(A) MOTOROLA

DL160/D REV 0

Display Products
 Device Data

General Information

Liquid Crystal Display Drivers

Monitor On-Screen Display Devices

Application Notes and Technical Articles

Display Products
 Device Data

Motorola offers a broad range of semiconductor communications products for a wide variety of applications. The Motorola Display Products Device Data Book contains specifications on these parts as well as information on Evaluation Kits, a selection of Application Notes and Technical Literature, a Glossary of related terms, Handling and Design Guidelines, and Reliability and Quality information. A Technical Selection Guide is also included to help you select the appropriate part for your application.

New Motorola display products devices are being introduced continually. For the latest releases, additional technical information, and pricing, please contact your nearest Motorola Semiconductor Sales Office or authorized distributor. A complete listing of sales offices and authorized distributors is included at the back of this book.

Abstract

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (4) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

DATA CLASSIFICATION

Product Preview

This heading on a data sheet indicates that the device is in the formative stages or under development at the time of print of this data book. Please check with Motorola for current status. The disclaimer at the bottom of the first page reads: "This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice."

Advance Information

This heading on a data sheet indicates that the device is in sampling, preproduction, or first production stages at the time of printing of this data book. Please check with Motorola for updated information. The disclaimer at the bottom of the first page reads: "This document contains information on a new product. Specifications and information herein are subject to change without notice."

Fully Released

A fully released data sheet contains neither a classification heading nor a disclaimer at the bottom of the first page. This document contains information on a product in full production. Guaranteed limits will not be changed without written notice to your local Motorola Semiconductor Sales Office.

Technical Summary

The Technical Summary is an abridged version of the complete device data sheet that contains the key technical information required to determine the correct device for a specific application. Complete device data sheets for these more complex devices are available from your Motorola Semiconductor Sales Office or authorized distributor.

All brand names and product names appearing in this document are registered trademarks of their respective holders.

3 Ways To Receive Motorola Semiconductor Technical Information

Literature Distribution Centers

Printed literature can be obtained from the Literature Distribution Centers upon request. For those items that incur a cost, the U.S. Literature Distribution Center will accept Master Card and Visa.

How to reach us:
USA/EUROPE: Motorola Literature Distribution; P.O. Box 5405; Denver, Colorado 80217
Phone: 1-800-441-2447 or 303-675-2140
JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, Toshikatsu Otsuki, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan Phone: 03-3521-8315

HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong
Phone: 852-26629298

Mfax ${ }^{\text {TM }}$ - Touch-Tone Fax

Mfax offers access to over 30,000 Motorola documents for faxing to customers worldwide. With menus and voice instruction, customers can request the documents needed, using their own touch-tone telephones from any location, 7 days a week and 24 hours a day. A number of features are offered within the Mfax system - including product data sheets, application notes, engineering bulletins, article reprints, selector guides, Literature Order Forms, Technical Training Information, and HOT DOCS (4-digit code identifiers for currently referenced promotional or advertising material).

A fax of complete, easy-to-use instructions can be obtained with a first-time phone call into the system, entering your FAX number and then pressing 1.

How to reach us:
Mfax: RMFAX0@email.sps.mot.com
TOUCH-TONE: 602-244-6609 - US \& Canada ONLY: 800-774-1848
or via the Internet at http://www.mot-sps.com/home/fax_rqst.html

Motorola SPS World Marketing Internet Server

Motorola SPS's Electronic Data Delivery organization has set up a World Wide Web Server to deliver Motorola SPS's technical data to the global Internet community. Technical data such as the complete Master Selection Guide along with the OEM North American price book are available on the Internet server with full search capabilities. Other data on the server includes abstracts of data books, application notes, selector guides, and textbooks. All have easy text search capability. Ordering literature from the Literature Distribution Center is available on-line. Other features of Motorola SPS's Internet server include the availability of a searchable press release database, technical training information with on-line registration capabilities, complete on-line access to the Mfax system for ordering faxes, an on-line technical support form to send technical questions . and receive answers through e-mail, information on product groups, full search capabilities of device models, a listing of the domestic and international sales offices, and direct links to other Motorola world wide web servers. For more information on Motorola SPS's internet server you can request BR1307/D from Mfax or LDC.

How to reach us:
After accessing the Internet, use the following URL:
http://www.mot.com/SPS

TABLE OF CONTENTS

Chapter 1 - Selection Guide
LCD Driver Product Summary 1-3
LCD Driver Technical Selection Guide 1-5
MC14153X Series Comparison Table 1-7
Monitor On-Screen Device Technical Selection Guide 1-8
Part Number Ordering Information 1-9
Chapter 2 - General Information
Reliability and Quality Assurance. 2-3
TAB Package For LCD Driver 2-16
Final Test for TAB Package 2-27
Manufacturing Flow 2-29
Chapter 3 - Liquid Crystal Display Drivers Data Sheets
Segmented LCD Driver for Low MUX Application MC14LC5003/4 128 Segment LCD Driver, 4 MUX 3-3
LCD Driver for Databank, Organizer, PDA
MC141511A Dragonkat 1+ Slave Driver, 32/41 MUX 3-19
MC141512/5 Dragonkat 2 Backplane Driver, 146 MUX 3-36
MC141514 Dragonkat 2 Segment Driver, 146 MUX 3-51
MC141516 Dragonkat 2 Backplane Driver, 64 MUX 3-69
MC141518 Dragonkat 2 Segment Driver, 64 MUX 3-80
MC141519 Dragonkat 2 Segment Driver, 80 MUX 3-96
LCD Driver for TFT LCD TV, Projector
MC141522 TFT-LCD Gate (Row) Driver 3-110
MC141524 TFT-LCD Source (Column) Driver 3-118
Integrated LCD Driver for Handheld Communication Devices
MC141531 120×17 LCD Segment/Common Driver 3-139
MC141532/3 120×33 LCD Segment/Common Driver 3-164
MC141535 161×17 LCD Segment/Common Driver 3-193
MC141537 120×16 LCD Segment/Common Driver 3-219
MC141539 120×32 LCD Segment/Common Driver 3-245
MC141800A 128×65 LCD Segment/Common Driver 3-277
LCD Driver for PDA, Palm-Top
MC141562 LCD Common Driver, 300 MUX 3-309
MC141563 LCD Segment Driver, 300 MUX 3-320
Chapter 4 - Monitor On-Screen Display Devices
MC141541P Enhanced Monitor On-Screen Display 4-3
MC141548P Super Monitor On-Screen Display - 24 4-18
MC141549P Super Monitor On-Screen Display - 16 4-39
MC141546P2 Advanced Monitor On-Screen Display - 24 4-59
MC141547P2 Advanced Monitor On-Screen Display - 16 4-76
MC141542P2 Graphic Monitor On-Screen Display - 24 4-93
MC141545P2 Graphic Monitor On-Screen Display - 16 4-114
Chapter 5 - Evaluation Kits
MC141511EVK1/2 Evaluation Kit with 128/256 x 82 LCD 5-3
MC141512EVK Evaluation Kit with 320×146 LCD 5-5
MC141518EVK Evaluation Kit with 240×64 LCD 5-7
MC141537EVK Evaluation Kit with 120×16 LCD 5-13
MC141539EVK Evaluation Kit with 120×32 LCD 5-15
MC141563EVK Evaluation Kit with 320×200 LCD 5-17
Chapter 6 - Application Notes and Technical Articles
LCD Driver for Mobile Applications 6-3
Slim TAB Package Design for Flat Panel Display Applications 6-7
Application of MC14153X Integrated LCD Segment / Common Driver. 6-14
Driving LCDs with M6805 Microprocessors 6-17
MC68HC05L10 An Enhanced Version of L9 for Handheld Equipment Applications 6-33
Using Dragonkat II LCD Chip-set in Hand-Writing Applications 6-84
Using MC141562, MC141563 LCD Driver with MC68328 DragonBall™ in PDA Applications 6-103
MC68328 DragonBall ${ }^{\text {TM }}$ Product Brief 6-108
Effects of Bond Temperature and Pressure on Microstructures of TAB ILB with Thin Tape Metallization 6-114
Testing LCD Drivers in TAB Package 6-123
Chapter 7 - Glossary 7-1
Chapter 8 - Handling and Design Guidelines 8-1
Chapter 9 - Mechanical Data 9-1

Selection Guide

LCD Driver Product Summary

Segmented LCD Driver for Low MUX Application

Part Number	Description	System	Application Examples	Display Size Examples	Package
MC14LC5003	4 MUX, Total 128 Segments, Serial In	Low MUX,	Fax Machines, Pager, Digital Meter, Home Appliances	32×4	QFP, Bare Die
MC14LC5004	4 MUX, Total 128 Segments, IIC				

DragonKat Series LCD Driver Kits with MC68HC05L10/L11

Part Number	Description	System	Application Examples	Display Size Examples	Package
MC141511A	DragonKat 1+ Slave Driver, 32/41 MUX, 128 Segments	DragonKat 1+ MC68HC05L10	Databank, Pager, Organizer, Games	$\begin{aligned} & 128 \times 32 / 41, \\ & 256 \times 32 / 41 \end{aligned}$	-TAB, Bare Die
MC141512	DragonKat 2 Backplane Driver, 146 MUX, 80 Backplanes	DragonKat 2 MC68HC05L11	Translator, Dictionary, Pen-Based Organizer, Low-Cost PDA	$\begin{aligned} & 160 \times 80, \\ & 320 \times 146, \\ & 320 \times 160 \end{aligned}$	TAB
MC141514	DragonKat 2 Segment Driver, 146 MUX, 160 Segments				
MC141515	DragonKat 2 Backplane Driver, 146 MUX, 160 Backplanes				
MC141519	DragonKat 2 Segment Driver, 80 MUX, 160 Segments				
MC141516	64 MUX LCD Backplane Driver, 64 Backplane Outputs	DragonKat 2 MC68HC05L11, other MCU with SPI	Pager, Games, Dictionary	$\begin{aligned} & 80 \times 64, \\ & 160 \times 64, \\ & 240 \times 64 \end{aligned}$	TQFP, Bare Die
MC141518	64 MUX LCD Segment Driver, 80 Segment Outputs				

TFT LCD Driver Accepts RGB Signal Inputs

Part Number	Description	System	Application Examples	Display Size Examples	Package
MC141522	TFT-LCD Gate (Row) Driver, 120 Row Outputs	Active LCD	Portable TV, Projector	480×240, 720×480	TAB
MC141524	TFT-LCD Source (Column) Driver, 120 Column Outputs				

MC14153X Series LCD Driver with Commons, Segments, Annunciators "All-in-One" Chip

Part Number	Description	System	Application Examples	Display Size Examples	Package
MC141531	$17 \mathrm{Com}, 120$ Seg, 3 Annunciators	General MCU, 6800, 68 K (Parallel Interface)	MobileCommunication Devices, Pager, Cellular, PHS	120×17	TAB, Bare Die, Gold Bump Die
MC141532	33 Com, 120 Seg, 4 Annunciators			120×33	
MC141533	33 Com, 120 Seg, 4 Annun, Split Common Outputs			120×33	
MC141535	17 Com, 161 Seg, 4 Annunciators			161×17	
MC141537	16 Com, 120 Seg, 3 Annunciators			120×16	
MC141539	$32 \mathrm{Com}, 120$ Seg, 4 Annunciators			120×32	

300 MUX LCD Driver without Display DRAM

Part Number	Description	System	Application Examples	Display Size Examples	Package
MC141562	LCD Common Driver, 100 Common Outputs	DragonBalliT MC68328, General MCU with LCD Controller	PDA, Palm-Top, Sub-Notebook	$\begin{aligned} & 320 \times 200, \\ & 320 \times 240, \\ & 640 \times 200 \end{aligned}$	TAB, Gold Bump Die
MC141563	LCD Segment Driver, 80 Segment Outputs				

MC14180X Series LCD Driver for Cellular Phone/PHS Applications

Part Number	Description	System	Application Examples	Display Size Examples	Package
MC141800A	65 Common, 128 Segment Outputs	General MCU, 6800, 68K (IIC, SPI, Parallel Interface)	Cellular Phone, PHS Large Display Pager	$\begin{aligned} & 128 \times 65, \\ & 128 \times 64 \text { Plus } \end{aligned}$ One Row for Icons	TAB, Gold Bump Die

LCD Driver Technical Selection Guide

Features	MC14LC5003 MC14LC5004	MC141511A	MC141512	MC141514	MC141515	MC141519
Type	Passive	Passive	Passive	Passive	Passive	Passive
Backplane/Common/Row	4	-	80	-	160	-
Segment/Column	32	128	-	160	-	160
MUX Ratio/Duty	1/4	1/32 or 1/41	1/32-1/146	1/32-1/146	1/32-1/146	1/32-1/80
Operating Voltage for Internal Circuit $V_{D D}(V)$	3 or 5	3 or 5	3 or 5	5	5	3 or 5
Voltage for LCD Drive Circuit VLCD (V)	5	12	25	25	25	16
Typical Current Consumption IDD Display Standby ILCD Display	$\begin{aligned} & 30 \mu \mathrm{~A} \\ & 30 \mu \mathrm{~A} \\ & 40 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 25 \mu \mathrm{~A} \\ & 15 \mu \mathrm{~A} \\ & 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 1 \mu \mathrm{~A} \\ & 0.5 \mu \mathrm{~A} \\ & 3 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 50 \mu \mathrm{~A} \\ & 1 \mu \mathrm{~A} \\ & 10 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2 \mu \mathrm{~A} \\ & 1 \mu \mathrm{~A} \\ & 6 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 30 \mu \mathrm{~A} \\ & 1 \mu \mathrm{~A} \\ & 12 \mu \mathrm{~A} \end{aligned}$
RAM Size	32×4	656×8	-	146×160	-	80×160
Package	QFP, Die	TAB, Die	TAB, Die	TAB, Die	TAB	TAB
Target CPU	General	MC68HC05L. 10	MC68HC05L. 11	MC68HC05L11	MC68HC05L11	MC68HC05L11
Special Features	Serial Interface or IIC Bus					

Features	MC141516	MC141518	MC141522	MC141524	MC141562	MC141563
Type	Passive	Passive	Active (TFT)	Active (TFT)	Passive	Passive
Backplane/Common/Row	64	-	120	-	100	-
Segment/Column	-	80	-	120	-	80
MUX Ratio/Duty	1/32-1/64	1/32-1/64	N/A	N/A	1/100-1/300	1/100-1/300
Operating Voltage for Internal Circuit $V_{D D}(V)$	3 or 5	3 or 5	5	5	3 or 5	3 or 5
Voltage for LCD Drive Circuit VLCD (V)	13	13	45	15	28	28
$\begin{array}{cl}\text { Typical Current } & \text { Consumption } \\ \text { IDD } & \text { Display } \\ & \text { Standby } \\ \text { ILCD } & \text { Display }\end{array}$	$\begin{aligned} & 5 \mu \mathrm{~A} \\ & 2 \mu \mathrm{~A} \\ & 8 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 20 \mu \mathrm{~A} \\ & 5 \mu \mathrm{~A} \\ & 30 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 100 \mu \mathrm{~A} \\ & \mathrm{~N} / \mathrm{A} \\ & \mathrm{~N} / \mathrm{A} \end{aligned}$	10 mA N/A N/A	$40 \mu \mathrm{~A}$ 300 nA $30 \mu \mathrm{~A}$	$\begin{aligned} & 250 \mu \mathrm{~A} \\ & 1.5 \mu \mathrm{~A} \\ & 30 \mu \mathrm{~A} \end{aligned}$
RAM Size	-	64×80	-	-	-	-
Package	TQFP, Die	TQFP, Die	TAB	TAB	TAB, Die	TAB, Die
Target CPU	MC68HC05L11	MC68HC05L. 11	-	-	-	-
Special Features					4-Bit/8-Bit Interface	4-Bit/8-Bit Interface

Features	MC141531	MC141535	MC141532 MC141533	MC141537	MC141539	MC141800A
Type	Passive	Passive	Passive	Passive	Passive	Passive
Backplane/Common/Row	17	17	33	16	32	65
Segment/Column	120	161	120	120	120	128
MUX Ratio/Duty	1/16, 1/17	1/17	$\begin{aligned} & 1 / 16,1 / 17, \\ & 1 / 32,1 / 33 \end{aligned}$	1/16	1/16 or 1/32	Direct to $1 / 65$
Operating Voltage for Internal Circuit $V_{D D}(V)$	2.4-3.5	2.4-3.5	2.4-3.5	2.4-3.5	2.4-3.5	2.4-3.5
Voltage for LCD Drive Circuit VLCD (V)	10.5	10.5	10.5	10.5	10.5	16.5
Typical Current Consumption IDD Display Standby ILCD Display	$75 \mu \mathrm{~A}$ 300 nA $6 \mu \mathrm{~A}$	$70 \mu \mathrm{~A}$ 300 nA $6 \mu \mathrm{~A}$	$80 \mu \mathrm{~A}$ 300 nA $6 \mu \mathrm{~A}$	$70 \mu \mathrm{~A}$ 300 nA $6 \mu \mathrm{~A}$	$76 \mu \mathrm{~A}$ 300 nA $6 \mu \mathrm{~A}$	$\begin{aligned} & \text { TBD } \\ & \text { TBD } \\ & \text { TBD } \end{aligned}$
RAM Size	17×120	17×161	33×120	16×120	32×120	65×128
Package	TAB, Gold Bump Die	TAB, Gold Bump Die	TAB, Gold Bump Die	TAB, Bare Die	TAB	TAB, Gold Bump Die
Target CPU	General	General	General	General	General	General
Special Features	3 Annunciators, On-Chip DC-DC, Temp. Compensation, Contrast Control, Low-Power Icon	4 Annunciators, On-Chip DC-DC, Temp. Compensation, Contrast Control, Horizontal Scrolling, Low-Power Icon	4 Annunciators, On-Chip DC-DC, Temp. Compensation, Contrast Control, Low-Power Icon	3 Annunciators, On-Chip DC-DC, Temp. Compensation, Contrast Control	4 Annunciators, On-Chip DC-DC, Temp. Compensation, Contrast Control	IIC, SPI, Parallel Interface, On-Chip DC-DC, Temp. Compensation, Contrast Control, Low-Power Icon

MC14153X Series Comparison Table

Features	MC141531	MC141532	MC141533	MC141535	MC141537	MC141539
Max. Display Size	120×17	120×33	120×33	161×17	120×16	120×32
Supply V ${ }_{\text {D }}$	$2.4-3.5 \mathrm{~V}$					
Standby Mode Current	Less than 500 nA					
On-Chip DC-DC Converter	$2 \mathrm{x} / 3 \mathrm{x}$					
Bias Voltage Generator	On-Chip					
Static Icon	3	4	4	4	3	4
Low-Power Icon Mode	Yes				No	
MUX Ratio	1/16, 1/17	1/16, 1/17	1/32, 1/33	1/17	1/16	1/16, 1/32
Graphic Display Data RAM	Yes					
Vertical Scrolling	Yes					
Row/Column Remap	Yes					
Master Clear RAM	Yes					
Internal Contrast Control	16 Levels					
External Contrast Control	Yes					
Temperature Compensation	. Yes					
Other Features	-	-	Split Common Output	Horizontal Scrolling	-	-
Package	70 mm TAB, Gold Bump Die				35 mm TAB, Bare Die	35 mm TAB

Monitor On-Screen Device Technical Selection Guide

Features	ES Series		AG Series	
	EMOSD Enhance MC141541	SMOSD Super MC141548/9	AMOSD2 Advance MC141546/7	GMOSD Graphic MC141542/5
Display Area	10R x 24C	15R $\times 30 \mathrm{C}$	15R $\times 30 \mathrm{C}$	15R $\times 30 \mathrm{C}$
Color	8	8	8	8
Intensity	High	High/Low	High/Low	High/Low
Windows	3	4	4	4
No. of Characters	128	256	128	256
ROM	120	248	128	288
Mask ROM	Yes	Yes	Yes	Yes
Character RAM	8	8	0	0
Font Matrix	10×16	10×16	12×18	12×18
Resolution	EGA	VGA	SVGA	SVGA
Max. Dot Clock	52.8 MHz	76.8 MHz	92.2 MHz	92.2 MHz
Max. Frequency	110 kHz	120 kHz	120 kHz	120 kHz
ROM-DAC Integration	0	12	12	12
16 DIP, 0 ROM DAC	MC141541P	MC141549P	MC141547P2	MC141545P2
24 DIP, 8 ROM DAC	N/A	MC141548P	MC141546P2	MC141542P2
28 SOIC, 12 ROM DAC	N/A	Custom	Custom	Custom
Special Display Features	Double Height, Double Width, Shadowing, Bordering, 3 Windows	EMOSD Plus: 4 Windows, Windows Shadow, Blinking, Fade-In/Fade-Out, Automatic Height, Icon Intensity, Windows Intensity	Double Height, Double Width, Shadowing, Bordering, 4 Windows, Spacing Control, Windows Intensity	AMOSD2 Plus: 16 Multicolor Font, Color Background, Windows Shadow, Blinking, Fade-In/ Fade-Out, Icon Intensity, Display Clear
Data Sheet	MC141541/D	MC141548/D	MC141546/D	MC141542/D
Evaluation Kit	MC141541EVK	MC141548EVK	MC141546EVK	MC141542EVK

Part Number Ordering Information

TAB Package

Die

Other Packages

MC14 $\underline{X X X X} \underline{X X}$

1

Item	Definition	Representation	Sequence	Notes
1	Four-digit numeral	One particular display IC	$\begin{aligned} & 1500-1599 \\ & 1800-1899 \\ & 5000-5009 \end{aligned}$	
2	One alpha character	Derivative of a particular IC, corresponding to the numeral defined in Item 1	Alphabetical order	Only for derivatives; no such character for original design
3	The letter " T " followed by a one-digit numeral	Device in TAB package	T, T1, T2 ...	No TO exists
4	The letter " R "	Reel size	With or without "R"	With " R " - 405 mm reel diameter; Without " R " - 330 mm reel diameter
5	The letter "C" or the letter "W"	Device in die form	"C" or "W"	" C " - Die shipped in chip carrier; "W" - Die shipped in wafer form
6	The letter "Z"	Device sold in gold bump die/bare die form	With or without "Z"	With "Z" - Gold bump die; Without "Z" - Bare die
7	One or two alpha character(s)	Package form	"P", "DW", "FU", or "FJ"	"P" - Plastic Dual In-Line Package; "DW" - Small Outline Gull-Wing Package; "FU" - Quad Flat Package; "FJ" - Thin Quad Flat Package

General Information

RELIABILITY AND QUALITY ASSURANCE

Prepared by: KY Cheng/Fei Wong Motorola Semiconductor Hong Kong Ltd

1. Quality Mission

1.1 Quality Policy

"It is the policy of the Motorola Semiconductor Products Sector to produce products and provide services exactly according to CUSTOMER expectations, specifications and delivery schedule. Our system is based on prevention using statistical process control. The standard is a Six Sigma level of error-free performance. These results come from the participative efforts of each employee in conjunction with supportive participation from all levels of management."
1.2 Reliability and Quality Monitor Philosophy

In order to guarantee that the high standards of reliability and quality required by Motorola are met, an ongoing Reliability Audit Program has been established.

Individual product and package monitors are generally developed by identifying a process driver device (in most cases the same device used to qualify a process / product / package family). Once the process driver device is identified, the appropriate stress test programs are put in place to adequately monitor the ongoing process average of the specific family. This process average measurement is made by understanding the reliability and quality results of individual samples from production material. These samples are pulled at the outgoing QA gate portion of the production flow, then randomly sourced into specified reliability tests. These tests include Early Fail Studies, Dynamic Long Term Lifetest (which includes Read and Record Parametric Characterization Samples), Temperature Humidity Bias (THB), Highly Accelerated Stress Test (HAST), and Temperature Cycle, as well as preconditioning stress testing on plastic surface mount packaging technology.

Monitor testing is completed on an ongoing cycle. Test results are subsequently made available quarterly. This report details all test results received for the entire year, outlining the reliability data associated with all process / package family types.

With all of this data, an effective ongoing monitoring method is established which is capable of identifying reliability trends associated with all process / product / package families.

2. Supreme Quality and Reliability

2.1 Quality is defined as:

- Reduction of variability around a target so that conformance to customer requirements and expectations can be achieved in a cost-effective way.
- The probability that a device (equipment, parts) will have performance characteristics within specified limits.
- Fitness for use.
2.2 Reliability is defined as:
- Quality in time and environment (temperature, voltage, etc.).
- The probability that a semiconductor device, which initially has satisfactory performance, will continue to perform its intended function for a given time under actual usage environments.
2.3 Monitorable Reliability and Quality Assurance Program

It is a program to generate on-going data for both reliability and quality for the various product families. Both reliability and quality monitors are performed on the different major categories of semiconductor products. These monitors are designed to test the product's design and material as well as to identify and eliminate potential failure mechanisms to ensure reliable device performance in a "real world" application. Thus, the primary purpose of the program is to identify trends from the data generated, so that if need be, corrective action(s) can be taken toward improved performance. In addition, this reliability and quality data can be utilized by our customers for failure rate predictions.

2.4 Superior Design for Reliability and Quality

Motorola has always stressed reliability and quality considerations in designing any new product. Superior designs with conservative design rules will mean a trouble-free product in the field.

The following rules and guidelines are applied by the various groups to achieve the required reliability and quality goals:

- Testability is a key consideration in new designs.
- Minimum levels of input protection (ESD) are required.
- Minimum levels of latch up protection are required.
- Stress relief design rules have been incorporated in all new large die designs to reduce the effects of package-induced stress.
- All design work is based on simulation across the processing window.
- On future designs the number of bootstrap nodes greater than V_{DD} will be reduced to a minimum to reduce the high E field effect across the new thinner gate oxides.
- Guidelines have been enacted to reduce the effects of hot carrier injection.
- Guidelines have been enacted for maximum current density allowed in metal lines, contacts, and vials to eliminate electromigration concerns.

3. Invincible Quality Assurance System

3.1 Quality Assurance Function at the Development Stage

Excellent quality and reliability of a semiconductor device is determined at the fundamental design stage. In order to assure product quality, design review and reliability tests are performed on prototypes to eliminate design and pilot run problems. While attaining the desired quality and reliability, the process also provides design and process information for future improvement. (See Figure 1.)

Figure 1. Development Stage Flow Chart

3.2 Quality Assurance in Mass Production

To achieve Motorola's quality objectives, the assurance of product quality is shared among various departments, including the quality department, the manufacturing department, and the test operation department. Each department plays a unique and important role during production, as shown in Figure 2. Key elements including control of material purchasing, manufacturing process, final product control, and an on-going reliability monitoring program are described in this section.

Figure 2. Mass Production Quality Flow Chart

3.2.1. Control of Material Purchasing

In order to maintain and improve the product quality and reliability, the control of materials and parts for manufacturing purpose is essential. The key activities include not only incoming inspection, but also the ensuring of supplier quality systems maintained at levels capable of meeting Motorola's prime objectives of Total Customer Satisfaction and Six Sigma quality. The incoming inspection and sampling method is performed based on Motorola's specifications and drawings.

The other activities of quality assurance are as follows:

1. Qualification and guidance of supplier.
2. Supplier quality system audit.
3. Physical and chemical analysis and test.
4. Technical co-operation with supplier.

Typical checkpoints of materials are shown in the following table.

Material	Properties	Critical Items
Wafer	Appearance	Damage and contamination, gold bump
TAB Tape	Appearance Dimension Plating Layer	Contamination, scratch, bend, twist All critical dimensions Solderability
Encapsulant	Composition Electrical Characteristics Thermal Characteristics Viscosity	Characteristics of plastic material

3.2.2. Control of the Manufacturing Process

The control of the manufacturing process plays a very important role in quality assurance of the semiconductor devices. This includes the control of in-process and final products, manufacturing equipment and facilities, measuring and inspection equipment, as well as the manufacturing environment. The process control plan in manufacturing is shown in Figure 3. In short, the elements in the manufacturing process control include:

- Prevention and detection of quality problems.
- Continuous improvement in quality.
- Maintenance and improvement of yield.
- Education and on-site training of technical assistants (operators).
- Communication and review of quality information.
- Condition control on equipment and operator.

	OPERATION	CHARACTERISTIC AFFECTED	ANALYSIS METHOD
	Recieve Wafer		
$A$$S$$S$$E$$M$$B$$L$$Y$	Film \& Wafer Mount	Assy Defects	
	Wafer Saw	Assy Defects Wafer Visual Defects	N-P Chart
	Saw Monitor	Resistivity, Bacteria Count Kerf Width	XBar-R
	Inner Lead Bond	Assy Process, Inner Lead Bonding Visual Defects	N-P Chart
	Lead Bond Monitor	Lead Pull	XBar-S
	QA Gate Visual	Wafer/Bonding Visual Defects	
	Encapsulation	Assy Process, Encapsulant Visual Defect	N-P Chart
	Marking	Assy Process, Marking Visual Defects	N-P Chart
	Encapsulant Cure	Assy Process, Marking/Encapsulant Visual Defects	
	QA Gate Visua!	Visual Defects, Marking Permanency	Visual 25X Alpha 2100/2110 Test
	Package Mark Check	Visual Defects	
	Room Temp Test	Electrical Test	Function Test
	QA Gate Inline (Test Temp: RM)	Electrical Test	Function Test Q Program
	Yield Check	Electrical Test	Test Yield
	100\% Visual Inspection	Visual Defects	Visual 25X
	QA Gate Visual	Visual Defects	Visual 25X
	Vaccum Pack \& Label		
	QA Gate Visual	,	
	Ship to Warehouse		

Figure 3. Process Control for TAB Package

3.2.3. Control of In-Process and Final Product

With the aim of "Do It Right the First Time" and achieving Six Sigma quality, the semifinal and final product are tightly controlled throughout the manufacturing process.
Checkpoints are set up in each manufacturing step, and 100% inspection and screening are executed according to the checkpoints. Product should not be proceeded to the next step if potential failure is found. The potential failure should be removed by the approach of analysis by root cause. An on-going reliability monitoring program is used to monitor the reliability of devices.

3.2.4. Control of Equipment and Facilities

The equipment and facilities developed for semiconductor manufacturing are high performance devices, and they are important in maintaining and improving the process capability. At Motorola, automation equipment is applied in most areas to keep the process variation in the lowest level. All the equipment is maintained on a preventive basis. A periodical preventive maintenance (PM) is carried out for individual equipment. At the PM, the checkpoints listed are checked one by one to avoid any omission. In order to ensure that the manufacturing equipment is under control, statistical process control (SPC) charts are applied. For the measurement and inspection equipment, a periodical calibration scheme is executed to ensure the accuracy, repeatability, and reproducibility.

3.2.5. Control of the Manufacturing Environment

The manufacturing environment (i.e., temperature, humidity and dust) also greatly affects the product quality; therefore, it is controlled as strictly as the other two factors. A periodical process audit is applied to ensure that the environment is in good condition. The prevention of Electrostatic Discharge (ESD) is also a key element in the environment control. Equipment ESD status, clothes, packaging materials, and all the critical points in the manufacturing process are given close attention for ESD protection.

3.2.6. Control of Final Product

After the device has been judged 100% good in test, sampling inspection for electrical characteristics and visual mechanical inspection is carried out by the reliability and quality assurance department. The purpose is to confirm that the product is meeting the customer's expectation, as well as to unmask the potential problems hidden in the manufacturing process. The sampling plan is based on the objective of meeting Six Sigma quality and beyond.
3.2.7. On-Going Reliability Monitoring Program

A reliability audit program (RAP) is executed on the final product to ensure the reliability of the device. Stress tests such as Burn In (B/I), Pressure Temperature and Humidity (PTH), Temperature Cycle (T/C), etc., are done periodically.

4. Innovative Reliability Design

4.1 Reliability Measure

Reliability is the probability that a semiconductor device will perform its specified function in a given environment for a specified period. In other words, reliability is quality over time and environmental conditions. The most frequently used reliability measure for semiconductor devices is the failure rate (λ). The failure rate is obtained by dividing the number of failures observed by the product of the number of devices on test and the interval in hours, usually expressed as percent per thousand hours or failures per billion device hours (FITS). This is called a point estimate because it is obtained from observations on a portion (sample) of the population of devices.

4.2 Reliability Model

To project from the sample to the population in general, one must establish confidence intervals. The application of confidence intervals is a statement of how "confident" one is that the sample failure rate approximates that for the population. To obtain failure rates at different confidence levels, it is necessary to make use of specific probability distributions. The chi-square ($\chi 2$) distribution that relates observed and expected frequencies of an event is frequently used to establish confidence intervals. The relationship between failure rate and the chi-square distribution is as follows:

$$
\lambda=\frac{\chi^{2}(\alpha, \text { d.f. })}{2 t}
$$

where:

$$
\lambda=\text { failure rate }
$$

$\chi 2=$ chi-square function
$\alpha=(100-$ confidence level) / 100
d.f. $=$ degrees of freedom $=2 r+2$
$r=$ number of failures
$t=$ device hours

The failure rate of semiconductor devices is inherently low. As a result, the industry uses a technique called accelerated testing to assess the reliability of semiconductors. During accelerated tests, elevated stresses are used to produce, in a short period, the same failure mechanisms as would be observed under normal use conditions. The objective of this testing is to identify these failure mechanisms and eliminate them as a cause of failure during the useful life of the product.

Temperature, relative humidity, and voltage are the most frequently used stresses during accelerated testing. Their relationship to failure rates has been shown to follow an Eyring type of equation of the form:

$$
\lambda=\mathrm{A} \exp (\phi / \mathrm{kT}) \cdot \exp (\mathrm{B} / \mathrm{RH}) \cdot \exp (\mathrm{CE})
$$

where $\mathrm{A}, \mathrm{B}, \mathrm{C}, \phi$, and k are constants, more specifically B, C, and ϕ are numbers representing the apparent energy at which various failure mechanisms occur. These are called activation energies. T is the temperature, RH is the relative humidity, and E is the electric field.

The most familiar form of this equation deals with the first exponential term which shows an Arrhenius type relationship of the failure rate versus the junction temperature of semiconductors. The junction temperature is related to the ambient temperature through the thermal resistance and power dissipation. Thus, we can test devices near their maximum junction temperatures, analyze the failures to assure that they are the types that are accelerated by temperature and then by applying known acceleration factors, estimate the failure rates for lower junction temperatures.

Arrhenius type of equation:

$$
\lambda=\mathrm{A} \exp \frac{\phi}{\mathrm{kT}}
$$

where:

$$
\begin{aligned}
\lambda & =\text { failure rate } \\
\mathrm{A} & =\text { constant } \\
\varepsilon & =2.72 \\
\phi & =\text { activation energy, } \mathrm{eV} \\
\mathrm{k} & =\text { Boltzman's constant, } 8.62 \times 10^{-5} \mathrm{eV} /{ }^{\circ} \mathrm{K} \\
\mathrm{~T} & =\text { temperature in degrees Kelvin }\left(\mathrm{T}_{\mathrm{J}}^{\circ} \mathrm{C}+273.15\right)
\end{aligned}
$$

Temperature acceleration factors for a particular failure mechanism can be expressed as the ratio of the failure rates at two different levels of stress:

$$
\mathrm{Fa}=\exp (\phi / \mathrm{k}) \cdot \frac{1}{\mathrm{Tr}}-\frac{1}{\mathrm{Tt}}
$$

where:
$\mathrm{Fa}=$ acceleration factor
$\phi=$ activation energy
$\mathrm{k}=$ Boltzman's constant, $8.62 \times 10^{-5} \mathrm{e} / \mathrm{V} /{ }^{\circ} \mathrm{K}$
$\mathrm{Tr}=$ junction temperature, ${ }^{\circ} \mathrm{K}$ at the rated ambient temperature
$\mathrm{Tt}=$ junction temperature, ${ }^{\circ} \mathrm{K}$ at the life test ambient temperature

4.3 Reliability Tests

The following summary briefly describes the various reliability tests included in the Motorola reliability monitor program.

Dynamic Early Fail Study
This stress is performed to accelerate infant mortality failure mechanisms, which are defects that occur within the first year of normal device operation. Typical stress is a temperature of $125^{\circ} \mathrm{C}$, nominal voltage (6 V), and a duration of 24 or 48 hours. All devices used
in this test are sampled directly after the standard production final test flow with no prior burn-in or other prescreening, unless called out in the normal production flow.

Dynamic Long Term Lifetest

Dynamic Long Term Lifetest is performed to accelerate failure mechanisms and access parametric shifts, which are voltage and thermally activated. This is done through the application of extreme temperatures and the use of biased operating conditions. Typical stress temperature is $125^{\circ} \mathrm{C}$ with the bias applied being equal to or greater than the data sheet nominal value. Testing is performed with dynamic signals applied to the devices for a test duration of 1008 hours.

Temperature Cycle
This test accelerates the effects of thermal expansion mismatch among the different components within a specific die and packaging system. This test is typically performed to minimum and maximum temperatures of $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ for a duration of 500 or 1000 cycles. During temperature cycle testing, devices are inserted into a cycling system and held at cold dwell temperature for at least ten minutes. Following this cold dwell, the devices are heated to the hot dwell where they remain for another ten minutes. The system employs a circulating air environment to assure rapid stabilization at the specified temperature.

Temperature Humidity Bias (THB)

This is an environmental test performed at a temperature of $85^{\circ} \mathrm{C}$ and a relative humidity of 85%. The test is designed to measure the moisture resistance of plastic encapsulated circuits. A nominal static bias is applied to the device to create the electrolytic cells necessary to accelerate corrosion of the metallization. Typical stress duration is 1008 hours.

Highly Accelerated Stress Test (HAST)

This test is performed to accelerate the effects of moisture penetration with the dominant effect being corrosion. This test detects similar failure mechanisms as THB but at a greatly accelerated rate. Conditions employed during this test are a temperature of $130^{\circ} \mathrm{C}$, humidity of $85 \%, 33.5 \mathrm{psia}$, and a nominal static bias voltage. Typical stress duration is 72 hours.
SMT Preconditioning Stress
The purpose of this test is to simulate the shipping, storage, and solder attach steps involved in mounting and reworking a surface mount device. The preconditioning flow begins with ten temperature cycles $\left(-65 / 150^{\circ} \mathrm{C}\right)$ and is followed by a moisture soak. The soak may involve simulating a worst case "no Dry Pack" condition in an $85^{\circ} \mathrm{C} / 85 \%$ RH environment, a worst case Dry Pack condition of $85^{\circ} \mathrm{C} / 60 \% \mathrm{RH}$, or a typical manufacturing environment condition of $30^{\circ} \mathrm{C} / 60 \% \mathrm{RH}$. The duration of the moisture condition will vary depending on the moisture level tested. Moisture exposure is followed by multiple passes of vapor phase reflow $\left(215^{\circ} \mathrm{C}\right)$ for 120 seconds per pass.

Autoclave

Autoclave is an environmental test that measures devices resistance to moisture penetration and the resultant effects of galvanic corrosion. Conditions employed during the test include $121^{\circ} \mathrm{C}, 100 \%$ relative humidity, and 15 psig. Corrosion of the die is the expected failure
mechanism. Autoclave is a highly accelerated and destructive test. Typical test duration is 240 hours.

Data Retention

Data retention testing or high temperature storage is performed to measure the stability of the programmed EPROM and EEPROM devices during storage at elevated temperatures with no electrical stress applied. The devices are exposed to an ambient of $150^{\circ} \mathrm{C}$. An acceleration of charge loss from the storage cell is the expected result. All groups are typically tested to 1008 hours.

EEPROM Write/Erase Cycling

The Write/Erase endurance test measures EEPROM cell operation over an expected life time. All cells are alternately cycled for a minimum of 10,000 cycles between an erased state " 1 " and a write state " 0 " at the device high temperature specification of $85^{\circ} \mathrm{C}$ (some samples are cycled at higher temperatures).

4.4 Reliability Data

The following summary gives a brief description of the various reliability tests included in qualifying and reliability monitoring of LCD drivers.

Operating Life Test, $\mathrm{Ea}=0.7 \mathrm{eV}$

Device	Package	Test Condition	Sample Size	Failure
MC141511	1281d QFP	$125^{\circ} \mathrm{C}$, Bias, 1008hrs	45	0
MC141512	91ld TAB	$125^{\circ} \mathrm{C}$, Bias, 1008hrs	45	0
MC141514	1861d TAB	$125^{\circ} \mathrm{C}$, Bias, 1008hrs	45	0

Temperature Cycle

Device	Package	Test Condition	Sample Size	Failure
MC141511	128ld QFP/ 1591d TAB	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}, 100$ cyc	80	0
MC141512	911d TAB	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}, 100$ cyc	80	0
MC141514	1861d TAB	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}, 100$ cyc	80	0

Temperature Humidity Bias

Device	Package	Test Condition	Sample Size	Failure
MC141512	911d TAB	$85^{\circ} \mathrm{C} / 85 \% \mathrm{RH}, 1008 \mathrm{hrs}$	45	0
MC141514	186ld TAB	$85^{\circ} \mathrm{C} / 85 \% \mathrm{RH}, 1008 \mathrm{hrs}$	45	0

Pressure Temperature Humidity (PTH, Autoclave)

Device	Package	Test Condition	Sample Size	Failure
MC141511	159ld TAB	$121^{\circ} \mathrm{C}, 100 \%$ RH, 30 PSIA	45	0
MC141512	91ld TAB	$121^{\circ} \mathrm{C}, 100 \%$ RH, 30 PSIA	45	0
MC141514	186ld TAB	$121^{\circ} \mathrm{C}, 100 \%$ RH, 30 PSIA	45	0

5. Responsible Field Service

5.1 Mission

Provide "On the Spot" quality professionals to work with our customers to describe our quality initiatives, assist in the resolution of quality problems, and to be proactive in seeking ways to provide total customer satisfaction. Provide technical assistance to our field and headquarters people in developing methods to obtain Six Sigma quality in everything we do. Facilitate cycle time improvements in all processes and procedures in world marketing.
5.2 Responsibilities to the Customer

- Call on all customer departments/organizations in the assigned region to provide resolution of any quality problems discovered or perceived.
- Work with the customer to understand their quality requirements and vendor rating systems and then establish Motorola procedures in our sales and factory organizations to serve our customers' needs and improve our ratings.
- Act as a quality consultant in the field to facilitate the training and implementation of administrative quality systems and programs.
5.3 Measurement
- Overall quality rating improvement with customers.
- Implementation of quality systems that measure and track continuous improvements in quality and reliability of our products and services.
- Reduction in customer returns for administrative quality reasons.
- Support the factory in efforts to provide Total Customer Satisfaction.
- World marketing attention to the "Speed Imperative."

5.4 Field Service Flow

Figure 4 demonstrates Motorola's field service process. As part of the Total Customer Satisfaction (TCS) team, the quality department serves as a medium between sales/field quality and the TCS team for all technical and quality issue support. He or she also acts as a leading function to resolve all quality problems upon customer complaint. Customers can also go through marketers for any inquiry which will be replied to by an active member of the TCS team.

Figure 4. Field Service Process Flow Chart

TAB PACKAGE FOR LCD DRIVER

By O.L. Chau
Motorola Semiconductors Hong Kong Ltd.

Today most products use liquid crystal displays (LCD) for the user interface. The advantage of LCD lies in its small volumetric profile which offers tremendous space saving over cathode ray tube (CRT) display. It has become an increasingly important substitute for CRTs. The proliferation of notebook computers and other portable electronic products have also accelerated the use of LCDs at an incredible rate. As the LCD resolution and capacity increase, more LCD drivers are needed. However, the increase in LCD driving requirement should not offset the advantage of LCD, i.e. slim profile. Therefore, a good choice of LCD driver package should feature high pin count, small form size and cost effectiveness. For such an application, Tape Automated Bonding (TAB) package has been successfully developed as the most preferred package for LCD driver application.

INTRODUCTION TO TAB PACKAGING

A typical TAB package is shown in Fig. 1. The layout is specially designed to meet the application for LCD driver. One side of the package are the output leads for LCD panel terminal connection. These are fine pitch leads to match LCD panel terminal pitch, typical pitch is between 0.07 mm to 0.35 mm . The opposite side are the input leads for soldering connection to the PCB. The input leads pitch are usually made wide enough for easy alignment, typical pitch is between 0.5 mm to 1.2 mm . The overall package thickness is around 0.8 mm .

Figure 1. TAB package for LCD driver

Figure 2. TAB packaging process flow
Fig. 2 shows the TAB packaging process. Instead of using wire bond technology for the inner lead bonding, TAB uses gold bumps to form the connection. Gold bumps are deposited on the bonding pads after wafer fabrication. Several types of bump shape are possible. See Fig. 3.

Figure 3. Gold bump shapes
Formation of high reliability gold bumps requires a well controlled series of processes. Motorola uses a proprietary gold bump process to precisely control the bump dimensions so that the straight wall bumps as shown in Fig. 4 can be achieved. With straight wall bumps, bond pads can be placed at closer pitch and the die size can be further reduced.

Figure 4. Motorola straight wall bump

Figure 5. Construction of 3-layer tape

The inexpensive 3-layer tape construction is the usual choice for LCD driver TAB. The 3-layer tape structure consists of a conductive copper foil which is laminated to a polyimide based film using an adhesive. See Fig. 5. With photo-imaging and etching processes, a conductive pattern on the tape is defined to form the interconnection circuitry. The pattern can be designed to match the terminal connection on LCD panel and PCB. Fig. 6 shows the outline of a TAB tape specially designed for LCD driver application.

Figure 6. Pattern of a TAB tape
The most common method to connect the tape leads to the gold bumps is by means of a gang bonder. The gang bonder bonds all the leads onto the bumps simultaneously using a thermal compression bonding which provides a strong and reliable mechanical joint. See Fig. 7. Alternatively, the single point bonder can also be used to bond the lead one at a time using thermosonic or laser-based bonding. However, for volume production, the gang bonding is still the most efficient bonding method. After the inner lead bonding, a thin layer of encapsulant is dispensed onto the top surface to provide a protective coating for the chip. The encapsulant is then partially cured in the encapsulator to facilitate handling and marking. At completion of a reel of tape, the reel is transferred to an oven for final cure of the encapsulant. Fig. 8 shows the inner lead gang bonding and encapsulation process for the TAB package.

Figure 7. Gang bonded inner leads

Figure 8. Inner lead bonding and encapsulation

PACKAGING REQUIREMENT OF LCD DRIVER

As the display density increases, more driver chips per LCD module are needed and more I/O connections have to be made. Figure 9 shows a typical requirement for the $10 "$ LCD panels. It indicates that use of low pin count chip is impractical. The challenges of building a LCD module are (i) how to accommodate a large number of high pin count chip in a limited mounting area, and (ii) how to connect the large number of terminals on LCD to PCB reliably.

The following are common methods used in the industry to connect the LCD panel to the PCB. See Fig. 10.
(1) Elastomeric connector

Conductive elements are sandwiched between either spongy or solid silicone rubber which is at least 3.5 mm thick. By making the pitch sufficiently small, conducting terminals on each surface can be connected through redundant contacts. Silicone rubber is stable and resistant to harsh environmental conditions. However, a permanent clamp frame is required to apply contact pressure, and variation across the length of the rubber has a negative effect on the electrical integrity. Long term contact reliability is also subject to stress relaxation of the silicone rubber in the connection. Connection pitch is usually limited to above 0.4 mm .

Figure 9. LCD driver requirement

Figure 10. LCD panel terminals connection methods

QFP package is a popular option for the driver chips. The conventional SMT process is a simple process with good cost performance. Use of QFP means that batch reflow soldering with other components is possible. However, for high performance LCD panels, the lead count of the LCD driver is typically around 200. That will require use of a 208 leads QFP package with 0.5 mm outer lead pitch. The 208 leads QFP is now a giant $28 \times 28 \mathrm{~mm}$ package which is almost impossible to be accommodated inside the limited space of a compact product. If outer lead pitch is reduced to below 0.5 mm in order to shrink package size, problems with screen printing and solder reflow will require alternative methods of solder application and reflow technique.

Chip on Board (COB) is another popular option for the driver chips. In COB, the bare chip is directly mounted onto the PCB. The signal connection is done via wire bonding. A glob-top coating is generally used for protection of the wire bonded chip. This method used to provide a low cost solution for low lead count devices. However, for high lead count LCD drivers, $C O B$ consumes a large fanout area in order to facilitate wire bonding. Unfortunately, a compact product has a very limited PCB area which is to be shared by many other components. In addi-
tion, the bonding pad pitch of a high lead count device is usually made as close as possible to save chip cost. With finer pad pitch, more wires and longer wire length, COB would now suffer a higher assembly yield loss.
(2) Heat seal connector (HSC)

HSC is commonly used in small LCD panel for electronic calculators and organizers. It consists of conductive pastes and dielectric thermoset adhesives. The driver chips are mounted to PCB in the same way as the elastomeric connector, i.e. QFP package or COB. HSC is reliable, dimensionally accurate and versatile. However, it is relatively expensive at small pitch even though the pitch can get down to 0.2 mm from the latest development. In addition, it will be too messy when applied to a medium or large size LCD panel which requires many drivers and connections.
(3) TAB

In TAB package, the driver chip is packaged into a tape film which provides a high degree of flexibility like a flexible printed circuit (FPC). The tape film can be used as the connector between the LCD panel and the PCB. Anisotropic Conductive Film (ACF) is commercially available for this application. This direct connection method simplifies the
manufacturing process and the end product design. Today most of the large LCD panels in the market use TAB package to serve the dual role of driver and connector. TAB package may also be used in conjunction with HSC for a more flexible connection layout.
(4) Chip on glass (COG)

In COG, the chip is directly mounted onto the LCD panel using a flip chip mounting process. COG offers the smallest form factor which is not possible with packaged chip. Many industry observers predict that COG technology is the trend for LCD driver. However, the trade-off is in terms of cost, yield and reliability issues. It is difficult to do full functional testing and burn-in at the component level. The known good die (KGD) is therefore a well known issue for direct chip mounting process. At present moment, application of COG is limited to medium size panel and matured LCD driver product.

ADVANTAGES OF TAB PACKAGE

Out of the different connection methods, TAB package has appeared to be the best choice for LCD driver. This fact can be evidented from its wide application in most LCD products. The advantages of using TAB package can be summarized as follows:
(1) Slim body profile

The TAB package has a light weight and a thin body profile. These match with the most important characteristics for portable products.
(2) Die size reduction

The main reason to get over this limitation is the cost of silicon. Chip size is very much decided by the lead count, and chip size is proportional to cost. As wire bonding cannot handle pad pitch smaller than 3.0 mil, more and more chips become "pad limited". Use of TAB technology allows closer bonding pad pitch, thus help to reduce chip cost. The following is a comparison of minimum pad pitch requirement between various inner lead bonding technologies.

Innerlead Bonding	Minimum Pad Pitch
TAB	$2.0-3.0 \mathrm{mil}$
Wire Bonding (Al wire)	$3.0-3.5 \mathrm{mil}$
Wire Bonding (Au wire)	$3.5-4.0 \mathrm{mil}$

(3) Flexible connection

TAB package is structured as a thin film and is very flexible. It can be used to form the direct connection between PCB and LCD panel with ACF or HSC. The TAB package virtually does not occupy any space on the PCB. It can be even folded sideway or at the back of the LCD panel to further facilitate space reduction in the product.
(4) Less PCB space consumption

It saves the valuable PCB space and cost since the LCD driver is now an integral part of the PCB/LCD connector.

(5) Simplified manufacturing process

TAB package simplifies the manufacturing process because it combines the mounting of LCD driver and PCB/LCD connection into a single process. Unlike other packages, there is less lead skew or bent lead problem for TAB package. It greatly resolves the handling difficulty for high lead count packages and allows for an automated manufacturing process.

ATTACHMENT OF TAB PACKAGE

There are a number of ways to attach the TAB package. For LCD driver, direct attachment using ACF is very popular. ACF is a high density connecting material serving three purposes at the same time - bonding, conduction and insulation. It is an epoxy based material filled with many tiny conductive particles. The separation between these particles is far enough that they are electrically isolated from each other. Fig. 11 shows the end view of a TAB package, the ACF and a LCD panel ready to be bonded. Heat and pressure are then applied to the parts. Pressure squeezes the excess adhesive out of the conductive path area, leaving deformed conductive particles in close contact with the conductive terminals. The thermoset epoxy hardens under temperature to put the conductive particles in a mechanical bonded state. Conductive particles not in the conductive path do not get compressed and will remain isolated.

Figure 11. Outer lead bonding using ACF
The application of ACF is simple. Fig. 12 shows the basic steps. After tacking the ACF to LCD panel, the separator on the ACF is removed. Conductive terminals on TAB package and LCD panel are then aligned with vision system. Final sealing is made after more heat and pressure are applied. A number of ACFs are commonly available in the market. Typical minimum connection pitch is 0.15 mm to 0.20 mm . ACFs with
finer connection pitch 0.07 mm to 0.10 mm are also available from specific suppliers. ACF for COG application at 0.05 mm pitch is under development.

Fig. 13 shows the alternative process when HSC is used to bond TAB packages to LCD panel.

For the input leads of the TAB package, the hot bar soldering technique can be applied. The heating tool mechanically presses all the leads down into contact with the PCB connection traces which are usually coated with solder. The solder can be screen printed and reflowed during the precedent SMT process for the other components on the PCB. So flux is needed for soldering with the reflowed solder. Heat is applied to exceed the melting point of the solder. Upon melting the solder, heating is cut off and the solder cools to form the joint. The tool is then lifted and removed from the joint. Sometimes a cooling air jet can be used for faster cooling. As the heating tool is required to follow a preprogrammed heating and cooling sequence, a pulse-heating thermode is preferred for this application.

(1) CLEAN LCD

 ELECTRODE TERMINALS(2) TACK ACF

(3) PEEL OFF ACF COVER
(4) ALIGN TAB PACKAGE OUTPUT LEADS TO LCD TERMINALS, APPLY PERMANENT BONDING

Figure 12. Outer lead bonding using ACF
(1) CLEAN LCD ELECTRODE TERMINALS
(2) ALIGN HSC TO LCD TERMINALS, APPLY BONDING
(3) ALIGN TAB PACKAGE OUTPUT LEADS TO HSC, APPLY BONDING

Figure 13. Outer lead bonding using HSC

CUSTOM TAB TAPE DESIGN

TAB tapes are supplied in $35 \mathrm{~mm}, 48 \mathrm{~mm}$ or 70 mm width. They are further classified into STANDARD, WIDE or SUPER format according to size and location of the sprocket holes. The interior area bound by the sprocket holes is the effective user-definable pattern area. The typical dimensions of a 35 mm WIDE TAB product is shown in Figure 14. Motorola TAB products use WIDE format which provide an optimum combination of tape handling support and effective pattern area. See Fig. 15.

Figure 14. 35mm WIDE format tape

TAPE FORMAT	MAX. A TAPE EFFECTIVE WIDTH	MAX. B TAPE EFFECTIVE LENGTH	MAX. SPROCKET PITCH
35 mm WIDE	25.0 mm	60.0 mm	13
48mm WIDE	38.0 mm	66.5 mm	15
70 mm WIDE	59.0 mm	66.5 mm	15

Figure 15. Tape format
For the end user of the TAB product, the considerations in the tape design can be summarized as follows:
(1) Outer lead dimensions

These include the lead pitch, lead width, connection length for both output and input sides. Dummy leads can be added to provide extra protection to the connection.
(2) Polyimide tape opening

Parallel slots can be added to the output side to facilitate folding of the tape after connection to the LCD panel. That is to be determined by the outer lead connection method being used and the components layout requirement in the end product. See Fig. 16.
(3) Alignment marks

Fiducial marks and alignment holes can be added to facilitate alignment of the TAB leads to the LCD panel terminals or the PCB land patterns. See Fig. 17.
(4) Polyimide up or polyimide down design

The chip can be inner lead bonded to either side of the tape leads. The choice can resolve stringent components layout requirement in a compact product.

To drive a large size LCD panel, multiple drivers are needed. Use of slim TAB package can help to eliminate folding of many TAB packages and potential alignment and reliability problem. The length of the slim TAB package is typically between 8.5 mm to 12.0 mm depending on the lead count. With this short length, slim TAB packages can be mounted along the perimeter

Figure 16. Polyimide tape opening

Figure 17. Allgnment marks

Figure 18. Slim TAB against conventional TAB

Figure 19. Slim TAB and its application
of the LCD panel without a significant increase in the overall panel size. See Fig. 18 \& 19.

TAB HANDLING AND STORAGE CONDITIONS

(1) Delivery

Motorola TAB products are packed in reel. There are two types of reel. The 330 mm reel can carry about 20 m of tape and the 405 mm reel can carry 40 m tape. Quantity of TAB product in a reel thus varies according to sprocket pitch of a TAB site. An additional 3 m of leading tape and 3 m of trailing tape are added to each end of the $20 \mathrm{~m} / 40 \mathrm{~m}$ tape for convenience of handling and protection. Emboss separator tape is used when the TAB tape is wound inside the reel.

Each reel is sealed in a moisture resistant ESD protective bag with desiccant and nitrogen to prevent contamination, corrosion and protection from ESD. Each bag is then packed in a protective box for additional protection. See Fig. 21.
(2) Reject handling

All TAB products will undergo 100\% functional test. Inner part of reject site is punched out from the tape. Multiple reject sites are spliced off and reconnected with Kapton adhesive tape.
(3) Mechanical and electrical handling

MATERIAL: HIGH IMPACT POLYSTYRENE (HIPS) SURFACE RESISTIVITY: $1 \times 10^{5} \mathrm{OHM}$ MIN 1×10^{9} OHM MAX

Figure 20. Tape Reel

Figure 21. TAB product packing
Prevention of bent lead, contamination, and other forms of mechanical and electrical damage must be observed whenever TAB product is handled. Use of clean room and ESD approved gloves or finger cots are recommended. To prevent ESD damage to the product, proper electrical grounding procedures should be followed.

The outer leads on the TAB product are usually very thin copper foil, so excessive stress should be avoided during mounting of the TAB product. In addition, contamination should be avoided to prevent shorting of the leads. Although the TAB product is structured as a thin film, excessive bending of the film should be avoided to prevent cracking of the solder resist and the encapsulant.

Figure 22. Reject handling
In TAB product, the back side of the chip is exposed. Mechanical or electrical contact with the back side of the chip should be avoided to prevent cracking or ESD damage. Direct exposure to strong ambient light should also be avoided to assure proper electrical characteristics.
(4) Storage conditions

The TAB products should be stored in its original sealed bag in an upright position (stand on diameter end). If products are stored outside of its original sealed bag, then they are recommended to be stored in a nitrogen environment. To assure good solderability, there is a limited time period to use the products once they are removed from the sealed bag. Products stored in ambient conditions, i.e. room temperature at 40% to $50 \% \mathrm{RH}$, is recommended to be used within 30 days after opening from the sealed bag. Any unused products stored in the sealed bag after more than one year from date of shipment from Motorola are recommended to be sample tested for solderability.

CONCLUSIONS

TAB package has been gaining wide acceptance in recent years because of its thin body outline and ability to provide high density interconnects in both inner lead bonding and outer lead bonding. It is certainly one of the most important package in the 90's. LCD driver continues to be the major application for TAB packages.

TAB Tape Design Information Checklist

Device name	Example
Final excised size	
Width	13.5 mm
Length	25.4 mm
Output side OLB	
Pitch	0.23 mm
Width	0.11 mm
Connection length	2.835 mm
Dummy lead	min 1, max 2 on each end
Input side OLB	1.0 mm
Pitch	0.5 mm
Width	1.8 mm
Connection length	1 on each end
Dummy lead	2 square marks, one on each end
Output side alignment mark	0.6 mm
OD	0.4 mm
ID	24.83 mm
Mark to mark distance	$2 \times \phi 0.5 \mathrm{~mm}$ on each end
Input side alignment hole	
TAB pitch on LCD glass	
Inter-TAB gap	3.0 mm
No. of sprocket hole	6
Polyimide up/down	
Lead coating material	Down
Output side	
Input side	
OLB connection method	
Output side	
Input side	

FINAL TEST FOR TAB PACKAGE

TEST FLOW

Each lot of TAB devices are 100% tested to confirm the outgoing quality, both of electrical and visual mechanical performance. The manufacturing flow is different from the traditional package in following points:

Continuity of devices - each device within a lot is linked together;
Rejects removal - the die of reject units are punched out from the tape;

Motorola TAB Package Device Final Test Flow

VACUUM PACK

All TAB devices are passed through the Vacuum Packing process before shipping out. By utilizing the ESD \& Moisture protected vacuum packing bag, TAB device can be fully protected from moisture and oxidation on leads. The packing material also protected TAB devices from the damage of mechanical shoot.

Characteristics of Vacuum Packing:

Vacuum - air is removed from the package to prevent oxidation on leads;
Nitrogen (N2) injection - to balance the pressure for TAB device protection;
Moisture prevention - desiccants are enclosed inside the package to protect the TAB device from moisture damage. Humidity indicator card is also appended with the package for customer inspection.

WAFER MANUFACTURING FLOW

TAB MANUFACTURING FLOW

QFP MANUFACTURING FLOW

Liquid Crystal Display Drivers

Segmented LCD Driver for Low MUX Application
MC14LC5003/4 128 Segment LCD Driver, 4 MUX 3-3
LCD Driver for Databank, Organizer, PDA
MC141511A Dragonkat 1+ Slave Driver, 32/41 MUX 3-19
MC141512/5 Dragonkat 2 Backplane Driver, 146 MUX 3-36
MC141514 Dragonkat 2 Segment Driver, 146 MUX 3-51
MC141516 Dragonkat 2 Backplane Driver, 64 MUX 3-69
MC141518 Dragonkat 2 Segment Driver, 64 MUX 3-80
MC141519 Dragonkat 2 Segment Driver, 80 MUX 3-96
LCD Driver for TFT LCD TV, Projector
MC141522 TFT-LCD Gate (Row) Driver 3-110
MC141524 TFT-LCD Source (Column) Driver 3-118
Integrated LCD Driver for Handheld Communication Devices
MC141531 120×17 LCD Segment/Common Driver 3-139
MC141532/3 120×33 LCD Segment/Common Driver 3-164
MC141535 161×17 LCD Segment/Common Driver 3-193
MC141537 120×16 LCD Segment/Common Driver 3-219
MC141539 120×32 LCD Segment/Common Driver 3-245
MC141800A 128×65 LCD Segment/Common Driver 3-277
LCD Driver for PDA, Palm-Top
MC141562 LCD Common Driver, 300 MUX 3-309
MC141563 LCD Segment Driver, 300 MUX 3-320

128 Segment LCD Drivers CMOS

The MC14LC5003/5004 are 128-segment, multiplexed-by-four LCD Drivers. The two devices are functionally the same except for their data input protocols. The MC14LC5003 uses a serial interface data input protocol. The device may be interfaced to the MC68HCXX product families using a minimal amount of software (see example). The MC14LC5004 has a IIC interface and has essentially the same protocol, except that the device sends an acknowledge bit back to the transmitter after each eight-bit byte is received. MC14LC5004 also has a "read mode", whereby data sent to the device may be retrieved via the IIC bus.
The MC14LC5003/MC14LC5004 drives the liquid-crystal displays in a mul-tiplexed-by-four configuration. The device accepts data from a microprocessor or other serial data source to drive one segment per bit. The chip does not have a decoder, allowing for the flexibility of formatting the segment data externally.
Devices are independently addressable via a two-wire (or three-wire) communication link which can be common with other peripheral devices.
The MC14LC5003/MC14LC5004 are low cost version of MC145003 and MC145004 without cascading function.

- Drives 128 Segments Per Package
- May Be Used with the Following LCDs: Segmented Alphanumeric, Bar Graph, Dot Matrix, Custom
- Quiescent Supply Current: $30 \mu \mathrm{~A} @ 2.7 \mathrm{~V} \mathrm{~V}_{\mathrm{DD}}$
- Operating Voltage Range: 2.7 to 5.5 V
- Operating Temperature Range: -40 to $85^{\circ} \mathrm{C}$
- Separate Access to LCD Drive Section's Supply Voltage to Allow for Temperature Compensation
- See Application Notes AN1066 and AN442

BLOCK DIAGRAM

REV 2
10/96

ABSOLUTE MAXIMUM RATINGS（Voltages Referenced to $\mathrm{V}_{S S}$ ）

Symbol	Parameter	Value	Unit
V_{DD}	DC Supply Voltage	-0.5 to +6.5	V
$\mathrm{~V}_{\text {in }}$	Input Voltage， $\mathrm{D}_{\text {in }}$, and Data Clock	-0.5 to 15	V
$\mathrm{~V}_{\text {in osc }}$	Input Voltage， OSC $_{\text {in }}$ of Master	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
$\mathrm{I}_{\text {in }}$	DC Input Current，per Pin	± 10	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature Range	-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$

This device contains protection circuitry to guard against damage due to high static voltages or electric fields．However，precau－ tions must be taken to avoid applications of any voltage higher than maximum rated volt－ ages to this high－impedance circuit．This device may be light sensitive．Caution should be taken to avoid exposure of this device to any light source during normal op－ eration．This device is not radiation protect－ ed．
＊Maximum Ratings are those values beyond which damage to the device may occur．Func－ tional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Descriptions section．

ELECTRICAL CHARACTERISTICS（Voltages Referenced to $\mathrm{V}_{\mathrm{SS}}, T_{A}=25^{\circ} \mathrm{C}$ ）

－Characteristic	Symbol	$\begin{gathered} \mathbf{V}_{\mathrm{DD}} \\ \mathbf{v} \end{gathered}$	$\underset{\mathrm{V}}{\mathrm{~V}}$	Min	Typical	Max	Unit
Output Drive Current－Frontplanes ${ } \mathrm{V}_{\mathrm{O}}=0.15 \mathrm{~V}$,	$\begin{aligned} & I_{F H} \\ & I_{F L} \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 2.7 \\ & 2.7 \end{aligned}$	$\begin{aligned} & 260 \\ & 260 \end{aligned}$	－		$\mu \mathrm{A}$
	$\begin{aligned} & \mathrm{I}_{\mathrm{FH}} \\ & \mathrm{I}_{\mathrm{FL}} \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 2.7 \\ & 2.7 \end{aligned}$	$\begin{aligned} & -240 \\ & -240 \end{aligned}$	二	－	
	$\begin{aligned} & \mathrm{I}_{\mathrm{FH}} \\ & \mathrm{I}_{\mathrm{FL}} \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 2.7 \\ & 2.7 \end{aligned}$	－40	二	－1．5	
	$\begin{aligned} & \mathrm{I}_{\mathrm{FH}} \\ & \mathrm{I}_{\mathrm{FL}} \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 2.7 \\ & 2.7 \end{aligned}$	40	－	2	
	$\begin{aligned} & I_{F H} \\ & I_{F L} \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 600 \\ & 600 \end{aligned}$	－	－	
	$\begin{aligned} & \mathrm{I}_{\mathrm{FH}} \\ & \mathrm{I}_{\mathrm{FL}} \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & -520 \\ & -520 \end{aligned}$	二	－	
	$\begin{aligned} & \mathrm{I}_{\mathrm{FH}} \\ & \mathrm{I}_{\mathrm{FL}} \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	－35	－	－1．5	
	$\begin{aligned} & I_{F H} \\ & I_{F L} \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	55	－	$\overline{1}$	
$\begin{aligned} & \text { Supply Standby Currents (No Clock) } \\ & I_{D D}=\text { Standby @ } I_{\text {out }}=0 \mu \mathrm{~A} \\ & I_{\text {LCD }}=\text { Standby @ } I_{\text {out }}=0 \mu \mathrm{~A} \\ & I_{D D}=\text { Standby @ } I_{\text {out }}=0 \mu \mathrm{~A} \\ & I_{L C D}=\text { Standby @ } I_{\text {out }}=0 \mu \mathrm{~A} \end{aligned}$	IDDS ILCDS IDDS ILCDS	$\begin{gathered} 2.7 \\ - \\ 5.5 \\ - \end{gathered}$	$\frac{\overline{2.7}}{5.5}$	－	－	$\begin{gathered} 30 \\ 800 \\ 50 \\ 1500 \end{gathered}$	$\mu \mathrm{A}$
$\begin{aligned} & \text { Supply Currents }\left(f_{O S C}\right)=110 \mathrm{kHz} \\ & I_{D D}=\text { Quiescent } @ I_{\text {out }}=0 \mu \mathrm{~A}, \text { no loading } \\ & I_{D D}=\text { Quiescent } @ \text { loading }=270 \mathrm{pF} \\ & I_{D D}=\text { Quiescent } @ I_{\text {out }}=0 \mu \mathrm{~A}, \text { no loading } \\ & I_{D D}=\text { Quiescent } \text { loading }=270 \mathrm{pF} \\ & I_{\text {LCD }}=\text { Quiescent } @ I_{\text {out }}=0 \mu \mathrm{~A}, \text { no loading } \\ & I_{\text {LCD }}=\text { Quiescent } @ I_{\text {out }}=0 \mu \mathrm{~A}, \text { no loading } \end{aligned}$	IDDQ IDDQ $I_{D D Q}$ ${ }^{\mathrm{I} D D Q}$ licDo licdo	$\begin{aligned} & 2.7 \\ & 2.7 \\ & 5.5 \\ & 5.5 \\ & - \end{aligned}$	－ － － 2.7 5.5	－	30 - 170 -	$\begin{aligned} & \overline{70} \\ & \overline{-} \\ & 400 \\ & 40 \\ & 70 \end{aligned}$	$\mu \mathrm{A}$
Input Current	$\mathrm{l}_{\text {in }}$	－	－	－0．1	－	0.1	$\mu \mathrm{A}$
Input Capacitance	$\mathrm{C}_{\text {in }}$	－	－	－	－	7.5	pF

ELECTRICAL CHARACTERISTICS（Continued）

Characteristic	Symbol	$\begin{gathered} \mathrm{v}_{\mathrm{DD}} \\ \mathrm{v} \end{gathered}$	$\underset{\mathrm{VCD}}{\mathrm{~V}}$	Min	Typical	Max	Unit
Frequencies OSC2 Frequency＠R1；R1 $=200 \mathrm{k} \Omega$ BP Frequency（3）R1 OSC2 Frequency © R2；R2＝ $996 \mathrm{k} \Omega$	$\begin{aligned} & \mathrm{f}_{\mathrm{OSC}} \\ & \mathrm{f}_{\mathrm{BP}} \\ & \mathrm{f}_{\mathrm{OSC} 2} \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 23 \end{aligned}$	－	$\begin{aligned} & 150 \\ & 150 \\ & 33 \end{aligned}$	$\begin{gathered} \mathrm{kHz} \\ \mathrm{~Hz} \\ \mathrm{kHz} \end{gathered}$
Average DC Offset Voltage（BP Relative to FP）	V_{0}	5	2.8	－50	－	＋50	mV
Input Voltage＂0＂Level＂ 1 ＂Level	$\begin{aligned} & \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IL}} \end{aligned}$	$\begin{aligned} & 2.8 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$		－	$\begin{aligned} & 0.85 \\ & 1.65 \end{aligned}$	V
	$\begin{aligned} & V_{I H} \\ & V_{I H} \end{aligned}$	$\begin{aligned} & 2.8 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{gathered} 2 \\ 3.85 \end{gathered}$	－		
Output Drive Current－Backplanes	$\begin{aligned} & \mathrm{I}_{\mathrm{BH}}{ }^{*} \\ & \mathrm{I}_{\mathrm{BL}} \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 2.8 \\ & 2.8 \end{aligned}$	$\begin{aligned} & -240 \\ & -240 \end{aligned}$	二	－	$\mu \mathrm{A}$
	$\begin{aligned} & \mathrm{I}_{\mathrm{BH}} \\ & \mathrm{I}_{\mathrm{BL}} \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 2.8 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 260 \\ & 260 \end{aligned}$	－	－	
	$\begin{aligned} & \mathrm{I}_{\mathrm{BH}} \\ & \mathrm{I}_{\mathrm{BL}} \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 2.8 \\ & 2.8 \end{aligned}$	40	－	2	
	$\begin{aligned} & \mathrm{I}_{\mathrm{BH}} \\ & \mathrm{I}_{\mathrm{BL}} \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 2.8 \\ & 2.8 \end{aligned}$	-40	－	－1	
	I_{BH}	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & -520 \\ & -520 \end{aligned}$	二		
	$\begin{aligned} & I_{B H} \\ & I_{B L} \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 600 \\ & 600 \end{aligned}$	－		
	$\begin{aligned} & I_{B H} \\ & I_{B L} \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	55	－	$\overline{1}$	
	$\begin{aligned} & I_{\mathrm{BH}} \\ & \mathrm{I}_{\mathrm{BL}} \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	－35	－	－1	
Pulse Width，Data Clock（Figure 1）	t_{w}	$\begin{aligned} & 5 \\ & 3 \end{aligned}$		$\begin{gathered} 50 \\ 100 \end{gathered}$	－	－	ns
DCLK Rise／Fall Time（Figure 1）	t_{r}, t_{t}	$\begin{aligned} & 5 \\ & 3 \end{aligned}$		二	－	$\begin{gathered} 20 \\ 120 \end{gathered}$	$\mu \mathrm{s}$
Setup Time， $\mathrm{D}_{\text {in }}$ to DCLK \quad（Figure ${ }^{\text {2）}}$	$\mathrm{t}_{\text {su }}$	$\begin{aligned} & 5 \\ & 3 \end{aligned}$		0	－	－	ns
Hold Time， $\mathrm{D}_{\text {in }}$ to DCLK \quad（Figure 2）	t_{n}	$\begin{aligned} & 5 \\ & 3 \end{aligned}$		30 60	－	－	ns
DCLK Low to ENB High（Figure 3）	t_{n}	$\begin{aligned} & 5 \\ & 3 \end{aligned}$		$\begin{aligned} & 10 \\ & 20 \end{aligned}$	－	－	ns
ENB High to DCLK High（Figure 3）	$\mathrm{t}_{\text {rec }}$	$\begin{aligned} & 5 \\ & 3 \end{aligned}$		10 20	－	－	ns
ENB High Pulse Width（Figure 3）	$\mathrm{t}_{\text {w }}$	$\begin{aligned} & 5 \\ & 3 \end{aligned}$		$\begin{gathered} 50 \\ 100 \end{gathered}$	－	－	ns
ENB Low to DCLK High（Figure 3）	$\mathrm{t}_{\text {su }}$	5 3		10 20	－	－	ns

NOTE：Timing for Figures 1,2 ，and 3 are design estimates only．
＊For a time（ $\mathrm{t}=4 / \mathrm{OSC}$ FREQ．）after the backplane waveform changes to a new voltage level，the circuit is maintained in the high－current state to allow the load capacitances to charge quickly．The circuit is then returned to the low－current state until the next voltage change．

SWITCHING WAVEFORMS

Figure 1.

Figure 2.

Figure 3.

FUNCTIONAL DESCRIPTION

The MC14LC5003/MC14LC5004 has essentially two sections which operate asynchronously from each other; the data input and storage section and the LCD drive section. The LCD drive and timing is derived from the oscillator, while the data input and storage is controlled by the Data In ($\mathrm{D}_{\text {in }}$), Data Clock (DCLK), Address (A0, A1, A2), and Enable (ENB) pins.

Data is shifted serially into the 128 -bit shift register and arranged into four consecutive blocks of 32 parallel data bits. A time-multiplex of the four backplane drivers is made (each backplane driver becoming active then inactive one after another) and, at the start of each backplane active period, the corresponding block of 32 bits is made available at the frontplane drivers. A high input to a plane driver turns the driver on, and a low input turns the driver off.

Figure 4 shows the sequence of backplanes. Figure 5 shows the possible configurations of the frontplanes relative to the backplanes. When a backplane driver is on, its output switches
from V_{LCD} to 0 V , and when it is off, it switches from $1 / 3 \mathrm{~V}_{\mathrm{LCD}}$ to $2 / 3 \mathrm{~V}_{\mathrm{LCD}}$. When a frontplane driver is on, its output switches from 0 V to $\mathrm{V}_{\mathrm{LCD}}$, and when it is off, it switches from $2 / 3 V_{L C D}$ to $1 / 3 V_{L C D}$.

The LCD drive and timing section provides the multiplex signals and backplane driver input signals and formats the frontplane and backplane waveforms.

The address pins are used to uniquely distinguish LCD driver from any other chips on the same bus and to define LCD driver as the "master" in the system. There must be one master in any system.

The enable pin may be used as a third control line in the communication bus. It may be used to define the moment when the data is latched. If not used, then the data is latched after 128 bits of data have been received.

Figure 4. Backplane Sequence

Figure 5. Frontplane Combinations

A0-A2

Address Inputs (Pins 42-44)

The devices have to receive a correct address before they will accept data. Three address pins (A2, A1, A0) are used to define the states of the three programmable bits of MC14LC5003/MC14LC5004's 8-bit address.

The address is 0111vwxy where v, w, x represent $A 2, A 1$, and $A 0$ respectively. Where $v, w, x=0$, then $A 2, A 1$, and $A 0$ should be tied to 0 V . Where $\mathrm{v}, \mathrm{w}, \mathrm{x}=1$, then $\mathrm{A} 2, \mathrm{~A} 1$, and A 0 should be tied to $V_{D D}$.

The address pins must be tied to $V_{D D}$. This defines the device as a master.

NOTE

Note: In applications where the circuit will be isolated from external manual interference the system designer may take advantage of the self-programming feature. Upon power-on, address pins which are left open-circuit will be charged to $V_{D D}$ However, care must be taken not to inadvertently discharge the pins after power-on since the address may then be lost. A similar feature is also available on the ENB pin.

CAUTION

The configuration A0, A1, A2 = 000 should not be used. This does not give a valid address and is reserved for Motorola's use only. All three address pins should never be tied to 0 V simultaneously.

ENB

Enable Input (Pin 41)

If the ENB pin is tied to $V_{D D}$, the MC14LC5003/ MC14LC5004 will always latch the data after 128 bits have been received. The latched data is multiplexed and fed to the frontplane drivers for display. If external control of this latching function is required, then the $\overline{E N B}$ pin should be held low, followed by one high pulse on ENB when data display is required. (This may be useful in a system where one MC145003/ MC145004 is permanently addressed and only the last 128 bits of data sent are required to be latched for display). The pulse on the ENB pin must occur while DCLK is high.

```
DCLK, Din
Data Clock and Data Input (Pins 38, 39)
```

Address input and data input controls. See Data Input Protocol sections for relevant option.

OSC1, OSC2

Oscillator Pins (Pins 51,50)

To use the on-board oscillator, an external resistor should be connected between OSC1 and OSC2. Optionally, the OSC1 pin may be driven by an externally generated clock signal.

A resistor of $680 \mathrm{k} \Omega$ connected between OSC1 and OSC2 pins gives an oscillator frequency of about 30 kHz , giving approximately 30 Hz as seen at the LCD driver outputs. A resistor of $200 \mathrm{k} \Omega$ gives about 100 kHz , which results in 100 Hz at the driver outputs. LCD manufacturers recommend an LCD drive frequency of between 30 Hz and 100 Hz . See Figure 6.

Figure 6. Oscillator Frequency vs. Load Resistance

(Approximate)

FP1-FP32
Frontplane Drivers (Pins 36-27, 25-22, 19-15, 13-1)
Frontplane driver outputs.

BP1-BP4

Backplane Drivers (Pins 48-45)
Backplane driver outputs.
$V_{\text {LCD }}$
LCD Driver Supply (Pin 20)
Power supply input for LCD drive outputs. May be used to supply a temperature-compensated voltage to the LCD drive section, which can be separate from the logic voltage supply, $V_{D D}$.
$V_{D D}$
Positive Power Supply (Pin 49)
This pin supplies power to the main processor interface and logic portions of the device. The voltage range is 2.7 to 5.5 V with respect to the V_{SS} pin.

For optimum performance, $V_{D D}$ should be bypassed to $V_{\text {SS }}$ using a low inductance capacitor mounted very closely to these pins. Lead length on this capacitor should be minimized.

$V_{S S}$
 Ground (Pin 21)

Common ground.

DATA INPUT PROTOCOL

Two-wire communication bus DCLK, D_{in}; three-wire communication bus DCLK, D_{in}, ENB.
MC14LC5003 - SERIAL INTERFACE DEVICE (FIGURE 7)
Before communication with an MC14LC5003 can begin, a start condition must be set up on the bus by the transmitter. To establish a start condition, the transmitter must pull the data line low while the clock line is high. The "idle" state for the clock line and data line is the high state.

After the start condition has been established, an eight-bit address should be sent by the transmitter. If the address sent corresponds to the address of the MC14LC5003 then on each
successive clock pulse, the addressed device will accept a data bit.
If the $\overline{E N B}$ pin is permanently high, then the addressed MC14LC5003's internal counter latches the data to be displayed after 128 data bits have been received. Otherwise, the control of this latch function may be overridden by holding the ENB line low until the new data is required to be displayed, then a high pulse should be sent on the ENB line. The high pulse must be sent during DCLK high (clock idle).

To end communication with an MC14LC5003, a stop condition should be set up on the bus (or another start condition may be set up if another communication is desired). Note that the communication channel to an addressed device may be left open after the 128 data bits have been sent by not setting up a stop or a start condition. In such a case, the 129th rising DCLK edge, which normally would be used to set up the stop or start condition, is ignored by the MC14LC5003 and data continues to be received on the 130th rising DCLK. The latch function continues to work as normal (i.e., data is be latched either after each block of 128 data bits has been received or under external control as required).

At any time during data transmission, the transfer may be interrupted with a stop condition. Data transmission may be resumed with a start condition and resending the address.

MC14LC5004 - IIC DEVICE (FIGURE 8)

Before communication with an MC14LC5004 can begin, a start condition must be set up on the bus by the controller. To establish a start condition, the controller must pull the data line low while the clock line is high.
After the start condition has been established, an eight-bit address should be sent by the controller followed by an extra clock pulse while the data line is left high. In this option, only the seven most significant bits of the address are used to uniquely define devices on the bus, the least significant bit is used as a read/write control: if the least significant bit is 0 , then the controller writes to the LCD driver; if it is 1 , then the
controller reads from the LCD driver's 128-bit shift register on a first-in first-out basis. If the seven most significant address bits sent correspond to the address of the LCD driver then the addressed LCD driver responds by sending an "acknowledge" bit back to the controller (i.e., the LCD driver pulls the data line low during the extra clock pulse supplied by the controller). If the least significant address bit was 0 , then the controller should continue to send data to the LCD driver in blocks of eight bits followed by an extra ninth clock pulse to allow the LCD driver to pull the data line $D_{\text {in }}$ low as an acknowledgment. If the least significant address bit was 1 , then the LCD driver sends data back to the controller (the clock is supplied by the controller). After each successive group of eight bits sent, the LCD driver leaves the data line high for one pulse.

If the ENB pin is permanently high, then the addressed MC14LC5004's internal counter latches the data to be displayed after 128 data bits have been received. Otherwise the control of this latch function may be overridden by holding the ENB line low until the new data is required to be displayed, then a high pulse should be sent on the ENB line. The high pulse must be sent during DCLK high (clock idle).

To end communication with an MC14LC5004, a stop condition should be set up on the bus (or another start condition may be set up if another communication is desired). Note that the communication channel to an addressed device may be left open after the 128 data bits have been sent by not setting up a stop or a start condition. In such a case the rising DCLK edge which comes after all 128 data bits have been sent and after the last acknowledge-related clock pulse has been made is ignored; data continues to be received on the following DCLK high. The latch function continues to work as normal (i.e., data is latched either after each block of 128 data bits has been received or under external control as required).

At any time during data transmission, the transfer may be interrupted with a stop condition. Data transmission may be resumed with a start condition and resending the address.

Figure 7a. Data Input-MC14LC5003

Figure 7b. Serial 128 Bits Data

Figure 9. Application Example

APPLICATION INFORMATION

Figure 10 shows an interface example.
Example shows a semi-automatic SPI Mode (only start and stop conditions are done in non-SPI Mode). It contains the software to use HC11 with MC14LC5003 in manual SPI Mode.

Figure 10. Interface Example Between MC68HC11 and MC14LC5003

1

2	0000	T
4	0000	T
5	0000	T
6	0000	T
7	0000	T
8	0000	T
9	0000	T

A000	T	
A000	N	8E00FF
A003	M	8638
A005	T	B71009
A008	M	C611
A00A	N	CEA05E
A00D	T	BDA010
A010	T	
A010	U	18CE1000
A014	J	181D0820
A018	T	BDA031
A01B	X	A600
A01D	T	B7102A
A020	L	181F2980FB
A025	H	08
A026	H	5A
A027	R	26F2
A029	J	181C0820
A02D	T	BDA04C
A030	H	39
A031	M	8633
A033	T	B71028

extram	equ	\$A000	; \$A000 for 8K RAM
stack	equ	\$00FF	; last RAM byte
intofs	equ	\$1000	; Internal Registers
data	equ	\$08	
clock	equ	\$10	
enable	equ	\$20	
portd	equ	8	

	org	extram	; Program into RAM
cold	lds	\#stack	; set stack pointer
	ldaa	\#\$38	; set of MOSI,SS,SCK
	staa	\$1009	; DDRD
	1 dab	\#17	
	ldx	\#send	
	jsr	spi	
	end	cold	
spi	1 dy	\#intofs	
	bclr	portd, y \#enable	; $\mathrm{EN}=0$
	jsr	start	; start condition
again	1daa	0 , x	; SPI Mode Use
	staa	\$102A	; SPDR
	brclr	\$29, y, \#\$80,*	
	inx		; next DATA
	decb		
	bne	again	
	bset	portd,y \#enable	
	jsr	stop	;stop condition
	rts		
start	ldaa	\#\$33	; Normal Mode
	staa	\$1028	;SPCR

37	A036	J	181C0808		bset	portd，y \＃data	；DATA $=1$
38	A03A	J	$181 \mathrm{C0810}$		bset	portd，y \＃clock	；CLK＝ 1
39	A03E	J	18100808		belr	portd， y \＃data	；DATA $=0$
40	A042	J	181D0810		bclr	portd，y \＃clock	；CLK $=0$
41	A046	M	8673		1daa	\＃\＄73	；SPI Mode
42	A048	T	B71028		staa	\＄1028	；SPCR
43	A04B	H	39		rts		
44	A04C	M	8633	stop	1daa	\＃${ }^{\text {3 }} 3$	；Normal Mode
45	A04E	T	B71028		staa	\＄1028	；SPCR
46	A051	J	181D0808		bclr	portd， y \＃data	；DATA $=0$
47	A055	J	$181 \mathrm{C0810}$		bset	portd，y \＃clock	； $\mathrm{CLK}=1$
48	A059	J	181C0808		bset	portd，y \＃data	；DATA $=0$
49	A05D	H	39		rts		
50							
51	A05E	T	7 E	send	fcb	\＄007E	；LCD Driver Address
52	A05F	T	F0		fcb	\＄00f0	；Data to sent
53	A060	T	F0		fcb	\＄00f0	
54	A061	T	F0		fcb	\＄00f0	
55	A062	T	F0		fcb	\＄00f0	
56	A063	T	F0		fcb	\＄00f0	
57	A064	T	F0		fcb	\＄00f0	
58	A065	T	F0		fcb	\＄00f0	
59	A066	T	F0		fcb	\＄00f0	
60	A067	T	F0		fcb	\＄00f0	
61	A068	T	F0		fcb	\＄00f0	
62	A069	T	F0		fcb	\＄00f0	
63	A06A	T	F0		fcb	\＄00f0	
64	A06B	T	F0		fcb	\＄00f0	
65	A06C	T	F0		fcb	\＄00f0	
66	A06D	T	F0		fcb	\＄00f0	
67	A06E	T	F0		fcb	\＄00f0	
68	A06F	H	39		rts		
6							
70				；＝＝＝	OGRAM	－ニッ＝＝＝＝ッ＝＝＝＝	

Example 1．Semi－Automatic SPI Method

Figure 11 shows another interface example．
Example 2 contains the software to use HCO5 with MC14LC5003 in serial data interface．

Figure 11．Interface Example Between MC68HC05 and MC14LC5003

Example 2. Serial Data Interface Method

PACKAGE DIMENSIONS
QFP
FU SUFFIX
CASE 848B-02

SECTION B-B

DETAIL C
notes:
1.DIMENSIONING AND TOLERANCING PER ANSI Y14.5M. 1982
2.CONTROLLING DIMENSION: MILLIMETER.
3.DATUM PLANE - H- IS LOCATED AT BOTTOM OF

LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE. 4.DATUMS - A- -B - AND -D - TO BE DETERMINED AT DATUM PLANE - H-
5.DIMENSIONS S AND V TO BE DETERMINED AT SEATING PLANE -C-.
6.DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 (0.010) PER SIDE. DIMENSIONS A AND B DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -H-.
7.DIMENSION O DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT.

	MILLIMETERS		INCHES		
DIM	MIN	MAX	MIN	MX	
A	9.90	10.10	0.390	0.398	
B	9.90	10.10	0.390	0.398	
C	2.10	2.45	0.083	0.096	
D	0.22	0.38	0.009	0.015	
E	2.00	2.10	0.079	0.083	
F	0.22	0.33	0.009	0.013	
G	0.65		BSC	0.026	
BSC					
H	--	0.25	-	0.010	
J	0.13	0.23	0.005	0.009	
K	0.65	0.95	0.026	0.037	
L	7.80	REF	0.307	REF	
M	5^{*}	10°	5°	10°	
N	0.13	0.17	0.005	0.007	
Q	0^{*}	7^{*}	0^{*}	7^{*}	
R	0.13	0.30	0.005	0.012	
S	12.95	13.45	0.510	0.530	
T	0.13	-	0.005	--	
U	00°	--	0°	--	
V	12.95	13.45	0.510	0.530	
W	0.35	0.45	0.014	0.018	
X	1.6	REF	0.063	REF	

BOND PAD LAYOUT

Die size : $78 \times 119 \mathrm{mil}^{2}$ ($1 \mathrm{mil} \sim 25.4 \mu \mathrm{~m}$)

BOND PAD COORDINATES

PIN NO.	PIN NAME	COORDINATES	
		X	Y
1	FP32	-736.002	929.199
2	FP31	-736.002	781.999
3	FP30	-736.002	634.799
4	FP29	-736.002	487.599
5	FP28	-736.002	340.399
6	FP27	-736.002	193.199
7	FP26	-736.002	45.999
8	FP25	$\cdot 736.002$	-101.201
9	FP24	-736.002	-248.401
10	FP23	-736.002	-395.601
11	FP22	-736.002	-542.801
12	FP21	-736.002	-690.001
13	FP20	-736.002	-837.201
14	NC	N/A	N/A
15	FP19	-736.002	-1205.601
16	FP18	-588.802	-1205.601
17	FP17	-441.602	-1205.601
18	FP16	-294.402	-1205.601
19	FP15	-147.202	-1205.601
20	$V_{\text {LCD }}$	0.000	-1205.600
21	$V_{S S}$	147.200	-1205.600
22	FP14	294.398	-1205.601
23	FP13	441.598	-1205.601
24	FP12	588.798	-1205.601
25	FP11	735.998	-1205.601
26	NC	N/A	N/A

PIN NO.	PIN NAME	COORDINATES	
		X	Y
27	FP10	735.998	-837.201
28	FP9	735.998	-690.001
29	FP8	735.998	-542.801
30	FP7	735.998	-395.601
31	FP6	735.998	-248.401
32	FP5	735.998	-101.201
33	FP4	735.998	45.999
34	FP3	735.998	193.199
35	FP2	735.998	340.399
36	FP1	735.998	487.599
37	NC	736.000	634.800
38	DCLK	736.000	782.000
39	$\mathrm{D}_{\text {IN }}$	736.000	929.200
40	NC	N/A	N/A
41	ENB	736.000	1205.600
42	A2	588.800	1205.600
43	A1	441.600	1205.600
44	AO	294.400	1205.600
45	BP4	147.198	1205.599
46	BP3	-0.002	1205.599
47	BP2	-147.202	1205.599
48	BP1	-294.402	1205.599
49	$V_{D D}$	-441.600	1205.600
50	OSC2	-588.800	1205.600
51	OSC1	-736.000	1205.600
52	NC	N/A	N/A

MC141511A

LCD Segment Driver CMOS

The MC141511A is an LCD frontplane (segment) driver chip which includes a 656×8 display RAM. The MC68HC05L10 microcomputer is the companion device which provides the backplane drive.

The MC68HC05L10, together with one MC141511A, may be used to drive a 5248 -pixel muxed-by- 41 display or a 4096 -pixel muxed-by- 32 display. Larger displays may be driven by adding additional MC141511A.

The MC141511A is a low operating voltage version of MC141511. It is pin to pin compatible to the MC141511.

See Application Note AN-HK-13A.

- Operating Supply Voltage Range -

Control Logic, RAM, and Latch (VDD Pin): 2.7V to 5.5 V
Frontplane Drivers (VLCD Pin): 4.5 V to 13.2 V

- Operating Temperature Range: -20 to $70^{\circ} \mathrm{C}$
- Direct Interface with the MC68HC05L10
- 656×8 Static RAM (Display RAM)
- 128 LCD Segment (Frontplane) Driving Signals
- 10-Bit Address Bus and 8-Bit Bidirectional Data Bus
- Selectable 1:32 or 1:41 Multiplex Ratios
- Available in Two Forms:

TAB (Tape Automated Bonding), 161 Contacts, 10 sprocket hole device Die Form Without Gold Bumps, 159 Pads with 4.5 mil Pads Pitch

BLOCK DIAGRAM

Figure 1A. TAB Package Contact Assignment (Copper View)

Figure 1B. Chip Pad Assignment

MAXIMUM RATINGS ${ }^{*}$ (Voltages Referenced to $\mathrm{V}_{\mathrm{SS}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Symbol	Parameter	Value	Unit
$V_{D D}$	Supply Voltage	-0.3 to +7.0	V
$V_{\text {LCD }}$		-0.3 to +14.0	V
$\mathrm{V}_{\text {in }}$	Input Voltage	$\mathrm{V}_{\text {SS }}-0.3$ to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
1	Current Drain Per Pin Excluding V_{DD} and $\mathrm{V}_{\text {SS }}$	25	mA
T_{A}	Operating Temperature	-20 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$

* Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Description section.

ELECTRICAL CHARACTERISTICS (Voltage Referenced to $\mathrm{V}_{\mathrm{SS}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Symbol	Parameter	Min	Typ	Max	Unit
$V_{D D}$ $\mathrm{V}_{\mathrm{LCD}}$	Operating Voltage Supply Voltage LCD Voltage	$\begin{aligned} & 2.7 \\ & 4.5 \end{aligned}$		$\begin{gathered} 5.5 \\ 13.2 \end{gathered}$	$\begin{aligned} & \text { V } \\ & \text { v } \end{aligned}$
$\begin{aligned} & I_{\mathrm{AC}} \\ & \mathrm{I}_{\mathrm{DP}} \\ & \mathrm{I}_{\mathrm{SB}} \\ & \mathrm{I}_{\mathrm{AC}} \\ & \mathrm{I}_{\mathrm{DP}} \end{aligned}$	Supply Current at $\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}(\mathrm{PHI} 2=3.685 \mathrm{MHz})$ ACCESS DISPLAY STANDBY (Using D_{ON} bit of the MCU) at $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$ ($\mathrm{PH} 2=1.25 \mathrm{MHz}$) ACCESS DISPLAY STANDBY (Using D_{ON} bit of the MCU)		$\begin{aligned} & 25 \\ & 15 \\ & - \\ & 17 \\ & 10 \end{aligned}$	$\begin{gathered} 200 \\ 30 \\ 20 \\ \\ 200 \\ 30 \\ 20 \end{gathered}$	uA uA uA uA uA uA
ILCD	Supply Current at $\mathrm{V}_{\text {LCD }}$	-	-	200	uA
$\begin{aligned} & \mathrm{V}_{\mathrm{OL}} \\ & \mathrm{~V}_{\mathrm{OH}} \end{aligned}$	Output Voltage, lload $\leq 10.0 \mathrm{uA}$	$V_{\mathrm{LCD}}{ }^{-0.1}$			$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
V_{OH}	Output High Voltage (lload=1.6mA) D7-D0	$\mathrm{V}_{\mathrm{DD}}-0.8$	-		V
V_{OL}	Output Low Voltage (lload=1.6mA) D7-D0	-	-	0.4	V
V_{IH}	Input High Voltage R/W, BPCLK, BPSYNC, PHI2, MS, $\overline{C E}$, D7-D0	$0.8 \times V_{D D}$	-	$V_{D D}$	V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage R/W, BPCLK, BPSYNC, PHi2, MS, CE, D7-D0	$\mathrm{V}_{\text {SS }}$	-	$0.2 \times \mathrm{V}_{\mathrm{DD}}$	V
V_{R}	Data Retention	2.0	-	-	V
$1{ }_{\text {in }}$		-	-	± 1	uA
$\mathrm{C}_{\text {in }}$	Capacitance R/W, BPCLK, BPSYNC, PHI2, MS, $\overline{\text { CE, D7-D0 }}$	-	-	8	pF
I_{OH}	Output current ($\left.\mathrm{V}_{\mathrm{OH}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.5 \mathrm{~V}\right) \quad$ D7-D0	$+20$		-20	$\begin{aligned} & \mathrm{uA} \\ & \mathrm{uA} \end{aligned}$

AC ELECTRICAL CHARACTERISTICS - WRITE CYCLE ($\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=\mathrm{OV}$)

Symbol	Parameter	Min	Max	Unit
$\mathrm{t}_{\mathrm{CYCW}}$	Write Cycle Time	400	-	ns
t_{AS}	Address Set Up Time	100	-	ns
t_{AH}	Address Hold Time	70	-	ns
t_{CS}	Chip Select Pulse Width	260	-	ns
$\mathrm{t}_{\text {WCS }}$	Write to Chip Select Delay Time	100	-	ns
$\mathrm{t}_{\mathrm{DSW}}$	Data Setup Time	200	-	ns
t_{H}	Input Hold Time	15	-	ns
t_{WH}	Write Hold Time from Chip Select	70	-	ns

Figure 2. Write Cycle Timing

AC ELECTRICAL CHARACTERISTICS - READ CYCLE $\left(\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}\right)$

Symbol	Parameter	Min	Max	Unit
$t_{\text {CYCR }}$	READ Cycle Time	400	-	ns
t_{AS}	Address Setup Time	100	-	ns
$\mathrm{t}_{\mathrm{DDR}}$	Data Delay Time (Read)	-	350	ns
t_{H}	Output Hold Time	10	-	ns

Figure 3. Read Cycle Timing

PIN DESCRIPTIONS

$V_{D D}$ AND $V_{S S}$

The main dc power is supplied to the part by these two connections. $V_{D D}$ is the most-positive supply level for logic circuitry and $V_{S S}$ is ground.
$V_{\text {LCD }}$
This supply connection provides the voltage level for the segment drivers and is connected to the Vout connection of the MC68HC05L10 MCU.

$\mathbf{V}_{\text {SEGL }}, \mathbf{V}_{\text {SEGH }}$

These inputs are connected to V 2 and V 3 of an external voltage divider. See Figure 4.

D0 - D7
These connections form an eight bit wide bidirectional data bus which are connected to D0 through D7 of the MC68HC05L10.

A0 - A9

These inputs form a ten-bit wide address bus for addressing the display RAM and are connected to A0 through A9 of the MC68HC05L10.

BPSYNC

This input is a periodic active-low signal from the MC68HC05L10 for timing synchronization. BPSYNC is connected to FRM of MC68HC05L10. See Figure 5.

BPCLK
This input may be run as high as 4.096 kHz (50% duty cycle). It provides the required frame frequency for the segment driver. It is connected to BPCLK of the MC68HC05L10. Thus, the frequency is usually 2.048 kHz . See Figure 5.

PHI2

This input is a bus clock input that is used for data bus timing synchronization. It is connected to P02 of MC68HC05L10.

SEGO-SEG127

These 128 output lines provide the frontplane drive signals to the LCD panel. These outputs are forced to a low level while display is turned off. Any unused segment outputs should be left open.
$\overline{C E}$
This is an active low chip enable input and is connected to either $\overline{\mathrm{CS1}}, \overline{\mathrm{CS}}, \overline{\mathrm{CS}}$ or $\overline{\mathrm{CS} 4}$ of the MC68HC05L10.

LRS

The left-right selection input defines the direction of the segment driver display. See Figure 8.
0 or Low = SEG 0 - 127
1 or High = SEG 127-0
MS
This input selects how display RAM is addressed. Either a 1:32 or 1:41 multiplex ratio is possible.
0 or Low $=1: 32$ multiplex addressing
1 or High = 1:41 multiplex addressing

R/W

This input indicates which direction the data is to be passed over the data bus. When R / \bar{W} is low, the LCD driver reads data from the data bus (D0-D7). When R \bar{W} is high, the LCD driver writes data to the data bus (DO-D7). This input is connected to R/W of MC68HC05L10.

TEST

Allowing this connection to float or connecting it to VSS (GND) places the part in the normal mode of operation. This input has an onchip pulldown resistance of approximately $1 \mathrm{M} \Omega$.

Figure 4. External Voltage Divider

Figure 5．Relationship between BPSYNC and BPCLK

$\text { LRS }=0 \longrightarrow \begin{gathered} 8 \\ \hline \end{gathered}$	$\begin{aligned} & \overline{(} \\ & \text { 岕 } \end{aligned}$	恣	$\begin{aligned} & \text { §o } \\ & \text { W } \end{aligned}$	N N W	N N W
LRS $=1 \longrightarrow$ 第	$\begin{aligned} & \stackrel{N}{N} \\ & \stackrel{N}{N} \\ & \underset{W}{N} \end{aligned}$	N	$\begin{aligned} & \stackrel{H}{N} \\ & \stackrel{y}{U} \\ & \underset{\sim}{n} \end{aligned}$	¢	－i8

Figure 6．Display RAM Configuration

OPERATION OF LCD DRIVER

INTRODUCTION

The MC141511 is LCD driver with selectable 1: 32 or $1: 41$ multiplex ratios. The device consists of the following functional blocks as shown in the Block Diagram.

CONTROL LOGIC - accepts the control signals from the MCU and generates internal signals for synchronisation.

DISPLAY RAM - stores the display data. Each bit of the display RAM has one-to-one correspondence to a pixel of the LCD. The display RAM is in vertical byte oriented format as shown in Figure 6 and the way the display RAM is addressed depends on the multiplexing mode of the LCD (Figure 8). With reference to Figure 6, the display RAM also contains 16 bytes of memory which is in horizontal format (\$280-\$28F). The display RAM is addressed when backplane reaches 41.

LEVEL SELECTOR - consists of a switching circuit to select appropriate voltage levels from an external voltage divider. See figure 4.

SEGMENT DRIVERS - provides the segment driving signals to the LCD frontplane. See Figure 7.

The LCD driver clock is derived from the 2.048 KHz BPCLK and frame frequency is 64 Hz for $1: 32$ multiplex and 50 Hz for 1:41 multiplex ratio. See Figure 5.

GENERATION OF LCD BIAS LEVELS

Refer to Figure 4. In order to obtain optimum contrast for LCD panels, the bias levels should be selected such that

```
BIAS = R/(4R+R1 ) = 1/(\sqrt{}{MUX + 1)}
V1/NLCD = 1/(\sqrt{}{MUX + 1)}
V2/VLCD = 2/(\sqrt{}{MUX +1)}
V3NLCD = (\sqrt{}{MUX -1)/(\sqrt{}{MUX }+1)}\)
V4NLCD = \sqrt{}{MUX /(\sqrt{}{MUX + 1)}}\mathbf{M})
Example: Mux = 41 ---- Bias = 1:7.4,
R=10K,R1=33K,VR=100K
Mux = 32 ---- Bias = 1:6.6,
R=10K,R1 = 27K,VR=100K
```


Figure. 7 Driving Waveform of 1:5 Bias, 1:32 or 1:41 Multiplex Ratio

1 : 32

\square	\$1C0-\$1CF	∞
\square	\$200-\$27F	$-\infty$
\square	\$280-\$2FF	$\underline{\sim}$
\square	\$300- \$37F	\rightarrow
\square	\$380-\$3FF	$-\infty$
\square	\$400-\$47F	$-\infty$

$1: 41$

ONE SLAVE

\square	\$200-\$27F	\cdots	\sim	\$400-\$47F	-
\square	\$280-\$2FF	\rightarrow	-	\$480-\$4FF	\cdots
$\square-$	\$300-\$37F	\rightarrow	\square	\$500-\$57F	\square
\square	\$380-\$3FF	\cdots	\square	\$580-\$5FF	\rightarrow

1 : 32

\square	\$1C0-\$1CF	\rightarrow	\square	\$1D0- \$1DF	$-$
\square	\$200-\$27F	\cdots	∞	\$480-\$4FF	∞
\square	\$280-\$2FF	$-\infty$	\square	\$500- \$57F	$-\infty$
\square	\$300-\$37F	$-$	\square	\$580-\$5FF	$-\infty$
\square	\$380-\$3FF	\rightarrow	\square	\$600-\$67F	\rightarrow
\square	\$400-\$47F	\rightarrow	\square	\$680- \$6FF	\rightarrow

TWO SLAVES
1:41

\square	\$200-\$27F	\rightarrow	\square	\$400-\$47F	\cdots	\longrightarrow	\$600-\$67F	\rightarrow
\square	\$280-\$2FF	\cdots	\square	\$480-\$4FF	$-\infty$	\square	\$680-\$6FF	$-\infty$
\square	\$300-\$37F	\rightarrow	\square	\$500-\$57F	\cdots	\square	\$700-\$77F	$-\infty$
\square	\$380-\$3FF	\square	\square	\$580-\$5FF	\square	\square	\$780-\$7FF	\cdots

1:32

\square	\$1C0-\$1CF	\cdots	-	\$1D0-\$1DF	$-\infty$	\square	\$1E0- \$1EF	∞
\square	\$200-\$27F	\cdots	$\square-$	\$480-\$4FF	\rightarrow	\square	\$700- \$77F	$-\infty$
\longrightarrow	\$280-\$2FF	\cdots	\square	\$500-\$57F	\cdots	\longrightarrow	\$780-\$7FF	\cdots
\square	\$300-\$37F	\cdots	\square	\$580- \$5FF	\rightarrow	\longrightarrow	\$800-\$87F	\rightarrow
\square	\$380- \$3FF	\rightarrow	\square	\$600-\$67F	\cdots	\square	\$880-\$8FF	\square
\square	\$400-\$47F	\square	\square	\$680-\$6FF	$-\infty$	\square	\$900-\$97F	-5

1:41

THREE SLAVES

\square	\$200-\$27F	$-\infty$	\square	\$400-\$47F	$-\infty$	\longrightarrow	\$600-\$67F	\cdots	\square	\$800-\$87F	-5
\square	\$280- \$2FF	\rightarrow	\longrightarrow	\$480-\$4FF	-5	\longrightarrow	\$680-\$6FF	\rightarrow	\square	\$880-\$8FF	$-\infty$
\square	\$300-\$37F	\rightarrow	\square	\$500-\$57F	\square	\square	\$700-\$77F	\pm	\square	\$900-\$97F	\rightarrow
\square	\$380- \$3FF	\square	\square	\$580-\$5FF	$-\infty$	\square	\$780-\$7FF	\cdots	\square	\$980-\$9FF	$-\infty$

$1: 32$

\square	\$1C0-\$1CF	∞	\square	\$1D0-\$1DF	\square	\square	\$1E0-\$1EF	\square	\square	\$1F0-\$1FF	\rightarrow
\square	\$200-\$27F	\square	\square	\$480-\$4FF	\cdots	\square	\$700-\$77F	5	\square	\$980-\$9FF	-5
\square	\$280-\$2FF	-5	\square	\$500-\$57F	\rightarrow	\square	\$780- \$7FF	\square	\square	\$A00 - \$A7F	-5
\square	\$300-\$37F	\cdots	\square	\$580-\$5FF	\rightarrow	\square	\$800-\$87F	\cdots	\square	\$A80-\$AFF	$-\infty$
\square	\$380-\$3FF	\rightarrow	\square	\$600-\$67F	\cdots	\square	\$880-\$8FF	\cdots	\square	\$B00-\$B7F	\rightarrow
\square	\$400-\$47F	\square	$\square-$	\$680-\$6FF	\square	$\square-$	\$900-\$97F	\cdots	\square	\$B80 - \$BFF	\cdots

$1: 41$
FOUR SLAVES
Figure 8. Display RAM Mapping for 1:32 and 1:41 Multiplex Ratio

PACKAGE DIMENSIONS

MC141511AT2

TAB PACKAGE DIMENSION (DO NOT SCALE THIS DRAWING)

MC141511AT2 TAB PACKAGE DIMENSION

	Millimeters		Inches		Millimeters			Inches	
Dim	Min	Max	Min	Max	Dim	Min	Max	Min	Max
A	46.55	47.55	1.8327	1.8720	AE	21.25	21.35	0.8366	0.8406
B	34.775	35.175	1.3691	1.3848	AF	1.95	2.05	0.0768	0.0807
C	28.947	29.007	1.1396	1.1420	AG	0.85	0.95	0.0335	0.0374
D	4.72	4.78	0.1858	0.1882	AH	0.85	0.95	0.0335	0.0374
E	1.951	2.011	0.0768	0.0792	AJ	9.75	9.85	0.3839	0.3878
F	1.951	2.011	0.0768	0.0792	AK	6.85	6.95	0.2697	0.2736
G	1	2	0.0394	0.0787	AL	4.75	4.85	0.1870	0.1909
H	-	-	-	-	AM	1.95	2.05	0.0768	0.0807
J	7.469	8.469	0.2941	0.3334	AN	1.95	2.05	0.0768	0.0807
K	9.04	10.04	0.3559	0.3953	AP	0.085	0.095	0.0033	0.0037
L	0.48	0.52	0.0189	0.0205	AR	0.35	0.45	0.0014	0.0177
M	1.26	1.28	0.0496	0.0504	AS	0.35	0.45	0.0014	0.0177
N	4.95	5.05	0.1949	0.1988	AT	0.6	0.7	0.0236	0.0276
P	20.45	20.55	0.8051	0.8091	AU	0.6	0.7	0.0236	0.0276
R	20.45	20.55	0.8051	0.8091	AV	0.75	0.85	0.0295	0.0335
S	9.78	9.88	0.3850	0.3890	AW	0.75	0.85	0.0295	0.0335
T	23.155	23.255	0.9116	0.9156	AX	1.75	1.85	0.0689	0.0728
U	23.155	23.255	0.9116	0.9156	AY	0.34	0.36	0.0134	0.0142
V	22.53	22.62	0.8870	0.8905	AZ	0.15	0.19	0.0059	0.0075
W	22.53	22.62	0.8870	0.8905	BA	13.7	14.3	0.5394	0.5630
X	23.1	23.2	0.9094	0.9134	BB	1.22	1.32	0.0480	0.0520
Y	23.1	23.2	0.9094	0.9134	BC	1.22	1.32	0.0480	0.0520
Z	19.95	20.05	0.7854	0.7894	BD	0.45	0.55	0.0177	0.0217
AA	-	0.2	-	0.0079	BE	11.35	11.45	0.4469	0.4508
AB	0.686	0.838	0.027	0.033	BF	0.12	0.22	0.0047	0.0087
AC	0.068	0.063	0.0027	0.0024	BG	12.35	12.45	0.4862	0.4902
AD	0.579	0.629	0.0227	0.0247					

NOTES:

1. Dimensioning and tolerancing per ANSI Y14.5M, 1982.
2. Controlling dimension: millimeter
3. Copper thickness: 1 oz

TAB TAPE REEL ORIENTATION

MCC141511A PAD COORDINATES

(UNIT: um)

Pin Name	X	Y	$\begin{aligned} & \text { Pin } \\ & \text { Name } \end{aligned}$	X	Y	Pin Name	X	Y	Pin Name	X	Y
VDD	-1874.62	-2498.76	SEG126	2728.66	-2233.88	SEG86	2630.76	2432.32	SEG39	-2728.66	22.27 .72
TEST	-1738.66	-2498.76	SEG125	2728.66	-2119.48	SEG85	2516.36	2432.32	SEG38	-2728.66	2113.32
BPSYNC	-1611.06	-2498.76	SEG124	2728.66	-2005.08	SEG84	2401.96	2432.32	SEG37	-2728.66	1998.92
BPCLK	-1483.46	-2498.76	SEG123	2728.66	-1890.68	SEG83	2287.56	2432.32	SEG36	-2728.66	1884.52
MS	-1355.86	-2498.76	SEG122	2728.66	-1776.28	SEG82	2173.16	2432.32	SEG35	-2728.66	1770.12
PHI2	-1228.26	-2498.76	SEG121	2728.66	-1661.88	SEG81	2058.76	2432.32	SEG34	-2728.66	1655.72
$\overline{\mathrm{CE}}$	-1100.66	-2498.76	SEG120	2728.66	-1547.48	SEG80	1944.36	2432.32	SEG33	-2728.66	1541.32
RWW	. 973.06	-2498.76	SEG119	2728.66	-1433.08	SEG79	1829.96	2432.32	SEG32	-2728.66	1426.92
A9	-845.46	-2498.76	SEG118	2728.66	-1318.68	SEG78	1715.56	2432.32	SEG31	-2728.66	1312.52
A8	-717.86	- -2498.76	SEG117	2728.66	-1204.28	SEG77	1601.16	2432.32	SEG30	-2728.66	1198.12
A7	-590.26	-2498.76	SEG116	2728.66	-1089.88	SEG76	1486.76	2432.32	SEG29	-2728.66	1083.72
A6	-462.66	-2498.76	SEG115	2728.66	-975.48	SEG75	1372.36	2432.32	SEG28	-2728.66	969.32
A5	-335.06	-2498.76	SEG114	2728.66	-861.08	SEG74	1257.96	2432.32	SEG27	-2728.66	854.92
A4	-207.46	-2498.76	SEG113	2728.66	-746.68	SEG73	1143.56	2432.32	SEG26	-2728.66	740.52
A3	-79.86	-2498.76	SEG112	2728.66	-632.28	SEG72	1029.16	2432.32	SEG25	-2728.66	626.12
A2	47.74	-2498.76	SEG111	2728.66	-517.88	SEG71	914.76	2432.32	SEG24	-2728.66	511.72
A1	175.34	-2498.76	SEG110	2728.66	-403.48	SEG70	800.36	2432.32	SEG23	-2728.66	397.32
A0	302.94	-2498.76	SEG109	2728.66	-289.08	SEG69	685.96	2432.32	SEG22	-2728.66	282.92
LRS	430.54	-2498.76	SEG108	2728.66	-174.68	SEG68	571.56	2432.32	SEG21	-2728.66	168.52
DO	558.14	-2498.76	SEG107	2728.66	-60.28	SEG67	457.16	2432.32	SEG20	-2728.66	54.12
D1	685.74	-2498.76	SEG106	2728.66	54.12	SEG66	342.76	2432.32	SEG19	-2728.66	-60.28
D2	813.34	-2498.76	SEG105	2728.66	168.52	SEG65	228.36	2432.32	SEG18	-2728.66	-174.68
D3	940.94	-2498.76	SEG104	2728.66	282.92	SEG64	113.96	2432.32	SEG17	-2728.66	-289.08
D4	1068.54	-2498.76	SEG103	2728.66	397.32	SEG63	-0.44	2432.32	SEG16	-2728.66	-403.48
D5	1196.14	-2498.76	SEG102	2728.66	511.72	SEG62	-114.84	2432.32	SEG15	-2728.66	-517.88
D6	1323.74	-2498.76	SEG101	2728.66	626.12	SEG61	-229.24	2432.32	SEG14	-2728.66	-632.28
D7	1451.12	-2498.76	SEG100	2728.66	740.52	SEG60	-343.64	2432.32	SEG13	-2728.66	-746.68
VLCD	1578.94	-2498.76	SEG99	2728.66	854.92	SEG59	-458.04	2432.32	SEG12	-2728.66	-861.08
VSEGH	1706.54	-2498.76	SEG98	2728.66	969.32	SEG58	-572.44	2432.32	SEG11	-2728.66	-975.48
VSEGL	1834.14	-2498.76	SEG97	2728.66	1083.72	SEG57	-686.84	2432.32	SEG10	-2728.66	-1089.88
VSS	1979.78	-2498.76	SEG96	2728.66	1198.12	SEG56	-801.24	2432.32	SEG9	-2728.66	-1204.28
DUMPAD 4	2111.78	-2498.76	SEG95	2728.66	1312.52	SEG55	-915.64	2432.32	SEG8	-2728.66	-1318.68
DUMPAD 3	2239.38	-2498.76	SEG94	2728.66	1426.92	SEG54	-1030.04	2432.32	SEG7	-2728.66	-1433.08
DUMPAD 2	2366.98	-2498.76	SEG93	2728.66	1541.32	SEG53	-1144.44	2432.32	SEG6	-2728.66	-1547.48
DUMPAD 1	2494.58	-2498.76	SEG92	2728.66	1655.72	SEG52	-1258.84	2432.32	SEG5	-2728.66	-1661.88
SEG127	2619.54	-2498.76	SEG91	2728.66	1770.12	SEG51	-1373.24	2432.32	SEG4	-2728.66	-1776.28
			SEG90	2728.66	1884.52	SEG50	-1487.64	2432.32	SEG3	-2728.66	-1890.68
			SEG89	2728.66	1998.92	SEG49	-1602.04	2432.32	SEG2	-2728.66	-2005.08
			SEG88	2728.66	2113.32	SEG48	-1716.44	2432.32	SEG1	-2728.66	-2119.48
			SEG87	2728.66	2227.72	SEG47	-1830.84	2432.32	SEG0	-2728.66	-2233.88
						SEG46	-1945.24	2432.32			
						SEG45	-2059.64	2432.32			
						SEG44	-2174.04	2432.32			
						SEG43	-2288.44	2432.32			
						SEG42	-2402.84	2432.32			
						SEG41	-2517.24	2432.32			
						SEG40	-2631.64	2432.32			

Die Size $\quad: 240.0 \times 212.0 \mathrm{mil}^{2}$
Pad Pitch : 4.5 mil
Note $\quad: 1$ mil $\sim 25.4 \mu \mathrm{~m}$
DUMPAD 1-4: Dummy pad without connections to internal circuitry

Note
: Full capability of MC68HC05L10 can control up to four MC141511A slave LCD drivers with 41×512 dots LCD panel. Refer to application note, MC68HC05L10 AN ENHANCED VERSION OF L9 FOR HANDHELD EQUIPMENT APPLICATIONS (AN-HK-13A) for more details.

LCD Backplane Drivers CMOS

The MC141512 and MC141515 are high voltage passive LCD backplane driver chips. The MC141512 provides 80 high voltage LCD driving signals whereas the MC141515 provides 160 high voltage LCD driving signals.

They are companion chips to the MC141514 and MC141519 LCD segment driver for medium size LCD panels. All these chips are controlled by the MC68HC05L11 microcomputer.

The MC141515T is the twin die version of the MC141512T.
See Application Note AN-HK-15.

- Operating Supply Voltage Range -

Control Logic (VD Pin): 2.7 V to 5.5 V
Backplane Drivers (VLCD Pin): 10 V to 25 V

- Operating Temperature Range: - 25 to $70^{\circ} \mathrm{C}$
- Direct Serial Data Interface with the MC68HC05L11
- MC141512-80 LCD Backplane Driving Signals
- MC141515-160 LCD Backplane Driving Signals
- $1: 5$ to $1: 13$ Bias
- Expansion to Higher Driver Count by Cascade
- Available in Three Forms:

TAB (Tape Automated Bonding), 91 Contacts - MC141512T1 182 Contacts - MC141515T
Die Form Without Gold Bumps, 91 Pads with 4.3 mil Pads Pitch

MC141512 MC141515

BLOCK DIAGRAM

Lع- ε
ststiow・でstitiow

MAXIMUM RATINGS*(Voltages Referenced to V_{SS})

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage	-0.3 to +7.0	V
$\mathrm{~V}_{<1>}$		-0.3 to +27.5	V
$\mathrm{~V}_{\mathrm{in}}$	Input Voltage	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
I	Current Drain Per Pin Excluding V_{DD} and V_{SS}	25	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature	-25 to +75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{stg}}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$

* Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Description section.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions to be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended that $V_{\text {in }}$ and $V_{\text {out }}$ be constrained to the range $\mathrm{V}_{\mathrm{SS}}<$ or $=\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right)<$ or $=\mathrm{V}_{\mathrm{DD}}$. Reliability of operation is enhanced if unused input are connected to an appropriate logic voltage level (e.g., either $V_{S S}$ or $V_{D D}$). Unused outputs must be left open. This device may be light sensitive. Caution should be taken to avoid exposure of this device to any light source during normal operation. This device is not radiation protected.

ELECTRICAL CHARACTERISTICS (Voltage Referenced to $\mathrm{V}_{\mathrm{SS}}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{~V}_{<1>}=25 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-25$ to $70^{\circ} \mathrm{C}$)

Symbol	Parameter	Test Condition	Min	Typ	Max	Unit
$\begin{aligned} & V_{D D} \\ & V_{\langle 1\rangle} \end{aligned}$	Supply Voltage Range LCD Supply Voltage Range	(Absolute value reference to V_{SS})	$\begin{gathered} \hline 2.7 \\ +10.0 \end{gathered}$		$\begin{gathered} 5.5 \\ +25.0 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$l_{\text {dP }}$	Display Mode Supply Current (VDD Vin)	BPCLK $=8 \mathrm{KHz}$	-	1	10	UA
$I_{\text {SB }}$	Standby Mode Supply Current (VDD ${ }_{\text {Pin }}$)	Using $\mathrm{D}_{\text {ON }}$ bit of the MCU	-	0.5	1	uA
ILDP	Display Mode Supply Current ($\mathrm{V}_{<1\rangle} \mathrm{Pin}$)	BPCLK $=8 \mathrm{KHz}$	-	3	10	UA
$\mathrm{I}_{\text {LSB }}$	Standby Mode Supply Current ($\mathrm{C}_{\text {<1> }}$ Pin)	BPCLK $=8 \mathrm{KHz}$	-	0.5	1	uA
$\begin{aligned} & \mathrm{V}_{\mathrm{OL}} \\ & \mathrm{~V}_{\mathrm{OH}} \end{aligned}$	Output Low Voltage Output High Voltage (M, FMC)	No Load	$\begin{gathered} V_{S S} \\ 0.8 \times V_{D D} \end{gathered}$		$\begin{gathered} 0.2 \times V_{D D} \\ V_{D D} \end{gathered}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IL}} \end{aligned}$	Input High Voltage Input Low Voltage (BPCLK, FRM, M, DOFF, FMC, MGEN)		$\begin{gathered} 0.7 \times V_{D D} \\ V_{S S} \end{gathered}$		$\begin{gathered} V_{D D} \\ 0.3 \times V_{D D} \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$1{ }_{\text {in }}$	Input Current (BPCLK, FRM, M, DOFF, FMC, MGEN)		-	-	± 1	uA
$\mathrm{C}_{\text {in }}$	Input Capacitance (BPCLK, FRM, M, DOFF, FMC)		-	-	8	pF
$\begin{aligned} & \mathrm{I}_{\mathrm{OH}} \\ & \mathrm{I}_{\mathrm{OL}} \end{aligned}$	Output High Current Output Low Current (M, FMC)	$\begin{aligned} & V_{\mathrm{OH}}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OL}}=0.5 \mathrm{~V} \end{aligned}$	$+100$	-	-100	$\begin{aligned} & \text { UA } \\ & \text { UA } \end{aligned}$

AC ELECTRICAL CHARACTERISTICS $\left(V_{D D}=2.7-5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Symbol	Parameter	Min	Max	Unit
$\mathrm{t}_{\text {FCon }}$	Carry Out Frame On Time	122	-	us
$\mathrm{t}_{\text {FCd }}$	Carry Out Frame Delay Time	10	100	ns
$\mathrm{t}_{\mathrm{BPon}}$	BPCLK Pulse On Time	61	-	us
$\mathrm{t}_{\mathrm{BPcyc}}$	BPCLK Cycle Period	61	-	us
$\mathrm{t}_{\text {FMd }}$	Frame Delay Time	10	100	ns
$\mathrm{t}_{\text {FMon }}$	Frame Pulse On Time	122	-	us

Timing Diagram

PIN DESCRIPTIONS

$V_{D D}$ AND $V_{S S}$
Power is supplied to the driver using these two pins. $V_{D D}$ is power and $V_{S S}$ is ground.

$\mathrm{V}<1>, \mathrm{V}<5>, \mathrm{V}<6>$

These are the levels of voltage generated from an external voltages divider (Fig. 1).

DOFF

This is an output from MC68HC05L11 to signal the backplane driver to turn off LCD. If this signal is clear, the backplane driver will supply LCD with driving signal. If this signal is set, the backplane driver outputs will be high-impedanced and LCD display is disabled.

FRM

A periodic active high input to the backplane driver for frame timing synchronization which is connected to FRM of MC68HC05L11.

BPCLK

A periodic output from MC68HC05L11 to backplane driver for timing synchronization. The signal will affect the refreshing time of LCD display.

FMC
This is an output pin of backplane driver which is connected to the FRM of the next backplane driver in case of cascading.

M
This pin is for synchronization between the display driver. When MGEN is set, it will generate an M signal for synchronization. When MGEN is clear, it becomes an input pin and expecting a M signal from other device.

MGEN

An input which is used for program the M pin as an input or output. If MGEN is logic high, M acts as an output. If MGEN is logic low, M becomes an input.

COM 0-79

These are the high voltage outputs of the backplane driver which are connected to set of common lines of any LCD panel.

OPERATION OF LCD DRIVER

INTRODUCTION

The LCD backplane driver can support multiplex ratio of a LCD system up to 146 and cascading of more than one driver for expansion is possible. It can be set from 1:5 bias (for 16 mux) to $1: 13$ bias (for 146 mux), by the voltage divider ratio of Fig.1. The ratio of bias or the contrast ratio (a) is defined as

$$
1: \frac{4 \times R 1+R 2}{R 1}=1: a
$$

As the multiplex ratio changes, the ratio of bias has to be changed accordingly. The ratio of bias relates to the multiplex ratio as

$$
a=\sqrt{m u x}+1
$$

To set up a multiplex ratio, please refer to MC68HC05L11 technical data Section 10.6.2.

VOLTAGES SELECTOR consists of switching circuit to select appropriate voltage levels from external voltage divider. (See Fig. 1).

80-BIT SHIFT REGISTER samples the FRM at the falling edge of BPCLK and shifts the sample to the left 80 times before exports to the next backplane driver through FMC.

HIGH VOLTAGE DRIVERS ARRAY is a row of high voltage drivers connecting to segment lines of any LCD panel. The output waveform of the high voltage driver is shown as Com(1) and Com(2)are shown in Figure 2.

POWER UP SYNCHRONIZATION is activated upon the receipt the first M pulse. The M pin of the backplane driver will act as an input when MGEN is connected to Low. When MGEN is Set, this backplane driver will be the master of the synchronization system. M pin will then supply a periodic signal for all LCD drivers.

Figure 1. External Voltage Divider

Figure 2. Driving Waveforms of 1:N Multiplex Ratio

PACKAGE DIMENSIONS

MC141512T1
TAB PACKAGE DIMENSION
(DO NOT SCALE THIS DRAWING)

MAGNIFIED VIEW

MC141512T1

TAB PACKAGE DIMENSION (DO NOT SCALE THIS DRAWING)

DETAIL "E"

	Millimeters		Inches		Millimeters		Inches		
Dim	Min	Max	Min	Max	Dim	Min	Max	Min	Max
A	34.775	35.175	1.369	1.385	AE	7.000	8.000	0.2756	0.3150
B	28.907	29.017	1.138	1.142	AF	1.950	2.050	0.0768	0.0807
C	4.950	5.050	0.195	0.199	AG	-	6.410	-	0.2524
D	4.700	4.800	0.185	0.189	AH	-	5.968	-	0.2350
E	1.951	2.011	0.077	0.079	AJ	11.750	12.750	0.4626	0.5020
F	1.951	2.011	0.077	0.079	AK	11.750	12.750	0.4626	0.5020
G	10.950	11.050	0.431	0.435	AL	3.950	4.050	0.1555	0.1594
H	10.950	11.050	0.431	0.435	AM	0.150	0.190	0.0059	0.0075
J	28.00	29.000	1.102	1.142	AN	12.430	12.530	0.4894	0.4933
K	0.686	0.838	0.027	0.033	AP	12.430	12.530	0.4894	0.4933
L	0.0675	0.0825	0.0027	0.0032	AR	0.5794	0.6294	0.0228	0.0248
M	1.190	1.210	0.047	0.048	AS	0.750	0.850	0.0295	0.0335
N	0.480	0.520	0.019	0.020					
P	0.380	0.420	0.015	0.016					
R	0.380	0.420	0.015	0.016					
S	0.150	0.190	0.006	0.007					
T	0.290	0.310	0.011	0.012					
U	1.750	1.850	0.069	0.073					
V	0.480	0.520	0.019	0.020					
W	0.880	0.920	0.035	0.036					
Y	12.100	12.200	0.4764	0.4803					
Z	12.100	12.200	0.4764	0.4803					
AA	-	0.200	-	0.008					
AB	9.778	9.878	0.3850	0.3889					
AC	4.950	5.050	0.1949	0.1988					
AD	6.500	7.500	0.2559	0.2953					

NOTES:

1. Dimensioning and tolerancing per ANSI Y14.5M, 1982.
2. Controlling dimension: millimeter
3. Cu thickness: 1 oz
4. Tin plating thickness: $0.4 \mu \mathrm{~m}$

TAB TAPE REEL ORIENTATION

MC141515T
TAB PACKAGE DIMENSION (DO NOT SCALE THIS DRAWING)

MC141515T

TAB PACKAGE DIMENSION
(DO NOT SCALE THIS DRAWING)

SECTION $X-X$

	Milimeters		Tnches			Millimeters		Tnches	
Dim	MIn	Max	Min	Max	Dim	Min	Max	Min	Max
A	34.775	35.175	1.3691	1.3848	AE	8.730	8.750	0.3437	0.3445
B	28.907	29.017	1.1381	1.1424	AF	1.950	2.050	0.0768	0.0807
C	4.950	5.050	0.1949	0.1988	AG	25.250	25.270	0.9941	0.9949
D	4.700	4.800	0.1850	0.1890	AH	25.550	25.570	1.0059	1.0067
E	1.951	2.011	0.0768	0.0792	AJ	27.135	27.235	1.0683	1.0722
F	1.951	2.011	0.0768	0.0792	AK	27.435	27.485	1.0801	1.0821
G	24.200	24.300	0.9528	0.9567	AL	26.950	27.050	1.0610	1.0650
H	24.200	24.300	0.9528	0.9567	AM	0.750	0.850	0.0295	0.0335
J	56.900	57.100	2.2402	2.2480	AN	0.75	0.850	0.0295	0.0335
K	0.686	0.838	0.0270	0.0330	AP	0.600	0.700	0.0236	0.0276
L	0.0675	0.0825	0.0027	0.0033	AR	0.600	0.700	0.0236	0.0276
M	1.190	1.210	0.0469	0.0476	AS	24.590	24.610	0.9681	0.9689
N	0.480	0.520	0.0189	0.0205	AT	24.890	24.910	0.9799	0.9807
P	0.380	0.420	0.0150	0.0165	AU	7.705	7.725	0.3034	0.3041
R	0.380	0.420	0.0150	0.0165	AV	0.450	0.550	0.0177	0.0217
S	0.150	0.190	0.3850	0.3890	AW	10.450	10.550	0.4114	0.4154
T	0.29	0.310	0.0114	0.0122	AY	3.95	4.050	0.1555	0.1595
U	1.780	1.820	0.0701	0.0717	AZ	3.95	4.050	0.1555	0.1595
V	0.480	0.520	0.0189	0.0205	BA	14.200	14.300	0.5591	0.5630
W	0.880	0.920	0.0347	0.0362	BB	14.200	14.300	0.5591	0.5630
Y	0.032	0.038	0.0013	0.0015	BC	-	6.410	-	0.2524
Z	0.032	0.038	0.0013	0.0015	BD	-	5.500	-	0.2165
AA	-	0.2	-	0.0079	$B E$	0.4326	0.5326	0.0170	0.0210
AB	11.300	11.500	0.4449	0.4527					
AC	12.300	12.500	0.4843	0.4921					
AD	1.950	2.050	0.0768	0.0807					

NOTES:

1. Dimensioning and tolerancing per ANSI Y14.5M, 1982.
2. Controlling dimension: millimeter
3. Recommended excise area $\mathrm{Jx}(\mathrm{AB}+\mathrm{AC})$

MCC141512 PAD COORDINATES

(UNIT: um)

$\begin{aligned} & \text { Pin } \\ & \text { Name } \end{aligned}$	X	Y	$\begin{aligned} & \text { Pin } \\ & \text { Name } \end{aligned}$	X	Y	Pin Name	X	Y	$\begin{gathered} \hline \text { Pin } \\ \text { Name } \end{gathered}$	X	Y
COM9	1687.50	1688.00	COM69	-1841.50	935.00	COM55	-1743.50	-1688.00	COM23	1841.50	-527.50
COM8	1575.00	1688.00	COM68	-1841.50	822.50	COM54	-1631.00	-1688.00	COM22	1841.50	-415.00
COM7	1462.50	1688.00	COM67	-1841.50	710.00	COM53	-1518.50	-1688.00	COM21	1841.50	-302.50
COM6	1350.00	1688.00	COM66	-1841.50	597.50	COM52	-1406.00	-1688.00	COM20	1841.50	-190.00
COM5	1237.50	1688.00	COM65	-1841.50	- 485.00	COM51	-1293.50	-1688.00	COM19	1841.50	-77.50
COM4	1125.00	1688.00	COM64	-1841.50	372.50	COM50	-1181.00	-1688.00	COM18	1841.50	35.00
СОМ3	1012.50	1688.00	COM63	-1841.50	260.00	COM49	-1068.50	-1688.00	COM17	1841.50	147.50
COM2	900.00	1688.00	COM62	-1841.50	147.50	COM48	-956.00	-1688.00	COM16	1841.50	260.00
COM1	787.50	1688.00	COM61	-1841.50	35.00	COM47	-843.50	-1688.00	COM15	1841.50	372.50
COMO	675.00	1688.00	COM60	-1841.50	-77.50	COM46	-731.00	-1688.00	COM14	1841.50	485.00
VDD	562.50	1688.00	COM59	-1841.50	-190.00	COM45	-618.50	-1688.00	COM13	1841.50	597.50
MGEN	450.00	1688.00	COM58	-1841.50	-302.50	COM44	-506.00	-1688.00	COM12	1841.50	710.00
FMC	337.50	1688.00	COM57	-1841.50	-415.00	COM43	-393.50	-1688.00	COM11	1841.50	822.50
DOFF	225.00	1688.00	COM56	-1841.50	-527.50	COM42	-281.00	-1688.00	COM10	1841.50	935.00
V6	112.50	1688.00				COM41	-168.50	-1688.00			
V5	0.00	1688.00				COM40	-56.00	-1688.00			
V1	-112.50	1688.00				СОМ39	56.50	-1688.00			
BPCLK	-225.00	1688.00				СОМ38	169.00	-1688.00			
FRM	-337.50	1688.00				COM37	281.50	-1688.00			
M	-450.00	1688.00				COM36	394.00	-1688.00			
VSS	-562.50	1688.00				COM35	506.50	-1688.00			
COM79	-675.00	1688.00				COM34	619.00	-1688.00			
COM78	-787.50	1688.00				СОМ33	731.50	-1688.00			
COM77	-900.00	1688.00				COM32	844.00	-1688.00			
COM76	-1012.50	1688.00				COM31	956.50	-1688.00			
COM75	-1125.00	1688.00				COM30	1069.00	-1688.00			
COM74	-1237.50	1688.00				COM29	1181.50	-1688.00			
COM73	-1350.00	1688.00				COM28	1294.00	-1688.00			
COM72	-1462.50	1688.00				COM27	1406.50	-1688.00			
COM71	-1575.00	1688.00				COM26	1519.00	-1688.00			
COM70	-1687.50	1688.00				COM25 COM24	$\begin{aligned} & 1631.50 \\ & 1744.00 \end{aligned}$	$\begin{aligned} & -1688.00 \\ & -1688.00 \end{aligned}$			

Die size : $158.0 \times 148.5 \mathrm{mil}^{2}$
Pad pitch : 4.43 mil
Note $: 1 \mathrm{mil} \sim 25.4 \mu \mathrm{~m}$

LCD Segment Driver

MC141514

CMOS

The MC141514 is an LCD segment driver chip which consists of 160×146 static RAM for display storage and provides 160 high voltage LCD driving signals.

It is a companion chip of MC141512 and MC141515 Backplane drivers for medium LCD panels. All these chips are controlled by the MC68HC05L11 microcomputer.

See Application Note AN-HK-15.

- Operating Supply Voltage Range-

Control Logic, RAM and Latch (V_{DD} Pin): 4.5 V to 5.5 V
Segment drivers (VCD Pin): 8.0 to 26 V

- Operating Temperature Range: -25 to $70^{\circ} \mathrm{C}$
- Direct Serial Data Interface with the MC68HC05L11
- 160×146 Static RAM (Display RAM)
- 160 LCD Segment Driving Signals
- \quad Selectable 1:16 to 1:146 Multiplex Ratios
- $1: 5$ to $1: 13$ bias
- Expansion to higher driver count by cascade
- Available in TAB Form:

TAB (Tape Automated Bonding), 186 contacts

BLOCK DIAGRAM

TAB Package Pin Assignment (Copper View) MC141514T1
MC141514T2

MAXIMUM RATINGS* (Voltages Referenced to V_{SS})

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage	-0.3 to +7.0	V
$\mathrm{~V}_{<1>}$		-0.3 to +27.5	V
$\mathrm{~V}_{\text {in }}$	Input Voltage	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
I	Current Drain Per Pin Excluding V_{DD} and V_{SS}	25	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature	-25 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$

* Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Description section.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions to be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended that $V_{\text {in }}$ and $V_{\text {out }}$ be constrained to the range $\mathrm{V}_{\text {SS }}<$ or $=\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right)<$ or $=\mathrm{V}_{\mathrm{DD}}$. Reliability of operation is enhanced if unused input are connected to an appropriate logic voltage level (e.g., either $V_{S S}$ or $V_{D D}$). Unused outputs must be left open. This device may be light sensitive. Caution should be taken to avoid exposure of this device to any light source during normal operation. This device is not radiation protected.

