LCX DATA Low-Voltage CMOS Logic

DATA SHEET CLASSIFICATIONS

Product Preview

This heading on a data sheet indicates that the device is in the formative stages or in design (under development). The disclaimer at the bottom of the first page reads: "This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice."

Advance Information

This heading on a data sheet indicates that the device is in sampling, pre-production, or first production stages. The disclaimer at the bottom of the first page reads: "This document contains information on a new product. Specifications and information herein are subject to change without notice."

Fully Released

A fully released data sheet contains neither a classification heading nor a disclaimer at the bottom of the first page. This document contains information on a product in full production. Guaranteed limits will not be changed without written notice to your Motorola Semiconductor Sales Office.

The data sheets contained in this book were the most current available as of the date of publication, October 1995.

A more current version of data sheets designated Product Preview or Advance Information may be available.

LCX Data

Low-Voltage CMOS Logic

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (4) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

SOIC is a trademark of Motorola, Inc. FACT is a trademark of National Semiconductor Corporation.

All other brand names and product names appearing in this publication are registered trademarks or trademarks of their respective holders.

Table of Contents

Introduction
Functional Selection Guide 1
Introduction to LCX 3
LCX Family Specifications 3
Definitions of Symbols 9
LCX Family Characteristics 10
LCX Applications Information 13
Device Datasheets
MC74LCX00
Quad 2-Input NAND Gate 24
MC74LCX02 Quad 2-Input NOR Gate 28
MC74LCX04 Hex Inverter 32
MC74LCX08 Quad 2-Input AND Gate 36
MC74LCX32 Quad 2-Input OR Gate 40
MC74LCX74 Dual D-Type Flip-Flop 44
MC74LCX86 Quad 2-Input XOR Gate 50
MC74LCX125 Quad Buffer 51
MC74LCX138 1-of-8 Decoder/Demultiplexer 55
MC74LCX157 Quad 2-Input Multiplexer 60
MC74LCX240 Octal Buffer (Inverting) 61
MC74LCX244 Octal Buffer 66
MC74LCX245 Octal Transceiver 71
MC74LCX257 Quad 2-Input Multiplexer with 3-State 76
MC74LCX373 Octal Transparent Latch 77
MC74LCX374 Octal D-Type Flip-Flop 82
MC74LCX540 Octal Buffer Flow Through Pinout (Inverting) 87
MC74LCX541 Octal Buffer Flow Through Pinout 92
MC74LCX543 Octal Latching Transceiver 97
MC74LCX573 Octal Transparent Latch Flow Through Pinout 103
MC74LCX574 Octal D-Type Flip-Flop Flow Through Pinout 108
MC74LCX646 Octal Transceiver/Registered Transceiver 113
MC74LCX652 Octal Transceiver/Registered Transceiver with Dual Enables 120
MC74LCX2952 Octal Registered Transceiver with Clock Enable 127
16-Bit Devices
MC74LCX1624016-Bit Buffer (Inverting)136
MC74LCX16244 16-Bit Buffer 141
MC74LCX16245 16-Bit Transceiver 146
MC74LCX16373 16-Bit Transparent Latch 151
MC74LCX16374 16-Bit D-Type Flip-Flop 156
MC74LCX16500 18-Bit Universal Bus Transceiver (Yes, it is 18-Bits) 161
MC74LCX16543 16-Bit Latching Transceiver 162
MC74LCX16646 16-Bit Transceiver/Registered Transceiver 163
MC74LCX16652 172
Reliability Information
Device Description 182
Processing Information 182
Qualification Introduction 183
Intrinsic Reliability 183
Extrinsic Reliability 183
Process Qualification Information 185
Process Qualification Summary 185
Intrinsic Reliability Results 185
Extrinsic Reliability Results/Data 185
Package Qualification 186
Package Qualification Summary 186
Reliability Audit Program Summary 186
Thermal Considerations 187
Ordering Information
Device Nomenclature 191
Case Outlines 192
Motorola Distributors and Worldwide Sales Offices 204

Functional Selection Guide

Motorola currently supplies three major product lines that interface with $3 V$ buses. Besides the LCX family that is highlighted in this data book, the LVQ and High-Speed CMOS (HC) families are guaranteed to be functional as low as 2 V VCC. A broad selection of LVQ and HC products are also included in this selection guide to assist you in finding a wide selection of products that fit your design needs.

The LCX family provides industry leading CMOS technology. LCX products are specially designed for 3V applications and have special features enabling LCX to interface directly with 5 V buses. This emerging logic family is available now with alternate sources already in place.

The LVQ product line also has DC and AC specifications

Abbreviations

```
S = Synchronous
A = Asynchronous
B = Both Synchronous and Asynchronous
2S = 2-State Output
3S = 3-State Output
N = Available Now
P = Planned (See Logic New Product Calendar,
    BR1332/D, for the latest availability and new
    product status)
- = No Current Plans or Not Applicable
```


Inverters

Description	Type of Output	No.	LCX	LVQ	HC
Hex	2 S	04	N	N	N
Hex, w/Open Drain Outputs	2 S	05	-	-	-

AND Gates

Description	Type of Output	No.	LCX	LVQ	HC
Quad 2-Input	2 S	08	P	P	N
Triple 3-Input	2 S	11	-	-	N

NAND Gates

Description	Type of Output	No.	LCX	LVQ	HC
Dual 4-Input	2 S	20	-	-	N
Quad 2-Input	2 S	00	P	N	N
Triple 3-Input	2 S	10	-	-	N

OR Gates

Description	Type of Output	No.	LCX	LVQ	HC
Quad 2-Input	$2 S$	32	P	P	N

for $V C C=3 V$. LVQ can be a less expensive solution when 5 V tolerance is not required.

The High-Speed CMOS HC product line is specified at 2 V , 4.5 V and 6 V supplies. There are a few HC products that have been specified at $3 V$ (contact your Motorola sales representative for information). Generally for designs not requiring fast propagation delays, users may estimate the 3 V propagation delays using the 2 V and 4.5 V numbers. Please see Motorola's High-Speed CMOS data book (DL129/D) for more information.

Motorola welcomes customer input for LCX family portfolio expansion.

NOR Gates

Description	Type of Output	No.	LCX	LVQ	HC
Quad 2-Input	2 S	02	P	P	N

Exclusive OR/NOR Gates

Description	Type of Output	No.	LCX	LVQ	HC
Quad 2-Input XOR	2 S	86	P	P	N
Quad 2-Input XNOR	2 S	7266	-	-	N

Schmitt Triggers

Description	Type of Output	No.	LCX	LVQ	HC
Hex, Inverting	2 S	14	-	-	N
Quad 2-Input, NAND	2 S	132	-	-	N

Filp-Flops

Description	Clock Edge	No.	LCX	LVQ	HC
Dual D w/Set \& Clear	Pos	74	P	P	N
Dual J \bar{K}	Pos	109	-	-	N

Multiplexers

Descriptlon	Type of Output	No.	LCX	LVQ	HC
8-to-1	2 S	151	-	-	N
	3 S	251	-	-	N
Dual 4-to-1, Non-Inverting	2 S	153	-	-	N
Quad 2-to-1, Inverting	3 S	253	-	-	N
Quad 2-to-1, Non-Inverting	2 S	158	-	-	N
	2 S	157	P	P	N
	3 S	257	P	P	N

Functional Selection Guide

Shift Registers

Description	No. of Bits	Type of Output	Mode*				No.	LCX	LVQ	HC
			SR	SL	Hold	Reset				
Parallel In-Parallel Out, Bidirectional	4	25	X	X	X	A	194	-	-	N
	8	35	X	x	X	A	299	-	-	N
8-Bit Serial In-Parallel/Serial Out With 3-State	8	35	-	X	X	A	595	-	-	N

*SR = Shift Right
SL $=$ Shift Left

Buffers/Line Drivers

Description	Type of Output	No.	LCX	LVQ	HC
Quad	3 S	125	P	P	N
	3 S	126	-	-	N
Octal, Non-Inverting	3 S	241	-	-	N
	3 S	244	N	N	N
Flow Through Pinout	3 S	541	N	P	N
16-Bit, Non-Inverting	3 S	16244	P	-	-
Octal, Inverting	3 S	240	N	N	N
Flow Through Pinout	3 S	540	N	P	N
16-Bit, Inverting	3 S	16240	P	-	-

Transceivers

Description	Type of Output	No.	LCX	LVQ	HC
Octal, Non-Inverting	3S	245	N	N	N
	3S	640	-	-	N
16-Bit, Non-Inverting	3S	16245	P	-	-
Octal, Non-Invert w/Reg	3S	646	P	P	N
	3S	652	P	P	-
16-Bit, Non-Invert w/Reg	3S	16646	P	-	-
Octal, Reg'd Transceiver	3S	16652	P	-	-
w/ Clock Enable	3S	2952	P	-	-
18-Bit, Univ Bus Trnscvr	3S	16500	P	-	-

Cascadable Synchronous Counters Positive Edge-Triggered

Description	Type of Output	Load	Reset	No.	LCX	LVQ	HC
Decade	2 S	S	A	160	-	-	N
	2 S	S	S	162	-	-	N
4-Bit Binary	2 S	S	A	161	-	-	N
	$2 S$	S	S	163	-	-	N

Decoders/Demultiplexers

Description	Type of Output	No.	LCX	LVQ	HC
Dual 1-of-4	2 S	139	$\overline{-}$	-	N
1 1-of-8	2 S	138	P	P	N

Latches

Description	Type of Output	No.	LCX	LVQ	HC
Addressable	2 S	259	-	-	N
Transparent, Inverting	3S	533	-	-	N
	3S	563	-	-	N
Octal, Non-Inverting	3S	573	N	P	N
Transparent	3S	373	N	P	N
16-Bit, Non-Inverting	3S	16373	P	-	-
Octal, Bidirectional	3S	543	P	P	-
16-Bit, Bidirectional	3S	16543	P	-	-

Flip-Flops/Registers

Description	No. of Bits	Type of Output	Set or Reset	No.	LCX	LVQ	HC
D-Type, Non-Inverting	6	$2 S$	A	174	-	-	N
	8	$2 S$	A	273	-	-	N
Flow Through Pinout	8	$3 S$	-	374	N	P	N
16-Bit, D-Type, Non-Inverting	8	$3 S$	-	574	N	P	N
D-Type, Inverting	16	$3 S$	-	16374	P	-	-

Introducing LCX
 Motorola's Low-Voltage CMOS Logic Family

Motorola's 3 V LCX family features 5V-tolerant inputs and outputs that enable easy transition from 5 V to mixed $3 \mathrm{~V} / 5 \mathrm{~V}$ systems or to 3V systems. Low power, low switching noise and fast switching speeds make this family perfect for low power portable applications as well as high-end, advanced workstation applications.

The unique feature of this family is its ability to interface to pure 3 V or both 3 V and 5 V buses in the same design without sacrificing performance. The LCX family improves system performance by drastically reducing static and dynamic power consumption which extends battery life for portable and handheld applications. Customers also realize simplified system design in mixed voltage environments, as well as expedited development of their low voltage systems. The 3V/5V interface using LCX, requires no other special components that would be necessary to protect other low voltage logic families that cannot tolerate signals beyond the VCC supply level.

The Motorola LCX family is available in industry standard JEDEC SOIC, EIAJ SOIC, SSOP type 2, and TSSOP packages. LCX family specifications range from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. The LCX family was developed in accordance with an alliance including Motorola and two other major semiconductor suppliers, so there are alternate sources available now.

- Designed for 2.7 to $3.6 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ Operation
- 5V Tolerant - Interface Capability With 5V TTL Logic
- Supports Live Insertion/Withdrawal (3-State Devices)
- IOFF Specification Guarantees High Impedance When VCC $=$ OV (3-State Devices)
- LVTTL Compatible
- LVCMOS Compatible
- 24mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current in All Three Logic States (10 1 A) Substantially Reduces System Power Requirements
- Latchup Performance Exceeds 500 mA
- ESD Performance: Human Body Model >2000V; Machine Model >200V

LCX Family Specifications

To assist the designer in evaluating the performance of Motorola's LCX family, data specifications and actual performance information are included here.

ABSOLUTE MAXIMUM RATINGS*

Symbol	Parameter	Value	Condition	Unit
V_{Cc}	DC Supply Voltage	-0.5 to +7.0		V
V_{1}	DC Input Voltage	-0.5 $\leq V_{1} \leq+7.0$		V
V_{0}	DC Output Voltage	-0.5 $\leq \mathrm{V}_{\mathrm{O}} \leq+7.0$	Output in 3-State	V
		$-0.5 \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}+0.51$	Output in HIGH or LOW State	V
IIK	DC Input Diode Current	-50	$V_{1}<\mathrm{GND}$	mA
IOK	DC Output Diode Current	-50	$V_{O}<$ GND	mA
		+50	$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$	mA
10	DC Output Source/Sink Current	± 50		mA
Icc	DC Supply Current Per Supply Pin	± 100		mA
IGND	DC Ground Current Per Ground Pin	± 100		mA
TSTG	Storage Temperature Range	-65 to +150		${ }^{\circ} \mathrm{C}$

* Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute-maximum-rated conditions is not implied.
1 l o absolute maximum rating must be observed.

LCX Family Specifications

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Typ	Max	Unit
$V_{C C}$	Supply VoltageOperating Data Retention Only	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 3.6 \end{aligned}$	V
V_{1}	Input Voltage	0		5.5	V
V_{O}	Output Voltage (HIGH or LOW State) (3-State)	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{gathered} \hline \mathrm{v}_{\mathrm{CC}} \\ 5.5 \end{gathered}$	V
${ }^{\mathrm{IOH}}$	HIGH Level Output Current, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$			-24	mA
lOL	LOW Level Output Current, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$			24	mA
$\mathrm{IOH}^{\text {I }}$	HIGH Level Output Current, $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V}$			-12	mA
${ }^{\mathrm{OL}}$	LOW Level Output Current, $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V}$			12	mA
T_{A}	Operating Free-Air Temperature	-40		+85	${ }^{\circ} \mathrm{C}$
$\Delta t / \Delta V$	Input Transition Rise or Fall Rate, V_{IN} from 0.8 V to 2.0 V , $V_{C C}=3.0 \mathrm{~V}$	0		10	ns N

DC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
			Min	Max	
$\mathrm{V}_{\text {IH }}$	HIGH Level Input Voltage (Note 1)	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$	2.0		V
V_{IL}	LOW Level Input Voltage (Note 1)	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$		0.8	V
V_{OH}	HIGH Level Output Voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{l}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}-0.2$		V
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; 1 \mathrm{OH}=-12 \mathrm{~mA}$	2.2		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$; $\mathrm{IOH}=-18 \mathrm{~mA}$	2.4		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$; $\mathrm{IOH}=-24 \mathrm{~mA}$	2.2		
VOL	LOW Level Output Voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{IOL}=100 \mu \mathrm{~A}$		0.2	v
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$		0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=16 \mathrm{~mA}$		0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$		0.55	
1	Input Leakage Current	$2.7 \mathrm{~V} \leq \mathrm{V}_{\text {CC }} \leq 3.6 \mathrm{~V} ; 0 \mathrm{~V} \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}$		± 5.0	$\mu \mathrm{A}$
loz	3-State Output Current	$\begin{gathered} 2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V} ; \\ \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }} \text { or } \mathrm{V}_{\text {IL }} \end{gathered}$		± 5.0	$\mu \mathrm{A}$
IOFF	Power-Off Leakage Current (Note 2)	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} ; \mathrm{V}_{1}$ or $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$		10	$\mu \mathrm{A}$
ICC	Quiescent Supply Current	$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{V}_{1}=\mathrm{GND}$ or V_{CC}		10	$\mu \mathrm{A}$
		$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; 3.6 \leq \mathrm{V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$		± 10	$\mu \mathrm{A}$
$\triangle^{\text {I }} \mathrm{CC}$	Increase in ICC per Input	$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$		500	$\mu \mathrm{A}$

NOTE 1: These values of V_{I} are used to test DC electrical characteristics only. Functional test should use $\mathrm{V}_{\text {IH }} \geq 2.4 \mathrm{~V}, \mathrm{~V}_{\text {IL }} \leq 0.5 \mathrm{~V}$. NOTE 2: IOFF is applicable only to devices with 3-state outputs.

DYNAMIC SWITCHING CHARACTERISTICS

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			Unit
			Min	Typ	Max	
Volp	Dynamic LOW Peak Voltage ${ }^{1}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\text {IH }}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$		0.8		V
Volv	Dynamic LOW Valley Voltage ${ }^{1}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\text {IH }}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$		0.8		V

1 Number of outputs defined as " n ". Measured with " $n-1$ " outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state.

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Unit
C_{PD}	Power Dissipation Capacitance	$10 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	NOTE 1	pF
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V}$ or V_{CC}	7	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V}$ or V_{CC}	8	pF
$\mathrm{C}_{\mathrm{l} / \mathrm{O}}$	Input/Output Capacitance ${ }^{2}$	$\mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V}$ or V_{CC}	8	pF

Function dependent, see individual datasheets.
2 Bidirectional devices only.

Figure 1. AC Waveforms

TEST	SWITCH
tPLH, tPHL	Open
tPZL, tPLZ	6 V
Open Collector/Drain tpLH and tPHL	6 V
tPZH, tPHZ	GND

$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ or equivalent (Includes jig and probe capacitance)
$R_{\mathrm{L}}=\mathrm{R}_{1}=500 \Omega$ or equivalent
$R_{T}=$ ZOUT of pulse generator (typically 50Ω)
Figure 2. Test Circuit

Figure 3. Test Input Signal Levels

Test Conditions

Figure 3 describes the input signal voltage levels to be used when testing LCX circuits. The AC test conditions follow industry convention requiring $\mathrm{V}_{I N}$ to range from O V for a logic LOW to 2.7V for a logic HIGH. The DC parameters are normally tested with V_{I} at guaranteed input levels, that is V_{IH} to V_{IL} (see datasheets for details). Care must be taken to adequately decouple these high performance parts and to protect the test signals from electrical noise. In an electrically noisy environment, (e.g., a tester and handler not specifically designed for high speed work), DC input levels may need adjustment to increase the noise margin allowance for the tester. This noise will not likely be seen in a system environment.

Noise immunity testing is performed by raising V_{I} to the nominal supply voltage of 3.3 V then dropping to a level corresponding to V_{IH} characteristics, and then raising it again to the 3.3V level. Noise tests are performed on the VIL characteristics by raising $\mathrm{V}_{\text {I }}$ from 0 V to V_{IL}, then returning to 0 V . Both V_{IH} and V_{IL} noise immunity tests should not induce a switch condition on the appropriate outputs of the LCX device.

Good high frequency wiring practices should be used in constructing test jigs. Leads on the load capacitor should be as short as possible to minimize ripples on the output wave form transitions and to minimize undershoot. Generous ground metal (preferably a ground plane) should be used for the same reasons. A VCC bypass capacitor should be provided at the test socket, also with minimum lead lengths.

Rise and Fall Times

Input signals should have rise and fall times of 2.5 ns and signal swing of OV to 2.7 V . Rise and fall times less than or equal to 1 ns should be used for testing $f_{\max }$ or pulse widths.

CMOS devices tend to oscillate when the input rise and fall times become lengthy. As a direct result of its increased performance, LCX devices can be more sensitive to slow input
rise and fall times than other lower performance technologies. Recommended edge rate is $\leq 10 \mathrm{~ns} / N$.

It is important to understand why this oscillation occurs. Consider the outputs, where the problem is initiated. Usually, CMOS outputs drive capacitive loads with low DC leakage. When the output changes from a HIGH level to a LOW level, or from a LOW level to a HIGH level, this capacitance is charged or discharged. With the present high performance technologies, charging or discharging takes place in a very short time, typically $2-3 n s$. The requirement to charge or discharge the capacitive loads quickly creates a condition where the instantaneous current change through the output structure is quite high. A voltage is generated across the VCC or ground leads inside the package due to the lead inductance. The internal ground of the chip will change in reference to the outside world because of this induced voltage.

Next, consider the inputs. If the internal ground changes, the input voltage level appears to change to the DUT. If the input rise time is slow enough, its level might still be in the threshold region, or very close to it, when the output switches. If the internally-induced voltage is large enough, it is possible to shift the threshold enough so that it re-crosses the input level. If the gain of the device is sufficient and the input rise or fall time is slow enough, then the device may go into oscillation. As device propagation delays become shorter, the inputs will have less time to rise or fall through the threshold region. As device gains increase, the outputs will swing more, creating more induced voltage. Instantaneous current change will be greater as outputs become quicker, generating more induced voltage.

Package-related causes of output oscillation are not entirely to blame for problems with input rise and fall time measurements. All testers have VCC and ground leads with some finite inductance. This inductance must be added to the inductance of the package to determine the overall voltage which will be induced when the outputs change. As the reference for the input signals moves further away from the pin
under test, the test will be more susceptible to problems caused by the inductance of the leads and stray noise. Any noise on the input signal will also cause problems.

Enable and Disable Times

Figure 7 and Figure 8 show that the disable times are measured at the point where the output voltage has risen or fallen by 0.3 V from the voltage rail level (i.e., ground for tpLZ or V_{CC} for tPHZ). This change enhances the repeatability of measurements, reduces test times, and gives the system designer more realistic delay times to use in calculating minimum cycle times. Since the high-impedance state rising or falling waveform is RC-controlled, the first 0.3 V of change is more linear and is less susceptible to external influences. More importantly, perhaps from the system designer's point of view, a change in voltage of 0.3 V is adequate to ensure that a device output has turned OFF. Measuring to a larger change in voltage merely exaggerates the apparent Disable time artificially penalizing system performance (since the designer must use the Enable and Disable times to figure worst case timing.)

Figure 4. Waveform for Inverting and Non-Inverting Functions

Figure 6. Setup Time, Hold Time and Recovery Time

Propagation Delay, fmax, Set, Hold, and Recovery Times

A 1 MHz square wave is recommended for most propagation delay tests. The repetition rate must necessarily be increased for testing $f_{\max }$. A 50% duty cycle should always be used when testing fmax. Two pulse generators are usually required for testing such parameters as setup time (t_{s}), hold time (th), recovery time (t REC) shown in Figure 6.

Electrostatic Discharge

Precautions should be taken to prevent damage to devices by electrostatic discharge. Static charge tends to accumulate on insulated surfaces such as synthetic fabrics or carpeting, plastic sheets, trays, foam, tubes or bags, and on ungrounded electrical tools or appliances. The problem is much worse in a dry atmosphere. In general, it is recommended that individuals take the precaution of touching a known ground before handling devices. To effectively avoid electrostatic damage to LCX devices, it is recommended that individuals wear a grounded wrist strap when handling devices. More often, handling equipment, which is not properly grounded, causes damage to parts. Ensure that all plastic parts of the tester, which are near the device, are conductive and connected to ground.

Figure 5. Propagational Delay, Pulse Width and trec Waveforms

Figure 7. 3-State Output High Enable and Disable Times

$$
V_{m}=1.5 \mathrm{~V}
$$

Figure 8. 3-State Output Low Enable and Disable Times

Definitions of Symbols

DC Characteristics

Currents Positive current is defined as conventional current flow into a device. Negative current is defined as current flow out of a device.
Voltages All voltages are referenced to the ground pin.
ICC The current flowing into the VCC supply terminal when the device is at a quiescent state.
ICCH The current flowing into the VCC supply terminal when the outputs are in the HIGH state.
ICCL The current flowing into the VCC supply terminal when the outputs are in the LOW state.
ICCZ The current flowing into the VCC supply terminal when the outputs are disabled (high impedance).
$\triangle \mathrm{ICC} \quad$ Additional ICC due to TTL HIGH levels forced on CMOS inputs.
II Input Current. The current flowing into or out of an input when a specified LOW or HIGH voltage is applied to that input.
$\mathrm{IOH} \quad$ Output HIGH Current. The current flowing out of an output which is in the HIGH state.
IOL Output LOW Current. The current flowing into an output which is in the LOW state.
IOS Output Short Circuit Current. The current flowing out of an output in the HIGH state when that output is shorted to ground (or other specified potential).
IOZ Output high impedance current. The current flowing into or out of a disabled output when specified LOW or HIGH voltage is applied to that output.
IOFF Input/Output power-off leakage current. The maximum leakage current into or out of the input/output transistors when forcing the input/output from 0 V to 5.5 V with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$.
VCC Supply Voltage. The range of power supply voltages over which the device is guaranteed to operate.
$\mathrm{V}_{\mathrm{IH}} \quad$ Input HIGH Voltage. The minimum input voltage that is recognized as a DC HIGH level.
$V_{I L} \quad$ Input LOW Voltage. The maximum input voltage that is recognized as a DC LOW level.
VOH Output HIGH Voltage. The voltage at an output conditioned HIGH with a specified output load and $V_{C C}$ supply voltage.
VOL Output LOW Voltage. The voltage at an output conditioned LOW with a specified output load and $V_{C C}$ supply voltage.
VOLP Maximum (peak) voltage induced on a static LOW output during switching of other outputs.
VOLV Minimum (valley) voltage induced on a static LOW output during switching of other outputs.

AC Characteristics

$f_{\text {max }}$ Toggle Frequency/Operating Frequency - The maximum rate at which clock pulses may be applied to a sequential circuit. Above this frequency the device may cease to function properly.
tplH Propagation Delay Time - The time between the specified reference points, on the input and output voltage waveforms, with the output changing from the defined LOW level to the defined HIGH level.
tpHL Propagation Delay Time - The time between the specified reference points, on the input and output voltage waveforms, with the output changing from the defined HIGH level to the defined LOW level.
$\mathbf{t}_{\mathbf{W}}$ Pulse Width - The time between specified amplitude points of the leading and trailing edges of a pulse.
t_{h} Hold Time - The interval immediately following the active transition of the timing pulse (usually the clock pulse) or following the transition of the control input to its latching level, during which interval the data to be recognized must be maintained at the input to ensure its continued recognition.
$t_{\mathbf{S}}$ Setup Time-The interval immediately preceding the active transition of the timing pulse (usually the clock pulse) or preceding the transition of the control input to its latching level, during which interval the data to be recognized must be maintained at the input to ensure its recognition.
tpHZ Output Disable Time (of a 3-state Output) from HIGH Level - The time between specified levels on the input and a voltage 0.3 V below the steady state output HIGH level with the 3-state output changing from the defined HIGH level to a high impedance (OFF) state.
tplZ Output Disable Time (of a 3-state Output) from LOW Level - The time between specified levels on the input and a voltage 0.3 V above the steady state output LOW level with the 3-state output changing from the defined LOW level to a high impedance (OFF) state.
tPZH Output Enable Time (of a 3-state Output) to a HIGH Level - The time between the specified levels of the input and output voltage waveforms with the 3-state output changing from a high impedance (OFF) state to a HIGH level.
tPZL Output Enable Time (of a 3-state Output) to a LOW Level - The time between the specified levels of the input and output voltage waveforms with the 3-state output changing from a high impedance (OFF) state to a LOW level.
trec Recovery Time - The time between the specified level on the trailing edge of an asynchronous input control pulse and the same level on a synchronous input (clock) pulse such that the device will respond to the synchronous input.

LCX Family Characteristics

LCX and LVT Products

Product Family	74LCX	74LVT
Technology	CMOS	BiCMOS
ICCL (mA)	0.01	12.0
ICC vs Frequency (50 MHz)	130 mA	275 mA
Speed ('244 Max)	6.5 ns	4.1 ns
Drive (2.0V/0.55V) JEDEC (2.4V/0.4V)	$\begin{gathered} >-24 m A / 24 m A \\ -18 m A / 16 m A \end{gathered}$	$\begin{gathered} -32 m A / 64 m A \\ -8 m A / 16 m A \end{gathered}$
5 V Tolerant $\begin{array}{l}\text { Inputs } \\ \text { Outputs }\end{array}$ P	$\begin{aligned} & \text { YES } \\ & \text { YES } \end{aligned}$	$\begin{aligned} & \text { YES } \\ & \text { YES* } \end{aligned}$
Power-Down High-Z	YES	YES
Data Retention	YES	NO

* LVT claims 5 V -Tolerant outputs, but it is not specified.

The following graph compares the 5V-tolerance capability of LCX and LVT. When LCX is not driving the bus (outputs are disabled), the levels on that bus can exceed the LCX VCC with no adverse effect on the device or any loading on the bus. In fact, test data shows that a disabled LCX output can "tolerate" signals over 13 V on the outputs.

5V Output Tolerance

$$
\text { (Ioz vs Vout, } \left.V_{C C}=2.7 \mathrm{~V},+25^{\circ} \mathrm{C}\right)
$$

Another advantage of the LCX family is the low dynamic current. Low dynamic current means low power consumption. Low power consumption means smaller power supplies, longer battery life and physically smaller systems. The following graph shows the Motorola 74LCX245's ICC vs. Frequency performance with 8 outputs switching. To give an idea of power improvement that can be had with low voltage logic, a 74LCX 245 consumes about the same power running at 35 MHz that a 74 F 245 does statically. At 100 MHz the LCX device only consumes about 200 mA .

ICC versus Frequency
$\left(25^{\circ} \mathrm{C}, 3.3 \mathrm{~V}\right)$

LCX Family Characteristics

LCX — Low-Voltage CMOS Logic (With 5V-Tolerant Inputs and Outputs)

The LCX family represents Motorola's Low-Voltage CMOS family. These devices offer mixed 3V-5V capability and are recommended for applications where 3.3 V and 5 V subsystems interface with one another and where low power consumption is a necessity. The input and output (Note 1) structures of the LCX family of products will tolerate input and output node exposure to signals or DC levels that exceed the VCC level (Note 2). Refer to Figure 9 for schematic description of a typical LCX circuit. Note that the output PMOS device P1 has its bulk potential supplied by the output of the comparator X1 rather than by V_{CC} as in conventional CMOS. The circuitry contained within the comparator is designed such that the output is always the greater of $V_{C C}$ or V_{O}. This technique circumvents the $\mathrm{P}+/ \mathrm{N}$ - bulk-source forward junction that usually appears between the PMOS drain at the output and the bulk connection of the output PMOS which is usually tied to V_{CC}. Eliminating this junction is fundamental to the powered-down high Z and overvoltage tolerance features that distinguish Motorola's LCX family from other Low-Voltage CMOS products.

NOTE 1: U.S. patent pending.
NOTE 2: Output overvoltage is permitted unconditionally for 3-stated outputs. For active outputs, see datasheet.

Figure 9. Simplified LCX Schematic Diagram

LCX Applications Information

Introduction

Many system designers concerned about reducing power in mobile computing, portable systems and communications may be unnecessarily avoiding the use of 3.3 V products because of either cost or the dreaded $3 \mathrm{~V} / 5 \mathrm{~V}$ interface. Cost may be a concern, but nearly every new 3.3 V device has better performance - either increased speed or reduced power - when compared to a 5 V "counterpart". In the long run it could easily cost the equipment maker more to continue with older technology rather than make the move to 3.3 V or mixed $3.3 \mathrm{~V} / 5 \mathrm{~V}$ systems.

There are three major reasons that chip manufacturers are accelerating the introduction of low voltage devices. First-DRAM manufacturers are worried about damage to products with fine geometries. As memory becomes more dense, feature geometries by necessity shrink. Voltages as high as 5 V would damage these compactly designed RAMs. Second-as processor manufacturers have increased the - performance of their chips, they have found that packages could not handle the increased power dissipation need. The enabling factor is the move to 3.3 V supplies. Power dissipation varies by the ratio of the squares of the V_{CC}, (PD $\cong\left(V_{C C}{ }^{2}\right)$ (capacitance)(frequency)), so the ratio of reduction in power is $3.3^{2} / 5^{2}(11 / 25)$ when moving from 5 V to 3.3 V . Third-Battery-powered system manufactures are continually working for extended battery life. Obviously a $56+\%$ reduction in power would considerably extend battery life. There are other benefits as well. Smaller packaging can be used to house the low voltage chips-saving board space and making the end product smaller and lighter. Smaller or fewer power supplies are required, and costly, space- hogging heat dissipating equipment can be eliminated.

Most 3.3V logic families can directly interface only with other 3.3V products. LVC, LVX, VHC, LVQ, FCT3, and HC product families are lines that may work well for pure 3.3 V system interface. Of these families only LVX guarantees 5 V -tolerant inputs. The other families can tolerate maximum input and output levels of only $V_{C C}+0.5 \mathrm{~V}$. If a 5 V TTL bus voltage swings to levels that exceed these specifications then the non 5 V -tolerant products may be damaged, destroyed, load the bus, or current may be sourced into its 3.3V supply. Not only is it important to be 5V-tolerant on the inputs but to be 5 V -tolerant on the outputs as well.

The LCX family provides the necessary circuitry to bridge the technology gap between the 5 V and 3.3 V worlds. The inputs of this low voltage family can be safely driven to 5.5 V , guaranteed, easily handling a 5 V TTL or 5 V CMOS interface on the input bus. When the LCX device outputs, or I/Os, have finished their tasks and are in the high-impedance state, the voltage levels on the bus to which they are tied may rise well above the $3.3 \mathrm{~V} V_{C C}$, up to 5.5 V without loading the bus or causing damage to the device or power supply, guaranteed. This capability has been properly termed 5V tolerant, rather than $3.3 \mathrm{~V} / 5 \mathrm{~V}$ translation which is a misnomer. (Products that are powered by 3.3 V supplies do not drive 5 V rail-to-rail
output swings. Dual $3.3 \mathrm{~V} / 5 \mathrm{~V}$ supply devices are needed to drive 5 V CMOS level outputs.)

There is no longer reason to fear mixed voltage designs. The LCX family is available now to help you bridge the 3.3V-5V interface.

Interfacing Dual Systems

To properly interface between integrated circuits, it is imperative that input and output specifications be reviewed and voltage and current levels satisfied. Output specifications ($\mathrm{VOH}_{\mathrm{OH}}$ and V_{OL}) of the driving device must meet or exceed the input requirements (V_{IH} and V_{IL}) of the receiving device for the interface to function properly. Meeting these requirements protects against malfunction when operating in environments which may induce noise to the interface.

The 5 V power supply has been the standard for many years in the IC world. Several product families have been introduced with varying speeds, drive capabilities, and power requirements. Because of this many I/O standards have evolved complicating the interface between 5 V devices. The move to 3.3 V power supplies actually simplifies the interface problem. Pure Bipolar products do not function well at 3.3 V , so the core technology is either BiCMOS or pure CMOS. In a pure 3.3V MOS environment the interface can be made directly - inputs and outputs. However, it will be several years before all system components operate from 3.3 V supplies. This is especially true for peripheral devices such as printers, displays, and faxes.

Interfacing 5V-TTL to Pure 3.3V Logic
 (No 5V-Tolerance)

When the desired interface is 5 V -TTL to pure 3.3V CMOS (such as LVQ), the solution may become a little messy. The designer must make sure that the $5 \mathrm{~V}-\mathrm{TTL}$ outputs do not exceed the 3.3V CMOS input specifications. There are a few options available to protect the 3.3 V device from excessive input current. The 3.3V and 5 V power supplies should be regulated together. It would also be a benefit to run the 5 V supply on the low side reducing the $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{OH}}$ difference. If, however, the power supplies are not regulated together and the supplies end up at $5 \mathrm{~V}+10 \%$ and $3.3 \mathrm{~V}-10 \%$ then the 3.3 V CMOS input specifications would likely be violated. To keep within the 3.3V CMOS input specification the 5V-TTL output cannot exceed $0.5 \mathrm{~V}+\mathrm{V}_{\mathrm{CC}}$ of the CMOS device. The simplest way to ensure that V_{OH} remains within the input specification is to use a parallel termination resistor tied to ground. There are also CMOS switches that can be placed between the 5 V and 3.3 V devices to reduce the V_{OH}, but this solution can be very expensive.

Interfacing 5V-CMOS to Pure 3.3V Logic

(No 5V-Tolerance)
When the interface is a 5 V CMOS device and a 3.3 V CMOS device without 5 V -tolerance, the problem is much like the 5V-TTL interface - but worse. The output of the 5 V device must be reduced or large currents will flow into the
3.3V device. This type of interface is simply not recommended.

Interfacing Pure 3.3V Logic to 5V Inputs

(No 5V Output Tolerance)
Interfacing 3.3V CMOS to 5V-TTL inputs can be done directly. LVCMOS/LVTTL output specifications and 5V-TTL input specifications are compatible. Be aware of 5 V buses that have pull-up resistors on the inputs. If pull-up resistors are used then pull-down resistors should be used to compensate and reduce a high voltage level to within the output specification range of the 3.3 V device. Interfacing a 3.3V CMOS output to a 5 V CMOS output should NEVER be done. The output swing of the 3.3 V device is insufficient to drive the 5V CMOS device. If a pull-up resistor to 5 V VCC was used to raise the input level high enough to drive the 5 V CMOS input then massive current would flow into the 3.3 V device output.

Interfacing to 5V-Tolerant LCX Devices

Many of the problems and concerns associated with pure 3.3V interface can be resolved simply by using 5 V -tolerant LCX devices. L.CX tolerates 5V-TTL or 5V CMOS levels on its inputs. There is no inherent leakage path that would damage the device or in any way adversely affect these interfaces.

The 5 V -tolerant output feature protects the 3.3 V bus from high signal excursions on the 5 V bus when the 3.3 V bus is inactive (3-State). Only LCX devices with 3-State capability have 5 V -tolerant outputs. Gates and MSI products without 3-State capability have 5V-tolerant inputs but not 5 V -tolerant outputs. When an LCX device is enabled the 5 V output tolerance is not active and will not protect the LCX device in cases of bus contention. Care must be taken to ensure that the LCX device is 3-Stated when there are 5 V signals present on the bus.

5 V signals can also be caused by the use of pull-ups on the 5 V bus. Similarly certain 5 V devices with internal pull-ups could cause leakage current into the LCX enabled outputs. Pay close attention to the 5 V device data sheets to be sure that 5 V pull-ups do not exist on the 5 V bus. Do not interface an LCX output to a 5 V CMOS input. The V_{OH} level of LCX devices is not high enough to reliably drive a 5 V CMOS input.

Summary

LCX is recommended for interfacing 3 V and 5 V buses. LCX is CMOS based, so it is very stingy when it comes to power consumption - perfect for battery powered applications. Built on Motorola's .8 micron CMOS process, LCX has high drive and high speed making it perfect for many high end applications, and 5 V -tolerant inputs and outputs makes LCX ideal for use in mixed voltage environments.

Figure 10. LCX System Block Dlagram

Design Considerations

The LCX family was designed to alleviate many of the drawbacks that are common to current low-voltage logic circuits. LCX combines the low static power consumption and the high noise margins of CMOS with a high fan-out, low input loading and a 50Ω transmission line drive capability.

Performance features such as 5 ns speeds at CMOS power levels, $\pm 24 \mathrm{~mA}$ drive, excellent noise, ESD and latch-up immunity are characteristics that designers of state-of-the-art systems require. LCX provides this level of performance. To fully utilize the advantages provided by LCX, the system designer should have an understanding of the flexibility as well as the trade-offs of CMOS design. The following section discusses common design concerns relative to the performance and requirements of LCX.

There are six items of interest which need to be evaluated when implementing LCX devices in new designs:

- Thermal Management - circuit performance and longterm circuit reliability are affected by die temperature.
- Interfacing - interboard and technology interfaces, battery backup and power down or live insertextract systems require some special thought.
- Transmission Line Driving - LCX has excellent line driving capabilities.
- Noise effects - As edge rates increase, the probability of crosstalk and ground bounce problems increases. The enhanced noise immunity and high threshold levels improve LCX's resistance to crosstalk problems.
- Board Layout - Prudent board layout will ensure that most noise effects are minimized.
- Power Supplies and Decoupling - Maximize ground and $V_{C C}$ traces to keep $V_{C C}$ ground impedance as low as possible; full ground $N_{\text {CC }}$ planes are best. Decouple any device driving a transmission line; otherwise add one capacitor for every package

Thermal Management

Circuit performance and long-term circuit reliability are affected by die temperature. Normally, both are improved by keeping the IC junction temperatures low.

Electrical power dissipated in any integrated circuit is a source of heat. This heat source increases the temperature of the die relative to some reference point, normally the ambient temperature of $25^{\circ} \mathrm{C}$ in still air. The temperature increase, then, depends on the amount of power dissipated in the circuit and on the net thermal resistance between the heat source and the reference point. See the Thermal Management Considerations Section on page 187 for LCX power calculations.

The temperature at the junction is a function of the packaging and mounting system's ability to remove heat generated in the circuit - from the junction region to the ambient environment. The basic formula for converting power dissipation to estimated junction temperature is:

$$
\begin{equation*}
T_{J}=T_{A}+P_{D}\left(\bar{\theta} J C+\vec{\theta}_{C A}\right) \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathrm{T}_{J}=\mathrm{T}_{\mathrm{A}}+\mathrm{P}_{\mathrm{D}}\left(\bar{\theta}_{\mathrm{JA}}\right) \tag{2}
\end{equation*}
$$

where

$T_{J}=$ maximum junction temperature
$T_{A}=$ maximum ambient temperature
$P_{D}=$ calculated maximum power dissipation including effects of external loads (see Power Dissipation in section III).
$\bar{\theta}_{\mathrm{\theta}} \mathrm{CC}=$ average thermal resistance, junction to case
$\bar{\theta} \mathrm{CA}=$ average thermal resistance, case to ambient
$\bar{\theta}_{\mathrm{JA}}=$ average thermal resistance, junction to ambient
This Motorola recommended formula has been approved by RADC and DESC for calculating a "practical" maximum operating junction temperature for MIL-M-38510 (JAN) devices.

Only two terms on the right side of equation (1) can be varied by the user - the ambient temperature, and the device case-to-ambient thermal resistance, $\bar{\theta} \mathrm{CA}$. (To some extent the device power dissipation can also be controlled, but under recommended use the VCC supply and loading dictate a fixed power dissipation.) Both system air flow and the package mounting technique affect the $\bar{\theta} \mathrm{CA}$ thermal resistance term. $\bar{\theta}_{\mathrm{JC}}$ is essentially independent of air flow and external mounting method, but is sensitive to package material, die bonding method, and die area.

For applications where the case is held at essentially a fixed temperature by mounting on a large or temperaturecontrolled heat sink, the estimated junction temperature is calculated by:

$$
\begin{equation*}
T_{J}=T_{C}+P_{D}\left(\bar{\theta}_{J C}\right) \tag{3}
\end{equation*}
$$

where $T_{C}=$ maximum case temperature and the other parameters are as previously defined.

Air Flow

The effect of air flow over the packages on $\bar{\theta}_{J A}$ (due to a decrease in $\bar{\theta} \mathrm{CA}$) reduces the temperature rise of the package, therefore permitting a corresponding increase in power dissipation without exceeding the maximum permissible operating junction temperature.

Even though different device types mounted on a printed circuit board may each have different power dissipations, all will have the same input and output levels provided that each is subject to identical air flow and the same ambient air temperature. This eases design, since the only change in levels between devices is due to the increase in ambient temperatures as the air passes over the devices, or differences in ambient temperature between two devices.

The majority of users employ some form of air-flow cooling. As air passes over each device on a printed circuit board, it absorbs heat from each package. This heat gradient from the first package to the last package is a function of the air flow rate and individual package dissipations.

Optimizing The Long Term Reliability of Plastic Packages

Todays plastic integrated circuit packages are as reliable as ceramic packages under most environmental conditions. However when the ultimate in system reliability is required, thermal management must be considered as a prime system design goal.

Design Considerations

Modern plastic package assembly technology utilizes gold wire bonded to aluminum bonding pads throughout the electronics industry. When exposed to high temperatures for protracted periods of time an intermetallic compound can form in the bond area resulting in high impedance contacts and degradation of device performance. Since the formation of intermetallic compounds is directly related to device junction temperature, it is incumbent on the designer to determine that the device junction temperatures are consistent with system reliability goals.

Predicting Bond Fallure Time

Based on the results of almost ten (10) years of $+125^{\circ} \mathrm{C}$ operating life testing, a special arrhenius equation has been developed to show the relationship between junction temperature and reliability.

$$
\text { (1) } \grave{\mathrm{T}}=\left(6.376 \times 10^{-9}\right) \mathrm{e}\left[\frac{11554.267}{273.15+\mathrm{TJ}}\right] \text {. }
$$

Where: $\mathrm{T}=$ Time in hours to 0.1% bond failure (1 failure per 1,000 bonds).
$\mathrm{T}_{\mathrm{J}}=$ Device junction temperature, ${ }^{\circ} \mathrm{C}$.
And:
(2) $T_{J}=T_{A}+P_{D} \theta_{J A}=T_{A}+\Delta T_{J}$

Where: $T_{J}=$ Device junction temperature, ${ }^{\circ} \mathrm{C}$.
$\mathrm{T}_{\mathrm{A}}=$ Ambient temperature, ${ }^{\circ} \mathrm{C}$.
PD = Device power dissipation in watts.
$\theta_{J A}=$ Device thermal resistance, junction to air, ${ }^{\circ} \mathrm{C} /$ Watt.
$\Delta T_{J}=$ Increase in junction temperature due to onchip power dissipation.
Table 1 shows the relationship between junction temperature, and continuous operating time to 0.1% bond failure, (1 failure per 1,000 bonds).

TABLE 1 - DEVICE JUNCTION TEMPERATURE versus TIME TO 0.1\% BOND FAILURES.

Junction Temperature ${ }^{\circ} \mathbf{C}$	Tlme, Hours	Tlme, Years
80	$1,032,200$	117.8
90	419,300	47.9
100	178,700	20.4
110	79,600	9.4
120	37,000	4.2
130	17,800	2.0
140	8,900	1.0

Table 1 is graphically illustrated in Figure 11 which shows that the reliability for plastic and ceramic devices is the same until elevated junction temperatures induce intermetallic failures in plastic devices. Early and mid-life failure rates of plastic devices are not effected by this intermetallic mechanism.

Figure 11. Failure Rate versus Time
Junction Temperature

Procedure

After the desired system failure rate has been established for failure mechanisms other than intermetallics, each device in the system should be evaluated for maximum junction temperature. Knowing the maximum junction temperature, refer to Table 1 or Equation 1 to determine the continuous operating time required to 0.1% bond failures due to intermetallic formation. At this time, system reliability departs from the desired value as indicated in Figure 11.

Air flow is one method of thermal management which should be considered for system longevity. Other commonly used methods include heat sinks for higher powered devices, refrigerated air flow and lower density board stuffing. Since $\bar{\theta} C A$ is entirely dependent on the application, it is the responsibility of the designer to determine its value. This can be achieved by various techniques including simulation, modeling, actual measurement, etc.

The material presented here emphasizes the need to consider thermal management as an integral part of system design and also the tools to determine if the management methods being considered are adequate to produce the desired system reliability.

Line Driving

With the available high-speed logic families, designers can reach new heights in system performance. Yet, these faster devices require a closer look at transmission line effects.

Although all circuit conductors have transmission line properties, these characteristics become significant when the edge rates of the drivers are equal to or less than three times the propagation delay of the line. Significant transmission line properties may be exhibited in an example where devices have edge rates of 3 ns and lines of 8 inches or greater, assuming propagation delays of $1.7 \mathrm{~ns} / \mathrm{ft}$ for an unloaded printed circuit trace.

Of the many properties of transmission lines, two are of major interest to the system designer: $Z_{0 e}$, the effective equivalent impedance of the line, and $t_{\text {pde }}$, the effective propagation delay down the line. It should be noted that the intrinsic values of line impedance and propagation delay, Z_{0} and tpd, are geometry-dependent. Once the intrinsic values are known, the effects of gate loading can be calculated. The loaded values for Z_{oe} and $\mathrm{t}_{\mathrm{pde}}$ can be calculated with:

$$
\begin{aligned}
& z_{o e}=\frac{z_{0}}{\sqrt{1+C_{t} / C_{1}}} \\
& t_{\mathrm{pde}}=t_{\mathrm{pd}} \sqrt{1+C_{t} / C_{1}}
\end{aligned}
$$

where $C_{l}=$ intrinsic line capacitance and $C_{t}=$ additional capacitance due to gate loading.

The formulas indicate that the loading of lines decreases the effective impedance of the line and increases the propagation delay. Lines that have a propagation delay greater than one third the rise time of the signal driver should be evaluated for transmission line effects. When performing transmission line analysis on a bus, only the longest, most heavily loaded and the shortest, least loaded lines need to be analyzed. All lines in a bus should be terminated equally; if one line requires termination, all lines in the bus should be terminated. This will ensure similar signals on all of the lines.

There are several termination schemes which may be used. Included are series, parallel, AC parallel and Thevenin terminations. AC parallel and series terminations are the most useful for low power applications since they do not consume any DC power. Parallel and Thevenin terminations experience high DC power consumption.

Termination Schemes

a: No Termination

b: Series Termination

c: Parallel Termination

d: AC Parallel Termination

e: Thevenin Termination

Figure 12. Termination Schemes

Series Terminations

Series terminations are most useful in high-speed applications where most of the loads are at the far end of the line. Loads that are between the driver and the end of the line will receive a two-step waveform. The first wave will be the incident wave. The amplitude is dependent upon the output impedance of the driver, the value of the series resistor and the impedance of the line according to the formula

$$
V_{W}=V_{C C} \cdot Z_{o e} /\left(Z_{0 e}+R_{S}+Z_{S}\right)
$$

The amplitude will be one-half the voltage swing if RS (the series resistor) plus the output impedance (Z_{S}) of the driver is equal to the line impedance. The second step of the waveform is the reflection from the end of the line and will have an amplitude equal to that of the first step. All devices on the line will receive a valid level only after the wave has propagated down the line and returned to the driver. Therefore, all inputs will see the full voltage swing within two times the delay of the line.

Parallel Termination

Parallel terminations are not generally recommended for CMOS circuits due to their power consumption, which can exceed the power consumption of the logic itself. The power consumption of parallel terminations is a function of the resistor value and the duty cycle of the signal. In addition, parallel termination tends to bias the output levels of the driver towards either VCC or ground. While this feature is not desirable for driving CMOS inputs, it can be useful for driving TTL inputs.

AC Parallel Termination

AC parallel terminations work well for applications where the delays caused by series terminations are unacceptable. The effects of AC parallel terminations are similar to the effects of standard parallel terminations. The major difference is that the capacitor blocks any DC current path and helps to reduce power consumption.

Design Considerations

Thevenin Termination

Thevenin terminations are also not generally recommended due to their power consumption. Like parallel termination, a DC path to ground is created by the terminating resistors. The power consumption of a Thevenin termination will generally not be a function of the signal duty cycle. Thevenin terminations are more applicable for driving CMOS inputs because they do not bias the output levels as paralleled terminations do. It should be noted that lines with Thevenin terminations should not be left floating since this will cause the input levels to float between $V_{C C}$ or ground, increasing power consumption.

LCX circuits have been designed to drive 50Ω transmission lines over the full temperature range.

LCX devices also feature balanced totem pole output structures to allow equal source and sink current capability. This provides balanced edge rates and equal rise and fall times. Balanced drive capability and transition times eliminates the need to calculate two different delay times for each signal path and the requirement to correct signal polarity for the shortest delay time.

