NEC NEC Electronics U.S.A. Inc.

 Microcomputer Division

Western Microtechnology 10040 Bubb Road
Cupertino, CA 95014
Phone (408) 725-1660
TWX 910-338-0013

This 1982 Microcomputer Division catalog includes specifications for the current product lines marketed by the Microcomputer Division of NEC Electronics U.S.A. Inc. In addition, it contains a special section of specifications for the ROM product line marketed by the Electronic Arrays Division. Both product lines are sold through the NEC Electronics U.S.A. sales network (see last page and back covers for listing).

NEC Electronics U.S.A. Inc., with corporate headquarters in San Mateo, California, is a subsidiary of Nippon Electric Company. NEC Electronics U.S.A. Inc. consists of four product divisions. The Microcomputer Division, founded in 1975 and now located in Natick, Massachusetts, markets a wide variety of leading-edge LSI semiconductor memories and microprocessors. The Electronic Arrays Division, acquired by NEC in 1978, manufactures ROMs and RAMs in Mountain View, California. The Electron Division, founded in 1976 and headquartered in Sunnyvale, California, markets a broad range of products including linear ICs, vacuum fluorescent displays, tantalum capacitors, discrete semiconductors including optoelectronics and fiber optics. The Board Division is also located in Natick, Massachusetts; it designs, manufactures, and sells sophisticated board and system products.

NEC Electronics U.S.A. Inc. Corporate Headquarters 3055 Clearview Way, Suite 310 San Mateo, California 94402
NEC Electronics U.S.A. Inc.
Electron Division
252 Humboldt Court
Sunnyvale, California 94086
NEC Electronics U.S.A. Inc.
Electronic Arrays Division
550 East Middlefield Road
Mountain View, California 94043

NEC Electronics U.S.A. Inc.
Microcomputer Division
One Natick Executive Park
Natick, Massachusetts 01760

The information in this document is subject to change without notice. NEC Electronics U.S.A. Inc. makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. NEC Electronics U.S.A. Inc. assumes no responsibility for any errors that may appear in this document. NEC Electronics U.S.A. Inc. makes no commitment to update nor to keep current the information contained in this document.
No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics U.S.A. Inc.
(c) 1982 by NEC Electronics U.S.A. Inc. Printed in the United States of America

Additional copies of this catalog or other NEC literature may be obtained from your local representative or distributor (addresses in section 10 of this catalog) or by writing to:

Communications Department
NEC Electronics U.S.A. Inc.
Microcomputer Division
One Natick Executive Park
Natick, MA 01760 U.S.A.

GENERAL INFORMATION

MICROCOMPUTERS SINGLE CHIP 4-BIT MICROCOMPUTERS

SINGLE CHIP 8-BIT MICROCOMPUTERS

MICROPROCESSORS

PERIPHERALS

REPRESENTATIVES \& DISTRIBUTORS
RANDOM ACCESS MEMORIES
Selection Guide 11
Dynamic NMOS RAMs μ PD416 21
μ PD4164 31
Static NMOS RAMs
μ PD4104 37
μ PD2114L 43
μ PD2147 47
μ PD2149 53
μ PD2167 59
μ PD4016 63
Static CMOS RAMs
μ PD5101L 69
μ PD444 75
μ PD446 79
μ PD449 85
FIELD PROGRAMMABLEREAD ONLY MEMORIES
Selection Guide 11
Bipolar
μ PB406/426 93
μ PB409/429 97
μ PB450 103
U.V. Erasable
μ PD2716 105
μ PD2732 111
uPD2732A 115
μ PD2764 119
ELECTRONIC ARRAYS MASK PROGRAMMED ROMs
EA Ordering Procedure 125
μ PD2316E/EA8316E 129
μ PD2332A/B/EA8332A/B 133
μ PD2364/EA8364 137
SINGLE CHIP
4-BIT MICROCOMPUTERS
Selection Guide 12
Microcomputer Alternate Source Guide 15
ROM-Based Products
Ordering Procedure 17
$\mu \mathrm{COM}-4$. 143
μ PD546/547 157
μ PD557L 159
4PD650/651 161
μ PD547L 163
μ PD552/553 165
μ PD550/554 167
${ }^{\text {PPD550L/554L }}$ 169
μ PD652 171
μ PD556B Evaluation Chip 173
μ PD7500 Series Introduction 177
μ PD7501 193
MPD7502/7503 199
μ PD7506 205
μ PD7507/7508 211
μ PD7507S 219
μ PD7508A 225
μ PD7519 233
μ PD7520 235
4PD7500 Evaluation Chip 241
MC-430P 249
SINGLE CHIP
8-BIT MICROCOMPUTERS
Selection Guide 12
Alternate Source Guide 15
ROM-Based Products
Ordering Procedure 17
4PD7800 257
uPD7801 269
μ PD78C06 321
μ PD7811G 325
μ PD8021 329
μ PD8022 335
μ PD8041A/8741A 341
μ PD8048/8748/8035L 351
μ PD80C48/80C35 363
${ }_{\mu}{ }^{\mu} \mathrm{PDD8049}$ /8039L 371
381
MICROPROCESSORS
Selection Guide 12
Alternate Source Guide 15
μ PD780 391
μ PD8080AF 407
uPD8085A 421
μ PD8086 435
4PD8088 447
PERIPHERALS
Selection Guide 12
Alternate Source Guide 15
ROM-Based Products
Ordering Procedure 17
μ PD765A 459
μ PD7001 479
μ PD7002 483
μ PD7201 487
MPD7210 499
4PD7220 515
μ PD7225 537
μ PD7227 545
MPD7720 551
μ PD8155/8156 569
μ PB8212 577
μ PB8214 583
μ PB8216/8226 591
μ PB8224 595
4PB8228 601
μ PD8237A-5 607
μ PD8243 619
μ PD82C43 625
μ PD8251/8251A 631
μ PD8253-5 649
uPD8255A-5 657
μ PD8257-5 665
μ PD8259A 675
μ PD8279-5 693
4PB8282/8283 703
MPB8284 707
4 PB8284A 715
μ PB8286/8287 723
μ PB8288 729
4PB8289 737
μ PD8355/8755A 745
PRODUCT PAGE
μ COM-4 143
MC-430P 249
μ PB406 93
μ PB409 97
μ PD416 21
4PB426 93
μ PB429 97
μ PD444 75
μ PD446 79
μ PD449 85
μ PB450 103
μ PD546/547 157
μ PD547L 163
μ PD550 167
μ PD550L 169
μ PD552/553 165
μ PD554 167
μ PD554L 169
μ PD556B 173
μ PD557L 159
μ PD650/651 161
μ PD652 171
μ PD765A 459
μ PD780 391
μ PD2114L 43
μ PD2147 47
MPD2149 53
μ PD2167 59
μ PD2316E 129
μ PD2332A/B 133
MPD2364 137
μ PD2716 105
μ PD2732 111
μ PD2732A 115
μ PD2764 119
μ PD4016 63
μ PD4104 37
μ PD4164 31
μ PD5101L 69
μ PD7001 479
μ PD7002 483
μ PD7201 487
μ PD7210 499
μ PD7220 515
μ PD7225 537
μ PD7227 545
μ PD7500 241
μ PD7501 193
μ PD7502/7503 199
μ PD7506 205
μ PD7507/7508 211
μ PD7507S 219
μ PD7508A 225
PRODUCT PAGE
μ PD7519 233
μ PD7520 235
μ PD7720 551
μ PD7800 257
μ PD7801 269
μ PD7802 295
μ PD7811G 325
μ PD78C06 321
μ PD8021 329
μ PD8022 335
4PD8035L 351
μ PD80C35 363
μ PD8039L 371
μ PD80C39 381
μ PD8041A 341
μ PD8048 351
μ PD80C48 363
μ PD8049 371
μ PD80C49 381
μ PD8080AF 407
μ PD8085A 421
μ PD8086 435
μ PD8088 447
μ PD8155/8156 569
μ PB8212 577
بPB8214 583
بPB8216 591
μ PB8224 595
μ PB8226 591
μ PB8228 601
μ PD8237A-5 607
μ PD8243 619
μ PD82C43 625
μ PD8251/8251A 631
μ PD8253-5 649
μ PD8255A-5 657
μ PD8257-5 665
μ PD8259A 675
μ PD8279-5 693
μ PB8282/8283 703
بPB8284 707
μ PB8284A 715
μ PB8286/8287 723
μ PB8288 729
بPB8289 737
EA8316E 129
EA8332A/B 133
EA8364 137
μ PD8355 745
μ PD8741A 341
μ PD8748 351
μ PD8755A 745

NEC Electronics U.S.A. Inc.
Microcomputer Division

MEMORY SELECTION GUIDE

| DEVICE | SIZE | PROCESS | ACCESS | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TIME | CYCLE | SUPPLY
 VOLTAGE | PACKAGE | |
| | | | MATERIAL | PINS |

DYNAMIC RANDOM ACCESS MEMORIES

μ PD416	$16 \mathrm{~K} \times 1$ TS	NMOS	120 ns	320 ns	$+12,+5,-5$	C/D	16
μ PD4164	$64 \mathrm{~K} \times 1 \mathrm{TS}$	NMOS	120 ns	270 ns	+5	C/D	16

STATIC RANDOM ACCESS MEMORIES

μ PD5101L	256×4 TS	CMOS	450 ns	450 ns	+5	C	22
μ PD444	$1 \mathrm{~K} \times 4$ TS	CMOS	200 ns	200 ns	+5	C/D	18
μ PD446	$2 \mathrm{~K} \times 8$ TS	CMOS	150 ns	150 ns	+5	C/D	24
μ PD449	$2 \mathrm{~K} \times 8$ TS	CMOS	150 ns	150 ns	+5	C/D	24
μ PD4016	2K $\times 8$ TS	NMOS	150 ns	150 ns	+5	C/D	24
μ PD4104	$4 \mathrm{~K} \times 1$ TS	NMOS	200 ns	310 ns	+5	C	18
μ PD2114L	$1 \mathrm{~K} \times 4 \mathrm{TS}$	NMOS	150 ns	150 ns	+5	C	18
μ PD2147	$4 \mathrm{~K} \times 1 \mathrm{TS}$	NMOS	25 ns	25 ns	+5	D	18
$\mu \mathrm{PD} 2149$	$1 \mathrm{~K} \times 4 \mathrm{TS}$	NMOS	35 ns	35 ns	+5	D	18
μ PD2167	$16 \mathrm{~K} \times 1 \mathrm{TS}$	NMOS	55 ns	55 ns	+5	D	20

FIELD PROGRAMMABLE READ ONLY MEMORIES

(Bipolar)							
μ PB406	1K $\times 4$ OC	BIPOLAR	50 ns	50 ns	+5	C/D	18
μ PB426	$1 \mathrm{~K} \times 4$ TS	BIPOLAR	50 ns	50 ns	+5	C/D	18
μ PB409	$2 \mathrm{~K} \times 8 \mathrm{OC}$	-BIPOLAR	50 ns	50 ns	+5	C/D	24
μ PB429	$2 \mathrm{~K} \times 8 \mathrm{TS}$	BIPOLAR	50 ns	50 ns	+5	C/D	24
(Bipolar Logic Array)							
μ PB450	9216 bit	BIPOLAR	200 ns	200 ns	+5	D	48
(U.V. Erasable)							
$\mu \mathrm{PD} 2716$	$2 \mathrm{~K} \times 8 \mathrm{TS}$	NMOS	450 ns	450 ns	+5	D	24
$\mu \mathrm{PD} 2732$	$4 \mathrm{~K} \times 8 \mathrm{TS}$	NMOS	450 ns	450 ns	+5	D	24
μ PD2732A	$4 \mathrm{~K} \times 8 \mathrm{TS}$	NMOS	250 ns	250 ns	+5	D	24
$\mu \mathrm{PD} 2764$	$8 \mathrm{~K} \times 8 \mathrm{TS}$	NMOS	250 ns	250 ns	+5	D	28

MASK PROGRAMMED READ ONLY MEMORIES

$\begin{array}{\|c} \mu \mathrm{PD} 2316 \mathrm{E} / \\ \mathrm{EA} 316 \mathrm{E} \end{array}$	$2 \mathrm{~K} \times 8 \mathrm{TS}$	NMOS	450 ns	450 ns	+5	C	24
μ PD2316E/	$2 \mathrm{~K} \times 8 \mathrm{TS}$	NMOS	350 ns	350 ns	+5	C	24
EA8316E-1							
μ PD2332A/B/	$4 \mathrm{~K} \times 8 \mathrm{TS}$	NMOS	450 ns	450 ns	+5	C	24
EA8332A/B							
μ PD2332A/B-1/	$4 \mathrm{~K} \times 8 \mathrm{TS}$	NMOS	350 ns	350 ns	+5	C	24
EA8332A/B-1							
[PD2364/	$8 \mathrm{~K} \times 8 \mathrm{TS}$	NMOS	450 ns	450 ns	+5	C	24
EA8264							
$\mu \mathrm{PD} 23128 /$	$16 \mathrm{~K} \times 8 \mathrm{TS}$	NMOS	250 ns	350 ns	+5	C	28
EA8364							

Notes: OC = Open Collector; C = Plastic Package; D = Hermetic Package; TS = 3-State

MICROCOMPUTER SELECTION GUIDE

SINGLE CHIP 4-BIT MICROCOMPUTERS

DEVICE	FAMILY	ROM	RAM	1/0	PROCESS	OUTPUT	FEATURES	SUPPLY VOLTAGE	PINS
μ PD546	μ COM-43	2000×8	96×4	35	PMOS	O.D.		-10	42
μ PD553	μ COM-43H	2000×8	96×4	35	PMOS	O.D.	A	-10	42
μ PD557L	μ COM-43SL	2000×8	96×4	21	PMOS	O.D.	A	-8	28
μ PD650	μ COM 43 C	2000×8	96×4	35	cmos	push-pull		+5	42
μ PD547	μ COM-44	1000×8	64×4	35	PMOS	O.D.		-10	42
μ PD547L	μ COM-44L	1000×8	64×4	35	PMOS	O.D.		-8	42
μ PD552	μ COM -44 H	1000×8	64×4	35	PMOS	O.D.	A	-10	42
μ PD651	μ COM-44C	1000×8	64×4	35	cmos	push-pull		+5	42/52
μ PD550	$\mu \mathrm{COM}-45$	640×8	32×4	21	PMOS	O.D.	A	-10	28
$\mu \mathrm{PD} 550 \mathrm{~L}$	μ COM-45L.	640×8	32×4	21	PMOS	O.D.	A	-8	28
μ PD554	μ COM-45	1000×8	32×4	21	PMOS	O.D.	A	-10	28
μ PD554L	μ COM-45L	1000×8	32×4	21.	PMOS	O.D.	A	-8	28
μ PD652	μ COM-45C	1000×8	32×4	21	CMOS	push-pull		+5	28
$\mu \mathrm{PD} 556$	μ COM-43	External	96×4	35	PMOS	O.D.	B	-10	64
MC-430P	μ COM-43	2000×8	96×4	35	PMOS	O.D.	G	-10	42
		UV EPROM							
$\mu \mathrm{PD} 7500$	μ PD7500 Series	External	256×4	46	CMOS	O.D.	C	+2.7 to 5.5	64
$\mu \mathrm{PD} 7501$	μ PD7500 Series	1024×8	96×4	24	CMOS	O.D.	D	+2.7 to 5.5	64
$\mu \mathrm{PD} 7502$	μ PD7500 Series	2048×8	128×4	23	CMOS	O.D.	D	+2.7 to 5.5	64
μ PD7503	μ PD7500 Series	4096×8	224×4	23	CMOS	O.D.	D	+2.7 to 5.5	64
$\mu \mathrm{PD} 7506$	μ PD7500 Series	1024×8	64×4	22	CMOS	O.D.		+2.7 to 5.5	28
μ PD7507	μ PD 7500 Series	2048×8	128×4	32	CMOS	O.D.		+2.7 to 5.5	40/52
μ PD7508	μ PD7500 Series	4096×8	224×4	32	CMOS	O.D.		+2.7 to 5.5	40/52
$\mu \mathrm{PD} 7508 \mathrm{~A}$	μ PD7500 Series	4096×8	208×4	32	CMOS	O.D.	A	+2.7 to 5.5	40
μ PD7519	μ PD7500 Series	4096×8	256×4	28	CMOS	O.D.	F	+2.7 to 5.5	64
μ PD 7520	μ PD7500 Series	768×8	48×4	24	PMOS	O.D.	E	-6 to -10	28

[^0]Mierocomputer Division

> MICROCOMPUTER SELECTION GUIDE

SINGLE CHIP 8-BIT MICROPROCESSORS

DEVICE	SPECIAL FEATURES	ROM	RAM	1/0	PROCESS	OUTPUT	CYCLE	SUPPLY VOLTAGE	PINS
μ PD8021	Zero-Cross Detector	1024×8	64×8	21	NMOS	BD	3.6 MHz	+5	28
μ PD8022	On-Chip A/D Converter	2048×8	64×8	26	NMOS	BD	3.6 MHz	+5	40
μ PD8035L	μ PD8048 w/External Memory	Externa!	64×8	27	NMOS	TS,BD	6 MHz	+5	40
$\mu \mathrm{PD} 8039 \mathrm{~L}$	μ PD8049 w/External Memory	External	128×8	27	NMOS	TS, BD	11 MHz	+5	40
$\mu \mathrm{PD} 8041$	Peripheral Interface w/Slave Bus	1024×8	64×8	18	NMOS	TS, BD	6 MHz	+5	40
$\mu \mathrm{PD} 8041 \mathrm{~A}$	Enhanced μ PD8041	1024×8	64×8	18	NMOS	TS, BD	6 MHz	+5	40
μ PD8048	Expansion Bus	1024×8	64×8	27	NMOS	TS,BD	6 MHz	+5	40
μ PD8049	High Speed μ PD8048	2048×8	128×8	27	NMOS	TS, BD	11 MHz	+5	40
$\mu \mathrm{PD} 8741 \mathrm{~A}$	UV-EPROM μ PD8041A	1024×8	64×8	18	NMOS	TS,BD	6 MHz	+5	40
$\mu \mathrm{PD} 8748$	UV-EPROM μ PD8048	1024×8	64×8	27	NMOS	TS, BD	6 MHz	+5	40
μ PD80C35	CMOS 8035	External	64×8	27	CMOS	TS, BD	6 MHz	+2.7 to 5.5	40
$\mu \mathrm{PD} 80 \mathrm{C48}$	CMOS 8048	1024×8	64×8	27	CMOS	TS,BD	6 MHz	+2.7 to 5.5	40
$\mu \mathrm{PD} 80 \mathrm{C} 39$	CMOS 8039	External	128×8	27	CMOS	TS,BD	6 MHz	+2.7 to 5.5	40
$\mu \mathrm{PD} 80 \mathrm{C} 49$	CMOS 8049	2048×8	128×8	27	CMOS	TS,BD	6 MHz	+2.7 to 5.5	40
$\mu \mathrm{PD} 7800$	Development Chip	External	128×8	48	NMOS	TS,BD	4 MHz	+5	64
$\mu \mathrm{PD} 7801$	8080 Expansion Bus	4096×8	128×8	48	NMOS	TS,BD	4 MHz	+5	64
	64K Memory Address Space								
μ PD7802	Expanded μ PD7801	6144×8	64×8	48	NMOS	TS,BD	4 MHz	+5	64
μ PD78C05	CMOS Microprocessor	External	128×8	46	cmos	TS,BD	4 MHz	+5	64
μ PD78C06	CMOS Microcomputer	4096×8	128×8	46	CMOS	TS,BD	4 MHz	+5	64
μ PD7810	Powerful Microprocessor	External	256×8	44	NMOS	TS,BD	10 MHz	+5	64
μ PD7811	8 Channel A/D	4096×8	128×8	44	NMOS	TS,BD	10 MHz	+5	64

MICROPROCESSORS

DEVICE	PRODUCT	SIZE	PROCESS	OUTPUT	CYCLE	SUPPLY	
VOLTAGES	PINS						
μ PD780	Microprocessor	8 -bit	NMOS	3 -State	4.0 MHz	+5	
μ PD8080AF	Microprocessor	8 -bit	NMOS	3 -State	2.0 MHz	$+12 \pm 5$	40
μ PD8080AF-2	Microprocessor	8 -bit	NMOS	3 -State	2.5 MHz	$+12 \pm 5$	40
μ PD8080AF-1	Microprocessor	8-bit	NMOS	3 -State	3.0 MHz	$+12 \pm 5$	40
μ PD8085A	Microprocessor	8-bit	NMOS	3 -State	3.0 MHz	+5	40
μ PD8085A-2	Microprocessor	8-bit	NMOS	3 -State	5.0 MHz	+5	40
μ PD8086	Microprocessor	16-bit	NMOS	3 -State	5.0 MHz	+5	40

MICROCOMPUTER SELE:CTION GUIDE
SYSTEM SUPPORT

DEVICE	PRODUCT	SIZE	PROCESS	OUTPUT	CYCLE	SUPPLY VOLTAGES	PINS
μ PD765AC	Double Sided/Double Density Floppy Disk Controller	8-bit	NMOS	3-State	8 MHz	+5	40
μ PD781	Dot Matrix Printer Controller-Epson 500 Printer	8-bit	NMOS	3-State	6 MHz	+5	40
μ PD782	Dot Matrix Printer Controller-Epson 200 Printer	8-bit	NMOS	3-State	6 MHz	+5	40
$\mu \mathrm{PD} 7001$	8-Bit A/D Converter	8-bit	CMOS	Open Collector Serial	10 kHz Conversion Time	+5	16
μ PD7002	10-Bit A/D Converter	8-bit	CMOS	3-State	400 Hz Conversion Time	+5	28
μ PD7201	Multi-Protocol Serial Controller	8-bit	NMOS	3-State	4 MHz	+5	40
μ PD7210	IEEE Controller (Talker, Listener, Controller)	8-bit	NMOS	3-State	8 MHz	+5	40
μ PD7220	Color Graphic Display Controller	8-bit	NMOS	3-State	5 MHz	+5	40
μ PD7225	Alpha Numeric LCD Controller/Driver	8-bit	CMOS	-	-	2.7 to 5.5	52
μ PD7227	Dot Matrix LCD Controller/Driver	8-bit	CMOS	-	-	2.7 to 5.5	64
μ PD7720	Signal Processor	16-bit	NMOS	3-State	8 MHz	+5	28
μ PD8155	256×8 RAM with I/O Ports and Timer	8-bit	NMOS	3-State	-	+5	40
μ PD8155-2	256×8 RAM with I/O Ports and Timer	8-bit	NMOS	3-State	-	+5	40
μ PD8156	256×8 RAM with I/O Ports and Timer	8-bit	NMOS	3-State	-	+5	40
μ PD8156-2	256×8 RAM with I/O Ports and Timer	8-bit	NMOS	3-State	-	+5	40
$\mu \mathrm{PB8212}$	1/O Port	8-bit	Bipolar	3-State	-	+5	24
$\mu \mathrm{PB8214}$	Priority Interrupt Controller	3-bit	Bipolar	Open Collector	3 MHz	+5	24
$\mu \mathrm{PB8216}$	Bus Driver Non-Inverting	4-bit	Bipoiar	3-State	-	+5	16
$\mu \mathrm{PB8224}$	Clock Generator Driver	2 phase	Bipolar	High Level Clock	3 MHz	$+12 \pm 5$	16
$\mu \mathrm{PB8226}$	Bus Driver Inverting	4-bit	Bipolar	3-State	-	+5	16
$\mu \mathrm{PB8228}$	System Controller	8-bit	Bipolar	3-State	-	+5	28
$\mu \mathrm{PD} 8243$	1/O Expander	4×4 bits	NMOS	3-State	-	+5	24
$\mu \mathrm{PD} 8251$	Programmable Communications Interface (Async/Sync)	8-bit	NMOS	3-State	A.9.6K baud S.56K baud	+5	28
$\mu \mathrm{PD} 825,1 \mathrm{~A}$	Programmable Communications Interface (Async/Sync)	8-bit	NMOS	3-State	A-9.6K baud S-64K baud	+5	28
μ PD8253-5	Programmable Timer	8-bit	NMOS	3-State	4.0 MHz	+5	24
μ PD8255A-5	Peripheral Interface	8-bit	NMOS	3-State	-	+5	40
μ PD8257-5	Programmable DMA Controller	8-bit	NMOS	3-State	4 MHz	+5	40
μ PD8279-5	Programmable Keyboard/ Display Interface	8-bit	NMOS	3-State	-	+5	40
$\begin{aligned} & \mu \text { PB8282/ } \\ & 8283 \end{aligned}$	8-Bit Latches		Bipolar	3-State	5 MHz	+5	20
$\mu \mathrm{PB8284}$	Clock Driver		Bipolar	3-State	5 MHz	+5	18
$\begin{aligned} & \mu \mathrm{PB8} 826 / \\ & 8287 \end{aligned}$	8-Bit Bus Transceivers		Bipolar	3-State	5 MHz	+5	20
μ PB8288	Bus Controller		Bipolar	3-State	5 MHz	+5	20
μ PD8355	2048×8 ROM with I/O Ports	8-bit	NMOS	3-State	-	+5	40
$\mu \mathrm{PD} 8755 \mathrm{~A}$	2048×8 EPROM with 1/O Ports	8-bit	NMOS	3-State	-	+5	40

MICROCOMPUTER ALTERNATE SOURCE GUIDE

MANUFACTURER	PART NUMBER	DESCRIPTION	NEC REPLACEMENT
AMD	AM8080A/9080A AM8080A-2/9080A-2 AM8080A-1/9080A-1 AM8085A AM8155 AM8156 AM8212 AM8214 AM8216 AM8224 AM8226 AM8228 AM8251 AM8255 AM8257 AM8355 AM8048	Microprocessor (2.0 MHz) Microprocessor (2.5 MHz) Microprocessor (3.0 MHz) Microprocessor (3.0 MHz) Programmable Peripheral Interface with 256×8 RAM Programmable Peripheral Interface with 256×8 RAM I/O Port (8-Bit) Priority Interrupt Controller Bus Driver, Inverting Clock Generator/Driver Bus Driver, Non-Inverting System Controller Programmable Communications Interface Programmable Peripheral Interface Programmable DMA Controller Programmable Peripheral Interface with 2048×8 ROM Single Chip Microcomputer	μ PD8080AF μ PD8080AF-2 μ PD8080AF-1 μ PD8085A μ PD8155 μ PD8156 μ PB8212 μ PB8214 μ PB8216 μ PB8224 $\boldsymbol{\mu}$ PB8226 μ PB8228 μ PD8251 μ PD8255 μ PD8257 μ PD8355 μ PD8048
INTEL	8080A 8080A-2 8080A-1 8021 8022 8035L 8039L 8041A 8048 8049 8085A 8085A-2 8086 8155/8155-2 8156/8156-2 8212 8214 8216 8224 8226 8228 8243 8251	Microprocessor (2.0 MHz) Microprocessor (2.5 MHz) Microprocessor (3.0 MHz) Microcomputer with ROM Microcomputer with A/D Converter Microprocessor Microprocessor Programmable Peripheral Controller with ROM Microcomputer with ROM Microcomputer with ROM Microprocessor (3.0 MHz) Microprocessor (5.0 MHz) Microprocessor (16-Bit) Programmable Peripheral Interface with 256×8 RAM Programmable Peripheral Interface with 256×8 RAM I/O Port (8-Bit) Priority Interrupt Controller Bus Driver, Non-Inverting Clock Generator/Driver Bus Driver, Inverting System Controller 1/O Expander Programmable Communications Interface (Async/Sync)	μ PD8080AF μ PD8080AF-2 μ PD8080AF-1 μ PD8021 μ PD8022 μ PD8035L μ PD8039L μ PD8041A μ PD8048 μ PD8049 μ PD8085A μ PD8085A-2 μ PD8086 μ PD8155/8155-2 μ PD8156/8156-2 μ PB8212 μ PB8214 μ PB8216 μ PB8224 μ PB8226 μ PB8228 μ PD8243 μ PD8251

MICROCOMPUTER ALTERNATE SOURCE GUIDE

MANUFACTURER	PART NUMBER	DESCRIPTION	NEC REPLACEMENT
INTEL (CONT.)	8251A 8253-5 8255A-5 8257-5 8259A 8272 8279-5 8282/8283 8284 8286/8287 8288 8355 8741A 8748 8755A 8274	Programmable Communications Interface (Async/Sync) Programmable Timer Programmable Peripheral Interface Programmable DMA Controller Programmable Interrupt Controller Double Sided/Double Density Floppy Disk Controller Programmable Keyboard/Display Interface 8-Bit Latches Clock Driver 8-Bit Transceivers Bus Controller Programmable Peripheral Interface with 2048×8 ROM Programmable Peripheral Controller with EPROM Microcomputer with EPROM Programmable Peripheral Interface with $2 \mathrm{~K} \times 8$ EPROM Multiprotocol Serial Controller	μ PD8251A μ PD8253-5 μ PD8255A-5 μ PD8257-5 μ PD8259A μ PD765 μ PD8279-5 μ PB8282/8283 μ PB8284 μ PB8286/8287 μ PB8288 μ PD8355 μ PD8741A μ PD8748 μ PD8755A μ PD7201
NATIONAL	INS8048 INS8049 INS8080A INS8080A-2 INS8080A-1 8212 8214 8216 8224 8226 8228 iNS8251 INS8253 INS8255 INS8257 INS8259	Microcomputer with ROM Microcomputer with ROM Microprocessor (2.0 MHz) Microprocessor (2.5 MHz) Microprocessor (3.0 MHz) 1/O Port (8-Bit) Priority Interrupt Controller Bus Driver, Non-Inverting Clock Generator/Driver Bus Driver, Inverting System Controller Programmable Communications Interface Programmable Timer Programmable Peripheral Interface Programmable DMA Controller Programmable Interrupt Controller	μ PD8048 μ PD8049 μ PD8080AF μ PD8080AF-2 μ PD8080AF-1 μ PB8212 μ PB8214 μ PB8216 μ P88224 μ PB8226 μ PB8228 μ PD8251A μ PD8253-5 μ PD8255A-5 μ PD8257-5 μ PD8259A
T.I.	TMS8080A TMS8080A-2 TMS8080A-1 SN74S412 SN74LS424 SN74S428	Microprocessor (2.0 MHz) Microprocessor (2.5 MHz) Microprocessor (3.0 MHz) 1/O Port (8-Bit) Clock Generator/Driver System Controller .	μ PD8080AF μ PD8080AF-2 μ PD8080AF-1 μ PB8212 μ PB8224 μ PB8228

ROM-BASED PRODUCTS ORDERING PROCEDURE

The following NEC products fall under the guidelines set by the ROM-Based Products Ordering Procedure:

μ PD7801	μ PD80C49	μ PD554	μ PD7506
μ PD7802	μ PD8355	μ PD554L	μ PD7507
μ PD7811	μ PD546	μ PD557L	μ PD7507S
μ PD8021	μ PD547	μ PD650	μ PD7508
μ PD8022	μ PD547L	μ PD651	μ PD7508A
μ PD8041A	μ PD550	μ PD652	μ PD7519
μ PD8048	μ PD550L	μ PD7501	μ PD7520
μ PD80C48	μ PD552	μ PD7502	μ PD7720
μ PD8049	μ PD553	μ PD7503	

NEC Electronics U.S.A., Inc., Microcomputer Division is able to accept mask patterns in a variety of formats to facilitate the transferral of ROM mask information. These are intended to suit various customer needs and minimize the turnaround time. Always enclose a listing of the code and the code submittal form. The following is a list of valid media for code transferral.

- PROM/EPROM equivalent to ROM parts
- Sample ROMs or ROM-based microcomputers
- Paper Tape
- Timesharing Files
- ISIS-II compatible disks
- Other (Contact NEC Electronics U.S.A., Inc., Microcomputer Division for arrangements.)

Thoroughly tested verification procedures protect against unnecessary delays or costly mistakes. NEC Electronics U.S.A., Inc., Microcomputer Division will return the ROM mask patterns to the customer in the most convenient format. Unprogrammed EPROMs, if sent with the ROM code, can be programmed and returned for verification.

Earth satellites and the world-wide GE Mark III timesharing systems provide reliable and instant communication of ROM patterns to the factory. Customers with access to GE-TSS may further reduce the turnaround time by transferring files directly to NEC Electronics U.S.A., Inc., Microcomputer Division.

The following is an example of a ROM mask transferral procedure. The $\mu \mathrm{PD} 8048$ is used here; however, the process is the same for the other ROM-based products.

1. The customer contacts NEC Electronics U.S.A., Inc., Microcomputer Division's Sales Representative, concerning a ROM pattern for the μ PD8048 that he would like to send.
2. Since an EPROM version of that part is available, the μ PD8748 is proposed as a code transferral medium, or a paper tape and listing may be used.
3. Two programmed μ PD8748's are sent to NEC Electronics U.S.A., Inc., Microcomputer Division with a listing, a code submittal form, and a paper tape as back-up.
4. NEC Electronics U.S.A., Inc., Microcomputer Division compares the media provided and enters the code into GS-TSS. The GE-TSS file is accessed at the NEC factory and a copy of the code is returned to NEC Electronics U.S.A., Inc., Microcomputer Division for verification. One of the μ PD8748's is erased and reprogrammed with the customer's code as the NEC factory has it. Both μ PD8748's and a listing are returned to the customer for his final verification.
5. Once the customer notifies NEC Electronics U.S.A., Inc., Microcomputer Division in writing that the code is verified and provides the mask charge and hard copy of the purchase order, work begins immediately on developing his μ PD8048's.

Please contact your local Sales Representative for assistance with all ROM-based product orders, Mask Programmed ROM products other than those listed above are marketed by Electronic Arrays Division; refer to Section 5 for Electronic Arrays' ordering procedures.

NOTES

RANDOM ACCESS MEMORIES

16384×1 BIT DYNAMIC MOS RANDOM ACCESS MEMORY

DESCRIPTION

The NEC μ PD 416 is a 16384 words by 1 bit Dynamic MOS RAM. It is designed for memory applications where very low cost and large bit storage are important design objectives.

The μ PD416 is fabricated using a double-poly-layer N channel silicon gate process which affords high storage cell density and high performance. The use of dynamic circuitry throughout, including the sense amplifiers, assures minirnal power dissipation.

Multiplexed address inputs permit the μ PD 416 to be packaged in the standard 16 pin dual-in-line package. The 16 pin package provides the highest system bit densities and is available in either ceramic or plastic. Noncritical clock timing requirements allow use of the multiplexing technique while maintaining high performance.

FEATURES • 16384 Words $\times 1$ Bit Organization

- High Memory Density - 16 Pin Ceramic and Plastic Packages
- Multiplexed Address Inputs
- Standard Power Supplies +12V,-5V, +5V
- Low Power Dissipation; 462 mW Active (MAX), 20 mW Standby (MAX)
- Output Data Controlled by $\overline{\mathrm{CAS}}$ and Unlatched at End of Cycle
- Read-Modify-Write, $\overline{\mathrm{RAS}}$-only Refresh, and Page Mode Capability
- All Inputs TTL Compatible, and Low Capacitance
- 128 Refresh Cycles
- 5 Performance Ranges:

	ACCESS TIME	R/W CYCLE	RMW CYCLE
μ PD416	300 ns	510 ns	575 ns
μ PD416-1	250 ns	410 ns	465 ns
μ PD416-2	200 ns	375 ns	375 ns
μ PD416-3	150 ns	320 ns	320 ns
μ PD416-5	120 ns	320 ns	320 ns

PIN CONFIGURATION

$A_{0} \cdot A_{6}$	Address Inputs
$\overline{C A S}$	Column Address Strobe
$D_{I N}$	Data In
$D_{O U T}$	Data Out
$\overline{\text { RAS }}$	Row Address Strobe
$\overline{W R I T E}$	Read/Write
$V_{B B}$	Power (-5V)
$V_{C C}$	Power (+5 V)
$V_{D D}$	Power (+12 V)
$V_{S S}$	Ground

Operating Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature	$55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
All Output Voltages (1).	-0.5 to +20 Volts
All Input Voltages (1).	-0.5 to +20 Volts
Supply Voltages VDD, VCC, VSS (1).	-0.5 to +20 Volts
Supply Voltages VDD, VCC (2)	-1.0 to +15 Volts
Short Circuit Output Current	50 mA
Power Dissipation	

Notes: (1) Relative to V_{BB}
(2) Relative to $V_{S S}$
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
*COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
$T_{a}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{D D}=+12 \mathrm{~V} \pm 10 \%, V_{B B}=-5 \mathrm{~V} \pm 10 \%, V_{C C}=+5 \mathrm{~V} \pm 10 \%$,
$V_{S S}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		TYP	MAX			
Input Capacitance $\left(A_{0}-A_{6}\right), D_{I N}$	$\mathrm{C}_{I 1}$		4	5	pF	
Input Capacitance RAS, CAS, $\overline{\text { WRITE }}$	C_{12}		8	10	pF	
Output Capacitance (DOUT)	C_{0}		5	7	pF	

CAPACITANCE
$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (1). $\mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Supply Voltage	$V_{\text {DD }}$	10.8	12.0	1.3 .2	V	(2)
Supply Voltage	$V_{\text {cc }}$	4.5	5.0	5.5	\checkmark	(2) (3)
Supply Voltage	$\mathrm{V}_{\text {SS }}$	0	0	0	V	(2)
Supply Voltage	$V_{B B}$	- 4.5	-5.0	-5.5	V	(2)
Input High (Logic 1) Voltage, RAS, CAS, WRITE	$V_{\text {IHC }}$	2.7		7.0	V	(2)
Input High (Logic 1) Voltage, all inputs except $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}$ WRITE	$\mathrm{V}_{\text {IH }}$	2.4	-	7.0	v	(2)
Input Low (Logic 0) Voltage, all inputs	$V_{\text {IL }}$	- 1.0		0.8	v	(2)
Operating $V_{\text {DO }}$ Current	'001			35	mA	$\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}$ cycling:
Standby V ${ }_{\text {DD }}$ Current	IOD2			1.5	mA	$\overline{\text { RAS }}=V_{I H C}, D_{O U T}$ $=$ High 1 mpedance
Refresh All Speeds VDD except μ PD416-5	IDD3			25	mA	$\overline{\mathrm{RAS}}$ cycling, $\overline{\mathrm{CAS}}=$ V_{IHC} : $\mathrm{t}_{\mathrm{RC}}=375 \mathrm{~ns}$ (4)
Current $\quad \mu$ PD416-5	'DD3			27	mA	
Page Mode $V_{D D}$ Current	IDD4			27	mA	$\begin{aligned} & \overline{\text { RAS }}=V_{1 L} \text {. } \overline{C A S} \\ & \text { cycling: tPC } \\ & 225 \text { ns (4) } \end{aligned}$
Operating V_{CC} Current	${ }^{1} \mathrm{CC}$,				$\mu \mathrm{A}$	$\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}$ cycling. tRC - 375 ns (5)
Standby $V_{C C}$ Current	${ }^{1} \mathrm{CC} 2$	-10		10	$\mu \mathrm{A}$	$\overline{\mathrm{RAS}}=\mathrm{V}_{1} H C$. DOUT $=$ High Impedance
Refresh VCC Current	${ }^{1} \mathrm{CC3}$	-10		10	$\mu \mathrm{A}$	$\overrightarrow{\mathrm{RAS}}$ cycling. $\overline{C A S}-V_{1 H C}$. trC 375 ns
Page Mode $V_{C C}$ Current	' CC 4				$\mu \mathrm{A}$	$\overline{\text { RAS }} \cdot V_{I L}, \overline{C A S}$ cycling. tPC 225 ns (5)
Operating $V_{B B}$ Current	'BB1			200	$\mu \mathrm{A}$	$\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}$ cycling: tre 375 ns
Standby $V_{B B}$ Current	'BB2			100	$\mu \mathrm{A}$	$\overline{\text { RAS }}$ VIHC. DOUT High Impedance
Refresh $V_{B B}$ Current	'BB3			200	$\mu \mathrm{A}$	$\overline{\mathrm{RAS}}$ cycling. $\overline{C A S}=V_{1 H C}$. ${ }^{\text {R RC }}=375 \mathrm{~ns}$
Page Mode $V_{B B}$ Current	IBB4			200	$\mu \mathrm{A}$	$\overline{\text { RAS }}-V_{\text {IL }} \cdot \overline{\text { CAS }}$ cycling: ${ }^{1} P C=225 \mathrm{~ns}$
Input Leakage (any input)	II(L)	-10		10	$\mu \mathrm{A}$	$\begin{aligned} & V_{B B}=5 V .0 V \leqslant \\ & V_{I N} \leqslant+7 V . \end{aligned}$ all other pins not under test $=0 \mathrm{~V}$
Output Leakage	${ }^{\prime} \mathrm{O}(\mathrm{L})$	-10		10	$\mu \mathrm{A}$	DOUT is disabled, $0 \mathrm{~V} \leqslant \mathrm{~V}_{\text {OUT }} \leqslant+5.5 \mathrm{~V}$
Output High Voltage (Logic 1)	V_{OH}	2.4			V	IOUT $=-5 \mathrm{~mA}$ (3)
Output Low Voltage (l.ogic 0)	V_{OL}			0.4	V	${ }^{\text {I OUT }}=4.2 \mathrm{~mA}$

(2) All voltages referenced to $V_{S S}$
(3) Output voltage wilt swing from $V_{S S}$ to $V_{C C}$ when activated with no current loading. For purposes of maintaining data in standby mode, $V_{\text {CC }}$ may be reduced to $V_{\text {SS }}$ without affecting refresh operations or data retention. However, the $\mathrm{VOH}_{\mathrm{OH}}(\mathrm{min})$ specification is not guaranteed in this made.
4) IDD1, IDD3, and IDD4 depend on cycle rate. See Figures 2,3 and 4 for IDD limits at other cycle rates
(5) ICC1 and ICC4 depend upon output loading, During readout of high level data V_{CC} is connected through a low ICC1 and ' $\mathrm{CC4}$ depend upon output loading. During readout of high level data V_{CC} is con ne
impedance (135s? typ) to data out. At all other times I

AC
 CHARACTERISTICS

Parameter	SYMBOL	LIMITS										UNIT	TEST CONDITIONS
		μ PD418		μ PD416-1		μ PD416-2		μ PD416.3		- PDP416-5			
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAS	MIN	MAX		
Random read or write cycle time	${ }^{\text {'RC }}$	510		410		375		320		320		ns	(3)
Read-write cycle time	trwc	575		465		375		375		320		ns	(3)
Page mode cycle time	${ }^{\text {PPC }}$	330		275		225		170		160		ns	
Access tirne from $\overrightarrow{R A S}$	${ }^{\text {P/RAC }}$		300		250		200		150		120	ns	(4) (6)
Access time from $\overline{C A S}$	${ }^{t} \mathrm{CAC}$		200		165		135		100		80	ns	(5) (6)
Outpus buffer turn-off delay	${ }^{\text {t O F F }}$	0	80	0	60	0	50	0	40	0	35	ns	(7)
Transition time (rise and fall)	${ }^{\text {T }}$	3	50	3	50	3	50	3	35	3	35	ns	(2)
$\overline{\overline{A A S}}$ precharge time	trp	200		150		120		100		100		ns	
$\overline{\text { RAS }}$ pulse width	tras	300	10.000	250	10,000	200	32,000	150	32,000	120	10,000	ns	
AAS hold time	${ }^{\text {thSH }}$	200		165		135		100		80		ns	
CAS pulse width	${ }^{\text {t CAS }}$	200	10.000	165	10,000	135	10,000	100	10,000	80	10,000	ns	
$\overline{\text { AAS to CAS delay }}$ time	trcD	40	100	35	85	25	65	20	50	15	40	ns	(8)
CAS to RAS precharge time	${ }^{\text {che }}$	-20		-20		-20		-20		0		ns	
Row address set up time	tASR	0		0		0		0		0		ns	
Row address hold time	${ }^{\text {traH }}$	40		35		25		20		15		ns	
Column address set-up time	${ }^{\prime}$ ASC	-10		-10		-10		-10		-10		ns	
Column address hold time	TCAH	90		75		55		45		40		ns	
Column address hold time referenced to RAS	tAR	190		160		120		95		80		ns	
Read command set-up time	trics	0		0		0		0		0		กs	
Read command hold time	${ }^{\text {taCH }}$	0		0		0		0		0		ns	
Write command hold time	${ }^{\text {t }}$ WCH	90		75		55		45		40		ns	
Write command hold time referenced to $\overline{\mathrm{AAS}}$	${ }^{\text {tw }}$ WCR	190		160		120		95		80		ns	
Write command pulse width	twp	90		75		55		45		40		ns	
Write command to RAS lead thme	trwL	120		85		70		50		50		ns	
Write command to CAS lead time	${ }^{\text {t }}$ CWL	120		85		70		50		60		ns	
Deta-in set-up time	${ }^{\text {tos }}$	0		0		0		0		0		ns	(9)
Data-in hold time	${ }^{\text {tor }}$	90		75		55		45		40		ก5	(9)
Deta-in hold time referenced to $\overline{\text { RAS }}$	tDHR	190		160		120		95		80		ns	
CAS precharge time (for paga mode cycle only)	${ }^{1} \mathrm{CP}$	120		100		80		60		60		ns	
Refresh period	tREF		2		2		2		2		2	ms	
WAITE command set-up time	twCs	-20	-	-20		20		-20		0		ns	(10)
CAS to WRITE delay	${ }^{\text {t }}$ WWD	140		125		95		70		80		ns	(10)
RAS to WRITE delay	tRWD	240	-	200		160		120		120		ns	(10)

(1) $A C$ measurements assume $\mathrm{t}_{\mathrm{T}}=\mathbf{5} \mathrm{ns}$.
(2) $\mathrm{V}_{I H C}(\mathrm{~min})$ or $\mathrm{V}_{I H}(\mathrm{~min})$ and $\mathrm{V}_{I L}$ (max) are reference levels for measuring timing of input signals. Also, transition times are measured between $V_{I H C}$ or $V_{I H}$ and $V_{I L}$
(3) The specifications for $t_{R C}(\mathrm{~min})$ and $\mathrm{tRWC}(\mathrm{min})$ are used only to indicate cycle time at which proper operation over the full temparature range $\left(0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{a}} \leqslant 70^{\circ} \mathrm{C}\right)$ is assured.
(4) Assumes that $\mathrm{t}_{\mathrm{ACD}}<\mathrm{t}_{\mathrm{RCD}}$ (max). If $\mathrm{t}_{\mathrm{RCD}}$ is greater than the maximum recommended value shown in this tuble, $\mathrm{t}_{\mathrm{RAC}}$ will increase by the amount that tRCD exceeds the values shown.
(5) Assumes that tRCD $>\operatorname{tRCD}_{\text {(max) }}$
(6) Measured with a load equivalent to 2 TTL loads and 100 pF .
(7) TOFF (max) defines the time at which the output achieves the open circuit condition and is not referenced to cutput voltage tevels.
(8) Operation within the tRCD (maxt limit ensures that ${ }^{\text {RAC }}$ (max) can be met, $\mathrm{t}_{\mathrm{RCD}}$ (max) is specified as a reference point only; if tRCD is greater than the specified tRCD (max) limit, then access time is controlled exclusively by ${ }^{\text {t }} \mathrm{CAC}$
(9) These parameters are referenced to $\overline{C A S}$ leading edge in early write cycles and to $\bar{W} \overline{W I T I T E}^{\text {leading edge in delayed write or read-modify-write cycles. }}$

10 :WCS, ${ }^{\text {t CWO }}$ and trWD are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only. If twCS s twCS (min), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance)) $\mathrm{t}_{\mathrm{RWW}}$ (min), the cycle is a read-write cycle and the data out will contain data read from the selected cell; if neither of the above sets of conditions is satisfied the condition of the data out (at access time) is indeterminate.

DERATING CURVES

FIGURE 1
Maximum ambient temperature versus cycle rate for extended frequency operation. T_{a} (max) for operation at cycling rates greater than $2.66 \mathrm{MHz}\left({ }^{(t} \mathrm{CYC}<375 \mathrm{~ns}\right)$ is determined by $\mathrm{T}_{\mathrm{a}}(\max)\left[{ }^{\circ} \mathrm{C}\right]=70-9.0 \mathrm{x}$ (cycle rate $[\mathrm{MHz}]-2.66$). For μ PD416-5, it is $T_{a}(\max)\left[{ }^{\circ} \mathrm{C}\right]=70-9.0$ (cycle rate $[\mathrm{MHz}]-3.125)$.

FIGURE 2
Maximum I DD ${ }_{1}$ versus cycle rate for device operation at extended frequencies.

CYCLE TIME tRC ${ }^{(n s)}$

FIGURE 3
Maximum $I_{D D 3}$ versus cycle rate for device operation at extended frequencies.

CYCLE TIME tPC (ns)

CYCLE RATE $(\mathrm{MHz})=10^{3 / \mathrm{t}} \mathrm{RC}(\mathrm{ns})$
FIGURE 4
Maximum IDD4 versus cycle rate for device operation in page mode.

μ PD416

READ CYCLE
TIMING WAVEFORMS
addresses

WATTE

DOUT

$D_{\text {out }}$

${ }^{\text {OUT }} \quad \mathrm{V}_{\text {OH- }}$

Note $\overline{C A S}=V_{I H C}, \overline{\text { WRITE }}=$ Don't Care

PAGE MODE READ CYCLE

PAGE MODE WRITE CYCLE

μ PD416

The 14 address bits required to decode 1 of 16,384 bit locations are multiplexed onto the 7 address pins and then latched on the chip with the use of the Row Address Strobe ($\overline{\mathrm{RAS}}$), and the Column Address Strobe ($\overline{\mathrm{CAS}}$). The 7 bit row address is first applied and $\overline{\mathrm{RAS}}$ is then brought low. After the $\overline{\mathrm{RAS}}$ hold time has elapsed, the 7 bit column address is applied and $\overline{\mathrm{CAS}}$ is brought low. Since the column address is not needed internally until a time of ${ }^{t}$ CRD MAX after the row address, this multiplexing operation imposes no penalty on access time as long as $\overline{\mathrm{CAS}}$ is applied no later than ${ }^{t}$ CRD MAX. If this time is exceeded, access time will be defined from $\overline{\mathrm{CAS}}$ instead of $\stackrel{\rightharpoonup}{\text { RAS }}$.

For a write operation, the input data is latched on the chip by the negative going edge of $\overline{W R I T E}$ or $\overline{\mathrm{CAS}}$, whichever occurs later. If $\overline{\mathrm{WRITE}}$ is active before $\overline{\mathrm{CAS}}$, this is an "early WRITE" cycle and data out will remain in the high impedance state throughout the cycle. For a READ, WRITE, OR READ-MODIFY-WRITE cycle, the data output will contain the data in the selected cell after the access time. Data out will assume the high impedance state anytime that $\overline{\mathrm{CAS}}$ goes high.

The page mode feature allows the μ PD4 16 to be read or written at multiple column addresses for the same row address. This is accomplished by maintaining a low on $\overline{R A S}$ and strobing the new column addresses with $\overline{\mathrm{CAS}}$. This eliminates the setup and hold times for the row address resulting in faster operation.

Refresh of the memory matrix is accomplished by performing a memory cycle at each of the 128 row addresses every 2 milliseconds or less. Because data out is not latched, " $\overline{\mathrm{RAS}}$ only" cycles can be used for simple refreshing operation.

Either $\overline{\text { RAS }}$ and/or $\overline{\text { CAS }}$ can be decoded for chip select function. Unselected chip outputs will remain in the high impedance state.

In order to assure long ierm reliability, V_{BB} should be applied first during power up and removed last during power down.

ADDRESSING

DATA I/O

PAGE MODE

REFRESH

Plastic

ITEM	MILLIMETERS	INCHES
A	19.4 MAX	0.76 MAX
B	0.81	0.03
C	2.54	0.10
D	0.5	0.02
E	17.78	0.70
F	1.3	0.051
G	2.54 MIN	0.10 MIN
H	0.5 MIN	0.02 MIN
I	4.05 MAX	0.16 MAX
J	4.55 MAX	0.18 MAX
K	7.62	0.30
L	6.4	0.25
M	$0.25{ }^{+0.10}$	0.01

μ PD416D CERAMIC

Ceramic

ITEM	MILLIMETERS	INCHES
A	20.6 MAX	0.81 MAX
B	1.36	0.05
C	2.64	0.10
D	0.5	0.02
E	17.78	0.70
F	1.3	0.051
G	3.6 MIN	0.14 MIN
H	0.5 MIN	0.02 MIN
I	4.6 MAX	0.18 MAX
J	5.1 MAX	0.20 MAX
K	7.6	0.30
L	7.3	0.29
M	0.27	0.01

PACKAGE OUTLINE
 μ PD416D
 CERDIP

ITEM	MILLIMETERS	INCHES
A	19.9 MAX	0.784 MAX
B	1.06	0.042
C	2.54	0.10
0	0.46 ± 0.10	0.018 ± 0.004
E	17.78	0.70
F	1.5	0.059
G	2.54 MIN	0.10 MIN
H	0.5 MIN	0.019 MIN
1	4.58 MAX	0.181 MAX
J	5.08 MAX	0.20 MAX
K	7.82	0.30
L	6.4	0.25
M	$\begin{array}{r} +0.10 \\ 0.25 \\ -0.05 \end{array}$	$0_{0.0098} \begin{array}{r}+0.0039 \\ -0.0019\end{array}$

65,536 x 1 BIT DYNAMIC RANDOM ACCESS MEMORY

The NEC μ PD4164 is a 65,536 words by 1 bit Dynamic N-Channel MOS RAM designed to operate from a single +5 V power supply. The negative-voltage substrate bias is internally generated - its operation is both automatic and transparent.

The μ PD4164 utilizes a three-poly N -channel silicon gate process which provides high storage cell density, high performance and high reliability.

The μ PD4164 uses a single transistor dynamic storage cell and advanced dynamic circuitry throughout, including the 512 sense amplifiers, which assures that power dissipation is minimized. Refresh characteristics have been chosen to maximize yield (low cost to user) while maintaining compatibility between Dynamic RAM generations.

The μ PD4 164 three-state output is controlled by $\overline{\text { CAS }}$, independent of $\overline{\text { RAS. After a }}$ valid read or read-modify-write cycle, data is held on the output by holding CAS low. The data out pin is returned to the high impedance state by returning $\overline{\mathrm{CAS}}$ to a high state. The μ PD4 164 hidden refresh feature allows $\overline{C A S}$ to be held low to maintain output data while $\overline{\mathrm{RAS}}$ is used to execute $\overline{\mathrm{RAS}}$ only refresh cycles.

Refreshing is accomplished by performing RAS only refresh cycles, hidden refresh cycles, or normal read or write cycles on the 128 address combinations of A_{0} through A6 during a 2 ms period.

Multiplexed address inputs permit the μ PD4 164 to be packaged in the standard 16 pin dual-in-line package. The 16 pin package provides the highest system bit densities and is compatible with widely available automated handling equipment.

FEATURES • High Memory Density

- Multiplexed Address Inputs
- Single $+5 V$ Supply
- On Chip Substrate Bias Generator
- Access Time: μ PD4 164-20-200 ns
μ PD4164-15 - 150 ns
μ PD4164-12 - 120 ns
- Read, Write Cycle Time: μ PD4164-20 - 335 ns
μ PD4164-15 - 270 ns
μ PD4164-12-260ns
- Low Power Dissipation: 250 mW (Active); 28 mW (Standby)
- Non-Latched Output is Three-State, TTL Compatible
- Read, Write, Read-Write; Read-Modify-Write, RAS Only Refresh, and Page Mode Capability
- All Inputs TTL Compatible, and Low Input Capacitance
- 128 Refresh Cycles (A0-A6 Pins for Refresh Address)
- CAS Controlled Output Allows Hidden Refresh
- Available in Both Ceramic and Plastic 16 Pin Packages

PIN NAMES	
$\mathrm{A}_{0}-\mathrm{A}_{7}$	Address Inputs
$\overline{\mathrm{RAS}}$	Row Address Strobe
$\overline{\mathrm{CAS}}$	Column Address Strobe
$\overline{\text { WE }}$	Write Enable
D_{IN}	Data Input
DOUT $^{V_{C C}}$	Data Output
$V_{S S}$	Power Supply $(+5 \mathrm{~V})$
NC	Ground

Operating Temperature . . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature (Ceramic Package) $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
(Plastic Package) $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltages On Any Pin Except VCC - 1 to +7 Volts (1)
Supply Voltage VCC . - 0.5 to +7 Volts (1)
Short Circuit Output Current . 50 mA
Power Dissipation . 1 Watt
Note: (1) Relative to $V_{S S}$
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
*COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
$T_{a}=0^{\circ}$ to $70^{\circ} \mathrm{C}$ (1) $; V_{C C}=+5 \mathrm{~V} \pm 10 \%: V_{S S}=0 \mathrm{~V}$

PARAMETER	SYMBOL		LIMITS			UNIT	TEST CONDITIONS
			MIN	TYP	MAX		
Supply Voltage		$V_{\text {CC }}$	4.5	5.0	5.5	V	All Voltages Referenced to $V_{S S}$
		V_{SS}	0	0	0	V	
High Level Input Voltage. ($\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}, \overline{\mathrm{WE}}$)		$V_{\text {IHC }}$	2.4		5.5	V	
High Level Input Voltage, All Inputs Except RAS, CAS, WE		$\mathrm{V}_{\text {IH }}$	2.4		5.5	V	
Low Level Input Voltage, All Inputs		$V_{\text {IL }}$	-2.0		0.8	V	
Operating Current Average Power Supply Operating Current $\overline{\text { RAS, }} \overline{\mathrm{CAS}}$ Cycling; ${ }^{\mathrm{t}} \mathrm{RC}=\mathrm{t}_{\mathrm{RC}}$ (Min.)	ICC1	μ PD4164-20			45	mA	(2)
		μ PD4164-15			50		
		μ PD4164-12			55		
Standby Current Power Supply Standby Current ($\overline{\text { RAS }}=V_{I H C}$. DOUT $^{\text {(}}$ Hi-Impedance)	${ }^{\prime} \mathrm{CC} 2$				5.0	mA	
Refresh Current Average Power Supply Current, Refresh Mode; $\overline{\text { RAS }}$ Cycling, $\overline{C A S}=V_{I H C}$. ${ }^{\mathrm{t}} \mathrm{RC}=\mathrm{t}_{\mathrm{RC}}$ (Min .)	${ }^{1} \mathrm{CC} 3$	μ PD4164-20			35	mA	(2)
		$\mu \mathrm{PD} 4164$-15			40		
		μ PD4164-12			45		
Page Mode Current Average Power Supply Current, Page Mode Operation $\overline{\text { AAS }}=\mathrm{V}_{\text {IL }} ; \overline{\mathrm{CAS}}$ Cycling $t_{P C}=$ tPC (Min.)	ICC4	μ PD4164-20			35	mA	(2)
		μ PD4164-15			40		
		μ PD4164-12			45		
Input Leakage Current Any Input $V_{I N}=0$ to +5.5 Volts, All Other Pins Not Under Test = OV	II(L)		-10		10	$\mu \mathrm{A}$	
Output Leakage Current DOUT is Disabled, $\mathrm{V}_{\text {OUT }}=0$ to +5.5 Volts		10(L)	-10		10	$\mu \mathrm{A}$	
Output Levels High Level Output Voltage (${ }^{\prime}$ OUT $=5 \mathrm{~mA}$) Low Level Output Voltage (${ }_{\mathrm{OUT}}=4.2 \mathrm{~mA}$)	VOH		2.4	VCc		V	
		VOL	0		0.4	V	

Notes: (1) T_{a} is specified here for operation at frequencies to $t_{R C} \geq t_{R C}(\min)$. Operation at higher cycle rates with reduced ambient temperatures and high power dissipation is permissible, however, provided AC operating parameters are met.
(2) ICC1, ICC3 and ICC4 depend on output loading and cycle rates. Specified rates are obtained with the output open.

ABSOLUTE MAXIMUM RATINGS*

DC CHARACTERISTICS

AC CHARACTERISTICS
$\mathrm{T}_{\mathrm{a}}=0^{\circ}$ to $+70^{\circ} \mathrm{C}$ (1); $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (3) (4)

PARAMETER	SYMBEL	LMITS						UNIT	TEST CONDITIONS
		μ PD4164-20		μ PD4164-15		μ PD4164-12			
		MIN	MAX	MIN	MAX	MIN	MAX		
Rendom Read or Write Cycle Time	t_{BC}	335		270	.	260		n	(5)
Read Write Cycle Time	tRWC	335		270		260		n	(5)
Page Mode Cycle Time	tpC	225		$\dagger 70$		130		n	
Access Time from $\overline{\mathrm{RAS}}$	trac		200		150		120	nt	(8) (8)
Access Time from CAS	tcac		100		75		60	ns	(7) (8)
Output Buffer Turn-Off Delay	${ }^{\text {tofF }}$	0	50	0	40	0	40	ns	(9)
Transition Time (Rise and Fall)	${ }^{\text {t }}$	3	50	3	50	3	35	ns	(4)
RAS Precharge Time	thp	120		100		90	.	n	
RAS Pulse Width	tras	200	10,000	150	10,000	120	10,000	ns	
$\overline{\text { RAS }}$ Hold Time	$\mathrm{t}_{\text {RSH }}$	100		75		60		ns	
$\overline{\text { CAS Pulse Width }}$	tcas	100	10,000	75	10,000	60	10,000	ns	
CAS Hold Time	${ }_{\text {tesh }}$	200		150		120		ns	
RAS to CAS Delay Time	${ }^{\text {tRCD }}$	30	100	25	75	25	60	ns	(10)
$\overline{C A S}$ to $\overline{\text { AAS }}$ Precharge Time	${ }^{\text {t CRP }}$	0		0		0		ns	
$\overline{\text { CAS }}$ Precharge Time	${ }^{\text {t CPN }}$	30		25		25		ns	
$\overline{\text { CAS Precharge Time (For }}$ Page Mode Cycle Only)	${ }^{t} \mathrm{CP}$	80		60		60		ns	
$\overline{\mathrm{RAS}}$ Precharge $\overline{\mathrm{CAS}}$ Hold Time	$t_{\text {PPC }}$	0		0		0		ns	
How Address Set-Up Time	tasR	0		0		0		ns	
Row Address Hold Time	${ }_{\text {thaH }}$	20		15		15		ns	
Column Address Set-Up Time	${ }^{\text {t }}$ ASC	0		0		0		ns	
Column Address Hold Time	${ }^{\text {t }}$ CAH	55		45		35		ns	
Column Address Hold Time Peferenced to RAS	${ }^{\text {t }}$ AR	120		95		95		ns	
Read Command Set-Up Time	${ }^{\text {tRCS }}$	0		0		0		ns	
Read Command Hold Time Referenced to $\overline{\text { RAS }}$	$\mathrm{t}_{\text {RRH }}$	25		20		20		ns	(3)
Read Command Hotd Time	${ }_{\text {tren }}$	0		0		0		ns	(13)
Write Command Hold Time	${ }_{\text {twCH }}$	55		45		35		ns	
Write Command Hold Time Referenced to $\overline{\text { RAS }}$	${ }^{\text {tw }}$ WCR	120		95		95		ns	
Write Command Pulse Width	twp	55		45		35		ns	
Write Command to $\overline{\text { RAS }}$ Lead Time	${ }_{\text {t }}$ WWL	55		45		45		ns	
Write Command to $\overline{\mathrm{CAS}}$ Lead Time	${ }^{\text {t CWL }}$	55		45		45		ns	
Data-In Set-Up Time	tos	0		0		0		ns	(11)
Data-In Hold Time	${ }^{\text {t }} \mathrm{DH}$	55		45		35		ns	(1)
Date-In Hold Time Referenced to $\overline{\text { RAS }}$	${ }^{\text {t }} \mathrm{DHR}$	120		95		95		ns	
Refresh Period	tREF		2		2		2	ms	
WRITE Command Set-Up Time	twes	- 10		-10		-10		ns	13
$\overline{\text { CAS }}$ to WRITE Delay	${ }^{\text {t CWD }}$	80		60		50		ns	(12)
AAS to WRITE Delay .	tRWD	145		110		110		ns	(2)

Notas: (1) T_{a} ls specifled here for operation at frequencles to $\mathrm{t}_{\mathrm{RC}}>\mathrm{t}_{\mathrm{RC}}(\mathrm{min})$. Operation at higher cycle rates with reduced amblent temperatures and higher power dissipstion is permissible, however, provided AC operating parameters are met,
(2) An initial pense of $100 \mu \mathrm{~s}$ is required efter power-up followed by any 8 AAS, cycles before proper device operation I achieved.
(3) AC mesasurements assume $\mathrm{t}_{\mathrm{T}}=\mathbf{5} \mathbf{n s}$.
(4) $\mathrm{V}_{1 H C}$ (min) or $\mathrm{V}_{1 H}$ (min) and V_{IL} (max) are reference levels for messuring timing of input signals. Also, transition times ere messured between $V_{I H C}$ or $V_{I H}$ and $V_{I L}$.
(5) The specifications for tRC ($\mathrm{m} \mid \mathrm{n}$) and trWC ($\mathrm{m} \mid \mathrm{n}$) are used only to Indicate cycle times at which proper operation over he full temperature range $\left(0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{a}}<70^{8} \mathrm{C}\right)$ is assured.
(6) Asfumes that tRCS < tRCD (max). If tRCS is greater then the maximum recommended value shown in this table, tRAC will Increses by the amount that tRCD exceads the values shown.
(7) Assumes that $\mathrm{t}_{\mathrm{RCD}}>\mathrm{t}_{\mathrm{RCD}}$ (max).
(8) Messured with a loed equivelent to 2 TTL loads and 100 pF .
(9) toff (max) defines the time at which the output echleves the open circult condition and is not referenced to output voltage levels.
(1) Operation within the tricD (max) ilmit ensures that tRAC (max) can be mat, tricD (max) is specified as a reference point only, If tRCD is greatar than the specified tRCD (max) fimit, then access time is controled exclusivaly by tCAC
(13) These parameters are referenced to CAS leading edge in early write cycles and to WRITE lesding edge in delayed write or read-modify -write cycles.
(2) tWCS, t CWD and tRWD are restrictive operating paremeters in read-write and read-modify-write cyclet only. If twcs > WCS (min), the cycle is an early write cycle and the date output will remein open clrcult throughout the entre cycle. tCWD $>$ t $C W O$ (min) and RFWD $>$ tRWD (m), CAS goes beck to $\mathrm{V}_{1 \mathrm{H}}$) is indeterminate.
(13) Either tRRH or tRCH must be sotisfiad for a read cycle.

TIMING WAVEFORMS (CONT.)

$T_{a}=0^{\circ}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$
CAPACITANCE

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		TYP	MAX			
Input Capacitance (A0-A7), $\mathrm{D}_{1} \mathrm{~N}$	$\mathrm{C}_{\mathrm{I} 1}$			5	pF	
Input Capacitance RAS, CAS, WRITE	$\mathrm{C}_{\mathrm{I} 2}$			8	pF	
Output Capacitance (DOUT)	C_{0}			7	pF	

ITEM	MILLIMETERS	INCHES
A	19.4 MAX.	0.76 MAX .
8	0.81	0.03
c	2.54	0.10
0	0.5	0.02
E	17.78	0.70
F	1.3	0.051
G	2.54 MIN .	0.10 MIN .
H	0.5 MIN .	0.02 MIN .
1	4.05 MAX.	0.16 MAX :
J	4.55 MAX.	0.18 MAX .
K	7.62	0.30
L	6.4	0.25
M	$0.25{ }_{-0.10}^{+0.10}$	0.01

Cerdip		
ITEM	MILLIMETERS	INCHES
A	19.9 MAX	0.784 MAX
B	1.06	0.042
C	2.54	0.10
D	0.46 ± 0.10	0.018 ± 0.004
E	17.78	0.70
F	1.5	0.059
G	2.54 MIN	0.10 MIN
H	0.5 MIN	0.019 MIN
I	4.58 MAX	0.181 MAX
J	5.08 MAX	0.20 MAX
K	7.62	0.30
L	6.4	0.25
M	0.25	

PACKAGE OUTLINES μ PD4164C
μ PD4164D

4096×1 STATIC NMOS RAM

DESCRIPTION The μ PD4 104 is a high performance 4 K static RAM. Organized as 4096×1, it uses a combination of static storage cells with dynamic input/output circuitry to achieve high speed and low power in the same device. Utilizing NMOS technology, the μ PD4104 is fully TTL compatible and operates with a single $+5 \mathrm{~V} \pm 10 \%$ supply.

FEATURES - Fast Access Time - 200 ns (μ PD4104-2)

- Very Low Stand-By Power - 28 mW Max.
- Low V_{CC} Data Retention Mode to +3 Volts.
- Single $+5 \mathrm{~V} \pm 10 \%$ Supply.
- Fülly TTL Compatible.
- Available in 18 Pin Plastic and Ceramic Dual-in-Line Packages.
- 3 Performance Ranges:

		SUPPLY CURRENT			
		R/W CYCLE	ACTIVE	STANDBY	LOW VCC
μ PD4104		460 ns	21 mA	5 mA	5 mA
μ PD4104-1	250 ns	385 ns	21 mA	5 mA	3.3 mA
μ PD4104-2	200 ns	310 ns	25 mA	5 mA	3.3 mA

PIN NAMES	
$A_{0}-A_{11}$ Address Inputs $\overline{C E}$ Chip Enable $D_{\text {IN }}$ Data Input $D_{\text {OUT }}$ Data Output $V_{S S}$ Ground $V_{\text {CC }}$ Power (+5V) $\overline{W E}$ Write Enable	

Operating Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature.	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on Any Pin	1 to +7 Volts (1)
Power Dissipation	1 Watt
Short Circuit Output Current	50 mA
Note: (1) With respect to VSS	

ABSOLUTE MAXIMUM

 RATINGS*DC CHARACTERISTICS (1) (6)

CAPACITANCE (1)

Notes: (1) All voltages referenced to V_{SS}
(2) ${ }^{\mathrm{CCC}}$ is related to precharge and cycle times. Guaranteed maximum values for $\mathrm{I}_{\mathrm{CC}} \mathrm{C}$ may be calculated by

$$
I_{\mathrm{CC}} I_{\mathrm{ma}} \mid=\left(5 t_{\mathrm{p}}+13\left(\mathrm{t}_{\mathrm{C}}-\mathrm{t}_{\mathrm{p}}\right)+3420\right) \quad \mathrm{t}_{\mathrm{C}} \mathrm{C}
$$

where t_{p} and t_{C} are expressed in nanoseconds. Equation is referenced to the $\mathbf{- 2}$ device, other devices derate to the same curve.
(3) Output is disabled (open circuit), $\overline{\mathrm{CE}}$ is at logic 1.
(4) All device pins at 0 volts except pin under test at $0 . V_{I N}=5.5$ volts.
(5) $0 V \leqslant V_{\text {OUT }} \leqslant+5.5 \mathrm{~V}$.
(6) During power up, $\overline{\mathrm{CE}}$ and $\overline{\mathrm{WE}}$ must be at $V_{I H}$ for minimum of 2 ms after V_{CC} reaches 4.5 V , before a valid memory cycle can be accomplished.
(7) Effective capacitance calculated from the equation C I $\frac{\Delta t}{\Delta V}$ with ΔV equal to $3 V$ and $V_{C C}$ nominal.
$\mathrm{T}_{\mathrm{B}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$ (1)

PARAMETER	SYMBOL	LIMITS						UNIT	TEST conditions
		4104		4104.1		4104.2			
		MIN	MAX	MIN	MAX	MIN	MAX		
Read or Write Cycle Time	t	460		385		310		ns	(8)
Random Access	${ }^{t}$ AC		300		250		200	ns	(3)
Chip Enable Pulse Width	${ }^{\text {t }}$ CE	300	10,000	250	10,000	200	10,000	ns	
Chip Enable Precharge Time	$t \mathrm{P}$	150		125		100		ns	
Address Hold Time	${ }_{\text {ta }}$	165		135		110		ns	
Address Set-Up Time	${ }^{\text {t }}$ AS	0		0		0		ns	
Output Buffer Turn-Off Delay	tofe	0	75	0	65	0	50	ns	(9)
Read Command Set-Up Time	trs	0		0		0		ns	(4)
Write Enable Ser-Up Time	tws	-20		-20		-20		ns	(4)
Data Input Hold Time Referenced to WE	${ }^{\text {t DIH }}$	25		25		25		ns	
Write Enabled Pulse Width	tww	90		75		60		ns	
Modify Time	TMOD	0	10,000	0	10,000	0	10,000	ns	(5)
$\overline{\text { WE }}$ to $\overline{\text { CE }}$ Precharge Lead Time	twPL	105		85		70		ns	(6)
Data Input Set-Up Time	tos	0		0		0		ns	
Write Enable Hold Time	twh	225		185		150		ns	
Transition Time	IT	5	50	5	50	5	50	ns	
Read-Modify-Write Cycle Time	trmw	565		470		380		ns	(10)

Notes: (1) All voltages referenced to $V_{S S}$
(2) During power up, $\overline{C E}$ and $\overline{W E}$
(2) During power up, $\overline{C E}$ and $\overline{W E}$ must be at $V_{I H}$ for minimum of 2 ms after $V_{C C}$ reaches 4.5 V , before a valid memory cycle can be accomplished.
(3) Measured with load circuit equivalent to 2 TTL loads and $\mathrm{CL}=100 \mathrm{pF}$.
(4) If $\overline{W E}$ follows $\overline{C E}$ by more than tWS then data out may not remain open circuited.
(5) Determined by user. Total cycle time cannot exceed tCE max.
(6) Data-in set-up time is referenced to the later of the two falling clock edges $\overline{\mathrm{CE}}$ or $\overline{\mathrm{WE}}$.
(7) $A C$ measurements assume $t T=5 \mathrm{~ns}$. Timing points are taken as $V_{I L}=0.8 \mathrm{~V}$ and $\mathrm{V}_{1 H}=2.2 \mathrm{~V}$ on the inputs and $V_{O L}=0.4 \mathrm{~V}$ and $V_{\mathrm{OH}}=2.4 \mathrm{~V}$ on the output waveform.
(8) ${ }^{1} \mathrm{C}={ }^{2} \mathrm{CE}+\mathrm{tP}+2 \mathrm{tT}$.
(9) The true level of the output in the open circuit condition will be determined totally by output load conditions. The output is guaranteed to be open circuit within toFF.
(10) $t_{R M W}=t_{A C}+t_{W P L}+t_{P}+3 t_{T}+t_{M O D}$.

STANDBY CHARACTERISTICS

$T a=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	LIMITS						UNIT	TEST CONDITIONS
		4104		41041		4104-2			
		MIN	MAX	MIN	MAX	MIN	MAX		
$\mathrm{V}_{\text {CC }} \operatorname{In}$ Standby	VPD	3.0		3.0		3.0		V	
Standby Current	IPD		5.0		3.3		3.3	mA	(1)
Power Supply Fall Time	T_{F}	100		100		100		$\mu \mathrm{s}$	
Power Supply Rise Time	$T_{\text {R }}$	100		100		100		$\mu \mathrm{s}$	
Chip Enable Pulse CE Width	TCE	300		250		200		$\mu \mathrm{s}$	
Chip Enable Precharge to Power Down Time	TPPD	150		125		100		ns	
"I' Level CE Min Level	$\mathrm{V}_{1} \mathrm{H}$	2.2		2.2		2.2		V	
Standby Recovery Time	T_{RC}	600		500		500		$\mu \mathrm{s}$	

Note: (1) Maximum value for $V_{P D}$ minimum value $(=3 \mathrm{~V})$.

TIMING WAVEFORMS

POWER DOWN

TIMING WAVEFORMS (CONT.)

WRITECYCLE

READ-MODIFY-WRITE CYCLE
$\overline{C E}$
$\overline{C E}$
addresses

WE

DIN

Dout

OPERATIONAL DESCRIPTION

READ CYCLE

The selection of one of the possible 4096 bits is made by virtue of the 12 address bits presented at the inputs. These are latched into the chip by the negative going edge of chip enable ($\overline{\mathrm{CE}})$. If the write enable $(\overline{\mathrm{WE}})$ input is held at a high level $\left(\mathrm{V}_{1 H}\right)$ while the $\overline{\mathrm{CE}}$ input is clocked to a low level (V_{IL}), a read operation will be performed. At the access time ($t_{A C}$), valid data will appear at the output. Since the output is unlatched by a positive transition of $\overline{\mathrm{CE}}$, it will be in the high impedance state from the previous cycle until the access time. It will go to the high impedance state again at the end of the current cycle when $\overline{\mathrm{CE}}$ goes high.

The address lines may be set up for the next cycle any time after the address hold time has been satisfied for the current cycle.

WRITE CYCLE

Data to be written into a selected cell is latched into the chîp by the later negative transition of $\overline{C E}$ or $\overline{W E}$. If $\overline{W E}$ is brought low before $\overline{C E}$, the cycle is an "Early Write" cycle, and data will be latched by $\overline{\mathrm{CE}}$. If $\overline{\mathrm{CE}}$ is brought low before $\overline{\mathrm{WE}}$, as in a Read-Modify-Write cycle, then data will be latched by $\overline{W E}$.

If the cycle is an "Early Write" cycle, the output will remain in the high impedance state. For a Read-Modify-Write cycle; the output will be active for the Modify and Write portions of the memory cycle until $\overline{C E}$ goes high. If $\overline{W E}$ is brought low after $\overline{C E}$ but before the access time, the state of the output will be undefined. The desired data will be written into the cell if data-in is valid on the leading edge of $\overline{W E}, t D I H$ is satisfied, and $\overline{W E}$ occurs prior to $\overline{\mathrm{CE}}$ going high by at least the minimum lead time (tWPL).

READ-MODIFY-WRITE

Read and Write cycles can be combined to allow reading of a selected location and then modifying that data within the same memory cycle. Data is read at the access time and modified during a period defined by the user. New data is written between $\overline{W E}$ low and the positive transition of $\overline{C E}$. Data out will remain valid until the rising edge of $\overline{C E} . A$ minimum R-M-W cycle time can be calculated by $t_{R M W}=t A C+t M O D+t W P L+t P+$ 3 tT ; where tRMW is the cycle time, t_{AC} is the access time, tMOD $^{\text {I }}$ is the user defined modify time, tWPL is the $\overline{W E}$ to $\overline{\mathrm{CE}}$ lead time, tP is the $\overline{\mathrm{CE}}$ high time, and tT is one transition time.

POWER DOWN MODE

In power down, data may be retained indefinitely by maintaining V_{CC} at +3 V . However, prior to $V_{C C}$ going below $V_{C C}$ minimum ($\leqslant 4.5 \mathrm{~V}$) $\overline{C E}$ must be taken high $\left(V_{1 H}=2.2 \mathrm{~V}\right)$ and held for a minimum time period tPPD and maintained at $\mathrm{V}_{1 \mathrm{H}}$ for the entire standby period. After power is returned to $V_{C C} \min$ or above, $\overline{C E}$ must be held high for a minimum of $t_{R C}$ in order that the device may operate properly. See power down waveforms herein. Any active cycle in progress prior to power down must be completed so that tCE min is not violated.

PACKAGE OUTLINES μ PD4104C

ITEM	MILLIMETERS	INCHES
A	23.2 MAX.	0.91 MAX .
B	1.44	0.055
C	2.54	0.1
D	0.45	0.02
E	20.32	0.8
F	1.2	0.06
G	2.5 MIN .	0.1 MiN.
H	0.5 MIN.	0.02 MIN.
1	4.6 MAX.	0.18 MAX .
J	5.1 MAX.	0.2 MAX .
K	7.62	0.3
L	6.7	0.26
M	0.25	0.01

4096 BIT (1024 $\times 4$ BITS) STATIC RAM

DESCRIPTION The NEC μ PD2114L is a 4096 bit static Random Access Memory organized as 1024 words by 4 bits using N-channel Silicon-gate MOS technology. It uses fully DC stable (static) circuitry throughout, in both the array and the decoding. It therefore requires no clocks or refreshing to operate and simplifies system design. The data is read out nondestructively and has the same polarity as the input data. Common input/output pins are provided.

The μ PD2114L is designed for memory applications where high performance, low cost, large bit storage, and simple interfacing are important design objectives. The $\mu \mathrm{PD} 2114 \mathrm{~L}$ is placed in an 18 -pin package for the highest possible density.

It is directly TTL compatible in all respects: inputs, outputs, and a single +5 V supply. A separate Chip Select ($\overline{\mathrm{CS}}$) lead allows easy selection of an individual package when outputs are OR-Tied.

FEATURES - Access Time: Selection from 150-450 ns

- Single +5 Volt Supply
- Directly TTL Compatible - All Inputs and Outputs
- Completely Static - No Clock or Timing Strobe Required
- Low Operating Power - Typically $0.06 \mathrm{~mW} / \mathrm{Bit}$
- Identical Cycle and Access Times
- Common Data Input and Output using Three-State Output
- High Density 18 -pin Plastic and Ceramic Packages
- Replacement for 2114L and Equivalent Devices

PIN NAMES

$\mathrm{A}_{0} \cdot \mathrm{Ag}_{9}$	Address Inputs
$\overline{\mathrm{WE}}$	Write Enable
$\overline{\mathrm{CS}}$	Chip Select
$\mathrm{I} / \mathrm{O}_{1}-\mathrm{I} / \mathrm{O}_{4}$	Data Input/Output
V_{CC}	Power (+5V)
GND	Ground

Rev/2

Note: (1) With respect to ground.
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
*COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

$$
T_{a}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} ; V_{C C}=+5 \mathrm{~V} \pm 10 \% \text { unless otherwise noted. }
$$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Load Current (All Input Pins)	${ }^{1}$ LI			10	$\mu \mathrm{A}$	$V_{1 N}=0$ to 5.5 V
I/O Leakage Current	${ }^{\prime} \mathrm{LO}$.		10	$\mu \mathrm{A}$	$\overline{\mathrm{CS}}=2 \mathrm{~V}, \mathrm{~V}_{1 / \mathrm{O}}=0.4 \mathrm{~V}$ to V_{CC}
Power Supply Current	${ }^{1} \mathrm{CCl}$			65	mA	$\begin{aligned} & V_{I N}=5.5 \mathrm{~V}, \mathrm{I}_{1 / O}=0 \mathrm{~mA}, \\ & T_{a}=25^{\circ} \mathrm{C} \end{aligned}$
Power Supply Current	${ }^{1} \mathrm{CC} 2$			70	mA	$\begin{aligned} & V_{I N}=5.5 \mathrm{~V}, \mathrm{I}_{1 / \mathrm{O}}=0 \mathrm{~mA} ; \\ & T_{a}=0^{\circ} \mathrm{C} \end{aligned}$
Input Low Voltage	$V_{\text {IL }}$	-3.0		0.8	V	
Input High Voltage	$V_{1 H}$	2.0		6.0	V	
Output Low Current	${ }^{1} \mathrm{OL}$	3.2			mA	$V_{\text {OL }}=0.4 \mathrm{~V}$
Output High Current	${ }^{\mathrm{I}} \mathrm{OH}$			-1.0	mA	$\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}$
						$\mathrm{V}_{\mathrm{OH}}=2.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1.0 \mathrm{MHz}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input/Output Capacitance	$\mathrm{C}_{1 / \mathrm{O}}$			8	pf	$V_{1 / O}=0 \mathrm{~V}$
Input Capacitance	CIN			5	pf	$V_{1 N}=0 \mathrm{~V}$

ABSOLUTE MAXIMUM RATINGS*

DC CHARACTERISTICS

CAPACITANCE

AC CHARACTERISTICS
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}: \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$, unless otherwise noted.

PARAMETER	SYMBOL	LIMITS										UNIT	TEST CONDITIONS
		2114L		2114L-1		2114L. 2		2114L-3		2114L-5			
		MIN	MAX										
READ CYCLE													
Read Cycle Time	${ }^{1} \mathrm{RC}$:	450		300		250.		200		150		ns	$\mathrm{t}_{\mathrm{T}}=\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{t}}=10 \mathrm{~ns}$
Access Time	${ }^{\prime}$ A		450		300		250		200		150	ns	$C_{L}=100 \mathrm{pF}$
Chip Selection to Output Valid	${ }^{1} \mathrm{CO}$		120		100		80		70		60	ns	Load = 1 TTL gate
Chip Selection to Output Active	${ }^{1} \mathrm{CX}$	20		20		20		20		20		ns	Input Levels $=0.8$ and 2.0 V
Output 3-State from Oeselection	'OTD		100		80		70		60		50	ns	$V_{\text {ref }}=1.5 \mathrm{~V}$
Output Hold from Address Change	TOHA	50	\because	50		50		50		50		ns	
WRItE CYCLE													
Write Cycle Time	\% WC	450		300		250		200		150		ns	$\mathrm{t}_{\mathrm{T}}=\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=10 \mathrm{~ns}$
Write Time	tw	200		150		120		120		80		ns	$C_{L}=100 \mathrm{pF}$
Write Release Time	twr	0		0		0		0		0		ns	
Output 3-State from Write	${ }^{\text {to }}$ OTW		100		80		70		60		50	$n s$	Input Levels $=0.8$ and 2.0 V
Data to Write Time Overlap	${ }^{\text {tow }}$	200		150		120		120		80		ns	$v_{\text {ref }}=1.5 \mathrm{~V}$
Data Hold from Write Time	${ }^{1} \mathrm{DH}$	0		0		0		0		0		ris	
Address to Write Setup Time	${ }^{\text {t }}$ AW	0		0		0		0		0		ns	

PACKAGE OUTLINES μ PD2114LC

ITEM	MILLIMETERS	INCHES
A	23.2 MAX.	0.91 MAX.
B	1.44	0.055
C	2.54	0.1
D	0.45	0.02
E	20.32	0.8
F	1.2	0.06
G	2.5 MIN.	0.1 MIN,
H	0.5 MIN .	$0.02 \mathrm{Ml} \mathrm{N}_{1}$
1	4.6 MAX.	0.18 MAX .
J	5.1 MAX.	0.2 MAX.
K	7.62	0.3
L	6.7	0.26
M	0.25	0.01

4096×1 BIT STATIC RAM

DESCRIPTION
The μ PD2147 is a 4096-bit static Random Access Memory organized as 4096 words by 1 -bit. Using a scaled NMOS technology, it incorporates an innovative design approach which provides the ease-of-use features associated with non-clocked static memories and the reduced standby power dissipation associated with clocked static memories. The result is low standby power dissipation without the need for clocks, address setup and hold times. In addition, data rates are not reduced due to cycle times that are longer than access times.
$\overline{\mathrm{CS}}$ controls the power down feature. In less than a cycle time after $\overline{\mathrm{CS}}$ goes high deselecting the μ PD2147 - the part automatically reduces its power requirements and remains in this lower power standby mode as long as $\overline{\mathrm{CS}}$ remains high. This device feature results in system power savings as great as 85% in larger systems, where the majority of devices are deselected.
The μ PD2147 is placed in an 18-pin package configured with the industry standard pinout. It is directly TTL compatible in all respects: inputs, outputs, and a single +5 V supplv. The data is read out non-destructively and has the same polarity as the input data. A data input and a separate three-state output are used.

- Scaled NMOS Technology
- Completely Static Memory - No Clock or Timing Strobe Required
- Equal Access and Cycle Times
- Single +5V Supply
- Automatic Power-Down
- High Density 18-Pin Package
- Directly TTL Compatible -- All Inputs and Outputs
- Separate Data Input and Output
- Three-State Output
- Available in a Standard 18-Pin Ceramic Package
- 2 Performance Ranges:

	MAX	SUPPLY CURRENT	
		ACTIVE	STANDBY
μ PD2147-2	70 ns	160 mA	20 mA
μ PD2147-3	55 ns	160 mA	20 mA
μ PD2147-5	45 ns	160 mA	20 mA

PIN CONFIGURATION

PIN NAMES

AO-A11	Address Inputs
$\overline{W E}$	Write Enable
$\overline{\mathrm{CS}}$	Chip Select
DIN	Data Input
DOUT	Data Output
VCC	Power (+5V)
GND	Ground

TRUTH TABLE

$\overline{C S}$	$\overline{W E}$	MODE	OUTPUT	POWER
H	X	Not Selected	High Z	Standby
L	L	Write	High Z	Active
L	H	Read	DOUT	Active

Operating Temperature
Storage Temperature . $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on Any Pin \qquad
DC Output Current 20 mA
Power Dissipation 1.2 W

Note: (1) with respect to ground
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
*COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} \mathrm{V}_{\mathrm{C}}=+5 \mathrm{~V} \pm 10 \%$, unless otherwise noted. (1)

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS	
		MIN	TYP (2)	MAX			
Input Load Current (All Input Pins)	$1_{\text {LI }}$		0.01	10	$\mu \mathrm{A}$	$\begin{aligned} & v_{C C}=\operatorname{Max} \\ & v_{C C} \end{aligned}$	$V_{I N}=G N D \text { to }$
Output Leakage Current	'LO		0.01	10	$\mu \mathrm{A}$	$\begin{aligned} & C S=V_{I H}, V_{C C}=\operatorname{Max}, \\ & V_{O U T}=G N D \text { to } V_{C C} \end{aligned}$	
Operating Current	${ }^{\prime} \mathrm{Cc}$		120	150	mA	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & V_{C C}=M a x, \\ & C S=V_{I L}, \\ & \text { Outputs Open } \end{aligned}$
				160	mA	$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$	
Standby Current	${ }^{\prime}$ SB		12	20	mA	$\begin{aligned} & V_{C C}=\text { Min to Max, } \\ & C S=V_{I H} \end{aligned}$	
Peak Power-On Current	IPO (3)		25	50	mA	$\begin{aligned} & V_{C C}=G N D \text { to } V_{C C}=M i n, \\ & \mathrm{CS}=\text { Lower of } V_{C C} \text { or } \\ & V_{I H M i n} \end{aligned}$	
Input Low Voltage	$V_{\text {IL }}$	-3.0		0.8	V		
Input High Voltage	$\mathrm{V}_{\text {IH }}$	2.0		6.0	V		
Output Low Voltage	V_{OL}			0.4	v	$1 \mathrm{OL}=8 \mathrm{~m}$	
Output High Voltage	V_{OH}	2.4			V	$\mathrm{IOH}^{-1} 4.0$	mA
Output Short Circuit Current	Ios	-150		+150	mA	$\mathrm{V}_{\text {OUT }}=\mathbf{G}$	ND to VCC

Notes: (1) The operating ambient temperature range is guaranteed with transverse air flow exceeding 400 linear feat per minute.
(2) Typical ilmits are $V_{C C}=5 \mathrm{~V}, \mathrm{Ta}_{\mathrm{a}}=+25^{\circ} \mathrm{C}$, and specified loading.
(3) ICC exceeds ISB maximum during power on. A pult-up resistor to $V_{C C}$ on the CS input is required to keep the device deselected: otherwise, power-on current approaches ICC active.

CAPACITANCE
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1.0 \mathrm{MHz}(1)$

	\vdots	LIMITS				
	PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
TEST CONDITIONS						
Input Capacitance	CIN $_{\text {IN }}$			5	pF	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
Output Capacitance	COUT			6	pF	$V_{\text {OUT }}=0 \mathrm{~V}$

Note: (1) This parameter is sampled and not 100% tested.

AC TEST CONDITIONS

Input Pulse Levels Gnd to 3.0 Volts
Input Rise and Fall Times 5 ns
Input and Output Timing Reference Levels 1.5 Volts

Output Load See Figure 1

AC CHARACTERISTICS READ CYCLE

PARAMETER	SYMBOL	LIMITS						UNIT	TEST CONDITIONS
		$\mu \mathrm{PD} 2147$-5		$\mu \mathrm{PD} 2147-3$		μ PD2147-2			
		MIN	MAX	MIN	MAX	MIN	MAX		
Read Cycle Time	$t_{\text {RC }}$ (1)	45		55		70		ns	
Address Access Time	${ }^{t} A A$		45		55		70	ns	
Chip Select Access Time	${ }^{\text {t }}$ ACS 1		45		55		70	ns	
Chip Select Access Time	${ }^{\text {'ACS2 }}$		45		55		70	ns	
Output Hold From Address Change	${ }^{\text {t }} \mathrm{OH}$	Б		5		5		ns	
Chip Select to Output in Low \mathbf{Z}	${ }^{2} \mathrm{Cz}$	10		10		10		ns	(3)
Chip Deselection to Output in High Z	t_{Hz} (2)	0	30	0	30	0	40	ns	(4)
Chip Selection to Powar-Up Time	${ }^{\text {t P }}$	0		0		0		ns	
Chip Selection to Power-Down Time	${ }^{\text {tPD }}$		20		20		30	ns	

Figure 1

Notes: (1) All Read Cycle timings are referenced from the last valid address to the first transitioning address.
(2) At any given temperature and voltage condition, t_{HZ} max is less than $\mathrm{t}_{\mathrm{LZ}} \mathrm{min}$. both for a given device and from device to device.
(3) Transition is measured $\pm 200 \mathrm{mV}$ from steady state voltage with specified loading.
(4) Transition is measured at $V_{\mathrm{OL}}+200 \mathrm{mV}$ and $\mathrm{V}_{\mathrm{OH}}-200 \mathrm{mV}$ with specified loading.

TIMING WAVEFORMS
READ CYCLE

READ CYCLE NO. 2 (5)(7)

PARAMETER	SYMBOL	LIMITS						UNIT	TEST CONDITIONS
		μ PD2147-5		μ PD2147-3		μ PD2147-2			
		MIN	MAX	MIN	MAX	MIN	MAX		
Write Cycle Time (2)	${ }^{\text {t w }}$ W	45		55		70		ns	
Chip Select to End of Write	${ }^{\text {t }} \mathrm{CW}$	45		45		55		ns	
Address Valid to End of Write	${ }^{\text {t }}$ AW	45		45		55		ns	
Address Setup Time	${ }^{t}$ AS	0		0		0		ns	
Write Pulse Width	twp	25		26		40		ns	
Write Recovery Time	TWR	0		10		15		ns	
Date Valid to End of Write	${ }^{\text {t }} \mathrm{DW}$	25		25		30		ns	
Data Hold Time	${ }^{1} \mathrm{DH}$	10		10		10		ns	
Write Enabled to Output with Z	twZ	0	25	0	25	0	35	ns	(3)
Output Active From End of Write	tow	0		0		0		ns	(4)

AC CHARACTERISTICS WRITE CYCLE

Notes: (1) All Read Cycle timings are referenced from the last valid address to the first transitioning address.
(2) At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{H}} \mathrm{Z}$ max is less than $\mathrm{t} L \mathrm{Z} \mathrm{min}$. both for a given device and from device to device.
(3) Transition is measured $\pm 200 \mathrm{mV}$ from steady state voltage with specified loading.
(4) Transition is measured at $V_{\mathrm{OL}}+200 \mathrm{mV}$ and $\mathrm{VOH}_{\mathrm{OH}}-200 \mathrm{mV}$ with specified loading.
(5) WE is high for Read Cycles.
(6) Device is continuously selected, $\mathrm{CS}=\mathrm{V}_{1 \mathrm{~L}}$.
(7) Addresses valid prior to or coincident with CS transition low.

TIMING WAVEFORMS WRITE CYCLE

WRITE CYCLE NO. 1 (WE CONTROLLED)

Notes: (1) If $\overline{\mathrm{CS}}$ goes high simultaneously with $\overline{W E}$ high, the output ramains in a high impedance state.
(2) All Write Cycle timings are referenced from the last valid address to the first transitioning address.
(3) Transition is measured at $\mathrm{VOL}_{\mathrm{OL}}+200 \mathrm{mV}$ and $\mathrm{VOH}-200 \mathrm{mV}$ with specified loading.
(4) Transition is measured $\pm 200 \mathrm{~mW}$ from steady state voltage with specified loading.
(5) CS or WE must be high during address transitions.

PACKAGE OUTLINE μ PD2147D

ITEM	millimeters	INCHES
A	23.2 MAX	0.91 MAX
B	1.44	0.055
C	2.54	0.1
0	0.45	0.02
E	20.32	0.8
F	1.2	0.06
G	2.5 MIN	0.1 MIN
H	0.5 MIN	0.02 MIN
1	4.6 MAX	0.18 MAX
J	5.1 MAX	0.2 MAX
K	7.62	0.3
L	6.7	0.26
M	0.25	0.01

4096 (1024x4) BIT STATIC RAM

DESCRIPTION The μ PD2149 is a 4096-bit static Random Access Memory organized as 1024 words by 4-bits. Using a scaled NMOS technology, it incorporates an innovative design approach which provides the ease-of-use features associated with non-clocked static memories.

The μ PD2149 is encapsulated in an 18-pin ceramic package configured with the industry standard pinout. It is directly TTL compatible in all respects: inputs, outputs, and a single +5 V supply. The data is read out non-destructively and has the same polarity as the input data.

FEATURES - Completely Static Memory - No Clock or Timing Strobe Required

- Equal Access and Cycle Times, Faster Chip Select Access
- Single $+5 V$ Supply
- High Density 18-Pin Package
- Directly TTL Compatible - All inputs and Outputs
- Common Input and Output
- Three-State Output
- Access Time: $35-55$ ns MAX (From Address)

15-25 ns MAX (From Chip Select)

- Power Dissipation: 180 mA MAX

PIN NAMES

$A_{0}-A_{9}$	Address Inputs
$\overline{W E}$	Write Enable
$\overline{C S}$	Chip Select
$I / O_{1} \cdot 1 / O_{4}$	Data Input/Output
$V_{C C}$	Power (+5V)
GND	Ground

TRUTH TABLE

$\overline{\text { CS }}$	$\overline{\text { WE }}$	MODE	I/O
H	X	Not Selected	High Z
L	L	Write	DIN
L	H	Read	DOUT

$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$, unless otherwise noted.

PARAMETER	SYMBOL	MIN	MAX	UNIT	TEST CONDITIONS
Input Leakage Current	'LII		+10	$\mu \mathrm{A}$	$V_{\text {IN }}=$ GND to $V_{C C}$
Ouput Leakage Current	ILO		+50	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{CS}=\mathrm{V} 1 \mathrm{H} \\ & \text { VOUT }=\text { GND to } 4.5 \mathrm{~V} \end{aligned}$
Power Supply Current	ICC		180	MA	$\mathrm{V}_{\text {IN }}=\mathrm{VCC}_{\text {c }} \mathrm{I} / \mathrm{O}=\mathrm{open}$
Input Low Voltage	VIL		0.8	V	
Input High Voltage	VIH	2.1	VCC	V	
Output Low Voltage	VOL		0.4	V	$1 \mathrm{OL}=8 \mathrm{MA}$
Output High Voltage	VOH	2.4		V	$1 \mathrm{OH}=-4 \mathrm{MA}$
Output Short Circuit Current	IOS		± 200	MA	$V_{\text {OUI }}=$ GND to $\mathrm{V}_{\text {CC }}$

Note: The operating temperature range is guaranteed with transverise air flow exceeding 400 feet per minute.

CAPACITANCE $T_{a}=25^{\circ} \mathrm{C} ; f=1.0 \mathrm{MHz}$ (1)

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	$\mathrm{CiN}_{\text {I }}$			5	pF	$V_{\text {IN }}=0 \mathrm{~V}$
Output Capacitance	COUT			7	pF	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$

Note: (1.) This parameter is sampled and not 100% tested.

AC TEST CONDITIONS
 AC CHARACTERISTICS READ CYCLE (1)

Input Pulse Levels
Gnd to 3.0 V
Input Rise and Fall Times . 5 ns
Input and Output Timing Reference Levels . 1.5V
Output Load
See Figure 1
$\mathrm{Ta}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{VCC}_{\mathrm{Cl}}=+5 \mathrm{~V} \pm 10 \%$, unless otherwise noted.

PARAMETER	SYMBOL	2149-2		2149.1		2149		UNIT	TEST CONDITIONS
		MIN	MAX	MIN	MAX	MIN	MAX		
Read Cycle Time	TRC	35	,	45		55		ns	
Access Time	TA		35		45		55	ns	
Chip Selection to Output Valid	TCO		15		20		25	ns	
Chip Selection to Output Active	TCX	5		5		5		ns	
Output 3-State From Deselection	TotD		10		15		20	ns	(2)
Output Hold From Address Change	TOH	5		5		5		ns	

Figure 1

Figure 2

Notes: (1) $\overline{W E}$ is high for read cycle.
(2) Transition is measured $\pm 500 \mathrm{MV}$ from steady state with load of Figure 2. This parameter is sampled and not 100% tested.

PARAMETER	SYMBOL	μ PD2149-2		μ PD2149-1		μ PD2149		UNIT	TEST CONDITIONS
		MIN	MAX	MIN	MAX	MIN	MAX		
Write Cycle Time	twc	35		45	.	55		ns	
Chip Selection to End of Write	${ }^{\text {t }} \mathrm{CW}$	30		40		50		ns	
Address Valid to End of Write	${ }^{\text {t }}$ WW	30		40		50		ns	
Address Setup Time	${ }^{\text {tas }}$	0		0		0		ns	
Write Pulse Width	twP	30		35		40		ns	.
Write Recovery Time	twR	5		5		5		ns	
Data Valid to End of Write	${ }^{\text {t }}$ DW	20		20		20		ns	
Data Hold Time	${ }^{\text {t }} \mathrm{DH}$	5		5		5		ns	
Write Enabled to Output in High Z	twz	0	10	0	15	0	20	ns	(1)
Output Active from End of Write	tow	0		0		0		\cdots	(2)

AC CHARACTERISTICS WRITE CYCLE

Figure 3
Notes: (1) WE or CS must be high during all address transitions.
(2) Transition is measured +500 MV from steady state with load of Figure 3. This parameter is sampled and not 100% tested.

READ CYCLE (1) (2)

TIMING WAVEFORMS

TIMING WAVEFORMS

WRITE CYCLE NO. 1 ($\overline{W E}$ CONTROLLED)

WRITE CYCLE NO. 2 ($\overline{\mathrm{CS}}$ CONTROLLED)

Note: (1) Transition is measured $\pm 500 \mathrm{mV}$ from steady state with Load B. This parameter is sampled and not 100% tested.

PACKAGE OUTLINE μ PD2149D

Cerdip		
ITEM	MILLIMETERS	INCHES
A	23.2 MAX	0.91 MAX
B	1.44	0.065
C	2.54	0.1
D	0.45	0.02
E	20.32	0.3
F	1.2	0.06
G	2.5 MIN	0.1 MIN
H	0.5 MIN	0.02 MIN
I	4.6 MAX	0.18 MAX
J	5.1 MAX	0.2 MAX
K	7.62	0.3
L	6.7	0.26
M	0.25	0.01

Description

The μ PD2167 is a 16,384 -word by 1 -bit static MOS RAM. Using a scaled-NMOS technology, its design provides the easy-to-use features associated with non-clocked static memories.
The μ PD2167 has a three-state output and offers a standby mode that features an 83% savings in power consumption. The μ PD2167 requires a single +5 volt supply and is fully TTL-compatible. It features equal access and cycle times and, because of its fully static operation, it requires no external clocks or timing strobes. It is packaged in a standard $20-\mathrm{pin}, 300$ mil DIP.

Features

- 16384×1 organizationFully static memory - no clock or timing
strobe requiredEqual access and cycle timesSingle $+5 v$ supplyAutomatic power-downStandard $20-\mathrm{pin}$ DIP, 300 milAll inputs and output directly TTL-compatible
Separate data input and outputThree-state outputPower dissipation: $180 \mathrm{~mA} \max$ (active)
30 mA max (standby)

	Access time	R/W Cycle time
μ PD2167-2	70ns	70ns
μ PD2167-3	55 ns	55 ns

Pin Configuration

Pin Names

$\mathrm{A}_{0}-\mathrm{A}_{13}$	Address inputs
$\overline{\text { WE }}$	Write Enable
$\overline{\overline{C S}}$	Chip Select
$\mathrm{D}_{\text {IN }}$	Data Input
$\mathrm{D}_{\text {OUT }}$	Data Output
V_{cc}	Power (+5 v)
$\mathrm{V}_{\text {ss }}$	Ground

Truth Table

$\overline{\overline{\mathbf{C S}}}$	WE	Mode	Output	Power
H	X	not selected	High Z	Standby
\mathbf{L}	L	write	High Z	Active
\mathbf{L}	H	read	Dout	Active

Absolute Maximum Ratings*

$\mathbf{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	
Temperature under bias	$-10^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on any pin with respect to ground	-3.5 v to +7 v
D.C. output current	20 mA
Power dissipation	1.2 w

*Comment: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Capacitance

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

Parameter	Symbol	Max.	Unit	Conditions
Input Capacitance	$\mathrm{C}_{\text {IN }}$	$\mathbf{5}$	pF	$\mathrm{V}_{\text {IN }}=\mathrm{OV}$
Output Capacitance	$\mathrm{C}_{\text {OUT }}$	$\mathbf{6}$	pF	$\mathrm{V}_{\text {OUT }}=\mathrm{OV}$

This parameter is sampled and not 100% tested.
μ PD2167
DC Characteristics

Parameter	Sym	Min	Typ	Max	Unit	Test Conditions
Input load current all input pins	I_{LI}			10	$\mu \mathrm{A}$	$\begin{aligned} & V_{\mathrm{cc}}=\max , \\ & \mathbf{V}_{\mathrm{IN}}=G N D \text { to } V_{\mathrm{CC}} \end{aligned}$
Output leakage current	$\mathrm{I}_{\text {Lo }}$		0.1	50	$\mu \mathrm{A}$	$\begin{aligned} & \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{iH}}, \\ & \mathbf{V}_{\mathrm{Cc}}=\mathrm{max}, \\ & \mathbf{V}_{\mathrm{ouT}}=\mathbf{G N D} \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$
Operating current	$\mathbf{I m C}_{\text {c }}$			$\begin{array}{r} 170 \\ 180 \\ \hline \end{array}$	mA mA	$\begin{array}{l\|l} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} & \begin{array}{l} \mathrm{V}_{\mathrm{CC}}=\text { max } \\ \mathrm{T}_{A}=0^{\circ} \mathrm{C} \end{array} \end{array} \begin{aligned} & \mathrm{CS}=\mathrm{V}_{\mathrm{IL}}, \\ & \text { output open } \end{aligned}$
Standby current	I_{SB}			30	mA	$\begin{aligned} & V_{C C}=\min \text { to } \text { max } \\ & C S=V_{I H} \end{aligned}$
Peak Power-On current	$\mathrm{I}_{\mathrm{PO}}(1)$		35	70	mA	$\begin{aligned} V_{C C} & =G N D \text { to } \\ & V_{\mathrm{GC}} \text { min. } \\ \overline{\mathrm{CS}}= & \text { Lower of } V_{\mathrm{Cc}} \\ & \text { or } V_{\mathrm{IH}} \text { min. } \end{aligned}$
Input low voltage	$\mathrm{V}_{\text {IL }}$	-3.0		0.8	V	
Input high voltage	$\mathbf{V}_{\text {IH }}$	2.0		6.0	V	
Output low voltage	V_{oL}			0.4	V	$\mathrm{i}_{\mathrm{OL}}=8 \mathrm{~mA}$
Output high voltage	V_{OH}	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}$
Output short circuit current	$\mathrm{l}^{\text {SS }}$		-150		mA	$\mathbf{V}_{\text {OUT }}=\mathbf{G N D}$
Output short circuit current	${ }^{\mathrm{l}_{\text {OS2 }}}$		150		mA	$\mathbf{V}_{\text {OUT }}=\mathbf{V}_{\text {CC }}$

Figure 1 - Output Load

Figure 2 - Output Load for $t_{\mathrm{HZ}}, t_{\mathrm{L} z}, t_{\mathrm{WZ}}, t_{\mathrm{OW}}$

AC Characteristics
$\mathrm{T}_{\mathrm{a}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+\mathbf{7 0} 0^{\circ} \mathrm{C}, V_{C C}=+5 V \pm 10 \%$

Nctes:

(1) $\overline{\mathrm{CS}}$ valid prior to or coincident with address transition
(2) Address valid prior to or coincident with CS transition low

Timing Waveforms

Read Cycle 1 (5) (6)

Read Cycle 2 (5) (7)

Notes:

(1) All Read Cycle timings are referenced from the last valid address to the first address in transition.
(2) At any given temperature and voltage condition, $t_{H Z}$ max is less than $t_{i z}$ min both for a given device and from device to device.
(3) Transition is measured +200 mV from steady state voltage with specified loading in Figure 2.
(4) Transition is measured at $V_{O L}+200 \mathrm{mV}$ and $\mathrm{V}_{\mathrm{OH}}-200 \mathrm{mV}$ with specified loading in Figure 2.
(5) WE is high for Read Cycles.
(6) Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{it}}$.
(7) Addresses valid prior to or coincident with $\overline{\mathrm{CS}}$ transition low.

Write Cycle

Notes:

(1) If CS goes high simultaneously with $\overline{W E}$ high, the output remains in a high impedance state.
(2) All Write Cycle timings are referenced from the last valid address to the first transitioning address.
(3) Transition is measured at $\mathrm{V}_{\mathrm{OL}}+200 \mathrm{mV}$ and $\mathrm{V}_{\mathrm{OH}}-200 \mathrm{mV}$ with specified loading in Figure 2.
(4) Transition is measured $\pm 200 \mathrm{mV}$ from steady state voltage with specified loading in Figure 2.

Package Outline μ PD2167D (ceramic)

	Ceramic	
Btem	Millimeters	Inches
A	25.14 max	0.96 max
B	1.14	0.04
C	2.54	0.1
D	0.5	0.02
E	22.86	0.9
F	1.3	0.05
G	3.2 min	0.13 min
H	0.5 min	0.20 min
	3.01 max	0.12 max
J	4.15 max	0.16 max
K	7.6	0.3
L	7.3	0.29
M	0.27	0.01

Description

The μ PD4016 is a 16384 -bit static Random Access Memory device organized as 2048 words by 8 bits. Using a scaled NMOS technology, its design provides the ease-ofuse features associated with non-clocked static memories. The μ PD4016 has a three-state output and offers a stand-by mode with an attendant 75\% savings in power consumption. It features equal access and cycle times and provides an output enable function that eliminates the need for external bus buffers. The μ PD4016 is packaged in a standard 24-pin dual-in-line package and is plug-compatible with 16K EPROMS.

Features

\square Scaled NMOS technology
\square Completely static memory: no clock, no refresh
\square Equal access and cycle times
\square Single +5 V supply
\square Automatic power-down
\square All inputs and outputs directly TTL-compatible
Common I/O capability
$\overline{\mathrm{OE}}$ eliminates need for external bus buffers

- Three-state outputs
\square Plug-compatible with 16 K 5 V EPROMS
Low power dissipation in standby mode
Available in a standard 24-pin dual-in-line package

	Access Time	R/W Cycle
μ PD4016-1	250 ns	250 ns
μ PD4016-2	200 ns	200 ns
μ PD4016-3	150 ns	150 ns

Pin Configuration

A7 1		24	v_{cc}
$\mathrm{A}_{\mathrm{A}} \mathrm{Cl} 2$		23	A8
A5-3		22	A9
A4, 4		21	WE
A3 \square^{5}		20] $\overline{O E}$
A2 ${ }^{6}$		19	- ${ }^{\text {c }}$
A1-7	${ }_{4016}^{\mu \mathrm{PD}}$	18	$\overline{\mathrm{CS}}$
A0] ${ }^{8}$		17	-1/08
1/01- ${ }^{\text {- }}$		16	1/07
1/02 10		15]/06
1/03-11		14	[1/05
vss^{12}		13]/04

Pin Names					
A0-A10			Address Inputs		
$\overline{\text { WE }}$			Write Enable		
CS			Chip Select		
$\overline{O E}$			Output Enable		
1/01-1/08			Data input/Output		
$\mathrm{V}_{\text {CC }}$			Power (+ 5V)		
$V_{S S}$			Ground		
Truth Table					
$\overline{\text { CS }}$	$\overline{\mathbf{O E}}$	WE	MODE	V/O	POWER
H	X	\mathbf{X}	Not Selected	High-Z	Standby
L	L	H	Read	Dout	Active
L	H	L	Write	Din	Active
L	L	L	Write	Din	Active

Block Diagram

Absolute Maximum Ratings*

$\mathrm{T}_{\mathrm{a}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$
Temperature Under Bias $-10^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Voitage on any pin with respect to Ground -0.5 V to 7 V
D.C. Output Current 20mA

Power Dissipation . 1W
*COMMENT: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Capacitance

Parameter	Symbol	Limits			Unit	Test Conditions
		Min.	Typ.	Max		
Input Capacitance	$\mathrm{Cl}_{\text {IN }}$			5	pF	$\mathrm{V}_{\mathrm{IN}}=\mathrm{OV}$
1/0 Capacitance	$\mathrm{C}_{1 / \mathrm{O}}$			7	pF	$V_{1 / O}=O V$

DC Characteristics
$\mathbf{T}_{\mathrm{a}}=\mathbf{0}^{\circ} \mathbf{C}$ to $\mathbf{7 0}{ }^{\circ} \mathrm{C}, \mathbf{V}_{\mathbf{c c}}=\mathbf{5 V} \pm \mathbf{1 0 \%}$

Parameter	Symbol	LIMITS			Unit	Test Conditions
		Min.	Typ.	Max.		
Input Leakage Current	l_{LI}			10	$\mu \mathrm{A}$	$\begin{aligned} & \text { VCC = Max } \\ & \text { VIN }=\text { GND to VCC } \end{aligned}$
Output Leakage Current	ILO			10	$\mu \mathrm{A}$	$\begin{aligned} & \text { VCC }=\text { Max, } \overline{C S}=\mathrm{VIH} \\ & \text { VOUT }=\text { GND to } V C C \end{aligned}$
Operating Current	ICC			60	mA	$\begin{aligned} & \text { VCC }=\text { Max, } \overline{\text { CS }}=\text { VIL } \\ & \text { Outputs Open } \end{aligned}$
Standby Current	ISB			15	mA	$\begin{aligned} & \text { VCC }=\text { Min to Max } \\ & \text { CS }=\text { VIH } \end{aligned}$
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	-1.5		0.8	V	
Input High Voltage	V_{IH}	2.0		6.0	V	
Output Low Voltage	V_{OL}			0.4	V	$10 \mathrm{~L}=4 \mathrm{~mA}$
Output High Voltage	V_{OH}	2.4			V	$1 O H=1 \mathrm{~mA}$
Output Short Circuit Current	los	TBD		TBD	mA	VOUT = GND to VCC

AC Test Conditions

Input Pulse Levels8V to 2.2 V
Input Rise and Fall Times 10 nsec
Input Timing Reference Levels $\ldots \ldots .1 .5 \mathrm{~V}$
Output Timing Reference Levels $\ldots \ldots .1 .5 \mathrm{~V}$

Figure 1 - Output Load

Figure 2-Transition Load

AC Characteristics
Raad Cycle
$\mathrm{T}_{a}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{Cc}} \mathrm{SV}_{ \pm} 10 \%$

Parameter	Symbol	LIMITS						Unit	Notes
		μ PD4016-3		μ PD4016-2		μ PD4016-1			
		Min.	Max	Min.	Max.	Min.	Max.		
Read Cycle Time	${ }_{\text {tra }}$	150		200		250		nsec	1
Address Access Time	${ }_{\text {t }}$ A		150		200		250	nsec	
Chip Select Access Time	${ }_{\text {taCS }}$		150		200		250	nsec	2
Output Hold from Address Change	${ }^{1} \mathrm{OH}$	10		10		10	-	nsec	
Chip Selection to Output in Low Z	${ }_{\text {t }}^{\text {LZ }}$	10		10		10		nsec	3,4
Chip Deselection to Output in High Z	${ }^{\text {thz }}$		50		60		80	nsec	3,4
Output Enable to Output Valid	${ }^{\prime} \mathrm{OE}$		70		90		110	nsec	
Output Enable to Output in Low Z	${ }^{\text {tolz }}$	10		10		10		nsec	3,4
Output Disable to Output in High Z	${ }^{\text {toriz }}$		50		60		80	nsec	3,4
Chip Selection to Power up Time	tpu	0		0		0		nsec	4
Chip Deselection to Power down Time	tPD		70		90		110	nsec	4

Write Cycle

$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\text {cc }} 5 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	LIMITS						Unit	Notes
		μ PD4016-3		μ PD4016-2		μ PD4016-1			
		Min	Max.	Min	Max.	Min	Max.		
Write Cycle Time	twe	150		200		250		nsec	
Chip Selection to End of Write	tcw	120		160		200		nsec	
Address Valid to End of Write	taw	90		120		150		nsec	
Address Setup Time	tAS	0		0		0		nsec	
Write Pulse Width	tWP	80		100		130		nsec	5
Write Recovery Time	tWR	10		10		10		nsec	
Data Valid to End of Write	tDW	50		60		80		nsec	
Data Hold Time	tDH	0		0		0		nsec	
Write Enabled to Output in High-Z	twZ		50		60	.	80	nsec	6,7
Output Active from End of Write	${ }^{\text {tow }}$	10		10		10		nsec	6,7

Notes:

1. All Read Cycle timings are referenced from the last valid address to the first transitioning address.
2. Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition low.
3. Transition is measured $\pm 200 \mathrm{mV}$ from steady state voltage with specified load of Figure 1.
4. This parameter is sampled and not 100% tested.
5. If $\overline{\mathrm{CS}}$ and $\overline{\mathrm{OE}}$ are both low before write enabled, $\mathrm{tWP}=\mathrm{tWZ}+\mathrm{DW}$
6. Transition is measured $\pm 200 \mathrm{mV}$ from steady state voltage with specified loading in Figure 2.
7. This parameter is sampled and not 100% tested.

Write Cycle No. 1 ($\overline{W E}$ Controlled)

Write Cycle No. 2 ($\overline{C S}$ Controlled)

μ PD4016

Read Cycle No. 1 (2) (3) (4)

Read Cycle No. 2 (1) (2) (4)

Read Cycle No. 3 (2) (3)

Notes: (1) Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition low.
(2) WE is high for Read Cycles.
(3) Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{VIL}$.
(4) $\overline{O E}=V \mathrm{VIL}$

Package Outlines

μ PD4016C

μ PD4016D

Item	Millimeters	Inches
A	33 Max	1.3 Max
B	2.53	0.1
C	2.54	0.1
D	0.5 ± 0.1	0.02 ± 0.004
E	27.94	1.1
F	1.5	0.059
G	2.54 MIn	0.1 Min
H	0.5 Min	0.02 Min
1	5.22 Max	0.205 Max
J	5.72 Max	0.225 Max
K	15.24	0.6
1	13.2	0.52
M	$0.25+0.10$	$0.01 \begin{aligned} & +0.004 \\ & -0.0019 \end{aligned}$

Item	Millimeters	Inches
A	33.5 Max	1.32 Max
B	2.78	0.11
C	2.54	0.1
D	0.46	0.018
E	27.94	1.1
F	1.5	0.059
G	2.54 Min	0.1 Min
H	0.5 Min	0.019 Min
1	4.58 Max	0.181 Max
J	5.08 Max	0.2 Max
K	15.24	0.6
L	13.5	0.53
M	$0.25+0.10$	$0.01 \begin{gathered} +0.004 \\ -0.002 \end{gathered}$

1024 BIT (256x4) STATIC CMOS RAM

DESCRIPTION The μ PD5101L and μ PD5101L- 1 are very low power 1024 bit (256 words by 4 bits) static CMOS Random Access Memories. They meet the low power requirements of battery operated systems and can be used to ensure non-volatility of data in systems using battery backup power.
All inputs and outputs of the μ PD5101L and μ PD5101L-1 are TTL compatible. Two chip enables $\left.\overline{(C E}_{1}, \mathrm{CE}_{2}\right)$ are provided, with the devices being selected when $\overline{\mathrm{CE}}_{1}$ is low and CE_{2} is high. The devices can be placed in standby mode, drawing $10 \mu \mathrm{~A}$ maximum, by driving $\overline{\mathrm{CE}}_{1}$ high and inhibiting all address and control line transitions. The standby mode can also be selected unconditionally by driving CE_{2} low.
The μ PD5101L and μ PD5101L-1 have separate input and output lines. They can be used in common I/O bus systems through the use of the OD (Output Disable) pin and OR-tying the input/output pins. Output data is the same polarity as input data and is nondestructively read out. Read mode is selected by placing a high on the R/W pin. Either device is guaranteed to retain data with the power supply voltage as low as 2.0 volts. Normal operation requires a single +5 volt supply.

The μ PD5 101L and μ PD5101L- 1 are fabricated using NEC's silicon gate complementary MOS (CMOS) process.

FEATURES - Directly TTL Compatible - All Inputs and Outputs

- Three-State Output
- Access Time - $650 \mathrm{~ns}(\mu$ PD5101L); $450 \mathrm{~ns}(\mu$ PD5101L-1)
- Single $+5 V$ Power Supply
- CE_{2} Controls Unconditional Standby Mode
- For operation at +3V Power Supply, Contact the NEC Sales Office.

PIN NAMES

$\mathrm{DI}_{1}-\mathrm{DI}_{4}$	Data Input
$\mathrm{A}_{0}-\mathrm{A}_{7}$	Address Inputs
R / W	Read $/$ Write Input
$\overline{\mathrm{CE}}_{1}, \mathrm{CE}_{2}$	Chip Enables
OD	Output Disable
$\mathrm{DO}_{1}-\mathrm{DO}_{4}$	Data Output
$V_{C C}$	Power (+5 V)

Operating Temperature
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage On Any Pin With Respect to Ground -0.3 Volts to VCC +0.3 Volts
Power Supply Voltage . - 0.3 to +7:0 Volts
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
*COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
$T_{a}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$, unless otherwise specified.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP (1)	MAX		
Input High Leakage	ILIH (2)			1	$\mu \mathrm{A}$	$V_{\text {IN }}=V_{C C}$
Input Low Leakage	ILIL (2)			-1	$\mu \mathrm{A}$	$V_{\text {IN }}=0 \mathrm{~V}$
Output High Leakage	$\mathrm{I}_{\mathrm{LOH}}(2)$			1	$\mu \mathrm{A}$	$\overline{C E}_{1}=2.2 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
Output Low Leakage	${ }^{\prime} \mathrm{LOL}$ (2)			-1	$\mu \mathrm{A}$	$\overline{C E}_{1}=2.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=0.0 \mathrm{~V}$
Operating Current	'CC1			22	mA	$\begin{aligned} & V_{\text {IN }}=V_{\text {CC Except }} \overline{\mathrm{CE}}_{1} \\ & \leqslant 0.65 \mathrm{~V}, \text { Outputs Open } \end{aligned}$
Operating Current	${ }^{\prime} \mathrm{CC} 2$			27	mA	$V_{\text {IN }}=2.2 V$ Except $\overline{C E} \overline{1}_{1}$ $\leqslant 0.65 \mathrm{~V}$. Outputs Open
Standby Current	${ }^{1} \mathrm{CCL}$ (2)			10	$\mu \mathrm{A}$	$\begin{aligned} & V_{\text {IN }}=0 \text { to } 5.25 \mathrm{~V} \\ & C E_{2} \leq 0.2 \mathrm{~V} \end{aligned}$
Input Low Voltage	$V_{\text {IL }}$	-0.3		0.65	V	
Input High Voltage	$\mathrm{VIH}^{\text {IH }}$	2.2		V_{CC}	V	
Output Low Voltage	VOL			0.4	V	$1 \mathrm{OL}=2.0 \mathrm{~mA}$
Output High Voltage	$\mathrm{VOH}^{\text {O }}$	2.4			V	$1 \mathrm{OH}=-1.0 \mathrm{~mA}$
Output High Voltage	VOH_{2}	3.5			V	${ }^{1} \mathrm{OH}=-100 \mu \mathrm{~A}$

Notes: (1) Typical values at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ and nominal supply voltage.
(2) Current through all inputs and outputs included in I^{CCL}.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
input Capacitance (All Input Pins)	CIN		4	8	pF	VIN OV
Output Capacitance	Cout		8	12	pF	VOUT - OV

ABSOLUTE MAXIMUM RATINGS*

DC CHARACTERISTICS

CAPACITANCE
$T_{a}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}_{\mathrm{i}} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$, unless otherwise specified

PARAMETER	SYMBOL	LIMITS						UNIT	TEST CONDITIONS
		5101 L			5101L-1				
		MIN	TYP	MAX	MIN	TVP	MAX		
Read Cycle	${ }^{\text {t } R C}$	650			450			ns	Input pulse amplitude: 0.65 to 2.2 Volts
Access Time	t ${ }_{\text {A }}$			650			450	ns	Input rise and fall
Chip Enable ($\overline{\mathrm{CE}}_{1}$) to Output	tCOT			600			400	ns	times: 20 ns
Chip Enable (CE_{2}) to Output	${ }^{\text {t }} \mathrm{CO} 2$			700			500	ns	Timing measurement reference level:
Output Disable to Output	${ }^{1} 00$			350			250	ns	Output load: ITTL
Data Output to High Z State	${ }^{t} \mathrm{DF}$	0		150	0		130	ns	Gate and $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
Previous Read Data Valid with Respect to Address Change	${ }^{1} \mathrm{OH} 1$	0			0			ns	
Previous Read Data Valid with Respect to Chip Enable	${ }^{\text {O }} \mathrm{OH} 2$	0			0			ns	

WRITE CYCLE
$\mathrm{T}_{\mathrm{B}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$: $V_{C C}=5 \mathrm{~V} \pm 5 \%$, unless otherwise specified

PARAMETER	SYMBOL	LIMITS						UNIT	TEST CONDITIONS
		5101L			5101L. 1				
		MIN	TYP	MAX	MIN	TYP	MAX		
Write Cycle	twc	650			450		-	ns	Input pulse amplitude:
Write Delay	${ }^{\text {t }}$ AW	150			130			ns	0.65 to 2.2 Volts
Chip Enable ($\overline{\mathrm{CE}}{ }_{j}$) to Write	${ }^{\text {t }}$ CW1	550			350			'ns	Input rise and fall times: 20 ns
Chip Enable (CE_{2}) to Write	t CW2	550			350			ns	Timing measurement reference level:
Data Setup	${ }_{\text {t }}$ DW	400			250			ns	1.5 Volt
Data Hold	${ }^{\text {t }} \mathrm{DH}$	100			50			ns	Output load: ITTL.
Write Pulse	twP	400			250			ns	Gate and $C_{L}=$
Write Recovery	WR	50			50			ns	100 pF
Output Disable Setup	${ }^{\text {T }}$ DS	150			130				

LOW VCC DATA RETENTION CHARACTERISTICS

$T_{a}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	LiMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
$V_{C C}$ for Data Retention	$\mathrm{V}_{\text {CCDR }}$	$+2.0$			\checkmark	$\mathrm{CE}_{2} \leqslant+0.2 \mathrm{~V}$
Data Retention Current	${ }^{\text {I CCOR }}$			+10	$\mu \mathrm{A}$	$\begin{aligned} & V_{C C D R}=+2.0 \mathrm{~V} \\ & \mathrm{CE}_{2} \leqslant+0.2 \mathrm{~V} \end{aligned}$
Chịp Deselect Setup Time	${ }^{\text {t CDR }}$	0			ns	
Chip Deselect Hold Time	${ }^{\text {t }}$ R	$\mathrm{t}_{\mathrm{RC}}(1)$			ns	

Note: (1) trC $=$ Read Cycle Time

Notes:
Typical values are for $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ and nominal supply voltage.
OD may be tied low for separate $1 / O$ operation.
(3) During the write cycle, OD is "high" for common $1 / O$ and "don't care" for separate 1/O operation.

Notes:
(1) 4.75 V
(2) $\mathrm{v}_{\mathrm{CCDR}}$
(3) $\mathrm{v}_{1 \mathrm{H}}$
(4) 0.2 V

TYPICAL OPERATING CHARACTERISTICS

PACKAGE OUTLINE μ PD5101LC

ITEM	MILLIMETEAS	INCHES
A	28.0 Mox.	1.10 Max.
8	1.4 Max.	0.025 Max.
C	2.54	0.10
D	0.600 .10	$0.02 \quad 0.004$
E	25.4	1.0.
F	1:40	0.055
6	2.54 Min .	0.10 Min .
H	0.5 Min .	0.02 Min .
1	4,7 Max.	0.18 Max.
1	5. 2 Max.	0.20 Max.
K	10.16	0.40
L	8.5	0.33
M	0.25 ${ }^{+0.10} 0.05$	$0.01+0.004$ 0.002

NOTES

1024×4-BIT STATIC CMOS RAM

The μ PD444 is a high-speed, low power silicon gate CMOS 4096 bit static RAM organized 1024 words by 4 bits. It uses DC stable (static) circuitry throughout and therefore requires no clock or refreshing to operate. Data access is particularly simple since address setup times are not required. The data is read out non-destructively and has the same polarity as the input data. Common input/output pins are provided.
$\overline{\mathrm{CS}}$ controls the power down feature. In less than a cycle time after $\overline{\mathrm{CS}}$ goes high deselecting the μ PD444 - the part automatically reduces its power requirements and remains in this low power standby mode as long as $\overline{C S}$ is high. There is no minimum $\overline{\mathrm{CS}}$ high time' for device operation, although it will determine the length of time in the power down mode. When $\overline{\mathrm{CS}}$ goes low, selecting the μ PD444, the μ PD444 automatically powers up.

The μ PD444 is placed in an 18 -pin plastic package for the highest possible density. It is directly TTL compatible in all respects: inputs, outputs, and a single +5 V supply. The μ PD444 is pin-compatible with the μ PD2114L NMOS Static RAM.

Data retention is guaranteed to 2 volts on all parts. These devices are ideally suited for low power applications where battery operation or battery backup for nonvolatility is required.

FEATURES • Low Power Standby - $1 \mu \mathrm{~A}$ Typ.

- Low Power Operation
- Data Retention - 2.0V Min.
- Capability of Battery Backup Operation
- Fast Access Time - 200-450 ns
- Identical Cycle and Access Times
- Single +5 V Supply
- No Clock or Timing Strobe Required
- Completely Static Memory
- Automatic Power-Down
- Directly TTL compatible: All Inputs and Outputs
- Common Data Input and Output using Three-State Outputs
- Available in a Standard 18-Pin Plastic Package
- For Operation at $+3 V$ Power Supply, Contact the NEC Sales Office.

PIN CONFIGURATION

Rev/2

PIN NAMES

$\mathrm{A}_{0} \cdot \mathrm{~A}_{9}$	Address Inputs
$\overline{\mathrm{WE}}$	Write Enable
$\overline{\mathrm{CS}}$	Chip Select
$\mathrm{I} / \mathrm{O}_{1}-1 / \mathrm{O}_{4}$	Data Input/Output
VCC^{2}	Power (+5 V)
GND	Ground

Operating Temperature
Storage Temperature .
All Input and Output Voltages
Supply Voltage
Note: (1) With Respect to Ground
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
*COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
$T_{a}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{C}}=+5 \mathrm{~V} \pm 10 \%$ unless otherwise noted.
DC CHARACTERISTICS

PARAMETER	SYMBOL	LIMITS												UNIT	TEST CONDITIONS
		444.3			444.2			444.1			444				
		MIN	TYP	MAX											
Inout Leakage Current	${ }^{1} \mathrm{LI}$	-1.0		1.0	-1.0		1.0	-1.0		1.0	-1.0		1.0	$\mu \mathrm{A}$	$V_{\text {IN }}=$ GND to $V_{C C}$
HO Leakage Current	${ }^{1} \mathrm{LO}$	-1.0		1.0	-1.0		1.0	-1.0		1.0	-1.0		1.0	$\mu \mathrm{A}$	$\begin{aligned} & \overline{C S}=V_{I H} \cdot V_{I / O}=G N D \\ & \text { to } V_{C C} \end{aligned}$
Operating Suppiv Current	'CCAI		19	35		15	35		12	35		9	35	mA	$\overline{C S}=V_{I L}, V_{I N}=V_{C C} .$ Outputs Open
Operating Supply Current	${ }^{\text {I CCA }}$		23	'0		19	40		15	40		12	40	mA	$\overline{\mathrm{CS}}=V_{I L}, V_{I N}=2.4 \mathrm{~V}$ Outputs Open
Average Operating Supply Current	${ }^{\prime} \mathrm{CCA} 3$		10	20		9	20		8	20		7	20	mA	$\begin{aligned} & V_{\text {IN }}=G N D \text { or } V_{C C}, \\ & \text { Outputs Open } \mathrm{I}=1 \mathrm{MHz} \text {. } \\ & \text { Duty } 50 \% \end{aligned}$
Standby Supply Current	${ }^{1} \mathrm{Ccs}$		1	5		1	5		1	5		1	50	$\mu \mathrm{A}$	$\begin{aligned} & \overline{C S}=V C C . V_{I N}=G N D \\ & \text { to } V C C \end{aligned}$
Input Low Voltage	$V_{1 L}$	-0.3		0.8	-0.3		0.8	-0.3		0.8	-0.3		0.8	v	
Input High Voltage	$\mathrm{V}_{\text {IH }}$	2.4		$\mathrm{v}_{\mathrm{Cc}}+0.3$	2.4		$V_{C C}+0.3$	2.4		$\mathrm{V}_{\mathrm{CC}}+0.3$	2.4		$\mathrm{VCC}^{+0.3}$	v	
Output Low Voltage	$\mathrm{VOL}_{\text {OL }}$			0.4			0.4			0.4			0.4	v	$1 \mathrm{OL}=2.0 \mathrm{~mA}$
Output High Voltage	VOH	2.4			2.4			2.4			2.4			V	${ }^{1} \mathrm{OH}=-1.0 \mathrm{~mA}$

$T_{a}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$
CAPACITANCE

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input/Output Capacitance	$\mathrm{Cl}_{1 / \mathrm{O}}$			10	pF	$V_{1 / O}=0 \mathrm{~V}$
Input Capacitance	$\mathrm{CIN}^{\text {N }}$			5	pF	$V_{1 N}=0 V$

Note: This parameter is periodically sampled and not 100% tested.

AC CHARACTERISTICS

$T_{B}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$ unless otherwise noted.

PARAMETER	SYMBOL	LIMITS								UNIT	TEST CONDITIONS
		444.3		444.2		444.1		444			
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX		
READ CYCLE											
Read Cycle	tRC	200		250		300		450		ns	Input Pulse Levels: +0.8 to +2.4 Volts Input Rise and Fall Times: 10 ns Input and Output Timing Levels: 1.5 Volt Output Load: 1 TTL Gate and $C_{L}=100 \mathrm{pF}$
Address Access Time	${ }_{\text {I A }}$		200		250		300		450	ns	
Chip Select Access Time (1)	'ACS]		200		250		300		450	ns	
Chip Select Access Time (2)	${ }^{\text {t }}$ ACS2		250		300		350		500	ns	
Output Hold from Address Change	${ }^{1} \mathrm{OH}$	50		50		50		50		ns	
Chip Selection to Output in Low 2	tiz	20		20		20		20		ns	
Chip Deselection to Output in High \mathbf{Z}	${ }^{\text {t }} \mathrm{Hz}$		60		70		80		100	ns	
WRITE CVCLE											
Write Cycie Time	twc	200		250		300.		450		ns	Input Pulse Levels: +0.8 to +2.4 Volts Input Rise and Fall Times: 10 ns Input and Output Timing Levels: 1.5 Volt Output Load: 1 TTL Gate and $C_{L}=100 \mathrm{pF}$
Chip Selection to End of Write	${ }^{\text {t }}$ CW	180		230		250		350		ns	
Address Valid to End of Write	${ }^{\text {t }}$ AW	180		230		250		350		ns	
Address Setup Time	tas	0		0		0		0		ns	
Write Pulse Width	twp	180		210		230		300		ns	
Write Recovery Time	IWR	0		0		0		0		ns	
Data Valid to End of Write	tow	120		140		150		200		ns	
Data Hold Timo	${ }^{1} \mathrm{OH}$	0		0		0		0		ns	
Write Enabled to Output in High \mathbf{Z}	${ }^{\text {t }}$ WZ		60		70		80		100	ns	
Output Active from End of Write	tow	0		0		0		0		ns	

Notes: (1) Chip deselected for greater than 100 ns prior to selection,
(2) Chip deselected for a finite time that is less than 100 ns prior to selection. (If the deselect time is 0 ns , the chip is by definition selected and access occurs according to Read Cycie No. 1,

TIMING WAVEFORMS
$\mathrm{T}_{\mathrm{a}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

PARAMETER	SVMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Data Retention Supply Voltage	$V_{\text {CCDR }}$	2.0			V	$\begin{aligned} & \overline{\mathrm{CS}}=V_{C C}, V_{I N}=V_{C C} \\ & \text { to } G N D \end{aligned}$
Data Retention Supply Current	${ }^{\prime} \mathrm{CCDR}$		0.01	(2)	$\mu \mathrm{A}$	$\begin{aligned} & V_{C C}=3 V, C S=V_{C C} \\ & V_{\text {IN }}=V_{C C} \text { to } G N D \end{aligned}$
Chip Deselect to Data Retention Time	${ }^{\text {t CDR }}$	0			ns	
Operation Recovery Time	${ }^{t} \mathrm{R}$	${ }^{\text {t R }}$ (1)			ns	

Notes: (1) $\mathrm{t}_{\mathrm{RC}}=$ Read Cycle Time
(2) 444-1, -2, -3: Value is $2 \mu \mathrm{~A}$

444 Value is $10 \mu \mathrm{~A}$
READ CYCLE (1) (2)

READ CYCLE (1) (3)

LOW VCC DATA RETENTION CHARACTERISTICS

Plastic

ITEM	millimeters	INCHES
A	23.2 MAX.	0.91 MAX.
B	1.44	0.055
c	2.54	0.1
D	0.45	0.02
E	20.32	0.8
F	1.2	0.05
G	2.5 MIN.	0.1 MIN .
H	0.5 MIN .	0.02 MIN .
1	4.6 MAX .	0.18 MAX.
J	5.1 MAX.	0.2 MAX.
K	7.62	0.3
L	6.7	0.26
M	0.25	0.01

2048×8-BIT STATIC CMOS RAM

DESCRIPTION
The μ PD446 is a high speed, low power, 2048 word by 8 bit static CMOS RAM fabricated using an advanced silicon gate CMOS technology. A unique circuitry technique makes the μ PD446 a very low operating power device which requires no clock or refreshing to operate. Minimum standby power current is drawn by this device when CS equals $V_{C C}$ independently of the other input levels.

Data retention is guaranteed at a power supply voltage as low as 2 V .
The μ PD446 is packaged in a standard 24-pin dual-in-line package and is plug-in compatible with 16K EPROMs.

FEATURES

- Single +5 V Supply
- Fully Static Operation - No Clock or Refreshing required
- TTL Compatible - All Inputs and Outputs
- Common I/O Using Three-State Output
- $\overline{\mathrm{OE}}$ Eliminates Need for External Bus Buffers
- Max Access/Min Cycle Times Down to 150 ns
- Low power Dissipation, 18 mA Max Active/ $10 \mu \mathrm{~A}$ Max Standby/ $10 \mu \mathrm{~A}$ Max Data Retention
- Data Retention Voltage - 2V Min
- Standard 24-Pin Plastic and Ceramic Packages
- Plug-in Compatible with 16K EPROMs
- Operating Temperature Range $--40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

PIN NAMES	
$A_{0}-A_{10}$	Address Inputs
$\overline{W E}$	Write Enable
$\overline{O E}$	Qutput Enable
$\overline{\mathrm{CS}}$	Chip Select
I/O1-I/O8	Data Input/Output
VCC	Power (+5V)
GND	Ground

$\overline{\mathbf{C S}}$	$\overline{\mathrm{OE}}$	$\overline{\text { WE }}$	MODE	I/O	ICC
H	X	X	NOT SELECTED	HZ	STANDBY
L	H	H	NOT SELECTED	$H Z$	ACTIVE
L	L	H	READ	DOUT	ACTIVE
L	X	L	WRITE	DIN	ACTIVE

Supply Voltage

7.0 V

Input or Output Voltage Supplied - 0.3 to VCC +0.3 V
Storage Temperature Range . $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Operating Temperature Range . $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
*COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
$T_{a}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, V_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	LIMITS			UNIT	CONDITIONS
		MIN	TYP	MAX		
Input High Voltage	$V_{1}{ }_{H}$	2.2		$\begin{array}{r} V_{\mathrm{CC}} \\ +0.3 \\ \hline \end{array}$	V	
Input Low Voltage	V_{1}	-0.3		0.8	V	
Input Leakage Current	${ }_{1} L_{1}$	-1.0		1.0	$\mu \mathrm{A}$	$V_{\text {IN }}=0 \sim V_{\text {CC }}$
1/O Leakage Current	I_{O}	-1.0		1.0	$\mu \mathrm{A}$	$\begin{aligned} & V_{C S}=V_{I H} \\ & V_{1 / O}=0 \sim V_{C C} \end{aligned}$
Operating Supply Current	${ }^{\prime} \mathrm{CCA}_{1}$		(1)	(1)	mA	$V_{C S}=V_{I L} I_{I / O}=0$ MIN TCYCLE
	${ }^{1} \mathrm{CCA}_{2}$		5	10	mA	$V_{C S}=V_{I L} l_{1 / O}=0$ DC CURRENT
	${ }^{1} \mathrm{CCA}_{3}$		30	100	$\mu \mathrm{A}$	$\begin{aligned} & V_{C S}=0.2 \mathrm{~V} I_{1 / O}=0 \\ & V_{1 N}=V_{C C}-0.2 \\ & O R 0.2 V \end{aligned}$
Standby Current	${ }^{1} \mathrm{CC} \mathrm{S}_{5}$			10	$\mu \mathrm{A}$	$\begin{aligned} & V_{C S}=V_{C C}-0.2 \\ & V_{I N}=0-V_{C C} \end{aligned}$
Output High Voltage	V_{OH}	2.4			V	$\mathrm{I}^{\mathrm{OH}}=-1.0 \mathrm{~mA}$
Output Low Voltage	VOL			0.4	V	$\mathrm{I}^{\mathrm{OL}}=2.0 \mathrm{~mA}$

NOTE: (1) μ PD446: 12 mA TYP, 18 mAMAX μ PD446-1: 18 mA TYP, 26 mA MAX μ PD 446-2: 20 mA TYP, 30 mA MAX μ PD446-3: 25 mA TYP, 38 mA MAX

DC CHARACTERISTICS

CAPACITANCE $\quad T_{a}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

PARAMETER	SYMBOL	LIMITS		UNIT	TEST CONDITIONS
		MIN	MAX		
Input Capacitance	$\mathrm{Cl}_{1 \mathrm{~N}}$		6	pF	$V_{1 N}=0 \mathrm{~V}$
Input/Output Capacitance	$\mathrm{Cl}_{1 / \mathrm{O}}$		8	pF	$v_{1 / O}=0 \mathrm{~V}$

READ CYCLE
$V_{C C}=5.0 \mathrm{~V} \pm 10 \%, T_{a}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	LIMITS								UNIT
		μ PD446-3		$\mu \mathrm{PD} 446.2$		μ PD 446.1		μ PD 446		
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
Read Cycle Time	$t_{\text {R }}$	150		200		250		450		ns
Address Access Time	${ }^{\text {t A A }}$		150		200		250		450	ns
Chip Select Access Time	${ }^{\text {t }}$ ACS		150		200		250		450	ns
Output Enable to Qutput Valid	toe		75		100		120		150	ns
Output Hold from Address Change	${ }^{1} \mathrm{OH}$	15		15		15		15		ns
Chip Enable to Output in LZ	${ }^{\text {t CLZ }}$	10		10		10		10		$n s$
Output Enable to Output in LZ	tolz	5		5		5		5		ns
Chip Disable to Output in HZ	${ }^{\text {t }} \mathrm{CHZ}$		50		60		80		100	ns
Output Disable to Output in HZ	${ }^{\text {tohz }}$		50		60		80		100	ns

WRITE CYCLE
$V_{C C}=5.0 \mathrm{~V}: 10 \%, \mathrm{~T}_{\mathrm{a}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	LIMITS								UNIT
		μ PD446-3		$\mu \mathrm{PD} 446.2$		μ PD 446.1		μ PD 446		
		MIN	MAX	MiN	MAX	MIN	MAX	MIN	MAX	
Write Cycle Time	twe	150		200		250		450		ns
Chip Enable to End of Write	tew	120		150		180		210		ns
Address Valid to End of Write	${ }^{\text {t }}$ AW	120		150		180		210		ns
Address Setup Time	${ }_{\text {t }}$ AS	0		0		0		0		ns
Write Pulsewidth	tWP	90		120		150		180		ns
Write Recovery Time	twR	0		0		0		0		ns
Data Valid to End of Write	tow	50		60		80		100		ns
Data Hold Time	${ }^{1} \mathrm{DH}$	0		0		0		0		$n 5$
Write Enable to Output in HZ	${ }_{\text {t }}$ WHZ		50		60		80		100	ns
Output Active from End of Write	${ }^{1} \mathrm{OW}$	10		10		10		10		ns

$T_{a}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	TEST CONDITIONS	LIMITS			UNIT
			MIN	TYP	MAX	
VCC for Data Retention	$\mathrm{V}_{\text {CCDR }}$	$\begin{aligned} & v_{I N}=0 \sim v_{C C}, \\ & v_{\overline{C S}}=v_{C C} \end{aligned}$	2.0			v
Data Retention Current	I CCDR	$\begin{aligned} & v_{C C}=3.0 v, \\ & v_{I N}=0 \sim v_{C C} \\ & v_{C S}=v_{C C} \end{aligned}$		0.01	10	$\mu \mathrm{A}$
Chip Deselection to Data Retention Time	${ }^{\text {t }}$ CDR		0			ns
Operation Recovery Time	${ }^{1} \mathrm{R}$		${ }^{\text {tre }}$			ns

READ CYCLE (2)

NOTES:
(1) $\overline{W E}$ is high for read cycles.
(2) Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{1 \mathrm{~L}}$.
(3) Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition low.

WRITE CYCLE (1)

NOTES: (1) $\overline{W E}$ must be high during all address transition.
(2) A write occurs during the overlap of a low $\overline{\mathrm{CS}}$ and a low $\overline{\mathrm{WE}}$.
(3) tWR is measured from the earlier of $\overline{C S}$ or $\overline{W E}$ going high to the end of write cycle.
(4) If the $\overline{\mathrm{CS}}$ low transition occurs simultaneously with or after the $\overline{W E}$ low transition, output buffers remain in a high impedance state.

TIMING WAVEFORMS (CONT.)

Notes: (1) $\overline{W E}$ must be high during all address transition.
(2) A write occurs during the overlap of a low $\overline{\mathrm{CS}}$ and a low $\overline{\mathrm{WE}}$.
(3) tWR is measured from the earlier of $\overline{\mathrm{CS}}$ or $\overline{\mathrm{WE}}$ going high to the end of write cycle.
(4) If the $\overline{\mathrm{CS}}$ low transition occurs simultaneously with or after the $\overline{W E}$ low transition, output buffers remain in a high impedance state.
(5) $\overline{O E}$ is continuously low ($\overline{O E}-V_{I L}$).

LOW VCC DATA RETENTION

 TIMING CHART

AC TEST CONDITIONS

Input Pulse Levels	0.8 V to 2.2 V
Input Rise and Fall Times	10 ns
Input and Output Timing Reference Levels	1.5 V
Output Load	$1 \mathrm{TTL}+100 \mathrm{pF}$

PACKAGE OUTLINE μ PD446C PLASTIC

PLASTIC

ITEM	MILLIMETERS	INCHES
A	33 MAX	1.3 MAX
B	2.53	0.1
C	2.54	0.1
D	$0.5: 0.1$	$0.02 \div 0.004$
E	27.94	1.1
F	1.5	0.059
G	2.54 MIN	0.1 MIN
H	0.5 MIN	0.02 MIN
I	5.22 MAX	0.205 MAX
J	5.72 MAX	0.225 MAX
K	15.24	$\frac{0.6}{0.52}$
L	13.2	$0.01+0.004$
M	$0.25+0.10$	-0.05

CERDIP

ITEM	MILLIMETERS	INCHES
A	33.5 MAX	1.32 MAX
B	2.78	0.11
C	2.54	0.1
D	0.46	0.018
E	27.94	1.1
F	1.5	0.059
G	2.54 MIN	0.1 MIN
H	0.5 MIN	0.019 MIN
I	4.58 MAX	0.181 MAX
J	5.08 MAX	0.2 MAX
K	15.24	0.6
L	13.5	0.53
M	$0.25{ }_{-0.05}^{+0.10}$	$0.01_{-0.002}^{+0.004}$

2048×8-BIT STATIC CMOS RAM

The μ PD449 is a high speed, low power, 2048 word by 8 bit static CMOS RAM fabricated using an advanced silicon gate CMOS technology. A unique circuitry technique makes the μ PD.449 a very low operating power device which requires no clock or refreshing to operate.

Since the device has two chip enable inputs, it is suited for battery backup applications. Minimum standby power current is drawn by this device when $\overline{\mathrm{CE}} 1$ or $\overline{\mathrm{CE}} 2$ equals $V_{C C}$ independently of the other input levels.

Data Retention is guaranteed at a power supply voltage as low as 2 V .
The μ PD449 is packaged in a standard 24 -pin dual-in-line package and is plug-in compatible with 16K EPROMs.

FEATURES - Single +5 V Supply

- Fully Static Operation - No Clock or Refreshing required
- TTL Compatible - All Inputs and Outputs
- Common Data Input and Output Using Three-State Output
- Two Chip Enable Inputs for Battery Operation
- Max Access/Min Cycle Times Down to 150 ns
- Low Power Dissipation; 18 mA Max Active $/ 10 \mu \mathrm{~A}$ Max Standby/ $10 \mu \mathrm{~A}$ Max Data Retention
- Data Retention Voltage - 2 V Min
- Standard 24-Pin Plastic and Ceramic Paçkages
- Plug-in Compatible with 16 K EPROMs
- Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

PIN CONFIGURATION

PIN NAMES
$A_{0}-A_{10}$ Address Inputs $\overline{\text { WE }}$ Write Enable $\overline{C E} 1-\overline{C E} 2$ Chip Enable Inputs I/O1-I/O8 Data Input/Output $V_{\text {CC }}$ Power (+5V) GND Ground

TRUTH TABLE

$\overline{\text { CE1 }}$	CE2	WE	MODE	I/O	ICC
\mathbf{X}	H	X	NOT SELECTED	HZ	STANDBY
H	L	X	NOT SELECTED	HZ	STANDBY
L	L	L	WRITE	DIN	ACTIVE
L	L	H	READ	DOUT	ACTIVE

μ PD449

ABSOLUTE MAXIMUM

Supply Voltage
Input or Output Voltage Supplied . -0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Storage Temperature Range . $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Operating Temperature Range . $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
*COMMENT: Stress above those listed under "Absolute Meximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
$V_{C C}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{a}}-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input High Voltage	$\mathrm{V}_{1 \mathrm{H}}$	2.2		$\mathrm{V}_{\text {CC }}+0.3$	V	
Input Low Voltage	$V_{1 L}$	-0.3		0.8	\checkmark	
Input Leakage Current	${ }^{\prime} \mathrm{LI}$	-1.0		1.0	$\mu \mathrm{A}$	$V_{\text {IN }}=0 \sim V_{C C}$
1/O Leakage Current	'Lo	-1.0		1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CE}}{ }^{\text {or }}$ $V_{\overline{C E}}=V_{1 H}$ or $V_{W E}=V_{1 L}$ $V_{\text {I/O }}=0-V_{C C}$
Operating Supply Current	'CCA1	-	(1)	(1)	mA	$V_{\overline{C E} 1}$ and $V_{C E} \overline{C E}_{2}=V_{1 L}$ $1_{1 / O}=0$ MIN TCYCLE
	${ }^{1} \mathrm{CCA} 2$		5	10	mA	$V_{\overline{C E}} 1$ and $V_{\overline{C E} 2}=V_{\text {IL }}$ $\mathrm{t}_{\mathrm{I} / \mathrm{O}}=0$ DC CURRENT
	${ }^{\prime} \mathrm{CCA} 3$		30	10	$\mu \mathrm{A}$	$V_{\overline{C E}} 1$ and $V_{\text {CEE }}=0.2 \mathrm{~V}$ $V_{I N}=V_{C C} \quad 0.2 \mathrm{~V}$ or 0.2 V $I_{1 / O}=0$
Standby Current	Iccs			10	$\mu \mathrm{A}$	$V_{\overline{C E}}$ or $V_{\overline{C F}}^{2}=$ $\mathrm{V}_{\mathrm{CC}} \quad 0.2 \mathrm{~V}$ $V_{\text {IN }}=0-V_{C C}$
Output High Voltage	V_{OH}	2.4			V	$\mathrm{O}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$
Output Low Voltage	V_{OL}			0.4	\checkmark	$1 \mathrm{OL}=2.0 \mathrm{~mA}$

NOTE: (1) μ PD 449: 12 mA TYP, 18 mA MAX μ PD449-1: 18 mA TYP, 26 mA MAX μ PD 449-2: 20 mA TYP, 30 mA MAX μ PD449-3: 25 mA TYP, 38 mA MAX
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

PARAMETER	SYMBOL	LIMITS		UNIT	TEST CONDITIONS
		MIN	MAX		
Input Capacitance	$\mathrm{Clin}^{\text {I }}$		6	pF	$V_{\text {IN }}=0 \mathrm{~V}$
Input/Output Capacitance	$\mathrm{Cl}_{1 / \mathrm{O}}$		8	pF	$V_{1 / O}=0 \mathrm{~V}$

READ CYCLE

AC CHARACTERISTICS

$V_{C C}=5.0 \mathrm{~V} \pm 10 \%, T_{a}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

PARAMETER	Symbol	Limits								UNIT
		μ PD449-3		μ PD 449.2		μ PD 449.1		μ PD 449		
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
Read Cycle Time	$t_{\text {RC }}$	150		200		250		450		ns
Access Time	${ }^{\text {t }}$ A		150		200		250		450	ns
Chip Enable ($\overline{\mathrm{CE}} 1)$ to Output Valid	${ }^{\text {t }} \mathrm{CO} 1$		150		200	.	250		450	ns
Chip Enable ($\overline{\mathrm{CE}} 2$ 2) to Output Vatid	${ }^{\text {t }} \mathrm{CO} 2$		150		200		250		450	ns
Output Hold from Address Change	${ }^{\text {tor }}$	15		15		15		15		ns
Chip Enable ($\overline{\mathrm{CE}} 1$) to Output in LZ	t L21	5		5		5		5		ns
Chip Enable (CE2) to Output in LZ	tLz2	5		5		5		5		ns
Chip Enable ($\overline{\mathrm{CE}}$) to Output in HZ	${ }_{\text {thzi }}$		50		60		80		100	ns
Chip Enable ($\overline{\mathrm{CE}} 2$) to Output in HZ	t $\mathrm{Hz2}$		50		60		80		100	ns

write cycle
$V_{C C}=5.0 \mathrm{~V} \pm 10 \%, T_{a}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Parameter	SYMBOL	LIMITS								UNIT
		μ PD 449.3		${ }_{\mu}$ PD 449.2		μ PD 449.1		${ }_{\mu}$ PD 449		
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	max	
Write Cycle Time	twc	150		200		250		450		ns
Chip Enable (CE 1 1) to End of Write	${ }^{\text {t CWW }} 1$	120		150		180		210		ns
Chip Enable ((EE2) to End of Write	${ }^{\text {t CW2 }}$	120		150		180		210		ns
Address Satup Time	${ }^{\text {t }}$ WW	0		0		0		0		ns
Write Pulsewidth	twp	90		120		150		180		ns
Write Recovery Time	$t_{\text {WR }}$	0		0		0		0		ns
Write Enable to Output in HZ	${ }^{\text {t }}$ Wz		50		60		80		100	ns
Output Active from End of Write	tow	10		10		10		10		ns
Data Valid to End of Write	tow	50		60		80		100		ns
Data Hold Time	${ }_{\text {t }}$ H	0		0		0		0		ns

LOW VCC
DATA RETENTION
$T_{a}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	TEST CONDITIONS	LIMITS			UNIT
			MIN	TYP	MAX	
$V_{\text {CC }}$ for Data Retention	$\mathrm{V}_{\text {CCDR }}$	$V_{\text {IN }}=0 \sim V_{C C}$, $V_{\overline{C E}}$ or $V_{\overline{C E} 2}=V_{C C}$	2.0			V
Data Retention Current	${ }^{\prime} \mathrm{CCDR}$	$\begin{aligned} & V_{C C}=3.0 \mathrm{~V} \\ & V_{I N}=0 \sim V_{C C} \\ & V_{\overline{C E} 1} \text { or } \\ & V_{\overline{C E} 2}=V_{C C} \end{aligned}$		0.01	10	$\mu \mathrm{A}$
Chip Disable to Data Retention Time	${ }^{t}$ CDR		0			ns
Operation Recovery Time	t_{R}		${ }^{\text {t }} \mathrm{RC}$			ns

AC TEST CONDITIONS

Input Pulse Levels	0.8 V to 2.2 V
Input Rise and Fall Times	10 ns
Input and Output Timing Reference Levels	1.5 V
Output Load	$1 \mathrm{TTL}+100 \mathrm{pF}$

PACKAGE OUTLINES μ PD449C PLASTIC

PLASTIC

ITEM	MILLIMETERS	INCHES
A	33 MAX	1.3 MAX
B	2.53	0.1
C	2.54	0.1
D	$0.5 \cdot 0.1$	$0.02 \cdot 0.004$
E	27.94	1.9
F	1.5	0.059
G	2.54 MIN	0.1 MIN
H	0.5 MIN	0.02 MIN
I	5.22 MAX	0.205 MAX
J	5.72 MAX	0.225 MAX
K	15.24	0.6
L	13.2	0.52
M	$0.25+0.10$	$0.01+0.004$

449DS -1-82-CAT

NOTES

MEMORIES

Description

The μ PB406 and μ PB426 are high-speed, electrically programmable, fully decoded 4096 -bit TTL read-only memories. On-chip address decoding, two chip-enable inputs and open-collector/three-state outputs allow easy expansion of memory capacity. The μ PB406 and μ PB426 are fabricated with logic level zero (low); logic level one (high) can be electrically programmed into the selected bit locations. The same address inputs are used for both programming and reading.

Features

1024 word x 4 bit organization (fully decoded)TTL interfaceFast Read Access Time: 50 ns max. (μ PB406-2, μ PB426-2)Power consumption: 500 mW typ.Two Chip Select inputs for memory expansionOpen-collector output (μ PB406)
Three-state outputs (μ PB426)Ceramic and plastic 18 -lead dual in-line packagesFast programming time: $200 \mu \mathrm{~s} /$ bit typ.Compatible with: 7642/7643, 6352/6353 types and equivalent devices (as a ROM)A.I.M. (Avalanche Induced Migration), Shorted-junction technology

Pin Configuration

	18
A_{s},	17
A_{1},	316
$\mathrm{A}_{3} \mathrm{C}$	$4{ }_{4061}{ }^{\text {PPB }} 15$
A_{0} -	$5{ }^{426} 14$
A,	13
$\mathrm{A}_{2} \mathrm{C}$	12
CE, 미	11
and	$9 \quad 10$

the sensed voltage indicates that the selected bit is in the logic one state, an additional pulse train is applied, then stopped:

Reading

To read the memory, both of the two chip select inputs should be held at logic zero (low). The outputs then correspond to the data programmed in the selected words. When either or both of the two chip select inputs are at logic one (high), all the outputs will be high (floating).

Block Diagram

Absolute Maximum Ratings*

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	
Operating Temperature	$-25^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
All Output Voltages	-0.5 to +5.5 Volts
All Input Voltages	-0.5 to +5.5 Voits
Supply Voltage $\mathrm{V}_{C C}$	-0.5 to +7.0 Volts
Output Currents	50 mA

*COMMENT: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

μ PB406/426

DC Characteristics

$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=4,50 \mathrm{~V}$ to 5.50 V

Parameter	Symbol	Limits			Unit	Test Conditions
		M/n.	Typ.	Max.		
Input High Voltage	V_{IH}	2.0			V	
Input Low Voltage	V_{1}			0.8	V	
Input High Current	4.			40	$\mu \mathrm{A}$	$\mathrm{V}_{1}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}}=5.5 \mathrm{~V}$
Input Low Current	-4.			0.5	mA	$\mathrm{V}_{1}=0.4 \mathrm{~V}, \mathrm{~V}_{c c}=5.5 \mathrm{~V}$
Output Low Voltage	V_{0}			0.45	V	$b_{0}=16 \mathrm{~mA}, V_{c c}=4.5 \mathrm{~V}$
Output Leakage Current	$\mathrm{b}_{6} \mathrm{~F}_{1}$			40	$\mu \mathbf{A}$	$\mathrm{V}_{0}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}}=5.5 \mathrm{~V}$
Output Leakage Current	- $\mathrm{V}_{\text {efr }}$			40	$\mu \mathrm{A}$	$\mathrm{V}_{0}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}}=5.5 \mathrm{~V}$
Input Clamp Voitage	$-V_{16}$			1.3	V	$\mathrm{I}_{1}=-18 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$
Power Supply Current	l_{cc}		100	150	mA	All Inputs Grounded
Output High Voltage(1)	$\mathrm{VOH}_{\mathrm{OH}}$	2.4			V	$b_{0}=-2.4 \mathrm{~mA}$
Output Short CIrcuit Current(1)	$-\mathrm{sc}$	15		60	$m A$	$\mathrm{V}_{0}=\mathbf{0} \mathbf{V}$

NOTE:

(1) Applicable to μ PB426 only.

Capacitance

$\mathrm{T}_{\mathrm{a}}=28^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.6 \mathrm{~V}$				
Characteristlcs	Symbol	Min.	Max.	Unit
input Capacitance	C_{N}		8	pF
Output Capacitance	$\mathrm{C}_{\text {OUT }}$		10	pF

AC Characteristics

$T_{a}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=4.50 \mathrm{~V}$ to 5.50 V

Parameter	Symbol	$\mu \mathrm{PB}$ $\mu \mathrm{PB}$	$\begin{aligned} & 3408 \\ & 326 \end{aligned}$		$\begin{aligned} & 406-1 \\ & 426-1 \end{aligned}$		$\begin{aligned} & 406-2 \\ & 426-2 \\ & \hline \end{aligned}$	Unit	Test Condiltions
		MIn.	Max.	MIn.	Max.	MIn.	Max.		
Address Access Time	$t_{\text {AA }}$		70		60		50	ns	
Chip Select Access Time	$t_{\text {Acs }}$		45		40		30	n8	(1) (3) (3) (1)
Chip Select Disable Time	$t_{\text {ch }}$		45		40		30	$n 8$	

Figure 1

Notes:

(1) Output Load: See Figure 1.
(2) Input Waveform: 0.0 V for low level and 3.0 V for high level, less than 10 ns for both rise and fall times.
(3) Measurement References: 1.5 V for both inputs and outputs.
(4) C_{L} in Figure 1 includes jig and probe stray capacitances.

Programming Specification

You must rigorously observe this specification in order to program the $\mu \mathrm{PB} 406$ and $\mu \mathrm{PB} 426$ correctly. NEC will not accept responsibility for any device found to be defective if it was not programmed according to this specification.
A typical programming operation is performed by sensing, programming, and sensing again to find out if the word to be programmed has reached the desired state. Either or both of the two chip enable inputs must be at a logic one (high).
Sensing is accomplished by forcing a 20 mA current into the selected location via the output. The sense measurement ensures that the voltage required to force this 20 mA current is less than the reference voltage. If this condition is satisfied, then that bit location is in the logic one (high) state.
Programming is accomplished by forcing a 200 mA current into the selected bit via the output. The current pulse is applied for $7.5 \mu \mathrm{~s}$ and then the location is sensed before a second programming current pulse is applied. This process continues until the selected bit is altered to the one state. You can tell that a bit is programmed when two successive sense readings, $10 \mu s$ apart with no intervening programming pulse, pass the limit. When this condition has been mot, four additional pulses are applied, and the sense current is terminated.

Characteristic	Limit	Unit	Notes
Amblent Temperature	25 ± 5	${ }^{\circ} \mathrm{C}$	
Programming pulse			
Amplitude	200 $\pm 5 \%$	mA	
Clamp voltage	$28+0 \%-2 \%$	V	
Ramp rate (both in rise and in fall)	70 max.	$\mathrm{V} / \mu \mathrm{s}$	
Pulse wldth	$7.5 \pm 5 \%$	$\mu \mathrm{s}$	15 V point/ 150Ω load.
Duty cycle	70\% min.		
Sense current			
Amplitude	20 ± 0.5	mA	
Clamp voltage	28+0\%-2\%	V	
Ramp rate	70 max.	$V / \mu s$	15V polnt/
Sense current interruption before and after address change 10 min .			
Programming $\mathbf{V C c}^{\text {c }}$	$5.0+5 \%-0 \%$	V	
Maximum sensed voltage for programmed one	7.0 ± 0.1	V	
Delay from tralling edge of programming pulse before sensing output voitage	0.7 min .	$\mu 8$	

Figure 2 - Typlcal Output Voltage Waveform

μ PB406/426C PLASTIC μ PB406/426D CERDIP

Plastic

Item	Millimeters	Inches
A	23.2 Max.	0.91 Max.
B	1.44	0.055
C	2.54	0.1
D	0.45	0.02
E	20.32	0.8
F	1.2	0.06
G	2.5 Min.	0.1 Min.
H	0.5 Min.	0.02 Min.
I	4.6 Max.	0.18 Max.
J	5.1 Max.	0.2 Max.
K	7.62	0.3
L	6.7	0.26
M	0.25	0.01

Cerdip		
Item	Millimeters	Inches
A	23.2 Max.	0.91 Max.
B	1.44	0.055
C	2.54	0.1
D	0.45	0.02
E	20.32	0.8
F	1.2	0.06
G	2.5 Min.	0.1 Min.
H	0.5 Min.	0.02 Min.
I	4.6 Max.	0.18 Max.
J	5.1 Max.	0.2 Max.
K	7.62	0.3
L	6.7	0.26
M	0.25	0.01

Qualified Programming Equipment

Approved Manufacturer	Model No.	Personallty Module	Socket Adaptors
Data I/O lssaquah, WA	$5,7,9,17,19$	$919-1555$	$\mathbf{7 1 5 - 1 3 0 5 - 5}$
Minato Electronics Tokyo, Japan	1802	μ PB4XX	SA-18/B426
Takeda Riken Tokyo, Japan	TR-429 B	PZ 3834	WZ3256-78
Tokyo Data Tokyo, Japan	PECKER-O	UN-711F	AD-7115

NOTES
μ PB409

Microcomputer Division

2048 WORD BY 8 BIT BIPOLAR TTL PROGRAMMABLE READ ONLY MEMORY

Abstract

DESCRIPTION The μ PB409 and $\mu \mathrm{PB} 429$ are high-speed, electrically programmable, fully-decoded 16384 bit TTL read only memories. On-chip address decoding, three chip enable inputs and open-collector/three-state outputs allow easy expansion of memory capacity. The μ PB409 and μ PB429 are fabricated with logic level zero (low); logic level one (high) can be electrically programmed into the selected bit locations. The same address inputs are used for both programming and reading.

FEATURES : 2048 WORDS $\times 8$ BITS Organization (Fully Decoded)

- TTL Interface
- Fast Read Access Time :50 ns MAX
- Medium Power Consumption :500 mW TYP
- Three Chip Enable Inputs for Memory Expansion
- Open-Collector Outputs (μ PB409)
- Three-State Outputs (μ PB429)
- Ceramic 24-Lead Dual In-Line Package (μ PB409D, μ PB429D)
- Plastic 24-Lead Dual In-Line Package (μ PB409C, μ PB429C)
- Fast Programming Time $: 200 \mu \mathrm{~s} / \mathrm{bit}$ TYP
- Replaceable with :82S190/191

HM76160/76161, 3636
and Equivalent Type Devices

PIN NAMES

$A_{0}-A_{10}$	Address Inputs
$C E_{1}-\mathrm{CE}_{3}$	Chip Enable Inputs
$\mathrm{O}_{1}-\mathrm{O}_{8}$	Data Outputs

PIN CONFIGURATION

$A_{7}-1$		24	V_{CC}
$A_{6} \square_{2}$		23	A_{8}
$A_{5} \square_{3}$		22	Ag_{9}
$\mathrm{A}_{4} \square 4$		21	A_{10}
$\mathrm{A}_{3} \square 5$		20	$\overline{C E}{ }_{1}$
$A_{2} \square 6$	${ }_{\mu}{ }^{\text {PB }}$ 409/	19	CE_{2}
$A_{1} \square 7$	429	18	CE_{3}
$A_{0} \square_{8}$		17	O_{8}
$O_{1} \square 9$		16	O_{7}
$\mathrm{O}_{2} \square_{10}$		15	O_{6}
$\mathrm{O}_{3} \square^{11}$		14	O_{5}
GND 12		13	O_{4}

Supply Voltage -0.5 to +7.0 V

Input Voltage -0.5 to +5.5 V

Output Voltage -0.5 to +5.5 V
Output Current .50 mA
Operating Temperature $25^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Storage Temperature
Ceramic Package . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Plastic Package . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
*COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}, \vee_{\mathrm{CC}}=4.5$ to 5.5 V

CHARACTERISTIC	SYMBOL	MIN	TYP	MAX	UNIT	TEST CONDITIONS
Input High Voltage	V_{IH}	2.0			v	
Input Low Voltage	V_{IL}			0.85	v	
Input High Current	$\mathrm{IIH}^{\text {H }}$			40	$\mu \mathrm{A}$	$V_{1}=5.5 \mathrm{~V}, \mathrm{~V}_{C C}=5.5 \mathrm{~V}$
Input Low Current	$-\mathrm{ILL}$			0.25	mA	$\mathrm{V}_{1}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}$
Output Low Voltage	V_{OL}			0.45	\checkmark	$10=16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$
Output Leakage Current	Ioff1			40	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}$
Output Leakage Current	-IOFF2			40	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}$
Input Clamp Voltage	$-V_{\text {IC }}$			1.3	V	$1,0-18 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$
Power Supply Current	Icc		100	160	mA	All inputs Grounded, $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$
Output High Voltage**	VOH	2.4			V	$10=-2.4 \mathrm{~mA}, \mathrm{~V}_{C C}=4.5 \mathrm{~V}$
Output Short Circuit Current*	${ }^{-1} \mathrm{SC}$	20		70	mA	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$

*Note: Applicable to $\mu \mathrm{PB} 429$
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{f}} \mathrm{N}=2.5 \mathrm{~V}$

CHARACTERISTICS	SYMBOL	MIN	MAX	UNIT
Input Capacitance	CIN		8	pF
Output Capacitance	COUT		10	pF

$T_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4: 5$ to 5.5 V (1)(2)(3)(4)

CHARACTERISTIC	SYMBOL	${ }_{\mu \mathrm{PB} 409-2, ~ \mu P B 429-2 ~}^{\text {2 }}$		$\mu \mathrm{PB409-1}, \mu$ PB429-1		$\mu \mathrm{PB409}, \mu \mathrm{PB429}$		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	
Address Access Time	${ }^{\text {t }}$ A A		50		60		70	ns
Chip Enable Access Time	${ }_{\text {t }}$ ACE		30		40		50	ns
Chip Enable Disable Time	${ }_{\text {t }}$ DCE		30		40		50	ns

FIGURE 1
NOTES:
(1) Output Load: See Fig. 1.
(2) Input Waveform: 0.0 V for low level and 3.0 V for high level, less than 10 ns for both rise and fall times.
(3) Measurement References: 1.5 V for both inputs and outputs.
(4) C_{L} in Fig. 1 includes jig and probe stray capacitances.

DC CHARACTERISTICS

CAPACITANCE

AC CHARACTERISTICS

You can program only when the outputs are disabled by any one of the chip enable inputs. This insures that the output will not be damaged when you apply programming voltages.

Programming

You can permanently program a logic one into a selected bit location by using special equipment (programmer). First, disable the chip as described above. Second, apply a train of high-current programming pulses to the desired output. Apply an additional pulse train after the sensed voltage indicates that the selected bit is in the logic one state. Then, stop the pulse train.

Reading

To read the memory, enable the chip (i.e., $C E_{1}=0, C E_{2}=C E_{3}=1$). The outputs then correspond to the data programmed into the selected words. When the chip is disabled, all the outputs will be in a high impedance (floating) state.

LOGIC DIAGRAM

It is imperative that this specification be rigorously observed in order to correctly program the μ PB409 and μ PB429. NEC will not accept responsibility for any device found to be defective if it was not programmed according to this specification.

CHARACTERISTIC	LIMIT	UNIT	NOTES
Ambient Temperature	25 ± 5	${ }^{\circ} \mathrm{C}$	
Programming Pulse Amplitude Clamp Voltage Ramp Rate (Both in Rise and in Fall) Pulse Width Duty Cycle	$\begin{aligned} & 200 \pm 5 \% \\ & 28+0 \%-2 \% \\ & 70 \text { MAX } \\ & 7.5 \pm 5 \% \\ & 70 \% \text { MIN } \end{aligned}$	$\begin{gathered} \mathrm{mA} \\ \mathrm{~V} \\ \mathrm{~V} / \mu \mathrm{s} \\ \mu \mathrm{~s} \end{gathered}$	15V point/150 ${ }^{\text {l }}$ load
Sense Current Amplitude Clamp Voltage Ramp Rate Sense Current Interruption before and after address change	$\begin{aligned} & 20 \pm 0.5 \\ & 28+0 \%-2 \% \\ & 70 \mathrm{MAX} \\ & 10 \mathrm{MIN} \end{aligned}$	$\begin{gathered} m A \\ V \\ V / \mu \mathrm{s} \\ \mu \mathrm{~s} \end{gathered}$	15 V point/150 ${ }^{\text {doad }}$
Programming V_{CC}	$5.0+5 \%-0 \%$	V	
Maximum Sensed Voltage* for programmed "1"	7.0 ± 0.1	V	
Delay from trailing edge of programming pulse before sensing output voltage	0.7 MIN	$\mu 5$	

*A bit is judged to be programmed when two successive sense readings $10 \mu \mathrm{~s}$ apart with no intervening programming pulse pass the limit. When this condition has been met, four additional pulses are applied, then the sense current is terminated.

APPROVED MANUFACTURER	MODEL NO.	PERSONALITY MODULE	SOCKET ADAPTORS
Data 1/O Issaquah, WA	$5,7,9,17,19$	$919-1555$	$715-1628-2$
Minato Electronics Tokyo, Japan	1802	μ PB4XX	SA-24-/B429
Takeda Riken Tokyo, Japan	TR-429 B	PZ 3834	WZ3256-123
Toyo Data Tokyo, Japan	PECKER-O	UN-711F	AD-7118

PROGRAMMING EQUIPMENT
TYPICAL OUTPUT VOLTAGE WAVEFORM

PACKAGE OUTLINE $\mu \mathrm{PB} 409 \mathrm{C} / 429 \mathrm{C}$

(Cerdip)

ITEM	millimeters	INCHES
A	33.5 MAX	1.32 MAX
B	2.78	0.11
c	2.54	0.1
D	0.46	0.018
E	27.94	1.1
F	1.5	0.069
G	2.54 MIN	0.1 Min
H	0.5 MIN	0.019 MIN
1	4.58 max	0.181 MAX
J	5.08 MAX	0.2 MAX
k	16.24	0.8
L	13.5	0.53
M	$0.25_{-0.06}^{+0.10}$	$0.01_{-0.002}^{+0.004}$

NOTES

9216 BIT FIELD PROGRAMMABLE LOGIC ARRAY

DESCRIPTION The μ PB450 is a bipolar, 9, 216-bit field programmable logic array. It includes 24 input and 16 output lines, 72 product terms, input 2-bit decoders, and 16 -bit feedback registers. This provides an extremely versatile organization. Interconnection of internal AND-OR arrays is performed electrically by the proven, avalanche induced migration method which is widely used in NEC Bipolar PROM technology.

FEATURES - 24 Input Terminals

- 16 Output Terminals with Latches
- 72 Product Terms
- 16 Feedback Loops with J-K Flip Flops
- 202704 Input Decoders
- 80×72 AND-Array Elements
- 72×48 OR-Array Elements
- Scan Path (Shift Register Mode) Capability of J-K Flip Flops
- TTL Compatible
- Single +5 V Supply
- 48 Pin Ceramic Dual-In-Line Package

111	1		48	$\square 123$
110	2		47	$\square 122$
19	3		46	-121
18	4		45	$\square 120$
17	5		44	-19
16	6		43	-118
15	7		42	-117
1_{4}	8		41	-116
13	9		40] 115
12	10		39] 114
11	11		38	[113
10	12	μ PB450	37	- l_{12}
GND	13		36	$\square \mathrm{V}_{\mathrm{cc}}$
ADE	14		35	$]$ QOT
O_{0}	15		34	O_{8}
O_{1}	16		33	- O_{9}
O_{2}	17		32	- O_{10}
O_{3}	18		31	- 0_{11}
O_{4}	19		30	- 0_{12}
O_{5}	20		29	$\square O_{13}$
O_{6}	21		28] O_{14}
O_{7}	22		27] O_{15}
CE	23		26] RESET
CKO_{0}	24		25]. CK_{1}

PIN NAMES

$\mathrm{I}_{0} \sim \mathrm{I}_{23}$	Input
$\mathrm{O}_{0} \sim \mathrm{O}_{15}$	Outputs
ADE	Mode Control
QOT	Shift Register Output (Mode 2)
CE	Output and Mode Control
CK0	Output Latch Control
CK1	Feed Back Register Clock
RESET	Feed Back Register Reset
VCC	Power Supply $(+5 V)$
GND	Ground

NOTES

16,384 (2K X 8) BIT UV ERASABLE PROM

DESCRIPTION
The μ PD2716 is a 16,384 bit (2048×8 bit) Ultraviolet Erasable and Electrically Programmable Read-Only Memory (EPROM). It operates from a single +5 volt supply, making it ideal for microprocessor applications. It offers a standby mode with an attendant 75% savings in power consumption, and is compatible with the $\mu \mathrm{PD} 2316 \mathrm{E}$ as a ROM. This allows for economical change-over to a masked ROM for production quantities, where desired.

The μ PD27 16 features fast, simple one pulse programming controlled by TTL leve! signals. Total programming time for all 16,384 bits is only 100 seconds.

FEATURES - Ultraviolet Erasable and Electrically Programmable

- Access Time - 390 ns Max
- Single Location Programming
- Programmable with Single Pulse
- Low Power Dissipation Standby Mode
- Input/Output TTL Compatible for Reading and Programming
- Pin Compatible to μ PD2316E, μ PD446 and μ PD4016.
- Single +5V Power Supply
- 24 Pin Ceramic DIP
- Three-State Outputs

TABLE 1. MODE SELECTION

MODE	$\overline{\text { CE/PGM }}$	$\overline{O E}$	Vpp	V_{cc}	OUTPUTS
Read	$V_{\text {IL }}$	$V_{\text {IL }}$	+5	+5	DOUT
Standby	$\mathrm{V}_{\text {IH }}$	Don't Care	+5	+5	High 2
Program	Pulsed $V_{\text {IL }}$ to $V_{\text {IH }}$	$\mathrm{V}_{\text {IH }}$	+25	+5	DIN
Program Verify	$\mathrm{V}_{\text {IL }}$	$V_{\text {IL }}$	+25	+5	Dout
Program Inhibit	VIL	$\mathrm{V}_{1} \mathrm{H}$	+25	+5	High 2

$V_{\text {IH }}$ and $V_{\text {IL }}$ are TTL high level (${ }^{\prime \prime} 1^{\prime \prime}$) and TTL low level (" ${ }^{\prime \prime}$) respectively.

Rev/1

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
*COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	CIN		4	6	pF	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
Output Capacitance	COUT		8	12	pF	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$

CAPACITANCE

DC CHARACTERISTICS

PARAMETEP	SYMBOL	LINITS			UNIT	TEST CONDITIONS
		MIN.	TYP.	MAX.		
Output High Voltege	VOH	2.4			V	${ }^{1} \mathrm{OH}^{\prime}=-400 \mu \mathrm{~A}$
Output Low Voltege	$V_{\text {OL }}$			0.45	v	$1 \mathrm{OL}=2.1 \mathrm{~mA}$
Input High Voltege	$V_{\text {IN }}$	2.0		$v_{c c}+1$	v	
Input Low Voltage	$V_{\text {IL }}$	-0.1		0.8	V	
Output Leakege Current	1 LO			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=5.25 \mathrm{~V}$
Input Leakage Current	IIL			10	$\mu \mathbf{A}$	$V_{1 N}=5.25 V$
VPP Current	IPPI			5	mA	$V_{\text {PP }}=5.85 \mathrm{~V}$
$\mathbf{V}_{\text {cc }}$ Current (2)	${ }^{1} \mathrm{CCl}$		10	25	$m A$	$\overline{C E} / P G M=V_{1 H} \overline{O E}=V_{1 L}$ Standby Mode
	${ }^{1} \mathrm{CC2}$		57	100	mA	$\overline{\mathrm{CE}} / \mathrm{PGM}=\mathrm{V}_{1 \mathrm{~L}} \overline{\mathrm{OE}}=\mathrm{V}_{1 \mathrm{~L}}$ Read Mode

Notes: (1) VCc must be applied simultaneously or before Vpp and removed after Vpp.
(2) VPP may be connected directly to $V_{C C}(+5 V)$ at read mode and standby mode. The supply current would then be the sum of IPP1 and ICC (ICC1 or ICC2).
(3) The tolerance of 0.6 V allows the use of a driver circuit for switching the VPP supply pin from +25 V to +5 V .

DC CHARACTERISTICS
(CONT.)

PROGRAM, PROGRAM VERIFY AND PROGRAM INHIBIT MODE
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}$ (1) $=+5 \mathrm{~V} \pm 5 \% ; \mathrm{VPP}^{(1)(4)}=+25 \mathrm{~V} \pm 1 \mathrm{~V}$

PARAMETER	SYMBOL	Limits			UNIT	TEST CONDITIONS
		MIN.	TYp.	max.		
Input High Voltage	V_{f}	2.0		$\mathrm{V}_{\mathrm{cc}}+1$	v	
Input Low Voltage	$V_{\text {IL }}$	-0.1		0.8	v	
input Leakage Current	I_{1}			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=5.25 \mathrm{~V} / 0.45 \mathrm{~V}$
$V_{\text {Pp }}$ Current	${ }^{\prime}$ pp1			5	mA	CE/PGM $=V_{\text {IL }} \begin{gathered}\text { Program Verify } \\ \text { Program Inhibit }\end{gathered}$
	IPP2			30	mA	$\overline{C E / P G M}=\mathrm{V}_{1 H}$ Program Mode
V_{cc} Current	${ }^{\prime} \mathrm{Cc}$			100	mA	

READ MODE AND STANDBY MODE
$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{C C}{ }^{(1)}=+5 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{PP}}$ (1)(2) $=\mathrm{V}_{C C} \pm 0.6 \mathrm{~V}$ (3)

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TVP	MAX		
Address to Output Delay	${ }^{\text {t }}$ ACC			(5)	ns	$\overline{C E} / \mathrm{PGM}=\overline{O E}=V_{I L}$
$\overline{\text { CE/PGM to Output Delay }}$	${ }^{\text {t }}$ CE			(5)	ns	$\overline{O E}=V_{\text {IL }}$
Output Enable to Output Delay	toE			120	ns	$\overline{C E} / P G M=V_{1 L}$
Output Enable High to Output Float	tDF	0		100	ns	$\overline{\mathrm{CE}} / \mathrm{PGM}=\mathrm{V}_{\text {IL }}$
Address to Output Hold	${ }^{\text {t }} \mathrm{OH}$	0			ns	$\overline{C E} / P G M=\overline{O E}=V_{I L}$

Test Conditions
Output Load: 1 TTL gate and $\mathrm{CL}_{\mathrm{L}}=100 \mathrm{pF}$
Input Rise and Fall Times: 20 ns
Timing Measurement Reference Level:

Input Pulse Levels: 0.8 to 2.2 V

Inputs: 1.0 V and 2.0 V
Outputs: 0.8 V and 2.0 V

PROGRAM, PROGRAM VERIFY AND PROGRAM INHIBIT MODE
$T_{a}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}$ (1) $=+5 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{PP}}$ (1)(4) $=+25 \mathrm{~V} \pm 1 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNITS	$\begin{gathered} \text { TEST } \\ \text { CONDITIONS } \end{gathered}$
		MIN	TYP	MAX		
Address Setup Time	tAS	2			$\mu \mathrm{s}$	
$\overline{\mathrm{OE}}$ Setup Time	tOES	2			$\mu \mathrm{s}$	
Data Setup Time	${ }^{\text {t }}$ DS	2			$\mu \mathrm{s}$	
Address Hold Time	${ }_{\text {t }} \mathrm{AH}$	2			$\mu \mathrm{s}$	
$\overline{\overline{O E}}$ Hold Time	${ }^{\text {I OEH }}$	2			$\mu \mathrm{s}$	
Data Hold Time	tD	2			$\mu \mathrm{s}$	
Output Enable to Output Float Delay	tDF	0		120	ns	CE/PGM $=$ VIL
Output Enable to Output Delay	TOE			120	ns	$\overline{C E / P G M}=V_{I L}$
Program Pulse Width	tPW	45	50	55	ms	
Program Pulse Rise Time	tPRT	5			ns	
Program Pulse Fall Time	tPF T	5			ns	

Test Conditions:
Input Pulse Levels 0.8 V to 2.2V Output Timing Reference Level. . 0.8 V and 2 V Input Timing Reference Level. 1 V and 2 V

Notes: (1) $V_{C C}$ must be applied simultaneously or before Vpp and removed after Vpp.
(2) Vpp may be connected directly to $\mathrm{VCC}(1+5 \mathrm{~V})$ at read mode and standby mode. The supply current would then be the sum of Ipp1 and Icc (ICC1 or ICC2).
(3) The tolerance of 0.6 V allows the use of a driver circuit for switching the Vpp supply pin from +25 V to +5 V .
(4) During programming, program inhibit, and program verify, a maximum of $+\mathbf{2 6 V}$ should be applied to the Vpp pin. Overshoot voltages to be generated by the VPP power supply should be limited to less than $\mathbf{+ 2 6 V}$
(5) μ PD 2716450 ns $\mu \mathrm{PD} 2716-2380$ ns

PROGRAM MODE

Notas: (1) $\overline{O E}$ may be delayed up to $t_{A C C}-$ toE after the falling edge of $\overline{C E} / P G M$ for read mode without impact on tACC
(2) TDF is specified from $\overline{O E}$ or $\overline{C E} / P G M$, whichever occurs first.

FUNCTIONAL The μ PD2716 operates from a single +5 V power supply and, accordingly, is ideal DESCRIPTION for use with +5 V microprocessors such as μ PD8085 and μ PD8048/8748.

Programming of the μ PD2716 is achieved with a single 50 ms TTL pulse. Total programming time for all 16,384 bits is only 100 sec . Due to the simplicity of the programming requirements, devices on boards and in systems may be programmed easily and without any special programmer.

The μ PD2716 features a standby mode which reduces the power dissipation from a maximum active power dissipation of 525 mW to a maximum standby power dissipation of $\mathbf{1 3 2} \mathbf{~ m W}$. This results in a $\mathbf{7 5 \%}$ savings with no increase in access time.

Erasure of the μ PD2716 programmed data can be attained when exposed to light with wavelengths shorter than approximately 4,000 Angstroms (A). It should be noted that constant exposure to direct sunlight or room level fluorescent lighting could erase the μ PD2716. Consequently, if the μ PD2716 is to be exposed to these types of lighting conditions for long periods of time, the μ PD27 16 window should be masked to prevent unintentional erasure.

The recommended erasure procedure for the μ PD2716 is exposure to ultraviolet light with wavelengths of 2,537 Angstroms (\AA). The integrated dose (i.e., UV intensity x exposure time) for erasure should be not less than $15 \mathrm{~W}-\mathrm{sec} / \mathrm{cm}^{2}$. The erasure time is approximately 15 to 20 minutes using an ultraviolet lamp of $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ power rating.

During erasure, the μ PD27 16 should be placed within 1 inch of the lamp tubes. If the lamps have filters on the tubes, the filters should be removed before erasure.

OPERATION The five operation modes of the μ PD2716 are listed in Table 1. The power supplies required are $a+5 \mathrm{~V} V_{C C}$ and a $V_{P p}$. The $V_{P P}$ power supply should be at +25 V during programming, program verification and program inhibit, and it should be at +5 V during read and standby. $\overline{\mathrm{CE}} / \mathrm{PGM}, \overline{\mathrm{OE}}$ and V_{PP} select the operation mode as shown in Table 1.

READ MODE When CE/PGM and $\overline{\sigma E}$ are at low (0) level with $V_{P P}$ at $+5 V$, the READ MODE is set and the data is available at the outputs after toE from the falling edge of $\overline{O E}$ and tACC after setting the address.

STANDBY MODE The μ PD2716 is placed in the standby mode with the application of a high (1) level TTL signal to the $\overline{C E} / P G M$ and a $V_{P P}$ of +5 V . In this mode, the outputs are in a high impedance state, independent of the $\overline{O E}$ input. The active power dissipation is reduced by $\mathbf{7 5 \%}$ from 525 mW to 132 mW .

PROGRAMMING Programming of the μ PD2716 is commenced by erasing all data and consequently MODE having all bits in the high (1) level state. Data is then entered by programming a low (0) level TTL signal into the chosen bit location.

The μ PD2716 is placed in the programming mode by applying a high (1) level TTL signal to the $\overline{O E}$ with VPP at +25 V . The data to be programmed is applied to the output pins 8 bits in parallel at TTL levels.
Any location can be programmed at any time, either individually, sequentially or at random.
When multiple μ PD2716s are connected in parallel, except for $\overline{C E} / P G M$, individual μ PD2716s can be programmed by applying a high (1) level TTL pulse to the $\overline{\mathrm{CE}} / \mathrm{PGM}$ input of the desired μ PD2716 to be programmed.
Programming of multiple μ PD2716s in parallel with the same data is easily accomplished. All the alike inputs are tied together and are programmed by applying a high (1) level TTL pulse to the $\overline{\mathrm{CE}} / \mathrm{PGM}$ inputs.

μ PD2716

Programming of multiple μ PD2716s in parallel with different data is rendered more PROGRAMMING easily by the program inhibit mode. Except for $\overline{\mathrm{CE}} / \mathrm{PGM}$, all alike inputs (including $\overline{\mathrm{OE}}$) INHIBIT MODE of the parallel μ PD2716s may be common. Programming is accomplished by applying a TTL level program pulse to the μ PD2716 $\overline{\mathrm{CE}} / \mathrm{PGM}$ input with $V_{P P}$ at +25 V . A low level applied to the $\overline{C E} / P G M$ of the other μ PD2716 will inhibit it from being programmed.
A verify should be performed on the programmed bits to determine thay the data was correctly programmed on all bits of the $\mu \mathrm{PD} 2716$. The program verify can be performed with $V_{P P}$ at +25 V and $\overline{\mathrm{CE}} / \mathrm{PGM}$ and $\overline{\mathrm{OE}}$ at low (O) levels.
The data outputs of two or more μ PD2716s may be wire-ored together to the same data bus. In order to prevent bus contention problems between devices, all but the selected $\mu \mathrm{PD} 2716$ s should be deselected by raising the $\overline{\mathrm{OE}}$ input to a TTL high.

Item	Millimeters	Inches
A	33.5 MAX.	1.32 MAX.
B	2.78	1.1
C	2.54	0.1
D	$0.46 \cdot 0.10$	$0.018 \cdot 0.004$
E	27.94	1.10
F	1.3	0.05
G	2.54 MIN.	0.1 MIN.
H	0.5 Min.	0.020
1	5.0 MAX.	0.20
J	5.5 MAX.	0.216
K	15.24	0.60
L	14.66	0.58
M	$0.25 \cdot 0.05$	$0.010 \cdot 0.002$

Window Label

An amber-colored window label is provided unattached for the convenience of the user. The window label filters ultra-violet light frequencies, thus preventing accidental erasure or long-term degradation caused by ambient light or sunlight.

Description

The μ PD2732 is a 32,768-bit (4096×8 bit) Ultraviolet Erasable and Electrically Programmable Read-Only Memory (EPROM). It operates from a single +5 V supply, making it ideal for microprocessor applications. It features an output enable control and offers a standby mode with an attendant 80% savings in power consumption.
A distinctive feature of the μ PD2732 is a separate output control, output enable (OE) from the chip enable control (CE). The OE control eliminates bus contention in multiplebus microprocessor systems. The μ PD2732 features fast, simple one-pulse programming controlled by TTL-level signals. Total programming time for all 32,768 bits is only 210 seconds.

Features

\square Ultraviolet erasable and electrically programmableAccess time- 390 ns maxSingle location programmingProgrammable with single pulseLow power dissipation: 150 mA max active current, 30 mA max standby current
\square Input/Output TTL-compatible for reading and programming
\square Single +5 V power supply
\square 24-pin ceramic DIPThree-state outputs

Pin Configuration

A_{4}	1		24	$\square \mathrm{v}_{\mathrm{cc}}(+5 \mathrm{n}$
A_{6}	2		23	$\square \mathrm{A}_{8}$
A_{5}	3		22	$\square A_{8}$
A_{4}	4		21	$\square A_{11}$
A_{3}	5		20	
A_{2}	6	$\underset{2732}{\mu \mathrm{PD}}$	19	$\square A_{10}$
A_{1}	7		18	口CE
A_{0}	8		17	口o,
O_{0}	${ }^{9}$		16	Pos
0.	10		15	Fos
O_{2}	11		14	JO_{4}
(OV) GND	12		13	PO_{3}

Pin Names

$\mathrm{A}_{0}-\mathrm{A}_{11}$	Addresses
$\overline{O E}$	Output Enable
$\mathrm{O}_{0}-\mathrm{O}_{7}$	Data Outputs
$\mathbf{C E}$	Chip Enable

PINS	$\overline{\mathbf{C E}}$	$\overline{\mathbf{O E} / \mathbf{V}_{\mathrm{PP}}}$	\mathbf{V}_{CC}	OUTPUTS
MODE				
Read	\mathbf{V}_{L}	\mathbf{V}_{IL}	+5	$\mathbf{D}_{\text {OUT }}$
Standby	\mathbf{V}_{IH}	Don't Care	+5	High \mathbf{Z}
Program	\mathbf{V}_{IL}	\mathbf{V}_{PP}	+5	\mathbf{D}_{IN}
Program Verify	\mathbf{V}_{LL}	\mathbf{V}_{LL}	+5	$\mathbf{D}_{\text {out }}$
Program Inhiblt	\mathbf{V}_{IH}	\mathbf{V}_{PP}	+5	High $\mathbf{~}$

[^1]Block Dlagram

Absolute Maximum Ratings* $\left(\mathbf{T}_{\mathrm{a}}=\mathbf{2 5}^{\circ} \mathbf{C}\right.$)

Operating Temperature $\ldots-10^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
Storage Temperature $\ldots \ldots-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Supply Voltage $\mathrm{V}_{\mathrm{cc}} \ldots \ldots \ldots \ldots \ldots \ldots . . .0 .3$ to +6 Volts
Supply Voltage $\mathrm{V}_{\mathrm{Pp}} \ldots \ldots \ldots \ldots \ldots . .-0.3$ to +26.5 Volts
*COMMENT: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Capacitance

$\mathrm{T}_{\mathrm{a}}=\mathbf{2 5 ^ { \circ }} \mathbf{C} ; \mathbf{f}=\mathbf{1} \mathrm{MHz}$

Parameter	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
Input Capacitance Except $\overline{O E} / V_{p p}$	$\mathrm{C}_{\text {INI }}$			6	pF	$\mathrm{V}_{\text {IN }}-\mathrm{OV}$
$\begin{aligned} & \overline{\mathrm{OE} / \mathrm{V}_{\mathrm{p}} \ln p u t} \\ & \text { Capacltance } \end{aligned}$	$\mathrm{C}_{\text {IN } 2}$			30	pF	$\mathrm{V}_{\mathrm{N}}=0 \mathrm{~V}$
Output Capacitance	$\mathrm{C}_{\text {OUT }}$			12	pF	$\mathrm{V}_{\text {our }}=0 \mathrm{~V}$

DC Characteristics

Read Mode and Standby Mode

Parameter	Symbol	Limits			Unit	Test Conditions
		Min.	Typ.	Max.		
Output High Voltage	V_{OH}	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$
Output Low Voltage	$V_{0 L}$			0.45	V	$\mathrm{I}_{\mathrm{a}}=2.1 \mathrm{~mA}$
Input High Voltage	$\mathrm{V}_{\text {IH }}$	2.0		$\mathrm{V}_{\mathrm{cc}}+1$	V	
Input Low Voltage	$V_{1 L}$	-0.1		0.8	V	
Output Leakage Current	I_{10}			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {our }}=5.25 \mathrm{~V}$
Input except $\overline{O E} / V_{p p}$	I_{LI}			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {in }}=5.25 \mathrm{~V}$
$\begin{aligned} & \text { Leakage } \\ & \text { current } \end{aligned} \overline{\overline{O E} / V_{P P}}$	$\mathrm{I}_{1 / 2}$			10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=5.25 \mathrm{~V}$
$V_{\text {cc }}$ Standby	$\mathrm{I}_{\mathrm{Cl} 1}$		15	30	mA	$\overline{\mathrm{CE}} \cdots \mathrm{V}_{1 H}, \overline{\mathrm{OE}} / \mathrm{V}_{\mathrm{Pr}} \cdots V_{\text {il }}$
Current Active	$\mathrm{I}_{\mathrm{cc} 2}$		85	150	mA	$\overline{\mathrm{OE} / V_{P P}}-\overline{\mathrm{CE}} V_{11}$

$1 * 02762$						
-c cinaracteristios (Contu)						
Progiram, Program Verify and Program Inhibit Mode $\mathrm{T}_{\mathrm{a}}=\mathbf{2 5} \pm \mathbf{5}^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=+\mathbf{5 V} \pm \mathbf{5} \%, \mathrm{~V}_{\mathrm{pp}}=+25 \mathrm{~V} \pm 1 \mathrm{~V}$						
6			Umits			
Parameter	Symbol	Min.	Typ.	Max.	Unit	Test Conditions
Input High Voitage	$\mathrm{V}_{\text {H }}$	2.0		$\mathrm{V}_{\mathrm{cc}}+1$	V	
Input Low Voltage	$V_{\text {L }}$	-0.1		0.8	V	
Input Leakage Current	I_{1}			10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{L}}$ or $\mathrm{V}_{\text {IH }}$
Output High Voltage	V_{OH}	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$
Output Low Voltag*	V_{ol}			0.45	V	$\mathrm{I}_{0}=2.1 \mathrm{~mA}$
V_{CC} Current	I_{cc}		85	150	mA	
$\mathrm{V}_{\text {pp }}$ Current	$\mathbf{I P P}^{\text {P }}$			30	$m A$	$\overline{\mathbf{C E}}=\mathrm{V}_{\mathrm{L}}, \overline{\mathrm{OE}} \mathrm{V}_{\mathrm{pP}}$

AC Characteristics

Read Mode and Standby Mode
$\mathrm{T}_{\mathrm{a}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{cc}}=+5 \mathrm{~V} \pm 5 \%$

Parameter	Symbol	Limits			Unit	Test Conditions	
		Min	TYp	Max			
Address to Output Delay	$\mathrm{t}_{\text {ACC }}$			(1)	ns	$\overline{C E E}=\overline{O E} / V_{\text {PP }}=V_{\text {IL }}$	
$\overline{\text { CE }}$ to Output Delay	$t_{\text {ce }}$			(1)	ns	$\overline{O E}=V_{1 L}$	
Output Enable to Output Delay	$t_{\text {OE }}$			120	ns	$\overline{\mathbf{C E}}=\mathrm{V}_{\mathrm{LL}}$	
Output Enable High to Output Float	t_{DF}	0		100	ns	$\overline{C E}=V_{1}$	
Address to Output Hold	$\mathrm{taH}^{\text {H }}$	0			n8	$\overline{\mathbf{C E}}=\mathbf{O E}=\mathrm{V}_{1 L}$	
Note: (1) μ PD2732 (450 ns max) μ PD2732-4 (390 ns max)							
Test Conditions -							
Output Load: 1 TTL gate and $C_{L}=100 \mathrm{pF}$ Input Rise and Fall Times: 20 ns Input Pulse Levels: 0.8 to 2.2 V							
Timing Measurement Reference Level: Inputs: 1.0 V and 2.0 V Outputs: 0.8 V and 2.0 V							
Program, Program Verify and Program Inhibit Mode $\mathbf{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+\mathbf{5 V} \pm \mathbf{5} \% ; \mathrm{V}_{\mathrm{PP}}=+25 \mathrm{~V} \pm \mathbf{1 V}$							
Parameter	Symbol	Linits			Units Test Conditions		
		Min	Typ				Max
Address Setup Time	$t_{4 s}$	2			$\mu 8$		
OE Setup Time	$t_{\text {ces }}$	2			$\mu \mathrm{s}$		
Date Setup Time	t_{DS}	2			$\mu \mathrm{s}$		
Address Hold Time	$\mathrm{t}_{\text {AH }}$	0			$\mu 8$		
OE Hold Time	$\mathrm{t}_{\text {OEH }}$	2			$\mu 8$		
Data Hold Time	$\mathrm{t}_{\text {DH }}$	2			μ		
Output Enable to Output Float Delay	t_{DF}	0		120	ns		
Data Valld from CE	$t_{\text {dv }}$			1	$\mu \mathrm{B}$	$\overline{C E}=V_{u}, \overline{O E}=V_{u}$	
Program Pulse Width	$t_{\text {pw }}$	45	50	55	ms		
Program Pulse Rise Time	$\mathbf{t}_{\text {Pat }}$	50			$n 8$		
V_{Pp} Recovery Tlme	$t_{\text {vR }}$	2			$\mu 8$		

Test Conditions -
Input Pulse Levels $=0.8 \mathrm{~V}$ to 2.2 V
Input Timing Reference Level $=1.0 \mathrm{~V}$ and 2.0 V
Output Tlming Reference Level $=0.8 \mathrm{~V}$ and 2 V

Function

The μ PD2732 operates from a single +5 V power supply, making it ideal for microprocessor applications.
Programming of the μ PD2732 is achieved with a single 50 ms TTL pulse. Total programming time for all 32,768 bits is only 210 sec . Due to the simplicity of the programming requirements, devices on boards and in systems may be easily programmed without any special programmer.
The μ PD2732 features a standby mode which reduces the power dissipation from a maximum active power dissipation of 788 mW to a maximum standby power dissipation of 158 mW . This results in an 80% savings with no increase in access time.