ELECTRICAL CHARACTERISTICS (Voltage Referenced to $\mathrm{V}_{\mathrm{SS}}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{~V}_{<1>}=25 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$)

Symbol	Parameter	Test Condition	Min	Typ	Max	Unit
$\begin{aligned} & V_{D D} \\ & V_{\langle 1\rangle} \end{aligned}$	Supply Voltage Range LCD Supply Voltage Range	(Absolute value reference to V_{SS})	$\begin{gathered} 4.5 \\ +8.0 \end{gathered}$	-	$\begin{gathered} 5.5 \\ +26.0 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \end{aligned}$
$\mathrm{I}_{\text {ACC }}$	Access Mode Supply Current (V_{DD} Pin)		-	100	200	
I_{DP}	Display Mode Supply Current (V_{DD} Pin)		-	50	100	uA
$\mathrm{I}_{\text {SB }}$	Standby Mode Supply Current (V_{DD} Pin)	Using $\mathrm{D}_{\text {ON }}$ bit of the MCU	-	1	10	UA
$\mathrm{I}_{\text {LDP }}$	Display Mode Supply Current ($\mathrm{V}_{<1>}$ Pin)		-	10	20	UA
$\mathrm{I}_{\text {LSB }}$	Standby Mode Supply Current ($\mathrm{c}_{\text {<1> }}$ Pin)		-	1	10	uA
$\begin{aligned} & \mathrm{V}_{\mathrm{OL}} \\ & \mathrm{~V}_{\mathrm{OH}} \end{aligned}$	Output Low Voltage Output High Voltage (SD1, SD2)	No Load	$\begin{gathered} V_{S S} \\ 0.8 \times V_{D D} \end{gathered}$		$\begin{gathered} 0.2 \times \mathrm{V}_{\mathrm{DD}} \\ \mathrm{~V}_{\mathrm{DD}} \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\begin{aligned} & \hline \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IL}} \end{aligned}$	Input High Voltage Input Low Voltage (BPCLK, FRM, P02, RAA, CR1, CR2, $\overline{B S}$, D7-D0, SD1, SD2, SHCLK, DOFF, M, DIRR)		$\begin{gathered} 0.7 \times V_{D D} \\ V_{S S} \end{gathered}$		$\begin{gathered} V_{D D} \\ 0.3 \times V_{D D} \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \end{aligned}$
V_{R}	Data Retention		2.0	-	-	V
$\mathrm{l}_{\text {in }}$	Input Current (BPCLK, FRM, P02, RAA, CR1, CR2, $\overline{B S}$, D7-D0, SD1, SD2, SHCLK, DOFF, M, DIRR)		-	-	± 1	uA
$\mathrm{C}_{\text {in }}$	Input Capacitance (BPCLK, FRM, P02, RAA, CR1, CR2, $\overline{B S}$, D7-D0, SD1, SD2, SHCLK, DOFF, M, DIRR)		-	-	8	pF
$\mathrm{R}_{\text {down }}$	Internal Pull Down Resistance (DOFF)		-	1	-	$\mathrm{M} \Omega$

AC ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{D D}=5.0 \mathrm{~V}, \mathrm{~V}_{S S}=0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Symbol	Parameter	Min	Max	Unit
$\mathrm{t}_{\text {cyc }}$	Access Cycle Time	235	-	ns
$t_{\text {AS }}$	Access Set up Time	100	-	ns
$\mathrm{t}_{\text {AH }}$	RAA Hold Time	0	-	ns
t_{CS}	Chip Select Pulse Width	135	-	ns
$t_{\text {DSW }}$	Data SetUp Time	100	-	ns
t_{H}	Input Hold Time	10	\bullet	ns
$\mathrm{t}_{\text {SCcyc }}$	Shift Clock Cycle Time	200	-	ns
$t_{\text {SCon }}$	Shift Clock On Time	100	-	ns
$\mathrm{t}_{\text {SDS }}$	Serial Data Setup Time	50	-	ns
$\mathrm{t}_{\text {SDH }}$	Serial Data Hold Time	10	-	ns

Parallel Access Timing

Serial Access Timing (with $\overline{\mathrm{BS}}=0$)

V_{DD} AND V_{SS}

Power is supplied to the driver using these two pins. $V_{D D}$ is power and V_{SS} is ground.

V<1>, V<3>, V<4>

These are the levels of voltage generated from an external voltages divider (Fig. 2). These voltage provide different voltage levels for shaping up the display output waveforms Seg0 Seg159.

DOFF

This is an output from MC68HC05L11 to signal the backplane driver to turn off LCD.If this pin is clear, the segment driver supplies LCD with driving signal. If this pin is set, the segment driver outputs is high-impedanced and LCD display is disabled.

FRM

A periodic active high input to the segment driver for frame timing synchronization. This pin is connected to the signal FRM of MC68HC05L11. The frequency depends on the MUX ratio and BPCLK signal.

BPCLK

A periodic clock output from MC68HC05L11 to the segment driver for timing synchronization. The signal controls the refresh timing of LCD display.

M

A periodic output from backplane driver. This pin is used for synchronization among display drivers.

D0 - D7

An eight-bit input-only data bus which is connected to the D0 - D7 of MC68HC05L11. These pins are used for address input and data input. Refer to Fig. 1 for definition.

P02
A bus clock input that is used for data bus timing synchronization. This pin is connected to P02 of MC68HC05L11.
$\overline{B S}$
This is an active low input for chip select.

RAA

It is a strobe signal from MC68HC05L11 indicating that a valid segment control data is on D0-D7 for a period of P02.

CR1, CR2

These two control signals from MC68HC05L11 to Segment driver describing the nature of the content in D0-D7. The effect of CRs are shown on Fig 1.

SD1, SD2

These two pins are two bi-directional data lines connecting to the UD2 or LD2 and UD1 or LD1 respectively. These allow the display data from MC68HC05L11 entering the segment driver in both directions.

SHCLK

This is the shift clock from MC68HC05L11 to segment driver for clocking the serial data on SD1 and SD2. See Timing Diagram (above) for illustration.

DDIR

It is an input pin carrying the signal from MC68HC05L11 to segment driver to control the direction of the serial data. If DDIR is set, the serial data enter the segment driver through SD1 and leave the segment driver through SD2. If DDIR is clear, SD1 and SD2 are redefined as an output and input respectively. See Figure 1A.

SEG0 - SEG159

These 160 output lines provide the segment driving signal to the LCD panel. They are all in high-impedance state while the display is turned off (i.e. DOFF is set).

INTRODUCTION

The LCD segment driver can support multiplex ratio of a LCD system up to 256(146 at the present version) and cascading of more than one driver for expansion is possible. It can be set from 1:5 bias (for 16 mux) to $1: 13$ bias (for 146 mux), by the voltage divider ratio of Fig.2. The ratio of bias or the contrast ratio (a) is defined as

$$
1: \frac{4 \times R 1+R 2}{R 1}=1: a
$$

As the multiplex ratio changes, the ratio of bias has to be changed accordingly. The ratio of bias relates to the multiplex ratio as

$$
a=\sqrt{m u x}+1
$$

To set up a multiplex ratio, please .refer to MC68HC05L11D/H Technical Data Section 10.

CONTROL LOGIC produces the control signals necessary for display RAM read / write and serial data latching. This Control Logic is directly supervised by the MCU through the Data Bus, i.e. D0-D7, CR1 and CR2. MCU writing a byte of instruction to the Segment Control Register will cause Segment Driver(s) to fetch this instruction from the Data Bus and the command executed at the next P02 cycle. Fig. 1 shows the functions of which the Control Logic will carry out in respond to MCU access through the Segment Control Register.

ROW ADDRESS(WRITE IN) instruction causes Segment driver(s) to load the content of the SHIFT REGISTER into a row of RAM which address is specified by D7 to D0.

ROW ADDRESS(READ FROM) instruction causes Segment driver(s) to copy a row of RAM which address is specified by D7 to D0 into the 160 BIT SHIFT REGISTER.

SCROLL UP ADVANCE instruction causes Segment driver(s) to do a vertical scroll up or down.

The content of D7 to D0 only represents the vertical offset of the new screen to the current screen. This vertical offset presenting in the Data Bus then is added up with an old offset which is stored in a register called the VERTICAL SCROLL VECTOR REGISTER to generate a new offset. This new offset will then be stored in the VERTICAL SCROLL VECTOR REGISTER. Periodically the content of this register will be fetched and loaded into a presettable counter in the TIMING LOGIC to generate the row addresses for screen refreshing.

RESET BITO Writing an " 1 " to this bit will set the VERTICAL SCROLL VECTOR REGISTER to zero.

UL BIT1 If this bit is set, the segment driver serves the upper panel in case of splitted panel. This will cause a swap in signals flow between SD1 and SD2.

CLRSH BIT2 Writing an " 1 " to this bit will clear the content of the 160 -BIT SHIFT REGISTER.

TIMING LOGIC, according to M, BPCLK and FRM, fills the DISPLAY DATA LATCH ARRAY with rows of RAM matrix's content periodically starting from the row address specified by the VERTICAL SCROLL VECTOR REGISTER.

VOLTAGES SELECTOR consists of switching circuit to select appropriate voltage levels from the external voltage divider. (See Fig. 2).

DISPLAY DATA LATCH ARRAY is used to buffer up a row of display data from RAM.

STATIC RAM MATRIX consists of 160×146 bits of SRAM cell. The content of these RAM cells can be altered by read/write from/to the shift register with the Segment Control Interface (refer to MC68HC05L11 specification Section 6.2.4).

HIGH VOLTAGE DRIVERS ARRAY is a row of high voltage drivers connecting to segment lines of any LCD panel. The output waveform of the high voltage driver is shown as $\operatorname{Seg}(\mathrm{x})$ in Fig 3.

SHIFT REGISTER is a 160-bit bi-directional register which acts as an input either from SD1 or SD2. The direction of data flow depends on the content of DDIR. And, it can be swapped by setting the UL bit to high. Data enter this shift register in serial. Shift register latches data at the falling edge of the signal SHCLK. See Timing Diagram on Page 4 for illustration.

CR2	CR1	D7	D6	D5	D4	D3	D2	D1	D0
0	0	ROWADDRESS (WRITE IN)							
0	1	ROWADDRESS (READ FROM)							
1	0	SCROLL UP ADVANCE							
1	1	$\begin{aligned} & \hline \text { RESER } \\ & \hline-V E D \end{aligned}$	X	X	X	X	$\begin{aligned} & \hline \mathrm{CLR} \\ & \mathrm{SH} \end{aligned}$	UL	RESET

FIGURE 1 - A Summary of the Control Functions of Segment Driver

DDIR	UL	SD1	SD2
1	0	input	output
0	0	output	input
1	1	output	input
0	1	input	output

FIGURE 1A - Relationship between DDIR, UL, SD1 and SD2

FIGURE 2 - External Voltage Divider

FIGURE 3 - Driving Waveforms of 1:N multiplex
(M is used for timing synchronization)

PACKAGE DIMENSIONS

MC141514T1
TAB PACKAGE DIMENSION (DO NOT SCALE THIS DRAWING)

MC141514T1
TAB PACKAGE DIMENSION (DO NOT SCALE THIS DRAWING)

DETAIL "B"

DETAIL "A"

DETAIL "C"
DETAIL "D"

	Millimeters		Inches		Millimeters		Mnes		
Dim	Min	Max	Min	Max	Dim	Min	Max	Min	Max
A	34.775	35.175	1.3691	1.3848	AE	8.690	8.790	0.3421	0.3461
B	28.927	29.027	1.1389	1.1428	AF	1.950	2.050	0.0768	0.0807
C	4.950	5.050	0.1949	0.1988	AG	25.350	25.450	0.9980	1.0020
D	4.720	4.780	0.1858	0.1882	AH	25.510	25.610	1.0043	1.0083
E	1.951	2.011	0.0768	0.0792	AJ	27.130	27.230	1.0681	1.0720
F	1.951	2.011	0.0768	0.0792	AK	27.430	27.530	1.0799	1.0839
G	24.200	24.300	0.9528	0.9567	AL	26.500	27.500	1.0433	1.0827
H	24.200	24.300	0.9528	0.9567	AM	0.750	0.850	0.0295	0.0335
J	56.500	57.500	2.2244	2.2638	AN	0.750	0.850	0.0295	0.0335
K	0.686	0.838	0.0270	0.0330	AP	0.600	0.700	0.0236	0.0276
L	0.0675	0.0825	0.0027	0.0032	AR	0.600	0.700	0.0236	0.0276
M	1.190	1.210	0.0469	0.0476	AS	24.551	24.649	0.9666	0.9704
N	0.480	0.520	0.0189	0.0205	AT	24.850	24.950	0.9784	0.9823
P	0.350	0.450	0.0138	0.0177	AU	7.670	7.770	0.3020	0.3059
R	0.350	0.450	0.0138	0.0177	AV	2.450	2.550	0.0965	0.1004
S	0.150	0.190	0.0059	0.0075	AW	10.000	11.000	0.3937	0.4331
T	0.290	0.310	0.0114	0.0122	AY	3.500	4.500	0.1378	0.1772
U	1.750	1.850	0.0689	0.0728	AZ	3.500	4.500	0.1378	0.1772
V	0.450	0.550	0.0177	0.0217	BA	-	10.062	-	0.3961
W	0.850	0.950	0.0335	0.0374	BB	-	9.747	-	0.3837
AA	-	0.200	-	0.0079	BC	0.5794	0.6294	0.0228	0.0248
AB	10.900	11.900	0.4291	0.4685	BD	1.150	1.250	0.0453	0.0492
AC	11.900	12.900	0.4685	0.5079	BE	1.150	1.250	0.0453	0.0492
AD	1.500	2.500	0.0591	0.0984					

NOTES:

1. Dimensioning and tolerancing per ANSI Y14.5M, 1982.
2. Controlling dimension: millimeter.
3. Copper thickness: 1 oz .
4. Tin plating thickness: $0.4 \mu \mathrm{~m}$.
5. Recommended excise area $\mathrm{J} \times(\mathrm{AB}+\mathrm{AC})$.

TAB TAPE REEL ORIENTATION

DETAIL "B"

DETAIL "C"

DETAIL "D"

	Millimeters			Inches		Millimeters			Inches	
Dim	Min	Max	Min	Max	Dim	Min	Max	Min	Max	
A	34.775	35.175	1.3691	1.3848	AJ	27.130	27.230	.0681	1.0720	
B	28.927	29.027	1.1389	1.1428	AK	27.430	27.530	1.0799	1.0839	
C	4.950	5.050	0.1949	0.1988	AL	26.500	27.500	1.0433	1.0827	
D	4.720	4.780	0.1858	0.1882	AM	0.750	0.850	0.0295	0.0335	
E	1.951	2.011	0.0768	0.0792	AN	0.750	0.850	0.0295	0.0335	
F	1.951	2.011	0.0768	0.0792	AP	0.600	0.700	0.0236	0.0276	
G	24.200	24.300	0.9528	0.9567	AR	0.600	0.700	0.0236	0.0276	
H	24.200	24.300	0.9528	0.9567	AS	24.551	24.649	0.9666	0.9704	
J	56.500	57.500	2.2244	2.2638	AT	24.850	24.950	0.9784	0.9823	
K	0.686	0.838	0.0270	0.0330	AU	7.937	8.037	0.3125	0.3164	
L	0.0675	0.0825	0.0027	0.0032	AV	2.450	2.550	0.0965	0.1004	
M	1.190	1.210	0.0469	0.0476	AW	10.000	11.000	0.3937	0.4331	
N	0.480	0.520	0.0189	0.0205	AY	3.500	4.500	0.1378	0.1772	
P	0.350	0.450	0.0138	0.0177	AZ	3.500	4.500	0.1378	0.1772	
R	0.350	0.450	0.0138	0.0177	BA	-	10.062	-	0.3961	
S	0.150	0.190	0.0059	0.0075	BB	-	9.747	-	0.3837	
T	0.290	0.310	0.0114	0.0122	BC	0.5794	0.6294	0.0228	0.0248	
U	1.750	1.850	0.0689	0.0728	BD	25.200	25.300	0.9921	0.9961	
V	0.450	0.550	0.0177	0.0217	BE	25.500	25.600	1.0039	1.0079	
W	0.850	0.950	0.0335	0.0374	BF	0.850	0.950	0.0335	0.0374	
Y	0.032	0.038	0.0013	0.0015	BG	0.850	0.950	0.0335	0.0374	
Z	0.032	0.038	0.0013	0.0015	BH	6.850	6.950	0.2697	0.2736	
AA	-	0.200	-	0.0079	BJ	4.750	4.850	0.1870	0.1909	
AB	10.900	11.900	0.4291	0.4685	BK	9.750	9.850	0.3839	0.3878	
AC	11.900	12.900	0.4685	0.5079	BL	1.950	2.050	0.0768	0.0807	
AD	1.500	2.500	0.0591	0.0984	BM	0.750	0.850	0.0295	0.0335	
AE	8.690	8.790	0.3421	0.3461	BN	20.450	20.550	0.8051	0.8091	
AF	1.950	2.050	0.0768	0.0807	BP	20.450	20.550	0.8051	0.8091	
AG	25.350	25.450	0.9980	1.0020	BR	1.150	1.250	0.0453	0.0492	
AH	25.510	25.610	1.0043	1.0083	BS	1.150	1.250	0.0453	0.0492	

NOTES:

1. Dimensioning and tolerancing per ANSI Y14.5M, 1982.
2. Controlling dimension: millimeter.
3. Copper thickness: 1 oz (35 micrometer)
4. 12 sprocket hole device

TAB TAPE REEL ORIENTATION

TYPICAL APPLICATIONS

146×320 SINGLE PANEL LCD SYSTEM WITH MC68HC05L11

$146 \times 320 \times 2$ SPLIT PANEL LCD SYSTEM WITH MC68HC05L11

LCD Backplane Driver CMOS

The MC141516 is a high voltage passive LCD Backplane driver. It is a low power silicon-gate CMOS LCD driver chip which consists of 64 backplane driving outputs for 64 MUX or lower LCD panel. The MC141516 is a companion chip of MC141518 (Segment driver).

It has an LCD timing generator which serves the same purpose as the LCD timing generator in a Motorola microcomputer MC68HC05L11. If these drivers are used with MC68HC05L11, its internal LCD timing generator can be disabled. Necessary timing signals are input from MC68HC05L11. Otherwise, the driver's internal LCD timing generator can be activated to provide timing signals for system synchronization.

- Operation Supply Voltage Range-

Logic (V_{DD}): 2.7V to 5.5 V
Backplane drivers ($\mathrm{V}_{\mathrm{LCD}}$): 6.0 V to 13 V

- Operation Temperature Range: -20 to $70^{\circ} \mathrm{C}$
- 64 LCD blackplane driving signals
- Driving Duty Cycle (MUX): $1 / 32$ to $1 / 64$
- Optional 32,48 or 64 multiplex ratio if the on-chip RC oscillator is used
- Optional multiplex ratio from 32 to 64 with MC68HC05L11
- 80-pin TQFP (Thin Quad Flat Package)

MC141516

Block Diagram

MAXIMUM RATINGS ${ }^{*}$ (Voltages Reference to $\mathrm{V}_{\mathrm{SS}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage	-0.3 to +7.0	V
		$\mathrm{V}_{\mathrm{SS}}-0.3$ to V_{SS} +15	V
$\mathrm{~V}<1>$	Input Voltage	$\mathrm{V}_{\mathrm{SS}}-0.3$ to V_{DD} +0.3	V
I	Current Drain Per Pin Excluding VDD and Vss	25	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature Range	-20 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{stg}}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$

*Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Description Section.

The device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions to be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended that Vin and Vout be constrained to the range $\mathrm{V}_{\mathrm{SS}}<0 r=$ (Vin or Vout) $<$ or $=V_{D D}$. Reliability of operation is enhanced if unused input is connected to an appropriate logic voltage level (e.g. either $V_{S S}$ or $V_{D D}$). Unused outputs must be left open. This device may be light sensitive. Caution should be taken to avoid exposure of this device to any light source during normal operation. This device is not radiation protected.

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to $\mathrm{V}_{S S}, T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{~V}<1>=13 \mathrm{~V}$)

Symbol	Parameter	MIn	Max	Unit
V_{IH}	Input High Voltage BPCLK, FRM, M, DOFF	$0.7 \times V_{\text {DD }}$	$V_{D D}$	V
$V_{\text {IL }}$	Input Low Voltage BPCLK, FRM, M, DOFF	$V_{S S}$	$0.3 \times V_{D D}$	V
$\mathrm{C}_{\text {in }}$	Capacitance BPCLK, FRM, M, DOFF	-	8	pF
$\begin{aligned} & V_{D D} \\ & V<1> \end{aligned}$	Operating Voltages Supply Voltage (referenced to VSS) LCD Voltage (referenced to VSS)	$\begin{aligned} & 2.7 \\ & 6.0 \end{aligned}$	$\begin{gathered} 5.5 \\ 13 \end{gathered}$	$\begin{aligned} & v \\ & v \end{aligned}$
$\mathrm{l}_{\text {in }}$	$\begin{array}{cr}\text { Input Current (Oscillator OFF) } & \text { BPCLK, FRM, M, } \\ \text { DOFF, MXSO, MXS1 }\end{array}$	-	± 1	uA
V_{OL}	Output Low Voltage (Oscillator ON) M, FRM, BPCLK	\bullet	$0.2 \times V_{D D}$	V
V OH	Output High Voltage (Oscillator ON) M, FRM, BCLK	$0.8 \times V_{D D}$	-	V
loL	Output Low Current (Oscillator ON) $\begin{array}{r}\text { M, FRM, BCLK } \\ \left(V_{\text {OL }}=0.5 \mathrm{~V}\right)\end{array}$	-	-100	uA
$\mathrm{IOH}^{\text {O }}$	Output High Current (Oscillator ON) $\begin{gathered}\text { M, FRM, BCLK } \\ \left(\mathrm{V}_{\mathrm{OH}}=4.5 \mathrm{~V}\right)\end{gathered}$	100	-	uA
$\begin{aligned} & \mathrm{I}_{\mathrm{DP} 1} \\ & \mathrm{I}_{\mathrm{DP} 2} \\ & \mathrm{I}_{\mathrm{SB}} \end{aligned}$	Operating supply current VDD (VDD=5V, V<1>=13V) Dynamic Mode (Oscillator ON, BPCLK=4KHz) (Oscillator OFF, BPCLK $=4 \mathrm{KHz}$) Standby Mode		$\begin{gathered} 32 \\ 5 \\ 2 \end{gathered}$	uA uA uA
$\begin{aligned} & \mathrm{I}_{\text {LDP }} \\ & \mathrm{I}_{\text {LSB }} \end{aligned}$	Operating supply current $\mathrm{V}<1>$ ($\mathrm{V}<1>=13 \mathrm{~V}$) Display Mode Standby Mode	-	$\begin{gathered} 8 \\ 4.0 \end{gathered}$	$u A$ $u A$

AC ELECTRICAL CHARACTERISTICS ($\left.\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}+/-5 \%, \mathrm{~V}_{\mathrm{SS}}=0, \mathrm{~V}<1>=13 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Symbol	Parameter	Min	Max	Unit
$t_{\text {BPon }}$	BPCLK Pulse On Time	61	-	us
$t_{\text {BPcyc }}$	BPCLK Cycle Period	122	-	us
$t_{\text {FMd }}$	Frame Delay Time	5	30	us
$t_{\text {FMon }}$	Frame Pulse On Time	122	-	us
$t_{\text {Md }}$	M Pulse Delay Time	0	30	us

MC141516 Timing Diagram

$V_{D D}$ AND VS

Power is supplied to the driver using these two pins. VDD is power and VSS is ground.

$\mathrm{V}<1>, \mathrm{V}<5>, \mathrm{V}<6>$

These input pins provide the voltage levels for the backplane driver and are connected to the $\mathrm{V}<1>$, $\mathrm{V}<5>, \mathrm{V}<6>$ of the voltages generator as in Figure 2 of the MC141518 Segment driver Product Specification.

DOFF

It is an active-high input for turning off the LCD. If DOFF is set, all high voltage outputs will be turned to high impedance. DOFF will also suppress the onchip RC oscillator from oscillation when the LCD timing generator is enabled.

OSC1, OSC2, RC

These pins provide connections for external circuitry to the on-chip RC oscillator for frequency selection. The on-chip RC oscillator is part of the internal LCD timing generator. Output of this oscillator will be fed out as BPCLK and further divided down internally to produce signals FRM and M if the LCD timing generator is enabled.

MXS1, MXSO

These pins can be hardwired to select different mux ratios. Table 1 shows the combinations of these signals and their corresponding mux ratios. These four combinations provide selections for 32,48 and 64 mux ratio and a disable state. Except for the disabled state, all other selections will enable the LCD timing generator. With DOFF clear, the periodic signal from the on-chip RC oscillator is fed to the whole LCD system as the BPCLK. BPCLK will then be further divided down through the LCD timing generator to produce signals FRM and M for the whole LCD system.

MXS1, MXS0	MUX RATIO
0,0	DISABLE
0,1	32
1,0	48
1,1	64

Table 1: The Selections of MUX Ratio using MXS1 and MXSO

BPCLK

It is either an input pin connecting to signal BPCLK of the microcomputer MC68HC05L11 or an output pin supplying the synchronization pulse BPCLK to segment drivers. If the LCD timer generator is disabled, this pin is assumed to be input.

FRM

It is either an input pin connecting to signal FRM of the microcomputer MC68HC05L11 or an output pin supplying the synchronization pulse FRM to segment drivers. If the LCD timer generator is disabled, the status of this pin is input.

M

This is an output pin providing the necessary modulation signal to shape up the class B LCD waveform (see Fig.3, Product Specification of MC141518). It is a signal with 50% duty cycle and its frequency is half of FRM.

COMO-COM63

These are the high voltage outputs of the backplane driver which are connected to the common lines of the LCD panel. These high voltage drivers are high impedance if DOFF is set. See Fig. 3 "Product Specification of MC141518" for these high voltage outputs waveform.

FMC

This is a test pin. This pin should be left open in application.

INTRODUCTION

The backplane driver can support multiplex ratio of a LCD system from 32 to 64 . Three signals that need to be varied as a result of different mux ratio are BPCLK, FRM and M. The first two can be imported externally (if the microprocessor MC68HC05L11 is used) or the backplane driver generates them internally. In case of internal generation, user has to design the on-chip RC oscillator circuit producing a frequency with respect to desirable mux ratio.

VOLTAGE S SELECTOR consists of switching circuit to select appropriate voltage levels from external voltage divider. See Fig.2, Product Specification of the segment driver MC141518.

64 BIT SHIFT REGISTER samples FRM and shift at the falling edge of BPCLK.

HIGH VOLTAGE DRIVERS ARRAY is a row of high voltage drivers which outputs are connecting to the backplane (or common) lines of the LCD panel. The waveform of these drivers are shown as Com(1) or Com(2) in Fig. 3, the Product Specification of the segment driver MC141518.

Figure 1. (a) the external circuit to the on-chip RC oscillator and its (b) frequency relationship with the external resistor and capacitor.

PACKAGE DIMENSIONS

MC141516FJ

TQFP PACKAGE DIMENSION (DO NOT SCALE THIS DRAWING)

MC141516FJ
TQFP PACKAGE DIMENSION (DO NOT SCALE THIS DRAWING)

VIEW Y
SECTION AB - AB
ROTATED 90' CLOCKWISE

VIEW AA

	Millimeters		Inches			Millimeters		Inches	
Dim	Min	Max	Min	Max	Dim	Min	Max	Min	Max
A	14.00	BSC	.551	BSC	K	0.50	REF	.020	REF
A1	7.00	BSC	.276	BSC	P	0.325	BSC	.013	REF
B	14.00	BSC	.551	BSC	R1	0.09	0.20	.004	.008
B1	7.00	BSC	.276	BSC	S	16.00	BSC	.630	BSC
C	--	1.74	--	.069	S1	8.00	BSC	.013	BSC
C1	0.04	0.24	.002	.009	U	0.09	0.16	.004	.006
C2	1.30	1.50	.051	.059	V	16.00	BSC	.630	BSC
D	0.22	0.38	.009	.015	$V 1$	8.00	BSC	.315	BSC
E	0.40	0.75	.016	.030	W	0.20	REF	.008	REF
F	0.17	0.33	.007	.013	Z	1.00	REF	.039	REF
G	0.65	BSC	.026	BSC	θ	0°	10°	0°	10°
J	0.09	0.27	.004	.011	$\theta 1$	0°	--	0°	--
					$\theta 2$	9°	14°	9°	14°

NOTES:

1. Dimensions and tolerancing per ANSI Y14.5M, 1982.
2. Controlling dimension: millimeter.
3. Datum plane $\quad-\mathrm{H}-$ is located at bottom of lead and is coincident with the lead where the lead exits the plastic body at the bottom of the parting line.
4. Datums $\operatorname{l-L}_{-},-\mathrm{M}-$ and $\mathrm{H}^{-\mathrm{N}-}$ to be determined at datum plane $-\mathrm{H}_{-}$.
5. Dimensions S and V to be determined at seating plane -T - .
6. Dimensions A and B do not include mold protrusion. Allowable protrusion is $0.25(.010)$ per side. Dimensions A and B do include mold mismatch and are determined at datum plane $-\mathrm{H}-$.
7. Dimension D does not include dambar protrusion. dambar protrusion shall not cause the lead width to exceed 0.46 (.018). Minimum space between protrusion and adjacent lead or protrusion 0.07 (.003).

MCC141516 PAD COORDINATES: (UNIT: UM)

PIN NAME	X	Y	PIN NAME	X	Y
COM1	-1330.0	-1481.5	COM61	1489.5	-1331.5
COMO	-1190.0	-1481.5	COM60	1489.5	-1191.5
V6	-982.0	-1481.5	COM59	1489.5	-1051.5
V5	-842.0	-1481.5	COM58	1489.5	-911.5
V1	-702.0	-1481.5	COM57	1489.5	-771.5
FMC	-490.0	-1481.5	COM56	1489.5	-631.5
DOFF	-350.0	-1481.5	COM55	1489.5	-491.5
VDD	-210.0	-1481.5	COM54	1489.5	-351.5
BPCLK	-70.0	-1481.5	COM53	1489.5	-211.5
FRM	70.0	-1481.5	COM52	1489.5	-71.5
M	210.0	-1481.5	COM51	1489.5	68.5
OSC1	350.0	-1481.5	COM50	1489.5	208.5
OSC2	490.0	-1481.5	COM49	1489.5	348.5
RC	630.0	-1481.5	COM48	1489.5	488.5
MXS0	770.0	-1481.5	COM47	1489.5	628.5
MXS1	910.0	-1481.5	COM46	1489.5	768.5
VSS	1050.0	-1481.5	COM45	1489.5	908.5
COM63	1190.0	-1481.5	COM44	1489.5	1048.5
COM62	1330.0	-1481.5	COM43	1489.5	1188.5
			COM42	1489.5	1328.5

PIN NAME	\mathbf{X}	\mathbf{Y}	PIN NAME	\mathbf{X}	\mathbf{Y}
COM2	-1489.5	-1331.5	COM22	-1330.0	1481.0
COM3	-1489.5	-1191.5	COM23	-1190.0	1481.0
COM4	-1489.5	-1051.5	COM24	-1050.0	1481.0
COM5	-1489.5	-911.5	COM25	-910.0	1481.0
COM6	-1489.5	-771.5	COM26	-770.0	1481.0
COM7	-1489.5	-631.5	COM27	-630.0	1481.0
COM8	-1489.5	-491.5	COM28	-490.0	1481.0
COM9	-1489.5	-351.5	COM29	-350.0	1481.0
COM10	-1489.5	-211.5	COM30	-210.0	1481.0
COM11	-1489.5	-71.5	COM31	-70.0	1481.0
COM12	-1489.5	68.5	COM32	70.0	1481.0
COM13	-1489.5	208.5	COM33	210.0	1481.0
COM14	-1489.5	348.5	COM34	350.0	1481.0
COM15	-1489.5	488.5	COM35	490.0	1481.0
COM16	-1489.5	628.5	COM36	630.0	1481.0
COM17	-1489.5	768.5	COM37	770.0	1481.0
COM18	-1489.5	908.5	COM38	910.0	1481.0
COM19	-1489.5	1048.5	COM39	1050.0	1481.0
COM20	-1489.5	1188.5	COM40	1190.0	1481.0
COM21	-1489.5	1328.5	COM41	1330.0	1481.0

Die Size: $134.0 \times 132.5 \mathrm{mil}^{2}$
Note: 1 mil $\sim 25.4 \mu \mathrm{~m}$

LCD Segment Driver CMOS

The MC141518 is a high voltage passive LCD Segment driver. It is a low power silicon-gate CMOS LCD driver chip which consists of 80 segment driving outputs for 64 MUX or lower LCD panel. The MC141518 is a companion chip of MC141516 (Backplane driver). It can be directly connected to the display controller inside the Motorola microcomputer MC68HC05L11.

- Operating Supply Voltage Range-

Logic ($V_{D D}$): 2.7 V to 5.5 V
Segment Drivers (VCD): 6.0V to 13 V

- Operating Temperature Range: -20 to $70^{\circ} \mathrm{C}$
- 80 LCD segment driving signals
- Driving Duty Cycle (MUX): $1 / 32$ to $1 / 64$
- Casadable for more LCD segment driving outputs
- Serial interface for both display data and control instruction transfers
- 100-pin TQFP (Thin Quad Flat Package)

MC141518

	MC141518FJ TQFP
	$\begin{aligned} & \text { MCC141518 } \\ & \text { DIE } \end{aligned}$
ORDERING INFORMATION	
MC141518FJ	TQFP
MCC141518	- DIE

BLOCK DIAGRAM

MCC141518 PAD ASSIGNMENT

MAXIMUM RATINGS* (Voltages Reference to $\mathrm{V}_{\mathrm{SS}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Symbol	Parameter	Value	Unit
$V_{D D}$	Supply Voltage	-0.3 to +7	V
V <1>		$\begin{gathered} \mathrm{V}_{\mathrm{SS}}-0.3 \text { to } \mathrm{V}_{\mathrm{SS}} \\ +15 \end{gathered}$	V
$V_{\text {in }}$	Input Voltage	$\begin{gathered} \mathrm{V}_{\mathrm{SS}}-0.3 \text { to } \mathrm{V}_{\mathrm{DD}} \\ +0.3 \end{gathered}$	V
I	Current Drain Per Pin Excluding $V_{D D}$ and $V_{S S}$	25	mA
T_{A}	Operating Temperature Range	-20 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-65 to + 150	${ }^{\circ} \mathrm{C}$

*Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Description Section.

The device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions to be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended that Vin and Vout be constrained to the range VSS $<$ or $=$ (Vin or Vout) $<$ or $=$ VDD. Reliability of operation is enhanced if unused input is connected to an appropriate logic voltage level (e.g. either VSS or VDD). Unused outputs must be left open. This device may be light sensitive. Caution should be taken to avoid exposure of this device to any light source during normal operation. This device is not radiation protected.

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to $\left.\mathrm{V}_{\mathrm{SS}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{~V}<1\right\rangle=13 \mathrm{~V}$)

Symbol	Parameter	Min	Max	Unit
$\mathrm{V}_{1 \mathrm{H}}$		$0.7 \times \mathrm{V}_{\text {DD }}$	V_{DD}.	V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage $\quad \begin{array}{r}\text { BPCLK, FRM, M, ID, DDIR } \\ \overline{B S}, \text { SD1, SD2, SHCLK, DOFF }\end{array}$	$V_{S S}$	$0.3 \times V_{D D}$	V
V_{R}	Data Retention	2.0	-	V
$\mathrm{l}_{\text {in }}$	Input CurrentBPCLK, FRM, M, ID, DDIR , SD1, SD2, SHCLK, DOFF	-	± 1	uA
$\mathrm{c}_{\text {in }}$	Capacitance $\overline{B S}, \mathrm{SD} 1, \mathrm{SD} 2$, SHCLK, DOFF	-	8	pF
V_{OH}	Output High Voltage SD1, SD2	$0.8 \times V_{\text {DD }}$	V_{DD}	V
V_{OL}	Output Low Voltage SD1, SD2	$\mathrm{V}_{\text {SS }}$	$0.2 x V_{D D}$	V
$\begin{aligned} & V_{D D} \\ & V_{<1>} \end{aligned}$	Operating Voltages Supply Voltage (referenced to V_{SS}) LCD Voltage (referenced to $V_{S S}$)	$\begin{aligned} & 2.7 \\ & 0.0 \end{aligned}$	$\begin{gathered} 5.5 \\ +13 \end{gathered}$	$\begin{aligned} & v \\ & v \end{aligned}$
$I_{A C C}$ $I_{D P}$ ${ }^{\text {ISB }}$	Operating supply current $V_{D D}\left(V_{D D}=5 V, V<1>=13 V, M=2 M H z\right)$ Dynamic Mode (Display on, R/W access, BPCLK $=4 \mathrm{KHz}$, SHCLK $=5 \mathrm{MHz}$) (Display on, R W W disable, BPCLK $=4 \mathrm{KHz}$) Standby Mode(Display off, R/W disable)		$\begin{gathered} 200 \\ 20 \\ 5 \end{gathered}$	uA uA uA
$\begin{aligned} & \mathrm{I}_{\mathrm{LDP}} \\ & \mathrm{I}_{\text {LSB }} \\ & \hline \end{aligned}$	Operating supply current $\mathrm{V}<1>(\mathrm{V}<1>=13 \mathrm{~V})$ Display Mode Standby Mode		$\begin{gathered} 30 \\ 2 \end{gathered}$	uA uA

AC ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}+/-5 \%, \mathrm{~V}_{\mathrm{SS}}=0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}\langle 1\rangle=13 \mathrm{~V}\right)$

Symbol	Parameter	Min	Max	Unit
$\mathrm{t}_{\text {Sccyc }}$	Shift Clock Cycle Time	200	-	ns
$\mathrm{t}_{\text {SCon }}$	Shift Clock On Time	100	-	ns
$\mathrm{t}_{\text {SDS }}$	Serial Data Setup Time	50	-	ns
$\mathrm{t}_{\mathrm{SDH}}$	Serial Data Hold Time	10	-	ns
$\mathrm{t}_{\text {Ssc }}$	Select to clock on	100	\cdot	ns
$\mathrm{t}_{\text {Ssc }}$	Clock on to device disable	10		\cdot

PIN DESCRIPTIONS

$V_{D D}$ and $V_{S S}$
Power is supplied to the driver using these two pins. V_{DD} is power and V_{SS} is ground.
$V<1>, V<3>, V<4>$
These are the inputs of voltage levels for the LCD driving signals (Fig. 2).

DOFF

This is an input pin to turn off the LCD. If it is set, all the high voltage drivers are switched off.

FRM

This is an input pin for frame timing synchronisation. This pin is connected either to FRM of the microcomputer MC68HC05L11 or to FRM of the Backplane driver MC141516.

BPCLK

This is an input pin for a periodic signal from the microcomputer to segment driver for timing synchronisation. This pin is connected either to BPCLK of the microcomputer MC68HC05L11 or to BPCLK of the Backplane driver MC141516.

SEG0-SEG79

These 80 output lines provide the segment driving signals to the LCD panel. They are all high impedance while the display is turned off (i.e. DOFF is selected).

BS

This is the Bank Select pin. It is an active low input for chip enable.

UL

This pin is used to set the segment driver to support the Upper or Lower panel for a split LCD panel system. Since any segment driver to the upper panel will be 180 degree rotated with respect to the lower panel's segment drivers, to maintain easier routing and consistent in data format, the serial data direction has to be reversed. Therefore whenever UL is tied high, the serial data direction inside the segment drivers will be reversed with respect to the serial data direction as UL is ground. Details about the serial data direction can be found in the SD1, SD2 description.

SD1, SD2
These pins are two bidirectional serial data lines connected to either one of the two serial ports of the microcomputer MC68HC05L11 (UD1, UD2 LD1 and LD2) depending on the UL pin. If the segment driver is set to serve the upper panel with its UL tied high, serial data direction between SD1 and SD2 is reversed. In such case, SD1 is connected either to UD1 or to LD1 of MC68HC05L11. SD2 is then connected to UD2 or LD2 of MC68HC05L11. However, if the UL pin is ground, SD1 and SD2 are then connected to UD2 and UD1, or LD2 and LD1 of MC68HC05L11 respectively. SD1 and SD2 allow the display data or instruction from the microcomputer entering the segment driver in both directions. During $\overline{\mathrm{BS}}$ high, these two pins are high impedance. In case of an instruction from the microcomputer with ID pin set. SD1 and SD2 are disconnected from the 80 -bit shift register and form a transparent loop. Instruction bits entering the segment through a serial port (say SD1) are exported to its cascading device immediately through another serial port (i.e. SD2). In such a way, this instruction from the microcomputer can be broadcasted to a bank of cascading segments. See Typical Application Section for typical system connections.

ID
This is the Instruction/Data pin. If this pin is set, an instruction byte is shifting in from the bidirectional data lines as soon as $\overline{B S}$ goes low. Otherwise, data in the bidirectional lines is the display data. (See SD1 and SD2 definitions). Instructions are described in Table 2. Though each instruction has eight bits, the segment needs 12 SHCLK cycles to complete it. Eight cycles to fill in the internal instruction register and the last four cycles are use for instructions processing. Once the instruction is completed, additional SHCLK is ignored until $\overline{\mathrm{BS}}$ signal toggles from high to low again. See Figure 1 for details. Notice that intemal sampling for the instruction register should be as the order of MSB to LSB if DDIR is 0 and LSB to MSB if DDIR is 1. doesn't matter what UL is.

SHCLK

This is the shift clock from the microcomputer MC68HC05L11 to the segment for clocking the serial data on SD1 and SD2.

DDIR

It is an input pin specifying the direction of the serial data. DDIR definition is also affected by UL pin as specified in Table 2. If UL pin is found low and DDIR is set, the serial data enters the segment driver through SD1 and leaves the segment driver through SD2. If both UL and DDIR are zeros, SD1 and SD2 are
redefined as output and input respectively. If $U L$ pin is high and DDIR is set, the serial data then enters the segment driver through SD2 and leaves the segment driver through SD1. If UL is high but DDIR is clear, SD2 and SD1 are output and input respectively.

UL	DDIR	Internal Serialdata Drecion
0	0	-SD2 _ _ bid rectional shifter register \longrightarrow _ SD1 \longrightarrow
0	1	4 -SD2 bid rectional shifter register - . SDi-
1.	0	4-SD2__ bid rectional shifter register -__SD1-
1	1	\ldots SD2 __ bidirectional shifter register _ SD1 \rightarrow

Table 1. Summary of Data Direction Flow Responding To DDIR and UL Bit.

OPERATION OF LCD DRIVER

INTRODUCTION

The LCD segment driver is capable of $1: 6$ bias (for 32 mux) to 1:9 bias (for 64 mux), depending on the voltage divider ratio of Fig.2. The ratio of bias (a) is defined as

$$
\text { 1: } \frac{4 \times \mathrm{R} 1+\mathrm{R} 2}{\mathrm{R} 1}=1: \mathrm{a}
$$

As the multiplex ratio changes, the ratio of bias has to be changed accordingly. The ratio of bias relates to the multiplex ratio as

$$
a=\sqrt{m u x}+1
$$

To set up a multiplex ratio, please refer to either Section 10.6.2., the Technical data of MC68HC05L11 or the Advanced Information of the Backplane MC141516.

CONTROL LOGIC produces the control signals necessary for display RAM read/write and serial data latching. This Control Logic can be controlled by the MCU through the serial interface with ID set. MCU writing a byte of instruction (ID7 to IDO) to the Segment Control Register through the serial interface will cause Segment driver(s) to carry functions as shown as Table 2.

ID7	ID6	ID5	ID4	ID3	ID2	ID1	ID0
0	0	ROW ADDRESS (WRTEIN)					
0	1	ROW ADDRESS (READ FROM)					
1	0	SCROLL UP ADVANCE					
1	1	X	X	X	CLR SH	X	RESET

TABLE 2. A Summary of the Control Functions of Segment Driver

ROW ADDRESS(WRITE IN) instruction causes the segment driver(s) to load the content of the 80 BITS SHIFT REGISTER into a row of RAM which address is specified by ID5 to ID0.

ROW ADDRESS(READ FROM) instruction causes the segment driver(s) to copy a row of RAM which address is specified by ID5 to ID0 into the 80 BIT SHIFT REGISTER.

SCROLL UP ADVANCE instruction causes the segment driver(s) to do vertically scroll up or down. The content of ID5 to ID0 represents the vertical offset of the new screen to the current screen. This vertical offset is added up with an old offset which is stored in a register called the VERTICAL SCROLL VECTOR REGISTER. The sum of these is the new offset and will be stored in the VERTICAL SCROLL VECTOR REGISTER. The VERTICAL SCROLL VECTOR REGISTER is default zero during power-on.

RESET BITO Writing an " 1 " to this bit will clear the VERTICAL SCROLL VECTOR REGISTER.

CLRSH BIT2 Writing an " 1 " to this bit will clear the content of the 80 BIT SHIFT REGISTER.

An instruction (ID7 to IDO) is transferred to the segment driver through the serial interface as Figure 1 demonstrated. Figure 1-a shows a case that the DDIR bit is clear. The most significant bit ID7 of the instruction will come in as the first bit. After 8 SHCLK cycles, a byte of instruction data is kept in an instruction register. However, the instruction needs another 4 cycles to complete, as long as $\overline{B S}$ holds low, segment driver will wait for these 4 cycles to complete the instruction. After the instruction, the segment driver will ignore any coming SHCLK cycle until the signal $\overline{\mathrm{BS}}$ toggles from high to low again. Figure $1-\mathrm{b}$ shows in case of DDIR bit set. The UL bit will not affect the order of instruction shifting. For most case, user does not need to worry about the order of shifting if the segment is connected to the display controller in the microcomputer MC68HC05L11.

TIMING LOGIC, according to BPCLK and FRM, fills the DISPLAY DATA LATCH ARRAY with rows of RAM matrix's content periodically starting from the row address specified in the VERTICAL SCROLL VECTOR REGISTER.

VOLTAGES SELECTOR consists of switching circuit to select appropriate voltage levels among $<V 1\rangle,<V 3\rangle,<V 4>$ and <V2>. (See Fig. 2).

DISPLAY DATA LATCH ARRAY is used to buffer up a row of display data from RAM.

STATIC RAM MATRIX consists of 64 rows x 80 bits of SRAM cell. The content of these RAM cells can be read from/written to the 80 BIT SHIFT REGISTER.

HIGH VOLTAGE DRIVERS ARRAY is a row of high voltage drivers connecting to segment lines of any LCD panel. The output waveform of the high voltage driver is shown as seg(x) in Fig. 3.

(a)

ID
DDIR

(b)

DDIR/
SD1
SD2
\square ID2 \square
ID4 ID5 ID6 \times ID7 x $\times \times \times \times \times 1 \times 2$

Figure 1. The order of Instruction byte shifted

Figure 2. External Voltage Divider

Figure 3. Driving waveforms of 1:N multiplex

PACKAGE DIMENSIONS

MC141518FJ
TQFP PACKAGE DIMENSION (DO NOT SCALE THIS DRAWING)

VIEW AA

MC141518FJTQFP PACKAGE DIMENSION

	Millimeters		Inches			Millimeters		Inches	
Dim	Min	Max	Min	Max	Dim	Min	Max	Min	Max
A	14.00	BSC	. 551	BSC	K	0.50	REF	. 020	REF
A1	7.00	BSC	. $276{ }^{\text {' }}$	BSC	R1	0.08	0.20	. 003	. 008
B	14.00	BSC	. 551	BSC	S	16.00	BSC	. 630	BSC
B1	7.00	BSC	. 276	BSC	S1	8.00	BSC	. 315	BSC
C	---	1.70	---	. 066	U	0.09	0.16	. 004	. 006
C1	0.05	0.20	. 002	. 008	V	16.00	BSC	. 630	BSC
C2	1.30	1.50	. 051	. 059	V1	8.00	BSC	. 315	BSC
D	0.10	0.30	. 004	. 012	W	0.20	REF	. 008	REF
E	0.45	0.75	. 016	. 030	Z	1.00	REF	. 039	REF
F	0.15	0.23	. 006	. 009	θ	0°	$7{ }^{\circ}$	0°	$7{ }^{\circ}$
G	0.50	BSC	. 020	BSC	$\theta 1$	$0{ }^{\circ}$	---	0°	-..
J	0.07	0.20	. 003	. 008	$\theta 2$	12°	REF	12^{*}	REF
					$\theta 3$	12°	REF	12°	REF

NOTES:

1. Dimensions and tolerancing per ANSI Y14.5M, 1982.
2. Controlling dimension: millimeter.
3. Datum plane $\quad-\mathrm{H}^{-}$is located at bottom of lead and is coincident with the lead where the lead exits the plastic body at the bottom of the parting line.
4. Datums H_{L}, $-\mathrm{M}-$ and $-\mathrm{N}-$ to be determined at datum plane -H .
5. Dimensions S and V to be determined at seating plane $-T$.
6. Dimensions A and B do not include mold protrusion. Allowable protrusion is $0.25(.010)$ per side. Dimensions A and B do include mold mismatch and are determined at datum plane $-\mathrm{H}-$.
7. Dimension D does not include dambar protrusion. Dambar protrusion shall not cause the lead width to exceed 0.46 (.018). Minimum space between protrusion and adjacent lead or protrusion 0.07 (.003).

MCC141518 PAD COORDINATES: (UNIT: $\mu \mathrm{M}$)

PIN NAME	\mathbf{X}	\mathbf{Y}	PIN NAME	\mathbf{X}	\mathbf{Y}
SEG3	-1835.9	-1898.5	SEG75	2180.1	-1442.5
SEG2	-1670.9	-1898.5	SEG74	2180.1	-1302.5
SEG1	-1505.9	-1898.5	SEG73	2180.1	-1162.5
SEG0	-1340.9	-1898.5	SEG72	2180.1	-1022.5
V	-1175.9	-1898.5	SEG71	2180.1	-882.5
SD2	-1010.9	-1898.5	SEG70	2180.1	-742.5
BS	-845.9	-1898.5	SEG69	2180.1	-602.5
BPCLK	-680.9	-1898.5	SEG68	2180.1	-462.5
DDIR	-515.9	-1898.5	SEG67	2180.1	-322.5
ID	-350.9	-1898.5	SEG66	2180.1	-182.5
FRM	-185.9	-1898.5	SEG65	2180.1	-42.5
SHCLK	-20.9	-1898.5	SEG64	2180.1	97.5
DOFF	144.1	-1898.5	SEG63	2180.1	237.5
M	309.1	-1898.5	SEG62	2180.1	377.5
SD1	474.1	-1898.5	SEG61	2180.1	517.5
V1	639.1	-1898.5	SEG60	2180.1	657.5
V3	804.1	-1898.5	SEG59	2180.1	797.5
V4	969.1	-1898.5	SEG58	2180.1	937.5
VSS	1134.1	-1898.5	SEG57	2180.1	1077.5
UL	1299.1	-1898.5	SEG56	2180.1	1217.5
SEG79	1464.1	-1898.5	SEG55	2180.1	1357.5
SEG78	1629.1	-1898.5	SEG54	2180.1	1497.5
SEG77	1794.1	-1898.5	SEG53	2180.1	1637.5
SEG76	1959.1	-1898.5	SEG52	2180.1	1777.5

PIN NAME	\mathbf{X}	\mathbf{Y}	PIN NAME	\mathbf{X}	\mathbf{Y}
SEG4	-2179.9	-1442.5	SEG28	-1609.9	1898.5
SEG5	-2179.9	-1302.5	SEG29	-1469.9	1898.5
SEG6	-2179.9	-1162.5	SEG30	-1329.9	1898.5
SEG7	-2179.9	-1022.5	SEG31	-1189.9	1898.5
SEG8	-2179.9	-882.5	SEG32	-1049.9	1898.5
SEG9	-2179.9	-742.5	SEG33	-909.9	1898.5
SEG10	-2179.9	-602.5	SEG34	-769.9	1898.5
SEG11	-2179.9	-462.5	SEG35	-629.9	1898.5
SEG12	-2179.9	-322.5	SEG36	-489.9	1898.5
SEG13	-2179.9	-182.5	SEG37	-349.9	1898.5
SEG14	-2179.9	-42.5	SEG38	-209.9	1898.5
SEG15	-2179.9	97.5	SEG39	-69.9	1898.5
SEG16	-2179.9	237.5	SEG40	70.1	1898.5
SEG17	-2179.9	377.5	SEG41	210.1	1898.5
SEG18	-2179.9	517.5	SEG42	350.1	1898.5
SEG19	-2179.9	657.5	SEG43	490.1	1898.5
SEG20	-2179.9	797.5	SEG44	630.1	1898.5
SEG21	-2179.9	937.5	SEG45	770.1	1898.5
SEG22	-2179.9	1077.5	SEG46	910.1	1898.5
SEG23	-2179.9	1217.5	SEG47	1050.1	1898.5
SEG24	-2179.9	1357.5	SEG48	1190.1	1898.5
SEG25	-2179.9	1497.5	SEG49	1330.1	1898.5
SEG26	-2179.9	1637.5	SEG50	1470.1	1898.5
SEG27	-2179.9	1777.5	SEG51	1610.1	1898.5

Die size: $193.5 \times 167.0 \mathrm{mil}^{2}$
Note: 1 mil $\sim 25.4 \mu \mathrm{~m}$

TYPICAL APPLICATIONS
64x240 SINGLE PANEL LCD SYSTEM WITH MC68HC05L11

64x240 SINGLE PANEL LCD SYSTEM WITH OTHER MCU

$64 \times 240 \times 2$ SPLIT PANEL LCD SYSTEM

LCD Segment Driver CMOS

The MC141519 is an LCD segment driver chip which consists of 160×80 static RAM for display storage and provides 160 high voltage LCD driving signals.

It is a companion chip of MC141512T Backplane driver for medium LCD panels. All these chips are controlled by the MC68HC05L11 microcomputer.

- Operating Supply Voltage Range-

Control Logic, RAM and Latch ($\mathrm{V}_{\mathrm{DD}} \mathrm{Pin}$): 2.7 to 5.5V
Segment drivers (VCD Pin): 8.0 to 20 V

- Operating Temperature Range: -20 to $80^{\circ} \mathrm{C}$
- Direct serial data interface with the MC68HC05L11
- 160×80 Static RAM (Display RAM)
- 160 LCD Segment Driving Signals
- Selectable 1:16 to 1:80 Multiplex Ratios
- Expansion to higher driver count by cascade
- Available in TAB Form:

TAB (Tape Automated Bonding), 186 contacts

MC141519

ORDERING INFORMATION
MC141519T
TAB

BLOCK DIAGRAM

TAB Package Pin Assignment (copper view)

MÀXIMUM RATINGS* (Voltages Referenced to $\mathrm{V}_{\text {SS }}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage	-0.3 to +7.0	V
$\mathrm{~V}<1>$		$\mathrm{V}_{\mathrm{SS}^{-}-0.3 \text { to } \mathrm{V}_{\mathrm{SS}}+22.0}$	V
$\mathrm{~V}_{\text {in }}$	Input Voltage	$\mathrm{V}_{\mathrm{SS}^{-}-0.3 \text { to } \mathrm{V}_{\mathrm{DD}}+0.3}$	V
I	Current Drain Per Pin Excluding and V_{DD}	25	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature Range	-20 to 80	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$

* Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Description section.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions to be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended that $\mathrm{V}_{\text {in }}$ and $\mathrm{V}_{\text {out }}$ be constrained to the range $\mathrm{V}_{S S}<$ or $=\left(\mathrm{V}_{\text {in }}\right.$ or $\left.V_{\text {out }}\right)<$ or $=V_{D D}$. Reliability of operation is enhanced if unused input are connected to an appropriate logic voltage level (e.g., either $\mathrm{V}_{\text {SS }}$ or V_{DD}). Unused outputs must be left open. This device may be light sensitive. Caution should be taken to avoid exposure of this device to any light source during normal operation. This device is not radiation protected.

ELECTRICAL CHARACTERISTICS (Voltages Referenced to $\mathrm{V}_{\mathrm{SS}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$)

Symbol	Parameter	Min	Typ	Max	Unit
V_{IH}	Input High Voltage BPCLK, FRM, P02,RAA,CR1,CR2, $\overline{\mathrm{BS}}$, D6-D0,SD1,SD2,SHCLK,DOFF,M,DIRR	$0.7 \mathrm{x} \mathrm{V}_{\text {DD }}$	-	V_{DD}	V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage BPCLK, FRM,P02,RAA,CR1,CR2, $\overline{\mathrm{BS}}$, D6-D0,SD1,SD2,SHCLK,DOFF,M,DIRR	$\mathrm{V}_{S S}$	-	$0.3 \times V_{D D}$	V
V_{R}	Data Retention	2.0	-	-	V
$\mathrm{I}_{\text {in }}$	Input Current BPCLK, FRM,P02,RAA,CR1,CR2, $\overline{B S}$, D6-D0,SD1,SD2,SHCLK,DOFF,M,DIRR	-	-	± 1	UA
$\mathrm{C}_{\text {in }}$	Capacitance BPCLK, FRM,PO2,RAA,CR1,CR2, $\overline{\mathrm{BS}}$, D6-D0,SD1,SD2,SHCLK,DOFF,M,DIRR	-	-	8	pF
V_{OH}	Output High Voltage SD1,SD2	$0.8 \times V_{\text {DD }}$	-	$V_{D D}$	V
$\mathrm{V}_{\text {OL }}$	Output Low Voltage SD1,SD2	$\mathrm{V}_{\text {SS }}$	-	$0.2 \times V_{\text {DD }}$	V
$\begin{aligned} & V_{D D} \\ & V<1> \end{aligned}$	Operating Voltages Supply Voltage (referenced to V_{SS}) LCD Voltage (referenced to $V_{S S}$)	$\begin{aligned} & 2.7 \\ & 8.0 \end{aligned}$	-	$\begin{gathered} 5.5 \\ 20.0 \end{gathered}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
$\begin{aligned} & I_{\mathrm{ACC}} \\ & \mathrm{I}_{\mathrm{DP}} \end{aligned}$ I_{SB}	Operating supply current $\left(\mathrm{V}_{\mathrm{DD}}\right)\left(\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}\right.$, referenced to $\left.\mathrm{V}_{S S}\right)$ Access Mode Display Mode Standby Mode		$\begin{gathered} 150 \\ 30 \\ 1 \end{gathered}$	$\begin{gathered} 200 \\ 100 \\ 10 \end{gathered}$	uA uA uA
$\begin{aligned} & \text { ILDP } \\ & \text { ILSB } \end{aligned}$	Operating supply current $(\mathrm{V}<1>)\left(\mathrm{V}<1>=20 \mathrm{~V}\right.$, referenced to $\left.\mathrm{V}_{\mathrm{SS}}\right)$ Display Mode Standby Mode	-	$\begin{gathered} 12 \\ 1 \end{gathered}$	$\begin{aligned} & 20 \\ & 10 \end{aligned}$	$\begin{aligned} & \text { uA } \\ & \text { uA } \end{aligned}$

AC ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}-5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Symbol	Parameter	Min	Max	Unit
$\mathrm{t}_{\text {cyc }}$	Access Cycle Time	235	\cdot	ns
$\mathrm{t}_{\text {AS }}$	Access Set up Time	100	-	ns
$\mathrm{t}_{\text {AH }}$	RAA Hold Time	0	-	ns
$\mathrm{t}_{\text {CS }}$	Chip Select Pulse Width	135	-	ns
$\mathrm{t}_{\text {DSW }}$	Data SetUp Time	100	-	ns
t_{H}	Input Hold Time	10	-	ns
$\mathrm{t}_{\text {SCcyc }}$	Shift Clock Cycle Time	200	-	ns
$\mathrm{t}_{\text {SCon }}$	Shift Clock On Time	100	-	ns
$\mathrm{t}_{\text {SDS }}$	Serial Data Setup Time	50	-	ns
$\mathrm{t}_{\text {SDH }}$	Serial Data Hold Time	10		-

Serial Access Timing (with $\overline{\mathrm{BS}}=0$)

PIN DESCRIPTIONS

$V_{D D}$ AND $V_{S S}$

Power is supplied to the driver using these two pins. $V_{D D}$ is power and V_{SS} is ground.
$V<1>, V<3>, V<4>$
These are the levels of voltage generated from an external voltages divider (Fig. 2). These voltage provide different voltage levels for shaping up the display output waveforms Sego Seg159.

DOFF

This is an output from MC68HC05L11 to signal the backplane driver to turn off LCD. If this pin is clear, the segment driver supplies LCD with driving signal. If this pin is set, the segment driver outputs is high-impedance and LCD display is disabled.

FRM

A periodic active high input to the segment driver for frame timing synchronization. This pin is connected to the signal FRM of MC68HC05L11. The frequency depends on the bias ratio and BPCLK signal.

BPCLK

A periodic clock output from \cdot MC68HC05L11 to the segment driver for timing synchronization. The signal controls the refresh timing of LCD display.

M

A periodic output from backplane driver. This pin is used for synchronization among display drivers.

D0 - D6

A seven-bit input-only data bus which is connected to the D0 - D6 of MC68HC05L11. These pins are used for address input and control input. Refer to Fig. 1 for definition.

TST

The test pin should be pulled-low or connected to D7 of MC68HC05L11 during normal operation.

P02
A bus clock input that is used for data bus timing synchronization. This pin is connected to P02 of MC68HC05L11.

$\overline{B S}$

This is an active low input for chip select.

RAA

It is a strobe signal from MC68HC05L11 indicating that a valid segment control data is on DO - D6 for a period of P02.

CR1, CR2

These two control signals from MC68HC05L11 to Segment driver describing the nature of the content in DO - D6. The effect of CRs are shown on Fig 1.

SD1, SD2
These two pins are two bi-directional data lines connecting to the UD2 or LD2 and UD1 or LD1 respectively. These allow the display data from MC68HC05L11 entering the segment driver in both directions.

SHCLK

This is the shift clock from MC68HC05L11 to segment driver for clocking the serial data on SD1 and SD2. See Timing Diagram for illustration.

DDIR

It is an input pin carrying the signal from MC68HC05L11 to segment driver to control the direction of the serial data. In lower panel mode, if DDIR is set, the serial data enters the segment driver through SD1 and leaves the segment driver through SD2. If DDIR is clear, SD1 and SD2 are redefined as an output and input respectively.

SEG0-SEG159

These 160 output lines provide the segment driving signal to the LCD panel. They are all in high-impedance state while the display is turned off (i.e. DOFF is set).

INTRODUCTION

The LCD segment driver can support multiplex ratio of a LCD system up to 80 and cascading of more than one driver for expansion is possible. It can be set from 1:5 bias (for 16 mux) to $1: 10$ bias (for 80 mux), by the voltage divider ratio of Fig.2. The ratio of bias or the contrast ratio (a) is defined as

$$
1: \frac{4 \mathrm{xR} 1+\mathrm{R} 2}{\mathrm{R} 1}=1: \mathrm{a}
$$

As the multiplex ratio changes, the ratio of bias has to be changed accordingly. The ratio of bias relates to the multiplex ratio as

$$
a=\sqrt{\operatorname{mux}}+1
$$

To set up a multiplex ratio, please refer to MC68HC05L11D/H Technical Data Section 10.

CONTROL LOGIC produces the control signals necessary for display RAM read / write and serial data latching. This Control Logic is directly supervised by the MCU through the Data Bus, i.e. D0 - D6, CR1 and CR2. MCU writing a byte of instruction to the Segment Control Register will cause Segment Driver(s) to fetch this instruction from the Data Bus and the command executed at the next P02 cycle. Fig. 1 shows the functions of which the Control Logic will carry out in respond to MCU access through the Segment Control Register.

ROW ADDRESS(WRITE IN) instruction causes Segment driver(s) to load the content of the SHIFT REGISTER into a row of RAM which address is specified by D6 to D0.

ROW ADDRESS(READ FROM) instruction causes Segment driver(s) to copy a row of RAM which address is specified by D6 to DO into the 160 BIT SHIFT REGISTER.

SCROLL UP ADVANCE instruction causes Segment driver(s) to do a vertical scroll up or down.

The content of D6 to D0 only represents the vertical offset of the new screen to the current screen. This vertical offset presenting in the Data Bus then is added up with an old offset which is stored in a register called the VERTICAL SCROLL VECTOR REGISTER to generate a new offset. This new offset will then be stored in the VERTICAL SCROLL VECTOR REGISTER. Periodically the content of this register will be fetched and loaded into a presettable counter in the TIMING LOGIC to generate the row addresses for screen refreshing.

RESET BITO Writing a " 1 " to this bit will set the VERTICAL SCROLL VECTOR REGISTER to zero.

UL BIT1 If this bit is set, the segment driver serves the upper panel in case of splitted panel. This will cause a swap in signals flow between SD1 and SD2.

CLRSH BIT2 Writing an " 1 " to this bit will clear the content of the $160-$ BIT SHIFT REGISTER.

TIMING LOGIC, according to M, BPCLK and FRM, fills the DISPLAY DATA LATCH ARRAY with rows of RAM matrix's content periodically starting from the row address specified by the VERTICAL SCROLL VECTOR REGISTER.

VOLTAGES SELECTOR consists of switching circuit to select appropriate voltage levels from the external voltage divider. (See Fig. 2).

DISPLAY DATA LATCH ARRAY is used to buffer up a row of display data from RAM.

STATIC RAM MATRIX consists of 160×80 bits of SRAM cell. The content of these RAM cells can be altered by read/write from/ to the shift register with the Segment Control Interface (refer to MC68HC05L11D/H Technical Data Section 10).

HIGH VOLTAGE DRIVERS ARRAY is a row of high voltage drivers connecting to segment lines of any LCD panel. The output waveform of the high voltage driver is shown as $\operatorname{Seg}(\mathrm{x})$ in Fig 3.

SHIFT REGISTER is a 160 -bit bi-directional register which acts as an input either from SD1 or SD2. The direction of data flow depends on the content of DDIR. And, it can be swapped by setting the UL bit to high. Data enter this shift register in serial. Shift register latches data at the falling edge of the signal SHCLK. See Timing Diagram for illustration.

CR2	CR1	D6	D5	D4	D3	D2	D1	D0
0	0	ROW ADDRESS (WRITE IN)						
0	1	ROW ADDRESS (READ FROM)						
1	0	SCROLL UP ADVANCE						
1	1	X	X	X	X	CLR SH	UL	RESET

FIGURE 1 - A Summary of the Control Functions of Segment Driver

DDIR	UL	SD1	SD2
1	0	input	output
0	0	output	input
1	1	output	input
0	1	input	output

FIGURE 1A - Relationship between DDIR, UL, SD1 and SD2

FIGURE 2 - External Voltage Divider

FIGURE 3 - Driving Waveforms of 1:N multiplex
(M is used for timing synchronization)

PACKAGE DIMENSIONS

TAB PACKAGE DIMENSION (DO NOT SCALE THIS DRAWING)

DETAIL "C"

MC141519T TAB PACKAGE DIMENSION

	Millimeters		Inches			Millimeters		Inches	
Dim	Min	Max	Min	Max	Dim	Min	Max	Min	Max
A	34.775	35.175	1.3691	1.3848	AK	27.430	27.530	1.0799	1.0839
B	28.927	29.027	1.1389	1.1428	AL	26.500	27.500	1.0433	1.0827
C	4.950	5.050	0.1949	0.1988	AM	0.750	0.850	0.0295	0.0335
D	4.720	4.780	0.1858	0.1882	AN	0.750	0.850	0.0295	0.0335
E	1.951	2.011	0.0768	0.0792	AP	0.600	0.700	0.0236	0.0276
F	1.951	2.011	0.0768	0.0792	AR	0.600	0.700	0.0236	0.0276
G	24.200	24.300	0.9528	0.9567	AS	24.551	24.649	0.9666	0.9704
H	24.200	24.300	0.9528	0.9567	AT	24.850	24.950	0.9784	0.9823
J	56.500	57.500	2.2244	2.2638	AU	7.937	8.037	0.3125	0.3164
K	0.686	0.838	0.0270	0.0330	AV	2.450	2.550	0.0965	0.1004
L	0.0675	0.0825	0.0027	0.0033	AW	10.000	11.000	0.3937	0.4331
M	1.190	1.210	0.0469	0.0476	AY	3.500	4.500	0.1378	0.1772
N	0.480	0.520	0.0189	0.0205	AZ	3.500	4.500	0.1978	0.1772
P	0.350	0.450	0.0138	0.0177	BA	-	8.996	-	0.3542
R	0.350	0.450	0.0138	0.0177	BB	.	9.750	.	0.3839
S	0.150	0.190	0.0059	0.0075	BC	0.5794	0.6294	0.0228	0.0248
T	0.290	0.310	0.0114	0.0122	BD	25.200	25.300	0.9921	0.9961
U	1.750	1.850	0.0689	0.0728	BE	25.500	25.600	1.0039	1.0079
V	0.450	0.550	0.0177	0.0217	BF	0.850	0.950	0.0335	0.0374
W	0.850	0.950	0.0335	0.0374	BG	0.850	0.950	0.0335	0.0374
Y	0.622	0.722	0.0245	0.0284	BH	6.850	6.950	0.2697	0.2736
AA	-	0.20	-	0.0079	BJ	4.750	4.850	0.1870	0.1909
AB	10.900	11.900	0.4291	0.4685	BK	9.750	9.850	0.3839	0.3878
AC	12.150	12.650	0.4783	0.4980	BL	1.950	2.050	0.0768	0.0807
AD	1.500	2.500	0.0591	0.0984	BM	0.750	0.850	0.0295	0.0335
AE	8.690	8.790	0.3421	0.3461	BN	20.450	20.550	0.8051	0.8091
AF	1.950	2.050	0.0768	0.0807	BP	20.450	20.550	0.8051	0.8091
AG	25.350	25.450	0.9980	1.0020	BR	1.150	1.250	0.0453	0.0492
AH	25.510	25.610	1.0043	1.0083	BS	1.150	1.250	0.0453	0.0492
AJ	27.130	27.230	1.0681	1.0720					

NOTES:

1. Dimensioning and tolerancing per ANSI Y14.5M, 1982.
2. Controlling dimension: millimeter.
3. Copper thickness: $10 z$.
4. Tin plating thickness: 0.4 um.
5. 12 sprocket hole device.

TAB TAPE REEL ORIENTATION

TYPICAL APPLICATIONS
160×80 SINGLE PANEL LCD SYSTEM WITH MC68HC05L11

Gate (Row) Driver for TFT Type LCD Panel CMOS

The MC141522 is a high voltage LCD gate driver. It is a low power silicon-gate CMOS LCD driver chip which consists of 120 channels gate drive to provide the row gating function of a TFT (Thin-Film-Transistor) LCD panel.

This chip consists of the low voltage and high voltage part. The low voltage part includes the 122 stages of shift register, level shifter, left/right shift controller. The high voltage part consists of 120 stages level shifters and high voltage output driver buffer with 35 volts output swing capability.

The MC141522 will provide the best performance in combination with the MC141524 (source driver). The two devices can drive LCD panels from 480×240 pixels middle-resolution up to 720×480 pixels high-resolution by cascading.

- Operating Supply Voltage Range

$$
\text { Logic }\left(V_{D D} \text { pin): } 4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}\right.
$$

Output Drive $\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)=20.0 \mathrm{~V}$ to 35.0 V

- Operating Temperature Range: -30 to $85^{\circ} \mathrm{C}$
- 120 - Row Output Driver
- Split Power Supply
- Output Pulse Width Modulation Control
- Bi-directional Shift Register
- Left / Right Shift Mode Selection
- Maximum Clock Frequency $=100 \mathrm{KHz}$
- Cascadable
- Available in TAB (Tape Automated Bonding), 141 pins

BLOCK DIAGRAM

REV 4

10/96

Figure 1A. TAB Package Contact Assignment (Copper View)

ABSOLUTE MAXIMUM RATING (Voltage Referenced to VSS)

Rating	Symbol	Value	Unit
Positive Supply Voltage	Vcc	+7.0 to +17.0	V
Negative Supply Voltage	Vee	-33.0 to - 23.0	V
Logic Supply Voltage	Vod	-0.3 to +6.0	V
DC Supply Voltage	Vcc - Vee	+40	V
Logic Input Voltage	Vin	$\begin{aligned} & V S S-0.5 \text { to } \\ & V D D+0.5 \end{aligned}$	V
Current Drain Per Pin Excluding Vod and Vss	Id	± 10	mA
Operating Temp. Range	Ta	-30 to 85	${ }^{\circ} \mathrm{C}$
Storage Temp. Range	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$

The device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions to be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended that Vin and Vout be constrained to the range VSS < or = (Vin or Vout) $<$ or $=$ VDD. Reliability of operation is enhanced if unused input is connected to an appropriate logic voltage level (e.g. either VSS or VDD). Unused outputs must be left open. This device may be light sensitive. Caution should be taken to avoid exposure of this device to any light source during normal operation. This device is not radiation protected.

Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Description section.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Typ	Max	Unit
Positive Supply Voltage	V_{CC}	+5.0	+12.0	+15.0	V
Negative Supply Voltage	V_{EE}	-10.0	-12.0	-30.0	V
Logic Supply Voltage	V_{DD}	+4.5	+5.0	+5.5	V
DC Supply Voltage	$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$	20	25	35	V
Operating Temperature	Ta_{a}	-20	--	+75	${ }^{\circ} \mathrm{C}$

AC ELECTRICAL CHARACTERISTICS

$V_{D D=+5.0} \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V} \mathrm{CC}=+15.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-20 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Voltage referenced to Vss

Parameter	Symbol	Min	Typ	Max	Unit
High Voltage Driver Output					
Rise Time	tr1	--	--	1.0	us
Fall Time	tf1	--	--	1.0	us
(Cload=200pF)					
High Voltage Driver Output Rise Time Fall Time	tr2	-	-	2.5	us
(Loading=5K in series with 150pF)		tt2	-	\ddots	-
Propagation Delay Time (Carry output from GSC) Low to High High to Low			2.5	us	
Maximum Clock Fre- quency (GSC)	$ø$ Max	-			

35.0 Volts Range

20.0 Volts Range

Figure 2. High Voltage Output Buffer Voltage Range

Figure 3. High Voltage Buffer Output Rise and Fall Time

Figure 4. Shift Clock, Gate Driver Output and Carry Output Propagation Delay Timing

DC ELECTRICAL CHARACTERISTICS

$V_{D D}=+5.0 \mathrm{~V}, \mathrm{~V} S \mathrm{~S}=0, \mathrm{VcC}=+15.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-20 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Voltage referenced to Vss

Parameter	Symbol	Min	Typ	Max	Unit
Control Input Voltage High	V_{IH}	3.2	--	5.5	V
Control Input Voltage Low	$\mathrm{V}_{\text {IL }}$	0.0	--	1.2	V
Input Leakage Current $\begin{aligned} & V_{\text {in }}=0.5 \mathrm{~V} \\ & V_{\text {in }}=3.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{IH}} \end{aligned}$	$\begin{aligned} & -50 \\ & -50 \\ & \hline \end{aligned}$		$\begin{array}{r} +50 \\ +50 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{uA} \\ & \mathrm{uA} \end{aligned}$
Driver Output Voitage (G001-G120) High Low	$\begin{aligned} & \mathrm{v}_{\mathrm{OH}} \\ & \mathrm{v}_{\mathrm{OL}} \end{aligned}$	Vcc-0.8		$V_{E E}+0.8$	$\begin{aligned} & \text { v } \\ & \text { v } \end{aligned}$
Supply Current (GSC running at 100 kHZ , no loading)	$\begin{aligned} & \mathrm{I}_{\mathrm{CC}} \\ & \mathrm{I}_{\mathrm{DD}} \\ & \mathrm{I}_{\mathrm{EE}} \\ & \hline \end{aligned}$		$\begin{gathered} 0.5 \\ 100 \\ 0.5 \end{gathered}$	$\begin{gathered} 2.0 \\ 200 \\ -- \end{gathered}$	mA uA mA

PIN DESCRIPTION

Vss
This is the power supply GND connection pin.

Vod

This is the positive 5 V power supply pin for the logic circuitry of the chip.

Vcc
This is the power supply pin for the most positive supply voltage.
$V_{\text {EE }}$
This is the power supply pin for the most negative supply voltage.

GSC (Gate Driver Shift Clock)

This input clock signal is to clock the Carry In input ripple through the 122 Stages Shift Register for controlling the Output Scan Gating Sequence.

For normal single scan, the clock frequency is the horizontal frequency of the TV signal. In double scan full resolution mode, the frequency is doubled.

GCL (Gate Driver Carry-Left) / GCR (Carry-Right)

These two input / output pins perform the same function and depends on the GDD (Shift Direction Determination) Operation. In Shift Right mode, the GCL is the Carry input while the GCR is the Carry output for cascading. In shift Left mode, the pin functions and operations are vice versa. See Table 1.

GDD	Shift Direction	GCL	GCR	
"0"	G001 to G120	Shift Right Mode	Input	Output
"1"	G120 to G001	Shift Left Mode	Output	Input

Table 1.Carry Shift Direction

GDD (Gate Driver Shift Direction Determination)

This input pin provides the selection of the shift left and right mode of operation.

GDD $=$ " 0 ", the system shift register will shift right.
GDD $=$ " 1 ", the system shift register will shift left.
See Table 1.

GOC (Gate Driver Output Control)

This input pin provides control to the output buffer output pulse width in order to provide the effective gating timing of the TFT.

G001 to G120

These 120 output pins are high voltage buffer for driving the gate of the TFT active matrix LCD panel.

Figure 5. Gate Output Control to Control the Gating Pulse Width

Figure 6. Row Driver Timing Diagram (Shift Right Mode)

MC141522T1
TAB PACKAGE DIMEMSION (DO NOT SCALE THIS DRAWING)

LEADING DIRECTION

NOTES FOR ALL PAGES

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. IF NOT SPECIFIED, SIZE IN MILLIMETER
3. UNSPECIFIED DIMENSION TOLERANCE IS ± 0.05
4. BASE MATERIAL: 75 MICRON UPILEX-S
5. COPPER TYPE: $3 / 4$ OZ COPPER (THICKNESS TYP. 25 MICROMETER, MIN 18 MICROMETER)
6. 7 SPROCKET HOLES DEVICE
7. OPTIONAL FEATURE FOR. SPS INTERNAL USE ONLY WHICH. MAY BE REPLACED BY \varnothing 2.0 MM HOLE.

DETAIL C

DETAIL B

DETAIL A

FLEX MATERIAL DETAIL

Source (Column) Driver for TFT Type LCD Panel CMOS

The MC141524 is a high voltage LCD source driver. It is a low power silicongate CMOS LCD driver chip which consists of 120 channels source drive to provide the drain bus signal of a TFT (Thin-Film-Transistor) LCD panel.

This chip accepts the three video signals R, G, B. The built-in sample and hold circuitry will sample the video signals and hold these signals before outputting to drive the TFT-LCD panel.

The MC141524 will provide the best performance in combination with the MC141522 (gate driver). The two devices can drive LCD panels from 480×240 pixels middle-resolution up to 720×480 pixels high-resolution by cascading.

- Operating Supply Voltage Range

Logic ($\mathrm{V}_{\mathrm{DD}} \mathrm{pin}$): 4.5 V to 5.5 V
($V_{E E}$ pin): -5 V to -10 V
Output Drive $\left(V_{D D}-V_{E E}\right)=10 \mathrm{~V}$ to 15 V

- Dynamic Range: 11.0 Volts Peak to Peak
- Operating Temperature Range: -30 to $85^{\circ} \mathrm{C}$
- 120 - Column Output Driver
- 2 Sample \& Hold Cells Structure
- Bi-directional Shift Register with Interchanging Carry-Borrow Terminals
- Left / Right Shift Mode Selection
- Maximum Sampling Frequency $=30 \mathrm{MHz}$ (Three Phase (3ø)'s Operation)
- Video Bandwidith (-3dB): 5.0 MHz
- Programmable Buffer Output Drive with External Resistor
- Cascadable
- Available in TAB (Tape Automated Bonding), 152 pins

MC141524T1
TAB

ORDERING INFORMATION
MC141524T1 TAB

Figure 1A.TAB Package Contact Assignment (Copper View)

RATING	SYMBOL	VALUE	UNIT
Logic Supply Voltage	V_{DD}	+6.0	V
Negative Supply Voltage	V_{EE}	-16.0	V
DC Supply Voltage	$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}$	+22	V
Input Voltage	V_{di}	$\mathrm{Vss}-0.5$ to All Digital Input	V
Input Voltage Analog Video Input	Vai	$\mathrm{Vss}-0.5$ $\mathrm{~V}_{\mathrm{DD}}+0.5$	V
Operating Temp. Range	$\mathrm{Ta}_{\mathrm{ol}}$	-30 to 85	${ }^{\circ} \mathrm{C}$
Storage Temp. Range	$\mathrm{T}_{\mathrm{stg}}$	-55 to +150	${ }^{\circ} \mathrm{C}$

The device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions to be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended that Vin and Vout be constrained to the range VSS < or $=($ Vin or Vout $)<$ or $=$ VDD. Reliability of operation is enhanced if unused input is connected to an appropriate logic voltage level (e.g. either VSS or VDD). Unused outputs must be left open. This device may be light sensitive. Caution should be taken to avoid exposure of this device to any light source during normal operation. This device is not radiation protected.

Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Description section.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Typ	Max	Unit
Logic Supply Voltage	V_{DD}	+4.5	+5	+5.5	V
Negative Supply Voltage	V_{EE}	-5	-8	-10	V
DC Supply Voltage	$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}$	10	-	15	V
Operating Temperature	Ta	-20	-	+75	${ }^{\circ} \mathrm{C}$

AC ELECTRICAL CHARACTERISTICS

Vdd=5.0 V, Vss= $0 V, V_{E E}=-10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Voltage referenced to Vss

Parameter	Symbol	Min	Typ	Max	Unit
Control Input Rise Time Fall Time (SOE, SCR, SCL, SSC1,2,3)	$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$		$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
Shift Clock (SSC) to sampling activated Shift Register Output HIGH Shift Register Output LOW	$\begin{aligned} & \mathrm{t}_{\text {PLHR }} \\ & \mathrm{t}_{\text {PLHR }} \end{aligned}$			$\begin{aligned} & 10 \\ & 10 \end{aligned}$	ns
Carry In to Shift Clock (SSC1) Set Up Time	${ }^{\text {t }}$ Suc	--	20	--	ns
Carry In Pulse Width (SCR/SCL)	twc	80% of $\mathrm{t}_{\text {s }}$	--	--	ns
Shift Clock Cycle (SSC1,2,3)	t_{sg}	100	--	1000	ns
Shift Clock Pulse Width HIGH Shift Clock Pulse Width LOW (SSC1,2,3)	$\begin{aligned} & \mathrm{t}_{\mathrm{SCH}} \\ & \mathrm{t}_{\mathrm{SCL}} \end{aligned}$	$\begin{aligned} & 40 \% \text { of } t_{\mathrm{s} \varnothing} \\ & 40 \% \text { of } t_{\mathrm{s} \varnothing} \end{aligned}$	--	--	ns
Shift Clock n to Shift Clock $n+1$ Phase Delay	${ }_{\text {t }}$	30	--	--	ns
Propagation Delay Time Low to High Carry Output from SSC High to Low Carry Output from SSC $C_{L}=100 \mathrm{pF}$	$\begin{aligned} & \mathrm{t}_{\text {PLHC }} \\ & \mathrm{t}_{\text {PLHC }} \end{aligned}$				$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

Figure 1. Shift Clock, SR Output and Carry Out Propagation Delay Timing Diagram

Figure 2. Shift Clock and Carry In Propagation Delay Timing Diagram

Figure 3.Three Phase Shift Clock Phase Shift Delay Timing Diagram

Figure 4. Control Input Rise and Fall Time

DC ELECTRICAL CHARACTERISTICS
$V_{D D}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{VeE}_{\mathrm{E}}=-10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Voltage referenced to V SS

Parameter	Symbol	Min	Typ	Max	Unit
Control Input Voltage Level High	V_{iH}	3.2	--	5.5	V
Control Input Voltage Level Low	V_{IL}	0.0	--	1.2	V
SDD Input Voltage High SDD Input Voltage Low	$\begin{aligned} & \mathrm{V}_{\mathrm{IHS}} \\ & \mathrm{~V}_{\mathrm{ILSS}} \end{aligned}$	Vss		VDD	$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \end{aligned}$
D_{O} Output Current High ($V_{O}=V_{D D}-3.0 \mathrm{~V}$) Low ($\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{EE}}+2.0 \mathrm{~V}$)	$\begin{aligned} & \mathrm{I}_{\mathrm{OHX}} \\ & \mathrm{I}_{\mathrm{OLX}} \end{aligned}$	800		800	$\begin{aligned} & u A \\ & u A \end{aligned}$
Bias Voltage Resistance lag=15uA	R_{lb}	6	7.2	12	K Ω
Input Voltage Range	$V_{S G}$	$\mathrm{V}_{\mathrm{EE}}+2.0$	--	$\mathrm{V}_{\mathrm{DD}}-2.0$	V
Input Video Signal Dynamic Range		--	10	11	V_{pp}
Maximum Clock Input Frequency (CLK)	$\varnothing_{\text {MAX }}$	1.0	--	10.0	MHz
Current Consumption Shift Register constantly shifting one $V_{D D}=5 \mathrm{~V}, V_{E E}=-10 \mathrm{~V} \text {, Video } 1,2,3=-8 \mathrm{~V}$	Ic	-	10	30	mA
Sample \& Hold Cell Gain	$\mathrm{G}_{\text {s/h }}$	0.95	0.96	1.00	
Driver Output High (Video input = 3V) Driver Output Low (Video input $=-8 \mathrm{~V}$)	$\begin{aligned} & \mathrm{V}_{\mathrm{DOH}} \\ & \mathrm{~V}_{\mathrm{DOL}} \end{aligned}$	$\begin{gathered} 2.8 \\ -8 \end{gathered}$		$\begin{gathered} 3 \\ -7.8 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \end{aligned}$

PIN DESCRIPTION

$V_{\text {ss }}$
This is the power supply GND connection pin for the logic circuitry of the chip.
$V_{A G}$
This is the power supply GND connection pin for the ana\log circuitry of the chip. Normally it is set to middle between $V_{D D}$ and $V_{E E}$ level.
$V_{D D}$
This is the positive 5 V power supply pin for both the logic and the analog circuitry of the chip.
$V_{E E}$
This is the power supply pin for the most negative supply voltage for the analog circuitry of the chip.

Precharge

This logic input pin provides the output reset function. When precharge is held low, all driver $0 / p$ will go to the analog group level "VGA". When precharge is set high, all driver o / p is connected to the sample \& hold cell (i.e. normal signal output).

Autozero

This is a logic input pin to reset output unity gain buffer before next signal is generated. Normally, it is connected together with precharge pin. User can ignore the Autozero and / or precharge function by tying it to high.

SBV (Source Bias Voltage)

This is the bias voltage supply pin for the unity gain output analog buffer. This bias voltage can control the buffer current driving capability.

The bias voltage is controlled by an external resistor connected between SBV and VEE. The lower resistance will produce higher current driving capability.

SSC1, SSC2, SSC3 (Source Driver Shift Clock 1,2,3)
This input clock signal is divided in Three Phase Operation (3б) each with frequency of 10.0 MHz maximum. Each phase controls the sampling timing of one video line signal. The equivalent operating frequency is 30.0 MHz maximum.

Each clock signal will latch the carry signal through the Bi directional Shift Register to determine the video signal sampling timing for the sample \& hold cells.

SCL (Source Driver Carry-Left) / SCR (Carry-Right)
These two input / output pins perform the same function and depends on the SDD (Shift Direction Determination) Operation. In Shift Right mode, the SCL is the Carry input while the SCR is the Carry output for cascading. In shift Left mode, the pin functions and operations are vice versa. See Table 1.

SDD	Shift Direction		SCL	SCR
"0"	D1 to D120	Shift Right Mode	Input	Output
"1"	D120 to D1	Shift Left Mode	Output	Input

Table 1.Carry Shift Direction

SDD (Source Driver Shift Direction Determination)

This input pin determines the shift left / right operation of the Bi-directional Shift Register.

SDD $=$ " 0 ", the system shift register will shift right.
SDD = " 1 ", the system shift register will shift left.
See Table 1.

SOE (Source Driver Output Enable)

This input pin determines the sample and hold output sequence of the unity cell (See Figure 9). It governs the sample and hold alternate timing operation between lines.

D001 to D120

These 120 output pins are sample and hold buffer outputs. These buffers output the sampled video signal and drive the source of the TFT of an active matrix LCD panel.

SECTION 1

Bi-directional Shift Register

The 120-stage Bi-directional Shift Register controls the 120 corresponding sample and hold operation of the unity cell connected to each of the LCD driving output buffer. When the shift register bit content is " 1 ", the sample and hold circuit is in sampling state. The shift register is activated by shifting a "1" (Carry In) into the 1st stage of the shift register and the " 1 " value will latch through the register in turn performs the sample function of the unity cell.

The shift register is driven by a three phase clock. The maximum frequency of each phase clock is 10.0 MHz and therefore the minimum sampling window is 100 ns . The equivalent sampling rate of the source (common) driver is 30.0 MHz . See figure $6,7,8,9$.

Figure 6. Bi-directional Shift Register Block Diagram

Figure 7. Shift Register Timing Diagram (Shift Right Mode)

Figure 8. Carry Output Timing Diagram (Shift Right Mode)

(b) Bidirectional Connection Mode

Figure 9. Three Phase Shift Clock Arrangement

SECTION 2

Unity Cell

The unity cell consists of 2 sample and hold circuitry and a unity gain buffer output. The 2 sample and hold cells are arranged in complementary fashion such that one cell is in sampling action while another cell is holding the charge that was sampled previously.

The selected sample and hold circuit samples the video signal of one horizontal scan line and read out in the next horizontal line scanning period; while the other selected sample and hold cell samples the video signal of that next scan line. See figure 10, 11, 12, 13.

Figure 10. Sample and Hold Unity Cell Block Diagram

Figure 11. Sample and Hold Schematic

Figure 12. Unity Gain Buffer Schematic

Figure 13. Sample and Hold Timing Diagram

SECTION 3

System Timing

in NTSC TV standard, the vertical synchronization signal period is 16.7 ms while the horizontal synchronization signal period is 63.5 us. There is about 10us horizontal retrace period in one line of video signal. The effective display period contributes 95% of the rest of valid display period. Therefore, the effective display period for single video line is about 50 us. There is an half horizontal period shift between the odd field and even field, the effective display line video signal starts at the 19.0th lines scan after the vertical synchronization signal. The effective display line number for one field is 240 lines for single scan and 480 lines for double scan.

The Output Enable (SOE) control signal governs the sample and hold alternate timing operation between lines.

The driver controller has a VCO running at the required sampling rate to supply the system clock for the controller. The sampling clock is phase locked to the horizontal synchronization cooperated with the vertical synchronization signal. Odd field start and even field start signal are generated inside the controller to provide a timing signal for odd and even field start signal (Carry In). Once the start signal is generated, the column (source) driver starts sampling the video line signal while the row (gate) driver will output the latch signal one line
after the start pulse to change the sampled video signal to the LCD panel through the TFT switches on the active matrix panel.

There are 240 row driver outputs for single scan and 480 row driver outputs for double scan "High resolution" panel. However, the sampling frequency of the source (column) driver will be defined by the number of horizontal pixels of the panel.

For example, if the number of horizontal pixel is 720 , then the sampling frequency (fs) of the column driver will be defined by the following equation: (singe scan mode)
fs (signal scan)
$=$ (1/effective display period)* (no. of display pixels)
$=720 /(63 u s * 0.95)$
$=14.4 \mathrm{MHz}$
$=4.8 \mathrm{MHz}$ (using 3 phase clock)
The sampling frequency can be reduced by half if the column driver are placed in the bi-directional connection mode. See figure 6 and figure 12.

However, in the bi-directional connection mode, the controller has to provide a set of upper driver clock signal and lower driver clock signal. The phase shift between the upper and lower driver clock signal must be one pixel delay.

See Figure 14, 15.

Figure 14. LCD-TV: Odd Field System Timing

Figure 15. LCD-TV: Even Field System Timing

One Pixel Delay between upper and lower Column Driver

Figure 16. Sampling Pixel Delay with Upper and Lower Driver Arrangement

Figure 17. Source (Column) Driver Sampling of Video Line System Timing Diagram

Figure 18. Source (Column) Driver and Gate (Row) Driver Timing Relation

DETALL "A"
DETAIL. "B"

DETALL "C"

MC141524T1
TAB PACKAGE DIMENSION

	Millimeters		Inches			Millimeters		Inches	
Dim	Min	Max	Min	Max	Dim	Min	Max	Min	Max
A	69.750	70.150	2.7461	2.7618	AG	1.090	1.110	0.0429	0.0437
B	63.869	64.029	2.5145	2.5208	AH	14.050	14.115	0.5531	0.5571
C	0.950	1.050	0.0374	0.0413	AJ	14.050	14.115	0.5531	0.5571
D	17.870	17.970	0.7035	0.7075	AK	16.950	17.050	0.6673	0.6713
E	17.870	17.970	0.7035	0.7075	AL	16.950	17.050	0.6673	0.6713
F	36.068	36.212	1.4200	1.4257	AM	0.250	0.350	0.0098	0.0138
H	32.750	33.750	1.2894	1.3287	AN	0.250	0.350	0.0098	0.0138
J	13.450	13.550	0.5295	0.5335	AP	0.260	0.280	0.0102	0.0110
K	13.450	13.550	0.5295	0.5335	AR	0.110	0.150	0.0043	0.0059
L	0.750	0.850	0.0295	0.0335	AS	0.130	0.170	0.0051	0.0067
M	7.900	8.000	0.3110	0.3150	AT	0.680	0.720	0.0268	0.0283
N	9.700	9.800	0.3819	0.3858	AU	0.480	0.520	0.0189	0.0205
P	2.550	2.650	0.1004	0.1043	AV	1.350	1.450	0.0531	0.0571
R	0.750	0.850	0.0295	0.0335	AW	21.500	22.500	0.8465	0.8858
S	6.100	6.200	0.2402	0.2441	AX	23.500	24.500	0.9252	0.9646
T	7.900	8.000	0.3110	0.3150	AY	0.686	0.838	0.0270	0.0330
U	0.750	0.850	0.0295	0.0335	AZ	0.5794	0.6294	0.0228	0.0248
V	1.951	2.011	0.0768	0.0792	BA	0.0675	0.0825	0.0027	0.0032
W	1.951	2.011	0.0768	0.0792	BB	0.080	0.120	0.0031	0.0047
X	-	10.490	-	0.4130	BF	17.111	17.179	0.6737	0.6764
Y	-	6.651	-	0.2619	BG	17.111	17.179	0.6737	0.6764
Z	4.720	4.780	0.1858	0.1882	BH	10.550	11.550	0.4154	0.4547
AA	-	0.200	-	0.0079	BJ	1.950	2.050	0.0768	0.0807
AB	12.450	12.550	0.4902	0.4941	BK	16.650	16.750	0.6555	0.6594
AC	8.500	9.500	0.3347	0.3740	BL	16.650	16.750	0.6555	0.6594
AD	3.500	4.500	0.1378	0.1772					
AE	7.300	8.300	0.2874	0.3268					
AF	0.480	0.520	0.0189	0.0205					

NOTES:

1. Dimensioning and tolerancing per ANSI Y14.5M, 1982.
2. Controlling dimension: millimeter.
3. Copper thickness: $10 z$.

TAB TAPE REEL ORIENTATION

Advance Information LCD Segment / Common Driver CMOS

MC141531 is a CMOS LCD Driver which consists of 3 annunciator outputs and 137 high voltage LCD driving signals (17 common and 120 segment). It has parallel interface capability for operating with general MCU. Besides the general LCD driver features, it has on chip LCD bias voltage generator circuits such that limited external component is required during application.

- Single Supply Operation, 2.4 V-3.5 V
- Operating Temperature Range : $-30^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- Low Current Stand-by Mode (<500nA)
- On Chip Bias DC/DC Converter
- 8 bit Parallel Interface
- Graphic Mode Operation
- On Chip 120×17 Graphic Display Data RAM
- Master clear RAM
- 120 Segment Drivers, 17 Common Drivers
- 1/16, $1 / 17$ Multiplex Ratio
- $1: 5$ bias ratio
- Re-mapping of Row and Column Drivers
- Three Stand Alone Annunciator (Static Icon) Driver Circuits
- Low Power Icon. Mode Driven by Com16 in Special Driving Scheme
- Selectable LCD Drive Voltage Temperature Coefficients
- 16 level Internal Contrast Control
- External Contrast Control
- Standard TAB (Tape Automated Bonding) Package, Gold Bump Die

Block Diagram

$1 \boldsymbol{1 O R}$
LEGLカレDW

MAXIMUM RATINGS* (Voltages Referenced to $\mathrm{V}_{\mathrm{SS}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Symbol	Parameter	Value	Unit
$\mathrm{AV}_{\mathrm{DD}}, \mathrm{D} \mathrm{V}_{\mathrm{DD}}$	Supply Voltage	-0.3 to +4.0	V
$\mathrm{~V}_{\mathrm{CC}}$		$\mathrm{V}_{\mathrm{SS}^{-}-0.3 \text { to } \mathrm{V}_{\mathrm{SS}}+10.5}$	V
$\mathrm{~V}_{\mathrm{in}}$	Input Voltage	$\mathrm{V}_{\mathrm{SS}^{-}-0.3 \text { to } \mathrm{V}_{\mathrm{DD}}+0.3}$	V
I	Current Drain Per Pin Excluding V_{DD} and V_{SS}	25	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature	-30 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$

*Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Description section.
$V_{S S}=A V_{S S}=D V_{S S}\left(D V_{S S}=V_{S S}\right.$ of Digital circuit, $A V_{S S}=V_{S S}$ of Analogue Circuit)
$V_{D D}=A V_{D D}=D V_{D D}$ ($D V_{D D}=V_{D D}$ of Digital circuit, $A V_{D D}=V_{D D}$ of Analogue Circuit)

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions to be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended that $V_{\text {in }}$ and $V_{\text {out }}$ be constrained to the range $\mathrm{V}_{\mathrm{SS}}<$ or $=\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right)<$ or $=\mathrm{V}_{\mathrm{DD}}$. Reliability of operation is enhanced if unused input are connected to an appropriate logic voltage level (e.g., either $V_{S S}$ or $V_{D D}$). Unused outputs must be left open. This device may be light sensitive. Caution should be taken to avoid exposure of this device to any light source during normal operation. This device is not radiation protected.

ELECTRICAL CHARACTERISTICS (Voltage Referenced to $\mathrm{V}_{\mathrm{SS}}, \mathrm{V}_{\mathrm{DD}}=2.4$ to $3.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Symbol \& Parameter \& Test Condition \& Min \& Typ \& Max \& Unit \\
\hline \begin{tabular}{l}
DV \({ }_{D D}\) \\
\(A V_{D D}\)
\end{tabular} \& Logic Circuit Supply Voltage Range DC/DC Converter Circuit Supply Voltage Range \& (Absolute value referenced to \(\mathrm{V}_{\mathrm{SS}}\)) \& \[
\begin{aligned}
\& \hline 2.4 \\
\& 2.4
\end{aligned}
\] \& 3.0 \& \[
\begin{aligned}
\& \hline 3.5 \\
\& 3.5
\end{aligned}
\] \& V \\
\hline \(I_{A C}\)

$I_{D P}$ \& | Access Mode Supply Current Drain $\left(A V_{D D}+D V_{D D}\right.$ Pins $)$ |
| :--- |
| Display Mode Supply Current Drain ($A V_{D D}+D V_{D D}$ Pins) | \& | $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$, Internal DC/DC Converter On, Tripler Enabled, Annunciator On/Off, R \bar{W} accessing, $T_{\text {cyc }}=1 \mathrm{MHz}$, Osc. Freq. $=38.4 \mathrm{kHz}$, Display On, $1 / 7$ Mux Ratio |
| :--- |
| $V_{D D}=3.0 \mathrm{~V}$, Internal DC/DC Converter On, Tripler Enabled, |
| Annunciator On/Off, R/W halt, Osc. Freq. $=38.4 \mathrm{kHz}$, Display On, 1/17Mux Ratio | \& 0

0 \& 200
75 \& 300
165 \& $\mu \mathrm{A}$

$\mu \mathrm{A}$

\hline $\mathrm{I}_{\text {SB1 }}$ \& Standby Mode Supply Current Drain ($A V_{D D}+D V_{D D}$ Pins) \& $V_{D D}=3.0 \mathrm{~V}$, Display off, Oscillator Disabled, $R \bar{W}$ halt. \& 0 \& 300 \& 500 \& nA

\hline $\mathrm{I}_{\text {SB2 }}$ \& Annunciator Mode Supply Current Drain

$$
\left(A V_{D D}+D V_{D D} \text { Pins }\right)
$$ \& $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$, Annunciator Mode, Internal Oscillator, Oscillator Enabled, Display Off, R \bar{W} halt, Int Osc. Freq. $=38.4 \mathrm{kHz}$. \& 0 \& 5 \& 10 \& $\mu \mathrm{A}$

\hline $\mathrm{I}_{\text {SB3 }}$ \& Icon Mode Supply Current Drain ($A V_{D D}+D V_{D D}$ Pins) \& $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$, Icon Mode, Internal Oscillator, Oscillator Enabled, Display Off, R \bar{W} halt, Ext Osc. Freq. $=38.4 \mathrm{kHz}$. \& 0 \& - \& 25 \& $\mu \mathrm{A}$

\hline $\mathrm{V}_{\mathrm{CC1}}$ \& LCD Driving DC/DC Converter Output
(VCC Pin) \& Display On, Internal DC/DC Converter Enabled, Tripler Enabled, Osc. Freq. $=38.4 \mathrm{KHz}$, Regulator Enabled, Divider Enabled. \& - \& $3^{*} \mathrm{AV}_{\text {DD }}$ \& 10.5 \& V

\hline $\mathrm{V}_{\mathrm{CC2}}$ \& LCD Driving DC/DC Converter Output ($V_{C C}$ Pin) \& Display On, Internal DC/DC Converter Enabled, Doubler Enabled, Osc. Freq. $=38.4 \mathrm{KHz}$, Regulator Enabled, Divider Enabled. \& - \& $2^{*} \mathrm{AV}_{\text {DD }}$ \& 7 \& V

\hline $V_{\text {LCD }}$ \& LCD Driving Voltage Input ($V_{C C}$ Pin) \& Internal DC/DC Converter Disabled. \& 5 \& - \& 10.5 \& v

\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS (Voltage Referenced to $\mathrm{V}_{\mathrm{SS}}, \mathrm{V}_{\mathrm{DD}}=2.4$ to $3.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Symbol	Parameter	Test Condition	Min	Typ	Max	Unit
$\mathrm{V}_{\mathrm{HH} 1}$	Input high voltage (RES, OSC2, $\overline{\mathrm{CS}}, \mathrm{DO}$-D7, R/W, $\mathrm{D} / \mathrm{C}, \mathrm{OSC} 1$)		$0.8{ }^{*} \mathrm{~V}_{\mathrm{DD}}$	-	V_{DD}	V
$\mathrm{V}_{\text {IL } 1}$	Input Low voltage ($\overline{\mathrm{RES}}, \mathrm{OSC} 2, \overline{\mathrm{CS}}, \mathrm{DO}-\mathrm{D} 7, \mathrm{R} / \bar{W}, \mathrm{D} / \overline{\mathrm{C}}, \mathrm{OSC1})$		0	-	$0^{*}{ }^{*} V_{\text {DD }}$	v
$\mathrm{V}_{\mathrm{LL} 6}$ $V_{\text {LL5 }}$ VLL4 $V_{\text {LL3 }}$ $V_{L L 2}$	LCD Display Voltage Output $\left(\mathrm{V}_{\mathrm{LL} 6}, \mathrm{~V}_{\mathrm{LL} 5}, \mathrm{~V}_{\mathrm{LL} 4}, \mathrm{~V}_{\mathrm{LL} 3}, \mathrm{~V}_{\mathrm{LL} 2}\right.$ Pins $)$	Voltage Divider Enabled		$\begin{gathered} V_{R} \\ 0.8^{*} V_{R} \\ 0.6^{*} V_{R} \\ 0.4^{*} V_{R} \\ 0.2^{*} V_{R} \end{gathered}$	-	$\begin{aligned} & \hline v \\ & v \end{aligned}$
$V_{\text {LL6 }}$ $\mathrm{V}_{\mathrm{LL} 5}$ $\mathrm{V}_{\mathrm{LL} 4}$ $\mathrm{V}_{\mathrm{LL} 3}$ $\mathrm{V}_{\mathrm{LL} 2}$	LCD Display Voltage Input $\left(\mathrm{V}_{\mathrm{LL} 6}, \mathrm{~V}_{\mathrm{LL} 5}, \mathrm{~V}_{\mathrm{LL} 4}, \mathrm{~V}_{\mathrm{LL} 3}, \mathrm{~V}_{\mathrm{LL} 2}\right.$ Pins $)$	External DC/DC Converter, Voltage Divider Disable	$\begin{aligned} & 5 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	-	$V_{c c}$ $\mathrm{V}_{\mathrm{LL} 6}$ $\mathrm{V}_{\mathrm{LL} 5}$ $\mathrm{V}_{\mathrm{LL} 4}$ $\mathrm{V}_{\mathrm{LL} 3}$	v v v v v
I_{OH}	$\begin{aligned} & \text { Output High Current Source } \\ & \text { (DO-D7, Annun0-2, BP, OSC2) } \end{aligned}$	$\mathrm{V}_{\text {out }}=\mathrm{V}_{\text {D }}-0.4 \mathrm{~V}$	50	-	-	$\mu \mathrm{A}$
lol	Output Low Current Drain (DO-D7, Annun0-2, BP, OSC2)	$V_{\text {out }}=0.4 \mathrm{~V}$	-	-	-50	$\mu \mathrm{A}$
loz	Output Tri-state Current Drain Source (DO-D7, OSC2)		-1	-	1	$\mu \mathrm{A}$
$\mathrm{I}_{1 / 2} / \mathrm{IH}^{\text {d }}$	Input Current ($\overline{R E S}, ~ O S C 2, ~ \overline{C S}, ~ D O-D 7, ~ R / \bar{W}, D / \bar{C}, ~ O S C 1) ~$		-1	-	1	$\mu \mathrm{A}$
$\mathrm{R}_{\text {on }}$	Channel resistance between LCD driving signal pins (SEG and COM) and driving voltage input pins ($\mathrm{V}_{\mathrm{LL} 2}$ to $\mathrm{V}_{\mathrm{LL} 6}$)	During Display on, 0.1 V apply between two terminals, VCC within operating voltage range	\bullet	\bullet	10	k Ω
V_{SB}	Memory Retention Voltage ($\mathrm{DV}_{\mathrm{DD}}$)	Standby mode, retain all internal configuration and RAM data	2	-	-	V
$\mathrm{C}_{\text {IN }}$	Input Capacitance (OSC1, OSC2, all logic pins)		-	5	7.5	pF
PTCO PTC1 PTC2 РTC3	Temperature Coefficient Compensation* Flat Temperature Coefficient Temperature Coefficient 1* Temperature Coefficient 2* Temperature Coefficient 3^{*}	TC1 $=0$, TC2 $=0$, Voltage Regulator Disabled TC1 $=0$, TC2 $=1$, Voltage Regulator Enabled TC1 $=1$, TC2 $=0$, Voltage Regulator Enabled TC1=1, TC2=1, Voltage Regulator Enabled		$\begin{gathered} 0.0 \\ -0.18 \\ -0.22 \\ -0.35 \end{gathered}$		$\begin{aligned} & \% \\ & \% \\ & \% \\ & \% \end{aligned}$
V_{CN}	Internal Contrast Control (V_{R} Output Voltage)	Regulator Enabled, Internal Contrast control Enabled. (16 Voltage Levels Controlled by Software. Each level is typically 2.25% of the Regulator Output Voltage.)	-	± 18	-	\%

*The formula for the temperature coefficient (TC) is:
$\mathrm{TC}(\%)=\frac{\text { VR at } 50^{\circ} \mathrm{C} \cdot \mathrm{VR} \text { at } 0^{\circ} \mathrm{C}}{50^{\circ} \mathrm{C}-0^{\circ} \mathrm{C}} \times \frac{1}{\text { VR at } 25^{\circ} \mathrm{C}} \times 100 \%$

AC ELECTRICAL CHARACTERISTICS ($T_{A}=25^{\circ} \mathrm{C}$, Voltage referenced to $V_{S S}, A V_{D D}=D V_{D D}=3 V$)

Symbol	Parameter	Test Condition	Min	Typ	Max	Unit
Fosc	Oscillation Frequency of Display timing generator	60 Hz Frame Frequency Either External Clock Input or Internal Oscillator Enabled	-	38.4	-	kHz
$\mathrm{F}_{\text {ANN }}$	Backplane Frequency of Annunciator (Annun0-3, BP)	50% duty cycle Annunciator on, $\mathrm{Fosc}=38.4 \mathrm{KHz}$	-	30	-	Hz
FFRM	Frame Frequency	Graphic Display Mode, Timing generator freq. $=38.4 \mathrm{kHz}$ Icon Mode, Timing generator freq. $=38.4 \mathrm{kHz}$	-	60 TBD	-	Hz
OSC	Internal Oscillation Frequency with different value of feedback resistor	Internal Oscillator Enabled, V_{DD} within operation range	See Figure 1 for the relationship			

Note: $F_{\text {FRM }}=$ Fosc $/ 640$
$\mathrm{F}_{\mathrm{ANN}}=\mathrm{F}_{\mathrm{OSC}} / 1280$

Figure 1. Internal Oscillator Frequency Relationship with External Resistor Value

TABLE 2a. Parallel Timing Characteristics (Write Cycle) ($\mathrm{T}_{\mathrm{A}}=-30$ to $85^{\circ} \mathrm{C}, \mathrm{DV} \mathrm{DD}=2.4$ to $3.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$)

Symbol	Parameter	Min	Typ	Max	Unit
$\mathrm{t}_{\text {cycle }}$	Enable Cycle Time	600	-	-	ns
t_{EH}	Enable Pulse Width	290	-	-	
t_{AS}	Address Setup Time	5	ns		
t_{DS}	Data Setup Time	290	-	-	ns
t_{DH}	Data Hold Time	20	-	-	ns
t_{AH}	Address Hold Time	-	-	ns	

Figure 3. Timing Characteristics (Write Cycle)

TABLE 2b. Parallel Timing Characteristics (Read Cycle) ($\mathrm{T}_{\mathrm{A}}=-30$ to $85^{\circ} \mathrm{C}, \mathrm{DV} \mathrm{DD}=2.4$ to $3.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$)

Symbol	Parameter	Min	Typ	Max	Unit
$\mathrm{t}_{\mathrm{cycle}}$	Enable Cycle Time	600	-	-	ns
t_{EH}	Enable Pulse Width	290	-	-	
t_{AS}	Address Setup Time	5	ns		
t_{DS}	Data Setup Time	-	-	-	ns
t_{DH}	Data Hold Time	5	-	290	ns
t_{AH}	Address Hold Time	-	-	ns	

Figure 4. Timing Characteristics (Read Cycle)

PIN DESCRIPTIONS

D/C (Data / Command)

This input pin tell the LCD driver the input at DO-D7 is data or command. Input High for data while input Low for command.

$\overline{C S}$ (CLK) (Input Clock)

This pin is normal Low clock input. Data on D0-D7 are latched at the falling edge of ट्S.

RES (Reset)

An active Low pulse to this pin reset the internal status of the driver (same as power on reset). The minimum pulse width is $10 \mu \mathrm{~s}$.

D0-D7 (Data)

This bi-directional bus is used for data / command transferring.

R/W (Read / Write)

This is an input pin. To read the display data RAM or the internal status (Busy / Idle), pull this pin High. The R/W input Low indicates a write operation to the display data RAM or to the internal setup registers.

OSC1 (Oscillator Input)

For internal oscillator mode, this is an input for the internal low power RC oscillator circuit. In this mode, an external resistor of certain value should be connected between the OSC1 and OSC2 pins for a range of internal operating frequencies (refer to Figure 1). For external oscillator mode, OSC1 should be left open.

OSC2 (Oscillator Output / External Oscillator Input)

For internal oscillator mode, this is an output for the internal low power RC oscillator circuit. For external oscillator mode, OSC2 will be an input pin for external clock and no external resistor is needed.

VLL6-VLL2

Group of voltage level pins for driving the LCD panel. They can either be connected to external driving circuit for external bias supply or connected internally to built-in divider circuit if internal divider is enable. For Internal DC/DC Converter enabled, a $0.1 \mu \mathrm{~F}$ capacitor to $A V_{S S}$ is required on each pin.

C1N and C1P

If Internal DC/DC Converter is enabled, a $0.1 \mu \mathrm{~F}$ capacitor is required to connect these two pins.

C2N and C2P

If Internal DC/DC Converter and Tripler are enabled, a $0.1 \mu \mathrm{~F}$ capacitor is required between these two pins. Otherwise, leave these pins open.

C+ and C-

If internal divider circuit is enabled, a $0.1 \mu \mathrm{~F}$ capacitor is required to connect between these two pins.

VR and VF

This is a feedback path for the gain control (external contrast control) of VLL1 to VLL6. For adjusting the LCD driving voltage, it requires a feedback resistor placed between VR and VF, a gain control resistor placed between VF and AVSS, a $10 \mu \mathrm{~F}$ capacitor placed between VR and AVSS. (Refer to the Application Circuit)

COM0-COM16 (Row Drivers)

These pins provide the row driving signal to LCD panel. Output is 0 V during display off. COM16 also serves as the common driving signal in the icon mode.

SEG0-SEG119 (Column Drivers)

These 120 pins provide LCD column driving signal to LCD panel. They output OV during display off.

BP (Annunciator Backplane)

This pin combines with Annun0-Annun2 pins to form annunciator driving part. When the annunciator circuit is enabled, it will output square wave of 30 Hz . It outputs low when oscillator is disabled.

Annun0 - Annun2 (Annunclator Frontplanes)

These pins are three independent annunciator driving outputs. The enabled annunciator outputs from its corresponding pin a 30 Hz square wave which is 180 degrees out of phase with BP. Disabled annunciator output from its corresponding pin an square wave inphase with BP.. When all annunciators are disabled, all these pins output OV.

AVDD and AVSS

AVDD is the positive supply to the LCD bias Internal DC/DC Converter. AVSS is ground.

VCC

For using the Internal DC/DC Converter, a $0.1 \mu \mathrm{~F}$ capacitor from this pin to AVSS is required. It can also be an external bias input pin if Internal DC/DC Converter is not used. Power is supplied to the LCD Driving Level Selector and HV Buffer Cell with this pin. Normally, this pin is not intended to be a power supply to other component.

DVDD and DVSS

Power is supplied to the digital control circuit of the driver using these two pins. DVDD is power and DVSS is ground.

OPERATION OF LIQUID CRYSTAL DISPLAY DRIVER

Description of Block Diagram Module

Command Decoder and Command Interface

This module determines whether the input data is interpreted as data or command. Data is directed to this module based upon the input of the D/C pin. If D/C high, data is written to Graphic Display Data RAM (GDDRAM). D/C low indicates that the input at DO-D7 is interpreted as a Command.

Reset is of same function as Power ON Reset (POR). Once RES received the reset pulse, all internal circuitry will back to its initial status. Refer to Command Description section for more information.

MPU Parallel Interface
The parallel interface consists of 8 bi-directional data lines (DOD7), RN, and the CS. The RN input High indicates a read operation from the Graphic Display Data RAM (GDDRAM). RN input Low indicates a write operation to Display Data RAM or Internal Command Registers depending on the status of D/C input. The CS input serves as data latch signal (clock). Refer to AC operation conditions and characteristics section for Parallel Interface Timing Description.

Graphic Display Data RAM (GDDRAM)

The GDDRAM is a bit mapped static RAM holding the bit pattern to be displayed. The size of the RAM is determined by number of row times the number of column ($120 \times 17=2040$ bits). Figure 5 is a description of the GDDRAM address map. For mechanical flexibility, re-mapping on both Segment and Common outputs are provided.

Figure 5. Graphic Display Data RAM (GDDRAM) Address Map

Display Timing Generator

This module is an on chip low power RC oscillator circuitry (Figure 6). The oscillator frequency can be selected in the range of 15 kHz to 50 kHz by external resistor. One can enable the circuitry by software command. For external clock provided, feed the clock to OSC2 and leave OSC1 open.

Annunclator Control Circuit

The LCD waveform of the 3 annunciators and BP are generated by this module. The 3 independent annunciators are enabled by software command. Annunciator is also controlled by oscillator circuit. Before turning the annunciators on, the oscillator must be on in advance. Annunciator output waveform shown in Figure 7.

Figure 6. Oscillator Circuitry

Figure 7. Annunciators and BP Display Waveform

LCD Driving Internal DC/DC Converter and Regulator

This module generates the LCD voltage needed for display output. It takes a single supply input and generate necessary bias voltages. It consists of :

1. Voltage Doubler and Voltage Tripler

To generate the Vcc voltage. Either Doubler or Tripler can be enabled.
2. Voltage Regulator

Feedback gain control for initial LCD voltage. It can also be used with external contrast control.
3. Voltage Divider

Divide the LCD display voltage $\left(\mathrm{V}_{\mathrm{LL} 2}-\mathrm{V}_{\mathrm{LL} 6}\right)$ from the regulator output. This is a low power consumption circuit which can save the most display current compare with traditional resistor ladder method.
4. Self adjust temperature compensation circuitry

Provide 4 different compensation grade selections to satisfy the various liquid crystal temperature grades. The grading can be selected by software control.
5. Contrast Control Block

Software control of 16 voltage levels of LCD voltage.
All blocks can be individually turned off if external DC/DC Converter is employed.

17 Bit Latch / 120 Bit Latch

A 137 bit long register which carry the display signal information. First 17 bits are Common driving signals and other 120 bits are Segment driving signals. Data will be input to the HV-buffer Cell for bumping up to the required level.

Level Selector

- Level Selector is a control of the display synchronization. Display voltage can be separated into two sets and used with different cycles. Synchronization is important since it selects the required LCD voltage level to the HV Buffer Cell for output signal voltage pump.

HV Buffer Cell (Level Shifter)

HV Buffer Cell works as a level shifter which translates the low voltage output signal to the required driving voltage. The output is shifted out with an internal FRM clock which comes from the Display Timing Generator. The voltage levels are given by the level selector which is synchronized with the internal M signal.

LCD Panel Driving Waveform

The following is an example of how the Common and Segment drivers may be connected to a LCD panel. The waveforms shown in Figure $8 \mathrm{a}, 8 \mathrm{~b}$ and 8 c illustrate the desired multiplex scheme.

Figure 8a. LCD Display Example " 0 "

TIME SLOT

Figure 8b. LCD Driving Signal from MC141531

TIME SLOT

Figure 8c. Effective LCD waveform on LCD pixel

Command Description

Set Display On/Off (Display Mode / Stand-by Mode)

The Display On command turns the LCD Common and Segment outputs on and has no effect to the annunciator output. This command starts the conversion of data in GDDRAM to necessary waveforms on the Common and Segment driving outputs. The on-chip bias generator is also turned on by this command. (Note: "Set Oscillator On" command should be sent before "Set Display On")

The Display Off command turn the display off and the states of the LCD driver are as follow during display off:

1. The Common and Segment outputs are fixed at $\mathrm{V}_{\mathrm{LL} 1}\left(\mathrm{~V}_{\mathrm{SS}}\right)$.
2. The bias Internal DC/DC Converter is turned off.
3. The RAM and content of all registers are retained.
4. IC will accept new commands and data.

The status of the Annunciators and Oscillator are not affected by this command.

Note: DON'T USE ICON DISPLAY MODE DURING DISPLAY OFF.

Set GDDRAM Column Address

This command positions the address pointer on a column location. The address can be set to location $00 \mathrm{H}-77 \mathrm{H}$ (120 columns). The column address will be increased automatically after a read or write operation. Refer to "Address Increment Table" and command "Set GDDRAM Page Address" for further information.

Set GDDRAM Page Address

This command positions the row address to 1 of 3 possible positions in GDDRAM. Refer to figure 5.

Master Clear GDDRAM

This command is to clear the content of page 1 and 2 of the Display Data RAM to zero. Issue this command followed by a dummy write command.

Master Clear Icons

This command is used to clear the data in page 3 of GDDRAM which stores the icon line data. Before using this command, set the page address to Page 3 by the command "Set GDDRAM Page Address". A dummy write data is also needed after this "Master Clear Icons" command to make the clear icon action effective.

Set Display Mode

This command switch the driver to full display mode or low power icon mode. In low power icon mode, only icons (driven by COM16) and annunciators are displayed, and the DC-DC converter, the Internal DC/DC Converter and the regulator are disabled. Do select 1/17 Mux ratio before using the low power icon mode.
Note: DON'T USE ICON DISPLAY MODE DURING DISPLAY OFF.

Set Multiplex Ratio

In normal display mode, the multiplex ratio could be set to be 1/16 or $1 / 17$. For $1 / 16$ Mux Ratio, COM16 signal should not be connected to the panel.

Set Icon Mode A/B

In Icon mode A, on-pixels are stressed by a voltage with root-mean-square value of $0.87 \times V_{D D}$, whereas off-pixels by $0.5 \times V_{D D}$. In icon mode B, on-pixels are stressed by a voltage with root-meansquare value of $0.71 \times V_{D D}$, whereas off-pixels by $0.41 \times V_{D D}$. This command is used to control the contrast of the icon line (Com16) under icon mode

Set Vertical Scroll Value

This command maps the selected GDDRAM row ($00 \mathrm{H}-0 \mathrm{FH}$) to Com0. With scroll value equals to 0 , Row 0 of GDDRAM is mapped to Com0 and Row 1 through Row 15 are mapped to Com1 through Com15 respectively. With scroll value equal to 1 , Row 1 of GDDRAM is mapped to Com0, then Row 2 through Row 15 will be mapped to Com1 through Com14 respectively and Row 0 will be mapped to Com15.

Save / Restore Column Address

With bit option = 1 in this command, the Save / Restore Column Address command saves a copy of the Column Address of GDDRAM. With a bit option $=0$, this command restores the copy obtained from the previous execution of saving column address. This instruction is very useful for writing full graphics characters that are larger than 8 pixels vertically.

Set Column Mapping

This instruction selects the mapping of GDDRAM to Segment drivers for mechanical flexibility. There are 2 mappings to select:

1. Column 0 - Column 119 of GDDRAM mapped to Sego-Seg119 respectively;
2. Column 0 - Column 119 of GDDRAM mapped to Seg119-Sego respectively.
Detail information please refer to section "Display Output Description".

Set Row Mapping

This command selects the mapping of GDDRAM to Common Drivers for mechanical flexibility. There are 2 mappings to select:

1. Row 0 - Row 15 of GDDRAM to Com0-Com15 respectively;
2. Row 0 - Row 15 of GDDRAM to Com15-Com0 respectively.

Output of Row 16 (Com16) will not be changed by this command. See section "Display Output Description" for related information.

Set Annunclator Control Signals

This command is used to control the active states of the 3 stand alone annunciator drivers.

Set Oscillator Enable / Disable

This command is used to either turn on or off the oscillator. For using internal or external oscillator, this command should be executed. The setting for this command is not affected by command "Set Display On/Off" and "Set Annunciator Control Signal". See command "Set Internal / External Oscillator" for more information

Set Internal / External Oscillator

This command is used to select either internal or external oscillator. When internal oscillator is selected, feedback resistor between OSC1 and OSC2 is needed. For external oscillation circuit, teed clock input signal to OSC2 and leave OSC1 open.

Set Internal DC/DC Converter On/Off

Use this command to select the Internal DC/DC Converter to generate the V_{CC} from $\mathrm{AV}_{\mathrm{DD}}$. Disable the Internal DC/DC Converter if external Vcc is provided.

Set Voltage Doubler / Tripler

Use this command to choose Doubler or Tripler when the Internal DC/DC Converter is enabled.

Set Internal Regulator On/Off

Choose bit option 0 to disable the Internal Regulator. Choose bit option 1 to enable Internal Regulator which consists of the internal contrast control and temperature compensation circuits.

Set Internal Voltage Divider On/Off

If the Internal Voltage Divider is disabled, external bias can be used for $V_{L L 6}$ to $V_{L L 2}$. If the Internal Voltage Divider is enabled, the internal circuit will generated the $1: 5$ bias driving voltage.

Set Internal Contrast Control On/Off

This command is used to turn on or off the internal control of delta voltage of the bias voltages. With bit option $=1$, the software selection for delta bias voltage control is enabled. With bit option $=0$, internal contrast control is disabled.

Increase / Decrease Contrast Level

If the internal contrast control is enabled, this command is used to increase or decrease the contrast level within the 16 contrast levels. The contrast level starts from lowest value after POR.

Set Contrast Level

This command is to select one of the 16 contrast levels when internal contrast control circuitry is in use. After power-on reset, the contrast level is the lowest.

Set Temperature Coefficient

This command can select 4 different LCD driving voltage temperature coefficients to match various liquid crystal temperature grades. Those temperature coefficients are specified in Electrical Characteristics Tables.

COMMAND TABLE

Bit Pattern	Command	Comment
$000000 \mathrm{X}_{1} \mathrm{X}_{0}$	Set GDDRAM Page Address	Set GDDRAM Page Address using $X_{1} X_{0}$ as address bits. $\begin{aligned} & X_{1} x_{0}=00: \text { page } 1(\mathrm{POR}) \\ & x_{1} x_{0}=01: \text { page } 2 \\ & x_{1} x_{0}=10: \text { page } 3 \end{aligned}$
$0001 \mathrm{X}_{3} \mathrm{x}_{2} \mathrm{X}_{1} \mathrm{X}_{0}$	Set Contrast Level	With $R \bar{W}$ pin input low, set one of the 16 available values to the internal contrast register, using $X_{3} X_{2} X_{1} X_{0}$ as data bits. The contrast register is reset to 0000 during POR.
$0010000 \mathrm{X}_{0}$	Set Voltage Doubler / Tripler	$X_{0}=0$: Set Voltage Tripler (POR) $X_{0}=1$: Set Voltage Doubler
$0010001 \mathrm{X}_{0}$	Set Column Mapping	$X_{0}=0$: Col0 to Sego (POR) $X_{0}=1$: Colo to Seg119
$0010010 \mathrm{X}_{0}$	Set Row Mapping	$X_{0}=0$: Row0 to Com0 $X_{0}=1$: Row0 to Com15
0010100X 0	Set Display On/Off	$\begin{aligned} & X_{0}=0: \text { display off (POR) } \\ & X_{0}=1: \text { display on } \end{aligned}$
$0010101 \mathrm{X}_{0}$	Set Internal DC/DC Converter On/Off	$X_{0}=0$: Internal DC/DC Converter off(POR) $X_{0}=1$: Internal DC/DC Converter on
0010110X ${ }_{0}$	Set Internal Regulator On/Off	$x_{0}=0$: Internal Regulator off(POR) $X_{0}=1$: Internal Regulator on When application uses a supply with built-in temperature compensation, the regulator should be disabled.
0010111 ${ }_{0}$	Set Internal Voltage Divider On/Off	$X_{0}=0$: Internal Voltage Divider off (POR) $X_{0}=1$: Internal Voltage Divider on When an external bias network is preferred, the voltage divider should be disabled.
$0011000 \mathrm{X}_{0}$	Set Internal Contrast Control On/Off	$\mathrm{X}_{0}=0$: Internal Contrast Control off (POR) $X_{0}=1$: Internal Contrast Control on Internal contrast circuits can be disabled if external contrast circuits is preferred.
$0011001 \mathrm{X}_{0}$	Set Display Mode	$\mathrm{X}_{0}=0$: normal display mode ($1 / 16$ or $1 / 17$ mux) (POR) $X_{0}=1$: low power icon display mode
$0011010 \mathrm{X}_{0}$	Save/Restore GDDRAM Column Address	$\mathrm{X}_{0}=0$: restore address $X_{0}=1$: save address
00110110	Master Clear GDDRAM	Master clear page 1 and 2 of GDDRAM
00110111	Master Clear of Icons	Master Clear of icon line (Com16)
0011101X 0	Reserved.	$\mathrm{X}_{0}=0$: normal operation (POR) $X_{0}=1$: test mode (Note: Make sure to set $\mathrm{X}_{0}=0$ during application)

Bit Pattern	Command	Comment
0011110X 0	Set Multiplex Ratio	$\begin{aligned} & X_{0}=0: 1 / 16 \text { Mux ratio (POR) } \\ & X_{0}=1: 1 / 17 \text { Mux ratio } \end{aligned}$
$0011111 \mathrm{X}_{0}$	Set Icon Mode A/B	$\begin{aligned} & X_{0}=0: \text { icon mode } A(P O R) \\ & X_{0}=1: \text { icon mode } B \end{aligned}$
$0100 X_{3} x_{2} x_{1} x_{0}$	Set Vertical Scroll Value	Use $X_{3} X_{2} X_{1} X_{0}$ as number of lines to scroll. Scroll value $=0$ upon POR
$01100 A_{1} A_{0} \mathrm{X}_{0}$	Set Annunciator Control Signals	$A_{1} A_{0}=00$: select annunciator 1 (POR) $A_{1} A_{0}=01$: select annunciator 2 $A_{1} A_{0}=10$: select annunciator 3 $X_{0}=0$: turn selected annunciator off (POR) $X_{0}=1$: turn selected annunciator on
01101000	Reserved	
$011011 \mathrm{X}_{1} \mathrm{X}_{0}$	Set Temperature Coefficient	$\begin{aligned} & X_{1} x_{0}=00: 0.00 \% \text { (POR) } \\ & X_{1} X_{0}=01:-0.18 \% \\ & X_{1} X_{0}=10:-0.22 \% \\ & X_{1} x_{0}=11:-0.35 \% \end{aligned}$
0111000X ${ }_{0}$	Increase / Decrease Contrast Value	$X_{0}=0$: Decrease by one $\mathrm{X}_{0}=1$: Increase by one (Note: increment/decrement wraps round among the 16 contrast levels. Start at the lowest level when POR.)
$0111011 \mathrm{X}_{0}$	Reserved	$\mathrm{X}_{0}=0$: normal operation (POR) $X_{0}=1$: test mode select (Note: Make sure to set $\mathrm{X}_{0}=0$ during application)
0111101X 0	Set External / Internal Oscillator	$\mathrm{X}_{0}=0$: External oscillator (POR) $X_{0}=1$: Internal oscillator. For internal oscillator place a resistor between OSC1 and OSC2. For external oscillator mode, feed clock input to OSC2.
0111111 X_{0}	Set Oscillator Disable / Enable	$\mathrm{X}_{0}=0$: oscillator master disable (POR) $X_{0}=1$: oscillator master enable. This is the master control for oscillator circuitry. This command should be issued after the "External / Internal Oscillator" command.
$1 \mathrm{X}_{6} \mathrm{x}_{5} \mathrm{X}_{4} \mathrm{X}_{3} \mathrm{X}_{2} \mathrm{X}_{1} \mathrm{X}_{0}$	Set GDDRAM Column Address	Set GDDRAM Column Address. Use $X_{6} X_{5} X_{4} X_{3} X_{2} X_{1} X_{0}$ as address bits.

Data Read/Write

To read data from the GDDRAM, input High to R / \bar{W} pin and D / \bar{C} pin. Data is valid at the falling edge of $\overline{C S}$. And the GDDRAM column address pointer will be increased by one automatically.

To write data to the GDDRAM, input Low to $R \bar{W}$ pin and High to $\bar{D} / \overline{\mathrm{C}}$ pin. Data is latched at the falling edge of $\overline{\mathrm{CS}}$. And the GDDRAM column address pointer will be increased by one automatically.

No auto address pointer increment will be performed for the Dummy Write Data after Master Clear GDDRAM. (Refer to the "Commands Required for RNW Actions on RAM" Table)

Address Increment Table (Automatic)

$\mathbf{D} / \overline{\mathbf{C}}$	$\mathbf{R} / \overline{\mathbf{W}}$	Comment	Address Increment	Remarks
$\mathbf{0}$	0	Write Command	No	
0	1	Read Command	No (invalid mode)	$* 1$
$\mathbf{1}$	0	Write Data	Yes	${ }^{*} 2$
$\mathbf{1}$	1	Read Data	Yes	

Address Increment is done automatically data read write. The column address pointer of GDDRAM ${ }^{* 3}$ is affected.
Remarks: *1. Only data is read from RAM.
*2. If write data is issued after Command Clear RAM, Address increase is not applied.
*3. Column Address will be wrapped round when overflow.

Power Up Sequence (Commands Required)

Command Required	POR Status	Remarks
Set External / Internal Oscillator	External	$* 1$
Set Voltage Tripler / Doubler	Tripler	$* 1$
Internal DC/DC Converter On	Off	$* 1$
Set Internal Regulator On	Off	$* 1$
Set Temperature Coefficient	TC=0\%	$* 1, * 3$
Set Internal Contrast On	Off	$* 1, * 3$
Set Contrast Level	Contrast Level $=0$	$* 1, * 2, * 3$
Set Internal Voltage Divider On	Off	$* 1$
Set Column Mapping	Seg. $0=$ Col. 0	$* 1$
Set Row Mapping	Com. $0=$ Row 0	$* 1$
Set Vertical Scroll Value	Scroll Value =0	$* 1$
Set Oscillator Enable	Disable	
Set Annunciator Control Signals	Annunciators all off	$* 1$
Master Clear GDDRAM	Random	
Dummy Write Data		
Set Display On	Off	

Remarks
*1 -- Required only if desired status differ from POR.
*2 -- Effective only if Internal Contrast Control is enabled.
*3 -- Effective only if Regulator is enabled.

Commands Required for Display Mode Setup

Display Mode	Commands Required	
Normal Display Mode	Set External / Internal Oscillator Set Oscillator Enable, Set Display On.	$\left(0111101 X_{0}\right)^{*}$ $(0111111)^{*}$ $(00101001)^{*}$
Icon Display Mode	Set Internal Oscillator Set Oscillator Enable, Set Display Mode to Icon Display Mode Set Display On.	$(0111011)^{*}$ $(0111111)^{*}$ $(00110011)^{*}$ $(00101001)^{*}$
Annunciator Display	Set External/Internal Oscillator Set Oscillator Enable, Set Annunciator On/Off.	$\left(011101 \mathrm{X}_{0}\right)^{*}$
	Set Display Off, Set Oscillator Disable.	$(0111111)^{*}$
Standby Mode	$\left(0010 A_{1} A_{0} x_{0}\right)^{*}$	

Other Related Command with Display Mode: Set Column Mapping, Set Row Mapping, Set Vertical Scroll Value.
Commands Related to Internal DC/DC Converter:
Set Oscillator Disable / Enable, Set Internal Regulator On/Off, Set Temperature Coefficient, Set Internal Contrast Control On/Off, Increase / Decrease Contrast Level, Set Internal Voltage Divider On/Off, Set Display On/Off, Set Internal / External Oscillator, Set Contrast Level, Set Voltage Doubler / Tripler
*No need to resend the command again if it is set previously.

Commands Required for R/W Actions on RAM

R/W Actions on RAMs	Commands Required	
Read/Write Data from/to GDDRAM.	Set GDDRAM Page Address Set GDDRAM Column Address Read/Write Data	$\left(000000 x_{1} x_{0}\right)^{*}$ $\left(1 x_{6} x_{5} x_{4} x_{3} x_{2} x_{1} x_{0}\right)^{*}$ $\left(x_{7} x_{6} x_{5} x_{4} x_{3} x_{2} x_{1} x_{0}\right)$
Save/Restore GDDRAM Column Address.	Save/Restore GDDRAM Column Address.	$\left(0011010 x_{0}\right)$
Increase GDDRAM Column Address by One	Dummy Read Data	$\left(x_{7} x_{6} x_{5} x_{4} x_{3} x_{2} x_{1} x_{0}\right)$
Master Clear GDDRAM	Master Clear GDDRAM Dummy Write Data	(00110110) $\left(X_{7} x_{6} x_{5} x_{4} x_{3} x_{2} x_{1} x_{0}\right)$

* No need to resend the command again if it is set previously.

The read / write action to the Display Data RAM does not depend on the display mode. This means the user can change the RAM content whether the target RAM content is being displayed.

Display Output Description

This is an example of output pattern on the LCD panel. The following table is a description of what is inside the CDDRAM, CGRAM and GDDRAM. Figure 9 b and 9 c are the output pattern on the LCD display with different command enabled.
(Display Mode, Page Swapping, Scrolling, Column Re-map and Row Re-map)

Figure 9a

Content of GDDRAM

PAGE 1	5			5	A	5	$\begin{aligned} & A \\ & A \end{aligned}$	5 5	A	-	-	-	-							-	-	-	-	-	-	-	0	0	0	0	0	0	0	0
PAGE 2	3	3		C	C		$\begin{aligned} & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \end{aligned}$		-									-	-	-	-	-	-	-	3	3 3	C	C	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	3	C	$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \end{aligned}$

Figure 9b

Figure 9c. Examples of LCD display with different command enabled

PACKAGE DIMENSIONS
 MC141531T
 TAB PACKAGE DIMENSION-1 98ASL00247A ISSUE0

NOTES FOR ALL PAGES

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. IF NOT SPECIFIED, SIZE IN MILLIMETER
3. UNSPECIFIED DIMENSION TOLERANCE IS ± 0.05
4. BASE MATERIAL: 75 MICRON UPILEX-S
5. COPPER TYPE: $3 / 4$ OZ COPPER (THICKNESS TYP. 25 MICROMETER, MIN 18 MICROMETER)
6. 4 SPROCKET HOLES DEVICE
7. OPTIONAL FEATURE FOR SPS INTERNAL USE ONLY WHICH MAY BE REPLACED BY $\varnothing 2.0 \mathrm{MM}$ HOLE.

PACKAGE DIMENSIONS MC141531T
 TAB PACKAGE DIMENSION - 2
 98ASL00247A ISSUE0

DETAIL A

DETAIL D

DETAIL C

16/17 MUX Display with Analog Circuitry enabled, Tripler enabled and 1:5 bias

Remark:

1. Capacitor between C2N and C2P can be omitted only if doubler is enable.
2. Resistor across OSC1 and OSC2 can be omitted if external oscillator is used.
3. VR and VF can be left open for Regulator disable, TC $=0 \%$ and Contrast Disable.
4. $\overline{\mathrm{RES}}, \overline{\mathrm{CS}}, \mathrm{R} / \overline{\mathrm{W}}$ and $\mathrm{D} / \overline{\mathrm{C}}$ should be at a known state.
5. $\overline{C S}$ line low at Standby Mode.

Application Circuit

16/17 MUX Display with Analog Circuit disabled, External Bias

Remark:

1. Value of the resistors depends on the LCD panel characteristic.
2. $\overline{\text { RES }}, \overline{C S}, R / \bar{W}$ and D / \bar{C} should be at a known state.
3. $\overline{\mathrm{CS}}$ line low at Standby Mode.