Noise Effects

LCX offers excellent noise immunity. However, even the most advanced technology alone cannot eliminate noise problems. Good circuit board layout techniques are essential to take full advantage of the superior performance of LCX circuits.

Well-designed circuit boards also help eliminate manufacturing and testing problems.

Another recommended practice is to segment the board into a high-speed area, a medium-speed area and a lowspeed area. The circuit areas with high current requirements (i.e., buffer circuits and high-speed logic) should be as close to the power supplies as possible; low-speed circuit areas can be furthest away.

Decoupling capacitors should be adjacent to all buffer chips; they should be distributed throughout the logic: one capacitor per chip. Transmission lines need to be terminated to keep reflections minimal. To minimize crosstalk, long signal lines should not be close together.

Crosstalk

The problem of crosstalk and how to deal with it is becoming more important as system performance and board densities increase. Crosstalk is the capacitive coupling of signals from one line to another. The amplitude of the noise generated on the inactive line is directly related to the edge rates of the signal on the active line, the proximity of the two lines and the distance that the two lines are adjacent.

Crosstalk has two basic causes. Forward crosstalk, Figure 13 , is caused by the wavefront propagating down the printed circuit trace at two different velocities. This difference in velocities is due to the difference in the dielectric constants of air $\left(\epsilon_{r}=1\right)$ and epoxy glass $\left(\epsilon_{r}=4.7\right)$. As the wave propagates down the trace, this difference in velocities will cause one edge to reach the end before the other. This delay is the cause of forward crosstalk; it increases with longer trace length, so consequently the magnitude of forward crosstalk will increase with distance.

Reverse crosstalk, Figure 14, is caused by the mutual inductance and capacitance between the lines which is a
transformer action. Reverse crosstalk increases linearly with distance up to a critical length. This critical length is the distance that the signal can travel during its rise or fall time.

Although crosstalk cannot be totally eliminated, there are some design techniques that can reduce system problems resulting from crosstalk. LCX's industry-leading noise margins makes it easier to design systems immune to crosstalk-related problems.

Figure 13. Forward Crosstalk on PCB Traces

Key	Vertical Scale	Horizontal Scale
- Active Driver	1.0 V/Div	$50 \mathrm{~ns} / \mathrm{Div}$
Forward Crosstalk	0.2 V/Div	5.0 ns/Div
Active Receiver	1.0 V/Div	5.0 ns/Div

This figure shows traces taken on a test fixture designed to exaggerate the amplitude of crosstalk pulses.

Figure 14. Reverse Crosstalk on PCB Traces

Key	Vertical Scale	Horizontal Scale
$\ldots-\ldots$ Active Driver	$1.0 \mathrm{~V} / \mathrm{Div}$	$50 \mathrm{~ns} / \mathrm{Div}$
	$0.2 \mathrm{~V} / \mathrm{Div}$	$5.0 \mathrm{~ns} / \mathrm{Div}$
	Forward Crosstalk	Active Receiver

This figure shows traces taken on a test fixture designed to exaggerate the amplitude of crosstalk pulses.

Ground Bounce

Ground bounce occurs as a result of the intrinsic characteristics of the leadframes and bondwires of the packages used to house CMOS devices. As edge rates and drive capability increase in advanced logic families, the effects of these intrinsic electrical characteristics become more pronounced.

Figure 15 shows a simple circuit model for a device in a leadframe driving a standard test load. The inductor L1 represents the parasitic inductance in the ground lead of the package; inductor L2 represents the parasitic inductance in the power lead of the package; inductor L3 represents the parasitic inductance in the output lead of the package; the resistor R1 represents the output impedance of the device output, and the capacitor and resistor C_{L} and R_{L} represent the standard test load on the output of the device.

Figure 15. Output Model

Figure 16. Output Voltage

Figure 17. Output Current

Figure 18. Inductor Voltage

Design Considerations

The three waveforms shown in Figure 16 through Figure 18 depict how ground bounce is generated. The first waveform shows the voltage (V) across the load as it is switched from a logic HIGH to a logic LOW. The output slew rate is dependent upon the characteristics of the output transistor, the inductors L1 and L3, and C_{L}, the load capacitance. The second waveform shows the current that is generated as the capacitor discharges [$I=C_{L} \cdot d V / d t$]. The third waveform shows the voltage that is induced across the inductance in the ground lead due to the changing currents $\left[V_{g b}=-L \bullet(d / / d t)\right]$.

There are many factors which affect the amplitude of the ground bounce. Included are:

- Number of outputs switching simultaneously: more outputs result in more ground bounce.
- Type of output load: capacitive loads generate two to three times more ground bounce than typical system traces. Increasing the capacitive load to approximately $60-70 \mathrm{pF}$ increases ground bounce. Beyond 70 pF, ground bounce drops off due to the filtering effect of the load. Moving the load away from the output reduces the ground bounce.
- Location of the output pin: outputs closer to the ground pin exhibit less ground bounce than those further away.
- Voltage: lowering $V_{C C}$ reduces ground bounce.
- Test fixtures: standard test fixtures generate 30 to 50% more ground bounce than a typical system since they use capacitive loads which both increase the AC load and form LCR tank circuits that oscillate.

Ground bounce produces several symptoms:

- Altered device states. LCX does not exhibit this symptom.
- Propagation delay degradation. LCX devices are characterized not to degrade more than 200ps per additional output switching.
- Undershoot on active outputs. The worst-case undershoot will be approximately equal to the worst-case quiet output noise.
- Quiet output noise. The LCX worst case quiet output has been characterized to be typically 800 mV . It will be much less in well designed systems.

Observing either one of the following rules is sufficient to avoid running into any of the problems associated with ground bounce:

First, use caution when driving asynchronous TTL-level inputs from CMOS octal outputs, or
Second, use caution when running control lines (set, reset, load, clock, chip select) which are glitch-sensitive through the same devices that drive data or address lines.
When it is not possible to avoid the above conditions, there are simple precautions available which can minimize ground bounce noise. These are:

- Locate these outputs as close to the ground pin as possible.
- Use the lowest VCC possible or separate the power supplies.
- Use board design practices which reduce any additive noise sources, such as crosstalk, reflections, etc.

Design Rules

The set of design rules listed below are recommended to ensure reliable system operation by providing the optimum power supply connection to the devices. Most designers will recognize these guidelines as those they have employed with advanced bipolar logic families.

- Use multi-layer boards with $V_{C C}$ and ground planes, with the device power pins soldered directly to the planes to ensure the lowest power line impedances possible.
- Use decoupling capacitors for every device, usually $0.1 \mu \mathrm{~F}$ should be adequate. These capacitors should be located as close to the ground pin as possible.
- Do not use sockets or wirewrap boards whenever possible.
- Do not connect capacitors from the outputs directly to ground.

Decoupling Requirements

Motorola's LCX family, as with other high-performance, high-drive logic families, has special decoupling and printed circuit board layout requirements. Adhering to these requirements will ensure the maximum advantages are gained with LCX products.

Figure 19. Power Distribution Impedances

Local high frequency decoupling is required to supply power to the chip when it is transitioning from a LOW to a HIGH value. This power is necessary to charge the load capacitance or drive a line impedance. Figure 19 displays various $V_{C C}$ and ground layout schemes along with associated impedances.

For most power distribution networks, the typical impedance is between 100 and 150Ω. This impedance appears in series with the load impedance and will cause a droop in the V_{CC} at
the part. This limits the available voltage swing at the local node, unless some form of decoupling is used. This drooping of rails will cause the rise and fall times to become elongated. Consider the example described in Figure 20 to calculate the amount of decoupling necessary. This circuit utilizes an LCX240 driving a 150Ω bus from a point somewhere in the middle.

Figure 20. Octal Buffer Driving a 150Ω Bus

Being in the middle of the bus, the driver will see two 150Ω loads in parallel, or an effective impedance of 75Ω. To switch the line from rail to rail, a drive of 37 mA is needed; about 300 mA will be required if all eight lines switch at once. This instantaneous current requirement will generate a voltage across the impedance of the power lines, causing the actual $V_{C C}$ at the chip to droop. This droop limits the voltage swing available to the driver. The net effect of the voltage droop will lengthen device rise and fall times and slow system operation. A local decoupling capacitor is required to act as a low impedance supply for the driver chip during high current conditions. It will maintain the voltage within acceptable limits and keep rise and fall times to a minimum. The necessary values for decoupling capacitors can be calculated with the formula given in Figure 21.

In this example, if the V_{CC} droop is to be kept below 30 mV and the edge rate equals 4 ns , a $0.04 \mu \mathrm{~F}$ capacitor is needed.

It is good practice to distribute decoupling capacitors evenly through the logic, placing one capacitor for every package.

Capacitor Types

Decoupling capacitors need to be of the high K ceramic type with low equivalent series resistance (ESR), consisting primarily of series inductance and series resistance. Capacitors using 5ZU dielectric have suitable properties and make a good choice for decoupling capacitors; they offer minimum cost and effective performance.

Place one decoupling capacitor adjacent to each package driving any transmission line and distribute others evenly throughout the logic.

Figure 21. Formula for Calculating Decoupling Capacitors

Device Datasheets

Product Preview
 Low-Voltage CMOS Quad 2-Input NAND Gate With 5V-Tolerant Inputs

The MC74LCX00 is a high performance, quad 2-input NAND gate operating from a 2.7 to 3.6 V supply. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. A V_{I} specification of 5.5 V allows MC74LCX00 inputs to be safely driven from 5 V devices.

Current drive capability is 24 mA at the outputs.

- Designed for 2.7 to $3.6 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ Operation
- 5V Tolerant Inputs — Interface Capability With 5V TTL Logic
- LVTTL Compatible
- LVCMOS Compatible
- 24mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current ($10 \mu \mathrm{~A}$) Substantially Reduces System Power Requirements
- Latchup Performance Exceeds 500 mA
- ESD Performance: Human Body Model >2000V; Machine Model >200V

Pinout: 14-Lead (Top View)

LOGIC DIAGRAM

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

MC74LCX00

LCX

LOW-VOLTAGE CMOS QUAD 2-INPUT NAND GATE

PIN NAMES

Pins	Function
An, Bn	Data Inputs $\overline{\mathrm{O} n}$

FUNCTION TABLE

Inputs		Outputs
An	Bn	On
L	L	H
L	H	H
H	L	H
H	H	L

ABSOLUTE MAXIMUM RATINGS*

Symbol	Parameter	Value	Condition	Unit
$V_{\text {cc }}$	DC Supply Voltage	-0.5 to +7.0		V
V_{1}	DC Input Voltage	-0.5 $\leq \mathrm{V}_{1} \leq+7.0$		V
V_{O}	DC Output Voltage	$-0.5 \leq V_{O} \leq V_{C C}+0.51$	Output in HIGH or LOW State	V
IIK	DC Input Diode Current	-50	$V_{1}<$ GND	mA
IOK	DC Output Diode Current	-50	$\mathrm{V}_{\mathrm{O}}<\mathrm{GND}$	mA
		+50	$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$	mA
10	DC Output Source/Sink Current	± 50		mA
ICC	DC Supply Current Per Supply Pin	± 100		mA
IGND	DC Ground Current Per Ground Pin	± 100		mA
TSTG	Storage Temperature Range	-65 to +150		${ }^{\circ} \mathrm{C}$

* Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute-maximum-rated conditions is not implied.

1. Io absolute maximum rating must be observed.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Typ	Max	Unit
$V_{\text {cc }}$	Supply VoltageOperating Data Retention Only	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 3.6 \end{aligned}$	V
V_{1}	Input Voltage	0		5.5	V
V_{O}	Output Voltage (HIGH or LOW State)	0		$\mathrm{V}_{\text {cc }}$	V
IOH	HIGH Level Output Current, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$			-24	mA
l OL	LOW Level Output Current, $\mathrm{V}_{\text {CC }}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$			24	mA
IOH^{2}	HIGH Level Output Current, $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V}$			-12	mA
$\mathrm{IOL}^{\text {l }}$	LOW Level Output Current, $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V}$			12	mA
T_{A}	Operating Free-Air Temperature	-40		+85	${ }^{\circ} \mathrm{C}$
$\Delta t \Delta V$	Input Transition Rise or Fall Rate, V_{IN} from 0.8 V to 2.0 V , $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	0		10	ns / N

dC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic	Condition	$\mathrm{T}_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
			Min	Max	
V_{IH}	HIGH Level Input Voltage (Note 1)	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$	2.0		V
V_{IL}	LOW Level Input Voltage (Note 1)	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$		0.8	V
V OH	HIGH Level Output Voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{l}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}-0.2$		V
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$	2.2		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$; $1 \mathrm{OH}=-18 \mathrm{~mA}$	2.4		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{OH}}=-24 \mathrm{~mA}$	2.2		
$\mathrm{V}_{\text {OL }}$	LOW Level Output Voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$; $\mathrm{OLL}=100 \mu \mathrm{~A}$		0.2	V
		$\mathrm{V}_{\text {CC }}=2.7 \mathrm{~V} ; \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$		0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=16 \mathrm{~mA}$		0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$		0.55	

1. These values of V_{I} are used to test DC electrical characteristics only. Functional test should use $\mathrm{V}_{\mathrm{IH}} \geq 2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}} \leq 0.5 \mathrm{~V}$.

MC74LCX00

DC ELECTRICAL CHARACTERISTICS (continued)

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
			Min	Max	
1	Input Leakage Current	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; 0 \mathrm{~V} \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}$		± 5.0	$\mu \mathrm{A}$
ICC	Quiescent Supply Current	$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or V_{CC}		10	$\mu \mathrm{A}$
		$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; 3.6 \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}$		± 10	$\mu \mathrm{A}$
$\Delta \mathrm{lcC}$	Increase in ICC per Input	$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{V}_{1 \mathrm{H}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$		500	$\mu \mathrm{A}$

AC CHARACTERISTICS ${ }^{1}\left(\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega\right.$)

Symbol	Parameter	Waveform				Unit
			$T_{A}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$			
			Vcc	0 3.6V	$\mathrm{V}_{\mathrm{cc}}=2.7 \mathrm{~V}$	
			Min	Max	Max	
tplH tpHL	Propagation Delay Input to Output	1	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 5.2 \\ & 5.2 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	ns
$\begin{aligned} & \text { tOSHL } \\ & \text { toSLH } \\ & \hline \end{aligned}$	Output-to-Output Skew (Note 2)			$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$		ns

1. These AC parameters are preliminary and may be modified prior to release. The maximum AC limits are design targets. Actual performance will be specified upon completion of characterization.
2. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (OSHL) or LOW-to-HIGH (tOSLH); parameter guaranteed by design.

DYNAMIC SWITCHING CHARACTERISTICS

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			Unit
			Min	Typ	Max	
V OLP	Dynamic LOW Peak Voltage ${ }^{1}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$		0.8		V
V OLV	Dynamic LOW Valley Voltage ${ }^{1}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\text {IH }}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$		0.8		V

1. Number of outputs defined as " n ". Measured with " $\mathrm{n}-1$ " outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state.

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Unit
$C_{P D}$	Power Dissipation Capacitance	$10 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	25	pF
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	7	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	8	pF

PROPAGATION DELAYS
$t_{R}=t_{F}=2.5 \mathrm{~ns}, 10 \%$ to $90 \% ; f=1 \mathrm{MHz} ; t_{w}=500 \mathrm{~ns}$
Figure 1. AC Waveforms

$C_{L}=50 \mathrm{pF}$ or equivalent (Includes jig and probe capacitance)
$R_{L}=R_{1}=500 \Omega$ or equivalent
$\mathrm{R}_{\mathrm{T}}=$ ZOUT of pulse generator (typically 50Ω)
Figure 2. Test Circuit

Product Preview
 Low-Voltage CMOS Quad 2-Input NOR Gate With 5V-Tolerant Inputs

The MC74LCX02 is a high performance, quad 2-input NOR gate operating from a 2.7 to 3.6 V supply. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. A V_{I} specification of 5.5 V allows MC74LCX02 inputs to be safely driven from 5 V devices.

Current drive capability is 24 mA at the outputs.

- Designed for 2.7 to $3.6 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ Operation
- 5V Tolerant Inputs - Interface Capability With 5V TTL Logic
- LVTTL Compatible
- LVCMOS Compatible
- 24 mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current ($10 \mu \mathrm{~A}$) Substantially Reduces System Power Requirements
- Latchup Performance Exceeds 500 mA
- ESD Performance: Human Body Model >2000V; Machine Model >200V

Pinout: 14-Lead (Top View)

LOGIC DIAGRAM

MC74LCX02
LCX

LOW-VOLTAGE CMOS QUAD 2-INPUT NOR GATE

PIN NAMES

Pins	Function
An, Bn	Data Inputs
$\overline{\mathrm{O} n}$	Outputs

FUNCTION TABLE

INPUTS		OUTPUTS
An	Bn	$\overline{\mathbf{O}} \mathbf{n}$
L	L	H
L	H	L
H	L	L
H	H	L

[^0] change or discontinue this product without notice.

ABSOLUTE MAXIMUM RATINGS*

Symbol	Parameter	Value	Condition	Unit
$V_{\text {CC }}$	DC Supply Voltage	-0.5 to +7.0		V
V_{1}	DC Input Voltage	$-0.5 \leq V_{1} \leq+7.0$		V
V_{O}	DC Output Voltage	$-0.5 \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}+0.5^{1}$	Output in HIGH or LOW State	V
IIK	DC Input Diode Current	-50	$V_{1}<$ GND	mA
${ }^{1} \mathrm{OK}$	DC Output Diode Current	-50	$\mathrm{V}_{\mathrm{O}}<\mathrm{GND}$	mA
		+50	$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$	mA
10	DC Output Source/Sink Current	± 50		mA
ICC	DC Supply Current Per Supply Pin	± 100		mA
IGND	DC Ground Current Per Ground Pin	± 100		mA
TSTG	Storage Temperature Range	-65 to +150		${ }^{\circ} \mathrm{C}$

* Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute-maximum-rated conditions is not implied.

1. IO absolute maximum rating must be observed.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Typ	Max	Unit
$V_{C C}$	Supply VoltageOperating Data Retention Only	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 3.6 \end{aligned}$	V
V_{1}	Input Voltage	0		5.5	V
V_{0}	Output Voltage (HIGH or LOW State)	0		VCC	V
${ }^{1} \mathrm{OH}$	HIGH Level Output Current, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$			-24	mA
lOL	LOW Level Output Current, $\mathrm{V}_{C C}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$			24	mA
IOH	HIGH Level Output Current, $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V}$			-12	mA
IOL	LOW Level Output Current, $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V}$			12	mA
T_{A}	Operating Free-Air Temperature	-40		+85	${ }^{\circ} \mathrm{C}$
$\Delta t \Delta V$	Input Transition Rise or Fall Rate, $\mathrm{V}_{\text {IN }}$ from 0.8 V to 2.0 V , $V_{C C}=3.0 \mathrm{~V}$	0		10	ns / N

DC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
			Min	Max	
$\mathrm{V}_{\text {IH }}$	HIGH Level Input Voltage (Note 1)	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$	2.0		V
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage (Note 1)	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$		0.8	V
V_{OH}	HIGH Level Output Voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{l}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}-0.2$		v
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{IOH}=-12 \mathrm{~mA}$	2.2		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{IOH}=-18 \mathrm{~mA}$	2.4		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{IOH}^{2}=-24 \mathrm{~mA}$	2.2		
V_{OL}	LOW Level Output Voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=100 \mu \mathrm{~A}$		0.2	V
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}$		0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$; $\mathrm{IOL}=16 \mathrm{~mA}$		0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{l} \mathrm{OL}=24 \mathrm{~mA}$		0.55	

1. These values of V_{I} are used to test DC electrical characteristics only. Functional test should use $\mathrm{V}_{\mathrm{IH}} \geq 2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}} \leq 0.5 \mathrm{~V}$.

MC74LCX02

DC ELECTRICAL CHARACTERISTICS (continued)

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
			Min	Max	
I	Input Leakage Current	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; 0 \mathrm{~V} \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}$		± 5.0	$\mu \mathrm{A}$
ICC	Quiescent Supply Current	$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{l}}=\mathrm{GND}$ or $\mathrm{V}_{C C}$		10	$\mu \mathrm{A}$
		$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; 3.6 \leq \mathrm{V}_{\mathrm{I}} \leq 5.5 \mathrm{~V}$		± 10	$\mu \mathrm{A}$
$\Delta \mathrm{lc}$	Increase in ICC per Input	$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{V}_{\text {IH }}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$		500	$\mu \mathrm{A}$

AC CHARACTERISTICS ${ }^{1}$ ($\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega$)

Symbol	Parameter	Waveform	Limits			Unit
			$\mathrm{T}_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			
			Vcc	3.6V	$\mathrm{V}_{\text {cc }}=2.7 \mathrm{~V}$	
			Min	Max	Max	
$\begin{aligned} & \hline \mathrm{tPLH} \\ & \mathrm{t}_{\mathrm{tPHL}} \end{aligned}$	Propagation Delay Input to Output	1	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 5.2 \\ & 5.2 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	ns
$\begin{aligned} & \text { tOSHL } \\ & \text { toSLH } \\ & \hline \end{aligned}$	Output-to-Output Skew (Note 2)			$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$		ns

1. These AC parameters are preliminary and may be modified prior to release. The maximum AC limits are design targets. Actual performance will be specified upon completion of characterization.
2. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (tOSHL) or LOW-to-HIGH (tOSLH); parameter guaranteed by design.

DYNAMIC SWITCHING CHARACTERISTICS

Symbol	Characteristlc	Condition	$\mathrm{T}^{\prime} \mathrm{A}=+25^{\circ} \mathrm{C}$			Unit
			Min	Typ	Max	
VOLP	Dynamic LOW Peak Voltage ${ }^{1}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$		0.8		V
Volv	Dynamic LOW Valley Voltage ${ }^{1}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\text {IH }}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$		0.8		V

1. Number of outputs defined as " n ". Measured with " $\mathrm{n}-1$ " outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state.

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Unit
$C_{\text {PD }}$	Power Dissipation Capacitance	$10 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	25	pF
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	7	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	8	pF

PROPAGATION DELAYS
$t_{R}=t_{F}=2.5 n \mathrm{~s}, 10 \%$ to $90 \% ; f=1 \mathrm{MHz} ; t_{W}=500 \mathrm{~ns}$
Figure 1. AC Waveforms

$C_{L}=50 \mathrm{pF}$ or equivalent (Includes jig and probe capacitance)
$\mathrm{R}_{\mathrm{L}}=\mathrm{R}_{1}=500 \Omega$ or equivalent
$\mathrm{RT}_{\mathrm{T}}=\mathrm{Z}_{O U T}$ of pulse generator (typically 50Ω)
Figure 2. Test Circuit

Low-Voltage CMOS Hex Inverter With 5V-Tolerant Inputs

The MC74LCX04 is a high performance hex inverter operating from a 2.7 to 3.6 V supply. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. A V_{1} specification of 5.5 V allows MC74LCX04 inputs to be safely driven from 5 V devices.

Current drive capability is 24 mA at the outputs.

- Designed for 2.7 to $3.6 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ Operation
- 5V Tolerant Inputs — Interface Capability With 5V TTL Logic
- LVTTL Compatible
- LVCMOS Compatible
- 24mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current ($10 \mu \mathrm{~A}$) Substantially Reduces System Power Requirements
- Latchup Performance Exceeds 500 mA
- ESD Performance: Human Body Model >2000V; Machine Model >200V

LOGIC DIAGRAM

MC74LCX04

LCX

LOW-VOLTAGE CMOS HEX INVERTER

PIN NAMES

Pins	Function
$\frac{\text { An }}{\bar{O} n}$	Data Inputs

FUNCTION TABLE

An	$\overline{\mathbf{O}} \mathbf{n}$
L	H
H	L

ABSOLUTE MAXIMUM RATINGS*

Symbol	Parameter	Value	Condition	Unit
$V_{C C}$	DC Supply Voltage	-0.5 to +7.0		V
$\mathrm{~V}_{\mathbf{I}}$	DC Input Voltage	$-0.5 \leq \mathrm{V}_{1} \leq+7.0$		V
$\mathrm{~V}_{\mathrm{O}}$	DC Output Voltage	$-0.5 \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}+0.5^{1}$	Output in HIGH or LOW State	V
I_{IK}	DC Input Diode Current	-50	$\mathrm{~V}_{\mathrm{I}}<\mathrm{GND}$	mA
I_{OK}	DC Output Diode Current	-50	$\mathrm{~V}_{\mathrm{O}}<\mathrm{GND}$	mA
		+50	$\mathrm{~V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$	mA
I_{O}	DC Output Source/Sink Current	± 50		mA
I_{CC}	DC Supply Current Per Supply Pin	± 100	mA	
$\mathrm{I}_{\text {GND }}$	DC Ground Current Per Ground Pin	± 100		mA
$\mathrm{~T}_{\text {STG }}$	Storage Temperature Range	-65 to +150		${ }^{\circ} \mathrm{C}$

* Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute-maximum-rated conditions is not implied.

1. Io absolute maximum rating must be observed.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Typ	Max	Unit
VCC	Supply VoltageOperating Data Retention Only	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 3.3 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 3.6 \end{aligned}$	V
V_{1}	Input Voltage	0		5.5	V
V_{O}	Output Voltage (HIGH or LOW State)	0		VCC	V
IOH	HIGH Level Output Current, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$			-24	mA
lOL	LOW Level Output Current, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$			24	mA
IOH	HIGH Level Output Current, $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V}$			-12	mA
I_{OL}	LOW Level Output Current, $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V}$			12	mA
T_{A}	Operating Free-Air Temperature	-40		+85	${ }^{\circ} \mathrm{C}$
$\Delta t \Delta V$	Input Transition Rise or Fall Rate, $\mathrm{V}_{\text {IN }}$ from 0.8 V to 2.0 V , $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	0		10	ns / N

DC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
			Min	Max	
V_{IH}	HIGH Level Input Voltage (Note 1)	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$	2.0		V
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage (Note 1)	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$		0.8	V
V_{OH}	HIGH Level Output Voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{lOH}=-100 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}-0.2$		V
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{IOH}=-12 \mathrm{~mA}$	2.2		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{I}^{\mathrm{OH}}=-18 \mathrm{~mA}$	2.4		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{IOH}=-24 \mathrm{~mA}$	2.2		
V_{OL}	LOW Level Output Voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; 1_{\mathrm{OL}}=100 \mu \mathrm{~A}$		0.2	V
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}$		0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=16 \mathrm{~mA}$		0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{IOL}=24 \mathrm{~mA}$		0.55	

1. These values of V_{I} are used to test DC electrical characteristics only. Functional test should use $\mathrm{V}_{\mathrm{IH}} \geq 2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}} \leq 0.5 \mathrm{~V}$.

MC74LCX04

DC ELECTRICAL CHARACTERISTICS (continued)

Symbol	Characteristle	Condition	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
			Min	Max	
Ii	İnput Leakage Current	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; 0 \mathrm{~V} \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}$		± 5.0	$\mu \mathrm{A}$
ICC	Quiescent Supply Current	$2.7 \leq \mathrm{V}_{\text {CC }} \leq 3.6 \mathrm{~V}_{;} \mathrm{V}_{1}=\mathrm{GND}$ or $\mathrm{V}_{\text {CC }}$		10	$\mu \mathrm{A}$
		$2.7 \leq V_{C C} \leq 3.6 V_{;} 3.6 \leq V_{1} \leq 5.5 \mathrm{~V}$		± 10	$\mu \mathrm{A}$
$\Delta \mathrm{lc}$	Increase in ICC per Input	$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{V}_{1 \mathrm{H}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$		500	$\mu \mathrm{A}$

AC CHARACTERISTICS ($\mathrm{t}_{\mathrm{R}}=\mathrm{tF}_{\mathrm{F}}=2.5 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega$)

Symbol	Parameter	Waveform	Limits			Unit
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			
			$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V		$\mathrm{V}_{\mathrm{Cc}}=2.7 \mathrm{~V}$	
			Min	Max	Max	
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay Input to Output	1	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 5.2 \\ & 5.2 \end{aligned}$	$\begin{aligned} & \hline 6.0 \\ & 6.0 \end{aligned}$	ns
$\begin{aligned} & \text { tOSHL } \\ & \text { tosLH } \end{aligned}$	Output-to-Output Skew (Note 1)			$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$		ns

1. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (tOSHL) or LOW-to-HIGH (tOSLH); parameter guaranteed by design.

DYNAMIC SWITCHING CHARACTERISTICS

Symbol	Characteristic	Condition	$\mathrm{T}_{\text {A }}=+25^{\circ} \mathrm{C}$			Unit
			Min	Typ	Max	
Volp	Dynamic LOW Peak Voltage ${ }^{1}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {IL }}=0 \mathrm{~V}$		0.8		V
Volv	Dynamic LOW Valley Voltage ${ }^{1}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\text {IH }}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$		0.8		V

1. Number of outputs defined as " n ". Measured with " $\mathrm{n}-1$ " outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state.

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Unit
$C_{\text {PD }}$	Power Dissipation Capacitance	$10 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	25	pF
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	7	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	8	pF

PROPAGATION DELAYS
$t_{R}=t_{f}=2.5 n s, 10 \%$ to $90 \% ; f=1 \mathrm{MHz} ; t_{w}=500 \mathrm{~ns}$
Figure 1. AC Waveforms

$C_{L}=50 \mathrm{pF}$ or equivalent (Includes jig and probe capacitance)
$\mathrm{R}_{\mathrm{L}}=\mathrm{R}_{1}=500 \Omega$ or equivalent
$R_{T}=Z_{O U T}$ of pulse generator (typically 50Ω)
Figure 2. Test Circuit

Product Preview
 Low-Voltage CMOS Quad 2-Input AND Gate With 5V-Tolerant Inputs

The MC74LCX08 is a high performance, quad 2-input AND gate operating from a 2.7 to 3.6 V supply. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. A V_{1} specification of 5.5 V allows MC74LCX08 inputs to be safely driven from 5 V devices.

Current drive capability is 24 mA at the outputs.

- Designed for 2.7 to $3.6 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ Operation
- 5V Tolerant Inputs - Interface Capability With 5V TTL Logic
- LVTTL Compatible
- LVCMOS Compatible
- 24mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current ($10 \mu \mathrm{~A}$) Substantially Reduces System Power Requirements
- Latchup Performance Exceeds 500 mA
- ESD Performance: Human Body Model >2000V; Machine Model >200V

Pinout: 14-Lead (Top View)

LOGIC DIAGRAM

LCX

LOW-VOLTAGE CMOS QUAD 2-INPUT AND GATE

PIN NAMES

Pins	Function
An, Bn On	Data Inputs Outputs

FUNCTION TABLE

INPUTS		OUTPUTS
An	Bn	On
L	L	L
L	H	L
H	L	L
H	H	H

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

ABSOLUTE MAXIMUM RATINGS*

Symbol	Parameter	Value	Condition	Unit
$V_{\text {CC }}$	DC Supply Voltage	-0.5 to +7.0		V
$\mathrm{~V}_{\mathrm{I}}$	DC Input Voltage	$-0.5 \leq \mathrm{V}_{1} \leq+7.0$		V
$\mathrm{~V}_{\mathrm{O}}$	DC Output Voltage	$-0.5 \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}+0.5^{1}$	Output in HIGH or LOW State	V
$\mathrm{IIK}_{\mathrm{K}}$	DC Input Diode Current	-50	$\mathrm{~V}_{1}<\mathrm{GND}$	mA
IOK	DC Output Diode Current	-50	$\mathrm{~V}_{\mathrm{O}}<\mathrm{GND}$	mA
		+50	$\mathrm{~V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$	mA
IO	DC Output Source/Sink Current	± 50		mA
ICC	DC Supply Current Per Supply Pin	± 100	mA	
IGND	DC Ground Current Per Ground Pin	± 100		mA
TSTG	Storage Temperature Range	-65 to +150		${ }^{\circ} \mathrm{C}$

* Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute-maximum-rated conditions is not implied.

1. Io absolute maximum rating must be observed.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Typ	Max	Unit
$V_{C C}$	$\begin{array}{lr}\text { Supply Voltage } & \begin{array}{r}\text { Operating } \\ \text { Data Retention Only }\end{array}\end{array}$	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 3.6 \end{aligned}$	V
V_{1}	Input Voltage	0		5.5	V
V_{O}	Output Voltage (HIGH or LOW State)	0		$\mathrm{V}_{\text {CC }}$	V
${ }^{\mathrm{IOH}}$	HIGH Level Output Current, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$			-24	mA
IOL	LOW Level Output Current, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$			24	mA
${ }^{\mathrm{IOH}}$	HIGH Level Output Current, $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V}$			-12	mA
IOL	LOW Level Output Current, $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V}$			12	mA
T_{A}	Operating Free-Air Temperature	-40		+85	${ }^{\circ} \mathrm{C}$
$\Delta t / \Delta V$	Input Transition Rise or Fall Rate, $\mathrm{V}_{\text {IN }}$ from 0.8 V to 2.0 V , $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	0		10	ns / N

DC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
			Min	Max	
$\mathrm{V}_{1 \mathrm{H}}$	HIGH Level Input Voltage (Note 1)	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$	2.0		V
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage (Note 1)	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$		0.8	V
V_{OH}	HIGH Level Output Voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{l}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	$\mathrm{V}_{\text {cc }}-0.2$		V
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$	2.2		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$; $\mathrm{IOH}=-18 \mathrm{~mA}$	2.4		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{IOH}=-24 \mathrm{~mA}$	2.2		
VOL	LOW Level Output Voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$; $\mathrm{IOL}=100 \mu \mathrm{~A}$		0.2	v
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}$		0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$		0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{IOL}=24 \mathrm{~mA}$		0.55	

1. These values of V_{I} are used to test DC electrical characteristics only. Functional test should use $\mathrm{V}_{\mathrm{IH}} \geq 2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}} \leq 0.5 \mathrm{~V}$.

DC ELECTRICAL CHARACTERISTICS (continued)

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
			Min	Max	
1	Input Leakage Current	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}^{\prime} 0 \mathrm{~V} \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}$		± 5.0	$\mu \mathrm{A}$
IcC	Quiescent Supply Current	$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{V}_{1}=$ GND or V_{CC}		10	$\mu \mathrm{A}$
		$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; 3.6 \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}$		± 10	$\mu \mathrm{A}$
$\Delta \mathrm{lcc}$	Increase in ICC per Input	$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\text {CC }}-0.6 \mathrm{~V}$		500	$\mu \mathrm{A}$

AC CHARACTERISTICS ${ }^{1}$ ($\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega$)

Symbol	Parameter	Waveform	Limits			Unit
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			
			$\mathrm{V}_{\text {cc }}$	3.6 V	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	
			Min	Max	Max	
$\begin{aligned} & \hline \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay Input to Output	1	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 6.2 \\ & 6.2 \end{aligned}$	ns
$\mathrm{t} \mathrm{OSHL}$ tOSLH	Output-to-Output Skew (Note 2)			$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$		ns

1. These AC parameters are preliminary and may be modified prior to release. The maximum AC limits are design targets. Actual performance will be specified upon completion of characterization.
2. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (tOSHL) or LOW-to-HIGH (tOSLH); parameter guaranteed by design.

DYNAMIC SWITCHING CHARACTERISTICS

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			Unit
			Min	Typ	Max	
Volp	Dynamic LOW Peak Voltage ${ }^{1}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$		0.8		V
Volv	Dynamic LOW Valley Voltage ${ }^{1}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {IL }}=0 \mathrm{~V}$		0.8		V

1. Number of outputs defined as " n ". Measured with " $n-1$ " outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state.

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Unit
$C_{P D}$	Power Dissipation Capacitance	$10 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	25	pF
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	7	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	8	pF

PROPAGATION DELAYS
$t_{R}=t_{F}=2.5 n s, 10 \%$ to $90 \% ; f=1 M H z ; t_{w}=500 \mathrm{~ns}$
Figure 1. AC Waveforms

$C_{L}=50 \mathrm{pF}$ or equivalent (Includes jig and probe capacitance)
$R_{L}=R_{1}=500 \Omega$ or equivalent
$\mathrm{R}_{\mathrm{T}}=\mathrm{Z}_{\mathrm{OUT}}$ of pulse generator (typically 50Ω)
Figure 2. Test Circuit

Product Preview
 Low-Voltage CMOS Quad 2-Input OR Gate With 5V-Tolerant Inputs

The MC74LCX32 is a high performance, quad 2-input OR gate operating from a 2.7 to 3.6 V supply. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. A V_{I} specification of 5.5 V allows MC74LCX32 inputs to be safely driven from 5 V devices.

Current drive capability is 24 mA at the outputs.

- Designed for 2.7 to $3.6 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ Operation
- 5V Tolerant Inputs — Interface Capability With 5V TTL Logic
- LVTTL Compatible
- LVCMOS Compatible
- 24mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current ($10 \mu \mathrm{~A}$) Substantially Reduces System Power Requirements
- Latchup Performance Exceeds 500 mA
- ESD Performance: Human Body Model >2000V; Machine Model >200V

Pinout: 14-Lead (Top View)

LOGIC DIAGRAM

LOW-VOLTAGE CMOS QUAD 2-INPUT OR GATE

PIN NAMES

Pins	Function
An, Bn On	Data Inputs Outputs

FUNCTION TABLE

INPUTS		OUTPUTS
An	Bn	On
L	L	L
L	H	H
H	L	H
H	H	H

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

ABSOLUTE MAXIMUM RATINGS*

Symbol	Parameter	Value	Condition	Unit
V_{CC}	DC Supply Voltage	-0.5 to +7.0		V
V_{1}	DC Input Voltage	-0.5 $\leq V_{1} \leq+7.0$		V
V_{O}	DC Output Voltage	$-0.5 \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}+0.5^{1}$	Output in HIGH or LOW State	V
IIK	DC Input Diode Current	-50	$V_{1}<\mathrm{GND}^{\text {d }}$	mA
IOK	DC Output Diode Current	-50	$\mathrm{V}_{\mathrm{O}}<\mathrm{GND}$	mA
		+50	$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\text {cC }}$	mA
10	DC Output Source/Sink Current	± 50		mA
ICC	DC Supply Current Per Supply Pin	± 100		mA
IGND	DC Ground Current Per Ground Pin	± 100		mA
TSTG	Storage Temperature Range	-65 to +150		${ }^{\circ} \mathrm{C}$

* Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute-maximum-rated conditions is not implied.

1. IO absolute maximum rating must be observed.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Typ	Max	Unit
V_{CC}	Supply VoltageOperating Data Retention Only	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 3.6 \end{aligned}$	V
V_{1}	Input Voltage	0		5.5	V
V_{O}	Output Voltage (HIGH or LOW State)	0		V_{CC}	V
${ }^{10 H}$	HIGH Level Output Current, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$			-24	mA
${ }^{\mathrm{O}} \mathrm{OL}$	LOW Level Output Current, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$			24	mA
${ }^{\mathrm{IOH}}$	HIGH Level Output Current, $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V}$			-12	mA
IOL	LOW Level Output Current, $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V}$			12	mA
T_{A}	Operating Free-Air Temperature	-40		+85	${ }^{\circ} \mathrm{C}$
$\Delta t / \Delta V$	Input Transition Rise or Fall Rate, $\mathrm{V}_{\text {IN }}$ from 0.8 V to 2.0 V , $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	0		10	ns / N

DC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic	Condition	$\mathrm{T}_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
			Min	Max	
V_{IH}	HIGH Level Input Voltage (Note 1)	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$	2.0		V
V_{IL}	LOW Level Input Voltage (Note 1)	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$		0.8	V
V_{OH}	HIGH Level Output Voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{l}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}-0.2$		v
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; 1 \mathrm{OH}=-12 \mathrm{~mA}$	2.2		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{IOH}=-18 \mathrm{~mA}$	2.4		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{IOH}=-24 \mathrm{~mA}$	2.2		
V_{OL}	LOW Level Output Voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{\text {CC }} \leq 3.6 \mathrm{~V} ; 1 \mathrm{OL}=100 \mu \mathrm{~A}$		0.2	V
		$\mathrm{V}_{\text {CC }}=2.7 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}$		0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=16 \mathrm{~mA}$		0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{IOL}=24 \mathrm{~mA}$		0.55	

1. These values of V_{1} are used to test DC electrical characteristics only. Functional test should use $\mathrm{V}_{\mathrm{IH}} \geq 2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}} \leq 0.5 \mathrm{~V}$.

DC ELECTRICAL CHARACTERISTICS (continued)

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
			Min	Max	
1	Input Leakage Current	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; 0 \mathrm{~V} \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}$		± 5.0	$\mu \mathrm{A}$
ICC	Quiescent Supply Current	$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or V_{CC}		10	$\mu \mathrm{A}$
		$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; 3.6 \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}$		± 10	$\mu \mathrm{A}$
$\Delta \mathrm{CC}$	Increase in ICC per Input	$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{V}_{\text {IH }}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$		500	$\mu \mathrm{A}$

AC CHARACTERISTICS ${ }^{1}$ ($\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega$)

Symbol	Parameter	Waveform	Limits			Unit
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			
			$\mathrm{V}_{\mathbf{c c}}=$	3.6V	$\mathrm{V}_{\mathrm{Cc}}=2.7 \mathrm{~V}$	
			Min	Max	Max	
tpLH tPHL	Propagation Delay Input to Output	1	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 6.2 \\ & 6.2 \end{aligned}$	ns
tOSHL tosth	Output-to-Output Skew (Note 2)			$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$		ns

1. These AC parameters are preliminary and may be modified prior to release. The maximum AC limits are design targets. Actual performance will be specified upon completion of characterization.
2. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (tOSHL) or LOW-to-HIGH (tOSLH); parameter guaranteed by design.

DYNAMIC SWITCHING CHARACTERISTICS

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			Unit
			Min	Typ	Max	
Volp	Dynamic LOW Peak Voltage ${ }^{1}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$		0.8		V
Volv	Dynamic LOW Valley Voltage ${ }^{1}$	$\mathrm{V}_{C C}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {IL }}=0 \mathrm{~V}$		0.8		V

1. Number of outputs defined as " n ". Measured with " $n-1$ " outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state.

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Unit,
C_{PD}	Power Dissipation Capacitance	$10 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	25	pF
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V}$ or V_{CC}	7	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	8	pF

Figure 1. AC Waveforms

$C_{L}=50 \mathrm{pF}$ or equivalent (Includes jig and probe capacitance)
$R_{L}=R_{1}=500 \Omega$ or equivalent
$R_{T}=Z_{\text {OUT }}$ of pulse generator (typically 50Ω)
Figure 2. Test Circuit

Product Preview
 Low-Voltage CMOS Dual D-Type Flip-Flop With 5V-Tolerant Inputs

The MC74LCX74 is a high performance, dual D-type flip-flop with asynchronous clear and set inputs and complementary ($\mathrm{O}, \overline{\mathrm{O}}$) outputs. It operates from a 2.7 to 3.6 V supply. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. A V_{I} specification of 5.5 V allows MC74LCX74 inputs to be safely driven from 5 V devices.

The MC74LCX74 consists of 2 edge-triggered flip-flops with individual D-type inputs. The flip-flop will store the state of individual D inputs, that meet the setup and hold time requirements, on the LOW-to-HIGH Clock (CP) transition.

- Designed for 2.7 to $3.6 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ Operation
- 5V Tolerant Inputs — Interface Capability With 5V TTL Logic
- LVTTL Compatible
- LVCMOS Compatible
- 24mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current in All Three Logic States (10 AA) Substantially Reduces System Power Requirements
- Latchup Performance Exceeds 500 mA
- ESD Performance: Human Body Model >2000V; Machine Model >200V

Pinout: 14-Lead (Top View)

MC74LCX74
LCX

LOW-VOLTAGE CMOS DUAL D-TYPE FLIP-FLOP

$14 \sqrt{1} \sqrt{\operatorname{cic}^{2}+4}$	D SUFFIX PLASTIC SOIC CASE 751A-03
	$\begin{aligned} & \text { M SUFFIX } \\ & \text { PLASTIC SOIC EIAJ } \\ & \text { CASE 965-01 } \end{aligned}$
	SD SUFFIX PLASTIC SSOP CASE 940A-03
	DT SUFFIX PLASTIC TSSOP CASE 948G-01

PIN NAMES

Pins	Function
$\mathrm{CP} 1, \mathrm{CP2} 2$	Clock Pulse Inputs
$\mathrm{D} 1, \overline{\mathrm{D} 2}$	Data Inputs
$\overline{\mathrm{CD} 1, \overline{\mathrm{CD}} 2}$	Direct Clear Inputs
$\mathrm{SD1} 1, \overline{\mathrm{SD} 2}$	Direct Set Inputs
On, $\overline{\mathrm{On}}$	Outputs

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

LOGIC DIAGRAM

INPUTS				OUTPUTS		
$\overline{\text { SDn }}$	$\overline{\text { CDn }}$	CPn	Dn	On	$\overline{\text { On }}$	
L	H	X	X	H	L	Asynchronous Set
H	L	X	X	L	H	Asynchronous Clear
L	L	X	X	H	H	Undetermined
H	H	\uparrow	h	H	L	Load and Read Register
H	H	\uparrow	I	L	H	Hold
H	H	\uparrow	X	NC	NC	

$\mathrm{H}=$ High Voltage Level; $\mathrm{h}=$ High Voltage Level One Setup Time Prior to the Low-to-High Clock Transition; L = Low Voltage Level; $\mathrm{I}=$ Low Voltage Level One Setup Time Prior to the Low-to-High Clock Transition; NC = No Change; X = High or Low Voltage Level or Transitions are Acceptable; $\uparrow=$ Low-to-High Transition; $\uparrow=$ Not a Low-to-High Transition; For Icc Reasons DO NOT FLOAT Inputs

ABSOLUTE MAXIMUM RATINGS*

Symbol	Parameter	Value	Condition	Unit
$\mathrm{V}_{\text {CC }}$	DC Supply Voltage	-0.5 to +7.0		V
V_{1}	DC Input Voltage	-0.5 $\leq \mathrm{V}_{1} \leq+7.0$		V
V_{0}	DC Output Voltage	$-0.5 \leq V_{O} \leq V_{C C}+0.5^{1}$	Output in HIGH or LOW State	V
IIK	DC Input Diode Current	-50	$\mathrm{V}_{1}<\mathrm{GND}^{\text {d }}$	mA
Iok	DC Output Diode Current	-50	$\mathrm{V}_{\mathrm{O}}<$ GND	mA
		+50	$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\text {cC }}$	mA
10	DC Output Source/Sink Current	± 50		mA
Icc	DC Supply Current Per Supply Pin	± 100		mA
IGND	DC Ground Current Per Ground Pin	± 100		mA
TSTG	Storage Temperature Range	-65 to +150		${ }^{\circ} \mathrm{C}$

* Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute-maximum-rated conditions is not implied.

1. Io absolute maximum rating must be observed.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Typ	Max	Unit
$V_{C C}$	Operating Supply Voltage Data Retention Only	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 3.6 \end{aligned}$	V
v_{1}	Input Voltage	0		5.5	V
V_{O}	Output Voltage (HIGH or LOW State)	0		$\mathrm{V}_{\text {CC }}$	V
${ }^{\mathrm{IOH}}$	HIGH Level Output Current, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$			-24	mA
lOL	LOW Level Output Current, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$			24	mA
${ }^{1} \mathrm{OH}$	HIGH Level Output Current, $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V}$			-12	mA
$\mathrm{IOL}^{\text {l }}$	LOW Level Output Current, $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V}$			12	mA
T_{A}	Operating Free-Air Temperature	-40		+85	${ }^{\circ} \mathrm{C}$
$\Delta t / \Delta V$	Input Transition Rise or Fall Rate, $\mathrm{V}_{\text {IN }}$ from 0.8 V to 2.0 V , $V_{C C}=3.0 \mathrm{~V}$	0		10	ns / N

DC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
			Min	Max	
$\mathrm{V}_{\text {IH }}$	HIGH Level Input Voltage (Note 1)	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$	2.0		V
V_{IL}	LOW Level Input Voltage (Note 1)	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$		0.8	V
V_{OH}	HIGH Level Output Voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{l}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{Cc}}-0.2$		V
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{IOH}=-12 \mathrm{~mA}$	2.2		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; 1 \mathrm{OH}=-18 \mathrm{~mA}$	2.4		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{IOH}=-24 \mathrm{~mA}$	2.2		
VOL	LOW Level Output Voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$; $\mathrm{lOL}=100 \mu \mathrm{~A}$		0.2	V
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}$		0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=16 \mathrm{~mA}$		0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{IOL}=24 \mathrm{~mA}$		0.55	

1. These values of V_{1} are used to test DC electrical characteristics only. Functional test should use $\mathrm{V}_{\mathrm{IH}} \geq 2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}} \leq 0.5 \mathrm{~V}$.

DC ELECTRICAL CHARACTERISTICS (continued)

Symbol	Characterlstic	Condition	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
			Min	Max	
1	Input Leakage Current	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; 0 \mathrm{~V} \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}$		± 5.0	$\mu \mathrm{A}$
ICC	Quiescent Supply Current	$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} \mathrm{~V}_{1}=\mathrm{GND}$ or V_{CC}		10	$\mu \mathrm{A}$
		$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; 3.6 \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}$		± 10	$\mu \mathrm{A}$
$\Delta \mathrm{lcc}$	Increase in ICC per Input	$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}_{i} \mathrm{~V}_{\text {IH }}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$		500	$\mu \mathrm{A}$

AC CHARACTERISTICS ${ }^{1}$ ($\mathrm{t}_{\mathrm{R}}=\mathrm{t}=2.5 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega$)

Symbol	Parameter	Waveform	Limits				Unit
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$				
			$\mathrm{V}_{\text {CC }}=3.0 \mathrm{~V}$ to 3.6 V		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$		
			Min	Max	Min	Max	
$f_{\text {max }}$	Clock Pulse Frequency	1	150				MHz
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	Propagation Delay CPn to On or Ōn	1	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$		$\begin{aligned} & \hline 8.0 \\ & 8.0 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \text { tpHL } \end{aligned}$	Propagation Delay $\overline{\mathrm{SD}} \mathrm{n}$ or $\overline{\mathrm{CD}} \mathrm{n}$ to On or $\overline{\mathrm{O}} \mathrm{n}$	2	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 7.0 \\ & 7.0 \end{aligned}$		$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	ns
t_{s}	Setup TIme, HIGH or LOW Dn to CPn	1	2.5		2.5		ns
t_{h}	Hold Time, HIGH or LOW Dn to CPn	1	1.5		1.5		ns
t_{w}	CPn Pulse Width, HIGH or LOW	$\begin{aligned} & 1 \\ & 3 \end{aligned}$	3.3		3.3		ns
	$\overline{\text { SDn }}$ or $\overline{\text { CD }}$ P Pulse Width, LOW		3.3		3.3		ns
$\mathrm{t}_{\text {rec }}$	Recovery TIme $\overline{\text { SD }}$ or $\overline{\mathrm{CD}} \mathrm{n}$ to CPn	1	2.0		2.5		ns
$\begin{aligned} & \text { toSHL } \\ & \text { toSLH } \end{aligned}$	Output-to-Output Skew (Note 2)			$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$			ns

1. These AC parameters are preliminary and may be modified prior to release. The maximum AC limits are design targets. Actual performance will be specified upon completion of characterization.
2. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (tOSHL) or LOW-to-HIGH (tOSLH); parameter guaranteed by design.

dYNAMIC SWITCHING CHARACTERISTICS

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			Unit
			Min	Typ	Max	
VoLP	Dynamic LOW Peak Voltage ${ }^{1}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$		0.8		V
VOLV	Dynamic LOW Valley Voltage ${ }^{1}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$		0.8		V

1. Number of outputs defined as " n ". Measured with " $n-1$ " outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state.