Erasure of the μ PD2732 programmed data can be attained when exposed to light with wavelengths shorter than approximately 4,000 Angstroms (\AA). It should be noted that constant exposure to direct sunlight or room level fluorescent lighting could erase the μ PD2732. Consequently, if the μ PD2732 is to be exposed to these types of lighting conditions for long periods of time, its window should be masked to prevent unintentional erasure.
The recommended erasure procedure for the $\mu \mathrm{PD} 2732$ is exposure to ultraviolet light with wavelengths of 2,537 Angstroms (\mathcal{A}). The integrated dose (i.e., UV intensity x exposure time) for erasure should be not less than $15 \mathrm{~W}-\mathrm{sec}^{2} / \mathrm{cm}^{2}$. The erasure time is approximately 15 to 20 minutes using an ultraviolet lamp of $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ power rating.
During erasure, the μ PD2732 should be placed within 1 inch of the lamp tubes. If the lamps have filters on the tubes, the filters should be removed before erasure.

Operation

The five operation modes of the μ PD2732 are listed in Table 1. In READ mode, the only power supply required is a +5 V supply. During programming, all inputs are TTL levels except for $0 E / V_{\text {PP }}$ which is pulsed from TTL level to 25 V .

Read Mode

When $\overline{C E}$ and $\overline{O E} / V_{\text {pp }}$ are at low (0) level, READ is set and data is available at the outputs after $t_{{ }_{O E}}$ from the falling edge of $\overline{O E}$ and $\mathrm{t}_{A C C}$ after setting the address.

Standby Mode

The μ PD2732 is placed in standby mode with the application of a high (1) level TTL signal to the CE input. In this mode, the outputs are in a high impedance state, independent of the $\overline{O E} / V_{\text {pp }}$ input. The active power dissipation is reduced by 80% from 788 mW to 158 mW .

Programming

Programming begins with erasing all data and consequently having all bits in the high (1) level state. Data is then entered by programming a low (0) level TTL signal into the chosen bit location.
The $\mu \mathrm{PD} 2732$ is placed in programming mode by applying a high (1) level TTL signal to the $\overline{C E}$ and with $\overline{O E} / N_{\text {PP }}$ at +25 V . The data to be programmed is applied to the output pins in 8-bit parallel form at TTL levels.
Any location can be programmed at any time, either individually, sequentially or at random.
When multiple μ PD2732s are connected in parallel, except for $\overline{C E}$, individual μ PD2732s can be programmed by applying a low (0) level TTL pulse to the CE input of the desired μ PD2732 to be programmed.
Programming of multiple μ PD2732s in parallel with the same data is easily accomplished. All the like inputs are tied together and programmed by applying a low (0) level TTL pulse to the CE inputs.

Programming Inhibit Mode

Programming multiple μ PD2732s in parallel with different data is easier with the program inhibit mode. Except for $\overline{C E}$, all like inputs (including $\overline{\mathrm{OE}}$) of the parallel $\mu \mathrm{PD} 2732$ s may be common. Programming is accomplished by applying the TTL-level program pulse to the CE input with $O E / V_{P P}$ at +25 V . A high (1) level applied to the $\overline{\mathrm{CE}}$ of the other $\mu \mathrm{PD} 2732$ will inhibit it from being programmed.

Read Mode

Notes: (1) $\overline{O E}$ may be delayed up to $t_{A C C}-t_{\mathrm{t}_{\mathrm{E}}}$ after the falling edge of $\overline{\mathrm{CE}}$ for read mode without impact on $\mathrm{t}_{\mathrm{ACC}}$. (2) $t_{D F}$ is specified from $\overline{O E}$ or $\overline{C E}$, whichever occurs first.

Program Mode (1)

।Note: (1) $0.1 \mu \mathrm{~F}$ capacitor must be connected between $\overline{\mathrm{OE}} / \mathrm{V}_{\mathrm{Pp}}$ and ground to suppress spurious voltage transients which may damage the device.

4PD2732

Program Verify Mode

A verify should be performed on the programmed bits to determine that the data was correctly programmed. The program verify can be performed with $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}} / \mathrm{V}_{\mathrm{PP}}$ at low (0) levels.

Output Deselect

The data outputs of two or more μ PD2732s may be wireORed together to the same data bus. In order to prevent bus contention problems between devices, all but the selected μ PD2732s should be deselected by raising the $\overline{\mathrm{OE}} / \mathrm{V}_{\mathrm{PP}}$ input to a TTL high.

Window Label

An amber-colored window label is provided unattached for the convenience of the user. The window label filters ultra-violet light frequencies, thus preventing accidental erasure or long-term degradation caused by ambient light or sunlight.

Package Outline μ PD2732 D (Cerdip)

Item	Mlilimeters	Inches
A	33.5 MAX.	1.32 MAX.
B	2.78	1.1
C	2.54	0.1
D	0.46 ± 0.10	0.018 ± 0.004
E	27.94	1.10
F	1.3	0.05
G	2.54 MIN.	0.1 MIN.
H	0.5 MIN.	0.020
1	5.0 MAX.	0.20
J	5.5 MAX.	0.216
K	15.24	0.60
L	14.66	0.58
M	0.25 ± 0.05	0.010 ± 0.002

Description

The μ PD2732A is a 32,768-bit (4096×8 bit) Ultraviolet Erasable and Electrically Programmable Read-Only Memory (EPROM). It operates from a single +5 V supply, making it ideal for microprocessor applications. It features an output enable control and offers a standby mode with an attendant 75\% savings in power consumption.
A distinctive feature of the μ PD2732A is a separate output control, output enable $(\overline{\mathrm{OE}})$ from the chip enable control (CE). The $\overline{\mathrm{O} E}$ control eliminates bus contention in multiplebus microprocessor systems. The μ PD2732A features fast, simple one-pulse programming controlled by TTL-level signals. Total programming time for all 32,768 bits is only 210 seconds.

Features

\square Ultraviolet erasable and electrically programmableAccess time - 250 ns maxSingle location programmingProgrammable with single pulseLow power dissipation: 150 mA max active current, 35 mA max standby currentInput/Output TTL-compatible for reading and programmingSingle +5 V power supply24-pin ceramic DIPThree-state outputs

Pin Configuration

$\mathrm{A}, 5^{1}$		$24 . \mathrm{v}_{\text {ccl }}(5)$
$\mathrm{A}_{6} \mathrm{C}_{2}$		${ }_{23} \mathrm{~A}{ }_{\text {a }}$,
$\mathrm{As}_{5} \mathrm{C}_{3}$		${ }_{22} \mathrm{BA}^{\text {a }}$
A, \square^{4}		$21 .{ }^{1}{ }_{1}$,
$\mathrm{A}_{4} \mathrm{C}_{5}$		20 OEE $N_{\text {pp }}$
$\mathrm{A}_{2} \mathrm{O}^{6}$	${ }_{2732 \mathrm{~A}}$	${ }^{19} \mathrm{~A}_{10}$
A, C_{7}		18 PCE
$\mathrm{A}_{0} \mathrm{C} 8$		17 O,
$\mathrm{O}_{0} \mathrm{Cl}^{9}$		16 O 。
0, C^{10}		${ }^{15} \mathrm{PO}_{5}$
$\mathrm{O}_{2} \mathrm{O} 11$		${ }^{14} 30$.
(OVGNDC ${ }^{12}$		${ }_{13} \mathrm{O}_{3}$

Pin Names

$\mathrm{A}_{0}-\mathrm{A}_{11}$				Addresses
OE			Output Enable	
$\mathrm{O}_{0} \mathrm{O}_{7}$				Data Outputs
CE				Chip Enable
PINS	$\overline{\mathbf{C E}}$	$\overline{\mathbf{O E}} / \mathrm{V}_{\mathrm{pP}}$	$\mathbf{v}_{\text {cc }}$	OUTPUTS
MODE				
Read	V_{1}	V_{1}	+5	Dout
Standby	$\mathrm{V}_{\mathbf{H}}$	Don't Care	+5	High Z
Program	V_{1}	$\mathrm{V}_{\text {Pp }}$	+5	D_{iN}
Program Verify	V_{1}	$\mathrm{V}_{\text {IL }}$	+5	$\mathrm{D}_{\text {out }}$
Program Inhibit	V_{H}	V_{pp}	$+5$	High Z

[^2]Block Dlagram

Absolute Maximumi Ratings* ${ }^{*}\left(\mathbf{T}_{\mathrm{a}}=\mathbf{2 5}^{\circ} \mathbf{C}\right)$

Operating Temperature $\ldots-10^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
Storage Temperature $\ldots-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Output Voltage -0.3 to +6 V
Input Voltage -0.3 to +6 V
Supply Voltage V_{cc}. -0.3 to +6 V

*COMMENT: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Capacitance
$\mathrm{T}_{\mathrm{a}}=\mathbf{2 5}{ }^{\circ} \mathrm{C} ; \mathbf{f}=\mathbf{1} \mathrm{MHz}$

Parameter	Symbol	Limits			UnIt	Test Conditions
		MIn	Typ	Max		
Input Capacitance Except OE/ ${ }_{\text {pp }}$	$C_{\text {in }}$			6	pF	$V_{\text {IN }}=\mathbf{O V}$
$\overline{O E} / V_{p D}$ Input Capacitance	$\mathrm{C}_{\text {in2 }}$			20	pf	$\mathbf{V} \mathbf{I M}=\mathbf{O V}$
Output Capacitance	$\mathrm{C}_{\text {out }}$			12	pF	$\mathrm{V}_{\text {OUT }}=\mathbf{O V}$

DC Characteristics

Read Mode and Standby Mode
$\mathrm{T}_{\mathrm{a}}=\mathbf{0}^{\circ} \mathrm{C} \sim \mathbf{7 0}{ }^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{cc}}=+\mathbf{5 V} \pm \mathbf{5 \%}$

Paramoter	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max.		
Output High Voltage	V_{OH}	2.4			V	$\mathrm{l}_{\text {OH }}=-400 \mu \mathrm{~A}$
Output Low Voltage	V_{ot}			0.45	V	$\mathrm{I}_{\mathrm{a}}=2.1 \mathrm{~mA}$
Input High Voltage	$V_{\text {H }}$	2.0		$\mathrm{V}_{\mathrm{cc}}+1!$		
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	-0.1		0.8	V	
Output Leakage Current	L_{10}			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUI }}=5.25 \mathrm{~V}$
input except $\overline{\mathrm{OE}} / \mathrm{V}_{\mathrm{PP}}$	$\mathrm{I}_{\mathrm{L},}$			10	$\mu \mathbf{A}$	$V_{i H}=5.25 \mathrm{~V}$
Leakage Current $\overline{O E} / V_{p p}$	$\mathrm{I}_{1 / 2}$			10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathbf{N}}=5.25 \mathrm{~V}$
$V_{\text {cc }}$ Standby	$\mathrm{I}_{\mathrm{cc} 1}$.			35	mA	$\overline{C E}=V_{H}, \overline{O E} / V_{P P}=V_{1 L}$
Current Active	$\mathrm{I}_{\mathrm{cc} 2}$			150	$m A$	$\overline{\mathrm{OE}} / \mathrm{V}_{p p}=\overline{\mathrm{CE}}=\mathrm{V}_{\mathbf{L}}$

μ PD2732A

Paramoter	Symbol	Limits			Unit	Tost Conditions
		Min	Typ	Max		
Input High Voltage	$V_{\text {H }}$	2.0		$V_{\text {cc }}+1$	V	
Input Low Voltage	$V_{\text {L }}$	-0.1		0.8	v	
Input Leakage Curient	IL_{1}			10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{L}}$ or $\mathrm{V}_{\text {IH }}$
Output High Voltage	$\mathrm{V}_{\text {OH }}$	2.4			v	$\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$
Output Low Voltage	V_{a}			0.45	v	$\mathrm{I}_{\mathrm{a}}=2.1 \mathrm{~mA}$
\mathbf{V}_{cc} Current	I_{cc}		85	150	mA	
V_{pp} Curront	$\mathrm{I}_{\text {pp }}$			30	mA	$\overline{\overline{C E}}=V_{L}, \overline{\overline{O E}}=V_{p p}$

AC Characteristics

Read Mode and Standby Mode

$\mathrm{T}_{\mathrm{a}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{cc}}=+\mathbf{5 V} \pm \mathbf{5} \%$

Parametor	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
Address to Output Delay	$t_{\text {acc }}$			250	ns	$\overline{C E}=\overline{\mathrm{E}} / \mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{L}}$
CE to Output Delay	$t_{\text {ce }}$			250	ns	$\overline{\mathrm{O} E}=\mathrm{V}_{1}$
Output Enable to Output Delay	t_{ob}	10.		100	ns	$\overline{C E}=\mathrm{V}_{\text {IL }}$
Output Enable High to Output Float	t_{of}	0		90	ns	CE $=\mathrm{V}_{\text {it }}$
Addreses to Output Hoid	t_{OH}	0			ns	$\mathbf{C E}=\mathbf{O E}=\mathrm{V}_{\mathrm{L}}$

Test Conditions -
Output Load: 1 TTL gate and $\mathrm{C}_{\mathrm{L}}=\mathbf{1 0 0} \mathrm{pF}$
Input Rise and Fall Tmes: 20 ns
Input Pulse Levels: 0.8 to 2.2 V
Timing Measurement Reference Level:
Inputs: 1.0V and 2.0 V
Outputs: 0.8 V and 2.0 V
Program, Program Verify and Program Inhibit Mode
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}, V_{\mathrm{CC}}=+\mathbf{5 V} \pm 5 \% ; V_{\mathrm{PP}}=+\mathbf{2 1 V} \mathrm{V}_{ \pm} \mathbf{0 . 5 V}$

Parameter	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
Address Setup Time	t_{43}	2			$\mu *$	
OE Setup Time	$\mathrm{t}_{\text {ors }}$	2			$\mu \mathrm{s}$	
Data Setup Time	t_{DS}	2			$\mu \mathrm{s}$	
Address Hold Time	$\mathrm{t}_{\text {AH }}$	0			$\mu 8$	
OE Hold Time	$\mathrm{t}_{\text {OEH }}$	2			μs	
Data Hold Time	t_{DH}	2			$\mu \mathrm{s}$	
Output Enable to Output Float Delay	$t_{\text {f }}$	0		130	ns	
Data Valid from CE	$t_{0 v}$			1	$\mu 8$	$\overline{C E E}=V_{1, ~}^{\text {OE }}=V_{1}$
Program Pulse Width	$t_{\text {PW }}$	45	50	55	ms	
Program Pulse Rise Time	$t_{\text {Prit }}$	50			ns	
V_{pp} Recovery Time	$t_{\text {va }}$	2			$\underline{\mu}$	

Test Conditions -
Input Pulse Levels $=\mathbf{0 . 8 V}$ to 2.2 V
Input Timing Reference Level $=1.0 \mathrm{~V}$ and 2.0 V
Output Timing Reference Level $=\mathbf{0 . 8 V}$ and 2 V
Input Rise and Fall TImes: 20 ns

Function

The μ PD2732A operates from a single +5 V power supply, making it ideal for microprocessor applications.
Programming of the μ PD2732A is achieved with a single 50 ms TTL pulse. Total programming time for all 32,768 bits is only 210 sec . Due to the simplicity of the programming requirements, devices on boards and in systems may be easily programmed without any special programmer.
The μ PD2732A features a standby mode which reduces the power dissipation from a maximum active power dissipation of 788 mW to a maximum standby power dissipation of 184 mW . This results in a 75% savings with no increase in access time.

Erasure of the μ PD2732A programmed data can be attained when exposed to light with wavelengths shorter than approximately 4,000 Angstroms (\mathcal{A}). It should be noted that constant exposure to direct sunlight or room level fluorescent lighting could erase the μ PD2732A. Consequently, if the μ PD2732A is to be exposed to these types of lighting conditions for long periods of time, its window should be masked to prevent unintentional erasure.
The recommended erasure procedure for the μ PD2732A is exposure to yltraviolet light with wavelengths of 2,537
Angstroms (\mathcal{A}). The integrated dose (i.e., UV intensity x exposure time) for erasure should be not less than $15 \mathrm{~W}-\mathrm{sec}^{2} / \mathrm{cm}^{2}$. The erasure time is approximately 15 to 20 minutes using an ultraviolet lamp of $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ power rating.
During erasure, the μ PD2732A should be placed within 1 inch of the lamp tubes. If the lamps have filters on the tubes, the filters should be removed before erasure.

Operation

The five operation modes of the μ PD2732A are listed in Table 1. In READ mode, the only power supply required is a +5 V supply. During programming, all inputs are TTL levels except for $\overline{\bar{E}} / V_{P P}$ which is pulsed from TTL level to 21V.

Read Mode

When $\overline{C E}$ and $\overline{O E} / V_{\text {Pp }}$ are at low (0) level, READ is set and data is available at the outputs after t_{OE} from the falling edge of $\overline{O E}$ and $\mathrm{t}_{\mathrm{AcC}}$ after setting the address.

Standby Mode

The μ PD2732A is placed in standby mode with the application of a high (1) level TTL signal to the $\overline{C E}$ input. In this mode, the outputs are in a high impedance state, independent of the $\overline{\mathrm{OE}} / \mathrm{V}_{\mathrm{PP}}$ input. The active power dissipation is reduced by 75% from 788 mW to 184 mW .

Programming

Programming begins with erasing all data and consequently having all bits in the high (1) level state. Data is then entered by programming a low (0) level TTL signal into the chosen bit location.
The μ PD2732A is placed in programming mode by applying a high (1) level TTL signal to the $\overline{\mathrm{CE}}$ and with $\overline{O E} / V_{\mathrm{Pp}}$ at +21 V . The data to be programmed is applied to the output pins in 8 -bit parallel form at TL levels.
Any location can be programmed at any time, either individually, sequentially or at random.
When multiple μ PD2732As are connected in parallel, except for $\overline{C E}$, individual μ PD2732As can be programmed by applying a low (0) level TTL pulse to the CE input of the desired μ PD2732A to be programmed.
Programming of multiple μ PD2732As in parallel with the same data is easily accomplished. All the like inputs are tied together and programmed by applying a low (0) level TIL pulse to the CE inputs.

Programming Inhlbit Mode

Programming multiple μ PD2732As in parallel with different data is easier with the program inhibit mode. Except for $\overline{\mathrm{CE}}$, all like inputs (including OE) of the parallel $\mu \mathrm{PD} 2732 \mathrm{As}$ may be common. Programming is accomplished by applying the TTL-level program pulse to the $\overline{C E}$ input with $\overline{O E} / V_{\text {pp }}$ at +21 V . A high (1) level applied to the $\overline{\mathrm{CE}}$ of the other μ PD2732A will inhibit it from being programmed.

Risad Mode

Notes: (1) $\overline{\mathrm{OE}}$ may be delayed up to $\mathrm{t}_{\mathrm{ACC}}-\mathrm{t}_{\mathrm{OE}}$ after the falling edge of $\overline{\mathrm{CE}}$ for read mode without impact on $\mathrm{t}_{\mathrm{ACC}}$. (2) t_{DF} is specified from $\overline{O E}$ or $\overline{C E}$, whichever occurs first.

Program Mode (1)

Note: (1) $0.1 \mu \mathrm{~F}$ capacitor must be connected between $\overline{\mathrm{CE}} / \mathrm{V}_{\text {PP }}$ and ground to suppress spurious voltage transients which may damage the device.

Program Verify Mode

A verify should be performed on the programmed bits to determine that the data was correctly programmed. The program verify can be performed with $\overline{C E}$ and $\overline{O E} / V_{P P}$ at low (0) levels.

Output Deselect

The data outputs of two or more μ PD2732As may be wireORed together to the same data bus. In order to prevent bus contention problems between devices, all but the selected μ PD2732As should be deselected by raising the $\overline{O E} / V_{\text {pp }}$ input to a TTL high.

Window Label

An amber-colored window label is provided unattached for the convenience of the user. The window label filters ultraviolet light frequencies, thus preventing accidental erasure or long-term degradation caused by ambient light or sunlight.

Package Outline

 μ PD2732AD (Cerdip)

Item	Millimeters	Inches
A	33.5 MAX	1.32 MAX
B	2.78	1.1
C	2.54	0.1
D	0.46 ± 0.10	0.018 ± 0.004
E	27.94	1.10
F	1.3	0.05
G	2.54 MIN	0.1 MIN.
H	0.5 MIN.	0.020
I	5.0 MAX .	0.20
J	5.5 MAX	0.216
K	15.24	0.60
\underline{L}	14.66	0.58
M	0.25 ± 0.05	0.010 ± 0.002

Descriptlon

The μ PD2764 is a 65,536 －bit（ 8192×8 bit）Ultraviolet Erasable and Electrically Programmable Read－Only Memory（EPROM）．It operates from a single +5 V sup－ ply，making it ideal for microprocessor applications．It features an output enable control and offers a standby mode with an attendant 67% savings in power con－ sumption．
A distinctive feature of the μ PD2764 is a separate out－ put control，output enable（OE）from the chip enable control（CE）．The OE control eliminates bus contention in multiple－bus microprocessor systems．The μ PD2764 features fast，simple one－pulse programming controlled by TTL－level signals．Total programming time for all 65,536 bits is 420 seconds．

Features

Ultraviolet erasable and electrically programmableAccess time－250 ns maxSingle location programmingProgrammable with single pulseLow power dissipation： 150 mA max active current， 50 mA max standby currentInput／Output TTL－compatible for reading and programmingSingle +5 V power supply28 －pin ceramic DIPThree－state outputs

Pin Configuration

$v_{\text {PP }}-1$	$\sqrt{28}$	Pvoc
$\mathrm{A}_{12}{ }^{2}$	27	7 pag
$\mathrm{A}_{7} \mathrm{CH}^{3}$	28	Pn．c．
$\mathrm{A}_{8} \mathrm{C}_{4}$	25	$\square^{A_{B}}$
$\mathrm{A}_{5} \mathrm{C}_{5}$	24	口ag
${ }_{4} \mathrm{C}^{8}$	23	A_{11}
$\mathrm{A}_{3} \mathrm{Cl}_{7}$	22	日気
$\mathrm{A}_{2} \mathrm{C}^{8}$	PPD ${ }^{21}$	$\square^{A_{10}}$
$\mathrm{A}_{1} \mathrm{E}^{\text {a }}$ ，	$\mu \mathrm{PD}{ }^{20}$	己ce
$A_{0} \mathrm{~A}_{1} 10$	2764	r_{7}
$0_{0} \square_{11}$	18	口os
$00_{1} \square^{12}$	17	\square^{0}
$\mathrm{O}_{2} \square^{13}$	${ }_{10}$	p^{0}
and ${ }^{14}$	15	g^{0}

Pin Names

[^3]Block Diagram

Absolute Maximum Ratings＊ $\mathbf{~}_{\mathbf{a}}=\mathbf{2 5}{ }^{\circ} \mathbf{C}$ ）
Operating Temperature ．．．．．．．．．．．．．．．．$-10^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
Storage Temperature ．．．．．．．．．．．．．．．$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Input Voltage ．．．．．．．．．．．．．．．．．．．．．．．．．．-0.6 to +6 V
Supply Voltage V_{cc} ．．．．．．．．．．．．．．．．．．．．．．．-0.6 to +6 V
Supply Voltage $\mathrm{V}_{\text {pp }}$ ．．．．．．．．．．．．．．．．．．．．．-0.6 to +22 V
＊COMMENT：Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause perma－ nent damage．The device is not meant to be operated under conditions outside the limits described in the opera－ tional sections of this specification．Exposure to absolute maximum rating conditions for extended periods may affect device reliability．

Capacitance
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$

Parameter	Symbol	Limits			Unit	Tost Conditions
		Min	Typ	Max		
Input Capacitance	$\mathrm{C}_{\text {N }}$			6	pF	$\mathrm{V}_{\text {is }}=\mathbf{o v}$
Output Capacltance	$\mathrm{C}_{\text {out }}$			12	pF	$\mathrm{V}_{\text {Out }}=\mathbf{0}$

DC Characteristics
Read Mode and Standby Mode
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{cc}}=+5 \mathrm{~V}_{ \pm} 5 \%$

Parameter	Symbol	Limits		Unit	Test Conditions
		Min．Typ．	Max．		
Output High Voltage	V_{OH}	2.4		V	$\mathrm{l}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$
Output Low Voltage	V_{0}		0.45	V	$\mathrm{I}_{\mathrm{OL}}=2.1 \mathrm{~mA}$
Input High Voltage	V_{1+}	2.0	$\mathrm{V}_{\mathrm{cc}}+1$ ！		
Input Low Voltage	V_{1}	－0．1	0.8	V	
Output Leakage Current	l_{L}		10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=5.25 \mathrm{~V}$
Input Leakage Current	I_{1}		10	$\mu \mathrm{A}$	$V_{\text {IN }}=5.25 \mathrm{~V}$
$V_{c c}$ Standby	$\mathrm{I}_{\mathrm{cc} 1}$		50	mA	$\overline{C E}=V_{1 H}$
Current Actlve	ICC		150	mA	$\overline{\mathrm{OE}}=\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{H}}$

Table 1 －Mode Selection

μ PD2764

DC Characteristics (Cont.)

Program, Program Verify and Program Inhiblt Mode
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{PP}}=+21 \mathrm{~V}_{ \pm} 0.5 \mathrm{~V}$

Parameter	Symbol	Umits			Unit	Test Conditions
		MIn.	Typ.	Max.		
Input High Voltage	$V_{\text {IH }}$	2.0		$\mathrm{V}_{\mathrm{cc}}+1$	V	
Input Low Voltage	$V_{\text {iL }}$	-0.1		0.8	V	
Input Leakage Current	I_{1}			10	$\mu \mathrm{A}$	$V_{1 H}=V_{1 L}$ or $V_{\text {IH }}$
Output High Voltage	$\mathrm{V}_{\text {OH }}$	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$
Output Low Voltage	V_{Ot}			0.45	V	$\mathrm{I}_{\mathrm{d}}=2.1 \mathrm{~mA}$
V_{cc} Current	I_{cc}			150	mA	
V_{pp} Current	IPP			30	mA	$\overline{\overline{C E}}=\mathrm{V}_{\text {LI }} / \overline{\text { PGM }}=\mathrm{V}_{\text {IL }}$.

AC Characteristics

Read Mode and Standby Mode
$\mathrm{T}_{\mathrm{a}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+\mathbf{7 0} 0^{\circ} \mathrm{C} \mathrm{V}_{\mathrm{cc}}=+\mathbf{5 V} \pm \mathbf{5} \%$

Parameter	\$ymbol	Umits			Unlt	Tost Conditions
		MIn	Typ	Max		
Address to Output Delay	$\mathrm{t}_{\text {ACG }}$			250	ne	$\overline{C E}=\overline{\mathbf{O E}}=\mathrm{V}_{1 L}$
CE to Output Delay	$t_{\text {ce }}$			250	ns	$\overline{\mathbf{O E}}=\mathrm{V}_{\mathrm{L}}$
Output Enable to Output Delay	$t_{\text {OE }}$	10		100	ns	$\overline{C E}=V_{\text {II }}$
Output Enable High to Output Fioat	$t_{\text {DF }}$	0		90	ns	$\overline{\mathbf{C E}}=\mathbf{V}_{\mathbf{L}}$
Address to Output Hold	t_{OH}	0			ns	$\overline{C E}=\overline{O E}=V_{1 L}$

Test Conditions -
Output Load: 1 TTL gate and $C_{L}=100 \mathrm{pF}$
Input Rise and Fall Times: 20 ns
Input Pulse Levels: 0.8 to 2.2 V
Timing Measurement Reference Level:
Inputs: 1.0V and 2.0V
Outputs: 0.8 V and 2.0 V
Program, Program Verify and Program Inhibit Mode $\mathrm{T}_{\mathrm{a}}=\mathbf{2 5}{ }^{\circ} \mathrm{C} \pm \mathbf{5}^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{cc}}=+\mathbf{5 V} \pm \mathbf{5} \% ; \mathrm{V}_{\mathrm{Pp}}=+\mathbf{2 1 V} \pm \mathbf{0 . 5 V}$

Parameter	Symbol	Limits			Unit	Test Conditions
		MIn	Typ	Max		
Address Setup Time	$t_{\text {As }}$	2			$\mu 3$	
OEً Setup Time	$\mathrm{t}_{\text {OES }}$	2			$\mu 8$	
Data Setup Time	t_{cs}	2			μs	
Address Hold Time	$t_{\text {AH }}$	0			$\mu 8$	
CEE Setup Time	$t_{\text {ces }}$	2			μs	
Data Hold Time	t_{DH}	2			$\mu 8$	
Chip Enable to Output : Float Delay	t_{DF}	0		130	ns	
Data Valld from $\overline{O E}$	t_{OE}			150	ns	
Program Puise Width	$\mathbf{t}_{\text {pw }}$	45	50	55	ms	
$V_{\text {PP }}$ Setup Time	tvs	2			$\mu 8$	

Test Conditions -
Input Pulse Levels $=0.8 \mathrm{~V}$ to 2.2 V
Input Timing Reference Level $=1.0 \mathrm{~V}$ and 2.0 V
Output Timing Reference Level $=0.8 \mathrm{~V}$ and 2 V
Input Rise and Fall Times: 20 ns

Function

The μ PD2764 operates from a single +5 V power supply, making it ideal for microprocessor applications.
Programming of the μ PD2764 is achieved with a single
50 ms TTL pulse. Total programming time for all 65,536 bits is 420 sec. Due to the simplicity of the programming requirements, devices on boards and in systems may be easily programmed without any special programmer.
The μ PD2764 features a standby mode which reduces the power dissipation from a maximum active power dissipation of 788 mW to a maximum standby power dissipation of 262 mW . This results in a 67% savings with no increase in access time.

Erasure of the μ PD2764 programmed data can be attained when exposed to light with wavelengths shorter than approximately 4,000 Angstroms $(\mathbb{\AA})$. It should be noted that constant exposure to direct sunlight or room level fluorescent lighting could erase the μ PD2764. Consequently, if the μ PD2764 is to be exposed to these types of lighting conditions for long periods of time, its window should be masked to prevent unintentional erasure.
The recommended erasure procedure for the μ PD2764 is exposure to ultraviolet light with wavelengths of 2,537 Angstroms (\AA). The integrated dose (i.e., UV intensity x exposure time) for erasure should be not less than $15 \mathrm{~W}-\mathrm{sec} / \mathrm{cm}^{2}$. The erasure time is approximately 15 to 20 minutes using an ultraviolet lamp of $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ power rating.
During erasure, the μ PD2764 should be placed within 1 inch of the lamp tubes. If the lamps have filters on the tubes, the filters should be removed before erasure.

Operation

The five operation modes of the μ PD2764 are listed in Table 1. In READ mode, the only power supply required iss a +5 V supply. During programming, all inputs are TTL levels except for $V_{p p}$ which is pulsed from TTL level to 21 V .

Read Mode

When $\overline{C E}$ and $\overline{O E}$ are at low (0) level, READ is set and data is available at the outputs after toe from the falling edge of $\overline{O E}$ and $t_{A C C}$ after setting the address.

Standby Mode

The μ PD2764 is placed in standby mode with the application of a high (1) level TTL signal to the $\overline{C E}$ input. In this mode, the outputs are in a high impedance state, independent of the $\overline{O E}$ input. The active power dissipation is reduced by 67% from 788 mW to 262 mW .

Programming

Programming begins with erasing all data and consequently having all bits in the high (1) level state. Data is then entered by programming a low (0) level TTL signal into the chosen bit location.
The $\mu \mathrm{PD} 2764$ is placed in programming mode by applying a low (0) level TTL signal to the $\overline{C E}$ and $\overline{P G M}$ with $V_{P P}$ at +21 V . The data to be programmed is applied to the output pins in 8-bit parallel form at TTL levels.
Any location can be programmed at any time, either individually, sequentially or at random.
When multiple μ PD2764s are connected in parallel except for $\overline{\mathrm{CE}}$, individual $\mu \mathrm{PD} 2764$ s can be programmed by applying a low (0) level TTL pulse to the PGM input of the desired μ PD2764 to be programmed.
Programming of multiple μ PD2764s in parallel with the same data is easily accomplished. All the like inputs are tied together and programmed by applying a low (0) level TTL pulse to the $\overline{\mathrm{PGM}}$ inputs.

Programming Inhibit Mode

Programming multiple μ PD2764s in parallel with different data is easier with the program inhibit mode. Except for $\overline{C E}$ (or $\overline{\mathrm{PGM}}$) all like inputs (including $\overline{\mathrm{OE}}$) of the parallel μ PD2764s may be common. Programming is accomplished by applying a low (0) TTL-level program pulse to the CE (or $\overline{P G M}$) input with $V_{P P}$ at +21 V . A high (1) level applied to the $\overline{\mathrm{CE}}$ (or $\overline{\mathrm{PGM}}$) of the other

Read Mode

Notes: (1) $\overline{\mathrm{OE}}$ may be delayed up to $\mathrm{t}_{\mathrm{ACC}}-\mathrm{t}_{\mathrm{OE}}$ after the falling edge of $\overline{\mathrm{CE}}$ for read mode without impact on $\mathrm{t}_{\mathrm{ACC}}$. (2) $t_{D F}$ is specified from $\overline{O E}$ or $\overline{C E}$, whichever occurs first.

Program Mode

Program Verify Mode

A verify should be performed on the programmed bits to determine that the data was correctly programmed. The program verify can be performed with $\overline{C E}$ and $\overline{O E}$ at low (0) levels and PGM at high (1) level.

Output Deselect

The data outputs of two or more μ PD2764s may be wire-ORed together to the same data bus. In order to prevent bus contention problems between devices, all but the selected μ PD2764s should be deselected by raising the CE input to a TTL high. OE input should be made common to all devices and connected to the READ line from the system control BUS. These connections offer the lowest average power consumption.

Package Outline μ PD2764 D (Cerdip)

Item	Millimeters	Inches
A	37.7 MAX.	1.48 MAX.
B	2.78	1.1
C	2.54	0.1
D	0.46 ± 0.10	0.018 ± 0.004
E	27.94	1.10
F	1.3	0.05
G	2.54 MIN.	0.1 MIN.
H	0.5 MIN.	0.020
I	5.0 MAX.	0.20
J	5.5 MAX.	0.216
K	15.24	0.60
L	14.66	0.58
M	0.25 ± 0.05	0.010 ± 0.002

NEC NECE Electronics U.S.A. Inc.

Electronic Arrays Division

MEMORIES

ELECTRONIC ARRAYS MASK PROGRAMMED READ ONLY MEMORIES

Custom ROM Verification Code Procedure

ROMs the Right Way

You will select well if you choose Electronic Arrays as your supplier of mask programmed ROMs.

Every ROM is like a custom LSI circuit. It's designed to store a bit pattern unique to your requirements. No one else can use your ROM. And you depend upon your ROM supplier to meet his commitments regarding delivery and quality. A ROM manufacturer must therefore be particularly cognizant of the custom nature of the business if he is to be effective in meeting customer needs.

At EA, we have the "ROM PERSPECTIVE", developed over a ten-year period of supplying custom ROMs. By utilizing our Mother Lot contact mask programming technique, and local domestic assembly, EA ships quality ROMs with fast, reliable delivery.

We also apply our knowledge to make verifying your custom ROM patterns a snap. With your complete input, as described within, we'll read out, duplicate, and send a verification package on its way back to you in 24 hours-every time.

NEC Electronics U.S.A. Inc. Electronic Arrays Division

NEC

A. VERIFICATION SEQUENCE SUMMARY

The diagram on page 3 details the procedure used by EA to verify your bit patterns. At your end, the sequence is simple. EA does all the hard stuff.

1. You ship to EA UV EPROMs or ROMs containing your custom bit patterns.
2. Upon receipt, EA reads out your patterns onto our PDP-11/70 computer file.
3. EA programs UV EPROMs the same or electrically similar to those you submitted, using the stored program data base from our computer.
4. A complete octal printout of your code is generated, including designation of chip selects and any custom marking required.
5. The EA-programmed UV EPROMs and printout are shipped to you for verification and approval.
6. Upon your receipt and verification testing, you notify us by phone, TWX, or mail of your approval. This starts the clock as regards delivery of first samples and all subsequent deliveries.
7. You sign and return to EA the cover sheets attached to each ROM code printout in the space indicated. Please don't forget this last important detail.

B. SENDING COMPLETE DATA

Complete information is necessary from you to avoid urinecessary verification delays. The following checklist should be reviewedfor all custom patterns sent to EA.:

1. Have you included the desired chip select logic levels for each ROM? This information cannot be included in the UV EPROM, and must be furnished separately. We cannot proceed without it-it is an integral part of the ROM pattern data we require (see C below for details).2. If your are sending multiple UV EPROMs for a single: ROM (e.g., two 16 K UV EPROMs for one 32 K ROM), be sure each part is clearly marked with the starting address for that section of the ROM. It is best to include this address marking on the UV EPROM package itself via a sticker.3. Are the UV EPROMs themselves electrically sound? Double check them to ensure they program and read out properly with the right levels.4. Do you require your own marking on the package? W's'll be happy to custom-mark your ROMs for you if you will supply us with your desired marking. We've up to 20 digits available on one line for your marking preference.5. Are the devices properly packaged for shipment to EA? To avoid accidental UV erasure, be sure the quartz window is covered. A small, gummed label is good protection. And we receive many UV EPROMs in a "CRUSHED" condition-often irreparable. Do not ship in an envelope. Ensure the UV EPROMs are packed in a rigid container to physically protect the leads, and with conductive foam to protect them from static charge. Then ship in a jiffy bag, or better yet, a small box with protective packing.
2. Can you include duplicate master UV EPROMs (or ROMs)? This allows EA to use a checksum to attest to readout integrity and reduces the potential error rate. If you can't send duplicate masters, please include a checksum for each individual UV EPROM (or ROM). The more redundancy we receive, the more rigorous EA can be in each verification step.
3. If you wish to receive your masters back with their original program, please include blank UV EPROMs for EA to program for verification. This will facilitate our turn time, and allow us to return your masters with the verification EPROMs.
4. If you are ordering the EA8332 32K ROM, have you indicated whether you want the A or B pinout version? The pinout is irreversibly fixed simultaneous with the bit pattern during contact mask, and must be specified by you. Reference the front of the EA8332A/B data sheet for pinout option details.

C. CHIP SELECT PROGRAMMING

Every EA ROM has programmable chip selects which are permanently programmed into the ROM along with the bit pattern during wafer fabrication.
These chip selects are available for your convenience since they allow multiple ROMs to be utilized in parallel without external ROM select logic. You must furnish EA with the desired chip selection logic level for each CS pin on your ROM concurrent with the submission of the bit pattern.
See diagram on page 3. Note that the customer role is kept to a minimum in the overall verification effort. You need only:

1. Supply the EPROMs, CHIP SELECT, SPECIAL MARKING, CHECKSUM.
2. Test the product returned to you for verification.
3. Sign and return the approval sheet attached to each printout.

Prior to order entry into customer service, we of course also require your P.O. number, prices, quantity, and requested delivery schedule. All delivery commitments are based upon EA receipt of code verification and complete order entry data.

5

Each chip select (CS) must be programmed to be selected by either a logic 1 or logic 0 . Reference the ROM data sheet "DC Operating Characteristics" to correctly interpret the logic 1 (high) and logic 0 (low) voltage conditions when determining your chip select options.
Chip selects must be specified for the following pins on EA RCMs:

ROM TYPE	SIZE
EA8308A	$8 K$
EA8316E	$16 K$
EA8332A	$32 K$
EA8332B	$32 K$
EA8364	$64 K$

CHIIP SELECT PINS	TOTAL
18,20	2
$18,20,21$	3
20,21	2
18,20	2
20	1

D. USING UV EPROMS FOR CODE TRANSMITTAL

EA receives the vast majority of its customer codes by way of customer-programmed UV EPROMs. You may utilize any of the following UV EPROMs to transmit codes to EA:

UV EPROM	SIZE
2708	8 K
$2716 / 2516$	16 K
$2732 / 2532$	32 K
$2764 / 2564$	64 K

To transmit a code for this ROM: EA8308A (8K ROM)	Use these UV EPROMs: One 2708
EA8316E (16K ROM)	Two 2708's or One 2716
EA8332A/B (32K ROM)	Four 2708's or Two 2716's or One 2732
EA8364 (64K ROM)	Eight 2708's or Four 2716's or Two 2732's or One 2764

When submitting multiple UV EPROMs for one ROM code, remember to mark the starting address on each EPROM (B-2. above).

E. EXPEDITED VERIFICATION

If distances are great and/or time is of the absolute essence, EA has an alternate verification procedure you may use:
UV EPROMs- Send EA 3 identically programmed UV EPROMs or sets of UV EPROMs. EA will read out all 3 and test for a match. If a match is obtained, EA will proceed with masking to produce ROMs identical to the 3 received. A printout will be furnished, but for information purposes only, not approval. The customer is responsible for the integrity of the patterns as submitted.
MASKED ROMs- Send 2 masked ROMs or sets of ROMs. EA will test for a match. If a match is obtained, EA will proceed with masking to produce ROMs identical to those received. A printout will be furnished, but for information purposes only, not approval. EA guarantees their ROMs to contain the identical pattern as the ROMs EA received.

F. ALTERNATE CODE TRANSMITTAL METHODS

There are acceptable alternatives to transmitting custom ROM codes to EA other than via UV EPROMs or ROMs. Codes may be transmitted via paper tape, punched cards, or other acceptable mediums. Standard octal and hexadecimal formats are currently available for use with punched computer cards or paper tape. Other non-standard formats may be acceptable provided adequate descriptions and compatible equipment are available. Contact EA sales personnel for further details and factory response.

Electronic Arrays Division, 550 East Middlefield Road, Mountain View, CA 94043, Telephone (415) 964-4321, TWX 910-379-6985

Description

The μ PD2316E/EA8316E is a 16,384 -bit Read Only Memory utilizing MOS N-channel silicon gate technology. The device is completely static in operation, organized as 2,048 words by 8 bits, and operates from a single +5 volt power supply. All inputs and outputs are fully TTL compatible. It has three programmable chip select inputs and three-state outputs that allow memory expansion to 16,384 words by 8 bits without the use of any external logic. Programming of the device is accomplished by a custom mask during fabrication. The EA8316E pin-out is compatible with 2708 and 2716 EPROMs and can replace two 2708s or one 2716 for production. The EA8316E is available to two access time specifications, the standard 450 ns or the faster 350 ns version.

Features

Two Fast Access Time Options

- 450 ns Maximum, EA8316E
- 350 ns Maximum, EA8316E-5

All Outputs Drive 2 TTL Loads Directly
All Inputs TTL Compatible
Single +5 Volt Supply with $\pm 5 \%$ Tolerance Three-State Outputs for Direct Bus Compatibility Three Programmable Chip Select Inputs
Pin-Compatible to 2708 and 2716 EPROMs Fully Static Operation
All Inputs Protected Against Static Charge

PIn Configuration

Block Dlagram

Absolute Maximum Ratings*
$\mathrm{T}_{\mathrm{a}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{f}=\mathbf{1} \mathbf{~ M H z}$
Voltage on All Inputs, Outputs, and Supply Pins $\quad-0.5$ to 7.0 V
Maximum Junction Temperature $\quad+150^{\circ} \mathrm{C}$
$\theta_{J \mathrm{JC}}$ (Hermetic DIP) $+65^{\circ} \mathrm{C} / \mathrm{W}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
*COMMENT: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Capacitance

$\mathbf{T}_{\mathrm{a}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{f}=\mathbf{1 M H z}$. All pins at 0 volts.

Parsmeter	Symbol	Limits			Test Conditions
		MIn	Typ	Max	
Input Capacitance	$C_{\text {IN }}$		5pF	7pF	$\mathrm{V}_{\mathbf{I N}}=\mathbf{O V}$
Output Capacitance	$\mathrm{C}_{\text {OUT }}$		7pF	10pF	$V_{\text {OUT }}=\mathbf{O V}$

DC Characterlstics

$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}$ and $\mathrm{VCC}=5 \mathrm{~V}$

Parameter	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
Input "Low', Voltage	$\mathrm{V}_{\text {IL }}$	-0.5		0.8	V	
Input "High" Voltage	V_{IH}	2.0		$\mathrm{V}_{\mathrm{CC}}+1$	V	
Input Load Current	ILL			10	$\mu \mathrm{A}$	$\mathrm{V}_{1 \mathrm{~N}}=0$ to +5.25 V
Output "Low" Voltage	V_{OL}			0.40	V	$\mathrm{I}_{\mathrm{OL}}=+3.2 \mathrm{~mA}$
Output 'Hlgh', Voltage	V_{OH}	2.4			V	$\mathrm{IOH}^{\text {O }}$ - $200 \mu \mathrm{~A}$
Output Leakage Current	${ }^{\text {L }} \mathrm{O}$			10	$\mu \mathrm{A}$	Chip disabled, $V_{\text {OUT }}=+0.4 \mathrm{~V}$ to $V_{C C}$
Power Supply Current	${ }^{\text {c }}$ c		60	90	mA	All inputs + 5.25V, Outputs unioaded

$T_{a}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Parameter	Symbol	EA8316E-5		EAB316-E		Unit
		M / n	Max	MIn	Max	
Address to Output Delay Time	${ }_{\text {t }}$ ACC		350		450	ns
Chip Select to Output Delay Time	${ }^{\text {t }} \mathrm{CO}$		150		150	ns
Chip Deselect to Output Data Float Time	${ }^{1} \mathrm{DF}$		100		100	ns
Previous Data Valld After Address Change	${ }^{\text {t }} \mathrm{OH}$	20		20		$n 8$

AC Test Conditions

Input Pulse Rise and Fall Times .20 ns
Timing Measurement Reference
Levels: $\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{OH}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{OL}}, \mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$.

Output Load (AC): 1 TTL Load + 100 pF .

Standard Conditions

The characteristics below apply for the following standard test conditions, unless otherwise noted. All voltages are referenced to ground. Positive current flows into the referenced pin.

$$
\begin{array}{ll}
\text { Output Load (AC): } & 2 \text { Series } 74 \mathrm{TTL}, \mathrm{CL}=100 \mathrm{pF} \\
& 0^{\circ} \mathrm{C} \leq t \mathrm{~A} \leq+70^{\circ} \mathrm{C} \\
& +4.75 \mathrm{~V} \leq \mathrm{V} C \mathrm{C} \leq+5.25 \mathrm{~V}
\end{array}
$$

Timing Waveform

Definitions

Access Time, tacc
Access time is the maximum time between the application of a valid Address and the corresponding valid Data Out.
Output Hold Delay, toH
Output hold delay is the minimum time after an Address change that the previous data remains valid.
Output Enable Time, tco
Output enable time is the maximum delay between Chip Selects becoming true and Output Data becoming valid.

Output Disable Time, tDF

Output disable time is the delay between Chip Selects becoming false and output stages going to the high impedance state.

Gustom Programming Instructions
 Eilt Pattern Submittal Options

The customer's unique bit pattern can be submitted to Electronic Arrays via several convenient methods such that it is easy for the ROM customer, and readily verifiable for accuracy. The bit pattern can be delivered to EA contained within:

1. One programmed 2716 EPROM
2. Two programmed 2708 EPROMs
3. One customer-programmed 8316E ROM
4. Punched computer cards per the detail format shown below.

Elit Pattern Verification

For customer verification of the submitted bit patterns, several alternatives are also available. The following are those found by experience to be most expeditious.

Customer Pattern

Submitted Via:

1. One programmed 2716
2. Two programmed 2708s

Verification Routine

Customer sends EA one additional erased 2716. EA programs the spare 2716 with the pattern data base extracted from the programmed 2716, and returns to customer for pattern verification. Customer sends EA two additional erased 2708s. EA programs the spare 2708 s with the pattern data base extracted from the programmed 2708 s and returns to customer for pattern verification.

Typical Characteristics

Customer Pattern

Submitted Via:
3. One mask-programmed 8316E (or one 16K ROM)
4. Punched computer cards

Verification Routine

Customer sends EA one erased 2716 or two erased 2708s. EA programs these EPROMs with the pattern data base extracted from the 8316 and returns to the customer for pattern verification. After extracting the bit pattern from the card deck, EA's data base is used to punch a new deck. This deck, plus a complete printout, is returned to customer for pattern verification.

In all cases a computer printout of the complete bit pattern is also available upon customer request. The original $2716 \mathrm{~s}, 2708 \mathrm{~s}$, or 8316 s are retained by EA as the original bit pattern source data, at least until the first sample EA8316Es are tested and customerapproved.
The data base tape derived from the above source devices or card deck is utilized in turn to produce a pattern generator tape and ROM test pattern. The pattern generator tape drives EA's automatic pattern generation mask equipment, resulting in mask tooling that contains the customer's unique one/zero pattern. The ROM test pattern is used at production sort and final test to test each device 100% to the complete custom bit pattern.

Chip Select Level Programming

$\mathrm{CS}_{1}, \mathrm{CS}_{2}$, and CS_{3} must be programmed by the customer to be selected by either a logic 1 or a logic 0 level. Accordingly, the customer must furnish EA with the desired chip selection level (1 or 0 only) for CS_{1}, CS_{2}, and CS_{3}, concurrent with submission of the bit pattern. The CS input logic levels are permanently established within each ROM in the same manner as the bit pattern.
Punched Computer Card Instructions
This technique requires that the customer supply EA with a deck of standard 80 -column computer cards describing the data to be stored in the ROM array.

Title Card

All customer ROM "Data Cards" must be preceded by a "Title Card" which contains all unique information pertaining to that ROM other than the ROM data content. The required punching format is as follows:

Card	
Column No.	Card Contents
1	*(Asterisk)
2-19	Customer Name
20-21	Blank (no punch)
22-23	Month; e.g., 05 for May
24	/(slash)
25-26	Day of the month; e.g., 04 for the 4th day
27	/(slash)
28-29	The last two digits of the year
30-31	Blank
32-36	ROM Type (i.e., 8316E)
37	Blank
38-41	$\mathrm{CS}_{1}=$
42	CS_{1} level desired for chip selection (1 or 0 only)
43	Blank
44-47	$\mathrm{CS}_{2}=$
48	CS_{2} level desired for chip selection (1 or 0 only)
49-54	Blank
55-80	Customer part number

Alternative Data File Formats

In addition to the standard EA octal format, it is possible to furnish data to EA in other formats if prearranged with the factory. A standard hexadecimal format is currently available. Other nonstandard formats may be acceptable. Contact EA sales personnel.

Data Cards

The required punching format is described below. All addresses must be included with their outputs defined. That is, no assumptions are made regarding the bit configuration of undefined outputs. Therefore, the customer must submit cards defining the entire ROM contents, when portions of the ROM may be unused (zero).
$\substack{\text { Card } \\ \text { Column No. } \\ 1-4 \\ 5-7 \\ 8-10 \\ 11-13 \\-\\-50-52 \\ 53-59 \\ 60-80}$

Octal Pattern Format

 Card ContentsPunch a 4 -digit octal number representing the input address for the first of the 16 output words appearing on this card (this is the initial address).
Punch a 3-digit octal number representing the outputs for the input address specified in column 1-4.
Punch a 3 -digit octal number representing the outputs for the initial input address +1 .
Punch a 3 -digit octal number representing the outputs for the initial input address +2 .

60-80
二
Punch a 3-digit octal number representing the outputs for the initial input address + 15 .
Blank
Not used by EA. May contain customer identification.

Each card, therefore, carries (in octal) the initial input address for the 16 output words contained on that card, the 16 output words themselves (in octal) and the unique ROM number. The cards must be provided for all possible sequential address locations (in blocks of 16). A 2,048-word ROM therefore, requires 128 cards, with all 16 output words defined on each card.

بPD2316E/EA8316E

Package Outlines μ PD2316EC
 EA8316EC Plastic

μ PD2316ED
 EA8316ED
 Ceramic

Item	Millimeters	Inchos
A	33 Max	1.3 Max
B	2.53	0.1
C	2.54	0.1
D	0.5 ± 0.1	0.02 ± 0.004
E	27.94	1.1
F	1.5	0.059
G	2.54 Min	0.1 Min
H	0.5 Min	0.02 Min
I	5.22 Max	0.205 Max
J	5.72 Max	0.225 Max
K	15.24	0.6
L	13.2	0.55 Max
M	$0.25+0.10$	$0.01+0.004$

Item	Millimeters	Inches
A	30.78 Max	1.23 Max
B	1.53 Max	0.07 Max
C	2.54 ± 0.1	0.10 ± 0.004
D	0.46 ± 0.8	0.018 ± 0.03
E	27.94 ± 0.1	1.10 ± 0.004
F	1.02 Min	0.04 Min
G	3.2 Min	0.125 Min
H	1.02 Min	0.04 Min
1	3.23 Max	0.13 Max
J	4.25 Max	0.17 Max
K	15.24 Typ	0.60 Typ
L	14.93 Typ	0.59 Typ
M	0.25 ± 0.05	0.010 ± 0.002

Electronic Arrays Division

Description

The μ PD2332A/B/EA8332A/B is a 32,768 -bit fully static Read Only Memory utilizing MOS N-channel silicongate ion-implanted technology. It is organized 4096 words by 8 bits and operates from a single +5 volt power supply with a $\pm 10 \%$ supply tolerance. All inputs are TTL compatible, and the three-state outputs can drive 2 standard TTL loads each. It is unique in that both proposed JEDEC standard pin configurations are available. The 8332A incorporates CS2 and A_{11} on pins 21 and 18 respectively. The EA8332B incorporates CS_{2} and A_{11} on pins 18 and 21 respectively. Hence pin compatibility with other available 32 K ROMs is at user option. Both pinout versions are available to two access time specifications, the standard 450 ns or the faster 350 ns version.

Features

\square Two Fast Access Time Options

- 450 ns Max, EA8332
- 350 ns Max, EA8332-1

All Outputs Drive 2 TTL Loads Directly
All Inputs TTL CompatibleSingle +5 Volt Supply with $\pm 10 \%$ Tolerance Three-State Outputs for Direct Bus CompatibilityBoth Proposed JEDEC Pinouts Available

	Pin 18	Pin 21
EA8332A	A_{11}	CS_{2}
EA8332B	CS_{2}	$\mathrm{~A}_{11}$

Two Programmable Chip Select Inputs
Pin Compatible to EA2716 and 2732 EPROMs Fully Static Operation
All Inputs Protected Against Static Charge

Pin Configuration

Block Dlagram

Absolute Maximum Ratings*
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$
Voltage on All Inputs, Outputs, and Supply Pins $\quad-0.5$ to 7.0 V

Maximum Junction Temperature	$+150^{\circ} \mathrm{C}$
θ_{JC} (Hermetic DIP)	$-65^{\circ} \mathrm{C} / \mathrm{W}$

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
*COMMENT: Stresses more severe than those listed here may cause permanent damage to the device. This is a stress rating only, and operation of the device at any condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Standard Conditions

The characteristics below apply for the following standard test conditions, unless otherwise noted. All voltages are referenced to ground. Positive current flows into the referenced pin.

Output Load (AC): 2 Series 74 TTL, $C_{L}=100 \mathrm{pF}$

$$
\begin{aligned}
& 0^{\circ} \mathrm{C} \leqslant t \mathrm{~A} \leqslant+70^{\circ} \mathrm{C} \\
& +4.50 \mathrm{~V} \leqslant \mathrm{VCC} \leqslant+5.50 \mathrm{~V}
\end{aligned}
$$

DC Characteristics

Parameter	Symbol	Limits			Unit	Tost Conditions
		MIn	Typ	Max		
Input 'Low' Voltage	$V_{\text {IL }}$	-0.5		0.8	V	
Input'High'' Voltage	$\mathrm{V}_{\text {IH }}$	2.0		VCC^{+1}	v	
Input Load Current	ILL			10	$\mu \mathrm{A}$	$V_{\text {IN }}=0$ to 5.5 V
Output 'Low', Voltage	V_{OL}			0.40	V	$\mathrm{IOL}^{\prime}=+3.2 \mathrm{~mA}$
Output "High" Voltage	V_{OH}	2.4			V	$\mathrm{IOH}_{\mathrm{OH}}=-200 \mu \mathrm{~A}$
Output Leakage Current	LO			10	$\mu \mathrm{A}$	Chip Disabled $\begin{aligned} & V_{\text {OUT }}=+0.4 V \\ & \text { to } V_{C C} \end{aligned}$
Power Supply Current	${ }^{\prime} \mathrm{Cc}$		60	90	mA	All inputs +5.5V Output Unloaded

Parameter	Symbol	EA8332A/B-1		EAB332A/B		Unit
		Min	Max	Min	Max	
Address to Output Detay Time	tacc		350		450	ns
Chip Select to Output Delay Time	${ }^{\text {t }} \mathrm{CO}$		150		150	n8
Chip Deselect to Output Data Float Time	${ }^{\text {t }} \mathrm{FF}$		100		. 100	ns
Previous Data Valld After Address Change	${ }^{\text {toH }}$	20		20	\therefore	n¢

AC Test Conditions

Input Pulse Rise and Fall Times 20 ns Timing Measurement Reference

Output Load (AC): 1 TTL Load +100 pF
Capacitance
$\mathbf{T}_{\mathbf{a}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHzs}$ all pins at 0 volts.

Parametor	Symbol	Limits			Teat Conditions
		Min	Typ	Max	
Input Capacitance	$\mathrm{CIN}_{\text {N }}$		5pF	7pF	$\mathrm{V}_{\mathrm{iN}}=O \mathrm{~V}$
Output Capacitance	$\mathrm{COUT}^{\text {On }}$		7pF	10pF	$\mathrm{V}_{\text {OUT }}=\mathrm{OV}$

Timing Waveform

Definitlons

Access Time, tacc

Access time is the maximum time between the application of a valid Address and the corresponding valid Data Out.

Output Hold Delay, toH

Output hold delay is the minimum time after an Address change that the previous data remains valid.
Output Enable Time, tco
Output enable time is the maximum delay between Chip Selects becoming true and Output Data becoming valid.

Output Disable Time, tDF

Output disable time is the delay between Chip Selects becoming false and output stages going to the high impedance state.

Custom Programming Instructions Blt Pattern Submittal Options

The customer's unique bit pattern can be submitted to Electronic Arrays via several convenient methods such that it is easy for the ROM customer, and readily verifiable for accuracy. The bit pattern can be delivered to EA contained within:

1. Two programmed 2716 EPROMs
2. Four Programmed 2708 EPROMs
3. Two customer-programmed 8316E ROMs
4. Two customer-programmed 8316A ROMs
5. Punched computer cards per the detail format shown below.

Bit Pattern Verification

For customer verification of the submitted bit patterns, several alternatives are also available. The following are those found by experience to be most expeditious.

Customer Pattern
 Submitted Via:

1. Two programmed 2716 s
2. Four programmed 2708s
3. Two mask-programmed 8316Es (or 8316As)
4. Punched computer cards

Verification Routine

Customer sends EA two additional erased 2716s. EA programs the spare 2716s with the pattern data base extracted from the programmed 2716s, and returns to customer for pattern verification.
Customer sends EA four additional erased 2708s، EA programs the spare 2708s with the pattern data base extracted from the programmed 2708s and returns to customer for pattern verification.
Customer sends EA two erased 2716s or four erased 2708s. EA programs these EPROMs with the pattern data base extracted from the 8316s and returns to the customer for pattern verification.
After extracting the bit pattern from the card deck, EA's data base is used to punch a new deck. This deck, plus a complete printout, is returned to customer for pattern verification.
In all cases a computer printout of the complete bit pattern is also available upon customer request. The original $2716 \mathrm{~s}, 2708 \mathrm{~s}$, or 8316 s are retained by EA as the original bit pattern source data, at least until the first sample EA8332s are tested and customer approved. The data base tape derived from the above source devices or card deck is utilized in turn to produce a pattern generator tape and ROM test pattern. The pattern generator tape drives EA's automatic pattern generation mask equipment, resulting in mask tooling that contains the customer's unique one/zero pattern. The ROM test pattern is used at production sort and final test to test each device 100% to the complete custom bit pattern.

Typlcal Characterlstics

Customer Programming Instructions (Cont.) Chip Select Level Programming

$C S_{1}$ and $C S_{2}$ must be programmed by the customer to be selected by either a logic 1 or a logic 0 level. Accordingly, the customer must furnish EA with the desired chip selection level (1 or 0 only) for CS_{1} and CS_{2}, concurrent with submission of the bit pattern. The CS input logic levels are permanently established within each ROM in the same manner as the bit pattern.

Punched Computer Card Instructions

This technique requires that the customer supply EA with a deck of standard 80 column computer cards describing the data to be stored in the ROM array.

Title Card

All customer ROM "Data Cards" must be preceded by a "Title-Card" which contains all unique information pertaining to that ROM other than the ROM data content. The required punching format is as follows:

Card Column No. 1	Card Contents
$2-19$	*(Asterisk)
$20-21$	Customer Name
$22-23$	Blank (no punch)
24	Month; e.g., 0.5 for May
$25-26$	/(slash)
27	Day of the month; e.g., 04 for the 4th day
$28-29$	/(slash)
$30-31$	The last two digits of the year
$32-36$	Blank
37	ROM Type (i.e. 8332 A or 8332 B)
$38-41$	Blank 42
	CS $_{1}=$
	CS $_{1}$ level desired for chip selection
43	(1 or 0 only)
$44-47$	Blank
48	CS $_{2}=$
	CS level desired for chip selection
$49-54$	(1 or 0 only)
$55-80$	Blank
	Customer part number

Alternative Data File Formats

In addition to the standard EA octal format, it is possible to furnish data to EA in other formats if prearranged with the factory. A standard hexadecimal format is currently available. Other nonstandard formats may be acceptable, Contact EA sales personnel.

Data Cards

The required punching format is described below. All addresses must be included with their outputs defined. That is, no assumptions are made regarding the bit configuration of undefined outputs. Therefore, the customer must submit cards defining the entire ROM contents, when portions of the ROM may be unused (zero).

Octal Pattern Format

 Card ContentsPunch a 4-digit octal number representing the input address for the first of the 16 output words appearing on this card (this is the initial address).
Punch a 3-digit octal number representing the outputs for the input address specified in column 1-4.
Punch a 3-digit octal number representing the outputs for the initial input address +1 .
Punch a 3-digit octal number representing the outputs for the initial input address +2 .

60-80

Each card, therefore, carries (in octal) the initial input address for the 16 output words contained on that card, the 16 output words themselves (in octal) and the unique ROM number. The cards must be provided for all possible sequential address locations (in blocks of 16). A 4096 word ROM, therefore, requires 256 cards, with all 16 output words defined on each card.

μ PD2332A/B/EA8332A/B

Package Outlines μ PD2338AC/EA8338AC μ PD2338BC/EA8338BC Plastic

Item	Millimeters	Inches
A	33 Max	1.3 Max
B	2.53	0.1
C	2.54	0.1
D	0.5 ± 0.1	0.02 ± 0.004
E	27.94	1.1
F	1.5	0.059
G	2.54 Min	0.1 Min
H	0.5 Min	0.02 Min
I	5.22 Max	0.205 Max
J	5.72 Max	0.225 Max
K	15.24	0.6
L	13.2	0.55 Max
M	$0.25+0.10$	$0.01+0.004$
		-0.05

μ PPD2338AD/EA8338AD μ PD2338BD/EA8338BD Ceramic

Item	Millimeters	Inches
A	30.78 Max	1.23 Max
8	1.53 Max	0.07 Max
C	2.54 ± 0.1	0.10 ± 0.004
D	0.46 ± 0.8	0.018 ± 0.03
E	27.94 ± 0.1	1.10 ± 0.004
F	1.02 Min	0.04 Min
G	3.2 Min	0.125 Min
H	1.02 Min	0.04 Min
1	3.23 Max	0.13 Max
J	4.25 Max	0.17 Max
K	15.24 Typ	0.60 Typ
L	14.93 Typ	0.59 Typ
M	0.25 ± 0.05	0.010 ± 0.002

Description

The μ PD2364/EA8364 is a 65,536 -bit Read Only Memory utilizing MOS N-channel silicon gate technology. The device is completely static in operation, organized as 8192 words by 8 bits, and operates from a single +5 volt power supply. All inputs and outputs are fully TTL compatible. It has one programmable chip select input and three-state outputs that allow memory expansion to 16,384 words by 8 bits without the use of any external logic. Programming of the device is accomplished by a custom mask during fabrication. The EA8364 pin-out is compatible with 2716 and 2732 EPROMs and can replace two 2732 s or one 2564 for production.

Features

\square Two Fast Access Time Options

- 450 ns Maximum - EA8364
- 350 ns Maximum - EA8364-1

All Inputs and Outputs TTL Compatible
\square Single +5 Volt Supply with $\pm 10 \%$ Tolerance
Three-State Outputs for Direct Bus Compatibility
One Programmable Chip Select Input
Pin-Compatible to 2716, 2732, and 2564 EPROMs
Fully Static Operation
\square All Inputs Protected Against Static Charge

Pln Configuration

Block Dlagram

Absolute Maximum Ratings *

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{f}=\mathbf{1} \mathrm{MHz}$

Voltage on All Inputs, Outputs, and Supply Pins	-0.5 to 7.0 V
Maximum Junction Temperature	$+150^{\circ} \mathrm{C}$
日JC (Hermetic DIP)	$-65^{\circ} \mathrm{C} / \mathrm{W}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

*COMMENT: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Capacltance
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$

Parameter	Symbol	Limits			Test Conditons
		MIn	Typ	Max	
Input Capacitance	$\mathrm{C}_{\text {IN }}$			10 pF	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
Output Capacitance	COUT			15 pF	$\mathrm{V}_{\text {OUT }}=\mathrm{OV}$

DC Characteristics

$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$

Parameter	Symbol	Limits			Unit	Test Conditions
		Mhn	Typ	Max		
Input "Low' Voltage	V_{16}	-0.5		0.8	V	
Input "High' Voltage	$\mathrm{V}_{\text {IH }}$	2.0		VCC +1	V	
Input Load Current	I_{L}			10	$\mu \mathrm{A}$	$V_{1 N}=0$ to 5.5 V
Output "Low' Voltage	V_{OL}	.		0.4	V	$\mathrm{IOL}_{\mathrm{OL}}=+3.2 \mathrm{~mA}$
Output "High" Voltage	V_{OH}	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-200 \mu \mathrm{~A}$
Output Leakage Current	ILO			10	$\mu \mathrm{A}$	Chip Disabled $V_{\text {OUT }}=+0.4 V$ to VCC
Power Supply Current	${ }^{\prime} \mathrm{Cc}$		80	140	mA	All Inputs +5.5V Output Disabled
Power Supply Current	${ }^{1} \mathrm{C}$		100	160	mA	All inputs +5.5V Output Disabled 8364-1

$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Parameter	Symbol	EA8364-1		EA8364		Unit
		Min	Max	Min	Max	
Address to Output Delay Time	${ }^{\text {taCC }}$		350		450	ns
Chip Select to Output Delay Time	${ }^{\text {t }} \mathrm{CO}$		150		150	$n 8$
Chip Deselect to Output Data Float Time	${ }^{\text {t }} \mathrm{DF}$		150		150	ns
Previous Data Valid After Address Change	${ }^{\prime} \mathrm{OH}$	20		20		ns

AC Test Conditions

Input Pulse Rise and Fall Times
Timing Measurement Reference

$$
\text { Levels. } \mathrm{V}_{\mathrm{IH}}, \mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{OL}}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}
$$

Output Load (AC): 1 TTL Load + 100 pF

Standard Conditions

The characteristics below apply for the following standard test conditions, unless otherwise noted. All voltages are referenced to ground. Positive current flows into the referenced pin.

```
Output Load (AC): 1 Series 74 TTL, CL \(=100\) pF
    \(0^{\circ} \mathrm{C} \leqslant t \mathrm{~A} \leqslant+70^{\circ} \mathrm{C}\)
    \(+4.50 \mathrm{~V} \leqslant \mathrm{VCC} \leqslant+5.50 \mathrm{~V}\)
```


Timing Waveform

Definitlons

Access Time, taCC

Access time is the maximum time between the application of a valid Address and the corresponding valid Data Out.

Output Hold Delay, toH

Output hold delay is the minimum time after an Address change that the previous data remains valid.

Output Enable Time, tco

Output enable time is the maximum delay between Chip Selects becoming true and Output Data becoming valid.

Output Disable Time, tDF

Output disable time is the delay between Chip Selects becoming false and output stages going to the high impedance state.

Custom Programming Instructions

Bit Pattern Submittal Options
The customer's unique bit pattern can be submitted to Electronic Arrays via several convenient methods such that it is easy for the ROM customer, and readily verifiable for accuracy. The bit pattern can be delivered to EA contained within:

1. One programmed $2564 / 2764$ EPROM
2. Two programmed 2532/2732 EPROMs
3. Four programmed $2516 / 2716$ EPROMs
4. One customer-programmed 8364 ROM
5. Two customer-programmed 8332 ROMs

Bit Pattern Verification Sequence

For customer verification of the submitted bit patterns, several alternatives are also available. The following are those found by experience to be most expeditious.

Customer Pattern

Submitted Via:

1. One programmed $2564 / 2764$
2. Two programmed 2532/2732s
3. Four programmed $2516 / 2716 \mathrm{~s}$
4. One mask programmed 64 K ROM (or 232 K masked ROMs)

Verification Routine

Customer sends EA one additional erased 2564/2764. EA programs the spare 2564/2764 with the pattern data base extracted from the programmed 2564/2764, and returns to customer for pattern verification.
Customer sends EA two additional erased 2532/2732s. EA programs the spare 2532/2732s with the pattern data base extracted from the programmed 2532/2732s and returns to customer for pattern verification.
Customer sends EA four additional erased $2516 / 2716$ s. EA programs the spare 2516/2716s with the pattern data base extracted from the programmed 2516/2716s and returns to customer for pattern verification. Customer sends EA one additional erased 2564/2764 or two additional erased 2532/2732s. EA programs these EPROMs with the pattern data base extracted from the 64 K ROM (or 32 K ROMs) and returns to customer for pattern verification.
An alternative to the above is to provide EA with 2 identical ROMs. Each will capture the patterns from both, compare them, and if they match, the code is presumed correct. In this case, only a printout is returned to customer for verification. Whenever ROMs are used to submit bit patterns, include the ROM chip select logic levels for each.
In all cases where multiple EPROMs or ROMs are submitted for one 64 K ROM (i.e., 232 Ks or 416 Ks) the applicable address locations of each device within the 64 K memory map must be clearly indicated for each package-preferably on the device package itself.

Bit Pattern Verification Sequence

An additional verification alternative, when distances are great and/or time is of the essence, is to submit three identically programmed EPROMs (or sets of EPROMs, if not 2564/2764s). EA will compare all three programs, and if we get a match, proceed with tooling. A printout is returned to the customer but no verification EPROMs are necessary under these conditions.
EA is also equipped to accept bit patterns transmitted over the phone lines. If this method is desired by the customer, contact Electronic Arrays for format information and direct transmission procedures.
In all cases, a computer printout of the complete bit pattern is also furnished to all customers. Attached to each printout is a cover sheet containing data relevant to the ROM. Following careful review of the data and the bit pattern, the customer indicates verification and approval by signing the cover sheet and returning it to EA.
The data base tape derived from above source devices is utilized in turn to produce a pattern generator tape and a ROM test pattern. The pattern generator tape

Package Outlines
 μ PD2364C

EA8364C

Plastic

Item	Millimeters	Inches
A	33 Max	1.3 Max
B	2.53 Max	0.1 Max
C	2.54 ± 0.1	0.1 ± 0.004
D	0.5 ± 0.1	0.02 ± 0.004
E	27.94 ± 0.1	1.1 ± 0.004
F	1.5 Min	0.059 Min
G	2.54 Min	0.1 Min
H	0.5 Min	0.02 Min
1	5.22 Max	0.205 Max
J	5.72 Max	0.225 Max
K	15.24 Typ	0.6 Typ
L	13.2 Typ	0.52 Typ
M	$\begin{array}{r} +0.10 \\ 0.25 \\ \hline \end{array}$	$\begin{array}{cc} 0.01+0.004 \\ -0.0019 \end{array}$

drives EA's automatic pattern generation mask equipment, resulting in mask tooling that contains the customer's unique one/zero pattern. The ROM test pattern is used at production wafer sort and final test to test each device 100% to the complete custom bit pattern.

Chip Select Level Programming

CS 1 must be programmed by the customer to be selected by either a logic 1 or a logic 0 level. Accordingly, the customer must furnish EA with the desired chip selection level (1 or 0 only) for CS_{1} concurrent with submission of the bit pattern. The CS input logic levels are permanently established within each ROM in the same manner as the bit pattern.

Alternative Data File Formats

In addition to the EPROM technique, it is possible to furnish ROM data to EA in other media if prearranged with the factory. Standard octal and hexadecimal formats are currently available. Other nonstandard formats may be acceptable. Contact EA sales personnel.

4PD2364D EA8364D Ceramic

Item	Millimeters	Inches
A	30.78 Max	1.21 Max
B	1.53 Max	0.06 Max
C	2.54 ± 0.1	0.10 ± 0.004
D	0.46 ± 0.8	0.018 ± 0.03
E	27.94 ± 0.1	1.10 ± 0.004
F	1.02 Min	0.04 Min
G	3.2 Min	0.13 Min
H	1.02 Min	0.04 Min
1	3.23 Max	0.13 Max
J	4.25 Max	0.17 Max
K	15.24 Typ	0.60 Typ
L	14.93 Typ	0.59 Typ
M	0.25 ± 0.05	0.010 ± 0.002
;		8364DS-1-82-CA

Notes

4-BIT SINGLE CHIP MICROCOMPUTER FAMILY

$$
\begin{array}{ll}
\text { DESCRIPTION } & \begin{array}{l}
\text { The } \mu \text { COM- 4-bit Microcomputer Family is a broad product line of } 14 \text { individual } \\
\text { devies designed to fulfill a wide variety of design criteria. The product line shares a } \\
\text { compatible architecture and instruction set. The architecture includes all functional } \\
\text { blocks necessary for a single chip controller, including an ALU, Accumulator, Byte- }
\end{array} \\
\text { wide ROM, RAM, and Stack. The instruction set maximizes the efficient utilization } \\
\text { of the fixed ROM space, and includes a variety of Single Bit Manipulation, Table } \\
\text { Look-Up, BCD arithemetic, and Skip instructions. } \\
& \begin{array}{l}
\text { The } \mu \text { COM-4 Microcomputer Family includes seven different products capable of } \\
\text { directly driving 35V Vacuum Fluorescent Displays. Four products are manufactured } \\
\text { with a CMOS process technology. } \mu \text { COM-4 Microcomputers are ideal for low-cost } \\
\text { general purpose controller applications such as industrial controls, instruments, } \\
\text { appliance controls, intelligent VF display drivers, and games. }
\end{array}
\end{array}
$$

FEATURES - Choice of ROM size: $2000 \times 8,1000 \times 8$, or 640×8

- Choice of RAM size: $96 \times 4,64 \times 4$, or 32×4
- Six 4-Bit Working Registers Available
- One 4-Bit Flag Register Available
- Powerful Instruction Set
- Choice of 80 or 58 Instructions
-- Table Look-Up Capability with CZP and JPA Instructions
- Single Bit Manipulation of RAM or I/O Ports
- BCD Arithmetic Capability
- Choice of 3-Level, 2-Level, or 1-Level Subroutine Stack
- Extensive I/O Capability
- Choice of 35 or 21 I/O Lines

$42 / 52-$ Pin Packages	
2	28-Pin Package
2	2
4	2
1	-
-	1

- Programmable 6-Bit Timer Available
- Choice of Hardware or Testable Interrupt
- Built-In Clock Signal Generation Circuitry
- Built-In Reset Circuitry
- Single Power Supply
- Low Power Consumption
- PMOS or CMOS Technologies
- Choice of 42 -pin DIP, 28 -pin DIP, or 52 -pin Flat Plastic Package

Internal Registers

FUNCTIONAL DESCRIPTION
The ALU, the Accumulator, and the Carry Flag together comprise the central portion of the μ COM-4 Microcomputer Family architecture. The ALU performs the arithmetic and logical operations and checks for various results. The Accumulator stores the results generated by the ALU and acts as the major interface point between the RAM, the I/O ports, and the Data Pointer registers. The Carry F/F can be addressed directly, and can also be set during an addition. The μ PD546, μ PD553, μ PD557L, and μ PD650 also have a Carry Save F/F for storage the value of the Carry F/F.

Data Pointer Registers

The DPH register and 4-bit DPL register reside outside the RAM. They function as the Data Pointer, addressing the rows and columns of the RAM, respectively. They are individually accessible and the L register can be automatically incremented or decremented.

RAM

All μ COM-4 microcomputers have a static RAM organized into a multiple-row by 16 -column configuration, as follows:

MICROCOMPUTER	RAM	ORGANIZATION	DPH	DP $_{\text {L }}$
μ PD546,$~$ μ PD553, μ PD557L, and μ PD650	96×4	6 rows $\times 16$ columns	3	4
μ PD547,μ PD547L μ PD552, and μ PD651	64×4	4 rows $\times 16$ columns	2	4
μ PD550, μ PD550L, μ PD554, μ PD554L, and μ PD652	32×4	2 rows $\times 16$ columns	1	4

The μ PD546, μ PD553, μ PD557L, and μ PD650 also have a 4-bit Flag register and six 4-bit working registers resident in the last row of the RAM. Their extended instruction set provides 10 additional instructions with which you can access or manipulate these seven registers.

ROM

The ROM is the mask-programmable portion of the μ COM-4 Microcomputer which stores the application program. It is organized as follows:

| MICROCOMPUTER | ROM | ORGANIZATION |
| :--- | :---: | :---: | :---: |
| $\begin{array}{l}\mu \text { PD546, } \mu \text { PD553, } \\ \mu P D 557 L, ~ a n d ~\end{array}$ PD650 | | |$)$

FUNCTIONAL

DESCRIPTION (CONT.)

Program Counter and Stack Register
The Program Counter contains the address of a particular instruction being executed. It is incremented during normal operation, but can be modified by various JUMP and CALL instructions. The Stack Register is a LIFO push-down stack register used to save the value of the Program Counter when a subroutine is called. It is organized as follows:

MICROCOMPUTER	STACK ORGANIZATION	ALLOWABLE SUBROUTINE CALLS
μ PD546, μ PD553, μ PD557L, and μ PD650	3 words $\times 11$ bits	3 Levels
μ PD651	2 words $\times 10$ bits	2 Levels
μ PD547, μ PD547L, and μ PD552	1 word $\times 10$ bits	1 Level
μ PD550, μ PD550L; μ PD554, μ PD554L, and μ PD652	1 word $\times 10$ bits	1 Level

Interrupts

All μ COM-4 microcomputers are equipped with a software-testable interrupt which skips an instruction if the Interrupt F/F has been set. The TIT instruction resets the Interrupt F/F.

In addition, the μ PD546, μ PD553, μ PD557L, and μ PD 650 have a level-triggered hardware interrupt, which causes an automatic stack level shift and interrupt service routine call when an interrupt occurs.

Interval Timer

The μ PD546, μ PD553, μ PD557L, and μ PD650 are equipped with a programmable 6 -bit interval timer which consists of a 6 -bit polynomial counter and a 6 -bit binary down counter. The STM instruction sets the initial value of the binary down counter and starts the timing. The polynomial counter decrements the binary down counter when 63 instruction cycles have been completed. When the binary down counter reaches zero, the timer F / F is set. The TTM instruction tests the timer F / F, and skips the next instruction if it is set.

Clock and Reset Circuitry

The Clock Circuitry for any μ COM-4 microcomputer can be implemented by connecting either an Intermediate Frequency Transformer (IFT) and a capacitor, or a Ceramic Resonator and two capacitors, to the CL_{0} and CL_{1} Inputs. The Power-On-Reset Circuitry for any $\mu \mathrm{COM}-4$ microcomputer can be implemented by connecting a Resistor, a Capacitor, and a Diode to the RESET input.

μ COM-4

1/O Capability

The μ COM-4 microcomputer family devices have either 35 or 21 I/O lines, depending upon the individual device, for communication with and control of external circuitry. They are organized as follows:

PORT	SYMBOL	FUNCTION	μ PD546, μ PD547, μ PD547L, μ PD552, μ PD553, μ PD650, and μ PD65 1	μ PI)550, μ PD550L, μ PD)654, μ PD554L, μ PDE57L, and μ PD652
Port A	PA_{0-3}	4-Bit Input	\bullet	-
Port B	$\mathrm{PB}_{0.3}$	4-Bit Input	-	
Port C	PC_{0-3}	4-Bit Input/Output (VF Drive Possible)	-	\bullet
Port D	$\mathrm{PD}_{0.3}$.4-Bit Input/Output (VF Drive Possible)	-	-
Port E	PE_{0-3}	4-Bit Output (VF Drive Possible)	\bullet	$\cdot \bullet$
Port F	PF_{0-3}	4-Bit Output (VF Drive Possible)	-	-
Port G	PG_{0-3}	4- Bit Output (VF Drive Possible)	-	
	$\mathrm{PG}_{0.1}$	1-Bit Output (VF Drive Possible)		\bullet
Port H	PH_{0-3}	4-Bit Output (VF Drive Possible)	-	:
Port 1	Pl_{0-2}	3-Bit Output (VF Drive Possible)	-	

Development Tools

The NEC Development System (NDS) is available for developing softvare service code, editing, and assembling source code into object code. In addition, the ASM-43 Cross Assembler is available for systems which support either the Intel ISIS-II Operating System or the CP/M (${ }^{\circledR}$ Digital Research Corp.) Operating System.
The EVAKIT-43P Evaluation Board is available for production device emulation and prototype system debugging. The SE-43P Emulation Board is available for demonstrating the final system design. The μ PD556B ROM-less Evaluation Chip is available for small pilot production.

FUNCTIONAL DESCRIPTION (CONT.)

Note: Block diagram above applies to μ PD546, μ PD553, and μ PD650 4 -bit microcomputers. The μ PD557L block diagram is similar to the above, except that $\mathrm{PB}_{0-3}, \mathrm{PG}_{1-3}, \mathrm{PH}_{0}-3$, and PI_{0-2} have been eliminated to accommodate the μ PD557L's 28-pin package.
μ PD547, μ PD547L,
μ PD552, μ PD651
BLOCK DIAGRAM

μ PD550, μ PD550L, μ PD554, μ PD554L, μ PD652 BLOCK DIAGRAM

The μ PD546, μ PD553, μ PD557L, and μ PD650 execute all 80 instructions of the
INSTRUCTION SET extended μ COM- 4 instruction set. The 22 additional instructions are indicated by shading.
The μ PD547, μ PD547L, μ PD550, μ PD550L,$~ \mu$ PD552, μ PD554, μ PD $554 \mathrm{~L}, \mu$ PD651, and μ PD652 execute a 58 instruction subset of the μ COM 4 instruction set.

INSTRUCTION SET SYMBOL DEFINITIONS

The following abbreviations are used in the description of the μ COM-4 instruction set:

SYMBOL	EXPLANATION AND USE
Acc	Accumulator
${ }^{\text {ACC }}$ n	Bit "n" of Accumulator
address	Immediate address
C	Carry F/F
C^{\prime}	Carry Save F/F
data	Immediate data
D_{n}	Bit " n " of immediate data or immediate address
DP	Data Pointer
$\mathrm{DPH}_{\mathrm{H}}$	Upper Bits of Data Pointer
DPL	Lower 4 Bits of Data Pointer
FLAG	FLAG Register
INTE F/F	Interrupt Enable F/F
INT F/F	Interrupt F/F
P()	Parallel Input/Output Port addressed by the value within the brackets
P_{n}	Bit " n " of Program Counter
PA	Input Port A
PC	Input/Output Port C
PD	Input/Output Port D
PE	Output Port E
R	R Register
S	S Register
SKIP	Number of Bytes in next instruction when skip condition occurs
STACK	Stack Register
TC	6-Bit Binary Down Timer Counter
TIMER F/F	Timer F/F
W	W Register
X	X Register
Y	Y Register
Z	Z Register
()	The contents of RAM addressed by the value within the brackets
[]	The contents of ROM addressed by the value within the brackets
\leftarrow	Load, Store, or Transfer
\leftrightarrow	Exchange
-	Complement
\forall	LOGICAL EXCLUSIVE OR
.	Applies to μ PD546, μ PD553, μ PD556B, μ PD557L, and μ PD 650 only

					INE	RUC	ON C	ODE					
MNEMONIC	FUNCTION	DESCRIPTION	D7	D8	D ${ }_{5}$	D_{4}	D_{3}		D1	Do	BYTES	cYCLES	CONDITION
LOAD													
LI data	$A C C 5 \mathrm{D}_{3-0}$	Load ACC with 4 bite of immediate data; execute succeeding LI instructions as NOP Instructions	1	0	0	1	D_{3}			D_{0}	1	1	String
L	$A C C-(D P)$	Load ACC with the RAM contents sddressed by DP	0	0	1	1	1	0	0	0	1	1	
LM date	$\begin{aligned} & A C C \leftarrow(D P) \\ & D P_{H} \leftarrow D P_{H} \forall D_{1-0} \end{aligned}$	Load ACC with the RAM contents eddrassed by DP; Perform a LOGICAL EXCLUSIVE-OR Between DP H and 2 bits of Immediate Date; Store the result in $D P_{H}$	0	0	1	1	1	0	D_{1}	D_{0}	1	1	
LDI date	$\mathrm{DP} \leftarrow \mathrm{D}_{6-0}$	Losd DP with 7 bits of immediate data		$\begin{aligned} & 0 \\ & D_{6} \end{aligned}$	$\begin{aligned} & 0 \\ & D_{5} \end{aligned}$	$\begin{aligned} & 1 \\ & D_{4} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathrm{D}_{3} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathrm{D}_{2} \end{aligned}$		$\stackrel{1}{\mathrm{D}_{0}}$	2	2	
LDZ date	$\begin{aligned} & \mathrm{DP} \mathrm{H}_{\mathrm{H}} \leftarrow 0 \\ & \mathrm{DP} \mathrm{~L}_{\mathrm{L}} \leftarrow \mathrm{D}_{3-0} \end{aligned}$	Load DPH with 0; Load DP L with 4 bits of immediate data		0	0	0	D_{3}			D_{0}	1	1	
STORE													
S	$(D P) \leftarrow A C C$	Store ACC into the RAM location addressed by DP	0	0	0	0	0	1	0	0	1	1	
TRANSFER													
TAL	$D P_{L}+A C C$	Transfer Acc to DP_{L}	0	0	0	0	0	1	1	1	1	1	
TLA	$A_{C C} \leftarrow \mathrm{DP}_{\mathrm{L}}$	Transfer DPL to $A_{\text {cc }}$	0	0	0	1	0	0	1	0	1	1	
	$\text { Wr } 2 \mathrm{xc}$	Trimifer Acc to W		7	0							18	
WA	$\underline{2} \mathrm{EECHn}$	Whand Acccos	0	1	${ }^{31}$		6		1	0		2	
Xhx	$x+8 \mathrm{CH}$, mraty	Whater DP_{4} to X		\pm	\%						19	Where	Whatrem
	Wvert			1	0		0		1	0	1	${ }^{2}$	
EXCHANGE													
x	${ }^{\text {A C }}{ }^{+}(\mathrm{DP})$	Exchange A with the RAM contents addressed by DP	0	0	1	0	1	0	0	0	1	1	
XI	$\begin{aligned} & A C C \leftrightarrow(D P) \\ & D P_{L} \leftarrow D P_{L}+1 \\ & \text { Skip if } D P_{L}=O H \\ & \hline \end{aligned}$	Exchange AcC with RAM contents addressed by DP; increment $D P_{L}$; Skip if $D P_{L}=O H$	0	0	1	1	1	1	0	0	1	$1+s$	$\overline{\mathrm{DP}} \mathrm{L}=\mathrm{OH}$
XD	$\begin{aligned} & A C C \leftrightarrow\{D P\rangle_{1} \\ & D P_{L}-D P_{L}-1 \\ & S k i p \text { if } D P_{L}=F H \end{aligned}$	Exchange ACC with the RAM contents addressed by DP: decrement $D P_{L}$; Skip if $D P_{L}=F H$	0	0	1	0	1	1	0	0	1	$1+s$	DPL $=\mathrm{FH}$
XM deta	$\begin{aligned} & A C C \nleftarrow(D P) \\ & D P_{H} \leftarrow D P_{H} \nLeftarrow D_{1-0} \end{aligned}$	Exchange AcC with the RAM contents addressed by DP; Perform $\operatorname{LOGICAL}$ EXCLUSIVEOR Between DP_{H} and 2 bits of immedlate data; store the results in $D P_{H}$	0	0	1	0	1	0	D1	D_{0}	1	1	
XMI data	$\begin{aligned} & A C C \leftrightarrow(D P) \\ & D P_{H} \leftarrow D P_{H} \forall D_{1-0} \\ & D P_{L} \leftarrow D P_{L}+1 \\ & \text { Skip if } D P_{L}=O H \end{aligned}$	Exchange ACC with the RAM contents eddressed by DP; Perform a LOGICAL EXCLUSIVEOR Between DP_{H} and 2 bits of immediate data; store the results in $D P_{H}$ increment $D P_{L}$; Skip if $D P_{L}=O H$	0	0	1	1	1	1	D_{1}	Do	1	$1+5$	$\mathrm{DP}_{\mathrm{L}} \mathrm{OH}$
XMD date	$\begin{aligned} & A C C *(D P) \\ & D P_{H} \leftarrow D P_{H} * D_{1-0} \\ & D P_{L} \leftarrow D P_{L}-1 \\ & S k i p \text { if } D P_{L}=F H \end{aligned}$	Exchange ACC with the RAM contents addressed by DP; Perform a LOGICAL EXCLUSIVEOR Between DPH and 2 bits of immediate date; store the results in $D P_{H}$ decrement DP L $^{\text {; }}$ Skip if $D P_{L}=F H$	0	0	$?$	0	1	1 	O_{1} 	D_{0}	1	$1+5$	$D P_{L}=F H$
xAN	$\mathrm{Acc}+\mathrm{tax}$	Exch nige Acc with W											
X12 , r,	WCC 2 , mata	Wher Exanie Acc with 2											
Whit incist	DrH'sh ${ }^{\text {a }}$	- exetrrge OPh whth											
741		Exthar DPHwith X	$0 \quad 0 \quad 1 \quad 1 \quad 1 \quad 1 / 2$										-
xts	$\mathrm{Pr}_{\mathrm{h}}-\mathbf{S}$ F fgither	Wrax Exinge DPL with S fegister	$0 \text { of } \frac{1}{}$								1	- CH^{2}	Tras
xLY	$\text { DPL }+9$	Exchange DP1 With Y									F\% 1	1	74\%
	$c \leadsto d$	Exch ing Carty FIF wh Carry Sovetf									+ +1		

MNEMONIC	FUNCTION	DESCRIPTION	INSTRUCTION CODE								bytes	crcles	$\begin{gathered} \text { SKIP } \\ \text { CONDITION } \end{gathered}$
			D7	D_{6}		D_{4}	D_{3}	D_{2}		D_{0}			
ARITHMETIC													
AD	$A_{C c}+A_{C C}+(D P)$ Skip if overflow	Add the RAM contents addressed by DP to ACC; skip if overflow is generated		0		0	1	0	0	0	1	$1+s$	Overflow
ADC	$\begin{aligned} & \mathrm{A} C \mathrm{C}-\mathrm{A} \mathrm{CC}+(\mathrm{DP})+\mathrm{C} \\ & \text { if overflow occurs, } \\ & \mathrm{C} \leftarrow 1 \\ & \hline \end{aligned}$	Add the RAM contents addressed by DP, and the Carry F/F to ACC; If overflow occurs, set carry F/F	0	0	0	1	1.	0.	0	1	1	1	
ADS	$A_{C C}-A_{C C}+(D P)+C$ if overflow occurs, $\mathrm{C} \leftarrow 1$ and akip	Add the RAM contents addressed by DP and the carry F/F to Acc; If overflow occurs, set Carry F/F and skip	0	0	0	0	1	0	0	1	1	$1+s$	Overflow
DAA	$A C C \leftarrow A C C+6$	Add 6 to Acc to Adjust Decimal for BCD Addition	0	0	0	0	0	1	1	0	1	1	
DAS	$A_{C C}+A_{C C}+10$	Add 10 to Acc to Adjust Decimal for BCD Subtraction	0	0	0	0	1	0	1	0	1	1	
logical													
EXL	$A C C-A C C \forall(D P)$	Perform a LOGICAL EXCLUSIVE-OR between the RAM contents addressed by DP and ACC; store the result in ACC		0				0	0	0	1	1	
ACCUMULATOR													
CLA	$\mathrm{A}_{\text {c }}+0$	Clear ACC to zero	1	0	0	1	0	0	0	0	1	1	String
CMA	$A_{C C}-\overline{A_{C C}}$	Complement ACC	0	0	0	1	0	0	0	0	1	1	
CIA	$A_{C C}+\overline{A_{C C}}+1$	Complement A; Increment A	0	0	0	1	0	0	0	1	1	1	
F8:		Hothe Aec right through Cirifif	10	0		1	0				1		
CARAY FLAG													
CLC	c + 0	Reset Carry F/F to zero	0	0	0	0	1	0	1	1	1	1	
STC	C+1	Set Carry F/F to one	0	0	0	1	1	0	1	1	1	1	
TC	Skip if $\mathrm{C}=1$	Skjp if Carry F/F is true	0	0	0	0	0	1	0	0	1	1+s	$c=1$
		St wind bil (denoted b) OLOO_{2} ALEAG RETHTY IG ong							D_{1}				
	Haciveo	Besor a ingle bildenoted wh 	0			9							-
		skip ff siphe bit toropied by 2atic			0		1		T	Do		$2+5$	$\begin{aligned} & L A A G^{2}-1 \\ & \end{aligned}$
	$\text { Hyp } 4 \text { FLAGhis }{ }^{0}$	skip li single bit ldenoted by Diped of the FLAG Register ss talts		0		0_{i}					$\frac{18}{4}$	$2+5$	FLAG $\mathrm{F}_{\text {bit }}=0$
INCREMENT AND DECREMENT													
INC	$\begin{array}{\|l\|} \hline \text { ACC-ACC+1 } \\ \text { Skip if overflow } \\ \hline \end{array}$	Increment A; Skip If overflow is generated	0	0	0	0	1	1	0	1	1	$1+5$	Overflow
DEC	$\begin{aligned} & A C C-A C C-1 \\ & \text { Skip if underflow } \end{aligned}$	Decrement A; Skip if underflow occurs	0	0	0	0	1	1.	1	1	1	1+S	Underflow
IND.	$\begin{array}{\|l} \hline D P_{L} \leftarrow D P_{L}+1 \\ \text { Skip if } D P_{L}=O H \\ \hline \end{array}$	Increment DP ${ }_{L}$; Skip if $D P_{L}=\mathrm{OH}$. 0	0	1	1	0	0	1	1	1	$1+5$	DP L $=\mathrm{OH}$
DED	$\begin{aligned} & \text { DPL } P_{L} \text { DP } P_{L}-1 \\ & \text { Skip if } D P_{L}=F F H \end{aligned}$	$\begin{aligned} & \text { Decrement } D P_{L} ; \\ & \text { Skip if } D P_{L}=F H \end{aligned}$	0	0	0	1	0	0	1	1	1	1+S	DP L $=\mathrm{FH}$
	Reveron	hovimen he MAM confonts ddirisid by DP Skip it the $\mathrm{triten} \mathrm{y}=\mathrm{OH}$					1.	1				$1+s$	LoplaOH
		Decrementithe HAM contents darassed by pr skip it the Wommiti FH			0.	1.						$\sqrt{1+s}$	$(D P A=F H$

						RUCT	ION C	ODE					
MNEMONIC	FUNCTION	DESCRIPTION		D_{8}	Ds	D_{4}	D3	D_{2}	D_{1}	Do	BYTES	CYCLES	CONDITION
BIT MANIPULATION													
RMB data	$(\mathrm{PP})_{\text {bit }}-0$	Reset a single bit (denoted by $\mathrm{D}_{1}-\mathrm{D}_{0}$) of RAM at the location addressed by DP to zero	0	1	1	0	1	0	D_{1}	D_{0}	1	1	
SMB data	(DP) ${ }_{\text {bit }}-1$	Set a single bit (denoted by $\mathrm{D}_{1} \mathrm{D}_{0}$) of RAM at the location addressed by $D P$ to one	0	1	1	1	1	0	D_{1}	D_{0}	1	1	
REB dats	$P E_{\text {bit }}-0$	Resat a single bit (denoted by $D_{1} D_{0}$) of output Port E to zero	0	1	1	0	0	1	D_{1}	D_{0}	1	2	.
SEB data	$P E_{\text {blt }}+1$	Set a single bit (denoted by $D_{1} D_{0}$) of output Port E to one	0	1	1	1	0	1	D_{1}	D_{0}	1	2	
RPB data	P(DP ${ }_{\text {L }}$ bit -0	Reset a single bit (denoted by $\mathrm{D}_{1} \mathrm{D}_{0}$) of the output port addressed by $D P_{L}$ to zero	0	1	1	0	0	0	D_{1}	D_{0}	1	1	
SPB date	$\mathbf{P}\left(\mathrm{DP} \mathrm{L}_{\text {bit }} \leqslant 1\right.$	Set a single bit (denoted by $\mathrm{D}_{1} \mathrm{D}_{0}$) of the output port addressed by $D P_{L}$	0	1	1	1	0	0	D_{1}	Do	1	1	.
JUMP, CALL AND RETEJRN													
JMP address	P_{10-0} - D_{10-0}	Jump to the address specified by 11 bits of immediate date	$\begin{gathered} 1 \\ D_{7} \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ D_{6} \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{D}_{\mathrm{G}} \end{gathered}$	$\begin{aligned} & 0 \\ & D_{4} \end{aligned}$	$\begin{gathered} 0 \\ D_{3} \end{gathered}$	$\begin{gathered} D_{10} \\ D_{2} \end{gathered}$	$\begin{aligned} & D_{9} \\ & D_{1} \\ & \hline \end{aligned}$	$\begin{aligned} & D_{8} \\ & D_{0} \end{aligned}$	2	2	
JCP address	P_{5-0} - D_{5-0}	Jump to the address within the current ROM page specified by. 6 bits of immediate date.	1	1	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}	1	1	
JPA	$\begin{aligned} & P_{5-2} \leftarrow A C C \\ & P_{1-0} \leftarrow 00 \end{aligned}$	Jump to the sddress within the current ROM page modified by ACC	0	1	0	0	0	0	0	1	1	2	
CAL address	$\begin{aligned} & \text { Stack } \leftarrow P+2 \\ & P_{10-0} \leftarrow D_{10-0} \end{aligned}$	Store a return addyess ($\mathbf{P}+2$) in the stack; cell the subroutine program at the location specified by 11 bitt of immediate date	$\begin{aligned} & 1 \\ & D_{7} \end{aligned}$	$\begin{gathered} 0 \\ D_{6} \end{gathered}$	$\begin{gathered} 1 \\ D_{j} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{D}_{4} \end{gathered}$	$\begin{gathered} 1 \\ D_{3} \end{gathered}$	$\begin{aligned} & \mathrm{D}_{10} \\ & \mathrm{D}_{2} \end{aligned}$	$\begin{aligned} & \mathrm{D}_{9} \\ & \mathrm{D}_{1} \end{aligned}$	$\begin{aligned} & \mathrm{D}_{8} \\ & \mathrm{D}_{0} \end{aligned}$	2	2	
CZP address	$\begin{aligned} & \text { Stack } \leftarrow P+1 \\ & P_{10-6} \leftarrow 00000 \\ & P_{5-2} \leftarrow D_{3-0} \\ & P_{1-0} \leftarrow 00 \end{aligned}$	Store a return address ($\mathbf{P}+1$) in the stack; call the subroutine program at one of sixteen locations in Page 0 of Field 0 , specified by 4 bits of immediate date		0	1	1	D_{3}	D_{2}	D_{1}	D_{0}	1	1 ;	
RT	P -Stack	Return from Subroutine	0	1	0	0	1	0	0	0	1	2	
RTS	P \& Stack Skip unconditionally	Return from Subroutine; skip unconditionally	0	1	c	0	1	0	0	1.	1	$2+s$	Unconditional
SKIP													
Cl data	Skip if $\mathrm{A}_{\mathrm{CC}}=\mathrm{D}_{3} \mathbf{0}$	Skip if ACC equals 4 bits of immediate data	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ D_{3} \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{O}_{2} \\ \hline \end{gathered}$	$\begin{aligned} & 1 \\ & \mathrm{D}_{1} \end{aligned}$	$\begin{gathered} 1 \\ \mathrm{D}_{0} \end{gathered}$	2	$2+5$	$A C C=O_{3-0}$
CM	Skip it $\mathrm{A}_{\mathrm{CC}}=(\mathrm{DP})$	Skip if ACC equals the RAM contents addressed by DP	0	0	0	0	1	1	0	0	1	$1+5$	$A_{C C}=(D P)$
CMB data	Skip if $\mathrm{A}_{\mathbf{C C}}^{\text {bit }}$ = $(\mathrm{DP})_{\text {bit }}$	Skip if the single bit (denoted by $\mathrm{D}_{1} \mathrm{D}_{0}$) of Acc , is equal to the single bit (also denoted by $D_{1} D_{0}$) of RAM addressed by DP	0	0	\%	1	0	1	D_{1}	D_{0}	1	$1+5$	$\mathrm{ACC}_{\text {bit }}=1 \mathrm{DP}$
TAB data	Skip if ${ }^{\text {A }} \mathrm{CC}_{\text {bit }}=1$	Skip if the single bit (denoted by $\mathrm{D}_{1} \mathrm{D}_{0}$) of $\mathrm{AcC}_{\mathrm{C}}$ is true	0	0	1	0	0	1.	D_{1}	D_{0}	1	$1+5$	$\mathrm{AcC}_{\text {bit }}=1$
CLI data	Skip if $\mathrm{DP}_{L}=\mathrm{D}_{3}-0$	Skip if DP ${ }_{L}$ equals 4 bits of immediate data	$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$	$\begin{array}{r} 1 \\ 1 \\ \hline \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0 \\ \mathrm{D}_{3} \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{D}_{2} \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{D}_{1} \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{D}_{0} \end{gathered}$	2	$2+5$	$D P_{L}=D_{30}$
TME deta	Skip if (DP) bit $=1$	Skip if the single bit (denoted by $\mathrm{D}_{1} \mathrm{D}_{0}$) of the RAM location addressed by DP is true	0	1	1)	1	1	0	D_{1}	D_{0}	1	$1+s$	$(\mathrm{DP})_{\text {bit }}=1$
TPA date	Skip if PA ${ }_{\text {bit }}=1$	Skip if the single bit (denoted by $\mathrm{D}_{1} \mathrm{D}_{0}$) of Port A is true	0	1	\bigcirc	1	0	1	D_{1}	D_{0}	1	$2+5$.	$\mathrm{PA}_{\text {bit }}=1$
TPB data	Skip if $P\left(D P_{L}\right)_{\text {bit }}=1$	Skip if the single bit (denoted by $\mathrm{D}_{1} \mathrm{D}_{0}$) of the input Port addressed by $D P_{L}$ is true	0	1	3	1	0	0	D_{1}	D_{0}	1	$1+S$	$P\left(D P_{L}\right)_{\text {bit }}=1$

INSTRUCTION SET
(CONT.)

MNEMONIC	FUNCTION	DESCRIPTION	INSTRUCTION CODE								BYTES	cycles	sKIP CONDITION
			D_{7}	D 6	D_{6}	D_{4}	D_{3}	D_{2}	D1	D_{0}			
INTERRUPT													
TIT	Skip if INT F/F $=1$	Skip if Interrupt F/F is true; Reset Interrupt F/F	0	0			0	0	1	1	1	$1+5$	INT F/F = 1
	Wh645-1	quathan intrues										- ${ }^{1}$	
Wix	$W I E d E=0$	Beset Internut Lipabic FL/ to 	0					\%			+1.	1.	
PARALLEL I/O													
IA	ACC - PA	Input Port A to Acc	0	1	0	0	0	0	0	0	1	2	
IP	$A_{C C} \sim P(D P L)$	Input the Port addressed by $D P_{L}$ to $A_{C C}$	0	0	1	1	0	0	1	0	1	1	
OE	PE + ACC	Output ACC to Port E	0	1	0	0	0	1	0	0	1	2	
OP	$\mathrm{P}(\mathrm{DP} \mathrm{L}) \leftarrow \mathrm{A}_{\text {c }}$	Output $A_{C C}$ to the port addressed by DP_{L}	0	0	0	0	1	1	1	0	1	1	
OCD	$\begin{aligned} & \mathrm{PD}_{3-0} \leftarrow \mathrm{D}_{7-4} \\ & \mathrm{PC}_{3-0} \leftarrow \mathrm{D}_{3-0} \end{aligned}$	Output 8 bits of immediate data to Ports C and D	$\begin{aligned} & \hline 0 \\ & D_{7} \end{aligned}$	$\begin{gathered} 0 \\ D_{6} \end{gathered}$	$\begin{aligned} & 0 \\ & D_{5} \end{aligned}$	$\begin{aligned} & \hline 1 \\ & \mathrm{D}_{4} \end{aligned}$	$\begin{gathered} 1 \\ \mathrm{D}_{3} \end{gathered}$	$\begin{aligned} & 1 \\ & \mathrm{D}_{2} \end{aligned}$	$\begin{aligned} & 1 \\ & D_{1} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & D_{0} \end{aligned}$	2	2	
CPU CONTROL													
NOP		Perform no operation; consume one machine cycle	0	0	0	0	0	0	0	0	1	1	

μ COM-4

28-PIN DIP μ PD550C μ PD550LC μ PD554C μ PD554LC μ PD557LC μ PD652C

Plastic

ITEM	MILLIMETERS	INCHES
A	38.0 MAX	1.496 MAX
B	2.49	0.098
C	2.54	0.10
D	0.5 ± 0.1	0.02 ± 0.004
E	33.02	1.3
F	1.5	0.059
G	2.54 MIN	0.10 MIN
H	0.5 MIN	0.02 MIN
I	5.22 MAX	0.205 MAX
J	5.72 MAX	0.225 MAX
K	15.24	0.6
L	13.2	0.52
M	$0.25+0.10$	$0.01+0.004$

52-PIN FLAT PLASTIC PACKAGE μ PD651G

PLASTIC

ITEM	MILLIMETERS	INCHES
A	12.0 MAX	0.47 MAX
B	1.0 ± 0.1	0.04 ± 0.004
C	14.0	0.55
D	0.4	0.016
E	21.8 ± 0.4	0.86 ± 0.016
F	0.15	0.006
G	2.6	0.1

NOTES

4-BIT SINGLE CHIP MICROCOMPUTERS

The μ PD546 and the μ PD547 are pin-compatible 4-bit single chip microcomputers which have similar architectures.

The μ PD546 contains a 2000×8-bit ROM, and a 96×4-bit RAM which includes six working registers and the Flag register. It has a level-triggered hardware interrupt, a three-level stack, and a programmable 6-bit timer. The μ PD546 executes all 80 instructions of the extended μ COM-4 family instruction set.
The μ PD547 contains a 1000×8-bit ROM and a 64×4-bit RAM. It has a testable interrupt input $\overline{\text { INT }}$, a single-level stack, and executes all 58 instructions of the μ COM-4 family instruction set. The μ PD547 is upward compatible with the μ PD546.
Both the μ PD546 and the μ PD547 provide 35 I/O lines organized into the 4-bit input Ports A and B, the 4-bit I/O Ports C and D, the 4-bit output Ports E, F, G, and H, and the 3 -bit output Port I. Both devices typically execute their instructions with a $10 \mu \mathrm{~s}$ instruction cycle time. The μ PD546 and the μ PD547 are manufactured with a standard PMOS process, allowing use of a single -10 V power supply, and are available in a 42-pin dual-in-line plastic package.

PIN CONFIGURATION

PIN NAMES

$\mathrm{PA}_{0}-\mathrm{PA}_{3}$	Input Port A
$\mathrm{PB}_{0}-\mathrm{PB}_{3}$	Input Port B
$\mathrm{PC}_{0}-\mathrm{PC}_{3}$	Input/Output Port C
$\mathrm{PD}_{0}-\mathrm{PD}_{3}$	Input/Output Port D
$\mathrm{PE}_{0}-\mathrm{PE}_{3}$	Output Port E
$\mathrm{PFO}_{0}-\mathrm{PF}_{3}$	Output Port F
$\mathrm{PG}_{0}-\mathrm{PG}_{3}$	Output Port G
$\mathrm{PH}_{0}-\mathrm{PH}_{3}$	Output Port H
$\mathrm{Pl}_{\mathrm{O}}-\mathrm{Pl}_{2}$	Output Port 1
INT	Interrupt Input
$\mathrm{CL}_{0}-\mathrm{CL}_{1}$	External Clock Signals
RESET	Reset
$V_{\text {GG }}$	Power Supply Negative
$V_{\text {SS }}$	Power Supply Positive
TEST	Factory Test Pin (Connect to V_{SS})

[^4]| PARAMETER | SYMBOL | LIMITS | | | | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | MIN | TYP | MAX | UNIT | |
| Input Voltage High | $\mathrm{V}_{1 \mathrm{H}}$ | 0 | | -2.0 | V | Ports A through D, $\overline{\mathrm{INT}}$, RESET |
| Input Voltage Low | $V_{\text {IL }}$ | -4.3 | | V_{GG} | V | Ports A through D. INT, RESET |
| Clock Voltage High | $\mathrm{V}_{\phi} \mathrm{H}$ | 0 | | -0.8 | V | CL_{0} Input, External Clock |
| Clock Voltage Low | $\mathrm{V}_{\phi \mathrm{L}}$ | -6.0 | | V_{GG} | v | CL_{0} Input, External Clock |
| Input Leakage Current High | ILIH | | | +10 | $\mu \mathrm{A}$ | Ports A through D, $\overline{\text { INT }}$, RESE T, $V_{1}=-1 \mathrm{~V}$ |
| Input Leakage Current Low | 'LIL | | | -10 | $\mu \mathrm{A}$ | Ports A through D, $\overline{\mathrm{INT}}$, RESET, $\mathrm{V}_{1}=-11 \mathrm{~V}$ |
| Clock Input Leakage Current High. | ${ }^{\mathrm{L}-\phi \mathrm{H}}$ | | | $+200$ | $\mu \mathrm{A}$ | CL_{0} input, $\mathrm{V}_{\phi \mathrm{H}}=0 \mathrm{~V}$ |
| Clock Input Leakage Current Low | ${ }^{\prime} \mathrm{L} \phi \mathrm{L}$ | | | -200 | $\mu \mathrm{A}$ | CL_{0} input, $\mathrm{V}_{\phi \mathrm{L}}=-11 \mathrm{~V}$ |
| Output Voltage High | VOH_{1} | | | -1.0 | V | Ports C through I, ${ }^{\prime} \mathrm{OH}=-1.0 \mathrm{~mA}$ |
| | VOH_{2} | | | -2.3 | V | Ports C through I , $\mathrm{I}_{\mathrm{OH}}=-3.3 \mathrm{~mA}$ |
| Output Leakage Current Low | ${ }^{1} \mathrm{LOL}$ | | | -10 | $\mu \mathrm{A}$ | Ports C through I , $v_{0}=-11 \mathrm{~V}$ |
| Supply Current | IGG | | -30 | -50 | mA | |

DC CHARACTERISTICS

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	c_{1}			15	pF	$f=1 \mathrm{MHz}$
Output Capacitance	C_{0}			15	pF	
Input/Output Capacitance	ClO_{10}			15	pF	

CAPACITANCE

$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{GG}}=-10 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Oscillator Frequency	1	150		440	KHz	
Rise and Fall Times	$\mathrm{tr}_{\mathrm{r}}, \mathrm{tf}^{\text {f }}$	0		0.3	$\mu \mathrm{s}$	EXTERNAL CLOCK
Clock Pulse Width High.	${ }^{\mathbf{t}}{ }_{\text {¢ }} \mathrm{W}_{\mathrm{H}}$	0.5		5.6	$\mu \mathrm{s}$	
Clock Pulse Width Low	${ }_{\phi}{ }^{+} W_{L}$	0.6		5.6	$\mu \mathrm{s}$	

4-BIT SINGLE CHIP MICROCOMPUTER WITH VACUUM FLUORESCENT DISPLAY DRIVE CAPABILITY

DESCRIPTION The μ PD557L is a 4-bit single chip microcomputer which has the same architecture as

 the μ PD553, but is pin-compatible with the μ PD550L and the μ PD554L. The μ PD557L contains a 2000×8-bit ROM and a 96×4-bit RAM, which includes six working registers and the FLAG register. It has a lever-triggered hardware interrupt input INT, a three-level stack and a 6 -bit programmable timer. The μ PD557L provides $21 \mathrm{I} / \mathrm{O}$ lines, organized into the 4-bit input port A, the 4 -bit I/O ports C and D, and the 4 -bit output ports E and F, and the 1 -bit output port G. The $171 / O$ ports and output ports are capable of being pulled to -35 V in order to drive Vacuum Fluorescent Displays directly. The μ PD557L typically executes all 80 instructions of the extended μ COM -4 family instruction set with a 25μ s instruction cycle time. It is manufactured with a modified PMOS process, allowing use of a single -8 V power supply and is available in a 28 -pin dual-in-line plastic package.The μ PD550L and the μ PD554L are upward-compatible with the μ PD557L.

PIN CONFIGURATION

PIN NAMES

$\mathrm{PA}_{0}-\mathrm{PA}_{3}$	Input Port A
$\mathrm{PC}_{0}-\mathrm{PC}_{3}$	Input/Output Port C
$\mathrm{PD}_{0}-\mathrm{PD}_{3}$	Input/Output Port D
$\mathrm{PE}_{0}-\mathrm{PE}_{3}$	Output Port E
$\mathrm{PF}_{0}-\mathrm{PF}_{3}$	Output Port F
PG_{0}	Output Port G
$\overline{\mathrm{NT}}$	Interrupt Input
$\mathrm{CL}_{0}-\mathrm{CL}_{1}$	External Clock Signals
RESET	Reset
V_{GG}	Power Supply Negative
$\mathrm{V}_{\text {SS }}$	Power Supply Positive
TEST	Factory Test Pin (Connect to VSS

ABSOLUTE MAXIMUM Operating Temperature $-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage, VGG -15 to +0.3 V
Input Voltages (Port A, $\overline{\mathrm{INT}}, \mathrm{RESET}$) -15 to +0.3 V
Output Voltages -40 to +0.3 V
Output Current (Ports C, D, each bit) $-4 \mathrm{~mA}$
(Ports E, F, G, each bit) $-25 \mathrm{~mA}$
(Total, all ports) $-100 \mathrm{~mA}$

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
*COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliabllity.
$T_{a}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{G G}=-8.0 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Voltage High	$\mathrm{V}_{\text {IH }}$	0		-2.5	v	Ports A, C, D, INT, RESET
Input Voltage Low	$\mathrm{V}_{1 \mathrm{~L}_{1}}$	-6.5		V_{GG}	V	Ports A, INT, RESET
	$\mathrm{V}_{1 L_{2}}$	-6.5		-35	V	Ports C, D
Clock Voltage High	$V_{\phi H}$	0		-0.6	V	CLo Input, External Clock
Clock Voltage Low	$V_{\phi L}$	-5.0		V_{GG}	V	CLo Input, External Clock
Input Leakage Current High	${ }^{\text {LILH }}$			+10	$\mu \mathrm{A}$	Ports $\mathrm{A}, \mathrm{C}, \mathrm{l})$, INT, RESET $V_{1}=-1 V$.
Input Leakage Current Low	${ }^{\text {L }}$ LIL1			-10	$\mu \mathrm{A}$	Ports A, C, D, $\overline{\mathrm{NT}}, \mathrm{RESET}$ $V_{1}=-9 V$
	${ }^{\text {LILL2 }}$			-30	$\mu \mathrm{A}$	Ports C, D, $\mathrm{V}_{1}=-35 \mathrm{~V}$
Clock Input Leakage Current High	${ }^{\text {L }}$ ¢ $\mathrm{H}^{\text {l }}$			+200	$\mu \mathrm{A}$	$C L 0$ Input, $V_{\phi H}=0 \mathrm{~V}$
Clock Input Leakage Current Low	${ }^{\prime} \mathrm{L} \phi \mathrm{L}$			-200	$\mu \mathrm{A}$	CLO Input, ${ }^{1} \mathrm{CLL}^{\prime}=-9 \mathrm{~V}$
Output Voltage High	VOH_{1}			-1.0	V	Ports C through G , $\mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$
	VOH_{2}			-4.0	v	Ports E, F, G, IOH $=-20 \mathrm{~mA}$
Output Leakage Current Low	'LOLi			-10	$\mu \mathrm{A}$	Ports C through G, $V_{0}=-9 \mathrm{~V}$
	LLOL_{2}			-30	$\mu \mathrm{A}$	Ports C through G, $v_{\mathrm{O}}=-35 \mathrm{~V}$
Supply Current	IGG		-20	-36	mA	

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	C_{1}			15	pF	$f=1 \mathrm{MHz}$
Output Capacitance	Co_{0}			15	pF	
Input/Output Capacitance	ClO_{10}			15	pF	

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Oscillator Frequency	f	100		180	kHz	
Rise and Fall Times	t_{r}, t_{f}	0		0.3	$\mu \mathrm{s}$	External Clock
Clock Pulse Width High	${ }^{t}{ }_{\phi} W_{H}$	2.0		8.0	$\mu 5$	
Clock Pulse Width Low	$t_{\phi} W_{L}$	2.0		8.0	$\mu \mathrm{s}$	

DC CHARACTERISTICS

CAPACITANCE

AC CHARACTERISTICS

CLOCK WAVEFORM

CMOS 4－BIT SINGLE CHIP MICROCOMPUTERS

DESCRIPTION The μ PD650 and the μ PD651 are pin－compatible CMOS 4－bit single chip microcom－ puters which have similar architectures．

The μ PD650 contains a 2000×8－bit ROM，and a 96×4－bit RAM which includes six working registers and the Flag register．It has a level－triggered hardware interrupt，a three－level stack，and a programmable 6－bit Timer．The μ PD650 executes all 80 instructions of the extended μ COM－4 family instruction set．The μ PD 651 contains a 1000×8－bit ROM and a 64×4－bit RAM．It has a testable interrupt input INT，a two－ level stack，and executes all 58 instructions of the μ COM -4 family instruction set．The μ PD651 is upward－compatible with the μ PD650．
Both the μ PD650 and the μ PD651 provide $35 \mathrm{I} / \mathrm{O}$ lines，organized into the 4－bit input ports A and B ，the 4 －bit I／O ports C and D ，the 4 －bit output ports E, F, G ，and H ，and the 3 －bit output port I ．Both devices typically execute their instructions with a $10 \mu \mathrm{~s}$ instruction cycle time．The μ PD650 and the μ PD651 are manufactured with a standard CMOS process，allowing use of a single +5 V power supply，and are available in a 42－pin Dual－in－line plastic package．The μ PD651 is also available in a space－saving 52 －pin flat plastic package．

PIN CONFIGURATION

$\mathrm{CL}_{1}{ }^{\text {d }}$		42 ®CLo
$\mathrm{PCO}_{0} 2$		41 V VSS
$\mathrm{PC}_{1}{ }^{3}$		$40 . \mathrm{PB} 3$
$\mathrm{PC}_{2} \mathrm{Cl}_{4}$		${ }_{39} \mathrm{~PB}_{2}$
$\mathrm{PC}_{3} \mathrm{C}_{5}$		$38 \square \mathrm{~PB}$ ；
INT 6		37 صPB0
RESET 7		${ }^{36}$ 口 PA_{3}
PDOO_{0}		${ }^{35}$ صPA2
PD1 9	$\mu \mathrm{PD}$	$34 \square \mathrm{PA}{ }_{1}$
$\mathrm{PD}_{2} \mathrm{Cl}_{10}$		${ }^{33} \square^{\prime P}{ }^{\text {Pa }}$
$\mathrm{PD}_{3} \mathrm{H}_{11}$	650C／	32 日＇${ }^{\text {P }} 2$
$\mathrm{PE}_{0} \mathrm{PE}^{12}$	651C	$31{ }^{31} \mathrm{Pl}_{1}$
$\mathrm{PE}_{1} \mathrm{PE}_{2} 13$		${ }_{29}{ }^{\text {Pro }}$
$\mathrm{PE}_{2} \mathrm{P}^{14}$		$29 .{ }^{29} \mathrm{PH}_{3}$
$\mathrm{PE}_{3} \mathrm{CF}^{15}$		$28 \mathrm{D}^{\mathrm{PH}} \mathrm{H}_{2}$
PFo 16		${ }_{27}{ }^{\text {P }} \mathrm{PH}_{1}$
PF1石		$26 \square \mathrm{PH}$
$\mathrm{PF}_{2} \mathrm{Cl}_{18}$		$25 . \mathrm{PG}_{3}$
$\mathrm{PF}_{3} 19$		${ }_{24} \mathrm{PGG}_{2}$
TEST 20		$23 . \mathrm{PG} 1$
$\mathrm{VCCH}_{[21}$		$22 . \mathrm{PGO}$

$\mathrm{PA}_{0} \cdot \mathrm{PA}_{3}$	Input Port A
$\mathrm{PB}_{0}-\mathrm{PB}_{3}$	Input Port B
$\mathrm{PC}_{0}-\mathrm{PC}_{3}$	Input／Output Port C
$\mathrm{PD}_{0}-\mathrm{PD}_{3}$	Input／Output Port D
$\mathrm{PE}_{0}-\mathrm{PE}_{3}$	Output Port E
$\mathrm{PFO}_{0} \cdot \mathrm{PF}_{3}$	Output Port F
$\mathrm{PG}_{0} \cdot \mathrm{PG}_{3}$	Output Port G
$\mathrm{PH}_{0} \cdot \mathrm{PH}_{3}$	Output Port H
$\mathrm{Pl}_{0}-\mathrm{Pl}_{2}$	Output Port I
INT	Interrupt Input
$\mathrm{CLO}_{0} \mathrm{CL}_{1}$	External Clock Signals
RESET	Reset
$V_{\text {cc }}$	Power Supply Positive
$V_{\text {SS }}$	Ground
TEST	Factory Test Pin （Connect to $V_{C C}$ ）
NC	No Connection

ABSOLUTE MAXIMUM Operating Temperature $-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
RATINGS*Storage Temperature$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$Supply Voltage, Vcc . -0.3 to +7.0 VInput Voltages (Ports A through D, INT, RESET). -0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$-0.3 to $\mathrm{VCC}+0.3 \mathrm{~V}$
Output Voltages $+0.3 \mathrm{~V}$
Output Current (Ports C through I, each bit) 2.5 mA
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ (Total, all ports) 28 mA
*COMMENT: Stress above those listeci under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Voltege High	$\mathrm{V}_{1} \mathrm{H}$	0.7 VCC		$V_{C C}$	V	Ports A through D, INT RESET
Input Voltage Low	$V_{\text {IL }}$	0		0.3 VCC	V	Ports A through D, INT RESET
Clock Voltage High	$V_{\phi H}$	$0.7 \mathrm{~V}_{\mathrm{CC}}$.	V cc	V	CLo Input, External Clork
Clock Voltage Low	$V_{\phi L}$	0		0.3 Vcc	V	CLo Input, External Clock
Input Leakage Current High	${ }^{1}$ LIH			+10	$\mu \mathrm{A}$	Ports A through D, INT BESET, $V_{1}=V C C$
Input Leakage Current Low	'LIL			-10	$\mu \mathrm{A}$	Ports A through D, INT, RESET, $V_{1}=0 V$
Clock Input Loskage Current High	$1 \mathrm{~L} \phi \mathrm{H}$			$+200$	$\mu \mathrm{A}$	CL_{O} Input, $\mathrm{V}_{\phi H}=\mathrm{V}_{\mathrm{CC}}$
Clock Input Leakege Current Low	ILQL			-200	$\mu \mathrm{A}$	CLo Input, $\mathrm{V}_{\phi \mathrm{L}}=0 \mathrm{~V}$
Output Voltage High	VOH_{1}	$V_{\text {cc }}-0.5$			V	Ports C through I, $\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$
	VOH_{2}	Vcc -2.5			V	Ports C through I, $10 \mathrm{H}=-2.0 \mathrm{~mA}$
Output Voltage Low	VOLH_{1}			+0.6	V	Ports E through I. ${ }^{\prime} \mathrm{OL}=+2.0 \mathrm{~mA}$
	VOL_{2}			+0.4	V	Porti E through I, $\mathrm{IOL}^{2}=+1.2 \mathrm{~mA}$
Output Leakage Current Low	ILOL			-10	$\mu \mathrm{A}$	Ports C, D, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$
Supply Current	ICC		+0.8	+2.0	mA	

$T_{.}=25^{\circ} \mathrm{C}$

PARAMETER	8YMBOL	LIMIT8			UNIT	$\begin{aligned} & \text { TEST } \\ & \text { CONDITIONS } \end{aligned}$
		MIN	TYP	MAX		
Input Capacitence	C_{1}			15	pF	f=1 MHz
Outpur Capecitance	Co_{0}			15	pr	
Input/Output Capacitance	ClO_{10}			16	pr ${ }^{\text {P }}$	

CAPACITANCE

$T_{a}=-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ; \mathrm{VCC}_{\mathrm{C}}=+5 \pm 10 \%$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Oscillator Frequency	f	160		440	KHz	
Rise and Fall Times	$\mathrm{tr}_{4}, \mathrm{t}_{4}$	0		0.3	μs	EXTERNAL CLOCK
Clock Pulse Width High	${ }^{\text {t }} \Phi \mathrm{W}_{\mathrm{H}}$	0.5		5.6	$\mu \mathrm{S}$	
Clock Pulse Width Low	${ }^{t} \phi W_{L}$	0.5		5.6	$\mu \mathrm{s}$	

AC CHARACTERISTICS

CLOCK WAVEFORM

4-BIT SINGLE CHIP MICROCOMPUTER

DESCRIPTION
The μ PD547L is a 4 -bit single chip microcomputer which has the same architecture as the μ PD547. It contains a 1000×8-bit ROM, a 64×4-bit RAM, a testable interrupt input INT and a single-level stack.
The μ PD547L provides 35 I/O lines, organized into the 4 -bit input ports A and B, the 4-bit I/O ports C and D, the 4-bit output ports, E, F, G, and H, and the 3-bit output port I. The μ PD547L typically executes all 58 instructions of the $\mu \mathrm{COM}-4$ family instruction set with a $25 \mu \mathrm{~s}$ instruction cycle time. It is manufactured with a modified PMOS process, allowing use of a single -8 V power supply, and is available in a 42 -pin dual-in-line plastic package.

PIN NAMES

PAO-PA3	Input Port A
$\mathrm{PB}_{0}-\mathrm{PB}_{3}$	Input Port B
$\mathrm{PC}_{0}-\mathrm{PC}_{3}$	Input/Output Port C
$\mathrm{PD}_{0}-\mathrm{PD}_{3}$	Input/Output Port D
$\mathrm{PE}_{0}-\mathrm{PE}_{3}$	Output Port E
$\mathrm{PF}_{0}-\mathrm{PF}_{3}$	Output Port F
$\mathrm{PG}_{0}-\mathrm{PG}_{3}$	Output Port G
$\mathrm{PH}_{0}-\mathrm{PH}_{3}$	Output Port H
$\mathrm{PI}_{0}-\mathrm{PI}_{2}$	Output Port I
INT^{7}	Interrupt Input
$\mathrm{CLO}_{0}-\mathrm{CL}_{1}$	External Clock Signals
RESET	Reset
V_{GG}	Power Supply Negative
V_{SS}	Power Supply Positive
TEST	Factory Test Pin (Connect to VSS

[^5]| PARAMETER | SYMBOL | LIMITS | | | | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | MIN | TYP | MAX | UNIT | |
| Input Voltage High | $\mathrm{V}_{1 \mathrm{H}}$ | 0 | | -1.6 | \checkmark | Ports A through D, $\overline{\mathrm{INT}}$, RESET |
| Input Voltage Low | $V_{\text {IL }}$ | -3.8 | | V_{GG} | \checkmark | Ports A through D, $\overline{\mathrm{INT}}$. RESET |
| Clock Voltage High | $\mathrm{V}_{\phi} \mathrm{H}$ | 0 | | -0.6 | v | CL0 Input, External Clock |
| Clock Voltage Low | $\mathrm{V}_{\phi \mathrm{L}}$ | -5.0 | | v_{GG} | \checkmark | CL_{0} Input, External Clock |
| Input Leakage Current High | 'LIH | | | +10 | $\mu \mathrm{A}$ | Ports A through D, $\overline{\mathrm{NT}}$, RESET, $V_{1}=-1 \mathrm{~V}$ |
| Input Leakage Current Low | 'LIL | | | -10 | $\mu \mathrm{A}$ | Ports A through D, $\overline{\mathrm{INT}}$, RESET, $V_{1}=-9 V^{\prime}$ |
| Clock Input Leakage Current High | ${ }^{\text {L }} \mathrm{L}$ ¢ H | | | +200 | $\mu \mathrm{A}$ | CL_{0} Input, $\mathrm{V}_{\text {¢ }}=0 \mathrm{~V}$ |
| Clock Input Leakage Current Low | ${ }_{\text {L }}^{\text {L } \phi \text { L }}$ | | | -200 | $\mu \mathrm{A}$ | CL_{0} Input, $\mathrm{V}_{\phi \mathrm{L}}=-9 \mathrm{~V}$. |
| Output Voltage High | VOH_{3} | | | -1.0 | v | Ports C through I. $\mathrm{IOH}^{=}=-1.0 \mathrm{~mA}$ |
| | VOH_{2} | | | -2.3 | v | Ports C through I , $\mathrm{IOH}^{2}:-3.3 \mathrm{~mA}$ |
| Output Leakage Current Low | ILOL | | | -10 | $\mu \mathrm{A}$ | Ports C through 1 , $V_{0}=-9 V^{-}$ |
| Supply Current | ${ }^{\text {IGG }}$ | | -15 | -25 | mA | |

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	c_{1}			15	pF	$f=1 \mathrm{MHz}$
Output Capacitance	Co_{0}			15	pF	
Input/Output Capacitance	ClO_{10}			15	pF	

CAPACITANCE
$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{GG}}=-8 \mathrm{~V} \pm 10 \%$.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Oscillator Frequency	f	100		180	KHz	
Rise and Fall Times	t_{r}, t_{f}	0		0.3	$\mu \mathrm{s}$	EXTERNAL CLOCK
Clock Pulse Width High	$t_{\phi} W_{H}$	2.0		8.0	$\mu \mathrm{s}$	
Clock Pulse Width Low	${ }^{t}{ }_{\phi} W_{L}$	2.0		8.0	$\mu \mathrm{s}$	

AC CHARACTERISTICS

CLOCK WAVEFORM

4-BIT SINGLE CHIP MICROCOMPUTERS WITH VACUUM FLUORESCENT DISPLAY DRIVE CAPABILITY

DESCRIPTION The μ PD552 and the μ PD553 are pin-compatible 4-bit single chip microcomputers

 which have similar architectures.The μ PD552 contains a 1000×8-bit ROM and a 64×4-bit RAM. It has a testable interrupt input $\overline{\mathrm{NT}}$, a single-level stack, and executes all 58 instructions of the μ COM -4 family instruction set. The μ PD552 is upward compatible with the μ PD553.
The μ PD553 contains a 2000×8-bit ROM, and a 96×4-bit RAM which includes six working registers and the Flag register. It has a level-triggered hardware interrupt, a three-level stack, and a programmable 6 -bit Timer. The μ PD553 executes all 80 instructions of the extended μ COM-4 family instruction set.

Both the μ PD552 and the μ PD553 provide $35 \mathrm{I} / \mathrm{O}$ lines organized into the 4 -bit input Ports A and B, the 4-bit I/O Ports C and D, the 4-bit output Ports E, F, G, and H, and the 3-bit output Port I. The 27 I/O ports and output ports are capable of being pulled to -35 V in order to drive Vacuum Fluorescent Displays directly. Both devices typically execute their instructions with a 10μ s instruction cycle time. The μ PD552 and the μ PD553 are manufactured with a standard PMOS process, allowing use of a single -10V power supply, and are available in a 42-pin dual-in-line plastic package.

PIN CONFIGURATION RATINGS*

$\mathrm{CL}_{1} \square^{1}$		42	$\square \mathrm{CLO}_{0}$
$\mathrm{PCO}_{0} 2$		41	$\square \mathrm{VGG}^{\text {a }}$
$\mathrm{PC}_{1}-3$		40	$\square \mathrm{PB} 3$
$\mathrm{PC}_{2} \mathrm{P}_{4}$		39	PB_{2}
$\mathrm{PC}_{3} \square 5$		38	PB_{1}
INT 96		37	$\mathrm{P}^{\mathrm{P} \mathrm{B}_{0}}$
RESET 7		36	PPA_{3}
$\mathrm{PD}_{0} 8$		35	$\square \mathrm{PA}_{2}$
PD1 $\square 9$		34	$\square \mathrm{PA}_{1}$
PD2 10	$\mu \mathrm{PD}$	33	$\square \mathrm{PA}_{0}$
$\mathrm{PD}_{3} \square_{11}$	552/	32] PI_{2}
$\mathrm{PE}_{0} \mathrm{P}_{12}$	553	31	P Pl_{1}
PE1 13		30	Pl_{0}
$\mathrm{PE}_{2} \square_{14}$		29	PH_{3}
$\mathrm{PE}_{3} \mathrm{P}_{15}$		28	PH_{2}
PF0 16		27	PH_{1}
PF1 17		26	PH_{0}
PF2 18		25	PPG3
$\mathrm{PF}_{3} 19$		24	DPG_{2}
TEST ${ }^{1}$		23	$]^{1} \mathrm{PG}{ }_{1}$
VSs 21		22	$\square \mathrm{PG}_{0}$

Operating Temperature
Storage Temperature . $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage, $\mathrm{V}_{\mathrm{GG}} . \operatorname{~.~}-15$ to +0.3V
Input Voltages (Port A, B, INT, RESET) .- 15 to +0.3V
(Ports C, D) . 40 to +0.3V
Output Voltages . 40 to +0.3V
Output Current (Ports C through I, each bit) . -12 mA
(Total, all ports) . -60 mA
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
*COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Voltage High	$\mathrm{V}_{\text {IH }}$	0		-3.5	v	Ports A through $D, \overline{\mathrm{INT}}$, RESET
Input Voltage Low	$V_{1 L}$	-7.5		$V_{G G}$	V	Ports A, B, INT, RESET
	$\mathrm{V}_{1} \mathrm{~L}_{2}$	-7.5		-36	V	Ports C, D
Clock Voltage High	$\mathrm{V}_{\phi} \mathrm{H}$	0		-0.8	v	CLo input, External Clock
Clock Voltage Low	$\mathrm{V}_{\phi \text { L }}$	-6.0		V_{GG}	v	CLo ${ }^{\text {mput, External Clock }}$
Input Leakage Current High	ILIH			+10	$\mu \mathrm{A}$	Ports A through D, $\overline{\mathrm{INT}}$, RESLT, $V_{1}=-1 V$
Input Leakage Current Low	'LIL,			-10	$\mu \mathrm{A}$	Ports A through D, INT, RESI:T, $\mathrm{V}_{1}=-11 \mathrm{~V}$
	${ }^{\text {LIIL } 2}$			-30	$\mu \mathrm{A}$	Ports C, D, $\mathrm{V}_{1}=-35 \mathrm{~V}$
Clock Input Leakage Current High	$\mathrm{I}_{\mathrm{L} \phi \mathrm{H}}$			+200	$\mu \mathrm{A}$	CL_{O} Input, $\mathrm{V}_{\phi \mathrm{H}}=0 \mathrm{~V}$
Clock Input Leakage Current Low	IL \quad L			-200	$\mu \mathrm{A}$	CL_{0} Input, $\mathrm{V}_{\phi \mathrm{L}}=-11 \mathrm{~V}$
Output Voltage High	V OH			-2.0	v	Ports C through I . $\mathrm{IOH}_{\mathrm{OH}}=-8 \mathrm{~mA}$
Output Leakage Current Low	$\mathrm{L}_{\mathrm{LOL}}^{1}$			-10	$\mu \mathrm{A}$	Ports C through I. $v_{0}=-11 \mathrm{~V}$
	$\mathrm{l}_{\mathrm{LOL}}^{2}$			-30	$\mu \mathrm{A}$	Ports C through I. $V_{Q}=-35 V$
Supply Current	${ }^{\prime} \mathrm{GG}$		-30	-50	mA	

DC CHARACTERISTICS

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	C_{1}			15	pF	
Output Capacitance	Co			15	pF	$f=1 \mathrm{MHz}$
Input/Output Capacitance	ClO_{10}			16	pF	

CAPACITANCE

$T_{a}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{VGG}^{2}=-10 \mathrm{~V} \pm 10 \%$

Parameter	SYMBOL	LIMITS			UNIT	TE8T CONDITIONS
		MIN	TYP	MAX		
Oscillator Frequency	1	150		440	KHz	
Rise and Fall Times	tr_{r}, $\mathrm{tf}^{\text {f }}$	0		0.3	μ	EXTERNAL CLOCK
Clock Pulse Width High	$\mathbf{t}_{\phi} \mathrm{W}_{\mathbf{H}}$	0.6		5.6	$\mu \mathrm{s}$	
Clock Puise Width Low	${ }_{4} \mathrm{~W}_{\mathrm{L}}$	0.5		5.6	$\mu 8$	

μ PD554

4-BIT SINGLE CHIP MICROCOMPUTERS WITH VACUUM FLUORESCENT DISPLAY DRIVE CAPABILITY

DESCRIPTION The μ PD550 and the μ PD554 are pin-compatible 4-bit single chip microcomputers which have the same architecture. The only difference between them is that the μ PD550 contains a 640×8-bit ROM, whereas the μ PD554 contains a 1000×8-bit ROM. Both devices have a 32×4-bit RAM; a testable interrupt input $\overline{\mathrm{NT}}$, and a single-level stack. The μ PD550 and the μ PD554 provide 21 I/O lines organized into the 4 -bit input port A , the 4 -bit I / O ports C and D , the 4 -bit output ports E and F , and the 1 -bit output port G. The $17 \mathrm{I} / \mathrm{O}$ ports and output ports are capable of being pulled to -35 V in order to drive Vacuum Fluorescent Displays directly. The μ PD550 and the μ PD554 typically execute all 58 instructions of the μ COM- 4 family instruction set with a $10 \mu \mathrm{~s}$ instruction cycle time. Both devices are manufactured with a standard PMOS process, allowing use of a single -10 V power supply, and are available in a 28 pin dual-in-line plastic package.

PIN CONFIGURATION

$\mathrm{PA}_{0}-\mathrm{PA}_{3}$	Input Port A
$\mathrm{PC}_{0}-\mathrm{PC}_{3}$	Input/Output Port C
$\mathrm{PD}_{0}-\mathrm{PD}_{3}$	Input/Output Port D
$\mathrm{PE}_{0}-\mathrm{PE}_{3}$	Output Port E
$\mathrm{PF}_{0}-\mathrm{PF}_{3}$	Output Port F
PG_{0}	Output Port G
$\mathrm{CL}_{0}-\mathrm{CL}_{1}$	External Clock Signals
TNT	Interrupt Input
RESET	Reset
VGG $^{\text {VSS }}$	Power Supply Negative
TEST	Power Supply Positive

[^6]| PARAMETER | SYMBOL | LIMITS | | | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | MIN | TYP | MAX | | |
| Input Voltege High | $\mathrm{V}_{1} \mathrm{H}$ | 0 | | -2.0 | v | Ports A, C, D, INT, RESET |
| Input Voltage Low | $V_{1 L_{1}}$ | -4.3 | | VGG | v | Ports A, iÑT, RESET |
| | $\mathrm{V}_{1} \mathrm{~L}_{2}$ | -4.3 | | -36 | V | Ports C, D |
| Clock Voltage High | $\mathrm{V}_{\phi H}$ | 0 | | -0.6 | V | CLo Input, External Clock |
| Clock Voitage Low | $V_{\phi L}$ | -6.0. | | VGG | V | CLo Input, External Clock |
| Input Leakage Current High | ILIH | | | +10 | $\mu \mathrm{A}$ | Ports A, C, D, INT, RESET $v_{1}=-1 v$ |
| Input Leakag* Current Low | 'LILis | | | -10 | $\mu \mathrm{A}$ | Ports $A, C, D, \overline{\text { INT, RESET }}$ $v_{1}=-11 v$ |
| | $\mathrm{I}_{\text {LIL2 }}$ | | | -30 | $\mu \mathrm{A}$ | Ports $\mathrm{C}, \mathrm{I}, \mathrm{V}_{1}=-35 \mathrm{~V}$ |
| Clock Input Leakage Current High | IL¢H | | | +200 | $\mu \mathrm{A}$ | CL_{0} Input, $\mathrm{V}_{\phi H}=0 \mathrm{~V}$ |
| Clock Input Leakage Current Low | ${ }^{1}$ L ϕ L | | | -200 | $\mu \mathrm{A}$ | CLo Input, $\mathrm{V}_{\phi L}=-11 \mathrm{~V}$ |
| Output Voltage High | VOH_{1} | | | -1.0 | V | Ports $\mathrm{C}, \mathrm{D}, 1 \mathrm{OH}=-2 \mathrm{~mA}$ |
| | VOH_{2} | | | -2.5 | V | Ports E, \%, G, $1 \mathrm{OH}=-10 \mathrm{~mA}$ |
| Output Leakage Current Low | ${ }_{1} \mathrm{LOL}_{1}$ | | | -10 | $\mu \mathrm{A}$ | Ports C through G , $v_{\mathrm{O}}=-11 \mathrm{~V}$ |
| | ILOL_{2} | | | -30 | $\mu \mathrm{A}$ | Ports C through G, $V_{Q}=-35 \mathrm{~V}$ |
| Supply Current | IGG. | | -20 | -40 | mA | |

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	c_{1}			15	pF	
Output Capecitance	c_{0}			15	pF	$\mathrm{f}=1 \mathrm{MHz}$
Input/Output Capacitance	ClO_{10}			15	pF	

CAPACITANCE
$T_{\mathrm{B}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; V_{G G}=-10 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Oscillator Frequency	f	150		440	KHz	
Rise and Fall Times	t_{r}, t_{f}	0	-	0.3	μ	Exsernal Clock
Clock Pulse Width High	${ }^{\text {¢ }}$ ¢ W_{H}	0.5		5.6	$\mu 8$	
Clock Pulse Width Low	${ }_{ \pm}{ }^{+} W_{L}$	0.6		5.6	$\mu 8$	

4-BIT SINGLE CHIP MICROCOMPUTERS WITH VACUUM FLUORESCENT DISPLAY DRIVE CAPABILITY

DESCRIPTION The μ PD550L and the μ PD554L are pin-compatible 4-bit single chip microcomputers which have the same architecture. The only difference between them is that the μ PD550L contains a 640×8-bit ROM, whereas the μ PD554L contains a 1000×8-bit ROM. Both devices have a 32×4-bit RAM, a testable interrupt input INT, and a singlelevel stack. The μ PD550L and the μ PD554L provide $21 \mathrm{I} / \mathrm{O}$ lines organized into the 4-bit input port A , the 4 -bit I / O ports C and D , the 4 -bit output ports E and F , and the 1 -bit output port. G. The $17 \mathrm{I} / \mathrm{O}$ ports and output ports are capable of being pulled to -35 V in order to drive Vacuum Fluorescent Displays directly. The μ PD550L and the μ PD554L typically execute all 58 instructions of the μ COM-4 family instruction set with a 25μ instruction cycle time. Both devices are manufactured with a modified PMOS process, allowing use of a single -8 V power supply, and are available in a 28 -pin dual-in-line plastic package.
The μ PD550L and the μ PD554L are upward compatible with the μ PD557L.

$T_{a}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; V_{G G}=-8.0 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST COHDITIONS
		MIN	TYP	MAX		
Input Voltage High	$\mathrm{V}_{\text {IH }}$	0		-1.6	V	Ports A, C, O, INT, RESET
Input Voltage Low	$V_{1 L_{1}}$	-4.5		VGG	V	Ports $A, \overline{\text { NT, }}$ RESET
	$\mathrm{V}_{1} \mathrm{~L}_{2}$	-4.5		-35	V	Ports C, D
Clock Voitage High	$\mathrm{V}_{\phi} \mathrm{H}$	0		-0.6	V	CLo Input, External Clock
Clock Voltage Low	$\mathrm{V}_{\phi} \mathrm{L}$	-5.0		VGG	\checkmark	CLo Input, External Clock
Input Leakage Current High	'LİH			+10	$\mu \mathrm{A}$	Ports A, C, D, INT, RESET $v_{1}=-1 v$
Input Leakage Current Low	'LiLl			-10	$\mu \mathrm{A}$	Ports A, C, D, INT, RESET $v_{1}=-9 v$
	$\mathrm{I}_{\mathrm{LI}} \mathrm{L}_{2}$			-30	$\mu \mathrm{A}$	Ports C, D, $V_{1}=-35 \mathrm{~V}$
Clock Input Leakage Current High	'L¢H			+200	$\mu \mathrm{A}$	$C L_{0}$ Input, $\mathrm{V}_{\phi H}=0 \mathrm{~V}$
Clock Input Leakage Current Low	IL¢L			-200	$\mu \mathrm{A}$	CLo Input, $\mathrm{V}_{\phi \mathrm{L}}=-9 \mathrm{~V}$
Output Voltage High	VOH_{1}			-1.0	V	Ports C, D, $\mathrm{IOH}=-2 \mathrm{~mA}$
	VOH_{2}			-2.5	v	Ports E, F, G, $10 \mathrm{OH}=-10 \mathrm{~mA}$
Output Leakage Current Low	${ }^{1} \mathrm{LOL}_{1}$			-10	$\mu \mathrm{A}$	Ports C through G, $V_{0}=-9 \mathrm{~V}$
	${ }^{1} \mathrm{LOL}_{2}$			-30	$\mu \mathrm{A}$	Ports C through G , $v_{0}=-35 \mathrm{~V}$
Supply Current	IGG		-12	-24	mA	

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	LImits			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	C_{1}			15	pF	$f=1 \mathrm{MHz}$
Output Capacitance	c_{0}			15	pF	
Input/Output Capacitance	ClO_{10}			15	pF	

CAPACITANCE

$$
\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} ; V_{G G}=-8.0 \mathrm{~V} \pm 10 \%
$$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Oscillator Frequency	f	100		180	KHz	
Rise and Fall Times	t_{r}, t_{f}	0		0.3	$\mu \mathrm{s}$	Extarnal Clock
Clock Pulse Width High	${ }^{\mathbf{t}} \mathrm{WW}_{\mathrm{H}}$	2.0		8.0	$\mu 3$	
Clock Pulse Width Low	${ }^{t}{ }^{\text {d }} \mathrm{W}_{\mathrm{L}}$	2.0		8.0	$\mu \mathrm{s}$	

CLOCK WAVEFORM

CMOS 4-BIT SINGLE CHIP MICROCOMPUTER

DESCRIPTION
The μ PD652 is a CMOS 4-bit single chip microcomputer having the same architecture as the μ PD554. It contains a 1000×8-bit ROM, a 32×4-bit RAM, a testable interrupt input $\overline{\mathrm{NT}}$, and a single-level stack. The $\mu \mathrm{PD} 652$ provides $21 \mathrm{I} / \mathrm{O}$ lines, organized into the 4 -bit input port A, the 4 -bit I/O ports C and D, the 4 -bit output ports E and F, and the 1 -bit output port G. The μ PD652 typically executes all 58 instructions of the μ COM-4 family instruction set with a 10μ s instruction cycle time. It is manufactured with a standard CMOS process, allowing use of a single +5 V power supply, and is available in a 28 -pin Dual-in-line plastic package.

PIN CONFIGURATION

PIN NAMES

$\mathrm{PA}_{0}-\mathrm{PA}_{3}$	Input Port A
$\mathrm{PC}_{0}-\mathrm{PC}_{3}$	Input/Output Port C
$P D_{0}-P D_{3}$	Input/Output Port D
$\mathrm{PE}_{0}-\mathrm{PE}_{3}$	Output Port E
$\mathrm{PF}_{0} \cdot \mathrm{PF}_{3}$	Output Port F
PGo	Output Port G
INT	Interrupt Input
$\mathrm{CLO}_{0}-\mathrm{CL}_{1}$	External Clock Signals
RESET	Reset
$V_{\text {cc }}$	Power Supply Positive
VSS	Power Supply Negative
TEST	Factory Test Pin (Connect to V_{CC})

[^7]| PARAMETER | SYMBOL | LIMITS | | | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | MIN | TYP | MAX | | |
| Input Voltage High | $\mathrm{V}_{\text {IH }}$ | 0.7 VCC | | $V_{\text {cc }}$ | \checkmark | Ports A, C, D, INT, RESET |
| Input Voltage Low | $V_{\text {IL }}$ | 0 | | 0.3 VCC | V | Ports A, C, D, INT, RESET |
| Clock Voltage High | $V_{\phi H}$ | 0.7 VCC | | $V_{C C}$ | V | CLo Input, External Clock |
| Clock Voltage Low | $V_{\phi L}$ | 0 | | 0.3 VCC | V | CLo Input, External Clock |
| Input Leakage Current High | ILIH | | | +10 | $\mu \mathrm{A}$ | Ports A, C, D, $\overline{\text { INT }}$, RESET, $V_{1}=V_{C C}$ |
| Input Leakage Current Low | ILIL | | | -10 | $\mu \mathrm{A}$ | Ports A, C, [I, INT, RESET, $v_{1}=0 v$ |
| Clock Input Leakage Current High | IL¢H | | | +200 | $\mu \mathrm{A}$ | CL_{0} Input, $\mathrm{V}_{\phi} \mathrm{H}=\mathrm{V}_{\mathrm{CC}}$ |
| Clock Input Leakage Current Low | ${ }^{\text {L. } ¢ \mathrm{~L}}$ | | | -200 | $\mu \mathrm{A}$ | CL_{0} Input, $\mathrm{V}_{\phi \mathrm{L}}=0 \mathrm{~V}$ |
| Output Voltage High | VOH_{1} | VCC-0.5 | | | V | Ports C through $\mathrm{G}, \mathrm{IOH}=-1.0 \mathrm{~mA}$ |
| | VOH_{2} | $\mathrm{V}_{\text {cc }}{ }^{-2.5}$ | | | \checkmark | Ports C through $\mathrm{G}, 1 \mathrm{OH}=-2.0 \mathrm{~mA}$ |
| Output Voltage Low | VOL_{1} | | | +0.6 | \checkmark | Ports E, F, G, IOL $=+2.0 \mathrm{~mA}$ |
| | VOL_{2} | | | +0.4 | \checkmark | Ports E, F, G, IOL $=+1.2 \mathrm{~mA}$ |
| Output Leakage Current Low | ILOL | | | -10 | $\mu \mathrm{A}$ | Ports C, D, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ |
| Supply Current | Icc | | +0.8 | +2.0 | mA | |

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

PARAMETER	SVMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	C_{1}			15	pF	
Output Capacitance	Co			15	pF	$f=1 \mathrm{MHz}$
Input/Output Capacitance	ClO_{10}			15	pF	

$T_{a}=-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	Limirs			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Oscillator Frequency	f	150		440	kHz	
Rise and Fall Times	t_{r}, t_{f}	0		0.3	$\mu 3$	
Clock Pulse Width High	${ }^{\text {t }}$ ¢ W_{H}	0.5		5.6	$\mu \mathrm{s}$	External Clock
Clock Pulse Width Low	${ }^{t} \phi \mathrm{~W}_{\mathrm{L}}$	0.5		5.6	μs	

CAPACITANCE

μ COM-4 4-BIT SINGLE CHIP ROM-LESS EVALUATION CHIP

The μ PD556B is the ROM-less evaluation chip for the μ COM - 4 4-bit single chip microcomputer family. The μ PD556B is used in conjunction with an external 2048×8-bit program memory, such as the μ PD2716 UV EPROM, to emulate each of the 14 different $\mu \mathrm{COM}-4$ single chip microcomputers.

The μ PD556B contains a 96×4-bit RAM, which includes six working registers and the Flag register. It has a level-triggered hardware interrupt, a three-level stack, and a programmable 6-bit timer. The μ PD556B executes all 80 instructions of the extended μ COM-4 family instruction set.

The μ PD556B provides $35 \mathrm{I} / \mathrm{O}$ lines organized into the 4 -bit input Ports A and B, the 4-bit I/O Ports C and D, the 4-bit output Ports E, F, G, and H, and the 3-bit output Port I. It typically executes its instructions with a $10 \mu \mathrm{~s}$ instruction cycle time. The μ PD556B is manufactured with a standard PMOS process, allowing use of a single -10 V power supply, and is available in a 64-pin quad-in-line ceramic package.

Operating Temperature
. $-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
ABSOLUTE MAXIMUM
Storage Temperature $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage, VGG -15 V to +0.3 V
All Input Voltages. -15 V to +0.3 V
All Output Voltages. -15 V to +0.3 V
Output Current (total, all ports) . 4 mA

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

*COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RATINGS*
$T_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{GG}}=-10 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$

PARAMETER	SYMBOL	L.IMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input High Voltage	$\mathrm{V}_{1 H}$	0		-2.0	V	Ports A to D, 1_{7-0} BREAK, STEP, $\overline{\mathrm{INT}}$, RESET, and $A C C / P C$
Input Low Voltage	$V_{\text {IL }}$	-4.3		V_{GG}	v	Ports A to D, 17-0 BREAK, STEP, INT, RESET, and $A C C / P C$
Clock High Voltage	$\mathrm{V}_{6, \mathrm{H}}$	0		-0.8	\checkmark	CL_{0} Input, External Clock
Clock Low Voltage	V_{6} L	-6.0		v_{GG}	v	CLo Input, External Clock
Input Leakage Current High	${ }^{\prime}$ LIH			$+10$	$\mu \mathrm{A}$	Ports A and $B, 17-0$ INT, RESET, BREAK, STEP, $A_{C C} / P C, V_{1}=-1 V$
				+10	$\mu \mathrm{A}$	Ports C and $D_{1}, V_{1}=-1 \mathrm{~V}$
Input Leakage Current Low	ILIL			-10	$\mu \mathrm{A}$	Ports A and $B, 17.0$ INT, RESET, BREAK, STEP, $\mathrm{ACC}^{2} \mathrm{PC}, \mathrm{V}_{1}=-11 \mathrm{~V}$
				-10	$\mu \mathrm{A}$	Ports C and $\mathrm{D}, \mathrm{V}_{1}=-11 \mathrm{~V}$
Clock Input Leakage High	${ }^{1} \mathrm{~L}, \mathrm{i}^{\prime} \mathrm{H}$			$+200$	$\mu \mathrm{A}$	CL_{O} Input, External Clock, $\mathrm{V}_{\mathrm{O} \mathrm{H}}=\mathrm{OV}$
Clock Input Leakage Low	${ }^{1} \mathrm{LCO}$			-200	$\mu \mathrm{A}$	CLo Input, External Clock, $v_{\phi L}=-11 \mathrm{~V}$
Output High Voltage	$\mathrm{V}_{\mathrm{OH} 1}$			-1.0	V	Ports C to I, P10-0 $\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$
	$\mathrm{V}_{\mathrm{OH} 2}$			-2.3	v	Ports C to I, $\mathrm{P}_{10.0}$ $\mathrm{I}_{\mathrm{OH}}=-3.3 \mathrm{~mA}$
Output Leakage Current Low	'LOL			-30	$\mu \mathrm{A}$	$\text { Ports C to } 1, P_{10-0}$ $v_{O}=-11 \mathrm{v}$
Supply Current	I_{GG}		-30	-50	mA	

AC CHARACTERISTICS $\quad T_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{GG}}=-10 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Frequency	$\mathrm{f}_{4}{ }_{\text {c }}$:	150		440	KHz	
Clock Rise and Fall Times	tr_{r}, tf	0		0.3	$\mu \mathrm{s}$	
Clock Pulse Width High	town	0.5		5.6	$\mu \mathrm{s}$	
Clock Pulse Widtn Low	t_{φ} WWL	0.5		5.6	μs	
Input Setup Time	tis			5	$\mu \mathrm{s}$	
Input Hold Time	$\mathrm{t}_{1} \mathrm{H}$	0			$\mu \mathrm{s}$	
BREAK to STEP Interval	${ }^{\text {t }}$ BS	200			$\mu \mathrm{s}$	$\mathrm{f}=400 \mathrm{KHz}, ~ " 1$ " Written
STEP to RUN Interval	${ }^{\text {t }}$ SB	200			$\mu \mathrm{s}$	$\mathrm{f}=400 \mathrm{KHz}, ~ " 1 "$ Written
STEP Pulse Width	tws	30			$\mu \mathrm{s}$	$\mathrm{f}=400 \mathrm{KHz}, ~ " 1$ " Written
BREAK to Acc interval	${ }^{\text {t }}{ }_{\text {BA }}$	200			$\mu \mathrm{s}$	$f=400 \mathrm{KHz}, ~ " 1$ " Written
$\mathrm{A}_{\mathrm{cc}} / \mathrm{PC}$ Pulse Width	${ }^{\text {t }}$ WA	30			$\mu \mathrm{s}$	$\mathrm{f}=400 \mathrm{KHz}, ~ " 1 "$ Written
STEP to ACC Interval		200			$\mu \mathrm{S}$	$\mathrm{f}=400 \mathrm{KHz}, ~ " 1$ " Written
PC to STEP Overlap	${ }^{\text {t }}$ SA2			5	μ_{s}	$\mathrm{f}=400 \mathrm{KHz}$, "1" Written
PC to RUN Interval	${ }^{\text {t }} \mathrm{AB}$	0			$\mu \mathrm{s}$	$\mathrm{f}=400 \mathrm{KHz}$, "1" Written
$\mathrm{A}_{\mathrm{CC}} / \mathrm{PC} \cdot \mathrm{P}_{10.0}$ Delay	${ }^{\text {t }}$ DAP1			15	$\mu \mathrm{s}$	$\mathrm{f}=400 \mathrm{KHz},{ }^{\prime} 1$ " Written
	tDAP2			15	$\mu \mathrm{s}$	$\mathrm{f}=400 \mathrm{KHz}, " 1$ " Written

CAPACITANCE $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	C_{1}			15	pf	$\mathrm{f}=1 \mathrm{MHz}$
Output Capacitance	Co_{0}			15	pf	
Input/Output Capacitance	Clo			15	pf	

TIMING WAVEFORMS

PACKAGE OUTLINE μ PD556B

CERAMIC

ITEM	MILLIMETERS	INCHES
A	41.5	1.634 MAX
B	1.05	0.042
C	2.54	0.1
D	0.5 ± 0.1	0.2 ± 0.004
E	39.4	1.55
F	1.27	0.05
G	5.4 MIN	0.21 MIN
I	2.35 MA	0.13 MAX
J	24.13	0.95
K	19.05	0.75
L	15.9	0.626
M	0.25 ± 0.05	0.01 ± 0.002

Description

The μ PD7500 Series CMOS 4-Bit Single Chip Microcomputer Family is a broad product line of 10 individual devices designed to fulfill a wide variety of applications. The advanced 4th generation architecture includes all of the functional blocks necessary for a single chip controller, including an ALU, Accumulator, Program Memory (ROM), Data Memory (RAM), four General Purpose Registers, Stack Pointer, Program Status Word (PSW), 8-Bit Timer/Event Counter, Interrupt Controller, Display Controller/Driver, and 8-Bit Serial Interface. The instruction set maximizes the efficient utilization of fixed Program Memory space, and includes a variety of addressing, Table-Look-up, Logical; Single Bit Manipulation, vectored jump, and Condition Skip Instructions.
The μ PD7500 Series includes three different devices, the μ PD7501, μ PD7502, and μ PD7503, capable of directly driving Liquid Crystal Displays with up to 12 7 -segment digits. The μ PD7508A can directly drive up to 35 V Vacuum Fluorescent Displays with up to 8 7-segment digits, and the μ PD7519 can directly drive up to 35 V Vacuum Fluorescent Displays with up to 16 7 -segment digits.
All 10 devices are manufactured with a Silicon gate CMOS process, consuming only $900 \mu \mathrm{~A}$ max at 5 V , and only $400 \mu \mathrm{~A}$ max at 3 V . The HALT and STOP powerdown instructions can significantly reduce power consumption even further.
The flexibility and the wide variety of μ PD7500 Series devices available make the μ PD7500 series ideally suited for a wide range of battery-powered, solarpowered, and portable products, such as telecommunication devices, hand-held instruments and meters, automotive products, industrial controls, energy management systems, medical instruments, portable terminals, portable measuring devices, appliances, and consumer products.

Features

Advanced 4th Generation ArchitectureChoice of 8-Bit Program Memory (ROM) size:- $1 \mathrm{~K}, 2 \mathrm{~K}, 4 \mathrm{~K}$ internal, or 8 K external bytes

Choice of 4-Bit Data Memory (RAM) size:

- 64, 96, 128, 208, 224, or 256 internal nibbles

RAM Stack
Four General Purpose Registers: D, E, H, and L

- Can address Data Memory and I/O ports
- Can be stored to or retrieved from Stack

Powerful Instruction Set

- From 58 to 110 instructions, including:
- Direct/indirect addressing
- Table Look-up
- RAM Stack Push/Pop
- Single byte subroutine calls
- RAM and I/O port single bit manipulation
- Accumulator and I/O port Logical operations
- $10 \mu \mathrm{~s}$ Instruction Cycle Time, typically

Extensive General Purpose I/O Capability

- One 4-Bit Input Port
- Two 4-Bit latched tri-state Output Ports
- Five 4-Bit input/latched tri-state Output Ports
- Easily expandable with μ PD82C43 CMOS I/O Expander
- 8-Bit Parallel I/O capability

Hardware Logic Blocks - Reduce Software Requirements

- Operation completely transparent to instruction execution
- 8-Bit Timer/Event Counter
- Binary-up counter generates INTT at coincidence
- Accurate Crystal Clock or External Event operation possible
- Vectored, Prioritized Interrupt Controller
- Three external interrupts ($\mathrm{INT}_{0}, \mathrm{INT}_{1}, \mathrm{INT}_{2}$)
- Two internal interrupts (INTT, INTS)
- Display Controller/Driver
- Complete Direct Drive and Control of Multiplexed LCD or Vacuum Fluorescent Display
- Display Data automatically multiplexed from RAM to dedicated segment/backplane/digit driver lines
- 8-Bit Serial Interface
- 3-line I/O configuration generates INTS upon transmission of eighth bit
- Ideal for distributed intelligence systems or communication with peripheral devices
- Complete operation possible in HALT and STOP power-down modes
Built-in System Clock Generator
Built-in Schmidt-Trigger RESET Circuitry
Single Power Supply, Variable from 2.7V to 5.5 V
Low Power Consumption Silicon Gate CMOS Technology
- $900 \mu \mathrm{~A}$ max at 5V, $400 \mu \mathrm{~A}$ max at 3V
- HALT, STOP Power-down instructions reduce power consumption to $20 \mu \mathrm{~A}$ max at 5 V , $10 \mu \mathrm{~A}$ at 3 V (Stop mode)
Extended $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Temperature Range Available
Choice of 28 -pin or 40-pin dual-in-line packages, or 52-pin or 64-pin flat plastic packages

μ PD7500 SERIES

Instruction Set

The μ PD7500 Series Instruction Set consists of 110 powerful instructions designed to take full advantage of the advanced μ PD7500 architecture in your application. It is divided into two subsets, according to the complexity of the device.
Instruction Set " A " is available for the higherperformance μ PD7500 Series devices having either a $2 \mathrm{~K} \times 8$-bit or a $4 \mathrm{~K} \times 8$-bit Program Memory. It can be used with the μ PD7500, μ PD7502, μ PD7503, μ PD7507, μ PD7507S, μ PD7508, μ PD7508A, and μ PD7519 products.
Instruction Set " B " is available for the lower-cost μ PD7500 Series devices having a $1 \mathrm{~K} \times 8$-bit Program Memory. Its instructions are a compatible subset of Instruction Set "A," and can be used with the μ PD7500, μ PD7501, and μ PD7506 products.

Instruction Set Symbol Definitions

The following abbreviations are used in the description of the μ PD7500 Series Instruction sets:

μ PD7500 SERIES

Instruction Set "A"
For the μ PD7500, μ PD7502, μ PD7503, μ PD7507, μ PD7507S, μ PD7508, μ PD7508A, and μ PD7519 devices only

Mnomonic	Function	Description	Instruction Code									Bytes	Cycles	Sklp Condition					
			D7	D6	Ds	D4	D3	D2	D_{1}	Do	HEX								
Lond																			
LADR addr	A-(D7-0)	Load Accumulator from directly addressed RAM	$\begin{gathered} 0 \\ D_{7} \end{gathered}$	$\begin{gathered} 0 \\ D_{6} \end{gathered}$	$\begin{aligned} & 1 \\ & D_{5} \end{aligned}$	$\begin{gathered} 1 \\ \mathbf{D}_{4} \end{gathered}$	$\begin{gathered} 1 \\ D_{3} \end{gathered}$	$\begin{aligned} & 0 \\ & \mathrm{D}_{2} \end{aligned}$	$\begin{gathered} 0 \\ D_{1} \end{gathered}$	$\begin{gathered} 0 \\ D_{0} \end{gathered}$	$\begin{gathered} 38 \\ 00-F F \end{gathered}$	2	2						
LAI data	$A-D_{3-0}$	Loed Accumulator whith immediate data	0	0	0	1	D3	D2	D1	D0	10-1F	1	1	String					
LAM rp	$\begin{aligned} & A-(r p) \\ & r p=D L, D E, H L-, H L+, H L \\ & \text { If } r p=H L-\text {, sklp if borrow } \\ & \text { If } r p=H L+\text { sklp If overflow } \end{aligned}$	Load Accumulator from Memory, possible sklp	0	1	0	D2	0	0	D1	Do	$\begin{aligned} & \hline 40,41 \\ & 50-52 \end{aligned}$	1	$1+5$	See explanation of "rp" in symbol definitions					
LAMT (μ PD7500, MPD7502 only)	$\begin{aligned} & \text { ROM addr }=P_{10-6} \\ & 0, C_{1} A_{3-0} \\ & A-[R O M \text { addr }] 7-4 \\ & \text { (HL) }-[\text { ROM addr }] 3-0 \end{aligned}$	Load Accumulator and Memory from Table	0	1	0	1	1	1	1	0	5 E	1	2						
LAMTL (μ PD7500, μ PD7503, μ PD7507, μ PD7507S, μ PD7508, μ PD7508A, μ PD7519, only)	$\begin{aligned} & \text { ROM addr }=\text { PC } 11-8, \\ & \text { A3-0, }(\mathrm{HL}) 3-0 \\ & \text { A }-[\text { ROM addr }] 7-4 \\ & \text { (HL) } \leftarrow[\mathrm{ROM} \text { addr }] 3-0 \end{aligned}$	Load Accumulator and Memory from Table Long	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 3 F \\ & 34 \end{aligned}$	2	2						
LDEI data	$\begin{aligned} & D \leftarrow D_{7-4} \\ & E \leftarrow D_{3-0} \end{aligned}$	Load DE reglster pair with immedlate data	$\begin{aligned} & 0 \\ & D_{7} \end{aligned}$	$\stackrel{1}{\mathbf{D}_{6}}$	$\begin{aligned} & 0 \\ & \mathrm{D}_{5} \end{aligned}$	$\begin{gathered} 0 \\ D_{4} \end{gathered}$	$\begin{aligned} & 1 \\ & D_{3} \end{aligned}$	$\begin{gathered} 1 \\ D_{2} \end{gathered}$	$\begin{gathered} 1 \\ \mathbf{D}_{1} \end{gathered}$	$\begin{gathered} 1 \\ D_{0} \end{gathered}$	$\begin{gathered} 4 F \\ 00-F F \end{gathered}$	2	2						
LDI data	D- $\mathrm{D}_{3} 0$	Load D reglster with Immediate data	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{gathered} 1 \\ D_{3} \end{gathered}$	$\begin{gathered} \mathbf{1} \\ \mathbf{D}_{2} \end{gathered}$	$\begin{gathered} 1 \\ D_{1} \end{gathered}$	$\begin{gathered} 0 \\ D_{0} \end{gathered}$	$\begin{gathered} 3 E \\ 20-2 F \end{gathered}$	2	2						
LEI data	E-D3-0	Load E register with Immediate data	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{gathered} 1 \\ D_{3} \end{gathered}$	$\begin{gathered} 1 \\ \mathbf{D}_{2} \end{gathered}$	$\begin{aligned} & 1 \\ & \mathbf{D}_{1} \end{aligned}$	$\begin{gathered} 0 \\ D_{0} \end{gathered}$	$\begin{gathered} 3 E \\ 00-0 F \end{gathered}$	2	2						
LHI data	$\mathrm{H} \leftarrow \mathrm{D}_{3}-0$	Load H register with Immediate data	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1	$\begin{gathered} 1 \\ D_{3} \end{gathered}$	$\begin{gathered} 1 \\ \mathbf{D}_{2} \end{gathered}$	$\begin{aligned} & 1 \\ & D_{1} \end{aligned}$	$\begin{gathered} 0 \\ D_{0} \end{gathered}$	$\begin{gathered} 3 E \\ 30-3 F \end{gathered}$	2	2						
LHLI data	$\begin{aligned} & \mathrm{H} \leftarrow \mathrm{D}_{7-4} \\ & \mathrm{~L} \leftarrow \mathrm{D}_{3}-0 \end{aligned}$	Load HL reglster pair with immediate data	$\begin{gathered} 0 \\ \mathbf{D}_{7} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{D}_{6} \end{gathered}$	$\begin{aligned} & 0 \\ & \mathrm{D}_{5} \end{aligned}$	$\begin{gathered} 0 \\ D_{4} \end{gathered}$	$\begin{gathered} 1 \\ \mathbf{D}_{3} \end{gathered}$	$\begin{aligned} & \mathbf{1} \\ & \mathbf{D}_{2} \end{aligned}$	$\begin{aligned} & \mathbf{1} \\ & \mathbf{D}_{1} \end{aligned}$	$\begin{gathered} 0 \\ D_{0} \end{gathered}$	$\begin{gathered} 4 E \\ 00-F F \end{gathered}$	2	2	String					
LHLT taddr	$\begin{aligned} & \text { ROM addr }=0 \mathrm{OCOH}+\mathrm{D}_{3-0} \\ & \mathrm{H}-[\mathrm{ROM} \text { addr }] 7-4 \\ & \mathrm{~L} \leftarrow[\mathrm{ROM} \text { addr }] 3-0 \end{aligned}$	Load HL register palr from ROM Table	1	1	0	0	D3	D2	D1	D_{0}	C0-CF	1	2	String					
LLI data	L↔-D3-0	Load L register with immediate data	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	1	$\stackrel{1}{D_{3}}$	$\begin{gathered} 1 \\ D_{2} \end{gathered}$	$\begin{aligned} & 1 \\ & \mathrm{D}_{1} \end{aligned}$	$\begin{gathered} \mathbf{0} \\ \mathrm{D}_{0} \end{gathered}$	$\begin{gathered} 3 E \\ 10-1 F \end{gathered}$	2	2						
Store																			
Transfor																			
TAD	D-A	Transfer A to D	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	1	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 3 E \\ & \mathrm{AA} \end{aligned}$	2	2						
TAE	E-A	Transfer A to E	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 3E } \\ & \text { BA } \end{aligned}$	2	2						
TAH	H-A	Transfer A to H	$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 3E } \\ & \text { BA } \\ & \hline \end{aligned}$	2	2						
TAL	L-A	Transfer A to L	$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 3 E \\ & 9 A \end{aligned}$	2	2						
TDA	A+D	Transfer D to A	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 3 E \\ & \mathrm{AB} \end{aligned}$	2	2						
TEA	A-E	Transfer E to A	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 3 E \\ & 8 B \end{aligned}$	2	2						
THA	A-H	Transfer H to A	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { 3E } \\ & \text { BB } \end{aligned}$	2	2						
TLA	A-L	Transfer L to A	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{0} \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { 3E } \\ & 9 \mathrm{~B} \end{aligned}$	2	2						
Exchange																			
XAD	$A \leftrightarrow D$	Exchange A with D	0	1	0	0	1	0	1	0	4A	1	1						
XADR addr	$A \rightarrow\left(D_{7-0)}\right.$	Exchange A with directly addressed RAM	$\begin{gathered} 0 \\ \mathrm{D}_{7} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{D}_{6} \end{gathered}$	$\begin{aligned} & 1 \\ & \mathrm{D}_{5} \end{aligned}$	$\begin{aligned} & 1 \\ & D_{4} \end{aligned}$	$\begin{gathered} 1 \\ D_{3} \end{gathered}$	$\begin{gathered} 0 \\ \mathbf{D}_{2} \end{gathered}$	$\begin{gathered} 0 \\ \mathbf{D}_{1} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{D}_{0} \end{gathered}$	$\begin{gathered} 39 \\ 00-F F \end{gathered}$	2	2						
XAE	$A \leftrightarrow E$	Exchange A with E	0	1	0	0	1	0	1	1	48	1	1						
XAH	$A+H$	Exchange A with H	0	1	1	1	1	0	1	0	7 A	1	1						
XAL	A+L	Exchange A with L	0	1	1	1	1	0	1	1	7 B	1	1						
XAM rp	$A \rightarrow(r p)$ $r p=D L, D E, H L-, H L+, H L$ If $\mathrm{rp}=\mathrm{HL}-$, skip if borrow If $\mathrm{pp}=\mathrm{HL}+$, skip if overflow	Exchange A with Memory, Possible Skip	0	1	0	D2	0	1	D1	Do	$\begin{aligned} & 44,45 \\ & 54-56 \end{aligned}$	1	$1+5$	See explanation or "rp' In symbol definitions					
XHDR addr	H \rightarrow (D7-0)	Exchange H with directly addressed RAM	$\begin{gathered} 0 \\ D_{7} \end{gathered}$	$\begin{gathered} 0 \\ D_{6} \end{gathered}$	$\begin{aligned} & 1 \\ & \mathbf{D}_{5} \end{aligned}$	$\begin{gathered} 1 \\ D_{4} \end{gathered}$	$\begin{gathered} 1 \\ D_{3} \end{gathered}$	$\begin{gathered} 0 \\ \mathbf{D}_{2} \end{gathered}$	$\begin{aligned} & \mathbf{1} \\ & \mathbf{D}_{1} \end{aligned}$	$\begin{gathered} 0 \\ D_{0} \end{gathered}$	$\begin{gathered} 3 A \\ 00-F F \end{gathered}$	2	2						
XLDR addr	$L \rightarrow($ D7-0)	Exchange L with directly addressed RAM	$\begin{aligned} & 0 \\ & D_{7} \end{aligned}$	$\begin{gathered} 0 \\ D_{6} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{D}_{5} \end{gathered}$	$\begin{aligned} & 1 \\ & \mathrm{D}_{4} \end{aligned}$	$\begin{gathered} 1 \\ D_{3} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{D}_{2} \end{gathered}$	$\begin{gathered} \mathbf{1} \\ \mathbf{D}_{1} \end{gathered}$	$\begin{gathered} 1 \\ \mathbf{D}_{0} \end{gathered}$	$\begin{gathered} 3 \mathrm{~B} \\ 00-\mathrm{FF} \end{gathered}$	2	2						

Instruction Set "A" (Cont.)
For the μ PD7500, μ PD7502, μ PD7503, μ PD7507, μ PD7507S, μ PD7508, μ PD7508A, and μ PD7519 devices only

Instructlon Set "A" (Cont.)
For the μ PD7500, μ PD7502, μ PD7503, μ PD7507, μ PD7507S, μ PD7508, μ PD7508A, and μ PD7519 devices only

Mnomonlc	Function	Description	Instruction Code									Bytes	Cyclos	Sklp Condilion
			D_{7}	D6	DS.	D4	D3	D_{2}	D1	Do	HEX			
Branch														
CALL addr		Call subroutine	$\begin{aligned} & 0 \\ & D_{7} \end{aligned}$	$\begin{gathered} - \\ D_{6} \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \\ & D_{5} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathrm{D}_{4} \end{aligned}$	$\begin{aligned} & 0 \\ & D_{3} \end{aligned}$	$\begin{aligned} & D_{10} \\ & D_{2} \end{aligned}$	$\begin{aligned} & \mathrm{D}_{9} \\ & \mathrm{D}_{1} \end{aligned}$	$\begin{aligned} & \mathrm{D}_{8} \\ & \mathrm{D}_{0} \end{aligned}$	$\begin{aligned} & 30-37 \\ & 00-\mathrm{FF} \end{aligned}$	2	2	
CALT addr		Call subroutine through ROM Table (single byte)	1	1	D5	D4	D3	D_{2}	D1	D0	DO-FF	1	2	
JAM data	$\begin{aligned} & \mathrm{PC}_{11-8+\mathrm{D}_{3-0}} \\ & \mathrm{PC}_{7-4}-\mathrm{A} \\ & \mathrm{PC}_{3-0}+(\mathrm{HL}) \end{aligned}$	Vectored Jump on Accumulator and Memory	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & D_{3} \end{aligned}$	$\begin{aligned} & 1 \\ & D_{2} \end{aligned}$	$\begin{aligned} & 1 \\ & D_{1} \end{aligned}$	$\begin{gathered} 1 \\ \mathbf{D}_{0} \end{gathered}$	$\begin{gathered} 3 F \\ 10-1 F \end{gathered}$	2	2	
JCP addr	PC5-0-D5-0	Jump within current page	1	0	D5	D4	D3	D2	D1	Do	80-BF	1	1	
JMP addr	PC 11-0 $^{-D_{11-0}}$	Jump to speciflied address	$\begin{gathered} 0 \\ D_{7} \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ \mathbf{D}_{8} \\ \hline \end{gathered}$	$\begin{aligned} & \hline 1 \\ & D_{5} \end{aligned}$	$\begin{gathered} 0 \\ \mathbf{D}_{4} \end{gathered}$	$\begin{gathered} \mathrm{D}_{11} \\ \mathrm{D}_{3} \end{gathered}$	$\begin{gathered} \mathrm{D}_{10} \\ \mathrm{D}_{2} \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{D}_{9} \\ & \mathrm{D}_{1} \end{aligned}$	$\begin{aligned} & \mathbf{D}_{8} \\ & \mathrm{D}_{0} \end{aligned}$	$\begin{aligned} & 20-2 F \\ & 00-\mathrm{FF} \end{aligned}$	2	2	
	54x	Jumptom	x_{x}^{x}				$\begin{aligned} & 011 \\ & 83 \\ & 2 \end{aligned}$		og	$\begin{aligned} & \mathrm{Ds} \\ & \mathrm{DO} \\ & \hline \end{aligned}$			5	
RT		Return from Subroutine	0	1	0	1	0	0	1	1	53	1	1	
RTPSW	$\begin{aligned} & \mathrm{PC}_{11-8}-(\mathrm{SP}) \\ & \mathrm{PSW}^{2}-(\mathrm{SP}+1) \\ & \mathrm{PC}_{3-0}-(\mathrm{SP}+2) \\ & \mathrm{PC} 7-4-(\mathrm{SP}+3) \\ & \mathrm{SP}+\mathrm{SP}+4 \end{aligned}$	Return from Subroutine and restore PSW	0	1	0	0	0	0	1	1	43	1	2	
RTS	$\begin{aligned} & \mathrm{PC}_{11-8+(S P)} \\ & \mathrm{BANK}^{2}+(\mathrm{SP}+1) \\ & \mathrm{PC}_{3}-0+(\mathrm{SP}+2) \\ & \mathrm{PC}_{7-4}+(\mathrm{SP}+3) \\ & \text { SP-(SP+4) } \\ & \text { Skip unconditionally } \end{aligned}$	Return from Subroutine; then skip next instruction	0	1	0	1	1	0	1	1	58	1	$1+5$	Unconditional
stack														
POPDE	$\begin{aligned} & E-(S P) \\ & D \div(S P+1) \\ & S P-S P+2 \end{aligned}$	Pop DE register palr off Stack	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \mathbf{1} \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { 3E } \\ & \mathbf{B F} \end{aligned}$	2	2	
POPHL	$\begin{aligned} & L-(S P) \\ & H \leftarrow(S P+1) \\ & S P-S P+2 \end{aligned}$	Pop HL register pair off Stack	0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline \mathbf{3 E} \\ & \mathbf{9 F} \end{aligned}$	2	2	
PSHOE	$\begin{aligned} & (S P-1)+D \\ & (S P-2)-E \\ & S P+S P-2 \end{aligned}$	Push DE register pair on Stack	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline \mathbf{3 E} \\ & \mathbf{8 E} \end{aligned}$	2	2	
PSHHL	$\begin{aligned} & (S P-1)-H \\ & (S P-2)-L \\ & S P-S P-2 \end{aligned}$	Push HL register palr on Stack	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \mathbf{3 E} \\ & \mathbf{9 E} \end{aligned}$	2	2	
TAMSP	$\begin{aligned} & \mathbf{S P}_{7-4-A} \\ & \mathbf{S P}_{3-1-(H L)} \\ & \mathbf{S P}_{0-1}-1 \end{aligned}$	Transfer Accumulator and Memory to Stack Pointer	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 3 F \\ & 31 \end{aligned}$	2	2	
TSPAM	$\begin{aligned} & \text { A-SPT-4 } \\ & \text { (HL)3-1*SP3-1 } \\ & \text { (HL) } 0^{+0} \end{aligned}$	Transfer Stack Pointer to Accumulator and Memory	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline \text { 3F } \\ & 35 \end{aligned}$	2	2	
Conditional \$klp														
SKABT bit	$\begin{aligned} & \text { Skip if } A b l t=1 \\ & b i t=B_{1-0}(0-3) \end{aligned}$	Skip if Accumulator bit true	0	1	1	1	0	1	B_{1}	B_{0}	74.77	1	1+S	$A_{b l t}=1$
SKAEI data	Skip if $\mathbf{A}=\mathrm{D}_{3} \mathbf{- 0}$	Skip if Accumulator equals immediate data	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & D_{3} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathbf{D}_{2} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathrm{D}_{1} \end{aligned}$	$\begin{gathered} 1 \\ D_{0} \end{gathered}$	$\begin{gathered} 3 F \\ 60-6 F \end{gathered}$	2	$2+5$	$\mathrm{A}=\mathrm{D}_{3} \mathbf{0}$
SKAEM	Skip if $\mathrm{A}=$ (HL)	Skip if Accumulator equals Memory	0	1	0	1	1	1	1	1	5 F	1	$1+5$	$A=(\bar{L}$)
SKC	Skip if $\mathrm{C}=1$	Skip If Carry	0	1	0	1	1	0	1	0	5A	1	1+S	$C=1$
SKDEI data	Sklp if D $=$ D 3 -0	Skip if D equals Immediate data	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & D_{3} \end{aligned}$	$\begin{gathered} 1 \\ \mathrm{D}_{2} \end{gathered}$	$\begin{aligned} & 1 \\ & \mathbf{D}_{1} \end{aligned}$	$\begin{gathered} \mathbf{0} \\ \mathbf{D O}_{0} \end{gathered}$	$\begin{gathered} 3 \mathrm{E} \\ 60.6 \mathrm{~F} \end{gathered}$	2	$2+5$	$\mathrm{D}=\mathrm{D}_{3} \mathbf{0}$
SKEEI data	Skip if $\mathrm{E}=\mathrm{D}_{3} \mathbf{0}$	Skip if E equals Immedlate data	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & \hline \end{aligned}$	$\begin{gathered} 1 \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 1 \\ D_{2} \end{gathered}$	$\begin{aligned} & 1 \\ & D_{1} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{D O}_{0} \end{aligned}$	$\begin{gathered} 3 E \\ 40-4 F \end{gathered}$	2	$2+5$	$E=D_{3-0}$
SKHEI data	Sklp If $\mathbf{H}=\mathbf{D}_{3} \mathbf{0}$	Skip if H equals immediate data	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & \mathbf{D}_{3} \end{aligned}$	$\begin{gathered} 1 \\ \mathbf{D}_{2} \end{gathered}$	$\begin{aligned} & 1 \\ & \mathrm{D}_{1} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{D}_{0} \end{aligned}$	$\begin{gathered} 3 \mathrm{E} \\ 70-7 \mathrm{~F} \end{gathered}$	2	$2+5$	$\mathrm{H}=\mathrm{D}_{3} \mathbf{0}$

Instruction Set "A" (Cont.)
For the μ PD7500, μ PD7502, μ PD7503, μ PD7507, μ PD7507S, μ PD7508, μ PD7508A, and μ PD7519 devices only

Wnomonic	Function	Description	inatruction Code									Bytes	Cyclos	Sklp Condition
			D7	D6	D5	D4	D3	D2	D1	Do	HEX			
Conditional skip (Cont.)														
SKLEI data	Skip if L = D3-0	Skip if Lequals Immedlate data	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	D_{3}^{1}	$\begin{gathered} 1 \\ \mathbf{D}_{2} \end{gathered}$	$\begin{gathered} 1 \\ \mathbf{D}_{1} \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{0} \\ \mathbf{D}_{0} \end{gathered}$	$\begin{gathered} 3 E \\ 50-5 F \end{gathered}$	2	$2+5$	$L=D_{3}-0$
SKMBF bit	$\begin{aligned} & \text { Skip if (HL)bit }=0 \\ & \text { bit }=B_{1-0(0-3)} \end{aligned}$	Skip If Memory bit false	0	1	1	0	0	0	B_{1}	B0	60-63	1	$1+5$	(HL) bit $=0$
SKMBT bit	$\begin{aligned} & \text { Skip if (HL)blt }=1 \\ & \text { bit }=\mathrm{B}_{1}-0(0-3) \end{aligned}$	Skip if Memory blt true	0	1	${ }^{1}$	0	0	1.	B_{1}	Bo^{1}	64-67	1	$1+5$	$(H L)$ blt $=1$
_ TImerltvent Counter \because :														
TAMMOD	$\begin{aligned} & \text { TMR }_{7-4} \leftarrow A \\ & \text { TMR }_{3-0} \leftarrow(\mathrm{HL}) \end{aligned}$	Transfer Accumulator and Memory to Timer Modulo Register	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	1	1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 3 F \\ & 3 F \end{aligned}$	2	2				
TCNTAM	A-TCR7-4 (HL) $-\mathrm{TCR}_{3-0}$	Transfer Timer Count Reglster to Accumulator and Memory	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 3 F \\ & 3 B \end{aligned}$	2	2	
TIMER	$\begin{aligned} & \text { TCR }_{7-0}{ }^{\circ 0} \\ & \text { IRF }_{T}^{*-0} \end{aligned}$	Start Timer	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 3 F \\ & 32 \end{aligned}$	2	2	
Interrupt Control														
DI data	$\begin{aligned} & \text { IME F/F }-0 \text { if data }=0 \\ & \text { IER3-0 } \\ & D_{3-0} \text { if data }<>0 \end{aligned}$	Disable Interrupt, Interrupt Master Enable F/F or specifled	0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{gathered} 1 \\ D_{3} \end{gathered}$	$\begin{gathered} 1 \\ \mathbf{D}_{2} \end{gathered}$	$\begin{gathered} 1 \\ 0_{1} \end{gathered}$	$\begin{gathered} 1 \\ D_{0} \end{gathered}$	$\begin{gathered} 3 F \\ 80-8 F \end{gathered}$	2	2	
El data	$\begin{aligned} & \text { IME } F / F \leftarrow 1 \text { If data }=0 \\ & \text { IER }_{3-0}\left\lfloor\mathrm{IER}_{3-0} \text { OR } D_{3-0}\right. \\ & \text { If data }<>0 \end{aligned}$	Enable Interrupt, Interrupt Master Enable F/F or specified	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 1 \\ \mathrm{D}_{3} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{D}_{2} \end{gathered}$	$\begin{gathered} 1 \\ D_{1} \end{gathered}$	$\begin{gathered} 1 \\ D_{0} \end{gathered}$	$\begin{gathered} 3 F \\ 90-8 F \end{gathered}$	2	2	
SKI data	Skip if IRFn AND $\mathrm{D}_{3-0}<>0$ IRF $_{\mathbf{n}}$-IRF $\mathbf{n}_{\mathbf{n}}$ AND NOT D_{3-0}	Skip if Interrupt Aequest Flag is true	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{gathered} 1 \\ D_{3} \end{gathered}$	$\begin{gathered} 1 \\ \mathbf{D}_{2} \end{gathered}$	$\begin{gathered} 1 \\ D_{1} \end{gathered}$	$\begin{gathered} 1 \\ D_{0} \end{gathered}$	$\begin{gathered} 3 F \\ 40-4 F \end{gathered}$	2	$2+5$	$\boldsymbol{I R F} \mathrm{F}_{\mathrm{n}}=1$
Serial Interface														
SIO	$\begin{aligned} & \text { SIOCR }-0 \\ & \text { IRFO/S }-0 \end{aligned}$	Start Serial I/O Operation	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 3 F \\ & 33 \\ & \hline \end{aligned}$	2	2	
TAMSIO	$\begin{aligned} & \mathrm{StO}_{7-4-A} \\ & \mathrm{~S} \mathrm{O}_{3}-\mathrm{O}^{-}-(\mathrm{HL}) \end{aligned}$	Transfer Accumulator and Memory to SI Shift Register	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 3 F \\ & 3 E \end{aligned}$	2	. 2					
TSIOAM	$\begin{aligned} & \mathrm{A}-\mathrm{SIO}_{7-4} \\ & (\mathrm{HL}) \leftarrow \mathrm{SiO}_{3-0} \end{aligned}$	Transfer SI Shift Register to Accumulator and Memory	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 3F } \\ & \text { 3A } \end{aligned}$	2	2	
Parallel 1/0														
ANP data	$P\left(P_{3-0}\right)-P_{(}\left(P_{3}-0\right)$ AND D3-0	AND output port latch with immediate data	$\begin{gathered} 0 \\ D_{3} \end{gathered}$	$\begin{gathered} 1 \\ \mathbf{D}_{2} \end{gathered}$	$\begin{aligned} & 0 \\ & D_{1} \end{aligned}$	$\begin{gathered} 0 \\ D_{0} \end{gathered}$	$\begin{gathered} 1 \\ P_{3} \end{gathered}$	$\begin{aligned} & 1 \\ & \mathbf{P}_{2} \end{aligned}$	$\begin{gathered} 0 \\ P_{1} \end{gathered}$	$\begin{aligned} & 0 \\ & P_{0} \end{aligned}$	$\begin{gathered} 4 \mathrm{C} \\ 00-F F \end{gathered}$	2	2	
IP port	A-P(P3-0)	Input from port, immediate address	$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & \hline \end{aligned}$	$\begin{gathered} 1 \\ P_{3} \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ \mathbf{P}_{2} \\ \hline \end{gathered}$	$\begin{aligned} & 1 \\ & P_{1} \\ & \hline \end{aligned}$	$\begin{gathered} 1 \\ \mathrm{P}_{0} \\ \hline \end{gathered}$	$\begin{gathered} 3 F \\ \mathrm{CO}-\mathrm{CF} \end{gathered}$	2	2	
IP1 (except μ PD7507S)	A-P(1)	Input from Port 1	0	1	1	1	0	0	0	1	71	1	1	
IP54	$\begin{aligned} & A \leftarrow P(5) \\ & (H L) \div P(4) \end{aligned}$	Input Byte from Ports 5 and 4	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 3 F \\ & 38 \\ & \hline \end{aligned}$	2	2	
IPL	$A \leftarrow P(L)$	Input from Port specifled by L	0	1	1	1	0	0	0	0	70	$\because 1$	1	
OP port	$\mathbf{P}\left(\mathrm{P}_{3}-0\right)<4$	Output to port, Immediate address	$\begin{array}{r} 0 \\ 1 \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{gathered} 1 \\ P_{3} \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ \mathbf{P}_{2} \\ \hline \end{gathered}$	$\begin{aligned} & 1 \\ & P_{1} \end{aligned}$	$\begin{gathered} 1 \\ P_{0} \\ \hline \end{gathered}$	$\begin{gathered} 3 F \\ E 0-E F \end{gathered}$	2	2	
OP3	$P(3)-A$	Output to Port 3	0	1	1	1	0	0	1	1	73	1	1	
OP54	$\begin{aligned} & P(5) \leftarrow A \\ & P(4) \leftarrow(H L) \end{aligned}$	Output Byte to Ports 5 and 4	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & \hline 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3 F \\ & 3 \mathrm{C} \end{aligned}$	2	2	
OPL	$P(L) \leftarrow A$	Output to port specifled by L	0	1	1	1	0	0	1	0	72	1	1	
ORP data	$P\left(P_{3-0}\right)-\left(P_{3-0}\right)$ OR D3-0	OR output port latch with immediate data	$\begin{gathered} 0 \\ D_{3} \end{gathered}$	$\begin{gathered} 1 \\ \mathbf{D}_{2} \end{gathered}$	$\begin{gathered} 0 \\ D_{1} \end{gathered}$	$\begin{gathered} 0 \\ \mathbf{D}_{0} \end{gathered}$	$\begin{aligned} & 1 \\ & \mathrm{P}_{3} \end{aligned}$	$\begin{gathered} 1 \\ \mathbf{P}_{2} \end{gathered}$	$\begin{gathered} 0 \\ R_{1} \end{gathered}$	$\begin{gathered} 1 \\ P_{0} \end{gathered}$	$\begin{gathered} 4 D \\ 00-F F \end{gathered}$	2	2	
CALT CPU Control														
HALT		Enter HALT Mode	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3 F \\ & 36 \end{aligned}$	2	2	
NOP		No operation	0	0	0	0	0	0	0	0	00	1	1	
STOP		Enter STOP Mode	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{1} \\ & \mathbf{1} \end{aligned}$	$\begin{aligned} & 3 F \\ & 37 \end{aligned}$	2	2	

μ PD7500 SERIES

Instruction Set "B"

For the μ PD7500, μ PD7501, and μ PD7506 devices only

Mnemonle	Function	Description	Instruction Code									Bytes	Cycles	Sklip Condition
			D7	Ds	Dg	Da	D3	D_{2}	D_{1}	D0	MEX			
Load														
LADR addr	A-(D_{6-0})	Load Accumulator from directly addressed PAM	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ \mathbf{D}_{6} \end{gathered}$	$\begin{aligned} & 1 \\ & D_{5} \end{aligned}$	$\begin{aligned} & 1 \\ & D_{4} \end{aligned}$	$\begin{gathered} 1 \\ D_{3} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{D}_{2} \end{gathered}$	$\begin{aligned} & 0 \\ & \mathbf{D}_{1} \end{aligned}$	$\begin{gathered} \mathbf{0} \\ \mathbf{D}_{0} \end{gathered}$	$\begin{gathered} 38 \\ 00-5 F \end{gathered}$	2	2	
Lal data	A $-\mathrm{D}_{3} \mathbf{- 0}$	Load Accumulator with Immediate data	0	0	0	1	D3	D2	D1	Do	10-1F	1	1	String
LAM rp	$\begin{aligned} & A-(r p) \\ & \text { ip }=H L-H L+, H L \\ & \text { If } r p=H L-, s k / p \text { if borrow } \\ & \text { if } r p=H L+, s k l p \text { if overflow } \end{aligned}$	Load Accumulator from Memory, posslble skip	0	1	0	1	0	0	D1	Do	50-52	1	1+S	See explanation of "rp" in symbol definitions
LAMt		Load Accumulator and Memory from Table	0	1	0	1	1	1	1	0	5E	1	2	
	W以 (x)	Ther Ahtintition whuw whetin	\cdots		星	Wre		\pm	$\underline{ }$	Ot				
LHI data	$\begin{aligned} & \mathrm{H}_{3} \div \mathrm{O} \\ & \mathrm{H}_{2-0^{+}-\mathrm{D}_{2-0}} \end{aligned}$	Load H register with immediate data	0	0	1	0	1	D_{2}	D1	D_{0}	28-2F	1	1	
LHLI data	$\begin{aligned} & H_{3-1}-0 \\ & H_{0}+\mathrm{D}_{4} \\ & \mathrm{~L} \leftarrow \mathrm{D}_{3}-\mathrm{O} \end{aligned}$	Load HL register palr with Immedlate data	1	1	0	D4	D3	D2	D1	Do	CO-DF	1	1	String
Store														
ST	(HL)-A	Store A to Memory	0	1	0	\pm	0	1	1	1	57	1	1	
STH data	$\begin{aligned} & (\mathrm{HLL})-\mathrm{D}_{3}-0 \\ & \mathrm{~L}-\mathrm{L}+1 \end{aligned}$	Store Immediate data and increment i	0	1	0	0	D_{3}	D2	D1	D0	40-4F	1	1	
Exchange														
XADR addr	A - (D_{6-0})	Exchange A with directly addressed RAM	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & D_{6} \end{aligned}$	$\begin{aligned} & 1 \\ & 0_{5} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathbf{D}_{4} \end{aligned}$	$\begin{aligned} & 1 \\ & D_{3} \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{D}_{2} \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{D}_{1} \end{aligned}$	$\begin{gathered} 1 \\ D_{0} \end{gathered}$	$\begin{gathered} 39 \\ 00-5 F \end{gathered}$	2	2	
XAH	$\mathrm{A} \sim \mathrm{H}$	Exchange A whh H	0	1	1	1	1	0	1	0	7A	1	1	
XAL	A -L	Exchange A with L	0	1	1	1	1	0	1	1	78	1	1	
XAM rp	$\begin{aligned} & A \leftrightarrow(r p) \\ & r p=H L-H L+H L \\ & \text { if } r p=H L-, s k / p \text { if borrow } \\ & \text { if } r p=H L+, s k i p \text { if overflow } \end{aligned}$	Exchange A with Memory, Posṣible Skip	0	1	0	1	0	1	D1	Do	54-56	1	$1+5$	See oxplanation of "rp" in symbol definitions
XHDR addr	$H^{+}\left(\mathrm{D}_{6-0}\right)$	Exchange H with directly addressed RAM	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ \mathrm{D}_{6} \end{gathered}$	$\begin{aligned} & 1 \\ & \mathrm{D}_{5} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathbf{D}_{4} \end{aligned}$	$\begin{aligned} & 1 \\ & D_{3} \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{D}_{2} \end{aligned}$	$\begin{aligned} & 1 \\ & D_{1} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{D}_{0} \end{aligned}$	$\begin{gathered} 3 A \\ 00-5 F \end{gathered}$	2	2	
XLOR addr	$L \rightarrow\left(D_{8.0}\right)$	Exchange L with directly addressed RAM	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \mathrm{D}_{6} \end{aligned}$	$\begin{aligned} & 1 \\ & D_{5} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathbf{D}_{4} \end{aligned}$	$\begin{aligned} & 1 \\ & D_{3} \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{D}_{2} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathbf{D}_{1} \end{aligned}$	$\begin{gathered} 1 \\ \mathbf{D}_{0} \end{gathered}$	$\begin{gathered} 3 \mathrm{~B} \\ 00-5 \mathrm{~F} \end{gathered}$	2	2	
Arithmetie														
ACSC	$\begin{aligned} & A, C \leftarrow A \pm(\mathrm{HL})+C \\ & \text { skip if carry } \end{aligned}$	Add with carry; skip if carry	0	1	1	1	1	1	0	0	7 C	1	$1+5$	Carry = 1
AISC data	$A-A+D_{3}-0$ skip if overflow	Add Immediate; sklp If overflow	0	0	0	0	D3	D2	D1	Oo	00.0F	1	$1+5$	Overflow
ASC	$A-A+(H L)$ skip if overflow	Add memory; skip If overflow	0	1	1	1	1	1	0	1	7 C	1	$1+5$	Carry = 1
Logleal														
ANL	A-A AND (HL)	AND Accumulator and Memory	$\begin{array}{r} 0 \\ 1 \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 1 \\ 1 \\ \hline \end{array}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 3F } \\ & \text { B2 } \\ & \hline \end{aligned}$	2	2	
EXL	A-A XOR (HL)	Exclusive-Or Accumulator and Memory	0	1	1	1	1	1	1	0	7E	1	1	
ORL	A-A OR (HL)	OR Accumulator and Memory	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline \text { 3F } \\ & \text { B6 } \end{aligned}$	2	2	
Accumulator														
CMA	A-NOT A	Complement Accumulator	0	1	1	1	1	1	1	1	7F	1	1	
RAR	$\begin{aligned} & C-A_{0} \\ & A_{0}-A_{1} \\ & A_{1}-A_{2} \\ & A_{2}-A_{3} \\ & A_{3}-C \text { (old) } \end{aligned}$	Rotate Accumulator right through Carry	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 3 \mathrm{BF}^{3} \\ & \hline \end{aligned}$	2	2	
(Program Status Word														
RC	c-0	Roset Carry	0	1	1	1	1	0	0	0	78	1	1	
SC	C-1	Set Carry	0	1	1	1	1	0	0	1	79	1	1	

Instruction Set "B" (Cont.)