Die Pad Coordinate of MC141531

Pad	Pin Name	X (um)	Y(um)	$\begin{array}{\|l\|} \hline \text { Bump } \\ \text { Size (um) } \\ \hline \end{array}$	Pad	Pin Name	X (um)	Y(um)	$\begin{array}{\|l\|} \hline \text { Bump } \\ \text { Size (um) } \\ \hline \end{array}$	Pad	Pin Name	X (um)	Y(um)	$\begin{array}{\|l\|} \hline \text { Bump } \\ \text { Size (um) } \end{array}$
1	OSC2	-3685	-762.9	76×76	71	SEG102	3925	631.5	50×108	141	SEG32	-1409	631.5	50×108
2	AVSS	-3487	-762.9	76×76	72	SEG101	3849	631.5	50×108	142	SEG31	-1485	631.5	50×108
3	VR	-3290	-762.9	76×76	73	SEG100	3773	631.5	50×108	143	SEG30	-1561	631.5	50×108
4	VF	-3183	-762.9	76×76	74	SEG99	3697	631.5	50×108	144	SEG29	-1637	631.5	50×108
5	VCC	-2985	-762.9	76×76	75	SEG98	3620	631.5	50×108	145	SEG28	-1714	631.5	50×108
6	C-	-2787	-762.9	76x76	76	SEG97	3544	631.5	50×108	146	SEG27	-1790	631.5	50×108
7	C+	-2590	-762.9	76x76	77	SEG96	3468	631.5	50×108	147	SEG26	-1866	631.5	50×108
8	VLL6	-2392	-762.9	76×76	78	SEG95	3392	631.5	50×108	148	SEG25	-1942	631.5	50×108
9	VLL5	-2194	-762.9	76×76	79	SEG94	3316	631.5	50x108	149	SEG24	-2018	631.5	50×108
10	VLL4	-1997	-762.9	76×76	80	SEG93	3239	631.5	50×108	150	SEG23	-2095	631.5	50×108
11	OSC1	-1789	-762.9	76×76	81	SEG92	3163	631.5	50×108	151	SEG22	-2171	631.5	50×108
12	VLL3	-1682	-762.9	76×76	82	SEG91	3087	631.5	50×108	152	SEG21	-2247	631.5	50x108
13	VLL2	-1485	. 763.2	76×76	83	SEG90	3011	631.5	50×108	153	SEG20	-2323	631.5	50×108
14	C1N	- 1287	-762.9	76×76	84	SEG89	2935	631.5	50×108	154	SEG19	-2399	631.5	50×108
15	C1P	-1089	-762.9	76×76	85	SEG88	2858	631.5	50×108	155	SEG18	-2476	631.5	50×108
16	C2N	-891.6	-762.9	76x76	86	SEG87	2782	631.5	50×108	156	SEG17	-2552	631.5	50×108
17	C2P	-693.9	-762.9	76×76	87	SEG86	2706	631.5	50×108	157	SEG16	-2628	631.5	50×108
18	AVDD	-496.2	.762.9	76×76	88	SEG85	2630	631.5	50×108	158	SEG15	-2704	631.5	50×108
19	AVDD	-298.5	-762.9	76×76	89	SEG84	2554	631.5	50×108	159	SEG14	-2780	631.5	50×108
20	DVSS	-99	-762.9	76×76	90	SEG83	2477	631.5	50x108	160	SEG13	-2857	631.5	50×108
21	DVSS	18	-762.9	76×76	91	SEG82	2401	631.5	50×108	161	SEG12	-2933	631.5	50×108
22	DVSS	124.8	-762.9	76x76	92	SEG81	2325	631.5	50x108	162	SEG11	-3009	631.5	50×108
23	D7	241.8	-762.9	76×76	93	SEG80	2249	631.5	50×108	163	SEG10	-3085	631.5	50×108
24	DVSS	348.6	-762.9	76×76	94	SEG79	2173	631.5	50×108	164	SEG9	-3161	631.5	50×108
25	D6	465.6	-762.9	76x76	95	SEGG78	2096	631.5	50×108	165	SEG8	-3238	631.5	50×108
26	DVSS	572.4	-762.9	76x76	96	SEG77	2020	631.5	50×108	166	SEG7	-3314	631.5	50x108
27	D5	689.4	-762.9	76×76	97	SEG76	1944	631.5	50×108	167	SEG6	-3390	631.5	50×108
28	DVSS	796.2	-762.9	76×76	98	SEG75	1868	631.5	50×108	168	SEG5	-3466	631.5	50×108
29	D4	913.2	-762.9	76×76	99	SEG74	1792	631.5	50×108	169	SEG4	-3542	631.5	50×108
30	DVSS	1020	-762.9	76×76	100	SEG73	1715	631.5	50×108	170	SEG3	-3619	631.5	50×108
31	D3	1137	-762.9	76×76	101	SEG72	1639	631.5	50×108	171	SEG2	-3695	631.5	50×108
32	DVSS	1244	-762.9	76×76	102	SEG71	1563	631.5	50×108	172	SEG1	-3771	631.5	50×108
33	D2	1361	-762.9	78×76	103	SEG70	1487	631.5	50×108	173	SEG0	-3847	631.5	50×108
34	DVSS	1468	-762.9	76×76	104	SEG69	1411	631.5	50×108	174	COM16	-3930	631.5	50×108
35	D1	1585	-762.9	76×76	105	SEG68	1334	631.5	50×108	175	COM15	-4006	631.5	50×108
36	DVSS	1691	-762.9	76×76	106	SEG67	1258	631.5	50×108	176	COM14	-4082	631.5	50×108
37	D0	1808	-762.9	76×76	107	SEG66	1182	631.5	50x108	177	COM 13	-4159	631.5	50×108
38	DVSS	1915	-762.9	76×76	108	SEG65	1106	631.5	50×108	178	COM12	-4235	631.5	50×108
39	CS	2032	-762.9	76×76	109	SEG64	1030	631.5	50x108	179	COM11	-4311	631.5	50×108
40	DVSS	2139	-762.9	76×76	110	SEG63	953.4	631.5	50×108	180	COM10	-4254	140.1	108×50
41	R/W	2256	-762.9	76×76	111	SEG62	877.2	631.5	50×108	181	COM9	-4254	63.9	108×50
42	DVSS	2363	-762.9	76×76	112	SEG61	801	631.5	50×108	182	COM8	-4254	-12.3	108×50
43	D/C	2480	-762.9	76×76	113	SEG60	724.8	631.5	50×108	183	COM7	-4254	-88.5	108×50
44	RES	2587	-762.9	76×76	114	SEG59	648.6	631.5	50×108	184	COM6	-4254	-164.7	108×50
45	DVDD	2794	-762.9	76×76	115	SEG58	572.4	631.5	50×108	185	COM5	-4254	-240.9	108×50
46	BP	2901	-762.9	76×76	116	SEG57	496.2	631.5	50×108	186	COM4	-4254	-317.1	108×50
47	DVSS	3018	-762.9	76×76	117	SEG56	420	631.5	50×108	187	COM3	-4254	-393.3	108×50
48	ANNUN2	3125	-762.9	76×76	118	SEG55	343.8	631.5	50×108	188	COM2	-4254	-469.5	108×50
49	DVSS	3242	-762.9	76x76	119	SEG54	267.6	631.5	50×108	189	COM1	-4254	-545.7	108×50
50	ANNUN1	3348	-762.9	76×76	120	SEG53	191.4	631.5	50×108	190	COM0	-4254	-621.9	108×50
51	DVSS	3465	-762.9	76×76	121	SEG52	115.2	631.5	50×108	191	COM16	-4254	-698.1	108×50
52	ANNUNO	3572	-762.9	76×76	122	SEG51	39	631.5	50×108			Die Size : $358.5 \times 78 \mathrm{mil}$		
53	DVSS	3689	-762.9	76×76	123	SEG50	-37.2	631.5	50×108					
54	SEG119	4254	-697.2	108×50	124	SEG49	-113.4	631.5	50x108					
55	SEG118	4254	-621	108×50	125	SEG48	-189.6	631.5	50x108					
56	SEG117	4254	-544.8	108×50	126	SEG47	-265.8	631.5	50×108					
57	SEG116	4254	-468.6	108×50	127	SEG46	-342	631.5	50×108					
58	SEG115	4254	-392.4	108×50	128	SEG45	-418.2	631.5	50×108					
59	SEG114	4254	-316.2	108×50	129	SEG44	-494.4	631.5	50×108					
60	SEG113	4254	-240	108×50	130	SEG43	-570.6	631.5	50×108					
61	SEG112	4254	-163.8	108×50	131	SEG42	-646.8	631.5	50x108					
62	SEG111	4254	-87.6	108×50	132	SEG41	-723	631.5	50×108					
63	SEG110	4254	-11.4	108×50	133	SEG40	-799.2	631.5	50×108					
64	SEG109	4254	64.8	108×50	134	SEG39	-875.4	631.5	50×108					
65	SEG108	4254	141	108×50	135	SEG38	-951.6	631.5	50×108					
66	SEG107	4306	631.5	50x108	136	SEG37	-1028	631.5	50×108					
67	SEG106	4230	631.5	50×108	137	SEG36	-1104	631.5	50×108					
68	SEG105	4154	631.5	50×108	138	SEG35	-1180	631.5	50×108					
69	SEG104	4078	631.5	50x108	139	SEG34	-1256	631.5	50×108					
70	SEG103	4001	631.5	50x108	140	SEG33	-1333	631.5	50×108					

Advance Information LCD Segment / Common Driver CMOS

MC141532 / MC141533 is a CMOS LCD Driver which consists of 4 annunciator outputs and 153 high voltage LCD driving signals (33 commons and 120 segments). MC141532 is one sided common output while MC141533 is split common output design. It has parallel interface capability for operating with general MCU. Besides the general LCD driver features, it has an on chip LCD bias Voltage Generator circuit such that fewer external components are required during application.

- Single Supply Operation, 2.4 V-3.5 V
- Operating Temperature Range : -30 to $80^{\circ} \mathrm{C}$
- Low Current Stand-by Mode (<500nA)
- On Chip Bias Voltage Generator
- 8 Bit Parallel Interface
- Graphic Mode Operation
- On Chip 120×33 Graphic Display Data RAM
- 120 Segment Drivers, 33 Common Drivers
- Selectable $1 / 16,1 / 32,1 / 33$ Multiplex Ratio
- Selectable on Chip Voltage Doubler and Tripler
- Selectable 1:5 or 1:7 Bias Ratio
- Re-mapping of Row and Column Drivers
- Four Stand Alone Annunciator (Static Icon) Driver Circuits
- Low Power Icon Mode Driven by Com32 in Special Driving Scheme
- Selectable LCD Driving Voltage Temperature Coefficients
- 16 Level Internal Contrast Control
- External Contrast Control Provided
- Master Clear RAM
- Standard TAB, Gold Bump Die

MC141532 MC141533

Block Diagram

291- ε

$\xrightarrow{ } \mathbf{Y}$

MC141532 Die Pin Assignment

MC141533 Die Pin Assignment

MAXIMUM RATINGS* (Voltages Referenced to $\mathrm{V}_{\mathrm{SS}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Symbol	Parameter	Value	Unit
$\mathrm{AV}_{\mathrm{DD}}, \mathrm{DV} \mathrm{V}_{\mathrm{DD}}$	Supply Voltage	-0.3 to +4.0	V
$\mathrm{~V}_{\mathrm{CC}}$		$\mathrm{V}_{\mathrm{SS}}-0.3$ to $\mathrm{V}_{\mathrm{SS}}+10.5$	V
$\mathrm{~V}_{\text {in }}$	Input Voltage	$\mathrm{V}_{\mathrm{SS}^{-}-0.3 \text { to } \mathrm{V}_{\mathrm{DD}}+0.3}$	V
I	Current Drain Per Pin Excluding V_{DD} and V_{SS}	25	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature	-30 to +85	C
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$

* Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Description section.
$V_{S S}=A V_{S S}=D V_{S S}\left(D V_{S S}=V_{S S}\right.$ of Digital circuit, $A V_{S S}=V_{S S}$ of Analogue Circuit)
$V_{D D}=A V_{D D}=D V_{D D}$ ($D V_{D D}=V_{D D}$ of Digital circuit, $A V_{D D}=V_{D D}$ of Analogue Circuit)

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions to be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended that $\mathrm{V}_{\text {in }}$ and $\mathrm{V}_{\text {out }}$ be constrained to the range $\mathrm{V}_{\mathrm{SS}}<$ or $=\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right)<$ or $=\mathrm{V}_{\mathrm{DD}}$. Reliability of operation is enhanced if unused input are connected to an appropriate logic voltage level (e.g., either $V_{S S}$ or $V_{D D}$). Unused outputs must be left open. This device may be light sensitive. Caution should be taken to avoid exposure of this device to any light source during normal.operation. This device is not radiation protected.

ELECTRICAL CHARACTERISTICS (Voltage Referenced to $V_{S S}, T_{A}=25^{\circ} \mathrm{C}$)

ELECTRICAL CHARACTERISTICS (Voltage Referenced to $\mathrm{V}_{\mathrm{SS}}, \mathrm{DV} \mathrm{DD}_{\mathrm{DD}}=2.4-3.15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Symbol	Parameter	Test Condition	Min	Typ	Max	Unit
$\mathrm{V}_{\mathrm{LL} 6}$ $V_{\text {LL5 }}$ $V_{\text {LL4 }}$ VLL3 $\mathrm{V}_{\mathrm{LL} 2}$	LCD Display Voltage. (LCD Driving Voltage Output from Pins VLL6, VLL5, VLL4, VLL3 and VLL2.)	1/5 Bias Ratio, Voltage Divider Enabled, Regulator Enabled.		$\begin{gathered} V_{R} \\ 0.8^{*} V_{R} \\ 0.6^{*} V_{R} \\ 0.4^{*} V_{R} \\ 0.2^{*} V_{R} \end{gathered}$		$\begin{aligned} & V \\ & V \\ & V \\ & V \\ & V \end{aligned}$
$\begin{gathered} \mathrm{V}_{\mathrm{LL6}} \\ \mathrm{~V}_{\mathrm{LLS}} \\ \mathrm{~V}_{\mathrm{LL4}} \\ \mathrm{DUM2} \\ \text { DUM1 } \\ \mathrm{V}_{\mathrm{LL3}} \\ \mathrm{~V}_{\mathrm{LL2}} \end{gathered}$		1/7 Bias Ratio, Internal Voltage Divider Enabled, Regulator Enabled		$\begin{gathered} V_{R} \\ 6 / 7^{*} V_{R} \\ 5 / 7^{*} V_{R} \\ 4 / 7^{*} V_{R} \\ 3 / 7^{*} V_{R} \\ 2 / 7^{*} V_{R} \\ 1 / 7^{*} V_{R} \end{gathered}$		$\begin{aligned} & \hline V \\ & V \end{aligned}$
$\mathrm{V}_{\mathrm{LL} 6}$ $V_{\text {LL5 }}$ $\mathrm{V}_{\mathrm{LL} 4}$ $V_{\text {LL3 }}$ $\mathrm{V}_{\mathrm{LL} 2}$		External Voltage Generator, Internal Voltage Divider Disable	$0.5 \mathrm{~V}_{\mathrm{CC}}$ $0.5 \mathrm{~V}_{\mathrm{CC}}$ $0.5 \mathrm{~V}_{\mathrm{cc}}$ $V_{S S}$ $V_{S S}$		V_{Cc} $V_{C C}$ $V_{c c}$ $0.5 \mathrm{~V}_{\mathrm{cc}}$ $0.5 \mathrm{~V}_{\mathrm{CC}}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \\ & \mathrm{~V} \\ & \mathrm{v} \\ & \mathrm{~V} \end{aligned}$
${ }^{\mathrm{IOH}}$ - ${ }^{\mathrm{OL}}$ loz	Output Current Output High Current Source from Pins DO-D7, Annun0-3, BP and OSC2 Output Low Current Drain by Pins D0-D7, Annun0-3, BP and OSC2 Output Tri-state Current Drain Source at pins D0D7 and OSC2	$\begin{aligned} & \mathrm{V}_{\text {out }}=\mathrm{VDD}-0.4 \mathrm{~V} . \\ & \mathrm{V}_{\text {out }}=0.4 \mathrm{~V} . \end{aligned}$	100 -1		-100 1	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
${ }_{1 L L} / /_{\text {IH }}$	Input Current at pins $\overline{\text { RES }}, \mathrm{CE}, \overline{\mathrm{CS}}, \mathrm{DO} 0-\mathrm{D} 7, \mathrm{R} \overline{\mathrm{N}}, \mathrm{D} / \overline{\mathrm{C}}$ OSC1 and OSC2.		-1	-	1	$\mu \mathrm{A}$
Ron	On Resistance Channel Resistance between LCD Driving Signal Pins (SEG and COM) and Driving Voltage Input Pins ($\mathrm{V}_{\mathrm{LL} 2}$ to $\mathrm{V}_{\mathrm{LL} 6}$).	During Display on, 0.1V Apply between Two Terminals, V_{CC} within Operating Voltage Range.	-	-	10	k Ω
$\mathrm{V}_{S B}$	Memory Retention Voltage ($\mathrm{DV} \mathrm{VD}_{\mathrm{DD}}$) Standby Mode, Retained All Internal Configuration and RAM Data		1.8	-	-	V
C_{IN}	Input Capacitance All Control Pins		-	5	7.5	pF
PTCO PTC1 PTC2 РТСЗ	Temperature Coefficient Compensation Flat Temperature Coefficient Temperature Coefficient $\mathbf{1}^{*}$ Temperature Coefficient 2^{*} Temperature Coefficient 3^{*}	TC1 $=0$, TC2 $=0$, Voltage Regulator Disabled. TC1 $=0$, TC2 $=1$, Voltage Regulator Enabled. TC1 $=1$, TC2 $=0$, Voltage Regulator Enabled. TC1=1, TC2=1, Voltage Regulator Enabled.		$\begin{gathered} 0.0 \\ -0.18 \\ -0.22 \\ -0.35 \end{gathered}$		$\begin{aligned} & \% \\ & \% \\ & \% \\ & \% \end{aligned}$
V_{CN}	Internal Contrast Control VR Output Voltage with Internal Contrast Control Selected. 16 Voltage Levels Controlled by Software. Each Level is Typical of 2.25% of the Regulator Output Voltage.	Internal Regulator Enabled, Internal Contrast Control Enabled.	-	± 18	-	\%

* The formula for the temperature coefficient is:
$T C(\%)=\frac{V R \text { at } 50^{\circ} \mathrm{C}-\mathrm{VR} \text { at } 0^{\circ} \mathrm{C}}{50^{\circ} \mathrm{C} \cdot 0^{\circ} \mathrm{C}} \times \frac{1}{\text { VR at } 25^{\circ} \mathrm{C}} \times 100 \%$

ELECTRICAL CHARACTERISTICS (Voltage Referenced to $\mathrm{V}_{\mathrm{SS}}, \mathrm{AV}_{\mathrm{DD}}=\mathrm{DV} \mathrm{VD}_{\mathrm{DD}}=2.4$ to $3.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)
Total variation of VR $\Delta V_{R T}$ is affected by the following factors :
Process variation of Regulator ΔV_{R}
External $V_{D D}$ Variation contributed to Regulator $\Delta V_{V D D}$
External resistor pair Ra/Rf contributed to Regulator $\Delta V_{\text {res }}$
where $\Delta V_{R T}=\sqrt{\left(\Delta V_{R}\right)^{2}+\left(\Delta V_{V_{D D}}\right)^{2}+\left(\Delta V_{r e s}\right)^{2}}$
Assume external $V_{D D}$ variation is $\pm 6 \%$ at 3.15 V and 1% variation resistor used at application

	TC Level	$\Delta \mathrm{V}_{\text {VOD }}(\%)$	$\Delta \mathrm{V}_{\mathrm{R}}(\%)$	$\Delta \mathrm{V}_{\text {res }}(\%)$	$\Delta \mathrm{V}_{\mathrm{RT}}(\%)$
	TC0			± 6.652	
Reference	TC1	± 6.0		± 2.5	± 1.414
Generator	TC2	± 2.5		± 4.924	
	TC3	± 1.4			± 3.805

AC ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Voltage referenced to $\mathrm{V}_{\mathrm{SS}}, \mathrm{V}_{\mathrm{DD}}=2.4$ to 3.15 V)

Set Clock Frequency to Slow: $\mathrm{F}_{\text {FRM } 1}=\mathrm{F}_{\mathrm{OSG} 1} / 576$
Set Clock Frequency to Normal: $\mathrm{FFRM}_{2}=\mathrm{F}_{\mathrm{OSC} 2} / 768$

Figure 1. Internal Oscillator Frequency Relationship with External Resistor Value
AC OPERATION CONDITIONS AND CHARATERISTICS
ELECTRICAL CHARACTERISTICS LCD Panel driving signal timing ($\mathrm{T}_{\mathrm{A}}=-30$ to $85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.4$ to $3.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$)

Symbol	Parameter	Minimum	Typical	Maximum	Unit
T_{Af}	Annunciator Fall Time	-	200	TBD	ns
T_{Ar}	Annunciator Rise Time	-	200	TBD	ns

Figure 2. LCD Driving Signal Timing Diagram

TABLE 2a. Parallel Timing Characteristics (Write Cycle) ($T_{A}=-30$ to $85^{\circ} \mathrm{C}, \mathrm{DV} \mathrm{VD}_{\mathrm{DD}}=2.4$ to $3.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$)

Symbol	Parameter	Min	Typ	Max	Unit
$\mathrm{t}_{\text {cycle }}$	Enable Cycle Time	600	-	-	ns
t_{EH}	Enable Pulse Width	290	-	-	ns
t_{AS}	Address Setup Time	5	-	-	ns
t_{DS}	Data Setup Time	290	-	-	ns
t_{DH}	Data Hold Time	20	-	-	ns
t_{AH}	Address Hold Time	20	-	-	ns

Figure 3. Timing Characteristics (Write Cycle)

TABLE 2b. Parallel Timing Characteristics (Read Cycle) $\left(\mathrm{T}_{\mathrm{A}}=-30\right.$ to $85^{\circ} \mathrm{C}, \mathrm{DV}_{\mathrm{DD}}=2.4$ to $3.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$)

Symbol	Parameter	Min	Typ	Max	Unit
$\mathrm{t}_{\text {cycle }}$	Enable Cycle Time	600	-	-	ns
t_{EH}	Enable Pulse Width	290	-	-	ns
t_{AS}	Address Setup Time	5	-	-	ns
t_{DS}	Data Setup Time	-	-	290	ns
t_{DH}	Data Hold Time	10	-	-	ns
t_{AH}	Address Hold Time	20	-	-	ns

Figure 4. Timing Characteristics (Read Cycle)

PIN DESCRIPTIONS

D/ \bar{C} (Data / Command)

This input pin let the driver distinguish the input at DO-D7 is data or command. Input High for data while input Low for command.

$\overline{\text { CS (CLK) (Chip Select / Input Clock) }}$

This pin is normal Low clock input. Data on D0-D7 is latched at the falling edge of $\overline{C S}$.

$\overline{\text { RES }}$ (Reset)

An active Low pulse to this pin reset the internal status of the driver (same as power on reset). The minimum pulse width is $10 \mu \mathrm{~s}$.

CE (Chip Enable)

HIGH input to this pin to enable the control pins on the driver.

DO-D7

This bi-directional bus is used for data / command transferring.

R/W (Read/Write)

This is an input pin. To read the display data RAM or the internal status (Busy / Idle), pull this pin High. The R/W input Low indicates a write operation to the display data RAM or to the internal setup registers.

OSC1 (Oscillator Input)

For internal oscillator mode, this is an input for the internal low power RC oscillator circuit. In this mode, an external resistor of certain value is placed between the OSC1 and OSC2 pins for a range of internal operating frequencies (refer to Figure 1). For external oscillator mode, OSC1 should be left open.

OSC2 (Oscillator Output / External Oscillator Input)

This is an output for the internal low power RC oscillator circuit. For external oscillator mode, OSC2 will be an input pin for external clock and no external resistor is needed.

VLL6 - VLL2

Group of voltage level pins for driving the LCD panel. They can either be connected to external driving circuit for external bias supply or connected internally to built-in divider circuit. For internal Voltage Divider enabled, a $0.1 \mu \mathrm{~F}$ capacitor to $\mathrm{AV}_{\text {SS }}$ is required on each pin.

DUM1 and DUM2

If internal Voltage Divider is enabled with $1 / 7$ bias selected, a 0.1 $\mu \mathrm{F}$ capacitor to $\mathrm{AV}_{\text {SS }}$ is required on each pin. Otherwise, pull these two pin to $A V_{S S}$

C1N and C1P

If Internal DC/DC Converter is enabled, a $0.1 \mu \mathrm{~F}$ capacitor is required to connect these two pins.

C2N and C2P

If internal Tripler is enabled, a $0.1 \mu \mathrm{~F}$ capacitor is required between these two pins. Otherwise, leave these pin open.

$\mathrm{C}+$ and C -

If internal divider circuit is enabled, a $0.1 \mu \mathrm{~F}$ capacitor is required to connect between these two pins.

VR and VF

This is a feedback path for the gain control (external contrast control) of VLL1 to VLL6. For adjusting the LCD driving voltage, it requires a feedback resistor placed between VR and VF, a gain control resistor placed between VF and AVSS, a $10 \mu \mathrm{~F}$ capacitor placed between VR and AVSS. (Refer to the Application Circuit)

COMO-COM32 (Row Drivers)

These pins provide the row driving signal to LCD panel. ComoCom31 are used in 32 mux configuration. Com0-Com15 are used in 16 mux configuration. Com32 is used to drive the non-static icons in 33 Mux. They output $O V$ during display off.

SEGO-SEG119 (Column Drivers)

These 120 pins provide LCD column driving signal to LCD panel. They output OV during display off.

BP (Annunciator Backplane)

This pin combines with Annun0-Annun3 pins to form annunciator driving part. When the annunciator circuit is enabled, it will output square wave of $\mathrm{F}_{\text {ANNn }} \mathrm{Hz}$. It outputs low when oscillator is disabled.

Annun0-Annun3 (Annunciator Frontplanes)

These pins are four independent annunciator driving outputs. The enabled annunciator outputs from its corresponding pin a $F_{\text {ANNn }} \mathrm{Hz}$ square wave which is 180 degrees out of phase with BP. Disabled annunciator output from its corresponding pin an square wave inphase with BP. When oscillator is disabled, all these pins output 0 V .

AVDD and AVSS

AVDD is the positive supply to the noise sensitive circuitry in LCD bias Internal DC/DC Converter. AVSS is ground.

vcC

For using the Internal $D C / D C$ Converter, a $0.1 \mu \mathrm{~F}$ capacitor from this pin to AVSS is required. It can also be an external bias input pin if Internal DC/DC Converter is not used. Positive power is supplied to the LCD Driving Level Selector and HV Buffer Cell with this pin. Normally, this pin is not intended to be a power supply to other component.

DVDD and DVSS

Power is supplied to the digital control circuit and other circuitry in LCD bias Voltage Generator of the driver using these two pins. DVDD is power and DVSS is ground.

OPERATION OF LIQUID CRYSTAL DISPLAY DRIVER

Description of Block Diagram Module

Command Decoder and Command Interface

This module determines whether the input data is interpreted as data or command.

Data is directed to this module based upon the input of the D/C pin. If D/C high, data is written to Graphic Display Data RAM (GDDRAM). D/C low indicates that the input at DO-D7 is interpreted as a Command.

CE is the master chip selection signal. A High input enable the input lines ready to sample signals. Reset is of same function as Power ON Reset (POR). Once RES received the reset pulse, all internal circuitry will back to its initial status. Refer to Command Description section for more information.

MPU Parallel Interface

The parallel interface consists of 8 bi-directional data lines (DOD7), RNW, and the CS. The RNW input High indicates a read operation from the Graphic Display Data RAM (GDDRAM). RW input Low indicates a write to Display Data RAM or Internal Command Registers depending on the status of D / C input. The CS input serves as data latch signal (clock). Refer to AC operation conditions and characteristics section for Parallel Interface Timing Description.

Graphic Display Data RAM (GDDRAM)

The GDDRAM is a bit mapped static RAM holding the bit pattern to be displayed. The size of the RAM is determined by number of row times the number of column ($120 \times 33=3960$ bits). Figure 5 is a description of the GDDRAM address map. For mechanical flexibility, re-mapping on both Segment and Common outputs are provided.

Figure 5. Graphic Display Data RAM (GDDRAM) Address Map

Display Timing Generator

This module is an on chip low power RC oscillator circuitry (Figure 6). The oscillator frequency can be selected in the range of 15 kHz to 50 kHz by external resistor. One can enable the circuitry by software command. For external clock provided, feed the clock to OSC2 and leave OSC1 open.

Annunciator Control Circuit

The LCD waveform of the 4 annunciators and BP are generated by this module. The 4 independent annunciators are enabled by software command. Annunciator is also controlled by oscillator circuit too. Annunciator output waveform shown in Figure 7.

Figure 6. Oscillator Circuitry

Figure 7. Annunciators and BP Display Waveform

LCD Driving Voltage Generator

This module generates the LCD voltage needed for display output. It takes a single supply input and generate necessary bias voltages. It consists of :

1. Voltage Doubler and Voltage Tripler

To generate the Vcc voltage. Either Doubler or Tripler can be enabled.
2. Voltage Regulator

Feedback gain control for initial LCD voltage. it can also be used with external contrast control.
3. Voltage Divider

Divide the LCD display voltage $\left(V_{L L 2}-V_{L L 6}\right)$ from the regulator output. This is a low power consumption circuit which can save the most display current compare with traditional resistor ladder method.
4. Bias Ratio Selection circuitry

Software control of $1 / 5$ and $1 / 7$ bias ratio to match the characteristic of LCD panel.
5. Self adjust temperature compensation circuitry

Provide 4 different compensation grade selections to satisfy the various liquid crystal temperature grades. The grading can be selected by software control.
6. Contrast Control Block

Software control of 16 voltage levels of LCD voltage.

7. External Contrast Control

By adjusting the gain control resistors connected externally, the contrast can be varied. Refer to the application circuit for details. All blocks can be individually turned off if external voltage generator is employed.

33 Bit Latch / 120 Bit Latch

A 153 bit long register which carry the display signal information. First 33 bits are Common driving signals and other 120 bits are Segment driving signals. Data will be input to the HV-buffer Cell for bumping up to the required level.

Level Selector

Level Selector is a control of the display synchronization. Display voltage can be separated into two sets and used with different cycles. Synchronization is important since it selects the required LCD voltage level to the HV Buffer Cell for output signal voltage pump.

HV Buffer Cell (Level Shift-er)

HV Buffer Cell works as a level shift-er which translates the low voltage output signal to the required driving voltage. The output is shifted out with an internal FRM clock which comes from the Display Timing Generator. The voltage levels are given by the level selector which is synchronized with the internal M signal.

LCD Panel Driving Waveform

The following is an example of how the Common and Segment drivers may be connected to a LCD panel. The waveforms shown in Figure 8a, 8b and 8c illustrate the desired multiplex scheme.

Figure 8a. LCD Display Example "0"

TIME SLOT

Figure 8b. LCD Driving Signal from MC141532/33

Figure 8 c . Effective LCD waveform on LCD pixel

Command Description

Set Display On/Off (Display Mode / Stand-by Mode)

The Display On command turns the LCD Common and Segment - outputs on and has no effect to the annunciator output. This command causes the conversion of data in GDDRAM to necessary waveforms on the Common and Segment driving outputs. The onchip bias generator is also turned on by this command. (Note: "Oscillator On" command should be sent before "Display On" is selected)

The Display Off command turns the display off and the states of the LCD driver are as follow during display off:

1. The Common and Segment outputs are fixed at $\mathrm{V}_{\mathrm{LL} 1}\left(\mathrm{~V}_{\mathrm{SS}}\right)$.
2. The bias Voltage Generator is turned off.
3. The RAM and content of all registers are retained.
4. IC will accept new commands and data.

The status of the Annunciators and Oscillator are not affected by Display Off command.

Set GDDRAM Column Address

This command positions the address pointer on a column location. The address can be set to location $00 \mathrm{H}-77 \mathrm{H}$ (120 columns). The column address will be increased by one automatically after a read or write operation. Refer to "Address increment Table" and command "Set GDDRAM Page Address".

Set GDDRAM Page Address

This command positions the row address to 1 of 5 possible positions in GDDRAM. Refer to figure 5.

Master Clear GDDRAM

This command is to clear the 480 byte GDDRAM by setting the RAM data to zero. Issue this command followed by a dummy write command. The RAM for icon line will not be affected by this command.

Master Clear Icons

This command is used to clear the data in page 5 of GDDRAM which stores the icon line data. Before using this command, set the page address to Page 5 by the command "Set GDDRAM Page Address". A dummy write data is also needed after this "Master Clear Icons" command to make the clear icon action effective.

Set Display with Icon Line

If $1 / 32$ Mux selected, use this command change to $1 / 33$ Mux for using the Icon LIne. This command can also change Icon Display Mode to Normal Display Mode ($1 / 32$ or $1 / 33$ MUX).

Set Icon Display Mode

This command force the output to the icon display mode. Display on Row 0 to Row 31 will be disabled.

Set Icon Line / Annunciator Contrast Level

The contrast of the icon line and annunciators in Icon Mode can be set by this command. There are four levels to select from.

Set Vertical Scroll Value

This command is used to scroll the screen vertically with scroll value 0 to 31. With scroll value equals to 0 , Row 0 of GDDRAM is mapped to Com0 and Row 1 through Row 31 are mapped to Com1 through Com31 respectively. With scroll value equal to 1, Row 1 of GDDRAM is mapped to Com0, then Row 2 through Row 31 will be mapped to Com1 through Com30 respectively and Row 0 will be mapped to Com31. Com32 is not affected by this command.

Save / Restore GDDRAM Column Address

With bit option = 1 in this command, the Save / Restore Column Address command saves a copy of the Column Address of GDDRAM. With a bit option $=0$, this command restores the copy obtained from the previous execution of saving column address. This instruction is very useful for writing full graphics characters that are larger than 8 pixels vertically.

Set Column Mapping

This instruction selects the mapping of GDDRAM to Segment drivers for mechanical flexibility. There are 2 mappings to select:

1. Column 0-Column 119 of GDDRAM mapped to Seg0-Seg119 respectively;
2. Column 0 - Column 119 of GDDRAM mapped to Seg119-Seg0 respectively.
Com32 will not be affected by this command. Detailed information please refer to section "Display Output Description".

Set Row Mapping

This instruction selects the mapping of GDDRAM to Common Drivers for mechanical flexibility. There are 2 selected mappings:

1. Row 0 - Row 31 of GDDRAM to Com0-Com31 respectively;
2. Row 0 - Row 31 of GDDRAM to Com31-Com0 respectively.

Com32 will not be affected by this command. See section "Display Output Description" for related information.

Set Annunciator Control Signals

This command is used to control the active states of the 4 stand alone annunciator drivers.

Set Oscillator Disable / Enable

This command is used to either disable or enable the Oscillator. For using internal or external oscillator, this command should be executed. The setting for this command is not affected by command "Set 'Display On/Off" and "Set Annunciator Control Signal". See command "Set Internal / External Oscillator" for more information

Set Internal / External Oscillator

This command is used to select either internal or external oscillator. When Internal Oscillator is selected, feedback resistor between OSC1 and OSC2 is needed. For external oscillation circuit, feed clock input signal to OSC2 and leave OSC1 open.

Set Clock Frequency

Use this command to choose from two different oscillation frequency (50 kHz or 38.4 kHz) to get the 60 Hz frame frequency. With frequency high, 50 kHz clock frequency is preferred. 38.4 kHz clock frequency (low frequency) enable for power saving purpose.

Set DC/DC Converter On/Off

Use this command selects the Internal DC/DC Converter to generate the V_{CC} from $\mathrm{AV} \mathrm{V}_{\mathrm{D}}$. Disable the Internal $\mathrm{DC} / \mathrm{DC}$ Converter if external Vcc is provided.

Set Voltage Doubler / Tripler

Use this command to choose Doubler or Tripler when the Internal $D C / D C$ Converter is enabled.

Set Internal Regulator On/Off

Choose bit option 0 to disable the Internal Regulator. Choose bit option 1 to enable Internal Regulator which consists of the internal contrast control and temperature compensation circuits.

Set Internal Voltage Divider On/Off

If the Internal Voltage Divider is disabled, external bias can be used for $V_{L L 6}$ to $V_{L L 2}$. If the Internal Voltage Divider is enabled, the internal circuit will automatically select the correct bias level according to the number of multiplex. Refer to command "Bias Ratio Select".

Set Duty Cycle

This command is to select 16 mux or 32 mux display. When 16 mux is enabled, the unused 16 common outputs will be swinging between VLL2 and VLLL 5 for dummy scan purpose and doubler will be used.

Set Blas Ratlo

This command sets the $1 / 5$ bias or $1 / 7$ bias for the divider output. The selection should match the characteristic of LCD Panel.

Set Internal Contrast Control On/Off

This command is used to turn on or off the internal control of delta voltage of the bias voltages. With bit option $=1$, the software selection for delta bias voltage control is enabled. With bit option $=0$, internal contrast control is disabled.

Increase / Decrease Contrast Level

If the internal contrast control is enabled, this command is used to increase or decrease the contrast level within the 16 contrast levels. The contrast level starts from lowest value after POR.

Set Contrast Level

This command is to select one of the 16 contrast levels when internal contrast control circuitry is in use.

Read Contrast Value

This command allows the user to read the current contrast level value. With $\mathrm{R} / \overline{\mathrm{W}}$ input high (READ), $\mathrm{D} / \overline{\mathrm{C}}$ input low (COMMAND) and D7 D6 D5 D4 are equal to 0001 , the value of the internal contrast value can be read on DO-D3 at the falling edge of CS.

Set Temperature Coefficient

This command can select 4 different LCD driving voltage temperature coefficients to match various liquid crystal temperature grades. Those temperature coefficients are specified in Electrical Characteristics Tables.

Set $I_{D D}$ Reduction Mode On/Off

By using this command to reduce the display clock frequency by half. Use in Icon Mode to reduce stand-by current.

COMMAND TABLE

Bit Pattern	Command	Comment
$00000 \mathrm{X}_{2} \mathrm{X}_{1} \mathrm{X}_{0}$	Set GDDRAM Page Address	Set GDDRAM Page Address using $X_{2} X_{1} X_{0}$ as address bits. $\begin{aligned} & X_{2} X_{1} X_{0}=000 \text { : page } 1(P O R) \\ & X_{2} X_{1} X_{0}=001 \text { : page } 2 \\ & x_{2} X_{1} X_{0}=010: \text { page } 3 \\ & X_{2} X_{1} X_{0}=011 \text { : page } 4 \\ & X_{2} X_{1} X_{0}=100 \text { : page } 5 \end{aligned}$
$000011 \mathrm{X}_{1} \mathrm{X}_{0}$	Set Icon Line / Annunciator Contrast Level	Set one of the 4 available values to the icon and annunciator contrast, using $X_{1} X_{0}$ as data bits. $X_{1} X_{0}=00$ at POR
$0001 \mathrm{X}_{3} \mathrm{X}_{2} \mathrm{X}_{1} \mathrm{X}_{0}$	Set Contrast Level	Set one of the 16 available values to the internal contrast register, using $X_{3} x_{2} x_{1} x_{0}$ as data bits. The contrast register is reset to 0000 during POR.
$0001 \mathrm{X}_{3} \mathrm{X}_{2} \mathrm{X}_{1} \mathrm{X}_{0}$	Read Contrast Value	With D/C pin input Low, R/ \bar{W} pin input high, and D7 D6 D5 D4 pins equal to 0001 at the rising edge of $\overline{C S}$, the value of the internal contrast register will be latched out at D3 D2 D1 D0 pins, i.e. $X_{3} X_{2} X_{1} x_{0}$, at the rising edge of $\overline{C S}$.
$0010000{ }_{0}$	Set Voltage Doubler / Tripler	$\mathrm{X}_{0}=0$: Select Voltage Tripler (POR) $X_{0}=1$: Select Voltage Doubler
$0010001 \mathrm{X}_{0}$	Set Column Mapping	$\mathrm{X}_{0}=0$: Col0 to Seg0 (POR) $X_{0}=1$: ColO to Seg119
$0010010 \mathrm{X}_{0}$	Set Row Mapping	$\mathrm{X}_{0}=0$: Row 0 to Com0 (POR) $X_{0}=1$: Row0 to Com31
0010011X ${ }_{0}$	Reserved	
$0010100 \mathrm{X}_{0}$	Set Display On/Off	$\begin{aligned} & X_{0}=0 \text { : display off }(P O R) \\ & X_{0}=1 \text { : display on } \end{aligned}$
0010101 ${ }_{0}$	Set DC/DC Converter On/Off	$\mathrm{X}_{0}=0$: DC/DC Converter off (POR) $X_{0}=1$: DC/DC Converter on
$0010110 \mathrm{X}_{0}$	Set Internal Regulator On/Off	$\mathrm{X}_{0}=0$: Internal Regulator off (POR) $X_{0}=1$: Internal Regulator on When the application employs external contrast control, the internal contrast control, temperature compensation and the Regulator must be enabled.
$0010111 \mathrm{X}_{0}$	Set Internal Voltage Divider On/Off	$\mathrm{X}_{0}=0$: Internal Voltage Divider off (POR) $X_{0}=1$: Internal Voltage Divider on When an external bias network is preferred, the voltage divider should be disabled.
$0011000 \mathrm{X}_{0}$	Set Internal Contrast Control On/Off	$\mathrm{X}_{0}=0$: Internal Contrast Control off (POR) $X_{0}=1$: Internal Contrast Control on Internal contrast circuits can be disabled if external contrast circuits is preferred.
0011001X ${ }_{0}$	Set Clock Frequency	$\mathrm{X}_{0}=0$: low frequency (38.4 kHz) (POR) $X_{0}=1$: high frequency (50 kHz)
$0011010 \mathrm{X}_{0}$	Save/Restore GDDRAM Column Address	$\mathrm{X}_{0}=0$: restore address $\mathrm{X}_{0}=1$: save address
00110110	Master Clear GDDRAM	Master clear GDDRAM page 1 to 4
00110111	Master Clear Icons	Master Clear of GDDRAM page 5. GDDRAM page 5 should be selected and dummy write is required
$0011100 \mathrm{X}_{0}$	Set Bias Ratio	$\begin{aligned} & X_{0}=0 \text { : set } 1 / 7 \text { bias (POR) } \\ & X_{0}=1 \text { : set } 1 / 5 \text { bias } \end{aligned}$
$0011101 \mathrm{X}_{0}$	Reserved.	$\mathrm{X}_{0}=0$: normal operation (POR) $X_{0}=1$: test mode (Note: Make sure to set $\mathrm{X}_{0}=0$ during application)

Bit Pattern	Command	Comment
0011110X 0	Set Display with Icon Line	$X_{0}=0$: set display mode without Icon Line $X_{0}=1$: set display mode with Icon Line
00111110	Set Icon Display Mode	Power saving icon display mode, Com0 to Com32 will be disabled
$010 \mathrm{X}_{4} \mathrm{X}_{3} \mathrm{X}_{2} \mathrm{X}_{1} \mathrm{X}_{0}$	Set Vertical Scroll Value	Use $X_{4} X_{3} X_{2} X_{1} X_{0}$ as number of lines to scroll. Scroll value $=0$ upon POR
$01100 \mathrm{~A}_{1} \mathrm{~A}_{0} \mathrm{X}_{0}$	Set Annunciator Control Signals	$\mathrm{A}_{1} \mathrm{~A}_{0}=00$: select annunciator 1 (POR) $A_{1} A_{0}=01$: select annunciator 2 $A_{1} A_{0}=10$: select annunciator 3 $A_{1} A_{0}=11$: select annunciator 4 $X_{0}=0$: turn selected annunciator off (POR) $X_{0}=1$: turn selected annunciator on
0110100X 0	Set Duty Cycle	$X_{0}=0: 1 / 32$ duty and tripler enabled (POR) $X_{0}=1: 1 / 16$ duty and doubler enabled
0110101X ${ }_{0}$	Set IDD Reduction Mode	$X_{0}=0$: Normal Mode $X_{0}=1$: $I_{\text {DD }}$ Reduction Mode
011011 $\mathrm{X}_{1} \mathrm{X}_{0}$	Set Temperature Coefficient	$\begin{aligned} & X_{1} X_{0}=00: 0.00 \% \text { (POR) } \\ & X_{1} X_{0}=01:-0.18 \% \\ & X_{1} X_{0}=10:-0.22 \% \\ & X_{1} X_{0}=11:-0.35 \% \end{aligned}$
0111000 ${ }_{0}$	Increase / Decrease Contrast Value	$X_{0}=0$: Decrease by one level $X_{0}=1$: Increase by one level (Note: increment/decrement wraps round among the 16 contrast levels. Start at the lowest level when POR.
0111001X ${ }_{0}$	Reserved	
0111010X0	Reserved	
0111011 ${ }_{0}$	Reserved	$\mathrm{X}_{0}=0$: normal operation (POR) $X_{0}=1$: test mode select (Note: Make sure to set $X_{0}=0$ during application)
0111100X ${ }_{0}$	Reserved	
$0111101 \mathrm{X}_{0}$	Set Internal / External Oscillator	$\mathrm{X}_{0}=0$: Internal oscillator (POR) $X_{0}=1$: External oscillator. Internal oscillator circuit is automatically enabled if resistors are placed at OSC1 and OSC2. For external oscillator, simply feed clock in OSC2.
0111110 ${ }_{0}$	Reserved	
	Set Oscillator Disable / Enable	$\mathrm{X}_{0}=0$: oscillator disable (POR) $\mathrm{X}_{0}=1$: oscillator enable. This is the master control fro oscillator circuitry. This command should be issued after the "External / Internal Oscillator" command.
$1 \mathrm{X}_{6} \mathrm{X}_{5} \mathrm{x}_{4} \mathrm{x}_{3} \mathrm{x}_{2} \mathrm{X}_{1} \mathrm{x}_{0}$	Set GDDRAM Column Address	Set GDDRAM Column Address. Use $X_{6} X_{5} X_{4} X_{3} X_{2} X_{1} X_{0}$ as address bits.

Data Read / Write

To read data from the GDDRAM, input High to $\mathrm{R} \overline{\mathrm{W}}$ pin and $\mathrm{D} / \overline{\mathrm{C}}$ pin. Data is valid at the falling edge of $\overline{\mathrm{CS}}$. And the GDDRAM column address pointer will be increased by one automatically.

To write data to the GDDRAM, input Low to $R \bar{W}$ pin and High to $\mathrm{D} / \overline{\mathrm{C}}$ pin. Data is latched at the falling edge of $\overline{\mathrm{CS}}$. And the GDDRAM column address pointer will be increased by one automatically.

No auto address pointer increment will be performed for the Dummy Write Data after Master Clear GDDRAM. (Refer to the "Commands Required for R/W Actions on RAM" Table)

Address Increment Table (Automatic)

$\mathbf{D} / \overline{\mathbf{C}}$	$\mathbf{R} / \overline{\mathbf{W}}$	Comment	Address Increment	Remarks
$\mathbf{0}$	0	Write Command	No	
$\mathbf{0}$	1	Read Command	No	*1
1	0	Write Data	Yes	*2
$\mathbf{1}$	1	Read Data	Yes	

Address Increment is done automatically data read write. The column address pointer of GDDRAM ${ }^{* 3}$ is affected.
Remarks: "1. Refer to the command "Read Contrast Value".
*2. If write data is issued after Command Clear RAM, Address increase is not applied.
*3. Column Address will be wrapped round when overflow.

Power Up Sequence (Commands Required)

Command Required	POR Status	Remarks
Set Clock Frequency	Low	*1
Set Oscillator Enable	Disable	*1
Set Annunciator Control Signals	Annunciator all Off	*1
Set Duty Cycle	1/32 duty	*1
Set Bias Ratio	1/7 bias	*1
Set Internal DC/DC Converter On	Off	*1
Set Internal Regulator On	Off	*1
Set Temperature Coefficient	TC=0\%	*1, *3
Set Internal Contrast Control On	Off	*1, *3
Increase Contrast Level	Contrast Level $=0$	*1, *2, *3
Set Internal Voltage Divider On	Off	*1
Set Segment Mapping	Seg. $0=$ Col. 0	
Set Common Mapping	Com. $0=$ Row 0	
Set Vertical Scroll Value	Scroll Value $=0$	
Set Display On	Off	

Remarks :
*1 -- Required only if desired status differ from POR.
*2 -- Effective only if Internal Contrast Control is enabled.
*3 -- Effective only if Regulator is enabled.

Commands Required for Display Mode Setup

Display Mode	Commands Required	
Display Mode	Set External / Internal Oscillator, Set Oscillator Enable, Set Display On.	$\left(0111101 X_{0}\right)^{*}$ $(0111111)^{*}$ $(00101001)^{*}$
Annunciator Display	Set External / Internal Oscillator, Set Oscillator Enable, Set Annunciator Control Signal.	$\left(0111101 \mathrm{X}_{0}\right)^{*}$ $(01111111)^{*}$ $\left(01100 A_{1} A_{0} \mathrm{X}_{0}\right)^{*}$
Standby Mode 1.	Set Display Off, Set Oscillator Disable.	$(00101000)^{*}$ $(01111110)^{*}$
Standby Mode 2.	Set External Oscillator, Set Annunciator Control Signal, Set Display Off, Set Oscillator Enable.	$(01111011)^{*}$ $\left(01100 A_{1} A_{0} \mathrm{X}_{0}\right)^{*}$ $(00101000)^{*}$
Standby Mode 3.	Set Internal Oscillator, Set Annunciator Control Signal,	$(0111111)^{*}$
	Set Display Off,	
Set Oscillator Enable.	$(0111010)^{*}$	

Other Related Command with Display Mode: Set Duty Cycle, Set Column Mapping, Set Row Mapping, Set Vertical Scroll Value.

Commands Related to Internal DC/DC Converter:

Set Oscillator Disable / Enable, Set Internal Regulator On/Off, Set Duty Cycle, Set Temperature Coefficient, Set Internal Contrast Control On/ Off, Increase / Decrease Contrast Level, Set Internal Voltage Divider On/Off, Set Bias Ratio, Set Display On/Off, Set Internal / External Oscillator, Set Contrast Level, Set Voltage Doubler / Tripler, Set 33 Mux Display Mode, Set Icon Display Mode

* No need to resend the command again if it is set previously.

Commands Required for R/W Actions on RAM

R/W Actions on RAMs	Commands Required	
Read/Write Data from/to GDDRAM.	Set GDDRAM Page Address Set GDDRAM Column Address Read/Write Data	$l \begin{aligned} & \left(000 x_{4} X_{3} x_{2} X_{1} x_{0}\right)^{*} \\ & \left(1 X_{6} x_{5} x_{4} x_{3} X_{2} X_{1} X_{0}\right)^{*} \\ & \left(X_{7} X_{6} X_{5} X_{4} x_{3} X_{2} X_{1} X_{0}\right) \end{aligned}$
Save/Restore GDDRAM Column Address.	Save/Restore GDDRAM Column Address.	(0011010 ${ }_{0}$)
Increase GDDRAM Address by One	Dummy Read Data	$\left(\mathrm{X}_{7} \mathrm{X}_{6} \mathrm{X}_{5} \mathrm{x}_{4} \mathrm{x}_{3} \mathrm{x}_{2} \mathrm{x}_{1} \mathrm{x}_{0}\right)$
Master Clear GDDRAM	Master Clear GDDRAM Dummy Write Data	$\begin{aligned} & (00110110) \\ & \left(X_{7} X_{6} X_{5} X_{4} X_{3} X_{2} X_{1} X_{0}\right) \end{aligned}$

* No need to resend the command again if it is set previously.

Display Output Description
This is an example of output pattern on the LCD panel. Figure 9b and 9c are data map of GDDRAM and the output pattern on the LCD display with different command enabled.

	Content of GDDRAM
PAGE 1 Upper Nibble Lower Nibble	$\begin{aligned} & 5 \text { A } 5 \text { A }-\cdots \cdots-\cdots-\cdots \text { A } 5 \text { A } \\ & 5 \text { A } \end{aligned}$
PAGE 2 Upper Nibble Lower Nibble	
PAGE 3 Upper Nibble Lower Nibble	
PAGE 4 Upper Nibble Lower Nibble	
PAGE 5 Upper Nibble Lower Nibble	$\left.\begin{array}{lllllllll} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \cdots \cdots \cdots \cdots \cdots \cdots \end{array}\right)$

Figure 9b

Figure 9a

Figure 9c. Examples of LCD display with different command enabled

PACKAGE DIMENSIONS

MC141532T

TAB PACKAGE DIMENSION-1

PACKAGE DIMENSIONS

MC141532T
TAB PACKAGE DIMENSION - 2

DETAIL E

DETAIL D

FLEX MATERIAL DETAIL

Application Circuit

32/33 MUX Display with Analog Circuitry enabled, Tripler enabled and $1 / 7$ bias

Remark :

1. VR and VF can be left open for Regulator Disable.
2. $\overline{\mathrm{CS}}$ pin low at Standby Mode.

16 MUX Display with Analog Circuitry enabled, Tripler Disabled and $1 / 5$ bias

Remark:

1. VR and VF can be left open for Regulator Disable.
2. $\overline{\mathrm{CS}}$ pin low at Standby Mode.

Application Circuit

16/32/33 MUX Display with Analog Circuitry disabled

Remark:

1. VR and VF can be left open for Regulator Disable.
2. $\overline{C S}$ pin low at Standby Mode.

Die Pad Co-ordinate for MC141532

Pad	Name	X ($\mu \mathrm{m}$)	Y ($\mu \mathrm{m}$)	Pad	Name	X ($\mu \mathrm{m}$)	Y ($\mu \mathrm{m}$)	Pad	Name	X ($\mu \mathrm{m}$)	Y ($\mu \mathrm{m}$)	Pad	Name	X ($\mu \mathrm{m}$)	$\mathrm{Y}(\mu \mathrm{m})$
-1	Anno	-4803.6	-526.6	61	DVSs	2472.8	-530.4	122	Sego	3217.4	492.7	181	Seg59	-1266.6	492.7
2	Ann 1	-4702.0	- 526.6	62	C+	2574.4	-530.4	123	Seg1	3141.4	492.7	182	Seg60	-1342.6	492.7
3	Ann2	-4600.4	-526.6	63	DVSs	2676.0	-530.4	124	Seg2	3065.4	492.7	183	Seg61	-1418.6	492.7
4	Ann3	-4498.8	-526.6	64	C-	2777.6	-530.4	125	Seg3	2989.4	492.7	184	Seg62	-1494.6	492.7
5	BP	-4397.2	-526.6	65	DVSs	2879.2	- 530.4	126	Seg4	2913.4	492.7	185	Seg63	-1570.6	492.7
6	DVdd	-4295.6	-526.6	66	VCC	2980.8	-530.4	127	Seg5	2837.4	492.7	186	Seg64	-1646.6	492.7
7	RES	-4194.0	-526.6	67	DVss	3082.4	-530.4-	128	Seg6	2761.4	492.7	187	Seg65	-1722.6	492.7
8	DVsS	-4092.4	-526.6	68	VF	3184.0	-530.4-	129	Seg7	2685.4	492.7	188	Seg66	-1798.6	492.7
	D/C	-3990.8	-526.6	69	DVSS	3285.6	-530.4	130	Seg8	2609.4	492.7	189	Seg67	-1874.6	492.7
10	R/W	-3889.2	-526.6	70	VR	3387.2	- 530.4	131	Seg9	2533.4	492.7	190	Seg68	-1950.6	492.7
11	CS(CLK)	-3787.6	-526.6	71	AVss	3488.8	-530.4	132	Seg10	2457.4	492.7	191	Seg69	-2026.6	492.7
12	DVss	-3686.0	-526.6	72	OSCI	3590.4	-530.4	133	Seg 11	2381.4	492.7	192	Seg70	-2102.6	492.7
13	D0	-3584.4	-526.6	73	DVss	3692.0	-530.4	134	Seg12	2305.4	492.7	193	Seg71	-2178.6	492.7
14	D1	-3482.8	-526.6	74	DVss	3793.6	-530.4	135	Seg 13	2229.4	492.7	194	Seg72	-2254.6	492.7
15	D2	-3381.2	-526.6	75	DVss	3869.6	-530.4	136	Seg14	2153.4	492.7	195	Seg73	-2330.6	492.7
16	03	-3279.6	-526.6	76	DVss	3945.6	-530.4	137	Seg15	2077.4	492.7	196	Seg74	-2406.6	492.7
17	D4	-3178.0	-526.6	77	DVSS	4021.6	-530.4	138	Seg16	2001.4	492.7	197	Seg75	-2482.6	492.7
18	D5	-3076.4	-526.6	78	DVss	4097.6	-530.4	139	Seg 17	1925.4	492.7	198	Seg76	-2558.6	492.7
19	D6	-2974.8	-526.6	79	DVss	4173.6	-530.4	140	Seg18	1849.4	492.7	199	Seg77	-2634.6	492.7
20	D7	-2873.2	-526.6	80	DVSS	4249.6	-530.4	141	Seg19	1773.4	492.7	200	Seg78	-2710.6	492.7
21	CE	-2771.6	-526.6	81	DVss	4325.6	-530.4	142	Seg20	1697.4	492.7	201	Seg79	-2786.6	492.7
22	DVss	-2670.0	-526.6	82	DVss	4401.6	-530.4	143	Seg21	1621.4	492.7	202	Seg80	-2862.6	492.7
23	DVss	-2498.3	-526.6	83	DVss	4477.6	-530.4	144	Seg22	1545.4	492.7	203	Seg81	-2938.6	492.7
24	DVSS	-873.6	-591.8	84	DVSS	4553.6	-530.4	145	Seg23	1469.4	492.7	204	Seg82	-3014.6	492.7
25	DVss	-797.6	-591.8	85	DVss	4629.6	-530.4	146	Seg24	1393.4	492.7	205	Seg83	-3090.6	492.7
26	DVss	-721.6	-591.8	86	Test 1	4705.6	-551.0	147	Seg25	1317.4	492.7	206	Seg84	-3166.6	492.7
27	DVSS	-645.6	-591.8	87	Test2	4835.2	-550.6	148	Seg26	1241.4	492.7	207	Seg85	-3242.6	492.7
-28	DVss	-569.6	-591.8	88	Com32	5174.4	-484.8	149	Seg27	1165.4	492.7	208	Seg86	-3318.6	492.7
29	DVss	-493.6	-591.8	89	Como	-5174.4	-408.8	150	Seg28	1089.4	492.7	209	Seg87	-3394.6	492.7
30	OVSS	-417.6	-591.8	90	Com 1	5174.4	-332.8	151	Seg29	1013.4	492.7	210	Seg88	-3470.6	492.7
31	DVss	-341.6	-591.8	91	Com2	5174.4	-256.8	152	Seg30	937.4	492.7	211	Seg89	-3546.6	492.7
32	DVss	-265.6	-591.8	92	Com ${ }^{\text {a }}$	5174.4	-180.8	153	Seg31	861.4	492.7	212	Seg90	-3622.6	492.7
33	OVss	-189.6	-591.8	93	Com4	5174.4	-104.8	154	Seg32	785.4	492.7	213	Seg91	-3698.6	492.7
-34-1	DVss	-113.6	-591.8	94	Com5	5174.4	-28.8	155	Seg33	709.4	492.7	214	Seg92	-3774.6	492.7
35	DVss	-37.6	-591.8	95	Com6	5174.4	47.2	156	Seg34	633.4	492.7	215	Seg93	-3850.6	492.7
36	DVss	38.4	-591.8	96	Com7	5174.4	123.2	157	Seg35	557.4	492.7	216	Seg94	-3926.6	492.7
37	OVSs	114.4	-591.8	97	Com8	5174.4	199.2	158	Seg36	481.4	492.7	217	Seg95	-4002. 6	492.7
38	DVss	190.4	-591.8	98	Com9	5174.4	275.2	159	Seg37	405.4	492.7	218	Seg96	-4078.6	492.7
39	DVss	266.4	-591.8	99	Com10	5174.4	351.2	160	Seg38	329.4	492.7	219	Seg97	-4154.6	492.7
40	DVSS	342.4	-591.8	100	Com11	5174.4	427.2	161	Seg39	253.4	492.7	220	Seg98	-4230.6	492.7
41	DVss	418.4	-591.8	101	Com12	5174.4	503.2	162	Seg40	177.4	492.7	221	Seg99	-4306.6	492.7
42	DVss	494.4	-591.8	102	Com13	4771.2	492.7	163	Seg41	101.4	492.7	222	Seg100	-4382.6	492.7
43	AVdd	644.0	-530.4	103	Com14	4695.2	492.7	164	Seg42	25.4	492.7	223	Seg101	-4458.6	492.7
44	AVdd	745.6	-530.4	104	Com15	4619.2	492.7	165	Seg43	-50.6	492.7	224	5 Seg 102	-4534.6	492.7
45	CTP	847.2	-530.4	105	Com16	4518.0	492.7	166	Seg44	-126.6	492.7	225	Seg103	-4619.2	492.7
46	C1N	948.8	-530.4	106	Com17	4442.0	492.7	167	Seg45	-202.6	492.7	226	Seg104	-4695.2	492.7
47	C2P	1050.4	-530.4	107	Com18	4366.0	492.7	168	Seg46	-278.6	492.7	227	Seg 105	-4771.2	492.7
48	C2N	1152.0	-530.4	108	Com19	4290.0	492.7	169	Seg47	-354.6	492.7	228	Seg 106	-5174.4	503.2
49	VLL2	1253.6	-530.4	109	Com20	4214.0	492.7	170	5 Seg 48	-430.6	492.7	229	Seg 107	-5174.4	427.2
50	VLL3	1355.2	-530.4	110	Com21	4138.0	492.7	171	Seg49	-506.6	492.7	230	Seg108	-5174.4	351.2
51	DVSS	1456.8	-530.4	111	Com22	4062.0	492.7	172	Seg50	-582.6	492.7	231	Seg109	-5174.4	275.2
52	DVss	1558.4	-530.4	112	Com23	3986.0	492.7	173	Seg5 1	-658.6	492.7	232	Seg110	-5174.4	199.2
53	VLL4	1660.0	-530.4	113	Com24	3910.0	492.7	174	Seg52	-734.6	492.7	233	Seg111	-5174.4	123.2
54	VLL5	1761.6	-530.4	114	Com25	3834.0	492.7	775	Seg53	-810.6	492.7	234	Seg112	-5174.4	47.2
55	VLL6	1863.2	-530.4	115	Com26	3758.0	492.7	176	Seg54	-886.6	492.7	235	Seg113	-5174.4	-28.8
56	DUM1	1964.8	-530.4	116	Com27	3682.0	492.7	177	Seg55	-962.6	492.7	236	Seg114	-5174.4	-104.8
57	DVss	2066.4	-530.4	117	Com28	3606.0	492.7	178	Seg56	-1038.6	492.7	237	Seg115	-5174.4	-180.8
58	OSC2	2168.0	-530.4	118	Com29	3530.0	492.7	179	Seg57	-1114.6	492.7	238	Seg116	-5174.4	-256.8
59	DVss	2269.6	-530.4	119	Com30	3454.0	492.7	180	Seg5	-1190.6	492.7	239	Seg117	-5174.4	332.8
60	DUM2	2371.2	-530.4	120	Com31	3378.0	492.7					240	Seg178	-5174.4	-408.8
				121	Com32	3302.0	492.7					241	Segit9	-5174.4	-484.8

Gold Bump Size

Pad	Bump Size X $(\mu \mathrm{m})$	Bump Size Y $(\mu \mathrm{m})$
$1-23$	66.5	66.5
$24-42$	49.0	39.8
$43-74$	66.5	66.5
$75-85$	49.0	66.5
86	49.0	107.0
87	No Gold Bump	
$88-101$	107.0	49.0
$102-227$	49.0	107.0
$228-241$	107.0	49.0

Die Size

$X(\mu \mathrm{~m})$	$Y(\mu \mathrm{~m})$
10881.0	1522.0

Die Pad Co-ordinate for MC141533

Pad	Name	X ($\mu \mathrm{m}$)	Y ($\mu \mathrm{m}$)	Pad	Name	X ($\mu \mathrm{m}$)	Y ($\mu \mathrm{m}$)	Pad	Name	X ($\mu \mathrm{m}$)	$\gamma(\mu \mathrm{m})$	Pad	Name	X ($\mu \mathrm{m}$)	$Y(\mu \mathrm{~m})$
1	Anno	-4803.6	-526.6	61	DVss	2472.8	-530.4	122	Seg17	3217.4	492.7	181	Seg76	-1266.6	492.7
2	Ann1	-4702.0	-526.6	62	C+	2574.4	-530.4	123	Seg18	3141.4	492.7	182	Seg77	-1342.6	492.7
3	Ann2	-4600.4	-526.6	63	DVss	2676.0	-530.4	124	Seg19	3065.4	492.7	183	Seg78	-1418.6	492.7
4	Ann3	-4498.8	-526.6	64	C-	-2777.6	-530.4	125	Seg20	2989.4	492.7	184	Seg79	-1494.6	492.7
5	BP	-4397.2	-526.6	65	DVss	-2879.2	-530.4	126	Seg21	2913.4	492.7	185	Seg80	-1570.6	492.7
6	DVdd	-4295.6	-526.6	66	VCC	2980.8	-530.4	127	Seg22	2837.4	492.7	186	Seg81	-1646.6	492.7
7	RES	-4194.0	-526.6	67	DVSS	3082.4	-530.4	128	Seg23	2761.4	492.7	187	Seg82	-1722.6	492.7
8	DVss	-4092.4	-526.6	68	VF	3184.0	-530.4	129	Seg24	2685.4	492.7	188	Seg83	-1798.6	492.7
9	D/C	-3990.8	-526.6	69	DVSS	3285.6	-530.4	130	Seg25	2609.4	492.7	189	Seg84	-1874.6	492.7
10	R/W	-3889.2	- 526.6	70	VR	3387.2	-530.4	131	Seg26	2533.4	492.7	190	Seg85	-1950.6	492.7
11	CS(CLK)	-3787.6	-526.6	71	AVSS	3488.8	-530.4	132	Seg27	2457.4	492.7	191	Seg86	-2026.6	492.7
12	DVss	-3686.0	-526.6	72	OSCT	3590.4	-530.4	133	Seg28	2381.4	492.7	192	Seg87	-2102.6	492.7
13	D0	-3584.4	-526.6	73	DVss	3692.0	-530.4	134	Seg29	2305.4	492.7	193	Seg88	-2178.6	492.7
14	D1	-3482.8	-526.6	74	DVss	3793.6	-530.4	135	Seg30	2229.4	492.7	194	Seg89	-2254.6	492.7
15	D2	-3381.2	-526.6	75	DVss	3869.6	-530.4	136	Seg31	2153.4	492.7	195	Seg90	-2330.6	492.7
16	D3	-3279.6	-526.6	76	DVss	3945.6	-530.4	137	Seg32	2077.4	492.7	196	Seg91	-2406.6	492.7
17	D4	-3178.0	-526.6	77	DVss	4021.6	-530.4	138	Seg33	2001.4	492.7	197	Seg92	-2482.6	492.7
18	D5	-3076.4	-526.6	78	DVss	4097.6	-530.4	139	Seg34	1925.4	492.7	198	Seg93	-2558.6	492.7
19	D6	-2974.8	-526.6	79	DVss	4173.6	-530.4	140	Seg35	1849.4	492.7	199	Seg94	-2634.6	492.7
20	D7	-2873.2	-526.6	80	DVss	4249.6	-530.4	141	Seg36	1773.4	492.7	200	Seg95	-2710.6	492.7
21	CE	-2771.6	-526.6	81^{-}	DVss	4325.6	-530.4	142	Seg37	1697.4	492.7	201	Seg96	-2786.6	492.7
22	DVSS	-2670.0	-526.6	82	DVss	4401.6	-530.4	143	Seg38	1621.4	492.7	202	Seg97	-2862.6	492.7
23	DVss	-2498.3	-526.6	83	DVss	4477.6	-530.4	144	Seg39	1545.4	492.7	203	Seg98	-2938.6	492.7
24	DVss	-873.6	-591.8	84	DVss	4553.6	-530.4	145	Seg40	1469.4	492.7	204	Seg99	-3014.6	492.7
25	DVss	-797.6	-591.8	85	DVss	4629.6	-530.4.	146	Seg41	1393.4	492.7	205	Seg100	-3090.6	492.7
26	DVss	-721.6	-591.8	86	Test2	4705.6	-551.0	147	Seg42	1317.4	492.7	206	Seg101	-3166.6	492.7
27	DVSS	-645.6	-591.8	87	Test 1	4835.2	-550.6	148	Seg43	1241.4	492.7	207	Seg102	-3242.6	492.7
28	DVSS	-569.6	-591.8	88	Com32	5174.4	-484.8	149	Seg44	1165.4	492.7	208	Seg103	-3318.6	492.7
29	DVss	-493.6	-591.8	89	Como	5174.4	-408.8	150	Seg45	1089.4	492.7	209	Seg104	-3394.6	492.7
30	DVss	-417.6	- 591.8	90	Com 1	5174.4	-332.8	151	Seg46	1013.4	492.7	210	Seg105	-3470.6	492.7
31	DVSS	-341.6	-591.8	91	Com2	5174.4	-256.8	-152	Seg47	937.4	492.7	211	Seg106	-3546.6	492.7
32	DVSS	-265.6	-591.8	92	Com3	5174.4	-180.8	153	Seg48	861.4	492.7	212	Seg107	-3622.6	492.7
33	DVSS	-189.6	-591.8	93	Com4	5174.4	-104.8	154	Seg49	785.4	492.7	213	Seg108	-3698.6	492.7
34	DVss	-113.6	-591.8	94	Com5	5174.4	-28.8	155	Seg50	709.4	492.7	214	Seg109	-3774.6	492.7
35	DVss	-37.6	-591.8	95	Com6	5174.4	47.2	156	Seg51	633.4	492.7	215	Seg110	-3850.6	492.7
36	DVss.	38.4	-591.8	96	Com 7	5174.4	123.2	157	Seg52	557.4	492.7	216	Seg 117	-3926.6	492.7
37	DVss	114.4	-591.8	97	Com8	5174.4	199.2	158	Seg53	481.4	492.7	217	Seg112	-4002.6	492.7
38	DVSs	190.4	- 597.8	98	Com9	5174.4	275.2	159	Seg54	405.4	492.7	218	Seg113	-4078.6	492.7
39	DVss	266.4	-591.8	99	Com10	5174.4	351.2	160	Seg55	329.4	492.7	219	Seg114	-4154.6	492.7
40	DVss	342.4	- 591.8	100	Com11	5174.4	427.2	161	Seg56	253.4	492.7	220	Seg115	-4230.6	492.7
41	DVSs	418.4	-591.8	101	Com12	5174.4	503.2	162	Seg57	177.4	492.7	221	Seg116	-4306.6	492.7
42	DVss	494.4	-591.8	102	Com13	4771.2	492.7	763	Seg58	101.4	492.7	222	Seg 117	-4382.6	492.7
43	AVdd	644.0	-530.4	103	Com14	4695.2	492.7	164	Seg59	25.4	492.7	223	Seg118	-4458.6	492.7
44	AVdd	- 745.6	-530.4	104	Com 15	4619.2	492.7	165	Seg60	-50.6	492.7	224	Seg119	-4534.6	492.7
45	C1P	847.2	-530.4	105	Sego	4518.0	492.7	166	Seg61	-126.6	492.7	225	Com32	-4619.2	492.7
46	CIN	948.8	-530.4	106	Seg1	4442.0	492.7	167	Seg62	-202.6	492.7	226	Com31	-4695.2	492.7
47	C2P	1050.4	-530.4	107	Seg2	4366.0	492.7	168	Seg63	-278.6	492.7	227	Com30	-4771.2	492.7
48	C2N	1152.0	-530.4	108	Seg3	4290.0	492.7	169	Seg64	-354.6	492.7	228	Com29	-5174.4	503.2
49	VLL2	1253.6	-530.4	109	Seg4	4214.0	492.7	170	Seg65	-430.6	492.7	229	Com28	-5174.4	427.2
50	VLL3	1355.2	-530.4	110	Seg5	4138.0	492.7	171	Seg66	-506.6	492.7	230	Com27	-5174.4	351.2
51	DVSS	1456.8	-530.4	111	Seg6	4062.0	492.7	172	Seg67	-582.6	492.7	231	Com26	-5174.4	275.2
52	DVss	1558.4	-530.4	112	Seg7	3986.0	492.7	173	Seg68	-658.6	492.7	232	Com25	-5174.4	199.2
53	VLL4	1660.0	-530.4	113	Seg8	3910.0	492.7	174	Seg69	-734.6	492.7	233	Com24	-5174.4	123.2
54	VLL5	1761.6	-530.4	114	Seg9	3834.0	492.7	175	Seg70	-810.6	492.7	234	Com23	-5174.4	47.2
55	VLL6	1863.2	-530.4	115	Seg 10	3758.0	492.7	176	Seg71	-886.6	492.7	235	Com22	-5174.4	-28.8
56	DUM1	1964.8	-530.4	116	Seg11	3682.0	492.7	177	Seg72	-962.6	492.7	236	Com21	-5174.4	-104.8
57	DVSS	2066.4	-530.4	117	Seg12	3606.0	492.7	178	Seg73	-1038.6	492.7	237	Com20	-5174.4	-180.8
58	OSC2	2168.0	- 530.4	118	Seg13	3530.0	492.7	179	Seg74	-1114.6	492.7	238	Com19	-5174.4	-256.8
59	DVss	2269.6	-530.4	119	Seg14	3454.0	492.7	180	Seg75	-1190.6	492.7	239	Com18	-5174.4	-332.8
60	DUM2	2371.2	-530.4	120	Seg 15	3378.0	492.7					240	Com17	-5174.4	-408.8
				121	Seg16	3302.0	492.7					241	Com16	-5174.4	-484.8

Gold Bump Size

Pad	Bump Size X $(\mu \mathrm{m})$	Bump Size Y $(\mu \mathrm{m})$
$1-23$	66.5	66.5
$24-42$	49.0	39.8
$43-74$	66.5	66.5
$75-85$	49.0	66.5
86	49.0	107.0
87	No Gold Bump	
$88-101$	107.0	49.0
$102-227$	49.0	107.0
$228-241$	107.0	49.0

Die Size

$X(\mu \mathrm{~m})$	$Y(\mu \mathrm{~m})$
10881.0	1522.0

LCD Segment / Common Driver CMOS

MC141535 is a CMOS LCD Driver which consists of 4 annunciator outputs and 178 high voltage LCD driving signals (17 rows and 161 segments). It has parallel interface capability for operating with general MCU. Besides the general LCD driver features, it has on chip LCD bias voltage generator circuit so that limited external components are required during application.

- Single Supply Operation, 2.4 V-3.5 V
- Low Current Stand-by Mode (<500nA)
- On Chip Bias Voltage Generator
- 8 Bit Paraliel Interface
- Graphic Mode Operation
- On Chip Graphic Display Data RAM
- Four Static Annunciator (Icon) Drivers
- Low Power Icon Mode Driven by Com16 in Special Driving Scheme
- 161 Segment Drivers, 17 Row Drivers
- 1:5 Bias Ratio
- 1/17 Multiplex Ratio
- Master Clear RAM (Main Dot Matrix Display / Icons Display)
- Vertical and Horizontal Scrolling for Main Display
- Re-mapping of Row and Column Drivers
- Selectable LCD Driving Voltage Temperature Compensation
- 16 Level Internal Contrast Control
- External Contrast Control
- Standard TAB

Block Diagram

MAXIMUM RATINGS* (Voltages Referenced to $\mathrm{V}_{\mathrm{SS}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Symbol	Parameter	Value	Unit
$\mathrm{AV}_{\mathrm{DD}}, \mathrm{DV}_{\mathrm{DD}}$	Supply Voltage	-0.3 to +4.0	V
$\mathrm{V}_{\text {cc }}$		$\mathrm{V}_{\text {SS }}-0.3$ to $\mathrm{V}_{\text {SS }}+10.5$	V
$V_{\text {in }}$	Input Voltage	$\mathrm{V}_{S S}-0.3$ to $\mathrm{V}_{\text {DD }}+0.3$	V
1	Current Drain Per Pin Excluding V_{DD} and $\mathrm{V}_{S S}$	25	mA
$\begin{aligned} & T_{A 1} \\ & T_{A 2} \end{aligned}$	Operating Temperature For Using Internal Oscillator For Using External Oscillator	$\begin{aligned} & -25 \text { to }+85 \\ & -30 \text { to }+85 \end{aligned}$	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$

* Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Description section.
$V_{S S}=A V_{S S}=D V_{S S}\left(D V_{S S}=V_{S S}\right.$ of Digital circuit, $A V_{S S}=V_{S S}$ of Analogue Circuit)
$V_{D D}=A V_{D D}=D V_{D D}$ ($D V_{D D}=V_{D D}$ of Digital circuit, $A V_{D D}=V_{D D}$ of Analogue Circuit)

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions to be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended that $V_{\text {in }}$ and $V_{\text {out }}$ be constrained to the range $\mathrm{V}_{\mathrm{SS}}<$ or $=\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right)<$ or $=\mathrm{V}_{\mathrm{DD}}$. Reliability of operation is enhanced if unused input are connected to an appropriate logic voltage level (e.g., either $V_{S S}$ or $V_{D D}$). Unused outputs must be left open. This device may be light sensitive. Caution should be taken to avoid exposure of this device to any light source during normal operation. This device is not radiation protected.

ELECTRICAL CHARACTERISTICS (Voltage Referenced to $\mathrm{V}_{S S}, T_{A}=25^{\circ} \mathrm{C}$)

Symbol	Parameter	Test Condition	Min	Typ	Max	Unit
DVD $\mathrm{AV}_{\mathrm{DD}}$	Supply voltage (Absolute value Referenced to V_{SS}) Operating Range of Logic Circuit Supply DV ${ }_{D D}$ Operating Range of Voltage Generator Circuit Supply AV ${ }_{\text {DD }}$		$\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$	3.0	3.5 3.5	V
I_{AC}	Supply Current (Measure with V_{DD} fixed at 3.0 V) Access Mode Supply Current Drain from Pin AVDD and DVDD.	Internal DC/DC Converter On, Display On, Tripler Enable, RNW Accessing, $T_{c y c}=1 \mathrm{MHz}$, Osc. Freq.	0	200	300	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{DP} 1}$	Display Mode Supply Current Drain from Pin AVDD and DVDD.	$=38.4 \mathrm{kHz}, 1 / 17$ Duty Cycle, $1 / 7$ Bias. Internal DC/DC Converter On, Display On, Normal Display Mode, Tripler Enable, RW Halt, Osc. Freq. $=38.4 \mathrm{kHz}$	0	70	100	$\mu \mathrm{A}$
$\mathrm{I}_{\text {DP2 }}$	Display Mode Supply Current Drain from Pin AVDD and DVDD	Internal DC/DC Converter On, Display On, Normal Display Mode, Tripler Enable, R/W Halt, Osc. Freq. $=38.4 \mathrm{kHz}$. Horizontal Scrolling	0	78	110	$\mu \mathrm{A}$
IJCON	Display Mode Supply Current Drain from Pin AVDD and DVDD	Internal DC/DC Converter On, Display On, Icon Display Mode, Tripler Enable, RW Halt, Osc. Freq. $=38.4 \mathrm{kHz}$.	-	15	30	$\mu \mathrm{A}$
$\mathrm{I}_{\text {SB1 }}$	Stand-by Mode Supply Current Drain from Pin AVDD and DVDD	Display Off, Oscillator Disabled, R/W Halt	0	300	500	nA
	Stand-by Mode Supply Current Drain from Pin AVDD and DVDD.	Display Off, Oscillator Enable, RW Halt, External Oscillator and Frequency $=38.4 \mathrm{kHz}$.	0	2.5	5	$\mu \mathrm{A}$
$\mathrm{I}_{\text {SB3 }}$	Stand-by Mode Supply Current Drain from Pin AVDD and DVDD.	Display Off, Oscillator Enable, R/W Halt, Internal Oscillator and Frequency $=38.4 \mathrm{kHz}$.	0	5	7	$\mu \mathrm{A}$
$\mathrm{V}_{\mathrm{cC1}}$	VLCD Voltage LCD Driving Voltage Generator Output Voltage at Pin $V_{\text {cc }}$.	Display On, Internal DC/DC Converter Enabled, Tripler Enable, Osc. Freq. $=38.4 \mathrm{kHz}$, Regulator Enabled, Divider Enabled	\bullet	$3^{*} A V_{D D}$	10.5	V
$\mathrm{V}_{\mathrm{cC2}}$	LCD Driving Voltage Generator Output Voltage at Pin $V_{\text {cc }}$.	Display On, Internal DC/DC Converter Enabled, Doubler Enable, Osc. Freq. $=38.4 \mathrm{kHz}$, Regulator Enabled, Divider Enabled	-	$2^{*} \mathrm{AV}_{\text {D }}$	10.5	V
$\mathrm{V}_{\text {LCD }}$	LCD Driving Voltage input at pin $\mathrm{V}_{\text {CC }}$.	Internal DC/DC Converter Disabled.	$A V_{D D}$	-	10.5	V
	Output Voltage					
$\mathrm{V}_{\mathrm{OH} 1}$	Output High Voltage at Pins DO-D7, Annun0-3, BP and OSC2.	$\mathrm{I}_{\text {out }}=100 \mu \mathrm{~A}$	$0.9 * V_{D D}$	-	$V_{D D}$	V
$\mathrm{V}_{\text {OL1 }}$	Output Low Voltage at Pins D0-D7, Annuno-3, BP and OSC2.	$\mathrm{I}_{\text {out }}=100 \mu \mathrm{~A}$	0	-	$0.1 * V_{D D}$	V
$\mathrm{V}_{\mathrm{R} 1}$	LCD Driving Voltage Source at Pin VR	Regulator Enabled	0	-	$\mathrm{V}_{\mathrm{CC}}-0.5$	v
$\mathrm{V}_{\mathrm{R} 2}$	LCD Driving Voltage Source at Pin VR	Regulator Disabled	-	0	-	V
$\mathrm{V}_{\mathrm{R} 3}$	Delta of VR Voltage Drop	Regulator Enabled, $\mathrm{I}_{\text {out }}=50 \mu \mathrm{~A}$	0	-	VCC	V
$\Delta \mathrm{V}_{\mathrm{R}}$	Variation of V_{R} Input (V_{DD} is fixed)	Regulator Enabled	-	± 1	± 2.5	\%

ELECTRICAL CHARACTERISTICS (Voltage Referenced to $\mathrm{V}_{\mathrm{SS}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Symbol	Parameter	Test Condition	Min	Typ	Max	Unit
$\begin{aligned} & V_{\mathrm{IH} 1} \\ & \mathrm{~V}_{\mathrm{IL} 1} \end{aligned}$	Input Voltage Input High Voltage at Pins, $\overline{R E S}, \overline{C S}, ~ D O-D 7, \bar{R} / W$, D/C, OSC1 and OSC2. Input Low Voltage at Pins, $\overline{\mathrm{RES}}, \overline{\mathrm{CS}}, \mathrm{D} 0-\mathrm{D} 7, \overline{\mathrm{R}} / \mathrm{W}$, D/C, OSC1 and OSC2.		$0.8^{*} V_{D D}$	-	$\begin{gathered} V_{D D} \\ 0.2^{*} V_{D D} \end{gathered}$	V v
$\begin{aligned} & \mathrm{V}_{\mathrm{LL6}} \\ & \mathrm{~V}_{\mathrm{LL5}} \\ & \mathrm{~V}_{\mathrm{LL4} 4} \\ & \mathrm{~V}_{\mathrm{LL} 3} \\ & \mathrm{~V}_{\mathrm{LLL} 2} \end{aligned}$	LCD Display Voltage. (LCD Driving Voltage Output from Pins VLL6, VLL5, VLLL4, VLL3 and VLL2.)	Voltage Driver Enabled, Regulator Enabled.		$\begin{gathered} V_{R} \\ 0.8^{*} V_{R} \\ 0.6^{*} V_{R} \\ 0.4^{*} V_{R} \\ 0.2^{*} V_{R} \end{gathered}$		$\begin{aligned} & v \\ & v \\ & v \\ & v \\ & v \end{aligned}$
$V_{\text {LL6 }}$ $\mathrm{V}_{\mathrm{LL} 5}$ $\mathrm{V}_{\mathrm{LL} 4}$ $\mathrm{V}_{\mathrm{LL} 3}$ $\mathrm{V}_{\mathrm{LL} 2}$		External Voltage Generator, Voltage Divider Disable, Regulator Enabled.	$\begin{gathered} 1 / 2 V_{c C} \\ 1 / 2 V_{c C} \\ 1 / 2 V_{c c} \\ 0 \\ 0 \end{gathered}$		$\begin{gathered} V_{C C} \\ V_{C C} \\ V_{C C} \\ 1 / 2 V_{C C} \\ 1 / 2 V_{C C} \end{gathered}$	$\begin{aligned} & \hline V \\ & v \\ & v \\ & v \\ & v \end{aligned}$
$\mathrm{IOH}_{\mathrm{O}}$ 1 OL I_{OZ}	Output Current Output High Current Source from Pins DO-D7, Annun0-3, BP and OSC2. Output Low Current Drain from Pins DO-D7, Annun0-3, BP and OSC2. Output Tri-state Current Drain Source at pins DOD7 and OSC2	$\begin{aligned} & \mathrm{V}_{\text {out }}=\mathrm{VDD}-0.4 \mathrm{~V} \\ & \mathrm{~V}_{\text {out }}=0.4 \mathrm{~V} \end{aligned}$	50 -1	-	-50 1	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
$\mathrm{IIL}^{\prime} / I_{\text {IH }}$	Input Current at pins $\overline{\text { RES }}, \overline{\mathrm{CS}}, \mathrm{D} 0-\mathrm{D} 7, \mathrm{R} / \overline{\mathrm{W}}, \mathrm{D} / \overline{\mathrm{C}}$ OSC1 and OSC2.		-1	-	1	$\mu \mathrm{A}$
Ron	On Resistance Channel Resistance between LCD Driving Signal Pins (SEG and COM) and Driving Voltage Input Pins ($\mathrm{V}_{\mathrm{LL} 2}$ to $\mathrm{V}_{\mathrm{LL} 6}$).	During Display on, 0.1V Apply between Two Terminals, $V_{C C}$ within Operating Voltage Range.	-	-	10	k Ω
$\mathrm{V}_{\text {SB }}$	Memory Retention Voltage (DV DD) Standby Mode, Retained All Internal Configuration and RAM Data		2	-	3.5	V
$\mathrm{C}_{\text {IN }}$	Input Capacitance OSC1, OSC2 and All Logic Pins		-	5	7.5	pF

ELECTRICAL CHARACTERISTICS (Voltage Referenced to $\mathrm{V}_{\mathrm{SS}}, D V_{D D}=2.4-3.15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

	Temperature Coefficient Compensation				
PTC0	Flat Temperature Coefficient	TC1 $=0$, TC2 $=0$, Voltage Regulator Disabled.	-	0.0	-
PTC1	Temperature Coefficient 1^{*}	TC1 $10, \mathrm{TC2}=1$, Voltage Regulator Enabled.	-	-0.18	-
PTC2	Temperature Coefficient 2^{*}	TC1 1, TC2 $=0$, Voltage Regulator Enabled.	-	-0.22	-
PTC3	Temperature Coefficient 3^{*}	TC1=1,TC2=1, Voltage Regulator Enabled.	-	-0.35	-

* The formula for the temperature coefficient is:
$\mathrm{TC}(\%)=\frac{\mathrm{VR} \text { at } 50^{\circ} \mathrm{C}-\mathrm{VR} \text { at } 0^{\circ} \mathrm{C}}{50^{\circ} \mathrm{C}-0^{\circ} \mathrm{C}} \times \frac{1}{\text { VR at } 25^{\circ} \mathrm{C}} \times 100 \%$

ELECTRICAL CHARACTERISTICS (Voltage Referenced to $\mathrm{V}_{\mathrm{SS}}, \mathrm{AV}_{\mathrm{DD}}=D V_{D D}=2.4$ to $3.15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)
Total variation of VR $\Delta V_{R T}$ is affected by the following factors :
Process variation of Regulator ΔV_{F}
External $V_{D D}$ Variation contributed to Regulator $\Delta V_{V D D}$
External resistor pair $R a / R f$ contributed to Regulator $\Delta V_{\text {res }}$
where $\Delta V_{R T}=\sqrt{\left(\Delta V_{R}\right)^{2}+\left(\Delta V_{V_{D D}}\right)^{2}+\left(\Delta V_{r e s}\right)^{2}}$
Assume external $V_{D D}$ variation is $+l-6 \%$ at 3.15 V and 1% variation resistor used at application.

	TC Level	$\Delta \mathrm{V}_{\mathrm{VDD}}(\%)$	$\Delta \mathrm{V}_{\mathrm{R}}(\%)$	$\Delta \mathrm{V}_{\text {res }}(\%)$	$\Delta \mathrm{V}_{\mathrm{RT}}(\%)$
Reference	TC0			± 6.652	
Generator	TC1	± 6.0		± 2.5	± 1.414
	TC2	± 2.5		± 4.924	
	TC3	± 1.4			± 3.195

AC ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$, Voltage referenced to $\mathrm{V}_{S S}, V_{D D}=2.4$ to 3.15 V)

Symbol	Parameter	Test Condition	Min	Typ	Max	Unit
Fosct $\mathrm{F}_{\text {ANN } 1}$ FRM1	Oscillation Frequency. Oscillation Frequency of Display Timing Generator with 60 Hz Frame Frequency. Annunciator Display Frequency (with 50% duty cycle) from Pins Annun0-3 and BP LCD Driving Signal Frame Frequency.	Normal Display Frequency Selected Graphic or Icon Display Mode.	-	$\begin{gathered} 38.4 \\ 18.75 \\ 60 \end{gathered}$	-	$\begin{aligned} & \mathrm{kHz} \\ & \mathrm{~Hz} \\ & \mathrm{~Hz} \end{aligned}$
$\mathrm{F}_{\mathrm{ANN} 2}$ $F_{\text {FRM2 }}$	Oscillation Frequency. Annunciator Display Frequency (with 50% duty cycle) from Pins Annun0-3 and BP With Low Display Frequency Enabled LCD driving Signal Frame Frequency. (Graphic or Icon Display Mode With Low Display Frequency Enabled.)	Slow Display Frequency Selected	-	$\begin{gathered} 9.375 \\ 30 \end{gathered}$	-	$\begin{aligned} & \mathrm{Hz} \\ & \mathrm{~Hz} \end{aligned}$
OSC	Internal Oscillation Frequency Internal OSC Oscillation Frequency with Different Value of Feedback Resistor. (Internal Oscillator Enabled. $V_{D D}$ within Operation Range.)		See Figure 1 for the relationship			

Figure 1. Internal Oscillator Frequency Relationship with External Resistor Value

Figure 2. LCD Driving Signal Timing Diagram

TABLE 2a. Parallel Timing Characteristics (Write Cycle) ($\mathrm{T}_{\mathrm{A}}=-10$ to $60^{\circ} \mathrm{C}, \mathrm{DV} \mathrm{DD}_{\mathrm{D}}=2.4$ to $3.15 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$)

Symbol	Parameter	Min	Typ	Max	Unit
$\mathrm{t}_{\mathrm{cycle}}$	Enable Cycle Time	1000	-	-	ns
t_{EH}	Enable Pulse Width	290	-	-	ns
t_{AS}	Address Setup Time	0	-	-	
t_{DS}	Data Setup Time	290	ns		
t_{DH}	Data Hold Time	0	-	ns	
t_{AH}	Address Hold Time	-	-	ns	

Figure 3. Timing Characteristics (Write Cycle)

TABLE 2b. Parallel Timing Characteristics (Read Cycle) $\left(T_{A}=-10\right.$ to $60^{\circ} \mathrm{C}, D V_{D D}=2.4$ to $3.15 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$)

Symbol	Parameter	Min	Typ	Max	Unit
$\mathrm{t}_{\mathrm{cycl}}$	Enable Cycle Time	1000	-	-	ns
t_{EH}	Enable Pulse Width	375	-	-	ns
t_{AS}	Address Setup Time	0	-	-	ns
t_{DD}	Data Setup Time	-	-	350	ns
t_{DH}	Data Hold Time	7	-	-	ns
t_{AH}	Address Hold Time	5	-	-	ns

Figure 4. Timing Characteristics (Read Cycle)

PIN DESCRIPTIONS

D/C (Data / Command)

This input pin tell the LCD driver the input at D0-D7 is data or command. Input High for data while input Low for command.

$\overline{\text { CS (CLK) (Chip Select / Input Clock) }}$

This pin is normal Low clock input. Data on DO-D7 is latched at the falling edge of $\overline{C S}$.

$\overline{R E S}$ (Reset)

An active Low pulse to this pin reset the internal status of the driver (same as power on reset). The minimum pulse width is $10 \mu \mathrm{~s}$.

D0-D7 (Data)

This bi-directional bus is used for data / command transferring.

R/W (Read / Write)

This is an input pin. To read the display data RAM or the internal status (Busy / Idle), pull this pin High. The R / \bar{W} input Low indicates a write operation to the display data RAM or to the internal setup registers.

OSC1 (Oscillator Input)

For internal oscillator mode, this is an input for the internal low power RC oscillator circuit. In this mode, an external resistor of certain value should be connected between the OSC1 and OSC2 pins for a range of internal operating frequencies (refer to Figure 1). For external oscillator mode, OSC1 should be left open.

OSC2 (Oscillator Output / External Oscillator Input)

For internal oscillator mode, this is an output for the internal low power RC oscillator circuit. For external oscillator mode, OSC2 will be an input pin for external clock and no external resistor is needed.

VLL6 - VLL2

Group of voltage level pins for driving the LCD panel. They can either be connected to external driving circuit for external bias supply or connected internally to built-in divider circuit if internal divider is enable. For Internal DC/DC Converter enabled, a $0.1 \mu \mathrm{~F}$ capacitor to $A V_{S S}$ is required on each pin.

C1N and C1P

If Internal DC/DC Converter is enabled, a $0.1 \mu \mathrm{~F}$ capacitor is required to connect these two pins.

C2N and C2P

If Internal DC/DC Converter and Tripler are enabled, a $0.1 \mu \mathrm{~F}$ capacitor is required between these two pins. Otherwise, leave these pins open.

C+ and C-

If internal divider circuit is enabled, a $0.1 \mu \mathrm{~F}$ capacitor is required to connect between these two pins.

VR and VF

This is a feedback path for the gain control (external contrast control) of VLL1 to VLL6. For adjusting the LCD driving voltage, it requires a feedback resistor placed between VR and VF, a gain control resistor placed between VF and AVSS, a $10 \mu \mathrm{~F}$ capacitor placed between VR and AVSS. (Refer to the Application Circuit)

COM0-COM16 (Row Drivers)

These pins provide the row driving signal to LCD panel. ComoCom15 are used in 16 mux display. Com16 is used to drive the nonstatic icons. Output is low during display off.

SEG0-SEG160 (Column Drivers)

These 161 pins provide LCD column driving signal to LCD panel. They output OV during display off.

BP (Annunciator Backplane)

This pin combines with Annun0-Annun3 pins to form annunciator driving part. When the annunciator circuit is enabled, it will output square wave of $F_{A N N n} \mathrm{~Hz}$. It outputs low when oscillator is disabled.

Annun0-Annun3 (Annunciator Frontplanes)

These pins are four independent annunciator driving outputs. The enabled annunciator outputs from its corresponding pin a $F_{\text {ANNn }} \mathrm{Hz}$ square wave which is 180 degrees out of phase with BP. Disabled annunciator output from its corresponding pin an square wave inphase with BP. When all annunciators are disabled, all these pins output 0 V .

AVDD and AVSS

AVDD is the positive supply to LCD bias voltage generator. AVSS is ground.

VCC

For using the Internal DC/DC Converter, a $0.1 \mu \mathrm{~F}$ capacitor from this pin to AVSS is required. It can also be an external bias input pin if Internal DC/DC Converter is not used. Power is supplied to the LCD Driving Level Selector and HV Buffer Cell with this pin. Normally, this pin is not intended to be a power supply to other component.

DVDD and DVSS

Power is supplied to the digital control circuit of the driver using these two pins. DVDD is power and DVSS is ground.

OPERATION OF LIQUID CRYSTAL DISPLAY DRIVER

Description of Block Diagram Module

Command Decoder and Command Interface

This module determines whether the input data is interpreted as data or command. Data is directed to this module based upon the input of the D/C pin. If D/C high, data is written to Graphic Display Data RAM (GDDRAM). D/C low indicates that the input at D0-D7 is interpreted as a Command.

Reset is of same function as Power ON Reset (POR). Once RES received the reset pulse, all internal circuitry will back to its initial status. Refer to Command Description section for more information.

MPU Parallel Interface

The parallel interface consists of 8 bi-directional data lines (DO-D7), R/W, and the CS. The R/W input High indicates a read operation from the Graphic Display Data RAM (GDDRAM). RW input Low indicates a write operation to Display Data RAM or Internal Command Registers depending on the status of D/C input. The CS input serves as data latch signal (clock). Refer to AC operation conditions and characteristics section for Parallel Interface Timing Description.

Graphic Display Data RAM (GDDRAM)

The GDDRAM is a bit mapped static RAM holding the bit pattern to be displayed. The size of the RAM is determined by number of row times the number of column ($161 \times 17=2737$ bits). Figure 5 is a description of the GDDRAM address map. For mechanical flexibility, remapping on both Segment and Common outputs are provided.

Figure 5. Graphic Display Data RAM (GDDRAM) Address Map

Display Timing Generator

This module is an on chip low power RC oscillator circuitry (Figure 6). The oscillator frequency can be selected in the range of 15 kHz to 50 kHz by external resistor. One can enable the circuitry by software command. For external clock provided, feed the clock to OSC2 and leave OSC1 open.

Annunciator Control Circuit

The LCD waveform of the 4 annunciators and BP are generated by this module. The 4 independent annunciators are enabled by software command. Annunciator is also controlled by oscillator circuit. Before turning the annunciators on, the oscillator must be on in advance. Annunciator output waveform shown in Figure 7.

Figure 6. Oscillator Circuitry

Figure 7. Annunciators and BP Display Waveform

LCD Driving Voltage Generator

This module generates the LCD voltage needed for display output. It takes a single supply input and generate necessary bias voltages. It consists of :

1. Voltage Doubler and Voltage Tripler

To generate the Vcc voltage. Either Doubler or Tripler can be enabled.
2. Voltage Regulator

Feedback gain control for initial LCD voltage. it can also be used with external contrast control.
3. Voltage Divider

Divide the LCD display voltage $\left(\mathrm{V}_{\mathrm{LL}}-\mathrm{V}_{\mathrm{LL} 6}\right)$ from the regulator output. This is a low power consumption circuit which can save the most display current compare with traditional resistor ladder method.
All blocks can be individually turned off if external voltage generator is employed.

Voltage Regulator

1. Self adjust temperature compensation circuitry

Provide 4 different compensation grade selections to satisfy the various liquid crystal temperature grades. The grading can be selected by software control.
2. Contrast Control Block

Software control of 16 voltage levels of LCD voltage.

17 Bit Latch / 161 Bit Latch

A 178 bit long register which carrys the display signal information. First 32 bits are Common driving signals and other 161 bits are Segment driving signals. Data will be input to the HV-buffer Cell for bumping up to the required level.

Level Selector

Level Selector is a control of the display synchronization. Display voltage can be separated into two sets and used with different cycles. Synchronization is important since it selects the required LCD voltage level to the HV Buffer Cell for output signal voltage pump.

HV Buffer Cell (Level Shift-er)

HV Buffer Cell works as a level shift-er which translates the low voltage output signal to the required driving voltage. The output is shifted out with an internal FRM clock which comes from the Display Timing Generator. The voltage levels are given by the level selector which is synchronized with the internal M signal.

Horizontal Shifter

This Horizontal Shifter shift the 16 rows of GDDRAM data horizontally according to the value in the Horizontal Scroll register (which is programmable through sending two commands consecutively). Such Horizontal Shifter's output will go to the 161 Bit Latch for display.

LCD Panel Driving Waveform

The following is an example of how the Common and Segment drivers may be connected to a LCD panel. The waveforms shown in Figure $8 \mathrm{a}, 8 \mathrm{~b}$ and 8 c illustrate the desired multiplex scheme.

Figure 8a. LCD Display Example " 0 "

TIME SLOT

Figure 8b. LCD Driving Signal from MC141535

Figure 8c. Effective LCD waveform on LCD pixel

Command Description

Set Display On/Off (Display Mode / Stand-by Mode)

This Display On command turns the LCD Common and Segment outputs on and has no effect to the annunciator output. This command starts the conversion of data in GDDRAM to necessary waveforms on the Common and Segment driving outputs. The on-chip bias generator is also turned on by this command. (Note : "Oscillator On" command should be sent before "Display On " is selected)

The Display Off command turns the display off and the states of the LCD driver are as follow during display off :

1. The Common and Segment outputs are fixed at $\mathrm{V}_{\mathrm{LL} 1}\left(\mathrm{~V}_{\mathrm{SS}}\right)$.
2. The bias Voltage Generator is turned off.
3. The RAM and content of all registers are retained.
4. IC will accept new commands and data.

The status of the Annunciators and Oscillator are not affected by this command. The Oscillator is not affected by this command either.

Set Horizontal Scroll

This command is used in combination with "Set Horizontal Scroll Value" to set the LCD driver to scroll the display horizontally. The next input from D0 to D7 is the scroll value. Note that Row16 is not affected by this command.

Set Horizontal Scroll Value

When display is turned on, this command maps the selected GDDRAM column $(00 \mathrm{H}-\mathrm{AOH})$ to Seg0-Seg160. With scroll value equals to 0 , Col 0 of GDDRAM is mapped to Seg0 and Col 1 through Col 160 are mapped to Seg 1 through Seg160 respectively. With Scroll value equals to 1 , Col 1 of GDDRAM is mapped to $\operatorname{Seg} 0$, then Col 2 through Col 160 will be mapped to Seg 1 through Seg 159 respectively and Col 0 will be mapped to Seg 160. This command must issue follow command "Set Horizontal Scroll".

Set GDDRAM Column Address

This command positions the address pointer on a column location. The address can be set to location $00 \mathrm{H}-\mathrm{AOH}$ (161 columns) in combination with the command "Set MSB of GDDRAM Column Address". The column address will be increased automatically after a read or write operation. Refer "Address Increment Table" and command "Set GDDRAM Page Address" for further information.

Set MSB of GDDRAM Column Address

This command set the MSB of the GDDRAM Column address pointer. Set this MSB to 0 for accessing the 00H-7FH address; while set this MSB to 1 for accessing $80 \mathrm{H}-\mathrm{AOH}$ address

Set GDDRAM Page Address

This command positions the row address to 1 of 3 possible positions in GDDRAM. Refer to figure 5.

Master Clear GDDRAM

This command is to clear the content of page 1 and 2 of the Display Data RAM. Issue this command followed by a dummy write command.

Master Clear Icons

This command is used to clear the data in page 3 of GDDRAM which storing the icon line data. Before using this command, set the page address to page 3 by the command "Set GDDRAM Page Address". A dummy write data operation is also needed after this "Master Clear Icons" command to make the clear icon action effective.

Set Display Mode

This command switch the driver to full display mode or icon display mode. In low power icon mode, only icons (driven by COM16) and
annunciators are displayed.

Set Vertical Scroll Value

This command maps the selected GDDRAM row ($00 \mathrm{H}-0 \mathrm{FH}$) to Como. With scroll value equals to 0 , Row 0 of GDDRAM is mapped to Com0 and Row 1 through Row 15 are mapped to Com1 through Com15 respectively. With scroll value equal to 1 , Row 1 of GDDRAM is mapped to Com0, then Row 2 through Row 15 will be mapped to Com1 through Com14 respectively and Row 0 will be mapped to Com15.

Save / Restore Column Address

With bit option $=1$ in this command, the Save / Restore Column Address command saves a copy of the Column Address of GDDRAM. With a bit option $=0$, this command restores the copy obtained from the previous execution of saving column address. This instruction is very useful for writing full graphics characters that are larger than 8 pixels vertically.

Set Column Mapping

This instruction selects the mapping of GDDRAM to Segment drivers for mechanical flexibility. There are 2 mappings to select:

1. Column 0 - Column 160 of GDDRAM mapped to Seg0-Seg160 respectively;
2. Column 0 - Column 160 of GDDRAM mapped to Seg160-Seg0 respectively.
Detail information please refer to section "Display Output Description".

Set Row Mapping

This instruction selects the mapping of GDDRAM to Common Drivers for mechanical flexibility. There are 2 selected mappings:

1. Row 0 - Row 15 of GDDRAM to Com0-Com15 respectively;
2. Row 0 - Row 15 of GDDRAM to Com15-Com0 respectively.

Output of Row 16 (Com16) will not be changed by this command.
See section "Display Output Description" for related information.

Set Annunciator Control Signals

This command is used to control the active states of the 4 stand alone annunciator drivers.

Set Oscillator Enable / Disable

This command is used to either turn on or off the oscillator. For using internal or external oscillator, this command should be executed. The setting for this command is not affected by command "Set Display On/ Off" and "Set Annunciator Control Signals". See command "Set External / Internal Oscillator" for more information

Set External / Internal Oscillator

This command is used to select either internal or external oscillator. When Internal Oscillator is selected, feedback resistor between OSC1 and OSC2 is needed. For external oscillation circuit, feed clock input signal to OSC2 and leave OSC1 open.

Set Internal DC/DC Converter On/Off

Use this command selects the Internal DC/DC Converter to generate the $V_{C C}$ from $A V_{D D}$. Turn off the Internal $D C / D C$ Converter if external Vcc is provided.

Set Voltage Doubler / Tripler

Use this command to select Doubler or Tripler when the Internal DC/ DC Converter is on.

Set Internal Regulator On/Off

Choose bit option 0 to disable the Internal Regulator. Choose bit
option 1 to enables the Internal Regulator which consists of the internal contrast control and temperature compensation circuits.

Set Internal Voltage Divider On/Off

If the Internal Voltage Divider is disabled, external bias can be used for $\mathrm{V}_{\mathrm{LL} 6}$ to $\mathrm{V}_{\mathrm{LL} 2}$. If the Internal Voltage Divider is enabled, the internal circuit will generated the $1: 5$ bias driving voltage.

Set Internal Contrast Control On/Off

This command is used to turn on or off the internal control of delta voltage of the bias voltages. With bit option $=1$, the software selection for delta bias voltage control is enabled. With bit option $=0$, internal contrast control is disabled.

Increase / Decrease Contrast Level

If the internal contrast control is enabled, this command is used to increase or decrease the contrast level within the 16 contrast levels. The contrast level starts from the lowest value after POR.

Set Contrast Level

This command is to select one of the 16 contrast levels when internal
contrast control circuitry is in use. After power-on reset, the contrast level is the lowest.

Read Contrast Value

This command allows the user to read the current contrast level value. With $\mathrm{R} / \overline{\mathrm{W}}$ input high (READ), $\mathrm{D} / \overline{\mathrm{C}}$ input low (COMMAND) and D7 D6 D5 D4 are equal to 0001 , the value of the internal contrast value can be read on DO-D3 at the falling edge of CS.

Set Temperature Coefficient

A temperature gradient selector circuit controlled by two control bits TC1 and TC2. This command can select 4 different LCD driving voltage temperature coefficients to match various liquid crystal temperature grades. Those temperature coefficients are specified in Electrical Characteristics Tables.

Set Display Frequency

This command set the LCD panel display to normal frequency or slow frequency.

COMMAND TABLE

Bit Pattern	Command	Comment
$000000 \mathrm{X}_{1} \mathrm{X}_{0}$	Set GDDRAM Page Address	Set GDDRAM Page Address using $X_{1} X_{0}$ as address bits. $\mathrm{X}_{1} \mathrm{X}_{0}=00$: page 1 (POR) $x_{1} x_{0}=01$: page 2 $X_{1} x_{0}=10$: page 3
$0001 X_{3} x_{2} \mathrm{X}_{1} \mathrm{X}_{0}$	Set / Read Contrast Level	With $R \bar{W}$ pin input low, set one of the 16 available values to the internal contrast register, using $X_{3} X_{2} X_{1} X_{0}$ as data bits. The contrast register is reset to 0000 during POR. With R/W pin input high, and at the rising edge of $\overline{C S}$, the value of the internal contrast register will be latched out at D3 D2 D1 D0 pins, i.e. $X_{3} X_{2} X_{1} X_{0}$, at the rising edge of CS.
$0010000 \mathrm{X}_{0}$	Set Voltage Doubler / Tripler	$X_{0}=0$: Tripler enable (POR) $X_{0}=1$: Doubler enable
$0010001 \mathrm{X}_{0}$	Set Column Mapping	$X_{0}=0$: Col0 to Seg0 (POR) $x_{0}=1$: Col0 to Seg160
0010010X 0	Set Row Mapping	$\mathrm{X}_{0}=0$: Rowo to Com0 $x_{0}=1$: Row to Com15
$0010011 \mathrm{X}_{0}$	Set MSB of GDDRAM Column Address	$\begin{aligned} & X_{0}=0: M S B=0(P O R) \\ & X_{0}=1: M S B=1 \end{aligned}$
$0010100 \mathrm{X}_{0}$	Set Display On/Off	$X_{0}=0$: display off (POR) $x_{0}=1$: display on
$0010101 \mathrm{X}_{0}$	Set Internal DC/DC Converter On/Off	$\mathrm{X}_{0}=0$: Internal DC/DC Converter off(POR) $X_{0}=1$: Internal DC/DC Converter on
0010110X ${ }_{0}$	Set Internal Regulator Enable	$\mathrm{X}_{0}=0$: Internal Regulator off (POR) $X_{0}=1$: Internal Regulator on When application uses a supply with built-in temperature compensation, the regulator should be disabled.
0010111 ${ }^{0}$	Set Internal Voltage Divider On/Off	$\mathrm{X}_{0}=0$: Internal Voltage Divider off(POR) $X_{0}=1$: Internal Voltage Divider on When an external bias network is preferred, the voltage divider should be disabled.
0011000X 0	Set Internal Contrast Control On/Off	$\mathrm{X}_{0}=0$: Internal Contrast Control off(POR) $X_{0}=1$: Internal Contrast Control on Internal contrast circuits can be disabled if external contrast circuits is preferred.

COMMAND TABLE

Bit Pattern	Command	Comment
$0011001 \mathrm{X}_{0}$	Set Display Mode	$\mathrm{X}_{0}=0$: normal display mode (POR) $X_{0}=1$: icon display mode
0011010X ${ }_{0}$	Save/Restore GDDRAM Column Address	$\mathrm{X}_{0}=0$: restore address $X_{0}=1$: save address
00110110	Master Clear GDDRAM	Master clear page 1 and 2 of GDDRAM, dummy write is required after this command.
00110111	Master Clear Icons	Master Clear of GDDRAM page 3. GDDRAM page 3 should be selected and dummy write is required
0011100X0	Set Display Frequency	$X_{0}=0$: normal display frequency $X_{0}=1$: slow display mode
$0011101 \mathrm{X}_{0}$	Reserved.	$\mathrm{X}_{0}=0$: normal operation (POR) $X_{0}=1$: test mode (Note: Make sure to set $X_{0}=0$ during application)
$0100{ }_{3} \mathrm{X}_{2} \mathrm{X}_{1} \mathrm{X}_{0}$	Set Vertical Scroll Value	Use $X_{3} X_{2} X_{1} X_{0}$ as number of lines to scroll. Scroll value $=0$ upon POR
$01100 \mathrm{~A}_{1} \mathrm{~A}_{0} \mathrm{X}_{0}$	Set Annunciator Control Signals	$\mathrm{A}_{1} \mathrm{~A}_{0}=00$: select annunciator 1 (P.OR) $\mathrm{A}_{1} \mathrm{~A}_{0}=01$: select annunciator 2 $A_{1} A_{0}=10$: select annunciator 3 $A_{1} A_{0}=11$: select annunciator 4 $X_{0}=0$: turn selected annunciator off (POR) $X_{0}=1$: turn selected annunciator on
01101000	Set Horizontal Scrolling	Set horizontal scrolling mode. The next input from D0~D7 will be interpreted as the horizontal shift value.
011011X ${ }_{1} \mathrm{X}_{0}$	Set Temperature Coefficient	$\begin{aligned} & X_{1} x_{0}=00: 0.00 \% \text { (POR) } \\ & x_{1} x_{0}=01:-0.18 \% \\ & x_{1} X_{0}=10:-0.22 \% \\ & x_{1} x_{0}=11:-0.35 \% \end{aligned}$
$0111000{ }_{0}$	Increase / Decrease Contrast Value	$X_{0}=0$: Decrease by one level $X_{0}=1$: Increase by one level (Note: increment/decrement wraps round among the 16 contrast levels. Start at the lowest level when POR.
	Reserved	
$0111010 \mathrm{X}_{0}$	Reserved	
0111011 X_{0}	Reserved	$\mathrm{X}_{0}=0$: normal operation (POR) $X_{0}=1$: test mode select (Note: Make sure to set $\mathrm{X}_{0}=0$ during application)
0111100X 0	Reserved	
0111101X ${ }_{0}$	Set External / Internal Oscillator	$\mathrm{X}_{0}=0$: External oscillator (POR) $X_{0}=1$: Internal oscillator. For internal oscillator place a resistor between OSC1 and OSC2. For external oscillator mode, feed clock input to OSC2.
0111110X0	Reserved	
0111111 X_{0}	Set Oscillator Enable / Disable	$\mathrm{X}_{0}=0$: oscillator master disable (POR) $X_{0}=1$: oscillator master enable. This is the master control fro oscillator circuitry. This command should be issued after the "External / Internal Oscillator" command.
$1 \mathrm{X}_{6} \mathrm{x}_{5} \mathrm{x}_{4} \mathrm{X}_{3} \mathrm{x}_{2} \mathrm{X}_{1} \mathrm{x}_{0}$	Set GDDRAM Column Address	Set GDDRAM Column Address. Use $X_{6} X_{5} X_{4} X_{3} X_{2} X_{1} X_{0}$ as address bits.
$\mathrm{X}_{7} \mathrm{X}_{6} \mathrm{X}_{5} \mathrm{X}_{4} \mathrm{X}_{3} \mathrm{X}_{2} \mathrm{x}_{1} \mathrm{x}_{0}$	Set Horizontal Scroll Value	To set the amount of Horizontal scroll

Data Read / Write

To read data from the GDDRAM, input High to $\mathrm{R} / \overline{\mathrm{W}}$ pin and $\mathrm{D} / \overline{\mathrm{C}}$ pin. Data is valid at the falling edge of $\overline{C S}$. And the GDDRAM column address pointer will be increased by one automatically.
To write data to the GDDRAM, input Low to $\mathrm{R} / \overline{\mathrm{W}}$ pin and High to $\mathrm{D} / \overline{\mathrm{C}}$ pin. Data is latched at the falling edge of $\overline{\mathrm{CS}}$. And the GDDRAM column address pointer will be increased by one automatically.
No auto address pointer increment will be performed for the Dummy Write Data after Master Clear GDDRAM. (Refer to the "Commands Required for R/W Actions on RAM" Table)

Address Increment Table (Automatic)

$\mathbf{D / \overline { C }}$	$\mathbf{R} / \overline{\mathbf{W}}$	Comment	Address Increment	Remarks
0	0	Write Command	No	
0	1	Read Command	No	${ }^{*} 1$
$\mathbf{1}$	0	Write Data	Yes	*2
1	1	Read Data	Yes	

Address Increment is done automatically data read write. The column address pointer of GDDRAM ${ }^{* 3}$ is affected.
Remarks: *1. Refer to the command "Read Contrast Value".
*2. If write data is issued after Command Clear RAM, Address increase is not applied.
*3. Column Address will be wrapped round when overflow.

Commands Required for Display Mode Setup

Display Mode	Commands Required	
Normal Display Mode	Set External / Internal Oscillator Set Oscillator Enable, Set Display Mode (Normal Display) Set Display On.	$\begin{array}{\|l} \left(0111101 X_{0}\right)^{*} \\ (01111111)^{*} \\ (00110010)^{*} \\ (00101001)^{*} \end{array}$
Icon Display Mode	Set External / Internal Oscillator Set Oscillator Enable, Set Display Mode (Icon Display) Set Display On.	$\begin{aligned} & \hline\left(0111101 X_{0}\right)^{*} \\ & (01111111)^{*} \\ & (00110011)^{*} \\ & (00101001)^{*} \end{aligned}$
Annunciator Display	Set External / Internal Oscillator Set Oscillator Enable, Set Annunciator On/Off.	$\begin{aligned} & \left(0^{\left(0111101 X_{0}\right)^{*}}\right. \\ & (01111111)^{*} \\ & \left(01100 A_{1} A_{0} X_{0}\right)^{*} \end{aligned}$
Standby Mode 1.	Set Display Off, Set Oscillator Disable.	$\begin{aligned} & (00101000)^{*} \\ & (0111110)^{*} \end{aligned}$
Standby Mode 2.	Set External Oscillator Set Display Off, Set Oscillator Enable. Set Annunciator On / Off,	$(01111011)^{*}$ $(00101000)^{*}$ $(0111111)^{*}$ $\left(01100 A_{1} A_{0} X_{0}\right)^{*}$
Standby Mode 3.	Set Internal Oscillator Set Display Off, Set Oscillator Enable. Set Annunciator On / Off,	$\begin{aligned} & \hline(01111010)^{*} \\ & (00101000)^{*} \\ & (0111111)^{*} \\ & \left(01100 A_{1} A_{0} x_{0}\right)^{*} \\ & \hline \end{aligned}$

[^0]Commands Required for R/W Actions on RAM

R/W Actions on RAMs	Commands Required	
Read/Write Data from/to GDDRAM. .	Set GDDRAM Page Address Set MSB of GDDRAM Column Address Set GDDRAM Column Address Read/Write Data	$\begin{aligned} & \left(000000 X_{1} X_{0}\right)^{* *} \\ & \left(0010011 X_{0}\right)^{*} \\ & \left(1 X_{6} X_{5} X_{4} X_{3} X_{2} X_{1} X_{0}\right)^{*} \\ & \left(X_{7} X_{6} X_{5} X_{4} X_{3} X_{2} X_{1} X_{0}\right) \end{aligned}$
Save/Restore GDDRAM Column Address.	Save/Restore GDDRAM Column Address.	(0011010 ${ }_{0}$)
Increase GDDRAM Address.	Dummy Read Data Set GDDRAM Column Address	$\begin{aligned} & \left(x_{7} x_{6} x_{5} x_{4} x_{3} x_{2} x_{1} x_{0}\right) \\ & \left(1 x_{6} x_{5} x_{4} x_{3} x_{2} x_{1} x_{0}\right) \end{aligned}$
Master Clear GDDRAM	Master Clear GDDRAM Dummy Write Data	$\begin{aligned} & (00110110) \\ & \left(X_{7} X_{6} X_{5} X_{4} X_{3} X_{2} X_{1} X_{0}\right) \\ & \hline \end{aligned}$
Master Clear Icons	Set Clear Page 3 of GDDRAM Master Clear Icons Dummy Write Data	$\begin{aligned} & (00000010)^{*} \\ & (00110111) \\ & \left(x_{7} x_{6} x_{5} x_{4} x_{3} x_{2} x_{1} x_{0}\right) \end{aligned}$
Horizontal Scrolling with Writing GDDRAM	Set GDDRAM Page 1 Set MSB of GDDRAM Column Address Set GDDRAM Column Address Write Data Set GDDRAM Page 1 Set MSB of GDDRAM Column Address Set GDDRAM Column Address Write Data Set Horizontal Scroll Set Scroll Value	(00000000)* (0010011X ${ }^{0}$ * $\left(1 X_{6} X_{5} X_{4} x_{3} x_{2} x_{1} x_{0}\right)^{*}$ $\left(\mathrm{X}_{7} \mathrm{X}_{6} \mathrm{X}_{5} \mathrm{X}_{4} \mathrm{X}_{3} \mathrm{X}_{2} \mathrm{X}_{1} \mathrm{X}_{0}\right)$ (00000001)* (0010011X ${ }_{0}$ * $\left(1 X_{6} x_{5} x_{4} x_{3} x_{2} x_{1} x_{0}\right)^{*}$ $\left(X_{7} X_{6} X_{5} X_{4} X_{3} X_{2} x_{1} x_{0}\right)$ (01101000) (00000001)

*No need to resend the command again if it is set previously.
The read / write action to the Display Data RAM does not depend on the display mode. This means the user can change the RAM content whether the target RAM content is being displayed.

Display Output Description by Working Example

This is an example of output pattern on the LCD panel. The following table is a description of what is inside the CDDRAM, CGRAM and GDDRAM. Figure 9 b and 9 c are the output pattern on the LCD display with different command enabled.
(Display Mode, Page Swapping, Scrolling, Column Re-map and Row Re-map)

Figure 9a

Content of GDDRAM

PAGE 1	5	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$	5	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$	-	-	-	-	-	-	-	-	-	-	-	-	-					0	0	0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0	0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0
PAGE 2	3	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \end{aligned}$	-	-				-		-	-	-	-	-	-	-	-			3	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & C \\ & C \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	3	$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \end{aligned}$
PAGE 3	0	0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	0	0	0	0	0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$

Figure 9b

Figure 9c. Examples of LCD display with different command enabled

MC141535T TAB PACKAGE DIMENSION (1 OF 2) 98ASLO0248A ISSUE 0

DO NOT SCALE THIS DRAWING

LEADING DIRECTION

NOTES FOR ALL PAGES

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. IF NOT SPECIFIED, SIZE IN MILLIMETER
3. UNSPECIFIED DIMENSION TOLERANCE IS ± 0.05
4. BASE MATERIAL: 75 MICRON UPILEX-S
5. COPPER TYPE: $3 / 4$ OZ COPPER (THICKNESS TYP. 25 MICROMETER, MIN 18 MICROMETER)
6. OPTIONAL FEATURE FOR SPS INTERNAL USE ONLY WHICH MAY BE REPLACED BY $\varnothing 2.0$ MM HOLE.
7. 4 SPROCKET HOLES DEVICE

MC141535T TAB PACKAGE DIMENSION (2 OF 2) 98ASL00248A ISSUE 0

DO NOT SCALE THIS DRAWING

Application Circuit

16/17 MUX Display with Analog Circuitry enabled, Tripler enabled and 1:5 blas

Remark:

1. VR and VF can be left open Regulator Disable.
2. CS pin low at Standby Mode.

Application Circuit

16/17 MUX Display with Analog Circuit disabled, External Blas

Remark:

1. VR and VF can be left open Regulator Disable.
2. $\overline{C S}$ pin low at Standby Mode.

MC141535 Die Pad Co-ordinate

MC141537

LCD Segment / Common Driver CMOS

MC141537 is a CMOS LCD Driver which consists of 3 annunciator outputs and 136 high voltage LCD driving signals (16 common and 120 segment). It has parallel interface capability for operating with general MCU. Besides the general LCD driver features, it has on chip LCD bias voltage generator circuit such that limited external component is required during application.

- Single Supply Operation, 2.4V-3.5 V
- Operating Temperature Range : $-30^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- Low Current Stand-by Mode (<500nA)
- On Chip Bias Voltage Generator
- 8 bit Parallel Interface
- Graphic Mode Operation
- On Chip 240 byte Graphic Display Data RAM
- Master clear RAM
- 120 Segment Drivers, 16 Common Drivers
- $1 / 16$ multiplex ratio
- 1:5 bias ratio
- Re-mapping of Row and Column Drivers
- Three stand alone Annunciator driver circuits
- Selectable LCD Drive Voltage Temperature Coefficients
- 16 level Internal Contrast Control
- External Contrast Control
- Available in TAB (Tape Automated Bonding) Package

BLOCK DIAGRAM

เ $Z 乙-\varepsilon$
LESLtトN

INヨWNפISS \forall NId $\downarrow \perp$ \＆

1月	

MCC141537 DIE PIN ASSIGNMENT
Refer to the MC141537 Die Pad Coordinate for Pin Name Assignment

MAXIMUM RATINGS* (Voltages Referenced to $\mathrm{V}_{\mathrm{SS}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Symbol	Parameter	Value	Unit
$\mathrm{AV}_{\mathrm{DD}}, \mathrm{DV}_{\mathrm{DD}}$	Supply Voltage	-0.3 to +4.0	V
V_{CC}		$\mathrm{V}_{\text {SS }}-0.3$ to $\mathrm{V}_{\text {SS }}+10.5$	V
$V_{\text {in }}$	Input Voltage	$\mathrm{V}_{\mathrm{SS}}-0.3$ to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
1	Current Drain Per Pin Excluding V_{DD} and $\mathrm{V}_{S S}$	25	mA
$\begin{aligned} & \mathrm{T}_{\mathrm{A} 1} \\ & \mathrm{~T}_{\mathrm{A} 2} \end{aligned}$	Operating Temperature For Using Internal Oscillator For Using External Oscillator	$\begin{aligned} & -25 \text { to }+85 \\ & -30 \text { to }+85 \end{aligned}$	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-65 to +150	C

*Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Description section.
$V_{S S}=A V_{S S}=D V_{S S}\left(D V_{S S}=V_{S S}\right.$ of Digital circuit, $A V_{S S}=V_{S S}$ of Analogue Circuit)
$V_{D D}=A V_{D D}=D V_{D D}$ ($D V_{D D}=V_{D D}$ of Digital circuit, $A V_{D D}=V_{D D}$ of Analogue Circuit)

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions to be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended that $V_{\text {in }}$ and $V_{\text {out }}$ be constrained to the range $\mathrm{V}_{\mathrm{SS}}<$ or $=\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right)<$ or $=\mathrm{V}_{\mathrm{DD}}$. Reliability of operation is enhanced if unused input are connected to an appropriate logic voltage level (e.g., either $V_{S S}$ or $V_{D D}$). Unused outputs must be left open. This device may be light sensitive. Caution should be taken to avoid exposure of this device to any light source during normal operation. This device is not radiation protected.

ELECTRICAL CHARACTERISTICS (Voltage Referenced to $\mathrm{V}_{S S}, V_{D D}=2.4$ to $3.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Symbol	Parameter	Test Condition	Min	Typ	Max	Unit
$\begin{aligned} & \hline \mathrm{DV}_{\mathrm{DD}} \\ & \mathrm{AV}_{\mathrm{DD}} \end{aligned}$	Logic Circuit Supply Voltage Range Voltage Generator Circuit Supply Voltage Range	(Absolute value referenced to V_{SS})	$\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$	3.0	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	V
$l_{\text {AC }}$	Access Mode Supply Current Drain $\left(A V_{D D}+D V_{D D} \text { Pins }\right)$	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$, Internal DC/DC Converter On, Tripler Enabled, Annunciator On/Off, R/W accessing, $\mathrm{T}_{\text {cyc }}=1 \mathrm{MHz}$, Osc. Freq. $=38.4 \mathrm{KHz}$, Display On.	0	200	300	$\mu \mathrm{A}$
$A_{\text {dP }}$	Display Mode Supply Current Drain ($\mathrm{A} \mathrm{V}_{\mathrm{DD}}$ Pin)	$V_{D D}=3.0 \mathrm{~V}$, Internal DC/DC Converter On, Tripler Enabled, Annunciator On/OFF, R/W halt, Osc. Freq. $=38.4 \mathrm{KHz}$, Display On.	0	70	150	$\mu \mathrm{A}$
$\mathrm{DI}_{\mathrm{DP}}$	Display Mode Supply Current Drain ($D V_{D D}$ Pin)	$V_{D D}=3.0 \mathrm{~V}$, Internal DC/DC Converter On, Tripler Enabled, Annunciator On/OFF, RW halt, Osc. Freq. $=38.4 \mathrm{KHz}$, Display On.	0	6	15	$\mu \mathrm{A}$
$\mathrm{I}_{\text {SB1 }}$	Standby Mode Supply Current Drain $\left(A V_{D D}+D V_{D D}\right.$ Pins $)$	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$, Display off, Oscillator Disabled, RW halt.	0	300	500	nA
$\mathrm{I}_{\mathrm{SB2}}$	Standby Mode Supply Current Drain $\left(A V_{D D}+D V_{D D} \text { Pins }\right)$	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$, External Oscillator, Oscillator Enabled, Display Off, R/W halt, Ext Osc. Freq. $=38.4 \mathrm{KHz}$.	0	1	2	$\mu \mathrm{A}$
$\mathrm{I}_{\text {SB3 }}$	Standby Mode Supply Current Drain $\left(A V_{D D}+D V_{D D} \text { Pins }\right)$	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$, Internal Oscillator, Oscillator Enabled, Display Off, R/W halt, Int Osc. Freq. $=38.4 \mathrm{KHz}$.	0	5	10	$\mu \mathrm{A}$
$\mathrm{V}_{\mathrm{CC1}}$	LCD Driving Voltage Generator Output ($V_{C C}$ Pin)	Display On, Internal DC/DC Converter Enabled, Tripler Enabled, Osc. Freq. $=38.4 \mathrm{KHz}$, Regulator Enabled, Divider Enabled.	-	$3^{*} A V_{D D}$	10.5	V
$\mathrm{V}_{\mathrm{CC} 2}$	LCD Driving Voltage Generator Output $\left(V_{C C} P i n\right)$	Display On, Internal DC/DC Converter Enabled, Doubler Enabled, Osc. Freq. $=38.4 \mathrm{KHz}$, Regulator Enabled, Divider Enabled.	-	$2^{*} \mathrm{AV}_{\text {DD }}$	7	V
$\mathrm{V}_{\mathrm{LCD}}$	LCD Driving Voltage Input (VCC ${ }_{\text {C }}$ Pin)	Internal DC/DC Converter Disabled.	$\mathrm{AV}_{\mathrm{DD}}$	-	10.5	V
$\mathrm{V}_{\mathrm{OH} 1}$	$\begin{aligned} & \text { Output High Voltage } \\ & \text { (DO-D7, Annun0-2, BP, OSC2) } \end{aligned}$	$\mathrm{I}_{\text {out }}=100 \mu \mathrm{~A}$	$0.9 * V_{\text {DD }}$	-	V_{DD}	V
$\mathrm{V}_{\text {OL1 }}$	Output Low Voltage (DO-D7, Annun0-2, BP, OSC2)	$\mathrm{I}_{\text {out }}=100 \mu \mathrm{~A}$	0	-	$0.1{ }^{*} \mathrm{~V}_{\mathrm{DD}}$	V
$\mathrm{V}_{\text {R1 }}$	LCD Driving Voltage Source ($\mathrm{V}_{\mathrm{R}} \mathrm{Pin}$)	Regulator Enabled (V_{R} voltage depends on TC and Int/Ext Contrast Control)	0	-	V_{Cc}	v
$\mathrm{V}_{\mathrm{R} 2}$	LCD Driving Voltage Source ($\mathrm{V}_{\mathrm{R}} \mathrm{Pin}$)	Regulator Disable.	-	Floating	-	v

ELECTRICAL CHARACTERISTICS (Voltage Referenced to $\mathrm{V}_{\mathrm{SS}}, \mathrm{V}_{\mathrm{DD}}=2.4$ to $3.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Symbol	Parameter	Test Condition	Min	Typ	Max	Unit
V_{1+1}	Input high voltage ($\overline{\text { RES }}, \mathrm{OSC2}, \overline{\mathrm{CS}}, \mathrm{DO}-\mathrm{D} 7, \mathrm{R} / \bar{W}, \mathrm{D} / \mathrm{C}, \mathrm{OSC1})$		$0^{*} 8^{*} V_{\text {DD }}$	-	V_{DD}	V
$\mathrm{V}_{\text {IL, }}$	Input Low voltage ($\overline{R E S}, \mathrm{OSC} 2, \overline{\mathrm{CS}}, \mathrm{DO}-\mathrm{D} 7, \mathrm{R} / \overline{\mathrm{W}}, \mathrm{D} / \overline{\mathrm{C}}, \mathrm{OSC} 1$)		0	-	$0.2 * V_{D D}$	v
$\begin{aligned} & \hline \mathrm{V}_{\mathrm{LL6}} \\ & \mathrm{~V}_{\mathrm{LL5} 5} \\ & \mathrm{~V}_{\mathrm{LL4} 4} \\ & \mathrm{~V}_{\mathrm{LL} 3} \\ & \mathrm{~V}_{\mathrm{LL} 2} \end{aligned}$	LCD Display Voltage Output $\left(\mathrm{V}_{\mathrm{LL} 6}, \mathrm{~V}_{\mathrm{LL} 5}, \mathrm{~V}_{\mathrm{LL} 4}, \mathrm{~V}_{\mathrm{LL} 3}, \mathrm{~V}_{\mathrm{LL} 2}\right.$ Pins $)$	Voltage Divider Enabled		$\begin{gathered} V_{R} \\ 0.8^{*} V_{R} \\ 0.6^{*} V_{R} \\ 0.4^{*} V_{R} \\ 0.2^{*} V_{R} \end{gathered}$	- - -	V V V V V
$\mathrm{V}_{\text {LL6 }}$	LCD Display Voltage Input	External Voltage Generator, Voltage Divider Disable	0	-	V_{Cc}	V
$\mathrm{V}_{\text {LL5 }}$	$\left(\mathrm{V}_{\mathrm{LL} 6}, \mathrm{~V}_{\mathrm{LL} 5}, \mathrm{~V}_{\mathrm{LL} 4}, \mathrm{~V}_{\mathrm{LL} 3}, \mathrm{~V}_{\mathrm{LL} 2} \mathrm{Pins}\right)$		0	-	$V_{C C}$	V
$\mathrm{V}_{\mathrm{LL} 4}$			0	-	$V_{C C}$	V
$\mathrm{V}_{\mathrm{LL} 3}$			0	-	V_{cc}	V
$\mathrm{V}_{\mathrm{LL} 2}$			0	-	V_{cc}	V
${ }^{1} \mathrm{OH}$	Output High Current Source (DO-D7, Annuno-2, BP, OSC2)	$V_{\text {out }}=V_{\text {DO }}-0.4 \mathrm{~V}$	50	\bullet	-	$\mu \mathrm{A}$
$\mathrm{IOL}^{\text {a }}$	Output Low Current Drain (D0-D7, Annun0-2, BP, OSC2)	$\mathrm{V}_{\text {out }}=0.4 \mathrm{~V}$	-	\bullet	-50	$\mu \mathrm{A}$
$\mathrm{I}_{0 Z}$	Output Tri-state Current Drain Source (D0-D7, OSC2)			-	1	$\mu \mathrm{A}$
$\mathrm{ILL}^{\text {I }} \mathrm{I}_{\text {IH }}$	Input Current ($\overline{R E} \bar{S}, ~ O S C 2, \overline{C S}, D 0-D 7, R / \bar{W}, D / \bar{C}, O S C 1$)		-1	-	1	$\mu \mathrm{A}$
$\mathrm{R}_{\text {on }}$	Channel resistance between LCD driving signal pins (SEG and COM) and driving voltage input pins ($\mathrm{V}_{\mathrm{LL} 2}$ to $\mathrm{V}_{\mathrm{LL} 6}$)	During Display on, 0.1 V apply between two terminals, VCC within operating voltage range	-	-	10	$\mathrm{K} \Omega$
$\mathrm{V}_{S B}$	Memory Retention Voltage ($\mathrm{DV}_{\mathrm{DD}}$)	Standby mode, retain all internal configuration and RAM data	2	-	-	V
$\mathrm{C}_{\text {IN }}$	Input Capacitance (OSC1, OSC2, all logic pins)		\cdot	5	7.5	pF
PTCO PTC1 PTC2 PTC3	Temperature Coefficient Compensation* Flat Temperature Coefficient Temperature Coefficient 1^{*} Temperature Coefficient 2^{*} Temperature Coefficient 3^{*}	TC1 $=0$, TC2 $=0$, Voltage Regulator Disabled TC1 $=0, \mathrm{TC} 2=1$, Voltage Regulator Enabled TC1 $=1$, TC2 $=0$, Voltage Regulator Enabled TC1 $=1$, TC2 $=1$, Voltage Regulator Enabled		$\begin{gathered} 0.0 \\ -0.18 \\ -0.22 \\ -0.35 \end{gathered}$	$\stackrel{-}{-}$	$\begin{aligned} & \% \\ & \% \\ & \% \\ & \% \end{aligned}$
V_{CN}	Internal Contrast Control (V_{R} Output Voltage)	Regulator Enabled, Internal Contrast control Enabled. (16 Voltage Levels Controlled by Software. Each level is typically 2.25% of the Regulator Output Voltage.)	-	± 18	-	\%

*The formula for the temperature coefficient (TC) is:
$T C(\%)=\frac{V_{R} \text { at } 50^{\circ} \mathrm{C}-\mathrm{V}_{\mathrm{R}} \text { at } 0^{\circ} \mathrm{C}}{50^{\circ} \mathrm{C}-0^{\circ} \mathrm{C}} \times \frac{1}{V_{\mathrm{R}} \text { at } 25^{\circ} \mathrm{C}} \times 100 \%$

AC ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$, Voltage referenced to $\left.\mathrm{V}_{S S}, A V_{D D}=D V_{D D}=3 V\right)$

Symbol	Parameter	Test Condition	Min	Typ	Max	Unit
Fosc	Oscillation Frequency of Display timing generator	60 Hz Frame Frequency Either External Clock Input or Internal Oscillator Enabled	-	38.4	-	KHz
$\mathrm{F}_{\text {ANN }}$	Backplane Frequency of Annunciator (AnnunO-2, BP)	50\% duty cycle Annunciator on, $\mathrm{Fosc}=38.4 \mathrm{KHz}$	-	30	-	Hz
FFRM	Frame Frequency	Graphic Display Mode, Timing generator freq. within specification	-	60	-	Hz
OSC	Internal Oscillation Frequency with different value of feedback resistor	Internal Oscillator Enabled, $V_{D D}$ within operation range	See Figure 1 for the relationship			

Note: $\mathrm{F}_{\text {FRM }}=\mathrm{F}_{\mathrm{OSC}} / 640$
$\mathrm{F}_{\mathrm{ANN}}=\mathrm{F}_{\mathrm{OSC}} / 1280$

Figure 1. Internal Oscillator Frequency Relationship with External Resistance

TABLE 2. Parallel Timing Characteristics (Write Cycle) $\left(T_{A}=-30\right.$ to $85^{\circ} \mathrm{C}, \mathrm{DV} \mathrm{DD}_{\mathrm{D}}=2.4$ to $3.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0$)

Symbol	Parameter	Min	Typ	Max	Unit
$\mathrm{t}_{\text {cycle }}$	Enable Cycle Time	1000	-	-	ns
t_{EH}	Enable Pulse Width	300	-	-	-
t_{AS}	Address Setup Time	30	-	-	ns
t_{DS}	Data Setup Time	350	-	-	ns
t_{DH}	Data Hold Time	30	-	-	ns
t_{AH}	Address Hold Time	30	-	-	ns

Figure 3a. Parallel Timing Characteristics (Write Cycle)

TABLE 3. Parallel Timing Characteristics (Read Cycle) $\left(T_{A}=-30\right.$ to $85^{\circ} \mathrm{C}, \mathrm{DV} \mathrm{DD}=2.4$ to $3.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0$)

Symbol	Parameter	Min	Typ	Max	Unit
$\mathrm{t}_{\text {cycle }}$	Enable Cycle Time	1000	-	-	ns
$\mathrm{t}_{\text {EH }}$	Enable Pulse Width	300	-	-	ns
$\mathrm{t}_{\text {AS }}$	Address Setup Time	30	-	-	ns
${ }^{\text {t }}$ S	Data Setup Time	-	-	350	ns
$t_{\text {DH }}$	Data Hold Time	30	-	-	ns
$\mathrm{t}_{\text {AH }}$	Address Hold Time	30	$1, \therefore$	-	ns

Figure 3b. Parallel Timing Characteristics (Read Cycle)

PIN DESCRIPTIONS

D/C (Data / Command)

This input pin tell the driver the input at D0-D7 is data or command. Input High for data while input Low for command.

$\overline{\mathbf{C S}}$ (CLK) (Input Clock)

This pin is normal Low clock input. Input on DO-D7 is latched at the falling edge of CS.

RES (Reset)

An active Low pulse to this pin reset the internal status of the driver (same as power on reset). The minimum pulse width is $10 \mu \mathrm{~s}$.

DO-D7

This bi-directional bus is used for data / command transferring.

R/W (Read/Write)

This is an input pin. To read the display data RAM or the internal status (Busy / Idle), pull this pin High. The R/W input Low indicates a write operation to the display data RAM or to the internal setup registers.

OSC1 (Oscillator Input)

For internal oscillator mode, this is an input for the internal low power RC oscillator circuit. In this mode, an external resistor of certain value is placed between the OSC1 and OSC2 pins for a range of internal operating frequencies (refer to Figure 1). For external oscillator mode, OSC1 should be left open.

OSC2 (Oscillator Output / External Oscillator Input)

This is an output for the internal low power RC oscillator circuit. For external oscillator mode, OSC2 will be an input pin for external clock and no external resistor is needed.

VLL6-VLL2

Group of voltage level pins for driving the LCD panel. They can either be connected to external driving circuit for external bias supply or connected internally to built-in divider circuit. For internal Voltage Divider enabled, a $0.1 \mu \mathrm{~F}$ capacitor to $\mathrm{AV}_{\text {SS }}$ is required on each pin.

C1N and C1P

If Internal DC/DC Converter is enabled, a $0.1 \mu \mathrm{~F}$ capacitor is required to connect these two pins.

C2N and C2P

If Internal DC/DC Converter is enable with Tripler enable, a $0.1 \mu \mathrm{~F}$ capacitor is required to connect between these two pins. Otherwise, it should be left open.

C+ and C-

If internal divider circuit is enabled, a $0.1 \mu \mathrm{~F}$ capacitor is required to connect between these two pins.

VR and VF

This is a feedback path for the gain control (external contrast control) of VLL1 to VLL6. For adjusting the LCD driving voltage, it requires a feedback resistor placed between VR and VF, a gain control resistor placed between VF and AVSS, a $10 \mu \mathrm{~F}$ capacitor placed between VR and AVSS. (Refer to the Application Circuit Section)

COMO-COM15 (Row Drivers)

These pins provide the row driving signal to LCD panel. They output 0 V during display off.

SEGO-SEG119 (Column Drivers)

These 120 pins provide LCD column driving signal to LCD panel. They output OV during display off.

BP (Annunciator Backplane)

This pin combines with Annun0-Annun2 pins to form annunciator driving part. When the annunciator circuit is enabled, it will output square wave of $\mathrm{F}_{\text {ANN }} \mathrm{Hz}$. It outputs low when oscillator is disabled.