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Unit
$C_{P D}$	Power Dissipation Capacitance	$10 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	25	pF
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	7	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	8	pF

WAVEFORM 2 -PROPAGATION DELAYS
$t_{R}=t_{F}=2.5 \mathrm{~ns}, 10 \%$ to $90 \% ; f=1 \mathrm{MHz} ; t_{w}=500 \mathrm{~ns}$

WAVEFORM 3 -RECOVERY TIME
$t_{R}=t_{F}=2.5 \mathrm{~ns}$ from 10% to $90 \% ; f=1 \mathrm{MHz} ; t_{w}=500 \mathrm{~ns}$

Figure 1. AC Waveforms

WAVEFORM 4 - PULSE WIDTH
$t_{R}=t_{F}=2.5 \mathrm{~ns}$ (or fast as required) from 10% to 90%; Output requirements: $\mathrm{V}_{\mathrm{OL}} \leq 0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}} \geq 2.0 \mathrm{~V}$

Figure 1. AC Waveforms (continued)

$C_{L}=50 \mathrm{pF}$ or equivalent (Includes jig and probe capacitance)
$R_{L}=R_{1}=500 \Omega$ or equivalent
$\mathrm{R}_{\mathrm{T}}=\mathrm{Z}_{\text {OUT }}$ of pulse generator (typically 50Ω)
Figure 2. Test Circuit

Product Preview

Low-Voltage CMOS Quad 2-Input XOR Gate With 5V-Tolerant Inputs

The MC74LCX86 is a high performance, quad 2-input XOR gate operating from a 2.7 to 3.6 V supply. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. A V_{I} specification of 5.5 V allows MC74LCX86 inputs to be safely driven from 5 V devices.

Current drive capability is 24 mA at the outputs.

- Designed for 2.7 to 3.6 V VCC Operation
- 5V Tolerant Inputs - interface Capability With 5V TTL Logic
- LVTTL Compatible
- LVCMOS Compatible
- 24mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current ($10 \mu \mathrm{~A}$) Substantially Reduces System Power Requirements
- Latchup Performance Exceeds 500 mA
- ESD Performance: Human Body Model >2000V; Machine Model >200V

Pinout: 14-Lead (Top View)

LOGIC DIAGRAM

MC74LCX86 LCX

LOW-VOLTAGE CMOS QUAD 2-INPUT XOR GATE

PIN NAMES

Pins	Function
$\frac{\mathrm{An}, \mathrm{Bn}}{\mathrm{O} \mathrm{n}}$	Data Inputs Outputs

FUNCTION TABLE

Inputs		Outputs
An	Bn	Ōn
L	L	L
L	H	H
H	L	H
H	H	L

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

Product Preview

Low-Voltage CMOS Quad Buffer With 5V-Tolerant Inputs and Outputs (3-State, Non-Inverting)

The MC74LCX125 is a high performance, non-inverting quad buffer operating from a 2.7 to 3.6 V supply. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. A V_{l} specification of 5.5 V allows MC74LCX125 inputs to be safely driven from 5 V devices. The MC74LCX125 is suitable for memory address driving and all TTL level bus oriented transceiver applications.

Current drive capability is 24 mA at the outputs. The Output Enable (OEn) inputs, when HIGH, disable the outputs by placing them in a HIGH Z condition.

- Designed for 2.7 to $3.6 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ Operation
- 5V Tolerant — Interface Capability With 5V TTL Logic
- Supports Live Insertion and Withdrawal
- IOFF Specification Guarantees High Impedance When $V_{C C}=0 V$
- LVTTL Compatible
- LVCMOS Compatible
- 24 mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current in All Three Logic States $(10 \mu A)$ Substantially Reduces System Power Requirements
- Latchup Performance Exceeds 500mA
- ESD Performance: Human Body Model >2000V; Machine Model >200V

Pinout: 14-Lead (Top View)

PIN NAMES

Pins	Function
$\overline{\text { OEn }}$	Output Enable Inputs
Dn	Data Inputs
On	3-State Outputs

FUNCTION TABLE

INPUTS		OUTPUTS
$\overline{\text { OEn }}$	Dn	On
L	L	L
L	H	H
H	X	Z

H = High Voltage Level; L = Low Voltage Level; Z = High Impedance State; $\mathrm{X}=$ High or Low Voltage Level and Transitions Are Acceptable, for ICC reasons, DO NOT FLOAT Inputs

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

ABSOLUTE MAXIMUM RATINGS*

Symbol	Parameter	Value	Condition	Unit
$\mathrm{V}_{\text {CC }}$	DC Supply Voltage	-0.5 to +7.0		V
V_{1}	DC Input Voltage	$-0.5 \leq \mathrm{V}_{1} \leq+7.0$		V
V_{O}	DC Output Voltage	$-0.5 \leq \mathrm{V}_{\mathrm{O}} \leq+7.0$	Output in 3-State	V
		$-0.5 \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}+0.51$	Output in HIGH or LOW State	\checkmark
IIK	DC Input Diode Current	-50	$V_{1}<$ GND	mA
Iok	DC Output Diode Current	-50	$\mathrm{V}_{\mathrm{O}}<$ GND	mA
		+50	$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$	mA
10	DC Output Source/Sink Current	± 50		mA
ICC	DC Supply Current Per Supply Pin	± 100		mA
IGND	DC Ground Current Per Ground Pin	± 100		mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range	-65 to +150		${ }^{\circ} \mathrm{C}$

* Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute-maximum-rated conditions is not implied.

1. IO absolute maximum rating must be observed.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Typ	Max	Unit
$V_{\text {cc }}$	Operating Supply Voltage Data Retention Only	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 3.6 \end{aligned}$	V
V_{1}	Input Voltage	0		5.5	V
V_{O}	Output Voltage (HIGH or LOW State) (3-State)	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ 5.5 \end{gathered}$	V
${ }^{\mathrm{IOH}}$	HIGH Level Output Current, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$			-24	mA
${ }^{\text {OL }}$	LOW Level Output Current, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$			24	mA
1 OH	HIGH Leve! Output Current, $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V}$			-12	mA
l OL	LOW Level Output Current, $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V}$			12	mA
T_{A}	Operating Free-Air Temperature	-40		+85	${ }^{\circ} \mathrm{C}$
$\Delta t / \Delta V$	Input Transition Rise or Fall Rate, V_{IN} from 0.8 V to 2.0 V , $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	0		10	ns N

DC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
			Min	Max	
$\mathrm{V}_{1 \mathrm{H}}$	HIGH Level Input Voltage (Note 1)	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$	2.0		V
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage (Note 1)	$2.7 \mathrm{~V} \leq \mathrm{V}_{\text {CC }} \leq 3.6 \mathrm{~V}$		0.8	V
V_{OH}	HIGH Level Output Voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{l}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{Cc}}-0.2$		V
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{IOH}=-12 \mathrm{~mA}$	2.2		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{IOH}=-18 \mathrm{~mA}$	2.4		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{IOH}=-24 \mathrm{~mA}$	2.2		
V OL	LOW Level Output Voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=100 \mu \mathrm{~A}$		0.2	V
		$\mathrm{V}_{\text {CC }}=2.7 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}$		0.4	
		$\mathrm{V}_{C C}=3.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=16 \mathrm{~mA}$		0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$		0.55	

1. These values of V_{1} are used to test DC electrical characteristics only. Functional test should use $\mathrm{V}_{\mathrm{IH}} \geq 2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}} \leq 0.5 \mathrm{~V}$.

DC ELECTRICAL CHARACTERISTICS (continued)

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
			Min	Max	
1	Input Leakage Current	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; 0 \mathrm{~V} \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}$		± 5.0	$\mu \mathrm{A}$
'oz	3-State Output Current	$\begin{gathered} 2.7 \leq V_{C C} \leq 3.6 V_{;} ; 0 V \leq V_{O} \leq 5.5 V_{;} \\ V_{I}=V_{I H} \text { or } V_{I L} \end{gathered}$		± 5.0	$\mu \mathrm{A}$
IOFF	Power-Off Leakage Current	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$; V_{1} or $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$		10	$\mu \mathrm{A}$
ICC	Quiescent Supply Current	$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{V}_{1}=\mathrm{GND}$ or V_{CC}		10	$\mu \mathrm{A}$
		$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; 3.6 \leq \mathrm{V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$		± 10	$\mu \mathrm{A}$
$\Delta \mathrm{CCC}$	Increase in ICC per Input	$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{V}_{\text {IH }}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$		500	$\mu \mathrm{A}$

AC CHARACTERISTICS ${ }^{1}\left(\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega\right.$)

Symbol	Parameter	Waveform	Limits			Unit
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			
			$\mathrm{V}_{\mathrm{CC}}=$	3.6V	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	
			Min	Max	Max	
${ }^{\text {tpLH }}$ tPHL	Propagation Delay Input to Output	1	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \hline 6.5 \\ & 6.5 \end{aligned}$	ns
$\begin{aligned} & \text { tPZH } \\ & { }^{\text {tPZL }} \end{aligned}$	Output Enable Time to High and Low Level	2	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	ns
tphZ tplZ	Output Disable Time From High and Low Level	2	$\begin{aligned} & \hline 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	ns
$\begin{aligned} & \text { toSHL } \\ & \text { toSLH } \\ & \hline \end{aligned}$	Output-to-Output Skew (Note 2)			$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$		ns

1. These $A C$ parameters are preliminary and may be modified prior to release. The maximum AC limits are design targets. Actual performance will be specified upon completion of characterization.
2. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (OSHL) or LOW-to-HIGH (tOSLH); parameter guaranteed by design.

DYNAMIC SWITCHING CHARACTERISTICS

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			Unit
			Min	Typ	Max	
V OLP	Dynamic LOW Peak Voltage ${ }^{1}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{1 \mathrm{H}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$		0.8		V
$\mathrm{V}_{\text {OLV }}$	Dynamic LOW Valley Voltage ${ }^{1}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\text {IH }}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$		0.8		\checkmark

1. Number of outputs defined as " n ". Measured with " $n-1$ " outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state.

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Conditlon	Typical	Unit
C_{PD}	Power Dissipation Capacitance	$10 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V}$ or V_{CC}	25	pF
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V}$ or V_{CC}	7	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V}$ or V_{CC}	8	pF

WAVEFORM 2-OUTPUT ENABLE AND DISABLE TIMES
$\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns}, 10 \%$ to $90 \% ; \mathrm{f}=1 \mathrm{MHz} ; \mathrm{t}_{\mathrm{W}}=500 \mathrm{~ns}$
Figure 1. AC Waveforms

TEST	SWITCH
tPLH, tPHL	Open
tPZL, tPLZ	6 V
Open Collector/Drain tPLH and tPHL	6 V
tPZH, tPHZ	GND

$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ or equivalent (Includes jig and probe capacitance)
$R_{L}=R_{1}=500 \Omega$ or equivalent
$\mathrm{R}_{\mathrm{T}}=$ ZOUT of pulse generator (typically 50Ω)
Figure 2. Test Circult

Product Preview
 Low-Voltage CMOS 1-of-8 Decoder/Demultiplexer With 5V-Tolerant Inputs

The MC74LCX138 is a high performance, 1-of-8 decoder/ demultiplexer operating from a 2.7 to 3.6 V supply. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. A $V_{\text {I s }}$ specification of 5.5 V allows MC74LCX138 inputs to be safely driven from 5V devices. The MC74LCX138 is suitable for memory address decoding and other TTL level bus oriented applications.

The MC74LCX138 high-speed 1-of-8 decoder/demultiplexer accepts three binary weighted inputs (A0, A1, A2) and, when enabled, provides eight mutually exclusive active-LOW outputs ($\overline{\mathrm{O}}-\overline{\mathrm{O}}$). The LCX138 features three Enable inputs, two active-LOW ($\overline{\mathrm{E} 1}, \overline{\mathrm{E} 2}$) and one active-HIGH (E3). All outputs will be HIGH unless $\overline{\mathrm{E} 1}$ and E2 are LOW, and E3 is HIGH. This multiple enabled function allows easy parallel expansion of the device to a 1 -of- 32 (5 lines to 32 lines) decoder with just four LCX138 devices and one inverter (See Figure 1). The LCX138 can be used as an 8 -output demultiplexer by using one of the active-LOW Enable inputs as the data input and the other Enable inputs as strobes. The Enable inputs which are not used must be permanently tied to their appropriate active-HIGH or active-LOW state.

Current drive capability is 24 mA at the outputs.

- Designed for 2.7 to $3.6 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ Operation
- 5V Tolerant Inputs - Interface Capability With 5V TTL Logic
- LVTTL Compatible
- LVCMOS Compatible
- 24mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current ($10 \mu \mathrm{~A}$) Substantially Reduces System Power Requirements
- Latchup Performance Exceeds 500 mA
- ESD Performance: Human Body Model >2000V; Machine Model >200V

MC74LCX138

LCX

LOW-VOLTAGE CMOS DECODER/DEMULTIPLEXER

PIN NAMES

Pins	Function
$\overline{A 0}-\mathrm{A} 2$	Address Inputs
$\overline{\mathrm{E}}-\overline{\mathrm{E} 2}$	Enable Inputs
$\overline{\mathrm{B}}$	Enable Input
$\overline{\mathrm{O} 0}-\overline{\mathrm{O}} \mathrm{T}$	Outputs

[^1]LOGIC DIAGRAM

INPUTS						OUTPUTS							
E1	E2	E3	AO	A1	A2	$\overline{00}$	01	$\overline{02}$	$\overline{O 3}$	04	$\overline{05}$	$\overline{06}$	07
$\begin{aligned} & \mathrm{H} \\ & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & X \\ & H \\ & X \\ & X \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathbf{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	H H H
L L L L		$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \hline \end{aligned}$	H H H H H
L L L	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & H \\ & H \\ & L \\ & H \end{aligned}$	H H H L

$\mathrm{H}=$ High Voltage Level; L = Low Voltage Level; X = High or Low Voltage Level and Transitions Are Acceptable; For ICC reasons, DO NOT FLOAT Inputs

Figure 1. Expansion to 1-of-32 Decoding

ABSOLUTE MAXIMUM RATINGS*

Symbol	Parameter	Value	Condition	Unit
V_{CC}	DC Supply Voltage	-0.5 to +7.0		V
$\mathrm{~V}_{\mathrm{I}}$	DC Input Voltage	$-0.5 \leq \mathrm{V}_{1} \leq+7.0$		V
$\mathrm{~V}_{\mathrm{O}}$	DC Output Voltage	$-0.5 \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}+0.5^{1}$	Output in HIGH or LOW State	V
I_{IK}	DC Input Diode Current	-50	$\mathrm{~V}_{\mathrm{I}}<\mathrm{GND}$	mA
I_{OK}	DC Output Diode Current	-50	$\mathrm{~V}_{\mathrm{O}}<\mathrm{GND}$	mA
		+50	$\mathrm{~V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$	mA
I_{O}		± 50		mA
I_{CC}	DC Output Source/Sink Current	± 100	mA	
IGND	DC Supply Current Per Supply Pin	± 100		mA
TSTG	DC Ground Current Per Ground Pin	-65 to +150		${ }^{\circ} \mathrm{C}$

* Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute-maximum-rated conditions is not implied.

1. IO absolute maximum rating must be observed.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Typ	Max	Unit
$V_{C C}$	Supply Voltage Operating Data Retention Only	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 3.6 \end{aligned}$	V
v_{1}	Input Voltage	0		5.5	V
V_{O}	Output Voltage (HIGH or LOW State)	0		$\mathrm{V}_{\text {CC }}$	V
${ }^{\mathrm{IOH}}$	HIGH Level Output Current, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$			-24	mA
lOL	LOW Level Output Current, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$			24	mA
${ }^{\mathrm{O}} \mathrm{OH}$	HIGH Level Output Current, $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V}$			-12	mA
IOL	LOW Level Output Current, $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V}$			12	mA
T_{A}	Operating Free-Air Temperature	-40		+85	${ }^{\circ} \mathrm{C}$
$\Delta t \Delta V$	Input Transition Rise or Fall Rate, V_{IN} from 0.8 V to 2.0 V , $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	0		10	ns / N

DC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
			Min	Max	
V_{IH}	HIGH Level Input Voltage (Note 1)	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$	2.0		V
V_{IL}	LOW Level Input Voltage (Note 1)	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$		0.8	V
V_{OH}	HIGH Level Output Voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{l}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	$\mathrm{V}_{\text {CC }}-0.2$		V
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{l}^{\mathrm{OH}}=-12 \mathrm{~mA}$	2.2		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{OH}}=-18 \mathrm{~mA}$	2.4		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{OH}}=-24 \mathrm{~mA}$	2.2		
V_{OL}	LOW Level Output Voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{\text {CC }} \leq 3.6 \mathrm{~V} ; \mathrm{lOL}=100 \mu \mathrm{~A}$		0.2	V
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}$		0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=16 \mathrm{~mA}$		0.4	
		$\mathrm{VCC}=3.0 \mathrm{~V} ; \mathrm{lOL}=24 \mathrm{~mA}$		0.55	
11	Input Leakage Current	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; 0 \mathrm{~V} \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}$		± 5.0	$\mu \mathrm{A}$
ICC	Quiescent Supply Current	$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{V}_{1}=\mathrm{GND}$ or V_{CC}		10	$\mu \mathrm{A}$
		$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; 3.6 \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}$		± 10	$\mu \mathrm{A}$
$\Delta^{1} \mathrm{CC}$	Increase in ICC per Input	$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{V}_{\text {IH }}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$		500	$\mu \mathrm{A}$

1. These values of V_{I} are used to test DC electrical characteristics only. Functional test should use $\mathrm{V}_{\mathrm{IH}} \geq 2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}} \leq 0.5 \mathrm{~V}$.

AC CHARACTERISTICS ${ }^{1}\left(\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega\right)$

Symbol	Parameter	Waveform	Limits			Unit
			$\mathrm{T}_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			
			$V_{\text {cc }}$	3.6V	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	
			Min	Max	Max	
tPLH TPHL	Propagation Delay An to $\overline{O n}$	1,2	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	ns
tpLH tpHL	Propagation Delay E1, E2 to $\overline{O n}$	2	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	ns
$\begin{aligned} & \hline \text { tpLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay E3 to $\overline{O n}$	1	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	ns

1. These AC parameters are preliminary and may be modified prior to release. The maximum AC limits are design targets. Actual performance will be specified upon completion of characterization.

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Unit
C_{PD}	Power Dissipation Capacitance	$10 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{l}}=0 \mathrm{~V}$ or V_{CC}	25	pF
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{l}}=0 \mathrm{~V}$ or V_{CC}	7	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	8	pF

WAVEFORM 1: PROPAGATION DELAYS FOR INVERTING OUTPUTS

WAVEFORM 2: PROPAGATION DELAYS FOR NON-INVERTING OUTPUTS

Figure 2. AC Waveforms

$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ or equivalent (Includes jig and probe capacitance)
$R_{L}=R_{1}=500 \Omega$ or equivalent
$\mathrm{R}_{\mathrm{T}}=\mathrm{Z}_{\mathrm{OUT}}$ of pulse generator (typically 50Ω)
Figure 3. Test Circuit

Product Preview
 Low-Voltage CMOS Quad 2-Input Multiplexer With 5V-Tolerant Inputs

The MC74LCX157 is a high performance, quad 2-input multiplexer operating from a 2.7 to 3.6 V supply. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. A V_{I} specification of 5.5 V allows MC74LCX157 inputs to be safely driven from 5 V devices.

Four bits of data from two sources can be selected using the Select and Enable inputs. The four outputs present the selected data in the true (non-inverted) form. The MC74LCX157 can also be used as a function generator. Current drive capability is 24 mA at the outputs.

- Designed for 2.7 to $3.6 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ Operation
- 5V Tolerant Inputs — Interface Capability With 5V TTL Logic
- LVTTL Compatible
- LVCMOS Compatible
- 24mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current ($10 \mu \mathrm{~A}$) Substantially Reduces System Power Requirements
- Latchup Performance Exceeds 500mA
- ESD Performance: Human Body Model >2000V; Machine Model >200V

Pinout: 16-Lead Plastic Package (Top View)

TRUTH TABLE

Inputs				Outputs	
\bar{E}	S	IOn	Itn	Zn	
H	X	X	X	L	
L	H	X	L	L	
L	H	X	H	H	
L	L	L	X	H	
L	L	H	X	H	

MC74LCX157

LCX

LOW-VOLTAGE CMOS QUAD 2-INPUT MULTIPLEXER

PIN NAMES

Pins	Function
$10 n$	Source 0 Data Inputs
I1n	Source 1 Data Inputs
E	Enable Input
S	Select Input
Zn	Outputs

[^2]
Low-Voltage CMOS Octal Buffer
 With 5V-Tolerant Inputs and Outputs (3-State, Inverting)

The MC74LCX240 is a high performance, inverting octal buffer operating from a 2.7 to 3.6 V supply. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. A V_{1} specification of 5.5 V allows MC74LCX240 inputs to be safely driven from 5 V devices. The MC74LCX240 is suitable for memory address driving and all TTL level bus oriented buffer applications.

Current drive capability is 24 mA at the outputs. The Output Enable ($\overline{\mathrm{OE}}$) input, when HIGH, disables the outputs by placing them in a HIGH Z condition.

- Designed for 2.7 to $3.6 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ Operation
- 5V Tolerant - Interface Capability With 5V TTL Logic
- Supports Live Insertion and Withdrawal
- IOFF Specification Guarantees High Impedance When $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$
- LVTTL Compatible
- LVCMOS Compatible
- 24 mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current in All Three Logic States ($10 \mu \mathrm{~A}$) Substantially Reduces System Power Requirements
- Latchup Performance Exceeds 500mA
- ESD Performance: Human Body Model >2000V; Machine Model >200V

Pinout: 20-Lead (Top View)

MC74LCX240
LCX

LOW-VOLTAGE CMOS

 OCTAL BUFFER

PIN NAMES

Pins	Function
$\overline{\mathrm{nEE}}$	Output Enable Inputs
$\frac{1 D n, 2 \mathrm{2Dn}}{10 \mathrm{n}, \frac{2 O n}{}}$	Data Inputs
3-State Outputs	

LOGIC DIAGRAM

INPUTS		OUTPUTS
$\overline{10 E}$	1Dn $20 E$ $2 D n$	$\overline{\mathbf{1 0 n}, \overline{20 n}}$
L	L	H
L	H	L
H	X	Z

$H=$ High Voltage Level; L = Low Voltage Level; $Z=$ High Impedance State; $X=$ High or Low Voltage Level and Transitions Are Acceptable, for ICC reasons, DO NOT FLOAT Inputs

ABSOLUTE MAXIMUM RATINGS*

Symbol	Parameter	Value	Condition	Unit
VCC	DC Supply Voltage	-0.5 to +7.0		V
V_{1}	DC Input Voltage	$-0.5 \leq \mathrm{V}_{1} \leq+7.0$		V
V_{0}	DC Output Voltage	$-0.5 \leq V_{O} \leq+7.0$	Output in 3-State	V
		$-0.5 \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}+0.51$	Output in HIGH or LOW State	V
IIK	DC Input Diode Current	-50	$V_{1}<$ GND	mA
IOK	DC Output Diode Current	-50	$\mathrm{V}_{\mathrm{O}}<\mathrm{GND}$	mA
		+50	$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$	mA
10	DC Output Source/Sink Current	± 50		mA
IcC	DC Supply Current Per Supply Pin	± 100		mA
IGND	DC Ground Current Per Ground Pin	± 100		mA
TSTG	Storage Temperature Range	-65 to +150		${ }^{\circ} \mathrm{C}$

* Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute-maximum-rated conditions is not implied.

1. lo absolute maximum rating must be observed.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Typ	Max	Unit
V_{CC}		$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 3.6 \end{aligned}$	V
V_{1}	Input Voltage	0		5.5	V
v_{O}	Output Voltage (HIGH or LOW State) (3-State)	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{gathered} \mathrm{v}_{\mathrm{CC}} \\ 5.5 \end{gathered}$	V
${ }^{\mathrm{IOH}}$	HIGH Level Output Current, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$			-24	mA
$\mathrm{IOL}^{\text {O }}$	LOW Level Output Current, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$			24	mA
${ }^{\mathrm{I}} \mathrm{OH}$	HIGH Level Output Current, $\mathrm{V}_{C C}=2.7 \mathrm{~V}-3.0 \mathrm{~V}$			-12	mA
lOL	LOW Level Output Current, $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V}$			12	mA
T_{A}	Operating Free-Air Temperature	-40		+85	${ }^{\circ} \mathrm{C}$
$\Delta t \Delta V$	Input Transition Rise or Fall Rate, V_{IN} from 0.8 V to 2.0 V , $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	0		10	ns / N

DC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
			Min	Max	
V_{iH}	HIGH Level Input Voltage (Note 1)	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$	2.0		V
V_{IL}	LOW Level Input Voltage (Note 1)	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$		0.8	V
V_{OH}	HIGH Level Output Voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{l}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{cc}}-0.2$		v
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{l}^{\mathrm{OH}}=-12 \mathrm{~mA}$	2.2		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{l}^{\mathrm{OH}}=-18 \mathrm{~mA}$	2.4		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{IOH}=-24 \mathrm{~mA}$	2.2		
VOL	LOW Level Output Voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{lOL}=100 \mu \mathrm{~A}$		0.2	V
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}$		0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=16 \mathrm{~mA}$		0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$		0.55	

[^3]MC74LCX240

DC ELECTRICAL CHARACTERISTICS (continued)

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
			Min	Max	
$1 /$	Input Leakage Current	$2.7 \mathrm{~V} \leq \mathrm{V}_{\text {cc }} \leq 3.6 \mathrm{~V} ; 0 \mathrm{~V} \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}$		± 5.0	$\mu \mathrm{A}$
Ioz	3-State Output Current	$\begin{gathered} 2.7 \leq V_{C C} \leq 3.6 V_{;} ; 0 V \leq V_{O} \leq 5.5 V_{;} \\ V_{I}=V_{I H} \text { or } V_{I L} \end{gathered}$		± 5.0	$\mu \mathrm{A}$
IOFF	Power-Off Leakage Current	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} ; \mathrm{V}_{1}$ or $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$		10	$\mu \mathrm{A}$
Icc	Quiescent Supply Current	$2.7 \leq V_{C C} \leq 3.6 \mathrm{~V}$; $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or V_{CC}		10	$\mu \mathrm{A}$
		$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; 3.6 \leq \mathrm{V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$		± 10	$\mu \mathrm{A}$
$\Delta I C C$	Increase in ICC per Input	$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{V}_{\text {IH }}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$		500	$\mu \mathrm{A}$

AC CHARACTERISTICS ($\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega$)

Symbol	Parameter	Waveform	Limits			Unit
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			
			$\mathrm{V}_{\mathrm{CC}}=$	3.6 V	$\mathrm{V}_{\text {cc }}=2.7 \mathrm{~V}$	
			Min	Max	Max	
$\begin{aligned} & \text { tPL } \\ & \text { tPHL } \end{aligned}$	Propagation Delay Input to Output	1	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	ns
$\begin{aligned} & \text { tPZH } \\ & \text { tPZL } \end{aligned}$	Output Enable Time to High and Low Level	2	$\begin{aligned} & \hline 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	ns
$\begin{array}{\|l\|} \hline \text { tphz } \\ \text { tpLz } \\ \hline \end{array}$	Output Disable Time From High and Low Level	2	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	ns
$\begin{aligned} & \text { toshL } \\ & \text { tosLH } \end{aligned}$	Output-to-Output Skew (Note 1)			$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$		ns

1. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (tOSHL) or LOW-to-HIGH (tOSLH); parameter guaranteed by design.

DYNAMIC SWITCHING CHARACTERISTICS

Symbol	Characteristlc	Condition	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			Unit
			Min	Typ	Max	
Volp	Dynamic LOW Peak Voitage ${ }^{1}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$		0.8		V
$\mathrm{V}_{\text {OLV }}$	Dynamic LOW Valley Voltage ${ }^{1}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\text {IH }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {IL }}=0 \mathrm{~V}$		0.8		V

1. Number of outputs defined as " n ". Measured with " $n-1$ " outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state.

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Unit
$C_{P D}$	Power Dissipation Capacitance	$10 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	25	pF
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	7	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	8	pF

WAVEFORM 2 - OUTPUT ENABLE AND DISABLE TIMES
$t_{R}=t_{F}=2.5 \mathrm{~ns}, 10 \%$ to $90 \% ; f=1 \mathrm{MHz} ; \mathrm{t}_{\mathrm{W}}=500 \mathrm{~ns}$
Figure 1. AC Waveforms

TEST	SWITCH
tPLH, tPHL	Open
tpzL, $_{\text {tPLZ }}$	6 V
Open Collector/Drain tple and tPHL	6 V
tPZH, tPHZ	GND

$C_{L}=50 \mathrm{pF}$ or equivalent (Includes jig and probe capacitance)
$R_{L}=R_{1}=500 \Omega$ or equivalent
$\mathrm{R}_{\mathrm{T}}=$ Z $_{\mathrm{OUT}}$ of pulse generator (typically 50Ω)
Figure 2. Test Circuit

Low-Voltage CMOS Octal Buffer With 5V-Tolerant Inputs and Outputs (3-State, Non-Inverting)

The MC74LCX244 is a high performance, non-inverting octal buffer operating from a 2.7 to 3.6 V supply. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. A V_{I} specification of 5.5 V allows MC74LCX244 inputs to be safely driven from 5 V devices. The MC74LCX244 is suitable for memory address driving and all TTL level bus oriented buffer applications.

Current drive capability is 24 mA at the outputs. The Output Enable ($\overline{\mathrm{OE}}$) input, when HIGH, disables the output by placing them in a HIGH Z condition.

- Designed for 2.7 to $3.6 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ Operation
- 5V Tolerant - Interface Capability With 5V TTL Logic
- Supports Live Insertion and Withdrawal
- IOFF Specification Guarantees High Impedance When VCC = OV
- LVTTL Compatible
- LVCMOS Compatible
- 24 mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current in All Three Logic States ($10 \mu \mathrm{~A}$) Substantially Reduces System Power Requirements
- Latchup Performance Exceeds 500 mA
- ESD Performance: Human Body Model >2000V; Machine Model >200V

Pinout: 20-Lead (Top View)

MC74LCX244

LCX

LOW-VOLTAGE CMOS

 OCTAL BUFFER

PIN NAMES

Pins	Function
nOE	Output Enable Inputs
1Dn, 2Dn	Data Inputs
1On, 2On	3-State Outputs

LOGIC DIAGRAM

INPUTS		OUTPUTS
$1 \overline{O E}$ $2 \overline{O E}$	1 Dn 2 Dn	
L	L	10n, 20n
L	H	L
H	X	H

$H=$ High Voltage Level; L = Low Voltage Level; $Z=$ High Impedance State; $\mathrm{X}=$ High or Low Voltage Level and Transitions Are Acceptable, for ICC reasons, DO NOT FLOAT Inputs

ABSOLUTE MAXIMUM RATINGS*

Symbol	Parameter	Value	Condition	Unit
$\mathrm{V}_{\text {CC }}$	DC Supply Voltage	-0.5 to +7.0		V
V_{1}	DC Input Voltage	-0.5 $\leq \mathrm{V}_{1} \leq+7.0$		V
V_{O}	DC Output Voltage	$-0.5 \leq \mathrm{V}_{\mathrm{O}} \leq+7.0$	Output in 3-State	V
		$-0.5 \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}+0.51$	Output in HIGH or LOW State	V
If	DC Input Diode Current	-50	$\mathrm{V}_{1}<\mathrm{GND}$	mA
Iok	DC Output Diode Current	-50	$\mathrm{V}_{\mathrm{O}}<$ GND	mA
		+50	$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$	mA
10	DC Output Source/Sink Current	± 50		mA
Icc	DC Supply Current Per Supply Pin	± 100		mA
$\mathrm{I}_{\text {GND }}$	DC Ground Current Per Ground Pin	± 100		mA
TSTG	Storage Temperature Range	-65 to +150		${ }^{\circ} \mathrm{C}$

* Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute-maximum-rated conditions is not implied.

1. IO absolute maximum rating must be observed.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Typ	Max	Unit
$V_{C C}$	Supply Voltage $\begin{array}{r}\text { Operating } \\ \text { Data Retention Only }\end{array}$	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 3.6 \end{aligned}$	V
V_{1}	Input Voltage	0		5.5	V
V_{O}	Output Voltage (HIGH or LOW State)	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{gathered} V_{C C} \\ 5.5 \end{gathered}$	V
${ }^{1} \mathrm{OH}$	HIGH Level Output Current, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$			-24	mA
IOL	LOW Level Output Current, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$			24	mA
IOH	HIGH Level Output Current, $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V}$			-12	mA
l OL	LOW Level Output Current, $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V}$			12	mA
T_{A}	Operating Free-Air Temperature	-40		+85	${ }^{\circ} \mathrm{C}$
$\Delta t \Delta V$	Input Transition Rise or Fall Rate, $\mathrm{V}_{\text {IN }}$ from 0.8 V to 2.0 V , $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	0		10	ns / N

DC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
			Min	Max	
$\mathrm{V}_{\text {IH }}$	HIGH Level Input Voltage (Note 1)	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$	2.0		V
V_{IL}	LOW Level Input Voltage (Note 1)	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$		0.8	V
V_{OH}	HIGH Level Output Voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ;!\mathrm{OH}=-100 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}-0.2$		V
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{IOH}=-12 \mathrm{~mA}$	2.2		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$; $\mathrm{IOH}=-18 \mathrm{~mA}$	2.4		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}$	2.2		
$\mathrm{V}_{\text {OL }}$	LOW Level Output Voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{lOL}=100 \mu \mathrm{~A}$		0.2	V
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}$		0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$		0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{IOL}=24 \mathrm{~mA}$		0.55	

1. These values of V_{I} are used to test DC electrical characteristics only. Functional test should use $\mathrm{V}_{\mathrm{IH}} \geq 2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}} \leq 0.5 \mathrm{~V}$.

DC ELECTRICAL CHARACTERISTICS (continued)

Symbol	Characteristic	Condition	$\mathrm{T}_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
			Min	Max	
1	Input Leakage Current	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; 0 \mathrm{~V} \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}$		± 5.0	$\mu \mathrm{A}$
'oz	3-State Output Current	$\begin{gathered} 2.7 \leq V_{C C} \leq 3.6 \mathrm{~V} ; 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V} ; \\ V_{I}=V_{I H} \text { or } V_{I \mathrm{~L}} \end{gathered}$		± 5.0	$\mu \mathrm{A}$
Ioff	Power-Off Leakage Current	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$; V_{1} or $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$		10	$\mu \mathrm{A}$
ICC	Quiescent Supply Current	$2.7 \leq V_{C C} \leq 3.6 V V_{1}=$ GND or $V_{C C}$		10	$\mu \mathrm{A}$
		$2.7 \leq \mathrm{V}_{\text {CC }} \leq 3.6 \mathrm{~V} ; 3.6 \leq \mathrm{V}_{\mathrm{I}}$ or $\mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$		± 10	$\mu \mathrm{A}$
$\Delta \mathrm{lcC}$	Increase in ICC per Input	$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$		500	$\mu \mathrm{A}$

AC CHARACTERISTICS ($\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega$)

Symbol	Parameter	Waveform	Limits			Unit
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			
			V_{cc}	3.6V	$\mathrm{V}_{\mathrm{cc}}=2.7 \mathrm{~V}$	
			Min	Max	Max	
$\begin{aligned} & \mathrm{t} \mathrm{t} \mathrm{LH} \\ & \mathrm{t} \mathrm{PHL} \end{aligned}$	Propagation Delay Input to Output	1	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	ns
	Output Enable Time to High and Low Level	2	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	ns
$\begin{array}{\|l\|} \hline \text { tphz } \\ \text { tpLZ } \end{array}$	Output Disable Time From High and Low Level	2	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	ns
$\begin{aligned} & \text { tosht } \\ & \text { tOSLH } \end{aligned}$	Output-to-Output Skew (Note 1)			$\begin{aligned} & \hline 1.0 \\ & 1.0 \end{aligned}$		ns

1. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (tOSHL) or LOW-to-HIGH (tOSLH); parameter guaranteed by design.

DYNAMIC SWITCHING CHARACTERISTICS

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			Unit
			Min	Typ	Max	
Volp	Dynamic LOW Peak Voltage ${ }^{1}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$		0.8		V
V OLV	Dynamic LOW Valley Voltage ${ }^{1}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$		0.8		V

1. Number of outputs defined as " n ". Measured with " $\mathrm{n}-1$ " outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state.

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition \quad Typical	Unit	
C_{PD}	Power Dissipation Capacitance	$10 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	25	pF
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	7	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	8	pF

WAVEFORM 2 - OUTPUT ENABLE AND DISABLE TIMES
$t_{R}=t_{F}=2.5 \mathrm{~ns}, 10 \%$ to $90 \% ; \mathrm{f}_{\mathrm{f}}=1 \mathrm{MHz} ; \mathrm{t}_{\mathrm{W}}=500 \mathrm{~ns}$
Figure 1. AC Waveforms

TEST	SWITCH
tPLH, tPHL	Open
tPZL, tPLZ	6 V
Open Collector/Drain tple and tPHL	6 V
tPZH, tPHZ	GND

$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ or equivalent (Includes jig and probe capacitance)
$R_{L}=R_{1}=500 \Omega$ or equivalent
$\mathrm{R}_{\mathrm{T}}=$ ZOUT of pulse generator (typically 50Ω)
Figure 2. Test Circuit

Low-Voltage CMOS Octal Transceiver With 5V-Tolerant Inputs and Outputs (3-State, Non-Inverting)

The MC74LCX245 is a high performance, non-inverting octal transceiver operating from a 2.7 to 3.6 V supply. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. $\mathrm{A} \mathrm{V}_{\text {I }}$ specification of 5.5 V allows MC74LCX245 inputs to be safely driven from 5 V devices. The MC74LCX245 is suitable for memory address driving and all TTL level bus oriented transceiver applications.

Current drive capability is 24 mA at both A and B ports. The Transmit/Receive (T / \bar{R}) input determines the direction of data flow through the bi-directional transceiver. Transmit (active-HIGH) enables data from A ports to B ports; Receive (active-LOW) enables data from B to A ports. The Output Enable input, when HIGH, disables both A and B ports by placing them in a HIGH Z condition.

- Designed for 2.7 to $3.6 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ Operation
- 5V Tolerant — Interface Capability With 5V TTL Logic
- Supports Live Insertion and Withdrawal
- IOFF Specification Guarantees High Impedance When $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$
- LVTTL Compatible
- LVCMOS Compatible
- 24mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current in All Three Logic States ($10 \mu \mathrm{~A}$) Substantially Reduces System Power Requirements
- Latchup Performance Exceeds 500 mA
- ESD Performance: Human Body Model >2000V; Machine Model >200V

Pinout: 20-Lead (Top View)

MC74LCX245 LCX

LOW-VOLTAGE CMOS OCTAL TRANSCEIVER

DW SUFFIX
PLASTIC SOIC
CASE 751D-04

M SUFFIX
PLASTIC SOIC EIAJ
CASE 967-01

SD SUFFIX PLASTIC SSOP
CASE 940C-03

DT SUFFIX
PLASTIC TSSOP
CASE 948E-02

PIN NAMES

Pins	Function
$\overline{\mathrm{OE}}$	Output Enable Input
$\mathrm{T} / \overline{\mathrm{R}}$	Transmit/Receive Input
A0-A7	Side A 3-State Inputs or 3-State
O0-B7	Outputs Side B 3-State Inputs or 3-State Outputs

LOGIC DIAGRAM

INPUTS		OPERATING MODE Non-Inverting
$\overline{\mathrm{OE}}$	$\mathrm{T} / \overline{\mathrm{R}}$	
L	L	B Data to A Bus
L	H	A Data to B Bus
H	X	Z

$H=$ High Voltage Level; L = Low Voltage Level; Z = High Impedance State; X = High or Low Voltage Level and Transitions are Acceptable; For ICC reasons, Do Not Float Inputs

MC74LCX245

ABSOLUTE MAXIMUM RATINGS*

Symbol	Parameter	Value	Condition	Unit
$V_{C C}$	DC Supply Voltage	-0.5 to +7.0		V
V_{1}	DC Input Voltage	-0.5 $\leq \mathrm{V}_{1} \leq+7.0$		V
V_{O}	DC Output Voltage	-0.5 $\leq \mathrm{V}_{\mathrm{O}} \leq+7.0$	Output in 3-State	V
		$-0.5 \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}+0.51$	Output in HIGH or LOW State	V
IIK^{\prime}	DC Input Diode Current	-50	$V_{1}<$ GND	mA
lok	DC Output Diode Current	-50	$\mathrm{V}_{\mathrm{O}}<\mathrm{GND}$	mA
		+50	$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\text {cC }}$	mA
10	DC Output Source/Sink Current	± 50		mA
ICC	DC Supply Current Per Supply Pin	± 100		mA
IGND	DC Ground Current Per Ground Pin	± 100		mA
TSTG	Storage Temperature Range	-65 to +150		${ }^{\circ} \mathrm{C}$

* Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute-maximum-rated conditions is not implied.

1. Io absolute maximum rating must be observed.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Typ	Max	Unit
V_{CC}	Supply Voltage Operating Data Retention Only	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 3.6 \end{aligned}$	V
V_{1}	Input Voltage	0		5.5	V
V_{O}	Output Voltage (HIGH or LOW State) (3-State)	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}} \\ 5.5 \end{gathered}$	V
${ }^{\mathrm{OH}}$	HIGH Level Output Current, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$			-24	mA
lOL	LOW Level Output Current, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$			24	mA
${ }^{\mathrm{O}} \mathrm{OH}$	HIGH Level Output Current, $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V}$			-12	mA
l OL	LOW Level Output Current, $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V}$			12	mA
T_{A}	Operating Free-Air Temperature	-40		+85	${ }^{\circ} \mathrm{C}$
$\Delta t \Delta V$	Input Transition Rise or Fall Rate, $\mathrm{V}_{\text {IN }}$ from 0.8 V to 2.0 V , $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	0		10	ns / N

DC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
			Min	Max	
V_{IH}	HIGH Level Input Voltage (Note 1)	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$	2.0		V
V_{IL}	LOW Level Input Voltage (Note 1)	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$		0.8	V
V_{OH}	HIGH Level Output Voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{IOH}=-100 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}-0.2$		v
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{IOH}=-12 \mathrm{~mA}$	2.2		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{IOH}=-18 \mathrm{~mA}$	2.4		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{IOH}=-24 \mathrm{~mA}$	2.2		
V_{OL}	LOW Level Output Voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{IOL}=100 \mu \mathrm{~A}$		0.2	v
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$		0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{lOL}=16 \mathrm{~mA}$		0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}$		0.55	

1. These values of V_{I} are used to test DC electrical characteristics only. Functional test should use $\mathrm{V}_{\mathrm{IH}} \geq 2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}} \leq 0.5 \mathrm{~V}$.

DC ELECTRICAL CHARACTERISTICS (continued)

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
			Min	Max	
$!$	Input Leakage Current	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; 0 \mathrm{~V} \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}$		± 5.0	$\mu \mathrm{A}$
Ioz	3-State Output Current	$\begin{gathered} 2.7 \leq V_{C C} \leq 3.6 V_{;} ; V \leq V_{O} \leq 5.5 V_{;} \\ V_{I}=V_{I H} \text { or } V_{I L} \end{gathered}$		± 5.0	$\mu \mathrm{A}$
loff	Power-Off Leakage Current	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} ; \mathrm{V}_{1}$ or $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$		10	$\mu \mathrm{A}$
Icc	Quiescent Supply Current	$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{V}_{1}=$ GND or V_{CC}		10	$\mu \mathrm{A}$
		$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; 3.6 \leq \mathrm{V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$		± 10	$\mu \mathrm{A}$
$\Delta \mathrm{lc}$	Increase in ICC per Input	$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$		500	$\mu \mathrm{A}$

AC CHARACTERISTICS ($\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{t}}=2.5 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega$)

Symbol	Parameter	Waveform	Limits			Unit
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			
			Vcc	3.6V	$\mathrm{V}_{\text {cc }}=2.7 \mathrm{~V}$	
			Min	Max	Max	
$\begin{array}{\|l} \hline \text { tpLH } \\ \text { tpHL } \end{array}$	Propagation Delay Input to Output	1	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & \hline 8.0 \\ & 8.0 \end{aligned}$	ns
$\begin{array}{\|l\|} \hline \begin{array}{l} \text { tPZH } \\ \text { tPZL } \end{array} \\ \hline \end{array}$	Output Enable Time to High and Low Level	2	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	ns
$\begin{array}{\|l\|} \hline \text { tpHZ } \\ \text { tpLZ } \end{array}$	Output Disable Time From High and Low Level	2	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	ns
$\begin{aligned} & \text { toshL } \\ & \text { tosLH } \end{aligned}$	Output-to-Output Skew (Note 1)			$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$		ns

1. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, eitherHIGH-to-LOW (tOSHL) or LOW-to-HIGH (tOSLH); parameter guaranteed by design.

DYNAMIC SWITCHING CHARACTERISTICS

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			Unit
			Min	Typ	Max	
Volp	Dynamic LOW Peak Voltage ${ }^{1}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\text {IH }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {IL }}=0 \mathrm{~V}$		0.8		V
Volv	Dynamic LOW Valley Voltage ${ }^{1}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\text {IH }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {IL }}=0 \mathrm{~V}$		0.8		V

1. Number of outputs defined as " n ". Measured with " $n-1$ " outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state.

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Unit
$C_{P D}$	Power Dissipation Capacitance	$10 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	25	pF
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	7	pF
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	Input/Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	8	pF

WAVEFORM 2-OUTPUT ENABLE AND DISABLE TIMES

$\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns}, 10 \%$ to $90 \% ; \mathrm{f}=1 \mathrm{MHz} ; \mathrm{t} \mathbf{W}=500 \mathrm{~ns}$
Figure 1. AC Waveforms

TEST	SWITCH
tPLH, tPHL	Open
tPZL, tPLZ	6 V
Open Collector/Drain tPLH and tPHL	6 V
tPZH, tPHZ	GND

$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ or equivalent (Includes jig and probe capacitance)
$R_{L}=R_{1}=500 \Omega$ or equivalent
$\mathrm{R}_{\mathrm{T}}=$ ZOUT of pulse generator (typically 50Ω)
Figure 2. Test Circuit

Product Preview

Low-Voltage CMOS Quad 2-Input Multiplexer With 5V-Tolerant Inputs and Outputs (3-State, Non-Inverting)

The MC74LCX257 is a high performance, quad 2-input multiplexer with 3-state outputs operating from a 2.7 to 3.6 V supply. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. $\mathrm{A} \mathrm{V}_{\text {I }}$ specification of 5.5 V allows MC74LCX257 inputs to be safely driven from 5 V devices.

Four bits of data from two sources can be selected using the Select input. The four outputs present the selected data in the true (non-inverted) form. The outputs may be switched to a high impedance state by placing a logic HIGH on the Output Enable ($\overline{\mathrm{OE}}$) input. Current drive capability is 24 mA at the outputs.

- Designed for 2.7 to $3.6 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ Operation
- 5V Tolerant - Interface Capability With 5V TTL Logic
- Supports Live Insertion and Withdrawal
- IOFF Specification Guarantees High Impedance When $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$
- LVTTL Compatible
- LVCMOS Compatible
- 24 mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current in All Three Logic States ($10 \mu \mathrm{~A}$) Substantially Reduces System Power Requirements
- Latchup Performance Exceeds 500 mA
- ESD Performance: Human Body Model >2000V; Machine Model >200V

TRUTH TABLE

Inputs				Outputs	
$\overline{O E}$	S	IOn	IIn	Zn	
H	X	X	X	Z	
L	H	X	L	L	
L	H	X	H	H	
L	L	L	X	L	

MC74LCX257
LCX

LOW-VOLTAGE CMOS QUAD 2-INPUT MULTIPLEXER

PIN NAMES

Pins	Function
IOn	Source 0 Data Inputs
IIn	Source 1 Data Inputs
OE	Output Enable Input
S	Select Input
Zn	Outputs

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

Low-Voltage CMOS Octal Transparent Latch With 5V-Tolerant Inputs and Outputs (3-State, Non-Inverting)

The MC74LCX373 is a high performance, non-inverting octal transparent latch operating from a 2.7 to 3.6 V supply. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. $A V_{\text {I }}$ specification of 5.5 V allows MC74LCX373 inputs to be safely driven from 5 V devices.

The MC74LCX373 contains 8 D-type latches with 3-state outputs. When the Latch Enable (LE) input is HIGH, data on the Dn inputs enters the latches. In this condition, the latches are transparent, i.e., a latch output will change state each time its D input changes. When LE is LOW, the latches store the information that was present on the D inputs a setup time preceding the HIGH-to-LOW transition of LE. The 3-state standard outputs are controlled by the Output Enable ($\overline{\mathrm{OE}}$) input. When $\overline{\mathrm{OE}}$ is LOW, the standard outputs are enabled. When $\overline{O E}$ is HIGH, the standard outputs are in the high impedance state, but this does not interfere with new data entering into the latches.