For the μ PD7500, μ PD7501, and μ PD7506 devices only

Mnomonic	Function	Description	Instruction Code									Bytos	Cyctes	Sklp Condition	
			D7	D5	D5	D4	D_{3}	D2	D1	D0	HEX				
Increment and Decrement															
DDRS addr	$\begin{aligned} & \left(D_{6-0}\right)+\left(D_{6-0}\right)-1 \\ & \text { skip if }\left(D_{6-0}\right)=F H \end{aligned}$	Decrement directly addressed RAM; skip if borrow	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 0_{0}^{0} \\ D_{6} \end{gathered}$	$\begin{gathered} 1 \\ \mathbf{D}_{5} \end{gathered}$	$\begin{aligned} & 1 \\ & D_{4} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathbf{D}_{3} \end{aligned}$	$\begin{gathered} 1 \\ D_{2} \end{gathered}$	$\begin{gathered} 0 \\ \mathbf{D}_{1} \end{gathered}$	$\begin{aligned} & 0 \\ & D_{0} \end{aligned}$	$\begin{gathered} 3 \mathrm{C} \\ 00-5 \mathrm{~F} \end{gathered}$	2	$2+8$	$\left(\mathrm{D}_{8}-0\right)=\mathrm{FH}$	
DLS	$\begin{aligned} & \mathrm{L}-\mathrm{L}-\mathrm{I}^{\prime} \\ & \mathrm{skip} \text { if } \mathrm{L}=\mathrm{FH} \end{aligned}$	Decrement L; skip If borrow	0	1	0	1	1	0	0	0	58	1	$1+5$	$\mathbf{L}=\mathbf{F H}$	
IDRS addr	$\begin{aligned} & \left(\mathrm{D}_{6-0}\right)+\left(\mathrm{D}_{6-0}\right)+1 \\ & \mathrm{sklp} \\|\left(\mathrm{D}_{6-0}\right)=0 \mathrm{H} \end{aligned}$	Increment directly addressed; skip if overfiow	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ D_{6} \end{gathered}$	$\begin{gathered} 1 \\ D_{5} \end{gathered}$	$\begin{aligned} & 1 \\ & \mathrm{D}_{4} \end{aligned}$	$\begin{aligned} & 1 \\ & 0_{3} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathbf{D}_{2} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{D}_{1} \end{aligned}$	$\begin{aligned} & 1 \\ & D_{0} \end{aligned}$	$\begin{gathered} 3 D \\ 00-5 F \end{gathered}$	2	$2+5$	$\left(\mathrm{D}_{6-0}\right)=0 \mathrm{H}$	
ILS	$\begin{aligned} & \mathrm{L}+\mathrm{L}+1 \\ & \text { skip If } L^{\prime}=O H \end{aligned}$	Increment L; skip if overflow	0	1	0	1	1	0	0	1	59	1	1 +S	$\mathrm{L}=\mathrm{OH}$	
Bit Manipulation															
RMB blt	$\begin{aligned} & (H L) \text { blt }{ }^{+0} \\ & b 1 t=B_{1-0}(0-3) \end{aligned}$	Reset Memory bit	0	1	1	0	1	0	B1	B_{0}	68-68	1	1		
SMB bit	$\begin{aligned} & \text { (HL)bitt-1 } \\ & \text { blt }=B_{1-0}(0-3) \end{aligned}$	Set Memory bit	0	1	1	0	1	1	B_{1}	B_{0}	6C-6F	1	1		
Branch															
CALL addr		Call subroutine	$\begin{aligned} & 0 \\ & D_{7} \end{aligned}$	$\begin{gathered} 0 \\ \mathrm{D}_{6} \end{gathered}$	$\begin{aligned} & 1 \\ & \mathbf{D}_{5} \end{aligned}$	$\begin{aligned} & 1 \\ & D_{4} \end{aligned}$	$\begin{gathered} 0 \\ \mathrm{D}_{3} \end{gathered}$	$\begin{aligned} & D_{10} \\ & D_{2} \end{aligned}$	$\begin{aligned} & \mathrm{D}_{9} \\ & \mathrm{D}_{1} . \end{aligned}$	$\begin{aligned} & \mathrm{D}_{8} \\ & \mathrm{D}_{0} \end{aligned}$	$\begin{aligned} & 30-37 \\ & 00-\mathrm{FF} \end{aligned}$	2	2		
CAL addr		Call short to CAL address subrountine	1	1	1	D4	D3	O_{2}	D1	Do	E0-FF	1	2		
JAM data	$\begin{aligned} & \mathrm{PC}_{10-8}+\mathrm{O}_{2-0} \\ & \mathrm{PC}_{7-4+\mathrm{A}} \\ & \mathrm{PC}_{3.0+(\mathrm{HL})} \\ & \hline \end{aligned}$	Vectored Jump on Accumulator and Memory	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & \mathbf{D}_{2} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathbf{D}_{1} \end{aligned}$	$\begin{gathered} 1 \\ D_{0} \end{gathered}$	$\begin{gathered} 3 F \\ 10-17 \end{gathered}$	2	2		
JCP addr	PC5-0 - D5-0	Jump within current page	1	0	D5	D4	D_{3}	D_{2}.	D_{1}	Do	80-BF	1	1		
JMP addr	PC $\mathbf{1 0 - 0}^{-\mathrm{D}_{10-0}}$	Jump to specified address	$\begin{aligned} & \hline 0 \\ & \mathrm{D}_{7} \end{aligned}$	$\begin{gathered} 0 \\ \mathrm{D}_{6} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{D}_{5} \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ \mathbf{D}_{4} \end{gathered}$	$\begin{aligned} & 0 \\ & \mathbf{D}_{3} \end{aligned}$	$\begin{array}{r} \mathrm{D}_{10} \\ \mathrm{D}_{2} \end{array}$	$\begin{array}{r} \mathrm{D}_{9} \\ \mathrm{D}_{1} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{D}_{8} \\ & \mathrm{DO}_{0} \\ & \hline \end{aligned}$	$\begin{aligned} & 20.27 \\ & 00-\mathrm{FF} \\ & \hline \end{aligned}$	2	2		
	4 (4) W2.	Wrow wne to 		wow		$\frac{1}{2}$		$\frac{1}{200}$							
RT		Return from Subroutine	0	1	0	1	0	0	1	1	53	1	1		
RTS		Return from Subroutine; then skip next instruction	0	1	0	1	1	0	1	1	5B	1	$1+5$	Uncondilional	
Stack															
TAMSP	$\begin{aligned} & \hline \mathbf{S P}_{7-4+\text { - }} \\ & \mathbf{S P}_{3-1}+(\mathrm{HL}) 3-1 \\ & \mathbf{S P}_{0}+0 \end{aligned}$	Transfer Accumulator and Memory to Stack Pointer	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline \text { 3F } \\ & 31 \end{aligned}$	2	2		
4 6															
Conditional sklp															
SKABT blt	$\begin{aligned} & \text { Skip if } A_{\text {bit }}=1 \\ & \text { bit }=B_{1-0}(0-3) \end{aligned}$	Sklp if Accumulator blt true	0	1	1	1	0	1	B_{1}	B0	74.77	1	1+5	$A_{\text {blt }}=1$	
SKAEI data	Skip if $\mathrm{A}=\mathrm{D}_{\mathbf{3}-0}$	Skip If Accumulator equals Immediate data	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{gathered} 1 \\ D_{3} \end{gathered}$	$\begin{gathered} \mathbf{1} \\ \mathbf{D}_{2} \end{gathered}$	$\begin{aligned} & 1 \\ & D_{1} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathrm{D}_{0} \end{aligned}$	$\begin{gathered} 3 F \\ 60-6 F \end{gathered}$	2	$2+8$	$A=\mathrm{D}_{3} \mathbf{0}$	
SKAEM	Skip if $A=(H L)$	Skip if Accumulator equals Memory	0	1	0	1	1	1	1	1	5 F	1	$1+8$	A $=$ (HL)	
SKC	Sklp if $\mathrm{C}=1$	Skip if Carry	0	1	0	1	1	0	1	0	5A	1	$1+5$	$C=1$	
SKLEI data	Skip if $\mathrm{L}=\mathrm{O}_{\mathbf{3}-0}$	Skip If Lequals immediate data	$\begin{array}{r} 0 \\ 0 \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{r} 1 \\ 1 \\ \hline \end{array}$	$\begin{gathered} 1 \\ D_{3} \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ \mathbf{D}_{2} \\ \hline \end{gathered}$	$\begin{array}{r} 1 \\ D_{1} \\ \hline \end{array}$	$\begin{gathered} 0 \\ \mathbf{D}_{0} \end{gathered}$	$\begin{array}{r} 3 \mathrm{E} \\ 50.5 \mathrm{~F} \\ \hline \end{array}$	2	2+8	$\mathrm{L}=\mathrm{D}_{3} \mathbf{0}$	
SKMBF blt	$\begin{aligned} & \text { Skip If (HL)bit }=0 \\ & \text { bit }=B_{1-0(0-3)} \end{aligned}$	Skip If Memory bit false	0	1	1	0	0	0	B_{1}	B0	60-63	1	1+S	$(\mathrm{HL})_{\text {b }}$ ($=0$	
SKMBT blt	$\begin{aligned} & \text { Skip if (HL) bit }=1 \\ & \text { bht }=B_{1-0(0.3)} \end{aligned}$	Skip if Memory blt true	0	1	1	0	0	1	B1	B0	64-67	1	1+S	$(\mathrm{HL})_{\text {blt }}=1$	
		SkpINFmory,													

μ PD7500 SERIES

Instruction Set "B" (Cont.)

For the μ PD7500, μ PD7501, and μ PD7506 devices only

Mnemonic	Function	Description	Instruction Code									Bytes	Cycles	Skip Condition
			D7	D6	Ds	D4	D3	D2	D_{1}	Do	HEX			
	TimerlEvent Counter													
TAMMOD	$\begin{aligned} & \text { TMR7-4 }^{T}-A \\ & \text { TMR }_{3-0} \div(H L) \end{aligned}$	Transfer Accumulator and Memory to Timer Modulo Regiater	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \mathbf{3 F} \\ & \mathbf{3 F} \end{aligned}$	2	2					
TCNTAM (except μ PD7506)	$\begin{aligned} & \text { A-TCR7-4 } \\ & \text { (HL) }- \text { TCR }_{3-0} \end{aligned}$	Transfer Timer Count Reglster to Accumulator and Memory	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 3 F \\ & 3 B \end{aligned}$	2	2	
TIMER	$\begin{aligned} & \text { TCR }_{7-0}-0 \\ & \text { IRF }_{T}-0 \end{aligned}$	Clear TImer Counter Register	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3 F \\ & 32 \\ & \hline \end{aligned}$	2	2	
Interrup														
SKI data	Skip if IRFn AND D3-0 $<>0$ IRFn ${ }^{-I R F} \mathrm{n}_{\mathrm{n}}$ AND NOT D3-0	Skip If Interrupt Request Flag is true	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{gathered} 1 \\ \mathbf{D}_{2} \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{D}_{1} \end{gathered}$	$\begin{gathered} 1 \\ \mathbf{D}_{0} \end{gathered}$	$\begin{gathered} 3 F \\ 40-47 \end{gathered}$	2	$2+5$	$\mathrm{IRF}_{\mathrm{n}}=1$
Serial Interiace														
SIO (except μ PD7506)	$\begin{aligned} & \text { SIOCR } \leftarrow 0 \\ & \text { IRFO/S } \div 0 \end{aligned}$	Start Serial I/O Operation	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 3 F \\ & 33 \end{aligned}$	2	2	
TAMSIO (except μ PD7506)	$\begin{aligned} & \mathrm{SIO}_{7-4}-A \\ & \mathrm{SIO}_{3-0}-(\mathrm{HL}) \end{aligned}$	Transfer Accumulator and Memory to SIO Shift Register	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 3 F \\ & 3 \mathrm{E} \end{aligned}$	2	2					
TSIOAM (except μ PD7506)	$\begin{aligned} & \mathrm{A} \leftarrow \mathrm{SIO}_{7-4} \\ & \mathrm{HL} \leftarrow \mathrm{SIO}_{3-0} \end{aligned}$	Transfer SIO Shift Register to Accumulator and Memory	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 3 F \\ & 3 A \end{aligned}$	2	2	
Parallel M/O														
IP port	A - P(P3-0)	Input from port, immedlate address	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 3 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{gathered} 1 \\ \mathbf{P}_{3} \end{gathered}$	$\begin{gathered} 1 \\ P_{2} \end{gathered}$	$\begin{gathered} 1 \\ P_{1} \end{gathered}$	$\begin{gathered} 1 \\ P_{0} \end{gathered}$	$\begin{gathered} 3 F \\ C 0-C F \end{gathered}$	2	2	
IP1	$A-(1)$	Input from Port 1	0	1	1	1	0	0	0	1	71	1	1	
IP54	$\begin{aligned} & A-P(5) \\ & (H L) \leftarrow P(4) \end{aligned}$	Input Byte from Ports 5 and 4	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 3 F \\ & 38 \end{aligned}$	2	2	
IPL	$A-P(L)$	Input from Port specified by L	0	1	1	1	0	0	0	0	70	1	1	
OP port	$\mathbf{P}\left(\mathrm{P}_{3-0}\right)^{-1} \mathbf{A}$	Output to port, Immediate address	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & \hline \end{aligned}$	$\begin{gathered} \mathbf{1} \\ \mathbf{P}_{3} \end{gathered}$	$\begin{gathered} 1 \\ P_{2} \end{gathered}$	$\begin{aligned} & \mathbf{1} \\ & \mathbf{P}_{1} \end{aligned}$	$\begin{gathered} 1 \\ \mathbf{P}_{0} \end{gathered}$	$\begin{gathered} 3 F \\ E O-E F \end{gathered}$	2	2	
OP3 (except μ PD7506)	$\mathbf{P}(3) \leftarrow A$	Output to Port 3	0	1	1	1	0	0	1	1	73	1	1	
OP54	$\begin{aligned} & P(5)-A \\ & P(4)-(H L) \end{aligned}$	Output Byte to Ports 5 and 4	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{array}{r} 1 \\ 1 \\ \hline \end{array}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3 \mathrm{~F} \\ & \text { 3C } \end{aligned}$	2	2	
OPL	$P(L) \div A$	Output to port specified by L	0	1	1	1	0	0	1	0	72	1	1	
RPEL SPBL	$\begin{aligned} & \text { Pbe2c43 } 10 \text { Expander Pont } \\ & \text { (3-2) bi }(1-0) \text { - } \\ & \text { pDe2c43 } 10 \text { Expander Port } \\ & (4-2) \text { bit }(1-0) \div 1 \end{aligned}$	Fesef Port Bit Specficd by L Set Port Bit Specmed by L									56 50	$\frac{1}{1} \frac{1}{1}+\frac{2}{4}$		
CPU Control														
HALT		Enter HALT Mode	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 3 F \\ & 36 \end{aligned}$	2	2	
NOP		No operation	0	0	0	0	0	0	0	0	00	1	1	
STOP		Enter STOP Mode	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 3 F \\ & 37 \end{aligned}$	2	2	

Development Tools

For software development, editing, debugging, and assembly into object code, the NDS Development System, designed and manufactured by NEC
Electronics U.S.A., Inc., is available. Additionally, for systems supporting either the ISIS-II (© Intel Corp.), CP/M (${ }^{\text {® }}$ Digital Research Corp.) or FDOS-II (${ }^{(1)}$ Motorola, Inc.,) operating systems, or Fortran IV ANSI 1966 V3.9, the ASM75 Cross-Assembler is available.
Once software development is complete, the code can be completely evaluated and debugged with hardware by the Evakit-7500 Evaluation Board. Available options include the Evakit-7500-LCD LCD driver board (for the μ PD7501, μ PD7502, and μ PD7503), Evakit-7500-VFD Vacuum Fluorescent Display driver board (for the μ PD7508A and μ PD7519), and the Evakit-7500-RTT Real Time Tracer. The SE-7502 System Emulation Board will emulate complete functionality of the
μ PD7501, μ PD7502, or μ PD7503 for demonstrating your final system design. The SE-7508 System Emulation Board will emulate complete functionality of the μ PD7506, μ PD7507, μ PD7507S, μ PD7508, or μ PD7508A for demonstrating your final system design. All of these boards take advantage of the capabilities of the μ PD7500 Rom-less evaluation chip to perform their tasks.
Complete operation details on any μ PD7500 Series CMOS 4-Bit Microcomputer can be found in the μ PD7500 Series CMOS 4-Bit Microcomputer Technical Manual.

Package Outline μ PD7500G μ PD7519G-XXX

XXX denotes mask number assigned by factory at time of code verification. Use. I.C. Socket NP32-64075G4.

Package Outlines
μ PD7501G-XXX-11 μ PD75020-XXX-11 μ PD7503G-XXX-11
XXX denotes mask number
assigned by factory at time of cocle verification.
Use. I.C. Socket IC-51-59S.

Package Outlines

μ PD7501G-XXX-12
μ PD7502G-XXX-12 μ PD7503G-XXX-12

XXX denotes mask number assigned by factory at time of code submission. Use I.C. Socket IC-51-59S.

Package Outlines

μ PD7506G-XXX-01 μ PD7507G-XXX-01 μ PD7508G-XXX-01

μ PD7506G-XXX-00 μ PD7507G-XXX-00 μ PD7508G-XXX-00

XXX denotes mask number assigned by factory at time of code submission. Use I.C. Socket IC-53-11.

μ PD7500 SERIES

Package Outlines

μ PD7506C-XXX μ PD7507SC-XXX

Itom	Mulimeters	Inches
A	38.0 MAX	1.496 MAX
B	2.49	0.098
c	2.54	0.10
D	0.5 ± 0.1	0.02 ± 0.004
E	33.02	1.3
F	1.5	0.059
G	2.54 MIN	0.10 MiN
H	0.5 MIN	0.02 MIN
1	5.22 MAX	0.205 MAX
J	5.72 MAX	0.225 MAX
K	15.24	0.6
L	13.2	0.52
M	$\begin{array}{r} 0.25+0.10 \\ -0.05 \end{array}$	$\begin{array}{r} 0.01+0.004 \\ -0.002 \end{array}$

Package Outlines

μ PD7507C-XXX μ PD7508C-XXX μ PD7508AC-XXX


```
NOTES
```


Description

The μ PD7501 is a CMOS 4-bit single chip microcomputer which has the μ PD750x architecture.
The μ PD7501 contains a 1024×8-bit ROM, and a $96 \times$ 4-bit RAM.
The μ PD7501 contains two 4-bit general purpose registers located outside RAM. The subroutine stack is implemented in RAM for greater nesting depth and flexibility, providing such operations as the pushing and popping of register values. The μ PD7501 typically executes 63 instructions of the μ PD7500 series " B " instruction set with a $10 \mu \mathrm{~s}$ instruction cycle time.
The μ PD7501 has two external and two internal edgetriggered testable interrupts. It also contains an 8-bit timer/event counter and an 8-bit serial interface to help reduce software requirements. The on-board LCD controller/driver supervises all of the timing required by the 24 Port S segment drivers and the 4 Port COM backplane drivers, for either a 12-digit 7-segment quadriplexed LCD, or an 8-digit 7-segment triplexed LCD.
The μ PD7501 provides 24 I/O lines organized into the 4-bit input/serial interface Port 0, the 4-bit input Port 1, the 4-bit output Port 3, and the 4-bit I/O Ports 4, 5, and 6. It is manufactured with a low power consumption CMOS process, allowing the use of a single power supply between 2.7 V and 5.5 V . Current consumption is less than $900 \mu \mathrm{~A}$ maximum, and can be lowered much further in the HALT and STOP power-down modes. The μ PD7501 is available in a space-saving 64-pin flat plastic package.
The μ PD7501 is upward compatible with the μ PD7502 and the $\mu \mathrm{PD} 7503$.

Pin Configuration

Pin Identification

Pln		Function
No.	Symbol	
1	NC	No connection.
2-4, 64	$\mathrm{P3}_{3}-\mathrm{P3}_{0}$	4-blt latched tri-state output Port 3 (active high).
5	$\mathrm{PO}_{3} / \mathrm{SI}$	4 -bit Input Port 0/serial l/O Interface (active high).
6 7 7 55	$\begin{aligned} & \mathrm{PO}_{2} / \mathrm{SO} \\ & \mathrm{PO}_{1} / \overline{\mathrm{SCK}} \\ & \mathrm{PO}_{0} / \mathrm{INT}_{1} \end{aligned}$	This port can be configured elther as a parallel input port, or as the a -bit serial \ddagger / O Interface, under control of the serial mode select register. The Serial Input SI (active high), Serial Output SO (active low), and the Serial Clock SCK (active low) used for synchronizing data transter, comprise the $\mathbf{8}$-bit serial I/O Interface. Line PO_{0} is always shared with external interrupt INT_{1}.
8-11		4-blt input/latched tri-state output Port 6 (active high). Individual lines can be configured elther as inputs or as outputs under control of the Port 6 mode select register.
12.15	$\mathrm{P5}_{3}-\mathrm{P}^{5} 0$	4-blt input/latched tri-state output Port 5 (active high). Can also perform 8-bit parallel I/O in conjunction with Port 4.
16-19	$\mathrm{Pa}_{3} \mathbf{P a}^{-\mathrm{Pa}_{0}}$	4 -bit input/latched tri-state output Port 4 (active high). Can also perform 8-bit parallel I/O in conjunction with Port 5.
20, 21	$\mathrm{x}_{2}, \mathrm{x}_{1}$	Crystal clock/external event input Port X (active high). A crystal oscillator circult is connected to input X_{1} and output X_{2} for crystal clock operation. Alternatively, external event puises are connected to input X_{1} while output X_{2} is left open for external event counting.
22	$\mathrm{V}_{\text {SS }}$	Ground.
23-25	$\begin{aligned} & \mathrm{V}_{\mathrm{LCD}_{3}}, \mathrm{~V}_{\mathrm{LCD}_{2}} \\ & \mathrm{v}_{\mathrm{LCD}_{1}} \end{aligned}$	LCD bias voltage supply inputs to LCD voltage controller. Apply appropriate voltages from a voltage ladder connected across $V_{D D}$.
26, 58	V_{DD}	Power supply positive. Apply single voltage ranging from 2.7 V to 5.5 V for proper operation.
27-30	$\mathrm{COM}_{3} \mathrm{COM}_{0}$	LCD backplane driver outputs.
31-54	$\mathrm{S}_{23} \mathrm{~S}_{0}$	LCD segment driver outputs.
56	RESET	RESET input (active high). R/C circuit or pulse initiallzes 4PD7501 after power-up.
57, 59	$\mathrm{CL}_{1}, \mathrm{CL}_{2}$	System clock Input (active high). Connect $82 \mathrm{k} \Omega$ resistor across CL_{1} and CL_{2}, and connect 33pF capacitor from CL_{1} to V_{SS}. Alternatively, an external clock source may be connected to CL_{1}, whereas CL_{2} is left open.
60-63	$\begin{aligned} & \mathrm{P}_{1}-\mathrm{P}_{10} \\ & \left(\mathrm{PI}_{0} \mathrm{INT}_{0}\right) \end{aligned}$	4-bit Input Port 1 (active high). Line P10 is also shared with external interrupt iNTo.

Absolute Maximum Ratings*

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	
Operating Temperature	$-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Supply Voltage, VDD	-0.3 V to +7.0 V
All Input and Output Voltages	-0.3 V to $\mathrm{VDD}+\mathbf{0 . 3 \mathrm { V }}$
Output-Current (Total, All Output Ports)	$\frac{1 \mathrm{OH}=-20 \mathrm{~mA}}{}$
	$\mathrm{IOL}=30 \mathrm{~mA}$

*Comment: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Block Dlagram

$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5 V

AC Characteristics

$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5 V

Parametor	Symbol	Limits			Unit	Test Conditions	
		Min	Typ	Max			
Syatem Clock Oscillation Frequency	${ }_{\text {t }}{ }_{\text {d }}$	120	200	280	KHz		$V_{D D}=5 \mathrm{~V} \pm 10 \%$
		60	100	130		R/C Clock $R=160 \mathrm{kO} \pm 2 \%$	$V_{D D}=3 V_{ \pm}$10\%
		60		180		$\mathrm{C}=33 \mathrm{pF} \pm 5 \%$	$V_{D D}=2.7 \mathrm{~V}$ to 5.5 V
	${ }_{4}^{4}$ Ext	10	200	300		CL1, External Clock	$V_{D D}=5 \mathrm{~V} \pm 10 \%$
		10		135			$V_{D D}=2.7 \mathrm{~V}$ to 5.5 V
Systom Clock Rise and Fall Times	$t_{\text {r }},{ }_{\text {t }}^{\text {¢ }}$			0.2	$\mu 8$	CL1, External Clock	
System Clock Pulse Width	${ }^{\mathbf{t}} \mathrm{W}_{\mathrm{H}^{\prime}}{ }^{\text {d }} \mathrm{W}_{\mathrm{L}}$	1.5		50	$\mu 8$	CL1, External Clock	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$
		3.5		50			$V_{\text {DD }}=2.7 \mathrm{~V}$ to 5.5 V
Counter Clock Oscillation Frequency	${ }^{\text {f }}$	25	32	50	KHz	$\mathrm{X}_{1}, \mathrm{X}_{2}$ Crystal Oscillator	
	${ }^{\mathbf{x}_{\text {Ext }}}$	0		300		X_{1}, External Puise input	$V_{\text {DD }}=5 \mathrm{~V} \pm 10 \%$
		0		135			$V_{\text {DD }}=2.7 \mathrm{~V}$ to 5.5V
Counter Clock Rise and Fall Times	$t_{\text {rx }}, t_{\text {fx }}$			0.2	$\mu \mathrm{s}$	X_{1}, External Pulse Input	
Counter Clock Puise Width		1.5			$\mu 8$	X_{1}, External Pulse Input	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$
		3.5					$V_{\text {DD }}=2.7 \mathrm{~V}$ to 5.5V
SCR Cycle Time	${ }^{\mathbf{t}} \mathrm{CY}_{\mathbf{K}}$	4.0			${ }^{\mu \mathrm{E}}$	SCK is an input	$V_{D D}=5 \mathrm{~V} \pm 10 \%$
		7.0					$V_{D D}=2.7 \mathrm{~V}$ to 5.5 V
		6.7				SCK is an output	$V_{\text {DD }}=5 \mathrm{~V} \pm 10 \%$
		14.0					$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5 V
SCK Pulse Width	${ }^{\mathbf{t}} \mathrm{KW}_{\mathbf{H}}{ }^{\mathbf{t}} \mathrm{KWW}_{\mathrm{L}}$	1.8			μs	SCK is an input	$V_{\text {DD }}=5 \mathrm{~V} \pm 10 \%$
		3.3					$V_{D D}=2.7 \mathrm{v}$ to 5.5 V
		3.0				SCK is an output	$V_{D D}=5 \mathrm{~V} \pm 10 \%$
		6.5					$V_{D D}=2.7 \mathrm{~V}$ to 5.5 V
Sl Sotup Time to Stck	If	300			n8		
SI Hold Time after SCK \dagger	${ }_{\text {IH }}$	450			ns		
SO Delay Time after $\overline{\text { SCK }} \downarrow$	${ }^{\text {I O }}$			850	ns	$V_{D D}=5 \mathrm{~V} \pm 10 \%$$V_{D D}=2.7 \mathrm{~V}$ to 5.5 V	
			1200				
NT_{0} Pulse Width	${ }^{t_{0}} \mathrm{~W}_{\mathrm{H}} \mathrm{t}_{0} \mathrm{~W}_{\mathrm{L}}$	10			$\mu 3$		
NNT_{1} Pulse Width	${ }_{1 / 1} w_{H}{ }^{t_{1}} w_{L}$	2/f ${ }_{\text {d }}$			$\mu \mathrm{s}$		
RESET Pulse Width	${ }^{t_{R W}} \mathrm{H}^{\prime} \mathrm{t}_{\mathrm{RW}} \mathrm{W}_{\mathrm{L}}$	10			$\mu 8$		
RESET Sotup Time	$t_{\text {RS }}$	0			ne		
RESET Hold Time	${ }_{\text {t }}$	0			ns		

Capacltance

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}$

Parameter	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
Input Capacitance	c_{1}			15	pF	$\mathrm{f}=1 \mathrm{MHz}$
Output Capacitance	c_{0}			15	pF	Unmeasured pins
Input/Output Capacitance	$\mathrm{C}_{1 / 0^{\circ}}$			15		returned to $\mathbf{V}_{\mathbf{S S}}$

Timing Waveforms

Clocks

Operating Characteristics

Typleal, $\mathbf{T}_{\mathbf{a}}=\mathbf{2 5}^{\circ} \mathrm{C}$

Notes:
(1) Only R/C system clock is operating and consuming power. All other internal logic blocks are not active.
(2) Only crystal oscillator clock is operating and consuming power. All other internal logic blocks are not active.

- μ PD7501

Operating Characteristles (Cont.)
 Typlcal, $T_{a}=25^{\circ} \mathrm{C}$

System Clock Oscillation Frequency Supply Voltage

μ PD7502 μ PD7503 CMOS 4-BIT SINGLE CHIP MICROCOMPUTERS WITH LCD CONTROLLER/DRIVER

Description

The μ PD7502 and the μ PD7503 are pin-compatible CMOS 4-bit single chip microcomputers which have the same μ PD750x architecture.
The μ PD 7502 contains a 2048×8-bit ROM, and a $128 \times$ 4 -bit RAM. The μ PD7503 contains a 4096×8-bit ROM, and a 224×4-bit RAM.
Both the μ PD7502 and the μ PD7503 contain four 4-bit general purpose registers located outside RAM. The subroutine stack is implemented in RAM for greater nesting depth and flexibility, providing such operations as the pushing and popping of register values. The μ PD7502 and the μ PD7503 typically execute 92 instructions of the μ PD7500 series " A " instruction set with a $10 \mu \mathrm{~s}$ instruction cycle time.
The μ PD7502 and the μ PD7503 have two external and two internal edge-triggered hardware vectored interrupts. They also contain an 8 -bit timer/event counter and an 8 -bit serial interface to help reduce software requirements. The on-board LCD controller/driver supervises all of the timing required by the 24 Port S segment drivers and the 4 Port COM backplane drivers, for either a 12-digit 7 -segment quadriplexed LCD, or an 8 -digit 7 -segment triplexed LCD.
Both the μ PD7502 and the μ PD7503 provide 23 I/O lines, organized into the 3 -bit input/serial interface Port 0, the 4-bit input Port 1, the 4-bit output Port 3, and the 4 -bit l/O Ports 4,5 , and 6 . They are manufactured with a low power consumption CMOS process, allowing the use of a single power supply between 2.7 V and 5.5 V . Current consumption is less than $900 \mu \mathrm{~A}$ maximum, and can be lowered much further in the HALT and STOP power-down modes. The μ PD7502 and the μ PD7503 are available in a space-saving 64 -pin flat plastic package.
The μ PD7502 is downward compatible with the μ PD7501.

Pin Configuration

Pin Names

Pin No.	Symbol	Function
1	NC	No connection.
2-4, 64	$\mathrm{P3}_{3} \cdot \mathrm{P3}_{0}$	4-bit latched tristate output Port 3 (active high).
5	$\mathrm{PO}_{3} / \mathrm{SI}$	3-bit input Port 0/serial I/O interface (active high).
6 7	$\begin{aligned} & \mathrm{PO}_{2} / \mathrm{SO} \\ & \mathrm{PO}_{1} / \mathrm{S} \mathrm{CK} \end{aligned}$	This port can be configured either as a parallel input port, or as the 8-bit serial I/O Interface, under control of the serial mode select register. The Serial Input SI (active high), Serial Output SO (active high), and the Serial Clock $\overline{\text { SCK (active }}$ low) used for synchronizing data transfer, comprise the 8-bit serial l/O interface.
8-11	$\mathrm{P6}_{3}-\mathrm{P}_{0}$	4-bit input/latched tristate output Port 6 (active high). Individual lines can be configured either as inputs or as outputs under control of the Port 6 mode select register.
12-15	$\mathrm{P5}_{3} \mathrm{Pr}_{0}$	4-bit input/latched tristate output Port 5 (active high). Can also perform 8 -blt parallel $1 / \mathrm{O}$ in conjunction with Port 4.
16-19	$\mathrm{P}_{3}-\mathrm{P4}_{0}$	4-bit input/latched tristate output Port 4 (active high). Can also perform 8-bit parallel $1 / 0$ in conjunction with Port 5.
20. 21	x_{2}, x_{1}	Crystal clock/external event input Port X (active high). A crystal oscillator circuit is connected to input X_{1} and output X_{2} for crystal clock operation. Alternatively, external event pulses are connected to input X_{1} while output X_{2} is left open for external event counting.
22	$\mathrm{V}_{\text {SS }}$	Ground.
23-25	$\begin{aligned} & \mathrm{V}_{\mathrm{LCD}_{3}}, \mathrm{~V}_{\mathrm{LCD}_{2}} \\ & \mathrm{v}_{\mathrm{LCD}_{1}} \end{aligned}$	LCD bias voltage supply Inputs to LCD voltage controlier. Apply approprlate voltages from a voltage ladder connected across $V_{D D}$.
26, 58	$V_{\text {DD }}$	Power supply positive. Apply single voltage ranging from 2.7 V to 5.5 V for proper operation.
27-30	$\mathrm{COM}_{3} \mathrm{COM}_{0}$	LCD backplane driver outputs.
$31-54$	$\mathbf{S}_{23} \mathbf{S}_{0}$	LCD segment driver outputs.
55	NWT_{1}	External Interrupt INT $_{1}$ (active high). This is a rising edgetriggered interrupt.
56	RESET	RESET input (active high). R/C circuit or pulse initializes μ PD7502 or μ PD7503 after power-up.
57, 59	$\mathrm{CL}_{1}, \mathrm{CL}_{2}$	System clock input (active high). Connect 82kQ resistor across CL_{1} and CL_{2}, and connect 33 pF capacitor from CL_{1} to V_{SS}. Alternatively, an external clock source may be connected to CL_{1}, whereas CL_{2} is left open.
60-63	$\begin{aligned} & \mathrm{P}_{3}-\mathrm{P}_{0} \\ & \left(\mathrm{PI}_{0} / \mathrm{NT}_{0}\right) \end{aligned}$	4-bit input Port 1 (active high). Line Pt_{0} is also shared with external interrupt $\mathbb{N N}_{0}$, which is a rising edge-triggered interrupt.

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	
Operating Temperature	$-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Supply Voltage, VDD	-0.3 V to + 7.0 V
All Input and Output Voltages	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Output-Current (Total, All Output Ports)	$1 \mathrm{OH}=-20 \mathrm{~mA}$

*Comment: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

μ PD7502/7503

Block Dlagram

Capacltance

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathbf{0 V}$

Parameter	Symbol	Limits			Unit	Test Condilfons
		Min	Typ	Max		
Input Capacitance	c_{1}			15	PF	$\mathrm{f}=1 \mathrm{MHz}$,
Output Capacitance	c_{0}			15	pF	Unmeasured pins
Input/Output Capacitance	$\mathrm{c}_{1 / \mathrm{O}}$			15		returned to $\mathbf{V}_{\text {SS }}$

$T_{a}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{VDD}=2.7$ to 5.5 V

AC Characteristics
$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{D D}=2.7 \mathrm{~V}$ to 5.5 V

Timing Waveforms

Clocks

Reset

Data Retention Mode

Operating Characteristics

Typlcal, $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$.

Supply Current
System Clock Osclilation Frequency (Note (1))

Notes:

(1) Only R/C system clock is operating and consuming power. All other internal logic blocks are not active.

Only crystal oscillator clock is operating and consuming power. All other internal logic blocks are not active.

μ PD7502/7503

Operating Characteristics (Cont.)
Typlcal, $\mathbf{T}_{\mathrm{a}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

System Clock Oscillation Frequency Supply Voltage

Description

The μ PD7506 is a CMOS 4-bit single chip microcomputer which has the μ PD750x architecture.
The μ PD7506 contains a 1024×8-bit ROM, and a $64 \times$ 4-bit RAM.
The μ PD7506 contains two 4-bit general purpose registers located outside RAM. The subroutine stack is implemented in RAM for greater nesting depth and flexibility, providing such operations as the pushing and popping of register values. The μ PD7506 typically executes 58 instructions of the μ PD7500 series "B" instruction set with a $10 \mu \mathrm{~s}$ instruction cycle time. The μ PD7506 has one external and one internal edgetriggered testable interrupts. It also contains an 8 -bit timer/event counter to help reduce software requirements.
The μ PD7506 provides 22 I/O lines, organized into the 2 -bit input Port 0, the 4 -bit output Port 2, and the 4 -bit I/O Ports $1,4,5$, and 6 . It is manufactured with a low power consumption CMOS process, allowing the use of a single power supply between 2.7 V and 5.5 V . Current consumption is less than $600 \mu \mathrm{~A}$ maximum, and can be lowered much further in the HALT and STOP powerdown modes. The μ PD7506 is available either in a 28 -pin dual-in-line plastic package, or in a space-saving 52 -pin flat plastic package.
The μ PD7506 is upward compatible with the μ PD7507 and the μ PD7507S.

PIn Configuration

Pin Configuration (Cont.)

(Top View)			
P_{43}		${ }^{28}$	$\square \mathrm{vss}$
x_{2}		27	\square^{184}
Po3/X1 \square^{3}		26	P4 ${ }_{1}$
${ }^{\text {P20/PSTE }}{ }^{\text {PTE }}{ }^{4}$		25	P40
$\mathrm{P}_{2} 1$ PTout ${ }^{\text {a }}$		24	$\square \mathrm{Poointo}$
$\mathrm{P}_{22}{ }^{6}$		${ }^{23}$	P_{53}
P_{23}	${ }^{7506 C}$	${ }^{22}$	$\square \mathrm{P}_{5}$
$\mathrm{P}_{60}{ }^{-}$		${ }_{21}$	P51
$\mathrm{P}_{61} \square^{\text {a }}$		20	P50
$\mathrm{P}_{62}{ }^{10}$		19	P13
$\mathrm{P}_{63} \square^{11}$		18	JP^{12}
$\mathrm{CLI}_{1}{ }^{12}$		17	P_{11}
$\mathrm{CL}_{2} \square^{13}$		16	
vDD \square^{14}		15	Reset

Pin Names

| 40-Pln
 DIP | S2-Pin
 Flat | Symbol |
| :--- | :--- | :--- | :--- |

MPD7506

Block Diagram

Absolute Maximum Ratings*
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

Operating Temperature	$-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Supply Voltage, V_{DD}	-0.3 V to +7.0 V
All Input and Output Voltages	-0.3 V to $\mathrm{VDD}+0.3 \mathrm{~V}$
Output-Current (Total, All Output Ports)	$\frac{1 \mathrm{OH}=-20 \mathrm{~mA}}{}$
	$1 \mathrm{OL}=32 \mathrm{~mA}$

*Comment: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Capacitance

$\mathrm{T}_{\mathrm{a}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathrm{OV}$

Parameter	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
Input Capacitance	c_{1}			15		$f=1 \mathrm{MHz}$,
Output Capacltance	C_{0}			15	pF	Unmeasured pins returned to $V_{S S}$
Input/Output Capacitance	$\mathrm{C}_{1 / \mathrm{O}}$			15		

DC Characteristics
$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5 V

Parameter	Symbol	Limits			Unit	Test Conditions			
		Min	Typ	Max					
Input Voltage High	$\mathrm{V}_{\text {IH }}$	$0.7 \mathrm{~V}_{\mathrm{DD}}$	$V_{D D}$		v	All Inputs Other than $\mathrm{CL}_{1}, \mathrm{X}_{1}$			
	$\mathrm{V}_{\text {¢ }}$	$V_{\text {DD }-0.5}$	$V_{\text {D }}$			$\mathrm{CL}_{1}, \mathrm{X}_{1}$			
	$\mathbf{V}_{\mathbf{I H}}{ }_{\text {DR }}$	$0.9 \mathrm{~V}_{\mathrm{DD}} \mathrm{DR}$	$\mathrm{V}_{\mathrm{DD}_{\mathrm{DR}}+0.2}$			RESET, Data Retention Mode			
Input Voltage Low	$V_{\text {IL }}$	0		$0.3 \mathrm{~V}_{\text {DD }}$	V	All Inputs Other than $\mathrm{CLL}_{1}, \mathrm{X}_{1}$			
	$V_{\text {¢ }}$ L	0		0.5		$\mathrm{CL}_{1}, \mathrm{X}_{1}$			
Input Leakage Current High	${ }^{1} \mathrm{LI}_{\mathrm{H}}$		3		$\mu \mathrm{A}$	All inputs Other than $\mathrm{CL}_{1}, \mathrm{X}_{1}$	$\mathbf{V}_{1}=\mathbf{V}_{\text {DD }}$		
	${ }_{\text {L }}^{1}{ }_{\text {H }}$			10		$\mathrm{CL}_{1}, \mathrm{X}_{1}$			
Input Leakage Current Low	${ }_{\text {LIL }}^{\text {L }}$			-3	$\mu \mathrm{A}$	All Inputs Other than $\mathrm{CL}_{1}, \mathrm{X}_{1}$	$\mathrm{V}_{1}=0 \mathrm{~V}$		
	LL¢L			-10		$\mathrm{CL}_{1}, \mathrm{X}_{1}$			
Output Voltage High	V_{OH}	$\mathrm{V}_{\mathrm{DD}}-1.0$			v	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{IOH}=-1.0 \mathrm{~mA}$			
		$\mathrm{V}_{\mathrm{DD}}-0.5$				$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$			
Output Voltage Low	$\mathrm{V}_{\text {OL }}$			0.4	V	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$			
				0.5		$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=400 \mu \mathrm{~A}$			
Output Leakage Current High	${ }^{\mathbf{L} \mathrm{LO}_{\mathrm{H}}}$			3	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}}$			
Output Leakage Current Low	${ }^{\mathbf{L}} \mathrm{O}_{\mathrm{L}}$		-3		$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=\mathrm{OV}$			
Supply Voltage	V_{DD}	2.0			V	Data Retention Mode			
Supply Current	${ }^{\prime} \mathrm{DD}_{0}$			600300	Normal Operation		$V_{\text {DD }}=5 \mathrm{~V} \pm 10 \%$		
				$V_{\text {DD }}=3 V_{ \pm} \pm 10 \%$					
	${ }^{\prime} \mathrm{DD}_{s}$		1		10	$\mu \mathrm{A}$	Stop Mode, $\mathrm{X}_{1}=\mathbf{O V}$	$V_{\text {DD }}=5 \mathrm{~V} \pm 10 \%$	
			0.3	5	$\mathrm{V}_{\text {DD }}=3 \mathrm{~V}_{ \pm} 10 \%$				
	${ }^{1} D_{\text {DR }}$		0.4	10	Data Retention Mode		$\mathrm{V}_{\mathrm{DD}} \mathrm{DA}=2.0 \mathrm{~V}$		

AC Characteristics

$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5 V

Parametor	Symbol	Limits			Unit	Test Conditions	
		Min	Typ	Max			
System Clock Oscillation Frequency	${ }_{\text {t }}$	120	200	260	kHz	$R=120 \mathrm{k} Q \pm \mathbf{2 \%}$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm \pm 10 \%$
		60	100	130		$\mathrm{CL}_{1}, \mathrm{CL}_{2} \quad \mathrm{R}=240 \mathrm{kQ} \pm \mathbf{2 \%}$	$V_{\text {DD }}=3 V_{ \pm} \pm 10 \%$
		60		180			$V_{D D}=2.7 \mathrm{~V}$ to 5.5 V
	${ }^{\text {¢ }}$ Ext	10	200	300		CL1, External Clock	$V_{\text {DD }}=5 \mathrm{~V} \pm 10 \%$
		10		135			$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5 V
System Clock Rise and Fall Times	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\boldsymbol{\prime}}$			0.2	$\mu 8$	CL1, External Clock	
System Clock Pulse Width		1.5		50	$\mu 8$	CL_{1}, External Clock	$\mathrm{V}_{\text {DD }}=5 \mathrm{~V} \pm 10 \%$
		3.5		50			$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5 V
Counter Clock Oscillation Frequency	${ }_{\text {f }}$	25	32	50	kHz	$\mathrm{X}_{1}, \mathrm{x}_{2}$ Crystal Oscillator	
	${ }^{1}{ }_{\text {Exx }}$	0		300		X_{1}, External Pulse Input	$\mathrm{V}_{\text {DD }}=5 \mathrm{~V} \pm 10 \%$
		0		135			$V_{D D}=2.7 \mathrm{~V}$ to 5.5 V
Counter Clock Rise and Fall Times	${ }_{t_{r x}}, t_{f x}$			0.2	$\mu 8$	X_{1}, External Pulse Input	\cdots
Counter Clock Pulse Width	${ }^{t_{x} W_{H}}{ }^{t_{x} W_{L}}$	1.5			$\mu 5$	X_{1}, External Pulse Input	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$
		3.5					$V_{D D}=2.7 \mathrm{~V}$ to 5.5 V
Port 1 Output Setup Time to $\mathbf{P} \overline{\mathbf{S T E}} \uparrow$	$t^{\prime} \mathbf{S}$	1/(24 $\left.4_{\phi}-800\right)$			n8	$\mathrm{V}_{\text {DD }}=\mathbf{5 V} \pm \mathbf{1 0 \%}$	
		1/(2f $1_{\phi}-2000$)				$V_{\text {DD }}=2.7 \mathrm{~V}$ to 5.5 V	
Port 1 Output Hold Time after P ${ }^{\text {STE }}$	$\mathrm{tP}_{\mathbf{1}} \mathrm{H}$	300	350	500	ns	$\mathrm{V}_{\text {DD }}=5 \mathrm{~V} \pm 10 \%$	
		300		1500		$\mathrm{V}_{\text {DD }}=2.7 \mathrm{~V}$ to 5.5 V	
PSTB Pulse Width	${ }^{\text {t }} \mathrm{w}_{\mathrm{L}}$	1/(2f $\mathrm{f}_{\phi} \mathbf{8 0 0}$)			ns	$\mathrm{V}_{\text {DD }}=5 \mathrm{~V} \pm 10 \%$	
		$1 /\left(2 f_{\phi}-2000\right)$				$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5 V	
INT_{0} Pulse Width	${ }^{t_{0}} W_{H^{\prime}} t_{0} W_{L}$	10			$\mu 8$		
RESET Pulse Widith	${ }^{\mathrm{R}^{\text {RW }} \mathrm{H}^{\prime}}{ }^{\text {t }} \mathrm{RW}_{\mathrm{L}}$	10			$\mu 8$		
RESET Setup Time	${ }^{\text {tRS }}$	0			ns		
RESET Hold Time	${ }_{\text {tr }}$	0			ns		

μ PD7506

Timing Waveforms

Clocks

Output Strobe

Operating Characterlstics

Typlcal, $\mathbf{T}_{\mathbf{a}}=25^{\circ} \mathrm{C}$

[^8]
Description

The μ PD7507 and the μ PD7508 are pin-compatible CMOS 4-bit single chip microcomputers which have the same μ PD750x architecture.
The μ PD7507 contains a 2048×8-bit ROM, and a $128 \times$ 4 -bit RAM. The μ PD 7508 contains a 4096×8-bit ROM, and a 224×4-bit RAM.
Both the μ PD7507 and the μ PD7508 contain four 4-bit general purpose registers located outside RAM. The subroutine stack is implemented in RAM for greater nesting depth and flexibility, providing such operations as the pushing and popping of register values. The μ PD7507 and the μ PD5708 typically execute 92 instructions of the μ PD7500 series " A " instruction set with a $10 \mu \mathrm{~s}$ instruction cycle time.
The μ PD7507 and the μ PD7508 have two external and two internal edge-triggered hardware vectored interrupts. They also contain an 8 -bit timer/event counter and an 8 -bit serial interface to help reduce software requirements. Both the μ PD7507 and the μ PD7508 provide 32 I/O lines organized into the 4 -bit input/serial interface Port 0 , the 4-bit input Port 2, the 4-bit output Port 3, and the 4-bit I/O Ports $1,4,5,6$, and 7 . They are manufactured with a low power consumption CMOS process, allowing the use of a single power supply between 2.7 V and 5.5 V . Current consumption is less than $900 \mu \mathrm{~A}$ maximum, and can be lowered much further in the HALT and STOP power-down modes. The μ PD7507 and the μ PD7508 are available in either a 40 -pin dual-in-line plastic package or in a spacesaving 52 -pin flat plastic package.
The μ PD7507 is downward compatible with the μ PD7506 and the μ PD7507S.

Pin Configuration

Pin Identification

40-Pin DIP	52-Pin Fiat	Symbol	Function
1,40	32, 34	$\mathrm{X}_{2}, \mathrm{X}_{1}$	Crystal clock/external event input Port X (active high). A crystal osciliator circult is connected to Input X_{1} and output X_{2} for crystal clock operation. Alternatively, external event pulses are connected to input X_{1} while output X_{2} ls left open for external event counting.
$2-5$	36-38	$\begin{aligned} & \mathrm{P}_{0}-\mathrm{P}_{3} \\ & \mathrm{P}_{\mathbf{0}} / \mathrm{P}_{\mathrm{STB}} \\ & \mathrm{P}_{1} / \mathrm{P}_{\mathrm{T}_{\text {OUT }}} \end{aligned}$	4-blt latched tri-state output Port 2 (actlve high). Line $\mathbf{P 2}_{0}$ is also shared with PSTB, the Port 1 output strobe pulse (active low). Line $\mathrm{P} 2_{1}$ is also shared with PT OUT $_{\text {, }}$, the timer-out F/F signal (actlve high).
6-9	41-44	$\mathrm{Pl}_{0}-\mathrm{Pl}_{3}$	4-blt Input/tri-state output Port 1 (actlve high). Data output to Port 1 ls strobed In synchronization with a P2 ${ }_{0} / P^{\text {STB }}$ puise.
10.13	46-49	$\mathrm{P3}_{0}-\mathrm{P3}_{3}$	4-blt latched tri-state output Port 3 (active high).
14-17	50-52, 2	$\mathrm{P7}_{0}-\mathrm{P}_{3}$	4-bit Input/latched tri-state output Port 7 (actlve high).
18	3	RESET	RESET Input (active high). R/C circult or pulse Initlallzes μ PD7507 or μ PD7508 after power-up.
19, 21	5,9	$\mathrm{CL}_{1}, \mathrm{CL}_{2}$	System clock Input (active high). Connect 82ks resistor across CL_{1} and CL_{2}, and connect 33pF capacitor from CL_{1} to $\mathrm{VSS}_{\mathrm{SS}}$. Alternatively, an external clock source may be connected to CL_{1}, whereas CL_{2} ls left open.
20	7,33	$V_{\text {DD }}$	Power supply positive. Apply single voltage ranging from 2.7 V to 5.5 V for proper operation.
22	10	$\mathbf{N N T}_{1}$	External Interrupt INT, (active high). This is a rising edge-triggered Interrupt.
23-26	$\begin{aligned} & 11,12 \\ & 15,16 \end{aligned}$	$\begin{aligned} & \mathrm{PO}_{0} / \mathrm{INT}_{0} \\ & \mathrm{PO}_{1} / \overline{\mathrm{SCK}} \\ & \mathrm{PO}_{2} / \mathrm{SO} \\ & \mathrm{PO}_{3} / \mathrm{SI} \end{aligned}$	4-bit input Port 0/Serial I/O Interiace (active high). This port can be configured either as a 4-blt parallel input port, or as the 8 -blt serial I/O Interface, under control of the serial mode select register. The Serial Input SI (active high), Serial Output SO (active low), and the Serlal Clock SCK (active low) used for synchronizing data transfer comprise the 8-blt serlal I/O interface. Line $\mathrm{PO}_{\mathbf{0}}$ Is always shared with external Interrupt INT 0 (active high) which is a rising edge-triggered interrupt.

Pin Identification (Cont.)

$\begin{aligned} & \text { 40-Pin } \\ & \text { DIP } \end{aligned}$	52-PIn Flat	Symbol	Function
27-30	17-20	$\mathrm{P}_{6} \mathrm{O}^{-\mathrm{P}} \mathbf{3}_{3}$	4-bit input/latched tri-state output Port 6 (active high). Individual ilnes can be configured elther as inputs or as outputs under control of the Port 6 mode select reglster.
31-34	21-24	$\mathrm{P5}_{0}-\mathrm{P5}_{3}$	4-bit input/latched tri-state output Port 5 (active high). Can also perform 8-bit parallel I/O in conjunction with Port 4.
35-38	$\begin{aligned} & \mathbf{2 5 , 2 6 ,} \\ & \mathbf{2 8 , 3 0}, \end{aligned}$	$\mathrm{P4}_{0}-\mathrm{P4}_{3}$	4-bit Input//atched tri-state output Port 4 (active high). Can also perform 8-bit parallel I/O in conjunction with Port 5.
39	31	$v_{\text {SS }}$	Ground.
-	$\begin{aligned} & 1,4,6,8, \\ & 13,14,27,29, \\ & 35,40,45 \\ & \hline \end{aligned}$	NC	No connection.

Absolute Maximum Ratings*

$\mathrm{F}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	
Operating Temperature	$-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Supply Voltage, VDD	-0.3 V to +7.0 V
All Input and Output Voltages	-0.3 V to $\mathrm{VDD}+\mathbf{0 . 3 \mathrm { V }}$
Output-Current (Total, All Output Ports)	$1 \mathrm{OH}=-20 \mathrm{~mA}$
	$1 \mathrm{OL}=30 \mathrm{~mA}$

"Comment: Stress above those listed under "Absolute Maximum Ratings'" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC Characteristics

$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5 V

AC Characteristics

$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathbf{2 . 7 V}$ to 5.5 V

Parametor	Symbol	Limits			Unit	Test Conditions		
		M/n	Typ	Max				
System Clock Osciliation Frequency	\mathbf{f}_{ϕ}	120	200	280	KHz	$\mathrm{CL}_{1}, \mathrm{CL}_{2}$	$\begin{aligned} & R=120 \mathrm{kQ} \pm 2 \% \\ & C=33 \mathrm{pF} \pm 5 \% \\ & \hline \end{aligned}$	$V_{\text {DD }}=5 \mathrm{~V} \pm 10 \%$
		60	100	130			$\begin{aligned} & \mathrm{R}=250 \mathrm{k} \Omega \pm 2 \% \\ & \mathrm{C}=33 \mathrm{pF} \pm 5 \% \end{aligned}$	$V_{D D}=3 V_{ \pm} \pm 10 \%$
		60		180				$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5 V
	${ }^{\dagger_{\text {EXXT }}}$	10	200	300		CL_{1}, External Clock		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V} \pm 10 \%$
		10		135				$V_{D D}=2.7 \mathrm{~V}$ to 5.5 V
System Clock Rise and Fall Times	$\mathrm{t}_{1}, \mathrm{t}_{\text {f }}$			0.2	$\mu \mathrm{s}$	CL_{1}, Exter	rnal Clock	
System Clock Pulse Width		1.5		50	$\mu 8$	CL ${ }_{1}$, External Clock		$\mathrm{V}_{\text {DD }}=5 \mathrm{~S} \pm 10 \%$
		3.5		50				$V_{D D}=2.7 \mathrm{~V}$ to 5.5 V
Counter Clock Oscillation Frequency	${ }^{\prime}{ }_{x}$	25	32	50	KHz	$\mathrm{X}_{1}, \mathrm{X}_{2}$ Crystal Oscillator		
	${ }^{4}{ }^{\text {Ext }}$	0		300		X_{1}, External Pulse Input		$V_{\text {DD }}=5 \mathrm{~V} \pm 10 \%$
				135				$V_{D D}=2.7 \mathrm{~V}$ to 5.5 V
Counter Clock Rise and Fall Times	$\mathrm{t}_{\mathrm{rx}}, \mathrm{t}_{\mathrm{f}}$			0.2	$\mu \mathrm{s}$	X_{1}, Extern	al Puise Input	
Counter Clock Pulse Width					$\mu 8$	X_{1}, External Pulse Input		$V_{\text {DD }}=5 \mathrm{~V} \pm 10 \%$
								$V_{D D}=2.7 \mathrm{~V}$ to 5.5 V

Paramotor	Symbol	Limits			Unit	Test Conditions	
		MIn	Typ	Max			
SCK Cyele Time	${ }^{\mathbf{t}} \mathbf{C Y}_{\mathbf{K}}$	4.0			$\mu 8$	SCK ${ }_{\text {Is a }}$ an input	$V_{D D}=5 \mathrm{~V} \pm 10 \%$
		7.0					$V_{D D}=2.7 \mathrm{~V}$ to 5.5V
		6.7				$\overline{\text { SCK }}$ is an output	$V_{\text {DD }}=5 \mathrm{~V} \pm 10 \%$
		14.0					$V_{\text {DD }}=2.7 \mathrm{~V}$ to 5.5V
$\overline{\text { SCK Pulse Width }}$		1.8			$\mu 8$	$\overline{\text { SCK }}$ Is an input	$V_{\text {DD }}=5 \mathrm{~V} \pm 10 \%$
		3.3					$V_{D D}=2.7 v$ to 5.5 V
		3.0					$V_{\text {DD }}=5 \mathrm{~V} \pm 10 \%$
		6.5				SCK is an output	$V_{\text {DD }}=2.7 \mathrm{~V}$ to 5.5 V
SI Setup Time to SCKT	$1{ }^{\text {I }}$	300			ns		
SI Hold Time after SCK \uparrow	t_{H}	450			n8		
SO Detay Time after $\overline{\text { SCK }} \downarrow$	${ }^{\text {to }}$			850	ns	$V_{\text {DD }}=5 \mathrm{~V} \pm 10 \%$	
				1200		$V_{\text {DD }}=2.7 \mathrm{~V}$ to 5.5 V	
Port 1 Output Setup Time to P $\overline{\text { STB }} \uparrow$	${ }^{1} \mathrm{P}_{1} \mathrm{~s}$	1/(2f ${ }_{\text {d }}$-800)			ns	$V_{D D}=5 \mathrm{~V} \pm 10 \%$	
		1/(2f ${ }_{\text {d }}$-2000)				$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5 V	
Port 1 Output Hold Time after P ${ }_{\text {PTST }}$ ¢	${ }^{t} \mathrm{P}_{1} \mathrm{H}$	300	350	500	ns	$V_{D D}=5 \mathrm{~V} \pm 10 \%$	
		300		1500		$V_{\text {DD }}=2.7 \mathrm{~V}$ to 5.5 V	
PSTB Pulse Width	${ }^{\text {S }}{ }^{\text {d }}$	f/(2t ${ }_{\text {¢ }}$-800)			ns	$V_{\text {DD }}=5 \mathrm{~V} \pm 10 \%$	
		7/(2t ${ }_{\text {¢ }}$-2000)				$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5 V	
INT ${ }_{0}$ Pulse Width	${ }^{1}{ }_{0} W_{H}, t_{0} W_{L}$	10			$\mu 8$		
INT ${ }_{1}$ Pulse Width	${ }_{1}{ }_{1} W_{H}{ }^{\prime} t_{1} W_{L}$	2/f ${ }_{\text {d }}$			$\mu 8$		
RESET Pulse Width		10			$\mu 8$		
RESET Setup Time	${ }^{\text {tras }}$	0			ns		
RESET Hold Time	${ }^{\text {fRH }}$:	0			ns		

Capacitance

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{v}_{\mathrm{DD}}=\mathrm{ov}$

Parameter	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
Input Capacitance	c_{1}			15	pF	$\mathrm{f}=1 \mathrm{MHz}$
Output Capacitance	C_{0}			15	PF	Unmeasured
Input/Output Capacitance	$\mathrm{C}_{1 / 0}$			15		returned to $V_{\text {SS }}$

Block Dlagram

Timing Waveforms

Clocks

External Interrupts

Operating Characteristles
 (Typlcal, $\mathrm{Ta}_{\mathrm{a}}=25^{\circ} \mathrm{C}$)

Notes:

(1) Only R/C system clock is operating and consuming power. All other internal logic blocks are not active.
(2) Only crystal oscillator clock is operating and consuming power. All other internal logic blocks are not active.

Operating Characteristics (Cont.) (Typlcal, $\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Description

The μ PD7507S is a CMOS 4-bit single chip microcomputer which has the same μ PD750x architecture.
The μ PD7507S contains a 2048×8-bit ROM, and a 128 x 4-bit RAM.
The μ PD7507S contains two 4-bit general purpose registers located outside RAM. The subroutine stack is implemented in RAM for greater nesting depth and flexibility, providing such operations as the pushing and popping of register values. The μ PD7507S typically executes 91 instructions of the μ PD7500 series " A " instruction set with a 10μ s instruction cycle time.
The μ PD7507S has two external and two internal edgetriggered hardware vectored interrupts. It also contains an 8-bit timer/event counter and an 8-bit serial interface to help reduce software requirements.
The μ PD7507S provides 20 I/O lines organized into the 4-bit input/serial interface Port 0 , the 4 -bit output Port 2, the 4-bit output Port 3, and the 4-bit I/O Ports 4 and 5. It is manufactured with a low power consumption CMOS process, allowing the use of a single power supply between 2.7 V and 5.5 V . Current consumption is less than $900 \mu \mathrm{~A}$ maximum, and can be lowered much further in the HALT and STOP power-down modes. The μ PD7507S is available in a 28 -pin dual-in-line plastic package.
The μ PD7507S is upward compatible with the μ PD7507, and downward compatible with the μ PD7506.

Pin Configuration

Pin Identification

Pin'		Function
No.	Symbol	
1, 25-27	$\mathrm{P4}_{0} \mathrm{P}^{-4_{3}}$	4-bit Input/atched tri-state output Port 4 (actlve high). Can also perform 8-blt parallel I/O in conjunction with Port 5.
2, 3	X_{2}, x_{1}	Crystal clock/external event input Port X (active high). A crystal oscillator circuit is connected to input X_{1} and output X_{2} for crystal clock operation. Alternatively, external event pulses are connected to input X_{1} while output X_{2} is left open for external event counting.
4-7	$\begin{aligned} & \mathrm{P}_{2}-\mathrm{P}_{3} \\ & \mathrm{P}_{1} / \mathrm{P}_{\mathrm{T}_{\mathrm{OUT}}} \end{aligned}$	4-bit latched tri-state output Port 2 (active high). Line P2 $\mathbf{1 s}_{1}$ shared with PTOUT, the timer-out F/F aignal (active high).
8-11	$\mathrm{P3}_{3}{ }^{-\mathrm{P}_{3}}$	4-bit latched tri-state output Port 3 (active high).
12	RESET	RESET input (ective high). R/C circuit or pulse initializes μ PD7507 or μ PD7508 after power-up.
13, 15	$\mathrm{CL}_{1}, \mathrm{CL}_{2}$	System clock Input (active high). Connect $82 \mathrm{k} \Omega$ resistor across $C L_{1}$ and $C L_{2}$, and connect 33pF capacitor from CL_{1} to $\mathbf{V}_{\mathbf{S S}}$. Alternatively, an external clock source may be connected to CL_{1}, whereas CL_{2} ls left open.
14	$V_{D D}$	Power supply positive. Apply single voltage ranging from 2.7V to 5.5 V for proper operation.
16	INT_{1}	External interrupt INT ${ }_{1}$ (active high). This is a rising edgetriggered interrupt.
17-20	$\begin{aligned} & \mathrm{PO}_{0} / \mathrm{INT}_{0} \\ & \mathrm{PO}_{1} / \overline{\mathrm{SCK}} \\ & \mathrm{PO}_{2} / \mathrm{SO} \\ & \mathrm{PO}_{3} / \mathrm{SI} \end{aligned}$	4-bit input Port $0 /$ serial I/O interface (active high). This port can be configured either as a 4-bit parallel input port, or as the 8 -bit serial I/O interface, under control of the serlal mode select register. The Serial Input SI (active high), Serial Output SO (active low), and the Serial Clock SCK (active low) used for synchronizing data transfer comprise the 8-bit serial I/O interface. Line $\mathbf{P O}_{0}$ is always shared with external interrupt INT $_{0}$ (active high) which is a rising edge-triggered Interrupt.
21-24	$\mathrm{P5}_{0}-\mathrm{P5}_{3}$	4-bit input/latched tri-state output Port 5 (actlve high). Can also perform 8-bit parallei I/O in conjunction with Port 4.
28	$\mathrm{V}_{\mathbf{S S}}$	Ground.

Absolute Maximum Ratings*

$\boldsymbol{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

Operating Temperature	$-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Supply Voltage, V_{DD}	-0.3 V to +7.0 V
All Input and Output Voltages	-0.3 V to $\mathrm{VDD}+0.3 \mathrm{~V}$
Output-Current (Totai, All Output Ports)	$1 \mathrm{OH}=-20 \mathrm{~mA}$
	$1 \mathrm{OL}=30 \mathrm{~mA}$

*Comment: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Block Dlagram

DC Characteristles

$T_{a}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{VDD}=2.7 \mathrm{~V}$ to 5.5 V

Paramster	Symbol	Limits			Unit	Test Conditions		
		Min	Typ	Max				
Input Voltage High	$\mathrm{V}_{\text {IH }}$	0.7 VDD	$V_{\text {DD }}$		v	All Inputs Other than $\mathrm{CL}_{1}, \mathrm{X}_{1}$		
	$V_{\text {¢ }}$	$V_{\text {DD - } 0.5}$	$V_{\text {DD }}$			$\mathrm{CL}_{1}, \mathrm{X}_{1}$		
	$\mathrm{V}_{\text {IH }}{ }_{\text {DR }}$	$0.9 \mathrm{~V}_{\mathrm{DD}}$		$\mathrm{V}_{\mathrm{DD}} \mathrm{DR}^{+0.2}$		RESET, Data Retention Mode		
Input Voltage Low	$\mathrm{V}_{\text {IL }}$	0		$0.3 \mathrm{~V}_{\text {DD }}$	V	All Inputs Other than $\mathrm{CL}_{1}, \mathrm{X}_{1}$		
	$\mathrm{V}_{\phi} \mathrm{L}$	0		0.5		$\mathrm{CL}_{1}, \mathrm{X}_{1}$		
Input Leakage Current High	${ }^{\text {L }} \mathrm{LI}_{\mathbf{H}}$			3	$\mu \mathrm{A}$	All inputs Other than $\mathrm{CL}_{4}, \mathrm{X}_{1}$	$\mathbf{v}_{\mathbf{I}}=\mathbf{v}_{\text {DD }}$	
	${ }^{\text {L }}$ ¢ ${ }_{\text {H }}$			10		$\mathrm{CL}_{1}, \mathrm{X}_{1}$		
Input Leakage Current Low	${ }^{\text {LIL }}$			-3	$\mu \mathrm{A}$	All Inputs Other than $\mathrm{CLL}_{1}, \mathrm{X}_{1}$	$\mathrm{v}_{1}=\mathbf{O V}$	
	${ }_{\text {L }}^{\text {¢ }}$ L			-10		$\mathrm{CL}_{1}, \mathrm{X}_{1}$		
Output Voltage High	V_{OH}	$\frac{V_{D D}-1.0}{V_{D D}-0.5}$			V	$V_{D D}=5 \mathrm{~V} \pm 10 \%, \mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$		
Output Voltage Low	$V_{O L}$			0.4	v	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$, $\mathrm{IOL}=1.6 \mathrm{~mA}$		
				0.5		$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5V, $\mathrm{IOL}=400 \mu \mathrm{~A}$		
Output Leakage Current High	${ }^{\text {LOOH }}$			3	$\mu \mathrm{A}$	$V_{O}=V_{\text {D }}$		
Output Leakage Current Low	${ }^{\mathrm{L}} \mathrm{O}_{\mathrm{L}}$		-3		$\mu \mathrm{A}$	$\mathrm{V}_{0}=0 \mathrm{~V}$		
Supply Voltage	$\mathrm{V}_{\text {DD }}$	2.0			V	Data Retention Mode		
Supply Current	${ }^{10}{ }^{\circ}$		300	900	$\mu \mathrm{A}$	Normal Operation	$V_{\text {DD }}=5 V_{ \pm}{ }^{10 \%}$	
			150	400			$V_{\text {DD }}=3 V_{ \pm}$10\%	
	${ }^{\prime} \mathrm{DD}_{S}$		2	20		Stop Mode, $\mathrm{X}_{1}=0 \mathrm{~V}$	$\mathrm{V}_{\text {DD }}=5 \mathrm{~V} \pm \pm 10 \%$	
			0.5	10			$V_{\text {DD }}=3 V_{ \pm} 10 \%$	
	${ }^{1} \mathrm{DD}_{\text {DR }}$		0.4	10		Data Retention Mode	$\mathrm{V}_{\text {DD }} \mathrm{DR}=2.0 \mathrm{~V}$	

AC Characterlstics

$T_{a}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathbf{2 . 7 V}$ to 5.5 V

Paraineter	Symbol	Limits			Unit	Test Conditions	
		Min	Typ	Max			
System Clock Osclllation Frequency	t_{ϕ}	120	200	280	KHz	$\begin{aligned} \mathrm{R} & =82 \mathrm{kQ} \pm 2 \% \\ \mathrm{CL}_{1}, \mathrm{CL}_{2} 2 & =33 \mathrm{pF} \pm 5 \% \\ \mathrm{R} / \mathrm{C} \text { Clock } & =160 \mathrm{k} \Omega_{ \pm} 2 \% \\ \mathrm{R} & =33 \mathrm{pF} \pm 5 \% \end{aligned}$	$V_{\text {DD }}=5 \mathrm{~V} \pm 10 \%$
		60	100	130			$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} \pm 10 \%$
		60		180			$V_{D D}=2.7 \mathrm{~V}$ to 5.5 V
	${ }^{1}{ }_{\text {Ext }}$	10	200	300		CL_{1}, External Clock	$\mathrm{V}_{\text {DD }}=5 \mathrm{~V} \pm 10 \%$
		10		135			$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5 V
System Clock Rise and Fall Times	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\text {f }}$			0.2	$\mu \mathrm{s}$	CL_{1}, External Clock	
System Clock Pulse Width		1.5		50	$\mu 8$	CL ${ }_{1}$, External Clock	$V_{\text {DD }}=5 \mathrm{~V} \pm 10 \%$
		3.5		50			$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5 V
Counter Clock Oscillation Frequency	${ }^{\prime} \mathrm{x}$	25	32	50	KHz	$\mathrm{x}_{1}, \mathrm{x}_{2}$ Crystal Oscillator	
	${ }^{4}{ }^{\text {Ext }}$	0		300		X_{1}, External Pulse Input	$V_{\text {DD }}=5 \mathrm{~V} \pm 10 \%$
		0		135			$V_{D D}=2.7 \mathrm{~V}$ to 5.5 V
Counter Clock Rise and Fall Times	$t_{\text {rx }}, t_{\text {fx }}$			0.2	$\mu \mathbf{s}$	X_{1}, External Pulse Input	
Counter Clock Pulse Width	${ }^{t_{x} W_{H}}{ }^{\prime} \mathrm{t}_{\mathbf{x} W_{L}}$	1.5			μs	X_{1}, External Pulse Input	$V_{D D}=5 V_{ \pm} 10 \%$
		3.5					$V_{\text {DD }}=2.7 \mathrm{~V}$ to 5.5 V
$\overline{\text { SCK }}$ Cycle Time	${ }^{\mathbf{t}} \mathrm{Cr}_{\mathrm{K}}$	4.0			$\mu 8$	SCK is an input	$\mathrm{V}_{\text {DD }}=5 \mathrm{~V} \pm 10 \%$
		7.0					$\mathrm{V}_{\text {DD }}=2.7 \mathrm{~V}$ to 5.5 V
		6.7				SCK is an output	$V_{\text {DD }}=5 \mathrm{~V} \pm 10 \%$
		14.0					$V_{\text {DD }}=2.7 \mathrm{~V}$ to 5.5 V
$\overline{\text { S }} \overline{C K}$ Pulse Width		1.8			$\mu 8$	SCK is an input	
		3.3					$V_{\text {DD }}=2.7 \mathrm{~V}$ to 5.5 V
		3.0				$\overline{\text { SCK }}$ is an output	$V_{\text {DD }}=5 \mathrm{~V} \pm 10 \%$
		6.5					$V_{\text {DD }}=2.7 \mathrm{~V}$ to 5.5 V
SI Setup Time to SCKT	tIS_{5}	300			ns		
SI Hold Time after SCK \uparrow	${ }_{1}$	450			ns		
SO Delay Time after $\overline{\text { SCK }} \downarrow$	${ }^{10 D}$			850	ns	$V_{D D}=5 \mathrm{~V} \pm 10 \%$$V_{D D}=2.7 \mathrm{~V}$ to 5.5 V	
			1200				
iNT_{0} Pulse Width	${ }^{t_{0}} w_{H}{ }^{\prime} t_{0} w_{L}$	10			$\mu 8$		
INT ${ }_{1}$ Pulse Width	$t_{1} w_{H}{ }^{\text {, } l_{1} w_{L}}$	2/f ${ }_{\text {d }}$			$\mu \mathrm{s}$		
RESET Pulse Width		10			$\mu \mathrm{s}$		
RESET Setup Time	$\mathrm{t}_{\text {RS }}$	0			ns		
RESET Hold TIme	${ }^{\text {t }}$ H	0			ns		

Capacitance

$\mathrm{T}_{\mathbf{a}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathrm{OV}$

Paramoter	Symbol	Limits			Unit	Teat Conditions
		Min	Typ	Max		
Input Capacitance	c_{1}			15	pF	$f=1 \mathrm{MHz}$
Output Capacitance	C_{0}			15	pF	Unmeasured pins
Input/Output Capactiance	$\mathrm{C}_{1 / \mathrm{O}}$			15		returned to $\mathrm{V}_{\text {SS }}$

Timing Waveforms

Clocks

Operating Characterlistics

(Typlcal, $\mathbf{T}_{a}=25^{\circ} \mathrm{C}$)

Notes:
(1) Only R/C system clock is operating and consuming power. All other internal logic blocks are not active.
(2) Only crystal oscillator clock is operating and consuming power. All other internal logic blocks are not active.

μ PD7507S

Operating Characteristics (Cont.) (Typlcal, $\mathrm{Ta}_{\mathrm{a}}=25^{\circ} \mathrm{C}$)

Description

The μ PD7508A is a CMOS 4 -bit single chip microcomputer which has the μ PD750x architecture. It is identical to the μ PD7508, except for a slightly smaller RAM, and 16 lines of vacuum fluorescent display drive capability.
The μ PD7508A contains a 4096×8-bit ROM, and a 208 $\times 4$-bit RAM.
The μ PD7508A contains four 4-bit general purpose registers located outside RAM. The subroutine stack is implemented in RAM for greater nesting depth and flexibility, providing such operations as the pushing and popping of register values. The μ PD7508A typically executes 92 instructions of the μ PD7500 series "A" instruction set with a $10 \mu \mathrm{~s}$ instruction cycle time.
The μ PD7508A has two external and two internal edgetriggered hardware vectored interrupts. It also contains an 8 -bit timer/event counter and an 8 -bit serial interface to help reduce software requirements.
The μ PD7508A provides 32 I/O lines organized into the 4-bit input/serial interface Port 0, the 4-bit output Port 2, the 4 -bit output Port 3, and the 4-bit I/O Ports 1, 4, 5, 6, and 7. Ports $3,4,5$, and 6 are capable of being pulled to -35 V in order to drive vacuum fluorescent displays directly. It is manufactured with a low power consumption CMOS process, allowing the use of a single power supply between 2.7 V and 5.5 V . Current consumption is less than $900 \mu \mathrm{~A}$ maximum, and can be lowered much further in the HALT and STOP power-down modes. The μ PD7508A is available in a 40 -pin dual-in-line plastic package.

Pin Configuration

PIn Names

$40-\mathrm{Pin}$ DIP	Symbol	Function
1. 40	x_{2}, x_{1}	Crystal clock external event input Port X (active high). A crystal oscillator circult is connected to input X_{1} and output X_{2} for crystal clock operation. Alternatively, external event pulses are connected to input X_{1} while output X_{2} is left open for external event counting.
2-5	$\begin{aligned} & \mathrm{P}_{2}-\mathrm{P}_{2} \\ & \mathrm{P}_{2}{ }_{0} \mathrm{P}_{\mathrm{STB}} \\ & \mathrm{P}_{2} / \mathrm{P}_{\mathrm{T}_{\mathrm{OUT}}} \\ & \hline \end{aligned}$	4-bit latched tristate output Port 2 (active high). Line $\mathrm{P}_{\mathbf{0}}$ is also shared with P $\overline{S_{T B}}$, the Port 1 output strobe pulse (active low). Line P_{1} is also shared with $\mathrm{P}_{\mathrm{T}_{\text {OUT }}}$, the timer out F/F signal (active high).
6-9	$\mathrm{P1}_{0} \mathrm{Pr}_{3}$	4-bit Input/tristate output Port 1 (active high). Data output to
10.13	$\mathrm{P} 30^{-}-\mathrm{P}_{3}$	4-bit latched tristate output Port 3 (active high).
14-17	$\mathrm{P7}_{0} \mathrm{P}^{-7_{3}}$	4-bit input/latched tristate output Port 7 (active high).
18	RESET	RESET input (active high). R/C circuit or pulse initializes μ PD7507 or μ PD7508 after power-up.
19, 21	$\mathrm{CL}_{1}, \mathrm{CL}_{2}$	System clock Input (active high). Connect $82 \mathrm{k} \Omega$ resistor across CL_{1} and CL_{2}, and connect $\mathbf{3 3} \mathbf{~ p F}$ capacitor from CL_{1} to $\mathbf{V}_{\mathbf{S S}}$. Alternatlvely, an external clock source may be connected to CL_{1}, whereas CL_{2} is left open.
20	VDD	Power supply positive. Apply single voltage ranging from 2.7V to 5.5 V for proper operation.
22	INT_{1}	External Interrupt INT_{1} (active high). This is a rising edgetriggered interrupt.
23-26	$\begin{aligned} & \mathrm{PO}_{0} / \mathrm{INT}_{0} \\ & \mathrm{PO}_{1} / \overline{\mathrm{SCK}} \\ & \mathrm{PO}_{2} / \mathrm{SO} \\ & \mathrm{PO}_{3} / \mathrm{SI} \end{aligned}$	4-bit input Port 0/serial I/O interface (active high). This port can be configured elther as a 4-bit parallel input port, or as the 8 -bit serial I/O interface, under control of the serial mode select register. The Serial Input SI (active high). Serial Output SO (active low), and the Serial Clock $\overline{\text { SCK }}$ (active low) used for synchronizing data transfer comprise the 8-bit serial I/O Interface. Line $\mathbf{P O}_{\mathbf{0}}$ is always shared with external interrupt NNT_{0} (active high) which is a rising edge-triggered interrupt.
27-30	$\mathrm{P6}_{0} \cdot \mathrm{P6}_{3}$	4-bit input/latched tristate output Port 6 (active high). Individual lines can be configured either as inputs or as outputs under control of the Port 6 mode select register.
31-34	$\mathrm{P5}_{0}-\mathrm{P5}_{3}$	4-blt input/Iatched tristate output Port 5 (active high). Can also perform 8-bit parallel I/O conjunction with Port 4.
35-38	$\mathrm{P4}_{0}-\mathrm{PH}_{3}$	4-bit input/fatched tristate output Port 4 (active high). Can also perform 8-bit parallel 1/O in conjunction with Port 5.
39	$\mathrm{V}_{\text {SS }}$	Ground.

Absolute Maximum Ratings*

Operating Temperature	$-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Supply Voltage, VDD	-0.3 V to +7.0V
Input Voltages, Ports 4,5, and 6	0.0) V to ($\left.\mathrm{V}_{\text {DD }}+0.3\right) \mathrm{V}$
All Other Input Ports	-0.3V to $V_{D D}+0.3 \mathrm{~V}$
Output Voltages, Ports 3, 4, 5, and $6\left(\mathrm{~V}_{\mathrm{DD}}-40.0\right) \mathrm{V}$ to ($\left.\mathrm{V}_{\mathrm{DD}}+0.3\right) \mathrm{V}$	
All Other Output Ports	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Output-Current (Total, All Output Ports)	$1 \mathrm{OH}=-150 \mathrm{~mA}$
	$1 \mathrm{OL}=50 \mathrm{~mA}$

*Comment: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect Rev/1device reliability.

DC Characteristics
$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5 V

Capacltance

$T_{a}=25^{\circ} C, V_{D D}=0 V$

Paramotor	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
Input Capacitance	c_{1}			20	pF	$f=1 \mathrm{MHz}$,
Output Capacitance	, co			20	pF	Unmeasured plns
Input/Output Capacitance	$\mathrm{c}_{1 / 0}$			20		

AC Characteristics
$\mathbf{T a}=-10^{\circ} \mathrm{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathbf{2 . 7 V}$ to 5.5 V

Timing Waveforms

Output Strobe

Operating Characteristles
 Typical, $\mathrm{T}_{\mathbf{a}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

Notes:

Only R/C system clock is operating and consuming power. All other internal logic blocks are not active.
(2) Only crystal oscillator clock is operating and consuming power. All other internal logic blocks are not active.

Operating Characteristics (Cont.)
 Typical, $\mathbf{T}_{\mathbf{a}}=25^{\circ} \mathrm{C}$

NOTES

Description

The μ PD7519 is a CMOS 4-bit single chip microcomputer which has the μ PD750x architecture.
The μ PD7519 contains a 4096×8-bit ROM, and a $256 \times$ 4-bit RAM.
The μ PD7519 contains four 4-bit general purpose registers located outside RAM. The subroutine stack is implemented in RAM for greater nesting depth and flexibility, providing such operations as the pushing and popping of register values. The μ PD7519 typically executes 92 instructions of the μ PD7500 series "A" " instruction set with a $10 \mu \mathrm{~s}$ instruction cycle time. The μ PD7519 has two external and two internal edge- . triggered hardware vectored interrupts. They also contain an 8 -bit timer/event counter, an 8 -bit serial interface, and a 9-bit D/A programmable pulse generator, to help reduce software requirements. The on-board vacuum fluorescent display controller/driver supervises all of the timing required by the 24 Port S segment drivers either for a 16 -digit 7 -segment vacuum fluorescent display, or for an 8 -character 14 -segment vacuum fluorescent display.
The μ PD7519 provides 28 I/O lines organized into the 4 -bit input/serial interface Port 0 , the 4 -bit output Port 2, the 4 -bit output Port 3, and the 4-bit I/O Ports 1, 4,5 , and 6 . Additionally, Port 1 can be automatically expanded to 16 I/O lines through connection to a μ PD82C43. The μ PD7519 is manufactured with a low power consumption CMOS process, allowing the use of a single power supply between 2.7 V and 5.5 V . Current consumption is less than $900 \mu \mathrm{~A}$ maximum, and can be lowered much further in the HALT and STOP powerdown modes. The μ PD7519 is available in a spacesaving 64 -pin flat plastic package.

Pin Configuration

PIN \#	SYMBOL	FUNCTION
	NC	No Connection.
	$\mathrm{P3}_{3} \cdot \mathrm{P3}_{0}$	4-bit latched tristate output Port 3 (active high).
	$\begin{aligned} & \mathrm{PO}_{3} / \mathrm{SI} \\ & \mathrm{PO}_{2} / \mathrm{SO} \\ & \mathrm{PO}_{1} / \overline{\mathrm{SCK}} \\ & \mathrm{PO}_{0} / \mathrm{NT}_{0} \end{aligned}$	4-bit Input Port 0/serial I/O interface (actlve high). This port can be configured either as a parallel input port, or as the 8 -bit serial I/O interface, under control of the serial mode select register. The Serial Input SI (active high), Serial Output SO (active high), and the Serial Clock SCK (active low) used for synchronizing data transfer comprise the 8-bit serial I/O Interface. Line PO_{0} is always shared with external interrupt INT_{0}, which is a rising edge-triggered Interrupt.
	$\mathrm{P6}_{3}$ - $\mathbf{P 6}_{0}$	4-bit input/latched tristate output Port 6 (active high). Individual lines can be configured either as inputs or as outputs under control of the Port 6 mode select register.
	$\mathrm{P5}_{3}-\mathrm{P5}_{0}$	4-bit Input/latched tristate output Port 5 (active high). Can also perform 8-bit parallel I/O in conjunction with Port 4.
.	$\mathrm{P4}_{3} \cdot \mathbf{P 4} 0$	4-bit input/latched tristate output Port 4 (active high). Can also perform 8-bit parallel I/O in conjunction with Port 5.
	x_{2}, x_{1}	Crystal clock input (active high). A crystal oscillator circuit is connected to input X_{1} and output X_{2} for system clock oparstion. Alternatively, an external clock source may be connected to input X_{1} while output X_{2} is left open.
	$V_{\text {SS }}$	Ground.
	$V_{\text {DD }}$	Power supply positive. Apply single voltage ranging from 2.7 V to 5.5 V for proper operation.
	INT_{1}	External interrupt INT_{1} (active high). This is a rising edgetriggered Interrupt.
	RESET	RESET input (active high). R/C circuit or puise initlalizes μ PD7502 or μ PD7503 after power-up.
	$\mathrm{P1}_{3}-\mathrm{Pl}_{0}$	4-bit Input/latched tristate output Port 1 (active high).
	$\begin{aligned} & \mathrm{P}_{2}-\mathrm{P}_{0} \\ & \mathrm{P}_{2} / \mathrm{P}_{\mathrm{STB}} \\ & \mathrm{P}_{1} / \mathrm{P}_{\mathrm{T}_{\text {OUT }}} \end{aligned}$	4-blt latched output Port 2 (active high). Line $\mathbf{P 2}_{0}$ is also shared with PSTV, the Port 1 output strobe pulse (active low). Line $\mathbf{P 2}_{1}$ is also shared with $\mathbf{P}_{\mathbf{T}_{\text {OUT }}}$, the timer-out F/F signal (actlve high).
	PPG	1-bit programmable pulse generator output (active high).
	Event	1-bit external event input for timer/event counter (active high).
	VVFD	Vacuum fluorescent display power supply negative. Apply single voltage between $V_{D D}-35.0$ and $V_{D D}$ for proper display operation.
	$\begin{aligned} & \mathrm{S}_{0}-\mathrm{S}_{7} \\ & \mathrm{~S}_{8} / T_{8}-S_{15} / T_{15} \\ & T_{0-} T_{7} \end{aligned}$	Vacuum fluorescent display outputs (active high). $\mathrm{S}_{0}-\mathrm{S}_{7}$ are always segment driver outputs, and $\mathrm{T}_{0}{ }^{-} \mathrm{T}_{7}$ are always digit driver outputs. $\mathrm{S}_{8} / \mathrm{T}_{8}-\mathrm{S}_{15} / \mathrm{T}_{15}$ can be conflgured as elther segment driver outputs or as digit driver outputs under control of the display mode select register.

Description

The μ PD7520 is a low-cost 4-bit single chip microcomputer which shares the 4th generation architecture of the μ PD7500 series of CMOS 4 -bit microcomputers. It contains a 768×8-bit ROM and a 48×4-bit RAM. It has a 2 -level subroutine stack, and executes a 47 instruction subset of the μ PD7500 series instruction set. The μ PD7520 provides 24 I/O lines, organized into the 4 -bit input Port 1, the 4 -bit I/O Port 4, the 2 -bit output Port 3, the 8 -bit output Port S, and the 6 -bit output Port T. Ports S and T are controlled by the on-board programmable LED display controller/driver hardware logic block, which automatically directly drives either static or multiplexed common-anode 7 -segment LED displays totally transparent to program execution. The μ PD7520 is manufactured with a low-power consumption PMOS process, allowing use of a single power supply between -6 V and -10 V , and is available in a 28 -pin dual-in-line plastic package.

Pin Configuration

PIn Names

Further details on device operation can be found in the μ PD7520 4-Bit Single Chip Microcomputer Technical Manual.

Absolute Maximum Ratings*

$\mathbf{T}_{\mathbf{a}}=25^{\circ} \mathrm{C}$	$-10^{\circ} \mathrm{C}$ to $+\mathbf{7 0 ^ { \circ } \mathrm { C }}$
Operating Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature	-15 V to $+\mathbf{0 . 3 \mathrm { V }}$
Supply Voltage, V_{GG}	-15 V to $+\mathbf{0 . 3 \mathrm { V }}$
Input Voltages	-15 V to $+\mathbf{0 . 3 \mathrm { V }}$
Output Voltages	-100 mA
Output Current (lOH Total)	90 mA
(IOL Total)	

"Comment: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Block Diagram

DC Characteristics

$T_{a}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{GQ}}=-6 \mathrm{~V}$ to $-10 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$

Notes:

(1) Current within 2.5 ms after turning to the low level ($\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$).
(2) $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{GG}}=-9 \mathrm{~V}$.

AC Characterlstics

$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}, \mathrm{VaG}_{\mathrm{Ga}}=-6 \mathrm{~V}$ to -10 V

		Limits				
Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions

Capacitance

$\mathbf{T}_{\mathbf{a}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Limits			Unit	Test Conditions
		M/n	Typ	Max		
Input Capacitance	c_{1}			15	pF	Port 1, RESET
Output Capacitance	C_{0}			20	pF	Ports 3, S,T
Input/Output Capacitance	C_{10}			20	pF	Port 4
Clock Capacitance	c_{ϕ}			30	pF	CLK

Clock Waveform

Development Tools

The NEC Electronics U.S.A.'s NDS Development System is available for the development of software source code, editing, and assembly into object code. In addition, the ASM75 Cross Assembler is available for systems supporting the ISIS-II or the CP/M (${ }^{\text {D Digital }}$ Research Corp.) Operating Systems.
The EVAKIT-7520 Evaluation Board is available for production device evaluation and prototype system debugging.
The ASM75-F9T Cross Assembler is available for systems supporting fortran IV ANSI Standard 1966-V3.9.

Instructlon Set Symbol Definitions

The following abbreviations are used in the description of the μ PD7520 instruction set:

gYMBOL	EXPLANATION AND USE
A	Accumulator
address	Immediate address
C	Carry Flag
data	Immediate data
D_{n}	Bit " n " of Immedlate data or immediate address
H	Register H
HL	Reglster pair HL
L	Register L
P()	Parallel Input/Output Port addressed by the value within the brackets
PC_{n}	Bit " n "' of Program Counter
S	Zero when Skip Condition does not occur; the number of bytes In next Instruction when Skip Condition occurs
Stack	Stack Register
String	String Effect Skip Condition, whereby succeeding Instructions of the same type are executed as NOP Instructions
()	The contents of RAM addressed by the value within the brackets
[]	The contents of ROM addressed by the value within the brackets
\leftarrow	Load, Store, or Transfer
\rightarrow	Exchange
-	Complement
\forall	LOGICAL Exclusive-OR

Instruction Set

MNEMONIC	FUNCTION	DESCRIPTION	INSTRUCTION CODE										8KIP
			O_{7}	D8	D_{5}	D4	D_{3}	D_{2}	D1	D_{0}	BYTES	CYCLES	CONDITION
	LOAD												
LAl data	$A-D_{3-0}$	Load A with 4 bits of Imme. dlate data; execute succeeding LAI instructions as NOP Instructions	0	0	0	1	D_{3}	D_{2}	D_{1}	D_{0}	1	1	String
LHI deta	$H \leftarrow \mathrm{D}_{1-0}$	Load H with 2 bits of imme. diate deta	0	0	1	0	1	0	D1	D_{0}	1	1	
LHLI data	$\mathrm{HL}-\mathrm{D}_{4-0}$	Losd HL with 5 bits of immediete data; execute succending LHLI instructions es NOP instructions	1	1	0	D4	D_{3}	D_{2}	D_{1}	D_{0}	1	1	String
LAMT	$A \leftarrow\left[\mathrm{PCg}_{9-6,0, C, A]}{ }_{\mathrm{H}}\right.$	Load the upper 4 bits of ROM Table Dota at address PC9-6, 0, C, A to A	0	1	0	1	1	1	1	0	1	2	
	$\begin{array}{r} (H L)-\left[P C_{9-6}\right. \\ 0, C, A]_{L} \end{array}$	Load the lower 4 bits of POM Table Date at address PC9.6, O, C, A to the RAM location addressed by HL											
L	$A \leftarrow(H L)$	Load A with the contents of RAM addressed by HL	0	1	0	1	0	0	1	0	1	1	
LIS	$\begin{aligned} & A \div(H L) \\ & L=L+1 \\ & \text { Skip if } L=O H \end{aligned}$	Load A with the contents of RAM addressed by HL; increment L; skip if $L=O H$	0	1	0	1	0	0	0	1	1	$1+5$	$\mathrm{L}=\mathrm{OH}$
LDS	$\begin{aligned} & A=(H L) \\ & L=L-i \\ & \text { Skip if } L=F H \end{aligned}$	Load A with the contents of RAM addressed by HL; decrement L ; skjp if $\mathrm{L}=\mathrm{FH}$	0	1	0	1	0	0	0	0	1	$1+5$	$\mathrm{L}=\mathrm{FH}$
LADR address	$A \leftarrow\left(D_{5-0}\right)$	Load A with the contents of RAM addressed by 6 bits of immediate data	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 1 \\ D_{i} \end{gathered}$	$\begin{gathered} 1 \\ D_{4} \end{gathered}$	$\begin{gathered} 1 \\ D_{3} \end{gathered}$	$\begin{gathered} 0 \\ D_{2} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{D}_{1} \end{gathered}$	$\begin{gathered} 0 \\ D_{0} \end{gathered}$	2	2	

Instruction Set (Cont.)

MNEMONIC	FUNCTION	DESCRIPTION	INSTRUCTION CODE								bytes	crcles	SKIP CONDITION
			D7	D_{6}	D5	04	D3	D2	D1	D0			
Store													
ST	$(H L) \leftarrow A$	Store A into the RAM locetion addressed by HL	0	1	0	1	0	1	1	1	1	1	
STII data	$\begin{aligned} & (H L) \leftarrow D_{3-0} \\ & L \leftarrow L+1 \end{aligned}$	Store 4 bits of immediate data into the RAM location addressed by $H L$; increment L	0	1	0	0	D_{3}	D_{2}	D_{1}	D_{0}	1	1	
EXCHANGE													
XAH	$\begin{aligned} & A_{1-0} \leftarrow \mathrm{H}_{1-0} \\ & A_{3-2} \leftarrow 00 \mathrm{H} \\ & \hline \end{aligned}$	Exchange A with H	0	1	1	1	1	0	1	0	1	1	
XAL	$A \leftrightarrow L$	Exchange A with L	0	1	1	1	1	0	1	1	1	1	
X	$A \leftrightarrow(\mathrm{HL})$	Exchange \mathbf{A} with the contents of RAM addressed by HL	0	1	0	1	0	1	1	0	1	1	
XIS	$\begin{aligned} & A \leftrightarrow(H L) \\ & L \leftarrow L+1 \\ & \text { Skip if } L=O H \end{aligned}$	Exchange A with the contents of RAM addressed by HL; increment L; skip if $L=\mathbf{O H}$	0	1	0	1	0	1	0	1	1	$1+5$	$\mathrm{L}=\mathbf{O H}$
XDS	$\begin{aligned} & A \leftrightarrow(H L) \\ & L \leftarrow L-1 \\ & \text { Skip if } L=F H \end{aligned}$	Exchange A with the contents of RAM addressed by HL; decrement L; skip if $L=F H$	0	1	0	1	0	1	0	0	1	$1+5$	$\mathbf{L}=\mathbf{F H}$
XADR address	$A \leftrightarrow\left(D_{5-0}\right)$	Exchange A with the contents of RAM addressed by 6 bits of immediate data	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{0} \end{aligned}$	$\begin{gathered} 1 \\ D_{5} \end{gathered}$	$\begin{gathered} 1 \\ \mathbf{D}_{4} \end{gathered}$	$\begin{gathered} 1 \\ D_{3} \end{gathered}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{D}_{2} \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{D}_{1} \end{aligned}$	$\begin{aligned} & 1 \\ & D_{0} \end{aligned}$	2	2	
ARITHMETIC AND LOGICAL													
AISC data	$\begin{aligned} & A \leftarrow A+D_{3-0} \\ & \text { Skip if overflow } \end{aligned}$	Add 4 bits of immediate data to A : Skip if overflow is generated	0	0	0	0	D3	D2	D_{1}	Do	1	$1+5$	Overilow
ASC	$\begin{aligned} & A \leftarrow A+(H L) \\ & \text { Skip if overflow } \end{aligned}$	Add the contents of RAM addressed by HL to \mathbf{A}; skip if overtiow is generated	0	1	1	1	1	1	0	1	1	$1+5$	Overfiow
ACSC	$\begin{aligned} & A_{1} C \leftarrow A+(H L)+C \\ & \text { Skip if } C=1 \end{aligned}$	Add the contents of RAM addressed by HL and the carry flag to A; skip if carry is generated	0	1	1	1	1	1	0	0	1	$1+5$	$C=1$
EXL	$A \leftarrow A \forall(H L)$	Perform a LOGICAL Exclusive--OR operation between the contents of RAM addressed by HL and A; store the result in A	0	1	1	1	1	1	1	0	1	1	
ACCUMULATOR AND CARRY FLAG													
CMA	$A \leftarrow \bar{A}$	Complement A	0	1	1	1	1	1	1	1	1	1	
RC	$C \leftarrow 0$	Reset Carry Flag	0	1	1	1	1	0	0	0	1	1	
SC	$\mathrm{C}+1$	Set Carry Flag	0	1	1	1	1	0	0	1	1	1	
INCREMENT AND DECREMENT													
ILS	$\begin{aligned} & L-L+1 \\ & \text { Skip if } L=O H \end{aligned}$	Increment L; Skip if $\mathrm{L}=\mathbf{O H}$	0	1	0	1	1	0	0	1	1	$1+s$	$\mathrm{L}=\mathbf{O H}$
IDRS address	$\begin{aligned} & \left(D_{5-0}\right)+\left(D_{5-0}\right)+1 \\ & \text { Skip if }\left(D_{5-0}\right)=0 H \end{aligned}$	Increment the contents of RAM addressed by 6 bits of immediate data; Skip if the contents $=\mathbf{0 H}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{0} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathbf{D}_{5} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathrm{D}_{4} \end{aligned}$	$\begin{aligned} & \mathbf{1} \\ & \mathbf{D}_{3} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathbf{D}_{2} \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{D}_{1} \end{aligned}$	$\begin{aligned} & 1 \\ & D_{0} \end{aligned}$	2	$2+5$	$\left(D_{5-0}\right)=0 \mathrm{H}$
DLS	$\begin{aligned} & L \leftarrow L-1 \\ & \text { Skip if } L=F H \end{aligned}$	Decrement L; Skip if $\mathrm{L}=\mathrm{FH}$	0	1	0	1	1	0	0	0	1	$1+5$	$L=F H$
DDRS address	$\begin{aligned} & \left(D_{5-0}\right) \leftarrow\left(D_{5-0}\right)-1 \\ & \text { Skip if }\left(D_{5-0}\right)=F H \end{aligned}$	Decrement the contents of RAM addressed by 6 bits of immediate data, skip if the contents = FH	0 0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	1 D_{5}	1 D_{4}	${ }^{1}$	1 D_{2}	0 D_{1}	Do	2	$2+5$	$\left(D_{5-0}\right)=F H$
BIT MANIPULATION													
RMB date	$(\mathrm{HL})_{\text {bit }} \leftarrow 0$	Reset a single blt (denoted by $\mathrm{D}_{1} \mathrm{D}_{0}$) of the RAM location addressed by HL to zero	0	1	1	0	1	0	D_{1}	Do	1	1	
SM8 data	$(\mathrm{HL})_{\text {bit }}+1$	Set a single bit (denoted by $\mathrm{D}_{1} \mathrm{D}_{0}$) of the RAM location addressed by HL to one	0	1	1	0	1	1	D1	Do	1	1	
SUMP, CALL, AND RETURN													
JMP acldress	$\mathrm{PC}_{9-0}-\mathrm{Dg}_{9-0}$	Jump to the eddress specified by 10 bits of immediate data	$\begin{gathered} 0 \\ D_{7} \\ \hline \end{gathered}$	$\begin{aligned} & 0 \\ & \mathbf{D}_{6} \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & \mathbf{D}_{5} \\ & \hline \end{aligned}$	$\begin{gathered} \mathbf{0} \\ \mathbf{D}_{4} \\ \hline \end{gathered}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{D}_{3} \\ & \hline \end{aligned}$	$\begin{gathered} 0 \\ \mathbf{D}_{7} \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{D}_{9} \\ & \mathrm{D}_{1} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{D}_{\mathbf{8}} \\ & \mathbf{D O}_{\mathbf{0}} \\ & \hline \end{aligned}$	2	2	
JAM data	$\begin{aligned} & P C_{9-8} \leftarrow D_{1-0} \\ & P C_{7-4} \leftarrow A \\ & P C_{3-0} \leftarrow(H L) \end{aligned}$	Jump to the address specified by 2 bits of immediate data, A. and the RAM contents addressed by HL	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	1	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & D_{1} \end{aligned}$	$\begin{aligned} & \mathbf{1} \\ & \mathbf{D}_{0} \end{aligned}$	2	2	

			INSTRUCTION CODE								BYTES		SKIPCONDITION
MNEMONIC	FUNCTION	DESCRIPTION	D7	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	O_{1}	D_{0}		CYCLES	
JUMP, CALL AND RETUPN													
JCP address	$\mathrm{PC}_{5-0}-\mathrm{D}_{5-0}$	Jump to the eddress specified by the higher-order bits PC9-6 * of the PC, and 6 bits of ifmmediate deta	1	0	D_{5}	D4	D_{3}	D_{2}	D_{1}	D_{0}	1	1	
CALL address	$\begin{aligned} & \text { STACK } \leftarrow \mathrm{PC}+2 \\ & \text { PC }_{9}=0 \div \mathrm{D}_{9-0} \end{aligned}$	Store a return address (PC + 2) in the stack; call the subroutine program at the location specified by 10 bits of immediate date	$\begin{aligned} & \hline 0 \\ & \mathrm{D}_{7} \end{aligned}$	$\begin{gathered} 0 \\ \mathbf{D}_{6} \end{gathered}$	$\begin{aligned} & 1 \\ & D_{5} \end{aligned}$	$\begin{aligned} & 1 \\ & D_{4} \text {, } \end{aligned}$	$\begin{aligned} & \hline 0 \\ & \mathrm{D}_{3} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathrm{D}_{2} \end{aligned}$	$\begin{aligned} & \mathrm{Dg}_{9} \\ & \mathrm{D}_{1} \end{aligned}$	$\begin{aligned} & \mathrm{D}_{8} \\ & \mathrm{D}_{0} \end{aligned}$	2	2	
CAL sddress	$\begin{aligned} & \text { STACK } \leftarrow P C+1 \\ & \text { PC9.0 }^{-} \leftarrow 01 \mathrm{D}_{4} \mathrm{D}_{3} \\ & 000 \mathrm{D}_{2} \mathrm{D}_{1} \mathrm{D}_{0} \end{aligned}$	Store a return address (PC + 1) in the steck; call the subroutine program at one of the 32 zpecial locations specified by 5 bits of immediate date	1	1	1	O_{4}	D_{3}	D_{2}	D_{1}	Do	1	1	
RT	PC \leftarrow STACK	Return from Subroutine	0	1	0	1	0	0	1	1	1	1	
RTS	PC \leftarrow STACK Skip unconditionally	Return from Subroutine: skip unconditionally	0	1	0	1	1	0	1	1	1	$1+5$	Unconditional
SKIP													
SKC	Skip if $\mathrm{C}=1$	Skip if cerry flag is true	0	1	0	1	1	0	1	0	1	$1+5$	$\mathrm{C}=1$
SKMBT data	Skip if (HL) bit $=1$	Skip if the single bit (denoted by $D_{1} D_{0}$) of the RAM locetion addressed by HL is true	0	1	1	0	0	1	D_{1}	D_{0}	1	$1+5$	$(\mathrm{HL})_{\text {bit }}=1$
SKMBF data	Skip if (HL) ${ }_{\text {bit }}=0$	Skip if the single bit (denoted by $\mathrm{D}_{1} \mathrm{D}_{0}$) of the RAM location addressed by HL is false	0	1	1	0	0	0	D_{1}	D_{0}	1	$1+5$	$(\mathrm{HL})_{\text {bit }}=0$
SKABT data	Skip if $A_{\text {bit }}=1$	Skip if the single bit idenoted by $D_{1} D_{0}$) of A is true	0	1	1	1	0	1	D_{1}	D_{0}	1	$1+5$	$A_{\text {bit }}=1$
SKAEI date	Skip if $\mathrm{A}=$ data	Skip if A equals 4 bits of immediata data	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{gathered} 1 \\ \mathrm{D}_{3} \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{D}_{2} \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{D}_{1} \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ D_{0} \\ \hline \end{gathered}$	2	$2+5$	$A=$ data
SKAEM	Skip if $\mathbf{A}=(\mathrm{HL}$)	Skip if A equals the RAM contents addressed by HL	0	1	0	1	1	1	1	1	1	$1+5$	$A=(H L)$
PARALLEL I/O													
IPL	$A \leftarrow P(L)$	Input the Port addressad by L to A	0	1	1	1	0	0	0	0	1	1	
\|P 1	A↔P1	Input Port 1 to A	0	1	1	1	0	0	0	1	1	1	
OPL	$P(L)+A$	Output A to the port addressed by L	0	1	1	1	0	0	1	0	1	1	
OP3	P3 $+\mathrm{A}_{1-0}$	Output the lower 2 bits of A to Port 3	0	1	1	1	0	0	1	1	1	1	
CPU CONTROL													
NOP		Perform no operation; consume one machine cycle	0	0	0	0	0	0	0	0	1	1	

Package Outline μ PD7520C

Item	Millimeters	Inches
A	38.0 MAX	1.496 MAX
B	2.49	0.098
C	2.54	0.10
D	0.5 ± 0.1	0.02 ± 0.004
E	33.02	1.3
F	1.5	0.059
G	2.54 MIN	0.10 MIN
H	0.5 MIN	0.02 MIN
1	5.22 MAX	0.205 MAX
J	5.72 MAX	0.225 MAX
K	15.24	0.6
L	13.2	0.52
M	$\begin{array}{r} +0.10 \\ -0.05 \end{array}$	$\begin{array}{r} 0.01+0.004 \\ -0.002 \end{array}$

Description

The μ PD7500 is a CMOS 4-bit microprocessor which has the μ PD750x architecture, and also functions as the μ PD7500 series ROM-less evaluation chip.
The μ PD7500 contains a 256×4-bit RAM, and is capable of addressing up to 8192×8-bits of external program memory.
The μ PD7500 contains four 4-bit general purpose registers located outside RAM. The subroutine stack is implemented in RAM for greater nesting depth and flexibility, providing such operations as the pushing and popping of register values. The μ PD7500 typically executes either all 110 instructions of the μ PD7500 series " A " instruction set, or all 70 instructions of the μ PD7500 series " B " instruction set with a $10 \mu \mathrm{~s}$ instruction cycle time.
The μ PD7500 has three external and two internal edgetriggered hardware vectored interrupts. It also contains an 8 -bit timer/event counter and an 8 -bit serial interface to help reduce software requirements. A display timing pulse is also provided when emulating the μ PD7501, μ PD7502, the μ PD7503, or the μ PD7519.
The μ PD7500 provides 32 I/O lines organized into the 4-bit input/serial interface Port 0, the 4-bit output Port 2, the 4-bit output Port 3, and the 4-bit I/O Ports 1, 4, 5, 6 , and 7. It is manufactured with a low power consumption CMOS process, allowing the use of a single +5 V power supply. Current consumption is less than $900 \mu \mathrm{~A}$ maximum, and can be lowered much further in the HALT and STOP power-down modes. The μ PD7500 is available in a 64 -pin quad-in-line plastic package.

Pin Configuration

Pin Names

P1/		Function
No.	Symbol	
1,2	$\mathrm{X}_{2}, \mathrm{X}_{1}$	Crystal clock/external event input Port X (active high). A crystal oscillator circult is connected to Input X_{1} and output X_{2} for crystal clock operation. Alternatively, external event pulses are connected to input X_{1} while output X_{2} is left open for external event counting.
3	TEST	Factory test pin (connect to $\mathbf{V}_{\mathbf{S S}}$).
$\begin{aligned} & 4-9, \text { and } \\ & 56-63 \end{aligned}$	BUS $_{0}$-BUS ${ }_{13}$	External data bus (active high). Connected to external program memory.
10-13	$\mathrm{P4}_{0}-\mathrm{P4}_{3}$	4-blt input/latched tri-state output Port 4 (active high). Can also perform 8-bit parallel I/O in conjunction with Port 5.
14-17	$\mathrm{P5}_{0}-\mathrm{P5}_{3}$	4-bit Input/latched tri-state output Port 5 (active high). Can also perform 8-bit parallel I/O in conjunction with Port 4.
18-21	$\mathrm{P6}_{0}-\mathrm{P}_{6}$	4-blt Input/latched trl-state output Port 6 (active high). Individual lines can be conflgured elther as inputs or as outputs under control of the Port 6 mode select register.
22-25	$\mathrm{P7}_{0} \mathrm{Pr}_{3}$	4-bit Input/latched trl-state output Port 7 (active high).
26	INT_{1}	External interrupt INT_{1} (active high). This is a rising edgetriggered interrupt.
27	$\mathbf{N N T}_{\mathbf{0}}$	External Interrupt INT_{0} (active high). This is a rising edgetriggered interrupt.
28	INT_{2}	External Interrupt INT_{2} (active high). This is a rising edgetriggered interrupt.
29	RESET	RESET Input (active high). R/C circult or pulse initializes μ PD7500 after power-up.
30, 31	$\mathrm{CL}_{1}, \mathrm{CL}_{2}$	System clock Input (active high). Connect 82K Ω resistor across CL_{1} and CL_{2}, and connect 33 pF capacitor from CL_{1} to $V_{\text {SS }}$. Alternatively, an external clock source may be connected to $C L_{1}$, whereas CL_{2} is left open.
32	VDD	Power supply positive. Apply single voltage ranging from 2.7 V to 5.5 V for proper operation.
33-36	$\mathrm{P3}_{0}-\mathrm{P3}_{3}$	4-blt input/latched trl-state output Port 3 (active high).
37	DOUT	Data output (active low).
38	ALE	Address latch enable (active high).
39	NC	No connection.
40-43	$\begin{aligned} & \mathrm{PO}_{0} \\ & \mathrm{PO}_{1} / \overline{\mathrm{SCK}} \\ & \mathrm{PO}_{2} / \mathrm{SO} \\ & \mathrm{PO}_{3} / \mathrm{SI} \end{aligned}$	4-bit Input Port 0/serial I/O interface (active high). This port can be configured either as a 4-bit parallel Input port, or as the 8-bit serial I/O interface, under control of the serial mode select register. The Serlal Input Si (active high), Serial Output SO (active low), and the Serial Clock SCK (active low) used for synchronizing data transfer comprise the 8-blt serlal I/O interface.
44-47	$\begin{aligned} & \mathrm{P}_{2}-\mathrm{P}_{3} \\ & \mathrm{P}_{0} / \mathrm{P}_{\mathrm{STB}} \\ & \mathrm{P}_{1} / \mathrm{P}_{\mathrm{T}_{\mathrm{OUT}}} \end{aligned}$	4-bit latched tri-state output Port 2 (active high). Line P_{2} is also shared with PSTB, the Port 1 output strobe pulse (active low). Line P2 1_{1} is also shared with $\mathrm{P}_{\text {TOUT }}$, the timer-out F/F signal (active high).
48	PSEN	Program store enable (active low).
49	DISPLAY	DISPLAY timing pulse (active high).
50	CSOUT	Chlp select output (active low). Connected to μ PD82C43.
51	STB	STROBE output (active low). Connected to μ PD82C43.
52-55	$\mathrm{P1}_{0}-\mathrm{P1}_{3}$	4-bit input/tri-state output Port 1 (active high). Data output to Port 1 is strobed in synchronization wlth a $\mathbf{P 2}_{0} / \mathrm{P}_{\overline{\mathrm{STB}}}$ pulse.
64	V_{SS}	Ground.

Block Dlagram

Absolute Maximum Ratings*	
$\mathbf{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	
Operating Temperature	$-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Supply Voltage, VDD	-0.3 V to +7.0 V
All input and Output Voltages	-0.3 V to $\mathrm{VDD}+0.3 \mathrm{~V}$
Output-Current (Total, All Output Ports)	$\mathrm{IOH}=-20 \mathrm{~mA}$
	$\mathrm{IOL}=30 \mathrm{~mA}$

*Comment: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC Characterlstics
$T_{a}=-10^{\circ} \mathrm{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm \mathbf{1 0 \%}$

Parametor	Symbol	Limits			Unit	Teat Conditions
		Min	Typ	Max		
Input Voltage High	$\mathbf{V}_{\mathbf{I H}}$	0.7 VDD		V_{DD}	v	All Inputs Other than C_{1}, X_{1}
	$\overline{V_{\text {d }}}$	$\mathrm{V}_{\mathrm{DD}}-0.5$		$V_{\text {DD }}$		$\mathrm{CL}_{1}, \mathrm{X}_{1}$
Input Voltage Low	$V_{\text {IL }}$	0		$0.3 \mathrm{~V}_{\mathrm{DD}}$	v	All inputs Other than C_{1}, X_{1}
	$V_{\text {¢L }}$	0		0.5		$\mathrm{CL}_{1}, \mathrm{X}_{1}$
Input Current High	${ }^{\mathbf{L}} \mathrm{LI}_{\mathbf{H}}$			3		$\begin{aligned} & \text { All Inputs Other } V_{I}=V_{D D} \\ & \text { than } \mathrm{CL}_{1}, \mathrm{X}_{1} \\ & \hline \end{aligned}$
	${ }_{\text {L }}^{\text {¢ }}$ + 1			10	$\mu \mathrm{A}$	$\mathrm{CL}_{1}, \mathrm{X}_{1}$
Input Leakege Current Low	${ }^{1} \mathrm{LI}_{L}$			-3		All inputs Other $\mathbf{V}_{\mathbf{1}}=\mathbf{0 V}$ than $\mathrm{CL}_{1}, \mathrm{X}_{1}$
	${ }_{\text {L }}^{\text {L }}$ L			-10	$\mu \mathrm{A}$	$\mathrm{CL}_{1}, \mathrm{X}_{1}$
Output Voltage High	V_{OH}	VDD - 1.0			v	
Output Voltage Low	V_{OL}			0.4	v	
Output Leakage Current High	${ }^{1} \mathrm{LO} \mathrm{H}$			3	$\mu \mathrm{A}$	$V_{O}=V_{D D}$
Output Leakage Current Low	${ }^{1} \mathrm{O}_{\mathrm{L}}$.			-3	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$
Supply Current	${ }^{\prime} \mathrm{DD}_{0}$			2000	$\mu \mathrm{A}$	Normal Operation All Output Pins Open No BUS Conflicts
	$\mathrm{I}_{\mathbf{D D}}$		2	20	$\mu \mathrm{A}$	Stop Mode, $\mathrm{X}_{1}=0 \mathrm{~V}$
			0.4	10		Data Retention Mode $\mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V}$

Capacitance

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}$

Parametor	Symbol	Limits			Unit	Test Conditions
		min	Typ	Max		
Input Capacitance	$\mathrm{Cl}_{\mathbf{I N}}$			15	pF	$f=1 \mathrm{mHz}$
Output Capacitance	Cout			15	pF	Unmeasured pins
I/O Capacitance	C_{10}			15	pF	returned to $\mathrm{V}_{\text {SS }}$

AC Characterlstics

$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \sim+\mathbf{7 0}{ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm \mathbf{1 0 \%}$
Clock Operation

Parametor	Symbel	Limita			Untt	Test Condtiont
		Min	Typ	Max		
System Clock Osclliation Frequency	f ¢	120	200	280	KHz	$\begin{aligned} & R=82 k \Omega \pm 2 \% \\ & C=33 p F \pm 5 \% \end{aligned}$
	1 ¢	10		300	KHz	CL_{1}, External Clock
CL, Input Rise Time	${ }^{\text {CRR }}$			0.2	$\mu 8$	
CL_{1} Input Fall Time	${ }^{\mathbf{C}} \mathrm{CF}$			0.2	$\boldsymbol{\mu}$ *	
CL_{1} Input Clock Width (High)	${ }^{1} \mathrm{CH}$	1.5			$\mu 8$	
CL_{1} Input Clock Width (Low)	${ }^{\mathbf{C}} \mathbf{C L}$	1.5			$\mu \mathrm{s}$	
Count Clock Oscillation Frequency (X_{1}, X_{2})	${ }^{\mathbf{7}} \mathbf{X X}$		32		KHz	Xtal Oeclilation
Count Clock Input Frequency (X_{1})	${ }^{1} \times$	0		300	$\mathbf{K H z}$	
X_{1} Input Rise Time	${ }^{1} \times 8$			0.2	$\mu \mathrm{s}$	
X_{1} Input Fall Time	${ }^{\mathbf{T}} \mathbf{X F}$			0.2	$\mu 8$	
X_{1} Input Clock Width (High)	${ }^{\text {X }}$ H	1.5			$\mu{ }^{5}$	
X_{1} Input Clock Width (Low)	${ }^{\mathbf{X}} \mathrm{XL}$	1.5			$\mu *$	

Bus I/O Operation

Perameter	Symbol	Limits			Unlt	Tent Conditions
		NIn	Typ	Max		
ALE Pulse Width (High)	${ }^{\mathbf{t}} \mathrm{LH}$	600			ns	
Address Setup Time to ALE	${ }^{\text {A }}$ L	200			ns	
Addrese Hold Ttme after ALE	t ${ }_{\text {A }}$	100			ns	
Output Data Sotup Time to $\overline{\text { OUUTA}}$	tDDO	200			ns	
Output Data Hold Time after DOUT \uparrow	${ }^{\text {t }}$ OOD	100			nt	
$\overline{\text { DOUT Pulse Width }}$ (Low)	$t_{\text {DOL }}$	600			n8	
ALE \rightarrow Data Input Valid Time	tLDV			700	ns	
Address \rightarrow Data Input Valld Time	$t_{\text {ADV }}$			900	nf	
$\overline{\text { PSEN Pulse Width }}$ (Low)	tPSL	1200			ns	
$\overline{\text { PSEN }} \rightarrow$ Data Input Valld Time	tpsDV			600	ns	
$\overline{\text { PSEN }} \rightarrow$ Data Float	${ }^{\text {tPSDF }}$	0			ns	

μ PD7500

Port 1 //0 Operation

Parameter	Symbol	Limits			Unit	Tost Conditions
		Min	Typ	Max		
Port 1 Output Setup Time to STB	tpst	200			ns	
Port 1 Output Hold Time after STE	tstp	100			ns	Port Output Mode
STE Pulse Width (Low)	${ }^{\text {S }} \mathrm{STL}_{1}$	600			ns	
Output Data Setup Time to STEt	tost	300			ns	
Output Data Mold Time after STB	${ }^{\text {ISTD }}$	100			ns	
$\overline{\text { STB }}$ b \rightarrow Input Data Valld Time	$t_{\text {STDV }}$			850	ns	
$\overline{\text { STB }} t \rightarrow$ Input Data Float Time	'StDF	0			ns	
Control Setup Time to STB	${ }^{\text {c CST }}$	200			n*	1/O Expander Mode
Control Hold Time after STB	${ }^{\text {tstc }}$	100			ns	
STB Pulse Width (Low)	${ }^{\text {'STL }}{ }_{2}$	1200			ns	
CSOUT Setup Time to STB	${ }^{\text {t }} \mathbf{C S S T}$	200			ns	
CSOUT Hold Time after STB	$t_{\text {STCS }}$	100			ns	

Serial Interface Operation

Parameter	Symbol	Limits			Unit	Test Conditions
		Min	Typ	max		
SCK Cycle Time	${ }^{\mathbf{K}} \mathrm{KCY}$	4.0			$\mu \mathrm{s}$	Input
		6.7			μs	Output
$\overline{\text { SCK }}$ Puise Width High	${ }^{\text {H }} \mathbf{K H}$	1.8			$\mu \mathrm{s}$	Input
		3.0			$\mu \mathrm{s}$	Output
Pulse Width Low	${ }^{4} \mathrm{KL}$	1.8			H	Input
		3.0			$\mu 8$	Output
Sl Setup Time to SCK \uparrow	tsik	300			ns	
SI Hold Time after $\overline{\text { SCK }}{ }^{\dagger}$	$\mathbf{t K S I}^{\text {I }}$	450			n*	
SO Output Delay after SCK ${ }^{1}$	$\mathbf{t K s O}^{\text {K }}$			850	ns	

Clock Timing Waveforms

Bus I/O TIming Waveforms

Strobe Output Timing Waveforms

Port 1 I/O Expander Port Timing Waveforms

Serial Interface Timing Waveforms

Interrupt Input Timing Waveforms

RESET Input Timing

Operating Characteristics

Typical, $\mathbf{T}_{\mathbf{a}}=25^{\circ} \mathrm{C} \quad$ Supply Current

Note:
(1) Only R/C system clock is operating and consuming power. All other internal logic blocks are not active.

NOTES

MC－430P

Microcomputer Division

DESCRIPTION

HYBRID UV EPROM 4－BIT SINGLE CHIP MICROCOMPUTER

The MC－430P is a hybrid chip containing a μ PD556B ROM－less Evaluation chip，a μ PD2716 $2 \mathrm{~K} \times 8$－bit UV EPROM，a μ PC7905 3 －terminal voltage regulator，and pull－up resistors on the same ceramic substrate．The MC－430P is pin－compatible with the μ PD546C／μ PD547C，and can emulate the high－voltage drive or CMOS μ COM－4 micro－ computers with the corresponding I／O line buffers．

The MC－430P contains a 2048×8－bit UV EPROM and a 96×4－bit RAM which includes six working registers and the flag register．It has a level－triggered hardware interrupt，a three－level stack，and a programmable 6－bit timer．The MC－430P executes all 80 instructions of the extended $\mu \mathrm{COM}-4$ family instruction set．

The MC－430P provides $35 \mathrm{I} / \mathrm{O}$ lines organized into the 4 －bit input ports A and B ，the 4－bit I／O ports C and D，the 4－bit output ports E，F，G，and H，and the 3－bit output port I．It typically executes its instructions with a $10 \mu \mathrm{~s}$ instruction cycle time．The MC－430P is manufactured with a standard PMOS process，allowing use of a single －10V power supply，and is available in a 42－pin dual－in－line ceramic hybrid package．

MC－430P（PIN COMPATIBLE WITH μ PD546／μ PD547）		
$\mathrm{CL}_{1}-1$		$42 口 \mathrm{CLO}$
$\mathrm{PCO}_{0} 2$		41 日VGG
$\mathrm{PC}_{1}{ }^{\text {c }}$		40 P PB3
$\mathrm{PC}_{2} \mathrm{Cl}_{4}$.		39 PP ${ }_{2}$
$\mathrm{PC}_{3} \square 5$		$38{ }^{\text {P }}{ }^{\text {P }} 1$
INT 6		$37{ }^{\circ} \mathrm{PB} 8_{0}$
RESET 7		$36 . \mathrm{PA}_{3}$
$\mathrm{PD}_{0}-8$		$350 P A_{2}$
PD ${ }_{1} 9$		$34.1{ }^{\text {P }}$
$\mathrm{PD}_{2} \mathrm{Cl}^{10}$		${ }^{33} \mathrm{PA} \mathrm{O}_{0}$
$\mathrm{PD}_{3} \mathrm{Cl}_{11}$		${ }^{3} \mathrm{PP} \mathrm{P}_{2}$
$\mathrm{PE}_{0} \mathrm{Cl}_{12}$		$31 . \mathrm{Pr} 1$
PE1 13		${ }^{30} \mathrm{PP}{ }_{0}$
$\mathrm{PE}_{2} 14$		29 － PH_{3}
$\mathrm{PE}_{3}-15$		28 口 ${ }^{\text {PH }}$
PFO－16		27 PH_{1}
PF1 17		26 PHO
$\mathrm{PF}_{2} \mathrm{Cl}_{18}$		25 － PG_{3}
$\mathrm{PF}_{3} 19$		${ }_{24} \mathrm{PPG}_{2}$
TEST 20		$23^{23} \mathrm{PG}_{1}$
Vss 21		22．${ }^{\text {PG }} 0$

$\mathrm{PA}_{0}-\mathrm{PA}_{3}$	Input Port A
$\mathrm{PB}_{0}-\mathrm{PB}_{3}$	Input Port B
$\mathrm{PC}_{0}-\mathrm{PC}_{3}$	Input／Output Port C
$\mathrm{PD}_{0}-\mathrm{PD}_{3}$	Input／Output Port D
$\mathrm{PE}_{0}-\mathrm{PE}_{3}$	Output Port E
$\mathrm{PF}_{0}-\mathrm{PF}_{3}$	Output Port F
$\mathrm{PG}_{0}-\mathrm{PG}_{3}$	Output Port G
$\mathrm{PH}_{0}-\mathrm{PH}_{3}$	Output Port H
$\mathrm{PI}_{0}-\mathrm{PI}_{2}$	Output Port I
$\overline{\mathrm{NT}}$	Interrupt Input
$\mathrm{CL}-\mathrm{CL}$	External Clock Signats
RESET	Reset
$\mathrm{VGG}_{\mathrm{G}}$	Power Supply Negative
V_{SS}	Power Supply Positive
TEST	Factory Test Pin （Connect to VSS

1: μ PD556
2 : Pull-Up Resistors
: μ PC7905 (3-Terminal 5 Volt Voltage Re!julator) $4: \mu$ PD 2716 (EPROM)
: μ PD546C/ μ PD547C Compatible Pins (42 Pins) 6 : EPROM Write Pads (24 Pads)

[^9]DC CHARACTERISTICS

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Voltage High	$V_{\text {IH }}$	0		-2.0	V	Ports A through D, $\overline{\mathrm{NT}}$, RESET
Input Voltage Low	$V_{\text {IL }}$	-4.3		$V_{G G}$	v	Ports A through D, $\overline{\text { INT. }}$ RESET
Clock Voltage High	$\mathrm{V}_{\phi} \mathrm{H}$	0		-0.8	v	CLio Input, External Clock
Clock Voltage Low	$\mathrm{V}_{\phi} \mathrm{L}$	-6.0		V_{GG}	V	CLo Input, External Clock
Input Leakage Current High	${ }^{\prime} \mathrm{L} .1 \mathrm{H}$			+10	$\mu \mathrm{A}$	Ports A through D, INT, RESET, $V_{1}=-1 V$
Input Leakage Current Low	't.IL			-10	$\mu \mathrm{A}$	Ports A through D, INT, RESET, $V_{1}=-11 \mathrm{~V}$
Clock input Leakage Current High	${ }^{\mathrm{L} \phi \text { ¢ }} \mathrm{H}$			+200	$\mu \mathrm{A}$	CL_{0} Input, $\mathrm{V}_{\phi H}=0 \mathrm{~V}$
Clock Input Leakage Current Low	IL. $¢ \mathrm{~L}$			-200	$\mu \mathrm{A}$	$C L_{0}$ Input, $\mathrm{V}_{\phi L}=-11 \mathrm{~V}$
Output Voltage High	VOH_{1}			-1.0	\checkmark	Ports C through I , ${ }^{1} \mathrm{OH}=-1.0 \mathrm{~mA}$
	VOH_{2}			-2.3	V	Ports C through I. $\mathrm{I}_{\mathrm{OH}}=-3.3 \mathrm{~mA}$
Output Leakage Current Low	${ }^{\text {LIOL }}$			-10	$\mu \mathrm{A}$	Ports C through I , $v_{0}=-11 \mathrm{~V}$
Supply Current	${ }^{\text {IGG }}$		-110	-165	mA	

AC CHARACTERISTICS

$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C} 10+70^{\circ} \mathrm{C}: \mathrm{V}_{\mathrm{GG}}-10 \mathrm{~V}: 10 \%$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Oscillator Frequency	4	150		440	KHz	
Fise and Fall Times	$t_{\text {r }}, \mathrm{tf}_{f}$	0		0.3	$\mu \mathrm{s}$	
Clock Pulse Width High	${ }^{t}{ }_{\text {d }} \mathrm{w}_{\mathrm{H}}$	0.5		5.6	$\mu \mathrm{s}$	EXTERNAL CLOCK
Clock Pulse Width Low		0.5		5.6	$\mu \mathrm{s}$	

CAPACITANCE

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	c_{1}			15	pF	$\mathrm{f}=1 \mathrm{MHz}$
Output Capacitance	Co			40	pF	
Input/Output Capacitance	c_{10}			30	pF	

CLOCK WAVEFORM

PROGRAM, PROGRAM VERIFY AND PROGRAM INHIBIT MIDE
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{cc}}(1)=+5 \mathrm{~V} \pm 5 \% ; \mathrm{Vpp}_{\text {(1) (2) }}=+25 \mathrm{~V} \pm 1 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN.	TYP.	MAX.		
Input High Voltage	$V_{\text {IH }}$	+2.0		$v_{c c}+1$	v	
Input Low Voltaga	$V_{1 L}$	-0.1		+0.8	V	
Input Leakage Current	$I_{\text {IL }}$			± 10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=5.25 \mathrm{~V} / 0.45 \mathrm{~V}$
$V_{\text {PP }}$ Current	'pp1			+5	mA	Pr sgrem Verify CE/PGM $=V_{\text {IL }}$ Pr Prorm
	IPP2			+30	mA	$\overline{C E} / P G M=V_{\text {IH }}$ Progrem Mode
${ }^{\text {cc }}$ Current'	${ }^{1} \mathrm{CC}$			+100	mA	

PROGRAM, PROGRAM VERIFY AND PROGRAM INHIBIT MIODE
$T_{a}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}: \mathrm{V}_{\mathrm{CC}}{ }^{(1)}=+5 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{PP}}$ (1) $^{(2)}=+25 \mathrm{~V} \pm 1 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNITS	TEST CONDITIONS
		MIN	TYP	MAX		
Address Setup Time	tas	2			$\mu \mathrm{s}$	
$\overline{\mathrm{OE}}$ Setup Time	tOES	2			$\mu \mathrm{s}$	
Data Setup Time	tos	2			$\mu \mathrm{s}$	
Address Hold Time	${ }^{\text {ta }}$	2			$\mu \mathrm{s}$	
$\overline{\mathrm{OE}}$ Hold Time	toen	2			$\mu \mathrm{s}$	
Data Hold Time	${ }^{\text {to }}$ H	2			$\mu \mathrm{s}$	
Output Enable to Output Float Delay	tDF	0		120	ns	CE/PGM $=V_{\text {IL }}$
Output Enable to Output Delay	${ }^{1} \mathrm{OE}$			120	ns	$\overline{C E / P G M}=V_{\text {IL }}$
Program Pulse Width	tPW	45	50	55	ms	
Program Pulse Rise Time	tPRT	5			ns	
Program Pulse Fall Time	tPFT	5			ns	

Test Conditions:
Input Pulse Levels 0.8 V to 2.2 V Output Timing Reference Level. . 0.8 V and 2 V
Input Timing Reference Level. . . . V and 2 V

Notes: (1) $V_{\text {cc }}$ must be applied simulteneously or before $V_{P P}$ and removed after $V_{P P}$.
(2) During programming, program inhibit, and program verify, a maximum of $+\mathbf{2 6 V}$ should be applied to the VpP pin. Overshoot voltages to be generated thy the Vpp should be spplied to the Vpp pin. Overshoot voltages
power supply should be limited to less than +26 V .
$T_{a}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	CIN			60	pF	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
Output Capacitance	COUT			45	pF	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$

Input Puise Levels
\square COUT
-

AC CHARACTERISTICS

TIMING WAVEFORM

PACKAGE OUTLINE (Units: mm)

MICROCOMPUTERS

HIGH END SINGLE CHIP 8-BIT MICROCOMPUTER ROM-LESS DEVELOPMENT DEVICE

DESCRIPTION The NEC μ PD7800 is an advanced 8-bit general purpose single-chip microcomputer fabricated with N-channel Silicon Gate MOS Technology. Intended as a ROM-less development device for NEC μ PD7801/7802 designs, the μ PD7800 can also be used as a powerful microprocessor in volume production enabling program memory flexibility. Basic on-chip functional blocks include 128 bytes of RAM data memory, 8-bit ALU, 32 I/O lines, Serial I/O port, and 12 -bit timer. Fully compatible with the industry standard 8080A bus structure, expanded system operation can be easily implemented using any of 8080A/8085A peripheral and memory products. Total memory address space is 64 K bytes.

FEATURES - NMOS Silicon Gate Technology Requiring Single +5V Supply.

- Single-Chip Microcomputer with On-Chip ALU, RAM and I/O
- 128 Bytes RAM
- 32 I/O Lines
- Internal 12-Bit Programmable Timer
- On-Chip 1 MHz Serial Port
- Five-Level Vectored, Prioritized Interrupt Structure
- Serial Port
- Timer
- 3 External Interrupts
- Bus Expansion Capabilities
- Fully 8080A Bus Compatible
- 64K Byte Memory Address Range
- Wait State Capability
- Alternate Z80TM Type Register Set
- Powerful 140 Instruction Set
- 8 Address Modes; Including Auto-Increment/Decrement
- Multi-Level Stack-Capabilities
- Fast 2μ s Cycle Time
- Bus Sharing Capabilities

PIN NO.	DESIGNATION	FUNCTION
1, 49-63	$\mathrm{AB}_{0}-\mathrm{AB}_{15}$	(Tri-State, Output) 16-bit address bus.
2	$\overline{\text { EXT }}$	(Output) EXT is used to simulate μ PD7801/7802 external memory reference operation. EXT distinguishes between internal and external memory references, and goes low when locations 4096 through 65407 are accessed.
3-10	$\mathrm{DB}_{0}-\mathrm{DB}_{7}$	(Tri-State Input/Output, active high) 8-bit true bi-directional data bus used for external data exchanges with I/O and memory.
11	INT0	(Input, active high) Level-sensitive interrupt input.
12	INT $_{1}$	(Input, active high) Rising-edge sensitive interrupt input. Interrupts are initiated on low-to-high transitions, providing interrupts are enabled.
13	INT_{2}	(Input) INT2 is an edge sensitive interrupt input where the desired activation transition is programmable. By setting the ES bit in the Mask Register to a $1, \mathrm{INT}_{2}$ is rising edge sensitive. When ES is set to $0, \mathrm{INT}_{2}$ is falling edge sensitive.
14	WAIT	(Input, active low) WAIT, when active, extends read or write timing to interface with slower external memory or I / O. WAIT is sampled at the end of T_{2}, if active processor enters a wait state TW and remains in that state as long as WAIT is active.
15	M1	(Output, active high) when active, M1 indicates that the current machine cycle is an OP CODE FETCH.
16	$\overline{W R}$	(Tri-State Output, active low) $\overline{\overline{N R}}$, when active, indicates that the data bus holds valid data. Used as a strobe signal for external memory or I/O write operations. WR goes to the high impedance state during HALT, HOLD, or RESET.
17	$\overline{\mathrm{RD}}$	(Tri-State Output, active low) RD is used as a strobe to gate data from external devices on the data bus. $\overline{\mathrm{RD}}$ goes to the high impedance state during HALT, HOLD, and RESET.
18-25	$\mathrm{PC}_{0}-\mathrm{PC}_{7}$	(Input/Output) 8-bit I/O configured as a nibble I/O port or as control lines.
26	$\overline{\text { SCK }}$	(Input/Output) $\overline{\text { SCK }}$ provides control clocks for Serial Port Input/Output operations. Data on the SI line is clocked into the Serial Register on the rising edge. Contents of the Serial Register is clocked onto SO line on falling edges.
27	SI	(Input) Serial data is input to the processor through the SI line. Data is clocked into the Serial Register MSB to LSB with the rising edge of SCK.
28	SO	(Output) SO is the Serial Output Port. Serial data is output on this line on the falling edge of SCK, MSB to LSB.
29	RESET	(Input, active low) RESET inisializes the μ PD7800.
30	STB	(Output) Used to simulate μ PD $7801 / 7802$ Port E operation, indicating that a Fort E operation is being performed when active.
31	X_{1}	(Input) Clock Input
33.40	PAO-PA7	(Output) 8-bit output port wish latch capability.
41-48	$\mathrm{PB}_{0}-\mathrm{PB} 7$	(Tri-State Input/Output) 8-bit programmable I/O port. Each line configurable independently as an input or output.

BLOCK DIAGRAM

Architecturally consistent with μ PD7801/7802 devices, the μ PD7800 uses a slightly different pin-out to accommodate for the address bus and lack of on-chip clock generator. For complete μ PD7800 functional operation, please refer to μ PD7801 product information. Listed below are functional differences that exist between μ PD7800 and μ PD7801 devices.

μ PD7800/7801 Functional Differences

1. The functionality of μ PD7801 Port E is somewhat different on the μ PD7800. Because the μ PD 7800 contains no program memory, the address buis is made accessible to address external program memory. Thus, lines normally used for Port E operation with the $\mu \mathrm{PD} 7801$ are used as the address bus on the $\mu \mathrm{PD} 7800$. AB0$A B 15$ is active during memory access 0 through 4095.
2. Consequently Port E instructions (PEX, PEN, and PER) have different functionality.
PEX Instruction - The contents of B and C register are output to the address bus. The value 01 H is output to the data bus. STB becornes active.
PEN Instruction - B and C register contents are output to the address bus. The value 02 H is output to the data bus. STB becomes active.
PER Instruction - The address bus goes to the high impedance state. The value 04 H is output to the data bus. STB becomes active.
3. ON-CHIP CLOCK GENERATOR. The μ PD7800 contains no internal clock generator. An external clock source is input to the X_{1} input.
4. PIN 30. This pin functions as the X_{2} crystal connection on the μ PD7801. On the μ PD7800, pin 30 functions as a strobe output (STB) and becomes active when a Port E instruction is executed. This control signal is useful in simulating μ PD7801 Port E operation - indicating that a port E operation is being performed.
5. PIN 2. Functions as the Φ out clock output used for synchronizin3 system external memory and I/O devices, on the μ PD7801. On the μ PD7800, this pin is used to simulate external memory reference operation of the μ PD7801. $\bar{E} \overline{X T}$ is used to distinguish between internal and external memory references and goes low when location 4096 through 65407 are accessed.

RECOMMENDED CLOCK DRIVE CIRCUIT

ABSOLUTE MAXIMUM RATINGS*

Operating Temperature	${ }^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage On Any Pin	Vren

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
*COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC CHARACTERISTICS $\quad T_{a}=-10^{\circ} \mathrm{C} \sim+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{C}}=+5.0 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	LIMITS			UNITS	TEST CONDITIONS
		MIN	TYP	MAX		
Input Low Voitage	VIL	0		0.8	V	
Input High Voltage	$\mathrm{V}_{1 \mathrm{H} 1}$	2.0		V_{CC}	V	Except $\overline{\text { SCK, }} \times 1$
	$\mathrm{V}_{1 \mathrm{H} 2}$	3.8		V_{Cc}	V	SCK, X1
Output Low Voltage	VOL			0.45	V	$1 \mathrm{OL}=2.0 \mathrm{~mA}$
Output High Voltage	$\mathrm{VOH1}$	2.4			V	$1 \mathrm{OH}=-100 \mu \mathrm{~A}$
	VOH 2	2.0			V	$\mathrm{I}^{\mathrm{OH}}=-500 \mu \mathrm{~A}$
Low Level Input Leakage Current	ILIL			-10	$\mu \mathrm{A}$	$V_{\text {IN }}=0 \mathrm{~V}$
High Level Input Leakage Current	ILIH			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$
Low Level Output Leakage Current	${ }_{\text {L LOL }}$			-10	$\mu \mathrm{A}$	$V_{\text {OUT }}=0.45 \mathrm{~V}$
High Level Output Leakage Current	${ }^{1} \mathrm{LOH}$			10	$\mu \mathrm{A}$	$\mathrm{VOUT}=\mathrm{V}_{\text {CC }}$
$V_{\text {cc }}$ Power Supply Current	${ }^{1} \mathrm{CC}$		110	200	mA	

CLOCK TIMING

PARAMETER	SYMBOL	LIMITS		UNITS	TEST CONDITIONS
		MIN	MAX		
Xout Cycle Time	${ }_{\text {t }} \mathbf{C Y X}$	454	2000	r. 8	${ }_{\text {t }}^{\text {c }}$ PX
$\mathrm{X}_{\text {OUT }}$ Low Level Width	${ }^{t} \times \times \mathrm{L}$	212		ris	${ }^{1} \times \times$ L
$\dot{X}_{\text {OUT }}$ High Level Width	${ }^{1} \times \times \mathrm{H}$	212		ris	${ }^{\mathbf{T} \times \times \mathrm{H}}$

READ/WRITE OPERATION

PARAMETER	SYMBOL	LIMITS		UNITS	TEST CONDITIONS
		MIN	MAX		
$\overline{\mathrm{RD}}$ L.E. $\rightarrow \mathrm{X}_{\text {OUT }}$ L.E.	tRX	20	\checkmark	nes	
$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Address }\left(P_{0-15}\right) \rightarrow \text { Data } \\ \text { Input } \end{array} \\ \hline \end{array}$	tAD1		$550+500 \times \mathrm{N}$	rs	
RD T.E. \rightarrow Address	tRA	200(T3); 700(T4)		ris	
RDL.E. \rightarrow Data Input	${ }^{\text {tr }}$ D		$350+500 \times \mathrm{N}$	ris	
RDT.E. \rightarrow Data Hold Time	${ }^{\text {tRDH }}$	0		His	
RD Low Level Width	tRR	$850+500 \times \mathrm{N}$		HS	
RD' L.E. \rightarrow WAIT L.E.	${ }^{\text {trawT }}$		450	ns	
Address (PE_{0-15}) \rightarrow WAIT L.E.	tAWT 1		650	us	
WAIT Set Up Time (Referenced from $\mathrm{X}_{\text {OUT L.E.) }}$	tWTS	180		ns	
WATY Hold Time (Referenced from $\mathrm{X}_{\text {OUT }}$ L.E.)	tWTH	0		7s	
M1 \rightarrow RDL L.E.	tMR	200		ns	
RD T.E. \rightarrow M1	${ }^{\text {t RM }}$	200		ns	ns
$10 / \mathrm{M} \rightarrow$ RD L.E.	t/R	200		ns	
RD T.E. \rightarrow 10/M	tRI	200		ns	
$\mathrm{X}_{\text {OUT }}$ L.E. \rightarrow WR L.E.	txw		270	ns	
$\begin{aligned} & \text { Address }\left(P E_{0-15}\right) \rightarrow \\ & X_{\text {OUT T.E. }} \\ & \hline \end{aligned}$	${ }^{\text {t } A X}$		300	ns	
$\begin{aligned} & \text { Address }\left(\mathrm{PE}_{0-15}\right) \rightarrow \\ & \text { Data Output } \end{aligned}$	tAD2	450		ns	
$\begin{aligned} & \text { Data Output } \rightarrow \overline{W R} \\ & \text { T.E. } \\ & \hline \end{aligned}$	t DW	$600+500 \times N$		ns	
WR T.E. \rightarrow Data Stabilization Time	twD	150		ns	
Address (PE0-15) \rightarrow WR L.E.	${ }^{\text {t }}$ AW	400		ns	
WR T.E. \rightarrow Address Stabilization Time	tWA	200		ns	
WR Low Level Width	tww	$600+500 \times \mathrm{N}$		ns	
$10 / \mathrm{M} \rightarrow$ WF L.E.	tiw	500		ns	
WR T.E. \rightarrow IO/M	${ }^{\text {tWI }}$	250		ns	

AC CHARACTERISTICS
(CONT.)

SERIALI/O OPERATION

PARAMETER	SYMBOL	MIN	MAX	UNIT	CONDITION
$\overline{\text { SCK }}$ Cycle Time	${ }^{\text {t }} \mathrm{CYK}$	800		ns	$\overline{\text { SCK }}$ Input
		900	4000	ns	SCK Output
$\overline{\text { SCK }}$ Low Level Width	${ }^{\text {t K K }}$ L	350		ns	$\overline{\text { SCK }}$ Input
		400		ns	SCK Output
$\overline{\text { SCK }}$ High Level Width	tKKH	350		ns	SCK Input
		400		ns	SCK Output
SI Set-Up Time (referenced from $\overline{\text { SCK }}$ T.E.)	${ }^{\text {t S IS }}$	140		ns	
SI Hold Time (referenced from $\overline{\text { SCK T.E.) }}$	tSIH	260		ns	
$\overline{\text { SCK L.E. } \rightarrow \text { SO Delay Time }}$	tKO		180	ns	
$\overline{\text { SCS }}$ High $\rightarrow \overline{\text { SCK }}$ L.E.	${ }^{\text {t CSK }}$	100		ns	
$\overline{\text { SCK T.E. } \rightarrow \text { SCS Low }}$	tKCS	100		ns	
$\overline{\text { SCK T.E. } \rightarrow \text { SAK Low }}$	${ }^{\text {t KSA }}$		260	ns	

PEN, PEX, PER OPERATION

PARAMETER	SYMBOL	MIN	MAX	UNIT	CONDITION
X_{1} L.E. \rightarrow EXT	tXE		250	ns	${ }^{t} \mathrm{CYX}=500 \mathrm{~ns}$
Address (AB_{0-15}) \rightarrow STB L.E.	${ }^{\text {t AST }}$	200			
Data ($\mathrm{DB}_{0-7 \text {) } \rightarrow \text { STB L.E. }}$	${ }^{\text {t DST }}$	200			
STB Hold Time	tSTST	300			
STB \rightarrow Data	tSTD	400			

HOLD OPERATION

PARAMETER	SYMBOL	MIN	MAX	UNIT	CONDITION
HOLD Set-Up Time (referenced from $\mathrm{X}_{\text {OUT }}$ L.E.)	tHDS_{1}	100		ns	
	tHDS_{2}	100		ns	
HOLD Hold Time (referenced from $\varnothing_{\text {OUT }}$ L.E.)	${ }^{\text {t }} \mathrm{HDH}$	100		ns	
$\mathrm{X}_{\text {OUT }}$ L.E. \rightarrow HLDA	t×HA		100	ns	
HLDA High \rightarrow Bus Floating (High Z State)	thabF	-150	150	ns	
HLDA Low \rightarrow Bus Enable	thabe		350	ns	

Notes:
(1) AC Signal waveform (unless otherwise specified)

(2) Output Timing is measured with $1 \mathrm{TTL}+200 \mathrm{pF}$ measuring points are $\mathrm{V}_{\mathrm{OH}}=2.0 \mathrm{~V}$

VOL $=0.8 \mathrm{~V}$
(3) L.E. $=$ Leading Edge, T.E. $=$ Trailing Edge
${ }^{\text {t}}$ CYX DEPENDENT AC PARAMETERS

PARAMETER	EQUATION	MIN/MAX	UNIT
${ }^{\text {t }} \mathrm{RX}$	(1/25) T	MIN	ns
${ }^{\text {t }} \mathrm{AD}_{1}$	$(3 / 2+N) T-200$	MAX	ns
${ }^{\text {R }}$ A (${ }^{\text {a }}$)	(1/2) T-50	MIN	ns
${ }^{\text {R } R A(~}{ }_{4}{ }_{4}$)	(3/2) T-50	MIN	ns
${ }^{\text {t }} \mathrm{RD}$	(1+N) T-150	MAX	ns
${ }^{\text {tr }}$ R	(2+N) T-150	MIN	ns
${ }^{\text {tr }}$ WT	(3/2) T-300	MAX	ns
${ }^{\text {t }}{ }^{\text {WWT }}{ }_{1}$	(2) T-350	MAX	ns
${ }^{\text {t MR }}$	(1/2) T-50	MIN	ns
${ }^{\text {t } R M}$	(1/2) T-50	MIN	ns
$\mathrm{t}_{1} \mathrm{R}$	(1/2) T-50	MIN	ns
${ }^{\text {tral }}$	(1/2) T-50	MIN	ns
${ }^{\text {t }}$ WW	(27/50) T	MAX	ns
${ }^{t} \mathrm{AD}_{2}$	T-50	MIN	ns
${ }^{\text {t }}$ DW	$(3 / 2+N) T-150$	MIN	ns
twD	(1/2) T-100	MIN	ns
${ }^{\text {t }}$ AW	T-100	MIN	ns
twA	(1/2) T-50	MIN	ns
twW	$(3 / 2+N) T-150$	MIN	ns
tiw	T	MIN	ns
${ }^{\text {t W }}$ I	(1/2) T	MIN	ns
$t_{\text {HABE }}$	(1/2) T-150	MAX	ns
${ }^{\text {t }}$ AST	(2/5) T	MIN	ns
${ }^{\text {t }}$ DST	(2/5) T	MIN	ns
${ }^{\text {t }}$ STST	(3/5) T	MIN	ns
${ }^{\text {tSTD }}$	(4/5) T	MIN	ns

Notes: (1) $N=$ Number of Wait Stetes
(2) $T=t \mathrm{CYX}$
(3) Only above parameters are ${ }^{\mathrm{C}} \mathrm{CYX}$ dependent
(4) When a crystal frequency other than 4 MHz is used ($\mathrm{t} \mathrm{CYX}=500 \mathrm{~ns}$) the above equations can be used to calculate AC parameter
values.

CLOCK TIMING

TIMING WAVEFORMS (CONT.)

PEN, PEX, PER OPERATION

PACKAGE OUTLINE μ PD7800G

Use. I.C. Socket NP32-64075G4.

NOTES

HIGH END SINGLE CHIP 8－BIT MICROCOMPUTER WITH 4K ROM

PRODUCT DESCRIPTION
The NEC μ PD7801 is an advanced 8－bit general purpose single－chip microcomputer fabricated with N－Channel Silicon Gate MOS technology．
The NEC μ PD7801 is intended to serve a broad spectrum of 8 －bit designs ranging from enhanced single chip applications extending into the multi－chip microprocessor range．All the basic functional blocks -4096×8 of ROM program memory， 128×8 of RAM data memory， 8 －bit ALU， 48 I／O lines，Serial I／O port， 12 －bit timer，and clock generator are provided on－chip to enhance stand－alone applications．Fully compatible with the industry standard 8080 A bus structure，expanded system operation can be easily implemented using any of the 8080A／8085A peripherals and memory products．Total memory space can be increased to 64 K bytes．

The powerful 140 instruction set coupled with 4 K bytes of ROM program memory and 128 bytes of RAM data memory greatly extends the range of single chip microcomputer applications．Five level vectored interrupt capability combined with a 2 microsecond cycle time enable the μ PD7801 to compete with multi－chip microprocessor systems with the advantage that most of the support functions are on－chip．

FEATURES－NMOS Silicon Gate Technology Requiring＋5V Supply
－Complete Sinale－Chip Microcomputer with On－Chip ROM，RAM and I／O
－4K Bytes ROM
－ 128 Bytes RAM
－ $481 / 0$ Lines
－Internal 12－Bit Programmable Timer
－On－Chip 1 MHz Serial Port
－Five Level Vectored，Prioritized Interrupt Structure
－Serial Port
－Timer
－ 3 External Interrupts
－Bus Expansion Capabilities
－Fully 8080A Bus Compatible
－ 60 K Bytes External Memory Address Range
－On－Chip Clock Generator
－Wait State Capability
－Alternate Z80 TM Type Register Set
－Powerful 140 Instruction Set
－ 8 Address Modes；Including Auto－Increment／Decrement
－Multi－Level Stack Capabilities
－Fast 2μ s Cycle Time
－Bus Sharing Capabilities

PE15／AB15	1		64		$\mathrm{Vcc}(+5 \mathrm{~V})$
¢OUT	2		63		$\mathrm{PE}_{14} / \mathrm{AB} 14$
DB7	3		62	曰	$P E_{13} / A B_{13}$
DB_{6}	4		61		$\mathrm{PE}_{12} / \mathrm{AB} \mathrm{l}_{12}$
$\mathrm{OB}_{5} \mathrm{H}$	5		60	曰	$P E_{11} / A B_{11}$
DB4	6		59		${ }^{2} \mathrm{PE}_{10} / \mathrm{AB} \mathrm{B}_{10}$
$\mathrm{DB}_{3} \mathrm{H}$	7		58	\square	$\mathrm{PEg} / \mathrm{ABg}$
DB_{2}	8		57		PE8／$/ A B_{8}$
D81	9		56	Q	$\mathrm{PE}_{7} / \mathrm{AB}_{7}$
DBoL	10		55		－ $\mathrm{PE}_{6} / A \mathrm{~B}_{6}$
INT_{2}－	11		54	\square	$P E_{5} / A B_{5}$
INT1	12		53		$\mathrm{PE}_{4} / \mathrm{AB}_{4}$
INTO $\quad 1$	13		52	ص	$\mathrm{PE}_{3} / \mathrm{AB}_{3}$
WATT	14		51		$P E_{2} / A B_{2}$
MI S 1	15		50	曰	$P E_{1} / A B_{1}$
	16	7801	49		PEO／AB0
RD G 1	17		48	？	PB_{7}
$\mathrm{PC} 7 \square 1$	18		47		PPB_{6}
PC_{6}－1	19		46	］	PB5
PC5 L 2	20		45		PB4
PC_{4}［－ 2	21		44	Q	PB3
$\mathrm{PC}_{3} \square 2$	22		43		PB_{2}
PC_{2}［2	23		42	曰	PB1
$\mathrm{PC}_{1} \square 2$	24		41		PB0
${ }^{P C O}{ }^{\text {CR }}$	25		40	\square	PA7
SCR L2	26		39		PA_{6}
S1［－2	27		38	日	PAE
So 2	28		37		PA4
RESET 日 2	29		36	\square	PA3
$\times 2 \square$	30		35		Pa_{2}
$x_{1} \square^{3}$	31		34	Q	PA1
$V \mathrm{Ss}(0 \mathrm{~V}) \square 3$	32		33		$\square P A 0$

[^10]| PIN NO. | DESIGNATION | FUNCTION |
| :---: | :---: | :---: |
| 1, 49-63 | $\mathrm{PE}_{0} / \mathrm{AB}_{0}{ }^{-}$ | (Tri-State, Output) 16-bit address bus. |
| 2 | $P E_{15 / A B_{15}}$ | |
| | ¢OUT | (Output) ϕ OUT provides a prescaled output clock for use with external I/O devices or memories. $\phi O U T$ frequency is f XTAL/2. |
| 3-10 | $\mathrm{DB}_{0}-\mathrm{DB}_{7}$ | (Tri-State Input/Output, active high) 8-bit true bi-directional data bus used for external data exchanges with I/O and memory. |
| 11 | INT0 | (Input, active high) Level-sensitive interrupt input. |
| 12 | INT1 | (Input, active high) Rising-edge sensitive interrupt input. Interrupts are initiated on low-to-high transitions, providing interrupts are enabled. |
| 13 | INT_{2} | (Input) $I N T_{2}$ is an edge sensitive interrupt input where the desired activation transition is programmable. By setting the ES bit in the Mask Register to a $1, \mathrm{INT}_{2}$ is rising edge sensitive. When $E S$ is set to $0, \mathrm{INT}_{2}$ is falling edge sensitive. |
| 14 | WAIT | (Input, active low) WAIT, when active, extends read or write timing to interface with slower external memory or I/O. WAIT is sampled at the end of T_{2}, if active processor enters a wait state TW and remains in that state as long as WAIT is active. |
| 15 | M1 | (Output, active high) when active, M1 indicates that the current machine cycle is an OP CODE FETCH. |
| 16 | \bar{W} | (Tri-State Output, active low) $\overline{W R}$, when active, indicates that the data bus holds valid data. Used as a strobe signal for external memory or I/O write operations. WR goes to the high impedance state during HALT, HOLD, or RESET. |
| 17 | $\overline{\mathrm{RD}}$ | (Tri-State Output, active low) RD is used as a strobe to gate data from external devices onto the data bus. $\overline{R D}$ goes to the high impedance state during HALT, HOLD, and RESET. |
| 18-25 | $\mathrm{PC}_{0}-\mathrm{PC}_{7}$ | (Input/Output) 8-bit I/O configured as a nibble I/O port or as control lines. |
| 26 | $\overline{\text { SCK }}$ | (Input/Output) $\overline{\text { SCK }}$ provides control clocks for Serial Port Input/Output operations. Data on the SI line is clocked into the Serial Register on the rising edge. Contents of the Serial Register is clocked onto SO line on falling edges. |
| 27 | SI | (Input) Serial data is input to the processor through the SI line. Data is clocked into the Serial Register MSB to LSB with the rising edge of SCK. |
| 28 | SO | (Output) SO is the Serial Output Port. Serial data is output on this line on the falling edge of SCK, MSB to LSB. |
| 29 | RESET | (Input, active low) RESET initializss the μ PD7801. |
| 30 | X_{2} | (Output) Osciliator output. |
| 31 | X_{1} | (Input) Clock Input. |
| 33-40 | PA0-PA7 | (Output) 8-bit output port with larch capability. |
| 41-48 | $\mathrm{PB}_{0}-\mathrm{PB}_{7}$ | (Tri-State Input/Output) 8-bit programmable I/O port. Each line configurable independently as an input or output. |

FUNCTIONAL DESCRIPTION

Memory Map
The μ PD7801 can directly address up to 64 K bytes of memory. Except for the on-chip ROM $(0-4095)$ and RAM $(65,408-65,535)$, any memory location can be used as either ROM or RAM. The following memory map defines the $0-64 \mathrm{~K}$ byte memory space for the μ PD7801 showing that the Reset Start Address, Interrupt Start Address, Call Tables, etc., are located in the internal ROM area.

1/O Ports

PORT	FUNCTIONS
Port A	8-bit output port with latch
Port B	8-bit programmable Input/Output port w/latch
Port C	8-bit nibble I/O or Control port
Port E	16-bit Address/Output Port

Port A

Port A is an 8 -bit latched output port. Data can be readily tlansferred between the aiccumulator and the output latch buffers. The contents of the output latches can be modified using Arithmetic and logic instructions. Data remains latched at Port A unless acted on by another Port A instruction or a RESET is issued.

Port B

Port B is an 8-bit I/O port. Data is latched at Port B in both the Input or Output modes. Each bit of Port B can be independently set to either Input or Output modes. The Mode B register programs the individual lines of Port B to bs either an Input (Mode $B_{n=1}$) or an Output (Mode $B_{n=0}$).

Port C

Port C is an 8 -bit I / O port. The Mode C register is used to program the upper 6 bits of Port C to provide control functions or to set the I/O structure per the following table.

	MODE $\mathrm{C}_{\mathrm{n}}=0$	MODE C $\mathrm{C}_{\mathrm{n}}=1$
PC_{0}	Output	Input
PC_{1}	Output	Input
PC_{2}	$\overline{\text { SCS }}$ Input	Input
PC_{3}	SAK Output	Output
PC_{4}	To Output	Output
PC_{5}	IO/M Output	Output
PC_{6}	HLDA Output	Output
PC_{7}	HOLD Input	Input

Port E

Port E is a 16 -bit address bus/output port. It can be set to one of three operating modes using the PER, PEN, or PEX instructions.

- 16-Bit Address Bus - the Per instruction sets this mode for use with external I/O or memory expansion (up to 60 K bytes, externally).
- 4-Bit Output Port/12 Bit Address Bus - the PEN instruction sets this mode which allows for memory expansion of up to 4 K bytes, exterrally, plus the transfer of 4 -bit nibbles.
- 16-Bit Output Port - the PEX instruction sets Port E to a 16 -bit output port. The contents of B and C registers appear on $P E_{8-15}$ and $P E_{0-7}$, respectively.

TIMER BLOCK DIAGRAM

A programmable 12-bit timer is provided on-chip for measuring time intervals, generating pulses, and general time-related control functions. It is capable of measuring time intervals from $4 \mu \mathrm{~s}$ to $16 \mu \mathrm{~s}$ in duration. The timer consists of a prescaler which decrements a 12 -bit counter at a fixed 4μ s rate. Count pulses are loaded into the 12 -bit down counter through timer register (TM0 and TM1). Count-down operation is initiated upon extension of the STM instruction when the contents of the down counter are fully decremented and a borrow operation occurs, an interval interrupt (INTT) is generated. At the same time, the contents of TM0 and TM1 are reloaded into the down-counter and countdown operation is resumed. Count operation may be restarted or initialized with the STM instruction. The duration of the timeout may be altered by loading new contents into the down counter.

The timer flip flop is set by the STM instruction and reset on a countdown operation. Its output (TO) is available externally and may be used in a single pulse mode or general external synchronization.

Timer interrupt (INTT) may be disabled through the interrupt.

Serial Port Operation

SERIAL PORT BLOCK DIAGRAM

The on-chip serial port provides basic synchronous serial communication functions allowing the NEC μ PD7801 to serially interface with external devices.

Serial Transfers are synchronized with either the internal closk or an external clock input ($\overline{\mathrm{SCK}}$). The transfer rate is fixed at $1 \mathrm{Mbit} /$ second if the internal clock is used or is variable between DC and $1 \mathrm{Mbit} /$ second when an exterral clock is used. The Clock Source Select is determined by the Mode C register. The serial clock (internal or external $\overline{\mathrm{SCR}}$) is enabled when the Serial Chip Select Signal ($\overline{\mathrm{SCS}}$) goes low. At this time receive and transmit operations through the Serial Input port (SI)/Serial Output port (SO) are enabled. Receive and transmit operations are performed MSB first.
Serial Acknowledge (SAK) goes high when data transfers between the accumulator and Serial Register is completed. SAK goes low when the buffer becomes full after the completion of serial data receive or transmit operations. While SAK is low, no further data can be received.

Interrupt Structure

The μ PD7801 provides a maskable interrupt structure capakle of handling vectored prioritized interrupts. Interrupts can be generated from six different sources; three external interrupts, two internal interrupts, and non-maskatle software interrupt. Each interrupt when activated branches to a designated mernory vector location for that interrupt.

INT	VECTORED MEMORY LOCATION	PRIORITY	TYPE
INTT	8	3	Internal, Timer Overflow
INTS	64	6	Internal, Serial Buffer Full/Empty
INT0	4	2	Ext., level sensitive
INT1	16	4	Ext., Rising edge sensitive
INT2	32	5	Ext., Rising/Falling edge sensitive
SOFTI	96	1	Software Interrupt

FUNCTIONAL RESET (Reset)

An active low-signal on this input for more than $4 \mu \mathrm{~s}$ forces the μ PD7801 into a Reset condition. $\overline{\text { RESET }}$ affects the following internal functions:

- The Interrupt Enable Flags are reset, and Interrupts are inhibited.
- The Interrupt Request Flag is reset.
- The HALT flip flop is reset, and the Halt-state is released.
- The contents of the MODE B register are set to $\mathrm{FFH}_{\mathrm{H}}$, and Port B becomes an input port.
- The contents of the MODE C register are set to $\mathrm{FFH}_{\mathrm{H}}$. Port C becomes an I/O port and output lines go low.
- All Flags are reset to 0 .
- The internal COUNT register for timer operation is set to $\mathrm{FFF}_{\mathrm{H}}$ and the timer F/F is reset.
- The ACK F/F is set.
- The HLDA F/F is reset.
- The contents of the Program Counter are set to 0000 H .
- The Address Bus (PE0-15), Data Bus (DB0-7), $\overline{R D}$, and $\overline{W R}$ go to a high impedance state.
Once the $\overline{\operatorname{RESET}}$ input goes high, the program is started at location 0000_{H}.
REGISTERS The μ PD7801 contains sixteen 8 -bit registers and two 16 -bit registers.

0	15
SP	

$\left.\begin{array}{|c|c|}\hline \mathrm{V}^{\prime} & \mathrm{A}^{\prime} \\ \hline \mathrm{B}^{\prime} & \mathrm{C}^{\prime} \\ \hline \mathrm{D}^{\prime} & \mathrm{E}^{\prime} \\ \hline \mathrm{H}^{\prime} & \mathrm{L}^{\prime} \\ \hline\end{array}\right\}$ Alternate

General Purpose Registers (B, C, D, E, H, L)
There are two sets of general purpose registers (Main: B, C, D, E, H, L: Alternate: $\left.B^{\prime}, C^{\prime}, D^{\prime}, H^{\prime}, L^{\prime}\right)$. They can function as auxiliary registers to the accumulator or in pairs as data pointers ($B C, D E, H L, B^{\prime} C^{\prime}, D^{\prime} E^{\prime}, H^{\prime} L^{\prime}$). Auto Increment and Decrement addressing mode capabilities extend the uses for the DE, HL, $D^{\prime} E^{\prime}$, and $H^{\prime} L^{\prime}$ register-pairs. The contents of the $B C, D E$, and $H L$ register-pairs can be exchanged with their Alternate Register counterparts using the EXX instruction.

Vector Register (V)
When defining a scratch pad area in the memory space, the upper 8-bit memory address is defined in the V-register and the lower 8 -bits is defined by the immediate data of an instruction. Also the scratch pad indicated by the V-register can be used as 256×8-bit working registers for storing software flags, parameters and counters.

Accumulator (A)

All data transfers between the μ PD7801 and external memory or 1/O are done through the accumulator. The contents of the Accumulator and Vector Registers can be exchanged with their Alternate Registers using the EX instruction.

Program Counter (PC)

The PC is a 16 -bit register containing the address of the next instruction to be fetched. Under normal program flow, the PC is automatically incremented. However, in the case of a branch instruction, the PC contents are from another register or an instruction's immediate data. A reset sets the $P C$ to 0000_{H}.

Stack Pointer (SP)

The stack pointer is a 16 -bit register used to maintain the top of the stack area (last-in-first-out). The contents of the SP are decremented during a CALL or PUSH instruction or if an interrupt occurs. The SP is incremented during a RETURN or POP instruction.

Register Addressing
Register Indirect Addressing
Auto-Increment Addressing
Auto-Decrement Addressing

Working Register Addressing
Direct Addressing
Immediate Addressing
Immediate Extendəd Addressing

FUNCTIONAL DESCRIPTION (CONT.)

Register Addressing

The instruction opcode specifies a register r which contains the operand.

Register Indirect Addressing

The instruction opcode specifies a register pair which contains the memory address of the operand. Mnemonics with an X suffix are ending this address mode.

Auto-Increment Addressing

The opcode specifies a register pair which contains the memory address of the. operand. The contents of the register pair is automatically incramented to point to a new operand. This mode provides automatic sequential stepping when working with a table of operands.

Working Register Addressing

The contents of the register is linked with the byte following the opcode to form a memory address whose contents is the operand. The V register is used to indicate the memory page. This address mode is useful as a short-offset address mode when working with operands in a common memory page where only 1 additional byte is required for the address. Mnemonics with a W suffix ending this address mode.

Direct Addressing

$P C$	OPCODE	
$P C+1$	Low Address	
$P C+2$	High Address	
	$\left.\begin{array}{\|c\|}\hline \text { operand } \\ 1 \text { byte }\end{array} \begin{array}{\|c\|}\hline \text { Low Operand } \\ \hline \text { High Operand } \\ \hline 2 \text { byte } \\ \hline\end{array}\right]$	

The two bytes following the opcode specify an address of a location containing the operand.

Immediate Addressing
PC
OPCODE
PC + 1
OPERAND

Immediate Extended Addressing

PC
PC + 1
OPCODE
Low Operand
PC + 2
High Operand

OPERAND	DESCRIPTION
r	V, A, B, C, D, E, H, L
r1	B, C, D, E, H, L
r2	A, B, C
sr	PA PB PC MK MB MC TM0 TM1 S
sr1	PA PB PC MK S
sr2	PA PB PC MK
rp	SP, B, D, H
rp1	V, B, D, H
rpa	B, D, H, D+, H+, D- , H^{-}
rpa 1	B, D, H
wa	8 bit immediate data
word	16 bit immediate data
byte	8 bit immediate data
bit	3 bit immediate data
f	F0, F1, F2, FT, FS,

Notes: 1. When special register operands sr, sr1, sr2 are used; $\mathrm{PA}=$ Port $\mathrm{A}, \mathrm{PB}=$ Port B , $P C=$ Port $C, M K=$ Mask Register, $M B=$ Mode B Register, $M C=$ Mode C Register, TM $0=$ Timer Register 0, TM1 $=$ Timer Register 1, $\mathrm{S}=$ Serial Register.
2. When register pair operands rp, rp1 are used; $S P=$ Stack Pointer, $B=B C$, $D=D E, H=H L, V=V A$.
3. Operands $\mathrm{rPa}, \mathrm{rPa}$ 1, wa are used in indirect addressing and auto-increment/ auto-decrement addressing modes.
$B=(B C), D=(D E), H=(H L)$
$D^{+}=(D E)^{+}, H^{+=}=(H L)^{+}, D^{-=}=(D E)^{-}, H^{-}=(H L)^{-}$.
4. When the interrupt operand f is used; $F 0=$ INTF0, $F 1=1 N T F 1, F 2=I N T F 2$, $F T=I N T F T, F S=I N T F S$.

MNEMONIC	OPERANDS	$\begin{aligned} & \text { NO. } \\ & \text { BYTES } \end{aligned}$	$\begin{aligned} & \text { CLOCK } \\ & \text { CYCLES } \end{aligned}$	OPERATION	SKIP CONDITION	FLAGS	
						CY	2
8-BIT DATA TRANSFER							
MOV	r1, A	1	4	$r 1 \leftarrow A$			
MOV	A, r1	1	4	$A \leftarrow r 1$			
MOV	sr, A	2	10	$s r<A$			
MOV	A, sr 1	2	10	$A \leftarrow s r^{1}$			
MOV	r, word	4	17	ir \leftarrow (word)			
MOV	word, r	4	17	(word) $\leftarrow r$			
MVI	r, byte	2	7	$r \leftarrow$ byte			
MVIW	wa, byte	3	13	$(V$, wa) ¢byte			
MVIX	rpa1, byte	2	10	(rpal) ¢byte			
STAW	wa	2	10	$(V, w a) \leftarrow A$			
LDAW	wa	2	10	$A \sim(V, w a)$			
STAX	rpe	1	7	$(r p a) \leftarrow A$			
LDAX	rpa	1	7	$A \leftarrow(r p a)$			
EXX		1	4	Exchange register sets			
EX		1	4	$V, A \leftrightarrow V, A$			
BLOCK		1	$13(c+1)$	$(D E)^{+} \leftarrow(H L)^{+}, C \leftarrow C-1$			
16-BIT DATA TRANSFER							
SBCD	word	4	20	$($ word $) \leftarrow C$, $($ word +1$) \leftarrow B$			
SDED	word	4	20	(word) $\leftarrow E,($ word +1$) \leftarrow D$			
SHLD	word	4	20	(word) $\leftarrow L$, (word +1$) \leftarrow H$			
SSPD	word	4	20	$($ word $) \leftarrow S P_{L}$, $($ word +1$) \leftarrow S P_{H}$			
LBCD	word	4	20	$\mathrm{C} \leftarrow$ (word), $\mathrm{B} \leftarrow$ (word +1)			
LDED	word	4	20	$E \leftarrow($ word $), D \leftarrow($ word +1$)$			
LHLD	word	4	20	$L \leftarrow($ word $), H \leftarrow($ word +1$)$			
LSPD	word	4	20	$S P_{L} \leftarrow($ word $), S P_{H} \leftarrow($ word +1$)$			
PUSH	rp1	2	17	$(S P-1) \leftarrow r p^{1} \mathrm{H},(\mathrm{SP}-2) \leftarrow r \mathrm{P}^{1} \mathrm{~L}$			
POP	rp1	2	15	$\begin{aligned} & \mathrm{rp1} 1 \leftarrow(S P) \\ & r p 1 H \leftarrow(S P+1), S P \leftarrow S P+2 \\ & \hline \end{aligned}$			
LXI	rp, word	3	10	$\mathrm{rp} \leftarrow$ word			
TABLE		1	19	$\begin{aligned} & C \leftarrow(P C+2+A) \\ & B \leftarrow(P C+2+A+1) \end{aligned}$	*		

μ PD7801

INSTRUCTION GROUPS (CONT.)

MNEMONIC	OPERANDS	$\begin{aligned} & \text { NO. } \\ & \text { BYTES } \end{aligned}$	CLOCK CYCLES	OPERATION	$\begin{gathered} \text { SKIP } \\ \text { CONDITION } \end{gathered}$	FLAGS	
						CY	z
ARITHMETIC							
ADD	A, r	2	8	$A \sim A+r$		\downarrow	\downarrow
ADD	r. A	2	8	$r \leftarrow r+A$		\downarrow	\downarrow
ADDX	rpa	2	11	$A \leftarrow A+(r p a)$		\downarrow	\downarrow
ADC	A, r	2	8	$A \leftarrow A+r+C Y$		\dagger	\ddagger
ADC	r, A	2	8	$r \leftarrow r+A+C Y$		\downarrow	\ddagger
ADCX	rpa :	2	11	$A \leftarrow A+(r p a)+C Y$		\pm	\pm
SUB	A, r	2	8	$A \leftarrow A-r$		\uparrow	\pm
SUB	r, A	2	8	$r \leftarrow r-A$		\dagger	\pm
SUBX	rpa	2	11	$A \leftarrow A-(r p s)$		\pm	\ddagger
SBB	A, r	2	8	$A \leftarrow A-r-C Y$		\ddagger	1
SBB	r, A	2	8	$r \leftarrow r-A-C Y$		\uparrow	\ddagger
SBBX	rpa	2	11	$A \leftarrow A-(r p q)-C Y$		\ddagger	\ddagger
ADDNC	A, r	2	8	$A \leftarrow A+r$	No Carry	\pm	\ddagger
ADDNC	r, A	2.	8	$r \leftarrow r+A$	No Carry	\ddagger	\ddagger
ADDNCX	rpa	2	11	$A \leftarrow A+(r p a)$	No Carry	\downarrow	\pm
SUBNB	A, r	2	8	$A-A-r$	No Borrow	\uparrow	\uparrow
SUBNB	r, A	2	8	$r-r-A$	No Borrow	\ddagger	\ddagger
SUBNBX	rpa	2	11	$A \leftarrow A-(r p a)$	No Borrow	\pm	\ddagger
LOGICAL							
ANA	A, r	2	8	$A \leftarrow A \wedge r$			\dagger
ANA	r, A	2	8	$r \leftarrow r \wedge A$			\pm
ANAX	rpa	2	11	$A \leftarrow A \wedge(r p a)$			\ddagger
ORA	A, r	2	8	$A-A \vee r$			\uparrow
ORA	r, A	2	8	$r \leftarrow r \vee A$			\pm
ORAX	rpa	2	11	$A-A \vee(r p a)$			1
XRA	A, r	2	8	$A \leftarrow A \forall r$			\uparrow
XRA	r, A	2	8	$A \leftarrow r \forall A$			1
XRAX	rpa	2	11	$A \leftarrow A \forall(r p a)$			\downarrow
GTA	A, r	2	8	A-r-1	No Borrow	\downarrow	\uparrow

INSTRUCTION GROUPS (CONT.)

MNEMONIC	OPERANDS	$\begin{gathered} \text { NO. } \\ \text { BYTES } \end{gathered}$	$\begin{aligned} & \text { CLOCK } \\ & \text { CYCLES } \end{aligned}$	OPERATION	SKIP CONDITION	FLAGS	
						CY	z
LOGICAL (CONT.)							
GTAX	rpa	2	11	A - (rpa)-1	No Borrow	\pm	1
LTA	A, r	2	8	A-r	Borrow	\ddagger	\downarrow
LTA	r, A	2	8	$r-A$	Borrow	\ddagger	\ddagger
LTAX	rpa	2	11	A - (rpa)	Borrow	\ddagger	\ddagger
ONA	A, r	2	8	$A \wedge r$	No Zero		\uparrow
ONAX	rpa	2	11	$A \wedge(\mathrm{r} p \mathrm{a})$	No Zero		\ddagger
OFFA	A, r	2	8	A \wedge r	Zero		\ddagger
OFFAX	rpa	2	11	$A \wedge(\mathrm{rpa})$	Zero		\pm
NEA	A, r	2	8	A-r	No Zero	\ddagger	\downarrow
NEA	r, A	2	8	r-A	No Zero	\ddagger	\ddagger
NEAX	rpa	2	11	A - (rpa)	No Zero	\ddagger	\downarrow
EQA	A, ${ }^{\text {r }}$	2	8	A-r	Zero	\downarrow	\ddagger
EQA	r, A	2	8	$r-A$	Zero	\dagger	\ddagger
EQAX	rpa	2	11	A - (rpa)	Zero	1	\ddagger
IMMEDIATE DATA TRANSFER (ACCUMULATOR)							
XRI	A, byte	2	7	$A \leftarrow A \forall$ byte			\pm
ADINC :	A, byte	2	7	$A \leftarrow A+$ byte	No Carry	\pm	\ddagger
SUINB	A, byte	2	7	$A \leftarrow A-b y t e$	No Borrow	\ddagger	\ddagger
ADI	A, byte	2	7	A - A + byte		\pm	\downarrow
ACl	A, byte	2	7	A $<A+b y t e+C Y$		\ddagger	\pm
SUI'	A, byte	2	7	$A \leftarrow A$ - byte		\uparrow	\ddagger
SBI	A, byte	2	7	$A \leftarrow A-$ byte - CY		\dagger	\ddagger
ANI	A, byte	2	7	$A \leftarrow A \wedge$ byte			\dagger
ORI	A, byte	2	7	$A \leftarrow A \vee b y t e$			\pm
GTI	A, byte	2	7	A - byte-1	No Borrow	\ddagger	\uparrow
LTI	A, byte	2	7	A - byte.	Borrow	\ddagger	\ddagger
ONI	A, byte	2	7	A \wedge byte	No Zero		\pm
OFFI	A, byte	2	7	A \wedge bye	Zero		\uparrow
NEI	A, byte	2	7	A - byte	No Zero	\pm	\pm
EQI	A, byte	2	7	A-byte	Zero	\ddagger	\uparrow

INSTRUCTION GROUPS (CONT.)

MNEMONIC	OPERANDS	$\begin{aligned} & \text { NO. } \\ & \text { BYTES } \end{aligned}$	$\begin{aligned} & \text { CLOCK } \\ & \text { CYCLES } \end{aligned}$	OPERATION	SKIP CONDITION	FLAGS	
						CY	z
IMMEDIATE DATA TRANSFER							
XRI	r, byte	3	11	$r \leftarrow r \forall$ byte			\uparrow
ADINC	r, byte	3	11	$r \leftarrow r+$ byte	No Carry	\ddagger	\ddagger
SUINB	r, byte	3	11	$r \leftarrow r$ - byte	No Borrow	\ddagger	\ddagger
ADI	re, byte	3	11	$r \leftarrow r+$ byte	.	\ddagger	\ddagger
ACI	r, byte	3	11	$r \leftarrow r+$ byte $+C Y$		\ddagger	\ddagger
SUI	r, byte	3	11	r-r-byte		\downarrow	\uparrow
SBI	r, byte	3	11	$r \leftarrow r$-byte - CY		\uparrow	\ddagger
ANI	r, byte	3	11	$r \leftarrow r$ へ byte		\pm	\ddagger
ORJ	r, byte	3	11	$r \leftarrow r$ b byte			\ddagger
GTI	r, byte	3	11	r-byte-1	No Borrow	\ddagger	\ddagger
LTI	r, byte	3	11	r-byte	Borrow	1	\ddagger
ONI	r, byte	3	11	$\mathrm{r} \wedge$ byte	No Zero		\ddagger
OFFI	r, byte	3	11	r ${ }^{\text {d byte }}$	Zero		\pm
NEI	r, byte	3	11	r-byte	No Zero	\ddagger	\ddagger
EOI	r, byte	3	11	r-byte	Zero	\ddagger	\pm

IMMEDIATE DATA TRANSFER (SPECIAL REGISTER)

XRI	sr2, byte	3	17	sr2-sr2 \quad byte			1
ADINC	sr2, byte	3	17	sr2 \leftarrow sr2 + byte	No Carry	\dagger	\ddagger
SUINB	sr2, byte	3	17	sr2 \leftarrow sr2 - byte	No Borrow	\downarrow	\downarrow
ADI	sr2, byte	3	17	sr2 5 sr2 + byte		\ddagger	1
ACl	sr2, byte	3	17	$\mathrm{sr} 2 \leftarrow \mathrm{sr} 2+\mathrm{byte}+\mathrm{CY}$		\ddagger	\uparrow
SUI	sr2, byte	3	17	sr2 $\leftarrow \mathrm{sr} 2$ - byte		\ddagger	\ddagger
SBI	sr2, byte	3	17	$\mathrm{sr} 2 \leftarrow \mathrm{sr} 2-\mathrm{byte}-\mathrm{CY}$		\downarrow	\downarrow
ANI	sr2, byte	3	17				\dagger
ORI	sr2, byte	3	17	sr2 2 sr2 Vbyte			\downarrow
GTI	sr2, byte	3	14	sr2-byte - ,	No Borrow	\pm	\pm
LTI	sr2, byte	3	14	sr2-byte	Borrow	\ddagger	\ddagger
ONI	sr2, byte	3	14	sr2^ byte	No Zero		\dagger

INSTRUCTION GROUPS (CONT.)

MNEMONIC	OPERANDS	NO. BYTES	$\begin{array}{\|c} \text { CLOCK } \\ \text { CYCLES } \end{array}$	OPERATION	SKIP CONDITION	FLAGS	
						CY	2
IMMEDIATE DATA TRANSFER (SPECIAL REGISTER) (CONT.)							
OFFI	sr2, byte	3	14	sr2^byte	Zero		\pm
NEI	sr2, byte	3	14	sr2-byte	No Zero	\downarrow	\ddagger
EOI	sr2, byte	3	14	sr2-byte	Zero	\ddagger	t
WORKING REGISTER							
XRAW	wa	3	14	$A \leftarrow A \forall(V, w a)$			t
ADDNCW	wa	3	14	$A+A+(V, w a)$	No Carry	\downarrow	\downarrow
SUBNBW.	wa	3	14	$A \leftarrow A-(V, w a)$	No Borrow	\pm	\ddagger
ADDW	wa	3	14	$A \leftarrow A+(V, w a)$		\downarrow	\ddagger
ADCW	wa	3	14	$A \leftarrow A+(V, w a)+C V$		\pm	\ddagger
SUBW	wa	3	14	$A \leftarrow A-(V, w a)$		\pm	\ddagger
SBBW	wa	3	14	$A \leftarrow A-(V, w a)-C W$		\ddagger	\ddagger
ANAW	wa	3	14	$A \leftarrow A \wedge(V, w a)$			t
ORAW	wa	3	14	$A \leftarrow A \vee(V, w a)$			\ddagger
GTAW	wa	3	14	$A \leftarrow(V, w a)-1$	No Borrow	\ddagger	\ddagger
LTAW	wa	3	14	$A-(V, w a)$	Borrow	\pm	\ddagger
ONAW	wa	3	14	$A \wedge(V, w a)$	No Zero		t
OFFAW	wa	3	14.	$A \wedge(V, w a)$	Zero		\pm
NEAW	wa	3	14	$A-(V, w a)$	No Zero	\uparrow	\pm
EQAW	wa	3	14	$A-(V, w a)$	Zero	1	\ddagger
ANIW	wa, byte	3	16	$(V, w a) \leftarrow(V, w a)$ ^bvte			\ddagger
ORIW	wa, byte	3	16	$(V$, wa $) \leftarrow(V$, wa $)$ Vbyte			\ddagger
GTIW	wa, byte	3	13	(V, wa) - byte - 1	No Borrow	\pm	\ddagger
LTIW	wa, byte	3	13	(V, wa) - byte	Borrow	\pm	\ddagger
ONIW	wa, byte	3	13	(V , wa) ${ }^{\text {人 b byte }}$	No Zero		\ddagger
OFFIW	wa, byte	3	13	(V, wa) ^ byte	Zero		\ddagger
NEIW	wa, byte	3	13	(V, wa) - byte	No Zero	\ddagger	1
EQIW	wa, byte	3	13	(V, wa) - byte	Zero	1	\ddagger
INCREMENT/DECREMENT							
INR	r2	1	4	$r 2 \leftarrow r 2+1$	Carry		\dagger
INRW	wa	2	13	$(V, w a) \leftarrow(V, w a)+1$	Carry		\ddagger

MNEMONIC	OPERANDS	$\begin{gathered} \text { NO. } \\ \text { BYTES } \end{gathered}$	$\begin{aligned} & \text { CLOCK } \\ & \text { CYCLES } \end{aligned}$	OPERATION	SKIP CONDITION	FLAGS	
						CY	z
INCREMENT/DECREMENT (CONT.)							
DCR	r2	1	4	$r 2 \leftarrow r 2-1$	Borrow		1
DCRW	wa	2	13	$(V$, wa $) \leftarrow(V$, wa $)-1$	Borrow		t
INX	rp	1	7	$r p \leftarrow r p+1$			
DCX	rp	1	7	$r p \leftarrow r p-1$			
DAA		1	4	Decimal Adjust Accumulator		\ddagger	\ddagger
STC		2	8	$C Y \leftarrow 1$		1	
CLC		2	8	$C Y \leftarrow 0$		0	
ROTATE AND SHIFT							
RLD		2	17	Rotate Left Digit			
RRD		2	17	Rotate Right Digit			
RAL		2	8	$A m+1 \leftarrow A m, A_{0} \leftarrow C Y, C Y \leftarrow A_{7}$		\ddagger	
RCL		2	8	$\mathrm{Cm}+1 \leftarrow \mathrm{Cm}, \mathrm{C}_{0} \leftarrow \mathrm{CY}, \mathrm{CY} \leftarrow \mathrm{C}_{7}$		\pm	
RAR		2	8	$A m-1 \leftarrow A m, A_{7} \leftarrow C Y, C Y \leftarrow A_{0}$		\ddagger	
RCR		2	8			\pm	
SHAL		2	8	$A m+1 \leftarrow A m, A_{0} \leftarrow 0, C Y \leftarrow A 7$		\ddagger	
SHCL		2	8	$\mathrm{Cm}+1 \leftarrow \mathrm{CM}, \mathrm{C}_{0} \leftarrow 0, \mathrm{CY} \leftarrow \mathrm{C}_{7}$		1	
SHAR		2	8	$A m-1-A m, A_{7}-0, C Y \sim A_{0}$		\ddagger	
SHCR		2	8	$\mathrm{Cm}-1 \leftarrow \mathrm{Cm}^{\text {c }} \mathrm{C}_{7} \leftarrow 0, \mathrm{CY} \leftarrow \mathrm{C}_{\mathrm{C}}$		\ddagger	
JUMP							
JMP	word	3	10	PC ¢ word			
JB		1	4	$P C_{H} \leftarrow B, P C_{L} \leftarrow C$			
JR	word	1	13	$\mathrm{PC} \leftarrow \mathrm{PC}+1+$ jdisp1			
JRE	word	2	13	$\mathrm{PC} \leftarrow \mathrm{PC}+2+$ jdisp			
CALL							
CALL	word	3	16	$\begin{aligned} & (S P-1) \leftarrow(P C-3)_{H},(S P-2)= \\ & (P C-3)_{L}, P C \leftarrow \text { word } \end{aligned}$			
CALB		1	13	$\begin{aligned} & (S P-1) \leftarrow(P C-1)_{H},(S P-2) \times \\ & (P C-1)_{L}, P C_{H} \leftarrow B, P C_{L} \leftarrow C \end{aligned}$			
CALF	word	2	16	$\begin{aligned} & (\mathrm{SP}-1) \leftarrow(\mathrm{PC}-2)_{\mathrm{H}},(\mathrm{SP}-2) \leftarrow(\mathrm{PC}-2)_{\mathrm{L}} \\ & \mathrm{PC} 15 \sim 11 \leftarrow 00001, \mathrm{PC} 10 \sim 0 \leftarrow \mathrm{fa} \end{aligned}$	\cdot		
CALT	word	1	19	$\begin{aligned} & (\mathrm{SP}-1)+(\mathrm{PC}-1)_{\mathrm{H}}(\mathrm{SP}-2) \leftarrow(\mathrm{PC}-1)_{\mathrm{L}} \\ & \mathrm{PC}_{\mathrm{L}} \leftarrow(128-2 \mathrm{ta}), \mathrm{PC}_{\mathrm{H}^{+}-(129+2 \mathrm{ta})} \end{aligned}$			
SOFTI		1	19	$\begin{aligned} & (S P-1) \leftarrow P S W, S P-2,(S P-3)-P C \\ & P C \leftarrow 0060_{H}, S I R Q \leftarrow 1 \end{aligned}$			

INSTRUCTION GROUPS (CONT.)

MNEMONIC	OPERANDS	NO. BYTES	$\begin{aligned} & \text { CLOCK } \\ & \text { CYCLES } \end{aligned}$	OPERATION	SKIP CONDITION	FLAGS	
						CY	z
RETURN							
RET		1	11	$\begin{aligned} & P C_{L} \leftarrow(S P), P C_{H} \leftarrow(S P+1) \\ & S P \leftarrow S P-2 \end{aligned}$			
RETS		1	11+a	$\begin{aligned} & P C_{L} \leftarrow(S P), P C_{H} \leftarrow(S P+1), \\ & S P \leftarrow S P+2, P C \leftarrow P C+n \end{aligned}$			
RETI		1	15	$\begin{aligned} & \mathrm{PC}_{L} \leftarrow(\mathrm{SP}), \mathrm{PC} C_{H} \leftarrow(S P+1) \\ & \mathrm{PSW} \leftarrow(\mathrm{SP}+2), \mathrm{SP} \leftarrow S P+3, \mathrm{SIRQ} \leftarrow 0 \end{aligned}$			
SKIP							
BIT	bit, wa	2	10	Bit test	$\begin{aligned} & \text { (V,wal bit } \\ & =1 \text {) } \end{aligned}$		
SKC		2	8	Skip if Carry	$C Y=1$		
SKNC		2	8	Skip if No Carry	$C Y=0$		
SKZ		2	8	Skip if Zero	$z=1$		
SKNZ		2	8	Skip if No Zero	$\mathrm{z}=0$		
SKIT	f	2	8	Skip if INT $X=1$, then reset INT X	$f=1$		
SKNIT	f	2	8	Skip if No INT X otherwise reset INT X	$\mathrm{f}=0$		
CPU CONTROL.							
NOP		1	4	No Operation			
EI		2	8	Enable Interrupt			
DI		2	8	Disable Interrupt			
HLT		1	6	Halt			
SERIAL PORT CONTROL							
SIO		1	4	Start (Trigger) Serial I/O			
STM		1	4	Start Timer			
INPUT/OUTPUT							
IN	byte	2	10	$\begin{aligned} & A B_{15-8} \leftarrow B, A B_{7-0} \leftarrow \text { byte } \\ & A \leftarrow D B_{7-0} \end{aligned}$			
OUT	byte	2	10	$\begin{aligned} & A B_{15-8} \leftarrow B, A B_{7-0} \leftarrow \text { byte } \\ & D B_{7-0} \leftarrow A \end{aligned}$			
PEX		2	11	PE $15.8-\mathrm{B}, \mathrm{PE}_{7.0}+\mathrm{C}$			
PEN		$2{ }^{*}$	11	PE ${ }_{15-12-\mathrm{B}_{7-4}}$			
PER		2	11	Port E AB Mode			

Program Status Word (PSW) Operation

\ddagger Flag affected according to result of operation

Flag set

0 Flag reset

- Flag not affected
ABSOLUTE MAXIMUM
Operating Temperature $-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ RATINGS*
Storage Temperature . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage On Any Pin . -0.3 V to +7.0V
$T_{a}=25^{\circ} \mathrm{C}$
*COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device rellability.