Annun0 - Annun2 (Annunciator Frontplanes)

These pins are three independent annunciator driving outputs. The enabled annunciator outputs from its corresponding pin a $\mathrm{F}_{\text {ANN }}$ Hz square wave which is 180 degrees out of phase with BP . Disabled annunciator output from its corresponding pin an square wave inphase with BP. When oscillator is disabled, all these pins output 0 V .

AVDD and AVSS

AVDD is the positive supply to the LCD bias voltage generator. AVSS is ground.

VCC

For using the Internal DC/DC Converter, a $0.1 \mu \mathrm{~F}$ capacitor from this pin to AVSS is required. It can also be an external bias input pin if Internal DC/DC Converter is not used. Positive power is supplied to the LCD Driving Level Selector and HV Buffer Cell with this pin. Normally, this pin is not intended to be a power supply to other component.

DVDD and DVSS

Power is supplied to the digital control circuit of the driver using these two pins. DVDD is power and DVSS is ground.

OPERATION OF LIQUID CRYSTAL DISPLAY DRIVER

Description of Block Diagram Module

Command Decoder and Command Interface

This module determines whether the input data is interpreted as data or command.

Data is directed to this module based upon the operating mode of the part and the status of the D / \bar{C} line. If D / \bar{C} High, data is written to Graphic Display Data RAM (GDDRAM). D/C Low indicates that the data is interpreted as a Command.

Reset has the same function as Power ON Reset (POR). Once $\overline{\text { RES }}$ received the POR pulse, all internal circuitry will reset to its initial status. Refer to Command description section for more information.

MPU Parallel Interface

The parallel interface consists of 8 bi-directional data lines (D0-D7) plus $\mathrm{R} \overline{\mathrm{W}}$ and $\overline{\mathrm{CS}}$. The $\mathrm{R} / \overline{\mathrm{W}}$ line High indicates a read of the Graphic Display Data RAM (GDDRAM). R/W line Low indicates a write to Display Data RAM or Internal Command Registers depending on the status of $\mathrm{D} / \overline{\mathrm{C}}$ line. The $\overline{\mathrm{C}}$ line serves as data latch signal (clock). Refer to AC operation conditions and characteristics section for Parallel Interface Timing Description.

Graphic Display Data RAM (GDDRAM)

The GDDRAM is a bit mapped static RAM that holds the bit pattern to be displayed at graphic display mode. The size of the RAM is determined by number of row times the number of column drivers ($120 \times 16=1920$ bits). Figure 4 is a description of GDDRAM address map. For mechanical feasibility, re-mapping on both Segment and Common outputs are provided.

Note : The configuration in parentheses represent the remapping of Commons and Columns

Figure 4. Graphic Display Data RAM Address MAP

Display Timing Generator

The part is an on chip low power RC oscillator circuitry (figure 5). The oscillator frequency is selected by external resistor in the range of 15 kHz to 50 kHz . The circuitry can be enabled with software control. For external clock application, feed clock into OSC2 and leave OSC1 open.

Annunciator Control Circuit

The LCD waveform of the 3 Annunciators and BP are generated by this block. The 3 independent annunciators are enabled by software command. Annunciator is also controlled by oscillator circuit. The Oscillator must be enabled before selecting the annunciator on. Annunciator display waveform is shown in Figure 6.

Figure 5. Oscillator Circuitry

Figure 6. Annunciators and BP display waveform

LCD Drive Voltage Generator

This module generates the LCD voltages needed for display output. This section should take a single supply input and generate necessary bias voltage.

It consists of :

1. Voltage Doubler and Voltage Tripler

To generate the Vcc voltage. Doubler is used for LCD panel which needs lower driving voltage for less power consumption. Tripler is used for LCD panel which needs higher driving voltage.
2. Voltage Regulator

Feedback gain control for initial LCD display voltage. One can also use it as an external contrast control.
3. Voltage Divider

Divide the LCD display voltage $\left(V_{L L 2}-V_{L L 6}\right)$ from the regulator output. This is a low power consumption circuit which consumes very little LCD $_{\text {current compare with traditional resistor ladder method. }}^{\text {lat }}$
4. Self adjust temperature compensation circuitry

Provide 4 different compensation grade selections to satisfy the various liquid crystal temperature grades. This temperature coefficients can be selected by software control.
5. Contrast Control Block

Software control of 16 voltage levels of LCD display voltage.

All blocks can be individually turned off if external voltage generator is provided.

LCD Panel Driving Waveform

This is an example of how the Common and Segment drivers may be connected to a LCD panel. The waveform shown in figure $7 \mathrm{a}, 7 \mathrm{~b}$ and 7 c illustrates the desired multiplex scheme.

16 Bit Latch / 120 Bit Latch

A 136 bit long register which carries the display signal information. First 16 bits are Common driving signals and other 120 bits are Segment driving signals. Data will be input to the Level Shifter for bumping up to the required level.

Level Selector

Level selector is a control of the display synchronization. Display voltage can be separated into two sets and used with different cycle. Synchronization is important since it selects the required LCD voltage level to the HV Buffer Cell for output signal voltage pump.

HV Buffer Cell (Level Shifter)

HV buffer cell works as a level shifter which translates the low voltage output signal to the required driving voltage. The output is shifted out with a internal FRM clock which comes from the Display Timing Generator. The voltage levels are determined by the level selector which is synchronized with the internal M signal.

Figure 7a. LCD Display Waveform

TIME SLOT

Figure 7b. LCD Driving Signal from MC141537

TIME SLOT

Figure 7c. Effective LCD waveform on LCD pixel

Command Description

Set Display On/Off (Display Mode / Stand-by mode)

The Display On command controls the selecting of the LCD output voltage and has no effect on the annunciator drivers. The Display On command causes the conversion of data in GDDRAM to the necessary waveforms on the Common and Segment driver outputs. It enables the on-chip bias generator. (Note : "Set Oscillator On" command should be issued before "display on")

The Display Off Command turns the display off and the state of the LCD driver are as follow during display off:

1) The Common and Segment driver outputs are fixed at $\mathrm{V}_{\mathrm{LL} 1}\left(\mathrm{~V}_{\mathrm{SS}}\right)$.
2) The bias voltage generator is turned off.
3) The content of all registers and RAM are retained.
4) IC will accept new commands and data.
5) Annunciators is not affected by this command.
6) Oscillator is not affected by this command.

Set GDDRAM Column Address

This command positions the address pointer on a column boundary. The address can be set to location $00 \mathrm{H}-77 \mathrm{H}$ (120 columns). The column address will be increased automatically after a read or write operation. Refer to figure 4, "Address Increment Table" and command "Set GDDRAM Page Address" for further information.

Set GDDRAM Page Address

This command positions the row address pointer to 1 of 2 possible positions in GDDRAM. Refer to figure 4.

Master Clear GDDRAM

This command is a MASTER clear of the GDDRAM. The internal RAM data will be set to Zero after the command is issued. The clear RAM action will be taken if a dummy Write follows the "Clear GDDRAM" command.

Set Vertical Scroll Value

When display is turned on, this command maps the selected GDDRAM row ($00 \mathrm{H}-\mathrm{OFH}$) to Com0-Com15. With scroll value equal to 0 , Row 0 of GDDRAM is mapped to Com0 and Row 1 through Row 15 are mapped to Com1 through Com15 respectively. With scroll value equal to 1 , Row 1 of GDDRAM is mapped to Com0, then Row 2 through Row 15 will be mapped to Com1 through Com14 respectively and Row 0 will be mapped to Com15.

Save / Restore Column Address

With a bit option $=1$, the Save $/$ Restore Column Address command saves a copy of the Column Address of GDDRAM. With a bit option $=0$, this instruction restores the copy obtained from the previous execution of saving column address. This instruction is very useful for writing idle graphics characters that are larger than 8 pixels vertically.

Set Column Mapping

This instruction selects the mapping of GDDRAM to Segment Drivers for mechanically flexibility. There are 2 selected mappings:

1. Column 0-Column 119 of GDDRAM mapped to Sego - Seg119 respectively;
2. Column 0-Column 119 of GDDRAM mapped to Seg119-Sego respectively.
See section "Display Output Description by Example" for related information.

Set Row Mapping

This instruction selects the mapping of GDDRAM to Common Drivers for mechanical flexibility. There are 2 selected mappings:

1. Row 0-Row 15 of GDDRAM to Common 0-Common 15 respectively;
2. Row 0 - Row 15 of GDDRAM to Common 15 - Common 0 respectively.
See section "Display Output Description" for related information.

Set Annunciator Control Signals

This command is used to control the active states of the 3 stand alone annunciator drivers.

Set Oscillator Enable / Disable

This command is used to either turn on / off Oscillator. For either internal or external oscillator, this command should be executed. This command is not affected by the command "Set Display On/Off" and "Annunciator On/Off". See command "Ext/Int Oscillator" for more information.

Set External / Internal Oscillator

This command is used to select either internal or external oscillator. When internal oscillator is being selected, feedback resistor between OSC1 and OSC2 is needed. For External oscillation circuit, clock should be input to OSC2. OSC1 should be left open.

Set Internal DC/DC Converter On/Off

This command selects the Internal DC/DC Converter to generate the V_{CC} from $A V_{D D}$. Disable the Internal DC/DC Converter if external $V_{C C}$ is provided.

Set Voltage Doubler / Tripler

This command selects the Voltage Doubler or Tripler when the Internal $\mathrm{DC} / \mathrm{DC}$ Converter is enabled.

Set Internal Regulator On/Off

With different bit option values, this command either enables or disables the regulator which consists of internal contrast control and temperature compensation circuits.

Set Internal Voltage Divider On/Off

If the Internal Voltage Divider is enabled, an external power supply should be applied to $\mathrm{V}_{\mathrm{LL}}-\mathrm{V}_{\mathrm{LL2}}$. If the divider is enabled, the internal circuit will automatically generate the $1: 5$ bias level driving voltage.

Set Internal Contrast Control On/Off

This command is used to turn on or off the internal control of delta voltage between the bias voltages. If the bit option $=1$, the software selected for delta bias voltage control is enabled. If the bit option $=0$, the external contrast control through an external resistor is enabled. Note: The software contrast control and the external feedback contrast controls cannot be both enabled at the same time.

Set Contrast Level

This command is to select one of the 16 contrast levels when internal contrast control circuitry is in use. After power-on reset, the contrast level is the lowest.

Increase / Decrease Contrast Level

If the internal contrast control is enabled, this command is used to increase or decrease the contrast level within the 16 contrast levels. The contrast level starts from the lowest value after POR.

Set Temperature Coefficient

This instruction selects 4 different LCD drive voltage temperature coefficients allowing for various liquid crystal temperature grades. These temperature coefficients are specified in Electrical Characteristics Tables.

COMMAND TABLE

	Bit Pattern	Command	Comment
1	0000000 ${ }_{0}$	Set GDDRAM Page Address	Set GDDRAM Page Address using X0 as address bit. $X_{0}=0$: page 1 (POR) $x_{0}=1$: page 2
30	$0001 x_{3} x_{2} x_{1} x_{0}$	Set Contrast Level	Enable one of the 16 Internal Contrast Value using X3X2X1X0 as data bits. Reset to 0000 during POR.
2	$0010000 \mathrm{X}_{0}$	Set Voltage Tripler / Doubler	$X_{0}=0$: tripler enabled (POR) $x_{0}=1$: doubler enabled
3	$0010001 \mathrm{X}_{0}$	Set Column Mapping	$\begin{aligned} & X_{0}=0: \text { Col0 to Seg0 (POR) } \\ & X_{0}=1: \text { Col0 to Seg119 } \end{aligned}$
4	0010010X 0	Set Row Mapping	$\mathrm{X}_{0}=0$: Row0 to Com0 (POR) $X_{0}=1$: Row0 to Com15
5	0010011 X_{0}	Reserved for Expansion	
6	0010100X0	Set Display On/Off	$\begin{aligned} & X_{0}=0 \text { : display off (POR) } \\ & X_{0}=1 \text { : display on } \end{aligned}$
7	0010101X ${ }_{0}$	Set Internal DC/DC Converter Enable	$\mathrm{X}_{0}=0$: disable generator(POR) $X_{0}=1$: enable generator
8	0010110X ${ }_{0}$	Set Internal Regulator On/Off	$\mathrm{X}_{0}=0$: disable regulator (POR) $X_{0}=1$: enable regulator When application uses a supply with built-in temperature compensation, the regulator should be disabled.
9	$0010111 X_{0}$	Set Internal Voltage Divider On/Off	$\mathrm{X}_{0}=0$: disable voltage divider (POR) $X_{0}=1$: enable voltage divider When an external bias network is used, the voltage divider should be disabled.
10	0011000X0	Set Internal Contrast Control On/Off	$\mathrm{X}_{0}=0$: disable contrast control (POR) $X_{0}=1$: enable contrast control Internal contrast circuits should be disabled if external contrast circuits is used.
11	0011001X ${ }_{0}$	Reserved for Expansion	
12	0011010X 0	Save/Restore GDDRAM Column Address	$\mathrm{X}_{0}=0$: restore address $X_{0}=1$: save address
13	00110110	Master Clear GDDRAM	Master Clear GDDRAM
14	$\mathrm{0}^{0} 11100 \mathrm{X}_{0}$	Reserved for Expansion	
15	0011101X0	Reserved	$\mathrm{X}_{0}=0$: normal operation (POR) $X_{0}=1$: test mode (Note: Be sure to set $\mathrm{X} 0=0$ during application)
16	0011111 ${ }_{1} x_{0}$	Reserved for Expansion	
17	$0100{ }_{3} \mathrm{X}_{2} \mathrm{X}_{1} \mathrm{X}_{0}$	Set Vertical Scroll Value	Use $X_{3} X_{2} X_{1} X_{0}$ as scroll amount. Scroll value $=0$ upon POR
18	01100 $\mathrm{A}_{1} \mathrm{~A}_{0} \mathrm{X}_{0}$	Set Annunciator Control Signals	$\mathrm{A}_{1} \mathrm{~A}_{0}=00$: select annunciator 0 (POR) $A_{1} A_{0}=01$: select annunciator 1 $A_{1} A_{0}=10$: select annunciator 2 $\mathrm{X}_{0}=0$: turn selected annunciator off (POR) $X_{0}=1$: turn selected annunciator on
19	011010X ${ }_{1} \mathrm{X}_{0}$	Reserved for Expansion	
20	011011 ${ }_{1} \mathrm{X}_{0}$	Set Temperature Coefficient	$\begin{aligned} & X_{1} X_{0}=00: 0.00 \% \text { (POR) } \\ & X_{1} X_{0}=01:-0.18 \% \\ & X_{1} X_{0}=10:-0.22 \% \\ & X_{1} X_{0}=11:-0.35 \% \end{aligned}$

	Bit Pattern	Command	Comment
21	0111000X 0	Increment/Decrement Contrast Level	$\mathrm{X}_{0}=0$: decrement by one level $X_{0}=1$: increment by one level (Note: increment/decrement wraps around; total 16 contrast levels. Start at the lowest level when POR.)
22	0111001X ${ }_{0}$	Reserved for Expansion	
23	0111010X 0	Reserved for Expansion	
24	0111011 ${ }_{0}$	Reserved	$X_{0}=0$: normal operation (POR) $X_{0}=1$: test mode select (Note: Be sure to set $\mathrm{X} 0=0$ during application)
25	0111100 ${ }_{0}$	Reserved for Expansion	
26	0111101X ${ }_{0}$	Set External/ Internal Oscillator	$\mathrm{X}_{0}=0$: external oscillator (POR) $\mathrm{X}_{0}=1$: internal oscillator For internal oscillator circuit enabled, place resistor between OSC1 and OSC2. At external oscillator mode, feed clock to OSC2.
27	0111110X ${ }_{0}$	Reserved For Expansion	
28	0111111 ${ }_{0}$	Oscillator Enable	$\mathrm{X}_{0}=0$: oscillator disable (POR) $X_{0}=1$: oscillator enable. This is the master control for oscillator circuitry. Issue command 26 before this command.
29	1X6X5X4X3X2X1X0	Set GDDRAM Column Address	Set GDDRAM Column Address. Use $\mathrm{X} 6 \times 5 \times 4 \times 3 \times 2 \times 1 \mathrm{X0}$ as address bits

DATA READNRITE TABLE

	Bit Pattern	Command	Comment
1	$x_{7} x_{6} x_{5} x_{4} x_{3} x_{2} x_{1} x_{0}$	Data Read/Data Write	When R/W line low, Data write into GDDRAM. RAM column address pointer will have increment automatically. D/C line high
		When $R \bar{W}$ line high, Data read from GDDRAM. RAM column address pointer will have increment automatically. Address Auto increment will not apply if the last command is Clear RAM. This is a dummy write.	

Address Increment Table (Automatic)

D/C	$\mathbf{R} / \overline{\mathbf{W}}$	Comment	Address Increment	Remarks
0	0	Parallel Mode Write Command	No	
0	1	Parallel Mode Read Command	No (invalid mode)	1
1	0	Parallel Mode Write Data	Yes	2
1	1	Parallel Mode Read Data	Yes	

Address Increment is done automatically after command being sent or data read write. Only the Column address pointer of GDDRAM is affected.

Remark: 1. Under this condition, the data, not command will be read from RAM.
2. If write data is issued after Command Clear RAM, address inc is not applied.
3. Column Address wraps around.

Commands Required for R/W Actions on RAMs

R/W Actions on RAMs	Commands Required	
Read/Write Data from/to GDDRAM.	Set GDDRAM Page Address, Set GDDRAM Column Address, Read/Write Data.	$\left(0000000 X_{0}\right)^{*}$ $\left(1 X_{6} X_{5} X_{4} X_{3} X_{2} X_{1} X_{0}\right)^{*}$ $\left(X_{7} X_{6} X_{5} X_{4} X_{3} X_{2} X_{1} X_{0}\right)$
Save/Restore GDDRAM Column Address.	Save/Restore GDDRAM Column Address.	$\left(0011010 X_{0}\right)$
Increment GDDRAM Address by one	Dummy Read Data	$\left(X_{7} X_{6} X_{5} X_{4} X_{3} X_{2} X_{1} X_{0}\right)$
Clear GDDRAM Address.	Master Clear GDDRAM, Dummy Write Data.	(00110110) $\left(X_{7} X_{6} X_{5} X_{4} X_{3} X_{2} X_{1} X_{0}\right)$

Commands Required for Display Mode Setup

Display Mode	Commands Required	
Graphic Mode	Set External / Internal Oscillator, Set Oscillator Enable, Set Display On.	$\begin{aligned} & \left(0111101 X_{0}\right)^{*} \\ & (01111111)^{*} \\ & (00101001)^{*} \end{aligned}$
Annunciator Display	Set External / Internal Oscillator, Set Oscillator Enable, Set Annunciator On/Off.	$\begin{aligned} & \left(0111101 \mathrm{X}_{0}\right)^{*} \\ & (01111111)^{*} \\ & \left(01100 \mathrm{~A}_{1} \mathrm{~A}_{0} \mathrm{X}_{0}\right)^{*} \end{aligned}$
Standby Mode 1.	Set Display Off, Set Oscillator Disable.	$\begin{aligned} & (00101000)^{*} \\ & (01111110)^{*} \end{aligned}$
Standby Mode 2.	Set External Oscillator, Set Display Off, Set Oscillator Enable. Set Annunciator On/Off.	$(01111010)^{*}$ $(00101000)^{*}$ $(0111111)^{*}$ $\left(01100 A_{1} A_{0} X_{0}\right)^{*}$
Standby Mode 3.	Set Internal Oscillator, Set Display Off, Set Oscillator Enable. Set Annunciator On/Off.	$\begin{aligned} & (01111011)^{*} \\ & (00101000)^{*} \\ & (01111111)^{*} \\ & \left(01100 A_{1} A_{0} x_{0}\right)^{*} \end{aligned}$

1. Other Related Command with Graphic Mode:

Set Column Mapping, Set Row Mapping, Set Vertical Scroll Value.
2. Commands Related to Voltage Generator :

Set Oscillator Enable / Disable, Set External / Internal Oscillator, Set Voltage Doubler / Tripler , Set Temperature Coefficient, Set Internal Regulator On/Off, Set Internal Contrast Control On/Off, Increase / Decrease Contrast Level, Set Contrast Level, Set Internal Voltage Divider On/Off, Set Display On/Off.

* No need if set already.

Power Up Sequence (Commands Required)

Command Required	POR Status	Remarks
Set External / Internal Oscillator	External	*1
Set Voltage Tripler / Doubler	Tripler	*1
Internal DC/DC Converter Enable	Off	*1
Set Internal Regulator On	Off	*1
Set Temperature Coefficient	TC=0\%	*1, *3
Set Internal Contrast Control On	Off	*1, *3
Set Contrast Level	Contrast Level $=0$	*1, *2, *3
Set Internal Voltage Divider On	Off	*1
Set Column Mapping	Seg. $0=$ Col. 0	*1
Set Row Mapping	Com. 0 = Row 0	*1
Set Vertical Scroll Value	Scroll Value $=0$	*1
Set Oscillator Enable	Disable	
Set Annunciator Control Signals	All Annunciators off	*1
Master Clear RAM	Random	
Dummy Write Data		
Set Display On	Off	

Display Output Description by Example

This an example of output pattern on the LCD panel. Figure $8 \mathrm{a}, 8 \mathrm{~b}$ and 8 c are data map of GDDRAM and the output pattern on the LCD display with different command enabled. (Scrolling, Column Re-map and Row Re-map)

Remarks:
*1 -- Required only if desired status differ from POR. *2 -- Effective only if Internal Contrast Control is enabled. *3 -- Effective only if Regulator is enabled.

Figure 8a

Content of GDDRAM

PAGE 1	5	A	5	A	5	A	-	-	-	0	0	0	0	0	0
	5	A	5	A	5	A	-	-	-	0	0	0	0	0	0
PAGE 2	3	3	C	C	3	3	-	-	-	C	C	3	3	C	C
	3	3	C	C	3	3	-	-	-	C	C	3	3	C	C

Figure 8b

Figure 8c

PACKAGE DIMENSIONS

MC141537T1
TAB PACKAGE DIMENSION DO NOT SCALE THIS DRAWING

Reference: 98ASLO0159A Issue 0

MC141537T1 TAB PACKAGE DIMENSION

DO NOT SCALE THIS DRAWING

DETAIL "B"

DETAIL "A"
DETAIL "C"

Reference : 98ASL00159A Issue O

MC141537T1 TAB PACKAGE DIMENSION

	Millimeters		Tnches			Millimeters		Tnches	
Dim	Min	Max	Min	Max	Dim	Min	Max	Min	Max
A	47.000	48.000	1.8504	1.8898	AJ	5.537	5.637	0.2180	0.2219
B	34.775	35.175	1.3691	1.3848	AK	0.850	0.950	0.0335	0.0374
C	28.927	29.027	1.1389	1.1428	AL	10.550	10.650	0.4154	0.4193
D	4.720	4.780	0.1858	0.1882	AM	7.737	7.837	0.3046	0.3085
E	1.951	2.011	0.0768	0.0792	AN	0.850	0.950	0.0335	0.0374
F	1.951	2.011	0.0768	0.0792	AP	3.500	4.500	0.1378	0.1772
G	22.900	23.000	0.9016	0.9055	AR	13.750	13.850	0.5413	0.5453
H	22.900	23.000	0.9016	0.9055	AS	13.750	13.850	0.5413	0.5453
J	22.275	22.375	0.8770	0.8809	AT	15.000	15.100	0.5906	0.5945
K	22.275	22.375	0.8770	0.8809	AU	15.000	15.100	0.5906	0.5945
L	21.975	22.075	0.8652	0.8691	AV	17.000	17.100	0.6693	0.6732
M	21.975	22.075	0.8652	0.8691	AW	17.000	17.100	0.6693	0.6732
N	21.407	21.493	0.8428	0.8462	AX	20.450	20.550	0.8051	0.8091
P	21.407	21.493	0.8428	0.8462	AY	20.450	20.550	0.8051	0.8091
R	0.790	0.810	0.0311	0.0319	AZ	20.500	21.500	0.8071	0.8465
S	0.330	0.370	0.0130	0.0146	BA	21.750	22.750	0.8563	0.8957
T	12.050	12.150	0.4744	0.4783	BB	0.950	1.050	0.0374	0.0413
U	11.450	11.550	0.4508	0.4547	BC	0.450	0.550	0.0177	0.0217
V	9.500	10.500	0.3740	0.4134	BD	1.950	2.050	0.0768	0.0807
W	4.950	5.050	0.1949	0.1988	BE	0.350	0.450	0.0138	0.0177
X	-	8.643	-	0.3403	BF	0.350	0.450	0.0138	0.0177
Y	-	7.814	-	0.3076	BG	1.230	1.270	0.0484	0.0500
Z	10.180	10.280	0.4008	0.4047	BH	0.630	0.670	0.0248	0.0264
AA	-	0.200	-	0.0079	BJ	0.918	1.018	0.0361	0.0401
AB	0.686	0.838	0.0270	0.0330	BK	0.100	0.200	0.0039	0.0079
AC	0.068	0.083	0.0027	0.0032	BL	0.290	0.310	0.0114	0.0122
AD	0.579	0.629	0.0228	0.0248	BM	0.130	0.170	0.0051	0.0067
AE	1.600	2.600	0.0630	0.1024	BN	1.750	1.850	0.0689	0.0728
AF	1.500	2.500	0.0591	0.0984	BP	0.450	0.550	0.0177	0.0217
AG	1.950	2.050	0.0768	0.0807	BR	0.850	0.950	0.0335	0.0374
AH	9.550	9.650	0.3760	0.3799					

NOTES:

1. Dimensioning and tolerancing per ANSI Y14.5M, 1982.
2. Controlling dimension: millimeter.
3. Copper thickness: $10 z$.
4. Tin plating thickness: $0.4 \mu \mathrm{~m}$.
5. 10 sprocket hole device.

Reference: 98ASL00159A Issue O

Reference : 98ASL00159A Issue O

Application Circuit: (All Internal Analog Block Disabled, External Voltage Generator used)

Application Circuit: (All Internal Analog Block Enabled)

Remark:

1. Capacitor between C2N and C2P can be omitted only if doubler is enable.
2. R3 can be omitted for external oscillator.
3. VR and VF can be left open for Regulator disable, TC = 0\% and Contrast Disable.
4. $\overline{R E S}, \overline{C S}, R / \bar{W}$ and D / \bar{C} should be at a known state.
5. $\overline{\mathrm{CS}}$ line low at Standby Mode.

Pin	Name	x (um)	y (um)	Pin	Name	x (um)	y (um)	Pin	Name	X (um)	y (um)	Pin	Name	x (um)	y (um)
1	COM9	-2900.06	-1958.41	59	SEG109	2953.34	-1723.46	94	DUMMY	2705.44	2035.37	148	SEG28	-2953.71	1780.81
2	COM8	-2798.31	-1958.41	60	SEG108	2953.34	-1621.71	95	DUMMY	2603.69	2035.37	149	SEG27	-2953.71	1679.06
3	COM7	-2696.56	-1958.41	61	SEG107	2953.34	-1519.96	96	DUMMY	2501.94	2035.37	150	SEG126	-2953.71	1577.31
4	COM6	-2594.81	-1958.41	62	SEG106	2953.34	-1418.21	97	DUMMY	2400.19	2035.37	151	SEG25	-2953.71	1475.56
5	COM5	-2493.06	-1958.41	63	SEG105	2953.34	-1316.46	98	SEG74	2289.19	1958.41	152	SEG24	-2953.71	1373.81
6	COM4	-2391.31	-1958.41	64	SEG104	2953.34	-1214.71	99	SEG73	2187.44	1958.41	153	SEG23	-2953.71	1272.06
7	COM3	-2289.56	-1958.41	65	SEG103	2953.34	-1068.19	100	SEG72	2085.69	1958.41	154	SEG22	-2953.71	1170.31
8	COM2	-2187.81	-1958.41	66	SEG102	2953.34	-966.44	101	SEG71	1983.94	1958.41	155	SEG21	-2953.71	1068.56
9	COM1	-2086.06	-1958.41	67	SEG101	2953.34	-864.69	102	SEG70	1882.19	1958.41	156	SEG20	-2953.71	966.81
10	COMO	-1984.31	-1958.41	68	SEG100	2953.34	-762.94	103	SEG69	1780.44	1958.41	157	SEG19	-2953.71	865.06
11	DUMMY2	-1882.56	-1958.41	69	SEG99	2953.34	-661.19	104	SEG68	1678.69	1958.41	158	SEG18	-2953.71	763.31
12	OSC2	-1780.81	-1958.41	70	SEG98	2953.34	-559.44	105	SEG67	1576.94	1958.41	159	SEG17	-2953.71	661.56
13	AVSS	-1679.06	-1958.41	71	SEG97	2953.34	-457.69	106	SEG66	1475.19	1958.41	160	SEG16	-2953.71	559.81
14	VR	-1577.31	-1958.41	72	SEG96	2953.34	-355.94	107	SEG65	1373.44	1958.41	161	SEGT5	-2953.71	458.06
15	VF	-1475.56	-1958.41	73	SEG95	2953.34	-254.19	108	SEG64	1271.69	1958.41	162	SEG14	-2953.71	356.31
16	VCC	-1373.81	-1958.41	74	SEG94	2953.34	-152.44	109	SEG63	1169.94	1958.41	163	SEG13	-2953.71	254.56
17	C-	-1272.06	-1958.41	75	SEG93	2953.34	-50.69	110	SEG62	1068.19	1958.41	164	SEG12	-2953.71	152.81
18	C+	-1170.31	-1958.47	76	SEG92	2953.34	51.06	171	SEG61	966.44	1958.41	165	SEGT1	-2953.71	51.06
19	VLL6	-1068.56	-1958.41	77	SEG91	2953.34	152.81	112	SEG60	864.69	1958.41	166	SEGTO	-2953.71	-50.69
20	VLL5	-966.81	-1958.41	78	SEG90	2953.34	254.56	113	SEG59	762.94	1958.41	167	SEG9	-2953.71	-152.44
21	VLL4	-865.06	-1958.41	79	SEG89	2953.34	356.31	114	SEG58	661.19	1958.41	168	SEG8	-2953.71	-254.19
22	OSC1	-763.31	-1958.41	80	SEG88	2953.34	458.06	115	SEG57	559.44	1958.41	169	SEG7	-2953.71	-355.94
23	VLL3	-661.56	-1958.41	81	SEG87	2953.34	559.81	116	SEG56	457.69	1958.41	170	SEG6	-2953.71	-457.69
24	VLL2	-559.81	-1958.41	82	SEG86	2953.34	661.56	117	SEG55	355.94	1958.41	171	SEG5	-2953.71	-559.44
25	CiN	-458.06	-1958.41	83	SEG85	2953.34	763.31	118	SEG54	254.19	1958.41	172	SEG4	-2953.71	-661.9
26	C1P	-356.31	-1958.41	84	SEG84	2953.34	865.06	119	SEG53	152.44	1958.41	173	SEG3	-2953.71	-762.94
27	C2N	-254.56	-1958.41	85	SEG83	2953.34	966.81	120	SEG52	50.69	1958.41	174	SEG2	-2953.71	-864.69
28	C2P	-152.81	-1958.41	86	SEG82	2953.34	1068.56	121	SEG51	-51.06	1958.41	175	SEG1	-2953.71	-966.44
29	AVDD	-51.06	-1958.41	87	SEG81	2953.34	1170.31	122	SEG50	-152.81	1958.41	176	SEG0	-2953.71	-1068.19
30	D7	50.69	-1958.41	88	SEG80	2953.34	1272.06	123	SEG49	-254.56	1958.41	177	COM15	-2953.71	-1214.71
31	D6	152.44	-1958.41	89	SEG79	2953.34	1373.81	124	SEG48	-356.31	1958.41	178	COM14	-2953.71	-1316.46
32	D5	254.19	-1958.41	90	SEG78	2953.34	1475.56	125	SEG47	-458.06	1958.41	179	COM13	-2953.71	-1418.21
33	D4	355.94	-1958.41	91	SEG77	2953.34	1577.31	126	SEG46	-559.81	1958.41	180	COM12	-2953.71	-1519.96
34	D3	457.69	-1958.41	92	SEG76	2953.34	1679.06	127	SEG45	-661.56	1958.41	181	COM11	-2953.71	-1621.71
35	D2	559.44	-1958.41	93	SEG75	2953.34	1780.81	128	SEG44	-763.31	1958.41	182	COMTO	-2953.71	-1723.46
36	D1	661.19	-1958.41					129	SEG43	-865.06	1958.41				
37	D0	762.94	-1958.41					130	SEG42	-966.81	1958.41				
38	DVSS	864.69	-1958.41					131	SEG41	-1068.56	1958.41				
39	CS	966.44	-1958.41					132	SEG40	-1170.31	1958.41				
40	R/W	1068.19	-1958.41					133	SEG39	-1272.06	1958.41				
41	D/C	1169.94	-1958.41					134	SEG38	-1373.81	1958.41				
42	RES	1271.69	-1958.41					135	SEG37	-1475.56	1958.41				
43	DVDD	1373.44	-1958.41					136	SEG36	-1577.31	1958.41				
44	BP	1475.19	-1958.41					137	SEG35	-1679.06	1958.41				
45	DUMMYY	1576.94	-1958.41					138	SEG34	-1780.81	1958.41				
46	ANNUN2	1678.69	-1958.41					139	SEG33	-1882.56	1958.41				
47	ANNUN1	1780.44	-1958.41					140	SEG32	-1984.31	1958.41				
48	ANNUNO	1882.19	-1958.41					141	SEG31	-2086.06	1958.41				
49	SEG119	1983.94	-1958.41					142	SEG30	-2187.81	1958.41				
50	SEG118	2085.69	-1958.41					143	SEG29	-2289.56	1958.41				
51	SEG117	2187.44	-1958.41					144	DUMMY	-2400.56	2035.37				
52	SEG116	2289.19	-1958.41					145	DUMMY	-2502.31	2035.37				
53	SEG115	2390.94	-1958.41					146	DUMMY	-2604.06	2035.37				
54	SEG114	2492.69	-1958.41					147	DUMMY	-2705.81	2035.37				
55	SEG113	2594.44	-1958.41												
56	SEG112	2696.19	-1958.41												
57	SEG111	2797.94	-1958.41												
58	SEG110	2899.69	-1958.41												

Die Size is $\mathbf{2 5 4} \mathbf{~ m i l} \times 180 \mathrm{mil}$

MC141539

LCD Segment / Common Driver CMOS

MC141539 is a CMOS LCD Driver which consists of 4 annunciator outputs and 152 high voltage LCD driving signals (32 commons and 120 segments). It has parallel interface capability for operating with general MCU. Besides the general LCD driver features, it has on chip LCD bias voltage generator circuit such that fewer external components are required during application.

- Single Supply Operation, 2.4 V-3.5 V
- Operating Temperature Range : -30 to $85^{\circ} \mathrm{C}$
- Low Current Stand-by Mode (<500nA)
- On Chip Bias Voltage Generator
- 8 Bit Parallel Interface
- Graphic Mode Operation
- On Chip 480 Byte Graphic Display Data RAM
- 120 Segment Drivers, 32 Common Drivers
- Selectable $1 / 16$ or $1 / 32$ Multiplex Ratio
- Selectable on Chip Voltage Doubler and Tripler
- Selectable 1:5 or 1:7 Bias Ratio
- Re-mapping of Row and Column Drivers
- Four Stand Alone Annunciator Driver Circuits
- Selectable LCD Driving Voltage Temperature Coefficients
- 16 Level Internal Contrast Control
- External Contrast Control Provided
- Master Clear RAM
- Standard TAB Package

TAB

ORDERING INFORMATION

MC141539T1 TAB
MC141539T2 TAB MCC141539Z Gold Bump Die

Block Diagram

MAXIMUM RATINGS* (Voltages Referenced to $\mathrm{V}_{\mathrm{SS}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Symbol	Parameter	Value	Unit
$\mathrm{AV}_{\mathrm{DD}}, \mathrm{DV} \mathrm{DD}$	Supply Voltage	-0.3 to +4.0	V
$\mathrm{~V}_{\mathrm{CC}}$		$\mathrm{V}_{\mathrm{Ss}}-0.3$ to $\mathrm{V}_{\mathrm{SS}}+10.5$	V
$\mathrm{~V}_{\text {in }}$	Input Voltage	$\mathrm{V}_{\mathrm{SS}^{-0.3}}$ to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
I	Current Drain Per Pin Excluding V_{DD} and V_{SS}	25	mA
$\mathrm{~T}_{\mathrm{A} 1}$	Operating Temperature For Using Internal Oscillator $\mathrm{T}_{\mathrm{A} 2}$	For Using External Oscillator	-25 to +85
$\mathrm{~T}_{\mathrm{stg}}$	Storage Temperature Range	-C	

* Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Description section.
$V_{S S}=A V_{S S}=D V_{S S}\left(D V_{S S}=V_{S S}\right.$ of Digital circuit, $A V_{S S}=V_{S S}$ of Analogue Circuit)
$V_{D D}=A V_{D D}=D V_{D D}$ ($D V_{D D}=V_{D D}$ of Digital circuit, $A V_{D D}=V_{D D}$ of Analogue Circuit)

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions to be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended that $V_{\text {in }}$ and $V_{\text {out }}$ be constrained to the range $\mathrm{V}_{\mathrm{SS}}<$ or $=\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right)<$ or $=\mathrm{V}_{\mathrm{DD}}$. Reliability of operation is enhanced if unused input are connected to an appropriate logic voltage level (e.g., either $V_{S S}$ or $V_{D D}$). Unused outputs must be left open.This device may be light sensitive. Caution should be taken to avoid exposure of this device to any light source during normal operation. This device is not radiation protected.

ELECTRICAL CHARACTERISTICS (Voltage Referenced to $\mathrm{V}_{S S}, T_{A}=25^{\circ} \mathrm{C}$)

Symbol	Parameter	Test Condition	Min	Typ	Max	Unit
$\begin{aligned} & \mathrm{DV}_{\mathrm{DD}} \\ & \mathrm{AV}_{\mathrm{DD}} \end{aligned}$	Supply voltage (Absolute value Referenced to V_{SS}) Operating Range of Logic Circuit Supply DV Operating Range of Voltage Generator Circuit Supply AV ${ }_{\text {DD }}$		$\begin{gathered} 2.4 \\ \mathrm{DV} \mathrm{DDD}^{2} \end{gathered}$	$\begin{aligned} & 3.15 \\ & 3.15 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	V
$\begin{aligned} & \mathrm{I}_{\mathrm{AC}} \\ & \mathrm{I}_{\mathrm{DP} 1} \\ & \mathrm{I}_{\mathrm{DP} 2} \\ & \mathrm{I}_{\mathrm{SB} 1} \\ & \mathrm{I}_{\mathrm{SB} 2} \\ & \mathrm{I}_{\mathrm{SB} 3} \end{aligned}$	Supply Current (Measure with V_{DD} fixed at 2.8 V) Access Mode Supply Current Drain from Pin AVDD and DVDD. Display Mode Supply Current Drain from Pin AVDD and DVDD. Display Mode Supply Current Drain from Pin AVDD and DVDD Stand-by Mode Supply Current Drain from Pin AVDD and DVDD Stand-by Mode Supply Current Drain from Pin AVDD and DVDD. Stand-by Mode Supply Current Drain from Pin AVDD and DVDD.	Internal DC/DC Converter On, Display On, Tripler Enable, RW Accessing, $T_{c y c}=1 \mathrm{MHz}$, Osc. Freq. $=50 \mathrm{kHz}, 1 / 32$ Duty Cycle, $1 / 7$ Bias. Internal DC/DC Converter On, Display On, Tripler Enable, R/W Halt, Osc. Freq. $=50 \mathrm{kHz}, 1 / 32$ Duty Cycle,1/7 Bias. Internal DC/DC Converter On, Display On, Tripler Enable, R/W Halt, Osc. Freq. $=38.4 \mathrm{kHz}, 1 / 32$ Duty Cycle, $1 / 7$ Bias. Display Off, Oscillator Disabled, R/W Halt Display Off, Oscillator Enable, R/W Halt, External Oscillator and Frequency $=50 \mathrm{kHz}$. Display Off, Oscillator Enable, R/W Halt, Internal Oscillator and Frequency $=50 \mathrm{kHz}$.		200 76 55 300 2.5 5	300 115 75 500 5 10	μA μA μA $n A$ μA μA
$\begin{aligned} & \mathrm{v}_{\mathrm{CC} 1} \\ & \mathrm{v}_{\mathrm{CC} 2} \\ & \mathrm{v}_{\mathrm{LCD}} \end{aligned}$	VLCD Voltage (Absolute Value Refer to V_{SS}) LCD Driving Voltage Generator Output Voltage at Pin $V_{c c}$. LCD Driving Voltage Generator Output Voltage at Pin $V_{C C}$. LCD Driving Voltage input at pin V_{CC}.	Display On, Internal DC/DC Converter Enabled, Tripler Enable, Osc. Freq. $=50 \mathrm{kHz}$, Regulator Enabled, Divider Enabled lout $<=100 \mu \mathrm{~A}$ Display On, Internal DC/DC Converter Enabled, Doubler Enable, Osc. Freq. $=50 \mathrm{kHz}$, Regulator Enabled, Divider Enabled lout $<=100 \mu \mathrm{~A}$ Internal DC/DC Converter Disabled.	$\mathrm{AV}_{\mathrm{DD}}$	$\begin{aligned} & 3^{*} A V_{D D} \\ & 2^{*} A V_{D D} \end{aligned}$	10.5 7 10.5	v v v
$\begin{aligned} & V_{\mathrm{OH} 1} \\ & V_{\mathrm{OL} 1} \\ & V_{\mathrm{R} 1} \\ & V_{\mathrm{R} 2} \end{aligned}$	Output Voltage Output High Voltage at Pins DO-D7, Annun0-3, BP and OSC2. Output Low Voltage at Pins D0-D7, Annun0-3, BP and OSC2. LCD Driving Voltage Source at Pin VR LCD Driving Voltage Source at Pin VR	$\begin{aligned} & \mathrm{l}_{\mathrm{out}}=100 \mu \mathrm{~A} \\ & \mathrm{l}_{\mathrm{out}}=100 \mu \mathrm{~A} \end{aligned}$ Regulator Enabled, $\mathrm{I}_{\text {out }}=50 \mu \mathrm{~A}$ Regulator Disabled, $\mathrm{I}_{\text {out }}=50 \mu \mathrm{~A}$.	$\begin{gathered} 0.8^{*} V_{D D} \\ 0 \\ 0 \end{gathered}$	Floating	$\begin{gathered} V_{D D} \\ 0.2^{*} V_{D D} \\ V_{C C} \end{gathered}$	V v v v
$\mathrm{V}_{\text {IH1 }}$ $\mathrm{V}_{\text {IL1 }}$	Input Voltage Input High Voltage at Pins, $\overline{R E S}, \mathrm{CE}, \overline{\mathrm{C}}, \mathrm{DO} 0 \mathrm{D} 7$, R/W, D/C, OSC1 and OSC2. Input Low Voltage at Pins, RES, CE, CS, DO-D7, $\overline{\mathrm{R}} \mathrm{W}, \mathrm{D} / \mathrm{C}, \mathrm{OSC} 1$ and OSC2.		$0.8^{*} V_{D D}$ 0	-	$\begin{gathered} V_{D D} \\ 0.2^{*} V_{D D} \end{gathered}$	v v

ELECTRICAL CHARACTERISTICS (Voltage Referenced to $\mathrm{V}_{\mathrm{SS}}, \mathrm{DV}_{\mathrm{DD}}=2.4-3.15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Symbol	Parameter	Test Condition	Min	Typ	Max	Unit
$V_{\text {LL6 }}$ $V_{\text {LL5 }}$ $\mathrm{V}_{\text {LL4 }}$ $V_{\text {LL3 }}$ $\mathrm{V}_{\mathrm{LL} 2}$	LCD Display Voltage. (LCD Driving Voltage Output from Pins VLL6, VLL.5, VLL4, VLL3 and VLLL2.)	1/5 Bias Ratio, Voltage Divider Enabled, Regulator Enabled.		$\begin{gathered} V_{R} \\ 0.8^{*} V_{R} \\ 0.6^{*} V_{R} \\ 0.4^{*} V_{R} \\ 0.2^{*} V_{R} \end{gathered}$	$\stackrel{-}{-}$	$\begin{aligned} & v \\ & v \\ & v \\ & v \\ & v \end{aligned}$
$V_{\text {LL6 }}$ $V_{\text {LL5 }}$ $V_{\text {LL4 }}$ DUM2 DUM1 $\mathrm{V}_{\mathrm{LL} 3}$ $V_{L L 2}$		1/7 Bias Ratio, Voltage Divider Enabled, Regulator Enabled		V_{R} $6 / 7^{*} V_{\mathrm{R}}$ $5 / 7^{*} V_{\mathrm{R}}$ $4 / 7^{*} V_{\mathrm{R}}$ $3 / 7^{*} V_{\mathrm{R}}$ $2 / 7^{*} V_{\mathrm{R}}$ $1 / 7^{*} V_{\mathrm{R}}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\mathrm{LL} 6}$ $\mathrm{V}_{\mathrm{LL} 5}$ $\mathrm{V}_{\mathrm{LL} 4}$ $\mathrm{V}_{\text {LL3 }}$ $\mathrm{V}_{\mathrm{LL} 2}$		External Voltage Generator, Voltage Divider Disable	$\begin{gathered} 0.5 \mathrm{~V}_{\mathrm{cc}} \\ 0.5 \mathrm{~V}_{\mathrm{cc}} \\ 0.5 \mathrm{~V}_{\mathrm{cc}} \\ \mathrm{~V}_{\mathrm{SS}} \end{gathered}$		V_{Cc} $V_{C C}$ $V_{c c}$ $0.5 \mathrm{~V}_{\mathrm{CC}}$ $0.5 \mathrm{~V}_{\mathrm{CC}}$	$\begin{aligned} & \hline V \\ & v \\ & v \\ & v \\ & v \end{aligned}$
$\begin{aligned} & \mathrm{I}_{\mathrm{OH}} \\ & \mathrm{I}_{\mathrm{OL}} \\ & \mathrm{I}_{\mathrm{OZ}} \end{aligned}$	Output Current Output High Current Source from Pins D0-D7, Annun0-3, BP and OSC2. Output Low Current Drain by Pins D0-D7, Annun0$3, \mathrm{BP}$ and OSC2. Output Tri-state Current Drain Source at pins DOD7 and OSC2	$\begin{aligned} & \mathrm{V}_{\text {out }}=\mathrm{VDD}-0.4 \mathrm{~V} \\ & \mathrm{~V}_{\text {out }}=0.4 \mathrm{~V} \end{aligned}$	100 -1		-100 1	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
$\mathrm{ILL}^{\prime} /{ }_{\text {IH }}$	Input Current at pins $\overline{\mathrm{RES}}, \mathrm{CE}, \overline{\mathrm{CS}}, \mathrm{DO}-\mathrm{D} 7, \mathrm{R} / \bar{W}, \mathrm{D} / \overline{\mathrm{C}}$ OSC1 and OSC2.		-1	-	1	$\mu \mathrm{A}$
Ron	On Resistance Channel Resistance between LCD Driving Signal Pins (SEG and COM) and Driving Voltage Input Pins ($V_{L L 2}$ to $V_{L L 6}$).	During Display on, 0.1 V Apply between Two Terminals, V_{CC} within Operating Voltage Range	- .	-	10	k Ω
$\mathrm{V}_{S B}$	Memory Retention Voltage ($\mathrm{DV} \mathrm{V}_{\mathrm{DD}}$) Standby Mode, Retained All Internal Configuration and RAM Data		1.8	-	-	V
$\mathrm{C}_{\text {IN }}$	Input Capacitance OSC1, OSC2 and All Control Pins		-	5	7.5	pF
PTC0 PTC1 PTC2 PTC3	Temperature Coefficient Compensation Flat Temperature Coefficient Temperature Coefficient 1^{*} Temperature Coefficient 2* Temperature Coefficient 3^{*}	TC1 $=0$, TC2 $=0$, Voltage Regulator Disabled $T C 1=0, T C 2=1$, Voltage Regulator Enabled TC1 $=1$, TC2 $=0$, Voltage Regulator Enabled TC1 $=1, T C 2=1$, Voltage Regulator Enabled		$\begin{gathered} 0.0 \\ -0.18 \\ -0.22 \\ -0.35 \end{gathered}$		$\begin{aligned} & \% \\ & \% \\ & \% \\ & \% \end{aligned}$
V_{CN}	Internal Contrast Control VR Output Voltage with Internal Contrast Control Selected: 16 Voltage Levels Controlled by Software. Each Level is Typical of 2.25% of the Regulator Output Voltage.	Regulator Enabled, Internal Contrast Control Enabled	${ }^{-}$	± 18	-	\%

* The formula for the temperature coefficient is:
$T C(\%)=\frac{\text { VR at } 50^{\circ} \mathrm{C}-\text { VR at } 0^{\circ} \mathrm{C}}{50^{\circ} \mathrm{C}-0^{\circ} \mathrm{C}} \times \frac{1}{\text { VR at } 25^{\circ} \mathrm{C}} \times 100 \%$

ELECTRICAL CHARACTERISTICS (Voltage Referenced to $\mathrm{V}_{\mathrm{SS}}, \mathrm{AV}_{\mathrm{DD}}=D V_{D D}=2.4$ to $3.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)
Total variation of VR $\triangle V_{R T}$ is affected by the following factors:
Process variation of Regulator ΔV_{R}
External V_{DD} Variation contributed to Regulator $\Delta \mathrm{V}_{\mathrm{VDD}}$
External resistor pair Ra/Rf contributed to Regulator $\Delta V_{\text {res }}$
where $\Delta V_{R T}=\sqrt{\left(\Delta V_{R}\right)^{2}+\left(\Delta V_{V_{D D}}\right)^{2}+\left(\Delta V_{r e s}\right)^{2}}$
Assume external $\mathrm{V}_{D D}$ variation is $+/-6 \%$ at 3.15 V and 1% variation resistor used at application

	TC Level	$\Delta V_{\text {VOD }}(\%)$	$\Delta V_{R}(\%)$	$\Delta V_{\text {res }}(\%)$	$\Delta V_{R T}(\%)$
	TC0	± 6.0			± 6.652
Reference	TC1	± 4.0			± 2.5
Generator	TC2	± 2.5			
	TC3	± 1.4			± 3.924

AC ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$, Voltage referenced to $\mathrm{V}_{S S}, \mathrm{~V}_{\mathrm{DD}}=2.4$ to 3.15 V)

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Symbol \& Parameter \& Test Condition \& Min \& Typ \& Max \& Unit \\
\hline \begin{tabular}{l}
Fosc1 \\
\(\mathrm{F}_{\mathrm{ANN} 1}\) \\
\(F_{\text {FRM1 }}\)
\end{tabular} \& \begin{tabular}{l}
Oscillation Frequency. \\
Oscillation Frequency of Display Timing Generator with 60 Hz Frame Frequency. Annunciator Display Frequency (with 50\% duty cycle) from Pins Annun0-3 and BP LCD Driving Signal Frame Frequency.
\end{tabular} \& \begin{tabular}{l}
Set Clock Frequency to Low \\
Either External Clock Input or Internal Oscillator Enable, Either \(1 / 32\) or \(1 / 16\) Duty Cycle, Graphic Display Mode
\end{tabular} \& - \& \[
\begin{gathered}
38.4 \\
18.75 \\
66
\end{gathered}
\] \& - \& kHz
Hz

Hz

\hline | Fosc_{2} |
| :--- |
| $\mathrm{F}_{\mathrm{ANN} 2}$ |
| $F_{\text {FRM2 }}$ | \& | Oscillation Freq. |
| :--- |
| Oscillation Frequency of Display Timing Generator with 60 Hz Frame Frequency. Annunciator Display Frequency (with 50\% duty cycle) from Pins Annun0-3 and BP LCD driving Signal Frame Frequency. | \& | Set Clock Frequency to High |
| :--- |
| Either External Clock Input or Internal Oscillator Enable, Either 1/32 Duty Cycle | \& - \& | 50 |
| :--- |
| 24.4 |
| 65 | \& - \& kHz

Hz
Hz

\hline OSC \& Internal Oscillation Frequency Internal OSC Oscillation Frequency with Different Value of Feedback Resistor. \& Internal Oscillator Enabled. $V_{D D}$ within Operation Range \& \multicolumn{4}{|l|}{See Figure 1 for the relationship}

\hline
\end{tabular}

Set Clock Frequency to Slow : $\mathrm{F}_{\mathrm{FRM} 1}=\mathrm{F}_{\mathrm{OSC} 1} / 576$ Set Clock Frequency to Normal : $\mathrm{F}_{\mathrm{FRM} 2}=\mathrm{F}_{\mathrm{OSC} 2} / 768$

Figure 1. Internal Oscillator Frequency Relationship with External Resistor Value

Figure 2. LCD Driving Signal Timing Diagram

TABLE 2a. Parallel Timing Characteristics (Write Cycle) ($T_{A}=-10$ to $60^{\circ} \mathrm{C}, \mathrm{DV} \mathrm{DD}=2.4$ to $3.15 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$)

Symbol	Parameter	Min	Typ	Max	Unit
$\mathrm{t}_{\text {cycle }}$	Enable Cycle Time	1000	-	-	ns
t_{EH}	Enable Pulse Width	290	-	-	ns
t_{AS}	Address Setup Time	0	\vdots	-	-
t_{DS}	Data Setup Time	290	-	-	ns
t_{DH}	Data Hold Time	0	-	-	ns
t_{AH}	Address Hold Time	5	-	-	ns

Figure 3. Timing Characteristics (Write Cycle)

TABLE 2b. Parallel Timing Characteristics (Read Cycle) $\left(T_{A}=-10\right.$ to $60^{\circ} \mathrm{C}, D V_{D D}=2.4$ to $3.15 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$)

Symbol	Parameter	Min	Typ	Max	Unit
$\mathrm{t}_{\text {cycle }}$	Enable Cycle Time	1000	-	-	ns
t_{EH}	Enable Pulse Width	375	-	-	ns
t_{AS}	Address Setup Time	0	-	-	ns
t_{DS}	Data Setup Time	-	-	350	ns
t_{DH}	Data Hold Time	7	-	-	ns
t_{AH}	Address Hold Time	5	-	-	ns

Figure 4. Timing Characteristics (Read Cycle)

PIN DESCRIPTIONS

D/C (Data / Command)

This input pin acknowledge the driver the input at D0-D7 is data or command. Input High for data while input Low for command.

$\overline{\mathbf{C S}}$ (CLK) (Input Clock)

This pin is normal Low clock input. Data on DO-D7 is latched at the falling edge of CS.

$\overline{\text { RES }}$ (Reset)

An active Low pulse to this pin reset the internal status of the driver (same as power on reset). The minimum pulse width is $10 \mu \mathrm{~s}$.

CE (Chip Enable)

HIGH input to this pin to enable the control pins on the driver.

D0-D7

This bi-directional bus is used for data / command transferring.

R/W (Read/Write)

This is an input pin. To read the display data RAM or the internal status (Busy / Idle), pult this pin High. The R/W input Low indicates a write operation to the display data RAM or to the internal setup registers.

OSC1 (Oscillator Input)

For internal oscillator mode, this is an input for the internal low power RC oscillator circuit. In this mode, an external resistor of certain value is placed between the OSC1 and OSC2 pins for a range of internal operating frequencies (refer to Figure 1). For external oscillator mode, OSC1 should be left open.

OSC2 (Oscillator Output / External Oscillator Input)

This is an output for the internal low power RC oscillator circuit. For external oscillator mode, OSC2 will be an input pin for external clock and no external resistor is needed.

VLL6 - VLL2

Group of voltage level pins for driving the LCD panel. They can either be connected to external driving circuit for external bias supply or connected internally to built-in divider circuit. For internal Voltage Divider enabled, a $0.1 \mu \mathrm{~F}$ capacitor to $\mathrm{AV}_{\mathrm{SS}}$ is required on each pin.

DUM1 and DUM2

If internal Voltage Divider is enabled with $1 / 7$ bias selected, a 0.1 $\mu \mathrm{F}$ capacitor to $\mathrm{AV}_{\text {SS }}$ is required on each pin. Otherwise, pull these two pin to $A V_{S S}$

C1N and C1P

If Internal DC/DC Converter is enabled, a $0.1 \mu \mathrm{~F}$ capacitor is required to connect these two pins.

C2N and C2P

If 32 Mux is selected and Internal DC/DC Converter is enabled, a $0.1 \mu \mathrm{~F}$ capacitor is required between these two pins. Otherwise, leave these pin open.

C+ and C-

If internal divider circuit is enabled, a $0.1 \mu \mathrm{~F}$ capacitor is required to connect between these two pins.

VR and VF

This is a feedback path for the gain control (external contrast control) of VLL1 to VLL6. For adjusting the LCD driving voltage, it requires a feedback resistor placed between VR and VF, a gain control resistor placed between VF and AVSS, a $10 \mu \mathrm{~F}$ capacitor placed between VR and AVSS. (Refer to the Application Circuit Section)

COMO-COM31 (Row Drivers)

These pins provide the row driving signal to LCD panel. Com0Com31 are used in 32 mux configuration. Com0-Com15 are used in 16 mux configuration. They output 0 V during display off.

SEGO-SEG119 (Column Drivers)

These 120 pins provide LCD column driving signal to LCD panel. They output OV during display off.

BP (Annunciator Backplane)

This pin combines with AnnunO-Annun3 pins to form annunciator driving part. When the annunciator circuit is enabled, it will output square wave of $\mathrm{F}_{\mathrm{ANNn}} \mathrm{Hz}$. It outputs low when oscillator is disabled.

Annun0 - Annun3 (Annunciator Frontplanes)

These pins are four independent annunciator driving outputs. The enabled annunciator outputs from its corresponding pin a $F_{\text {ANN }} \mathrm{Hz}$ square wave which is 180 degrees out of phase with BP. Disabled annunciator output from its corresponding pin an square wave inphase with BP. When oscillator is disabled, all these pins output OV.

AVDD and AVSS

AVDD is the positive supply to the LCD bias voltage generator. AVSS is ground.

VCC

For using the internal $\mathrm{DC} / \mathrm{DC}$ Converter, a $0.1 \mu \mathrm{~F}$ capacitor from this pin to AVSS is required. It can also be an external bias input pin if Internal DC/DC Converter is not used. Positive power is supplied to the LCD Driving Level Selector and HV Buffer Cell with this pin. Normally, this pin is not intended to be a power supply to other component.

DVDD and DVSS

Power is supplied to the digital control circuit of the driver using these two pins. DVDD is power and DVSS is ground.

OPERATION OF LIQUID CRYSTAL DISPLAY DRIVER

Description of Block Diagram Module

Command Decoder and Command Interface

This module determines whether the input data is interpreted as data or command.

Data is directed to this module based upon the input of the D/C pin. If D/C high, data is written to Graphic Display Data RAM (GDDRAM). D/C low indicates that the input at D0-D7 is interpreted as a Command.

CE is the master chip selection signal. A High input enable the input lines ready to sample signals. Reset is of same function as Power ON Reset (POR). Once RES received the reset pulse, all internal circuitry will back to its initial status. Refer to Command Description section for more information.

MPU Parallel Interface

The parallel interface consists of 8 bi-directional data lines (D0-D7), RNW, and the CS. The R/W input High indicates a read operation from the Graphic Display Data RAM (GDDRAM). RNW input Low indicates a write to Display Data RAM or Internal Command Registers depending on the status of D/C input. The CS input serves as data latch signal (clock). Refer to AC operation conditions and characteristics section for Parallel Interface Timing Description.

Graphic Display Data RAM (GDDRAM)
The GDDRAM is a bit mapped static RAM holding the bit pattern to be displayed. The size of the RAM is determined by number of row times the number of column ($120 \times 32=3840$ bits). Figure 5 is a description of the GDDRAM address map. For mechanical flexibility, re-mapping on both Segment and Common outputs are provided.

Figure 5. Graphic Display Data RAM (GDDRAM) Address Map

Display Timing Generator

This module is an on chip low power RC oscillator circuitry (Figure 6). The oscillator frequency can be selected in the range of 15 kHz to 50 kHz by external resistor. One can enable the circuitry by software command. For external clock provided, feed the clock to OSC2 and leave OSC1 open.

Annunciator Control Circuit

The LCD waveform of the 4 annunciators and BP are generated by this module. The 4 independent annunciators are enabled by software command. Annunciator is also controlled by oscillator circuit too. the annunciators pins output OV when oscillator is disabled. Annunciator output waveform shown in Figure 7.

Figure 6. Oscillator Circuitry

Figure 7. Annunciators and BP Display Waveform

LCD Driving Voltage Generator

This module generates the LCD voltage needed for display output. It takes a single supply input and generate necessary bias voltages. It consists of :

1. Voltage Doubler and Voltage Tripler

To generate the Vcc voltage. Either Doubler or Tripler can be enabled.
2. Voltage Regulator

Feedback gain control for initial LCD voltage. It can also be used with external contrast control.
3. Voltage Divider

Divide the LCD display voltage $\left(\mathrm{V}_{\mathrm{LL} 2}-\mathrm{V}_{\mathrm{LL} 6}\right)$ from the regulator output. This is a low power consumption circuit which can save the most display current compare with traditional resistor ladder method.
4. Self adjust temperature compensation circuitry

Provide 4 different compensation grade selections to satisfy the various liquid crystal temperature grades. The grading can be selected by software control.
5. Contrast Control Block

Software control of 16 voltage levels of LCD voltage.
6. Bias Ratio Selection circuitry

Software control of $1 / 5$ and $1 / 7$ bias ratio to match the characteristic of LCD panel.
All blocks can be individually turned off if external voltage generator is employed

32 Bit Latch / 120 Bit Latch

A 152 bit long register which carries the display signal information. First 32 bits are Common driving signals and other 120 bits are Segment driving signals. Data will be input to the HV-buffer Cell for bumping up to the required level.

Level Selector

Level Selector is a control of the display synchronization. Display voltage can be separated into two sets and used with different cycles. Synchronization is important since it selects the required LCD voltage level to the HV Buffer Cell for output signal voltage pump.

HV Buffer Cell (Level Shift-er)

HV Buffer Cell works as a level shift-er which translates the low voltage output signal to the required driving voltage. The output is shifted out with an internal FRM clock which comes from the Display Timing Generator. The voltage levels are given by the level selector which is synchronized with the internal M signal.

Reference Generator

Two reference generators on chip to provide reference voltage to the regulator circuitry. The VR (LCD driving voltage) stability is affected by the performance of the reference voltage. For details on it's performance, please refer to electrical characteristic.

LCD Panel Driving Waveform

The following is an example of how the Common and Segment drivers may be connected to a LCD panel. The waveforms shown in Figure $8 \mathrm{a}, 8 \mathrm{~b}$ and 8 c illustrate the desired multiplex scheme.

Figure 8a. LCD Display Example "0"

TIME SLOT

1	2	3	4	\cdots	$-\cdots$	1	2	3	4

Figure 8b. LCD Driving Signal from MC141539

Figure 8c. Effective LCD waveform on LCD pixel

Command Description

Display On/Off (Display Mode / Stand-by Mode)

The Display On command turns the LCD Common and Segment outputs on and has no effect to the annunciator output. This command causes the conversion of data in GDDRAM to necessary waveforms on the Common and Segment driving outputs. The onchip bias generator is also turned on by this command. (Note : "Oscillator On " command should be sent before "Display On " is selected)

The Display Off command turns the display off and the states of the LCD driver are as follow during display off :

1. The Common and Segment outputs are fixed at $\mathrm{V}_{\mathrm{LL} 1}\left(\mathrm{~V}_{\mathrm{SS}}\right)$.
2. The bias Voltage Generator is turned off.
3. The RAM and content of all registers are retained.
4. IC will accept new commands and data.

The status of the Annunciators and Oscillator are not affected by this command.

Set GDDRAM Column Address

This command positions the address pointer on a column location. The address can be set to location $00 \mathrm{H}-77 \mathrm{H}$ (120 columns). The column address will be increased by one automatically after a read or write operation. Refer "Address Enlacement Table" and command "Set GDDRAM Page Address".

Set GDDRAM Page Address

This command positions the row address to 1 of 4 possible positions in GDDRAM. Refer to figure 5.

Master Clear GDDRAM

This command is to clear the 480 byte Display Data RAM by setting the RAM data to zero. Issue this command followed by a dummy write command.

Set Vertical Scroll Value

This command is used to scroll the screen vertically with scroll value 0 to 31. With scroll value equals to 0 , Row 0 of GDDRAM is mapped to Com0 and Row 1 through Row 31 are mapped to Com1 through Com31 respectively. With scroll value equal to 1, Row 1 of GDDRAM is mapped to Como, then Row 2 through Row 31 will be mapped to Com1 through Com30 respectively and Row 0 will be mapped to Com31.

Save / Restore Column Address

With bit option = 1 in this command, the Save $/$ Restore Column Address command saves a copy of the Column Address of GDDRAM. With bit option $=0$, this command restores the copy obtained from the previous execution of saving column address. This instruction is very useful for writing full graphics characters that are larger than 8 pixels vertically.

Set Column Mapping

This instruction selects the mapping of GDDRAM to Segment drivers for mechanical flexibility. There are 2 mappings to select:

1. Column 0-Column 119 of GDDRAM mapped to Seg0-Seg119 respectively;
2. Column 0-Column 119 of GDDRAM mapped to Seg119-Seg0 respectively.
Detail information please refer to section "Display Output Description".

Set Row Mapping

This instruction selects the mapping of GDDRAM to Common Drivers for mechanical flexibility. There are 2 selected mappings:

1. Row 0-Row 31 of GDDRAM to Com0-Com31 respectively;
2. Row 0-Row 31 of GDDRAM to Com31-Com0 respectively. See section "Display Output Description" for related information.

Set Annunciator Control Signals

This command is used to control the active states of the 4 stand alone annunciator drivers.

Set Oscillator Enable / Disable

This command is used to either turn on / off Oscillator. For using internal or external oscillator, this command should be executed. The setting for this command is not affected by command "Set Display On/Off" and "Set Annunciator On/Off". See command "Ext/Int Oscillator" for more information

Set External / Internal Oscillator

This command is used to select either internal or external oscillator. When internal oscillator is selected, feedback resistor between OSC1 and OSC2 is needed. For external oscillation circuit, feed clock input signal to OSC2 and leave OSC1 open.

Set Clock Frequency

Use this command to choose from two different oscillation frequencies (50 kHz or 38.4 kHz) to get the 60 Hz frame frequency. With frequency high, 50 kHz clock frequency is preferred. 38.4 kHz clock frequency (low frequency) enable for power saving purpose.

Set Internal DC/DC Converter On/Off

Use this command to select the Internal DC/DC Converter to generate the $V_{C C}$ from $A V_{D D}$. Disable the Internal DC/DC Converter if external Vcc is provided.

Set Voltage Doubler / Tripler

Use this command to choose Voltage Doubler or Tripler when the Internal DC/DC Converter is enabled.

Set Internal Regulator On/Off

Choose bit option 0 to disable the Internal Regulator. Choose bit option 1 to enable Internal Regulator which consists of the internal contrast control and temperature compensation circuits.

Set Internal Voltage Divider On/Off

If the Internal Voltage Divider is disabled, external bias can be used for $\mathrm{V}_{\mathrm{LL} 6}$ to $\mathrm{V}_{\mathrm{LL} 2}$. If the Internal Voltage Divider is enabled, the internal circuit will automatically select the correct bias level according to the number of multiplex. Refer to command "Set Bias Ratio".

Set Duty Cycle

This command is to select 16 mux or 32 mux display. When 16 mux is enabled, the unused 16 common outputs will be swinging between VLL2 and VLL5 for dummy scan purpose and doubler will be used.

Set Bias Ratio

This command sets the $1 / 5$ bias or $1 / 7$ bias for the divider output. The selection should match the characteristic of LCD Panel.

Set Internal Contrast Control On/Off

This command is used to turn on or off the internal control of delta voltage of the bias voltages. With bit option $=1$, the software selection for delta bias voltage control is enabled. With bit option $=0$, internal contrast control is disabled.

Increase / Decrease Contrast Level

If the internal contrast control is enabled, this command is used to
increase or decrease the contrast level within the 16 contrast levels. The contrast level starts from lowest value after POR.

Set Contrast Level

This command is to select one of the 16 contrast levels when internal contrast control circuitry is in use.

Read Contrast Value

This command allows the user to read the current contrast level value. With R/W input high (READ), D / \bar{C} input low (COMMAND) and D7 D6 D5 D4 are equal to 0001 , the value of the internal contrast value can be read on DO-D3 at the falling edge of CS.

Set Temperature Coefficient

A temperature gradient selector circuit controlled by two control bits TC1 and TC2. This command can select 4 different LCD driving voltage temperature coefficients to match various liquid crystal temperature grades. Those temperature coefficients are specified in Electrical Characteristics Tables.

COMMAND TABLE

Bit Pattern	Command	Comment
$000000 \mathrm{X}_{1} \mathrm{X}_{0}$	Set GDDRAM Page Address	Set GDDRAM Page Address using $X_{1} X_{0}$ as address bits. $\begin{aligned} & X_{1} X_{0}=00: \text { page } 1(\mathrm{POR}) \\ & X_{1} X_{0}=01: \text { page } 2 \\ & X_{1} X_{0}=10: \text { page } 3 \\ & X_{1} X_{0}=11: \text { page } 4 \end{aligned}$
$0001 X_{3} \mathrm{X}_{2} \mathrm{X}_{1} \mathrm{X}_{0}$	Set Contrast Level	Set one of the 16 available values to the internal contrast register, using $X_{3} X_{2} X_{1} X_{0}$ as data bits. The contrast register is reset to 0000 during POR.
$0001 X_{3} X_{2} X_{1} X_{0}$	Read Contrast Value	With D / \bar{C} pin input Low, R/W pin input high, and D7 D6 D5 D4 pins equal to 0001 at the rising edge of $\overline{C S}$, the value of the internal contrast register will be latched out at D3 D2 D1 D0 pins, i.e. $x_{3} x_{2} x_{1} x_{0}$, at the rising edge of CS.
$0010000 \mathrm{X}_{0}$	Set Voltage Doubler / Tripler	$X_{0}=0$: Select Voltage Tripler (POR) $X_{0}=1$: Select Voltage Doubler
$0010001 \mathrm{X}_{0}$	Set Column Mapping	$\mathrm{X}_{0}=0$: Col0 to Seg0 (POR) $X_{0}=1$: Col0 to Seg119
$0010010 \mathrm{X}_{0}$	Set Row Mapping	With duty cycle is $1 / 32$ $\mathrm{X}_{0}=0$: Rowo to Como (POR) $X_{0}=1$: Row0 to Com31 With duty cycle is $1 / 16$ $\mathrm{X}_{0}=0$: Row0 to Com0 $X_{0}=1$: Row 0 to Com15
$0010011 \mathrm{X}_{0}$	Reserved	
$0010100 \mathrm{X}_{0}$	Set Display On/Off	$\begin{aligned} & X_{0}=0 \text { : display off (POR) } \\ & X_{0}=1 \text { : display on } \end{aligned}$
0010101X ${ }_{0}$	Set Internal DC/DC Converter On/Off	$X_{0}=0$: Internal DC/DC Converter off (POR) $X_{0}=1$: Internal DC/DC Converter on
$0010110{ }_{0}$	Set Internal Regulator On/Off	$\mathrm{X}_{0}=0$: Internal Regulator off (POR) $x_{0}=1$: Internal Regulator on When the application employs external contrast control, the internal contrast control, temperature compensation and the Regulator must be enabled.
$0010111 \mathrm{X}_{0}$	Set Internal Voltage Divider On/Off	$X_{0}=0$: Internal Voltage Divider off (POR) $X_{0}=1$: Internal Voltage Divider on When an external bias network is preferred, the voltage divider should be disabled.
$0011000 \mathrm{X}_{0}$	Set Internal Contrast Control On/Off	$X_{0}=0$: Internal Contrast Control off (POR) $X_{0}=1$: Internal Contrast Control on Internal contrast circuits can be disabled if external contrast circuits is preferred.
$0011001 \mathrm{X}_{0}$	Set Clock Frequency	$X_{0}=0$: low frequency (38.4 kHz) (POR) $X_{0}=1$: high frequency (50 kHz)
0011010X 0	Save/Restore GDDRAM Column Address	$X_{0}=0$: restore address $X_{0}=1$: save address
0011011 ${ }_{0}$	Master Clear GDDRAM	Master clear entire GDDRAM
$0011100 \mathrm{X}_{0}$	Set Bias Ratio	$\begin{aligned} & X_{0}=0 \text { : set } 1 / 7 \text { bias (POR) } \\ & X_{0}=1: \text { set } 1 / 5 \text { bias } \end{aligned}$
0011101X ${ }_{0}$	Reserved.	$x_{0}=0$: normal operation (POR) $X_{0}=1$: test mode (Note: Make sure to set $X_{0}=0$ during application)
$001110 \mathrm{X}_{1} \mathrm{X}_{0}$	Reserved	$\begin{aligned} & X_{1} X_{0}=00: \text { Reserved } \\ & X_{1} X_{0}=01: \text { Reserved (POR) } \\ & X_{1} X_{0}=10: \text { Reserved } \\ & X_{1} X_{0}=11: \text { Reserved } \end{aligned}$

Bit Pattern	Command	Comment
$010 \mathrm{X}_{4} \mathrm{X}_{3} \mathrm{X}_{2} \mathrm{X}_{1} \mathrm{X}_{0}$	Set Vertical Scroll Value	Use $X_{4} X_{3} X_{2} X_{1} X_{0}$ as number of lines to scroll. Scroll value $=0$ upon POR
01100A $A_{1} \mathrm{~A}_{0} \mathrm{X}_{0}$	Set Annunciator Control Signals	$A_{1} A_{0}=00$: select annunciator 1 (POR) $A_{1} A_{0}=01$: select annunciator 2 $A_{1} A_{0}=10$: select annunciator 3 $A_{1} A_{0}=11$: select annunciator 4 $X_{0}=0$: turn selected annunciator off (POR) $x_{0}=1$: turn selected annunciator on
0110100X 0	Set Duty Cycle	$X_{0}=0: 1 / 32$ duty and tripler enabled (POR) $X_{0}=1: 1 / 16$ duty and doubler enabled
$0110101 \mathrm{X}_{0}$	Reserved	$\mathrm{X}_{0}=0$: Reserved $x_{0}=1$: Reserved
011011 $X_{1} X_{0}$	Set Temperature Coefficient	$\begin{aligned} & X_{1} x_{0}=00: 0.00 \% \text { (POR) } \\ & x_{1} x_{0}=01:-0.18 \% \\ & x_{1} x_{0}=10:-0.22 \% \\ & x_{1} x_{0}=11:-0.35 \% \end{aligned}$
0111000X 0	Increase / Decrease Contrast Value	$x_{0}=0$: Decrease by one level $X_{0}=1$: Increase by one level (Note: increment/decrement wraps round among the 16 contrast levels. Start at the lowest level when POR.
$0111001 \mathrm{X}_{0}$	Reserved	
$0111010 \mathrm{X}_{0}$	Reserved	
0111011X0	Reserved	$\begin{aligned} & X_{0}=0: \text { normal operation (POR) } \\ & X_{0}=1: \text { test mode select } \\ & \text { (Note: Make sure to set } X_{0}=0 \text { during application) } \end{aligned}$
0111100X 0	Reserved	
0111101X 0	Set Internal / External Oscillator	$\mathrm{X}_{0}=0$: internal oscillator(POR) $X_{0}=1$: external oscillator Internal oscillator circuit is automatically enabled if resistors are placed at OSC1 and OSC2. For external oscillator, simply feed clock in OSC2.
0111110X 0	Reserved	
$0111111 \mathrm{X}_{0}$	Set Oscillator Disable / Enable	$\mathrm{X}_{0}=0$: disable oscillator (POR) $X_{0}=1$: enable oscillator. This is the master control fro oscillator circuitry. This command should be issued after the "Set External / Internal Oscillator" command.
$1 \mathrm{X}_{6} \mathrm{x}_{5} \mathrm{x}_{4} \mathrm{X}_{3} \mathrm{X}_{2} \mathrm{X}_{1} \mathrm{x}_{0}$	Set GDDRAM Column Address	Set GDDRAM Column Address. Use $X_{6} X_{5} X_{4} X_{3} X_{2} X_{1} X_{0}$ as address bits.

Data Read / Write

To read data from the GDDRAM, input High to $R \bar{W}$ pin and D / \bar{C} pin. Data is valid at the falling edge of $\overline{C S}$. And the GDDRAM column address pointer will be increased by one automatically.

To write data to the GDDRAM, input Low to $R \bar{W}$ pin and High to D / C pin. Data is latched at the falling edge of $\overline{C S}$. And the GDDRAM column address pointer will be increased by one automatically.

No auto address pointer increment will be performed for the Dummy Write Data after Master Clear GDDRAM. (Refer to the "Commands Required for R/W Actions on RAM" Table)

Address Increment Table (Automatic)

$\mathbf{D} / \overline{\mathbf{C}}$	R/W	Comment	Address Increment	Remarks
0	0	Write Command	No	
0	1	Read Command	No	$* 1$
1	0	Write Data	Yes	$* 2$
1	1	Read Data	Yes	

Address Increment is done automatically data read write. The column address pointer of GDDRAM ${ }^{\circ}{ }^{3}$ is affected.
Remarks: "1. Refer to the command "Read Contrast Value".
*2. If write data is issued after Command Clear RAM, Address increase is not applied.
*3. Column Address will be wrapped round when overflow.
Power Up Sequence (Commands Required)

Command Required	POR Status	Remarks
Set Clock Frequency	Low	*1
Set Oscillator Enable	Disable	
Set Annunciator Control Signals	All annunciators off	*1
Set Duty Cycle	1/32 duty	*1
Set Bias Ratio	1/7 bias	*1
Set DC/DC Converter On	Off	*1
Set Internal Regulator On	Off	*1
Set Temperature Coefficient	TC=0\%	*1, *3
Set Internal Contrast Control On	Off	*1, *3
Increase Contrast Value	Contrast Value $=0$	*1, *2, *3
Set Internal Voltage Divider On	Off	
Set Segment Mapping	Seg. $0=$ Col. 0	
Set Common Mapping	Com. $0=$ Row 0	
Set Vertical Scroll Value	Scroll Value $=0$	
Set Display On	Off	

Remarks:
*1 -- Required only if desired status differ from POR.
*2 -- Effective only if Internal Contrast Control is enabled.
*3 -- Effective only if Regulator is enabled.

Commands Required for Display Mode Setup

Display Mode	Commands Required	
Display Mode	Set External / Internal Oscillator, Set Oscillator Enable, Set Display On.	$\left(0111101 \mathrm{X}_{0}\right)^{*}$ $(0111111)^{*}$ $(00101001)^{*}$
Annunciator Display	Set External / Internal Oscillator, Set Oscillator Enable, Set Annunciator Control Signals.	$\left(0111101 X_{0}\right)^{*}$ $(01111111)^{*}$ $\left(01100 A_{1} A_{0} x_{0}\right)^{*}$
Standby Mode 1.	Set Display Off, Set Oscillator Disable.	$(00101000)^{*}$ $(01111110)^{*}$
Standby Mode 2.	Set External Oscillator, Set Annunciator Control Signals, Set Display Off, Set Oscillator Enable.	$(01111101)^{*}$ $\left(01100 A_{1} A_{0} x_{0}\right)^{*}$
Standby Mode 3.	Set Internal Oscillator, Set Annunciator Control Signals, Set Display Off, Set Oscillator Enable.	$(01111111)^{*}$

Other Related Command with Display Mode : Set Duty Cycle, Set Column Mapping, Set Row Mapping, Set Vertical Scroll Value.
Commands Related to Voltage Generator:
Set Oscillator Disable/Enable, Set Internal Regulator On/Off, Set Duty Cycle, Set Temperature Coefficient, Set Internal Contrast Control On/Off, Increase/Decrease Contrast Level, Set Internal Voltage Divider On/Off, Set Bias Ratio, Set Display On/Off, Set Reference Voltage Generator, Set VDD Reference, Set Contrast Level

* No need to resend the command again if it is set previously

Commands Required for R/W Actions on RAM

R/W Actions on RAMs	Commands Required	
Read/Write Data from/to GDDRAM.	Set GDDRAM Page Address Set GDDRAM Column Address Read/Write Data	$\begin{aligned} & \left(000000 x_{1} x_{0}\right)^{*} \\ & \left(1 x_{6} x_{5} x_{4} x_{3} x_{2} x_{1} x_{0}\right)^{*} \\ & \left(x_{7} x_{6} x_{5} x_{4} x_{3} x_{2} x_{1} x_{0}\right) \end{aligned}$
Save/Restore GDDRAM Column Address.	Save/Restore GDDRAM Column Address.	(0011010 ${ }_{0}$)
Increase GDDRAM Address.	Dummy Read Data	$\left(\mathrm{X}_{7} \mathrm{X}_{6} \mathrm{X}_{5} \mathrm{X}_{4} \mathrm{X}_{3} \mathrm{X}_{2} \mathrm{X}_{1} \mathrm{X}_{0}\right)$
Master Clear GDDRAM	Master Clear GDDRAM Dummy Write Data	$\begin{aligned} & (00110110) \\ & \left(x_{7} x_{6} x_{5} x_{4} x_{3} x_{2} x_{1} x_{0}\right) \end{aligned}$

*No need to resend the command again if it is set previously.

Display Output Description by Working Example

This is an example of output pattern on the LCD panel. Figure 9b and 9 c are data map of GDDRAM and the output pattern on the LCD display with different command enable.

Figure 9a

Figure 9b

Column remap disable Row re-map disable

Column remap enable Row re-map disable

Column remap disable Row re-map enable

Column remap disable Row re-map disable Scroll Value $=31$

Figure 9c. Examples of LCD display with different command enabled

PACKAGE DIMENSIONS MC141539T1
 TAB PACKAGE DIMENSION - 1

PACKAGE DIMENSIONS

 MC141539T1TAB PACKAGE DIMENSION-2

DETAIL A

DETAIL B

PACKAGE DIMENSIONS

MC141539T2
TAB PACKAGE DIMENSION - 1 98ASL00244A ISSUEO

PACKAGE DIMENSIONS

MC141539T2
TAB PACKAGE DIMENSION - 2

DETAIL D

DETAIL C.

FLEX MATERIAL DETAIL

DETAIL A

DETAIL B

Application Circuit

32 MUX Display with Analog Circuitry enabled, Tripler enabled and $1 / 7$ bias

Remark:

1. VR and VF can be left open Regulator Disable.
2. $\overline{\mathrm{CS}}$ pin low at Standby Mode.

Application Circuit

16 MUX Display with Analog Circuitry enabled, Tripler disabled and $1 / 5$ bias

Remark:

1. VR and VF can be left open Regulator Disable.
2. CS pin low at Standby Mode.

Application Circuit

16/32 MUX Display with Analog Circultry disabled

Remark:

1. VR and VF can be left open Regulator Disable.
2. $\overline{C S}$ pin low at Standby Mode.

64 Lines 32 MUX Display Application - 1

Remark:

1. $\overline{C S}$ pin low at Standby Mode.
2. Two CE signal are needed

64 Lines 32 MUX Display Application - 2

64 lines 32 MUX Display Operation
Master Chip -- analog circuitry enabled, Slave Chip -- analog circuitry disable.

Pin	Name	x (um)	y (um)	Pin	Name	x (um)	y (um)	Pin	Name	x (um)	y (um)	Pin	Name	x (um)	y (um)
1	DUMMY	-2730.23	-1862.58	53	DUMMY	2986.27	-1763.79	95	DUMMY	2943.72	1715.32	173	DUMMY	-3098.75	1470.75
2	DUMMY	-2569.28	-1862.58	54	COMO	2986.27	-1687.2	96	SEG6	2857.51	1715.32	174	DUMMY	-3098.75	1351.24
3	ANNUNO	-2413.88	-1750.84	55	COM1	2986.27	-1610.98	97	SEG7	2781.29	1715.32	175	DUMMTY	-3098.75	1275.02
4	ANNUN1	-2312.5	-1750.84	56	COMM2	2986.27	-1534.76	98	SEG8	2705.07	1715.32	176	SEG82	-2986.27	1150.7
5	ANNUN2	-2211.12	-1750.84	57	Соा\3	2986.27	-1458.54	99	SEG9	2628.85	1715.32	177	SEG83	-2986.27	1074.48
6	ANNUN3	-2109.74	-1750.84	58	COM4	2986.27	-1382.32	100	SEG10	2552.63	1715.32	178	SEG84	-2986.27	998.26
7	BP	-2008.36	-1750.84	59	COM5	2986.27	-1306.1	101	SEG11	2476.41	1715.32	179	SEG85	-2986.27	922.04
8	DVDD	-1906.98	-1750.84	60	COM6	2986.27	-1229.88	102	SEG12	2400.19	1715.32	180	SEG86	-2986.27	845.82
9	RESET\#	-1805.6	-1750.84	61	COM7	2986.27	-1153.66	103	SEG13	2323.97	1715.32	181	SEG87	$\cdot 2986.27$	769.6
10	DVSS	-1704.22	-1750.84	62	COM8	2986.27	-1077.44	104	SEG14	2247.75	1715.32	182	SEG88	- 2986.27	693.38
11	D/C\#	-1602.84	-1750.84	63	COM9	2986.27	-1001.22	105	SEG15	2171.53	1715.32	183	SEG89	-2986.27	617.16
12	R $/$ \#	-1501.46	-1750.84	64	COM10	2986.27	-925	106	SEG16	2095.31	1715.32	184	SEG90	-2986.27	540.94
13	CS\#	-1400.08	-1750.84	65	COM11	2986.27	-848.78	107	SEG17	2019.09	1715.32	185	SEG91	-2986.27	464.72
14	DVSS	-1298.7	-1750.84	66	COM12	2986.27	-772.56	108	SEG18	1942.87	1715.32	186	SEG92	-2986.27	388.5
15	D0	-1197.32	-1750.84	67	COM13	2986.27	-696.34	109	SEG19	1866.65	1715.32	187	SEG93	-2986.27	312.28
16	D1	-1095.94	-1750.84	68	COM14	2986.27	-620.12	110	SEG20	1790.43	1715.32	188	SEG94.	-2986.27	236.06
17	D2	-994.56	-1750.84	69	COM15	2986.27	-543.9	111	SEG21	1714.21	1715.32	189	SEG95	-2986.27	159.84
18	D3	-893.18	-1750.84	70	COM16	2986.27	-467.68	112	SEG22	1637.99	1715.32	190	SEG96	-2986.27	83.62
19	D4	-791.8	-1750.84	71	COM17	2986.27	-391.46	113	SEG23	1561.77	1715.32	191	SEG97	-2986.27	7.4
20	D5	-690.42	-1750.84	72	COM18	2986.27	-315.24	114	SEG24	1485.55	1715.32	192	SEG98	-2986.27	-68.82
21	D6	-589.04	-1750.84	73	COM19	2986.27	-239.02	115	SEG25	1409.33	1715.32	193	SEG99	-2986.27	-145.04
22	D7	-487.66	-1750.84	74	COM20	2986.27	-162.8	116	SEG26	1333.11	1715.32	194	SEG100	-2986.27	-221.26
23	CE	-386.28	-1750.84	75	COM21	2986.27	-86.58	117	SEG27	1258.37	1715.32	195	SEG101	-2986.27	-297.48
24	AVSS	-284.9	-1750.84	76	COM22	2986.27	-10.36	118	SEG28	1180.67	1715.32	196	SEG102	-2986.27	-373.7
25	AVDD	-183.52	-1750.84	77	C0M23	2986.27	65.86	119	SEG29	1104.45	1715.32	197	SEG103	-2986.27	-449.92
26	C1P	-82.14	-1750.84	78	COM24	2986.27	142.08	120	SEG30	1028.23	1715.32	198	SEG104	-2986.27	-526.14
27	CIN	19.24	1750.84	79	COM25	2986.27	218.3	121	SEG31	952.01	1715.32	199	SEG105	-2986.27	-602.36
28	C2P	120.62	-1750.84	80	COM26	2986.27	294.52	122	SEG32	875.79	1715.32	200	SEG106	$\cdot 2986.27$	-678.58
29	C 2 N	222	-1750.84	81	COM27	2986.27	370.74	123	SEG33	799.57	1715.32	201	SEG107	-2986.27	-754.8
30	VLL2	323.38	-1750.84	82	C0M28	2986.27	446.96	124	SEG34	723.35	1715.32	202	SEG108	-2986.27	-831.02
31	VLL3	424.76	-1750.84	83	C0M29	2986.27	523.18	125	SEG35	647.13	1715.32	203	SEG109	-2986.27	-907.24
32	AVSS	526.14	-1750.84	84	COM30	2986.27	599.4	126	SEG36	570.91	1715.32	204	SEG110	-2986.27	-983.46
33	AVSS	627.52	-1750.84	85	COM31	2986.27	675.62	127	SEG37	494.69	1715.32	205	SEG171	-2986.27	-1059.68
34	VLL4	728.9	-1750.84	86	SEGO	2986.27	769.6	128	SEG38	418.47	1715.32	206	SEG112	-2986.27	-1135.9
35	VLL5	830.28	-1750.84	87	SEG1	2986.27	845.82	129	SEG39	342.25	1715.32	207	SEG113	-2986.27	-1212.12
36	VLL6	931.66	-1750.84	88	SEG2	2986.27	922.04	130	SEG40	266.03	1715.32	208	SEG114	-2986.27	-1288.34
37	DUM1	1033.04	-1750.84	89	SEG3	2986.27	998.26	131	SEG41	189.81	1715.32	209	SEG115	-2986.27	-1364.56
38	OSC1	1134.42	-1750.84	90	SEG4	2986.27	1074.48	132	SEG42	113.59	1715.32	210	SEG116	-2986.27	-1440.78
39	DUM2	1235.8	-1750.84	91	SEG5	2986.27	1150.7	133	SEG43	37.37	1715.32	211	SEG117	-2986.27	-1517
40	CPLUS	1337.18	-1750.84	92	DUMMY	3098.75	1275.02	134	SEG44	-38.85	1715.32	212	SEG118	-2986.27	-1593.22
41	CMINUS	1438.56	-1750.84	93	DUMMY	3098.75	1351.24	135	SEG45	-115.07	1715.32	213	SEG119	-2986.27	-1669.44
42	VCC	1539.94	-1750.84	94	DUMMY	3098.75	1470.75	136	SEG46	-191.29	1715.32	214	DUMMY	-2986.27	-1746.03
43	VF	1641.32	-1750.84					137	SEG47	-267.51	1715.32				
44	VR	1742.7	-1750.84					138	SEG48	-343.73	1715.32				
45	AVSS	1844.08	-1750.84					139	SEG49	-419.95	1715.32				
46	OSC2	1945.46	-1750.84					140	SEG50	-496.17	1715.32				
47	AVSS	2046.84	-1750.84					141	SEG51	-572.39	1715.32				
48	AVSS	2148.22	-1750.84					142	SEG52	-648.61	1715.32				
49	AVSS	2249.6	-1750.84					143	SEG53	. 724.83	1715.32				
50	AVSS	2350.98	-1750.84					144	SEG54	-801.05	1715.32				
51	DUMMM	2569.65	-1867.39					145	SEG55	-877.27	1715.32				
52	DUMMY	2730.6	-1867.39					146	SEG56	-953.49	1715.32				
								147	SEG57	-1029.71	1715.32				
								148	SEG58	-1105.93	1715.32				
								149	SEG59	-1182.15	1715.32				
								150	SEG60	-1258.37	1715.32				
								151	SEG61	-1334.59	1715.32				
								152	SEG62	-1410.81	1715.32				
								153	SEG63	-1487.03	1715.32				
								154	SEG64	-1563.25	1715.32				
								155	SEG65	-1639.47	1715.32				
								156	SEG66	-1715.69	1715.32				
								157	SEG67	-1791.91	1715.32				
								158	SEG68	-1868.13	1715.32				
								159	SEG69	-1944.35	1715.32				
								160	SEG70	-2020.57	1715.32				
								161	SEG71	-2096.79	1715.32				
								162	SEG72	-2173.01	1715.32				
								163	SEG73	-2249.23	1715.32				
								164	SEG74	-2325.45	1715.32				
								165	SEG75	-2401.67	1715.32				
								166	SEG76	-2477.89	1715.32				
								167	SEG77	-2554.11	1715.32				
								168	SEG78	-2630.33	1715.32				
 Bump Size : $75 \mathrm{um} \times 75$ um for $1-52$ $49 \mathrm{um} \times 107 \mathrm{um}$ for $95-172$ $107 \mathrm{um} \times 49 \mathrm{um}$ for $54-94,173-214$ Die Size : 260×164 mil $(6604.13 \times 4165.60 \mathrm{um})$								169	SEG79	-2706.55	1715.32				
								170	SEG80	-2782.77	1715.32				
								171	SEG81	-2858.99	1715.32				
								172	DUMMY	-2943.72	1715.32				

Product Preview

LCD Segment / Common Driver CMOS

MC141800A is a CMOS LCD Driver which consists of 193 high voltage LCD driving signals to drive 128 Segment and 65 Common display. It has 6800 -series parallel, IIC serial interface and Serial Peripheral interface (SPI) capability for operating with general MCU. Besides the general LCD driver features, it has on chip LCD Smart Bias Divider circuit such that minimize external component required in applications.

MC141800AT : TAB (Tape Automated Bonding)
MCC141800AZ : Gold Bump Die

- Single Supply Operation, $2.4 \mathrm{~V}-3.5 \mathrm{~V}$
- Maximum 16.5V LCD Driving Output Voltage
- Low Current Stand-by Mode (<1uA)
- On Chip Internal DC/DC Converter / External Power Supply
- Smart Bias Divider
- 4X / 5X DC-DC Converter
- 8 bit 6800 -series Parallel Interface, 1 MHz IIC Serial Interface and Serial Peripheral Interface (SPI)
- On chip Oscillator
- Graphic Mode Operation
- On Chip 128×65 Display Data RAM
- Master Clear RAM
- Low Power Smart Icon Mode (128 icons, <25uA)
- Display Masks for Implementation of Blinking Effect
- 1 to 65 Selectable Multiplex Ratio
- 1:7 / 1:9 Bias Ratio
- Re-mapping of Row and Column Drivers
- 16 level Internal Contrast Control
- External Contrast Control
- Built-in Temperature Compensation Circuit
- Selectable Display Waveform : Type B or Type C Waveform
- 2 V Icon Mode Display On

Block Diagram

6LZ－E

Die Pad Layout for MC141800A

[^1]MAXIMUM RATINGS* (Voltages Referenced to $\mathrm{V}_{\mathrm{SS}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Symbol	Parameter	Value	Unit
$\mathrm{AV}_{\mathrm{DD}}, \mathrm{D} \mathrm{V}_{\mathrm{DD}}$	Supply Voltage	-0.3 to +4.0	V
$\mathrm{~V}_{\mathrm{CC}}$		$\mathrm{V}_{\mathrm{SS}^{-}-0.3 \text { to } \mathrm{V}_{\mathrm{SS}}+16.5}$	V
$\mathrm{~V}_{\text {in }}$	Input Voltage	$\mathrm{V}_{\mathrm{SS}^{-}-0.3 \text { to } \mathrm{V}_{\mathrm{DD}}+0.3}$	V
I	Current Drain Per Pin Excluding V_{DD} and V_{SS}	25	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature	-30 to +85	C
$\mathrm{T}_{\mathrm{stg}}$	Storage Temperature Range	-65 to +150	C

* Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Description section.
$V_{S S}=A V_{S S}=D V_{S S}$ ($D V_{S S}=V_{S S}$ of Digital circuit, $A V_{S S}=V_{S S}$ of Analogue Circuit)
$V_{D D}=A V_{D D}=D V_{D D}\left(D V_{D D}=V_{D D}\right.$ of Digital circuit, $A V_{D D}=V_{D D}$ of Analogue Circuit)

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions to be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended that $V_{\text {in }}$ and $V_{\text {out }}$ be constrained to the range $V_{S S}<$ or $=\left(V_{\text {in }}\right.$ or $\left.V_{\text {out }}\right)<$ or $=V_{D D}$. Reliability of operation is enhanced if unused input are connected to an appropriate logic voltage level (e.g., either $\mathrm{V}_{S S}$ or V_{DD}). Unused outputs must be left open. This device may be light sensitive. Caution should be taken to avoid exposure of this device to any light source during normal operation. This device is not radiation protected.

ELECTRICAL CHARACTERISTICS (Voltage Referenced to $\mathrm{V}_{\mathrm{SS}}, \mathrm{V}_{\mathrm{DD}}=2.4$ to $3.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Symbol	Parameter	Test Condition	Min	Typ	Max	Unit
$\begin{aligned} & \mathrm{DV}_{\mathrm{DD}} \\ & \mathrm{AV}_{\mathrm{DD}} \end{aligned}$	Logic Circuit Supply Voltage Range Voltage Generator Circuit Supply Voltage Range	(Absolute value referenced to V_{SS})	$\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$	3.0	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	V
${ }^{\prime}{ }_{\text {A }}$	Access Mode Supply Current Drain $\left(A V_{D D}+D V_{D D} \text { Pins }\right)$	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$, Internal DC/DC Converter On, 5XDC/DC Converter Enabled, R \bar{W} accessing, $T_{c y c}=1 \mathrm{MHz}$, Osc. Freq. $=50 \mathrm{KHz}$, Display On.	-	500	TBD	$\mu \mathrm{A}$
$I_{\text {DP }}$	Display Mode Supply Current Drain ($A V_{D D}+D V_{D D}$ Pins)	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$, Internal $\mathrm{DC} / \mathrm{DC}$ Converter On, 5 X Converter Enabled, R/W Halt, Osc. Freq. $=50 \mathrm{KHz}$, Display On.	-	300	TBD	$\mu \mathrm{A}$
$I_{\text {SB }}$	Standby Mode Supply Current Drain $\left(A V_{D D}+D V_{D D}\right.$ Pins $)$	$V_{D D}=3.0 \mathrm{~V}$, Display off, Oscillator Disabled, $\mathrm{R} / \overline{\mathrm{W}}$ halt.	-	TBD	1	$\mu \mathrm{A}$
I'CON	Icon Mode Supply Current Drain $\left(A V_{D D}+D V_{D D} \text { Pins }\right)$	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$, Internal Oscillator, Oscillator Enabled, Display On, Icon On, R \bar{W} halt, Freq. $=50 \mathrm{KHz}$.	-	TBD	25	$\mu \mathrm{A}$
V_{cc}	LCD Driving Internal DC/DC Converter Output ($V_{C C}$ Pin)	Display On, DC/DC Converter Enabled, Osc. Freq.= 50 KHz , Internal Regulator Enabled, Divider Enabled.	7	15	16.5	V
$\mathrm{V}_{\text {LCD }}$	LCD Driving Voltage Input (VCC ${ }_{\text {Cin }}$)	Internal DC/DC Converter Disabled.	7	15	16.5	V
$\mathrm{V}_{\text {ICON }}$	Low Power Icon mode Voltage		-	2		V
$\mathrm{V}_{\text {OH1 }}$	Output High Voltage (D0-D7, OSC2)	$\mathrm{I}_{\text {out }}=100 \mu \mathrm{~A}$	$0.9{ }^{*} V_{D D}$	-	V_{DD}	V
$\mathrm{V}_{\mathrm{OL} 1}$	Output Low Voltage (D0-D7, OSC2)	$\mathrm{I}_{\text {out }}=100 \mu \mathrm{~A}$	0	-	$0.1 * V_{\text {DD }}$	v
$\mathrm{V}_{\mathrm{R} 1}$	LCD Driving Voltage Source ($\mathrm{V}_{\mathrm{R}} \mathrm{Pin}$)	Internal Regulator Enabled (V_{R} voltage depends on Int/Ext Contrast Control)	0	-	$\mathrm{V}_{\mathrm{CC}}-0.5$	v
$\mathrm{V}_{\mathrm{R} 2}$	LCD Driving Voltage Source ($\mathrm{V}_{\mathrm{R}} \mathrm{Pin}$)	Internal Regulator Disable.	-	Floating	-	v

ELECTRICAL CHARACTERISTICS (Voltage Referenced to $\mathrm{V}_{\mathrm{SS}}, \mathrm{V}_{\mathrm{DD}}=2.4$ to $3.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Symbol	Parameter	Test Condition	Min	Typ	Max	Unit
$\begin{aligned} & \mathrm{V}_{\mathrm{IH}:} \\ & \mathrm{V}_{\mathrm{LL} 1} \end{aligned}$	```Input high voltage (RES, OSC2, CLK, \(\overline{C E}, D O-D 7, R / \bar{W}, D / \bar{C}, S / \bar{P}\), OSC1) Input Low voltage (\(\overline{R E S}, \mathrm{OSC2}, \mathrm{CLK}, \overline{\mathrm{CE}}, \mathrm{DO}-\mathrm{D} 7, \mathrm{R} / \bar{W}, \mathrm{D} / \overline{\mathrm{C}}, \mathrm{S} / \overline{\mathrm{P}}\), OSC1)```		$\begin{gathered} 0.8^{*} \mathrm{~V}_{\mathrm{DD}} \\ 0 \end{gathered}$	-	$\begin{gathered} \mathrm{V}_{\mathrm{DD}} \\ 0.2^{*} \mathrm{~V}_{\mathrm{DD}} \end{gathered}$	V
$\mathrm{V}_{\mathrm{LL} 6}$ $V_{\text {LLL5 }}$ $\mathrm{V}_{\text {LL4 }}$ $V_{\text {LL3 }}$ $V_{\text {LL2 }}$	$\begin{aligned} & \text { LCD Display Voltage Output } \\ & \left(V_{\text {LL6 } 6}, V_{\text {LL5 } 5}, V_{\text {LL4 } 4}, \mathrm{~V}_{\mathrm{LL} 3}, \mathrm{~V}_{\mathrm{LL} 2} \text { Pins }\right) \end{aligned}$	Smart Bias Divider Enabled, 1:9 bias ratio	-	$\begin{gathered} V_{R} \\ 8 / 9^{*} V_{R} \\ 7 / 9^{*} V_{R} \\ 2 / 9^{*} V_{R} \\ 1 / 9^{*} V_{R} \end{gathered}$	-	$\begin{aligned} & \hline V \\ & v \\ & V \\ & V \\ & V \end{aligned}$
$\mathrm{V}_{\mathrm{LL} 6}$ $V_{\text {LL5 }}$ $\mathrm{V}_{\mathrm{LL} 4}$ $V_{\text {LL3 }}$ $\mathrm{V}_{\mathrm{LL} 2}$	LCD Display Voltage Output ($\mathrm{V}_{\mathrm{LL} 6}, \mathrm{~V}_{\mathrm{LL} 5}, \mathrm{~V}_{\mathrm{LL} 4}, \mathrm{~V}_{\mathrm{LL} 3}, \mathrm{~V}_{\mathrm{LL} 2}$ Pins $)$	Smart Bias Divider Enabled, 1:7 bias ratio		V_{F} $6 / 7^{*} V_{R}$ $5 / 7^{*} V_{\mathrm{B}}$ $2 / 7^{*} V_{\text {R }}$ $1 / 7^{*} V_{R}$		$\begin{aligned} & V \\ & V \\ & V \\ & V \\ & v \end{aligned}$
$\begin{aligned} & \mathrm{V}_{\mathrm{LL} 6} \\ & \mathrm{~V}_{\mathrm{LL5}} \\ & \mathrm{~V}_{\mathrm{LL4} 4} \\ & \mathrm{~V}_{\mathrm{LL} 3} \\ & \mathrm{~V}_{\mathrm{LL} 2} \end{aligned}$	LCD Display Voltage Input $\left(\mathrm{V}_{\mathrm{LL} 6}, \mathrm{~V}_{\mathrm{LL} 5}, \mathrm{~V}_{\mathrm{LL} 4}, \mathrm{~V}_{\mathrm{LL} 3}, \mathrm{~V}_{\mathrm{LL} 2} \text { Pins }\right)$	External Voltage Generator, Smart Bias Divider Disable	$\begin{aligned} & 7 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	-	$V_{c c}$ $\mathrm{V}_{\mathrm{LL} 6}$ $V_{\text {LL5 }}$ $V_{\text {LL4 }}$ $V_{\text {LL3 }}$	$\begin{aligned} & V \\ & V \\ & V \\ & V \\ & V \end{aligned}$
${ }^{1} \mathrm{OH}$	Output High Current Source (D0-D7, OSC2)	$V_{\text {out }}=V_{\text {DD }}-0.4 \mathrm{~V}$	50	-	-	$\mu \mathrm{A}$
lOL	Output Low Current Drain (D0-D7, OSC2)	$\mathrm{V}_{\text {out }}=0.4 \mathrm{~V}$	-	-	-50	$\mu \mathrm{A}$
loz	Output Tri-state Current Drain Source (D0-D7, OSC2)		-1	-	1	$\mu \mathrm{A}$
$\mathrm{ILL} I_{\text {IH }}$	```Input Current (\overline{RES}, OSC2, CLK, DO-D7, R/\overline{W},D/\overline{C}, S/\overline{P}, OSC1)```		-1	-	1	$\mu \mathrm{A}$
$\mathrm{C}_{\text {IN }}$	$\begin{array}{\|l\|} \hline \text { Input Capacitance } \\ \text { (OSC1, OSC2, all logic pins) } \end{array}$	-	-	5	7.5	pF
V_{CN}	Internal Contrast Control (V_{R} Output Voltage)	Internal Regulator Enabled, Internal Contrast control Enabled. (16 Voltage Levels Controlled by Software. Each level is typically 1.5% of the Internal Regulator Output Voltage.)	-	± 12	-	\%
PTCO PTC1 PTC2 PTC3	Temperature Coefficient Compensation Flat Temperature Coefficient Temperature Coefficient 1^{*} Temperature Coefficient $\mathbf{2}^{*}$ Temperature Coefficient 3^{*}	($\mathrm{TC} 1=0, \mathrm{TC} 2=0$, Internal Regulator Disabled.) ($\mathrm{TC} 1=0, \mathrm{TC} 2=1$, Internal Regulator Enabled.) (TC1=1, TC2 $=0$, Internal Regulator Enabled.) (TC1=1, TC2=1, Internal Regulator Enabled.)		$\begin{gathered} 0.0 \\ -0.18 \\ -0.22 \\ -0.35 \end{gathered}$	-	$\begin{aligned} & \% \\ & \% \\ & \% \\ & \% \end{aligned}$

* The formula for the temperature coefficient is:
$\mathrm{TC}(\%)=\frac{\text { VR at } 50^{\circ} \mathrm{C}-\text { VR at } 0^{\circ} \mathrm{C}}{50^{\circ} \mathrm{C} \cdot 0^{\circ} \mathrm{C}} \times \frac{1}{\text { VR at } 25^{\circ} \mathrm{C}} \times 100 \%$

AC ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$, Voltage referenced to $\left.\mathrm{V}_{S S}, A V_{D D}=D V_{D D}=3 V\right)$

Figure 1. Internal Oscillator Frequency Relationship with External Resistor Value

TABLE 3. Parallel Timing Characteristics ($\mathrm{T}_{\mathrm{A}}=-30$ to $85^{\circ} \mathrm{C}, \mathrm{DV} \mathrm{VD}_{\mathrm{D}}=2.4$ to $3.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{OV}$)

Symbol	Parameter	Min	Typ	Max	Unit
$\mathrm{t}_{\text {cycle }}$	Clock Cycle Time	1000	-	-	ns
t_{AS}	Address Setup Time	90	-	-	ns
t_{AH}	Address Hold Time	60	-	-	ns
$\mathrm{t}_{\mathrm{DSW}}$	Write Data Setup Time	210	-	-	ns
$\mathrm{t}_{\mathrm{DHW}}$	Write Data Hold Time	75	-	-	ns
$\mathrm{t}_{\mathrm{DSR}}$	Read Data Setup Time	250	-	-	ns
$\mathrm{t}_{\mathrm{DHR}}$	Read Data Hold Time	75	-	-	ns
$\mathrm{t}_{\mathrm{ACC}}$	Access Time	-	-	250	ns
$\mathrm{PW}_{\mathrm{EL}}$	Enable Low Pulse Width	390	-	-	ns
$\mathrm{PW}_{\mathrm{EH}}$	Enable High Pulse Width	390	-	-	ns
t_{R}	Rise Time	-	-	45	ns
t_{F}	Fall Time	-	-	45	ns

Figure 2. Parallel 6800-series Interface Timing Characteristics

TABLE 4. IIC Serial Timing Characteristics ($T_{A}=-30$ to $85^{\circ} \mathrm{C}, \mathrm{DV} \mathrm{VD}_{\mathrm{DD}}=2.4$ to $3.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$)

Symbol	Parameter	100kHz			400kHz			1MHz			UnIt
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
${ }^{\text {chacle }}$	Clock Cycle Time	10	-	-	2.5	-	-	1	-	-	$\mu \mathrm{s}$
${ }^{\text {thetart }}$	Start condition Hold Time	4.0	-	-	0.6	-	-	0.3	-	-	$\mu \mathrm{s}$
t_{HD}	Data Hold Time	500	-	-	300	-	-	150	-	-	ns
$\mathrm{t}_{\text {SD }}$	Data Setup Time	250	-	-	100	-	-	50	-	-	ns
$\mathrm{t}_{\text {SStart }}$	Start condition Setup Time (Only relevant for a repeated Start condition)	4.7	-	\cdot	0.6	-	\cdot	0.3	-	-	$\mu \mathrm{s}$
${ }^{\text {t SSTOP }}$	Stop condition Setup Time	4.0	-	-	0.6	-	-	0.3	-	-	$\mu \mathrm{s}$
t_{R}	Rise Time for data and clock pin	-	-	1000	-	-	300	-	-	150	ns
t_{F}	Fall Time for data and clock pin	-	-	300	-	\bullet	300	-	-	150	ns
tidLe	Idle Time before a new transmission can start	4.7	-	-	1.3	-	-	0.6	-	-	$\mu \mathrm{s}$

Figure 3. IIC Serial Interface Timing Characteristics

Figure 4. IIC Serial Interface Input Protocol (Write Data to Driver)

Figure 5. IIC Serial Interface Output Protocol (Read Data from Driver)

TABLE 5. SPI Timing Characteristics $\left(T_{A}=-30\right.$ to $85^{\circ} \mathrm{C}, \mathrm{DV} V_{D D}=2.4$ to $3.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$)

Symbol	Parameter	Min	Typ	Max	Unit
$\mathrm{t}_{\text {cycle }}$	Clock Cycle Time	1000	-	-	ns
$\mathrm{t}_{\text {LEAD }}$	Enable Lead Time	500	-	-	ns
$\mathrm{t}_{\text {LAG }}$	Enable Lag Time	500	-	-	ns
$\mathrm{t}_{\text {DSW }}$	Write Data Setup Time	100	-	-	ns
$\mathrm{t}_{\text {DHW }}$	Write Data Hold Time	100	-	-	ns
$\mathrm{t}_{\text {DVR }}$	Read Data Valid Time	-	-	240	ns
$\mathrm{t}_{\text {DHR }}$	Read Data Hold Time	10	-	-	ns
$\mathrm{t}_{\text {ACC }}$	Access Time	-	-	120	ns
$\mathrm{t}_{\text {DIS }}$	Disable Time	-	-	240	ns
$\mathrm{t}_{\text {CLKL }}$	Clock Low Time	380	-	-	ns
$\mathrm{t}_{\text {CLKH }}$	Clock High Time	380	-	-	ns
t_{R}	Rise Time	-	-	100	ns
t_{F}	Fall Time	-	-	100	ns

Figure 6. SPI Timing Characteristics

PIN DESCRIPTIONS

$\mathbf{S} / \overline{\mathbf{P}}$ (Serial / Parallel Interface)

This pin is an input pin. The pin is sampled out when reset to determine what type of interface is desired. The $\mathrm{S} / \overline{\mathrm{P}}$ pin input HIGH for serial interface while input LOW for parallel interface.

D/C (Data / Command)

If parallel interface is selected, this input pin acknowledges the LCD driver the input at DO-D7 is data or command. Input High for data while input Low for command. If serial interface is selected, float this pin.

CLK (Input Clock)

This pin is normal Low clock input. If parallel interface is selected, data on DO-D7 are latched at the falling edge of CLK. If IIC serial interface is selected, data on SDA is latched at the falling edge of CLK. If SPI is selected, data on Din and Dout are latched at the falling edge of CLK.

$\overline{\text { RES }}$ (Reset)

A Low input pulse to this pin resets the internal status of the driver (same as power on reset). The minimum pulse width is $10 \mu \mathrm{~s}$.

$\overline{C E}$ (Chip Enable)

If parallel interface is selected, this input pin is used for chip enable. If IIC serial interface is selected, leave this pin float and it will be internally tied to VDD.

D0 - D7 (Data)

This bi-directional bus is used for data / command transferring. If parallel interface is selected, DO - D7 are connected directly to MCU for data transfer. When serial interface is selected, D7 (IIC/SPI) is an input pin to determine which type of serial interface is desireds The IIC/SPI pin HIGH indicates IIC interface is used. The IIC/SPI pin LOW indicates SPI is used.

When IIC serial interface is selected, DO (SDA) is connected directly to MCU for data transfer, D1 (A1) and D2 (A2) are used to define the 2 bit programmable address. The address of this device is 0111 xyab where $\mathrm{x}, \mathrm{y}, \mathrm{a}, \mathrm{b}$ represent $\mathrm{A} 2, \mathrm{~A} 1, \mathrm{D} / \overline{\mathrm{C}}$ and R / \bar{W} respectively.

When SPI is selected, D3 (Din) is used to write data / command from MCU to driver and D4 (Dout) is used to read data / command to MCU from driver.

R/W (Read / Write)

If parallel interface is selected, this is an input pin. To read the display data RAM or the internal status (Busy / Idle), pull this pin High. The R / \bar{W} input Low indicates a write operation to the display data RAM or to the internal setup registers. If serial interface is selected, let this pin float.

OSC1 (Oscillator Input)

For internal oscillator mode, this is an input for the internal low power RC oscillator circuit. In this mode, an external resistor of certain value should be connected between the OSC1 and OSC2 pins for a range of internal operating frequencies (refer to Figure 1). For external oscillator mode, OSC1 should be left open.

OSC2 (Oscillator Output / External Oscillator Input)

For internal oscillator mode, this is an output for the internal low power RC oscillator circuit. For external oscillator mode, OSC2 will be an input pin for external clock and no external resistor is needed.

VLL6-VLL2

Group of voltage level pins for driving the LCD panel. They can either be connected to external driving circuit for external bias supply or connected internally to built-in divider circuit if internal divider is enable.

C1N and C1P, C2N and C2P, C3N and C3P

If Internal $D C / D C$ Converter is enabled, a $0.1 \mu \mathrm{~F}$ capacitor is required to connect these three pair of pins.

V_{R} and V_{F}

This is a feedback path for the gain control (external contrast control) of VLL1 to VLL6. For adjusting the LCD driving voltage, it requires a feedback resistor placed between V_{R} and V_{F}, a gain control resistor placed between V_{F} and AVSS, a $10 \mu \mathrm{~F}$ capacitor placed between V_{R} and AVSS. (Refer to the Application Circuit)

COM0-COM63, COM64A and COM64B (Row Drivers)

These pins provide the row driving signal to LCD panel. Output is OV during display off. COM64A and COM64B are icon lines with same signal output so as to provide the flexability to have the icon line on top or bottom of panel, or both top and bottom of the panel. COM64A/B also serves as the common driving signal in the icon mode.
COM64A/B is special design icon line (128 icons). There are some special commands to program it separately (e.g. Set Icon Mask, Smart Icon Mode, Low Power Icon Mode)

SEG0-SEG127 (Column Drivers)

These 128 pins provide LCD column driving signal to LCD panel. They output OV during display off.

AVDD and AVSS

AVDD is the positive supply to the LCD bias Internal DC/DC Converter. AVSS is ground.

VCC

For using the Internal DC/DC Converter, a $0.1 \mu \mathrm{~F}$ capacitor from this pin to AVSS is required. It can also be an external bias input pin if Internal DC/DC Converter is not used. Power is supplied to the LCD Driving Level Selector and HV Buffer Cell with this pin. Normally, this pin is not intended to be a power supply to other component.

DVDD and DVSS

Power is supplied to the digital control circuit of the driver using these two pins. DVDD is power and DVSS is ground.

OPERATION OF LIQUID CRYSTAL DISPLAY DRIVER

Description of Block Diagram Module

Command Decoder and Command Interface

This module determines whether the input data is interpreted as data or command. Data is directed to this module based upon the input of the D / \bar{C} pin. If D / \bar{C} high, data is written to Graphic Display Data RAM (GDDRAM). D/C low indicates that the input at DO-D7 is interpreted as a Command.
Reset is of same function as Power ON Reset (POR). Once $\overline{\text { RES }}$ received the reset pulse, all internal circuitry will back to its initial status. Refer to Command Description section for more information.

MPU Parallel 6800-series Interface

The parallel interface consists of 8 bi-directional data pins (DOD7), $\mathrm{R} / \bar{W}, \mathrm{D} / \overline{\mathrm{C}}, \overline{\mathrm{CE}}$ and the CLK. The R / \bar{W} input High indicates a read operation from the Graphic Display Data RAM (GDDRAM). R/ W input Low indicates a write operation to Display Data RAM or Internal Command Registers depending on the status of D / \bar{C} input. The CLK input serves as data latch signal (clock). Refer to AC operation conditions and characteristics section for Parallel Interface Timing Description.

MPU Serial IIC Interface

The IIC interface consists of two communication bus : data pin SDA and clock pin CLK. The CLK input serves as data latch signal (clock). Before communication begins, a start condition must be setup on the bus by the controller. To establish a start condition, the controller must pull the data pin low while the clock pin is high.

After the start condition has been established for $\mathrm{t}_{\text {HSTART }}$, an eight-bit address should be sent. The six most significant bits of the address (0111 xy) are used to uniquely define devices on the bus, the 7th bit is used as a data / command control: if it is 0 , then the signal on SDA is interpreted as a command; if it is 1 , then data SDA is written to GDDRAM. The least significant bit is a data direction read / write control; if it is 0 , then the controller writes data / command to the driver; if it is 1 , then the controller reads data / command from LCD driver.
Data is transferred with the most significant bit first. Each byte has to be followed by an acknowledge bit. The transmitter releases the SDA high during the acknowledge clock pulse. The receiver has to pull down the SDA during the acknowledge clock pulse.

To end communication, a stop condition should be set up on the bus. A low to high transition of data pin while the clock pin is high defines a stop condition. However, if a master still wishes to communicate on the bus, another start condition and address can be generated without a stop condition. Refer to AC operation conditions and characteristics section for IIC Serial Interface Timing Description.

MPU Serial Peripheral Interface

The SPI consists of 4 communication bus : data input pin Din, data output pin Dout, clock pin CLK and chip enable pin CE. The CLK input serves as data latch signal (clock).

Data is transferred serially with most significant bit first, least significant bit last. During the communication, the controller must input Low $\overline{\mathrm{CE}}$ before data transactions and must stay low for the rest of the transaction. By default, the LCD driver will receive command from MCU. If messages on the data pin are data rather than command, MCU should send Data Direction command ($0100100 \mathrm{X}_{0}$) to control the data direction and then one more command to define the number of data bytes will be read / write. After these two continuous commands are send, the following messages will be data rather than command. For read operation ($\mathrm{X}_{0}=1$), MCU reads a group of data from LCD driver through Dout pin. For write opearion ($X_{0}=0$), MCU writes a group of data to the LCD driver through Din pin. Refer to AC operation conditions and characteristics section for Serial Peripheral Interface Timing Description.

Figure 7. Graphic Display Data RAM (GDDRAM) Address Map

Graphic Display Data RAM (GDDRAM)

The GDDRAM is a bit mapped static RAM holding the bit pattern to be displayed. The size of the RAM is determined by number of row times the number of column ($128 \times 65=8320$ bits). Figure 7 is a description of the GDDRAM address map. For mechanical flexibility, re-mapping on both Segment and Common outputs are provided.

Display Timing Generator

This module is an on chip low power RC oscillator circuitry (Figure 8). The oscillator frequency can be selected in the range of 15 kHz to 250 kHz by external resistor. One can enable the circuitry by software command. For external clock provided, feed the clock to OSC2 and leave OSC1 open.

Figure 8. Oscillator Circuitry

LCD Driving Voltage Generator and Internal Regulator

This module generates the LCD voltage needed for display output. It takes a single supply input and generate necessary bias voltages. It consists of:

1. 4 X and $5 \mathrm{X} D C-D C$ Converter

To generate the Vcc voltage. 4X DC-DC converter is used for LCD panel which needs lower driving voltage for less power consumption. 5X DC-DC converter is used for LCD panel which needs higher driving voltage.
2. Internal Regulator

Feedback gain control for initial LCD voltage. it can also be used with external contrast control.
3. Smart Bias Divider

Divide the LCD display voltage ($\mathrm{V}_{\mathrm{LL} 2}-\mathrm{V}_{\mathrm{LL} 6}$) from the Internal Regulator output. This is a low power consumption circuit which can save the most display current compare with traditional resistor ladder method.
4. Contrast Control Block

Software control of 16 voltage levels of LCD voltage.
All blocks can be individually turned off if external voltage generator is employed
5. Bias Ratio Selection circuitry

Software control of $1 / 7$ and $1 / 9$ bias ratio to match the characteristic of LCD panel.
6. Self adjust temperature compensation circuitry

Provide 4 different compensation grade selections to satisfy the various liquid crystal temperature grades. The grading can be selected by software control.

65 Bit Latch / 128 Bit Latch

A register carries the display signal information. First 65 bits are Common driving signals and other 128 bits are Segment driving signals. Data will be input to the HV-buffer Cell for bumping up to the required level.

Level Selector

Level Selector is a control of the display synchronization. Display voltage can be separated into two sets and used with different cycles. Synchronization is important since it selects the required LCD voltage level to the HV Buffer Cell for output signal voltage pump.

HV Buffer Cell (Level Shifter)

HV Buffer Cell works as a level shifter which translates the low voltage output signal to the required driving voltage. The output is shifted out with an internal FRM clock which comes from the Display Timing Generator. The voltage levels are given by the level selector which is synchronized with the internal M signal.

LCD Panel Driving Waveform

The following is an example of how the Common and Segment drivers may be connected to a LCD panel. The waveforms shown in Figure $9 \mathrm{a}, 9 \mathrm{~b}$ and 9 c illustrate the desired multiplex scheme.
In order to reduce the crosstalk effect, invert the polarities of the pixel-driving waveforms every 2 or 4 or 8 or 65 lines according to the selected waveforms. In the power-up state, the default waveform will be type " B ".

Figure 9a. LCD Display Example " 0 "

Figure 9b. LCD Driving Signal from MC141800A (Waveform B)

Figure 9c. LCD Driving Signal from MC141800A (Waveform C with polarity inversion every 2 lines)

Command Description

Set Display On / Off (Display Mode / Stand-by Mode)

The Display On command turns the LCD Common and Segment outputs on. This command starts the conversion of data in GDDRAM to necessary waveforms on the Common and Segment driving outputs. The on-chip bias generator is also turned on by this command. (Note : "Oscillator On" command should be sent before "Display On" is selected)

The Display Off command turn the display off and the states of the LCD driver are as follow during display off :

1. All the Common and Segment outputs are fixed at $\mathrm{V}_{\mathrm{LL} 1}\left(\mathrm{~V}_{\mathrm{SS}}\right)$.
2. The bias Internal DC/DC Converter is turned off.
3. The RAM and content of all registers are retained.
4. IC will accept new commands and data.

The Oscillator is not affected by this command.

Set GDDRAM Column Address

This command positions the address pointer on a column location. The address can be set to location 00H-7FH (128 columns). The column address will be increased automatically after a read or write operation. Refer to "Address Increment Table" and command "Set GDDRAM Page Address" for further information.

Set GDDRAM Page Address

This command positions the row address to 1 of 9 possible positions in GDDRAM. Refer to figure 7.

Master Clear GDDRAM

This command is to clear the content of the Display Data RAM to zero. Issue this command followed by a dummy write command. The RAM for icon line will not be affected by this command.

Master Clear Icon

This command is a MASTER clear of the Icon Data RAM. After setting the page pointer to icon page (page 9), the internal icon RAM data will be set to Zero after the command is issued. Before using this command, set the page address to page 9 by the command "Set GDDRAM Page Address". A dummy write data is also needed after the "Master Clear Icon" command to make the clear icon action effective.

Set Page Mask (Display Mask)

The following command will be written to the Page Mask Register. Page Mask is an 8 -bit register. Each bit represents one of the 8 pages : page mask bit 0 represents Page 1, page mask bit 1 represents Page $2, \ldots$ etc.

Page Mask

When the Page Mask is enabled, the display of those pages, with page mask bit set, will be cleared. Meanwhile, the data in the display RAM is retained.

Icon Mask

When the Icon Mask is enabled, the display of the icons will be cleared. Meanwhile, the data in the icon display RAM is retained.

Set Display Mode

This command switch the driver to full display mode or icon display mode. In low power icon mode, only icons (driven by COM64) are displayed. Display on row 0 to row 63 will be disabled. The DC-DC converter and the Internal Regulator are off. All VCC, VLLs pins do not have external bias voltage supply in the low power icon mode. In normal display mode, COMO to COM64 will be turned on.

Set Display Frequency

In half display frequency mode, the display frame frequency will be halved. Also, the operation frequency of analog circuitries will be halved for power saving purpose.

Save / Restore Column Address

Save Column Address command saves a copy of the Column Address of GDDRAM. Restore Column Address command restores the copy obtained from the previous execution of saving column address. This instruction is very useful for writing full graphics characters that are larger than 8 pixels vertically.

Set Column Mapping

This instruction selects the mapping of Display Data RAM to Segment drivers for mechanical flexibility. There are 2 mappings to select:

1. Column 0 - Column 127 of GDDRAM mapped to Seg0-Seg127 respectively;
2. Column 0 - Column 127 of GDDRAM mapped to Seg127-Seg0 respectively.
COM64 will not be affected by this command. Detail information please refer to section "Display Output Description".

Set Row Mapping

This instruction selects the mapping of Display Data RAM to Common Drivers for mechanical flexibility. There are 2 selected mappings:

1. Row 0 - Row x of GDDRAM to Common 0 - Common x respectively;
2. Row 0 - Row x of GDDRAM to Common x - Common 0 respectively.
($x+2$ is the multiplex ratio)
COM64 will not be affected by this command. See section "Display Output Description" for related information.

Set MUX Ratio

This command is to select any a ratio from 2 to 65 . Row 64 (icon line) is not affected by this command and it would be turned on for normal display. This command contain two commands bytes, the first byte inform the driver that the second byte will be the no. of mux ratio.
e.g. second byte $=0 \mathrm{H}$ to turn on Row 0 and 64 (2 MUX)
second byte $=63 \mathrm{H}$ to turn on Row 0 to 64 (65 MUX)
The unused common pins output non-scanning signals.

Set Bias Ratio

This command sets the $1 / 7$ bias or $1 / 9$ bias for the divider output. The selection should match the characteristic of LCD Panel.

Set Oscillator Disable / Enable

This command is used to either turn on / off Oscillator. For using internal or external oscillator, this command should be executed. The setting for this command is not affected by command "Set Display On/ Off". See command "Ext/Int Oscillator" for more information. .

Set Internal / External Oscillator

This command is used to select either internal or external oscillator. When internal oscillator is selected, feedback resistor between OSC1 and OSC2 is needed. For external oscillation circuit, feed clock input signal to OSC2 and leave OSC1 open.

Set Internal DC/DC Converter Enable

Use this command to select the Internal DC/DC Converter to generate the V_{CC} from $\mathrm{AV}_{\mathrm{DD}}$. Disable the Internal DC/DC Converter if external $V \mathrm{Vc}$ is provided.

Set 4X / 5X DC/DC Converter

This command selects the usage of 4 X or 5 X Converter when the Internal DC/DC Converter is enabled.

Set Temperature Coefficient

A temperature gradient selector circuit controlled by two control bits TC1 and TC2. This command can select 4 different LCD driving voltage temperature coefficients to match various liquid crystal temperature grades.

Set Internal Regulator On/Off

Choose bit option 0 to disable the on chip Internal Regulator. Choose bit option 1 to enables Internal Regulator which consists of the internal contrast control circuits.

Set Smart Bias Divider On/Off

If the Smart Bias Divider is disabled, external bias can be used for $\mathrm{V}_{\mathrm{LL} 6}$ to $\mathrm{V}_{\mathrm{LL} 2}$. If the Smart Bias Divider is enabled, the internal circuit will generated the $1: 7$ or $1: 9$ bias driving voltage.

End of Commiand

This command is used as extra write end command follows the last byte of data / command written. This command is not available if serial mode is selected.

Set Internal Contrast Control Enable

This command is used to adjust the delta voltage of the bias voltages. With bit option $=1$, the software selection for delta bias voltage control is enabled. With bit option $=0$, internal contrast control is disabled.

Increase / Decrease Contrast Level

If the internal contrast control is enabled, this command is used to increase or decrease the contrast level within the 16 contrast levels. The contrast level starts from lowest value after POR.

Set Contrast Level

This command is to select one of the 16 contrast levels when internal contrast control circuitry is in use. After power-on reset, the contrast level is lowest.

Set Smart Icon Mode

This command is to set 4-Phase or 6-Phase smart icon modes which for lower VDD or higher Von of panel. Refer to Smart Icon Mode Output Description for detail.

Set Display Waveform Type

This command will select the number of lines for the polarity inversion of the driving waveform. Four types of waveform types are available. Refer to Figure 9.

Set Data Direction

This command is used in SPI mode only. It will be two continuous commands, the first byte control the data direction and inform the LCD driver the second byte will be number of data bytes will be read / write. After these two commands sending out, the following messages will be data.

COMMAND TABLE

Bit Pattern	Command	Comment
$0000 \mathrm{X}_{3} \mathrm{X}_{2} \mathrm{X}_{1} \mathrm{X}_{0}$	Set GDDRAM Page Address	Set GDDRAM Page Address using $X_{3} X_{2} X_{1} X_{0}$ as address bits. $\mathrm{X}_{3} \mathrm{X}_{2} \mathrm{X}_{1} \mathrm{X}_{0}=0000$: page 1 (POR) $X_{3} X_{2} X_{1} X_{0}=0001$: page 2 $X_{3} x_{2} x_{1} X_{0}=0010$: page 3 $X_{3} X_{2} X_{1} X_{0}=0011$: page 4 $X_{3} X_{2} X_{1} X_{0}=0100$: page 5 $X_{3} X_{2} X_{1} X_{0}=0101$: page 6 $X_{3} X_{2} X_{1} x_{0}=0110:$ page 7 $X_{3} X_{2} X_{1} X_{0}=0111$: page 8 $X_{3} X_{2} X_{1} X_{0}=1000$: page 9
$0001 \mathrm{X}_{3} \mathrm{X}_{2} \mathrm{X}_{1} \mathrm{X}_{0}$	Set Contrast Level	With $\mathrm{R} / \overline{\mathrm{W}}$ pin input low, set one of the 16 available values to the internal contrast register, using $X_{3} X_{2} X_{1} X_{0}$ as data bits. The contrast register is reset to 0000 during POR.
0010000 ${ }_{0}$	Set 4X / 5X DC-DC Converter	$\mathrm{X}_{0}=0$: enable 4 X Converter (POR) $X_{0}=1$: enable $5 X$ Converter
$0010001 \mathrm{X}_{0}$	Set Segment Mapping	$\mathrm{X}_{0}=0$: Colo to Sego (POR) $\mathrm{X}_{0}=1$: Col0 to Seg127
0010010X 0	Set Common Mapping	$\mathrm{X}_{0}=0$: Row0 to Com0 (POR) $X_{0}=1$: Row0 to Com63
$0010100 \mathrm{X}_{0}$	Set Display on/off	$\mathrm{X}_{0}=0$: display off (POR) $X_{0}=1$: display on
0010101X ${ }_{0}$	Set Internal DC/DC Converter On/Off	$\mathrm{X}_{0}=0$: Internal DC/DC Converter Off (POR) $X_{0}=1$: Internal DC/DC Converter On
0010110X 0	Set Internal Regulator On/Off	$\mathrm{X}_{0}=0$: Internal Regulator Off(POR) $X_{0}=1$: Internal Regulator On
0010111 ${ }_{0}$	Set Smart Bias Divider On/Off	$\mathrm{X}_{0}=0$: Smart Bias Divider Off (POR) $X_{0}=1$: Smart Bias Divider On When an external bias network is preferred, the Smart Bias Divider should be disabled.

COMMAND TABLE

Bit Pattern	Command	Comment
$0011000 \mathrm{X}_{0}$	Set Internal Contrast Control On/Off	$\mathrm{X}_{0}=0$: Internal Contrast Control Off(POR) $X_{0}=1$: Internal Contrast Contro! On Internal contrast circuits can be disabled if external contrast circuits is preferred.
$0011001 \mathrm{X}_{0}$	Set Display Frequency	$\mathrm{X}_{0}=0$: normal display frequency (POR) $X_{0}=1$: half display frequency
$0011010 X_{0}$	Save/Restore GDDRAM Column Address	$\mathrm{X}_{0}=0$: restore address $X_{0}=1$: save address
00110110	Master Clear GDDRAM	Master clear GDDRAM (64×128 bits), row 64 (icon line) will not be cleared
00110111	Master Clear Icons	Master Clear of Icons
$0011100 X_{0}$	Set Bias Ratio	$\begin{aligned} & X_{0}=0: \text { bias }=1: 9(P O R) \\ & X_{0}=1: \text { bias }=1: 7 \end{aligned}$
$0011101 \mathrm{X}_{0}$	Reserved	$\mathrm{X}_{0}=0$: Normal Operation (POR) $\mathrm{X}_{0}=1$: Test Mode 1 Select (Note : Make sure to set $X_{0}=0$ during application)
00111100	End of Command	Write commnd to identify end of data frame
$001111 \mathrm{X}_{0}$	Set Display Mode	$X_{0}=0$: low power icon display mode $X_{0}=1$: normal display mode (POR)
01000000	Set Multiplex Ratio	next command will define no. of MUX, $00 X_{5} X_{4} X_{3} X_{2} X_{1} X_{0}$ no. of mux=00111111 upon POR (65 MUX)
01000001	Set Page Mask	next command will be written to page mask register page mask register=0 upon POR
0100010X 0	Page Mask	$\mathrm{X}_{0}=0$: disable page mask (POR) $X_{0}=1$: enable page mask
0100011 ${ }_{0}$	Icon Mask	$\mathrm{X}_{0}=0$: disable icon mask (POR) $X_{0}=1$: enable icon mask
0100100X ${ }_{0}$	Set Data Direction (for SPI mode only)	$\mathrm{X}_{0}=0$: Write Data (POR) $X_{0}=1$: Read Data next command will define the total number of data bytes will be read/write e.g. no. of data bytes $=01111111$ for 128 bytes
0100101 X_{0}	Reserved	$\mathrm{X}_{0}=0$: Select Switch Resistor as HV divider (POR) $X_{0}=1$: Select Buffer as HV dividier
0100110X 0	Reserved	$X_{0}=0$: Select 5000 hm in switch resistor divider (POR) $X_{0}=1$: Select 1 kohm in switch resistor divider
01010100	Reserved	next command will define Smart Divider value, $000 X_{4} X_{3} X_{2} X_{1} X_{0}$
0101001X ${ }_{0}$	Reserved	$X_{0}=0$: Use diode approach for temperature compensation (POR) $X_{0}=1$: Use band gap technique for temperature compensation
$011001 X_{1} X_{0}$	Set Display Waveform Type	$X_{1} X_{0}=00$: Waveform Type B (POR) $X_{1} X_{0}=01$: Waveform Type C with polarity inversion every 8 lines $X_{1} X_{0}=10$: Waveform Type C with polarity inversion every 4 lines $X_{1} X_{0}=11$: Waveform Type C with polarity inversion every 2 lines
0110100X 0	Set Smart Icon Mode	$X_{0}=1$:4-Phase Smart Icon $X_{0}=0: 6$-Phase Smart Icon (POR)
$011011 \mathrm{X}_{1} \mathrm{X}_{0}$	Set Temperature Coefficient	$\begin{aligned} & X_{1} X_{0}=: 0.00 \% \text { (POR) } \\ & x_{1} X_{0}=:-0.18 \% \\ & x_{1} X_{0}=:-0.22 \% \\ & x_{1} x_{0}=:-0.35 \% \end{aligned}$
$0111000 \mathrm{X}_{0}$	Increase / Decrease Contrast Level	$x_{0}=0$: Decrease by one level $X_{0}=1$: Increase by one level (Note: increment/decrement wraps round among the 16 contrast levels. Start at the lowest level when POR.

COMMAND TABLE

Bit Pattern	Command	Comment
0111011X 0	Reserved	$\mathrm{X}_{0}=0$: Normal Operation (POR) $X_{0}=1$: Test Mode 2 Select (Note : Make sure to set $\mathrm{X}_{0}=0$ during application)
0111101X0	Set Internal / External Oscillator	$\begin{aligned} & \hline x_{0}=0 \text { : Internal oscillator (POR) } \\ & X_{0}=1: \text { External oscillator. } \\ & \text { For internal oscillator place a resistor between OSC1 and OSC2. } \\ & \text { For external oscillator mode, feed clock input to OSC2. } \end{aligned}$
0111111 ${ }_{0}$	Set Oscillator On/Off	$\mathrm{X}_{0}=0 \text { : oscillator Off (POR) }$ $X_{0}=1$: oscillator On. This is the master control for oscillator circuitry. This command should be issued after the "Set Internal / External Oscillator" command.
$1 \mathrm{X}_{6} \mathrm{X}_{5} \mathrm{x}_{4} \mathrm{X}_{3} \mathrm{X}_{2} \mathrm{X}_{1} \mathrm{x}_{0}$	Set GDDRAM Column Address	Set GDDRAM Column Address. Use $X_{6} X_{5} X_{4} X_{3} X_{2} X_{1} X_{0}$ as address bits.

Data Read / Write

To read data from the GDDRAM, input High to R / \mathbf{W} pin and D / C pin in parallel mode or pull high at the 7 th and 8 th bit of the address in IIC serial mode or send Data Direction command 01001001 in SPI mode. Data is valid at the falling edge of CLK. And the GDDRAM column address pointer will be increased by one automatically.

To write data to the GDDRAM, input Low to $\mathrm{R} / \overline{\mathrm{W}}$ pin and High to $\mathrm{D} / \overline{\mathrm{C}}$ pin in parallel mode or pull low 7 th bit and high 8th bit of the address in IIC serial mode or send Data Direction command 01001000 in SPI mode. Data is latched at the falling edge of CLK. And the GDDRAM column address pointer will be increased by one automatically. If parallel interface is selected, End of command should be followed after all data are send out.

No auto address pointer increment will be performed for the Dummy Write Data after Master Clear GDDRAM. (Refer to the "Commands Required for R/W Actions on RAM" Table)

Address Increment Table (Automatic)

$\mathbf{D} / \overline{\mathbf{C}}$	$\mathbf{R} / \overline{\mathbf{W}}$	Comment	Address Increment	Remarks
0	0	Write Command	No	
0	1	Read Command	No (invalid mode)	$* 1$
1	0	Write Data	Yes	$* 2$
1	1	Read Data	Yes	

Address Increment is done automatically data read write. The column address pointer of GDDRAM ${ }^{* 3}$ is affected.
Remarks: *1. Only data is read from RAM.
*2. If write data is issued after Command Clear RAM, Address increase is not applied.
*3. Column Address will wrap round when overflow.
Commands Required for R/W Actions on RAM

R/W Actions on RAMs	Commands Required	
Read/Write Data from/to GDDRAM.	Set GDDRAM Page Address Set GDDRAM Column Address Read/Write Data End of command	$\begin{aligned} & \left(0000 x_{3} x_{2} x_{1} x_{0}\right)^{*} \\ & \left(1 x_{6} x_{5} x_{4} x_{3} x_{2} x_{1} x_{0}\right)^{*} \\ & \left(x_{7} x_{6} x_{5} x_{4} x_{3} x_{2} x_{1} x_{0}\right) \\ & (00111100) \end{aligned}$
Save/Restore GDDRAM Column Address.	Save/Restore GDDRAM Column Address End of command	$\begin{array}{\|l} \hline\left(0011010 X_{0}\right) \\ (00111100) \end{array}$
Master Clear GDDRAM	Set Clear Page GDDRAM (64×128 bits) Dummy Write Data	$\begin{aligned} & (00110110) \\ & \left(X_{7} X_{6} X_{5} X_{4} X_{3} X_{2} X_{1} x_{0}\right) \end{aligned}$
Master Clear Icon RAM	Set GDDRAM Page Address to Page 9 Master Clear Icon RAM (128 bits, row 64) Dummy Write Data	$\begin{aligned} & (00001000) \\ & (00110111) \\ & \left(X_{7} X_{6} x_{5} X_{4} X_{3} X_{2} X_{1} x_{0}\right) \end{aligned}$

* No need to resend the command again if it is set previously.