- Designed for 2.7 to $3.6 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ Operation
- 5V Tolerant - Interface Capability With 5V TTL Logic
- Supports Live Insertion and Withdrawal
- IOFF Specification Guarantees High Impedance When $V_{C C}=0 \mathrm{~V}$
- LVTTL Compatible
- LVCMOS Compatible
- 24mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current in All Three Logic States $(10 \mu \mathrm{~A})$ Substantially Reduces System Power Requirements
- Latchup Performance Exceeds 500 mA
- ESD Performance: Human Body Model >2000V; Machine Model >200V

Pinout: 20-Lead (Top View)

LOW-VOLTAGE CMOS OCTAL TRANSPARENT LATCH

PIN NAMES

Pins	Function
$\overline{O E}$	Output Enable Input
LE	Latch Enable Input
DO-D7	Data Inputs
OO-O7	3-State Latch Outputs

LOGIC DIAGRAM

INPUTS			INTERNAL LATCHES	OUTPUTS	OPERATING MODE
$\overline{O E}$	LE	Dn	Q	On	
\bar{L}	H H	$\stackrel{H}{\mathrm{H}}$	$\begin{gathered} \mathrm{H} \\ \mathrm{~L} \\ \hline \end{gathered}$	$\stackrel{H}{\mathrm{H}}$	Transparent (Latch Disabled); Read Latch
$\stackrel{L}{L}$	\downarrow	$\begin{aligned} & n \\ & i \end{aligned}$	$\underset{\mathrm{L}}{\mathrm{H}}$	$\underset{H}{H}$	Latched (Latch Enabled) Read Latch
L	L	X	NC	NC	Hold; Read Latch
H	L	X	NC	Z	Hold; Disabled Outputs
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\underset{\mathrm{L}}{\mathrm{~L}}$	$\underset{H}{H}$	$\begin{aligned} & z \\ & z \end{aligned}$	Transparent (Latch Disabled); Disabled Outputs
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	\downarrow	\bar{h}	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & z \\ & z \end{aligned}$	Latched (Latch Enabled); Disabled Outputs

$H=$ High Voltage Level; $h=$ High Voltage Level One Setup Time Prior to the Latch Enable High-to-Low Transition; L = Low Voltage Level; $I=$ Low Voltage Level One Setup Time Prior to the Latch Enable High-to-Low Transition; NC = No Change; X = High or Low Voltage Level or Transitions are Acceptable; $Z=$ High Impedance State; $\downarrow=$ High-to-Low Transition; For ICC Reasons DO NOT FLOAT Inputs

ABSOLUTE MAXIMUM RATINGS*

Symbol	Parameter	Value	Condition	Unit
V_{CC}	DC Supply Voltage	-0.5 to +7.0		V
V_{1}	DC Input Voltage	$-0.5 \leq \mathrm{V}_{1} \leq+7.0$		V
V_{0}	DC Output Voitage	-0.5 $\leq \mathrm{V}_{0} \leq+7.0$	Output in 3-State	V
		$-0.5 \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}+0.51$	Output in HIGH or LOW State	V
IIK	DC Input Diode Current	-50	$\mathrm{V}_{1}<\mathrm{GND}^{\text {d }}$	mA
IOK	DC Output Diode Current	-50	$\mathrm{V}_{\mathrm{O}}<\mathrm{GND}^{\text {d }}$	mA
		+50	$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$	mA
10	DC Output Source/Sink Current	± 50		mA
ICC	DC Supply Current Per Supply Pin	± 100		mA
IGND	DC Ground Current Per Ground Pin	± 100		mA
TSTG	Storage Temperature Range	-65 to +150		${ }^{\circ} \mathrm{C}$

* Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute-maximum-rated conditions is not implied.

1. IO absolute maximum rating must be observed.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Typ	Max	Unit
VCC	$\begin{array}{lr}\text { Supply Voltage } & \text { Operating } \\ \text { Data Retention Only }\end{array}$	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 3.6 \end{aligned}$	V
V_{1}	Input Voltage	0		5.5	V
V_{0}	Output Voltage (HIGH or LOW State) (3-State)	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{gathered} V_{C C} \\ 5.5 \end{gathered}$	V
${ }^{10 H}$	HIGH Level Output Current, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$			-24	mA
${ }^{\mathrm{OL}}$	LOW Level Output Current, $\mathrm{V}_{C C}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$			24	mA
IOH	HIGH Level Output Current, $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V}$			-12	mA
lOL	LOW Level Output Current, $\mathrm{V}_{C C}=2.7 \mathrm{~V}-3.0 \mathrm{~V}$			12	mA
T_{A}	Operating Free-Air Temperature	-40		+85	${ }^{\circ} \mathrm{C}$
$\Delta t \Delta V$	Input Transition Rise or Fall Rate, V_{IN} from 0.8 V to 2.0 V , $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	0		10	ns / N

DC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
			Min	Max	
$\mathrm{V}_{\text {IH }}$	HIGH Level Input Voltage (Note 1)	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$	2.0		V
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage (Note 1)	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$		0.8	V
V_{OH}	HIGH Level Output Voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{l}^{\mathrm{OH}}=-100 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}-0.2$		V
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{IOH}=-12 \mathrm{~mA}$	2.2		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{IOH}=-18 \mathrm{~mA}$	2.4		
		$\mathrm{VCC}=3.0 \mathrm{~V} ; \mathrm{IOH}=-24 \mathrm{~mA}$	2.2		
VOL	LOW Level Output Voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$; $\mathrm{IOL}=100 \mu \mathrm{~A}$		0.2	V
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}$		0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=16 \mathrm{~mA}$		0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$		0.55	

1. These values of V_{I} are used to test DC electrical characteristics only. Functional test should use $\mathrm{V}_{\mathrm{IH}} \geq 2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}} \leq 0.5 \mathrm{~V}$.

DC ELECTRICAL CHARACTERISTICS (continued)

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
			Min	Max	
I	Input Leakage Current	$2.7 \mathrm{~V} \leq \mathrm{V}_{\text {CC }} \leq 3.6 \mathrm{~V} ; 0 \mathrm{~V} \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}$		± 5.0	$\mu \mathrm{A}$
Ioz	3-State Output Current	$\begin{gathered} 2.7 \leq V_{C C} \leq 3.6 \mathrm{~V} ; 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V} ; \\ V_{\mathrm{I}}=\mathrm{V}_{\mathrm{HH}} \text { or } V_{\mathrm{IL}} \end{gathered}$		± 5.0	$\mu \mathrm{A}$
IOFF	Power-Off Leakage Current	$V_{C C}=0 V^{\prime} V_{1}$ or $V_{O}=5.5 \mathrm{~V}$		10	$\mu \mathrm{A}$
ICC	Quiescent Supply Current	$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{V}_{1}=\mathrm{GND}$ or V_{CC}		10	$\mu \mathrm{A}$
		$2.7 \leq V_{C C} \leq 3.6 \mathrm{~V} ; 3.6 \leq \mathrm{V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$		± 10	$\mu \mathrm{A}$
$\Delta \mathrm{CC}$	Increase in ICC per Input	$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$		500	$\mu \mathrm{A}$

AC CHARACTERISTICS ($\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega$)

Symbol	Parameter	Waveform	Limits				Unit
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$				
			$\mathrm{V}_{\text {cc }}=3.0 \mathrm{~V}$ to 3.6 V		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$		
			Min	Max	Min	Max	
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay Dn to On	1	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	ns
$\begin{array}{\|l} \hline \text { tpLH } \\ \text { tpHL } \end{array}$	Propagation Delay LE to On	3	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	ns
$\begin{aligned} & \text { tPZH } \\ & \text { tPZL } \end{aligned}$	Output Enable Time to HIGH and LOW Level	2	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{tPHZ} \\ & \text { tpLZ } \end{aligned}$	Output Disable Time from HIGH and LOW Level	2	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	ns
t_{s}	Setup TIme, HIGH or LOW Dn to LE	3	2.5		2.5		ns
th	Hold TIme, HIGH or LOW Dn to LE	3	1.5		1.5		ns
$t_{\text {w }}$	LE Pulse Width, HIGH	3	3.3		3.3		ns
$\begin{aligned} & \text { toSHL } \\ & \text { tosLH } \\ & \hline \end{aligned}$	Output-to-Output Skew (Note 1)			$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$			ns

1. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (tOSHL) or LOW-to-HIGH (IOSLH); parameter guaranteed by design.

DYNAMIC SWITCHING CHARACTERISTICS

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			Unit
			Min	Typ	Max	
VoLP	Dynamic LOW Peak Voltage ${ }^{1}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$		0.8		V
VOLV	Dynamic LOW Valley Voltage ${ }^{1}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\text {IH }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {IL }}=0 \mathrm{~V}$		0.8		V

1. Number of outputs defined as " n ". Measured with " $\mathrm{n}-1$ " outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state.

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Unit
C_{PD}	Power Dissipation Capacitance	$10 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V}$ or V_{CC}	25	pF
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V}$ or V_{CC}	7	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V}$ or V_{CC}	8	pF

WAVEFORM 1 -PROPAGATION DELAYS
$t_{R}=t_{F}=2.5 \mathrm{~ns}, 10 \%$ to $90 \% ; f=1 \mathrm{MHz} ; t_{W}=500 \mathrm{~ns}$

WAVEFORM 2-OUTPUT ENABLE AND DISABLE TIMES
$t_{R}=t_{F}=2.5 \mathrm{~ns}, 10 \%$ to $90 \% ; f=1 \mathrm{MHz} ; t_{W}=500 \mathrm{~ns}$

WAVEFORM 3 - LE to On PROPAGATION DELAYS, LE MINIMUM PULSE WIDTH, Dn to LE SETUP AND HOLD TIMES
$t_{R}=t_{f}=2.5 n s, 10 \%$ to $90 \% ; f=1 \mathrm{MHz} ; t^{w}=500 \mathrm{~ns}$ except when noted

Figure 1. AC Waveforms

TEST	SWITCH
tPLH, tPHL	Open
tPZL, tPLZ	6 V
Open Collector/Drain tPLH and tPHL	6 V
tPZH, tPHZ	GND

$C_{L}=50 \mathrm{pF}$ or equivalent (Includes jig and probe capacitance)
$R_{L}=R_{1}=500 \Omega$ or equivalent
$\mathrm{R}_{\mathbf{T}}=$ ZOUT of pulse generator (typically 50Ω)
Figure 2. Test Circuit

Low-Voltage CMOS Octal D-Type Flip-Flop
 With 5V-Tolerant Inputs and Outputs (3-State, Non-Inverting)

The MC74LCX374 is a high performance, non-inverting octal D-type flip-flop operating from a 2.7 to 3.6 V supply. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. A V/specification of 5.5 V allows MC74LCX374 inputs to be safely driven from 5 V devices.

The MC74LCX374 consists of 8 edge-triggered flip-flops with individual D-type inputs and 3-state true outputs. The buffered clock and buffered Output Enable ($\overline{\mathrm{OE}}$) are common to all flip-flops. The eight flip-flops will store the state of individual D inputs that meet the setup and hold time requirements on the LOW-to-HIGH Clock (CP) transition. With the $\overline{O E}$ LOW, the contents of the eight flip-flops are available at the outputs. When the $\overline{\mathrm{OE}}$ is HIGH, the outputs go to the high impedance state. The $\overline{\mathrm{OE}}$ input level does not affect the operation of the flip-flops.

- Designed for 2.7 to $3.6 \mathrm{~V} \mathrm{~V}_{\mathrm{C}}$ Operation
- 5V Tolerant - Interface Capability With 5V TTL Logic
- Supports Live Insertion and Withdrawal
- IOFF Specification Guarantees High Impedance When $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$
- LVTTL Compatible
- LVCMOS Compatible
- 24mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current in All Three Logic States $(10 \mu A)$ Substantially Reduces System Power Requirements
- Latchup Performance Exceeds 500 mA
- ESD Performance: Human Body Model >2000V; Machine Model >200V

Pinout: 20-Lead (Top View)

MC74LCX374
LCX

LOW-VOLTAGE CMOS OCTAL D-TYPE FLIP-FLOP
 CASE 751D-04

M SUFFIX PLASTIC SOIC EIAJ CASE 967-01

SD SUFFIX PLASTIC SSOP CASE 940C-03

DT SUFFIX PLASTIC TSSOP CASE 948E-02

PIN NAMES

Pins	Function
$\overline{\mathrm{OE}}$	Output Enable Input
CP	Clock Pulse Input
$\mathrm{DO}-\mathrm{D7} 7$	Data Inputs
$\mathrm{OO}-\mathrm{O7}$	3-State Outputs

LOGIC DIAGRAM

INPUTS			INTERNAL LATCHES	OUTPUTS	OPERATING MODE
$\overline{O E}$	CP	Dn	Q	On	
\bar{L}	\uparrow	1 h	$\begin{aligned} & L \\ & H \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	Load and Read Register
L	\uparrow	X	NC	NC	Hold and Read Register
H	\ddagger	X	NC	Z	Hold and Disable Outputs
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	\uparrow	$\begin{aligned} & \mathrm{I} \\ & \mathrm{~h} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{z} \\ & \mathrm{z} \end{aligned}$	Load Internal Register and Disable Outputs

H = High Voltage Level; $\mathrm{h}=$ High Voltage Level One Setup Time Prior to the Low-to-High Clock Transition; L = Low Voltage Level; $1=$ Low Voltage Level One Setup Time Prior to the Low-to-High Clock Transition; NC = No Change; X = High or Low Voltage Level and Transitions are Acceptable; $Z=$ High Impedance State; $\uparrow=$ Low-to-High Transition; $\uparrow=$ Nota Low-to-High Transition; ForlCC ReasonsDO NOTFLOAT Inputs

ABSOLUTE MAXIMUM RATINGS*

Symbol	Parameter	Value	Condition	Unit
$\mathrm{V}_{\text {CC }}$	DC Supply Voltage	-0.5 to +7.0		V
V_{1}	DC Input Voltage	$-0.5 \leq \mathrm{V}_{1} \leq+7.0$		V
V_{0}	DC Output Voltage	-0.5 $\leq \mathrm{V}_{\mathrm{O}} \leq+7.0$	Output in 3-State	V
		$-0.5 \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}+0.5^{1}$	Output in HIGH or LOW State	V
IIK	DC Input Diode Current	-50	$\mathrm{V}_{1}<\mathrm{GND}$	mA
IOK	DC Output Diode Current	-50	$\mathrm{V}_{\mathrm{O}}<\mathrm{GND}$	mA
		+50	$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$	mA
10	DC Output Source/Sink Current	± 50		mA
ICC	DC Supply Current Per Supply Pin	± 100		mA
IGND	DC Ground Current Per Ground Pin	± 100		mA
TSTG	Storage Temperature Range	-65 to +150		${ }^{\circ} \mathrm{C}$

* Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute-maximum-rated conditions is not implied.

1. IO absolute maximum rating must be observed.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Typ	Max	Unit
VCC	Supply Voltage \quadOperating Data Retention Only	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 3.6 \end{aligned}$	V
V_{1}	Input Voltage	0		5.5	V
V_{0}	Output Voltage (HIGH or LOW State) (3-State)	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{gathered} \mathrm{V}_{\mathrm{Cc}} \\ 5.5 \end{gathered}$	V
IOH	HIGH Level Output Current, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$			-24	mA
lOL	LOW Level Output Current, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$			24	mA
IOH	HIGH Level Output Current, $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V}$			-12	mA
lOL	LOW Level Output Current, $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V}$			12	mA
T_{A}	Operating Free-Air Temperature	-40		+85	${ }^{\circ} \mathrm{C}$
$\Delta t / \Delta V$	Input Transition Rise or Fall Rate, $\mathrm{V}_{\text {IN }}$ from 0.8 V to 2.0 V , $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	0		10	$\mathrm{ns} N$

DC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
			Min	Max	
$\mathrm{V}_{\text {IH }}$	HIGH Level Input Voltage (Note 1)	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$	2.0		V
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage (Note 1)	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$		0.8	V
V_{OH}	HIGH Level Output Voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{l}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}-0.2$		V
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{l}_{\mathrm{OH}}=-12 \mathrm{~mA}$	2.2		
		$\mathrm{VCC}=3.0 \mathrm{~V} ; \mathrm{IOH}=-18 \mathrm{~mA}$	2.4		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{IOH}=-24 \mathrm{~mA}$	2.2		
V_{OL}	LOW Level Output Voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$; $\mathrm{l}_{\mathrm{OL}}=100 \mu \mathrm{~A}$		0.2	V
		$\mathrm{V}_{\text {CC }}=2.7 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}$		0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=16 \mathrm{~mA}$		0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{IOL}=24 \mathrm{~mA}$		0.55	

1. These values of V_{I} are used to test DC electrical characteristics only. Functional test should use $\mathrm{V}_{\mathrm{IH}} \geq 2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}} \leq 0.5 \mathrm{~V}$.

DC ELECTRICAL CHARACTERISTICS (continued)

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
			Min	Max	
$!$	Input Leakage Current	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; 0 \mathrm{~V} \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}$		± 5.0	$\mu \mathrm{A}$
Ioz	3-State Output Current	$\begin{gathered} 2.7 \leq V_{C C} \leq 3.6 \mathrm{~V} ; 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V} ; \\ \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{gathered}$		± 5.0	$\mu \mathrm{A}$
IOFF	Power-Off Leakage Current	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}_{\text {; }} \mathrm{V}_{1}$ or $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$		10	$\mu \mathrm{A}$
ICC	Quiescent Supply Current	$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{V}_{1}=\mathrm{GND}$ or V_{CC}		10	$\mu \mathrm{A}$
		$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; 3.6 \leq \mathrm{V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$		± 10	$\mu \mathrm{A}$
$\Delta \mathrm{CC}$	Increase in ICC per Input	$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$		500	$\mu \mathrm{A}$

AC CHARACTERISTICS ($\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega$)

Symbol	Parameter	Waveform					Unit
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$				
			$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V		$\mathrm{VCC}=2.7 \mathrm{~V}$		
			Min	Max	Min	Max	
$f_{\text {max }}$	Clock Pulse Frequency	1	150		.		MHz
$\begin{array}{\|l\|} \hline \text { tpLH } \\ \text { tPHL } \end{array}$	Propagation Delay CP to On	1	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	ns
$\begin{array}{\|l\|} \hline \begin{array}{l} \text { tPZH } \\ \text { tPZL } \end{array} \\ \hline \end{array}$	Output Enable Time to HIGH and LOW Levels	2	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	ns
$\begin{array}{\|l} \hline \text { tpHZ } \\ \text { tpLZ } \end{array}$	Output Disable Time from HIGH and LOW Levels	2	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 8.5 \\ & 8.5 \end{aligned}$	ns
$\mathrm{t}_{\text {s }}$	Setup TIme, HIGH or LOW Dn to CP	1	2.5		2.5		ns
th	Hold TIme, HIGH or LOW Dn to CP	1	1.5		1.5		ns
$\mathrm{t}_{\text {w }}$	CP Pulse Width, HIGH or LOW	3	3.3		3.3		ns
toshl tosLh	Output-to-Output Skew (Note 1)			$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$			ns

1. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (tOSHL) or LOW-to-HIGH (tOSLH); parameter guaranteed by design.

DYNAMIC SWITCHING CHARACTERISTICS

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			Unit
			Min	Typ	Max	
VoLP	Dynamic LOW Peak Voltage ${ }^{1}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$		0.8		V
VOLV	Dynamic LOW Valley Voltage ${ }^{1}$	$\cdot \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$		0.8		V

1. Number of outputs defined as " n ". Measured with " $n-1$ " outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state.

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Unit
$C_{P D}$	Power Dissipation Capacitance	$10 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V}$ or V_{CC}	25	pF
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V}$ or V_{CC}	7	pF
C_{OUT}	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V}$ or V_{CC}	8	pF

WAVEFORM 1 - PROPAGATION DELAYS, SETUP AND HOLD TIMES $t_{R}=t_{F}=2.5 \mathrm{~ns}, 10 \%$ to $90 \% ; f=1 \mathrm{MHz} ; \mathrm{t}_{\mathrm{W}}=500 \mathrm{~ns}$

WAVEFORM 2 - OUTPUT ENABLE AND DISABLE TIMES $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{f}}=2.5 \mathrm{~ns}, 10 \%$ to $90 \% ; \mathrm{f}=1 \mathrm{MHz} ; \mathrm{t}_{\mathrm{W}}=500 \mathrm{~ns}$

WAVEFORM 3 - PULSE WIDTH
$t_{R}=t_{F}=2.5$ ns (or fast as required) from 10% to 90%; Output requirements: $\mathrm{V}_{\mathrm{OL}} \leq 0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}} \geq 2.0 \mathrm{~V}$

Figure 1. AC Waveforms

TEST	SWITCH
tPLH, tPHL	Open
tPZL, tPLZ	6 V
Open Collector/Drain tPLH and tPHL	6 V
tPZH, tPHZ	GND

$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ or equivalent (Includes jig and probe capacitance)
$R_{L}=R_{1}=500 \Omega$ or equivalent
$R_{T}=Z_{O U T}$ of pulse generator (typically 50Ω)
Figure 2. Test Circuit

Low-Voltage CMOS Octal Buffer Flow Through Pinout With 5V-Tolerant Inputs and Outputs (3-State, Inverting)

The MC74LCX540 is a high performance, inverting octal buffer operating from a 2.7 to 3.6 V supply. This device is similar in function to the MC74LCX240, while providing flow through architecture. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. A V/ specification of 5.5 V allows MC74LCX540 inputs to be safely driven from 5 V devices. The MC74LCX540 is suitable for memory address driving and all TTL level bus oriented buffer applications.

Current drive capability is 24 mA at the outputs. The Output Enable ($\overline{\mathrm{OE}}, \overline{\mathrm{OE} 2}$) inputs, when HIGH, disables the outputs by placing them in a HIGH Z condition.

- Designed for 2.7 to $3.6 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ Operation
- 5V Tolerant — Interface Capability With 5V TTL Logic
- Supports Live Insertion and Withdrawal
- IOFF Specification Guarantees High Impedance When $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$
- LVTTL Compatible
- LVCMOS Compatible
- 24mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current in All Three Logic States (10 AA) Substantially Reduces System Power Requirements
- Latchup Performance Exceeds 500mA
- ESD Performance: Human Body Model >2000V; Machine Model >200V

Pinout: 20-Lead (Top View)

LOGIC DIAGRAM

INPUTS			OUTPUTS
$\overline{\text { OE1 }}$	$\overline{\text { OE2 }}$	Dn	$\overline{\mathbf{O n}}$
L	L	L	H
L	L	H	L
X	H	X	Z
H	X	X	Z

H = High Voltage Level; L = Low Voltage Level; $Z=$ High Impedance State; $\mathrm{X}=$ High or Low Voltage Level and Transitions Are Acceptable, for ICC reasons, DO NOT FLOAT Inputs

ABSOLUTE MAXIMUM RATINGS*

Symbol	Parameter	Value	Condition	Unit
$V_{\text {cc }}$	DC Supply Voltage	-0.5 to +7.0		V
V_{1}	DC Input Voltage	$-0.5 \leq \mathrm{V}_{1} \leq+7.0$		V
V_{O}	DC Output Voltage	-0.5 $\leq \mathrm{V}_{\mathrm{O}} \leq+7.0$	Output in 3-State	V
		$-0.5 \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}+0.5^{1}$	Output in HIGH or LOW State	V
IIK	DC Input Diode Current	-50	$V_{1}<$ GND	mA
Iok	DC Output Diode Current	-50	$\mathrm{V}_{\mathrm{O}}<\mathrm{GND}$	mA
		+50	$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$	mA
10	DC Output Source/Sink Current	± 50		mA
${ }^{\text {I CC }}$	DC Supply Current Per Supply Pin	± 100		mA
IGND	DC Ground Current Per Ground Pin	± 100		mA
TSTG	Storage Temperature Range	-65 to +150		${ }^{\circ} \mathrm{C}$

* Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute-maximum-rated conditions is not implied.

1. Io absolute maximum rating must be observed.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Typ	Max	Unit
$V_{C C}$	Supply Voltage $\begin{array}{r}\text { Operating } \\ \text { Data Retention Only }\end{array}$	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 3.6 \end{aligned}$	V
V_{1}	Input Voltage	0		5.5	V
V_{O}	Output Voltage (HIGH or LOW State) (3-State)	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{gathered} \mathrm{v}_{\mathrm{CC}} \\ 5.5 \end{gathered}$	V
IOH	HIGH Level Output Current, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$			-24	mA
${ }^{\text {IOL }}$	LOW Level Output Current, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$			24	mA
$\mathrm{IOH}^{\text {l }}$	HIGH Level Output Current, $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V}$			-12	mA
${ }^{\mathrm{I} \mathrm{OL}}$	LOW Level Output Current, $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V}$			12	mA
$\mathrm{T}_{\text {A }}$	Operating Free-Air Temperature	-40		+85	${ }^{\circ} \mathrm{C}$
$\Delta t / \Delta V$	Input Transition Rise or Fall Rate, $\mathrm{V}_{\text {IN }}$ from 0.8 V to 2.0 V , $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	0		10	ns / V

DC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
			Min	Max	
$\mathrm{V}_{\text {IH }}$	HIGH Level Input Voltage (Note 1)	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$	2.0		V
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage (Note 1)	$2.7 \mathrm{~V} \leq \mathrm{VCC} \leq 3.6 \mathrm{~V}$		0.8	V
V_{OH}	HIGH Level Output Voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{l}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}-0.2$		V
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$	2.2		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{IOH}=-18 \mathrm{~mA}$	2.4		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{OH}}=-24 \mathrm{~mA}$	2.2		
V_{OL}	LOW Level Output Voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$; $\mathrm{OL}=100 \mu \mathrm{~A}$		0.2	V
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{l}^{\text {OL }}=12 \mathrm{~mA}$		0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=16 \mathrm{~mA}$		0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{IOL}=24 \mathrm{~mA}$		0.55	

1. These values of V_{I} are used to test DC electrical characteristics only. Functional test should use $\mathrm{V}_{\mathrm{IH}} \geq 2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}} \leq 0.5 \mathrm{~V}$.

DC ELECTRICAL CHARACTERISTICS (continued)

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
			Min	Max	
1	Input Leakage Current	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; 0 \mathrm{~V} \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}$		± 5.0	$\mu \mathrm{A}$
loz	3-State Output Current	$\begin{gathered} 2.7 \leq V_{C C} \leq 3.6 V_{;} ; V \leq V_{O} \leq 5.5 V_{;} \\ V_{I}=V_{I H} \text { or } V_{I L} \end{gathered}$		± 5.0	$\mu \mathrm{A}$
IOFF	Power-Off Leakage Current	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} ; \mathrm{V}_{1}$ or $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$		10	$\mu \mathrm{A}$
ICC	Quiescent Supply Current	$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{V}_{1}=\mathrm{GND}$ or V_{CC}		10	$\mu \mathrm{A}$
		$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; 3.6 \leq \mathrm{V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$		± 10	$\mu \mathrm{A}$
$\Delta^{\prime} \mathrm{C} C$	Increase in ICC per Input	$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$		500	$\mu \mathrm{A}$

AC CHARACTERISTICS ($\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega$)

Symbol	Parameter	Waveform	Limits			Unit
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			
			V_{Cc}	3.6 V	$\mathrm{V}_{\text {cc }}=2.7 \mathrm{~V}$	
			Min	Max	Max	
$\begin{aligned} & \text { tpLH } \\ & \text { tphL } \end{aligned}$	Propagation Delay Input to Output	1	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	ns
$\begin{aligned} & \text { tPZH } \\ & \text { tPZL } \end{aligned}$	Output Enable Time to High and Low Level	2	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	ns
$\begin{aligned} & \text { tPHZ } \\ & \text { tplZ } \end{aligned}$	Output Disable Time From High and Low Level	2	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & \hline 8.5 \\ & 8.5 \end{aligned}$	ns
$\begin{aligned} & \text { toshL } \\ & \text { tosLH } \end{aligned}$	Output-to-Output Skew (Note 1)			$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$		ns

1. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (tOSHL) or LOW-to-HIGH (tOSLH); parameter guaranteed by design.

DYNAMIC SWITCHING CHARACTERISTICS

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			Unit
			Min	Typ	Max	
VOLP	Dynamic LOW Peak Voltage ${ }^{1}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$		0.8		V
Volv	Dynamic LOW Valley Voltage 1	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\text {IH }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {IL }}=0 \mathrm{~V}$		0.8		V

1. Number of outputs defined as " n ". Measured with " $n-1$ " outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state.

CAPACITIVE CHARACTERISTICS

Symbol	Carameter	Condition	Typical	Unit
$C_{P D}$	Power Dissipation Capacitance	$10 \mathrm{MHz}, \mathrm{V}_{C C}=3.3 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V}$ or V_{CC}	25	pF
$\mathrm{C}_{\mathbb{I}}$	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	7	pF
$C_{O U T}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	8	pF

WAVEFORM 2 - OUTPUT ENABLE AND DISABLE TIMES
$\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns}, 10 \%$ to $90 \% ; \mathrm{f}=1 \mathrm{MHz} ; \mathrm{tw}=500 \mathrm{~ns}$
Figure 1. AC Waveforms

TEST	SWITCH
tPLH, $^{\|c\|}$ PHL	Open
tPZL, tPLZ	6 V
Open Collector/Drain tpLH and tPHL	6 V
tPZH, tPHZ	GND

$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ or equivalent (Includes jig and probe capacitance)
$R_{L}=R_{1}=500 \Omega$ or equivalent
$\mathrm{R}_{\mathrm{T}}=$ Z OUT of pulse generator (typically 50Ω)
Figure 2. Test Circuit

Low-Voltage CMOS Octal Buffer Flow Through Pinout With 5V-Tolerant Inputs and Outputs (3-State, Non-Inverting)

The MC74LCX541 is a high performance, non-inverting octal buffer operating from a 2.7 to 3.6 V supply. This device is similar in function to the MC74LCX244, while providing flow through architecture. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. A $V_{\text {I }}$ specification of 5.5 V allows MC74LCX541 inputs to be safely driven from 5 V devices. The MC74LCX541 is suitable for memory address driving and all TTL level bus oriented buffer applications.

Current drive capability is 24 mA at the outputs. The Output Enable (OE1. OE2) inputs, when HIGH, disables the output by placing them in a HIGH Z condition.

- Designed for 2.7 to $3.6 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ Operation
- 5V Tolerant - Interface Capability With 5V TTL Logic
- Supports Live Insertion and Withdrawal
- IOFF Specification Guarantees High Impedance When $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$
- LVTTL Compatible
- LVCMOS Compatible
- 24mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current in All Three Logic States (10 A A) Substantially Reduces System Power Requirements
- Latchup Performance Exceeds 500 mA
- ESD Performance: Human Body Model >2000V; Machine Model >200V

Pinout: 20-Lead (Top View)

MC74LCX541 LCX

LOW-VOLTAGE CMOS

 OCTAL BUFFER

DW SUFFIX PLASTIC SOIC CASE 751D-04

M SUFFIX PLASTIC SOIC EIAJ CASE 967-01

SD SUFFIX PLASTIC SSOP CASE 940C-03

DT SUFFIX PLASTIC TSSOP CASE 948E-02

PIN NAMES

Pins	Function
$\overline{\text { OEn }}$	Output Enable Inputs
Dn	Data Inputs
On	3-State Outputs

LOGIC DIAGRAM

INPUTS			OUTPUTS
$\overline{\text { OE1 }}$	$\overline{\text { OE2 }}$	Dn	On
L	L	L	L
L	L	H	H
X	H	X	Z
H	X	X	Z

$H=$ High Voltage Level; L = Low Voltage Level; Z = High Impedance State; $\mathrm{X}=$ High or Low Voltage Level and Transitions Are Acceptable, for Icc reasons, DO NOT FLOAT Inputs

ABSOLUTE MAXIMUM RATINGS*

Symbol	Parameter	Value	Condition	Unit
$V_{C C}$	DC Supply Voltage	-0.5 to +7.0		V
$\mathrm{~V}_{\mathrm{I}}$	DC Input Voltage	$-0.5 \leq \mathrm{V}_{1} \leq+7.0$		V
$\mathrm{~V}_{\mathrm{O}}$	DC Output Voltage	$-0.5 \leq \mathrm{V}_{\mathrm{O}} \leq+7.0$	Output in 3-State	V
		$-0.5 \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}+0.5^{1}$	Output in HIGH or LOW State	V
I_{IK}	-50	$\mathrm{~V}_{1}<\mathrm{GND}$	mA	
I_{OK}	DC Input Diode Current	-50	$\mathrm{~V}_{\mathrm{O}}<\mathrm{GND}$	mA
I_{O}	DC Output Diode Current	+50	$\mathrm{~V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$	mA
I_{CC}		± 50		mA
$\mathrm{I}_{\mathrm{GND}}$	DC Output Source/Sink Current	± 100		mA
TSTG	DC Supply Current Per Supply Pin	± 100		mA

* Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute-maximum-rated conditions is not implied.

1. IO absolute maximum rating must be observed.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Typ	Max	Unit
VCC	Supply Voltage $\begin{array}{r}\text { Operating } \\ \text { Data Retention Only }\end{array}$	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 3.6 \end{aligned}$	V
V_{1}	Input Voltage	0		5.5	V
V_{0}	Output Voltage (HIGH or LOW State) (3-State)	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{gathered} \mathrm{v}_{\mathrm{Cc}} \\ 5.5 \end{gathered}$	V
${ }^{\mathrm{OH}}$	HIGH Level Output Current, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$			-24	mA
${ }^{\text {IOL }}$	LOW Level Output Current, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$			24	mA
${ }^{\mathrm{O}} \mathrm{OH}$	HIGH Level Output Current, $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V}$			-12	mA
lOL	LOW Level Output Current, $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V}$			12	mA
T_{A}	Operating Free-Air Temperature	-40		+85	${ }^{\circ} \mathrm{C}$
$\Delta t / \Delta V$	Input Transition Rise or Fall Rate, $\mathrm{V}_{\text {IN }}$ from 0.8 V to 2.0 V , $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	0		10	ns/V

DC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
			Min	Max	
V_{IH}	HIGH Level Input Voltage (Note 1)	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$	2.0		V
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage (Note 1)	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$		0.8	V
V_{OH}	HIGH Level Output Voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{I}^{\mathrm{OH}}=-100 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}-0.2$		V
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{I}^{\text {OH }}=-12 \mathrm{~mA}$	2.2		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{IOH}=-18 \mathrm{~mA}$	2.4		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$; $\mathrm{l}_{\mathrm{OH}}=-24 \mathrm{~mA}$	2.2		
VOL	LOW Level Output Voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=100 \mu \mathrm{~A}$		0.2	V
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}$		0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{l} \mathrm{OL}=16 \mathrm{~mA}$		0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{IOL}=24 \mathrm{~mA}$		0.55	

1. These values of V_{I} are used to test DC electrical characteristics only. Functional test should use $\mathrm{V}_{\mathrm{IH}} \geq 2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}} \leq 0.5 \mathrm{~V}$.

DC ELECTRICAL CHARACTERISTICS (continued)

Symbol	Characteristic	Condltion	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
			Min	Max	
II	Input Leakage Current	$2.7 \mathrm{~V} \leq \mathrm{V}_{\text {CC }} \leq 3.6 \mathrm{~V} ; 0 \mathrm{~V} \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}$		± 5.0	$\mu \mathrm{A}$
Ioz	3-State Output Current	$\begin{gathered} 2.7 \leq V_{C C} \leq 3.6 V_{;} 0 V \leq V_{O} \leq 5.5 V_{;} \\ V_{I}=V_{I H} \text { or } V_{I L} \end{gathered}$		± 5.0	$\mu \mathrm{A}$
IOFF	Power-Off Leakage Current	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}^{\prime} \mathrm{V}_{1}$ or $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$		10	$\mu \mathrm{A}$
ICC	Quiescent Supply Current	$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or V_{CC}		10	$\mu \mathrm{A}$
		$2.7 \leq V_{C C} \leq 3.6 \mathrm{~V} ; 3.6 \leq \mathrm{V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$		± 10	$\mu \mathrm{A}$
$\Delta \mathrm{l} C \mathrm{C}$	Increase in ICC per Input	$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}_{;} \mathrm{V}_{\text {IH }}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$		500	$\mu \mathrm{A}$

AC CHARACTERISTICS $\left(\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega\right.$)

Symbol	Parameter	Waveform	L.imits			Unit
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			
			V_{CC}	o 3.6 V	$\mathrm{V}_{C C}=2.7 \mathrm{~V}$	
			Min	Max	Max	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay Input to Output	1	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	ns
$\begin{aligned} & \text { tpZH } \\ & \text { tPZL } \end{aligned}$	Output Enable Time to High and Low Level	2	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	ns
$\begin{aligned} & \text { tPHZ } \\ & \text { tpLZ } \end{aligned}$	Output Disable Time From High and Low Level	2	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	ns
$\begin{aligned} & \text { toshl } \\ & \text { tOSLH } \end{aligned}$	Output-to-Output Skew (Note 1)			$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$		ns

1. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (tOSHL) or LOW-to-HIGH (IOSLH); parameter guaranteed by design.

DYNAMIC SWITCHING CHARACTERISTICS

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			Unit
			Min	Typ	Max	
Volp	Dynamic LOW Peak Voltage ${ }^{1}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$		0.8		V
Volv	Dynamic LOW Valley Voltage ${ }^{1}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$		0.8		V

1. Number of outputs defined as " n ". Measured with " $n-1$ " outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state.

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Unit
C_{PD}	Power Dissipation Capacitance	$10 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V}$ or V_{CC}	25	pF
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V}$ or V_{CC}	7	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V}$ or V_{CC}	8	pF

WAVEFORM 1 - PROPAGATION DELAYS
$t_{R}=t_{F}=2.5 \mathrm{~ns}, 10 \%$ to $90 \% ; f=1 \mathrm{MHz} ; t_{w}=500 \mathrm{~ns}$

WAVEFORM 2 - OUTPUT ENABLE AND DISABLE TIMES
$t_{R}=t_{F}=2.5 \mathrm{~ns}, 10 \%$ to $90 \% ; f=1 \mathrm{MHz} ; t_{W}=500 \mathrm{~ns}$
Figure 1. AC Waveforms

Figure 2. Test Circuit

Product Preview

Low-Voltage CMOS Octal Latching Transceiver With 5V-Tolerant Inputs and Outputs (3-State, Non-Inverting)

The MC74LCX543 is a high performance, non-inverting octal latching transceiver operating from a 2.7 to 3.6 V supply. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. A VI specification of 5.5 V allows MC74LCX543 inputs to be safely driven from 5 V devices. The MC74LCX543 is suitable for memory address driving and all TTL level bus oriented transceiver applications.

For data flow from A to B with the $\overline{E A B}$ LOW, the $A-t o-B$ Output Enable ($\overline{O E A B}$) must be LOW in order to enable data to the B bus, as indicated in the Function Table. With EAB LOW, a LOW signal on the A-to-B Latch Enable ($\overline{\mathrm{LEAB}}$) input makes the A -to-B latches transparent; a subsequent LOW-to-HIGH transition of the LEAB signal will latch the A latches, and the outputs no longer change with the A inputs. With $\overline{E A B}$ and $\overline{O E A B}$ both LOW, the 3-State B output buffers are active and reflect the data present at the output of the A latches. Control of data flow from B to A is symetric to that above, but uses the EBA, $\overline{\text { LEBA, }}$, and $\overline{O E B A}$ inputs.

- Designed for 2.7 to $3.6 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ Operation
- 5V Tolerant - Interface Capability. With 5V TTL Logic
- Supports Live Insertion and Withdrawal
- IOFF Specification Guarantees High Impedance When VCC = OV
- LVTTL Compatible
- LVCMOS Compatible
- 24 mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current in All Three Logic States $(10 \mu A)$ Substantially Reduces System Power Requirements
- Latchup Performance Exceeds 500 mA
- ESD Performance: Human Body Model >2000V; Machine Model >200V

Pinout: 24-Lead Package (Top View)

PIN NAMES

Pins	Function
$\overline{\mathrm{OExx}}$	Output Enable Inputs
$\overline{\mathrm{Exx}}$	Enable Inputs
$\overline{\mathrm{LExx}}$	Latch Enable Inputs
AO-A7	3-State Inputs/Outputs
BO-B7	3-State Inputs/Outputs

[^4]LOGIC DIAGRAM

FUNCTION TABLE

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Inputs} \& \multicolumn{2}{|c|}{Internal Latch} \& \multicolumn{2}{|r|}{Outputs} \& \multirow[b]{2}{*}{Operating Mode} \\
\hline An \& OEAB \& EAB \& LEAB \& Bn \& OEBA \& EBA \& LEBA \& QABn \& QBAn \& A0-A7 \& B0-B7 \& \\
\hline h
1 \& L \& \[
\bar{L}
\] \& \[
\bar{\uparrow}
\] \& \[
\begin{aligned}
\& \mathrm{U} \\
\& \mathrm{U}
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathrm{H} \\
\& \mathrm{H}
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathrm{x} \\
\& \mathrm{x}
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathrm{x} \\
\& \mathrm{x}
\end{aligned}
\] \& \[
\stackrel{H}{\mathrm{~L}}
\] \& \[
\begin{aligned}
\& \mathrm{x} \\
\& \mathrm{x}
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { NA } \\
\& \mathrm{NA}
\end{aligned}
\] \& \[
\stackrel{H}{\mathrm{H}}
\] \& Latch \& Display B Outputs \\
\hline X \& L \& L \& H \& U \& H \& X \& X \& NC \& X \& NA \& NC \& Hold, Read B Outputs \\
\hline h
1
\(h\)
\(h\)
1 \& \[
\begin{aligned}
\& \mathrm{L} \\
\& \mathrm{~L} \\
\& \mathrm{H} \\
\& \mathrm{H}
\end{aligned}
\] \& \[
\begin{aligned}
\& \uparrow \\
\& \uparrow \\
\& L \\
\& L
\end{aligned}
\] \& \[
\begin{aligned}
\& L \\
\& \uparrow \\
\& \uparrow
\end{aligned}
\] \& \[
\begin{aligned}
\& x \\
\& x \\
\& x \\
\& x \\
\& x
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathrm{H} \\
\& \mathbf{H} \\
\& \mathbf{H} \\
\& \mathbf{H}
\end{aligned}
\] \& \[
\begin{aligned}
\& x \\
\& x \\
\& x \\
\& x
\end{aligned}
\] \& \[
\begin{aligned}
\& x \\
\& x \\
\& x \\
\& x \\
\& x
\end{aligned}
\] \& \(H\)
L
H
L \& \[
\begin{aligned}
\& \mathrm{H} \\
\& \mathrm{~L} \\
\& \mathrm{X} \\
\& \mathrm{X}
\end{aligned}
\] \& \begin{tabular}{l}
NA \\
NA \\
NA \\
NA
\end{tabular} \& \[
\begin{aligned}
\& z \\
\& z \\
\& Z \\
\& z
\end{aligned}
\] \& Latch and B Outputs Disabled \\
\hline \[
\underset{\mathrm{L}}{\mathrm{H}}
\] \& L \& L \& \({ }_{\text {L }}\) \& U
U \& \[
\begin{aligned}
\& \mathrm{H} \\
\& \mathrm{H}
\end{aligned}
\] \& X \& \[
\begin{aligned}
\& \mathrm{x} \\
\& \mathrm{x}
\end{aligned}
\] \& \[
\underset{\mathrm{L}}{\mathrm{H}}
\] \& \[
\begin{aligned}
\& \mathrm{x} \\
\& \mathrm{x}
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { NA } \\
\& \text { NA }
\end{aligned}
\] \& \[
\underset{\mathrm{H}}{\mathrm{H}}
\] \& Transparent A to B \\
\hline \[
\begin{aligned}
\& \mathrm{x} \\
\& \mathrm{x}
\end{aligned}
\] \& \[
\begin{aligned}
\& H \\
\& X
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathrm{X} \\
\& \mathrm{H}
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathrm{x} \\
\& \mathrm{x}
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathrm{x} \\
\& \mathrm{x}
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathrm{H} \\
\& \mathrm{H}
\end{aligned}
\] \& X
\(\times\)

1 \& $$
\begin{aligned}
& \mathrm{x} \\
& \mathrm{x}
\end{aligned}
$$ \& \[

$$
\begin{gathered}
x \\
\mathrm{NC}
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{x} \\
& \mathrm{x}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { NA } \\
& \text { NA }
\end{aligned}
$$
\] \& Z \& Disable B Outputs

\hline $$
\begin{aligned}
& u \\
& u
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{x} \\
& \mathrm{x}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{x} \\
& \mathrm{x}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { h } \\
& \text { i }
\end{aligned}
$$

\] \& L \& \[

L

\] \& \[

\uparrow

\] \& \[

$$
\begin{aligned}
& \mathrm{x} \\
& \mathrm{x}
\end{aligned}
$$

\] \& \[

\stackrel{H}{\mathrm{H}}

\] \& \[

$$
\begin{gathered}
\mathrm{H} \\
\mathrm{~L}
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& \text { NA } \\
& \text { NA }
\end{aligned}
$$
\] \& Latch \& Display A Outputs

\hline U \& H \& X \& X \& X \& L \& L \& H \& X \& NC \& NC \& NA \& Hold, Read A Outputs

\hline $$
\begin{aligned}
& x \\
& x \\
& x \\
& x \\
& x
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H} \\
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& x \\
& x \\
& x \\
& x \\
& x
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& x \\
& x \\
& x \\
& x \\
& x
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { h } \\
& 1 \\
& h \\
& \text { l }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& L \\
& L \\
& H \\
& H
\end{aligned}
$$
\] \& ¢

L
L \& L
L
\uparrow \& H
L
X
X \& H
L
H
L \& Z
Z
Z

Z \& | NA |
| :--- |
| NA |
| NA |
| NA | \& Latch and A Outputs Disabled

\hline U

U \& $$
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \mathrm{x} \\
& \mathrm{x}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{x} \\
& \mathrm{x}
\end{aligned}
$$

\] \& \[

\underset{L}{X}

\] \& \[

L

\] \& L \& L \& \[

$$
\begin{aligned}
& \mathrm{x} \\
& \mathrm{x}
\end{aligned}
$$

\] \& \[

\stackrel{H}{\mathrm{~L}}

\] \& \[

\underset{H}{H}

\] \& \[

$$
\begin{aligned}
& \hline \text { NA } \\
& \text { NA }
\end{aligned}
$$
\] \& Transparent B to A

\hline | X |
| :--- |
| X | \& \[

$$
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{X} \\
& \mathrm{x}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{x} \\
& \mathrm{x}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{x} \\
& \mathrm{x}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{H} \\
& \mathrm{X}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{X} \\
& \mathrm{H}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{x} \\
& \mathrm{x}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{x} \\
& \mathrm{x}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
x \\
\mathrm{NC}
\end{gathered}
$$
\] \& Z

Z \& $$
\begin{aligned}
& \text { NA } \\
& \text { NA }
\end{aligned}
$$ \& Enable A Outputs

\hline
\end{tabular}

$H=$ High Voltage Level; $h=$ High Voltage Level One Setup Time Prior to the Latch Enable or Enable Low-to-High Transition; L= Low Voltage Level; I =Low Voltage Level One Setup Time Prior to the Latch Enable or Enable Low-to-High Transition; Z = High Impedance State; X = High or Low Voltage Level and Transitions are Acceptable; NC = No Change; $\uparrow=$ Low-to-High Transition; U = Undriven

ABSOLUTE MAXIMUM RATINGS*

Symbol	Parameter	Value	Condition	Unit
V_{Cc}	DC Supply Voltage	-0.5 to +7.0		V
V_{1}	DC Input Voltage	$-0.5 \leq v_{1} \leq+7.0$		V
V_{0}	DC Output Voltage	$-0.5 \leq \mathrm{V}_{\mathrm{O}} \leq+7.0$	Output in 3-State	V
		$-0.5 \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}+0.5^{1}$	Output in HIGH or LOW State	V
IIK	DC Input Diode Current	-50	$\mathrm{V}_{1}<\mathrm{GND}$	mA
IOK	DC Output Diode Current	-50	$\mathrm{V}_{\mathrm{O}}<\mathrm{GND}$	mA
		+50	$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$	mA
10	DC Output Source/Sink Current	± 50		mA
Icc	DC Supply Current Per Supply Pin	± 100		mA
IGND	DC Ground Current Per Ground Pin	± 100		mA
TSTG	Storage Temperature Range	-65 to +150		${ }^{\circ} \mathrm{C}$

* Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute-maximum-rated conditions is not implied.

1. IO absolute maximum rating must be observed.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Typ	Max	Unit
VCC	Supply Voltage $\begin{array}{r}\text { Operating } \\ \text { Data Retention Only }\end{array}$	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 3.6 \end{aligned}$	V
V_{1}	Input Voltage	0		5.5	V
V_{O}	$\begin{array}{lr}\text { Output Voltage } & \text { (HIGH or LOW State) } \\ \text { (3-State) }\end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{gathered} \mathrm{v}_{\mathrm{CC}} \\ 5.5 \end{gathered}$	V
${ }^{10 H}$	HIGH Level Output Current, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$			-24	mA
lOL	LOW Level Output Current, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$			24	mA
${ }^{\mathrm{O}} \mathrm{OH}$	HIGH Level Output Current, $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V}$			-12	mA
IOL	LOW Level Output Current, $\mathrm{V}_{C C}=2.7 \mathrm{~V}-3.0 \mathrm{~V}$			12	mA
$\mathrm{T}_{\text {A }}$	Operating Free-Air Temperature	-40		+85	${ }^{\circ} \mathrm{C}$
$\Delta t \Delta V$	Input Transition Rise or Fall Rate, $\mathrm{V}_{\text {IN }}$ from 0.8 V to 2.0 V , $V_{C C}=3.0 \mathrm{~V}$	0		10	ns / N

DC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
			Min	Max	
$\mathrm{V}_{\text {IH }}$	HIGH Level Input Voitage (Note 1)	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$	2.0		V
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage (Note 1)	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$		0.8	V
V_{OH}	HIGH Level Output Voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; 1 \mathrm{lOH}=-100 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}-0.2$		V
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$	2.2		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{OH}}=-18 \mathrm{~mA}$	2.4		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{IOH}=-24 \mathrm{~mA}$	2.2		
VOL	LOW Level Output Voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$; $\mathrm{IOL}=100 \mu \mathrm{~A}$		0.2	V
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}$		0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{lOL}=16 \mathrm{~mA}$		0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$		0.55	

1. These values of V_{I} are used to test DC electrical characteristics only. Functional test should use $\mathrm{V}_{I \mathrm{H}} \geq 2.4 \mathrm{~V}, \mathrm{~V}_{I L} \leq 0.5 \mathrm{~V}$.