DC CHARACTERISTICS $-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	LIMITS			UNITS	TEST CONDITIONS
		MIN	TYP	MAX		
Input Low Voltage	$V_{\text {IL }}$	0		0.8	V	
Input High Voltage	$\mathrm{V}_{\text {IH1 }}$	2.0		V_{Cc}	V	Except $\overline{\text { SCK, }} \times 1$
	$\mathrm{V}_{1 \mathrm{H} 2}$	3.8		V_{Cc}	V	$\overline{\text { SCK, }} \times 1$
Output Low Voltage	VOL			0.45	V	$\mathrm{I}_{\mathrm{OL}}=2.0 \mathrm{~mA}$
Output High Voltage	$\mathrm{VOH1}$	2.4			V	$1 \mathrm{OH}=-100 \mu \mathrm{~A}$
	VOH_{2}	2.0			\checkmark	$\mathrm{I}^{\mathrm{OH}}=-500 \mu \mathrm{~A}$
Low Level Input Leakage Current	ILIL			-10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
High Level Input Leakage Current	ILIH			10	$\mu \mathrm{A}$	$V_{\text {IN }}=V_{\text {CC }}$
Low Level Output Leakage Current	ILOL			-10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=0.45 \mathrm{~V}$
High Level Output Leakage Current	${ }^{1} \mathrm{LOH}$			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
VCC Power Supply Current	I'c		110	200	mA	

CAPACITANCE $T_{a}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=\mathrm{GND}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNITS	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	C_{1}			10	pF	$\mathrm{fc}=1 \mathrm{MHz}$ All pins not under test at OV
Output Capacitance	CO_{0}			20	pF	
Input/Output Capacitance	ClO_{10}			20	pF	

CLOCK TIMING

PARAMETER	SYMBOL	LIMITS		UNITS	TEST CONDITIONS
		MIN	MAX		
X1 Input Cycle Time	tcy	227	1000	ns	
X1 Input Low Level Width	tXXL	106		ns	
X1 Input High Level Width	${ }^{\text {t }} \times$ XH	106		ns	.
$\phi_{\text {OUT }}$ Cycle Time	${ }^{\text {t }} \mathrm{CY}{ }^{\prime}$	454	2000	ns	
$\phi_{\text {OUT }}$ Low Level Width	${ }^{\text {t }}$ ¢ ${ }^{\text {¢ }}$ L	150		ns	
$\phi_{\text {OUT }}$ High Level Width	$\mathrm{t}_{\phi \phi \boldsymbol{H}}$	150		ns	
$\phi_{\text {OUT }}$ Rise/Fall Time	$\mathrm{t}_{\mathrm{r}, \mathrm{t}_{\mathrm{f}}}$		40	ns	

READ/WRITE OPERATION

PARAMETER	SYMBOL	LIMITS		UNITS	TEST CONDITIONS
		MIN	MAX		
$\overline{\text { RD L.E. } \rightarrow \text { ¢OUT L.E. }}$	${ }^{\dagger} \mathrm{R} \phi$	100		ns	
Address (PE0-15) \rightarrow Data Input	tAD1		$550+500 \times \mathrm{N}$	ns	
RD T.E. \rightarrow Address	${ }^{\text {t }}$ RA	200(T3); 700(T4)		ns	
RD L.E. \rightarrow Data Input	${ }^{\text {t R D }}$		$350+500 \times \mathrm{N}$	ns	
RD T.E. \rightarrow Data Hold Time	${ }^{\text {tRDH }}$	0		ns	
RD Low Level Width	tRR	$850+500 \times N$		r r	
$\overline{\text { AD L.E. } \rightarrow \text { WATT L.E. }}$	$t_{\text {RWW }}$		450	rs	
Address (PE_{0-15}) \rightarrow WAIT L.E.	${ }^{\text {t }}$ AWT1		650	rs	
WAIT Set Up Time (Referenced from $\phi_{\text {OUT L.E.) }}$	tWTS	290		rs	
WAIT Hold Time (Referenced from фOUT L.E.)	tWTH	0		ris	
$\mathrm{M} 1 \rightarrow$ RD L.E.	${ }^{\text {m }}$ MR	200		ris	
RD T.E. \rightarrow M1	tRM	200		Iis	${ }^{\mathrm{t}} \mathrm{CY} \phi$. ${ }^{\text {a }} 500 \mathrm{~ns}$
IO/M \rightarrow RD L.E.	tIR	200		18	
RD T.E. \rightarrow IO/M	${ }^{\text {tr }}$ I	200		1.8	
¢OUT L.E. \rightarrow WR L.E.	${ }^{\text {t }}$ ¢ ${ }^{\text {W }}$	40	125	118	
Address (PE_{0-15}) \rightarrow ¢OUT T.E.	${ }^{\text {t }} \mathrm{A} \phi$	100	300	118	
$\text { Address }\left(\mathrm{PE}_{0-15}\right) \rightarrow$ Data Output	tAD2	450		IIS	
$\begin{aligned} & \text { Data Output } \rightarrow \text { WR } \\ & \text { T.E. } \end{aligned}$	${ }^{\text { }}$ DW	$600+500 \times \mathrm{N}$		118	
WR T.E. \rightarrow Data Stabilization Time	twD	150		18	
$\begin{aligned} & \text { Address }\left(\text { PE }_{0.15}\right) \rightarrow \\ & \text { WR L.E. } \end{aligned}$	${ }^{\text {t }}$ AW	400		118	
WR T.E. \rightarrow Address Stabilization Time	twA	200		13	
WR Low Level Width	twW	$600+500 \times \mathrm{N}$		13	
10/M \rightarrow WF L.E.	tIW	600		118	
WR T.E. \rightarrow 10/M	tWI	250		18	

SERIAL I/O OPERATION

PARAMETER	SYMBOL	MIN	MAX	UNIT	CONDITION
$\overline{\text { SCK }}$ Cycle Time	${ }^{\text {t C M }}$	800		ns	$\overline{\text { SCK Input }}$
		900	4000	ns	SCK Output
$\overline{\text { SCK }}$ Low Level Width	${ }_{\text {t KKL }}$	350		ns	$\overline{\text { SCK Input }}$
		400		ns	SCK Output
SCK High Level Width	tKKH	350		ns	SCK Input
		400		ns	SCK Qutput
SI Set-Up Time (referenced from SCK T.E.)	${ }^{\text {t S }}$ IS	140		ns	1
SI Hold Time (referenced from SCK T.E.)	tSIH	260		ns	
SCK L.E. \rightarrow SO Delay Time	${ }_{1} \mathrm{KO}$		180	ns	
SCS High \rightarrow SCK L.E.	${ }^{\text {t }}$ CSK	100		ns	
SCK T.E. \rightarrow SCS Low	${ }^{\text {t K CS }}$	100		ns	
$\overline{\text { SCK }}$ T.E. \rightarrow SAK. Low	${ }^{\text {tKSA }}$		260	ns	

hold operation

PARAMETER	SYMBOL	MIN	MAX	UNIT	CONDITION
HOLD Set-Up Time (referenced from ØOUT L.E.)	tHDS_{1}	200		ns	${ }^{\mathrm{t}} \mathrm{CY} \boldsymbol{\phi}=500 \mathrm{~ns}$
	tHDS_{2}	200		ns	
HOLD Hold Time (referenced from бOUT L.E.)	${ }_{\text {t }}^{\text {HDH }}$	0		ns	
$\emptyset_{\text {OUT L.E. }} \rightarrow$ HLDA	${ }^{t}$ DHA	110	100	ns	
HLDA High \rightarrow Bus Floating (High Z State)	tHABF	-150	150	ns	
HLDA Low \rightarrow Bus Enable*	thabe		350	ns	

Notes:
(1) AC Signal waveform (unless otherwise specified)

(2) Output Timing is measured with $1 \mathrm{TTL}+200 \mathrm{pF}$ measuring points are $\mathrm{V}_{\mathrm{OH}}=2.0 \mathrm{~V}$
$V_{O L}=0.8 \mathrm{~V}$
(3) L.E. = Leading Edge, T.E. = Tralling Edge
${ }^{\mathrm{t}} \mathrm{CY}{ }_{\phi}$ DEPENDENT AC PARAMETERS

PARAMETER	EQUATION	MIN/MAX	UNIT
${ }^{\text {t }}$ ¢ ϕ	(1/5) T	MIN	ns
${ }^{\text {ta }}{ }_{1}$	$(3 / 2+N) T-200$	MAX	ns
${ }^{\text {t }} \mathrm{A}$ (T_{3})	(1/2) T-50	MIN	ns
${ }^{\text {tra }}$ (T_{4})	(3/2) T-50	MIN	ns
${ }^{\text {t } R D}$	$(1+N) T-150$	MAX	ns
${ }^{\text {t } R \text { R }}$	$(2+N) T-150$	MIN	ns
${ }^{\text {t }}$ RWT	(3/2) T-300	MAX	ns
${ }^{\text {t }}$ AWT ${ }_{1}$	(2) T-350	MAX	ns
${ }^{\text {t MR }}$	(1/2) T-50	MIN	ns
${ }^{\text {t } R M}$	(1/2) T-50	MIN	ns
${ }^{\prime} / \mathrm{R}$	(1/2) T-50	MIN	ns
$\mathrm{t}_{\mathrm{R}} \mathrm{I}$	(1/2) T-50	MIN	ns
${ }^{\text {t }}$ ¢ W	(1/4) T	MAX	ns
${ }_{\text {t }}$ ¢ ϕ	(1/5) T	MIN	ns
${ }^{\mathrm{t}} \mathrm{AD}_{2}$	T-50	MIN	ns
${ }^{\text {t }}$ WW	$(3 / 2+N) T-150$	MIN	ns
${ }^{\text {t }}$ WD	(1/2) T-100	MIN	ns
${ }^{\text {t }}$ AW	T-100	MIN	ns
${ }^{\text {t }}$ WA	(1/2) T-50	MIN	ns
${ }^{\text {t }}$ WW	$(3 / 2+N) T-150$	MIN	ns
${ }^{\text {I }}$ W	T	MIN	ns
${ }^{\text {twI }}$	(1/2) T	MIN	ns
thabe	(1/2) T-150	MAX	ns

Notes: (1) $N=$ Number of Wait States
(2) $\mathrm{T}={ }^{t} \mathrm{CY} \phi$
(3) Only above parameters are ${ }^{\mathrm{C}} \mathrm{C}_{\phi}$ dependent
(4) When a crystal frequency other than 4 MHz is used ($\mathrm{t}_{\mathrm{C}} \mathrm{Y}_{\phi}=500 \mathrm{~ns}$) the above equations can be used to calculate AC parameter
values.

CLOCK TIMING

AC CHARACTERISTICS (CONT.)

TIMING WAVEFORMS
(CONT.)

WRITE OPERATION

-active only when io/m is enabled.

PACKAGE INFORMATION μ PD7801G-XXX

XXX denotes mask number
assigned by factory at time of
code verification.
Use. I.C. Socket NP32-64075G4.

7

NOTES

HIGH END SINGLE CHIP 8-BIT MICROCOMPUTER WITH 6K ROM

PRODUCT DESCRIPTION The NEC μ PD 7802 is an advanced 8 -bit general purpose single-chip microcomputer fabricated with N -Channel Silicon Gate MOS technology.
The NEC μ PD7802 is intended to serve a broad spectrum of 8 -bit designs ranging from enhanced single chip applications extending into the multi-chip microprocessor range. All the basic functional blocks -6144×8 of ROM program memory, 64×8 of RAM data memory, 8 -bit ALU, 48 1/O lines, Serial 1/O port, 12-bit timer, and clock generator are provided on-chip to enhance standalone applications. Fully compatible with the industry standard 8080A bus structure, expanded system operation can be easily implemented using any of the 8080A/8085A peripherals and memory products. Total memory space can be increased to 64 K bytes.
The powerful 140 instruction set coupled with 6 K bytes of ROM program memory and 64 bytes of RAM data memory greatly extends the range of single chip microcomputer applications. Five level vectored interrupt capability combined with a 2 microsecond cycle time enable the μ PD 7802 to compete with multi-chip microprocessor systems with the advantage that most of the support functions are on-chip.

FEATURES - NMOS Silicon Gate Technology Requiring +5 V Supply

- Complete Single-Chip Microcomputer with On-Chip ROM, RAM and-1/O
- 6K Bytes ROM
- 64 Bytes RAM
- 48 I/O Lines
- Internal 12-Bit Programmable Timer
- On-Chip 1 MHz Serial Port
- Five Level Vectored, Prioritized Interrupt Structure
- Serial Port
- Timer
- 3 External Interrupts
- Bus Expansion Capabilities
- Fully 8080A Bus Compatible
- 58 K Bytes External Memory Address Range
- On-Chip Clock Generator
- Wait Stațe Capability
- Alternate Z80TM Type Register Set
- Powerful 140 Instruction Set
- 8 Address Modes; Incluiding Auto-Increment/Decrement
- Multi-Level Stack Capabilities
- Fast $2 \mu \mathrm{~s}$ Cycle Time
- Bus Sharing Capabilities

PIN CONFIGURATION

$\mathrm{PE}_{15} / \mathrm{AB} 15$	1		64		$\mathrm{VCc}(+5 \mathrm{~V})$
¢OUT	2		63		$\mathrm{PE}_{14} / \mathrm{AB} \mathrm{B}_{14}$
DB7	3		62	\square	$P \mathrm{PE}_{13} / \mathrm{AB} 13$
DB6	4		61		$\mathrm{PE}_{12} / \mathrm{AB}_{12}$.
$\mathrm{DB5}_{5}$	5		60	\square	PE ${ }_{11} / \mathrm{AB} \mathrm{B}_{1.1}$
DB_{4}	6		59		$\mathrm{PE}_{10} / \mathrm{AB} 10$
$\therefore \mathrm{DB}_{3} \mathrm{~B}$	7.		58]	PEg/ABg
DB_{2}	8		57		PEg/AB8
DB1 5	9		56	\square	PE ${ }_{7}{ }^{\prime} \mathrm{AB}_{7}$
DBoL	10		55		$\mathrm{PE}_{6} / \mathrm{AB} \mathrm{B}_{6}$
$\mathrm{INT}_{2} \mathrm{C}$	11		54	\square	$\mathrm{PE}_{5} / \mathrm{AB}_{5}$
INT1	12		53		$\mathrm{PE}_{4} / \mathrm{AB}_{4}$
INTO	13		52]	$\mathrm{PE}_{3} / \mathrm{AB}_{3}$
WAIT	14		51		$\mathrm{PE}^{\mathrm{P}} \mathrm{E}_{2} / \mathrm{AB}$
	15 16	${ }_{\text {MPD }}$	49	-	- ${ }^{P E_{1} / A E_{0} / A B_{1}}$
RD 5	17	7802	48	2	$\mathrm{PB7}^{\text {P }}$
$\mathrm{PC7}^{2}$	18		47		PB6
PC6	19		46	\square	PB_{5}
PC_{5}	20		45		PB_{4}
PC4 ${ }^{\text {P }}$	21		44	\square	PB3
$\mathrm{PC}_{3} \square$	22		43		PB_{2}
$\mathrm{PC}_{2} \mathrm{~S}^{2}$	23		42	\square	PB_{1}
$\mathrm{PC}_{1} \square$	24		41		PBo
PCo ${ }^{-1}$	25		40	\square	PA7
SCR	26		39		PA6
Si C ${ }^{2}$	27		38	\square	PA5
So ${ }^{2}$	28		37		PA4
RESET [2	29		36	\square	PA3
$\times_{2} \square$	30		35		PA_{2}
x_{1} 口	31		34	I	PA_{1}
$\mathrm{Vss}(0 \mathrm{~V}) \square$	32		33		PPAO

TM: Z80 is a registered trademark of Zilog, Inc.

PIN NO.	DESIGNATION	FUNCTION:
1, 49-63	$\mathrm{PE}_{0} / \mathrm{AB}_{0}{ }^{-}$	(Tri-State, Output) 16-bit address bus.
2	$P E_{15} / A B_{15}$	
		(Output) ϕ OUT provides a prescaled output clock for use with external $1 /()$ devices or memories. ϕ OUT frequency is fXTAL/2.
3-10	$\mathrm{DB}_{0}-\mathrm{DB}_{7}$	(Tri-State Input/Output, active high) 8 -bit true bi-directional data bus used for external data exchanges with I/O and memory.
11	INT0	(Input, active high) Level-sensitive interrupt input.
12	INT1	(Input, active high) Rising-edget sensitive interrupt input. Interrupts are initiated an low-to-high transitions, providing interrupts are enabled.
13	INT ${ }_{2}$	(Input) INT2 is an edge sensitive interrupt input where the desired activation transition is programmable. By setting the ES bit in the Mask Register to a $1, \mathrm{INT}_{2}$ is rising edge sensitive. When ES is set to $0, \mathrm{INT}_{2}$ is falling edge sensitive.
14	WAIT	(Input, active low) WAIT, when active, extends read or write timing to interface with slower external memory or I/O. WAIT is sampled at the end of T_{2}, if active processor enters a wait state TW and remains in that state as long as WAIT is active.
15	M1	(Output, active high) when active, M1 indicates that the current machine cycle is an OP CODE FETCH.
16	$\overline{W R}$	(Tri-State Output, active low) $\overline{W R}$, when active, indicates that the data bus holds valid data. Used as a strobe signal for external memory or $1 / 0$ write operations. WR goes to the high impedance state during HALT, HOLD, or RESET.
17	$\overline{\mathrm{RD}}$	(Tri-State Output, active low) RD is used as a strobe to gate data from external devices onto the data bus. $\overline{\mathrm{RD}}$ goes to the high impedance state during HALT, HOLD, and RESET.
18-25	$\mathrm{PC}_{0}-\mathrm{PC}_{7}$	(Input/Output) 8 -bit I/O contigured as a nibble I/O port or as control lines.
26	$\overline{\text { SCK }}$	(Input/Output) $\overline{\text { SCK }}$ provides control clocks for Serial Port Input/Output operations. Data on the SI line is clocked into the Serial Register on the rising edge. Contents of the Serial Register is clocked onto SO line on falling edges.
27	SI	(Input) Serial data is input to the processor through the SI line. Data is clocked into the Serial Register MSB to LSB with the rising edge of SCK.
28	SO	(Output) SO is the Serial Output Port. Serial data is output on this line on the falling edge of SCK, MSB to LSB.
29	RESET	(Input, active low) $\overline{\text { RESET }}$ initializes the μ PD7802.
30	X_{2}	(Output) Oscillator output.
31	X_{1}	(Input) Clock Input
33-40	$\mathrm{PA}_{0}-\mathrm{PA} 7$	(Output) 8-bit output port with latch capability.
41.48	$\mathrm{PB}_{0}-\mathrm{PB} 7$	(Tri-State Input/Output) 8-bit programmable I/O port. Each line configurable independently as an input or output.

BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION

Memory Map
The μ PD7802 can directly address up to 64 K bytes of memory. Except for the on-chip ROM ($0-6144$) and RAM $(65,471-65,535)$, any memory location can be used as either ROM or RAM. The following memory map defines the $0-64 \mathrm{~K}$ byte memory space for the μ PD7802 showing that the Reset Start Address, Interrupt Start Address, Call Tables, etc., are located in the Internal ROM area.

I/O PORTS

PORT	FUNCTIONS
Port A	8-bit output port with latch
Port B	8-bit programmable Input/Output port w/latch
Port C	8-bit nibble I/O or Control port
Port E	16-bit Address/Output Port

Port A

Port A is an 8 -bit latched output port. Data can be readily 1 ransferred between the accumulator and the output latch buffers. The contents of the output latches can be modified using Arithmetic and Logic instructions. Data remains latched at Port A unless acted on by another Port A instruction or a RESET is issued.

Port B

Port B is an 8-bit I/O port. Data is latched at Port B in both the Input or Output modes. Each bit of Port B can be independently set to either Input or Output modes. The Mode B register programs the individual lines of Port B to ke either an Input (Mode $B_{n=1}$) or an Output (Mode $B_{n=0}$).

Port C

Port C is an 8 -bit I / O port. The Mode C register is used to program the upper 6 bits of Port C to provide control functions or to set the $1 / \mathrm{O}$ structure per the following table.

	MODE $\mathrm{C}_{\mathrm{n}}=0$	MODE $\mathrm{C}_{\mathrm{n}}=1$
PC_{0}	Output	Input
PC_{1}	Output	Input
PC_{2}	$\overline{\text { SCS Input }}$	Input
PC_{3}	SAK Output	Output
PC_{4}	To Output	Output
PC_{5}	IO/M Output	Output
PC_{6}	HLDA Output	Output
PC_{7}	HOLD Input	Input

Port E

Port \mathbf{E} is a 16 -bit address bus/output port. It can be set to one of three operating modes using the PER, PEN, or PEX instructions.

- 16-Bit Address Bus - the PER instruction sets this mode for use with external I/O or memory expansion (up to 60 K bytes, externally).
- 4-Bit Output Port/12 Bit Address Bus - the PEN instruction sets this mode which allows for memory expansion of an additional 4 K bytes, externally, plus the transfer of 4-bit nibbles.
- 16-Bit Output Port - the PEX instruction sets Port E to a 16 -bit output port. The contents of B and C registers appear on $P E_{8-15}$ and $P E_{0-7}$, respectively.

TIMER OPERATION

TIMER BLOCK DIAGRAM

A programmable 12-bit timer is provided on-chip for measuring time intervals, generating pulses, and general time-related control functions. It is capable of measuring time intervals from $4 \mu \mathrm{~s}$ to 16 ms in duration. The timer consists of a prescaler which decrements a 12 -bit counter at a fixed $4 \mu \mathrm{~s}$ rate. Count pulses are loaded into the 12 -bit down counter through timer register (TMO and TM1). Count-down operation is initiated upon extension of the STM instruction when the contents of the down counter are fully decremented and a borrow operation occurs, an interval interrupt (INTT) is generated. At the same time, the contents of TM0 and TM1 are reloaded into the down-counter and countdown operation is resumed. Count operation may be restarted or initialized with the STM instruction. The duration of the timeout may be 'altered by loading new contents into the down counter.

The timer flip flop is set by the STM instruction and reset on a countdown operation. Its output (TO) is available externally and may be used in a single pulse mode or general external synchronization.

Timer interrupt (INTT) may be disabled through the interrupt.

SERIAL PORT OPERATION

SERIAL PORT BLOCK DIAGRAM

The on-chip serial port provides basic synchronous serial coinmunication functions allowing the NEC μ PD7802 to serially interface with external devices.
Serial Transfers are synchronized with either the internal clock or an external clock input ($\overline{\mathrm{SCK}}$). The transfer rate is fixed at $1 \mathrm{Mbit} /$ second if the internal clock is used or is variable between DC and $1 \mathrm{Mbit} /$ second when an external clock is used. The Clock Source Select is determined by the Mode C register. The serial clock (internal or external SCR) is enabled when the Serial Chip Select Signal (SCS) goes low. At this time receive and transmit operations through the Serial Input port (SI)/Serial Output port (SO) are enabled. Receive and transmit operations are performed MSB first.
Serial Acknowledge (SAK) goes high when data transfers between the accumulator and Serial Register is completed. SAK goes low when the buffer becomes full after the completion of serial data receive or transmit operations. While SAK is low, no further data can be received.

INTERRUPT STRUCTURE

The μ PD7802 provides a maskable interrupt structure capable of handling vectored prioritized interrupts. Interrupts can be generated from six different sources; three external interrupts, two internal interrupts, and a non-maskable software interrupt. Each interrupt when activated branches to a designated memory vector location for that interrupt.

INT	VECTORED MEMORY LOCATION	PRIORITY	TYPE
INTT	8	3	Internal, Timer Overflow
INTS	64	6	Internal, Serial Buffer Full/Empty
INT0	4	2	Ext., level sensitive
INT1	16	4	Ext., Rising edge sensitive
INT2	32	5	Ext., Rising/Falling edge sensitive
SOFTI	96	1	Software Interrupt

FUNCTIONAL DESCRIPTION (CONT.)

RESET (Resot)

An active low-signal on this input for more than 4μ s forces the μ PD7802 into a Reset condition. $\overline{\text { RESET }}$ affects the following internal functions:

- The Interrupt Enable Flags are reset, and Interrupts are inhibited.
- The Interrupt Request Flag is reset.
- The HALT flip flop is reset, and the Halt-state is released.
- The contents of the MODE B register are set to FF_{H}, and Port B becomes an input port.
- The contents of the MODE C register are set to FFH. Port C becomes an 1/O port and output lines go low.
- All Flags are reset to 0 .
- The internal COUNT register for timer operation is set to FFFH and the timer F / F is reset.
- The ACK F/F is set.
- The HLDA F/F is reset.
- The contents of the Program Counter are set to 0000 H .
- The Address Bus (PE0-15), Data Bus (DB0.7), $\overline{R D}$, and WR go to a high impedance state.
Once the RESET input goes high, the program is started at location 0000 H .
REGISTERS The μ PD7802 contains sixteen 8 -bit registers and two 16 -bit registers.

| PC |
| :---: | :---: |
| $S P$ |

0	A
V	A
B	C
D	E
H	L
	A^{\prime}
V^{\prime}	C^{\prime}
B^{\prime}	E^{\prime}
D^{\prime}	L^{\prime}
H^{\prime}	

General Purpose Registers (B, C, D, E, H, L)

There are two sets of general purpose registers (Main: B, C, D, E, H, L: Alternate: $\left.\mathrm{B}^{\prime}, \mathrm{C}^{\prime}, \mathrm{D}^{\prime}, \mathrm{H}^{\prime}, \mathrm{L}^{\prime}\right)$. They can function as auxiliary registers to the accumulator or in pairs as data pointers ($B C, D E, H L, B^{\prime} C^{\prime}, D^{\prime} E^{\prime}, H^{\prime} L^{\prime}$). Auto Increment and Decrement addressing mode capabilities extend the uses for the DE, HL, $D^{\prime} E^{\prime}$, and $H^{\prime} L^{\prime}$ register-pairs. The contents of the $B C, D E$, and HL register-pairs can be exchanged with their Alternate Register counterparts using the EXX instruction.

Vector Register (V)

When defining a scratch pad area in the memory space, the upper 8 -bit memory address is defined in the V-register and the lower 8 -bits is defined by the immediate data of an instruction. Also the scratch pad indicated by the V-register can be used as $\mathbf{2 5 6 \times 8} \mathbf{8}$-bit working registers for storing software flags, parameters and counters.

Accumulator (A)

All data transfers between the μ PD7802 and external memory or $1 / 0$ are done through the accumulator. The contents of the Accumulator and Vector Registers can be exchanged with their Alternate Registers using the EX instruction.

Program Counter (PC)
The PC is a 16 -bit register containing the address of the next instr sction to be fetched. Under normal program flow, the PC is automatically incremented. However, in the case of a branch instruction, the PC contents are from another register or an instruction's immediate data. A reset sets the PC to 0000 H .

Stack Pointor (SP)

The stack pointer is a $\mathbf{1 6}$-bit register used to maintain the top of the stack area (last-in-first-out). The contents of the SP are decremented during a CALL or PUSH instruction or if an interrupt occurs. The SP is incremented during a RETURN or POP instruction.

The instruction opcode specifies a register r which contains the operand.
Register Indirect Addressing

The instruction opcode specifies a register pair which contains the memory address of the operand. Mnemonics with an X suffix are ending this address mode.

Auto-Increment Addressing

The opcode specifies a register pair which contains the memory address of the operand. The contents of the register pair is automatically incromented to point to a new operand. This mode provides automatic sequential stepp ing when working with a table of operands.

Working Register Addressing

The contents of the register is linked with the byte following the opcode to form a memory address whose contents is the operand. The V register is used to indicate the memory page. This address mode is useful as a short-offset address mode when working with operands in a common memory page where only 1 additional byte is required for the address. Mnemonics with a W suffix ending this address mode.

Direct Addressing

$P C$	OPCODE
$P C+1$	Low Address
$P C+2$	High Address
	\ddots

The two bytes following the opcode specify an address of a location containing the operand.

Immediate Addressing

> PC
> $\mathrm{PC}+1$

OPCODE
OPERAND
Immediate Extended Addressing
PC
$P C+1$
OPCODE
Low Operand
$P C+2$

OPERAND	DESCRIPTION
r	V, A, B, C, D, E, H, L
$r 1$	B, C, D, E, H, L
$r 2$	A, B, C
$s r$	PA PB PC MK MB MC TMD TM1 S
sr1	PA PB PC MK
sr2	PA PB PC MK
$r p$	SP, B, D, H
rp1	V, B, D, H
rpa	B, D, H, D+, H+, D-, H-
rpa1	B, D, H
wa	8 bit immediate data
word	16 bit immediate data
byte	8 bit immediate data
bit	3 bit immediate data
f	F0, F1, F2, FT, FS,

Notes: 1. When special register operands sr, sr1, sr2 are used; $P A=P o r t A, P B=P o r t B$, PC=Port C, MK=Mask Register, MB=Mode B Ragister, MC=Mode C Register, TMO = Timer Register 0, TM1 = Timer Register 1, $\mathrm{S}=$ Serial Register.
2. When register pair operands $r p, r p 1$ are used; $S P=$ Stack Pointer, $B=B C$, $D=D E, H=H L, V=V A$.
3. Operands $\mathrm{rPa}, \mathrm{rPa}$ 1, wa are used in indirect addressing and auto-increment/ auto-decrement addressing modes.
$B=(B C), D=(D E), H=(H L)$
$D+=(D E)^{+}, H+=(H L)^{+}, D-=(D E)^{-}, H-=(H L)^{-}$.
4. When the interrupt operand f is used; $F 0=1 N T F 0, F 1=1 N T F 1, F 2=I N T F 2$, FT=|NTFT, FS=|NTFS.

INSTRUCTION GROUPS

MNEMONIC	OPERANDS	NO.BYTES	$\begin{aligned} & \text { CLOCK } \\ & \text { CYCLES } \end{aligned}$	OPERATION	SKIP CONDITION	FLAGS	
						CY	2
8-BIT DATA TRANSFER							
MOV	r1, A	1	4	r - A			
MOV	A, r1	1	4	$A \leftarrow r 1$			
MOV	sr, A	2	10	$\mathbf{s r} \leftarrow \mathrm{A}$			
MOV	A, sr 1	2	10	$A \leftarrow s r 1$			
MOV	r, word	4	17	$r+$ (word)			
MOV	word, r	4	17	(word) $\leftarrow r$			
MVI	r, byte	2	7	r - byte			
MVIW	wa, byte	3	13	(V, wa $) \leftarrow$ byte			
MVIX	rpa1, byte	2	10	(rpa1) - byte			
STAW	wa	2	10	$(V$, wa $) \leftarrow A$			
LDAW	wa	2	10	$A \leftarrow(V, w a)$			
STAX	rpa	1	7	(rpa) - A			
LDAX	rpa	1	7	A - (rpa)			
EXX		1	4	Exchange register sets			
EX	\because	1	4	$V, A \rightarrow V, A$			
BLOCK		1	13 (C+1)	$(D E)^{+} \leftarrow(H L)^{+}, C \leftarrow C-1$			
16-BIT DATA TRAN8FER							
SBCD	word	4	20	$($ word $) \leftarrow C, ~($ word +1$) \leftarrow \mathrm{B}$			
SDED	word	4	20	$($ word $) \leftarrow E,($ word +1$) \leftarrow D$			
SHLD	word	4	20	$($ word $) \leftarrow L, ~($ word +1$) \leftarrow H$			
SSPD	word	4	20	$($ word $) \leftarrow \mathrm{SP}_{\mathrm{L}}$ ((word +1$) \leftarrow \mathrm{SP}_{\mathrm{H}}$			
LBCD	word	4	20	$\mathrm{C} \leftarrow($ word $), \mathrm{B} \leftarrow($ word +1$)$			
LDED	word *	4	20	E-(word), D - (word + 1)			
LHLD	word	4	20	$L \leftarrow($ word $), \mathrm{H} \leftarrow($ word +1$)$			
LSPD	word	4	20	$S P_{L} \leftarrow($ word $), S P_{H} \leftarrow$ (word +1$)$			
PUSH	rp1	2	17	$(S P-1) \leftarrow \mathrm{rP}^{1} \mathrm{H},(S P-2) \leftarrow \mathrm{rP}^{1} \mathrm{~L}$,		
POP	rp1	2	15	$\begin{aligned} & r p 1_{L} \leftarrow(S P) \\ & r p 1_{H} \leftarrow(S P+1), S P \leftarrow S P+2 \end{aligned}$			
LXI	rp, word	3	10	rp ¢ word			
TABLE		1	19	$\begin{aligned} & C \leftarrow(P C+2+A) \\ & B \leftarrow(P C+2+A+1) \end{aligned}$			

INSTRUCTION GROUPS (CONT.)

MNEMONIC	OPERANDS	NO. BYTES	CLOCK CYCLES	OPERATION	$\begin{gathered} \text { SKIP } \\ \text { CONDITION } \end{gathered}$	FLAGS	
						CY	Z
ARITHMETIC							
ADD	A, r	2	8	$A \leftarrow A+r$		\ddagger	\ddagger
ADD	r, A	2	8	$r \leftarrow r+A$		\ddagger	\uparrow
ADDX	rpa	2	11	$A \leftarrow A+(r p a)$		\ddagger	\downarrow
ADC	A, r	2	8	$A \leftarrow A+r+C Y$		\downarrow	\ddagger
ADC	r, A	2	8	$r \leftarrow r+A+C Y$		\downarrow	\downarrow
ADCX	rpa	2	11	$A \leftarrow A+(r p a)+C Y$		\pm	\ddagger
SUB	A, r	2	8	$A \leftarrow A-r$		\uparrow	\ddagger
SUB	r, A	2	8	$r \leftarrow r-A$		\downarrow	\pm
SUBX	rpa	2	11	$A \leftarrow A-(r p a)$		\ddagger	\ddagger
SBB	A, r	2	8	$A-A-r-C Y$		\uparrow	\pm
SBB	r, A	2	8	$r-r-A=C Y$		\ddagger	\uparrow
SBBX	rpa	2	11	$A-A-(r p a)-C Y$		\pm	\ddagger
ADDNC	A, r	2	8	$A \leftarrow A+r$	No Carry	\ddagger	\ddagger
ADDNC	r, A	2	8	$r \leftarrow r+A$	No Carry	\ddagger	\ddagger
ADDNCX	rpa	2	.11	$A \leftarrow A+(r p s)$	No Carry	\$	\uparrow
SUBNB	A, r	2	8	$A \leftarrow A-r$	No Borrow	\ddagger	\ddagger
SUBNB	r, A	2	8	$r \leftarrow r-A$	No Borrow	\pm	\ddagger
SUBNBX	rpa	2	11	$A \leftarrow A-(r p a)$	No Borrow	\uparrow	\ddagger
LOGICAL							
ANA	A, r	2	8	$A \leftarrow A \wedge r$			\downarrow
ANA	r, A	2	8	$r \leftarrow r \wedge A$			\downarrow
ANAX	rpa	2	11	$A \leftarrow A \wedge(r p a)$			\ddagger
ORA	A, r	2	8	$A \leftarrow A \vee r$			\downarrow
ORA	r, A	2	8	$r \leftarrow r \vee A$			\ddagger
ORAX	rpa	2	11	$A \leftarrow A \vee(r p a)$			\downarrow
XRA	A, r	2	8	$A \leftarrow A \forall r$			\ddagger
XRA	r, A	2	8	$A \leftarrow r \forall A$			\ddagger
XRAX	rpa	2	11	$A \leftarrow A \forall$ (rpa $)$			\ddagger
GTA	A, r	2	8	$A-r-1$	No Borrow	\downarrow	\uparrow

INSTRUCTION GROUPS (CONT.)

MNEMONIC	OPERANDS	NO. BYTES	$\begin{aligned} & \text { CLOCK } \\ & \text { CYCLES } \end{aligned}$	OPERATION	SKIP CONDITION	Flags	
						CY	z
LOGICAL (CONT.)							
GTAX	rpa	2	11	A - (rpa) - 1	No Borrow	1	\ddagger
LTA	A, r	2	8	A-r	Borrow	\pm	4
LTA	r, A	2	8	$r-A$	Borrow	\ddagger	\pm
LTAX	rpa	2	11	A - (rpa)	Borrow	\uparrow	\ddagger
ONA	A, r	2	8	A^r	No Zero		\ddagger
ONAX	rpa	2	11	$A \wedge(r p a)$	No Zero		\ddagger
OFFA	A, r	2	8	$A \wedge r$	Zero		\pm
OFFAX	rpa	2	11	$A \wedge$ (rpa)	Zero		\ddagger
NEA	A, r	2	8	A - r	No Zero	\uparrow	\ddagger
NEA	r, A	2	8	$r-A$	No Zero	1	\ddagger
NEAX	rpa	2	11	A - (rpal	No Zero	\pm	\ddagger
EQA	A, r	2	8	A - r	Zero	\ddagger	\pm
EQA	r, A	2	8	$r-A$	Zero	\pm	\ddagger
EQAX	rpa	2	11	A - (rpa)	Zero	1	\ddagger
IMMEDIATE DATA TRANSFER (ACCUMULATOR)							
XRI	A, byte	2	7	$A \leftarrow A \forall$ byte			\downarrow
ADINC	A, byte	2	7	$A-A+$ byte	No Carry	\pm	\dagger
SUINB	A, byte	2	7	$A \leftarrow A-b y t e$	No Borrow	\pm	\ddagger
ADI	A, byte	2	7	$A \leftarrow A+$ byte		\pm	\dagger
ACl	A, byte	2	7	$A \leftarrow A+b y t e+C Y$		\ddagger	\pm
SUI	A, byte	2	7	$A \leftarrow A-b y t e$		\ddagger	\ddagger
SBI	A, byte	2	7	$A \leftarrow A-b y t e-C Y$		\pm	\pm
ANI	A, byte	2	7	$A \leftarrow A \wedge$ byte			\dagger
ORI	A, byte	2	7	$A \sim A \vee b y t e$			\pm
GTI	A, byte	2	7	A-byte-1	No Borrow	\ddagger	\ddagger
LTI	A, bute	2	7	A-byte	Borrow	\pm	\pm
ONI	A, byte	2	7	A \wedge byte	No Zero		\ddagger
OFFI	A, byte	2	7	A \wedge byte	Zero		\pm
NEI	A, byte	2	7	A-byse	No Zero	\pm	\ddagger
EQI	A, byte	2	7	A-byte	Zero	\pm	+

INSTRUCTION GROUPS (CONT.)

MNEMONIC	OPERANDS	$\begin{aligned} & \text { NO. } \\ & \text { BYTES } \end{aligned}$	$\begin{array}{\|c\|c\|} \text { CLOCK } \\ \text { CYCLES } \end{array}$	OPERATION	SKIP CONDITION	FLAGS	
						CY	2
IMMEDIATE DATA TRANSFER							
XRI	r, byte	3	11	r-r \forall byte			\uparrow
ADINC	r, byte	3	11	$r \leftarrow r+$ byte	No Carry	\ddagger	\pm
SUINB	r, byte	3	11	$r \leftarrow r-b y t e$	No Borrow	\ddagger	\ddagger
ADI	r, byte	3	11	$r<r+$ byte		\pm	\ddagger
ACl	r, byte	3	11	$r-r+b y t e+c Y$		\pm	\ddagger
SUI	r, byte	3	11	$r \leftarrow r$-byte		\pm	\ddagger
SBI	r, byte	3	11	$r \leftarrow r$-byte - CY		\ddagger	\ddagger
ANI	r, byte	3	11	$r \leftarrow r$ Abyte		\ddagger	\ddagger
ORJ	r, byte	3	11	r revbyte			\ddagger
GTI	r, byte	3	11	r-byte - 1	No Borrow	\ddagger	t
LTI	r, byte	3	11	r-byte	Borrow	1	\ddagger
ONI	r, byte	3	11	rebyte	No Zero		\pm
OFFI	r, byte	3	11	rabyte	Zero		\ddagger
NEI	r, byte	3	11	r-byte	No Zero	\downarrow	\ddagger
EQI	r, byte	3	11	r-byte	Zero	\ddagger	\pm
IMMEDIATE DATA TRANSFER (SPECIAL REGISTER)							
XRI	sr2, byte	3	17	$\mathrm{sr} 2 \sim \mathrm{sr} 2 \forall$ byte			\ddagger
ADINC	sr2, byte	3	17	sr2 2 sr2 + byte	No Carry	\ddagger	\ddagger
SUINB	sr2, byte.	3	17	sr2 -3 r 2 - byte	No Borrow	\uparrow	\ddagger
ADI	sr2, byte	3	17	sr2 2 sr2 + byte		\ddagger	\ddagger
ACI	sr2, byte	3	17	sr2 2 sr2 + byte +CY		\ddagger	\ddagger
SUI	sr2, byte	3	17	sr2 -sr 2 - byte		\ddagger	\ddagger
SBI	sr2, byte	3	17	sr2 - sr2-byte - CY		\pm	\ddagger
ANI	sr2, byte	3	17	sr2 2 sr2 $\mathrm{sbyte}^{\text {b }}$			\ddagger
ORI	sr2, byte	3	17	st2 2 sr2 Vbyte			\ddagger
GTI	sr2, byte	3	14	sr2-byte-1	No Borrow	\ddagger	\pm
LTI	sr2, byte	3	14	sr2 - byte	Borrow	\ddagger	t
ONI	sr2, byte	3	14	sr2^byte	No Zero		\downarrow

INSTRUCTION GROUPS (CONT.)

					SKIP	FLAGS	
MNEMONIC	OPERANDS	BYTES	CYCLES	OPERATION	CONDITION	CY	2
IMMEDIATE DATA TRANSFER (SPECIAL REGISTER) (CONT.)							
OFFI	sr2, byte	3	14	sr2^byte	Zero		\pm
NEI	sr2, byte	3	14	sr2 - byte	No Zero	\pm	\ddagger
EQI	sr2, byte	3	14	sr2-byte	Zero	\pm	\ddagger
WORKING REGISTER							
XRAW	wa	3	14	$A \leftarrow A \forall(V, w a)$			\uparrow
ADDNCW	wa	3	14	$A \leftarrow A+(V, w a)$	No Carry	t	\ddagger
SUBNBW	wa	3	14	$A \leftarrow A-(V, w a)$	No Borrow	\ddagger	\ddagger
ADDW	wa	3	14	$A \leftarrow A+(V, w a)$		\ddagger	\ddagger
ADCW	wa	3	14	$A \leftarrow A+(V, w a)+C Y$		\ddagger	\ddagger
SUBW	wa	3	14	$A \leftarrow A-(V, w a)$		\ddagger	\ddagger
SBBW	wa	3	14	$A \leftarrow A-(V, w a)-C W$		\ddagger	\pm
ANAW	wa	3	14	$A \leftarrow A \wedge(V$, wa $)$			\pm
ORAW	wo	3	14	$A \leftarrow A \vee(V, w a)$			\pm
GTAW	wa	3	14	$A \leftarrow(V, w a)-1$	No Borrow	\uparrow	\ddagger
LTAW	wa	3	14	$A-(V, w a)$	Borrow	\ddagger	\ddagger
ONAW	wa	3	14	$A \wedge(V$, wa)	No Zero		\dagger
OFFAW	wa	3	14	$A \wedge(V, w a)$	Zero		\ddagger
NEAW	wa	3	14	$A-(V, w a)$	No Zero	\pm	\ddagger
EQAW	wa	3	. 14	$A-(V, w a)$	Zero	\ddagger	\ddagger
ANIW	wa, byte	3	16	$(V$, wa $) \leftarrow(V$, wa) ^byte			1
ORIW	wa, byte	3	16	$(V$, wa $) \leftarrow(V$, wal V byte			\downarrow
GTIW	wa, byte	3	13	(V, wa) - byte-1	No Borrow	\pm	\downarrow
LTIW	wa, byte	3	13	(V, wa) - byte	Borrow	\pm	t
ONIW	wa, byte	3	13	(V, wal^ byte	No Zero		\uparrow
OFFIW	wa, byte	3	13	(V, wa) ^ byte	Zero		\pm
NEIW	wa, byte	3	13	(V, wa) - byte	No Zero	\ddagger	\ddagger
EQIW	wa, byte	3	13	(V, wa) - byte	Zero	\pm	\ddagger
INCREMENT/DECREMENT							
INR	r2	1	4	$r 2 \leftarrow r 2+1$	Carry		\ddagger
INRW	wa	2	13	$(V, w a) \leftarrow(V, w a)+1$	Carry		\ddagger

INSTRUCTION GROUPS (CONT.)

MNEMONIC	OPERANDS	$\begin{gathered} \text { NO. } \\ \text { BYTES } \end{gathered}$	$\begin{gathered} \text { CLOCK } \\ \text { CYCLES } \end{gathered}$	OPERATION	SKIP CONDITION	FLAGS	
						CV	z
INCREMENT/DECREMENT (CONT.)							
DCA	r2	1	4	r2-r2-1	Borrow		\ddagger
DCRW	wa	2	13	$(V, w a) \leftarrow(V, w a)-1$	Borrow		\uparrow
INX	rp	1	7	$r p \leftarrow r p+1$			
DCX	rp	1	7	$r p \leftarrow r p-1$			
DAA		1	4	Decimal Adjust Accumulator		\ddagger	\ddagger
STC		2	8	$C Y \leftarrow 1$		1	
CLC		2	8	CY $\leftarrow 0$		0	
ROTATE AND SHIFT							
RLD		2	17	Rotate Left Digit	.		
RRD		2	17	Rotate Right Digit			
RAL		2	8	$A m+1 \leftarrow A m, A_{0} \leftarrow C Y, C Y \sim A_{7}$		\ddagger	
RCL		2	8	$\mathrm{Cm}+1 \leftarrow \mathrm{Cm}, \mathrm{C}_{0} \leftarrow \mathrm{CY}, \mathrm{CY} \leftarrow \mathrm{C}_{7}$		\downarrow	
RAR		2	8	$A m-1 \leftarrow A m, ~ A 7 \leftarrow C Y, C Y * A_{0}$		\pm	
RCR		2	8	$\mathrm{Cm}-1-\mathrm{Cm}, \mathrm{C}_{7}+\mathrm{CY}, \mathrm{CY} \leftarrow \mathrm{C}_{0}$		\downarrow	
SHAL		2	8	$A m+1 \leftarrow A m, A_{0} \leftarrow 0, C Y \leftarrow A_{7}$		\pm	
SHCL		2	8	$\mathrm{Cm}+1 \leftarrow \mathrm{CM}, \mathrm{C}_{0} \leftarrow 0, \mathrm{CY} \leftarrow \mathrm{C}_{7}$		\ddagger	
SHAR		2	8	$A m-1 \leftarrow A m, ~ A 7 \leftarrow O, C Y \leftarrow A_{0}$		\pm	
SHCR		2	8	$\mathrm{Cm}-1 \leftarrow \mathrm{Cm}_{\mathrm{m}} \mathrm{C}_{7}-\mathrm{O}, \mathrm{CY} \leftarrow \mathrm{CO}_{0}$		\pm	
JUMP							
JMP	word	3	10	PC \leftarrow word			
JB		1	4	$P C_{H} \leftarrow \mathrm{~B}, \mathrm{PC} C_{L} \leftarrow \mathrm{C}$			
JR	word	1	13	$\mathrm{PC} \leftarrow \mathrm{PC}+1+\mathrm{jdisp} 1$			
JRE	word	2	13	$\mathrm{PC} \leftarrow \mathrm{PC}+2+j$ disp			
CALL							
CALL	word	3	16	$\begin{aligned} & (S P-1) \leftarrow(P C-3)_{H},(S P-2) \leftarrow \\ & (P C-3)_{L}, P C-\text { word } \end{aligned}$			
CALB		1	13	$\begin{aligned} & (S P-1)+(P C-1)_{H},(S P-2) \\ & (P C-1)_{h}, P C_{H}-B, P C_{L}-C \end{aligned}$			
CALF	word	2	16	$\begin{aligned} & (\mathrm{SP}-1)+(\mathrm{PC}-2)_{\mathrm{H}},(\mathrm{SP}-2)+(\mathrm{PC}-2)_{\mathrm{L}} \\ & \mathrm{PC} 15 \sim 11 \leftarrow 00001, \mathrm{PC} 10 \sim 0-\mathrm{fa} \end{aligned}$			
CALT	word	1	19	$\begin{aligned} & (S P-1) \leftarrow(P C-1)_{H},(S P-2)+(P C-1)_{\mathrm{L}} \\ & \mathrm{PC}_{\mathrm{L}}-(128-2 \mathrm{ta}), \mathrm{PC}_{H}+(129+2 \mathrm{ta}) \end{aligned}$			
SOFTI		1	19	$\begin{aligned} & (S P-1) \leftarrow P S W, S P-2,(S P-3) \leftarrow P C \\ & P C \leftarrow 0060_{H}, S I R Q \leftarrow 1 \end{aligned}$			

INSTRUCTION GROUPS (CONT.)

MNEMONIC	OPERANDS	NO.	CLOCK			
BYTES	CYCLES			\quad OPERATION \quad	SKIP	FLAGS
:---:	:---:	:---:				

RETURN						
RET		1	11	$\begin{aligned} & P_{C} \leftarrow(S P), P C_{H} \leftarrow(S P+1) \\ & S P \leftarrow S P-2 \end{aligned}$		
RETS	.	1	11+a	$\begin{aligned} & P C_{L} \leftarrow(S P), P C_{H} \leftarrow(S P+1), \\ & S P \leftarrow S P+2, P C \leftarrow P C+n \end{aligned}$		
RETI		1	15	$\begin{aligned} & P C_{L} \leftarrow(S P), P C_{H} \leftarrow(S P+1) \\ & P S W \leftarrow(S P+2), S P \leftarrow S P+3, S I R Q \leftarrow 0 \end{aligned}$		
SK.IP						
BIT	bit, wa	2	10	Bit test	$\begin{aligned} & \text { (V, wa) bit } \\ & =1 \text {) } \end{aligned}$	
SKC		2	8	Skip if Carry	$C Y=1$	
SKNC		2	8	Skip if No Carry	$C Y=0$	
SKZ		2	8	Skip if Zero	$Z=1$	
SKNZ		2	8	Skip if No Zero	Z $=0$	
SKIT	f	2	8	Skip if INT $X=1$, then reset INT X	$f=1$	
SKNIT	f	2	8	Skip if No INT X otherwise reset INT X	$\mathrm{f}=0$	
CPU CONTROL						
NOP		1	4	No Operation		
E1	.	2	8	Enable Interrupt		
DI		2	8	Disable Interrupt		
HLT		1	6	Halt		
SERIAL PORT CONTROL						
SIO		1	4	Start (Trigger) Serial 1/O		
STM		1	4	Start Timer		
INPUT/OUTPUT						
IN	byte	2	10	$\begin{aligned} & A B_{15-8} \leftarrow B, A B_{7-0} \leftarrow \text { byte } \\ & A \leftarrow D B_{7-0} \end{aligned}$		
OUT	byte	2	10	$\begin{aligned} & {A B_{15-8} \leftarrow B, A B_{7-0} \leftarrow \text { byte }}^{D B_{7-0} \leftarrow A} \end{aligned}$		
PEX		2	11	$P E_{15-8} \leftarrow \mathrm{~B}, \mathrm{PE}_{7-0} \leftarrow C$		
PEN		2	11	$\mathrm{PE}_{15.12-\mathrm{B}_{7-4}}$		
PER		2	11	Port E AB Mode		

7

Program Status Word (PSN) Operation

OPERATION						D6	D5	D4	D3	D2	DO
REG, MEMORY			IMMEDIATE		SKIP	Z	SK	HC	L1	LO	CY
ADD ADC SUB SBB	ADDW ADCW SUBW SBBW	ADDX ADCX SUBX SBBX	$\begin{aligned} & \text { ADI } \\ & \text { ACl } \\ & \text { SUI } \\ & \text { SBI } \\ & \hline \end{aligned}$			\ddagger	0	\downarrow	0	0	\downarrow
ANA ORA XRA	ANAW ORAW XRAW	ANAX ORAX XRAX	ANI ORI XRI	ANIW ORIW		\ddagger	0	-	0	0	-
ADDNC SUBNB GTA LTA	ADDNCW SUBNBW GTAW LTAW	ADDNCX SUBNBX GTAX LTAX	ADINC SUINB GTI LTI	GTIW LTIW		\ddagger	\ddagger	\ddagger	0	0	\downarrow
ONA OFFA	ONAW OFFAW	ONAX OFFAX	$\begin{aligned} & \text { ONI } \\ & \text { OFFI } \end{aligned}$	ONIW OFFIW		\ddagger	\ddagger	-	0	0	-
$\begin{aligned} & \text { NEA } \\ & \text { EQA } \end{aligned}$	NEAW EQAW	NEAX EQAX	$\begin{aligned} & \text { NEI } \\ & \text { EQI } \end{aligned}$	NEIW EOIW		\downarrow	\downarrow	\ddagger	0	0	\downarrow
INR DCR	INRW DCRW				.	\uparrow	\ddagger	\ddagger	0	0	-
DAA						1	0	1	0	0	1
RAL, RAR, RCL, RCR SHAL, SHAR, SHCL, SHCR						\bullet	0	-	0	0	\downarrow
RLD, RRD						\bullet	0	\bullet	0	0	\bullet
STC						-	0	-	0	0	1
CLC						\bullet	0	\bullet	0	0	0
			MVI A, byte		-	\bullet	0	-	1	0	\bullet
			MVI L, byte LXI H, word			-	0	-	0	1	-
					EIT SKC SKNC SKZ SKNZ SKIT SKNIT	-	\downarrow	-	0	0	\bullet
					FIETS	-	1	-	0	0	\bullet
All other instructions						-	0	\bullet	0	0	\bullet

\ddagger Flag affected according to result of operation
1 Flag set
0 Flag reset

- Flag not affected
ABSOLUTE MAXIMUM Operating Temperature . $-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ RATINGS*
orage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage On Any Pin . -0.3 V to +7.0 V
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
*COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC CHARACTERISTICS -10 to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	LIMITS			UNITS	TEST CONDITIONS
		MIN	TYP	MAX		
Input Low Voltage	$V_{\text {IL }}$	0		0.8	V	
Input High Voltage	$\mathrm{V}_{\text {IH1 }}$	2.0		$V_{\text {cc }}$	V	Except S'EK, X1
	$\mathrm{V}_{1 \mathrm{H} 2}$	3.8		VCC	V	SCK, X1
Output Low Voltage	VOL			0.45	V	$\mathrm{I}_{\text {OL }}=2.0 \mathrm{~mA}$
Output High Voltage	$\mathrm{VOH1}$	2.4			V	$\mathrm{I}^{\mathrm{OH}}=-100 \mu \mathrm{~A}$
	VOH_{2}	2.0			V	$\mathrm{I}^{\mathrm{OH}}=-500 \mu \mathrm{~A}$
Low Level Input Leakage Current	ILIL			-10	$\mu \mathrm{A}$	$V_{\text {IN }}=0 \mathrm{~V}$
High Level Input Leakage Current	ILIH			10	$\mu \mathrm{A}$	$V_{\text {IN }}=V_{\text {CC }}$
Low Level Output Leakage Current	${ }^{\text {ILOL}}$			-10	$\mu \mathrm{A}$	$V_{\text {OUT }}=0.45 \mathrm{~V}$
High Level Output Leakage Current	ILOH			10	$\mu \mathrm{A}$	$V_{\text {OUT }}=V_{\text {CC }}$
$V_{\text {CC }}$ Power Supply Current	ICC		110	200	mA	

CAPACITANCE $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{VCC}=\mathrm{GND}=\mathrm{OV}$

PARAMETER	SYMBOL	LIMITS			UNITS	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	C_{1}			10	pF	$\mathrm{fc}=1 \mathrm{MHz}$ All pins not under test at OV
Output Capacitance	CO_{0}			20	pF	
Input/Output Capacitance	ClO_{10}			20	pF	

-10 to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$					
CLOCK TIMING					
PARAMETER	SYMBOL	LIMITS		UNITS	TEST CONDITIONS
		MIN	MAX		
X1 Input Cycle Time	${ }^{\text {t }} \mathrm{C} \times \mathrm{X}$	227	1000	ns	
X 1 Input Low Level Width	${ }^{\text {t }} \times \times \mathrm{L}$	106		ns	
X1 Input High Level Width	${ }^{\mathrm{t}} \times \times \mathrm{H}$	106		ns	
$\phi_{\text {OUT }}$ Cycle Time	${ }^{\text {t }} \mathrm{C}$ ¢ ${ }^{\text {d }}$	454	2000	ns	
¢OUT Low Level Width	${ }_{t}{ }_{\phi \phi \text { L }}$	150		ns	
$\phi_{\text {OUT }}$ High Level Width		150		ns	
¢OUT Rise/Fall Time	$\mathrm{t}_{\mathrm{r}, \mathrm{t}} \mathrm{t}$		40	ns	

READ/WRITE OPERATION

PARAMETER	SYMBOL	LIMITS		UNITS	TEST
		MIN	MAX		
$\overline{\text { RD L.E. } \rightarrow \text { ¢ OUT L.E. }}$	${ }^{\text {t }} \boldsymbol{\phi} \phi$	100		ns	
Address (PE0-15) \rightarrow Data Input	${ }^{t}$ AD1		$550+500 \times N$	ns	
RD T.E. \rightarrow Address	${ }^{\text {tRA }}$	200(T3); 700(T4)		ns	
$\overline{\text { RD L.E. } \rightarrow \text { Data Input }}$	${ }^{\text {tRD }}$		$350+500 \times \mathrm{N}$	ns	
RDT.E. \rightarrow Data Hold Time	trDH	0		ns	
RD Low Level Width	${ }^{\text {t }}$ RR	$850+500 \times \mathrm{N}$		ns	
$\overline{\text { RD L.E. } \rightarrow \text { WAIT }}$ L.E.	${ }^{\text {tRWW }}$		450	ns	
Address (PEO-15) \rightarrow WAIT L.E.	${ }^{\text {t AWT1 }}$		650	ns	
$\overline{\text { WAIT }}$ Set Up Time (Referenced from $\phi_{\text {OUT L.E.) }}$	${ }^{\text {tWTS }}$	290		ns	
WAIT Hold Time (Referenced from фOUT L.E.)	${ }^{\text {t WTH }}$	0		ns	
$\mathrm{M} 1 \rightarrow$ RD L.E.	${ }^{\text {t MR }}$	200		ns	
RD T.E. \rightarrow M1	${ }^{\text {t }}$ RM	200		ns	$\mathrm{CY}^{\prime}{ }^{\text {d }}=500 \mathrm{~ns}$
10/M \rightarrow RD L.E.	$\mathrm{t}_{\text {IR }}$	200		ns	
RD T.E. \rightarrow 10/M	${ }_{\text {t }}^{\text {RI }}$	200		ns	
ϕ OUT L.E. \rightarrow WR L.E.	${ }^{\text {t }}$ W W	40	125	ns	
Address (PE_{0-15}) \rightarrow ϕ OUT T.E.	${ }^{\text {t }} \mathrm{A} \phi$	100	300	ns	
$\begin{aligned} & \text { Address }\left(\mathrm{PE}_{0-15}\right) \rightarrow \\ & \text { Data Output } \\ & \hline \end{aligned}$	${ }^{\text {t }}$ AD2	450		ns	
$\begin{aligned} & \text { Data Output } \rightarrow \text { WR } \\ & \text { T.E. } \end{aligned}$	${ }^{\text {t }}$ WW	$600+500 \times N$		ns	
WR T.E. \rightarrow Data Stabilization Time	twD	150		ns	
$\begin{aligned} & \text { Address }\left(\mathrm{PE}_{0.15}\right) \rightarrow \\ & \text { WR L.E. } \end{aligned}$	${ }^{\text {t }}$ AW	400		ns	
WR T.E. \rightarrow Address Stabilization Time	twA	200		ns	
WR Low Level Width	twW	$600+600 \times N$		ns	
10/M \rightarrow WR L.E.	${ }^{\text {taw }}$	500		ns	
WR T.E. \rightarrow IO/M	tWI	250		n8	

SERIALI/O OPERATION

PARAMETER	SYMBOL	MIN	MAX	UNIT	CONDITION
$\overline{\text { SCK }}$ Cycle Time	${ }^{\text {t CYK }}$	800		ns	$\overline{\text { SCK Input }}$
		900	4000	ns	SCK Output
$\overline{\text { SCK Low Level Width }}$	${ }^{\text {t K K L }}$	350		ns	SCK Input
		400		ns	SCK Output
$\overline{\text { SCK }}$ High Level Width	tKKH	350		ns	$\overline{\text { SCK }}$ Input
		400		ns,	SCK Output
SI Set-Up Time (referenced from $\overline{\text { SCK T.E.) }}$	${ }^{\text {tS }}$ IS	140		ns	
SI Hold Time (referenced from $\overline{\text { SCK T.E.) }}$	tis	260		ns	
SCK L.E. \rightarrow SO Delay Time	${ }_{\text {t }} \mathrm{KO}$		180	ns	
$\overline{\text { SCS High } \rightarrow \text { SCK }}$ L.E.	${ }^{t} \mathrm{CSK}$	100		ns	
$\overline{\text { SCK T.E. } \rightarrow \text { SCS Low }}$	tKCS	100		ns	
$\overline{\text { SCK T.E. } \rightarrow \text { SAK Low }}$	$t_{K S A}$		260	ns	

HOLD OPERATION

PARAMETER	SYMBOL	MIN	MAX	UNIT	CONDITION
HOLD Set-Up Time (referenced from ØOUT L.E.)	tHDS 1	200		ns	${ }^{\text {t }} \mathrm{CY} \phi=500 \mathrm{~ns}$
	tHDS 2	200		ns	
HOLD Hold Time (referenced from ØOUT L.E.)	${ }^{\text {t }} \mathrm{HDH}$	0		ns	
$\wp_{\text {OUT L.E. } \rightarrow \text { HLDA }}$	${ }^{t}$ DHA	110	100	ns	
HLDA High \rightarrow Bus Floating (High Z State)	thabF	-160	150	ns	
HLDA Low \rightarrow Bus Enable	tHABE		350	ns	

Notes:
(1) AC Signal waveform (unless otherwise specified)

(2) Output Timing is measured with $1 \mathrm{TTL}+200 \mathrm{pF}$ measuring points are $\mathrm{V}_{\mathrm{OH}}=2.0 \mathrm{~V}$ $\mathrm{VOL}=0.8 \mathrm{~V}$
(3) L.E. = Leading Edge, T.E. $=$ Trailing Edge
${ }^{t}{ }^{C} Y_{\phi}$ DEPENDENT AC PARAMETERS

PARAMETER	EQUATION	MIN/MAX	UNIT
${ }^{\text {t }}$ ¢ ϕ	(1/5) T	MIN	ns
${ }^{t} \mathrm{AD}_{1}$	$(3 / 2+N) T-200$	MAX	ns
${ }^{\text {tra }}$ (T_{3})	(1/2) T-50	MIN	ns
${ }^{\text {t } R A ~}\left(T_{4}\right.$)	(3/2) T-50	MIN	ns
${ }^{\text {t }}$ R ${ }^{\text {d }}$	$(1+N) T-150$	MAX	ns
${ }^{\text {t } R \text { R }}$	$(2+N) T-150$	MIN	ns
${ }^{\text {t }}$ RWT	(3/2) T-300	MAX	ns
${ }^{\text {t }}{ }^{\text {WWT }}{ }_{1}$	(2) T-350	MAX	ns
${ }^{\text {t }}$ MR	(1/2) T-50	MIN	ns
${ }^{\text {t } R M}$	(1/2) T-50	MIN	ns
${ }^{\prime} / \mathrm{R}$	(1/2) T-50	MIN	ns
t_{RI}	(1/2) T-50	MIN	ns
${ }^{\text {t }}$ ¢ W	(1/4) T	MAX	ns
${ }^{\text {t }}$ ¢ ϕ	(1/5) T	MIN	ns
${ }^{t_{A D}}$	T-50	MIN	ns
${ }^{\text {t }} \mathrm{DW}$	$(3 / 2+N) T-150$	MIN	ns
${ }^{\text {t }}$ WD	(1/2) T-100	MIN	ns
${ }^{\text {t }}$ AW	T-100	MIN	ns
twA	(1/2) T-50	MIN	ns
tww	$(3 / 2+N) T-150$	MIN	ns
${ }_{\text {t }} \mathrm{W}$	T	MIN	ns
${ }^{\text {tw }}$ I	(1/2) T	MIN	ns
${ }^{\text {t HABE }}$	(1/2) T-150	MAX	ns

Notes: (1) $N=$ Number of Wait States
(2) $\mathrm{T}={ }^{t} \mathrm{CY} \phi$
(3) Only above parameters are $\mathrm{t}_{\mathrm{C}} \mathrm{Y}_{\phi}$ dependent
(4) When a crystal frequency other than 4 MHz is used ($\mathrm{t}_{\mathrm{C}} \mathrm{C}_{\phi}=501 \mathrm{~ns}$) the above equations can be used to calculate $A C$ parameter values.

CLOCK TIMING

AC CHARACTERISTICS (CONT.)

TIMING WAVEFORMS (CONT.)

WRITE OPERATION

-ACTIVE ONLY WHEN IO/M IS ENABLED

HOLD OPERATION

PACKAGE INFORMATION μ PD7802G-XXX

XXX denotes mask number
assigned by factory at time of
code verification.
Use. I.C. Socket NP32-64075G4.

(Unit:mm)

NOTES

Description

The NEC μ PD78C06 is an advanced CMOS 8-bit general purpose single chip microcomputer intended for applications requiring 8 -bit microprocessor control and extremely low power consumption; ideally suited for portable, battery-powered/backed-up products. A subset of the μ PD7801, the μ PD78C06 integrates an 8-bit ALU, 4K ROM, 128 bytes RAM, 46 I/O lines, an 8 -bit timer, and a serial I/O port on a single die. Fully compatible with the 8080A bus structure, expanded system operation can easily be implemented using industry standard peripheral and memory components. Total memory space can be increased to 64 K bytes.
The μ PD78C06 lends itself well to low power, portable applications by featuring two power down modes to further conserve power when the processor is not active. The μ PD78C06 is packaged in a 64 -pin flat pack. The $\mu \mathrm{PD} 78 \mathrm{C} 05$ is a ROM-less version packaged in a 64 -pin QUIL, designed for prototype development and small volume production.

Features

\square CMOS Silicon Gate Technology +5 V supply
\square Complete Single Chip Microcomputer

- 8-bit ALU
- 4K ROM
- 256 Bytes RAM
\square Low Power Consumption
46 I/O Lines
\square Expansion Capabilities

- 8080A Bus Compatible

- 60 K Bytes External Memory Address Range

Serial I/O Port

- 101 Instruction Set
- Multiple Address Modes
\square Power Down Modes
- Halt Mode
- Stop Mode8-Bit Timer
\square Prioritized Interrupt Structure
- 2 External
- 1 Internal
\square On Chip Clock Generator
\square 64-Pin Flat Pack

Pin Configuration

Pin Identification

PA $7-0, \mathrm{~PB}_{7-0}, \mathrm{PC}_{5-0}, \mathrm{PE}_{15-0}$	I/O Ports
D87-0	Data Bus
WAIT	Wait Request
$\mathrm{NT}_{0}, \mathrm{INT}_{1}$	Interrupt Request
$\mathrm{X}_{2}, \mathrm{X}_{1}$	Xtal
SCK	Serial Ciock Input/Output
51	Serial Input
SO	Serial Output
RESET	Reset
RD	Read Strobe
WR	Write Strobe
\$out	Clock Output

Block Dlagram

Table 4-1 HALT Mode and STOP Mode

Function	Halt Mode	Stop Mode
Oscillator	Run	Stop
Internal System Clock	Stop	
Timer	Run	
TIMER REG	Hold	Set
UPCOUNTER, PRESCALER 0, 1	Run	Cleared
Serial Interface		Run(1)
Serial Clock	Hold	Hold
Interrupt Control Circuit	Run	Stop
Interrupt Enable Flag	Hold	Reset
$\mathrm{INT}_{0}, \mathrm{INT}_{1}$ Input		Inactive
INTT	Active	-
T8 (INTFS)		-
MASK Register	Hold	Set
Pending Interrupts (INTFX)		Reset
REL Input	Inactive	
RESET Input	Active	Active

Function	Halt Mode	Stop Mode
On-Chip RAM	Hold	Hold
Output Latch in Port A, B, E		
Program Counter (PC)		Cleared
Stack Pointer (SP)		Unknown
General Registers		
(A, B, C, D, E, F, L)		
Program Status Word (PSW)		Reset
Mode B-Register		Hold
Standby Control Register ($\mathrm{SC}_{0}-\mathrm{SC}_{3}$)		
Standby Control Register (SC_{4})		Set
Timer Mode Register (TMM ${ }_{0-1}$)		Hold
Timer Mode Register (TMM ${ }_{1}$)		Set
Serial Mode Register (SM)		Hold
Data Bus (DB_{0-7})	High-Z	High-Z
	High	High

Note:

(1) Serial clock counter is running and T_{8} is generated; however, there are no effects by it.

यPD78C06G-XXX-12

NOTES

Description

The NEC μ PD7811G is a high performance single chip microcomputer integrating sophisticated on-chip peripheral functionality normally provided by external components. The device's internal 16 -bit ALU and data paths, combined with a powerful instruction set and addressing, make the μ PD7811G appropriate in data processing as well as control applications. The device integrates a 16-bit ALU, 4K ROM, 256 Bytes RAM with an 8 -channel A/D converter, a multifunction 16 -bit timer/ event counter, two 8-bit timers, a USART and two zerocross detect inputs on a single die, to direct the device into fast, high-end processing applications involving analog signal interface and processing.
The μ PD7811G is the mask-ROM high volume production device embedded with custom customer program. The μ PD7810G is a ROM-less version for prototyping and small volume production. The μ PD78PG11E is a piggy-back EPROM version for design development.

Features

NMOS Silicon Gate Technology Requiring +5 V SupplyComplete Single Chip Microcomputer- 16-Bit ALU
- 4K ROM
- 256 Bytes RAM44 I/O linesTwo Zero-Cross Detect Inputs
Expansion Capabilities
- 8085A Bus Compatible
- 60K Bytes External Memory Address Range

8-Channel, 8-Bit A/D Converter

- Auto Scan
- Channel Select

Full Duplex USART

- Synchronous and Asynchronous153 Instruction Set
- 16-Bit Arithmetic, Multiply and Divide$1 \mu \mathrm{~s}$ Instruction Cycle TimePrioritized Interrupt Structure
- 2 External
- 4 InternalStandby FunctionOn-Chip Clock Generator
64-Quil Package

Pin Configuration

Instruction Set

In addition to the existing instruction set for μ PD7801, the following new instructions are incorporated in the μ PD7811.

- 16-Bit Data Transfer

16-Bit Data Transfer Memory and Extended Accumulator

- 16-Bit Data Arithmetic and Logical Operation 16-Bit Addition and Subtraction
16-Bit Comparison
16-Bit And, Or, Ex-or Operation
- 16-Bit Data Shift and Rotation
- Multiply

8 -Bit by 8 -Bit
Less than $8 \mu \mathrm{~s}$ Execution

- Divide

16-Bit Divided by 8 -Bit
Less than $14 \mu \mathrm{~s}$ Execution

- Index Operation

Register Pair HL and DE are used as Index
Register

Block Dlagram

Input/Output

8 Analog Input Lines
44 Digital I/O Lines - Five 8-Bit ports (Port A, Port B, Port C, Pört D, Port F) and 4. Input Lines (AN4-7)

1. Analog Input Lines
AN_{0-7} are configured as analog input lines for on chip A/D converter.
2. Port Operation

- Port A, Port B, Port C, Port F Each line of these ports can be individually programmed as an input or as an output.
- Port D

Port D can be programmed as a byte input or a byte output.

- $\mathrm{AN}_{4} 7$

In addition to the analog input lines, AN_{4-7} can be used as digital input lines for falling edge detection.
3. Control Lines

Under software control, each line of Port C can be configured individually to provide control lines for serial interface, Timer and Timer/Counter.
4. Memory Expansion

In addition to the single-chip operation mode μ PD7811 has 4 memory expansion modes. Under software control, Port D can provide multiplexed low-order address and data bus and Port F can provide high-order address bus. The relation between memory expansion modes and the pin configurations of Port D and Port F is shown in the table that follows.

Mfomory Expansion	Port Configuration
Non	Port D - $1 / 0$ Port Port F - I/O Port
256 Bytes	Port D - Multiplexed Address/Data Bus Port F - I/O Port
4K Bytes	Port D - Multiplexed Address/Data Bus Port F0-3 - Address Bus Port F4-7 - I/O Port
16K Bytes	Port D - Multiplexed Address/Data Bus Port F0-5 - Address Bus Port F6, 7 - I/O Port
60K Bytes	Port D - Multiplexed Address/Data Bus Port F - Address Bus

8-Bit A/D Converter

8 Input Channels
4 Conversion Result Registers
2 Powerful Operation Modes
Auto Scan Mode
Channel Select Mode
Successive Approximation Technique
Absolute Accuracy $\quad \pm 1.5 \mathrm{LSB}(\pm 0.6 \%)$
Conversion Range $\quad 0 \sim 5 \mathrm{~V}$
Conversion Time $\quad 50 \mu \mathrm{~s}$
Interrupt Generation

A/D Converter Block Dlagram

Unlversal Serlal Interface

-- Full-Duplex, Double Buffering
-. Synchronous Operation Mode
Search Mode
Receive Mode

- Asynchronous Operation Mode

7, 8-Bits/Character
Start/Stop Bit
Even/Odd Parity
Programmable Clock Rate x1, x16, x64

- I/O Expansion Mode (μ PD7801 Serial Mode)
- Programmable Communication Rate
$2 \mu \mathrm{~s}, 32 \mu \mathrm{~s}$, Timer 1 and External
- Interrupt Generation

Universal Serial Interface Block Dlagram

Interrupt Structure

- 11 Interrupt Sources
- 6 Priority Levels
- Non-maskable Interrupt Capability - NMI
- Individual Request Mask Capability - Except NMI

Interrupt Request	Interrupt	Type of Interrupt	In/Ext	
IRQ0	4	NMI (Non-maskable interrupt)	External	
IRQ1	8	INTT0 (Coincidence signal from timer 0) INTT1 (Coincidence signal from timer 1)	Internal	
IRQ2	16	INT1 (Maskable interrupt) INT2 (Maskable interrupt)	External	
IRQ3	24	INTE0 (Coincidence signal from timer/ event counter) INTE1 (Coincidence signal from timer/ event counter)	Internal	
IRQ4	32	INTEIN (Falling signal of C1 and TO counter)	INTAD (A/D converter interrupt)	In/External
IRQ5	40	INTSR (Serial recelve Interrupt) INST (Serial send interrupt)	Internal	

7

Package Information μ PD7811G-XXX

SINGLE CHIP 8-BIT MICROCOMPUTER

DESCRIPTION The NEC μ PD8021 is a stand alone 8-bit parallel microcomputer incorporating the following features usually found in external peripherals. The μ PD8021 contains: $1 \mathrm{~K} \times 8$ bits of mask ROM program memory, 64×8 bits of RAM data memory, 21 I/O lines, an 8 -bit interval timer/event counter, and internal clock circuitry.

FEATURES - 8-Bit Processor, ROM, RAM, I/O, Timer/Counter

- Single +5 V Supply $(+4.5 \mathrm{~V}$ to +6.5 V)
- NMOS Silicon Gate Technology
- 8.38μ s Instruction Cycle Time
- All Instructions 1 or 2 Cycles
- Instructions are Subset of μ PD8048/8748/8035
- High Current Drive Capability - 2 I/O Pins
- Clock Generation Using Crystal or Single Inductor
- Zero-Cross Detection Capability
- Expandable I/O Using $\mu 8243$'s
- Available in 28-Pin Plastic Package

PIN CONFIGURATION

P_{22}-1		28	V_{CC}
$\mathrm{P}_{23} \square_{2}$		27	$\square \mathrm{P}_{21}$
PROG ${ }^{-1}$		26	P_{20}
$\mathrm{P}_{0} \mathrm{O}_{4}$		25	P_{17}
P01-5		24	P_{16}
$\mathrm{P}_{02} \mathrm{C}^{6}$		23	$\square \mathrm{P}_{15}$
$\mathrm{P}_{03} \mathrm{H}_{7}$	$\mu \mathrm{PD}$	22	$]^{\mathrm{P}_{14}}$
$\mathrm{P}_{04} \mathrm{C}_{8}$		21	- P_{13}
P05. ${ }^{9}$		20	P_{12}
$\mathrm{P}_{06} \mathrm{C}_{10}$		19	P_{11}
P07-11		18] P_{10}
ALE ${ }^{12}$		17	$\square \mathrm{RESET}$
T1 ${ }^{13}$		16	$\square \times$ TAL 2
vss ${ }^{\text {- }} 14$		15] \times TAL 1

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
*COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.5 \mathrm{~V} \pm 1 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Low Voltage	$V_{\text {IL }}$	-0.5		$+0.8$	V	
Input High Voltage, RESET, T1 (All Except XTAL 1, XTAL 2)	$V_{\text {IH }}$	2.0		$V_{\text {cc }}$	V	$V_{C C}=5.0 \mathrm{~V} \pm 10 \%$
Input High Voltage (XTAL 1, XTAL 2)	$\mathrm{V}_{\text {IH1 }}$	3.0		$V_{C C}$	V	$V_{C C}=5.5 \mathrm{~V} \pm 1 \mathrm{~V}$
Output Low Voltage	VoL			0.45	V	$\mathrm{I}^{\prime} \mathrm{OL}=1.7 \mathrm{~mA}$
Output Low Voltage $\left(P_{10}, P_{11}\right)$	VOL1			2.5	V	$\mathrm{I}^{\text {OL }}=7 \mathrm{~mA}$
Output High Voltage (All Unless Open Drain)	VOH	2.4			V	${ }^{1} \mathrm{OH}=40 \mu \mathrm{~A}$
Output Leakage Current (Open Drain Option - Port 0)	IOL			± 10	$\mu \mathrm{A}$	$\begin{aligned} & V_{C C} \geqslant V_{\text {IN }} \geqslant V_{S S} \\ & +0.45 \mathrm{~V} \end{aligned}$
VCC Supply Current	ICC		40	75	mA	

$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \pm 1 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	1EST CONDITIONS
		MIN	TYP	MAX		
Cycle Time	TCY	8.38		50.0	$\mu \mathrm{s}$	3.58 MHz XTAL for $T_{C Y}$ Min.

ABSOLUTE MAXIMUM RATINGS*

DC CHARACTERISTICS

AC CHARACTERISTICS

PIN		FUNCTION
No.	SYMBOL	
$\begin{gathered} 1-2, \\ 26-27 \end{gathered}$	$\begin{aligned} & \mathrm{P}_{20} \mathrm{P}_{23} \\ & \text { (Port 2) } \end{aligned}$	$\mathrm{P}_{20}-\mathrm{P}_{23}$ comprise the 4 -bit bi-directional I/O port which is also used as the expander bus for the μ PD8243.
3	PROG	PROG is the output strobe pin for the μ PD8243.
4.11	$\begin{aligned} & \mathrm{P}_{00}{ }^{-P_{07}} \\ & \text { (Port 0) } \end{aligned}$	One of the two 8-bit quasi bi-directional I/O ports.
12	ALE	Address Latch Enable output (active-high). Occurring once every 30 input clock periods, ALE can be used as an output clock.
13	T1	Testable input using transfer functions JT1 and JNT1. T1 can be made the counter/timer input using the STRT CNT instruction. T1 also provides zero-cross sensing for low-frequency $A C$ input signals.
14	$\mathrm{V}_{\text {SS }}$	Processor's ground potential.
15	XTAL 1	One side of frequency source input using resistor, inductor, crystal or external source.(non-TTL compatible $\mathrm{V}_{(\mathrm{H}}$).
16	XTAL 2	The other side of frequency source input.
17	RESET	Active high input that initializes the processor and starts the program at location zero.
18-25	$\begin{aligned} & P_{10} \cdot P_{17} \\ & \text { (Port 1) } \end{aligned}$	The second of two 8-bit quasi bi-directional I/O ports.
28	V_{CC}	+5V power supply input.

FUNCTIONAL DESCRIPTION
The NEC μ PD8021 is a single component, 8 -bit, parallel microprocessor using N -channel silicon gate MOS technology. The self-contained $1 \mathrm{~K} \times 8$-bit ROM, 64×8-bit RAM, 8 -bit timer/counter, and clock circuitry allow the μ PD8021 to operate as a single-chip microcomputer in applications ranging from controllers to arithmetic processors.
The instruction set, a subset of the μ PD8048/8748/8035, is optimum for high-volume, low cost applications where I/O flexibility and instruction set power are required. The μ PD8021 instruction set is comprised mostly of single-byte instructions with no instructions over two bytes.

MNEMONIC	FUNCTION	DESCRIPTION	INSTRUCTION CODE								CYCLES	BYTES	FLAG C
			D7	D_{6}	D_{6}	D_{4}	D_{3}	D_{2}	D1	D_{0}			
DATAMOVES													
MOV A, = data	(A) + data	Move Immediate the specified date into the Accumulator.	$\begin{gathered} 0 \\ d_{7} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{~d}_{6} \end{gathered}$	$\begin{aligned} & 1 \\ & d_{5} \end{aligned}$	$\begin{gathered} 0 \\ d_{4} \end{gathered}$	$\begin{gathered} 0 \\ d_{3} \end{gathered}$	$\begin{gathered} 0 \\ d_{2} \end{gathered}$	$\begin{gathered} 1 \\ d_{1} \end{gathered}$	$\begin{gathered} 1 \\ \text { do } \end{gathered}$	2	2	
MOV A, Rr	$(\mathrm{A})+(\mathrm{Rr}) ; \mathrm{r}=0-7$	Move the contents of the designated registers into the Accumulator.	1	1	1	1	1	r	r	r	1	1	
MOV A, ¢Rr	$(\mathrm{A})-\left(\left(\mathrm{Rr}_{\mathrm{r}}\right)\right) ; r=0-1$	Move Indirect the contents of data memory location into the Accumulator.	1	1	1	1	0	0	0	r	1	1	
MOV Rr, = data	$\left(\mathrm{Rr}_{\mathrm{r}}\right)+$ data; $\mathrm{r}=0-7$	Move Immediate the specified data into the designated register.	$\begin{gathered} 1 \\ d 7 \end{gathered}$	$\begin{gathered} 0 \\ d_{6} \end{gathered}$	$\begin{gathered} 1 \\ d_{5} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{~d}_{4} \end{gathered}$	$\begin{gathered} 1 \\ d_{3} \end{gathered}$	$\begin{gathered} \mathrm{r} \\ \mathrm{~d}_{2} \end{gathered}$	$\stackrel{r}{\mathrm{~d}_{1}}$	$\stackrel{\mathrm{r}}{\mathrm{~d}_{0}}$	2	2	
MOV Rr, A	$(\mathrm{Rr}) \leftarrow(\mathrm{A}) ; \mathrm{r}=0-7$	Move Accumulator Contents into the designated register.	1	0	1	0	1	r	r	r	1	1	
MOV@Rr, A	$((\mathrm{Rr}))-(\mathrm{A}) ; r=0-1$	Move Indirect Accumulator Contents: into data memiory location.	1	0	1	0	0	0	0	r	1	1	
MOV @ Rr, = data	$((\mathrm{Rr}))-$ data; $\mathrm{r}=0-1$	Move Immediate the specified data into data memory.	$\begin{gathered} 1 \\ d_{7} \end{gathered}$	$\begin{gathered} 0 \\ d_{6} \end{gathered}$	$\begin{gathered} 1 \\ d_{5} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{~d}_{4} \end{gathered}$	$\begin{gathered} 0 \\ d_{3} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{~d}_{2} \end{gathered}$	$\begin{gathered} 0 \\ d_{1} \end{gathered}$	$\stackrel{r}{d_{0}}$	2	2	
MOVP A, @ A	$\begin{aligned} & (P C 0-7) \leftarrow(A) \\ & (A) \leftarrow((P C)) \end{aligned}$	Move data in the current page into the Accumulator.		0	1	0	0	0	1	1	2	1	
XCH A, Rr	$(\mathrm{A}) \rightleftarrows(\mathrm{Rr}): \mathrm{r}=0-7$	Exchange the Accumulator and designated register's contents.	0	0	1	0	1	f	r	r	1	1	
$\mathrm{XCH} \mathrm{A,@Rr}$	$(\mathrm{A}) \rightleftarrows((\mathrm{Rr})$; $r=0-1$	Exchange Indirect contents of Accumulator and location in data memory.	0	0	1	0	0	0	0	r	1	1	
XCHD A, @ Ar	$\begin{aligned} & (A 0-3) \rightleftarrows(t \mathrm{Rr})) 0-3) \mathrm{A}) \\ & r=0-1 \end{aligned}$	Exchange Indirect 4 -bit contents of Accumulator and data memory.	0	0	1	1	0	0	0	r	1	1	
FLAGS													
$\begin{aligned} & \text { CPL C } \\ & \text { CLR C } \end{aligned}$	$\begin{aligned} & (C)-\text { NOT }(C) \\ & (C)+0 \end{aligned}$	Comptement Content of carry bit. Clear content of carry bit to 0 .	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	\bullet				
INPUT/OUTPUT													
ANLD Pp, A	$\begin{aligned} & \left(P_{p}\right)-\left\{P_{p}\right) \text { AND }(A 0-3) \\ & p=4-7 \end{aligned}$	Logical and contents of Accumulator with designated port (4-7).	1	0	0	1	1	1	p	p	2	1	
IN A, P_{p}	$(\mathrm{A})-\left(\mathrm{P}_{\mathrm{p}}\right) ; p=1-2$	Input data from designated port (1-2) into Accumulator.	0	0	0	0	1	0	p	p	2	1	
MOVD A, P_{p}	$\begin{aligned} & \{A 0-3) \leftarrow\left(P_{p}\right) ; p=4-7 \\ & (A 4-7) \leftarrow 0 \end{aligned}$	Move contents of designated port (4-7) into Accumulator.	0	0	0	0	1	1	p	p	2	1	
MOVD $P_{p,} A$	$\left(P_{p}\right) \leftarrow A 0-3 ; p=4-7$	Move contents of Accumulator to designated port (4-7).	0	0	1	1	1	1	p	p	1	1	
ORLD P_{p}, A	$\begin{aligned} & \left(P_{p}\right) \leftarrow\left(P_{p}\right) O R(A O-3) \\ & p=4-7 \end{aligned}$	Logical or contents of Accumulator with designated port (4-7).	1	0	0	0	1	1	p	p	1	1	
OUTLP ${ }_{p}$, A	$\left(P_{p}\right) \leftarrow(A) ; p=1-2$	Output contents of Accumulator to designated port (1-2).	0	0	1	1	1	0	P	p	1	1	
REGISTERS													
INC Rr	$(\mathrm{Rr})+(\mathrm{Rr})+1 ; r=0-7$	Increment by 1 contents of designated register.	0	0	0	1	1	r	r	r	1	1	
INC @ Rr	$\begin{aligned} & ((R r))-((R r))+1 ; \\ & r=0-1 \end{aligned}$	Increment Indirect by 1 the contents of data memory location.	0	0	0	1	0	0	0	r	1	1	
SUBROUTINE													
CALL addr	$\begin{aligned} & ((\mathrm{SP})) \leftarrow(\mathrm{PC}),(\text { PSW } 4-71 \\ & (\text { SP }) \leftarrow(\mathrm{SP})+1 \\ & (\text { PC } 8-10) \leftarrow \text { addr } 8-10 \\ & \text { (PC 0 }-7) \leftarrow \text { addr } 0-7 \\ & (\text { PC 11) }- \text { DBF } \end{aligned}$	Call designated Subroutine.	$\begin{aligned} & 810 \\ & 87 \end{aligned}$	$\begin{aligned} & a_{9} \\ & a_{6} \end{aligned}$	$\begin{aligned} & \text { a8 } \\ & \text { as } \end{aligned}$		$\begin{gathered} 0 \\ a_{3} \end{gathered}$	$\begin{gathered} 1 \\ 8_{2} \end{gathered}$	$\begin{gathered} 0 \\ e_{1} \end{gathered}$	$\begin{gathered} 0 \\ a_{0} \end{gathered}$	2	2	
RET	$\begin{aligned} & (S P) \leftarrow(S P)-1 \\ & (P C) \leftarrow((S P)) \end{aligned}$	Feturn from Subroutine without restoring Program Status Word.	1	0	0	0	0	0	1	1	2	1	
TIMER/COUNTER													
MOV A,T	$(A) \leftarrow(T)$	Move contents of Timer/Counter into Accumulator.	0	1	0	0	0	0	1	0	1	1	
MOV T, A	$(\mathrm{T})-(\mathrm{A})$	Move contents of Accumulator into Timer/Counter.	0	1	1	0	0	0	1	0	1	1	
STOP TCNT								1	0	1	1	1	
STRT CNT		Start Count for Event Counter.	0	1	0	0	0	1	0	1	1	1	
STRT T		Start Count for Timer.	0	1.	0	1	0	1	0	1	1	1	
MISCELLANEOUS													
NOP		No Operation performed.	0	0	0	0	0	0	0	0	1	1	

Notes: (1) Instruction Code Designations r and p form the binary representation of the Registers and Ports involved.
(2) The dot under the appropriate fiag bit indicates that its content is subject to change by the instruction it appears in.
(3) References to the address and data are specified in bytes 2 and/or 1 of the instruction.
(4) Numerical, Subscripts appearing in the FUNCTION column reference the specific bits affected.

Symbol Definitions

SYMBOL	DESCRIPTION
A_{1}	The'Accumulator
addr	Program Memory Address (12 bits)
C	Carry Flag
CLK	Clock Signal
CNT	Event Counter
D	Nibble Designator (4 bits)
data	Number or Expression (8 bits)
P	"In-Page" Operation Designator
P_{p}	Port Designator $(p=1,2$ or $4-7)$
$R r$	Register Designator $(r=0,1$ or $0-7)$

SYMBOL	DESCRIPTION
T	Timer
- T_{1}	Testable Flag 1
\times	External RAM
-	Prefix for Immediate Data
@	Prefix for Indirect Address
\$	Progrem Counter's Current Value
(x)	Contents of External RAM Location
((x))	Contents of Memory Location Addressed by the Contents of External fAM Location
\leftarrow	Replaced 3y

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{MNEMONIC} \& \multirow[b]{2}{*}{FUNCTION} \& \multirow[b]{2}{*}{DESCRIPTION} \& \multicolumn{8}{|c|}{INSTRUCTION CODE} \& \multirow[b]{2}{*}{crcles} \& \multirow[b]{2}{*}{BYTE8} \& \multirow[t]{2}{*}{flag C}

\hline \& \& \& D7 \& D_{6} \& D_{5} \& D_{4} \& D_{3} \& D_{2} \& D_{1} \& D_{0} \& \& \&

\hline \multicolumn{14}{|c|}{ACCUMULATOR}

\hline ADD A, = data \& $(\mathrm{A}) \leftarrow(\mathrm{A})+$ data \& Add immediate the specified Data to the Accumulator. \& $$
\begin{gathered}
0 \\
d 7
\end{gathered}
$$ \& $$
\begin{gathered}
0 \\
d 8
\end{gathered}
$$ \& $$
\underset{d_{5}}{0}
$$ \& $$
\begin{gathered}
0 \\
d 4
\end{gathered}
$$ \& $$
\begin{gathered}
0 \\
d 3
\end{gathered}
$$ \& $$
\begin{gathered}
0 \\
d 2
\end{gathered}
$$ \& $$
\begin{aligned}
& 1 \\
& d_{1}
\end{aligned}
$$ \& $$
\begin{gathered}
1 \\
d_{0}
\end{gathered}
$$ \& 2 \& 2 \& -

\hline Add A, Rr \& $$
\begin{aligned}
& (A) \leftarrow(A)+(\mathrm{Ar}) \\
& \text { for } r=0-7
\end{aligned}
$$ \& Add contents of designated register to the Accumulator. \& 0 \& 1. \& 1 \& 0 \& 1 \& r \& r \& r \& 1 \& 1 \& -

\hline ADD A, © Ar \& $$
\begin{aligned}
& (A) \leftarrow(A)+((A r)) \\
& \text { for } r=0-1
\end{aligned}
$$ \& Add indirect the contents the data memory location to the Accumulator. \& 0 \& 1 \& 1 \& 0 \& 0 \& 0 \& 0 \& r \& 1 \& 1 \& -

\hline ADDC A. $=$ date \& $(A) \leftarrow(A)+(C)+$ data \& Add immediate with carry the specified dete to the Accumulator. \& $$
\begin{gathered}
0 \\
d 7
\end{gathered}
$$ \& $$
\begin{gathered}
0 \\
d_{6}
\end{gathered}
$$ \& $$
\begin{gathered}
0 \\
d 5
\end{gathered}
$$ \& $$
\begin{gathered}
1 \\
d_{4}
\end{gathered}
$$ \& $$
\begin{gathered}
0 \\
d 3
\end{gathered}
$$ \& $$
\begin{gathered}
0 \\
d_{2}
\end{gathered}
$$ \& $$
\begin{gathered}
1 \\
d 1
\end{gathered}
$$ \& $$
\begin{gathered}
1 \\
d 0
\end{gathered}
$$ \& 2 \& 2 \& *

\hline ADDC A. Rr \& $$
\begin{aligned}
& (A) \leftarrow(A)+(C)+(\operatorname{Rr}) \\
& \text { for } r=0-7
\end{aligned}
$$ \& Add with carry the contents of the designated register to the Accumulator. \& 0 \& 1 \& 1 \& 1 \& 1 \& , \& , \& r \& 1 \& 1 \& -

\hline ADDC A, @ Rr \& $$
\begin{aligned}
& (A) \leftarrow(A)+(C)+((R r)) \\
& \text { for } r=0-1
\end{aligned}
$$ \& Add indirect with carry the contents of deta mamory location to the Accumulator. \& 0 \& 1 \& 1 \& 1 \& 0 \& 0 \& 0 \& r \& 1 \& 1 \& -

\hline ANL A, = data \& (A) - (A) AND data \& Logical and specified Immediate Data with Accumulator. \& $$
\begin{gathered}
0 \\
d 7
\end{gathered}
$$ \& $$
\begin{gathered}
1 \\
d_{6}
\end{gathered}
$$ \& $$
\begin{gathered}
0 \\
\mathbf{d}_{6}
\end{gathered}
$$ \& $$
\begin{gathered}
1 \\
d_{4}
\end{gathered}
$$ \& $$
\begin{gathered}
0 \\
d 3
\end{gathered}
$$ \& $$
\begin{gathered}
0 \\
\mathrm{~d}_{2}
\end{gathered}
$$ \& $$
\begin{gathered}
1 \\
d_{1}
\end{gathered}
$$ \& $$
\begin{gathered}
1 \\
d_{0}
\end{gathered}
$$ \& 2 \& 2 \&

\hline ANL A, Rr \& $$
\begin{aligned}
& (A) \leftarrow(A) \text { AND (Rr) } \\
& \text { for } r=0-7
\end{aligned}
$$ \& Logical and contents of designated register with Accumulator. \& \& 1 \& 0 \& 1 \& 1 \& \& \& r \& 1 \& 1 \&

\hline ANL A, © Rr \& $$
\begin{aligned}
& (A) \leftarrow(A) \text { AND }(\text { (Rr })) \\
& \text { for } r=0-1
\end{aligned}
$$ \& Logical and indirect the contents of data memory with Accumulator. \& 0 \& 1 \& 0 \& 1 \& 0 \& 0 \& 0 \& r \& 1 \& 1 \&

\hline CPLA \& $(A) \leftarrow$ NOT (A) \& Complement the contents of the Accumulator. \& 0 \& 0 \& 1 \& 1 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \&

\hline CLRA \& (A) -0 \& CLEAR the contents of the Accumulator. \& 0 \& 0 \& 1 \& 0 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \&

\hline DAA \& \& DECIMAL ADJUST the contents of the Accumulator. \& 0 \& 1 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& -

\hline DECA A \& $(A)-(A)-1$ \& DECREMENT by 1 the Accumulator's contents. \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \&

\hline INC A \& $(A) \leftarrow(A)+1$ \& Increment by 1 the Accumulator's contents. \& 0 \& 0 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \&

\hline ORL $A_{\text {, }}=$ data \& $(A)-(A)$ OR date \& Logical OR specified immediate date with Accumulator \& $$
\begin{gathered}
0 \\
d 7
\end{gathered}
$$ \& $$
\begin{gathered}
1 \\
d_{6}
\end{gathered}
$$ \& $$
\begin{gathered}
0 \\
d_{5}
\end{gathered}
$$ \& $$
\begin{gathered}
0 \\
d 4
\end{gathered}
$$ \& $$
\begin{gathered}
0 \\
d_{3}
\end{gathered}
$$ \& $$
\begin{gathered}
0 \\
d_{2}
\end{gathered}
$$ \& $$
\begin{gathered}
1 \\
d y
\end{gathered}
$$ \& $$
\begin{gathered}
1 \\
d_{0}
\end{gathered}
$$ \& 2 \& 2 \&

\hline ORL A, Rr \& $$
\begin{aligned}
& \text { (A) }-(A) \text { OR (Rr) } \\
& \text { for } r=0=7
\end{aligned}
$$ \& Logical OR contents of designated register with Accumulator. \& 0 \& 1 \& 0 \& 0 \& 1 \& , \& r \& r \& 1 \& 1 \&

\hline ORLA \oplus Rr \& $$
\begin{aligned}
& (A)-(A) \text { OR }\left(\left(R_{r}\right)\right) \\
& \text { for } r=0-1
\end{aligned}
$$ \& Logicsi OR indirect the contents of date memory location with Accumulator. \& 0 \& 1 \& 0 \& c \& 0 \& 0 \& 0 \& ' \& 1 \& 1 \&

\hline RLA \& $$
\begin{aligned}
& (A N+1)-(A N) \\
& \left(A_{0}\right) \leftarrow\left(A_{7}\right) \\
& \text { for } N=0-6
\end{aligned}
$$ \& Rotate Accumulator left by 1 -bit without carry. \& 1 \& 1 \& 1 \& 0 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \&

\hline RLC A \& $$
\begin{aligned}
& (A N+1)+(A N) ; N=0-6 \\
& \left(A_{0}\right) \leftarrow(C) \\
& (C) \leftarrow\left(A_{7}\right)
\end{aligned}
$$ \& Rotate Accumulator left by 1-bit through carry. \& 1 \& 1 \& 1 \& 1 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& \bullet

\hline RR A \& $$
\begin{aligned}
& (A N) \leftarrow(A N+1) ; N=0-6 \\
& \left(A_{7}\right) \leftarrow\left(A_{0}\right)
\end{aligned}
$$ \& Rotate Accumulator right by 1 -bit without carry. \& 0 \& 1 \& \dagger \& 1 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \&

\hline FRCA \& $$
\begin{aligned}
& (A N)-(A N+1) ; N=0-6 \\
& \left(A_{7}\right)+(C) \\
& (C) \leftarrow\left(A_{0}\right)
\end{aligned}
$$ \& Rotate Accumulator right by 1 -bit through carry. \& 0 \& 1 \& 1 \& 0 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& -

\hline SWAP A \& $\left(A_{4} 7\right) \pm\left(A_{0}-3\right)$ \& Swap the 24-bit nibbles in the Accumulator. \& 0 \& 1 \& 0 \& 0 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \&

\hline XRL $\mathrm{A}, ~=$ date \& $(\mathrm{A}) \sim(\mathrm{A}) \times$ OR data \& Logical XOR specified immediate data with Accumulator. \& $$
\begin{gathered}
1 \\
d 7
\end{gathered}
$$ \& $$
\begin{gathered}
1 \\
d_{6}
\end{gathered}
$$ \& $$
\begin{gathered}
0 \\
d_{5}
\end{gathered}
$$ \& $$
\begin{gathered}
1 \\
d_{4}
\end{gathered}
$$ \& $$
\begin{gathered}
0 \\
d 3
\end{gathered}
$$ \& $$
\begin{gathered}
0 \\
d_{2}
\end{gathered}
$$ \& $$
\begin{aligned}
& 1 \\
& d_{1}
\end{aligned}
$$ \& $$
\begin{gathered}
1 \\
0_{0}
\end{gathered}
$$ \& 2 \& 2 \&

\hline XRLA, Rr \& $$
\begin{aligned}
& (A) \leftarrow(A) \text { XOR }(\mathrm{Rr}) \\
& \text { for } r=0-7
\end{aligned}
$$ \& Logical XOR contents of designated register with Accumulator. \& 1 \& 1 \& 0 \& 1 \& 1 \& , \& r \& r \& 1 \& 1 \&

\hline XRL A, © Rr \& $$
\begin{aligned}
& (A)-(A) \text { XOR }((\mathrm{Rr})) \\
& \text { for } r=0-1
\end{aligned}
$$ \& Logical XOR indirect the contents of data memory location with Accumulator. \& 1 \& 1 \& 0 \& 1 \& 0 \& 0 \& 0 \& r \& 1 \& 1 \&

\hline \multicolumn{14}{|c|}{ERANCH}

\hline DJNZ. Rr, addr \& $$
\begin{aligned}
& (R r)+(R r)-1 ; r=0-7 \\
& \text { If }(R r) \neq 0 \\
& (P C 0-7)+\text { addr }
\end{aligned}
$$ \& Decrement the specified register and test contents. \& $$
\begin{aligned}
& 1 \\
& a 7
\end{aligned}
$$ \& $$
\begin{gathered}
1 \\
a_{6}
\end{gathered}
$$ \& $$
\begin{gathered}
1 \\
a_{5}
\end{gathered}
$$ \& 0

4 \& $$
\begin{gathered}
1 \\
\text { as }
\end{gathered}
$$ \& $\stackrel{*}{2}$ \& ${ }_{1}^{1}$ \& \[

\stackrel{r}{80}
\] \& 2 \& 2 \&

\hline JC addr \& $$
\begin{aligned}
& (\mathrm{PCO} 0-7) \leftarrow \text { addr if } \mathrm{C}=1 \\
& (\mathrm{PC}) \leftarrow(\mathrm{PC})+2 \text { if } \mathrm{C}=0
\end{aligned}
$$ \& Jump to specified address if carry fiag is set. \& \[

$$
\begin{gathered}
1 \\
07
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
88
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
05
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
0.4
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
23
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
02
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
a_{1}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
a_{0}
\end{gathered}
$$
\] \& 2 \& 2 \&

\hline JMP eddr \& $$
\begin{aligned}
& (\text { PC 8 - 10) }- \text { addr } 8-10 \\
& (\text { PC 0 }-7) \leftarrow \text { addr } 0-7 \\
& (\text { PC 11 }) \leftarrow \text { DBF }
\end{aligned}
$$ \& Direct Jump to specified address within the 2 K address block. \& \[

$$
\begin{aligned}
& 310 \\
& 37
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 99 \\
& 96
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathbf{a 8} \\
& 95
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
0 \\
24
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
0
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
02
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
81
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
{ }_{20}
\end{gathered}
$$
\] \& 2 \& 2 \&

\hline JMPP © ${ }^{\text {a }}$ \& (PCO-7) $-((\mathrm{A})$) \& Jump indirect to specified address with address page. \& 1 \& 0 \& 1 \& 1 \& 0 \& 0 \& 1 \& 1 \& 2 \& 1 \&

\hline JNC addr \& $$
\begin{aligned}
& \text { (PC } 0-7) \leftarrow \text { addr if } C=0 \\
& (P C)+(P C)+2 \text { if } C=1
\end{aligned}
$$ \& Jump to specified eddress if carry flag is low. \& \[

$$
\begin{gathered}
1 \\
7
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
06
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
85
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
a_{4}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
3
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
2
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
\mathbf{n}_{t} \\
\mathbf{a}+\frac{1}{k}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
a_{0}
\end{gathered}
$$
\] \& 2 \& 2 \&

\hline JNT1 addr \& $$
\begin{aligned}
& (\mathrm{PCO}-7)-\text { addr if } \mathrm{T} 1=0 \\
& (\mathrm{PC})-(\mathrm{PC})+2 \text { if } \mathrm{T} 1=1
\end{aligned}
$$ \& Jump to specified address if Test 1 is low. \& \[

$$
\begin{aligned}
& 0 \\
& 7
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
1 \\
86
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
\text { as }
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
a 4
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
a 3
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
82
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 1 \\
& 01
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
0 \\
80
\end{gathered}
$$
\] \& 2 \& 2 \&

\hline JNZ eddr \& $$
\begin{aligned}
& (P C O-7)-\text { addr if } A=0 \\
& (P C) \leftarrow(P C)+2 \text { if } A=0
\end{aligned}
$$ \& Jump to apecified address if Accumulator is non-zero. \& \[

$$
\begin{gathered}
1 \\
07
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
a_{6}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
0
\end{gathered}
$$
\] \& 1

84 \& 0

3 \& ± 2 \& ${ }_{1}^{1}$ \& $$
\begin{gathered}
0 \\
00
\end{gathered}
$$ \& 2 \& 2 \&

\hline JTF addr \& $$
\begin{aligned}
& (\mathrm{PCO} 0-7) \leftarrow \text { addr if TF }=1 \\
& (\mathrm{PC}) \leftarrow(\mathrm{PC})+2 \text { if } T F=0
\end{aligned}
$$ \& Jump to specified addrens if Timer Flag is set to 1. \& \[

$$
\begin{aligned}
& 0 \\
& 07
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
0 \\
08
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
05
\end{gathered}
$$
\] \& 1

4 \& $$
\begin{gathered}
0 \\
3_{3}
\end{gathered}
$$ \& \[

$$
\begin{gathered}
1 \\
02
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 1 \\
& 01
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
0 \\
s_{0}
\end{gathered}
$$
\] \& 2 \& 2 \&

\hline JT1 addr \& $$
\begin{aligned}
& \text { (PC } 0-7)+ \text { addr if } T 1=1 \\
& \text { (PC) }-(P C)+2 \text { if } T 1=0
\end{aligned}
$$ \& Jump to specified eddress if Test 1 is a 1 . \& 0

0
0 \& 1
08 \& 0
35 \& 1
3 \& 0
0 \& 1
02 \& 1
81 \& 0 \& 2 \& 2 \&

\hline JZ addr \& $$
\begin{aligned}
& (P C O-7) \leftarrow \text { eddr if } A=0 \\
& (P C) \leftarrow(P C)+2 \text { if } A=0
\end{aligned}
$$ \& Jump to specified eddress if Accumulator is 0 . \& \[

$$
\begin{gathered}
1 \\
87
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
2_{8}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
a_{6}
\end{gathered}
$$
\] \& 0

3

4 \& $$
\begin{gathered}
0 \\
\text { a3 }
\end{gathered}
$$ \& 1

32 \& 1

1 \& $$
\begin{gathered}
0 \\
20
\end{gathered}
$$ \& 2 \& 2 \&

\hline
\end{tabular}

ITEM	MILLIMETERS	INCHES
A	38.0 MAX	1.496 MAX
B	2.49	0.098
c	2.54	0.10
D	0.5 ± 0.1	0.02 ± 0.004
E	33.02	1.3
F	1.5	0.059
G	2.64 MIN	0.10 MIN
H	0.5 MIN	0.02 MIN
1	5.22 MAX	0.205 MAX
J	5.72 MAX	0.225 MAX
K	15.24	0.6
L	13.2	0.52
M	$\begin{array}{r} +0.10 \\ 0.25 \begin{array}{r} 0.05 \\ \hline \end{array} \begin{array}{r} \\ \hline \end{array}{ }^{2} \\ \hline \end{array}$	$\begin{array}{r} 0.01+0.004 \\ 0.002 \\ \hline \end{array}$

SINGLE CHIP 8-BIT MICROCOMPUTER WITH ON-CHIP A/D CONVERTER

The NEC μ PD8022 is designed for low cost, high volume applications requiring large ROM space, analog to digital conversion capability, a capacitive touchpanel keyboard interface and/or a power line time base. The μ PD8022 satisfies these requirements by integrating on one chip, an 8-bit μ PD8021 type processor with 2 K of ROM, a 2 channel 8 -bit A/D converter, a high impedance comparator input port, and a zero crossing detector.

FEATURES - 8-Bit Processor, ROM, RAM, I/O and Clock Generator

- Single +5 V Supply $(4.5 \mathrm{~V}$ to 6.5 V)
- NMOS Silicon Gate Technology
- $2 \mathrm{~K} \times 8$ ROM, 64×8 RAM, 26 I/O Lines
- On Chip 8-Bit A/D Converter with 2 Input Channels
- 8.3μ Instruction Cycle Timer
- Instructions are a Subset of μ PD8048; Superset of μ PD8021
- Internal Timer/Event Counter
- External and Timer/Counter Interrupts
- On-Chip Zero-Cross Detector
- High Impedance Comparator Port with Variable Threshold
- Clock Generator Using a Crystal or Single Inductor
- High Current Drive Capability on 2 I/O Pins
- Expandable I/O Utilizing the μ PD8243

PIN CONFIGURATION

Rev/1

Operating Temperature
$.0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
ABSOLUTE MAXIMUM
Storage Temperature (Plastic Package) . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on Any Pin -0.5 to +7 Volts ${ }^{(1)}$
Power Dissipation 1 Watt

Note: (1) With Respect to Ground.
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
*COMMENT: Stress above those listed under "Absolute Maximum Ratings" inay cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended perlods may affect device reliability.
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{v}_{\mathrm{CC}}=5.5 \mathrm{~V} \pm 1 \mathrm{~V}, \mathrm{v}_{\mathrm{SS}}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Low Voltage	$V_{\text {IL }}$	-0.5		0.8	V	$V_{\text {TH }}$ Floating
Input Low Voltage (Port 0)	VIL1	-0.5		$\mathrm{V}^{\text {TH }}{ }^{-0.1}$	V	
Input High Voltage (All except XTAL 1, RESET)	V IH	2.0		V_{CC}	V	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & \pm 10 \% \\ & V_{T H} \text { Floating } \end{aligned}$
Input High Voltage (All except XTAL 1, RESET)	$\mathrm{V}_{1 \mathrm{H} 1}$	3.0		V_{CC}	V	$\begin{aligned} & V_{C C}=5.5 V \\ & \pm 1 V \\ & V_{T H} \text { Floating } \end{aligned}$
Input High Voltage (Port 0)	VIH2	$\mathrm{V}_{\mathrm{TH}}+0.1$		$V_{\text {cc }}$	V	
Input High Voltage (RESET, XTAL 1)	$\mathrm{V}_{1 \mathrm{H} 3}$	3.0		V_{CC}	V	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & \pm 10 \% \\ & \hline \end{aligned}$
Port O Threshold Voltage	$V_{\text {TH }}$	0		0.4 VCC	V	
Output Low Voltage	VOL			0.45	V	$1 \mathrm{OL}=1.7 \mathrm{~mA}$
Output Low Voltage $\left(P_{10}, P_{11}\right)$	VOL1			2.5	V	${ }^{\prime} \mathrm{OL}=7 \mathrm{~mA}$
Output High Voltage (All unless open drain option for Port 0)	V_{OH}	2.4			V	${ }^{1} \mathrm{OH}=50 \mu \mathrm{~A}$
Input Current (T1)	'L1			± 200	$\mu \mathrm{A}$	$\begin{aligned} & V_{C C} \geqslant V_{\text {IN }} \\ & \geqslant V_{S S}+0.45 V \end{aligned}$
Output Leakage Current (Open drain option for Port 0)	ILO			± 10	$\mu \mathrm{A}$	$\begin{aligned} & V_{C C} \geqslant V_{1 N} \\ & \geqslant V_{S S}+0.45 V \end{aligned}$
V CC Supply Current	ICC		50	100	miA	

PIN		FUNCTION
NO.	SYMBOL	
8	T_{0}	Active low interrupt input if enabled. Also testable using the conditional jump instructions JTO and JNTO.
19	T_{1}	Zero-cross detector input. After executing a STRT CNT instruction this becomes the event counter input. Also testable using the conditional jump instructions JT1 and JNT1. Optional ROM mask pull-up resistor available.
6	ANO	Analog input to the A/D converter after execution of the SEL ANO instruction.
5	AN1	Analog input to the A/D converter after execution of the SEL AN1 instruction.
22	XTAL 1	Input for internal oscillator connected to one side of a crystal or inductor. Serves as an external frequency input also (Non-TTL compatible V_{IH}).
23	XTAL 2	Input for internal oscillator connected to the other side of a crystal or inductor. This pin is not used when employing an external frequency source.
37	PROG	Strobe output for the μ PD8243 1/O expander.
18	ALE	Active high address latch enable output occurring once every instruction cycle. Can be used as an output clock.
24	RESET	Active high input that initializes the processor to a defined state and starts the program at memory location zero.
40	v_{CC}	+5 V power supply.
3	$\mathrm{AV}_{\mathrm{CC}}$	+5V A/D converter power supply.
20	$\mathrm{V}_{\text {SS }}$	Power supply ground potential.
7	$\mathrm{AV}_{\text {SS }}$	A/D converter power supply ground potential. Sets conversion range lower limit.
4	$\mathrm{VA}_{\text {REF }}$	Reference voltage for A/D converter. Sets conversion range upper limit.
9	$\mathrm{V}_{\text {TH }}$	Port 0 comparator threshold reference input.
21	$\begin{aligned} & \hline \text { SUBST } \\ & \text { (NC) } \end{aligned}$	Substrate connection used with bypass capacitor to V_{SS} for substrate voltage stabilization and improvement of A / D accuracy.
10-17	$\mathrm{P}_{00}{ }^{-P_{07}}$	Port 0.8 -bit open drain I/O port with comparator inputs. The reference threshold is set via V_{TH}. Optional ROM mask pull-up resistors available.
25-32	$\mathrm{P}_{10}{ }^{-\mathrm{P}_{17}}$	Port 1.8-bit quasi-bidirectional port. TTL compatible.
$\begin{gathered} 1-2 \\ 33-36 \\ 38-39 \end{gathered}$	$\mathrm{P}_{20}{ }^{-\mathrm{P}_{27}}$	Port 2. 8-bit quasi-bidirectional port. TTL compatible. $\mathrm{P}_{20}{ }^{-{ }^{-}} 23$ also function as an I/O expander port for the μ PD8243.

$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \pm 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Cycle Time	${ }^{t} \mathrm{C} Y$	8.38		50.0	$\mu 5$	3.58 MHz XTAL for $t_{C Y}$ min.
Zero-Cross Detection Input (T1)	$V_{T 1}$	1		3	$V A C_{p p}$	AC coupled
Zero-Cross Accuracy	$A_{Z X}$			± 135	mV	60 Hz Sine Wave
Zero-Cross Detection Input Frequency (T1)	$F_{Z X}$	0.05		1	kHz	
Port Control Setup Before Falling Edge of PROG	${ }^{t} \mathrm{CP}$	0.5			$\mu \mathrm{s}$	$\begin{aligned} & { }^{t} C Y=8.38 \mu \mathrm{~s}, \\ & \mathrm{C}_{\mathrm{L}}=80 \mathrm{pF} \end{aligned}$
Port Control Hold After Falling Edge of PROG	${ }^{\text {tPC }}$	0.8			$\mu 5$	$\begin{aligned} & { }^{{ }^{2} C Y}=8.38 \mu \mathrm{~s}, \\ & \mathrm{C}_{\mathrm{L}}=80 \mathrm{pF} \end{aligned}$
PROG to Time P2 Input Must be Valid	tPR			1.0	$\mu \mathrm{s}$	$\begin{aligned} & { }^{\mathrm{t} C Y}=8.38 \mu \mathrm{~s}, \\ & \mathrm{CL}=80 \mathrm{pF} \end{aligned}$
Output Data Setup Time	tpp	7.0			$\mu \mathrm{s}$	$\begin{aligned} & { }^{{ }^{\prime} C Y}=8.38 \mu \mathrm{~s}, \\ & \mathrm{C}_{\mathrm{L}}=80 \mathrm{pF} \end{aligned}$
Output Data Hold Time	tPD	8.3			$\mu \mathrm{s}$	$\begin{aligned} & { }^{\mathrm{t}} \mathrm{CY}=8.38 \mu \mathrm{~s}, \\ & \mathrm{C} \mathrm{~L}=80 \mathrm{pF} \end{aligned}$
Input Data Hold Time	${ }^{\text {tPF }}$	0		150	ns	$\begin{aligned} & { }^{t} C_{Y}=8.38 \mu \mathrm{~s}, \\ & \mathrm{C}_{\mathrm{L}}=80 \mathrm{pF} \end{aligned}$
PROG Pulse Width	tpp	8.3			$\mu \mathrm{s}$	$\begin{aligned} & { }^{\mathrm{t}} \mathrm{CY}=8.38 \mu \mathrm{~s}, \\ & \mathrm{C}_{\mathrm{L}}=80 \mathrm{pF} \end{aligned}$
ALE to Time P2 Input Must be Valid	tPRL			3.6	$\mu \mathrm{s}$	$\begin{aligned} & { }^{\mathrm{t}} \mathrm{CY}=8.38 \mu \mathrm{~s}, \\ & \mathrm{C}_{\mathrm{L}}=80 \mathrm{pF} \end{aligned}$
Output Data Setup Time	${ }^{\text {tPL }}$	0.8			$\mu \mathrm{s}$	$\begin{aligned} & { }^{\mathrm{t}} \mathrm{CY}=8.38 \mu \mathrm{~s} \\ & \mathrm{C}_{\mathrm{L}}=80 \mathrm{pF} \end{aligned}$
Output Data Hold Time	${ }^{\text {t }}$ -	1.6			$\mu \mathrm{s}$	$\begin{aligned} & { }^{\mathrm{t}} \mathrm{CY}=8.38 \mu \mathrm{~s}, \\ & \mathrm{C}_{\mathrm{L}}=80 \mathrm{pF} \end{aligned}$
Input Data Hold Time	tPFL	0			$\mu \mathrm{s}$	$\begin{aligned} & { }^{\mathrm{t}} \mathrm{CY}=8.38 \mu \mathrm{~s}, \\ & \mathrm{C}_{\mathrm{L}}=80 . \mathrm{pF} \end{aligned}$
ALE Pulse Width	${ }^{\text {t }}$ LL	3.9		23.0	$\mu \mathrm{s}$	${ }^{\mathrm{t}} \mathrm{CY}=8.38 \mu \mathrm{~s}$ $\text { for } \mathrm{min} \text {. }$

PORT 2 TIMING

AC CHARACTERISTICS

TIMING WAVEFORM

A/D CONVERTER CHARACTERISTICS
$T_{a}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \pm 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, A V_{C C}=5.5 \mathrm{~V} \pm 1 \mathrm{~V}, A V_{S S}=0 \mathrm{~V}$
$A V_{C C} / 2 \leqslant V_{A R E F} \leqslant A V_{C C}$

PARAMETER	SYMBOL	LIMITS			UNITS	TEST CONDITIONS
		MIN	TYP	MAX		
Resolution		8			BITS	
Absolute Accuracy				(2)	LSB	
Sample Setup Before Falling Edge of ALE	${ }^{\text {tss }}$		0.20		${ }^{\text {t }} \mathrm{CY}$	(1)
Sampie Hold After Falling Edge of ALE	${ }^{\text {tS }} \mathrm{H}$		0.10		${ }^{\text {t }} \mathrm{CY}$	(1)
Input Capacitance (ANO, AN1)	$C_{\text {AD }}$		1		pF	
Conversion Time	tenv	4		4	${ }_{\text {t }} \mathrm{C} Y$	
Conversion Range		AVSS		$\vee_{\text {AREF }}$	\checkmark	
Reference Voltage	$V_{\text {AREF }}$	$\mathrm{AV}_{\mathrm{Cc}} / 2$		$\mathrm{AV}_{\mathrm{CC}}$	V	

Note: (1) The analog signal on ANO and AN1 must remain constant during the sample time ${ }^{t} \mathrm{SS}^{+}{ }^{\mathrm{t}} \mathrm{SH}$.
(2) $.8 \% \mathrm{FSR} \pm 1 / 2 \mathrm{LSB}$

TIMING WAVEFORM

The instruction set of the μ PD8022 is a subset of the μ PD8048 instruction set except for three instructions, SEL ANO, SEL AN1, and RAD, which are unicue to the μ PD8022. The μ PD8022 instruction set is also a superset of the μ PD8021, meaning that the μ PD8022 will execute ALL of the μ PD8021 instructions PLUS some additional instructions which are listed below. For a summary of the ${ }_{\mu}$ PD88021 instruction set, please refer to that section. Symbols used below are defined in the same manner as in that section. Also note that the instructions listed below do not affect any status flags.

MNEMONIC	FUNCTION	DESCRIPTION	INSTRUCTION CODE								CYCLES	BYTES
			D7	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D1	D_{0}		
JTO addr	$\begin{aligned} & \left(\mathrm{PC}_{0-7}\right) \leftarrow \text { addr if } \\ & \mathrm{TO}=1 \\ & (\mathrm{PC})-(\mathrm{PC})+2 \\ & \text { if } \mathrm{TO}=0 \end{aligned}$	Jump to specified address if TO is high	0 a 7	$\begin{aligned} & 0 \\ & a_{6} \end{aligned}$	$\begin{gathered} 1 \\ \text { a5 } \end{gathered}$	1 a_{4}	$\begin{gathered} 0 \\ \mathrm{a}_{3} \end{gathered}$	1 a_{2}	$\begin{array}{\|l\|} \hline 1 \\ a_{1} \end{array}$	0 ao	2	2
JNTO addr	$\begin{aligned} & \left(\mathrm{PC}_{0}-7\right) \leftarrow \text { addr if } \\ & \mathrm{TO}=0 \\ & (\mathrm{PC}) \leftarrow(\mathrm{PC})+2 \\ & \text { if } \mathrm{TO}=1 \end{aligned}$	Jump to specified address if TO is low	0 ${ }^{a} 7$		$\begin{aligned} & 1 \\ & \text { as } \end{aligned}$	0 ${ }^{3} 4$	0 a3	$\begin{array}{\|l\|} \hline 1 \\ a_{2} \end{array}$	$\begin{aligned} & 1 \\ & a_{1} \end{aligned}$	0 a0	2	2
RAD	$(\mathrm{A}) \leftarrow(\mathrm{CRR})$	Move to A the contents of the A/D conversion result register (CRR)	1	0	0	0	0	0	0	0	2	1
SEL ANO		Select ANO as the input for the A / D converter	1	0	0	0	0	1	0	1	1	1
SEL AN1		Select AN1 as the input for the A/D converter	1	0	0	1	0	1	0	1	1	1
EN I		Enable the external interrupt input T0	0	0	0	0	0	1	0	1	1	1
DIS I		Disable the external interrupt input TO	0	0	0	1	0	1	0	1	1	1
EN TCNTI		Enable internal timer/ counter interrupt	0	0	1	0	0	1	0	1	1	1
DIS TCNTI		Disable internal timer/ counter interrupt	0	0	1	1	0	1	0	1	1	1
RETI	$\begin{aligned} & (S P) \leftarrow(\mathrm{SP})-1 \\ & (\mathrm{PC}) \leftarrow((\mathrm{SP})) \end{aligned}$	Return from interrupt and re-enable interrupt input logic	1	0	0	1	0	0	1	1	2	1

PACKAGE OUTLINE μ PD8022C

UNIVERSAL PROGRAMMABLE PERIPHERAL INTERFACE - 8-BIT MICROCOMPUTER

The μ PD8041A/8741A is a programmable peripheral interface intended for use in a wide range of microprocessor systems. Functioning as a totally self-sufficient controller, the $\mu \mathrm{PD} 8041 \mathrm{~A} / 8741 \mathrm{~A}$ contains an 8 -bit CPU, $1 \mathrm{~K} \times 8$ program memory, 64×8 data memory, I/O lines, counter/timer, and clock generator in a 40 -pin DIP. The bus structure, data registers, and status register enable easy interface to 8048, 8080A or 8085A based systems. The μ PD8041A's program memory is factory mask programmed, while the μ PD8741A's program memory is UV EPROM to enable user flexibility.
FEATURES - Fully Compatible with $8048,8080 \mathrm{~A}, 8085 \mathrm{~A}$ and 8086 Bus Structure

- 8 -Bit CPU with $1 \mathrm{~K} \times 8$ ROM, 64×8 RAM, 8 -Bit Timer/Counter, 18 I/O Lines
- 8-Bit Status and Two Data Registers for Asynchronous Slave-to-Master Interface
- Interchangeable EPROM and ROM Viersions
- Interrupt, DMA or Polled Operation
- Expandable I/O
- 40-Pin Plastic or Ceramic Dip
- Single +5 V Supply

PIN CONFIGURATION

PIN		FUNCTION
NO.	SYMBOL	
1,39	$\mathrm{T}_{0}, \mathrm{~T}_{1}$	Testable input pins using conditional transfer functions JT0, JNT0, JT1, JNT1. T 1 can be made the counter/timer input using the STRT CNT instruction. The PROM programming and verification on the μ PD8741A uses T_{0}.
2	X_{1}	One side of the crystal input for external oscillator or frequency source.
3	X_{2}	The other side of the crystal input.
4	RESET	Active-low input for processor initialization. $\overline{\text { RESET }}$ is also used for PROM programming, verification, and power down.
5	$\overline{\text { SS }}$	Single Step input (active-low). $\overline{\mathrm{SS}}$ together with SYNC output allows the μ PD8741A to "single-step" through each instruction in program memory.
6	$\overline{C S}$	Chip Select input (active-low). $\overline{\mathrm{CS}}$ is used to select the appropriate μ PD8041A/8741A on a common data bus.
7	EA	External Access input (active-high). A logic " 1 " at this input commands the μ PD8041A/8741A to perform all program memory fetches from external memory.
8	$\overline{\mathrm{RD}}$	Read strobe input (active-low). $\overline{R D}$ will pulse low when the master processor reads data and status words from the DATA BUS BUFFER or Status Register.
9	A_{0}	Address input which the master processor uses to indicate if a byte transfer is a command or data.
10	$\overline{W R}$	Write strobe input (active-low). $\overline{W R}$ will pulse low when the master processor writes data or status words to the DATA BUS BUFFER or Status Register.
11	SYNC	The SYNC qutput pulses once for each μ PD8041A/8741A instruction cycle. It can function as a strobe for external circuitry. SYNC can also be used together with $\overline{\mathrm{SS}}$ to "single-step" through each instruction in program memory.
12-19	D_{0} - $\mathrm{D}_{7} \mathrm{BUS}$	The 8-bit, bi-directional, tri-state DATA BUS BUFFER lines by which the μ PD8041A/8741A interfaces zo the 8 -bit master system data bus.
20	$\mathrm{V}_{\text {SS }}$	Processor's ground potential.
$\begin{aligned} & \hline 21-24, \\ & 35-38 \end{aligned}$	$\mathrm{P}_{20} \cdot \mathrm{P}_{27}$	PORT 2 is the second of two 8 -bit, quasi-bi-directional 1/O ports. $\mathrm{P}_{20-} \mathrm{P}_{23}$ contain the four most significant bits of the program counter during external memory fetches. $\mathrm{P}_{20}-\mathrm{P}_{23}$ also serve as a 4 -bit I/O bus for the μ PD824:3, INPUT/ OUTPUT EXPANDER. $\mathrm{P}_{24} \cdot \mathrm{P}_{27}$ can be used as port lines or can provide Interrupt Request (IBF and OBF) and DMA handshake lines (DRG and DACK).
25	PROG	Program Pulse. PROG is used in programmirg the μ PD8741A. It is also used as an output strobe for the μ F'D8243.
26	$V_{\text {DD }}$	V_{DD} is the programming supply voltage for programming the μ PD8741A. It is +5 V for normal operation of the μ PD8041A/8741A. VDD is also the Low Pawer Standby input for the ROM version.
27-34	$\mathrm{P}_{10} \mathrm{P}_{17}$	PORT 1 is the first of two 8 -bit quasi-bi-directional I/O ports.
40	$V_{C C}$	Primary power supply. $V_{\text {CC }}$ must be +5 V for programming and operation of the μ PD8741A and for the operation of the μ PD8041A.

FUNCTIONAL The μ PD8041A/8741A is a programmable peripheral controller intended for use DESCRIPTION in master/slave configurations with $8048,8080 \mathrm{~A}, 8085 \mathrm{~A}, 8086$ - as well as most other 8 -bit and 16 -bit microprocessors. The μ PD8041A/8741A functions as a totally self-sufficient controller with its own program and data memory to effectively unburden the master CPU from I/O handling and peripheral control functions. The μ PD8041A/8741A is an intelligent peripheral device which connects directly to the master processor bus to perform control tasks which off load main system processing and more efficiently distribute processing functions.

The μ PD8041A/8741A features several functional enhancements to the earlier μ PD8041 part. These enhancements enable easier master/slave interface and increased functionality.

1. Two Data Bus Buffers. Separate Input and Output data bus buffers have been provided to enable smoother data flow to and from master processors.

2. 8-Bit Status Register. Four user-definable status bits, $\mathrm{ST}_{4}-\mathrm{ST}_{7}$, have been added to the status register. $\mathrm{ST}_{4}-\mathrm{ST}_{7}$ bits are defined with the MOV STS, A instruction which moves accumulator bits 4-7 to bits 4-7 of the status register. $\mathrm{ST}_{0}-\mathrm{ST}_{3}$ bits are not affected.

ST_{7}	ST_{6}	ST_{5}	ST_{4}	$\mathrm{~F}_{1}$	FO_{0}	IBF	OBF

D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}

MOV STS, A Instruction OP Code 90H
3. $\overline{R D}$ and $\overline{W R}$ inputs are edge-sensitive. Status bits IBF, OBF, F1 and INT are affected on the trailing edge at $\overline{R D}$ or $\overline{W R}$.

4. P_{24} and P_{25} can be used as either port lines or Buffer Status Flag pins. This feature allows the user to make OBF and IBF status available externally to interrupt the master processor. Upon execution of the EN Flags instruction, P_{24} becomes the OBF pin. When a " 1 " is written to P_{24}, the OBF pin is enabled and the status of OFB is output. A " 0 " written to P_{24} disables the OBF pin and the pin remains low. This pin indicates valid data is available from the μ PD8041A/8741A. EN Flags instruction execution also enables P_{25} indicate that the μ PD8041A/8741A is ready to accept data. A " 1 " written to P_{25} enables the IBF pin and the status of IBF is available on P25. A " $($ " written to P_{25} disables the IBF pin.
EN Flags Instruction Op code - F5H.
5. P_{26} and P_{27} can be used as either port lines or-DMA handshake lines to allow DMA interface. The EN DMA instruction enables P_{26} and P_{27} to be used as DRO (DMA Request) and $\overline{\text { DACK }}$ (DMA acknowledge) respectively. When a " 1 " is written to P_{26}, DRQ is activated and a DMA request is issued. Deactivation of DRQ is accomplished by the execution of the EN DMA instruction, $\overline{D A C K}$ anded with $\overline{R D}$, or $\overline{D A C K}$ anded with $\overline{W R}$. When EM DMA, has been executed, P_{27} ($\overline{\mathrm{DACK}}$) functions as a chip select input for the Data Bus Buffer registers during DMA transfers.
EN DMA Instruction Op Code - E5H.
μ PD8041A/8741A
FUNCTIONAL
ENHANCEMENTS (CONT.)

BLOCK DIAGRAM

DC CHARACTERISTICS	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ *COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implled. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Note: (1) With respect to ground. $T_{a}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} ; \mathrm{V}_{D D}=V_{C C}=+5 \mathrm{~V} \pm 10 \% ; V_{S S}=0 \mathrm{~V}$						
	PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
			MIN	TYP	max		
	Input Low Voltage (All except X_{1} and X_{2})	$V_{\text {IL }}$	${ }^{-0.5}$		+0.8	V	
	Input Low Voltage (X_{1} and X_{2}, RESET)	$V_{\text {ILI }}$	${ }^{-0.5}$		0.6	v	
	Input High Voltage \qquad (All except $\mathrm{X}_{1}, \mathrm{X}_{2}, \overline{\mathrm{RESET}}$)	$\mathrm{V}_{1 \mathrm{H}}$	2.0		v_{cc}	v	
	Input High Voltage ($\left.X_{1}, X_{2}, \overline{\text { RESET }}\right)$	$\mathrm{V}_{1 \mathrm{H} 1}$	3.8		v_{cc}	v	
	Output Low Voltage (D_{O}-D7, SYNC)	v_{OL}			0.45	v	$1 \mathrm{OL}=2.0 \mathrm{~mA}$
	Output Low Voltage (All other outputs except PROG)	${ }^{\text {OL1 }}$			0.45	v	$\mathrm{IOL}=1.0 \mathrm{~mA}$
	Output Low Voltage (PROG)	VOL2			0.45	v	$1 \mathrm{OL}=1.0 \mathrm{~mA}$
	Output High Voltage (D_{0}-D7)	V OH	2.4			v	$1 \mathrm{OH}=-400 \mu \mathrm{~A}$
	Output High Voltage (All other outputs)	$\mathrm{VOH}^{\text {O }}$	2.4			v	$1 \mathrm{OH}=-50 \mu \mathrm{~A}$
	Input Leakage Current ($\mathrm{T}_{0}, \mathrm{~T}_{1}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \overline{\mathrm{CS}}, \mathrm{EA}, \mathrm{A}_{0}$)	IIL			± 10	$\mu \mathrm{A}$	$\begin{aligned} & v_{\text {sS }}<v_{\text {IN }}< \\ & v_{\text {CC }} \end{aligned}$
	Output Leakage Current ($\mathrm{D}_{0}-\mathrm{D}_{7}$; High Z State)	${ }^{102}$			± 10	$\mu \mathrm{A}$	$\begin{aligned} & V_{S S}+0.45< \\ & V_{\text {IN }} \leqslant v_{C C} \end{aligned}$
	V DD Supply Current	IDD			15	mA	
	Total Supply Current	ICC + IDD			125	mA	
	Low Input Source Current ($\mathrm{P}_{10}-\mathrm{P}_{17}$; $\mathrm{P}_{20}-\mathrm{P}_{27}$)	ILI			0.5	mA	$\mathrm{V}_{\mathrm{iL}}=0.8 \mathrm{~V}$
	Low Input Source Current (SS; $\overline{\text { RESET }}$)	'LII			0.2	mA	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$

$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS				UNITS	TEST CONDITIONS
		$\mu \mathrm{PD} 8041 \mathrm{~A}$		μ PD8741A			
		MIN	MAX	MIN	MAX		
DBB READ							
$\overline{C S}, A_{0}$ Setup to $\overline{R D} \downarrow$	taR	0		60		ns	
$\overline{\mathrm{CS}}, \mathrm{A}_{0}$ Hold after $\overline{\mathrm{RD}} \uparrow \uparrow$	tRA	0		30		ns	
$\overline{\mathrm{RD}}$ Pulse Width	tRR	250		300	$2 \times \mathrm{tcy}$	ns	$\mathrm{t}^{\mathrm{C}} \mathrm{Y}=2.5 \mu \mathrm{~s}$
$\overline{C S}, A_{0}$ to Data Out Delay	taD		225		370	ns	$C_{L}=150 \mathrm{pF}$
$\overline{\mathrm{RD}} \downarrow$ to Data Out Delay	tRD		225		200	ns	$C_{L}=150 \mathrm{pF}$
$\overline{\mathrm{RD}} \uparrow$ to Data Float Delay	tDF		100		140	ns	
Cycle Time	${ }^{\text {t }} \mathrm{C}$	2.5	15	2.5	15	$\mu \mathrm{s}$	6 MHz Crystal
DBB WRITE							
$\overline{\mathrm{CS}}, \mathrm{A}_{0}$ Setup to $\overline{\mathrm{WR}} \downarrow$	taw	0		60		ns	
$\overline{\mathrm{CS}}, \mathrm{A}_{0}$ Hold after $\bar{W} \mathrm{FR} \uparrow$	tWA	0		30		ns	
WR Pulse Width	twW	250		300	$2 \times \mathrm{tcy}$	ns	${ }^{\text {t }} \mathrm{CY}=2.5 \mu \mathrm{~s}$
Data Setup to $\overline{W R} \uparrow$	t DW	150		250		ns	
Data Hold after $\overline{W R} \uparrow$	tWD	0		30		ns	

READ OPERATION - DATA BUS BUFFER REGISTER

INSTRUCTION SET

	FUNCTION	DESCRIPTION	INSTRUCTION CODE								CYCLES	BYtes	flags				874.7			
MNEMONIC			D_{7}	D_{6}	D5	D_{4}	D_{3}	D_{2}	D)	Do			C AC	F0	F1 IBF	OBF				
ACCUMULAYOF																				
ADD A. \#dita	ADD A = data	Add Immediate the specified Data to the Accumulator.	$\left\lvert\, \begin{gathered} 0 \\ d 7 \end{gathered}\right.$	$\begin{gathered} 0 \\ d_{6} \end{gathered}$	$\begin{gathered} 0 \\ 0 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 \\ d_{2} \end{gathered}$	$\begin{gathered} 1 \\ 0_{1} \end{gathered}$	$\begin{gathered} 1 \\ d 0 \end{gathered}$	2	2	-							
ADD A, Rt	$\|A\| \cdot\|A\|+\|R r\|$ $\text { for } r=0.7$	Add contents of designated register to the Accumulator.	0	1	1	0	1	,	,	,	1	$\cdot 1$	-							
$A D O$ A. © $\mathrm{Rr}_{\mathbf{r}}$	$\begin{aligned} & \text { (A) }=(A)+(\mid R B) \\ & \text { for } r=0-1 \end{aligned}$	Add indirect the contents the data memorv fiocation to the Accumulator.	0	1	1	0	0	0	0	;	1	,	-							
ADDC A. \ddagger dals	$\|A\|$ - $\|A\|$ + $\|C\|$, data	Add Immediate with carry the specitied data to the Accumulator.	$\begin{gathered} 0 \\ 07 \end{gathered}$	$\begin{gathered} 0 \\ d_{6} \end{gathered}$	$\begin{gathered} 0 \\ d_{5} \end{gathered}$	C_{4}^{1}	$\begin{gathered} 0 \\ d 3 \end{gathered}$	$\begin{gathered} 0 \\ d_{2} \end{gathered}$	$\begin{aligned} & 1 \\ & d_{1} \end{aligned}$	$\begin{gathered} 1 \\ d_{0} \end{gathered}$	2	2	-							
AODC A. Rr	$\begin{aligned} & (A) \cdot(A)+(C)+\mid R() \\ & \text { for } r=0.7 \end{aligned}$	Add with carry the contents of the designated register to the Accumutator	0	1	1	1	1	.	,	,	1	1	-							
ADUC A, A,	$\begin{aligned} & (A) \cdot\|A\|-\|C\|+(\mid A r)] \\ & \text { for } r=0-1 \end{aligned}$	Add indrect with carry the contents of data memory location to the Accumulator.	0	1	1	1	0	0	0	$\stackrel{ }{ }$	1	1	-							
ANL A. - data	(A). \|A	AND data	Logical and specitied Immediate Oata with Accumularor.	(0	$\begin{gathered} 1 \\ d_{6} \end{gathered}$	$\begin{gathered} 0 \\ d 5 \end{gathered}$	$\begin{gathered} 1 \\ d_{4} \end{gathered}$	$\begin{gathered} 0 \\ d_{3} \end{gathered}$	$\begin{gathered} 0 \\ d_{2} \end{gathered}$	d_{1}^{1}	$\begin{gathered} 1 \\ d_{0} \end{gathered}$	2	2							
ANL A, R,	\|A	.	A	AND (RI) for $r=0.7$	Logical and contents of designated register with Accumulator.	0	1	0	1	1		,	,	1	1					
ANLA.@Rr	$\begin{aligned} & \|A\| \cdot\|A\| \text { AND'HR!) } \\ & \text { for } r=0-1 \end{aligned}$	Logical and Indirect the contents of data memory with Accumulator.	0	1	0	1	0	0	0	,	1	1								
CPL A	$\|A\|$: NOT $\|A\|^{\text {a }}$.	Complement the contents of the Accumulator.	0	0	1	1	0	1	1	1	1	1								
CLRA	, \mid A ${ }^{\text {. }} 0$	CLEAR the contents of the Accumulator	0	0	1	0	0	1	1	1	1	1								
DAA		DECIMAL ADJUST the contents of the. Accumulator.	0	1	0	1	0	1	1	1	1	1	-							
DEC A	\|A	. (A) - 1	DECREMENT by 1 the accumulator's contents.	0	0	0	0	0	1	1	1	1	1							
INC A	(A) - $\|A\|$ + 1	Increment by 1 the accumulator's contents.	0	0	0	1	0	1	1	1	1	1								
ORL A, = data		Logical OR or specified immediate dato with Accumulator.	$\left\lvert\, \begin{gathered} 0 \\ d 7 \end{gathered}\right.$	$\begin{gathered} 1 \\ d_{6} \end{gathered}$	$\begin{gathered} 0 \\ d 5 \end{gathered}$	$\begin{gathered} 0 \\ d_{4} \end{gathered}$	$\begin{gathered} 0 \\ d 3 \end{gathered}$	$\begin{gathered} 0 \\ d_{2} \end{gathered}$	$\begin{gathered} 1 \\ d_{1} \end{gathered}$	$\begin{gathered} 1 \\ \text { do } \end{gathered}$	2	2								
ORL A. R ${ }_{\text {r }}$	(A). (A) OR (RI) for $r=0.7$	Logical ORcontents of designated. reqister with Accumulator.	0	1	0	0	1	r	r	,	1	1								
ORLA, \oplus R,	\|A). (A) OR (RI) for $r=0.1$	Logical OR Indirect the contents of data memory tocation with Accumulator.	0	1	0	0	0	0	0	\cdots	1	1							
ALA	$\begin{aligned} & \|A N+11=\|A N\| \\ & \left\|A_{0}\right\|=\|A\|^{\prime} \\ & \operatorname{tor} N=0-6 \end{aligned}$	Rotare Accumulatar lett by 1 bit without carry.	1	1	1	0	0	1	1	1	1	1								
RLC A	$\begin{aligned} & (A N+1)+(A N), N=0-6 \\ & \left(A_{0}^{\prime} \cdot \mid C\right) \\ & (C) \cdot(A) \end{aligned}$	Rotate Accumulator laft by libit through carcy.	1	1	1	1	0	1	1	1	1	1	-							
RR A	$\begin{aligned} & (A N) \leftarrow(A N+1), N=0-6 \\ & \left(A_{7}\right)-\left(A_{0}\right) \end{aligned}$	Rotate Accumuiator right by i.bit without carry.	0	1	1	1	0	1	1	1	1	1								
RRC A	$\begin{aligned} & (A N)+(A N+1), N=0-6 \\ & (A)=(C) \\ & (C) \cdot(A 0) \end{aligned}$	Rotate Accumulator right by 1 bit through carty.	0	1	1	0	0	1	1	1	1	1	-							
SWAP A	$\left\|A_{4.7}\right\rangle \div\left(A_{0}-3\right\rangle$.	Swap the 24 bit nibbles in the Accumulator.	0	1	0	0	0	1	1	1	1	1								
XRL A, y data	(A). $\|A\| \times O R$ ders	Logical XOR specitied immedisie date with Accumutator.	$\begin{aligned} & 1 \\ & 1 \\ & d 7 \end{aligned}$	$\begin{gathered} 1 \\ d_{6} \end{gathered}$	$\underset{d_{5}}{0}$	$\stackrel{1}{0}$	$\begin{gathered} 0 \\ d 3 \end{gathered}$	$\begin{gathered} 0 \\ d_{2} \end{gathered}$	$\begin{aligned} & 1 \\ & d_{1} \end{aligned}$	$\begin{gathered} 1 \\ \text { do } \end{gathered}$	2	2								
XRLA, A_{1}	$\begin{aligned} & (A) \cdot(A) \times O A \cdot(A) \mid \\ & \text { for } r=0-7 \end{aligned}$	Logical XOA contenis of designated register with Accumulator.	,	1	0	1	1	,	,	,	1	1								
XRL A. © Rit	$\begin{aligned} & (A)=\|A\| \times O R((R,)) \\ & \text { (or } t=0-1 \end{aligned}$	Logral XOR Indirect the contents of data memory location with Accumulatior.	1	1	0	1	0	0	0	,	1	1								
BRANCH																				
DJNZ Rr, eddr	$\begin{aligned} & (\mathrm{Rr}) \leftarrow(\mathrm{Rr})-1, r=0.7 \\ & \text { If }(\mathrm{Rr}) \neq 0 \\ & (\mathrm{PC} 0-7) \leftarrow \text { addr } \end{aligned}$	Decrement the spacified register and rest contents	\int_{0}^{1}	$\begin{aligned} & 1 \\ & 96 \end{aligned}$	$\begin{gathered} 1 \\ 25 \end{gathered}$	$\begin{aligned} & 0 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 1 \\ & a_{3} \end{aligned}$	$\frac{1}{2}$	i	30	2	2								
58be mdr	$\begin{aligned} & \langle\mathrm{PC} 0.7\rangle-\mathrm{addr} \text { if } \mathrm{Bb}=1 \\ & (\mathrm{PC})-(\mathrm{PC})+2 \text { if } \mathrm{Bb}=0 \end{aligned}$	Jump to specilied address : 1 Accumulato bit is set.	$\left[\begin{array}{l} 62 \\ 07 \end{array}\right.$	$\begin{aligned} & b_{1} \\ & a_{6} \end{aligned}$	$\begin{aligned} & \text { bo } \\ & \text { as } \end{aligned}$	$\begin{aligned} & 1 \\ & 94 \end{aligned}$	$\begin{gathered} 0 \\ a_{3} \end{gathered}$	0	$\begin{aligned} & 1 \\ & 1 \\ & 01 \end{aligned}$	$\begin{gathered} 0 \\ 20 \end{gathered}$	2	2			\because					
JC addr	$\begin{aligned} & (\mathrm{PCO}-7) \leftarrow \text { addr if } \mathrm{C}=: 1 \\ & (\mathrm{PC}) \leftarrow(\mathrm{PC})+2 \text { if } \mathrm{C}=0 \end{aligned}$	Jump to specified address it carry tiog is set.	$\left\lvert\, \begin{array}{r} 1 \\ 9 \end{array}\right.$	$\begin{aligned} & 1 \\ & 36 \end{aligned}$	$\begin{aligned} & 1 \\ & 25 \end{aligned}$	$\begin{aligned} & 1 \\ & 04 \end{aligned}$	$\begin{aligned} & 0 \\ & 23 \end{aligned}$	$\begin{gathered} 1 \\ 3_{2} \end{gathered}$	$\begin{gathered} 1 \\ a_{1} \end{gathered}$	0 $* 0$	2	2			-					
JF 0 edot	$\begin{aligned} & \text { (PC } 0-7) \leftarrow \text { gddr if } F O=1 \\ & \text { (PC) }) \leftarrow(\mathrm{PC})+2 \text { if } F O=0 \end{aligned}$	sump to tocecitied addetes if Figg FO is set.	$\left[\begin{array}{l} 1 \\ 1 \\ 07 \end{array}\right.$	0 0 0	1 1 3	1	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	1 2	$\begin{aligned} & 1 \\ & 1 \\ & a \end{aligned}$	0 20	2	2								
JFI sodr	$\begin{aligned} & (P C 0-7)+\text { addet in } F 1=1 \\ & (\mathrm{PC})-(\mathrm{PC})+2 \text { if } \mathrm{F} \mid=0 \end{aligned}$	Jump to specified address if Flag FI is set.	$\begin{gathered} 0 \\ 07 \end{gathered}$	$\begin{aligned} & 1 \\ & 06 \end{aligned}$	$\stackrel{1}{4}$	1 8	$\begin{gathered} 0 \\ 23 \end{gathered}$	$\begin{gathered} 1 \\ 02 \end{gathered}$		$\stackrel{0}{0}$	2	2								
JMP edar		Direct Jump to specified asdress within the 2 K addeess block.	\int_{10}^{20}	$\begin{aligned} & 29 \\ & 26 \end{aligned}$	$\begin{aligned} & \bullet 8 \\ & \bullet 8 \end{aligned}$	$\begin{gathered} 0 \\ 34 \end{gathered}$	$\begin{aligned} & 0 \\ & 3 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 0 \\ & 21 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	2	2								
mape.e A	(PC 0.7)-((A))	Jump indirect to specitied address with with address page.	1	0	1	1	0	0	1	1	2	1								
Mac endr	$\begin{aligned} & (P C O-7)+\operatorname{add} \text { in } C=0 \\ & (P C)+(P C)+2+C=1 \end{aligned}$	Jump to apecified address it cerry flag is low.	1	$\begin{aligned} & 1 \\ & * \end{aligned}$	$\begin{gathered} 1 \\ 05 \end{gathered}$	$\begin{aligned} & 0 \\ & 4 \end{aligned}$	$\begin{aligned} & 0 \\ & 3 \end{aligned}$	$\begin{gathered} 1 \\ * 2 \end{gathered}$	$\begin{aligned} & 1 \\ & 11 \end{aligned}$	0	2	2								
mulef addr	(PCC $0-7$ - a addr if IEF = $(P C)-(P C)+2+18 F=1$	Jump to specified eddress it input bulfer tull tiag is fow.	1	$\stackrel{1}{\infty}$	$\begin{aligned} & 0 \\ & 45 \end{aligned}$	$\begin{gathered} 1 \\ 94 \end{gathered}$	$\begin{aligned} & 0 \\ & 3 \end{aligned}$	$\begin{gathered} 1 \\ 02 \end{gathered}$	$\begin{aligned} & 1 \\ & 21 \end{aligned}$	$\begin{aligned} & 0 \\ & 00 \end{aligned}$	2	2								
J0eF	$\begin{aligned} & (P C O-7)-\text { adde it OPF }=1 \\ & (\mathrm{PC})-(P \mathrm{C})+2 \text { OBF }=0 \end{aligned}$	Jump to specified eddress it output oulfer full fliog is wet.	\int_{1}^{1}	$\begin{aligned} & 0 \\ & 06 \end{aligned}$	$\begin{aligned} & 0 \\ & 05 \end{aligned}$	$\begin{aligned} & 0 \\ & 24 \end{aligned}$	$\begin{aligned} & 0 \\ & 03 \end{aligned}$	$\begin{aligned} & 1 \\ & 92 \end{aligned}$	$\begin{aligned} & 1 \\ & 01 \end{aligned}$	0	2	2								

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{MNEMONIC} \& \multirow[b]{2}{*}{FUNCTION} \& \& \multicolumn{8}{|c|}{IN ITRUCTION CODE} \& \multirow[b]{2}{*}{crcles} \& \multirow[b]{2}{*}{BYtES} \& \multicolumn{5}{|c|}{flags} \& \multirow[b]{2}{*}{8T4.7}

\hline \& \& \& D7 \& D_{6} \& O_{5} \& D_{4} \& D_{3} \& D_{2} \& D_{1} \& D0 \& \& \& C AC \& \& \& 18F \& OBf \&

\hline \multicolumn{18}{|c|}{GRANCH (CONT)} \&

\hline JNT0 addr \& $$
\begin{aligned}
& (\mathrm{PCO}-7) \leftarrow \text { addr if T0 }=0 \\
& (\mathrm{PC})-(\mathrm{PC})+2 \text { if } \mathrm{TO}=1
\end{aligned}
$$ \& Jump to specified address it Test 0 is low. \& 0
a

0 \& $\begin{array}{r}0 \\ \\ \\ \hline\end{array}$ \& 1

15 \& $\begin{array}{r}0 \\ \hline 4\end{array}$ \& 0
3 \& 1 \& 1
0 \& 0
0 \& 2 \& 7 \& \& \& \& \& \&

\hline JNT1 addr \& $$
\begin{aligned}
& (\mathrm{PC} 0-7)-\text { addr if } \mathrm{Tt}=0 \\
& (\mathrm{PC}) \leftarrow(\mathrm{PC})+2 \text { if } T 1=1
\end{aligned}
$$ \& Jump to specified address if Test 1 is low. \& 0

8 \& 1
6 \& 0
0 \& 0
3 \& 0 \& 12 \& 1 \& 0 \& 2 \& 2 \& \& \& \& \& \&

\hline JNZ addr \& $$
\begin{aligned}
& (P C O-7)-\text { addr if } A=0 \\
& (P C)+(P C)+2 \text { if } A=0
\end{aligned}
$$ \& Jump to specified address it accumulator is non-zero. \& 1

9 \& $$
\begin{gathered}
0 \\
36
\end{gathered}
$$ \& \[

$$
\begin{gathered}
0 \\
25
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
3
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
03
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 1 \\
& \mathbf{a}_{2}
\end{aligned}
$$
\] \& 1

1 \& $$
\begin{gathered}
0 \\
0
\end{gathered}
$$ \& 2 \& 2 \& \& \& \& \& \&

\hline JTF addr \& $(\mathrm{PC} 0-7) \leftarrow$ addr if $\mathrm{TF}=1$
$(\mathrm{PC})-(\mathrm{PC})+2$ if $T F=0$ \& Jump to specified address if Timer Fiag is set to 1. \& 0
97 \& 0
0 \& 0
0
0 \& 1
4 \& 0 \& 1 \& 1
9 \& 0

0 \& 2 \& 2 \& \& \& \& \& \&

\hline JTO addr \& $$
\begin{aligned}
& (\mathrm{PCO}-7) \leftarrow \text { addr if } \mathrm{TO}=1 \\
& (\mathrm{PC}) \leftarrow(\mathrm{PC})+2 \text { if } \mathrm{TO}=0
\end{aligned}
$$ \& Jump 10 specitied address if Test 0 is a 1, \& 0

3 \& \& 1
3 \& \& 0
0
0 \& ${ }^{1}$ \& 1
1
1 \& 0 \& 2 . \& 2 \& \& \& \& \& \&

\hline JT1 addr \& (PC $0-7$) - addr if $\mathrm{T} 1=1$ $(\mathrm{PC}) \leftarrow(\mathrm{PC})+2$ if $\mathrm{T} 1=0$ \& Jump to specified address it Test 1 is 0 ll. \& 0
0
9 \& 1
9 \& 0
3 \& 1
3 \& ${ }_{0}^{0}$ \& ${ }^{1} 2$ \& 1 \& 0 \& 2 \& 2 \& \& \& \& \& \&

\hline JZ addr \& $$
\begin{aligned}
& (P C O-7)-\text { addr if } A=0 \\
& \text { (PC) }-(P C)+2 \text { if } A=0
\end{aligned}
$$ \& Jump to specified address if Accumbiator is 0 . \& 1

0 \& $$
\begin{gathered}
1 \\
26
\end{gathered}
$$ \& \[

$$
\begin{gathered}
0 \\
25 \\
\hline
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 0 \\
& 24
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0 \\
& 03
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1 \\
& 1 \\
& 8
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1 \\
& a_{1}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
0 \\
0 \\
0
\end{gathered}
$$
\] \& 2 \& 2 \& \& \& \& \& \&

\hline \multicolumn{13}{|c|}{CONTROL} \& \& \& \& \& \&

\hline ENI \& \& Enable the External Interrupt inou:. \& 0 \& 0 \& 0 \& 0 \& 0 \& \& \& 1 \& 1 \& 1 \& \& \& \& \& \&

\hline Ois 1 \& \& Disable the External Interrupt input. \& 0 \& 0 \& 0 \& 1 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& \& \& \& \& \&

\hline SELRBO \& (BS) . 0 \& Select Bank 0 (locations $0-71$ of Data Memory. \& 1 \& 1 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& \& \& \& \& \&

\hline SEL RB1 \& $(B S) \leftarrow 1$ \& Selact Bank 0 (focations 24-31) of Date Momory. \& 1 \& 1 \& 0 \& 1 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& \& \& \& \& \&

\hline EN DMA \& \& Enable DMA Hendihake. \& \& \& \& \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& \& \& \& \& \&

\hline EN FLAGS \& \& Enable Interrupt to Menter Device. \& 1 \& 1 \& 1 \& 0 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& \& \& \& \& \&

\hline \multicolumn{13}{|c|}{OATA MOVES} \& \& \& \& \& \&

\hline MOV A. $=$ dete \& |A] + data \& Move immediate the specified data into the Accumulator. \& \[
$$
\begin{gathered}
0 \\
d 7
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
d_{6}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
d_{5}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
0 \\
d 4
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
d 3
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
d_{2}
\end{gathered}
$$

\] \& \& \[

$$
\begin{gathered}
1 \\
d_{0}
\end{gathered}
$$
\] \& 2 \& 2 \& \& \& \& \& \&

\hline MOV A, R \& (A)-- (Rr). $=0 \quad 7$ \& Move the contents of the designated registers into the Accumulator. \& 1 \& 1 \& 1 \& 1 \& 1 \& , \& , \& , \& 1 \& 1 \& \& \& \& \& \&

\hline MOV A, @ Rr \& $(\mathrm{A})-\left(\left|R_{r}\right|\right)^{\prime}+=0 \quad 1$ \& Move indirect the contents of data memory location into the Accumuletor. \& 1 \& 1 \& 1 \& 1 \& 0 \& 0 \& 0 \& ' \& 1 \& 1 \& \& \& \& \& \&

\hline MOV A, PSW \& (A). (PSW) \& Move contents of the Program Status Word into the Accumulator. \& 1 \& 1 \& 0 \& 0 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& \& \& \& \& \&

\hline MOV Rr, $=$ dats \& $\mid R+1$ - dota. $\mathrm{T}=0 \quad 7$ \& Move Immediate the specified date into the designated register. \& 1

$d 7$ \& \[
$$
\begin{gathered}
0 \\
d_{6}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
d_{5}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
0
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
a_{3}
\end{gathered}
$$

\] \& \[

\dot{d}_{2}

\] \& \[

$$
\begin{aligned}
& \prime \\
& d_{1}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
\text { d } \\
d_{0}
\end{gathered}
$$
\] \& 2 \& 2 \& \& \cdot \& \& \& \&

\hline MOV Rr. A \& $(\mathrm{Rr})-(\mathrm{A}), \mathrm{r}=0 \quad 7$. \& Move Accumulator Contents into the designated register. \& 1 \& 0 \& 1 \& 0 \& 1 \& , \& , \& , \& 1 \& 1 \& \& \& \& \& \&

\hline MOV RI. A $^{\text {a }}$ \& $(1 R+1)-(A): r=0$, \& Move Indirect Accumulator Contents into data memory location. \& 1 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& ' \& 1 \& 1 \& \& . \& \& \& \&

\hline MOV Rr, \% data \& (Ar $\left.^{\prime}\right)$ - data; $1=0 \quad 1$ \& Move immediate the specified data into data memory. \& \[
$$
\begin{gathered}
1 \\
d 7
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
d_{6}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
d 5
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
d_{4}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
d 3
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
d_{2}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
d_{1}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
d_{0}
\end{gathered}
$$
\] \& 2 \& 2 \& \& \& \& \& \&

\hline MOV PSW. A \& (PSW) - (A) \& Move contents of Accumulator into the program status word. \& 1 \& \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& \& \& \& \& \&

\hline MOVPA.GA \& $$
\begin{aligned}
& (P C=0-7)-(A) \\
& (A)-((P C))
\end{aligned}
$$ \& Move data in the current page into the Accumulator. \& 1 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1 \& 1. \& 2 \& 1 \& \& \& \& \& \&

\hline MOVP3 A. A \& $$
\begin{aligned}
& (P C O-7)-(A) \\
& (P C 8 \cdot 10)-011 \\
& (A)-(\mid P C) \mid
\end{aligned}
$$ \& Move Program data in Page 3 into the Accumulator. \& 1 \& 1 \& 1 \& 0 \& 0 \& 0 \& 1 \& 1 \& 2 \& 1 \& \& \& \& \& \&

\hline XCH A, RI \& $(\mathrm{A})=\left(\mathrm{Rr}_{r}\right),+00-7$ \& Exchange the Accumulator and designated register's contents. \& 0 \& 0 \& 1 \& 0 \& 1 \& ${ }^{\prime}$ \& ' \& ' \& ' \& 1 \& \& \& \& \& \&

\hline XCH A, PR \& $(\mathrm{A})=(\mathrm{A}+$) $) \mathrm{r}=0.1$ \& Exchenge Indirect contents of Accumu. lator and location in date memory. \& 0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& $!$ \& 1 \& 1 \& \& \& \& \& \&

\hline XCHOA, Rr \& $$
\begin{aligned}
& (A 0-3) \leftrightharpoons H(A r)) 0-31): \\
& 1=0-1
\end{aligned}
$$ \& Exchange Indirect 4-bit contents of Accumulator and date mamory. \& 0 \& 0 \& 1 \& 1 \& 0 \& 0 \& 0 \& , \& 1 \& 1 \& \& \& \& \& \&

\hline \multicolumn{13}{|c|}{FLAGS} \& \& \& \& \& \&

\hline CPL C \& (C) - NOT (C) \& Complement Content of cerry bit. \& 1 \& 0 \& 1 \& 0 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& - \& \& \& \& \&

\hline CPL FO \& (F0) - NOT (FO) \& Complement Content ot Flag F 0 . \& 1 \& 0 \& 0 \& 1 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& \& - \& \& \& \&

\hline CPL F1 \& (F1)-NOT (F1) \& Comploment Content of Flag Ft . \& 1 \& \& 1 \& \& $$
0
$$ \& \[

1
\] \& 0 \& 1 \& 1 \& 1 \& \& \& - \& \& \&

\hline CLR C \& (C) - C \& Cleer content of cerry bit to 0 . \& 1 \& 0 \& 0 \& \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& - \& \& \& \& \&

\hline CLRFO \& (F0) - 0 \& Ciser content of Fiso 0 to 0 . \& 1 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& \& - \& \& \& \&

\hline CLR F1 \& (F1) -0 \& Cleser content of Fleg 1 to 0 . \& 1 \& 0 \& $$
1
$$ \& \& 0 \& 1 \& \& 1 \& 1 \& 1 \& \& \& - \& \& \&

\hline MOV STS, A \& $\mathrm{ST}_{4}-\mathrm{ST}_{7} \leftarrow \mathrm{AS}_{4}-\mathrm{Al}_{7}$ \& Move high order 4 bitt of Accumulator Into atatus regiter blti 4-7. \& 1 \& 0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1 \& \& \& \& \& \& -

\hline
\end{tabular}

Notes (1) Instruction Code Designations rana p form the binary representation of the Registers and Ports involved.
(2) The dot under the appropriate flag bit indicates that its content is subject to change by the instruction it appears in.
(3) References to the address and data are specified in bytes 2 and or 1 of the instruction.
(4) Numerical Subscripte appearing in the FUNCTION column reference the specific bits affected.

Symbol Definitions:

SYMBOL	DESCRIPTION
A	The Accumulator
AC	The Auxiliary Carry Flag
addr	Program Memory Address (12 bits)
Bb	Bit Designator (b = 0-7)
BS	The Bank Switch
BUS	The BUS Port
C	Carry Flag
CLK	Clock Signal
CNT	Event Counter
D	Nibble Designator (4 bits)
data	Number or Expression (8 bits)
DBF	Memory Bank Flip-Flop
F0, F1	Flags 0, 1
I	Interrupt
P	"In-Page" Operation Designator
IBF	Input Buffer Full Flag

SYMBOL	DESCRIPTION
P_{p}	Port Designator ($\mathrm{p}=1,2$ or 4-7)
PSW	Program Status Word
Rr	Register Designator ($\mathrm{r}=0,1$ or 0-7)
SP	Stack Pointer
T	Timer
TF	Timer Flag
T0, T1	Testable Flags 0,1
X	External RAM
\#	Prefix for Immediate Data
@	Prefix for Indirect Address
\$	Program Counter's Current Value
(x)	Contents of External RAM Location
$((x))$	Contents of Memory Location Addressed by the Contents of External RAM Location.
\leftarrow	Replaced By
OBF	Output Buffer Full
DBB	Data Bus Buffer

PACKAGE OUTLINE μ PD8041AC

Plastic

ITEM	MILLIMETERS	INCHES
A	51.5 MAX	2.028 MAX
B	1.62	0.064
C	2.54 ± 0.1	0.10 ± 0.006
D	0.5 ± 0.1	0.019 ± 0.064
E	48.26	1.9
F	1.2 MIN	0.047 MIN
G	2.54 MIN	0.10 MIN
H	0.5 MIN	0.019 MIN
I	5.22 MAX	0.206 MAX
J	5.72 MAX	0.225 MAX
K	15.24	0.600
L	13.2	0.520
M	$0.25+0.1$	$0.010+0.0014$

Ceramic

ITEM	MILLIMETERS	INCHES
A	51.5 MAX	2.028 MAX
B	1.62	0.064
C	2.54 ± 0.1	0.100 ± 0.014
D	0.50 ± 0.1	0.0197 ± 0.1004
E	48.26 ± 0.2	1.900 ± 0.008
F	1.27	0.050
G	3.2 MIN	0.126 MIN
H	1.0 MIN	0.04 MIN
I	4.2 MAX	0.17 MAX
J	5.2 MAX	0.205 MAX
K	15.24 ± 0.1	0.6 ± 0.004
L	$13.5+0.2$	$0.531+0.018$
M	0.30 ± 0.1	0.012 ± 0.0104

μ PD8741AD Cerdip

μ PD8048 FAMILY OF SINGLE CHIP 8-BIT MICROCOMPUTERS

DESCRIPTION The μ PD8048 family of single chip 8-bit microcomputers is comprised of the μ PD8048, μ PD8748 and μ PD8035L. The processors in this family differ only in their internal program memory options: The μ PD8048 with $1 \mathrm{~K} \times 8$ bytes of mask ROM, the μ PD8748 with $1 \mathrm{~K} x 8$ bytes of UV erasable EPROM and the μ PD8035L with external memory.

FEATURES • Fully Compatible With Industry Standard 8048/8748/8035

- NMOS Silicon Gate Technology Requiring a Single +5V Supply
- 2.5μ s Cycle Time. All Instruction 1 or 2 Bytes
- Interval Timer/Event Counter
- 64×8 Byte RAM Data Memory
- Single Level Interrupt
- 96 Instructions: 70\% Single Byte
- 27 I/O Lines
- Internal Clock Generator
- 8 Level Stack
- Compatible With 8080A/8085A Peripherals
- Available in Both Ceramic and Plastic 40 Pin Packages

PIN CONFIGURATION

$\mathrm{T}_{0}{ }^{1}$		40	v_{cc}
xtal 1 -		39	$\square \mathrm{T}_{1}$
XtAL 2 -		38	P27
RESET 4		37	P26
$\overline{\text { SS }}$		36	P25
INT 6		35	$\square \mathrm{P} 24$
EA		34	P17
$\overline{\mathrm{BD}} 8$	$\mu \mathrm{PD}$	33	P16
PSEN 9	8048/	32	- P15
WR - 10	8748/	31	$\square \mathrm{P} 14$
ALe 11		30	
$\mathrm{DB}_{0} \mathrm{C}_{12}$	8035 L	29	P P12
$\mathrm{DB}_{1} \mathrm{C}^{13}$		28	P P11
$\mathrm{DB}_{2} \mathrm{C}^{14}$		27	$\square \mathrm{P} 10$
$\mathrm{DB}_{3} \mathrm{C}^{15}$		26	$\square \mathrm{V}_{\mathrm{D}}$
$\mathrm{DB}_{4}{ }^{16}$		25	P PROG
$\mathrm{DB}_{5} \mathrm{C}^{17}$		24	P23
$\mathrm{DB}_{6} \mathrm{C}_{18}$		23	P ${ }^{\text {P2 }}$
$\mathrm{DB}_{7} \mathrm{C}^{19}$		22	P21
$\mathrm{v}_{\text {SS }}{ }^{20}$		21	P20

The NEC μ PD8048, μ PD8748 and μ PD8035L are single component, 8 bit, parallel microprocessors using N-channel silicon gate MOS technology. The $\mu \mathrm{P} 1) 8048 / 8748 /$ 8035L efficiently function in control as well as arithmetic applications. The flexibility of the instruction set allows for the direct set and reset of individual data bits within the accumulator and the I/O port structure. Standard logic function implementation is facilitated by the large variety of branch and table look-up instructions.

The μ PD8048/8748/8035L instruction set is comprised of 1 and 2 byte instructions with over 70% single-byte and requiring only 1 or 2 cycles per instruction with over 50\% single-cycle.
The μ PD8048 series of microprocessors will function as stand alone microcomputers. Their functions can easily be expanded using standard 8080A/8085A peripherals and memories.
The μ PD8048 contains the following functions usually found in exterrial peripheral devices: 1024×8 bits of ROM program memory; 64×8 bits of RAM data memory; 27 I/O lines; an 8-bit interval timer/event counter; oscillator and clock circuitry.
The μ PD8748 differs from the μ PD8048 only in its 1024×8-bit UV erasable EPROM program memory instead of the 1024×8-bit ROM memory. It is useful in preproduction or prototype applications where the software design has not yet been finalized or in system designs whose quantities do not require a mask ROM.
The μ PD8035L is intended for applications using external program memory only. It contains all the features of the μ PD 8048 except the 1024×8-bit internal ROM. The external program memory can be implemented using standard 8080A/8085A memory products.

PIN		FUNCTION
NO.	SYMBOL	
1	T_{0}	Testable input using conditional transfer functions JTO and JNTO. The internal State Clock (CLK) is available to T_{0} using the ENTO CLK instruction. T_{0} can also be used during programming as a testable flag.
2	XTAL 1	One side of the crystal input for external oscillator or frequency (non TTL compatible $V_{1 H}$).
3.	XTAL 2	The other side of the crystal input.
4	RESET	Active low input for processor initialization. $\overline{\text { RESET }}$ is also used for PROM programming verification and powerdown (non TTL compatible $V_{1 H}$).
5	$\overline{\text { SS }}$	Single Step input (active-low). $\overline{\text { SS }}$ together with ALE allows the processor to "single-step" through each instruction in program memory.
6	$\overline{\text { INT }}$	Interrupt input (active-low). $\overline{\text { INT }}$ will start an interrupt if an enable interrupt instruction has been executed. A reset will disable the interrupt. INT can be tested by issuing a conditional jump instruction.
7	EA	External Access input (active-high). A logic " 1 " at this input commands the processor to perform all program memory fetches from external memory.
8	$\overline{\mathrm{RD}}$	READ strobe output (active-low). $\overline{\mathrm{AD}}$ will pulse low when the processor performs a BUS READ. RD will also enable data onto the processor BUS from a peripheral device and function as a READ STROBE for external DATA MEMORY.
9	$\overline{\text { PSEN }}$	Program Store Enable output (active-low). $\overline{\text { PSEN }}$ becomes active only during an external memory fetch.
10	$\overline{W R}$	WRITE strobe output (active-low). WR will pulse low when the processor performs a BUS WRITE. WR can also function as a WRITE STROBE for external DATA MEMORY.
11	ALE	Address Latch Enable output (active high). Occurring once each cycle, the falling edge of ALE latches the address for external memory or peripherals. ALE can also be used as a clock output.
12-19	$\mathrm{D}_{0}-\mathrm{D}_{7} \mathrm{BUS}$	8 -bit, bidirectional port. Synchronous reads and writes can be performed on this port using $\overline{R D}$ and $\overline{W R}$ strobes. The contents of the $D_{0}-D_{7}$ BUS can be latched in a static mode. During an external memory fetch, the $D_{0}-D_{7}$ BUS holds the least significant bits of the program counter. $\overline{\text { PSEN }}$ controls the incoming addressed instruction. Also, for an external RAM data store instruction the $D_{0}-D_{7} B U S$, controlled by ALE, $\overline{R D}$ and $\overline{W R}$, contains address and data information.
20	$V_{\text {SS }}$	Processor's GROUND potential.
$\begin{aligned} & 21-24 \\ & 35-38 \end{aligned}$	$\begin{aligned} & \mathrm{P}_{20}-\mathrm{P}_{27}: \\ & \mathrm{PORT}_{2} \end{aligned}$	Port 2 is the second of two 8-bit quasi-bidirectional ports. For external data memory fetches, the four most significant bits of the program counter are contained in $\mathrm{P}_{20}-\mathrm{P}_{23}$. Bits $\mathrm{P}_{20}-\mathrm{P}_{23}$ are also used as a 4-bit I/O bus for the μ PD8243, INPUT/OUTPUT EXPANDER.
25	PROG	Program Pulse. A +25V pulse applied to this input is used for programming the μ PD8748. PROG is also used as an output strobe for the μ PD8243.
26	VDD	Programming Power Supply. VDD must be set to +25 V for programming the $\mu \mathrm{PD} 8748$, and to +5 V for the ROM and PROM versions for normal operation. VDD functions as the Low Power Standby input for the μ PD8048.
27-34	$\begin{gathered} P_{10}-P_{17} \\ \text { PORT } 1 \end{gathered}$	Port 1 is one of two 8 -bit quasi-bidirectional ports.
39	T1	Testable input using conditional transfer functions JT1 and JNT1. T1 can be made the counter/timer input using the STRT CNT instruction.
40	VCc	Primary Power Supply. VCC must be +5 V for programming and operation of the μ PD8748, and for operation of the μ PD8036L and μ PD8048.

Operating Temperature $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature (Ceramic Package) $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature (Plastic Package) $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on Any Pin
-0.5 to +7 Volts (1)
Power Dissipation . 1.5 W
Note: (1) With respect to ground.
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
*COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Low Voltage (All Except XTAL 1, XTAL 2)	$V_{\text {IL }}$	-0.5		0.8	\checkmark	
Input High Voltage (All Except XTAL 1, XTAL 2, RESET)	$V_{\text {IH }}$	2.0		Vcc	v	
Input High Voltage (RESET, XTAL 1, XTAL 2)	V_{1+1}	3.8		Vcc	V	
Output Low Voltage (BUS)	VOL			0.45	V	$1 \mathrm{OL}=2.0 \mathrm{~mA}$
Output Low Voltage ($\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$, PSEN, ALE)	$V_{\text {OL1 }}$			0.45	V	$\mathrm{IOL}=1.8 \mathrm{~mA}$
Output Low Voltage (PROG)	VOL2			0.45	V	$\mathrm{IOL}=1.0 \mathrm{~mA}$
Output Low Voltage (All Other Outputs)	VOL3			0.45	V	$\mathrm{I} \mathrm{OL}=1.6 \mathrm{~mA}$
Output High Voltage (BUS)	VOH	2.4			V	$\mathrm{I}^{\mathrm{OH}}=-400 \mu \mathrm{~A}$
Output High Voltage $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$. PSEN, ALE)	V OH 1	2.4			V	$1 \mathrm{OH}=-100 \mu \mathrm{~A}$
Output High Voltage (All Other Outputs)	VOH_{2}	2.4			v	${ }^{\prime} \mathrm{OH}=-40 \mu \mathrm{~A}$
Input Leakage Current (T1, INT)	IIL.			± 10	$\mu \mathrm{A}$	$V_{S S} \leqslant V_{\text {IN }} \leqslant V_{C C}$
Input Leakage Current ($\left.\mathrm{P}_{10}-\mathrm{P}_{17}, \mathrm{P}_{20} \cdot \mathrm{P}_{27}, \mathrm{EA}, \overline{\mathrm{SS}}\right)$	ILLI			-500	$\mu \mathrm{A}$	$V_{C C C} \geqslant V_{1 N} \geqslant V_{S S}+0.45 \mathrm{~V}$
Output Leakage Current (BUS, T_{0} - High Impedance State)	${ }^{\prime} \mathrm{OL}$			± 10	$\mu \mathrm{A}$	$V_{C C} \geqslant V_{\text {IN }} \geqslant V_{S S}+0.45 \mathrm{~V}$
Power Down Supply Current	IDD		7	15	mA	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
Total Supply Current	${ }^{1} \mathrm{DD}+\mathrm{I} C \mathrm{C}$		60	135	mA	$\mathrm{Ta}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

$T_{a}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} ; V_{C C}=+5 \mathrm{~V} \pm 10 \% ; V_{D D}=+25 \mathrm{~V} \pm 1 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
VDD Program Voltage High-Level	V DOH	24.0		26.0	V	
VDD Voltage Low-Level	VDDL	4.75		5.25	V	
PROG Voltage High-Level	VPH	21.5		24.5	V	
PROG Voltage Low-Level	VPL			0.2	V	
EA Program or Verify Voltage High-Level	VEAH	21.5		24.5	V	
EA Voltage Low-Level	VEAL			5.25	V	
VDD High Voltage Supply Current	IDD			30.0	mA	
PROG High Voltage Supply Current	IPROG			16.0	mA	
EA High Voltage Supply Current	IEA			1.0	mA	

ABSOLUTE MAXIMUM RATINGS*

DC CHARACTERISTICS

DC CHARACTERISTICS PROGRAMMING THE μ PD8748

READ, WRITE AND INSTRUCTION FETCH - EXTERNAL DATA AND PROGRAM MEMORY
AC CHARACTERISTICS
$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; V_{C C}=V_{D D}=+5 \mathrm{~V} \pm 10 \% ; V_{S S}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST (1) CONDITIONS
		MIN	TYP	MAX		
ALE Pulse Width	${ }_{\text {t }}^{\text {LL }}$	400			ns	
Address Setup before ALE	${ }^{\text {t }}$ AL	120			ns	
Address Hold from ALE	tha	80			ns	
Control Pulse Width ($\overline{\text { PSEN }}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}$)	${ }^{\text {t }} \mathrm{C}$	700			ns	
Data Setup before WR	${ }^{\text {tow }}$	500			ns	
Data Hold after WR	tWD	120			ns	$\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$
Cycle Time	${ }^{\text {t }} \mathrm{C}$	2.5		15.0	$\mu \mathrm{s}$	$6 \mathrm{MHz} \times$ XTAL
Data Hold	tor	0		200	ns	
$\overline{\text { PSEN, }} \overline{\mathrm{RD}}$ to Data In	tRD	.		500	ns	
Address Setup before $\overline{W R}$	${ }^{\text {t }}$ AW	230			ns	
Address Setup before Data in	t $A D$			950	ns	
Address Float to Rप्ट, $\overline{\text { PSEN }}$	${ }^{\text {t }}$ AFC	0			ns	
Control Pulse to ALE	tCA	10			ns	

Notes:
(1) For Control Outputs: $\mathrm{C}_{\mathrm{L}}=80 \mathrm{pF}$

For Bus Outputs: $C_{L}=150 \rho F$
${ }^{t} \mathrm{CY}=2.5 \mu \mathrm{~s}$
PORT 2 TIMING
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Port Control Setup before Falling Edge of PROG	${ }^{\text {t }}$ P	110			ns	
Port Control Hold after Falling Edge of PROG	tec	100			ns	
$\widehat{\text { PROG to Time P2 Input must be }}$ Valid	tPR			810	ns	
Output Data Setup Time	tDP	250			ns	
Output Data Hold Time	tPD	65			ns	
Input Data Hold Time	tPF	0		150	ns	
PROG Pulse Width	tpp	1200			ns	
Port 2 I/O Data Setup	tPL	350			ns	
Port 2 I/O Data Hold	${ }_{\text {t }}$ LP	150			ns	

PROGRAMMING SPECIFICATIONS $-\mu$ PD8748

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Address Setup Time before RESET \uparrow	taw	4 tCY				
Address Hold Time after RESET \uparrow	tWA	4 tcY				
Data In Setup Time before PROG \uparrow	tDW	4 tcY				
Data in Hold Time after PROG \downarrow	twD	:4 tcy				
RESET Hold Time to VERIFY	tPH	4 tCY				
VDD	tVDDW	4 tcY				
VDD Hold Time after PROG \downarrow	.tVDDH	0				
Program Pulse Width	${ }^{\text {t }}$ PW	50		60	ms	
Test 0 Setup Time before Program Mode	t7w	4 tcY				
Test 0 Hold Time after Program Mode	tWT	4 tcY				
Test 0 to Data Out Delay	too			4 tcy		
RESET Pulse Width to Latch Address	tww	4 tcy				
VDD and $\overline{\text { PROGE }}$ Rise and Fall Times	t_{r}, tf_{f}	0.5		2.0	μs	
Processor Operation Cycle Time	tCY	5.0			$\mu \mathrm{s}$	
RESET Setup Time before EA \uparrow	tre	4 tcy				

INSTRUCTION FETCH FROM EXTERNAL MEMORY

ALE
$\overline{R D}$

Bus

READ FROM EXTERNAL DATA MEMORY

WRITE TO EXTERNAL MEMORY

PORT 2 TIMING

VERIFY MODE TIMING (μ PD8048/8748 ONLY)

Notes:

(1) Conditions: $\overline{C S}$ TTL Logic " 1 "; Ao TTL Logic " 0 " must be met. (Use 10 K resistor to $V_{C C}$ for CS , and 10 K resistor to $V_{S S}$ for $A 0$)
(2) tCY $5 \mu \mathrm{~s}$ can be achieved using a 3 MHz frequency source (LC, XTAL or external) at the XTAL 1 and XTAL 2 inputs.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{MNEMONIC} \& \multirow[b]{2}{*}{FUNCTION} \& \multirow[b]{2}{*}{DESCRIPTION} \& \multicolumn{8}{|c|}{INSTRUCTION CODE} \& \multirow[b]{2}{*}{CYCLES} \& \multirow[b]{2}{*}{BYTES} \& \multicolumn{4}{|c|}{Flags}

\hline \& \& \& D_{7} \& D_{6} \& D_{5} \& D_{4} \& D_{3} \& D_{2} \& D_{1} \& D_{0} \& \& \& c \& AC \& FO \& F1

\hline \multicolumn{17}{|c|}{BRANCH (CONT.)}

\hline JNTO addr \& $$
\begin{aligned}
& \text { (PCO-7)+addr if TO }=0 \\
& \text { (PC) } \leftarrow(P C)+2 \text { if TO }=1
\end{aligned}
$$ \& Jump to specified adiress if Test 0 is low. \& 0
3 \& 0
a_{6} \& 1
a_{5} \& \& 0
a3 \& 1
a_{2} \& 1
a_{1} \& 0
a_{0} \& 2 \& 2 \& \& \& \&

\hline JNT ${ }^{\text {a addr }}$ \& $$
\begin{aligned}
& (\mathrm{PCCO}-7)-\text { addr if } \mathrm{T} 1=0 \\
& (\mathrm{PC})-(\mathrm{PC})+2 \text { if } \mathrm{T} 1=1
\end{aligned}
$$ \& Jump to specified address if Test 1 is low. \& 0
17 \& 1
a_{6} \& 0
a_{5} \& \& 0
0
0 \& 1
a_{2}

1 \& ${ }^{1} 1$ \& 0
3_{0}
0 \& 2 \& 2 \& \& \& \&

\hline JNZ addr \& $$
\begin{aligned}
& (P C 0-7) \leftarrow \text { addr if } A=0 \\
& (P C) \leftarrow(P C)+2 \text { if } A=0
\end{aligned}
$$ \& Jump to specified address if accumulator is non-zero. \& \[

$$
\begin{gathered}
1 \\
a 7
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
a_{0}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
a 5
\end{gathered}
$$

\] \& \& \[

$$
\begin{gathered}
0 \\
a_{3}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
a_{2}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
a_{1}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
a_{0}
\end{gathered}
$$
\] \& 2 \& 2 \& \& \& \&

\hline JTF addr \& $$
\begin{aligned}
& (\mathrm{PC} 0-7) \leftarrow \text { addr if } T F=1 \\
& (\mathrm{PC}) \leftarrow(\mathrm{PC})+2 \text { if } T F=0
\end{aligned}
$$ \& Jump to specified address if Timer Flag is set to 1 . \& \[

$$
\begin{gathered}
0 \\
a_{7}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
a_{6}
\end{gathered}
$$.
\] \& \& 1

04 \& 0
3 \& 1
a_{2} \& 1

a_{1} \& $$
\begin{gathered}
0 \\
a_{0}
\end{gathered}
$$ \& 2 \& 2 \& \& \& \&

\hline JTO addr \& (PC 0-7) *- addr if $\mathrm{TO}=1$

$$
(P C) \leftarrow(P C)+2 \text { if } 70=0
$$ \& Jump to specified address if Test 0 is a \& 0

07 \& 0
06 \& 1
a_{5} \& 1
a_{4} \& 0
03 \& 1
a_{2} \& 1
a_{i}
1 \& 0
0
0 \& 2 \& 2 \& \& \& \&

\hline JT1 addr \& (PC 0-7) \leftarrow addr if $T 1=1$

$$
(P C)+(P C)+2 \text { if } T 1=0
$$ \& Jump to specified address if Test $\mathbf{1}$ is a 1 . \& 0

37 \& 1
96 \& 0
35 \& 1
34 \& 0
3 \& 1
4 \& 1
${ }_{1} 1$ \& 0
90
0 \& 2 \& 2 \& \& \& \&

\hline $j 2$ addr \& \[
$$
\begin{aligned}
& (P C 0-7) \leftarrow \text { addr if } A=0 \\
& (P C) \leftarrow(P C)+2 \text { if } A=0
\end{aligned}
$$

\] \& Jump to specified address if Accumulator is 0 . \& \[

$$
\begin{gathered}
1 \\
a_{7}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
a_{6}
\end{gathered}
$$

\] \& \& \& \[

$$
\begin{gathered}
0 \\
a_{3}
\end{gathered}
$$

\] \& \& \[

$$
\begin{gathered}
1 \\
a_{1}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
a_{0}
\end{gathered}
$$
\] \& 2 \& 2 \& \& \& \&

\hline \multicolumn{17}{|c|}{CONTROL}

\hline EN I \& \& Enable the External Interrupt input. \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& \& \& \&

\hline DIS I \& \& Disable the External Interrupt input. \& 0 \& 0 \& 0 \& 1 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& \& \& \&

\hline ENTO CLK \& \& Enable the Clock Output pin TO. \& 0 \& 1 \& 1 \& 1 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& \& \& \&

\hline SEL MESO \& $(\mathrm{DBF}) \leftarrow 0$ \& Select Bank 0 (locations 0 2047) of Program Memory. \& 1 \& 1 \& 1 \& 0 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& \& \& \&

\hline SEL MB1 \& $(\mathrm{DBF}) \leftarrow 1$ \& Select Bank 1 (locations 2048 4095) of Program Memory. \& 1 \& 1 \& 1 \& 1 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& \& \& \&

\hline SELRBO \& $$
(B S) \leftarrow 0
$$ \& Select Bank 0 (locations 0 - 7) of Data Memory. \& 1 \& \[

1

\] \& 0 \& \[

0

\] \& \[

0

\] \& \dagger \& \[

0

\] \& \[

1

\] \& 1 \& \[

1
\] \& \& \& \&

\hline SEL RB1 \& $(B S)-1$ \& Select Eank 1 (locations 24 - 31) of Data Memory. \& 1 \& 1 \& 0 \& 1 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& \& \& \&

\hline \multicolumn{17}{|c|}{DATA MOVES}

\hline MOV A, : data \& $(\mathrm{A}) \leftarrow$ dats \& Move Immediate the specified data into the Accumulator. \& \[
$$
\begin{gathered}
0 \\
d 7
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
d_{6}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
d_{5}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
d_{4}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
d_{3}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
d_{2}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
d_{1}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
d_{0}
\end{gathered}
$$
\] \& 2 \& 2 \& \& \& \&

\hline MOV A. Rr \& $(A)-\left(R_{r}\right) ; r=0-7$ \& Move the contents of the designated registers into the Accumulator. \& 1 \& 1 \& 1 \& 1 \& 1 \& 1 \& ' \& 1 \& 1 \& 1 \& \& \& \&

\hline MOV A, \&r \& $(A)+((\mathrm{Rr})): r=0-1$ \& Move Indirect the contents of data memory location into the Accumulator. \& 1 \& 1 \& 1 \& 1 \& 0 \& 0 \& 0 \& 1 \& 1 \& 1 \& \& \& \&

\hline MOV A, PSW \& $(\mathrm{A}) \div(\mathrm{PSW})$ \& Move contents of the Program Status Word into the Accumulator. \& 1 \& 1 \& 0 \& 0 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& \& \& \&

\hline MOV Rr, : data \& $(\mathrm{Rr}) \hookleftarrow$ data; $\mathrm{r}=0-7$ \& Move Immediate the specified data into the designated register. \& \[
$$
\begin{gathered}
1 \\
d 7
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
d_{6}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
d_{5}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
d_{4}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
d_{3}
\end{gathered}
$$

\] \& \[

\stackrel{\mathrm{r}}{\mathrm{~d}_{2}}

\] \& \[

\stackrel{r}{d_{1}}

\] \& \[

{ }_{\mathrm{d}}^{\mathrm{d}}
\] \& 2 \& 2 \& \& \& \&

\hline MOV R1, A \& $(\mathrm{Rr})-(\mathrm{A}) ; \mathrm{r}=0-7$ \& Move Accumulator Contents into the designated register. \& 1. \& 0 \& 1 \& 0 \& 1 \& 1 \& r \& r \& 1 \& 1. \& \& \& \&

\hline MOV @Rr, A \& $\{(\mathrm{Rr})\} \leftarrow(\mathrm{A}) ; \mathrm{r}=0-1$ \& Move Indirect Accumulator Contents into data memory location. \& 1 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& ' \& 1 \& 1 \& \& \& \&

\hline MOV @ Rr, : data \& $\left(\left(\mathrm{Rr}_{\mathrm{r}}\right)\right.$) - data; r $=0-1$ \& Move Immediate the specified data into data memory. \& \[
$$
\begin{gathered}
1 \\
d 7
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
d_{6}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
d_{5}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
d_{4}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
\mathrm{~d}_{3}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
\mathrm{~d}_{2}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
d_{1}
\end{gathered}
$$

\] \& \[

\mathrm{d}_{0}
\] \& 2 \& 2 \& \& \& \&

\hline MOV PSW, A \& $(\mathrm{PSW})<(\mathrm{A})$ \& Move contents of Accumulator into the program status word. \& \& 1 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& \& \& \&

\hline MOVP A, @ A \& $$
\begin{aligned}
& (P C 0-7) \leftarrow(A) \\
& (A) \leftarrow((P C))
\end{aligned}
$$ \& Move data in the current page into the Accumulator. \& 1 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1 \& 1 \& 2 \& 1 \& \& \& \&

\hline MOVP3 A, @ A \& $$
\begin{aligned}
& (P C O-7) \leftarrow(A) \\
& (P C 8-10)-011 \\
& (A) \leftarrow((P C))
\end{aligned}
$$ \& Move Program data in Page 3 into the Accumulator. \& 1 \& 1 \& 1 \& 0 \& 0 \& 0 \& 1 \& 1 \& 2 \& 1 \& \& \& \&

\hline Movx A.@R \& $(\mathrm{A})-($ (Rr) $): r=0-1$ \& Move Indirect the contents of external data memory into the Accumulator. \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& $$
0
$$ \& r \& 2 \& 1 \& \& \& \&

\hline MOVX@R. A \& $((\mathrm{Rr}) \quad \leftarrow(\mathrm{A}) ; \mathrm{r}=0-1$ \& Move Indirect the contents of the Accumulator into external data memory. \& 1 \& 0 \& 0 \& 1 \& 0 \& 0 \& 0 \& r \& 2 \& 1 \& \& \& \&

\hline XCH A, Rr \& $(\mathrm{A}) \stackrel{(\mathrm{Rr}}{\mathbf{\prime}}$; $\mathrm{r}=0-7$ \& Exchange the Accumulator and designated register's conients. \& 0 \& 0 \& 1 \& 0 \& 1 \& ' \& r \& 1 \& 1 \& 1 \& \& \& \&

\hline $\mathrm{XCH} \mathrm{A.@Rr}$ \& $$
(A) _\left(\left(R_{r}\right)\right) ; r=0-1
$$ \& Exchange Indirect contents of Accumu lator and location in data memory. \& 0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& r \& 1 \& 1 \& \& \& \&

\hline XCHD A, @ Rr \& $$
\begin{aligned}
& (A 0-3) \approx((\mathrm{Rr})) 0-3)): \\
& r=0-1
\end{aligned}
$$ \& Exchange Indirect 4.bit contents of Accumulator and data memory. \& 0 \& 0 \& 1 \& 1 \& 0 \& 0 \& 0 \& r \& 1 \& 1 \& \& \& \&

\hline \multicolumn{17}{|c|}{FLAGS}

\hline CPL C \& |C| - NOT (C) \& Complement Content of carry bit. \& 1 \& 0 \& 1 \& 0 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& - \& \& \&

\hline CPL Fo \& (F0) , NOT (FO) \& Complement Content of Flag F0. \& 1 \& 0 \& 0 \& 1 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& \& \& - \&

\hline CPLFI \& (F1) NOT (F1) \& Complement Content of Flag F1. \& 1 \& 0 \& 1 \& 1 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& \& \& \& -

\hline CLR C \& (C) - 0 \& Clear content of carry bit to 0 . \& 1 \& 0 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& - \& \& \&

\hline CLR FO \& (FO) - 0 \& Clear content of Flag 0 to 0 . \& 1 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& \& \& * \&

\hline CLRF 1 \& (Fi) . 0 \& Clear content of Flag ito 0 . \& 1 \& 0 \& 1 \& 0 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& \& \& \& -

\hline
\end{tabular}

MNEMONIC	FUNCTION	DESCRIPTION	INSTRUCTION CODE								CYCLES	BYTES	FLAGS			
			D7	D6	D5	Da	D3	D2	D1	D0			C	AC	Fo	F1
INPUT/OUTPUT																
ANL BUS, : data	$(B \cup S) \sim(B \cup S)$ AND data	Logical and Immediate-specified data with contents of BUS.	$\begin{gathered} 1 \\ d 7 \end{gathered}$	$\begin{gathered} 0 \\ d_{6} \end{gathered}$	$\begin{gathered} 0 \\ d_{5} \end{gathered}$	$\begin{gathered} 1 \\ d_{4} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{~d}_{3} \end{gathered}$	$\begin{gathered} 0 \\ d 2 \end{gathered}$	$\begin{gathered} 0 \\ d_{1} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{~d}_{0} \end{gathered}$	2	2				
ANL Pp, $=$ data	$(\mathrm{Pp}) \times(\mathrm{Pp})$ AND data $p=1-2$	Logical and immediate specified data with designated port (1 or 2)		$\begin{gathered} 0 \\ d_{6} \end{gathered}$			$\begin{gathered} 1 \\ d_{3} \end{gathered}$	$\begin{gathered} 0 \\ d_{2} \end{gathered}$	$\begin{gathered} p \\ d_{1} \end{gathered}$	$\begin{gathered} \mathrm{p} \\ \mathrm{~d} 0 \end{gathered}$	2	2				
ANLD Pp. A	$\begin{aligned} & (P p)-(P p) \text { AND }(A O-3) \\ & p=4-7 \end{aligned}$	Logical and contents of Accumulator with designated port ($4-7$).		0	0	1	1	1	p	p	2	1				
IN A, Pp	$(\mathrm{A})-(\mathrm{Pp}) ; \mathrm{p}=1-2$	Input data from designated port (1-2) into Accumulator.	0	0	0	0	1	0	p	p	2	1				
INS A, BUS	$(A) \leftarrow(B \cup S)$	Input strobed BUS data into Accumulator.	0	0	0	0	1	0	0	0	2	1				
MOVD A, Pp	$\begin{aligned} & (\mathrm{A} 0-3) \leftarrow(\mathrm{Pp}): p=4-7 \\ & (\mathrm{~A} 4-7)-0 \end{aligned}$	Move contents of designated port (4-7) into Accumulator.	0	0	0	0	1	1	D	p	2	1				
MOVD Pp, A	$(\mathrm{Pp}) \leftarrow A 0=3 ; p=4-7$	Move contents of Accumulator to designated port (4 - 7).	0	0	1	1	1	1	ρ	p	2	1				
ORL BUS, :: data	(BUS) $\leftarrow($ BUS OR data	Logical or immediate specified data with contents of BUS.		$\begin{gathered} 0 \\ d_{6} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{~d}_{5} \end{gathered}$	$\begin{gathered} 0 \\ d_{4} \end{gathered}$	$\begin{gathered} 1 \\ d_{3} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{~d}_{2} \end{gathered}$	$\begin{gathered} 0 \\ \sigma_{1} \end{gathered}$	$\begin{gathered} 0 \\ d_{0} \end{gathered}$	2	2				
ORLD Pp, A	$\begin{aligned} & (P p)-(P p) \text { OR }(A O-3) \\ & p=4-7 \end{aligned}$	Logical or contents of Accumulator with designated port (4-7).	1	0	0	0	1	1	p	D	2	1				
ORL Pp. $\%$ dats	$(\mathrm{Pp})-(\mathrm{Pp})$ OR data $p=1-2$	Logical or Immediate specified date with designated port (1-2).		$\begin{gathered} 0 \\ 46 \end{gathered}$	$\begin{gathered} 0 \\ d_{5} \end{gathered}$	$\begin{gathered} 0 \\ d_{4} \end{gathered}$	$\begin{gathered} 1 \\ d_{3} \end{gathered}$	$\begin{gathered} 0 \\ d_{2} \end{gathered}$	$\begin{gathered} p \\ d_{1} \end{gathered}$	$\begin{aligned} & \mathrm{p} \\ & \mathrm{~d}_{0} \end{aligned}$	2	2				
OUTL BUS, A	(BUS) - (A)	Output contents of Accumulator onto Bus.		0	0	0	0	0	1	0	2	1				
OUTL Pp.A	$(\mathrm{Pp})-(\mathrm{A}) ; \mathrm{p}=1-2$	Output contents of Accumulator to designated port (1-2).	0	0	1	1		0	p	p	2	1				
REGISTERS																
DEC Rr (Rr)	$(R r) \leftarrow(R r)+1 ; r=0 \rightarrow 7$	Decrement by 1 contents of designated register.	1	1	0	0	1	r	'	'	1	1				
INC RIr	$(R r)-(R r)+1 ; r=0-7$	Increment by 1 contents of designated register.	0	0	0	1	1	r	r	I	1	1				
INC@ R_{1}	$\begin{aligned} & \left(\left(R_{r}\right)\right)-\left(\left(R_{r}\right)\right)+1 ; \\ & r=0-1 \end{aligned}$	Increment Indirect by 1 the contents of data memory location.	0	0	0	1	0	0	0	r	1	1				
STMES SUBROUTINE																
CALL addr	$\begin{aligned} & ((\mathrm{SP})) \leftarrow(\mathrm{PC}),(\mathrm{PSW} 4-7) \\ & (\mathrm{SP})-(\mathrm{SP})+1 \\ & (\mathrm{PC} 8-10)-\operatorname{addr} 8-10 \\ & (\mathrm{PC} 0-7) \leftarrow \operatorname{addr} 0-7 \\ & (\mathrm{PC} 11)-\mathrm{DBF} \end{aligned}$	Call designated Subroutine.		$\begin{aligned} & a_{9} \\ & a_{6} \end{aligned}$	$\begin{aligned} & a_{8} \\ & a 5 \end{aligned}$	$\begin{gathered} 1 \\ a 4 \end{gathered}$	$\begin{gathered} 0 \\ a_{3} \end{gathered}$	1 3	0 a_{1}	$\begin{gathered} 0 \\ a_{0} \end{gathered}$	2	2				
RET	$\begin{aligned} & (S P) \leftarrow(S P)=1 \\ & (P C)-((S P)) \end{aligned}$	Return from Subroutine without restoring Program Status Word.	1	0	0	0	0	0	1	1	2	1				
RETR	$\begin{aligned} & (S P)-(S P)=1 \\ & (P C)-(\mid S P)) \end{aligned}$ (PSW 4-7) - ((SP))	Return from Subroutine restoring Program Status Word.	1	0	0	1	0	0	1	1	2	1				
TIMER/COUNTER																
EN TCNT:		Enable Internal inierrupt Flag for TimeriCounter output.	0	0	1	0	0	1	0	1	1	1				
DIS TCNTI		Disable Internal interrupt Flag for Timer/Counter output.	0	0	1	1	0	1	0	1	1	1				
MOV A, T	(A). (T)	Move contents of Timer/Counter into Accumulator.	0	1	0	0	0	0	1	0	1	1				
MOV T, A	(T). (A)	Move contents of Accumulator into Timer/Counter.	0	1	1	0	0	0	1	0	1	1				
STOP TCNT		Stop Count for Event Counter.	0	1	t	0	0	1	0	1	1	1				
STRT CNT		Start Count for Event Counter.	0	1	0	0	0	1	0	1	1	1				
STRT T		Start Count for Timer.	0	1	0	1	0	1	0	1	1	1				
MISCELLANEOUS																
NOP		No Operation Derformed.	0	0	0	0	0	0	0	0	1	1				

Notes: (1) Instruction Code Designations r and p form the binary representation of the Registers and Port: involved.
(2) The dot under the appropriate flag bit indicates that its content is subject to change by the instriction it appears in.
(3) References to the address and data are specified in bytes 2 andior 1 of the instruction.
(4) Numerical Subscripts appearing in the FUNCTION column reference the specific bits affected.

Symbol Definitions:

SYMBOL	DESCRIPTION
A	The Accumulator
AC	The Auxiliary Carry Flag
addr	Program Memory Address (12 bits)
Bb	Bit Designator (b $=0-7$)
BS	The Bank Switch
BUS	The BUS Port
C	Carry Flag
CLK	Clock Signal
CNT	Event Counter
D	Nibble Designator (4 bits)
data	Number or Expression (8 bits)
DBF	Memory Bank Flip-Flop
F0. F1	Flags O, 1
I	Interrupt
P	"In-Page" Operation Designator

SYMBOL	DESCRIPTION
P_{p}	Port Designator ($\mathrm{p}=1,2$ or 4-7)
PSW	Progr 1 m Status Word
Br	Regiszer Designator ($\mathrm{r}=0,1$ or 0-7)
SP	Stack Pointer
T	Timer
TF	Timer Flag
T0, T1	Testable Flags 0. 1
X	External RAM
$=$	Prefix for Immediate Data
(0)	Prefix for Indirect Address
\$	Progr 3 m Counter's Current Value
(x)	Contents of External RAM Location
(1x)	Contents of Memory Location Addressed by the Contents of External RAM Location.
${ }^{-}$	Replaced By

LOGIC SYMBOL

PACKAGE OUTLINES μ PD8048C μ PD8035LC

Plastic

ITEM	MILLIMETERS	INCHES
A	51.5 MAX	2.028 MAX
B	1.62	0.064
C	2.54 ± 0.1	0.10 ± 0.004
D	0.5 ± 0.1	0.019 ± 0.004
E	48.26	1.9
F	1.2 MIN	0.047 MIN
G	2.54 MIN	0.10 MIN
H	0.5 MIN	0.019 MIN
I	5.22 MAX	0.206 MAX
J	5.72 MAX	0.225 MAX
K	15.24	0.600
L	13.2	0.520
M	$0.25+0.1$	$0.010+0.004$

μ PD8048D μ PD8035LD

Ceramic		
ITEM	MILLIMETERS	INCHES
A	51.5	2.03
B	1.62	0.06
C	2.54	0.1
D	0.5 ± 0.1	0.02 ± 0.004
E	48.26	1.9
F	1.02	0.04
G	3.2	0.13
H	1.0	0.04
I	3.5	0.14
J	4.5	0.18
K	15.24	0.6
L	14.93	0.59
M	0.25 ± 0.05	0.01 ± 0.0019

PACKAGE OUTLINE μ PD8748D
Cerdip

Description

The NEC μ PD80C48 is a true stand-alone 8 -bit microcomputer fabricated with CMOS technology. The μ PD80C48 contains all the functional blocks - 1 K bytes ROM, 64 bytes RAM, 28 I/O lines, on-chip 8-bit Timer/ Event counter, on-chip clock generator - to enable its use in stand-alone applications. For designs requiring extra capability the μ PD80C48 can be expanded using industry standard μ PD8080A $/ \mu$ PD8085A peripherals and memory products. The μ PD80C35 differs from the μ PD80C48 only in that the μ PD80C35 contains no internal program memory (ROM).
Compatible with the industry-standard 8048, 8748, and 8035, the CMOS-fabricated μ PD80C48 provides significant power consumption savings in applications requiring low power and portability. In addition to the power savings gained through CMOS technology, the NEC μ PD80C48 features Halt and Stop modes to further minimize power drain.