The read / write action to the Display Data RAM does not depend on the display mode. This means the user can change the RAM content whether the target RAM content is being displayed

Display Output Description

This is an example of output pattern on the LCD panel. Figure 10 b and 10 c are data map of GDDRAM and the output pattern on the LCD display with different command enabled.

	Content of GDDRAM
PAGE 1 Upper Nibble Lower Nibble	$\begin{aligned} & 5 \text { A } 5 \text { A }-\cdots \cdots-\cdots-\cdots \text { A } 5 \text { A } \\ & 5 \text { A } 5 \text { A } 5 \text { A } \end{aligned}$
PAGE 2 Upper Nibble Lower Nibble	
PAGE 3 Upper Nibble Lower Nibble	
PAGE 4 Upper Nibble Lower Nibble	FFFFFFFFOO FFFFFFFFOO
PAGE 9 Upper Nibble Lower Nibble	

Figure 10a
Figure 10b

Figure 10c. Examples of LCD display with different command enabled

Power Up Sequence (Commands Required)

Command Required	POR Status	Remarks
Set Display Frequency	Normal	$* 1$
Set Oscillator Enable	Disable	$* 1$
Set MUX Ratio	65 MUX	$* 1$
Set Bias Ratio	$1 / 9$ bias	$* 1$
Set Internal DC/DC Converter	$4 X$ Converter	$* 1$
Set Internal Regulator On	Off	$* 1$
Set Temperature Coefficient	TC=0\%	$* 1, * 3$
Set Internal Contrast Control On	Off	$* 1, ~ * 3$
Set Contrast Level	Contrast Level = 0	$* 1,{ }^{2} 2, * 3$
Set Smart Bias Divider On	Off	$* 1$
Set Segment Mapping	Seg. $0=$ Col. 0	
Set Common Mapping	Com. $0=$ Row 0	
Set Display On	Off	

Remarks:
*1 -- Required only if desired status differ from POR.
*2 -- Effective only if Internal Contrast Control is enabled.
*3 -- Effective only if Internal Regulator is enabled.

Smart Icon Mode Output Description

There are two driving schemes of Smart Icon Mode for panel with different $V_{\text {on }} / V_{\text {off }}$ or $V_{D D}$:

1) 4 - Phase Smart Icon: $1 / 4 \sim 3 / 4$
$V_{\text {off }}>V_{D D} * \operatorname{sqrt}(1 / 4)$
$V_{\text {on }}<V_{D D} * \operatorname{sqrt}(3 / 4)$
2) 6 - Phase Smart Icon: 1/6~3/6

$$
\begin{aligned}
& V_{\text {off }}>V_{D D} * \text { sqrt }(1 / 6) \\
& \left.V_{\text {on }}<V_{D D}^{*} \text { sqrt (} 3 / 6\right)
\end{aligned}
$$

Figure 11a. LCD Driving Signal for 4 - Phase Smart Icon Mode

Figure 11b. LCD Driving Signal for 6 - Phase Smart Icon Mode

Application Circuit:

All Internal Analog Circuitry disabled at IIC Serial mode operation

Remark:

1. R3 can be omitted for external oscillator.
2. RES should be at a known state.
3. VLL2 - VLL6 can be left open for internal divider is enable.
4. $\mathrm{R} / \overline{\mathrm{W}}, \overline{\mathrm{CE}}, \mathrm{D} / \overline{\mathrm{C}}$ and D3-D6 can be open for IIC serial mode.
5. D1/A1 and D2/A2 should be at predefined state for device identification.
6. R is pull up resistance, $R<\frac{t_{r}}{2^{*} C_{\text {bus }}}$ ($R=300$ ohm for 1 MHz , assume $C_{\text {bus }}=200 \mathrm{pF}$)

All Internal Analog Circuitry enabled at IIC Serial mode operation

Remark:

1. R3 can be omitted for external oscillator.
2. VR and VF can be left open for Internal Regulator disable and Contrast Disable.
3. $\overline{\text { RES }}$ should be at a known state.
4. $\mathrm{RW}, \overline{\mathrm{CE}}, \mathrm{D} / \overline{\mathrm{C}}$ and $\mathrm{D} 3-\mathrm{D} 6$ can be open for IIC serial mode.
5. D1/A1 and D2/A2 should be at predefined state for device identification.
6. R is pull up resistance, $R<\frac{t_{r}}{2^{*} C_{\text {bus }}}$ ($R=300$ ohm for 1 MHz , assume $C_{\text {bus }}=200 \mathrm{pF}$)

All Internal Analog Circuitry disabled at SPI Serial mode operation

Remark:

1. R3 can be omitted for external oscillator.
2. $\overline{\text { RES }}$ should be at a known state.
3. VLL2 - VLL6 can be left open for internal divider is enable.
4. R/W, D/C, D0-2 and D5-6 can be open for SPI serial mode.

All Internal Analog Circuitry enabled at SPI Serial mode operation

Remark:

1. R3 can be omitted for external oscillator.
2. VR and VF can be left open for Internal Regulator disable and Contrast Disable.
3. $\overline{R E S}$ should be at a known state.
4. R/W, D/C, D0-2 and D5-6 can be open for SPI serial mode.

All Internal Analog Circuitry disabled at Parallel mode operation

Remark:

1. R3 can be omitted for external oscillator.
2. $\overline{\text { RES }}$ should be at a known state.
3. VLL2 - VLL6 can be left open for internal divider is enable.

All Internal Analog Circuitry enabled at Parallel mode operation

Remark:

1. R3 can be omitted for external oscillator.
2. VR and VF can be left open for Internal Regulator disable and Contrast Disable.
3. $\overline{\text { RES }}$ should be at a known state.

PACKAGE DIMENSIONS

MC141800AT

TAB PACKAGE DIMENSION - 1 (DO NOT SCALE THIS DRAWING)

2. IF NOT SPECIFIED, SIZE IN MILLIMETER
3. UNSPECIFIED DIMENSION TOLERANCE IS ± 0.05
4. BASE MATERIAL: 75 MICRON UPILEX-S
5. COPPER TYPE: $3 / 4$ OZ COPPER (THICKNESS TYP. 25 MICROMETER, MIN 18 MICROMETER)
6. 5 SPROCKET HOLES DEVICE
7. OPTIONAL FEATURE FOR SPS INTERNAL USE ONLY WHICH MAY BE REPLACED BY $\varnothing 2.0 \mathrm{MM}$ HOLE.

PACKAGE DIMENSIONS

MC141800AT
TAB PACKAGE DIMENSION - 2 (DO NOT SCALE THIS DRAWING)

DETAIL C

DETAIL B

FLEX MATERIAL dETAIL

Die Pad Coordinate of MC141800A

LCD Common (Row) Driver cmos

The MC141562 is a high volt, high MUX passive LCD common driver. It is a low power silicon-gate CMOS LCD driver chip which consists of 100channel common driving outputs for a high MUX (up to 300 MUX) large dot matrix passive LCD panel.

This chip can be configured as $100 \mathrm{CH} \times 1$ or $50 \mathrm{CH} \times 2$ mode of operation. The 28 V high voltage output driving cells can be controlled by low voltage (3.0 volts) logic input.

The MC141562 will provide the best performance in combination with the MC141563 (segment driver).

- Operating Supply Voltage Range -

Control Logic, Shift Register (VDD): 2.7V to 5.5V
Common Drivers (VLCD): 10 V to 28 V

- Operating Temperature Range: -20 to $70^{\circ} \mathrm{C}$
- 100 LCD Common Driving Outputs.
- Driving Duty Cycle (MUX) : $1 / 100$ to $1 / 300$.
- Bi-directional Shift Register with 100 CH X 1 or 50 CH X 2 Mode of Operation.
- Interchangeable Carry-In / Carry-Out Terminals.
- Left / Right Shift Mode Selection.
- Cascadable.
- Maximum Shift Clock Frequency $=1.0 \mathrm{MHz}$
- Available in TAB (Tape Automated Bonding), 115 pins

MC141562

BLOCK DIAGRAM

Figure 1. TAB Package Contact Assignment (Copper.View)

MAXIMUM RATINGS** ${ }^{*}$ (Voltages Referenced to $\mathrm{V}_{\text {SS }}$)

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage	-0.3 to +6.0	V
$V_{E E}$		-0.3 to -24.0	V
$\mathrm{V}_{\text {LCD }}$	DC Supply Voltage ($\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}$)	$V_{D D}$ to +30	V
$\begin{aligned} & V_{\text {Din }} \\ & V_{\text {Ain }} \end{aligned}$	Input Voltage All Digital Input $V_{\text {LCD }}$ Level Input	$\begin{aligned} & V_{S^{-}}-0.3 \text { to } V_{D D+0.3} \\ & V_{E E^{-}}-0.3 \text { to } V_{D D^{+}+0.3} \end{aligned}$	$\begin{aligned} & V \\ & v \end{aligned}$
1	Current Drain Per Pin Excluding V_{DD} and V_{SS}	25	mA
T_{A}	Operating Temperature Range	-20 to 70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$

* Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Description section.

ELECTRICAL CHARACTERISTICS (Voltage Referenced to $\mathrm{V}_{\mathrm{SS}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Symbol	Parameter	Test Condition	Min	Typ	Max	Unit
$\begin{aligned} & V_{D D} \\ & V_{L C D} \end{aligned}$	Operating Voltage Supply Voltage (reference to V_{SS}) LCD Supply Voltage ($\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}$)		$\begin{gathered} 2.7 \\ 10.0 \end{gathered}$		$\begin{gathered} 5.5 \\ 28.0 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\begin{aligned} & \mathrm{I}_{\mathrm{DP}} \\ & \mathrm{I}_{\mathrm{SB}} \end{aligned}$	Supply Current (VDD Pin) Display Mode Standby Mode	$\begin{aligned} & V_{D D}=5.5 \mathrm{~V}, \mathrm{~V}_{E E}=-23 \mathrm{~V} \\ & \text { SCLK }=200 \mathrm{KHz}, \mathrm{M}=2 \mathrm{KHz} \end{aligned}$		$\begin{aligned} & 40 \\ & 0.3 \end{aligned}$	$\begin{gathered} 100 \\ 2 \end{gathered}$	$\underset{\mu \mathrm{A}}{\mu \mathrm{~A}}$
$\begin{aligned} & \mathrm{I}_{\mathrm{DP}} \\ & \mathrm{I}_{\mathrm{SB}} \end{aligned}$	Supply Current (VDD Display Mode Standby Mode	$\begin{aligned} & V_{D D}=2.7 \mathrm{~V}, \mathrm{~V}_{\text {EE }}=-23 \mathrm{~V} \\ & \mathrm{SCLK}=200 \mathrm{KHz}, \mathrm{M}=2 \mathrm{KHz} \end{aligned}$		$\begin{aligned} & 20 \\ & 0.3 \end{aligned}$	-	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
$\mathrm{I}_{\text {EE }}$	Supply Current at VEE	No Load	-	30	150	$\mu \mathrm{A}$
$\begin{aligned} & \mathrm{V}_{\mathrm{OL}} \\ & \mathrm{~V}_{\mathrm{OH}} \end{aligned}$	Common Output Voltage VL5,6=V VL1,2 $=V_{D E}$ COM1-COM100	lload $=150 \mu \mathrm{~A}$	$V_{D D}-0.3$	-	$\mathrm{V}_{\mathrm{EE}}+0.3$	$\begin{aligned} & v \\ & v \end{aligned}$
V_{OH} $V_{O L}$	Output High Voltage Output Low Voltage EIO1, EIO2, EIO3, EIO4	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, 11 \mathrm{oad}=1 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{DD}}-1.0$	-	$\mathrm{V}_{\mathrm{SS}}+1.0$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IL}} \end{aligned}$	Input High Voltage Input Low Voltage SCLK, L/ \bar{R}, EIO1, EIO2, EIO3, EIO4, M, DIS-OFF		$\begin{gathered} 0.7 \times V_{D D} \\ V_{S S} \end{gathered}$		$\begin{gathered} V_{D D} \\ 0.2 \times V_{D D} \end{gathered}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{I}_{\text {in }}$	Input Current SCLK, L/ $\overline{\mathrm{R}}, \mathrm{EIO1}, \mathrm{EIO2}, \mathrm{EIO} 3$, EIO4, M, DIS-OFF		\bullet	± 0.5	± 1	$\mu \mathrm{A}$
$\mathrm{C}_{\text {in }}$	$\begin{array}{rr} \hline \text { Capacitance } \\ & \\ \text { SCLK, L/ } / \mathrm{R}, \mathrm{EIO1}, \mathrm{EIO} 2, \mathrm{EIO} 3, \\ \mathrm{EIO} 4, \mathrm{M}, \overline{\mathrm{DIS}-\mathrm{OFF}} \end{array}$		-	5	10	pF
Iohx, IoLx	Common Output Current COM1-COM100	$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=\mathrm{V}_{\mathrm{EE}}+0.3 \mathrm{~V}$	± 150	-	-	$\mu \mathrm{A}$
$\mathrm{I}_{\text {OHC, }}$ IoLC	Carry Output Current EIO1, EIO2, EIO3, EIO4	$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=\mathrm{V}_{\mathrm{SS}}+1.0 \mathrm{~V}$	± 1.0	-	\bullet	mA
R_{ON}	Common Output Impedance Common Output Impedance Variance	$\mathrm{V}_{\mathrm{DD}} \cdot \mathrm{V}_{\mathrm{EE}}=28 \mathrm{~V}, \mathrm{I}_{\mathrm{OHX}}, \mathrm{l}_{\mathrm{OLX}}= \pm 150 \mu \mathrm{~A}$		$\begin{gathered} 1 \\ \pm 10 \end{gathered}$	$\begin{gathered} 2 \\ \pm 30 \end{gathered}$	$\begin{gathered} \text { K Ohm } \\ \% \end{gathered}$

AC ELECTRICAL CHARACTERISTICS -WRITE CYCLE ($\left.\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{~V}_{E E}=-23 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Symbol	Parameter	Min	Typ	Max	Unit
$\begin{aligned} & t_{\mathrm{T} L \mathrm{H}} \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$	Digital Input Rise and Fall Time SCLK, M, EIO1,2,3,4, DIS-OFF		$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & \hline \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
${ }_{\text {tscø }}$	Shift Clock (SCLK) Cycle	1000	-	-	ns
${ }_{\text {t }}$ SH	Shift Clock (SCLK) Pulse Width HIGH	150	-	-	ns
${ }_{\text {t }}^{\text {SLL }}$	Shift Clock (SCLK) Pulse Width LOW	150	-	-	ns
tsue	Enable Input (EIO) to Shift Clock (SCLK) Set up Time	100	-	-	ns
$t_{\text {he }}$	Enable Input (EIO) to Shift Clock (SCLK) Hold Time	100	-	-	ns
${ }^{\text {t PEO }}$	Shift Clock (SCLK) to Enable Output (EIO) Delay Time $\mathrm{CL}=25 \mathrm{pF}$	-	-	100	ns

Figure 2. SCLK, EIO Input and Output Propagation Delay Timing Diagram

Figure 3. Control Input Rise and Fall Timing Diagram

Figure 4. Shift Clock Pulse Width High and Pulse Width Low Timing Diagram

PIN DESCRIPTIONS

$V_{D D}$ AND $V_{S S}$

The main dc power is supplied to the part by these two connections. $V_{D D}$ is the most-positive supply level and $V_{S S}$ is ground.

VEE
This supply connection provides the negative power supply voltage for the common drivers.

VL1, VL2, VL5, VL6

These input pins are connected to the external voltage divider (See Figure 5).
Voltage supply level for the LCD :
VL1, VL6: On-level of the LC
VL2, VL5 : Off-level of the LC

Carry Shift Clock (SCLK)

Carry input is strobed into the shift register by the falling edge of the SCLK.

Left / Right Shift Select (L/ \bar{R})

This input pin determines the direction of the shift register operation (See Table 1).
$L / \bar{R}=$ " 0 ", \quad the carry will shift right (COM. 1 to COM. 100).
$\mathrm{L} / \overline{\mathrm{R}}=$ " 1 ", \quad the carry will shift left (COM. 100 to COM. 1).

Carry-In / Carry-Out (EIO1, EIO2, EIO3, EIO4)

These four input / output pins perform the Carry-In and Carry-Out function depending on the shift register direction of operation. EIO1 and EIO2 are used as the I/O pins of the COM1 to COM50 block, while EIO3 and EIO4 are used as I/O pins for the COM51 to COM100 block. In right shift mode ($\mathrm{L} / \overline{\mathrm{R}}=$ " 0 "), the EIO1/EIO3 is the Carry-In input while the EIO2/EIO4 will be the Carry-Out output for cascading. In left shift mode ($L / \overline{\mathrm{R}}={ }^{" 1} 1^{"}$), the pin functions and operation are reversed. In case of 100 CH application, EIO2 and EIO3 should be connected together.

Frame Signal Input (M)

This input signal is the Frame Sync. Signal which provides an frame alternating output format of the output (See Figure 6).

M	1	0	1	0
EIO (Input)	1	0	0	1
Output	VL1	VL2	VL5	VL6

Display-Off Enable (DIS-OFF)
This input pin is active low. If set "LOW", all output pins (Common 1 to Common 100) are forced to VL1.

Common Output (Common 1 to Common 100)

These 100 output lines provide the high volt common signal to the LCD panel. They are all at VL1 while display is turned off.

Figure 5. External Voltage Divider

Figure 6. EIO Input, M Signal and Common Output Format

Figure 7. SCLK, M Signal and EIO Input and Output Timing Diagram

	ElO				
L / \bar{R}	1	2	3	4	Common Output
H	output			input	COM 100,99------ COM 2, 1
	output	input	output	input	COM 100, $99-\cdots-\cdots$ COM 52, 51 COM 50, $49-\cdots-\cdots$ COM 2,1
L	input			output	COM 1,2 -------. COM 99, 100
	input	output	input	output	$\begin{aligned} & \text { COM } 1,2-\cdots-\cdots \text { COM 49,50 } \\ & \text { COM } 51,52-\cdots-\cdots \text { COM } 99,100 \end{aligned}$

Table 1. Left / Right Shift Control, EIO and Common Output Relation

Figure 8. M Signal, Common and Segment Output Format

PACKAGE DIMENSIONS

MC141562T

TAB PACKAGE DIMENSION
(DO NOT SCALE THIS DRAWING)

MAGNIFIED VIEW

DETAIL "A"

DETAIL "B"

DETALL "C"

	Millimeters		Inches		Millimeters			Inches	
Dim	Min	Max	Min	Max	Dlm	Min	Max	Min	Max
A	34.775	35.175	1.3691	1.3848	AD	0.579	0.629	0.0228	0.0248
B	28.927	29.027	1.1389	1.1428	AE	7.765	8.365	0.3057	0.3293
C	4.720	4.780	0.1858	0.1882	AF	0.450	0.550	0.0177	0.0217
D	1.951	2.011	0.0768	0.0792	AG	1.950	2.050	0.0768	0.0807
E	1.951	2.011	0.0768	0.0792	AH	3.950	4.050	0.1555	0.1594
F	28.000	29.000	1.1024	1.1417	AJ	0.480	0.520	0.0189	0.0205
G	12.365	12.465	0.4868	0.4907	AK	0.990	1.010	0.0390	0.0398
H	12.365	12.465	0.4868	0.4907	AL	8.800	8.900	0.3465	0.3504
J	24.100	24.700	0.9488	0.9724	AM	8.800	8.900	0.3465	0.3504
K	11.821	11.869	0.4654	0.4673	AN	9.800	9.900	0.3858	0.3898
L	11.821	11.869	0.4654	0.4673	AP	9.800	9.900	0.3858	0.3898
M	10.000	11.000	0.3937	0.4331	AR	10.500	11.500	0.4134	0.4528
N	6.005	6.105	0.2364	0.2404	AS	9.500	10.500	0.3740	0.4134
P	1.750	1.850	0.0689	0.0728	AT	11.450	11.550	0.4508	0.4547
R	5.105	5.205	0.2010	0.2049	AU	11.450	11.550	0.4508	0.4547
S	4.643	4.743	0.1828	0.1867	AV	0.350	0.450	0.0138	0.0177
T	2.950	3.050	0.1161	0.1201	AW	0.350	0.450	0.0138	0.0177
U	0.000	1.000	0.0000	0.0394	AX	0.580	0.620	0.0228	0.0244
V	3.950	4.050	0.1555	0.1594	AY	0.380	0.420	0.0150	0.0165
W	9.500	10.500	0.3740	0.4134	AZ	0.090	0.130	0.0035	0.0051
Y	-	8.880	-	0.3496	BA	0.220	0.240	0.0087	0.0094
Z	-	4.820	-	0.1898	BB	0.750	0.850	0.0295	0.0335
AA	-	0.200	-	0.0079	BC	0.350	0.450	0.0138	0.0177
AB	0.686	0.838	0.0270	0.0330	BD	0.150	0.250	0.0059	0.0098
AC	0.068	0.083	0.0027	0.0032					

NOTES:

1. Dimensioning and tolerancing per ANSI Y14.5M, 1982.
2. Controlling dimension: millimeter.
3. Copper Thickness: 1oz.
4. Tin plating thickness: $0.4 \mu \mathrm{~m}$
5.6 sprocket hole device

TAB TAPE REEL ORIENTATION

LCD Segment (Column) Driver CMOS

The MC141563 is a high volt, high MUX passive LCD segment driver. It is a CMOS LCD driver chip which consists of 80 -channel segment driving outputs for a high MUX (up to 300 MUX) large dot matrix passive LCD panel.

This chip interfaces with 4-bit or 8-bit data bus with bidirectional shift capability. The 28 V high voltage output driving cells can be controlled by low voltage (3.0 Volts) logic input.

The MC141563 will provide the best performance in combination with the MC141562 (common driver).

- Operating Supply Voltage Range -

Control Logic, Shift Register (VDD): 2.7V to 5.5V
Segment Drivers (VLCD): 10 V to 28 V

- Operating Temperature Range: -20 to $70^{\circ} \mathrm{C}$
- 80 LCD Segment Driving Outputs.
- Driving Duty Cycle (MUX) : $1 / 64$ to $1 / 300$.
- Bi-directional Shift Register Data Bus of 4 -bit $\times 20$ or 8 -bit $\times 10$ Configuration.
- Interchangeable Carry-In / Carry-Out Terminals.
- Left / Right Shift Mode Selection
- Cascadable.
- Maximum Data Clock Frequency $=8.0 \mathrm{MHz}$
- Available in SLIM TAB (Tape Automated Bonding), 103 pins

Figure 1. BLOCK DIAGRAM

Figure 2. TAB Package Contact Assignment (Copper View)

MAXIMUM RATINGS ${ }^{*}$ (Voltages Referenced to $\mathrm{V}_{\mathrm{SS},} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Symbol	Parameter	Value	Unit
$V_{D D}$	Supply Voltage	-0.3 to 6.0	V
V_{EE}		-0.3 to -24.0	V
$\mathrm{V}_{\text {LCD }}$	DC Supply Voltage ($\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}$)	$V_{D D}$ to +30	V
$\begin{aligned} & V_{\text {Din }} \\ & V_{\text {Ain }} \end{aligned}$	Input Voltage All Digital Input $V_{\text {LCD }}$ Level Input	$\begin{aligned} & V_{S S}-0.3 \text { to } V_{D D}+0.3 \\ & V_{E E^{-}}-0.3 \text { to } V_{D D^{+}}+0.3 \end{aligned}$	$\begin{aligned} & v \\ & v \end{aligned}$
1	Current Drain Per Pin Excluding V_{DD} and $\mathrm{V}_{S S}$	25	mA
$\mathrm{T}_{\text {A }}$	Operating Temperature Range	-20 to 70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$

* Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Description section.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions to be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended that $V_{\text {in }}$ and $V_{\text {out }}$ be constrained to the range $V_{S S}<$ or $=\left(V_{\text {in }}\right.$ or $\left.V_{\text {out }}\right)<o r=V_{D D}$. Reliability of operation is enhanced if unused input are connected to an appropriate logic voltage level (e.g., either $V_{S S}$ or $V_{D D}$). Unused outputs must be left open. This device may be light sensitive. Caution should be taken to avoid exposure of this device to any light source during normal operation. This device is not radiation protected.

ELECTRICAL CHARACTERISTICS (Voltage Referenced to $\mathrm{V}_{\mathrm{SS}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Symbol	Parameter	Test Condition	Min	Typ	Max	Unit
$\begin{aligned} & V_{\mathrm{DD}} \\ & \mathrm{~V}_{\mathrm{LCD}} \end{aligned}$	Operating Voltage Supply Voltage (reference to V_{SS}) LCD Supply Voltage ($\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}$)		$\begin{gathered} 2.7 \\ 10.0 \end{gathered}$		$\begin{array}{r} 5.5 \\ 28.0 \end{array}$	$\begin{aligned} & \hline v \\ & v \end{aligned}$
$\begin{aligned} & \mathrm{I}_{\mathrm{DP}} \\ & \mathrm{I}_{\mathrm{SB}} \end{aligned}$	Supply Current (VD $V_{D D}$) Display Mode Standby Mode	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-23 \mathrm{~V} \\ & \mathrm{SCLK}=6 \mathrm{MHz}, \mathrm{LP}=15 \mathrm{KHz}, \\ & \mathrm{M}=35 \mathrm{~Hz} \end{aligned}$		$\begin{array}{r} 250 \\ 1.5 \end{array}$	$\begin{gathered} 600 \\ 5.5 \end{gathered}$	$\underset{\mu \mathrm{A}}{\mu \mathrm{~A}}$
$\begin{aligned} & \mathrm{I}_{\mathrm{DP}} \\ & \mathrm{I}_{\mathrm{SB}} \\ & \hline \end{aligned}$	Supply Current (VDP Pin) Display Mode Standby Mode	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-23 \mathrm{~V} \\ & \mathrm{SCLK}=6 \mathrm{MHz}, \mathrm{LP}=15 \mathrm{KHz}, \\ & \mathrm{M}=35 \mathrm{~Hz} \end{aligned}$		$\begin{aligned} & 120 \\ & 600 \end{aligned}$	-	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{nA} \end{aligned}$
$\mathrm{I}_{\text {ee }}$	Supply Current at VEE	No Load	-	30	550	$\mu \mathrm{A}$
$\begin{aligned} & \mathrm{v}_{\mathrm{OL}} \\ & \mathrm{~V}_{\mathrm{OH}} \end{aligned}$	```Segment Output Voltage VL4,6=V VE VL1,3=VDD``` SEG1-SEG80	$\text { lload }=100 \mu \mathrm{~A}$	$V_{D D^{-0.3}}$	-	$\mathrm{V}_{\mathrm{EE}}+0.3$	$\begin{aligned} & v \\ & v \end{aligned}$
V_{OH} V_{OL}	Output High Voltage Output Low Voltage	$V_{D D}=5.0 \mathrm{~V}, \text { lload }=1 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{DD}}-1.0$	-	$V_{S S}+1.0$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IL}} \end{aligned}$	Input High Voltage Input Low Voltage SCLK, LP, L/ \bar{R}, EIO1, EIO2, DO to D3, M, DIS-OFF		$\begin{gathered} 0.7 \times V_{D D} \\ V_{S S} \end{gathered}$		$\begin{gathered} V_{D D} \\ 0.2 x V_{D D} \end{gathered}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{v} \end{aligned}$
1 in	Input Current SCLK, LP, L/ \bar{R}, EIO1, EIO2, D0 to D3, M, DIS-OFF	\vdots	-	± 0.5	± 1.0	$\mu \mathrm{A}$
$\mathrm{C}_{\text {in }}$	Capacitance SCLK, LP, L/ $\bar{R}, \overline{E I O 1}, \overline{E I O 2}$, D0 to D3, M, DIS-OFF	\cdots - ${ }^{\text {- }}$	-	5	10	PF
Iohx, IOLX	Segment Output Current SEG1-SEG80	$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=\mathrm{V}_{\mathrm{EE}}+0.3 \mathrm{~V}$	± 100	-	-	$\mu \mathrm{A}$
${ }^{\text {I Ohc, }}$ IOLC	Carry Output Current EIO1, EIO2	$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-1.0 \mathrm{~V}, \mathrm{~V}_{\text {Ot }}=\mathrm{V}_{\mathrm{SS}}+1.0 \mathrm{~V}$	± 1.0	-	-	mA
R_{ON}	Segment Output Impedance Segment Output Impedance Variance	$V_{D D} \cdot V_{E E}=28 \mathrm{~V}, \mathrm{I}_{\text {OHX }}, \mathrm{I}_{\text {OLX }}= \pm 100 \mu \mathrm{~A}$		$\begin{gathered} 1.5 \\ \pm 10 \end{gathered}$	$\begin{aligned} & 3.0 \\ & \pm 30 \end{aligned}$	$\begin{gathered} \hline \text { K Ohm } \\ \% \end{gathered}$

AC ELECTRICAL CHARACTERISTICS -WRITE CYCLE ($\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-23 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Symbol	Parameter	Min	Typ	Max	Unit
${ }^{\text {tsud }}$	Data (D0-D3) to Shift Clock (SCLK) Set up Time	50	-	-	ns
$t_{\text {hD }}$	Data (D0-D3) to Shift Clock (SCLK) Hold Time	50	-	-	ns
$\mathrm{t}_{\text {SULP }}$	Data Latch (LP) to Shift Clock (SCLK) Set up Time	50	-	-	ns
$t_{\text {hLP }}$	Data Latch (LP) to Shift Clock (SCLK) Hold Time	50	-	-	ns
\therefore tsus	Enable Input (EIO) to Shift Clock (SCLK) Set up Time	20	-	-	ns
tsue	Shift Clock (SCLK) to Enable Output (EIO) Set up Time	20	-	-	ns
$\begin{aligned} & t_{\mathrm{M}} \\ & \mathrm{t}_{\mathrm{PO}} \\ & \mathrm{t}_{\mathrm{PM}} \\ & t_{\mathrm{PLP}} \\ & \mathrm{t}_{\mathrm{PE}} \end{aligned}$	Propagation Delay Time Data Latch (LP) to M Data Latch (LP) to Segment Output (n) $C L=100 \mathrm{pF}$ M to Segment Output (n) $C L=100 \mathrm{pF}$ Data Latch (LP) to EIO (Output) $C L=50 \mathrm{pF}$ Shift Clock (SCLK) to EIO (Output) $C L=50 \mathrm{pF}$	- - - - - -		$\begin{gathered} 200 \\ 0.5 \\ 0.5 \\ 50 \\ 50 \end{gathered}$	ns $\mu \mathrm{S}$ $\mu \mathrm{s}$ ns ns
${ }^{\text {tith }}$ ${ }^{\text {theL }}$	Control Input Rise and Fall Time SCLK, LP, M, EIO1,EIO2		$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
${ }_{\text {tsc }}$	Shift Clock (SCLK) Cycle $\quad \mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$	125	-	-	ns
$\mathrm{t}_{\mathrm{scH}}$	Shift Clock (SCLK) Pulse Width HIGH	40	-	-	ns
${ }_{\text {t }}$	Shift Clock (SCLK) Pulse Width LOW	40.	-	-	ns
tLPH	Data Latch (LP) Pulse Width HIGH	50	-	-	ns

Figure 3. SCLK, LP, Data, M and Segment Output Propagation Delay Timing Diagram

Figure 4. SCLK, LP, EIO (Input/Output) Propagation Delay Timing Diagram

Control Input
(SCLK, LP, M, ElOT, EIO2)

Figure 5. Control Pin Rise and Fall Timing Diagram

Shift Clock (SCLK) Input

Figure 6. Shift Clock Pulse Width High and Pulse Width Low Timing Diagram

Figure 7. Data Latch Pulse Width High Timing Diagram

PIN DESCRIPTIONS

$V_{D D}$ AND $V_{S S}$

The main dc power is supplied to the part by these two connections. $V_{D D}$ is the most-positive supply level and $V_{S S}$ is ground.

VEE

This supply connection provides the negative power supply voltage for the common drivers.

VL1, VL3, VL4, VL6

These input pins are connected to the external voltage divider (See Figure 8).
Voltage supply level for the LCD:
VL1, VL6: On-level of the LC
VL3, VL4 : Off-level of the LC

Data Latch (LP)

Display data (a complete line on display) is acknowledged by the falling edge of the LP signal.

Data Shift Clock (SCLK)

Input data (8 bit or 4 bit) is stored into a 8 bit / 4 bit data latch by the falling edge of SCLK.

Data Input (D0 to D7)

Data Input is either in 8 bit or 4 bit data bus format and is selectable by the DS input.

Data Format Select (DS)

This input is to select the data bus format. If set "Low", the data bus format is 4 -bit, if set "High", the data bus format is 8 -bit.

Left / Right Shift Select (L/ $\overline{\text { R }}$)

This input pin provides the selection of the shift register operation (See Table 1).
$L / \bar{R}=$ " 1 ", \quad the data will shift left
(LSB of the first input data will be loaded to SEG1).
$L / \bar{R}=$ " 0 ", \quad the data will shift right
(LSB of the first input data will be
loaded to SEG80).

Carry-In / Carry-Out (EIO1 / EIO2)

These two input / output pins perform the same function and depend on the shift register direction of operation. In right shift mode (L / $\overline{\mathrm{R}}=$ " 0 "), the $\mathrm{EIO1}$ is the Carry-In input while the EIO2 will be the Carry-Out output for cascading. In Left Mode ($L / \bar{R}=$ " 1 "), the pin functions and operation are reversed. (See Table 2)

Frame Signal Input (M)
This input signal is the frame sync: signal which provides an frame alternating output format of the segment output (See Figure 9).

M	0	0	1	1
Data	1	0	0	1
Output	VL1	VL3	VL4	VL6

Display-Off Enable (DIS-OFF)

This input pin is active low. If set "LOW", all output pins (Segment 1 to Segment 80) are forced to VL1.

Segment Output (Segment 1 to Segment 80)

These 80 output lines provide the high volt segment signal to the LCD panel. They are all at VLi while display is turned off.

Figure 8. External Voltage Divider

L／ \bar{R}	SCLK ：	1	2	3	4	－－－－	19	20
H	D0	01	05	09	13	－－－－	73	77
	D1	02	06	10	14	－－－－	74	78
	D2	03	07	11	15	－－－－	75	79
	D3	04	08	12	16		76	80
L	D0	80.	76	72.	68	－ーー－	08	04
	D1	79	75	71	67	－	07	03
	D2	78	74	70	66	－ー－ー	06	02
	D3	77	73	69	65	－－－－	05	01

L／$\overline{\mathrm{R}}$	SCLK	1	2	－－－－	10
H	D0	01	09	－－－－	73
	D1	02	10	－－－－	74
	D2	03	11	－－－－	75
	D3	04	12	－－－－	76
	D4	05	13	－	77
	D5	06	14	－	78
	D6	07	15	－－－－	79
	D7	08	16	－－－－	80
L	D0	80	72	－－－－	08
	D1	79	71	－－－－	07
	D2	78	70	－－－	06
	D3	77	69	－	05
	D4	． 76	68	－－－－	04
	D5	75	67	－－－－	03
	D6	74	66	－	02
	D7	73	65	－－－－	01

Table 1．Left／Right Shift Select and the Associated Data Bit Segment Output Mapping （a） 4 bit interface；（b） 8 bit interface

Figure 9．Data，M Inputs and Segment Output Format

L / \bar{R}	EIO1	EIO2
H	OUT	\mathbb{N}
L	\mathbb{N}	OUT

Table 2．Left／Right Shift Control and EIO1，ElO2 Relation

Figure 10. EIO1 and EIO2 in 4 Data Bit Application and Timing Diagram

Figure 11. Common and Segment and Input Control Format Timing Diagram

PACKAGE DIMENSIONS

MC141563T

TAB PACKAGE DIMENSION (DO NOT SCALE THIS DRAWING)

MAGNIFIED VIEW

MC141563T
TAB PACKAGE DIMENSION
(DO NOT SCALE THIS DRAWING)

DETAIL "A"

	Millimeters		Inches			Millimeters		Inches	
Dim	Min	Max	Min	Max	Dim	Min	Max	Min	Max
A	34.775	35.175	1.3691	1.3848	AC	0.068	0.083	0.0027	0.0032
B	28.927	29.027	1.1389	1.1428	AD	0.579	0.629	0.0228	0.0248
C	4.720	4.780	0.1858	0.1882	AE	0.330	0.370	0.0130	0.0146
D	1.951	2.011	0.0768	0.0792	AF	0.690	0.710	0.0272	0.0280
E	1.951	2.011	0.0768	0.0792	AG	6.825	6.925	0.2687	0.2726
F	8.100	8.200	0.3189	0.3228	AH	9.825	9.925	0.3868	0.3907
G	11.100	11.200	0.4370	0.4409	AJ	7.675	7.775	0.3022	0.3061
H	7.201	7.229	0.2835	0.2846	AK	10.675	10.775	0.4203	0.4242
J	10.195	10.235	0.4014	0.4030	AL	10.500	11.500	0.4134	0.4528
K	1.000	2.000	0.0394	0.0787	AM	0.580	0.620	0.0228	0.0244
L	17.635	18.235	0.6943	0.7179	AN	0.340	0.380	0.0134	0.0150
M	3.490	4.090	0.1374	0.1610	AP	0.085	0.125	0.0033	0.0049
N	-	12.460	-	0.4906	AR	0.200	0.220	0.0079	0.0087
P	-	3.624	-	0.1427	AS	0.280	0.380	0.0110	0.0150
R	1.962	2.062	0.0772	0.0812	AT	0.280	0.380	0.0110	0.0150
S	0.900	1.900	0.0354	0.0748					
T	1.150	1.250	0.0453	0.0492					
U	1.950	2.050	0.0768	0.0807					
V	2.562	2.662	0.1009	0.1048					
W	3.146	3.246	0.1239	0.1278					
X	3.462	3.562	0.1363	0.1402					
Y	4.938	5.038	0.1944	0.1983					
AB	0.450	0.550	0.0177	0.0217					
AB	0.686	0.838	0.0270	0.0330					

NOTES:

1. Dimensioning and tolerancing per ANSI Y14.5M, 1982.
2. Controlling dimension: millimeter.
3. Copper Thickness: $1 / 2 \mathrm{oz}$.
4. Tin plating thickness: $0.4 \mu \mathrm{~m}$
5.2 sprocket hole device

MC141563T

TAB TAPE REEL ORIENTATION

Application Example
320×300

Monitor On-Screen Display Devices

MC141541P Enhanced Monitor On-Screen Display 4-3
MC141548P Super Monitor On-Screen Display - 24 4-18
MC141549P Super Monitor On-Screen Display - 16 4-39
MC141546P2 Advanced Monitor On-Screen Display - 24 4-59
MC141547P2 Advanced Monitor On-Screen Display - 16 4-76
MC141542P2 Graphic Monitor On-Screen Display - 24 4-93
MC141545P2 Graphic Monitor On-Screen Display - 16 4-114

Enhanced Monitor On-Screen Display CMOS

This is a high performance HCMOS device designed to interface with a micro controller unit to allow colored symbols or characters to be displayed onto the monitor screen. Its on-chip PLL allows both multisystem operation and self generation of system timing. It also minimizes the MCU's burden through its built-in 273 bytes display/control RAM. By storing a full screen of data and control informations, this device has a capability to carry out 'screen-refresh' without any MCU supervision. Since there is no clearance between characters, special graphics oriented characters can be generated by combining two or more character blocks. Besides, there are two kinds of different character resolution that users can choose. By changing the number of dots per horizontal sync line to 320 or 480 , the smaller characters with higher resolution can be easily achieved. Special functions such as character bordering or shadowing, multi-level windows, double height and double width, and programmable vertical length of character are also incorporated. Furthermore, neither massive information update nor extremely high data transmission rate is expected for normal on screen display operation, serial protocols are implemented in lieu of any parallel formats to achieve the minimum pin count.

And one special feature, character RAM fonts, is implemented in this MOSD enhanced version (EMOSD). Users can download their own fonts pattern and display them at any time once the chip is powered on. Thus, there are two ways for users to build and store their fonts. One is a conventional approach to have their masked ROM fonts. Another new approach is to store the fonts in the EPROM accessed by MCU then download them into the EMOSD character RAM. Under this new technique, users have much flexibility to prepare their fonts and the effective fonts number is increased a lot.

- Two selectable Resolutions: 320 (CGA) and 480 (EGA) Dots per Line
- Fully Programmable Character Array of 10 Rows by 24 Columns
- 273 Bytes Direct Mapping Display RAM Architecture
- Internal PLL Generates a Wide-Ranged System Clock
- For High End Monitor Application, Maximum Horizontal Frequency is 110 KHz (52.8 MHz Dot Clock at 480 mode)
- Programmable Vertical Height of Character to Meet Multi-Sync Requirement
- Programmable Vertical and Horizontal Positioning for Display Center
- 120 Characters and Graphic Symbols ROM and 8 programmable character RAM
- 10×16 Dot Matrix Character
- Character by Character Color Selection
- A Maximum of Four Selectable Colors per Row
- Double Character Height and Double Character Width
- Character Bordering or Shadowing
- Three Fully Programmable Background Windows with Overlapping Capability
- Provide a Clock Output Synchronous to the Incoming H Sync for External PWM
- M_BUS (IIC) Interface with Address \$7A
- Single Positive 5 V Supply

ABSOLUTE MAXIMUM RATINGS Voltage Referenced to $\mathrm{V}_{\text {SS }}$

Symbol	Characterlstic	Value	Unit
$V_{D D}$	Supply Voltage	-0.3 to +7.0	V
$\mathrm{~V}_{\text {in }}$	Input Voltage	$\mathrm{V}_{S S}-0.3$ to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Id	Current Drain per Pin Excluding V_{DD} and V_{SS}	25	mA
Ta	Operating Temperature Range	0 to 85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE: Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Description section.
AC ELECTRICAL CHARACTERISTICS $\left(V_{D D} V_{D D(A)}=5.0 \mathrm{~V}, \mathrm{~V}_{S S} V_{S S}(A)=0 \mathrm{~V}, T_{A}=25 \mathrm{C}\right.$,
Voltage Referenced to $V_{S S}$)

Symbol	Characteristic	Min	Typ	Max	Unit
	Output Signal (R, G, B, FBKG and HTONE/PWMCK) $\mathrm{C}_{\text {load }}=30 \mathrm{pF}$				
tr_{r}	Rise Time	-	-	6	ns
tf	Fall Time	-	-	6	ns
FHFLB	HFLB Input Frequency	-	-	110K	Hz

Figure 1. Switching Characteristics

DC CHARACTERISTICS $V_{D D} / V_{D D(A)}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{S S} / V_{S S}(\mathrm{~A})=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Voltage Referenced to $\mathrm{V}_{S S}$

Symbol	Characteristic	Min	Typ	Max	Unit
V_{OH}	High Level Output Voltage $\mathrm{l}_{\text {out }}=-5 \mathrm{~mA}$	$V_{D D}-0.8$	-	-	V
V_{OL}	Low Level Output Voltage $\mathrm{l}_{\text {out }}=5 \mathrm{~mA}$	-	-	$\mathrm{V}_{S S}+0.4$	V
$\begin{aligned} & V_{\mathrm{IL}} \\ & V_{\mathrm{IH}} \end{aligned}$	Digital Input Voltage (Not Including SDA and SCL) Logic Low Logic High	$0.7 \overline{\mathrm{~V}}_{\mathrm{DD}}$	-	$0.3 \text { VDD }$	$\begin{aligned} & V \\ & V \end{aligned}$
$\begin{aligned} & \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IH}} \end{aligned}$	Input Voltage of Pin SDA and SCL in SPI Mode Logic Low Logic High	$0.7 \overline{\mathrm{~V}}_{\mathrm{DD}}$	-	$\begin{gathered} 0.3 V_{D D} \\ - \end{gathered}$	$\begin{aligned} & V \\ & V \end{aligned}$
$\begin{aligned} & V_{I L} \\ & V_{I H} \end{aligned}$	Input Voltage of Pin SDA and SCL in M_BUS Mode Logic Low Logic High	$0.7 \overline{\mathrm{~V}}_{\mathrm{DD}}$	-	$0.3 \mathrm{VDD}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
III	High-Z Leakage Current (R, G, B and FBKG)	-10	-	$+10$	$\mu \mathrm{A}$
III	Input Current (Not Including RP, VCO, R, G, B, FBKG and HTONE/PWMCK)	-10	-	+10	$\mu \mathrm{A}$
IDD	Supply Current (No Load on Any Output)	-	-	+15	mA

PIN DESCRIPTION

VSS(A) (Pin 1)

This pin provides the signal ground to the PLL circuitry. Analog ground for PLL is separated from digital ground for optimal performance.

VCO (Pin 2)

A dc control voltage input to regulate an internal oscillator frequency. See the Application Diagram for the application values used.

RP (Pin 3)

An external RC network is used to bias an internal VCO to resonate at the specific dot frequency. The maximum voltage at Pin 3 should not exceed 3.5 V at any condition. See the Application Diagram for the application values used.
$V_{D D(A)}($ Pin 4$)$
A positive 5 V dc supply for PLL circuitry. Analog power for PLL is separated from digital power for optimal performance.

HFLB (Pin 5)

This pin inputs a negative polarity horizontal synchronize signal pulse to phase lock into an internal system clock generated by the on-chip VCO circuit.

$\overline{\mathbf{S S}}$ (Pin 6)

This input pin is part of the SPI system. An active low signal generated by the master device enables this slave device to accept data. Pull high to terminate the SPI communication. If M_BUS is employed as the serial interface, this pin should be tied to either $V_{D D}$ or $V_{S S}$.

SDA (MOSI) (Pin 7)

Data and control message are being transmitted to this chip from a host MCU, via one of the two serial bus systems. With either protocol, this wire is configurated as a uni-directional data line. (Detailed description of these two protocols will be discussed in the M_BUS and SPI sections).

SCL (SCK) (Pin 8)

A separate synchronizing clock input from the transmitter is required for either protocol. Data is read at the rising edge of each clock signal.

$V_{D D}(\operatorname{Pin} 9)$

This is the power pin for the digital logic of the chip.

$\overline{\text { VFLB }}$ (Pin 10)

Similar to Pin 5, this pin inputs a negative polarity of vertical synchronize signal to synchronize the vertical control circuit.

HTONE/PWMCK (Pin 11)

This is a multiplexed pin. When the PWMCK_EN bit is cleared after power on or by the MCU, this pin is HTONE and outputs a logic high during windowing except when graphics or characters are being displayed. It is used to lower the external R, G, B amplifiers gain to achieve a transparent windowing effect. If the PWMCK_EN bit is set to 1 via M_BUS or SPI, this pin is changed to a mode-dependent clock output with 50/50 duty cycle and synchronous with the input horizontal synchronization signal at Pin 5 . The frequency is dependent on the mode in which the EMOSD is currently running. The exact frequencies in the different resolution modes are described below.

Table 1. PWM CLK Frequency

Resolution	Frequency	Duty Cycle
320 dots/line	$32 \times \mathrm{H}_{\mathrm{f}}$	$50 / 50$
480 dots/line	$48 \times \mathrm{H}_{\mathrm{f}}$	$50 / 50$

NOTE: H_{f} is the frequency of the input H sync. on Pin 5.
Typically, this clock is fed into an external pulse width modulation module as its clock source. Because of the synchronization between PWM clock and H sync, a better performance on the PWM controlled functions can be achieved.

FBKG (Pin 12)

This pin will output a logic high while displaying characters or windows when FBKGC bit in frame control register is 0 , and output a logic high only while displaying characters when FBKGC bit is 1 . It is defaulted to high impedance state after power on, or when there is no output. An external $10 \mathrm{k} \Omega$ resistor pulled low is recommended to avoid level toggling caused by hand effect when there is no output.

B,G,R (Pin 13,14,15)

EMOSD color output in TTL level to the host monitor. These three signals are active high output pins which are in high impedance state when EMOSD is disabled.

$V_{S S}$ (Pin 16)

This is the ground pin for the digital logic of the chip.

SYSTEM DESCRIPTION

MC141541 is a full screen memory architecture. Refresh is done by the built-in circuitry after a screenful of display data has been loaded in through the serial bus. Only changes to the display data need to be input afterward.

Serial data, which includes screen mapping address, display information, and control messages, are being transmitted via one of the two serial buses: SPI or M_BUS (mask option). These two sets of buses are multiplexed onto a single set of wires. Standard parts offer SPI transmission. Parts which offer M_BUS transmission mode have to be specially manufactured as custom parts.

Data is first received and saved in the MEMORY MANAGEMENT CIRCUIT in the Block Diagram. Meanwhile, the EMOSD is continuously retrieving the data and putting it into a ROW BUFFER for display and refreshing, row after row. During this storing and retrieving cycle, a BUS ARBITRATION LOGIC will patrol the internal traffic, to make sure that no crashes occur between the slower serial bus receiver and fast 'screen-refresh' circuitry. After the full screen display data is received through one of the serial communication interface, the link can be terminated if change on display is not required.

The bottom half of the Block Diagram constitutes the heart of this entire system. It performs all the EMOSD functions such as programmable vertical length (from 16 lines to 63 lines), display clock generation (which is phase locked to the incoming horizontal sync signal at Pin 5 HFLB), bordering or shadowing, and multiple windowing.

COMMUNICATION PROTOCOLS

M_BUS Serial Communication

This is a two-wire serial communication link that is fully compatible with the IIC bus system. It consists of SDA bidirectional data line and SCL clock input line. Data is sent from a transmitter (master), to a receiver (slave) via the SDA line, and is synchronized with a transmitter clock on the SCL line at the receiving end. The maximum data rate is limited to 100 kbps . The default chip address is $\$ 7 \mathrm{~A}$, but is hardware changeable by mask set.

Operating Procedure

Figure 2 shows the M_BUS transmission format. The master initiates a transmission routine by generating a START condition, followed by a slave address byte. Once the address is properly identified, the slave will respond with an ACKNOWLEDGE signal by pulling the SDA line LOW during the ninth SCL clock. Each data byte which then follows must be eight bits long, plus the ACKNOWLEDGE bit, to make up nine bits together. Appropriate row and column address information and display data can be downloaded sequentially in one of the three transmission formats described in DATA TRANSMISSION FORMATS SECTION. In the cases of no ACKNOWLEDGE or completion of data transfer, the master will generate a STOP condition to terminate the transmission routine. Note that the OSD_EN bit must be set after all the display information has been sent in order to activate the EMOSD circuitry of MC141541, so that the received information can then be displayed.

Figure 2. M_BUS Format

Serial Peripheral Interface (SPI)

Similar to M_BUS communication, SPI requires separate clock (SCK) and data (MOSI) lines. In addition, a SS SLAVE SELECT pin is controlled by the master transmitter to initiate the receiver.

Operating Procedure

To initiate SPI transmission, pull $\overline{S S}$ pin low by the master device to enable MC141541 to accept data. The SS input line must be a logic low prior to occurrence of SCK and remain low until and after the last (eighth) SCK cycle. After all data has been sent, the $\overline{S S}$ pin is then pulled high by master to terminate the transmission. No slave address is needed for SPI. Hence, row and column address information and display data (the data transmission formats are the same as in

M_BUS mode described in the previous section) can be sent immediately after the SPI is initiated.

Figure 3. SPI Protocol

DATA TRANSMISSION FORMATS

In this enhanced version MOSD, both display RAM/control registers and character RAM fonts needed to be programmed after power-on. The arrangement of display RAM/ control registers is on the row-column basis, while the character RAM is on the segment-line basis. Although the address basis is different from each other, the data downloading protocols are very similar and will be describedi in the following sections.

Display RAM and Control Registers

After the proper identification by the receiving device, data train of arbitrary length is transmitted from the master. There are three transmission formats from (a) to (c) as stated below. The data train in each sequence consists of row address (R), column address (C), and display information (I), as shown in Figure 4. In format (a), display information data must be preceded with the corresponding row address and column address. This format is particularly suitable for updating small amounts of data between different rows. However, if the current information byte has the same row address as the one before, format (b) is recommended. For a full screen pattern change which requires a massive information update, or during power up situation, most of the row and column addresses on either (a) or (b) format will appear to be redundant. A more efficient data transmission format (c) should be applied. This sends the RAM starting row and column addresses once only, and then treats all subsequent data as display information. The row and column addresses will be automatically incremented internally for each display information data from the starting location.

The data transmission formats are:
(a) $\mathrm{R} \rightarrow>\mathrm{C}->$ I $\rightarrow \mathrm{R}->\mathrm{C}->$ I $->$
(b) $\mathrm{R} \rightarrow>\mathrm{C}->$ I $->\mathrm{C}->$ I $->\mathrm{C}->$ I.
(c) R $->$ C $->$ I $->$ I $->$ I $->$.

To differentiate the row and column addresses when transferring data from master, the MSB (Most Significant Bit) is set as in Figure 5: ' 1 ' to represent row, while ' 0 ' for column address. Furthermore, to distinguish the column address between format (a), (b) and (c), the sixth bit of the column address is set to ' 1 ' which represents format (c), and a '0' for format (a) or (b). There is some limitation on using mix-formats during a single transmission. It is permissible to change the format from (a) to (b), or from (a) to (c), or from (b) to (a), but not from (c) back to (a) or (b).

Figure 4. Data Packet

Figure 5. Row \& Column Address Bit Patterns

Character RAM

The structure of 8 character RAM fonts are shown in Figure 6 . They occupy the font number from 0 to 7 . Because of the 10X16 dot matrix font, we decompose each font into 2 segments in horizontal direction and 16 lines in vertical direction. So, there are 5 dots needed to be defined for each specified segment-line location. This 5 -bit data forms the lower 5 bits of the information data byte and the higher 3 bits are ignored. Because there are 16 segments (2 segments per font) and 16 lines, both the segment and line addresses are 4-bit wide.

Basically, the transmission format is very similar with that for display RAM or control registers. The major difference is to replace the row and column address with segment address and line address respectively. After the proper identification by the receiving device, data train of arbitrary length is transmitted from the Master. There are three transmission formats, from (a) to (c) as stated below. The data train in each sequence consists of segment address (S), line address (L), and font informations (I), as shown in Figure 6. In format (a), each font information data have to be preceded with the corresponding segment address and line address. This format is particular suitable for updating small portion of font pattern. However, if the current information byte has the same segment address as the one before, format (b) is recommended. For a new font pattern change which requires massive information update or during power up situation, most of the segment and column address on either (a) or (b) format will appear to be redundant. A more efficient data transmission format (c) should be applied. It sends the character RAM starting segment and line addresses once only, and then treat all subsequent data as font information. The segment and line addresses will be automatically incremented internally for each RAM font data from the starting location.

The data transmission formats are:
(a) $\mathrm{S}->\mathrm{L}->\mathrm{I}->\mathrm{S}->\mathrm{L}->\mathrm{I}->$.
(b) $\mathrm{S}->\mathrm{L}->1->L->1->L->1$
(c) $\mathrm{S}->\mathrm{L}->\mathrm{I}->\mathrm{I}->$ I->...................

To differentiate the segment address from row and line address when transferring data, the bit 7 (MSB) and bit 6 are set to ' 11 ' to represent segment address, while ' 00 ' for line address used in format (a) or (b) and '01' for line address used in format (c). There is some limitation on using mix-for-
mats during a single transmission. It is permissible to change the format from (a) to (b), or from (a) to (c), or from (b) to (a), but not from (c) back to (a) or (b).

Segment \& Line Address bit Patterns:

Data Packet:

NOTE: X means don't care bit and D means valid data bit.

Figure 6. Structure of Programmable RAM Fonts and Downloading Format

MEMORY MANAGEMENT

Inside this chip, there are three kinds of RAM, display RAM, control registers and character RAM. For display RAM and control registers, they are addressed with row and column (coln) number in sequence, while the character RAM with segment and line number. The transmission format has been described in the last section. Besides the 8 RAM fonts numbered from $\$ 00$ to $\$ 07,120$ masked ROM fonts numbered from $\$ 08$ to $\$ 7 \mathrm{~F}$ are also built in this chip.

Display RAM and Control Registers

The space between row 0 and coln 0 to row 9 and coln 23 are called Display registers, with each contains a character RAM/ROM number corresponding to display location on monitor screen. Every data row associate with two control registers, which locate at coln 30 and 31 of their respective rows, to control the characters display format of that row. In
addition, three window control registers for each of three windows together with three frame control registers occupy the first 13 columns of row 10 space.

Figure 7. Memory Map

User should handle the internal RAM address location with care especially for those rows with double length alphanumeric symbols. For example, if row n is destined to be double height on the memory map, the data displayed on screen row n and $n+1$ will be represented by the data contained in the memory address of row n only. The data of next row $n+1$ on the memory map will appear on the screen of $n+2$ and $\mathrm{n}+3$ row space and so on. Hence, it is not necessary to throw in a row of blank data to compensate for the double row action. User needs to take care of excessive row of data in memory in order to avoid over running the limited number of row space on the screen.

There is difference for rows with double width alphanumeric symbols. Only the data contained in the even numbered columns of memory map will be shown, the odd numbered columns will be ignored and not disclosed

Character RAM/ROM

The RAM fonts occupy the font number $\$ 00$ to $\$ 07$ and their patterns can be changed at any time via the SPI or MBUS protocol. The masked ROM fonts are fixed and located from number $\$ 08$ to $\$ 7 \mathrm{~F}$. See the following Figure for the details.

Font Number: $\$ 00 \sim$ \$7F

Figure 8. Arrangement of Character RAM/ROM fonts

REGISTERS

Display Register

Bit 7 CCSO - This bit defines a specific character color out of the two preset colors. Color 1 is selected if this bit is cleared, and color 2 otherwise.

Bit 6-0 CRADDR - These seven bits address the 128 characters or symbols residing in the character ROM.

Row Control Registers

Coln 30

Bit 7-2 Color 1 is determined by R1, G1, B1 and color 2 by R2, G2, B2.
Bit 1 CHS - It determines the height of a display symbol. When this bit is set, the symbol is displayed in double height.

Bit 0 CWS - Similar to bit 1, character is displayed in double width, if this bit is set.

Coln 31

COLN 31

Bit 7-2 Color 3 and 4 are defined by R3, G3, B3, and R4, G4, B4 respectively.

Window 1 Registers

Row 10 Coln 1

	7	6	5	4	3	2	1	0
ROW 15 COLN 1			TAD		LSB	WEN	CCS1	HPOL

Bit 2 WEN - It enables the background window 1 generation if this bit is set.

Bit 1 CCS1 - This additional color select bit provides the characters residing within window 1 with two extra color selections, making a total of four selections for that row.

Bit 0 HPOL - This bit selects the polarity of the incoming horizontal sync signal ($\overline{\mathrm{HFLB}}$) on pin 5 . If it is negative polarity, clear this bit. Otherwise, set this bit to 1 to represent the positive H sync signal. After power on, this bit is cleared.

Row 10 Coln 2

Bit 2-0 R, G and B-Controls the color of window 1. Window 1 occupies Column 0-2 of Row 10. Window 2 from Column $3-5$, and Window 3 from $6-8$. Window 1 has the highest priority, and Window 3 the least. If window overlapping occurs, the higher priority window will cover the lower one, and the higher priority color will take over on the overlap window area. If the start address is greater than the end address, this window will not be displayed.

Window 2 Registers

Row 10 Coln 3

Row 10 Coln 4

Bit 2 WEN - It enables the background window 2 generations if this bit is set.

Bit 1 CCS1 - This additional color select bit provides the characters residing within window 2 with two extra color selections, making a total of four selections for that row.

Bit 0 VPOL - This bit selects the polarity of the incoming vertical sync signal ($\overline{\mathrm{VFLB}}$) on pin 5 . If it is negative polarity, clear this bit. Otherwise, set this bit to 1 to represent the positive V sync signal. After power on, this bit is cleared.

Row 10 Coln 5

Bit 2-0 R, G and B - Controls the color of window 2. Window 1 occupies Column 0-2 of Row 10. Window 2 from Column 3-5, and Window 3 from 6-8. Window 1 has the highest priority, and Window 3 the least. If window overlapping occurs, the higher priority window will cover the lower one, and the higher priority color will take over on the overlap window area. If the start address is greater than the end address, this window will not be displayed.

Window 3 Registers

Row 10 Coln 6

	7	6	5	4	3	2	1	0
ROW 10 COLN 7	MSB	COL	T		LSB	WEN	CCS1	PWMCK_EN

Bit 2 WEN - it enables the background window 3 generations if this bit is set.

Bit 1 CCS1 - This additional color select bit provides the characters residing within window 3 with two extra color selections, making a total of four selections for that row.

Bit 0 PWMCK_EN - When this bit is set to 1, HTONE/PWMCK pin will be switched to a clock output which is synchronous to the H sync and used as an external PWM (pulse width modulation) clock source. Refer to the pin description of HTONE/PWMCK for more information. After power on, the default value is 0 .

Row 10 Coln 8

Bit 2-0 R, G and B-Controls the color of window 3. Window 1 occupies Column 0-2 of Row 10. Window 2 from Column $3-5$, and Window 3 from 6-8. Window 1 has the highest priority, and Window 3 the least. If window overlapping occurs, the higher priority window will cover the lower one, and the higher priority color will take over on the overlap window area. If the start address is greater than the end address, this window will not be displayed.

Frame Control Registers

Frame Control Register Row 10 Coln 9

Bit 7-0 VERTD - These eight bits define the vertical starting position. Total 256 steps, with an increment of four horizontal lines per step for each field. Its value cannot be zero anytime. The default value is 4 .

Frame Control Register Row 10 Coln 10

Bit 7 TB - Reserved Test Bit.

Bit 6-0 HORD - Horizontal starting position for character display. Seven bits give a total of 96 steps and each increment represents five dots movement shift to the right on the monitor screen. Its value cannot be zero anytime. The default value is 10.

Frame Control Register Coln 11

	7	6	5	4	3	2	1	0
COLN 11	TB	TB	CH5	CH 4	CH3	CH 2	CH 1	CHO

Bit 7 TB - Reserved Test Bit.
Bit 6 TB - Reserved Test Bit.
Bit 5-0 CH5-CHO - These six bits will determine the displayed character height. It is possible to have a proper character height by setting a value greater than or equal to 16 on different horizontal frequency monitor. Setting a value below 16 will not have a predictable result. Figure 9 illustrates how this chip expands the built-in character font to the desired height.

Frame Control Register Coln 12

Bit 7 OSD_EN - OSD circuit is activated when this bit is set.

Bit 6 BSEN - It enables the character bordering or shadowing function when this bit is set.

Bit 5 SHADOW - Character with black-edge shadowing is selected if this bit is set; otherwise bordering prevails.

Bit 4, TB - Reserved Test Bit.
Bit 3, X32B - It determines the number of dots per horizontal line. There are 320 dots per horizontal line if bit X32B is clear and this is also the default power on state. Otherwise, 480 dots per horizontal sync line is chosen when bit X32B is set to 1 . Refer to Table 2 for details.

Bit 2 TB - Reserved Test Bit.
Bit 1 TB - Reserved Test Bit.
Bit 0 FBKGC - It determines the configuration of FBKG output pin. When it is clear, the FBKG pin outputs high while displaying characters or windows; otherwise, the FBKG pin outputs high only while displaying characters.

Table 2. Resolution Setting

Register Setting (32B)	0	1
Dots number per H Sync Line	320	480

Figure 9. Variable Character Height

Figure 10. Character Bordering and Shadowing

Frame Format and Timing

Figure 12 illustrates the positions of all display characters on the screen relative to the leading edge of horizontal and vertical flyback signals. The shaded area indicates the area not interfered by the display characters. Notice that there are two components in the equations stated in Figure 12 for horizontal and vertical delays: fixed delays from the leading edge of HFLB and VFLB signals, regardless of the values of HORD and VERTD: (47 dots + phase detection pulse width) and one H scan line for horizontal and vertical delays, respectively; variable delays determined by the values of HORD and VERTD. Refer to Frame Control Registers COLN 9 and 10 for the definitions of VERTD and HORD. Phase detection pulse width is a function of the external charge-up resistor, which is the $330 \mathrm{k} \Omega$ resistor in a series with $2 \mathrm{k} \Omega$ to VCO pin in the Application Diagram. Dot frequency is determined by the equation: H Freq. $\times 320$ if the bit X 32 B is clear and H Freq. X

480 if bit X 32 B is set to 1 and bit X 64 is 0 and H Freq. $\times 640$ if both bit X32B and bit X64 are set to 1 . For example, dot frequency is 10.24 MHz if H freq is 32 KHz while bit X 32 B is 0 . If X 32 B is 1 and bit X 64 is 0 , the dot frequency will be 15.36 MHz (one and a half of the original one).

When double character width is selected for a row, only the even-numbered characters will be displayed, as shown in row 2. Notice that the total number of horizontal scan lines in the display frame is variable, depending on the chosen character height of each row. Care should be taken while configuring each row character height so that the last horizontal scan line in the display frame always comes out before the leading edge of $\overline{\mathrm{FFLB}}$ of next frame to avoid wrapping display characters of the last few rows in the current frame into the next frame. The number of display dots in a horizontal scan line is always fixed at 240 , regardless of row character width and the setting of bit X32B.
Although there are 24 character display registers that can be programmed for each row, not every programmed character can be shown on the screen in 320 dots resolution. Usually, only 24 characters can be shown in this resolution at most. This is induced by the retrace time that is required to retrace the H scan line. In other resolution, 480 dots, 24 characters can be displayed on the screen totally if the horizontal delay register is set properly.
Figure 11 illustrates the timing of all output signals as a function of window and fast blanking features. Line 3 of all three characters is used to illustrate the timing signals. The shaded area depicts the window area. Both the left hand side and right hand side characters are embodied in a window with only one difference: FBKGC bit. The middle character does not have a window as its background. Notice that signal HTONE/PWMCK is active only during window area. Timing of signal FBKG depends on the configuration of FBKGC bit. The configuration of FBKGC bits affects only FBKG signal timing; it has no effect on the timing of HTONE/PWMCK. Waveform ' R, G or B ', which is the actual waveform at R, G, or B pin, is the logical OR of waveform 'character R, G or B' and waveform 'window R, G or B'. 'Character R, G, or B' and 'window R, G, or B ' are internal signals for illustration purpose only. Also notice that HTONE/PWMCK has exactly the same waveform as 'window R, G or B '.

[^2]

FONT

Icon Combination

MC141541 contains 120 character ROM and 8 RAM. The user can create an on-screen menu based on those characters and programmable RAM. Refer to Table 3 for icon combinations.

Table 3. Combination Map

ICON	ROM ADDRESS(HEX)
Volume Bar I	$48,49,57$
Volume Bar II	47
Size	$4 \mathrm{~F}, 50$
Position	51,52
Geometry	$53,54,55,56$
Contrast	58,59
Brightness	$5 \mathrm{~A}, 5 \mathrm{~B}$
Horizontal Position	$5 \mathrm{C}, 5 \mathrm{D}$
Horizontal Sizing	$5 \mathrm{E}, 5 \mathrm{~F}$
Vertical Position	60,61
Vertical Sizing	62,63
Pin Cushion	64,65
Degaussing	66,67
Trapezoid	$6 \mathrm{C}, 6 \mathrm{D}, 6 \mathrm{E}, 6 \mathrm{~F}$
Parallelogram	$68,69,6 \mathrm{~A}, 6 \mathrm{~B}$
Color Select	70,71
Video Level	72,73
Input Select	74,75
Recall	$7 \mathrm{~F}, 77$
Save	$7 \mathrm{~F}, 7 \mathrm{~F}$
Left/Right Arrows	INC/DEC sign
Speaker	

ROM CONTENT

Figures 13-14 show the ROM content of MC141541.

Figure 13. ROM Address (\$08-\$3F)

Figure 14. ROM Address (\$40-\$7F)

DESIGN CONSIDERATIONS

Distortion

Motorola's MC141541P has a built-in PLL for multisystems application. Pin 2 voltage is a dc basing for the internal VCO in the PLL. When the input frequency (HFLB) in Pin 5 becomes higher, the VCO voltage will increase accordingly. The built-in PLL then has a higher locked frequency output. The frequency should be equal to 320/480/640 x HFLB (depends on resolution). It is the dot-clock in each horizontal line.

Display distortion is caused by noise in Pin 2. Positive noise makes VCO run faster than normal. The corresponding scan line will be shorter accordingly. In contrast, negative noise causes the scan line to be longer. The net result will be distortion on the display, especially on the right hand side with window turn on.

In order to have distortion-free display, the following recommendations should be considered.

- Only analog part grounds (Pin 2 to Pin 4) can be connected to Pin $1\left(V_{S S}(A)\right) . V_{S S}$ and other grounds should connect to PCB common ground. Then the $\mathrm{V}_{\mathrm{SS}(\mathrm{A})}$ and V_{SS} grounds should be totally separated (i.e. $V_{S S}(A)$ is floating). Refer to the Application Diagram for the ground connections.
- DC supply path for Pin 9 (VDD) should be separated from other switching devices.
- LC filter should be connected between Pin 9 and Pin 4. Refer to the values used in the Application Diagram.
- Biasing and filter networks should be connected to Pin 2 and Pin 3. Refer to the recommended networks in the Application Diagram.

Jittering

Most display jittering is caused by HFLB jittering in Pin 5. Care must be taken if the HFLB signal comes from the flyback transformer. A short path and shielded cable are recommended for a clean signal. A small capacitor can be added between Pin 5 - Pin 16 to smooth the signal. Refer to the value used in the Application Diagram.

Display Dancing

Most display dancing is caused by interference of the serial bus. It can be avoided by adding resistors in the bus in series.

APPLICATION DIAGRAM

Super Monitor On-Screen Display - 24
 CMOS

This is a high performance HCMOS device designed to interface with a micro controller unit to allow colored symbols or characters to be displayed onto color monitor. Because of the large number of fonts, 256 fonts including the programmable RAM fonts and fixed ROM fonts, SMOSD is suitable to be adopted for the multi-language monitor application especially. Its on-chip PLL allows both multisystem operation and self generation of system timing. It also minimizes the MCU's burden through its built-in RAM. By storing a full screen of data and control information, this device has a capability to carry out 'screen-refresh' without any MCU supervision.

Since there is no clearance between characters, special graphics oriented characters can be generated by combining two or more character blocks. Besides, there are three kinds of different resolutions that users can choose. By changing the number of dots per horizontal line to 320 (CGA), 480 (EGA) or 640 (VGA), smaller characters with higher resolution can be easily achieved.

Special functions such as character blinking, automatic height scaling, character/window bordering or character shadowing, four-level windows, double height and double width, and programmable vertical length of character are also incorporated. Furthermore, 8 programmable character/symbol RAM fonts are also built-in. It is much flexible to create the new symbols, icons and logo. One special attractive application of the RAM fonts is the real-time programming to achieve the dynamic image instead of the static picture as previous.

There are 8 PWM DAC channels for external digital to analog control. Each PWM channel is composed of an 8-bit register which contains a 5-bit PWM in MSB portion and a 3-bit binary rate multiplier(BRM) in LSB portion.

- 8 Channels DAC Synchronous PWMs with 8 bit Resolution
- Totally 256 Characters and Graphic Fonts Including 8 Programmable RAM Fonts and 248 Mask ROM Fonts
- Three Selectable Resolutions: 320 (CGA), 480 (EGA) or 640 (VGA) Dots/ Line
- Wide Operating Frequency Range for High End Monitor: $15 \mathrm{KHz} \sim 120 \mathrm{KHz}$
- Fully Programmable Character Array of 15 Rows by 30 Columns
- True 16-Color Selection for Windows
- Fancy Fade-In/Fade-Out Effects
- 8-Color Selection for Characters with Color Intensity Attribute on Each Row
- Auto Height Scaling to Keep Constant Height Independent of Display Modes
- Four Programmable Background Windows with Overlapping Capability
- Shadowing on Windows with Programmable Shadow Width/Height
- Character Bordering or Shadowing
- Character/Symbol Blinking Function
- Programmable Vertical Height of Character to Meet Multi-Sync Requirement
- Programmable Vertical and Horizontal Positioning for Display Centre
- Double Character Height and Double Character Width
- Internal PLL Generates a Wide-Ranged System Clock (76.8 MHz)
- M_BUS (IIC) Interface with Address \$7A (SPI Bus is Mask Option)


```
REV }
12/96
```


ABSOLUTE MAXIMUM RATINGS Voltage Referenced to $V_{S S}$

Symbol	Characteristic	Value	Unit
VDD	Supply Voltage	-0.3 to +7.0	V
$V_{\text {in }}$	Input Voltage	$\begin{aligned} & V_{S S}-0.3 \text { to } \\ & V_{D D}+0.3 \end{aligned}$	V
Id	Current Drain per Pin Excluding $\mathrm{V}_{\text {DD }}$ and $\mathrm{V}_{S S}$	25	mA
Ta	Operating Temperature Range	0 to 85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE: Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Description section.
AC ELECTRICAL CHARACTERISTICS $\left(V_{D D} V_{D D}(A)=5.0 \mathrm{~V}_{,} \mathrm{V}_{S S} V_{S S}(\mathrm{~A})=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25 \mathrm{C}\right.$,
Voltage Referenced to V_{SS})

Symbol	Characteristic	Min	Typ	Max	Unit
	Output Signal (R, G, B, FBKG and INT) $\mathrm{Cload}_{\text {lo }}=30 \mathrm{pF}$				
t_{r}	Rise Time	-	-	6	ns
t_{f}	Fall Time	-	-	6	ns
FRFLB	HFLB Input Frequency	-	-	120K	Hz

Figure 1. Switching Characteristics

DC CHARACTERISTICS $V_{D D} V_{D D}(A)=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{S S} V_{S S}(A)=0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$, Voltage Referenced to $\mathrm{V}_{S S}$

\begin{tabular}{|c|c|c|c|c|c|}
\hline Symbol \& Characteristic \& Min \& Typ \& Max \& Unit \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) \& High Level Output Voltage \(\mathrm{l}_{\text {out }}=-5 \mathrm{~mA}\) \& \(V_{D D}-0.8\) \& - \& - \& V \\
\hline VOL \& Low Level Output Voltage \(\mathrm{I}_{\text {out }}=5 \mathrm{~mA}\) \& - \& - \& \(\mathrm{V}_{S S}+0.4\) \& V \\
\hline \[
\begin{aligned}
\& V_{\mathrm{IL}} \\
\& V_{\mathrm{IH}}
\end{aligned}
\] \& \begin{tabular}{l}
Digital Input Voltage (Not Including SDA and SCL) \\
Logic Low \\
Logic High
\end{tabular} \& \[
0.7 \bar{V}_{\mathrm{DD}}
\] \& - \& 0.3 V
- \& \[
\begin{aligned}
\& V \\
\& v
\end{aligned}
\] \\
\hline \[
\begin{aligned}
\& V_{\mathrm{IL}} \\
\& \mathrm{~V}_{\mathrm{IH}}
\end{aligned}
\] \& Input Voltage of Pin SDA and SCL in SPI Mode Logic Low Logic High \& \[
0.7 \overline{\mathrm{~V}}_{\mathrm{DD}}
\] \& - \& \({ }_{0}^{0.3} \mathrm{~V} \mathrm{DD}\) \& \[
\begin{aligned}
\& V \\
\& v
\end{aligned}
\] \\
\hline \[
\begin{aligned}
\& V_{\mathrm{IL}} \\
\& \mathrm{~V}_{\mathrm{IH}}
\end{aligned}
\] \& Input Voltage of Pin SDA and SCL in M_BUS Mode Logic Low Logic High \& \[
0.7 \overline{\mathrm{~V}}_{\mathrm{DD}}
\] \& - \& 0.3

V \& $$
\begin{aligned}
& V \\
& v
\end{aligned}
$$

\hline I_{11} \& High-Z Leakage Current (R, G, B and FBKG) \& -10 \& - \& + 10 \& $\mu \mathrm{A}$

\hline 111 \& Input Current (Not Including RP, VCO, R, G, B, FBKG and INT) \& -10 \& - \& + 10 \& $\mu \mathrm{A}$

\hline IDD \& Supply Current (No Load on Any Output) \& - \& - \& + 15 \& mA

\hline
\end{tabular}

PIN DESCRIPTION

VSS(A) (Pin 1)

This pin provides the signal ground to the PLL circuitry. Analog ground for PLL is separated from digital ground for optimal performance.

VCO (Pin 2)

A dc control voltage input to regulate an internal oscillator frequency. See the Application Diagram for the application values used.

RP (Pin 3)

An external RC network is used to bias an internal VCO to resonate at the specific dot frequency. The maximum voltage at Pin 3 should not exceed 3.5 V at any condition. See the Application Diagram for the application values used.
$V_{D D(A)}($ Pin 4$)$
A positive 5 V dc supply for PLL circuitry. Analog power for PLL is separated from digital power for optimal performance.

HFLB (Pin 5)

This pin inputs a negative polarity horizontal synchronize signal pulse to phase lock into an internal system clock generated by the on-chip VCO circuit.

$\overline{\mathbf{S S}}$ (Pin 6)

This input pin is part of the SPI system. An active low signal generated by the master device enables this slave device to accept data. Pull high to terminate the SPI communication. If M_BUS is employed as the serial interface, this pin should be tied to either V_{DD} or V_{SS}.

SDA (MOSI) (Pin 7)
Data and control message are being transmitted to this chip from a host MCU, via one of the two serial bus systems. With either protocol, this wire is configurated as a uni-directional data line. (Detailed description of these two protocols will be discussed in the M_BUS and SPI sections).

SCL (SCK) (Pin 8)

A separate synchronizing clock input from the transmitter is required for either protocol. Data is read at the rising edge of each clock signal.

PWM 6 (Pin 9)

Channel 6 of the PWM.

PWM 4 (Pin 10)

Channel 4 of the PWM.

PWM 2 (Pin 11)

Channel 2 of the PWM.

PWM 0 (Pin 12)

Channel 0 of the PWM.

PWM 1 (Pin 13)

Channel 1 of the PWM.
PWM 3 (Pin 14)
Channel 3 of the PWM.
PWM 5 (Pin 15)
Channel 5 of the PWM.
PWM 7 (Pin 16)
Channel 7 of the PWM.

VDD (Pin 17)

This is the power pin for the digital logic of the chip.

$\overline{\text { VFLB }}$ (Pin 18)

Similar to Pin 5, this pin inputs a negative polarity of vertical synchronize signal to synchronize the vertical control circuit.

INT (Pin 19)

This output pin is used to indicate the color intensity. If the intensity control bits are set in the row attribute registers or window control registers, this pin will output a logic high while displaying the specified windows or the characters on the associated rows. Otherwise, it will keep in low state. Please refer to Figure 17 for detail timing chart. Thus, 16color selection is achievable by combining this intensity pin with R/G/B outputs. On the other hand, this color intensity information could be reflected on the R/G/B pins by asserting tri-state instead of logic high if 3 _S bit is set to 1 . Refer to the "REGISTERS" for more information.

FBKG (Pin 20)

This pin will output a logic high while displaying characters or windows when FBKGC bit in frame control register is 0 , and output a logic high only while displaying characters when FBKGC bit is 1 . It is defaulted to high impedance state after power on, or when there is no output. An external $10 \mathrm{k} \Omega$ resistor pulled low is recommended to avoid level toggling caused by hand effect when there is no output.

B,G,R (Pin 21, 22, 23)
SMOSD color outputs in TTL level to the host monitor. These three signals are open drain outputs if 3_STATE bit is set and the color intensity is inactive. Otherwise, they are active high push-pull outputs. See "REGISTERS" for more information. These pins are in high impedance state after power on.

$V_{S S}$ (Pin 24)

This is the ground pin for the digital logic of the chip.

SYSTEM DESCRIPTION

MC141548 is a full screen memory architecture. Refresh is done by the built-in circuitry after a screenful of display data has been loaded in through the serial bus. Only changes to the display data need to be input afterward.

Serial data, which includes screen mapping address, display information, and control messages, are being transmitted via one of the two serial buses: M_BUS or SPI (mask option). These two sets of buses are multiplexed onto a single set of wires. Standard parts offer M_BUS transmission.

Data is first received and saved in the MEMORY MANAGEMENT CIRCUIT in the Block Diagram. Meanwhile, the SMOSD is continuously retrieving the data and putting it into a ROW BUFFER for display and refreshing, row after row. During this storing and retrieving cycle, a BUS ARBITRATION LOGIC will patrol the internal traffic, to make sure that no crashes occur between the slower serial bus receiver and fast 'screen-refresh' circuitry. After the full screen display data is received through one of the serial communication interface, the link can be terminated if change on display is not required.

The bottom half of the Block Diagram constitutes the heart of this entire system. It performs all the SMOSD functions such as programmable vertical length (from 16 lines to 63 lines), display clock generation (which is phase locked to the incoming horizontal sync signal at Pin 5 HFLB), bordering or shadowing, and multiple windowing.

COMMUNICATION PROTOCOLS

M BUS Serial Communication

This is a two-wire serial communication link that is fully compatible with the IIC bus system. It consists of SDA bidirectional data line and SCL clock input line. Data is sent from a transmitter (master), to a receiver (slave) via the SDA line, and is synchronized with a transmitter clock on the SCL line at the receiving end. The maximum data rate is limited to 100 kbps . The default chip address is $\$ 7 \mathrm{~A}$.

Operating Procedure

Figure 2 shows the M_BUS transmission format. The master initiates a transmission routine by generating a START condition, followed by a slave address byte. Once the address is properly identified, the slave will respond with an ACKNOWLEDGE signal by pulling the SDA line LOW during the ninth SCL clock. Each data byte which then follows must be eight bits long, plus the ACKNOWLEDGE bit, to make up nine bits together. Appropriate row and column address information and display data can be downloaded sequentially in one of the three transmission formats described in DATA TRANSMISSION FORMATS SECTION. In the cases of no ACKNOWLEDGE or completion of data transfer, the master will generate a STOP condition to terminate the transmission routine. Note that the OSD_EN bit must be set after all the display information has been sent in order to activate the SMOSD circuitry of MC141548, so that the received information can then be displayed.

Figure 2. M_BUS Format

Serial Peripheral Interface (SPI)

Similar to M_BUS communication, SPI requires separate clock (SCK) and data (MOSI) lines. In addition, a SS SLAVE SELECT pin is controlled by the master transmitter to initiate the receiver.

Operating Procedure

To initiate SPI transmission, pull $\overline{\mathrm{SS}}$ pin low by the master device to enable MC141548 to accept data. The $\overline{\text { SS }}$ input line must be a logic low prior to occurrence of SCK and remain
low until and after the last (eighth) SCK cycle. After all data has been sent, the $\overline{\mathrm{SS}}$ pin is then pulled high by master to terminate the transmission. No slave address is needed for SPI. Hence, row and column address information and display data (the data transmission formats are the same as in M_BUS mode described in the previous section) can be sent immediately after the SPI is initiated.

Figure 3. SPI Protocol

DATA TRANSMISSION FORMATS

After the proper identification by the receiving device, data train of arbitrary length is transmitted from the Master. As mentioned above, three register blocks, display registers, attribute/control registers and RAM fonts, need to be programmed before the proper operation. Basically, these three areas use the similar transmission protocol. Only two bits of the row/segment byte are used to distinguish the programming blocks.

There are three transmission formats, from (a) to (c) as stated below. The data train in each sequence consists of row/seg address (R), column/line address (C), and data informations (I). In format (a), each display information data have to be preceded with the corresponding row/seg address and column/line address. This format is particular suitable for updating small amount of data between different row. However, if the current information byte has the same row/seg address as the one before, format (b) is recommended. For a full screen pattern change which requires massive information update or during power up situation, most of the row/seg and column/line address on either (a) or (b) format will appear to be redundant. A more efficient data transmission format (c) should be applied. It sends the RAM starting row/seg and column/line addresses once only, and then treat all subsequent data as data information. The row/ seg and column/line addresses will be automatically incremented internally for each information data from the starting location.

Based on the different programming areas, the detail transmission protocol is described below respectively.

(I) Display Register Programming

The data transmission formats are:
(a) R->C->1->R->C->1->..........
(b) $\mathrm{R} \cdot>\mathrm{C}->$ I $->\mathrm{C}->$ I $->\mathrm{C}->$ I.......
(c) R \rightarrow C $->$ I->|->1->.

NOTE: R means row byte.
C means column byte. I means data byte.

To differentiate the display row address from attribute/ RAM fonts area when transferring data, the most significant three bits are set to ' 100 ' to represent display row address, while '00X' for column address used in format (a) or (b) and '01X' for column address used in format (c). There is some limitation on using mix-formats during a single transmission. It is permissible to change the format from (a) to (b), or from (a) to (c), or from (b) to (a), but not from (c) back to (a) or (b).

Figure 4. Data Packet for Display Data

Figure 5. Address Bit Patterns for Display Data

(II) Attribute/Control Register Programming

The data transmission formats are similar with that in display data programming:
(a) $\mathrm{R}->\mathrm{C}->\mathrm{I}->\mathrm{R}->\mathrm{C}->1->$.
(b) R \rightarrow C $->1->\mathrm{C}->1->\mathrm{C}->1$.
(c) R->C->I->|->1->.....................

NOTE: R means row byte.
C means column byte.
I means data byte.

To differentiate the row address for attribute/control registers from display area when transferring data, the most significant three bits are set to '101' to represent the row address of the attribute/control registers, while ' 00 X ' for column address used in format (a) or (b) and '01X' for column address used in format (c). There is some limitation on using mix-formats during a single transmission. It is permissible to change the format from (a) to (b), or from (a) to (c), or from (b) to (a), but not from (c) back to (a) or (b).

Figure 6. Data Packet for Attribute/Control Data

Figure 7. Address Bit Patterns for Attribute/Control Data

(III) RAM Fonts Programming

Basically, the transmission format is very similar with that for display RAM or control registers. The major difference is to replace the row and column address with segment address and line address respectively. There are also three transmission formats, from (a) to (c) as stated below. The data train in each sequence consists of segment address (S), line address (L), and font informations (I), as shown in Figure 3. In format (a), each font information data have to be preceded with the corresponding segment address and line address. This format is particular suitable for updating small portion of font pattern. However, if the current information byte has the same segment address as the one before, format (b) is recommended. For a new font pattern change
which requires massive information update or during power up situation, most of the segment and column address on either (a) or (b) format will appear to be redundant. A more efficient data transmission format (c) should be applied. It sends the character RAM starting segment and line addresses once only, and then treat all subsequent data as font information. The segment and line addresses will be automatically incremented internally for each RAM font data - from the starting location.

The transmission formats are shown below:
(a) $\mathrm{S}->\mathrm{L}->\mathrm{I}->\mathrm{S}->\mathrm{L}->\mathrm{I}->\ldots \ldots \ldots$.
(b) $\mathrm{S}->\mathrm{L}->\mathrm{I}->\mathrm{L}->$ I->L->I.......
(c) $\mathrm{S}->\mathrm{L}->$ I $->$ I $->$ I $->\ldots \ldots \ldots \ldots$.

NOTE: S means segment byte.
L means line byte.
I means data byte.

To differentiate the segment address from row and line address when transferring data, the bit $7(\mathrm{MSB})$ and bit 6 are set to ' 11 ' to represent segment address, while ' 00 ' for line address used in format (a) or (b) and '01' for line address used in format (c). There is some limitation on using mix-formats during a single transmission. It is permissible to change the format from (a) to (b), or from (a) to (c), or from (b) to (a), but not from (c) back to (a) or (b).

NOTE: X means don't care bit and D means valid data bit.

Figure 8. Data Packet for RAM Fonts

Internal display RAM are addressed with row and column (coln) number in sequence. As the display area is 15 rows by 30 columns, the related display registers are also 15 by 30. The space between row 0 and coln 0 to row 14 and coln 29 are called Display registers, with each contains a character/ symbol address corresponding to display location on monitor screen. And each register is 8 -bit wide to identify the selected character/symbol out of 256 RAM/ROM fonts.

Figure 11. Memory Map of Attribute/Control Registers

Besides the font selection, there is 3-bit attribute associated with each symbol to identify its color. Because of 3-bit attribute, each character can select any color out of 8 independently on the same row. Every data row associate with one attribute register, which locate at coln 30 of their respective rows, to control the characters display format of that row such as the character blinking, color intensity, character double height and character double width function. In addition, other control registers are located at row 15 such as window control, frame function control and PWM registers. Three window control registers for each of four windows together with four frame control registers and twelve PWM registers occupy the first 28 columns of row 15 space. These control registers will be described on the "REGISTERS" section.

User should handle the internal display RAM address location with care especially for those rows with double length alphanumeric symbols. For example, if row n is destined to be double height on the memory map, the data displayed on screen row n and $n+1$ will be represented by the data contained in the memory address of row n only. The data of next row $n+1$ on the memory map will appear on the screen of $n+2$ and $n+3$ row space and so on. Hence, it is not necessary to throw in a row of blank data to compensate for the double row action. User needs to take care of excessive row of data in memory in order to avoid over running the limited number of row space on the screen.

There is difference for rows with double width alphanumeric symbols. Only the data contained in the even numbered columns of memory map will be shown, the odd numbered columns will be ignored and not disclosed.

Figure 12. Memory Map of Programmable RAM Fonts
Another programming area is the RAM fonts. Totally, 8 fonts are programmable in SMOSD. The structure of 8 character RAM fonts are shown in Figure 12. They occupy the font number from 0 to 7 while ROM fonts 8 to 255. Because of the 10X16 dot matrix font, we decompose each font into 2 segments in horizontal direction and 16 lines in vertical direction. So, there are 5 dots needed to be defined for each specified segment-line location. This 5-bit data forms the lower 5 bits of the information data byte and the higher 3 bits are ignored. Because there are 16 segments (2 segments per font) and 16 lines, both the segment and line addresses are 4-bit wide.

REGISTERS

(I) Display Register

Bit 7-0 CRADDR - This eight bits address one of the 256 characters or symbols resided in the character RAM/ROM fonts.

(II) Attribute/Window/Control/Frame Registers

Character Attribute Register (Row 0~14, Coln 0~29)

Bit 3 BLINK - The blinking effect will be active on the corresponding character if this bit is set to 1 . The blinking frequency is approximately one time per second $(1 \mathrm{~Hz})$ with fifty-fifty duty cycle at 80 Hz vertical scan frequency.

Bit 2-0 These three bits are the color attribute to define the color of the associated character/symbol.

Row Attribute Register (Row 0~14, Coln 30)

Bit 2 R_INT - Row intensity bit controls the color intensity of the displayed character/symbol on the corresponding row. Setting this bit to 1 means high intensity color and the INT pin will go high while displaying the characters of this row.

Bit 1 CHS - It determines the height of a display symbol. When this bit is set, the symbol is displayed in double height.

Bit 0 CWS - Similar to bit 1, character is displayed in double width, if this bit is set.

Window 1 Registers

Row 15 Coln 0

Row 15 Coln 1

Bit 2 WEN - It enables the background window 1 generation if this bit is set.

Bit 1 W_INT - This additional color related bit provides the color intensity selection for window 1 . If this bit is 0, INT pin will go low while displaying window 1.The default value is 1 to indicate high intensity.. Video pre-amplifier or external R/ G/B switch can make use of INT pin for windows's color intensity control.

Bit 0 W_SHD - Shadowing on window. Set this bit to activate the window 1 shadowing. When the window is active, the right M pixels and lower N horizontal scan lines will output black shadowing. The width/height of window shadow, number of M / N, is defined in the frame control registers located at row 15 column 16 and 17. See the following figure and the related frame control register for detail.

Row 15 Coln 2

Bit 2-0 R, G and B-Controls the color of window 1. Window 1 registers occupy Column 0-2 of Row 15, Window 2 from Column 3-5, Window 3 from 6-8 and Window 4 from 911. Window 1 has the highest priority, and Window 4 the least. If window over-lapping occurs, the higher priority window will cover the lower one, and the higher priority color will take over on the overlap window area. If the start address is greater than the end address, this window will not be displayed.

Window 2 Registers

Row 15 Coln 3

Row 15 Coln 4

	7	6	5	4	3	2	1

Bit 2 WEN - It enables the background window 2 generation if this bit is set.

Bit 1 W_INT - This additional color related bit provides the color intensity selection for window 2 . If this bit is 0, INT pin will go low while displaying window 2 . The default value is 1 to indicate high intensity..Video pre-amplifier or external R/ G/B switch can make use of INT pin for windows's color intensity control.

Bit 0 W_SHD - Shadowing on window. Set this bit to activate the window 2 shadowing.

Row 15 Coin 5

Bit 2-0 R, G and B-Controls the color of window 2. Window 1 registers occupy Column 0-2 of Row 15, Window 2 from Column 3-5, Window 3 from 6-8 and Window 4 from 911. Window 1 has the highest priority, and Window 4 the least. If window over-lapping occurs, the higher priority window will cover the lower one, and the higher priority color will take over on the overlap window area. If the start address is greater than the end address, this window will not be displayed.
Window 3 Registers

Row 15 Coln 6

Row 15 Coln 7

	7	6	5	4	3	2	1	0
ROW 15 COLN 7	MS				LSB	WEN	W_INT	W_SHD

Bit 2 WEN - It enables the background window 3 generation if this bit is set.

Bit 1 W_INT - This additional color related bit provides the color intensity selection for window 3 . If this bit is 0 , INT pin will go low while displaying window 3 . The default value is 1 to indicate high intensity..Video pre-amplifier or external R/ G/B switch can make use of INT pin for windows's color intensity control.

Bit 0 W_SHD - Shadowing on window. Set this bit to activate the window 3 shadowing.

Row 15 Coln 8

Bit 2-0 R, G and B-Controls the color of window 3. Window 1 registers occupy Column 0-2 of Row 15, Window 2 from Column 3-5, Window 3 from 6-8 and Window 4 from 911. Window 1 has the highest priority, and Window 4 the least. If window over-lapping occurs, the higher priority window will cover the lower one, and the higher priority color will take over on the overlap window area. If the start address is greater than the end address, this window will not be displayed.

Window 4 Registers

Row 15 Coln 9

	7	6	5	4	3	2	1	0
ROW 15	ROW START ADDR				ROW END ADDR			
COLN 9	MSB			LSB	MSB			LSB

Row 15 Coln 10

Bit 2 WEN - It enables the background window 4 generation if this bit is set.

Bit 1 W_INT - This additional color related bit provides the color intensity selection for window 4 . If this bit is 0 , INT pin will go low while displaying window 4.The default value is 1 to indicate high intensity.. Video pre-amplifier or external R/ G/B switch can make use of INT pin for windows's color intensity control.

Bit 0 W_SHD - Shadowing on window. Set this bit to activate the window 4 shadowing.

Row 15 Coln 11

Bit 2-0 R, G and B - Controls the color of window 4. Window 1 registers occupy Column 0-2 of Row 15, Window 2 from Column 3-5, Window 3 from 6-8 and Window 4 from 911. Window 1 has the highest priority, and Window 4 the least. If window over-lapping occurs, the higher priority window will cover the lower one, and the higher priority color will take over on the overlap window area. If the start address is greater than the end address, this window will not be displayed.

Vertical Delay Control Register Row 15 Coln 12

Bit 7-0 VERTD - These 8 bits define the vertical starting position. Total 256 steps, with an increment of four horizontal lines per step for each field. Its value can't be zero anytime. The default value of it is 4 .

Horizontal Delay Control Register Row 15 Coln 13

Bit 6-0 HORD - Horizontal starting position for character display. 7 bits give a total of 128 steps and each increment represents five dots movement shift to the right on the monitor screen. Its value cannot be zero anytime. The default value of it is 15 .

Character Height Control Register Row 15 Coln 14

	7	6	5	4	3	2	1	0
ROW 15								
	COLN 14	HF	AUTO_CH	CH 5	CH 4	CH 3	CH 2	CH 1
			CH0					

Bit 7 HF - High Frequency Bit. If the incoming H sync signal is higher than 60 KHz , set this bit to 1 for better performance.

Bit 6 AUTO_CH - Auto Character Height Adjustment. If this bit is set, the character height will be controlled internally to keep the fixed ratio in the vertical direction and independent of the display modes. The ratio of character height to the screen is roughly $1 / 24,1 / 36$ and $1 / 48$ for $320 / 480 / 640$ resolution modes respectively. In the meantime, $\mathrm{CH} 5-\mathrm{CHO}$ are ignored.

Bit 5-0 $\quad \mathrm{CH} 5-\mathrm{CH} 0$ - This six bits will determine the displayed character height if AUTO_CH bit is cleared. It is possible to have a proper character height by setting a value greater than or equal to 16 on different horizontal frequency monitor. Setting a value below 16 will not have a predictable result. Figure 13 illustrates how this chip expand the built-in character font to the desired height.

Frame Control Register Row 15 Coln 15

	7	6	5	4	3	2	1	0
$\begin{array}{r} \text { ROW } 15 \\ \text { COLN } 15 \end{array}$	OSD_EN	BSEN	SHADOW	X64	X32B	3 3 5	FAN	FBKGC

Bit 7 OSD_EN - OSD circuit is activated when this bit is set.

Bit 6 BSEN - It enables the character bordering or shadowing function when this bit is set.

Bit 5 SHADOW - Character with black-edge shadowing is selected if this bit is set, otherwise bordering prevails.

Bit 4-3 X64, X32B - It determines the number of dots per horizontal line. There are 320 dots per horizontal line if bit X32B is clear and this is also the default power on state. Otherwise, 480 dots per horizontal sync line is chosen when bit X64 is clear and 640 dots per horizontal sync line when bit X64 is set to 1. Please refer to the Table 1 for details.

Table 1. Resolution Setting

$(X 64$, X32B $)$	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
Dots / Line	320	320	480	640
Resolution	CGA	CGA	EGA	VGA

Bit 2 3_S - By setting this bit to 1, R/G/B could output high impedance state if the intensity attribute of characters or windows is set to 0 . It means the corresponding $R / G / B$ output will go high impedance instead of driving-high while displaying the low intensity characters or windows. After power on, this bit is reset and the R/G/B are push-pull outputs initially.

Bit 1 FAN - It enables the fan-in/fan-out functions when OSD is turned on from off state or vice versa. If this bit is set, it roughly takes about one second to fully display the whole menu. It also takes 1 second to disappear completely.

Bit 0 FBKGC - It determines the configuration of FBKG output pin. When it is clear. FBKG pin outputs high during displaying characters or windows. Otherwise, FBKG pin outputs high only during displaying characters.

Figure 14. Character Bordering and Shadowing

Frame Control Register Row 15 Coln 16

Bit 7-6 WW41, WW40 - It determines the shadow width of the window 4 when the window shadowing function is activated. Please refer to the following table for more details where M is the actual pixel number of the shadowing.

Table 2. Shadow Width Setting

(WW41, WW40)	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
Shadow Width M (unit in Pixel)	2	4	6	8

Bit 5-4 WW31, WW30 - Similarly as WW41, WW40, these two bits determine the shadow width of the window 3 when the window shadowing function is activated.

Bit 3-2 WW21, WW20 - Similarly as WW41, WW40, these two bits determine the shadow width of the window 2 when the window shadowing function is activated.

Bit 1-0 WW11, WW10 - Similarly as WW41, WW40, these two bits determine the shadow width of the window 1 when the window shadowing function is activated

Frame Control Register Row 15 Coln 17

	7	6	5	4	3	2	1	0
ROW 15	WH41	WH40	WH31	WH30	WH21	WH20	WH11	WH10

Bit 7-6 WH41, WH40 - It determines the shadow height of the window 4 when the window shadowing function is activated. Please refer to the following table for more details where N is the actual line number of the shadowing.

Table 3. Shadow Width Setting

(WH41, wH40)	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
Shadow Height N (unit in Line)	2	4	6	8

Bit 5-4 WH31, WH30 - Similarly as WH41, WH40, these two bits determine the shadow height of the window 3 when the window shadowing function is activated.

Bit 3-2 WH21, WH20 - Similarly as WH41, WH40, these two bits determine the shadow height of the window 2 when the window shadowing function is activated.

Bit 1-0 WH11, WH10 - Similarly as WH41, WH40, these two bits determine the shadow height of the window 1 when the window shadowing function is activated.

Bit 2 TRIC - Tri-state Control. This bit is used to control the driving state of output pins, R, G, B and FBKG when the OSD is disabled. After power on, this bit is reset and R, G, B and FBKG are in high impedance state while OSD being disabled. If it is set by MCU, these four output pins will drive low while OSD being in disabled state. Basically, the setting is dependent on the requirement of the external application circuit.

Bit 1 HPOL - This bit selects the polarity of the incoming horizontal sync signal ($\overline{\mathrm{HFLB}}$). If it is negative polarity, clear this bit. Otherwise, set this bit to 1 to represent the positive H sync signal. After power on, this bit is cleared.

Bit 0 VPOL - This bit selects the polarity of the incoming vertical sync signal ($\overline{\mathrm{VFLB}}$). If it is negative polarity, clear this bit. Otherwise, set this bit to 1 to represent the positive V sync signal. After power on, this bit is cleared.

- NOTE: The registers located at column 19 of row 15 are reserved for the chip testing. In normal operation, they should not be programmed anytime.

PWM Control Registers Row 15 Col 20 to Col 31

	7	6	5	4	3	2	1	0
ROW 15 COLN 20-31	MSB			PWM_n				LSB

Bit 7-0 HORD - This eight-bit value decides the output duty cycle and waveforms of PWM. There are maximum 12 channels of PWM. And the corresponding registers are located from column 20 to column 31 respectively on row 15.

The higher five bits (MSB) are used for the conventional PWM and the lower 3 bits (LSB) for the BRM. Please refer to the following figures for more information about BRM algorithm and PWM output waveform.

Figure 14. Pure 8-bit PWM v.s. 5-bit PWM + 3-bit BRM

Figure 15. BRM Pulse Insertion Algorithm

A software called SMOSD FONT EDITOR in IBM PC environment was written for MC141548 editing purposes. It generates a set of S-Record or Binary record for the desired display patterns to be masked onto the character ROM of the MC141548.

In order to have better character display within windows, we suggest you to place your designed character font in the centre of the 10×16 matrix, and let its spaces be equally located in the four sides of the matrix. The character $\$ 00$ is pre-defined for blank character, the character \$FF is predefined for full-filled character.

In order to avoid submersion of displayed symbols or characters into a background of comparable colors, a feature of bordering which encircles all four sides, or shadowing which encircles only the right and bottom sides of an individual display character is provided. Figure 14 shows how a character is being jacketed differently. To make sure that a character is bordered or shadowed correctly, at least one dot blank should be reserved on each side of the character font.

Frame Format and Timing

Figure 16 illustrates the positions of all display characters on the screen relative to the leading edge of horizontal and vertical flyback signals. The shaded area indicates the area not interfered by the display characters. Notice that there are two components in the equations stated in Figure 16 for horizontal and vertical delays: fixed delays from the leading edge of $\overline{H F L B}$ and $\overline{V F L B}$ signals, regardless of the values of HORD and VERTD: (47 dots + phase detection pulse width) and one H scan line for horizontal and vertical delays, respectively; variable delays determined by the values of HORD and VERTD. Refer to Frame Control Registers COLN 9 and 10 for the definitions of VERTD and HORD. Phase detection pulse width is a function of the external charge-up resistor, which is the $330 \mathrm{k} \Omega$ resistor in a series with $2 \mathrm{k} \Omega$ to VCO pin in the Application Diagram. Dot frequency is determined by the equation: H Freq. $\times 320$ if the bit X 32 B is clear and H Freq. x 480 if bit X32B is set to 1 and bit X64 is 0 and H Freq. $x 640$ if both bit X32B and bit X64 are set to 1 . For example, dot frequency is 10.24 MHz if H freq is 32 KHz while bit X 32 B is 0 . If X 32 B is 1 and bit X 64 is 0 , the dot frequency will be 15.36 MHz (one and a half of the original one). If X32B is 1 and bit X64 is also 1, the dot frequency will be 20.48 MHz (double of the original one).
When double character width is selected for a row, only the even-numbered characters will be displayed, as shown in row 2. Notice that the total number of horizontal scan lines in the display frame is variable, depending on the chosen character height of each row. Care should be taken while configuring each row character height so that the last horizontal scan line in the display frame always comes out before the leading edge of VFLB of next frame to avoid wrapping display characters of the last few rows in the current frame into the next frame. The number of display dots in a horizontal scan line is always fixed at 300 , regardless of row character width and the setting of bit X32B and X64.

Although there are 30 character display registers that can be programmed for each row, not every programmed character can be shown on the screen in 320 dots resolution. Usually, only 24 characters can be shown in this resolution at most. This is induced by the retrace time that is required to retrace the H scan line. In other resolution, 480 dots and 640 dots, 30 characters can be displayed on the screen totally if the horizontal delay register is set properly.

Figure 17 illustrates the timing of all output signals as a function of window and fast blanking features. Line 3 of all three characters is used to illustrate the timing signals. The shaded area depicts the window area. Both the left hand side and right hand side characters are embodied in a window with only one difference: FBKGC bit. The middle character does not have a window as its background. Timing of signal FBKG depends on the configuration of FBKGC bit. The configuration of FBKGC bits affects only FBKG signal timing. Waveform ' R, G or B ', which is the actual waveform at R, G, or B pin, is the logical OR of waveform 'character R, G or $B '$ and waveform 'window R, G or B'. 'Character R, G, or B' and 'window R, G, or B ' are internal signals for illustration purpose only.

$W_{\text {_ }}$ INT $=0 \&$ FBKGC bit $=0$
Timing of Output Signals as a Function of Window, FBKGC bit and Row Intensity Features

MC141548 contains 256 character/symbol fonts including 8 RAM fonts and 248 ROM fonts. The RAM fonts occupy the font number $\$ 00$ to $\$ 07$ and their patterns can be changed at any time via the SPI or MBUS protocol described above. The masked ROM fonts are fixed and located from number \$08 to \$FF. See the figures on the next page for the details fonts mapping.

Icon Combination

User can create On-Screen menu based on those characters and icons. Please refer to Table 4 for Icon combination. Address $\$ 00 \& \$ F F$ are pre-defined characters for testing.

Table 4. Combination Map 1

ICON	ROM ADDRESS(HEX)
RAM CHARACTERS	$00-07$
ARABIC NUMERALS	$09-11$
ALPHABET	$12-2 D$
EUROPEAN	$2 \mathrm{E}-48$
JAPANESE	$48-91$
SYMBOLS	$82-\mathrm{C} 4$, EF-FE
GEOMETRY	C5-EE

ROM CONTENT

Figures $18-21$ show the ROM content of MC141548. Mask ROM is optional for custom parts.

Figure 18. ROM Address (\$08-\$3F)

Figure 19. ROM Address (\$40-\$7F)

Figure 20. ROM Address ($\mathbf{\$ 8 0} \mathbf{- \$ B F}$)

C0	C1	C2	C3	C4	C5	C 6	C7
C8	C9	CA	CB	CC	CD	CE	CF
DO	D1	D2	D3	D4	D5	D6	D7
D8	D9	DA	DB	DC	DD	DE	DF
E0	E1	E2	E3	E4	E5	E6	E7
E8	E9	EA	EB	EC	ED	EE	EF
F0	F1	F2	F3	F4	F5	F6	F7
F8	F9	FA	FB	FC	FD	FE	FF

Figure 21. ROM Address (\$C0-\$FF)

DESIGN CONSIDERATIONS

Distortion

Motorola's MC141548P has a built-in PLL for multisystems application. Pin 2 voltage is a dc basing for the internal VCO in the PLL. When the input frequency (HFLB) in Pin 5 becomes higher, the VCO voltage will increase accordingly. The built-in PLL then has a higher locked frequency output. The frequency should be equal to $320 / 480 / 640 \times \mathrm{HFLB}$ (depends on resolution). It is the dot-clock in each horizontal line.

Display distortion is caused by noise in Pin 2. Positive noise makes VCO run faster than normal. The corresponding scan line will be shorter accordingly. In contrast, negative noise causes the scan line to be longer. The net result will be distortion on the display, especially on the right hand side with window turn on.

In order to have distortion-free display, the following recommendations should be considered.

- Only analog part grounds (Pin 2 to Pin 4) can be connected to Pin 1($\left.V_{S S}(A)\right) . V_{S S}$ and other grounds should connect to PCB common ground. Then the $\mathrm{V}_{S S}(\mathrm{~A})$ and $\mathrm{V}_{S S}$ grounds should be totally separated (i.e. $V_{S S}(A)$ is floating). Refer to the Application Diagram for the ground connections.
- DC supply path for Pin 17 (VDD) should be separated from other switching devices.
- LC filter should be connected between Pin 17 and Pin 4. Refer to the values used in the Application Diagram.
- Biasing and filter networks should be connected to Pin 2 and Pin 3. Refer to the recommended networks in the Application Diagram.

Jittering

Most display jittering is caused by HFLB jittering in Pin 5. Care must be taken if the HFLB signal comes from the flyback transformer. A short path and shielded cable are recommended for a clean signal. A small capacitor can be added between Pin 5 - Pin 24 to smooth the signal. Refer to the value used in the Application Diagram.

Display Dancing

Most display dancing is caused by interference of the serial bus. It can be avoided by adding resistors in the bus in series.

Super Monitor On-Screen Display - 16 CMOS

This is a high performance HCMOS device designed to interface with a micro controller unit to allow colored symbols or characters to be displayed onto color monitor. Because of the large number of fonts, 256 fonts including the programmable RAM fonts and fixed ROM fonts, SMOSD-16 is suitable to be adopted for the multi-language monitor application especially. Its on-chip PLL allows both multisystem operation and self generation of system timing. It also minimizes the MCU's burden through its built-in RAM. By storing a full screen of data and control information, this device has a capability to carry out 'screen-refresh' without any MCU supervision.

Since there is no clearance between characters, special graphics oriented characters can be generated by combining two or more character blocks. Besides, there are three kinds of different resolutions that users can choose. By changing the number of dots per horizontal line to 320 (CGA), 480 (EGA) or 640 (VGA), smaller characters with higher resolution can be easily achieved.

Special functions such as character blinking, automatic height scaling, character/window bordering or character shadowing, four-level windows, double height and double width, and programmable vertical length of character are also incorporated. Furthermore, 8 programmable character/symbol RAM fonts are also built-in. It is much flexible to create the new symbols, icons and logo. One special attractive application of the RAM fonts is the real-time programming to achieve the dynamic image instead of the static picture as previous.

- Totally 256 Characters and Graphic Fonts Including 8 Programmable RAM Fonts and 248 Mask ROM Fonts
- Three Selectable Resolutions: 320 (CGA), 480 (EGA) or 640 (VGA) Dots/ Line
- Wide Operating Frequency Range for High End Monitor: $15 \mathrm{KHz} \sim 120 \mathrm{KHz}$
- Fully Programmable Character Array of 15 Rows by 30 Columns
- True 16-Color Selection for Windows
- Fancy Fade-In/Fade-Out Effects
- 8-Color Selection for Characters with Color Intensity Attribute on Each Row
- Auto Height Scaling to Keep Constant Height Independent of Display Modes
- Four Programmable Background Windows with Overlapping Capability
- Shadowing on Windows with Programmable Shadow Width/Height
- Character Bordering or Shadowing
- Character/Symbol Blinking Function
- Programmable Vertical Height of Character to Meet Multi-Sync Requirement
- Programmable Vertical and Horizontal Positioning for Display Centre
- Double Character Height and Double Character Width
- Internal PLL Generates a Wide-Ranged System Clock (76.8 MHz)
- M_BUS (IIC) Interface with Address \$7A (SPI Bus is Mask Option)

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS Voltage Referenced to $\mathrm{V}_{\text {SS }}$

Symbol	Characteristic	Value	Unit
$V_{\text {DD }}$	Supply Voltage	-0.3 to +7.0	V
$\mathrm{~V}_{\text {in }}$	Input Voltage	$V_{S S}-0.3$ to $V_{D D}+0.3$	V
Id	Current Drain per Pin Excluding V_{DD} and V_{SS}	25	mA
Ta	Operating Temperature Range	0 to 85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {Stg }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $\mathrm{V}_{\text {in }}$ and $\mathrm{V}_{\text {out }}$ should be constrained to the range $\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{\text {in }}$ or $\left.V_{\text {out }}\right) \leq V_{D D}$.
Unused inputs must always be tied to an appropriate logic voltage level (e.g., either $\mathrm{V}_{S S}$ or $V_{D D}$). Unused outputs must be left open.

NOTE: Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Description section.
AC ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{DD}} \mathcal{V}_{\mathrm{DD}(\mathrm{A})}=5.0 \mathrm{~V}, \mathrm{~V}_{S S} \mathcal{N S S}^{(A)}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25 \mathrm{C}\right.$,
Voltage Referenced to $V_{S S}$)

Symbol	Characteristic	Min	Typ	Max
	Output Signal (R, G, B, FBKG and INT) C Coad $=30 \mathrm{pF}$			
t_{l}	Rise Time	Unit		
t_{f}	Fall Time	-		
FHFLB	HFLB Input Frequency	-	-	

Figure 1. Switching Characteristics

DC CHARACTERISTICS $V_{D D} N_{D D}(A)=5.0 \mathrm{~V} \pm 10 \%, V_{S S} / V_{S S}(A)=0 V T_{A}=25^{\circ} \mathrm{C}$, Voltage Referenced to $V_{S S}$

Symbol	Characteristic	Min	Typ	Max	Unit
V_{OH}	High Level Output Voltage $l_{\text {out }}=-5 \mathrm{~mA}$	$V_{D D}-0.8$	-	-	V
V_{OL}	Low Level Output Voltage $\mathrm{I}_{\text {out }}=5 \mathrm{~mA}$	-	-	$\mathrm{V}_{S S}+0.4$	V
$\begin{aligned} & V_{I L} \\ & V_{I H} \end{aligned}$	Digital Input Voltage (Not Including SDA and SCL) Logic Low Logic High	$0.7 \overline{\mathrm{~V}}_{\mathrm{DD}}$	-	$0.3 \mathrm{~V}_{\mathrm{DD}}$	$\begin{aligned} & V \\ & V \end{aligned}$
$\begin{aligned} & V_{I L} \\ & v_{I H} \end{aligned}$	Input Voltage of Pin SDA and SCL in SPI Mode Logic Low Logic High	$0.7 \overline{\mathrm{~V}}_{\mathrm{DD}}$	-	$0.3 V_{D D}$	$\begin{aligned} & V \\ & v \end{aligned}$
$\begin{aligned} & V_{\mathrm{IL}} \\ & V_{\mathrm{IH}} \end{aligned}$	Input Voltage of Pin SDA and SCL in M_BUS Mode Logic Low Logic High	$0.7 \overline{\mathrm{~V}}_{\mathrm{DD}}$	-	$0.3 V_{D D}$	$\begin{aligned} & \text { V } \\ & v \end{aligned}$
III	High-Z Leakage Current (R, G, B and FBKG)	-10	-	+ 10	$\mu \mathrm{A}$
11	Input Current (Not Including RP, VCO, R, G, B, FBKG and INT)	-10	-	+ 10	$\mu \mathrm{A}$
IDD	Supply Current (No Load on Any Output)	-	-	+ 15	mA

PIN DESCRIPTION

VSS(A) (Pin 1)

This pin provides the signal ground to the PLL circuitry. Analog ground for PLL is separated from digital ground for optimal performance.

VCO (Pin 2)

A dc control voltage input to regulate an internal oscillator frequency. See the Application Diagram for the application values used.

RP (Pin 3)

An external RC network is used to bias an internal VCO to resonate at the specific dot frequency. The maximum voltage at Pin 3 should not exceed 3.5 V at any condition. See the Application Diagram for the application values used.

$V_{D D(A)}($ Pin 4)

A positive 5 V dc supply for PLL circuitry. Analog power for PLL is separated from digital power for optimal performance.

HFLB (Pin 5)

This pin inputs a negative polarity horizontal synchronize signal pulse to phase lock into an internal system clock generated by the on-chip VCO circuit.

SS (Pin 6)

This input pin is part of the SPI system. An active low signal generated by the master device enables this slave device to accept data. Pull high to terminate the SPI communication. If M_BUS is employed as the serial interface, this pin should be tied to either $V_{D D}$ or $V_{S S}$.

SDA (MOSI) (Pin 7)

Data and control message are being transmitted to this chip from a host MCU, via one of the two serial bus systems. With either protocol, this wire is configurated as a uni-directional data line. (Detailed description of these two protocols will be discussed in the M_BUS and SPI sections).

SCL (SCK) (Pin 8)

A separate synchronizing clock input from the transmitter is required for either protocol. Data is read at the rising edge of each clock signal.

VDD (Pin 9)

This is the power pin for the digital logic of the chip.

$\overline{\mathrm{VFLB}}$ (Pin 10)

Similar to Pin 5 , this pin inputs a negative polarity of vertical synchronize signal to synchronize the vertical control circuit.

INT (Pin 11)

This output pin is used to indicate the color intensity. If the intensity control bits are set in the row attribute registers or window control registers, this pin will output a logic high while displaying the specified windows or the characters on the associated rows. Otherwise, it will keep in low state. Please refer to Figure 17 for detail timing chart. Thus, 16color selection is achievable by combining this intensity pin with R/G/B outputs. On the other hand, this color intensity information could be reflected on the R/G/B pins by asserting tri-state instead of logic high if 3 _S bit is set to 1 . Refer to the "REGISTERS" for more information.

FBKG (Pin 12)

This pin will output a logic high while displaying characters or windows when FBKGC bit in frame control register is 0 , and output a logic high only while displaying characters when FBKGC bit is 1 . It is defaulted to high impedance state after power on, or when there is no output. An external $10 \mathrm{k} \Omega$ resistor pulled low is recommended to avoid level toggling caused by hand effect when there is no output.

B,G,R (Pin 13, 14, 15)

SMOSD-16 color outputs in TTL level to the host monitor. These three signals are open drain outputs if 3_STATE bit is set and the color intensity is inactive. Otherwise, they are active high push-pull outputs. See "REGISTERS" for more information. These pins are in high impedance state after power on.

V_{SS} (Pin 16)

This is the ground pin for the digital logic of the chip.

SYSTEM DESCRIPTION

MC141549 is a full screen memory architecture. Refresh is done by the built-in circuitry after a screenful of display data has been loaded in through the serial bus. Only changes to the display data need to be input afterward.
Serial data, which includes screen mapping address, display information, and control messages, are being transmitted via one of the two serial buses: M_BUS or SPI (mask option). These two sets of buses are multiplexed onto a single set of wires. Standard parts offer M_BUS transmission.

Data is first received and saved in the MEMORY MANAGEMENT CIRCUIT in the Block Diagram. Meanwhile, the SMOSD-16 is continuously retrieving the data and putting it into a ROW BUFFER for display and refreshing, row after row. During this storing and retrieving cycle, a BUS ARBITRATION LOGIC will patrol the internal traffic, to make sure that no crashes occur between the slower serial bus receiver and fast 'screen-refresh' circuitry. After the full screen display data is received through one of the serial communication interface, the link can be terminated if change on display is not required.
The bottom half of the Block Diagram constitutes the heart of this entire system. It performs all the SMOSD-16 functions such as programmable vertical length (from 16 lines to 63 lines), display clock generation (which is phase locked to the incoming horizontal sync signal at Pin 5 HFLB), bordering or shadowing, and multiple windowing.

COMMUNICATION PROTOCOLS

M_BUS Serial Communication

This is a two-wire serial communication link that is fully compatible with the IIC bus system. It consists of SDA bidirectional data line and SCL clock input line. Data is sent from a transmitter (master), to a receiver (slave) via the SDA line, and is synchronized with a transmitter clock on the SCL line at the receiving end. The maximum data rate is limited to 100 kbps . The default chip address is \$7A.

Operating Procedure

Figure 2 shows the M_BUS transmission format. The master initiates a transmission routine by generating a START
condition, followed by a slave address byte. Once the address is properly identified, the slave will respond with an ACKNOWLEDGE signal by pulling the SDA line LOW during the ninth SCL clock. Each data byte which then follows must be eight bits long, plus the ACKNOWLEDGE bit, to make up nine bits together. Appropriate row and column address information and display data can be downloaded sequentially in one of the three transmission formats described in DATA TRANSMISSION FORMATS SECTION. In the cases of no ACKNOWLEDGE or completion of data transfer, the master will generate a STOP condition to terminate the transmission routine. Note that the OSD_EN bit must be set after all the display information has been sent in order to activate the SMOSD-16 circuitry of MC141549, so that the received information can then be displayed.

Figure 2. M_BUS Format

Serial Peripheral Interface (SPI)

Similar to M_BUS communication, SPI requires separate clock (SCK) and data (MOSI) lines. In addition, a SS SLAVE SELECT pin is controlled by the master transmitter to initiate the receiver.

Operating Procedure

To initiate SPI transmission, pull $\overline{\mathrm{SS}}$ pin low by the master device to enable MC141549 to accept data. The $\overline{\text { SS }}$ input line must be a logic low prior to occurrence of SCK and remain low until and after the last (eighth) SCK cycle. After all data has been sent, the $\overline{\mathrm{SS}}$ pin is then pulled high by master to terminate the transmission. No slave address is needed for SPI. Hence, row and column address information and display data (the data transmission formats are the same as in M_BUS mode described in the previous section) can be sent immediately after the SPI is initiated.

Figure 3. SPI Protocol

DATA TRANSMISSION FORMATS

After the proper identification by the receiving device, data train of arbitrary length is transmitted from the Master. As mentioned above, three register blocks, display registers; attribute/control registers and RAM fonts, need to be programmed before the proper operation. Basically, these three areas use the similar transmission protocol. Only two bits of the row/segment byte are used to distinguish the programming blocks.

There are three transmission formats, from (a) to (c) as stated below. The data train in each sequence consists of row/seg address (R), column/line address (C), and data informations (1). In format (a), each display information data have to be preceded with the corresponding row/seg address and column/line address. This format is particular suitable for updating small amount of data between different row. However, if the current information byte has the same row/seg address as the one before, format (b) is recommended. For a full screen pattern change which requires massive information update or during power up situation, most of the row/seg and column/line address on either (a) or (b) format will appear to be redundant. A more efficient data transmission format (c) should be applied. It sends the RAM starting row/seg and column/line addresses once only, and then treat all subsequent data as data information. The row/ seg and column/line addresses will be automatically incremented internally for each information data from the starting location.

Based on the different programming areas, the detail transmission protocol is described below respectively.

(I) Display Register Programming

The data transmission formats are:
(a) $\mathrm{R}->\mathrm{C}->\mathrm{I} \rightarrow \mathrm{R}->\mathrm{C}->\mathrm{I}->$.
(b) R->C $->$ I $>\mathrm{C}->$ I $->\mathrm{C}->$ I.
(c) R $->$ C $->$ I $->$ I $->$ I $->$

NOTE: R means row byte.
C means column byte.
I means data byte.

To differentiate the display row address from attribute/ RAM fonts area when transferring data, the most significant three bits are set to '100' to represent display row address, while '00X' for column address used in format (a) or (b) and '01X' for column address used in format (c). There is some limitation on using mix-formats during a single transmission. It is permissible to change the format from (a) to (b), or from
(a) to (c), or from
(b) to (a), but not from
(c) back to
(a) or (b).

row addr	col addr	info

Figure 4. Data Packet for Display Data

Figure 5. Address Bit Patterns for Display Data

(II) Attribute/Control Register Programming

The data transmission formats are similar with that in display data programming:
(a) $\mathrm{R}->\mathrm{C}->\mathrm{I} \rightarrow \mathrm{R}->\mathrm{C}->\mathrm{I}->$.
(b) $\mathrm{R}->\mathrm{C}->$ I $->\mathrm{C}->$ I $->\mathrm{C}->$ I. $\ldots \ldots$
(c) R->C->1->I->I->...................

NOTE: R means row byte. C means column byte.
1 means data byte.

To differentiate the row address for attribute/control registers from display area when transferring data, the most significant three bits are set to '101' to represent the row address of the attribute/control registers, while ' $00 X$ ' for column address used in format (a) or (b) and ' 01 X ' for column address used in format (c). There is some limitation on using mix-formats during a single transmission. It is permissible to change the format from (a) to (b), or from (a) to (c), or from (b) to (a), but not from (c) back to (a) or (b).

Figure 6. Data Packet for Attribute/Control Data

15 WINDOW 1 - WINDOW 4 FRAME CRTL REG FWM CRTL REG
WINDOW/FRAME/PWM CONTROL REGISTERS

ADDRESS	BIT						FORMAT		
	7	6	5	4	3	2	1	0	
ROW	1	0	1	X	D	D	D	D	a, b, c
COLUMN	0	0	X	D	D	D	D	D	a, b
COLUMN	0	1	X	D	D	D	D	D	c

Figure 7. Address Bit Patterns for Attribute/Control Data

(III) RAM Fonts Programming

Basically, the transmission format is very similar with that for display RAM or control registers. The major difference is to replace the row and column address with segment address and line address respectively. There are also three transmission formats, from (a) to (c) as stated below. The data train in each sequence consists of segment address (S), line address (L), and font informations (I), as shown in Figure 3. In format (a), each font information data have to be preceded with the corresponding segment address and line address. This format is particular suitable for updating small portion of font pattern. However, if the current information byte has the same segment address as the one before, format (b) is recommended. For a new font pattern change which requires massive information update or during power up situation, most of the segment and column address on either (a) or (b) format will appear to be redundant. A more efficient data transmission format (c) should be applied. It sends the character RAM starting segment and line addresses once only, and then treat all subsequent data as font information. The segment and line addresses will be automatically incremented internally for each RAM font data from the starting location.

The transmission formats are shown below:
(a) $\mathrm{S}->\mathrm{L}->\mathrm{I}->\mathrm{S}->\mathrm{L}->\mathrm{I}->\ldots \ldots \ldots$.
(b) $\mathrm{S}->\mathrm{L}->\mathrm{I}->\mathrm{L}->\mathrm{I}->\mathrm{L}->\mid \ldots \ldots$.
(c) $\mathrm{S}->\mathrm{L}->$ I $->$ I $->$ I $->\ldots \ldots \ldots \ldots$.

L means line byte.
I means data byte.

To differentiate the segment address from row and line address when transferring data, the bit 7 (MSB) and bit 6 are set to '11' to represent segment address, while ' 00 ' for line address used in format (a) or (b) and '01' for line address used in format (c). There is some limitation on using mix-formats during a single transmission. It is permissible to change the format from (a) to (b), or from (a) to (c), or from (b) to (a), but not from (c) back to (a) or (b).

NOTE: X means don't care bit and D means valid data bit.

Figure 8. Data Packet for RAM Fonts

Figure 9. Address Bit Patterns for RAM Fonts

NOTE: S means segment byte.

MEMORY MANAGEMENT

All the internal programmable area can be divided into three parts including (1) Display Registers (2) Attribute/Control Registers and (3) Programmable RAM Fonts. Please refer to the following three figures for the corresponding memory map.

Figure 10. Memory Map of Display Registers
Internal display RAM are addressed with row and column (coln) number in sequence. As the display area is 15 rows by 30 columns, the related display registers are also 15 by 30. The space between row 0 and coln 0 to row 14 and coln 29 are called Display registers, with each contains a character/ symbol address corresponding to display location on monitor screen. And each register is 8 -bit wide to identify the selected character/symbol out of 256 RAM/ROM fonts.

Figure 11. Memory Map of Attribute/Control Registers

Besides the font selection, there is 3 -bit attribute associated with each symbol to identify its color. Because of 3-bit attribute, each character can select any color out of 8 independently on the same row. Every data row associate with one attribute register, which locate at coln 30 of their respective rows, to control the characters display format of that row such as the character blinking, color intensity, character double height and character double width function. In addition, other control registers are located at row 15 such as window control, frame function control and PWM registers. Three window control registers for each of four windows together with four frame control registers and twelve PWM registers occupy the first 28 columns of row 15 space. These control registers will be described on the "REGISTERS" section.

User should handle the internal display RAM address location with care especially for those rows with double length alphanumeric symbols. For example, if row \mathbf{n} is destined to be double height on the memory map, the data displayed on screen row n and $n+1$ will be represented by the data contained in the memory address of row n only. The data of next row $n+1$ on the memory map will appear on the screen of $n+2$ and $n+3$ row space and so on. Hence, it is not necessary to throw in a row of blank data to compensate for the double row action. User needs to take care of excessive row of data in memory in order to avoid over running the limited number of row space on the screen.

There is difference for rows with double width alphanumeric symbols. Only the data contained in the even numbered columns of memory map will be shown, the odd numbered columns will be ignored and not disclosed.

Figure 12. Memory Map of Programmable RAM Fonts

Another programming area is the RAM fonts. Totally, 8 fonts are programmable in SMOSD-16. The structure of 8 character RAM fonts are shown in Figure 12. They occupy the font number from 0 to 7 while ROM fonts 8 to 255. Because of the 10X16 dot matrix font, we decompose each font into 2 segments in horizontal direction and 16 lines in vertical direction. So, there are 5 dots needed to be defined for each specified segment-line location. This 5 -bit data forms the lower 5 bits of the information data byte and the
higher 3 bits are ignored. Because there are 16 segments (2 segments per font) and 16 lines, both the segment and line addresses are 4-bit wide.

REGISTERS

(I) Display Register

Display Register (Row 0~14, Coln 0~29)

Bit 7-0 CRADDR - This eight bits address one of the 256 characters or symbols resided in the character RAM/ROM fonts.

(II) Attribute/Window/Control/Frame Registers

Character Attribute Register (Row 0~14, Coln 0~29)

Bit 3 BLINK - The blinking effect will be active on the corresponding character if this bit is set to 1. The blinking frequency is approximately one time per second $(1 \mathrm{~Hz})$ with fifty-fifty duty cycle at 80 Hz vertical scan frequency.

Bit 2-0 These three bits are the color attribute to define the color of the associated character/symbol.

Row Attribute Register (Row 0~14, Coln 30)

Bit 2 R_INT - Row intensity bit controls the color intensity of the displayed character/symbol on the corresponding row. Setting this bit to 1 means high intensity color and the INT pin will go high while displaying the characters of this row.

Bit 1 CHS - It determines the height of a display symbol. When this bit is set, the symbol is displayed in double height.

Bit 0 CWS - Similar to bit 1, character is displayed in double width, if this bit is set.

Window 1 Registers

Row 15 Coln 0

Row 15 Coln 1

Bit 2 WEN - It enables the background window 1 generation if this bit is set.

Bit 1 W_INT - This additional color related bit provides the color intensity selection for window 1 . If this bit is 0 , INT pin will go low while displaying window 1.The default value is 1 to indicate high intensity.Video pre-amplifier or external R/ G/B switch can make use of INT pin for windows's color intensity control.

Bit 0 W_SHD - Shadowing on window. Set this bit to activate the window 1 shadowing. When the window is active, the right M pixels and lower N horizontal scan lines will output black shadowing. The width/height of window shadow, number of M / N, is defined in the frame control registers located at row 15 column 16 and 17. See the following figure and the related frame control register for detail.

Row 15 Coln 2

Bit 2-0 R, G and B - Controls the color of window 1. Window 1 registers occupy Column 0-2 of Row 15, Window 2 from Column 3-5, Window 3 from 6-8 and Window 4 from 911. Window 1 has the highest priority, and Window 4 the least. If window over-lapping occurs, the higher priority window will cover the lower one, and the higher priority color will take over on the overlap window area. If the start address is greater than the end address, this window will not be displayed.

Window 2 Registers

Row 15 Coln 3

	7	6	5	4	3	2

Row 15 Coln 4

	7	6	5	4	3	2	1

Bit 2 WEN - It enables the background window 2 generation if this bit is set.

Bit 1 W_INT - This additional color related bit provides the color intensity selection for window 2 . If this bit is 0 , INT pin will go low while displaying window 2. The default value is 1 to indicate high intensity.Video pre-amplifier or external R/ G/B switch can make use of INT pin for windows's color intensity control.

Bit 0 W_SHD - Shadowing on window. Set this bit to activate the window 2 shadowing.

Row 15 Coln 5

	7	6	5	4	3	2	1	0
ROW 15 COLN 5					LSB	R	G	B

Bit 2-0 R, G and B-Controls the color of window 2. Window 1 registers occupy Column 0-2 of Row 15, Window 2 from Column 3-5, Window 3 from 6-8 and Window 4 from 911. Window 1 has the highest priority, and Window 4 the least. If window over-lapping occurs, the higher priority window will cover the lower one, and the higher priority color will take over on the overlap window area. If the start address is greater than the end address, this window will not be displayed.

Window 3 Registers

Row 15 Coln 6

Row 15 Coln 7

Bit 2 WEN - It enables the background window 3 generation if this bit is set.

Bit 1 W_INT - This additional color related bit provides the color intensity selection for window 3 . If this bit is 0 , INT pin will go low while displaying window 3.The default value is

1 to indicate high intensity.Video pre-amplifier or external R/ G / B switch can make use of INT pin for windows's color intensity control.

Bit 0 W_SHD - Shadowing on window. Set this bit to activate the window 3 shadowing.

Row 15 Coln 8

Bit 2-0 R, G and B-Controls the color of window 3. Window 1 registers occupy Column $0-2$ of Row 15, Window 2 from Column 3-5, Window 3 from 6-8 and Window 4 from 911. Window 1 has the highest priority, and Window 4 the least. If window over-lapping occurs, the higher priority window will cover the lower one, and the higher priority color will take over on the overlap window area. If the start address is greater than the end address, this window will not be displayed.

Window 4 Registers

Row 15 Coln 9

Row 15 Coln 10

Bit 2 WEN - it enables the background window 4 generation if this bit is set.

Bit 1 W_INT - This additional color related bit provides the color intensity selection for window 4 . If this bit is 0 , INT pin will go low while displaying window 4.The default value is 1 to indicate high intensity.Video pre-amplifier or external R/ G/B switch can make use of INT pin for windows's color intensity control.

Bit 0 W_SHD - Shadowing on window. Set this bit to activate the window 4 shadowing.

Row 15 Coln 11

Bit 2-0 R, G and B - Controls the color of window 4. Window 1 registers occupy Column 0-2 of Row 15, Window 2 from Column 3-5, Window 3 from $6-8$ and Window 4 from $9-$ 11. Window 1 has the highest priority, and Window 4 the least. If window over-lapping occurs, the higher priority window will cover the lower one, and the higher priority color will take over on the overlap window area. If the start address is greater than the end address, this window will not be displayed.

Vertical Delay Control Register Row 15 Coln 12

Bit 7-0 VERTD - These 8 bits define the vertical starting position. Total 256 steps, with an increment of four horizontal lines per step for each field. Its value can't be zero anytime. The default value of it is 4 .

Horizontal Delay Control Register Row 15 Coln 13

Bit 6-0 HORD - Horizontal starting position for character display. 7 bits give a total of 128 steps and each increment represents five dots movement shift to the right on the monitor screen. Its value cannot be zero anytime. The default value of it is 15 .

Character Height Control Register Row 15 Coln 14

	7	6	5	4	3	2	1	0
ROW 15 COLN 14	HF	AUTO_CH	CH5	CH4	CH3	CH2	CH1	CHO

Bit 7 HF - High Frequency Bit. If the incoming H sync signal is higher than 60 KHz , set this bit to 1 for better performance.

Bit 6 AUTO_CH - Auto Character Height Adjustment. If this bit is set, the character height will be controlled internally to keep the fixed ratio in the vertical direction and independent of the display modes. The ratio of character height to the screen is roughly $1 / 24,1 / 36$ and $1 / 48$ for $320 / 480 / 640$ resolution modes respectively. In the meantime, $\mathrm{CH} 5-\mathrm{CHO}$ are ignored.

Bit 5-0 $\mathrm{CH} 5-\mathrm{CHO}$ - This six bits will determine the displayed character height if AUTO_CH bit is cleared. It is possible to have a proper character height by setting a value greater than or equal to 16 on different horizontal frequency monitor. Setting a value below 16 will not have a predictable result. Figure 13 illustrates how this chip expand the built-in character font to the desired height.

Frame Control Register Row 15 Coln 15

Bit 7 OSD_EN - OSD circuit is activated when this bit is set.

Bit 6 BSEN - It enables the character bordering or shadowing function when this bit is set.

Bit 5 SHADOW - Character with black-edge shadowing is selected if this bit is set, otherwise bordering prevails.

Bit 4-3 X64, X32B - It determines the number of dots per horizontal line. There are 320 dots per horizontal line if bit X32B is clear and this is also the default power on state. Otherwise, 480 dots per horizontal sync line is chosen when bit X64 is clear and 640 dots per horizontal sync line when bit X64 is set to 1 . Please refer to the Table 1 for details.

Table 1. Resolution Setting

$(X 64$, X32B $)$	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
Dots / Line	320	320	480	640
Resolution	CGA	CGA	EGA	VGA

Bit 2 3_S - By setting this bit to 1, R/G/B could output high impedance state if the intensity attribute of characters or windows is set to 0 . It means the corresponding $R / G / B$ output will go high impedance instead of driving-high while displaying the low intensity characters or windows. After power on, this bit is reset and the $\mathrm{R} / \mathrm{G} / \mathrm{B}$ are push-pull outputs initially.

Bit 1 FAN - It enables the fan-in/fan-out functions when OSD is turned on from off state or vice versa. If this bit is set, it roughly takes about one second to fully display the whole menu. It also takes 1 second to disappear completely.

Bit 0 FBKGC - It determines the configuration of FBKG output pin. When it is clear. FBKG pin outputs high during displaying characters or windows. Otherwise, FBKG pin outputs high only during displaying characters.

Figure 13. Variable Character Height

Figure 14. Character Bordering and Shadowing

Frame Control Register Row 15 Coln 16

Bit 7-6 WW41, WW40 - It determines the shadow width of the window 4 when the window shadowing function is activated. Please refer to the following table for more details where M is the actual pixel number of the shadowing.

Table 2. Shadow Width Setting

(WW41, WW40)	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
Shadow Width M (unit in Pixel)	2	4	6	8

Bit 5-4 WW31, WW30 - Similarly as WW41, WW40, these two bits determine the shadow width of the window 3 when the window shadowing function is activated.

Bit 3-2 WW21, WW20 - Similarly as WW41, WW40, these two bits determine the shadow width of the window 2 when the window shadowing function is activated.

Bit 1-0 WW11, WW10 - Similarly as WW41, WW40, these two bits determine the shadow width of the window 1 when the window shadowing function is activated

Frame Control Register Row 15 Coln 17

Bit 7-6 WH41, WH40 - It determines the shadow height of the window 4 when the window shadowing function is activated. Please refer to the following table for more details where N is the actual line number of the shadowing.

Table 3. Shadow Width Setting

(WH41, WH40)	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
Shadow Height N (unit in Line)	2	4	6	8

Bit 5-4 WH31, WH3O - Similarly as WH41, WH40, these two bits determine the shadow height of the window 3 when the window shadowing function is activated.

Bit 3-2 WH21, WH2O - Similarly as WH41, WH40, these two bits determine the shadow height of the window 2 when the window shadowing function is activated.

Bit 1-0 WH11, WH10 - Similarly as WH41, WH40, these two bits determine the shadow height of the window 1 when the window shadowing function is activated.

Frame Control Register Row 15 Coln 18

Bit 2 TRIC - Tri-state Control. This bit is used to control the driving state of output pins, R, G, B and FBKG when the OSD is disabled. After power on, this bit is reset and R, G, B and FBKG are in high impedance state while OSD being disabled. If it is set by MCU, these four output pins will drive low while OSD being in disabled state. Basically, the setting is dependent on the requirement of the external application circuit.

