MOTOROLA

SEMICONDUCTOR

BU207 BU208

Desiqners Data Sheet

HORIZONTAL DEFLECTION TRANSISTOR

...specifically designed for use in large screen color deflection circuits.

- Collector-Emitter Voltage -

$$
\begin{aligned}
V_{C E X}= & 1300 \mathrm{Vdc}-\text { BU207 } \\
& 1500 \mathrm{Vdc}-\text { BU208 }
\end{aligned}
$$

- Collector-Emitter Sustaining Voltage -

$$
V_{C E O}(\text { sus })=600 \mathrm{Vdc}-\mathrm{BU} 207
$$

$$
700 \mathrm{Vdc}-\mathrm{BU} 208
$$

- Switching Times with Inductive Loads, $\mathrm{t}_{\mathrm{f}}=0.4 \mu \mathrm{~s}$ (Typ) @

$$
\mathrm{I}^{\prime} \mathrm{C}=4.5 \mathrm{~A}
$$

- Optimum Drive Condition Curves
- Glass Base-Collector Junction

*MAXIMUM RATINGS				
Rating	Symbol	BU207	BU208	Unit
Collector-Emitter Voltage	$V_{\text {CEO }}$ (sus)	600	700	Vdc
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEX }}$	1300	1500	Vdc
Emitter Base Voltage	$\mathrm{V}_{\text {EB }}$			Vdc
Collector Current - Continuous Peak (1)	$\begin{aligned} & \text { IC } \\ & \text { ICM } \end{aligned}$	7.		Adc
Base Current - Peak (1)	${ }^{\text {I BM }}$	4		Adc
Total Power Dissipation @ $\mathrm{T}_{\mathrm{C}}=95^{\circ} \mathrm{C}$ Derate above $95^{\circ} \mathrm{C}$	$P_{\text {D }}$			Watts $W /{ }^{\circ} \mathrm{C}$
Operating and Storage Junction Temperature Range	$\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\text {stg }}$	-65 to	+115	${ }^{\circ} \mathrm{C}$
THERMAL CHARACTERISTICS				
Characteristic	Symbol	M		Unit
Thermal Resistance, Junction to Case	R $\mathrm{JJC}^{\text {c }}$			${ }^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Lead Temperature for Soldering Purposes: $1 / 8^{\prime \prime}$ from Case for 5 Seconds	T_{L}			${ }^{\circ} \mathrm{C}$

[^0]
5 AMPERE NPN SILICON POWER TRANSISTORS

1300 AND 1500 VOLTS

Designer's Data for

"Worst Case" Conditions

The Designers Data Sheet permits the design of most circuits entirely from the information presented. Limit data - representing device characteristics boundaries are given to facilitate "worst case" design.

ELECTRICAL CHARACTERISTICS $T_{C}=25^{\circ}$ unless otherwise noted.)

Characteristic		Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS (1)						
Collector-Emitter Sustaining Voltage $\left(I_{C}=100 \mathrm{mAdc}, I_{B}=0\right)$	$\begin{aligned} & \text { BU207 } \\ & \text { BU208 } \end{aligned}$	VCEO(sus)	$\begin{aligned} & 600 \\ & 700 \end{aligned}$	-	-	Vdc
$\begin{aligned} & \text { Collector Cutoff Current } \\ & \left(V_{C E}=1300 \mathrm{Vdc}, V_{B E}=0\right) \\ & \left(V_{C E}=1500 \mathrm{Vdc}, V_{B E}=0\right) \end{aligned}$	$\begin{aligned} & \text { BU207 } \\ & \text { BU208 } \end{aligned}$	ICES	-	-	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	mAdc
Emitter Base Voltage $\left(I_{E}=10 \mathrm{~mA}, I_{C}=0\right)$		VEBO	5.0	-	-	Vdc

ON CHARACTERISTICS (1)

DC Current Gain ($I_{C}=4.5 \mathrm{Adc}, \mathrm{V}_{\mathrm{CE}}=5 \mathrm{Vdc}$)	hFE	2.25	-	-	-
Collector-Emitter Saturation Voltage ($I_{C}=4.5 \mathrm{Adc}, I_{B}=2 \mathrm{Adc}$)	$\mathrm{V}_{\text {CE }}$ (sat)	-	-	5	Vdc
Base Emitter Saturation Voltage ($I_{C}=4.5 \mathrm{Adc}, I_{B}=2 \mathrm{Adc}$)	$\mathrm{V}_{\mathrm{BE} \text { (sat) }}$	-	-	1.5	Vdc
Second Breakdown Collector Current with Base Forward Biased	IS/b		See Figure 14		

DYNAMIC CHARACTERISTICS

$\begin{array}{c}\text { Current-Gain }- \text { Bandwidth Product } \\ \left(I_{C}=0.1 ~ A d c, ~\right. \\ V_{C E}\end{array}=5.0$ Vdc, $\left.f_{\text {test }}=1 \mathrm{MHz}\right)$	f_{T}	-	4.0	-
Output Capacitance $\left(V_{C B}=10 \mathrm{Vdc}, I_{E}=0, f=0.1 \mathrm{MHz}\right)$	C_{ob}	-	125	-

SWITCHING CHARACTERISTICS						
Fall Time	$I_{C}=4.5 \mathrm{Adc}, I_{B}=1.8 \mathrm{Adc}$, $L_{B}=10 \mu \mathrm{H}$, see Figure 1)	${ }_{\text {t }}$	-	0.6	-	$\mu \mathrm{s}$

(1) Pulse Test: Pulse Width $=\mathbf{3 0 0} \boldsymbol{\mu}$, Duty Cycle $<\mathbf{2 \%}$.