DC ELECTRICAL CHARACTERISTICS (continued)

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
			Min	Max	
1	Input Leakage Current	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; 0 \mathrm{~V} \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}$		± 5.0	$\mu \mathrm{A}$
loz	3-State Output Current	$\begin{gathered} 2.7 \leq V_{C C} \leq 3.6 V ; 0 V \leq V_{O} \leq 5.5 V_{;} \\ V_{I}=V_{I H} \text { or } V_{I L} \end{gathered}$		± 5.0	$\mu \mathrm{A}$
IofF	Power-Off Leakage Current	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}$ or $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$		10	$\mu \mathrm{A}$
${ }^{\text {I C }}$ c	Quiescent Supply Current	$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{V}_{1}=\mathrm{GND}$ or V_{CC}		10	$\mu \mathrm{A}$
		$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; 3.6 \leq \mathrm{V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$		± 10	$\mu \mathrm{A}$
$\Delta \mathrm{l} C \mathrm{C}$	Increase in ICC per Input	$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{V}_{1 \mathrm{H}}=\mathrm{V}_{C C}-0.6 \mathrm{~V}$		500	$\mu \mathrm{A}$

AC CHARACTERISTICS ${ }^{1}$ ($\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega$)

Symbol	Parameter	Waveform					Unit
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$				
			$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$		
			Min	Max	Min	Max	
$\begin{array}{\|l} \text { tPLH } \\ \text { tpHL } \end{array}$	Propagation Delay An to Bn or Bn to An	1	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	ns
tPLH $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $\overline{\text { LEBA }}$ to An or $\overline{\text { LEAB }}$ to Bn	4	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	ns
$\begin{aligned} & \text { tPZH } \\ & \text { tPZL } \end{aligned}$	Output Enable Time $\overline{O E B A}$ to $A n$ or $\overline{O E A B}$ to $B n$	2	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$	ns
$\left\lvert\, \begin{aligned} & \mathrm{tphz} \\ & \text { tpLZ } \end{aligned}\right.$	Output Disable Time $\overline{O E B A}$ to $A n$ or $\overline{O E A B}$ to Bn	2	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	ns
$\begin{array}{\|l\|} \hline \text { tpZH } \\ \text { tpZL } \end{array}$	Output Enable Time $\overline{\mathrm{EBA}}$ to An or $\overline{\mathrm{EAB}}$ to Bn	2	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$	ns
$\left\lvert\, \begin{aligned} & \text { tphz } \\ & \text { tpl_ } \end{aligned}\right.$	Output Disable Time $\overline{\mathrm{EBA}}$ to An or $\overline{\mathrm{EAB}}$ to Bn	2	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	ns
$\mathrm{t}_{\text {s }}$	Setup Time, HIGH to LOW Data to $\overline{\text { LExx }}$	4	2.5		2.5		ns
th	Hold Time, HIGH to LOW Data to $\overline{\text { LExx }}$	4	1.5		1.5		ns
$t_{\text {s }}$	Setup Time, HIGH to LOW Data to Exx	4	2.5		2.5		ns
th	Hold Time, HIGH to LOW Data to Exx	4	1.5		1.5		ns
t_{w}	Latch Enable or Enable Pulse Width, LOW	4	3.3		3.3		ns
tOSHL tOSLH	Output-to-Output Skew (Note 2)			$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$			ns

1. These AC parameters are preliminary and may be modified prior to release. The maximum $A C$ limits are design targets. Actual performance will be specified upon completion of characterization.
2. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (tOSHL) or LOW-to-HIGH (tOSLH); parameter guaranteed by design.

DYNAMIC SWITCHING CHARACTERISTICS

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			Unit
			Min	Typ	Max	
VOLP	Dynamic LOW Peak Voltage ${ }^{1}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$		0.8		V
V OLV	Dynamic LOW Valley Voltage ${ }^{1}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\text {IH }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {IL }}=0 \mathrm{~V}$		0.8		V

1. Number of outputs defined as " n ". Measured with " $n-1$ " outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state.

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Unit
$C_{P D}$	Power Dissipation Capacitance	$10 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V}$ or V_{CC}	25	pF
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}_{1} \mathrm{~V}_{1}=0 \mathrm{~V}$ or V_{CC}	7	pF
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	Input/Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V}$ or V_{CC}	8	pF

WAVEFORM 1 - A/B to B/A PROPAGATION DELAYS
$\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns}, 10 \%$ to $90 \% ; \mathrm{t}=1 \mathrm{MHz} ; \mathrm{tw}_{\mathrm{W}}=500 \mathrm{~ns}$

WAVEFORM 2- $\overline{\text { OExx }} \overline{E x x}$ to A or B OUTPUT ENABLE AND DISABLE TIMES $t_{R}=t_{F}=2.5 \mathrm{~ns}, 10 \%$ to $90 \% ; f=1 \mathrm{MHz} ; \mathrm{t}_{\mathrm{W}}=500 \mathrm{~ns}$

Figure 1. AC Waveforms

Figure 2. AC Waveforms (continued)

Figure 3. Test Circuit

Low-Voltage CMOS Octal Transparent Latch Flow Through Pinout With 5V-Tolerant Inputs and Outputs (3-State, Non-Inverting)

The MC74LCX573 is a high performance, non-inverting octal transparent latch operating from a 2.7 to 3.6 V supply. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. A $\mathrm{V}_{\text {}}$ specification of 5.5 V allows MC74LCX573 inputs to be safely driven from 5 V devices.

The MC74LCX573 contains 8 D-type latches with 3-state standard outputs. When the Latch Enable (LE) input is HIGH, data on the Dn inputs enters the latches. In this condition, the latches are transparent, i.e., a latch output will change state each time its D input changes. When LE is LOW, the latches store the information that was present on the D inputs a setup time preceding the HIGH-to-LOW transition of LE. The 3-state standard outputs are controlled by the Output Enable (DE) input. When $\overline{\mathrm{OE}}$ is LOW, the standard outputs are enabled. When $\overline{\mathrm{OE}}$ is HIGH, the standard outputs are in the high impedance state, but this does not interfere with new data entering into the latches. The LCX573 flow through design facilitates easy PC board layout.

- Designed for 2.7 to $3.6 \mathrm{~V} \mathrm{~V}_{\mathrm{C}}$ Operation
- 5V Tolerant — Interface Capability With 5V TTL Logic
- Supports Live Insertion and Withdrawal
- IOFF Specification Guarantees High Impedance When $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$
- LVTTL Compatible
- LVCMOS Compatible
- 24 mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current in All Three Logic States ($10 \mu \mathrm{~A}$) Substantially Reduces System Power Requirements
- Latchup Performance Exceeds 500 mA
- ESD Performance: Human Body Model >2000V; Machine Model >200V

Pinout: 20-Lead (Top View)

LOW-VOLTAGE CMOS OCTAL TRANSPARENT LATCH

DW SUFFIX
PLASTIC SOIC
CASE 751D-04

M SUFFIX
PLASTIC SOIC EIAJ
CASE 967-01

SD SUFFIX PLASTIC SSOP
CASE 940C-03

DT SUFFIX
PLASTIC TSSOP
CASE 948E-02

PIN NAMES

Pins	Function
$\overline{O E}$	Output Enable Input
LE	Latch Enable Input
DO-D7	Data Inputs
OO-O7	3-State Latch Outputs

LOGIC DIAGRAM

INPUTS			INTERNAL LATCHES	OUTPUTS	OPERATING MODE
$\overline{\mathrm{OE}}$	LE	Dn	Q	On	
$\stackrel{L}{L}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\underset{H}{H}$	$\begin{gathered} \mathrm{H} \\ \mathrm{~L} \end{gathered}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	Transparent (Latch Disabled); Read Latch
\bar{L}	\downarrow	\bar{h}	$\begin{gathered} \mathrm{H} \\ \mathrm{~L} \end{gathered}$	$\begin{gathered} \mathrm{H} \\ \mathrm{~L} \end{gathered}$	Latched (Latch Enabled) Read Latch
L	L	X	NC	NC	Hold; Read Latch
H	L	X	NC	Z	Hold; Disabled Outputs
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	H H	$\begin{gathered} H \\ L \end{gathered}$	$\underset{\mathrm{L}}{\mathrm{H}}$	$\begin{aligned} & z \\ & z \end{aligned}$	Transparent (Latch Disabled); Disabled Outputs
$\begin{aligned} & \hline \mathrm{H} \\ & \mathrm{H} \\ & \hline \end{aligned}$	\downarrow	$\begin{aligned} & \hline \mathrm{h} \\ & \mathrm{i} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{z} \\ & \mathrm{z} \\ & \hline \end{aligned}$	Latched (Latch Enabled); Disabled Outputs

$H=$ High Voltage Level; $h=$ High Voltage Level One Setup Time Prior to the Latch Enable High-to-Low Transition; L = Low Voltage Level; $\mathrm{I}=$ Low Voltage Level One Setup Time Prior to the Latch Enable High-to-Low Transition; $N C=$ No Change; $X=$ High or Low Voltage Level and Transitions are Acceptable; $Z=$ High Impedance State; $\downarrow=$ High-to-Low Transition; For Icc Reasons DO NOT FLOAT Inputs

ABSOLUTE MAXIMUM RATINGS*

Symbol	Parameter	Value	Condition	Unit
$V_{C C}$	DC Supply Voltage	-0.5 to +7.0		V
V_{1}	DC Input Voltage	-0.5 $\leq V_{1} \leq+7.0$		V
V_{0}	DC Output Voltage	$-0.5 \leq \mathrm{V}_{\mathrm{O}} \leq+7.0$	Output in 3-State	V
		$-0.5 \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}+0.51$	Output in HIGH or LOW State	V
IIK	DC Input Diode Current	-50	$V_{1}<\mathrm{GND}^{\text {d }}$	mA
${ }^{\text {IOK }}$	DC Output Diode Current	-50	$V_{O}<$ GND	mA
		+50	$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$	mA
10	DC Output Source/Sink Current	± 50		mA
ICC	DC Supply Current Per Supply Pin	± 100		mA
IGND	DC Ground Current Per Ground Pin	± 100		mA
TSTG	Storage Temperature Range	-65 to +150		${ }^{\circ} \mathrm{C}$

* Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute-maximum-rated conditions is not implied.

1. Io absolute maximum rating must be observed.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Typ	Max	Unit
V_{CC}	Supply VoltageOperating Data Retention Only	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 3.6 \end{aligned}$	V
V_{1}	Input Voltage	0		5.5	V
V_{O}	Output Voltage \quad (HIGH or LOW State) (3-State)	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ 5.5 \end{gathered}$	V
${ }^{\mathrm{IOH}}$	HIGH Level Output Current, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$			-24	mA
lOL	LOW Level Output Current, $\mathrm{V}_{C C}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$			24	mA
IOH	HIGH Level Output Current, $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V}$			-12	mA
IOL	LOW Level Output Current, $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V}$			12	mA
T_{A}	Operating Free-Air Temperature	-40		+85	${ }^{\circ} \mathrm{C}$
$\Delta t \Delta V$	Input Transition Rise or Fall Rate, V_{IN} from 0.8 V to 2.0 V , $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	0		10	ns / N

DC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
			Min	Max	
V_{IH}	HIGH Level Input Voltage (Note 1)	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$	2.0		V
V_{IL}	LOW Level Input Voltage (Note 1)	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$		0.8	V
V OH	HIGH Level Output Voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; 1 \mathrm{OH}=-100 \mu \mathrm{~A}$	$\mathrm{VCC}^{-0.2}$		V
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$; $1 \mathrm{OH}=-12 \mathrm{~mA}$	2.2		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{IOH}=-18 \mathrm{~mA}$	2.4		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{IOH}=-24 \mathrm{~mA}$	2.2		
VOL	LOW Level Output Voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{l} \mathrm{OL}=100 \mu \mathrm{~A}$		0.2	v
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}$		0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=16 \mathrm{~mA}$		0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$		0.55	

1. These values of V_{I} are used to test DC electrical characteristics only. Functional test should use $\mathrm{V}_{\mathrm{IH}} \geq 2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}} \leq 0.5 \mathrm{~V}$.

DC ELECTRICAL CHARACTERISTICS (continued)

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
			Min	Max	
1	Input Leakage Current	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; 0 \mathrm{~V} \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}$		± 5.0	$\mu \mathrm{A}$
loz	3-State Output Current	$\begin{gathered} 2.7 \leq V_{C C} \leq 3.6 V_{;} ; 0 V \leq V_{O} \leq 5.5 V ; \\ V_{I}=V_{I H} \text { or } V_{I L} \end{gathered}$		± 5.0	$\mu \mathrm{A}$
Ioff	Power-Off Leakage Current	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} ; \mathrm{V}_{1}$ or $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$		10	$\mu \mathrm{A}$
I'C	Quiescent Supply Current	$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}_{;} \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or V_{CC}		10	$\mu \mathrm{A}$
		$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; 3.6 \leq \mathrm{V}_{\mathrm{I}}$ or $\mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$		± 10	$\mu \mathrm{A}$
$\triangle \mathrm{l}$ CC	Increase in ICC per Input	$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{V}_{\text {IH }}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$		500	$\mu \mathrm{A}$

AC CHARACTERISTICS $\left(t_{R}=t_{F}=2.5 n s ; C_{L}=50 p F ; R_{L}=500 \Omega\right)$

Symbol	Parameter	Waveform	Limits				Unit
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$				
			$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$		
			Min	Max	Min	Max	
$\begin{array}{\|l\|l\|} \hline \text { tpLH } \\ \text { tPHL } \end{array}$	Propagation Delay Dn to On	1	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t} \mathrm{t} \mathrm{LH} \\ & \mathrm{tPHL} \end{aligned}$	Propagation Delay LE to On	3	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	ns
$\begin{array}{\|l\|} \hline \text { tPZH } \\ \text { tPZL } \end{array}$	Output Enable Time to HIGH and LOW Level	2	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t} \mathrm{t} H \mathrm{Z} \\ & \mathrm{tPLZ} \end{aligned}$	Output Disable Time from HIGH and LOW Level	2	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	ns
$\mathrm{t}_{\text {s }}$	Setup TIme, HIGH or LOW Dn to LE	3	2.5		2.5		ns
th	Hold TIme, HIGH or LOW Dn to LE	3	1.5		1.5		ns
t_{w}	LE Pulse Width, HIGH	3	3.3		3.3		ns
$\begin{aligned} & \text { toSHL } \\ & \text { tOSLH } \end{aligned}$	$\begin{aligned} & \text { Output-to-Output Skew } \\ & \text { (Note 1) } \end{aligned}$			$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$			ns

1. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (tOSHL) or LOW-to-HIGH (tOSLH); parameter guaranteed by design.

DYNAMIC SWITCHING CHARACTERISTICS

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			Unit
			Min	Typ	Max	
$\mathrm{V}_{\text {OLP }}$	Dynamic LOW Peak Voltage ${ }^{1}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$		0.8		V
Volv	Dynamic LOW Valley Voltage 1	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\text {IH }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {IL }}=0 \mathrm{~V}$		0.8		V

1. Number of outputs defined as " n ". Measured with " $\mathrm{n}-1$ " outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the L.OW state.

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Unit
C_{PD}	Power Dissipation Capacitance	$10 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	25	pF
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V}$ or V_{CC}	7	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	8	pF

WAVEFORM 1 -PROPAGATION DELAYS
$t_{R}=t_{F}=2.5 \mathrm{~ns}, 10 \%$ to $90 \% ; f=1 \mathrm{MHz} ; t_{W}=500 \mathrm{~ns}$

WAVEFORM 2-OUTPUT ENABLE AND DISABLE TIMES
$t_{R}=t_{F}=2.5 \mathrm{~ns}, 10 \%$ to $90 \% ; f=1 \mathrm{MHz} ; \mathrm{t}_{\mathrm{w}}=500 \mathrm{~ns}$

WAVEFORM 3 - LE to On PROPAGATION DELAYS, LE MINIMUM PULSE WIDTH, Dn to LE SETUP AND HOLD TIMES
$t_{R}=t_{F}=2.5 \mathrm{~ns}, 10 \%$ to $90 \% ; f=1 \mathrm{MHz} ; t_{W}=500 \mathrm{~ns}$ except when noted

Figure 1. AC Waveforms

TEST	SWITCH
tPLH. ${ }^{\text {tPHL }}$	Open
tPZL, tPLZ	6 V
Open Collector/Drain tpLH and tPHL	6 V
tPZH, tPHZ	GND

$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ or equivalent (Includes jig and probe capacitance)
$R_{L}=R_{1}=500 \Omega$ or equivalent
$\mathrm{R}_{\mathrm{T}}=$ ZOUT of pulse generator (typically 50Ω)
Figure 2. Test Circuit

Low-Voltage CMOS Octal D-Type Flip-Flop Flow Through Pinout With 5V-Tolerant Inputs and Outputs (3-State, Non-Inverting)

The MC74LCX574 is a high performance, non-inverting octal D-type flip-flop operating from a 2.7 to 3.6 V supply. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. A Vispecification of 5.5 V allows MC74LCX574 inputs to be safely driven from 5 V devices.

The MC74LCX574 consists of 8 edge-triggered flip-flops with individual D-type inputs and 3-state true outputs. The buffered clock and buffered Output Enable ($\overline{\mathrm{OE}}$) are common to all flip-flops. The eight flip-flops will store the state of individual D inputs that meet the setup and hold time requirements on the LOW-to-HIGH Clock (CP) transition. With the $\overline{O E}$ LOW, the contents of the eight flip-flops are available at the outputs. When the $\overline{O E}$ is HIGH, the outputs go to the high impedance state. The $\overline{\mathrm{OE}}$ input level does not affect the operation of the flip-flops. The LCX574 flow through design facilitates easy PC board layout.

- Designed for 2.7 to 3.6 V VCC Operation
- 5V Tolerant - Interface Capability With 5V TTL Logic
- Supports Live Insertion and Withdrawal
- IOFF Specification Guarantees High Impedance When $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$
- LVTTL Compatible
- LVCMOS Compatible
- 24mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current in All Three Logic States ($10 \mu \mathrm{~A}$) Substantially Reduces System Power Requirements
- Latchup Performance Exceeds 500mA
- ESD Performance: Human Body Model >2000V; Machine Model >200V

Pinout: 20-Lead (Top View)

MC74LCX574 LCX

LOW-VOLTAGE CMOS OCTAL D-TYPE FLIP-FLOP

DW SUFFIX
PLASTIC SOIC
CASE 751D-04

M SUFFIX
PLASTIC SOIC EIAJ
CASE 967-01

SD SUFFIX
PLASTIC SSOP
CASE 940C-03

DT SUFFIX
PLASTIC TSSOP
CASE 948E-02

PIN NAMES

Pins	Function
$\overline{O E}$	Output Enable Input
CP	Clock Pulse Input
D0-D7	Data Inputs
O0-O7	3-State Outputs

LOGIC DIAGRAM

INPUTS			INTERNAL LATCHES	OUTPUTS	OPERATING MODE
$\overline{O E}$	CP	Dn	Q	On	
$\begin{aligned} & L \\ & L \end{aligned}$	\uparrow	$\begin{aligned} & \mathrm{I} \\ & \mathrm{~h} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	Load and Read Register
L	\uparrow	X	NC	NC	Hold and Read Register
H	\uparrow	X	NC	Z	Hold and Disable Outputs
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	\uparrow	$\begin{aligned} & \mathrm{I} \\ & \mathrm{~h} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	Z	Load Internal Register and Disable Outputs

$H=$ High Voltage Level; $h=$ High Voltage Level One Setup Time Prior to the Low-to-High Clock Transition; L = Low Voltage Level; I = Low Voltage Level One Setup Time Prior to the Low-to-High Clock Transition; NC = No Change; $X=$ High or Low Voltage Level and Transitions are Acceptable; $Z=$ High ImpedanceState; $\uparrow=$ Low-to-High Transition; $\uparrow=$ NotaLow-to-High Transition; Forlcc Reasons DONOT FLOAT Inputs

ABSOLUTE MAXIMUM RATINGS*

Symbol	Parameter	Value	Condition	Unit
V_{CC}	DC Supply Voltage	-0.5 to +7.0		V
V_{1}	DC Input Voltage	$-0.5 \leq \mathrm{V}_{1} \leq+7.0$		V
V_{0}	DC Output Voltage	$-0.5 \leq \mathrm{V}_{\mathrm{O}} \leq+7.0$	Output in 3-State	V
		$-0.5 \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}+0.51$	Output in HIGH or LOW State	V
IIK	DC Input Diode Current	-50	$V_{1}<\mathrm{GND}^{\text {d }}$	mA
Iok	DC Output Diode Current	-50	$\mathrm{V}_{\mathrm{O}}<\mathrm{GND}$	mA
		+50	$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$	mA
10	DC Output Source/Sink Current	± 50		mA
Icc	DC Supply Current Per Supply Pin	± 100		mA
IGND	DC Ground Current Per Ground Pin	± 100		mA
TSTG	Storage Temperature Range	-65 to +150		${ }^{\circ} \mathrm{C}$

* Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute-maximum-rated conditions is not implied. 1. IO absolute maximum rating must be observed.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Typ	Max	Unit
$\mathrm{V}_{\text {CC }}$	Supply VoltageOperating Data Retention Only	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 3.6 \end{aligned}$	V
V_{1}	Input Voltage	0		5.5	V
V_{O}	Output Voltage (HIGH or LOW State) (3-State)	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ 5.5 \end{gathered}$	V
${ }^{\mathrm{O}} \mathrm{H}$	HIGH Level Output Current, V $\mathrm{V}_{\text {CC }}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$			-24	mA
loL	LOW Level Output Current, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$			24	mA
IOH	HIGH Level Output Current, $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V}$			-12	mA
$\mathrm{IOL}^{\text {l }}$	LOW Level Output Current, $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V}$			12	mA
T_{A}	Operating Free-Air Temperature	-40		+85	${ }^{\circ} \mathrm{C}$
$\Delta t / \Delta V$	Input Transition Rise or Fall Rate, $\mathrm{V}_{\text {IN }}$ from 0.8 V to 2.0 V , $\mathrm{v}_{\mathrm{CC}}=3.0 \mathrm{~V}$	0		10	ns / N

DC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
			Min	Max	
$\mathrm{V}_{\text {IH }}$	HIGH Level Input Voltage (Note 1)	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$	2.0		V
V_{IL}	LOW Level Input Voltage (Note 1)	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$		0.8	V
V_{OH}	HIGH Level Output Voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$; $\mathrm{l}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}-0.2$		V
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{IOH}=-12 \mathrm{~mA}$	2.2		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{IOH}=-18 \mathrm{~mA}$	2.4		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$; $\mathrm{IOH}=-24 \mathrm{~mA}$	2.2		
V_{OL}	LOW Level Output Voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$; $\mathrm{lOL}=100 \mu \mathrm{~A}$		0.2	V
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}$		0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=16 \mathrm{~mA}$		0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$		0.55	

1. These values of V_{I} are used to test DC electrical characteristics only. Functional test should use $\mathrm{V}_{\mathrm{IH}} \geq 2.4 \mathrm{~V}, \mathrm{~V}_{I L} \leq 0.5 \mathrm{~V}$.

DC ELECTRICAL CHARACTERISTICS (continued)

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
			Min	Max	
1	Input Leakage Current	$2.7 \mathrm{~V} \leq \mathrm{V}_{\text {CC }} \leq 3.6 \mathrm{~V} ; 0 \mathrm{~V} \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}$		± 5.0	$\mu \mathrm{A}$
loz	3-State Output Current	$\begin{gathered} 2.7 \leq V_{C C} \leq 3.6 V_{;} ; 0 V \leq V_{O} \leq 5.5 V ; \\ V_{I}=V_{I H} \text { or } V_{I L} \end{gathered}$		± 5.0	$\mu \mathrm{A}$
IofF	Power-Off Leakage Current	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} ; \mathrm{V}_{1}$ or $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$		10	$\mu \mathrm{A}$
Icc	Quiescent Supply Current	$2.7 \leq \mathrm{V}_{C C} \leq 3.6 \mathrm{~V}$; $\mathrm{V}_{1}=\mathrm{GND}$ or $\mathrm{V}_{C C}$		10	$\mu \mathrm{A}$
		$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; 3.6 \leq \mathrm{V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$		± 10	$\mu \mathrm{A}$
${ }^{\text {alc }}$	Increase in ICC per Input	$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{V}_{\text {IH }}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$		500	$\mu \mathrm{A}$

AC CHARACTERISTICS ($\mathrm{t}_{\mathrm{R}}=\mathrm{tF}_{\mathrm{F}}=2.5 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega$)

Symbol	Parameter	Waveform	Limits				Unit
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$				
			$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V		$\mathrm{VCC}=2.7 \mathrm{~V}$		
			Min	Max	Min	Max	
${ }_{\text {max }}$	Clock Pulse Frequency	1	150				MHz
$\begin{aligned} & \mathrm{tpLH} \\ & \text { tPHL } \end{aligned}$	Propagation Delay CP to On	1	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t} \text { PZH } \\ & \mathrm{t}^{2} \end{aligned}$	Output Enable Time to HIGH and LOW Levels	2	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	ns
$\begin{aligned} & \text { tpHZ } \\ & \text { tpLZ } \end{aligned}$	Output Disable Time from HIGH and LOW Levels	2	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	ns
t_{s}	Setup Time, HIGH or LOW Dn to CP	1	2.5		2.5		ns
th	Hold TIme, HIGH or LOW Dn to CP	1	1.5		1.5		ns
t_{w}	CP Pulse Width, HIGH or LOW	3	3.3		3.3		ns
$\begin{aligned} & \text { tOSHL } \\ & \text { tOSLH } \end{aligned}$	Output-to-Output Skew (Note 1)			$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$			ns

1. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (tOSHL) or LOW-to-HIGH (tOSLH); parameter guaranteed by design.

DYNAMIC SWITCHING CHARACTERISTICS

Symbol	Characteristic	Condition	$\mathrm{T}^{\prime}=+25^{\circ} \mathrm{C}$			Unit
			Min	Typ	Max	
VoLP	Dynamic LOW Peak Voltage ${ }^{1}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$		0.8		V
Volv	Dynamic LOW Valley Voltage ${ }^{1}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$		0.8		V

1. Number of outputs defined as " n ". Measured with " $n-1$ " outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state.

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Unit
C_{PD}	Power Dissipation Capacitance	$10 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	25	pF
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	7	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	8	pF

WAVEFORM 1 - PROPAGATION DELAYS, SETUP AND HOLD TIMES $t_{R}=t_{F}=2.5 \mathrm{~ns}, 10 \%$ to $90 \% ; f=1 \mathrm{MHz} ; \mathrm{t}_{\mathrm{W}}=500 \mathrm{~ns}$

WAVEFORM 2-OUTPUT ENABLE AND DISABLE TIMES $t_{R}=t_{F}=2.5 n s, 10 \%$ to $90 \% ; f=1 \mathrm{MHz} ; t^{W}=500 \mathrm{~ns}$

WAVEFORM 3 - PULSE WIDTH
$t_{R}=t_{F}=2.5$ ns (or fast as required) from 10% to 90%; Output requirements: $\mathrm{V}_{\mathrm{OL}} \leq 0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}} \geq 2.0 \mathrm{~V}$

Figure 1. AC Waveforms

TEST	SWITCH
tPLH, tPHL	Open
tPZL, tPLZ	6 V
Open Collector/Drain tPLH and tPHL	6V
tPZH, tPHZ	GND

$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ or equivalent (Includes jig and probe capacitance)
$R_{L}=R_{1}=500 \Omega$ or equivalent
$\mathrm{R}_{\mathrm{T}}=$ ZOUT of pulse generator (typically 50Ω)
Figure 2. Test Circuit

Product Preview

Low-Voltage CMOS Octal Transceiver/Registered Transceiver

With 5V-Tolerant Inputs and Outputs (3-State, Non-Inverting)

The MC74LCX646 is a high performance, non-inverting octal transceiver/registered transceiver operating from a 2.7 to 3.6 V supply. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. A V_{I} specification of 5.5 V allows MC74LCX646 inputs to be safely driven from 5V devices. The MC74LCX646 is suitable for memory address driving and all TTL level bus oriented transceiver applications.

Data on the A or B bus will be clocked into the registers as the appropriate clock pin goes from a LOW-to-HIGH logic level. Output Enable $(\overline{\mathrm{OE}})$ and DIR pins are provided to control the transceiver outputs. In the transceiver mode, data present at the high impedance port may be stored in either the A or the B register or in both. The select controls (SBA, SAB) can multiplex stored and real-time (transparent mode) data. The direction control (DIR) determines which bus will receive data when the enable $\overline{O E}$ is active LOW. In the isolation mode ($\overline{O E}$ HIGH), A data may be stored in the B register or B data may be stored in the A register. Only one of the two buses, A or B, may be driven at one time.

- Designed for 2.7 to $3.6 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ Operation
- 5V Tolerant - Interface Capability With 5V TTL Logic
- Supports Live Insertion and Withdrawal
- IOFF Specification Guarantees High Impedance When $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$
- LVTTL Compatible
- LVCMOS Compatible
- 24 mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current in All Three Logic States (10 AA) Substantially Reduces System Power Requirements
- Latchup Performance Exceeds 500mA
- ESD Performance: Human Body Model >2000V; Machine Model >200V

MC74LCX646

LCX

LOW-VOLTAGE CMOS
OCTAL TRANSCEIVER/ REGISTERED TRANSCEIVER

PIN NAMES

Pins	Function
AO-A7	Side A Inputs/Outputs
B-B7	Side B Inputs/Outputs
CAB, CBA	Clock Pulse Inputs
SAB, SBA	Select Control Inputs
DIR, OE	Output Enable Inputs

[^5]
MC74LCX646

FUNCTION TABLE

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Inputs} \& \multicolumn{2}{|l|}{Storage Registers} \& \multicolumn{2}{|c|}{Data Ports} \& Operating Mode

\hline $\overline{\mathrm{OE}}$ \& DIR \& CAB \& CBA \& SAB \& SBA \& $\mathbf{Q}_{\mathbf{A}}$ \& Q_{B} \& A_{n} \& B_{n} \& Operating Mode

\hline H \& X \& \& \& \& \& \& \& Input \& Input \&

\hline \& \& \uparrow \& \uparrow \& X \& X \& NC \& NC \& X \& X \& Isolation, Hold Storage

\hline \& \& \uparrow \& \uparrow \& X \& X \& L

X
X
X \& X
X
L

H \& \[
$$
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H} \\
& \mathrm{X} \\
& \mathrm{X}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{X} \\
& \mathrm{X} \\
& \mathrm{~L} \\
& \mathrm{H}
\end{aligned}
$$
\] \& Store A and/or B Data

\hline L \& H \& \& \& \& \& \& \& Input \& Output \&

\hline \& \& \ddagger \& ${ }^{*}$ \& L \& X \& \[
$$
\begin{aligned}
& \text { NC } \\
& \text { NC }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { NC } \\
& \text { NC }
\end{aligned}
$$

\] \& \[

\stackrel{L}{\mathrm{H}}

\] \& \[

$$
\begin{aligned}
& \mathbf{L} \\
& \mathbf{H}
\end{aligned}
$$
\] \& Real Time A Data to B Bus

\hline \& \& \& \& H \& X \& NC \& NC \& X \& Q_{A} \& Stored A Data to B Bus

\hline \& \& \uparrow \& X* \& L \& X \& \[
$$
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { NC } \\
& \text { NC }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& L \\
& H
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
$$
\] \& Real Time A Data to B Bus; Store A Data

\hline \& \& \& \& H \& X \& $$
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \text { NC } \\
& \text { NC }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathbf{Q}_{A} \\
& \mathbf{Q}_{\mathbf{A}}
\end{aligned}
$$
\] \& Stored A Data to B Bus; Store A Data

\hline L \& L \& \& \& \& \& \& \& Output \& Input \&

\hline \& \& X* \& \uparrow \& X \& L \& \[
$$
\begin{aligned}
& \text { NC } \\
& \text { NC }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { NC } \\
& \text { NC }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
$$
\] \& Real Time B Data to A Bus

\hline \& \& \& \& X \& H \& NC \& NC \& Q_{B} \& X \& Stored B Data to A Bus

\hline \& \& X ${ }^{*}$ \& \uparrow \& X \& L \& \[
$$
\begin{aligned}
& \text { NC } \\
& \text { NC }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
$$
\] \& Real Time B Data to A Bus; Store B Data

\hline \& \& \& \& X \& H \& $$
\begin{aligned}
& \text { NC } \\
& \text { NC }
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& L \\
& H
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathbf{Q}_{\mathrm{B}} \\
& \mathbf{Q}_{\mathrm{B}}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
$$
\] \& Stored B Data to A Bus; Store B Data

\hline
\end{tabular}

$H=$ High Voltage Level; L = Low Voltage Level; $X=$ Don't Care; $\uparrow=$ Low-to-High Clock Transition; $\uparrow=$ NOT Low-to-High Clock Transition; NC = No Change; * $=$ The clocks are not internally gated with either the Output Enables or the Source Inputs. Therefore, data at the A or B ports may be clocked into the storage registers, at any time. For ICC reasons, Do Not Float Inputs.

Real Time Transfer - Bus B to Bus A

Real Time Transfer - Bus A to Bus B

Transfer Storage Data to Bus A or Bus B

MC74LCX646

ABSOLUTE MAXIMUM RATINGS*

Symbol	Parameter	Value	Condition	Unit
$V_{\text {cc }}$	DC Supply Voltage	-0.5 to +7.0		V
V_{1}	DC Input Voltage	-0.5 $\leq \mathrm{V}_{1} \leq+7.0$		V
V_{0}	DC Output Voltage	$-0.5 \leq \mathrm{V}_{\mathrm{O}} \leq+7.0$	Output in 3-State	V
		$-0.5 \leq V_{O} \leq V_{C C}+0.51$	Output in HIGH or LOW State	V
IIK	DC Input Diode Current	-50	$\mathrm{V}_{1}<\mathrm{GND}^{\text {d }}$	mA
Iok	DC Output Diode Current	-50	$\mathrm{V}_{\mathrm{O}}<\mathrm{GND}$	mA
		+50	$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$	mA
10	DC Output Source/Sink Current	± 50		mA
ICC	DC Supply Current Per Supply Pin	± 100		mA
IGND	DC Ground Current Per Ground Pin	± 100		mA
TSTG	Storage Temperature Range	-65 to +150		${ }^{\circ} \mathrm{C}$

* Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute-maximum-rated conditions is not implied.

1. IO absolute maximum rating must be observed.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Typ	Max	Unit
VCC	Supply VoltageOperating Data Retention Only	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 3.6 \end{aligned}$	V
V_{1}	Input Voltage	0		5.5	V
V_{0}	Output Voltage (HIGH or LOW State) (3-State)	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{gathered} V_{C C} \\ 5.5 \end{gathered}$	V
IOH	HIGH Level Output Current, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$			-24	mA
IOL	LOW Level Output Current, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$			24	mA
${ }^{\mathrm{OH}}$	HIGH Level Output Current, $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V}$			-12	mA
l_{OL}	LOW Level Output Current, $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V}$			12	mA
T_{A}	Operating Free-Air Temperature	-40		+85	${ }^{\circ} \mathrm{C}$
$\Delta t \Delta V$	Input Transition Rise or Fall Rate, V_{IN} from 0.8 V to 2.0 V , $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	0		10	ns / N

DC ELECTRICAL CHARACTERISTICS

Symbol	Characteristlc	Condition	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
			Min	Max	
$\mathrm{V}_{\text {IH }}$	HIGH Level Input Voltage (Note 1)	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$	2.0		V
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage (Note 1)	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$		0.8	V
V_{OH}	HIGH Level Output Voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{l}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}-0.2$		V
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$	2.2		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{IOH}=-18 \mathrm{~mA}$	2.4		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; 1 \mathrm{OH}=-24 \mathrm{~mA}$	2.2		
VOL	LOW Level Output Voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$; $\mathrm{IOL}=100 \mu \mathrm{~A}$		0.2	V
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{l}^{\mathrm{OL}}=12 \mathrm{~mA}$		0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=16 \mathrm{~mA}$		0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{IOL}=24 \mathrm{~mA}$		0.55	

1. These values of V_{I} are used to test DC electrical characteristics only. Functional test should use $\mathrm{V}_{\mathrm{IH}} \geq 2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}} \leq 0.5 \mathrm{~V}$.

DC ELECTRICAL CHARACTERISTICS (continued)

Symbol	Characteristic	Condition	$T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
			Min	Max	
1	Input Leakage Current	$2.7 \mathrm{~V} \leq \mathrm{V}_{\text {CC }} \leq 3.6 \mathrm{~V} ; 0 \mathrm{~V} \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}$		± 5.0	$\mu \mathrm{A}$
loz	3-State Output Current	$\begin{gathered} 2.7 \leq V_{C C} \leq 3.6 V_{;} ; 0 V \leq V_{O} \leq 5.5 V_{;} \\ V_{I}=V_{I H} \text { or } V_{I L} \end{gathered}$		± 5.0	$\mu \mathrm{A}$
IOFF	Power-Off Leakage Current	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}^{\prime} \mathrm{V}_{1}$ or $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$		10	$\mu \mathrm{A}$
ICC	Quiescent Supply Current	$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or V_{CC}		10	$\mu \mathrm{A}$
		$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; 3.6 \leq \mathrm{V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$		± 10	$\mu \mathrm{A}$
$\Delta \mathrm{CC}$	Increase in ICC per Input	$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$		500	$\mu \mathrm{A}$

AC CHARACTERISTICS ${ }^{1}$ ($\mathrm{tR}=\mathrm{tF}=2.5 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega$)

Symbol	Parameter	Waveform					Unit
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$				
			$\mathrm{V}_{\text {cc }}=3.0 \mathrm{~V}$ to 3.6V		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$		
			Min	Max	Min	Max	
${ }_{\text {max }}$	Clock Pulse Frequency	3	150				MHz
$\begin{aligned} & \mathrm{tPLH} \\ & \text { tPHL } \end{aligned}$	Propagation Delay Clock to Output	3	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	ns
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay Input to Output	1	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	ns
$\begin{array}{\|l} \text { tPLH } \\ \text { tPHL } \end{array}$	Propagation Delay Select to Output	1	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	ns
$\begin{array}{\|l\|l\|} \text { tPZH } \\ \text { tPZL } \end{array}$	Output Enable Time to High and Low Level	2	$\begin{aligned} & \hline 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	ns
$\begin{aligned} & \text { tphz } \\ & \text { tpLZ } \end{aligned}$	Output Disable Time From High and Low Level	2	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	ns
$\mathrm{t}_{\text {s }}$	Setup Time, HIGH or LOW Data to Clock	3	2.5		2.5		ns
th	Hold Time, HIGH or LOW Data to Clock	3	1.5		1.5		ns
$t_{\text {w }}$	Clock Pulse Width, HIGH or LOW	3	3.3		3.3		ns
toshl. tosLh	Output-to-Output Skew (Note 2)			$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$			ns

1. These AC parameters are preliminary and may be modified prior to release. The maximum AC limits are design targets. Actual performance will be specified upon completion of characterization.
2. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (tOSHL) or LOW-to-HIGH (tOSLH); parameter guaranteed by design.

DYNAMIC SWITCHING CHARACTERISTICS

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			Unit
			Min	Typ	Max	
V OLP	Dynamic LOW Peak Voltage ${ }^{1}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$		0.8		V
V OLV	Dynamic LOW Valley Voltage ${ }^{1}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\text {IH }}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$		0.8		V

1. Number of outputs defined as " n ". Measured with " $n-1$ " outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state.

MC74LCX646

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Unit
C_{PD}	Power Dissipation Capacitance	$10 \mathrm{MHz}, \mathrm{V} C \mathrm{CC}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	25	pF
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	7	pF
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	Input/Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	8	pF

WAVEFORM 1 - SAB to B and SBA to A, An to Bn PROPAGATION DELAYS $t_{R}=t_{F}=2.5 \mathrm{~ns}, 10 \%$ to $90 \% ; f=1 \mathrm{MHz} ; \mathrm{t}_{\mathrm{W}}=500 \mathrm{~ns}$

WAVEFORM 2 - $\overline{O E} / D I R$ to An/Bn OUTPUT ENABLE AND DISABLE TIMES $t_{f}=t_{F}=2.5 \mathrm{~ns}, 10 \%$ to $90 \% ; f=1 \mathrm{MHz} ; t^{2}=500 \mathrm{~ns}$

Figure 1. AC Waveforms

WAVEFORM 3-CLOCK to Bn/An PROPAGATION DELAYS, CLOCK MINIMUM PULSE WIDTH,
An/Bn to CLOCK SETUP AND HOLD TIMES
$t_{R}=t_{F}=2.5 \mathrm{~ns}, 10 \%$ to $90 \% ; f=1 \mathrm{MHz} ; \mathrm{t}_{\mathrm{w}}=500 \mathrm{~ns}$ except when noted

WAVEFORM 4 - INPUT PULSE DEFINITION
$t_{R}=t_{F}=2.5 \mathrm{~ns}, 10 \%$ to 90% of 0 V to 2.7 V

Figure 2. AC Waveforms

TEST	SWITCH
tPLH, tPHL $^{\text {O }}$	Open
tPZL, tPLZ	6 V
Open Collector/Drain tPLH and tPHL	6 V
tPZH, tPHZ	GND

$C_{L}=50 \mathrm{pF}$ or equivalent (Includes jig and probe capacitance)
$\mathrm{R}_{\mathrm{L}}=\mathrm{R}_{1}=500 \Omega$ or equivalent
$\mathrm{RT}_{\mathrm{T}}=$ ZOUT of pulse generator (typically 50Ω)

Figure 3. Test Circuit

Product Preview

Low-Voltage CMOS Octal Transceiver/Registered Transceiver With Dual Enable With 5V-Tolerant Inputs and Outputs (3-State, Non-Inverting)

The MC74LCX652 is a high performance, non-inverting octal transceiver/registered transceiver operating from a 2.7 to 3.6 V supply. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. A V_{1} specification of 5.5 V allows MC74LCX652 inputs to be safely driven from 5V devices. The MC74LCX652 is suitable for memory address driving and all TTL level bus oriented transceiver applications.

Data on the A or B bus will be clocked into the registers as the appropriate clock pin goes from a LOW-to-HIGH logic level. Two Output Enable pins ($\overline{O E B A}, \mathrm{OEAB}$) are provided to control the transceiver outputs. In the transceiver mode, data present at the high impedance port may be stored in either the A or the B register or in both. The select controls (SBA, SAB) can multiplex stored and real-time (transparent mode) data. In the isolation mode (both outputs disabled), A data may be stored in the B register or B data may be stored in the A register. When in the real-time mode, it is possible to store data without using the internal registers by simultaneously enabling OEAB and OEBA. In this configuration, each output reinforces its input (data retention is not guaranteed in this mode).

- Designed for 2.7 to $3.6 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ Operation
- 5V Tolerant - Interface Capability With 5V TTL Logic
- Supports Live Insertion and Withdrawal
- IOFF Specification Guarantees High Impedance When $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$
- LVTTL Compatible
- LVCMOS Compatible
- 24 mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current in All Three Logic States (10 $\mu \mathrm{A}$) Substantially Reduces System Power Requirements
- Latchup Performance Exceeds 500mA
- ESD Performance: Human Body Model >2000V; Machine Model >200V

MC74LCX652

LCX

LOW-VOLTAGE CMOS OCTAL TRANSCEIVER/ REGISTERED TRANSCEIVER WITH DUAL ENABLE

PIN NAMES

Pins	Function
AO-A7	Side A Inputs/Outputs
B0-B7	Side B Inputs/Outputs
CAB, CBA	Clock Pulse Inputs
SAB, SBA	Select Control Inputs
OEBA, OEAB	Output Enable Inputs

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

REV 0.2 .2

FUNCTION TABLE

Inputs						Storage Registers		Data Ports		Operating Mode
OEAB	OEBA	CAB	CBA	SAB	SBA	a_{A}	a_{B}	A_{n}	B_{n}	
L	H							Input	Input	
		\uparrow	7	x	x	NC	NC	X	X	Isolation, Hold Storage
		\uparrow	\uparrow	X	X	$\begin{aligned} & \hline \text { L } \\ & H \\ & X \\ & X \end{aligned}$	$\begin{aligned} & \hline X \\ & X \\ & X \\ & L \\ & \hline \end{aligned}$	$\begin{aligned} & \hline L \\ & H \\ & X \\ & X \\ & \hline \end{aligned}$	$\begin{aligned} & X X \\ & X \\ & L \\ & H \end{aligned}$	Store A and/or B Data
H	H							Input	Output	
		\uparrow	**	L	X	$\begin{aligned} & \text { NC } \\ & \text { NC } \end{aligned}$	$\begin{aligned} & \text { NC } \\ & \text { NC } \end{aligned}$	$\begin{aligned} & \bar{L} \\ & H \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	Real Time A Data to B Bus
				H	x	NC	NC	X	$Q_{\dot{A}}$	Stored A Data to B Bus
		\uparrow	x*	L	x	$\begin{aligned} & \bar{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \text { NC } \\ & \text { NC } \end{aligned}$	\bar{L}	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	Real Time A Data to B Bus; Store A Data
				H	X	L	$\begin{aligned} & \mathrm{NC} \\ & \mathrm{NC} \end{aligned}$	$\begin{aligned} & \hline L \\ & H \end{aligned}$	$\begin{aligned} & Q_{A} \\ & Q_{A} \end{aligned}$	Stored A Data to B Bus; Store A Data
L	L							Output	Input	
		x	7	X	L	$\begin{aligned} & \text { NC } \\ & \text { NC } \end{aligned}$	$\begin{aligned} & \text { NC } \\ & \text { NC } \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\stackrel{L}{\mathrm{~L}}$	Real Time B Data to A Bus
				x	H	NC	NC	Q_{B}	X	Stored B Data to A Bus
		X*	\uparrow	X	L	$\begin{aligned} & \text { NC } \\ & \text { NC } \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \bar{L} \\ & H \end{aligned}$	\bar{L}	Real Time B Data to A Bus; Store B Data
				X	H	$\begin{aligned} & \text { NC } \\ & \text { NC } \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{Q}_{\mathrm{B}} \\ & \mathrm{Q}_{\mathrm{B}} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	Stored B Data to A Bus; Store B Data
H	L							Output	Output	
		\uparrow	\ddagger	H	H	NC	NC	Q_{B}	$Q_{\text {A }}$	Stored A Data to B Bus, Stored B Data to A Bus

H = High Voltage Level; L = Low Voltage Level; X = Don't Care; $\uparrow=$ Low-to-High Clock Transition; $\uparrow=$ NOT Low-to-High Clock Transition; NC = No Change; * $=$ The clocks are not internally gated with either the Output Enables or the Source Inputs. Therefore, data at the A or B ports may be clocked into the storage registers, at any time. For ICC reasons, Do Not Float Inputs.

BUS APPLICATIONS

Real Time Transfer - Bus B to Bus A

Store Data from Bus A, Bus B or Bus A and Bus B

Store Bus A in Both Registers or Store Bus B in Both Registers

Real Time Transfer-Bus A to Bus B

Transfer A Stored Data to Bus B or Stored Data Bus B to Bus A or Both at the Same Time

Isolation

ABSOLUTE MAXIMUM RATINGS*

Symbol	Parameter	Value	Condition	Unit
VCC	DC Supply Voltage	-0.5 to +7.0		V
V_{1}	DC Input Voltage	$-0.5 \leq V_{1} \leq+7.0$		V
V_{O}	DC Output Voltage	$-0.5 \leq \mathrm{V}_{\mathrm{O}} \leq+7.0$	Output in 3-State	V
		$-0.5 \leq V_{O} \leq V_{C C}+0.51$	Output in HIGH or LOW State	V
IIK	DC Input Diode Current	-50	$V_{1}<$ GND	mA
IOK	DC Output Diode Current	-50	$\mathrm{V}_{0}<\mathrm{GND}$	mA
		+50	$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\text {cc }}$	mA
10	DC Output Source/Sink Current	± 50		mA
ICC	DC Supply Current Per Supply Pin	± 100		mA
IGND	DC Ground Current Per Ground Pin	± 100		mA
TSTG	Storage Temperature Range	-65 to +150		${ }^{\circ} \mathrm{C}$

* Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute-maximum-rated conditions is not implied.

1. Io absolute maximum rating must be observed.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Typ	Max	Unit
$V_{\text {cc }}$	Supply Voltage Operating Data Retention Only	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 3.6 \end{aligned}$	V
v_{1}	Input Voltage	0		5.5	V
V_{0}	Output Voltage (HIGH or LOW State) (3-State)	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{gathered} \mathrm{v}_{\mathrm{cc}} \\ 5.5 \end{gathered}$	V
IOH	HIGH Level Output Current, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$			-24	mA
IOL	LOW Level Output Current, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$			24	mA
${ }^{\mathrm{OH}}$	HIGH Level Output Current, $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V}$			-12	mA
$\mathrm{IOL}^{\text {l }}$	LOW Level Output Current, $\mathrm{V}_{\text {CC }}=2.7 \mathrm{~V}-3.0 \mathrm{~V}$			12	mA
T_{A}	Operating Free-Air Temperature	-40		+85	${ }^{\circ} \mathrm{C}$
$\Delta t / \Delta V$	Input Transition Rise or Fall Rate, $\mathrm{V}_{\text {IN }}$ from 0.8 V to 2.0 V , $V_{C C}=3.0 \mathrm{~V}$	0		10	ns / N

DC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
			Min	Max	
V_{IH}	HIGH Level Input Voltage (Note 1)	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$	2.0		V
V_{IL}	LOW Level Input Voltage (Note 1)	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$		0.8	V
V OH	HIGH Level Output Voitage	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{l}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}-0.2$		V
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; 1 \mathrm{OH}=-12 \mathrm{~mA}$	2.2		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{IOH}=-18 \mathrm{~mA}$	2.4		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{OH}}=-24 \mathrm{~mA}$	2.2		
VoL	LOW Level Output Voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$; $\mathrm{IOL}=100 \mu \mathrm{~A}$		0.2	V
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{lOL}=12 \mathrm{~mA}$		0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=16 \mathrm{~mA}$		0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{IOL}=24 \mathrm{~mA}$		0.55	

1. These values of V_{I} are used to test DC electrical characteristics only. Functional test should use $\mathrm{V}_{I \mathrm{H}} \geq 2.4 \mathrm{~V}, \mathrm{~V}_{I L} \leq 0.5 \mathrm{~V}$.

DC ELECTRICAL CHARACTERISTICS (continued)

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
			Min	Max	
1	Input Leakage Current	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; 0 \mathrm{~V} \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}$		± 5.0	$\mu \mathrm{A}$
Ioz	3-State Output Current	$\begin{gathered} 2.7 \leq V_{C C} \leq 3.6 V^{2} ; 0 V \leq V_{O} \leq 5.5 V ; \\ V_{I}=V_{I H} \text { or } V_{I L} \end{gathered}$		± 5.0	$\mu \mathrm{A}$
IOFF	Power-Off Leakage Current	$V_{C C}=0 V^{\prime} V_{1}$ or $V_{O}=5.5 \mathrm{~V}$		10	$\mu \mathrm{A}$
ICC	Quiescent Supply Current	$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{V}_{1}=\mathrm{GND}$ or V_{CC}		10	$\mu \mathrm{A}$
		$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; 3.6 \leq \mathrm{V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$		± 10	$\mu \mathrm{A}$
$\Delta^{\prime} \mathrm{CC}$	Increase in ICC per Input	$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$		500	$\mu \mathrm{A}$

AC CHARACTERISTICS ${ }^{1}\left(\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega\right)$

Symbol	Parameter	Waveform					Unit
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$				
			$\mathrm{V}_{\text {CC }}=3.0 \mathrm{~V}$ to 3.6 V		$\mathrm{V}_{\text {cc }}=2.7 \mathrm{~V}$		
			Min	Max	Min	Max	
${ }_{f}$ max	Clock Pulse Frequency	3	150				MHz
tPLH tPHL	Propagation Delay Clock to Output	3	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	ns
$\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay Input to Output	1	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 8.0 \\ & 8.0 \end{aligned}$	ns
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay Select to Output	1	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	ns
$\begin{aligned} & \text { tpZH } \\ & \text { tpZL } \end{aligned}$	Output Enable Time to High and Low Level	2	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	ns
$\begin{array}{\|l\|l} \text { tphZ } \\ \text { tpLZ } \end{array}$	Output Disable Time From High and Low Level	2	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 9.5 \\ & 9.5 \end{aligned}$	ns
t_{s}	Setup Time, HIGH or LOW Data to Clock	3	2.5		2.5		ns
th	Hold Time, HIGH or LOW Data to Clock	3	1.5		1.5		ns
$\mathrm{t}_{\text {w }}$	Clock Pulse Width, HIGH or LOW	3	3.3		3.3		ns
$\begin{aligned} & \text { toshl } \\ & \text { tosLh } \end{aligned}$	Output-to-Output Skew (Note 2)			$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$			ns

1. These AC parameters are preliminary and may be modified prior to release. The maximum AC limits are design targets. Actual performance will be specified upon completion of characterization.
2. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (tOSHL) or LOW-to-HIGH (tOSLH); parameter guaranteed by design.