Bit 1 HPOL - This bit selects the polarity of the incoming horizontal sync signal ($\overline{\mathrm{HFLB}}$). If it is negative polarity, clear this bit. Otherwise, set this bit to 1 to represent the positive H sync signal. After power on, this bit is cleared.

Bit 0 VPOL - This bit selects the polarity of the incoming vertical sync signal ($\overline{\mathrm{VFLB}}$). If it is negative polarity, clear this bit. Otherwise, set this bit to 1 to represent the positive V sync signal. After power on, this bit is cleared.

- NOTE: The registers located at column 19 of row 15 are reserved for the chip testing. In normal operation, they should not be programmed anytime.

PWM Control Registers Row 15 Col 20 to Col 31

	7	6	5	4	3	2	1	0
	ROW 15	MSB			PWM_n			
COLN 20-31								

Bit 7-0 HORD - This eight-bit value decides the output duty cycle and waveforms of PWM. There are maximum 12 channels of PWM. And the corresponding registers are located from column 20 to column 31 respectively on row 15.

The higher five bits (MSB) are used for the conventional PWM and the lower 3 bits (LSB) for the BRM. Please refer to the following figures for more information about BRM algorithm and PWM output waveform.

Figure 14. Pure 8-bit PWM v.s. 5-bit PWM + 3-bit BRM

Figure 15. BRM Pulse Insertion Algorithm
A software called SMOSD-16 FONT EDITOR in IBM PC environment was written for MC141548 editing purposes. It generates a set of S-Record or Binary record for the desired display patterns to be masked onto the character ROM of the MC141548.

In order to have better character display within windows, we suggest you to place your designed character font in the centre of the 10×16 matrix, and let its spaces be equally located in the four sides of the matrix. The character $\$ 00$ is pre-defined for blank character, the character \$FF is predefined for full-filled character.

In order to avoid submersion of displayed symbols or characters into a background of comparable colors, a feature of bordering which encircles all four sides, or shadowing which encircles only the right and bottom sides of an individual display character is provided. Figure 14 shows how a character is being jacketed differently. To make sure that a character is bordered or shadowed correctly, at least one dot blank should be reserved on each side of the character font.

Frame Format and Timing

Figure 16 illustrates the positions of all display characters on the screen relative to the leading edge of horizontal and vertical flyback signals. The shaded area indicates the area not interfered by the display characters. Notice that there are two components in the equations stated in Figure 16 for horizontal and vertical delays: fixed delays from the leading edge of $\overline{H F L B}$ and $\overline{\mathrm{VFLB}}$ signals, regardless of the values of HORD and VERTD: (47 dots + phase detection pulse width) and one H scan line for horizontal and vertical delays, respectively; variable delays determined by the values of HORD and VERTD. Refer to Frame Control Registers COLN 9 and 10 for the definitions of VERTD and HORD. Phase detection pulse width is a function of the external charge-up resistor, which is the $330 \mathrm{k} \Omega$ resistor in a series with $2 \mathrm{k} \Omega$ to VCO pin in the Application Diagram. Dot frequency is determined by the equation: H Freq. $\times 320$ if the bit $\times 32 \mathrm{~B}$ is clear and H Freq. x 480 if bit X32B is set to 1 and bit X64 is 0 and H Freq. $X 640$ if both bit X 32 B and bit X 64 are set to 1 . For example, dot frequency is 10.24 MHz if H freq is 32 KHz while bit $X 32 \mathrm{~B}$ is 0 . If $X 32 B$ is 1 and bit $X 64$ is 0 , the dot frequency will be 15.36 MHz (one and a half of the original one). If X 32 B is 1 and bit X64 is also 1, the dot frequency will be 20.48 MHz (double of the original one).

When double character width is selected for a row, only the even-numbered characters will be displayed, as shown in row 2. Notice that the total number of horizontal scan lines in the display frame is variable, depending on the chosen character height of each row. Care should be taken while configuring each row character height so that the last horizontal scan line in the display frame always comes out before the leading edge of $\overline{\mathrm{FFLB}}$ of next frame to avoid wrapping display characters of the last few rows in the current frame into the next frame. The number of display dots in a horizontal scan line is always fixed at 300 , regardless of row character width and the setting of bit X 32 B and X 64 .

Although there are 30 character display registers that can be programmed for each row, not every programmed character can be shown on the screen in 320 dots resolution. Usually, only 24 characters can be shown in this resolution at most. This is induced by the retrace time that is required to retrace the H scan line. In other resolution, 480 dots and 640 dots, 30 characters can be displayed on the screen totally if the horizontal delay register is set properly.

Figure 17 illustrates the timing of all output signals as a function of window and fast blanking features. Line 3 of all three characters is used to illustrate the timing signals. The shaded area depicts the window area. Both the left hand side and right hand side characters are embodied in a window with only one difference: FBKGC bit. The middle character does not have a window as its background. Timing of signal FBKG depends on the configuration of FBKGC bit. The configuration of FBKGC bits affects only FBKG signal timing. Waveform 'R, G or B', which is the actual waveform at R, G, or B pin, is the logical OR of waveform 'character R, G or B' and waveform 'window R, G or B'. 'Character R, G, or B' and 'window R, G, or B ' are internal signals for illustration purpose only.

Figure 16. Display Frame Format

MC141549 contains 256 character/symbol fonts including 8 RAM fonts and 248 ROM fonts. The RAM fonts occupy the font number $\$ 00$ to $\$ 07$ and their patterns can be changed at any time via the SPI or MBUS protocol described above. The masked ROM fonts are fixed and located from number \$08
 to \$FF. See the figures on the next page for the details fonts mapping.

Icon Combination

User can create On-Screen menu based on those characters and icons. Please refer to Table 4 for Icon combination. Address $\$ 00 \& \$ F F$ are pre-defined characters for testing.

Table 4. Combination Map 1

ICON	ROM ADDRESS(HEX)
RAM CHARACTERS	$00-07$
ARABIC NUMERALS	$09-11$
ALPHABET	$12-2 D$
EUROPEAN	$2 E-48$
JAPANESE	$49-81$
SYMBOLS	$82-C 4$, EF-FE
GEOMETRY	C5-EE

ROM CONTENT

Figures 18 - 21 show the ROM content of MC141549. Mask ROM is optional for custom parts.

Figure 17. Timing of Output Signals

Figure 18. ROM Address (\$08-\$3F)

Figure 19. ROM Address (\$40-\$7F)

Figure 20. ROM Address ($\mathbf{\$ 8 0} \mathbf{-} \mathbf{\$ B F}$)

Figure 21. ROM Address (\$C0 - \$FF)

DESIGN CONSIDERATIONS

Distortion

Motorola's MC141549P has a built-in PLL for multisystems application. Pin 2 voltage is a dc basing for the internal VCO in the PLL. When the input frequency (HFLB) in Pin 5 becomes higher, the VCO voltage will increase accordingly. The built-in PLL then has a higher locked frequency output. The frequency should be equal to 320/480/640 x HFLB (depends on resolution). It is the dot-clock in each horizontal line.
Display distortion is caused by noise in Pin 2. Positive noise makes VCO run faster than normal. The corresponding scan line will be shorter accordingly. In contrast, negative noise causes the scan line to be longer. The net result will be distortion on the display, especially on the right hand side with window turn on.
In order to have distortion-free display, the following recommendations should be considered.

- Only analog part grounds (Pin 2 to Pin 4) can be connected to Pin $1\left(\mathrm{~V}_{S S}(\mathrm{~A})\right) . \mathrm{V}_{\mathrm{SS}}$ and other grounds should connect to PCB common ground. Then the $\mathrm{V}_{S S}(\mathrm{~A})$ and V_{SS} grounds should be totally separated (i.e. VSS(A) is floating). Refer to the Application Diagram for the ground connections.
- DC supply path for Pin 9 (VDD) should be separated from other switching devices.
- LC filter should be connected between Pin 9 and Pin 4. Refer to the values used in the Application Diagram.
- Biasing and filter networks should be connected to Pin 2 and Pin 3. Refer to the recommended networks in the Application Diagram.

Jittering

Most display jittering is caused by HFLB jittering in Pin 5. Care must be taken if the HFLB signal comes from the flyback transformer. A short path and shielded cable are recommended for a clean signal. A small capacitor can be added between Pin 5 - Pin 16 to smooth the signal. Refer to the value used in the Application Diagram.

Display Dancing

Most display dancing is caused by interference of the serial bus. It can be avoided by adding resistors in the bus in series.

Advanced Monitor On-Screen Display II-24 CMOS

This is a high performance HCMOS device designed to interface with a microcontroller unit to allow colored symbols or characters to be displayed on a color monitor. Its on-chip PLL allows both multisystem operation and self generation of system timing. It also minimizes the MCU's burden through its built-in display and control bytes RAM. By storing a full screen of data and control information, this device has a capability to carry out 'screen-refresh' without any MCU supervision.

Since there is no clearance between characters, special graphics oriented characters can be generated by combining two or more character blocks. There are two different resolutions that users can choose. By changing the number of dots per horizontal line to 384 (CGA) or 768 (VGA), smaller characters with higher resolution can be easily achieved.

Special functions such as character bordering or shadowing, multi-level windows, intensity control for windows, double height and double width, and programmable vertical length of character are also incorporated. Furthermore, neither massive information update nor extremely high data transmission rate are expected for normal on- screen display operation and serial protocols are implemented in lieu of any parallel formats to achieve the minimum pin count.

There are 8 PWM DAC channels for external digital to analog control. Each PWM DAC channel is composed of an 8 bit register which contains a 5 bit PWM in MSB portion and a 3 bit binary rate multiplier (BRM) in LSB portion.

Moreover, the font matrix is improved from 10 by 16 to high resolution font matrix, 12 by 18 , in this version. In order to maintain the constant menu height in the different display modes, one special register, controlling the row to row spacing, is implemented to avoid the nonuniform extension of BRM algorithm in character height adjustment.

- 8 Channels 8 -bit Synchronous PWM DAC with Push-Pull Output
- Two Resolutions: 384 (CGA) or 768 (VGA) Dots per Line
- 12×18 Dot Matrix Character
- Maximum Horizontal Frequency is 120 KHz (92.2 MHz Dot Clock at 768 mode)
- Four Fully Programmable Background Windows with Intensity Control
- Row to Row Spacing Register to Manipulate the Constant Menu Height
- Programmable Height of Character to Meet Multi-Sync Requirement
- Smooth Menu Movement by Real Time Programming of H N Delay Registers
- Fully Programmable Character Array of 15 Rows by 30 Columns
- Internal PLL Generates a Wide-Ranged System Clock
- Programmable Vertical and Horizontal Positioning for Display Center
- 128 Characters and Graphic Symbols ROM (Mask ROM is Optional)
- Character by Character Color Selection
- A Maximum of Four Selectable Colors per Row
- Double Character Height and Double Character Width
- Character Bordering or Shadowing
- M_BUS (IIC) Interface with Address \$7A (SPI Bus is Mask Option)

MC141546P2

PIN ASSIGNMENT
$V_{S S}(A)$
$V C O$

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS Voltage Referenced to $\mathrm{V}_{\text {SS }}$

Symbol	Characteristic	Value	Unit
$V_{\text {DD }}$	Supply Voltage	-0.3 to +7.0	V
$\mathrm{~V}_{\text {in }}$	Input Voltage	$V_{S S}-0.3$ to $V_{D D}+0.3$	V
Id	Current Drain per Pin Excluding V_{DD} and V_{SS}	25	mA
Ta	Operating Temperature Range	0 to 85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {Stg }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE: Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Description section.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $V_{\text {in }}$ and $V_{\text {out }}$ should be constrained to the range $\mathrm{V}_{\mathrm{SS}} \leq\left(\mathrm{V}_{\text {in }}\right.$ or $\left.V_{\text {out }}\right) \leq V_{D D}$.
Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or $V_{D D}$). Unused outputs must be left open.

AC ELECTRICAL CHARACTERISTICS $\left(V_{D D} V_{D D}(\mathrm{~A})=5.0 \mathrm{~V}, \mathrm{~V}_{S S} / V_{S S}(\mathrm{~A})=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25 \mathrm{C}\right.$, Voltage Referenced to $V_{\text {SS }}$)

Symbol	Characteristic	Min	Typ	Max	Unit
	Output Signal (R, G, B, FBKG and INT/Cout) $\mathrm{C}_{\text {load }}=30 \mathrm{pF}$				
tr_{r}	Rise Time	-	-	6	ns
t_{f}	Fall Time	-	-	6	ns
	Output Signal (PWM0 - PWM7) $\mathrm{C}_{\text {load }}=30 \mathrm{pF}$				
t_{r}	Rise Time	-	-	20	ns
t_{f}	Fall Time	-	-	20	ns
F $\overline{\mathrm{HFLB}}$	HFLB Input Frequency	15K	-	120K	Hz

Figure 1. Switching Characteristics

DC CHARACTERISTICS $V_{D D} V_{D D(A)}=5.0 \mathrm{~V} \pm 10 \%, V_{S S} V_{S S}(A)=0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$, Voltage Referenced to $\mathrm{V}_{S S}$

Symbol	Characteristic	Min	Typ	Max	Unit
V_{OH}	High Level Output Voltage $l_{\text {out }}=-5 \mathrm{~mA}$	$V_{D D}-0.8$	-	-	V
V_{OL}	Low Level Output Voltage $\mathrm{I}_{\text {out }}=5 \mathrm{~mA}$	-	-	$\mathrm{V}_{S S}+0.4$	V
$\begin{aligned} & V_{I L} \\ & V_{I H} \end{aligned}$	Digital Input Voltage (Not Including SDA and SCL) Logic Low Logic High	$0.7 \overline{\mathrm{~V}}_{\mathrm{DD}}$	-	$0.3 \mathrm{~V}_{\mathrm{DD}}$	$\begin{aligned} & v \\ & v \end{aligned}$
$\begin{aligned} & V_{I L} \\ & V_{I H} \end{aligned}$	Input Voltage of Pin SDA and SCL in SPI Mode Logic Low Logic High	$0.7 \bar{V}_{D D}$	-	$0.3 \mathrm{~V} \mathrm{DD}$	$\begin{aligned} & v \\ & v \end{aligned}$
$\begin{aligned} & V_{I L} \\ & V_{I H} \end{aligned}$	Input Voltage of Pin SDA and SCL in M_BUS Mode Logic Low Logic High	$0.7 \overline{\mathrm{~V}}_{\mathrm{DD}}$	-	$\begin{gathered} 0.3 V_{D D} \\ - \end{gathered}$	$\begin{aligned} & V \\ & V \end{aligned}$
III	High-Z Leakage Current (R, G, B and FBKG)	-10	-	+ 10	$\mu \mathrm{A}$
III	Input Current (Not Including RP, VCO, R, G, B, FBKG and INT)	-10	-	$+10$	$\mu \mathrm{A}$
IDD	Supply Current (No Load on Any Output)	-	-	+20	mA
LVI	Low Voltage Inhibit for PWM DAC Output	2.7	3.2	3.6	V

PIN DESCRIPTION

VSS(A) (Pin 1)

This pin provides the signal ground to the PLL circuitry. Analog ground for PLL is separated from digital ground for optimal performance.

VCO (Pin 2)

A dc control voltage input to regulate an internal oscillator frequency. See the Application Diagram for the application values used.

RP (Pin 3)

An external RC network is used to bias an internal VCO to resonate at the specific dot frequency. The maximum voltage at Pin 3 should not exceed 3.5 V at any condition. See the Application Diagram for the application values used.
$V_{D D(A)}($ Pin 4)
A positive 5 V dc supply for PLL circuitry. Analog power for PLL is separated from digital power for optimal performance.

HFLB (Pin 5)

This pin inputs a negative polarity horizontal synchronize signal pulse to phase lock into an internal system clock generated by the on-chip VCO circuit.

$\overline{\mathbf{S S}} \mathbf{(P i n} 6)$

This input pin is part of the SPI system. An active low signal generated by the master device enables this slave device to accept data. Pull high to terminate the SPI communication. If M_BUS is employed as the serial interface, this pin should be tied to either V_{DD} or V_{SS}.

SDA (MOSI) (Pin 7)

Data and control message are being transmitted to this chip from a host MCU, via one of the two serial bus systems. With either protocol, this wire is configured as a uni-directional data line. (Detailed description of these two protocols will be discussed in the M_BUS and SPI sections).

SCL (SCK) (Pin 8)

A separate synchronizing clock input from the transmitter is required for either protocol. Data is read at the rising edge of each clock signal.

PWM 6 (Pin 9)

Channel 6 of the PWM.

PWM 4 (Pin 10)

Channel 4 of the PWM.

PWM 2 (Pin 11)

Channel 2 of the PWM.

PWM 0 (Pin 12)

Channel 0 of the PWM.

PWM 1 (Pin 13)

Channel 1 of the PWM.

PWM 3 (Pin 14)

Channel 3 of the PWM.

PWM 5 (Pin 15)

Channel 5 of the PWM.

PWM 7 (Pin 16)

Channel 7 of the PWM.

$V_{D D}$ (Pin 17)

This is the power pin for the digital logic of the chip.

VFLB (Pin 18)

Similar to Pin 5, this pin inputs a negative polarity of vertical synchronize signal to synchronize the vertical control circuit.

INT/ Cout (Pin 19)

This is a multiplexed pin. When the Cout bit is cleared after power on or by the MCU, this pin is INT and this output pin is used to indicate the color intensity. If the associated window intensity control bits are set, this pin will output a logic high while displaying the specified windows. Otherwise, it will keep in low state. Only the windows have the color intensity selection and all displayed characters or symbols are all high intensity. It means that INT pin must be driven high while displaying the characters or symbols.

Please refer to the timing figure for detail timing chart. Thus, 16-color selection is achievable by combining this intensity pin with $R / G / B$ outputs for windows' color control. On the other hand, this color intensity information could be reflected on the $\mathrm{R} / \mathrm{G} / \mathrm{B}$ pins by asserting tri-state instead of logic high if 3_S bit is set to 1 . Refer to the "REGISTERS" for more information.

If the Cout bit is set to 1 via M_BUS or SPI, this pin is changed to a mode-dependent clock output with 50/50 duty cycle and synchronous with the input horizontal synchronization signal at Pin 5. The frequency is dependent on the mode in which the AMOSD II is currently running. The exact frequencies in the different resolution modes are described below.

Resolution	Frequency	Duty Cycle
384 dots/line	$32 \times \mathrm{H}_{\mathrm{f}}$	$50 / 50$
768 dots/line	$64 \times \mathrm{H}_{\mathrm{f}}$	$50 / 50$

NOTE: H_{f} is the frequency of the input H sync. on Pin 5 .
Typically, this clock is fed into an external pulse width modulation module as its clock source. Because of the synchronization between Cout clock and H sync, a better performance on the external PWM controlled functions can be achieved.

FBKG (Pin 20)

This pin will output a logic high while displaying characters or windows when FBKGC bit in frame control register is 0 , and output a logic high only while displaying characters when FBKGC bit is 1 . It is defaulted to high impedance state after power on, or when there is no output. An external $10 \mathrm{k} \Omega$ resistor pulled low is recommended to avoid level toggling caused by hand effect when there is no output.

B,G,R (Pin 21, 22, 23)

AMOSD II color outputs in TTL level to the host monitor. These three outputs are in high impedance if 3 _S bit is set and the color intensity is low. Otherwise, they are active. high push-pull outputs. See "REGISTERS" for more information. These pins are in high impedance state after power on.
$\mathbf{V}_{\text {SS }}$ (Pin 24)
This is the ground pin for the digital logic of the chip.

SYSTEM DESCRIPTION

MC141546P2 is a full screen memory architecture. Refresh is done by the built-in circuitry after a screenful of display data has been loaded in through the serial bus. Only changes to the display data need to be input afterward.

Serial data, which includes screen mapping address, display information, and control messages, are being transmitted via one of the two serial buses: M_BUS or SPI (mask option). These two sets of buses are multiplexed onto a single set of wires. Standard parts offer M_BUS transmission.

Data is first received and saved in the MEMORY MANAGEMENT CIRCUIT in the Block Diagram. Meanwhile, the AMOSD II is continuously retrieving the data and putting it into a ROW BUFFER for display and refreshing, row after row. During this storing and retrieving cycle, a BUS ARBITRATION LOGIC will patrol the internal traffic, to make sure that no crashes occur between the slower serial bus receiver and fast 'screen-refresh' circuitry. After the full screen display data is received through one of the serial communication interface, the link can be terminated if change on display is not required.

The bottom half of the Block Diagram constitutes the heart of this entire system. It performs all the AMOSD II functions such as programmable vertical length (from 16 lines to 63 lines), display clock generation (which is phase locked to the incoming horizontal sync signal at Pin 5 HFLB), bordering or shadowing, and multiple windowing.

COMMUNICATION PROTOCOLS

BUS Operation

The operating clock for M_Bus or SPI bus derives from system dot clock. Internal PLL is using to generate the dot clock base on the HFLB input frequency where the dot clock is equal to $384 / 768 \times H F L B$ in $384 / 768$ modes respectively. In order to have stable operation of M_Bus or SPI bus in the OSD and meet below specifications, HFLB(15k-120k) must be presented and the PLL locks to HFLB properly. Refer to Application Diagram for PLL bias circuit.

M_BUS Serial Communication

This is a two-wire serial communication link that is fully compatible with the IIC bus system. It consists of SDA bidirectional data line and SCL clock input line. Data is sent from a transmitter (master), to a receiver (slave) via the SDA line, and is synchronized with a transmitter clock on the SCL line at the receiving end. The maximum data rate is limited to 100 kbps . The default chip address is $\$ 7 \mathrm{~A}$. Please refer to the IIC-Bus specification for detail timing requirement.

Operating Procedure

Figure 2 shows the M_BUS transmission format. The master initiates a transmission routine by generating a START condition, followed by a slave address byte. Once the address is properly identified, the slave will respond with an ACKNOWLEDGE signal by pulling the SDA line LOW during the ninth SCL clock. Each data byte which then follows must be eight bits long, plus the ACKNOWLEDGE bit, to make up nine bits together. Appropriate row and column address information and display data can be downloaded sequentially in
one of the three transmission formats described in DATA TRANSMISSION FORMATS SECTION. In the cases of no ACKNOWLEDGE or completion of data transfer, the master will generate a STOP condition to terminate the transmission routine. Note that the OSD_EN bit must be set after all the display information has been sent in order to activate the AMOSD II circuitry of MC141546P2, so that the received information can then be displayed.

Figure 2. M_BUS Format

Serial Peripheral Interface (SPI)

Similar to M_BUS communication, SPI requires separate clock (SCK) and data (MOSI) lines. In addition, a SS SLAVE SELECT pin is controlled by the master transmitter to initiate the receiver.

Operating Procedure

To initiate SPI transmission, pull $\overline{\mathrm{SS}}$ pin low by the master device to enable MC141546P2 to accept data. The $\overline{\mathrm{SS}}$ input line must be a logic low prior to occurrence of SCK and remain low until and after the last (eighth) SCK cycle. After all data has been sent, the $\overline{\mathrm{SS}}$ pin is then pulled high by master to terminate the transmission. Data bit is sent from master to OSD's internal latch during rising edge of SCK and then transmit to internal register during falling edge. Therefore, last falling edge of CLK is needed for proper transmission of last byte data. No slave address is needed for SPI. Hence, row and column address information and display data (the data transmission formats are the same as in M_BUS mode described in the previous section) can be sent immediately after the SPI is initiated.

Figure 3. SPI Protocol

DATA TRANSMISSION FORMATS

After the proper identification by the receiving device, data train of arbitrary length is transmitted from the master. There are three transmission formats from (a) to (c) as stated below. The data train in each sequence consists of row address (R), column address (C), and display information (I), as
shown in Figure 4. In format (a), display information data must be preceded with the corresponding row address and column address. This format is particularly suitable for updating small amounts of data between different rows. However, if the current information byte has the same row address as the one before, format (b) is recommended. For a full screen pattern change which requires a massive information update, or during power up situation, most of the row and column addresses on either (a) or (b) format will appear to be redundant. A more efficient data transmission format (c) should be applied. This sends the RAM starting row and column addresses once only, and then treats all subsequent data as display information. The row and column addresses will be automatically incremented internally for each display information data from the starting location.

The data transmission formats are:
(a) $\mathrm{R} \rightarrow>\mathrm{C} \rightarrow$ I $\rightarrow \mathrm{R} \rightarrow>\mathrm{C} \rightarrow$ I \rightarrow
(b) $\mathrm{R} \rightarrow>\mathrm{C}->$ I $->$ C $->$ I $->$ C $->$ I. $\ldots \ldots$
(c) $\mathrm{R} \rightarrow>\mathrm{C}->$ I $->$ I $->$ I $->$.

To differentiate the row and column addresses when transferring data from master, the MSB (Most Significant Bit) is set as in Figure 5: ' 1 ' to represent row, while ' 0 ' for column address. Furthermore, to distinguish the column address between format (a), (b) and (c), the sixth bit of the column address is set to ' 1 ' which represents format (c), and a ' 0 ' for format (a) or (b). There is some limitation on using mix-formats during a single transmission. It is permissible to change the format from (a) to (b), or from (a) to (c), or from (b) to (a), but not from (c) back to (a) or (b).

Figure 4. Data Packet

Figure 5. Row \& Column Address Bit Patterns

MEMORY MANAGEMENT

Internal RAM are addressed with row and column (coln) number in sequence. The space between row 0 and coln 0 to row 14 and coln 29 are called Display registers, with each contains a character ROM address corresponding to display location on monitor screen. Every data row associate with two control registers, which locate at coln 30 and 31 of their respective rows, to control the characters display format of that row. In addition, three window control registers for each of three windows together with six frame control registers occupy the first 15 columns of row 15 space. The PWM registers are located from column 20 to 31 .

User should handle the internal RAM address location with care especially for those rows with double length alphanumeric symbols. For example, if row n is destined to be double height on the memory map, the data displayed on
screen row n and $n+1$ will be represented by the data contained in the memory address of row n only. The data of next row $n+1$ on the memory map will appear on the screen of $n+2$ and $n+3$ row space and so on. Hence, it is not necessary to throw in a row of blank data to compensate for the double row action. User needs to take care of excessive row of data in memory in order to avoid over running the limited number of row space on the screen.

There is difference for rows with double width alphanumeric symbols. Only the data contained in the even numbered columns of memory map will be shown, the odd numbered columns will be ignored and not disclosed.

Figure 6. Memory Map

REGISTERS

Display Register

Bit 7 CCSO - This bit defines a specific character color out of the two preset colors. Color 1 is selected if this bit is cleared, and color 2 otherwise.

Bit 6-0 CRADDR - This seven bits address the 128 characters or symbols resided in the character ROM.

Row Control Registers

Coln 30

Bit 7-2 Color 1 is determined by R1, G1, B1 and color 2 by R2, G2, B2. Refer to Table 1 for color selection.

Bit 1 CHS - It determines the height of a display symbol. When this bit is set, the symbol is displayed in double height.

Bit 0 CWS - Similar to bit 1, character is displayed in double width, if this bit is set.

Coln 31

Bit 7-2 Color 3 and 4 are defined by R3, G3, B3, and R4, G4, B4 respectively.

Table 1. The Character/Window Color Selection

	R	G	B
Black	0	0	0
Blue	0	0	1
Green	0	1	0
Cyan	0	1	1
Red	1	0	0
Magenta	1	0	1
Yellow	1	1	0
White	1	1	1

Window 1 Registers

Row 15 Coln 0

Row 15 Coln 1

	7	6	5	4	3	2	1	0
ROW 15 COLN 1	MS				LSB	WEN	CCS1	W_INT

Bit 2 WEN - It enables the background window 1 generation if this bit is set.

Bit 1 CCS1 - This additional color select bit provides the characters resided within window 1 with two extra color selections, making a total of four selection for that row.

Bit $0 \quad$ W_INT - This additional color related bit provides the color intensity selection for window 1 . If this bit is 0 , INT pin will go low while displaying window 1 . The default value is 1 to indicate high intensity.Video pre-amplifier or external R/G/ B switch can make use of INT pin for windows's color intensity control.

Row 15 Coln 2

Bit 2-0 R, G and B-Controls the color of window 1. Refer to Table 1 for color selection. Window 1 Registers occupy Column 0-2 of Row 15, Window 2 from Column 3-5, Window 3 from 6-8 and Window 4 from 9-11. Window 1 has the highest priority, and Window 4 the least. If window over-lapping occurs, the higher priority window will cover the lower one, and the higher priority color will take over on the overlap window area. If the start address is greater than the end address, this window will not be displayed.

Window 2 Registers

Row 15 Coln 3

Row 15 Coln 4

	7	6	5	4	3	2	1

Bit 2 WEN - It enables the background window 2 generation if this bit is set.

Bit 1 CCS1 - This additional color select bit provides the characters resided within window 2 with two extra color selections, making a total of four selection for that row

Bit 0 W_INT - This additional color related bit provides the color intensity selection for window 2 . If this bit is 0 , INT pin will go low while displaying window 2 . The default value is 1 to indicate high intensity.Video pre-amplifier or external R/G/ B switch can make use of INT pin for windows's color intensity control.

Bit 2-0 R, G and B. Controls the color of window 2. Refer to Table 1 for color selection. Window 1 Registers occupy Column 0-2 of Row 15, Window 2 from Column 3-5, Window 3 from 6-8 and Window 4 from 9-11. Window 1 has the highest priority, and Window 4 the least. If window over-lapping occurs, the higher priority window will cover the lower one,
and the higher priority color will take over on the overlap window area. If the start address is greater than the end address, this window will not be displayed.

Window 3 Registers

Row 15 Coln 6

Row 15 Coln 7

	7	6	5	4	3	2	1	0
ROW 15 COLN 7	MS				LSB	WEN	CCS1	W_INT

Bit 2 WEN - It enables the background window 3 generation if this bit is set.

Bit 1 CCS1 - This additional color select bit provides the characters resided within window 3 with two extra color selections, making a total of four selection for that row

Bit 0 W_INT - This additional color related bit provides the color intensity selection for window 3 . If this bit is 0 , INT pin will go low while displaying window 3.The default value is 1 to indicate high intensity.Video pre-amplifier or external R/ G/B switch can make use of INT pin for windows's color intensity control.

Row 15 Coln 8

Bit 2-0 R, G and B-Controls the color of window 3. Refer to Table 1 for color selection. Window 1 Registers occupy Column 0-2 of Row 15, Window 2 from Column 3-5, Window 3 from 6-8 and Window 4 from 9-11. Window 1 has the highest priority, and Window 4 the least. If window over-lapping occurs, the higher priority window will cover the lower one, and the higher priority color will take over on the overlap window area. If the start address is greater than the end address, this window will not be displayed.

Window 4 Registers

Row 15 Coln 9

Row 15 Coln 10

ROW 15 COLN 10	7	6	5	4	3	2	1	0
			TAI		L.SB	WEN	CCS1	W_INT

Bit 2 WEN - It enables the background window 4 generation if this bit is set.

Bit 1 CCS1 - This additional color select bit provides the characters resided within window 4 with two extra color selections, making a total of four selection for that row

Bit $0 \quad$ W_INT - This additional color related bit provides the color intensity selection for window 4 . If this bit is 0, INT pin will go low while displaying window 4. The default value is 1 to indicate high intensity. Video pre-amplifier or external R/ G/B switch can make use of INT pin for windows's color intensity control.

Row 15 Coln 11

Bit 2-0 R, G and B-Controls the color of window 4. Refer to Table 1 for color selection. Window 1 Registers occupy Column 0-2 of Row 15, Winciow 2 from Column 3-5, Window 3 from 6-8 and Window 4 from 9-11. Window 1 has the highest priority, and Window 4 the least. If window over-lapping occurs, the higher priority window will cover the lower one, and the higher priority color will take over on the overlap window area. If the start address is greater than the end address, this window will not be displayed.

Frame Control Registers

Frame Control Register Row 15 Coln 12

Bit 7-0 VERTD - These 8 bits define the vertical starting position. Total 256 steps, with an increment of four horizontal lines per step for each field. Its value can't be zero anytime. The default value of it is 4 .

Frame Control Register Row 15 Coln 13

Bit 6-0 HORD - Horizontal starting position for character display. 7 bits give a total of 128 steps and each increment represents five dots movement shift to the right on the monitor screen. Its value cannot be zero anytime. The default value of it is 15 .

Frame Control Register Coln 14

Bit 5-0 $\mathrm{CH} 5-\mathrm{CH} 0$ - This six bits will determine the displayed character height. AMOSD II adopts 12 by 18 font matrix and the middle 16 lines, line 2 to line 17, are expanded by BRM algorithm. The top line and bottom line will be duplicated dependent on the value of CH . No any line is duplicated for top and bottom if CH is less than 32. One extra duplicated line will be inserted for top and bottom if CH is larger or equal to 32 and less than 48 . Two extra duplicated lines will be inserted for top and bottom if CH is larger or equal to 48 . Setting a value below 16 will not have a predictable result. Display character line number is equal to C 1 $\mathrm{x}(18+\mathrm{C} 2)$ where $\mathrm{C} 1=1,2$ or 3 defined by $\mathrm{CH} 5-\mathrm{CH} 4$ and $\mathrm{C} 2=0-15$ defined by $\mathrm{CH} 3-\mathrm{CHO}$ (BRM).

Bit 7 OSD_EN - OSD circuit is activated when this bit is set.

Bit 6 BSEN - It enables the character bordering or shadowing function when this bit is set.

Bit 5 SHADOW - Character with black-edge shadowing is selected if this bit is set, otherwise bordering prevails.

Bit 3 X32B - It determines the number of dots per horizontal line. There are 384 dots per horizontal line if bit X32B is clear and this is also the default power on state. Otherwise, 768 dots per horizontal sync line when bit X 32 B is set to 1. Please refer to the Table 2 for details.

Table 2. Resolution Setting

X32B	0	1
Dots / Line	384	768
Resolution	CGA	SVGA

Bit 2 3_S - By setting this bit to 1, R/G/B could output high impedance state if the intensity attribute of windows is set to 0 . It means the corresponding $R / G / B$ output will go high impedance instead of driving-high while displaying the low intensity windows which can be implemented by simple external circuit. After power on, this bit is reset and the R/G/ B are push-pull outputs initially.

Bit 0 FBKGC - It determines the configuration of FBKG output pin. When it is clear. FBKG pin outputs high during displaying characters or windows. Otherwise, FBKG pin outputs high only during displaying characters.

Frame Control Register Row 15 Coln 16

Bit 4-0 RSPACE - These 5 bits define the row to row spacing in unit of horizontal scan line. It means extra N lines, defined by this 5 -bit value, will be appended for each display row. Because of the nonuniform expansion of BRM used by character height control, this register is usually used to maintain the constant OSD menu height for different display modes instead of adjusting the character height. The default value of it is 0 . It means there is no any extra line inserted between row and row after power on.

Frame Control Register Row 15 Coln 17

Bit 2 TRIC - Tri-state Control. This bit is used to control the driving state of output pins, R, G, B and FBKG when the OSD is disabled. After power on, this bit is reset and R, G, B and FBKG are in high impedance state while OSD being disabled. If it is set by MCU, these four output pins will drive low while OSD being in disabled state. Basically, the setting is dependent on the requirement of the external application circuit.

Bit 3 HF - High Frequency Bit. If the incoming H sync signal is higher than 60 KHz , set this bit to 1 for better performance. This bit controls gain of internal VCO so that PLL can work for whole range from 15 KHz to 120 KHz .

Bit 1 HPOL - This bit selects the polarity of the incoming horizontal sync signal (HFLB). If it is negative polarity, clear this bit. Otherwise, set this bit to 1 to represent the positive H sync signal. After power on, this bit is cleared.

Bit 0 VPOL - This bit selects the polarity of the incoming vertical sync signal (VFLB). If it is negative polarity, clear this bit. Otherwise, set this bit to 1 to represent the positive V sync signal. After power on, this bit is cleared.

Row 15 Col 18 to Col 19

Bit 7 Cout - When this bit is set to 1 ,INT/Cout pin will be switched to a clock output which is synchronous to the H sync and used as an external PWM (pulse width modulation) clock source. Refer to the pin description of $\operatorname{INT} / \mathrm{Cout}$ for more information. After power on, the default value is 0 .

PWM Control Registers Row 15 Col 20 to Col 31

Bit 7-0 PWM_n - This eight-bit value decides the output duty cycle and waveforms of PWM. There are maximum 12 channels of PWM. And the corresponding registers are located from column 20 to column 31 respectively on row 15.

The higher five bits (MSB) are used for the conventional PWM and the lower 3 bits (LSB) for the BRM. Please refer to the following figures for more information about BRM algorithm and PWM output waveform.

Figure 8. Pure 8-bit PWM v.s. 5-bit PWM + 3-bit BRM

Figure 9. BRM Pulse Insertion Algorithm

Frame Format and Timing

Figure 10 illustrates the relative positions of all display characters on the screen relative to the leading edge of horizontal and vertical flyback signals. The shaded area indicates the area not interfered by the display characters. Notice that there are two components in the equations stated in Figure 10 for horizontal and vertical delays: fixed delays from the leading edge of $\overline{\mathrm{HFLB}}$ and $\overline{\mathrm{FFLB}}$ signals, regardless of the values of HORD and VERTD: (47 dots + phase detection pulse width) and one H scan line for horizontal and vertical delays, respectively; variable delays
determined by the values of HORD and VERTD. Please refer to Frame Control Registers COLN 9 and 10 for the definitions of VERTD and HORD. Phase detection pulse width is a function of external charge-up resistor, which is the 1 M Ohm resistor in series with 5.6 KOhm to VCO pin in the Application Diagram. Dot frequency is determined by the equation: H Freq. $\times 384$ if the bit X32B is clear and H Freq. x 768 if bit X 32 B is set to 1 . For example, dot frequency is 12.288 MHz if H freq is 32 KHz while bit X 32 B is 0 . If X 32 B is 1, the dot frequency will be 24.576 MHz (double of the original one).

When double character width is selected for a row, only the even-numbered characters will be displayed, as shown in row 2. Notice that the total number of horizontal scan lines in the display frame is variable, depending on the chosen character height of each row. Care should be taken while configured each row character height so that the last horizontal scan line in the display frame always comes out before the leading edge of VFLB of next frame to avoid wrapping display characters of the last few rows in current frame into next frame. The number of display dots in a horizontal scan line is always fixed at 360, regardless of row character width and the setting of bit X32B.

Although there are 30 character display registers that can be programmed for each row, not every programmed character can be shown on the screen in 384 dots resolution. Usually, only 24 characters can be shown in this resolution at most. This is induced by the retrace time that is required to retrace the H scan line. In other resolution, 768 dots, 30 characters can be displayed on the screen totally if the horizontal delay register is set properly.

Figure 11 illustrates the timing of all output signals as a function of window and fast blanking features. Line 3 of all three characters are used to illustrate the timing signals. The shaded area depicts the window area. Both the left hand side and right hand side characters are embodied in a window with only one difference: FBKGC bit. The middle character does not have a window as its background. Timing of signal FBKG depends on the configuration of FBKGC bit. The configuration of FBKGC bits affects only FBKG signal timing. Waveform 'R, G or B', which is the actual waveform at R, G, or B pin, is the logical OR of waveform 'character R, G or B ' and waveform 'window R, G or B '. 'character R, G, or B ' and 'window R, G, or B ' are internal signals for illustration purpose only.

Figure 10. Timing of Output Signals

Figure 11. Display Frame Format
A software called AMOSD II FONT EDITOR in IBM PC environment was written for MC141546P2 editing purposes. It generates a set of S-Record or Binary record for the desired display patterns to be masked onto the character ROM of the MC141546P2.

In order to have better character display within windows, we suggest you to place your designed character font in the centre of the 12×18 matrix, and let its spaces be equally located in the four sides of the matrix. The character $\$ 00$ is pre-defined for blank character, the character \$FF is predefined for full-filled character.

In order to avoid submersion of displayed symbols or characters into a background of comparable colors, a feature of bordering which encircles all four sides, or shadowing which encircles only the right and bottom sides of an individual display character is provided. Figure 12 shows how a character is being jacketed differently. To make sure that a character is bordered or shadowed correctly, at least one dot blank should be reserved on each side of the character font.

Figure 12. Character Bordering and Shadowing

FONT

Icon Combination

MC141546P2 contains 128 character ROM. The user can create an on-screen menu based on those characters and icons. Refer to Table 3 for icon combinations. Address $\$ 00$ and \$7F are predefined characters. They cannot be modified in any AMOSD II.

Table 3. Combination Map

ICON	ROM ADDRESS(HEX)
ARABIC NUMERALS	$01-0 A$
ALPHABET	$0 \mathrm{~B}-26$
EUROPEAN	$27-41$
SYMBOLS	$42-61,7 \mathrm{E}$
GEOMETRY	C5-EE

ROM CONTENT

Figures 13-14 show the ROM content of MC141546P2. Mask ROM is optional for custom parts.

Figure 13. ROM 00-3F

Figure 14. ROM 40-7F

DESIGN CONSIDERATIONS

Distortion

Motorola's MC141546P2 has a built-in PLL for multisystems application. Pin 2 voltage is a dc basing for the internal VCO in the PLL. When the input frequency (HFLB) in Pin 5 becomes higher, the VCO voltage will increase accordingly. The built-in PLL then has a higher locked frequency output. The frequency should be equal to $384 / 768 \times \mathrm{HFLB}$ (depends on resolution). It is the dot-clock in each horizontal line.

Display distortion is caused by noise in Pin 2. Positive noise makes VCO run faster than normal. The corresponding scan line will be shorter accordingly. In contrast, negative noise causes the scan line to be longer. The net result will be distortion on the display, especially on the right hand side with window turn on.

In order to have distortion-free display, the following recommendations should be considered.

- Only analog part grounds (Pin 2 to Pin 4) can be connected to Pin $1\left(\mathrm{~V}_{S S}(\mathrm{~A})\right) . \mathrm{V}_{S S}$ and other grounds should connect to PCB common ground. Then the $V_{S S}(A)$ and $V_{S S}$ grounds should be totally separated (i.e. $V_{S S}(A)$ is floating outside, they are connected internally). Refer to the Application Diagram for the ground connections.(NOTE: $\mathrm{Vss}(\mathrm{A})$ and Vss are connected internally.)
- DC supply path for Pin $4\left(V_{D D(A)}\right)$ should be separated from other switching devices.
- LC filter should be connected between Pin 17 and Pin 4. Refer to the values used in the Application Diagram.
- Biasing and filter networks should be connected to Pin 2 and Pin 3. Refer to the recommended networks in the Application Diagram.
- Two small capacitors can be added between Pin1-Pin2 and Pin3-Pin4 to filter VCO noise if necessary. Values should be small enough to avoid picture unlocking caused by temperature variation.

Jittering and Unlocking

Most display jittering and unlocking is caused by HFLB in Pin 5. Care must be taken if the HFLB signal comes from the flyback transformer. A short path and shielded cable are recommended for a clean signal. Buffer is needed for both HFLB and VFLB inputs. Refer to the value used in the Application Diagram.

Display Dancing

Most display dancing is caused by interference of the serial bus. It can be avoided by adding resistors in the bus in series.

APPLICATION DIAGRAM

MC141547P2

Advanced Monitor On-Screen Display II-16 cmos

This is a high performance HCMOS device designed to interface with a microcontroller unit to allow colored symbols or characters to be displayed on a color monitor. Its on-chip PLL allows both multisystem operation and self generation of system timing. It also minimizes the MCU's burden through its built-in display and control bytes RAM. By storing a full screen of data and control information, this device has a capability to carry out 'screen-refresh' without any MCU supervision.

Since there is no clearance between characters, special graphics oriented characters can be generated by combining two or more character blocks. There are two different resolutions that users can choose. By changing the number of dots per horizontal line to 384 (CGA) or 768 (VGA), smaller characters with higher resolution can be easily achieved.

Special functions such as character bordering or shadowing, multi-level windows, intensity control for windows, double height and double width, and programmable vertical length of character are also incorporated. Furthermore, neither massive information update nor extremely high data transmission rate are expected for normal on- screen display operation and serial protocols are implemented in lieu of any parallel formats to achieve the minimum pin count.

Moreover, the font matrix is improved from 10 by 16 to high resolution font matrix, 12 by 18 , in this version. In order to maintain the constant menu height in the different display modes, one special register, controlling the row to row spacing, is implemented to avoid the nonuniform extension of BRM algorithm in character height adjustment.

- Two Resolutions: 384 (CGA) or 768 (VGA) Dots per Line
- 12×18 Dot Matrix Character
- Maximum Horizontal Frequency is 120 KHz (92.2 MHz Dot Clock at 768 mode)
- Four Fully Programmable Background Windows with Intensity Control
- Row to Row Spacing Register to Manipulate the Constant Menu Height
- Programmable Height of Character to Meet Multi-Sync Requirement
- Smooth Menu Movement by Real Time Programming of H/V Delay Registers
- Fully Programmable Character Array of 15 Rows by 30 Columns
- Internal PLL Generates a Wide-Ranged System Clock
- Programmable Vertical and Horizontal Positioning for Display Center
- 128 Characters and Graphic Symbols ROM (Mask ROM is Optional)
- Character by Character Color Selection
- A Maximum of Four Selectable Colors per Row
- Double Character Height and Double Character Width
- Character Bordering or Shadowing
- M_BUS (IIC) Interface with Address \$7A (SPI Bus is Mask Option)

ABSOLUTE MAXIMUM RATINGS Voltage Referenced to $V_{S S}$

Symbol	Characteristic	Value	Unit
V_{DD}	Supply Voltage	-0.3 to +7.0	V
$\mathrm{~V}_{\text {in }}$	Input Voltage	$V_{S S}-0.3$ to $V_{D D}+0.3$	V
Id	Current Drain per Pin Excluding V_{DD} and V_{SS}	25	mA
Ta	Operating Temperature Range	0 to 85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE: Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Description section.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $V_{\text {in }}$ and $V_{\text {out }}$ should be constrained to the range $\mathrm{V}_{\mathrm{SS}} \leq\left(\mathrm{V}_{\text {in }}\right.$ or $\left.V_{\text {out }}\right) \leq V_{\text {DD }}$.
Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or $V_{D D}$. Unused outputs must be left open.

AC ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{DD}} V_{D D(A)}=5.0 \mathrm{~V}, \mathrm{~V}_{S S} N_{S S}(\mathrm{~A})=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25 \mathrm{C}\right.$,
Voltage Referenced to V_{SS})

Symbol	Characteristic	Min	Typ	Max
	Output Signal (R, G, B, FBKG and INT/Cout) Cload $=30 \mathrm{pF}$			
tr_{l}	Rise Time tr	Fall Time	-	
FHFLB	HFLB Input Frequency	-	-	

Figure 1. Switching Characteristics

DC CHARACTERISTICS $V_{D D} V_{D D(A)}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{S S} V_{S S}(A)=0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$, Voltage Referenced to $\mathrm{V}_{S S}$

Symbol	Characterlstic	Min	Typ	Max	Unit
VOH	High Level Output Voltage $\mathrm{t}_{\text {out }}=-5 \mathrm{~mA}$	$V_{D D}-0.8$	-	-	V
V_{OL}	Low Level Output Voltage $\mathrm{I}_{\text {out }}=5 \mathrm{~mA}$	-	-	$\mathrm{V}_{S S}+0.4$	V
$\begin{aligned} & V_{I L} \\ & V_{I H} \end{aligned}$	Digital Input Voltage (Not Including SDA and SCL) Logic Low Logic High	$0.7 \overline{\mathrm{~V}}_{\mathrm{DD}}$	-	$0.3 V_{D D}$	$\begin{aligned} & v \\ & v \end{aligned}$
$\begin{aligned} & V_{I L} \\ & V_{I H} \end{aligned}$	Input Voltage of Pin SDA and SCL in SPI Mode Logic Low Logic High	$0.7 \overline{\mathrm{~V}}_{\mathrm{DD}}$	-	$0.3 \mathrm{~V}_{\mathrm{DD}}$	$\begin{aligned} & v \\ & v \end{aligned}$
$\begin{aligned} & v_{I L} \\ & v_{I H} \end{aligned}$	Input Voltage of Pin SDA and SCL in M_BUS Mode Logic Low Logic High	$0.7 \overline{\mathrm{~V}}_{\mathrm{DD}}$	-	0.3 V DD -	$\begin{aligned} & V \\ & v \end{aligned}$
III	High-Z Leakage Current (R, G, B and FBKG)	-10	-	+ 10	$\mu \mathrm{A}$
I!	Input Current (Not Including RP, VCO, R, G, B, FBKG and INT)	- 10	-	+10	$\mu \mathrm{A}$
IDD	Supply Current (No Load on Any Output)	-	-	+20	mA

PIN DESCRIPTION

VSS(A) (Pin 1)

This pin provides the signal ground to the PLL circuitry. Analog ground for PLL is separated from digital ground for optimal performance.

VCO (Pin 2)
A dc control voltage input to regulate an internal oscillator frequency. See the Application Diagram for the application values used.

RP (Pin 3)

An external RC network is used to bias an internal VCO to resonate at the specific dot frequency. The maximum voltage at Pin 3 should not exceed 3.5 V at any condition. See the Application Diagram for the application values used.

$V_{D D(A)}($ Pin 4$)$

A positive 5 V dc supply for PLL circuitry. Analog power for PLL is separated from digital power for optimal performance.

$\overline{\text { HFLB (Pin 5) }}$

This pin inputs a negative polarity horizontal synchronize signal pulse to phase lock into an internal system clock generated by the on-chip VCO circuit.

$\overline{\mathbf{S S}}$ (Pin 6)

This input pin is part of the SPI system. An active low signal generated by the master device enables this slave device to accept data. Pull high to terminate the SPI communication. If M_BUS is employed as the serial interface, this pin should be tied to either $V_{D D}$ or $V_{S S}$.

SDA (MOSI) (Pin 7)
Data and control message are being transmitted to this chip from a host MCU, via one of the two serial bus systems. With either protocol, this wire is configured as a uni-directional data line. (Detailed description of these two protocols will be discussed in the M_BUS and SPI sections).

SCL (SCK) (Pin 8)

A separate synchronizing clock input from the transmitter is required for either protocol. Data is read at the rising edge of each clock signal.

$V_{D D}$ (Pin 9)

This is the power pin for the digital logic of the chip.

$\overline{\mathrm{VFLB}}(\operatorname{Pin} 10)$

Similar to Pin 5, this pin inputs a negative polarity of vertical synchronize signal to synchronize the vertical control circuit.

INT/ Cout (Pin 11)

This is a multiplexed pin. When the Cout bit is cleared after power on or by the MCU, this pin is INT and this output pin is used to indicate the color intensity. If the associated window intensity control bits are set, this pin will output a logic high while displaying the specified windows. Otherwise, it will keep in low state. Only the windows have the color intensity selection and all displayed characters or symbols are all high intensity. It means that INT pin must be driven high while displaying the characters or symbols.

Please refer to the timing figure for detail timing chart. Thus, 16 -color selection is achievable by combining this intensity pin with R/G/B outputs for windows' color control. On the other hand, this color intensity information could be
reflected on the R/G/B pins by asserting tri-state instead of logic high if 3 _S bit is set to 1 . Refer to the "REGISTERS" for more information.

If the Cout bit is set to 1 via M_BUS or SPI, this pin is changed to a mode-dependent clock output with $50 / 50$ duty cycle and synchronous with the input horizontal synchronization signal at Pin 5. The frequency is dependent on the mode in which the AMOSD II is currently running. The exact frequencies in the different resolution modes are described below.

Resolution	Frequency	Duty Cycle
384 dots/line	$32 \times \mathrm{H}_{\mathbf{f}}$	$50 / 50$
768 dots/line	$64 \times \mathrm{H}_{\mathbf{f}}$	$50 / 50$

NOTE: H_{f} is the frequency of the input H sync. on Pin 5.
Typically, this clock is fed into an external pulse width modulation module as its clock source. Because of the synchronization between Cout clock and H sync, a better performance on the external PWM controlled functions can be achieved.

FBKG (Pin 12)

This pin will output a logic high while displaying characters or windows when FBKGC bit in frame control register is 0 , and output a logic high only while displaying characters when FBKGC bit is 1 . It is defaulted to high impedance state after power on, or when there is no output. An external $10 \mathrm{k} \Omega$ resistor pulled low is recommended to avoid level toggling caused by hand effect when there is no output.

B,G,R (Pin 13, 14, 15)

AMOSD II color outputs in TTL level to the host monitor. These three outputs are in high impedance if 3 _S bit is set and the color intensity is low. Otherwise, they are active high push-pull outputs. See "REGISTERS" for more information. These pins are in high impedance state after power on.

$\mathrm{V}_{\mathrm{SS}}($ Pin 16$)$

This is the ground pin for the digital logic of the chip.

SYSTEM DESCRIPTION

MC141547P2 is a full screen memory architecture. Refresh is done by the built-in circuitry after a screenful of display data has been loaded in through the serial bus. Only changes to the display data need to be input afterward.
Serial data, which includes screen mapping address, display information, and control messages, are being transmitted via one of the two serial buses: M_BUS or SPI (mask option). These two sets of buses are multiplexed onto a single set of wires. Standard parts offer M_BUS transmission.

Data is first received and saved in the MEMORY MANAGEMENT CIRCUIT in the Block Diagram. Meanwhile, the AMOSD II is continuously retrieving the data and putting it into a ROW BUFFER for display and refreshing, row after row. During this storing and retrieving cycle, a BUS ARBITRATION LOGIC will patrol the internal traffic, to make sure that no crashes occur between the slower serial bus receiver and fast 'screen-refresh' circuitry. After the full screen display data is received through one of the serial communica-
tion interface, the link can be terminated if change on display is not required.

The bottom half of the Block Diagram constitutes the heart of this entire system. It performs all the AMOSD II functions such as programmable vertical length (from 16 lines to 63 lines), display clock generation (which is phase locked to the incoming horizontal sync signal at Pin 5 HFLB), bordering or shadowing, and multiple windowing.

COMMUNICATION PROTOCOLS

BUS Operation

The operating clock for M_Bus or SPI bus derives from system dot clock. Internal PLL is using to generate the dot clock base on the HFLB input frequency where the dot clock. is equal to $384 / 768 \times H F L B$ in $384 / 768$ modes respectively. In order to have stable operation of M_Bus or SPI bus in the OSD and meet below specifications, HFLB(15k-120k) must be presented and the PLL locks to HFLB properly. Refer to Application Diagram for PLL bias circuit.

M_BUS Serial Communication

This is a two-wire serial communication link that is fully compatible with the IIC bus system. It consists of SDA bidirectional data line and SCL clock input line. Data is sent from a transmitter (master), to a receiver (slave) via the SDA line, and is synchronized with a transmitter clock on the SCL line at the receiving end. The maximum data rate is limited to 100 kbps . The default chip address is $\$ 7 \mathrm{~A}$. Please refer to the IIC-Bus specification for detail timing requirement.

Operating Procedure

Figure 2 shows the M_BUS transmission format. The master initiates a transmission routine by generating a START condition, followed by a slave address byte. Once the address is properly identified, the slave will respond with an ACKNOWLEDGE signal by pulling the SDA line LOW during the ninth SCL clock. Each data byte which then follows must be eight bits long, plus the ACKNOWLEDGE bit, to make up nine bits together. Appropriate row and column address information and display data can be downloaded sequentially in one of the three transmission formats described in DATA TRANSMISSION FORMATS SECTION. In the cases of no ACKNOWLEDGE or completion of data transfer, the master will generate a STOP condition to terminate the transmission routine. Note that the OSD_EN bit must be set after all the display information has been sent in order to activate the AMOSD II circuitry of MC141547P2, so that the received information can then be displayed.

Figure 2. M_BUS Format

Serial Peripheral Interface (SPI)

Similar to M_BUS communication, SPI requires separate clock (SCK) and data (MOSI) lines. In addition, a SS SLAVE SELECT pin is controlled by the master transmitter to initiate the receiver.

Operating Procedure

To initiate SPI transmission, pull $\overline{S S}$ pin low by the master device to enable MC141547P2 to accept data. The $\overline{\text { SS }}$ input line must be a logic low prior to occurrence of SCK and remain low until and after the last (eighth) SCK cycle. After all data has been sent, the $\overline{\mathrm{SS}}$ pin is then pulled high by master to terminate the transmission. Data bit is sent from master to OSD's internal latch during rising edge of SCK and then transmit to internal register during falling edge. Therefore, last falling edge of CLK is needed for proper transmission of last byte data. No slave address is needed for SPI. Hence, row and column address information and display data (the data transmission formats are the same as in M_BUS mode described in the previous section) can be sent immediately after the SPI is initiated.

Figure 3. SPI Protocol

DATA TRANSMISSION FORMATS

After the proper identification by the receiving device, data train of arbitrary length is transmitted from the master. There are three transmission formats from (a) to (c) as stated below. The data train in each sequence consists of row address (R), column address (C), and display information (I), as shown in Figure 4. In format (a), display information data must be preceded with the corresponding row address and column address. This format is particularly suitable for updating small amounts of data between different rows. However, if the current information byte has the same row address as the one before, format (b) is recommended. For a full screen pattern change which requires a massive information update, or during power up situation, most of the row and column addresses on either (a) or (b) format will appear to be redundant. A more efficient data transmission format (c) should be applied. This sends the RAM starting row and column addresses once only, and then treats all subsequent data as display information. The row and column addresses will be automatically incremented internally for each display information data from the starting location.

The data transmission formats are:
(a) $\mathrm{R} \rightarrow>\mathrm{C}->1 \rightarrow \mathrm{R} \rightarrow \mathrm{C}->$ I $->$
(b) $\mathrm{R} \rightarrow>\mathrm{C}->\mathrm{I}->\mathrm{C}->\mathrm{I}->\mathrm{C}->$ I. $\ldots \ldots$
(c) $\mathrm{R} \rightarrow>\mathrm{C}->$ I $->$ I $->$ I $->$.

To differentiate the row and column addresses when transferring data from master, the MSB (Most Significant Bit) is set as in Figure 5: ' 1 ' to represent row, while ' 0 ' for column address. Furthermore, to distinguish the column address be-
tween format (a), (b) and (c), the sixth bit of the column address is set to ' 1 ' which represents format (c), and a ' 0 ' for format (a) or (b). There is some limitation on using mix-formats during a single transmission. It is permissible to change the format from (a) to (b), or from (a) to (c), or from (b) to (a), but not from (c) back to (a) or (b).

Figure 4. Data Packet

Figure 5. Row \& Column Address Bit Patterns

MEMORY MANAGEMENT

Internal RAM are addressed with row and column (coln) number in sequence. The space between row 0 and coln 0 to row 14 and coln 29 are called Display registers, with each contains a character ROM address corresponding to display location on monitor screen. Every data row associate with two control registers, which locate at coln 30 and 31 of their respective rows, to control the characters display format of that row. In addition, three window control registers for each of three windows together with six frame control registers occupy the first 15 columns of row 15 space. The PWM registers are located from column 20 to 31.

User should handle the internal RAM address location with care especially for those rows with double length alphanumeric symbols. For example, if row n is destined to be double height on the memory map, the data displayed on screen row n and $n+1$ will be represented by the data contained in the memory address of row n only. The data of next row $n+1$ on the memory map will appear on the screen of $\mathrm{n}+2$ and $\mathrm{n}+3$ row space and so on. Hence, it is not necessary to throw in a row of blank data to compensate for the double row action. User needs to take care of excessive row of data in memory in order to avoid over running the limited number of row space on the screen.

There is difference for rows with double width alphanumeric symbols. Only the data contained in the even numbered columns of memory map will be shown, the odd numbered columns will be ignored and not disciosed.

Figure 6. Memory Map

REGISTERS

Display Register

Bit 7 CCSO - This bit defines a specific character color out of the two preset colors. Color 1 is selected if this bit is cleared, and color 2 otherwise.

Bit 6-0 CRADDR - This seven bits address the 128 characters or symbols resided in the character ROM.

Row Control Registers

Coln 30

Bit 7-2 Color 1 is determined by R1, G1, B1 and color 2 by R2, G2, B2. Refer to Table 1 for color selection.

Bit 1 CHS - It determines the height of a display symbol. When this bit is set, the symbol is displayed in double height.

Bit 0 CWS - Similar to bit 1, character is displayed in double width, if this bit is set.

Coln 31

Bit 7-2 Color 3 and 4 are defined by R3, G3,.B3, and R4, G4, B4 respectively.

Table 1. The Character/Window Color Selection

	\mathbf{R}	\mathbf{G}	\mathbf{B}
Black	0	0	0
Blue	0	0	1
Green	0	1	0
Cyan	0	1	1
Red	1	0	0
Magenta	1	0	1
Yellow	1	1	0
White	1	1	1

Window 1 Registers

Row 15 Coln 0

Row 15 Coln 1

Bit 2 WEN - It enables the background window 1 generation if this bit is set.

Bit 1 CCS1 - This additional color select bit provides the characters resided within window 1 with two extra color selections, making a total of four selection for that row

Bit $0 \quad$ W_INT - This additional color related bit provides the color intensity selection for window 1 . If this bit is 0 , INT pin will go low while displaying window 1 . The default value is 1 to indicate high intensity.Video pre-amplifier or external R/G/ B switch can make use of INT pin for windows's color intensity control.

Row 15 Coln 2

Bit 2-0 R, G and B-Controls the color of window 1. Refer to Table 1 for color selection. Window 1 Registers occupy Column 0-2 of Row 15, Window 2 from Column 3-5, Window 3 from $6-8$ and Window 4 from $9-11$. Window 1 has the highest priority, and Window 4 the least. If window over-lapping occurs, the higher priority window will cover the lower one,
and the higher priority color will take over on the overlap window area. If the start address is greater than the end address, this window will not be displayed.

Window 2 Registers

Row 15 Coln 3

	7	5	4	3	2	1	0
ROW 15	ROW START ADDR			ROW END ADDR			
COLN 3	MSB		LSB	MSB			LSE

Row 15 Coln 4

	7	6	5	4	3	2	1	0
ROW 15 COLN 4	MSB				LSB	WEN	CCS1	W_INT

Bit 2 WEN - It enables the background window 2 generation if this bit is set.

Bit 1 CCS1 - This additional color select bit provides the characters resided within window 2 with two extra color selections, making a total of four selection for that row

Bit 0 W_INT - This additional color related bit provides the color intensity selection for window 2 . If this bit is 0 , INT pin will go low while displaying window 2 . The default value is 1 to indicate high intensity.Video pre-amplifier or external R/G/ B switch can make use of INT pin for windows's color intensity control.

Row 15 Coln 5

Bit 2-0 R, G and B-Controls the color of window 2. Refer to Table 1 for color selection. Window 1 Registers occupy Column 0-2 of Row 15, Window 2 from Column 3-5, Window 3 from 6-8 and Window 4 from 9-11. Window 1 has the highest priority, and Window 4 the least. If window over-lapping occurs, the higher priority window will cover the lower one, and the higher priority color will take over on the overlap window area. If the start address is greater than the end address, this window will not be displayed.

Window 3 Registers

Row 15 Coln 6

Row 15 Coln 7

	7	6	5	4	3	2	1	0
ROW 15 COLN 7	COL START ADDR MSB				LSB	WEN	CCS1	W_INT

Bit 2 WEN - It enables the background window 3 generation if this bit is set.

Bit 1 CCS1 - This additional color select bit provides the characters resided within window 3 with two extra color selections, making a total of four selection for that row

Bit 0 W_INT - This additional color related bit provides the color intensity selection for window 3 . If this bit is 0 , INT pin will go low while displaying window 3. The default value is 1 to indicate high intensity. Video pre-amplifier or external R/ G/B switch can make use of INT pin for windows's color intensity control.

Row 15 Coln 8

Bit 2-0 R, G and B-Controls the color of window 3. Refer to Table 1 for color selection. Window 1 Registers occupy Column 0-2 of Row 15, Window 2 from Column 3-5, Window 3 from 6-8 and Window 4 from 9-11. Window 1 has the highest priority, and Window 4 the least. If window over-lapping occurs, the higher priority window will cover the lower one, and the higher priority color will take over on the overlap window area. If the start address is greater than the end address, this window will not be displayed.

Window 4 Registers

Row 15 Coln 9

Row 15 Coln 10

	7	6	5	4	3	2	1	0
ROW 15 COLN 10					LSB	WEN	CCS1	W_INT

Bit 2 WEN - It enables the background window 4 generation if this bit is set.

Bit 1 CCS1 - This additional color select bit provides the characters resided within window 4 with two extra color selections, making a total of four selection for that row

Bit 0 W_INT - This additional color related bit provides the color intensity selection for window 4. If this bit is 0 , INT pin will go low while displaying window 4.The default value is 1 to indicate high intensity. Video pre-amplifier or external R/ G/B switch can make use of INT pin for windows's color intensity control.

Row 15 Coln 11

	7	6	5	4	3	2	1	0	
ROW 15 COLN 11					LSB	R	G	B	B

Bit 2-0 R, G and B - Controls the color of window 4. Refer to Table 1 for color selection. Window 1 Registers occupy Column 0-2 of Row 15, Window 2 from Column 3-5, Window 3 from 6-8 and Window 4 from 9-11. Window 1 has the highest priority, and Window 4 the least. If window overlapping occurs, the higher priority window will cover the lower one, and the higher priority color will take over on the overlap window area. If the start address is greater than the end address, this window will not be displayed.

Frame Control Registers

Frame Control Register Row 15 Coln 12

Bit 7-0 VERTD - These 8 bits define the vertical starting position. Total 256 steps, with an increment of four horizontal lines per step for each field. Its value can't be zero anytime. The default value of it is 4 .

Frame Control Register Row 15 Coln 13

Bit 6-0 HORD - Horizontal starting position for character display. 7 bits give a total of 128 steps and each increment represents five dots movement shift to the right on the monitor screen. Its value cannot be zero anytime. The default value of it is 15 .

Frame Control Register Coln 14

Bit 5-0 CH5-CHO - This six bits will determine the displayed character height. AMOSD II adopts 12 by 18 font matrix and the middle 16 lines, line 2 to line 17, are expanded by BRM algorithm. The top line and bottom line will be duplicated dependent on the value of CH . No any line is duplicated for top and bottom if CH is less than 32. One extra duplicated line will be inserted for top and bottom if CH is larger or equal to 32 and less than 48 . Two extra duplicated lines will be inserted for top and bottom if CH is larger or equal to 48 . Setting a value below 16 will not have a predictable result. Display character line number is equal to C 1 $x(18+\mathrm{C} 2)$ where $\mathrm{C} 1=1,2$ or 3 defined by $\mathrm{CH} 5-\mathrm{CH} 4$ and $\mathrm{C} 2=0-15$ defined by $\mathrm{CH} 3-\mathrm{CH} 0$ (BRM).

Figure 7. Variable Character Height
Figure 7 illustrates the enlargement algorithm for top and bottom lines and how this chip expand the built-in character font to the desired height.

In this approach, the actual character height in unit of the scan line can be calculated from the following simple equation:
$\mathrm{H}=\mathrm{CH}+\mathrm{N}$
Where H is the expanded character height in unit of lines

CH is the number defined by $\mathrm{CH} 5 \sim \mathrm{CHO}$
N is a variable dependent on the value of CH
$N=2$ when $16 \leq \mathrm{CH}<32$
$\mathrm{N}=4$ when $32 \leq \mathrm{CH}<48$
$\mathrm{N}=6$ when $48 \leq \mathrm{CH}<64$

Frame Control Register Row 15 Coln 15

Bit 7 OSD_EN - OSD circuit is activated when this bit is set.

Bit 6 BSEN - It enables the character bordering or shadowing function when this bit is set.

Bit 5 SHADOW - Character with black-edge shadowing is selected if this bit is set, otherwise bordering prevails.

Bit 3 X32B - It determines the number of dots per horizontal line. There are 384 dots per horizontal line if bit X32B is clear and this is also the default power on state. Otherwise, 768 dots per horizontal sync line when bit X32B is set to 1 . Please refer to the Table 2 for details.

Table 2. Resolution Setting

X32B	0	1
Dots / Line	384	768
Resolution	CGA	SVGA

Bit 2 3_S - By setting this bit to 1, R/G/B could output high impedance state if the intensity attribute of windows is set to 0 . It means the corresponding $R / G / B$ output will go high impedance instead of driving-high while displaying the low intensity windows which can be implemented by simple external circuit. After power on, this bit is reset and the R/G/ B are push-pull outputs initially.

Bit 0 FBKGC - It determines the configuration of FBKG output pin. When it is clear. FBKG pin outputs high during displaying characters or windows. Otherwise, FBKG pin outputs high only during displaying characters.

Frame Control Register Row 15 Coln 16

Bit 4-0 RSPACE - These 5 bits define the row to row spacing in unit of horizontal scan line. It means extra N lines, defined by this 5 -bit value, will be appended for each display row. Because of the nonuniform expansion of BRM used by character height control, this register is usually used to maintain the constant OSD menu height for different display modes instead of adjusting the character height. The default value of it is 0 . It means there is no any extra line inserted between row and row after power on.

Frame Control Register Row 15 Coln 17

Bit 2 TRIC - Tri-state Control. This bit is used to control the driving state of output pins, R, G, B and FBKG when the OSD is disabled. After power on, this bit is reset and R, G, B and FBKG are in high impedance state while OSD being disabled. If it is set by MCU, these four output pins will drive low while OSD being in disabled state. Basically, the setting is dependent on the requirement of the external application circuit.

Bit 3 HF - High Frequency Bit. If the incoming H sync signal is higher than 60 KHz , set this bit to 1 for better performance. This bit controls gain of internal VCO so that PLL can work for whole range from 15 KHz to 120 KHz .

Bit 1 HPOL - This bit selects the polarity of the incoming horizontal sync signal ($\overline{\mathrm{HFLB}}$). If it is negative polarity, clear this bit. Otherwise, set this bit to 1 to represent the positive H sync signal. After power on, this bit is cleared.

Bit 0 VPOL - This bit selects the polarity of the incoming vertical sync signal ($\overline{\mathrm{VFLB}}$). If it is negative polarity, clear this bit. Otherwise, set this bit to 1 to represent the positive V sync signal. After power on, this bit is cleared.

Row 15 Col 18 to Col 19

Bit 7 Cout - When this bit is set to $1, \mathrm{INT} /$ Cout pin will be switched to a clock output which is synchronous to the H sync and used as an external PWM (pulse width modulation) clock source. Refer to the pin description of INT/Cout for more information. After power on, the default value is 0 .

Pulse Inserted when 0 to 1 transition occurred on the corresponding bit.

Frame Format and Timing

Figure 10 illustrates the relative positions of all display characters on the screen relative to the leading edge of horizontal and vertical flyback signals. The shaded area indicates the area not interfered by the display characters. Notice that there are two components in the equations stated in Figure 10 for horizontal and vertical delays: fixed delays from the leading edge of $\overline{H F L B}$ and $\overline{V F L B}$ signals, regardless of the values of HORD and VERTD: (47 dots + phase detection pulse width) and one H scan line for horizontal and vertical delays, respectively; variable delays determined by the values of HORD and VERTD. Please refer to Frame Control Registers COLN 9 and 10 for the definitions of VERTD and HORD. Phase detection pulse width is a function of external charge-up resistor, which is the 1MOhm resistor in series with 5.6 KOhm to VCO pin in the Application Diagram. Dot frequency is determined by the equation: H Freq. x 384 if the bit X32B is clear and H Freq. x 768 if bit X32B is set to 1 . For example, dot frequency is 12.288 MHz if H freq is 32 KHz while bit X 32 B is 0 . If X 32 B is 1 , the dot frequency will be 24.576 MHz (double of the original one).

When double character width is selected for a row, only the even-numbered characters will be displayed, as shown in row 2. Notice that the total number of horizontal scan lines in the display frame is variable, depending on the chosen character height of each row. Care should be taken while configured each row character height so that the last horizontal scan line in the display frame always comes out before the leading edge of $\overline{\mathrm{VFLB}}$ of next frame to avoid wrapping display characters of the last few rows in current frame into next frame. The number of display dots in a horizontal scan line is always fixed at 360 , regardless of row character width and the setting of bit X32B.

Although there are 30 character display registers that can be programmed for each row, not every programmed character can be shown on the screen in 384 dots resolution. Usually, only 24 characters can be shown in this resolution at most. This is induced by the retrace time that is required to retrace the H scan line. In other resolution, 576 dots and 768 dots, 30 characters can be displayed on the screen totally if the horizontal delay register is set properly.

Figure 11 illustrates the timing of all output signals as a function of window and fast blanking features. Line 3 of all three characters are used to illustrate the timing signals. The shaded area depicts the window area. Both the left hand side and right hand side characters are embodied in a window with only one difference: FBKGC bit. The middle character does not have a window as its background. Timing of signal FBKG depends on the configuration of FBKGC bit. The configuration of FBKGC bits affects only FBKG signal timing. Waveform ' R, G or B ', which is the actual waveform at R, G, or B pin, is the logical OR of waveform 'character R, G or B ' and waveform 'window R, G or B'. 'character R, G, or B' and 'window R, G, or B ' are internal signals for illustration purpose only.

Figure 10. Timing of Output Signals

Figure 12. Character Bordering and Shadowing

Figure 11. Display Frame Format
A software called AMOSD II FONT EDITOR in IBM PC environment was written for MC141547P2 editing purposes. It generates a set of S-Record or Binary record for the desired display patterns to be masked onto the character ROM of the MC141547P2.

In order to have better character display within windows, we suggest you to place your designed character font in the centre of the 12×18 matrix, and let its spaces be equally located in the four sides of the matrix. The character $\$ 00$ is pre-defined for blank character, the character SFF is predefined for full-filled character.

In order to avoid submersion of displayed symbols or characters into a background of comparable colors, a feature of bordering which encircles all four sides, or shadowing which encircles only the right and bottom sides of an individual display character is provided. Figure 12 shows how a character is being jacketed differently. To make sure that a character is bordered or shadowed correctly, at least one dot blank should be reserved on each side of the character font.

FONT

Icon Combination

MC141547P2 contains 128 character ROM. The user can create an on-screen menu based on those characters and icons. Refer to Table 3 for icon combinations. Address $\$ 00$ and $\$ 7 \mathrm{~F}$ are predefined characters. They cannot be modified in any AMOSD II.

Table 3. Combination Map

ICON	ROM ADDRESS(HEX)
ARABIC NUMERALS	$01-0 \mathrm{~A}$
ALPHABET	$0 \mathrm{~B}-26$
EUROPEAN	$27-41$
SYMBOLS	$42-61,7 \mathrm{E}$
GEOMETRY	C5-EE

ROM CONTENT

Figures 13-14 show the ROM content of MC141547P2. Mask ROM is optional for custom parts.

Figure 13. ROM 00-3F

40	41	42	43	44	45	46	47
48	49	4A	4B	4C	4D	4E	4 F
50	51	52	53	54	55	56	57
				曲曲曲曲	曲曲曲曲		
58	59	5A	5B	5 C	5D	5E	5 F
60	61	62	63	64	65	66	67
	ㅍ․․․…						
68	69	6A	6B	6C	6D	6E	6 F
70	71	72	73	74	75	76	77
78	79	7A	7B	7C	7D	7 E	7 F

Figure 14．ROM 40－7F

DESIGN CONSIDERATIONS

Distortion

Motorola's MC141547P2 has a built-in PLL for multisystems application. Pin 2 voltage is a dc basing for the internal VCO in the PLL. When the input frequency (HFLB) in Pin 5 becomes higher, the VCO voltage will increase accordingly. The built-in PLL then has a higher locked frequency output. The frequency should be equal to $384 / 768 \times$ HFLB (depends on resolution). It is the dot-clock in each horizontal line.

Display distortion is caused by noise in Pin 2. Positive noise makes VCO run faster than normal. The corresponding scan line will be shorter accordingly. In contrast, negative noise causes the scan line to be longer. The net result will be distortion on the display, especially on the right hand side with window turn on.

In order to have distortion-free display, the following recommendations should be considered.

- Only analog part grounds (Pin 2 to Pin 4) can be connected to Pin $1\left(V_{S S}(A)\right) . V_{S S}$ and other grounds should connect to PCB common ground. Then the $\mathrm{V}_{\mathrm{SS}}(\mathrm{A})$ and V_{SS} grounds should be totally separated (i.e. VSS(A) is floating outside, they are connected internally). Refer to the Application Diagram for the ground connections. (NOTE: Vss(A) and Vss are connected internally.)
- DC supply path for Pin $4\left(V_{D D}(A)\right)$ should be separated from other switching devices.
- LC filter should be connected between Pin 17 and Pin 4. Refer to the values used in the Application Diagram.
- Biasing and filter networks should be connected to Pin 2 and Pin 3. Refer to the recommended networks in the Application Diagram.
- Two small capacitors can be added between Pin1-Pin2 and Pin3-Pin4 to filter VCO noise if necessary. Values should be small enough to avoid picture unlocking caused by temperature variation.

Jittering and Unlocking

Most display jittering and unlocking is caused by HFLB in Pin 5. Care must be taken if the HFLB signal comes from the flyback transformer. A short path and shielded cable are recommended for a clean signal. Buffer is needed for both HFLB and VFLB inputs. Refer to the value used in the Application Diagram.

Display Dancing

Most display dancing is caused by interference of the serial bus. It can be avoided by adding resistors in the bus in series.

APPLICATION DIAGRAM

Graphic Monitor On-Screen Display - 24 CMOS

This is a high performance HCMOS device designed to interface with a micro controller unit to allow colored symbols or characters to be displayed onto CRT monitor. Because of the large number of fonts, 256 fonts including 240 standard fonts and 16 multi-color fonts, GMOSD-24 is suitable to be adopted for the multi-language monitor application especially. Its on-chip PLL allows both multiscan operation and self generation of system timing. It also minimizes the MCU's burden through its built-in RAM. By storing a full screen of data and control information, this device has a capability to carry out 'screenrefresh' without any MCU supervision.

Since there is no clearance between characters, special graphics oriented characters can be generated by combining two or more character blocks. There are two kinds of resolutions that users can choose. By changing the number of dots per horizontal line to 384 (CGA) or 768 (SVGA), smaller characters with higher resolution can be easily achieved. The full OSD menu is formed of 15 rows $\times 30$ columns which can by freely positioned on anywhere of the monitor screen by changing vertical or horizontal delay.
There are 8 PWM DAC channels for external digital to analog control. Each PWM DAC channel is composed of an 8 bit register which contains a 5 bit PWM in MSB portion and a 3 bit binary rate multiplier (BRM) in LSB portion.

Special functions such as character background color, blinking, bordering or shadowing, four-level windows with programmable shadowing, row double height and double width, programmable vertical height of character and row-torow spacing, and full-screen erasing and Fade-In/Fade-Out are also incorporated. There are 8 color selections for any individual character display with row intensity attribute and window intensity attribute to expand the color mixture on OSD menu.

- 8 Channels 8-bit Synchronous PWM DAC with Push-Pull Output
- Totally 256 Fonts Including 240 Standard Fonts and 16 Multi-Color Fonts.
- Two Resolutions: 384 (CGA) or 768 (SVGA) Dots/Line
- Wide Operating Frequency Range for High End Monitor: $15 \mathrm{KHz} \sim 120 \mathrm{KHz}$
- Fully Programmable Character Array of 15 Rows by 30 Columns
- 8-Color Selection for Characters with Color Intensity Attribute on Each Row
- 7-Color Selection for Characters background
- True 16-Color Selection for Windows
- Fancy Fade-In/Fade-Out Effects
- Programmable Height of Character to Meet Multi-Sync Requirement
- Row To Row Spacing Control to Avoid Expansion Distortion
- Four Programmable Windows with Overlapping Capability
- Shadowing on Windows with Programmable Shadow Width/Height
- Character Bordering or Shadowing
- Character/Symbol Blinking Function
- Programmable Vertical and Horizontal Positioning for Display Centre
- Double Character Height and Double Character Width
- Internal PLL Generates a Wide-Ranged System Clock (92.2 MHz)
- M_BUS (IIC) Interface with Address \$7A (SPI Bus is Mask Option)

PIN ASSIGNMENT

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS Voltage Referenced to $V_{S S}$

Symbol	Characteristic	Value	Unit
$V_{D D}$	Supply Voltage	-0.3 to +7.0	V
$\mathrm{~V}_{\text {in }}$	Input Voltage	$\mathrm{V}_{S S}-0.3$ to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Id	Current Drain per Pin Excluding V_{DD} and V_{SS}	25	mA
Ta	Operating Temperature Range	0 to 85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE: Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Description section.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $\mathrm{V}_{\text {in }}$ and $\mathrm{V}_{\text {out }}$ should be constrained to the range $\mathrm{V}_{\mathrm{SS}} \leq\left(\mathrm{V}_{\text {in }}\right.$ or $V_{\text {out }}$) $\leq V_{\text {DD }}$.
Unused inputs must always be tied to an appropriate logic voltage level (e.g.', either V_{SS} or $V_{D D}$). Unused outputs must be left open.

AC ELECTRICAL CHARACTERISTICS $\left(V_{D D} / V_{D D}(A)=5.0 V, V_{S S} / V_{S S}(A)=0 V, T_{A}=25 C\right.$, Voltage Referenced to $V_{\text {SS }}$)

Symbol	Characteristic	Min	Typ	Max	Unit
$\begin{aligned} & t_{r} \\ & t_{f} \end{aligned}$	Output Signal (R, G, B, FBKG and INT) $\mathrm{C}_{\mathrm{load}}=30 \mathrm{pF}$ Rise Time Fall Time	二	二	6 6	ns ns
$\begin{aligned} & t_{r} \\ & t_{f} \end{aligned}$	Output Signal (PWMO - PWM7) C $\mathrm{C}_{\text {load }}=30 \mathrm{pF}$ Rise Time Fall Time		-	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	ns
FAFLB	HFLB Input Frequency	15K	-	120K	Hz

Figure 1. Switching Characteristics

DC CHARACTERISTICS $V_{D D} N_{D D}(A)=5.0 \mathrm{~V} \pm 10 \%, V_{S S} V_{S S}(A)=0 V_{,} T_{A}=25^{\circ} \mathrm{C}$, Voltage Referenced to $V_{S S}$

Symbol	Characteristic	Min	Typ	Max	Unit
V_{OH}	High Level Output Voltage $\mathrm{I}_{\text {out }}=-5 \mathrm{~mA}$	$V_{D D}-0.8$	-	-.	V
VOL	Low Level Output Voltage $\mathrm{I}_{\text {out }}=5 \mathrm{~mA}$	-	-	$\mathrm{V}_{S S}+0.4$	V
$\begin{aligned} & V_{I L} \\ & V_{I H} \end{aligned}$	Digital Input Voltage (Not Including SDA and SCL) Logic Low Logic High	$0.7 \overline{\mathrm{~V}}_{\mathrm{DD}}$	-	$0.3 \mathrm{~V}_{\mathrm{DD}}$	$\begin{aligned} & v \\ & v \end{aligned}$
$\begin{aligned} & \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IH}} \end{aligned}$	Input Voltage of Pin SDA and SCL in SPI Mode Logic Low Logic High	$0.7 \overline{\mathrm{~V}}_{\mathrm{DD}}$	-	$0.3 \mathrm{~V}_{\mathrm{DD}}$	$\begin{aligned} & v \\ & v \end{aligned}$
$\begin{aligned} & V_{I L} \\ & V_{I H} \end{aligned}$	Input Voltage of Pin SDA and SCL in M_BUS Mode Logic Low Logic High	$0.7 \bar{V}_{D D}$	-	0.3 VDD -	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
III	High-Z Leakage Current (R, G, B and FBKG)	-10	-	$+10$	$\mu \mathrm{A}$
111	Input Current (Not Including RP, VCO, R, G, B, FBKG and INT)	-10	-	+10	$\mu \mathrm{A}$
IDD	Supply Current (No Load on Any Output) at $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$	-	-	+26	mA
LVI	Low Voltage Inhibit for PWM DAC Output	2.7	3.2	3.6	V

PIN DESCRIPTION

VSS(A) (Pin 1)

This pin provides the signal ground to the PLL circuitry. Analog ground for PLL is separated from digital ground for optimal performance.

VCO (Pin 2)

A dc control voltage input to regulate an internal oscillator frequency. See the Application Diagram for the application values used.

RP (Pin 3)

An external RC network is used to bias an internal VCO to resonate at the specific dot frequency. The maximum voltage at Pin 3 should not exceed 3.5 V at any condition. See the Application Diagram for the application values used.

$V_{D D(A)}($ Pin 4$)$

A positive 5 V dc supply for PLL circuitry. Analog power for PLL is separated from digital power for optimal performance.

HFLB (Pin 5)

This pin inputs a negative polarity horizontal synchronize signal pulse to phase lock into an internal system clock generated by the on-chip VCO circuit.

$\overline{\mathbf{S S}}$ (Pin 6)

This input pin is part of the SPI system. An active low signal generated by the master device enables this slave device to accept data. Pull high to terminate the SPI communication. If M_BUS is employed as the serial interface, this pin should be tied to either V_{DD} or V_{SS}.

SDA (MOSI) (Pin 7)
Data and control message are being transmitted to this chip from a host MCU, via one of the two serial bus systems. With either protocol, this wire is configurated as a uni-directional data line. (Detailed description of these two protocols will be discussed in the M_BUS and SPI sections).

SCL (SCK) (Pin 8)

A separate synchronizing clock input from the transmitter is required for either protocol. Data is read at the rising edge of each clock signal.

PWM 6 (Pin 9)
Channel 6 of the PWM.

PWM 4 (Pin 10)

Channel 4 of the PWM.
PWM 2 (Pin 11)
Channel 2 of the PWM.

PWM 0 (Pin 12)

Channel 0 of the PWM.
PWM 1 (Pin 13)
Channel 1 of the PWM.
PWM 3 (Pin 14)
Channel 3 of the PWM.

PWM 5 (Pin 15)

Channel 5 of the PWM.

PWM 7 (Pin 16)

Channel 7 of the PWM.

VDD (Pin 17)

This is the power pin for the digital logic of the chip.

$\overline{\text { VFLB (Pin 18) }}$

Similar to Pin 5, this pin inputs a negative polarity of vertical synchronize signal to synchronize the vertical control circuit.

INT (Pin 19)

This output pin is used to indicate the color intensity. If the intensity control bits are set in the row attribute registers or window control registers, this pin will output a logic high while displaying the specified windows or the characters on the associated rows. Otherwise, it will keep in low state. Please refer to Figure 15 for detail timing chart. Thus, 16color selection is achievable by combining this intensity pin with $R / G / B$ outputs. On the other hand, this color intensity information could be reflected on the R/G/B pins by asserting tri-state instead of logic high if 3 _S bit is set to 1 . Refer to the "REGISTERS" for more information.

FBKG (Pin 20)

This pin will output a logic high while displaying characters or windows when FBKGC bit in frame control register is 0 , and output a logic high only while displaying characters when FBKGC bit is 1 . It is defaulted to high impedance state after power on, or when there is no output. An external $10 \mathrm{k} \Omega$ resistor pulled low is recommended to avoid level toggling caused by hand effect when there is no output.

B,G,R (Pin 21, 22, 23)

GMOSD-24 color outputs in TTL level to the host monitor. These three signals are open drain outputs if 3_STATE bit is set and the color intensity is inactive. Otherwise, they are active high push-pull outputs. See "REGISTERS" for more information. These pins are in high impedance state after power on.

VSS (Pin 24)

This is the ground pin for the digital logic of the chip.

SYSTEM DESCRIPTION

MC141542P2 is a full screen memory architecture. Refresh is done by the built-in circuitry after a screenful of display data has been loaded in through the serial bus. Only changes to the display data need to be input afterward.

Serial data, which includes screen mapping address, display information, and control messages, are being transmitted via one of the two serial buses: M_BUS or SPI (mask option). These two sets of buses are multiplexed onto a single set of wires. Standard parts offer M_BUS transmission.

Data is first received and saved in the MEMORY MANAGEMENT CIRCUIT in the Block Diagram. Meanwhile, the GMOSD-24 is continuously retrieving the data and putting it into a ROW BUFFER for display and refreshing, row after row. During this storing and retrieving cycle, a BUS ARBITRATION LOGIC will patrol the internal traffic, to make sure that no crashes occur between the slower serial bus receiver and fast 'screen-refresh' circuitry. After the full screen display data is received through one of the serial communication interface, the link can be terminated if change on display is not required.

The bottom half of the Block Diagram constitutes the heart of this entire system. It performs all the GMOSD-24 functions such as programmable vertical length (from 16 lines to 63
lines), display clock generation (which is phase locked to the incoming horizontal sync signal at Pin 5 HFLB), bordering or shadowing, and multiple windowing.

COMMUNICATION PROTOCOLS

BUS Operation

The operating clock for M_Bus or SPI bus derives from system dot clock. Internal PLL is using to generate the dot clock base on the HFLB input frequency where the dot clock is equal to $384 / 768 \times H F L B$ in $384 / 768$ modes respectively. In order to have stable operation of M_Bus or SPI bus in the OSD and meet below specifications, HFLB(15k-120k) must be presented and the PLL locks to HFLB properly. Refer to Application Diagram for PLL bias circuit.

M_BUS Serial Communication

This is a two-wire serial communication link that is fully compatible with the IIC bus system. It consists of SDA bidirectional data line and SCL clock input line. Data is sent from a transmitter (master), to a receiver (slave) via the SDA line, and is synchronized with a transmitter clock on the SCL line at the receiving end. The maximum data rate is limited to 100 kbps . The default chip address is $\$ 7 \mathrm{~A}$. Please refer to the IIC-Bus specification for detail timing requirement.

Operating Procedure

Figure 2 shows the M_BUS transmission format. The master initiates a transmission routine by generating a START condition, followed by a slave address byte. Once the address is properly identified, the slave will respond with an ACKNOWLEDGE signal by pulling the SDA line LOW during the ninth SCL clock. Each data byte which then follows must be eight bits long, plus the ACKNOWLEDGE bit, to make up nine bits together. Appropriate row and column address information and display data can be downloaded sequentially in one of the three transmission formats described in DATA TRANSMISSION FORMATS SECTION. In the cases of no ACKNOWLEDGE or completion of data transfer, the master will generate a STOP condition to terminate the transmission routine. Note that the OSD_EN bit must be set after all the display information has been sent in order to activate the GMOSD-24 circuitry of MC141542P2, so that the received information can then be displayed.

Figure 2. M_BUS Format

Serial Peripheral Interface (SPI)

Similar to M_BUS communication, SPI requires separate clock (SCK) and data (MOSI) lines. In addition, a SS SLAVE SELECT pin is controlled by the master transmitter to initiate the receiver.

Operating Procedure

To initiate SPI transmission, pull $\overline{\mathrm{SS}}$ pin low by the master device to enable MC141542P2 to accept data. The $\overline{\text { SS }}$ input line must be a logic low prior to occurrence of SCK ard remain low until and after the last (eighth) SCK cycle. After all data has been sent, the $\overline{\mathrm{SS}}$ pin is then pulled high by master to terminate the transmission. Data bit is sent from master to OSD's internal latch during rising edge of SCK and then transmit to internal register during falling edge. Therefore, last falling edge of CLK is needed for proper transmission of last byte data. No slave address is needed for SPI. Hence, row and column address information and display data (the data transmission formats are the same as in M_BUS mode described in the previous section) can be sent immediately after the SPI is initiated.

Figure 3. SPI Protocol

DATA TRANSMISSION FORMATS

After the proper identification by the receiving device, data train of arbitrary length is transmitted from the Master. As mentioned above, two register blocks, display registers, attribute/control registers, need to be programmed before the proper operation. Basically, these three areas use the similar transmission protocol. Only two bits of the row/segment byte are used to distinguish the programming blocks.

There are three transmission formats, from (a) to (c) as stated below. The data train in each sequence consists of row/seg address (R), column/line address (C), and data informations (I): In format (a), each display information data have to be preceded with the corresponding row/seg address and column/line address. This format is particular suitable for updating small amount of data between different row. However, if the current information byte has the same row/seg address as the one before, format (b) is recommended. For a full screen pattern change which requires massive information update or during power up șituation, most of the row/seg and column/line address on either (a) or (b) format will appear to be redundant. A more efficient data transmission format (c) should be applied. It sends the RAM starting row/seg and column/line addresses once only, and then treat all subsequent data as data information. The row/ seg and column/line addresses will be automatically incremented internally for each information data from the starting location.

Based on the different programming areas, the detail transmission protocol is described below respectively.

The data transmission formats are:
(a) R $->$ C->I \rightarrow R $->$ C $->$ I->.
(b) $\mathrm{R}->\mathrm{C}->$ I $->\mathrm{C}->$ I $->\mathrm{C}->$ I
(c) R $->$ C $->$ I $->$ I $->$ I $->$.

NOTE: R means row byte.
C means column byte.
I means data byte.

To differentiate the display row address from attribute area when transferring data, the most significant three bits are set to ' 100 ' to represent display row address, while ' 00 X ' for column address used in format (a) or (b) and ' 01 X ' for column address used in format (c). There is some limitation on using mix-formats during a single transmission. It is permissible to change the format from (a) to (b), or from (a) to (c), or from (b) to (a), but not from (c) back to (a) or (b).

Figure 4. Data Packet for Display Data

Figure 5. Address Bit Patterns for Display Data

The data transmission formats are similar with that in display data programming:
(a) $\mathrm{R}->\mathrm{C}->\mathrm{I}->\mathrm{R}->\mathrm{C}->\mathrm{I}->\ldots \ldots \ldots$.
(b) $\mathrm{R}->\mathrm{C}->$ I $->\mathrm{C}->$ I $\rightarrow \mathrm{C}->$ I. $\ldots \ldots$
(c) $\mathrm{R}->\mathrm{C}->1->1->1->$

NOTE: R means row byte.
C means column byte. I means data byte.

To differentiate the row address for attribute/control registers from display area when transferring data, the most significant three bits are set to '101' to represent the row address of the attribute/control registers, while '00X' for column address used in format (a) or (b) and ' 01 X ' for column address used in format (c). There is some limitation on using mix-formats during a single transmission. It is permissible to change the format from (a) to (b), or from (a) to (c), or from (b) to (a), but not from (c) back to (a) or (b).

Figure 6. Data Packet for Attribute/Control Data

WINDOW/FRAME/PWM CONTROL REGISTERS
ADDRESS

	7	6	5	4	3	2	1	0	
ROW	1	0	1	X	D	D	D	D	$\mathrm{a}, \mathrm{b}, \mathrm{c}$
COLUMN	0	0	X	D	D	D	D	D	a, b
COLUMN	0	1	X	D	D	D	D	D	c

X: don't care
D: valid data

Figure 7. Address Bit Patterns for Attribute/Control Data

MEMORY MANAGEMENT

All the internal programmable area can be divided into two parts including (1) Display Registers (2) Attribute/Control Registers. Please refer to the following two figures for the corresponding memory map.

Figure 8. Memory Map of Display Registers

Internal display RAM are addressed with row and column (coln) number in sequence. As the display area is 15 rows by 30 columns, the related display registers are also 15 by 30. The space between row 0 and coln 0 to row 14 and coln 29 are called Display registers, with each contains a character/ symbol address corresponding to display location on monitor screen. And each register is 8 -bit wide to identify the selected character/symbol out of 256 ROM fonts.

Figure 9. Memory Map of Attribute/Control Registers

Besides the font selection, there is 3-bit attribute associated with each symbol to identify its color and 3 -bit to define its background. Because of 3-bit attribute, each character can select any color out of 8 independently on the same row. as well as background. Every data row associate with one attribute register, which locate at coln 30 of their respective rows, to control the characters display format of that row such as the character blinking, color intensity, character double height and character double width function. In addition, other control registers are located at row 15 such as window control, frame function control and PWM registers. Four window control registers for each of four windows together with four frame control registers and twelve PWM registers occupy the first 28 columns of row 15 space. These control registers will be described on the "REGISTERS" section.

User should handle the internal display RAM address location with care especially for those rows with double length alphanumeric symbols. For example, if row n is destined to be double height on the memory map, the data displayed on screen row n and $n+1$ will be represented by the data contained in the memory address of row n only. The data of next row $n+1$ on the memory map will appear on the screen of $n+2$ and $n+3$ row space and so on. Hence, it is not necessary to throw in a row of blank data to compensate for the double row action. User needs to take care of excessive row of data in memory in order to avoid over running the limited number of row space on the screen.

There is difference for rows with double width alphanumeric symbols. Only the data contained in the even numbered columns of memory map will be shown, the odd numbered columns will be ignored and not disclosed.

REGISTERS

(I) Display Register

Display Register (Row 0~14, Coln 0~29)

Bit 7-0 CRADDR - This eight bits address one of the 256 characters or symbols resided in the character ROM fonts.

(II) Attribute/Window/Control/Frame Registers

Character Attribute Register (Row 0~14, Coln 0~29)

Bit 6-4 These three bits define the color of the background for the correspondent characters. If all three bits are clear, no background will be shown(transparent). Therefore, total seven background colors can be selected.

Bit 3 BLINK - The blinking effect will be active on the corresponding character if this bit is set to 1 . The blinking frequency is approximately one time per second $(1 \mathrm{~Hz})$ with fifty-fifty duty cycle at 80 Hz vertical scan frequency.

Bit 2-0 These three bits are the color attribute to define the color of the associated character/symbol.

Table 1. The Character/Window Color Selection

	\mathbf{R}	\mathbf{G}	\mathbf{B}
Black	0	0	0
Blue	0	0	1
Green	0	1	0
Cyan	0	1	1
Red	1	0	0
Magenta	1	0	1
Yellow	1	1	0
White	1	1	1

Row Attribute Register (Row 0~14, Coln 30)

Bit 2 R_INT - Row intensity bit controls the color intensity of the displayed character/symbol on the corresponding row. Setting this bit to 1 means high intensity color and the INT pin will go high while displaying the characters of this row.

Bit 1 CHS - It determines the height of a display symbol. When this bit is set, the symbol is displayed in double height.

Bit 0 CWS - Similar to bit 1, character is displayed in double width, if this bit is set.

Window 1 Registers

Row 15 Coln 0

	7	6	5	4	3	2	1

Row 15 Coln 1

	7	6	5	4	3	2	1	0
ROW 15 COLN 1	MS				LSB	WEN	W_INT	W_SHD

Bit 2 WEN - It enables the window 1 generation if this bit is set.

Bit 1 W_INT - This additional color related bit provides the color intensity selection for window 1 . If this bit is 0 , INT pin will go low while displaying window 1.The default value is

1 to indicate high intensity..Video pre-amplifier or external R/ G/B switch can make use of INT pin for windows's color intensity control.

Bit 0 W_SHD - Shadowing on window. Set this bit to activate the window 1 shadowing. When the window is active, the right M pixels and lower N horizontal scan lines will output black shadowing. The width/height of window shadow, number of M / N, is defined in the frame control registers located at row 15 column 16 and 17. See the following figure and the related frame control register for detail.

Row 15 Coln 2

Bit 2-0 R, G and B-Controls the color of window 1. Refer to Table 1 for color selection. Window 1 registers occupy Column 0-2 of Row 15, Window 2 from Column 3-5, Window 3 from $6-8$ and Window 4 from 9-11. Window 1 has the highest priority, and Window 4 the least. If window over-lapping occurs, the higher priority window will cover the lower one, and the higher priority color will take over on the overlap window area. If the start address is greater than the end address, this window will not be displayed.

Window 2 Registers

Row 15 Coln 3

	7	6	5	4	3	2	1	0
ROW 15	ROW START ADDR				ROW END ADDR			
COLN 3	MSB			LSB	MSB			LSB

Row 15 Coln 4

	7	6	5	4	3	2	1	0
ROW 15 COLN 4	MS		TAI		LSB	WEN	W_INT	W_SHD

Bit 2 WEN - It enables the window 2 generation if this bit is set.

Bit 1 W_INT - This additional color related bit provides the color intensity selection for window 2 . If this bit is 0 , INT pin will go low while displaying window 2. The default value is 1 to indicate high intensity.Video pre-amplifier or external R/ G/B switch can make use of INT pin for windows's color intensity control.

Bit $0 \quad W_{W}$ SHD - Shadowing on window. Set this bit to activate the window 2 shadowing.

Row 15 Coln 5

Bit 2-0 R, G and B - Controls the color of window 2.Refer to Table 1 for color selection. Window 1 registers occupy Column 0-2 of Row 15, Window 2 from Column 3-5, Window 3 from 6-8 and Window 4 from 9-11. Window 1 has the highest priority, and Window 4 the least. If window over-lapping occurs, the higher priority window will cover the lower one, and the higher priority color will take over on the overlap window area. If the start address is greater than the end address, this window will not be displayed.

Window 3 Registers

Row 15 Coln 6

Row 15 Coln 7

Bit 2 WEN - It enables the window 3 generation if this bit is set.

Bit 1 W_INT - This additional color related bit provides the color intensity selection for window 3 . If this bit is 0 , INT pin will go low while displaying window 3.The default value is 1 to indicate high intensity.Video pre-amplifier or external R/ G/B switch can make use of INT pin for windows's color intensity control.

Bit 0 W_SHD - Shadowing on window. Set this bit to activate the window 3 shadowing.

Row 15 Coln 8

Bit 2-0 R, G and B-Controls the color of window 3.Refer to Table 1 for color selection. Window 1 registers occupy Column 0-2 of Row 15, Window 2 from Column 3-5, Window 3 from $6-8$ and Window 4 from 9-11. Window 1 has the highest priority, and Window 4 the least. If window over-lapping occurs, the higher priority window will cover the lower one,
and the higher priority color will take over on the overlap window area. If the start address is greater than the end address, this window will not be displayed.

Window 4 Registers

Row 15 Coln 9

Row 15 Coln 10

	7	6	5	4	3	2	1	0
ROW 15 COLN 10					LSB	WEN	W_INT	W_SHD

Bit 2 WEN - It enables the window 4 generation if this bit is set.

Bit 1 W_INT - This additional color related bit provides the color intensity selection for window 4 . If this bit is 0 , INT pin will go low while displaying window 4.The default value is 1 to indicate high intensity.Video pre-amplifier or external R/ G/B switch can make use of INT pin for windows's color intensity control.

Bit 0 - W_SHD - Shadowing on window. Set this bit to activate the window 4 shadowing.

Row 15 Coln 11

Bit 2-0 R, G and B - Controls the color of window 4.Refer to Table 1 for color selection. Window 1 registers occupy Column 0-2 of Row 15, Window 2 from Column 3-5, Window 3 from 6-8 and Window 4 from 9-11. Window 1 has the highest priority, and Window 4 the least. If window over-lapping occurs, the higher priority window will cover the lower one, and the higher priority color will take over on the overlap window area. If the start address is greater than the end address, this window will not be displayed.

Vertical Delay Control Register Row 15 Coln 12

Bit 7-0 VERTD - These 8 bits define the vertical starting position. Total 256 steps, with an increment of four horizontal lines per step for each field. Its value can't be zero anytime. The default value of it is 4 .

Horizontal Delay Control Register Row 15 Coln 13

	7	6	5	4	3	2	1	0
	ROW 15							
COLN 13	CLR	MSB		HORD			LSB	

Bit 7 CLR - Setting this bit to 1 clear all display register from Row 0 to Row 14; Control register will not be erased.

Bit 6-0 HORD - Horizontal starting position for character display. 7 bits give a total of 128 steps and each increment represents five dots movement shift to the right on the monitor screen. Its value cannot be zero anytime. The default value of it is 15 .

Character Height Control Register Row 15 Coln 14

	7	6	5	4	3	2	1	0
ROW 15 COLN 14	HF	0	CH5	CH4	CH3	CH2	CH1	CHO

Bit 7 HF - High Frequency Bit. If the incoming H sync signal is higher than 60 KHz , set this bit to 1 for better performance. This bit controls gain of internal VCO so that PLL can work for whole range from 15 KHz to 120 KHz .

Bit 6 Bit reserved. Set to 0 for normal operation.
Bit 5-0 $\mathrm{CH} 5-\mathrm{CH} 0$ - This six bits will determine the displayed character height. GMOSD adopts 12 by 18 font matrix and the middle 16 lines, line 2 to line 17, are expanded by BRM algorithm. The top line and bottom line will be duplicated dependent on the value of CH . No any line is duplicated for top and bottom if CH is less than 32. One extra duplicated line will be inserted for top and bottom if CH is larger or equal to 32 and less than 48 . Two extra duplicated lines will be inserted for top and bottom if CH is larger or equal to 48 . Setting a value below 16 will not have a predictable result. Display character line number is equal to C 1 $\mathrm{x}(18+\mathrm{C} 2)$ where $\mathrm{C} 1=1,2$ or 3 defined by $\mathrm{CH} 5-\mathrm{CH} 4$ and $\mathrm{C} 2=0-15$ defined by $\mathrm{CH} 3-\mathrm{CH} 0$ (BRM).

Bit 7 OSD_EN - OSD circuit is activated when this bit is set.

Bit 6 BSEN - It enables the character bordering or shadowing function when this bit is set.

Bit 5 SHADOW - Character with black-edge shadowing is selected if this bit is set, otherwise bordering prevails.

Bit $3 \times 32 \mathrm{~B}$ - It determines the number of dots per horizontal line. There are 384 dots per horizontal line if bit X32B is clear and this is also the default power on state. Otherwise, 768 dots per horizontal sync line when bit X 32 B is set to 1. Please refer to the Table 2 for details.

Table 2. Resolution Setting

X32B	0	1
Dots / Line	384	768
Resolution	CGA	SVGA

Bit 2 3_S - By setting this bit to 1, R/G/B could output high impedance state if the intensity attribute of characters or windows is set to 0 . It means the corresponding $R / G / B$ output will go high impedance instead of driving-high while displaying the low intensity characters or windows. After power on, this bit is reset and the R/G/B are push-pull outputs initially.

Bit 1 FAN - It enables the fan-in/fan-out functions when OSD is turned on from off state or vice versa. If this bit is set, it roughly takes about one second to fully display the whole menu. It also takes 1 second to disappear completely.

Bit 0 FBKGC - It determines the configuration of FBKG output pin. When it is clear. FBKG pin outputs high during displaying characters or windows. Otherwise, FBKG pin outputs high only during displaying characters.

Figure 10. Variable Character Height

Figure 10 illustrates the enlargement algorithm for top and bottom lines and how this chip expand the built-in character font to the desired height.

In this approach, the actual character height in unit of the scan line can be calculated from the following simple equation:

$$
\mathrm{H}=\mathrm{CH}+\mathrm{N}
$$

Where H is the expanded character height in unit of lines

CH is the number defined by $\mathrm{CH} 5 \sim \mathrm{CH} 0$
N is a variable dependent on the value of CH
$\mathrm{N}=2$ when $16 \leq \mathrm{CH}<32$
$\mathrm{N}=4$ when $32 \leq \mathrm{CH}<48$
$\mathrm{N}=6$ when $48 \leq \mathrm{CH}<64$

Figure 11. Character Bordering and Shadowing

Frame Control Register Row 15 Coln 16

Bit 7-6 WW41, WW40 - It determines the shadow width of the window 4 when the window shadowing function is activated. Please refer to the following table for more details where M is the actual pixel number of the shadowing.

Table 3. Shadow Width Setting

(WW41, WW40)	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
Shadow Width M (unit in Pixel)	2	4	6	8

Bit 5-4 WW31, WW30 - Similarly as WW41, WW40, these two bits determine the shadow width of the window 3 when the window shadowing function is activated.

Bit 3-2 WW21, WW20 - Similarly as WW41, WW40, these two bits determine the shadow width of the window 2 when the window shadowing function is activated.

Bit 1-0 WW11, WW10 - Similarly as WW41, WW40, these two bits determine the shadow width of the window 1 when the window shadowing function is activated

Frame Control Register Row 15 Coln 17

Bit 7-6 WH41, WH40 - It determines the shadow height of the window 4 when the window shadowing function is activated. Please refer to the following table for more details where N is the actual line number of the shadowing.

Table 4. Shadow Width Setting

(WH41, WH40)	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
Shadow Height N (unit in Line)	2	4	6	8

Bit 5-4 WH31, WH30 - Similarly as WH41, WH40, these two bits determine the shadow height of the window 3 when the window shadowing function is activated.

Bit 3-2 WH21, WH20 - Similarly as WH41, WH40, these two bits determine the shadow height of the window 2 when the window shadowing function is activated.

Bit 1-0 WH11, WH10 - Similarly as WH41, WH40, these two bits determine the shadow height of the window 1 when the window shadowing function is activated.

Bit 7-3 RSPACE - These 5 bits define the row to row spacing in unit of horizontal scan line. It means extra N lines, defined by this 5 -bit value, will be appended for each display row. Because of the nonuniform expansion of BRM used by character height control, this register is usually used to maintain the constant OSD menu height for different display modes instead of adjusting the character height. The default value of it is 0 . It means there is no any extra line inserted between row and row after power on. It can be used for Portrait monitor too when icon design is rotated 90 degree.

Bit 2 TRIC - Tri-state Control. This bit is used to control the driving state of output pins, R, G, B and FBKG when the OSD is disabled. After power on, this bit is reset and R,G, B and FBKG are in high impedance state while OSD being disabled. If it is set by MCU, these four output pins will drive low while OSD being in disabled state. Basically, the setting is dependent on the requirement of the external application circuit.

Bit 1 HPOL - This bit selects the polarity of the incoming horizontal sync signal (HFLB). If it is negative polarity, clear this bit. Otherwise, set this bit to 1 to represent the positive H sync signal. After power on, this bit is cleared.

Bit 0 VPOL - This bit selects the polarity of the incoming vertical sync signal ($\overline{\mathrm{VFLB}}$). If it is negative polarity, clear this bit. Otherwise, set this bit to 1 to represent the positive V sync signal. After power on, this bit is cleared.

- NOTE: The registers located at column 19 of row 15 are reserved for the chip testing. In normal operation, they should not be programmed anytime.

PWM Control Registers Row 15 Col 20 to Col 31

Bit 7-0 PWM_n - This eight-bit value decides the output duty cycle and waveforms of PWM. There are maximum 12 channels of PWM. And the corresponding registers are located from column 20 to column 31 respectively on row 15.

The higher five bits (MSB) are used for the conventional PWM and the lower 3 bits (LSB) for the BRM. Please refer to the following figures for more information about BRM algorithm and PWM output waveform.

Figure 12. Pure 8-bit PWM v.s. 5-bit PWM + 3-bit BRM

Figure 13. BRM Pulse Insertion Algorithm
A software called GMOSD-24 FONT EDITOR in IBM PC environment was written for MC141542P2 editing purposes. It generates a set of S-Record or Binary record for the desired display patterns to be masked onto the character ROM of the MC141542P2.

In order to have better character display within windows, we suggest you to place your designed character font in the centre of the 12×18 matrix, and let its spaces be equally located in the four sides of the matrix. The character $\$ 00$ is pre-defined for blank character, the character \$FF is pre-defined for full-filled character.

In order to avoid submersion of displayed symbols or characters into a background of comparable colors, a feature of bordering which encircles all four sides, or shadowing which encircles only the right and bottom sides of an individual display character is provided. Figure 11 shows how a character is being jacketed differently. To make sure that a character is bordered or shadowed correctly, at least one dot blank should be reserved on each side of the character font.

Frame Format and Timing

Figure 14 illustrates the positions of all display characters on the screen relative to the leading edge of horizontal and vertical flyback signals. The shaded area indicates the area not interfered by the display characters. Notice that there are two components in the equations stated in Figure 14 for horizontal and vertical delays: fixed delays from the leading edge of $\overline{\mathrm{HFLB}}$ and $\overline{\mathrm{VFLB}}$ signals, regardless of the values of HORD and VERTD: (47 dots + phase detection pulse width) and one H scan line for horizontal and vertical delays, respectively; variable delays determined by the values of HORD and VERTD. Refer to Frame Control Registers COLN 9 and 10 for the definitions of VERTD and HORD. Phase detection pulse width is a function of the external charge-up resistor, which is the $1 \mathrm{M} \Omega$ resistor in a series with $5.6 \mathrm{k} \Omega$ to VCO pin in the Application Diagram. Dot frequency is determined by the equation: H Freq. $\times 384$ if the bit X32B is clear and H Freq. x 768 if bit X 32 B is set to 1 . For example, dot frequency is 12.28 MHz if H freq is 32 KHz while bit X 32 B is 0 . If X 32 B is 1 , the dot frequency will be 24.57 MHz (double of the original one).

When double character width is selected for a row, only the even-numbered characters will be displayed, as shown in row 2. Notice that the total number of horizontal scan lines in the display frame is variable, depending on the chosen character height of each row. Care should be taken while configuring each row character height so that the last horizontal scan line in the display frame always comes out before the leading edge of VFLB of next frame to avoid wrapping display characters of the last few rows in the current frame into the next frame. The number of display dots in a horizontal scan line is always fixed at 360 , regardless of row character width and the setting of bit X32B.

Although there are 30 character display registers that can be programmed for each row, not every programmed character can be shown on the screen in 384 dots resolution. Usually, only 24 characters can be shown in this resolution at most. This is induced by the retrace time that is required to retrace the H scan line. In other resolution, 768 dots, 30 characters can be displayed on the screen totally if the horizontal delay register is set properly.

Figure 15 illustrates the timing of all output signals as a function of window and fast blanking features. Line 3 of all three characters is used to illustrate the timing signals. The shaded area depicts the window area. Both the left hand side and right hand side characters are embodied in a window with only one difference: FBKGC bit. The middle character does not have a window as its background. Timing of signal FBKG depends on the configuration of FBKGC bit. The configuration of FBKGC bits affects only FBKG signal timing. Waveform ' R, G or B ', which is the actual waveform at R, G, or B pin, is the logical OR of waveform 'character R, G or B' and waveform 'window R, G or B'. 'Character R, G, or B' and 'window R, G, or B' are internal signals for illustration purpose only.

MC141542P2 contains 256 character/symbol fonts including 240 normal fonts and 16 multi-color fonts. The normal fonts are located from number $\$ 00$ to $\$ E F$. The 16 multicolor fonts occupy number \$F0 to \$FF and their patterns can be designed using Font Editor. See the figures on the next page for the details fonts mapping.

Multi-Color Font

The color fonts comprises three different R, G, and B fonts. When the code of color font is accessed, the separate R/G/B dot pattern is output to the corresponding R/G/B output. See Figure. 16 for the sample displayed color font. No black color can be defined in color font: Black window underline the color font can make the dots $(\mathrm{RGB}=000)$ become black in color. It has to be consider during font design stage.

Figure 16. Example of Multi-Color Font

Table 5. The Multi-Color Font Color Selection

	\mathbf{R}	\mathbf{G}	\mathbf{B}
Background Color	0	0	0
Blue	0	0	1
Green	0	1	0
Cyan	0	1	1
Red	1	0	0
Magenta	1	0	1
Yellow	1	1	0
White	1	1	1

Icon Combination

User can create On-Screen menu based on those characters and icons. Please refer to Table 6 for Icon combination. Address $\$ 00 \& \$ E F$ are pre-defined characters for testing.

ROM CONTENT

Figures 17-20 show the ROM content of MC141542P2. Mask ROM is optional for custom parts.

Table 6. Combination Map

ICON	ROM ADDRESS(HEX)
ARABIC NUMERALS	$08-11$
ALPHABET	$12-2 D$
EUROPEAN	$2 E-48$
JAPANESE	$49-81$
SYMOBOLS	$01-07,82-\mathrm{C} 4$
GEOMETRY	C5-EE
COLOR	F0-FF

Figure 17. ROM 00-3F

Figure 18. ROM 40-7F

Figure 19. ROM $80-\mathrm{BF}$

Figure 20. ROM CO-FF

DESIGN CONSIDERATIONS

Distortion

Motorola's MC141542P2 has a built-in PLL for multisystems application. Pin 2 voltage is a dc basing for the internal VCO in the PLL. When the input frequency (HFLB) in Pin 5 becomes higher, the VCO voltage will increase accordingly. The built-in PLL then has a higher locked frequency output. The frequency should be equal to $384 / 768 \times$ HFLB (depends on resolution). It is the dot-clock in each horizontal line.

Display distortion is caused by noise in Pin 2. Positive noise makes VCO run faster than normal. The corresponding scan line will be shorter accordingly. In contrast, negative noise causes the scan line to be longer. The net result will be distortion on the display, especially on the right hand side with window turn on.

In order to have distortion-free display, the following recommendations should be considered.

- Only analog part grounds (Pin 2 to Pin 4) can be connected to Pin $1\left(\mathrm{~V}_{\mathrm{SS}}(\mathrm{A})\right)$. V_{SS} and other grounds should connect to PCB common ground. Then the $\mathrm{V}_{\mathrm{SS}(\mathrm{A})}$ and V_{SS} grounds should be totally separated (i.e. $V_{S S}(A)$ is floating outside, they are connected internally). Refer to the Application Diagram for the ground connections.(NOTE: Vss(A) and Vss are connected internally.)
- DC supply path for Pin $4\left(\mathrm{~V}_{\mathrm{DD}(\mathrm{A})}\right)$ should be separated from other switching devices.
- LC filter should be connected between Pin 17 and Pin 4. Refer to the values used in the Application Diagram.
- Biasing and filter networks should be connected to Pin 2 and Pin 3. Refer to the recommended networks in the Application Diagram.
- Two small capacitors can be added between Pin1-Pin2 and Pin3-Pin4 to filter VCO noise if necessary. Values should be small enough to avoid picture unlocking caused by temperature variation.

Jittering and Unlocking

Most display jittering and unlocking is caused by HFLB in Pin 5. Care must be taken if the HFLB signal comes from the flyback transformer. A short path and shielded cable are recommended for a clean signal. Buffer is needed for both HFLB and VFLB inputs. Refer to the value used in the Application Diagram.

Display Dancing

Most display dancing is caused by interference of the serial bus. It can be avoided by adding resistors in the bus in series.

APPLICATION DIAGRAM

Graphic Monitor On-Screen Display - 16
 CMOS

This is a high performance HCMOS device designed to interface with a micro controller unit to allow colored symbols or characters to be displayed onto CRT monitor. Because of the large number of fonts, 256 fonts including 240 standard fonts and 16 multi-color fonts, GMOSD-16 is suitable to be adopted for the multi-language monitor application especially. Its on-chip PLL allows both multiscan operation and self generation of system timing. It also minimizes the MCU's burden through its built-in RAM. By storing a full screen of data and control information, this device has a capability to carry out 'screenrefresh' without any MCU supervision.

Since there is no clearance between characters, special graphics oriented characters can be generated by combining two or more character blocks. There are two kinds of resolutions that users can choose. By changing the number of dots per horizontal line to 384 (CGA) or 768 (SVGA), smaller characters with higher resolution can be easily achieved. The full OSD menu is formed of 15 rows $\times 30$ columns which can by freely positioned on anywhere of the monitor screen by changing vertical or horizontal delay.

Special functions such as character background color, blinking, bordering or shadowing, four-level windows with programmable shadowing, row double height and double width, programmable vertical height of character and row-torow spacing, and full-screen erasing and Fade-In/Fade-Out are also incorporated. There are 8 color selections for any individual character display with row intensity attribute and window intensity attribute to expand the color mixture on OSD menu.

- Totally 256 Fonts Including 240 Standard Fonts and 16 Multi-Color Fonts.
- Two Resolutions: 384 (CGA) or 768 (SVGA) Dots/Line
- Wide Operating Frequency Range for High End Monitor: $15 \mathrm{KHz} \sim 120 \mathrm{KHz}$
- Fully Programmable Character Array of 15 Rows by 30 Columns
- 8-Color Selection for Characters with Color Intensity Attribute on Each Row
- 7-Color Selection for Characters background
- True 16-Color Selection for Windows
- Fancy Fade-In/Fade-Out Effects
- Programmable Height of Character to Meet Multi-Sync Requirement
- Row To Row Spacing Control to Avoid Expansion Distortion
- Four Programmable Windows with Overlapping Capability
- Shadowing on Windows with Programmable Shadow Width/Height
- Character Bordering or Shadowing
- Character/Symbol Blinking Function
- Programmable Vertical and Horizontal Positioning for Display Centre
- Double Character Height and Double Character Width
- Internal PLL Generates a Wide-Ranged System Clock (92.2 MHz)
- M_BUS (IIC) Interface with Address \$7A (SPI Bus is Mask Option)

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS Voltage Referenced to V_{SS}

Symbol	Characteristic	Value	Unit
V_{DD}	Supply Voltage	-0.3 to +7.0	V
$\mathrm{~V}_{\text {in }}$	Input Voltage	$\mathrm{V}_{S S}-0.3$ to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Id	Current Drain per Pin Excluding V_{DD} and V_{SS}	25	mA
Ta	Operating Temperature Range	0 to 85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE: Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Description section.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $V_{\text {in }}$ and $V_{\text {out }}$ should be constrained to the range $\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{\mathrm{in}}$ or $\left.V_{\text {out }}\right) \leq V_{\text {DD }}$.
Unused inputs must always be tied to an appropriate logic voltage level (e.g., either $\mathrm{V}_{S S}$ or V_{DD}). Unused outputs must be left open.

AC ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{DD}} / V_{D D}(\mathrm{~A})=5.0 \mathrm{~V}, \mathrm{~V}_{S S} / V_{S S}(\mathrm{~A})=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25 \mathrm{C}\right.$,
Voltage Referenced to $V_{S S}$)

Symbol	Characteristic	Min	Typ	Max	Unit
$\begin{aligned} & t_{r} \\ & t_{f} \end{aligned}$	Output Signal (R, G, B, FBKG and INT) Cload $=30 \mathrm{pF}$ Rise Time Fall Time	-		$\begin{aligned} & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
FRFLB	HFLB Input Frequency	15K	-	120 K	Hz

Figure 1. Switching Characteristics

DC CHARACTERISTICS $V_{D D} N_{D D}(A)=5.0 \mathrm{~V} \pm 10 \%, V_{S S} / V_{S S}(A)=0 V, T_{A}=25^{\circ} \mathrm{C}$, Voltage Referenced to $\mathrm{V}_{S S}$

Symbol	Characteristic	Min	Typ	Max	Unit
V OH	High Level Output Voltage $\mathrm{I}_{\text {out }}=-5 \mathrm{~mA}$	$V_{D D}-0.8$	-	-	V
V_{OL}	Low Level Output Voltage $\mathrm{I}_{\text {out }}=5 \mathrm{~mA}$	-	-	$\mathrm{V}_{S S}+0.4$	V
$\begin{aligned} & V_{I L} \\ & V_{I H} \end{aligned}$	Digital Input Voltage (Not Including SDA and SCL) Logic Low Logic High	$0.7 \overline{\mathrm{~V}}_{\mathrm{DD}}$	-	$0.3 V_{D D}$	$\begin{aligned} & v \\ & v \end{aligned}$
$\begin{aligned} & \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IH}} \end{aligned}$	Input Voltage of Pin SDA and SCL in SPI Mode Logic Low Logic High	$0.7 \overline{\mathrm{~V}}_{\mathrm{DD}}$	-	$0.3 \mathrm{~V}_{\mathrm{DD}}$	$\begin{aligned} & V \\ & v \end{aligned}$
$\begin{aligned} & V_{I L} \\ & V_{I H} \end{aligned}$	Input Voltage of Pin SDA and SCL in M_BUS Mode Logic Low Logic High	$0.7 \overline{\mathrm{~V}}_{\mathrm{DD}}$	-	$0.3 V_{D D}$	$\begin{aligned} & v \\ & v \end{aligned}$
If	High-Z Leakage Current (R, G, B and FBKG)	-10	-	+ 10	$\mu \mathrm{A}$
$1 / 1$	Input Current (Not Including RP, VCO, R, G, B, FBKG and INT)	-10	-	+ 10	$\mu \mathrm{A}$
${ }^{\prime} \mathrm{DD}$	Supply Current (No Load on Any Output) at $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$	-	-	+26	mA

PIN DESCRIPTION

VSS(A) (Pin 1)

This pin provides the signal ground to the PLL circuitry. Analog ground for PLL is separated from digital ground for optimal performance.

VCO (Pin 2)

A dc control voltage input to regulate an internal oscillator frequency. See the Application Diagram for the application values used.

RP (Pin 3)

An external RC network is used to bias an internal VCO to resonate at the specific dot frequency. The maximum voltage at Pin 3 should not exceed 3.5 V at any condition. See the Application Diagram for the application values used.

$V_{D D(A)}($ Pin 4)

A positive 5 V dc supply for PLL circuitry. Analog power for PLL is separated from digital power for optimal performance.

HFLB (Pin 5)

This pin inputs a negative polarity horizontal synchronize signal pulse to phase lock into an internal system clock generated by the on-chip VCO circuit.

$\overline{\mathrm{SS}}$ (Pin 6)

This input pin is part of the SPI system. An active low signal generated by the master device enables this slave device to accept data. Pull high to terminate the SPI communication. If M_BUS is employed as the serial interface, this pin should be tied to either $V_{D D}$ or $V_{S S}$.

SDA (MOSI) (Pin 7)

Data and control message are being transmitted to this chip from a host MCU, via one of the two serial bus systems. With either protocol, this wire is configurated as a uni-directional data line. (Detailed description of these two protocols will be discussed in the M_BUS and SPI sections).

SCL (SCK) (Pin 8)

A separate synchronizing clock input from the transmitter is required for either protocol. Data is read at the rising edge of each clock signal.

VDD (Pin 9)

This is the power pin for the digital logic of the chip.

$\overline{\text { VFLB }}$ (Pin 10)

Similar to Pin 5, this pin inputs a negative polarity of vertical synchronize signal to synchronize the vertical control circuit.

INT (Pin 11)

This output pin is used to indicate the color intensity. If the intensity control bits are set in the row attribute registers or window control registers, this pin will output a logic high while displaying the specified windows or the characters on the associated rows. Otherwise, it will keep in low state. Please refer to Figure 15 for detail timing chart. Thus, 16color selection is achievable by combining this intensity pin with R/G/B outputs. On the other hand, this color intensity information could be reflected on the R/G/B pins by asserting tri-state instead of logic high if 3_S bit is set to 1 . Refer to the "REGISTERS" for more information.

FBKG (Pin 12)

This pin will output a logic high while displaying characters or windows when FBKGC bit in frame control register is 0 , and output a logic high only while displaying characters when FBKGC bit is 1 . It is defaulted to high impedance state after power on, or when there is no output. An external $10 \mathrm{k} \Omega$ resistor pulled low is recommended to avoid level toggling caused by hand effect when there is no output.

B,G,R (Pin 13, 14, 15)

GMOSD-16 color outputs in TTL level to the host monitor. These three signals are open drain outputs if 3_STATE bit is set and the color intensity is inactive. Otherwise, they are active high push-pull outputs. See "REGISTERS" for more information. These pins are in high impedance state after power on.

$V_{S S}$ (Pin 16)

This is the ground pin for the digital logic of the chip.

SYSTEM DESCRIPTION

MC141545P2 is a full screen memory architecture. Refresh is done by the built-in circuitry after a screenful of display data has been loaded in through the serial bus. Only changes to the display data need to be input afterward.

Serial data, which includes screen mapping address, display information, and control messages, are being transmitted via one of the two serial buses: M_BUS or SPI (mask option). These two sets of buses are multiplexed onto a single set of wires. Standard parts offer M_BUS transmission.

Data is first received and saved in the MEMORY MANAGEMENT CIRCUIT in the Block Diagram. Meanwhile, the GMOSD-16 is continuously retrieving the data and putting it into a ROW BUFFER for display and refreshing, row after row. During this storing and retrieving cycle, a BUS ARBITRATION LOGIC will patrol the internal traffic, to make sure that no crashes occur between the slower serial bus receiver and fast 'screen-refresh' circuitry. After the full screen display data is received through one of the serial communication interface, the link can be terminated if change on display is not required.

The bottom half of the Block Diagram constitutes the heart of this entire system. It performs all the GMOSD-16 functions such as programmable vertical length (from 16 lines to 63 lines), display clock generation (which is phase locked to the incoming horizontal sync signal at Pin 5 HFLB), bordering or shadowing, and multiple windowing.

COMMUNICATION PROTOCOLS

BUS Operation

The operating clock for M_Bus or SPI bus derives from system dot clock. Internal PLL is using to generate the dot clock base on the HFLB input frequency where the dot clock is equal to $384 / 768 \times$ HFLB in $384 / 768$ modes respectively. In order to have stable operation of M_Bus or SPI bus in the OSD and meet below specifications, HFLB(15k-120k) must be presented and the PLL locks to HFLB properly. Refer to Application Diagram for PLL bias circuit.

M_BUS Serial Communication

This is a two-wire serial communication link that is fully compatible with the IIC bus system. It consists of SDA bidi-
rectional data line and SCL clock input line. Data is sent from a transmitter (master), to a receiver (slave) via the SDA line, and is synchronized with a transmitter clock on the SCL line at the receiving end. The maximum data rate is limited to 100 kbps . The default chip address is $\$ 7 \mathrm{~A}$. Please refer to the IIC-Bus specification for detail timing requirement.

Operating Procedure

Figure 2 shows the M_BUS transmission format. The master initiates a transmission routine by generating a START condition, followed by a slave address byte. Once the address is properly identified, the slave will respond with an ACKNOWLEDGE signal by pulling the SDA line LOW during the ninth SCL clock. Each data byte which then follows must be eight bits long, plus the ACKNOWLEDGE bit, to make up nine bits together. Appropriate row and column address information and display data can be downloaded sequentially in one of the three transmission formats described in DATA TRANSMISSION FORMATS SECTION. In the cases of no ACKNOWLEDGE or completion of data transfer, the master will generate a STOP condition to terminate the transmission routine. Note that the OSD_EN bit must be set after all the display information has been sent in order to activate the GMOSD-16 circuitry of MC141545P2, so that the received information can then be displayed.

Figure 2. M_BUS Format

Serial Peripheral Interface (SPI)

Similar to M_BUS communication, SPI requires separate clock (SCK) and data (MOSI) lines. In addition, a SS SLAVE SELECT pin is controlled by the master transmitter to initiate the receiver.

Operating Procedure

To initiate SPI transmission, pull $\overline{S S}$ pin low by the master device to enable MC141545P2 to accept data. The $\overline{S S}$ input line must be a logic low prior to occurrence of SCK and remain low until and after the last (eighth) SCK cycle. After all data has been sent, the $\overline{\mathrm{SS}}$ pin is then pulled high by master to terminate the transmission. Data bit is sent from master to OSD's internal latch during rising edge of SCK and then transmit to internal register during falling edge. Therefore, last falling edge of CLK is needed for proper transmission of last byte data. No slave address is needed for SPI. Hence, row and column address information and display data (the data transmission formats are the same as in M_BUS mode described in the previous section) can be sent immediately after the SPI is initiated.

Figure 3. SPI Protocol

DATA TRANSMISSION FORMATS

After the proper identification by the receiving device, data train of arbitrary length is transmitted from the Master. As mentioned above, two register blocks, display registers, attribute/control registers, need to be programmed before the proper operation. Basically, these three areas use the similar transmission protocol. Only two bits of the row/segment byte are used to distinguish the programming blocks.

There are three transmission formats, from (a) to (c) as stated below. The data train in each sequence consists of row/seg address (R), column/line address (C), and data informations (I). In format (a), each display information data have to be preceded with the corresponding row/seg address and column/line address. This format is particular suitable for updating small amount of data between different row. However, if the current information byte has the same row/seg address as the one before, format (b) is recommended. For a full screen pattern change which requires massive information update or during power up situation, most of the row/seg and column/line address on either (a) or (b) format will appear to be redundant. A more efficient data transmission format (c) should be applied. It sends the RAM starting row/seg and column/line addresses once only, and then treat all subsequent data as data information. The row/ seg and column/line addresses will be automatically incremented internally for each information data from the starting location.

Based on the different programming areas, the detail transmission protocol is described below respectively.

(I) Display Register Programming

The data transmission formats are:
(a) $\mathrm{R}->\mathrm{C}->\mathrm{I}->\mathrm{R}->\mathrm{C}->\mathrm{I}->\ldots \ldots \ldots$.
(b) $\mathrm{R}->\mathrm{C}->\mathrm{I}->\mathrm{C}->\mathrm{I}->\mathrm{C}->\mathrm{I}$.
(c) R->C $->$ I-> $1->$ I $->\ldots \ldots \ldots \ldots$

NOTE: R means row byte.
C means column byte. I means data byte.

To differentiate the display row address from attribute area when transferring data, the most significant three bits are set to ' 100 ' to represent display row address, while '00X' for column address used in format (a) or (b) and ' 01 X ' for column address used in format (c). There is some limitation on
using mix-formats during a single transmission. It is permissible to change the format from (a) to (b), or from (a) to (c), or from (b) to (a), but not from (c) back to (a) or (b).

Figure 4. Data Packet for Display Data

Figure 5. Address Bit Patterns for Display Data

(II) Attribute/Control Register Programming

The data transmission formats are similar with that in display data programming:
(a) $\mathrm{R}->\mathrm{C}->\mathrm{I}->\mathrm{R}->\mathrm{C}->\mathrm{I}->\ldots \ldots .$.
(b) $\mathrm{R} \rightarrow \mathrm{C}->1->\mathrm{C}->\mathrm{I}->\mathrm{C}->\mathrm{I}$.
(c) R $->$ C $->$ I $->$ I $->$ I $->$

NOTE: R means row byte. C means column byte. I means data byte.

To differentiate the row address for attribute/control registers from display area when transferring data, the most significant three bits are set to '101' to represent the row address of the attribute/control registers, while '00X' for column address used in format (a) or (b) and ' 01 X ' for column address used in format (c). There is some limitation on using mix-formats during a single transmission. It is permissible to change the format from (a) to (b), or from (a) to (c), or from (b) to (a), but not from (c) back to (a) or (b).

Figure 6. Data Packet for Attribute/Control Data

WINDOW/FRAME/PWM CONTROL REGISTERS

X : don't care
D: valid data

Figure 7. Address Bit Patterns for Attribute/Control Data

MEMORY MANAGEMENT

All the internal programmable area can be divided into two parts including (1) Display Registers (2) Attribute/Control Registers. Please refer to the following two figures for the corresponding memory map.

Figure 8. Memory Map of Display Registers

Internal display RAM are addressed with row and column (coln) number in sequence. As the display area is 15 rows by 30 columns, the related display registers are also 15 by 30 . The space between row 0 and coln 0 to row 14 and coln 29 are called Display registers, with each contains a character/ symbol address corresponding to display location on monitor screen. And each register is 8 -bit wide to identify the selected character/symbol out of 256 ROM fonts.

Figure 9. Memory Map of Attribute/Control Registers

Besides the font selection, there is 3-bit attribute associated with each symbol to identify its color and 3-bit to define its background. Because of 3-bit attribute, each character can select any color out of 8 independently on the same row. as well as background. Every data row associate with one attribute register, which locate at coln 30 of their respective rows, to control the characters display format of that row such as the character blinking, color intensity, character double height and character double width function. In addition, other control registers are located at row 15 such as window control, frame function control and PWM registers. Four window control registers for each of four windows together with four frame control registers and twelve PWM registers occupy the first 28 columns of row 15 space. These control registers will be described on the "REGISTERS" section.

User should handle the internal display RAM address location with care especially for those rows with double length alphanumeric symbols. For example, if row n is destined to be double height on the memory map, the data displayed on screen row n and $n+1$ will be represented by the data contained in the memory address of row n only. The data of next row $\mathrm{n}+1$ on the memory map will appear on the screen of $n+2$ and $n+3$ row space and so on. Hence, it is not necessary to throw in a row of blank data to compensate for the double row action. User needs to take care of excessive row of data in memory in order to avoid over running the limited number of row space on the screen.

There is difference for rows with double width alphanumeric symbols. Only the data contained in the even numbered columns of memory map will be shown, the odd numbered columns will be ignored and not disclosed.

REGISTERS

(I) Display Register

Display Register (Row 0~14, Coln 0~29)

Bit 7-0 CRADDR - This eight bits address one of the 256 characters or symbols resided in the character ROM fonts.

(II) Attribute/Window/Control/Frame Registers

Character Attribute Register (Row 0~14, Coln 0~29)

7	6	5	4	3	2	1	0
	BGR	BGG	BGB	BLINK	R	G	B

Bit 6-4 These three bits define the color of the background for the correspondent characters. If all three bits are clear, no background will be shown(transparent). Therefore, total seven background colors can be selected.

Bit 3 BLINK - The blinking effect will be active on the corresponding character if this bit is set to 1 . The blinking frequency is approximately one time per second $(1 \mathrm{~Hz})$ with fifty-fifty duty cycle at 80 Hz vertical scan frequency.

Bit 2-0 These three bits are the color attribute to define the color of the associated character/symbol.

Table 1. The Character/Window Color Selection

	R	G	B
Black	0	0	0
Blue	0	0	1
Green	0	1	0
Cyan	0	1	1
Red	1	0	0
Magenta	1	0	1
Yellow	1	1	0
White	1	1	1

Row Attribute Register (Row 0~14, Coln 30)

Bit 2 R_INT - Row intensity bit controls the color intensity of the displayed character/symbol on the corresponding row. Setting this bit to 1 means high intensity color and the INT pin will go high while displaying the characters of this row.

Bit 1 CHS - It determines the height of a display symbol. When this bit is set, the symbol is displayed in double height.

Bit 0 CWS - Similar to bit 1, character is displayed in double width, if this bit is set.

Window 1 Registers

Row 15 Coln 0

Row 15 Coln 1

Bit 2 WEN - It enables the window 1 generation if this bit is set.

Bit 1 W_INT - This additional color related bit provides the color intensity selection for window 1 . If this bit is 0, INT pin will go low while displaying window 1.The default value is 1 to indicate high intensity.Video pre-amplifier or external R/ G/B switch can make use of INT pin for windows's color intensity control.

Bit 0 W_SHD - Shadowing on window. Set this bit to activate the window 1 shadowing. When the window is active, the right M pixels and lower N horizontal scan lines will output black shadowing. The width/height of window shadow, number of M / N, is defined in the frame control registers located at row 15 column 16 and 17. See the following figure and the related frame control register for detail.

Row 15 Coln 2

Bit 2-0 R, G and B-Controls the color of window 1. Refer to Table 1 for color selection. Window 1 registers occupy Column 0-2 of Row 15, Window 2 from Column 3-5, Window 3 from $6-8$ and Window 4 from 9-11. Window 1 has the highest priority, and Window 4 the least. If window over-lapping occurs, the higher priority window will cover the lower one, and the higher priority color will take over on the overlap window area. If the start address is greater than the end address, this window will not be displayed.

Window 2 Registers

Row 15 Coln 3

Row 15 Coln 4

Bit 2 WEN - It enables the window 2 generation if this bit is set.

Bit 1 W_INT - This additional color related bit provides the color intensity selection for window 2 . If this bit is 0 , INT pin will go low while displaying window 2 . The default value is 1 to indicate high intensity. Video pre-amplifier or external $\mathrm{R} /$ G/B switch can make use of INT pin for windows's color intensity control.

Bit 0 W_SHD - Shadowing on window. Set this bit to activate the window 2 shadowing.

Row 15 Coln 5

Bit 2-0 R, G and B-Controls the color of window 2. Refer to Table 1 for color selection. Window 1 registers occupy Column 0-2 of Row 15, Window 2 from Column 3-5, Window 3 from $6-8$ and Window 4 from $9-11$. Window 1 has the highest priority, and Window 4 the least. If window over-lapping occurs, the higher priority window will cover the lower one, and the higher priority color will take over on the overlap window area. If the start address is greater than the end address, this window will not be displayed.

Row 15 Coln 6

Row 15 Coln 7

Bit 2 WEN - It enables the window 3 generation if this bit is set.

Bit 1 W_INT - This additional color related bit provides the color intensity selection for window 3 . If this bit is 0 , INT pin will go low while displaying window 3.The default value is 1 to indicate high intensity.Video pre-amplifier or external R/ G/B switch can make use of INT pin for windows's color intensity control.

Bit 0 W_SHD - Shadowing on window. Set this bit to activate the window 3 shadowing.

Row 15 Coln 8

Bit 2-0 R, G and B-Controls the color of window 3. Refer to Table 1 for color selection. Window 1 registers occupy Column 0-2 of Row 15, Window 2 from Column 3-5, Window 3 from $6-8$ and Window 4 from $9-11$. Window 1 has the highest priority, and Window 4 the least. If window over-lapping occurs, the higher priority window will cover the lower one, and the higher priority color will take over on the overlap window area. If the start address is greater than the end address, this window will not be displayed.