Features

8-bit CPU, ROM, RAM, I/O in a single package

Hardware/Software-compatible with industry standard $8048,8748,8035$ products$1 \mathrm{~K} \times 8 \mathrm{ROM}$$64 \times 8$ RAM
27 I/O lines$2.5 \mu \mathrm{~s}$ cycle time (6 MHz crystal)All instructions 1 or 2 cycles
97 instructions: 70% single-byte
Internal Timer/Event Counter
Two Interrupts (External and Timer)Easily expandable memory and I/O
Bus-compatible with 8080A/8085A peripheralsCMOS technologyOperational over a 2.5 to 6.0 V rangeAvailable in 40 -pin DIP or 52 -pin flat pack
Low-power Standby modesHalt Mode
1 mA typical supply current
Maintains internal logic values and control status
Initiated by HALT instruction
Released by External Interrupt or ResetStop Mode
1μ A typical supply current
Disables internal clock generation and internal logic
Maintains RAM
Initiated via Hardware ($V_{D D}$)
Released via Reset

Pin Identification

Pln		Function
No.	Symbol	
1	T0	Testable input using conditional transier functions JT0 and JNTO. The internal State Clock (CLK) is avallable to T_{0} using the ENTO CLK Instruction. To can also be used during programming as a testable flag.
2	XTAL 1	One side of the crystal input for external oscillator or frequency (non-TTL-compatible $\mathbf{V}_{\text {th }}$).

Pin		Function
No.	Symbol	
3	XTAL, 2	The other side of the crystal input.
4	RESET	Active low input for processor initialization. RESET is also used for Halt/Stop Mode release (non-TTL-compatible V_{14}).
5	S3	Single step input (ective-low). $\overline{\text { SS }}$ with ALE allows the processor to "single-step" through each instruction in program memory.
6	$\overline{\text { INT }}$	Interrupt input (active-low). $\overline{\text { NT }}$ starts an interrupt if an enable instruction has been executed. A reset disables the Interrupt. NT can be tested by issulng a conditional jump instruction.
7	EA	External Access input (active-high). A logic " 1 " at this Input commands the processor to perform all program memory fetches from external memory.
8	$\overline{\mathbf{R D}}$	Read strobe output (active-low). $\overline{\mathrm{RD}}$ pulses low when the processor performs a Bus Read. RD also enables data onto the proceseor Bus from a peripheral device and functions as a Read Strobe for external Data Memory.
g	FSEN	Program Store Enable output (active-low). $\overline{\text { PSEN }}$ becomes active only during an external memory fetch.
10	WR	Write strobe output (active-low). WR pulses low when the processor performs a Bus Write. WR can also function as a Write Strobe for external Data Memory.
11	ALE	Address Latch Enable output (active high). Occuring once each cycle, the falling edge of ALE latches the address for external memory or peripherals. ALE can also be used as a clock output.
12-19	$\mathrm{D}_{0}-\mathrm{D}_{7}$ BUS	8-blt, bldirectional port. Synchronous reads and writes can be performed on this port using $\overline{\text { AD }}$ and \bar{W} strobes. The contents of the $D_{0}-D_{1}$ Bus can be latched in e static mode. During an external memory fetch, the D_{0} - D_{2} Bus holds the least significant bits of the program counter. PSEN controls the incoming addressed Instruction. Also, for an external RAM data store instruction the $D_{0}-D_{7}$ Bus, controlled by ALE, $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$, contains address and data information.
20	\mathbf{V}_{59}	Processor's Ground potentlal.
$\begin{aligned} & 21-24, \\ & 35-38 \end{aligned}$	$\begin{aligned} & \mathbf{P}_{20}-P_{2 r} ; \\ & \text { PORT } 2 \end{aligned}$	Port 2 is the second of two 8 -bht quasi-bidirectional porta. For external data memory fotches, the four most significan bits of the program counter are contalned in $P_{20}-P_{23}$. Bits $P_{20}-P_{25}$ are also used as a 4-blt $/ / O$ bus for the μ PD8243, Input/Output Expander.
25	PROG	PROG is used as an output strobe for the μ PD8243.
26	V_{DD}	+5 V during normal operation. V_{op} is used In Stop Mode. By forcing V_{DD} low during a reset, the processor enters Stop Mode.
27-34	$\begin{gathered} \mathbf{P}_{10}-\mathbf{P}_{117}: \\ \text { PORT } \end{gathered}$	Port 1 is one of two 8-bit quasi-bldirectional ports.
39	T1	Testable input using conditional transfer functions JT1 and JNT1. T1 can be made the counter/timer Input using the STRT CNT instruction.
40	$\mathbf{V}_{\text {cc }}$	Primary Power Supply.

Pin Configuration

μ PD80C48/ μ PD80C35

Absolute Maximum Ratings*

$\mathbf{T} a=25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Operating Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature (Ceramic Package)	$-65^{\circ} \mathrm{C}$ to $+\mathbf{1 2 5 ^ { \circ } \mathrm { C }}$
Storage Temperature (Plastic Package)	$\mathrm{V}_{\mathrm{ss}}-\mathbf{0 . 3 \mathrm { V } \text { to } \mathrm { V } _ { \mathrm { cc } } + \mathbf { 0 . 3 V }}$
Voltage on Any Pin	$\mathrm{V}_{\mathrm{ss}}-\mathbf{0 . 3}$ to $+\mathbf{1 0 \mathrm { V }}$
Supply Voltage	

*COMMENT: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditons outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC Characteristics

Parameter	8ymbel	Lumts			Unit	Teat Conditions
		M/n	Typ	Max		
Input Low Voltage (All Except XTAL 1, XTAL 2)	$v_{\text {IL }}$	-0.3		0.16 V CC	V	
Input High Voltage (Al Except XTAL 1, XTAL 2. RESET)	$\mathbf{V}_{\mathbf{I H}}$	$0.7 \mathrm{~V}_{\text {cc }}$		$\mathrm{V}_{C C}$	v	
Input High Voltage (लESET, XTAL 1, XTAL 2)	$\mathrm{V}_{\mathrm{HH} 1}$	$0.8 \mathrm{~V}_{\mathrm{cc}}$		$\mathbf{V}_{\text {cc }}$	V	
Output Low Voltage	$v_{\text {OL }}$			0.45	v	$\mathrm{I}_{\mathrm{OL}}=1.0 \mathrm{~mA}$
Output High voltage (BUS, $\overline{\text { RD }}$ WR, $\overline{\text { PSEN }}$, ALE)	V_{OH}	$0.75 \mathrm{~V}_{\mathrm{Cc}}$			v	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$
Output High Voltage (All Other Outputs)	$V_{\text {OMI }}$	$0.75 \mathrm{~V}_{\text {CC }}$			V	$\mathrm{I}_{\mathrm{OH}}=-1 \mu \mathrm{~A}$
Input Current (Pont 1, Port 2)	$I_{\text {ILP }}$			-30	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}<\mathrm{V}_{\text {IL }}$
Input Current (SS, $\overline{\text { AESET }}$)	ILC			-40	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }} \leqslant \mathrm{V}_{\text {IL }}$

Parametor	Symbol	Limits			Unit	Test Conditions
		M/n	Typ	Max		
Input Leakage Current: (T1, TNT)	$\mathrm{f}_{\text {L }}$			± 1	$\mu \mathbf{A}$	$\mathbf{V}_{\text {SS }}<\mathbf{V}_{\mathbf{I N}}<\mathbf{V}_{\text {cG }}$
Input Leakage Current (EA)	4 L1			± 3	$\mu \mathrm{A}$	$\mathbf{V}_{\mathbf{S S}}<\mathbf{V}_{\mathbf{I N}}<\mathbf{V}_{\text {cc }}$
Output Leakage Current (BUS, T_{0} - High Impedance State)	bou.			± 1	$\mu \mathrm{A}$	$\mathbf{V}_{\text {ss }}<\mathbf{V}_{\text {IN }}<\mathbf{V}_{\text {cc }}$
Total Supply Current	$\mathrm{I}_{\mathrm{DD}}+\mathrm{l}_{\mathrm{Cc}}$		5	10	mA	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} 6 \mathrm{MHz}$
Halt Power Supply Current	$\mathrm{lcc}_{\text {c }}$		1	3	mA	6 MHz
Stop Mode Supply Current	I_{cc}		1	20	$\mu \mathrm{A}$	6 MHz
RAM Data Retention Voltege	$\mathbf{V c c}$ OR	2.0			V	Stop Mode ($V_{D D}$, $\begin{aligned} & \text { RESET } \leq .4 \mathrm{~V} \text {) or } \\ & \text { RESET } \leq 0.4 \mathrm{~V} \end{aligned}$

AC Characteristics

Read, Write and Instruction Fetch-External Data and Program Memory

Parameter	Symbol	Limits (2)		Unit	Limits (3)			Test Conditions
		M/n	Max		WIm	Max		
ALE Pulse Width	${ }_{\text {LLL }}$	400		n8	2.16		$\mu \mathrm{s}$	
Address Setup before ALE	${ }^{\text {t }}$ AL	120		ns	1620		ns	
Address Hold from ALE	${ }^{\text {t }}$ LA	80		ns	330		ns	
Control Pulse Width (PSEN, RD, WA)	${ }^{t} \mathrm{CC}$	700		ns	3.7		$\mu \mathrm{s}$	
Data Setup before WR	${ }^{\text { }}$ DW	500		ns	3.5		$\mu \mathrm{s}$	
Data Hold after WR	${ }^{\text {w }}$ WD	120		ns	370		ns	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF} \\ & \mathrm{t}_{\mathrm{CY}}=2.5 \mu \mathrm{~s} \end{aligned}$
Cycle Time	${ }^{\text {c }} \mathrm{CY}$	2.5	150	$\mu \mathrm{s}$	10	150	ns	
Data Hold	tor	0	200	ns	0	950	ns	

AC Characteristics (Cont.)

Parameter	Symbol	Limis (2)		Unit	Limits (2)		Unlit	Test Conditions
		M/n	Max		M/n	Max		
PSEN, RD to Data in	${ }^{\text {t }}$ RD		500	n8		2.75	$\mu \mathrm{s}$	
Address Setup before WR	${ }^{\text {taw }}$	230		n8	3.23		$\mu 8$	
Address Setup before Data In	${ }^{1} A D$		950	ns		5.45	$\mu \mathrm{s}$	
Address Fioat to AD, PSEN	$t_{\text {AFC }}$	0		ns	500		n8	
Control Pulse to ALE	${ }^{t} \mathrm{CA}$	10		ns	10		n8	

Port 2 Timing

$\mathrm{T}_{\mathrm{a}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Parameter	Symbol	Limits (2)		Unit	Limits (3)		UnHt	conditions (9)
		MIn	Max		Min	Max		
Port Control Setup before Falling Edge of PROG	${ }^{\mathbf{t}} \mathbf{C P}$	110		ns	860		ns	
Port Control Hold after Falling Edge of PROG	tPC	-	80	ns	0	200	ns	
PROG to Time P2 input must be Valid	${ }^{\text {P PR }}$		810	ns		5.31	$\mu \mathrm{s}$	
Output Data Setup rime	${ }^{\text {t }}$ P P	250		ns	0	3250	ns	
Output Data Hold Time	${ }^{\text {t }}$ PD	65		ns	820		ns	
Input Data Hold Time	${ }^{\text {tPF }}$	0	150	$n 8$	0	900	ns	
Proa Pulse Width	${ }^{\text {tPP }}$	1200		n8	6450		ns	
Frort 2 I/O Data Setup	${ }^{\text {P PL }}$	350		ns	2.1		$\mu \mathrm{s}$	
Port 2 I/O Data Hoid	tLP	150		$n 8$	1400		ns	

Notes:

(1) For Control Outputs: $\mathrm{C}_{\mathrm{L}}=80 \mathrm{pF}$ For Bus Outputs: $C_{L}=150 \mathrm{pF}$
(2) $V_{C C}=+5 V \pm 10 \%$.
(3) $V_{C C}=+2.5 \mathrm{~V}$ to +5.5 V

Timing Waveforms

Instruction Fetch From External Memory

Write to External Memory

1) Halt Mode (When EI)

2) Stop Mode

Low Power Standby Operation

Port 2 Timing

Features

The NEC μ PD80C48/ μ PD80C35 contains all the functional features of the industry standard 8048/8035. The power down mode of the μ PD8048 is replaced with two additional power standby features for added power savings. Depending on desired power consumption savings and internal logic status maintenance, Halt mode or Stop mode may be used.

μ PD80C48/ μ PD80G35

Halt Mode

The μ PD80C48/80C35 includes a Halt instruction (01H) an addition to the standard 8048 instruction set. Upon execution of the Halt instruction, the μ PD80C48 enters a Halt mode where the internal clocks and internal logic are disabled. The oscillator, however, continues its operation. The state of all internal logic values and control status prior to the halt state is maintained. Under Halt mode, power consumption is less than 30% of normal μ PD80C48 operation, and 2% of 8048 operation.
Halt mode is released through either of two methods: an active input on the INT line or a reset operation. Under the Interrupt Release mode, if interrupts are enabled (EI Mode), the INT input restarts the internal clocks to the internal logic. The μ PD80C48 then executes the instruction immediately following the Halt instruction, before branching to the interrupt service routine.
If interrupts are disabled (DI Mode), an INT active signal causes the program operation to resume, beginning from the next sequential address after the Halt instruction.
A $\overline{\text { RESET }}$ input causes the normal reset function which starts the program at address OH .
Note: The V_{cc} range under Halt mode must be maintained at normal operation voltage.

Stop Mode

Stop mode provides additional power consumption savings over the Halt mode of operation. Stop mode is initiated by forcing V_{DD} to the low state during a RESET low. While in Stop mode, oscillator operation is discontinued and only the contents of RAM are maintained.
The μ PD80C48 is released from Stop mode when $V_{D D}$ is forced high during a RESET low. Clock generation is then restarted. When oscillator stabilization is achieved, RESET is pulled high and the program is restarted from location 0.
To ensure reliable Stop mode operation, V_{pq} must be brought back up before releasing the RESET pin. The V_{DD}. pin must be protected against noise conditions since it controls oscillator operation. In the Stop mode, V_{cc} may be dropped as low as 2.0 volts to ensure RAM data retention ($\mathrm{V}_{\mathrm{cc}} \mathrm{DR}$). . $\overline{\text { RESET }}$ must be held low after oscillation stops until the oscillator is restarted.

Stop Mode Timing

Logic Symbol

Symbol Definitions:

Symbol	Deseription
A	Accumulator
AC	Auxiliary Carry Flag
addr	Program Memory Address (12 bits)
Bb	Bit Designator ($\mathrm{b}=0-7$)
BS	Bank Swltch
Bus	Bus Port
C	Carry Flag
CLK	Clock Signal
CNT	Event Counter
D	Nibble Designator (4 bits)
data	Number or Expression (8 blts)
DBF	Memory Bank Flip-Flop
$\mathrm{F}_{0}, \mathrm{~F}_{1}$	Flags 0,1
1	Interrupt
P	"In-Page" Operation Designator
$\mathbf{P}_{\boldsymbol{p}}$	Port Designator ($\mathbf{p}=1,2$ or $4-7)$
PSW	Program Status Word
Rr	Register Designator ($\mathrm{r}=0,1$ or $0-7$)
SP	Stack PoInter
T	Timer
TF	Timer Flag
T0, T1	Testable Flags 0,1
X	External RAM
$=$	Prefix for Immediate Data
@	Prefix for Indirect Address
5	Program Counter's Current Value
(x)	Contents of External RAM Location
((x))	Contente of Memory Location Addressed by the Contents of External RAM Location.
-	Replaced By

Instruction Set

Mnemonic	Function	Description	Instruction Code								Cycles Bytes		Fiags:		
			$\overline{\mathbf{D}_{7}}$	D_{6}	D_{5}	D ${ }_{4}$	D_{3}	\mathbf{D}_{2}	D_{1}	D			c	AC FO	F1
Accumulator															
ADD, $A=$ data	$(A) \leftarrow(A)+$ data	Add immediate the specified Data to the Accumulator.	$\begin{aligned} & \mathbf{0} \\ & \mathbf{d}_{7} \end{aligned}$	$\begin{array}{r} 0 \\ d_{0} \end{array}$	$\begin{aligned} & 0 \\ & d_{5} \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{d}_{4} \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{d}_{3} \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{d}_{2} \end{aligned}$	$\begin{aligned} & 1 \\ & d_{1} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathbf{d}_{0} \end{aligned}$	2	2	-		
Add A, Rr	$\begin{aligned} & (A) \leftarrow(A)+(R r) \\ & \text { for } r=0.7 \end{aligned}$	Add contents of designated register to the Accumulator.	0	1	1	0	1	r	r	r	1	1	-		
ADD A, @Rr	$\begin{aligned} & (A) \leftarrow(A)+((R r)) \\ & \text { for } r=0-1 \end{aligned}$	Add Indirect the contents of the data memory location to the Accumulator.	0	1	1	0	0	0	0	r	1	1	-		
$\underset{\text { data }}{\overline{A D D C A}=}$	(A) $\leftarrow(A)+(C)+$ data	Add immediate with carry the specified data to the Accumulator.	$\begin{aligned} & \mathbf{0} \\ & \mathbf{d}_{7} \end{aligned}$	$\begin{aligned} & 0 \\ & d_{i} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{d}_{5} \end{aligned}$	$\begin{aligned} & \mathbf{1} \\ & \mathbf{d}_{4} \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{d}_{0} \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{d}_{2} \end{aligned}$	$\begin{aligned} & 1 \\ & d_{1} \end{aligned}$	$\begin{aligned} & 1 \\ & d_{0} \end{aligned}$	2	2	-		
ADDC A, Rr	$\begin{aligned} & (A) \leftarrow(A)+(C)+(R r) \\ & \text { for } r=0.7 \end{aligned}$	Add with carry the contents of the designated register to the Accumulator.	0	1	1	1	1	r	r	r	1	1	-		
ADDC A,@Rr	$\begin{aligned} & (A) \leftarrow(A)+(C)+((R r)) \\ & \text { for } r=0-1 \end{aligned}$	Add indirect with carry the contents of data memory location to the Accumutator.	0	1	1	1	0	0	0	r	1	1	-		
$\overline{\text { ANL }}$ A, $=$ data	(A) $\leftarrow(A)$ AND data	Logical AND specifled Immediate Data with Accumulator.	$\begin{aligned} & 0 \\ & d_{1} \end{aligned}$	$\begin{aligned} & 1 \\ & d_{0} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{d}_{5} \end{aligned}$	$\begin{aligned} & 1 \\ & d_{4} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{d}_{3} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{d}_{2} \end{aligned}$	$\begin{aligned} & \mathbf{1} \\ & \mathbf{d}_{1} \end{aligned}$	$\begin{aligned} & 1 \\ & d_{0} \end{aligned}$	2	2			
ANLA, Rr	$\begin{aligned} & \text { (A) } \leftarrow(A) \text { AND (Rr) } \\ & \text { for } r=0-7 \end{aligned}$	Logical AND contents of designated register with Accumulator.	0	1	0	1	1	r	r	r	1	1			
ANLA, @ Rr	$\begin{aligned} & \text { (A) } \leftarrow \text { (A) AND }((\mathrm{Rr})) \\ & \text { for } \mathrm{r}=0-1 \end{aligned}$	Logical AND indirect the contents of data memory with Accumulator.	0	1	0	1	0	0	0	r	1	1			
CPLA	(A) $\leftarrow \mathrm{NOT}(\mathrm{A})$	Complement the contents of the Accumulator.	0	0	1	1	0	1	1	1	1	1			
CLRA	(A) $\leftarrow 0$	Clear the contents of the Accumulator.	0	0	1	0	0	1	1	1	1	1			
DAA		Decimal Adjust the contents of the Accumulator.	0	1	0	1	0	1	1	1	1	1	-		
DECA	$(A) \leftarrow(A) 1$	Decrement by 1 the Accumulator's contents.	0	0	0	0	0	1	1	1	1	1			
INC A	$(\mathrm{A}) \leftarrow(\mathrm{A})+1$	Increment by 1 the Accumulator's contents.	0	0	0	1	0	1	1	1	1	1			
$\overline{\text { ORL } A,=\text { data }}$	$(A) \leftarrow(A)$ OR data	Logical OR specifled Immedlate data with Accumulator.	$\begin{aligned} & 0 \\ & \mathbf{d}_{1} \end{aligned}$	$\begin{aligned} & 1 \\ & d_{0} \\ & \hline \end{aligned}$	$\begin{array}{r} \mathbf{0} \\ \mathbf{d}_{5} \\ \hline \end{array}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{d}_{4} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{d}_{3} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{d}_{2} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{1} \\ & \mathbf{d}_{1} \end{aligned}$	$\begin{aligned} & 1 \\ & \alpha_{0} \end{aligned}$	2	2			
ORL A, Rr	$\begin{aligned} & (A) \leftarrow(A) \text { OR }(R r) \\ & \text { for } r=0.7 \end{aligned}$	Logical OR contents of designated register with Accumulator.	0	1	0	0	1	r	r	r	1	1			
$\overline{\text { ORL A, @ }}$ Rr	$\begin{aligned} & (A) \leftarrow(A) \text { OR (}(\mathrm{Rr})) \\ & \text { for } \mathrm{r}=0-1 \end{aligned}$	Logical OR Indirect the contents of data memory location with Accumulator.	0	1	0	0	0	0	0	r	1	1			
RLA	$\begin{aligned} & (A N+1) \leftarrow(A N) \\ & \left(A_{0}\right) \leftarrow\left(A_{)}\right) \\ & \text {for } N=0.6 \end{aligned}$	Rotate Accumulator left by 1 bit without carry.	1	1	1	0	0	1	1	1	1	1			
RLCA	$\begin{aligned} & (A N+1) \leftarrow(A N) ; N=0.6 \\ & \left(A_{0}\right) \leftarrow(C) \\ & (C) \leftarrow\left(A_{)}\right) \end{aligned}$	Rotate Accumulator left by 1 blt through carry.	1	1	1	1	0	1	1	1	1	1	-		
RR A	$\begin{aligned} & (A N) \leftarrow(A N+1), N=0-6 \\ & \left(A_{7}\right) \leftarrow\left(A_{0}\right) \end{aligned}$	Rotate Accumulator right by 1 bit without carry.	0	1	1	1	0	1	1	1	1	1			
RRC A	$\begin{aligned} & \text { (AN) } \leftarrow(A N+1) ; N=0-6 \\ & \left(A_{1}\right) \leftarrow(C) \\ & (C) \leftarrow\left(A_{0}\right) \\ & \hline \end{aligned}$	Rotate Accumulator right by 1 bit through carry.	0	1	1	0	0	1	1	1	1	1	-		
SWAP A	$\left(A_{4-7}\right) \neq\left(A_{0}-3\right)$	Swap the two 4-bit nibbles In the Accumulator.	0	1	0	0	0	1	1	1	1	1			
XRL $A,=$ data	$(\mathrm{A}) \leftarrow(\mathrm{A}) \mathrm{XOR}$ data	Logical XOR specified Immediate data with Accumulator.	$\begin{gathered} \mathbf{1} \\ \mathbf{d}_{7} \end{gathered}$	$\begin{gathered} 1 \\ \mathbf{d}_{6} \\ \hline \end{gathered}$	$\begin{aligned} & \hline 0 \\ & d_{5} \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & d_{4} \end{aligned}$	$\begin{aligned} & 0 \\ & d_{3} \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{d}_{2} \end{aligned}$	$\begin{aligned} & 1 \\ & d_{1} \end{aligned}$	$\begin{aligned} & 1 \\ & d_{0} \end{aligned}$	2	2			
XRLA, Rr	$\begin{aligned} & \text { (A) } \leftarrow(A) \times O R(\mathrm{Rr}) \\ & \text { for } r=0.7 \end{aligned}$	Logical XOR contents of designated register with Accumulator.	1	1	0	1	1	r	r	r	1	1			
XRLA, @ Rr	$\begin{aligned} & \text { (A) } \leftarrow(A) \text { XOR }((R r)) \\ & \text { for } r=0-1 \end{aligned}$	Logical XOR Indirect the contents of data memory location with Accumulator.	1	1	0	1	0	0	0	r	1	1			
Branch															
DJNZ Rr, addr	$\begin{aligned} & \text { (Rr) } \leftarrow(\mathrm{Rr})-1 ; \mathrm{r}=0.7 \\ & \text { If }(\mathrm{Rr}) \neq 0 \\ & (\mathrm{PCO} 0-7) \leftarrow \text { addr } \\ & \hline \end{aligned}$	Decrement the specified register and test contents.	$\begin{aligned} & 1 \\ & a_{7} \end{aligned}$	$\begin{aligned} & 1 \\ & a_{6} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathbf{a}_{5} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{a}_{4} \end{aligned}$	$\begin{aligned} & 1 \\ & a_{0} \end{aligned}$	$\stackrel{\mathbf{r}}{\mathbf{a}}$	$\begin{aligned} & \mathbf{r} \\ & \mathbf{a}_{1} \end{aligned}$	$\stackrel{r}{\mathbf{r}} \underset{\mathbf{a}_{0}}{ }$	2	2			
JBb addr	$\begin{aligned} & (P C 0-7) \leftarrow \text { addr if } \mathrm{Bb}=1 \\ & (\mathrm{PC})-(\mathrm{PC})+2 \text { if } \mathrm{Bb}=0 \\ & \hline \end{aligned}$	Jump to specified address if Accumulator bit ls set.	$\begin{aligned} & \mathbf{b}_{2} \\ & \mathbf{a}_{7} \end{aligned}$	$\begin{aligned} & \mathbf{b}_{1} \\ & \mathbf{a}_{6} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{b}_{0} \\ & \mathbf{a}_{5} \\ & \hline \end{aligned}$	$\begin{array}{r} 1 \\ \mathbf{a}_{4} \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & \mathbf{a}_{3} \\ & \hline \end{aligned}$	0 a_{2}	$\begin{aligned} & \mathbf{1} \\ & \mathbf{a}_{1} \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{a}_{0} \\ & \hline \end{aligned}$	2	2			
JC addr	$\begin{aligned} & (P \mathrm{PCO}-7)<\text { addrif } \mathrm{C}=1 \\ & (\mathrm{PC}) \leftarrow(\mathrm{PC})+2 \text { if } \mathrm{C}=0 \end{aligned}$	Jump to specifled adidress if carry flag is set.	$\begin{array}{r} 1 \\ a_{7} \\ \hline \end{array}$	$\begin{array}{r} 1 \\ a_{8} \\ \hline \end{array}$	$\begin{aligned} & 1 \\ & \mathbf{a}_{5} \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & a_{4} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathbf{0} \\ & \mathbf{a}_{3} \\ & \hline \end{aligned}$	$\begin{array}{r} 1 \\ \mathbf{a}_{2} \\ \hline \end{array}$	$\begin{aligned} & 1 \\ & \mathbf{a}_{1} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{a}_{0} \\ & \hline \end{aligned}$	2	2			
JF 0 addr	$\begin{aligned} & \text { (PCO-7) }- \text { addr If } \mathrm{FO}=1 \\ & (\mathrm{PC}) \leftarrow(\mathrm{PC})+2 \text { if } \mathrm{FO}=0 \end{aligned}$	Jump to specified address if Fiag F 0 Is set.	$\begin{aligned} & 1 \\ & \mathbf{a}_{7} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & \mathbf{a}_{6} \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & a_{5} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathbf{a}_{1} \end{aligned}$	$\begin{aligned} & \hline \mathbf{0} \\ & \mathbf{a}_{5} \\ & \hline \end{aligned}$	1 a_{2} 1	$\begin{array}{r} \mathbf{1} \\ \mathbf{a}_{1} \\ \hline \end{array}$	0 0 0	2	2			
JF 1 addr	$\begin{aligned} & \text { (PCO-7) } \leftarrow \text { addr if } \mathrm{FA}_{1}=1 \\ & (\mathrm{PC})-(\mathrm{PC})+2 \mathrm{~F} \mathrm{~F}_{1}=0 \end{aligned}$	Jump to specified address if Flag $F 1$ is set.	$\begin{gathered} \hline 0 \\ \mathbf{a}_{7} \\ \hline \end{gathered}$	$\begin{aligned} & 1 \\ & a_{6} \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & \mathbf{a}_{5} \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & \mathbf{a}_{4} \\ & \hline \end{aligned}$	$\begin{gathered} \mathbf{0} \\ \mathbf{a}_{3} \\ \hline \end{gathered}$	1 a_{2}	$\begin{array}{r} 1 \\ a_{1} \\ \hline \end{array}$	0 a_{0} 0	2	2			
JMP addr	$\begin{aligned} & (\text { PC B - 10) } \leftarrow \text { addr } 8-10 \\ & (P C 0-7) \leftarrow \text { addr } 0-7 \\ & (P C \text { 11) } \leftarrow \text { DBF } \end{aligned}$	Direct Jump to specified address within the 2 K address block.	$\begin{aligned} & \mathbf{a}_{10} \\ & \mathbf{a}_{7} \end{aligned}$	$\begin{aligned} & a_{9} \\ & a_{6} \end{aligned}$	$\begin{aligned} & \mathbf{a}_{6} \\ & \mathbf{a}_{5} \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{a}_{4} \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{a}_{0} \end{aligned}$	1 a_{2}	$\begin{aligned} & \mathbf{0} \\ & \mathbf{a}_{1} \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{a}_{0} \end{aligned}$	2	2			
JMPP@A	$(\mathrm{PCO} 7) \leftarrow((\mathrm{A}))$	Jump indirect to specified address with address page.	1	0	1	1	0	0	1	1	2	1			
JNC addr	$\begin{aligned} & \text { (PCO 7) addr if } \mathrm{C}=0 \\ & (\mathrm{PC}) \leftarrow(\mathrm{PC})+2 \text { If } \mathrm{C}=1 \\ & \hline \end{aligned}$	Jump to specifled address if carry flag is low.	$\begin{aligned} & 1 \\ & \mathbf{a}_{7} \end{aligned}$	$\begin{aligned} & 1 \\ & a_{6} \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & a_{5} \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{a}_{4} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{a}_{3} \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & a_{2} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathbf{a}_{1} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{a}_{0} \\ & \hline \end{aligned}$	2	2			
JNI addr	$\begin{aligned} & \text { (PCO 7) addrif } 1=0 \\ & (P C)<(P C)+2 \text { if }=1 \end{aligned}$	Jump to specifled address if Interrupt is low.	$\begin{aligned} & \mathbf{1} \\ & \mathbf{a}, \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{a}_{8} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{a}_{5} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{a}_{4} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{a}_{3} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{1} \\ & \mathbf{a}_{2} \\ & \hline \end{aligned}$	$\begin{array}{r} \hline .1 \\ a_{1} \\ \hline \end{array}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{a}_{0} \end{aligned}$	2	2			

μ PD80C48/ μ PD80C35

Instruction Set (Cont.)

Mnemonic	Punction	Description	Instruction Code								Cyclos Bytes		Flags		
			$\overline{D_{7}}$	D_{6}	D_{6}	D.	D_{3}	D_{2}	D	5					F1
Branch (Cont.)															
JNT0 Addr	$\begin{aligned} & \text { (PCO-7) } \leftarrow \text { addr if } T 0=0 \\ & (\mathrm{PC}) \leftarrow(\mathrm{PC})+2 \text { if } T 0=1 \end{aligned}$	Jump to specified address if Test 0 is low.	$\begin{aligned} & \mathbf{0} \\ & \mathbf{a}_{7} \\ & \hline \end{aligned}$	$\begin{array}{r} 0 \\ 2 \\ \hline \end{array}$	$\begin{aligned} & 1 \\ & \mathbf{a}_{6} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{a}_{4} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{a}_{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{1} \\ & \mathbf{a}_{2} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathbf{a}_{1} \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{a}_{0} \\ & \hline \end{aligned}$	2	2			
JNT1 addr	$\begin{aligned} & (\mathrm{PC} 0-7) \leftarrow \text { addr If } \mathrm{T} 1=0 \\ & (\mathrm{PC}) \leftarrow(\mathrm{PC})+2 \text { If } \mathrm{T} 1=1 \end{aligned}$	Jump to specified address if Test 1 ls low.	$\begin{aligned} & \mathbf{0} \\ & \mathbf{a}_{7} \end{aligned}$	$\begin{array}{r} 1 \\ 2 \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & \mathbf{a}_{6} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{a} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{a}_{0} \end{aligned}$	$\begin{aligned} & 1 \\ & a_{2} \end{aligned}$	$\begin{aligned} & \mathbf{1} \\ & \mathbf{a}_{1} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & \mathbf{a}_{0} \\ & \hline \end{aligned}$	2	2			
JNZ addr	$\begin{aligned} & \text { (PCO-7) -addr if } A=0 \\ & (\mathrm{PC}) \leftarrow(\mathrm{PC})+2 \text { If } A=0 \\ & \hline \end{aligned}$	Jump to specified addres if Accumulator is non-zero.	$\begin{aligned} & 1 \\ & 8 \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{a}_{6} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{a}_{6} \\ & \hline \end{aligned}$	$\begin{array}{r} 1 \\ a_{1} \end{array}$	$\begin{aligned} & 0 \\ & a_{0} \end{aligned}$	$\begin{aligned} & 1 \\ & a_{2} \end{aligned}$	$\begin{array}{r} \mathbf{1} \\ \mathbf{a}_{1} \\ \hline \end{array}$	$\begin{aligned} & \hline \mathbf{0} \\ & \mathbf{a}_{0} \end{aligned}$	2	2			
JTF addr	$\begin{aligned} & \text { (PC 0-7) } \text { addr if TF }=1 \\ & \text { (PC) } \leftarrow(\mathrm{PC})+2 \text { if TF }=0 \\ & \hline \end{aligned}$	Jump to specifled address if Timer Flag is set to 1 .	$\begin{aligned} & \mathbf{0} \\ & \mathbf{a}_{1} \end{aligned}$	$\begin{array}{r} 0 \\ 8 \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & a_{6} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathbf{a}_{1} \end{aligned}$	$\begin{aligned} & 0 \\ & a_{0} \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & a_{2} \end{aligned}$	$\begin{array}{r} 1 \\ a_{1} \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & a_{0} \end{aligned}$	2	2			
JT0 addr	$\begin{aligned} & (\mathrm{PCO} 0-7) \leftarrow \text { addr if } T 0=1 \\ & (\mathrm{PC})-(\mathrm{PC})+2 \text { if } T 0=0 \\ & \hline \end{aligned}$	Jump to specified address if Testo is a 1.	$\begin{aligned} & \mathbf{0} \\ & \mathbf{a}_{7} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{B}_{6} \end{aligned}$	$\begin{aligned} & 1 \\ & a_{6} \end{aligned}$	$\begin{aligned} & 1 \\ & a_{1} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{a}_{0} \end{aligned}$	$\begin{aligned} & 1 \\ & a_{2} \end{aligned}$	$\begin{aligned} & \mathbf{1} \\ & \mathbf{a}_{1} \end{aligned}$	$\begin{aligned} & 0 \\ & a_{0} \end{aligned}$	2	2			
JT1 addr	$\begin{aligned} & \text { (PCO-7) } \leftarrow \text { addr if } \mathrm{T}_{1}=1 \\ & \text { (PC) } \leftarrow(\mathrm{PC})-2 \text { if } \mathrm{T} 1=0 \\ & \hline \end{aligned}$	Jump to specified address if Test 1 is a 1.	$\begin{aligned} & \mathbf{0} \\ & \mathbf{a}_{1} \end{aligned}$	$\begin{array}{r} 1 \\ 8 \\ \hline \end{array}$	$\begin{aligned} & \hline 0 \\ & a_{0} \\ & \hline \end{aligned}$	$\begin{array}{r} 1 \\ a_{1} \\ \hline \end{array}$	$\begin{aligned} & \hline \mathbf{0} \\ & \mathbf{a}_{5} \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & a_{2} \end{aligned}$	$\begin{aligned} & \mathbf{1} \\ & \mathbf{a}_{1} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{a}_{0} \\ & \hline \end{aligned}$	2	2			
JZ addr	$\begin{aligned} & \text { (PCO-7) } \leftarrow \text { addr if } A=0 \\ & (\mathrm{PC}) \leftarrow(\mathrm{PC})+2 \text { if } A=0 \end{aligned}$	Jump to specified address if Accumulator is 0.	$\begin{aligned} & 1 \\ & a_{7} \end{aligned}$	1	$\begin{aligned} & 0 \\ & a_{0} \end{aligned}$	$\begin{aligned} & \hline \mathbf{0} \\ & \mathbf{a}_{1} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & a_{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{1} \\ & \mathbf{a}_{2} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathbf{B}_{1} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{a}_{0} \\ & \hline \end{aligned}$	2	2			
Control															
ENI		Enable the External Interrupt input.	0	0	0	0	0	1	0	1	1	1			
DISI		Disabie the External Interrupt Input.	0	0	0	1	0	1	0	1	1	1			
ENTO CLK		Enable the Clock Output pin T0.	0	1	1	1	0	1	0	1	1	1			
SEL MBO	(DBF) $\leftarrow 0$	Select Bank 0 (locations 0-2047) of Program Memory.	1	1	1	0	0	1	0	1	1	1			
SEL MB1	(DBF) $\leftarrow 1$	Select Bank 1 (locations 2048-4095) of Program Memory.	1	1	1	1	0	1	0	1	1	1			
SEL RBO	(BS) $\leftarrow 0$	Select Bank 0 (locatlons 0-7) of Data Memory.	1	1	0	0	0	1	0	1	1	1			
SEL RB1	(BS) $\leftarrow 1$	Select Bank 1 (locations 24-31) of Data Memory.	1	1	0	1	0	1	0	1	1	1			
HALT		Initlate Halt State.	0	0	0	0	0	0	0	1	1	1			
Data Moves															
MOV A, = data	(A) \leftarrow data	Move Immediate the spechied data into the Accumulator.	$\begin{aligned} & \mathbf{0} \\ & \mathbf{d}_{7} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{d} \end{aligned}$	$\begin{aligned} & 1 \\ & d_{5} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{0} \\ & \mathbf{d} \end{aligned}$	$\begin{aligned} & 0 \\ & d_{0} \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{d}_{2} \end{aligned}$	$\begin{aligned} & \mathbf{1} \\ & \mathbf{d}_{1} \end{aligned}$	$\begin{aligned} & 1 \\ & \alpha_{0} \end{aligned}$	2	2			
MOV A, Rr	$(\mathrm{A}) \leftarrow(\mathrm{Rr}) ; \mathrm{r}=0.7$	Move the contents of the designated registers into the Accumulator.	1	1	1	1	1	r	r	r	1	1			
MOVA, @ Rr	(A) $\leftarrow((\mathrm{Rr})$) $\mathrm{r}=0-1$	Move Indirect the contents of data memory location Into the Accumulator.	1	1	1	1	0	0	0	r	1	1			
MOV A, PSW	(A) \leftarrow (PSW)	Move contents of the Program Status Word into the Accumulator.	1	1	0	0	0	1	1	1	1	1			
$\begin{aligned} & \text { MOV Rr, }= \\ & \text { data } \end{aligned}$	$(\mathrm{Rr}) \leftarrow$ data; $\mathrm{r}=0.7$	Move Immediate the specified data into the designated reglster.	$\begin{aligned} & 1 \\ & \mathbf{d}_{7} \end{aligned}$	$\begin{aligned} & 0 \\ & d_{0} \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & d_{3} \end{aligned}$	$\begin{aligned} & 1 \\ & d_{4} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathbf{d}_{3} \end{aligned}$	$\begin{gathered} \mathbf{r} \\ \mathbf{d}_{2} \\ \hline \end{gathered}$	$\begin{array}{r} \mathbf{r} \\ \mathbf{d}_{1} \\ \hline \end{array}$	$\begin{aligned} & \mathbf{r} \\ & \boldsymbol{d}_{0} \end{aligned}$	2	2			
MOV Ar, A	$(\mathrm{Rr}) \leftarrow(\mathrm{A}) ; \mathrm{r}=0.7$	Move Accumblator Contents Into the designated register.	1	0	1	0	1	r	r	r	1	1			
MOV@ Rr, A	$((\mathrm{Rr})) \leftarrow(A), r=0.1$	Move Indirect Accumulator Contents into data memory location.	1	0	1	0	0	0	0	r	1	1			
$\overline{\text { dova } @ R r,=}$	$($ (Rr) $) \leftarrow$ data; $\mathrm{r}=0.1$	Move Immediate the specified data into data memory.	$\begin{aligned} & 1 \\ & d_{7} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{d}_{6} \end{aligned}$	$\begin{array}{r} 1 \\ \mathbf{d}_{5} \end{array}$	$\begin{aligned} & 1 \\ & d_{4} \end{aligned}$	$\begin{gathered} \mathbf{0} \\ \mathbf{d}_{3} \\ \hline \end{gathered}$	$\begin{aligned} & 0 \\ & d_{2} \\ & \hline \end{aligned}$	$\begin{gathered} 0 \\ \mathbf{d}_{1} \end{gathered}$	$\begin{array}{r} \mathbf{r} \\ \mathbf{d}_{0} \end{array}$	2	2			
MOV PSW, A	(PSW) $\leftarrow(A)$	Move contents of Accumulator into the program status word.	1	1	0	1	0	1	1	1	1	1			
MOVPA, @ A	$\begin{aligned} & \text { (PC 0-7) } \leftarrow(\mathrm{A}) \\ & (\mathrm{A}) \leftarrow(\mathrm{PC})) \\ & \hline \end{aligned}$	Move data in the current page into the Accumulator.	1	0	1	0	0	0	1	1	2	1			
MOVP3 A, @ A	$\begin{aligned} & (P C 0-7) \leftarrow(A) \\ & (P C 8-10) \leftarrow 011 \\ & (A) \leftarrow(P C)) \\ & \hline \end{aligned}$	Move Program data In Page 3 Into the Accumulator.	1	1	1	0	0	0	1	1	2	1			
MovX A, @ R	(A) $\leftarrow((\mathrm{Rr})$) $\mathrm{r}=0-1$	Move Indirect the contents of external data memory into the Accumulator.	1	0	0	0	0	0	0	r	2	1			
MOVX@R,A	$((\mathrm{Rr})$) $\leftarrow(\mathrm{A}), \mathrm{r}=0-1$	Mave Indirect the contents of the Accumulator into external data memory.	1	0	0	1	0	0	0	r	2	1			
XCHA, Rr	$(\mathrm{A}) \overrightarrow{(\mathrm{Rr})} \mathrm{r}=0.7$	Exchange the Accumulator and designated register's contents.	0	0	1	0	1	r	r	r	1	1			
XCH A, @ Rr	$(\mathrm{A}) \leftarrow((\mathrm{Rr})$) $\mathrm{r}=0-1$	Exchange Indirect contents of Accumulator and location in data memory.	0	0	1	0	0	0	0	r	1	1			
XCHD A, @ Rr	$\begin{aligned} & (A 0-3) \rightleftarrows((R r)) 0-3)) ; \\ & r=0-1 \end{aligned}$	Exchange Indirect 4 bit contente of Accumulator and data memory.	0	0	1	1	0	0	0	r	1	1			
Flags															
CPLC	(C) $\leftarrow \mathrm{NOT}(\mathrm{C})$	Complement carry bit.	1	0	1	0	0	1	1	1	1	1	-		
CPLFO	(FO) $-\mathrm{NOT}(\mathrm{FO})$	Complement Fiag Fo.	1	0	0	1	0	1	0	1	1	1		-	
CPLF1	(F1) $\leftarrow \operatorname{NOT}(\mathrm{F} 1)$	Complement of Fiag F 1.	1	0	1	1	0	1	0	1	1	1			\bullet
CLRC	(C) $\leftarrow 0$	Clear carry blt to 0 .	1	0	0	1	0	1	1	1	1	1	-		
CLRFO	(F0) $\leftarrow 0$	Clear Flag 0 to 0.	1	0	0	0	0	1	0	1	1	1		-	
CLR F1	(F1) $\leftarrow 0$	Clear Flag 1 to 0.	1	0	1	0	0	1	0	1	1	1			-

Instruction Set (Cont.)

			Instruction Code								Cycles Bytes		Fiags		
Mnemonle	Function	Descriptlon	D_{7}	D_{6}	D_{6}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}			c	AC Fo	F1
Input/Output															
$\begin{aligned} & \text { ANL BUS, = } \\ & \text { data } \end{aligned}$	(BUS) \leftarrow (BUS) AND data	Logical AND Immediate specifled data with contents of Bus.	$\begin{aligned} & 1 \\ & \mathbf{d}_{7} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{d}_{6} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{d}_{5} \end{aligned}$	$\begin{aligned} & 1 \\ & d_{4} \end{aligned}$	$\begin{array}{r} 1 \\ d_{3} \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & d_{2} \end{aligned}$	$\begin{array}{r} \mathbf{0} \\ \mathbf{d}, \end{array}$	$\begin{aligned} & 0 \\ & d_{0} \end{aligned}$	2	2			
$\begin{aligned} & \text { ANL } P_{p},= \\ & \text { data } \end{aligned}$	$\left(P_{\mathrm{B}}\right) \leftarrow\left(\mathrm{P}_{\mathrm{p}}\right)$ AND data $p=1-2$	Logical AND Immediate specified data with designated port (1 or 2).	$\begin{aligned} & \mathbf{1} \\ & \mathbf{d}_{7} \end{aligned}$	$\begin{aligned} & 0 \\ & d_{0} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{d}_{5} \end{aligned}$	$\begin{aligned} & \mathbf{1} \\ & \mathbf{d}_{4} \end{aligned}$	$\begin{aligned} & 1 \\ & d_{3} \\ & \hline \end{aligned}$	$\begin{gathered} 0 \\ \mathbf{d}_{2} \end{gathered}$	$\begin{aligned} & \mathbf{p} \\ & \mathbf{d}_{1} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{p} \\ & \boldsymbol{\alpha}_{0} \end{aligned}$	2	2			
ANLD $\mathrm{P}_{\mathrm{p}}, \mathrm{A}$	$\begin{aligned} & \left(P_{\mathrm{D}}\right) \leftarrow\left(P_{\mathrm{o}}\right) \text { AND }(\mathrm{AO}-3) \\ & p=4-7 \end{aligned}$	Logical AND contents of Accumulator with designated port (4-7).	1	0	0	1	1	1	P	P	2	1			
in A, P_{p}	$(\mathrm{A}) \leftarrow\left(\mathrm{P}_{\mathrm{O}}\right), \mathrm{p}=1-2$	Input data from designated port (1-2) Into Accumulator.	0	0	0	0	1	0	P	p	2	1			
INS A, BUS	(A) \leftarrow (BUS)	Input strobed Bus data Into Accumulator.	0	0	0	0	1	0	0	0	2	1			
MOVD A, P_{o}	$\begin{aligned} & (A 0-3) \leftarrow\left(P_{P}\right) ; P=4-7 \\ & (A 4-7) \leftarrow 0 \end{aligned}$	Miove contents of designated port (4-7) Into Accumulator.	0	0	0	0	1	1	p	p	2	1			
MOVD P_{p}, A	$\left(P_{p}\right) \leftarrow A 0-3 ; p=4-7$	Move contents of Accumulator designated port (4-7).	0	1	1	1	1	p	p	1	1				
$\begin{aligned} & \text { ORL BUS, = } \\ & \text { data } \end{aligned}$	(BUS) \leftarrow (BUS) OR data	Logical OR Immediate specified data with contents of Bus.	$\begin{aligned} & \mathbf{1} \\ & \mathbf{d}_{7} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{d}_{6} \end{aligned}$	$\begin{aligned} & 0 \\ & d_{5} \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{d}_{4} \end{aligned}$	$\begin{aligned} & 1 \\ & d_{3} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{d}_{2} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{d}_{1} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{d}_{0} \end{aligned}$	2	2			
ORLD P, A	$\begin{aligned} & \left(P_{p}\right) \leftarrow\left(P_{p}\right) O R(A O-3) \\ & P=4.7 \end{aligned}$	Logical OR contents of Accumulator with designated port (4-7).	1	0	0	0	1	1	P	P	1	1			
$\begin{aligned} & \overline{\text { ORL } P_{p}},= \\ & \text { data } \end{aligned}$	$\begin{aligned} & \left(P_{p}\right) \leftarrow\left(P_{p}\right) O R \text { data } \\ & p=1-2 \end{aligned}$	Logical OR immediate specifled data with designated port (1-2).	$\begin{array}{r} 1 \\ \mathbf{d}_{7} \\ \hline \end{array}$	d_{0}	$\begin{aligned} & 0 \\ & d_{5} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{a}_{4} \end{aligned}$	$\begin{aligned} & 1 \\ & d_{3} \\ & \hline \end{aligned}$	$\begin{gathered} 0 \\ \mathbf{d}_{2} \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{p} \\ \mathbf{d}_{1} \end{gathered}$	$\begin{aligned} & \mathbf{p} \\ & \mathbf{d}_{0} \end{aligned}$	2	2			
OUTL BUS, A	(BUS) $\leftarrow(A)$	Output contents of Accumulator onto Bus.	0	0	0	0	0	0	1	0	1	1			
OUTL P $\mathrm{P}_{\text {, }}$ A	$\left(P_{p}\right) \leftarrow(A) ; p=1-2$	Output contents of Accumulator to designated port (1-2).	0	0	1	1	1	0	P	P	1	1			
Reglsters															
DEC Rr (Rr)	$(\mathrm{Rr}) \leftarrow(\mathrm{Rr}) \quad 1 ; \mathrm{r}=0.7$	Decrement by 1 contents of designated register.	1	1	0	0	1	r	r	r	1	1			
INC Rr	$(\mathrm{Rr}) \leftarrow(\mathrm{Rr})+1, r=0-7$	Increment by 1 contents of designated reglster.	0	0	0	1	1	r	r	r	1	1			
INC@ R	$\begin{aligned} & ((R r)) \leftarrow((R r))+1 ; \\ & r=0-1 \end{aligned}$	Increment Indirect by 1 the contents of data memory location.	0	0	0	1	0	0	0	r	1	1			
Subroutine															
Call addr	$($ (SP)) $\leftarrow($ PC), (PSW 4-7)	Call designated Subroutine.	a_{10}	a_{5}	a_{0}	1	0	1	0	0	2	2			
	$\begin{aligned} & (S P) \leftarrow(S P)+1 \\ & \text { (PC B-10) addr } 8-10 \\ & \text { (PC 0-7 } \leftarrow \text { addr } 0-7 \\ & (P C 11) \leftarrow \text { DBF } \\ & \hline \end{aligned}$.	\mathbf{a}_{1}	a_{0}	a_{5}	a_{4}	a_{3}	a_{2}	a_{1}	a_{0}					
RET	$\begin{aligned} & \text { (SP) } \leftarrow(\mathrm{SP}){ }^{1} \\ & (\mathrm{PC}) \leftarrow(\mathrm{SP})) \end{aligned}$	Return from Subroutine without restoring Program Status Word.	1	0	0	0	0	0	1	1	2	1			
RETR	$\begin{aligned} & (\mathrm{SP}) \leftarrow(\mathrm{SP}) 1 \\ & (\mathrm{PC}) \leftarrow((\mathrm{SP})) \\ & (\mathrm{PSW} 4-7) \leftarrow((\mathrm{SP})) \end{aligned}$	Return from Subroutine restoring Program Status Word.	1	0	0	1	0	0	1	1	2	1			
Timer/Counter															
EN TCNTI		Enable Internal interrupt Flag for Timer/Counter output.	0	0	1	0	0	1	0	1	1	1			
DIS TCNTI		Disable Internal interrupt Flag for Timer/Counter output.	0	0	1	1	0	1	0	1	1	1			
MOVA, T	$(\mathrm{A}) \leftarrow(\mathrm{T})$	Move contents of Timer/Counter Into Accumulator.	0	1	0	0	0	0	1	0	1	1			
MOV T, A	$(\mathrm{T}) \leftarrow(\mathrm{A})$	Move contents of Accumulator Into Timer/Counter.	0	1	1	0	0	0	1	0	1	1			
STOP TCNT		Stop Count for Event Counter.	0	1	1	0	0	1	0	1	1	1			
STAT CNT		Start Count for Event Counter.	0	1	0	0	0	1	0	1	1	1			
STRT T		Start Counter for Timer.	0	1	0	1	0	1	0	1	1	1			
Miscellaneous															
NOP		No Operation performed.	0	0	0	0	0	0	0	0	1	1			

Notes:

(1) Instruction Code Designations r and p form the binary representation of the Registers and Ports involved.
(2) The dot under the appropriate flag bit indicates that its content is subject to change by the instruction it appears in.
(3) References to the address and data are specified in bytes 2 and/or 1 of the instruction.
(4) Numerical Subscripts appearing in the FUNCTION column reference the specific bits affected.

μ PD80C48/ μ PD80C35

Package Outlines $\begin{array}{ll}\mu \text { PD80C48C } & \mu \text { PD80C48D } \\ \mu \text { PD80C35C } & \mu \text { PD80C35D }\end{array}$

Item	Millimeters	Inches
A	51.5 MAX	2.028 MAX
B	1.62	0.084
C	2.54 ± 0.1	0.10 ± 0.004
D	0.5 ± 0.1	0.019 ± 0.004
E	48.26	1.9
F	1.5 MiN	0.059 MIN
G	2.54 MIN	0.10 MIN
H	0.5 MIN	0.019 MIN
1	5.22 MAX	0.206 MAX
J	5.72 MAX	0.225 MAX
K	15.24	0.600 MAX
L	13.2 MAX	0.520 MAX
M	$0.25+0.1$	${ }^{0.010^{+0.004}}{ }_{-0.002}$

Item	Millimeters	Inches
A	51.5 MAX	2.028 MAX
B	1.62	0.064
C	2.54 ± 0.1	0.100 ± 0.004
D	0.50 ± 0.1	0.0197 ± 0.004
E	48.26 ± 0.2	1.900 ± 0.008
F	1.27	0.050
G	3.2 MIN	0.126 MIN
H	1.0 MIN	0.04 MIN
1	4,2 MAX	0.17 MAX
J	5.2 MAX	0.205 MAX
K	15.24 ± 0.1	0.6 ± 0.004
L	$\begin{array}{r} 13.5+0.2 \\ -0.25 \\ \hline \end{array}$	$\begin{array}{r} 0.531+0.008 \\ -0.010 \\ \hline \end{array}$
M	0.30 ± 0.1	0.012 ± 0.004

HIGH PERFORMANCE
 SINGLE CHIP 8－BIT MICROCOMPUTERS

DESCRIPTION	The NEC μ PD8049 and μ PD8039L are single chip 8－bit microcomputers．The processors differ only in their internal program memory options：the μ PD8049 has $2 \mathrm{~K} \times 8$ bytes of mask ROM and the μ PD8039L has external program memory．Both of these devices feature new，high performance 11 MHz operation．
FEATURES	－High Performance 11 MHz Operation
	－Fully Compatible with Industry Standard $8049 / 8039$
	－Pin Compatible with the μ PD8048／8748／8035
	－NMOS Silicon Gate Technology Requiring a Single $+5 \mathrm{~V} \pm 10 \%$ Supply
	－Programmable Interval Timer／Event Counter
	－ $2 \mathrm{~K} \times 8$ Bytes of ROM， 128×8 Bytes of RAM
	－ 96 Instructions： 70 Percent Single Byte

${ }^{\top} 0$	1		40	cc
Xtal 1	2		39	日 T_{1}
xtal 2	3		38	P27
RESET	4		37	P126
ss	5		36	P ${ }^{\text {225 }}$
int	6		35	$\square^{\text {P2 }}$
ea	7		34	P17
सD	8		33	$\square^{\text {P16 }}$
$\overline{\text { PSEN }}$	9	$\mu \mathrm{PD}$	32	$\square^{\text {P15 }}$
WR	10	8049／	31	$\square^{\text {P14 }}$
ale	11		30	P P13
$\mathrm{DB}_{0} \mathrm{C}$	12		29	口 P12
DB_{1}	13		28	$\square^{\text {P11 }}$
$\mathrm{DB}_{2}{ }^{\text {¢ }}$	14		27	限10
$\mathrm{DB}_{3} \mathrm{C}$	15		26	㳔
DB_{4}	16		25	$\square \mathrm{PROG}$
$\mathrm{DB}_{5} \mathrm{C}$	17		24	P23
$\mathrm{DB}_{6} \mathrm{~B}$	18		23	$\mathrm{Q}^{\mathrm{P} 22}$
$\mathrm{DB}_{7}{ }^{\text {¢ }}$	19		22	$\mathrm{Q}^{\text {P21 }}$
$\mathrm{v}_{\mathrm{SS}}{ }^{\text {－}}$	20		21	］P20

μ PD8049/8039L

The NEC μ PD8049 and μ PD8039L are high performance, single component, 8 -bit parallel microcomputers using N-channel silicon gate MOS technology. The μ PD8049 and μ PD8039L function efficiently in control as well as arithmetic applications. The powerful instruction set eases bit handling applications and provides facilities for binary and BCD arithmetic. Standard logic functions implementation is facilitated by the large variety of branch and table look-up instructions.

The μ PD8049 and μ PD8039L instruction set is comprised of 1 and 2 byte instructions with over 70 percent single-byte. The instruction set requires only 1 or $\mathbf{2}$ cycles per instruction with over 50 percent single-cycle.

The μ PD8049 and μ PD8039L microprocessors will function as stand-alone microcomputers. Their functions can easily be expanded using standard 8080A/8085A peripherals and memories.

The μ PD8049 contains the following functions usually found in external peripheral devices: 2048×8 bits of mask ROM program memory; 128×8 bits of RAM data memory; 27 I/O lines; an 8-bit interval timer/event counter; and oscillator and clock circuitry.

The μ PD8039L is intended for applications using external program memory only. It contains all the features of the μ PD8049 except the 2048×8-bit internal ROM. The external program memory can be implemented using standard 8080A/8085A memory products.

FUNCTIONAL DESCRIPTION

PIN IDENTIFICATION

PIN		FUNCTION
NO.	SYMBOL	
1	T_{0}	Testable input using conditional transfer functions JTO and JNTO. The internal State Clock (CLK) is available to T_{0} using the ENTO CLK instruction. T_{0} can also be used during programming as a testable flag.
2	XTAL 1	One side of the crystal, LC, or external frequency source. (Non-TTL compatible $\mathrm{V}_{1 \mathrm{H}}$.)
3	XTAL 2	The other side of the crystal or LC frequency source. For external sources, XTAL 2 must be driven with the logical complement of the $X T A L 1$ input.
4	RESET	Active low input from processor initialization. $\overline{\operatorname{RESET}}$ is also used for PROM programming verification and power-down (non-TTL compatible $\mathrm{V}_{\mathrm{IH}^{\prime}}$).
5	$\overline{\mathrm{SS}}$	Single Step input (active-low). $\overline{\mathrm{SS}}$ together with ALE allows the processor to "single-step" through each instruction in program memory.
6	$\overline{\mathrm{NT}}$	Interrupt input (active-low). $\overline{\text { INT }}$ will start an interrupt if an enable interrupt instruction has been executed. A reset will disable the interrupt. $\overline{N^{\prime}}$ can be tested by issuing a conditional jump instruction.
7	EA	External Access input (active-high). A logic " 1 " at this input commands the processor to perform all program memory fetches from external memory.
8	$\overline{R D}$	READ strobe outputs (active-iow). $\overline{R D}$ will pulse low when the processor performs a BUS READ. RD will also enable data onto the processor BUS from a peripheral device and function as a READ STROBE for external DATA MEMORY.
9	PSEN	Program Store Enable output (active-low). $\overline{\text { SSEN }}$ becomes active only during an external memory fetch.
10	$\overline{W R}$	WRITE strobe output (active-low). $\overline{W R}$ will pulse low when the processor performs a BUS WRITE. WR can also function as a WRITE STROBE for external DATA MEMORY.
11	ALE	Address Latch Enable output (active-high). Occurring once each cycle, the falling edge of ALE latches the address for external memory or peripherals. ALE can also be used as a clock output.
12-19	$\mathrm{D}_{0}-\mathrm{D}_{7} \mathrm{BUS}$	8 -bit, bidirectional port. Synchronous reads and writes can be performed on this port using $\overline{R D}$ and $\overline{W R}$ strobes. The contents of the $D_{0}-D_{7} B U S$ can be latched in a static mode. During an external memory fetch, the $\mathrm{D}_{0}-\mathrm{D}_{7}$ BUS holds the least significant bits of the program counter. $\overline{\text { SSEN }}$ controls the incoming addressed instruction. Also, for an external RAM data store instruction the $\mathrm{D}_{0}-\mathrm{D}_{7}$ BUS, controlled by ALE, $\overline{\mathrm{RD}}$ and $\overline{W R}$, contains address and data information.
20	$\mathrm{V}_{\text {SS }}$	Processor's GROUND potential.
$\begin{aligned} & 21-24, \\ & 35-38 \end{aligned}$	$\begin{aligned} & \mathrm{P}_{20}-\mathrm{P}_{27} \\ & \mathrm{PORT}_{2} \end{aligned}$	Port 2 is the second of two 8-bit quasi-bidirectional ports. For external data memory fetches, the four most significant bits of the program counter are contained in $\mathrm{P}_{20}-\mathrm{P}_{23}$. Bits $\mathrm{P}_{20}-\mathrm{P}_{23}$ are also used as a 4-bit I/O bus for the μ PD8243, INPUT/OUTPUT EXPANDER.
25	PROG	PROG is used as an output strobe for μ PD8243's during I/O expansion. When the μ PD8049 is used in a stand-alone mode the PROG pan can be allowed to float.
26	$V_{\text {DD }}$	$V_{D D}$ is used to provide +5 V to the 128×8 bit RAM section. During normal operation $V_{C C}$ must also be +5 V to provide power to the other functions in the device. During stand-by operation $V_{D D}$ must remain at +5 V while V_{CC} is at ground potential.
27-34	$\begin{aligned} & \text { P10-P }_{17}: \\ & \text { PORT } 1 \end{aligned}$	Port 1 is one of two 8-bit quasi-bidirectional ports.
39	T1	Testable input using conditional transfer functions JT1 and JNT1. T1 can be made the counter/timer input using the STRT CNT instruction.
40	V_{CC}	Primary Power supply. $V_{\text {CC }}$ is +5 V during normal operation.

Operating Temperature
Storage Temperature (Ceramic Package) $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature (Plastic Package) $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on Any Pin . - 0.5 to +7 Volts (1)
Power Dissipation
Note: (1) With respect to ground.
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
*COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
$T_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{D D}=+5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{S S}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Low Voltage (All Except XTAL 1, XTAL 2)	VIL	-0.5		0.8	V	
Input High Voltage (All Except XTAL 1, XTAL 2, $\overline{\text { RESET }}$)	$\mathrm{V}_{1 H}$	2.0		VCC	V	
Input High Voltage ($\overline{\text { RESET }}$, XTAL 1, XTAL 2)	VIH1	3.8		VCC	V	
Output Low Voltage (BUS, $\overline{\mathrm{RD}}$, WR, PSEN, ALE)	VoL			0.45	V	$\mathrm{I}^{\prime} \mathrm{L}=2.0 \mathrm{~mA}$
Output Low Voltage (All Other Outputs Except PROG)	VOL1			0.45	V	$1 \mathrm{OL}=1.6 \mathrm{~mA}$
Output Low Voltage (PROG)	VOL2			0.45	V	$\mathrm{IOL}=1.0 \mathrm{~mA}$
Output High Voltage (BUS, $\overline{\mathrm{RD}}$, $\bar{W}, \overline{\text { PSEN, ALE }}$	VOH	2.4			v	$\mathrm{IOH}^{\prime}=-100 \mu \mathrm{~A}$
Output High Voltage (All Other Outputs)	VOH1	2.4			V	$1 \mathrm{OH}=-50 \mu \mathrm{~A}$
Input Leakage Current ($T_{1}, E A, I N T$)	IIL			± 10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {SS }} \leqslant \mathrm{V}_{\text {IN }} \leqslant \mathrm{V}_{\text {cC }}$
Output Leakage Current (BUS, To - High Impedance State)	${ }^{\text {IOL }}$			± 10	$\mu \mathrm{A}$	$V_{C C} \geqslant V_{I N} \geqslant V_{S S}+0.45 \mathrm{~V}$
Power Down Supply Current	IDD		25	50	mA	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
Total Supply Current	$1 \mathrm{DD}+\mathrm{ICC}$		100	170	mA	$\mathrm{Ta}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

READ, WRITE AND INSTRUCTION FETCH - EXTERNAL DATA AND PROGRAM MEMORY
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=V_{D D}=+5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
ALE Pulse Width	${ }_{\text {t }}^{\text {LL }}$	150			ns	
Address Setup before ALE	${ }^{\text {t }}$ L	70			ns	
Address Hold from ALE	tha	50			ns	
Control Pulse Width ($\overline{\mathrm{PSEN}}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}$)	${ }^{1} \mathrm{CC}$	300			ns	
Data Setup before $\overline{W R}$	tow	250			ns	
Data Hold after $\overline{W R}$	tWD	40			ns	$\mathrm{C}_{L}=20 \mathrm{pF}$ (3)
Cycle Time	${ }^{\text {t }} \mathrm{C} Y$	1.36		15.0	$\mu \mathrm{s}$	
Data Hold	tDR	0		100	ns	
$\overline{\text { PSEN, }}$, $\overline{\mathrm{DD}}$ to Data In	tro			200	ns	
Address Setup before $\overline{\text { WR }}$	${ }^{\text {t }}$ AW	200			ns	
Address Setup before Data In	${ }^{\text {t }}$ AD			400	ns	
Address Float to $\overline{\mathrm{RD}}, \overline{\mathrm{PSEN}}$	${ }^{\text {t }} \mathrm{AFC}$	-40			ns	

Notes: (1) For Control Outputs: $\mathrm{C}_{\mathrm{L}}=80 \mathrm{pF}$
(2) For Bus Outputs: $\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$
(3) $\mathrm{t}_{\mathrm{CY}}=1.36 \mu \mathrm{~s}$

PORT 2 TIMING
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Port Control Setup before Falling Edge of PROG	${ }^{\text {t }}$ CP	100			ns	
Port Control Hold after Falling Edge of PROG	tPC	60		.	ns	
PROG to Time P2 Input must be Valid	tPR			650	ns	
Output Data Setup Time	${ }^{1} \mathrm{DP}$	200			ns	
Output Data Hold Time	${ }^{\text {tPD }}$	20			ns	
Input Data Hold Time	tPF	10		150	ns	
PROG Pulse Width	tpp	700			ns	
Port 2 //O Data Setup	${ }_{\text {tPL }}$	150			ns	
Port 2 I/O Data Hold	${ }_{\text {t }}$ LP	20			ns .	

TIMING WAVEFORMS

INSTRUCTION FETCH FROM EXTERNAL MEMORY

μ PD8049/8039L

READ FROM EXTERNAL DATA MEMORY

ALE

$\overline{W R}$

WRITE TO EXTERNAL MEMORY

PORT 2 TIMING

MNEMONIC	FUNCTION	DESCRIPTION	instruction code								CYCLES	Bytes	FLAGS			
			D7	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}			c	AC	F0	F1
BRANCH (CONT.)																
JNTO addr	(PC 0-7) - addr if TO $=0$ (PC) - (PC) +2 if $\mathrm{TO}=1$	Jump to specified address if Test 0 is low.	0 9	0 ${ }^{6} 6$	1 a_{5}	0 a_{4}	0 a_{3}	1 a_{2}	1 ∂_{1}	$\begin{gathered} 0 \\ a_{0} \end{gathered}$	2	2				
JNT1 addr	$\begin{aligned} & (\mathrm{PC} 0 \cdots 7) \cdot \text { addr if } \mathrm{T} 1-0 \\ & (\mathrm{PC}) \cdot(\mathrm{PC})+2 \text { if } \mathrm{T} 1 \end{aligned}$	Jump to specified address if Test 1 is low.	0 9	1 a_{6}	0 a_{5}	0 34	0 a_{3}	1 a_{2}	1 a_{1}	0 0 0	2	2				
JNZ addr	(PCO 7) - addr if $\mathrm{A}=0$ $(\mathrm{PCl}-\mathrm{PPCl}+2$ if A 0	Jump to specified address it accurnulator is non-zero.	1 07	$\begin{gathered} 0 \\ a_{6} \end{gathered}$	$\begin{array}{r} 0 \\ a 5 \end{array}$	$\begin{gathered} 1 \\ a 4 \end{gathered}$	$\begin{gathered} 0 \\ 03 \end{gathered}$	$\begin{gathered} 1 \\ a_{2} \end{gathered}$	$\begin{aligned} & 1 \\ & 2_{1} \end{aligned}$	$\begin{gathered} 0 \\ \text { a } 0 \end{gathered}$	2	2				
.JTF addr	(PCO 71•• addr if TF - 1 $(\mathrm{PC}) \cdot(\mathrm{PC})+2$ If TF 0	Jump to specified address if Timer Flay is set to 1 .	$\begin{gathered} 0 \\ 07 \end{gathered}$	$\begin{gathered} 0 \\ a_{6} \end{gathered}$	$\begin{array}{r} 0 \\ \text { a5 } \end{array}$	$\begin{gathered} 1 \\ 04 \end{gathered}$	$\begin{gathered} 0 \\ \text { a3 } \end{gathered}$	$\begin{gathered} 1 \\ a_{2} \end{gathered}$	$\begin{gathered} 1 \\ a_{1} \end{gathered}$	$\begin{gathered} 0 \\ 00 \end{gathered}$	2	2				
JT0 addr	$\begin{aligned} & (\mathrm{PC} 0 \cdot 7) \cdot \text { addr if TO-1 } \\ & (\mathrm{PCl} \cdot(\mathrm{PC})+2 \text { if TO }-0 \end{aligned}$	Jump to specified address if Test 0 is a	$\begin{gathered} 0 \\ 37 \end{gathered}$		1 a_{5}	1 4 4	0 0 0	1 a_{2} 1	1 a_{1}	$\begin{gathered} 0 \\ a_{0} \end{gathered}$	2	2				
JT1 addr	(PCO 7) - addr if T1 = 1 (PC) - $(\mathrm{PC})+2$ if T1 0	Jump to specified address if Test 1 is a 1.			0 a_{5}	1 0	0 93	1 3 2	1 a_{1}	0 0	2	2				
JZ addr	$(P C 0 \quad ?) \cdot \operatorname{addr} \text { if } A=0$ $(\mathrm{PC}) \cdot(\mathrm{PC})+2, f A=0$	Jump to specified address if Accumulator is 0 .	1 ${ }^{1} 7$	$\begin{gathered} 1 \\ a_{6} \end{gathered}$	$\begin{array}{r} 0 \\ a 5 \\ \hline \end{array}$	$\begin{array}{r} 0 \\ 84 \\ \hline \end{array}$	$\begin{array}{r} 0 \\ 23 \end{array}$		$\begin{array}{r} 1 \\ a_{1} \end{array}$	$\begin{array}{r} 0 \\ a_{0} \\ \hline \end{array}$	2	2				
CONTROL																
EN		Enable the External interrupt input.	0	0	0	0	0	1	0	1	1	1				
DIS I		Disable the External Interrupt input.	0	0	0	1	0	1	0	1	1	1				
ENTO CLK		Enable the Clock Outpur pin T0.	0	1	1	1	0	1	0	1	1	1				
SEL MBO	$(\mathrm{OBF})-0$	Select Bank 0 (locations 0 2047) of Program Memory.	1	1	1	0	0	1	0	1	1	1				
SEL MBI	$(D B F) \leftarrow 1$	Select Bank 1 (locations 20484095) of Program Memory.	1	1	1	1	0	1	0	1	1	1				
SEL RBO	(BS) -0	Select Bank 0 (locations $0-71$ of Data Memory.	1	1	0	0	0	1	0	1	1	1				
SEL RB1	(8S) - 1	Select Bank 1 tlocations 24311 of Data Mernory	1	1	0	1	0	1	0	1	1	1				
DATA MOVES																
MOV A, : data	(A) +- data	Move Immediate the specified data into the Accumulator.	$\begin{gathered} 0 \\ d 7 \end{gathered}$	$\begin{gathered} 0 \\ d_{6} \end{gathered}$	$\begin{gathered} 1 \\ d_{5} \end{gathered}$	$\begin{gathered} 0 \\ d_{4} \end{gathered}$	$\begin{gathered} 0 \\ d_{3} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{~d}_{2} \end{gathered}$	$\begin{gathered} 1 \\ d_{1} \end{gathered}$	$\begin{gathered} \mathbf{1} \\ d_{0} \end{gathered}$	2	2				
MOV A, Rr	$(\mathrm{A})-(\mathrm{Rr}): \mathrm{r}=0-7$	Move the contents of the designated registers into the Accumulator.	1	1	1	1	1	r	r	,	1	1				
MOVA, @ Rr	$(\mathrm{A})+((\mathrm{Rr})] ; \mathrm{r}=0-1$	Move Indirect the contents of data memory location into the Accumulator.	1	1	1	1	0	0	0	r	1	1				
MOV A, PSW	$(\mathrm{A})-($ PSW $)$	Move contents of the Program Status Word into the Accumulator.	1	1	0	0	0	1	1	1	1	1				
MOV Rr, :: data	$\left(R_{r}\right)$ - data; $r=0-7$	Move Immediate the specified data into the designated register.	$\begin{gathered} 1 \\ d 7 \end{gathered}$	$\begin{gathered} 0 \\ d_{6} \end{gathered}$	$\begin{gathered} 1 \\ d_{5} \end{gathered}$	$\begin{gathered} 1 \\ d 4 \end{gathered}$	$\begin{gathered} \mathbf{1} \\ d_{3} \end{gathered}$	d_{2}	$\stackrel{r}{d_{1}}$	$\begin{gathered} r \\ d_{0} \end{gathered}$	2	2				
MOVRr. A	$(\mathrm{Rr})-(\mathrm{A}): \mathrm{r}=0-7$	Move Accumulator Contents into the designated register.	1	0	1	0	1	r	r	r	1	1				
MOV Mr. A	$\left(\left(\mathrm{Rr}^{\prime}\right)\right)-(A) ; r=0-1$	Move Indirect Accumulator Contents into data memory location.	1	0	1	0	0	0	0	r	1	1				
MOV @ Rr, = data	$((\mathrm{Rr}))-$ data; $\mathrm{r}=0-1$	Move Immediate the specified data into data mernory.	$\begin{gathered} 1 \\ d 7 \end{gathered}$	$\begin{gathered} 0 \\ d_{6} \end{gathered}$	$\begin{gathered} 1 \\ d_{5} \end{gathered}$	$\begin{gathered} 1 \\ d_{4} \end{gathered}$	$\begin{gathered} 0 \\ d_{3} \end{gathered}$	$\begin{gathered} 0 \\ d_{2} \end{gathered}$	$\begin{gathered} 0 \\ d_{1} \end{gathered}$	d_{0}^{\prime}	2	2				
MOV PSW. A	$($ PSW $) \sim(A)$	Move contents of Accumulator into the program status word.	1	1	0	1	0	1	1	1	1	1				
MOVP A, @ A	$\begin{aligned} & (P C 0-7)-(\mathrm{A}) \\ & (\mathrm{A})-((\mathrm{PC})) \end{aligned}$	Move dota in the current page into the Accumulator.	1	0	1	0	0	0	1	1	2	1				
MOVP3 A.@A	$\begin{aligned} & (P C 0-7)-(A) \\ & (P C 8-10)-011 \\ & (A)+(P C)) \end{aligned}$	Move Program data in Page 3 into the Accumulator.	1	1	1	0	0	0	1	1	2	1				
MOVX A, @R	$(\mathrm{A})-(\mathrm{Rr}) \mid$; $r=0-1$	Move Indirect the contents of external data memory into the Accumulator.	1	0	0	0	0	0	0	r	2	1				
MOVX@R. A	$\left(\left(R_{r}\right) \mid-(A): r=0-1\right.$	Move Indirect the contents of the Accumulator into external data memory.	1	0	0	1	0	0	0	r	2	1	.			
$\mathrm{XCH} \mathrm{A}$,	$(\mathrm{A}) \approx(\mathrm{Rr}) ; \mathrm{r}=0-7$	Exchange the Accumulator and designated register's contents.	0	0	1	0	1	r	r	r	1	1				
XCH A, @ Rr	$(A) \rightleftarrows((R r)) ; r=0-1$	Exchange Indirect contents of Accumulator and focation in data memory.	0	0	1	0	0	0	0	r	1	1				
XCHD A.@Rr	$\begin{aligned} & (A 0-3) \leftrightarrows((\mathrm{Rr})) 0-3)) ; \\ & r=0-1 \end{aligned}$	Exchange Indirect 4-bit contents of Accumulator and data memory.	0	0	1	1	0	0	0	r	1	1				
FLAGS																
CPL C	(C) - NOT (C)	Complement Content of carry bit.	1	0	1	0	0	1	1	1	1	1	-			
CPLFO	(FO) . NOT (FO)	Complement Content of Flag FO.	1	0	0	1	0	1	0	\dagger	1	1			\bullet	
CPL F1	(F1). NOT (F1)	Complernent Content of Flag F1	1	0	1	1	0	\uparrow	0	1	1	1				-
CLR C	(C) - 0	Clear content of carry bit to 0 .	1	0	0	1	0	1	1	1	1	1	-			
CLR FO	(FO) - 0	Clear content of Flag 0 to 0 .	1	0	0	0	0	1	0	1	1	1			-	
CLR F1	(F1) 0	Clear content of Flag 1 to 0 .	1	0	1	0	0	1	0	1	1	1				-

Notes: (1) Instruction Code Designations r and \dot{p} form the binary representation of the Registers and Ports involved
(2) The dot under the appropriate flag bit indicates that its content is subject to change by the instruction it appears in.
(3) References to the address and deta are specified in bytes 2 and/or 1 of the instruction.
(a) Numerical Subscripts appearing in the FUNCTION column reference the specific bits affected.

Symbol Definitions:

SYMBOL	DESCRIPT$\ddagger O N$
A	The Accumulator
AC	The Auxiliary Carry Flag
addr	Program Memory Address (12 bits)
Bb	Bit Designator (b $=0-7$)
BS	The Bank Switch
BUS	The BUS Port
C	Carry Flag
CLK	Clock Signal
CNT	Event Counter
D	Nibbie Designator (4 bits)
data	Number or Expression (8 bits)
DBF	Memory Bank Flip. Flop
FD, F1	Flags 0, 1
I	Interrupt
P	"In-Page" Operation Designator

SYMBOL	DESCRIPTION
P_{p}	Port Designator ($p=1,2$ or 4-7)
PSW	Program Status Word
Rr	Register Designator ($\mathrm{r}=0,1$ or $0-7$)
SP	Stack Pointer
T	Timer
TF	Timer Flag
To. T1	Testable Flags 0, 1
X	External RAM
=	Prefix for Immediate Data
@	Prefix for Indirect Address
\$	Program Counter's Current Value
(x)	Contents of External RAM Location
((x))	Contents of Memory Location Addressed by the Contents of External RAM Location.
*	Replaced By

μ PD8049/8039L

PACKAGE OUTLINES μ PD8049C μ PD8039LC

PLASTIC

ITEM	MILLIMETERS	INCHES
A	51.5 MAX \times	2.028 MAX
B	1.62 MAX	0.064 MAX
C	2.54 ± 0.1	0.10 ± 0.004
D	0.5 ± 0.1	0.019 ± 0.004
E	48.26 ± 0.1	1.9 ± 0.004
F	1.2 MIN	0.047 MIN
G	2.54 MIN	0.10 MIN
H	0.5 MIN	0.019 MIN
I	5.22 MAX	0.206 MAX
J	5.72 MAX	0.225 MAX
K	15.24 TYP	0.600 TYP
L	13.2 TYP	0.520 TYP
M	$0.25{ }_{-0.05}^{+0.1}$	0.010 ${ }^{+0.004} \begin{array}{r}+0.002\end{array}$

CERAMIC

ITEM	MILLIMETERS	INCHES
A	51.5 MAX	2.03 MAX
B	1.62 MAX	0.06 MAX
C	2.54 ± 0.1	0.1 ± 0.004
D	0.5 ± 0.1	0.02 ± 0.004
E	48.26 ± 0.1	1.9 ± 0.004
F	1.02 MIN	0.04 MIN
G	3.2 MIN	0.13 MIN
H	1.0 MIN	0.04 MIN
I	3.5 MAX	0.14 MAX
J	4.5 MAX	0.18 MAX
K	15.24 TYP	0.6 TYP
L	14.93 TYP	0.59 TYP
M	0.25 ± 0.05	0.01 ± 0.0019

μ PD80C49／μ PD80C39

Microcomputer Division

Descriptlon

The NEC μ PD80C49 is a true stand－alone 8 －bit micro－ computer fabricated with CMOS technology．The μ PD80C49 contains all the functional blocks－ 1 K bytes ROM， 64 bytes RAM， 28 I／O lines，on－chip 8－bit Timer／ Event counter，on－chip clock generator－to enable its use in stand－alone applications．For designs requiring extra capability the μ PD80C49 can be expanded using industry standard μ PD8080A μ PD8085A peripherals and memory products．The μ PD80C39 differs from the μ PD80C49 only in that the μ PD80C39 contains no internal program mem－ ory（ROM）．
Compatible with the industry－standard 8049 and 8039，the CMOS－fabricated μ PD80C49 provides significant power consumption savings in applications requiring low power and portability．In addition to the power savings gained through CMOS technology，the NEC μ PD80C49 features Halt and Stop modes to further minimize power drain．

Features

［］8－bit CPU，ROM，RAM，I／O in a single packageHardware／Software－compatible with industry standard 8049， 8039 products$2 \mathrm{~K} \times 8$ ROM
128×8 RAM
27 I／O lines$2.5 \mu \mathrm{~s}$ cycle time（ 6 MHz crystal）
All instructions 1 or 2 cycles
［］ 97 instructions： 70% single－byte
－Internal Timer／Event CounterTwo Interrupts（External and Timer）Easily expandable memory and I／Osus－compatible with 8080A／8085A peripherals
\square Single $2.5 \sim 6.0 \mathrm{~V}$ supply
［］Available in 40 －pin DIP and 52 －pin flat pack
\square Low－power Standby modes
\square Halt Mode
1 mA typical supply current
Maintains internal logic values and control status Initiated by HALT instruction
Released by External Interrupt or Reset
\square Stop Mode
$1 \mu \mathrm{~A}$ typical supply current
Disables internal clock generation and internal logic
Maintains RAM
Initiated via Hardware（VD）
Released via Reset

Pin Identification

Pin		Function
No．	Symbol	
1	T0	Testable input using conditional transfer functions JT0 and JNTO．The Internal State Clock（CLK）Is available to T_{0} using the ENTO CLK instruction．To can also be used during pro－ gramming as a testable flag．
2	XTAL 1	One side of the crystal input for external oscillator or fre－ quency（non－TTL－compatible $V_{i H}$ ）．

Pin		Function
No．	Symbol	
3	XTAL 2	The other side of the crystal input．
4	RESET	Active low input for processor initialization．RESET signal should be 5 machine cycles or longer．
5	SS	Single step input（active－low）．SS with ALE allows the pro－ cessor to＂single－step＂through each instruction in program memory．
6	INT	Interrupt input（active－low）．INT starts an interrupt if an enable instruction has been executed．A reset disables the interrupt．INT can be tested by issuing a conditional jump instruction．
7	EA	External Access input（active－high）．A logic＂1＂at this input commands the processor to perform all program memory fetches from external memory．
8	$\overline{\mathbf{R}} \mathbf{D}$	Read strobe output（actlve－low）．RD pulses low when the processor performs a Bus Read．RD aiso enables data onto the processor Bus from a peripheral device and functions as a Read Strobe for external Data Memory．
9	$\overline{\text { PSEN }}$	Program Store Enable output（active－low）．PSEN becomes actjve only during an external memory fetch．
10	WF	Write strobe output（actlve－low）．WR pulses low when the processor performs a Bus Write．WR can also function as a Write Strobe for external Data Memory．
11	ALE	Address Latch Enable output（active high）．Occuring once each cycle，the falling edge of ALE latches the address for external memory or peripherals．ALE can also be used as a clock output．
12－19	$\mathrm{D}_{0}-\mathrm{D}_{7}$ BUS	8－bit，bidirectional port．Synchronous reads and writes can be performed on this port using RD and WR strobes．The contents of the $D_{0}-D_{\text {，Bus can be latched in a static mode．}}^{\text {，}}$ During an external memory fetch，the $D_{0}-D_{\text {，}}$ Bus holds the least significant bits of the program counter．PSEN controls the Incoming addressed instruction．Also，for an external RAM data store instruction the $D_{0}-D_{7}$ Bus，controlled by ALE，AD and WR，contains address and data information．
20	V_{ss}	Processor＇s Ground potential．
$\begin{aligned} & 21-24, \\ & 35-38 \end{aligned}$	$\begin{aligned} & \mathbf{P}_{20}-\mathbf{P}_{27}: \\ & \text { PORT } 2 \end{aligned}$	Port 2 is the second of two 8－bit quasi－bidirectlonal ports． For external data memory fetches，the four most significant blts of the program counter are contained in $\mathbf{P}_{20}-\mathbf{P}_{23}$ ．Blts $P_{20}-P_{23}$ are also used as a 4－blt I／O bus for the μ PD8243， Input／Output Expander．
25	PROG	PROG is used as an output strobe for the μ PQ8243．
26	V_{DD}	+5 V during normal operation． V_{DD} Is used in Stop Mode．By forcing $V_{D D}$ low during a reset，the processor enters Stop Mode．
27－34	$\underset{P_{10}-P_{11}:}{\text { PORT } 1}$	Port 1 ls one of two 8－blt quasi－bidirectional ports．
39	T1	Testable input using conditional transfer functions JT1 and JNT1．T1 can be made the counter／timer input using the STRT CNT Instruction．
40	\mathbf{V}_{cc}	Primary Power Supply． $\mathrm{V}_{C C}=+2.5 \sim 6.0$ Volt．

Pin Configuration

${ }^{\mathrm{T}} \mathrm{OH}^{-}$		40	
xtalig		39	日
XTAL2 2		38	P27
MESET A		37	Р P 26
SS C－5		36	P25
INT－6		36	$\square^{P 24}$
ear \％		34	$\square^{\text {P17 }}$
$\overline{\square D}$	$\mu \mathrm{PD}$	33	口 ${ }^{16}$
PSEN：9	80C49／	33	PP15
WR－ 10	80C39	31	己P14
ALEC ${ }^{11}$		30	口 ${ }^{\text {P13 }}$
$\mathrm{DB}_{0} \mathrm{Cl}^{12}$		20	\square^{812}
$\mathrm{DB}_{1} \mathrm{C}^{13}$		28	－ P^{11}
$\mathrm{DB}_{2}{ }^{14}$		\cdots	日 P^{10}
$\mathrm{DB}_{3} \mathrm{~S}^{15}$		26	v_{00}
$\mathrm{OB}_{4} \mathrm{Cl}^{16}$		2．，	Prog
$\mathrm{DB}_{5} \mathrm{~L}^{17}$		24	P P23
$\mathrm{OB}_{6} \mathrm{Cl}^{18}$		23	P22
$\mathrm{DB}_{7} \mathrm{H}^{10}$		22	P^{2}
vsS^{20}		21	P P^{2}

μ PD80C49/80C39

Absolute Maximum Ratings*

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature (Ceramic Package)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature (Plastic Package)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on Any Pin	$\mathrm{V}_{\mathrm{ss}}-\mathbf{- 0 . 3 \mathrm { V } \text { to } \mathrm { V } _ { \mathrm { cC } } + \mathbf { 0 . 3 \mathrm { V } }}$
Supply Voltage	$\mathrm{V}_{\mathrm{Ss}}-\mathbf{0 . 3}$ to +10 V

*COMMENT: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC Characteristics

Parameter	Symbol	Limits		Unit	Test Conditions
		Min Typ	Max		
Input Low Voitage (All Except XTAL 1, XTAL 2)	V_{1}	-0.3	0.8	V	
Input High Voltage (All Except XTAL 1, XTAL 2, RESET)	$\mathbf{V}_{\mathbf{t}}$	$\mathbf{V c c}^{-2}$	$\mathbf{V}_{\text {cc }}$	V	
Input High Voltage (RESETT, XTAL. 1, XTAL 2)	V_{1+1}	$\mathbf{V c c}_{\text {- }} \mathbf{1}$	$V_{c c}$	V	
Output Low Voltage	V_{0}		0.45	V	$\mathrm{I}_{\mathrm{L}}=2.0 \mathrm{~mA}$
Output High Voltage (BUS, RD, WF, PSEN, ALE)	V_{OH}	2.4		V	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$
Output High Voltage (All Other Outputs) (2)	$\mathrm{V}_{\mathrm{OH} 1}$	2.4		V	$\mathrm{t}_{\mathrm{OW}}=-5 \mu \mathrm{~A}$
Output High Voltage (All Outputs)	$\mathbf{V O H 2}$	$\mathrm{V}_{\mathrm{cc}}-\mathbf{0 . 5}$		V	$\mathrm{L}_{\mathrm{OH}}=-0.2 \mu \mathrm{~A}$
Input Current (Port 1, Port 2)	$\mathrm{ILLP}^{\text {a }}$	-15	-40	$\mu \mathbf{A}$	$V_{\text {IN }} \leqslant V_{\text {IL }}$
Input Current (SS, RESET)	It.e		-40	$\mu \mathbf{A}$	$V_{1 N} \leqslant V_{1}$
Input Leakage Current: (T, INT)	I_{1}		± 1	$\mu \mathrm{A}$	$\mathbf{V}_{\text {Ss }}<\mathbf{V}_{\mathbf{I N}}<\mathbf{V}_{\text {cc }}$

Parameter	Symbol	Limits			Unit	Test Conditions
		MIn	Typ	Max		
Input Leakage Current (EA)	IL,			± 3	$\mu \mathbf{A}$	$\mathrm{V}_{\text {SS }}<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\text {cc }}$
Output Leakage Current (BUS, T_{0} - High Impedance State)	L_{6}			± 1	$\mu \mathbf{A}$	$\mathbf{V S S}_{\text {S }}<\mathbf{V}_{\text {IN }}<\mathbf{V}_{\text {cc }}$
Total Supply Current	$\mathrm{Icc}_{\text {c }}$		4	8	mA	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} 6 \mathrm{MHz}$
Halt Power Supply Current	IcC_{1}		0.4	0.8	mA	6 MHz
Stop Mode Supply Current	ICC_{2}		1	20	$\mu \mathbf{A}$	6 MHz
RAM Data Retention Voltage	$\mathbf{V C c}$ DR	2.0			V	$\begin{aligned} & \text { Stop Mode }\left(\mathrm{V}_{\mathrm{DD}},\right. \\ & \text { RESET } \leqslant .4 \mathrm{~V}) \text { or } \\ & \text { RESET } \leqslant 0.4 \mathrm{~V} \end{aligned}$

AC Characteristics

Read, Write and Instruction Fetch - External Data and Program Memory
$T_{a}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ; V_{C C}=V_{D D}=+5 V \pm 10 \% ; V_{S S}=0 V$ (2)

Perameter	Symbol	ulmits			Unlt	Test Conditions(1)
		Min	Typ	Max		
ALE Pulse Wdth	L_{L}	400			ns	
Address Setup before ALE	t_{4}	120			ns	
Address Hold from ALE	t_{4}	80			ns	
Control Pulse Width (PSEN, AD, WR)	$t_{\text {cc }}$	700			ns	
Data Setup before WR	$\mathbf{t}_{\text {D }}$	500			ns	
Date Hold after WR	$t_{\text {wo }}$	120			ns	$C_{2}=20 \mathrm{pF}$
Cycle Time	t_{cr}	2.5		150	$\mu \mathrm{s}$	
Data Hold	t_{OH}	0		200	ก8	
PSEN, RD to Data in	$t_{\text {Ho }}$			500	ns	
Addrese Setup before WR	$t_{\text {Aw }}$	230			n8	
Address Setup before Data in	t_{0}			950	n8	
Address Float to RD, PSEN	$\mathrm{t}_{\text {AFC }}$	0			ns	
Control Pulse to ALE	t_{CA}	10			n8	

Notes:

(1) For Control Outputs: $\mathrm{C}_{-}=80 \mathrm{pF}$

For Bus Outputs: $C_{L}=150 \mathrm{pF}$.
(2) For $\mathrm{V}_{\mathrm{CC}}=+2.5 \mathrm{~V} \sim 6.0 \mathrm{~V}$ refer to 80 C 48 data sheet page 364 .

AC Characteristics (Cont.)

Port 2 Timing

$\mathrm{T}_{\mathrm{a}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	Limits			Unit	Test Conditlons
		Min	TyP	Max		
Port Control Setup before Falling Edge of PROG	$t_{\text {cp }}$	110			ns	
Port Control Hold after Falling Edge of PROG	$t_{\text {PC }}$			80	n8	
PFOOG to Time P2 Input must be Valld	$t_{\text {Pr }}$			810	ns	
Output Data Setup Time	$t_{\text {PP }}$	250			ns	
Output Data Hold Tlme	t_{8}	65			$n 8$	
Input Data Hoid Time	$\mathrm{t}_{\text {PF }}$	0		150	ns	
PFIOG Pulse Width	$\mathbf{t p p}_{\text {p }}$	1200			n8	
Port 2 I/O Data Setup	t_{p}	350			ns	
Port 2 I/O Data Hold	$\mathbf{t}_{\text {LP }}$	150			$n 8$	

Timing Waveforms

Instruction Fetch From External Memory

Read From External Data Memory

Write to External Memory

Low Power Standby Operation

Port 2 Timing

Features

The NEC μ PD80C49/ μ PD80C39 contains all the functional features of the industry standard 8049/8039. The power down mode of the μ PD8048 is replaced with two additional power standby features for added power savings. Depending on desired power consumption savings and internal logic status maintenance, Halt mode or Stop mode may be used.

Halt Mode

The μ PD80C49/80C39 includes a Halt instruction (01H) an addition to the standard 8049 instruction set. Upon execution of the Halt instruction, the μ PD80C49 enters a Halt mode where the internal clocks and internal logic are disabled. The oscillator, however, continues its operation. The state of all internal logic values and control status prior to the halt state is maintained. Under Halt mode, power consumption is less than 10% of normal μ PD80C49 operation, and 1% of 8049 operation.

μ PD80C49/80C39

Halt mode is released through either of two methods: an active input on the $\overline{N T}$ line or a reset operation. Under the Interrupt Release mode, if interrupts are enabled (EI Mode), the INT input restarts the internal clocks to the internal logic. The μ PD80C49 then executes the instruction immediately following the Halt instruction, before branching to the interrupt service routine.
If interrupts are disabled (DI Mode), an INT active signal causes the program operation to resume, beginning from the next sequential address after the Halt instruction.
A $\overline{R E S E T}$ input causes the normal reset function which starts the program at address OH .
Note: The V_{Cc} range under Halt mode must be maintained at normal operation voltage.

Stop Mode

Stop mode provides additional power consumption savings over the Halt mode of operation. Stop mode is initiated by forcing V_{DD} to the low state during a RESET low. While in Stop mode, oscillator operation is discontinued and only the contents of RAM are maintained.
The μ PD80C49 is released from Stop mode when $V_{D D}$ is forced high during a RESET low. Clock generation is then restarted. When oscillator stabilization is achieved, RESET is pulled high and the program is restarted from location 0.
To ensure reliable Stop mode operation, $\mathrm{V}_{\text {pp }}$ must be brought back up before releasing the RESET pin. The $V_{D D}$ pin must be protected against noise conditions since it controls oscillator operation. In the Stop mode, V_{cc} may be dropped as low as 2.0 volts to ensure RAM data retention ($\mathrm{V}_{\text {cc }}$ DR). RESET must be held low after oscillation stops until the oscillator is restarted.

Logic Symbol

Symbol Definitions:

Symbol	Description
A	Accumulator
AC	Auxlliary Carry Fiag
addr	Program Memory Address (12 blts)
Bb	Bit Designator ($\mathrm{b}=0-7$)
BS	Bank Switch
Bus	Bus Port
C	Carry Flag
CLK	Clock Signal
CNT	Event Counter
D	Nibble Designator (4 blis)
data	Number or Expression (8 blis)
DBF	Memory Bank Filp-Fiop
$\mathrm{F}_{0}, \mathrm{~F}_{1}$	Flags 0, 1
1	Interrupt
P	"In-Page" Operation Designator
P_{D}	Port Designator ($p=1,2$ or $4-7$)
PSW	Program Status Word
Rr	Register Designator ($\mathbf{r}=0,1$ or $0-7$)
SP	Stack Pointer
T	Timer
TF	Timer Flag
T0, T1	Testable Fiags 0,1
\mathbf{X}	External RAM
$=$	Prefix for Immediate Data
@	Prefix for Indirect Address
S	Program Counter's Current Value
(x)	Contents of External RAM Location
((x))	Contents of Memory Location Addressed by the Contents of External RAM Location.
二	Replaced By

Instruction Set

			Instruction Gode								Cycles Bytos		Fiars		
Mnemonle	Function	Description	D_{7}	D	D_{6}	D	D_{3}	D_{2}	D ${ }_{1}$	D_{0}			c	AC FO	F1
Accumulator															
ADD, $\mathrm{A}=$ data	$(\mathrm{A}) \leftarrow(\mathrm{A})+$ data	Add immediate the specified Data to the Accumulator.	$\begin{aligned} & \mathbf{0} \\ & \mathbf{d}_{7} \end{aligned}$	$\begin{aligned} & 0 \\ & d_{0} \end{aligned}$	$\begin{gathered} \hline \mathbf{0} \\ \mathbf{d}_{3} \\ \hline \end{gathered}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{d}_{1} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{d}_{3} \end{aligned}$	$\begin{aligned} & 0 \\ & d_{2} \end{aligned}$	$\begin{aligned} & 1 \\ & d_{1} \end{aligned}$	$\begin{aligned} & 1 \\ & \alpha_{0} \end{aligned}$	2	2	-		
Add A, Rr	$\begin{aligned} & \text { (A) } \leftarrow(A)+(\mathrm{Rr}) \\ & \text { for } r=0.7 \end{aligned}$	Add contents of designated register to the Accumulator.	0	1	1	0	1	r	r	r	1	1	-		
ADD A, @ Rr	$\begin{aligned} & (A) \leftarrow(A)+((\mathrm{Rr})) \\ & \text { for } \mathrm{r}=0.1 \end{aligned}$	Add indirect the contents of the data memory location to the Accumulator.	0	1	1	0	0	0	0	r	1	1	-		
$\begin{aligned} & \begin{array}{l} \text { ADDC A, }= \\ \text { date } \end{array} \end{aligned}$	$(\mathrm{A}) \leftarrow(\mathrm{A})+(\mathrm{C})+$ data	Add immediate whth carry the specified data to the Accumulator.	$\begin{aligned} & 0 \\ & \mathbf{d}_{1} \end{aligned}$	$\begin{aligned} & 0 \\ & d_{0} \end{aligned}$	$\begin{gathered} \hline 0 \\ d_{5} \end{gathered}$	$\begin{aligned} & \mathbf{1} \\ & a_{1} \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{d}_{3} \end{aligned}$	$\begin{aligned} & 0 \\ & d_{2} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathbf{d}_{1} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathbf{d}_{0} \end{aligned}$	2	2	-		
ADDC A, Rr	$\begin{aligned} & (A) \leftarrow(A)+(C)+(\mathrm{Rr}) \\ & \text { for } r=0.7 \end{aligned}$	Add with carry the contents of the designated register to the Accumulator:	0	1	1	1	1	r	r	r	1	1	-		
ADDC A, @ Rr	$\begin{aligned} & (A) \leftarrow(A)+(C)+((R r)) \\ & \text { for } r=0-1 \end{aligned}$	Add indirect with carry the contents of data memory location to the Accumulator.	0	1	1	1	0	0	0	r	1	1	-		
ANL A, = data	(A) $\leftarrow(A)$ AND data	Logicel AND specified Immediate Data with Accumulator.	$\begin{aligned} & 0 \\ & \mathbf{d}_{7} \end{aligned}$	$\begin{aligned} & 1 \\ & d_{0} \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{d}_{5} \end{aligned}$	$\begin{aligned} & 1 \\ & d_{4} \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{d}_{3} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{d}_{2} \end{aligned}$	$\begin{aligned} & 1 \\ & d_{1} \end{aligned}$	$\begin{aligned} & 1 \\ & \alpha_{0} \end{aligned}$	2	2			
ANLA, Rr	$\begin{aligned} & (A) \leftarrow(A) \text { AND }(\mathrm{Rr}) \\ & \text { for } \mathrm{r}=0.7 \end{aligned}$	Logical AND contents of designated register with Accumulator.	0	1	0	1	1	r	r	r	1	1			
ANLA, @ Rr	$\begin{aligned} & \text { (A) } \leftarrow(A) \text { AND }(\text { (} \mathrm{Ar})) \\ & \text { for } r=0-1 \end{aligned}$	Logical AND Indirect the contents of data memory with Accumulator.	0	1	0	1	0	0	0	V	1	1			
CPLA	$(\mathrm{A}) \leftarrow \operatorname{NOT}(\mathrm{A})$	Complement the contents of the Accumulator.	0	0	1	1	0	1	1	1	1	1			
CLRA	$(A) \leftarrow 0$	Clear the contents of the Accumulator.	0	0	1	0	0	1	1	1	1	1			
DAA		Decimal Adjust the contents of the Accumulator.	0	1	0	1	0	1	1	1	1	1	-		
DECA	$(A) \leftarrow(A) 1$	Decrement by 1 the Accumulator's contents.	0	0	0	0	0	1	1	1	1	1			
INCA	(A) $\leftarrow(A)+1$	Increment by 1 the Accumulator's contents.	0	0	0	1	0	1	1	1	1	1			
ORLA, = date	$(A) \leftarrow(A) O R$ data	Logical OR specifiled immediate data with Accumulator.	$\begin{aligned} & \mathbf{0} \\ & \mathbf{d}_{7} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathbf{d}_{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{d}_{5} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{d}_{4} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{d}_{3} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & d_{2} \end{aligned}$	$\begin{aligned} & 1 \\ & d_{1} \end{aligned}$	$\begin{aligned} & 1 \\ & \alpha \\ & \hline \end{aligned}$	2	2			
ORLA, Ar	$\begin{aligned} & \text { (A) } \leftarrow(A) O R(R r) \\ & \text { for } r=0-7 \end{aligned}$	Logical OR contents of designated register with Accumulator.	0	1	0	0	1	r	r	r	1	1			
ORLA, @ Rr	$\begin{aligned} & \text { (A) } \leftarrow(A) \text { OR }((\mathrm{Rr})) \\ & \text { for } r=0-1 \end{aligned}$	Logical OR Indirect the contents of data memory location with Accumulator.	0	1	0	0	0	0	0	r	1	1			
RLA	$\begin{aligned} & (A N+1) \leftarrow(A N) \\ & \left(A_{0}\right) \leftarrow\left(A_{1}\right) \\ & \text { for } N=0-6 \end{aligned}$	Rotate Accumulator left by 1 blt without carry.	1	1	1	0	0	1	1	1	1	1			
RLCA	$\begin{aligned} & \text { (AN +1) } \leftarrow(A N) ; N=0-6 \\ & \left(A_{0}\right) \leftarrow(C) \\ & \text { (C) } \leftarrow\left(A_{1}\right) \\ & \hline \end{aligned}$	Rotate Accumulator left by 1 blt through carry.	1	1	1	1	0	1	1	${ }^{1}$	1	1	-		
RRA	$\begin{aligned} & \text { (AN) } \leftarrow(A N+1), N=0-6 \\ & \left(A_{i}\right) \leftarrow\left(A_{0}\right) \\ & \hline \end{aligned}$	Rotate Accumulator right by 1 bit without carry.	0	1	1	1	0	1	1	1	1	1			
RRC A	$\begin{aligned} & (A N) \leftarrow(A N+1) ; N=0-6 \\ & \left(A_{1}\right) \leftarrow(C) \\ & (C) \leftarrow\left(A_{0}\right) \end{aligned}$	Rotate Accumulator right by 1 blt through carry.	0	1	1	0	0	1	1	1	1	1	-		
SWAPA	$\left(A_{1}, 7\right) \neq\left(A_{0}-3\right)$	Swap the two 4-bit nibbles in the Accumulator.	0	1	0	0	0	1	1	1	1	1			
XRL $\mathrm{A},=$ data	$(\mathrm{A}) \leftarrow(\mathrm{A}) \times \mathrm{OR}$ data	Logical XOR specifíled immediate data with Accumulator.	$\begin{aligned} & 1 \\ & d_{7} \end{aligned}$	$\begin{aligned} & 1 \\ & d_{0} \end{aligned}$	$\begin{aligned} & \hline \mathbf{0} \\ & \mathbf{d}_{5} \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{d}_{3} \end{aligned}$	$\begin{aligned} & 0 \\ & d_{2} \end{aligned}$	$\begin{aligned} & \mathbf{d} \\ & d_{1} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathbf{a}_{0} \end{aligned}$	2	2			
XRLA, Rr	$\begin{aligned} & \text { (A) } \leftarrow(A) \operatorname{XOR}(\mathrm{Rr}) \\ & \text { for } r=0.7 \end{aligned}$	Logical XOR contents of designated register with Accumulator.	1	1	0	1	1	r	r	r	1	1			
XRLA, @ Rr	$\begin{aligned} & \text { (A) } \leftarrow(A) \times O R((\mathrm{Rr})) \\ & \text { for } r=0-1 \end{aligned}$	Logical XOR Indirect the contents of data memory location with Accumulator.	1	1	0	1	0	0	0	r	1	1			
Branch															
DJNZ Rr, addr	$\begin{aligned} & (R r) \leftarrow(R r)-1 ; r=0-7 \\ & \text { If (Rr) } \neq 0 \\ & (P C O-7) \leftarrow \text { addr } \\ & \hline \end{aligned}$	Decrement the specifled regieter and test contents.	$\begin{aligned} & 1 \\ & a_{7} \end{aligned}$	$\begin{aligned} & 1 \\ & a_{0} \end{aligned}$	$\begin{aligned} & 1 \\ & a_{5} \end{aligned}$	$\begin{aligned} & 0 \\ & a_{1} \end{aligned}$	$\begin{aligned} & 1 \\ & a_{0} \end{aligned}$	$\begin{aligned} & \mathbf{r} \\ & \mathbf{a}_{2} \end{aligned}$	\mathbf{r}	$\begin{aligned} & \mathbf{r} \\ & \mathbf{a}_{0} \end{aligned}$	2	2			
JBb addr	$\begin{aligned} & \text { (PCO-7) }- \text { addr if } \mathrm{Bb}=1 \\ & \text { (PC) }-(\mathrm{PC})+2 \text { if } \mathrm{Bb}=0 \end{aligned}$	Jump to specified address if Accumulator bit is set.	$\begin{aligned} & \mathbf{b}_{2} \\ & \mathbf{a}_{7} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{b}_{1} \\ & a_{0} \end{aligned}$	$\begin{aligned} & \mathbf{b}_{0} \\ & \mathbf{a}_{5} \\ & \hline \end{aligned}$	$\begin{array}{r} 1 \\ 2 \end{array}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{a}_{5} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{a}_{2} \\ & \hline \end{aligned}$	$\begin{array}{r} 1 \\ a_{1} \\ \hline \end{array}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{a}_{0} \end{aligned}$	2	2			
Jc addr	$\begin{aligned} & \text { (PCO-7) addr if } \mathrm{C}=1 \\ & \text { (PC) } \leftarrow(\mathrm{PC})+2 \text { if } \mathrm{C}=0 \end{aligned}$	Jump to specified address if carry flag is set.	$\begin{aligned} & 1 \\ & a_{7} \end{aligned}$	$\begin{array}{r} 1 \\ 2 \\ \hline \end{array}$	$\begin{aligned} & \hline \mathbf{1} \\ & \mathbf{a}_{6} \end{aligned}$	$\begin{array}{r} 1 \\ 4 \\ \hline \end{array}$	$\begin{aligned} & \hline \mathbf{0} \\ & \mathbf{a}_{5} \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & a_{2} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathbf{a}_{1} \end{aligned}$	$\begin{aligned} & 0 \\ & 8 \\ & 0 \end{aligned}$	2	2			
JF 0 addr	$\begin{aligned} & \hline(\mathrm{PCO}-7) \leftarrow \text { addr if } \mathrm{FO}=1 \\ & (\mathrm{PC}) \leftarrow(\mathrm{PC})+2 \text { if } \mathrm{FO}=0 \\ & \hline \end{aligned}$	Jump to specified address if Flag $F 0$ is set.	$\begin{aligned} & 1 \\ & a_{7} \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{a}_{6} \end{aligned}$	$\begin{array}{r} 1 \\ a_{4} \end{array}$	$\begin{aligned} & 1 \\ & \mathbf{a} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{a}_{3} \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & \mathbf{a}_{2} \end{aligned}$	$\begin{aligned} & \mathbf{1} \\ & \mathbf{a}_{1} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & \hline \end{aligned}$	2	2			
JF 1 addr	$\begin{aligned} & (\mathrm{PCO}=7) \leftarrow \text { iddr if } F_{1}=1 \\ & (\mathrm{PC}) \leftarrow(\mathrm{PC})+2 \text { if } \mathrm{F}_{1}=0 \\ & \hline \end{aligned}$	Jump to specified address if Flag F 1 is set.	$\begin{aligned} & \hline \mathbf{0} \\ & \mathbf{a}_{7} \\ & \hline \end{aligned}$	$\begin{array}{r} 1 \\ a_{0} \\ \hline \end{array}$	$\begin{aligned} & \hline 1 \\ & \mathbf{a}_{8} \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & a_{1} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0 \\ & \mathbf{a}_{5} \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & a_{2} \end{aligned}$	$\begin{array}{r} 1 \\ \mathbf{a}_{1} \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	2	2			
JMP addr	$\begin{aligned} & \text { (PC 8-10) } \leftarrow \text { addr } 8-10 \\ & (P C 0-7) \leftarrow \text { addr } 0-7 \\ & (P C \text { 11) } \mathrm{DBF} \\ & \hline \end{aligned}$	Direct Jump to specifled address within the 2 K address block.	$\begin{aligned} & \mathbf{a}_{10} \\ & \mathbf{a}_{7} \end{aligned}$	$\begin{aligned} & \mathbf{a}_{1} \\ & \mathbf{a}_{1} \end{aligned}$	$\begin{aligned} & a_{6} \\ & a_{8} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{a} \end{aligned}$	$\begin{aligned} & 0 \\ & a_{0} \end{aligned}$	$\begin{aligned} & 1 \\ & a_{2} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{a}_{1} \end{aligned}$	$\begin{aligned} & 0 \\ & 40 \end{aligned}$	2	2			
JMPP@A	$(\mathrm{PC} 07) \leftarrow((\mathrm{A})$)	Jump indirect to specified address with address page.	1	0	1	1	0	0	1	1	2	1			
JNC addr	$\begin{aligned} & \text { (PCO } 7 \text {) } \leftarrow \text { addr if } C=0 \\ & (P G) \leftarrow(P C)+2 \text { If } C=1 \\ & \hline \end{aligned}$	Jump to specified address if carry flag is low.	$\begin{aligned} & \mathbf{1} \\ & \mathbf{a}_{7} \end{aligned}$	$\begin{array}{r} 1 \\ \mathbf{a}_{6} \\ \hline \end{array}$	$\begin{array}{r} 1 \\ a_{5} \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 2_{0} \end{aligned}$	$\begin{aligned} & 1 \\ & 2_{2} \\ & \hline \end{aligned}$	$\begin{array}{r} 1 \\ \mathbf{a}_{1} \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & 2 \\ & 2 \end{aligned}$	2	2			
JNI addr	$\begin{aligned} & \text { (PCO 7) addr if } 1=0 \\ & (P C) \leftarrow(P C)+2 \text { if } 1=1 \\ & \hline \end{aligned}$	Jump to apecified addrese if Interrupt is low.	$\begin{aligned} & 1 \\ & \mathbf{a} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{a}_{6} \end{aligned}$	$\begin{aligned} & 0 \\ & 2_{5} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{a} \end{aligned}$	$\begin{aligned} & 0 \\ & a_{0} \end{aligned}$	$\begin{aligned} & 1 \\ & a_{2} \end{aligned}$	$\begin{aligned} & 1 \\ & a_{1} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 2 \end{aligned}$	2	2			

Instruction Set (Cont.)

			Instruction Code								Cycles Bytos		Flags		
Mnemonic	Function	Description	$\overline{\text { D }}$	D ${ }^{\text {d }}$	Ds	D_{4}	D	D_{2}	D	\mathbf{D}_{0}			c	AC FO	$F 1$
Branch (Cont.)															
JNT0 addr	$\begin{aligned} & \text { (PCO-7) } \leftarrow \text { addr if TO }=0 \\ & (\mathrm{PC}) \leftarrow(\mathrm{PC})+2 \mathrm{HTO}=1 \\ & \hline \end{aligned}$	Jump to specified address if Test 0 is low.	$\begin{aligned} & \mathbf{0} \\ & \mathbf{a}_{7} \end{aligned}$	$\begin{aligned} & 0 \\ & 2_{1} \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & a_{5} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & a_{0} \end{aligned}$	$\begin{aligned} & 1 \\ & a_{2} \end{aligned}$	$\begin{aligned} & 1 \\ & a_{1} \end{aligned}$	$\begin{aligned} & \hline \mathbf{0} \\ & \mathbf{a}_{0} \\ & \hline \end{aligned}$	2	2			
JNT1 addr	$\begin{aligned} & \text { (PCO-7) -addr If T1 }=0 \\ & (P C) \leftarrow(P C)+2 H T 1=1 \end{aligned}$	Jump to specified address if Test 1 ls low.	$\begin{aligned} & \mathbf{0} \\ & \mathbf{a}, \end{aligned}$	$\begin{array}{r} 1 \\ 4 \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & a_{5} \end{aligned}$	$\begin{aligned} & 0 \\ & a_{1} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{a}_{5} \end{aligned}$	$\begin{aligned} & 1 \\ & a_{2} \end{aligned}$	$\begin{aligned} & 1 \\ & a_{1} \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{a}_{0} \end{aligned}$	2	2			
JNZ addr	$\begin{aligned} & \text { (PCO-7) } \sim \text { addr if } A=0 \\ & (P C) \leftarrow(P C)+2 \mathrm{ff} A=0 \end{aligned}$	Jump to specified addres if Accumulator is non-zero.	$\begin{aligned} & 1 \\ & a_{2} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{a}_{6} \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{a}_{5} \end{aligned}$	$\begin{aligned} & 1 \\ & a \end{aligned}$	$\begin{aligned} & 0 \\ & a_{0} \end{aligned}$	$\begin{aligned} & 1 \\ & a \end{aligned}$	$\begin{aligned} & 1 \\ & \mathbf{a}_{1} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	2	2			
JTF addr	$\begin{aligned} & \text { (PCO-7) }- \text { addr if TF }=1 \\ & (\mathrm{PC}) \leftarrow(\mathrm{PC})+2 \text { if TF }=0 \\ & \hline \end{aligned}$	Jump to specified address if Timer Fiag is set to 1.	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & a_{1} \end{aligned}$	$\begin{aligned} & 0 \\ & a_{5} \end{aligned}$	$\begin{aligned} & 1 \\ & a \end{aligned}$	$\begin{aligned} & 0 \\ & a_{0} \end{aligned}$	$\begin{aligned} & 1 \\ & a_{2} \end{aligned}$	$\begin{aligned} & 1 \\ & a_{1} \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{a}_{0} \end{aligned}$	2	2			
JT0 addr	$\begin{aligned} & \text { (PCO O-7) addr if } \mathrm{TO}=1 \\ & (\mathrm{PC}) \leftarrow(\mathrm{PC})+2 \text { if } \mathrm{TO}=0 \end{aligned}$	Jump to apecified address if Test 0 is a 1.	$\begin{aligned} & \mathbf{0} \\ & \mathbf{a}_{7} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & a_{5} \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 0 \\ & a_{0} \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & \mathbf{a}_{2} \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & \mathbf{a}_{1} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{a}_{0} \\ & \hline \end{aligned}$	2	2			
JTi addr	$\begin{aligned} & \text { (PC 0-7) } \leftarrow \text { addr if } \mathrm{TI}=1 \\ & \text { (PC) } \leftarrow(\mathrm{PC})-2 \mathrm{Hf}=0 \end{aligned}$	Jump to specified address if Test 1 la a 1.	$\begin{aligned} & \mathbf{0} \\ & \mathbf{a}_{1} \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & a_{6} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{a}_{5} \end{aligned}$	$\begin{aligned} & 1 \\ & a \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{a}_{0} \\ & \hline \end{aligned}$	$\begin{array}{r} 1 \\ \mathbf{a}_{2} \\ \hline \end{array}$	$\begin{aligned} & \mathbf{1} \\ & \mathbf{a}_{1} \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{a}_{0} \\ & \hline \end{aligned}$	2	2			
JZ addr	$\begin{aligned} & (\mathrm{PCO} 0-7) \leftarrow \text { addr if } \mathrm{A}=0 \\ & (\mathrm{PC}) \leftarrow(\mathrm{PC})+2 \text { if }=0 \end{aligned}$	Jump to specifled address if Accumulator is 0.	$\begin{array}{r} 1 \\ a_{7} \\ \hline \end{array}$	$\begin{array}{r} 1 \\ 4 \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & a_{5} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & a \\ & a \end{aligned}$	$\begin{aligned} & 0 \\ & a_{0} \end{aligned}$	$\begin{aligned} & 1 \\ & a_{2} \end{aligned}$	$\begin{aligned} & 1 \\ & a_{1} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{a}_{0} \end{aligned}$	2	2			
Control															
ENI		Enable the External Interrupt Input.	0	0	0	0	0	1	0	1	1	1			
DIS I		Disable the External Interrupt input.	0	0	0	1	0	1	0	1	1	1			
ENTO CLK		Enable the Clock Output pin TO.	0	1	1	1	0	1	0	1	1	1			
SEL MBO	(DBF) $\leftarrow 0$	Select Bank 0 (locations 0-2047) of Program Memory.	1	1	1	0	0	1	0	1	1	1			
SEL MB1	(DBF) <1	Select Bank 1 (locations 2048-4095) of Program Memory.	1	1	1	1	0	1	0	1	1	1			
SEL RBO	(BS) $\leftarrow 0$	Select Bank 0 (locations 0-7) of Data Memory.	1	1	0	0	0	1	0	1	1	1			
SEL. RB1	(BS) $\leftarrow 1$	Select Bank 1 (locations 24-31) of Data Memory.	1	1	0	1	0	1	0	1	1	1			
HALT		Initiate Hali Stete.	0	0	0	0	0	0	0	1	1	1			
Data Moves															
MOV A, = data	(A) \ldots data	Move Immediate the specified data into the Accumulator.	$\begin{aligned} & \mathbf{0} \\ & \mathbf{d}, \end{aligned}$	$\begin{aligned} & 0 \\ & d_{0} \end{aligned}$	$\begin{aligned} & 1 \\ & d_{5} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{\alpha} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{d}_{5} \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{d}_{2} \end{aligned}$	$\begin{aligned} & 1 \\ & d_{1} \end{aligned}$	$\begin{aligned} & 1 \\ & \alpha_{0} \end{aligned}$	2	2			
MOV A, Rr	$(\mathrm{A}) \leftarrow(\mathrm{Rr}) ; r=0.7$	Move the contents of the designated registers into the Accumulator.	1	1	1	1	1	r	r	r	1	1			
MOV A, @ Rr	(A) $-((\mathrm{Rr})$) $; r=0.1$	Move Indirect the contents of data memory location Into the Accumulator.	1	1	1	1	0	0	0	r	1	1			
MOV A, PSW	$($ A $) \leftarrow($ PSW $)$	Move contente of the Program Stetus Word into the Accumulator.	1	1	0	0	0	1	1	1	1	1			
$\begin{aligned} & \text { MOV Rr, }= \\ & \text { data } \end{aligned}$	(Rr) \leftarrow data; $\mathrm{r}=0$ 0-7	Move Immediato the specified data into the designated register.	$\begin{aligned} & \mathbf{1} \\ & \mathbf{d}_{7} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{d} \end{aligned}$	$\begin{aligned} & 1 \\ & d_{5} \end{aligned}$	$\begin{aligned} & 1 \\ & d_{4} \end{aligned}$	$\begin{aligned} & 1 \\ & d_{5} \end{aligned}$	$\begin{aligned} & \mathbf{r} \\ & \mathbf{d}_{2} \end{aligned}$	$\begin{aligned} & \mathbf{r} \\ & \mathbf{d}_{1} \end{aligned}$	$\begin{array}{r} \mathbf{r} \\ \mathbf{d}_{0} \end{array}$	2	2	-		
MOV Rr, A	$(\mathrm{Rr}) \leftarrow(\mathrm{A}) ; \mathrm{r}=0-7$	Move Accumulator Contents Into the designated register.	1	0	1	0	1	r	r	r	1	1			
MOV@ Rr, A	$((\mathrm{Rr})) \leftarrow(\mathrm{A}), \mathrm{r}=0-1$	Move Indirect Accumulator Contents Into data memory location.	1	0	1	0	0	0	0	r	1	1			
$\overline{\text { MOV@ }} \begin{aligned} & \text { data } \end{aligned}=$	((Rr)) ¢-data; $\mathrm{r}=0.1$	Move Immediate the specified data into data memory.	$\begin{aligned} & 1 \\ & \mathbf{d}_{7} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & d_{0} \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & d_{5} \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & d_{4} \\ & \hline \end{aligned}$	$\begin{gathered} 0 \\ \mathbf{d}_{3} \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ \mathbf{d}_{2} \\ \hline \end{gathered}$	$\begin{aligned} & 0 \\ & d_{1} \\ & \hline \end{aligned}$	$\begin{gathered} \mathbf{r} \\ \mathbf{d}_{0} \end{gathered}$	2	2			
MOV PSW, A	(PSW) $\leftarrow\left(\begin{array}{l}\text { A }\end{array}\right.$	Move contents of Accumulator into the program status word.	1	1	0	1	0	1	1	1	1	1			
MOVPA, @ A	$\begin{aligned} & \text { (PCO-7) }(A) \\ & (A) \leftarrow(P C)) \\ & \hline \end{aligned}$	Move data in the current page into the Accumulator.	1	0	1	0	0	0	1	1	2	1			
MOVP3 A, @	$\begin{aligned} & (P C O-7) \leftarrow(A) \\ & (P C B-10) \leftarrow 011 \\ & (A) \leftarrow(P C)) \\ & \hline \end{aligned}$	Move Program data In Page 3 Into the Accumulator.	1	1	1	0	0	0	1	1	2	1			
MOVXA, @	$(\mathrm{A}) \leftarrow(\mathrm{Pr})$) $; \mathrm{r}=0-1$	Move Indirect the contente of external date memory into the Accumulator.	1	0	0	0	0	0	0	r	2	1			
MOVX@R,A	$((\mathrm{Rr})) \leftarrow(\mathrm{A}), \mathrm{r}=0-1$	Move Indirect the contents of the Accumulator into external data memory.	1	0	0	1	0	0	0	r	2	1			
XCH A, Rr	$(A) \neq(\operatorname{lr}) ; \mathrm{r}=0-7$	Exchange the Accumulator and designated register's contents.	0	0	1	0	1	r	r	r	1	1			
XCHA, @ Rr	(A) $\leftarrow \sim(\mathrm{Rr})$) $;$ r $=0.1$	Exchange Indirect contents of Accumulator and location in date memory.	0	0	1	0	0	0	0	r	1	1			
XCHD A, © Rr	$\begin{aligned} & (A 0-3)=((R r)) 0-3)) ; \\ & r=0-1 \end{aligned}$	Exchange indirect 4 bit contents of Accumulator and data memory.	0	0	1	1	0	0	0	r	1	1			
Fiags															
CPLC	(C) $\leftarrow \operatorname{NOT}(\mathrm{C})$	Complement carry bit.	1	0	1	0	0	1	1	1	1	1	\bullet		
CPLFO	(FO) $\leftarrow \mathrm{NOT}(\mathrm{FO})$	Complement Fiag Fo.	1	0	0	1	0	1	0	1	1	1		-	
CPLF1	(F1) \leftarrow NOT (F1)	Complement of Flag F 1.	1	0	1	1	0	1	0	1	1	1			\bullet
CLR C	(C) -0	Clear carry bit to 0.	1	0	0	1	0	1	1	1	1	1	-		
CLR FO	(F0) $\leftarrow 0$	Clear Flag 0 to 0.	1	0	0	0	0	1	0	1	1	1		-	
CLRF1	(F1) $\leftarrow 0$	Clear Fiag 1 to 0.	1	0	1	0	0	1	0	1	1	1			\bullet

Instruction Set (Cont.)

Mnomonic	Function	Description	Instruction Code								Cyclos Bytos		Finge		
			$\overline{D_{7}}$	D。	D_{5}	D_{4}	D	D_{2}	D.	D_{0}			c	C	1 Fr
Input/Output															
$\begin{aligned} & \text { ANL BUS, }= \\ & \text { data } \end{aligned}$	(BUS) \leftarrow (BUS) AND data	Logical AND immediate specifled data with contents of Bus.	$\begin{aligned} & 1 \\ & d_{7} \end{aligned}$	$\begin{gathered} 0 \\ \mathbf{d}_{6} \\ \hline \end{gathered}$	$\begin{array}{r} 0 \\ \alpha_{5} \\ \hline \end{array}$	$\begin{aligned} & 1 \\ & d_{4} \\ & \hline \end{aligned}$	$\begin{array}{r} 1 \\ d_{0} \\ \hline \end{array}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{d}_{2} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{d}_{1} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{d}_{0} \end{aligned}$	2	2			
$\begin{aligned} & \text { ANLP } P_{0,}= \\ & \text { data } \end{aligned}$	$\begin{aligned} & \left(P_{\mathrm{o}}\right) \leftarrow\left(P_{\mathrm{D}}\right) \text { AND data } \\ & p=1-2 \end{aligned}$	Logical AND immediate spectfied data with designated port (1 or 2).	$\begin{aligned} & 1 \\ & d_{7} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{d}_{1} \end{aligned}$	$\begin{array}{r} 0 \\ \mathbf{d}_{5} \\ \hline \end{array}$	$\begin{aligned} & 1 \\ & d_{1} \end{aligned}$	$\begin{array}{r} 1 \\ \mathbf{d}_{3} \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & \mathbf{d}_{2} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{p} \\ & \mathbf{d}_{1} \\ & \hline \end{aligned}$	$\begin{array}{r} p \\ \mathbf{d}_{0} \\ \hline \end{array}$	2	2			
ANLD $\mathrm{P}_{\mathrm{n}}, \mathrm{A}$	$\begin{aligned} & \left(P_{o}\right) \leftarrow\left(P_{o}\right) \text { AND }(A 0-3) \\ & P=4-7 \end{aligned}$	Logical AND contents of Accumulator with designated port (4-7).	1	0	0	1	1	1	P	p	2	1			
INA, P_{0}	$(\mathrm{A}) \leftarrow\left(\mathrm{P}_{\mathrm{o}}\right), \mathrm{p}=1-2$	Input data from designated port (1-2) Into Accumulator.	0	0	0	0	1	0	p	P	2	1			
INS A, BUS	(A) - (BUS)	Input strobed Bus data into Accumulator.	0	0	0	0	1	0	0	0	2	1			
MOVD A, P_{p}	$\begin{aligned} & \left(\begin{array}{ll} A & -3) \leftarrow\left(P_{0}\right) ; P=4.7 \\ (A 4-7) \leftarrow 0 \end{array}\right. \end{aligned}$	Move contents of designated port (4-7) Into Accumulator.	0	0	0	0	1	1	p	p	2	1			
MOVD $\mathrm{P}_{\mathrm{D}}, \mathrm{A}$	$\left(P_{0}\right) \leftarrow A 0-3 ; p=4-7$	Move contents of Accumulator designated port (4-7).	0	1	1	1.	1	p	p	1	1				
$\begin{aligned} & \text { ORLBUS, = } \\ & \text { data } \end{aligned}$	(BUS) $\leftarrow(B U S)$ OR data	Logicat OR immediate specified data with contents of Bus.	$\begin{array}{r} 1 \\ d_{7} \end{array}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{d}_{3} \end{aligned}$	$\begin{aligned} & 0 \\ & d_{5} \end{aligned}$	$\begin{aligned} & 0 \\ & d_{4} \end{aligned}$	$\begin{aligned} & \mathbf{1} \\ & \mathbf{d}_{0} \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{d}_{2} \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{d}_{1} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{d}_{0} \end{aligned}$	2	2			
ORLD P_{p}, A	$\begin{aligned} & \left(P_{p}\right) \leftarrow\left(P_{p}\right) O R(A O-3) \\ & P=4-7 \end{aligned}$	Logical OR contents of Accumulator with designated port (4-7).	1	0	0	0	1	1	p	p	1	1			
$\overline{\text { ORLP }}_{\mathrm{p},=}$	$\begin{aligned} & \left(P_{0}\right) \leftarrow\left(P_{p}\right) \text { OR data } \\ & p=1-2 \end{aligned}$	Logical OR Immediate specifled data with designated port (1-2).	$\begin{gathered} 1 \\ \mathbf{d}_{7} \\ \hline \end{gathered}$	d_{6}	$\begin{aligned} & 0 \\ & d_{5} \end{aligned}$	$\begin{aligned} & 0 \\ & d_{1} \end{aligned}$	$\begin{aligned} & 1 \\ & d_{5} \end{aligned}$	$\begin{aligned} & 0 \\ & d_{2} \end{aligned}$	$\begin{aligned} & \mathbf{p} \\ & \mathbf{d}_{1} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{p} \\ & \mathbf{d}_{0} \\ & \hline \end{aligned}$	2	2			
OUTL BUS, A	(BUS) $\leftarrow(A)$	Output contents of Accumulator onto Bus.	0	0	0	0	0	0	1	0	1	1			
OUTLP $\mathrm{p}_{\mathrm{p}}, \mathrm{A}$	$\left(P_{p}\right) \leftarrow(A) ; p=1-2$	Output contentes of Accumulator to designated port (1-2).	0	0	1	1	1	0	P	p	1	1			
Registers										1					
DEC Rr (Rr)	$(\mathrm{Rr}) \leftarrow(\mathrm{Rr}) \quad 1 ; \mathrm{r}=0.7$	Decrement by 1 contents of designated reglater.	1	1	0	0	1	r	r	r	1	1			
INC Rr	$(\mathrm{Rr}) \leftarrow(\mathrm{Rr})+1, r=0-7$	Increment by 1 contents of designated register.	0	0	0	1	1	r	r	r	1	1			
INC@	$\begin{aligned} & ((R r)) \leftarrow((R r))+1 ; \\ & r=0-1 \end{aligned}$	increment Indirect by 1 the contents of data memory location.	0	0	0	1	0	0	0	r	1	1			
Subroutine															
Call addr	$((\mathrm{SP})) \leftarrow(\mathrm{PC}),(\mathrm{PSW} 4-7)$	Call designated Subroutine.	a_{10}	a_{5}	a_{p}	1	0	1	0	0	2	2			
	$\begin{aligned} & \text { (SP) } \leftarrow(\text { SP })+1 \\ & \text { (PC 8-0) } \leftarrow \text { addr } 8-10 \\ & \text { (PC 0-7) } \text { addr 0-7 } \\ & \text { (PC 11) } \leftarrow \text { DBF } \\ & \hline \end{aligned}$		${ }^{\text {a }}$	9	a_{5}	a	a_{0}	a_{2}	a_{1}	a_{0}					
RET	$\begin{aligned} & \hline(S P) \leftarrow(S P) 1 \\ & (P C) \leftarrow(S P)) \\ & \hline \end{aligned}$	Return from Subroutine without restoring Program Status Word.	1	0	0	0	0	0	1	1	2	1			
RETR	$\begin{aligned} & \text { (SP) } \leftarrow(\mathrm{SP}) 1 \\ & (\mathrm{PC}) \leftarrow(\text { (SP) }) \\ & (\mathrm{PSW} 4-7) \leftarrow((\mathrm{SP})) \end{aligned}$	Return from Subroutine restoring Program Status Word.	1	0	0	1	0	0	1	1	2	1			
Timer/Gounter															
EN TCNTI		Enable Internal Interrupt Fiag for Timer/Counter output.	0	0	1	0	0	1	0	1	1	1			
DIS TCNTI		Disable Internal interrupt Flag for Timer/Counter output.	0	0	1	1	0	1	0	1	1	1			
MOVA, T	$(A) \leftarrow(T)$	Move contents of Timer/Counter into Accumulator.	0	1	0	0	0	0	1	0	1	1			
MOV T, A	(7) $\leftarrow\left(\begin{array}{l}\text { (}\end{array}\right.$	Move contents of Accumulator into Timer/Counter.	0	1	1	0	0	0	1	0	1	1			
STOP TCNT		Stop Count for Event Counter.	0	1	1	0	0	1	0	1	1	1			
STRT CNT		Start Count for Event Counter.	0	1	0	0	0	1	0	1	1	1			
STRT T		Start Counter for Timer.	0	1	0	1	0	1	0	1	1	1			
Mlscellaneous															
NOP		No Operation performed.	0	0	0	0	0	0	0	0	1	1			

Notes:
(1) Instruction Code Designations r and p form the binary representation of the Registers and Ports invoived.
(2) The dot under the appropriate flag bit indicates that its content is subject to change by the instruction it appears in.
(3) References to the address and data are specified in bytes 2 and/or 1 of the instruction.
(4) Numerical Subscripts appearing in the FUNCTION column reference the specific bits affected.

μ PPB094SD $\mu \mathrm{PBOOSOD}$

Item	millimeters	Inches
A	51.5 MAX	2.028 mAX
B	1.62	0.064
C	2.54 ± 0.1	0.100 ± 0.004
D	0.50 ± 0.1	0.0197 ± 0.004
E	48.26 ± 0.2	1.900 ± 0.008
F	1.27	0.050
a	3.2 MIN	0.128 MIIN
H	1.0 MIN	0.04 MIN
1	4.2 MAX	0.17 MAX
J	5.2 MAX	0.205 MAX
K	15.24 ± 0.1	0.6 ± 0.004
1	$\begin{gathered} 13.5 \\ { }_{-0.25}^{+0.2} \end{gathered}$	${ }^{0.531}{ }_{-0.010}^{+0.008}$
M	0.30 ± 0.1	0.012 ± 0.004

8－BIT N－CHANNEL MICROPROCESSOR COMPLETELY Z80 ${ }^{\text {TM }}$ COMPATIBLE

The μ PD780 and μ PD780－1 processors are single－chipmicroprocessors developed from third－generation technology．Their increased computational power produces higher system through－put and more efficient memory utilization，surpassing that of any second－generation microprocessor．The single voltage requirement of the $\mu \mathrm{PD} 780$ and μ PD780－1 processors makes it easy to implement them into a system．All output sig－ nals are fully decoded and timed to either standard memory or peripheral circuits．An N －channel，ion－implanted，silicongate MOS process is utilized in implementing the circuit．
The block diagram shows the functions of the processor and details the internal register structure．The structure contains 26 bytes of Read／Write（R／W）memory available to the programmer．Included in the registers are two sets of six general purpose registers， which may be used individually as 8 －bit registers，or as 16 －bit register pairs．Also included are two sets of accumulator and flag registers．

Through a group of exchange instructions the programmer has access to either set of main or alternate registers．The alternate register permits foreground／background mode of operation，or may be used for fast interrupt response．A 16－bit stack pointer is also included in each processor，simplifying implementation of multiple level interrupts， permitting unlimited subroutine nesting，and simplifying many types of data handting．

The two 16 －bit index registers simplify implementation of relocatable code and manipu－ lation of tabular data．The refresh register automatically refreshes external dynamic memories．A powerful interrupt response mode uses the I register to form the upper 8 bits of a pointer to an interrupt service address table，while the interrupting apparatus supplies the lower 8 bits of the pointer．An indirect call will then be made to service this address．
－Single Chip，N－Channel Silicon Gate Processor
－ 158 Instructions－Including all 78 of the 8080A Instructions，Permitting Total Software Compatibility
－New 4．，8－，and 16－Bit Operations Featuring Useful Addressing Modes such as Indexed，Bit and Relative
－ 17 Internal Registers
－Three Modes of Rapid Interrupt Response，and One Non－Maskable Interrupt
－Directly Connects Standard Speed Dynamic or Static Memories，with Minimum Support Circuitry
－Single－Phase＋5 Voit Clock and 5 VDC Supply
－TTL Compatibility
－Automatic Dynamic RAM Refresh Circuitry
－Available in Plastic Package

PIN CONFIGURATION

$\mathrm{A}_{11}{ }^{\text {d }}$		40	$\square A_{10}$
$\mathrm{A}_{12} \mathrm{~L}$		39	口 A_{9}
$\mathrm{A}_{13} \mathrm{C}^{2}$		38	$\square A_{8}$
$\mathrm{A}_{14}{ }^{4}$		37	$\square \mathrm{A}_{7}$
$\mathrm{A}_{15} \mathrm{~S}$		36	$\square A_{6}$
ϕ－ 6		35	$\square A_{5}$
$\mathrm{D}_{4} \mathrm{C} 7$		34	$\square A_{4}$
$\mathrm{D}_{3} \mathrm{C}_{8}$		33	$\square A_{3}$
$\mathrm{D}_{5}{ }^{-1}$		32	$\mathrm{P}^{A_{2}}$
$\mathrm{D}_{6} \square^{10}$	$\mu \mathrm{PD}$	31	$\square \mathrm{A}_{1}$
＋5v 든	780／	30	$\square \mathrm{A}_{0}$
$\mathrm{D}_{2}{ }^{12}$	780－1	29	$\square \mathrm{GND}$
D7） 13		28	$\square \overline{\mathrm{RFSH}}$
$\mathrm{D}_{0}{ }^{14}$		27	口 \bar{M}_{1}
$\mathrm{D}_{1} \square_{15}$		26	日 RESET
INT ${ }^{16}$		25	$\square \overline{B U S R O}$
NMI 17		24	$\square \overline{\text { WAIT }}$
HALT 18		23	B BUSAK
MREQ 19		22	ص $\overline{W R}$
TORO \square^{20}		21	曰 $\overline{\mathrm{RD}}$

PIN			FUNCTION
NO.	SYMBOL	NAME	
$\begin{gathered} 1-5 \\ 30-40 \end{gathered}$	$\mathrm{A}_{0}-\mathrm{A}_{15}$	Address Bus	3-State Output, active high. Pins $\mathrm{A}_{0}-\mathrm{A}_{15}$ constitute a 16-bit address bus, which provides the address for memory and I/O device data exchanges. Memory capacity 65,536 bytes. $A_{0}-A_{6}$ is also needed as refresh cycle.
$\begin{array}{r} 7-10 \\ 12-15 \end{array}$	$\mathrm{D}_{0}-\mathrm{D}_{7}$	Data Bus	3-State input/output, active high. Pins $\mathrm{D}_{0}-\mathrm{D}_{7}$ compose an 8-bit, bidirectional data bus, used for data exchanges with memory and I/O devices.
27	\bar{M}_{1}	Machine Cycle One	Output, active low. $\overline{\mathrm{M}}_{1}$ indicates that the machine cycle in operation is the op code fetch cycle of an instruction execution.
19	$\overline{\text { MREQ }}$	Memory Request	3-State output, active low. $\overline{M R E Q}$ indicates that a valid address for a memory read or write operation is held in the address.
20	$\overline{\text { IORQ }}$	Input/Output Request	3-State output, active low. The I/O request signal indicates that the lower half of the address bus holds a valid address for an 1/O read or write operation. The IORO signal is also used to acknowledge an interrupt command, indicating that an interrupt response vector can be placed on the data bus.
21	$\overline{R D}$	Read	3-State output, active low. $\overline{\mathrm{RD}}$ indicates that the processor is requesting data from memory or an 1/O device. The memory or I/O device being addressed should use this signal to gate data onto the data bus.

PIN IDENTIFICATION

PIN			FUNCTION
NO.	SYMBOL	NAME	
22	WR	Write	3-State output, active low. The memory write signal indicates that the processor data bus is holding valid data to be stored in the addressed, memory or 1/O device.
28	$\overline{\mathrm{RFSH}}$	Refresh	Output, active low. $\overline{\text { RFSH }}$ indicates that a refresh address for dynamic memories is being held in the lower 7 -bits of the address bus. The $\overline{\text { MREQ }}$ signal should be used to implement a refresh read to all dynamic memories.
18	$\overline{\text { HALT }}$	Halt State	Output, active low. $\overline{H A L T}$ indicates that the processor has executed a HALT software instruction, and will not resume operation until either a non-maskable or a maskable (with mask enabled) interrupt has been implemented. The processor will execute NOP's while halted, to maintain memory refresh activity.
24	$\overline{\text { WAIT }}$	Wait	Input, active low. $\overline{\mathrm{WA} T \mathrm{~T}}$ indicates to the processor that the memory or 1/O devices being addressed are not ready for a data transfer. As long as this signal is active, the processor will reenter wait states.
16	$\overline{\text { INT }}$	Interrupt Request	Input, active low. The $\overline{\text { INT }}$ signal is produced by $1 / 0$ devices. The request will be honored upon completion of the current instruction, if the interrupt enable flip-flop (IFF) is enabled by the internal software. There are three modes of interrupt response. Mode 0 is identical to 8080 interrupt response mode. The Mode 1 response is a restart location at 0038_{H}. Mode 2 is for simple vectoring to an interrupt service routine anywhere in memory.
17	$\overline{\mathrm{NMI}}$	Non-Maskable Interrupt	Input, active low. The non-maskable interrupt has a higher priority than $\overline{\mathrm{NT}}$. It is always acknowledged at the end of the current instruction, regardless of the status of the interrupt enable flip-flop. When the $\overline{\mathrm{NM}}$ signal is given, the μ PD 780 processor automatically restarts to losation 0066 H .
26	RESET	Reset	Input, active low. The $\overline{\operatorname{RESET}}$ signal causes the processor to reset the interrupt enable flip-flop (IFF), clear PC and I and R registers, and set interrupt to 8080A mode. During the reset time, the address bus and data bus go to a state of high impedance, and all control output signals become inactive, after which processing continues at 0000 H .
25	$\overline{\text { BUSRQ }}$	Bus Request	Input, active low. $\overline{B U S R Q}$ has a higher priority than $\overline{\text { NMI, and is always honored at the end of the current }}$ machine cycle. It is used to allow other devices to take control over the processor address bus, data bus signals; by requesting that they go to a state of high impedance.
23	$\overline{\text { BUSAK }}$	Bus Acknowledge	Output, active low. $\overline{B U S A K}$ is used to inform the requesting device that the processor address bus, data bus and 3-state control bus signals have entered a state of high impedance, and the external device can now take control of these signals.

Operating Temperature . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on any Pin . -0.3 to +7 Volts (1)
Power Dissipation 1.5W

Note: (1) With Respect to Ground.
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
*COMMENT: Stress above those listed under "Absolute. Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; V_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$ unless otherwise specified.

PARAMETER		SYMBOL	LIMITS			UNIT	TEST CONDITIONS	
		MIN	TYP	MAX				
Clock Input Low Voltage			$V_{1 L C}$	-0.3		0.45	V	
Clock Input High Voltage		$\mathrm{V}_{\text {IHC }}$	$\mathrm{V}_{\text {cc }}-0.6$		$\mathrm{Vcc}^{+0.3}$	V		
Input Low Voitage		V_{1}	-0.3		0.8	v		
Input High Voltage		$\mathrm{V}_{1} \mathrm{H}$	2.0		V_{cc}	v		
Output Low Voltage		$\mathrm{VOL}_{\mathrm{L}}$			0.4	V	$1 \mathrm{OL}=1.8 \mathrm{~mA}$	
Output High Voltage		VOH	2.4			V	$\mathrm{IOH}^{\prime}=-250 \mu \mathrm{~A}$	
Power Supply Current	μ PD780	ICC			150	mA	$\mathrm{t}_{\mathrm{C}}=400 \mathrm{~ns}$	
	μ PD780-1	${ }^{1} \mathrm{CC}$		90	200	mA	$\mathrm{t}_{\mathrm{c}}=250 \mathrm{~ns}$	
Input Leakage Current		ILI			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0$ to $\mathrm{V}_{\text {CC }}$	
Tri-State Output Leakage Current in Float		$\mathrm{I}_{\mathrm{LOH}}$			10	$\mu \mathrm{A}$	$V_{\text {OUT }}=2.4$ to $V_{\text {CC }}$	
Tri-State Output Leakage Current in Float		ILOL			-10	$\mu \mathrm{A}$	$V_{\text {OUT }}=0.4 \mathrm{~V}$	
Data Bus Leakage Current in Input Mode		ILD			± 10	$\mu \mathrm{A}$	$0<V_{\text {IN }}<V_{\text {CC }}$	

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Clock Capacitance	C_{ϕ}			35	pF	$\mathrm{f}_{\mathrm{c}}=1 \mathrm{MHz}$
Input Capacitance	$\mathrm{CIN}^{\text {I }}$			5	pF	Unmeasured Pins
Output Capacitance	COUT			10	pF	Returned to Ground

DC CHARACTERISTICS
$T_{\mathrm{B}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; V_{C C}=+5 \mathrm{~V} \pm 5 \%$, unless otherwise specified.

- These values apply to the μ PD 780 .

Instruction Op Code Fetch

The contents of the program counter (PC) are placed on the address bus at the start of the cycle. $\overline{\mathrm{MREQ}}$ goes active one-half clock cycle later, and the falling edge of this signal can be used directly as a chip enable to dynamic memories. The memory data should be enabled onto the processor data bus when $\overline{\mathrm{RD}}$ goes active. The processor, takes data with the rising edge of the clock state T_{3}. The processor internally decodes and executes the instruction, while clock states T_{3} and T_{4} of the fetch cycle are used to refresh dynamic memories. The refresh control signal $\overline{\text { RFSH }}$ indicates that a refresh read should be done to all dynamic memories.

Memory Read or Write Cycles

This diagram illustrates the timing of memory read or write cycles other than an op code fetch (M_{1} cycle). The function of the $\overline{M R E Q}$ and $\overline{R D}$ signals is exactly the same as in the op code fetch cycle. When a memory write cycle is implemented, the MREQ becomes active and is used directly as a chip enable for dynamic memories, when the address bus is stable. The $\overline{W R}$ line is used directly as a R/W pulse to any type of semiconductor memory, and is active when data on the data bus is stable.

Input or Output Cycles

This illustrates the timing for an I/O read or I/O write operation. A single waitstate (TW) is automatically inserted in I/O operations to allow sufficient time for an I/O port to decode its address and activate the WAIT line, if necessary.

Interrupt Request/Acknowledge Cycle

The processor samples the interrupt signal with the rising edge of the last clock at the end of any instruction. A special M_{1} cycle is started when an interrupt is accepted. During the M_{1} cycle, the $\overline{O R Q}$ (instead of $\overline{M R E Q}$) signal becomes active, indicating that the interrupting device can put an 8-bit vector on the data bus. Two wait states (TW) are automatically added to this cycle. This makes it easy to implement a ripple priority interrupt scheme.

INSTRUCTION SET The following summary shows the assembly language mnemonic and the symbolic operation performed by the instructions of the μ PD780 and μ PD780-1 processors. The instructions are divided into 16 categories:
Miscellaneous Group
Rotates and Shifts
Bit Set, Reset and Test
Input and Output
Jumps
Calls
Restarts
Returns

8-Bit Loads
16-Bit Loads
Exchanges
Memory Block Moves
Memory Block Searches
8-Bit Arithmetic and Logic
16-Bit Arithmetic
General Purpose Accumulator and Flag Operations
The addressing Modes include combinations of the following:

Indexed		Immediate
Register	Immediate Extended	
Implied	Modified Page Zero	
Register Indirect		Relative
Bit	Extended	

INSTRUCTION SET TABLE

MNEMONIC	SYMBOLIC OPERATION	DESCRIPTION	$\begin{gathered} \text { NO. } \\ \text { BYTES } \end{gathered}$	$\begin{aligned} & \text { NO. T } \\ & \text { STATES } \end{aligned}$	c	z	PLA		N	H	76	P CO	
RLLC (HL)		Rotate location (HL) left circular	2	15	1	:	P	i	0	0	11 00	001	$\begin{aligned} & 011 \\ & 110 \end{aligned}$
RLC ($1 \mathrm{x}+\mathrm{d}$)		Rotate location ($1 \mathrm{X}+\mathrm{d}$) left circular	4	23	t	:	P	1	0	0	11 11 dd 00	011 001 ddd 000	$\begin{aligned} & 101 \\ & 011 \\ & \text { ddd } \\ & 110 \end{aligned}$
RLC (IY + d)	$\begin{aligned} & m=r,(H L) \\ & (I X+d),(Y+d), A \end{aligned}$	Rotate location (IY + d) left circular	4	23	1	:	P	:	0	0	11 11 dd dd 00	111 001 ddd 000	101 011 ddd 110
RLC r		Rotate Reg. r left circular	2	8	:	;	P	:	0	0	11 00	001 000	rlr^{017} (8)
RLCA		Rotate left circular ACC	1	4	:	\bullet	-	-	0	0	00	000	111
RLD		Rotate digit left and right between ACC and location (HL)	2	18	-	1	P	1	0	0	11 01	101	$\begin{array}{r} 101 \\ 111 \end{array}$
RR r		Rotate right through carry Reg. r		2	1	1	P	1	0	0	11 00	001	
RR (HL)		Rotate right through carry loc. (HL)		4	1	1	P	1	0	0	11 00	001 011	011 110
RR ($1 \mathrm{X}+\mathrm{d}$)		Rotate right through carry loc. $(I x+d)$		6	i	1	P	1	0	0	11 11 dd dd	011 001 ddd	101 011 ddd
$R \mathrm{R}(1)+d)$		Rotate right through carry loc. $(1 Y+d)$		6	1	1	P	1	0	0	00 11 11 dd 00	011 111 001 ddd 011	$\begin{aligned} & 110 \\ & 101 \\ & 011 \\ & \text { ddd } \\ & 110 \end{aligned}$
RRA		Rotate right ACC through carry	1	4	$!$	-	-	-	0	0	00	011	111
RRC r		Fotate Reg. r right circular		2	1	1	P	$!$	0	0	11 00	001	011 ${ }^{\text {(B) }}$
RRC (HL)		Rotate loc. (HL) right circular		4	1	1	P	1	0	0	11 11 00	001 001	1011 110
RRC ($1 \mathrm{X}+\mathrm{d}$)	$\square 7.0 \mathrm{CY}$	Rotate toc. ($1 \mathrm{X}+\mathrm{d}$) right circular		6	;	1	P	1	0	0	11 11 dd 00	011 001 ddd 001	101 011 ddd 110
RRC (IY + d)	$\begin{aligned} & m-r,(H L) \\ & (I X+d),(I Y+d), A \end{aligned}$	Rotate loc. ($1 \mathrm{Y}+\mathrm{d}$) right circular		6	1	1	P	1	0	0	11 11 dd 00	111 001 ddd 001	101 011 ddd 110
RRCA		Rotate right circular ACC	1	4	:	-		-	0	0	00	001	111
RRD	$\begin{array}{llll} \hline 7 & 4 & 30 \\ \hline & \\ \hline & 4 & 3 & 0 \\ \hline \end{array}$	Rotate digit right and left between ACC and location (HL)	2	18	\bullet	;	P	;	0	0	11 01	101	$\begin{aligned} & 101 \\ & 111 \end{aligned}$
RST ${ }_{\text {t }}$		Restart to location T	1	11	-	-	-	-	-	\bullet	11	tt	111
SBC A, r	$A \cdots A-r \quad C Y$	Subtract Reg. r from ACC w/carry	1	4	,	1	v	,	1	1	10	011	$r r^{(B)}$
SBC A, n	$A=A \cdot n \cdot C Y$	Subtract value n from $A C C$ with carry		7	,	1	v	\pm	1	t	11 nn	011	$\begin{aligned} & 110 \\ & n n n \end{aligned}$
SBC A, (HL) $\operatorname{SBC} A,(1 X+d)$		Sub. loc. (HL) from ACC w/carry		19	1	1	v	t	1	\pm	10	011	110
$\operatorname{sBC} A,(1 X+d)$	$A \cdot A-(I X+d) \quad C Y$	Subtract loc. $(1 X+d)$ from ACC with carry		19	,	,	v	,	1	1	11 10 di	011 011 ddd	$\begin{aligned} & 101 \\ & 110 \\ & \text { ddd } \end{aligned}$
SBC A, (IY + d)	$A-A \quad(I Y+d) \quad C Y$	Subtract loc. ($1 Y+d$) from ACC with carry		19	t	1	v	1	1	t	11 10 dd	111 011 ddd	$\begin{aligned} & 101 \\ & 110 \\ & \text { ddd } \end{aligned}$
SBC HL. ss	$\mathrm{HL} . \mathrm{HL}$ ss CY	Subtract Reg. par ss from HL with carry	2	15	1	1	v	1	1	x	11 01		$\begin{aligned} & 1011^{(A)} \\ & 010 \end{aligned}$
SCF	CY . 1	Set carry flag ($\mathrm{C}=1$)	1	4	1	\bullet		-	0	0	00	110	111
SET b, (HL)	$(\mathrm{HL})_{b}-1$	Set Bit bof location (HL)	2	15	-	-	-	-	-	-	11 11 11		$\begin{aligned} & 011^{\text {(ㄷ) }} \\ & 110 \end{aligned}$
SETb, (1x + d)	$(1 x+d)_{b}-1$	Set Bit b of location (1x+d)	4	23	-	-	\bullet	-	-	-	11 11 dd 11	011 001 ddd bbt	$\begin{aligned} & 101{ }^{(E)} \\ & 011 \\ & \text { ddd } \\ & 110 \\ & \hline \end{aligned}$

PACKAGE OUTLINE μ PD780C μ PD780C-1
(Plastic)

ITEM	MILLIMETERS	INCHES
A	51.5 MAX	2.028 MAX
B	1.62	0.064
C	2.54 ± 0.1	0.10 ± 0.004
D	0.5 ± 0.1	0.019 ± 0.004
E	48.26	1.9
F	1.2 MIN	0.047 MIN
G	2.54 MIN	0.10 MIN
H	0.5 MIN	0.019 MIN
I	5.22 MAX	0.206 MAX
J	5.72 MAX	0.225 MAX
K	15.24	0.600
L	13.2	0.520
M	$0.25+0.1$	$0.010+0.004$

μ PD8080AF

μ PD8080AF 8-BIT N-CHANNEL MICROPROCESSOR FAMILY

DESCRIPTION	The μ PD8080AF is a complete 8 -bit parallel processor for use in general purpose digital computer systems. It is fabricated on a single LSI chip using N-channel silicon gate MOS process, which offers much higher performance than conventional micro-
processors $1.28 \mu s$ minimum instruction cycle). A complete microcomputer system	
is formed when the μ PD8080AF is interfaced with I/O ports (up to 256 input and 256	
output ports) and any type or speed of semiconductor memory. It is available in a	
	40 pin ceramic or plastic package.

$\mathrm{A}_{10}{ }^{\text {a }}$			$\square A_{11}$
v_{ss}	2	39	
D_{4}	3	38	P A_{13}
D_{5}	4		- A_{12}
D_{6}	5	36	$\mathrm{P}^{\mathrm{A}_{15}}$
D_{7}	6		$\mathrm{F}^{\text {A }}$
D_{3}	7	34	A_{8}
D_{2}	8	33	日 A_{7}
D_{1}	${ }^{10} \mu \mathrm{PD}$	32 ®	ص A_{6}
	$\begin{aligned} & 10 \text { MPD } \\ & 11 \\ & \text { 8080AF } \end{aligned}$	${ }_{30}^{31}$	E ${ }^{A_{5}}{ }_{4}$
RESET	12	29	${ }^{\text {A }}$
HOLD	13	28	V_{DD}
INT	14	27	A_{2}
ϕ_{2}	15	26	$\mathrm{P}^{\mathrm{A}_{1}}$
INTE	16	25	$\mathrm{A}^{\text {a }}$
DBIN	17	24	Q wait
WR	18	23	$\square \mathrm{READ}$
SYNC	19	22	民 ϕ_{1}
$\mathrm{v}_{\mathrm{cc}} \mathrm{C}^{\text {a }}$		21	$\square \mathrm{HLDA}$

μ PD8080AF

The μ PD8080AF contains six 8 -bit data registers, an 8 -bit accumulator, four testable flag bits, and an 8 -bit parallel binary arithmetic unit. The μ PD8080AF also provides decimal arithmetic capability and it includes 16 -bit arithmetic and immediate operators which greatly simplify memory address calculations, and high speed arithmetic operations.
The μ PD8080AF utilizes a 16 -bit address bus to directly address 64 K bytes of memory, is TTL compatible (1.9 mA), and utilizes the following addressing modes: Direct; Register; Register Indirect; and Immediate.

The μ PD8080AF has a stack architecture wherein any portion of the external memory can be used as a last in/first out (LIFO) stack to store/retrieve the contents of the accumulator, the flags, or any of the data registers.
The μ PD8080AF also contains a 16 -bit stack pointer to control the addressing of this external stack. One of the major advantages of the stack is that multiple level interrupts can easily be handled since complete system status can be saved when an interrupt occurs and then restored after the interrupt is complete. Another major advantage is that almost unlimited subroutine nesting is possible.
This processor is designed to greatly simplify system design. Separate 16 -line address and 8 -line bidirectional data buses are employed to allow direct interface to memories and I/O ports. Control signals, requiring no decoding, are provided directly by the processor. All buses, including the control bus, are TTL compatible.
Communication on both the address lines and the data lines can be interlocked by using the HOLD input. When the Hold Acknowledge (HLDA) signal is issued by the processor, its operation is suspended and the address and data lines are forced to be in the FLOATING state. This permits other devices, such as direct memory access channels (DMA), to be connected to the address and data buses.

The μ PD8080AF has the capability to accept a multiple byte instruction upon an interrupt. This means that a CALL instruction can be inserted so that any address in the memory can be the starting location for an interrupt program. This allows the assignment of a separate location for each interrupt operation, and as a result no polling is required to determine which operation is to be performed.

NEC offers three versions of the μ PD8080AF. These processors have all the features of the μ PD8080AF except the clock frequency ranges from 2.0 MHz to 3.0 MHz . These units meet the performance requirements of a variety of systems while maintaining software and hardware compatibility with other 8080A devices.

BLOCK DIAGRAM

PIN			FUNCTION
NO.	SYMBOL	NAME	
$\left\lvert\, \begin{aligned} & 1, \\ & 25-27, \\ & 29-40 \end{aligned}\right.$	A_{15} - $\mathrm{A}_{0}{ }^{\circ}$	Address Bus (output threestatel	The address bus is used to address memory (up to 64 K 8 -bit words) or specify the I/O device number (up to 256 input and 256 output devices). A_{0} is the least significant bit.
2	VSS	Ground (input)	Ground
3-10	$\mathrm{D}_{7}-\mathrm{D}_{0}$	Data Bus (input/ output three-state)	The bidirectional data bus communicates between the processor, memory, and I/O devices for instructions and data transfers. During each sync time, the data bus contains a status word that describes the current machine cycle. D_{0} is the least significant bit.
11	$V_{B B}$	VBB Supply Voltage (input)	$-5 \mathrm{~V} \pm 5 \%$
12	RESET	Reset (input)	If the RESET signal is activated, the program counter is cleared. After RESET, the program starts at location 0 in memory. The INTE and HLDA flip-flops are also reset. The flags, accumulator, stack pointer, and registers are not cleared. (Note: External synchronization is not required for the RESET input signal which must be active for a minimum of 3 clock periods.)
13	HOLD	Hold (input)	HOLD requests the processor to enter the HOLD state. The HOLD state allows an external device to gain control of the μ PD8080AF address and data buses as soon as the μ PD8080AF has completed its use of these buses for the current machine cycle. It is recognized under the following conditions: - The processor is in the HALT state. - The processor is in the \mathbf{T}_{2} or TW stage and the READY signal is active. As a result of entering the HOLD state, the ADDRESS BUS ($A_{15}-A_{0}$) and DATA BUS (D_{7} - D_{0}) are in their high impedance state. The processor indicates its state on the HOLD ACKNOWLEDGE (HLDA) pin.
14	INT	Interrupt Request (input)	The μ PD8080AF recognizes an interrupt request on this line at the end of the current instruction or while halted. If the μ PD8080AF is in the HOLD state, or if the Interrupt Enable flip-flop is reset, it will not honor the request.
15	¢2	Phase Two (input)	Phase two of processor clock.
16	INTE (1)	Interrupt Enable (output)	INTE indicates the content of the internal interrupt enable flipflop. This flip-flop is set by the Enable (EI) or reset by the Disable (DI) interrupt instructions and inhibits interrupts from being accepted by the processor when it is reset. INTE is automatically reset (disabling further interrupts) during T_{1} of the instruction fetch cycle $\left(\mathrm{M}_{1}\right)$ when an interrupt is accepted and is also reset by the RESET signal.
17	DBIN	Data Bus In (output)	DBIN indicates that the data bus is in the input mode. This signal is used to enable the gating of data onto the μ PD8080AF data bus from memory or input ports.
18	$\bar{W} \bar{R}$	Write (output)	$\overline{W R}$ is used for memory WRITE or I/O output control. The data on the data bus is valid while the $\overline{W R}$ signal is active $(\overline{W R}=0)$.
19	SYNC	Synchronizing Signal (output)	The SYNC signal indicates the beginning of each machine cycle.
20	VCC	VCC Supply Voltage (input)	$+5 \mathrm{~V} \pm 5 \%$
21	HLDA	Hold Acknowledge (output)	HLDA is in response to the HOLD signal and indicates that the data and address bus will go to the high impedance state. The HLDA signal begins at: - T3 for READ memory or input operations. - The clock period following T3 for WRITE memory or OUTPUT operations. In either case, the HLDA appears after the rising edge of ϕ_{1} and high impedance occurs after the rising edge of $\boldsymbol{\phi}_{\mathbf{2}}$.
22	ϕ_{1}	Phase One (input)	Phase one of processor clock.
23	READY	Ready (input)	The READY signal indicates to the μ PD8080AF that valid memory or input data is available on the μ PD8080AF data bus. READY is used to synchronize the processor with slower memory or I/O devices. If after sending an address out, the μ PD8080AF does not receive a high on the READY pin, the μ PD8080AF enters a WAIT state for as long as the READY pin is low. (READY can also be used to single step the processor.)
24	WAIT	Wait (output)	The WAIT signal indicates that the processor is in a WAIT state.
28	VDO	VDD Supply Voltage (input)	$+12 \mathrm{~V} \pm 5 \%$

Note: (1) After the El instruction, the μ PD8080AF accapts interrupts on the second instruction following the EI. This allows proper execution of the RET instruction if an interrupt operation is pending after the service routine.

μ PD8080AF

Operating Temperature
Storage Temperature \qquad . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

All Output Voltages (1) . -0.3 to +20 Volts
All Input Voltages (1) . -0.3 to +20 Volts
Supply Voltages $V_{C C}, V_{D D}$ and $V_{S S}$ (1) -0.3 to +20 Volts
Power Dissipation 1.5 W

Note: (1) Relative to $V_{B B}$.
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
*COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 5 \%, V_{C C}=+5 \mathrm{~V} \pm 5 \%, V_{B B}=-5 \mathrm{~V} \pm 5 \%, V_{S S}=0 \mathrm{~V}$, unless otherwise specified.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Clock Input Low Voltage	VILC	$V_{S S}-1$		$V_{S S}+0.8$	V	
Clock Input High Voltage	VIHC	9.0		$V_{D D}+1$	V	
Input Low Voltage	VIL	$V_{S S}-1$		$\mathrm{V}_{\text {SS }}+0.8$	V	
Input High Voltage	V IH	3.3		$V_{\text {CC }}+1$	V	
Output Low Voltage	$\mathrm{VOL}^{\text {O }}$			0.45	V	$1 \mathrm{OL}=1.9 \mathrm{~mA}$ on all outputs
Output High Voltage	VOH	3.7			V	$\mathrm{IOH}=-150 \mu \mathrm{~A}$ (2)
Avg. Power Supply Current (VDD)	IDD(AV)		40	70	mA	
Avg. Power Supply Current (VCC)	ICC(AV)		60	80	mA	${ }^{\text {t }} \mathrm{CY} \mathrm{min}$
Avg. Power Supply Current (VB)	$1 \mathrm{BB}(\mathrm{AV})$		0.01	1	mA	
Input Leakage	IIL			± 10 (2)	$\mu \mathrm{A}$	$\mathrm{V}_{\text {SS }} \leqslant \mathrm{V}_{\text {IN }} \leqslant \mathrm{V}_{\text {CC }}$
Clock Leakage	${ }^{\text {ICL}}$			± 10 (2)	$\mu \mathrm{A}$	$V_{S S} \leqslant V_{C L O C K} \leqslant V_{D D}$
Data Bus Leakage in Input Mode	IDL (1)			$\begin{align*} & -100 \\ & -2 \tag{2} \end{align*}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & V_{S S} \leqslant V_{I N} \leqslant V_{S S}+0.8 V \\ & V_{S S}+0.8 V \leqslant V_{I N} \leqslant V_{C C} \end{aligned}$
Address and Data Bus Leakage During HOLD	IFL			$\begin{aligned} & +10 \\ & -100 \end{aligned}$	$\mu \mathrm{A}$	$\begin{aligned} & V_{A D D R / D A T A}=V_{C C} \\ & V_{\text {ADDR } / D A T A ~}=V_{S S}+0.45 \mathrm{~V} \end{aligned}$

TYPICAL SUPPLY CURRENT VS.
TEMPERATURE, NORMALIZED (3)

Notes: (1) When DBIN is high and $V_{I N}>V_{I H}$ internal active pull-up resistors will be switched onto the data bus.
(2) Minus (-) designates current flow out of the device.
(3) ΔI supply $/ \Delta T_{a}=i-0.45 \% \%^{\circ} C$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Clock Capacitance	C \downarrow		17	25	pF	$\mathrm{f}_{\mathrm{c}}=1 \mathrm{MHz}$
Input Capacitance	CIN		6	10	pF	Unmeasured Pins
Output Capacitance	COUT		10	20	PF	Returned to VSS

ABSOLUTE MAXIMUM RATINGS*

DC CHARACTERISTICS

AC CHARACTERISTICS μ PD8080AF
$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{S S}=0 \mathrm{~V}$, unless otherwise specified.

PARAMETER	SYMBOL	L.IMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Clock Period	${ }_{\mathrm{t}} \mathrm{Cl}(3)$	0.48		2.0	$\mu \mathrm{sec}$	
Clock Rise and Fall Time	$\mathrm{tr}_{\mathrm{r}} \mathrm{t}_{\mathrm{f}}$	0		50	nsec	
¢1 Pulse Width	$\mathrm{t}_{\boldsymbol{\phi} 1}$	60			nsec	
¢2 Pulse Width	${ }_{\text {t }}{ }_{\text {d }}$	220			nsec	
Delay $\phi 1$ to $\phi 2$	${ }^{\text {t }} 1$	0			nsec	
Delay $\phi 2$ to $\phi 1$	${ }^{\text {t }} 2$	70			nsec	
Delay $\phi 1$ to $\phi 2$ Leading Edges	tD3	80			nsec	
Address Output Delay From $\phi 2$	${ }^{\text {t }} \mathrm{DA}$ (2)			200	nsec	$C_{L}=100 \mathrm{pF}$
Data Output Delay From $\phi 2$	tDD (2)			220	nsec	
Signal Output Delay From $\phi 1$, or $\$ 2$ (SYNC, WR, WAIT, HLDA)	${ }^{1} \mathrm{DC}$ (2)			120	nsec	$C_{L}=50 \mathrm{pF}$
DBIN Delay From $\mathbf{6} 2$	tDF (2)	25		140	nsec	
Delay for Input Bus to Enter Input Mode	${ }_{\text {t }}$ (1)			tDF	nsec	
Data Setup Time During $\phi 1$ and DBIN	tos1	30			nsec	
Data Setup Time to $\phi 2$ During DBIN	tos2	150			nsec	
Data Hold Time From $\phi 2$ During DBIN	${ }^{\text {t }} \mathrm{DH}$ (1)	(1)			nsec	
INTE Output Delay From $\phi 2$	$\mathrm{I}_{1 \mathrm{E}}$ (2)			200	nsec	$C_{L}=50 \mathrm{pF}$
READY Setup Time During $\phi 2$	tRS	120			nsec	
HOLD Setup Time to $\phi 2$	${ }^{\text {thS }}$	140			nsec	
INT Setup Time During $\phi \mathbf{2}$ (During $\phi 1$ in Halt Mode)	tis	120			nsec	
Hold Time from $\phi 2$ (READY, INT, HOLD)	${ }^{\text {t }} \mathrm{H}$	0			nsec	
Delay to Float During Hold (Address and Data Bus)	${ }^{1} \mathrm{FD}$			120	nsec	
Address Stable Prior to $\overline{\mathrm{WR}}$	tAW (2)	(5)			nsec	$\begin{aligned} C_{L}= & 100 \mathrm{pF}: \text { Address, } \\ & \text { Data } \\ C_{L}= & 50 \mathrm{pF}: \overline{\text { WR, }} \\ & \text { HLDA, DBiN } \end{aligned}$
Output Data Stable Prior to $\bar{W} R$	tDW (2)	(6)			nsec	
Output Data Stable From WR'	twD (2)	(7)			nsec	
Address Stable from WR	tWA (2)	(7)			nsec	
HLDA to Float Delay	thF (2)	(8)			nsec	
WR to Float Delay	tWF (2)	(9)			nsec	
Address Hold Time after DBIN during HLDA	${ }^{1} A H$ (2)	-20			nsec	

Notes: (1) Data input should be enabled with DBIN status. No bus conflict can then occur and data hold time is assured, $\mathrm{t}_{\mathrm{DH}}=\mathbf{5 0} \mathrm{ns}$ or tDF, whichever is less.
(2) Load Circuit.

(3) Actual $t_{C Y}=t_{D 3}+t_{r \phi 2}+t_{\phi 2}+t_{t_{\phi} 2}+t_{D 2}+t_{r \phi 1}>t_{C Y} M i n$.

TYPICAL \triangle OUTPUT DELAY VS.

$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, unless otherwise specified.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Clock Period	${ }^{\text {t }} \mathrm{CY}$ (3)	0.32		2.0	$\mu \mathrm{sec}$	
Clock Rise and Fall Time	t_{r}, t_{f}	0		25	nsec	
\$1 Pulse Width	${ }^{\text {t }}$ 1 ${ }_{1}$	50			nsec	
\$2 Pulse Width	${ }^{\text {t }}$ ¢ 2	145			nsec	
Delay $\phi 1$ to $\phi 2$	${ }^{\text {t }} \mathrm{D} 1$	0			nsec	
Delay $\phi 2$ to $\phi 1$	tD2	60			nsec	
Delay $\phi 1$ to $\phi 2$ Leading Edges	${ }^{\text {to3 }}$	60			nsec	
Address Output Delay From $\phi 2$	tDA (2)			150	nsec	$C_{L}=100 \mathrm{pF}$
Data Output Delay From $\phi 2$	${ }^{\text {t DD }}$ (2)			180	nsec	
Signal Output Delay From $\phi 1$, or $\phi 2$ (SYNC, $\overline{W R}$, WAIT, HLDA)	${ }^{\text {toc }}$ (2)			110	nsec	$C_{L}=50 \mathrm{pF}$
DBIN Delay From $\phi 2$	${ }^{\text {tof (2) }}$	25		130	nsec	
Delay for Input Bus to Enter Input Mode	$\mathrm{t}_{\mathrm{DI}}(1)$			tDF	nsec	
Data Setup Time During $\phi 1$ and DBIN	tDS1	10			nsec	
Data Setup Time to $\phi 2$ During DBIN	tDS2	120			nsec	
Data Hold Time From $\phi 2$ During DBIN	${ }^{\text {t }}{ }_{\text {DH }}$ (1)	(1)			nsec	
INTE Output Delay From $\phi 2$	tiE (2)			200	nsec	$C_{L}=50 \mathrm{pF}$
READY Setup Time During $\phi 2$	tRS	90			nsec	
HOLD Setup Time to $\phi 2$	${ }^{\text {thS }}$	120			nsec	
INT Setup Time During ${ }^{\phi} 2$ (for all modes)	${ }^{\text {t }}$ S	100			nsec	
Hold Time from $\phi 2$ (READY. INT, HOLD)	${ }^{\text {t }} \mathrm{H}$	0			nsec	
Delay to Float During Hold (Address and Data Bus)	tFD			120	nsec	*
Address Stable Prior to $\overline{\mathrm{WR}}$	taw (2)	(5)			nsec	$\begin{aligned} C_{L}= & 100 \mathrm{pF}: \text { Address, } \\ & \text { Data } \\ C_{L}= & 50 \mathrm{pF}: \overline{\text { WR },} \\ & \text { HLDA, DBIN } \end{aligned}$
Output Data Stable Prior to WR	tDW (2)	(6)			nsec	
Output Data Stable From Wr	IWD (2)	(7)			nsec	
Address Stable from WR	tWA (2)	(7)			nsec	
HLDA to Float Delay	thF (2)	(8)			nsec	
WR to Float Delay	twF (2)	(9)			nsec	
Address Hold Time after DBIN during HLDA	t_{AH} (2)	-20			nsec	

Notes Continued:
(4) The following are relevant when interfacing the $\mu \mathrm{PD} 8080 \mathrm{AF}$ to devices having $\mathrm{V}_{1 \mathrm{H}}=3.3 \mathrm{~V}$.
a. Maximum output rise time from 0.8 V to $3.3 \mathrm{~V}=100 \mathrm{~ns}$ at $\mathrm{C}_{\mathrm{L}}=\mathrm{SPEC}$.
b. Output delay when measured to $3.0 \mathrm{~V}=\mathrm{SPEC}+60 \mathrm{~ns}$ at $\mathrm{C}_{\mathrm{L}}=\mathrm{SPEC}$.
c. If $C_{L} \neq \operatorname{SPEC}$, add $0.6 \mathrm{~ns} / \mathrm{pF}$ if $\mathrm{CL}_{\mathrm{L}}>\mathrm{CSPEC}^{2}$, subtract $0.3 \mathrm{~ns} / \mathrm{pF}$ (from modified delay) if $C_{L}<C_{\text {SPEC }}$.

AC CHARACTERISTICS μ PD8080AF-1

AC CHARACTERISTICS μ PD8080AF-2
$T_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, unless otherwise specified.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Clock Period	${ }^{1} \mathrm{CY}$ (3)	0.38		2.0	$\mu \mathrm{sec}$	
Clock Rise and Fall Time	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	0		50	nsec	
$\phi 1$ Pulse Width	${ }^{t}{ }_{1}$	60			nsec	
\$2 Pulse Width	${ }_{t}{ }_{\text {¢ }}$	175			nsec	
Delay $\phi 1$ to $\phi 2$	${ }_{\text {t }}$	0			nsec	
Delay $\phi 2$ to $\phi 1$	${ }_{\text {t } 21}$	70			nsec	
Delay $\phi 1$ to $\phi 2$ Leading Edges	${ }^{\text {t }} 3$	70			nsec	
Address Output Delay From $\phi 2$	TDA (2)			175	nsec	$C_{L}=100 \mathrm{pF}$
Data Output Delay From $\phi 2$	${ }^{\text {t DD (2) }}$			200	nsec	
Signal Output Delay From $\phi 1$, or $\$ 2$ (SYNC, WR, WAIT, HLDA)	$\operatorname{tDC}(2)$			120	nsec	$C_{L}=50 \mathrm{pF}$
DBIN Delay From $\phi 2$	${ }^{1} \mathrm{DF}$ (2)	25		140	nsec	
Delay for Input Bus to Enter Input Mode	${ }^{1} \mathrm{DI} 1(1)$			tof	nsec	
Data Setup Time During $\phi 1$ and DBIN	t DS 1	20			nsec	
Data Setup Time to $\phi 2$ During DBIN	${ }^{\text {t DS2 }}$	130			nsec	
Data Hold Time From $\phi 2$ During DBIN	${ }^{\text {t }}$ DH (1)	(1)			nsec	
INTE Output Delay From $\phi 2$	$\mathrm{IIE}^{\text {E (2) }}$			200	nsec	$C_{L}=50 \rho F$
READY Setup Time During $\phi 2$	${ }^{\text {t }}$, ${ }^{\text {S }}$	90			nsec	
HOLD Setup Time to $\phi 2$	${ }^{\text {thS }}$	120			nsec	
INT Setup Time During ${ }^{\boldsymbol{p}} \mathbf{2}$ (for all modes)	tis	100			nsec	
Hold Time from $\phi 2$ (READY, INT, HOLD)	${ }^{\text {t }} \mathrm{H}$	0			nsec	
Delay to Float During Hold (Address and Data Bus)	${ }^{\text {t }}$ FD			120	nsec	
Address Stable Prior to $\overline{\mathrm{WR}}$	${ }^{\text {t }}$ AW (2)	(5)			nsec	$\begin{aligned} C_{L}= & 100 \mathrm{pF}: \text { Address, } \\ & \text { Data } \\ C_{L}= & 50 \mathrm{pF}: \overline{\text { WR },} \\ & H L D A, \text { DBIN } \end{aligned}$
Output Data Stable Prior to $\overline{\mathrm{WR}}$	${ }^{\text {t DW }}$ (2)	(6)			nsec	
Output Data Stable From Wh	twD (2)	(7)			nsec	
Address Stable from WR	${ }^{\text {t WA (2) }}$	(7)			nsec	
HLDA to Float Delay	$\mathrm{t}^{\text {HF }}$ (2)	(8)			nsec	
WR to Float Delay	${ }^{\text {t }}$ WF (2)	(9)			nsec	
Address Hold Time after DBIN during HLDA	${ }^{\text {t }}$ AH (2)	-20			nsec	

Device	taw
$\mu \mathrm{PD} 8080 \mathrm{AF}$	$2 \mathrm{tcr}-\mathrm{t}_{\mathrm{D} 3}-\mathrm{t}_{\mathrm{r} \text { ¢ } 2-140}$
μ PD8080AF-2	$2 \mathrm{t} \mathrm{CY}-\mathrm{t}_{\mathrm{D} 3}-\mathrm{t}_{\mathrm{r} \phi 2-130}$
μ PD8080AF-1	

(6)

Device	$t_{D W}$
μ PD88080AF	$\mathrm{t}_{\mathrm{C} Y}-\mathrm{t}_{\mathrm{D} 3}-\mathrm{t}_{\mathrm{r} \phi 2}-170$
μ PD8080AF-2	$\mathrm{t}_{\mathrm{C}}-\mathrm{t}_{\mathrm{D} 3}-\mathrm{t}_{\mathrm{r} \phi 2}-170$
μ PD8080AF-1	$\mathrm{t}_{\mathrm{CY}}-\mathrm{t}_{\mathrm{D} 3}-\mathrm{t}_{\mathrm{r} \phi 2}-150$

(7) If not HLDA, tWD $=t_{W A}=t_{D 3}+t_{r \phi 2}+10 n s$. If HLDA, $t W D=t W A=t W F$.
(8) $\mathrm{t}_{\mathrm{HF}}=\mathrm{t}_{\mathrm{D} 3}+\mathrm{t}_{\mathrm{r} \phi 2}-50 \mathrm{~ns}$.
(9) $t_{W F}=t_{D 3}+t_{r \phi 2}-10 \mathrm{~ns}$.

Notes: (1) INTE F/F is reset if internal INT F/F is set.
2) Internal INT F/F is reset if INTE F/F is reset.
(3) If required, T_{4} and T_{5} are completed simultaneously with entering hold state.

Notes: (1) Data in must be stable for this period during DBIN $\cdot T_{3}$. Both tDS1 and tDS2 must be satisfied.
(2) Ready signal must be stable for this period during T_{2} or T_{W}. (Must be externally synchronized.)
(3) Hold signal must be stable for this period during T_{2} or T_{W} when entering hold mode, and during T_{3}, T_{4}, T_{5} and $T_{W H}$ when in hold mode. (External synchronization is not required.)
(4) Interrupt signal must be stable during this period of the last clock cycle of any instruction in order to be recognized in the following instruction. (External synchronization is not required.)
(5) This timing diagram shows timing relationships only; it does not represent any specific machine cycle.
(6) Timing measurements are made at the following reference voltages: CLOCK " $1 "=8.0 \mathrm{~V}, " 0$ " $=1.0 \mathrm{~V}$; INPUTS " $1 "=3.3 \mathrm{~V}$; " 0 " $=0.8 \mathrm{~V}$;

The instruction set includes arithmetic and logical operators with direct, register, indirect, and immediate addressing modes.
Move, load, and store instruction groups provide the ability to move either 8 or 16 bits of data between memory, the six working registers and the accumulator using direct, register, indirect, and immediate addressing modes.
The ability to branch to different portions of the program is provided with direct, conditional, or computed jumps. Also the ability to call and return from subroutines is provided both conditionally and unconditionally. The RESTART (or single byte call instruction) is useful for interrupt vector operation.
Conditional jumps, calls and returns execute based on the state of the four testable flags (Sign, Zero, Parity and Carry). The state of each flag is determined by the result of the last instruction executed that affected flags. (See Instruction Set Table.)
The Sign flag is set (High) if bit 7 of the result is a " 1 "; otherwise it is reset (Low). The Zero flag is set if the result is " 0 "; otherwise it is reset. The Parity flag is set if the modulo 2 sum of the bits of the result is " 0 " (Even Parity); otherwise (Odd Parity) it is reset. The Carry flag is set if the last instruction resulted in a carry or a borrow out of the most significant bit (bit 7) of the result; otherwise it is reset.
In addition to the four testable flags, the μ PD8080AF has another flag (ACY) that is not directly testable. It is used for multiple precision arithmetic operations with the DAA instruction. The Auxiliary Carry flag is set if the last instruction resulted in a carry or a borrow from bit 3 into bit 4; otherwise it is reset.
Double precision operators such as stack manipulation and double add instructions extend both the arithmetic and interrupt handling capability of the μ PD8080AF. The ability to increment and decrement memory, the six general registers and the accumulator are provided as well as extended increment and decrement instructions to operate on the register pairs and stack pointer. Further capability is provided by the ability to rotate the accumulator left or right through or around the carry bit. Input and output may be accomplished using memory addresses as I/O ports or the directly addressed I/O provided for in the μ PD8080AF instruction set.
The special instruction group completes the μ PD8080AF instruction set: NOP, HALT stop processor execution; DAA provides decimal arithmetic capability; STC sets the carry flag; CMC complements it; CMA complements the contents of the accumulator; and XCHG exchanges the contents of two 16 -bit register pairs directly.

Data in the ${ }_{\mu}$ PD8080AF is stored as 8 -bit binary integers. All data/instruction transfers to the system data bus are in the following format:

D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D	0
MSB			ATA	WO				SB

Instructions are one, two, or three bytes long. Multiple byte instructions must be stored in successive locations of program memory. The address of the first byte is used as the address of the instruction.

μ PD8080AF

One to five machine cycles ($\mathrm{M}_{1}--\mathrm{M}_{5}$) are required to execute an instruction. Each machine cycle involves the transfer of an instruction or data byte into the processor or a transfer of a data byte out of the processor (the sole exception being the double add instruction). The first one, two or three machine cycles obtain the instruction from the memory or an interrupting I/O controller. The remaining cycles are used to execute the instruction. Each machine cycle requires from three to five clock times ($T_{1}-T_{5}$). During $\phi_{1} \cdot$ SYNC of each machine cycle, a status word that identifies the type of machine cycle is available on the data bus.
Execution times and machine cycles used for each type of instruction are shown below.

Machine Cycle Symbal Definition

Underlined ($X X Y Z(\mathbb{N})$) indicates machine cycte is executed if condition is True.

STATUS INFORMATION DEFINITION

SYMBOLS	DATA BUS BIT	DEFINITION
INTA (1)	Do	Acknowledge signal for INTERRUPT request. Signal should be used to gate a restart or CALL instruction onto the data bus when DBIN is active.
WO	D_{1}	Indicates that the operation in the current machine cycle will be a WRITE memory or OUTPUT function ($\overline{W O}=0$). Otherwise, a READ memory or INPUT operation will be executed.
STACK	D_{2}	Indicates that the address bus holds the pushdown stack address from the Stack Pointer.
HLTA	D_{3}	Acknowledge signal for HALT instruction.
OUT	D_{4}	Indicates that the address bus contains the address of an output device and the data bus will contain the output data when $\overline{W R}$ is active.
M_{1}	D_{5}	Provides a signal to indicate that the CPU is in the fetch cycle for the first byte of an instruction.
INP (1)	D_{6}	Indicates that the address bus contains the address of an input device and the input data should be placed on the data bus when DBIN is active.
MEMR (1)	D7	Designates that the data bus will be used for memory read data.

Note: (1) These three status bits can be used to control the flow of data onto the μ PD8080AF data bus.

STATUS WORD CHART

(PLASTIC)

ITEM	MILLIMETERS	INCHES
A	51.5 MAX	2.028 MAX
B	1.62 MAX	0.064 MAX
C	2.54 ± 0.1	0.10 ± 0.004
D	0.5 ± 0.1	0.019 ± 0.004
E	48.26 ± 0.1	1.9 ± 0.004
F	1.2 MIN	0.047 MIN
G	2.54 MIN	0.10 MIN
H	0.5 MIN	0.019 MIN
I	5.22 MAX	0.206 MAX
J	5.72 MAX	0.225 MAX
K	15.24 TYP	0.600 TYP
L	13.2 TYP	0.520 TYP
M	$0.25+\begin{aligned} & +0.1 \\ & -0.05 \end{aligned}$	$0.010^{+0.004}$ -0.002

(CERAMIC)

ITEM	MILLIMETERS	INCHES
A	51.5 MAX	2.03 MAX
B	1.62 MAX	0.06 MAX
C	2.54 ± 0.1	0.1 ± 0.004
D	0.5 ± 0.1	0.02 ± 0.004
E	48.26 ± 0.1	1.9 ± 0.004
F	1.02 MIN	0.04 MIN
G	3.2 MIN	0.13 MIN
H	1.0 MIN	0.04 MIN
I	3.5 MAX	0.14 MAX
J	4.5 MAX	0.18 MAX
K	15.24 TYP	0.6 TYP
L	14.93 TYP	0.59 TYP
M	0.25 ± 0.05	0.01 ± 0.0019

μ PD8085A SINGLE CHIP 8-BIT N-CHANNEL MICROPROCESSOR

Abstract

'DESCRIPTION The μ PD8085A is a single chip 8 -bit microprocessor which is 100 percent software compatible with the industry standard 8080A. It has the ability of increasing system performance of the industry standard 8080A by operating at a higher speed. Using the μ PD8085A in conjunction with its family of ICs allows the designer complete flexibility with minimum chip count.

FEATURES - Single Power Supply: +5 Volt $; \pm 10 \%$

- Internal Clock Generation and System Control
- Internal Serial In/Out Port.
- Fully TTL Compatible
- Internal 4-Level Interrupt Structure
- Multiplexed Address/Data Bus for Increased System Performance
- Complete Family of Components for Design Flexibility
- Software Compatible with Industry Standard 8080A
- Higher Throughput: μ PD8085A -3 MHz
μ PD8085A-2 - 5 MHz
- Available in Either Plastic or Ceramic Package

PIN CONFIGURATION

Rev/3

μ PD8085A

The μ PD8085A contains six 8-bit data registers, an 8-bit accumulator, four testable flag bits, and an 8 -bit parallel binary arithmetic unit. The μ PD8085A also provides decimal arithmetic capability and it includes 16 -bit arithmetic and immediate operators which greatly simplify memory address calculations, and high speed arithmetic operations.

The μ PD8085A has a stack architecture wherein any portion of the external memory can be used as a last in/first out (LIFO) stack to store/retrieve the contents of the accumulator, the flags, or any of the data registers.

The μ PD8085A also contains a 16 -bit stack pointer to control the addressing of this external stack. One of the major advantages of the stack is that multiple level interrupts can easily be handled since complete system status can be saved when an interrupt occurs and then restored after the interrupt is complete. Another major advantage is that almost unlimited subroutine nesting is possible.

The μ PD8085A was designed with speed and simplicity of the overall system in mind. The multiplexed address/data bus increases available pins for advanced functions in the processor and peripheral chips while providing increased system speed and less critical timing functions. All signals to and from the μ PD8085A are fully TTL compatible.
The internal interrupt structure of the μ PD8085A features 4 levels of prioritized interrupt with three levels internally maskable.
Communication on both the address lines and the data lines can be interlocked by using the HOLD input. When the Hold Acknowledge (HLDA) signal is issued by the processor, its operation is suspended and the address, data and control lines are forced to be in the FLOATING state. This permits other devices, such as direct memory access channels (DMA), to be connected to the address and data busses.
The μ PD8085A features internal clock generation with status outputs available for advanced read/write timing and memory/ 10 instruction indications. The clock may be crystal controlled, RC controlled, or driven by an external signal.

On chip serial in/out port is available and controlled by the newly added RIM and SIM instructions.

PIN IDENTIFICATION

PIN			FUNCTION
NO.	SYMBOL	NAME	
1. 2	x_{1}, x_{2}	Crystal in	Crystal, RC, or external clock input
3	RO	Reset Out	Acknowledge that the processor is being reset to be used as a system reset
4	SOD	Serial Out Data	1 -bit data out by the SIM instruction
5	SIO	Serial In Data	1.bit data into ACC bit 7 by the RIM instruction
6	Trap	Trap Interrupt Input	Highest priority nonmaskable restart interrupt
$\begin{aligned} & 7 \\ & 8 \\ & 9 \end{aligned}$	RST 7.5 RST 6.5 RST 5.5	Restart Interrupts	Priority restart interrupt inputs, of which 7.5 is the highest and 5.5 the towest priority
10	INTR	Interrupt Request In	A general interrupt input which stops the PC from incrementing, generates INTA, and samples the date bus for a restart or call instruction
11	$\overline{\text { INTA }}$	Interrupt Acknowledge	An output which indicates that the processor has responded to INTR
12-19	$A D_{0}-A D_{7}$	Low Address/Data Bus	Multiplexed low address and data bus
20	$V_{S S}$	Ground	Ground Reference
21-28	$A_{8}-A_{15}$	High Address Bus	Nonmultiplexed high 8-bits of the address bus
29,33	$\mathrm{S}_{0}, \mathrm{~S}_{1}$	Status Outputs	Outputs which indicate data bus status: Halt, Write, Read, Fetch
30	ALE	Address Latch Enable Out	A signal which indicates that the lower 8 -bits of address are valid on the AD lines
31,32	$\overline{W R}, \overline{R D}$	Write/Read Strobes Out	Signais out which are used as write and read strobes for memory and I/O devices
34	$10 / \bar{M}$	I/O or Memory Indicator	A signal out which indicates whether $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ strobes are for $1 / O$ or memory devices
35	Ready	Ready Input	An input which is used to increase the data and address bus access times (can be used for slow memory)
36	$\overline{\text { Reset }} \overline{\text { In }}$	Reset input	An input which is used to start the processor activity at address 0 , resetting IE and HLDA flip-flops
37	CLK	Clock Out	System Clock Output
38,39	HLDA, HOLD	Hold Acknowledge Out and Hold Input Request	Used to request and indicate that the processor should relinquish the bus for DMA activity. When hold is acknowledged, $\overline{R D}, \overline{W R}, 10 / \bar{M}$, Address and Data busses are all 3-stated.
40	V_{CC}	5 V Supply	Power Supply Input

ABSOLUTE MAXIMUM RATINGS*

Operating Temperature.	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
All Output Voltages	-0.3 to +7 Volts
All Input Voltages	-0.3 to +7 Voits
Supply Voltage Vcc.	-0.3 to +7 Volts
Power Dissipation	1.5 W

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}= \pm 5 \mathrm{~V} \pm 5 \%, 8085 \mathrm{~A}-2$.
*COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC CHARACTERISTICS

$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{C C}=+5 \mathrm{~V} \pm 10 \%, V_{S S}=G N D$, unless otherwise specified

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Low Voltage	$V_{\text {IL }}$	$V_{S S}-0.5$		$\mathrm{V}_{\mathrm{SS}}+0.8$	V	
Input High Voltage	$\mathrm{V}_{\text {IH }}$	2.0		$\mathrm{V}_{\mathrm{CC}}+0.5$	V	
Output Low Voitage	VOL			0.45	V	$1 \mathrm{OL}=2 \mathrm{~mA}$ on all outputs
Output High Voltage	VOH	2.4			V	$1 \mathrm{OH}=-400 \mu \mathrm{~s}$ (1)
Power Supply Current (VCC)	ICC (AV)			170	mA	${ }^{\text {t }} \mathrm{CY} \mathrm{Y}$ min
Input Leakage	1 l			± 10 (1)	$\mu \mathrm{A}$	$V_{\text {IN }}=V_{\text {CC }}$
Output Leakage	ILO			± 10 (1)	$\mu \mathrm{A}$	$0.45 \mathrm{~V} \leqslant \mathrm{~V}_{\text {OUT }} \leqslant V_{C C}$
Input Low Level, Reset	$V_{\text {ILR }}$	-0.5		+0.8	V	
Input High Level, Reset	$V_{\text {IHR }}$	2.4		$\mathrm{v}_{\mathrm{CC}}+0.5$	V	
Hysteresis, Reset	V_{HY}	0.25			V	

Note: (1) Minus (-) designates current flow out of the device
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, 8085 \mathrm{~A}-2$

Parameter	SYMaOL	LIMITS				UNIT	TEST CONDITIONS
		$\mu \mathrm{P}$ D8088A					
		MIN	MAX	MIN	MAX		
CLK Crcie Period	${ }^{\text {T }} \mathrm{CYC}$	320	2000	200	2000	ก	$\begin{aligned} & \text { TCYC }=320 \mathrm{nt} \\ & \mathrm{C}_{\mathrm{L}}=150 \mathrm{pF} \end{aligned}$
CLK Low Time	1	80		40		31	
CLK High Time	12	120		70		ns	
CLK Rise and Fall Time	t_{t}. $\mathrm{tf}^{\text {f }}$		30		30	\%	
Address Hoid Time Atter ALE	Lla	100		50		n!	
ALE Width	ILL	140		80		n	
ALE Low During CLK High	tick	100		50		38	Output Voitsgas $\mathrm{V}_{\mathrm{L}}=0.8$ Volt $\mathrm{V}_{\mathrm{H}}=2.0$ Volts
Training Edge of ALE to Lagding Edge of Control	${ }^{1} \mathrm{LC}$	130		60		ns	
Address Fioat Alter Leading Edge of AEAD (INTA)	'AFR		0		0	ns	
Valid Address to Valid Data in	${ }_{\text {I }}$ AD		575		350	$n \mathrm{~s}$	Input Voltagas $V_{L}=0.8$ Volt $V_{H}=1.5$ Volts at 20 ns rise and talt timas
PEAD (or INTAI 10 Valid Oata	${ }^{\text {A AD }}$		300		160	n	
Dsta Hold Time Alter READ (INTA)	${ }^{18 D}$	0		0		ns	
Training Edge of READ to Re Enabling of Address	traE	150		90		n¢	
Address (Ag.A15) Valid After Control (1)	${ }^{\text {C }}$ CA	120		60		ns	
Data Valid to Training Edge of WRiTE	'0w	420		230		$n \mathrm{~s}$	For outputs where $C_{L}=150$ pf, correct as follows: $25 \mathrm{pf} \leqslant \mathrm{CL}<150 \mathrm{pt}$ $-0.10 \mathrm{~ns} / \mathrm{pl}$
Data Valid Atter Training Edge of WRITE	'WD	100		60		ns	
Widith of Control Low (RO, WA, INTA)	${ }^{\text {t }} \mathrm{C}$ C	400		230		ns	
Training Edge of Control to Leading Edge of ALE	${ }^{\prime} \mathrm{Cl}$	50		25		$n s$	
READY Valid from Address Valid	tary		220		100	ns	
AEADY Setup Time to Leading Edge of CLK	tays	110		100		$0 \cdot$	$\begin{aligned} & 150 \mathrm{pt} \text { e CL } \\ & 300 \mathrm{pf}+0.30 \mathrm{~ns} / \mathrm{pl} \end{aligned}$
READY Hold Time	${ }^{\text {'RYH }}$	0		0		ns	
HLDA Valid to Training Edge ol CLK	${ }^{\text {H HACK }}$	110		40		$n \mathrm{n}$	
Bus Float Atter HLIDA	${ }^{\text {t HABF }}$		210		150	$n \mathrm{n}$	Outputs measured with only capacitive toad
HLDA to Bus Enable	thabe		210		150	$n 8$	
ALE to Valid Data In	'LDP		460		270	ns	
Control Training Edge to Leading Edge of Next Control \qquad	trv	400		220		ns	
Address Valid to Leading Edige ol Contiol	${ }_{\text {I A }}$	270		115		n	
HOLD Setud Time to Trating Edge of CLK	thDS	170		120		n	
HOLO Hold Time	${ }^{\text {i }} \mathrm{HDH}$	0		0		ns	
INTA Satup Time to Leading Edge of CLK (M1, Ti only). Also RST and TRAP	INs	160		150		$n 5$	
INTA Hold Time	INH	0		0		ns	
X. Falling to CLK Rising	TXKR	30	120	30	100	ns	
X_{1} Falling to CLK Falling	${ }^{\text {'XKF }}$	30	150	30	110	n	
Leading Edge of Write to Dats Valid	${ }^{\text {t }}$ WDL		40		20		
AB-15 Valid Before Trailing Edge of ALE	PAL	115		50		ns	
A0.7 Valid Before Traiting Edge of ALE	${ }^{\text {ta }}$ L L	90		50		ns	
ALE to Valid Data During Write	tow		200		120	ns	
Al.E to READY Stable	${ }^{\text {t LRY }}$		110		30	$n 3$	
A0.7 Valid to Leading Edge of Controt	${ }^{1}$ ACL	240		115		ns	
Minimurn Clock in Low-High Time	13.14	64		40		ns	

Note: (1) $10 / \mathrm{M}$, so, sl

WRITE OPERATION

Note: READY must remain stable during setup and hold time.

INTERRUPT TIMING

Note:(1)IO/M is also floating during this time.

Notes: (1) BI indicates that the bus is idle during this machine cycle.
(2) CK indicates the number of clock cycles in this machine cycle.

CLOCK INPUTS (1) As stated, the timing for the μ PD8085A may be generated in one of three ways; crystal, RC, or external clock. Recommendations for these methods are shown below.

1-6 MHz Input Frequency Parallel Resonant Crystal

For 1-6 MHz Input Frequency, $C 1=C 2=10 \mathrm{pF}$ max .

EXTERNAL
For 6-10 MHz Input Frequency, $\mathrm{C} 1=\mathrm{C} 2=5 \mathrm{pF}$ max.

1-6 MHz 25-50\% DC X_{2} not used

Note: (1) Input frequency must be twice the internal operating frequency.

STATUS OUTPUTS The Status Outputs are valid during ALE time and have the following meaning:

	S1	S0
Halt	0	0
Write	0	1
Read	1	0
Fetch	1	1

These pins may be decoded to portray the processor's data bus status.

The μ PD8085A has five interrupt pins available to the user. INTR is operationally the same as the 8080 interrupt request, three (3) internally maskable restart interrupts: RESTART 5.5, 6.5 and 7.5, and TRAP, a non-maskable restart.

PRIORITY	INTERRUPT	RESTART ADDRESS
Highest	TRAP	24.16
1	RST 7.5	$3 C_{16}$
1	RST 6.5	3416
1	RST 5.5	$2 C_{16}$
Lowest	INTR	

INTR, RST 5.5 and RST 6.5 are all level sensing inputs while RST 7.5 is set on a rising edge. TRAP, the highest priority interrupt, is non-maskable and is set on the rising edge or positive level. It must make a low to high transition and remain high to be seen, but it will not be generated again until it makes another low to high transition.

Serial input and output is accomplished with two new instructions not included in the 8080: RIM and SIM. These instructions serve several purposes: serial I/O, and reading or setting the interrupt mask.