DYNAMIC SWITCHING CHARACTERISTICS

Symbol	Characteristlc	Condition	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			Unit
			Min	Typ	Max	
VOLP	Dynamic LOW Peak Voltage ${ }^{1}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\text {IH }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {IL }}=0 \mathrm{~V}$		0.8		V
Volv	Dynamic LOW Valley Voltage ${ }^{1}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\text {IH }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {IL }}=0 \mathrm{~V}$		0.8		V

1. Number of outputs defined as " n ". Measured with " $\mathrm{n}-1$ " outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state. The LCX652 is characterized with 7 outputs switching with 1 output held LOW.

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Unit
C_{PD}	Power Dissipation Capacitance	$10 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	25	pF
$\mathrm{C}_{\mathbb{I N}}$	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	7	pF
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	Input/Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	8	pF

WAVEFORM 1 - SAB to B and SBA to $A, A n$ to Bn PROPAGATION DELAYS $t_{R}=t_{F}=2.5 \mathrm{~ns}, 10 \%$ to $90 \% ; f=1 \mathrm{MHz} ; t w=500 \mathrm{~ns}$

WAVEFORM 2 - $\overline{O E B A} / O E A B$ to An/Bn OUTPUT ENABLE AND DISABLE TIMES $t_{R}=t_{F}=2.5 \mathrm{~ns}, 10 \%$ to $90 \% ; f=1 \mathrm{MHz} ; t_{w}=500 \mathrm{~ns}$

Figure 1. AC Waveforms

WAVEFORM 3-CLOCK to Bn/An PROPAGATION DELAYS, CLOCK MINIMUM PULSE WIDTH,
An/Bn to CLOCK SETUP AND HOLD TIMES

$$
t_{R}=t_{F}=2.5 \mathrm{~ns}, 10 \% \text { to } 90 \% ; f=1 \mathrm{MHz} ; t^{W}=500 \mathrm{~ns} \text { except when noted }
$$

WAVEFORM 4 - INPUT PULSE DEFINITION
$t_{R}=t_{F}=2.5 \mathrm{~ns}, 10 \%$ to 90% of 0 V to 2.7 V

Figure 2. AC Waveforms

TEST	SWITCH
t $_{\text {PLH }}$, tPHL	Open
t $_{\text {PZL }}$, t PLZ	6 V
Open Collector/Drain tPLH and tPHL	6 V
tpZH, $^{\text {tPHZ }}$	GND

$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ or equivalent (Includes jig and probe capacitance)
$R_{L}=R_{1}=500 \Omega$ or equivalent
$\mathrm{R}_{\mathrm{T}}=$ Z $_{\text {OUT }}$ of pulse generator (typically 50Ω)
Figure 3. Test Circuit

Product Preview Low-Voltage CMOS Octal Registered Transceiver With Dual Output and Clock Enables
 With 5V-Tolerant Inputs and Outputs (3-State, Non-Inverting)

The MC74LCX2952 is a high performance, non-inverting octal registered transceiver operating from a 2.7 to 3.6 V supply. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. A VI specification of 5.5 V allows MC74LCX2952 inputs to be safely driven from 5V devices. The MC74LCX2952 is suitable for memory address driving and all TTL level bus oriented transceiver applications.

Two 8-bit back to back registers store data from either of two bidirectional buses. Data applied to the inputs is entered and stored on the rising edge of the Clock (CAB, CBA) provided that the Clock Enable ($\overline{C E A B}, \overline{C E B A}$) is Low. The data is then presented at the 3-state output buffers, but is only accessible when the Output Enable ($\overline{\mathrm{OEAB}}, \overline{\mathrm{OEBA}}$) is Low. The operation of the MC74LCX2952 is symmetrical - A inputs to B outputs occurs in the same manner as B inputs to A outputs.

- Designed for 2.7 to $3.6 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ Operation
- 5V Tolerant - Interface Capability With 5V TTL Logic
- Supports Live Insertion and Withdrawal
- IOFF Specification Guarantees High Impedance When VCC $=0 \mathrm{~V}$
- LVTTL Compatible
- LVCMOS Compatible
- 24 mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current in All Three Logic States $(10 \mu \mathrm{~A})$ Substantially Reduces System Power Requirements
- Latchup Performance Exceeds 500mA
- ESD Performance: Human Body Model >2000V; Machine Model >200V

MC74LCX2952
LCX

LOW-VOLTAGE CMOS OCTAL REGISTERED TRANSCEIVER

PIN NAMES

PIns	Function
AO-A7	Side A Inputs/Outputs
B-B7	Side B Inputs/Outputs
CAB, CBA	Clock Pulse Inputs
CEAB, CEBA	Clock Enable Inputs
OEAB, OEBA	Output Enable Inputs

[^6]LOGIC DIAGRAM

FUNCTION TABLE

Inputs								Internal Register		Outputs		Operating Mode
An	$\overline{\text { OEAB }}$	CEAB	CAB	Bn	OEBA	CEBA	CBA	QABn	QBAn	An	Bn	
$\begin{aligned} & h \\ & \text { i } \end{aligned}$	L		\uparrow	$\begin{aligned} & U \\ & U \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\stackrel{H}{\mathrm{H}}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \text { NA } \\ & \text { NA } \end{aligned}$	$\stackrel{H}{\mathrm{H}}$	Load A to B Register; Read B Output
X	L	h	X	U	H	X	X	NC	X	NA	NC	Hold; Read B Output
$\begin{gathered} \text { h } \\ i \end{gathered}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	1	$\bar{\uparrow}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \hline x \\ & x \end{aligned}$	$\begin{gathered} \mathrm{H} \\ \mathrm{~L} \end{gathered}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{NA} \\ & \mathrm{NA} \end{aligned}$	$\begin{aligned} & z \\ & z \end{aligned}$	Load A to B Register; Disable B Outputs
x	H	h	X	x	H	X	X	NC	X	NA	Z	Hold; Disable B Outputs
$\begin{aligned} & u \\ & u \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \\ & x \end{aligned}$	\bar{h}	\bar{L}	1	\uparrow	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{gathered} \mathrm{H} \\ \mathrm{~L} \end{gathered}$	$\underset{\mathrm{H}}{\mathrm{H}}$	$\begin{aligned} & \text { NA } \\ & \text { NA } \end{aligned}$	Load B to A Register; Read A Output
U	H	X	X	X	L	h	X	X	NC	NC	NA	Hold; Read A Output
$\begin{aligned} & \hline x \\ & x \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \hline x \\ & x \\ & \hline \end{aligned}$	$\begin{aligned} & \hline x \\ & x \\ & \hline \end{aligned}$	\bar{h}	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	1	$\bar{\uparrow}$	$\begin{aligned} & \hline x \\ & x \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{H} \\ \mathrm{~L} \end{gathered}$	$\begin{aligned} & z \\ & z \end{aligned}$	$\begin{aligned} & \text { NA } \\ & \text { NA } \end{aligned}$	Load B to A Register; Disable A Outputs
X	H	X	X	X	H	h	X	X	NC	Z	NA	Hold; Disable A Outputs

$H=$ High Voltage Level; $h=$ High Voltage Level One Setup Time Prior to Clock Low-to-High Transition; L = Low Voltage Level; $1=$ Low Voltage Level One Setup Time Prior to Clock Low-to-High Transition; NA = Not Applicable; U = Undriven; Z = High Impedance State; X = Don't Care; NC = No Change; $\uparrow=$ Low-to-High Transition

ABSOLUTE MAXIMUM RATINGS*

Symbol	Parameter	Value	Condition	Unit
V_{Cc}	DC Supply Voltage	-0.5 to +7.0		V
V_{1}	DC Input Voltage	$-0.5 \leq V_{1} \leq+7.0$		V
V_{O}	DC Output Voltage	-0.5 $\leq \mathrm{V}_{\mathrm{O}} \leq+7.0$	Output in 3-State	V
		$-0.5 \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}+0.5^{1}$	Output in HIGH or LOW State	V
IIK	DC Input Diode Current	-50	$V_{1}<$ GND	mA
IOK	DC Output Diode Current	-50	$\mathrm{V}_{\mathrm{O}}<\mathrm{GND}$	mA
		+50	$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$	mA
10	DC Output Source/Sink Current	± 50		mA
Icc	DC Supply Current Per Supply Pin	± 100		mA
IGND	DC Ground Current Per Ground Pin	± 100		mA
TSTG	Storage Temperature Range	-65 to +150		${ }^{\circ} \mathrm{C}$

* Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute-maximum-rated conditions is not implied.

1. Io absolute maximum rating must be observed.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	MIn	Typ	Max	Unit
$\mathrm{V}_{\text {CC }}$	Supply Voltage Operating Data Retention Only	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 3.6 \end{aligned}$	V
V_{1}	Input Voltage	0		5.5	V
V_{0}	Output Voltage \quad (HIGH or LOW State) (3-State)	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{gathered} \mathrm{v}_{\mathrm{Cc}} \\ 5.5 \end{gathered}$	V
${ }^{\mathrm{OH}}$	HIGH Level Output Current, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$			-24	mA
IOL	LOW Level Output Current, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$			24	mA
IOH	HIGH Level Output Current, $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V}$			-12	mA
${ }^{\text {OLL }}$	LOW Level Output Current, $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V}$			12	mA
$\mathrm{T}_{\text {A }}$	Operating Free-Air Temperature	-40		+85	${ }^{\circ} \mathrm{C}$
$\Delta t / \Delta V$	Input Transition Rise or Fall Rate, V_{IN} from 0.8 V to 2.0 V , $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	0		10	ns / N

DC ELECTRICAL CHARACTERISTICS

Symbol	Characteristle	Condition	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
			Min	Max	
V_{IH}	HIGH Level Input Voltage (Note 1)	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$	2.0		V
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage (Note 1)	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$		0.8	V
VOH	HIGH Level Output Voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$; $\mathrm{l} \mathrm{OH}=-100 \mu \mathrm{~A}$	$V_{C C}-0.2$		V
		$\mathrm{VCC}=2.7 \mathrm{~V} ; \mathrm{IOH}=-12 \mathrm{~mA}$	2.2		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{OH}}=-18 \mathrm{~mA}$	2.4		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$; $\mathrm{IOH}=-24 \mathrm{~mA}$	2.2		
VOL	LOW Level Output Voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{IOL}=100 \mu \mathrm{~A}$		0.2	V
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}$		0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=16 \mathrm{~mA}$		'0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{lOL}=24 \mathrm{~mA}$		0.55	
1	Input Leakage Current	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; 0 \mathrm{~V} \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}$		± 5.0	$\mu \mathrm{A}$
loz	3-State Output Current	$\begin{gathered} 2.7 \leq V_{C C} \leq 3.6 V_{;} ; 0 V \leq V_{\mathrm{O}} \leq 5.5 \mathrm{~V} ; \\ V_{I}=V_{\text {IH }} \text { or } V_{\text {IL }} \end{gathered}$		± 5.0	$\mu \mathrm{A}$
loff	Power-Off Leakage Current	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} \mathrm{~V}_{1}$ or $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$		10	$\mu \mathrm{A}$
Icc	Quiescent Supply Current	$2.7 \leq V_{C C} \leq 3.6 \mathrm{~V} ; V_{1}=G N D$ or $V_{C C}$		10	$\mu \mathrm{A}$
		$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; 3.6 \leq \mathrm{V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$		± 10	$\mu \mathrm{A}$
$\Delta^{\prime} \mathrm{C} C$	Increase in ICC per Input	$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$		500	$\mu \mathrm{A}$

1. These values of V_{I} are used to test DC electrical characteristics only. Functional test should use $\mathrm{V}_{\mathrm{IH}} \geq 2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}} \leq 0.5 \mathrm{~V}$.

AC CHARACTERISTICS ($\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega$)

Symbol	Parameter	Waveform					Unit
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$				
			$\mathrm{V}_{\text {CC }}=3.0 \mathrm{~V}$ to 3.6 V		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$		
			Min	Max	Min	Max	
${ }^{\text {max }}$	Clock Pulse Frequency	3	150				MHz
$\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay Clock to Output	1	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	ns
$\begin{aligned} & \text { tpZH } \\ & \text { tpZL } \end{aligned}$	Output Enable Time to High and Low Level	2	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	ns
$\begin{aligned} & \text { tPHZ } \\ & \text { tpLZ } \end{aligned}$	Output Disable Time From High and Low Level	2	$\begin{aligned} & \hline 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	ns
t_{s}	Setup Time, HIGH to LOW Data to Clock	3	2.5		2.5		ns
th	Hold Time, HIGH to LOW Data to Clock	3	1.5		1.5		ns
t_{s}	Setup Time, HIGH to LOW CExx to Clock	3	2.5		2.5		ns
th	Hold Time, HIGH to LOW CExx to Clock	3	1.5		1.5		ns
$t_{\text {w }}$	Clock Pulse Width, HIGH or LOW	3	3.3		3.3		ns
$\begin{aligned} & \text { toSHL } \\ & \text { tosLH } \end{aligned}$	Output-to-Output Skew (Note 2)			$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$			ns

1. These AC parameters are preliminary and may be modified prior to release. The maximum AC limits are design targets. Actual performance will be specified upon completion of characterization.
2. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (tOSHL) or LOW-to-HIGH (tOSLH); parameter guaranteed by design.

DYNAMIC SWITCHING CHARACTERISTICS

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			Unit
			Min	Typ	Max	
Volp	Dynamic LOW Peak Voltage ${ }^{1}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\text {IH }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {IL }}=0 \mathrm{~V}$		0.8		V
V OLV	Dynamic LOW Valley Voltage ${ }^{1}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$		0.8		V

1. Number of outputs defined as " n ". Measured with " $n-1$ " outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state.

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Unit
$C_{P D}$	Power Dissipation Capacitance	$10 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	25	pF
$\mathrm{C}_{I N}$	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	7	pF
$\mathrm{C}_{I / \mathrm{O}}$	Input/Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V}$ or V_{CC}		8

WAVEFORM 1 -Cxx to An/Bn PROPAGATION DELAYS
$t_{R}=t_{F}=2.5 \mathrm{~ns}, 10 \%$ to $90 \% ; f=1 \mathrm{MHz} ; t_{W}=500 \mathrm{~ns}$

WAVEFORM 2 - $\overline{0 \times E x x}$ to An/Bn OUTPUT ENABLE AND DISABLE TIMES $t_{R}=t_{F}=2.5 \mathrm{~ns}, 10 \%$ to $90 \% ; f=1 \mathrm{MHz} ; \mathrm{t}_{\mathrm{w}}=500 \mathrm{~ns}$

WAVEFORM 3-Cxx MINIMUM PULSE WIDTH, An/Bn/ $\overline{C E x x}$ to Cxx
SETUP AND HOLD TIMES
$t_{R}=t_{f}=2.5 n s, 10 \%$ to $90 \% ; f=1 \mathrm{MHz} ;$ tw $=500$ ns except when noted

Figure 1. AC Waveforms

WAVEFORM 4-INPUT PULSE DEFIIITION $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns}, 10 \%$ to 90% of OV to 2.7 V

Figure 2. AC Waveforms

$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ or equivalent (Includes jig and probe capacitance)
$\mathrm{R}_{\mathrm{L}}=\mathrm{R}_{1}=500 \Omega$ or equivalent
$\mathrm{R}_{\mathrm{T}}=$ Z OUT of pulse generator (typically 50Ω)
Figure 3. Test Circuit

16-Bit Devices

Product Preview
 Low-Voltage CMOS 16-Bit Buffer With 5V-Tolerant Inputs and Outputs (3-State, Inverting)

The MC74LCX16240 is a high performance, inverting 16-bit buffer operating from a 2.7 to 3.6 V supply. The device is nibble controlled. Each nibble has separate Output Enable inputs which can be tied together for full 16-bit operation. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. A V_{1} specification of 5.5 V allows MC74LCX16240 inputs to be safely driven from 5V devices. The LCX16240 is suitable for memory address driving and all TTL level bus oriented buffer applications.

Current drive capability is 24 mA at the outputs. The Output Enable ($\overline{\mathrm{OEn}}$) inputs, when HIGH, disable the outputs by placing them in a HIGH Z condition.

- Designed for 2.7 to $3.6 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ Operation
- 5V Tolerant - Interface Capability With 5V TTL Logic
- Supports Live Insertion and Withdrawal
- IOFF Specification Guarantees High Impedance When VCC = OV
- LVTTL Compatible
- LVCMOS Compatible
- 24mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current in All Three Logic States ($10 \mu \mathrm{~A}$) Substantially Reduces System Power Requirements
- Latchup Performance Exceeds 500 mA
- ESD Performance: Human Body Model >2000V; Machine Model >200V

The MC74LCX16240 contains sixteen inverting buffers with 3-state 5 V -tolerant outputs. The device is nibble controlled with each nibble functioning identically, but independently. The control pins may be tied together to obtain full 16 -bit operation. The 3-state outputs are controlled by an Output Enable ($\overline{\mathrm{OEn}})$ input for each nibble. When $\overline{\mathrm{OEn}}$ is LOW, the outputs are on. When $\overline{O E n}$ is HIGH, the outputs are in the high impedance state.

MC74LCX16240

LCX

LOW-VOLTAGE CMOS 16-BIT BUFFER

DT SUFFIX
PLASTIC TSSOP PACKAGE CASE 1201-01

PIN NAMES

Pins	Function
$\overline{\mathrm{OEn}}$	Output Enable Inputs
$\overline{\mathrm{D} 0} \mathrm{D} 15$	
$\overline{\mathrm{O} 0}-\overline{\mathrm{O} 15}$	Inputs
Outputs	

[^7]| OE1 1 | 0^{3} | 48 OE2 |
| :---: | :---: | :---: |
| 0 | | 48 |
| $\overline{0} 2$ | | ${ }^{47} \mathrm{DO}$ |
| $\overline{01} 3$ | | $46 \mathrm{D1}$ |
| GNO 4 | | 45 GN |
| 025 | | 44.02 |
| 036 | | 43 D3 |
| $v_{\mathrm{cc}} 7$ | | ${ }^{42} \mathrm{~V} \mathrm{CO}$ |
| 048 | | $41 \mathrm{D4}$ |
| 059 | | $40 \mathrm{D5}$ |
| GND 10 | | 39 GND |
| 06 | | $38 \mathrm{D6}$ |
| $\overline{07} 12$ | | $37 \mathrm{D7}$ |
| ${ }^{88}$ | | $36 \mathrm{D8}$ |
| 0914 | | 35] $\mathrm{D9}$ |
| GND 15 | | 34 GND |
| 010 | | 33 D 10 |
| 01117 | | 32 D 11 |
| $\mathrm{v}_{\mathrm{CC}} 18$ | | 31 VCC |
| 012 | | 30.012 |
| 013 | | 29.013 |
| GND 21 | | 28 GND |
| 0142 | | 27 D 14 |
| 015 | | ${ }^{26} \mathrm{D} 15$ |
| 0 O 424 | | 25 OE |

LOGIC DIAGRAM

$\overline{\mathrm{OE}}$	$\mathrm{D0}: 3$	$\overline{\mathrm{OO}: 3}$	$\overline{\mathrm{OE} 2}$	$\mathrm{D} 4: 7$	$\overline{\mathrm{O} 4: 7}$	$\overline{\mathrm{OE} 3}$	$\mathrm{D} 8: 11$	$\overline{\mathrm{O} 8: 11}$	$\overline{\mathrm{OE4}}$	$\mathrm{D} 12: 15$	$\overline{\mathrm{O} 2: 15}$
L	L	H	L	L	H	L	L	H	L	L	H
L	H	L	L	H	L	L	H	L	L	H	L
H	X	Z	H	X	Z	H	X	Z	H	X	Z

$H=$ High Voltage Level; L = Low Voltage Level; $Z=$ High Impedance State; $X=$ High or Low Voltage Level and Transitions Are Acceptable, for IcC reasons, DO NOT FLOAT Inputs

ABSOLUTE MAXIMUM RATINGS*

Symbol	Parameter	Value	Condition	Unit
V_{CC}	DC Supply Voltage	-0.5 to +7.0		V
V_{1}	DC Input Voltage	$-0.5 \leq \mathrm{V}_{1} \leq+7.0$		V
V_{0}	DC Output Voltage	$-0.5 \leq \mathrm{V}_{\mathrm{O}} \leq+7.0$	Output in 3-State	V
		$-0.5 \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{C C}+0.5^{1}$	Output in HIGH or LOW State	V
IIK	DC Input Diode Current	-50	$V_{1}<$ GND	mA
IOK	DC Output Diode Current	-50	$\mathrm{V}_{\mathrm{O}}<\mathrm{GND}$	mA
		+50	$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$	mA
10	DC Output Source/Sink Current	± 50		mA
ICC	DC Supply Current Per Supply Pin	± 100		mA
IGND	DC Ground Current Per Ground Pin	± 100		mA
TSTG	Storage Temperature Range	-65 to +150		${ }^{\circ} \mathrm{C}$

* Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute-maximum-rated conditions is not implied. 1. IO absolute maximum rating must be observed.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Typ	Max	Unit
V_{CC}	Operating Supply Voltage Data Retention Only	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 3.6 \end{aligned}$	V
V_{1}	Input Voltage	0		5.5	V
v_{O}	Output Voltage (HIGH or LOW State) (3-State)	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}} \\ 5.5 \end{gathered}$	V
IOH	HIGH Level Output Current, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$			-24	mA
${ }^{\mathrm{O}} \mathrm{L}$	LOW Level Output Current, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$			24	mA
${ }^{\mathrm{OH}}$	HIGH Level Output Current, $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V}$			-12	mA
IOL	LOW Level Output Current, $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V}$			12	mA
$\mathrm{T}_{\text {A }}$	Operating Free-Air Temperature	-40		+85	${ }^{\circ} \mathrm{C}$
$\Delta t \Delta V$	Input Transition Rise or Fall Rate, $\mathrm{V}_{\mathbb{I}}$ from 0.8 V to 2.0 V , $V_{C C}=3.0 \mathrm{~V}$	0		10	ns / N

DC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
			Min	Max	
V_{IH}	HIGH Level Input Voltage (Note 1)	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$	2.0		V
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage (Note 1)	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$		0.8	V
V_{OH}	HIGH Level Output Voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{l}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}-0.2$		V
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$; $\mathrm{IOH}=-12 \mathrm{~mA}$	2.2		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$; $\mathrm{IOH}=-18 \mathrm{~mA}$	2.4		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$; $1 \mathrm{OH}=-24 \mathrm{~mA}$	2.2		
$\mathrm{V}_{\text {OL }}$	LOW Level Output Voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$; $\mathrm{IOL}=100 \mu \mathrm{~A}$		0.2	V
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}$		0.4	
		$\mathrm{V}_{\mathrm{CCC}}=3.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=16 \mathrm{~mA}$		0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$		0.55	

1. These values of V_{I} are used to test DC electrical characteristics only. Functional test should use $\mathrm{V}_{\mathrm{IH}} \geq 2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}} \leq 0.5 \mathrm{~V}$.

DC ELECTRICAL CHARACTERISTICS (continued)

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
			Min	Max	
1	Input Leakage Current	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; 0 \mathrm{~V} \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}$		± 5.0	$\mu \mathrm{A}$
loz	3-State Output Current	$\begin{gathered} 2.7 \leq V_{C C} \leq 3.6 V_{;} ; V \leq V_{O} \leq 5.5 V_{;} \\ V_{I}=V_{I H} \text { or } V_{I L} \end{gathered}$		± 5.0	$\mu \mathrm{A}$
IOFF	Power-Off Leakage Current	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} ; \mathrm{V}_{1}$ or $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$		10	$\mu \mathrm{A}$
ICC	Quiescent Supply Current	$2.7 \leq \mathrm{V}_{C C} \leq 3.6 \mathrm{~V}_{\text {; }} \mathrm{V}_{1}=\mathrm{GND}$ or V_{CC}		20	$\mu \mathrm{A}$
		$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; 3.6 \leq \mathrm{V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$		± 20	$\mu \mathrm{A}$
${ }^{\text {alc }}$	Increase in ICC per Input	$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}_{\mathrm{i}} \mathrm{V}_{I H}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$		500	$\mu \mathrm{A}$

AC CHARACTERISTICS ${ }^{1}\left(\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega\right.$)

Symbol	Parameter	Waveform	Limits			Unit
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			
			$\mathrm{V}_{\text {cc }}$	3.6V	$\mathrm{V}_{\mathrm{cc}}=2.7 \mathrm{~V}$	
			Min	Max	Max	
tpLH tpHL	Propagation Delay Input to Output	1	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 5.3 \\ & 5.3 \end{aligned}$	ns
$\begin{aligned} & \text { tpZH } \\ & \text { tpZL } \end{aligned}$	Output Enable Time to High and Low Level	2	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 5.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & \hline 6.0 \\ & 6.0 \end{aligned}$	ns
$\begin{aligned} & \text { tphz } \\ & \text { tpLZ } \end{aligned}$	Output Disable Time From High and Low Level	2	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 5.3 \\ & 5.3 \end{aligned}$	$\begin{aligned} & 5.4 \\ & 5.4 \end{aligned}$	ns
$\begin{aligned} & \text { tOSHL } \\ & \text { toSLH } \\ & \hline \end{aligned}$	Output-to-Output Skew (Note 2)			$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$		ns

1. These AC parameters are preliminary and may be modified prior to release.
2. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (tOSHL) or LOW-to-HIGH (tOSLH); parameter guaranteed by design.

DYNAMIC SWITCHING CHARACTERISTICS

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			Unit
			Min	Typ	Max	
Volp	Dynamic LOW Peak Voltage ${ }^{1}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$		0.8		V
Volv	Dynamic LOW Valley Voltage ${ }^{1}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$		0.8		V

1. Number of outputs defined as " n ". Measured with " $n-1$ " outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state.

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Unit
C_{PD}	Power Dissipation Capacitance	$10 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	20	pF
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	7	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V}$ or V_{CC}	8	pF

WAVEFORM 2-OUTPUT ENABLE AND DISABLE TIMES
$t_{R}=t_{F}=2.5 \mathrm{~ns}, 10 \%$ to $90 \% ; f=1 \mathrm{MHz} ; t_{W}=500 \mathrm{~ns}$
Figure 1. AC Waveforms

TEST	SWITCH
${ }_{\text {tPLH, }}$ tPHL	Open
tPZL, tplz	6 V
Open Collector/Drain tpLH and tpHL	6 V
tPZH, tPhz	GND

$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ or equivalent (Includes jig and probe capacitance)
$R_{L}=R_{1}=500 \Omega$ or equivalent
$R_{T}=Z_{\text {OUT }}$ of pulse generator (typically 50Ω)

Figure 2. Test Circuit

Product Preview
 Low-Voltage CMOS 16-Bit Buffer
 With 5V-Tolerant Inputs and Outputs (3-State, Non-Inverting)

The MC74LCX16244 is a high performance, non-inverting 16-bit buffer operating from a 2.7 to 3.6 V supply. The device is nibble controlled. Each nibble has separate Output Enable inputs which can be tied together for full 16-bit operation. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. A V_{I} specification of 5.5 V allows MC74LCX16244 inputs to be safely driven from 5 V devices. The MC74LCX16244 is suitable for memory address driving and all TTL level bus oriented buffer applications.

Current drive capability is 24 mA at the outputs. The Output Enable $\overline{(\overline{O E n})}$ inputs, when HIGH, disable the outputs by placing them in a HIGH Z condition.

- Designed for 2.7 to $3.6 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ Operation
- 5V Tolerant - Interface Capability With 5V TTL Logic
- Supports Live Insertion and Withdrawal
- IOFF Specification Guarantees High Impedance When $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$
- LVTTL Compatible
- LVCMOS Compatible
- 24mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current in All Three Logic States $(10 \mu A)$ Substantially Reduces System Power Requirements
- Latchup Performance Exceeds 500mA
- ESD Performance: Human Body Model >2000V; Machine Model >200V

The MC74LCX16244 contains sixteen non-inverting buffers with 3 -state 5 V -tolerant outputs. The device is nibble controlled with each nibble functioning identically, but independently. The control pins may be tied together to obtain full 16-bit operation. The 3-state outputs are controlled by an Output Enable ($\overline{\mathrm{OEn}}$) input for each nibble. When $\overline{\mathrm{OEn}}$ is LOW, the outputs are on. When OEn is HIGH, the outputs are in the high impedance state.

MC74LCX16244

LCX

LOW-VOLTAGE CMOS 16-BIT BUFFER

DT SUFFIX PLASTIC TSSOP PACKAGE

CASE 1201-01

PIN NAMES

Pins	Function
$\overline{\text { OEn }}$	Output Enable Inputs
DO-D15	Inputs
O0-O15	Outputs

[^8]

LOGIC DIAGRAM

$\overline{\mathrm{OE} 1}$	$\mathrm{D} 0: 3$	O0:3	$\overline{\mathrm{OE}}$	$\mathrm{D} 4: 7$	$\mathbf{0 4 : 7}$	$\overline{\mathrm{OE}}$	$\mathrm{D} 8: 11$	O8:11	$\overline{\mathrm{OE}}$	$\mathrm{D} 12: 15$	012:15
L	L	H	L	L	H	L	L	H	L	L	H
L	H	L	L	H	L	L	H	L	L	H	L
H	X	Z	H	X	Z	H	X	Z	H	X	Z

$\mathrm{H}=$ High Voltage Level; L = Low Voltage Level; $\mathrm{Z}=$ High Impedance State; $\mathrm{X}=$ High or Low Voltage Level and Transitions Are Acceptable, for ICC reasons, DO NOT FLOAT Inputs

ABSOLUTE MAXIMUM RATINGS*

Symbol	Parameter	Value	Condition	Unit
$V_{C C}$	DC Supply Voltage	-0.5 to +7.0		V
V_{1}	DC Input Voltage	$-0.5 \leq V_{1} \leq+7.0$		V
V_{O}	DC Output Voltage	-0.5 $\leq \mathrm{V}_{\mathrm{O}} \leq+7.0$	Output in 3-State	V
		$-0.5 \leq V_{O} \leq V_{C C}+0.5^{1}$	Output in HIGH or LOW State	\checkmark
İK	DC Input Diode Current	-50	$V_{1}<$ GND	mA
IOK	DC Output Diode Current	-50	$\mathrm{V}_{\mathrm{O}}<\mathrm{GND}$	mA
		+50	$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$	mA
10	DC Output Source/Sink Current	± 50		mA
Icc	DC Supply Current Per Supply Pin	± 100		mA
IGND	DC Ground Current Per Ground Pin	± 100		mA
TSTG	Storage Temperature Range	-65 to +150		${ }^{\circ} \mathrm{C}$

* Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to theseconditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute-maximum-rated conditions is not implied.

1. Io absolute maximum rating must be observed.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Typ	Max	Unit
$V_{C C}$	Supply Voltage $\begin{array}{r}\text { Operating } \\ \text { Data Retention Only }\end{array}$	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 3.6 \end{aligned}$	V
V_{1}	Input Voltage	0		5.5	V
V_{O}	$\begin{array}{rr}\text { Output Voltage } & \text { (HIGH or LOW State) } \\ \text { (3-State) }\end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ 5.5 \end{gathered}$	V
${ }^{\mathrm{O}} \mathrm{OH}$	HIGH Level Output Current, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$			-24	mA
IOL	LOW Level Output Current, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$			24	mA
${ }^{\mathrm{IOH}}$	HIGH Level Output Current, $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V}$			-12	mA
${ }_{\mathrm{OL}}$	LOW Level Output Current, $\mathrm{V}_{C C}=2.7 \mathrm{~V}-3.0 \mathrm{~V}$			12	mA
T_{A}	Operating Free-Air Temperature	-40		+85	${ }^{\circ} \mathrm{C}$
$\Delta t \Delta V$	Input Transition Rise or Fall Rate, $\mathrm{V}_{\text {IN }}$ from 0.8 V to 2.0 V , $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	0		10	ns N

DC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
			Min	Max	
V_{IH}	HIGH Level Input Voltage (Note 1)	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$	2.0		V
V_{IL}	LOW Level Input Voltage (Note 1)	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$		0.8	V
V_{OH}	HIGH Level Output Voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; 1_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}-0.2$		V
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{IOH}=-12 \mathrm{~mA}$	2.2		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-18 \mathrm{~mA}$	2.4		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{IOH}=-24 \mathrm{~mA}$	2.2		
$\mathrm{V}_{\text {OL }}$	LOW Level Output Voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=100 \mu \mathrm{~A}$		0.2	V
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{l}^{\mathrm{OL}}=12 \mathrm{~mA}$		0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$; $\mathrm{lOL}=16 \mathrm{~mA}^{\prime}$		0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$		0.55	

1. These values of V_{I} are used to test DC electrical characteristics only. Functional test should use $\mathrm{V}_{\mathrm{IH}} \geq 2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}} \leq 0.5 \mathrm{~V}$.

DC ELECTRICAL CHARACTERISTICS (continued)

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
			Min	Max	
I	Input Leakage Current	$2.7 \mathrm{~V} \leq \mathrm{V}_{\text {CC }} \leq 3.6 \mathrm{~V} ; 0 \mathrm{~V} \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}$		± 5.0	$\mu \mathrm{A}$
loz	3-State Output Current	$\begin{gathered} 2.7 \leq V_{C C} \leq 3.6 V_{;} ; V \leq V_{O} \leq 5.5 V ; \\ V_{I}=V_{I H} \text { or } V_{I L} \end{gathered}$		± 5.0	$\mu \mathrm{A}$
IOFF	Power-Off Leakage Current	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} ; \mathrm{V}_{1}$ or $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$		10	$\mu \mathrm{A}$
${ }^{\text {I C C }}$	Quiescent Supply Current	$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=$ GND or $\mathrm{V}_{C C}$		20	$\mu \mathrm{A}$
		$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; 3.6 \leq \mathrm{V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$		± 20	$\mu \mathrm{A}$
$\Delta \mathrm{lc}$	Increase in ICC per Input	$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$		500	$\mu \mathrm{A}$

AC CHARACTERISTICS ${ }^{1}$ ($\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega$)

Symbol	Parameter	Waveform	Limits			Unit
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			
			V_{CC}	3.6 V	$\mathrm{V}_{\text {cc }}=2.7 \mathrm{~V}$	
			Min	Max	Max	
tpLH tpHL	Propagation Delay Input to Output	1	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 5.2 \\ & 5.2 \end{aligned}$	ns
$\begin{array}{\|l} \hline \text { tPZH } \\ \text { tPZL } \end{array}$	Output Enable Time to High and Low Level	2	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 6.3 \\ & 6.3 \end{aligned}$	ns
tpHZ tpLz	Output Disable Time From High and Low Level	2	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 5.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 5.7 \\ & 5.7 \end{aligned}$	ns
$\begin{aligned} & \text { tosit } \\ & \text { tOSLH } \end{aligned}$	Output-to-Output Skew (Note 2)			$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$		ns

1. These AC parameters are preliminary and may be modified prior to release.
2. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (tOSHL) or LOW-to-HIGH (tOSLH); parameter guaranteed by design.

DYNAMIC SWITCHING CHARACTERISTICS

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			Unit
			Min	Typ	Max	
Volp	Dynamic LOW Peak Voltage ${ }^{1}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$		0.8		V
VOLV	Dynamic LOW Valley Voltage ${ }^{1}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$		0.8		V

1. Number of outputs defined as " n ". Measured with " $n-1$ " outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state.

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Unit
C_{PD}	Power Dissipation Capacitance	$10 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V}$ or V_{CC}	20	pF
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V}$ or V_{CC}	7	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V}$ or V_{CC}	8	pF

WAVEFORM 2-OUTPUT ENABLE AND DISABLE TIMES
$t_{R}=t_{F}=2.5 \mathrm{~ns}, 10 \%$ to $90 \% ; f=1 \mathrm{MHz} ; \mathrm{t}_{\mathrm{W}}=500 \mathrm{~ns}$
Figure 1. AC Waveforms

TEST	SWITCH
tPLH, tPHL $^{\|c\|}$	Open
tPZL, tPLZ	6 V
Open Collector/Drain tPLH and tPHL	6 V
tPZH, $^{\text {tPHZ }}$	GND

$C_{L}=50 \mathrm{pF}$ or equivalent (Includes jig and probe capacitance)
$R_{L}=R_{1}=500 \Omega$ or equivalent
$\mathrm{R}_{\mathrm{T}}=$ ZOUT of pulse generator (typically 50Ω)
Figure 2. Test Circuit

Product Preview
 Low-Voltage CMOS 16-Bit Transceiver
 With 5V-Tolerant Inputs and Outputs (3-State, Non-Inverting)

The MC74LCX16245 is a high performance, non-inverting 16-bit transceiver operating from a 2.7 to 3.6 V supply. The device is byte controlled. Each byte has separate Output Enable inputs which can be tied together for full 16-bit operation. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. A V_{l} specification of 5.5 V allows MC74LCX16245 inputs to be safely driven from 5V devices. The MC74LCX16245 is suitable for memory address driving and all TTL level bus oriented transceiver applications.

Current drive capability is 24 mA at both A and B ports. The Transmit/Receive ($\mathrm{T} / \overline{\mathrm{R}} \mathrm{n}$) inputs determine the direction of data flow through the bi-directional transceiver. Transmit (active-HIGH) enables data from A ports to B ports; Receive (active-LOW) enables data from B to A ports. The Output Enable inputs ($\overline{\mathrm{OEn}}$), when HIGH, disable both A and B ports by placing them in a HIGH Z condition.

- Designed for 2.7 to $3.6 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ Operation
- 5V Tolerant — Interface Capability With 5V TTL Logic
- Supports Live Insertion and Withdrawal
- IOFF Specification Guarantees High Impedance When $V_{C C}=0 \mathrm{~V}$
- LVTTL Compatible
- LVCMOS Compatible
- 24mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current in All Three Logic States ($10 \mu \mathrm{~A}$) Substantially Reduces System Power Requirements
- Latchup Performance Exceeds 500 mA
- ESD Performance: Human Body Model >2000V; Machine Model >200V

MC74LCX16245

LCX

LOW-VOLTAGE CMOS 16-BIT TRANSCEIVER

DT SUFFIX
PLASTIC TSSOP PACKAGE
CASE 1201-01

PIN NAMES

Pins	Function
$\overline{O E n}$	Output Enable Inputs
T//̄n	Transmit/Receive Inputs
A0-A15	Side A Inputs or 3-State Outputs
B0-B15	Side B Inputs or 3-State Outputs

$T / \overline{1} 1$	\bigcirc	- $\overline{01}$
B0 2		A0
813		A1
		GND
B2 5		4 A 2
B3 6		A3
$\mathrm{V}_{\mathrm{CC}}{ }^{7}$		$\mathrm{V}_{C C}$
B4 8		
B5 9		A5
GND 10		GND
B6 11		A6
B7 12		
B8 13		
B9 14		A9
GND 15		GND
B10 16		A10
B11 17		A11
$\mathrm{V}_{\text {CC }} 18$		$V_{C C}$
B12 19		A12
B13 20		A13
GND 21		GND
B14 22		A14
B15 23		A15
T/R2 24		OE2

LOGIC DIAGRAM

Inputs		Outputs	Inputs		Outputs
OE1	T/ $\overline{\mathrm{R}} 1$		$\overline{O E 2}$	T/R2	
L	L	Bus B0:7 Data to Bus A0:7	L	L	Bus B8:15 Data to Bus A8:15
L	H	Bus A0:7 Data to Bus B0:7	L	H	Bus A8:15 Data to Bus B8:15
H	X	High Z State on $A 0: 7, B 0: 7$	H	X	High Z State on A8:15, B8:15

$H=$ High Voltage Level; $L=$ Low Voltage Level; $Z=$ High Impedance State; $X=$ High or Low Voltage Level and Transitions Are Acceptable, for ICC reasons, DO NOT FLOAT Inputs

MC74LCX16245

ABSOLUTE MAXIMUM RATINGS*

Symbol	Parameter	Value	Condition	Unit
$V_{\text {cc }}$	DC Supply Voltage	-0.5 to +7.0		V
V_{1}	DC Input Voltage	-0.5 $\leq \mathrm{V}_{1} \leq+7.0$		V
V_{0}	DC Output Voltage	$-0.5 \leq \mathrm{V}_{\mathrm{O}} \leq+7.0$	Output in 3-State	V
		$-0.5 \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}+0.5^{1}$	Output in HIGH or LOW State	V
IIK	DC Input Diode Current	-50	$\mathrm{V}_{1}<$ GND	mA
IOK	DC Output Diode Current	-50	$\mathrm{V}_{\mathrm{O}}<$ GND	mA
		+50	$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$	mA
10	DC Output Source/Sink Current	± 50		mA
Icc	DC Supply Current Per Supply Pin	± 100		mA
IGND	DC Ground Current Per Ground Pin	± 100		mA
TSTG	Storage Temperature Range	-65 to +150		${ }^{\circ} \mathrm{C}$

* Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute-maximum-rated conditions is not implied.

1. Io absolute maximum rating must be observed.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Typ	Max	Unit
$V_{C C}$	Supply Voltage Operating Data Retention Only	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 3.6 \end{aligned}$	V
V_{1}	Input Voltage	0		5.5	V
V_{O}	Output Voltage (HIGH or LOW State) (3-State)	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{gathered} \hline \mathrm{v}_{\mathrm{cc}} \\ 5.5 \end{gathered}$	V
IOH	HIGH Level Output Current, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$			-24	mA
1 OL	LOW Level Output Current, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$			24	mA
IOH	HIGH Level Output Current, $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V}$			-12	mA
$\mathrm{IOL}^{\text {l }}$	LOW Level Output Current, $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V}$			12	mA
T_{A}	Operating Free-Air Temperature	-40		+85	${ }^{\circ} \mathrm{C}$
$\Delta t \Delta V$	Input Transition Rise or Fall Rate, V_{IN} from 0.8 V to 2.0 V , $V_{C C}=3.0 \mathrm{~V}$	0		10	ns / N

DC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic	Condition	$T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
			Min	Max	
V_{IH}	HIGH Level Input Voltage (Note 1)	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$	2.0		V
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage (Note 1)	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$		0.8	V
VOH	HIGH Level Output Voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{l}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	$\mathrm{V}_{\text {cc }}-0.2$		V
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{l}_{\mathrm{OH}}=-12 \mathrm{~mA}$	2.2		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-18 \mathrm{~mA}$	2.4		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{IOH}=-24 \mathrm{~mA}$	2.2		
V_{OL}	LOW Level Output Voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$; $\mathrm{OL}=100 \mu \mathrm{~A}$		0.2	V
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$		0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{IOL}=16 \mathrm{~mA}$		0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$		0.55	

[^9]DC ELECTRICAL CHARACTERISTICS (continued)

Symbol	Characteristlc	Condition	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
			Min	Max	
II	Input Leakage Current	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; 0 \mathrm{~V} \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}$		± 5.0	$\mu \mathrm{A}$
loz	3-State Output Current	$\begin{gathered} 2.7 \leq V_{C C} \leq 3.6 \mathrm{~V} ; 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V} ; \\ V_{I}=V_{I H} \text { or } V_{\text {IL }} \end{gathered}$		± 5.0	$\mu \mathrm{A}$
IOFF	Power-Off Leakage Current	$V_{C C}=0 V_{\text {; }} V_{\text {I }}$ or $V_{O}=5.5 \mathrm{~V}$		10	$\mu \mathrm{A}$
ICC	Quiescent Supply Current	$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$; $\mathrm{V}_{1}=$ GND or V_{CC}		20	$\mu \mathrm{A}$
		$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$; $3.6 \leq \mathrm{V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$		± 20	$\mu \mathrm{A}$
$\Delta \mathrm{CC}$	Increase in ICC per Input	$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}_{\text {; }} \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$		500	$\mu \mathrm{A}$

AC CHARACTERISTICS1 ${ }^{1}\left(\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega\right.$)

Symbol	Parameter	Waveform	Limits			Unit
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			
			$\mathrm{V}_{\mathrm{Cc}}=$	10.6V	$V_{c c}=2.7 \mathrm{~V}$	
			Min	Max	Max	
$\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay Input to Output	1	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 5.2 \\ & 5.2 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t} \text { tPZ } \\ & \mathrm{tPZL} \end{aligned}$	Output Enable Time to High and Low Level	2	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 7.2 \\ & 7.2 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t} \mathrm{tPHZ} \\ & \text { tpLZ } \end{aligned}$	Output Disable Time From High and Low Level	2	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 6.4 \\ & 6.4 \end{aligned}$	$\begin{aligned} & 6.9 \\ & 6.9 \end{aligned}$	ns
toshl OSLH	Output-to-Output Skew (Note 2)			$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$		ns

1. These AC parameters are preliminary and may be modified prior to release.
2. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (tOSHL) or LOW-to-HIGH (tOSLH); parameter guaranteed by design.

DYNAMIC SWITCHING CHARACTERISTICS

Symbol	Characteristic	Condition	$\mathrm{T}_{\text {A }}=+25^{\circ} \mathrm{C}$			Unit
			Min	Typ	Max	
VoLP	Dynamic LOW Peak Voltage ${ }^{1}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$		0.8		V
Volv	Dynamic LOW Valley Voltage ${ }^{1}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\text {IH }}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$		0.8		V

1. Number of outputs defined as " n ". Measured with " $\mathrm{n}-1$ " outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state.

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typlcal	Unit	
C_{PD}	Power Dissipation Capacitance	$10 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	20	pF	
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V}$ or V_{CC}	7	pF	
$\mathrm{C}_{\\| / \mathrm{O}}$	Input/Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	P	8	

WAVEFORM 1 - PROPAGATION DELAYS
$t_{R}=t_{f}=2.5 \mathrm{~ns}, 10 \%$ to $90 \% ; f=1 \mathrm{MHz} ; t_{W}=500$ ns

WAVEFORM 2-OUTPUT ENABLE AND DISABLE TIMES
$t_{R}=t_{F}=2.5 \mathrm{~ns}, 10 \%$ to $90 \% ; f=1 \mathrm{MHz} ; \mathrm{tw}=500 \mathrm{~ns}$
Figure 1. AC Waveforms

TEST	SWITCH
${ }_{\text {tPLH, }}$ tPHL	Open
tpZL, tplZ	6 V
Open Collector/Drain tpLH and tPHL	6 V
$\mathrm{tPZH} \mathrm{t}_{\text {PHZ }}$	GND

$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ or equivalent (Includes jig and probe capacitance)
$R_{L}=R_{1}=500 \Omega$ or equivalent
$\mathrm{R}_{\mathrm{T}}=\mathrm{Z}_{\mathrm{OUT}}$ of pulse generator (typically 50Ω)
Figure 2. Test Circuit

Product Preview
 Low-Voltage CMOS 16-Bit Transparent Latch With 5V-Tolerant Inputs and Outputs (3-State, Non-Inverting)

The MC74LCX16373 is a high performance, non-inverting 16-bit transparent latch operating from a 2.7 to 3.6 V supply. The device is byte controlled. Each byte has separate Output Enable and Latch Enable inputs. These control pins can be tied together for full 16-bit operation. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. A V_{I} specification of 5.5 V allows MC74LCX16373 inputs to be safely driven from 5V devices.
The MC74LCX16373 contains 16 D-type latches with 3-state 5V-tolerant outputs. When the Latch Enable (LEn) inputs are HIGH, data on the Dn inputs enters the latches. In this condition, the latches are transparent, i.e., a latch output will change state each time its D input changes. When LE is LOW, the latches store the information that was present on the D inputs a setup time preceding the HIGH-to-LOW transition of LE. The 3-state outputs are controlled by the Output Enable ($\overline{O E n}$) inputs. When $\overline{O E}$ is LOW, the outputs are enabled. When $\overline{O E}$ is HIGH, the standard outputs are in the high impedance state, but this does not interfere with new data entering into the latches.

- Designed for 2.7 to $3.6 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ Operation
- 5V Tolerant - Interface Capability With 5V TTL Logic
- Supports Live Insertion and Withdrawal
- IOFF Specification Guarantees High Impedance When $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$
- LVTTL Compatible
- LVCMOS Compatible
- 24 mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current in All Three Logic States (10 1 A) Substantially Reduces System Power Requirements
- Latchup Performance Exceeds 500mA
- ESD Performance: Human Body Model >2000V; Machine Model >200V

MC74LCX16373

LCX

LOW-VOLTAGE CMOS 16-BIT TRANSPARENT LATCH

DT SUFFIX PLASTIC TSSOP PACKAGE CASE 1201-01

PIN NAMES

Pins	Function
$\overline{\text { OEn }}$	Output Enable Inputs
LEn	Latch Enable Inputs
DO-D15	Inputs
OO-O15	Outputs

[^10]LOGIC DIAGRAM

$\overline{0 E 1}$	0	$48 \mathrm{LE1}$
002		47 DO
015		46 D 1
GNO 4		45 GND
025		44.02
036		43 D3
$v_{c c} 7$		42] v_{CC}
04.8		$4{ }^{41} \mathrm{D}_{4}$
059		40 D5
GND 10		39 GND
0611		38.86
0712		$37 \mathrm{D7}$
08×13		$36 \mathrm{D8}$
0914		35 Dg
GNo 115		34 GND
010		33 D 10
01117		32 D 11
$v_{\text {cc }} 118$		31 VCC
01219		30 D12
01320		29 D 13
GND 21		28 GND
014		27 D 14
015		26 D 15
OE2 24		25 LE

Inputs			Outputs		Inputs		
LE1	$\overline{\text { OE1 }}$	D0:7	O0:7	LE2	$\overline{\text { OE2 }}$	D8:15	Outputs
X	H	X	Z	X	H	X	Z
H	L	L	L	H	L	L	L
H	L	H	H	H	L	H	H
L	L	X	O0	L	L	X	O0

$H=$ High Voltage Level; L = Low Voltage Level; $Z=$ High Impedance State; $X=$ High or Low Voltage Level and Transitions Are Acceptable, for ICC reasons, DO NOT FLOAT Inputs

ABSOLUTE MAXIMUM RATINGS*

Symbol	Parameter	Value	Condition	Unit
$V_{C C}$	DC Supply Voltage	-0.5 to +7.0		V
V_{1}	DC Input Voltage	$-0.5 \leq \mathrm{V}_{1} \leq+7.0$		V
V_{0}	DC Output Voltage	$-0.5 \leq \mathrm{V}_{\mathrm{O}} \leq+7.0$	Output in 3-State	V
		$-0.5 \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}+0.5^{1}$	Output in HIGH or LOW State	V
IIK	DC Input Diode Current	-50	$\mathrm{V}_{1}<$ GND	mA
IOK	DC Output Diode Current	-50	$\mathrm{V}_{\mathrm{O}}<\mathrm{GND}$	mA
		+50	$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$	mA
10	DC Output Source/Sink Current	± 50		mA
ICC	DC Supply Current Per Supply Pin	± 100		mA
IGND	DC Ground Current Per Ground Pin	± 100		mA
TSTG	Storage Temperature Range	-65 to +150		${ }^{\circ} \mathrm{C}$

* Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute-maximum-rated conditions is not implied.