Window 4 Registers

Row 15 Coln 9

Row 15 Coln 10

Bit 2 WEN - It enables the window 4 generation if this bit is set.

Bit 1 W_INT - This additional color related bit provides the color intensity selection for window 4 . If this bit is 0, INT pin will go low while displaying window 4.The default value is 1 to indicate high intensity. Video pre-amplifier or external R/ G/B switch can make use of INT pin for windows's color intensity control.

Bit 0 W_SHD - Shadowing on window. Set this bit to activate the window 4 shadowing.

Row 15 Coln 11

Bit 2-0 R, G and B-Controls the color of window 4. Refer to Table 1 for color selection. Window 1 registers occupy Column 0-2 of Row 15, Window 2 from Column 3-5, Window 3 from 6-8 and Window 4 from 9-11. Window 1 has the highest priority, and Window 4 the least. If window over-lapping occurs, the higher priority window will cover the lower one, and the higher priority color will take over on the overlap window area. If the start address is greater than the end address, this window will not be displayed.

Vertical Delay Control Register Row 15 Coln 12

Bit 7-0 VERTD - These 8 bits define the vertical starting position. Total 256 steps, with an increment of four horizontal lines per step for each field. Its value can't be zero anytime. The default value of it is 4 .

Horizontal Delay Control Register Row 15 Coln 13

	7	6	5	4	3	2	1	0
ROW 15 COLN 13	CLR	MSB						LSB

Bit 7 CLR - Setting this bit to 1 will clear all display memory from Row 0 to Row 14; Control register will not be erased.

Bit 6-0 HORD - Horizontal starting position for character display. 7 bits give a total of 128 steps and each increment represents five dots movement shift to the right on the monitor screen. Its value cannot be zero anytime. The default value of it is 15 .

Character Height Control Register Row 15 Coln 14

Bit 7 HF - High Frequency Bit. If the incoming H sync signal is higher than 60 KHz , set this bit to 1 for better performance. This bit controls gain of internal VCO so that PLL can work for whole range from 15 KHz to 120 KHz .

Bit 6 Bit reserved. Set to 0 for normal operation.

Bit 5-0 $\mathrm{CH} 5-\mathrm{CH} 0$ - This six bits will determine the displayed character height. GMOSD adopts 12 by 18 font matrix and the middle 16 lines, line 2 to line 17, are expanded by BRM algorithm. The top line and bottom line will be duplicated dependent on the value of CH . No any line is duplicated for top and bottom if CH is less than 32. One extra duplicated line will be inserted for top and bottom if CH is larger or equal to 32 and less than 48. Two extra duplicated lines will be inserted for top and bottom if CH is larger or equal to 48 . Setting a value below 16 will not have a predictable result. Display character line number is equal to C 1 $\mathrm{x}(18+\mathrm{C} 2)$ where $\mathrm{C} 1=1$, 2 or 3 defined by $\mathrm{CH} 5-\mathrm{CH} 4$ and $\mathrm{C} 2=0-15$ defined by $\mathrm{CH} 3-\mathrm{CH} 0(B R M)$.

Figure 10. Variable Character Height

Figure 10 illustrates the enlargement algorithm for top and bottom lines and how this chip expand the built-in character font to the desired height.

In this approach, the actual character height in unit of the scan line can be calculated from the following simple equation:

$$
\mathrm{H}=\mathrm{CH}+\mathrm{N}
$$

Where H is the expanded character height in unit of lines

CH is the number defined by $\mathrm{CH} 5 \sim \mathrm{CH} 0$
N is a variable dependent on the value of CH
$\mathrm{N}=2$ when $16 \leq \mathrm{CH}<32$
$\mathrm{N}=4$ when $32 \leq \mathrm{CH}<48$
$N=6$ when $48 \leq \mathrm{CH}<64$

Frame Control Register Row 15 Coln 15

Bit 7 OSD_EN - OSD circuit is activated when this bit is set.

Bit 6 BSEN - It enables the character bordering or shadowing function when this bit is set.

Bit 5 SHADOW - Character with black-edge shadowing is selected if this bit is set, otherwise bordering prevails.

Bit 3 X32B - It determines the number of dots per horizontal line. There are 384 dots per horizontal line if bit X32B is clear and this is also the default power on state. Otherwise, 768 dots per horizontal sync line when bit X 32 B is set to 1. Please refer to the Table 2 for details.

Table 2. Resolution Setting

X32B	0	1
Dots / Line	384	768
Resolution	CGA	SVGA

Bit 2 3_S - By setting this bit to 1, R/G/B could output high impedance state if the intensity attribute of characters or windows is set to 0 . It means the corresponding $R / G / B$ output will go high impedance instead of driving-high while displaying the low intensity characters or windows. After power on, this bit is reset and the R/G/B are push-pull outputs initially.

Bit 1 FAN - It enables the fan-in/fan-out functions when OSD is turned on from off state or vice versa. If this bit is set, it roughly takes about one second to fully display the whole menu. It also takes 1 second to disappear completely.

Bit 0 FBKGC - It determines the configuration of FBKG output pin. When it is clear. FBKG pin outputs high during displaying characters or windows. Otherwise, FBKG pin outputs high only during displaying characters.

Figure 11. Character Bordering and Shadowing

Frame Control Register Row 15 Coln 16

Bit 7-6 WW41, WW40-It determines the shadow width of the window 4 when the window shadowing function is activated. Please refer to the following table for more details where M is the actual pixel number of the shadowing.

Table 3. Shadow Width Setting

(WW41, WW40)	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
Shadow Width M (unit in Pixel)	2	4	6	8

Bit 5-4 WW31, WW30 - Similarly as WW41, WW40, these two bits determine the shadow width of the window 3 when the window shadowing function is activated.

Bit 3-2 WW21, WW20 - Similarly as WW41, WW40, these two bits determine the shadow width of the window 2 when the window shadowing function is activated.

Bit 1-0 WW11, WW10 - Similarly as WW41, WW40, these two bits determine the shadow width of the window 1 when the window shadowing function is activated

Frame Control Register Row 15 Coln 17

Bit 7-6 WH41, WH40 - It determines the shadow height of the window 4 when the window shadowing function is activated. Please refer to the following table for more details where N is the actual line number of the shadowing.

Table 4. Shadow Width Setting

(WH41, WH40)	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
Shadow Height N (unit in Line)	2	4	6	8

Bit 5-4 WH31, WH30-Similarly as WH41, WH40, these two bits determine the shadow height of the window 3 when the window shadowing function is activated.

Bit 3-2 WH21, WH20 - Similarly as WH41, WH40, these two bits determine the shadow height of the window 2 when the window shadowing function is activated.

Bit 1-0 WH11, WH10 - Similarly as WH41, WH40, these two bits determine the shadow height of the window 1 when the window shadowing function is activated.

Frame Control Register Row 15 Coln 18

Bit 7-3 RSPACE - These 5 bits define the row to row spacing in unit of horizontal scan line. It means extra N lines, defined by this 5 -bit value, will be appended for each display row. Because of the nonuniform expansion of BRM used by character height control, this register is usually used to maintain the constant OSD menu height for different display modes instead of adjusting the character height. The default value of it is 0 . It means there is no any extra line inserted between row and row after power on. It can be used for Portrait monitor too when icon design is rotated 90 degree.

Bit 2 TRIC - Tri-state Control. This bit is used to control the driving state of output pins, R, G, B and FBKG when the OSD is disabled. After power on, this bit is reset and R, G, B and FBKG are in high impedance state while OSD being disabled. If it is set by MCU, these four output pins will drive low while OSD being in disabled state. Basically, the setting is dependent on the requirement of the external application circuit.

Bit 1 HPOL - This bit selects the polarity of the incoming horizontal sync signal ($\overline{\mathrm{HFLB}}$). If it is negative polarity, clear this bit. Otherwise, set this bit to 1 to represent the positive H sync signal. After power on, this bit is cleared.

Bit $0 \quad$ VPOL - This bit selects the polarity of the incoming vertical sync signal ($\overline{\mathrm{FFLB}}$). If it is negative polarity, clear this bit. Otherwise, set this bit to 1 to represent the positive V sync signal. After power on, this bit is cleared.

- NOTE: The registers located at column 19 of row 15 are reserved for the chip testing. In normal operation, they should not be programmed anytime.

Figure 12. Pure 8-bit PWM v.s. 5-bit PWM + 3-bit BRM

Figure 13. BRM Pulse Insertion Algorithm
A software called GMOSD-16 FONT EDITOR in IBM PC environment was written for MC141545P2 editing purposes. It generates a set of S-Record or Binary record for the desired display patterns to be masked onto the character ROM of the MC141545P2.

In order to have better character display within windows, we suggest you to place your designed character font in the centre of the 12×18 matrix, and let its spaces be equally located in the four sides of the matrix. The character $\$ 00$ is pre-defined for blank character, the character \$FF is predefined for full-filled character.

In order to avoid submersion of displayed symbols or characters into a background of comparable colors, a feature of bordering which encircles all four sides, or shadowing which encircles only the right and bottom sides of an individual display character is provided. Figure 11 shows how a character is being jacketed differently. To make sure that a character is bordered or shadowed correctly, at least one dot blank should be reserved on each side of the character font.

Frame Format and Timing

Figure 14 illustrates the positions of all display characters on the screen relative to the leading edge of horizontal and vertical flyback signals. The shaded area indicates the area not interfered by the display characters. Notice that there are two components in the equations stated in Figure 14 for horizontal and vertical delays: fixed delays from the leading edge of $\overline{H F L B}$ and $\overline{\text { VFLB }}$ signals, regardless of the values of HORD and VERTD: (47 dots + phase detection pulse width) and one H scan line for horizontal and vertical delays, respectively; variable delays determined by the values of HORD and VERTD. Refer to Frame Control Registers COLN 9 and 10 for the definitions of VERTD and HORD. Phase detection pulse width is a function of the external charge-up resistor, which is the $1 \mathrm{M} \Omega$ resistor in a series with $5.6 \mathrm{k} \Omega$ to VCO pin in the Application Diagram. Dot frequency is determined by the equation: H Freq. $\times 384$ if the bit X 32 B is clear and H Freq. $\times 768$ if bit X32B is set to 1 . For example, dot frequency is 12.28 MHz if H freq is 32 KHz while bit X 32 B is 0 . If X32B is 1 , the dot frequency will be 24.57 MHz (double of the original one).

When double character width is selected for a row, only the even-numbered characters will be displayed, as shown in row 2. Notice that the total number of horizontal scan lines in the display frame is variable, depending on the chosen character height of each row. Care should be taken while configuring each row character height so that the last horizontal scan line in the display frame always comes out before the leading edge of $\overline{\mathrm{VFLB}}$ of next frame to avoid wrapping display characters of the last few rows in the current frame into the next frame. The number of display dots in a horizontal scan line is always fixed at 360 , regardless of row character width and the setting of bit X32B.

Although there are 30 character display registers that can be programmed for each row, not every programmed character can be shown on the screen in 384 dots resolution. Usually, only 24 characters can be shown in this resolution at most. This is induced by the retrace time that is required to retrace the H scan line. In other resolution, 768 dots, 30 characters can be displayed on the screen totally if the horizontal delay register is set properly.

Figure 15 illustrates the timing of all output signals as a function of window and fast blanking features. Line 3 of all three characters is used to illustrate the timing signals. The shaded area depicts the window area. Both the left hand side and right hand side characters are embodied in a window with only one difference: FBKGC bit. The middle character does not have a window as its background. Timing of signal FBKG depends on the configuration of FBKGC bit. The configuration of FBKGC bits affects only FBKG signal timing. Waveform ' R , G or B ', which is the actual waveform at R, G, or B pin, is the logical OR of waveform 'character R, G or B' and waveform 'window R, G or B'. 'Character R, G, or B' and 'window R, G, or B' are internal signals for illustration purpose only.

Figure 14. Display Frame Format

MC141545P2 contains 256 character/symbol fonts including 240 normal fonts and 16 multi-color fonts. The normal fonts are located from number $\$ 00$ to \$EF. The 16 multi-color fonts occupy number \$FO to \$FF and their patterns can be designed using Font Editor. See the figures on the next page for the details fonts mapping.

Multi-Color Font

The color fonts comprises three different R, G, and B fonts. When the code of color font is accessed, the separate R/G/B dot pattern is output to the corresponding R/G/B output. See Figure. 16 for the sample displayed color font. No black color can be defined in color font: Black window underline the color font can make the dots $($ RGB $=000$) become black in color. It has to be consider during font design stage.

Figure 16. Example of Multi-Color Font

Figure 15. Timing of Output Signals

Table 5. The Multi-Color Font Color Selection

	R	G	B
Background Color	0	0	0
Blue	0	0	1
Green	0	1	0
Cyan	0	1	1
Red	1	0	0
Magenta	1	0	1
Yellow	1	1	0
White	1	1	1

Icon Combination

User can create On-Screen menu based on those characters and icons. Please refer to Table 6 for Icon combination. Address $\$ 00 \& \$ E F$ are pre-defined characters for testing.

ROM CONTENT

Figures 17-20 show the ROM content of MC141545P2. Mask ROM is optional for custom parts.

Table 6. Combination Map

ICON	ROM ADDRESS(HEX)
ARABIC NUMERALS	$08-11$
ALPHABET	$12-2 \mathrm{D}$
EUROPEAN	$2 \mathrm{E}-48$
JAPANESE	$49-81$
SYMBOLS	$01-07,82-\mathrm{C} 4$
GEOMETRY	C5-EE
COLOR	FO-FF

Figure 17. ROM 00-3F

Figure 18. ROM 40-7F

A0

B0

B8

81

89

91

99

A1

A9

B1

B9

82

9A

AA

B2

BA

83

9B

$A B$

B3

BB

84

8C

94

9C

A4

AC

B4

BC

85

95

B5

BD

86

8E

96

9 E

A6

AE

B6

BE

87

8 F

97

AF

B7

BF

Figure 19. ROM $80-\mathrm{BF}$

C0

C8

D0

D8

E0

E8

FO

F8

Cl

C9

D1

D9

E1

E9

F1

F9

C2

CA

D2

DA

E2

EA

F2

FA

C3

CB

D3

DB

E3

EB

F3

FB

C4

CC

D4

DC

E4

EC

F4

FC

C5

CD

D5

DD

ED

F5

FD

C6

CE

D6

DE

E6

EE

F6

FE

C7

CF
 D7

DF

E7

EF

F7

FF

Figure 20. ROM CO - FF

DESIGN CONSIDERATIONS

Distortion

Motorola's MC141545P2 has a built-in PLL for multisystems application. Pin 2 voltage is a dc basing for the internal VCO in the PLL. When the input frequency (HFLB) in Pin 5 becomes higher, the VCO voltage will increase accordingly. The built-in PLL then has a higher locked frequency output. The frequency should be equal to $384 / 768 \times$ HFLB (depends on resolution). It is the dot-clock in each horizontal line.

Display distortion is caused by noise in Pin 2. Positive noise makes VCO run faster than normal. The corresponding scan line will be shorter accordingly. In contrast, negative noise causes the scan line to be longer. The net result will be distortion on the display, especially on the right hand side with window turn on.

In order to have distortion-free display, the following recommendations should be considered.

- Only analog part grounds (Pin 2 to Pin 4) can be connected to Pin $1\left(V_{S S}(A)\right) . V_{S S}$ and other grounds should connect to PCB common ground. Then the $V_{S S}(A)$ and $V_{S S}$ grounds should be totally separated (i.e. $V_{S S}(A)$ is floating outside, they are connected internally). Refer to the Application Diagram for the ground connections.(NOTE: Vss(A) and Vss are connected internally.)
- DC supply path for Pin $4\left(\mathrm{~V}_{\mathrm{DD}}(\mathrm{A})\right)$ should be separated from other switching devices.
- LC filter should be connected between Pin 17 and Pin 4. Refer to the values used in the Application Diagram.
- Biasing and filter networks should be connected to Pin 2 and Pin 3. Refer to the recommended networks in the Application Diagram.
- Two small capacitors can be added between Pin1-Pin2 and Pin3-Pin4 to filter VCO noise if necessary. Values should be small enough to avoid picture unlocking caused by temperature variation

Jittering and Unlocking

Most display jittering and unlocking is caused by HFLB in Pin 5. Care must be taken if the HFLB signal comes from the flyback transformer. A short path and shielded cable are recommended for a clean signal. Buffer is needed for both HFLB and VFLB inputs. Refer to the value used in the Application Diagram.

Display Dancing

Most display dancing is caused by interference of the serial bus. It can be avoided by adding resistors in the bus in series.

APPLICATION DIAGRAM

Evaluation Kits

Product Information MC141511 Evaluation Kit

MC141511EVK1 MC141511EVK2

Introduction

The MC141511EVK is an evaluation board so built that for the development of the application using MC141511. The evaluation board is best to use with the MC68HC05L10EVM so the connection effort is minimal. There is two versions of the evaluation board, MC141511EVK1 is the demo board with two MC141511 and the MC141511EVK2 consist of four MC141511.

The two attached figures which show you the layout of 511 Demo Board and also connection to M68HC05L10EVM.
On the 511 Demo Board, you will find :

Power Supply Jack

Please connect them to $+12 \mathrm{~V}, \mathrm{GND}$ and +5 V respectively.

P03, P04

These are two 64 way headers to be connected to the EVM. The pin assignment is shown in Figure 2

VR
This is used to adjust the contrast of the LCD EVK.

CS1, CS2, CS3, CS4
The four jumpers are to connect CS1, CS2, CS3, CS4 of MCU to the chip enable pin (CE) of TAB no. 1, 2, 3 and 4.

For MC141511EVK1, the two jumpers on CS2 and CS4 will be closed. For MC141511EVK2, the four jumpers on CS1, CS2, CS3 and CS4 will be closed.

MS
This is to selects how display RAM is addressed, according to $1: 32$ or $1: 41$ multiplex ratio.
$0=1: 32$ multiplex addressing
$1=1: 41$ multiplex addressing
LRS
This is to control the Left-Right Selection pin of the MC141511.

Figure 1. MC141511EVK

There are two jumpers marked LRS on the evaluation board. The left one in Figure 1 is connected to LRS pin of TAB 3 and TAB 4 while the right one is connected to LRS of TAB no. 1 and 2.

The left-right selection pin define the direction of the segment driver display. (Please refer to the figure "Display RAM Configuration" of MC141511 Advance Information)
0 = SEG 0-127
$1=$ SEG $127-0$

	PO3			PO4	
VLCD	1	NC	BP0	7-2	BP1
PA7	3.4	PA6	BP2	34	BP3
PA5	56	PA4	BP4	56	BP5
PA3	78	PA2	BP6	78	BP7
PA1	910	PAO	BP8	$9 \quad 10$	BP9
BPCLK	1112	FRM	BP10	1112	BP11
CS4	1314	CS3	BP12	1314	BP13
CS2	1516	CS1	BP14	1516	BP15
AD19	1718	AD18	BP16	1718	BP17
AD17	1920	AD16	BP18	1920	BP19
AD15	2122	AD14	BP20	2122	BP21
AD13	2324	AD12	BP22	$23 \quad 24$	BP23
AD11	$25 \quad 26$	AD10	BP24	$25 \quad 26$	BP25
AD9	2728	AD8	BP26	2728	BP27
AD7	2930	AD6	BP28	2930	BP29
AD5	$\begin{array}{ll}31 & 32\end{array}$	AD4	BP30	$\begin{array}{ll}31 & 32\end{array}$	BP31
AD3	3334	AD2	BP32	$33 \quad 34$	BP33
AD1	3536	ADO	BP34	3536	BP35
PB7	3738	PB6	BP36	3738	BP37
PB5	3940	PB4	BP38	3940	BP39
PB3	4142	PB2	BP40	4142	V1
PB1	4344	PBO	V4	4344	VOUT
D7	4546	D6	PE3	4546	PE2
D5	4748	D4	PE1	4748	PEO
D3	4950	D2	PD7	4950	PD6
D1	5152	D0	PD5	5152	PD4
IRQ2	5354	IRQ1	PD3	5354	PD2
R/W	5556	PO2	PD1	5556	PDO
TONE	5758	RO1S	PC7	5758	PC6
RESET	5960	NC	PC5	5960	PC4
NC	6162	NC	PC3	6162	PC2
VDD	$63 \quad 64$	VSS	PC1	6364	PCO

Figure 2. PO3, PO4 pin assignment

Product Information MC141512 Evaluation Kit

Introduction

The MC141512EVK is an Evaluation Kit for MC141512 \& MC141514 LCD drivers evaluation and for prototypes development using these LCD drivers. This module consists of MC141512, MC141514 LCD drivers and a 320×146 pixel LCD panel. This EVK board can be connected directly to MC68HC05L11EVM, which is an evaluation module providing control signals and display data from MC68HC05L11 MCU to the LCD Drivers MC141512 \& MC141514. Any character or graphic pattern can be displayed on the LCD panel through software control.

Packing List

The package includes:

- an evaluation kit MC141512EVK

Features

- 320×146 active display size
- Hardware contrast control

MC141512EVK

- Two ports for connection to MC68HC05L11EVM
- On board voltage divider provides bias levels to LCD panel

Setup and Operation

Simple Setup

The simple setup is shown in Figure 2.

Supply

The Adapter Board requires two supply voltage : +25V for VLCD, +5 V for VDD .

Contrast of LCD panel

The variable resistor, VR1, is used to adjust the contrast of the LCD panel.

Control Signal from MC68HC05L11EVM

The J9 and J10 are used to get control signal and display information from MC68HC05L11EVM. The pin assignment of the two ports is shown in Figure 3.

Figure 1. MC141512EVK

Figure 2 Simple setup of the EVK

Figure 3 I/O Port Connectors to EVM (only pins with connection are show)

Simple Test Procedure for the Evaluation Board

The following is a simple test procedure which should able to check the functionality of the demo board and also serve as a simple exercise to begin with this EVK:

IBM-PC to EVM Downloading Procedure by using Kermit MC141512 Evaluation Board power supply condition : VDD = $5 \mathrm{~V}, \mathrm{VSS}=0 \mathrm{~V}, \mathrm{VLCD}=0 \mathrm{~V}$

Step	Comments
C>KERMIT IBM-PC Kermit-MS VX.XX Type? for help	IBM-PC prompt. Enter Kermit program
Kermit-MS $>$ SET BUAD 9600	Set IBM-PC baud rate
Kermit-MS>CONNECT	Connect IBM-PC to EVM
(Connecting to host, type Control-]C to return to PC) (RETURN)	Set Control Miscellaneous Register at address \$32
$>$ MM32	Display on, select lower panel segment bank
$=91$	Set MUX Register at address \$31
$>$ MM31	to be 145 (=146 MUX) $=91$ $=01$ Clear bit 7 of address $\$ 32$. (Please refer to section 6.2 of MC68HC05L11 Product Preview rev2.0)

After setting up the above steps, maintain the MC141512 Evaluation Board supply condition to : VDD $=5 \mathrm{~V}, \mathrm{VSS}=0 \mathrm{~V}$. Then increase the supply to VLCD gradually from 0 V to 25 V . If the LCD panel is on before reaching 10 V , the evaluation module may have problem. The normal operation voltage of VLCD is between $10-25 \mathrm{~V}$. If the LCD panel does not turn on for VLCD $>25 \mathrm{~V}$, the evaluation board is also defective.

If the panel is on in the operation range, do the following steps in Kermit:

```
>LOADT
(press [F5] and enter external program file name developed for MC68HC05) \(>G X X X X\)
```

Check if any line is missing, turn VR1 to get a good contrast.

Reference

Please also refer to the MC68HC05L11 Product Preview, the MC141516 and MC141518 Product Preview and the M68HC05L11EVM Evaluation Module User's Manual for more information.

Product Information MC141516/18 Evaluation Kit

Introduction

The MC141518EVK is an Evaluation Kit for MC141516 \& MC141518 LCD drivers evaluation and for prototypes development using these drivers. This module consists of MC141516, MC141518 LCD drivers and a 240×60 pixel LCD panel. This EVK board can be connected directly to M68HC05L11EVM, which is an evaluation module providing control signals and display data from MC68HC05L11 MCU to the LCD Drivers MC141516 \& MC141518. Any character or graphic pattern can be displayed on the LCD panel through software control.

Packing List

The package includes:

- an evaluation kit MC141518EVK
- an Adapter Board
- a 20 pin cable

Features

- 240×64 display size
- On board voltage divider provides high voltage bias to drive the LCD
- Flexible data loop configuration allows 80 column, 160 column or 240 column display
- Optional on-chip LCD timing generator

Setup and Operation
 Simple Setup

The simple setup is shown in Figure 1.

Supply

The Adapter Board requires two supply voltage : +15 V for VLCD, +5 V for VDD and also a common ground with the EVM supply.

Contrast of LCD panel

The variable resistor, VR1, is used to adjust the contrast of the LCD panel.

MC141518EVK

Power Supply :
+5 V for VDD
+15 V for LCD
OV for GND

Figure 1. MC141518EVK to MC68HC05L11EVK Setup and Cabling

Figure 2a. The hardwire for 240 column

Figure 2b The hardwire for 240 column

Data Loop Configuration

The number of columns of the LCD panel can be altered by re-connecting the data loop using hardwire. By default, the number of columns is 240 . However, it can be changed to 160 or 80 .

For 240 column configuration, connect the LD1 to U1/SD1, U1/SD2 to U2/SD1, U2/SD2 to U3/SD1 and U3/SD2 to LD2.

For 160 column configuration, connect the LD1 to U1/SD1, U1/SD2 to U2/SD1 and U2/SD2 to LD2.

For 80 column configuration, connect the LD1 to U1/SD1, U1/SD2 to LD2.

Figure 3a. The hardwire for 160 column

Figure 3b. The hardwire for 160 column

Figure 4a. The hardwire for 80 column

Figure 4b. The hardwire for 80 column

Setup on-chip LCD timing generator

There is a on-chip LCD timing generator on MC141516 which provides the BPCLK, FRM and M for whole LCD system. By default, it is disabled when the EVK works with MC68HC05L11 MCU. However, it can be enabled by setting the jumper JP2 on the MC141518EVK when the EVK works with other MCU through the serial interface.

Disable the LCD timing generator: (Default)

Connect pin 2 \& pin 3 of JP2 jumper as shown in Figure 5a.

Figure 5a. Disable the LCD timing generator

Enable the LCD timing generator :

Connect pin 1 \& pin 2 of JP2 jumper as shown in Figure 4.5b.

Figure 5b. Enable the LCD timing generator

Simple test for the EVK

The following is a simple test procedure used to check the functionality of the MC141518EVK.
a) Connect the MC141518EVK to the EVM
b) Connect the EVM to the PC
c) Turn on the supply (VDD $=5 \mathrm{~V}, \mathrm{VLCD}=10 \mathrm{~V}$)
d) Turn on the LCD by following command:

Command	Description
C:IEVM05> EVM05 > MM 32	Execute the EVM05 in the PC Dos prompt Modify the Control Miscellaneous Register at $\$ 32$
= 81 .	Set display on
> MM 31	Modity MUX Register at \$31
$=3 \mathrm{~F}$.	Set the MUX Register to 63

e) Adjust the VLCD gradually from 10 V to 15 V and observe the LCD
If random pattern displayed, the EVK is OK. If not, check
the connection and repeat the procedure (d) to (e).

Reference

Please also refer to the MC68HC05L11 Product Preview, the MC141516 and MC141518 Product Preview and the M68HC05L11EVM Evaluation Module User's Manual for more information:

Hardware Configuration

The hardware configuration of the MC141518EVK is shown in Figure 6a.

Figure 6a. Hardware configuration of the MC141518EVK

- JP1: Connect to MC141518 Adapter Board for receiving control signal and display data.
- JP2 : Select internal / external LCD timing generator.

The pin assignment of JP1 is shown in Figure 6b

Figure 6c. Hardware configuration of MC141518 Adapter Board

- JP3 : Connect to MC141518 EVK for sending control signals and display data.
- JP4 : Connect to power supply (VLCD).
- JP5 : Connect to M68HC05L11 EVM Evaluation Module.
- VR1: Alter the brightness of the LCD panel.

The pin assignment of JP3 is shown in Figure 6d

	1	2	V1
	3	4	DOFF
	5	6	SHCLK
	7	8	FRM
	9	10	CR1
	11	12	DDIR
	13	14	BPCLK
	15	16	BSO
VDD	17	18	LD1
GND	19	20	LD2

Figure 6d. Pin assignment of JP3

Figure 7. The MC141518EVK Outlook

The pin assignment of JP4 is shown in Figure 6e.

Figure 6e. Pin assignment of JP4
The pin assignment of JP5 is shown in Figure 6 f.

Figure 6f. Pin assignment of JP5

Product Information
 MC141537 Evaluation Kit

The MC141537EVK is a demonstration of the MC141537T1 works with a 120×16 LCD panel．In addition，three annuciators （icons）can also be seen in the left of the LCD panel．Figure 1 shows the outlook of the EVK．

The EVK is composed of essential exter－ nal components of MC141537．There is one contrast control variable resistor indi－ cated in the figure to control the contrast level of the LCD panel．There is a header used to connect the external control from MCU．For the pin assignment of the header，please refer to the EVK Header／ Connector section．

EVK Control

Function Control

The header on the EVK is used to control the MC141537 to perform the function desired．

Figure 1 EVK Outlook

Contrast Control

The contrast control is performed by tuning variable resistor on the upper board as shown in the figure．For lower contrast，turn the VR anti－clockwise；for higher contrast，turn the VR clockwise．

EVK Header／Connector

The header is used to connect the MCU signal to the EVK board．The pin 1 position is marked on Figure 1．The pin assignment of the header is as follow：

Function	$\frac{0}{2}$	\|	O	10	$\sum_{〔}$	18	$)_{0}^{\infty}$	옹	「	※	¢	\％	边	¢	人	Ш	$\frac{0}{\gtrless}$	$\underset{~<~}{8}$	8	2	2	O	U	O
Pin Number	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24

The users can use the upper board to build prototype application that matches the pin out stated above．

Troubleshooting

No display

Check the Connection of DVDD，DVSS，AVDD，AVSS

Only icons display

Turn the contrast control VR clockwise to increase the contrast level．

All black display

Turn the contrast control VR anti－clockwise to decrease the contrast level．

Missing Segment

Bad contact from the MC141537T1 TAB to the LCD panel．（Return to factory for replacement）
Caution：Keep the outer leads of the TAB away from touch or they will be damaged．

Figure 2a

Figure 2b

Figure 2a, 2b The outlook of MC141537EVK (The EVK shipped may have difference)

Product Information
 MC141539 Evaluation Kit

The MC141539EVK is a demonstration of the MC141539T1 works with a 120×32 LCD panel．In addition，four annuciators （icons）can also be seen on the left of the LCD panel．Figure 1 shows the outlook of the EVK．

The EVK is composed of essential exter－ nal components of MC141539．There is one contrast control variable resistor indi－ cated in the figure to control the contrast level of the LCD panel．There is a header used to connect the external control from MCU ．For the pin assignment of the header，refer to the EVK Header／Connector section．

EVK Control

Function Control

The header on the EVK is used to control the MC141539 to perform the function desired．

Figure 1 EVK Outlook

Contrast Control

The contrast control is performed by tuning variable resistor on the board as shown in the figure．For lower contrast， turn the VR anti－clockwise；for higher contrast，turn the VR clockwise．

EVK Header／Connector

The header is used to connect the MCU signal to the EVK board．The pin 1 position is marked on Figure 1．The pin assignment of the header is as follow：

Function	$\begin{aligned} & 0 \\ & 20 \\ & 2 \end{aligned}$	$\mid \underset{y}{\|c\|}$	O	10	范	18	苋	앙	$\bar{\square}$	ก	\％	¢	辺	$\stackrel{\square}{\circ}$	人	山	$\frac{8}{2}$	$\stackrel{\infty}{\gtrless}$	－	2	2	O	O	O
Pin Number	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24

The users can use the board to build prototype application that matches the pin out stated above．

Troubleshooting

No display

Check the Connection of DVDD，DVSS，AVDD，AVSS

Only icons display

Turn the contrast control VR clockwise to increase the contrast level．

All black display

Turn the contrast control VR anti－clockwise to decrease the contrast level．

Missing Segment

Bad contact from the MC141539T1 TAB to the LCD panel．（Return to factory for replacement）
Caution ：Keep the outer leads of the TAB away from touch or they will be damage．

Figure 2a

Figure 2b

Figure 2a, 2b The outlook of MC141539EVK (The EVK shipped may have difference)

Product Information

The MC14163EVK is a demonstration of the MC141562 and the MC141563 works with a 320 $\times 200$ LCD panel．Figure 1 shows the layout of the EVK．

The EVK is composed of essential external components of two MC141562 and four MC141563．There are 14 golden pads used to connect the external control from MCU．For the pin assignment，refer to the EVK Control Pin Assignment section．

EVK Control

Function Control

The Control Pins on the EVK is used to con－ trol the LCD module to perform the function desired．For the detailed information of the con－ trol signals，please refer to the data sheet of MC141562 and MC141563．

Contrast Control

The contrast control is performed by adjusting the VO pin on the LCD module as shown in Figure 2．VO is the voltage supply to the internal LCD bias circuit．

EVK Control Pin Assignment

There are 14 pads used to connect the MCU signal to the EVK board． The pad 1 and 14 are marked on Figure 1．The assignment of the pads are as follow：

Pin Name	O	$\underset{\underset{\sim}{\underset{\sim}{4}}}{\substack{\Sigma}}$	号		9	$\stackrel{Q}{\square}$	$\mathscr{\infty}$	岂	$\stackrel{刃}{\square}$	N	亏	을	$\underset{\sim}{\infty}$	年
Pin Number	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Connection to MC141562	Σ	$\begin{aligned} & \stackrel{*}{\mathbf{U}} \\ & \stackrel{\rightharpoonup}{\ddot{2}} \end{aligned}$	$\begin{aligned} & \text { Y } \\ & \text { U } \\ & \hline \end{aligned}$	－	＇	号	$\mathscr{\infty}$	$\stackrel{\text { 山 }}{\underset{>}{u}}$	，	，	，	－	$\stackrel{\infty}{8}$	免
Connection to MC141563	Σ	，	\bigcirc	$\begin{aligned} & \text { Y } \\ & \text { J } \end{aligned}$	－	○	$\stackrel{9}{7}$	$\stackrel{山}{\underset{>}{u}}$	\％	\％	$\bar{\square}$	응	$\stackrel{4}{8}$	艺

Figure 2 Contrast Control

The users can use the board to build prototype application that matches the pin out stated above．
＊Only connected to the EIO4 of the lower MC141562 indicated in Figure 1.

Troubleshooting

All black display

Try to adjust the contrast to decrease the contrast level．

Missing Segment

Bad contact from the TAB to the LCD panel．（Return to factory for replacement）

Figure 3 The outlook of MC141563EVK

Application Notes and Technical Articles

Application Note LCD Driver for Mobile Application

Advanced Digital Consumer Division - Display Products Motorola Semiconductors Hong Kong Ltd.

W.M. Lo, Vincent W.S. Wong, Humphrey Leung, Stephen Cheung

Abstract

Traditionally, the LCD driver chip has been playing the simple role of signal driving for LCD panels. However, with the recent trends in mobile applications, such as cellular and pager, moving towards highly integrated, compact, lightweight, with a long-battery life, both the function and package considerations of the LCD driver chips are becoming critical to fulfil the requirements of the new generation mobile communication applications. This paper will present the requirements and design of the LCD driver chip for mobile communication applications.

Introduction

Due to the increasing features and performance of the new generation mobile communication devices, the conventional simple LCD driver design cannot satisfy the requirements. Important features like power saving, small size, light weight, high display quality and a bigger screen should be integrated into the LCD driver chip to increase the performance and lower the cost of the mobile communication device.

Besides the chip design, package design is also important for mobile communication devices. Over the last few years, conventional SMT as a QFP package has emerged as the new generation, high density surface mount solution to the hand held applications. However, for high performance mobile communication applications, the display panel requires 120 segment, 33 common, many icons and other input control pins. The conventional 208 QFP package, which is costly and big in physical size, cannot easily fulfil the application requirement. The TAB (Tape Automated Bond) package is the most suitable solution for LCD driver mobile communication applications. TAB, which is made out of flexible film-type material, can provide a very thin package ($<1 \mathrm{~mm}$). The TAB package can be folded to the back side of the panel to minimize space. A custom-made TAB package can fully utilize the spacing inside the mobile communication device. The package cost of TAB is low compared to a QFP package for high pin count device.

Due to the increased demand and lower cost in personal communication services, cellular and pager are moving to new generation with more features and usage. The new
generation will be commercialized to all classes of people such as students, housewives, doctors, ... etc. Several requirements are important for the new generation mobile communication devices:

- Good display quality
- Long battery life
- Greater portability
- Light weight
- Low Cost

LCD Driver Configuration

The heart of the mobile communication device is a microcontroller which controls the operation of the system. The other components are an LCD screen, decoder, RF block, DC-DC converter, memory chips (RAM/ROM), buttons, and back-light.

Among all the components inside the mobile communication system, the display acts a very important role. End users of the communication products may pick their choice of products mainly because of the quality and the amount of information they can get from the display. A well designed LCD driver not only provides better display quality, but it also increases display features. It provides greater portability to achieve the requirements for a high-performance mobile communication systems. Sophisticated all of which built-in LCD driver designs include low operation voltage, power saving mode, internal oscillator, many icons, DC-DC converter, contrast control, temperature compensation and graphic mode operation. These features all achieve the new generation requirements.
Figure 1 shows the MC141532 LCD driver design which incorporates all the important features in a chip.

Figure 1. MC141532 LCD Driver Block Diagram

LCD Driver Design Consideration

Voltage Divider

In order to reduce the system cost of the mobile communication system, a DC-DC converter and a voltage divider have to be integrated inside the LCD driver. In order to drive an LCD panels in multiplex ratios of 33 , five voltage levels are required for a " $1: 7$ bias" driving scheme. The supply voltage is divided into " $1 / 7$ ", " $2 / 7$ ", " $5 / 7$ " and " $6 / 7$ "of the supply voltage.

To generate five voltage levels, the resistor ladder is the simplest way and is usually used as shown in figure 2 . The five voltage levels are used to generate multi-level waveform to charge the capacitance of the LCD pixels. To get a high enough current, the resistance of the resistor ladder must be low. In this way, the D.C. current through the resistor ladder is high. A typical LCD driver supply using resister ladder design in a 120×33 pixel panel consumes 200 uA D.C. current.

Figure 2. Resister Ladder Voltage Divider
To reduce the D.C. current, an operational amplifier is usually added to the output of the resistor ladder. However, this method fails to reduce the D.C. current. When an operation amplifier is integrated into a chip, it is difficult to make the amplifier stable if the D.C. operating current of the amplifier is too low. Using this design in a 120×33 panel consumes about 50uA D.C. current even though a very careful design was used. On the other hand, the CMOS operation amplifier consumes a bigger chip area compared to resistor ladder itself. The chip cost will be higher for bigger chip area.

To overcome the high DC current and high chip cost problem, a design technique using switching capacitors is employed. Under the switching capacitor design techniques, a typical circuit in a 120×33 panel consumes only 5uA DC current.

Temperature Compensation

For highly multiplexed LCD, the operating temperature range may be restricted from 0 to $50^{\circ} \mathrm{C}$ if the driver voltage is fixed. The purpose of temperature compensation, as shown in figure $3 a$, is to automatically adjust the level of driving voltage (VIcd) to the LCD panel under different temperature environments. The threshold voltage of the liquid crystal has a negative temperature coefficient characteristic typically $-6 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. The required driving voltage will have to be lowered for higher temperature. In order to maintain the display quality of the LCD panel of different LC material for a wide range of operating temperature, a temperature gradient selection circuit is incorporated in to the voltage generator of the LCD driver circuit, as shown in figure 3b. This provides a negative compensation for different types of liquid crystal glass.

Figure 3a. Temperature Compensation

Figure 3b. Concept of Temperature Compensation

Power Saving Mode

For the mobile communication device, it works over 95% of the time in stand by mode. Most of the functional blocks of the device can be turned to stand by mode to save power at this time. What means stand by mode to the LCD is to display limited but sufficient information to the user. So the LCD driver is still displaying and working. To make the "stand-by current" minimum, special icon driving scheme have to be introduced to reduce the current.

1. Static Icon Mode

It is implemented by adding the one common and few segments drivers separated from the main matrix display. Under this mode, all other common and segment outputs will be disabled. Only these additional icon driving pins drive the icons on the screen. This "one Mux" scheme use no high voltage
level to drive the LCD icons, and the driving frequency is reduced. So very low power is dissipated by the LCD driver in this mode.

2. Low Power Icon Mode

Unlike Static Icon Mode, this scheme does not employ additional I/O pins. This driving method is to use one of a selected common output from the main matrix display of the LCD driver to drive the icons. And this common output will stay on while other will be off by a special screen off command. The scheme does not need DC/DC converter stay on neither so as to save more power. This Icon Mode is especially useful in higher information content display in the stand by mode, like the clock display, battery level or even signal level. This mode also use no high voltage to drive the icons and the driving frequency is reduced. So the power dissipated is much lower than the running mode.

Using this two special icon modes, designer can implement a two step smart stand-by mode in order to get a larger flexibility in the power saving feature.

TAB Package For Pager LCD driver

QFPs were initially used for LCD drivers, but the TAB package is becoming the mainstream today. The leadcount of LCD panels for a two line alpha numeric Chinese character display is around 120 pins for segment input and 33 pins for common input. The lead pitch of input leads of LCD panels is typically $0.2-0.3 \mathrm{~mm}$. This application requires the LCD driver of around 200 leadcounts. In order to achieve the low cost and portable target, the conventional big size 208 QFP package is not a suitable candidate for mobile communication applications. The TAB package is a very thin and light package. It is the most suitable package for the application using LCD. The TAB package is expected to grow rapidly in the LCD application because existing QFP packages cannot meet the requirements of high leadcount, small body size and low cost.

The Chip On Board (COB) method is currently used by many manufacturers. In COB , a wire bonding technique is used to make the connection between the LCD driver chip and the PCB. The panel is then connected to the PCB by using a heat seal cable (HSC) as shown in figure 4. This method has been providing a low cost solution for signal connection. The recent applications require a much higher LCD driver leadcount. Under this condition, the pad pitch of the chip is then reduced to become smaller. The fine pad pitch of the chip is becoming a limiting factor for wire bonding the chip on the PCB. The wire bonding of high pin count and fine pad pitch (<4.0 mil) LCD driver chips on PCB will cause assembly yield and quality problems which increases the manufacturing cost. The following is the comparison of minimum pad pitch design between inter-lead bonding (ILB) of TAB technology and wire bonding technology.

TAB
Wire Bonding (Al wire)
Wire Bonding (Au wire)

Minimum Pad Pitch
$2.0-3.0 \mathrm{mil}$
$3.3-3.5 \mathrm{mil}$
$3.5-4.0 \mathrm{mil}$
Reliable information delivery and robustness of the display is very important for a personal communication device. The TAB package that can provide excellent reliability performance for fine pad pitch and high pin count IC bonding is the most appropriate package for the mobile communication LCD driver application.

Figure 4. Connection Method for LCD Driver Chip

Advantage of Using TAB

The LCD driver chip is packaged into a tape film, commonly known as the TAB package, figure 5. As the thin film provides a high degree of flexibility like a flexible printed circuit (FPC), it is also used as the connector between the LCD panel and the PCB as shown in figure 6. This direct connection simplifies the manufacturing process and the end product design. The advantages of using the TAB package are:

- Package is light weight and thin,
- High leadcount but small package size,
- Flexibility and foldability (The LCD driver is a TAB package can be folded 90 or 180 degree from the mounting edge of the LCD panel.),
- Less PCB board space and cost (since the driver IC is now part of the PCB / LCD connector.)

Simplified interconnect process (It combines the IC placement and PCB / LCD interconnection processes into a single heat seal process. TAB may also be used in conjunction with HSC for a more flexible connection layout.)

Figure 5. LCD driver in TAB package

Figure 6. Connection methods for LCD driver TAB

Conclusion

Since the displayed features and display quality of the new generation of mobile communication devices are becoming so important for sales. LCD and the drivers is very important as to differentiate the product. Sophisticated features of LCD driver designs (including low operation voltage, current saving mode, internal oscillator, DC-DC converter, contrast control, temperature compensation, character and graphic mode operation) can achieve the new generation requirements. On the other hand, as the display density increases, like the multiple lines alpha-numeric application, more I/O connections from the driver ICs required. TAB offers a unique combination of high reliability, high packaging density and excellent manufacturability that will result in increased usage on mobile communication LCD driver applications.

Acknowledgment

James Y.S. Lei, William K.W. Wong, K.K. Leung, Jeco Pang, Andrew Kung, Benjamin Liu, George Lien

Reference

[1]O.L Chau, C.N Yan "Dual TAB Application - LCD Driver," Fifth International TAB/Advanced Packaging Symposium., pp.20-24, Feb., 1993.
[2] Motorola Semiconductors Hong Kong Limited, "MC141538 LCD Driver Data Sheet", Oct 1993.

Slim TAB Package for Flat Panel Display Applications

Jeco Pang, W.M. Lo

Motorola Semiconductors Hong Kong Ltd.

Abstract

Owing to the fast growing demand of flat panel display on hand held electronic products such as pager, cellular, PHS, PDA, organizer, notebook, LCD-TV, etc., the shift from plastic molded quad flat packages (QFPs) and die bonding, which have been the mainstream package in wire bonding for display driver, to TAB packages is proceeding rapidly. Tape automated bonding (TAB) tape is now widely used for display drivers. TAB is compact, light weight, thin, flexible and idea for a high pin count device.

Cost is being recognized as one of the important factors on the display industry. The cost consideration is not only the display driver itself but also the manufacturing and system cost of the display system. With the appropriate design of

TAB package for the application, high performance with a low system cost can be achieved.

Introduction

Nowadays, quality and reliability are a kind of must in each IC package. Regarding to technology, it is highly relied on the development of new material and equipment. More or less, each supplier will provide similar quality, reliability and technology IC package to its customers. The only way to put itself in a better position in the market is to drive down the total system cost of the display system. IC packaging is one of the big areas for cost reduction because packaging can represent a large percentage of the total system cost.

Figure 1. LCD TAB Manufacturing Flow

LCD TAB Manufacturing Process Flow

Basically, TAB manufacturing flow, Figure 1, is quite simple when comparing with that of conventional package like PDIP, QFP \& so on. It is because the manufacturing steps in semiconductors house are fewer. It only involves wafer mount, wafer saw, inner lead bonding, encapsulation, marking, oven curing and testing. For the wafer mount and saw processes in TAB manufacturing flow, they are the same as those of conventional packages. The inner lead bonding \& encapsulation processes can be treated as die bonding plus wire bond processes \& molding process respectively. Dejunk, plating, trim \& form processes are no more required in TAB manufacturing.

Slim TAB vs. Conventional TAB

The most significant change in the LCD application is the adoption of slim TAB. The TAB LCD driver IC has been modified to minimize the overall size of the display. For example, instead of using a chip that is $5 \mathrm{~mm} \times 5 \mathrm{~mm}$, a slim rectangular die of size 1.5 mm by 17 mm is bonded to a TAB tape that has a total width of only 9 mm . This greatly reduces the size of the TAB tape bonded to the edge of the glass panel. Conventional TAB with folding window and slim TAB package are shown in Figure 2.

Conventional TAB (folding)

Slim TAB

Figure 2. Different TAB Packages
In applications, the slim TAB provides a narrow width that will reduce the overall size of the LCD module as show in Figure 3. By using a conventional TAB package, the size of the LCD module is increased.

Conventional TAB application

Slim TAB application

Figure 3. Conventional TAB vs. Slim TAB applications
One important effect of slim TAB is reduction in TAB tape material consumption. Slim TAB uses two or three sprocket holes of tape comparing to five or six for conventional TAB. The TAB package cost can also be reduced by using less TAB tape material. Especially for color LCD applications, the use of slim TAB could almost offset the cost increase on three times the number of TAB LCD drivers. As shown in Figure 5, the die of size $6.2 \times 6.4 \mathrm{~mm}$ will consume more TAB tape material that will cost higher. The TAB package cost will decrease when the larger aspect ratio die is employed. However, when the aspect ratio goes up to a certain value, say $1.5 \mathrm{~mm} \times 27 \mathrm{~mm}$, the TAB tape cost will increase again because the die length exceeds the routable area of the 35 mm TAB and 48 mm TAB needed to be used will cost higher them.

Concerning the die cost, long aspect ratio die will increase the number of incomplete die on wafer edge. This result in a decrease in the total number of die per wafer as shown in Figure 4. For example, a die size of $4.7 \mathrm{~mm} \times 4.7 \mathrm{~mm}$ (aspect ratio $=1: 1$) will have 330 pcs of dice per 6 inch wafer comparing to a die size with $1.4 \mathrm{~mm} \times 20 \mathrm{~mm}$ (aspect ratio $=1$: 20) which has only 290 pcs of dice although they have the same die area.

Figure 4. Die Count per 6" wafer vs. Die Aspect Ratio

Figure 5. TAB LCD Driver Cost vs. Die Aspect Ratio

The die cost is determined by the total number of good dice per wafer. The higher the die count will decrease the die cost. The decrease in die count per wafer for long aspect ratio die will then increase the die cost of production as shown in Figure 5. Therefore, the aspect ratio of die must be carefully designed so that the total cost of the TAB LCD driver can be optimized.

TAB Design Consideration

It is very important that TAB package design is optimized with the manufacturing process and user applications. The TAB design process begins with the IC design, then
progresses through gold bump design, inner lead bonding (ILB) design, outer lead bonding (OLB) design, TAB pattern design. Manufacturability, testing, cost and performance of user applications are the major guiding track on the TAB design process. Some of the main points of each design techniques are explained below:

The TAB design begins with the IC design stage. The chip layout must match with the TAB package design. The chip layout is divided into input terminals and output terminals. The input terminals will be connected to the PCB side and the output terminals will be connected to the LCD glass side. In the conventional TAB design, Figure 6a, the output terminals are placed along three or four sides of the IC
chip. The input terminals will place on one side only. For slim TAB design, Figure 6 b , in order to minimize the width of the TAB package, the die will have a very long aspect ratio. Many of the output terminals will place at one side and input terminals will place at the opposite side. The pad pitch of the die layout is a key factor to determine the minimum width of a slim TAB design.

Figure 6a. Die Layout for Conventional TAB Design

Figure 6b. Die Layout for Slim TAB Design
Also, it is important to design the layout of bond pads on chip and TAB tape for checking the electrical characteristics of the IC on wafer and on final testing stage. Owing to the cost reason, LCD driver that has very high pin count is normally a pad limited design, the smaller the pad pitch will usually consume less silicon and TAB material while the design of a pad size shape must allow accurate probing, the size of pad must be design as big as possible to provide better probing capability during electrical test stage. In order to optimize the manufacturability and cost, stagger bond pad design is used as Figure 7.

For gold bump design, Figure 8, the size of aluminum pad and overcoat will determine the optimal size of gold bump. The bump pad must be carefully designed so that it will not have lift bump or short bump problem.

Figure 8. Bump Pad Design
For TAB tape design, the guidelines are as follows:

1) Alignment marks

Alignment marks are very useful to assist operator or vision system to align fine pitch outer lead and the indium thin oxide (ITO) electrode on panel. Normally, they are located at two sides of fine pitch outer leads. The operator or vision system is only required to align corresponding marks so that the connection between the outer lead and the ITO will be accurately formed. Of course, manual alignment and vision system assisted alignment has a little bit difference. The guide line is larger in dimension for operator (normally > 1.0 mm) and smaller in dimension for vision system (normally $<0.8 \mathrm{~mm}$) which are mostly depended on machine accuracy. For vision system, the most desirable shape for alignment marks is circle or square because the center point of the alignment marks will be used as datum for alignment. Therefore, location of the center point of circle or square in shape alignment marks is easier than that of other. Example of alignment mark is showed as Figure 9.

Figure 9. Example of Square Alignment Mark

Figure 7. Stagger Pad Design

2) Maximum effective area for pattern routing

Actually, maximum effective area for pattern routing is very important because it will affect the overall design and the cost. Different TAB tape formats will have different effective areas for pattern routing. Incorrect selection of format for its applications will in turn loss money because TAB package cost is heavily dominated by the TAB tape area. In other words, the more the TAB tape material being used, the higher the TAB package cost is. The Figure 10 shows the capability of one of the TAB tape manufacturers about the tape effective width and length for different TAB tape formats.

TAB TAPE FORMAT	MAXIMUM "A"	MAXIMUM "B"	NO. OF SPROCKET
35 mm STD	23.5 mm	60.0 mm	13
35 mm WIDE	25.0 mm	60.0 mm	13
35 mm	28.6 mm	60.0 mm	13
SUPER			
48 mm WIDE	38.0 mm	66.5 mm	14
48 mm	41.6 mm	66.5 mm	14
SUPER			
70 mm WIDE5	9.0 mm	66.5 mm	14

Figure 10. Maximum Effective Area For Pattern Routing

3) Folding slit

The purpose of the folding slit is to increase the flexibility of TAB package, Figure 11. The TAB package can be easily folded after mounted on the LCD panel. The distance between two slits is depended on the thickness of the panel and overall module assembly requirement. However, it should be greater than 1.0 mm and the length of the slit should be max. 42 mm along and 20 mm perpendicular the sprocket hole respectively as a guide line.

Figure 11. Application of TAB Package with Folding Slit
4) Normal design against Mirror design TAB tape

Since there are two types of inner lead bonding method regarding to the TAB tape orientation, they are named as "normal design TAB tape" and "mirror design TAB tape", Figure 12. In normal design TAB tape, the die surface is facing up and the polyimide (tape) side is facing down (copper pattern is facing up). While in mirror design TAB tape, the die surface is facing up, the polyimide (tape) side is also facing up (copper pattern is facing down). The selection requirement for normal design or mirror design is depended on the real configuration in LCD panel module assembly.

Figure 12. Normal Design vs. Mirror Design TAB Tape
5) Outer lead pitch / width / spacing

For each application, it should have its requirement in outer lead pitch, width and spacing. It is a kind of matching between TAB tape outer lead and the ITO on panel. The pitch size can be from 300 micron down to 70 micron which depends on its application. Of course the min. pitch is highly dependent on the Anisotropic Conductive Film material (ACF)
and performance of the outer lead bonder. According to ACF material supplier, 50 micron pitch ACF is now being developed so as to match the min. fine pitch planned capability from some of the best in class TAB tape manufacturers. Figure 13 shows the relationship amongst outer lead pitch, width and spacing.

Figure 13 Outer Lead Pitch / Width / Spacing
6) Dummy lead

In order to prevent any external damage to the active outer lead, it is recommended to add some dummy leads to both ends of the outer leads, Figure 14. Even if there is any external shock to the outer leads, dummy leads can act as protection leads.

Figure 14 . Dummy Lead
7) Polyimide adhesive material

Talking about the active outer lead protection, a very thin film polyimide adhesive about 10-80 micron thick per side can be coated to the folding slit so that the rigidity of the overhanging outer leads can be strengthened significantly. Of course, one side coating and double side coating can be selected according to the requirement. However, the overall price per unit will be higher by 15-20\% and 30-40\% for one side and double side coating respectively.
8) Super slim TAB design considerations

Actually, there is no significant difference in design and inner lead bonding between normal TAB tape and super slim TAB tape. However, attention should be paid when you desire to design a super slim TAB tape and to perform inner lead bonding as follows.
a) At least 1 mm spacing is required between the edge of device hole and the slit hole for input outer lead, Figure 15. It is because enough area for copper pattern adhesion is very important especially in the area between the edge of the device hole and the slit hole so as to prevent copper peel off from the polyimide film. Copper pattern routing path and its width in this area should be maximized so as to achieve this requirement.

Figure 15. Spacing Requirement for Super Slim TAB Tape
b) In a super slim die, normally all output leads are arranged on top side of the die and the input leads are arranged at bottom side for the sake of easier routing. In order to keep good balance and prevent die tilting during inner lead bonding, dummy leads in input side are recommended to add so as to balance the bonding force. The suggested output leads to input leads ratio is 4: 1 .
c) According to some top TAB tape manufacturers, the minimum inner lead pitch is 70 micron for super slim TAB tape in production mode at this moment.
d) In order to make the TAB tape more accurate, the center of the device hole should be located in the center line of the sprocket hole in the rolling direction.
e) Coplanarity is very important in inner lead bonding. In order to get a better bonding quality in super slim TAB package, high temperature lapping inner lead bonding tool should be used during the inner lead bonding so as to achieve enough flatness amongst tool, TAB tape \& gold bump.

Future Trend

To be competitive in the display market, it is required to take care of several important things like quality, reliability, technology \& total system cost. TAB systems have undergone drastic changes in design, requiring finer feature sizes and dimensions. Therefore, proper design consideration that works closely to customers in the very beginning stage is very important, especially for the IC and package design.

Nowadays, super slim TAB is a kind of new LCD driver market trend. It is because it can lower down the material cost and the overall size of the end product can be reduced. The number of pin count of TAB LCD driver is increasing from 240 to 320. This also pushing the pitch size of OLB from 70um to 50 um. The copper thickness on TAB is also required to be reduced to match with the change. Thus, the successful implementation of a fine pitch TAB technology requires materials steady processes, high reliable equipment. Concerning the TAB material, since the TAB package cost is heavily depended on the polyimide tape material, a newly developed polyimide tape or its replacement material should be born so as to significantly cut down the package cost.

Acknowledgement

K.K. Leung, Gary Fung

Reference

[1] O.L Chau, C.N Yan "Dual TAB Application - LCD Driver," Fifth International TAB/Advanced Packaging Symposium., pp.20-24, Feb., 1993.
[2] Motorola Semiconductors Hong Kong Limited, "MC141539 LCD Driver Data Sheet", 1996.

Application of MC14153X Integrated LCD Segment / Common Driver

Advanced Digital Consumer Division - Display Products Motorola Semiconductors HK Ltd.

Vincent W.S. Wong

INTRODUCTION

MC14153x is a series of integrated CMOS LCD Drivers which consist of both common and segment driving outputs. It has parallel interface capability for operating with general MCU. In addition to the general LCD driver features, they also have on chip LCD bias voltage generator and temperature compensation circuit so that fewer external components are required in application.

DESIGN CONSIDERATIONS

When making use of the MC14153x series LCD driver, there are some considerations that must pay attention to:

- Display size
- Operation voltage
- Internal or external voltage divider
- Internal or external oscillator
- Internal or external contrast control
- Control signal generation $\mathrm{D} / \overline{\mathrm{C}}, \mathrm{R} / \overline{\mathrm{W}}, \overline{\mathrm{CS}}(\mathrm{CLK}), \mathrm{CE}$
- TAB package

DISPLAY SIZE

The display size is one of the significant factor in choosing which LCD driver is most suitable for a particular application. The driver classified by its display size x by y dots. Note that some of the drivers in the series have multiple mux ratio, that means the driver can turn on full panel, half panel or only icon line. This can be done by issuing command to the LCD driver to change its display mode.

OPERATION VOLTAGE

The operation voltage of the driver can be single supply $2.4-3.5 \mathrm{~V}$. The built-in voltage multiplier will generate doubled or even tripled the input voltage (V_{DD}) and will feed it to the on chip voltage divider internally in order to generate the needed LCD driving bias voltage from the input voltage. Under this configuration, only few capacitors are required to connect to the driver to make it works (refer to Figure 1). However, user can build the voltage multiplier and even voltage divider by their own.

INTERNAL OR EXTERNAL VOLTAGE DIVIDER

It is recommended to use the internal voltage divider to generate the required bias voltage to the LCD since it can save more power and use less components. If external
voltage divider is employed, the divided voltages should be fed to VLL6, VLL5, VLL4, VLL3, VLL2. These voltages should be set according to the LCD panel specification.

INTERNAL OR EXTERNAL OSCILLATOR

The LCD driver can use both internal or external oscillator. To use the internal oscillator, just connect the OSC1 pin to OSC2 pin by a resistor. The usable value of the resister varies from one driver to the other. Refer to respective data sheet for detailed description. The LCD driver can also use the external oscillator as the clock.

INTERNAL OR EXTERNAL CONTRAST CONTROL

The LCD driver consist of internal contrast control function which is an advanced feature controlled by software command. It is advised that both external and internal contrast control should be implemented during development phase. The reason is that the external contrast control is used to select a suitable contrast which can be further controlled by the internal contrast control.

Figure 1. External contrast control
Figure 1 details the implementation of the typical application. Note that the operation voltage of the circuit is 3 V and take MC141539 as the example. For other voltage or other driver, the resistor value may be different.

CONTROL SIGNAL GENERATION

The LCD driver can interface to general MPU/MCU. It is easy to control through general I/O ports. For those LCD driver have the CE pin, it can also be used in memory mapped I/O application. (Note: the CE pin of most of

Figure 2. Typical Application of MC141539
the MC driver is active high) For dedicated I/O port control of the LCD driver, the CE can be pulled high during all the time of application. For data bus sharing purpose, CE should be pulled low when not selected as the I/O device and the data pin D0~D7 will be high impedance state. Only pull CE high when the LCD driver is selected to be a device to control.
The $\mathrm{D} / \overline{\mathrm{C}}, \mathrm{R} / \overline{\mathrm{W}}, \overline{\mathrm{CS}}(\mathrm{CLK})$ combine with the $\mathrm{D} 0 \sim \mathrm{D} 7$ pin to form the control and data I/O block. The detail timing can be obtain in the data sheet. D / \bar{C} input determines the input in DO~D7 is Data or Command. R \bar{W} input high to read display data or internal status while input low to write data or command to the LCD driver. The $\overline{\mathrm{CS}}(C L K)$ pin latches the input from D0~D7.

APPLICATION EXAMPLE

The above figure shows the typical application of the LCD driver. This example employed the MC141539T1 and it is configured as 32 MUX and 1:7 bias ratio. Also, internal divider, internal voltage multiplier and internal oscillator are used.

The interface to the MCU is parallel. The user should only take care the control signals and D0~D7 I/O. For direct I/O port control from MCU, pull CE to high. For memory mapped I/O application, the CE, D/C and $\overline{\mathrm{CS}}$ signals are to be generated by a decoder.

Figure 3. Memory Mapped I/O application using 16V8
In this design, there are two address in the MPU to represent the command write and the data read / write. For example, when \$A0 input to the decoder, Q1 and Q2 output 1 and 0 respectively, which is a command write operation. When address input is \$A1, the Q1 and Q2 pin of the decoder will both 1 s , which is a data read/write operation, depending on the $\mathrm{R} \overline{\mathrm{W}}$ input of the LCD driver. The Q3 pin is programmed to go high from low after one clock of Q1 and Q2 generated. And Q3 will go low from high again in next clock to latch the data D0~D7 to / from the LCD driver. Note that the MPU must wait for four clock cycles before issuing new address and data in this case.

	State 1	State 2	State 3	State 4	State 5
Clock	1	2	3	4	5
Address	AO / A1	AO / A1	AO /A1	Don't Care	Ready for new address
Q1, Q2	00	$10 / 11$	$10 / 11$	$10 / 11$	00
Q3	0	0	1	0	0

The table above shows the states of the decoder which is programed as a state machine. The maximum clock input to the decoder depends on the timing of the LCD driver.

TAB PACKAGE

Most of the MC14153x LCD drivers are in TAB package. To use it, direct bonding to LCD panel by ACF (Anisotropic Conductive Film) or bonding to the HSC (Heat Seal Cable) and then to LCD panel are two ways to connect the LCD driver to the LCD panel.

Figure 4. The outlook of TAB package
Figure 4 shows the generic TAB layout of the LCD driver. The polyimide tape is the main carrier of the TAB package. The test pads are just for testing purpose in factory and should be cut off before bonding to LCD panel or HSC. The Common and Segment outputs are on the Out-
put Leads. The Input Leads are the control signal inputs and essential components connections to the LCD driver. The sprocket holes are the square holes on the both sides of the TAB which is used to pull the TAB package from the carrying wheel. And the locating holes are for rough alignment. To align the TAB to the LCD panel or HSC precisely, a square or cross style alignment mark will be marked on the TAB package. (Most likely located besides the both sides of the Output Leads, and not marked on the figure above). This mark will be aligned to the mark previously made on the LCD glass or the HSC.

They can also be simply cascaded to drive a display of any required size. Clearly, the number of chips and interconnections increases directly as the number of segments. This limits the practical size of a display using this arrangement. The output pin to segment connections can be chosen to suit the application. The arrangement used here has been chosen to be compatible with the 4 -backplane MC145000 driver used in a later example.

The MC144115 has a three-line serial interface consisting of clock, data, and chip enable. The clock and data lines can be shared with other peripherals, provided that each peripheral has a separate enable line. The enable line can, however, be derived from the clock if no other chips share the clock and data. This method of saving an I/O line is used in application note ANE416. The MC144115 software example (listing 1) has been modified from the routine used in ANE416.

Figure 1. Single-backplane LCD display with MC144115P display drivars

Driving LCDs with M6805 Microprocessors

By Peter Topping MCU Applications Group Motorola Ltd, East Kilbride

INTRODUCTION

M6805 microprocessors include a wide range of parts with a large diversity of on-chip features. These include A/D and D/A convertors, serial interfaces, timers and display drivers. The display drive capability of the microprocessors range from none beyond I/O pins, through high current ports, to specialised displaydrivers for LCDs and vacuum fluorescent displays.

The MC68HC05M series have vacuum fluorescent drive capabilities up to 40 V . The MC68HC05L series include LCD drivers with capabilities ranging from the MC68HCO5L6 (3 or 4 backplanes and 24 frontplanes) through the MC68HC05L7/9 with 8 or 16 backplanes and 60/40 frontplanes. The L9's 40 frontplanes can be expanded to 205 with three MC68HC68L9 expanders.

Microprocessors without special LCD circuity can be used to drive single backplane LCDs directly but require regular software intervention if the requirement that the display receives only AC drive is to be met. Alternatively display driver chips can be used to interface microprocessors with single and multiple backplane displays.

This application note gives hardware and software examples for these differentarrangements. The same methods also apply to other families of microprocessors, eg M6801 and M68HC11. The examples are arranged in the order of the number of backplanes.

SINGLE-BACKPLANE DISPLAYS

Single-backplane displays are commonly used where the number of segments required is limited, usually using the 7 -segment format. They have the advantages over multiplexed displays of superior contrast and viewing angle and a wider range of operating voltage and temperature. They can be driven directly by microprocessors with the number of segments limited simply by the number of available pins which are (or can be configured as) outputs. An output pin is required for the backplane together with one for each segment. The ports are loaded with the segment data corresponding to the required display, as with any other peripheral being directly driven by $1 / O$ lines. In this case, however, the microprocessor must complement the signals (backplane and frontplanes) atregular intervals, thus satisfying the requirement that the display receives an AC waveform with only a small DC component. It is possible for interrupts to alter the timing of these voltage reversals and the programmer must ensure that the resultant DC component does not exceed that above which the life of the display is reduced.

An alternative method of driving single-backplane displays from microprocessors is to use an LCD driver. Figure 1 shows a 6 -digit 7 -segment circuit using 3 MC144115P LCD drivers. These chips are driven serially and constitute a simple shift register giving the programmer full control over the display.

LISTING 1

THREE-BACKPLANE DISPLAYS

The MC68HC05L6 can drive 24 frontplanes and either 3 or 4 backplanes, the number of backplanes being selectable in software. The data to be displayed is arranged in the display RAM as shown in figure 2. Note that data sheet for the MC68HC05L6 (ADI1254) shows this relationship wrongly.

It can be seen that each frontplane occupies a nibble in the 12-byte RAM. There is thus a simple relationship between RAM location and displayed digit on a 4-backplane 7 -segment display (each 2 frontplane digit corresponds to one byte). With a 3-backplane display, however, each digit corresponds to 3 nibbles (1.5 bytes) so the software required to translate the required segments into display RAM data is more complex. Listing 2 shows a suggested method of doing this.

LCD data latch 00	7	6	5	4	3	2	1	0
$(\$ 00)$	Bp 1	Bp 2	Bp 3	Bp 4	Bp 1	Bp 2	Bp 3	Bp 4
	Fp 01				Fp 02			

Figure 2. MC68HC05L6 back/frontplane pin to LCD data latch bit relationship

The table which translates the required character into segments contains 2 bytes per character, the middle nibble of the 3 required being repeated. This simplifies the code required to write to the display RAM by using one nibble if the character is intended for an even position in the display and the other for an odd position. Figure 3 shows the L6-LCD segment arrangement used in this example.

When using a microprocessor without an LCD drive capability a separate display driver can be used to drive a multiplexed display. The example shown in figure 4 and listing 3 uses the ICM7231B 3-backplane driver. The ICM7231B requires each character to beaddressed through pins A0, A1 and A2 and the appropriate data written to pins D0, D1, D2 and D3. This parallel control uses more I/O lines than the serial arrangement employed in MC145000/1 and MC144115 drivers.

The fact that data is accepted in HEX and encoded into segments by the driver simplifies the software but reduces the versatility of the display as only the driver's 16 characters are available. The ICM7231B driver displays 0-9,-, E, H, L, P and blank while the ICM7231A displays 0-9, A, B, C, D, E and F.

As with any multiplexed LCD drive, the contrast is dependent on the supply voltage to the driver's multiplexer circuitry. In the case of the ICM7231, contrast can be adjusted using the potentiometer on pin 2 (figure 4).

Figure 3. MC68HC05L6 with a 3-backplane LCD

LISTING 2

60						
61			*			
62			*	Main	op for L6	ectly driven LCD.
63			*			
64			*	This	broutine as	nes that 0 contains
65			*	HEX d	for displ	. As each character
66			*	requi	s $1 / 2$ bytes	bits contained in
67			*	3 nib	es with 1 b	(backplane) in
68			*	each	bble not us) each execution
69			*	of th	loop handle	2 characters.
70			*			
71			***			
72						
73	00000120	$3 \mathrm{f59}$	START	CLR	H2	Initialise digit pointer.
74	00000122	a680		LDA	\#\$80	First write to $\$ 09$: Bus/LCD ratio $=256$.
75	00000124	b709		STA	LADD	4-backplane, fast charge enabled.
76	00000126	be59	L60P	LDX	W2	
77	00000128	e650		LDA	Q.X	Get HEX data.
78	0000012a	a40f		AND	\#SOF	Only lower nibble is relevant.
79	0000012c	48		LSLA		$x 2$ (two bytes per digit in table).
80	0000012d	97		TAX		
81	0000012e	d60100		LDA	L6TAB.X	Get first byte from segment table.
82	00000131	b708		STA	LDAT	Send it to LCD data latch.
83	00000133	3c09		INC	LADD	
84	00000135	d60101		LDA	L6TAB+1. X	Get second byte of segment data.
85	00000138	44		LSRA		From this byte only the
86	00000139	44		LSRA		upper nibble is relevant. lower
87	0000013a	44		LSRA		nibble is lost as upper nibble
88	0000013b	44		LSRA		is shifted down.
89	0000013c	b758		STA	W1	Save nibble, to be combined with first
90	0000013e	3c59		INC	H2	nibble of next digit.
91	00000140	be59		LDX	W2	Address of next digit in 0.
92	00000142	e650		LDA	Q. X	Get HEX data.
93	00000144	a40f		AND	\# ${ }^{\text {SOF }}$	only lower nibble is relevant.
94	00000146	48		LSLA		$\times 2$ (two bytes per digit in table).
95	00000147	97		TAX		
96	00000148	d60100		LOA	L6TAB.X	Get first byte from segment table.
97	0000014b	48		LSLA		From this byte only the
98	0000014c	48		LSLA		lower nibble is relevant, upper
99	0000014d	48		LSLA		nibble is lost as lower nibble
100	0000014e	48		LSLA		is shifted up.
101	0000014 f	bb58		ADD	W1	Combine nibble with last nibble
102	00000151	b708		STA	ldat	of previous digit and send byte to LCD.
103	00000153	3c09		INC	LADD	Next LCD data latch.
104	00000155	d60101		LDA	L6TAB+1. X	Get second byte from segment table.
105	00000158	b708		STA	LDAT	and send it to LCD.
106	0000015a	3c09		INC	LADD	Next latch (three per loop).
107	0000015c	3c59		INC	W2	Next digit (two per loop).
108	0000015e	b609		LDA	LADD	
109	00000160	a10c		CMP	\#12	Finished ?
110	00000162	26c2		BNE	L60P	If not. do next two digits.
111	00000164	81		RTS		

Figure 4. 3-backplane LCD driven by an ICM7321

LISTING 3

FOUR-BACKPLANE DISPLAYS

As mentioned above, the MC68HC05L6 can drive a 4 -backplane display with up to 24 frontplanes directly. The resultant 96 pixels could be used to drive 2 digits of an 5×8 dot matrix display, but with this number of segments most applications will use 7 -segment or customised displays. A 7 -segment display of up to 12 digits can be used. The software required is similar to, and simpler than, that shown for the $L 6$ with a 3 -backplane display. When it is required to drive a 4 -backplane display using a microprocessor without an LCD drive capability, the MC145000 offers a versatile solution. Up to 6 digits (12 frontplanes) can be driven directly and more can be driven by the addition of one or more of the 18 -pin MC145001 expanders, each adding 11 frontplanes. The example shown in figure 5 and listing 4 drives 6 digits, the software being very similar to that shown for the MC144115 single-backplane driver. This is the result of both chips having the same shift-register/latch architecture despite the actual output signals being quite different. The listing also shows a routine using an SCl rather than port lines.

A difference between the MC145000 and the MC144115 is that the MC145000 has no chip-enable input. It can share its data line with other peripherals but must have a dedicated clock so that the controller can supply data independently of other chips.

For applications requiring more than the 12 frontplanes made available by the MC145000, the MC145003/4 may be appropriate. They provide 32 frontplanes for use with a 4-backplane display, allowing up to 128
segments. The MC145003 andMC145004 are identical except for their serial protocol. The MC145004 has an IIC bus interface incorporating the usual acknowledge procedure associated with the IIC standard. The MC145003 is the same, except that there is no acknowledge and hence no associated clock cycle. The incoming data is automatically latched after 128 bits have been received. If, however, it is required that the data be latched at other times, an enable pin is available.

For applications where Vdd and VIcd are connected together, the LCD contrast is adjusted by adjusting Vdd. If the data is coming from a chip with a higher supply voltage, the input pins may go higher than the supply voltage of the MC145003/4. This is allowed for the clock and data pins, but not recommended for the enable pin as its input protection circuitry may clamp the input voltage. It is therefore not advisable to use the enable pin if the MC145003/4 has a different Vdd from the chip supplyingit with data. In applications not using this pin it can be left floating or tied high.

The example shown in figure 6 does not use the enable pin; the example software sends all 128 bits every time it is executed. The latchingis thusperformed automatically. The circuit shows 26 -digit displays, each with 12 frontplanes. Any display or combination of displays with up to 32 frontplanes can be used with the software shown in listing 6, as all 128 bits are always sent. The 6 lines of code (45-50) are commented out for use with the MC145003; they are required for the MC145004.

Figure 5. MC145000 driving a 4-backplane LCD

Figure 6. MC145003/4 driving 4-backplane LCDs

LISTING 4

LISTING 5

8/16-BACKPLANE DISPLAYS

For dot-matrix displays, 8 or 16 backplanes are common. This is the result of the large number of pixels required. A compromise between pin-count and contrast is made to decide the number of backplanes. The minimum pin requirement for a display with N segments would require the number of backplanes to be the square root of N, but with typical requirements of many hundred or thousands of pixels this is not practical as the resultant contrast would not be acceptable. Typical compromises are 8 or 16 backplanes, as this gives acceptable contrast and fits in conveniently with the 8×5 dot-matrix format commonly used for this type of display.

The MC68HC05L7 and L9 are designed to directly drive this type of display. The L 7 has 16 backplanes and 60 frontplanes allowing it to drive up to 960 pixels or 248×5 dot matrix digits (12 with $\times 8$ multiplexing). The L9 has only 40 frontplanes (168×5 digits) but is
capable of being used with MC68HC68L9 LCD drive expanders. Each MC68HC68L9, up to 3 of which may be added, contributes 55 frontplanes. An L9 and 3 expanders has thus 205 frontplanes allowing then to drive up to 3280 pixels or 828×5 dot matrix digits.

The display RAM contains a 5 -bit word for each row of dots in the 8×5 format; thus, 8 locations are used for each digit, allowing easy addressing. The RAM corresponding to the digits driven by expanders is contained in the expanders, but appears in the L9's memory map as the data and address buses from the $L 9$ to external memory are also used by the MC68HC68L9s.

Application note ANHK10/D shows an application using the L9 and also describes a method of extending the display size beyond that normally available using this device.

APPLICATION NOTES

The following application notes give complete applications using the type(s) of display indicated.

ANE404 An extended MC146805E2 CBUG05 system using the MC68HC25. MC145000-driven 4-backplane, 6-digit and ICM7231B-driven 3-backplane, 8 -digit display.

ANE416 MC68HC05B4 Radio Synthesizer.
MC145000-driven 4-backplane, 6-digit and MC144115-driven 1-backplane, 6-digit display.

ANE425 Use of the MC68HC68T1 RTC with M6805 Microprocessors.
ICM7231B-driven 3-backplane, 8-digit display.

ANHK10 The summary of the MC68HC05L9 Micro. App. Demo. Board.
MC68HC05L9/MC68HC68L9-driven dot matrix display.

DRIVER CHIPS

The following list shows some LCD driver devices. They are most suitable for 7 -segment, 16 -segment and ' custom displays. The 7SD column shows how many 7-segment digits each device can drive. With the possible exceptions of the MC145000/1 and the MC145003/4, they are not generally suitable for dot-matrix displays which have $35-40$ segments per digit.

Device	Back	Front	7SD	Drive	Expan.	Pins	
MC14543	1	7	1	parallel	parallel	16	BCD
MC14544	1	7	1	parallel	parallel	18	ripple blank
MC144115	1	16	2	3-line	yes	24	
MC144117	2	16	4	3-line	no	24	
MC145000	4	12	6	2-line	MC145001	24	
MC145001	44	11	5.5	2 2-line	n/a	18	expander
MC145003	4	32	16	2- or 3-line	parallel	52	2- or 3-line
MC145004	4	32	16	2-line	parallel	52	IIC
MC145453	1	33	4	2-line	parallel	40	also 44-pin
ICM7231	3	24	8	parallel	no	40	BCD

MOTOROLA SEMICONDUCTOR
 APPLICATION NOTE

MC68HC05L10 AN ENHANCED VERSION OF L9 FOR HANDHELD EQUIPMENT APPLICATIONS

Prepared by Jamson Cheung
System Design \& Application Department, Technical Operations
Motorola Semiconductors Hong Kong Ltd.

INTRODUCTION

The MC68HC05L10 (L10), new member of the DRAGONKAT ${ }^{\text {TM }}$ family of Micro-Controllers Unit (MCU), is particularly tailored for application in hand-held equipments, such as organizers, meter readers, inventory checkers, hand-held diagnostic terminals, or personal communication products etc., where low power consumption and system optimization are the main concerns to the product designer. This enhanced version of MC68HC05L9 (L9) has upgraded features to meet the requirements in advanced applications. The similarities and differences between these two MCUs are being highlighted in this application note. In addition, software routines on some new features such as keyscan, LCD (Liquid Crystal Display) and Memory Management Unit (MMU) are also described in detail to guild users in their program development for a specific application.

FEATURE COMPARISON BETWEEN MC68HC05L9 AND MC68HC05L10

Both L10 and L9 belong to the 68 HC 05 microprocessor family so that they share the same instruction set. Since both of them serve for the same intended application, most of the circuit blocks are the same for ease of use. However, certain features have been added or enhanced in L10 to expand its capability. Their similarities and differences are highlighted in below.

The following on-chip circuits remain unchanged:

* Real time clock and its alarm function
* 16 bit programmable free run timer
* Serial communication interface (SCI)
* Tone generator
* LCD auto-display off
* Keyboard wake-up interrupt
* Separate external data and address bus
* High frequency voltage controlled oscillator with PLL (Phase Lock Loop) locking into reference frequency from 32.768 KHz crystal oscillator.
* Serial peripheral interface (SPI). It provides a means to interface with other peripherals or MCU in a sophisticated system.
* Memory management unit (MMU). A hardware implementation to extend the memory addressing space from 64 KB to 1 MB for data storage. The number of address lines is therefore increased to 20 .
* External ROM. Internal ROM disabled by hardware pin RDIS which gives the user a choice of using internal or external ROM.
* An additional external interrupt input.
* Two external pins only on PLL. RF pin in L9 PLL system is eliminated by RF resistor onchip. No VCO (Voltage Controlled Oscillator) center frequency adjustment is required.
* Low voltage inhibit feature deleted. Due to the limitation of achieving high accuracy on internal reference voltage, it is recommended to use external low voltage detection circuit.
* Enhanced LCD driving capability. A programmable 32- or 41-multiplex backplane (or common) drive is built-in to expand the multiplex ratios while minimizing system chip count by fully utilizing the process ability of sustaining voltage. The segments are driven by a separate device (MC141511) which handles up to 128 segments each. The maximum segment driving capability is limited by the display RAM spaced located at $\$ 1 \mathrm{C} 0$ to $\$ B F F$ in L10. Up to four MC141511 segment drivers of 41 X128X4 $=20,992$ pixels in total on a single LCD display panel or up to two MC141511 segment drivers in a split panel with the same display pixels may be cascaded. The built-in display RAM in MC141511 is organized in 8 bit vertical format. However, the 16 bytes of display RAM for the annunciator in the backplane 40th is arranged horizontally as shown in Figure 3. This configuration of the display RAM significantly eases programming for display of Chinese character in terms of changing the character pitch or performing horizontal scrolling.
* Less interference from bus. During internal memory access, the data bus is at high impedence, address bus at low state, R/W line at high state and P02 switched off. It STOP or WAIT instruction is executed during CPU accessing external memory. the address bus will hold at the location of the instruction following the STOP or WAIT until an interrupt or reset occurs. The interference induced by digital pulses from external bus lines or P 02 is, therefore, eliminated during those operations. Furthermore, it also prevents the excess current contributed by the floating data lines and external memory devices during STOP or WAIT mode operation regardless or RIDS pin status.

The PLL system is shown in Figure 1. Upon power on or external reset, the CLKS bit in \$1C register is cleared which set the CPU bus directly sourced from 32.768 KHz crystal. To change the CPU bus speed from 32.768 KHz , follow the sequence shown in flow chart Figure 2. The sampling rate of the PLL is 8 KHz or sampling at every $125 \mu \mathrm{~s}$ interval. If there is no error occurred at phase detector output after 32 consecutive samplings which equals to 4 ms , a PLLI bit in $\$ 26$ register will be set. It indicates that the PLL stablized at new bus frequency. For operations on those require accurate clock frequency and duty cycle, such as SCI or counter etc., should make sure that the PLLI is set before start execution of the program. The software routine below gives an example:

DELAY	BCLR	6,\$1C	Select 16.384 KHz as internal bus frequency
	BSET	5,\$27	Select 1.2288 MHz for PLL
	LDA	\#\$9	4.0 msec delay loop for min PLLI settle time
	DECA		
STABLE	BNE	DELAY	
	BRCLR	6,\$26,STABLE	Wait until PLL is stable
	BSET	6,\$1C	Select PLL as the internal bus frequency
	JMP	SERVE	Go to service routine

INTERFACE BETWEEN MASTER L10 AND SLAVE MC141511 SEGMENT DRIVER

The connection between the L10 and the segment drivers in a single display panel is shown in Figure 4, and the simplified schematic for a split panel in Figure 5. The display RAM in the segment driver is configured in a "WHAT YOU STORE IS WHAT YOU SEE" (WYSIWYS) scheme which is the same as in L9. But the display RAM is to be accessed by the master L10 in 8-bit bytes oriented vertically instead of 5 bit arranged horizontally as in L9. The four segment drivers corresponding to the 2624 bytes ($4 \mathrm{X} 41 \mathrm{X128}$) of display RAM located in L10 memory space $\$ 1 \mathrm{C} 0$ to $\$ \mathrm{BFF}$ are to be selected by four individual chip select pins CS1-CS4. Care should be taken on the system memory address decoding circuit. For details of the address correlation please refer to TABLE 6 "MCU Display Logical \& Physical Address Translation", MC68HC05L10 Technical Data and Figure 7 "Display RAM Configuration at 1:32 and 1:41 Multiplex Ratios", of the MC141511Technical Data. For better understanding the relationship an illustration is shown in Figure 6. Notice that the segment driver's data clock rate is $4.096 \mathrm{KHz} / 2$ so that there is a time lag of up to 500 usec after DON bit (bit 3 of $\$ 26$ register) is set before the display data becomes valid.

PROGRAMMING FOR LCD DRIVE AND MMU

The program routine described here demonstrates an LCD driver that has large amount of symbols and font patterns stored in the external memory access via the MMU facility. Users have the flexibility of selecting various display symbols and font patterns or sizes. In this program, a characters in 16 X 16 pixels, and one row of 21 alphanumerics in 8 X 6 pixels, the third row of characters is being scrolled softly from right to left. The flow chart of this program is shown in Figure 8a to 8 c . It can be divided into three portions: The first portion is to search for the user's required symbol code and its font pattern; the second portion is to locate the display RAM address in L10 to its corresponding display pixel position on LCD; the last portion is to scroll the third character row located at 32nd to 39 th backplane in 41 multiplex mode.

The font pattern is organized in a tabular structure so that the user can easily modify the symbols and font patterns to fit their requirements. The number of symbols and font patterns can be extended beyond 64 KB with the on-ship MMU. User can clearly notice from this program how easy it is to access the memory space beyond 64 KB .

PROGRAMMING FOR KEYPAD SCANNING

This KEYSCAN program routine demonstrates a 6X4 matrix in a MXN keypad (M in port A AND N in port B). In order to be versatile the number of keys and the definition of each individual key can be user specified. The flow chart of this program and the associated schematic are shown in Figure 9 and 10 respectively.

To adapt this program to a user specified keypad, user only needs to follow a simple procedure: Firstly. to assign the number of key M in port A and N in port B; secondly, to modify the keypad definition routine as required by the particular application; lastly, to enter the routine entry address into the KEYDEF table. The number of M and N is specified in the section of the program called NUMKEYA and MUNBERB respectively.

* L7, L9 need at least 1 msec delay for PLLI to change from 1 to 0 and 16 ms from 0 to 1 .

L10 needs at least $125 \mu \mathrm{sec}$ delay for PLLI to change from 1 to 0 and 4 ms from 0 to 1 .

Fig 2 Flow Chart of Programming PLL for Bus Speed

Fig 3 MC141511 Display RAM Configuration

Fig 4 Full Capability of Master MCU and Slave LCD Drivers Pins Connection for 1:41 Mux and Left to Right Display Select

Fig 7 Display Pattern

Fig 8b Flow Chart of the LCD Driver Sample Program

Fig 8c Flow Chart of the LCD Driver Sample Program

Fig 9 Flow Chart of the Keyscan Sample Progra

Fig 10 Application Circuitry for Keyscan Program, LCD Driver \& Memory Management Unit Program
title
'PAL20L8
R1.0/MAR26/91
THE ADDRESS DECODER FOR
THE L10 APPLICATION CIRCUITRY.';
L10APP device 'P20L8';

"declarations

TRUE,FALSE = 1,0;H,L $=1,0$;
X,Z,C = .X.,.Z.,.C.;
GND,VCC
pin 12,24;
"Input Port
A8,A9,A10,A11,A12,A13,A14,A15,A16,A17,A18,A19pin $1,2,3,4,5,6,7,8,9,10,11,13$;"Address bus
P02 pin 14; "System clock
RW pin 23; "Read/Write signal
"Output Port
_RE pin 15; "Read Enable
_WE pin 16;
_RAM pin 17;
_SYSEP pin 18;
_EPROM1 pin 19;
_EPROM2 pin 20;
"Eprom 2 \$10000-\$17FFF
_EPROM3 pin 21;
_EPROM4 pin 22;
"Write Enable
"Expanded RAM Chip Enable"\$06000-\$067FF
"System S/W Eprom"\$00C00-\$05FFF
"Eprom 1 \$08000-\$0FFFF"Eprom 3 \$18000-\$1FFFF
"Eprom 4 \$20000-\$27FFF
"Identifier Definition
Address $=[\mathrm{A} 19, \mathrm{~A} 18, \mathrm{~A} 17, \mathrm{~A} 16, \mathrm{~A} 15, \mathrm{~A} 14, \mathrm{~A} 13, \mathrm{~A} 12, \mathrm{~A} 11, \mathrm{~A} 10, \mathrm{~A} 9, \mathrm{~A} 8$, $\mathrm{X}, \mathrm{X}, \mathrm{X}, \mathrm{X}, \quad \mathrm{X}, \mathrm{X}, \mathrm{X}, \mathrm{X}]$;
equations
"Output Enable
!_RE = RW;

```
"Write Enable
!_WE = P02 & !RW;
"Expanded RAM CHIP ENABLE ( 2K x 8 bit RAM )
!_RAM = P02 & (Address >= ^h06000) & (Address <=^h067FF );
"_SYSEP : SYSTEM S/W
!_SYSEP = P02 & ( Address >= ^^h00C00 ) & ( Address <= ^h05FFF );
"_EPROM1 : CHIP ENABLE OF FONT/DATA EPROM 1
!_EPROM1 = P02 & ( Address >= ^h08000 ) & (Address <= ^h0FFFF );
"_EPROM2 : CHIP ENABLE OF FONT/DATA EPROM 2
!_EPROM2 = P02 & (Address >= ^h10000 ) & (Address <= ^h17FFF );
"_EPROM3 : CHIP ENABLE OF FONT/DATA EPROM 3
!_EPROM3 = P02 & (Address >= ^h18000) & (Address <= ^h1FFFF );
"_EPROM4 : CHIP ENABLE OF FONT/DATA EPROM 4
!_EPROM4 = P02 & ( Address >= ^h20000 ) & (Address <= ^h27FFF );
```

"Test Vectors
"Address Decoding Test Vector
test_vectors (
[P02,A19,A18,A17,A16,A15,A14,A13,A12,A11,A10,A9,A8] ->[_RAM,_SYSEP,_EPROM1,_EPROM2,_EPROM3,_EPROM4])
" ~EEEE
" SPPPP
" ~YRRRR
"PAAAAAAAAAA RSOOOO
"01111111111AA AEMMMM
"2987654321098 MP1234
"RAM CHIP ENABLE : \$06000-\$067FF
[H,L,L,L,L,L,H,H,L,L,X,X,X]->[L,H,H,H,H,H];
"SYSTEM EPROM CHIP ENABLE : \$00C00-\$06FFF
[H,L,L,L,L,L,L,L,L,H,H,X,X]->[H,L,H,H,H,H]; "\$00C00-\$00FFF
[H,L,L,L,L,L,L,L,H,X,X,X,X]->[H,L,H,H,H,H]; "\$01000-\$01FFF
[H,L,L,L,L,L,L,H,L,X,X,X,X]->[H,L,H,H,H,H]; "\$02000-\$03FFF
[H,L,L,L,L,L,H,L,X,X,X,X,X]->[H,L,H,H,H,H]; "\$04000-\$05FFF
"EPROM 1 CHIP ENABLE : \$08000-\$0FFFF
[H,L,L,L,L,H,X,X,X,X,X,X,X]->[H,H,L,H,H,H];
"EPROM 2 CHIP ENABLE : \$10000-\$17FFF
[H,L,L,L,H,L,X,X,X,X,X,X,X]->[H,H,H,L,H,H];
"EPROM 3 CHIP ENABLE : $\$ 18000$-\$1FFFF
[H,L,L,L,H,H,X,X,X,X,X,X,X]->[H,H,H,H,L,H];
"EPROM 4 CHIP ENABLE : \$20000-\$27FFF
[H,L,L,H,L,L,X,X,X,X,X,X,X]->[H,H,H,H,H,L];
"CHIP UN-SELECT
[L,X,X,X,X,X,X,X,X,X,X,X,X]->[H,H,H,H,H,H];
"Read and Write Enable
test_vectors ([RW,P02] ->[_RE,_WE])
[H, H] $->[\mathrm{L}, \mathrm{H}] ;$
[H, L] $>$ [L, H];
$[\mathrm{L}, \mathrm{H}] \rightarrow[\mathrm{H}, \mathrm{L}] ;$
[L,L] $>[\mathrm{H}, \mathrm{H}]$;
end L10APPLICATION;

M6805 Portable Cross Assembler 0.05 MS-DOS/PC-DOS Page 1
Mon Sep 09 11:26:57 1991
Command line:
C:IPASMIPASM05.EXE -EQSUX -L keyscan.LST -O keyscan.OBJ keyscan.ASM
Options list:
ON -b - Printing of macro definitions
ON - c - Printing of macro calls
OFF - d- Placing of symbolic debugging information in COFF
$\mathrm{ON}-\mathrm{e}$ - Printing of macro expansions (changed)
$\mathrm{ON}-\mathrm{f}$ - Printing of conditional directives
OFF - g - Printing of generated constants list
ON -q-Expanding and printing of structured syntax (changed)
ON - s - Printing of symbol table (changed)
ON - u - Printing of conditional unassembled source (changed)
ON - x - Printing of cross reference table (changed)
OFF - m - Suppress printing of error messages
ON -w - Printing of warning messages
OFF - v-Suppress printing of updated status
OFF - y - Enabling of sgs extensions
ON - o-Create object code
ON - - Formatting of source line listing
Create listing file -1 - keyscan.LST
Change object file name-o-keyscan.OBJ
Xdefs:
NONE
Xrefs:

RC00	RC01	RC02	RC03	RC10	RC11	RC12	RC13	RC20	RC21	RC22
RC23	RC30	RC31	RC32	RC33	RC40	RC41	RC42	RC43	RC50	RC51
RC52	RC53									

Input file(s): keyscan.ASM (280 lines)
Output file: keyscan.OBJ
Listing file: keyscan.LST

M6805 Portable Cross Assembler 0.05 keyscan.ASM Page 2
Mon Sep 09 11:26:57 1991
Options - MD,MC,NOG,U,W,MEX,CL,FMT,O

```
LINE S PC OPCO OPERANDS S LABEL MNEMO OPERANDS COMMENT
00009 - *
00010 *
00011 
00012 
00013 (
00014 
00015 
00016 *
00017
00018
00019
00020
00021
0002
0002
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
```



```
00041 . *
00042 *
00043 A 3000
00044
00045 A 3000 00000000 X
00046 A 3008 00000000 X
00047 A 3010 00000000 X
00048 A 3018 00000000 X
00049 A 3020 00000000 X
00050 A 3028 00000000 X
00051
00052
00053
```

00001 00002 00003 00004 00005

00007 五
00008 五***
*
*

$$
*
$$

*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*

```
* FILE NAME: KEYSCAN.ASM* FILE DESCRIPTION: KEYSCAN PROGRAM FOR MC68HC05L10
\[
\text { * REVISION: } 1.0
\]
Program Latest Update:\(* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ~+~\)

OPT NOP . SET NO PAGE HEADER FOR EACH PAGE
* KEYSCAN FOR THE MC68HC05L10 MCU
```

```
* *
```

```
```

* *

```

OPT MUL

XREF RC00,RC01,RC02,RC03
XREF RC10,RC11,RC12,RC13
XREF RC20,RC21,RC22,RC23
XREF RC30,RC31,RC32,RC33
XREF RC40,RC41,RC42,RC43
XREF RC50,RC51,RC52,RC53
* KEY PAD DEFINITION TABLE

KEYDEF
ORG \(\$ 3000\)
FDB RC00,RC01,RC02,RC03
FDB RC10,RC11,RC12,RC13
FDB RC20,RC21,RC22,RC23
FDB RC30,RC31,RC32,RC33
FDB RC40,RC41,RC42,RC43
FDB RC50,RC51,RC52,RC53
* SYSTEM EQUATES



00174 A 0 e01 3f 54 A 00175 A 0 e03 a6 ff A 00176 A 0 e05 b7 01 A 00177 A 0 e 071701 A

00178 A 0 e 09 b 600 A 00179 A 0e0ba4 lf A 00180 A \(0 e 0 d\) al lf A 00181 A 0 e0f 2606 0el7 00182 A 0ell 3401 A 00183 A 0e13 25 f4 0e09 00184 A 0e15 20 lb 0 e32 00185
00186 A 0el7 005414 0e2e
00187
00188 A 0elaa6 of A 00189 A 0elc 43 00190 A 0eld ba 56 A 00191 A Oelfb7 56 A 00192
00193 A 0 e21 a6 1f A
00194 A 0e23 43
00195 A 0 e 24 ba 55 A
00196 A 0e26 b7 55 A
00197
00198 A 0 e28 ad 0b \(0 e 35\)
00199 A 0e2a 1054 A
00200 A 0 e2c 20 d5 0 e 03
00201
00202 A 0 e 2 e ad 050 e 35
00203 A 0 e 30 ad 0 e 0 e 40
00204 A 0e32 ad c2 0df6
00205 A 0 e34 80
00206
00207
00208
00209
00210 A 0e35 a6 5a A
00211 A 0 e37 ae ff A
00212 A 0e39 5a
00213 A 0e3a 26 fd \(0 e 39\)
00214 A 0e3c 4a
00215 A 0e3d 26 f8 0e37
00216 A 0 e3f 81
00217
00218
00219
00220
00221 *
00222
00223
00224
00225 A 0e40 b6 55 A
00226 A 0 e 42 ae ff A
00227 A 0e44 5c
00228 A 0e45 44
00229 A 0 e 4625 fc 0 e 44
*
*
*

CLR KEYFLAG
KEYSCAN LDA \#\$FF
STA PORTB
BCLR KEYNUMB-1,PORTB START CHECKING FROM KEYPAD WITH HIGHEST PORTB
REPEAT LDA PORTA START SCANNING FROM THE BOTTOM ROW
AND \#MASKPA
CMP \#MASKPA
BNE GOTIT KEY FOUND IS Z=1
LSR PORTB OTHERWISE, FOR NEXT COLUMN
BCS REPEAT
BRA DONE
GOTIT
BRSET BIT0,KEYFLAG,NOSAVE
LDA \#MASKPB
COMA
ORA KEYB
STA KEYB SAVE KEYB
LDA \#MASKPA
COMA
ORA KEYA
STA KEYA SAVE KEYA
BSR DBOUNC CHECK FOR NOISE
BSET BIT0,KEYFLAG SET KEYBOARD FLAG
BRA KEYSCAN
NOSAVE BSR DBOUNC PAUSE
BSR DECODE GO TO USER KEY DECODE ROUTINE
DONE BSR KBINIT PREPARE THE SCAN LINES FOR NEXT INTERRUPT
RTI
* DEBOUNCE ROUTINE
* DELAY FOR A SHORT PERIOD OF TIME

DBOUNC LDA \#90
AGAIN1 LDX \#\$FF
AGAIN DECX
BNE AGAIN
DECA
BNE AGAIN1
RTS
* DECODE ROUTINE

DECODE
LDA KEYA DETERMINE WHICH COLUMN IS DETECTED
LDX \#\$FF
INCX
LSRA
BCS CHKA

00230 A 0e48 bf 58 A
00231
00232 A 0e4a b6 56 A
00233 A 0e4c ae ff A
00234 A 0e4e 5c
00235 A 0e4f 44
00236 A 0e50 25 fc 0e4e
00237 A 0e52 bf 57 A
00238
00239
00240
00241 A 0e54 b6 58 A
00242 A 0e56 ae 04 A
00243 A 0e58 58
00244 A 0e59 42
00245
00246 A 0e5a bb 57 A
00247 A 0e5c bb 57 A
00248
00249
00250 A 0e5e 97
00251 A 0e5f d6 3000 A
00252 A 0e62 b7 51 A
00253 A 0e64 d6 3001 A
00254 A 0e67 b7 52 A
00255 A 0e69 bd 50 A
00256 A 0e6b 81
00257
00258
00259 *
00260
00261
00262
00263
00264
00265
00266
00267 A 0e6c 80
00268
00269
00270 A 0 c 00
00271 A 0c00 0e6c
00272 A 0c02 0e6c
00273 A 0c04 0e6c
00274 A 0c06 0e6c
00275 A 0c08 0e01
00276 A 0c0a 0e6c
00277 A 0c0c 0e6c
00278 A 0c0e 0de2
00279
00280
*

STX ROWX ROWX \(<=7\)
LDA KEYB DETERMINE WHICH ROW IS DETECTED
LDX \#\$FF
INCX
LSRA
BCS CHKB
STX COLX COLX \(<=7\)
* CALCULATE THE OFFSET FROM KEYDEF TABLE WHICH IS EQUAL TO
* (ROWX * NUMBER OF COLUMN * 2) \(+(\) COLX * 2 )

LDA ROWX
LDX \#KEYNUMB
LSLX . MULTIPLE BY 2
MUL \(\quad\) PRODUCT \(<=128\) (FOR \(8 \times 8\) PAD )
ADD COLX
ADD COLX 2 BYTE ADDRESS IN THE KEYDEF TABLE
* A = OFFSET OF THE ADDRESS FROM BEGINNING OF
* THE KEYDEF TABLE

TAX
LDA KEYDEF,X LOAD THE UPPER BYTE OF THE ADDRESS
STA KEYADD
LDA KEYDEF+1,X LOAD THE LOWER BYTE OF THE ADDRESS
STA KEYADD+1
JSR KEYSUB EXECUTE RAM SUBROUTINE
RTS:
* DUMMY INTERRUPT SERVICE ROUTINE

SPIISR
RTCISR
SCIISR
TIMISR
EIRQISR
SWIISR RTI

ORG \$0C00
A SPIIRQ FDB SPIISR SPI INTERRUPT VECTOR
A RTCIRQ FDB RTCISR REAL TIME CLOCK INTERRUPT VECTOR
A SCIIRQ FDB SCIISR SCI INTERRUPT VECTOR
A TIMIRQ FDB TIMISR TIMER INTERRUPT VECTOR
A KEYIRQ FDB KEYISR KEYBOARD INTERRUPT VECTOR
A EIRQ FDB EIRQISR EXTERNAL INTERRUPT VECTOR
A SWIVCT FDB SWIISR SOFTWARE INTERRUPT VECTOR
A FDB MAIN RESET INTERRUPT VECTOR
END

Total number of errors: 0
Total number of warnings: 0
Total number of lines: 280

Number of bytes in section ASCT: 212
Number of bytes in program: 212
CROSS REFERENCE TABLE
NAME ATTRB S VALUE P:LINE LINE1....N

RC00 XREF X \(0000 \quad 45\)
RC01 XREF X \(0000 \quad 45\)
RC02 XREF X 000045
RC03 XREF X 0000 45
RC10 XREF X 000046
RC11 XREF X 000046
RC12 XREF X 000046
RC13 XREF X 000046
RC20 XREF X \(0000 \quad 47\)
RC21 XREF X \(0000 \quad 47\)
RC22 XREF X \(0000 \quad 47\)
RC23 XREF X \(0000 \quad 47\)
RC30 XREF X \(0000 \quad 48\)
RC31 XREF X 000048
RC32 XREF X 000048
RC33 XREF X \(0000 \quad 48\)
RC40 XREF X \(0000 \quad 49\)
RC41 XREF X \(0000 \quad 49\)
RC42 XREF X \(0000 \quad 49\)
RC43 XREF X \(0000 \quad 49\)
RC50 XREF X 0000 50
RC51 XREF X 0000 50
RC52 XREF X 0000 50
RC53 XREF X \(0000 \quad 50\)

M6805 Portable Cross Assembler 0.05 MS-DOS/PC-DOS Page 1
Tue Sep 10 16:30:55 1991
Command line:
C:IPASMTPASM05.EXE -EQSUX -L DPROG.LST -O DPROG.OBJ DPROG.ASM
Options list:
ON - b-Printing of macro definitions
ON - c - Printing of macro calls
OFF - d - Placing of symbolic debugging information in COFF
ON - e - Printing of macro expansions (changed)
ON - f-Printing of conditional directives
OFF - g - Printing of generated constants list
ON -q - Expanding and printing of structured syntax (changed)
ON - s - Printing of symbol table (changed)
ON - u - Printing of conditional unassembled source (changed)
ON - x - Printing of cross reference table (changed)
OFF - m - Suppress printing of error messages
ON - w - Printing of warning messages
OFF - v - Suppress printing of updated status
OFF - y - Enabling of sgs extensions
ON - o-Create object code
ON - - Formatting of source line listing
Create listing file - 1-DPROG.LST
Change object file name - o - DPROG.OBJ
Xdefs:
NONE
Xrefs:
NONE
Input file(s): DPROG.ASM (821 lines)
Output file: DPROG.OBJ
Listing file: DPROG.LST

LINE S PC OPCO OPERANDS S LABEL MNEMO OPERANDS COMMENT

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014 00015 00016 00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030 P 0000
00031
00032
00033
00034
00035 P 0000 00036 00037 00038 00039 00040 P 0000 00041 P 0000 00042
00043 P 0000
00044 P 0000
00045 P 0000
00046 P 0000 00047 \(00048 \quad\) * SYSTEM EQUATES 00049
*
* FILE NAME: DPROG.ASM
*
*
* REVISION: 1.0
*
* AUTHOR: JAMSON CHEUNG
*
* a) DROMI.ASM
* b) DROM2.ASM
*
*
*
*
* ADDRESS LOCATION EQUATE
*
*
*
6000 A EXTRAM EQU \(\$ 6000\)
*
*
*
0de2 A INTROM EQU \$0DE2
*
*

8000 A TAB1 EQU OFF6x8
8100 A TAB2 EQU OFF6x8+\$100
c000 A TAB3 EQU OFF16x16
c100 A TAB4 EQU OFF16x16+\$100
*
\(* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\)
* FILE DESCRIPTION: MC68HC05L10 MCU DEMONSTRATION PROGRAM
* a) ONE SLAVE LCD DRIVER PROGRAM
* b) USING MMU TO ACCESS THE MEMORY MAP THAT
* GREATER THAN 64KByte MEMORY
* REMARK: THIS FILE CONTAINS THE SOURCE PROGRAM AND SOME BUFFERS
* THIS PROGRAM MUST BE LOCATED IN BANK 0
* THE SYMBOL PATTERN DATA FILES ARE
*****************************************************************************

OPT NOP SET NO PAGE HEADER FOR EACH PAGE
* EXTERNAL EXPANDED RAM SECTION \(\$ 6000\) - \(\$ 67 \mathrm{FF}\)
* INTERNAL DATA/PROGRAMMING ROM \$0DE2 - \$3FFF
* EXTERNAL FONT DATA ROM region \(\$ 10000-\$ 14 \mathrm{FFF}\)

8000 A OFF6x8 EQU \(\$ 8000\) COMBINE WITH MMU (PHYSICAL ADD=\$10000) c000 A OFF16x16 EQU \$C000 COMBINE WITH MMU (PHYSICAL ADD=\$14000)




ORG \$50

00258 **
00259 ** Name: BLOCK - TEMPORARY BUFFER FOR SCROLLING
00260 **

00262 A 0100 ORG \$0100
00263 A 010020 A BLOCK RMB 32 TEMPORARY BUFFER ( 32 BYTE)
00264
00265
00267 A 1c30
            ORG INTROM+WELEND
00268
    **
00269 **
00270 ** Name: RESET - MAIN PROGRAM



00435


```

00550 A 1d7f 20 e0 1d61 BRA N_ROW GO TO ANOTHER ROW IF NECESSARY
0 0 5 5 1
00552 A 1d81 b6 62 A COL_UP LDA DEST RESTORE THE DISPLAY RAMADDRESS BACK
0 0 5 5 3 ~ A ~ 1 d 8 3 ~ b 7 ~ 5 8 ~ A ~ S T A ~ D E S T I N E ~ T O ~ T H E ~ O R G I N A L ~ A D D R E S S ~
00554 A 1d85 b6 63 A LDA DEST+1
00555 A 1d87 b7 59 A STA DESTINE+1
00556
00557 A 1d89 3c 5d A INC TABPTR UPDATE THE POINTER TO NEXT SYMBOL
00558 * PATTERN BYTE
00559 A 1d8b 3c 5c A INC LCDPTR UPDATE THE DISPLAY RAM COLUMN POINTER
00560
0 0 5 6 1 ~ A ~ 1 d 8 d ~ 3 a ~ 6 1 ~ A ~ D E C ~ C O U N T ~ D E C R E M E N T ~ T H E ~ C O L U M N ~ C O U N T ~ B Y ~ 1 ~
00562 A 1d8f 26 c8 1d59 BNE N_COL
00563
00564 A ld91 }8
00565
00566
00568
00569
00570
0 0 5 7 1
00572
00573
00574
00575
00576
00577
00578
0 0 5 7 9
00580
00581
00582
00583
00584
00585
00586
00587