The RIM (Read Interrupt Mask) instruction is used for reading the interrupt mask and for reading serial data. After execution of the RIM instruction the ACC content is as follows:

Note: After the TRAP interrupt, the RIM instruction must be executed to preserve the status of IE.

The SIM (Set Interrupt Mask) instruction is used to program the interrupt mask and to output serial data. Presetting the ACC for the SIM instruction has the following meaning:

INSTRUCTION SET The instruction set includes arithmetic and logical operators with direct, register,

 indirect, and immediate addressing modes.Move, load, and store instruction groups provide the ability to move either 8 or 16 bits of data between memory, the six working registers and the accumulator using direct, register, indirect, and immediate addressing modes.
The ability to branch to different portions of the program is provided with direct, conditional, or computed jumps. Also, the ability to call and return from subroutines is provided both conditionally and unconditionally. The RESTART (or single byte call instruction) is useful for interrupt vector operation.

Conditional jumps, calls and returns execute based on the state of the four testable flags (Sign, Zero, Parity and Carry). The state of each flag is determined by the result of the last instruction executed that affected flags. (See Instruction Set Table.)
The Sign flag is set (High) if bit 7 of the result is a " 1 "; otherwise it is reset (Low). The Zero flag is set if the result is " 0 "; otherwise it is reset. The Parity flag is set if the modulo 2 sum of the bits of the result is " 0 " (Even Parity); otherwise (Odd Parity) it is reset. The Carry flag is set if the last instruction resulted in a carry or a borrow out of the most significant bit (bit 7) of the result; otherwise it is reset.
In addition to the four testable flags, the μ PD8085A has another flag (ACY) that is not directly testable. It is used for multiple precision arithmetic operations with the DAA instruction. The Auxiliary Carry flag is set if the last instruction resulted in a carry or a borrow from bit 3 into bit 4; otherwise it is reset.
Double precision operators such as stack manipulation and double add instructions extend both the arithmetic and interrupt handling capability of the μ PD8085A. The ability to increment and decrement memory, the six general registers and the accumulator are provided as well as extended increment and decrement instructions to operate on the register pairs and stack pointer. Further capability is provided by the ability to rotate the accumulator left or right through or around the carry bit.

Input and output may be accomplished using memory addresses as I/O ports or the directly addressed I/O provided for in the μ PD8085A instruction set.
Two instructions, RIM and SIM, are used for reading and setting the internal interrupt mask as well as input and output to the serial I/O port.

The special instruction group completes the μ PD8085A instruction set: NOP, HALT stop processor execution; DAA provides decimal arithmetic capability; STC sets the carry flag; CMC complements it; CMA complements the contents of the accumulator; and XCHG exchanges the contents of two 16 -bit register pairs directly.
Data in the μ PD8085A is stored as 8 -bit binary integers. All data/instruction transfers to the system data bus are in the following format:

D_{7}	D_{6}	D5		4	D_{3}	D_{2}	D1		D_{0}
MSB				TA					LSE

Instructions are one, two, or three bytes long. Multiple byte instructions must be stored in successive locations of program memory. The address of the first byte is used as the address of the instruction.

One Byte Instructions								OP CODE	TYPICAL INSTRUCTIONS Register to register, memory reference, arithmetic or logica! rotate, return, push, pop, enable, or disable interrupt instructions
D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}		
Two Byte Instructions									
D_{7}	D_{6}	D_{5}	D_{4}	O_{3}	D_{2}	D_{1}	D_{0}	op code OPERAND	Immediate mode or I/O instructions
D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}		
Three Byte Instructions								OP CODE	Jump, call or direct load and store instructions
D_{7}	D_{6}	D_{5} \|	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}		
D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}	LOW ADDRESS OR OPERAND 1	
D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}	HIGH ADDRESS OR OPERAND 2	

One to five machine cycles ($M_{1}-M_{5}$) are required to execute an instruction. Each machine cycle involves the transfer of an instruction or data byte into the processor or a transfer of a data byte out of the processor (the sole exception being the double add instruction). The first one, two or three machine cycles obtain the instruction from the memory or an interrupting I/O controller. The remaining cycles are used to execute the instruction. Each machine cycle requires from three to five clock times ($\mathrm{T}_{\mathbf{1}}-\mathrm{T}_{5}$).

Machine cycles and clock states used for each type of instruction are shown below.

INSTRUCTION TYPE	MACHINE CYCLES EXECUTED MIN/MAX	CLOCK STATUS MIN/MAX
ALU R	1	4
CMC	1	4
CMA	1	4
DAA	1	4
DCR R	1	4
DI	1	4
EI	1	4
INR R	$\bigcirc 1$	4
MOV R, R	1	4
NOP	1	4
ROTATE	1	4
RIM	1	4
SIM	1	4
STC	1	4
XCHG	1	4
HLT	1	5
DCX	1	6
INX	1	6
PCHL	1	6
RET COND.	1/3	6/12
SPHL	1	6
ALU I	2	7
ALU M	2	7
JNC	2/3	7/10
LDAX	2	7
MVI	2	7
MOV M, R	2	7
MOV R, M	2	7
STAX	2	7
CALL COND.	2/5	9/18
DAD	3	10
DCR M	3	10
IN	3	10
INR M	3	10
JMP	3	10
LOAD PAIR	3	10
MVI M	3	10
OUT	3	10
POP	3	10
RET	3	10
PUSH	3	12
RST	3	12
LDA	4	13
STA	4	13
LHLD	5	16
SHLD	5	16
XTHL	5	16
CALL	5	18

μ PD8085A

A minimum computer system consisting of a processor, ROM, RAM, and
μ PD8085A FAMILY MINIMUM SYSTEM CONFIGURATION I/O can be built with only $3-40$ pin packs. This system is shown below with its address, data, control busses and I/O ports.

PACKAGE OUTLINE μ PD8085AC

Plastic

ITEM	MILLIMETERS	INCHES
A	51.5 MAX	2.028 MAX
B	1.62	0.064
C	2.54 ± 0.1	0.10 ± 0.004
D	0.5 ± 0.1	0.019 ± 0.004
E	48.26	1.9
F	1.2 MIN	0.047 MIN
G	2.54 MIN	0.10 MIN
H	0.5 MIN	0.019 MIN
I	5.22 MAX	0.206 MAX
J	5.72 MAX	0.225 MAX
K	15.24	0.600
L	13.2	0.520
M	$0.25+0.1$	$0.010+0.004$

μ PD8085AD

Ceramic

ITEM	MILLIMETERS	INCHES
A	51.5 MAX	2.03 MAX
B	1.62 MAX	0.06 MAX
C	2.54 ± 0.1	0.1 ± 0.004
D	0.5 ± 0.1	0.02 ± 0.004
E	48.26 ± 0.1	1.9 ± 0.004
F	1.02 MIN	0.04 MIN
G	3.2 MIN	0.13 MIN
H	1.0 MIN	0.04 MIN
I	3.5 MAX	0.14 MAX
J	4.5 MAX	0.18 MAX
K	15.24 TYP	0.6 TYP
L	14.93 TYP	0.59 TYP
M	0.25 ± 0.05	0.01 ± 0.0019

16-BIT MICROPROCESSOR

DESCRIPTION The μ PD8086 is a 16 -bit microprocessor that has both 8 -bit and 16 -bit attributes. It has a 16 -bit wide physical path to memory for high performance. Its architecture allows higher throughput than the $5 \mathrm{MHz} \mu$ PD8085A-2.

FEATURES - Can Directly Address 1 Megabyte of Memory

- Fourteen 16-Bit Registers with Symmetrical Operations
- Bit, Byte, Word, and Block Operations
- 8, and 16 -Bit Signed and Unsigned Arithmetic Operations in Binary or Decimal
- Multiply and Divide Instructions
- 24 Operand Addressing Modes
- Assembly Language Compatible with the μ PD8080/8085
- Complete Family of Components for Design Flexibility

GND ${ }^{\text {d }}$	1		40	$\mathrm{V}_{C C}$	
AD14	2		39	- AD15	
AD13	3		38	A16/S3	
AD12	4		37	$\square \mathrm{A} 17 / \mathrm{S} 4$	
AD11	5		36	$\square \mathrm{A} 18 / 55$	
AD10	6		35	A19/S6	
AD9	7		34	\square BHE/S7	
AD8 8	8		33	$\square \mathrm{mN} / \mathrm{MX}$	
AD7	9		32	¢ $\overline{\mathrm{RD}}$	
AD6	10	$\mu \mathrm{PD8086}$	31	$\square \mathrm{HOLD}$	(RD/GTO)
AD5	11	CPU	30	HLDA	($\overline{\mathrm{Ra} / \mathrm{GT1}}$)
AD4	12		29	W WR	($\overline{\text { LOCK }}$)
AD3	13		28	$\underline{\mathrm{m}} \overline{\mathrm{O}}$	($\overline{\mathbf{S} 2)}$
AD2 5	14		27	Q DT / R	(S7)
AD1	15		26	Q DEN	($\overline{\text { S }}$)
ADO	16		25	$\square \mathrm{ALE}$	(aso)
NMI -	17		24	$\square \mathrm{INTA}$	(QS1)
INTR	18		23	\square TEST	
clk	19		22	READY	
GND \square^{-1}	20		21	$\square \mathrm{RESET}$	

No.	SYMBOL	NAME	FUNCTION
2-16, 39	AD0-AD15	Address/Data Bus	Multiplexed address $\left(T_{1}\right)$ and deta ($T_{2}, T_{3}, T_{W}, T_{4}$) bus. 8 -bit peripherals tied to the lower 8 bits, use AO to condition chip select functions. These lines are tri-state during interrupt acknowledge and hold states.
17	NMI	Non-Maskable Interrupt	This is an edge triggered input causing a type 2 interrupt. A look-up table is used by the processor for vectoring information.
18	INTR	Interrupt Request	A level triggered input sampled on the last clock cycle of each instruction. Vectoring is via an interrupt look-up table. INTR can mask in software by resetting the interrupt enable bit.
19	CLK	Clock	The clock input is a $1 / 3$ duty cycle input basic timing for the processor and bus controlier.
21	RESET	Reset	This active high signal must be high for 4 clock cycles. When it returns low, the procestor restarts execution.
22	READY	Ready	An acknowledgement from memory or I/O that data will be transferred. Synchronization is done by the μ PD8284 clock generator.
23	TEST	Test	This input is examined by the "WAIT" instruction, and if low, execution continues. Otherwise the processor waits in an "Idle" state. Synchronized by the processor on the leading edge of CLK.
24	INTA	Interrupt Acknowledge	This is a read strobe for reading vectoring information. During $\mathrm{T}_{\mathbf{2}}, \mathrm{T}_{\mathbf{3}}$, and $\mathrm{T}_{\mathbf{W}}$ of each interrupt acknowledge cycle it is low.
25	ALE	Address Latch Enable	This is used in conjunction with the μ PD8282/8283 latches to latch the address, during T_{1} of any bus cycle.
26	$\overline{\text { DEN }}$	Data Enable	This is the output ensble for the μ PD8282/8287 transcelvers. It is active low during each memory and I / O access and INTA cycles.
27	DT/R	Data Transmit/Recelve	Used to control the direction of data flow through the transceivers.
28	M/10	Memory/IO Status	This is used to separate mamory access from I/O access.
29	\bar{W}	Write	Depending on the stete of the $\mathrm{M} / \overline{\mathrm{TO}}$ line, the processor is elther writing to $1 / O$ or memory.
30	HLDA	Hold Acknowledge	A response to the HOLD input, causing the processor to tri-state the local bus. The bus return active one cycle after HOLD goes back low.
31	HOLD	Hold	When another device requests the local bus, driving HOLD high, will cause the μ PD8086 to issue a HLDA.
32	$\overline{\text { RD }}$	Read	Depending on the state of the $\mathrm{M} / \overline{\mathrm{IO}}$ line, the processor is reading from either memory or $1 / 0$.
33	MN/ $\overline{M X}$	Minimum/Maximum	This input is to tell the processor which mode it is to be used in. This effects some of the pin descriptions,
34	$\overline{\text { BHE/ }} / 7$	Bus/High Enable	This is used in conjunction with the most significant half of the data bus. Peripheral devices on this half of the bus use BHE to condition chip select functions.
35-38	A16-A19	Most Significant Address Bits	The four most significent address bits for memory operations. Low during I/O operations.
$\begin{gathered} \hline 26,27,28 \\ 34-38 \end{gathered}$	$\mathrm{S}_{0}-\mathrm{S}_{7}$	Status Outputs	These are the status outputs from the processor. They are used by the μ PD8288 to generate bus control signals.
24, 25	$\mathrm{OS}_{1}, \mathrm{OS}_{0}$	Que Status	Used to track the internal μ PD8086 instruction que.
29	LOCK	Lock	This output is set by the "LOCK" instruction to prevent other system bus masters from gaining control.
30, 31	$\begin{aligned} & \overline{\mathrm{RO}} / \overline{\mathrm{GTO}} \\ & \overline{\mathrm{RQ}} / \overline{\mathrm{GT}} \end{aligned}$	Request/Grant	Other local bus masters can force the processor to rebate the local bus at the end of the current bus cycle.

Operating Temperature $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on Any Pin with Respect to Ground

\qquad -1.0 to +7 VPower Dissipation2.5W

$$
\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}
$$

*COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PARAMETER	SYMBOL	LIMITS		UNITS	TEST CONDITIONS	DC CHARACTERISTICS
		MIN	MAX			
Input Low Voltage	$V_{\text {IL }}$	-0.5	+0.8	v		
Input High Voltage	$V_{\text {IH }}$	2.0	$\mathrm{V}_{\mathrm{Cc}}+0.5$	v		
Output Low Voltage	$\mathrm{VOL}^{\text {L }}$		0.45	v	$\mathrm{I}_{\mathrm{OL}}=2.5 \mathrm{~mA}$	
Output High Voltage	V_{OH}	2.4		V	$\mathrm{I}^{\mathrm{OH}}=-400 \mu \mathrm{~A}$	
Power Supply Current μ PD8086/ μ PD8086-2	${ }^{\text {Icc }}$		$\begin{aligned} & 340 \\ & 350 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	
Input Leakage Current	ILI		± 10	$\mu \mathrm{A}$	OV $<V_{\text {IN }}<V_{\text {cc }}$	
Output Leakage Current	ILO		± 10	$\mu \mathrm{A}$	$0.45 \mathrm{~V} \leqslant \mathrm{~V}_{\text {OUT }} \leqslant \mathrm{V}_{\text {cc }}$	
Clock Input Low Voltage	$\mathrm{V}_{\text {CL }}$	-0.5	+0.6	v		
Clock Input High Voltage	VCH .	3.9	Vcc + 1.0	V		
Capacitance of Input Buffer (All input except ADO-AD15, $\overline{R Q} / \overline{G T}$)	CIN		15	pF	$\mathrm{fc}=1 \mathrm{MHz}$	
Capacitance of I/O Buffer ($A D_{0}-A D_{15}, \overline{R Q} / \overline{G T}$)	ClO_{10}		15	pF	$\mathrm{fc}=1 \mathrm{MHz}$	

PARAMETER	SYMBOL	$\mu \mathrm{PD8086}$		${ }^{2}$ PD8086-2 (Preliminary)		UNITS	TEST CONDITIONS
		MIN	MAX	MIN	MAX		
CLK Cycle Period - μ PD8086	TCLCL	200	500	125	500	ns	
CLK Low Time	TCLCH	(2/3 TCLCL) -15		(2/3 TCLCL)-15		ns	
CLK High Time	TCHCL	(1/3 TCLCL) +2		$(1 / 3$ TCLCL) +2		ns	
CLK Rise TIme	TCH1CH2		10		10	ns	From 1.0V to 3.5V
CLK Fall Tima	TCL2CL1		10		10	ns	From 3.5V to 1.0V
Data In Sotup Time	TDVCL	30		20		ns	
Data In Hold Time	TCLDX	10		10		ns	
RDY Setup Time into μ PD8284 (1) (2)	TR1VCL	35		35		ns	
RDY Hold Time into μ PD8284 .(1) (2)	TCLR1X	0		0		ns	
FEADY Setup Time into μ PD8086	TRYHCH	(2/3 TCLCL) -15		(2/3 TCLCL) 15		ns	
READY Hold Time into μ PD8086	TCHRYX	30		20		ns	
READY Inactive to CLK (3)	TRYLCL	-8		-8		ns	
HOLD Satup Time	THVCH	35		20		ns	
INTR, NMI, $\overline{\text { TEST }}$ Setup Time (2)	TINVCH	30		15		ns	
Input Rise Time	TILIH		20			ns	From 0.8 V to 2.0 V
Input Fall Time	TİHIL	.	12			ns	From 2.0 V to 0.8 V

NOTES: (1) Signal at μ PD8284 shown for reference only
(2) Setup requirement for asynchronous signal only to guarantes recognition at next CLK.
(3) Appiles only to T 2 state. (8 ns into T 3)

TIMING WAVEFORMS

TIMING WAVEFORMS

Minimum Complexity
Systems (Con't.) (5)

NOTES: (1) All signals switch between $V_{O H}$ and $V_{O L}$ unless otherwise specified.
(2) RDY is sampled near the end of $\mathrm{T}_{2}, \mathrm{~T}_{3}, \mathrm{~T}_{W}$ to determine if T_{W} machines states are to be inserted.
(3) Two INTA cycles run back-to-back. The μ PD8086 locel ADDR/Data Bus is floating during both INTA cycles. Control signals shown for second INTA cycle.
(4) Signals at μ PD8284 are shown for reference only.
(5) All timing measurements are made at 1.5 V unless otherwise noted.

TIMING WITH μ PBB288 BUS CONTROLLER

PARAMETER	SYMBOL	$\mu \mathrm{PD} 8086$		-PD88086-2 (Preliminary)		UNITS	TEST CONDITIONS
		MIN	MAX	MIN	MAX		
CLK Cycle Period - μ PD8086	TCLCL	200	500	125	500	ns	
CLK Low Time	TCLCH	(2/3 TCLCL) - 15		(2/3 TCLCL) - 15		ns	
CLK K High Time	TCHCL	(1/3 TCLCL) +2		(1/3 TCLCL $)+2$		ns	
CLK Rise Time	TCH1CH2		10		10	ns	From 1.0V 103.5 V
CLN Fall Time	TCL2CL1		10		10	ns	From 3.5V to 1.0 V
Data in Setup Time	TDVCL	30		20		ns	
Data in Hold Time	TCLDX	10		10		ns	
RDY Setup Time into μ PD8284 (1) (2)	TR1VCL	35		35		ns	
RDY Hold time into μ PD8284 (1). (2)	TCLR1X	0		0		ns	
READY Setup Time into μ PD8086	TRYHCH	(2/3 TCLCL) - 15		(2/3 TCLCL) - 15		ns	
READY Hold Time into μ PD8086	TCHAYX	30		20		ns	
READY nactive to CLK (4)	TRYLCL	-8		-8		ns	
Setup Time for Recognition (INTR, NMI, TEST) (2)	TINVCH	30		15		ns	
$\overline{\mathrm{RO} / \mathrm{GT}}$ Setup Time	TGVCH	30		15		ns	
$\overline{\text { FQ }}$ Hold Time into μ PD8086	TCHGX	40		30		ns	
(nput Rise Time	TILIH		20			ns	From 0.8 V to 2.0 V
Input Fall Time	TIHIL		12			ns	From 2.0 V to 0.8 V

MAXIMUM MODE SYSTEM
With μ PB8288 Bus Controller

PARAMETER	SYMBOL	$\mu \mathrm{PD}$ (${ }^{\text {a }}$		μ PD9088-2 (Pratiminary)		UNIT8	TEST CONDITIONS
		MIN	MAX	MIN	MAX		
Command Active Delay (See Note 1)	TCLML	10	35	10	36	ns	$C_{L}=20-100 \mathrm{pF} \text { for }$ all μ PD8086 Outputs IIn addition to μ PD8086 self-load)
Command Inactive Delay (See Note 1)	TCLMH	10	35	10	36	ns	
READY Active to Status Passive (See Note 3)	TAYHSH		110		65	ns	
Status Active Delay	TCHSV	10	110	10	60	ns	
Stetus Inactlve Delay	TCLSH	10	130	10	70	ns	
Address Valid Delay	TCLAV	10	110	10	60	ng	
Address Hold Time	TCLAX	10		10		ns	
Address Flost Delay	TCLAZ	TCLAX	80	TCLAX	50	ns	
Status Valid to ALE High (See Note 1)	TSVLH		15		15	ns	
Status Valid to MCE High (See Note 1)	TSVMCH		15		15	n!	
CLK Low to ALE Valid (See Note 1)	TCLLH		15		15	ns	
CLK Low to MCE High (See Note 1)	TCLMCH		15		15	ns	
ALE Inactive Deiay (See Note 1)	TCHLL		15		15	ns	
MCE Inactive Delay (See Note 1)	TCLMCL		15		15	ns	
Date Valid Dalay	TCLDV	10	110	10	60	ns	
Data Hold Time	TCHDX	10		10		ns	
Control Active Delay (See Note 1)	TCVNV	5	45	5	45	ns	
Control Inactive Delay (See Note 1)	TCVNX	10	45	10	45	ns	
Address Float to Read Active	TAZRL	0		0		ns	
RD Active Delay	TCLRL	10	165	10	100	ns	
AD Inactive Delay	TCLRH	10	150	10	80	ns	
RD Inactive to Next Address Active	TRHAV	TCLCL-45		TCLCL-40		n8	
Direction Control Active Delby (See Note 1)	TCHDTL		50		50	ns	
Direction Control Inactive Delay (See Note 1)	TCHDTH		30		30	n8	
GT Active Delay	TCLGL	0	85	0	50	ns	
GT Inactive Delay	TCLGH	0	85	0	50	ns	
$\overline{\text { AD Width }}$	TRLRH	2TCLCL60		2TCLCL-50		ns	
Output Rise Time	TOLOH		20			nt	From 0.8V to 2.0 V
Output Fall Time	TOHOL		12			ns	From 2.0 V to 0.8 V

NOTES: (1) Signal at μ PB8284 or μ PB8288 shown for reference only.
(2) Signal at μ PB8284 or μ PB8288 shown for reference only.
(3) Applies only to T3 and weit states.

Applies only to T 2 state $\{8$ ns into T3).

TIMING WAVEFORMS
Maximum Mode
System Using
μ PB8288 Controller (7)

θ

TIMING WAVEFORMS
Maximum Mode System Using μ PB8288 Controller (Con't.) 7

NOTES: (1) All signals awitch between VOH and VOL untese otherwite apecifled.
(2) RDY ts tumpled neer the end of $\mathrm{T}_{\mathbf{2}}, \mathrm{T}_{\mathbf{3}}, \mathrm{T}_{\mathbf{w}}$ to determine $\mathrm{H} \mathrm{T}_{\mathbf{w}}$ machinet stetes ere to be inserted.
(3) Coscade addrass is valid between first and escond INTA cych.
(4) Two INTA cyeles run beck-zo-byck. The 8085 locel ADDR/Dere Bus is Two INTA eveles run beck-to-bsck. The 8083 locel ADDR/D
flosting during both INTA cycles. Control for polnter eddrees fiosting during both INTA cycles.
is shown for sucond INTA eycie.
(C) Signils at 8284 or 8288 are mown for reference only.
(6) The isuunce of the 8788 comphand end controd sigines (MFDCD NWTC. ANWC, IOAC, IOWC, AIOWC. INTA and DEN) lage the ecthe him 8288 CEN.
(7) All timing mataurements art mede at 1.5 V untese otherwise noted.
(6) Stetus inective in state just prior to T_{4}.

ASYNCHRONOUS SIGNAL RECOGNITION

BUS LOCK SIGNAL TIMING

REQUEST/GRANT SEQUENCE TIMING*

NOTE: (1) The coprocessor may not drive the buses outside the region shown without risking contention.
*for Maximum Mode only

HOLD/HOLD ACKNOWLEDGE TIMING*

PACKAGE OUTLINE μ PD8086D Cerdip

Description

The μ PD8088 is a powerful 8 -bit microprocessor that is software-compatible with the μ PD8086. The μ PD8088 has the same bus interface signals as the μ PD8085A, allowing it to interface directly with multiplexed bus peripherals. The μ PD8088 has a 20 -bit address space which can be divided into four segments of up to 64 K bytes each.

Features

8-bit data bus interface16-bit internal architecture
Addresses 1 M -byte of memory
Software-compatible with the 8086
Provides byte, word, and block operations
Performs 8-and 16 -bit signed and unsigned arithmetic in binary and decimal
\square Multiply and divide instruction
\square Directly interfaces to 8155,8355 , and 8755A multiplexed peripherals
40-pin DIP

PIn Conflguration

			Min Mode	$\left\{\begin{array}{c} \operatorname{Max} \\ \{\text { Mode } \end{array}\right\}$
GNO 1		40	$\square \mathrm{Vcc}$	
A14		39	-A15	
A13-		38	曰A16/S3	
A12 \square		37	A17/S4	
A11 $\square^{\text {a }}$		36	$\square \mathrm{A} 18 / 55$	
A10 6		35	$\square \mathrm{A} 19 / \mathrm{S6}$	
A9		34	$\square \mathrm{SSO}$	(HIGH)
A8		33	$\square \mathrm{MN} / \mathrm{MX}$	
AD7 ${ }^{\text {a }}$		32	\square RD	
AD6 10	8088 CPU	31	\square HOLD	($\mathrm{RO} / \mathrm{GTO}$
AD5 11		30	HLDA	(R / /GT1)
AD4 12		29	$\square \overline{W R}$	(LOCK)
${ }^{\text {ADO }}$ - 13		28	$\square 10 / \bar{M}$	(52)
AD2 14		27	В dт/R	(51)
AD1-15		26	$\square \overline{\text { OEN }}$	(50)
ADO 16		25	$\square \mathrm{ALE}$	(QSO)
NMI 17		24	$\square I \mathrm{NTA}$	(QS1)
INTR 18		23	\square TEST	
CLKK 19		22	$\square \mathrm{READY}$	
GND 20		21	$\square \mathrm{RESET}$	

Pin Identification

No.	8ymbol	Name	Function
1,20	GND	Ground	
$\begin{aligned} & 2-8 \\ & 35-39 \end{aligned}$	A_{19} A $_{8}$	Most significant address blts	Most significant blts for memory operations.
9-16	$A D_{7}-A D_{0}$	Address/Data bus	Multiplexed address and data bus. 8-blt peripherals tled to these blte use A_{0} to condition chip select functions. These lines are tri-state during hold and interrupt acknowledge states.
17	NMI	Non-maskable Interrupt	This edge-triggered input causes a type 2 Interrupt. The processor uses a lookup table for vectoring information.
18	INTR	Interrupt request	This is a level-triggered Interrupt sampled on the last clock cycle of each instruction. A lookup table is used for vectoring. INTR can be masked by software by resetting the interrupt enable bit.
19	CLK	Clock	The clock is a $1 / 3$ duty cycie input providing basic timing for the processor and bus controller.
21	FESET	Reset	This active high signal must be high for $\mathbf{4}$ clock cycles. When it returns low, the processor restarts execution.
22	READY	Ready	An acknowledgement from memory or I/O that data will be transferred. Synchronization is done by the μ PD8284 clock generator.
23	TEST	Test	This input is examined by the "WAIT"' instruction and If low, execution continues. Otherwise the processor waits in an "Idle"' state. Synchronized by the processor on the leading edge of CLK.
24	INTA	Interrupt Acknowledge	This is a read strobe for reading vectoring information. During $\mathrm{T}_{2}, \mathrm{~T}_{3}$, and T_{W} of each Interrupt acknowledge cycle it is low.
25	$\overline{\text { ALE }}$	Address Latch Enable	Used with the μ PD8282/8283 latches to latch the address during T_{1} of any bus cycle.
24, 25	$\mathbf{Q S}_{1}, \mathbf{Q S}_{0}$	Queue Status	(Max Mode) Tracks the Internal μ PD8088 instruction queue.
26	$\overline{\text { DEN }}$	Data Enable	This ls the output enable for the μ PD8286/8287 transceivers. It is active low during memory and I/O access and INTA cycles.
27	DT/R	Data Transmit/ Receive	Controls the direction of data flow through the transcelvers.
28	10/M	I/O/Memory Status	Separates memory access from I/O access.
29	$\overline{W R}$	Write	The processor is writing to memory or I/O, depending on the state of the IO/M line.
29	l.OCK	Lock	(Max Mode) Thls output is set by the lock Instruction to prevent other system bus masters from gaining control.
30	HLDA	Hold Acknowledge	A response to the HOLD Input, causing the processor to tri-state the local bus. The bus becomes active one cycle after HOLD returns low.
31	HOLD	Hold	When another device requests the local bus, HOLD is driven high, causing the μ PD8088 to issue a HLDA.
30, 31	$\overline{\mathbf{F Q}} / \mathbf{G T}_{0}$ मत/GT 1	Request/Grant	(Max Mode) Other local bus masters can force the processor to rebase the local bus at the end of the current bus cycle.
32	HD	Read	Depending on the state of the $\overline{\mathrm{IO}} / \mathrm{M}$ line, the processor is reading from memory or $1 / 0$.
. 33	MN/MX	Minimum/ Maximum	This input tells the processor In which mode it is to be used. This affects some of the pin descriptions.
34	$\overline{\mathrm{SSO}}$	Status Line	Equivalent to $\overline{\mathbf{S}}_{\mathbf{0}}$ in Max Mode.
26-28	$\underline{\mathrm{S}_{0}-\mathrm{S}_{2}}$	Status Outputs	(Max Mode)
35-38	$\mathrm{S}_{3}-\mathrm{S}_{6}$	Status Outputs	These outputs from the processor are used by the μ PंD 8288 to generate bus control signals.
40	$V_{C C}$	Power Supply	5 V power input.

μ PD8088

Block Dlagram

Absolute Maximum Ratings*
 $\mathrm{T}_{\mathrm{a}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

Tentative	
Amblent Temperature under Bias	$0^{\circ} \mathrm{C}$ to $\mathbf{7 0 ^ { \circ } \mathrm { C }}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on any Pin with respect to Ground	$-\mathbf{0 . 5 \mathrm { V } \text { to } + \mathbf { 7 V }}$
Power Dissipation	1.5 Watt

*COMMENT: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC Characteristics

Parameter	Symbol	Limits			Unlt	Teat Conditions
		M/n	Typ	Max		
Clock Input Low Voltage	$V_{\text {CL }}$	-0.5		+0.6	v	
Clock Input High Voltage	$V_{\text {ch }}$	3.9		$\mathrm{v}_{\mathrm{CC}}+1.0$	v	
Input Low Voltage	$V_{\text {IL }}$	-0.5		+0.8	v	
Input High Voltage	$\mathrm{V}_{\text {IH }}$	2.0		$\mathrm{VCC}+0.5$	v	
Output Low Voltage	V_{OL}			0.45	v	$\mathrm{IOL}=2.0 \mathrm{~mA}$
Output High Voltage	V_{OH}	2.4			V	$1 \mathrm{OH}=400 \mu \mathrm{~A}$
Power Supply Current	Icc			340	mA	
Input Leakage	ILI			± 10	$\mu \mathrm{A}$	OV $<V_{\text {IN }}<V_{\text {CC }}$
Output Leakage	Lo			± 10	$\mu \mathrm{A}$	$0.45 \mathrm{~V} \leqslant \mathrm{~V}_{\text {OUT }} \leqslant V_{\text {CC }}$

Capacitance

Parameter	Symbol	Limits			Unit	Teat Conditions
		Min	Typ	Max		
Capacitance of Input Buffer (All input except $\left.A D_{0}-A D_{7} R Q / G T\right)$	$C_{1 N}$			15	pF	$\mathrm{fc}=1 \mathrm{MHz}$
Capacitance of I/O Buffer $\left(\mathrm{AD}_{\mathbf{0}^{-}} \mathrm{AD}_{7} \mathrm{RQ} / \mathrm{GT}\right)$	ClO_{10}			15	pF	$\mathrm{fc}=1 \mathrm{MHz}$

AC Charac MInimum Mod $\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to	eristl TImin $+70^{\circ} \mathrm{C}$	cs Requirem VCC $=+5$	onts $v_{ \pm} 10 \%$		
Paramotor	Symbol	Min	Typ Max	Unit	Tost Condthion
CLK Period	${ }^{\text {clccl }}$	200	500	ns	
CLK Low Time	${ }_{\text {tcler }}$	(2/3tclal ${ }^{-15}$		ns	
CLK High Time	${ }^{\text {chel }}$	${ }^{1 / 13 \mathrm{t} \text { cLCL }}+2$		ns	
CLK Rise Time	${ }^{1} \mathrm{CHH}_{1} \mathrm{CH} 2$		10	ns	1.0 V to 3.5 V
CLK Fall Time	${ }^{\text {ctl2CL1 }}$		10	ns	3.5v to 1.0 V
Data In Sotup Time	tovcl	30		ns	
Data In Hold T Tme	tcldx	10		n9	
	${ }_{\text {trivcl }}$	${ }^{35}$		ns	
RDY Hold Time into	tclaix	0		ns	
READY Setup Time into μ PD808B	${ }_{\text {tryHeH }}$	$\left.{ }^{(2 / 3} \mathrm{CLCLL}\right){ }^{15}$		n8	
READY Hold Timo Into μ PD8088	tehryx	30		ns	
$\begin{aligned} & \begin{array}{l} \text { EEADY Inactive to } \\ \text { CLK (3) } \end{array} \end{aligned}$	tryLcL	-8		ns	
HoLD Sotup Time	thver	35		ns	
INTR, NM, TEST Solup Time (2)	$\mathrm{t}^{\text {WVCCH }}$	${ }^{30}$		ns	

Notes:

(1) Signal at μ PD8284 shown for reference only.
(2) Setup requirement for asynchronous signal guarantees recognition at next CLK.
(3) Applies to T_{2} state (8 ns into T_{3} state).

Timing Responses

Parameter	Symbol	M/n	Typ Max	Units	Test Conditions
Address Valid Delay	${ }^{\text {t CluaV }}$	15	110	ns	
Address Hold Time	${ }^{\text {C CLAX }}$	10		ns	
Address Float Delay	${ }^{\text {ctas }}$	${ }^{\text {t CLAX }}$	80	n8	
ALE Wldth	${ }_{\text {thLL }}$	${ }^{\text {t CLCH }}{ }^{-20}$		ns	
ALE Active Delay	tclur		80	ns	
ALE Inactive Delay	${ }_{\text {t }}^{\text {CHLL }}$		85	n8	
Address Hold Time to ALE Inactive	${ }_{\text {tLAX }}$	${ }^{\mathbf{C H C H}}-10$		ns	
Data Valid Delay	${ }^{\text {t CLDV }}$	10	110	ns	$C_{L}=20-100 \mathrm{pF}$ for
Data Hold Time	${ }^{\text {CHPHDX }}$	10		ns	all 8088 outputs
Data Hold Time After WR	tWHDX	${ }^{\mathbf{C L C H}}{ }^{-30}$		ns	
Control Active Delay 1	tcverv	10	110	ns	
Control Active Delay 2	${ }^{\text {t }}$ CHCTV	10	110	n8	
Control Inactive Delay	tcvetx	10	110	ns	
Address Float to READ Active	$t_{\text {AZRL }}$	0		ns	
$\overline{\mathrm{RD}}$ Active Delay	${ }^{\text {t CLRL }}$	10	165	ns	.
$\overline{\mathrm{RD}}$ Inactive Delay	${ }^{\text {t CLRH }}$	10	150	ns	
$\overline{\mathbf{R D}}$ Inactive to Next Address Active	${ }^{\text {t }}$ RHAV	${ }^{\text {t }}$ (LCL -45		n8	
HLDA Valld Delay	${ }^{\text {chelhav }}$	10	160	n8	
$\overline{R D}$ Width	trLRH	${ }^{2} \mathrm{CCLCL}^{-75}$		ns	
WR WIdth	tWLWH	${ }^{21} \mathrm{CLCL}-60$		ns	
Address Valld to ALE Low	$t_{\text {AVAL }}$	${ }^{1} \mathrm{CLCH}^{-60}$		ns	

AC Characterlstics (Cont.)

Max Mode System Timing Requirements
(Using 8288 Bus Controller)

Parameter	Symbol	Mm	Typ Max	Unit	Test Condilions
CLK Period	tclcl	200	500	ns	
CLK Low Time	${ }^{\text {t }}$ CLCH	(${ }^{2 / 3}$ CLCLL) -15		ns	
CLK High Time	${ }^{\text {t }} \mathrm{CHCL}$	$\left(1 / 3{ }^{\text {cLCL }}\right)+2$		ns	,
CLK Rise TIme	${ }^{\mathbf{t}} \mathrm{CH}_{1} \mathrm{CH} 2$		10	ns	1.0 V to 3.5 V
CLK Fall Time	${ }^{\text {ClL2Cl } 1}$		10	ns	3.5 V to 1.0 V
Data In Setup Time	tbVCL	30		ns	
Data In Hold TIme	tcldx	10		ns	
RDY Setup Time into μ PD8284 (1) (2)	${ }_{\text {trivCL }}$	35		ns	
RDY Hold Time Into μ PD8284 (1) \& 2)	tclalx	0		ns.	
READY Setup TIme Into μ PD8088	${ }^{\text {tryHCH }}$	(2/3t CLCL$)^{-15}$		ns	
READY Hold Time Into μ PD8088	${ }^{\text {t CHRYX }}$	30		n8	-
READY Inactlve to CLK (4)	${ }^{\text {tryLCL }}$	-8		ns	
Setup Time for Recognition (INTR, NMI, TESTI) (2)	${ }^{\text {tiNVCH }}$	30		ns	
RQ/GT Setup Time	$\mathrm{t}_{\text {GVCH }}$	30		ns	
RQ Hold Time into μ PD8088	${ }^{\text {tehax }}$	40		ns	

Perameter	Symbol	Win	Typ Max	Units	Teet Conditions
Command Active Delay (1)	${ }^{\text {t CLML }}$	10	35	ns	
Command Inactive Delay (1)	${ }^{\text {t CLMM }}$	10	35	ns	
READY Active to Status Passlve (3)	tRYHSH	,	110	ns	
Status Active Delay	CHSV	+ 10	110	ns	
Status Inactive Delay	${ }^{\text {t CLSH}}$	10	130	ns	
Address Valid Delay	tClav	15	110	ns	
Address Hold Time	tclax	10		ns	
Address Float Delay	tclaz	tclax	80	ns	
Status Valid to ALE High (1)	tSVLH		15	ns	
Status Valid to MCE High (1)	tSVMCH		15	n*	
CLK Low to ALE Valld (1)	${ }^{\text {t CLLH }}$		15	ns	
CLK Low to MCE High (1)	tCLMCH		15	ns	-
ALE Inactive Delay (1)	${ }^{\mathbf{t}} \mathbf{C H L L}$		15	ns	$C_{L}=20-100 \mathrm{pF}$ for all 8088 outputs
MCE Inactive Delay (1)	${ }^{\text {t CLMCL }}$		15	ns	and internal foads
Data Valld Delay	tCLDV	15	110	n8	-
Data Hold Time	tCHDX	10		ns	
Control Active Delay (1)	${ }^{\text {tcVNV }}$	5	45	ns	
Control Inactive Delay (1)	${ }^{\text {t }}$ CVNX	10	45	ns	
Address Float to READ.Active	$t_{\text {AZRL }}$	0		ns	
RD Active Delay	${ }^{\text {cher }}$	10	165	ns	
RD Inactive Delay	${ }^{\text {t CLRH }}$	10	150	ns	
RD Inactive to Next Address Active	${ }^{\text {tranav }}$	tclcl-45		ns	
Direction Control Active Delay (1)	${ }^{\text {t }}$ CHDTL		50	ns	
Direction Control Inactive Delay (1)	${ }^{\text {t }}$ CHDTH		30	ns	
GT Actlve Delay	${ }^{\text {t CLGL }}$		110	n8	
GT Inactive Delay	tClaH		85	ns	
$\overline{\text { FD Width }}$	$t_{\text {PLRH }}$	${ }^{2}$ CLCL- 75		$n 8$	

Notes:

(1) Signal at μ PD8284 or μ PD8288 shown for reference only.
(2) Setup requirement for asynchronous signal guarantees recognition at next CLK.
(3) Applies to T_{3} and wait states.
(4) Applies to T_{2} state (8 ns into T_{3} state).

بPD8088

Timing Waveforms

Timing Waveforms (Cont.)

Notes:
(1) All signals switch between V_{OH} and V_{OL} unless otherwise specified.
(2) RDY is sampled near the end of T_{2}, T_{3}, TWAIT to determine if TWAIT machine states are inserted.
(3) Two INTA cycles run back-to-back. The μ PD88088 local Address/ Data bus floats during both INTA cycles. The control signals shown are for the second INTA cycle.
(4) Signals at the μ PD8284 are shown for reference.
(5) All timing measurements are taken at 1.5 V unless otherwise specified.

μ PD8088

Timing Waveforms (Cont.)

Maximum Mode System Bus Timing (using 8288 Bus Controller)

$$
\mu \text { PD8088 }
$$

Notes:
(1) All signals switch between V_{OH} and V_{OL} unless otherwise specified.
(2) RDY is sampled near the end of T_{2}, T_{3}, TWAIT to determine if TWAIT machine states are inserted.
(3) The cascade address is valid between the first and second INTA cycles.
(4) Two INTA cycles run back-to-back. The μ PD8088 local Address/Data bus floats during both INTA cycles. The control signals shown are for the second INTA cycle.
(B) Signals at the μ PD8284 and μ PD8288 are shown for reference.
(6) The μ PD8288 active-high CEN lags when the μ PD8288 issues command and control signals ($\overline{M R D C}, \overline{M W T C}, \overline{A M W C}, \overline{O R C}, \overline{I O W C}, \overline{A O W C}, \overline{I N T A}$, and $\overline{D E N})$.
(7) All timing measurements are taken at 1.5 V unless otherwise specified.
(8) Status is inactive prior to T_{4}.

μ PD8088

Timing Waveforms (Cont.)

Asynchronous Input Recognition

(1) Setup requirements for asynchronous slgnals guarantee recognition at next CLK.

Maximum Mode Bus Lock Signal Timing

Maximum Mode Request/Grant Sequence Timing

(1) The coprocessor risks bus contention it it drives the buses outside the areas shown.

TIming Waveforms (Cont.)

Mimimum Mode Hold Acknowledge Timing

Note:

(1) All signals switch between V_{OH} and V_{OL} unless otherwise specified.

MPD8088

Package Outlines
 μ PD8088C

Item	milimoters	Inchea
A	51.5 Max	2.028 Max
B	1.62	0.064
c	2.54 ± 0.1	0.10 ± 0.004
D	0.5 ± 0.1	0.019 ± 0.004
E	48.26	1.9
F	1.2 Min	0.047 Min
0	2.54 Min	0.10 Min
H	0.5 Min	0.019 Min
1	5.22 Max	0.206 Max
J	5.72 Max	0.225 Max
K	15.24	0.600
L	13.2	0.520
M	$0.25 \begin{gathered} +0.1 \\ -0.05 \end{gathered}$	$0.010_{-0.002}^{+0.004}$

μ PD8088D
Cerdip

Microcomputer Division

SINGLEIDOUBLE DENSITY FLOPPY DISK CONTROLLER

The μ PD765 is an LSI Floppy Disk Controller (FDC) Chip, which contains the circuitry and control functions for interfacing a processor to 4 Floppy Disk Drives. It is capable of supporting either IBM 3740 single density format (FM), or IBM System 34 Double Density format (MFM) including double sided recording. The μ PD765 provides control signals which simplify the design of an external phase locked loop, and write precompensation circuitry. The FDC simplifies and handles most of the burdens associated with implementing a Floppy Disk Interface.
Hand-shaking signals are provided in the μ PD 765 which make DMA operation easy to incorporate with the aid of an external DMA Controller chip, such as the μ PD8257. The FDC will operate in either DMA or Non-DMA mode. In the Non-DMA mode, the FDC generates interrupts to the processor every time a data byte is available. In the DMA mode, the processor need only load the command into the FDC and all data transfers occur under control of the μ PD765 and DMA controller.
There are 15 separate commands which the μ PD 765 will execute. Each of these commands require multiple 8-bit bytes to fully specify the operation which the processor wishes the FDC to perform. The following commands are available:

Read Data	Scan High or Equal	Write Deleted Data
Read ID	Scan Low or Equal	Seek
Read Deleted Data	Specify	Recalibrate (Restore to Track 0)
Read a Track	Write Data	Sense Interrupt Status
Scan Equal	Format a Track	Sense Drive Status

FEATURES Address mark detection circuitry is internal to the FDC which simplifies the phase locked loop and read electronics. The track stepping rate, head load time, and head unload time may be programmed by the user. The μ PD 765 offers many additional features such as multiple sector transfers in both read and write with a single command, and full IBM compatibility in both single and double density modes.

- IBM Compatible in Both Single and Double Density Recording Formats
- Programmable Data Record Lengths: 128, 256,512, or 1024 Bytes/Sector
- Multi-Sector and Multi-Track Transfer Capability
- Drive Up to 4 Floppy Disks
- Data Scan Capability - Will Scan a Single Sector or an Entire Cylinder's Worth of Data Fields, Comparing on a Byte by Byte Basis, Data in the Processor's Memory with Data Read from the Diskette
- Data Transfers in DMA or Non-DMA Mode
- Parallel Seek Operations on Up to Four Drives
- Compatible with Most Microprocessors Including 8080A, 8085A, μ PD780 (Z80TM)
- Single Phase 8 MHz Clock
- Single +5 Volt Power Supply
- Available in 40 Pin Plastic Dual-in-Line Package

ABSOLUTE MAXIMUM RATINGS*

Operating Temperature	$+70^{\circ} \mathrm{C}$
Storage Temperature	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
All Output Voltages	-0.5 to +7 Volts
All Input Voltages	-0.5 to +7 Volts
Supply Voltage VCC	-0.5 to +7 Volts
Power Dissipation	1 Wa

$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$ unless otherwise specified.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP(1)	MAX		
Input Low Voltage	$V_{\text {IL }}$	-0.5		0.8	V	
Input High Voltage	$\mathrm{V}_{\text {IH }}$	2.0		$\mathrm{V}_{\mathrm{CC}}+0.5$	V	
Output Low Voltage	V_{OL}			0.45	V	$1 \mathrm{OL}=2.0 \mathrm{~mA}$
Output High Voltage	$\mathrm{VOH}^{\text {OH}}$	2.4		V cc	V	$\mathrm{I}_{\mathrm{OH}}=-200 \mu \mathrm{~A}$
Input Low Voltage (CLK + WR Clock)	$\mathrm{V}_{\text {IL }}(\mathbf{\Phi}$)	-0.5		0.65	V	
Input High Voltage (CLK + WR Clack)	$V_{1 H}(\Phi)$	2.4		$V_{C c}+0.5$	v	
$V_{\text {cc }}$ Supply Current	Icc			150	mA	
Input Load Current	ILI			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$
(All Input Pins)				-10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
High Level Output Leakage Current	${ }^{1} \mathrm{LOH}$			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
Low Level Output Leakage Current	ILOL			-10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=+0.45 \mathrm{~V}$

$-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
-0.5 to +7 Volts
-0.5 to +7 Volts
-0.5 to +7 Volts
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
*COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

[^11]| PIN | | | INPUT/ OUTPUT | $\begin{gathered} \text { CONNECTION } \\ \text { TO } \\ \hline \end{gathered}$ | FUNCTION |
| :---: | :---: | :---: | :---: | :---: | :---: |
| No. | 8YMBOL | NAME | | | |
| 1 | RST | Reset | Input | Processor | Places FDC in idfe retat. Rewtit output lines to FDD so "0" (liow). Doew not effect SRT, HUT or HLT in Speolfy commend. If RDY pin la held high during Reset, FDC will genorate Interrupt $1-25 \mathrm{~ms}$ leter. To cloer this interrupt use Sense Interrupt Sterus commend. |
| 2 | R $\bar{\square}$ | Reed | Input(1) | Processor | Control dignel for trameter of date from FDC to Dite Bus, whion "0" (low). |
| 3 | W | Write | Input(1) | Procssor | Control s/gnel for transfor of date to FDC vie Dete Bub, when "0" (low). |
| 4 | cs | Chip Solect | Input | Procestor | IC erieged when "0" (low), allowing $\overline{\text { ED }}$ and Wir to be ondebtad. |
| 5 | A_{0} | Data/Status Rep Select | Input(1) | Processor | Solects Data Reg $\left(A_{0}-1\right)$ or Sertus Reg ($\left.A_{0}-0\right)$ contenti of the FDC to be sems to Deta Bus. |
| 6-13 | $\mathrm{DB}_{0}-\mathrm{DB}_{7}$ | Data Bus | Input(1) Outpur | Procowor | Bi-Drsectional 8-8it Duta Bus. |
| 14 | DRO | Data DMA Request | Output | DMA | DMA Requent is being made by FDC when DRO"1". |
| 15 | $\overline{\text { DACK }}$ | DMA Acknowledge | Input | DMA | DMA eycle is active when " 0 " (low) and Controller is performing DMA transfer. |
| 16 | TC | Terminal Count | Input | DMA | Indicates the termination of a DMA trensfer whien "1" (high). It terminater date transfer during Read/Write/Scan command in DMA or interrupt mode. |
| 17 | 10x | Index | Input | FDD | Indicater the beginning of a disk track. |
| 18 | INT | Interrupt | Output | Procmer | Interrupt Request Generated by FDC. |
| 19 | CLK | Clock | Input | | Single Phaxe 8 MHz Squarewave Clock. |
| 20 | OND | Ground | | | D.C. Powor Return. |
| 21 | WCK | Write clook | Input | | Write date rate to FDD, FM $=800 \mathrm{kHz}$, MFM = 1 MHz , with a pulse width of 250 ms for both FM and MFM. |
| 22 | ROW | Fead Data Window | Input | Phaso Lock Loop. | Generated by PLL, and uned to semplo dete from FDD; |
| 23 | ROD | Foed Data | Input | FDD | Read dite from FDD, containing clock and dete blts. |
| 24 | Vco | vco sync | Output | Pheso Lock Loop | Intiblte VCO in PLL when " 0 " (low). enables VCO when "1." |
| 25 | WE | Write Enable | Output | FDD | Enubles write dete Into FDD. |
| 28 | MFM | MFM Mode | Output | Phow Look Loop | MFM mode when "1," FM made when "0." |
| 27 | HD | Hoed Seloct | Output | FDD | Heed 1 welected when " 1 " (high). Heed 0 melected whion " 0 " (low). |
| 28,29 | U81, Us\% | Unit Solect | Output | FDD | FDD Untt Serected. |
| 30 | WDA | Writs Date | Output | FDD | Serilif clock and dete bits to FDD. |
| 31,32 | $\mathrm{Ps}_{1}, \mathrm{Ps}_{0}$ | Procompencention (pre-shift) | Output | FDD | Write precompensation status during MFM mode. Determines early, litse, and normal times. |
| 33 | FLT/TR ${ }_{0}$ | Fault/reck 0 | Input | FDD | Sonnte FDD feult condition, in food/ Write mode; and Track 0 condition in 8 pok mode. |
| 34 | WP/T8 | Write Protsot/ Two-side | Input | FDD | Sences Write Protect status in feed/Writo mode; and Two side Media In seok mode. |
| 36 | RDY | Rendy | input | FDD | Indicesten FDD is resdy to mend or reoelve dera. |
| 36 | HDL | Hend Load | Output | FDD | Commind whioh ceunvs read/write hend in FDD to contect diskots. |
| 37 | FR/87P | Fit Resot/Giop | Output | FDD | Rowets fault F.F. In FDD in Roed/Write mode, contelns step pulses to move held to enother oylinder in seek mode. |
| 38 | LCT/DIR | Low Current/ Direotion | Output | FDD | Lowen Write current on Inner trecks in Roed/Write moob, determines direction. heed will itco in 8oek modn. A foult reitet pules is inured at the beginning of each Resd or Witse commend prior to the ocourrence of the Heed Loed elignal. |
| 39 | FiW78EEK | Resd Wrive/SEEK | Outpur | FDD | When " 1 " (high) Soek mode wloctrod and when " 0 " (low) Read/Writso mode wiectod. |
| 40 | Vcc | +6V | | | DC Powor. |

Note: (1) Dieabled when $C 8=1$.
CAPACITANCE
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} ; \mathrm{f}_{\mathrm{c}}=1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$

PARAMETER		SYMBOL	LIMITS			UNIT
CONDITIONS						$

μ PD765A

$T_{a}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$ unless otherwise specified.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP(1)	MAX		
Clack Period	$\Phi_{\text {CY }}$	120	125	500	ns	
Clock Active (High, Low)	Φ_{0}	40			ns	
Clock Rise Time	Φ_{r}			20	ns	
Clock Fall Time	Φ_{f}			20	ns	
$A_{0}, \overline{C S}, \overline{\text { DACK }}$ Set Up Time to $\overline{\mathrm{RD}} \downarrow$	$\mathrm{T}_{\text {AR }}$	0			ns	
$A_{0}, \overline{C S}, \overline{\text { DACK }}$ Hold Time from $\overline{\text { RD }} \uparrow$	- TRA	0			ns	
RD Width	TRR	250			ns	
Data Access Time from $\overline{\mathrm{RD}} \downarrow$	$T_{\text {RD }}$			200	ns	$C_{L}=100 \mathrm{pf}$
DB to Float Delay Time from RD \uparrow	TbF	20		100	ns	$C_{L}=100 \mathrm{pF}$
$A_{0}, \overline{\text { CS }}$, $\overline{\text { DACK }}$ Set Up Time to $\overline{\text { WR }} \downarrow$	TAW	0			ns	
Ao, CS, $\overline{\text { DACK }}$ Hold Time to WR \dagger	TwA	0			ns	
$\overline{\text { WR Width }}$	Tww	250			ns	
Data Set Up Time to WR \uparrow	TDW	150			ns	
Data Hold Time from $\overline{\text { WR }} \uparrow$	TwD	5			ns	
INT Delay Time from $\overline{\mathrm{RD}} \uparrow$	TRI			500	ns	
INT Delay Time from $\overline{\text { WR } \uparrow}$	$T_{\text {WI }}$			500	ns.	
DRQ Cycle Time	TMCY	13			$\mu \mathrm{s}$	
DRQ Delay Time from DACK \downarrow	$\mathrm{T}_{\text {AM }}$			200	ns	
TC Width	TTC	1			$\phi_{\mathrm{C}} \mathrm{C}$	
Reset Width	TRST	14			$\phi_{\mathrm{C}} \mathrm{C}$	
WCK Cycle Time	$\mathrm{T}_{\mathrm{C}} \mathrm{Y}$		$\begin{array}{\|l\|} \hline 2 \text { or } 4(2) \\ \hline 1 \text { or } 2 \\ \hline \end{array}$		μs	$\begin{aligned} & M F M=0 \\ & M F M=1 \end{aligned}$
WCK Active Time (High)	T_{0}	80	250	350	ns	
WCK Rise Time	T_{r}			20	ns	
WCK Fall Time	Tf			20	ns	,
PreShift Delay Time from WCK \uparrow	T_{CP}	20		100	ns	
WDA Delay Time from WCK \uparrow	T^{T} CD	20		100	ns	
RDD Active Time (High)	TRDD	40			ns	
Window Cycle Time	TwCY		$\begin{aligned} & 2.0 \\ & 1.0 \end{aligned}$		$\mu \mathrm{s}$	$\begin{aligned} & M F M=0 \\ & M F \dot{M}=1 \end{aligned}$
Window Hold Time to/from RDD	TRDW TWRD	15			ns	
US0,1 Hold Time to RW/SEEK \uparrow	TUS	12			$\mu \mathrm{s}$	
SEEK/RW Hold Time to LOW CURRENT/ DIRECTION \uparrow	TSD	7			$\mu \mathrm{s}$	
LOW CURRENT/DIRECTION Hold Time to FAULT RESET/STEP \uparrow	TDST	1.0			$\mu \mathrm{s}$	
US $_{0,1}$ Hold Time from FAULT RESET/STEP \uparrow	TSTU	5.0			$\mu \mathrm{s}$	8 MHz Clock Period
STEP Active Time (High)	TSTP	6.0	7.0		$\mu \mathrm{s}$	
STEP Cycle Time :	T_{SC}	33	(3)	(3)	$\mu \mathrm{s}$	
FAULT RESET Active Time (High)	TFR	8.0		10	$\mu \mathrm{s}$	
Write Data Width	TWDD	T0-50			ns	
US $0_{0,1}$ Hold Time After SEEK	TSU	15			$\mu \mathrm{s}$	
Seek Hold Time from DIR	TDS	30			$\mu \mathrm{s}$	8 MHz Clock Period
DIR Hold Time after STEP	TSTD	24			μs	
Index Pulse Wioth	TIDX	10			$\phi_{\mathrm{C}} \mathrm{Y}$	
$\overline{R D} \downarrow$ Delay from DRQ	TMR	800			ns	
$\overline{W R} \downarrow$ Delay from DRQ	TMW	250			ns	8 MHz Clock Period
$\overline{\text { WE }}$ or $\overline{\text { RD }}$ Response Time from DRQ \dagger	TMRW			12	$\mu \mathrm{s}$	

Notes: (1) Typical values for $\mathrm{T}_{8}=25^{\circ} \mathrm{C}$ and nominal supply voltage.
(2) The former value of 2 and 1 are applied to Standard Floppy, and the latter value of 4 and 2 are applied to Mini-floppy.
(3) Under Software Control. The range is from 1 ms to 16 ms at 8 MHz Clock Period, and 2 to 32 ms at 4 MHz Clock Period.
(4) For mini-floppy applications, $\Phi_{\mathrm{C}} \mathrm{Y}$ must be 4 mHz .

AC TEST CONDITION

clock

AC TESTING

Inputs are driven at 2.4 V for a logic " 1 " and 0.45 V for a logic " 0 ." Timing measurements are made at 2.0 V for a logic " 1 " and 0.8 V for a logic " 0. ."
Clocks are driven at 3.0 V for a logic " 1 " and 0.3 V for a logic " 0 ." Timing measurements are made at 2.4 V for a logic " 1 " and 0.65 V for a logic " 0 ."

TIMING WAVEFORMS

SEEK OPERATION

The μ PD765 contains two registers which may be accessed by the main system processor; a Status Register and a Data Register. The 8-bit Main Status Register contains the status information of the FDC, and may be accessed at any time. The 8-bit Data Register (actually consists of several registers in a stack with only one register presented to the data bus at a time), which stores data, commands, parameters, and FDD status information. Data bytes are read out of, or written into, the Data Register in order to program or obtain the results after a particular command. The Status Register may only be read and is used to facilitate the transfer of data between the processor and μ PD765.
The relationship between the Status/Data registers and the signals $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$, and A_{0} is shown below.

A_{0}	$\overline{R D}$	$\overline{W R}$	FUNCTION
0	0	1	Read Main Status Register
0	1	0	Illegal
0	0	0	Illegal
1	0	0	Illegal
1	0	1	Read from Data Register
1	1	0	Write into Data Register

The bits in the Main Status Register are defined as follows:

BIT NUMBER	NAME	SYMBOL	DESCRIPTION
DB_{0}	FDD 0 Busy	$\mathrm{D}_{0} \mathrm{~B}$	FDD number 0 is in the Seek mode. If any of the bits is set FDC will not accept read or write command.
DB1	FDD 1 Busy	$\mathrm{D}_{1} \mathrm{~B}$	FDD number 1 is in the Seek mode. If any of the bits is set FDC wifl not accept read or write command.
DB_{2}	FDD 2 Busy	$\mathrm{D}_{2}{ }^{\text {B }}$	FDD number 2 is in the Seek mode. If any of the bits is sat FDC will not accept read or write command.
DB_{3}	FDD 3 Busy	$\mathrm{D}_{3} \mathrm{~B}$	FDD number 3 is in the Seek mode. If any of the bits is set FDC will not accept read or write command.
DB4	FDC Busy	CB	A read or write command is in process. FDC will not accept any other command.
DB_{5}	Execution Mode	EXM	This bit is set only during execution phase in non-DMA mode. When DB5 goes fow, execution phase has ended, and result phase was started. It operates only during NON-DMA mode of operation.
DB6	Data Input/Output	DIO	Indicates direction of data transfer between FDC and Data Register. If DIO = "1" then transfer is from Dats Register to the Processor. If DIO $=$ " 0 ", then transfer is from the Processor to Data Register.
D87	Request for Master	RQM	Indicates Data Register is ready to send or receive data to or from the Processof, Both bits DIO and RQM should be used to perform the hand-shaking functions of "ready" and "direction" to the processor.

The DIO and RQM bits in the Status Register indicate when Data is ready and in which direction data will be transferred on the Dat Bus. The mex time between the last $\overline{R D}$ or WR during command or result phase and DIO and RQM getting set or reset is $12 \mu \mathrm{~s}$. For this reason every time Main Status Register is read the CPU should wait $12 \mu \mathrm{~s}$. The max time from the trailing edge of the last RD in the result phase to when DB_{4} (FDC Busy) goes low is $12 \mu \mathrm{~s}$.

COMMAND SEQUENCE

The μ PD 765 is capable of performing 15 different commands. Each command is initiated by a multi-byte transfer from the processor, and the result after execution of the command may also be a multi-byte transfer back to the processor. Because of this multi-byte interchange of information between the μ PD765 and the processor, it is convenient to consider each command as consisting of three phases:

Command Phase: The FDC receives all information required to perform a particular operation from the processor.
Execution Phase: The FDC performs the operation it was instructed to do.
Result Phase: After completion of the operation, status and other housekeeping information are made available to the processor.

Note: (1) Symbols used in this table are descrited at the end of this section.
(2) A_{0} should equal binary 1 for all operations.
(3) $\mathrm{X}=$ Don't care, usually made to equal binary 0 .

COMMAND SYMBOL DESCRIPTION

SYMBOL	NAME	DESCRIPTION
A_{0}	Address Line 0	A_{0} controls selection of Main Status Register ($A_{0}=0$) or Data Register ($A_{0}=1$)
C	Cylinder Number	C stands for the current/selected Cylinder (track) number 0 through 76 of the medium.
D	Data	D stands for the data pattern which is going to be written into a Sector.
$\mathrm{D}_{7}-\mathrm{D}_{0}$	Data Bus	8-bit Data Bus, where D_{7} stands for a most significant bit, and D_{0} stands for a least significant bit.
DTL	Data Length	When N is defined as $00, \mathrm{DTL}$ stands for the data length which users are going to read out or write into the Sector.
EOT	End of Track	EOT stands for the final Sector number on a Cylinder. During Read or Write operation FDC will stop date transfer after a sector \# equal to EOT.
GPL	Gap Length	GPL stands for the length of Gap 3. During Read/Write commands this value determines the number of bytes that VCOs will stay low after two CRC bytes. During Format command it determines the size of Gap 3.
H	Head Address	H stands for head number 0 or 1, as specified in ID field.
HD	Head	HD stands for a selected head number 0 or 1 and controls the polarity of pin 27. ($\mathrm{H}=\mathrm{HD}$ in all command words.)
HLT	Head Load Time	HLT stands for the head load time in the FDD (2 to 254 ms in 2 ms increments).
HUT	Head Unload Time	HUT stands for the head unload time after a read or write operation has occurred (16 to 240 ms in 16 ms increments).
MF	FM or MFM Mode	If MF is low, FM mode is selected, and if it is high, MFM mode is selected.
MT	Multi-Track	If MT is high, a multi-track operation is to be performed. If MT = 1 after finishing Read/Write operation on side 0 FDC will automatically start searching for sector 1 on side 1.

SYMBOL	NAME	DESCRIPTION	COMMAND SYMBOL DESCRIPTION (CONT.
N	Number	N stands for the number of data bytes written in a Sector.	
NCN	New Cylinder Number	NCN stands for a new Cylinder number, which is going to be reached as a result of the Seek operation. Desired position of Head.	
ND	Non-DMA Mode	ND stands for operation in the Non-DMA Mode.	
PCN	Present Cylinder Number	PCN stands for the Cylinder number at the completion of SENSE INTERRUPT STATUS Command. Position of Head at present time.	
R	Record	R stands for the Sector number, which will be read or written.	
R W	Read/Write	R/W stands for either Read (R) or Write (W) signal.	
SC	Sector	SC indicates the number of Sectors per Cylinder.	
SK	Skip	SK stands for Skip Deleted Data Address Mark.	
SRT	Step Rate Time	SRT stands for the Stepping Rate for the FDD. applies to all drives, ($F=1 \mathrm{~ms}, E=2 \mathrm{~ms}$, etc.).	
$\begin{aligned} & \text { ST } 0 \\ & \text { ST } 1 \\ & \text { ST } 2 \\ & \text { ST } 3 \end{aligned}$	Status 0 Status 1 Status 2 Status 3	ST 0-3 stand for one of four registers which store the status information after a command has been executed. This information is available during the result phase after command execution. These registers should not be confused with the main status register (selected by $A_{0}=0$). ST 0-3 may be read only after a command has been executed and contain information relevant to that particular command.	
STP		During a Scan operation, if STP $=1$, the data in contiguous sectors is compared byte by byte with data sent from the processor (or DMA); and if $S T P=2$, then alternate sectors are read and compared.	
USO, US1	Unit Select	US stands for a selected drive number 0 or 1 .	

During Command or Result Phases the Main Status Register (described earlier) must be read by the processor before each byte of information is written into or read from the Data Register. After each byte of data read or written to Data Register, CPU should wait for 12μ s before reading MSR. Bits D6 and D7 in the Main Status Register must be in a 0 and 1 state, respectively, before each byte of the command word may be written into the μ PD765. Many of the commands require multiple bytes, and as a result the Main Status Register must be read prior to each byte transfer to the μ PD765. On the other hand, during the Result Phase, D6 and D7 in the Main Status Register must both be 1 's ($D 6=1$ and $D 7=1$) before reading each byte from the Data Register. Note, this reading of the Main Status Register before each byte transfer to the μ PD765. is required in only the Command and Result Phases, and NOT during the Execution Phase.
During the Execution Phase, the Main Status Register need not be read. If the μ PD765 is in the NON-DMA Mode, then the receipt of each data byte (if μ PD765 is reading data from FDD) is indicated by an Interrupt signal on pin 18 (INT = 1). The generation of a Read signal ($\overline{R D}=0$) or Write signal $(\overline{W R}=0)$ will reset the Interrupt as well as output the Data onto the Data Bus. If the processor cannot handle Interrupts fast enough (every $13 \mu \mathrm{~s}$) for MFM and $27 \mu \mathrm{~s}$ for FM mode, then it may poll the Main Status Register and then bit D7 (ROM) functions just like the Interrupt signal. If a Write Command is in process then the WR signal performs the reset to the Interrupt signal.
If the μ PD7 65 is in the DMA Mode, no Interrupts are generated during the Execution Phase. The μ PD 765 generates DRQ's (DMA Requests) when each byte of data is available. The DMA Controller responds to this request with both a $\overline{\mathrm{DACK}}=0$ (DMA Acknowledge) and a $\overline{R D}=0$ (Read signal). When the DMA Acknowledge signal goes low ($\overline{D A C K}=0$) then the DMA Request is reset ($D R Q=0$). If a Write Command has been programmed then a $\overline{W R}$ signal will appear instead of $\overline{R D}$. After the Execution Phase has been completed (Terminal Count has occurred) or EOT sector was read/ written, then an Interrupt will occur (INT = 1). This signifies the beginning of the Result Phase. When the first bẏte of data is read during the Result Phase, the Interrupt is automatically reset (INT $=0$).
It is important to note that during the Result Phase all bytes shown in the Command Table must be read. The Read Data Command, for example has seven bytes of data in the Result Phase. All seven bytes must be read in order to successfully complete the Read Data Command. The μ PD765 will not accept a new command until all seven bytes have been read. Other commands may require fewer bytes to be read during the Result Phase.

The μ PD765 contains five Status Registers. The Main Status Register mentioned above may be read by the processor at any time. The other four Status Registers (STO, ST1, ST2, and ST3) are only available during the Result Phase, and may be read only after completing a command. The particular command which has been executed determines how many of the Status Registers will be read.

The bytes of data which are sent to the μ PD 765 to form the Command Phase, and are read out of the μ PD765 in the Result Phase, must occur in the order shown in the Command Table. That is, the Command Code must be sent first and the other bytes sent in the prescribed sequence. No foreshortening of the Command or Result Phases the Execution Phase automatically starts. In a similar fashion, when the last byte of data is read out in the Result Phase, the command is automatically ended and the μ PD765 is ready for a new command.

polling feature of

After the Specify command has been sent to the μ PD765, the Unit Select line USO and US1. will automatically go into a polling mode. In between commands (and between step pulses in the SEEK command) the μ PD765 polls all four FDD's looking for a change in the Ready line from any of the drives. If the Ready line changes state (usually due to a door opening or closing) then the μ PDD 765 will generate an interrupt. When Status Register 0 (STO) is read (after Sense Interrupt Status is issued), Not Ready (NR) will be indicated. The polling of the Ready line by the μ PD765 occurs continuously between commands, thus notifying the processor which drives are on or off line. Each drive is polled every 1.024 ms except during the Read/Write commands.

READ DATA

A set of nine (9) byte words are required to place the FDC into the Read Data Mode. After the Read Data command has been issued the FDC loads the head (if it is in the unloaded state), waits the specified head settling time (defined in the Specify Command), and begins reading ID Address Marks and ID fields. When the current sector number (" $\mathrm{R}^{\prime \prime}$) stored in the ID Register (IDR) compares with the sector number read off the diskette, then the FDC outputs data (from the data field) byte-to-byte to the main system via the data bus.

After completion of the read operation from the current sector, the Sector Number is incremented by one, and the data from the next sector is read and output on the data bus. This continuous read function is called a "Muiti-Sector Read Operation." The Read Data Command may be terminated by the receipt of a Terminal Count signal. TC should be issued at the same time that the DACK for the last byte of data is sent. Upon receipt of this signal, the FDC stops outputting data to the processor, but will continue to read data from the current sector, check CRC (Cyclic Redundancy Count) bytes, and then at the end of the sector terminate the Read Data Command
The amount of data which can be handled with a single command to the FDC depends upon MT (multitrack), MF (MFM/FM), and N (Number of Bytes/Sector). Table 1 below shows the Transfer Capacity.

Multi-Track MT	MFM/FM MF	Bytes/Sector \mathbf{N}	Maximum Transfer Capacity (Bytes/Sector) (Number of Sectors)	Final Sector Read from Diskette
0	0	00	$(128)(26)=3,328$	26 at Side 0
0	1	01	$(256)(26)=6,656$	or 26 at Side 1
1	0	00	$(128)(52)=6,656$	26 at Side 1
1	1	01	$(256)(52)=13,312$	
0	0	01	$(256)(15)=3,840$	15 at Side 0
0	1	02	$(512)(15)=7,680$	or 15 at Side 1
1	0	01	$(256)(30)=7,680$	15 at Side 1
1	1	02	$(512)(30)=15,360$	
0	0	02	$(512)(8)=4,096$	8 at Side 0
0	1	03	$(1024)(8)=8,192$	or 8 at Side 1
1	0	02	$(512)(16)=8,192$	8 at Side 1
1	1	03	$(1024)(16)=16,384$	

Table 1. Transfer Capacity
The "multi-track" function (MT) allows the FDC to read data from both sides of the diskette. For a particular cylinder, data will be transferred starting at Sector 1 . Side 0 and completing at Sector L, Side 1 (Sector $L=$ last sector on the side). Note, this function pertains to only one cylinder (the same track) on each side of the diskette.

When $\mathrm{N}=0$, then DTL defines the data length which the FDC must treat as a sector. If DTL is smaller than the actual data length in a Sector, the data beyond DTL in the Sector, is not sent to the Data Bus. The FDC reads (internally) the complete Sector performing the CRC check, and depending upon the manner of command termination, may perform a Multi-Sector Read Operation. When \mathbf{N} is non-zero, then DTL has no meaning and should be set to FF Hexidecimal.
At the completion of the Read Data Command, the head is not unloaded until after Head Unload Time Interval (specified in the Specify Command) has elapsed. If the processor issues another command before the head unloads then the head settling time may be saved between subsequent reads. This time out is particularly valuable when a diskette is copied from one drive to another.
If the FDC detects the Index Hole twice without finding the right sector, (indicated in "R"), then the FDC sets the ND (No Data) flag in Status Register 1 to a 1 (high), and terminates the Read Data Command. (Status Register 0 also has bits 7 and 6 set to 0 and 1 respectively.)
After reading the ID and Data Fields in each sector, the FDC checks the CRC bytes. If a read error is detected (incorrect CRC in ID field), the FDC sets the DE (Data Error) flag in Status Register 1 to a 1 (high), and if a CRC error occurs in the Data Field the FDC also sets the DD (Data Error in Data Field) flag in Status Register 2 to a 1 (high), and terminates the Read Data Command. (Status Register 0 also has bits 7 and \mathbf{b} set to 0 and 1 respectively.)

If the FDC reads a Deleted Data Address Mark off the diskette, and the SK bit (bit D5 in the first Command Word) is not set ($S K=0$), then the FDC sets the CM (Control Mark) flag in Status Register 2 to a 1 (high), and terminates the Read Data Command, after reading all the data in the Sector. If $\mathbf{S K}=\mathbf{1}$, the FDC skips. the sector with the Deleted Data Address Mark and reads the next sector. The CRC bits in the deleted data field are not checked when $S K=1$.
During disk data transfers between the FDC and the processor, via the data bus, the FDC must be serviced by the processor every 27μ s in the FM Mode, and every 13μ s in the MFM Mode, or the FDC sets the OR (Over Run) flag in Status Register 1 to a 1 (high), and terminates the Read Data Command.
If the processor terminates a read (or write) operation in the FDC, then the ID Information in the Result Phase is dependent upon the state of the MT bit and EOT byte. Table 2 shows the values for C, H, R, and \mathbf{N}, when the processor terminates the Command.

FUNCTIONAL DESCRIPTION OF COMMANDS

FUNCTIONAL DESCRIPTION OF COMMANDS (CONT.)

MT	HD	Final Sector Transferred to Processor	ID Information at Result Phase			
			c	H	R	N
0	0	Less than EOT	NC	NC	R + 1	NC
	0	Equal to EOT	$\mathrm{C}+1$	NC	$\mathrm{R}=01$	NC
	1	Less than EOT	NC	NC	R+1	NC
	1	Equal to EOT	C+1	NC	$\mathrm{R}=01$	NC
1	0	Less than EOT	NC	NC	R+1	NC
	0	Equal to EOT	NC	LSB	R $=01$	NC
	1	Less than EOT	NC	NC	R+1	NC
	1	Equal to EOT	$\mathrm{C}+1$	LSB	R $=01$	NC

Notes: 1 NC (No Change): The same value as the one at the beginning of command execution.
2 LSB (Least Significant Bit): The least significant bit of H is complemented.

WRITE DATA

A set of nine (9) bytes are required to set the FDC into the Write Data mode. After the Write Data command has been issued the FDC loads the head (if it is in the unloaded state), waits the specified Head Settling Time (defined in the Specify Command), and begins reading ID Fields. When all four bytes loaded during the command (C, H, R, N) match the four bytes of the ID field from the diskette, the FDC takes data from the processor byte-by-byte via the data bus, and outputs it to the FDD.

After writing data into the current sector, the Sector Number stored in " R " is incremented by one, and the next data field is written into. The FDC continues this "Multi-Sector Write Operation" until the issuance of a Terminal Count signal. If a Terminal Count signal is sent to the FDC it continues writing into the current sector to complete the data field. If the Terminal Count signal is received while a data field is being written then the remainder of the data field is filled with 00 (zeros).
The FDC reads the ID field of each sector and checks the CRC bytes. If the FDC detects a read error (incorrect CRC) in one of the ID Fields, it sets the DE (Data Error) riag of Status Register 1 to a 1 (high), and terminates the Write Data Command. (Status Register 0 also has bits 7^{\prime} and 6 set to 0 and 1 respectively.)
The Write Command operates in much the same manner as the Read Command. The following items are the same, and one should refer to the Read Data Command for details:

- Transfer Capacity
- Head Unload Time Interval
- EN (End of Cylinder) Flag
- ID Information when the processor terminates command (see Table 2)
- ND (No Data) Flag
- Definition of DTL when $N=0$ and when $N \neq 0$

In the Write Data mode, data transfers between the processor and FDC, via the Data Bus, must occur every $27 \mu \mathrm{~s}$ in the FM mode, and every $13 \mu \mathrm{~s}$ in the MFM mode. If the time interval between data transfers is longer than this then the FDC sets the OR (Over Run) flag in Status Register 1 to a 1 (high), and terminates the Write Data Command. (Status Register 0 also has bit 7 and 6 set to 0 and 1 respectively.)

WRITE DELETED DATA

This command is the same as the Write Data Command except a Deleted Data Address Mark is written at the beginning of the Data Field instead of the normal Data Address Mark.

READ DELETED DATA

This command is the same as the Read Data Command except that when the FDC detects a Data Address Mark at the beginning of a Data Field (and SK = 0 (low), it will read all the data in the sector and set the CM flag in Status Register 2 to a 1 (high), and then terminate the command. If $S K=1$, then the FDC skips the sector with the Data Address Mark and reads the next sector.

READ A TRACK

This command is similar to READ DATA Command except that this is a continuous READ operation where the entire data field from each of the sectors are read. Immediately after encountering the INDEX HOLE, the FDC starts reading all data fields on the track, as continuous blocks of data. If the FDC finds an error in the ID or DATA CRC check bytes, it continues to read data from the track. The FDC compares the ID information read from each sector with the value stored in the IDR, and sets the iND flag of Status Register 1 to a 1 (high) if there is no comparison. Multi-track or skip operations are not 'allowed with this command.

This command terminates when number of sectors read is equal to'EOT. If the FDC does not find an ID Address Mark on the diskette after it encounters the INDEX HOLE for the second time, then it sets the MA (missing address mark) flag in Status Register 1 to a 1 (high), and terminates the command. (Status Register 0 has bits 7 and 6 set to 0 and 1 respectively.)

READ ID

The READ ID Command is used to give the present position of the recording head. The FDC stores the values from the first ID Field it is able to read. If no proper ID Address Mark is found on the diskette, before the INDEX HOLE is encountered for the second time then the MA (Missing Address Mark) flag in Status Register 1 is set to a 1 (high), and if no data is found then the ND (No Data) flag is also set in Status Register 1 to a 1 (high). The command is then terminated with Bits 7 and 6 in Status Register 0 set to 0 and 1 respectively. During this command there is no data transfer between FDC and the CPU except during the result phase.

FORMAT A TRACK

The Format Command allows an entire track to be formatted. After the INDEX HOLE is detected, Data is written on the Diskette; Gaps, Address Marks, ID Fields and Data Fields, all per the IBM System 34 (Double Density) or System 3740 (Single Density) Format are recorded. The particular format which will be written is controlled by the values programmed into N (number of bytes/sector), SC (sectors/cylinder), GPL (Gap Length), and D (Data Pattern) which are supplied by the processor during the Command Phase. The Data Field is filled with the Byte of data stored in D. The ID Field for each sector is supplied by the processor; that is, four data requests per sector are made by the FDC for C (Cylinder Number), H (Head Number), R (Sector Number) and N (Number of Bytes/Sector). This allows the diskette to be formatted with nonsequential sector numbers, if desired.
The processor must send new values for C, H, R, and N to the μ PD 765 for each sector on the track. If FDC' is set for DMA mode, it will issue 4 DMA requests per sector. If it is set for interrupt mode, it will issue four interrupts per sector and the processor must supply $\mathrm{C}, \mathrm{H}, \mathrm{R}$ and N load for each sector. The contents of the R register is incremented by one after each sector is formatted, thus, the R register contains a value of R when it is read during the Result Phase. This incrementing and formatting continues for the whole track until the FDC encounters the INDEX HOLE for the second time, whereupon it terminates the command. If a FAULT signal is received from the FDD at the end of a write operation, then the FDC sets the EC flag of Status.Register 0 to a 1 (high), and terminates the command after setting bits 7 and 6 of Status Register 0 to 0 and 1 respectively. Also the loss of a READY signal at the beginning of a command execution phase causes bits 7 and 6 of Status Register 0 to be set to 0 and 1 respectively.
Table 3 shows the relationship between N, SC, and GPL for various sector sizes:
8' STANDARD FLOPPY 51/4" MINI FLOPPY

FORMAT	SECTOR SIZE	N	SC	GPL (1)	GPL (2)	SECTOR SIZE	N	SC	GPL 1	GPL (2)
FM Mode	128 bytes/Sector	00	1 A	07	1 B	128 bytes/Sector	00	12	07	09
	256	01	DF	OE	2A	128	00	10	10	19
	512	02	08	1B	3A	256	01	08	18	30
	1024 bytes/Sector	03	04	47	8A	512	02	04	46	87
	2048	04	02	C8	FF	1024	03	02	C8	FF
	4096	05	01	C8	FF	2048	04	01	C8	FF
MFM Mode	256	01	1 A	OE	36	256	01	12	0 A	OC
	512	02	OF	1 B	54	256	01	10	20	32
	1024	03	08	35	74	512	02	08	2A	50
	2048	04	04	99	FF	1024	03	04	80	F0
	4096	05	02	C8	FF	2048	04	02	C8	FF
	8192	06	01	C8	FF	4096	05	01	C8	FF

Table 3
Note: (1) Suggested values of GPL in Read or Write Commands to avoid splice point between data field and ID field of contiguous sections.
(2) Suggested values of GPL in format command.
(3) In MFM mode FDC can not perform a read/write/format operation with 128 bytes/sector. ($N=00$)
(4) All the values are hexidecimal.

SCAN COMMANDS

The SCAN Commands allow data which is being read from the diskette to be compared against data which is being supplied from the main system. The FDC compares the data on a byte-by-byte basis, and looks for a sector of data which meets the conditions of $D_{F D D}=D_{\text {Processor }}, D_{F D D}<D_{\text {Processor }}$, or $D_{F D D} \geqslant$ Dprocessor. The hexidicemial byte of FF either from memory or from FDD can be used as a mask byte because it always meet the condition of the compare. Ones complement arithmetic is used for comparison (FF = largest number, $00=$ smallest number). After a whole sector of data is compared, if the conditions are not met, the sector number is incremental ($R+S T P \rightarrow R$), and the scan operation is continued. The scan operation continues until one of the following conditions occur; the conditions for scan are met (equal, low, or high), the last sector on the track is reached (EOT), or the terminal count signal is received.

FUNCTIONAL DESCRIPTION OF COMMANDS (CONT.)

If the conditions for scan are met then the FDC sets the SH (Scan Hit) flag of Status Register 2 to a 1 (high), and terminates the Scan Command. If the conditions for scan are not met between the starting sector (as specified by R) and the last sector on the cylinder (EOT), then the FDC sets the SN (Scan Not Satisfied) flag of Status Register 2 to a 1 (high), and terminates the Scan Command. The receipt of a TERMINAL COUNT signal from the Processor or DMA Controller during the scan operation will cause the FDC to complete the comparison of the particular byte which is in process, and then to terminate the command. Table 4 shows the status of bits SH and SN under various conditions of SCAN.

COMMAND	STATUS REGISTER 2		COMMENTS
	BIT 2 $=\mathbf{S N}$	BIT 3 $=\mathbf{S H}$	
Scan Equal	0	1	DFDD $=$ DProcessor
	1	0	DFDD \neq DProcessor
	0	1	DFDD $=$ DProcessor
	0	0	DFDD $<$ DProcessor
	1	0	DFDD $>$ DProcessor
Scan High or Equal	0	1	DFDD $=$ DProcessor
	0	0	DFDD $>$ DProcessor
	1	0	DFDD $<$ DProcessor

Table 4

If the FDC encounters a Deleted Data Address Mark on one of the sectors (and SK = 0), then it regards the sector as the last sector on the cylinder, sets CM (Control Mark) flag of Status Register 2 to a 1 (high) and terminates the command. If $S K=1$, the FDC skips the sector with the Deleted Address Mark, and reads the next sector. In the second case ($S K=1$), the FDC sets the CM (Control Mark) flag of Status Register 2 to a 1 (high) in order to show that a Deleted Sector had been encountered.

When either the STP (contiguous sectors $=01$, or alternate sectors $=02$ sectors are read) or the MT (MultiTrack) are programmed, it is necessary to remember that the last sector on the track must be read. For example, if $S T P=02, M T=0$, the sectors are numbered sequentially 1 through 26 , and we start the Scan Command at sector 21 ; the following will happen. Sectors 21,23 , and 25 will be read, then the next sector (26) will be skipped and the Irdex Hole will be encountered before the EOT value of 26 can be read. This will result in an abnormal termination of the command. If the EOT had been set at 25 or the scanning started at sector 20, then the Scan Command would be completed in a normal manner.

During the Scan Command data is supplied by either the processor or DMA Controller for comparison against the data read from the diskette. In order to avoid having the OR (Over Run) flag set in Status Register 1, it is necessary to have the data available in less than $27 \mu \mathrm{~s}$ (FM Mode) or $13 \mu \mathrm{~s}$ (MFM Mode). If an Overrun occurs the FDC ends the command with bits 7 and 6 of Status Register 0 set to 0 and 1, respectively.

seek

The read/write head within the FDD is moved from cylinder to cylinder under control of the Seek Command. FDC has four independent Present Cylinder Registers for each drive. They are clear only after Recalibrate command. The FDC compares the PCN (Present Cylinder Number) which is the current head position with the NCN (New Cylinder Number), and if there is a difference performs the following operation:

PCN < NCN: Direction signal to FDD set to a 1 (high), and Step Pulses are issued. (Step in.)
PCN $>$ NCN: Direction signal to FDD set to a 0 (low), and Step Pulses are issued. (Step Out.)
The rate at which Step Pulses are issued is controlled by SRT (Stepping Rate Time) in the SPECIFY Command. After each Step Pulse is issued NCN is compared against PCN, and when NCN $=$ PCN, then the SE (Seek End) flag is set in Status Register 0 to a 1 (high), and the command is terminated. At this point FDC interrupt goes high. Bits $\mathrm{DB}_{0}-\mathrm{DB}_{3}$ in Main Status Register are set during seek operation and are cleared by Sense Interrupt Status command.
During the Command Phase of the Seek operation the FDC is in the FDC BUSY state, but during the Execution Phase it is in the NON BUSY state. While the FDC is in the NON BUSY state, another Seek Command may be issued, and in this manner parallel seek operations may be done on up to 4 Drives at once. No other command could be issued for as long as FDC is in process of sending Step Pulses to any drive.
If an FDD is in a NOT READY state at the beginning of the command execution phase or during the seek operation, then the NR (NOT READY) flag is set in Status Register 0 to a $\mathbf{1}$ (high), and the command is terminated after bits 7 and 6 of Status Register 0 are set to 0 and 1 respectively.
If the time to write 3 bytes of seek command exceeds $150 \mu \mathrm{~s}$, the timing between first two Step Pulses may be shorter than set in the Specify command by as much as 1 ms .

RECALIBRATE

The function of this command is to retract the read/write head within the FDD to the Track 0 position. The FDC clears the contents of the PCN counter, and checks the status of the Track 0 signal from the FDD. As long as the Track 0 signal is low, the Direction signal remains 0 (low) and Step Pulses are issued. When the Track 0 signal goes high, the SE (SEEK END) flag in Status Register 0 is set to a 1 (high) and the command is terminated. If the Track 0 signal is still low after 77 Step Pulse have been issued, the FDC sets the SE (SEEK END) and EC (EQUIPMENT CHECK) flags of Status Register 0 to both is (highs), and terminates the command after bits 7 and 6 of Status Register 0 is set to 0 and 1 respectively.
The ability to do overlap RECALIBRATE Commands to multiple FDDs and the loss of the READY signal, as described in the SEEK Command, also applies to the RECALIBRATE Command.

SENSE INTERRUPT STATUS

An Interrupt signal is generated by the FDC for one of the following reasons:

1. Upon entering the Result Phase of:
a. Read Data Command
e. Write Data Command
b. Read a Track Command
f. Format a Cylinder Command
c. Read ID Command
g. Write Deleted Data Command
d. Read Deleted Data Command
h. Scan Commands
2. Ready Line of FDD changes state
3. End of Seek or Recalibrate Command
4. During Execution Phase in the NON-DMA Mode

Interrupts caused by reasons 1 and 4 above occur during normal command operations and are easily discernible by the processor. During an execution phase in NON-DMA Mode, DB5 in Main Status Register is high. Upon entering Result Phase this bit gets clear. Reason 1 and 4 does not require Sense interrupt Status command. The interrupt is cleared by reading/writing data to FDC. Interrupts caused by reasons 2 and 3 above may be uniquely identified with the aid of the Sense Interrupt Status Command. This command when issued resets the interrupt signal and via bits 5, 6, and 7 of Status Register 0 identifies the cause of the interrupt.

SEEK END BIT 5	INTERRUPT CODE		CAUSE
	BIT 6	BIT 7	
0	1	1	Ready Line changed state, either polarity
1	0	0	Normal Termination of Seek or Recalibrate Command
1	1	0	Abnormal Termination of Seek or Recalibrate Command

Table 5
Neither the Seek or Recalibrate Command have a Result Phase. Therefore, it is mandatory to use the Sense Interrupt Status Command after these commands to effectively terminate them and to provide verification of where the head is positioned (PCN).
Issuing Sense Interrupt Status Command without interrupt pending is treated as an invalid command.

SPECIFY

The Specify Command sets the initial values for each of the three internal timers. The HUT (Head Unload Time) defines the time from the end of the Execution Phase of one of the Read/Write Commands to the head unload state. This timer is programmable from 16 to 240 ms in increments of $16 \mathrm{~ms}(01=16 \mathrm{~ms}, \mathbf{0 2}=\mathbf{3 2} \mathrm{ms} . \ldots$. OF $=$ 240 ms). The SRT (Step Rate Time) defines the time interval between adjacent step pulses. This timer is programmable from 1 to 16 ms in increments of $1 \mathrm{~ms}(F=1 \mathrm{~ms}, E=2 \mathrm{~ms}, \mathrm{D}=3 \mathrm{~ms}$, etc.). The HLT (Head Load Time) defines the time between when the Head Load signal goes high and when the Read/Write operation starts. This timer is programmable from 2 to 254 ms in increments of 2 ms ($01=2 \mathrm{~ms}, 02=4 \mathrm{~ms}, 03=6 \mathrm{~ms} \ldots$. $7 \mathrm{~F}=$ 254 ms).
The time intervals mentioned above are a direct function of the clock (CLK on pin 19). Times indicated above are for an 8 MHz clock, if the clock was reduced to 4 MHz (mini-floppy application) then all time intervals are increased by a factor of 2.
The choice of DMA or NON-DMA operation is made by the ND (NON-DMA) bit. When this bit is high (ND = 1) the NON-DMA mode is selected, and when ND $=0$ the DMA mode is selected.

SENSE DRIVE STATUS

This command may be used by the processor whenever it wishes to obtain the status of the FDDs. Status Register 3 contains the Drive Status information stored internally in FDC registers.

INVALID

If an invalid command is sent to the FDC (a command not defined above), then the FDC will terminate the command after bits 7 and 6 of Status Register 0 are set to 1 and 0 respectively. No interrupt is generated by the μ PD765 during this condition. Bit 6 and bit 7 (DIO and RQM) in the Main Status Register are both high ('" 1 '") indicating to the processor that the μ PD765 is in the Result Phase and the contents of Stetus Register 0 (STO) must be read. When the processor reads Status Register $\mathbf{0}$ it will find a 80 hex indicating an invalid command was received.
A Sense Interrupt Status Command must be sent after a Seek or Recalibrate Interrupt, otherwise the FDC will consider the next command to be an Invalid Command.
In some applications the user may wish to use this command as a No-Op command, to place the FDC in a standby or no operation state.

FUNCTIONAL DESCRIPTION OF COMMANDS (CONT.) IDENTIFICATION

BIT			DESCRIPTION
NO.	NAME	SYMBOL	
Status Register 0			
D6	$\begin{array}{\|l} \text { Interrupt } \\ \text { Code } \end{array}$	IC	$D_{7}=0 \text { and } D_{6}=0$ Normal Termination of Command, (NT). Command was completed and properly executed.
			$D_{7}=0 \text { and } D_{6}=1$ Abnormal Termination of Command, (AT). Execution of Command was started, but was not successfully completed.
			$\mathrm{D}_{7}=1$ and $\mathrm{D}_{6}=0$ Invalid Command issue, (IC). Command which was issued was never started.
			$\mathrm{D}_{7}=1$ and $\mathrm{D}_{6}=1$ Abnormal Termination because during command execution the ready signal from FDD changed state.
D_{5}	Seek End	SE	When the FDC completes the SEEK Command, this flag is set to 1 (high).
D4	Equipment Check	EC	If a fault Signal is received from the FDD, or if the Track 0 Signal fails to occur after 77 Step Pulses (Recalibrate Command) then this flag is set.
D_{3}	Not Ready	NR	When the FDD is in the not-ready state and a read or write command is issued, this flag is set. If a read or write command is issued to Side 1 of a single sided drive, then this flag is set.
D2	Head Address	HD	This flag is used to indicate the state of the head at Interrupt.
D_{1}	Unit Select 1	US 1	These flags are used to indicate a Drive Unit.
Do	Unit Select 0	USO	Number at Interrupt.
STATUS REGISTER 1			
D_{7}	End of Cylinder	EN	When the FDC tries to access a Sector beyond the final Sector of a Cylinder, this flag is set.
D6			Not used. This bit is always 0 (low).
D5	Data Error	DE	When the FDC detects a CRC error in either the ID field or the data field, this flag is set.
D_{4}	Over Run	OR	If the FDC is not serviced by the main-systems during data transfers, within a certain time interval, this flag is set.
D3			Not used. This bit always 0 (low).
D2	No Data	ND	During execution of READ DATA, WRITE DELETED DATA or SCAN Command, if the FDC cannot find the Sector specified in the IDR Register, this flag is set.
			During executing the READ ID Command, if the FDC cannot read the ID field without an error, then this flag is set.
			During the execution of the READ A Cylinder Command, if the starting sector cannot be found, then this flag is set.

BIT			DESCRIPTION
NO.	NAME	SYMBOL	
STATUS REGISTER 1 (CONT.)			
D_{1}	Not Writable	NW	During execution of WRITE DATA, WRITE DELETED DATA or Format A Cylinder Command, if the FDC detects a write protect signal from the FDD, then this flag is set.
D0	Missing Address Mark	MA	If the FDC cannot detect the ID Address Mark after encountering the index hole twice, then this flag is set.
			If the FDC cannot detect the Data Address Mark or Deleted Data Address Mark, this flag is set. Also at the same time, the MD (Missing Address Mark in Data Field) of Status Register 2 is set.
STATUS REGISTER 2			
D7			Not used. This bit is always 0 (low).
D_{6}	Control Mark	CM	During executing the READ DATA or SCAN Command, if the FDC encounters a Sector which contains a Deleted Data Address Mark, this flag is set.
D5	Data Error in Data Field	DD	If the FDC detects a CRC error in the data field then this flag is set.
D4	Wrong Cylinder	WC	This bit is related with the ND bit, and when the contents of C on the medium is different from that stored in the IDR, this flag is set
D3	Scan Equal Hit	SH	During execution, the SCAN Command, if the condition of "equal" is satisfied, this flag is set.
D2	Scan Not Satisfied	SN	During executing the SCAN Command, if the FDC cannot find a Sector on the cylinder which meets the condition, then this flag is set.
D1	Bad Cylinder	BC	This bit is related with the ND bit, and when the content of C on the medium is different from that stored in the IDR and the content of C is FF, then this flag is set.
D0	Missing Address Mark in Data Field	MD	When data is read from the medium, if the FDC cannot find a Data Address Mark or Deleted Data Address Mark, then this flag is set.
STATUS REGISTER 3			
D7	Fault	FT	This bit is used to indicate the status of the Fault signal from the FDD.
D6	Write Protected	WP	This bit is used to indicate the status of the Write Protected signal from the FDD.
D5	Ready	RY	This bit is used to indicate the status of the Ready signal from the FDD.
D4	Track 0	T0	This bit is used to indicate the status of the Track 0 signal from the FDD.
D3	Two Side	TS	This bit is used to indicate the status of the Two Side signal from the FDD.
D2	Head Address	HD	This bit is used to indicate the status of Side Select signal to the FDD.
D1	Unit Select 1	US 1	This bit is used to indicate the status of the Unit Select 1 signal to the FDD.
D0	Unit Select 0	US 0	This bit is used to indicate the status of the Unit Select 0 signal to the FDD.

It is suggested that you utilize the following applications notes:
(1) \#8 - for an example of an actual interface, as well as a "theoretical" data separator.
(2) \#10 - for a well documented example of a working phase lock loop.

PACKAGE OUTLINE

 μ PD765AD

ITEM	MILLIMETERS	INCHES
A	51.5 MAX	2.03 MAX
B	1.62 MAX	0.06 MAX
C	2.54 ± 0.1	0.1 ± 0.004
D	0.5 ± 0.1	0.02 ± 0.004
E	48.26 ± 0.1	1.9 ± 0.004
F	1.02 MIN	0.04 MIN
G	3.2 MIN	0.13 MIN
H	1.0 MIN	0.04 MIN
I	3.5 MAX	0.14 MAX
J	4.5 MAX	0.18 MAX
K	15.24 TYP	0.6 TYP
L	14.93 TYP	0.59 TYP
M	0.25 ± 0.05	0.01 ± 0.0019

Plastic

ITEM	MILLIMETERS	INCHES
A	51.5 MAX	2.028 MAX
B	1.62	0.064
C	2.54 ± 0.1	0.10 ± 0.004
D	0.5 ± 0.1	0.019 ± 0.004
E	48.26	1.9
F	1.2 MIN	0.047 MIN
G	2.54 MIN	0.10 MIN
H	0.5 MIN	0.019 MIN
I	5.22 MAX	0.206 MAX
J	5.72 MAX	0.225 MAX
K	15.24	0.600
L	13.2	0.520
M	$0.25+0.1$	0.05

NOTES

8-BIT SERIAL OUTPUT A/D CONVERTER

The μ PD7001 is a high performance, low power 8-bit CMOS A/D converter which consists of a 4 channel analog multiplexer, and a digital interface circuit for serial data I/O. The NEC μ PD7001 A/D converter uses successive approximation as a conversion technique.
An A/D conversion system can be easily designed with the μ PD7001 including all circuits for A/D conversion. The μ PD 7001 can be directly connected to 8 -bit or 4-bit microprocessors.

FEATURES - Single chip A/D Converter

- Resolution: 8 Bit
- 4 Channel Analog Multiplexer
- Auto-Zeroscale and Auto-Fullscale Corrections without any external components
- Serial Data Transmission
- High Input Impedance: $1,000 \mathrm{M} \Omega$
- Single +5V Power Supply
- Low Power Operation
- Available in 16 Pin Plastic Package
- Conversion Speed 140μ Typ.

PIN NAMES	
$\overline{\mathrm{EOC}}$	End of Conversion
DL	Analog Channel Data Load
SI	Serial Data Input
$\overline{\mathrm{SCK}}$	Serial Data Clock
SO	Serial Data Output
$\overline{\mathrm{CS}}$	Chip Select
$\mathrm{CL}_{0}, \mathrm{CL}_{1}$	Successive Approximation Clock
V_{SS}	Digital Ground
$\mathrm{A}_{0}, A_{1}, A_{2}, A_{3}$	Analog Inputs
$A G$	Analog Ground
$\mathrm{V}_{\text {REF }}$	Reference Voltage Input
V_{DD}	+5 V

[^12]
μ PD7001

The 4 channel analog inputs are selected by a 2-bit signal which is applied to a serial input and latched with a DL signal. The converted 8 -bit digital signals are output from an open collector serial output (SO). The serial digital signals are synchronized with an external clock applied to a $\overline{S C K}$ terminal. The internal sequence controller controls A/D conversion by initiating a conversion cycle at a rise of the Chip Select ($\overline{\mathrm{CS}}$). At the final step of each A/D conversion cycle the converted data is transmitted to an 8-bit shift register and immediately the next conversion cycle is started. This step results in storage of the newest data in a shift register. At the final step of the first A/D conversion cycle, an end of conversion signal ($\overline{\mathrm{EOC}}$) is output indicating that the converted data is stored in a shift register. At a low level (active) of the chip select, the sequence controller and $\overline{\overline{E O C}}$ are reset and the A / D conversion is stopped.

FUNCTIONAL DESCRIPTION

BLOCK DIAGRAM

Operating Temperature
$-0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Analog Input Voltage -0.3 to $V_{D D}+0.3$ Volts
Reference Input Voltage -0.3 to $V_{D D}+0.3$ Volts
Digital Input Voltage . - 0.3 to +12 Volts
Max. Pull-up Voltage . +12 Volts
Supply Voltages . -0.3 to +7 Volts
Power Dissipation . 200 mW
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
*COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ABSOLUTE MAXIMUM RATINGS*
$T_{a}=25 \pm 2^{\circ} \mathrm{C} ; \mathrm{f}^{\mathrm{C}} \mathrm{CK}=400 \mathrm{kHz} ; \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}$; (1)

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
EOC Hold Time	tHECS	0			μs	EOC to CS
CS Setup Time	${ }^{\text {t SCSK }}$	12.5			$\mu \mathrm{s}$	CS to SCK. (1)
Address Data Sotup Time	tsik	160			ns	
Address Data Hold Time	${ }^{\text {thKI }}$	100			ns	
High Level Serial Clock Pulse Width	tWHK	400			ns	
Low Level Serial Clock Pulse Width	${ }^{\text {'WLK }}$	400	*		ns	
Data Latch Hold Time	tHKDL	200			ns	$\overline{\text { SCK }}$ to DL
Data Latch Pulse Width	tWHDL	. 200			ns	
Serial Data Delay Time	${ }^{\text {t }} \mathrm{CKO}$:	500	ns	$\begin{aligned} & \text { SCK to SO, R }=3 K,(2) \\ & C L=30 \mathrm{pF} \end{aligned}$
Delay Time to Floating SO	${ }^{\text {t }}$ FCSO			250	ns	CS to High Impedance SO
CS Hold Time	${ }^{\text {t HKCS }}$	200			ns	

Notes: (1). At a low level of CS the data is exchanged with external digital circuit and at a high level of $\overline{C S}$ the μ PD 7001 performs A/D conversion and does not accept any external digital signal. However, 5 pulses of internal clock are needed before digital data output end then the μ PD7001 remains at the previous state of high level $\overline{\mathrm{CS}}$.
The rating corresponds to the 5 pulses of clock signial.

$$
\mathrm{t}^{\mathrm{s} C S K}(\mathrm{Min} .)=5 / \mathrm{f} \mathrm{CK}
$$

(2) The serial data delay time depends on load capacitance and pull-up resistance.

DC CHARACTERISTICS
$T_{a}=25 \pm 2^{\circ} \mathrm{C} ; V_{D D}=+5 \mathrm{~V} \pm 10 \% ; V_{\text {REF }}=2.5 \mathrm{~V} ; \mathrm{f}_{\mathrm{CK}}=400 \mathrm{kHz}$.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Resolution			8		Bit	$\begin{aligned} & V_{D D}=5 V \\ & V_{\text {REF }}=2.25 \text { to } 2.75 \mathrm{~V} \end{aligned}$
Non Linearity				0.8	\%FSR	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{R E F}=2.25 \text { to } 2.75 \mathrm{~V} \end{aligned}$
Full-Scale Error				2	LSB	$\begin{aligned} & V_{D D}=5 V \\ & V_{R E F}=2.25 \text { to } 2.75 \mathrm{~V} \end{aligned}$
Full-Scale Error Temp. Coefficient		-	30		ppm/ ${ }^{\circ} \mathrm{C}$	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{\text {REF }}=2.25 \text { to } 2.75 \mathrm{~V} \end{aligned}$
Zero Error				2	LSB	$\begin{aligned} & V_{D D}=5 V \\ & V_{\text {REF }}=2.25 \text { to } 2.75 V \end{aligned}$
Zero Error Temp. Coefficient	;		30		ppm/ ${ }^{\circ} \mathrm{C}$	$\begin{aligned} & V_{D D}=5 V \\ & V_{\text {REF }}=2.25 \text { to } 2.75 V \end{aligned}$
Total Unadjusted Error 1	T.U.E. 1			2	LSB	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{\text {REF }}=2.25 \text { to } 2.75 \mathrm{~V} \end{aligned}$
Total Unadjugted Error 2	T.U.E. 2			2	LSB	$\begin{aligned} & V_{D D}=4.5 \text { to } 5.5 \mathrm{~V} \\ & V_{\text {REF }}=2.5 \mathrm{~V} \\ & \hline \end{aligned}$
Analog Input Voltage	V_{1}	0		VREF	V	(1)
Analog Input Resistance	R_{1}		1000		M Ω	$V_{1}=0$ to $V_{D D}$
Conversion Tlme	${ }^{\text {c CONV }}$		140		$\mu 5$	(2)
Clock Frequency Range	${ }^{6} \mathrm{CK}$	0.01	$0.4{ }^{\text { }}$	0.5	MHz	
Clock Frequency Distribution	${ }^{\mathbf{A f}} \mathbf{C K}$		± 5	± 20	\%	$\begin{aligned} & R=27 \mathrm{~K} \Omega, \mathrm{C}=47 \mathrm{pF} \\ & \left({ }^{f} \mathrm{CK}=0.4 \mathrm{MHz}\right) \end{aligned}$
Serial Clock Frequency	${ }^{\text {f SCK }}$			1	MHz	(3)
High Level Voltage	$\mathrm{V}_{\text {IH }}$	3.6			V	
Low Level Voltage	VIL			1.4	V	
Digital Input Leakage Current	$1 /$		1.0	10	$\mu \mathrm{A}$	$V_{1}=V_{S S}$ to +12 V
Low Level Output Voltage	VOL			0.4	V	$1 \mathrm{OL}^{=1.7} \mathrm{~mA}$
Output Leakage Current	I_{L}		1.0	10	$\mu \mathrm{A}$	$V_{0}=+12 V$
Power Dissipation	P_{d}		5	15	mW	

[^13]

Notes: (1) The address set can be performed simultaneously with the digital data outputting.
(2) Analog Multiplexer Channel Selections:

Analog Input Address	D_{0}	D_{1}
A_{0}	L	L
A_{1}	H	L
A_{2}	L	H
A_{3}	H	H

(3) Rise and fall time of the above waveforms should not be more than 50 ns .

(PLASTIC)

ITEM	millimetene	inches
A	10.4 MAX.	0.76 MAX .
:	0.81	0.03
c	2.54	0.10
D	0.5	0.02
E	17.78	0.70
F	1.3	0.051
6	2.54 MIN.	0.10 miN .
H	0.5 MIN.	0.02 MIN.
1	4.06 max.	0.16 max.
J	4.66 max .	0.18 max.
K	7.62	0.30
6	0.4	0.28
M	$0^{0.25}{ }_{-0.105}^{+0.10}$	0.01

10-BIT BINARY AID CONVERTER

DESCRIPTION The μ PD7002 is a high performance, low power, monolithic CMOS A/D converter designed for microprocessor applications. The analog input voltage is applied to one of the four analog inputs. By loading the input register with the multiplexer channel and the desired resolution (8 or 10 bits) the integrating A / D conversion sequence is started. At the end of conversion $\overline{E O C}$ signal goes low and if connected to the interrupt line of microprocessor it will cause an interrupt. At this point the digital data can be read in two bytes from the output registers. The μ PD7002 also features a status register that can be read at any time.

FEATURES

- Single Chip CMOS LSI
- Resolution: 8 or 10 Bits
- 4 Channel Analog Multiplexer
- Auto-Zeroscale and Auto-Fullscale Corrections without any External Components
- High Input Impedance: $1000 \mathrm{M} \Omega$
- Readout of Internal Status Register Through Data Bus
- Single +5 V Power Supply
- Interfaces to Most 8-Bit Microprocessors
- Conversion Speed: 5 ms ($10 \mathrm{Bit}, \mathrm{f} \mathrm{CK}=2 \mathrm{MHz}$)
- Power Consumption: 15 mW
- Available in a 28 Pin Plastic Package
- 2 Performance Ranges

Conversion Accuracy (Max) $\mathrm{T}_{\mathrm{a}}=0^{\circ}$ to $50^{\circ} \mathrm{C}$
μ PD7002C-1; 0.1\% FSR
μ PD7002C ; 0.2\% FSR
PIN CONFIGURATION

Parameter		SYMBOL	LIMITS			UNIT	TEST CONDITION8	
		MIN	TYP	MAX				
Resolution	7002C-1			10	11	12	Bits	$\begin{aligned} & V_{D D}=5 V, \\ & V_{\text {REF }}=2.5 \pm 0.25 \mathrm{~V} \end{aligned}$
	7002C		9	11	12			
Non Lineerity	7002C-1			0.05	0.1	\%FSR	$\begin{aligned} & V_{D O}=5 \mathrm{~V}, \\ & V_{\text {REF }}=2.5 \pm 0.25 \mathrm{~V} \end{aligned}$	
	7002C			0.1	0.2			
Fullicale Error	7002C. 1			0.05	0,1	\%FSR	$\begin{aligned} & V_{D D}=5 V \\ & V_{\text {REF }}=2.5 \pm 0.25 \mathrm{~V} \end{aligned}$	
	7002C			0.1	0.2			
Zerorcale Error	7002C-1			0.05	0.1	\%FSR	$\begin{aligned} & V_{D D}=5 V \\ & V_{\text {REF }}=2.5 \pm 0.25 \mathrm{~V} \end{aligned}$	
	7002C			0.1	0.2			
Fuliscale Temperature Coefficient				10		PPM $P^{\circ} \mathrm{C}$	$V_{D D}=5 \mathrm{~V}$	
Zeroscale Temperature Cosfficient				10		PPM/ $/{ }^{\circ} \mathrm{C}$	$V_{D D}=5 \mathrm{~V}$	
Analog Input Voltage Range		$V_{1 A}$	0		$V_{\text {REF }}$	\checkmark		
Analog Input Resistance		$\mathrm{R}_{1 /}$		1000		M Ω	$V_{\text {IA }}=V_{\text {SS }}$ to $V_{\text {DD }}$	
Total Unadjusted Error 1	7002C-1	T.U.E. 1		0.05	0.1	\%FSR	$\begin{aligned} & V_{\text {REF }}=2.25 \text { to } 2.75 \mathrm{~V}, \\ & V_{D D}=5 V \end{aligned}$	
	7002C	T.U.E. 1		0.1	0.2			
Total Unadjusted Error 2	$7002 \mathrm{C}-1$	T.U.E. 2		0.05	0.1	\%FSR	$\begin{aligned} & V_{\text {REF }}=2.5 \mathrm{~V} . \\ & V_{D D}=4.75 \text { to } 6.25 \mathrm{~V} \end{aligned}$	
	7002C	T.U.E. 2		0.1	0.2			
Clock Input Current		$\mid \times 1$		5	50	$\mu \mathrm{A}$		
Clock Input High Level		$V_{\text {XII }}$	$V_{D O}{ }^{-1.4}$			V		
Clock Input Low Lavel		V XIL			$\mathrm{V}_{\text {ss }}{ }^{+1.4}$	V		
High Level Input Voltege		$\mathrm{V}_{\text {IH }}$	2.2			V	$\mathrm{T}_{5}=-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	
Low Level Input Voltage		$V_{\text {IL }}$			0.8	V	$\mathrm{Ta}_{\mathrm{g}}=-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	
High Level Output Voltage		VOH	$\mathrm{V}_{\text {DD }}{ }^{-1.5}$			v	$\begin{aligned} & 1_{0}=-1.6 \mathrm{~mA} \\ & T_{\mathrm{B}}=-20^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	
Low Level Output Voltage		VOL			0.46	V	$\begin{aligned} 1_{0} & =+16 \mathrm{~mA} \\ T_{\mathrm{a}} & =-20^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$	
Oigital input Leakage Current		1		1	10	$\mu \mathrm{A}$	$V_{1}=V_{S S}$ to $V_{\text {DD }}$	
Highz O Output Leakage Current		${ }^{\text {L Leak }}$		1	10	$\mu \mathrm{A}$	$\mathrm{V}_{0}=\mathrm{V}_{\text {SS }}$ to $\mathrm{V}_{\text {DD }}$	
Power Dissipation		Pd		15	25	mW	${ }^{1} \mathrm{CK} \leqslant 1 \mathrm{MHz}$	

ABSOLUTE MAXIMUM RATINGS*

Operating Temperature
$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
All Input Voltages 0.3 to VDD +0.3 Volts

Power Supply
-0.3 to +7 Volts
Power Dissipation . 300 mW
Analog GND Voltage . VSS ± 0.3 Volts
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
*COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
AC CHARACTERISTICS
$T_{\text {A }}=25^{\circ} \pm 2^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=+5 \pm 0.25 \mathrm{~V} ; \mathrm{V}_{\text {REF }}=2.5 \mathrm{~V} ; \mathrm{f}_{\mathrm{CK}}=1 \mathrm{MHz} ; \mathrm{C}_{\text {INT }}=0.033 \mu \mathrm{~F}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Conversion Speed (12 bit)	tCONV	8.5	10	15	ms	$\mathrm{f}_{\mathrm{CK}}=1 \mathrm{MHz}$
Conversion Speed (8 bit)	tconv	2.4	4	5	ms	$\mathrm{f}_{\mathrm{CK}}=1 \mathrm{MHz}$
Clock Frequency Range	${ }^{\text {fick }}$	0.5	1	3	MHz	
IntegratIng Capacitor Value	$\mathrm{C}_{\text {INT** }}$	0.029			$\mu \mathrm{F}$	$\begin{aligned} & \mathrm{V}_{\mathrm{REF}}=2.50 \mathrm{~V} . \\ & \mathrm{f}_{\mathrm{CK}}=1 \mathrm{MHz} \end{aligned}$
Address Setup Time $\overline{\mathrm{CS}}, \mathrm{A}_{0}, \mathrm{~A}_{1}$, to $\overline{\mathrm{WR}}$	${ }^{\text {taw }}$	50			ns	
Address Setup Time $\overline{C S}, A_{0}, A_{1}$, to $\overline{R D}$	${ }^{\text {t }}$ AR	50			ns	
Address Hold Time $\overline{\mathrm{WR}}$ to CS, A_{0}, A_{1}	twA	50			ns	
Address Hold Time $\overline{\mathrm{RD}}$ to CS, A_{0}, A_{1}	${ }^{\text {tra }}$	50			ns	
Low Level WR Pulse Width	${ }^{\text {tww }}$	400			ns	
Low Level $\overline{\text { RD Puise Width }}$	trR	400			ns	
Data Setup Time Input Data to $\overline{\mathrm{WR}}$	tow	300			ns	
Data Hold Time $\overline{\text { WR }}$ to Input Data	twD	50			ns	
Output Delay Time $\overline{\mathrm{RD}}$ to Output Data	${ }^{\text {tr }}$			300	ns	$1 \mathrm{TTL}+100 \mathrm{pF}$
Delay Time to High Z Output $\overline{\mathrm{RD}}$ to Floating Output	tDF			150	ns	

TIMING WAVEFORMS

CONTROL TERMINALS					MODE	INTERNAL FUNCTION	DATA INPUT-OUTPUT TERMINALS
$\overline{\mathbf{C s}}$	$\overline{\text { RD }}$	WR	A_{1}	A_{0}			
H	\times	\times	\times	\times	Not selected		High impedance
L	H	H	\times	x	Not selected	-	
L	H	L	L	L	Write mode	Data latch A/D start	Input status, $\mathrm{D}_{1}, \mathrm{D}_{0}=\mathrm{MPX}$ address $\mathrm{D}_{3}=8 \mathrm{bit} / 10$ bit conversion designation. (1) $D_{2}=$ Flag Input
L	H	1	L	H	Not selected	-	High impedance
L	H	L	H	L	Not selected	-	
L	H	L	H	H	Test mode	Test status	Input status (2)
L	L	H	L	L	Read mode	Internal status	$\begin{aligned} & D_{7}=\overline{E O C}, D_{6}=\overline{B U S Y}, D_{5}=\text { MSB }, \\ & D_{4}=2 n d M S B, D_{3}=8 / 10, \\ & D_{2}=\text { not used } D_{1}=M P X, \\ & D_{0}=M P X \end{aligned}$
L	L.	H	L	H	Read mode	High data byte	$\mathrm{D}_{7}-\mathrm{D}_{0}=\mathrm{MSB}-8$ th bit
L	L	H	H	L	Read mode	Low data byte	$D_{7}-D_{4}=9$ th -10 th bit, $D_{3}-D_{0}=L$
L	L	H	H	H	Read mode	Low data byte	

Notes: (1) Designation of number of conversion bits: 8 bit $=\mathrm{L} ; 10$ bit $=\mathrm{H}$.
(2) Test Mode: Used for inspecting the device. The data input-output terminals assume an input state and are connected to the A/D counter. Therefore, the A/D conversion data read out after this is meaningless.

PLASTIC

ITEM	MILLIMETERS	INCHES
A	38.0 MAX.	1.496 MAX.
B	2.49	0.098
C	2.54	0.10
D	0.5 ± 0.1	0.02 ± 0.004
E	33.02	1.3
F	1.5	0.059
G	2.54 MIN.	0.10 MIN.
H	0.5 MIN.	0.02 MIN.
I	5.22 MAX.	0.205 MAX.
J	5.72 MAX.	0.225 MAX.
K	15.24	0.6
L	13.2	0.52
M	$0.25+0.10$	$0.01+0.004$

CONTROL TERMINAL FUNCTIONS

PACKAGE OUTLINE μ PD7002C

MULTI-PROTOCOL SERIAL CONTROLLER

The μ PD7201 is a dual-channel multi-function peripheral controller designed to satisfy a wide variety of serial data communication requirements in microcomputer systems. Its basic function is a serial-to-parallel, parallel-to-serial converter/controller and within that role it is configurable by systems software so its "personality" can be optimized for a given serial data communications application.
The μ PD7201 is capable of handling asynchronous and synchronous byte-oriented protocols such as IBM Bisync, and synchronous bit-oriented protocols such as HDLC and IBM SDLC. This versatile device can also be used to support virtually any other serial protocol for applications other than data communications.
The μ PD7201 can generate and check CRC codes in any synchronous mode and can be programmed to check data integrity in various modes. The device also has facilities for modem controls in both channels. In applications where these controls are not needed, the modem controls can be used for general-purpose 1/O.

FEATURES

- Two Fully Independent Duplex Serial Channels
- Four Independent DMA Channels for Send/Received Data for Both Serial Inputs/Outputs
- Programmable Interrupt Vectors and Interrupt Priorities
- Modem Controls Signals
- Variable, Software Programmable Data Rate, Up to 880 K Baud at 4 MHz Clock
- Double Buffered Transmitter Data and Quadruply Buffered Received Data
- Programmable CRC Algorithm
- Selection of Interrupt, DMA or Polling Mode of Operation
- Asynchronous Operation:
- Character Length: 5, 6,7 or 8 Bits
- Stop Bits: 1, 1-1/2, 2
- Transmission Speed: $\times 1, \times 16, \times 32$ or $\times 64$ Clock Frequency
- Parity: Odd, Even, or Disable
- Break Generation and Detection
- Interrupt on Parity, Overrun, or Framing Errors
- Monosync, Bisync, and External Sync Operations:
- Software Selectable Sync Characters
- Automatic Sync Insertion
- CRC Generation and Checking
- HDLC and SDLC Operations:
- Abort Sequence Generation and Detection
- Automatic Zero Insertion and Detection
- Address Field Recognition
- CRC Generation and Checking
- I-Fiéld Residue Handling
- N-Channel MOS Technology
- Single +5 V Power Supply; Interface to Most Microprocessors Including 8080, 8085, 8086 and Others.
- Single Phase TTL Clock
- Available in Plastic and Ceramic Dual-in-Line Packages

CLK 1		40	$\square \mathrm{V}_{\mathrm{CC}}$
RESET \square		39	$\square \overline{C T S A}$
$\overline{D C D A} \square^{-1}$		38	ATSA
$\overline{\mathrm{R} \times \mathrm{CB}} \mathbf{4}$		37	\square TxDA
$\overline{\text { DCDE }}: 5$		36	$\overline{T \times C A}$
$\overline{\text { CTSB }} 6$		35	$\overline{\mathrm{R} \times \mathrm{CA}}$
T×CB $\square 7$		34	$\square \mathrm{RxDA}$
T×DB \square^{8}		33	SYNCA
R×DB 9		32	WAITA/DRQRxA
$\overline{\text { RTSB }} / \overline{\text { SYNCB }} 10$	$\mu \mathrm{PD}$	31] $\overline{\text { DTRA }} / \overline{\mathrm{HAO}}$
WAITB/DRQTXA 11	7201	30]PRO/DRQTxB
$\mathrm{D}_{7} \square 12$		29	$]$ PRI/DRQR \times B
D6 13		28	\square INT
$\mathrm{D}_{5} \mathrm{C}_{14}$		27	INTA
$\mathrm{D}_{4} \square^{-15}$		26	$\overline{\text { DTRB/ }} / \overline{\text { HAI }}$
$\mathrm{D}_{3} \square 16$		25	$\square B / \bar{A}$
$\mathrm{D}_{2} \square 17$		24	$\square C / \bar{D}$
$\mathrm{D}_{1}-18$		23	$\overline{\mathrm{CS}}$
$\mathrm{D}_{0} \square_{19}$		22	$] \overline{R D}$
$\mathrm{V}_{\text {SS }} \square_{20}$		21	$\overline{W R}$

PIN DESCRIPTION

NO.	PIN		DESCRIPTION
	SYMBOL	NAME	
12-19	$\mathrm{D}_{0}-\mathrm{D}_{7}$	System Data Bus (bidirectional, 3-state)	The system data bus transfers data and commands between the processor and the μ PD7201. D_{0} is the least significant bit.
25	B / \bar{A}	Channel A or B Select (input, High selects Channel B)	This input defines which channel is accessed during a data transfer between the processor and the μ PD7201.
24	C / \bar{D}	Control or Data Select (input, High selects Control)	This input defines the type of information transfer performed between the processor and the μ PD7201. A High at this input during a processor write to or read from the μ PD7201 causes the information on the data bus to be interpreted as a command for the channel selected by B / \bar{A}. A low at C / \bar{D} means that the information on the data bus is data.
23	$\overline{\mathrm{CS}}$	Chip Select (input, active Low)	A low level at this input enables the μ PD7201 to accept command or data inputs from the processor during a write cycle, or to transmit data to the processor during a read cycle.
1	CLK	System Clock (input)	The μ PD7201 uses standard TTL clock.
22.	$\overline{R D}$	Read (input active Low)	If $\overline{R D}$ is active, a memory or I/O read operation is in progress. $\overline{R D}$ is used with C / \bar{D}, $\mathrm{B} / \overline{\mathrm{A}}$ and $\overline{\mathrm{CS}}$ to transfer data from the $\mu \mathrm{PD} 7201$ to the processor or the memory.
21	WR	Write (input, active Low)	The $\overline{W R}$ signal is used to control the transfer of either command or data from the processor or the memory to the μ PD7201.
2	$\overline{\text { RESET }}$	Reset (input, active Low)	A low RESET disables both receivers and transmitters, forces T×DA and TxDB marking, forces the modem controls high and disables all interrupts. The control registers must be rewritten after the μ PD7201 is reset and before data is transmitted or received. RESET must be active for a minimum of one complete CLK cycle.
10,38	$\overline{\text { RTSA }}, \overline{\text { RTSB }}$	Request to Send (outputs, active Low)	When the $\overline{\mathrm{RTS}}$ bit is set, the $\overline{\mathrm{RTS}}$ output goes Low. When the $\overline{\mathrm{RTS}}$ bit is reset in the Asynchronous mode, the output goes High after the transmitter is empty. In Synchronous modes, the $\overline{\mathrm{RTS}}$ pin strictly follows the state of the $\overline{\mathrm{RTS}}$ bit. Both pins can be used as general-purpose outputs.
10,33	$\overline{\text { SYNCA }}$, $\overline{\text { SYNCB }}$	Synchronization (inputs/outputs, active Low)	These pins can act either as inputs or outputs. In the Asynchronous Receive mode, they are inputs similar to $\overline{\mathrm{CTS}}$ and $\overline{\mathrm{DCD}}$. In this mode, the transitions on these lines affect the state of the Sync/Hunt status bits in Read Register 0. In the External Sync mode, these lines also act as inputs. When external synchronization is achieved, $\overline{\text { SYNC }}$ must be driven Low on the second rising edge of $\overline{\mathrm{RXC}}$ after that rising edge of $\overline{\mathrm{RXC}}$ on which the last bit of the sync character was received. In other words, after the sync pattern is detected, the external logic must wait for two full Receive Clock cycles to activate the $\overline{\text { SYNC }}$ input. Once $\overline{\text { SYNC }}$ is forced Low, it is wise to keep it Low until the processor informs the external sync logic that synchronization has been lost or a new message is about to start. Character assembly begins on the rising edge of $\overline{\mathrm{RxC}^{\prime}}$ that immediately precedes the falling edge of SYNC in the External Sync mode. In the Internal Syrichronization mode (Monosync and Bisync), these pins act as outputs that are active during the part of the receive clock $\overline{(R \times C)}$ cycle in which sync characters are recognized. The sync condition is not latched, so these outputs are active each time a sync pattern is recognized, regardless of character boundaries.
26,31	$\overline{\text { DTRA }}$, $\overline{\text { DTRB }}$	Data Terminal Ready (outputs, active Low)	These outputs follow the state programmed into the DTR bit. They can also be programmed as general-purpose outputs.

PIN DESCRIPTION
(CONT.)

	PIN		DESCRIPTION
NO.	SYMBOL	NAME	
27	INTA	Interrupt Acknowledge (input, active Low)	This signal is generated by the processor and is sent to all peripheral devices. It serves to acknowledge the interrupt and to allow the highest priority interrupting device to put an 8 -bit vector on the bus. TNT and INTA are compatible with the fully nested option of the μ PD8259A-5.
29	$\overline{\text { PRI }}$	Priority In (input, active Low)	These signals are daisy chained through the peripheral device controllers. The signal on these lines is intact until a device with a pending interrupt request is found on the chain. After that device, this signal holds off lower priority device interrupts. A higher priority device can interrupt the processing of an interrupt from a lower priority device, provided the processor has interrupts enabled. $\overline{\mathrm{PRI}}$ is used with $\overline{\mathrm{PRO}}$ to form a priority daisy chain when there is more than one interrupt-driven device. A Low on this line indicates that no other device of higher priority is being serviced by a processor interrupt service routine. $\overline{\mathrm{PRO}}$ is Low only if $\overline{\mathrm{PRI}}$ is Low and the processor is not servicing an interrupt from the μ PD7201. Thus, this signal blocks lower priority devices from interrupting while a higher priority device is being serviced by its processor interrupt service routine.
30	$\overline{\text { PRO }}$	Priority Out loutput, active Low)	
$\begin{aligned} & 11,29 \\ & 30,32 \end{aligned}$	DROTxA, DRQTxB DRQRxA, DRQR×B	DMA Request (outputs, active High)	These signals are generated by the receiver or transmitter of Channel A and Channel B. These signals can be connected to most DMA Controllers directly and are used for handshaking during DMA transfer.
26	HAT	DMA Acknowledge (input, active Low)	Typically, the HLDA signal driven from the processor is input to the HAT terminal of the hlghest priority μ PD7201, and the HAO output of that μ PD7201 is daisy chained to the HAT input of the lower priority μ PD7201 and propagated downstream. $\overline{\mathrm{HAT}}$ and $\overline{\mathrm{HAO}}$ signals provide acknowledgement for the highest priority outstanding DMA request.
31	$\overline{\text { HAO }}$	DMA Acknowledge (output, active Low)	
28	INT	Interrupt Request (output, open collector, active Low)	When the μ PD7201 is requesting an interrupt, it pulls INT low.
11,32	$\overline{\text { WAITA, }}$ WAITB	(Outputs, open drain)	Wait lines for both channels that synchronize the processor to the μ PD7201 data rate. The reset state is open drain.
6,39	$\overline{\text { CTSA }}$, CTSB	Clear to Send (inputs, active Low)	When programmed as Auto Enables, a Low on these inputs enables the respective transmitter, If not programmed as Auto Enables, these inputs may be programmed as general-purpose inputs. Both inputs are Schmitt-trigger buffered to accommodate slow-risetime inputs. The μ PD7201 detects pulses on these inputs and interrupts the processor on both logic level transitions. The Schmitt-trigger inputs do not guarantee a specified noise-level margin.
3,5	$\overline{\mathrm{DCDA}}, \overline{\mathrm{DCDB}}$	Data Carrier Detect (inputs, active Low)	These signals are similar to the $\overline{\mathrm{CTS}}$ inputs, except they can be used as receiver enables.
9,34	$R \times D A, R \times D B$	Receive Data (inputs, active High)	
8,37	TxDA, TxDB	Transmit Data (outputs, active High)	
4,35	$\overline{\mathrm{RXCA}}, \overline{\mathrm{R} \times \mathrm{CB}}$	Receiver Clocks (inputs)	The Receiver Clocks may be 1,$16 ; 32$, or 64 times the data rate in asynchronous modes. Receive data is sampled on the rising edge of $\overline{\mathrm{R} \times \mathrm{C}}$.
7,36	$\overline{T \times C A}, \overline{T \times C B}$	Transmitter Clocks (inputs)	In asynchronous modes, the Transmitter Clocks may be 1,16,32, or 64 times the data rate. The multiplier for the transmitter and the receiver must be the same. Both $\overline{T \times C}$ and $\overline{R \times C}$ inputs are Schmitt-trigger buffered for relaxed rise- and falltime requirements (no noise margin is specified). $T \times D$ changes on the falling edge of $\overline{T x C}$. Note that $\overline{T x C}$ and $\overline{R x C}$ in Channel B are on a common pin, $\overline{R x C B} / \overline{T x C B}$.

Operating Temperature 0° to $+70^{\circ} \mathrm{C}$
Storage Temperature $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on Any Pin
0.5 to +7 Volts (1)

Note: (1) With respect to ground.
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
*COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	LIMITS		UNIT	TEST CONDITIONS
		MIN	MAX		
Input Low Voltage	VIL	-0.5	+0.8	V	
Input High Voltage	VIH	+2.0	$\mathrm{V}_{\text {CC }}+0.5$	V	
Output Low Voltage	V_{OL}		+0.45	V	$\mathrm{IOL}=+2.0 \mathrm{~mA}$
Output High Voltage	V OH	+2.4		V	$\mathrm{IOH}=-200 \mu \mathrm{~A}$
Input Leakage Current	IIL		± 10	$\mu \mathrm{A}$	$V_{\text {IN }}=V_{\text {CC }}$ to 0 V
Output Leakage Current	IOL		± 10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$ to 0 V
VCC Supply Current	ICC		180	mA	

$$
\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=\mathrm{GND}=0 \mathrm{~V}
$$

PARAMETER	SYMBOL	LIMITS		UNIT	TEST CONDITIONS
		MIN	MAX		
Input Capacitance	$\mathrm{C}_{\text {IN }}$		10	pF	$\mathrm{fc}=1 \mathrm{MHz}$
Output Capacitance	COUT		15	pF	
Returned to GND					

DC CHARACTERISTICS

CAPACITANCE
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	LIMITS		UNIT
		MIN	MAX	
Clock Cycle	tcy	250	4000	ns
Clock High Width	ter	105	2000	ns
Clock Low Width	tCL	105	2000	ns
Clock Rise and Fall Time	$\mathrm{tr}_{\mathrm{r}}, \mathrm{tf}_{f}$	0	30	ns
Address Setup to $\overline{\mathrm{RD}}$	${ }_{\text {t }}$ AR	0		ns
Address Hold from RD	tra	0		ns
$\overline{\mathrm{RD}}$ Pulse Width	${ }_{\text {tr }}$	250		ns
Data Delay from Address	tad		200	ns
Data Delay from $\overline{\mathrm{RD}}$	trD		200	ns
Output Float Delay	tDF	10	100	ns
Address Setup to WR	taw	0		ns
Address Hold from WR	twa	0		ns
$\overline{\text { WR Pulse Width }}$	tww	250		ns
Data Setup to WR	tDW	150		ns
Data Hold from $\overline{W R}$	twD	0		ns
$\overline{\text { PRO }}$ Delay from $\overline{\text { INTA }}$	tiAPO		200	ns
PRT Setup to TNTA	tPIN	0		ns
$\overline{\text { PRT }}$ Hold from $\overline{\text { INTA }}$	tIP	0		ns
INTA Pulse Width	tII	250		ns
$\overline{\text { PRO }}$ Delay from $\overline{\text { PRT }}$	tPIPO		100	ns
Data Delay from $\overline{\text { INTA }}$	tid		200	ns
Request Hold from $\overline{\mathrm{RD}} / \overline{\mathrm{WR}}$	tco		150	ns
	tLR	300		ns
$\overline{\mathrm{HAI}}$ Hold from $\overline{\mathrm{RD}} / \overline{\mathrm{WR}}$	tri	0		ns
HAO Delay from HAT	thino		100	ns
Recovery Time Between Controls	trv	300		ns
WAIT Delay from Address	tcw		120	ns
Data Clock Cycle	${ }_{\text {t }}$ DCY	400		ns
Data Clock Low Width	${ }^{\text {t }}$ DCL	180		ns
Data Clock High Width	tDCH	180		ns
Tx Data Delay	tTD		300	ns
Data Set up to $\overline{\mathrm{R} \times \mathrm{C}}$	tDS	0		ns
Data Hold from $\overline{\mathrm{RXC}}$	tD	140		ns
$\overline{\text { INT }}$ Delay Time from $\overline{\mathrm{T} \times \mathrm{C}}$	titi		4~6	tcy
$\overline{\text { INT }}$ Delay Time from $\overline{\mathrm{RxC}}$	tIRD		7~11	${ }_{\text {tCr }}$
Low Pulse Width	tPL	200		ns
High Pulse Width	tPH	200		ns
External $\overline{\text { INT }}$ from $\overline{\mathrm{CTS}}, \overline{\mathrm{DCD}}, \overline{\mathrm{SYNC}}$	tIPD		500	ns
Delay from $\overline{\mathrm{RXC}}$ to $\overline{\text { SYNC }}$	tDRxC		100	ns

INTA CYCLE

DMA CYCLE

TRANSMIT DATA CYCLE.
$\overline{T x C}$
T×D
INT

Notes:
(1) $\overline{\text { INTA }}$ signal acts as $\overline{\mathrm{RD}}$ signal.
(2) $\overline{\mathrm{PRI}}$ and $\overline{\mathrm{HAI}}$ signals act-as $\overline{\mathrm{CS}}$ signal.

TIMING WAVEFORMS
(CONT.)
$\overline{\mathrm{AxC}}$
R×D
INT

CLOCK

READ/WRITE CYCLE (SOFTWARE BLOCK TRANSFER MODE)

SYNC PULSE GENERATION (EXTERNAL SYNC MODE)

READ REGISTER 0

READ REGISTER 1 (1)

READ REGISTER 2

Notes: (1) Used with Special Receive Condition Mode.
(2) Variable if "Status Affects Vector" is programmed.

WRITE REGISTER BIT FUNCTIONS

WRITE REGISTER 0

WRITE REGISTER 1

WRITE REGISTER 2 (CHANNEL B)

INTERRUPT VECTOR

WRITE REGISTER 2

WRITE REGISTER (CHANNEL A) BIT FUNCTIONS (CONT.)

WRITE REGISTER 3

D7	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}
0	0	Rx	5 BI	TS/C	HAR	CTE	
0	1	Rx	7 BI	TS/C	HAR	ACTE	
1	0	Rx	6 BI	TS/C	HAR	ACTE	
1	1		8 BI	TS/C	HAR	CTE	

WRITE REGISTER 4

\mathbf{D}_{7} $\mathbf{D}_{\mathbf{6}}$ $\mathbf{D}_{\mathbf{5}}$ $\mathbf{D}_{\mathbf{4}}$ $\mathbf{D}_{\mathbf{3}}$ $\mathbf{D}_{\mathbf{2}}$ $\mathbf{D}_{\mathbf{1}}$ $\mathbf{D}_{\mathbf{0}}$ l

WRITE REGISTER BIT FUNCTIONS (CONT.)

WRITE REGISTER 5

WRITE REGISTER 6

ALSO SDLC ADDRESS FIELD

WRITE REGISTER 7

Note: (1) For SDLC it must be programmed to " 01111110 " for flag recognition.

WR2s BITS IN CH. A	$\overline{\text { PRIN }}$	MODE	CONTENTS ON DATA BUS DRIVEN BY THE μ PD7201 AT EACH INTA SEQUENCE		
$\begin{aligned} & \text { IN CH. A } \\ & D_{5} D_{4} D_{3} \end{aligned}$			lst TNTA $D_{7} \quad D_{6} \quad D_{5} \quad D_{4} \quad D_{3} \quad D_{2} D_{1} \quad D_{0}$	2nd INTA $D_{7} \quad D_{6} \quad D_{5} \quad D_{4} \quad D_{3} \quad D_{2} \quad D_{1} \quad D_{0}$	3rd INTA (*) $D_{7} D_{6} D_{5} D_{4} D_{3} D_{2} D_{1} D_{0}$
0×1	\times	Non-vectored	High-Z	High-Z	High-Z
100	0	8085 Master	$\begin{array}{llllll} \hline & & & \text { (Call) } \\ 1 & 1 & 0 & 1 & 1 & 0 \end{array}$		0000000
100	1	8085 Master	110010101	High-Z	High-Z
101	0	8085 Slave	High-Z		0000000
101	1	8085 Slave	High-Z	High-Z	High-Z
110	0	8086	High-Z	$V_{7} V_{6} \quad V_{5} \quad V_{4} V_{3} V_{2} V_{1} V_{0}$	
110	1	8086	High-Z	High-Z	

(*) 3rd INTA is 8085 Mode
Condition Affects Vector Modifications

INTELLIGENT GPIB INTERFACE CONTROLLER

DESCRIPTION

The μ PD7210 TLC is an intelligent GPIB Interface Controller designed to meet all of the functional requirements for Talkers, Listeners, and Controllers as specified by the IEEE Standard 488-1978. Connected between a processor bus and the GPIB, the TLC provides high level management of the GPIB to unburden the processor and to simplify both hardware and software design. Fully compatible with most processor architectures, Bus Driver/Receivers are the only additional components required to implement any type of GPIB interface.

FEATURES - All Functional Interface Capability Meeting IEEE Standard 488-1978

- SH1 (Source Handshake)
- AH1 (Acceptor Handshake)
- T5 or TE5 (Talker or Extended Talker)
- L3 or LE3 (Listener or Extended Listener)
- SR1 (Service Request)
- RL1 (Remote Local)
- PP1 or PP2 ((Parallel Poll) (Remote or Local Configuration))
- DC1 (Device Clear)
- DT1 (Device Trigger)
- C1-5 ((Controller) (All Functions))
- Programmable Data Transfer Rate
- 16 MPU Accessible Registers - 8 Read/8 Write
- 2 Address Registers
- Detection of MTA, MLA, MSA (My Talk/Listen/Secondary Address)
- 2 Device Addresses
- EOS Message Automatic Detection
- Command (IEEE Standard 488-78) Automatic Processing and Undefined Command Read Capability
- DMA Capability
- Programmable Bus Transceiver I/O Specification (Works with T.I./Motorola/Intel)
- 1 to 8 MHz Clock Range
- TTL Compatible
- N Channel MOS
- +5 V Single Power Supply
- 40-Pin Plastic DIP
- 8080/85/86 Compatible

PIN	NAME	1/0	DESCRIPTION
1	T/R1	0	Transmit/Receive Control - Input/Output Control Signal for the GPIB Bus Transceivers.
2	T/R2	0	Transmit/Receive Control - The functions of T/R2, T/R3 are determined by the values of TRM1, TRM0 of the address mode register.
3	CLK	1	Clock - (1-8 MHz) Reference Clock for generating the state change prohibit times T1, T6, T7, T9 specified in IEEE Standard 488-1978.
4	RST	1	Reset - Resets 7210 to an idle state when high (active high).
5	T/R3	0	Transmit/Receive Control - Function determined by TRM1 and TRM0 of address mode register (See T/R2).
6	DRQ	0	DMA Request - $\mathbf{7 2 1 0}$ requests data transfer to the computer system, becomes low on input of DMA acknowledge signal $\overline{\text { DACK. }}$
7	$\overline{\text { DACK }}$	1	DMA Acknowledge - (Active Low) Signal connects the computer system data bus to the data register of the $\mathbf{7 2 1 0}$.
8	$\overline{\mathrm{CS}}$	1	Chip Select - (Active Low) Enables access to the register selected by RSO-2 (read or write operation).
9	$\overline{\mathrm{RD}}$	1	Read - (Active Low) Places contents of read register specified by RSO-2 - on DO-7 (Computer Bus).
10	$\overline{W R}$	1	Write - (Active Low) writes data on D0.7 into the write register specified by RSO-2.
11		0	Interrupt Request - (Active High/Low) Becomes active due to any 1 of 13 internal interrupt factors (unmasked) active state software configurable, active high on chip reset.
12.19	D0-7	1/0	Data Bus - 8 -bit bidirectional data bus, for interface to computer system.
20	GND		Ground.
21-23	RSO-2	1	Register Select - These lines select one of eight read (write) registers during a read (write) operation.
24	$\overline{I F C}$	1/0	Interface Clear - Control line used for clearing the interface functions.
25	$\overline{\text { REN }}$	1/0	Remote Enable - Control line used to select remote or local control of the devices.
26	$\overline{\text { ATN }}$	1/0	Attention - Control line which indicates whether data on DIO lines is an interface message or device dependent message.
27	$\overline{\text { SRO }}$	1/0	Service Request - Control line used to request the controller for service.
28-35	$\overline{\text { DIO1-8 }}$	1/0	Data Input/Output - 8-bit bidirectional bus for transfer of message on the GPIB.
36	$\overline{\text { DAV }}$	1/0	Data Valid - Handshake line indicating that data on DIO lines is valid.
37	$\overline{\text { NRFD }}$	1/0	Ready for Data - Handshake line indicating that device is ready for data.
38	$\overline{\text { NDAC }}$	1/0	Data Accepted - Handshake line indicating completion of message reception.
39	$\overline{E O I}$	1/0	End or Identify - Control line used to indicate the end of multiple byte transfer sequence or to execute a parallel polling in conjunction with ATN.
40	VCC		+5 V DC - Technical Specifications: +5 V ; NMOS; 500 MW ; 40 Pins; TTL Compatible; 1.8 MHz .

BLOCK DIAGRAM

9

μ PD7210

The IEEE Standard 488 describes a "Standard Digital Interface for Programmable Instrumentation" which, since its introduction in 1975, has become the most popular means of interconnecting instruments and controllers in laboratory, automatic test and even industrial applications. Refined over several years, the 488-1978 Standard, also known as the General Purpose Interface Bus (GPIB), is a highly sophisticated standard providing a high degree of flexibility to meet virtually most all instrumentation requirements. The μ PD7210 TLC implements all of the functions that are required to interface to the GPIB. While it is beyond the scope of this document to provide a complete explanation of the IEEE 488 Standard, a basic description follows:

The GPIB interconnects up to 15 devices over a common set of data control lines. Three types of devices are defined by the standard: Talkers, Listeners, and Controllers, although some devices may combine functions such as Talker/Listener or Talker/Controller.

Data on the GPIB is transferred in a bit parallel, byte serial fashion over 8 Data I/O lines (D101 - D108). A 3 wire handshake is used to ensure synchronization of transmission and reception. In order to permit more than one device to receive data at the same time, these control lines are "Open Collector" so that the slowest device controls the data rate. A number of other control lines perform a variety of functions such as device addressing, interrupt generation, etc.

The μ PD7210 TLC implements all functional aspects of Talker, Listener and Controller functions as defined by the 488-1978 Standard, and on a single chip.

The μ PD7210 TLC is an intelligent controller designed to provide high level protocol management of the GPIB, freeing the host processor for other tasks. Control of the TLC is accomplished via 16 internal registers. Data may be transferred either under program control or via DMA using the TLC's DMA control facilities to further reduce processor overhead. The processor interface of the TLC is general in nature and may be readily interfaced to most processor lines.

In addition to providing all control and data lines necessary for a complete GPIB implementation, the TLC also provides a unique set of bus transceiver controls permitting the use of a variety of different transceiver configurations for maximum flexibility.

INTRODUCTION

GENERAL

INTERNAL REGISTERS

The TLC has 16 registers, 8 of which are read and 8 write.

DATA REGISTERS

The data registers are used for data and command transfers between the GPIB and the microcomputer system.

DATA IN (OR) | DI7 | DI6 | DI5 | DI4 | DI3 | DI2 | DI1 | DI0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Holds data sent from the GPIB to the computer

BYTE OUT (OW) | $B 07$ | $B 06$ | BO | BO | BO | BO | BO | BOO |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Holds information written into it for transfer to the GPIB

INTERRUPT REGISTERS

The interrupt registers are composed of interrupt status bits, interrupt mask bits, and some other noninterrupt related bits.

INTERRUPT STATUS 1 [1R]	READ															
	CPT	APT	DET	END	DEC	ERR	DO	DI								
INTERRUPT																
STATUS 2 [2R]	INT	SROI	LOK	REM	CO	LOKC	REMC	ADSC								
	white															
INTERRUPT																
MASK 1 [1W]									CPT	APT	DET	END	DEC	ERR	DO	DI
INTERRUPT																
MASK 2 [2W]	0	SRQI	DMAO	DMAI	CO	LOKC	REMC	ADSC								

There are thirteen factors which can generate an interrupt from the μ PD7210, each with their own status bit and mask bit.

The interrupt status bits are always set to one if the interrupt condition is met. The interrupt mask bits decide whether the INT bit and the interrupt pin will be active for that condition.

Interrupt Status Bits

INT	OR of All Unmasked Interrupt Status Bits
CPT	Command Pass Through
APT	Address Pass Through
DET	Device Trigger
END	End (END or EOS Message Received)
DEC	Device Clear
ERR	Error
DO	Data Out
DI	Data In
SRQI	Service Request Input
LOKC	Lockout Change
REMC	Remote Change
ADSC	Address Status Change
CO	Command Output

Noninterrupt Related Bits

LOK	Lockout
REM	Remote/Local
DMAO	Enable/Disable DMA Out
DMAI	Enable/Disable DMA In

SERIAL POLL REGISTERS

READ
SERIAL POLL STATUS [3R]

S8	PEND	S6	S5	S4	S3	S2	S1

SERIAL POLL MODE [3W]

S8	rSV	S6	S5	S4	S3	S2	S1

The Serial Poll Mode register holds the STB (status byte: S8, S6-S1) sent over the GPIB and the local message rsv (request service). The Serial Poll Mode register may be read through the Serial Poll Status register. The PEND is set by rSV = 1, and cleared by NPRS $\cdot \overline{\mathrm{ISV}}=1$ (NPRS = Negative Poll Response State).

ADDRESS MODE/STATUS REGISTERS

ADDRESS STATUS [4R]
ADDRESS MODE [4W]

CIC	ATN	SPMS	LPAS	TPAS	LA	TA	MJMN
ton	IOn	TRM1	TRMO	0	0	ADM1	ADMO

The Address Mode register selects the address mode of the device and also sets the mode for T/R3 and T/R2 the transceiver control lines.

The functions of T/R2, T/R3 terminals (2 and 5) are determined as below by the TRM1, TRM0 values of the address mode register.

T/R2	T/R3	TRM1	TRM0
EOIOE	TRIG	0	0
CIC	TRIG	0	1
CIC	EOIOE	1	0
CIC	PE	1	1

EOIOE $=$ TACS + SPAS $+\mathrm{CIC} \cdot \overline{\mathrm{CSBS}}$
This denotes the input/output of $\overline{E O I}$ terminal.
When " 1 ": Output
When "0": Input
$\mathrm{CIC}=\overline{\mathrm{CIDS}+\mathrm{CADS}}$
This denotes if the controller inteface function is active or not.
When " 1 ": $\overline{\operatorname{ATN}}=$ output, $\overline{\text { SRQ }}=$ input
When " 0 ": $\overline{\text { ATN }}=$ input, $\overline{\text { SRO }}=$ output
$\mathrm{PE}=\mathrm{CIC}+\overline{\mathrm{PPAS}}$
This indicates the type of bus driver connected to DI08 to DI01 and DAV lines.
When " 1 ": 3 state type
When " 0 ": Open collector type
TRIG: When DTAS state is initiated or when a trigger auxiliary command is issued, a high pulse is generated.
Upon RESET, TRM0 and TRM1 become " 0 " (TRM0 $=$ TRM1 $=0$) and local message port is provided, so that T/R2 and T/R3 both become "LOW."

Notes: (A1)- Either MTA or MLA reception is indicated by coincidence of either address with the received address. Interface function T or L.
(AR)
Address register $0=$ primary, Address register $1=$ secondary, interface function TE or LE.
(43)

CPU must read secondary address via Command Pass Through Register interface function (TE or LE).

ADDRESS STATUS BITS

$\overline{\text { ATS }}$	Data Transfer Cycle (device in CSBS)
LPAS	Listener Primary Addressed State
TPAS	Talker Primary Addressed State
CIC	Controller Active
LA	Listener Addressed
TA	Talker Addressed
MJMN	Sets minor T/L address Reset = Major T/L address
SPMS	Serial Poll Mode State

ADDRESS REGISTERS

ADDRESS 0 [GR]
ADDRESS 1 [TR]
ADDRESS 0/1 [6W]

The TLC is able to automatically detect two types of addresses which are held in address registers 0 and 1. The addressing modes are outlined below.
Address settings are made by writing into the address $0 / 1$ register. The function of each bit is described below.

ADDRESS 0/1 REGISTER BIT SELECTIONS

ARS - Selects which address register 0 or 1
DT - Permits or Prohibits address to be detected as Talk
DL - Permits or Prohibits address to be detected as Listen
AD5 - AD1 - Device address value
EOI - Holds the value of EOI line when data is received

COMMAND PASS THROUGH REGISTER

COMMAND PASS
THROUGH [FR]

CPT7	CPT6	CPT5	CPT4	CPT3	CPT2	CPT1	CPT0

The CPT register is used such that the CPU may read the DIO lines in the cases of undefined command, secondary address, or parallel poll response.

μ PD7210

END OF STRING REGISTER

END OF

STRING [7W]	EC7	EC6	EC5	EC4	EC3	EC2	EC1	EC0

This register holds either a 7- or 8-bit EOS message byte used in the GPIB system to detect the end of a data block. Aux Mode Register A controls the specific use of this register.

AUXILIARY MODE REGISTER

AUXILIARY

MODE [5W] | CNT2 | CNT1 | CNT0 | COM4 | COM3 | COM2 | COM1 | COMO |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

This is a multipurpose register. A write to this register generates one of the following operations according to the values of the CNT bits.

CNT			COM					OPERATION
2	1	0	4	3		1	0	
0	0	0	C_{4}	C_{3}	C_{2}	C_{1}	C_{0}	Issues an auxiliary command specified by C_{4} to C_{0}.
0	0	1	0	F_{3}	F_{2}	F_{1}	F0	The reference clock frequency is specified and $T_{1}, T_{6}, T_{7}, T_{g}$ are determined as a result.
0	1	1	U	S	P_{3}	P_{2}	P_{1}	Makes write operation to the parallel poll register.
1	0	0	A_{4}	A_{3}	A_{2}	A_{1}	A_{0}	Makes write operation to the aux. (A) register.
1	0	1	B4	B_{3}	B_{2}	B1	B_{0}	Makes write operation to the aux. (B) register.
1	1	0	0	0	0	E_{1}	E0	Makes write operation to the aux. (E) register.

COM			
43210			
00000	iepon		Immediate Execute pon - Generate local pon Message
00010	crst	-	Chip Reset - Same as External Reset
00011	rrfd	-	Release RFD
00100	trig	-	Trigger
00101	rtl	-	Return to Local Message Generation
00110	seoi	-	Send EOI Message
00111	nuld	-	Non Valid (OSA reception) - Release DAC Holdoff
01111	vid	-	Valid (MSA reception, CPT, DEC, DET) Release DAC Holdoff
0×001	sppf	-	Set/Reset Parallel Poll Flag
10000	gts	-	Go To Standby
10001	tca	-	Take Control Asynchronously
10010	tcs	-	Take Control Synchronously
11010	tcse	-	Take Control Synchronously on End
10011	Itn	-	L.isten
11011	Itnc	-	Listen with Continuous Mode
11100	lun	-	Local Unlisten
11101	epp	-	Execute Parallel Poll
1×110	sifc		Set/Reset IFC
1×111	sren	-	Set/Reset REN
10100	dsc	-	Disable System Control

INTERNAL COUNTER $00010_{3} F_{2} F_{1} F_{0}$

The internal counter generates the state change prohibit times ($\mathrm{T}_{1}, \mathrm{~T}_{6}, \mathrm{~T}_{7}, \mathrm{~T}_{9}$) specified in the IEEE std 488-1978 with reference to the clock frequency.

AUXILIARY A REGISTER $100 A_{4} A_{3} A_{2} A_{1} A_{0}$

Of the 5 bits that may be specified as part of its access word, 2 bits control the GPIB data receiving modes of the 7210 and 3 bits control how the EOS message is
used.

A_{1}	A_{0}	DATA RECEIVING MODE
0	0	Normal Handshake Mode
0	1	RFD Holdoff on all Data Modes
1	0	RFD Holdoff on End Mode
1	1	Continuous Mode

$\begin{aligned} & \text { BIT } \\ & \text { NAME } \end{aligned}$			FUNCTION
A_{2}	0	Prohibit	Permits (prohibits) the setting of the END bit by reception of the EOS message.
	1	Permit	
A3	0	Prohibit	Permits (prohibits) automatic transmission of END message simultaneously with the transmission of EOS message TACS.
	1	Permit	
A4	0	7 bit EOS	Makes the 8 bits/7 bits of EOS register the valid EOS message.
	1	8 bit EOS	

The Auxiliary B Register is much like the A Register in that it controls the special operating features of the device.

$\begin{aligned} & \text { BIT } \\ & \text { NAME } \end{aligned}$	FUNCTION		
B0	1	Permit	Permits (prohibits) the detection of undefined command. In other words, it permits (prohibits) the setting of the CPT bit on reception of an undefined command.
	0	Prohibit	
B1	1	Permit	Permits (prohibits) the transmission of the END message when in serial poll active state (SPAS).
	0	Prohibit	
B2	1	T_{1} (high-speed)	T_{1} (high speed) as T_{1} of handshake after transmission of 2 nd byte following data transmission.
	0	T1 (low-speed)	
B_{3}	1	INT	Specifies the active level of INT pin.
	0	INT	
B_{4}	1	ist $=$ SRQS	SROS indicates the value of ist level local message (the value of the parallel poll flag is ignored). $\begin{aligned} & \text { SRQS }=1 \ldots \text { ist }=1 . \\ & \text { SRQS }=0 \ldots \text { ist }=0 . \end{aligned}$
	0	$\begin{aligned} & \text { ist = Parallel } \\ & \text { Poll Flag } \end{aligned}$	The value of the parallel poll flag is taken as the ist local message.

AUXILIARYEREGISTER $110000 E_{1} E_{0}$

This register controls the Data Acceptance Modes of the TLC.

BIT	FUNCTION		
E_{0}	1	Enable	DAC Holdoff by initiation of DCAS
	0	Disable	
E_{1}	1	Enable	DAC Holdoff by initiation of DTAS
	0	Disable	

$\begin{array}{lllllllll}\text { Parallel Poll Register } & 0 & 1 & 1 & U & S & P_{3} & P_{2} & P_{1}\end{array}$
The Parallel Poll Register defines the parallel poll response of the μ PD7210.

нPD7210

Note: In this example, high-speed data transfer cannot be made since the bus transceiver is of the open collector type (Set $\mathrm{B}_{2}=0$).

Note: In the case of low-speed data transfer $\left(B_{2}=0\right)$, the T / R_{3} pin can be used as a TRIG output. The PE input of SN75160 should be cleared to " 0. "

MINIMUM 8085 SYSTEM WITH μ PD7210 (CONT.)

ABSOLUTE MAXIMUM $\quad\left(\mathrm{T}_{\mathrm{a}}=\mathbf{2 5} 5^{\circ} \mathrm{C}\right)$

 RATINGS| Parameter | Symbol | Test Conditions | Ratings | Unit |
| :--- | :--- | :--- | :--- | :---: |
| Supply Voltage | V_{CC} | | $-0.5 \sim+7.0$ | V |
| Input Voltage | V_{I} | | $-0.5 \sim+7.0$ | V |
| Output Voltage | V_{O} | | $-0.5 \sim+7.0$ | V |
| Operating Temperature | $\mathrm{T}_{\mathrm{opt}}$ | | $0 \sim+70$ | ${ }^{\circ} \mathrm{C}$ |
| Storage Temperature | $\mathrm{T}_{\text {stg }}$ | | $-65 \sim+125$ | ${ }^{\circ} \mathrm{C}$ |

DC CHARACTERISTICS $\quad\left(T_{a}=0 \sim+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%\right)$

Parameter	Symbol	Test Conditions	Limits			Unit
			Min.	Typ.	Max	
Input Low Voitage	VIL		-0.5		+0.8	V
Input High Voltage	$\mathrm{V}_{1} \mathrm{H}$		+2.0		$\mathrm{V}_{\mathrm{CC}}+0.5$	v
Low Level Output Voltage	$\mathrm{V}_{\text {OL }}$	$\begin{aligned} & 1 \mathrm{OL}=2 \mathrm{~mA} \\ & (4 \mathrm{~mA}: \mathrm{T} / \mathrm{R} 1 \mathrm{Pin}) \end{aligned}$			+0.45	v
High Level Output Voltage	$\mathrm{VOH}_{\text {O }}$	$\begin{aligned} & \mathrm{IOH}=-400 \mu \mathrm{~A} \\ & \text { (Except INT) } \end{aligned}$	+2.4			v
High Level Output Voltage (INT Pin)	VOH^{2}	$\begin{aligned} \mathrm{I}_{\mathrm{OH}} & =-400 \mu \mathrm{~A} \\ \mathrm{IOH} & =-50 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & +2.4 \\ & +3.5 \end{aligned}$			v
Input Leakage Current	IL	$V_{\text {IN }}=O V \sim V_{C C}$	-10		+10	$\mu \mathrm{A}$
Output Leakage Current	IOL	$\mathrm{V}_{\text {OUT }}=0.45 \mathrm{~V} \sim \mathrm{~V}_{\text {CC }}$	-10		+10	$\mu \mathrm{A}$
Supply Current	${ }^{\text {I c }}$				+180	mA

CAPACITANCE $\quad\left(T_{a}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=\mathrm{GND}=0 \mathrm{~V}\right)$

Parameter	Symbol	Test Conditions	Limits			Unit
			Min.	Typ.	Max	
Input Capacitance	$\mathrm{CIN}_{\text {IN }}$	$f=1 \mathrm{MHz}$ All Pins Except Pin Under Test Tied to AC Ground			10	pF
Output Capacitance	cout				15	pF
1/O Capacitance	$\mathrm{c}_{1 / \mathrm{O}}$				20	pF

Parameter	Symbol	Conditions	Limits		Unit
			Min.	Max	
$\overline{\mathrm{EOI}} \downarrow \rightarrow \overline{\mathrm{DIO}}$	tEODI	PPSS \rightarrow PPAS, ATN = True		250	ns
$\overline{\text { EOI } \downarrow} \rightarrow$ T/R1 \uparrow	tEOT11	PPSS \rightarrow FPAS, ATN = True		155	ns
$\overline{\mathrm{EOI}} \uparrow \rightarrow \mathrm{T} / \mathrm{R} 1 \downarrow$	tEOT12	PPAS \rightarrow PPSS, ATN $=$ False		200	ns
$\overline{\text { ATN }} \downarrow \rightarrow \overline{\text { NDAC }} \downarrow$	tATND	AIDS \rightarrow ANRS, LIDS		155	ns
$\overline{\text { ATN }} \downarrow \rightarrow$ T/R1 \downarrow	tATT1	TACS + SPAS \rightarrow TADS, CIDS		155	ns
$\overline{\text { ATN }} \downarrow \rightarrow$ T/R2 \downarrow	${ }^{\text {t A T }}$ 2	TACS + SPAS \rightarrow TADS, CIDS		200	ns
$\overline{\text { DAV }} \downarrow \rightarrow$ DMAREQ	tDVRQ	ACRS \rightarrow ACDS, LACS		600	ns
$\overline{\overline{D A V}_{\downarrow}} \rightarrow \overline{\text { NRFD }} \downarrow_{\downarrow}$	tDVNR1	ACRS \rightarrow ACDS		350	ns
$\overline{\text { DAV }} \downarrow \downarrow \rightarrow \overline{\text { NDAC }} \uparrow$	tDVND1	ACRS \rightarrow ACDS \rightarrow AWNS		650	ns
$\overline{\overline{D A V}} \uparrow \rightarrow \overline{N D A C}_{\downarrow}$	tDVND2	AWNS \rightarrow ANRS		350	ns
$\overline{\overline{\mathrm{DAV}} \uparrow} \rightarrow \overline{\mathrm{NRFD}} \uparrow$	tDVNR2	AWNS \rightarrow ANRS \rightarrow ACRS		350	ns
$\overline{\mathrm{RD}} \downarrow \rightarrow \overline{\mathrm{NRFD}} \uparrow$	${ }^{\text {t }}$ RNR	ANRS \rightarrow ACRS LACS, DI reg. selected		500	ns
	tNDRQ	STRS \rightarrow SWNS \rightarrow SGNS, TACS		400	ns
$\overline{\overline{N D A C}} \uparrow \rightarrow \overline{\overline{D A V}} \uparrow$	tNDDV	STRS \rightarrow SWNS \rightarrow SGNS		350	ns
$\overline{\mathrm{WR}} \uparrow \rightarrow \overline{\mathrm{DIO}}$	tWDI	SGNS \rightarrow SDYS, BO reg. selected		250	ns
$\overline{\text { NRFD }} \uparrow \rightarrow \overline{\text { DAV }} \downarrow_{\downarrow}$	tNRDV	SDYS \rightarrow STRS, $\mathrm{T}_{1}=$ True		350	ns
$\overline{W R} \uparrow \rightarrow \overline{D A V} \downarrow$	tWDV	SGNS \rightarrow SDYS \rightarrow STRS BO reg. selected, RFD = True $N_{F}=f c=8 \mathrm{MHz}$, T_{1} (High Speed)		$\begin{aligned} & 830 \\ & \text { +tSYNC } \end{aligned}$	ns
TRIG Pulse Width	tTRIG		50	.	ns

AC CHARACTERISTICS

$\left(\mathrm{T}_{\mathrm{a}}=0 \sim 70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%\right.$)
(CONT.)

Parameter	Symbol	Test Conditions	Limits		Unit
			Min	Max.	
Address Setup to $\overline{\mathrm{RD}}$	${ }^{\text {t }}$ AR	RSO ~ RS2	85		ns
		$\overline{\mathrm{CS}}$	0		ns
Address Hold from $\overline{\mathrm{RD}}$	tra		0		ns
$\overline{\text { RD Pulse Width }}$	tRR		170		ns
Data Delay from Address	${ }^{\text {t }}$ AD			250	ns
Data Delay from $\overline{\mathrm{RD}} \downarrow$	trD			150	ns
Output Float Delay from $\overline{\mathrm{RD}} \uparrow$	tDF		0	80	ns
$\overline{\mathrm{RD}}$ Recovery Time	trv		250		ns

Address Setup to $\overline{\mathrm{WR}}$	${ }^{\text {t }}$ AW		0		ns
Address Hold from $\overline{W R}$	twA		0		ns
$\overline{\text { WR Pulse Width }}$	tww		170		ns
Data Setup to $\overline{W R}$	tow		150		ns
Data Hold from \bar{W}	twD		0		ns
$\overline{\text { WR Recovery Time }}$	trv		250		ns

DMAREQ \downarrow Delay from $\overline{\text { DMAACK }}$	taKRQ $^{\text {AK }}$			130	ns
Data Delay from $\overline{\text { DMAACK }}$	t $^{\text {AKD }}$			200	ns

TIMING WAVEFORMS

Microcomputer Division

Description

The μ PD7220 Graphics Display Controller (GDC) is an intelligent microprocessor peripheral designed to be the heart of a high-performance raster-scan computer graphics and character display system. Positioned between the video display memory and the microprocessor bus, the GDC performs the tasks needed to generate the raster display and manage the display memory. Processor software overhead is minimized by the GDC's sophisticated instruction set, graphics figure drawing, and DMA transfer capa-
bilities. The display memory supported by the GDC can be configured in any number of formats and sizes up to 256 K 16 -bit words. The display can be zoomed and panned, while partitioned screen areas can be independently scrolled. With its light pen input and multiple controller capability, the GDC is ideal for advanced computer graphics applications.

Features

\square Microprocessor Interface
DMA transfers with 8257- or 8237-type controllers
FIFO Command BufferingDisplay Memory Interface
Up to 256K words of 16 bits
Read-Modify-Write (RMW) Display Memory cycles in under 800ns
Dynamic RAM reresh cycles for nonaccessed memoryLight Pen InputExternal video synchronization modeGraphics Mode:
Four megabit, bit-mapped display memoryCharacter Mode:
8 K character code and attributes display memoryMixed Graphics and Characters Mode
64 K if all characters
1 megapixel if all graphics
\square Graphics Capabilities:
Figure drawing of lines, arc/circles, rectangles, and graphics character in 800 ns per pixel
Display 1024-by-1024 pixels with 4 planes of color or grayscale.
Two independently scrollable areas
\square Character Capabilities:
Auto cursor advance
Four independently scrollable areas
Programmable cursor height
Characters per row: up to 256
Character rows per screen: up to 100Video Display Format
Zoom magnification factors of 1 to 16
Panning
Commancl-settable video raster parameters
\square Technology
Single +5 volt, NMOS, 40 -pin DIPDMA Capability:
Bytes or word transfers
4 clock periods per byte transferred

System Considerations

The GDC is designed to work with a general purpose microprocessor to implement a high-performance computer graphics system. Through the division of labor established by the GDC's design, each of the system components is used to the maximum extent through sixlevel hierarchy of simultaneous tasks. At the lowest level, the GDC generates the basic video raster timing, including sync and blanking signals. Partitioned areas on the screen and zooming are also accomplished at this level. At the next level, video display memory is modified during the figure drawing operations and data moves. Third, display memory addresses are calculated pixel by pixel as drawing progresses. Outside the GDC at the next level, preliminary calculations are done to prepare drawing parameters. At the fifth level, the picture must be represented as a list of graphics figures drawable by the GDC. Finally, this representation must be manipulated, stored, and communicated. By handling the first three levels, the GDC takes care of the high-speed and repetitive tasks required to implement a graphics system.

GDC Components

The GDC block diagram illustrates how these tasks are accomplished.

Microprocessor Bus Interface

Control of the GDC by the system microprocessor is achieved through an 8 -bit bidirectional interface. The status register is readable at any time. Access to the FIFO buffer is coordinated through flags in the status register and operates independently of the various internal GDC operations, due to the separate data bus connecting the interface and the FIFO buffer.

Command Processor

The contents of the FIFO are interpreted by the command processor. The command bytes are decoded, and the succeeding parameters are distributed to their proper destina-

MPD7220

tions within the GDC. The command processor yields to the bus interface when both access the FIFO simultaneously.

DMA Control

The DMA control circuitry in the GDC coordinates transfers over the microprocessor interface when using an external DMA controller. The DMA Request and Acknowledge handshake lines directly interface with a μ PD8257 or μ PD8237 DMA controller, so that display data can be moved between the microprocessor memory and the display memory.

Parameter RAM

The 16-byte RAM stores parameters that are used repetitively during the display and drawing processes. In character mode, this RAM holds four sets of partitioned display area parameters; in graphics mode, the drawing pattern and graphics character take the place of two of the sets of parameters.

Video Sync Generator

Based on the clock input, the sync logic generates the raster timing signals for almost any interlaced, non-interlaced, or "repeat field" interlaced video format. The generator is programmed during the idle period following a reset. In video sync slave mode, it coordinates timing between multiple GDCs.

Memory Timing Generator

The memory timing circuitry provides two memory cycle types: a two-clock period refresh cycle and the read-modify-write (RMW) cycle which takes four clock periods. The memory control signals needed to drive the display memory devices are easily generated from the GDC's ALE and DBIN outputs.

Zoom \& Pan Controller

Based on the programmable zoom display factor and the display area entries in the parameter RAM, the zoom and pan controller determines when to advance to the next memory address for display refresh and when to go on to the next display area. A horizontal zoom is produced by slowing down the display refresh rate while maintaining the video sync rates. Vertical zoom is accomplished by repeatedly accessing each line a number of times equal to the horizontal repeat. Once the line count for a display area is exhausted, the controller accesses the starting address and line count of the next display area from the parameter RAM. The system microprocessor, by modifying a display area starting address, can pan in any direction, independent of the other display areas.

Drawing Processor

The drawing processor contains the logic necessary to calculate the addresses and positions of the pixels of the various graphics figures. Given a starting point and the appropriate drawing parameters, the drawing processor needs no further assistance to complete the figure drawing.

Display Memory Controller

The display memory controller's tasks are numerous. Its primary purpose is to multiplex the address and data information in and out of the display memory. It also contains the 16 -bit logic unit used to modify the display memory contents during RMW cycles, the character mode line counter, and the refresh counter for dynamic RAMs. The memory controller apportions the video field time between the various types of cycles.

Light Pen Deglitcher

Only if two rising edges on the light pen input occur at the same point during successive video fields are the pulses
accepted as a valid light pen detection. A status bit indicates to the system microprocessor that the light pen register contains a valid address.

Programmer's View of GDC

The GDC occupies two addresses on the system microprocessor bus through which the GDC's status register and FIFO are accessed. Commands and parameters are written into the GDC's FIFO and are differentiated based on address bit AO. The status register or the FIFO can be read as selected by the address line.

GDC Microprocessor Bus Interface Registers
Commands to the GDC take the form of a command byte followed by a series of parameter bytes as needed for specifying the details of the command. The command processor decodes the commands, unpacts the parameters, loads them into the appropriate registers within the GDC, and initiates the required operations.
The commands available in the GDC can be organized into five categories as described in the following section.

GDC Command Summary

Video Control Commands

1. RESET: Resets the GDC to its idle state.
2. SYNC: Specifies the video display format.
3. VSYNC: Selects master or slave video synchronization mode.
4. CCHAR: Specifies the cursor and character row heights.
Display Control Commands
5. START: Ends Idle mode and unblanks the display.
6. BCTRL: Controls the blanking and unblanking of the display.
7. ZOOM: Specifies zoom factors for the display and graphics characters writing.
8. CURS: Sets the position of the cursor in display memory.
9. PRAM: Defines starting addresses and lengths of the display areas and specifies the eight bytes for the graphics character.
10. PITCH: Specifies the width of the X dimension of display memory.
Drawing Control Commands
11. WDAT: Writes data words or bytes into display memory.
12. MASK: Sets the mask register contents.
13. FIGS: Specifies the parameters for the drawing processor.
14. FIGD: Draws the figure as specified above.
15. GCHRD: Draws the graphics character into display memory.

Data Read Commands

1. RDAT: Reads data words or bytes from display memory.
2. CURD: Reads the cursor position.
3. LPRD: Reads the light pen address.

DMA Control Commands

1. DMAR: Requests a DMA read transfer. 2. DMAW: Requests a DMA write transfer.

7	6	5	4	3	2	1	0	

Status Register (SR)

Status Register Flags

SR-7: Light Pen Detect
When this bit is set to 1 , the light pen address (LAD) register contains a deglitched value that the system microprocessor may read. This flag is reset after the 3-byte LAD is moved into the FIFO in response to the light pen read command.

SR-6: Horizontal Blanking Active

A1 value for this flag signifies that horizontal retrace blanking is currently underway.
SR-5: Vertical Sync
Vertical retrace sync occurs while this flag is a 1. The vertical sync flag coordinates display format modifying commands to the blanked interval surrounding vertical sync.
This eliminates display disturbances.

SR-4: DMA Execute

This bit is a 1 during DMA data transfers.

SR-3: Drawing in Progress

While the GDC is drawing a graphics figure, this status bit is a 1.

SR-2: FIFO Empty

This bit and the FIFO Full flag coordinate system microprocessor accesses with the GDC FIFO. When it is 1, the Empty flag ensures that all the commands and parameters previously sent to the GDC have been processed.

SR-1: FIFO Full

A 1 at this flag indicates a full FIFO in the GDC. A 0 ensures that there is room for at least one byte. This flag needs to be checked before each write into the GDC.

SR-0: Data Ready

When this flag is a 1 , it indicates that a byte is available to be read by the system microprocessor. This bit must be tested before each read operation. It drops to a 0 while the data is transferred from the FIFO into the microprocessor interface data register.

FIFO Operation \& Command Protocol

The first-in, first-out buffer (FIFO) in the GDC handles the command dialogue with the system microprocessor. This flow of information uses a half-duplex technique, in which the single 16-location FIFO is used for both directions of data movernent, one direction at a time. The FIFO's direction is controlled by the system microprocessor through the GDC's command set. The microprocessor coordinates these transfers by checking the appropriate status register bits.
The command protocol used by the GDC requires the differentiation of the first byte of a command sequence from the succeeding bytes. This first byte contains the operation code and the remaining bytes carry parameters. Writing
into the GDC causes the FIFO to store a flag value alongside the data byte to signify whether the byte was written into the command or the parameter address. The command processor in the GDC tests this bit as it interprets the entries in the FIFO.

The receipt of a command byte by the command processor marks the end of any previous operation. The number of parameter bytes supplied with a command is cut short by the receipt of the next command byte. A read operation from the GDC to the microprocessor can be terminated at any time by the next command.

The FIFO changes direction under the control of the system microprocessor. Commands written into the GDC always put the FIFO into write mode if it wasn't in it already. If it was in read mode, any read data in the FIFO at the time of the turnaround is lost. Commands which require a GDC response, such as RDAT, CURD and LPRD, put the FIFO into read mode after the command is interpreted by the GDC's command processor. Any commands and parameters behind the read-evoking command are discarded when the FIFO direction is reversed.

Read-Modify-Write Cycle

Data transfers between the GDC and the display memory are accomplished using a read-modify-write (RMW) memory cycle. The four clock period timing of the RMW cycle is used to: 1) output the address, 2) read data from the memory, 3) modify the data, and 4) write the modified data back into the initially selected memory address. This type of memory cycle is used for all interactions with display memory including DMA transfers, except for the two clock period display and RAM refresh cycles.
The operations performed during the modify portion of the RMW cycle merit additional explanation. The circuitry in the GDC uses three main elements: the Pattern register, the Mask register, and the 16-bit Logic Unit. The Pattern register holds the data pattern to be moved into memory. It is loaded by the WDAT command or, during drawing, from the parameter RAM. The Mask register contents determine which bits of the read data will be modified. Based on the contents of these registers, the Logic Unit performs the selected operations of REPLACE, COMPLEMENT, SET, or CLEAR on the data read from display memory.
The Pattern register contents are ANDed with the Mask register contents to enable the actual modification of the memory read data, on a bit-by-bit basis. For graphics drawing, one bit at a time from the Pattern register is combined with the Mask. When ANDed with the bit set to a 1 in the Mask register, the proper single pixel is modified by the Logic Unit. For the next pixel in the figure, the next bit in the Pattern register is selected and the Mask register bit is moved to identify the pixel's location within the word. The Execution word address pointer register, EAD, is also adjusted as required to address the word containing the next pixel.
In character mode, all of the bits in the Pattern register are used in parallel to form the respective bits of the modify data word. Since the bits of the character code word are used in parallel, unlike the one-bit-at-a-time graphics drawing process, this facility allows any or all of the bits in a memory word to be modified in one RMW memory cycle. The Mask register must be loaded with 1 s in the positions where modification is to be permitted.

The Mask register can be loaded in either of two ways. In graphics mode, the CURS command contains a four-bit dAD field to specify the dot address. The command processor converts this parameter into the one-of-16 format used in the Mask register for figure drawing. A full 16 bits can be loaded into the Mask register using the MASK command. In addition to the character mode use mentioned above, the 16-bit MASK load is convenient in graphics mode when all of the pixels of a word are to be set to the same value.
The Logic Unit combines the data read from display memory, the Pattern Register, and the Mask register to generate the data to be written back into display memory. Any one of four operations can be selected: REPLACE, COMPLE-
MENT, CLEAR or SET. In each case, if the respective Mask bit is 0 , that particular bit of the read data is returned to memory unmodified. If the Mask bit is 1 , the modification is enabled. With the REPLACE operation, the modify data simply takes the place of the read data for modification enabled bits. For the other three operations, a 0 in the modify data allows the read data bit to be returned to memory. A 1 value causes the specified operation to be performed in the bit positions with set Mask bits.

Figure Drawing

The GDC draws graphics figures at the rate of one pixel per read-modify-write (RMW) display memory cycle. These cycles take four clock periods to complete. At a clock frequency of 5 MHz , this is equal to 800 ns . During the RMW cycle the GDC simultaneously calculates the address and position of the next pixel to be drawn.
The graphics figure drawing process depends on the display memory addressing structure. Groups of 16 horizontally adjacent pixels form the 16 -bit words which are handled by the GDC. Display memory is organized as a linearly addressed space of these words. Addressing of individual pixels is handled by the GDC's internal RMW logic. During the drawing process, the GDC finds the next pixel of the figure which is one of the eight nearest neighbors of the last pixel drawn. The GDC assigns each of these eight directions a number from 0 to 7, starting with straight down and proceeding counterclockwise.

Drawing Directions
Figure drawing requires the proper manipulation of the address and the pixel bit position according to the drawing direction to determine the next pixel of the figure. To move to the word above or below the current one, it is necessary to subtract or add the number of words per line in display memory. This parameter is called the pitch. To move to the word to either side, the Execute word address cursor, EAD, must be incremented or decremented as the dot address pointer bit reaches the LSB or the MSB of the Mask register. To move to a pixel within the same word, it is necessary to rotate the dot address pointer register to the right or left.

The table below summarizes these operations for each direction.
Whole word drawing is useful for filling areas in memory with a single value. By setting the Mask register to all is with the MASK command, both the LSB and MSB of the

Where $P=$ Pitch, $L R=$ Left Rotate, $R R=$ Right Rotate
$E A D=$ Execute Word Address
$\triangle A D=$ Dot Address stored in
dAD will always be 1 , so that the EAD value will be incremented or decremented for each cycle regardless of direction. One RMW cycle will be able to effect all 16 bits of the word for any drawing type. One bit in the Pattern register is used per RMW cycle to write all the bits of the word to the same value. The next Pattern bit is used for the word, etc.
For the various figures, the effect of the initial direction upon the resulting drawing is shown below:

Note that during line drawing, the angle of the line may be anywhere within the shaded octant defined by the DIR value. Arc drawing starts in the direction initially specified by the DIR value and veers into an arc as drawing proceeds. An arc may be up to 45 degrees in length. DMA transfers are done on word boundaries only, and follow the arrows indicated in the table to find successive word addresses. The slanted paths for DMA transfers indicate the GDC changing both the X and Y components of the word address when moving to the next word. It does not follow a 45 degree diagonal path by pixels.

Drawing Parameters

In preparation for graphics figure drawing, the GDC's Drawing Processor needs the figure type, direction and drawing parameters, the starting pixel address, and the pattern from the microprocessor. Once these are in place within the GDC, the Figure Draw command, FIGD, initiates the drawing operation. From that point on, the system microprocessor is not involved in the drawing process. The GDC Drawing Processor coordinates the RMW circuitry and address registers to draw the specified figure pixel by pixel.
The algorithms used by the processor for figure drawing are designed to optimize its drawing speed. To this end, the specific details about the figure to be drawn are reduced by the microprocessor to a form conducive to high-speed address calculations within the GDC. In this way the repetitive, pixel-by-pixel calculations can be done quickly, thereby minimizing the overall figure drawing time. The table below summarizes the parameters.

DRAWING TYPE	DC	D	D2	D1	DM
Initial Value*	0	8	8	-1	-1
Line	$\|\Delta\| \mid$	$2\|\Delta D\|-\|\Delta\| \mid$	$2(\|\Delta D\|-\|\Delta I\|)$	$2\|\Delta \mathrm{D}\|$	-
Arc**	$r \sin 0 \uparrow$	$\mathrm{r}-1$	2(r-1)	-1	$r \sin \theta \downarrow$
Rectangle	3	A-1	B-1	-1	A-1
Area FIII	B-1	A	A	-	-
Graphic Character***	B-1	A	A	-	-
Read \& Write Data	W-1	-	-	-	-
DMAW	D-1	C-1	-	-	-
DMAR	D-1	C-1	(C-1)/2 $=$	-	-

* Initial values for the vartous parameters are loaded during the handling of the FIGS op code byte.
** Circles are drawn with 8 arcs, each of which 8 pan 45°, 80 that $\sin 0=1 / \sqrt{2}$ and $\boldsymbol{\operatorname { l n }} \theta=0$.
*** Graphic characters are a special case of bit-map area filling in which B and A $\leqslant 8$. If $A=8$ there is no need to load D and D2.
Where:
$-1=$ all ONES value.
All numbers are shown in base 10 for convenlence. The GDC accepts base 2 numbers ($2 s$ complement notation where appropriate).
- = No parameter bytes sent to GDC for thls parameter.
$\Delta l=$ The larger at Δx or Δy.
$\Delta D=$ The smaller at Δx or Δy.
r = Radius at curvature, in plxels.
$\phi=$ Angle from major axis to end at the arc. $\phi \leqslant 45^{\circ}$.
$\theta=$ Angle from major axis to start at the arc. $\theta \leqslant 45^{\circ}$.
$\uparrow=$ Round up to the next higher Integer.
$\downarrow=$ Round down to the next lower integer.
$A=$ Number of pixels in the initially specified direction.
$B=$ Number of pixels in the direction at right angles to the initially specified direction.
W = Number of words to be accessed.
$\mathbf{C}=$ Number of bytes to be transferred In the initially specified direction. (Two bytes per word if word transfer mode is selected).
D = Number of words to be accessed in the direction at right angles to the initlally specified direction.
DC = Drawing count parameter which is one less than the number of RMW cycles to be executed.
$D M=$ Dots masked from drawing during arc drawing.
$=$ Needed only for word reads.

Oraphlcs Character Drawing

Graphics characters can be drawn into display memory pixel-by-pixel. The up to 8 -by- 8 character is loaded into the GDC's parameter RAM by the system microprocessor. Consequently, there are no limitations on the character set used. By varying the drawing parameters and drawing direction, numerous drawing options are available. In area fill applications, a character can be written into display memory as many times as desired without reloading the parameter RAM.
Once the parameter RAM has been loaded with up to eight graphics character bytes by the appropriate PRAM command, the GCHRD command can be used
to draw the bytes into display memory starting at the cursor. The zoom magnification factor for writing, set by the zoom command, controls the size of the character written into the display memory in integer multiples of 1 through 16. The bit values in the PRAM are repeated horizontally and vertically the number of times specified by the zoom factor.
The movement of these PRAM bytes to the display memory is controlled by the parameters of the FIGS command. Based on the specified height and width of the area to be drawn, the parameter RAM is scanned to fill the required area.
For an 8-by-8 graphics character, the first pixel drawn uses the LSB of RA-15, the second pixel uses bit 1 of RA-15, and so on, until the MSB of RA-15 is reached. The GDC jumps to the corresponding bit in RA-14 to continue the drawing. The progression then advances toward the LSB of RA-14. This snaking sequence is continued for the other 6 PRAM bytes. This progression matches the sequence of display memory addresses calculated by the drawing processor as shown above. If the area is narrower than 8 pixels wide, the snaking will advance to the next PRAM byte before the MSB is reached. If the area is less than 8 lines high, fewer bytes in the parameter RAM will be scanned. If the area is larger than 8 by 8, the GDC will repeat the contents of the parameter RAM in two dimensions, as required to fill the area with the 8-by-8 mozaic. (Fractions of the 8-by-8 pattern will be used to fill areas which are not multiples of 8 by 8 .)

Parameter RAM Contents: RAM Address RA 0 to 15

The parameters stored in the parameter RAM, PRAM, are available for the GDC to refer to repeatedly during figure drawing and raster-scanning. In each mode of operation the values in the PRAM are interpreted by the GDC in a predetermined fashion. The host microprocessor must load the appropriate parameters into the proper PRAM locations. PRAM loading command allows the host to write into any location of the PRAM and transfer as many bytes as desired. In this way any stored parameter byte or bytes may be changed without influencing the other bytes.
The PRAM stores two types of information. For specifying the details of the display area partitions, blocks of four bytes are used. The four parameters stored in each block include the starting address in display memory of each display area, and its length. In addition, there are two mode bits for each area which specify whether the area is a bit-mapped graphics area or a coded character area, and whether a 16-bit or a 32-bit wide display cycle is to be used for that area.
The other use for the PRAM contents is to supply the pattern for figure drawing when in a bit-mapped graphics area or mode. In these situations, PRAM bytes 8 through 16 are reserved for this patterning information. For line, arc, and rectangle drawing (linear figures) locations 8 and 9 are loaded into the Pattern Register to allow the GDC to draw dotted, dashed, etc. lines. For area filling and graphics bit-mapped character drawing locations 8 through 15 are referenced for the pattern or character to be drawn.
Details of the bit assignments are shown on the following pages for the various modes of operation.

Character Mode

Command Bytes Summary

Video Control Commands

Reset

Blank the dieplay, enter ldie mode, and initialize within the GDC:
 - FIFO
 - Command Processor -Internal Counters

This command can be executed at any time and does not modify any of the parameters already loaded into the GDC.
If followed by parameter bytes, this command also sets the sync generator parameters as described below.
Idle mode is exited with the START command.

P4

P8

In graphics mode, a word is a group of 16 pixels. In character mode, a word is one character code and its attributes, if any.
The number of active words per line must be an even number from 2 to 256.
An all-zero parameter value selects a count equal to 2^{n} where $\mathrm{n}=$ number of bits in the parameter field for vertical parameters.
All horizontal widths are counted in display words.
All vertical intervals are counted in lines.

SYNC Conerator Period Constraints

Horizontal Back Porch Constraints

1. In general:

HBP $\geqslant 3$ Display Word Cycles (6 clock cycles).
2. If the IMAGE or WD modes change within one video field:

HBP $\geqslant 5$ Display Word Cycles (10 clock cycles).

Horizontal Front Porch Constraints

1. If the display ZOOM function is used at other than 1X:
HFP $\geqslant 2$ Display Word Cycles (4 clock cycles).
2. If the GDC is used in the video sync Slave mode: HFP $\geqslant 4$ Display Word Cycles (8 clock cycles).
3. If the Light Pen is used:

HFP $\geqslant 6$ Display Word Cycles (12 clock cycles).

Horizontal SYNC Constraints

1. If Interlaced display mode is used: HS $\geqslant 3$ Display Word Cycles (6 clock cycles).

Modes of Operation Blts

c 6	Display Mode
00	Mixed Graphics \& Character
01	Graphics Mode
10	Character Mode
11	Invalid

1	s	Video Framing
0	0	Noninterlaced
0	1	Invalid
1	0	Interlaced Repeat Fleld for Character Displays
1	1	Interlaced

Repeat Field Framing: 2 Field Sequence with $1 / 2$ line offset between otherwise identical fields.
Interlaced Framing: 2 Field Sequence with $1 / 2$ line offset. Each field displays alternate lines.
Noninterlaced Framing: 1 field brings all of the information to the screen.

Total scanned lines in interlace mode is odd. The sum of VFP + VS + VBP + AL should equal one less than the desired odd number of lines.

D	Dynamic RAM Refresh Cycles Enable
0	No Refresh - STATIC RAM
1	Refresh - Dynamic RAM

Dynamic RAM refresh is important when high display zoom factors or DMA are used in such a way that not all of the rows in the RAMs are regularly accessed during display raster generation and for otherwise inactive display memory.

F	Drawing Time Window
0	Drawing during active display time and retrace blanking
1	Drawing only during retrace blanking

Access to display memory can be limited to retrace blanking intervals only, so that no disruptions of the image are seen on the screen.

SYNC Format Specify

sync:

The display le enabled by 1 , and blanked by $a 0$.

4PD7220

This command also loads parameters into the sync generator. The various parameter fields and bits are identical to those at the RESET command. The GDC is not reset nor does it enter ide mode.

Vertical Sync Mode

When using two or more GDCs to contribute to one image, one GDC is defined as the master sync generator, and the others operate as its slaves. The VSYNC pins of all GDCs are connected together.

Slave Mode Operation

A few considerations should be observed when synchronizing two or more GDCs to generate overlayed video via the VSYNC INPUT/OUTPUT pin. As mentioned above, the Horizontal Front Porch (HFP) must be 4 or more display cycles wide. This is equivalent to eight or more clock cycles. This gives the slave GDCs time to initialize their internal video sync generators to the proper point in the video field to match the incoming vertical sync pulse (VSYNC). This resetting of the generator occurs just after the end of the incoming VSYNC pulse, during the HFP interval. Enough time during HFP is required to allow the slave GDC to complete the operation before the start of the HSYNC interval.
Once the GDCs are initialized and set up as Master and Slaves, they must be given time to synchronize. It is a good idea to watch the VSYNC status bit of the Master GDC and wait until after one or more VSYNC pulses have been generated before the display process is started. The START command will begin the active display of data and will end the video synchronization process, so be sure there has been at least one VSYNC pulse generated for the Slaves to synchronize to.

Cursor \& Character Characteristics

In graphics mode, LR should be set to 0 .
The blink rate parameter controls both the cursor and attribute blink rates. The cursor blink-on time $=$ blink-off time $=2 \times B R$ (video frames). The attribute blink rate is always $1 / 2$ the cursor rate but with a $3 / 4$ on- $1 / 4$ off duty cycle.
Display Control Commands
Start Display \& End Idle Mode
StART:

Display Blanking Control

Zoom magnification factors of 1 through 16 are available using codes 0 through 15 , respectively.

Cursor Position Specify

In character mode, the third parameter byte is not needed. The cursor is displayed for the word time in which the display scan address (DAD) equals the cursor address. In graphics mode, the cursor word address specifies the word containing the starting pixel of the drawing; the dot address value specifies the pixel within that word.

Parameter RAM Load

From the starting address, SA, any number of bytes may be loaded into the parameter RAM at incrementing addresses, up to location 15 . The sequence of parameter bytes is terminated by the next command byte entered into the FIFO. The parameter RAM stores 16 bytes of information in predefined locations which differ for graphics and character modes. See the parameter RAM discussion for bit assignments.

Pitch Specification

This value is used during drawing by the drawing processor to find the word directly above or below the current word, and during display to find the start of the next line.

The Pitch parameter (width of display memory) is set by two different commands. In addition to the PITCH command, the RESET (or SYNC) command also sets the pitch value. The "active words per line"' parameter, which specifies the width of the raster-scan display, also sets the Pitch of the display memory. In situations in which these two values are equal there is no need to execute a PITCH command.

Drawing Control Commands

Write Data into Display Memory

Upon receiving a set of parameters (two bytes for a word transfer, one for a byte transfer), one RMW cycle into Video Memory is done at the address pointed to by the cursor EAD. The EAD pointer is advanced to the next word, according to the previously specified direction. More parameters can then be accepted.

For byte writes, the unspecified byte is treated as all zeros during the RMW memory cycle.

In graphics bit-map situations, only the LSB of the WDAT parameter bytes is used as the pattern in the RMW operations. Therefore it is possible to have only an all ones or all zeros pattern. In coded character applications all the bits of the WDAT parameters are used to establish the drawing pattern.
The WDAT command operates differently from the other commands which initiate RMW cycle activity. It requires parameters to set up the Pattern register while the other commands use the stored values in the parameter RAM. Like all of these commands, the WDAT command must be preceeded by a FIGS command and its parameters. Only the first three parameters need be given following the FIGS opcode, to set up the type of drawing, the DIR direction, and the DC value. The DC parameter +1 will be the number of RMW cycles done by the GDC with the first set of WDAT parameters. Additional sets of WDAT parameters will see a DC value of 0 which will cause only one RMW cycle to be executed.

Mask Register Load

This command sets the value of the 16 -bit Mask register of the figure drawing processor. The Mask register controls which bits can be modified in the display memory during a read-modify-write cycle.

The Mask register is loaded both by the MASK command and the third parameter byte of the CURS command. The MASK command accepts two parameter bytes to load a 16 -bit value into the Mask register. All 16 bits can be individually one or zero, under program control. The CURS command on the other hand, puts a " 1 of 16 " pattern into the Mask register based on the value of the Dot Address value, dAD. If normal single-pixel-at-a-time graphics figure drawing is desired, there is no need to do a MASK command at all since the CURS command will set up the proper pattern to address the proper pixels as drawing progresses. For coded character DMA, and screen setting and clearing opertions using the WDAT command, the MASK command should be used after the CURS command if its third parameter byte has been output.

Figure Drawing Parameters Specify

FIGS:	0	1	0	0	1	1	0	0

P1

Only these bit combinations assure correct drawing operation.

Figure Draw Start

FIQD: | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

On execution of this instruction, the GDC loads the parameters from the parameter RAM into the drawing processor and starts the drawing process at the pixel pointed to by the cursor, EAD, and the dot address, dAD.

Graphics Character Draw and Area Filling Start

Based on parameters loaded with the FIGS command, this command initiates the drawing of the graphics character or area filling pattern stored in Parameter RAM. Drawing begins at the address in display memory pointed to by the EAD and dAD values.

Data Read Commands

Read Data from Display Memory

Using the DIR and DC parameters of the FIGS command to establish direction and transfer count, multiple RMW cycles can be executed without specification of the cursor address after the initial load ($\mathrm{DC}=$ number of words or bytes).
As this instruction begins to execute, the FIFO buffer direction is reversed so that the data read from display memory can pass to the microprocessor. Any commands or parameters in the FIFO at this time will be lost. A command byte sent to the GDC will immediately reverse the buffer direction back to write mode, and all RDAT information not yet read from the FIFO will be lost. MOD should be set to 00 if no modification to video buffer is desired.

Cursor Address Read

The Execute Address, EAD, points to the display memory word containing the pixel to be addressed.
The Dot Address, dAD, within the word is represented as a 1-of-16 code for graphics drawing operations.

Light Pen Address Read

LPRD:

The light pen address, LAD, corresponds to the display word address, DAD, at which the light pen input signal is detected and deglitched.

The light pen may be used in graphics, character, or mixed modes but only indicates the word address of light pen position.

DMA Read Request

DMA Write Request

Absolute Maximum Ratings* (Tentative)

Ambient Temperature under Bias	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Voltage on any Pin with respect to Ground	-0.5 V to +7 V
Power Disslpation	1.5 Watt

*COMMENT: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC Characteristics

$\mathbf{t}_{\mathbf{a}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=\mathbf{5 V} \pm \mathbf{1 0 \%} ; \mathrm{GND}=\mathbf{0} \mathrm{V}$

Parameter	Symbol	Limits		Unit	Test Conditions
		M/n	Max		
Input Low Voltage	$V_{\text {IL }}$	-0.5	0.8	V	
Input High Voltage	$V_{\text {IH }}$	2.0	$v_{\text {cc }}+0.5$	v	
Output Low Voltage	V_{OL}		0.45	v	$1 \mathrm{OL}=2.2 \mathrm{~mA}$
Output High Voltage	V_{OH}	2.4		v	$\mathrm{I}^{\mathrm{OH}}=-400 \mu \mathrm{~A}$
Input Low Leak Current	IL		-10	$\mu \mathrm{A}$	$\mathrm{v}_{1}=\mathbf{0}$
Input High Leak Current	IIH		+10	$\mu \mathbf{A}$	$v_{1}=v_{c c}$
Output Low Leak Current	${ }^{\text {IOL }}$		-10	$\mu \mathrm{A}$	$v_{0}=0 \mathrm{~V}$
Output High Leak Current	$\mathrm{IOH}^{\text {a }}$		+10	$\mu \mathrm{A}$	$v_{0}=v_{c c}$
Clock Input Low Voltage	$V_{C L}$	-0.5	0.6	v	
Clock Input High Voltage	V_{CH}	3.9	$\underset{270}{v_{C c}+1.0}$	v	

Capacitance

$\mathrm{t}_{\mathrm{a}}=\mathbf{2 5}{ }^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=\mathrm{GND}=\mathbf{0 V}$

Parameter	Limits				Test Conditions.
	Symbol	M $/ \mathrm{n}$	Max	Unit	
Input Capacitance I/O Capacitance	$\mathrm{C}_{\mathrm{CN}}^{\mathrm{C}_{\mathrm{VO}}}$		$\begin{aligned} & 10 \\ & 20 \end{aligned}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$	1 M
Cutput Capacitance Clock Input Capacitance	$\begin{aligned} & \mathbf{c}_{\text {OUT }} \\ & \mathbf{c}_{\phi} \\ & \hline \end{aligned}$		$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \\ & \hline \end{aligned}$	(unmeasured) $=0 \mathrm{~V}$

AC Characteristics
$\mathrm{t}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{Cc}}=5.0 \mathrm{~V} \pm 10 \% ; \mathrm{GND}=\mathbf{0 V}$

Read Cycle		$(\mathrm{GDC} \leftrightarrow \mathrm{CPU})$			
Symbol	Parameter	Limits		Unit	Test Conditions
		Min	Max		
${ }^{\text {taR }}$	Address Setup to $\overline{\mathrm{RD}} \downarrow$	0		ns	
$t_{\text {RA }}$	Address Hold from RTp	0		n8	
${ }_{\text {thR1 }}$	$\overline{\text { PD Puise Wldth }}$	trD1 + 20	80	$n \mathrm{~s}$	
$\mathrm{t}_{\mathrm{RDP}}$	Data Delay from RD \downarrow		80	ns	$C_{L}=50 \mathrm{pF}$
t_{DF}	Data Floating from $\overline{\mathrm{RD}} \uparrow$	0	100	ns	
${ }^{\text {t }} \mathrm{BCY}$	$\overline{\text { RD Pulse Cycle }}$	4 tCLK		ns	

Write Cycle $\quad($ GDC \leftrightarrow CPU $)$

Symbol	Parameter	L/mits		Unlt	Test Conditions
		MIn ${ }^{-1}$	Max		
taw	Address Setup to WR \downarrow	0		ns	
'WA	Address Hold from Wh ${ }^{\dagger}$	0		ns	
${ }_{\text {tww }}$	Wh Pulse Width	100		ns	
tow	Data Setup to $\overline{\mathrm{WR}} \uparrow$	80		ns	
two	Data Hold from WR \uparrow	0		ns	
twer	WR Pulse Cycle	4 tcLK		ns	

DMA Read Cycle $\quad(G D C \leftrightarrow C P U)$

Symbol	Parameter	Limits		Unit	Test Conditions
		Min	Max		
$t_{\text {KR }}$	$\overline{\text { DACK }}$ Setup to $\overline{\mathrm{RD}} \downarrow$	0		ns	
$\mathbf{t}_{\text {RK }}$	$\overline{\text { DACK }}$ Hold from $\overline{\text { RD }} \uparrow$	0		n8	
${ }^{\text {taR2 }}$	$\overline{\text { RD Pulse Width }}$	$\mathrm{t}_{\text {RD2 }}+20$		ns	
${ }^{\text {thD2 }}$	Data Delay from RD \downarrow		1.5 tCLK + 80	n8	$C_{L}=50 \mathrm{pF}$
$t_{\text {tee }}$	DREQ Delay from 2xCCLKt		120	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
taK	DREQ Setup to DACK	0		ns	
${ }^{\text {t }}$ ($\overline{\text { DACK High Level Width }}$	tCLK		ns	
${ }_{\text {t }}$	$\overline{\text { DACK Pulse Cycle }}$	4 tclk		ns	
${ }^{\text {t }} \mathrm{KQ}(\mathrm{R})$	DREQ + Delay from D'ACK \downarrow		2 tCLK + 120	ns	$C_{L}=50 \mathrm{pF}$

DMA Write Cycle $\quad($ GDC \leftrightarrow CPU)

Symbol	Parameter	Limits		Unit	Test Conditions
		Min	Max		
${ }_{\text {t }}^{\text {KW }}$	$\overline{\text { DACK }}$ Setup to $\overline{\text { WR }}$	0		ns	
${ }^{\text {twK }}$	$\overline{\text { DACK }}$ Hold from $\overline{W R} \uparrow$	0		ns	
${ }^{\text {t }} \mathbf{K} \mathbf{Q}$ (R)	DREQ \downarrow Delay from $\overline{\text { DACK }} \downarrow$		${ }^{\text {t CLK }}+120$	n8	$C_{L}=50 \mathrm{pF}$

R/M/W Cycle		(GDC \leftrightarrow Display Memory)			
		LImits			
Symbol	Parameter	Min	Max	Unit	Conditions
${ }^{\text {A }}$ D	Address/Data Delay from 2XCCLK \uparrow		130	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
toff	Address/Data Floating from 2xCcLK \uparrow	10	130	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
tols	Input Data Setup to 2XCCLK \downarrow	40		n8	
${ }^{\text {tin }}$	Input Data Hold from 2xCCLK \downarrow	0		ns	
${ }^{\text {tDBI }}$	DBIN Delay from 2XCCLK \downarrow		90	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
$t_{\text {RH }}$	ALE个 Delay from 2XCCLK \uparrow	30	110	n8	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
$\mathrm{t}_{\text {RF }}$	ALE \downarrow Delay from 2XCCLK \downarrow	20	90	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
$t_{\text {RW }}$	ALE Width	$1 / 3$ tCLK		ns	$C_{L}=50$

Display Cycle
(GDC \leftrightarrow Display Memory)

Symbol	Parameter	Limits.		Unit	Teat Conditions
		Min	Max		
Ivo	Video Signal Delay from 2XCCLK \uparrow		120	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

Input Cycle		(GDC \leftrightarrow Display Memory)			
Symbol	Parameter	Limits		Unil	Test Conditions
		Min	Max		
tps	Input Signal Setup to 2XCCLK \uparrow	20		ns	
tpw	Input Signal Width	${ }^{\text {t CLK }}$		ns	

Clock

Symbol	Parameter	Limits		Unit	Test Conditions
		MIn	Max		
${ }_{\text {t }}$ CR	Clock Rise Time		10	ns	
${ }^{\mathbf{t}} \mathbf{C}$	Clock Fall Time		10	ns	
${ }^{\text {t }} \mathrm{CH}$	Clock High Pulse Width	95		ns	
${ }^{\text {t CL }}$	Clock Low Pulse Wldth	, 95		ns	
${ }^{\text {t CLK }}$	Clock Cycle	200	2000	ns	

Timing Waveforms

Display Memory RMW TImIng

Microprocessor Interface Write Timing

MIcroprocessor Interface DMA Write TIming

Microprocessor Interface DMA Read Timing
2xWCLK:

Timing Waveforms (Cont.)