1. IO absolute maximum rating must be observed.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Typ	Max	Unit
$V_{\text {cc }}$	Operating Supply Voltage Data Retention Only	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 3.6 \end{aligned}$	V
V_{1}	Input Voltage	0		5.5	V
v_{O}	Output Voltage (HIGH or LOW State) (3-State)	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{gathered} \mathrm{V}_{\mathrm{Cc}} \\ 5.5 \end{gathered}$	V
IOH	HIGH Level Output Current, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$			-24	mA
lOL	LOW Level Output Current, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$			24	mA
${ }^{\mathrm{O}} \mathrm{H}$	HIGH Level Output Current, $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V}$			-12	mA
lOL	LOW Level Output Current, $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V}$			12	mA
T_{A}	Operating Free-Air Temperature	-40		+85	${ }^{\circ} \mathrm{C}$
$\Delta t \Delta V$	Input Transition Rise or Fall Rate, $\mathrm{V}_{\text {IN }}$ from 0.8 V to 2.0 V , $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	0		10	ns / N

DC ELECTRICAL CHARACTERISTICS

Symbol	Characteristlc	Condition	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
			Min	Max	
$\mathrm{V}_{\text {IH }}$	HIGH Level Input Voltage (Note 1)	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$	2.0		V
V_{IL}	LOW Level Input Voltage (Note 1)	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$		0.8	V
V_{OH}	HIGH Level Output Voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{IOH}=-100 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}-0.2$		V
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{l}^{\mathrm{OH}}=-12 \mathrm{~mA}$	2.2		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{OH}}=-18 \mathrm{~mA}$	2.4		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}$	2.2		
VOL	LOW Level Output Voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=100 \mu \mathrm{~A}$		0.2	V
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}$		0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{IOL}=16 \mathrm{~mA}$		0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{lOL}=24 \mathrm{~mA}$		0.55	

[^11]DC ELECTRICAL CHARACTERISTICS (continued)

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
			Min	Max	
$1 /$	Input Leakage Current	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; 0 \mathrm{~V} \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}$		± 5.0	$\mu \mathrm{A}$
Ioz	3-State Output Current	$\begin{gathered} 2.7 \leq V_{C C} \leq 3.6 V_{;} ; V \leq V_{O} \leq 5.5 V_{;} \\ V_{I}=V_{I H} \text { or } V_{I L} \end{gathered}$		± 5.0	$\mu \mathrm{A}$
IOFF	Power-Off Leakage Current	$V_{C C}=0 \mathrm{~V} ; \mathrm{V}_{1}$ or $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$		10	$\mu \mathrm{A}$
ICC	Quiescent Supply Current	$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{V}_{1}=\mathrm{GND}$ or V_{CC}		20	$\mu \mathrm{A}$
		$2.7 \leq V_{C C} \leq 3.6 \mathrm{~V} ; 3.6 \leq \mathrm{V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$		± 20	$\mu \mathrm{A}$
${ }^{\text {a }} \mathrm{CC}$	Increase in ICC per Input	$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$		500	$\mu \mathrm{A}$

AC CHARACTERISTICS ${ }^{1}\left(\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega\right.$)

Symbol	Parameter	Waveform	Limits				Unit
			$\mathrm{T}_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$				
			$\mathbf{V}_{\mathbf{C C}}=3.0 \mathrm{~V}$ to 3.6 V		$\mathrm{VCC}=2.7 \mathrm{~V}$		
			Min	Max	Min	Max	
$\begin{array}{\|l\|l} \hline \text { tpLH } \\ \text { tphL } \\ \hline \end{array}$	Propagation Delay Dn to On	1	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 5.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 5.9 \\ & 5.9 \end{aligned}$	ns
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay LE to On	3	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 6.4 \\ & 6.4 \end{aligned}$	ns
$\left\lvert\, \begin{aligned} & \mathrm{tpZH} \\ & \mathrm{tPZL} \end{aligned}\right.$	Output Enable Time to HIGH and LOW Level	2	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 6.1 \\ & 6.1 \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 6.5 \\ & 6.5 \end{aligned}$	ns
$\begin{array}{\|l\|} \hline \text { tPHZ } \\ \text { tpLZ } \end{array}$	Output Disable Time from HIGH and LOW Level	2	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 6.3 \\ & 6.3 \end{aligned}$	ns
$\mathrm{t}_{\text {s }}$	Setup TIme, HIGH or LOW Dn to LE	3	2.5		2.5		ns
th	Hold Time, HIGH or LOW Dn to LE	3	1.5		1.5		ns
t_{w}	LE Pulse Width, HIGH	3	3.0		3.0		ns
$\begin{array}{\|l} \hline \text { toshL } \\ \text { tosLH } \end{array}$	Output-to-Output Skew (Note 2)			$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$			ns

1. These AC parameters are preliminary and may be modified prior to release.
2. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, eitherHIGH-to-LOW (tOSHL) or LOW-to-HIGH (tOSLH); parameter guaranteed by design.

DYNAMIC SWITCHING CHARACTERISTICS

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			Unit
			Min	Typ	Max	
Volp	Dynamic LOW Peak Voltage ${ }^{1}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$		0.8		V
Volv	Dynamic LOW Valley Voltage ${ }^{1}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {IL }}=0 \mathrm{~V}$		0.8		V

1. Number of outputs defined as " n ". Measured with " $n-1$ " outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state.

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Unit
$C_{P D}$	Power Dissipation Capacitance	$10 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V}$ or V_{CC}	20	pF
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	7	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	8	pF

WAVEFORM 1-PROPAGATION DELAYS
$t_{R}=t_{F}=2.5 n s, 10 \%$ to $90 \% ; f=1 \mathrm{MHz} ; t_{W}=500 \mathrm{~ns}$

WAVEFORM 2-OUTPUT ENABLE AND DISABLE TIMES $t_{R}=t_{F}=2.5 \mathrm{~ns}, 10 \%$ to $90 \% ; f=1 \mathrm{MHz} ; t w=500 \mathrm{~ns}$

WAVEFORM 3 - LE to On PROPAGATION DELAYS, LE MINIMUM
PULSE WIDTH, Dn to LE SETUP AND HOLD TIMES
$t_{R}=t_{F}=2.5 n s, 10 \%$ to $90 \% ; f=1 \mathrm{MHz} ;$ tw $=500 \mathrm{~ns}$ except when noted

Figure 1. AC Waveforms

TEST	SWITCH
tPLH, $^{\|c\|}$ PHL	Open
tPZL, $^{\text {tPLZ }}$	6 V
Open Collector/Drain tPLH and tPHL	6 V
tPZH, $^{\text {tPHZ }}$	GND

$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ or equivalent (Includes jig and probe capacitance)
$R_{L}=R_{1}=500 \Omega$ or equivalent
$\mathrm{R}_{\mathrm{T}}=\mathrm{Z}_{\mathrm{OUT}}$ of pulse generator (typically 50Ω)
Figure 2. Test Circuit

Product Preview

Low-Voltage CMOS 16-Bit D-Type Flip-Flop With 5V-Tolerant Inputs and Outputs (3-State, Non-Inverting)

The MC74LCX16374 is a high performance, non-inverting 16-bit D-type flip-flop operating from a 2.7 to 3.6 V supply. The device is byte controlled. Each byte has separate Output Enable and Clock Pulse inputs. These control pins can be tied together for full 16-bit operation. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. A V_{l} specification of 5.5 V allows MC74LCX16374 inputs to be safely driven from 5 V devices.

The MC74LCX16374 consists of 16 edge-triggered flip-flops with individual D-type inputs and 5V-tolerant 3-state true outputs. The buffered clocks (CPn) and buffered Output Enables ($\overline{\mathrm{OEn}}$) are common to all flip-flops within the respective byte. The flip-flops will store the state of individual D inputs that meet the setup and hold time requirements on the LOW-to-HIGH Clock (CP) transition. With the $\overline{O E}$ LOW, the contents of the flip-flops are available at the outputs. When the $\overline{O E}$ is HIGH, the outputs go to the high impedance state. The $\overline{\mathrm{OE}}$ input level does not affect the operation of the flip-flops.

- Designed for 2.7 to $3.6 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ Operation
- 5V Tolerant — Interface Capability With 5V TTL Logic
- Supports Live Insertion and Withdrawal
- IOFF Specification Guarantees High Impedance When VCC $=0 \mathrm{~V}$
- LVTTL Compatible
- LVCMOS Compatible
- 24 mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current in All Three Logic States ($10 \mu \mathrm{~A}$) Substantially Reduces System Power Requirements
- Latchup Performance Exceeds 500 mA
- ESD Performance: Human Body Model >2000V; Machine Model >200V

MC74LCX16374

LCX

LOW-VOLTAGE CMOS 16-BIT D-TYPE FLIP-FLOP

DT SUFFIX PLASTIC TSSOP PACKAGE CASE 1201-01

PIN NAMES

Pins	Function
$\overline{\text { OEn }}$	Output Enable Inputs
CPn	Clock Pulse Inputs
DO-D15	Inputs
OO-O15	Outputs

[^12]LOGIC DIAGRAM

Inputs			Outputs		Inputs		
CP1	$\overline{\text { OE1 }}$	D0:7	O0:7	CP2	$\overline{\text { OE2 }}$	D8:15	Outputs
\uparrow	L	H	H	\uparrow	L	H	O8:15
\uparrow	L	L	L	\uparrow	L	L	H
L	L	X	O	L	L		
X	H	X	Z	L	X	O0	

$H=$ High Voltage Level; L = Low Voltage Level; $Z=$ High Impedance State; $\uparrow=$ Low-to-High Transition; $X=$ High or Low Voltage Level and Transitions Are Acceptable, for ICC reasons, DO NOT FLOAT Inputs

MC74LCX16374

ABSOLUTE MAXIMUM RATINGS*

Symbol	Parameter	Value	Condition	Unit
V_{CC}	DC Supply Voltage	-0.5 to +7.0		V
V_{1}	DC Input Voltage	$-0.5 \leq \mathrm{V}_{1} \leq+7.0$		V
V_{0}	DC Output Voltage	$-0.5 \leq \mathrm{V}_{\mathrm{O}} \leq+7.0$	Output in 3-State	V
		$-0.5 \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}+0.51$	Output in HIGH or LOW State	V
IIK	DC Input Diode Current	-50	$\mathrm{V}_{1}<$ GND	mA
IOK	DC Output Diode Current	-50	$\mathrm{V}_{\mathrm{O}}<\mathrm{GND}$	mA
		+50	$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$	mA
10	DC Output Source/Sink Current	± 50		mA
ICC	DC Supply Current Per Supply Pin	± 100		mA
IGND	DC Ground Current Per Ground Pin	± 100		mA
TSTG	Storage Temperature Range	-65 to +150		${ }^{\circ} \mathrm{C}$

* Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute-maximum-rated conditions is not implied. 1. Io absolute maximum rating must be observed.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Typ	Max	Unit
$V_{\text {cc }}$	Supply Voltage $\begin{array}{r}\text { Operating } \\ \text { Data Retention Only }\end{array}$	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 3.6 \end{aligned}$	V
V_{1}	Input Voltage	0		5.5	V
V_{O}	Output Voltage (HIGH or LOW State) (3-State)	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{gathered} \hline \mathrm{v}_{\mathrm{CC}} \\ 5.5 \end{gathered}$	V
IOH	HIGH Level Output Current, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$			-24	mA
1 OL	LOW Level Output Current, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$			24	mA
1 OH	HIGH Level Output Current, $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V}$			-12	mA
IOL	LOW Level Output Current, $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V}$			12	mA
$\mathrm{T}_{\text {A }}$	Operating Free-Air Temperature	-40		+85	${ }^{\circ} \mathrm{C}$
$\Delta t \Delta v$	Input Transition Rise or Fall Rate, V_{IN} from 0.8 V to 2.0 V , $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	0		10	ns / N

DC ELECTRICAL CHARACTERISTICS

Symbol	Characteristlc	Condition	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
			Min	Max	
V_{IH}	HIGH Level Input Voltage (Note 1)	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$	2.0		V
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage (Note 1)	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$		0.8	V
V_{OH}	HIGH Level Output Voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$; $\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}-0.2$		V
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{l}_{\mathrm{OH}}=-12 \mathrm{~mA}$	2.2		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-18 \mathrm{~mA}$	2.4		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}$	2.2		
$\mathrm{V}_{\text {OL }}$	LOW Level Output Voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$; $\mathrm{IOL}=100 \mu \mathrm{~A}$		0.2	V
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{l}^{\mathrm{OL}}=12 \mathrm{~mA}$		0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=16 \mathrm{~mA}$		0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$		0.55	

1. These values of V_{I} are used to test DC electrical characteristics only. Functional test should use $\mathrm{V}_{\mathrm{IH}} \geq 2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}} \leq 0.5 \mathrm{~V}$.

DC ELECTRICAL CHARACTERISTICS (continued)

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
			Min	Max	
II	Input Leakage Current	$2.7 \mathrm{~V} \leq \mathrm{V}_{\text {CC }} \leq 3.6 \mathrm{~V} ; 0 \mathrm{~V} \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}$		± 5.0	$\mu \mathrm{A}$
loz	3-State Output Current	$\begin{gathered} 2.7 \leq V_{C C} \leq 3.6 V_{;} ; 0 \leq V_{O} \leq 5.5 V_{;} \\ V_{I}=V_{I H} \text { or } V_{\text {IL }} \end{gathered}$		± 5.0	$\mu \mathrm{A}$
IofF	Power-Off Leakage Current	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} ; \mathrm{V}_{1}$ or $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$		10	$\mu \mathrm{A}$
I'C	Quiescent Supply Current	$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} \mathrm{~V}_{1}=\mathrm{GND}$ or V_{CC}		20	$\mu \mathrm{A}$
		$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; 3.6 \leq \mathrm{V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$		± 20	$\mu \mathrm{A}$
$\Delta^{\prime} \mathrm{CC}$	Increase in ICC per Input	$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$		500	$\mu \mathrm{A}$

AC CHARACTERISTICS ${ }^{1}\left(\mathrm{t}_{\mathrm{R}}=\mathrm{tF}=2.5 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega\right.$)

Symbol	Parameter	Waveform					Unit
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$				
			$\mathrm{V}_{\text {CC }}=3.0 \mathrm{~V}$ to 3.6V		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$		
			Min	Max	Min	Max	
${ }^{\prime}$ max	Clock Pulse Frequency	1	170				MHz
$\begin{aligned} & \hline \text { tPLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay CP to On	1	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.2 \\ & 6.2 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	6.5	ns
$\begin{array}{\|l\|l} \mathrm{t} P Z \mathrm{H} \\ \text { tpZL } \end{array}$	Output Enable Time to HIGH and LOW Levels	2	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.1 \\ & 6.1 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.3 \\ & 6.3 \end{aligned}$	ns
$\begin{array}{\|l\|l} \mathrm{t} \text { tPHZ } \\ \text { tpLZ } \end{array}$	Output Disable Time from HIGH and LOW Levels	2	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.2 \\ & 6.2 \end{aligned}$	ns
$\mathrm{t}_{\text {s }}$	Setup TIme, HIGH or LOW Dn to CP	1	2.5		2.5		ns
th	Hold Tlme, HIGH or LOW Dn to CP	1	1.5		1.5		ns
t_{w}	CP Pulse Width, HIGH or LOW	3	3.0		3.0		ns
toshl tOSLH	Output-to-Output Skew (Note 2)			$\begin{aligned} & \hline 1.0 \\ & 1.0 \end{aligned}$			ns

1. These AC parameters are preliminary and may be modified prior to release.
2. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (OSHL) or LOW-to-HIGH (tOSLH); parameter guaranteed by design.

DYNAMIC SWITCHING CHARACTERISTICS

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			Unit
			Min	Typ	Max	
$\mathrm{V}_{\text {OLP }}$	Dynamic LOW Peak Voltage ${ }^{1}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$		0.8		V
Volv	Dynamic LOW Valley Voltage ${ }^{1}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{1 \mathrm{H}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$		0.8		V

1. Number of outputs defined as " n ". Measured with " $\mathrm{n}-1$ " outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state.

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Unit
$C_{P D}$	Power Dissipation Capacitance	$10 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V}$ or V_{CC}	20	pF
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\dot{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V}$ or V_{CC}	7	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V}$ or V_{CC}	8	pF

WAVEFORM 1 - PROPAGATION DELAYS, SETUP AND HOLD TIMES $t_{R}=t_{F}=2.5 \mathrm{~ns}, 10 \%$ to $90 \% ; f=1 \mathrm{MHz} ; \mathrm{t}_{\mathrm{W}}=500 \mathrm{~ns}$

WAVEFORM 2 - OUTPUT ENABLE AND DISABLE TIMES $t_{R}=t_{F}=2.5 \mathrm{~ns}, 10 \%$ to $90 \% ; f=1 \mathrm{MHz} ; t^{2}=500 \mathrm{~ns}$

WAVEFORM 3 - PULSE WIDTH
$t_{R}=t_{F}=2.5 \mathrm{~ns}$ (or fast as required) from 10% to 90%;
Output requirements: $\mathrm{V}_{\mathrm{OL}} \leq 0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}} \geq 2.0 \mathrm{~V}$

Figure 1. AC Waveforms

TEST	SWITCH
tPLH, tPHL	Open
tPZL, tpLZ	6 V
Open Collector/Drain tpLH and tPHL	6 V
tPZH, $^{\text {tPHZ }}$	GND

$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ or equivalent (Includes jig and probe capacitance)
$R_{L}=R_{1}=500 \Omega$ or equivalent
$\mathrm{R}_{\mathrm{T}}=\mathrm{Z}_{\mathrm{OUT}}$ of pulse generator (typically 50Ω)
Figure 2. Test Circuit

Product Preview Low-Voltage CMOS 18-Bit Universal Bus Transceiver With 5V-Tolerant Inputs and Outputs (3-State, Non-Inverting)

The MC74LCX16500 is a high performance, non-inverting 18-bit universal bus transceiver operating from a 2.7 to 3.6 V supply. The device is "byte +1 " controlled. Each "byte +1 " has separate control inputs which can be tied together for full 18-bit operation. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. A $V_{\text {I }}$ specification of 5.5 V allows MC74LCX16500 inputs to be safely driven from 5 V devices. The MC74LCX16500 is suitable for memory address driving and all TTL level bus oriented transceiver applications.

Data flow in each direction is controlled by Output Enable (OEAB, $\overline{O E B A}$), Latch Enable (LEAB, LEBA) and Clock inputs ($\overline{\mathrm{CAB}}, \overline{\mathrm{CBA}}$). When LEAB is HIGH, the A-to-B dataflow is transparent. When LEAB is LOW, and $\overline{C A B}$ is held at LOW or HIGH, the data A is latched; on the HIGH-to-LOW transition of $\overline{C A B}$ the A-data is stored in the latch/flip-flop. The outputs are active when OEAB is HIGH. When OEAB is LOW the B-outputs are in 3-state. Similarly, the LEBA, $\overline{O E B A}$ and $\overline{C B A}$ control the B-to-A dataflow. Please note that the output enables are complementary; OEAB is active HIGH, $\overline{O E B A}$ is active LOW.

- Designed for 2.7 to $3.6 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ Operation
- 5V Tolerant - Interface Capability With 5V TTL Logic
- Supports Live Insertion and Withdrawal
- IOFF Specification Guarantees High Impedance When $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$
- LVTTL Compatible
- LVCMOS Compatible
- 24mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current in All Three Logic States (10 $\mu \mathrm{A}$) Substantially Reduces System Power Requirements
- Latchup Performance Exceeds 500 mA
- ESD Performance: Human Body Model >2000V; Machine Model >200V

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

MC74LCX16500

LCX
LOW-VOLTAGE CMOS 18-BIT UNIVSERAL BUS TRANSCEIVER

Product Preview

Low-Voltage CMOS 16-Bit

 Latching Transceiver With 5V-Tolerant Inputs and Outputs (3-State, Non-Inverting)The MC74LCX16543 is a high performance, non-inverting 16-bit latching transceiver operating from a 2.7 to 3.6 V supply. The device is byte controlled. Each byte has separate control inputs which can be tied together for full 16-bit operation. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. $A V_{\mid}$specification of 5.5 V allows MC74LCX16543 inputs to be safely driven from 5 V devices. The MC74LCX16543 is suitable for memory address driving and all TTL level bus oriented transceiver applications.

For data flow from A to B with the $\overline{E A B}$ LOW, the A-to-B Output Enable ($\overline{O E A B}$) must be LOW in order to enable data to the B bus, as indicated in the Function Table. With EAB LOW, a LOW signal on the A-to-B Latch Enable ($\overline{\text { LEAB }}$) input makes the A-to-B latches transparent; a subsequent LOW-to-HIGH transition of the LEAB signal will latch the A latches, and the outputs no longer change with the A inputs. With $\overline{E A B}$ and $\overline{O E A B}$ both LOW, the 3-State B output buffers are active and reflect the data present at the output of the A latches. Control of data flow from B to A is symetric to that above, but uses the $\overline{E B A}$, LEBA, and $\overline{O E B A}$ inputs.

- Designed for 2.7 to $3.6 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ Operation
- 5V Tolerant — Interface Capability With 5V TTL Logic
- Supports Live Insertion and Withdrawal
- IOFF Specification Guarantees High Impedance When $V_{C C}=0 V$
- LVTTL Compatible
- LVCMOS Compatible
- 24 mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current in All Three Logic States (10رA) Substantially Reduces System Power Requirements
- Latchup Performance Exceeds 500 mA
- ESD Performance: Human Body Model >2000V; Machine Model >200V

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

MC74LCX16543

LCX
LOW-VOLTAGE CMOS 16-BIT LATCHING TRANSCEIVER

OEAB1 1	(1)	$\overline{\text { OEBAI }}$
LEAB1 2		LEBA1
EAB1 3		EBA1
GND 4		GND
A0 5		BO
A1 6		B1
$\mathrm{V}_{\mathrm{CC}} 7$		$V_{C C}$
A2 8		B2
A3 9		B3
A4 10		B4
GND 11		GND
A5 12		B5
A6 13		B6
A7 14		B7
A8 15		B8
A9 16		B9
A10 17		B10
GND 18		GND
A11 19		B11
A12 20		B12
A13 21		B13
$\mathrm{V}_{\mathrm{CC}} 22$		VCC
A14 23		B14
A15 24		B15
GND 25		GND
EAB2 26		EBA2
LEAB2 27		LEBA2
OEAB2 28.		$\overline{0 E B A 2}$

Product Preview Low-Voltage CMOS 16-Bit Transceiver/Registered Transceiver
 With 5V-Tolerant Inputs and Outputs (3-State, Non-Inverting)

The MC74LCX16646 is a high performance, non-inverting 16-bit transceiver/registered transceiver operating from a 2.7 to 3.6 V supply. The device is byte controlled. Each byte has separate control inputs which can be tied together for full 16-bit operation. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. A V_{1} specification of 5.5 V allows MC74LCX16646 inputs to be safely driven from 5V devices. The MC74LCX16646 is suitable for memory address driving and all TTL level bus oriented transceiver applications.

Data on the A or B bus will be clocked into the registers as the appropriate clock pin goes from a LOW-to-HIGH logic level. Output Enable ($\overline{O E n}$) and Direction Control (DIRn) pins are provided to control the transceiver outputs. In the transceiver mode, data present at the high impedance port may be stored in either the A or the B register or in both. The select controls (SBAn, SABn) can multiplex stored and real-time (transparent mode) data. The DIR determines which bus will receive data when $\overline{O E}$ is active LOW. In the isolation mode ($\overline{\mathrm{OE}} \mathrm{HIGH}$), A data may be stored in the B register or B data may be stored in the A register. Only one of the two buses, A or B, may be driven at one time.

- Designed for 2.7 to $3.6 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ Operation
- 5V Tolerant — Interface Capability With 5V TTL Logic
- Supports Live Insertion and Withdrawal
- IOFF Specification Guarantees High Impedance When VCC = OV
- LVTTL Compatible
- LVCMOS Compatible
- 24 mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current in All Three Logic States ($10 \mu \mathrm{~A}$) Substantially Reduces System Power Requirements
- Latchup Performance Exceeds 500 mA
- ESD Performance: Human Body Model >2000V; Machine Model >200V

MC74LCX16646

LCX

LOW-VOLTAGE CMOS 16-BIT TRANSCEIVER/ REGISTERED TRANSCEIVER

[^13]

Store Data from Bus A, Bus B or Busses A and B

Real Time Transfer-Bus A to Bus B

Transfer Storage Data to Bus A or Bus B

FUNCTION TABLE

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Inputs} \& \multicolumn{2}{|l|}{Storage Registers} \& \multicolumn{2}{|c|}{Data Ports} \& Operating Mode

\hline $\overline{O E n}$ \& DIRn \& CABn \& CBAn \& SABn \& SBAn \& $\mathbf{a}_{\mathbf{A}}$ \& O_{B} \& A_{n} \& B_{n} \& Operating Mode

\hline H \& X \& \& \& \& \& \& \& Input \& Input \&

\hline \& \& \uparrow \& \uparrow \& X \& X \& NC \& NC \& X \& X \& Isolation, Hold Storage

\hline \& \& \uparrow \& \uparrow \& X \& X \& L

H
X
X
X \& X
X
X
L

H \& \[
$$
\begin{aligned}
& L \\
& H \\
& X \\
& X
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& X \\
& X \\
& X \\
& L \\
& H
\end{aligned}
$$
\] \& Store A and/or B Data

\hline L \& H \& \& \& \& \& \& \& Input \& Output \&

\hline \& \& \ddagger \& X* \& L \& X \& \[
$$
\begin{aligned}
& \text { NC } \\
& \text { NC }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{NC} \\
& \text { NC }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& L \\
& H
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
$$
\] \& Real Time A Data to B Bus

\hline \& \& \& \& H \& X \& NC \& NC \& X \& Q_{A} \& Stored A Data to B Bus

\hline \& \& \uparrow \& ${ }^{*}$ \& L \& X \& \[
$$
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{NC} \\
& \mathrm{NC}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& L \\
& H
\end{aligned}
$$
\] \& Real Time A Data to B Bus; Store A Data

\hline \& \& \& \& H \& X \& $$
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \text { NC } \\
& \text { NC }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{Q}_{A} \\
& \mathrm{Q}_{A}
\end{aligned}
$$
\] \& Stored A Data to B Bus; Store A Data

\hline L \& L \& \& \& \& \& \& \& Output \& Input \&

\hline \& \& $$
X^{*}
$$ \& \uparrow \& X \& L \& \[

$$
\begin{aligned}
& \mathrm{NC} \\
& \mathrm{NC}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { NC } \\
& \text { NC }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
$$
\] \& Real Time B Data to A Bus

\hline \& \& \& \& X \& H \& NC \& NC \& Q_{B} \& X \& Stored B Data to A Bus

\hline \& \& X* \& \uparrow \& X \& L \& \[
$$
\begin{aligned}
& \text { NC } \\
& \text { NC }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
$$
\] \& Real Time B Data to A Bus; Store B Data

\hline \& \& \& \& X \& H \& $$
\begin{aligned}
& \mathrm{NC} \\
& \mathrm{NC} \\
& \hline
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{Q}_{\mathrm{B}} \\
& \mathrm{Q}_{\mathrm{B}}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
$$
\] \& Stored B Data to A Bus; Store B Data

\hline
\end{tabular}

$H=$ High Voltage Level; L = Low Voltage Level; X = Don't Care; $\uparrow=$ Low-to-High Clock Transition; $\uparrow=$ NOT Low-to-High Clock Transition; NC $=$ No Change; * $=$ The clocks are not internally gated with either the Output Enables or the Source Inputs. Therefore, data at the A or B ports may be clocked into the storage registers, at any time. For ICC reasons, Do Not Float Inputs.

ABSOLUTE MAXIMUM RATINGS*

Symbol	Parameter	Value	Condition	Unit
$V_{C C}$	DC Supply Voltage	-0.5 to +7.0		V
V_{1}	DC Input Voltage	$-0.5 \leq V_{1} \leq+7.0$		V
v_{O}	DC Output Voltage	$-0.5 \leq V_{0} \leq+7.0$	Output in 3-State	V
		$-0.5 \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}+0.5^{1}$	Output in HIGH or LOW State	V
IK	DC Input Diode Current	-50	$\mathrm{V}_{1}<$ GND	mA
IOK	DC Output Diode Current	-50	$\mathrm{V}_{\mathrm{O}}<\mathrm{GND}$	mA
		+50	$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\text {CC }}$	mA
10	DC Output Source/Sink Current	± 50		mA
ICC	DC Supply Current Per Supply Pin	± 100		mA
IGND	DC Ground Current Per Ground Pin	± 100		mA
TSTG	Storage Temperature Range	-65 to +150		${ }^{\circ} \mathrm{C}$

* Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute-maximum-rated conditions is not implied.

1. Io absolute maximum rating must be observed.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Typ	Max	Unit
$V_{C C}$	Supply VoltageOperating Data Retention Only	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 3.6 \end{aligned}$	V
V_{1}	Input Voltage	0		5.5	V
V_{0}	Output Voltage (HIGH or LOW State) (3-State)	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ 5.5 \end{gathered}$	V
${ }^{1} \mathrm{OH}$	HIGH Level Output Current, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$			-24	mA
${ }^{\mathrm{O}} \mathrm{OL}$	LOW Level Output Current, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$			24	mA
${ }^{1} \mathrm{OH}$	HIGH Level Output Current, $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V}$			-12	mA
l^{OL}	LOW Level Output Current, $\mathrm{V}_{\text {CC }}=2.7 \mathrm{~V}-3.0 \mathrm{~V}$			12	mA
T_{A}	Operating Free-Air Temperature	-40		+85	${ }^{\circ} \mathrm{C}$
$\Delta t / \Delta V$	Input Transition Rise or Fall Rate, $\mathrm{V}_{\text {IN }}$ from 0.8 V to 2.0 V , $V_{C C}=3.0 \mathrm{~V}$	0		10	ns / N

DC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
			Min	Max	
V_{IH}	HIGH Level Input Voltage (Note 1)	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$	2.0		V
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage (Note 1)	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$		0.8	V
V_{OH}	HIGH Level Output Voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$; $\mathrm{l}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}-0.2$		V
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{l}^{\mathrm{OH}}=-12 \mathrm{~mA}$	2.2		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{OH}}=-18 \mathrm{~mA}$	2.4		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$; $\mathrm{OHH}=-24 \mathrm{~mA}$	2.2		
VoL	LOW Level Output Voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=100 \mu \mathrm{~A}$		0.2	V
		$\mathrm{V}_{C C}=2.7 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}$		0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=16 \mathrm{~mA}$		0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$		0.55	
1	Input Leakage Current	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; 0 \mathrm{~V} \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}$		± 5.0	$\mu \mathrm{A}$
l OZ	3-State Output Current	$\begin{gathered} 2.7 \leq V_{C C} \leq 3.6 V_{;} ; 0 V \leq V_{O} \leq 5.5 V ; \\ V_{I}=V_{I H} \text { or } V_{\text {IL }} \end{gathered}$		± 5.0	$\mu \mathrm{A}$
IOFF	Power-Off Leakage Current	$\mathrm{V}_{\text {CC }}=0 \mathrm{~V}$; V_{1} or $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$		10	$\mu \mathrm{A}$
ICC	Quiescent Supply Current	$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or V_{CC}		20	$\mu \mathrm{A}$
		$2.7 \leq \mathrm{V}_{\text {CC }} \leq 3.6 \mathrm{~V} ; 3.6 \leq \mathrm{V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$		± 20	$\mu \mathrm{A}$
$\Delta \mathrm{CCC}$	Increase in ICC per Input	$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{V}_{\text {IH }}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$		500	$\mu \mathrm{A}$

1. These values of V_{I} are used to test DC electrical characteristics only. Functional test should use $\mathrm{V}_{\mathrm{IH}} \geq 2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}} \leq 0.5 \mathrm{~V}$.

AC CHARACTERISTICS ${ }^{1}$ ($\mathrm{t}_{\mathrm{R}}=\mathrm{tF}=2.5 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega$)

Symbol	Parameter	Waveform					Unit
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$				
			$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6V		$\mathrm{V}_{\text {cc }}=2.7 \mathrm{~V}$		
			Min	Max	Min	Max	
$f_{\text {max }}$	Clock' Pulse Frequency	3	170				MHz
tpLH tPHL	Propagation Delay Clock to Output	3	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	ns
tPLH tPHL	Propagation Delay Input to Output	1	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	ns
tple tPHL	Propagation Delay Select to Output	1	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	ns
$\begin{aligned} & \text { tpZH } \\ & \text { tpZL } \end{aligned}$	Output Enable Time to High and Low Level	2	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	ns
$\left\lvert\, \begin{aligned} & \text { tpHZ } \\ & \text { tpLZ } \end{aligned}\right.$	Output Disable Time From High and Low Level	2	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	ns
t_{s}	Setup Time, HIGH or LOW Data to Clock	3	2.5		2.5		ns
th	Hold Time, HIGH or LOW Data to Clock	3	1.5		1.5		ns
t_{w}	Clock Pulse Width, HIGH or LOW	3	3.0		3.0		ns
$\begin{aligned} & \text { tOSHL } \\ & \text { tOSLH } \end{aligned}$	Output-to-Output Skew (Note 2)			$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$			ns

1. These AC parameters are preliminary and may be modified prior to release.
2. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (IOSHL) or LOW-to-HIGH (IOSLH); parameter guaranteed by design.

DYNAMIC SWITCHING CHARACTERISTICS

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			Unit
			Min	Typ	Max	
V OLP	Dynamic LOW Peak Voltage ${ }^{1}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$		0.8		V
VOLV	Dynamic LOW Valley Voitage ${ }^{1}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$		0.8		V

1. Number of outputs defined as " n ". Measured with " $n-1$ " outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state.

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Unit
$C_{P D}$	Power Dissipation Capacitance	$10 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	20	pF
$\mathrm{C}_{I N}$	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V}$ or V_{CC}	7	pF
$\mathrm{C}_{/ / \mathrm{O}}$	Input/Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	8	pF

WAVEFORM 1 - SAB to B and SBA to A, An to Bn PROPAGATION DELAYS $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns}, 10 \%$ to $90 \% ; \mathrm{f}=1 \mathrm{MHz} ; \mathrm{t}_{\mathrm{w}}=500 \mathrm{~ns}$

WAVEFORM $2-\overline{O E} D I R$ to An/Bn OUTPUT ENABLE AND DISABLE TIMES $t_{R}=t_{F}=2.5 \mathrm{~ns}, 10 \%$ to $90 \% ; f=1 \mathrm{MHz} ; t_{W}=500 \mathrm{~ns}$

Figure 1. AC Waveforms

WAVEFORM 3-CLOCK to BN/An PROPAGATION DELAYS, CLOCK MINIMUM PULSE WIDTH, An/Bn to CLOCK SETUP AND HOLD TIMES
$t_{R}=t_{F}=2.5 n s, 10 \%$ to $90 \% ; f=1 \mathrm{MHz} ; t_{W}=500 \mathrm{~ns}$ except when noted

WAVEFORM 4 - INPUT PULSE DEFINITION
$t_{R}=t_{F}=2.5 \mathrm{~ns}, 10 \%$ to 90% of 0 V to 2.7 V

Figure 1. AC Waveforms (continued)

TEST	SWITCH
tPLH, tPHL	Open
tpZL, tpLZ	6 V
Open Collector/Drain tple and tPHL	6 V
tPZH, tPHZ	GND

$C_{L}=50 \mathrm{pF}$ or equivalent (Includes jig and probe capacitance)
$R_{L}=R_{1}=500 \Omega$ or equivalent
$\mathrm{R}_{\mathrm{T}}=$ ZOUT of pulse generator (typically 50Ω)

Figure 2. Test Circuit

Product Preview Low-Voltage CMOS 16-Bit Transceiver/Registered Transceiver With Dual Enable With 5V-Tolerant Inputs and Outputs (3-State, Non-Inverting)

The MC74LCX16652 is a high performance, non-inverting 16-bit transceiver/registered transceiver operating from a 2.7 to 3.6 V supply. The device is byte controlled. Each byte has separate control inputs which can be tied together for full 16-bit operation. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. A VI specification of 5.5 V allows MC74LCX16652 inputs to be safely driven from 5 V devices. The MC74LCX16652 is suitable for memory address driving and all TTL level bus oriented transceiver applications.

Data on the A or B bus will be clocked into the registers as the appropriate clock pin goes from a LOW-to-HIGH logic level. Output Enable pins ($\overline{O E B A n}, \mathrm{OEABn}$) are provided to control the transceiver outputs. In the transceiver mode, data present at the high impedance port may be stored in either the A or the B register or in both. The select controls (SBAn, SABn) can multiplex stored and real-time (transparent mode) data. In the isolation mode (both outputs disabled), A data may be stored in the B register or B data may be stored in the A register. When in the real-time mode, it is possible to store data without using the internal registers by simultaneously enabling OEAB and $\overline{O E B A}$. In this configuration, each output reinforces its input (data retention is not guaranteed in this mode).

- Designed for 2.7 to $3.6 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ Operation
- 5V Tolerant — Interface Capability With 5V TTL Logic
- Supports Live Insertion and Withdrawal
- IOFF Specification Guarantees High Impedance When $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$
- LVTTL Compatible
- LVCMOS Compatible
- 24 mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current in All Three Logic States (10 AA) Substantially Reduces System Power Requirements
- Latchup Performance Exceeds 500 mA
- ESD Performance: Human Body Model >2000V; Machine Model >200V

MC74LCX16652

LCX

LOW-VOLTAGE CMOS 16-BIT TRANSCEIVER/ REGISTERED TRANSCEIVER WITH DUAL ENABLE

DT SUFFIX PLASTIC TSSOP PACKAGE CASE 1202-01

PIN NAMES

Pins	Function
A0-A15	Side A Inputs/Outputs
BO-B15	Side B Inputs/Outputs
CABn, CBAn	Clock Pulse Inputs
SABn, SBAn	Select Control Inputs
OEBAn, OEABn	Output Enable Inputs

Real Time Transfer - Bus B to Bus A

Store Data from Bus A, Bus B or Bus A and Bus B

Store Bus A in Both Registers or Store Bus B in Both Registers

Real Time Transfer-Bus A to Bus B

Transfer A Stored Data to Bus B or Stored Data Bus B to Bus A or Both at the Same Time

Isolation

MC74LCX16652

FUNCTION TABLE

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Inputs} \& \multicolumn{2}{|l|}{Storage Registers} \& \multicolumn{2}{|c|}{Data Ports} \& \multirow[t]{2}{*}{Operating Mode}

\hline OEBAn \& OEABn \& CABn \& CBAn \& SABn \& SBAn \& $\mathbf{Q}_{\mathbf{A}}$ \& $\mathbf{O}_{\mathbf{B}}$ \& A_{n} \& B_{n} \&

\hline \multirow[t]{3}{*}{H} \& \multirow[t]{3}{*}{L} \& \& \& \& \& \& \& Input \& Input \&

\hline \& \& \uparrow \& \uparrow \& X \& X \& NC \& NC \& X \& X \& Isolation, Hold Storage

\hline \& \& \uparrow \& \uparrow \& X \& X \& L

H
X
X \& X
X
L

H \& $$
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H} \\
& \mathrm{X} \\
& \mathrm{X}
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& X \\
& X \\
& X \\
& L \\
& H
\end{aligned}
$$
\] \& Store A and/or B Data

\hline \multirow[t]{5}{*}{H} \& \multirow[t]{5}{*}{H} \& \& \& \& \& \& \& Input \& Output \&

\hline \& \& \uparrow \& X^{*} \& L \& X \& \[
$$
\begin{aligned}
& \text { NC } \\
& \text { NC }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { NC } \\
& \text { NC }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
\mathrm{L} \\
\mathrm{H}
\end{gathered}
$$
\] \& Real Time A Data to B Bus

\hline \& \& \& \& H \& X \& NC \& NC \& X \& $Q_{\text {A }}$ \& Stored A Data to B Bus

\hline \& \& \uparrow \& X* \& L \& X \& \[
$$
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { NC } \\
& \text { NC }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
$$
\] \& Real Time A Data to B Bus; Store A Data

\hline \& \& \& \& H \& X \& $$
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \mathrm{NC} \\
& \mathrm{NC}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& L \\
& H
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{Q}_{\mathrm{A}} \\
& \mathrm{Q}_{\mathrm{A}}
\end{aligned}
$$
\] \& Stored A Data to B Bus; Store A Data

\hline \multirow[t]{5}{*}{L} \& \multirow[t]{5}{*}{L} \& \& \& \& \& \& \& Output \& Input \&

\hline \& \& X* \& \uparrow \& X \& L \& \[
$$
\begin{aligned}
& \text { NC } \\
& \text { NC }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { NC } \\
& \text { NC }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
$$
\] \& Real Time B Data to A Bus

\hline \& \& \& \& X \& H \& NC \& NC \& Q_{B} \& X \& Stored B Data to A Bus

\hline \& \& X* \& \uparrow \& X \& L \& \[
$$
\begin{aligned}
& \text { NC } \\
& \text { NC }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
$$
\] \& Real Time B Data to A Bus; Store B Data

\hline \& \& \& \& X \& H \& $$
\begin{aligned}
& \mathrm{NC} \\
& \mathrm{NC}
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{Q}_{\mathrm{B}} \\
& \mathrm{Q}_{\mathrm{B}}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
$$
\] \& Stored B Data to A Bus; Store B Data

\hline \multirow[t]{2}{*}{L} \& \multirow[t]{2}{*}{H} \& \& \& \& \& \& \& Output \& Output \&

\hline \& \& \uparrow \& \uparrow \& H \& H \& NC \& NC \& Q_{B} \& $Q_{\text {A }}$ \& Stored A Data to B Bus, Stored B Data to A Bus

\hline
\end{tabular}

$H=$ High Voltage Level; L = Low Voltage Level; X = Don't Care; $\uparrow=$ Low-to-High Clock Transition; $\uparrow=$ NOT Low-to-High Clock Transition; NC = No Change; * $=$ The clocks are not internally gated with either the Output Enables or the Source Inputs. Therefore, data at the A or B ports may be clocked into the storage registers, at any time. For ICC reasons, Do Not Float Inputs.

ABSOLUTE MAXIMUM RATINGS*

Symbol	Parameter	Value	Condition	Unit
V_{CC}	DC Supply Voltage	-0.5 to +7.0		V
V_{1}	DC Input Voltage	$-0.5 \leq \mathrm{V}_{1} \leq+7.0$		V
V_{O}	DC Output Voltage	$-0.5 \leq \mathrm{V}_{\mathrm{O}} \leq+7.0$	Output in 3-State	V
		$-0.5 \leq V_{O} \leq V_{C C}+0.51$	Output in HIGH or LOW State	V
IIK	DC Input Diode Current	-50	$\mathrm{V}_{1}<$ GND	mA
IOK	DC Output Diode Current	-50	$\mathrm{V}_{\mathrm{O}}<\mathrm{GND}$	mA
		+50	$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$	mA
10	DC Output Source/Sink Current	± 50		mA
${ }^{\text {ICC }}$	DC Supply Current Per Supply Pin	± 100.		mA
IGND	DC Ground Current Per Ground Pin	± 100		mA
TSTG	Storage Temperature Range	-65 to +150		${ }^{\circ} \mathrm{C}$

* Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Exposure tothese conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute-maximum-rated conditions is not implied.

1. Io absolute maximum rating must be observed.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Typ	Max	Unit
$V_{C C}$	Supply Voltage $\begin{array}{r}\text { Operating } \\ \text { Data Retention Only }\end{array}$	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 3.6 \end{aligned}$	V
V_{1}	Input Voltage	0		5.5	V
V_{0}	Output Voltage (HIGH or LOW State) (3-State)	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ 5.5 \end{gathered}$	V
${ }^{1} \mathrm{OH}$	HIGH Level Output Current, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$			-24	mA
${ }^{\mathrm{OL}}$	LOW Level Output Current, $\mathrm{V}_{\text {CC }}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$			24	mA
${ }^{\mathrm{IOH}}$	HIGTH Level Output Current, $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V}$			-12	mA
lOL	LOW Level Output Current, $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V}$			12	mA
T_{A}	Operating Free-Air Temperature	-40		+85	${ }^{\circ} \mathrm{C}$
$\Delta t \Delta V$	Input Transition Rise or Fall Rate, $\mathrm{V}_{\text {IN }}$ from 0.8 V to 2.0 V , $v_{C C}=3.0 \mathrm{~V}$	0		10	ns / N

DC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
			Min	Max	
V_{IH}	HIGH Level Input Voltage (Note 1)	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$	2.0		V
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage (Note 1)	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$		0.8	V
V_{OH}	HIGH Level Output Voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{l}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}-0.2$		V
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{IOH}=-12 \mathrm{~mA}$	2.2		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{I}^{\mathrm{OH}}=-18 \mathrm{~mA}$	2.4		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; 1 \mathrm{OH}=-24 \mathrm{~mA}$	2.2		
$\mathrm{V}_{\text {OL }}$	LOW Level Output Voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=100 \mu \mathrm{~A}$		0.2	V
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}$		0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=16 \mathrm{~mA}$		0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{lOL}=24 \mathrm{~mA}$		0.55	
1	Input Leakage Current	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; 0 \mathrm{~V} \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}$		± 5.0	$\mu \mathrm{A}$
IOZ	3-State Output Current	$\begin{gathered} 2.7 \leq V_{C C} \leq 3.6 V_{;} ; 0 V \leq V_{O} \leq 5.5 V ; \\ V_{I}=V_{\text {IH }} \text { or } V_{\text {IL }} \end{gathered}$		± 5.0	$\mu \mathrm{A}$
IOFF	Power-Off Leakage Current	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$; V_{1} or $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$		10	$\mu \mathrm{A}$
I'c	Quiescent Supply Current	$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}_{;} \mathrm{V}_{1}=\mathrm{GND}$ or V_{CC}		20	$\mu \mathrm{A}$
		$2.7 \leq \mathrm{V}_{\text {CC }} \leq 3.6 \mathrm{~V} ; 3.6 \leq \mathrm{V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$		± 20	$\mu \mathrm{A}$
$\Delta^{\prime} \mathrm{CC}$	Increase in ICC per Input	$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$		500	$\mu \mathrm{A}$

1. These values of V_{I} are used to test DC electrical characteristics only. Functional test should use $\mathrm{V}_{\mathrm{IH}} \geq 2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}} \leq 0.5 \mathrm{~V}$.

AC CHARACTERISTICS ${ }^{1}\left(\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{t}}=2.5 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega\right.$)

Symbol	Parameter	Waveform					Unit
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$				
			$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V		$\mathrm{V}_{\mathbf{C C}}=2.7 \mathrm{~V}$		
			Min	Max	Min	Max	
$f_{\text {max }}$	Clock Pulse Frequency	3	170				MHz
$\begin{array}{\|l\|l\|} \text { tPLH } \\ \text { tpHL } \\ \hline \end{array}$	Propagation Delay Clock to Output	3	$\begin{aligned} & \hline 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{tPLH} \\ & \text { tpHL } \end{aligned}$	Propagation Delay Input to Output	1	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	ns
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay Select to Output	1	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	ns
$\begin{aligned} & \text { tPZH } \\ & \text { tPZL } \end{aligned}$	Output Enable Time to High and Low Level	2	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 8.5 \\ & 8.5 \end{aligned}$	ns
$\begin{aligned} & \text { tpHZ } \\ & \text { tplZ } \end{aligned}$	Output Disable Time From High and Low Level	2	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	ns
t_{s}	Setup Time, HIGH or LOW Data to Clock	3	2.5		2.5		ns
th	Hold Time, HIGH or LOW Data to Clock	3	1.5		1.5		ns
$t_{\text {w }}$	Clock Pulse Width, HIGH or LOW	3	3.0		3.0		ns
$\begin{aligned} & \text { toshL } \\ & \text { tOSLH } \end{aligned}$	Output-to-Output Skew (Note 2)			$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$			ns

1. These AC parameters are preliminary and may be modified prior to release.
2. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW ($\mathbf{t} \mathbf{O S H L}$) or LOW-to-HIGH (tOSLH); parameter guaranteed by design.

DYNAMIC SWITCHING CHARACTERISTICS

Symbol	Characteristic	Condition	$\mathrm{T}_{A}=+25^{\circ} \mathrm{C}$			Unit
			Min	Typ	Max	
Volp	Dynamic LOW Peak Voltage ${ }^{1}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{HH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$		0.8		V
VOLV	Dynamic LOW Valley Voltage ${ }^{1}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$		0.8		V

1. Number of outputs defined as " n ". Measured with " $n-1$ " outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state. The LCX16652 is characterized with 15 outputs switching with 1 output held LOW.

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Unit
C_{PD}	Power Dissipation Capacitance	$10 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	20	pF
$\mathrm{C}_{I N}$	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	$\mathbf{7}$	pF
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	Input/Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	8	pF

WAVEFORM 1 - SAB to B and SBA to A, An to Bn PROPAGATION DELAYS $t_{R}=t_{F}=2.5 \mathrm{~ns}, 10 \%$ to $90 \% ; f=1 \mathrm{MHz} ; \mathrm{t}_{\mathrm{W}}=500 \mathrm{~ns}$

WAVEFORM 2-EEBENOEAB to An/Bn OUTPUT ENABLE AND DISABLE TIMES
$t_{R}=t_{F}=2.5 \mathrm{~ns}, 10 \%$ to $90 \% ; f=1 \mathrm{MHz} ; t_{w}=500 \mathrm{~ns}$

Figure 1. AC Waveforms

WAVEFORM 3 - CLOCK to Bn/An PROPAGATION DELAYS, CLOCK MINIMUM PULSE WIDTH,
An/Bn to CLOCK SETUP AND HOLD TIMES
$t_{R}=t_{F}=2.5 \mathrm{~ns}, 10 \%$ to $90 \% ; \mathrm{f}=1 \mathrm{MHz} ; \mathrm{t}$ W $=500 \mathrm{~ns}$ except when noted

WAVEFORM 4 - INPUT PULSE DEFINITION $t_{R}=t_{F}=2.5 \mathrm{~ns}, 10 \%$ to 90% of 0 V to 2.7 V

Figure 1. AC Waveforms (continued)

TEST	SWITCH
${ }_{\text {tPLH, }}$ tPHL	Open
tPZL, tplz	6 V
Open Collector/Drain tpLH and tPHL	6 V
tPZH, tPHZ	GND

$C_{L}=50 \mathrm{pF}$ or equivalent (Includes jig and probe capacitance)
$R_{L}=R_{1}=500 \Omega$ or equivalent
$R_{T}=Z_{O U T}$ of pulse generator (typically 50Ω)

Figure 2. Test Circuit

Reliability Information

Motorola Reliability and Quality Assurance

Motorola has a long standing reputation for manufacturing products of excellent Quality and Reliability since the introduction of the first car radio in 1928. This has helped Motorola to become one of the largest corporations exclusively devoted to electronics.