**
** Name: FINDPAT -
**
** SEARCH ALL SYMBOL PATTERN ROM MEMORY UNTIL THE RIGHT PATTERN IS FOUND
** EACH PAGE OF SYMBOL PATTERN ROM MEMORY IS STORE IN THE P_TAB.
** EACH RECORD OF THE P_TAB CONTAINS
** ADDRESS OF THE SYMBOL PATTERN ROM TABLE
** CORRESPONDING MMU COMMON BANK VALUE
** . CORRESPONDING MMU POSAI VALUE
** CORRESPONDING MMU POSA2 VALUE
** : ; THE LAST RECORD HAS ALL ZERO ENTRY
**
** RETURN : A DESTROY
** X DESTROY
** : Z = 1 IF FOUND
** Z = 0 IF NOT FOUND.
**
FINDPAT
00588
00589 A 1d92 3f 66 A CLR P_TPTR INITIALIZE THE P_TAB POINTER
00590 A 1d94 10 65 A BSET 0,FOUND INITIALIZE THE FLAG
00591
00592 NEXT_PTAB
0 0 5 9 3 ~ A ~ 1 d 9 6 ~ b e ~ 6 6 ~ A ~ L D X ~ P ` T P T R ~ C H E C K ~ F O R ~ N U L L ~ R E C O R D ~
00594 A 1d98 d6 0de2 A LDA P_TAB,X
00595 A 1d9b 26 14 ldb1 BNE LDSET
00596 A 1d9d d6 0de3 A LDA P_TAB+1,X
0 0 5 9 7 A lda0 26 Of ldbl BNE LDSET
00598
00599 A 1da2 d6 0de4 A LDA P_TAB+P_OFFCB;X
00600 A 1da5 26 0a 1dbl . BNE LDSET
00601 A lda7 d6 0de5 A LDA P_TAB+P_OFFPA1,X
0 0 6 0 2 ~ A ~ 1 d a a ~ 2 6 ~ 0 5 ~ 1 d b 1 ~ B N E ~ L D S E T ~
0 0 6 0 3 ~ A ~ 1 d a c ~ d 6 ~ 0 d e 6 ~ A ~ L D A ~ P \& T A B + P \& O F F P A 2 , X ~
0 0 6 0 4 ~ A ~ 1 d a f ~ 2 7 ~ 2 6 ~ 1 d d 7 ~ B E Q ~ P \& E X I T ~ E X I T ~ I F ~ N U L L ~ R E C O R D ~ I S ~ F O U N D ~
00605
00606 A 1db1 d6 0de2 A LDSET LDA P_TAB,X INITIALIZE THE BASE ADDRESS TO THE

```


00665 A 1dee be 5 d 00666 A 1df0 bd 50 00667 A ldf2 b7 6a 00668 A ldf4 5c 00669 A ldf5 bd 50 00670 A ldf7 b7 6b 00671
00672 A ldf9 3d 6a 00673 A ldfb 2604 00674 A 1dfd 3d 6b A TST TABCODE+1 00675 A 1dff 27 1c leld BEQ RECEXIT EXIT IF HIT THE NULL ENTRY 00676 00677 00678 A le01 bl 68 A CMP CHAR +1 SYMBOL CODE MATCH? 00679 A le03 26 10 le15 BNE N_REC 00680 A le05 b6 6a A LDA TABCODE 00681 A le07b1 67 A CMP CHAR 00682 A le09 26 Oa le15 BNE N_REC GO TO NEXT SYMBOL CODE IF NOT MATCH 00683
00684 A 1e0b 5c 00685 A le0c bd 50 00686 A le0e 97 00687 A le0f b7 5d 00688 A le 11 3f 65 A CLR FOUND CLEAR THE FLAG AND EXIT 00689 A le1320 08 leld BRA RECEXIT 00690
00691 A le15 b6 5d 00692 A le17 ab 03 00693 A le19 b7 5d 00694 A lelb 20 d1 00695
00696 A leld 3d 65 00697 A lelf 81 00698 00699 00700 00702
00703
00704
00705
00706
00707
00708
00709
00710
00711
00712

12 A le20 a6 04 A LDA \#4 INITIALIZE THE VARIABLES
00713 A le22b7 6f A STA DISPROW
00714 A le24a6 06 A LDA \#6
00715 A le26b7 5 f A STA CHARCOL
00716 A le28a6 01 A LDA \#1
00717 A le2ab7 5e A STA CHARROW
00718 A le2c ad 04 le32 BSR SCROLLEFT SCROLLING THE ROW OF DISPLAY RAM TO 00719
00720 A le2e cd le6c A JSR PAUSE PAUSE FOR EACH SYMBOL PATTERN MOVE

\section*{00734 SCROLLEFT}
00735 A le32 a6 02 A LDA \#2 CALCULATE THE LCD ADDRESS OF THE ROW
00736 A le34 b7 51 A STA SOURCE
00737 A le36 3f 52 A CLR SOURCE+1

00738
00739 A le 38 be 6f A LDX DISPROW
00740 A le3ab6 52 A INCR LDA SOURCE+1 UPDATE THE BASE DISPLAY RAM ADDRESS
00741 A le3c ab 80 A ADD \#LCDCOL ACCORDING TO THE VARIABLE DISPROW
00742 A le3e b7 52 A STA SOURCE +1
00743 A le 40 b6 51 A LDA SOURCE
00744 A le42 a9 00 A ADC \#0
00745 A le44 b7 51 A STA SOURCE
00746 A le46 5a DECX
00747 A le47 26 fl 1e3a BNE INCR
00748
00749 A le 49 b6 52 A LDA SOURCE +1 DUPLICATE THE DISPLAY RAM ADDRESS
00750 A le 4 b b7 59 A STA DESTINE+1 TO DESTINE
00751 A 1e4d ab 01 A ADD \#1 INCREMENT THE DISPLAY RAM ADDRESS
00752 A le4f b7 56 A STA MSRC+1 1 AND STORE TO MSRC
00753
00754 A le51 b6 51 A LDA SOURCE
00755 A le53 b7 58 A STA DESTINE
00756 A le55 a9 00 A ADC \#0
00757 A le57b7 55 A STA MSRC
00758
00759 A le59 bd 50 A PICKBYT JSR LDD MOVE THE COLUME 0th DATA TO A BUFFER 00760 A le5b c7 0100 A STA BLOCK
00761
00762 A le5e 5f CLRX
00763 A le5f bd 54 A MVVLCD JSR MVV SHIFT ALL THE DATA PATTERN BY 00764 A 1e61 5c INCX A COLUMN UNTIL THE LAST COLUMN IS HIT
00765 A le62 a3 7f A CPX \#\$7F
00766 A le64 26 f9 le5f BNE MVVLCD 00767
00768 A le66 c6 0100 A LDA BLOCK MOVE THE DATA FROM COLUME OTH BEFORE 00769 A le69 bd 57 A JSR STT TO THE LAST COLUMN
00770
00771 A le6b 81
RTS
00772
00773
00774
00775
00776
00777 ** Name: PAUSE() -- PAUSE FOR ONE SECOND


Total number of errors: 0
Total number of warnings: 0
Total number of lines: 821

Number of bytes in section ASCT: 1278
Number of bytes in program: 1278

Number of bytes in program: 1278
M6805 Portable Cross Assembler 0.05 MS-DOS/PC-DOS Page 1
Mon Sep 09 10:43:21 1991
Command line:
C:IPASM\PASM05.EXE -EQSUX -L DROM1.LST -O DROM1.OBJ DROM1.ASM
Options list:
ON - b-Printing of macro definitions
ON - c-Printing of macro calls
OFF - d - Placing of symbolic debugging information in COFF
ON - e - Printing of macro expansions (changed)
ON - f - Printing of conditional directives
OFF - g - Printing of generated constants list
ON - q - Expanding and printing of structured syntax (changed)
ON - \(s\) - Printing of symbol table (changed)
ON -u - Printing of conditional unassembled source (changed)
ON - x - Printing of cross reference table (changed)
OFF - m - Suppress printing of error messages
\(\mathrm{ON}-w\) - Printing of warning messages
OFF - v - Suppress printing of updated status
OFF - y - Enabling of sgs extensions
ON - o-Create object code
ON - - Formatting of source line listing
Create listing file-1-DROM1.LST
Change object file name-o-DROM1.OBJ
Xdefs:
NONE

Xrefs:
NONE

Input file(s): DROMI.ASM (189 lines)
Output file: DROM1.OBJ
Listing file: DROM1.LST

LINE S PC OPCO OPERANDS S LABEL MNEMO OPERANDS COMMENT
\(00001 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\)

00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042 P 0000800
00043
00044 P 0000 00045 P 0000 00046 00047 00048 00049
*
*
*
*
*
*
* FILE NAME: DROM1.ASM
* FILE DESCRIPTION: MC68HC05L10 MCU DEMONSTRATION SYMBOL PATTERN
* DATA FILE I
* REVISION: 1.0
*
* AUTHOR: JAMSON CHEUNG
*
* REMARK: THIS FILE MUST BE IN CONJUCTION WITH THE PROGRAM DPROG.ASM
* THIS FILE CONTAINS TWO SYMBOL PATTERN TABLES. BOTH SYMBOL
* PATTERN ARE \(8 \times 6\) DOTS SYMBOLS.
*
*****************************************************************************
*****************************************************************************
* SYMBOL PATTERN TABLE FORMAT
* FIRST TWO BYTE: PATTERN SIZE
* FIRST BYTE : NUMBER OF DOTS IN X-AXIS
* SECOND BYTE : NUMBER OF BYTES IN Y-AXIS
* ( 8 DOTS A BYTE )
* 3 BYTE RECORD FOLLOWING:
* 1st TWO BYTE: SYMBOL CODE
* 3rd BYTE: PATTERN OFFSET FROM THE
* BEGINNING OF THE TABLE
* THE RECORD ENDING WITH A NULL RECORD
*
* THE BYTE FOLLOWING THE NULL RECORD ARE THE SYMBOL PATTERN
* DATA LOCATION
*
*****************************************************************************
*

OPT NOP COMPILER - LISTING OPTION
* SYMBOL PATTERN TABLE ADDRESS EQUATE
*
8000 A OFFSET EQU \(\$ 8000\)
8000 A TAB1LOC EQU OFFSET+\$000
8100 A TAB2LOC EQU OFFSET+\$100
* NB : PHYSCIAL ADDRESS \(=\) LOGICAL ADDRESS + POSAx * \(\$ 1000\)
*
* LOGICAL ADDRESS PHYSICAL ADDRESS CB POSA1 POSA2


00104 A 808f 00105 A 8095 00106 A 809b 00107 A 80al 00108 A 80a7 00109 A 80ad 00110 A 80b3 00111 A 80b9 00112 A 80bf 00113 A 80c5 00114 A 80cb 00115 A 80d1 00116 A 80d7 00117 A 80dd 00118 A 80 e 3 00119 A 80e9 00120
00121
00122
00123
00124
00125 A 8100
00126 A 8100 00127 A 8101
00128
00129
00130
00131 A 8102
00132 A 8105
00133 A 8108
00134 A 810b
00135 A 810e
00136 A 8111
00137 A 8114
00138 A 8117
00139 A 811a
00140 A 811d
00141 A 8120
00142 A 8123
00143 A 8126
00144 A 8129
00145 A 812c
00146 A 812 f
00147 A 8132
00148 A 8135
00149 A 8138
00150 A 813b
00151 A 813 e
00152 A 8141
00153 A 8144
00154 A 8147
00155 A 814a
00156 A 814d
00157 A 8150

0022147 f A SYMAST FCB \(\$ 00, \$ 22, \$ 14, \$ 7 \mathrm{~F}, \$ 14, \$ 22 *\) 0008083 A A SYMPLUS FCB \(\$ 00, \$ 08, \$ 08, \$ 3 \mathrm{E}, \$ 08, \$ 08+\) 00000050 A SYMCOMA FCB \(\$ 00, \$ 00, \$ 00, \$ 50, \$ 30, \$ 00\), 00080808 A SYMMINU FCB \(\$ 00, \$ 08, \$ 08, \$ 08, \$ 08, \$ 08\) 00000060 A SYMDOT FCB \(\$ 00, \$ 00, \$ 00, \$ 60, \$ 60, \$ 00\). 003e5149 A SYM0 FCB \(\$ 00, \$ 3 \mathrm{E}, \$ 51, \$ 49, \$ 45, \$ 3 \mathrm{E} 0\) 0000427 f A SYM1 FCB \(\$ 00, \$ 00, \$ 42, \$ 7 \mathrm{~F}, \$ 40, \$ 001\) 00426151 A SYM2 FCB \(\$ 00, \$ 42, \$ 61, \$ 51, \$ 49, \$ 462\)
00214145 A SYM3 FCB \(\$ 00, \$ 21, \$ 41, \$ 45, \$ 4 B, \$ 313\)
00181412 A SYM4 FCB \(\$ 00, \$ 18, \$ 14, \$ 12, \$ 7 \mathrm{~F}, \$ 104\)
00274545 A SYM5 FCB \(\$ 00, \$ 27, \$ 45, \$ 45, \$ 45, \$ 395\)
003 c 4 a 49 A SYM6 FCB \(\$ 00, \$ 3 \mathrm{C}, \$ 4 \mathrm{~A}, \$ 49, \$ 49, \$ 306\)
0001 f109 A SYM7 FCB \(\$ 00, \$ 01, \$ F 1, \$ 09, \$ 05, \$ 037\)
00364949 A SYM 8 FCB \(\$ 00, \$ 36, \$ 49, \$ 49, \$ 49, \$ 368\)
00064949 A SYM 9 FCB \(\$ 00, \$ 06, \$ 49, \$ 49, \$ 29, \$ 1 E 9\)
00000024 A SYMCOL FCB \(\$ 00, \$ 00, \$ 00, \$ 24, \$ 00, \$ 00\) :
*
* SYMBOL PATTERN 2
*

06 A TAB2 FCB SYMB-SYMA NUMBER OF DOTS IN X-AXIS 01 A FCB 1 NUMBER OF BYTES IN Y-AXIS *
* SYMBOL CODE AND SYMBOL PATTERN DATA OFFSET RECORD *
004153 A FCB \$00,'A,SYMA-TAB2
004259 A FCB \(\$ 00\),'B,SYMB-TAB2 00435 f A FCB \(\$ 00, \mathrm{C}\),SYMC-TAB2
004465 A FCB \$00,'D,SYMD-TAB2
00456b A FCB \$00,'E,SYME-TAB2
004671 A FCB \(\$ 00\), 'F,SYMF-TAB2
004777 A FCB \(\$ 00\),'G,SYMG-TAB2
00487d A FCB \$00,'H,SYMH-TAB2
004983 A FCB \(\$ 00\), I,SYMI-TAB2
004a89 A FCB \(\$ 00\), 'J,SYMJ-TAB2
004b8f A FCB \$00,'K,SYMK-TAB2
004c95 A FCB \$00,'L,SYML-TAB2
004d9b A FCB \$00,'M,SYMM-TAB2
004eal A FCB \$00,'N,SYMN-TAB2
004fa A FCB \(\$ 00\), 'O,SYMO-TAB2
0050ad A FCB \$00,'P,SYMP-TAB2
0051b3 A FCB \(\$ 00\),'Q,SYMQ-TAB2
0052b9 A FCB \(\$ 00\),'R,SYMR-TAB2
0053bf A FCB \(\$ 00\), 'S,SYMS-TAB2
0054c5 A FCB \$00,'T,SYMT-TAB2
0055 cb A FCB \(\$ 00, \mathrm{U}, \mathrm{SYMU}\)-TAB2
0056d1 A FCB \$00,'V,SYMV-TAB2
0057d7 A FCB \$00,'W,SYMW-TAB2
0058dd A FCB \$00,'X,SYMX-TAB2
0059e3 A FCB \$00,'Y,SYMY-TAB2
005ae9 A FCB \$00,'Z,SYMZ-TAB2
000000 A FCB \(\$ 00, \$ 00, \$ 00\) NULL RECORD OF TAB2


Total number of errors: 0 Total number of warnings: 0 Total number of lines: 189

Number of bytes in section ASCT: 478
Number of bytes in program: 478
M6805 Portable Cross Assembler 0.05 MS-DOS/PC-DOS Page 1
Mon Sep 09 10:43:45 1991
Command line:
C:IPASMIPASM05.EXE -EQSUX -L DROM2.LST -O DROM2.OBJ DROM2.ASM
Options list:
ON - b-Printing of macro definitions
ON -- c-Printing of macro calls
OFF - d - Placing of symbolic debugging information in COFF
ON - e-Printing of macro expansions (changed)
ON - f- Printing of conditional directives
OFF - g-Printing of generated constants list
ON -q - Expanding and printing of structured syntax (changed)
ON - s - Printing of symbol table (changed)
ON - u - Printing of conditional unassembled source (changed)
ON - x - Printing of cross reference table (changed)
OFF - m - Suppress printing of error messages
ON - w- Printing of warning messages
OFF \(-\mathrm{v}-\) Suppress printing of updated status
OFF - y-Enabling of sgs extensions
ON - o-Create object code
ON - - Formatting of source line listing
Create listing file - 1 - DROM2.LST
Change object file name - o - DROM2.OBJ
Xdefs:
NONE
Xrefs:
NONE
Input file(s): DROM2.ASM (157 lines)
Output file: DROM2.OBJ
Listing file: DROM2.LST

LINE S PC OPCO OPERANDS S LABEL MNEMO OPERANDS COMMENT

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027 —
00028
00029 *

00030 *
00031 *
00032 *
00033 *
00034 *
00035
00036 *

00037 *
00038
00039 *
00040 *
00041
00042 *

00043 P 0000
\(00049 \quad *\) NB : PHYSCIAL ADDRESS \(=\) LOGICAL ADDRESS + POSAx * \(\$ 1000\)
00050 *

00051 *
* LOGICAL ADDRESS

PHYSICALADDRESS CB POSA1 POSA2
00052
\begin{tabular}{llll}
\(\$ 14000\) & C8 & 0 & 8
\end{tabular}

00054
,
*
00055
00056
00057 * SYMBOL PATTERN TABLE 3

00058
00059 A c000
00060 A c000
00061 A c001
00062 A c002
00063 A c004
00064 A c005
00065 A c007
00066 A c008
00067 A c00a
00068 A c00b
00069 A c00d
00070 A c00e
00071 A c010
00072 A c011
00073 A c013
00074 A c014
00075 A c016
00076
00077
00078
00079 A c017
00080 A c01f
00081 A c027
00082 A c02f 00083
00084 A c037
00085 A c03f
00086 A c047
00087 A c04f
00088
00089 A c057
00090 A c05f
00091 A c067
00092 A c06f
00093
00094 A c077
00095 A c07f
00096 A c087
00097 A c08f
00098
00099 A c097
00100 A c09f
00101 A c0a7
00102 A c0af
00103

ORG TAB3LOC
10 A TAB3 FCB (YEN-FU)/2 NUMBER OF DOTS IN X-AXIS 02 A FCB 2 NUMBER OF BYTE IN Y-AXIS c577 A FDB \$C577
17 A FCB FU-TAB3
aaef A FDB \$AAEF
37 A FCB YEN-TAB3
bb59 A FDB \$BB59
57 A FCB EI-TAB3
c17b A FDB \$C17B
77 A FCB LEM-TAB3
b855 A FDB \$B855
97 A FCB MAN-TAB3
a44f A FDB \$A44F
b7 A FCB LEK-TAB3
0000 A FDB \(\$ 00\) NULL RECORD OF TAB3
00 A FCB \(\$ 00\)
*
* SYMBOL CODE AND SYMBOL PATTERN DATA OFFSET RECORD
*
00745 e 74 A FU FCB \(\$ 00, \$ 74, \$ 5 \mathrm{E}, \$ 74, \$ 80, \$ 74, \$ 5 \mathrm{E}, \$ 74\)
0010080 c A FCB \(\$ 00, \$ 10, \$ 08, \$ 0 \mathrm{C}, \$ \mathrm{~F} 8, \$ 08, \$ 18, \$ 00\)
0004027 f A FCB \(\$ 00, \$ 04, \$ 02, \$ 7 \mathrm{~F}, \$ 55, \$ 7 \mathrm{~F}, \$ 55, \$ 00\)
\(40300804 \mathrm{~A} \quad \mathrm{FCB}\) \$40,\$30,\$08,\$04;\$03,\$0E,\$78,\$00

00009080 A YEN FCB \(\$ 00, \$ 00, \$ 90, \$ 80, \$ 00, \$ F 8, \$ 04, \$ 02\)
0000 fc 04 A FCB \(\$ 00, \$ 00, \$ F C, \$ 04, \$ 04, \$ F C, \$ 00, \$ 00\)
\(00003 \mathrm{e} 31 \mathrm{~A} \quad \mathrm{FCB}\) \$00,\$00,\$3E,\$31,\$60,\$6F,\$68,\$64
62405f40 A FCB \$62,\$40,\$5F,\$40,\$41,\$41,\$00,\$00

00102404 A EI FCB \(\$ 00, \$ 10, \$ 24, \$ 04, \$ 86, \$ 4 \mathrm{C}, \$ \mathrm{E} 4, \$ 14\)
0000 c 40 c A FCB \$00, \(\$ 00, \$ \mathrm{C} 4, \$ 0 \mathrm{C}, \$ 06, \$ 04, \$ 00, \$ 00\)
00412110 A FCB \(\$ 00, \$ 41, \$ 21, \$ 10, \$ 00, \$ 00, \$ 7 \mathrm{~F}, \$ 20\)
25292129 A FCB \(\$ 25, \$ 29, \$ 21, \$ 29, \$ 25, \$ 21, \$ 20, \$ 00\)

00fc243c A LEM FCB \(\$ 00, \$ F C, \$ 24, \$ 3 C, \$ 24, \$ E 4, \$ 00, \$ 20\)
100cea28 A FCB \(\$ 10, \$ 0 \mathrm{C}, \$ \mathrm{EA}, \$ 28, \$ \mathrm{E}, \$ 08, \$ 00, \$ 00\)
007f243c A FCB \(\$ 00, \$ 7 \mathrm{~F}, \$ 24, \$ 3 \mathrm{C}, \$ 24, \$ 27, \$ 20, \$ 00\)
3c243d01 A FCB \$3C,\$24,\$3D,\$01,\$3D,\$24,\$3C,\$00

000004e4 A MAN FCB \(\$ 00, \$ 00, \$ 04, \$ E 4, \$ A 6, \$ A C, \$ A 4, \$ E 0\)
a0a0a4ec A FCB \$A0,\$A0,\$A4,\$EC,\$06,\$04,\$04,\$00
0078080b A FCB \(\$ 00, \$ 78, \$ 08, \$ 0 \mathrm{~B}, \$ 0 \mathrm{~A}, \$ 6 \mathrm{~A}, \$ 5 \mathrm{~A}, \$ 4 \mathrm{~F}\)
4a6a0a0b A FCB \$4A,\$6A,\$0A,\$0B,\$08,\$48,\$78,\$00
\begin{tabular}{|c|c|}
\hline 00104 A c0b7 & 00000020 A LEK FCB \$00,\$00,\$00,\$20,\$20,\$20,\$A0,\$70 \\
\hline 00105 A c0bf & 2 c 202020 A FCB \(\$ 2 \mathrm{C}, \$ 20, \$ 20, \$ 20, \$ \mathrm{E} 0, \$ 00, \$ 00, \$ 00\) \\
\hline 00106 A c0c7 & 00002010 A FCB \$00,\$00,\$20,\$10,\$08,\$04,\$03,\$20 \\
\hline 00107 A c0cf & 20100c03A FCB \$20, \$10,\$0C, \$03, \$00, \$00, \$00, \$00 \\
\hline 00108 & \\
\hline 00109 & \\
\hline 00110 & * \\
\hline 00111 & * SYMBOL PATTERN 4 \\
\hline 00112 & * \\
\hline 00113 A c100 & ORG TAB4LOC \\
\hline 00114 A c100 & 10 A TAB4 FCB (KON-GI)/2 NUMBER OF DOTS IN X-AXIS \\
\hline 00115 A cl01 & 02 A FCB 2 NUMBER OF BYTES IN Y-AXIS \\
\hline 00116 A c102 & aabf A FDB \$AABF \\
\hline 00117 A c104 & 14 A FCB GI-TAB4 \\
\hline 00118 A c105 & b4e4 A FDB \$B4E4 \\
\hline 00119 A c107 & 34 A FCB KON-TAB4 \\
\hline 00120 A c108 & a4a4 A FDB \$A4A4 \\
\hline 00121 A c10a & 54 A FCB CHUN-TAB4 \\
\hline 00122 A c10b & a4df A FDB \$A4DF \\
\hline 00123 A c10d & 74 A FCB SIN-TAB4 \\
\hline 00124 A cl0e & a140 A SYMSP16 FDB \$A140 \\
\hline 00125 A cl10 & 94 A FCB WHITE-TAB4 \\
\hline 00126 A cl11 & 0000 A FDB \(\$ 00\) NULL RECORD OF TAB2 \\
\hline 00127 A cl13 & 00 A FCB \$00 \\
\hline 00128 & * \\
\hline 00129 & * SYMBOL PATTERN DATA \\
\hline 00130 & * \\
\hline 00131 A cl14 &  \\
\hline 00132 A c11c & 8040a030 A FCB \$80,\$40,\$A0,\$30,\$28,\$A0,\$60,\$00 \\
\hline 00133 A c124 & 0001001f A FCB \$00,\$01,\$00,\$1F,\$11,\$11,\$1F,\$40 \\
\hline 00134 A c12c & 20100805 A FCB \$20,\$10,\$08,\$05,\$02,\$05,\$00,\$00 \\
\hline \multicolumn{2}{|l|}{00135} \\
\hline 00136 A c134 & 00224488 A KON FCB \$00, \$22,\$44,\$88,\$00,\$20,\$A0,\$64 \\
\hline 00137 A c13c & 3e247ea4 A FCB \$3E,\$24,\$7E,\$A4,\$24,\$20,\$20,\$00 \\
\hline 00138 A c144 & 00201008 A FCB \$00, \(220, \$ 10, \$ 08, \$ 04, \$ 01, \$ 00, \$ 7 \mathrm{~F}\) \\
\hline 00139 A c14c & 41414547 A FCB \$41,\$41,\$45,\$47,\$71,\$02,\$00,\$00000000 \\
\hline \multicolumn{2}{|l|}{00140} \\
\hline 00141 A c154 &  \\
\hline 00142 A c15c & 10101010 A FCB \(\$ 10, \$ 10, \$ 10, \$ 10, \$ \mathrm{E} 0, \$ 00, \$ 00, \$ 00\) \\
\hline 00143 A c164 & 00000302 A FCB \$00, \$00, \$03,\$02,\$02,\$02,\$02,\$7F \\
\hline 00144 A c16c &  \\
\hline \multicolumn{2}{|l|}{00145} \\
\hline 00146 A c174 &  \\
\hline 00147 A c17c & 30000000 A FCB \$30,\$00,\$00,\$00,\$00,\$80,\$40,\$00 \\
\hline 00148 A cl 84 & 00010000A FCB \$00, \$01,\$00,\$00,\$01,\$02,\$06,\$0C \\
\hline 00149 A cl8c & 08080804 A FCB \$08,\$08,\$08,\$04,\$00,\$01,\$00,\$00 \\
\hline \multicolumn{2}{|l|}{00150} \\
\hline 00151 A c194 & 00000000 A WHITE FCB \(\$ 00, \$ 00, \$ 00, \$ 00, \$ 00, \$ 00, \$ 00, \$ 00\) \\
\hline 00152 A c19c & 00000000 A FCB \$00, \(000, \$ 00, \$ 00, \$ 00, \$ 00, \$ 00, \$ 00\) \\
\hline 00153 A cla 4 & 00000000 A FCB \(\$ 00, \$ 00, \$ 00, \$ 00, \$ 00, \$ 00, \$ 00, \$ 00\) \\
\hline 00154 A clac & 00000000 A FCB \(\$ 00, \$ 00, \$ 00, \$ 00, \$ 00, \$ 00, \$ 00, \$ 00\) \\
\hline \multicolumn{2}{|l|}{00155} \\
\hline 00156END & \\
\hline 00157 & \\
\hline
\end{tabular} 00157

Total number of errors: 0
Total number of warnings: 0
Total number of lines: 157

Number of bytes in section ASCT: 395
Number of bytes in program: 395

\title{
AN-HK-15
}

\title{
USING DRAGONKAT II LCD CHIP-SET IN HAND-WRITING APPLICATIONS
}

\author{
Prepared by Harvey Wong \\ Motorola Semiconductors Hong Kong Ltd.
}

\section*{INTRODUCTION}

DragonKat II is a chip-set solution offered by Motorola for high density graphic LCD systems (with 146 mux and more than 160 segments). It includes a microcontroller (MCU) MC68HC05L11, a cascadable LCD backplane (or common) driver MC141512 and a cascadable LCD segment (or column) driver MC141514. When linked up to a touch sensitive panel, the system can accept and display handwriting inputs. The purpose of this document is to illustrate a pen-based system using this chip set. First the display output unit will be described. Then follows the hand-writing input system. Finally, they are integrated and a demonstration software for doing handwriting/erasing will be presented.

USING DRAGONKAT II LCD CHIP-SET TO BUILD A \(164 \times 320\) LCD SYSTEM

MC68HC05L11 is a fully static single chip CMOS microcomputer. It has 448 bytes of RAM of which 64 bytes are for stack, 3584 bytes of ROM, one crystal oscillator generating clock for a real time clock and one PLL frequency synthesizer for MCU's system clock, 38 bidirectional I/O lines, 2 serial communication interfaces (an SCI \({ }^{1}\) and an \(\mathrm{SPI}^{2}\) ), one 16 -bit timer, a memory management unit to page in as much as 8 Mega-bytes logical address into a 64 k physical address and a special LCD Control Unit. This MCU has all the features that make it an ideal part for electronic organizer, personal data bank, dictionary, game and other hand-held termi-

\footnotetext{
\({ }^{1}\). Serial Communications Interface (SCI) supports full-duplex asynchronous communication with standard NRZ format in number of standard baud rates.
\({ }^{2}\). Serial Peripherals Interface (SPI) is a Motorola's proprietary standard for synchronous communication.
}
nal or measurement equipment applications.
The segment driver MC141514, as in Figure 1, is designed to generate segment-driving waveforms \({ }^{3}\) for passive LCD panels. (It is customary to name the vertical lines of a LCD panel as segments and its horizontal lines as backplanes. Pixels are positioned at where these lines intercept.) MC141514 has 160 outputs and is cascadable for higher segment count. Inside there is a Static RAM matrix of 146 rows by 160 bits for image storage.
\({ }^{3}\). See MC141514 Product Specification.


Figure 1. The Segment Driver MC141514


Figure 2. A 146x320 LCD SYSTEM

Any of these rows can be selected and its contents fetched for segment output display or transferred to a 160-bit wide bidirectional shift register in a parallel fashion. Conversely, the content of the 160 -bit bidirectional shift register can be stored in any of the 146 rows. The bidirectional shift register serves as the gateway for transporting video data between the MCU and segment drivers. Since the content is stored in the segment driver(s), the LCD screen refresh is handled automatically by an internal wrap-around counter that sequentially scans each row for segment output in a repetitive manner. The MCU is required to access the segment driver(s) only if the screen content is to be altered.
The backplane driver MC141512 is designed to supply the backplane waveforms to a passive LCD panel. The mechanism is driven by a marching " 1 " along 80 -bit shift register. At the start of a refresh cycle, the Frame signal (FRM) feeds a logic one momentarily into the first bit of the shift register. The lone " 1 " is shifted to the next higher order bit successively on each BPCLK pulse. Effectively each row of pixels on the LCD screen
is sequentially selected during a refresh cycle.
Figure 2 shows an LCD system built with the DragonKat II chip-set. It consists of two backplane drivers, two segment drivers, one MCU and an LCD panel. The MCU communicates with the drivers through a special circuit block, the LCD Control Unit, as shown on Figure 3. This unit is designed to facilitate graphic manipulations such as smooth scrolling in " \(x\) " or " \(y\) " directions, variable pitch editing and window partitioning. However, it must work with the two drivers (the backplane driver MC141512 and the segment driver MC141514) in order to perform graphic functions. It can be divided into three functional blocks: a serial data interface, a parallel control interface and a timing generator as shown in Figure 3. The timing generator provides the necessary signals for system synchronization. The unit, most of the time, communicates with its drivers through the serial and parallel interfaces. Which are designed for different purposes: the serial interface is for video data transfer while the parallel one is for issuing commands. It is vital to have a serial transfer mechanism because of


Figure 3. The LCD Control Unit
its capability to shift data bit by bit. Also, it can shift to the left or right so as to allow smooth horizontal scroll in either directions. Figure 2 also shows the physical connections between the serial interface and the bidirectional shift registers of the segment drivers. As mentioned before the bidirectional shift register is a gateway for transporting video data, it can also serve as a parallel dump for a row of video content. Its length is same as the width of the video RAM. In our case here, the segment driver MC141516 has 160 bits per row of video RAM, therefore, the bidirectional shift register is 160 bits long. It can be easily observed that the serial connections are closed to form a loop. In Figure 2, there are two of these loops. Usually, only one loop is enough to support a long single LCD panel because more than one segment drivers can be cascaded to form a longer loop. However, the system shown uses two loops to support a single panel (one segment driver per loop) to shorten the loop path so as to increase the accessing speed. In the normal case, a separate loop drives each half of a split panel.
Other than serial data transfer operations, the serial port has a few more supporting circuits built-in i.e. the pointers, the variable pitch access logic and a macro-operations block. The macro-operations block can do four macro-operations while the pointers and variable pitch access block set up boundary conditions and access pitch respectively for these macro-operations. Macrooperations are either on a sequential (SEQ) or on a oneshot (OSH) access basis. Two sequential access options allow the MCU to either read from or write into the bidirectional shift register(s) of the segment driver(s) within a specified window boundary and at various pitch widths sequentially. For instance, a sequential-write at a 10-bit pitch width allows the MCU to write into the serial stream a 10 -bit word at a time which is then shifted serially into the segment drivers. The transfer is automatically carried out as soon as a 10 -bit word has been written into a register of the LCD Control Unit.

After the transfer, the interface will stop for the next \(10-\) bit word from the processor. This transfer-and-wait process is repeated within a window which is specified by the left and right pointers of the LCD Control Unit. These two pointers can be flexibly adjusted to fit in window of any size. The width can be as wide as the whole screen or just a pixel. For data outside this window, the interface will carry out a non-stop shift until the specified end-point. With this interface a row of display data can then be composed in the bidirectional shift register loop before the MCU orders the segment drivers to copy this row of data into their internal Static RAM in a parallel fashion. The MCU does it by issuing a command, encrypted with a row address, to the segment drivers through the parallel interface. It is a typical cycle that a row of display data is loaded into the bidirectional shift register and written back to the same row after it has been edited by the processor. This cycle can be viewed as accessing some part of the screen in rectangular coordinates - the row address as the Y-coordinate and the location pointed by one of the two pointers as the X coordinate, particularly if the macro-operation "OneShot Replace" is used. "One-Shot Replace" will replace a number of dots as specified by the variable pitch register after the first pointer with the new content prepared by the MCU. The transfer is one-shot and the loop will stop only after it has reverted back to its original position. Such an LCD system allows for a natural way of manipulating graphics on the LCD panel via a rectangular coordinating system. Unlike some conventional LCD systems which coordinations are somehow tied with the 8 -bit RAM structure, it eases much effort when only a bit of content needs to be changed, which is most often the case in handwriting applications.

\section*{The Handwriting Input Mechanism}

An input device for handwriting is a touch sensitive panel. It is transparent and can be laid on top of the LCD panel. With the appropriate setup, the points of touch can be located by an A/D converter (MC1415150). Detected points expressed in rectangular coordinates are brought to the processor for scaling and transformation and put on the LCD. If the sampling is fast enough, one would see a continuous trace on the LCD screen recording the movement of the touch.
This panel is a passive device and it needs both a hardware and a software driver for handwriting purpose. Figure 4 shows the hardware driver of the touch sensitive panel system. The panel shown is coupled to a transistor ladder which is responsible for configuring the circuit for different sampling set-ups. The ladder circuit is controlled by I/O port C . After the establishment of the right circuit configuration, the MCU through the Serial Peripheral Interface commands the A/D converter to translate an analog voltage into a digital numeric.

Direct Route to System Power
Direct Route to Power Ground
Terminal to resistive film


R7,R9,R12,R14-3.3K R8,R10,R11,R13-10K R15-3.3K

Figure 4. The Hardware Support Of The Touch Sensitive Panel

The touch sensitive panel has two layers of transparent, evenly doped resistive film sandwiching a thin spacer and mounted on a supporting glass. There are four terminals located along the four edges of the panel. A pair of terminals connects to opposite sides the upper film (e.g. in the horizontal direction) while another pair connects similarly to the lower film (e.g. in the vertical direction). Separated by a thin spacer, these films are electrically isolated from each other in the idle state. However, if a pressure is applied with a sharp pen, the stylus will push the upper film down to make contact with the lower film. Also, if a reference voltage is applied across the terminals of the upper film while the other pair remains in high impedance, the voltage should drop linearly across the upper film in vertical direction. The point of contact of the two films transforms the terminals of the lower film to become the wiper of a potentiometer. Because the resistance across the layer is uniform, the voltage at the contact point should be proportional to its distance from the groundreferenced edge. As a result, the voltage at either terminal of the lower film carries information about the Y coordinate of the stylus. The same procedure can be applied to measure the X coordinate of the stylus by role-swapping the two pairs of terminals. The mechanism is simple and its accuracy depends on the linearity
of the resistive film and the resolution of the \(\mathrm{A} / \mathrm{D}\) converter. However, there is another problem. Like most mechanical devices (e.g. a keyboard), the touch sensitive panel suffers from contact bounce. To verify good contact closure, the system has to switch one pair of terminals to the reference voltage source and then connect one of the terminals of the other pair to a high value pull-down resistor (but not too high in order to overcome the capacitive effect across the films). A good contact is ensured if the voltage across this resistor is greater than a threshold. In Figure 5, the software checks for a good contact before sampling the X and Y coordinates. However, the process is not ended until a reconfirmation for a good contact is done after polling in \(X\) and \(Y\) because of the fact that a good contact might be lost during sampling for X and Y . Valid samples will be further processed and then sent to the LCD system for output.

\section*{A PROTOTYPE FOR HAND-WRITING APPLICATION}

It is relatively straight-forward to implement handwriting input in a DragonKat II- based system. Figure 5 shows the circuit diagram of such a system. It is just the combination of the Figure 1 and 3 with the touch sensi-


Figure 5. Schematic Of An LCD Display System With Handwriting Input


Figure 6. The Software Driver For The Touch Sensitive Panel System
tive tablet overlaid on the top of the LCD panel. The MCU samples the touch sensitive tablet for handwriting input. If a valid contact is found, after a sample conversion, the dot can be transferred to the LCD system for display. Furthermore, the user can intercept the software flow for different interpretations on the pen-based inputs in applications such as straight-lines drawing, polygon building and even pattern hatching. The large effective area of the tablet allows icons to be displayed for pen selections. A touch-and-execute procedure makes the system very user-friendly and obviates the need for an elaborate keyboard in a pocket equipment.

\section*{SOFTWARE OF THE PROTOTYPE}

Figure 7 shows the flow chart of a sample program which emulates a blank paper and an eraser. The system routine DRAWRUB starts up to do hand-writing with its Eraser Flag disabled. It will first clean the screen and pops up an Eraser Icon at the upper right-hand corner of the screen. It then enables a 16 -bit timer interrupt before it goes to \(\mathrm{WAIT}^{4}\). The Timer will then periodically call up the processor to scan for user inputs. The main part


Figure 7. The Software For Electronic Handwriting And Erasing
of the scan-and-print job is resident in the Timer Server routine. The Timer Server is the routine to where the processor will branch as soon as it is waken up by a timer interrupt. It will first access the timer status register. The Timer Output Compare flag will be cleared as it writes a next interrupt count into the Output Compare Register. Otherwise the same interrupt request may keep

\footnotetext{
\({ }^{\text {4. }}\) A power saving mode of MC68 HC 05 .
}
on interrupting the processor as soon as it is out of the Timer Server. Then the MCU branches to scan for contact closures. It simply calls the routine GETXY as shown as Figure 6. Out of GETXY, the processor examines the Contact Flag. If a good contact is found, the processor resolves the \(\mathrm{X}, \mathrm{Y}\) coordinates on the LCD panel and then checks if the stylus is pointing to the area within the Eraser Icon. If so, it further examines the New Contact flag to determine whether it is a fresh
touch. Only a fresh touch can trigger the Eraser Icon. This trigger will cause the processor to inverse the Eraser Icon and toggle the Eraser Flag. However if the coordinates are out of Eraser Icon, the routine will either carry out the erasing routine or the writing routine depending on the Eraser Flag. The writing routine is listed in Figure 6 which just puts a black dot at the \(\mathrm{X}, \mathrm{Y}\) location while the erasing routine will clean up a square of an effective area around to the stylus. Both routines end with Enabling the Timer with different speed settings for the fact that writing and erasing might have dif-
ferent repetitive rates. Also if no good contact is found, the Timer Server will be exited with the New Contact flag asserted and the timer interrupt is enabled with the IDLE speed set. As a result, the system may have different scan rates for erasing, for writing and for idle scanning. On exiting the Server, the processor loops back to WAIT and repeats the same procedure. The attached appendix lists the source code for the software and it starts up with the screen as shown in Figure 8. A 16x16 eraser icon is located at the upper right hand corner of the LCD panel.


All numbers are in LCD pixel.

Figure 8. The Start Up Screen Of The Demonstration Software

APPENDIX : THE LISTING OF THE DEMONSTRATION SOFTWARE





COMPARE1 INTERRUPT

BSET
-
LDA
STA
LDA
LDA
STA
JSR
LDA
-
LDA
BSET

PORTI, CTL25 TIMER
FN
FN+1
\#IDLEH
SN
\#IDLEL
N+1
TSR CLEAR OCF2 FOR SYSTEM SECURITY OUTCMP1
N+1
OCIE1, TCR
ENABLING OUTPUT
* ENTER WAIT *

TOWAIT WAIT
BRA

TOWAIT
OF DRAWRUB
**************** LONG CALCULATIONS SUBROUTINES
\(\star * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\)
* LONGADD - DOUBLE BYTE ADDITION

FN: FN+1 = MSB,LSB OF THE FISRT NUMBER
SN: SN+1 = MSB,LSB OF THE SECOND NUMBER
FORMULA FN \(=\) FN + SN
\begin{tabular}{lll} 
02A3 & B6 & 58 \\
\(02 A 5\) & BB & 5 A \\
02A7 & B7 & 58 \\
\(02 A 9\) & B6 & 57 \\
02 AB & B9 & 59 \\
\(02 A D\) & B7 & 57 \\
\(02 A F\) & 81 &
\end{tabular}

LONGADD LDA FN+1
\(\mathrm{ADD} \quad \mathrm{SN}+1\)
STA FN+1
LDA FN
ADC SN
STA FN
RTS


FN: FN+1 \(=\) MSB, LSB OF FIRST NUMBER
SN:SN+1 \(=\) MSB,LSB OF SECOND NUMBER
\begin{tabular}{lll} 
02B0 & B6 & 57 \\
02B2 & B1 & 59 \\
02B4 & 26 & 04 \\
02B6 & B6 & 58 \\
02B8 & B1 & 5 A \\
02BA & 81 &
\end{tabular}

\footnotetext{

}
\begin{tabular}{lll} 
LONGCMP & LDA & FN \\
& CMP & SN \\
& BNE & LCMPQT \\
& LDA & FN+1 \\
& CMP & SN+1 \\
LCMPQT & RTS &
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline 03063 & 3454 & LSR & Y & \\
\hline 03083 & 3655 & ROR & Y+1 & \\
\hline 030A B & B6 54 & LDA & Y & \\
\hline 030C B & B7 57 & STA & FN & \\
\hline 030E B & B6 55 & LDA & Y+1 & \\
\hline 0310 B & B7 58 & STA & FN+1 & \\
\hline 0312 A & A6 00 & LDA & \#TOPBDH & \\
\hline 0314 B & B7 59 & STA & SN & \\
\hline 0316 A & A6 90 & LDA & \#TOPBDL & \\
\hline 0318 B & B7 5A & STA & SN+1 & \\
\hline 031A C & CD 02 BB & JSR & LONGSUB & \\
\hline 031D 2 & 25 0B & BCS & SETRATE & \\
\hline 031F 3 & 3 F 59 & CLR & SN & \\
\hline 0321 A & A6 91 & LDA & \#SCNHGT & \\
\hline 0323 B & B7 5A & STA & SN+1 & \\
\hline 0325 C & CD 02 BO & JSR & LONGCMP & \\
\hline 03282 & 2315 & BLS & PASS2 & \\
\hline & & SETRATE & & \\
\hline 032A 0 & 045006 & BRSET & ERASER, TSPFLGS, SETRATE1 & \\
\hline 032D A & A6 1F & LDA & \#SEED2H & \\
\hline 032F A & AE 00 & LDX & \#SEED2L & \\
\hline 03312 & 2041 & BRA & GENRATE & \\
\hline & & SETRATE1 & & \\
\hline 0333 A & A6 28 & LDA & \#SEED1H & \\
\hline 0335 A & AE 00 & LDX & \#SEED1L & \\
\hline 03372 & 20 3B & BRA & GENRATE & \\
\hline & & IDLING & & \\
\hline 0339 A & A6 00 & LDA & \# IDLEL & \\
\hline 033B A & AE FF & LDX & \#IDLEH & \\
\hline 033D 2 & 2035 & BRA & GENRATE & \\
\hline & & PASS2 & & \\
\hline 033 F B & B6 58 & LDA & FN+1 & \\
\hline 0341 B & B7 54 & STA & \(Y\) Y BECOMES & ONE BYTE \\
\hline VARIAB & BLE NOW & & & \\
\hline & & * CHECK X, Y IN & ERASER ICON * & \\
\hline 0343 B & B6 54 & LDA & Y & \\
\hline 0345 A & A1 08 & CMP & \#WICONY1 & \\
\hline 03472 & 254 E & BLO & NOTICON & \\
\hline 0349 A & A1 17 & CMP & \#WICONY2 & \\
\hline 034 B 2 & 22 4A & BHI & NOTICON & \\
\hline 034D B & B6 52 & LDA & X & \\
\hline 034 F B & B7 57 & STA & FN & \\
\hline 0351 B & B6 53 & LDA & X+1 & \\
\hline 0353 B & B7 58 & STA & FN+1 & \\
\hline 0355 A & A6 28 & LDA & \#WICONX1L & \\
\hline 0357 B & B7 59 & STA & SN & \\
\hline 0359 A & A6 01 & LDA & \#WICONX1H & \\
\hline 035B B & B7 5A & STA & SN+1 & \\
\hline 035D C & CD 02 BO & JSR & LONGCMP & \\
\hline 03602 & 2535 & BLO & NOTICON & \\
\hline 0362 A & A6 37 & LDA & \#WICONX2L & \\
\hline 0364 B & B7 59 & STA & SN & \\
\hline 0366 A & A6 01 & LDA & \#WICONX2H & \\
\hline 0368 B & B7 5A & STA & SN+1 & \\
\hline 036A C & CD \(02 \mathrm{B0}\) & JSR & LONGCMP & \\
\hline 036D 2 & 2228 & BHI & NOTICON & \\
\hline 036F 0 & 02501 A & BRSET & NEWCONT, TSPFLGS, ICON & \\
\hline 03722 & 20 C5 & BRA & IDLING & \\
\hline & & GENRATE & & \\
\hline 0374 B & B7 59 & STA & SN & \\
\hline 0376 B & BF 5A & STX & SN+1 & \\
\hline 0378 B & B6 18 & LDA & TIMER & \\
\hline 037A B & B7 57 & STA & FN & \\
\hline 037C B & B6 19 & LDA & TIMER+1 & \\
\hline
\end{tabular}



04D5 4 A
\(04 D 626 \mathrm{FD}\)

04D8 1102 04DA A6 10 04DC B7 24 04DE OF 23 FD 04E1 B6 24 04E3 B7 57 04E5 3F 24 04E7 0F 23 FD 04EA B6 24 04EC B7 58 O4EE 1002

04F0 A6 C0 04F2 B7 59 04 F 4 A6 00 \(04 \mathrm{~F} 6 \mathrm{B7}\) 5A 04F8 CD 02 B0 04FB 2403 04FD CC 0472

05001050 050281

CYC53_2
DECA BNE

CYC53_2
* GET ANOTHER CONTACT *

BCLR ADSEL_, PORTC
LDA \#\$10 GET CONTACT
STA SPDR
BRCLR SPIF,SPSR,*
LDA SPDR
STA FN
CLR SPDR
BRCLR SPIF,SPSR,*
LDA SPDR
STA FN+1
BSET ADSEL_, PORTC
* CHECK CONTACT LEVEL IN FN IS LARGER THAN TRIGGER *

LDA \#TRIGGERH
STA : SN
LDA \#TRIGGERL
STA \(\quad \mathrm{SN}+1\)
JSR LONGCMP
BHS SUCCESS
JMP FAILEXIT
SUCCESS
BSET CONTACT,TSPFLGS
RTS

INVERSE
BCLR BS1,LCDMREG
BSET : BSO,LCDMREG
CLR RGTPTR
LDA \#\$97
STA RGTPTR+1
BSET RSW,MODE
LDA \#HFLOOP
STA - LOOP+1
CLR LOOP
BCLR RSW, MODE
LDA \#\$88
STA LFTPTR+1
LDA \#\$F
STA HP
BCLR CR2,LCDMREG
LDX \#WICONY1
NEXTROW1
BSET CR1,LCDMREG
STX SEGMENT
LDA \#801100001
STA MODE
BRSET RGST, STATUS, *
BCLR CR1,LCDMREG
STX SEGMENT
INCX
CPX \#WICONY2
BLS NEXTROW1
CLR LFTPTR+1
RTS

0537 3F 2A
053981


\title{
Using MC141562, MC141563 LCD Driver with MC68328 DragonBallm in PDA Application
}

\author{
By Yvonne Chan \\ Advanced Digital Consumer Division - Display Products Motorola Semiconductors Hong Kong Ltd.
}

\section*{INTRODUCTION}

MC141562 and MC141563 are a kit of LCD driver ICs offered by Motorola for medium to large LCD systems. The MC141562 is a 100 -channel LCD Common Driver and the MC141563 is a 80 -channel LCD Segment Driver. They can be directly used with the Motorola processor MC68328 DragonBall \({ }^{T M}\) for PDA or other application. Both LCD Drivers are cascadable for driving different LCD sizes. This application note illustrates a PDA LCD module design using this kit with MC68328 and gives hardware example for different arrangements.

\section*{LCD MODULE DESIGN}

There are several things to be taken care of when designing LCD module with this chip-set:
- Operating voltage
- LCD bias levels
- \(M\) signal generation
- Display size
- Data shift direction
- TAB (Tape Automated Bonding) package

In this application note, a typical PDA display size \(320 \times 240\) is chosen as example.

\section*{OPERATION VOLTAGE}

Two supply voltages are required. VDD is for the IC's control logic and shift register, it is from 2.7 V to 5.5 V ; VLCD ( \(\mathrm{V}<1>\) \(\mathrm{V}<6>\) ) is for the high voltage common or segment driving cell and is a DC supply voltage from 10 V to 28 V . The VLCD voltage required is defined by the LCD characteristics. User should refer to threshold voltage for turning on/off LCD pixels in LCD specification. Typically for \(320 \times 240\) pixels LCD, \(\mathrm{VLCD}=21 \mathrm{~V}, \mathrm{VDD}=5.0 \mathrm{~V}, \mathrm{VEE}=-20 \mathrm{~V}\).

\section*{LCD BIAS LEVELS}

LCD Driver requires six voltage bias level for the high voltage common or segment driver outputs. It can be generated by external voltage divider, see figure 1 . In order to obtain opti-
mum contrast for LCD panels, the bias levels should be selected such that
\(B I A S=R 1 /(4 R 1+R 2)=1 /(\sqrt{ } M U X+1)\)
V1/VLCD \(=1 /(\sqrt{ }\) MUX +1\()\)
V2/VLCD \(=2 /(\sqrt{ }\) MUX +1\()\)
\(V 3 /\) VLCD \(=(\sqrt{ }\) MUX -1\() /(\sqrt{ }\) MUX +1\()\)
V4NLCD \(=\sqrt{ }\) MUX \(/(\sqrt{ } \operatorname{MUX}+1)\)

Example: \(\operatorname{Mux}=240 \ldots\).... Bias \(=1: 16.5\),
\(R 1=6.8 \mathrm{~K}, \mathrm{R} 2=75 \mathrm{~K}, \mathrm{VR}=100 \mathrm{~K}\)
(
User should also refer to the biasing recommendation in the LCD specifications.

\section*{M SIGNAL GENERATION}

M signal can be provided directly from MC68328 DragonBall \({ }^{\text {TM }}\) or generated externally using the FLM frequency. See figure 2.
Example:
Use a J K Flip-Flop MC14027B.


Figure 2. M Signal Generation

DISPLAY SIZE
For typical \(320 \times 240\) display size, \(3 \times\) MC141562 and \(4 \times\) MC141563 are required. Simply define the display size by setting LCD screen format (screen width register and screen height register) in MC68328 DragonBall \({ }^{\text {TM }}\). Depending on the Carry In / Carry Out (EIO1, EIO2, EIO3, EIO4) shift register direction of operation, the last 60 channels of common driver output are unused and left opened. See figure 3.

\section*{DIRECTION OF DATA SHIFT}

There are 20 SCLK (shift clock) for 4 bit data shifting of total 80 bit data. Direction of data shift is defined by \(L / / R\) pin on MC141563. User has to carefully define the data shift direction so as to obtain correct data sequence displayed. Physical arrangement of the TAB package is also needed to be taken into considerations. See figure \(4 \& 6\).

\section*{DISPLAY OFF}

A display off pin DIS-OFF is provided in both MC141562 and MC141563 for turning off the whole LCD display and save power.
DIS-OFF must pull high to turn on the display.
See figure 5 .

(a)

(b)

Figure 3. Common LCD Driver Arrangement for 240 rows
(a) Copper view of MC141562T, \(L \bar{R}=0\)
(b) Polyimide view of MC141562T, \(\overline{L / R}=1\)


Figure 4. Segment LCD Driver Arrangement for 320 Columns
(a) Polyimide view of MC141563T, L/ \(\bar{R}=0\)
(b) Copper view of MC141563T, \(L / \bar{R}=1\)


TAB PACKAGE


\section*{REFERENCE}

MC141562 Technical Data, Advanced Information Rev 3. MC141563 Technical Data, Advanced Information Rev 3. MC68328 User's Manual, MC68328UM/D.

MC68328 Application Development System MC68328ADS Product Brief, MC68328ADS/D.

MOTOROLA
Microprocessor and Memory

\section*{MC68328 MC68328V}

\section*{Product Brief}

Integrated Portable System Processor—DragonBall \({ }^{\text {TM }}\)
As the portable consumer market grows in full speed, the system requirements are becoming more rigorous than ever. Minimum components, small board space, low power consumption, and low system cost are several minimum criteria to a successful product. To address these needs, Motorola designed a new processor MC68328 DragonBall \({ }^{\top \mathrm{TM}}\). By providing 3.3V, fully static operation in an efficient package, the MC68328 delivers cost-effective performance to satisfy the extensive requirements of today's portable consumer market.

The MC68328 (shown in Figure 1) is the first integrated processor of the 68K Family to include a LCD controller, which demonstrates Motorola's focus on the portable market. With addition to the LCD controller, MC68328 provides key features that are suitable for many portable applications. Modules like RTC, PWM, Timers, Master SPI, Slave SPI, UART, and the System Integration Module (SIM28) facilitate the system engineer with more flexibility and resources to design efficient and innovative products.


Figure 1. MC68328 Block Diagram

\section*{KEY FEATURES}

The primary features of the MC68328 are as follows:
- Static 68EC000 Core Processor-Identical to MC68EC000 Microprocessor
- Full Compatibility with MC68000 and MC68EC000
— 32-Bit both External and Internal Address Bus capable of addressing 4GB Space
- 16-Bit On-Chip Data Bus for MC68000 Bus Operations
-Static Design Allows Processor Clock to be Stopped Providing Dramatic Power Savings
-2.7 MIPS Performance at \(16.67-\mathrm{MHz}\) Processor Clock
- External M68000 Bus Interface with Dynamic Bus Sizing for 8-bit and 16-bit Data Ports
- System Integration Module (SIM28), Incorporating Many Functions Typically Relegated to External Array Logic, such as:
- System Configuration, Programmable Address Mapping
-Glueless Interface to SRAM, EPROM, FLASH Memory
- Sixteen Programmable Peripheral Chip Selects with Wait State Generation Logic
- Interrupt Controller with 13 flexible inputs
-Programmable Interrupt Vector Response for On-Chip Peripheral Modules
- Hardware Watchdog Timer
- Software Watchdog Timer
- Low-Power Mode Control
-Up to 78-Bit Individually Programmable Parallel I/O Ports
-PCMCIA 1.0 Support
- UART
—Support IrDA Physical Layer Protocol
- 8 Bytes FIFO on Rx and Tx
- Two Separated Serial Peripheral Interface Ports (Master and Slave)
—Support for External POCSAG Decoder (Slave)
- Support for Digitizer from A/D Input or EEPROM (Master)
- Dual Channel 16-Bit General Purpose Counter/timer
-Multimode Operation, Independent Capture/Compare Registers
- Automatic Interrupt Generation
-240-ns Resolution at \(16.67-\mathrm{MHz}\) System Clock
- Each Timer has an Input and an Output Pin for Capture and Compare
- Pulse Width Modulation Output for Sound Generation
-Programmable Frame rate
- 16 Bit programmable
-Supports Motor Control
- Real Time Clock
- 24 Hour Time
- One Programmable Alarm
- Power Management
- 5 V or 3.3 V Operation
-Fully Static HCMOS Technology
-Programmable Clock Synthesizer for Full Frequency Control
- Low Power Stop Capabilities
- Modules can be Individually Shut-down
-Lowest Power Mode Control (Shut Down CPU and Peripherals)
- LCD Control Module
—Software Programmable Screen Size to Support Single (Non-Split) Monochrome/ STN Panels
- Capable Of Direct Driving Popular LCD Drivers/Modules from Motorola, Sharp, Hitachi, Toshiba etc.
-Support Up To 4 Grey Levels
-Utilize System Memory as Display Memory
- IEEE 1149.1 Boundary Scan Test Access Port (JTAG)
- Operation from DC To 16.67 MHz (Processor Clock)
- Operating Voltages of \(3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}\) and \(5 \mathrm{~V} \pm 0.5 \mathrm{~V}\)
- Compact 144-Lead Thin Quad Flat Pack (TQFP) Package

\section*{SYSTEM INTEGRATION MODULE}

The MC68328 system integration module (SIM28) consists of several functions that control the system startup, initialization, configuration, and the external bus with a minimum of external devices. The memory interface allows the user to interface gluelessly with the popular SRAM, EPROM as well as PCMCIA 1.0 memory cards, with the assistance of chip-select logic, wait states can be programmable. The hardware and software watchdog timers help the user to do system protections. The interrupt controller accepts and resolves the priority from internal modules and external generated interrupts and also handles the masking and wake-up selection control for power control. The low-power logic can be used to control the CPU power dissipation by altering the frequency or stopping it. The SIM28 is also capable of configuring the pin to allow the user to select either dedicated I/O or parallel I/O. This feature helps to increase the number of available I/O ports by reclaiming when the dedicated function is not in used

\section*{System Configuration}

The MC68328 system configuration logic consists of a system control register (SCR) and which allows the user to configure operation of the following major functions:
- System Status and Control Logic
- Register Double Mapping
- Bus Error Generation Control
- Protecting the module control registers from access by user programs

\section*{VCO/PLL Clock Synthesizer}

The clock synthesizer can operate with either an external crystal or an external oscillator for reference, using the internal phase-locked loop (PLL) and voltage-controlled oscillator (VCO), or an external clock can directly drive the clock signal at the operating frequency.

\section*{Chip Select Logic}

The MC68328 provides sixteen programmable general purpose chip-select signals. For a given chip-select block, the user may choose whether the chip-select allows read-only, or both read and write accesses, whether the chip-select should match only one function code value or all values, whether a DTACK is automatically generated for this chip-select, and after how many wait states (from zero to six) the DTACK will be generated.

\section*{External Bus Interface}

The external bus interface handles the transfer of information between the internal 68EC000 core and the memory, peripherals, or other processing elements in the external address space. It consists of a 16-bit 68000 bus interface for internal and a selectable 8 -bit or 16 -bit interface to outside.

\section*{Interrupt Controller}

The interrupt controller accepts and prioritizes both internal and external interrupt requests and generates a vector number during the CPU interrupt acknowledge cycle. Interrupt nesting is also provided so that an interrupt service routine of a lower priority interrupt may be suspended by a higher priority interrupt request. The on-chip interrupt controller has the following major features:
- Prioritized Interrupt Sources (Internal and External)
- A Fully Nested Interrupt Environment
- Programmable Vector Generation
- Interrupt Masking
- Wake-up interrupt Masking

\section*{Parallel General-Purpose I/O Ports}

The MC68328 supports up to 78 -bit general-purpose I/O ports, which can be configured as general-purpose I/O pins or as dedicated peripheral interface pins of the on-chip modules.

Each port pin can be independently programmed as general-purpose I/O pins, even when other pins related to the same on-chip peripheral are used as dedicated pins. Even if all the pins for a particular peripheral are configured as general-purpose I/O, the peripheral will still operate normally, although this is only useful in the case of the RTC and timer modules.

\section*{Software Watchdog}

A software watchdog timer is used to protect against system failures by providing a means to escape from unexpected input conditions, external events, or programming errors. Once started, the software watchdog timer must be cleared by software on a regular basis so that it never reaches its time-out value. Upon reaching the time-out value, the assumption is made that a system failure has occurred, and the software watchdog logic resets or interrupts the 68EC000 core.

\section*{Low-Power Stop Logic}

Various options for power-saving are available: turning off unused peripherals, reducing processor clock speed, disabling the processor altogether or a combination of these.

A wake-up from low-power mode can be achieved by causing an interrupt at the interrupt controller logic which runs throughout the period of processor low-power. Selectable interrupt will cause a wake-up of the EC000 core followed by processing of that interrupt.

The on-chip peripherals can initiate a wake-up; for example, the timer can be set to wake-up after a certain elapsed time, or number of external events.

\section*{LCD Controller}
- Interfaces with Monochrome STN LCD Modules
- Up to 4 Levels of Gray Scale through Frame Rate Control
- Utilize system RAM for display memory
- Screen Refresh through DMA

\section*{UART and Infra-red Communication Support}

The UART supports standard asynchronous serial communications at normal baud rates and is compatible with HPSIR/IrDA Physical Communication Protocol

\section*{Real Time Clock}

Real Time Clock in MC68328 is driven by a \(32.76 \mathrm{KHz} / 38.4 \mathrm{kHz}\) Crystal which is the same as the Clock Synthesizer Clock source. It also provides interrupt for alarm.

\section*{JTAG Test Access Port}

To aid in system diagnostics the MC68328 includes dedicated user-accessible test logic that is fully compliant with the IEEE 1149.1 standard for boundary scan testability, often referred to as JTAG (Joint Test Action Group).

\section*{ORDERING INFORMATION}

Table 1 identifies the packages and operating frequencies available for the MC68328.
Table 1. MC68328 Package/Frequency Availability
\begin{tabular}{|c|c|c|c|c|}
\hline Package Type & \(\mathrm{V}_{\mathrm{CC}}\) & Frequency \((\mathrm{MHz})\) & Temperature & Order Number \\
\hline 144 -Lead TQFP & 5 V & 16.67 & \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) & MC 68328 \\
\hline
\end{tabular}

The documents listed in Table 2 contain detailed information on the MC68328. These documents may be obtained from the Literature Distribution Centers at the addresses listed at the bottom of this page.

Table 2. Documentation
\begin{tabular}{|l|c|l|}
\hline \multicolumn{1}{|c|}{ Document Title } & Order Number & \multicolumn{1}{c|}{ Contents } \\
\hline MC68328 User's Manual & MC68328UM/AD & LDC Stocking est. 2Q95 \\
\hline M68000 Family Programmer's Reference Manual & M68000PM/AD & M68000 Family Instruction Set \\
\hline
\end{tabular}

\title{
Effects of Bond Temperature and Pressure on Microstructures of Tape Automated Bonding(TAB) Inner Lead Bonds(ILB) with Thin Tape Metallization
}

\author{
J. K. L. Lai and M. C. Loo \\ City University of Hong Kong \\ Department of Physics and Materials Science \\ Tat Chee Avenue, Kowloon, Hong Kong. \\ K. Y. Cheng \\ Motorola Semiconductors Hong Kong Ltd. MMTG/MDAD Products Reliability \& Quality Assurance Silicon Harbour Center, N.T., Hong Kong.
}

\begin{abstract}
In view of the advantages of low cost, simple manufacturing process and significant miniaturization in size, Tape Automated Bonding(TAB) technology is important to the future development of consumer electronic products. Inner lead bonding(ILB) process is especially crucial for the production of high quality TAB packages and compor,ents. In this investigation, the effects of two critical bonding parameters: bond temperature and bond pressure on the final ILBs integrity and microstructures have been studied. The possibility of gang bonding \(0.4 \mu \mathrm{~m} \mathrm{Sn}\)-plated Cu lead beams with straight wall gold bumps to form reliable TAB inner lead bonds is demonstrated in this study.

The variations in microstructure of ILB joints have been studied by microsectioning, metallography, Scanning Electron Microscopy(SEM) and Energy Dispersive X-ray(EDX) Spectroscopy. The gold rich \(\mathrm{Au} / \mathrm{Sn}(80 / 20 \mathrm{wt} . \%\) ) eutectic structure and \(\zeta\) phase have been observed. However, it was found that the \(\mathrm{Au} / \mathrm{Sn}\) eutectic exhibit different structures as the bond temperature and pressure were changed. Binary \(\mathrm{Au} / \mathrm{Sn}\) and ternary \(\mathrm{Au} / \mathrm{Sn} / \mathrm{Cu}\) intermetallic compounds have also been detected. The adhesion of the bonded interface has been studied by mechanical pull test. Lead pull values and the failure modes obtained are discussed with the result of microstructral evaluations.
\end{abstract}

\section*{INTRODUCTION}

Tape Automated Bonding(TAB) is an electronic packaging technique for providing mechanical support, thermal dissipation \& electrical connections to an integrated circuit chip or die which is connected to a substrate through the metal leads carried by a polymer tape. Having the advantages of low production cost, small in size and simple manufacturing process, TAB has been widely used in consumer electronic products such as LCD driver, pager, portable phone and others. Application of TAB in high performance, high pin-count chips also tends to increase. The success of TAB technology
for a particular application is largely determined by the success of inner lead bonding to form reliable inner lead bonds(ILB) as it is the first step in TAB assembly process, which connect the chip to the tape.

In order to obtain high quality inner lead bonds, the bonding parameters must be optimized. Important bonding parameters for a given set of mating surface metallizations for leads and bumps are bonding temperature, pressure, dwell time and stage temperature. The bond quality greatly depends on the bonding temperature and pressure since the bonds formed by the action of them. The possible ranges of bonding parameter settings to produce quality ILBs is so-called process window. The process window for the bonding is narrow and difficult to identify, little changes on each individual bonding parameter may causes a great variety on the integrity and structure of the ILBs.

Thermocompression bonding of \(\mathrm{Au} / \mathrm{Au}\) and eutectic bonding of \(\mathrm{Au} / \mathrm{Sn}\) are two common methods of inner lead bonding. For thermocompression bonding, gold-plated lead beams are bonded with gold-bump. The quality of the bonds depends solely on solid-state diffusion of Au/Au. It is known that high bonding pressure and temperature can ensure adequate solid-state diffusion. However, such operating condition may cause cracks on pad structure and damages to the circuit devices which are sensitive to high processing temperature[1]. Another way to provide good quality of diffusion with lower bonding temperature and pressure is by eutectic Au/Sn bonding. Tin-plated lead beams are bonded with gold bump. The Au/Sn alloy is formed by the action of liquid tin and the solid gold during the bonding. Therefore, it is suitable for inner lead bonding those delicate devices. The desired structure of the inner lead bonds is eutectic Au/Sn for it has the advantages of relatively low melting temperature, high strength, free from thermal fatigue and low Young's modulus[2].

However, the formation of \(\mathrm{Au} / \mathrm{Sn}\) alloy during ILB is extremely dynamic[3]. Intermediate phases such as \(\mathrm{AuSn}(\delta\) phase), AuSn2( \(\varepsilon\) phase) and AuSn4( \(\eta\) phase) may result.

All these phases are brittle in nature and may cause embrittlement of the ILBs. Ternary \(\mathrm{Au} / \mathrm{Sn} / \mathrm{Cu}\) intermetallic compound may also form which may cause strong degradation of pull forces due to the formation of Kirkendall void[4].

The primary goal of this investigation is to obtain a fundamental understanding of the influence of bonding temperature and pressure on the dynamic alloy formation of \(\mathrm{Au} / \mathrm{Sn}\) system. In order to obtain the structural and compositional information on the ILBs, metallographic examination was employed to observe the microstructures formed on the boned zone. Besides, the possibility of bonding reduced tinplating \((0.4 \mu \mathrm{~m})\) on gold bump is presented in this paper.

\section*{EXPERIMENTAL METHOD}

\section*{Materials}

TAB component devices of 97 lead counts and 3-layer tape were used. The lead beam material is electrodeposited(ED) copper and plated with thin tin of low roughness. The thickness of the tin plating is \(0.4 \mu \mathrm{~m}\). Straight wall gold bumps are deposited on the circuit devices. Characteristics of the TAB components are summarized and shown on Table I.

Table I. Characteristic data of the TAB component
\begin{tabular}{ll}
\hline Tape: & 3-layer tape \\
Pin count: & 97 \\
Die size: & \(4.01 \times 3.77 \mathrm{~mm}\) \\
Lead width: & \(60 \mu \mathrm{~m}\) \\
Bump material: & straight wall gold bump \\
Bump size: & \(22.5 \times 22.5 \times 20 \mathrm{~mm}\) \\
Lead material: & ED copper \\
Lead plating material: & immersion tin with \(0.4 \mu \mathrm{~m}\) thick \\
\hline
\end{tabular}

\section*{Bonding Process}

Inner lead bonds(ILB) were obtained by gang bonding. The bonder first picked up a die onto the stage for pre-heating. Almost at the same time, a TAB tape was moved to bonding position for pattern recognization and lead location check. The thermode was then slowly move down onto the lead. Heat and force were supplied by the thermode to the leads and bumps. The liquid tin reacted with solid gold to form \(\mathrm{Au} / \mathrm{Sn}\) alloy by the action of the temperature and pressure during the bond time. The alloy solidified after the heat and the force was released. The most critical bonding parameters of the bonding process are bonding temperature, bond pressure as they determine the final integrity of ILBs.

In order to investigate the dynamic influence of bond temperature and bond pressure on the formation of microstructures of the ILBs, we only varied both of the parameters, while the stage temperature for pre-heating and the bond time were kept constant at 0.5 second and \(150^{\circ} \mathrm{C}\) respec-
tively. Preliminary studies indicated that stage temperature and bond time have little effect on degradating the quality of the bonds.

Table II. Bonding Parameters Setting
\begin{tabular}{c|c|c}
\hline Setting & \begin{tabular}{c} 
Bonding temperature \\
\(/{ }^{\circ} \mathrm{C}\)
\end{tabular} & \begin{tabular}{c} 
Bonding pressure \\
/unit
\end{tabular} \\
\hline A & 370 & 30 \\
B & 395 & 25 \\
C & 420 & 20 \\
D & 470 & 10 \\
E & 520 & 0 \\
F & 420 & 0 \\
G & 520 & 20 \\
\hline
\end{tabular}

The applied thermode temperature were set within the range \(370^{\circ} \mathrm{C}\) to \(520^{\circ} \mathrm{C}\).

Since the bond force required for bonding may vary as the number of lead beams and the contact area of the thermode on individual lead are changed for different manufacturers or bonders, we only present the variations of the pressure (the force applied divided by the contact area of the thermode and the lead) applied to each lead in a relative sense of arbitrary unit. The range of the thermode force applied in our investigation, \(10 \mathrm{cN} /\) pad to \(40 \mathrm{cN} / \mathrm{pad}\), has been used successfully by previous researcher[4] for inner lead bonding.

The variations of the bonding parameter setting is illustrated in Fig. 1. The applied pressure decreased as the bonding temperature is increased. The setting is named in alphabetical order with decreasing bonding pressure and increasing temperature except setting F \& G. ILBs were bonded according to the setting.


Fig. 1 Variations of bonding parameters.

\section*{Analytical Method}

Metallographic examination techniques were used to investigate the microstructures and integrity of the formed ILBs. Samples of the TAB components bonded at different parameter settings were mounted using low temperature
curing epoxy resins. Normal grinding and polishing procedures were followed to obtain a smooth surface for further analysis.

The micro-sectionings of samples were then examined by a Scanning Electron Microscopy(SEM) which was operated in conjuction with a Back-scattered electron(BSE) detector. The microstructures and the phases were revealed by the detector. The observed phases were identi fied by an Energy Dispersive X-ray(EDX) Spectroscopy Since the dimensions of ILBs was so small, it was difficul to determine the exact composition of the phases. Thus only semi-qualitative analysis was carried out.

From the obtained micrographs, the deformation charac teristics of the formed ILBs were hence determined. The strain of each parameter setting were estimated by com paring the dimensional changes of the leads and bumps.

Parallel to the metallography examination, mechanica lead pull test was carried out to access the quality of the ILBs. The adhesion strength of the contact interface is indi cated by the averaged lead pull test values. The failure modes of the test were also used to interpret the date recorded.

\section*{RESULTS AND DISCUSSION}

\section*{Thin Tape Metallization}

Reduced tin-plating was used to form ILBs to check the possibility of obtaining reliable bonds. \(0.4 \mu \mathrm{~m}\) thick tin was plated on ED copper lead beams instead of \(0.5 \mu \mathrm{~m}\) with low roughness. As indicated in Fig. 2, ILBs bonded at various bonding parameter settings have acceptable lead pull values. Besides, the observed failure mode of all the settings is lead break. These directly show that all the ILBs have sufficiently high strength and this adhesive strength of the bonded interface is higher than the fracture strength of the copper lead which is explained by wire theory[5].


Fig. 2 Averaged lead pull strength of ILBs bonded at various settings.

Since the metallization of the lead beams was reduced, there was limited free tin available for \(\mathrm{Au} / \mathrm{Sn}\) bonding. This not only limited the formation of \(\mathrm{Au} / \mathrm{Sn}\) alloy at the gold-rich region or at the left portion of the Au-Sn phase diagram (Fig. 3) but also excluded the formation of two brittle inter-
metallic compounds: AuSn2( \(\varepsilon\) phase) and AuSn4( \(\eta\) phase). However, the formation of the \(\mathrm{Cu} / \mathrm{Sn}\) intermetallic compounds, \(\mathrm{Cu}_{3} \mathrm{Sn}\) and \(\mathrm{Cu}_{6} \mathrm{Sn}_{5}\), between the tin-plating and the copper lead may reduced the shelf life of the leads and free tin available for alloying as they have relatively high rate of formation at room temperature and form even more rapidly at higher temperature.


Fig. 3 Au-Sn equilibrium phase diagram [2].

\section*{Microstructural Variations}

In order to study the bonding mechanism, the microstructures and the alloy composition, samples bonded at different bonding parameters were cut into cross-sections and longitudinal sections. Fig. 4 (a) and (b) show the typical micrographs of the micro-sectioning. They were examined by a back-scattered electrons (BSE) detector in operating with a scanning electronic microscope(SEM) to differentiate the compositional differences of the microstructures.

It is observed that ILBs bonded at setting A \& B exhibit the same microstructural features. Fig. 5 shows the BSE image of the cross-section of the ILBs bonded at setting A. Rather uniform contact interface was observed with thickness less than \(1 \mu \mathrm{~m}\). As we can see, the contrast of the BSE image indicate that the interfacial layer has higher Sn content than the gold-rich eutectic compositon(70 at.\%Au, \(30 \mathrm{at} . \% \mathrm{Sn}\) ). This alloy did not wet the adjacent Cu-lead beam. Extensive accumulation of eutectic \(\mathrm{Au} / \mathrm{Sn}(70 / 30\) at.\%) alloy was also found at the contact interface as illustrated in Fig. 6. Cracks were also observed to be initiated from those region.

It should be pointed out that the eutectic \(\mathrm{Au} / \mathrm{Sn}\) found outside the contact interface has two distinguish structures. From Fig. 7(a), it is observed that rather regular coarser columnar layer and fine lamellar co-exist. EDX results indicate that these two structures has the same composition 70 at. \(\% \mathrm{Au}\) and \(30 \mathrm{at} . \% \mathrm{Sn}\). Thus these phases are identified as eutectic Au/Sn alloy. Formation of eutectic \(\mathrm{Au} / \mathrm{Sn}\)
lies on the fact that molten tin flow to the joint region and react with solid gold-bump forming a pool of Au/Sn alloy of eutectic composition and then solidified. The lamellae tend to grow perpendicular to the liquid-solid interface and its spacing would probably adjust so as to minimize the undercooling at the interface. The case is similar to the well known casting-metal structure. The dommed layer between the gold bump and the columnar eutectic was identified as \(\zeta\) phase with 15 at.\% Sn.

A layer of ternary \(\mathrm{Au} / \mathrm{Sn} / \mathrm{Cu}\) intermetallic was found at the copper lead beam. For the thickness of the layer is out of the detection limit of EDX, the composition of the compound was not determined. However, it is belief that it is due to the preference of diffusion of Cu atoms to eutectic \(\mathrm{Au} / \mathrm{Sn}\) region to form ternary \(\mathrm{Au} / \mathrm{Sn} / \mathrm{Cu}\) intermetallic compounds[4]. The growth of this intermetallic layer is highly temperature dependent.

(a)

(b)

Fig. 4 (a) Cross-section micrograph of ILB.
(b) Longitudinal-section micrograph of ILB.


Fig. 5 BSE image of the cross-sectional view ILB bonded at setting A. (a)CU-lead beam b) contact interface c) eutectic region. The thickness of the interface is less than \(1 \mu \mathrm{~m}\). The contrast of the image indicate that the layer may have higher Sn content than the eutectic phase(30 at. \% Sn).


Fig. 6 Cross-sectional SEM micrograph show the accumulation of the eutectic \(\mathrm{Au} / \mathrm{Sn}\) at the contact interface and the initiation of a crack from that region.

Besides the cross-sectional evaluation of the ILBs, longi-tudinal-section metallographic examination was employed. Fig. 8 (a) show the network structure of the alloy accumulated at the heel. The alloy does not wet the copper lead beam. EDX measurements identified it is a mixture of AuSn (50 at. \(\% \mathrm{Au} \& 50 \mathrm{at} . \% \mathrm{Sn}\) ) intermetallic or \(\delta\) phase and gold-rich eutectic ( \(70 \mathrm{Au} / 30 \mathrm{Sn}\) at. \%). This mixture was observed accumulated at the interface (Fig. 8(b)). Non-uniform interface and cracks were found within the region. Fig. 9 (a) and (b) depict the BSE images of the microstructure of setting A found at the heel and outside the contact interface respectively.

The copper lead beam and the gold bump bonded at setting \(A \& B\) remain rigid after bonding, i.e. undeformed, as indicated by the strain measurements of the ILBs (Fig. 10). Thus the strength of AuSn phase and gold-rich eutectic mix-
ture which made up the bonded zone determined the interfacial strength of the ILBs. Moreover, the beam and the bump could be deformed if the applied pressure is increased.


Fig. 7 (a) Microstructure of the accumulated eutectic Au/ Sn outside the contact interface. The content of the eutectic phase is 70 at.\% Au and \(30 \mathrm{at} . \% \mathrm{Sn}\). Two distinguish structure of \(\mathrm{Au} / \mathrm{Sn}\) co-exist. They are A\()\) coarser Au/Sn eutectic layer( \(0.5 \mu \mathrm{~m} /\) layer) and B) fine \(\mathrm{Au} / \mathrm{Sn}\) lamellar( \(0.1 \mu \mathrm{~m} /\) layer). The dark region is tin-rich while the lighter one is gold rich. C) \(\zeta\) phase is found at the perimeter of the gold bump with 15 at. \% Sn.
(b) A closer look on the interface. \(\mathrm{Au} / \mathrm{Sn} / \mathrm{Cu}\) ternary intermetallic formed at the Cu-beam caused by the diffusion of Cu -atoms to the eutectic \(\mathrm{Au} / \mathrm{Sn}\) zone.

As the bonding temperature exceeded \(420^{\circ} \mathrm{C}\), the wetting behavior of the formed \(\mathrm{Au} / \mathrm{Sn}\) alloy was observed to be improved as the bonding temperature was increased. The microstructure of the fillet of setting C, D \& F was determined to be gold-rich eutectic Au/Sn. No AuSn phase was found as it melts at \(419.3^{\circ} \mathrm{C}\). While, for setting E \& G , the bonding tem-
perature was \(520^{\circ} \mathrm{C}\), meniscus of mixture of fine lamellae and small grains are observed. Fig. 11 shows the cross-section of ILBs bonded at setting E. EDX results indicated that the fine lamellae of random orientation has the eutectic \(\mathrm{Au} / \mathrm{Sn}\) composition( \(70 / 30\) at. \(\%\) ) and the grains has 84 at. \(\% \mathrm{Au}\) and 16 at.\% Sn. These two phases hence identified as eutectic Au/ Sn and z phase respectively. Indicated by the Au-Sn phase diagram, peritectic reaction \(\left[\mathrm{L}+\beta\left(\mathrm{Au} u_{10} \mathrm{Sn}\right)\right] \leftrightarrow \zeta\) occurs at \(521^{\circ} \mathrm{C}\) [2]. This reaction is likely to happen as the bonding temperature closed to the reaction temperature and with sufficiently high content of gold. This explain the formation of grains of \(z\) phase within the eutectic alloy and is termed as hyperetutectic structure.


Fig. 8 (a) Longitudinal-section of ILB bonded at \(395^{\circ} \mathrm{C}\) (SE image) showing the network like structure of the \(\mathrm{Au} / \mathrm{Sn}\) alloy accumulated at the heel. There are 2 phases: A) AuSn (50/50 at.\%) phase and B) eutectic \(A u / S n(70 / 30\) at. \%)
(b) A) \(\operatorname{AuSn}(50 / 50\) at. \%) intermetallic and B) eutectic \(\mathrm{Au} / \mathrm{Sn}(70 / 30 \mathrm{at} . \%\) ) at the contact interface. Cracks are observed to be initiated from the region of AuSn intermetallic.

From Fig. 14 and Fig. 15, we can see that the gold-bump undergone plastic deformation at the perimeter of gold bump. It is obvious to see that the bump deformed by means of grain-boundary sliding under the action of bonding temperature and pressure. More gold solid solution dissolved into the liquid tin, which favored the forming of \(\zeta\) phase during cooling. Random lamellae formed as solidification. Same kind of microstructures were found at longitudinal sections of the bonds. Due to the effects of high bonding temperature of the settings, thicker layer of ternary \(\mathrm{Au} / \mathrm{Sn} / \mathrm{Cu}\) intermetallic compound was expected and was actually observed (Fig. 16). It is well known that the rate of diffusion of Cu is a function of temperature and thus the formation of the ternay intermetallic.

(a)

(b)

Fig. 9 BSE images of the mixture of AuSn phase and eutectic phase found at (a)the heel (b)the adjacent of the lead beam of ILBs bonded at A.


Fig. 10 Strain rate of the ILBs bonded at various setting.


Fig. 11 BSE image reveals the \(\mathrm{Au} / \mathrm{Sn}\) alloy formed at the fillet. The formed meniscus is composed of fine lamellar eutectic \(\mathrm{Au} / \mathrm{Sn}\) and gains of \(\zeta\) phase with 16 at. \% Sn.


Fig. 12 A close look on the meniscus (BSE image) show the fine lamellar Au/Sn grew from different cooling cores and grains of \(\zeta\) phase formed in the direction bump deformation.


Fig. 13 BSE images of longitudinal-section show the meniscus formed at the heel of setting \(E\).


Fig. 14 BSE images shows cross-sectional view of the ILB bonded at setting E. The contrast of the BSE image indicate the diffusion of the Sn atoms to that region through grain boundaries. The Sn content at that region is \(11 \mathrm{at} . \%\).
(X6000)

\section*{Deformation}

As the bond pressure used for setting \(C, D, E, F \& G\) were all less than setting \(A \& B\), the deformation of ILBs are obviously due to the influence of the increasing temperature. Temperature has the predominant role of initiating the deformation of both Cu lead beam and gold-bump. As the bonding temperature increased, more energies are available for the bonding process and for the deforming process. In co-operation with the applied pressure, molten tin was squeezed out with little remaining on the contact interface which facilitate the joining of the interface. The possible bonding mechanism was identified as the interdiffusion of matters of the bonded regions, plastic deformation of surface asperities and power law creep deformation[6]. Therefore, plastic deformation of the surface of Cu lead and Au-bump has the effect of pushing excess molten tin out of the bonded zone. Fig. 17 (a), (b) and
(c) show the BSE image of the interfaces of ILBs bonded at setting C, F and G respectively. In addition, this flow would certainly help to wet the alloy to the beam lead. Thus no accumulation of \(\mathrm{Au} / \mathrm{Sn}\) alloy at the interface occurs once deformation has been initiated. However, if temperature and pressure applied further, bulb deformation may result and lead to the degradation of Cu lead beam, and gold-bump, that is the case of setting D (Fig. 18).

By comparing the results of strain measurement and lead pull test, highest and lowest pull test values are obtained which are corresponding to the deformation of ILBs at \(25 \%\) and \(30 \%\). It suggest that the bulb deformation occurs as the strain exceed \(30 \%\).

\section*{The influence of Bonding Temperature and Pressure}

In order not to causing any kinds of damaging to the component devices during inner lead bonding, the bonding temperature and pressure should be kept as low as possible. The results obtained so far indicated that extensive formation of \(\mathrm{Au} / \mathrm{Sn}\) intermetallics, including \(\mathrm{AuSn}(\delta\) phase), \(\mathrm{AuSn2}(\varepsilon\) phase) and AuSn4( \(\eta\) phase), can be excluded if the bonding temperature exceeds \(420^{\circ} \mathrm{C}\) with thin tape metallization. While below that temperature, accumulation of AuSn phase and eutectic \(\mathrm{Au} / \mathrm{Sn}\) mixture observed at and outside the bonded zone, which intuitively cause long-term reliability problem. Besides, plastic deformation of the mating surfaces can also be obtained with reducing pressure. The microstructure of the fillet formed at the heel and adjacent to the lead beam is found to be gold-rich eutectic with good and easy wetting to the beam lead. Hypereutectic structure, i.e. mixture of gold-rich eutectic \(A u / S n\) and \(\zeta\) grains, is obtained as the bonding temperature exceed \(470^{\circ} \mathrm{C}\). However, the rate of formation of ternary \(\mathrm{Au} / \mathrm{Sn} / \mathrm{Cu}\) intermetallics is accelerated due to the increased bonding temperature may lead to long term degradation problem.

It is evident that for TAB Au/Sn eutectic inner lead bonding, bonding temperature is responsible for determining the metallurgical structure of the bonded zone and deforming the contact interfaces with the assistance of applied pressure. The growth of binary \(\mathrm{An} / \mathrm{Sn}\) intermetallic compounds and ternary \(\mathrm{Au} / \mathrm{Sn} / \mathrm{Cu}\) intermetallics can be limited by optimizing the bonding temperature within the range \(420^{\circ} \mathrm{C}\) and \(470^{\circ} \mathrm{C}\). Excellent wetting can also be achieved. The optimum deformation was found to be at \(25 \%\) strain rate of highest lead pull strength, which indicate that the bonding pressure is sufficient to deform the bonded interfaces without causing bulb deformation.


Fig. 15 BSE images of the heel of the ILBs bonded at setting \(E\).


Fig. 16 BSE images of longitudinal-section show ternary \(\mathrm{Au} / \mathrm{Sn} / \mathrm{Cu}\) intermetallic formed under the lead beam and grew in the direction of the applied temperature gradient. The content of the ternary phase is \(52 \mathrm{at} . \% \mathrm{Au}, 13 \mathrm{at} . \% \mathrm{Sn}\) and \(35 \mathrm{at} . \% \mathrm{Cu}\).


(b)

(c)

Fig. 17 BSE images of the interfacial layer formed at setting a) C, b) F and c) G. The micrographs indicate that the higher the applied pressure, the thinner is the interficial layer.


Fig. 18 SEM photograph show the cracks formed at the ILBs bonded at setting \(G\).

\section*{CONCLUSION}

Reduced tape metallization, \(0.4 \mu \mathrm{~m}\) tin-plating, was used to form ILBs in our investigation. The adhesive strength of the bonded interface were examined by mechanical lead pull test showing that all the ILBs have acceptable strength. The failure mode is lead break. The strength of the bonded interface is higher than the fracture strength of the ED copper lead beam. By means of micro-sectioning and metallographic examination, the microstructures of the formed \(\mathrm{Au} / \mathrm{Sn}\) system were investigated. The microstructures of the Au/Sn alloy fillet was a mixture of AuSn intermetallic phase \& gold-rich eutectic(70at.\%Au \& 30at. \(\% \mathrm{Sn}\) ) as the bonding temperature was set below \(420^{\circ} \mathrm{C}\), desirable gold-rich eutectic with good and easy wetting was obtained as bonded in between \(420^{\circ} \mathrm{C}\) and \(470^{\circ} \mathrm{C}\) and a mixture of \(\zeta\) grains \& the eutectic, i.e. hypereutectic composition, was found at \(520^{\circ} \mathrm{C}\).

It is evident that bonding temperature take the predominant role of establishing the metallurgical structure while bonding pressure assists the plastic deformation of the bonded zone and aids the wetting. The optimum bonding temperature for \(\mathrm{Au} / \mathrm{Sn}\) TAB inner lead bonding is between \(420^{\circ} \mathrm{C}\) and \(470^{\circ} \mathrm{C}\), as this temperature range favors the formation of gold-rich eutectic without accumulation of any kinds of brittle binary \(\mathrm{Au} / \mathrm{Sn}\) intermetallic. The growth of ternary \(\mathrm{Au} / \mathrm{Sn} / \mathrm{Cu}\) can also be inhibited. Furthermore, plastic deformation at the surfaces of the bond region is shown to be required. It is suggested that range of deformation is from \(25 \%\) to \(30 \%\) strain rate. This can be used as a rough guide for accessing the adequacy of bonding pressure as the bonding temperature has been optimized.

\section*{ACKNOWLEDGEMENTS}

The authors would like to express their gratitude to Dr.L.M.C.Wu in City University of Hong Kong for his useful discussion, Caety Tse and Alfred Ho in Motorola Semiconductors H.K. Ltd. for their supports on preparing the TAB components, T.F. Hung and K.F. Liang in MTU of City University of Hong Kong for coating SEM samples.

\section*{REFERENCES}
[1] W.T. Chen, J.Z. Raski, J.R. Young, and D.Y. Jung, "A Fundamental Study of the Tape Automated Bonding Process," Transaction of the ASME, Vol. 113, Sep 1991, pp. 216-225.
[2] G.S. Matijasevic, C.C. Lee and C.Y. Wang, "Au-Sn Alloy Phase Diagram and Properties Related To Its Use As A Bonding Medium," Thin Solid Films, Vol. 223, 1993, pp. 276-287.
[3] T.S. Liu, "Aspects of Gold-Tin Bump-Lead Interconnection Metallurgy," in Proceedings/ International Microelectronics on Symposium, 1977, pp.120-128.
[4] E. Zakel and H. Reichi, "Au-Sn Bonding Metallurgy of TAB Contacts and Its Influence on the Kirkendall Effects in the Ternary Cu-Au-Sn," IEEE Transactions on Compo-
nents, Hybrids, and Manufacturing Technology, Vol. 16, No. 3, May 1993, pp. 323-332.
[5] T.C. Chung and H. A. Moore, "Analysis and Evaluation of TAB Bonds," in Proceedings NEPCON East,1989, pp. 746-761.
[6] B.Derby and E.R. Wallach, "Diffusion Bonding: Development of Theoretical Model," Metal Science, Vol.18, Sep 1984, pp. 427-431
[7] E.Zakel and H.Reichi, "Investigations of Failure Mechanism of TAB-Bonded Chips During Thermal Aging," Proceedings 40th IEEE Electronic Components \& Technology Conference, 1990, pp 450-459.
[8] C.H. Tung, Y.S. Kuo and S.M. Chang, "Tape Automated Bonding Inner Lead Bonded Devices(TAB/ILB) Failure Analysis," IEEE Transcation on Components, Hybrids, and Manufacturing Technology, Vol. 16, No.3, May 1993, pp. 304-310.
[9] K.Atsumi, N. Kashima, Y. Maehara and Others, "Inner lead Bonding Techniques For 500 Led Dies Having a 90 mm Lead Pitch," IEEE 39th Electronic Component Conference, pp. 171-176.
[10] Karlheinz G., S-Thomas, M. Groll and A. Modl, "The Reliability of OLB Joints of Gold-Plated TAB Leads," IEEE Transactions on Components on Hybrids, and Manufacturing Technology, Vol.16, No.3, May 1993, pp. 284-291.
[11] E.Zakel, R. Leutenbauer and H. Reichi, "Reliability of Thermally Aged Au and Sn Plated Copper Leads for TAB Inner Lead Bonding," in Proceedings IEEE electronic Components and Technology Conference, 1991 May, pp. 866-876.
[12] T. H. Spencer, "Thermopression Bond Kinetics-the four Principle Variables," International Journal of Hybrid Microelectronics, 1982, pp. 404-418.
[13] Y. Jee and M. Andrews, "Failure Mode Analysis For TAB Inner Lead Bonding," in Proceedings 39th IEEE Electronic Components and Technology, 1989, pp. 325-334.
[14] E.Zakel, S. Schuler, and J.Simon, "The Application of an Eutectic Gold-Tin Cushion for TAB-Inner Lead Bonding with Reduced Bonding Pressure," Micro System Technologies 90: 1st Int't Conf. on..., 1990, pp. 400-406.
[15] J. H. Lau, S.J. Erasmus and D.W. Rice, "Overview of Tape Automated Bonding Technology," Electronic Materials Handbook: Packaging, Vol. 1, pp. 274-296.
[16] D. Meyer, A. Kohli, H. Firth \& H. Reis, "Metallurgy of TiW/Au/Cu System for TAB Assembly," J. Vac. Sci Technol. A 3(3), May/Jun 1985, pp. 772-776.
[17] A.S. Rose, F.E. Scheling and T.V. Sikina, "Metallurgical Considerations for Beam Tape Assembly". Solid State Technology, March 1978, pp. 49-68.
[18] L. Buene, H. F. Arell, J. Gjonnes and J. Tafto, "A Study of Evaporated Gold-Tin Film Using Transmission Electron Microscopy: II," Thin Solid Films, 67(1980), pp. 95-102.
[19] L.-G. Lilijestrand, "Bond Strengths of Inner and Outer Leads on TAB devices," Hybrid Circuits, 1986 May, Vol. 10, pp. 42-48.

\section*{Testing LCD Drivers in TAB package}

By Simon Ku
Advanced Product Test Operation
Motorola Semiconductors Hong Kong Ltd. 11

\section*{Contact method for testing TAB package}

Owing to the special nature of the TAB package \({ }^{1}\), traditional contact method for rigid body packages, such as PLCC and QFP, cannot be used. A different kind of interface should be used between the handler and the test system.

The most commonly used interfaces are probe card and conductive rubbers.

\section*{Probe Card}

\section*{What is probe card}

Probe card, in simple words is a PCB board with probes attached in which matches the pin layout of the TAB package under test.
The probe card in Fig. 1 is an Epoxy Ring Type probe card. It is composed of four parts which are:

\section*{1.Probe/Sensor}
2. Ring
3. Epoxy
4. Printed circuit board


Fig. 1 Epoxy Ring Type Probe Card

The most important parameter within a probe card should be the material of the probes. The material used contributes directly to the contact resistance and the life of the probe card. Three commonly used probe materials are listed below \({ }^{2}\) :

\section*{1. Tungsten}

The most widely used. Exhibits excellent fatigue resistance but higher contact resistance over use due to aluminum oxide build-up on the probe tip. Requires periodic sanding with ceramic wafer.

\section*{2. Beryllium Copper}

Recommended for high speed high or low power devices because of its lower contact resistance but has a much shorter life than tungsten.

\section*{3. Palladium}

Recommended for gold pad. Shows stable contact resistance but has a much shorter life than the above materials.

As a result, which material should be used depends upon which device is under test. Below is a table of their characteristics:
\begin{tabular}{|c|c|c|c|}
\hline CHARACTERISTICS & \multicolumn{3}{|c|}{ MATERIALS } \\
\hline & Tungsten & BeCu & Palladium \\
\hline \begin{tabular}{c} 
Volume Resistivity \\
\(\left(\mu \Omega \mathrm{cm}\right.\) at \(\left.20^{\circ} \mathrm{C}\right)\)
\end{tabular} & 5.7 & 6.8 & 34.2 \\
\hline \begin{tabular}{c} 
Modulus of Elasticity \\
\(\left(\mathrm{kg} / \mathrm{cm}^{2}\right)\)
\end{tabular} & \(4.13 \times 10^{6}\) & \(1.33 \times 10^{6}\) & \(1.18 \times 10^{6}\) \\
\hline Hardness (Rockwell C) & 7.0 & 3.0 & 4.8 \\
\hline
\end{tabular}
\({ }^{1}\) The TAB mentioned here is of reel to reel type.
\({ }^{2}\) From JEM America Corp.

\section*{Conductive Rubber}

Conductive Rubber is a collective name for many silicone base "rubber" with conductive materials embedded within. Below are two commonly used conductive rubber: PCR and MOE.

\section*{What is PCR}

The full name of PCR is Pressure Conductive Rubber. Fig. 2 shows a piece of PCR together with its cross section. As seen from the figure PCR looks like a TAB unit with special windows which match the pins on the TAB unit. Within the windows are contact areas, silicone, filled with conductive particles, usually nickel. Once under pressure, current can go through those particles and thus the material conducts.
\begin{tabular}{|l|l|}
\hline Contact Resistance & \(150 \mathrm{~m} \Omega\) \\
\hline Current Carrying Capacity & 500 mA \\
\hline Substrate Material & Nickel \\
\hline Life Time & \begin{tabular}{l}
10000 contacts \\
\((30 \%\) shrinkage \()\)
\end{tabular} \\
\hline \begin{tabular}{l} 
Resistivity between conduction \\
areas
\end{tabular} & \(10^{6} \Omega\) \\
\hline Temperature Tolerance & \(-55^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Below is a table of its characteristics:


Fig. 2 Pressure Conductive Rubber (PCR)


Fig. 3 Application of PCR with TAB

Fig. 3 shows a simplified diagram on the application of PCR. The PCR is placed in between the unit and a PC board. A pusher plate is then placed over the TAB unit to apply pressure in order for the PCR to conduct.

\section*{What is MOE}

The full name for MOE is Metal On Elastomer. Fig. 4 shows a diagram for a MOE strip. As seen from the diagram, MOE consists of metal traces inserted precisely
within electrically insulated silicone rubber to allow conduction in the \(z\)-axis. The substrate of the metal traces is usually gold.

Fig. 5 shows a typical application of MOE. Noticed that a special socket housing is needed to allocate the MOE strips. The TAB unit, when placed on top of the socket, can then make contact with the PC board through the MOE strips.


Fig. 4 Metal On Elastomer


Fig. 5 A typical application of MOE

Below is a table of its characteristics:
\begin{tabular}{|l|l|}
\hline Contact Resistance & \(0.005 \Omega\) \\
\hline Current Carrying Capacity & 3 A \\
\hline Substrate Material & Silicone rubber \\
\hline Trace Metallurgy & Gold \\
\hline Temperature Range & \(-45^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\) \\
\hline Dielectric constant & 3.0 \\
\hline Resistance between traces & \(10^{12} \Omega\) \\
\hline
\end{tabular}

\section*{Drawbacks of Probe Card and Conductive Rubber methods}

One of the advantages of TAB lies in its freedom of pins layout. It will be quite difficult for conductive rubber type of contact to apply on an irregular shaped TAB package due to the high cost for developing the tooling. For conductive rubber each different layout needs a different tooling for the conductive material and sockets. The costs for that would be high.

In addition, owing to their "rubber-like" nature, frequent cleanings are required or the contacts will be contaminated.

Probe card, on the other hand, has complication in maintenance. Besides periodic cleaning of probes, there will be times that the probes will be damaged. Repairing of probes depends totally on the skillful workmanship together with a special repairing station.

\section*{Advantages of Probe Card over Conductive Rubber for Mass Production}

Despite the above drawback on probe cards, they suit the irregular shaped TAB very well because the probes are laid by human hands. The costs of probe cards are thus comparatively lower than that of conductive rubbers.

Another side advantage of probe cards is that the probes can induce slight scratches on the test pads when pressure is applied. This allows better contact during testing because the probes can scratch away the oxide which may form on the test pads. Probe cards can also handle finer pitch TAB units than conductive rubbers.

As for LCD drivers, which are mixed-signal devices, a controlled impedance test fixture can reduce much noise influences. To achieve that, we want to minimize the layer of contacts from handler to tester. Probe cards with probes built right on the PC board can meet this requirement. Conductive rubber, on the contrary, increases the layer of contacts.

\section*{Precautions during testing TAB LCD ESD protection}

No matter what type of method you use to test TAB packaged devices, ESD will be generated due to the nature of the package itself. Besides any usual ESD precautions, ionizers should be installed along the path of the TAB device tape. TAB package can generate as high as 10 kilo volt ESD under a non-ionized environment.

\section*{Signal Distortion}

LCD drivers are mixed-signal devices which have their own distinctive test problems from those of digital or analog signal devices. Fixturing, or the connection between the test hardware and the device under test (DUT), contributes to this in the form of noise, crosstalk, and corruption of signal integrity. Grounding shields separating the digital and analog signals can assist in maintaining signal integrity. Proper decoupling of the power sources can reduce noise. Suitable design of interface between the device and the test system can also minimize crosstalk \({ }^{3}\).
\({ }^{3}\) Electronics Engineering, Feb 1994, Vol. 7 Number 10, Joseph A. Mielke, pp 104-107

\section*{Glossary \\ 7}

\section*{Abbreviations}

ACF Anisotropic Conductive Films.
BP Backplane
COB Chip On Board
COG Chip On Glass
DKAT Dragonkat
ILB Inner Lead Bonding
LCD Liquid Crystal Display
MUX Multiplex
OLB Outer Lead Bonding
SEG Segment
STN Super Twisted Nematic
TAB Tape Automated Bonding
TCP Tape Carrier Package
TFT Thin-Film Transistor
TN Twisted Nematic

\section*{Glossary}

\section*{ACF}

It is for connecting LCD drivers in TAB directly to LCD glass.

\section*{Active / Passive}

Active (TFT) and Passive (STN) are two categories of LCD technology.

\section*{Announciator}

Name for the static icon display commonly found on pager application.

\section*{BP / Backplane / Row / Common}

Horizontal rows in a matrix LCD display.

\section*{Bias Levels}

Bias \(=1 /(\sqrt{ }\) MUX +1\()\). It defines the voltage values should be obtained in a voltage divider in order to obtain an optimum contrast for LCD panel.

\section*{COG}

Chip on glass. The gold bump die directly bond to the LCD panel glass by ACF

\section*{DKAT Dragonkat}

Motorola's Dragonkat is a MCU Family of C05 core where:
DKAT IMC68HC05L9 + MC68HC68L9
DKAT I +MC68HC05L10 + MC141511A
DKAT IIMC68HC05L11 + MC141512 \& MC141514

\section*{Gold Bump Process}

The unique gold bump technology of Motorola is an Industry leader. Our "Straight Wall Bumps" enable us to use finer spacing of leads and optimum chip sizes.

\section*{ILB / Inner Lead Bonding}

Process of bonding a die to a TAB.

\section*{LCD / Liquid Crystal Display}

One of the electronic display technologies.

\section*{SEG / Segment / Column}

Vertical rows in a matrix LCD display.

\section*{MUX Multiplex}

The multiplex ratio (MUX ratio) is defined as \(1: N\), where \(N\) is the number of Backplanes / Common. It is one of the key factor in defining a LCD Driver.

\section*{OLB / Outer Lead Bonding}

Process of bonding TAB to LCD glass either directly with ACF or indirectly with heat seal connectors.

\section*{POCSECTM}

POCSEC \({ }^{\text {TM }}\) stands for Pocket Secretary. It represents a chip set where a complete solution of a pen-based, multi-features organizer is provided.

\section*{Split Panel}

It is a LCD panel which doubles the number of rows with the same MUX ratio by allowing addressing of two segments with one Common signal.

e.g. Point \(O\) is of segment 3 and

Point \(\bullet\) is of segment 19 , they are both addressed by Common 1.
(MUX ratio is 1:4 in this example, display size is \(8 \times 16\) )

TAB Tape Automated Bonding /
TCP Tape Carrier Package
A film like package of polyimide substrate with copper leads.

\section*{TFT / Thin-Film Transistor}

An LCD technology applied in active matrix display.
TN / Twisted Nematic / STN / Super Twisted Nematic Basic Passive LCD Technologies.

\section*{VLCD}

LCD driving voltage.

\section*{Handling and Design Guidelines}

\section*{Handling and Design Guidelines}

\section*{HANDLING PRECAUTIONS}

All CMOS devices have an insulated gate that is subject to voltage breakdown. The high-impedance gates on the devices are protected by on-chip networks. However, these onchip networks do not make the IC immune to electrostatic damage (ESD). Laboratory tests show that devices may fail after one very high voltage discharge. They may also fail due to the cumulative effect of several discharges of lower potential.

Static-damaged devices behave in various ways, depending on the severity of the damage. The most severely damaged are the easiest to detect because the input or output has been completely destroyed and is either shorted to \(V_{D D}\), shorted to \(V_{S S}\), or open-circuited. The effect is that the device is no longer functional. Less severe cases are more difficult to detect because they appear as intermittent failures or degraded performance. Static damage can often increase leakage currents.

CMOS devices are not immune to large static voltage discharges that can be generated while handling. For example, static voltages generated by a person walking across a waxed floor have been measured in the \(4-15 \mathrm{kV}\) range (depending on humidity, surface conditions, etc.). Therefore, the following precautions should be observed.
1. Do not exceed the Maximum Ratings specified by the data sheet.
2. All unused device inputs should be connected to \(V_{D D}\) or \(V_{S S}\).
3. All low-impedance equipment (pulse generators, etc.) should be connected to CMOS inputs only after the device is powered up. Similarly, this type of equipment should be disconnected before power is turned off.
4. A circuit board containing CMOS or devices is merely an extension of the device and the same handling precautions apply. Contacting connectors wired directly to devices can cause damage. Plastic wrapping should be avoided. When external connections to a PC board address pins of CMOS integrated circuits, a resistor should be used in series with the inputs or outputs. The limiting factor for the series resistor is the added delay caused by the time constant formed by the series resistor and input capacitance. This resistor will help limit accidental damage if the PC board is removed and brought into contact with static generating materials. For convenience, equations for added propagation delay and rise time effects due to series resistance size are given in Figure 1.
5. All CMOS devices should be stored or transported in materials that are antistatic. Devices must not be inserted into conventional plastic "snow", styrofoam or plastic trays, but should be left in their original container until ready for use.

Figure 1. Networks for Minimizing ESD and Reducing CMOS Latch Up Susceptibility


NOTE: These networks are useful for protecting the following:
A. digital inputs and outputs
B. analog inputs and outputs
C. 3 -state outputs
D. bidirectional (/V) ports

EQUATION 1 - PROPAGATION DELAY VS. SERIES RESISTANCE

EQUATION 2 - RISE TIME VS SERIES RESISTANCE
\[
R \approx \frac{t}{C \bullet k}
\]
where:
\(R=\) the maximum allowable series resistance in ohms \(t=\) the maximum tolerable propagation delay in seconds \(\mathrm{C}=\) the board capacitance plus the driven device's input capacitance in farads \(k=0.7\) for devices with TTL input levels (switch point \(\approx 1.3 \mathrm{~V}\) )
\(k=2.3\) for devices with CMOS input levels (switch point \(\approx 50 \%\)
\(V_{D D}\) ).
6. All CMOS devices should be placed on a grounded bench surface and operators should ground themselves prior to handling devices, since a worker can be statically charged with respect to the bench surface. Wrist straps in contact with skin are strongly recommended. See Figure 2.
7. Nylon or other static generating materials should not come in contact with CMOS circuits.
8. If automatic handling is being used, high levels of static electricity may be generated by the movement of devices, belts, or boards. Reduce static build-up by using ionized air blowers or room humidifiers. All parts of machines which come into contact with the top, bottom, and sides of IC packages must be grounded metal or other conductive material.
9. Cold chambers using \(\mathrm{CO}_{2}\) for cooling should be equipped with baffles, and devices must be contained on or in conductive material.
10. When lead-straightening or hand-soldering is necessary, provide ground straps for the apparatus used and be sure that soldering ties are grounded.
11. The following steps should be observed during wave solder operations.
a. The solder pot and conductive conveyor system of the wave soldering machine must be grounded to an earth ground.
b. The loading and unloading work benches should have conductive tops which are grounded to an earth ground.
c. Operators must comply with precautions previously explained.
d. Completed assemblies should be placed in antistatic containers prior to being moved to subsequent stations.
12. The following steps should be observed during board cleaning operation.
a. Vapor degreasers and baskets must be grounded to an earth ground. Operators must likewise be grounded.
b. Brush or spray cleaning should not be used.
c. Assemblies should be placed into the vapor degreaser immediately upon removal from the antistatic container.
d. Cleaned assemblies should be placed in antistatic containers immediately after removal from the cleaning basket.
e. High velocity air movement or application of solvents and coatings should be employed only when module circuits are grounded and a static eliminator is directed at the module.
13. The use of static detection meters for line surveillance is highly recommended.
14. Equipment specifications should alert users to the presence of CMOS devices and require familiarization with this specification prior to performing any kind of maintenance or replacement of devices or modules.
15. Do not insert or remove CMOS devices from test sockets with power applied. Check all power supplies to be used for testing devices to be certain there are no voltage transients present.
16. Double check the equipment setup for proper polarity of voltage before conducting parametric or functional testing.

\section*{RECOMMENDED READING}
"Total Control of the Static in Your Business" Available by writing to: 3M Static Control Systems
Building A145-3N-01
P.O. Box 2963

Austin, TX 78769-2963
Or calling:
1-800-328-1368

Figure 2. Typical Manufacturing Work Station


\section*{NOTES:}
1. 1/16 inch conductive sheet stock covering bench top work area.
2. Ground strap.
3. Wrist strap in contact with skin.
4. Static neutralizer. (lonized air blower directed at work.) Primarily for use in areas where direct grounding is impractical.
5. Room humidifier. Primarily for use in areas where the relative humidity is less than \(45 \%\). Caution: building heating and cooling systems usually dry the air causing the relative humidity inside of buildings to be less than outside humidity.

\section*{CMOS LATCH UP}

Latch up will not be a problem for most designs, but the designer should be aware of it, what causes it, and how to prevent it.

Figure 3 shows the layout of a typical CMOS inverter and Figure 4 shows the parasitic bipolar devices that are formed. The circuit formed by the parasitic transistors and resistors is the basic configuration of a silicon controlled rectifier, or SCR. In the latch-up condition, transistors Q1 and Q2 are turned on, each providing the base current necessary for the other to remain in saturation, thereby latching the devices on. Unlike a conventional SCR, where the device is turned on by applying a voltage to the base of the NPN transistor, the parasitic SCR is turned on by applying a voltage to the emitter of either transistor. The two emitters that trigger the SCR are the same point, the CMOS output. Therefore, to latch up the CMOS device, the output voltage must be greater than \(V_{D D}\) +0.5 Vdc or less than - 0.5 Vdc and have sufficient current to trigger the SCR. The latch-up mechanism is similar for the inputs.

Once a CMOS device is latched up, if the supply current is not limited, the device will be destroyed. Ways to prevent such occurrences are listed below.
1. Ensure that inputs and outputs are limited to the maximum rated values, as follows:
\(-0.5 \leq \mathrm{V}_{\text {in }} \leq \mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{Vdc}\) referenced to \(\mathrm{V}_{\mathrm{SS}}\)
\(-0.5 \leq \mathrm{V}_{\text {out }} \leq \mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{Vdc}\) referenced to \(\mathrm{V}_{\mathrm{SS}}\)
\(\|_{\text {in }} \mid \leq 10 \mathrm{~mA}\)
\(\|_{\text {out }} \mathrm{I} \leq 10 \mathrm{~mA}\) when transients or dc levels exceed the supply voltages.
2. If voltage transients of sufficient energy to latch up the device are expected on the outputs, external protection diodes can be used to clamp the voltage. Another method of protection is to use a series resistor to limit the expected worst case current to the Maximum Ratings values (see Figure 1).
3. If voltage transients are expected on the inputs, protection diodes may be used to clamp the voltage or a series resistor may be used to limit the current to a level less than the maximum rating of \(\mathrm{I}_{\mathrm{in}}=10 \mathrm{~mA}\) (see Figure 1).
4. Sequence power supplies so that the inputs or outputs of CMOS devices are not powered up first (e.g., recessed edge connectors may be used in plug-in board applications and/or series resistors).
5. Power supply lines should be free of excessive noise. Care in board layout and filtering should be used.
6. Limit the available power supply current to the devices that are subject to latch-up conditions. This can be accomplished with the power supply filtering network or with a current-limiting regulator.

Figure 3. CMOS Wafer Cross Section


Figure 4. Latch Up Circuit Schematic


\section*{Mechanical Data}

MOTOROLA
9-2

Package availability for each device is indicated on the front page of the individual data sheets. Dimensions for the packages are given in this chapter.

P SUFFIX
PLASTIC DIP (DUAL IN-LINE PACKAGE) CASE 648-08

\begin{tabular}{rrrl} 
STYLE 1: & & STYLE 2: \\
PIN 1. & CATHODE & PIN 1. COMMON DRAIN \\
2. CATHODE & 2. COMMON DRAIN \\
3. CATHODE & 3. COMMON DRAIN \\
4. CATHODE & 4. COMMON DRAIN \\
5. CATHODE & 5. COMMON DRAIN \\
6. CATHODE & 6. COMMON DRAIN \\
7. CATHODE & 7. COMMON DRAIN \\
8. CATHODE & 8. COMMON DRAIN \\
9. ANODE & 9. GATE \\
10. ANODE & 10. & SOURCE \\
11. ANODE & 11. & GATE \\
12. ANODE & 12. SOURCE \\
13. ANODE & 13. GATE \\
14. ANODE & 14. SOURCE \\
15. ANODE & 15. GATE \\
16. ANODE & 16. SOURCE
\end{tabular}

NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLUNG DIMENSION: INCH.
3. DIMENSION LTO CENTER OF LEADS WHEN FORMED PARALLEL.
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
5. ROUNDED CORNERS OPTIONAL
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{DIM} & \multicolumn{2}{|r|}{INCHES} & \multicolumn{2}{|l|}{MLLMMETERS} \\
\hline & MIN & MAX & MIN & MAX \\
\hline A & 0.740 & 0.770 & 18.80 & 19.55 \\
\hline B & 0.250 & 0.270 & 6.35 & 6.85 \\
\hline C & 0.145 & 0.175 & 3.69 & 4.44 \\
\hline D & 0.015 & 0.021 & 0.39 & 0.53 \\
\hline F & 0.040 & 0.70 & 1.02 & 1.77 \\
\hline G & \multicolumn{2}{|l|}{0.100 BSC} & \multicolumn{2}{|l|}{2.54 BSC} \\
\hline H & \multicolumn{2}{|l|}{0.050 BSC} & \multicolumn{2}{|l|}{1.27 BSC} \\
\hline J & 0.008 & 0.015 & 0.21 & 0.38 \\
\hline K & 0.110 & 0.130 & 2.80 & 3.30 \\
\hline L & 0.295 & 0.305 & 7.50 & 7.74 \\
\hline M & \(0^{\circ}\) & \(10^{\circ}\) & \(0^{\circ}\) & \(10^{\circ}\) \\
\hline 5 & 0.020 & 0.040 & 0.51 & 1.01 \\
\hline
\end{tabular}

P SUFFIX

\section*{PLASTIC DIP (DUAL IN-LINE PACKAGE)} CASE 724-03

\begin{tabular}{|l|l|l|l|}
\hline\(\oplus\) & \(0.25(0.010)\) & \((1)\) & T
\end{tabular} A (M)
notes:
1. CHAMFERED CONTOUR OPTIONAL
2. DIMENSION L TO CENTER OF LEADS WHEN

FORMED PARALIEL
3. DIMENSIONING AND TOLERANCING PER ANS Y14.5M, 1982.
4. CONTROLUNG DIMENSION: INCH.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{DIM} & \multicolumn{2}{|r|}{INCHES} & \multicolumn{2}{|l|}{MILLMETERS} \\
\hline & MIN & MAX & MIN & MAX \\
\hline A & 1.230 & 1.265 & 31.25 & 32.13 \\
\hline B & 0.250 & 0.270 & 6.35 & 6.85 \\
\hline C & 0.145 & 0.175 & 3.69 & 4.44 \\
\hline D & 0.015 & 0.020 & 0.38 & 0.51 \\
\hline E & \multicolumn{2}{|l|}{0.050 BSC} & \multicolumn{2}{|l|}{1.27 BSC} \\
\hline F & 0.040 & 0.060 & 1.02 & 1.52 \\
\hline G & \multicolumn{2}{|l|}{0.100 BSC} & \multicolumn{2}{|l|}{2.54 BSC} \\
\hline J & 0.007 & 0.012 & 0.18 & 0.30 \\
\hline K & 0.110 & 0.140 & 2.80 & 3.55 \\
\hline L & \multicolumn{2}{|l|}{0.300 BSC} & \multicolumn{2}{|l|}{7.62 BSC} \\
\hline M & \(0^{\circ}\) & \(15^{\circ}\) & \(0^{\circ}\) & \(15^{\circ}\) \\
\hline N & 0.020 & 0.040 & 0.51 & 1.01 \\
\hline
\end{tabular}


FU SUFFIX
QFP (QUAD FLAT PACKAGE) CASE 848B-04


BASE METAL

SECTION B-B


FJ SUFFIX
TQFP (THIN QUAD FLAT PACKAGE) CASE 917A-02


\section*{VIEW AA}


NOTES:
. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
CONTROUING DIMENSION: MILIMETER
3. DATUM PLANE -H-IS LOCATED AT BOTTOM OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THELEAD EXITS THE PLASTIC BODY AT THE BOTOMOF THE PARTNG LNE
4. DATUMS L- - -M-AND \(-N-\) TO BE DETERMINED

DATUMS -L- - \(-M-A N D\)
AT DATUM PLANE
5. DIMENSIONS S AND V TO BE DETERMINED AT SEATING PLANE-T-
6. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.250 (0.010) PER SIDE. DIMENSIONS A AND B DO INCLUDE MOLD MISMATCH AND ARE determined at datum plane -h-
7. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED 0.460 (0.018). MINIMUM SPACE BETWEEN PROTRUSION AND ADIACENTIEADO PROTRUSION 0.07 ( 0.003 ).
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{DIM} & \multicolumn{2}{|l|}{MILLIMETERS} & \multicolumn{2}{|l|}{INCHES} \\
\hline & MIN & MAX & MIN & MAX \\
\hline A & \multicolumn{2}{|l|}{14.00 BSC} & \multicolumn{2}{|l|}{0.551 BSC} \\
\hline A1 & \multicolumn{2}{|l|}{7.00 BSC} & \multicolumn{2}{|l|}{0.276 BSC} \\
\hline B & \multicolumn{2}{|l|}{14.00 BSC} & \multicolumn{2}{|l|}{0.551 BSC} \\
\hline 81 & \multicolumn{2}{|l|}{7.00 BSC} & \multicolumn{2}{|l|}{0.276 BSC} \\
\hline c & - & 1.74 & - & 0.069 \\
\hline C1 & 0.04 & 0.24 & 0.002 & 0.009 \\
\hline C2 & 1.30 & 1.50 & 0.051 & 0.059 \\
\hline D & 0.22 & 0.38 & 0.009 & 0.015 \\
\hline E & 0.40 & 0.75 & 0.016 & 0.030 \\
\hline F & 0.17 & 0.33 & 0.007 & 0.013 \\
\hline G & \multicolumn{2}{|l|}{0.65 BSC} & \multicolumn{2}{|l|}{0.026 BSC} \\
\hline \(J\) & 0.09 & 0.27 & 0.004 & 0.011 \\
\hline K & \multicolumn{2}{|l|}{0.50 REF} & \multicolumn{2}{|l|}{0.020 REF} \\
\hline P & \multicolumn{2}{|l|}{0.325 BSC} & \multicolumn{2}{|l|}{0.013 REF} \\
\hline A1 & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{gathered}
0.09] 0.20 \\
\hline 16.00 \mathrm{BSC}
\end{gathered}
\]}} & \multicolumn{2}{|l|}{\begin{tabular}{l}
\(0.004 \mid 10.008\) \\
\hline
\end{tabular}} \\
\hline 5 & & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& 0.630 \mathrm{BSC} \\
& 0.315 \mathrm{BSC}
\end{aligned}
\]}} \\
\hline S1 & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \frac{16.00 \mathrm{BSC}}{8.00 \text { BSC }} \\
& \hline
\end{aligned}
\]} & & \\
\hline 0 & 0.09 & 0.16 & 0.004 & 0.006 \\
\hline V & \multicolumn{2}{|l|}{16.00 BSC} & \multicolumn{2}{|l|}{0.630 BSC} \\
\hline V1 & \multicolumn{2}{|l|}{8.00 BSC} & \multicolumn{2}{|l|}{0.315 BSC} \\
\hline w & \multicolumn{2}{|l|}{0.20 REF} & \multicolumn{2}{|l|}{0.008 REF} \\
\hline z & \multicolumn{2}{|l|}{1.00 REF} & \multicolumn{2}{|l|}{0.039 REF} \\
\hline 0 & \(0^{\circ}\) & \(10^{\circ}\) & \(0^{\circ}\) & \(10^{\circ}\) \\
\hline 01 & \(0^{\circ}\) & - & \(0^{\circ}\) & \\
\hline 02 & \(9^{\circ}\) & \(14^{\circ}\) & \(9^{\circ}\) & \(14^{\circ}\) \\
\hline
\end{tabular}

FJ SUFFIX :
TQFP (THIN QUAD FLAT PACKAGE) CASE 983-02


\section*{MOTOROLA AUTHORIZED DISTRIBUTOR \& WORLDWIDE SALES OFFICES} NORTH AMERICAN DISTRIBUTORS

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Santa Clara} \\
\hline Wyle Electronics & (408)727-2500 \\
\hline \multicolumn{2}{|l|}{Santa Fe Springs} \\
\hline Newark & (310)929-9722 \\
\hline \multicolumn{2}{|l|}{Sierra Madre} \\
\hline PENSTOCK. & (818)355-6775 \\
\hline \multicolumn{2}{|l|}{Sunnyvale} \\
\hline Hamilton/Hallmark & (408)435-3500 \\
\hline PENSTOCK. & (408)730-0300 \\
\hline Time Electronics & 1-800-789-TIME \\
\hline \multicolumn{2}{|l|}{Thousand Oaks} \\
\hline Newark & (805)449-1480 \\
\hline \multicolumn{2}{|l|}{Torrance} \\
\hline Time Electronics & 1-800-789-TIME \\
\hline \multicolumn{2}{|l|}{Tustin} \\
\hline Time Electronics & .1-800-789-TIME \\
\hline \multicolumn{2}{|l|}{Woodland Hills} \\
\hline Hamilton/Hallmark & .(818)594-0404 \\
\hline \multicolumn{2}{|l|}{COLORADO} \\
\hline \multicolumn{2}{|l|}{Lakewood} \\
\hline FAI & . (303)237-1400 \\
\hline Future Electronics & (303)232-2008 \\
\hline \multicolumn{2}{|l|}{Denver} \\
\hline Newark & (303)373-4540 \\
\hline \multicolumn{2}{|l|}{Englewood} \\
\hline \multicolumn{2}{|l|}{Arrow/Schweber Electronics. . . .(303)799-0258} \\
\hline \multicolumn{2}{|l|}{Hamilton/Hallmark. . . . . . . . . (303)790-1662} \\
\hline \multicolumn{2}{|l|}{PENSTOCK. . . . . . . . . . . . . . (303)799-7845} \\
\hline \multicolumn{2}{|l|}{Time Electronics . . . . . . . . . 1-800-789-TIME} \\
\hline \multicolumn{2}{|l|}{Thornton} \\
\hline Wyle Electronics & (303)457-9953 \\
\hline \multicolumn{2}{|l|}{CONNECTICUT} \\
\hline Bloomfield & \\
\hline Newark & (203)243-1731 \\
\hline \multicolumn{2}{|l|}{Cheshire} \\
\hline FAI. & (203)250-1319 \\
\hline Future Electronics & (203)250-0083 \\
\hline Hamilton/Hallmark. & . (203)271-5700 \\
\hline \multicolumn{2}{|l|}{Southbury} \\
\hline Time Electronics & 1-800-789-TIME \\
\hline \multicolumn{2}{|l|}{Wallingfort} \\
\hline Arrow/Schweber Elec & . . (203)265-7741 \\
\hline \multicolumn{2}{|l|}{FLORIDA} \\
\hline Altamonte Springs & \\
\hline Future Electronics & (407)865-7900 \\
\hline \multicolumn{2}{|l|}{Clearwater} \\
\hline FAI. & . (813)530-1665 \\
\hline Future Electronics & . (813)530-1222 \\
\hline \multicolumn{2}{|l|}{Deerfield Beach} \\
\hline Arrow/Schweber Elect & . . . (305)429-8200 \\
\hline Wyle Electronics & . (305)420-0500 \\
\hline \multicolumn{2}{|l|}{Ft. Lauderdale} \\
\hline FAI. & . (305)428-9494 \\
\hline Future Electronics & (305)436-4043 \\
\hline Hamilton/Hallmark. & . (305)484-5482 \\
\hline Newark . . . & (305)486-1151 \\
\hline Time Electronics & 1-800-789-TIME \\
\hline \multicolumn{2}{|l|}{Lake Mary} \\
\hline Arrow/Schweber Elect & . . (407)333-9300 \\
\hline \multicolumn{2}{|l|}{Largo/Tampa/St. Petersburg} \\
\hline Hamilton/Hallmark. & (813)507-5000 \\
\hline Newark & . (813)287-1578 \\
\hline Wyle Electronics & . (813)576-3004 \\
\hline Time Electronics & .1-800-789-TIME \\
\hline \multicolumn{2}{|l|}{Orlando} \\
\hline FAI. & . (407)865-9555 \\
\hline Newark & (407)896-8350 \\
\hline \multicolumn{2}{|l|}{Tallahassee} \\
\hline FAI & (904)668-7772 \\
\hline \multicolumn{2}{|l|}{Tampa} \\
\hline Newark & . (813)287-1578 \\
\hline PENSTOCK. & . (813)247-7556 \\
\hline \multicolumn{2}{|l|}{Winter Park} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Hamilton/Hallmark. . . . . . . . . (407)657-3300 \\
PENSTOCK. . . . . . . . . . . . . . . (407)672-1114
\end{tabular}}} \\
\hline & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{GEORGIA} \\
\hline Atlanta & \\
\hline & (404)447-4767 \\
\hline Time Electronics & 1-800-789-TIME \\
\hline Wyle Electronics. & (404)441-9045 \\
\hline \multicolumn{2}{|l|}{Duluth} \\
\hline Arrow/Schweber Electroni & . .(404)497-1300 \\
\hline Hamilton/Hallmark & . (404)623-5475 \\
\hline \multicolumn{2}{|l|}{Norcross} \\
\hline Future Electronics & .(770)441-7676 \\
\hline Newark. & (770)448-1300 \\
\hline PENSTOCK & (770)734-9990 \\
\hline Wyle Electronics. & (770)441-9045 \\
\hline \multicolumn{2}{|l|}{IDAHO} \\
\hline Boise & \\
\hline & (208)376-8080 \\
\hline Newark. & .(208)342-4311 \\
\hline \multicolumn{2}{|l|}{ILLINOIS} \\
\hline \multicolumn{2}{|l|}{Addison} \\
\hline Wyle Laboratories & .(708)620-0969 \\
\hline \multicolumn{2}{|l|}{Bensenville} \\
\hline Hamilton/Hallmark & .(847)797-7300 \\
\hline \multicolumn{2}{|l|}{Chicago} \\
\hline FAI. & (708)843-0034 \\
\hline \multicolumn{2}{|l|}{Newark Electronics Corp.. . 1-800-4NEWARK} \\
\hline \multicolumn{2}{|l|}{Hoffman Estates} \\
\hline Future Electronics & (708)882-1255 \\
\hline \multicolumn{2}{|l|}{Itasca} \\
\hline Arrow/Schweber Electronics & . . (708)250-0500 \\
\hline \multicolumn{2}{|l|}{Palatine} \\
\hline PENSTOCK. & . (708)934-3700 \\
\hline \multicolumn{2}{|l|}{Schaumburg} \\
\hline Newark. . . & .(708)310-8980 \\
\hline Time Electronics & 1-800-789-TIME \\
\hline \multicolumn{2}{|l|}{INDIANA} \\
\hline \multicolumn{2}{|l|}{Indianapolis} \\
\hline Arrow/Schweber Electronic & . .(317)299-2071 \\
\hline Bailey's Electronics & . (317)848-9958 \\
\hline Hamilton/Hallmark . & . (317) 575-3535 \\
\hline FAI. . & . (317)469-0441 \\
\hline Future Electronics & . (317)469-0447 \\
\hline Newark. & (317)259-0085 \\
\hline Time Electronics & 1-800-789-TIME \\
\hline \multicolumn{2}{|l|}{Ft. Wayne} \\
\hline Newark. & .(219)484-0766 \\
\hline PENSTOCK & . (219)432-1277 \\
\hline \multicolumn{2}{|l|}{IOWA} \\
\hline Cedar Rapids & \\
\hline Newark. . & .(319)393-3800 \\
\hline Time Electronics & 1-800-789-TIME \\
\hline \multicolumn{2}{|l|}{KANSAS} \\
\hline \multicolumn{2}{|l|}{Kansas City} \\
\hline & .(913)381-6800 \\
\hline \multicolumn{2}{|l|}{Lenexa} \\
\hline \multicolumn{2}{|l|}{Arrow/Schweber Electronics . .(913)541-9542} \\
\hline \multicolumn{2}{|l|}{Olathe} \\
\hline PENSTOCK. & .(913)829-9330 \\
\hline \multicolumn{2}{|l|}{Overland Park} \\
\hline Future Electronics & .(913)649-1531 \\
\hline Hamilton/Hallmark : . & .(913)663-7900 \\
\hline Newark. . . . & . (913)677-0727 \\
\hline Time Electronics & 1-800-789-TIME \\
\hline \multicolumn{2}{|l|}{MARYLAND} \\
\hline \multicolumn{2}{|l|}{Baltimore} \\
\hline FAI . . . . & (410)312-0833 \\
\hline \multicolumn{2}{|l|}{Columbia} \\
\hline \multicolumn{2}{|l|}{Arrow/Schweber Electronics. . . . (301)596-7800} \\
\hline \multicolumn{2}{|l|}{Future Electronics . . . . . . . . . (410)290-0600} \\
\hline \multicolumn{2}{|l|}{Hamilton/Hallmark . . . . . . . . . (410)720-3400} \\
\hline \multicolumn{2}{|l|}{Time Electronics . . . . . . . . . 1-800-789-TIME} \\
\hline \multicolumn{2}{|l|}{PENSTOCK . . . . . . . . . . . . . (410)290-3746} \\
\hline \multicolumn{2}{|l|}{Wyle Electronics. . . . . . . . . . . (410)312-4844} \\
\hline \multicolumn{2}{|l|}{Hanover} \\
\hline Newark. & .(410)712-6922 \\
\hline
\end{tabular}

\section*{tlanta}

Time Electronics . . . . . . . . . . . . 1-800-789-TIME
Wyle Electronics. . . . . . . . . . . . (404)441-9045
uluth
Hamilto
Norcross
Future Electronics . . . . . . . . . . (770)441-7676
Newark. . . . . . . . . . . . . . . . . . . (770)448-1300
PENSTOCK . . . . . . . . . . . . . . . . (770)734-9990
e Electronics
(208)376-8080

ILLINOIS
Addison
Wyle Laboratories
(708)620-0969

Bensenville
Chicago
FAI . . . . . . . . . . . . . . . . . . . . . (708)843-0034
conics Corp.. . 1-800-4NEWARK
Estates
Araw/Schweber Flectronics (708)250-0500
Palatine
PENSTOCK . . . . . . . . . . . . . . . (708)934-3700
Newark. . . . . . . . . . . . . . . . . . . (708)310-8980
..... 1-800-789-TIME
Indianapolis
Arrow/Schweber Electronics. . . . (317)299-2071
Aley's Electronics . . . . . . . . . . (317)848-9958 allmark
(317)469-0441

Future Electronics . . . . . . . . . . (317)469-0447
Newark. . . . . . . . . . . . . . . . . (317)259-0085
Ft. Wayne Newark. . . . . . . . . . . . . . . . . . (219)484-0766

OWA
ar Rapids
Time Electronics . . . . . . . . . 1-800-789-TIME
KANSAS
Kansas City

Arrow/Schweber Electronics . .(913)541-9542
Olathe
PENSTOCK . . . . . . . . . . . . . . (913)829-9330
Future Electronics . . . . . . . . . . (913)649-1531
Newark. . . . . . . . . . . . . . . . . . . (913)677-0727
Time Electronics . . . . . . . . . 1-800-789-TIME
MARYLAND
Baltimore
Columbia
Arrow/Schweber Electronics. . . .(301)596-7800 Hamilton/Hallmark . . . . . . . . . . (410) \(720-3400\) Time Electronics . . . . . . . . . . . . 1-800-789-TIME

Wyle Electronics. . . . . . . . . . . . (410)312-4844
Newark. . . . . . . . . . . . . . . . . . (410)712-6922

\section*{AUTHORIZED DISTRIBUTORS - continued}
\begin{tabular}{|c|c|}
\hline UNITED STATES - continued & Hauppauge \\
\hline MASSACHUSETTS & Arrow/Schweber Electronics. . . . (516)231-1000 \\
\hline Boston & FAI. . . . . . . . . . . . . . . . . . 5 (516)348-3700 \\
\hline Arrow/Schweber Electronics. . . . (508)658-0900 & Future Electronics . . . . . . . . . . (516)234-4000 \\
\hline FAI . . . . . . . . . . . . . . . . . (508)779-3111 & Hamilton/Hallmark. . . . . . . . . (516)737-0600 \\
\hline Newark . . . . . . . . . . . . . . . 1-800-4NEWARK & Newark . . . . . . . . . . . . . . 1-800-4NEWARK \\
\hline Bolton & PENSTOCK. . . . . . . . . . . . . . (516)724-9580 \\
\hline Future Corporate . . . . . . . . . (508)779-3000 & Konkoma \\
\hline Burlington & Hamilton/Hallmark. . . . . . . . . (516)737-0600 \\
\hline PENSTOCK . . . . . . . . . . . . . (617)229-9100 & Melville \\
\hline Wyle Electronics . . . . . . . . . . (617)271-9953 & Wyle Laboratories . . . . . . . . . (516)293-8446 \\
\hline Peabody & Pittsford \\
\hline Time Electronics. . . . . . . . . . 1-800-789-TIME & Newark . . . . . . . . . . . . . . . . (716)381-4244 \\
\hline Hamiton/Hallmark . . . . . . . . (508)532-9893 & Rochester \\
\hline Woburn & Arrow/Schweber Electronics . . (716)427-0300 \\
\hline Newark . . . . . . . . . . . . . . . . (617)935-8350 & Future Electronics . . . . . . . . . (716)387-9550 \\
\hline MICHIGAN & FAI. . . . . . . . . . . . . . . . . . (716)387-9600 \\
\hline Detrolt & Hamilton/Hallmark. . . . . . . . . (716)272-2740 \\
\hline FAI . . . . . . . . . . . . . . . . . . (313)513-0015 & Time Electronics . . . . . . . . . 1-800-789-TIME \\
\hline Future Electronics. . . . . . . . . (616)698-6800 & Syracuse \\
\hline Grand Rapids & FAl. . . . . . . . . . . . . . . . . . . (315)451-4405 \\
\hline Newark . . . . . . . . . . . . . . . . (616)954-6700 & Future Electronics . . . . . . . . . (315)451-2371 \\
\hline Livonla & Newark . . . . . . . . . . . . . . . . . (315)457-4873 \\
\hline Arrow/Schweber Electronics. . . .(810)455-0850 & Time Electronics . . . . . . . . . 1-800-789-TIME \\
\hline Future Electronics. . . . . . . . . . (313)261-5270 & NORTH CAROLINA \\
\hline Hamilton/Hallmark . . . . . . . . (313)416-5800 & Charlotte \\
\hline Time Electronics . . . . . . . . . . 1-800-789-TIME & FAI. . . . . . . . . . . . . . . . . . . (704)548-9503 \\
\hline Troy & Future Electronics . . . . . . . . . . (704)547-1107 \\
\hline Newark . . . . . . . . . . . . . . . . (810)583-2899 & Newark . . . . . . . . . . . . . . . . . (704)535-5650 \\
\hline MINNESOTA & Raleigh \\
\hline Bloomington & Arrow/Schweber Electronics. . . .(919)876-3132 \\
\hline Wyle Electronics . . . . . . . . . . . . (612)853-2280 & FAI. . . . . . . . . . . . . . . . . . 9 (919)876-0088 \\
\hline Burnsville & Future Electronics . . . . . . . . . (919)790-7111 \\
\hline PENSTOCK . . . . . . . . . . . . (612)882-7630 & Hamiton/Hallmark. . . . . . . . (919)872-0712 \\
\hline Eden Prairie & Newark . . . . . . . . . . . . . . 1-800-4NEWARK \\
\hline Arrow/Schweber Electronics. . (612)941-5280 & Time Electronics . . . . . . . . . 1-800-789-TIME \\
\hline FAI ..................... (612)947-0909 & OHIO \\
\hline Future Electronics. . . . . . . . . . (612) \(9444-2200\) & Centerville \\
\hline Hamilton/Hallmark ......... (612)881-2600 & Arrow/Schweber Electronics. . . .(513)435-5563 \\
\hline Time Electronics . . . . . . . . . . 1-800-789-TIME & Cleveland \\
\hline Minneapolis & FAI. . . . . . . . . . . . . . . . . . . (216)446-0061 \\
\hline Newark. . . . . . . . . . . . . . . . (612)331-6350 & Newark . . . . . . . . . . . . . . . . (216)391-9330 \\
\hline MISSOURI & Time Electronics . . . . . . . . . 1-800-789-TIME \\
\hline Earth Clty & Columbus \\
\hline Hamilton/Hallmark . . . . . . . . (314)291-5350 & Newark . . . . . . . . . . . . . . . . (614)326-0352 \\
\hline St. Louls & Time Electronics . . . . . . . . . 1-800-789-TIME \\
\hline Arrow/Schweber Electronics . . . (314)567-6888 & Dayton \\
\hline Future Electronics . . . . . . . . . (314)469-6805 & FAI . . . . . . . . . . . . . . . . . . . (513)427-6090 \\
\hline FAI . . . . . . . . . . . . . . . . . . (314)542-9922 & Future Electronics . . . . . . . . . (513)426-0090 \\
\hline Newark. . . . . . . . . . . . . . . . . (314)453-9400 & Hamilton/Hallmark. . . . . . . . . (513)439-6735 \\
\hline Time Electronics . . . . . . . . . . 1-800-789-TIME & Newark . . . . . . . . . . . . . . . . (513)294-8980 \\
\hline NEW JERSEY & Time Electronics . . . . . . . . . 1-800-789-TIME \\
\hline Bridgewater & Maytield Heights \\
\hline PENSTOCK . . . . . . . . . . . . . . . (908)575-9490 & Future Electronics . . . . . . . . (216)449-6996 \\
\hline Cherry Hill & Solon \\
\hline Hamilton/Hallmark . . . . . . . . (609)424-0110 & Arrow/Schweber Electronics . . (216)248-3990 \\
\hline East Brunswick & Hamitton/Hallmark. . . . . . . . . (216)498-1100 \\
\hline Newark . . . . . . . . . . . . . . . . (908)937-6600 & Worthington \\
\hline Fairfield & Hamilton/Hallmark. . . . . . . . . (614)888-3313 \\
\hline FAI . . . . . . . . . . . . . . . . (201)331-1133 & OKLAHOMA \\
\hline Marlton & Tulsa \\
\hline Arrow/Schweber Electronics. . (609)596-8000 & FAl. . . . . . . . . . . . . . . . . . . (918)492-1500 \\
\hline FAI . . . . . . . . . . . . . . . . . (609)988-1500 & Hamilton/Hallmark. . . . . . . . . (918)459-6000 \\
\hline Future Electronics. . . . . . . . . (609)596-4080 & Newark . . . . . . . . . . . . . . . . . (918)252-5070 \\
\hline Pinebrook & OREGON \\
\hline Arrow/Schweber Electronics. . (201)227-7880 & Beaverton \\
\hline Wyle Electronics . . . . . . . . . (201)882-8358 & Arrow/Almac Electronics Corp. (503)629-8090 \\
\hline Parsippany & Future Electronics . . . . . . . . . (503)645-9454 \\
\hline Future Electronics. . . . . . . . . . (201)299-0400 & Hamilton/Hallmark. . . . . . . . . (503)526-6200 \\
\hline Hamilton/Hallmark . . . . . . . (201)515-1641 & Wyle Electronics . . . . . . . . . . (503)643-7900 \\
\hline Wayne & Portland \\
\hline Time Electronics . . . . . . . . . 1-800-789-TIME & FAI . . . . . . . . . . . . . . . . . . . (503)297-5020 \\
\hline NEW MEXICO & Newark . . . . . . . . . . . . . . . . (503)297-1984 \\
\hline Albuquerque & PENSTOCK. . . . . . . . . . . . . . 503 (646-1670 \\
\hline Hamilton/Hallmark. . . . . . . . . . . (505)293-5119 & Time Electronics . . . . . . . . . 1-800-789-TIME \\
\hline Newark. . . . . . . . . . . . . . . . (505)828-1878 & PENNSYLVANIA \\
\hline NEW YORK & Coatesville \\
\hline Bohemia & PENSTOCK. . . . . . . . . . . . . . (610)383-9536 \\
\hline Newark. . . . . . . . . . . . . . . . (516)567-4200 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Ft. Washington \\
Newark. (215)654-1434
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{Mt. Laure!} \\
\hline Wyle Electronics & (609)439-9110 \\
\hline \multicolumn{2}{|l|}{Philadelphla} \\
\hline Time Electronics & 1-800-789-TIME \\
\hline \multicolumn{2}{|l|}{Wyle Electronics. . . . . . . . . . . (609)439-9110} \\
\hline \multicolumn{2}{|l|}{Plttsburgh} \\
\hline Arrow/Schweber Electronics . & . .(412)963-6807 \\
\hline \multicolumn{2}{|l|}{Newark. . . . . . . . . . . . . . . . (412)788-4790} \\
\hline Time Electronics & 1-800-789-TIME \\
\hline \multicolumn{2}{|l|}{TENNESSEE} \\
\hline \multicolumn{2}{|l|}{Knoxville} \\
\hline Newark & 588-6493 \\
\hline \multicolumn{2}{|l|}{TEXAS} \\
\hline \multicolumn{2}{|l|}{Austin} \\
\hline Arrow/Schweber Electronics & .(512)835-4180 \\
\hline \multicolumn{2}{|l|}{Future Electronics . . . . . . . . . (512)502-0991} \\
\hline \multicolumn{2}{|l|}{FAI . . . . . . . . . . . . . . . . . . . 5 (512)346-6426} \\
\hline Hamilton/Hallmark & . .(512)258-8848 \\
\hline \multicolumn{2}{|l|}{Newark. . . . . . . . . . . . . . . . . 972 (92458-2528} \\
\hline PENSTOCK & .(512)346-9762 \\
\hline \multicolumn{2}{|l|}{Time Electronics . . . . . . . . . 1-800-789-TIME} \\
\hline Wyle Electronics. & (512)833-9953 \\
\hline \multicolumn{2}{|l|}{Benbrook} \\
\hline PENSTOC & 2 \\
\hline \multicolumn{2}{|l|}{Carollton} \\
\hline Arrow/Schweber Electronics. & . .(214)380-6464 \\
\hline \multicolumn{2}{|l|}{Dallas} \\
\hline & .(214)231-7195 \\
\hline \multicolumn{2}{|l|}{Future Electronics . . . . . . . . . (214)437-2437} \\
\hline \multicolumn{2}{|l|}{Hamilton/Hallmark . . . . . . . . . (214)553-4300} \\
\hline \multicolumn{2}{|l|}{Newark. . . . . . . . . . . . . . . . . (214)458-2528} \\
\hline \multicolumn{2}{|l|}{Time Electronics . . . . . . . . . 1-800-789-TIME} \\
\hline Wyle Electronics. . . . . . . . . . & . .(214)235-9953 \\
\hline \multicolumn{2}{|l|}{El Paso} \\
\hline \multicolumn{2}{|l|}{FAI . . . . . . . . . . . . . . . . . . . 919 (9)577-9531} \\
\hline \multicolumn{2}{|l|}{Newark. . . . . . . . . . . . . . . . . . (915)772-6367} \\
\hline \multicolumn{2}{|l|}{Ft. Worth} \\
\hline Allied Electronics & (817)336-5401 \\
\hline \multicolumn{2}{|l|}{Houston} \\
\hline \multicolumn{2}{|l|}{Arrow/Schweber Electronics . . 713 )647-6868} \\
\hline \multicolumn{2}{|l|}{FAI . . . . . . . . . . . . . . . . . . . 71313 952-7088} \\
\hline \multicolumn{2}{|l|}{Future Electronics . . . . . . . . . . 71313 785-1155} \\
\hline \multicolumn{2}{|l|}{Hamilton/Hallmark . . . . . . . . . (713)781-6100} \\
\hline \multicolumn{2}{|l|}{Newark. . . . . . . . . . . . . . . . . (713)894-9334} \\
\hline \multicolumn{2}{|l|}{Time Electronics . . . . . . . . . 1-800-789-TIME} \\
\hline \multicolumn{2}{|l|}{Wyle Electronics. . . . . . . . . . . (713)879-9953} \\
\hline \multicolumn{2}{|l|}{Richardson} \\
\hline \multicolumn{2}{|l|}{PENSTOCK.} \\
\hline \multicolumn{2}{|l|}{San Antonio} \\
\hline \multicolumn{2}{|l|}{FAI . . . . . . . . . . . . . . . . . . . 2120 (210)738-3330} \\
\hline \multicolumn{2}{|l|}{Newark. . . . . . . . . . . . . . . . . .(210)734-7960} \\
\hline \multicolumn{2}{|l|}{UTAH} \\
\hline \multicolumn{2}{|l|}{Salt Lake City} \\
\hline \multicolumn{2}{|l|}{Arrow/Schweber Electronics. . . . (801)973-6913} \\
\hline \multicolumn{2}{|l|}{FAI . . . . . . . . . . . . . . . . . . . 801 (867-9696} \\
\hline \multicolumn{2}{|l|}{Future Electronics . . . . . . . . . (801)467-4448} \\
\hline \multicolumn{2}{|l|}{Hamilton/Hallmark .............(801)266-2022} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Newark..................... . (801)261-5660}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{West Valley City} \\
\hline \multicolumn{2}{|l|}{Time Electronics . . . . . . . . . 1-800-789-TIME} \\
\hline Wyle Electronics. & .(801)974-9953 \\
\hline \multicolumn{2}{|l|}{WASHINGTON} \\
\hline \multicolumn{2}{|l|}{Bellevue} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Almac Electronics Corp.. . . . . . (206)643-9992}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{Bothell} \\
\hline Future Electronics & (206)489-3400 \\
\hline \multicolumn{2}{|l|}{Kirkland} \\
\hline Newark. & .(206)814-6230 \\
\hline \multicolumn{2}{|l|}{Redmond} \\
\hline \multicolumn{2}{|l|}{Hamilton/Hallmark . . . . . . . . . . (206)882-7000} \\
\hline \multicolumn{2}{|l|}{Time Electronics . . . . . . . . 1-800-789-TIME} \\
\hline Wyle Electronics. & (206)881-1150 \\
\hline \multicolumn{2}{|l|}{Seattle} \\
\hline \multicolumn{2}{|l|}{} \\
\hline & \\
\hline
\end{tabular}


Saskatchewan
Hamilton/Hallmark. . . . . . . . . (800)663-5500
BRITISH COLUMBIA
Vancouver
Arrow Electronics . . . . . . . . . (604)421-2333
Electro Sonic (604)273-2911

FAI. (604)654-1050

Future Electronics (604)294-1166

Hamilton/Hallmark (604)420-4101

MANITOBA
Winnipeg
Electro Sonic Inc. . . . . . . . . . (204) (283-3105
FAI.
(204)786-3075

Future Electronics (204)944-1446

Hamilton/Hallmark (800)663-5500

\section*{ONTARIO}

Kanata
PENSTOCK
(613)592-6088

London
Newark . . . . . . . . . . . . . . . . . . (519)685-4280
Misslssauga
PENSTOCK. . . . . . . . . . . . . . . (905)403-0724
Newark (905)670-2888
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Ottawa} \\
\hline Arrow Electronics. & . .(613)226-6903 \\
\hline Electro Sonic Inc. . & .(613)728-8333 \\
\hline FAI & .(613)820-8244 \\
\hline Future Electronics & .(613)727-1800 \\
\hline Hamilton/Hailmark & . .(613)226-1700 \\
\hline \multicolumn{2}{|l|}{Toronto} \\
\hline Arrow Electronics . & .(905)670-7769 \\
\hline Electro Sonic Inc. . & .(416)494-1666 \\
\hline FAI & .(905)612-9888 \\
\hline Future Electronics & .(905)612-9200 \\
\hline Hamilton/Hallmark & .(905)564-6060 \\
\hline Newark. & .(905)670-2888 \\
\hline \multicolumn{2}{|l|}{QUEBEC} \\
\hline \multicolumn{2}{|l|}{Montreal} \\
\hline Arrow Electronics . & .(514)421-7411 \\
\hline FAI & .(514)694-8157 \\
\hline Future Electronics & .(514)694-7710 \\
\hline Hamilton/Hallmark & . .(514)335-1000 \\
\hline \multicolumn{2}{|l|}{Mt. Royal} \\
\hline Newark. & .(514)738-4488 \\
\hline \multicolumn{2}{|l|}{Quebec City} \\
\hline Arrow Electronics & .(418)687-4231 \\
\hline FAI & (418)682-5775 \\
\hline Future Electronics & .(418)877-6666 \\
\hline
\end{tabular}

\section*{INTERNATIONAL DISTRIBUTORS}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{GERMANY - continued} \\
\hline SEl/Jermyn GmbH . . . . . & (49) 6431-5080 \\
\hline Newark & (49)2154-70011 \\
\hline Sasco Semiconductor. . & . . (49) 89-46110 \\
\hline Spoerle Electronic. & (49) 6103-304-0 \\
\hline \multicolumn{2}{|l|}{GREECE} \\
\hline EBV Elektronik & (30) 13414300 \\
\hline \multicolumn{2}{|l|}{HOLLAND} \\
\hline EBV Elektronik & (31) 346562353 \\
\hline Spoerle Electronic & .(31) 40545430 \\
\hline SEI/Rodelco B.V. & (31) 765722700 \\
\hline \multicolumn{2}{|l|}{HONG KONG} \\
\hline \multicolumn{2}{|l|}{AVNET WKK Components Ltd.} \\
\hline & (852)2 357-8888 \\
\hline \multicolumn{2}{|l|}{Nanshing Clr. \& Chem. Co. Ltd} \\
\hline & (852)2 333-5121 \\
\hline \multicolumn{2}{|l|}{INDIA} \\
\hline Canyon Products Ltd. & (91) 80 558-7758 \\
\hline \multicolumn{2}{|l|}{INDONESIA} \\
\hline P.T. Ometraco & (62) 21 619-6166 \\
\hline \multicolumn{2}{|l|}{IRELAND} \\
\hline Arrow. . . . & . (353) 14595540 \\
\hline Future Electronics & . . . (353) 6541330 \\
\hline Macro Group. & . (353) 16766904 \\
\hline \multicolumn{2}{|l|}{ITALY} \\
\hline AVNET EMG SRL & . .(39) 2381901 \\
\hline EBV Elektronik & .(39) 2660961 \\
\hline Future Electronics & .(39) 2660941 \\
\hline Silverstar Ltd. SpA. & (39) 2661251 \\
\hline \multicolumn{2}{|l|}{JAPAN} \\
\hline AMSC Co., Ltd. & 81-422-54-6800 \\
\hline Fujl Electronics Co., Ltd. & . 81-3-3814-1411 \\
\hline Marubun Corporation & 81-3-3639-8951 \\
\hline Nippon Motorola Micro Elec. & . . 81-3-3280-7300 \\
\hline OMRON Corporation. . & . 81-3-3779-9053 \\
\hline Tokyo Electron Ltd. & 81-3-5561-7254 \\
\hline \multicolumn{2}{|l|}{KOREA} \\
\hline Jung Kwang Sa & (82)2278-5333 \\
\hline Lite-On Korea Lid. & . (82)2858-3853 \\
\hline Nasco Co. Ltd.. . & . (82)23772-6800 \\
\hline \multicolumn{2}{|l|}{LATVIA} \\
\hline Avnet. & . (371) 8821118 \\
\hline \multicolumn{2}{|l|}{LITHUANIA} \\
\hline Macro Group . & . (370) 7751487 \\
\hline \multicolumn{2}{|l|}{NEW ZEALAND} \\
\hline AVNET VSI (NZ) Ltd & .(64)9 636-7801 \\
\hline \multicolumn{2}{|l|}{NORWAY} \\
\hline Arrow Tahonic AS. & . (47)22378440 \\
\hline Avnet Nortec A/S Norway & . .(47) 66846210 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
PHILIPPINES \\
Alexan Commercial \(\qquad\) (63) \(2241-9493\)
\end{tabular}}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{POLAND} \\
\hline Macro Group & (48) 22224337 \\
\hline \multicolumn{2}{|l|}{SEl/Elbatex . . . . . . . . . . . (48) 226254877} \\
\hline Spoerle Electronic & (48) 226060447 \\
\hline \multicolumn{2}{|l|}{PORTUGAL} \\
\hline Amitron Arrow & (35) 114714806 \\
\hline \multicolumn{2}{|l|}{ROMANIA} \\
\hline Macro Group & (401) 6343129 \\
\hline \multicolumn{2}{|l|}{RUSSIA} \\
\hline Macro Group & (781) 25311476 \\
\hline \multicolumn{2}{|l|}{SCOTLAND} \\
\hline EBV Elektronik. & (44) 1614993434 \\
\hline \multicolumn{2}{|l|}{SINGAPORE} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Future Electronics . . . . . . . . . (65) (6) 479-1300}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{Uraco Technologies Pte Ltd. . . (65) 545-7811} \\
\hline \multicolumn{2}{|l|}{SLOVAKIA} \\
\hline Macro Group & (42) 89634181 \\
\hline \multicolumn{2}{|l|}{SLOVENIA} \\
\hline SEI/Elbatex & (48) 226254877 \\
\hline \multicolumn{2}{|l|}{SPAIN} \\
\hline Amitron Arrow & . (34) 13043040 \\
\hline EBV Elektronik. & . (34) 18043256 \\
\hline SEl/Selco S.A. & (34) 16371011 \\
\hline \multicolumn{2}{|l|}{SWEDEN} \\
\hline Arrow-Th:s . & (46) 8362970 \\
\hline \multicolumn{2}{|l|}{Avnet Nortec AB ......... (46) 86291400} \\
\hline \multicolumn{2}{|l|}{SWITZERLAND} \\
\hline EBV Elektronik. & (41) 17456161 \\
\hline SE/EIbatex AG & (41) 564375111 \\
\hline Spoerle Electronic & (41) 18746262 \\
\hline \multicolumn{2}{|l|}{S. AFRICA} \\
\hline Advanced. & (27) 114442333 \\
\hline Reuthec Components & (27) 118233357 \\
\hline \multicolumn{2}{|l|}{THAILAND} \\
\hline Shapiphat Ltd. . (66) & 1-0432 or 2221-5384 \\
\hline \multicolumn{2}{|l|}{TAIWAN} \\
\hline Avnet-Mercuries Co., & . (886)2 516-7303 \\
\hline Solomon Technology & p. . (886)2 788-8989 \\
\hline Strong Electronics CO & d.. . (886)2 917-9917 \\
\hline \multicolumn{2}{|l|}{UNITED KINGDOM} \\
\hline Arrow Electronics (UK) & d. (44) 1234270027 \\
\hline \multicolumn{2}{|l|}{Avnet/Access ........... (44) 1462488500} \\
\hline \multicolumn{2}{|l|}{EBV Elektronik. ......... (44) 1628783688} \\
\hline \multicolumn{2}{|l|}{Future Electronics Ltd. . . . . (44) 1753763000} \\
\hline \multicolumn{2}{|l|}{Macro Group . . . . . . . . . . . (44) 162860600} \\
\hline & (44) 1420543333 \\
\hline
\end{tabular}POLANDMacro Group . . . . . . . . . . . . (48) 22224337erle Electronic
(35) 114714806

Amitron Arrow
(401) 6343129

RUSSIA
Macro Group .............. . (781) 25311476
EBV Elektronik. . . . . . . . . (44) 1614993434
SINGAPORE
Future Electronics . . . . . . . . . (65) 479-1300
(to
SLOVAKIA
acro Group
(42) 89634181

OVENIA

Amitron Arrow ............ (34) 13043040
EBV Elektronik. . . . . . . . . . . (34) 18043256
SEI/Selco S.A.
(46) 8362970

Avnet Nortec AB

DENMARK
Arrow Exatec .............. (45) 44927000
Avnet Nortec A/S ........... (45) 44880800
EBV Elektronik
(45) 39690511

\section*{ESTONIA}

Arrow Field Eesti ..............(372) 6503288
Avnet Baltronic . . . . . . . . . . . . . (372) 6397000
FINLAND
Arrow Field OY . . . . . . . . . . . (35) 89777571
Avnet Nortec OY. . . . . . . . . . . (35) 89613181
FRANCE
Arrow Electronique . .......(33) 149784978
Avnet Components. .......(33) 149652500
EBV Elektronik . . . . . . . . . (33) 164688600
Future Electronics. . . . . . . . . . (33) 169821111
Newark . . . . . . . . . . . . . . . . (33) 1-30954060
SEl/Scaib.................(33) 169198900
GERMANY
Avnet E2000
(49) 894511001
(49) 0957270

For changes to this information contact Technical Publications at FAX (602) 244-6560

\section*{MOTOROLA WORLDWIDE SALES OFFICES}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{UNITED STATES} \\
\hline \multicolumn{2}{|l|}{ALABAMA} \\
\hline Huntsville & (205)464-6800 \\
\hline ALASKA & (800)635-8291 \\
\hline \multicolumn{2}{|l|}{ARIZONA} \\
\hline Tempe. & (602)302-8056 \\
\hline \multicolumn{2}{|l|}{CALIFORNIA} \\
\hline \multirow[t]{2}{*}{Irvine....} & (818)878-6800 \\
\hline & (714)753-7360 \\
\hline Los Angeles & (818)878-6800 \\
\hline San Diego. & (619)541-2163 \\
\hline \multirow[t]{2}{*}{Sunnyvale.} & (408)749-0510 \\
\hline & \\
\hline \multirow[t]{2}{*}{CONNECTICUT} & (303)337-3434 \\
\hline & \\
\hline Wallingford & (203)949-4100 \\
\hline FLORIDA & \\
\hline \multirow[t]{2}{*}{Maitland.} & (813)524-4177 \\
\hline & (407)628-2636 \\
\hline \multicolumn{2}{|l|}{Pompano Beach/Ft. Lauderdale} \\
\hline & (954)351-6040 \\
\hline \multicolumn{2}{|l|}{GEORGIA} \\
\hline & (770)729-7100 \\
\hline \multicolumn{2}{|l|}{IDAHO} \\
\hline Boise. & (208)323-9413 \\
\hline \multicolumn{2}{|l|}{ILLINOIS} \\
\hline Chicago/Schaumburg & (847)413-2500 \\
\hline \multicolumn{2}{|l|}{INDIANA} \\
\hline Indianapolis & (317)571-0400 \\
\hline \multicolumn{2}{|l|}{Kokomo. . . . . . . . . . . . . . . . (317)455-5100} \\
\hline \multicolumn{2}{|l|}{IOWA} \\
\hline Cedar Rapids & (319)378-0383 \\
\hline \multicolumn{2}{|l|}{KANSAS} \\
\hline Kansas City/Mission. & (913)451-8555 \\
\hline \multicolumn{2}{|l|}{MARYLAND} \\
\hline Columbia & (410)381-1570 \\
\hline \multicolumn{2}{|l|}{MASSACHUSETTS} \\
\hline Marlborough & . (508) 357-8207 \\
\hline Woburn. & (617)932-9700 \\
\hline \multicolumn{2}{|l|}{MICHIGAN} \\
\hline Detroit. & (810)347-6800 \\
\hline \multicolumn{2}{|l|}{MINNESOTA} \\
\hline Minnetonka. & (612)932-1500 \\
\hline \multicolumn{2}{|l|}{MISSOURI} \\
\hline St. Louis & (314)275-7380 \\
\hline \multicolumn{2}{|l|}{NEW JERSEY} \\
\hline Fairfield... & (201)808-2400 \\
\hline \multicolumn{2}{|l|}{NEW YORK} \\
\hline Fairport. & (716)425-4000 \\
\hline Fishkill. & (914)896-0511 \\
\hline Hauppauge & (516)361-7000 \\
\hline \multicolumn{2}{|l|}{NORTH CAROLINA} \\
\hline Raleigh. & (919)870-4355 \\
\hline \multicolumn{2}{|l|}{OHIO} \\
\hline Cleveland & (216)349-3100 \\
\hline Columbus/Worthington & (614)431-8492 \\
\hline Dayton & (937)438-6800 \\
\hline \multicolumn{2}{|l|}{OKLAHOMA} \\
\hline Tulsa. & (918)459-4565 \\
\hline \multicolumn{2}{|l|}{OREGON} \\
\hline Portland & . (503)641-3681 \\
\hline \multicolumn{2}{|l|}{PENNSYLVANIA} \\
\hline Colmar & (215)997-1020 \\
\hline \multicolumn{2}{|l|}{Philadelphia/Horsham . . . . . (215)957-4100} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{TENNESSEE} \\
\hline Knoxville & (423)584-4841 \\
\hline \multicolumn{2}{|l|}{TEXAS} \\
\hline Austin & (512)502-2100 \\
\hline Houston. & (713)251-0006 \\
\hline Plano. & (972)516-5100 \\
\hline \multicolumn{2}{|l|}{VIRGINIA} \\
\hline Richmond & (804)285-2100 \\
\hline \multicolumn{2}{|l|}{UTAH} \\
\hline CSI Inc. & (801)572-4010 \\
\hline \multicolumn{2}{|l|}{WASHINGTON} \\
\hline Bellevue. & (206)454-4160 \\
\hline Seattle (toll free) & (206)622-9960 \\
\hline \multicolumn{2}{|l|}{WISCONSIN} \\
\hline \multicolumn{2}{|l|}{Milwaukee/Brookfield . . . . . . (414)792-0122} \\
\hline \multicolumn{2}{|l|}{Field Applications Engineering Available Through All Sales Offices} \\
\hline \multicolumn{2}{|l|}{CANADA} \\
\hline \multicolumn{2}{|l|}{BRITISH COLUMBIA} \\
\hline Vancouver . . . . . & (604)606-8502 \\
\hline \multicolumn{2}{|l|}{ONTARIO} \\
\hline Ottawa. & (613)226-3491 \\
\hline Toronto . & . (416)497-8181 \\
\hline \multicolumn{2}{|l|}{QUEBEC} \\
\hline \multicolumn{2}{|l|}{Montreal . . . . . . . . . . . . . . . (514)333-3300} \\
\hline \multicolumn{2}{|l|}{INTERNATIONAL} \\
\hline \multicolumn{2}{|l|}{AUSTRALIA} \\
\hline Melbourne. & (61-3)98870711 \\
\hline Sydney . & (61-2)99661071 \\
\hline BRAZIL & \(\because \cdots\) i \\
\hline Sao Paulo & 55(11)815-4200 \\
\hline \multicolumn{2}{|l|}{CHINA} \\
\hline Beijing . . & 86-10-68437222 \\
\hline Guangzhou & 86-20-87537888 \\
\hline Shanghai. & 86-21-63747668 \\
\hline Tianjin & 86-22-5325072 \\
\hline \multicolumn{2}{|l|}{DENMARK} \\
\hline Denmark & (45) 43488393 \\
\hline \multicolumn{2}{|l|}{FINLAND} \\
\hline Helsinki. car phone & \[
\begin{array}{r}
358-0-35161191 \\
. .358(49) 211501
\end{array}
\] \\
\hline FRANCE & \\
\hline Paris & 33134635900 \\
\hline \multicolumn{2}{|l|}{GERMANY} \\
\hline Langenhagen/Hanover & .49(511)786880 \\
\hline Munich. . . . . . . . . . & . 4989 92103-0 \\
\hline Nuremberg & 49911 96-3190 \\
\hline Sindelfingen & 49703179710 \\
\hline Wiesbaden & . 49611973050 \\
\hline \multicolumn{2}{|l|}{HONG KONG} \\
\hline Kwai Fong & 852-2-610-6888 \\
\hline Tai Po. . & 852-2-666-8333 \\
\hline \multicolumn{2}{|l|}{INDIA} \\
\hline Bangalore & .91-80-5598615 \\
\hline \multicolumn{2}{|l|}{ISRAEL} \\
\hline Herzlia. & .972-9-590222 \\
\hline \multicolumn{2}{|l|}{ITALY} \\
\hline & .39(2)82201 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{JAPAN Kyusyu . . . . . . . . . . . . . . . . .81-92-725-7583}} \\
\hline & \\
\hline Gotanda. & 81-3-5487-8311 \\
\hline Nagoya. & 81-52-232-3500 \\
\hline Osaka. & .81-6-305-1801 \\
\hline Sendai & .81-22-268-4333 \\
\hline Takamatsu & .81-878-37-9972 \\
\hline Tokyo & 81-3-3440-3311 \\
\hline \multicolumn{2}{|l|}{KOREA} \\
\hline Pusan. & .82(51)4635-035 \\
\hline Seoul & .82(2)554-5118 \\
\hline \multicolumn{2}{|l|}{MALAYSIA} \\
\hline Penang. & .60(4)228-2514 \\
\hline \multicolumn{2}{|l|}{MEXICO} \\
\hline Mexico City. & .52(5)282-0230 \\
\hline Guadalajara & .52(36)21-8977 \\
\hline Zapopan Jalisco. . & .52(36)78-0750 \\
\hline Marketing. & . \(52(36) 21-2023\) \\
\hline Customer Service & 52(36)669-9160 \\
\hline \multicolumn{2}{|l|}{NETHERLANDS} \\
\hline Best & (31)4998 61211 \\
\hline \multicolumn{2}{|l|}{PHILIPPINES} \\
\hline Manila & (63)2 822-0625 \\
\hline \multicolumn{2}{|l|}{PUERTO RICO} \\
\hline San Juan & .(809)282-2300 \\
\hline SINGAPORE & (65)4818188 \\
\hline \multicolumn{2}{|l|}{SPAIN} \\
\hline Madrid & .34(1)457-8204 \\
\hline or & .34(1)457-8254 \\
\hline \multicolumn{2}{|l|}{SWEDEN} \\
\hline Solna & .46(8)734-8800 \\
\hline \multicolumn{2}{|l|}{SWITZERLAND} \\
\hline Geneva. & 41(22)799 1111 \\
\hline Zurich. & . .41(1)730-4074 \\
\hline \multicolumn{2}{|l|}{TAIWAN} \\
\hline Taipei & 886(2)717-7089 \\
\hline \multicolumn{2}{|l|}{THAILAND} \\
\hline Bangkok. & . .66(2)254-4910 \\
\hline \multicolumn{2}{|l|}{UNITED KINGDOM} \\
\hline Aylesbury... & 441 (296)395252 \\
\hline
\end{tabular}

\section*{FULL LINE REPRESENTATIVES}

\section*{CALIFORNIA, Loomis}

Galena Technology Group . . . (916)652-0268
NEVADA, Reno Galena Tech. Group
(702)746-0642

NEW MEXICO, Albuquerque
S\&S Technologies, Inc. . . . . . . (505)414-1100
UTAH, Salt Lake City
Utah Comp. Sales, Inc. . . . . . . (801)572-4010
WASHINGTON, Spokane
Doug Kenley.
(509)924-2322

\section*{HYBRID/MCM COMPONENT SUPPLIERS}
Chip Supply . . . . . . . . . . . . . . . . (407)298-7100
Elmo Semiconductor . . . . \(768-7400\)
Minco Technology Labs Inc. . . (512)834-2022
Semi Dice Inc. . . . . . . . . . . . (310)594-4631

1 Selection Guide

2 General Information

3 Liquid Crystal Display Drivers

4 Monitor On-Screen Display Devices

5 Evaluation Kits

6
Application Notes and Technical Articles

\section*{7 \\ Glossary}

Handling and Design Guidelines


USA/EUROPE : Motorola Literature Distribution; P.O.Box 5405; Denver, Colorado 80217 Phone: 1-800-441-2447 or 303-675-2140

JAPAN : Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, Toshikatsu Otsuki, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan Phone: 03-3521-8315

Mfax: RMFAXO@email.sps.mot.com
TOUCH-TONE: 602-244-6609 - US \& Canada ONLY: 800-774-1848 or via the Internet at http://www.mot-sps.com/home/fax_rqst.html

Internet: After accessing the Internet, use the following URL: http://www.mot.com/SPS

HONG KONG : Motorola Semiconductors H.K. Ltd.; 88 Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong
Phone: 852-266?9298```


[^0]:    Other Related Command with Display Mode : Set Segment Mapping, Set Common Mapping, Set Vertical Scroll Value. Commands Related to Voltage Generator :
    Set Oscillator Enable / Disable, Set Internal Regulator On/Off, Set Temperature Coefficient, Set Internal Contrast Control On/Off, Increase / Decrease Contrast Level, Set Internal Voltage Divider On/Off, Set Display On/Off, Set Reference Voltage Generator, Set Contrast Level, Set Voltage Doubler / Tripler

[^1]:    Gold Bump Size :
    Input Pad, $65 \times 65$ (um)
    O Output Pad, $42 \times 100$ (um)

[^2]:    とレーも
    レカSLカレOW