Display Memory Display Cycla Timing

Light Pen and External Sync Input Timing

Clock TIming

Test Level (for AC Tests)

μ PD7220

TImIng Waveforms (Cont.)

Interlaced Video Timing

VIdeo Sync Generator Parameters

Timing Waveforms (Cont.)

Display and RMW Cycles (1x Zoom)

Display and RMW Cycles (2x Zoom)

μ PD7220

Timing Waveforms (Cont.)

Zoomed Display Operation with RMW Cycie (3x Zoom)

Video Field Timing

Drawing Intorvals

μ PD7220

Pin Identification

Pln		Drection	Function
No.	Sympol		
1	2xWCLK	IN	Clock Input
2	DEIN	OUT	Display Memory Rend Input Fiag
3	HSYNC	OUT	Horizontal Video Syac Output
4	V/EXT SYNC	IN/OUT	Verical Video Sync Output or External VsYNC Input
5	BLANK	OUT	CRT Blanking Output
6	ALE ($\overline{\text { RAS }}$)	OUT	Address Latch Enable Output
7	DRO	OUT	DMA Request Output
8	DACK	IN	DMA Acknowledge Input
9	AD	IN	Read Strobe Input for Microprocessor Interface
10	WR	IN.	Write Strobe Input for Microprocessor Interface
11	A0	IN	Address Select Input for Microprocessor Interface
12-19	DB0 to 7	IN/OUT	Bidirectional Data Bus to Host Microprocessor
20	CND	-	Ground
21	LPEN	IN	Light Pen Detect Input
22-34	ADO to 12	H/WOUT	Address and Data Lines to Display Memory
35-37	AD13 to 15	IN/OUT	Utilization Varies with Mode of Operation
38	A16	OUT	Uillization Varies with Mode of Operation
39	A17	OUT.	Utilization Varles with Mode of Operation
40	$V_{\text {cc }}$	-	+5V $\pm 10 \%$

Character Mode PIn Utllization

Pin			
No.	Name	Direction	Function
$35-37$	AD13 to 15	OUT	Line Counter Blts 0 to 2 Outputs
38	A16	OUT	Line Counter Blt 3 Output
39	A17	OUT	Cursor Output

Mixed Mode Pin Utilization

Pin			
No.	Name	Drectlon	Function
$35-37$	AD13 to 15	IN/OUT	Address and Data Ble 13 to 15
38	A16	OUT	Attribute Blink and Clear LIne Counter* Output
39	A17	OUT	Cursor and Bit-Map Area* Flag Output

* $=$ Output during the HSYNC interval. Use the trailing edge at HSYNC to clock this value into a flop for reference during the rest of the video line.

Graphics Mode Pin UtIIIzation

Pin		Drection	Function
No.	Name		
35-37	AD13 to 15	IN/OUT	Address and Data gite 13 to 15
38	A16	OUT	Address Bit 16 Output
39	A17	OUT	Address Bit 17 Output

Pin Configuration

Block Dlagram of a Graphles Terminal

9

Package Outlines

μ PD7220D

μ PD7220C

Description

The μ PD7225 is an intelligent peripheral device designed to interface most microprocessors with a wide variety of alphanumeric LCDs. It can directly drive any static or multiplexed LCD containing up to 4 backplanes and up to 32 segments and is easily cascaded for larger LCD applications. The μ PD7225 communicates with a host microprocessor through an 8 -bit serial interface. It includes a 7 -segment numeric and a 14 -segment alphanumeric segment decoder to reduce system software requirements. The μ PD7225 is manufactured with low power consumption CMOS process allowing use of a single power supply between 2.7 V and 5.5 V and is available in a space-saving 52 -pin flat plastic package.

Features

\square Single-chip LCD Controller with Direct LCD Drive
\square Low-cost Serial Interface to most Microprocessors
\square Compatible with:
7-Segment Numeric LCD Configurations-up to 16 Digits
14-Segment Alphanumeric LCD Configurations-up to 8 CharactersSelectable LCD Drive Configuration:
Static, Biplexed, Triplexed, or Quadriplexed
[] 32-Segment Drivers
\square Cascadable for Larger LCD Applications
[] Selectable LCD Bias Voltage Configuration: Static, $1 / 2$, or $1 / 3$
[] Hardware Logic Blocks Reduce System Software Requirements

- 8-Bit Serial Interface
- Two 32×4-Bit Static RAMs for Display Data and Blinking Data Storage
- Programmable Segment Decoding Capability - 16-Character, 7-Segment Numeric Decoder
- 64-Character, 14-Segment USASCII Alphanumeric Decoder
- Programmable Segment Blinking Capability
- Automatic Synchronization of Segment Drivers with Sequentially Multiplexed Backplane DriversSingle Power Supply, Variable from 2.7V to 5.5VLow Power Consumption CMOS TechnologyExtended $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Temperature Range Available
$\square 1$ Space-saving 52-Pin Flat Plastic Package

PIn Configuration

: Pin Description

	PIn		Function

Command Summary

Command	Description	Instruction Code								
		Binary							HEX	
		$D_{7} D_{6} D_{4} D_{4} D_{3} D_{2} D_{1} D_{0}$								
1. MODE SET	Initialize the μ PD7225, including selection of: 1) LCD Drive Configuration 2) LCD Bias Voltage Configuration 3) LCD Frame Frequency	0	1	0	D_{4}					40-5F
2. UNSYNCHRONOUS DATA TRANSFER	Synchronize Display RAM data transfer to Display Latch with CS	0	0	1	1	0	0	0	0	30
3. SYNCHRONOUS DATA TRANSFER	Synchronize Display RAM data transfer to Display Latch with LCD Drive Cycle	0	0	1	1	0	0	0	1	31
4. INTERRUPT DATA TRANSFER	Interrupt Display RAM data transfer to Display Latch	0	0	1	1	1	0	0	0	38
5. LOAD DATA POINTER	Load Data Pointer with 5 bits of Immediate Data	1	1	1	D_{4}	D_{3}	D_{2}	D_{1}		O-FF
6. CLEAR DISPLAY RAM	Clear the Display RAM and reset the Data Pointer	0	0	1	0	0	0	0	0	20
7. WRITE DISPLAY RAM	Write 4 bits of Immediate Data to the Display RAM location addressed by the Data Pointer; Increment Data Pointer	1	1	0	1	D_{3}	D_{2}	D_{1}		DO-DF
8. AND DISPLAY RAM	Perform a Logical AND between the Display RAM data addressed by the Data Pointer and 4 bits of Immediate Data; Write result to same Display RAM location. Increment Data Pointer	1	0	0	1	D_{3}	D_{2}	D_{1}	D_{0}	90-9F

Command	Description	Instruction Code								
		Binary							HEX	
		$D_{7} D_{6} D_{6} D_{4} D_{3} D_{2} D_{1} D_{0}$								
9. OR DISPLAY RAM	Perform a Logical OR between the Display RAM data addressed by the Data Pointer and 4 bits of Immediate Data; Write result to same Display RAM location; Increment Data Pointer	1	0	1	1	D_{3}	D_{2}	D_{1}	$D_{0} B 0-B F$	
10. ENABLE SEGMENT DECODER	Start use of the Segment Decoder	0	0	0	1	0	1	0	1	15
11. DISABLE SEGMENT DECODER	Stop use of the Segment Decoder	0	0	0	1	0	1	0	0	14
12. ENABLE DISPLAY	Turn on the LCD	0	0	0	1	0	0	0	1	11
13. DISABLE DISPLAY	Turn off the LCD	0	0	0	1	0	0	0	0	10
14. CLEAR BLINKING RAM	Clear the Blinking RAM and reset the Data Pointer	0	0	0	0	0	0	0	0	00
15. WRITE BLINKING RAM	Write 4 bits of Immediate Data to the Blinking RAM location addressed by țte Data Pointer; Increment Data Pointer	1	1	0	0	D_{3}	D_{2}			$\overline{O-C F}$
16. AND BLINKING RAM	Perform a Logical AND between Blinking RAM data addressed by the Data Pointer and 4 bits of Immediate Data; Write result to same Blinking RAM Location; Increment Data Pointer	1	0	0	0	D_{3}	D_{2}			80-8F
17. OR BLINKING RAM	Perform a Logical OR between Blinking RAM data addressed by the Data Pointer and 4 bits of Immediate Data; Write result to same Blinking Location; Increment Data Pointer	1	0	1	0	D_{3}	D_{2}			O-AF
18. ENABLE BLINKING	Start Segment Blinking at the Frequency Specified by 1 bit of Immediate Data	0	0	0	1	1	0	1		A-1B
19. DISABLE BLINKING	Stop Segment Blinking	0	0	0	1	1	0	0	0	18

Details of operation and application examples can be found in the " μ PD7225 Intelligent Alphanumeric LCD Controller/Driver Technical Manual."

Absolute Maximum Ratings*
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
Supply Voltage, $\mathrm{V}_{\mathrm{DD}} \quad-0.3 \mathrm{~V}$ to +7.0 V
All Inputs and Outputs with Respect to $\mathrm{V}_{\mathbf{S S}} \quad-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+\mathbf{0 . 3 \mathrm { V }}$ Storage Temperature $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Operating Temperature $-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
*COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC Characteristics

Parameter	Symbol	Limits			Unit	Test Conditlons
		M/n	Typ	Max		
Input Voltage High	$V_{I H}$	0.7 V DD		$\mathbf{V}_{\text {DD }}$	V	
Input Voltage Low	$V_{\text {IL }}$	0		$\begin{gathered} 0.3 \\ V_{\mathrm{DD}} \end{gathered}$	V	
Input Leakage Current High	ILIH			2	$\mu \mathrm{A}$	$\mathbf{V}_{\mathbf{I H}}=\mathbf{V}_{\text {DD }}$
Input Leakage Current Low	ILIL.			-2	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$
Output Voltage High	$\mathrm{V}_{\mathbf{O H}}$	VDD -0.5			V	BUSY, SYNC, $\mathrm{I}_{\mathrm{OH}}=-10 \mu \mathrm{~A}$
Output Voltage Low	VOL_{1}			0.5	V	EUSY, $\mathrm{IOL}^{\prime}=100 \mu \mathrm{~A}$
	VOL_{2}			1.0	V	SYNC, $\mathrm{I}_{\mathrm{OL}}=900 \mu \mathrm{~A}$
Output Leakage Current Low	ILOH			2	$\mu \mathbf{A}$	$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}$
	LOL			-2	$\mu \mathbf{A}$	$\mathrm{V}_{\mathrm{OL}}=\mathbf{0 V}$
Output Short Circult Current	Ios			-300	$\mu \mathbf{A}$	SYNC, $\mathrm{V}_{\text {OS }}=1.0 \mathrm{~V}$
Backplane Driver Output Impedance	$\mathrm{RCOM}^{\text {COM }}$		5	7	k 8	$\begin{aligned} & \mathrm{COMO}_{0}-\mathrm{CON}_{3} \text {. } \\ & \mathrm{V}_{\mathrm{DD}} \geqslant \mathrm{~V}_{\mathrm{LCD}} \\ & \text { Applies to static-, } \\ & 1 / 2-, \text { and } 1 / 3 \text {-LCD } \\ & \text { blas voltage schemes } \end{aligned}$
Segment Driver Output Impedance	$\mathbf{R s E G}_{\text {Se }}$		7	14	k 8	$\begin{aligned} & 3_{0}-3_{31} \\ & V_{D D} \geqslant V_{L C D} . \end{aligned}$ Apples to static-, 1/2-, and 1/3-LCD blas voltage schemas
Supply Current	IDD		100	250	$\mu \mathrm{A}$	CL_{1} external clock, $f_{\phi}=200 \mathrm{KHz}$

DC Characteristics (Cont.)

$\mathrm{T}_{\mathrm{E}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{VDD}_{\mathrm{DD}}=2.7$ to 5.5 V

Parameter	Symbol	Umits			Unit	Test Condthlons
		Min	Typ	max		
Input Voltage High	$\mathrm{V}_{\mathrm{HH}_{1}}$	$0.7 \mathrm{~V}_{\text {DD }}$		$V_{D D}$	V	Except $\overline{\text { SCK }}$
	$\overline{\mathrm{V}}_{\mathrm{H}_{2}}$	0.6 V DD		VDD	V	8CK
Input Voltage Low	$\mathrm{V}_{1 \mathrm{IL}_{1}}$	0		$\begin{aligned} & 0.3 \\ & v_{D D} \\ & \hline \end{aligned}$	V	Except SCR
	$\overline{\mathrm{V}_{\mathrm{L}_{2}}}$	0		$\begin{gathered} 0.2 \\ v_{D D} \end{gathered}$	v	$\overline{\text { scK }}$
Input Leakage Current High	ILIH			2	$\mu \mathrm{A}$	$\mathbf{V}_{\mathbf{I H}}=\mathrm{V}_{\mathrm{DD}}$
Input Leakage Current Low	LIL.			-2	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IL}}=\mathbf{O V}$
Output Voltage High	V_{OH}	$\mathrm{V}_{\mathrm{DD}}-0$.			v	$\begin{aligned} & \text { BUSY, } \overline{\text { SYNC }}, \\ & \mathrm{I}_{\mathrm{OH}}=-7 \mu \mathrm{~A} \end{aligned}$
Output Voltage Low	V_{OL}			0.5	v	BUSY, $\mathrm{l}_{\mathrm{OL}}=100 \mu \mathrm{~A}$
	VOL_{2}			0.5	V	SYNC, $\mathrm{IOL}^{\text {a }}=400 \mu \mathrm{~A}$
Output Leakage Current Low	${ }^{\text {LOH }}$			2	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OH }}=\mathrm{V}_{\mathrm{DD}}$
	LOL			-2	$\mu \mathrm{A}$	$\mathrm{VOL}_{\mathrm{OL}}=\mathrm{OV}$
Output Short Circult Current	Ios			-200	$\mu \mathrm{A}$	SYNC, $\mathrm{V}_{\text {OS }}=0.5 \mathrm{~V}$
Backplane Drivar Outpul Impedance	$\mathbf{R}_{\text {com }}$		6		k	$\mathrm{COM}_{0}-\mathrm{COM}_{3}$, $V_{D D}>V_{L C D}$. Apples to sititic-, 1/2-, and 1/3-LCD blas voltage schemes
Segment Driver Output Impedance	$\mathbf{R s e c}^{\text {S }}$		12		k	$\begin{aligned} & s_{0}-s_{31}, \\ & V_{D D} \geqslant V_{L C D} \\ & \text { Appiles to static-, } \\ & 1 / 2-, \text {,nd } 1 / 3-\mathrm{LCD} \\ & \text { bias voltage schomes } \end{aligned}$
Supply Current	IDD		30	100	$\mu \mathrm{A}$	CL_{1} external clock, $V_{D D}=3.0 \mathrm{~V} \pm 10 \%$, $f_{\phi}=140 \mathrm{KHz}$

AC Characteristics

$T_{a}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=+5.0 \mathrm{~V} \pm \mathbf{1 0 \%}$

Parmmeter	Symbol	Limits			Unit	Test Condflons
		Min	Typ	Max		
Clock Frequency	16	50		200	$\mathbf{K H z}$	
	fosc	85	130	175	KHz	$\mathrm{R}=180 \mathrm{k} \mathcal{5}+5 \%$
Clock Pulse Width High	${ }_{4} \mathrm{~W}_{\mathrm{H}}$	2		16	$\mu \mathrm{s}$	CL, external clock
Clock Pulse Width Low	${ }^{+} W_{W}$	2		16	$\mu 8$	CL ${ }_{1}$, external clock
SCK Cycle	${ }^{\mathrm{C}_{\mathrm{CH}} \mathrm{K}_{K}}$	900			ns	
SCK Pulse Width High	${ }^{\mathbf{K}} \mathrm{KW}_{\mathbf{H}}$	400			ns	
SCR Pulse Width Low	$\mathrm{t}_{\mathrm{KW}}^{\mathbf{L}}$	400			n8	
EUSF + to SCK \downarrow Hold Time	${ }^{\mathbf{B}} \mathrm{BH}_{\mathrm{K}}$	0			ns	
SI Setup Time to SCK \uparrow	${ }^{1} 1_{K}$	100			ns	
SI Hold Time After SCK \uparrow	${ }^{\mathbf{H}} \mathrm{H}_{K}$	200			ns	
$8 \mathrm{~B} \overline{\text { SCK }}$ t 0 BUSY Delay Time	${ }^{\mathbf{t}} \mathrm{KD}_{\mathbf{B}}$			3	$\mu 8$	$C_{\text {LOAD }}=60 \mathrm{pF}$
$\overline{\text { CS }} \downarrow$ to $\overline{\text { BUSY }} \downarrow$ Delay Time	${ }^{1} \mathrm{CD}_{\mathrm{B}}$			1.5	$\mu \mathrm{s}$	$C_{\text {LOAD }}=50 \mathrm{pF}$
c/D Setup Time to 8th SCRT	${ }^{\mathbf{t}} \mathrm{SS}_{K}$	9			μ	
c/D Hold Time After 8th SCKt	${ }^{\mathbf{D} \mathrm{DH}_{K}}$	1			μs	
CS Hold Time After 8th SCK 1	${ }^{\mathbf{T}} \mathrm{CH}_{\mathrm{K}}$	1			μ^{*}	
CS Pulee Width High	${ }^{\mathbf{C}} \mathrm{CWH}_{\mathbf{H}}$	8/4 ${ }_{\text {¢ }}$			μ	
CS Pulse Width Low	${ }^{1} \mathrm{CW}_{\mathrm{L}}$	$8 / f_{\phi}$			$\mu 8$	

AC Characteristics (Cont.)
$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; $\mathrm{VD}=2.7 \mathrm{~V}$ to 5.5 V

Parametor	Symbol	Limft			Unit	Teat Conditions
		Min	Typ	Max		
Clock Frequency	t	50		140	KHz	
	${ }^{\text {fosc }}$	50	100	140	KHz	$\begin{aligned} & R=180 \mathrm{kQ}+5 \%, \\ & V_{D D}=3.0 \mathrm{~V} \pm 10 \% \end{aligned}$
Clock Pulse WIdth High	${ }_{4} \mathrm{~W}_{\mathrm{H}}$	3		16	μ	CL_{1}, external clock
Clock Pulse Width Low	${ }_{4} W_{L}$	3		16	μ	CL_{1}, external clock
SCK Cycte	${ }^{\text {C }} \mathrm{CY}_{\mathrm{K}}$	4			μs	
SCK Pulse Width High	${ }^{\mathbf{K} \mathrm{KW}_{\mathbf{H}}}$	1.6			$\mu \mathrm{s}$	
SCK Pulse Width Low	${ }^{\text {K }} \mathrm{WL}_{\mathrm{L}}$	1.8			$\mu 8$	
BUSYt to $\overline{\text { SCK }} \downarrow$ Hold Time	${ }^{\text {B }}{ }^{\text {HK }}$	0			ns	
SI 8otup Time to SCK \dagger	${ }^{1 / 8}{ }_{K}$	1			μ	
Si Hold Time After $\overline{\text { SCK }} \uparrow$	$\mathrm{t}_{\mathbf{H}} \mathbf{K}$	1			$\mu \mathrm{s}$	
$\begin{aligned} & \text { 8th SCKi to } \\ & \text { BUSYt Delay } \\ & \text { Time } \\ & \hline \end{aligned}$	${ }^{\mathbf{K} \mathrm{KD}_{\mathrm{B}}}$			5	$\mu \mathrm{s}$	$C_{\text {LOAD }}=\mathbf{8 0} \mathrm{pF}$
CES to $\overline{\mathrm{BUSY}}$ Delay Time	${ }^{\mathbf{t}} \mathrm{CD}_{8}$			5	$\mu \mathrm{s}$	$C_{\text {LOAD }}=50 \mathrm{pF}$
C/D Setup Time to 8 th SCKt	${ }^{\text {d }} S_{K}$	18			$\mu \mathrm{s}$	
c/D Hold Time After 8th SCR	${ }^{\mathbf{t} \mathrm{DH}_{\mathrm{K}}}$	1			μ	
$\overline{\text { CS }}$ Hold Time After 8 th SCK \dagger	${ }^{\mathbf{t}} \mathrm{CH}_{\mathrm{K}}$	1			$\mu 8$	
$\overline{\text { CS }}$ Pulse Width High	${ }^{\mathbf{c}} \mathrm{CW}_{\mathrm{H}}$	$8 /{ }_{6}$			μ	
$\overline{\text { CS Pulse Width }}$ Low	${ }^{\mathbf{c}} \mathrm{CW}_{\mathrm{L}}$	$8 / 4$			${ }^{\mu 8}$	
SYNC Load Capachtance	$C_{\text {LOAD }}$			50	PF	$f_{\phi}=200 \mathrm{KHz}$

Capacltance

$\mathrm{T}_{\mathrm{a}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

Paramoter	Symbol	Limite			Unit	Test Conditions	
		MIn	Typ	Max			
Input Capacitance	c_{1}			10	PF		$f_{\phi}=1 \mathrm{MHz}$. Unmeasured pina return to OV .
Output Capacitance	CO_{1}			20	PF	Except BUSY	
	$\mathrm{C}_{\mathrm{O}_{2}}$			15	PF	EUSV	
input/Output Capacitance	C_{10}			15	pF	STNC	
Clock Capacitance	C_{6}			30	PF	CL_{1} Input	

AC Timing Characteristics

Timing Wavoforms

Clock

Serial Interface

Characteristics Curves

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

Package Dimensions (Unit: mm)

Use IC Socket IC-53-11 for all packages. μ PD7225C-01

μ PD7225G-00

NOTES

μ PD7227 INTELLIGENT DOT-MATRIX LCD CONTROLLER/DRIVER

DESCRIPTION The μ PD7227 Intelligent Dot-matrix LCD Controller/Driver is a peripheral device designed to interface most microprocessors with a wide variety of dot matrix LCDs. It can directly drive any multiplexed LCD organized as 8 rows by 40 columns, and is easily cascaded up to 16 rows and 280 columns. The μ PD7227 is equipped with several hardware logic blocks, such as an 8-bit serial interface, ASCII character generator, 40×16 static RAM with full read/write capability, and an LCD timing controller; all of which reduce microprocessor system software requirements. The μ PD7227 is manufactured with a single 5 V CMOS process, and is available in a space-saving 64-pin flat plastic package.

FEATURES - Single.chip LCD controller with direct LCD drive

- Compatible with most microprocessors
- Eight row drives
- Designed for dot-matrix LCD configurations up to 280 dots
- Designed for 5×7 dot-matrix character LCD configuration; up to 8 characters
- Cascadable to 16 row drives
- 40 column drives
- Cascadable to 280 column drives
- Hardware logic blocks reduce system software requirements
- 8-bit serial interface for communication
- ASCII 5×7 dot-matrix character generator with 64 -character vocabulary
- 40×16 bit static RAM for data storage, retrieval, and complete back-up memory capability
- Voltage controller generates LCD bias voltages
- Timing controller synchronizes column drives with sequentially-multiplexed row drives
- Single +5 V power supply
- CMOS technology

PIN NUMBER	SYMBOL	FUNCTION
1	NC	No connection.
$\begin{gathered} 2-24,47-57 \\ 59-64 \end{gathered}$	$\mathrm{C}_{0} \cdot \mathrm{C}_{39}$	LCD Column Driver Outputs.
25	V_{SS}	Ground
26,58	V ${ }_{\text {DD }}$	Power supply positive. Apply single voltage ranging from 2.7 V to 5.5 V for proper operation.
27	CLOCK	System Clock input (active high) connect to external clock source.
28	RESET	Reset input (active high). R/C circuit or pulse initializes μ PD7227 after power-up.
29	SI	Serial input (active high). Data input from microprocessor.
30	C/D	Command/Data Select input (active both high and low). Distinguishes serially input data byte as a command or as display data.
31	SO/ $\overline{\text { BUSY }}$	Serial Output (active high)/Busy output (active low). Data output from μ PD7227 to microprocessor when in READ MODE and C / \bar{D} is low. Handshake output indicates that μ PD7227 is ready to receive/send next data byte.
32	$\overline{\text { SCK }}$	Serial Clock input (active low). Synchronizes 8 -bit serial data transfer between microprocessor and μ PD7227.
33	$\overline{C S}$	Chip Select Input (active low) enables μ PD7227 for communication with microprocessor.
34	SYNC	Synchronization port (active high). For multichip operation tie all SYNC lines together, and configure with MODE SET command.
35-38	$V_{L_{L C D}}, V_{L_{C D}}$, $\mathrm{V}_{\mathrm{LCD}_{3}}, \mathrm{~V}_{\mathrm{LCD}}^{4}$	LCD Bias Voltage supply inputs to LCD Voltage Controller. Apply appropriate voltages from a voltage ladder connected across VDD.
39.46	$\mathrm{R}_{0 / 8} \cdot \mathrm{R}_{7 / 15}$	LCD Row Driver Outputs.

BLOCK DIAGRAM

Command	Description	Instruction Code								
		Binary								HEX
		D7	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}	
1. MODE SET	Initialize the μ PD7227, including selection of 1. LCD Drive Configuration 2. Row Driver Port Function 3. RAM Bank 4. SYNC Port Function	0		0	1	1	D_{2}		D_{0}	18-1F
2. FRAME FREQÚENCY SET	Set LCD Frame Frequency	0	0	0	1	0	D_{2}	D_{1}	D_{0}	10-17
3. LOAD DATA POINTER	Load Data Pointer with 7 bits of Immediate Data				D_{4}		D_{2}	D1	D_{0}	80-E7
4. WRITE MODE	Write Display Byte in Serial Register to RAM location addressed by Data Pointer; modify Data Pointer		1		0				D_{0}	64-67
5. READ MODE	Load RAM contents addressed by Data Pointer into Serial Register for output; modify Data Pointer	0			0		0	D_{1}	D_{0}	60-63
6. AND MODE	Perform a Logical AND between the display byte in the Serial Register and the RAM contents addressed by Data Pointer; write result to same RAM location; modify Data Pointer	0	1	1	0	1	1	D_{1}	D_{0}	6C-6F
7. OR MODE	Perform a Logical OR between the display byte in the Serial Register and the RAM contents addressed by Data Pointer; write Result to same RAM locatión; modify: Data Pointer	0	1	1	0	1	0	D_{1}	D_{0}	68-6B
8. CHARACTER MODE	Decode display byte in Serial Register into 5×7 character with Character Generator; write character to RAM location addressed by Date Pointer; increment Data Pointer by 5	0.	1	1	1	0	0	1	0	72
9. SET BIT	Set single bit of RAM location addressed by Data Pointer; modify Data Pointer	0	1	0	D_{4}	D_{3}	D_{2}	D1	Do	40-5F
10. RESET BIT	Reset single bit of RAM locatlon addressed by Data Painter; modlfy Data Pointer	0	0	1	D_{4}	D_{3}		D_{1}	D_{0}	20-3F
11. ENABLE DISPLAY	Turn on the LCD :	0	0	0	0	1	0	0	1	09
$\begin{aligned} & \text { 12. DISABLE } \\ & \text { DISPLAAY } \\ & \hline \end{aligned}$	Turn off the LCD	0	0	0	0	1	0	0	0	08

Further details of operation can be found in the " μ PD7227 Intelligent Dot-Matrix LCD Controller/Driver Technical Manual."

Power Supply, VDD.
.-0.3 V to +7.0 V
All inputs and outputs with respect to V_{SS}. - 0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3$
Storage Temperature . $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature. $-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
"COMMENT: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specificstion. Exposure to absolute maximum rating conditions for extended periods may affect device rellability.
$T_{a}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{D O}=+5.0 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	LIMATS			UNIT	CONDITIONS
		MIN	TYP	MAX		
Input Voltage High	$\mathrm{V}_{\text {IH }}$	0.7 VDO		VDD	V	
Input Voltage Low	VIL	0		0.3 VOO	V	
Input Leakage Current High	'LiH			+10	$\mu \mathrm{A}$	$V_{I H}=V_{D D}$
Input Leakage Current Low	ILIL			-10	$\mu \mathrm{A}$	$\mathrm{V}_{1 \mathrm{H}}=\mathrm{OV}$
Output Voltage High	VOH_{1}	$V_{D D}-0.5$			v	SO/EUSY, $10 \mathrm{OH}=-400 \mu \mathrm{~A}$
	VOH_{2}					SYNC, $\mathrm{I}^{\text {OH }}=-100 \mu \mathrm{~A}^{\circ}$
Output Voltage Low	VOL_{1}			0.45	V	SO/BUSY. $1 \mathrm{OL}=+1.7 \mathrm{~mA}$
	VOL_{2}					SVNC, $10 \mathrm{OL}=+100 \mu \mathrm{~A}$
Output Leakage Current High	${ }^{1} \mathrm{LOH}$			+10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\text {DD }}$
Output Leakage Current Low	ILOL			-10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{OL}}=0 \mathrm{~V}$
LCD Operating Voltage	$V_{\text {LCD }}$	3.0		VDD	v	8-Row Multiplexed LCD Drive Configuration
			VOD			16-Row Multipiexed LCD Drive Configuration
Row Drive Output Impedance	R ROW		4	8	k Ω	
Column Drive Output Impedance	RCOLUMN		10	15	k Ω	
Supply Current	${ }^{\prime} \mathrm{DD}$		200	400	$\mu \mathrm{A}$	$\mathrm{f}_{\boldsymbol{\phi}}=400 \mathrm{KHz}$

$T_{B}=-25^{\circ} \mathrm{C}, V_{D D}=0 V$

PARAMETER.	SYMBOL	LIMITS			UNIT	CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	C_{1}			10	pF	$\mathrm{f}_{6} \mathbf{=} \mathbf{= 1} \mathrm{MHz}$
Output Capacitance	C_{0}			25	pF	Unmeasured pins
Input/Output Capacitance	c_{10}			15	PF SYNC	returned to Ground.

ABSOLUTE MAXIMUM RATINGS*

DC CHARACTERISTICS

CAPACITANCE

AC CHARACTERISTICS
$T_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+5.0 \mathrm{~V} \pm .10 \%$

PARAMETER	SYMBOL	LIMITS			UNIT	CONDITIONS
		MIN	TYP	MAX		
Clock Frequency	f ϕ	100		1000	KHz	
Clock Pulse WIdth High	$t \phi W_{H}$	400			ns	
Clock Puise Width Low	$t \phi W_{L}$	400			ns	
SCK Cycle	$\mathrm{tc}_{\mathrm{CK}}$	0,9			$\mu \mathrm{s}$	
$\overline{\text { SCK Pulse Width High }}$	$\mathrm{t}_{\mathrm{k}} \mathrm{W}_{\mathrm{H}}$	400			ns	
SCK Pulse Width Low	${ }^{t_{K W}}{ }_{\text {L }}$	400			ns	
SCK Hold Time After BUSY \uparrow	${ }^{\text {t }}{ }_{\text {K }} \mathrm{H}_{\mathrm{B}}$	0			ns	
SI Setup Time To $\overline{\text { SCK }} \uparrow$	${ }^{1} S_{K}$	100			ns	
SI Hold Time After SCK \dagger	${ }^{t^{\prime} H_{K}}$	250			ns	
SO Delay Time After SCK \downarrow	${ }^{\text {tob }}$			320	ns	
SO Delay Time After C/D \downarrow	${ }^{1} 0 D_{D}$			2	$\mu \mathrm{s}$	
STK Hold Time After C/D\downarrow	${ }^{\text {t }}$ K HD_{D}	2			$\mu \mathrm{s}$	
$\overline{\text { BUSY }}$ Delay Time After 8th SCK \uparrow	${ }^{\text {t }}{ }^{\text {d }} \mathrm{D}_{\mathrm{K}}$			3	$\mu \mathrm{s}$	$\mathrm{C}_{\text {LOAD }}=50 \mathrm{pF}$
BUSY Delay Time After C/İ \uparrow	${ }^{\text {t }}{ }^{\text {d }}$ D			2	$\mu \mathrm{s}$	
$\overline{\text { BUSY }}$ Delay Time After $\overline{\mathrm{CS}} \downarrow$	${ }^{t_{B D}}{ }_{C}$			2	$\mu \mathrm{s}$	
C/D Setup Time to 8th $\overline{\text { SCK } \uparrow}$	${ }^{t^{\text {DS }} \text { K }}$	2			$\mu 5$	
C/D Hold Time After 8th SCK \uparrow	${ }^{\text {t }{ }^{\text {d }} \mathrm{H}_{\mathrm{K}}}$	2			$\mu \mathrm{s}$	
	${ }^{\text {t }} \mathrm{CH}_{\mathrm{K}}$	2			$\mu \mathrm{s}$	
$\overline{\text { Cs }}$ Puise Width High	${ }^{\text {t }} \mathrm{CW}_{\mathrm{H}}^{\mathrm{H}}$	2/f ϕ			$\mu \mathrm{s}$	
CSS \uparrow Delay Time to BUSY Fioating	${ }^{\text {t }} \mathrm{CD}_{\mathrm{B}}$	2			$\mu 5$	$C_{\text {LOAD }}=50 \mathrm{pF}$
SYNC Load Capacitance	$\mathrm{CLOADS}^{\text {L }}$			100	pF	

CLOCK WAVEFORM

SERIAL INTERFACE TIMING WAVEFORMS

μ PD7227G-12

DIGITAL SIGNAL PROCESSOR

DESCRIPTION The NEC μ PD7720 Signal Processing Interface (SPI) is an advanced architecture microcomputer optimized for signal processing algorithms. Its speed and flexibility allow the SPI to efficiently implement signal processing functions in a wide range of environments and applications.
The NEC SPI is the state of the art in signal processing today, and for the future.

APPLICATIONS - Speech Synthesis and Analysis

- Digital Filtering
- Fast Fourier Transforms (FFT)
- Dual-Tone Multi-Frequency (DTMF) Transmitters/Receivers
- High Speed Data Modems
- Equalizers
- Adaptive Control
- Sonar/Radar Image Processing
- Numerical Processing

PERFORMANCE BENCHMARKS	- Second Order Digital Filter (BiQuad) - SINE/COS of Angles - μ / A LAW to Linear Conversion - FFT: 32 Point Complex 64 Point Complex	$\begin{aligned} & 2.25 \mu \mathrm{~s} \\ & 5.25 \mu \mathrm{~s} \\ & 0.50 \mu \mathrm{~s} \\ & 0.7 \mathrm{~ms} \\ & 1.6 \mathrm{~ms} \end{aligned}$
FEATURES	- Fast Instruction Execution - 250 ns - 16-Bit Data Word - Multi-Operation Instructions for Opti - Large Memory Capacities	izing Program Execution
;	- Program ROM - Coefficient ROM - Data RAM	$\begin{aligned} & 512 \times 23 \text { Bits } \\ & 510 \times 13 \text { Bits } \\ & 128 \times 16 \text { Bits } \end{aligned}$

- Fast (250 ns) $16 \times 16-31$ Bit Multiplier
- Dual Accumulators
- Four Level Subroutine Stack for Program Efficiency
- Multiple I/O Capabilities
- Serial
- Parallel
- DMA
- Compatible with Most Microprocessors, Including:

[^14]

Fabricated in high speed NMOS, the μ PD7720 SPI is a complete 16 -bit microcomputer on a single chip. ROM space is provided for program and coefficient storage, while the on-chip RAM may be used for temporary data, coefficients and results. Computational power is provided by a 16 -bit Arithmetic/Logic Unit (ALU) and a separate 16×16-bit fully parallel multiplier. This combination allows the implementation of a "sum of products" operation in a single 250 nsec instruction cycle. In addition, each arithmetic instruction provides for a number of data movement operations to further increase throughput. Two serial I/O ports are provided for interfacing to codecs and other serially-oriented devices while a parallel port provides both data and status information to conventional $\mu \mathrm{P}$ for more sophisticated applications. Handshaking signals, including DMA controls, allow the SPI to act as a sophisticated programmable peripheral as well as a stand alone microcomputer.

Memory is divided into three types, Program ROM, Data ROM, and Data RAM. The 512×23-bit words of Program ROM are addressed by a 9-bit Program Counter which can be modified by an external reset, interrupt, call, jump, or return instruction.
The Data ROM is organized in 512×13-bit words and is also addressed through a 9-bit ROM pointer (RP Reg.) which may be modified as part of an arithmetic instruction so that the next value is available for the next instruction. The Data ROM is ideal for storing the necessary coefficients, conversion tables and other constants for all your processing needs.

The Data RAM is 128×16-bit words and is addressed through a 7 -bit Data Pointer (DP Reg.). The DP has extensive addressing features that operate simultaneously with arithmetic instructions so that no added time is taken for addressing or address modification.

PIN	name	$1 / 0$	function
1	NC	1	No Connection.
2	$\overline{\text { DACK }}$	1	DMA Request Acknowledge. Indicates to the μ PD7720 that the Data Bus is ready for a DMA transfer. $\left(\overline{\mathrm{DACK}}=\overline{\mathrm{CS}} \bullet \mathrm{A}_{0}=0\right)$
3	DRQ	o	DMA Request signals that the μ PD7720 is requesting a data transfer on the Data Bus.
4.5	$\mathrm{P}_{0}, \mathrm{P}_{1}$	\bigcirc	$\mathrm{P}_{0}, \mathrm{P}_{1}$ are general purpose output control lines.
6-13	$\mathrm{D}_{0}-\mathrm{D}_{7}$	1/0 Tristate	Port for data transfer between the Data Register or Status Register and Data Bus.
14	GND		
15	cLK	1	Single phase Master Clock input.
16	RST	1	Reset initializes the μ PD7720 internal logic and sets the PC to 0 .
17	INT	1	Interrupt. A low to high transition on this pin will (if interrupts are enabled by the progrem) execute a call instruction to location 100 H .
18	sck	1	Serial Data Input/Output Clock. A serial data bit is transferred when this pin is high.
19	$\overline{\text { SIEN }}$	1	Serial Input Enable. This line enables the shift clock to the Serial Input Register.
20	SOEN	1	Serial Output Enable. This pin enables the shift clock to the Serial Output Register.
21	si	- 1	Serial Data Input. This pin inputs 8 or 16 bit serial data words from an external device such as an A / D converter.
22	so	0	Serial Data Output. This pin outputs 8 or 16 bit data words to an external device such as an D/A converter.
${ }^{23}$	SORO	0	Serial Data Output Request. Specifies to an external device that the Serial Data Register has been loaded and is ready for output. SORQ is reset when the entire 8 or 16 bit word has been transferred.
24	$\overline{\text { wR }}$	1	Write Control Signal writes the contents of data bus into the Data Register.
25	$\overline{\text { RD }}$	1	Read Control Signal. Enables an output to the Data Port from the Data or Status Register.
26	$\overline{\text { cs }}$	1	Chip Select. Enables data transfer with Data or Status Port with $\overline{\mathrm{RD}}$ or $\overline{W R}$.
27	A_{0}	1	Selects Data Register for Read/Write (low) or Status Register for read (high).
28	Vcc		+5V Power

General

One of the unique features of the SPI's architecture is its arithmetic facilities. With a separate multipler, ALU, and multiple internal data paths, the SPI is capable of carrying out a multiply, an add, or other arithmetic operation, and move data between internal registers in a single instruction cycle.

ALU

The ALU is a 16 -bit 2's complement unit capable of executing 16 distinct operations on virtually any of the SPI's internal registers, thus giving the SPI both speed and versatility for efficient data management.

Accumulators (ACCA/ACCB)

Associated with the ALU are a pair of 16 -bit accumulators, each with its own set of flags, which are updated at the end of each arithmetic instruction (except NOP). In addition to Zero Result, Sign Carry, and Overflow Flags, the SPI incorporates auxilliary Overflow and Sign Flags (SA1, SB1, OVA1, OVB1). These flags enable the detection of an overflow condition and maintain the correct sign after as many as 3 successive additions or subtractions.

FLAG A	SA1	SA0	CA	ZA	OVA1	OVA0
FLAG B	SB1	SB0	CB	ZB	OVB1	OVB0

ACC A/B FLAG REGISTERS

Sign Register (SGN)

When OVA1 (or OVB1) is set, the SA1 (or SB1) bit will hold the corrected sign of the overflow. The SGN Register will use SA1 (SB1) to automatically generate saturation constants $7 \mathrm{FFFH}(+)$ or $8000 \mathrm{H}(-)$ to permit efficient limiting of a calculated valve.

Multiplier

Thirty-one bit results are developed by a 16×16 bit 2 's complement multiplier in 250 ns . The result is automatically latched in 2-16-bit registers M\&N (LSB in N is zero) at the end of each instruction cycle. The ability to have a new product available and to be able to use it in each instruction cycle, provides significant advantages in maximizing processing speed for real time signal processing.

Stack

The SPI contains a 4-level program stack for efficient program usage and interrupt handling.

Interrupt

A single level interrupt is supported by the SPI. Upon sensing a high level on the INT terminal, a subroutine call to location 100 H is executed. The El bit of the status register is automatically reset to 0 thus disabling the interrupt facilities until reenabled under program control.

General
The NEC SPI has 3 communication ports; 2 serial and one 8 -bit parallel, each with their own control lines for interface handshaking. The parallel port also includes DMA control lines (DRQ and $\overline{\text { DACK }}$) for high speed data transfer and reduced processor overhead. A general purpose 2 bit oútput (see Figure 1) port, rounds out a full complement of interface capability.

Serial I/O
Two shift registers (SI, SO) that are software-configurable to 8 or 16 bits and are externally clocked (SCK) provide simple interface between the SPI and serial peripherals such as, A/D and D/A converters, codecs, or other SPIs.

(7) Date clocked out on felling edge of SCK.
(2) Date clocked in on rising edge of SCK.
(3) Broken line denotes consecutive sending of next data.

PARALLEL I/O
The 8-bit parallel I/O port may be used for transferring data or reading the SPI's status. Data transfer is handled through a 16-bit Data Register (DR) that is softwareconfigurable for double or single byte data transfers. The port is ideally suited for operating with 8080,8085 and 8086 processor buses and may be used with other processors and computer systems.

PARALLEL R/W OPERATION

$\overline{\mathbf{C S}}$	A_{0}	$\overline{W R}$	$\overline{R D}$	OPERATION
1	x	X	X	
X	X	1	1	

(1) Eight MSBs or 8 LSBs of data register (DR) are used depending on DR status bit (DRS).
The condition of $\overline{\mathrm{DACR}}=0$ is equivalent to $\mathrm{A}_{0}=\overline{\mathrm{CS}}=\mathbf{0}$.

Status Register (SR)
MSB
LSB

ROM	USF 1	USFO	DRS	DMA	DRC	SOC	SIC	EI	0	0	0	0	0	P1	P0

The status register is a 16 -bit register in which the 8 most significant bits may be read by the system's MPU for the latest I/O and processing status.

ROM - (Request for Master) :	A read or write from DR to IDB sets RQM = 1. An Ext read (write) resets ROM $=0$.
$\left.\begin{array}{l} \text { USF } 1 \text { - (User Flag } 1): \\ \text { USF0 - (User Flag 0): } \end{array}\right\}$	General purpose flags which may be read by an external processor for user defined signalling
DRS - (DR Status) :	For 16 bit DR transfers (DRC = 0) DRS = 1 after first 8 bits have been transferred, DRS $=0$ after all 16 bits
DMA- (DMA Enable):	DMA $=0$ (Non DMA transfer mode) DMA = 1 (DMA transfer mode)
DRC - (DR Control):	DRC $=0$ (16 bit mode), DRC $=1$ (8 bit mode)
SOC - (SO Control):	SOC $=0$ (16 bit mode), SOC = 1 (8 bit mode)
SIC - (SI Control) :	SIC $=0$ (16 bit mode), SIC $=1$ (8 bit mode)
EI - (Enable Interrupt):	$\mathrm{EI}=0$ (interrupts disabled), $\mathrm{EI}=1$ (interrupts enabled)
P0/P1 (Ports 0 and 1):	P0 and P1 directly control the state of output pins PO and P1

INSTRUCTIONS The SPI has 3 types of instructions all of which are one word, 23 bits long and execute in 250 ns .
A) Arithmetic/Move-Return ($O P=00 / R T=01$)

	$22 \quad 21$	$20 \quad 19 \quad 18$	$17 \quad 16 \quad 15$	14	1312	11109	8	76654	3210
OP	00	P. SELECT	ALU	\hat{i}	$D P_{L}$	DPH.M	-	SRC	DST
RT	01	Same as OP instruction							

There are two instructions of this type, both of which are capable of executing all ALU functions listed in Table 2 on the value specified by the ALU input (i.e., P select field see Table 1).

Table 1. OP, RT

	P-Select Field		
Mnemonic	D20 $_{20}$	D_{19}	ALU Input
RAM	0	0	RAM
IDB	0	1	Internal Data Bus
M	1	0	M Register
N	1	1	N Register

*Any value on the on-chip data bus. Value may be selected from any of registers listed in Table 7 source register selections.

Table 2، OP, RT

Mnemonic	Flags Affected											
	ALU Field				ALU Function	$F \log A$ Flag B	SA1	SAO	CA	2A	OVA1	OVAO
	$\mathrm{D}_{18} \mathrm{D}_{17} \mathrm{D}_{16} \mathrm{D}_{15}$						- SB1	SBO	CB	2B	OVB1	OVBO
NOP	0	0	0	0	No Operation		-	-	-	-	-	-
OR	0	0	0	1	OR		x	\ddagger	0	\ddagger	0	0
AND	0	0	1	0	AND		$\therefore x$	\ddagger	0	t	0.	0
XOR	0	0	1	1	Exclusive OR		x	\uparrow	0	\ddagger	0	0
SUB	0	1	0	0	Subtract .		\downarrow	\ddagger	\ddagger	\ddagger	\ddagger	\ddagger
ADD	0	1	0	1	ADD		\ddagger	\ddagger	\ddagger	\ddagger	\ddagger	\ddagger
SBB	0	1	1	0	Subtract with Borrow		\pm	\ddagger	\ddagger	1	1	\ddagger
ADC	0	1.	1	1	Add with Carry		\uparrow	\uparrow	\ddagger	\ddagger	\ddagger	\pm
DEC	1	0	0	0	Decrement ACC		\ddagger	\pm	\downarrow	\ddagger	\ddagger	\uparrow
INC	1	0	0	1	Increment ACC	-	\ddagger	\downarrow	\ddagger	\ddagger	\ddagger	\ddagger
CMP	1	0	1	0	Complement ACC (1's Complement)	.	X	\ddagger	0	\pm	0	0
SHR1	1	0	1	1	1-bit R-Shift		x	\ddagger	1	\ddagger	0	0
SHL1	1	1	0	0	1-bit L-Shift		x	\downarrow	1	\ddagger	0	0
SHL2	1	1	0	1	2-bit L-Shift		$\cdots x$	\ddagger	0	\pm	0	0
SHL4	1	1	1	0	4.bit L-Shift	\because	x	\ddagger	0	\ddagger	0	0
XCHG	1	1	1	1	8-bit Exchange		x	\ddagger	0	\uparrow	0	0

Notes: \downarrow May be affected, depending on the results

- Previous status can be held
(0) Reset
X Indefinite

Table 3. OP, RT

Mnemonic	ASL Field	Acc Selection
	D14	
	0	ACC B

Table 4. OP, RT

	DPL Field 2		
Mnemonic	\mathbf{D}_{13}	\mathbf{D}_{12}	DP3 3-DP $_{0}$
DPNOP	0	0	No Dperation
DPINC	0	1	Increment DP
DPDEC	1	0	Decrement DP
DPCLR	1	1	Clear DPL

Table 5. OP, RT

Table 6. OP,RT

Mnemonic	RPDCR	
	$\mathrm{D}_{\mathbf{8}}$	Operation
RPNOP	0	No Operation
RPDEC	1	Decrement RP

Besides the arithmetic functions these instructions can also modify (1) the RAM Data Pointer DP, (2) the Data ROM Pointer RP, and (3) move data along the on-chip data bus from a source register to a destination register (the possible source and destination registers are listed in Tables 7 and 8 respectively). The difference in the two instructions of this type is that one executes a subroutine or interrupt return at the end of the instruction cycle while the other does not.

Table 7. OP, RT

Mnemonic	SRC Field				Specified Register
	D7	D_{6}	D_{5}	D_{4}	
NON	0	0	0	0	NO Register
A	0	0	0	1	Acc A (Accumulator A)
B	0	0	1	0	Acc B (Accumulator B)
TR	0	0	1	1	TR Temporary Register
DP	0	1	0	0	DP Data Pointer
RP	0	1	0	1	RP ROM Pointer
RO	0	1	1	0	RO ROM Output Data
SGN	0	1	1	1	SGN Sign Register
DR	1	0	0	0	DR Data Register
DRNF	1	0	0	1	DR Data No Flag (1)
SR	1	0	1	0	SR Status
SIM	1	0	1	1	SI Serial in MSB (2)
SIL	1	1	0	0	SI Serial in LSB (3)
K	1	1	0	1	K Register
L	1	1	1	0	L Register
MEM	1	1.	1	1	RAM

Notes: (1) DR to IDB RQM not set. IN DMA DRQ not set.
(2) First bit in goes to MSB, last bit to LSB.
(3) First bit in goes to LSB, last bit to MSB (bit reversed).

Table 7 - List of Registers Specified by the Source Field (SRC)

Table 8. OP, RT, LDI

Mnemonic	DST Field				Specified Register
			D1		
@NON	0	0	0	0	NO Register
@A	0	0	0	1	ACC A (Accumulator A)
@B	0	0	1	0	Acc B (Accumulator B)
@TR	0	0	1	1	TR Temporary Register
@DP	0	1	0	0	DP Data Pointer
@RP	0	1	0	1	RP ROM Pointer
@DR	0	1	1	0	DR Data Register
@SR	0	1	1	1	SR Status Register
@SOL	1	0	0	0	SO Serial Out LSB (1)
@SOM	1	0	0	1	SO Serial Out MSB (2)
@K	1	0	1	0	K (Mult)
@KLR	1	0	1	1	IDB $\rightarrow K$ ROM \rightarrow L (3)
@KLM	1	1	0	0	Hi RAM \rightarrow K IDB \rightarrow L (4)
@	1	1	0	1	L (Mult)
@NON	1	1	1	0	NO Register
@MEM	1	1	1	1	RAM

Notes: (1) LSB is first bit out.
(2) MSB is first bit out.
(3) Internal data bus to K and ROM to L register.
(4) Contents of RAM address specified by $\mathrm{DP}_{6}=1$
(i.e., 1, $\mathrm{DP}_{5}, \mathrm{DP}_{4}, \mathrm{DP}_{0}$) is placed in K register. IDB is placed in L .
Table 8 - List of Registers Specified by the Destination Field (DST)
B) Jump/Call/Branch

| 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :--- |

10	BRCH	CND	NA

JP Instruction Field Specifications

Three types of execution address modification instructions are accommodated by the processor and are listed in Table 9. All of the instructions, if unconditional or the specified condition is true, take their next program execution address from the Next Address field (NA), otherwise PC $=P C+1$.

Table 9. Branch Field Selections (BRCH)

20	19	18	Instruction
1	0	0	Uncondition jump
1	0	1	Subroutine call
0	1	0	Condition jump

For the conditional jump instruction, the condition field specifies the jump condition. Table 10 lists all the instruction mnemonics of the $\mathrm{J} / \mathrm{C} / \mathrm{B}$ OP codes.
The SPI offers all the execution modification instructions necessary for efficient, data, I/O and arithmetic control.

Table 10. Condition Field Specifications

Mnemonic	BRCH/CND Fields								Conditions
	D_{20}	D19	D_{18}	D17	D_{16}	D15	D_{14}	D13	
JMP	1	0	0	0	0	0	0	0	No Condition
CALL	1	0	1	0	0	0	0	0	No Condition
JNCA	0	1	0	0	0	0	0	0	$\mathrm{CA}=0$
JCA	0	1	0	0	0	0	0	1	$C A=1$
JNCB	0	1	0	0	0	0	1	0	$C B=0$
JCB	0	1	0	0	0	0	1	1	$C B=1$
JNZA	0	1	0	0	0	1	0	0	$\mathrm{ZA}=0$
JZA	0	1	0	0	0	1	0	1	$\mathrm{ZA}=1$
JNZB	0	1	0	0	0	1	1	0	$\mathrm{ZB}=0$
JZB	0	1	0	0	0	1	1	1	$\mathrm{ZB}=1$
JNOVAO	0	1	0	0	1	0	0	0	OVAO $=0$
JoVAo	0	1	0	0	1	0	0	1	OVAO $=1$
JNOVB0	0	1	0	0	1	0	1	0	OVBO $=0$
Jovbo	0	1	0	0	1	0	1	1	OVBO $=1$
JNOVA1	0	1	0	0	1	1	0	0	OVA1 $=0$
JoVA1	0	1	0	0	1	1	0	1	OVA $1=1$
JNOVB1	0	1	0	0	1	1	1	0	OVB1 $=0$
JovB1	0	1	0	0	1	1	1	1	OVB1 $=1$
JNSAO	0	1	0	1	0	0	0	0	SAO $=0$
JSAO	0	1	0	1	0	0.	0	1	SAO $=1$
JNSB0	0	1	0	1	0	0	1	0	SBO $=0$
JSB0	0	1	0	1	0	0	1	1	SB0 $=1$
JNSA1	0	1	0	1	0	1	0	0	SA1 $=0$
JSA1	0	1	0	1	0	1	0	1	SA1 $=1$
JNSB1	0	1	0	1	0	1	1	0	SB1 $=0$
JSB1	0	1	0	1	0	1	1	1	SB1 $=1$
JDPLO	0	1	0	1	1	0	0	0	$D P_{L}=0$
JDPLF	0	1	0	1	1	0	0	1	$D P_{L}=F(H E X)$
JNSIAK	0	1	0	1	1	0	1	0	SI ACK $=0$
JSIAK	0	1	0	1	1	0	1	1	SI ACK = 1
JNSOAK	0	1	0	1	1	1	0	0	SO ACK $=0$
JSOAK	0	1	0	1	1	1	0	1	SO ACK = 1
JNRQM	0	1	0	1	1	1	1	0	RQM $=0$
JROM	0	1	0	1	1	1	1	1	RQM $=1$

*BRCH or CND values not in this table are prohibited.
C) Load Data (LDI)

22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

| 11 | ID | DST |
| :---: | :---: | :---: | :---: |

The Load Data instruction will take the 16 -bit value contained in the Immediate Data field (ID) and place it in the location specified by the Destination field (DST) (see Table 8).
Voltage (VCC Pin) . -0.5 to +7.0 Volts (1)
Voltage, Any Input . -0.5 to +7.0 Volts ©
Voltage, Any Output . -0.5 to +7.0 Volts ©
Operating Temperature $-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

ABSOLUTE MAXIMUM RATINGS*

Note: (1) With respect to GND.
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
*COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	CONDITION
Input Low Voltage	$V_{\text {IL }}$	-0.5		0.8	V	
Input High Voltage	$\mathrm{V}_{\text {IH }}$	2.0		$\mathrm{V}_{\mathrm{CC}}+0.5$	V	
CLK Low Voltage	$V_{\phi L}$	-0.5		0.45	V	
CLK High Voltage	$V_{\phi H}$	3.5		$V_{\text {cc }}+0.5$	V	
Output Low Voltage	VOL			0.45	V	$1 \mathrm{OL}=2.0 \mathrm{~mA}$
Output High Voltage	VOH	2.4			\checkmark	$1 \mathrm{OH}=-400 \mu \mathrm{~A}$
Input Load Current	ILIL			-10	$\mu \mathrm{A}$	$V_{\text {IN }}=0 \mathrm{~V}$.
Input Load Current	ILIH			10	$\mu \mathrm{A}$	$V_{\text {IN }}=V_{C C}$
Output Float Leakage	ILOL			-10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=0.47 \mathrm{~V}$
Output Float Leakage	ILOH			10	$\mu \mathrm{A}$	$V_{\text {OUT }}=V_{\text {CC }}$
Power Supply Current	ICC		180	280	mA	

DC CHARACTERISTICS

CAPACITANCE

$T_{a}=-10 \sim+70^{\circ} \mathrm{C}, V_{C C}=+5 \mathrm{~V} \pm 5 \%$

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	CONDITION
CLK Cycle Time	$\phi C Y$	122		2000	ns	(1)
CLK Puise Width	$\phi \mathrm{D}$	60			ns	
CLK Rise Time.	$\phi \mathrm{R}$			10	ns	(1)
CLK Fall Time	$\phi \mathrm{F}$			10	ns	(1)
Address Setup TIme for RD	tAR	0			ns	
Address Hold Time for $\overline{\mathrm{RD}}$	${ }^{\text {tRA }}$	0			ns	
$\overline{R D}$ Pulse Width	tRR	250			ns	
Data Delay from $\overline{\mathrm{RD}}$	tRD			150	ns	$C_{L}=100 \mathrm{pF}$
Read to Data Floating	tDF	10		100	ns	$C_{L}=100 \mathrm{pF}$
Address Setup Time for \bar{W}	${ }^{\text {t }}$ AW	0			ns	
Address Hold Time for WR	tWA	0			ns	
$\overline{\text { WR Pulse Wldth }}$	tWW	250			ns	
Data Setup Time for $\overline{W R}$	tow	150			ns	
Data Hold Time for \bar{W}	tWD	0			ns	
$\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$, Recovery Time	tRV	250			ns	(2)
DRQ Delay	tAM			150	ns	
DACK Delay Time	tDACK	1			$\phi \mathrm{D}$	(2)
SCK Cycle Time	${ }^{\text {tSCY}}$	480		DC	ns	
SCK Pulse Width	tSCK	230			ns	
SCK Rise/Fall Time	tRSC			20	ns	(1)
SORO Delay	tDRQ	30		150	ns	$C_{L}=100 \mathrm{pF}$
SOEN Setup Time	tSOC	50			ns	
SOEN Hold Time	tcso	30			ns	
SO Delay from SCK = LOW	tDCK			150	ns	
SO Delay from SCK with SORQ \uparrow	tDZRQ	20		300	ns	(2)
SO Delay from SCK	tozsc	20		300	ns	(2)
SO Delay from SOEN	tDZE	20		180	ns	(2)
$\overline{\text { SOEN }}$ to SO Floating	tHZE	20		200	ns	(2)
SCK to SO Floating	thZSC	20		300	ns	(2)
SO Delay from SCK with SORQ \downarrow	thZRQ	70		300	ns	(2)
$\overline{\text { SIEN, SI Setup Time }}$	${ }^{\text {t }} \mathrm{DC}$	55			ns	(2)
SIEN, SI Hold Time:	${ }^{\text {t }} \mathrm{CD}$	30			ns	
$\mathrm{P}_{0}, \mathrm{P}_{1}$ Delay	tDP			$\begin{aligned} & \phi \mathrm{CY} \\ & +150 \end{aligned}$	ns	
RST Pulse Width	tRST	4			$\phi \mathrm{CY}$	
INT Pulse Width	tINT	8			$\phi \mathrm{CY}$	

Notes: (1) Voltage at measuring point of timing 1.0 V and 3.0 V
(2) Voltage at measuring point of AC Timing
$V_{I L}=V_{O L}=0.8 \mathrm{~V}$
$V_{I H}=V_{O H}=2.0 \mathrm{~V}$
Input Waveform of AC Test (except CLK, SCK)

2.4	2.0	2.0
0.45	0.8	0.8

CLOCK

READ OPERATION

WRITE OPERATION

DMA OPERATION

SERIAL TIMING

Notes: (1) For SO timing, the data at rising edge of SCK is valid and the other data is invalid. In set-up hold time of data for SCK, the most strict specifications are the following.

$$
\text { set-up }=t_{S C K}-t_{\text {DCK }}
$$

$$
\text { hold }=t_{H Z R O}
$$

(2) Voltage at measuring point of $t_{r s c}$ and $t_{f s c}$ for SCK timing
(1) 3.0 V
(2) 1.0 V

NOTES

2048 BIT STATIC MOS RAM WITH I/O PORTS AND TIMER

DESCRIPTION The μ PD8155 and μ PD8156 are μ PD8085A family components having 256×8 Static RAM, 3 programmable I/O ports and a programmable timer. They directly interface to the multiplexed μ PD8085A bus with no external logic. The μ PD8155 has an active low chip enable while the μ PD8156 is active high.

FEATURES • 256×8-Bit Static RAM

- Two Programmable 8-Bit I/O Ports
- One Programmable 6-Bit I/O Port
- Single Power Supplies: +5 Volt, $\pm 10 \%$;
- Directly interfaces to the μ PD8085A and μ PD8085A-2
- Available in 40 Pin Plastic Packages

PIN CONFIGURATION

The μ PD8155 and μ PD8156 contain 2048 bits of Static RAM organized as 256×8. The 256 word memory location may be selected anywhere within the 64 K memory space by using combinations of the upper 8 bits of address from the μ PD8085A as a chip select.

The two general purpose 8-bit ports (PA and PB) may be programmed for input or output either in interrupt or status mode. The single 6 -bit port (PC) may be used as control for PA and PB or general purpose input or output port. The μ PD8155 and μ PD8156 are programmed for their system personalities by writing into their Command/Status Registers (C/S) upon system initialization.

The timer is a single 14-bit down counter which is programmable for 4 modes of operation; see Timer Section.

BLOCK
 DIAGRAM

ABSOLUTE MAXIMUM RATINGS*

FUNCTIONAL DESCRIPTION

Operating Temperature . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on Any Pin . -0.5 to +7 Volts (1)
Power Dissipation 1.5 W

Note: (1) With Respect to Ground.
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
*COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PIN IDENTIFICATION

PIN			FUNCTION
NO.	SYMBOL	NAME	
$\begin{aligned} & 1,2,5 \\ & 39,38,37 \end{aligned}$	$\begin{aligned} & P C_{3}, P C_{4}, P C_{5} \\ & P C_{2}, P C_{1}, P C_{0} \end{aligned}$	Port C	Used as control for PA and PB or as a 6-bit general purpose port
3	TIMER IN	Timer Clock In	Clock input to the 14 -bit binary down counter
4	RESET	Reset In	From μ PD 8085A system reset to set PA, PB, PC to the input mode
6	TIMER OUT	Timer Counter Output	The output of the timer function
7	10/M	I/O or Memory Indic̣ator	Selects whether operation to and from the chip is directed to the internal RAM or to I/O ports
8	CE/ $\overline{C E}$	Chip Enable	Chip Enable Input. Active low for μ PD8155 and active high for μ PD81 56
9	R'D	Read Strobe	Causes Data Read
10	$\overline{W R}$	Write Strobe	Causes Data Write
11	ALE	Address Low Enable	Latches low order address in when valid
12-19	$A D_{0}-A D_{7}$	Low Address/Data	3-State address/data bus to interface directly to μ PD8085A
20	$V_{\text {SS }}$	Ground	Ground Reference
21-28	$P A_{0}-P A_{7}$	Port A	General Purpose 1/O Port
29-36	$\mathrm{PB}_{0}-\mathrm{PB}_{7}$	Port B	General Purpose 1/O Port
40	VCC	5 Volt Input	Power Supply

DC CHARACTERISTICS $\quad \mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$

PARAMETER		SYMBOL	LIMITS			UNIT	TEST CONDITIONS	
		MIN	TYP	MAX				
Input Low Voltage			$V_{\text {IL }}$	-0.5		0.8	v	
Input High Voltage		$\mathrm{V}_{\text {IH }}$	20		$\mathrm{Vcc}+0.5$	V		
Output Low Voltage		Vol			0.45	v	$\mathrm{H}^{\prime} \mathrm{OL}=2 \mathrm{~mA}$	
Output High Voltage		VOH	2.4			V	$1 \mathrm{OH}^{2}=400 \mu \mathrm{~A}$	
Input Leakage		IIL			± 10	$\mu \mathrm{A}$	$V_{\text {IN }}=V_{\text {CC }}$ to OV	
Output Leakage Current		'LO			± 10	$\mu \mathrm{A}$	$\begin{aligned} & 0.45 \mathrm{~V} \leqslant \mathrm{~V}_{\text {OUT }} \\ & \leqslant \mathrm{VCC} \end{aligned}$	
VCC Supply Current		Icc			180	mA		
Chip Enable Leakage	μ PD8155	IIL (CE)			+100	$\mu \mathrm{A}$		
	MPD8156	ILL(CE)			-100	$\mu \mathrm{A}$	$V_{\text {IN }}=V_{C C}$ to ov	

$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	Limits				UNIT	TEST CONDITIONS
		8156/8156		8158-2/8188.2			
		MIN	MAX	MIN	MAX		
Address to Latch Set Up Time	${ }_{\text {tal }}$	50		30		ns	
Address Hold Time after Letch	tha	80		30		ns	
Latch to READ/WRITE Control	${ }_{\text {t }} \mathrm{LC}$	100		40		ns	
Valid Data Out Delay from READ Control	${ }^{\text {t }}$ (${ }^{\text {d }}$		170		140	$n 8$	
Address Stable to Data Out Valid	${ }^{\text {f }}$ AD		400		330	ns	
Latch Enable Width	ILL	100		70		ns	
Data Bus Float After READ	tRDF	0	100	0	80	ns	
READ/WRITE Control to Latch Enable	${ }^{\text {' }}$ CL	20		10		ns	
AEAD/WAITE Control Width	${ }^{\text {t }} \mathrm{C}$ C	250		200		ns	
Data In to WRITE Set Up Time	tow	150		100		ns	
Date In Hold Time After WRITE	WD	0		0		ns	
Recovery Time Between Controls	thV	300		200		$n \mathrm{n}$	160 pf Lood
WRITE to Port Output	tWP		400		300	ns	160 pf Losd
Port Input Setup Time	tpr	70		50		ns	
Port Input Hold Time	${ }_{\text {t }}^{\text {P }}$ P	50		10		n3	
Strobe to Buffer Full	${ }^{\text {tSBF }}$		400		300	ni	
Strobe Width	${ }_{\text {S }}$ S	200		150		ns	
READ to Buffer Empty	trbe		400		300	$n 3$	
Strobe to INTA On	S ${ }^{\text {S }}$		400		300	ns	
AEAD 10 INTR Off	tRDI		400		300	ns	
Port Setup Time to Strobe	tPSS	60		0		n!	
Port Hold Time After Strobe	tPHS	120		100		n :	
Strobe to Buffer Empty	${ }^{\text {S SBE }}$		400		300	ns	
WRITE to Buffer Full	tWe		400		300	ns	
WRITE to INTR Off	twI		400		300	ns	
TIMER-IN Io TIMEG-OUT LOW	tiL		400		300	n	
TIMER-IN to TIMER-OUT High	${ }^{\text {t }}$ TH		400		300	n	
Data Bus Enable from READ Control	$t_{\text {RDE }}$	10		10		ns	

READCYCLE

WRITE CYCLE

AC CHARACTERISTICS

TIMING WAVEFORMS

STROBED INPUT MODE

The Command Status Register is an 8 -bit register which must be programmed before the μ PD8155/8156 may perform any useful functions. Its purpose is to define the mode of operation for the three ports and the timer. Programming of the device may be accomplished by writing to I/O address XXXXX000 (X denotes don't care) with a specific bit pattern. Reading of the Command Status Register can be accomplished by performing an I/O read operation at address $X X X X X 000$. The pattern returned will be a 7-bit status report of PA, PB and the Timer. The bit patterns for the Command Status Register are defined as follows:

COMMAND STATUS WRITE

$T M 2$	$T M 1$	$I E B$	$I E A$	P_{2}	$P C_{1}$	$P B$	$P A$

where:

TM2-TM1	Define Timer Mode
IEB	Enable Port B Interrupt
IEA	Enable Port A Interrupt
PC2-PC 1 DB/PA	Define Port C Mode

The Timer mode of operation is programmed as follows during command status write:

TM2	TM1	TIMER MODE
0	0	Don't Affect Timer Operation
0	1	Stop Timer Counting
1	0	Stop Counting after TC
1	1	Start Timer Operation

Interrupt enable status is programmed as follows:

IEB/IEA	INTERRUPT ENABLE PORT B/A
0	No
1	Yes

Port C may be placed in four possible modes of operation as outlined below. The modes are selected during command status write as follows:

PC $_{2}$	PC1 $_{1}$	PORT C MODE
0	0	ALT 1
0	1	ALT 3
1	0	ALT 4
1	1	ALT 2

The function of each pin of port C in the four possible modes is outlined as follows:

PIN	ALT 1	ALT 2	ALT 3(2)	ALT 4 (2)
PC0	IN	OUT	A INTR	A INTR
PC1	IN	OUT	A BF	A BF
PC2	IN	OUT	A STB	A STB
PC3	IN	OUT	OUT	B INTR
PCA	IN	OUT	OUT	B BF
PC5	IN	OUT	OUT	B STB

Notes: (1) PB/PA Sets Port B/A Mode: $0=$ Input; 1 - Output
(2) In ALT 3 and ALT 4 mode the control signats are initialized es follows:

CONTROL	INPUT	OUTPUT
STB (Input Strobe)	Input Control	Input Control
INTR (Interrupt Request)	Low	High
BF (Buffer Full)	Low	Low

COMMAND STATUS READ

$T I$	INTE B	B $B F$	INTR B	INTE A	A $B F$	INTR A

Where the function of each bit is as follows:

TI	Defines a Timer Interrupt. Latched high at TC and reset after reading the CS register or starting a new count, or reset.
INTE B/A	Defines If Port B/A Interrupt is Enabled. High = enabled.
B/A BF	Defines If Port B/A Buffer is Full-Input Mode or Empty-Output Mode. High = active.
INTR B/A	Port B/A Interrupt Request. High = active.

The programming address summary for the status, ports, and timer are as follows:

1/0 Address	Number of Bits	Function
XXXXX000	8	Command Status
XXXXX001	8	PA
XXXXX010	8	PB
XXXXX011	6	PC
XXXXX100	8	Timer-Low
XXXXX101	8	Timer-High

TIMER The Internal Timer is a 14 -bit binary down counter capable of operating in 4 modes. Its desired mode of operation is programmable at any time during operation. Any TTL clock meeting timer in requirements (See AC Characteristics) may be used as a time base and fed to the timer input. The timer output may be looped around and cause an interrupt or used as I/O control. The operational modes are defined as follows and programmed along with the 6 high bits of timer data.

M2	M1	Operation
0	0	High at Start, Low During Second Half of Count
0	1	Square Wave (Period = Count Length, Auto Reload at TC)
1	0	Single Pulse at TC
1	1	Single Pulse at TC with Auto Reload

Programming the timer requires two words to be written to the μ PD8155/8156 at I/O address $\mathrm{XXXXX100}$ and $\mathrm{XXXXX101}$ for the low and high order bytes respectively. Valid count length must be between 2 H and 3 FFFH. The bit assignments for the high and low programming words are as follows:

Word	Bit Pattorn								I/O Address
High Byte	M2	M1	T13	T12	T11	T10	T9	T8	XXXXX101
Low Byte	T7	T6	T5	T4	T3	T2	T1	T0	XXXXX100

The control of the timer is performed by TM2 and TM1 of the Command Status Word.
Note that counting will be stopped by a hardware reset and a START command must be issued via the Command Status Register to begin counting. A new mode and/or count length can be loaded while counter is counting, but will not be used until a START command is issued.

When using the timer of the 8155/8156 care must be taken if the timer input is an external, nonsynchronous event. To sync this signal to the system clock the flip-flop shown should be used.

Plastic

ITEM	MILLIMETERS	INCHES
A	51.5 MAX	2.028 MAX
B	1.62	0.064
C	2.54 ± 0.1	0.10 ± 0.004
D	0.5 ± 0.1	0.019 ± 0.004
E	48.26	1.9
F	1.2 MIN	0.047 MIN
G	2.54 MIN	0.10 MIN
H	0.5 MIN	0.019 MIN
I	5.22 MAX	0.206 MAX
J	5.72 MAX	0.225 MAX
K	15.24	0.600
L	13.2	0.520
M	$0.25-0.05$	$0.010+0.004$

EIGHT-BIT INPUT/OUTPUT PORT

DESCRIPTION

The μ PB8212 input/output port consists of an 8 -bit latch with three-state output buffers along with control and device selection logic. Also included is a service request flip-flop for the control and generation of interrupts to the microprocessor.

The device is multimode in nature and can be used to implement latches, gated buffers or multiplexers. Thus, all of the principal peripheral and input/output functions of a microcomputer system can be implemented with this device.

FEATURES - Fully Parallel 8-Bit Data Register and Buffer

- Service Request Flip-Flop for Interrupt Generation
- Low Input Load Current -0.25 mA Max
- Three State Outputs
- Outputs Sink 15 mA
- 3.65V Output High Voltage for Direct Interface to 8080A Processor
- Asynchronous Register Clear
- Replaces Buffers, Latches and Multiplexers in Microcomputer Systems
- Reduces System Package Count
- Available in 24-pin Plastic and Cerdip Packages

PIN CONFIGURATION

$\overline{\mathrm{CLR}}$	$\left(\overline{\mathrm{DS}}_{1} \cdot \mathrm{DS}_{2}\right)$	$\mathbf{S T B}$	$\mathbf{S R}(2)$	$\overline{\mathrm{NTT}}$
0	0	0	1	1
0	1	0	1	0
1	0	0	(3)	(3)
1		0	1	1
1	0		0	0
1	1	0	1	0
1	1		0	0

STB	MD	$\left(\overline{D S}_{1} \cdot\right.$ DS $\left._{2}\right)$	DATA OUT EQUALS
0	0	0	Three-State
1	0	0	Three State
0	1	0	Data Latch
1	1	0	Data Latch
0	0	1	Data Latch
1	0	1	Data In
0	1	1	Data In
1	1	1	Data In

Notes: (1) $\overline{C L R}$ resets data latch sets SR flip-flop. (No effect on output buffer) (2) Internal SR flip-flop
(3) Previous data remains

Operating Temperature
Storage Temperature
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ All Output or Supply Voltages . -0.5 to +7 Volts All Input Voltages . -1.0 to +5.5 Volts Output Currents 125 mA
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
*COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
$\mathrm{T}_{\mathrm{g}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{VCC}=+5 \mathrm{~V} \pm 6 \%$

PARAMETER	SYMBOL	LIMITS		UNIT	TEST CONDITIONS
		MIN	MAX		
Input Load Current STB, DS2, $\overline{C L F}, \mathrm{DI}_{1}$ - DI_{8} inputs	HL.		-0.25	mA	$V_{F}=0.45 \mathrm{~V}$
Input Load Current MD Input	11 L 2		-0.75	mA	$V_{F}=0.45 \mathrm{~V}$
Input Load Current DS ${ }_{1}$ Input	IIL3		-1.0	mA	$V_{F}=0.45 \mathrm{~V}$
Input Leakage Current STB DS, CLTR, DI 1 - Dl ${ }_{8}$ Inputs	HH_{1}		10	$\mu \mathrm{A}$	$V_{R}=6.25 \mathrm{~V}$
Input Leakage Current MD Input	11 H 2	,	30	$\mu \mathrm{A}$	$V_{R}=5.25 \mathrm{~V}$
Input Leakage Current $^{5} S_{1}$ Input	11 H 3		40	$\mu \mathrm{A}$	$V_{R}=5.25 \mathrm{~V}$
Input Forward Voltage Clamp	V_{c}		-1.0	V	$I^{\prime}=-5 m A$
Input "Low" Voltage	$V_{1 L}$		0.85	V	
Input "High" Voltage	$\mathrm{V}_{\text {IH }}$	2.0		V	
Output "Low" Voltage	V_{OL}		0.48	v	$1 \mathrm{OL}=15 \mathrm{~mA}$
Output "High" Voltage	VOH	3.65		V	$1 \mathrm{OH}=-1 \mathrm{~mA}$
Short Circuit Output Current	105	-15	-75	mA	$V_{O}=0 \mathrm{~V} V_{C C}=5 \mathrm{~V}$
Output Leakage Current High Impedance State $\mathrm{DO}_{0}-\mathrm{DO}_{8}$	10.		20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=0.45 \mathrm{~V} / 5.25 \mathrm{~V}$
Power Supply Current	ICC		130	mA	

CAPACITANCE (1) $\quad \mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} ; \mathrm{V} C \mathrm{C}=+5 \mathrm{~V} ; \mathrm{V}_{\mathrm{BI}} \mathrm{AS}=2.5 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$

PARAMETER	SYMBOL	LIMITS		UNIT	TEST CONDITIONS
		MIN	MAX		
Input Capacitance	$\mathrm{CIN}^{\text {N}}$		12	pF	$\overline{\mathrm{DS}}_{1}$, MD
Input Capacitance	CIN		9	pF	$\mathrm{DS}_{2}, \overline{\mathrm{CLK}}, \mathrm{STB}, \mathrm{DI}_{1}-\mathrm{DI} 8$
Output Capacitance	COUT		12	pF	$\mathrm{DO}_{1}-\mathrm{DO}_{8}$

Note: (1) This parameter is periodically sampled and not 100% tested

AC CHARACTERISTICS $\quad T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$

PARAMETER	SYMBOL	LIMITS		UNIT	TEST CONDITIONS
		MIN	MAX		
Pulse Width	tpw	30		ns	Input Pulse Amplitude $=2.5 \mathrm{~V}$ Input Rise and Fall Times $=5$ ns Between 1V and 2V Measurement made at 1.5 V with 15 mA and 30 pF Test Load
Data To Output Delay	${ }^{\text {tpd }}$		30	ns	
Write Enable To Output Delay	$t_{\text {we }}$		40	ns	
Data Setup Time	$\mathrm{t}_{\text {set }}$	15		ns	
Data Hold Time	th	20		ns	
Reset to Output Delay	t_{r}		40	ns	
Set To Output Delay	ts		30	ns	
Output Enable/Disable Time	t_{e} / t_{d}		45	ns	
Clear To Output Delay	t_{c}		55	ns	

Notes: (1) $R_{1}=300 \Omega / 10 \mathrm{~K} \Omega ; \mathrm{R}_{2}=600 \Omega / 1 \mathrm{~K} \Omega$

μ PB8212

Data Latch
The 8 flip-flops that compose the data latch are of a " D " type design. The output (Q) of the flip-flop follows the data input (D) while the clock input (C) is high. Latching occurs when the clock (C) returns low.
The data latch is cleared by an asynchronous reset input (CLR).
(Note: Clock (C) Overrides Reset (CLR).)

Output Buffer

The outputs of the data latch (Q) are connected to three-state, non-inverting output buffers. These buffers have a common control line (EN); enabling the buffer to transmit the data from the outputs of the data latch (Q) or disabling the buffer, forcing the output into a high impedance state (three-state).
This high-impedance state allows the designer to connect the μ PB8212 directly to the microprocessor bi-directional data bus.

Control Logic

The μ PB8212 has four control inputs: $\overline{\mathrm{DS}}_{1}, \mathrm{DS}_{2}, \mathrm{MD}$ and STB. These inputs are employed to control device selection, data latching, output buffer state and the service request flip-flop.

$\overline{\mathrm{DS}}_{1}, \mathrm{DS}_{2}$ (Device Select)

These two inputs are employed for device selection. When $\overline{D S_{1}}$ is low and $D S_{2}$ is high $\left(\overline{\mathrm{DS}}_{1} \cdot \mathrm{DS} \mathrm{S}_{2}\right)$ the device is selected. In the selected state the output buffer is enabled and the service request flip-flop (SR) is asynchronously set.

Service Request Flip-Flop (SR)

The (SR) flip-flop is employed to generate and control interrupts in microcomputer systems. It is asynchronously set by the $\overline{\mathrm{CLR}}$ input (active low). When the (SR) flipflop is set it is in the non-interrupting state.
The output (Q) of the (SR) flip-flop is connected to an inverting input of a "NOR" gate. The other input of the "NOR" gate is non-inverting and is connected to the device selection logic ($\mathrm{DS}_{1} \cdot \mathrm{DS} 2$). The output of the "NOR" gate (INT) is active low (interrupting state) for connection to active low input priority generating circuits.

MD (Mode)

This input is employed to control the state of the output buffer and to determine the source of the clock input (C) to the data latch.
When MD is in the output mode (high) the output buffers are enabled and the source of clock (C) to the data latch is from the device selection logic ($\overline{D S}_{1} \cdot \mathrm{DS}_{2}$).
When MD is in the input mode (low) the output buffer state is determined by the device selection logic ($\overline{\mathrm{DS}}_{1} \cdot \mathrm{DS}_{2}$) and the source of clock (C) to the data latch is the STB (Strobe) input.

STB (Strobe)

STB is employed as the clock (C) to the data latch for the input mode ($M D=0$) and to synchronously reset the service request flip-fiop (SR).
Note that the SR flip-flop triggers on the negative edge of STB which overrides CLR.

Note: (1) Including Jig and Probe Capacitance TEST CIRCUIT

PACKAGE OUTLINE μ PB8212C

(PLASTIC)

ITEM	Millimeters	INCHES
A	33 MAX	1.3 MAX
B	2.53	0.1
c	2.54	0.1
0	0.5 ± 0.1	0.02 ± 0.004
E	27.94	1.1
F	1.5	0.059
G	2.54 MIN	0.1 MIN
H	0.5 MIN	0.02 MIN
1	5.22 MAX	0.205 MAX
1	5.72 MAX	0.225 MAX
K	15.24	0.6
1.	13.2	0.52
M	$0.25{ }_{-0.05}^{+0.10}$	$0.01+0.004$

μ PB8212D'

(CERDIP)

ITEM	MILLIMETERS	INCHES
A	33.5 MAX	1.32 MAX
B	2.78	0.11
C	2.54	0.1
D	0.48	0.018
E	27.94	1.1
F	1.5	0.059
G	2.54 M1N	0.1 MIN
H	0.5 MIN	0.019 MiN
I	4.58 MAX	0.181 MAX
J	5.08 MAX	0.2 MAX
K	15.24	0.6
L	13.5	0.53
M	$0.25_{-0.05}^{+0.10}$	$0.01_{-0.002}^{+0.004}$

PRIORITY INTERRUPT CONTROLLER

DESCRIPTION The μ PB8214 is an eight－level priority interrupt controller．Designed to simplify interrupt driven microcomputer systems，the μ PB8214 requires a single +5 V power supply and is packaged in a 24 pin plastic Dual－in－line package．

The μ PB8214 accepts up to eight interrupts，determines which has the highest priority and then compares that priority with a software created current status register．If the incoming requires is of a higher priority than the interrupt currently being serviced，an interrupt request to the processor is generated．Vector information that identifies the interrupting device is also generated．

The interrupt structure of the microcomputer system can be expanded beyond eight interrupt levels by cascading μ PB8214s．The μ PB8214＇s interrupt and vector informa－ tion outputs are open collector and control signals are provided to simplify expansion of the interrupt structure．

FEATURES－Eight Priority Levels

－Current Status Register and Priority Comparator
－Easily Expanded Interrupt Structure
－Single +5 Volt Supply

$\overline{B_{0}} \square_{1}$		24	v_{cc}
$\overline{B_{1}} \square^{2}$		23	日 ECS
$\overline{B_{2}} \square_{3}$		22	$\square \overline{\mathrm{F}}_{7}$
$\overline{\text { SGS }} \mathrm{C}_{4}$		21	$\square \vec{R}_{6}$
INTS 5		20	口下
$\overline{C L K} \square^{6}$	$\mu \mathrm{PB}$	19	$\square \overline{R_{4}}$
INTE［ 7	8214	18	$\square \overline{\mathrm{R}}_{3}$
$\overline{A_{0}} \square^{8}$		17	口 $\overline{R_{2}}$
$\overline{A_{1}} \square^{9}$		16	$\square \overline{R_{1}}$
$\overline{A_{2}} \square_{10}$		15	$\square \bar{R}_{0}$
ELR 11		14	EnLG
GND \square^{12}		13	EtLg

PIN NAMES

Inputs：	
$\overline{\bar{R}_{0}}-\bar{R}_{7}$	Request Levels（ $\overline{\overline{7}_{7}}$ Highest Priority）
$\overline{B_{0}}-\bar{B}_{2}$	Current Status
SGS	Status Group Select
$\overline{\text { ECS }}$	Enable Current Status
INTE	Interrupt Enable
$\overline{\text { CLE }}$	Clock（INT F－F）
ELF	Enable Level Read
ETLG	Enable This Level Group
Outputs：	
$\overline{A_{0}}-\overline{\bar{A}_{2}}$	Request Levels Open
INT	Interrupt（Act．Low）Collector
ENLG	Enable Next Level Group

[^15]ABSOLUTE MAXIMUM

DC CHARACTERISTICS ' $\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$

PARAMETER	SYMBOL	LIMITS		UNIT	TEST CONDITIONS
		MIN	MAX		
Input Clamp Voltage (all inputs)	V_{C}		-1.0	\checkmark	$I^{\prime}=-5 \mathrm{~mA}$
Input Forward Current: ETLG input all other inputs	IF		-0.5	mA	$V_{F}=0.45 \mathrm{~V}$
	IF		-0.25	mA	
Input Reverse Current: ETLG input all other inputs	${ }_{1}{ }_{R}$		80	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=5.25 \mathrm{~V}$
	${ }_{1}$		40	$\mu \mathrm{A}$	
Input LOW Voltage: all inputs	$V_{1 L}$		0.8	V	$V_{C C}=5.0 \mathrm{~V}$
Input HIGH Voltage: all inputs	$\mathrm{V}_{\text {IH }}$	2.0		V	$\mathrm{VCC}=5.0 \mathrm{~V}$
Power Supply Current	${ }^{1} \mathrm{CC}$		130	mA	(1)
Output LOW Voltage: all outputs	$\mathrm{VOL}^{\text {O }}$. 45	V	$1 \mathrm{OL}^{=10 \mathrm{~mA}}$
Output HIGH Voltage: ENLG output	V OH	2.4		V	$1 \mathrm{OH}^{=-1 m A}$
Short Circuit Output Current: ENLG output	105	20	-55	mA	$\mathrm{V}_{O S}=0 \mathrm{~V}, \mathrm{~V}_{C C}=5.0 \mathrm{~V}$
Output Leakage Current: $\sqrt{\mathrm{NT}^{\top} \text { and }{\overline{A_{0}}}^{-1} \overline{A_{2}} \text { 2 }}$	ICEX		100	$\mu \mathrm{A}$	$V_{\text {CEX }}=5.25 \mathrm{~V}$

CAPACITANCE (2) $T_{a}=25^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	LIMITS		UNIT	TEST CONDITIONS
		MIN	MAX		
Input Capacitance	CiN		10	pF	$\mathrm{V}_{\mathrm{BIAS}}=2.5 \mathrm{~V}$
Output Capacitance	COUT		12	pF	$\begin{aligned} & V_{C C}=5 V \\ & f=1 \mathrm{mHz} \end{aligned}$

AC CHARACTERISTICS $\quad T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$

PARAMETER	SYMBOL	LIMITS		UNIT	TEST CONDITIONS
		MIN	MAX		
$\overline{\text { CLK }}$ Cycle Time	ter	80		ns	Input pulse amplitude: 2.5 Volts
$\overline{\text { CLK }}$, ECS, $\overline{\text { INT Pulse Width }}$	tPW	25		ns	
INTE Setup Time to $\overline{\text { CLK }}$	t/SS	16		ns	
INTE Hold Time after CLK	tISH	20		ns	
ETLG Setup Time to C-LK	${ }_{\text {teTCS }}{ }^{(3)}$	25		ns	Input rise and fall times: 5 ns between 1 and 2 Volts
ETLG Hold Time After CLK	tETCH ${ }^{(3)}$	20	.	ns	
ECS Setup Time to CLK	teccs ${ }^{(3)}$	80		ns	
ECS Hold Time After CLK	$\mathrm{EECCH}^{(4)}$	0		ns	
ECS Setup Time to CLK	tECRS ${ }^{(4)}$	110		ns	
ECS Hold Time After CLK	tECRH ${ }^{(4)}$	0			Output loading of 15 mA and 30 pF .
$\overline{\text { ECS }}$ Setup Time to CLK	tecss (3)	75		ns	
ECS Hold Time After CLK	tECSH (3)	0		ns	
$\overline{\text { SGS }}$ and $\overline{\bar{B}_{0}}-\overline{\bar{B}_{2}}$ Setup Time to CLK	tDCS (3)	70		ns	
$\overline{\text { SGS }}$ and $\overline{\mathrm{B}_{0}}-\overline{\mathrm{B}_{2}}$ Hold Time After $\overline{\text { CLK }}$	${ }^{\text {tDCH }}$ (3)	0		ns	Speed measurements taken at the 1.5 Volts levels.
$\overline{\mathrm{R}_{0}}-\overline{\overline{R_{7}}}$ Setup Time to $\overline{\mathrm{CLK}}$	thCS (4)	90		ns	
$\overline{\bar{R}_{0}}-\overline{\mathrm{Ry}}$ Hold Time After $\overline{\mathrm{CLK}}$	${ }^{\text {tRCH }}{ }^{4}$	0		ns	
$\overline{\text { INT }}$ Setup Time to $\overline{C L K}$	tics	55		ns	
$\overline{\mathrm{CLK}}$ to INT Propagation Delay	${ }_{\text {t }}$		25	ns	
$\overline{\bar{R}_{0}}-\overline{\bar{R}_{7}}$ Setup Time to $\overline{\mathrm{RNT}}$	this (5)	10		ns	
$\overline{\bar{R}_{0}}-\overline{\mathrm{R}_{7}}$ Hold Time After INT	TRIH (5)	35		ns	
$\overline{\bar{R}_{0}}-\overline{R_{7}}$ to $\overline{A_{0}}-\overline{\bar{A}_{2}}$ Propagation Delay	tra		100	ns	
$\overline{\text { ELR }}$ to $\overline{\bar{A}_{0}}-\overline{\bar{A}_{2}}$ Propagation Delay	tELA		55	ns	
$\overline{\text { ECS }}$ to $\overline{\mathrm{A}_{0}}-\overline{\mathrm{A}_{2}}$ Propagation Delay	tECA		120	ns	
ETLG to $\overline{A_{0}}-\overline{A_{2}}$ Propagation Delay	tETA		70	ns	
$\overline{\text { SGS }}$ and $\bar{B}_{0}-\overline{B_{2}}$ Setup Time to ECS	toEcs(5)	15		ns	
$\overline{\text { SGS }}$ and $\overline{B_{0}}-\overline{B_{2}}$ Hold Time After ECCS	TDECH(5)	15		ns	
$\overline{\bar{R}_{0}}-\overline{\bar{R}_{7}}$ to ENLG Propagation Delay	tREN		70	ns	
ELTG to ENLG Propagation Delay	tETEN		25	ns	
ECS to ENLG Propagation Delay	tECRN		90	ns	
$\overline{\mathrm{ECS}}$ to ENLG Propagation Delay	tecsn		55	ns	

Notes: (1) $\overline{\mathrm{B}_{0}}-\overline{\mathrm{B}_{2}}, \overline{\mathrm{SGS}}, \overline{\mathrm{CLK}}, \overline{\mathrm{R}_{0}}-\overline{\mathrm{R}_{4}}$ grounded, all other inputs and all outputs open.
(2) This parameter is not 100% tested.
(3) Required for proper operation if INTE is enabled during next clock pulse.
(4) These times are not required for proper operation but for desired change in interrupt flip-flop.
(5) Required for new request or status to be properly loaded.

μ PB8214

General

The μ PB8214 is an LSI device designed to simplify the circuitry required to

Interrupt Control Circuitry

The μ PB8214 contains two flip-flops and several gates which determine whether an accepted interrupt request to the $\mu \mathrm{PB} 8214$ will generate a system interrupt to the 8080A. A condition gate drives the D input of the interrupt flip-flop whenever an interrupt request has been completely accepted. This requires that: the ETLG (Enable This Level Group) and INTE (Interrupt Enable) inputs to the μ PB8214 are high; the $\overline{E L R}$ input is low; the incoming request must be of a higher priority than the contents of the current status register; and the μ PB8214 must have been enabled to accept interrupt.requests by the clearing of the interrupt disable flip-flop.

Once the condition gate drives the D input of the interrupt flip-flop high, a system interrupt (INT) to the 8080A is generated on the next rising edge of the CLK input to the μ PB8214. This $\overline{\mathrm{CLK}}$ input is typically connected to the $\phi 2$ (TTL) output of an 8224 so that 8080A set-up time specifications are met. When INT is generated, it sets the interrupt disable flip-flop so that no additional system interrupts will be generated until it is reset. It is reset by driving $\overline{\operatorname{ECS}}$ (Enable Current Status) low, thereby writing into the current status register.
It should be noted that the open collector INT output from the μ PB8214 is active for only one clock period and thus must be externally latched for inputting to the 8080A. Also, because the $\overline{\text { INT }}$ output is open collector, when μ PB8214's are cascaded, an INT output from any one will set all of the interrupt disable flipflops in the array. Each μ PB8214's interrupt disable flip-flop must then be cleared individually in order to generate subsequent system interrupts.

FUNCTIONAL DESCRIPTION (CONT.)

PRIORITY REQUEST		RST	D_{7}	${ }_{6}$	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}	
		1	1	${ }_{\text {A }}$	A_{1}	A_{0}	1	1	1		
LOWEST	\square_{0}		7	1	1	1	1	1	1	1	1
	F_{1}	6	1	1	1	1	0	1	1	1	
	F_{2}	5	1	1	1	0	1	1	1	1	
	F_{3}	4	1	1	\bigcirc	0	0	1	1	1	
	R_{4}	3	1.	1	0	1	1	1	1	1	
	R_{5}	2	1	1	0	1	0	1	1	1	
	R_{6}	1	1	1	0	0	1	1	1	1	
HIGHEST	$\overline{\mathrm{F}} 7$	$0{ }^{+}$	1.	1	0	0	0	1	1	1	

-CAUTION: RST 0 will vector the program counter to location 0 (zero) and invoke the same routine is the "RESET" input to 8080A.

Current Status Register

The current status register is designed to prevent an incoming interrupt request from overriding the servicing of an interrupt with higher priority. Via software, the priority level of the interrupt being serviced by the microprocessor is written into the current status register on $\overline{\mathrm{B}_{0}}-\overline{\mathrm{B}_{2}}$. The bit pattern written should be the complement of the interrupt level.
The interrupt level currently being serviced is written into the current status register by driving ECS (Enable Current Status) low. The μ PB8214 will only accept interrupts with a higher priority than the value contained by the current status register. Note that the programmer is free to use the current status register for other than as above. Other levels may be written into it. The comparison may be completely disabled by driving $\overline{S G S}$ (Status Group Select) low when ECS is driven low. This will cause the μ PB8214 to accept incoming interrupts only on the basis of their priority to each other.

Priority Comparator

The priority comparator circuitry compares the level of the interrupt accepted by the priority encoder and request latch with the contents of the current status register. If the incoming request has a priority level higher than that of the current status register, the $\overline{\mathrm{NT}}$ output is enabled. Note that this comparison can be disabled by loading the current status register with $\overline{\mathrm{SGS}}=0$.

Expansion Control Signals

A microcomputer design may often require more than eight different interrupts. The μ PB8214 is designed so that interrupt system expansion is easily performed via the use of three signals: ETLG (Enable This Level Group); ENLG (Enable Next Level Group); and ELR (Enable Level Read). A high input to ETLG indicates that the μ PB8214 may accept an interrupt. In a typical system, the ENLG output from one μ PB8214 is connected to the ETLG input of another μ PB8214, etc. The ETLG of the μ PB8214 with the highest priority is tied high. This configuration sets up priority among the cascaded μ PB8214's. The ENLG output will be high for any device that does not have an interrupt pending, thereby allowing a device with lower priority to accept interrupts. The ELR input is basically a chip enable and allows hardware or software to selectively disable/enable individual μ PB8214's. A low on the EL'R input enables the device.

TYPICAL μ PB8214 CIRCUITRY
TIMING WAVEFORMS

PACKAGE OUTLINE μ PB8214C

PLASTIC

ITEM	millimeters	INCHES
A	33 MAX	1.28
B	2.53	0.1
C	2.54	0.1
D	0.5 ± 0.1	0.02 ± 0.004
E	27.94	1.1
F	1.5	0.059
G	3.2 MIN	0.125 MiN
H	0.5 MIN	0.02 MiN
1	5.22 MAX	0.205 MAX
J	5.72 MAX	0.225 MAX
K	15.24	0.6
L	13.2	0.52
M	0.25 ± 0.1	0.01 ± 0.004

9

NOTES

4-BIT PARALLEL BIDIRECTIONAL BUS DRIVER

DESCRIPTION All inputs are low power TTL compatible. For driving MOS, the DO outputs provide a high $3.65 \mathrm{~V}(\mathrm{VOH})$, and for high capacitance terminated bus structures, the DB outputs provide a high 55 mA (IOL) capability.

FEATURES - Data Bus Buffer Driver for μ COM- 8 Microprocessor Family

- Low Input Load Current - 0.25 mA Maximum
- High Output Drive Capability for Driving System Data Bus
- 3.65V Output High Voltage for Direct Interface to μ COM-8 Microprocessor Family
- Three State Outputs
- Reduces System Package Count
- Available in 16 -pin packages: Cerdip and Plastic

PIN CONFIGURATION

Rev/3

Microprocessors like the μ PD8080A are MOS devices and are generally capable of driving a single TTL load. This also applies to MOS memory devices. This type of drive is sufficient for small systems with a few components, but often it is necessary to buffer the microprocessor and memories when adding components or expanding to a multi-board system.
The μ PD8216/8226 is a four bit bi-directional bus driver specifically designed to buffer microcomputer system components.

Bi-Directional Driver

Each buffered line of the four bit driver consists of two separate buffers. They are three state in nature to achieve direct bus interface and bi-directional capability. On one side of the driver the output of one buffer and the input of another are tied together (DB), this is used to interface to the system side components such as memories, I/O, etc. Its interface is directly TTL compatible and it has high drive (55 mA). For maximum flexibility on the other side of the driver the inputs and outputs are separate. They can be tied together so that the driver can be used to buffer a true bi-directional bus such as the 8080A Data Bus. The DO outputs on this side of the driver have a special high voltage output drive capability (3.65 V) so that direct interface to the 8080A processor is achieved with an adequate amount of noise immunity (650 mV worst case).

Control Gating $\overline{C S}$, $\overline{\text { DIEN }}$

The $\overline{\mathrm{CS}}$ input is used for device selection. When $\overline{\mathrm{CS}}$ is "high" the output drivers are all forced to their high-impedance state. When it is "low" the device is selected (enabled) and the data flow direction is determined by the DIEN input.
The $\overline{\text { DIEN }}$ input controls the data flow direction (see Block Diagrams for complete truth table). This directional control is accomplished by forcing one of the pair of buffers to its high impedance state. This allows the other to transmit its data. This is accomplished by a simple two gate circuit.
The μ PB8216/8226 is a device that will reduce component count in microcomputer systems and at the same time enhance noise immunity to assure reliable, high performance operation.

FUNCTIONAL DESCRIPTION

DIEN	CS	RESULT
0	0	$\mathrm{DI} \rightarrow \mathrm{DB}$
1	0	$\mathrm{DB} \rightarrow \mathrm{DO}$
0	1	
1	1	

ABSOLUTE MAXIMUM RATINGS*

Operating Temperature
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
All Output and Supply Voltages . -0.5 to +7 Volts
All Input Voltages . 1.0 to +5.5 Volts
Output Currents . 125 mA

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
*COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC CHARACTERISTICS
$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, V_{C C}=+5 \mathrm{~V}+5 \%$

PARAMETER		SYMBOL	LIMITS			UNIT	TEST.CONDITIONS	
		MIN	TYP (1)	MAX				
Input Load Current DTEN, CS			IF1			-0.5	mA	$V_{F}=0.45$
Input Load Current All Other Inputs		IF2			-0.25°	mA	$V_{F}=0.45$	
Input Leakage Current DIEN, $\overline{\mathrm{CS}}$		IR1			20	$\mu \mathrm{A}$	$V_{R}=5.25 V$	
Input Leakage Current DI Inputs		$\mathrm{I}_{\text {R2 }}$			10	$\mu \mathrm{A}$	$V_{R}=5.25 V$	
Input Forward Voltage Clamp		V_{C}			-1.0	V	${ }^{\prime} \mathrm{C}=-5 \mathrm{~mA}$	
Input "Low" Voltage		$V_{1 L}$			0.95	V		
Input "High" Voltage		$\mathrm{V}_{1} \mathrm{H}$	2.0			V		
Output Leakage Current (3-State)	00	10			20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=0.45 / 5.25 \mathrm{~V}$	
	DB	10			100			
Power Supply Current	8216	${ }^{\text {I CC }}$			130	mA		
	8226	${ }^{\text {I CC }}$			120	mA		
Output "Low" Voltage		VOLI			0.48	\checkmark	$\begin{aligned} & \text { DO Outputs } 1 \mathrm{OL}=15 \mathrm{~mA} \\ & \text { DB Outputs } 1 \mathrm{OL}=25 \mathrm{~mA} \end{aligned}$	
Output "Low" Voltage	8216	$\mathrm{VOL}^{\text {O }}$			0.7	V	DB Outputs $1 \mathrm{OL}=55 \mathrm{~mA}$	
	8226	$\mathrm{VOL}^{\text {O }}$			0.7	V	DB Outputs $1 \mathrm{OH}=50 \mathrm{~mA}$	
Output "High" Voltage		VOH1	3.65			V	DO Outputs $1 \mathrm{OH}=-1 \mathrm{~mA}$	
Output "High" Voltage		VOH2	2.4			V	DB Outputs $1 \mathrm{OH}=-10 \mathrm{~mA}$	
Output Short Cirquit Current		Ios	-15		-65	mA	DO Outputs $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	
		${ }^{1} \mathrm{OS}$	-30		-120	mA	DB Outputs $\mathrm{VCC}^{=}=5.0 \mathrm{~V}$	

Note: (1) Typical values are for $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, V_{\mathrm{CC}}=5.0 \mathrm{~V}$.

CAPACITANCE (1)

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	CIN			8	pF	$\begin{aligned} & V_{B I A S}=2.5 \mathrm{~V} \\ & V_{C C}=5 \mathrm{~V} \\ & T_{a}=25^{\circ} \mathrm{C} \\ & f=1 \mathrm{MHZ} \end{aligned}$
Output Capacitance	COUT1			10 (2)	pF	
Output Capacitance	COUT2			18 (3)	pF	

Notes: (1) This parameter is not 100% tested.
(2) DO Output.
(3) DB Output.
$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$

PARAMETER		SYMBOL	LIMITS			UNIT	TEST CONDITIONS	
		MIN	TYP (1)	MAX				
Input to Output Delay DO Outputs			tPD1			25	ns	$\begin{aligned} & C_{L}=30 \mathrm{pF}, \mathrm{R}_{1}=300 \Omega, \\ & R_{2}=600 \Omega \text { (4) } \end{aligned}$
Input to Output Delay DB Outputs	8216	tPD2			30	ns	$\begin{aligned} & C_{L}=300 \mathrm{pF}, \mathrm{R}_{1}=90 \Omega 2, \\ & R_{2}=180 \Omega 24 \end{aligned}$	
	8226	tPD2			25	ns		
Output Enable Time	8216	tE			65	ns	(2) (4)	
	8226	tE			54	ns		
Output Disable Time		tD			35.	ns	(3) (4)	

Notes:
(1) Typical values are for $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
(2) DO Outputs, $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{1}=300 / 10 \mathrm{~K} \Omega, \mathrm{R}_{2}=600 / 1 \mathrm{~K} \Omega$, DB Outputs, $C_{L}=300 \mathrm{pF}, \mathrm{R}_{1}=90 / 10 \mathrm{~K} \Omega, \mathrm{R}_{2}=180 / 1 \mathrm{~K} \Omega$.
(3) Do Outputs, $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{R}_{1}=300 / 10 \mathrm{~K} \Omega, \mathrm{R}_{2}=600 / 1 \mathrm{~K} \Omega$, DB Outputs, $C_{L}=5 \mathrm{pF}, \mathrm{R}_{1}=90 / 10 \mathrm{~K} \Omega, \mathrm{R}_{2}=180 / 1 \mathrm{~K} \Omega$.
(4). Input pulse amplitude: 2.5 V

Input rise and fall times of 5 ns between 1 and 2 volts.
Output loading is 5 mA and 10 pF .
Speed measurements are made at 1.5 volt levels.

TEST CIRCUIT

Plastic

TIMING WAVEFORMS

PACKAGE OUTLINE μ PB8216C/D μ PB8226C/D

CLOCK GENERATOR AND DRIVER FOR 8080A PROCESSORS

DESCRIPTION
The μ PB8224 is a single chip clock generator and driver for 8080A processors. The clock frequency is determined by a user specified crystal and is capable of meeting the timing requirements of the entire 8080A family of processors. MOS and TTL level clock outputs are generated.

Additional logic circuitry of the μ PB8224 provides signals for power-up reset, an advance status strobe and properly synchronizes the ready signal to the processor. This greatly reduces the number of chips needed for 8080A systems.

The μ PB8224 is fabricated using NEC's Schottky bipolar process.
FEATURES - Crystal Controlled Clocks

- Oscillator Output for External Timing
- MOS Level Clocks for 8080A Processor
- TTL Level Clock for DMA Activities
- Power-up Reset for 8080A Processor
- Ready Synchronization
- Advanced Status Strobe
- Reduces System Package Count
- Available in 16-pin Cerdip and Plastic Packages

PIN CONFIGURATION

PIN NAMES

Clock Generator

The clock generator circuitry consists of a crystal controlled oscillator and a divide-by-nine counter. The crystal frequency is a function of the 8080A processor speed and is basically nine times the processor frequency, i.e.:

Crystal frequency $=\frac{9}{{ }^{t} C Y}$
where $t_{C Y}$ is the 8080A processor clock period.
A series resonant fundamental mode crystal is normally used and is connected across input pins XTAL1 and XTAL2. If an overtone mode crystal is used, an additional LC network, AC coupled to ground, must be connected to the TANK input of the $\mu \mathrm{PB} 8224$ as shown in the following figure.

$$
\mathrm{LC}=\left(\frac{1}{2 \pi \mathrm{~F}}\right)^{2}
$$

where F is the desired frequency of oscillation.
The output of the oscillator is input to the divide-by-nine counter: It is also buffered and brought out on the OSC pin, allowing this stable, crystal controlled source to be used for derivation of other system timing signals. The divide-bynine counter generates the two non-overlapping processor clocks, ϕ_{1} and ϕ_{2}. which are buffered and at MOS levels, a TTL level ϕ_{2} and internal timing signals.
The ϕ_{1} and ϕ_{2} high level outputs are generated in a 2-5-2 digital pattern, with ϕ_{1} being high for two oscillator periods, ϕ_{2} being high for five oscillator periods, and then neither being high for two oscillator periods. The TTL level ϕ_{2}, ϕ_{2} (TTL), is normally used for DMA activities by gating the external device onto the 8080A bus once a Hold Acknowledge (HLDA) has been issued.

Additional Logic

In addition to the clock generator circuitry, the μ PB8224 contains additional logic to aid the system designer in the proper timing of several interface signals.
The $\overline{\text { STSTB }}$ signal indicates, at the earliest possible moment, when the status signals output from the 8080A processor are stable on the data bus, $\overline{\text { STSTB }}$ is designed to connect directly to the μ PB8228 System Controller and automatically resets the μ PB8228 during power-on Reset.
The $\overline{\text { RESIN }}$ input to the $\mu \mathrm{PB} 8224$ is used to automatically generate a RESET signal to the 8080A during power initialization. The slow rise of the power supply voltage in an external RC network is sensed by an internal Schmitt Trigger. The output of the Schmitt Trigger is gated to generate an 8080A compatible RESET. An active low manual switch may also be attached to the RC circuit for manual system reset.
The RDYIN input to the μ PB8224 accepts an asynchronous "wait request" and generates a READY output to the 8080A that is fully synchronized to meet the 8080A timing requirements.

ABSOLUTE MAXIMUM RATINGS*

Operating Temperature
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ All Output Voltages (TTL) . -0.5 to +7 Volts All Output Voltages (MOS) . -0.5 to +13.5 Volts All Input Voltages . -1.0 to +7 Volts Supply Voltage VCC . -0.5 to +7 Volts Supply Voltage VDD . -0.5 to +13.5 Volts Output Currents 100 mA
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
*COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanen damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C} 10+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}: 5 \% ; \mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V}: 5 \%$

PARAMETER	SYMBOL	Limits			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Current Loading	IF			0.25	mA	$V_{F}=0.45 \mathrm{~V}$
Input Leakage Current	I_{R}			10	$\mu \mathrm{A}$	$V_{R}=5.25 \mathrm{~V}$
Input Forward Clamp Voltage	V_{C}			-1.0	\checkmark	${ }_{1}{ }^{\text {C }}$ C $=-5 \mathrm{~mA}$
Input "Low" Voltage	$V_{1 L}$			0.8	V	$\mathrm{V}_{C C}=5.0 \mathrm{~V}$
Input "High" Voltage	V_{HH}	$\begin{aligned} & 2.6 \\ & 2.0 \\ & \hline \end{aligned}$			V	Reset Input All Other Inputs
FESIN Input Hysteresis	$\mathrm{V}_{\mathrm{IH}}-\mathrm{V}_{\text {IL }}$.	0.25			V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
Output 'Low' Voltage	V_{OL}	-		$\begin{aligned} & 0.45 \\ & 0.45 \end{aligned}$	v v	(ϕ_{1}, ψ_{2}), Ready, Reset, STSTB $\mathrm{I} \mathrm{OL}=2.5 \mathrm{~mA}$ All Other Inputs $\mathrm{I}_{\mathrm{OL}}=15 \mathrm{~mA}$
Output "High" Voltage ϕ_{1}, ϕ_{2} READY, RESET All Other Outputs	V_{OH}	$\begin{aligned} & 9.4 \\ & 3.6 \\ & 2.4 \\ & \hline \end{aligned}$			$\begin{aligned} & v \\ & v \\ & v \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
Output Short Circuit Current (All Low Voltage Outputs Only)	${ }^{1} \mathrm{sc}{ }^{(1)}$	-10		-60	mA	$\begin{aligned} & v_{\mathrm{O}}=0 \mathrm{~V} \\ & \mathrm{v}_{\mathrm{CC}}=5.0 \mathrm{~V} \end{aligned}$
Power Supply Current,	${ }^{\text {ICC }}$			115	$i n A$	
Power Supply Current	IDD			12	mA	

Note: (1) Caution, ϕ_{1} and ϕ_{2} outpul drivers do not have short circuit protection
$T_{a}=25^{\circ} \mathrm{C} ; f=1 \mathrm{MHz} ; V_{C C}=5 \mathrm{~V} ; V_{D D}=12 \mathrm{~V} ; V_{B I A S}=2.5 \mathrm{~V}$
CAPACITANCE(1)

PARAMETER	SYMBOL	LIMITS		UNIT	TEST CONDITIONS	
		MIN	TVP	MAX		
Input Capacitance	$C_{I N}$			8	$p F$	

Note: (1) This parameter is not 100% tested.
μ PB8224
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 5 \%$

PARAMETER	SYMBOL	LIMITS (1)			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
ϕ_{1} Pulse Width	tol	$\frac{2 \mathrm{t} \mathrm{CY}}{9}-20 \mathrm{~ns}$			ns	$C_{L}=20 \mathrm{pF}$ to 50 pF
ϕ_{2} Pulse Width	$t_{\text {¢ }}$ 2	$\frac{5 t \mathrm{CY}}{9}-35 \mathrm{~ns}$.		
ϕ_{1} to ϕ_{2} Delay	to1	0				
ϕ_{2} to ϕ_{1} Delay	${ }^{1} \mathrm{O} 2$	$\frac{2 \mathrm{t} \mathrm{CY}}{9}-14 \mathrm{~ns}$				
ϕ_{1} to ϕ_{2} Delay	${ }^{1} \mathrm{D} 3$	$\frac{2 t^{4} \mathrm{CY}}{9}$		$\frac{2 t_{C Y}}{9}+20 \mathrm{~ns}$		
ϕ_{1} and ϕ_{2} Rise Time	t_{P}	.		20		
ϕ_{1} and ϕ_{2} Fall Time	${ }^{\text {t }}$ F			20		
ϕ_{2} to ω_{2} (TTL) Delay	${ }^{\text {t }}$ ¢ $\phi 2$	-5		+15	ns	$\begin{aligned} & \phi_{2} \mathrm{TTL}, \mathrm{CL}=30 \mathrm{pF} \\ & \mathrm{R}_{1}=300 \Omega \\ & \mathrm{R}_{2}=600 \Omega \end{aligned}$
ϕ_{2} to STSTB Delay	${ }^{\text {t }}$ DSS	$\frac{6 t^{\text {c }} \mathrm{Cr}}{9}-30 \mathrm{~ns}$		$\frac{{ }^{6 t}{ }_{\text {c }} \mathrm{Y}}{9}$	ns	$\begin{aligned} & \overline{\text { STSTB }, C L}=15 \rho F \\ & \mathrm{R}_{1}=2 K \\ & \mathrm{R}_{2}=4 \mathrm{~K} \end{aligned}$
STSTB Pulse Width	tPW	${ }^{\text {t }} \mathrm{CY} \mathrm{Y}-15 \mathrm{~ns}$			ns	
RDYIN Setup Time to STSTB	${ }^{\text {t }}$ DRS	$50 \mathrm{~ns}-\frac{4{ }^{4} \mathrm{C} Y}{9}$				
RDYIN Hold Time After STSB	tDRH	$\frac{4 t_{C Y}}{9}$				
READY or RESET to ϕ_{2} Delay	${ }^{t} \mathrm{DR}$	$\frac{{ }^{4 t} \mathrm{CY}}{9}-25 \mathrm{~ns}$			ns	Ready and Reset $\begin{aligned} & C L=10 \mathrm{pF} \\ & \mathrm{R}_{1}=2 \mathrm{~K} \\ & \mathrm{R}_{2}=4 \mathrm{~K} \end{aligned}$
Crystal Frequency	${ }^{\text {f CLK }}$		$\frac{9}{\mathrm{Cry}}$		MHz	
Maximum Oscillating Frequency	${ }^{\text {f MAX }}$			27	MHz	

Note: (1) t ${ }^{C} Y$ represents the processor clock period

TEST CIRCUIT

TIMING WAVEFORMS

Voltage Measurement Points: ϕ_{1}, ϕ_{2} Logic " 0 " $=1.0 \mathrm{~V}$, Logic " 1 " $=8.0 \mathrm{~V}$. All other signals measured at 1.5 V .

Tolerance

Load Capacitance
Equivalent Resistance . 75-20 ohms

Power Dissipation (Min) 4 mW

Note: (1) With tank circuit use 3rd overtone mode.

PACKAGE OUTLINE

 μ PB8224C

ITEM	MILLIMETERS	INCHES
A	19.4 MAX	0.76 MAX .
B	0.81	0.03
C	2.54	0.10
D	0.5	0.02
E	17.78	0.70
F	1.3	0.051
G	2.54 MIN	0.10 MIN
H	0.5 MIN .	0.02 MIN
I	4.05 MAX	0.16 MAX
J	4.55 MAX	0.18 MAX
K	7.62	0.30
L	6.4	0.25
M	$\begin{array}{r} 0.25 \quad 0.10 \\ 0.05 \end{array}$	0.01

μ PB8224D

NOTES

8080A SYSTEM CONTROLLER AND BUS DRIVER

DESCRIPTION The μ PB8228 is a single chip controller and bus driver for 8080A based systems. All the required interface signals necessary to connect RAM, ROM and I/O components to a μ PD8080A are generated.

The μ PB8228 provides a bi-directional three-state bus driver for high TTL fan-out and isolation of the processor data bus from the system data bus for increased noise immunity.
The system controller portion of the μ PB8228 consists of a status latch for definition of processor machine cycles and a gating array to decode this information for direct interface to system components. The controller can enable gating of a multi-byte interrupt onto the data bus or can automatically insert a RESTART 7 onto the data bus without any additional components.

FEATURES - System Controller for 8080A Systems

- Bi-Directional Data Bus for Processor Isolation
- 3.60V Output High Voltage for Direct Interface to 8080A Processor
- . Three State Outputs on System Data Bus
- Enables Use of Multi-Byte Interrupt Instructions
- Generates RST 7 Interrupt Instruction
- μ PB8228 for Small Memory Systems
- Reduces System Package Count
- Schottky Bipolar Technology
STSTB -1
HLDA
WR
DBIN

PIN NAMES	
$\mathrm{D}_{7}-\mathrm{D}_{0}$	Data Bus (Processor Sida)
OB7-D80	Data Bus (System Side)
1/OR	I/O Read
1/OW	$1 / 0$ Write
MEMA	Memory Read
MEMW	Memory Write
DBIN	DBIN (From Procestor)
INTA	Interrupt Acknowledge
HLDA	HLDA (From Procesior)
WR	WR (From Processor)
BUSEN	Bus Enable Input
STSTB	Status Strobe (From μ PB8224)
V_{CC}	+6V
GND	0 Voltt

μ PB8228

Bi-Directional Bus Driver

The eight bit, bi-directional bus driver provides buffering between the processor data bus and the system data bus. On the processor side, the μ PB8228 exceeds the minimum input voltage requirements (3.0 V) of the $\mu \mathrm{PD} 8080 \mathrm{~A}$. On the system side, the driver is capable of adequate drive current. (10 mA) for connection of a large number of memory and I/O devices to the bus. Single flow in the bus driver is controlled by the gating array and its outputs can be forced into a high impedance state by use of the BUSEN input.

Status Latch

The Status Latch in the μ PB8228 stores the status information placed on the data bus by the 8080A at the beginning of each machine cycle. The information is latched when STSTB goes low and is then decoded by the gating array for the generation of control signals.

Gating Array

The Gating Array generates "active low" control signals for direct interfacing to system components by gating the contents of the status latch with control signals from the 8080A.
$\overline{M E M / R}, \overline{I / O R}$ and $\overline{\text { INTA }}$ are generated by gating the DBIN signal from the processor with the contents of the status latch. I/OR is used to enable an I/O input onto the system data bus. $\overline{M E M / R}$ is used to enable a memory input.
$\overline{I N T A}$ is normally used to gate an interrupt instruction onto the system data bus. When used with the μ PD8080A processor, the μ PB8228 will decode an interrupt acknowledge status word during all three machine cycles for a multi-byte interrupt instruction. For 8080A type processors that do not generate an interrupt acknowledge status word during the second and third machine cycles of a multi-byte interrupt instruction, the μ PB8228 will internally generate an INTA pulse for those machine cycles.
The μ PB8228 also provides the designer the ability to place a single interrupt instruction onto the bus without adding additional components. By connecting the +12 volt supply to the INTA output (pin 23) of the μ PB8228 through a 1 K ohm series resistor, RESTART 7 will be gated onto the processor data bus when DBIN is active during an interrupt acknowledge machine cycle.
$\overline{M E M / W}$ and $\overline{\mathrm{I} / O W}$ are generated by gating the $\overline{\mathrm{WR}}$ signal from the processor with the contents of the status latch. $\overline{/ / O W}$ indicates that an output port write is about to occur. $\overline{M E M / W}$ indicates that a memory write will occur.
The data bus output buffers and control signal buffers can be asynchronously forced into a high impedance state by placing a high on the $\overline{\text { BUSEN }}$ pin of the μ PB8228.
Normal operation is performed with BUSEN low.

BLOCK DIAGRAM

Operating Temperature . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
All Output or Supply Voltages . - 0.5 to +7 Volts
All Input Voltages . - 1.0 to +7.0 Volts
Output Currents 100 mA
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
*COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC CHARACTERISTICS
$T_{a}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}-5 \mathrm{~V} \pm 5 \%$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Clamp Voltage, All inputs	V_{C}		:	-1.0	\checkmark	$V_{C C} * 4.75 \mathrm{~V}$; $\mathrm{I}_{\mathrm{CC}}=-5 \mathrm{~mA}$
Input Load Current, STSTB	${ }_{\text {IF }}$			500	$\mu \mathrm{A}$	
D_{2} and D_{6}				750	$\mu \mathrm{A}$	$V_{C C}=5.25 V$
$D_{0}, D_{1}, D_{4}, D_{5}$, and D_{7}				250	$\mu \mathrm{A}$	$V_{F}=0.45 \mathrm{~V}$
All Other Inputs				250	$\mu \mathrm{A}$	
Input Leakage Current, STSTB	17			100	$\mu \mathrm{A}$	
DB_{0} through DB_{7}				20	$\mu \mathrm{A}$	
All Other Inputs				100	$\mu \mathrm{A}$	
Input Threshold Voltage, All Inputs	$V_{\text {TH }}$	0.8		2.0	\checkmark	$V_{C C} * 5 V$
Power Supply Current	${ }^{1} \mathrm{CC}$			190	mA	$V_{C C}=5.25 V$
Output Low Voltage, D_{0} through D_{7}	$\mathrm{VOL}_{\text {OL }}$			0.45	V	$V_{C C}=4.75 \mathrm{~V}$; $1 \mathrm{OL}=2 \mathrm{~mA}$
All Other Outputs				0.48	V	$1 \mathrm{OL}=10 \mathrm{~mA}$
Output High Voltage, D_{0} through D_{7}	VOH	3.6			V	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} ; \mathrm{IOH}=-10 \mu \mathrm{~A}$
All Other Outputs		2.4			V	$\mathrm{IOH}=-1 \mathrm{~mA}$
Short Circuit Current, All Outputs	Ios	15		90	mA	$V_{C C}=5 \mathrm{~V}$
Off State Output Current; All Control Outputs	IOfoff)			100	$\mu \mathrm{A}$	$V_{C C}=5.25 \mathrm{~V}: \mathrm{V}_{\mathrm{O}}=5.0 \mathrm{~V}$
				-100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=0.45 \mathrm{~V}$
INTA Current	IINT			5	mA	(See Figure below)

INTA TEST CIRCUIT

CAPACITANCE

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	CIN			12	pF	$V_{B I A S}=2.5 \mathrm{~V}$,
Output Capacitance Control Signals	COUT			15	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
I/O Capacitance (D or DB)	$\mathrm{Cl}_{1 / \mathrm{O}}$			15	pF	$f=1 \mathrm{MHz}$

NOTE: This parameter is not 100% tested.
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$

PAhameter	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TVP	MAX		
Width of Status Strobe	tpw	22			ns	
Satup Time, Status Inputs $\mathrm{D}_{0} \mathrm{D}_{7}$	tss	8			ns	
Hold Time, Status Inputs $\mathrm{D}_{0}-\mathrm{D}_{7}$	${ }^{\text {SH }}$	5			ns	
Delay from STSTB to any Control Signal	${ }^{\text {t }} \mathrm{C}$	20		60	ns	$C_{L}=100 \mathrm{pF}$
Delay from DBIN to Control Outputs	tra			30	ns	$C_{L}=100 \mathrm{pF}$
Delay from DBIN to Enable/ Disable 8080A Bus	tre			45	ns	$C_{L}=25 \mathrm{pF}$
Delay from System Bus to 8080A Bus during Read	tri			30	ns	$C_{L}=25 \mathrm{oF}$
Delay from WR to Control Outputs	twr	5		45	ns	$C_{L}=100 \mathrm{pF}$.
Delay to Enable System Bus $\mathrm{DB}_{0}-\mathrm{DB}_{7}$ after STSTB	twe			30	ns	$C_{L}=100 \mathrm{pF}$
Delay from 8080A Bus $\mathrm{D}_{0}-\mathrm{D}_{7}$ to System Bus $\mathrm{OB}_{0}-\mathrm{DB}_{7}$ during Write	two	5		40	ns	$C_{L}=100 \mathrm{pF}$
Delay from System Bus Enable to System Bus $\mathrm{DB}_{0}-\mathrm{DB}_{7}$	tE			30	ns	$C_{L}=100 \mathrm{pF}$
HLDA to Read Status Outputs	${ }^{\text {tho }}$			25	ns	
Setup Time, Systern Bus Inputs to HLDA	tos	10			ns	
Hold Time, System Bus Inputs to HLDA	${ }^{\text {ton }}$	20			ns	$C_{L}=100 \mathrm{pF}$

VOLTAGE MEASUREMENT POINTS: $\mathrm{O}_{0} \cdot \mathrm{D}_{7}$ Iwhen outpuis) Logic " 0 " $=0.8 \mathrm{~V}$. Logic " 1 " $=3.0 \mathrm{~V}$. All othar signala messured

PACKAGE OUTLINE μ PB8228C
(Plastic)

ITEM	MILLIMETERS	INCHES
A	38.0 MAX	1.496 MAX
B	2.49	0.098
C	2.54	0.10
D	05 ± 0.1	0.02 ± 0.004
E	33.02	1.3
F	1.5	0.059
G	2.54 MIN	0.10 MIN
H	0.5 MIN	0.02 MIN
I	5.22 MAX	0.205 MAX
J	5.72 MAX	0.225 MAX
K	15.24	0.6
L	13.2	0.52
M	$0.25+0.10$	$0.01+0.004$

(Ceramic)

ITEM	MILLIMETERS	INCHES
A	36.2 MAX	1.43
B	1.59 MAX	0.06
C	2.54	0.1
D	0.46 ± 0.05	0.02 ± 0.004
E	33.02	1.3
F	1.02	0.04
G	3.2 MIN	0.13
H	1.0	0.04
I	3.5	0.14
J	4.5	0.18
K	15.24	0.6
L	14.93	0.59
M	0.25 ± 0.05	0.01 ± 0.002

Description

The μ PD8237A-5 High Performance DMA Controller is a peripheral interface circuit for microprocessor systems. It is designed to improve system performance by allowing external devices to directly transfer information to or from the system memory. Memory-to-memory transfer capability is also provided. The μ PD8237A-5 offers a wide variety of programmable control features to enhance data throughput and allow dynamic reconfiguration under program control.
The μ PD8237A-5 is designed to be used with an external 8 -bit address register such as the 8282. It contains four independent channels and may be expanded to any number of channels by cascading additional controller chips.
The three basic transfer modes allow the user to program the types of DMA service. Each channel can be individually programmed to Autoinitialize to its original condition following an End of Process (EOP).
Each channel has a full 64 K byte address and word count capability.

Features

\square Memory-to-memory transfers
\square Memory block initialization
$[\square$ Address increment or decrement
\square Four independent DMA channels
[] Multiple transfer modes: block, demand, single word, cascade
[] Independent Autoinitialization of all channels
[] Enable/Disable control of individual DMA requests
[] Independent polarity control for DREQ and DACK signals
[] End of Process input for terminating transfers
[] Software DMA requests
[] High performance: transfers up to 1.6 M -bytes/ second
[] Directly expandable to any number of channels
[] 40-pin plastic or ceramic DIP

Pin Configuration

Pin Identification

No.	Symbol	Direction	Function
1	$\overline{\text { IOR }}$	In/out	In Idle state, $\overline{\mathrm{I} / O R}$ is an input control line used by the CPU to read control registers. In Active state, the μ PD8237A-5 uses I/OR as an output control signal to access data from a peripheral during a DMA Write.
2	I/OW	IN/OUT	In Idie state, the CPU uses $\overline{\mathrm{I}} \mathrm{OW}$ as an Input control signal to load information to the μ PD8237A-5. In Active state, the μ PD8237A-5 uses I/OW as an output control signal to load data to a peripheral during a DMA Read. The rising edge of $\overline{W R}$ must follow each data byte transfer in order for the CPU to write to the μ PD8237A-5. Holding I/OW low while toggling $\overline{C S}$ does not produce the same effect.
3	$\overline{\text { MEMR }}$	OUT	MEMR accesses data from a specified memory location during memory-to-peripheral or memory-to-memory transfers.
4	MEMW	OUT	MENW writes data to a specified memory location during peripheral-to-memory or memory-tomemory transfers.
5		IN	Pin 5 is always tied high.
6	READY	IN	The READY signal can extend memory read and write pulses for slow memorles or I/O peripherals.
7	HLDA	IN	HLDA indicates that the CPU has relinquished control of the system buses.
8	ADDSTB	OUT	This signal strobes the upper address byte from $\mathrm{D}_{0}-\mathrm{D}_{7}$ into an external latch.
9	AEN	OUT	This signal allows the external latch to output the upper address byte by disabling the system bus during DMA cycles. You should use HLDA and AEN to deselect I/O peripherals that may be erroneously accessed during DMA transfers. The μ PD8237A-5 deselects itself during DMA transfers.
10	HRO	OUT	This signal requests control of the system bus. The μ PD8237A-5 issues this signal in response to software requests or DRQ inputs from peripherals.
11	$\overline{c s}$	IN	The CPU uses $\overrightarrow{\mathrm{CS}}$ to select the μ PD8237A-5 as an I/O device during an I/O Read or Write by the CPU. Thls provides CPU communication on the data bus. CS may be held low during multiple transfers to or from the μ PD8237A-5 as long as $\overline{\text { I/OF }}$ or $\overline{1 / O W}$ Is toggled following each transfer.
12	CLK	IN	Controls internal operations and data transfer rate.
13	RESET	IN	Clears the Command, Status, Request, and Temporary registers, the first/last filip/flop, and sets the Mask register. The μ PD8237A-5 is in Idle state after a Reset.
$\begin{aligned} & 14,15 \\ & 24,25 \end{aligned}$	DACK $_{0}{ }^{-}$ DACK_{3}	OUT	These lines indicate an active channel. They are sometimes used to select a peripheral. Only one DACK may be active at any time. All DACK Ilnes are inactive uniess DMA has control of the bus. You may program the polarity of these lines; however, Reset initializes them to active low.
16-19	$\mathrm{ORO}_{0}-\mathrm{DRQ}_{3}$	IN	These are asynchronous channel request inputs used by peripherals to request DMA service. In a Fixed Priority scheme, DRO_{0} has the highest priority and DRQ_{3} has the lowest. You may program the polarity of these lines; however, Reset initializes them to active high.
20	GND		Ground.
$\begin{aligned} & 21-23, \\ & 26-30 \end{aligned}$	$\mathrm{D}_{0}-\mathrm{D}_{7}$	IN/OUT	During an I/O Read, the CPU enables these lines as outputs, allowing it to read an Address register, a Word Count reglster, or the Status or Temporary register. During an I/O Write, these lines are enabled as Inputs, altowing the CPU to program the μ PD8237A-5 control reglsters. DurIng DMA cycles, the elght MSBs of the address are output to the data bus to be strobed to an external latch via ADDSTB.
31	$v_{\text {cc }}$		Power Supply.

PD8237A-5

No.	Symbol	Direction	Function
32-35	$\mathrm{A}_{0}-\mathrm{A}_{3}$	IN/OUT	During DMA Idle states, these lines are inputs, allowing the CPU to load or examine control registers. During DMA Active states, these Ilines are outputs that provide the 4 LSB of the output address.
36	$\overline{\text { EOP }}$	WN/OUT	$\overline{\text { EOP }}$ signals that DMA service has been completed. When the word count of a channel becomes zero, the μ PD8237A-5 pulses EOP low to notlfy the peripheral that DMA service Is complete. The peripheral may pull EOP low to prematurely end DMA service. Internal or external receipt of EOP causes the currently active channel to end service, set Its TC blt in the Status register, and reset Its request bit. If the channel is programmed for Autoinitiailization, the current registers are updated from the base registera. Otherwise, the channel's mask bit is set and the contents of the reglster are unaltered. EOP is output when TC for channel 1 occurs during memory-to-memory transfers. EOP applies to the channel with an active DACK. When DACK ${ }_{0}$-DACK $_{3}$ are inactive, external EOPs are lgnored. It is recommended that you use an external pullup resistor of $3.3 \mathrm{k} \Omega$ or 4.7 k . This pin cannot sink the current passed by a 1 k \& pullup.
37-40	$A_{4}-A_{7}$		These linies are outputs that provide the four LSB of the address. These lines are active only during DMA service.

Functional Description

The μ PD8237A-5 has three basic control logic blocks, as shown in the block diagram. The Command Control block decodes commands issued by the CPU to the μ PD8237A-5 before DMA requests are serviced. It also decodes the Mode Control word of each channel. The Timing Control block generates the external control signals and the internal timing. The Priority Encoder block settles priority contentions among channels simultaneously requesting service.

DMA Operation

The μ PD8237A-5 operates in two states: Idle and Active. Each of these is made up of several smaller states equal to one clock cycle. The inactive state, S 1 , is entered when there are no pending DMA requests. The controller is inactive in S1, but the CPU may program it. S0 is the initial state for DMA service; the μ PD8237A-5 requests a hold, but the CPU has not acknowledged. Transters may begin upon acknowledgement from the CPU. The normal working states of DMA service are
$\mathrm{S} 1, \mathrm{~S} 2, \mathrm{~S} 3$, and S4. If more time is needed for a transfer, a wait state, SW, can be inserted using the READY line.
A memory-to-memory transfer requires read-frommemory and write-to-memory operations. The states $\mathrm{S} 11, \mathrm{~S} 12, \mathrm{~S} 13$, and S 14 provide the read-from operation. S21, S22, S23, and S24 provide the write-to part of the transfer. The byte is stored in the Temporary register between operations.

Idle State

When there are no pending service requests, the μ PD8237A-5 is in the Idle state; more specifically, in S1. DRQ lines and $\overline{\mathrm{CS}}$ are sampled to determine requests for DMA service and CPU attempts to inspect or modify the registers of the $\mu \mathrm{PD} 8237 \mathrm{~A}-5$, respectively. The CPU can read or write to the registers when CS and HLDA are low. $\mathrm{A}_{0}-\mathrm{A}_{3}$ are used as inputs to the μ PD8237A and select the registers affected. The IOOR and I/OW lines select and time the reads and writes. An internal flip-flop generates an additional address bit which determines the upper or lower byte of the Address and Word Count registers. This flip-flop can be reset by master Clear, Reset, or a software command.
When $\overline{C S}$ and HLDA are low (Program Phase), the μ PD8237A-5 can execute special software commands. When CS and I/OW are active, the commands are decoded as addresses and do not use the data bus.

Active State

When a channel requests service while the μ PD8237A-5 is in Idle state, the μ PD8237A-5 outputs an HRQ to the CPU and enters the Active state. DMA service takes place in the Active state, in one of the four modes described below.

Byte Transfer Mode

In this mode, a one-byte transfer is made during each HRQ/HLDA handshake. HRQ goes active when DRQ goes active. The CPU responds by making HLDA active, and the one-byte transfer takes place. After the transfer, HRQ goes inactive, the word count is decremented, and the address is incremented or decremented. If the word count goes to zero, a Terminal Count (TC) causes

Block Dlagram

an Autoinitialize if the channel has been programmed for it.
DRQ is held active only until the corresponding DACK goes active when a single transfer is performed. If DRQ is held active for a longer period, HRQ will become inactive after each transfer, become active again, and a one-byte transfer will be made after each rising edge of HLDA. This assures a full machine cycle between DMA transfers in 8080A/8085A systems. Timing between the μ PD8237A-5 and other bus control protocols depends on the CPU being used.

Block Transfer Mode

In this mode, the μ PD8237A-5 makes transfers until it encounters a TC or an external EOP. Hold DRQ active only until DACK goes active. The channel will Autoinitialize at the end of the DMA service if it has been programmed to do so.

Demand Transfer Mode

In this mode, the μ PD8237A-5 makes transfers until it encounters a TC or an external EOP, or until DRQ becomes inactive. This allows the device requesting service to stop the transfers by sending DRQ inactive. The device can resume service by making DRQ active. The Current Address and Current Word Count registers may be examined during the time between services when the CPU is allowed to operate. Autoinitialization can occur only after a TC or EOP at the end of the DMA service. After an Autoinitialization, there must be an active-going DRQ edge to begin new DMA service.

Cascade Mode

In this mode, you can expand your system by cascading several μ PD8237A-5s together. Connect the HLDA and HRQ signals from the additional μ PD8237A-5s to the DRQ and DACK signals of a channel of the initial μ PD8237A-5. This scheme allows the additional devices to send the DMA requests through the priority resolution circuitry of the preceding device, preserving the priority chain and forcing the device to wait its turn to acknowledge requests. The cascade channel in the initial device does not output any address or control signals because its only function is that of assigning priorities. The μ PD8237A-5 responds to DRQ with DACK, but all outputs except HRQ are disabled.
The following figure shows two μ PD8237A-5s cascaded into two channels of another one, forming a two-level DMA system. You could add more devices at the second level by using the leftover channels of the first level; likewise, you could add more devices to form a third level by cascading into the channels of the second level.

Transfers

There are three types of transfers that can be performed by the three active transfer modes: Read, Write, and Verify. Read transfers activate MEMR and I/OW to move memory data to an I/O device. Write transfers activate $\overline{I / O R}$ and $\overline{M E M W}$ to move data from an I/O device to memory. Verify transfers are not really transfers; the μ PD8237A-5 goes through the motions of a transfer but the memory and I/O lines are not active.

Memory-to-Memory Transfers

Use Block Transfer mode for memory-to-memory transfers. Mask out channels 0 and 1, and initialize the channel 0 word count to the same value as channel 1. Setting bit C0 of the command register to 1 makes channels 0 and 1 operate as memory-to-memory transfer channels. Channel 0 is the source address, channel 1 is the destination address, and the channel 1 word count is used. Initiate the memory-to-memory transfer by setting a DMA request for channel 0 . You can write a single source word to a block of memory when channel 0 is programmed for a fixed source address. The μ PD8237A-5 responds to external EOP signals during these transfers, but no DACK outputs are active. The EOP input may be used by data comparators doing block searches to end service when a match is found.

Autoinitialization

A channel may be set for Autoinitialize by programming a bit in the Mode register. Autoinitialize restores the original values of the Current Address and Current Word Count registers from the Initial Address and Initial Word Count registers of that channel. The CPU loads the Current and Initial registers simultaneously and they are unchanged through DMA service. EOP does not set the mask bit when the channel is in Autoinitialize. The channel can repeat its service following Autoinitialize without CPU intervention.

Priority Resolution

Two software-selectable priority resolution schemes are available on the μ PD8237A-5: Fixed Priority and Rotating Priority. In the Fixed Priority scheme, priority is assigned by the value of the channel number. Channel 3 is the lowest priority and channel 0 is the highest priority.
In the Rotating Priority scheme, the channel that was just serviced assumes the lowest priority and the other channels move up accordingly. This guarantees that a device requesting service can be acknowledged after no more than three other devices have been serviced, preventing any channel from monopolizing the system.

	1st Service	2nd Service	3rd Service
Highest	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 2- \\ & 3 \end{aligned}$	$\begin{aligned} & 3-\text { Service } \\ & 0 \end{aligned}$
wes	2	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	\rangle_{2}^{1}

The highest priority channel is selected on each activegoing HLDA edge. Once service to a channel begins, it cannot be interrupted by a request from a higher priority channel. A higher priority channel gets control only when the lower priority channel releases HRQ. The CPU gets bus control when control passes from channel to channel, ensuring that a rising HLDA edge can be generated to select the new highest priority request.

Transfer Timing

You can cut transfer timing, if the system allows, by compressing the transfer time to two clock periods. Since state $3\left(\mathrm{~S}_{3}\right)$ extends the access time for the read pulse, you can eliminate S_{3}, making the width of the read pulse equal to the write pulse. A transfer is then made up of S_{2} to change the address and S_{4} to perform the read or write. When the address lines A8-A15 need to be updated, S_{1} states occur.

Generating Addresses

The eight MSBs of the address are multiplexed on the data lines. These bits are output to an external latch during S_{1}, after which they can be placed on the address bus. The falling edge of ADDSTB loads the bits from the data lines to the latch. AEN places the bits on the address bus. The eight LSBs of the address are directly output on lines $A_{0}-A 7$. Connect $A_{0}-A_{7}$ to the address bus.
Sequential addresses are generated during Block and Demand Transfer mode operations because they include several transfers. Often, data in the external address latch does not change; it changes only when a carry or borrow from A_{7} to A_{8} occurs in the sequence of addresses. S1 states are executed only when $\mathrm{A}_{8}-\mathrm{A}_{15}$ need to be updated. In the course of lengthy transfers, S1 states may be executed only once every 256 transfers.

Reglsters

The following chart summarizes the registers of the μ PD8237A-5.

Register	Bits
Current Address registers (4)	16
Current Word Count registers (4)	16
Initial Address registers (4)	16
Initial Word Count registers (4)	16
Command register	8
Mode registers (4)	6
Request register	4
Mask register	4
Status register	8
Temporary register	8
Temporary Address register	16
Temporary Word Count register	16

Current Address Register

There is a Current Address register for each channel. This register holds the address used for DMA transfers; the address is incremented or decremented after each transfer and the intermediate values are stored here during the transfer. The CPU writes or reads this register in 8-bit bytes. An Autoinitialize restores this register to its initial value.

Current Word Count Register

There is a Current Word Count register for each channel. Program this register with the value of the number of words to be transferred, minus one. The word count is decremented after each transfer and intermediate values are stored in this register during the transfer. A TC is generated when the word count is zero. The CPU writes or reads this register in 8-bit bytes during Program Phase. An Autoinitialize restores this register to its initial value. After an internally generated EOP, the contents of this register will be FFFFH.

Initial Address and Initial Word Count Registers

There is an Initial Address register and an Initial Word Count register for each channel. The initial values of the associated Current registers are stored in these registers. The values in these registers are used to restore the Current registers at Autoinitialize. During DMA programming, the CPU writes the Initial registers and the corresponding Current registers at the same time, in 8 -bit bytes. Intermediate values in the Current registers are overwritten if you write to the Initial registers while the Current registers contain intermediate values. The CPU cannot read the Initial registers.

		81gnals							Internal FilpFlop	$\mathrm{D}_{0}-\mathrm{D}_{7}$
Channel	Operation	$\overline{\mathrm{cs}}$	1/08	I/OW	A_{3}	A_{2}	A_{1}	A_{0}		
0	Initial \& Current Address Write	0	1	0	0	0	0	0	0	$\begin{aligned} & A_{0}-A_{7} \\ & A_{8}-A_{15} \end{aligned}$
		0	1	0	0	0	0	0	1	
	Current Address Read	0	0	1	0	0	0	0	0	$\begin{aligned} & A_{0}-A_{7} \\ & A_{8}-A_{15} \end{aligned}$
		0	0	1	0	0	0	0	1	
	Initial a Current Word Count Write	0	1	0	0	0	0	1	0	$\begin{aligned} & W_{0}-W_{7} \\ & W_{8}-W_{15} \end{aligned}$
		0	1	0	0	0	0	1	1	
	Current Word Count Read	0	0	1	0	0	0	1	0	$\begin{aligned} & W_{0}-W_{7} \\ & W_{8}-W_{15} \end{aligned}$
		0	0	1	0	0	0	1	1	
1	Initial a Current Address Write	0	1	0	0	0	1	0	0	$\begin{aligned} & A_{0} A_{7} \\ & A_{8} A_{15} \end{aligned}$
		0	1	0	0	0	1	0	1	
	Current Address Read	0	0	1	0	0	1	0	0	$\begin{aligned} & A_{0}-A_{7} \\ & A_{8}-A_{15} \end{aligned}$
		0	0	1	0	0	1	0	1	
	Initial \& Current Word Count Write	0	1	0	0	0	1	1	0	$\begin{aligned} & w_{0}-w_{7} \\ & w_{8}-w_{15} \end{aligned}$
		0	1	0	0	0	1	1	1	
	Current Word Count Read	0	0	1	0	0	1	1	0	$\begin{aligned} & w_{0}-w_{7} \\ & w_{8}-w_{15} \end{aligned}$
		0	0	1	0	0	1	1	1	
2	Initial \& Current Address Write	0	1	0	0	1	0	0	0	$\begin{aligned} & A_{0}-A_{7} \\ & A_{8}-A_{15} \end{aligned}$
		0	1	0	0	1	0	0	1	
	Current Address Read	0	0	1	0	1	0	0	0	$\begin{aligned} & A_{0}-A_{7} \\ & A_{8}-A_{15} \end{aligned}$
		0	0	1	0	1	0	0	1	
	Initial \& Current Word Count Write	0	1	0	0	1	0	1	0	$\begin{aligned} & W_{0}-W_{7} \\ & W_{8}-W_{15} \end{aligned}$
		0	1	0	0	1	0	1	1	
	Current Word Count Read	0	0	1	0	1	0	1	0	$\begin{aligned} & W_{0}-W_{7} \\ & W_{8}-W_{15} \end{aligned}$
		0	0	1	0	1	0	1	1	
3	Initial \& Current Address Write	0	1	0	0	1	1	0	0	$\begin{aligned} & A_{0}-A_{7} \\ & A_{8}-A_{15} \end{aligned}$
.		0	1	0	0	1	1	0	1	
	Current Address Read	0	0	1	0	1	1	0	0	$\begin{aligned} & A_{0}-A_{7} \\ & A_{8}-A_{15} \\ & \hline \end{aligned}$
		0	0	1	0	1	1	0	1	
	Initial \& Current Word Count Write	0	1	0	0	1	1	1	0	$\begin{aligned} & w_{0}-w_{7} \\ & w_{8}-w_{15} \end{aligned}$
		0	1	0	0	1	1	1	1	
	Current Word Count Read	0	0	1	0	1	1	1	0	$\begin{aligned} & w_{0}-w_{7} \\ & w_{8}-w_{15} \end{aligned}$
		0	0	1	0	1	1	1	1	

Word Count and Address Register Command Codes

Command Register

The CPU programs this register during Program Phase. The register can be cleared with Reset.

Mode Reglster

There is a Mode register associated with each channel. When the CPU writes to this register during the Program Phase, bits 0 and 1 determine on which channel Mode register the operation is performed.

Request Register

This register allows the μ PD8237A-5 to respond to DMA requests from software as well as hardware. There is a bit pattern for each channel in the Request register. These bits can be prioritized by the Priority Resolving circuitry and are not maskable. Each bit is set or reset under software control or cleared when TC or an external EOP is generated. A Reset clears the entire register. The correct data word is loaded by software to set or reset a bit.
Software requests receive service only when the channel is in Block mode. The software request for channel 0 should be set at the beginning of a memory-to-memory transfer.

Mask Reglster

There is a mask bit for each channel which can disable an incoming DRQ. If the channel is not set for Autoinitialize, each mask bit is set when its channel produces an EOP. Each bit can be set or cleared under software control. Reset clears the register. This disallows DMA requests until they are permitted by a Clear Mask Register instruction.

You may also write all four bits of the Mask register with a single command.

Status Register

The Status register indicates which channels have made DMA requests and which channels have reached TC. Each time a channel reaches TC, including after Autoinitialization, bits 0-3 are set. Status Read and Reset clear these bits. Bits 4-7 are set when a channel is requesting service. The CPU can read the Status register.

Temporary Reglster

The Temporary register holds data during memory-tomemory transfers. The CPU can read the last word moved when the transfer is complete. This register always contains the last byte transferred in a memory-to-memory transfer unless cleared by a Reset.

μ PD8237A-5

Software Commands

There are two software commands that can be executed in the Program Phase. These commands are independent of data on the data bus.

Clear First/Last Filp-Flop

You may issue this command before reading or writing any word count or address information. It allows the CPU to access registers, addressing upper and lower bytes correctly, by initializing the flip-flop to an identifiable state.

Master Clear

This command produces the same effect as Reset. It clears the Command, Status, Request, Temporary, and Internal First/Last Flip-Flop registers, sets the Mask register, and causes the μ PD8237A-5 to enter Idle state.
The following chart illustrates address codes for the software commands.

\mathbf{A}_{3}	\mathbf{A}_{2}	\mathbf{A}_{1}	\mathbf{A}_{0}	$\overline{I O W}$	$\overline{\text { IOR }}$	Operatlon
1	0	0	0	0	1	Read Status reglster
1	0	0	0	1	0	Write to Command register
1	0	0	1	1	0	Write to Request register
1	0	1	0	1	0	Write a Mask reglster blt
1	0	1	1	1	0	Write to Mode register
1	1	0	0	1	0	Clear byte pointer fllp-fiop
1	1	0	1	0	1	Read Temporary reglster
1	1	0	1	1	0	Master Clear
1	1	1	1	1	0	Write all Mask register blts

All other bit combinations are illegal.

Appllcation Example

The following diagram shows an application using the μ PD8237A-5 with an 8088. The μ PD8237A-5 sends a hold request to the CPU whenever there is a valid DMA request from a peripheral device. The μ PD8237A-5 takes control of the Address, Data, and Control buses when the CPU replies with an HLDA signal. The address for the first transfer appears in two bytes: the eight LSBs are output on $\mathrm{A}_{0}-\mathrm{A}_{7}$ and the eight MSBs are output on the data bus pins. The contents of the

data bus pins are latched to the 8282 to make up the 16 bits of the address bus. Once the address is latched, the data bus transfers data to or from a memory location or $1 / O$ device, using the control bus signals generated by the μ PD8237A- 5 .

AC Characteristics Supplementary Information

All AC timing measurement points are 2.0 V for high and 0.8 V for low, for both inputs and outputs. The loading on the outputs is one TTL gate plus 100 pF of capacitance for the data bus pins, and one TTL gate plus 50 pF for all other outputs.
Recovery time between successive read and write inputs must be at least 400 ns . I/O or memory write pulse widths will be TCY- 100 ns for normal DMA transfers and 2 TCY- 100 ns for extended cycles. I/O or memory reads will be 2 TCY-50 ns for normal reads and TCY- 50 ns for compressed cycles. TDQ1 and TDQ2 are measured on two different levels. TDQ1 at 2.0 V, TDQ2 at 3.3 V with a $3.3 \mathrm{k} \Omega$ pull-up resistor. DREQ and DACK are both active high and low. DREQ must be held in the active state (user defined) until DACK is returned from the μ PD8237A-5. The AC waveforms assume these are programmed to the active high state.

Absolute Maximum Ratings*

Tentative	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Amblent Temperature under Blas	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Storage Temperature	-0.5 V to +7 V
Voltage on any Pin with respect to Ground	1.5 Watt
Power Dissipation	

*COMMENT: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
DC Characterlstics

Parameter	Symbol	Limits			Unlt	Test Conditions
		Min	Typ (1)	Max		
Output High Voltage	V_{OH}	2.4			v	${ }^{1} \mathrm{OH}=-200 \mu \mathrm{~A}$
		3.3			v	$\begin{aligned} & l_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \text { (HRQ Only) } \end{aligned}$
Output Low Voltage	$\mathbf{v}_{\mathbf{O L}}$			0.45	v	$\begin{aligned} & \mathrm{IOL}^{2}=2.0 \mathrm{~mA} \\ & \text { (Data Bus) } \end{aligned}$
						$\mathrm{OL}=3.2 \mathrm{~mA}$ (Other Outputs)
Input High Voltage	$\mathbf{V}_{\mathbf{I H}}$	2.0		$V_{\text {cc }}+0.5$	V	
Input Low Voltage	$\mathbf{V I L}^{\text {I }}$	-0.5		0.8	v	
Input Load Current	${ }^{\prime} \mathbf{L I}$			± 10	$\mu \mathrm{A}$	$\mathrm{OV} \leqslant \mathrm{V}_{\mathbf{N}} \leqslant \mathrm{V}_{\mathbf{C C}}$
Output Leakage Current	'LO			± 10	$\mu \mathrm{A}$	$0.45 \leqslant V_{\text {OUT }} \leqslant \mathrm{V}_{\text {CC }}$
$V_{\text {CC }}$ Supply Current	Icc		65	130	mA	$\mathrm{T}_{\mathrm{a}}=+25^{\circ} \mathrm{C}$
			75	150	mA	$\mathrm{Ta}_{\mathrm{a}}=0^{\circ} \mathrm{C}$

Note:

(1) Typical values measured at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$, nominal processing parameters, and nominal VCC.

Capacitance

Parameter	Symbol	Limits			Unlt	Test Conditions
		Min	Typ (1)	Max		
Output Capacitance	C_{0}		4	8	pF	$\mathrm{fc}=1.0 \mathrm{MHz}$,
Input Capacitance	c_{1}		8	15	pF	Inputs $=0 \mathrm{O}$
//O Capacitance	ClO_{10}		10	18	pF	

Note:

(1) Typical values measured at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$, nominal processing parameters, and nominal $V_{C C}$.

AC Testing Input/Output Waveform

Inputs are driven at 2.4 V for logic 1 and 0.45 V for logic 0 . These timing measurements are made at 2.0 V for logic 1 and 0.8 V for logic 0 . A transition time of 20 ns or less is assumed for input timing parameters. Unless noted, output loading is 1 TLL gate plus 50 pF capacitance.

AC Characteristics

$\mathbf{T a}_{\mathbf{a}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C} ; \mathbf{V C C}=\mathbf{5 V} \pm \mathbf{5 \%}$

Parameter	8 ymbol	4 mfts			Unit
		Min	Typ	Max	
Data Bus Float to Active Delay from CLK High	$t_{\text {FADB }}$			200	ns
HLDA Valid to CLK High Setup Time	t_{HS}	75			ns
Input Data from MEMR High Hold Time	IIDH	0			ก\%
Input Data to MEMR High Setup Time	${ }^{\text {I IDS }}$	170			ns
Output Data from MEMW High Hold Time	${ }^{\text {toDH }}$	10			ns
Output Data Valld to MEMW High	todv	130			ns
DRO to CLK Low ($\mathrm{S}_{\mathbf{1},} \mathrm{S}_{4}$) Setup Time	${ }^{\text {a }}$ S	0			n8
CLK to READY Low Hold Time	${ }^{\text {R }}$ H	20			ns
READY to CLKK Low Setup Time	${ }^{\text {t }}$ S	75			ns
ADDSTB High from CLK High Delay Time	${ }^{\text {tSTL }}$			130	ns
ADDSTB Low from CLK High Delay Time	${ }^{\text {tSTT }}$			90	ns

Notes:

(1) Net $\overline{1 / O W}$ or MEMW pulse width for normal write is tcy-100 ns and 2tCY- 100 ns for extended write. Net I/OR or MEMR pulse width for normal read is $2 \mathrm{t}_{\mathrm{CY}} \mathbf{- 5 0} \mathrm{ns}$ and $\mathrm{t} \mathrm{CY}-50 \mathrm{~ns}$ for compressed read.
(2) TDQ1 is measured at 2.0 V . TDQ_{2} is measured at 3.3 V . An external pullup resistor of $3.3 \mathrm{k} \Omega$ connected from $H R Q$ to $V_{C C}$ is assumed for tDQ2.

AC Characteristics Peripheral Mode $\mathrm{T}_{\mathrm{a}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathbf{V c c}=+5 \mathrm{~V} \pm \mathbf{5}$

Parameter	Symbol	Limits			Unit
		Min	Typ	Max	
ADR Valld or CSE Low to READ Low	${ }_{\text {t }}^{\text {AR }}$	50			ns
ADR Valld to WRITE High Setup Time	${ }^{\text {t }}$ AW	160			ns
CS Low to WRITE High Setup Time	${ }^{\text {t }}$ W	160			ns
Data Valld to WRITE High Setup Time	tDW	160			ns
ADR or CS Hoid from READ High	tra	0			ns
Data Access from $\overline{\text { READ Low (1) }}$	$t_{\text {RDE }}$			140	ns
Data Bus Float Delay from $\overline{\text { READ }}$ High	$t_{\text {RDF }}$	0		70	ns
Power Supply High to RESET Low Setup Time	trsto	500			ns
RESET to First प/OW	${ }^{\text {trSTS }}$	2 CH			ns
RESET Pulse Width	thstw	300			ns
$\overline{\text { EEAD Width }}$	${ }^{\text {trw }}$	200			ns
ADR from WRITE High Hold Time	${ }^{\text {twa }}$	20			ns
$\overline{\overline{C S}}$ High from WRITE High Hold Time	twe	20			ns
Data from WRITE High Hold Time	twd	30			ns
Write Width	twws	160			ns

Note:

(1) Data bus output loading is 1 TTL gate plus 100 pF capacitance.

Timing Wavoforms

Slave Mode Read

Noter

(1) You must time successive read or write operations by the CPU to allow at least 400 ns recovery time for the μ PD8237A-5 between read and write pulses.

Timing Waveforms (Cont.)

Memory-to-Memory Transfer

Timing Waveforms (Cont.)

Compressed Transfer

Reset

Package Dutline

μ PD8237AC-5

Item	Millimeters	Inches
A	51.5 Max	2.028 Max
B	1.62	0.084
C	2.54 ± 0.1	0.10 ± 0.004
D	0.5 ± 0.1	0.019 ± 0.004
E	48.26	1.9
F	1.2 Min	0.047 Mln
a	2.54 Min	0.10 Min
H	0.5 Min	0.019 Min
1	5.22 Max	0.208 Max
J	5.72 Max	0.225 Max
K	15.24	0.600
L	13.2	0.520
M	$\begin{gathered} +0.1 \\ 0.25{ }_{-0.05} \\ \hline \end{gathered}$	$0.010_{-0.002}^{+0.004}$

NOTES
μ PD8243

INPUT/OUTPUT EXPANDER FOR μ PD8048 FAMIL.Y

The μ PD8243 input/output' expander is directly compatible with the μ PD8048 family of single-chip microcomputers. Using NMOS technology the μ PD8243 provides high drive capabilities while requiring only a single +5 V supply voltage.

The μ PD8243 interfaces to the μ PD8048 family through a 4 -bit I/O port and offers four 4-bit bi-directional static I/O ports. The ease of expansion allows for multiple μ PD8243's to be added using the bus port.

The bi-directional I/O ports of the μ PD8243 act as an extension of the I/O capabilities of the μ PD8048 microcomputer family. They are accessible with their own ANL, MOV, and ORL instructions.

FEATURES - Four 4-Bit I/O Ports

- Fully Compatible with μ PD8048 Microcomputer Family
- High Output Drive
- NMOS Technology
- Single $+5 V$ Supply
- Direct Extension of Resident μ PD8048 I/O Ports
- Logical AND and OR Directly to Ports
- Compatible with Industry Standard 8243
- Available in a 24-Pin Plastic Package

Rev/1

μ PD8243

General Operation

The I/O capabilities of the μ PD8048 family can be enhanced in four 4-bit I/O port increments using one or more μ PD8243's. These additional I/O lines are addressed as ports 4-7. The following lists the operations which can be performed on ports 4-7.

- Logical AND Accumulator to Port.
- Logical OR Accumulator to Port.
- Transfer Port to Accumulator.
- Transfer Accumulator to Port.

Port $2\left(\mathrm{P}_{20}-\mathrm{P}_{23}\right)$ forms the 4-bit bus through which the $\mu \mathrm{PD} 8243$ communicates with the host processor. The PROG output from the μ PD8048 family provides the necessary timing to the μ PD8243. There are two 4 -bit nibbles involved in each data transfer. The'first nibble contains the op-code and port address followed by the second nibble containing the 4-bit data. Multiple μ PD8243's can be used for additional I/Q. The output lines from the μ PD8048 family can be used to form the chip selects for the additional μ PD8243's.

Power On Initialization

Applying power to the μ PD8243 sets ports 4-7 to the tri-state mode and port 2 to the input mode. The state of the PROG pin at power on may be either high or low. The PROG pin must make a high-to-low transition in order to exit from the power on mode. The power on sequence is initiated any time $V_{C C}$ drops below TV. The table below shows how the 4 -bit nibbles on Port 2 correspond to the μ PD8243 operations.

Port Address		Op-Code			
P_{21}	P_{20}	Address Code	P_{23}	P_{22}	Instruction Code
0	0	Port 4	0	0	Read
0	1	Port 5	0	1	Write
1	0	Port 6	1	0	ORLD
1	1	Port 7	1	1	ANLD

For example an 0010 appearing on $\mathrm{P}_{20}-\mathrm{P}_{23}$, respectively, would result in a Write to Port 4.

Read Mode

There is one Read mode in the μ PD8243. A falling edge on the PROG pin latches the op-code and port address from input Port 2. The port address and Read operation are then decoded causing the appropriate outputs to be tri-stated and the input buffers. switched on. The rising edge of PROG terminates the Read operation. The Port $(4,5,6$, or 7$)$ that was selected by the Port address $\left(\mathrm{P}_{21}-\mathrm{P}_{20}\right)$ is returned to the tri-state mode, and Port 2 is switched to the input mode.

Generally, in the read mode, a port will be an input and in the write mode it will be an output. If during program operation, the μ PD8243's modes are changed, the first read pulse immediately following a write should be ignored. The subsequent read signals are valid. Reading a port will then force that port to a high impedance state.

Write Modes

There are three write modes in the μ PD8243. The MOVD $P_{p, A}$ instruction from the μ PD8048 family writes the new data directly to the specified port ($4,5,6$ or 7). The old data previously latched at that port is lost. The ORLD $P_{p, A}$ instruction performs a logical OR between the new data and the data currently latched at the selected port. The result is then latched at that port. The final write mode uses the ANLD $P_{p, A}$ instruction. It performs a logical AND between the new data and the data currently latched at the specified port. The result is latched at that port.
The data remains latched at the selected port following the logical manipulation until new data is written to that port.

BLOCK DIAGRAM

PIN IDENTIFICATION

PIN		FUNCTION
NO.	SYMBOL	
$\begin{aligned} & \hline 2-5 \\ & 1,21-23 \\ & 17-20 \\ & 13-16 \end{aligned}$	$\begin{aligned} & P_{40} \cdot P_{43} \\ & P_{50} P_{53} \\ & P_{60}-P_{63} \\ & P_{70}-P_{73} \end{aligned}$	The four 4-bit static bi-directional I/O ports. They are programmable into the following modes: input mode (during a Read operation); low impedance latched output mode (after a Write operation); and the tri-state mode (following a Read operation). Data appearing on I/O lines $\mathrm{P}_{20}-\mathrm{P}_{23}$ can be written directly. That data can also be logically ANDed or ORed with the previous data on those lines.
6	$\overline{\text { CS }}$	Chip Select input (active-low). When the μ PD8343 is deselected ($\overline{\mathrm{CS}}=1$), output or internal status changes are inhibited.
7	PROG	Clock input pin. The control and address information are present on port lines $\mathrm{P}_{20}-\mathrm{P}_{23}$ when PROG makes a high-to-low transition. Data is present on port lines $\mathrm{P}_{20}-\mathrm{P}_{23}$ when PROG makes a low-to-high transition.
8-11	$\mathrm{P}_{20}-\mathrm{P}_{23}$	$\mathrm{P}_{20}-\mathrm{P}_{23}$ form a 4-bit bi-directional port. Refer to PROG function for contents of $\mathrm{P}_{20}-\mathrm{P}_{23}$ at the rising and falling edges of PROG. Data from a selected port is present on $\mathrm{P}_{20}-\mathrm{P}_{23}$ prior to the rising edge of PROG if during a Read operation.
12	GND	The μ PD8041/8741 ground potential.
24	VCC	+5 volt supply.

Operating Temperature $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on Any Pin . $\quad-0.5$ to +7 Volts(1)
Power Dissipation 1 W

Note: (1) With respect to ground.

$$
\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}
$$

*COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

			LIMI			ES
PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	CONDITIONS
Input Low Voltage	$V_{\text {IL }}$	-0.5		0.8	V	
Input High Voltage	$\mathrm{V}_{\text {IH }}$	2.0		$\mathrm{V}_{\mathrm{CC}}+0.5$	V	
Output Low Voltage (Ports 4-7)	$\mathrm{V}_{\mathrm{OL} 1}$			0.45	V	$\mathrm{I}_{\mathrm{OL}}=5 \mathrm{~mA}$ (1)
Output Low Voltage (Port 71	VOL2			1	V	$1 \mathrm{OL}=20 \mathrm{~mA}$
Output Low Voltage (Port 2)	VOL3			0.45	V	$1 \mathrm{OL}=0.6 \mathrm{~mA}$
Output High Voltage (Ports 4-7)	VOH	2.4			V	$\mathrm{I}_{\mathrm{OH}}=240 \mu \mathrm{~A}$
Output High Voltage (Port 2)	VOH^{2}	2.4			V	$\mathrm{I}^{\mathrm{OH}}=100 \mu \mathrm{~A}$
Sum of Alf IOL From 16 Outputs	1 OL			100	mA	5 mA Each Pin
Input Leakage Current (Ports 4-7)	ILL1	-10		20	$\mu \mathrm{A}$	$V_{\text {IN }}=V_{\text {CC }}$ to OV
Input Leakage Current (Port 2, $\overline{\mathrm{CS}}, \mathrm{PROG}$)	1162	-10		10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ to 0 V
$V_{C C}$ Supply Current	${ }^{1} \mathrm{C}$		10	20	mA	

Note: (1) Refer to graph of additional sink current drive.
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	LIMITS			UNITS	TEST CONDITIONS
		MIN	TYP	MAX		
Code Valid Before PROG	${ }^{\prime} A$	100			ns	80 pF Load
Code Valid After PROG	${ }^{\text {t }}$ B	60			ns	20 pF Load
Data Valid Before PROG	${ }^{\text {t }}$	200			ns	80 pF Load
Data Valid After PROG	${ }^{\text {t }}$	20			ns	20 pF Load
Port 2 Floating After PROG	${ }_{4}$	0		150	ns	20 pF Load
PROG Negative Pulse Width	${ }_{\text {t }} \mathrm{K}$	700			ns	
Ports 4.7 Valid After PROG	${ }^{\text {tPO }}$			700	ns	100 pF Load
Ports 4.7 Valid Before/After PROG	tLP1	100			ns	
Port 2 Valid After PROG	${ }^{\text {t }}$ ACC			650	ns	80 pF Load
$\overline{\text { CS }}$ Valid Before/After PROG	${ }^{\text {t }}$ CS	50			ns	

DC CHARACTERISTICS

AC CHARACTERISTICS

TIMING WAVEFORMS

CURRENT SINKING

 CAPABILITY (1)

Note: (1) This curve plots the guaranteed worst case current sinking capability of any I/O port line versus thetal sink current of all pins. The $\mu \mathrm{PD} 8243$ is capable of sinking 5 mA (for $\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$) through each of the $16 \mathrm{I} / \mathrm{O}$ lines simultaneously. The current sinking curve shows how the individual I/O line drive increases if all the I/O lines are not fully loaded.

PACKAGE OUTLINES
μ PD8243C

(PLASTIC)

ITEM	MILLIMETERS	INCHES
A	33 MAX	1.3 MAX
B	2.53	0.1
C	2.54	0.1
D	0.5 ± 0.1	0.02 ± 0.004
E	27.94	1.1
F	1.5	0.059
G	2.54 MIN	0.1 MIN
H	0.5 MIN	0.02 MIN
I	5.22 MAX	0.205 MAX
J	5.72 MAX	0.225 MAX
K	15.24	0.6
L	13.2	0.52
M	$0.25+0.10$	$0.01+0.004$

NOTES

CMOS INPUT/OUTPUT EXPANDER FOR μ PD8048/80C48 FAMILY

Abstract

DESCRIPTION The μ PD82C43 input/output expander is directly compatible with the μ PD8048/80C48 family of single-chip microcomputers. Using NMOS technology the μ PD82C43 provides high drive capabilities while requiring only a single +5 V supply voltage.

The μ PD82C43 interfaces to the μ PD8048/80C48 family through a 4-bit I/O port and offers four 4-bit bi-directional static I/O ports. The ease of expansion allows for multiple μ PD8243s to be added using the bus port.

The bi-directional I/O ports of the μ PD82C43 act as an extension of the I/O capabilities of the μ PD8048/80C48 microcomputer family. They are accessible with their own ANL, MOV, and ORL instructions.

FEATURES - Four 4-Bit I/O Ports

- Fully Compatible with μ PD8048/80C48 Microcomputer Family
- High Output Drive
- NMOS Technology
- Single +5 V Supply
- Direct Extension of Resident μ PD8048/80C48 I/O Ports
- Logical AND and OR Directly to Ports
- Compatible with Industry Standard 8243
- Available in a 24-Pin Plastic Package

μ PD82C43

General Operation

The I/O capabilities of the μ PD8048/80C48 family can be enhanced in four 4-bit I/O port increments using one or more μ PD82C43s. These additional I/O lines are addressed as ports 4-7. The following lists the operations which can be performed on ports 4-7.

- Logical AND Accumulator to Port.
- Logical OR Accumulator to Port.
- Transfer Port to Accumulator.
- Transfer Accumulator to Port.

Port $2\left(\mathrm{P}_{20}-\mathrm{P}_{23}\right)$ forms the 4-bit bus through which the μ PD82C43 communicates with the host processor. The PROG output from the μ PD8048/80C48 family provides the necessary timing to the μ PD82C43. There are two 4 -bit nibbles involved in each data transfer. The first nibble contains the op-code and port address followed by the second nibble containing the 4-bit data. Multiple μ PD82C43s can be used for additional I/O. The output lines from the μ PD8048/80C48 family can be used to form the chip selects for the additional μ PD82C43s.

Power On Initialization

Applying power to the μ PD82C43 sets ports $4-7$ to the tri-state mode and port 2 to the input mode. The state of the PROG pin at power on may be either high or low. The PROG pin must make a high-to-low transition in order to exit from the power on mode. The power on sequence is initiated any time $V_{C C}$ drops below 1V. The table below shows how the 4 -bit nibbles on Port 2 correspond to the μ PD82C43 operations.

Port Address			Op-Code		
P_{21}	P_{20}	Address Code	P_{23}	P_{22}	Instruction Code
0	0	Port 4	0	0	Read
0	1	Port 5	0	1	Write
1	0	Port 6	1	0	ORLD
1	1	Port 7	1	1	ANLD

For example an 0010 appearing on $\mathrm{P}_{20}-\mathrm{P}_{23}$, respectively, would result in a Write to Port 4.

Read Mode

There is one Read mode in the μ PD82C43. A falling edge on the PROG pin latches the op-code and port address from input port 2. The port address and Read operation are then decoded causing the appropriate outputs to be tri-stated and the input buffers switched on. The rising edge of PROG terminates the Read operation. The port ($4,5,6$, or 7) that was selected by the port address ($\mathrm{P}_{21}-\mathrm{P}_{20}$) is returned to the tri-state mode, and port 2 is switched to the input mode.
Generally, in the read mode, a port will be an input and in the write mode it will be an output. If during program operation, the μ PD82C43's modes are changed, the first read pulse immediately following a write should be ignored. The subsequent read signals are valid. Reading a port will then force that port to a high impedance state.

Write Modes

There are three write modes in the μ PD82C43. The MOVD P_{p}, A instruction from the μ PD8048/80C48 family writes the new data directly to the specified port ($4,5,6$, or 7). The old data previously latched at that port is lost. The ORLD Pp,A instruction performs a logical OR between the new data and the data currently latched at the selected port. The result is then latched at that port. The final write mode uses the ANLD Pp,A instruction. It performs a logical AND between the new data and the data currently latched at the specified port. The result is latched at that port.
The data remains latched at the selected port following the logical manipulation until new data is written to that port.

BLOCK DIAGRAM

PIN IDENTIFICATION

PIN		FUNCTION
No.	SYMBOL	
$\begin{aligned} & \hline 2-5 \\ & 1,21-23 \\ & 17-20 \\ & 13-16 \end{aligned}$	$\mathrm{P}_{40} \cdot \mathrm{P}_{43}$ $P_{50}-P_{53}$ P60-P63 $P_{70}-P_{73}$	The four 4-bit static bi-directional I/O ports. They are programmable into the following modes: input mode (during a Read operation); low impedance latched output mode (after a Write operation); and the tri-state mode (following a Read operation). Data appearing on I/O lines $\mathrm{P}_{20}-\mathrm{P}_{23}$ can be written directly. That data can also be logically ANDed or ORed with the previous data on those lines.
6	CS	Chip Select input (active-low). When the μ PD82C43 is deselected ($C S=1$), output or internal status changes are inhibited.
7	PROG	Clock input pin. The control and address information are present on port lines $\mathrm{P}_{20}-\mathrm{P}_{23}$ when PROG makes a high-to-low transition. Data is present on port lines $\mathrm{P}_{2} \mathrm{O}^{-} \mathrm{P}_{23}$ when PROG makes a low-to-high transition.
8-11	$\mathrm{P}_{20} \mathrm{P}_{23}$	$\mathrm{P}_{20 \text { - }}$ P23 form a 4-bit bi-directional port. Refer to PROG function for contents of $\mathrm{P}_{20}-\mathrm{P}_{23}$ at the rising and falling edges of PROG. Data from a selected port is present on $\mathrm{P}_{20}-\mathrm{P}_{23}$ prior to the rising edge of PROG if during a Read operation.
12	GND	The μ PD8041/8741 ground potential.
24	V_{CC}	+5 volt supply.

Operating Temperature $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on Any Pin -0.5 to +7 Volts (1)
Power Dissipation 1 W

Note: (1) With respect to ground.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP\|	MAX		
Input Low Voltirge	V_{1} L	-0.3		0.8	V	
Input High Voltage	$\mathrm{V}_{1} \mathrm{H}$	$\mathrm{V}_{\mathrm{CC}}-2.0$		$V_{\text {cc }}$	v	
Output Low Voltage (Ports 4.7)	VOL9			0.45	V	$\mathrm{OL}=5 \mathrm{~mA}$ (1)
Output Low Voltage (Port 7)	$\mathrm{V}_{\mathrm{OL} 2}$			1	V	$1 \mathrm{OL}-20 \mathrm{~mA}$
Output Low Voltiga (Port 2)	$\mathrm{V}_{\mathrm{OL}} \mathrm{S}$.			0.45	v	$1 \mathrm{OL}=0.6 \mathrm{~mA}$
Output High Voltage (Ports 4.7 I	$\mathrm{V}_{\mathrm{OH} 1}$	$V_{\text {CC }}-0.5$			V	${ }^{\circ} \mathrm{OH}=240 \mu \mathrm{~A}$
Output High Voltage (Port 2)	$\mathrm{V}_{\mathrm{OH} 2}$	$\mathrm{V}_{\mathrm{CC}}-0.5$			V	${ }^{1} \mathrm{OH}=100 \mu \mathrm{~A}$
Sum of All IOL From 16 Outputs	${ }^{\text {I OL }}$			80	mA	5 mA Each Pin
Input Leakage Current (Ports 4.7)	IL1	-1		+1	$\mu \mathrm{A}$	$V_{\text {IN }}=V_{C C}$ to OV
Input Leekage Current (Port 2, $\overline{\mathrm{CS}}$, PROG)	IL2	-1		+1	$\mu \mathrm{A}$	$V_{\text {IN }}=V_{C C}$ to OV
$V_{\text {CC }}$ Supply Current	${ }^{1} \mathrm{CC}_{1}$			300	$\mu \mathrm{A}$	
Power Down Supply Current	ICC2			10	$\mu \mathrm{A}$	

$T_{a}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}: V_{C C}-+5 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Code Valid Before PROG	${ }^{\prime} A$	100			ns	80 pF Load
Code Valid After PROG	${ }^{\text {t }}$ B	60			ns	20 pF Load
Data Valid Before PROG	${ }^{\text {c }}$	200			ns	80 pF Load
Data Valid After PROG	${ }^{\text {t }}$	20			ns	20 pF Load
Port 2 Floating After PROG	t_{H}	0		150	ns	20 pF Load
PROG Negative Pulse Width	${ }^{1} \mathrm{~K}$	900			ns	
Ports 4.7 Valid Atter PROG	tpo			700	ns	100 pF Load
Ports 4.7 Valid Before/After PROG	t P 1	100			ns	
Port 2 Valid After PROG	${ }^{\text {taCC }}$			750	ns	80 pF Load
CS Valid Before/After PROG	${ }_{\text {t }} \mathbf{C S}$	50			ns	

ABSOLUTE MAXIMUM RATINGS*

DC CHARACTERISTICS

AC CHARACTERISTICS

CURRENT SINKING

CAPABILITY (1)

Note: (9 This curve plots the guaranteed worst case current sinking capability of any I/O port line versus the total sink current of all pins. The μ PD82C43 is capable of sinking 5 mA (for $\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$) through each of the $\mathbf{1 6 1 / O}$ tines simultaneously. The current sinking curve shows how the individual $1 / 0$ line drive increases if alf the i/O lines are not fully loaded.

PACKAGE OUTLINE μ PD82C43

PLASTIC

ITEM	MILLIMETERS	INCHES
A	33 MAX	1.3 MAX
B	2.53	0.1
C	2.54	0.1
D	$0.5 \div 0.1$	$0.02 \div 0.004$
E	27.94	1.1
F	1.5	0.059
G	2.54 MIN	0.1 MIN
H	0.5 MIN	0.02 MIN
I	5.22 MAX	0.205 MAX
J	5.72 MAX	0.225 MAX
K	15.24	0.6
L	13.2	0.62
M	$0.25{ }_{-0.10}^{+0.05}$	$0.01{ }_{-0.004}^{+0.0019}$

NOTES

PROGRAMMABLE COMMUNICATION INTERFACES

DESCRIPTION
The μ PD8251 and μ PD8251A Universal Synchronous/Asynchronous Receiver/ Transmitters (USARTs) are designed for microcomputer systems data communications. The USART is used as a peripheral and is programmed by the 8080A or other processor to communicate in commonly used serial data transmission techniques including IBM Bi-Sync. The USART receives serial data streams and converts them into parallel data characters for the processor. While receiving serial data, the USART will also accept data characters from the processor in parallel format, convert them to serial format and transmit. The USART will signal the processor when it has completely received or transmitted a character and requires service. Complete USART status including data format errors and control signals such as TXE and SYNDET, is available to the processor at any time.
FEATURES - Asynchronous or Synchronous Operation
- Asynchronous:
Five 8-Bit Characters
Clock Rate $-1,16$ or $64 \times$ Baud Rate Break Character Generation Select 1, 1-1/2, or 2 Stop Bits False Start Bit Detector Automatic Break Detect and Handling (μ PD8251A)
- Synchronous: Five 8-Bit Characters Internal or External Character Synchronization Automatic Sync Insertion Single or Double Sync Characters
- Baud Rate (1X Mode) - DC to 56K Baud (μ PD8251)
- DC to 64K Baud (μ PD8251A)
- Full Duplex, Double Buffered Transmitter and Receiver
- Parity, Overrun and Framing Flags
- Fully Compatible with 8080A/8085/ μ PD780 (Z80TM)
- All Inputs and Outputs are TTL Compatible
- Single +5 Volt Supply, $\pm 10 \%$ (8251 A) $\pm 5 \%$ (8251)
- Separate Device Receive and Transmit TTL Clocks
- 28 Pin Plastic DIP Package
- N-Channel MOS Technology

PIN CONFIGURATION

PIN NAMES

D_{2} 든	28	$\square \mathrm{D}_{1}$
$\mathrm{D}_{3} \mathrm{H}_{2}$	27	$\square \mathrm{D}_{0}$
$\mathrm{R} \times \mathrm{D} \square^{2}$	26	$\square \mathrm{V}_{\mathrm{cc}}$
GND 4	25	$\square \mathrm{FxC}$
$\mathrm{D}_{4} \square 5$	24	\square DTR
$\mathrm{D}_{5} \square^{6}$	$\mu \mathrm{PD} \quad 23$	口 $\overline{\mathrm{RTS}}$
$\mathrm{D}_{6} \mathrm{C}_{7}$	8251/ 22	\square ठSB
$\mathrm{D}_{7} \mathrm{C}_{8}$	8251A 21	Reset
TxC \square^{9}	20	$\square \mathrm{CLK}$
WR ${ }^{10}$	19	$\square \mathrm{T} \times \mathrm{D}$
CS 11	18	\square TXE
C/DG12	17	\square CTS
人O-13	16	SYNDET (μ PD8251) SYNDET/BD (4PD8251A)
R×ROY 14	15	TxRDY

$\mathrm{D}_{7}-\mathrm{D}_{0}$	Date Bus (8 bits)
C/ $\overline{\mathbf{O}}$	Control or Dats is to by Written or Read
FO	Read Date Command
W	Write Date or Control Command
$\overline{\text { cs }}$	Chip Enable
CLK	Clock Pulue (TTL)
RESET	Aepet
TxC	Trensmitter Clock (TTL)
TxD	Transmitter Data
$\overline{\mathbf{P} \times C}$	Receiver Clock (TTL)
RxD	Recaiver Deta
RixRDY	Recesiver Resdy (has character for 8080)
TxRDY	Transmitter Resdy (resdy for char. from 8080)
ESSA	Date Set Ready
DTA	Deta Terminal Resty
SYNDET	Sync Detect
SYNDET/BD	Sync Detect/Break Detect
RTS	Request to Send Dete
CTS	Claer to Send Date
TxE	Tranmitter Empty
$V_{\text {cc }}$	+5 Voit Supply
GND	Ground

μ PD8251/8251A

The μ PD8251 and μ PD8251A Universal Synchronous/Asynchronous Receiver/ Transmitters are designed specifically for 8080 microcomputer systems but work with most 8-bit processors. Operation of the μ PD8251 and μ PD8251A, like other I/O devices in the 8080 family, are programmed by system software for maximum flexibility.

In the receive mode, the μ PD8251 or μ PD8251A converts incoming serial format data into parallel data and makes certain format checks. In the transmit mode, it formats parallel data into serial form. The device also supplies or removes characters or bits that are unique to the communication format in use. By performing conversion and formatting services automatically, the USART appears to the processor as a simple or "transparent" input or output of byte-oriented parallel data.

The μ PD8251A is an advanced design of the industry standard 8251 USART. It operates with a wide range of microprocessors, including the 8080, 8085, and μ PD 780 (Z80TM). The additional features and enhancements of the μ PD8251A over the μ PD8251 are listed below.

1. The data paths are double-buffered with separate $1 / O$ registers for control, status, Data In and Data Out. This feature simplifies control programming and minimizes processor overhead.
2. The Receiver detects and handles "break" automatically in asynchronous operations, which relieves the processor of this task.
3. The Receiver is prevented from starting when in "break" state by a refined Rx initialization. This also prevents a disconnected USART from causing unwanted interrupts.
4. When a transmission is concluded the TxD line will always return to the marking state unless SBRK is programmed.
5. The $T x$ Disable command is prevented from halting transmission by the $T x$ Enable Logic enhancement, until all data previously written has been transmitted. The same logic also prevents the transmitter from turning off in the middle of a word.
6. Internal Sync Detect is disabled when External Sync Detect is programmed. An External Sync Detect Status is pravided through a flip-flop which clears itself upon a status read.
7. The possibility of a false sync detect is minimized by:

- ensuring that if a double sync character is programmed, the characters be contiguously detected.
- clearing the Rx register to all Logic $1 \mathrm{~s}(\mathrm{VOH})$ whenever the Enter Hunt command is issued in Sync mode.

8. The $\overline{R D}$ and $\overline{W R}$ do not affect the internal operation of the device as long as the μ PD8251A is not selected.
9. The μ PD8251A Status can be read at any time, however, the status update will be inhibited during status read.
10. The μ PD8251A has enhanced AC and DC characteristics and is free from extraneous glitches, providing higher speed and improved operating margins.
11. Baud rate from $D C$ to $64 K$.

$\mathbf{C} / \overline{\mathbf{D}}$	$\overline{\mathbf{R D}}$	$\overline{\mathbf{W R}}$	$\overline{\mathbf{C S}}$	
0	0	1	0	μ PD8251 $/ \mu$ PD8251A \rightarrow Data Bus
0	1	0	0	Data Bus $\rightarrow \mu$ PD8251 $/ \mu$ PD8251A
1	0	1	0	Status \rightarrow Data Bus
1	1	0	0	Data Bus \rightarrow Control
X	X	X	1	Data Bus \rightarrow 3-State
X	1	1	0	

TM: Z80 is a registered trademark of Zilog, Inc.

FUNCTIONAL DESCRIPTION
μ PD8251A FEATURES AND ENHANCEMENTS

BASIC OPERATION

BLOCK DIAGRAM

ABSOLUTE MAXIMUMRATINGS*	Operating Temperature	$-0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
	Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
	All Output Voltages	-0.5 to +7 Volts
	All input Voltages.	-0.5 to +7 Volts
	Supply Voltages	-0.5 to +7 Volts

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
*COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specificatlon is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$ for 8251 A and $\pm 5 \%$ for $8251 ; \mathrm{GND}=0 \mathrm{~V}$.

PARAMETER	SYMBOL	LIMITS					UNIT	TEST CONDITIONS
		$\mu \mathrm{PD} 8251$			${ }_{\mu}$ PD8251A			
		MIN	TYP	MAX	MIN	MAX		
Input Low Vol tage	$V_{\text {IL }}$	-0.5		0.8	0.5	0.8	\checkmark	
Input High Voltage	$\mathrm{V}_{1} \mathrm{H}$	2.0		V_{CC}	2.2	$V_{C C}$	V	
Output Low Voltage	$\mathrm{V}_{\text {OL }}$			0.45		0.45	V	μ PD8251: $I^{\prime} \mathrm{OL}=1.7 \mathrm{~mA}$ μ PD8251A: $\mathrm{IOL}_{\mathrm{L}}=2.2 \mathrm{~mA}$
Output High Voltage	VOH	2.4			2.4		V	$\begin{aligned} & \mu \mathrm{PD} 8251: \mathrm{I}_{\mathrm{OH}}=-10 \mathrm{C} \mu \mathrm{~A} \\ & \mu \mathrm{PD} 8251 \mathrm{~A}: \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \end{aligned}$
Data Bus Leakage	IOL			-50		-10	$\mu \mathrm{A}$	$V_{\text {OUT }}=0.45 \mathrm{~V}$
				10		10		$V_{\text {OUT }}=V_{\text {CC }}$
Input Load Current	I/L			10		10	$\mu \mathrm{A}$	At 5.5 V
Power Supply Current	ICC		45	80		100	mA	μ PD8251A: All Outputs $=$ Logic 1

CAPACITANCE

$T_{a}=25^{\circ} \mathrm{C} ; V_{C C}=G N D=O V$

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	TEST CONDITIONS
Input Capacitance	CIN			10	pF	fc = 1 MHz Unmeasured
I/O Capacitance	CIIO			20	pF	Unms pins returned to GND

$T_{B}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; V_{C C}=5.0 \mathrm{~V} \pm 10 \%$ for $8251 \mathrm{~A} ; G N D=O V ; V_{C C}=5.0 \mathrm{~V} \pm 5 \%$ for 8251

Notes: (1) AC timings measured at $\mathrm{V}_{\mathrm{OH}}=2.0, \mathrm{VOL}_{\mathrm{OL}}=0.8$, and with load circuit of Figure 1.
(2) This recovery time is for initialization only, when MODE, SYNC1, SYNC2, COMMAND and first DATA BYTES are written into the USART. Subsequent writing of both COMMAND and DATA are only allowed when TxRDY $=1$
(3) The $T \times C$ and $R \times C$ frequencies have the following limitations with respect to CLK

For $1 x$ Baud Rate, I T_{x} or $f_{R_{x}}<1 /(30$ t $C y)$
Reset Pulse Width $=6$ tcy minimum:
(4) Reset Pulse Width $=6$ t CY minimum.
(5) TTXRDYCCR $-2 T_{C Y}+T_{\phi}+T_{R}+200 \mathrm{~ns}$
(6) $T_{R X R D Y C L R ~}-2 T_{C Y}+T_{\phi}+T_{R}+170 n s$

Figure 1.

\triangle CAPACITANCE (pF)
Typical Δ Output
Delay Versus Δ Capacitance (pF)

WRITE DATA CYCLE (PROCESSOR \rightarrow USART)

TIMING WAVEFORMS (CONT.)

WRITE CONTROL OR OUTPUT PORT CYCLE (PROCESSOR \rightarrow USART)

READ CONTROL OR INPUT PORT CYCLE (PROCESSOR \leftarrow USART)

NOTE
(1) $T_{W c}$ Includes the cespones timing of a control byte (2) $T_{C A}$ Inctudes the oflect of CTS on the TXENEL circuitry

TRANSMITTER CONTROL AND FLAG TIMING
(ASYNC MODE)

TIMING WAVEFORMS (CONT.)

RECEIVER CONTROL AND FLAG TIMING (ASYNC MODE)

EXAMPLE FORMAT = 5 BIT CHARACTER WITH PARITY AND 2 SYNC CHARACTERS

TRANSMITTER CONTROL AND FLAG TIMING (SYNC MODE)

RECEIVER CONTROL AND FLAG TIMING (SYNC MODE)

PIN			FUNCTION
NO.	SYMBOL	NAME	
$\begin{gathered} 1,2, \\ 27,28 \\ 5-8 \end{gathered}$	$\mathrm{D}_{7}-\mathrm{D}_{0}$	Data Bus Buffer	An 8-bit, 3-state bi-directional buffer used to interface the USART to the processor data bus. Data is transmitted or received by the buffer in response to input/output or Read/ Write instructions from the processor. The Data Bus Buffer also transfers Control words, Command words, and Status.
26	$V_{C C}$	$\mathrm{V}_{\text {CC }}$ Supply Voltage	+5 volt supply
4	GND	Ground	Ground
Read/Write Control Logic			This logic block accepts inputs from the processor Control Bus and generates control signals for overall USART operation. The Mode Instruction and Command Instruction registers that store the control formats for device functional definition are located in the Read/ Write Control Logic.
21	RESET	Reset	A "one" on this input forces the USART into the "Idle" mode where it will remain until reinitialized with a new set of control words. Minimum RESET pulse width is $6 \mathrm{t}_{\mathrm{C}} \mathrm{C}$.
20	CLK	Clock Pulse	The CLK input provides for internal device timing and is usually connected to the Phase 2 (TTL) output of the μ PB8224 Clock Generator. External inputs and outputs are not referenced to CLK, but the CLK frequency must be at least 30 times the Receiver or Transmitter clocks in the synchronous mode and 4.5 times for the asynchronous mode.
10	$\overline{\mathrm{WR}}$	Write Data	A "zero" on this input instructs the USART to accept the data or control word which the processor is writing out on the data bus.
13	$\overline{\mathrm{RD}}$	Read Data	A "zero" on this input instructs the USART to place the data or status information onto the Data Bus for the processor to read.
12	C/D̄	Control/Data	The Control/Data input, in conjunction with the $\overline{W R}$ and $\overline{R D}$ inputs, informs the USART to accept or provide either a data character, control word or status information via the Data Bus. $0=$ Data; 1 = Control.
11	$\overline{\overline{C S}}$	Chip Select	A "zero" on this input enables the USART to read from or write to the processor.
Modem Control			The μ PD8251 and μ PD8251A have a set of control inputs and outputs which may be used to simplify the interface to a Modem.
22	$\overline{\text { DSR }}$	Data Set Ready	The Data Set Ready input can be tested by the processor via Status information. The $\overline{\mathrm{DSR}}$ input is normally used to test Modem Data Set Ready condition.
24	$\overline{\text { DTR }}$	Data Terminal Ready	The Data Terminal Ready output can be controlled via the Command word. The DTR output is normally used to drive Modem Data Terminal Ready or Rate Select lines.
23	$\overline{\text { RTS }}$	Request to Send	The Request to Send output can be controlled via the Command word. The RTS output is normally used to drive the Modem Request to Send line.
17	$\overline{\text { CTS }}$	Clear to Send	A "zero" on the Clear to Send input enables the USART to transmit serial data if the TXEN bit in the Command Instruction register is enabled (one).

TRANSMIT BUFFER
The Transmit Buffer receives parallel data from the Data Bus Buffer via the internal data bus, converts paraliel to serial data, inserts, the necessary characters or bits needed for the programmed communication format and outputs composite serial data on the TxD pin.

PIN IDENTIFICATION (CONT.)

PIN			FUNCTION
NO.	SYMBOL	NAME	
Transmit Control Logic			The Transmit Control Logic accepts and outputs all external and internal signals necessary for serial data transmission.
15	TxRDY	Transmitter Ready	Transmitter Ready signals the processor that the transmitter is ready to accept a data character. TxRDY can be used as an interrupt or may be tested through the Status information for polled operation. Loading a character from the processor automatically resets $T \times R D Y$, on the leading edge.
18	T×E	Transmitter Empty	The Transmitter Empty output signals the processor that the USART has no further characters to transmit. TXE is automatically reset upon receiving a data character from the processor. In half-duplex, TxE can be used to signal end of a transmission and request the processor to "turn the line around." The TxEn bit in the command instruction does not effect TxE, In the Synchronous mode, a "one" on this output indicates that a Sync character or characters are about to be automatically transmitted as "fillers" because the next data character has not been loaded.
9	$\overline{\mathrm{T} \times \mathrm{C}}$	Transmitter Clock	The Transmitter Clock controls the serial charac ter transmission rate. In the Asynchronous mode, the $\overline{T \times C}$ frequency is a multiple of the actual Baud Rate. Two bits of the Mode Instruction select the multiple to be $1 \times, 16 x$, or $64 x$ the Baud Rate. In the Synchronous mode, the $\overline{T \times C}$ frequency is automatically selected to equal the actual Baud Rate. Note that for both Synchronous and Asynchronous modes, serial data is shifted out of the USART by the falling edge of $\overline{T \times C}$.
19	T×D	Transmitter Data	The Transmit Control Logic outputs the composite serial data stream on this pin.

μ PD8251 AND μ PD8251A INTERFACE TO 8080 STANDARD SYSTEM BUS

The Receive Buffer accepts serial data input at the $\overline{R \times D}$ pin and converts the data from serial to parallel format. Bits or characters required for the specific communication technique in use are checked and then an eight-bit "assembled" character is readied for the processor. For communication techniques which require less than eight bits, the μ PD8251 and μ PD8251A set the extra bits to "zero."

PIN			FUNCTION
NO.	SYMBOL	NAME	
Receiver Control Logic			This block manages all activities related to incoming data.
14	R×RDY	Receiver Ready	The Receiver Ready output indicates that the Receiver Buffer is ready with an "assembled" character for input to the processor. For Polled operation, the processor can check R×RDY using a Status Read or RxROY can be connected to the processor interrupt structure. Note that reading the character to the processor automatically resets RxRDY.
25	$\overline{\mathrm{R} \times \mathrm{C}}$	Receiver Clock	The Receiver Clock determines the rate at which the incoming character is received. In the Asynchronous mode, the $\overline{R \times C}$ frequency may be 1.16 or 64 times the actual Baud Rate but in the Synchronous mode the $\overline{R \times C}$ frequency must equal the Baud Rate. Two bits in the mode instruction select Asynchronous at $1 x, 16 x$ or $64 x$ or Synchronous operation at $1 x$ the Baud Rate. Unlike $\overline{T \times C}$, data is sampled by the $\mu \mathrm{PD} 8251$ and μ PD8251A on the rising edge of $\overline{\mathrm{R} \times \mathrm{C}}$. (1)
3	$R \times D$	Receiver Data	A composite serial data stream is received by the Receiver Control Logic on this pin.
16	SYNDET (μ P.D8251)	Sync Detect	The SYNC Detect pin is only used in the Synchronous mode. The μ PD8251 may be programmed through the Mode Instruction to operate in either the internal or external Sync mode and SYNDET then functions as an output or input respectively. In the internal Sync mode, the SYNDET output will go to a "one" when the μ PD8251 has located the SYNC character in the Receive mode. If double SYNC character (bi-sync) operation has been programmed. SYNDET will go to "one" in the middle of the last bit of the second SYNC character. SYNDET is automatically reset to "zero" upon a Status Read or RESET. In the external SYNC mode, a "zero" to "one" transition on the SYNDET input will cause the μ PD8251 to start assembling data character on the next falling edge of $\overline{\mathrm{R} \times \boldsymbol{C}}$. The length of the SYNDET input should be at least one $\overline{\mathrm{R} \times \mathrm{C}}$ period, but may be removed once the μ PD8251 is in SYNC.
16	SYNDET/BD (μ PD8251A)	Sync Detect/ Break Detect	The SYNDET/BD pin is used in both Synchronous and Asynchronous modes. When in SYNC mode the features for the SYNDET pin described above apply. When in Asynchronous mode, the Break Detect output will go high which all zero word of the programmed length is received. This word consists of: start bit, data bit, parity bit and one stop bit. Reset only occurs when Rx data returns to a logic one state or upon chip reset. The state of Break Detect can be read as a status bit.

Note: (1) Since the μ PD8251 and μ PD8251A will frequently be handling both the reception and transmission for a given link, the Receive and Transmit Baud Rates will be same. $\overline{\mathrm{R} \times \mathrm{C}}$ transmission for a given link, the Receive and Transmit Baud Rates will be same. R×C
and $\overline{T \times C}$ then require the same frequency and may be tied together and connected to a single clock source or Baud Rate Generator.
Examples: If the Baud Rate equals 110 (Async)

If the Baud Rate equals 300 :
$\overline{R \times C}$ or $\overline{T \times C}$ equals $300 \mathrm{~Hz}(1 x) A$ or S
$\overline{\mathrm{PxC}}$ or $\overline{\mathrm{T} X \mathrm{C}}$ equals 4800 Hz (16x) A only
$\overline{\mathrm{R} \times \mathrm{C}}$ or $\overline{\mathrm{T} \times \mathrm{C}}$ equals $19.2 \mathrm{KHz}(64 \times) \mathrm{A}$ only

RECEIVE BUFFER

PIN IDENTIFICATION (CONT.)