In today's semiconductor marketplace, two important elements for the success of a company are its quality and reliability systems. They are interrelated, reliability being quality extended over the expected life of a product. For any manufacturer to remain in business, its products must meet or exceed basic quality and reliability standards and customer needs.

At Motorola, the most stringent and demanding definitions of quality and reliability are used.

Quality

- Reduction of variability around a target so that conformance to customer requirements and expectations can be achieved in a cost-effective way
- The probability that a device (equipment, parts) will have performance characteristics within specified limits
- Fitness for use

Reliability

- Quality in time and environment
- The probability that our semiconductor devices, which initially have satisfactory performance, will continue to perform their intended function for a given time in usage environments
At Motorola, our Reliability and Quality Assurance Program is designed to generate ongoing data for both reliability and quality for the various product families. Both reliability and quality monitors are performed on the different major categories of semiconductor products. These monitors are designed to test the product's design and material as well as to identify and eliminate potential failure mechanisms to ensure reliable device performance in a "real world" application. Thus, the primary purpose of the program is to identify trends from generated data, so if need be, corrective action(s) can be taken toward improving performance. In addition, this reliability and quality data can be utilized by our customers for failure rate predictions.

It is the explicit purpose of this communication to inform the customer of our LCX qualification results. In addition, we have provided a general definition of our reliability and quality assurance program.

LCX Device Description

Motorola's LCX family, the first Low-Voltage CMOS family with 5V tolerant inputs and outputs, is manufactured on the H4C "plus" 75\% CMOS (double layer metal) process at MOS 6. The LCX family emphasizes low power, low switching noise, and fast switching speeds. LCX devices will be assembled in SOIC, SSOP and TSSOP packages. The H4C "plus" 75% CMOS process in MOS 6 was qualified using the LCX family's E76S maskset.

LCX Processing Information

PROCESSING SUMMARY — H4C "plus," 75\% CMOS (Double Layer Metal)
General

Process Type	CMOS on EPI
Effective Channel Length	Min. target $=0.65 \mu \mathrm{~m}$
Process Complexity	Single Poly, Double Metal

Gate Processing

Gate Oxide Thickness	$150 \AA$
Gate Terminal	Phosphorous Doped Polysilicon (POCL)
N+ Source Drain Dopant	Phosphorous \& Arsenic
P+ Source Drain Dopant	Boron (BF2)

Metallization Processing

Metal Composition	AlSiCu w/TiN Barrier (M1) AlSiCu (M2)

Passivation Processing

Passivation Type	Double Layer, Nitride over PSG Oxide

Electrical Characteristics

Field Threshold Voltage	$>12 \mathrm{~V}$
Punchthrough Voltage	$>12 \mathrm{~V}$
Gate Oxide Breakdown	$>14 \mathrm{~V}$

LCX Qualification Introduction

LCX Qualification consisted of intrinsic and extrinsic reliability testing. Intrinsic reliability concerns device degradation issues and is assessed via electromigration, hot carrier injection and dielectric breakdown measures. Extrinsic reliability addresses both processing and packaging related issues and utilizes several tests: high temperature bias, temperature cycling, pressure temperature humidity, thermal shock, temperature humidity bias, surface mount preconditioning, physical dimensions, solderability and marking permanency. (Included below are definitions of the aforementioned terms.)

INTRINSIC RELIABILITY

Electromigration

Electromigration is the movement of metal in the direction of electron flow. This is accelerated by high current densities and temperatures which result in metal void and/or collection (hillock) formations, and ultimately shorts. Design rules specify minimum metal widths and maximum current densities to circumvent electromigration issues.

Hot Carrier Injection (HCI)

Hot carrier injection is the result of electron scattering and subsequent trapping in the gate oxide of MOS devices. Scattering is a function of electron velocity and thus electric fields and temperature. Ultimately, carrier mobility and transconductance are reduced causing threshold voltage shifts. Processing conditions are set to minimize hot carrier generation rates and gate trapping efficiencies.

Dielectric Breakdown

Dielectric breakdown results in the formation of a conductive path connecting once-isolated conducting layers. High voltage induced charge injection and trapping accelerates this breakdown. Dielectric integrity is maximized via uniform depositional thickness, and dielectric quality is achieved through minimizing impurity, charge, and defect levels.

EXTRINSIC RELIABILITY

High Temperature Bias (HTB)

High temperature bias (HTB) testing is performed to accelerate failure mechanisms which are activated through the application of elevated temperatures and the use of biased operating conditions. The temperature and voltage conditions used in the stress are dependent on the product under stress. However, the typical ambient temperature is $145^{\circ} \mathrm{C}$ with the static bias applied equal to or greater than the data sheet nominal value.

Temperature Cycling (MIL-STD-833D-1010C)

Temperature cycle testing accelerates the effects of thermal expansion mismatch among the different components within a specific die and packaging system. This test is typically performed per MIL-STD-883D Method 1010C with the minimum and maximum temperatures being $-65^{\circ} \mathrm{C}$ and $+150^{\circ} \mathrm{C}$, respectively. During temperature cycle testing, devices are inserted into a cycling system and held at the cold dwell temperature for at least ten minutes. Following this cold dwell, the devices are heated to the hot dwell where they remain for another ten minute minimum time period. The system employs a circulating air environment to assure rapid stabilization at the specified temperature. The dwell at each extreme, plus the two transition times of five minutes each (one up to the hot dwell temperature, another down to the cold dwell temperature), constitute one cycle.

Thermal Shock (MIL-STD-833D-1010C)

The objective of thermal shock testing is the same as that for temperature cycle testing, that is, to emphasize differences in expansion coefficients for components of the packaging system. However, thermal shock provides additional stress, in that the device is exposed to a sudden change in temperature due to a maximum transfer time of ten seconds, as well as the increased thermal conductivity of a liquid ambient. This test is typically performed per MIL-STD-883D Method 1011C with minimum and maximum temperatures being $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$, respectively. Devices are placed in a bath and cooled to minimum specified temperature. After being held in the cold chamber for five minutes minimum, the devices are transferred to an adjacent chamber at the maximum specified temperature for an equivalent time. Two five minute dwells plus two ten second transitions constitute one cycle.

Temperature Humidity Bias (THB Motorola Std)

This stress is performed to accelerate the effects of moisture penetration, with the dominant effect being corrosion. Conditions employed during this test are a temperature of $85^{\circ} \mathrm{C}$, humidity of $85 \% \mathrm{RH}$, and a nominal bias level.
Pressure Temperature Humidity (PTH Motorola Std)
This stress is performed to accelerate the effects of moisture penetration, with the dominant effect being corrosion. This test detects similar failure mechanisms as THB but at a greatly accelerated rate. Conditions employed during this test are a temperature of $121^{\circ} \mathrm{C}$, pressure of 15 psig or greater, humidity of 100% RH, unbiased.

Surface Mount Preconditioning (Motorola Std)

Preconditioning tests are performed to simulate the customer board mount process where surface mount parts are subjected to a high temperature for a short duration. These tests detect mold compound delamination from the die and leadframe which can result in reliability failures. The dominant failure mechanism is corrosion, but other

Reliability Information

stress-related problems could also occur like fractured wirebonds, passivation cracks, smeared metal on die, etc.

The conditions typically used are $245^{\circ} \mathrm{C}$ for IR reflow and $260^{\circ} \mathrm{C}$ for solder immersion. For small pitch packages, a $260^{\circ} \mathrm{C}$ oil immersion is substituted for the $260^{\circ} \mathrm{C}$ solder to avoid solder bridging of the leads.

Physical Dimensions (MIL-STD-883D-2016)

The purpose of this test is to verify the external dimensions of the device are in accordance with the case outline specification. This test is typically performed per MIL-STD883D Method 2016.

Solderability (MIL-STD-883D-2003)

The purpose of this test is to determine the solderability of all terminations which are normally joined by a soldering
operation. This test is typically performed per MIL-STD883D Method 2003. The test verifies the ability of these terminations to be wetted or coated by solder, and to predict suitable fillet when dip soldered. An accelerated aging test is included in this method which simulates a minimum of six months natural aging under a combination of various storage conditions that have a deleterious effect on the solderability.

Marking Permanency (Motorola Std)

The purpose of this test is to verify the device markings will not become illegible when subjected to solvents, and the solvents will not cause any mechanical, electrical, damage or deterioration, of the materials or finishes. This test is typically performed per Motorola standard.

Process Qualification Information

PROCESS QUALIFICATION SUMMARY

The H4C "plus" 75\% CMOS (double layer metal) process qualification consisted of intrinsic reliability testing (Electromigration, Hot Carrier Injection, and Dielectric Breakdown) and extrinsic reliability testing (High Temperature Bias, Temperature Cycling, and Pressure Temperature Humidity).

The intrinsic reliability measures indicate no significant degradation over the lifetime of the device. Extrinsic reliability for the process resulted in zero failures.

INTRINSIC RELIABILITY RESULTS

DEVICE QUALIFICATION

Electromigration

Electromigration evaluation of MOS 6 metals used in the H4C "plus" 75\% CMOS (double layer metal) process revealed an acceptable metallization process for a minimum lifetime of 10 years at $100^{\circ} \mathrm{C}$ with $\leq .01 \%$ cumulative failures.

Hot Carrier Injection

HCl test (low temperature electrical stress) results indicate less than 10% change in transconductance over the lifetime of the transistor.

Dielectric Breakdown

The current conduction and QBD (charge breakdown) data taken in MOS 6 was used to calculate an intrinsic gate oxide lifetime of 1364 years. This estimated lifetime greatly exceeds the expected lifetime of the device.

EXTRINSIC RELIABILITY RESULTS/DATA PROCESS QUALIFICATION

The reliability testing consisted of High Temperature Bias $\left(145^{\circ} \mathrm{C}, 3.6 \mathrm{~V}\right.$ bias), Temperature Cycling $\left(-65^{\circ} \mathrm{C}\right.$ to $\left.150^{\circ} \mathrm{C}\right)$, and PTH ($121^{\circ} \mathrm{C}, 15 \mathrm{PSIG}, \& 100 \% \mathrm{RH}$). Samples from three wafer lots were tested.

One wafer lot was a metal/dielectric split lot. The metal and dielectric layers were run at the maximum and minimum thickness specifications in order to account for step coverage extremes.

The second wafer lot was a Vt/Leff split lot. The Vt and Leff were run at minimum and maximum specifications in order to account for extremes in leakage, speed, and translation window.

The remaining lot was a nominal lot. Zero process related rejects occurred after 504 hours of op-life, 600 temp cycles, and 240 hours of PTH. (The device failure in time (FIT) was calculated based on HTB results at 14.4; stress temp = $145^{\circ} \mathrm{C}$; activation energy $=0.7 \mathrm{eV}$).

The H4C "plus" 75\% CMOS (double layer metal) process in MOS 6 was qualified and approved in light of the results of the above intrinsic and extrinsic reliability results.

Package Qualification

MC74LCX family is being offered in SOIC, SSOP and TSSOP packaging. As the TSSOP package is a newer technology, a qualification summary has been included in this report. All reliability tests have passed successfully, including preconditioning tests used to simulate customer board mount processes (see below). Furthermore, based on reliability results, drypack is not required for this package type.

Package Qualification Summary

TSSOP leads	Op Life	Temperature Cycle	Thermal Shock	THB	Surface Mount Preconditioning	Solderablity	Marking Permanency	Physical Dimension
14	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS
16	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS
20	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS

Summary Package Information

- Package Material
- Leadframe Material
- Plating
- Die Attach Epoxy

Hitachi CEL 9200N
Copper
80/20 tin/lead solder plate
Sumitomo CRM 1033B

- Wire Bond Material 1.0 mil gold
- Wire Bond Method Thermosonic Ball
- Theta JA (20 Id TSSOP) 140 Deg C/W
- 14-116-Lead Flag Size 83×93 mils
- 20-Lead Flag Size

Reliability Audit Program Summary

The Motorola Logic Reliability Audit Program (RAP) is designed to monitor the ability of Logic products to exceed minimum acceptable reliability standards. Mesa Reliability Engineering has overall responsibility for RAP, including updating requirements, interpreting results, offshore administration, and monthly reporting.

Testing

RAP is a system of mechanical, environmental, and electrical tests performed periodically on randomly selected samples of standard products. Each sample receives minimum standard tests covering all wafer fab sites, assembly sites, and packages. Within each family, devices are chosen to represent the range of die sizes and functional complexity.

In addition to standard tests, each package type also receives special pre-conditioning tests, the frequency of which is intended to sample every package type and assembly site once per month.

Reliability tests are run at three sites: Mesa, Arizona (LICD); Manila, Philippines (MPI); and Taipei, Taiwan (METL). Following mechanical and electrical testing, devices receive standard static and functional electrical tests using conditions and limits per applicable device specifications.

Failures

All failed devices require recorded data. Failure data and failure verification information accompany all rejects to a product analysis lab where root cause failure analysis is performed on all occurrences observed at that site. All information regarding failed units is logged into a tracking database.

A review is called if any sample has a failure. The findings are analyzed relative to past performance to determine if customers are at risk for abnormally high failure rates. Customer notification may then be required and, if needed, is prepared and distributed. Following the completion of testing and data review, the local reliability engineering group enters all data into the Reliability Audit Program Database.

Thermal Considerations

Prepared by: Lance K. Packer

LCX Application Engineering

Reliability of Plastic Packages

Although today's plastic packages are as reliable as ceramic packages under most environmental conditions, as the junction temperature increases a failure mode unique to plastic packages becomes a significant factor in the long term reliability of the device.

Modern plastic package assembly utilizes gold wire bonded to aluminum bonding pads throughout the electronics industry. As the temperature of the silicon (junction temperature) increases, an intermetallic compound forms between the gold and aluminum interface. This intermetallic formation results in a significant increase in the impedance of the wire bond and can lead to performance failure of the affected pin. With this relationship between intermetallic formation and junction temperature established, it is incumbent on the designer to ensure that the junction temperature for which a device will operate is consistent with the long term reliability goals of the system.

Reliability studies were performed at elevated ambient temperatures $\left(125^{\circ} \mathrm{C}\right)$ from which an Arrhenius Equation (Eq 1), relating junction temperature to bond failure, was established. The application of this equation yields the values in Table 1. This table relates the junction temperature of a device in a plastic package to the continuous operating time before 0.1% bond failure (1 failure per 1000 bonds).

$$
\begin{equation*}
T=6.376 \times 10^{-9} e\left[\frac{11554.267}{273.15+T_{J}}\right] \tag{Eq1}
\end{equation*}
$$

Where:
$T=$ Time to 0.1% bond failure
Table 1. Tj vs Time to 0.1% Bond Failure

Junction Temp. $\left({ }^{\circ} \mathrm{C}\right.$)	Time (hours)	Time (yrs.)
80	$1,032,200$	117.8
90	419,300	47.9
100	178,700	20.4
110	79,600	9.1
120	37,000	4.2
130	17,800	2.0
140	8,900	1.0

Thermal Management

As in any system, proper thermal management is essential to establish the appropriate trade-off between performance, density, reliability and cost. In particular, the designer should be aware of the reliability implication of continuously operating semiconductor devices at high junction temperatures.

The increasing popularity of surface mount devices (SMD) is putting a greater emphasis on the need for better thermal management of a system. This is due to the fact that SMD
packages generally require less board space than their through hole counterparts so that designs incorporating SMD technologies have a higher thermal density. To optimize the thermal management of a system it is imperative that the user understand all of the variables which contribute to the junction temperature of the device.

The variables involved in determining the junction temperature of a device are both supplier and user defined. The supplier, through lead frame design, mold compounds, die size and die attach, can positively impact the thermal resistance and the junction temperature of a device. Motorola continually experiments with new package designs and assembly techniques in an attempt to further enhance the thermal performance of its products.

It can be argued that the user has the greatest control of the variables which commonly impact the thermal performance of a device. Depending on the environment in which an IC is placed, the user could control over 75% of the current that flows through the device. Ambient temperature, air flow and related cooling techniques are the obvious user controlled variables, however, PCB substrate material, layout density, size of the air-gap between the board and the package, amount of exposed copper interconnect, use of thermally-conductive epoxies and number of boards in a box and output loading can all have significant impacts on the thermal performance of a system.

PCB substrates all have different thermal characteristics, these characteristics should be considered when exploring the PCB alternatives. The user should also account for the different power dissipations of the different devices in his system and space them on the PCB accordingly. In this way, the heat load is spread across a larger area and "hot spots" do not appear in the layout. Copper interconnect traces act as heat radiators, therefore, significant thermal dissipation can be achieved through the addition of interconnect traces on the top layer of the board. Finally, the use of thermally conductive epoxies can accelerate the transfer of heat from the device to the PCB where it can more easily be passed to the ambient.

The advent of SMD packaging and the industry push towards smaller, denser designs makes it incumbent on the designer to provide for the removal of thermal energy from the system. Users should be aware that they control many of the variables which impact the junction temperatures and, thus, to some extent, the long term reliability of their designs.

Calculating Junction Temperature

The following equation can be used to estimate the junction temperature of a device in a given environment:

$$
T_{J}=T_{A}+P_{D} \Theta_{J A}
$$

where:
$\mathrm{T}_{\mathrm{J}}=$ Junction Temperature
$T_{A}=$ Ambient Temperature
PD = Power Dissipation
$\Theta_{J A}=$ Avg Pkg Thermal Resistance (Junction Ambient)

$$
\begin{gathered}
P_{D}=v_{C C}\left[C_{P} v_{C C} \sum_{i=1}^{s} F_{O U T_{i}}\right]+v_{C C}\left[\Delta_{C C}{ }^{n}\right] \\
+\left(v_{C C}-v_{O H}\right)\left[\left(v_{O H}-v_{O L}\right) \sum_{i=1}^{s} C_{L_{i}} F_{O U T_{i}}+\sum_{i=1}^{n} \frac{v_{O H}}{R_{D_{i}}}\right] \\
+\left(v_{O L}\right)\left[\left(v_{O H}-v_{O L}\right) \sum_{i=1}^{s} C_{L_{i}} F_{O U T}+\sum_{i=1}^{1} \frac{\left(v_{C C}-v_{O L}\right)}{R_{U_{i}}}\right]
\end{gathered}
$$

Power Dissipation Equation

The power dissipation equation is made up of five major factors controlled by the user which contribute to increased power dissipation:

1 Frequency of operation (output switching frequency)
2 Input voltage levels
3 Output loading (capacitive and resistive)
4 VCc level
5 Duty cycle
Each of these five factors are addressed in the estimating equation except duty cycle. Duty cycle can be addressed by "weighting" the power dissipation equation terms appropriately.

The first current term is ICCD, with the device unloaded. It is caused by the internal switching of the device. Static ICC is so small for LCX, that when estimating power dissipation, it is ignored.

$$
\mathrm{C}_{\mathrm{P}} \mathrm{~V}_{\mathrm{CC}} \sum_{\mathrm{i}=1}^{\mathrm{s}} \mathrm{~F}_{\text {out }_{i}}
$$

This term represents the ICC current with absolutely no load. This measurement is taken without the output pins connected to the board. The CP_{P} for a device is calculated by:

$$
C_{P}=\frac{I_{C C}(@ 50 \mathrm{MHz})-\mathrm{I}_{\mathrm{CC}}(@ 1 \mathrm{MHz})}{\mathrm{V}_{\mathrm{CC}}(49 \mathrm{MHz}) \mathrm{s}}
$$

" s " is the number of outputs switching. C_{P} may vary slightly from part to part within a product family.

The next term is from current due to holding the CMOS inputs at $\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$ rather than at the rail voltages. This term becomes insignificant as load and frequency increase.

$\Delta l \mathrm{cCn}$

${ }^{\Delta} \mathrm{I}_{\mathrm{CC}}$ is the through current when holding the input High of a device to $\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$. This value is typically $300 \mu \mathrm{~A}$ or less. " n " is the number of inputs held at this level.

The third term is current through the upper structure of the device. It is caused by the external capacitive load and the output frequency. If a capacitive load exists then this term can become very significant.

$$
\left(\mathrm{V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{OL}}\right) \sum_{i=1}^{s} \mathrm{C}_{\mathrm{L}_{\mathrm{i}}} \mathrm{FOUT}_{\mathrm{i}}
$$

$\mathrm{VOH}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{OL}}$ is the voltage swing of the output. C_{L} is the output load (this could vary from output to output). FOUT is the output frequency which can also vary from output to output.

The fourth term stems from current through the upper structure due to an external resistive load to ground.

As the output frequency increases, the measured current approaches that of static High outputs.

$$
\sum_{i=1}^{n} \frac{V_{O H}}{R_{D_{i}}}
$$

R_{D} is an external pull-down resistor. A different value load could be applied to each output.

The fifth current term is determined by the output capacitive load and the output frequency on the lower structure of the device. If this load exists than this term is also significant.

$$
\left(V_{\mathrm{OH}}-\mathrm{V}_{\mathrm{OL}}\right) \sum_{\mathrm{i}=1}^{s} \mathrm{C}_{\mathrm{L}_{\mathrm{i}}} \mathrm{FOUT}_{\mathrm{i}}
$$

All variables are the same as with the third term with the exception that this is current flowing through the lower structure of the IC. This current is not ICC, but rather current that is "sinked" from an external source.

The final term is due to an external load connected to V_{CC}. This term includes both switching and static Low outputs.

$$
\sum_{i=1}^{1} \frac{\left(v_{C C}-v_{O L}\right)}{R_{U_{i}}}
$$

As with term five, this is current that flows through the lower structure of the IC. This current too is not ICC.

Example of Thermal Calculations

Junction temperature can be estimated using the following equation:

$$
T_{J}=\left(\Theta_{J A} \times P_{D}\right)+T_{A}
$$

where:

$$
\begin{aligned}
& T_{J}=\text { Junction Temperature }\left({ }^{\circ} \mathrm{C}\right) \\
& \Theta_{J A}=\text { Thermal Resistance (Junction-to-Ambient) } \\
& P_{D}=\text { Power Dissipation at a } T_{J} \\
& T_{A}=\text { Ambient Temperature }\left({ }^{\circ} \mathrm{C}\right)
\end{aligned}
$$

Example of LCX TJ Calculation

1. Calculate Current Consumption:

For example, the LCX244's Cp is 25pF. Let VCC $=3 \mathrm{~V}$; operating temperature $=85^{\circ} \mathrm{C}$; FOUT $=50 \mathrm{MHz}$; for 4 outputs switching; hold 2 inputs LOW and 2 inputs HIGH (at VCC 0.6 V); $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} ; 500 \Omega$ pull-down; no pull-up.

1
2
$\left[25 \mathrm{pF} \times 3 \mathrm{~V} \sum_{i=1}^{4} 50 \mathrm{MHz}\right]+0.3 \mathrm{~mA}(2)$

$$
=15 \mathrm{~mA}+0.6 \mathrm{~mA}=15.6 \mathrm{~mA}
$$

These unloaded terms contribute only 10\% of the total ICC current.

$$
\begin{aligned}
& 3 \\
& (2.8 \mathrm{~V}-0.2 \mathrm{~V}) \sum_{i=1}^{4} 100 \mathrm{pF}(50 \mathrm{MHz})+\sum_{i=1}^{6} \frac{2.8 \mathrm{~V}}{500 \Omega} \\
& =52 \mathrm{~mA}+33.6 \mathrm{~mA}=85.6 \mathrm{~mA}
\end{aligned}
$$

In this example, terms three and four contribute over 55\% of the total ICC current. This part of ICC is entirely due to external loading.

5

6

$$
(2.8 \mathrm{~V}-0.2 \mathrm{~V}) \sum_{\mathrm{I}=1}^{4} 100 \mathrm{pF}(50 \mathrm{MHz})+\sum_{\mathrm{i}=1}^{6} \frac{3 \mathrm{~V}-0.2 \mathrm{~V}}{\infty}
$$

$$
=52 \mathrm{~mA}+0=52 \mathrm{~mA}
$$

These terms are not ICC currents, but rather currents "sinked" by the lower structure of the device. The total current from all terms is 153.2 mA .

2. Finding PD (V $\times 1$)

When calculating the total power dissipation of the device, the first two terms are multiplied by VCC, which in this example is

$$
3 \mathrm{~V}(15.6 \mathrm{~mA})=46.8 \mathrm{~mW}
$$

The third and fourth terms are multiplied by the voltage drop across the upper structure of the device, $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{OH}}$. This is approximately 0.2 V .

$$
0.2 \mathrm{~V}(85.6 \mathrm{~mA})=17.1 \mathrm{~mW}
$$

The fifth and sixth terms are multiplied by the voltage drop across the lower structure of the device, VOL.

$$
0.2 \mathrm{~V}(52 \mathrm{~mA})=10.4 \mathrm{~mW}
$$

The total estimated power dissipation of an LCX 244 with 4 outputs switching, at $85^{\circ} \mathrm{C}$, with $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$, with 2 outputs held static Low, and 2 inputs at 2.4 V with 100 pF capacitive loads, 500Ω pull-downs, and 50 MHz switching frequency is:
74.3 mW

3. OJA Value

The θ JA for a 20-pin TSSOP is approximately $140^{\circ} \mathrm{C} / \mathrm{W}$.

4. Final Calculations for T_{J} for the LCX244

$T_{J}=\left(P D \times \Theta_{J A}\right)+T_{A}=\left(0.0743 W \times 140^{\circ} \mathrm{C} / \mathrm{W}\right)+85^{\circ} \mathrm{C}=$ $95.4^{\circ} \mathrm{C}$. LCX runs cool - well below the point for reliability worries. Using the Arrhenius Equation (Eq 1 on page 187), the time to 0.1% bond failures is approximately 30 years.

System Considerations

The manner in which an IC package is mounted and positioned in its surrounding environment will have significant effects on operating junction temperatures. These conditions are under the control of the system designer and are worthy of serious consideration in PC board layout and system ventilation and airflow.

Forced-air cooling will significantly reduce Θ_{JA}. Air flow parallel to the long dimension of the package is generally a few percent more effective than air flow perpendicular to the long dimension of the package. In actual board layouts, other components can provide air flow blocking and flow turbulence, which may reflect the net reduction of Θ_{JA} of a specific component.

External heat sinks applied to an IC package can improve thermal resistance by increasing heat flow to the ambient environment. Heat sink performance will vary by size, material, design, and system air flow. Heat sinks can provide a substantial improvement.

Package mounting can affect thermal resistance. Surface mount packages dissipate significant amounts of heat through the leads. Improving heat flow from package leads to ambient will decrease thermal resistance.

- Metal (copper) traces on PC boards conduct heat away from the package and dissipate it to the ambient; thus the larger the trace area the lower the thermal resistance.
- Package stand-off has a small effect on $\Theta J A$. Boards with higher thermal conductivity (ceramic) may show the most pronounced benefit.
- The use of thermally conductive adhesive under SO packages can lower thermal resistance by providing a direct heat flow path from the package to board. Naturally high thermal conductivity board material and/or cool board temperatures amplify this effect.
- High thermal conductive board material will decrease thermal resistance. A change in board material from epoxy laminate to ceramic will help reduce thermal resistance.

Conclusion

Thermal management remains a major concern of producers and users of IC's. An increase in $\Theta_{J A}$ is the major trade-off one must accept for package miniaturization. When the user considers all of the variables that affect the IC junction temperature, he is then prepared to take maximum advantage of the tools, materials and data that are available.

References

1. "High Performance ECL Data - ECLinPS and ECLinPS Lite," Motorola, pp. 4-32.
2. "Thermal Considerations for Advanced Logic Families; AN241," Philips Semiconductors

Ordering Information

Device Nomenclature

Case Outlines

D SUFFIX

PLASTIC SOIC PACKAGE
CASE 751A-03
ISSUE F

D SUFFIX PLASTIC SOIC PACKAGE

CASE 751B-05
ISSUE J

MOTOROLA
 AUTHORIZED DISTRIBUTORS

UNITED STATES

ALABAMA	
Huntsville	
Arrow/Schweber Ele	(205)837-6
	(205)837-9209
Future Electronics	(205)830-2322
Hamilton Hallmark	(205)837-8700
Newark	(205)837-9091
Time Electronics	-800-789-TIME
Wyle Laboratories	(205)830-1119
ARIZONA	
Future Electronics	(602)731-4661
	(602)968-7140
Hamilton Hallmark	(602)437-1200
Wyle Laboratories	(602)437-2088
Tempe	
Arrow/Schweber Electronics	(602)431-0030
Newark	(602)966-6340
Time Electronics	1-800-789-TIME
CALIFORNIA	
Agoura Hills	
Belmont	
Richardson Electronics	(415)592-9225
Calabassas	
Arow/Schweber Electronics (818)880-9686	
Wyle Laboratories (818)880-9000	
Chatsworth	
Future Elecironics (818)865-0040	
Time Electronics	1-800-789-TIME
Costa Mesa	
Hamiton Hallmark (714)641-4100	
Culver Clty	
Hamition Hallmark (213)558-2000 Garden Grove	(213)558-2000
Garden Grove Newark \qquad (714-893-4909	
Irvine	
Arrow/Schweber Electronics ... (714)587-0404	
FAI (714)753-4778	
Future Electronics ${ }^{(714) 250-4141}$	
Wyle Laboratories Corporate	(714)753-9953
Wyle Laboratories (714)863-9953	
Los Angeles	
FAl (818)879-1234	
Wyle Laboratories	(818)880-9000
Mountain View	
Richardson Electronics (415)960-6900	
Palo Alto	
Riverside	
Newark.	
Rocklin	
Sacramento	
FAI (916)782-7882	
Newark (916)565-1760	
Wyle Laboratories (916)638-5282	
San Diego	
Arrow/Schweber Electronics ... (619)565-4800	
FAI (619)623-2888	
Future Electronics (619)625-2800	
Hamilton Hallmark (619)571-7540	
Newark (619)453-8211	
Wyle Laboratories	. (619)565-9171
San Jose	
Arrow/Schweber Electronics (408)441-9700	
Arrow/Schweber Electronics (408)428-6400	
FAI (408)434-0369	
Future Electronics (408)434-1122	
Santa Clara	
Wyle Laboratories	. (408)727-2500
Sunnyvale	
Hamitoon Hallmark	((408)435-3500
Time Electronics 1-800-789-Ti	

Thousand Oaks
Newark(805)449-1480
Torrance
Time Electronics 1-800-789-TIME
Tustin
Time Electronics 1-800-789-TIME
Woodland Hills
Hamilton Hallmark (818)594-0404
Richardson Electronics (615)594-5600

IDAHO Boise \qquad ILLINOIS Addison Wyle Laboratories (708)620-0969 Bensenville Hamilton Hallmark (708)860-7780 Chicago
FAl (708)843-0034
Newark Electronics Corp. (312)784-5100

Hotfman Estates
Future Electronics (708)882-1255
Itasca Arrow/Schweber Electronics ... (708)250-0500
LaFox Richardson Electronics (708)208-2401
Schaumburg
Newark (708)310-8980 Time Electronics 1-800-789-TIME
INDIANA
Indianapolis
Arrow/Schweber Electronics (317)299-2071 Hamilton Hallmark (317)575-3500 FAI . (317)469-0441 Future Electronics (317)469-0447 Newark (317)259-0085 Time Electronics 1-800-789-TIME
Ft. Wayne Newark (219)484-0766

IOWA

Cedar Raplds
Newark (319)393-3800

Time Electronics 1-800-789-TIME
KANSAS
Kansas Clty
FAI (913)381-6800
Lenexa
Arrow/Schweber Electronics (913)541-9542 Hamilton Hallmark (913)888-4747
Overland Park
Future Electronics (913)649-1531
Newark (913)677-0727

Time Electronics 1-800-789-TIME
MARYLAND
Baltimore
FAl............................ (410)312-0833
Columbia
Arow/Schweber Electronics (301)596-7800 Future Electronics (410)290-0600 Hamilton Hallmark (410)988-9800 Time Electronics 1-800-789-TIME Wyle Laboratories (410)312-4844
Hanover
Newark (410)712-6922
MASSACHUSETTS
Boston
Arrow/Schweber Electronics (617)271-9953 FAI (508)779-3111
Bolton
Future Corporate (508)779-3000
Burlington Wyle Laboratories (617) 271-9953
Norwe!
Richardson Electronics (617)871-5162
Peabody
Time Electronics 1-800-789-TIME Hamiltion Hallmark (508)532-3701
Woburn
Newark (617)935-8350
MICHIGAN
Detroit
FAI . (313)513-0015
Future Electronics (616)698-6800

AUTHORIZED DISTRIBUTORS - continued

UNITED STATES - continued

Grand Rapids Newark (616)954-6700	
Llvonia	
Arrow/Schweber Electronics	(313)462-2290
Future Electronics .	(313)261-5270
Hamilton Hallmark	(313)347-4020
Time Electronics	1-800-789-TIME
Troy	
	(810)583-2899
minNESOTA	
Bloomington Wyle Laboratorie	
Eden Prairie	
Arrow/Schweber Electronics	(612)941-5280
FAI (612)947-0909	
Future Electronics (612)944-2200	
Hamilton Hallmark (612)881-2600	
Time Electronics	1-800-789-TIME
Minneapolis	
Earth Clity	
Hamilton Hallmark	(314)291-5350
MISSOURI	
St. Louis	
Arrow/Schweber Electronics (314)567-6888	
Future Electronics (314)469-6805	
FAI (314)542-9922	
Newark (314)453-9400	
NEW JERSEY	
Cherry Hill	
Hamilton Hallmark	(609)424-0100
East Brunswick	
Newark	(908)937-6600
Fairfield	
FAI (201)331-1133	
Long Island\qquad (516)348-3700	
Marlton	
Future Electronics	(609)596-4080
Pinebrook	
Arrow/Schweber Electronics (201)227-7880	
Wyle Laboratories (201)882-8358	
Parsippany	
Future Electronics	(201)299-0400
Hamiton Hallmark (201)515-1641	
Wayne	
NEW MEXICO	
Albuquerque	
Alliance Electronics (505)292-3360	
Hamilton Hallmark	(505)828-1058
Newark (505)828-1878	
NEW YORK	
Bohemia	
Newark.	(516)567-4200
Hauppauge	
Arow/Schweber Electronics (516)231-1000	
Future Electronics (516)234-4000	
Hamilton Hallmark	. . (516)434-7400
Konkoma	
Hamilton Hallmark	.. (516)737-0600
Melville	
Wyle Laboratories	. (516)293-8446
Pittsford	
Newark	(716)381-4244
Rochester	
Arrow/schweber Electronics (716)427-0300Future Electronics (716)272-1120	
FAI (716)387-9600	
Hamiton Hallmark (716)475-9130Richardson Electronics (710)264-1100	
Time Electronics 1-800-789-TI	

Rockville Centre Richardson Electronics (516)872-4400	
Syracuse	
Future Electronics	(315)451-2371
Newark	(315)457-4873
Time Electronics	1-800-789-TIME
NORTH CAROLINA	
FAI..	(704)548-9503
Future Electronics	(704)455-9030
Richardson Electronics	(704)548-9042
Ralelgh	
Arrow/Schweber Electronics	(919)876-3132
FAI .	(919)876-0088
Future Electronics	(919)790-7111
Hamilton Hallmark	(919)872-0712
Newark	(919)781-7677
Time Electronics	1-800-789-TIME
OHIO	
Arrow/Schweber Electronics	(513)435-5563
Cleveland	
FAI.	(216)446-0061
Newark	(216)391-9330
Time Electronics	1-800-789-TIME
Columbus	
Newark (614)326-0352
Time Electronics	1-800-789-TIME
Dayton	
	. (513)427-6090
Future Electronics	. . (513)426-0090
Hamiton Hallmark	. (513)439-6735
Newark	((513)294-8980
Time Electronics	1-800-789-TIME
Mayfleld Heights	
Future Electronics	(216)449-6996
Solon	
Arrow/Schweber Electronics	.. (216)248-3990
Hamilton Hallmark (216)498-1100	
Worthington	
Hamilton Hallmark	8-3313
OKLAHOMA	
Tulsa FAI (918)492-1500	
Hamilton Hallmark (918)254-6110	
Newark	(918)252-5070
OREGON	
Beaverton	
Arrow/Almac Electronics CO	.. (503)629-8090
Future Electronics (503)645-9454	
Hamilton Hallmark (503)528-6200	
Wyle Laboratories	. . (503)643-7900
Portland	
FAl (503)297-5020
Newark (503)297-1984	(503)297-1984
Time Electronics	1-800-789-TIME
PENNSYLVANIA	
Ft. Washington	
Mt. Laurel	
Wyle Laboratories	(609)439-9110
Montgomeryville	
Richardson Electronics	(215)628-0805
Philadelphla	
Wyle Laboratories (609)439-9110	
Pittsburgh	
Newark \qquad (412)788-4790	
Time Electronics 1 1-800-789-TIME	
TENNESSEE	
Franklin	
Richardson Electronics	(615)791-4900
Knoxville	
	. (615)588-6493

TEXAS

Austin
Arrow/Schweber Electronics (512)835-4180
Future Electronics (512)502-0991
FAI (512) (346-6426
Hamilton Hallmark (512)258-8818
Newark (512)338-0287
Time Electronics 1-800-789-TIME
Wyle Laboratories (512) 345 -8853
Carollton
Arrow/Schweber Electronics (214)380-6464
Dallas
Fal (214)231-7195
Future Electronics (214)437-2437
Hamilton Hallmark, (214)553-4300
Newark (214)458-2528
Richardson Electronics (214)239-3680
Time Electronics 1-800-789-TIME
Wyle Laboratories (214)235-9953
El Paso
FAI....
Allied Electronics (817)336-5401
Houston
Arow/Schweber Electronics (713)530-4700
FAI (713)952-7088
Future Electronics (713)785-1155
Hamilton Hallmark (713)781-6100
Newark (713)894-9334
Time Electronics 1-800-789-TIME
Wyle Laboratories (713)879-9953
San Antonio \ldots FAl (210)738-3330

UTAH

Salt Lake City
Arrow/Schweber Electronics (801)973-6913
FAI (801)467-9696
Future Electronics (801)467-4448
Hamilton Hallmark (801)266-2022
Newark (801)261-5660
Wyle Laboratories (801)974-9953
West Valley City

Wyle Laboratories (801)974-9953
WASHINGTON
Bellevue
Almac Electronics Corp. (206)643-9992
Newark (206)641-9800
Richardson Electronics (206)646-7224
Bothell
Future Electronics (206)489-3400
Redmond
Hamilton Hallmark (206)881-6697
Time Electronics 1-800-789-TIME
Wyle Laboratories (206)881-1150
Seattle
FAI (206)485-6616
Wyle Laboratories. (206)881-1150
Spokane
Arrow/Almac Electronics Corp. .. (509)924-9500
WISCONSIN
Brookfield
Arrow/Schweber Electronics (414)792-0150
Future Electronics (414)879-0244
Milwaukee \quad FAI (414)792-9778
Time Electronics 1-800-789-TIME
New Berlin
Hamilton Hallmark (414)780-7200
Wauwatosa
Newark (414)453-9100
Waukesha
Wyle Laboratories (414)879-0434

AUTHORIZED DISTRIBUTORS - continued

CANADA	
ALbERTA	
All Provinces - Newark	(800)463-9275
Calgary	
Electro Sonic Inc. ..	(403)255-9550
FAI	(403)291-5333
BRITISH COLUMBIA	
Future Electronics	(403)250-5550
Hamilton/Hallmark	(800)663-5500
Edmonton	
FAI	(403)438-5888
Future Electronics	(403)438-2858
Hamilton/Hallmark	(800)663-5500
Saskatchewan	
Hamilton/Hallmark	(800)663-5500
Vancouver	
Arrow Electronics	(604)421-2333
Electro Sonic Inc.	(604)273-2911
	(604)654-1050
Future Electronics	(604)294-1166
Hamiltor/Hallmark	(604)420-4101
MANITOBA	
Winnipeg	
Electro Sonic Inc.	(204)783-3105
FAI	(204)786-3075
Future Electronics	(204)944-1446
Hamilton/Hallmark	(800)663-5500
ONTARIO	
Ottawa	
Arrow Electronics	(613)226-6903
Electro Sonic Inc.	(613$) 728-8333$
FAI......	(613)820-8244
Future Electronics	(613)820-8313
Hamilton/Hallmark	(613)226-1700
Toronto	
Arrow Electronics	(905)670-7769
Electro Sonic Inc.	. (416)494-1666
FAI	(905)612-9888
Future Electronics	(905)612-9200
Hamilton Hallmark	. (905)564-6060
Newark	(519)685-4280
	(905)670-2888
	(800)463-9275
Richardson Electronics	(905)795-6300
QUEBEC	
Montreal	
Arrow Electronics	(514)421-7411
FAI	(514)694-8157
Future Electronics	(514)694-7710
Hamiton Hallmark	(514)335-1000
Richardson Electronics	(514)748-1770
Quebec City	
FAI (418)682-5775
Future Electronics .	. (418)877-6666

AUSTRALIA
Veltek Australia Pty Ltd (61) 3 808-7511 VSI Electronics (NZ) Ltd (64)9 579-6603 VSI Electronics (Australia) (61)2 878-1299

AUSTRIA

EBV Austria (43) 2228941774
Elbatex GmbH (43) 222863211
Spoerle Austria (43) 131872700

BELGIUM

Diode Spoerle (32) 27254660
EBV Belgium (32) 27160010

CHINA

Advanced Electronics Ltd. (852)2305-3633
China El. App. Corp. Xiamen Co. (86)592 513-2489
Nanco Electronics Supply Ltd. .. (852) $2333-5121$
Qing Cheng Enterprises Ltd. .. (852) 2 493-4202
WKK-China (852)2 357-8888

DENMARK

Avnet Nortec ASS (45) 44880800
EBV Denmark
(45) 39690511

FINLAND
Arrow Field OY (35) 80777571
Avnet Nortec OY (35) 80613181

FRANCE

Arrow Electronique (33) 149784978
Avnet Components (33) 149652500
EBV France (33) 164688600
Future Electronics (33)1 69821111
Newark . (33) 1-30954060
SEI/Scaib...................... (33) 169198900

GERMANY

Avnet E2000
EBV Germany
(49) 894511001

Future Electronics GmbH
Jermyn GmbH (49) 6431-5080
Newark . (49) 2154-70011
Sasco GmbH (49) 89-46110
Spoerle Electronic (49) 6103-304-0
HOLLAND
EBV Holland (31) 346562353
Diode Spoerle BV
(31) 340291234

HONG KONG

Nanshing Clr. \& Chem. Co. Ltd . (852)2 333-5121 Wong's Kong King Semi. Ltd. . . (852)2 357-8888 INDIA
Canyon Products Ltd
(91) 755-2583

ITALY

Avnet Adelsy SpA (39) 238103100
EBV Italy . (39) 2660961
Silverstar SpA (39) 2661251
JAPAN
AMSC Co., Ltd. 81-422-54-6800
Marubun Corporation 81-3-3639-8951
OMRON Corporation 81-3-3779-9053
Fuji Electronics Co., Ltd. 81-3-3814-1411
Tokyo Electron Ltd. 81-3-5561-7254
Nippon Motorola Micro Elec. 81-3-3280-7300

KOREA

Lite-On Korea Ltd.	(82)2858-3853
Nasco Co. Ltd. . .	(82)23772-6800
Jung Kwang Sa	(82)2278-5333
NORWAY	
Avnet Nortec A/S Norway	(47) 66646210
Arrow Tahonic A/S (47)2237840

SINGAPORE

Alexan Commercial (63)2241-9493 or 9491 GEIC (65) 298-7633 P.T. Ometraco (62)2230-7032 Uraco Impex Asia Pte Ltd. (65) 545-7811 Shapiphat Ltd. . . . (66)2222-9937 or 2224-6767 Strong Pte. Ltd (65) 276-3996

SPAIN

Amitron Arrow (34) 13043040
EBV Spain (34) 93588608
Selco S.A. (34) 16371011

SWEDEN

Avnet Nortec AB (48) 86291400
Arrow-Th:s (48) 8362970

SWITZERLAND

EBV Switzerland............... (41) 17456161
Elbatex AG (41) 56275165
Spoerle (41) 18746262
TAIWAN
Mercuries \& Assoc. Ltd (886)2 503-1111
Solomon Technology Corp. (886)2788-8989 Strong Electronics Co. Ltd. (886)2 917-9917

UNITED KINGDOM

Arrow Electronics (UK) Ltd (44) 234270027
Avnet/Access (44) 462480888
Future Electronics Ltd. (44) 753687000
Macro Marketing Ltd. (44) 628604383
Newark.......................(44)420 543333

MOTOROLA

SALES OFFICES

UNITED STATES	
ALABAMA, Huntsville	(205)464-6800
ALASKA	(800)635-8291
ARIZONA, Tempe	(602)302-8056
CALIFORNIA, Calabasas	(818)878-6800
CALIFORNIA, Los Angeles	(818)878-6800
CALIFORNIA, İvine	(714)753-7360
CALIFORNIA, San Diego	(619)541-2163
CALIFORNIA, Sunnyvale	(408)749-0510
COLORADO, Colorado Springs	(719)599-7497
COLORADO, Denver	(303)337-3434
CONNECTICUT, Wallingford	(203)949-4100
FLORIDA, Maitland	(407)628-2636
FLORIDA, Pompano Beach Ft. Lauderdale \qquad	(305)351-6040
FLORIDA, Clearwater	(813)538-7750
GEORGIA, Atlanta	(404)729-7100
IDAHO, Boise	(208)323-9413
ILLINOIS, Chicago/	
Schaumburg	(708)413-2500
INDIANA, Fort Wayne	(219)436-5818
INDIANA, Indianapolis	(317)571-0400
INDIANA, Kokomo	(317)455-5100
IOWA, Cedar Rapids	(319)378-0383
KANSAS, Kansas Cityl Mission \qquad	(913)451-8555
MARYLAND, Columbia	(410)381-1570
MASSACHUSETTS, Marlborough	(508)481-8100
MASSACHUSETTS, Woburn	(617)932-9700
MICHIGAN, Detroit	(810)347-6800
Literature	(800)392-2016
MINNESOTA, Minnetonka	(612)932-1500
MISSOURI, St. Louis	(314)275-7380
NEW JERSEY, Fairfield	(201)808-2400
NEW YORK, Fairport	(716)425-4000
NEW YORK, Hauppauge	(516)361-7000
NEW YORK, Fishkill .	(914)896-0514
NORTH CAROLINA, Raleigh \qquad	(919)870-4355
OHIO, Cleveland .	(216)349-3100
OHIO, Columbus/Worthingt	(614)431-8492
OHIO, Dayton	(513)438-6800
OKLAHOMA, Tulsa	(918)459-4565
OREGON, Portland	(503)641-3681
PENNSYLVANIA, Colmar	(215)997-1020
Philadelphia/Horsham	(215)957-4100
TENNESSEE, Knoxville	(615)584-4841
TEXAS, Austin	(512)502-2100
TEXAS, Houston	(713)783-6400
TEXAS, Plano	(214)516-5100
VIRGINIA, Richmond	(804)285-2100
UTAH, CSI Inc.	(801)572-4010

WASHINGTON, Bellevue ... (206)454-4160	
WISCONSIN, Milwaukee/	
Brookfield	(414)792-0122
Field Applications Engineering Available Through All Sales Offices	
CANADA	
BRITISH COLUMBIA,	
ONTARIO, Toronto (416)497-8181	
ONTARIO, Ottawa (613)226-3491	
QUEBEC, Montreal (514)333-3300	
AUSTRALIA	
BRAZIL	
Sao Paulo	55(11)815-4200
CHINA	
Beijing	86-505-2180
FINLAND	
Helsinki $\ldots \ldots$. 358-0-351 61191car phone $. \ldots . . .$. 358(49)211501	
FRANCE	
Paris	33134635900
GERMANY	
Langenhagen/Hannover . 49(511)786880	
Munich 4989 92103-0	
Nuremberg 49911 96-3190	
Sindelfingen 49703179710	
Wiesbaden 49611973050	
HONG KONG	
Kwai Fong 852-6106888	
Tai Po 852-6668333	
INDIA	
Bangalore 91-80-5594754	
ISRAEL	
Herzlia 972-9-590222	
ITALY	
Milan 3 39(2)82201	
JAPAN	
Fukuoka 81-92-725-7583	
Gotanda 81-3-5487-8311	
Nagoya 81-52-232-3500	
Osaka 81-6-305-1802	
Sendai 81-22-268-4333	
Takamatsu 81-878-37-9972	
Tokyo 81-3-3440-3311	
KOREA	
Pusan 82(51)4635-035	
Seoul 82(2)554-5118	

MALAYSIA

Penang 60(4)374514
MEXICO
Mexico City 52(5)282-0230
Guadalajara 52(36)21-8977
Marketing 52(36)21-2023
Customer Service 52(36)669-9160
NETHERLANDS
Best(31)4998 61211
PUERTO RICOSan Juan(809)793-2170
SINGAPORE
SPAIN
Madrid 34(1)457-8204
or 34(1)457-8254
SWEDEN
Solna 46(8)734-8800
SWITZERLAND
Geneva 41(22)799 1111
Zurich 41(1)730-4074
TAIWAN
Taipei 886(2)717-7089
THAILAND
Bangkok66(2)254-4910
UNITED KINDOMAylesbury441 (296)395-252
FULL LINE REPRESENTATIVES
CALIFORNIA, Loomis
Galena Technology Group (916)652-0268
NEVADA, Reno
Galena Tech. Group (702)746-0642
NEW MEXICO, AlbuquerqueUTAH, Salt Lake CityUtah Comp. Sales, Inc.(801)561-5099
WASHINGTON, SpokaneDoug Kenley(509)924-2322
HYBRID/MCM COMPONENT SUPPLIERS
Chip Supply (407)298-7100
Elmo Semiconductor (818)768-7400
Minco Technology Labs Inc. . (512)834-2022
Semi Dice Inc. (310)594-4631

(A) MOTOROLA

How to reach us:

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, Toshikatsu Otsuki, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-3521-8315

HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

[^0]: This document contains information on a product under development. Motorola reserves the right to

[^1]: This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

[^2]: This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

[^3]: 1. These values of V_{I} are used to test DC electrical characteristics only. Functional test should use $\mathrm{V}_{\mathrm{IH}} \geq 2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}} \leq 0.5 \mathrm{~V}$.
[^4]: This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

[^5]: This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

[^6]: This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

[^7]: This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

[^8]: This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

[^9]: 1. These values of V_{I} are used to test DC electrical characteristics only. Functional test should use $\mathrm{V}_{\mathrm{IH}} \geq 2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}} \leq 0.5 \mathrm{~V}$.
[^10]: This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

[^11]: 1. These values of V_{1} are used to test DC electrical characteristics only. Functional test should use $\mathrm{V}_{\mathrm{IH}} \geq 2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}} \leq 0.5 \mathrm{~V}$.
[^12]: This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

[^13]: This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