FIGURE 1 - SWITCHING TIMES TEST CIRCUIT

BASE DRIVE: The Key to Performance

By now, the concept of controlling the shape of the turn-off base current is widely accepted and applied in horizontal deflection design. The problem stems from the fact that good saturation of the output device, prior to turn-off, must be assured. This is accomplished by providing more than enough $\mathrm{I}_{\mathrm{B} 1}$ to satisfy the lowest gain output device $h_{\text {FE }}$ at the end of scan $I_{C M}$. Worst-case component variations and maximum high voltage loading must also be taken into account.

If the base of the output transistor is driven by a very low impedance source, the turn-off base current will reverse very quickly as shown in Figure 2. This results in rapid, but only partial, collector turn-off, because excess carriers become trapped in the high resistivity collector and the transistor is still conductive. This is a high dissipation mode, since the collector voltage is rising very rapidly The problem is overcome by adding inductance to the base circuit to slow the base current reversal as shown in Figure 3, thus allowing excess carrier recombination in the collector to occur while the base current is still flowing

Choosing the right L_{B} is usually done empirically, since the equivalent circuit is complex, and since there are several important variables ($I_{C M}$, $I_{\mathrm{B} 1}$, and $h_{F E}$ at $I_{C M}$). One method is to plot fall time as a function of L_{B}, at the desired conditions, for several devices within the hFE specification. A more informative method is to plot power dissipation versus $I_{B 1}$ for a range of values of L_{B} as shown
in Figures 4 and 5. This shows the parameter that really matters, dissipation, whether caused by switching or by saturation. The negative slope of these curves at the left (low $\mathrm{I}_{\mathrm{B} 1}$) is caused by saturation losses. The positive slope portion at higher $I_{B 1}$, and low values of L_{B} is due to switching losses as described above. Note that for very low L_{B} a very narrow optimum is obtained. This occurs when $\mathrm{I}_{\mathrm{B} 1} \mathrm{~h}_{\mathrm{FE}}=\mathrm{I}_{\mathrm{CM}}$, and therefore would be acceptable only for the "typical" device with constant ICM. As L_{B} is increased, the curves become broader and flatter above the $I_{B 1} h_{F E}=I_{C M}$ point as the turn-off "tails" are brought under control. Eventually, if L_{B} is raised too far, the dissipation all across the curve will rise, due to poor initiation of switching rather than tailing. Plotting this type of curve family for devices of different h FE, essentially moves the curves to the left or right according to the relation $\mathrm{I}_{\mathrm{B} 1} \mathrm{~h}_{\mathrm{FE}}=$ constant. It then becomes obvious that, for a specified $I_{C M}$, an L_{B} can be chosen which will give low dissipation over a range of $h_{F E}$ and/or $I_{B 1}$. The only remaining decision is to pick $l_{B 1}$ high enough to accommodate the lowest $h_{F E}$ part specified. Figure 8 gives values recommended for L_{B} and $I_{B 1}$ for this device over a wide range of I^{CM}. These values were chosen from a large number of curves like Figure 4 and Figure 5. Neither L_{B} nor $\mathrm{I}_{\mathrm{B} 1}$ are absolutely critical, as can be seen from the examples shown, and values of Figure 8 are provided for guidance only.

TEST CIRCUIT WAVEFORMS

FIGURE 2

FIGURE 3

TEST CIRCUIT OPTIMIZATION

The test circuit may be used to evaluate devices in the conventional manner, i.e., to measure fall time, storage time, and saturation voltage. However, this circuit was designed to evaluate devices by a simple criterion, power supply input. Excessive power input can be caused by a variety of problems, but it is the dissipation in the transistor that is of fundamental importance.

Once the required transistor operating current is determined, fixed circuit values may be selected from the table. Factory testing is performed by reading the current meter only, since the input power is proportional to current. No adjustment of the test apparatus is required.

FIGURE 6 - SWITCHING BEHAVIOR versus TEMPERATURE
$I_{C M}=3.5 A, I_{B}=1.5 A, L_{B}=14 \mu H$

FIGURE 8 - OPTIMUM DRIVE CONDITIONS

FIGURE 5 - OPTIMIZING DRIVE @ IC $=4.5 \mathrm{~A}$

IB1, BASE CURRENT (AMP)
FIGURE 7 - SWITCHING BEHAVIOR versus TEMPERATURE
$I_{C M}=4.5 \mathrm{~A}, I_{B}=1.75 \mathrm{~A}, \mathrm{~L}_{\mathrm{B}}=8 \mu \mathrm{H}$

FIGURE 9 - SWITCHING BEHAVIOR versus ICM

FIGURE 10 - THERMAL RESPONSE

FIGURE 11 - COLLECTOR SATURATION REGION

FIGURE 13 - "ON" VOLTAGES

[^0]: (1) Pulse Test: Pulse Width $=5 \mathrm{~ms}$, Duty Cycle $\leqslant 10 \%$.