USART PROGRAMMING
The USART must be loaded with a group of two to four control words provided by the processor before data reception and transmission can begin. A RESET (internal or external) must immediately proceed the control words which are used to program the complete operational description of the communications interface. If an external complete operational description of the communications interface. If an external
RESET is not available, three successive 00 Hex or two successive 80 Hex command instructions ($C / \bar{D}=1$) followed by a software reset command instruction (40 Hex) can be used to initialize the μ PD8251 and μ PD8251A.

There are two control word formats:

1. Mode Instruction
2. Command Instruction

MODE INSTRUCTION This control word specifies the general characteristics of the interface regarding the Synchronous or Asynchronous mode, BAUD rate factor, character length, parity, and number of stop bits. Once the Mode Instruction has been received, SYNC characters or Command Instructions may be inserted depending on the Mode Instruction content.

This control word will be interpreted as a SYNC character definition if immediately

A set of control words must be sent to the μ PD8251 and μ PD8251A to define the desired mode and communications format. The control words will specify the BAUD rate factor ($1 x, 16 x, 64 x$), character length (5 to 8), number of STOP bits (1, 1-1/2, 2) Asynchronous or Synchronous mode, SYNDET (IN or OUT), parity, etc.

After receiving the control words, the μ PD8251 and μ PD8251A are ready to communicate. TxRDY is raised to signal the processor that the USART is ready to receive a character for transmission. When the processor writes a character to the USART, TxRDY is automatically reset.

Concurrently, the μ PD8251 and μ PD8251A may receive serial data; and after receiving an entire character, the $\mathrm{R} \times$ RDY output is raised to indicate a completed character is ready for the processor. The processor fetch will automatically reset $R \times R D Y$.

Note: The μ PD8251 and μ PD8251A may provide faulty RxRDY for the first read after power-on or for the first read after receive is re-enabled by a command instruction ($R \times E$). A dummy read is recommended to clear faulty RxRDY. But this is not the case for the first read after hardware or software reset after the device operation has once been established.

The μ PD8251 and μ PD8251A cannot transmit until the TxEN (Transmitter Enable) bit has been set by a Command Instruction and until the $\overline{\mathrm{CTS}}$ (Clear to Send) input is a "zero". TxD is held in the "marking" state after Reset awaiting new control words. preceded by a Mode Instruction which specified a Synchronous format. After the SYNC character (s) are specified or after an Asynchronous Mode Instruction, all subsequent control words will be interpreted as an update to the Command Instruction. Command Instruction updates may occur at any time during the data block. To modify the Mode Instruction, a bit may be set in the Command Instruction which causes an internal Reset which allows a new Mode Instruction to be accepted.

> NOTE (1) The second SYNC character is skipped i\& MODE instruction has programmed the μ PD8251 and μ PD8251A to single character Internal SYNC Mode. Both SYNC characters are skipped if MODE instruction has programmed the μ PD8251 and μ PD8251A to ASYNC mode.

The μ PD8251 and μ PD8251A can operate in either Asynchronous or Synchronous communication modes. Understanding how the Mode Instruction controls the functional operation of the USART is easiest when the device is considered to be two separate components (one asynchronous and the other synchronous) which share the same support circuits and package. Although the format definition can be changed at will or "on the fly," the two modes will be explained separately for clarity.

When a data character is written into the μ PD8251 and μ PD8251A, the USART automatically adds a START bit (low level or "space") and the number of STOP bits (high level or "mark") specified by the Mode Instruction. If Parity has been enabled, an odd or even Parity bit is inserted just before the STOP bit(s), as specified by the Mode Instruction. Then, depending on $\overline{C T S}$ and TXEN, the character may be transmitted as a serial data stream at the $T \times D$ output. Data is shifted out by the falling edge of $\overline{T \times C}$ at $\overline{T \times C}, \overline{T \times C} / 16$ or $\overline{T \times C} / 64$, as defined by the Mode Instruction.

If no data characters have been loaded into the μ PD8251 and μ PD8251A, or if all available characters have been transmitted, the TXD output remains "high" (marking) in preparation for sending the START bit of the next character provided by the processor. TXD may be forced to send a BREAK (continuously low) by setting the correct bit in the Command Instruction.

The $R \times D$ input line is normally held "high" (marking) by the transmitting device. A falling edge at $R \times D$ signals the possible beginning of a START bit and a new character. The START bit is checked by testing for a "low" at its nominal center as specified by the BAUD RATE. If a "low" is detected again, it is considered valid, and the bit assembling counter starts counting. The bit counter locates the approximate center of the data, parity (if specified), and STOP bits. The parity error flag (PE) is set, if a parity error occurs. Input bits are sampled at the $R \times D$ pin with the rising edge of $\overline{\mathrm{R} \times \mathrm{C}}$. If a high is not detected for the STOP bit, which normally signals the end of an input character, a framing error (FE) will be set. After a valid STOP bit, the input character is loaded into the parallel Data Bus Buffer of the μ PD8251 and μ PD8251A and the R×RDY signal is raised to indicate to the processor that a character is ready to be fetched. If the processor has failed to fetch the previous character, the new character replaces the old and the overrun flag (OE) is set. All the error flags can be reset by setting a bit in the Command Instruction. Error flag conditions will not stop subsequent USART operation.

MODE INSTRUCTION DEFINITION

ASYNCHRONOUS TRANSMISSION

ASYNCHRONOUS RECEIVE

Notes: (1) Generated by μ PO8251/82151A
Does not appear on the Data Bus.
(3) If character length is defined as 5, 6, or 7 bits, the unused bits, are set to "zero."

As in Asynchronous transmission, the TxD output remains "high" (marking) character) from the processor. After a Command Instruction has set TxEN and after Clear to Send ($\overline{\mathrm{CT}}$) goes low, the first character is serially transmitted. Data is shifted out on the falling edge of $\overline{\mathrm{TxC}}$ and the same rate as $\overline{\mathrm{TxC}}$.

Once transmission has started, Synchronous Mode format requires that the serial data stream at T×D continue at the $\overline{\mathrm{TXC}}$ rate or SYNC will be lost. If a data character is not provided by the processor before the μ PD8251 and μ PD8251A Transmit Buffer becomes empty, the SYNC character(s) loaded directly following the Mode Instruction will be automatically inserted in the TxD data stream. The SYNC character(s) are inserted to fill the line and maintain synchronization until new data characters are available for transmission. If the μ PD8251 and μ PD8251A become empty, and must send the SYNC character(s), the TxEMPTY output is raised to signal the processor that the Transmitter Buffer is empty and SYNC characters are being transmitted. TxEMPTY is automatically reset by the next character from the processor.

In Synchronous Receive, character synchronization can be either external or internal. If the internal SYNC mode has been selected, and the Enter HUNT (EH) bit

SYNCHRONOUS RECEIVE

MODE INSTRUCTION FORMAT SYNCHRONOUS MODE
Incoming data on the RxD input is sampled on the rising edge of $\overline{\mathrm{RxC}}$, and the Receive Buffer is compared with the first SYNC character after each bit has been loaded until a match is found. If two SYNC characters have been programmed, the next received character is also compared. When the SYNC character(s) programmed have been detected, the μ PD8251 and μ PD8251A leave the HUNT mode and are in character synchronization. At this time, the SYNDET (output) is set high. SYNDET is automatically reset by a STATUS READ.

If external SYNC has been specified in the Mode Instruction, a "one" applied to the SYNDET (input) for at least one $\overline{\mathrm{RxC}}$ cycle will synchronize the USART.

Parity and Overrun Errors are treated the same in the Synchronous as in the Asynchronous Mode. If not in HUNT, parity will continue to be checked even if the receiver is not enabled. Framing errors do not apply in the Synchronous format.

The processor may command the receiver to enter the HUNT mode with a Command Instruction which sets Enter HUNT (EH) if synchronization is lost.

TRANSMIT/RECEIVE
 FORMAT SYNCHRONOUS MODE

PROCESSOR BYTES (5-8 BITS CHAR)

ASSEMBLED SERIAL DATA OUTPUT (TAD)

TRANSMIT FORMAT

Note: (1) If character length is defined as 5,6 or 7 bits, the unused buts are set to "zero."

COMMAND INSTRUCTION FORMAT

STATUS READ FORMAT

PARITY ERROR

OVERRUN ERROR
If the processor fails to read a data character before the one following is availabie, the OE flag is set. It is cleared by setting the ER bit in a subsequent Command Instruction. Although OE being set does not inhibit USART operation, the previously received character is overwritten and lost.

If a valid STOP bit is not detected at the end of a character, the FE flag is set. It is cleared by setting the ER bit in a subsequent Command Instruction. FE being set does not inhibit USART operation.

Note: (1) ASYNC mode on!y.

STATUS READ FORMAT

OVERRUN ERROR
The OE flag is set when the CPU does not read a character before the next one becomes available. It is reset by the ER bit of the Command instruction. OE does not inhibit operation of the μ PD8251 and μ PD8251A; but, the pre. viously overrun character is lost.

Notes:
(1) No effect in ASYNC mode
(2) TXRDY stetus bit is not totally equivalent to the TXRDY output pin, the relationship is as follows:

ASYNCHRONOUS SERIAL INTERFACE TO CRT TERMINAL, DC to 9600 BAUD

ASYNCHRONOUS INTERFACE TO TELEPHONE LINES

SYNCHRONOUS INTERFACE TO TERMINAL OR PERIPHERAL DEVICE

SYNCHRONOUS INTERFACE TO TELEPHONE LINES
647

PACKAGE OUTLINES μ PD8251C μ PD8251AC

Plastic

ITEM	MILLIMETERS	INCHES
A	38.0 MAX.	1.496 MAX.
B	2.49	0.098
C	2.54	0.10
D	0.5 ± 0.1	0.02 ± 0.004
E	33.02	1.3
F	1.5	0.059
G	2.54 MIN.	0.10 MIN.
H	0.5 MIN.	0.02 MIN.
I	5.22 MAX	0.205 MAX.
J	5.72 MAX	0.225 MAX.
K	15.24	0.6
L	13.2	0.52
M	$0.25+0.10$	$0.01+0.004$

μ PD8251D
μ PD8251AD

Ceramic

ITEM	MILLIMETERS	INCHES
A	36.2 MAX.	1.43 MAX .
B	1.59 MAX.	0.06 MAX.
C	2.54 ± 0.1	0.1 ± 0.004
D	0.46 ± 0.01	0.02 ± 0.004
E	33.02 ± 0.1	1.3 ± 0.004
F	1.02 MIN ,	0.04 MIN.
G	3.2 MIN .	0.13 MIN.
H	1.0 MIN .	0.04 MIN.
I	3.5 MAX.	0.14 MAX.
J	4.5 MAX.	0.18 MAX.
K	15.24 TYP.	0.6 TYP.
L	14.93 TYP.	0.59 TYP.
M	0.25 ± 0.05	0.01 ± 0.002

PROGRAMMABLE INTERVAL TIMER

DESCRIPTION The NEC μ PD8253-5 contains three independent, programmable, multi-modal 16-bit counter/timers. It is designed as a general purpose device, fully compatible with the 8080 family. The μ PD8253-5 interfaces directly to the busses of the processor as an array of I/O ports.

The μ PD8253-5 can generate accurate time delays under the control of system software. The three independent 16 -bit counters can be clocked at rates from DC to 4 MHz . The system software controls the loading and starting of the counters to provide accurate multiple time delays. The counter output flags the processor at the completion of the time-out cycles.

System overhead is greatly improved by relieving the software from the maintenance of timing loops. Some other common uses for the μ PD8253-5 in microprocessor based systems are:

- Programmable Baud Rate Generator
- Event Counter
- Binary Rate Multiplier
- Real Time Clock
- Digital One-Shot
- Complex Motor Controller
- NEC Now Supplies μ PD8253-5 to all μ PD8253 Requirements

FEATURES - Three Independent 16-Bit Counters

- Clock Rate: DC to 4 MHz
- Count Binary or BCD
- Single +5 Volt Supply, $\pm 10 \%$
- 24 Dual-In-Line Plastic Package

$\mathrm{D}_{7}{ }^{1}$		24	$\square \mathrm{vcc}$
$\mathrm{D}_{6} \mathrm{C}_{2}$		23	$\square \overline{W R}$
$\mathrm{D}_{5} \mathrm{C}_{3}$		22	$\square \overline{\text { RD }}$
$\mathrm{D}_{4} \mathrm{C}_{4}$		21	$\square \overline{C S}$
$\mathrm{D}_{3} \square_{5}$		20	$\square \mathrm{A}_{1}$
$\mathrm{D}_{2} \square^{6}$	$\mu \mathrm{PD}$	19	曰 A_{0}
$\mathrm{D}_{1} \square_{7}$	8253-5	18	$\square \mathrm{CLK} 2$
$\mathrm{D}_{0} \mathrm{C}^{8}$		17	\square OUT 2
CLK O- 9		16	$\square \mathrm{gate} 2$
OUT $0 \square^{10}$		15	В clk 1
GATE 0 - 11		14	$\square \mathrm{GATE} 1$
GND 12		13	\square OUT 1

PIN NAMES

$\mathrm{D}_{7}-\mathrm{D}_{0}$	Data Bus (8-Bit)
CLK N	Counter Clock Inputs
GATE N	Counter Gate Inputs
OUT N	Counter Outputs
$\overline{\mathrm{RD}}$	Read Counter
$\overline{\text { WR }}$	Write Command or Data
$\overline{\mathrm{CS}}$	Chip Select
$\mathrm{A}_{0_{1}} \mathrm{~A}_{1}$	Counter Select
V_{C}	+5 Volts
GND	Ground

μ PD8253-5

Data Bus Buffer
The 3-state, 8 -bit, bi-directional Data Bus Buffer interfaces the μ PD8253-5 to the 8080AF/8085A microprocessor system. It will transmit or receive data in accordance with the INput or OUTput instructions executed by the processor. There are three basic functions of the Data Bus Buffer.

1. Program the modes of the μ PD8253-5.
2. Load the count registers.
3. Read the count values.

Read/Write Logic

The Read/Write Logic controls the overall operation of the μ PD8253-5 and is governed by inputs received from the processor system bus.

Control Word Register

Two bits from the address bus of the processor, A_{0} and A_{1}, select the Control Word Register when both are at a logic " 1 " (active-high logic). When selected, the Control Word Register stores data from the Data Bus Buffer in a register. This data is then used to control:

1. The operational MODE of the counters.
2. The selection of $B C D$ or Binary counting.
3. The loading of the count registers.

$\overline{\mathrm{RD}}$ (Read)

This active-low signal instructs the μ PD8253-5 to transmit the selected counter value to the processor.

$\overline{W R}$ (Write)

This active-low signal instructs the μ PD8253-5 to receive MODE information or counter input data from the processor.

$\mathrm{A}_{1}, \mathrm{~A}_{\mathbf{0}}$

The A_{1} and A_{0} inputs are normally connected to the address bus of the processor.
They control the one-of-three counter selection and address the control word register to select one of the six operational MODES.

$\overline{\mathbf{C S}}$ (Chip Select)

The μ PD8253-5 is enabled when an active-low signal is applied to this input. Reading or writing from this device is inhibited when the chip is disabled. The counter operation, however, is not affected.
Counters \#0, \#1, \#2
The three identical, 16 -bit down counters are functionally independent allowing for separate MODE configuration and counting operation. They function as Binary or $B C D$ counters with their gate, input and output line configuration determined by the operational MODE data stored in the Control Word Register. The system software overhead time can be reduced by allowing the control word to govern the loading of the count data.
The programmer, with READ operations, has access to each counter's contents. The μ PD8253-5 contains the commands and logic to read each counter's contents while still counting without disturbing its operation.
The following is a table showing how the counters are manipulated by the input signals to the Read/Write Logic.

$\overline{\mathbf{C S}}$	$\overline{\mathbf{R D}}$	$\overline{\mathrm{WR}}$	\mathbf{A}_{1}	$\mathbf{A}_{\mathbf{0}}$	FUNCTION
0	1	0	0	0	Load Counter No. 0
0	1	0	0	1	Load Counter No. 1
0	1	0	1	0	Load Counter No. 2
0	1	0	1	1	Write Mode Word
0	0	1	0	0	Read Counter No. 0
0	0	1	0	1	Read Counter No. 1
0	0	1	1	0	Read Counter No. 2
0	0	1	1	1	No-Operation, 3-State
1	X	X	X	X	Disable, 3-State
0	1	1	X	X	No-Operation, 3-State

Note: (1) With respect to ground.
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
"COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the oparational sections of this specification is not implied, Exposure to absolute maximum rating conditions for extended periods may affect device rellability.
DC CHARACTERISTICS
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Low Voltage	$V_{1 L}$	-0.5		0.8	V	
Input High Voltage	$\mathrm{V}_{1} \mathrm{H}$	2.0		$\mathrm{V}_{\mathrm{Cc}}+0.5$	V	
Output Low Voltage	V_{OL}			0.45	V	${ }^{1} \mathrm{OL}=2.2 \mathrm{~mA}$
Output High Voltage	VOH	2.4			V	${ }^{1} \mathrm{OH}=-400 \mu \mathrm{~A}$
Input Load Current	$1 / 2$			± 10	$\mu \mathrm{A}$	$V_{\text {IN }}=V_{\text {CC }}$ to 0 V
Output Float Leakage Current	IOFL			± 10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$ to 0 V
$V_{\text {CC }}$ Supply Current	${ }^{\text {I CC }}$			140	mA	

$T_{\mathrm{a}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=\mathrm{GND}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	CIN			10	pF	$\mathrm{f}_{\mathrm{c}}=1 \mathrm{MHz}$
Input/Output Capacitance	$\mathrm{Cl}_{1 / \mathrm{O}}$			20	pF	Unmeasured pins returned to $V_{S S}$.

μ PD8253-5

$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+6 \mathrm{~V} \pm 10 \% ; \mathrm{GND}=\mathrm{OV}$

PARAMETER	SYMBOL	$\frac{\text { LIMITS }}{\mu \text { PD8253.5 }}$			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
READ						
Address Stable Before $\overline{\mathrm{READ}}$	${ }^{\text {t } A R}$	0			ns	
Address Hold Time for READ	tra	0			ns	
AEAD Pulse Width	${ }_{\text {t }}^{\text {RR }}$	250			ns	
Data Delay from READ	tro			170	ns	$C L=160 \mathrm{pF}$
READ to Data Floating	${ }^{1} \mathrm{DF}$	25		100	ns	$C L=150 \mathrm{pF}$
WRITE						
Address Stable Before $\overline{\text { WRITE }}$	${ }^{t} \mathrm{AW}$	0			ns	
Address Hold Time for WRITE	twA	0			ns	
WRITE Pulse Width	twW	250			ns	
Data Set Up Time for WRITE	${ }^{1}$ DW	150			ns	
Data Hold Time for WRTTE	*WD	0			ns	
Recovery Time Between WRITES	${ }^{\text {t R V }}$	1			$\mu \mathrm{s}$	
CLOCK AND GATE TIMING						
Clock Period	${ }^{\text {TLK }}$	250		DC	ns	
High Pulse Width	${ }^{\text {t PWW }}$	160			ns	
Low Pulse Width	tPWL	90			ns	
Gate Pulse Width High	${ }_{\text {tGW }}$	150			ns	
Gate Set Up Time to Clock \dagger	${ }^{\text {t GS }}$	100			ns	
Gate Hold Time After Clock ${ }^{\text {i }}$	${ }^{1} \mathrm{GH}$	50			ns	
Low Gate Width	${ }^{1} \mathrm{GL}$	100			$n \mathrm{~s}$	
Output Delay from Clock 1	${ }^{1} \mathrm{OD}$			300	ns	$C L=150 \mathrm{pF}$
Output Delay from Gate	${ }^{\text {²0 }}$ ODG			300	ns	$C L=150 \mathrm{pF}$

Note: (1) AC Timing Measured at $\mathrm{V}_{\mathrm{OH}}=2.2 \mathrm{~V} ; \mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V}$.

TIMING WAVEFORMS

CLOCK AND GATE TIMING

PROGRAMMING
THE μ PD8253-5

The programmer can select any of the six operational MODES for the counters using system software. Individual counter programming is accomplished by loading the CONTROL WORD REGISTER with the appropriate control word data $\left\langle\mathrm{A}_{0}, \mathrm{~A}_{1}=11\right.$).

CONTROL WORD FORMAT

D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}
SC 1	$\mathrm{SC0}$	RL 1	RL 0	M 2	$\mathrm{M1}^{1}$	MO	BCD

SC - Select Counter

SC1	SCO	
0	0	Select Counter 0
0	1	Select Counter 1
1	0	Select Counter 2
1	1	Invalid

RL - Read/Load

RL1	RL0	
0	0	Counter Latching Operation
1	0	Read/Load Most Significant Byte Only
0	1	Read/Load Least Significant Byte Only
1	1	Read/Load Least Significant Byte First, Then Most Significant Byte

BCD

0	Binary Counter, 16-Bits
1	BCD Counter, 4-Decades

M-Mode

M2	M1	M0	
0	0	0	Mode 0
0	0	1	Mode 1
\times	1	0	Mode 2
X	1	1	Mode 3
1	0	0	Mode 4
1	0	1	Mode 5

Each of the three counters can be individually programmed with different operating MODES by appropriately formatted Control Words. The following is a summary of the MODE operations.

Mode 0: Interrupt on Terminal Count

The initial MODE set operation forces the OUTPUT low. When the specified counter is loaded with the count value, it will begin counting. The OUTPUT will remain low until the terminal count sets it high. It will remain in the high state until the trailing edge of the second $\overline{W R}$ pulse loads in COUNT data. If data is loaded during the counting process, the first $\overline{W R}$ stops the count. Counting starts with the new count data triggered by the falling clock edge after the second $\overline{W R}$. If a GATE pulse is asserted while counting, the count is terminated for the duration of GATE. The falling edge of CLK following the removal of GATE restarts counting from the terminated point.

Mode 1: Programmable One-Shot

The OUTPUT is set low by the falling edge of CLOCK following the trailing edge of GATE. The OUTPUT is set high again at the terminal count. The output pulse is not affected if new count data is loaded while the OUTPUT is low. The new data will be loaded on the rising edge of the next trigger pulse. The assertion of a trigger pulse while OUTPUT is low, resets and retriggers the One-Shot. The OUTPUT will remain low for the full count value after the rising edge of TRIGGER.

Mode 2: Rate Generator
The RATE GENERATOR is a variable modulus counter. The OUTPUT goes low for one full CLOCK period as shown in following timing diagram. The count data sets the time between OUTPUT pulses. If the count register is reloaded between output pulses the present period will not be affected. The subsequent period will reflect the new value. The OUTPUT will remain high for the duration of the asserted GATE input. Normal operation resumes on the falling CLOCK edge following the rising edge of GATE.

Note: (1) All internal counter events occur at the falling edge of the associated clock in all modes of operation.

Mode 3: Square Wave Generator
MODE 3 resembles MODE 2 except the OUTPUT will be high for half of the count and low for the other half (for even values of data). For odd values of count data the OUTPUT will be high one clock cycle longer than when it is low (High Period $\rightarrow \frac{\mathrm{N}+1}{2}$
clock cycles; Low Period $\rightarrow \frac{N-1}{2}$ clock periods, where N is the decimal value of count data). If the count register is reloaded with a new value during counting, the new value will be reflected immediately after the output transition of the current count.
The OUTPUT will be held in the high state while GATE is asserted. Counting will start from the full count data after the GATE has been removed.

Mode 4: Software Triggered Strobe

The OUTPUT goes high when MODE 4 is set, and counting begins after the second byte of data has been loaded. When the terminal count is reached, the OUTPUT will pulse low for one clock period. Changes in count data are reflected in the OUTPUT as soon as the new data has been loaded into the count registers. During the loading of new data, the OUTPUT is held high and counting is inhibited.
The OUTPUT is held high for the duration of GATE. The counters are reset and counting begins from the full data value after GATE is removed.

Mode 5: Hardware Triggered Strobe

Loading MODE 5 sets OUTPUT high. Counting begins when count data is loaded and GATE goes high. After terminal count is reached, the OUTPUT will pulse low for one clock period. Subsequent trigger pulses will restart the counting serquence with the OUTPUT pulsing low on terminal count following the last rising ecige of the trigger input (Reference bottom half of timing diagram).

Plastic

ITEM	MILLIMETERS	INCHES
A	33 MAX	1.3 MAX
8	2.53	0.1
c	2.64	0.1
D	0.5 ± 0.1	0.02 ± 0.004
E	27.94	1.1
F	1.5	0.059
G	2.54 MIN	0.1 MiN
H	0.5 MIN	0.02 MiN
1	5.22 MAX	0.205 MAX
J	5.72 MAX	0.225 MAX
K	15.24	0.6
L	13.2	0.52
M	$0.25{ }_{-0.05}^{+0.10}$	$0.01+0.004$

PROGRAMMABLE PERIPHERAL INTERFACES

The μ PD8255A- 5 is a general purpose programmable INPUT/OUTPUT device designed for use with the 8080A/8085A microprocessors. Twenty-four (24) I/O lines may be programmed in two groups of twelve (group I and group II) and used in three modes of operation. In the Basic mode, (MODE 0), each group of twelve I/O pins may be programmed in sets of 4 to be input or output. In the Strobed mode, (MODE 1), each group may be programmed to have 8 lines of input or output. Three of the remaining four pins in each group are used for handshaking strobes and interrupt control signals. The Bi -directional Bus mode, (MODE 2), uses the 8 lines of Port A for a bi-directional bus, and five lines from Port C for bus control signals. The μ PD8255A-5 is packaged in $40-$ pin plastic dual-in-line packages.

FEATURES - Fully Compatible with the 8080A/8085 Microprocessor Families

- All Inputs and Outputs TTL Compatible
- 24 Programmable I/O Pins
- Direct Bit SET/RESET Eases Control Application Interfaces
- 8-4 mA Darlington Drive Outputs for Printers and Displays.
- LSI Drastically Reduces System Package Count
- Standard 40-Pin Dual-In-Line Plastic and Ceramic Packages

$\mathrm{PA}_{3}-1$	40	$\square \mathrm{PA}_{4}$
$\mathrm{PA}_{2}-2$	39	$\square \mathrm{PA}_{5}$
$\mathrm{PA}_{1} \square^{3}$	38	$\bigcirc P A_{6}$
$\mathrm{PA}_{0} \square_{4}$	37	$\square \mathrm{PA}_{7}$
RD 5	36	$\square \overline{W R}$
$\overline{C S} \square 6$	35	\square RESET
GND 7^{-}	34	$\square D_{0}$
$A_{1} \square^{8}$	33	$\square \mathrm{D}_{1}$
$A_{0} \square$	32	$\square \mathrm{D}_{2}$
$\mathrm{PC}_{7}-10$	$\mu \mathrm{PD} \quad 31$	$\square \mathrm{D}_{3}$
$\mathrm{PC}_{6} \square 11$	8255A-5 30	$\square \mathrm{D}_{4}$
$\mathrm{PC}_{5} \square 12$	29	$\square \mathrm{D}_{5}$
$\mathrm{PC}_{4} \square 13$	28	$\square \mathrm{D}_{6}$
$\mathrm{PC}_{0} \square_{14}$	27	$\square \mathrm{D}_{7}$
$\mathrm{PC}_{1} \square 15$	26	$\square v_{\text {CC }}$
$\mathrm{PC}_{2} \square 16$	25	$\square \mathrm{PB}_{7}$
$\mathrm{PC}_{3}-17$	24	$\square \mathrm{PB}_{6}$
$\mathrm{PB}_{0} \square 18$	23	PB_{5}
$\mathrm{PB}_{1} \square_{19}$	22	PB_{4}
$\mathrm{PB}_{2} \square_{20}$	21] PB_{3}

PIN NAMES

$\mathrm{D}_{7}-\mathrm{D}_{0}$	Data Bus (Bi-Directional)
RESET	Reset Input
$\overline{\mathrm{CS}}$	Chip Select
$\overline{\mathrm{RD}}$	Read Input
$\overline{\mathrm{WR}}$	Write Input
$\mathrm{A}_{0}, \mathrm{~A}_{1}$	Port Address
$\mathrm{PA}_{7} \cdot \mathrm{PA}_{0}$	Port A (Bit)
$\mathrm{PB}_{7} \cdot \mathrm{~PB}_{0}$	Port $\mathrm{B}(\mathrm{Bit})$
$\mathrm{PC}_{7}-\mathrm{PC}_{0}$	Port $\mathrm{C}(\mathrm{Bit})$
V_{CC}	+5 Volts
GND	OVolts

μ PD8255A-5

General

The μ PD8255A-5 Programmable Peripheral Interface (PPI) is designed for use in 8080A/8085A microprocessor systems. Peripheral equipment can be effectively and efficiently interfaced to the 8080A/8085A data and control busses with the μ PD8255A-5. The μ PD8255A-5 is functionally configured to be programmed by system software to avoid external logic for peripheral interfaces.

Data Bus Buffer

The 3-state, bidirectional, 8-bit Data Bus Buffer ($\mathrm{D}_{0}-\mathrm{D}_{7}$) of the μ PD8255A-5 can be directly interfaced to the processor's system Data Bus ($\mathrm{D}_{0}-\mathrm{D}_{7}$). The Data Bus Buffer is controlled by execution of IN and OUT instructions by the processor. Control Words and Status information are also transmitted via the Data Bus Buffer.

Read/Write and Control Logic

This block manages all of the internal and external transfers of Data, Control and Status. Through this block, the processor Address and Control busses can control the peripheral interfaces.
Chip Select, $\bar{C} \bar{S}$, pin 6
A Logic Low, $\mathrm{V}_{\text {IL }}$, on this input enables the μ PD8255A- 5 for communication with the 8080A/8085A.
Read, $\overline{\mathrm{RD}}, \operatorname{pin} 5$
A Logic Low, $\mathrm{V}_{\text {IL }}$, on this input enables the μ PD8255A- 5 to send Data or Status to the processor via the Data Bus Buffer.
Write, $\overline{\mathrm{WR}}, \mathrm{pin} 36$
A Logic Low, VIL, on this input enables the Data Bus Buffer to receive Data or Control Words from the processor.
Port Select 0, A0, pin 9
Port Select 1, A_{1}, pin 8
These two inputs are used in conjunction with $\overline{\mathrm{CS}}, \overline{\mathrm{RD}}$, and $\overline{\mathrm{WR}}$ to control the selection of one of three ports on the Control Word Register. A_{0} and A_{1} are usually connected to A_{0} and A_{1} of the processor Address Bus.
Reset, pin 35
A Logic High, $\mathrm{V}_{1 \mathrm{H}}$, on this input clears the Control Register and sets ports A, B, and C to the input mode. The input latches in ports A, B, and C are not cleared.

Group I and Group II Controls

Through an OUT instruction in System Software from the processor, a control word is transmitted to the μ PD8255A-5. Information such as "MODE," "Bit SET," and "Bit RESET" is used to initialize the functional configuration of each I/O port.

Each qroup (I and II) accepts "commands" from the Read/Write Control Logic and "control words" from the internal data bus and in turn controls its associated I/O ports.

> Group I - Port A and upper Port C $\left(\mathrm{PC}_{7}-\mathrm{PC}_{4}\right)$
> Group II - Port B and lower Port C $\left(\mathrm{PC}_{3}-\mathrm{PC}_{0}\right)$

While the Control Word Register can be written into, the contents cannot be read back to the processor.
Ports A, B, and C
The three 8 -bit I / O ports (A, B, and C) in the $\mu \mathrm{PD} 8255 \mathrm{~A}-5$ can all be configured to meet a wide variety of functional requirements through system software. The effectiveness and flexibility of the μ PD8255A-5 are further enhanced by special features unique to each of the ports.

Port $A=A n 8$-bit data output latch/buffer and data input latch.
Port $B=A n 8$-bit data input/output latch/buffer and an 8 -bit data input buffer.
Port $\mathrm{C}=$ An 8 -bit output latch/buffer and a data input buffer (input not latched).
Port C may be divided into two independent 4-bit control and status ports for use with Ports A and B.

ABSOLUTE MAXIMUMOperating Temperature$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
RATINGS*Storage Temperature :$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
All Output Voltages (1) -0.5 to +7 Volts
All Input Voltages (1) -0.5 to +7 Volts
Supply Voltages (1) -0.5 to +7 Volts

Note: (1) With respect to $V_{S S}$
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
*COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
DC CHARACTERISTICS

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MPO8255A. 5				
		MIN	TYP	MAX		
Input Low Voltage	$V_{\text {IL }}$	-0.5		0.8	V	
Input High Voltage	$V_{\text {IH }}$	2		V_{CC}	V	
Output Low Voltage	$\stackrel{\text { VOL }}{ }$			0.45	V	(2)
Output High Vottage	VOH	2.4			v	(3)
Darlington Drive Current	$1 \mathrm{OH}(1)$	-1		-4	mA	$\mathrm{VOH}=1.5 \mathrm{~V}, \mathrm{REXT}^{\text {e }}=750 \mathrm{~S}$
Power Supply Current	${ }^{\text {ICC }}$			120	mA	$\mathrm{V}_{C C}=+5 \mathrm{~V}$. Output Open
Input Leakage Current	ILIH			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=V_{\text {CC }}$
Input Leakage Current	ILIL			-10	$\mu \mathrm{A}$	$V_{\text {IN }} 0.4 \mathrm{~V}$
Output Leakage Current	$\mathrm{I}_{\mathrm{LOH}}$			± 10	$\mu \mathrm{A}$	$V_{\text {OUT }}-V_{\text {CC: }}$ CS $=2.0 \mathrm{~V}$
Output Leakage Current	ILOL			-10	$\mu \mathrm{A}$	$V_{\text {OUT }}=0.4 \mathrm{~V}, \mathrm{CS}=2.0 \mathrm{~V}$

Notes: (1) Any set of eight $\{8$) outputs from either Port A, B, or C can source 4 mA into 1.5 V .
(2) $\mathrm{I} \mathrm{OL}=2.5 \mathrm{~mA}$ for DB Port; 1.7 mA for Peripheral Ports.
(3) $\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$ for dB Port; $-200 \mu \mathrm{~s}$ for Peripheral Ports.

$T_{\mathrm{a}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			MIN	TYP
MAX	UNIT	TEST CONDITIONS				
Input Capacitance	CIN 2			10	pF	$\mathrm{f}_{\mathrm{C}}=1 \mathrm{MHz}$ I/O Capacitance $\mathrm{C}_{\mathrm{I} / \mathrm{O}}$
			20	pF	Unmeasured pins returned to V SS	

μ PD8255A-5

$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			TEST CONDITIONS
		MIN	MAX	UNIT	
Address Stable Before READ	${ }^{\text {t }}$ AR	0		ns	
Address Stable After $\overline{\text { READ }}$	tra	0		ns	
$\overline{\text { READ Pulse Width }}$	trR	250		ns	
Data Valid From READ	$t_{\text {R }}$		170	ns	$\begin{aligned} & \text { 8255: } C_{L}=100 \mathrm{pF} \\ & \text { 8255A-5: } C_{L}=150 \mathrm{pF} \end{aligned}$
Data Float After $\overline{\text { READ }}$	tDF	10	100	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & C_{L}=100 \mathrm{pF} \\ & C_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$
Time Between READS and/ WRITES	tr V	850		ns	(2)
WRITE					
Address Stable Before $\overline{\text { WRITE }}$	taw	0		ns	
Address Stable After WRITE	twA	20		ns	
WRITE Pulse Width	tww	250		ns	
Data Valid to WRITE (T.E.)	tow	100		ns	
Data Valid After WRITE	twD	0		ns	
OTHER TIMING					
$\overline{\mathrm{WR}}=0$ To Output	twB		350	ns	$\begin{aligned} & \text { 8255: } C_{L}=50 \mathrm{pF} \\ & \text { 8255A-5: } C_{L}=150 \mathrm{pF} \end{aligned}$
Peripheral Data Before $\overline{\mathrm{RD}}$	tIR	0		ns	
Peripheral Data After $\overline{\mathrm{RD}}$	thr	0		ns	
$\overline{\text { ACK Pulse Width }}$	${ }^{\text {tak }}$	300		ns	
$\overline{\text { STB }}$ Pulse Width	${ }_{\text {ts }}$ T	350		ns	
Per. Data Before T.E. Of $\overline{\text { STB }}$	tPS	0		ns	
Per. Data After T.E. Of STB	${ }_{\text {tPH }}$	150		ns	
$\overline{\text { ACK }}=0$ To Output	${ }^{t} A D$		300	ns	$\begin{aligned} & \text { 8255: } C_{L}=50 \mathrm{oF} \\ & \text { 8255A-5: } C_{L}=150 \mathrm{pF} \end{aligned}$
$\overline{\text { ACK }}=0$ To Output Float	${ }^{\text {t }} \mathrm{KD}$	20	250	ns	$8255\left\{\begin{array}{l} C_{L}=50 \mathrm{pF} \\ C_{L}=15 \mathrm{pF} \end{array}\right.$
$\overline{\mathrm{WR}}=1 \mathrm{To} \mathrm{OBF}=0$	twob		650	ns	
$\overline{\mathrm{ACK}}=0$ To OBF $=1$	${ }^{\text {t }}$ AOB		350	ns	
$\overline{\mathrm{STB}}=0$ TO $\mathrm{IBF}=1$					8255: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
$\overline{R D}=1$ To $I B F=0$	${ }_{\text {trib }}$		300	ns	
$\overline{\mathrm{RD}}=0$ To INTR $=0$	${ }_{\text {trit }}$		400	ns	
$\overline{\text { STB }}=1$ TO INTR $=1$	${ }_{\text {tSIT }}$		300	ns	8255A-5: $\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$
$\widehat{\text { ACK }}=1$ To INTR $=1$	${ }^{\text {t }}$ AIT		350	ns	
$\overline{W R}=0$ To INTR $=0$	tWIT		850	ns	

Note: (1) Period of Reset pulse must be at least $50 \mu \mathrm{~s}$ during or after power on. Subsequent Reset pulse can be 500 ns min.
(2)

TIMING WAVEFORMS MODE 0

BASIC OUTPUT (WRITE)

MODE 1

Note: (1) Any sequence where $\overline{W F}$ occurs before $\overline{A C K}$ and $\overline{S T B}$ occurs before $\overline{\mathrm{AD}}$ is permissible. (INTR $=1 B F \cdot \overline{M A S K} \cdot \overline{\mathrm{STB}} \cdot \overrightarrow{\mathrm{RD}}+\overline{\mathrm{OBF}} \cdot \overline{\text { MASK }} \cdot \overline{\mathrm{ACK}} \cdot \overline{\mathrm{WR}})$
(2) When the μ PD8255A-5 is set to Mode 1 or $2, \overline{O B F}$ is reset to be high (logic 1).

The μ PD8255A- 5 can be operated in modes (0,1 or 2) which are selected by appropriate control words and are detailed below.

- MODE 0 provides for basic Input and Output operations through each of the ports A, B, and C. Output data is latched and input data follows the peripheral. No "handshaking" strobes are needed.
16 different configurations in MODE 0
Two 8 -bit ports and two 4 -bit ports
Inputs are not latched
Outputs are latched
MODE 1 provides for Strobed Input and Output operations with data transferred through Port A or B and handshaking through Port C .
Twe I/O Groups (I and II)
Both groups contain an 8-bit data port and a 4-bit control/data port Both 8 -bit data ports can be either Latched Input or Latched Output MODE 2 provides for Strobed bidirectional operation using PA0-7 as the bidirectional latched data bus. $\mathrm{PC}_{3}-7$ is used for interrupts and "handshaking" bus flow controls similar to Mode 1 . Note that $\mathrm{PB}_{0}-7$ and $\mathrm{PC}_{0.2}$ may be defined as Mode 0 or 1 , input or output in conjunction with Port A in Mode 2.
An 8 -bit latched bidirectional bus port ($\mathrm{PA}_{0}-7$) and a 5 -bit control port (PC_{3}-7)
Both inputs and outputs are latched
An additional 8 -bit input or output port with a 3 -bit control port

TIMING WAVEFORMS (CONT.)
MODE 2

MODES
MODE 0

MODE 1

MODE 2

BASIC OPERATION

INPUT OPERATION IREADI						
A_{1}	A_{0}	$\overline{\operatorname{RD}}$	$\overline{\mathrm{WR}}$	$\overline{\mathrm{CS}}$		
0	0	0	1	0	PORT $A \rightarrow$ DATA BUS	
0	1	0	1	0	PORT $B \rightarrow$ DATA BUS	
1	0	0	1	0	PORT $\mathrm{C} \longrightarrow$ DATA BUS	

OUTPUT OPERATION (WRITE)					
A_{1}	A_{0}	$\overline{\text { RD }}$	$\overline{\text { Wr }}$	$\overline{\text { CS }}$	
0	0	1	0	0	DATA BUS \rightarrow PORT A
0	1	1	0	0	DATA BUS \rightarrow PORT B
1	0	1	0	0	DATA BUS \rightarrow PORT C
1	1	1	0	0	DATA BUS \rightarrow CONTROL

DISABLE FUNCTION							
A_{1}	A_{0}	$\overline{\mathbf{R D}}$	$\overline{\text { WR }}$	$\overline{\overline{C S}}$			
x	x	x	x	1	DATA BUS \rightarrow HIGH Z STATE		
x	x	1	1	0	DATA BUS \rightarrow		
HIGH Z STATE							

NOTES: (1) x means "DO NOT CARE."
(2) All conditions not listed are illegal and should be avoided.
FORMATS

Plastic

ITEM	MILLIMETERS	INCHES
A	51.5 MAX	2.028 MAX
B	1.62	0.064
C	2.54 ± 0.1	0.10 ± 0.004
D	0.5 ± 0.1	0.019 ± 0.004
E	48.26	1.9
F	1.2 MIN	0.047 MIN
G	2.54 MIN	0.10 MIN
H	0.5 MIN	0.019 MIN
I	5.22 MAX	0.206 MAX
J	5.72 MAX	0.225 MAX
K	15.24	0.600
L	13.2	0.520
M	$0.25+0.1$	$0.010+0.004$

Ceramic		
ITEM	MILLIMETERS	INCHES
A	51.5 MAX	2.03 MAX
B	1.62 MAX	0.06 MAX
C	2.54 ± 0.1	0.1 ± 0.004
D	0.5 ± 0.1	0.02 ± 0.004
E	48.26 ± 0.1	1.9 ± 0.004
F	1.02 MIN	0.04 MIN
G	3.2 MIN	0.13 MIN
H	1.0 MIN	0.04 MIN
I	3.5 MAX	0.14 MAX
J	4.5 MAX	0.18 MAX
K	15.24 TYP	0.6 TYP
L	14.93 TYP	0.59 TYP
M	0.25 ± 0.05	0.01 ± 0.0019

PROGRAMMABLE DMA CONTROLLER

DESCRIPTION The μ PD8257-5 is a programmable four-channel Direct Memory Access (DMA) controller. It is designed to simplify high speed transfers between peripheral devices and memories. Upon a peripheral request, the μ PD8257-5 generates a sequential memory address, thus allowing the peripheral to read or write data directly to or from memory. Peripheral requests are prioritized within the μ PD8257-5 so that the system bus may be acquired by the generation of a single HOLD command to the 8080A. DMA cycle counts are maintained for each of the four channels, and a control signal notifies the peripheral when the preprogrammed member of DMA cycles has occurred. Output control signals are also provided which allow simplified sectored data transfers and expansion to other μ PD8257-5 devices for systems requiring more than four DMA channels.

FEATURES - NEC Now Supplies μ PD8257-5 to μ PD8257 Requirements

- Four Channel DMA Controller
- Priority DMA Request Logic
- Channel Inhibit Logic
- Terminal Count and Modulo 128 Outputs
- Automatic Load Mode
- Single TTL Clock
- Single +5 V Supply $\pm 10 \%$
- Expandable
- 40 Pin Plastic Dual-In-Line Package

PIN CONFIGURATION

TOR 1		40	Q_{7}
IOW 2		39	$\square A_{6}$
MEMR - 3		38	$\mathrm{P}^{A_{5}}$
MEMW 4		37	$\square A_{4}$
MARK 5		36	$\square \mathrm{Tc}$
READY 6		35	$\square \mathrm{A}_{3}$
HLDA 7		34	$\mathrm{Q}^{A_{2}}$
ADDSti 8		33	P_{1}
AEN 9		32	$\square^{A_{0}}$
HRO \square_{10}^{10}	8257-5	31	$\mathrm{Q}^{\text {cc }}$
$\overline{\mathrm{cs}} \mathrm{S}_{11}^{11}$		30	口 D_{0}
CLK ${ }^{12}$		29	Q_{1}
RESET ${ }^{13}$		28	D_{2}
		27	$\mathrm{D}^{\text {d }}$
$\mathrm{DACK}_{3} \mathrm{C}_{15}$		26	$\square^{\square} \mathrm{D}_{4}$
$\mathrm{DRO}_{3} \mathrm{~L}^{16}$		25	$\square^{\text {DACK }}$
$\mathrm{DRO}_{2} \mathrm{G}_{17}$		24	- DACK $_{1}$
DRO_{1} 늘		23	D_{5}
$\mathrm{DRO}_{0} \mathrm{~S}_{19}^{19}$		22	ص D_{6}
GND 420		21	口 D_{7}

$\mathrm{D}_{7} \cdot \mathrm{D}_{0}$	Data Bus
$\mathrm{A}_{7} \cdot \mathrm{~A}_{0}$	Address Bus
$\overline{\text { IOR }}$	1/0 Read
1/OW	1/0 $\overline{\text { Write }}$
MEMR	Memory ${ }_{\text {Fead }}$
MEMW	Memory Write
CLK	Clock Input
RESET	Reset Input
READY	Ready
HRO	Hold Request (to 8080A)
HLDA	Hold Acknowledge (from 8080A)
AEN	Address Enable
ADSTB	Address Strobe
TC	Terminal Count
MARK	Modulo 128 Mark
$\mathrm{DRO}_{3}-\mathrm{DRQ}_{0}$	DMA Request Input
$\overline{\mathrm{DACK}}_{3} \cdot \overline{D A C K}_{0}$	DMA Acknowledge Out
$\overline{\mathrm{CS}}$	Chip Select
$V_{\text {cc }}$	+5 Volts
GND	Ground

Operating Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on Any Pin	5 to +7 Volts (1)
Power Dissipation	1 Watt

Note: (1) With Respect to Ground
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
*COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \% \mathrm{GND}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN.	TYP.	MAX.		
Input Low Voltage	$V_{\text {IL }}$	-0.5		0.8	Volts	
Input High Voltage	$V_{\text {IH }}$	2.0		$\mathrm{V}_{\mathrm{CC}}+0.5$	Volts	
Output Low Voltage	v_{OL}			0.45	Volts	${ }^{1} \mathrm{OL}=1.7 \mathrm{~mA}$
Output High Voltage	V_{OH}	2.4		$\mathrm{V}_{\text {CC }}$	Volts	${ }^{\prime} \mathrm{OH}^{=-150 \mu A}$ for $A B$, DB and AEN ${ }^{1} \mathrm{OH}=-80 \mu \mathrm{~A}$ for others
HRO Output High Voltage	V_{HH}	3.3		$\mathrm{V}_{\text {cc }}$	Volts	${ }^{\prime} \mathrm{OH}=-80 \mu \mathrm{~A}$
$\mathrm{V}_{\text {CC }}$ Current Drain	${ }^{\prime} \mathrm{CC}$			120	mA	
Input Leakage	$1 / \mathrm{L}$			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$
Output Leakage During Float	${ }^{1} \mathrm{OFL}$			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}{ }^{(1)}$

Note: $(1) V_{\text {CC }}>V_{\text {OUT }}>G N D+0.45 V$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN.	TYP.	MAX.		
Input Capacitance	$\mathrm{C}_{\text {IN }}$			10	pF	$\mathrm{f}_{\mathrm{c}}=1 \mathrm{MHz}$
I/O Capacitance	$\mathrm{C}_{1 / \mathrm{O}}$			20	pF	Unmeasured pins returned to GND

CAPACITANCE

AC CHARACTERISTICS PERIPHERAL (SLAVE) MODE

BUS PARAMETERS
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \mathrm{GND}=\mathrm{OV}(1)$

PARAMETER	SYMBOL	$\frac{\text { LIMITS }}{\mu \text { PDB257.5 }}$			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
READ						
Adr or $\overline{\mathrm{CS}} 1$ Setup to $\overline{\mathrm{Ra}}$!	TAR	0			ns	
	TRA	0			ns	
Dita Access from $\overline{\text { Rd }}$.	TrDE	0		170	ns	$C_{L}=100 \mathrm{oF}$
OB Float Delay from $\overline{\text { Ad }} \uparrow$	TRDF	20		100	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & C_{L}=100 \mathrm{pF} \\ & C_{L}=15 \mathrm{pF} \end{aligned}$
$\overline{\mathrm{Rd}}$ Width	TRW	250			ns	
WRITE						
Adr Setup to Wri	TAW	20			ns	
Adr Hold from $\overline{W_{f}}$ t	TwA	0			as	
Data Setup to $\bar{W}+$	Tow	200			ns	
Data Hold from $\overline{\text { Wr }}$ t	Two	0			$n \mathrm{n}$	
Wr Width	Twws	200			ns	
OTHER TIMING						
Reset Pulse Width	TRSTW	300			ns	
Power Supply t (VCC) Setup to Reset +	TRSTD	500			$\mu \mathrm{s}$	
Signal Rise Time	T_{r}			20	ns	
Signal Falt Time	T_{f}			20	ns	
Reset to First $\overline{\text { IOWR }}$	TRSTS	2			${ }^{\text {\% }} \mathrm{CY}$	

Note: (1) All timing measurements are made at the following reference voltages unless specified otherwise: Input "1" t 2.0 V, " 0 " at 0.8 V , Output " 1 " at 2.0 V, " 0 " at 0.8 V

TIMING WAVEFORMS PERIPHERAL (SLAVE) MODE

READ TIMING

WRITE TIMING

μ PD8257-5

$T_{a}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{VCC}^{2}+5 \mathrm{~V} \pm 10 \% ; G N D=O V$

PARAMETER	SYMBOL	$\frac{\text { LIMMITS }}{\mu \text { PD8257-5 }}$		UNIT	test CONDITIONS
		MIN	MAX		
Cycle Time (Period)	TCr	0.250	4	$\mu \mathrm{s}$	
Clock Active (High)	T_{θ}	80	${ }^{.8} \mathrm{~T}^{\mathrm{C}} \mathrm{C}$	ns	
DRQ \uparrow Setup to $\theta+$ (SI, S4)	Tos	30			
DRO + Hold from HLDAt	TOH	0			(4)
HRQ \uparrow or \downarrow Delay from $\theta \dagger$ (SI, S4) (measured at 2.OV)	Tod		160	ns	(1)
HRQ \dagger or + Delay from $\theta \dagger$ (SI, S4) (measured at 3.3V)	T DQ1		250	ns	(3)
HLDAt or (Setup to $\theta \downarrow$ (SI, S4)	THS	100		ns	
AENT Delay from θ I (S1)	$\mathrm{T}_{\text {AEL }}$		250	ns	(1)
AEN \downarrow Delay from $\theta \uparrow(\mathrm{SI})$	$T_{\text {TAET }}$		200	ns	(1)
Adr (AB) (Active) Delay from AEN+ (S1)	TAEA	20		ns	(4)
Adr (AB) (Active) Delay from $\theta \uparrow$ (S1)	TfAAB		250	ns	(2)
Adr (AB) (Float) Delay from $\theta+$ (S))	$\mathrm{T}_{\text {AFAB }}$		150	ns	(2)
Adr (AB) (Stable) Delay from θ ¢ (S 1)	TASM		250	ns	(2)
Adr (AB) (Stable) Hold from $\theta+$ (S1)	$T_{\text {AH }}$	TASM-50			(2)
Adr (AB) (Valid) Hold from $\overline{\mathbf{R d}} \uparrow$ (S1, S1)	$T_{\text {AHR }}$	60		ns	(4)
Adr (AB) (Valid) Hold from $\overline{\text { Wr }}$ ($\mathrm{S} 1, \mathrm{~S}$)	TAHW	300		ns	(4)
Adr (DB) (Active) Delay from $\theta+(\$ 1)$	T FADB		250	ns	(2)
Adr (DB) (Float) Delay from $\theta+$ (S2)	TAFDB	TSTT +20	170	ns	(2)
Adr (DB) Setup to Adr Stbl (S1-S2)	TASS	100		ns	(4)
Adr (DB) (Valid) Hold from Adr Stb + (S2)	$\mathrm{T}_{\text {AHS }}$	50		ns	(4)
Adr Stbt Delay from $\theta \uparrow$ (S1)	TSTL		200	ns	(1)
Adr Stb \ddagger Delay from $\theta \uparrow(\mathrm{S} 2)$	TSTT		140	ns	(1)
Adr Stb Width (S1-S2)	$\mathrm{T}_{\text {SW }}$	TCY-100		ns	(4)
$\overline{\mathbf{R d}} \downarrow$ or $\overline{\mathrm{Wr}}$ (Ext) \downarrow Delay from Adr Stb \downarrow (S2)	TASC	70		ns	(4)
$\overline{\operatorname{Rd}} \downarrow$ or $\overline{\mathrm{Wr}}$ (Ext) 4 Delay from Adr (DB) (Float) (S2)	TDBC	20		ns	(4)
DACKt or \downarrow Delay from $\theta+(\mathbf{S 2}, \mathbf{S 1})$ and TC/Mark \dagger Delay from $\theta \dagger(\mathrm{S} 3)$ and TC/Mark \downarrow Delay from $\theta \uparrow$ (S4)	TAK		250	ns	(1) (5)
$\overline{\operatorname{Rd}} \downarrow$ or \bar{W} (Ext) $)$ Delay from θ ($\mathbf{S} 2$) and Wr \downarrow Delay from $\theta \dagger$ (S3)	Tocl		200	ns	(2) (6)
$\begin{array}{\|l} \hline \overline{\text { Rd }} \text { Delay from } \theta \downharpoonright(\mathrm{S} 1, \text { SI) and } \\ \text { Wrt Delay from } \theta \uparrow(\mathrm{S}) \\ \hline \end{array}$	TDCT		200	ns	(2) (7)
$\overline{\text { Rd }}$ or Wr (Active) from θ ((S1)	TFAC		250	ns	(2)
	$T_{\text {TAFC }}$		150	ns	(2)
$\overline{\mathrm{Rd}}$ Width (S2-S1 or S0)	TRWM	$\begin{array}{r} 2 \mathrm{~T}_{\mathrm{cr}} \\ \mathrm{~T}_{\theta}-50 \\ \hline \end{array}$		ns	(4)
$\overline{\text { Wr Wr widh (}} \mathbf{}$ 3-54)	Twwm	Tcy-50		ns	(4)
$\overline{\text { Wr }}$ (Ext) Width (S2-S4)	TwWME	2TCY-50		ns	(4)
READV Set Up Time to $\theta \uparrow$ (S 3 , Sw)	$T_{\text {RS }}$	30		ns	
READY Hold Time from $\theta \uparrow$ ($\mathrm{S3}$; Sw)	$\mathrm{T}_{\text {RH }}$	20		ns	

Notes: (1) Load * 1 TTL
(2) Load $=1 \mathrm{THL}+50 \mathrm{pF}$
(3) $\mathrm{Load}=1 \mathrm{TTL}+(\mathrm{RL}=3.3 \mathrm{~K}), \mathrm{V}_{\mathrm{OH}}=3.3 \mathrm{~V}$
(4) Tracking Specificeation
(5) $\Delta T_{A K}<60 \mathrm{~ns}$
(6) $\triangle T_{D G L}<50 \mathrm{~ns}$
(7) $\triangle T_{D C T}<60 \mathrm{~ns}$
(8) Data for comparison only

TIMING WAVEFORMS

 DMA (MASTER) MODE

μ PD8257-5

The μ PD8257-5 is a programmable, Direct Memory Address (DMA) device. When used with an 8212 I/O port device, it provides a complete four-channel DMA controller for use in 8080A/8085A based systems. Once initialized by an 8080A/8085A CPU, the μ PD8257-5 will block transfer up to 16,364 bytes of data between memory and a peripheral device without any attention from the CPU, and it will do this on all 4-DMA channels. After receiving a DMA transfer request from a peripheral, the following sequence of events occurs within the μ PD8257-5.

- It acquires control of the system bus (placing 8080A/8085A in hold mode).
- Resolves priority conflicts if multiple DMA requests are made.
- A 16-bit memory address word is generated with the aid of an 8212 in the following manner:

The μ PD8257-5 outputs the least significant eight bits ($\mathrm{A}_{0}-\mathrm{A}_{7}$) which go directly onto the address bus.
The μ PD8257-5 outputs the most significant eight bits (A8-A15) onto the data bus where they are latched into an 8212 and then sent to the high order bits on the address bus.

- The appropriate memory and I/O read/write control signals are generated allowing the peripheral to receive or deposit a data byte directly from or to the appropriate memory location.
Block transfer of data (e.g., a sector of data on a floppy disk) either to or from a peripheral may be accomplished as long as the peripheral maintains its DMA Request (DRO_{n}). The μ PD8257-5 retains control of the system bus as long as DRO ${ }_{n}$ remains high or until the Terminal Count (TC) is reached. When the Terminal Count occurs, TC goes high, informing the CPU that the operation is complete.
There are three different modes of operation:
- DMA read, which causes data to be transferred from memory to a peripheral;
- DMA write, which causes data to be transferred from a peripheral to memory; and
- DMA verify, which does not actually involve the transfer of data.

The DMA read and write modes are the normal operating conditions for the μ PD8257-5. The DMA verify mode responds in the same manner as read/write except no memory or I/O read/write control signals are generated, thus preventing the transfer of data. The peripheral gains control of the system bus and obtains DMA Acknowledgements for its requests, thus allowing it to access each byte of a data block for check purposes or accumulation of a CRC (Cylic Redundancy Code) checkword. In some applications it is necessary for a block of DMA read or write cycles to be followed by a block of DMA verify cycles to allow the peripheral to verify its newly acquired data.

Internally the μ PD8257-5 contains six different states (S0, S1, S2, S3, S4 and SW). The duration of each state is determined by the input clock. In the idle state, (S1), no DMA operation is being executed. A DMA cycle is started upon receipt of one or more DMA Requests (DRQ ${ }_{n}$), then the μ PD8257-5 enters the SO state. During state SO a Hold Request (HRQ) is sent to the 8080A/8085A and the μ PD8257-5 waits in S0 until the 8080A/8085A issues a Hold Acknowledge (HLDA) back. During SO, DMA Requests are sampled and DMA priority is resolved (based upon either the fixed or priority scheme). After receipt of HLDA, the DMA Acknowledge line ($\overline{\mathrm{DACK}}_{n}$) with the highest priority is driven low, selecting that particular peripheral for the DMA cycle. The DMA Request line $\left(\mathrm{DRO}_{n}\right)$ must remain high until either a DMA Acknowledge $\left.\overline{(\overline{D A C K}}_{n}\right)$ or both $\overline{\mathrm{DACK}}_{n}$ and TC (Terminal Count) occur, indicating the end of a block or sector transfer (burst model).

The DMA cycle consists of four internal states; S1, S2, S3 and S4. If the access time of the memory or I/O device is not fast enough to return a Ready command to the μ PD8257-5 after it reaches state S3, then a Wait state is initiated (SW). One or more than one Wait state occurs until a Ready signal is received, and the μ PD8257-5 is allowed to go into state S4. Either the extended write option or the DMA Verify mode may eliminate any Wait state.

If the μ PD8257-5 should lose control of the system bus (i.e., HLDA goes low) then the current DMA cycle is completed, the device goes into the S1 state, and no more DMA cycles occur until the bus is reacquired. Ready setup time (tRS), write setup time (tDW), read data àccess time (tRD) and HLDA setup time (toS) should all be carefully observed during the handshaking mode between the μ PD8257-5 and the 8080A/8085A.
During DMA write cycles, the I/O Read ($\overline{(\bar{I} O R}$) output is generated at the beginning of state S2 and the Memory Write ($\overline{\mathrm{MEMW}}$) output is generated at the beginning of S3. During DMA read cycles, the Memory Read ($\overline{M E M R}$) output is generated at the beginning of state S 2 and the I/O Write ($\overline{\mathrm{I} / O \mathrm{~W} \text {) goes low at the beginning of state S3. }}$ No Read or Write control signals are generated during DMA verify cycles.

Notes: (1) HRQ is set if $D R Q_{n}$ is active.
(2) HRQ is reset if $D R Q_{n}$ is not active.

TYPICAL μ PD8257-5
SYSTEM INTERFACE SCHEMATIC

PACKAGE OUTLINE μ PD8257C-5

Plastic		
ITEM	MILLIMETERS	INCHES
A	51.5 MAX	2.028 MAX
B	1.62	0.064
C	2.54 ± 0.1	0.10 ± 0.004
D	0.5 ± 0.1	0.019 ± 0.004
E	48.26	1.9
F	1.2 MIN	0.047 MIN
G	2.54 MIN	0.10 MIN
H	0.5 MIN	0.019 MIN
I	5.22 MAX	0.206 MAX
J	5.72 MAX	0.225 MAX
K	15.24	0.600
L	13.2	0.520
M	$0.25+0.1$	$0.010+0.004$

NOTES

PROGRAMMABLE INTERRUPT CONTROLLER

DESCRIPTION
The NEC μ PD8259A is a programmable interrupt controller directly compatible with the 8080A/8085A/8086/8088 microprocessors. It can service eight levels of interrupts and contains on-chip logic to expand interrupt capabilities up to 64 levels with the addition of other μ PD8259As. The user is offered a selection of priority algorithms to tailor the priority processing to meet his system requirements. These can be dynamically modified during operation, expanding the versatility of the system. The $\mu \mathrm{PD} 8259 \mathrm{~A}$ is completely upward compatible with the μ PD8259-5, so software written for the μ PD8259-5 will run on the μ PD8259A.

FEATURES

- Eight Level Priority Controller
- Programmable Base Vector Address
- Expandable to 64 Levels
- Programmable Interrupt Modes (Algorithms)
- Individual Request Mask Capability
- Single +5 V Supply (No Clocks)
- Full Compatibility with 8080A/8085A/8086/8088
- Available in 28-Pin Plastic and Ceramic Packages

PIN CONFIGURATION

Rev/1

Operating Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on Any Pin	-0.5 to +7 Volts (1)
Power Dissipation	1W

Note: (1) With respect to ground.
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
*COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sectlons of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

INTERRUPT REQUEST REGISTER (IRR) AND IN-SERVICE REGISTER (ISR)
The interrupt request register and in-service register store the in-coming interrupt request signals appearing on the IRO-7 lines (refer to functional block diagram). The inputs requesting service are stored in the IRR while the interrupts actually being serviced are stored in the ISR.

A positive transition on an IR input sets the corresponding bit in the Interrupt Request Register, and at the same time the INT output of the μ PD8259 is set high. The IR input line must remain high until the first INTA input has been received. Multiple, nonmasked interrupts occurring simultaneously can be stored in the IRR. The incoming $\overline{\text { INTA }}$ sets the appropriate ISR bit (determined by the programmed interrupt algorithm) and resets the corresponding IRR bit. The ISR bit stays high-active during the interrupt service subroutine until it is reset by the programmed End-of-Interrupt (EOI) command.

PRIORITY RESOLVER

The priority resolver decides the priority of the interrupt levels in the IRR. When the highest priority interrupt is determined it is loaded into the appropriate bit of the In-Service register by the first INTA pulse.

DATA BUS BUFFER

The 3-state, 8 -bit, bi-directional data bus buffer interfaces the μ PD8259 to the processor's system bus. It buffers the Control Word and Status Data transfers between the μ PD8259 and the processor bus.

READNRITE LOGIC

The read/write logic accepts processor data and stores it in its Initialization Command Word (ICW) and Operation Command Word (OCW) registers. It also controls the transfer of the Status Data to the processor's data bus.

CHIP SELECT ($\overline{\mathbf{C S}}$)

The μ PD8259 is enabled when an active-low signal is received at this input. Reading or writing of the μ PD8259 is inhibited when it is not selected.

WRITE (WR)

This active-low signal instructs the μ PD8259 to receive Command Data from the processor.

READ ($\overline{\mathrm{RD}}$)

When an active-low signal is received on the $\overline{\mathrm{RD}}$ input, the status of the Interrupt Request Register, In-Service Register, Interrupt Mask Register or binary code of the Interrupt Level is placed on the data bus.

INTERRUPT (INT)

The interrupt output from the μ PD8259 is directly connected to the processor's INT input. The voltage levels of this output are compatible with the 8080A/8085A/ 8086/8088.

INTERRUPT MASK REGISTER (IMR)

The interrupt mask register stores the bits for the individual interrupt bits to be masked. The IMR masks the data in the ISR. Lower priority lines are not affected by masking a higher priority line.

INTERRUPT ACKNOWLEDGE (INTA)

INTA pulses cause the μ PD8259A to put vectoring information on the bus. The number of pulses depends upon whether the μ PD8259A is in μ PD8085A mode or 8086/ 8088 mode.

A_{0}

A_{0} is usually connected to the processor's address bus. Together with $\overline{W R}$ and $\overline{R D}$ signals it directs the loading of data into the command register or the reading of status data. The following table illustrates the basic operations performed. Note that it is divided into three functions: Input, Output and Bus Disable distinguished by the $\overline{R D}, \overline{W R}$, and $\overline{C S}$ inputs.

Notes: (1) The contents of OCW2 written prior to the READ operation governs the selection of the IRR, ISR or Interrupt Level.
(2) The sequencer logic on the μ PD8259A aligns these commands in the proper order.

CASCADE BUFFER/COMPARATOR. (For Use in Multiple μ PD8259 Array.)

The IDs of all μ PD8259As are buffered and compared in the cascade buffer/comparator. The master μ PD8259A sends the ID of the interrupting slave device along the CASO, 1, 2 lines to all slave devices. The cascade buffer/comparator compares its preprogrammed ID to the CASO, 1, 2 lines. The next two INTA pulses strobe the preprogrammed, 2 byte CALL routine address onto the data bus from the slave whose ID matches the code on the CASO, 1, 2 lines.

SLAVE PROGRAM ($\overline{\mathrm{SP}}$). (For Use in Multiple μ PD8259A Array.)

The interrupt capability can be expanded to 64 levels by cascading multiple μ PD8259As in a master-plus-slaves array. The master controls the slaves through the CASO, 1, 2 lines. The $\overline{S P}$ input to the device selects the CASO-2 lines as either outputs ($\overline{S P}=1$) for the master or as inputs ($\overline{\mathbf{S P}}=0$) for the slaves. For one device only the $\overline{\mathrm{SP}}$ must be set to a logic " 1 " since it is functioning as a master.
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBoL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	-0.5		0.8	v	
Input High Voltage	$\mathrm{V}_{\text {IH }}$	2.0		$\mathrm{v}_{\mathrm{CC}}+0.5 \mathrm{~V}$	v	
Output Low Voltage	V_{OL}			0.45	v	${ }^{1} \mathrm{OL}=2.2 \mathrm{~mA}$
Output High Voltage	V_{OH}	2.4			v	$\mathrm{I}^{\mathrm{OH}}=-400 \mu \mathrm{~A}$
Interrupt OutputHigh Voltage	$\mathrm{V}_{\mathrm{OH}-\text { INT }}$	2.4			v	${ }^{\prime} \mathrm{OH}=-400 \mu \mathrm{~A}$
		3.5			V	$1 \mathrm{OH}^{\prime}=-100 \mu \mathrm{~A}$
Input Leakage Current for $\mathrm{IR}_{0.7}$	$\mathrm{I}_{\mathrm{LL}}\left(1 \mathrm{R}_{0.7}\right)$			-300	$\mu \mathrm{A}$	$V_{1 N}=0 \mathrm{~V}$
				10	$\mu \mathrm{A}$	$V_{\text {IN }}=v_{\text {CC }}$
Input Leakage Current for other Inputs	IIL			10	$\mu \mathrm{A}$	$V_{\text {IN }}=V_{\text {CC }}$ to ov
Output Leakage Current	$\mathrm{I}_{\text {LOL }}$			- 10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=0.45 \mathrm{~V}$
Output Leakage Current	$\mathrm{I}_{\mathrm{LOH}}$			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
$\mathrm{v}_{\text {CC }}$ Supply Current	ICC			85	mA	

CAPACITANCE $\quad T_{a}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{C}}=\mathrm{GND}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	CIN			10	pF	$\mathrm{f}_{\mathrm{c}}=1 \mathrm{MHz}$
I/O Capacitance	$\mathrm{Cl}_{1 / \mathrm{O}}$			20	pF	Unmeasured Pins Returned to VSS

AC CHARACTERISTICS
$T_{a}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%(\mu \mathrm{PDB259A})$

PARAMETER	SYMBEL	$\mu \mathrm{PD8258A}$		UNIT	TEST CONDITIONS
		MIN	MAX		
AO/ $\overline{\mathrm{CS}}$ Setup to $\overline{\mathrm{RD}} / \overline{\mathrm{N} T \mathrm{~T} A} \downarrow$	tAHPL	0		ns	
AO/ $\overline{C S}$ Hold after $\overline{\mathrm{RD}} / \mathrm{INTA} \uparrow$	tRHAX	0		ns	
$\overline{\mathrm{RD}}$ Pulse Width	trinh	235		ns	
AO/ $\overline{\mathrm{CS}}$ Setup to $\overline{\mathrm{WR}} \downarrow$	${ }^{\text {t }}$ AHWL	0		ns	
AO/ $\overline{C S}$ Hold after $\overline{W R} \uparrow$	tWHAX	0		ns	
$\overline{\text { WR Pulse Width }}$	tWLWH	290		ns	
Data Setup to $\overline{\mathrm{WR}} \uparrow$	tDVWH	240		ns	
Data Hold after WR \uparrow	tWHDX	0		ns	
Interrupt Request Width (Low)	tJLJH	100		ns	(1)
Cascade Setup to Second or Third INTA \downarrow (Sleve Only)	tCVIAL	65		ns	
End of $\overline{\text { AO }}$ to Next Command	tRHRL	160		ns	
End of WR to Next Command	tWHRL	190		ns	

Note: (1) This is the low time required to clear the input latch in the edge triggered mode.

INPUT WAVEFORMS FOR AC TESTS

AC CHARACTERISTICS (CONT.)

TIMING WAVEFORMS

READ/INTA MODE

OTHER TIMING

TIMING WAVEFORMS
(CONT.)

DETAILED OPERATIONAL DESCRIPTION

The sequence used by the μ PD88259A to handle an interrupt depends upon whether an 8080A/8085A or 8086/8088 CPU is being used.

The following sequence applies to 8080A/8085A systems:
The μ PD8259A derives its versatility from programmable interrupt modes and the ability to jump to any memory address through programmable CALL instructions. The following sequence demonstrates how the μ PD8259A interacts with the processor.

1. An interrupt or interrupts appearing on IR $0-7$ sets the corresponding IR bit(s) high. This in turn sets the corresponding IRR bit(s) high.
2. Once the IRR bit(s) has been set, the μ PD8259A will resolve the prioritios according to the preprogrammed interrupt algorithm. It then issues an INT signal to the processor.
3. The processor group issues an $\overline{\mathrm{NTA}}$ to the μ PD8259A when it receives the INT.

4, The $\overline{\text { NTA }}$ input to the μ PD8259A from the processor group sets the highest priority ISR bit and resets the corresponding IRR bit. The INTA also signals the μ PD8259A to issue an 8-bit CALL instruction op-code (11001101) onto its Data bus lines.
5. The CALL instruction code instructs the processor group to issue two more INTA pulses to the μ PD8259A.
6. The two INTA pulses signal the μ PD8259A to place its preprogrammed interrupt vector address onto the Data bus. The first INTA releases the low-order 8-bits of the address and the second $\overline{\text { INTA }}$ releases the high-order 8 -bits.
7. The μ PD8259A's CALL instruction sequence is complete. A preprogrammed EOI (End-of-Interrupt) command is issued to the μ PD8259A at the end of an interrupt service routine to reset the ISR bit and allow the μ PD8259A to service the next interrupt.
For 8086/8088 systems the first three steps are the same as described above, then the following sequence occurs:
4. During the first $\overline{\operatorname{INTA}}$ from the processor, the μ PD8259A does not drive the data bus. The highest priority ISR bit is set and the corresponding IRR bit is reset.
5. The μ PD8259A puts vector onto the data bus on the second INTA pulse from the 8086/8088.
6. There is no third INTA pulse in this mode. In the AEOI mode the ISR bit is reset at the end of the second INTA pulse, or it remains set until an EOI command is issued.

8080A/8085A MODE

For these processors, the μ PD8259A is controlled by three INTA pulses. The first
INTERRUPT SEQUENCE INTA pulse will cause the μ PD8259A to put the CALL op-code onto the data bus. The second and third INTA pulses will cause the upper and lower address of the interrupt vector to be released on the bus.

IR	Interval $=4$							
	D7	D6	D5	D4	D3	D2	D1	D0
7	A7	A6	A5	1	1	1	0	0
6	A7	AB	A5	1	1	0	0	0
5	A7	A6	A5	1	0	1	0	0
4	A7	A6	A5	1	0	0	0	0
3	A7	A6	A5	0	1	1	0	0
2	A7	A6	A5	0	1	0	0	0
1	A7	A6	A5	0	0	1	0	0
0	A7	AB	A5	0	0	0	0	0

18	Interval $=\mathbf{0}$								
	D7	D6	D5	D4	D3	D2	D1	D0	
7	A7	A6	1	1	1	0	0	0	
6	A7	A6	1	1	0	0	0	0	
5	A7	A6	1	0	1	0	0	0	
4	A7	A6	1	0	0	0	0	0	
3	A7	A6	0	1	1	0	0	0	
2	A7	A6	0	1	0	0	0	0	
7	A7	A6	0	0	1	0	0	0	
0	A7	A6	0	0	0	0	0	0	

D7	D8	D5	D4	D3	D2	D1	D0
A15	A14	A13	A12	A11	A10	A9	A8

In this mode only two INTA pulses are sent to the μ PD8259A. After the first $\overline{\text { INTA }}$ pulse, the μ PD8259A does not output a CALL but internally sets priority resolution. If it is a master, it sets the cascade lines. The interrupt vector is output to the data bus on the second INTA pulse.

	D7	D6	D5	D4	D3	D2	D1	D0
IR7	T7	T6	T5	T4	T3	1	1	1
IR6	T7	T6	T5	T4	T3	1	1	0
IR5	T7	T6	T5	T4	T3	1	0	1
IR4	T7	T6	T5	T4	T3	1	0	0
IR3	T7	T6	T5	T4	T3	0	1	1
IR2	T7	T6	T5	T4	T3	0	1	0
IR1	T7	T6	T5	T4	T3	0	0	1
IR0	T7	T6	T5	T4	T3	0	0	0

ICW1 AND ICW2

A5-A 15. Page starting address of service routines. In an 8085A system, the 8 request levels generate CALLs to 8 locations equally spaced in memory. These can be programmed to be spaced at intervals of 4 or 8 memory locations, thus the 8 routines occupy a page of 32 or 64 bytes, respectively.

The address format is 2 bytes long ($A_{0}-A_{15}$). When the routine interval is $4, A_{0}-A_{4}$ are automatically inserted by the μ PD8259A, while $\mathrm{A}_{5}-\mathrm{A}_{15}$ are programmed externally. When the routine interval is $8, A_{0}-A_{5}$ are automatically inserted by the μ PD8259A, while $\mathrm{A}_{6}-\mathrm{A}_{15}$ are programmed externally.
The 8 -byte interval maintains compatibility with current software, while the 4 -byte interval is best for a compact jump table.

In an MCS-86 system, T7-T3 are inserted in the five most significant bits of the vectoring byte and the μ PD8259A sets the three least significant bits according to the interrupt level. $\mathrm{A}_{10}-\mathrm{A}_{5}$ are ignored and ADI (Address Interval) has no effect.

LTIM: If LTIM $=1$, then the μ PD8259A operates in the level interrupt mode. Edge detect logic on the interrupt inputs is disabled.
ADI: \quad CALL address interval. $A D I=1$ then interval $=4 ; A D I=0$ then interval = 8.
SNGL: Single. Means that this is the only μ PD8259A in the system. If SNGL = 1 no ICW3 is issued.
IC4: If this bit is set - ICW4 has to be read. If ICW4 is not needed, set IC4 = 0 .

ICW3

This word is read only when there is more than one μ PD8259A in the system and cascading is used, in which case $\mathrm{SNGL}=0$. It will load the 8 -bit slave register. The functions of this register are:
a. In the master mode (either when $S P=1$, or in buffered mode when $M / S=1$ in ICW4) a " 1 " is set for each slave in the system. The master then releases byte 1 of the call sequence (for 8085A system) and enables the corresponding slave to release bytes 2 and 3 (for 8086/8088 only byte 2) through the cascade lines.
b. In the slave mode (either when $\mathrm{SP}=0$, or if $\mathrm{BUF}=1$ and $\mathrm{M} / \mathrm{S}=0$ in ICW4) bits 2-0 identify the slave. The slave compares its cascade input with these bits and if they are equal, bytes 2 and 3 of the CALL sequence (or just byte 2 for $8086 / 8088$) are released by it on the Data Bus.

ICW4

SFNM: If SFNM = $\mathbf{1}$ the special fully nested mode is programmed.
BUF: If BUF = 1 the buffered mode is programmed. In buffered mode $\overline{S P} / \overline{E N}$ becomes an enable output and the master/slave determination is by M/S.
M/S: If buffered mode is selected: $M / S=1$ means the μ PD8259A is programmed to be a master, $M / \mathrm{S}=0$ means the $\mu \mathrm{PD} 8259 \mathrm{~A}$ is programmed to be a slave. If $B U F=0, M / S$ has no function.
AEOI: If AEOI $=1$ the automatic end of interrupt mode is programmed.
$\mu \mathrm{PM}$: \quad Microprocessor mode: $\mu \mathrm{PM}=0$ sets the μ PD8259A for 8085A system operation, μ PM $=1$ sets the μ PD8259A for 8086 system operation.

Once the μ PD8259A has been programmed with Initialization Command Words, it can be programmed for the appropriate interrupt algorithm by the Operation Command Words. Interrupt algorithms in the μ PD8259A can be changed at any time during program operation by issuing another set of Operation Command Words. The following sections describe the various algorithms available and their associated OCW's.

INTERRUPT MASKS

The individual Interrupt Request input lines are maskable by setting the corresponding bits in the Interrupt Mask Register to a logic " 1 " through OCW1. The actual masking is performed upon the contents of the In-Service Register (e.g., if Interrupt Request line 3 is to be masked, then only bit 3 of the IMR is set to logic "1." The IMR in turn acts upon the contents of the ISR to mask bit 3). Once the μ PD8259A has acknowledged an interrupt, i.e, the μ PD8259A has sent an INT signal to the processor and the system controller has sent it an INTA signal, the interrupt input, although it is masked, inhibits lower priority requests from being acknowledged. There are two means of enabling these lower priority interrupt lines. The first is by issuing an End-of-Interrupt (EOI) through Operation Command Word 2 (OCW2), thereby resetting the appropriate ISR bit. The second approach is to select the Special Mask Mode through OCW3. The Special Mask Mode (SMM) and End-of-Interrupt (EOI) will be described in more detail further on.

FULLY NESTED MODE

The fully nested mode is the μ PD8259A's basic operating mode. It will operate in this mode after the initialization sequence, without requiring Operation Command Words for formatting. Priorities are set IR0 through IR7, with IRO the highest priority. After the interrupt has been acknowledged by the processor and system controller, only higher priorities will be serviced. Upon receiving an INTA, the priority resolver determines the priority of the interrupt, sets the corresponding IR bit, and outputs the vector address to the Data bus. The EOI command resets the corresponding ISR bits at the end of its service routines.

ROTATING PRIORITY MODE COMMANDS

The two variations of Rotating Priorities are the Auto Rotate and Specific Rotate modes. These two modes are typically used to service interrupting devices of equivalent priorities.

1. Auto Rotate Mode

Programming the Auto Rotate Mode through OCW2 assigns priorities $0-7$ to the interrupt request input lines. Interrupt line IRo is set to the highest priority and IR7 to the lowest. Once an interrupt has been serviced it is automatically assigned the lowest priority. That same input must then wait for the devices ahead of it to be serviced before it can be acknowledged again. The Auto Rotate Mode is selected by programming OCW2 in the following way (refer to Figure 3): set Rotate Priority bit " R " to a logic " 1 "; program EOI to a logic " 1 " and SEOI to a logic " 0. ." The EOI and SEOI commands are discussed further on. The following is an example of the Auto Rotate Mode with devices requesting interrupts on lines IR_{2} and IR_{5}.
Before Interrupts are Serviced:

	IS_{7}	IS_{6}	IS_{5}	IS_{4}	IS_{3}	IS_{2}	IS_{1}	IS

Highest Priority

	$\mathrm{IR7}_{7}$	IR6	1R5	IR4	$1 \mathrm{R}_{3}$	$1 \mathrm{R}_{2}$	IR 1	IRO

According to the Priority Status Register, $\mathbf{I R}_{\mathbf{2}}$ has a higher priority than $\mathbf{I R}_{5}$ and will be serviced first.

After Servicing:

	1S7	IS_{6}	IS5	IS_{4}	IS3̇	IS_{2}	IS_{1}	ISO	Highest Priority
In-Service Register	0	0	1	0	0	0	0	0	
Priority Status Register	$1 \mathrm{R}_{2}$	IR_{1}	IR_{0}	IR7	IR6	IR5	IR4	IR3	

At the completion of R_{2} 's service routine the corresponding in-Service Register bit, IS_{2} is reset to " 0 " by the preprogrammed EOI command. IR_{2} is then assigned the lowest priority level in the Priority Status Register. The μ PD8259A is now ready to service the next highest interrupt, which in this case, is $\mathrm{IR}_{\mathbf{5}}$.
2. Specific Rotate Mode

The priorities are set by programming the lowest level through OCW2. The μ PD8259A then automatically assigns the highest priority. If, for example, $I R_{3}$ is set to the lowest priority (bits $\mathrm{L}_{2}, \mathrm{~L}_{1}, \mathrm{~L}_{0}$ form the binary code of the bottom priority level), then IR4 will be set to the highest priority. The Specific Rotate Mode is selected by programming OCW2 in the following manner: set Rotate Priority bit " R " to a logic "1," program EOI to a logic " 0 ," SEOI to a logic " 1 " and L_{2}, L_{1}, L_{0} to the lowest priority level. If EOI is set to a logic "1," the ISR bit defined by L_{2}, L_{1}, L_{0} is reset.

OPERATIONAL COMMAND WORDS (CONT.)

OPERATIONAL COMMAND WORDS (CONT.)

END-OF-INTERRUPT (EOI) AND SPECIFIC END-OF-INTERRUPT (SEOI)

The End-of-Interrupt or Specific End-of-Interrupt command must be issued to reset the appropriate In -Service Register bit before the completion of a service routine. Once the ISR bit has been reset to logic " 0, ," the μ PD8259A is ready to service the next interrupt.

Two types of EOIs are available to clear the appropriate ISR bit depending on the μ PD8259A's operating mode.

1. Non-Specific End-of-Interrupt (EOI)

When operating in interrupt modes where the priority order of the interrupt inputs is preserved (e.g., fully nested mode), the particular ISR bit to be reset at the completion of the service routine can be determined. A non-specific EOI command automatically resets the highest priority ISR bit of those set. |The highest priority ISR bit must necessarily be the interrupt being serviced and must necessarily be the service subroutine returned from.
2. Specific End-of-Interrupt (SEOI)

When operating in interrupt modes where the priority order of the interrupt inputs is not preserved (e.g., rotating priority mode) the last serviced interrupt level may not be known. In these modes a Specific End-of-Interrupt must be issued to clear the ISR bit at the completion of the interrupt service routine. The SEOI is programmed by setting the appropriate bits in OCW3 (Figure 2) to logic " 1 "s. Both the EOI and SEOI bits of OCW3 must be set to a logic "1" with L_{2}, L_{1}, L_{0} forming the binary code of the ISR bit to be reset.

SPECIAL MASK MODE

Setting up an interrupt mask through the Interrupt Mask Register (refer to Interrupt Mask Register section) by setting the appropriate bits in OCW1 to a logic "1" inhibits lower priority interrupts from being acknowledged. In applications requiring that the lower priorities be enabled while the IMR is set, the Special Mask Mode can be used. The SMM is programmed in OCW3 by setting the appropriate bits to a logic "1." Once the SMM is set, the μ PD8259A remains in this mode until it is reset. The Special Mask Mode does not affect the higher priority interrupts.

POLLED MODE

In Poll Mode the processor must be instructed to disable its interrupt input (INT). Interrupt service is initiated through software by a Poll Command. Poll Mode is programmed by setting the Poll Mode bit in OCW3 $(P=1)$, during a $\overline{W R}$ pulse. The following $\overline{R D}$ pulse is then considered as an interrupt acknowledge. If an interrupt input is present, that $\overline{R D}$ pulse sets the appropriate ISR bit and reads the interrupt priority level. Poll Mode is a one-time operation and must be programmed through OCW3 before every read. The word strobed onto the Data bus during Poll Mode is of the form:

D7	D6	D5	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}
I	X	X	X	X	W_{2}	W_{1}	W_{0}

where: $I=1$ if there is an interrupt requesting service
$=0$ if there are no interrupts
\mathbf{W}_{2-0} forms the binary code of the highest priority level of the interrupts requesting service
Poll Mode can be used when an interrupt service routine is common to several interrupt inputs. The INTA sequence is no longer required, thus saving in ROM space. Poll Mode can also be used to expand the number of interrupts beyond 64.

NOTE 1: SLAVE ID IS EOUAL TO THE CORAESPONDING MASTER IR INPUT.

The following major registers' status is available to the processor by appropriately formatting OCW3 and issuing $\overline{R D}$ command.

INTERRUPT REQUEST REGISTER (8-BITS)

The Interrupt Request Register stores the interrupt levels awaiting acknowledgement. The highest priority in-service bit is reset once it has been acknowledged. (Note that the Interrupt Mask Register has no effect on the IRR.) A WR command must be issued with OCW3 prior to issuing the $\overline{R D}$ command. The bits which determine whether the IRR and ISR are being read from are RIS and ERIS. To read contents of the IRR, ERIS must be logic " 1 " and RIS a logic " 0 ."

IN-SERVICE REGISTER (8-BITS)

The In-Service Register stores the priorities of the interrupt levels being serviced. Assertion of an End-of-Interrupt (EOI) updates the ISR to the next priority level. A $\overline{W R}$ command must be issued with OCW3 prior to issuing the $\overline{\mathrm{RD}}$ command. Both ERIS and RIS should be set to a logic "1."

INTERRUPT MASK REGISTER (8-BITS)

The Interrupt Mask Register holds mask data modifying interrupt levels. To read the IMR status a $\overline{W R}$ pulse preceding the $\overline{R D}$ is not necessary. The IMR data is available to the data bus when $\overline{R D}$ is asserted with A_{0} at a logic " 1. "
A single OCW3 is sufficient to enable successive status reads providing it is of the same register. A status read is over-ridden by the Poll Mode when bits \mathbf{P} and ERIS of OCW3 are set to a logic " 1 ."

OPERATION COMMAND WORD FORMAT

	SUMMARY OF 0259A INSTRUCTION SET												
Inst.	Mnemontc		A0	D7	De	D5	D4	D3	D2	D1	D0	Operation Descripition	
1	ICW1	A	0	A7	AB	A5	1	0	1	1	0		Format $=4$, single, edge triggered
2	ICWI	B	0	A7	A6	A5	1	1	1	1	0		Format $=4$, single, level triggered
3	ICW1	C	0	A7	A6	A5	1.	0	1	0	0	Byte 1 Initialization	Format $=4$, not single, edge triggered
4	ICW1	D	0	A7	A6	A5	1	1	1	0	0		Format $=4$, not single, ievel triggered
5	ICW1	E	0	A7	A6	0	1	0	0	1	0	No ICW4 Requirpd	Format $=8$, single, edge triggered
6	ICW1	F	0	A7	A6	0	1	1	0	1	0		Format $=8$, single, level triggered
7	ICW1	G	0	A7	A6	0	1	0	0	0	0		Format $=8$, not single, edge triggered
8	ICW1	H	0	A7	A6	0	1	1	0	0	0		Format $=8$, not single, level triggered
9	ICW1	1	0	A7	A6	AS	1	0	1	1	1		Format $=4$, single, edge triggered
10	ICW1	J	0	A7	A6	A5	1	1	1	1	1		Format $=4$, single, level triggered
11	ICW1	K	0	A7	A6	A5	1	0	1	0	1	Byte 1 Initialization	Formal $=4$, not single, efge triggered
12	ICW1	L	0	A7	A6	A5	1	1	1	0	1		Format $=4$, not single, level triggered
13 14	ICW1 ICW1	$\stackrel{M}{\mathbf{N}}$	0	$\begin{aligned} & A_{7} \\ & \text { A7 } \end{aligned}$	A6 ${ }_{\text {A }}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	ICWA Required	Format $=8$, single, edge triggered Format $=8$, single, leval triggered
15	ICW1	0	0	A7	A6	0	1	0	0	0	1		Format $=8$, not single, edge triggered
16	ICW:	P	0	A)	A6	0	1	1	0	0	1		Format $=8$, not single, level triggered
17	ICW2		1	A15	A14	A13	A 12	Al1	A10	A9	A8	Byte 2 initialization	
18	ICW3	M	1	S7	S6	S5	S4	S3	S2	S1	so	Byte 3 initialization	master
19	ICW3	S	1	0	0	0	0	0	S2	S1	so	Byte 3 initialization -	slave
20	ICW4	A	1	0	0	0	0	0	0	0	0	No action, redundant	
21	ICW4	B	1	0	0	0	0	0	0	0	1	Non-buffered mode,	no AEOI, 8086/8088
22	ICW4	C	1	0	0	0	0	0	0	1	0	Nón-buffered mode,	AEOI, 80/85
23	ICW4	D	1	0	0	0	0	0	0	1	1	Non-buffered mode,	AEOI, 8086/8088
24	ICW4	E	1	0	0	0	0	0	1	0	0	No action, redundan	
25	ICW4	F	1	0	0	0	0	0	1	0	1	Non-buffered mode,	no AEOI, 8086/8088
26	ICW4	G	1	0	0	0	0	0	1	1	0	Non-buffered mod	AEOI, 80/85
27	ICW4	H	1	0	0	0	0	0	1	1	1	Non-buffered mode	AEOI, 8086/8088
28	ICW4	1	1	0	0	0	0	1	0	0	0	Buffered mode, sla	no AEOI, 80/85
29	ICW4	J	1	0	0	0	0	1	0	0	1	Buffered mode, sla	no AEOI, 80/85
30	ICW4	K	1	0	0	0	0	1	0	1	0	Buffered mode, slave	, no AEOI, 8086/8088
31	ICW4	L	1	0	0	0	0	1	0	1	1	Buffered mode, slave	AEOI, 80/85
32	ICW4	M	1	0	0	0	0	1	1	0	0	Buffered mode, slave	, AEOI, 8086/8088
33	ICW4	N	1	0	0	0	0	1	1	0	1	Buffered mode, mast	er, no AEOI, 80/85
34	ICWa	0	1	0	0	0	0	1	1	1	0	Buffered mode, mastar	er, no AEOI, 8086/8088
35	ICW4	P	1	0	0	0	0	1	1	1	1	Buffered mode, mas	er, AEOI, 80/85
36	ICW4	NA	1	0	0	0	1	0	0	0	0	Buffered mode, mas	er AEOI, 8086, 8088
37	ICW4	NB	1	0	0	0	1	0	0	0	1	Fully nested mode,	8085A, non-buffered, no AEOI
38	ICW4	NC	1	0	0	0	1	0	0	1	0	ICW4 NB through	W4 ND are identical to
39	ICW4	ND	1	0	0	0	1	0	0	1	1		
40	ICW4	NE	1	0	0	0	1	0	1	0	0	Fully Nested Mode	
41	ICW4	NF	1	0	0	0	1	0	1	0	1	Fully Nested Mode,	80/85, non-buffered, no AEOI
42	ICW4	NG	1	0	0	0	1	0	1	1	0	Fully Nested Mode,	-65, non-buffered, no AEOI
43	ICW4	NH	1	0	0	0	1	0	1	1	1		
44	ICW4	NI	1	0	0	0	1	1	0	0	0		
45	ICW4	NJ	1	0	0	0	1	1	0	0	1		
46	ICW4	NK	1	0	0	0	1	1	0	1	0	ICW4 NF through ICW	N4 NP are identical to
47	ICW4	NL	1	0	0	0	1	1	0	1	1	ICW4 F through ICW Fully Nested Mode	P with the addition of
48	ICWA	NM	1	0	0	0	1	1	1	0	0		
48	ICW4	NN	1	0	0	0	1	1	1	0	1		
50	ICW4	No	1	0	0	0	1	1	1	1	0		
51	ICW4	NP	1	0	0	0	1	1	1	1	1		
52	OCW1		1	M7	M6	M5	M4	M3	M2	M1	мо	Load mask register, r	ead mark register
53	OCW2	E	0	0	0	1	0	0	0	0	0	Non-specific EOI	
54	OCW2	SE	0	0	1.	1	0	0	12	11	L0	Specific EOI, LO-L2	code of IS FF to be reset
55	OCW2	RE	0	1	0	1	0	0	0	0	0	Rotate on Non-Speci	fic EOl
56	OCW2	RSE	0	1	1	1	0	0	L2	4	LO	Rotate on Specific E	OI LO-L2 code of line
57	OCW2	ค	0	1	0	0	0	0	0	0	0	Rotate in Auto EOI	
58	OCW2	CA	0	0	0	0	0	0	0	0	0	Rotate in Auto EOI	
59	OCW2	RS	0	1	1	0	0	0	L2	11	LO	Set Priority Command	
60	OCW3	P	0	0	0	0	0	1	1	0	0	Set Priority Comman	
61	OCW3	RIS	0	0	0	0	0	1	0	1	1	Poll mode Read IS register	

SUMMARY OF OPERATION COMMAND WORD PROGRAMMING

LOWER MEMORY INTERRUPT VECTOR ADDRESS

INTERVAL $=4$									INTERVAL $=8$							
	D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	Do	D_{7}	D_{6}	D5	D_{4}	D_{3}	D2	D1	Do
IR_{7}	A_{7}	A_{6}	A_{5}	1	1	1	0	0	A7	A_{6}	1	1	1	0	0	0
IR_{6}	A7	A_{6}	A_{5}	1	1	0	0	0	A7	A_{6}	1	1	0	0	0	0
IR_{5}	A_{7}	A_{6}	A_{5}	1	0	1	0	0	A_{7}	A_{6}	1	0	1	0	0	0
IR_{4}	A7	A_{6}	A_{5}	1	0	0	0	0	A_{7}	A_{6}	1	0	0	0	0	0
IR_{3}	A7	A_{6}	A_{6}	0	1	1	0	0	A7	A_{6}	0	1	1	0	0	0
iR_{2}	A_{7}	A_{6}	A_{6}	0	1	0	0	0	A 7	A_{6}	0	1	0	0	0	0
IR1	A_{7}	A_{6}	A_{5}	0	0	1	0	0	A7	A_{6}	0	0	1	0	0	0
IR_{0}	A_{7}	A_{6}	A_{5}	0	0	0	0	0	A_{7}	A_{6}	0	0	0	0	0	0

FIGURE 4
Note: Insure that the processor's interrupt input is disabled during the execution of any control command and initialization sequence for all μ PD8259A's.

PACKAGE OUTLINE μ PD8259AC

ITEM	MILLIMETERS	InCHES
A	38.0 mAX .	1.496 MAX.
B	2.49	0.098
c	2.54	0.10
0	05 ± 0.1	0.02 ± 0.004
E	33.02	1.3
F	1.5	0.059
6	2.54 MIN .	0.10 miN .
H	0.5 MIN.	0.02 MIN .
1	5.22 max.	0.206 MAX .
J	5.72 MAX .	0.225 MAX .
K	15.24	0.6
1	13.2	0.52
M	$\begin{array}{r} +0.10 \\ 0.25 \\ \hline \end{array}$	$\begin{array}{r} 0.01+0.004 \\ -0.002 \\ \hline \end{array}$

Ceramic

ITEM	MILLIMETERS	INCHES
A	36.2 MAX.	1.43 MAX .
B	1.59 MAX.	0.06 MAX .
C	2.54 ± 0.1	0.1 ± 0.004
D	0.46 ± 0.01	0.02 ± 0.004
E	33.02 ± 0.1	1.3 ± 0.004
F	1.02 MIN .	0.04 MIN .
G	3.2 MIN .	0.13 MIN .
H	1.0 MIN .	0.04 MIN .
I	3.5 MAX.	0.14 MAX .
J	4.5 MAX .	0.18 MAX .
K	15.24 TYP.	0.6 TYP.
L	14.93 TYP.	0.59 TYP.
M	0.25 ± 0.05	0.01 ± 0.002

PROGRAMMABLE KEYBOARD/DISPLAY INTERFACE

Abstract

DESCRIPTION The μ PD8279-5 is a programmable keyboard and display Input/Output device. It provides the user with the ability to display data on alphanumeric segment displays or simple indicators. The display RAM can be programmed as 16×8 or a dual 16×4 and loaded or read by the host processor. The display can be loaded with right or left entry with an auto-increment of the display RAM address.

The keyboard interface provides a scanned signal to a 64 contact key matrix expandable to 128 . General sensors or strobed keys may also be used. Keystrokes are stored in an $\mathbf{8}$ character FIFO and can be either $\mathbf{2}$ key lockout or \mathbf{N} key rollover. Keyboard entries generate an interrupt to the processor.

FEATURES - Programmable by Processor

- 32 HEX or 16 Alphanumeric Displays
- 64 Expandable to 128 Keyboard
- Simultaneous Keyboard and Display
- 8 Character Keyboard - FIFO
- 2 Key Lockout or N Key Rollover
- Contact Debounce
- Programmable Scan Timer
- Interrupt on Key Entry
- Single +5 Volt Supply, $\pm 10 \%$
- Fully Compatible with 8080A, 8085A, μ PD 780 (Z80 TM)
- Available in 40 Pin Plastic Package

μ PD8279-5

The μ PD8279-5 has two basic functions: 1) to control displays to output and 2) to control a keyboard for input. Its specific purpose is to unburden the host processor from monitoring keys and refreshing displays. The μ PD8279-5 is designed to directly interface the microprocessor bus. The microprocessor must program the operating mode to the μ PD8279-5, these modes are as follows:

Output Modes

- 8 or 16 Character Display
- Right or Left Entry

Input Modes

- Scanned Keyboard with Encoded $8 \times 8 \times 4$ Key Format or Decoded $4 \times 8 \times 8$ Scan Lines.
- Scanned Sensor Matrix with Encoded 8×8 or Decoded 4×8 Scan Lines.
- Strobed Input.

Operating Temperature . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
All Output Voltages . -0.5 to +7 Volts (1)
All Input Voltages . -0.5 to +7 Volts(1)
Supply Voltages . -0.5 to +7 Volts(1)
Power Dissipation . 1 W

Note: (1) With respect to V_{SS}
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
*COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

FUNCTIONAL

 DESCRIPTION
BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS*

PIN			DESCRIPTION
NO.	SYMBOL	NAME	
$\begin{aligned} & 1,2,5 \\ & 6,7,8, \\ & 38,39 \end{aligned}$	RL0-7	Return Lines	Return line inputs which are connected to the scan lines through the keys or sensor switches. They have active internal pullups to keep them high until a switch closure pulls one low. They also serve as an 8 -bit input in the Strobed Input mode.
3	CLK	Clock	Clock from system used to generate internal timing.
4	IRQ	Interrupt Request	Interrupt Request: In a keyboard mode, the interrupt line is high when there is data in the FIFO/ Sensor RAM. The interrupt line goes low with each FIFO/Sensor RAM read and returns high if there is still information in the RAM. In a sensor mode, the interrupt line goes high whenever a change in a sensor is detected.
9	Reset	Reset Input	A high signat on this pin resets the μ PD8279-5.
10	$\overline{\mathrm{R}} \mathrm{D}$	Read Input	Input/Output read and write. These signals enable the data buffers to either send data to the external bus or receive it from the external bus.
11	$\overline{W R}$	Write Input	
12-19	DB0.7	Data Bus	Bi-Directional data bus. All data and commands between the processor and the μ PD 8279-5 are transmitted on these lines.
20	VSS	Ground Reference	Power Supply Ground
21	A_{0}	Buffer Address	Buffer Address. A high on this line indicates the signals in or out are interpreted as a command or status. A low indicates that they are data.
22	$\overline{\overline{\mathrm{CS}}}$	Chip Select	Chip Select. A low on this pin enables the interface functions to receive or transmit.
23	$\overline{\overline{B D}}$	Blank Display Output	Blank Display. This output is used to blank the display during digit switching or by a display blanking command.
24-27	OUT A0-3	Display A Outputs	These two ports are the outputs for the 16×4 display refresh registers. The data from these outputs is synchronized to the scan lines ($S_{L_{0}}-\mathrm{SL}_{3}$) for multiplexed digit displays. The two 4-bit ports may be blanked independently. These two ports may also be considered as one 8 -bit port.
28.31	OUT B0-3	Display B Outputs	
32-35	SLo-3	Scan Lines	Scan Lines which are used to scan the key switch or sensor matrix and the display digits. These lines can be either encoded (1 of 16) or decoded (1 of 4).
36	Shift	Shift Input	The shift input status is stored along with the key position on key closure in the Scanned Keyboard modes. It has an active internal pullup to keep it high until a switch closure pulls it low.
37	CNTL/STB	Control/ Strobe Input	For keyboard modes this line is used as a control input and stored like status on a key closure. The line is also the strobe line that enters the data into the FIFO in Strobed input mode (Rising Edge). It has an active internal pullup to keep it high until a switch closure pulls it low.
40	$V_{C C}$	+5 V input	Power Supply Input

μ PD8279-5

$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; V_{C C}=+5 \mathrm{~V} \pm 10 \% ; V_{S S}=0 \mathrm{~V}$.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Low Voltage for Return Lines	VILI	-0.5		1.4	V	
Input Low Voltage (Others)	$V_{\text {IL2 }}$	-0.5		0.8	V	
input High Voltage for Return Lines	$\mathrm{V}_{1} \mathrm{H} 1$	2.2			V	
Input High Voltage (Others)	$\mathrm{V}_{1 \mathrm{H} 2}$	2.0			V	
Output Low Voltage.	VOL			0.45	V	$1 \mathrm{OL}=2.2 \mathrm{~mA}$
Output High Voltage on Interrupt Line	$\begin{aligned} & \text { IRO } \\ & \text { Pin } \end{aligned}$	+3.5			V	$1 \mathrm{OH}=-50 \mu \mathrm{~A}$
		+2.4			V	$1 \mathrm{OH}=-400 \mu \mathrm{~A}$
	OTHERS	+2.4			V	$\mathrm{IOH}=-400 \mu \mathrm{~A}$
Input Current on Shift, Control and Return Lines	ILL?			+10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$
				-100	$\mu \mathrm{A}$	$V_{\text {IN }}=0 \mathrm{~V}$
Input Leakage Current (Others)	IIL2			± 10	$\mu \mathrm{A}$	$V_{\text {IN }}=V_{\text {CC }}$ to $0 V$
Output Float Leakage	IOFL			+10	$\mu \mathrm{A}$	VOUT $=$ VCC to 0 V
Power Supply Current	ICC			120	mA	

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	CIN	5		10	pF	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$
Output Capacitance	COUT	10		20	pF	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$

CAPACITANCE

AC CHARACTERISTICS

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
READ						
Address Stable Before READ	tAR	0			ns	
Address Hold Time for $\overline{\text { READ }}$	tra	0			ns	
$\overline{\text { READ Pulse Width }}$	tRR	250			ns	
Data Delay from READ	tRD			150	ns	$C_{L}=150 \mathrm{pF}$
Address to Data Valid	${ }^{\text {t }}$ AD			250	ns	$C_{L}=150 \mathrm{pF}$
READ to Data Floating	tDF	10		100	ns	
Read Cycle Time	trey	1			$\mu \mathrm{s}$	
WRITE						
Address Stable Before WRITE	taw	0			ns	
Address Hold Time for WRITE	tWA	0			ns	
WRITE Pulse Width	twW	250			ns	
Data Set Up Time for WRITE	tDW	150			ns	
Data Hold Time for WRITE	twD	0			ns	
Write Cycle Time		$1 \mu \mathrm{~s}$				
OTHER						
Clock Pulse Width	$t_{\phi} \mathrm{W}$	120			ns	
Clock Period	tcy	320			ns	

GENERAL TIMING

Keyboard Scan Time:
5.1 ms
Keyboard Debounce Time:
Key Scan Time:
10.3 ms
Display Scan Time:
$80 \mu \mathrm{~s}$
10.3 ms

READ

CLOCK INPUT

μ PD8279-5

The following is a description of each section of the μ PD8279-5. See the block diagram for functional reference.

I/O Control and Data Buffers

Communication to and from the μ PD8279-5 is performed by selecting $\overline{C S}, A 0, \overline{R D}$ and $\overrightarrow{W R}$. The type of information written or read by the processor is selected by $A_{0} . A^{2}$ logic 0 states that information is data while a 1 selects command or status. $\overline{\mathrm{RD}}$ and $\overline{W R}$ select the direction by which the transfer occurs through the Data Buffers. When the chip is deselected ($\overline{\mathrm{CS}}=1$) the bi-directional Data Buffers are in a high impedance state thus enabling the μ PD8279-5 to be tied directly to the processor data bus.

Timing Registers and Timing Control

The Timing Registers store the display and keyboard modes and other conditions programmed by the processor. The timing control contains the timing counter chain. One counter is a divide by N scaler which may be programmed to match the processor cycle time. The scaler must take a value between 2 and 31 in binary. A value which scales the internal frequency to 100 KHz gives a 5.1 ms scan time and 10.3 ms switch debounce. The other counters divide down to make key, row matrix and display scans.

Scan Counter

The scan counter can operate in either the encoded or decoded mode. In the encoded mode, the counter provides a count which must be decoded to provide the scan lines. In the decoded mode, the counter provides a 1 out of 4 decoded scan. In the encoded mode the scan lines are active high and in the decoded mode they are active low.

Return Buffers, Keyboard Debounce and Control

The eight return lines are buffered and latched by the return buffers. In the keyboard mode these lines are scanned sampling for key closures in each row. If the debounce circuit senses a closure, about 10 ms are timed out and a check is performed again. If the switch is still pressed, the address of the switch matrix plus the status of shift and control are written into the FIFO. In the scanned sensor mode, the contents of return lines are sent directly to the sensor RAM (FIFO) each key scan. In the strobed mode, the transfer takes place on the rising edge of CNTL/STB.

FIF.O/Sensor RAM and Status

This section is a dual purpose 8×8 RAM. In strobe or keyboard mode it is a FIFO. Each entry is pushed into the FIFO and read in order. Status keeps track of the number of entries in the FIFO. Too many reads or writes to the FIFO will be treated as an error condition. The status logic generates an IRQ whenever the FIFO has an entry. In the sensor mode the memory is a sensor RAM which detects changes in the status of a sensor. If a change occurs, the IRQ is generated until the change is acknowledged.

Display Address Registers and Display RAM

The Display Address Register contains the address of the word being read or written by the processor, as well as the word being displayed. This address may be programmed to auto-increment after each read or write. The display RAM may be read by the processor any time after the mode and address is set. Data entry to the display RAM may be set to either right or left entry.

The commands programmable to the μ PD8279-5 via the data bus with $\overline{\mathrm{CS}}$ active (0) and A_{0} high are as follows:

Keyboard/Display Mode Set

0	0	0	D	D	K	K	K
MSB						LSB	

Display Mode:
DD

0	0	8-8-bit character display - Left entry
0	$1{ }^{(1)}$	16-8 bit character display - Left entry
1	0	8-8 bit character display - Right entry
1	1	16.8 bit character display - Right entry

Note: (1) Power on default condition
Keyboard Mode:
KKK

0	0	0	Encoded Scan - 2 Key Lockout
0	0	1	Decoded Scan - 2 Key Lockout
0	1	0	Encoded Scan - N Key Rollover
0	1	1	Decoded Scan - N Key Rollover
1	0	0	Encoded Scan-Sensor Matrix
1	0	1	Decoded Scan-Sensor Matrix
1	1	0	Strobed Input, Encoded Display Scan
1	1	1	Strobed Input, Decoded Display Scan

Program Clock

0	0	1	P	P	P	P	P

Where PPPPP is the prescaler value between 2 and 31 this prescaler divides the external clock by PPPPP to develop its internal frequency. After reset, a default value of 31 is generated.

Read FIFO/Sensor RAM

$$
\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 0 & 1 & 0 & A 1 & X & A & A & A \\
\hline
\end{array} \quad A_{0}=0
$$

A_{1} is the auto-increment flag. AAA is the row to be read by the processor. The read command is accomplished with ($\overline{C S} \cdot R D \cdot \overline{A O})$ by the processor. If A_{1} is 1 , the row select counter will be incremented after each read. Note that auto-incrementing has no effect on the display.

Read Display RAM

$$
\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 0 & 1 & 1 & A & A & A & A & A \\
\hline
\end{array} \quad A_{0}=0
$$

Where A_{1} is the auto-increment flag and AAAA is the character which the processor is about to read.
Write Display RAM

1	0	0	A1	A	A	A	A

where AAAA is the character the processor is about to write.
Display Write Inhibit Blanking

1	0	1	X	IW A	IW B	BL A	$B L$ B

Where IWA and IWB are Inhibit Writing nibble A and B respectively, and BLA, BLB are blanking. When using the display as a dual 4-bit, it is necessary to mask one of the 4-bit halves to eliminate interaction between the two halves. This is accomplished with the IW flags. The BL flags allow the programmer to blank either half of the display independently. To blank a display formatted as a single 8 -bit, it is necessary to set both BLA and BLB. Default after a reset is all zeros. All signals are active high (1).

			C		
			1 1 0C_{D}		
C_{D}	C_{D}	C_{D}			
1	0	X		All zeros	
1	1	0		$A B=20_{16}$	
1	1	1		All ones	
0	X	X		Disable clear display	

Clear

This command is used to clear the display RAM, the FIFO, or both. The CD options allow the user the ability to clear the display RAM to either all zeros or all ones.

CF clears the FIFO.
C_{A} clears all.
Clearing the display takes one complete display scan. During this time the processor can't write to the display RAM.
C_{F} will set the FIFO empty flag and reset IRQ. The sensor matrix mode RAM pointer will then be set to row 0 .
C_{A} is equivalent to C_{F} and C_{D}. The display is cleared using the display clear code specified and resets the internal timing logic to synchronize it.

End Interrupt/Error Mode Set

1	1	1	E	X	X	X	X

In the sensor matrix mode, this instruction clears IRQ and allows writing into RAM.
In N key rollover, setting the E bit to 1 allows for operating in the special Error mode. See Description of FIFO status.

FIFO Status

$D U$	S / E	O	U	F	N	N	N

Where: $\mathrm{D}_{\mathrm{U}}=$ Display Unavailable because a clear display or clear all command is in progress.
S/E = Sensor Error flag due to multiple closure of switch matrix.
$0=$ FIFO Overrun since an attempt was made to push too many characters into the FIFO.
$U=$ FIFO Underrun. An indication that the processor tried to read an empty FIFO.
$F=$ FIFO Full Flag.
NNN $=$ The Number of characters presently in the FIFO.
The FIFO Status is Read with A_{0} high and $\overline{\mathrm{CS}}, \overrightarrow{\mathrm{RD}}$ active low.
The Display not available is an indication that the C_{D} or C_{A} command has not completed its clearing. The S/E flags are used to show an error in multiple closures has occurred. The O or U , overrun or underrun, flags occur when too many characters are written into the FIFO or the processor tries to read an empty FIFO. F is an indication that the FIFO is full and NNN is the number of characters in the FIFO.

Data Read

Data can be read during $A_{0}=0$ and when $\overline{\mathrm{C}}, \overline{\mathrm{RD}}$ are active low. The source of the data is determined by the Read Display or Read FIFO commands.

Data Write

Data is written to the chip when $A_{0}, \overline{C S}$, and $\overline{W R}$ are active low. Data will be written into the display RAM with its address selected by the latest Read or Write Display command.

COMMAND OPERATION (CONT.)

Data Format

In the Scanned Key mode, the characters in the FIFO correspond to the above format where CNTL and SH are the most significant bits and the SCAN and return lines are the scan and column counters.

$R L_{7}$	$R L_{6}$	$R L_{5}$	RL_{4}	RL_{3}	RL_{2}	RL 1	RL_{0}

In the Sensor Matrix mode, the data corresponds directly to the row of the sensor RAM being scanned. Shift and control (SH, CNTL) are not used in this mode.

Control Address Summary

AO
DATA
MSB LSB

0	0	0	D	D	K	K	K

Keyboard Display Mode Set

$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	\mathbf{P}	\mathbf{P}	\mathbf{P}	\mathbf{P}	\mathbf{P}

Load Program Clock

0	1	0	A_{1}	X	A	A	A

Read FIFO/Sensor RAM
0

0	1	1	A_{1}	A	A	A	A

Read Display RAM

1	0	0	A_{1}	A	A	A	A

Write Display RAM
Display Write Inhibit/Blanking
Clear

| 1 | 1 | 1 | E | X | X | X | X |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |\quad End Interrupt/Error Mode Set

1 | $D U$ | S / E | O | U | F | N | N | N |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

PACKAGE OUTLINE

 μ PD8279-5C
(Plastic)

ITEM	MILLIMETERS	INCHES
A	51.5 MAX	2.028 MAX
B	1.62	0.064
C	2.54 ± 0.1	0.10 ± 0.004
D	0.5 ± 0.1	0.019 ± 0.004
E	48.26	1.9
F	1.2 MIN	0.047 MIN
G	2.54 MIN	0.10 MIN
H	0.5 MIN	0.019 MIN
I	5.22 MAX	0.206 MAX
J	5.72 MAX	0.225 MAX
K	15.24	0.600
L	13.2	0.520
M	$0.25+0.1$	$0.010+0.004$

NOTES

OCTAL LATCH

DESCRIPTION
The μ PB8282/8283 are 8 -bit latches with tri-state output buffers. The 8282 is noninverting and the 8283 inverts the input data. These devices are ideal for demuxing the address/data buses on the 8085A/8086 microprocessors.
The 8282/8283 are fabricated using NEC's Schottky bipolar process.

FEATURES - Supports 8080, 8085A, 8048, 8086 Family Systems

- Transparent During Active Strobe
- Fülly Parallel 8-Bit Data Register and Buffer
- High Output Drive Capability (32 mA) for Driving the System Data Bus
- Tri-State Outputs
- 20-Pin Package

PIN NAMES
$\mathrm{DI}_{0}-\mathrm{DI}_{7}$ DATA IN $\mathrm{DO} \mathrm{O}_{0} \mathrm{DO}_{7}$ DATA OUT $\overline{\mathrm{OE}}$ OUTPUT ENABLE STB STROBE

FUNCTIONAL The μ PB8282/8283 are 8-bit latches with tri-state output buffers. Data on the inputs DESCRIPTION is latched into the data latches on a high to low transition of the STB line. When STB is high, the latches appear transparent. The $\overline{\mathrm{OE}}$ input enables the latched data to be transferred to the output pins. When $\overline{\mathrm{OE}}$ is high, the outputs are put in the tri-state condition. $\overline{\mathrm{OE}}$ will not cause transients to appear on the data outputs.

Operating Temperature
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
All Output and Supply Voltages . -0.5 V to +7 V
All Input Voltages . - 1.0 V to 5.5V
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
*COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Conditions: $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	MIN	MAX	UNITS	TEST CONDITIONS
Input Clamp Voltage	V_{C}		-1	V	$\mathrm{I}_{\mathrm{C}}=-5 \mathrm{~mA}$
Power Supply Current	I_{CC}		160	mA	
Forward Input Current	I_{F}		-0.2	mA	$\mathrm{~V}_{\mathrm{F}}=0.45 \mathrm{~V}$
Reverse Input Current	I_{R}		50	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{R}}=5.25 \mathrm{~V}$
Output Low Voltage	V_{OL}		0.45	V	$\mathrm{I}_{\mathrm{OL}}=32 \mathrm{~mA}$
Output High Voltage	V_{OH}	2.4		V	$\mathrm{I}_{\mathrm{OH}}=-5 \mathrm{~mA}$
Output Off Current	$\mathrm{I}_{\mathrm{OFF}}$		± 50	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{OFF}}=0.45$ to 6.25 V
Input Low Voltage	V_{IL}		0.8	V	$\mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}(1)$
Input High Voltage	V_{IH}	2.0		V	$\mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}(1)$
Input Capacitance	C_{IN}		12	pF	$\mathrm{V}_{\mathrm{BIAS}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$ $\mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{F}=1 \mathrm{MHz}$

Note:(1) Output Losding $\mathrm{I}_{\mathrm{OL}}=32 \mathrm{~mA}, \mathrm{I}_{\mathrm{OH}}=-5 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=300 \mathrm{pF}$

AC CHARACTERISTICS
Conditions: $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Loading: Outputs - $1 \mathrm{OL}=32 \mathrm{~mA}, \mathrm{IOH}=-5 \mathrm{~mA}, \mathrm{CL}_{\mathrm{L}}=300 \mathrm{pF}$

PARAMETER	SYMBOL	MIN	MAX	UNITS
Input to Output Delay -Inverting -Non-Inverting	TIVOV	5 5	$\begin{aligned} & 22 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
STB to Output Delay - Inverting -Non-Inverting	TSHOV	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 40 \\ & 45 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
Output Disable Time	TEHOZ	5	22	ns
Output Enable Time	TELOV	10	30	ns
Input to STB Setup Time	TIVSL	0		ns
Input to STB Hold Time	TSLIX	25		ns
STB High Time	TSHSL	15		ns
Input, Output Rise Time	$\mathrm{T}_{\text {ILIH }}{ }^{\text {T }}$ TOLOH		20	ns
Input, Output Fall Time	T/HIL ${ }^{\text {T }}$ OHOL		12	nw

TIMING WAVEFORMS

Note: Output may be momentarily invalid following the high going into STB transition.

3-stATE TO VOL

3-STATE TO $\mathrm{VOH}_{\mathrm{OH}}$

SWITCHING

AC TESTING INPUT, OUTPUT WAVEFORM

ITEM	MILLIMETERS	INCHES
A	26.7 MAX.	1.05 MAX.
B	0.7	0.028
C	2.54	0.1
D	0.46 ± 0.1	0.018 ± 0.004
E	22.86	0.9
F	1.4	0.055
F^{\prime}	0.9	0.035
G	2.54 MIN.	0.1 MIN.
H	0.5 MIN .	0.02 MIN .
1	4.32 MAX.	0.17 MAX.
J	5.08 MAX .	0.2 MAX .
K	7.62	0.3
L	6.8	0.27
M	$\begin{array}{r} 0.25+0.10 \\ -0.05 \end{array}$	$\begin{array}{r} 0.01+0.004 \\ -0.002 \end{array}$
R	0.8 R	0.03R

μ PB8282D
μ PB8283D

CLOCK GENERATOR AND DRIVER FOR 8086/8088 MICROPROCESSORS

DESCRIPTION
The μ PB8284 is a clock generator and driver for the 8086 and 8088 microprocessors This bipolar driver provides the microprocessor with a reset signal and also provides properly synchronized READY timing. A TTL clock is also provided for peripheral devices.
FEATURES - Generate System Clock for the 8086 and 8088
- Frequency Source can be a Crystal or a TTL Signal
- MOS Level Output for the Processor
- TTL' Level Output for Peripheral Devices
- Power-Up Reset for the Processor
- READY Synchronization.
- +5V Supply
- 18 Pin Package

$\mathrm{x}_{1}, \mathrm{x}_{2}$	Crystal Connections
TANK	For Overtone Crystal
F/C	Clock Source Select
EFI	External Clock Input
CSYNC	Clock Synchronization Input
$\left.\begin{array}{l} \text { RDY1 } \\ \text { RDY2 } 2 \end{array}\right\}$	Ready Signal from MultibusTM* Systems
$\left.\begin{array}{\|l\|} \overline{\mathrm{AEN1}} \\ \overline{\mathrm{AEN} 2} \end{array}\right\}$	Address Enable Qualifiers for the two RDY Signals
RES	Reset Input
RESET	Synchronized Reset Output
OSC	Oscillator Output
CLK	MOS Clock for the Processor
PCLK	TTL Clock for Peripherals
READY	Synchronized Ready Output

PIN IDENTIFICATION

NO.	SYMBOL	NAME	FUNCTION
1	CSYNC	Clock Synchronization	An active high signal which allows multiple 82845 to be synchronized. When CYSNC is low, the internal counters count and when high the counters are reset. CYSNC should be grounded when the internal oscillator is used.
2	PCLK	Peripheral Clock	A TTL level clock for use with peripheral devices. This clock is onehalf the frequency of CLK.
3,7	$\overline{\text { AEN }} 1, \overline{\text { AEN }} 2$	Address Enable	This active low signal is used to qualify its respective RDY inputs. If there is only one bus to interface to, $\overline{\mathrm{AEN}}$ inputs are to be grounded.
4, 6	RDY1, RDY2	Bus Ready	This signal is sent to the 8284 from a peripheral device on the bus to indicate that data has been received or data is available to be read.
5	READY	Ready	The READY signal to the microprocessor is synchronized by the RDY inputs to the processor CLK. READY is cleared after the guaranteed hold time to the processor has been met.
8	CLK	Processor Clock	This is the MOS level clock output of 33% duty cycle to drive the microprocessor and bipolar support devices (8288) connected to the processor. The frequency of CLK is one third of the crystal or EFI frequency.
10	RESET	Reset	This is used to initialize the processor. Its input is derived from an RC connection to a Schmitt trigger input for power up operation.
11	$\overline{\text { RES }}$	Reset In	This Schmitt trigger input is used to determine the timing of RESET out via an RC circuit.
12	OSC	Oscillator Output	This TTL level clock is the output of the oscillator circuit running at the crystal frequency.
13	F/ $\overline{\mathrm{C}}$	Frequency Crystal Select	$\mathrm{F} / \overline{\mathrm{G}}$ is a strapping option used to determine where CLK is generated. A high is for the EFI input, and a low is for the crystal.
14	EFI	External Frequency In	A square wave in at three times the CLK output. A TTL level clock to generate CLK.
16, 17	$\mathrm{x}_{1}, \mathrm{x}_{2}$	Crystal In	A crystal is connected to these inputs to generate the processor clock. The crystal chosen is three times the desired CLK output.
15	TNK	Tank	This is used for overtone type crystals. (See diagram below.)
18	VCC	VCC	+5V

BLOCK DIAGRAM

ABSOLUTE MAXIMUM
 RATINGS*

Operating Temperature
$.0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature . $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
All Output and Supply Voltages . -0.5 V to +7 V
All Input Voltages -1.0 V to +5.5 V
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
*COMMENT: Stress above those listed under "Absolute Maximum Ratings"' may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC CHARACTERISTICS
Conditions: $\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	MIN	MAX	UNIT	TEST CONDITIONS
Forward Input Current	I_{F}		-0.5	mA	$V_{F}=0.45 \mathrm{~V}$
Reverse Input Current	I_{R}		50	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=5.25 \mathrm{~V}$
Input Forward Clamp Voltage	V_{C}		-1.0	V	$\mathrm{I}^{\prime} \mathrm{C}=-5 \mathrm{~mA}$
Power Supply Current	${ }^{\text {I Cr }}$		140	mA	
Input Low Voltage	$V_{1 L}$		0.8	V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
Input High Voltage	$V_{!H}$	2.0		V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
Reset Input High Voltage	$\mathrm{V}_{1} H_{R}$	2.6		V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
Output Low Voltage	$\mathrm{VOL}_{\text {OL }}$		0.45	V	$5 \mathrm{~mA}=1 \mathrm{OL}$
Output High Voltage CLK Other Outputs	VOH	$\begin{aligned} & \hline 4 \\ & 2.4 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \end{aligned}$	$\left.\begin{array}{l} -1 \mathrm{~mA} \\ -1 \mathrm{~mA} \end{array}\right\} \mathrm{I}^{\mathrm{OH}}$
$\overline{\mathrm{RES}}$ Input Hysteresis	$V_{1 H_{R}} \cdot V_{1} L_{R}$	0.25		V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

The clock generator can provide the system clock from either a crystal or an external TTL source. There is an internal divide by three counter which receives its input from either the crystal or TTL source (EFI Pin) depending on the state of the F/ $\overline{\mathrm{C}}$ input strapping. There is also a clear input (C SYNC) which is used for either inhibiting the clock, or synchronizing it with an external event (or perhaps another clock generator chip). Note that if the TTL input is used, the crystal oscillator section can still be used for an independent clock source, using the OSC output.

For driving the MOS output level, there is a 33% duty cycle MOS output (CLK) for the microprocessor, and a TTL output (PCLK) with a 50% duty cycle for use as a peripheral clock signal. This clock is at one half of the processor clock speed.

Reset timing is provided by a Schmitt Trigger input ($\overline{\mathrm{RES}}$) and a flip-flop to synchronize the reset timing to the falling edge of CLK. Power-on reset is provided by a simple RC circuit on the $\overline{\mathrm{RES}}$ input.

There are two READY inputs, each with its own qualifier ($\overline{\operatorname{AEN} 1}, \overline{\mathrm{AEN}} 2$). The unused $\overline{A E N}$ signal should be tied low.

The READY logic in the 8284 synchronizes the RDY1 and RDY2 asynchronous inputs to the processor clock to insure proper set up time, and to guarantee proper hold time before clearing the ready signal.

The tank input to the oscillator allows the use of overtone mode crystais. The tank circuit shunts the crystal's fundamental and high overtone frequencies and allows the third harmonic to oscillate. The external LC network is connected to the TANK input and is AC coupled to ground.

Conditions: $\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$
TIMING REQUIREMENTS

TIMING RESPONSES

Notes:
(1) $\delta=E F I$ rise (5 ns max) +EFI fall (5 ns max).
(2) Set up and hold only necessary to guarantee recognition at next clock.
(3) Applies only to T3 and TW states.
(4) Applies only to T2 states.

TIMING WAVEFORMS*

[^16]

FIGURE 1 CLOCK HIGH AND LOW TIME

Figure 3 READY TO CLK

FIGURE 2. CLOCK HIGH AND LOW TIME

FIGURE 4 READY TO CLK

OUTPUT
NOTES: (1) $\mathrm{C}_{\mathrm{L}}-100 \mathrm{pF}$
(2) $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$
(3) CL includes probe and jig capacitance

A.C. TESTING- INPUTS ARE DRIVEN AT 2.4V FOR A LOGIC " 1 " AND O.45V FOR A LOGIC "0" TIMING. MEASUREMENTS ARE MADE AT 1.5 V FOR BOTH A LOGIC "1" AND " 0 ."

AC TESTING INPUT, OUTPUT WAVEFORM

PACKAGE OUTLINES μ PB8284C

Plastic

ITEM	MILLIMETERS	INCHES
A	23.2 MAX	0.91 MAX
B	1.44	0.055
C	2.54	0.1
D	0.45	0.02
E	20.32	0.8
F	1.2	0.06
H	2.5 MIN	0.7 MIN
H	0.5 MIN.	0.02 MIN
J	4.6 MAX	0.18 MAX
K	5.1 MAX	0.2 MAX
L	7.62	0.3
M	6.7	0.25

Cerdip

ITEM	MILLIMETERS	INCHES
A	23.2 MAX	0.91 MAX
B	1.44	0.055
C	2.54	0.1
D	0.45	0.02
E	20.32	0.8
F	1.2	0.06
G	2.5 MIN	0.1 MIN
H	0.5 MIN	0.02 MIN
I	4.6 MAX	0.18 MAX
J	5.1 MAX	0.2 MAX
K	7.62	0.3
L	6.7	0.26
M	0.25	0.01

NOTES
μ PB8284A

Microcomputer Division

CLOCK GENERATOR AND DRIVER FOR 8086/8088 MICROPROCESSORS

DESCRIPTION
The μ PB8284A is a clock generator and driver for the 8066 and 8088 microprocessors. This bipolar driver provides the microprocessor with a reset signal and also provides properly synchronized READY timing. A TTL clock is also provided for peripheral devices.

FEATURES - Generate System Clock for the 8086 and 8088

- Frequency Source can be a Crystal or a TTL Signal
- MOS Level Output for the Processor
- TTL Level Output for Peripheral Devices
- Power-Up Reset for the Processor
- READY Synchronization
- +5V Supply
- 18 Pin Package

[^17]PIN IDENTIFICATION

NO.	SYMBOL	NAME	FUNCTION
1	CSYNC	Clock Synchronization	An active high signal which allows multiple 8284s to be synchronized. When CYSNC is low, the internal counters count and when high the counters are reset. CYSNC should be grounded when the internal oscillator is used.
2	PCLK	Peripheral Clock	A TTL level clock for use with peripheral devices. This clock is onehalf the frequency of CLK.
3,7	$\overline{\text { AEN }} 1, \overline{\text { AEN }} 2$	Address Enable	This active low signal is used to qualify its respective RDY inputs. If there is only one bus to interface to, $\overline{A E N}$ inputs are to be grounded.
4,6	RDY1, RDY2	Bus Ready	This signal is sent to the 8284 from a peripheral device on the bus to indicate that data has been received or data is available to be read.
5	READY	Ready	The READY signal to the microprocessor is synchronized by the RDY inputs to the processor CLK. READY is cleared after the guaranteed hold time to the processor has been met.
8	CLK	Processor Clock	This is the MOS level clock output of 33% duty cycle to drive the microprocessor and bipolar support devices (8288) connected to the processor. The frequency of CLK is one third of the crystal or EFI frequency.
10	RESET	Reset	This is used to initialize the processor. Its input is derived from an RC connection to a Schmitt trigger input for power up operation.
11	$\overline{\text { RES }}$	Reset In	This Schmitt trigger input is used to determine the timing of RESET out via an RC circuit.
12	OSC	Oscillator Output	This TTL level clock is the output of the oscillator circuit running at the crystal frequency.
13	F/C	Frequency Crystal Select	$\mathrm{F} / \overline{\mathrm{C}}$ is a strapping option used to determine where CLK is generated. A high is for the EFI input, and a low is for the crystal.
14	EFI	External Frequency In	A square wave in at three times the CLK output. A TTL level clock to generate CLK.
16, 17	x_{1}, x_{2}	Crystal In	A crystal is connected to these inputs to generate the processor clock. The crystal chosen is three times the desired CLK output.
15	$\overline{\text { ASYNC }}$	Asynchronous input	Ready Synchronization Select. $\overline{\text { ASYNC }}$ is an input which defines the synchronization mode of the READY logic. When $\overline{A S Y N C}$ is low, 2 stages of READY synchronization are provided. When $\overline{A S Y N C}$ is left open or HIGH, a single stage of READY synchronization is provided.
18	Vcc	Vcc	$+5 \mathrm{~V}$

ABSOLUTE MAXIMUM
 RATINGS*

Operating Temperature
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
All Output and Supply Voltages. -0.5 V to +7 V
All Input Voltages
-1.0 V to +5.5 V
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
"COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device rellability.

Conditions: $\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	MIN	MAX	UNIT	TEST CONDITIONS
Forward Input Current	If		-0.5	mA	$V_{F}=0.45 \mathrm{~V}$
Reverse Input Current	I_{R}		50	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=5.25 \mathrm{~V}$
Input Forward Clamp Voltage	V_{C}		-1.0	\checkmark	$I^{\prime} \mathrm{C}=-5 \mathrm{~mA}$
Power Supply Current	ICC		140	mA	
Input Low Voltage	$V_{\text {IL }}$		0.8	V	VCC $=5.0 \mathrm{~V}$
Input High Voltage	$V_{\text {IH }}$	2.0		V	$\mathrm{VCC}=5.0 \mathrm{~V}$
Reset Input High Voltage	$V_{\text {IHR }}$	2.6		V	$\mathrm{VCC}=5.0 \mathrm{~V}$
Output Low Voltage	VOL		0.45	V	$5 \mathrm{~mA}=\mathrm{I}_{\mathrm{OL}}$
Output High Voltage CLK Other Outputs	$\mathrm{V}^{\text {OH }}$	$\begin{aligned} & \hline 4 \\ & 2.4 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{v} \\ & \mathrm{v} \end{aligned}$	$\left.\begin{array}{l} -1 \mathrm{~mA} \\ -1 \mathrm{~mA} \end{array}\right\}{ }^{\mathrm{I} O H}$
$\overline{\mathrm{RES}}$ Input Hysteresis	$V_{1 H_{R}} V^{\prime} L_{\text {R }}$	0.25		V	$\mathrm{VcC}=5.0 \mathrm{~V}$

The clock generator can provide the system clock from either a crystal or an external TTL source. There is an internal divide by three counter which receives its input from either the crystal or TTL source (EFI Pin) depending on the state of the F/ $\overline{\mathrm{C}}$ input strapping. There is also a clear input (C SYNC) which is used for either inhibiting the clock, or synchronizing it with an external event (or perhaps another clock generator chip). Note that if the TTL input is used, the crystal oscillator section can still be used for an independent clock source, using the OSC output.

For driving the MOS output level, there is a 33% duty cycle MOS output (CLK) for the microprocessor, and a TTL output (PCLK) with a 50% duty cycie for use as a peripheral clock signal. This clock is at one half of the processor clock speed.

Reset timing is provided by a Schmitt Trigger input ($\overline{\mathrm{RES}}$) and a flip-flop to synchronize the reset timing to the falling edge of CL.K. Power-on reset is provided by a simple RC circuit on the $\overline{\mathrm{RES}}$ input.

There are two READY inputs, each with its own qualifier ($\overline{\operatorname{AEN} 1}, \overline{\mathrm{AEN} 2}$). The unused $\overline{\mathrm{AEN}}$ signal should be tied low.

The READY logic in the 8284A synchronizes the RDY1 and RDY2 asynchronous inputs to the processor clock to insure proper set up time, and to guarantee proper hold time before clearing the ready signal.

Conditions: $T_{a}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}: V_{C C}=5 \mathrm{~V} \pm 10 \%$
TIMING REQUIREMENTS

PARAMETER	SYMBOL	MIN	MAX	UNITS	TEST CONDITIONS
External Frequency High Time	TEHEL	13		ns	90\%-90\% V_{IN}
External Frequency Low Time	TELEH	13		ns	10\%-10\% VIN
Efl Period	TELEL	TEHEL + TELEH + δ		ns	(1)
XTAL Frequency		12	25	MHz	
RDY1, RDY2 Set-Up to CLK	TR1VCL	35		ns	
RDY1, RDY2 Hold to CL.K	TCLR1X	0		ns	
AEN1, AEN2 Set-Up to RDY1, RDY2	TA1VR1V	15		ns	
AEN1, AEN2 Hold to CLK	TCLA1X	0		ns	
CSYNC Set-Up to EFI	TYHEH	20		ns	
CSYNC Hold to EFI	TEHYL	20		ns	
CSYNC Width	TYHYL	2 TELEL		ns	
RES Set-Up to CLK	TI1HCL	65		ns	(2)
RES Hold to CLK	TCLITH	20		ns	(2)
RDY1, RDY2 Active Set-Up to CLK	tR1VCH	35		ns	$\overline{A S Y N C ~}=$ LOW
RDY1, RDY2 Inactive Set-Up to CLK	${ }^{\text {t }}$ (1VVCL	35		ns	
ASYNC Set-Up to CLK	${ }^{\text {t } A Y V C L}$	50		ns	
ASYNC Hold to CLK	${ }^{\text {t CLAYX }}$	0		ns	-
Input Rise Time	till		20	ns	From 0.8 V to 2.0 V
Input Fall Time	tILIL		12	ns	From 2.0 V to 0.8 V

AC CHARACTERISTICS (CONT.)

TIMING RESPONSES

PARAMETER	SYMBOL	MIN	MAX	UNITS	TEST CONDITIONS
CLK Cycle Period	TCLCL	125		ns	
CLK High Time	TCHCL	(1/3 TCLCL) +2.0		ns	Figure 3 and Figure 4
CLK Low Time	TCLCH	(2/3 TCLCL $)-15.0$		ns	Figure 3 and Figure 4
CLK Rise and Fall Time	TCH1CH2 TCL2CL1		10	ns	1.0 V to 3.5 V
PCLK High Time	TPHPL	TCLCL-20		ns	
PCLK Low Time	TPLPH	TCLCL -20		ns	
Ready Inactive to CLK (4)	TRYLCL	-8		ns	Figure 5 and Figure 6
Ready Active to CLK (3)	TRYHCH	(2/3 TCLCL) -15.0		ns	Figure 5 and Figure 6
CLK To Reset Delay	TCLIL		40	ns	
CLK to PCLK High Delay	TCLPH		22	ns.	
CLK to PCLK Low Delay	TCLPL		22	ns	
OSC to CLK High Delay	TOLCH	-5	12	ns	
OSC to CLK Low Delay	TOLCL	2	22	ns	
Output Rise Time (except CLK)	${ }^{\text {tolor }}$		20	ns	From 0.8 V to 2.0 V
Output Fall Time (except CLK)	${ }^{\text {t }} \mathrm{OHOL}$		12	ns	From 2.0 V to 0.8 V

Notes: (1) $\delta=$ EFI rise (5 ns max) + EFI fall (5 ns max) :
(2) Set up and hold only necessary to guarantee recognition at next clock.
(3) Applies only to T3 and TW states.

Applies only to T2 states.

TIMING WAVEFORM*
*ALL TIMING MEASUREMENTS ARE MADE AT $1.5 V$ UNLESS OTHERWISE NOTED.

FIGURE 1
CLOCK HIGH AND LOW TIME

FIGURE 3 READY TO CLK

FIGURE 2 CLOCK HIGH AND LOW TIME

FIGURE 4
READY TO CLK

OUTPUT
NOTES: (1) $C_{L}=100 \mathrm{pF}$
(2) $C_{L}=30 \mathrm{pF}$
(3) C_{L} includes probe and Jig capacitance

AC TESTING INPUT, OUTPUT WAVEFORM

Plastic

ITEM	millimeters	INCHES
A	23.2 MAX.	0.91 MAX
B	1.44	0.055
C	2.54	0.1
D	0.45	0.02
E	20.32	0.8
F	1.2	0.06
G	2.5 MIN	0.1 Min
H	0.5 MIN	0.02 MiN
1	4.6 MAX	0.18 MAX
J	5.1 MAX	0.2 MAX .
K	7.62	0.3
L	6.7	0.26
M	0.25	0.01

μ PB8284AD

Cerdip

ITEM	MILLIMETERS	INCHES
A	23.2 MAX	0.91 MAX
B	1.44	0.055
C	2.54	0.1
D	0.45	0.02
E	20.32	0.8
F	1.2	0.06
G	2.5 MIN	0.1 MIN
H	0.5 MIN	0.02 MIN
I	4.6 MAX	0.18 MAX.
J	5.1 MAX	0.2 MAX
K	7.62	0.3
L	6.7	0.26
M	0.25	0.01

NOTES

8-BIT BUS TRANSCEIVER

DESCRIPTION
The 8286 and 8287 are octal bus transceivers used for buffering microprocessor bus lines. Being bi-directional, they are ideal for buffering the data bus lines on 8 - or 16 -bit microprocessors. Each B output is capable of driving 32 mA low or 5 mA high.

FEATURES - Data Bus Buffer Driver for μ COM-8 (8080, 8085A, 780) and μ COM-16 (8086) families

- Low Input Load Current - 0.2 mA max
- High Output Drive Capability for Driving System Data Bus
- Tri-State Outputs
- 20 Pin Package with Fully Parallel 8-Bit Transceivers

PIN CONFIGURATIONS

PIN NAMES

$A_{0}-A_{7}$	Local Bus Data
$B_{0}-B_{7}$	System Bus Data
$\overline{\overline{O E}}$	Output Enable
T	Transmit

$\hat{O E}$	\mathbf{T}	RESULT
0	0	$\mathbf{B \rightarrow A}$
0	1	$\mathrm{A} \rightarrow \mathrm{B}$ 1
1	0	A and B 1
HIGH IMPEDANCE		

Operating Temperature . $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
All Output and Supply Voltages . 0.5 V to +7 V
All Input Voltages . -1.0 V to +5.5 V

ABSOLUTE MAXIMUM RATINGS*

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
*COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	MIN	MAX	UNITS	TEST CONDITIONS
Input Clamp Voltage	V_{C}		-1	V	${ }^{\prime} \mathrm{C}=-5 \mathrm{~mA}$
Power Supply Current	Icc		130	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	
	ICC		160		
Forward Input Current	If		-0.2	mA	$V_{F}=0.45 \mathrm{~V}$
Reverse Input Current	${ }^{\prime} \mathrm{R}$		50	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=5.25 \mathrm{~V}$
Output Low Voltage- B Outputs 	VOL		$\begin{aligned} & 0.45 \\ & 0.45 \end{aligned}$	\bar{v}	$\begin{aligned} \mathrm{I}_{\mathrm{OL}} & =32 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{OL}} & =16 \mathrm{~mA} \end{aligned}$
Output High Voltage $\begin{aligned} & \text { - B Outputs } \\ & - \text { A Outputs }\end{aligned}$	V_{OH}	$\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$		$\begin{aligned} & \mathrm{v} \\ & \mathrm{v} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-5 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
Output Off Current Output Off Current	$\begin{aligned} & \text { IOFF } \\ & \text { IOFF } \end{aligned}$		$\begin{aligned} & I_{F} \\ & I_{R} \end{aligned}$		$\begin{aligned} & V_{\text {OFF }}=0.45 \mathrm{~V} \\ & V_{\text {OFF }}=5.25 \mathrm{~V} \end{aligned}$
Input Low Voltage	$\frac{V_{I L}}{V_{I L}}$		0.8	$\begin{aligned} & \mathrm{v} \\ & \mathrm{v} \end{aligned}$	$\begin{array}{ll} V_{C C}=5.0 \mathrm{~V} & (1) \\ V_{C C}=5.0 \mathrm{~V} & (1) \end{array}$
Input High Voltage	$\mathrm{V}_{\text {IH }}$	2.0		V	$\begin{align*} & V_{C C}=5.0 \mathrm{~V} \tag{1}\\ & \mathrm{~F}=1 \mathrm{MHz} \end{align*}$
Input Capacitance - A Side	$\mathrm{Cl}_{\text {IN }}$		16	pF	$\begin{aligned} & V_{\mathrm{BIAS}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C} \quad \mathrm{~F}=1 \mathrm{MHz} \end{aligned}$

Note: (1) B Outputs $-1 \mathrm{OL}^{2}=32 \mathrm{~mA}, \mathrm{I}_{\mathrm{OH}}=-5 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=300 \mathrm{pF}$ A Outputs $-\mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}, \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$

AC CHARACTERISTICS
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$

SYMBOL	PARAMETER	MIN	MAX	UNITS
TIVOV	Input to Output Delay Inverting Non-Inverting	5	22	ns
TEHTV	Transmit/Receive Hold Time	TEHOZ		ns
TTVEL	Transmit/Receive Setup	10		ns
TEHOZ	Output Disable Time	5	22	ns
TELOV	Output Enable Time	10	30	ns
TILIH, TOLOH	Input Output Rise Time		20	ns
TIHIL, TOHOL	Input Output Fall Time		12	ns

Notes: See waveforms and test load circuit.
B Outputs $-\mathrm{IOL}_{\mathrm{OL}}=32 \mathrm{~mA}, \mathrm{IOH}_{\mathrm{OH}}=-5 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=300 \mathrm{pF}$ A Outputs $-\mathrm{IOL}_{\mathrm{OL}}=16 \mathrm{~mA}, \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$

AC TESTING INPUT, OUTPUT WAVEFORM

B OUTPUT

A OUTPUT

B OUTPUT

B OUTPUT

A OUTPUT

A OUTPUT

MOS microprocessors like the 8080/8085A/8086 are generally capable of driving a single TTL load. This also applies to MOS memory devices. While sufficient for minimum type small systems on a single PC board, it is usually necessary to buffer the microprocessor and memory signals when a system is expanded or signals go to other PC boards.
These octal bus transceivers are designed to do the necessary buffering.

Bi-Directional Driver

Each buffered line of the octal driver consists of two separate tri-state buffers. The B side of the driver is designed to drive 32 mA and interface the system side of the bus to I/O, memory, etc. The A side is connected to the microprocessor.

Control Gating, $\overline{\mathrm{OE}}, \mathrm{T}$

The $\overline{O E}$ (output enable) input is an active low signal used to enable the drivers selected by T on to the respective bus.
T is an input control signal used to select the direction of data through the transceivers. When T is high, data is transferred from the $A_{0}-A_{7}$ inputs to the $B_{0}-B_{7}$ outputs, and when low, data is transferred from $B_{0}-B_{7}$ to the $A_{0}-A_{7}$ outputs.

ITEM	MILLIMETERS	INCHES
A	26.7 MAX.	1.05 MAX.
B	0.7	0.028
C	2.54	0.1
D	0.46 ± 0.1	0.018 ± 0.004
E	22.86	0.9
F	1.4	0.055
F'	0.9	0.035
G	2.54 MIN .	0.1 MIN .
H	0.5 MIN .	0.02 MIN .
1	4.32 MAX.	0.17 MAX .
J	5.08 MAX .	0.2 MAX.
k	7.62	0.3
L	6.8	0.27
M	$\begin{array}{r} 0.25+0.10 \\ -0.05 \end{array}$	$\begin{array}{r} 0.01+0.004 \\ -0.002 \end{array}$
R	0.8R	0.03 A

9

NOTES

μ PD8086/8088 CPU SYSTEM BUS CONTROLLER

DESCRIPTION The μ PB8288 bus controller is for use in medium to large μ PD8086/8088 systems. This 20-pin bipolar component provides command and control timing generation, plus bipolar drive capability and optimal system performance. It provides both MultibusTM command signals and control outputs for the microprocessor system. There is an option to use the controller with a multi-master system bus and separate I/O bus.

FEATURES - System Controller for μ PD8086/8088 Systems

- Bipolar Drive Capability
- Provides Advanced Commands
- Tri-State Output Drivers
- Can be used with an I/O Bus
- Enables Interface to One or Two Multi-Master Buses
- 20-Pin Package

PIN CONFIGURATION

PIN NAMES

SO-S2	Status Input Pins
CLK	Clock
ALE	Address Latch Enable
DEN	Data Enable
DT/R	Data Transmit/Receive
$\overline{\text { AEN }}$	Address Enable
CEN	Command Enable
IOB	I/O Bus Mode
$\overline{\text { AIOWC }}$	Advanced I/O Write
$\overline{\text { OWC }}$	I/O Write Command
$\overline{\text { ORC }}$	I/O Read Command
$\overline{\text { AMWC }}$	Advanced Memory Write
$\overline{\text { MWTC }}$	Memory Write Command
$\overline{\text { MRDC }}$	Memory Read Command
INTA	Interrupt Acknowledge
MCE/PDEN	Master Cascade/Peripheral Data Enable

PIN			FUNCTION
NO.	SYMBOL	NAME	
1	IOB	I/O Bus Mode	Sets mode of μ PB8288, high for the I/O bus mode and low for the system bus mode.
2	CLK	Clock	The clock signal from the μ PB8284 clock generator synchronizes the generation of command and control signals.
3, 19, 18	$\overline{s_{0}}, \overline{s_{1}}, \bar{S}_{2}$	Status Input Pins	The μ PB8288 decodes these status lines from the μ PB8086 to generate command and control signals. When not in use, these pins are high.
4	DT/ \bar{R}	Data Transmit/Receive	This signal is used to control the bus transceivers in a system. A high for writing to I/O or memory and a low for reading data.
5	ALE	Address Latch Enable	This signal is used for controlling transparent D type latches (μ PB8282/ 8283). It will strobe in the address on a high to low transition.
6	$\overline{\text { AEN }}$	Address Enable	In the I/O system bus mode, AEN enables the command outputs of the μ PB8288 105 ns after it becomes active. If AEN is inactive, the command outputs are tri-stated.
7	$\overline{M R D C}$	Memory Read Command	This active low signal is for switching the data from memory to the data bus.
8	$\overline{\text { AMWC }}$	Advanced Memory Write Command	This is an advanced write command which occurs early in the machine cycle, with timing the same as the read command.
9	MWTC	Memory Write Command	This is the memory write command to transfer data bus to memory, but not as early as AMWC. (See timing waveforms.)
11	İWC	I/O Write Command	This command is for transferring information to I / O devices.
12	$\overline{\text { AIOWC }}$	Advanced I/O Write Command	This write command occurs earlier in the machine cycle than IOWC.
13	$\overline{\text { IORC }}$	I/O Read Command	This signal enables the CPU to read data from an I / O device.
14	INTA	Interrupt Acknowledge	This is to signal an interupting device to put the vector information on the data bus
15	CEN	Command Enable	This signal enables all command and control outputs. If CEN is low, these outputs are inactive.
16	DEN	Data Enable	This signal enables the data transceivers onto the bus.
17	$\frac{\text { MCE } /}{\text { PDEN }}$	Master Cascade Enable Peripheral Data Enable	Dual function pin system. MC/E - In the bus mode, this signal is active during an interrupt sequence to read the cascade address from the master interrupt controller onto the data bus. PDEN - In the I/O bus mode, it enables the transceivers for the I/O bus just as DEN enables bus transceivers in the system bus mode.

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS*

OPERATING TEMPERATURE . $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ All Output and Supply Voltages ${ }^{(1)}$. -0.5 V to +7 V All Input Voltages ${ }^{(1)}$. -1.0 V to +5.5V Note:(1) With Respect to Ground.
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
*COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

The three status lines ($\overline{\mathrm{SO}}, \overline{\mathrm{S} 1, ~} \overline{\mathrm{~S} 2}$) from the $\mu \mathrm{PD} 8086 \mathrm{CPU}$ are decoded by the command logic to determine which command is to be issued. The following chart shows the

S_{2}	S_{1}	S	μ PD8086 State $\quad \mu$	$\mu \mathrm{PB8288}$ Command
0	0	0	Interrupt Acknowledge	$\overline{\text { INTA }}$
0	0	1	Read I/O Port	$\overline{\text { IORC }}$
0	1	0	Write I/O Port	IOWC, AIOWC
0	1	1	Halt	None
1	0	0	Code Access	MRDC
1	0	1	Read Memory	MRDC
1	1	0	Write Memory	$\overline{M W T C}, \overline{A M W C}$
1	1	1	Passive	None

There are two ways the command is issued depending on the mode of the μ PB8288.
The I/O bus mode is enabled if the IOB pin is pulled high. In this mode, all I/O command lines are always enabled and not dependent upon AEN. When the processor sends out an I/O command, the μ PB8288 activates the command lines using PDEN and $D T / \bar{R}$ to control any bus transceivers.

This mode is advantageous if I/O or peripherals dedicated to one microprocessor are in a multiprocessor system, allowing the μ PB8288 to control two external buses. No waiting is required when the CPU needs access to the I/O bus, as an $\overline{\text { AEN }}$ low signal is needed to gain normal memory access.

If the IOB pin is tied to ground, the μ PB8288 is in the system bus mode. In this mode, commariu signals are dependent upon the $\overline{\mathrm{AEN}}$ line. Thus the command lines are activated 105 ns after the $\overline{\mathrm{AEN}}$ line goes low. In this mode, there must be some bus arbitration logic to toggle the $\overline{A E N}$ line when the bus is free for use. Here, both memory and I/O are shared by more than one processor, over one bus, with both memory and I/O commands waiting for bus arbitration.

Among the command outputs are some advanced write commands which are initiated early in the machine cycle and can be used to prevent the CPU from entering unnecessary wait states.

The INTA signal acts as an I/O read during an interrupt cycle. This is to signal the interrupting device that its interrupt is teing acknowledged, and to place the interrupt vector on the data bus.

The control outputs of the μ PB8288 are used to control the bus transceivers in a system. $D T / \bar{R}$ determines the direction of the data transfer, and DEN is used to enable the outputs of the transceiver. In the IOB mode the MCE/PDEN pin acts as a dedicated data enable signal for the I/O bus.

The MCE signal is used in conjunction with an interrupt acknowledge cycle to control the cascade address when more than one interrupt controller (such as a μ PD8259A) is used. If there is only one interrupt controller in a system, MCE is not used as the INTA signal gates the interrupt vector onto the processor bus. In multiple interrupt controller systems, MCE is used to gate the μ PD8259A's cascade addres's onto the processors local bus, where ALE strobes it into the address latches. This occurs during the first INTA cycle. During the second INTA cycle the addressed slave μ PD8259A gates its interrupt vector onto the processor bus.
The ALE signal occurs during each machine cycle and is used to strobe data into the address latches and to strobe the status ($\overline{\mathrm{SO}}, \overline{\mathrm{S} 1, ~ \overline{~ S 2 ~}}$) into the $\mu \mathrm{PB} 8288$. ALE also occurs during a halt state to accomplish this.

The CEN (Command Enable) is used to control the command lines. If pulled high the μ PB8288 functions normally and if grounded all command lines are inactive.
μ PB8288

DC CHARACTERISTICS
$V_{C C}=5 \mathrm{~V} \pm 10 \%, T_{a}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	MIN	MAX	UNIT	TEST CONDITIONS
Input Clamp Voltage	V_{C}		-1	\checkmark	$\mathrm{I}^{\prime} \mathrm{C}=-5 \mathrm{~mA}$
Power Supply Current	${ }^{\text {c C }}$		230	mA	
Forward Input Current	I_{F}		-0.7	mA	$V_{F}=0.45 \mathrm{~V}$
Reverse Input Current	IR		50	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{CC}}$
Output Low Voltage - Command Outputs Control Outputs	$\mathrm{V}_{\text {OL }}$		$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & \mathrm{v} \\ & \mathrm{v} \end{aligned}$	$\begin{aligned} \mathrm{IOL} & =32 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{OL}} & =16 \mathrm{~mA} \end{aligned}$
Output High Voltage -Command Outputs Control Outputs	V_{OH}	$\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$		$\begin{aligned} & v \\ & v \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-5 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
Input Low Voltage	$\mathrm{V}_{\text {IL }}$		0.8	\checkmark	
Input High Voltage	$\mathrm{V}_{1 \mathrm{H}}$	2.0		\checkmark	
Output Off Current	IOFF		100	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OFF }}=0.4$ to 5.25 V

AC CHARACTERISTICS
$V_{C C}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
TIMING REQUIREMENTS

PARAMETER	SYMBOL	MIN	MAX	UNIT	LOADING
CLK Cycle Period	TCLCL	100		ns	
CLK Low Time	TCLCH	50		ns	
CLK High Time	TCHCL	30		ns	
Status Active Setup Time	TSVCH	35		ns	
Status Active Hold Time	TCHSV	10		ns	
Status Inactive Setup Time	TSHCL	35		ns	
Status Inactive Hold Time	TCLSH	10		ns	
Input Rise Time	TILIH		20	ns	
Input Fall Time	TIHIL		12	ns	

TIMING RESPONSES

PARAMETER	SYMBOL	MIN	MAX	UNIT	LOADING
Control Active Delay	TCVNV	5	45	ns	$\overline{\text { MRDC }}$ $\overline{\text { IORC }}$ MWTC IOWC INTA $\overline{\text { AMWC }}$ $\overline{\text { AlOWC }}$
Control Inactive Delay	TCVNX	10	45	ns	
ALE MCE Active Delay (from CLK)	TCLLH, TCLMCH		20	ns	
ALE MCE Active Delay (from Status)	TSVLH, TSVMCH		20	ns	
ALE Inactive Delay	TCHLL	4	15	ns	
Command Active Delay	TCLML	10	35	ns	
Command Inactive Delay	TCLMH	10	35	ns	
Direction Control Active Delay	TCHDTL		50	ns	
Direction Control Inactive Delay	TCHDTH		30	ns	
Command Enable Time	TAELCH		40	ns	
Command Disable Time	TAEHCZ		40	ns	
Enable Delay Time	TAELCV	105	275	ns	$\left\{\begin{array}{l}I_{O L}=16 \mathrm{~mA}\end{array}\right.$
AEN to DEN	TAEVNV		25	ns	Other $\quad\left\{\begin{array}{l}\mathrm{OH}=-1 \mathrm{~mA}\end{array}\right.$
CEN to DEN, PDEN	TCEVNV		20	ns	($\mathrm{C}_{\mathrm{L}}=80 \mathrm{pF}$
CEN to Command	TCELRH		TCLML	ns	
Output Rise Time	TOLOH		20	ns	
Output Fall Time	TOHOL		12	ns	

NOTES:
(1.) ADDRESS/DATA BUS IS SHOWN ONLY FOR REFERENCE PURPOSES.
(2.) LEADING EDGE OF ALE AND MCE IS DETERMINED BY THE FALLING EDGE OF CLK OR STATUS GOING ACTIVE, WHICHEVER OCCURS LAST.
(3.) ALL TIMING MEASUREMENTS ARE MADE AT $1.6 V$ UNLESS SPECIFIED
OTHERWISE.

DEN, $\overline{P D E N}$ QUALIFICATION TIMING

μ PB8288 ADDRESS ENABLE (AEN) TIMING (3-STATE ENABLE/DISABLE)

TEST LOAD CIRCUITS

3-STATE COMMAND OUTPUT TEST LOAD

AC TESTING INPUT OUTPUT WAVEFORM

ITEM	MILLIMETERS	INCHES
A	26.7 MAX.	1.05 MAX .
B	0.7	0.028
C	2.54	0.1
D	0.46 ± 0.1	0.018 ± 0.004
E	22.86	0.9
F	1.4	0.055
F'	0.9	0.035
G	2.54 MIN.	0.1 MIN.
H	0.5 MIN.	0.02 MIN .
1	4.32 MAX.	0.17 MAX .
J	5.08 MAX .	0.2 MAX.
K	7.62	0.3
L	6.8	0.27
M	$0.25+0.10$	$0.01+0.004$
	-0.05	-0.002
A	0.8 R	0.03 R

Description

The μ PB8289 Bus Arbiter is used with the μ PD8288 Bus Controller to interface 8086 and 8088 microprocessors to a multimaster system bus. The μ PD8289 controls the μ PD8288 bus controller and the bus transceivers and address latches, preventing them from accessing the system bus if the processor does not have use of the bus.
An external command sequence will cause the associated microprocessor to enter a wait state until the bus is ready. The processor remains in the wait state until the bus arbiter acquires use of the multimaster system bus. Then, the arbiter allows the bus controller, data transceivers, and address latches to access the system. Once use of the bus has been acquired and data has been transferred, transfer acknowledge (XACK) is returned to the processor to indicate that the accessed slave device is ready. The processor may then complete its transfer cycle.

Features

Multimaster system bus protocol8086 and 8088 processor synchronization with multimaster busSimple interface with the 8288 bus controller and 8283/8282 address latches to a system busFour operating modes for flexible system configurationSimplified interface to MultibusTM systemsParallel, Serial, and Rotating priority resolutionBipolar buffering and drive capability

Pin Configuration

TM: Multibus is a registered trademark of Intel Corporation.

Functional Configuration

Pin Identification

Pin Number	Pin Name	Direction	Pin Functions
18, 19, 1	$\overline{\mathbf{s 0}}, \overline{\mathbf{s} 1}, \overline{\mathbf{s} 2}$	IN	Status inputs from the $\mathbf{8 0 8 6}$ or $\mathbf{8 0 8 8}$ processor. The μ PB8289 decodes them to begin bus requests and surrenders.
17	CLK	in	Clock signal from the 8284 clock generator.
16	$\overline{\text { LOCK }}$	in	
15	$\overline{\text { CRQLCK }}$	IN	Common Request Lock. Prevents the 4PB8289 from surrendering the bus in response to request on the CBRC input.
4	$\overline{\text { AESB }}$	IN	Resident Bus Input. This signal tells the μ PB8289 that there is a multimaster and resident bus. When this signal is high, the SYSB/RESE pin handles bue arbitration.
14	ANYROST	IN	This signal allows the multimaster bus to be surrendered to a lower prlority arbiter.
2	$\overline{108}$	IN	//O Bus. This signal tells the μ PB8289 that there is an $1 / 0$ peripheral bus and a multimaster syatem bus.
13	AEN	OUT	Address Enable. This output tells the 8288 bue controller, 8284 clock driver, and the processor's address latches when to trl-state their output drivers.
3	SYSB//ESSB	IN	Syatem Bua/Realdent Bus. This signal determines when bus requests and surrenders are permitted in SR mode.
12	$\overline{\text { CBRa }}$	IN/OUT	Common Bus Request. This is an input from a lower priority arbiter requesting the bus. It is an output from arbiters that surrender the multimaster bus upon request.
6	INIT	IN	Initialize. This is an ective low input that resets all bus arbiters on the multimaster bus. No arbiters have ues of the bu: following iNIT.
5	BCLK	IN	Syatem Bus Clock. This clock aynchronizes all syatem bus interface signals.
7	$\overline{\text { BREQ }}$	OUT	Bus Request. This output ls used by an arbiter to request use of the multimanter syatom bus.
9	BPRAN	IN	Bus Priority In. This slgnal telle the arbiter it may acquire the bus on the next falling edge of BCLK.

Block Dlagram

Pin Functions (Cont.)			
$\xrightarrow[\text { Number }]{\text { Num }}$	Pin Name	Directlon	Pin Functions
8	6P\%	OUT	Bus Priority Out. In serial priority resolving schemes, this output delsy-chains to BPRN of the next lower priority arbiter.
11	Busy	IN/OUT	Busy notifles all arblters on the bus when the buz is avallable. The highest requesting arbiter solzes the bus and pulla BUSY low to keep other arblters off the bus.
20	$V_{\text {cc }}$	IN	+5V
10	GND	W	Ground

Bus Master Arbitration

Higher priority masters generally acquire use of the bus when a lower priority master completes its present transfer cycle. Lower priority masters acquire the bus when no higher priority master is accessing the system bus. The ANYRQST strapping option allows the arbiter to surrender the bus to a lower priority master as if it were a higher priority master. The arbiter maintains the bus as long as no other bus masters are requesting the bus and its processor has not entered the Halt state. The arbiter does not voluntarily surrender the bus and must be forced off by a request from another bus master, unless the arbiter's processor has entered the Halt state. Additional strapping options allow for other sets of conditions.

Priority Resolving Techniques

The μ PB8289 provides several techniques for resolving priority between the many possible bus masters of a multimaster system bus. All of these techniques assume that one bus master will have priority over all others at any given time. You may use Paralle, Serial, or Rotating Priority Resolving.

Parallel Priority Resolving

This technique uses a Bus Request line ($\overline{\mathrm{BREQ}}$) for each arbiter on the multimaster system bus. Each BREQ line goes to a priority encoder that generates the address of the highest priority active BREO line. This binary address is decoded to select the Bus Priority In line (BPRN) that is returned to the highest priority active arbiter. The arbiter that receives priority (BPRN true) allows its bus master onto the multimaster system bus as soon as the bus becomes available. An arbiter that gets priority over another arbiter cannot immediately seize the bus, but must wait until the current bus transaction is complete. When the transaction is complete, the current occupant of the bus surrenders the bus by releasing BUSY. BUSY is an active low OR tied line which goes to every arbiter on the system bus. When BUSY goes high (inactive), the priority arbiter seizes the bus and brings BUSY low to keep other arbiters off the bus. Note that all multimaster system bus transactions are synchronized to the bus clock ($\overline{\mathrm{BCLK}}$).

Parallel Priority Resolving

Higher Priority Arbiter Obtaining the Bus from a Lower Priority Arblter

Serlal Prlority Resolving

The serial priority resolving technique daisy-chains the bus arbiters together by connecting the higher priority arbiter's BPRO output to the BPRN of the next lowest priority arbiter. This eliminates the need for the priority encoder-decoder arrangement. The number of arbiters that may be daisy-chained together is a function of $\overline{B C L K}$ and the propagation delay from arbiter to arbiter. At 10 MHz , only 3 arbiters may be daisy-chained.

Rotating Priority Resolving

This technique resembles the parallel priority resolving technique except that priority is dynamically reassigned. The priority encoder is replaced by a circuit that rotates priority between arbiters to allow each arbiter an equal chance to use the system bus.

Modes of Operation

The μ PB8289 has two basic operating modes: I/O Peripheral Bus mode (IOB mode), and Resident Bus mode (RESB mode). The $\overline{O B}$ strapping option configures the μ PB8289 into $\overline{\text { IOB }}$ mode and the RESB strapping option configures it to RESB mode. If both options are strapped false, the arbiter interfaces the processor to a multimaster system bus only. If both options are strapped true, the arbiter interfaces the processor to a multimaster system bus, a resident bus, and an I/O bus.

1OB Mode

IOB mode allows the processor to access both an I/O peripheral bus and a multimaster system bus. On an I/O peripheral bus, all devices on the bus, including memory, are treated as I/O devices and addressed by //O commands. All memory commands are directed to the multimaster system bus. In $\overline{\mathrm{OB}}$ mode, the processor communicates with and controls peripherals over the peripheral bus and communicates with system memory over the system memory bus.

RESB Mode

RESB mode allows the processor to communicate over both a resident bus and a multimaster system bus. A resident bus can issue memory and I/O commands, but it is separate from the multimaster system bus. The resident bus has one master and is dedicated to only that master. The 8086 and 8088 can communicate with a resident bus and a multimaster system bus. The processor can access the memory and peripherals of both buses. Memory mapping selects which bus is accessed. The SYSB/RESB input on the arbiter instructs the arbiter on which bus to access. The signal connected to SYSB/RESB also enables and disables commands from one of the bus controliers.

	Status Lines From 8088 or 8088 or 8089			IOB Mode Only		\qquad RESB (Mode) Only $\overline{105}=$ High RESE $=$ High		$\begin{aligned} & \text { 108 Mode RIsB Mode } \\ & \text { 105 }=\text { Low RESE }=\text { High } \end{aligned}$		```Single Bus Mode IOS = Migh RESE = Low```
	32	31	50	108	E Low	$\begin{gathered} \text { 8venhese } \\ \text { High } \end{gathered}$	$\begin{gathered} \text { sysa/ise } \\ \text { Low } \end{gathered}$	SYSPRTB Migh	$\begin{gathered} \text { BYenints }= \\ \text { Low } \end{gathered}$	
	0	0	0		x	\checkmark	X	x	\mathbf{x}	\sim
1/O Commands	0	0	1		x	-	x	x	x	r
	0	1	0		x	\sim	x	x	x	r
Halt	0	1	1		x	x	x	\mathbf{x}	x	x
	1	0	0		\sim	$\stackrel{\sim}{r}$	\mathbf{x}	\sim	K	\sim
Memory Commands	1	0	1		\checkmark	\sim	x	\sim	x	\sim
	1	1	0		r	\sim	x	\checkmark	x	\sim
Idie	1	1	1		x	\mathbf{x}	\mathbf{x}	x	x	\mathbf{x}

Notes:

(1) $\mathrm{x}=$ Multimaster System Bus is allowed to be surrendered.
(2) $r=$ Multimaster System Bus is requested.

Multimaster System Bus

Mode	Pin Strapping	Requested (1)	Surrendered (2)
Single Bus Multimaster Mode	$\begin{aligned} & \overline{\overline{O B}}=\mathrm{High} \\ & \text { RESB }=\text { LOw } \end{aligned}$	When the processor's status lines go active	HLT + TI • HPBRQ \dagger
RESB Mode Only	$\begin{aligned} & \overline{\overline{O O B}=\mathrm{High}} \\ & \text { RESB }=\mathrm{HIgh} \end{aligned}$	SYSB/RESB $=$ High 2 Active	$\begin{aligned} & \text { (SYSB/RESB }= \\ & \text { LOW + TI) CBRQ + } \\ & \text { HLT + HPBRQ } \end{aligned}$
IOB Mode Only	$\begin{aligned} & \overline{\mathrm{IOB}}=\text { Low } \\ & \text { RESB }=\text { Low } \end{aligned}$	Memory Commands	(I/O Status +TI) CBRO + HLT + HPBRQ
IOB Mode • RESB Mode	$\begin{aligned} & \overline{\overline{O B}=\text { LOW }} \\ & \text { RESB }=\mathrm{High} \end{aligned}$	$\begin{aligned} & \text { (Memory } \\ & \text { Command) - } \\ & \text { (SYSB } / \text { RESB }= \\ & \text { High) } \end{aligned}$	((I/O Status Commands) $+(\mathrm{TI})$ (SYSB/RESB = Low) - CBRQ + HPBRQt + HLT)

Notes:

(1) Except for HALT and Idle status.
(2) $\overline{L O C K}$ prevents surrender of bus to any other arbiter. $\overline{\text { CRQLCK }}$ prevents surrender of bus to a lower priority arbiter.
(3) $\mathrm{HLT}=$ processor halt; $\overline{\mathrm{S}}_{2}-\overline{\mathrm{S}}_{0}=011$.
(4) $\mathrm{T}!=$ processor idle; $\overline{\mathrm{S}}_{2}-\bar{S}_{0}=111$.
(5) + means OR.
(6) - means AND.
\dagger HPBRQ $=$ higher priority bus request or $\overline{\mathrm{BPRN}}=1$.

Absolute Maximum Ratings *

$\mathbf{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	
Operating Temperature	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on Any Pin	-0.5 V to $+\mathbf{7 V}$
All Input Voltages	-1.0 V to +5.5 V
Power Dlssipation	1.5 W

*COMMENT: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC Characteristics

Parameter	Symbol	Limits			Unit	Test Conditions
		M/n	Typ	max		
Input Low Voltage	$V_{\text {IL }}$			0.8	V	
Input High Voltage	V_{IH}	2.0			V	
Input Clamp Voltage	V_{C}			-1.0	V	$\begin{aligned} & V_{C C}=4.50 \mathrm{~V}, \\ & I_{C}=-5 \mathrm{~mA} \end{aligned}$
Input Forward Current	${ }_{F}$			-0.5	mA	$\begin{aligned} & V_{C C}=5.50 \mathrm{~V} \\ & V_{F}=0.45 \mathrm{~V} \end{aligned}$
Reverse Input Leakage Current	${ }^{1} \mathbf{R}$			60	$\mu \mathbf{A}$	$\begin{aligned} & V_{C C}=5.50 \mathrm{~V} \\ & V_{R}=5.50 \mathrm{~V} \end{aligned}$
$\begin{aligned} & \text { Output Low Voltege } \\ & \text { BUSY, CERQ } \\ & \text { AEN } \\ & \text { BPRO, BREQ } \end{aligned}$	$\mathbf{V O L}^{\text {O }}$			$\begin{aligned} & 0.45 \\ & 0.45 \\ & 0.45 \end{aligned}$	$\begin{aligned} & v \\ & v \\ & v \end{aligned}$	$\begin{aligned} & { }^{1} \mathrm{OL}=20 \mathrm{~mA} \\ & { }^{\circ} \mathrm{OL}=16 \mathrm{~mA} \\ & { }^{1} \mathrm{OL}=10 \mathrm{~mA} \end{aligned}$
Output High Voltage BUSY, CBRO	VOH		Open	Collector		
All Other Outputs		2.4			V	$\mathrm{I}_{\mathrm{OH}}=400 \mu \mathrm{~A}$
Power Supply Current	${ }^{\text {cce }}$			165	mA	

Capacitance

Parameter	Symbal	Limits			Unit	Test Conditions
		Min	Typ	Max		
Input Capacitance	Cin Status			25	pF	
Input Capacitance	Cin (Others)			12	pF	

Typical CPU System Using the μ PB8289 Bus Arblter

9
μ PB8289
AC Characterlstics

Timing Requirements

$\mathrm{T}_{\mathrm{a}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{Cc}}=5 \mathrm{~V} \pm \mathbf{1 0 \%}$

Parameter	Symbol	Umits		Unit	Test Conditions
		Min	Typ Max		
CLK Cycle Perlod	${ }^{\text {t CLCL }}$	125		ns	
CLK Low Time	${ }_{\text {t CLCH }}$	65		ns	
CLK High Time	${ }^{\text {t }} \mathrm{CHCL}$	35	.	ns	
Status Active Setup	tsvCH	65	${ }^{\text {chel }}{ }^{-10}$	ns	
Status Inactlve Setup	'SHCL	50	${ }^{1} \mathrm{CLCL}^{-10}$	$n 8$	
Status Active Hold	${ }^{\text {thVCH }}$	10		ns	
Status Inactive Hold	${ }^{\mathbf{T}} \mathbf{H V C L}$	10		ns	
BUŠY $\uparrow \downarrow$ Setup to BCLK \downarrow	tBySEl	20		$n 8$	-
$\overline{\text { CBAO}} \uparrow \downarrow$ Setup to BCLK \downarrow	${ }^{1} \mathrm{CBSBL}$	20		ns	
BCLK Cycle Time	${ }_{\text {B BLEL }}$	100		ns	
ECLKK High Time	tBhCl	30	0.65 (tBLBL)	n8	
LOCK Inactive Hold	${ }^{\text {t Cllli }}$	10		ns	
LOCK Active Setup	${ }^{\text {tCLLL2 }}$	40		ns	
$\overline{\text { BPRN }} \uparrow \uparrow$ to $\overline{\text { BCLK }}$ Setup Time	tPNBL	15		ns	
SYSB/RESB Setup	tCLSR1	0		ns	
SYSB/RESB Hold	${ }^{\text {tCLSR2 }}$	20		ns	
Initlallzation Pulse Width	${ }^{\text {I }}$ IVIH	$\begin{gathered} 3 \text { tBLBL } \\ 3 \mathrm{t}_{\mathrm{CLCL}} \\ \hline \end{gathered}$		n*	
Input Rise Time	IILIH		20	n8	From 0.8 V to 2.0 V
Input Fall Time	${ }_{\text {I }}$ IIL		12	ns	From 2.0 V to 0.8 V

Timing Responses

Paramoter	Symbol	Limits			Unit	Test Conditlons
		Min	Typ	Max		
$\overline{\text { BCLK }}$ to $\overline{\text { BREQ }}$ Delay (1)	tblbrl			35	ns	
$\overline{\text { BCLK to }} \overline{\text { BPRO }}$ (1) (2)	tBLPOH			40	ns	
BPRNH to EPROH Delay (1) (2)	tPNPO			25	ns	
BCLK to EUSY Low	tBlbVL			60	ns	
$\overline{\text { BCLK to }} \overline{\text { BUSY }}$ Float (3)	$t_{\text {BLBYH }}$			35	ns	
CLK to AEN High	tCLAEH			65	ns	
$\overline{\text { BCLK }}$ to $\overline{\text { AEN }}$ Low	tBLAEL			40	ne	
$\overline{\overline{B C L K}}$ to $\overline{\text { CBRO }}$ Low	tblcbl			60	ns	
$\overline{\text { BCLK to }} \overline{\text { CBRO }}$ Float (3)	trLCRH			35	n8	
Output Rise Time	${ }^{\text {t OLOH}}$			20	ns	From 0.8 V to 2.0 V
Output Fall Time	${ }^{\text {tohOL }}$			12	ne	From 2.0V to 0.8V

Notes:

(1) Denotes that the spec applies to both transitions of the signal.
(2) $\overline{B C L K}$ generates the first $\overline{B P R O}$. Subsequent changes of $\overline{B P R O}$ are generated through BPRON.
(3) Measured at 0.5 V above GND.

AC Test Condition Waveform

Input/Output

AC Testing inputs are driven at 2.4 V for LOGIC 1 and 0.45 V for LOGIC 0 . The ciock ls driven at 4.3 V and 0.25 . Timing measurements are made at 1.5 V for LOGIC 1 and 0 .

Timing Waveforms

The signals related to CLK are typical processor signals and do not relate to the depicted sequence of events of the signals referenced to BCLK. The signals shown related to the BCLK represent a hypothetical sequence of events for illustration. Assume three bus arbiters of priorities 1, 2, and 3 configured in the serial priority resolving scheme. Assume arbiter 1 has the bus and is holding BUSY low. Arbiter 2 detects its processor wants the bus and pulls BREQ \#2 low. If BPRN \#2 is high (as shown), arbiter 2 pulls $\overline{\mathrm{CBRQ}}$ low. $\overline{\mathrm{CBRQ}}$ signals to higher priority arbiter 1 that a lower priority arbiter wants the bus. A higher priority arbiter would be given BPRN when it makes the bus request rather than having to wait for another arbiter to release the bus through CBRQ. Arbiter 1 relinquishes the multimaster system bus when it enters a state of not requiring it, by lowering its $\overline{B P R O} \# 1$ (tied to BPRN \#2) and releasing BUSY. Arbiter 2 now sees that it has priority from BPRN \#2 being low and releases CBRQ. As soon as BUSY signifies the bus is available (high), arbiter 2 pulls BUSY low on the next falling edge of BCLK. Note that if arbiter 2 didn't want the bus at the time it received priority, it would pass priority to the next lower priority by lowering its BPRO \#2 (TPNPO). Note also that even a higher priority aribiter which is acquiring the bus through BPRN will momentarily drop CBRQ until it has acquired the bus.

Timing Waveforms

9

Package Outlines

4PB8289D
Cerdip
All measurements in MM

μ PB8289C

Plastic

16,384-BIT ROM WITH I/O PORTS *16,384-BIT EPROM WITH I/O PORTS

DESCRIPTION The μ PD8355 and the μ PD8755A are μ PD8085A Family components. The μ PD8355 contains 2048×8 bits of mask ROM and the μ PD8755A contains 2048×8 bits of mask EPROM for program development. Both components also contain two general purpose 8 -bit I/O ports. They are housed in 40 pin packages, are designed to directly interface to the μ PD8085A, and are pin-for-pin compatible with each other.

FEATURES - 2048×8 Bits Mask ROM (μ PD8355 and μ PD8355-2)

- 2048 X 8 Bits Mask EPROM (μ PD8755A)
- 2 Programmable I/O Ports
- Single Power Supplies: +5 V
- Directly Interfaces to the μ PD8085A
- Pin for Pin Compatible
- μ PD8755A: UV Erasable and Electrically Programmable
- μ PD8335 and μ PD8355-2 Available in Plastic Package
- μ PD8755A Available in Ceramic Package

PIN CONFIGURATIONS

NC: Not Connected

$\overline{C E} \square 1$		40	Vcc
CEE 2		39	PB_{7}
CLK ${ }^{\text {a }}$		38	$\square \mathrm{PB}_{6}$
RESET 4		37	PB_{5}
VDD 5		36	$\square \mathrm{PB}_{4}$
READY 6		35	PB_{3}
10/M \square		34	PB_{2}
$\overline{I O R ~} 8$		33	$\square \mathrm{PB}_{1}$
$\overline{\mathrm{RD}} 9$		32	$\square \mathrm{PB}_{0}$
IOW 10	$\mu \mathrm{PD}$	31	$\square \mathrm{PA}_{7}$
ALE 11	8755A	30	$\square \mathrm{PA}_{6}$
$A D_{0}-12$		29	$\square \mathrm{PA}_{5}$
$\mathrm{AD}_{1} \square^{13}$		28	PA_{4}
$\mathrm{AD}_{2}-14$		27	PA_{3}
$\mathrm{AD}_{3}-15$		26	$\square \mathrm{PA}_{2}$
$\mathrm{AD}_{4}-16$		25	PA_{1}
$\mathrm{AD}_{5} \square_{17}$		24	$7 \mathrm{PA}_{0}$
$A D_{6} \square 18$		23	$\square \mathrm{A}_{10}$
$\mathrm{AD}_{7}-19$		22	$\square \mathrm{Ag}$
VSS 20		21	A_{8}

The μ PD8355 and μ PD8755A contain 16,384 bits of mask ROM and EPROM respectively, organized as 2048×8. The 2048 word memory location may be selected anywhere within the 64K memory space by using the upper 5 bits of address from the μ PD8085A as a chip select.

The two general purpose I/O ports may be programmed input or output at any time. Upon power up, they will be reset to the input mode.

Operating Temperature (μ PD83555) . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (μ PD8755A) . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on Any Pin (μ PD8355) . -0.5 to +7V (1)
(μ PD8755A) . -0.5 to +7V (1)
Power Dissipation . 1.5W
Note: (1) With Respect to Ground
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
*COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Low Voltage	$V_{\text {IL }}$	-0.5		0.8	V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ (1)
Input High Voltage	$\mathrm{V}_{\text {IH }}$	2.0		$\mathrm{V}_{\mathrm{cc}}+0.5$	V	$V_{C C}=5.0 \mathrm{~V}^{(1)}$
Output Low Voltage	V_{OL}			0.45	V	$\mathrm{I}^{\mathrm{OL}}=2 \mathrm{~mA}$
Output High Voltage	VOH	2.4			V	$1 \mathrm{OH}=-400 \mu \mathrm{~A}$
Input Leakage	IIL			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=V_{\text {CC }}$ to 0 V
Output Leakage Current	ILO			± 10	$\mu \mathrm{A}$	$0.45 \mathrm{~V} \leqslant \mathrm{~V}_{\text {OUT }} \leqslant V_{\text {CC }}$
$V_{\text {cc }}$ Supply Current	Icc			180	mA	

Note: (1) These conditions apply to μ PD8355 only.

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS*

PIN			FUNCTION
NO.	SYMBOL	NAME	
1,2	$\overline{\mathrm{CE}}, \mathrm{CE}$	Chip Enables	Enable Chip activity for memory or I/O
3	CLK	Clock Input	Used to Synchronize Ready
4	Reset	Reset Input	Resets PA and PB to all inputs
5 (1)	NC	Not Connected	
5 (2)	$V_{D D}$	Programming Voltage	Used as a programming voltage tied to +5 V normally
6	Ready	Ready Output	A tri-state output which is active during data direction register loading
7	10/M	1/O or Memory Indicator	An input signal which is used to indicate I / O or memory activity
8	IOR	1/O Read	1/O Read Strobe In
9	$\overline{\mathrm{RD}}$	Memory Read	Memory Read Strobe In
10	IOW	I/O Write	I/O Write Strobe In
11	ALE	Address Low Enable	Indicates information on Address/Data lines is valid
12-19	$A^{*} D_{0}-A D_{7}$	Low Address/Data Bus	Multiplexed Low Address and Data Bus
20	$\mathrm{v}_{\text {SS }}$	Ground	Ground Reference
21.23	A_{8} - A_{10}	High Address	High Address inputs for ROM reading
24-31	$\mathrm{PA}_{0} \cdot \mathrm{PA}_{7}$	Port A	General Purpose I/O Port
32-39	$\mathrm{PB}_{0}-\mathrm{PB}_{7}$	Port B	General Purpose I/O Port
40	$V_{C C}$	5 V Input	Power Supply

Notes: (1) μ PD8355
(2) $\mu \mathrm{PD} 8755 \mathrm{~A}$

I/O PORTS I/O port activity is controlled by performing I/O reads and writes to selected I/O port numbers. Any activity to and from the μ PD8355 requires the chip enables to be active. This can be accomplished with no external decoding for multiple devices by utilizing the upper address lines for chip selects. (1) Port activity is controlled by the following 1/O addresses:

A_{1}	$A_{1} D_{\mathbf{0}}$	PORT SELECTED	FUNCTION
0	0	A	Read or Write PA
0	1	B	Read or Write PB
1	0	A	Write PA Data Direction
1	1	B	Write PB Data Direction

Since the data direction registers for PA and PB are each 8 -bits, any pin on PA or PB may be programmed as input of output ($0=$ in, $1=$ out).
Note: (1) During ALE time the data/address lines are duplicated on A_{15} - $\mathrm{A} \mathbf{8}$.

Symbor	Paremeter	8366		8356-2		Unit.	Test Conditions
		Min.	Max.	Min.	Max.		
${ }^{\text {teyc }}$	Clock Cycis Time	320		200		ns	$C_{\text {LOAD }}=150 \mathrm{pF}$
T1	CLK Pulse Width	80		40		ns	
T_{2}	CLK Pulse Width	120		70		ns	
t_{4}, t_{r}	CLK Rise and Fall Time		30		30	ns	
tal	Address to Latch Set Up Time	50		30		ns	150 pF Load
tha	Address Hold Time after Latch	80		30		ns	
te	Latch to READ/WRITE Control	100		40		ns	
tRD	Valid Data Out Dealy from READ Control		170		140	ns	
${ }^{\text {tab }}$	Address Stable to Data Out Valid		400		330	ns	
${ }_{t} \mathrm{LL}$	Latch Enable Width	100		70		ns	
${ }_{\text {tRDF }}$	Data Bus Float after READ	0	100	0	85	ns	
${ }^{\text {t }} \mathrm{CL}$	READ/WRITE Control to Latch Enable	20		10		ns	
${ }^{\text {t }} \mathrm{C}$	READ/WRITE Control Width	250		200		ns	
${ }^{\text {t }}$ DW	Data in to Write Set Up Time	150		150		ns	
tWD	Data in Hold Time After WRITE	10		10		ns	
twP	WRITE to Port Output		400		400	ns	
tPR	Port Input Set Up Time	50		50		ns	
${ }^{\text {tr }}$ P	Port Input Hold Time	50		50		ns	
$t_{\text {RYM }}$	READY HOLD Time	0	160	0	160	ns	
tany	ADDRESS (CE) to READY		160		160	ns	
trv	Recovery Time Between Controls	300		200		ns	
$t_{\text {t }}$	READ Control to Data Bus Enable	10		10		ns	

30 ns for μ PD8755
$C_{\text {LOAD }}=150 \mathrm{pF}$
ROM READ, I/O READ AND WRITE (1)
TIMING WAVEFORMS

PROM READ, I/O READ AND WRITE (2)

TIMING WAVEFORMS
(CONT.)

CLOCK

WAIT STATE TIMING (READY $=0$)

I/O PORT
INPUT MODE:

OUTPUT MODE:

EPROM PROGRAMMING μ PD8755A

Erasure of the μ PD8755A occurs when exposed to ultraviolet light sources of wavelengths less than $4000 \AA$. It is recommended, if the device is exposed to room fluorescent lighting or direct sunlight, that opaque labels be placed over the window to prevent exposure. To erase, expose the device to ultraviolet light at $2537 \AA$ at a minimum of $15 \mathrm{~W}-\mathrm{sec} / \mathrm{cm}^{2}$ (intensity X expose time). After erasure, all bits are in the logic 1 state. Logic 0 's must be selectively programmed into the desired locations. It is recommended that NEC's PROM programmer be used for this application.

PLASTIC

ITEM	MILLIMETERS	INCHES
A	51.5 MAX	2.028 MAX
B	1.62	0.064
C	2.54 ± 0.1	0.10 ± 0.004
D	0.5 ± 0.1	0.019 ± 0.004
E	48.26	1.9
F	1.2 MIN	0.047 MIN
G	2.54 MIN	0.10 MIN
H	0.5 MIN	0.019 MIN
I	5.22 MAX	0.206 MAX
J	5.72 MAX	0.225 MAX
K	15.24	0.600
L	13.2	0.520
M	$0.25+0.1$	$0.010+0.004$

μ PD8755AD Cerdip

NEC Electronics U.S.A. Inc.
Microcomputer Division

Microcomputer Division

U.S. REPRESENTATIVES

Iabama

20th Century Marketing, Inc.
Huntsville, AL 35801
205-533-9281

Arizona

red Board Associates, Inc
Scottsdale, AZ 85252
602-994-9388

Gallfornla

Cerco
San Diego, CA 92111
714-560-9143
Quorum Technical Sales
San Jose, CA 95110
408-297-1640
Santana Sales
os Alamitos, CA 90720
714-827-9100

Colorado

D/Z Associates
Denver, CO 8022
303-429-9369

Connecticut

HLM Associates
Waterbury CT 06708
203-753-9894

Florida

Semtronics, Inc
Altamonte, Fl 32701
305-831-8233
Clearwater FL 33515
813-461-4675

Georgla

Montgomery Marketing, Inc
Norcross, GA 30092
404-447-6124
Illinols
T. A. Carroll and Associates

Schaumburg, IL 60195
312-843-1125

Indlana

M/S Sales \& Associates, Inc
Fort Wayne, IN 46808
219-484-1904
Indianapolis, IN 46260
317-257-8915

Kansas

Advanced Technical Sales
Overland Park, KS 66214
913-492-4333

Maryland

Professional Representatives
Baltimore, MD 21208
301-653-3600

Massachusetts

Compass Technology
Woburn, MA 01801
617-933-3336

Michlgan

Miltimore Sales, Inc
Grand Rapids, MI 49506
Grand Rapids,
616-942-9721
Novi, M1 48050
$313-257-8915$

Minnesota
Electronic Innovators, Inc
Eden Prairie, MN 55344
612-941-0830

Missouri

Advanced Technical Sales, Inc.
St. Louis, M0 63011
314-227-4448

Now Jersey

B.G.R. Associates

Mariton, NJ 08053
609-428-2440
HLM Associates, Inc.
Parsippany, NJ 07054
201-263-1535

Now Mexico

Rontek, Inc.
Albuquerque, NM 87191
505-299-4124

Naw York

D. L. Eiss \& Assoclates, Inc.

Kingston, NY 12401
914-338-7588
Rochester, NY 14624
716-328-3000
Syracuse, NY 13220
315-457-0492
HL.M Associates, Inc.
Northport, NY 11768
516-757-1606

Morth Carolina

Montgomery Marketing
Cary, NC 27511
919-467-6319

Ohlo

Imtech, Inc.
Akron, OH 44321
216-666-1185
Dayton, OH 45414
513-278-6507

Oregon

Electronic Technical Sales Associates
Hillsboro, OR 97123
503-640-8086
Tennessee
20th Century Marketing, Inc.
Knoxville, TN 37922
615-966-3608

Texas

Technical Marketing, Inc.
Austin TX 78758
512-835-0064
Carrollton, TX 75006
Carrollton, TX
$214-387-3601$
Houston, TX 77081
713-777-9228

Utah

D/Z Associates
Salt Lake City, UT 84115
801-268-2876

Washington

Electronic Technical Sales Associates
Kirkland, WA 98033
206-827-8086

Wisconsin

T. A. Carroll and Assoclates

Milwaukee, WI 53207
414-744-6842

CANADIAN

REPRESENTATIVES

British Columbla

Kaytronics Western
Blaine, WA 98230
604-581-8411

Ontario

Kaytronics, Inc.
Concord, Ontario L4K 1 B1
416-669-2262
Kanata, Ontario K2K 2A3
613-592-6606
Ville St. Pierre, QU H8R 3 Y8
514-367-0101

U.S. DISTRIBUTORS

Alabama
Marshall Industries
Huntsville, AL 35801 205-881-9235

RM/Alabama, Inc Huntsville, AL 35805 205-85?-1550

Arizona

Marshall Industries
Tempe, AZ 85281
602-968-6181
Sterling Electronics
Phoenix, AZ 85034
602-258-4531
Western Microtechnology Scottsdale, AZ 85260 602-948-4240

California

Cetec Electronics
San Diego, CA 92123
714-278-5020
South Gate, CA 90280
213-773-6521
Diplomat Electronics
Sunnyvale, CA 94086
408-734-1900
Image Electronics
Tustin, CA 92680
714-730-0303
Marshall Industries
Canoga Park, CA 91304
213-999-5001
EI Monte, CA 91731
213-686-0141
Irvine, CA 92707
714-556-6400
San Diego, CA 92131
714-578-9600
Sunnyvale, CA 94086 408-73?-1100

Pacesetter Electronics
Santa Ana, CA 92704
714-557-4800
Ryno Electronics
San Diego, CA 92111
714-292े-6022
United Components, Inc. Santa Clara, CA 95050 408-496-6900

Western Microtechnology
Cupertino, CA 95014 408-725-1660

Coloratio

Active Component Technology
Lakewood, CO 80215
303-233-4431
Diplomat Electronics
Englewiod, CO 80112
303-740-8300
Marshall Industries
Denver, CO 80221
303-427-1818
Connecticut
Cronin Electronics
Wallingford, CT 06492
203-265-3134
Diplomat Electronics
Danbury, CT 06810
203-797-9674
Marshall Industries
Wallingford, CT 06492 203-265-3822

Florida

Milgray Electronics, Inc
Orange, CT 06477
203-795-0711

Diversified Electronic Components Ft. Lauderdale, FL 33309 305-973-8700

Diplomat Electronics
Clearwater, FL 33515
813-443-4514
ft. Lauderdale, FL 33309
305-971-7160
Palm Bay, FL 32905
305-725-4520
Marshall Industries
Orlando, FL 32805
305-841-1878
Milgray Electronics
Winter Park, FL 32789
305-647-5747
Reptron Electronics, Inc.
Tampa, FL 36240
813-855-4656

Georgla

Diplomat Electronics
Norcross, GA 30092
404-449-4133
800-241-4874
Marshall Industries
Norcross, GA 30093
404-923-5750
Milgray/Atlanta, Inc.
Dunwoody, GA 30338
404-393-9666

Illinois

Diplomat Electronics
Bensenville, IL 60106
312-595-1000
Inter Comp, Inc.
Hoffman Estates, IL 60195
312-843-2040
Marshall Industries
Bensenville, IL 60106
312-595-6622
NEP Electronics
Chicago, IL 60634
312-625-8400
Reptron Electronics, Inc. Arlington Heights, IL 60005 312-593-7070

RM Illinois, Inc.
Lombard, IL 61048
312-932-5150

Indiana

Graham Electronics
Ft. Wayne, IN 46803
219-423-3422
Indianapolis, IN 46204
317-634-8202

Kansas

LCOMP, Inc.
Wichita, KS 67214
316-265-8501
Milgray/Kansas City, Inc.
Overland Park, KS 66202
913-236-8800

Louisiana

Sterling Electronics
Metairie LA 70002
504-887-7610

Maryland

Almo Electronics Corp.
Rockville, MD 20850
301-251-1161

Diplomat Electronics Columbia, MD 21045 301-995-1226

Marshall Industries Gaithersburg, MD 20760 301-840-9450

Milgray/Washington, Inc. Rockville, MD 20852
301-486-6400

Massachusetts

Diplomat Electronics Holliston, MA 01746
617-429-4120
Future Electronics
Westboro, MA 01581
617-366-2400
Marshall Industries
Burlington, MA 01803
617-272-8200
Milgray New England, Inc.
Burlington, MA 01803
617-272-6800
RC Components
Wilmington, MA 01887
617-273-1860
Sterling Electronics
Waltham, MA 02154
617-894-6200
Michigan
Reptron Electronics, Inc.
Livonia, MI 48150
313-525-2700

Minnesota

Diplomat/Electro-Com Corp
Fridly, MN 55432
612-572-0313
Industrial Components, Inc
Minneapolis, MN 55435
612-831-2666
Marshall Industries
Plymouth, MN 55441
612-559-2211

Missouri

LCOMP, Inc.
Kansas City, MO 64120
316-221-2400
Maryland Heights, M0 63043
314-291-6200

Now Jersey

Diplomat Electronics
Totowa, NJ 07512
201-785-1830
General Radio Supply Corp.
Camden, NJ 01802 609-964-8560

Marshall Industries
Clifton, NJ 07015
201-340-1900
Mt. Laurel, NJ 08054
609-234-9100
Milgray/Delaware Valley, Inc.
Marlton, NJ 08002
609-983-5010
Sterling Electronics
Perth Amboy, NJ 08861
201-442-8000

New Mexico

Sterling Electronics
Albuquerque, NM 87107
505-884-1900

New York
Diplomat Electronics
Liverpool, NY 13088
315-652-5000
Melville, NY 11747
516-454-6400
Marshall Industries
E. Syracuse, NY 13057

315-432-0644
Haupauge, NY 11738
516-273-2424
Rochester NY 14611
716-235-7620
Milgray Electronics, Inc.
Freeport, NY 11520
516-546-5600
Pittsford, NY 14534
716-385-9330
Rochester Radio
Rochester, NY 14603
716-454-7800
North Carolina
Resco/Raleigh
Raleigh, NC 27612
919-781-5700

Ohio

Electronic Marketing Corp.
Columbus, OH 43212
614-299-4161
Marshall Industries
Dayton. OH 45424
513-236-8088
Milgray/Cleveland, Inc.
Cleveland, OH 44131
213-447-1520
Reptron Electronics, Inc.
Columbus, OH 43229
614-436-6675

Oklahoma

Component Specialties, Inc.
Tulsa, OK 74145
918-644-2820
Sterling Electronics
Tulsa, OK 74145
918-663-2410

Oregon

Radar Electric Co., Inc
Portland, OR 97214
503-232-3404
United Components, Inc
Milwaukee, OR 97222
503-653-5940

Pennsyivanla

Almo Electronics
Philadelphia, PA 19114
215-698-4000
Pittsburgh, PA 15237
412-931-5990

Texas

Active Component Technology
Addison, TX 75001
214-980-1888
Austin, TX 78758
512-452-5254
Houston, TX 77082
713-496-4000
Component Specialties, Inc
Austin TX 78758
Austin, 512 -837-8922
Dallas, TX 75220
214-357-6511
Houston, TX 77036
713-771-7237

Diplomat Electronics
Houston, TX 77099
713-530-1900
Kent Electronics
Houston, TX 77036
713-780-7770
Marshall Industries
Dallas, TX 75234
214-233-5200
Houston, TX 77042
713-789-6600
Sterling Electronics
Austin TX 78758
512-836-1341
Dallas, TX 75229
214-243-1600
Houston, TX 77027
713-627-9800

Utah

Diplomat Electronics
Salt Lake City, UT 84115
801-486-4134

Virginla

Sterling Electronics
Richmond, VA 23231
804-226-2190
Washington
Bell Industries
Bellevue, WA 98005
206-747-1515
Marshall Industries
Tukwila, WA 98188
206-575-3120
United Components, Inc.
Bellevue, WA 98007
206-643-7444
Western Electromotive
Tukwila, WA 98188
206-575-1910
Wisconsin
Marsh Electronics
Milwaukee, WI 53214
414-475-6000

CANADIAN DISTRIBUTORS

British Columbla
Martin Electronic Marketing Corp.
Surrey, B.C. V4A 2J4
206-332-6904

Ontario

Carsten Electronics
Ottawa, Ontario K2A 7C8
613-729-5138
Scarborough, Ontario M1R 3E8
416-751-5095
Future Electronics
Downsview, Ontario M3H 5S9
416-663-5563
Future Electronics
Chemin de Baxter, Ottawa
613-820-8313

Quebec

Carsten Electronics
St. Laurent, Quebec H45 1R7
514-334-8321
Future Electronics
Montreal, Quebec H9R 5C7
514-694-7710

REGIONAL SALES OFFICES

EASTERN REGION

275 Broadhollow Road, Route 110
Melville, NY 11747
TEL: 516-293-5660
TWX: 510-224-6090

MIDATLANTIC REGION

2000 Grosvenor Century Plaza, Suite 333
10632 Little Patuxent Parkway
Columbia, MD 21044
TEL: 301-730-8600
TWX: 710-862-2868

MIDWESTERN REGION

5105 Tollview Drive, Suite 190
Rolling Meadows, IL 60008
TEL: 312-577-9090
TWX: 910-233-4332
NORTHEASTERN REGION
21-G Olympia Avenue
Woburn, MA 01801
TEL: 617-935-6339
TWX: 710-348-6515
NORTHWESTERN REGION
20480 Pacifica Drive, Suite E
Cupertino, CA 95014
TEL: 408-446-0650
TWX: 910-338-2085
OHIO VALLEY REGION
19675 West Ten Mile Road
Southfield, MI 48075
TEL: 313-352-3770
TWX: 810-224-4625

SOUTHWESTERN REGION

1940 West Orangewood Avenue, Suite 205
Orange, CA 92668
TEL: 714-937-5244
TWX: 910-593-1629

SOUTH CENTRAL REGION

16475 Dallas Parkway, Suite 290
Dallas, TX 75248
TEL: 214-931-0641
TWX: 910-860-5284

SOUTHEASTERN REGION

Vantage Point Office Center, Suite 209
4699 North Federal Highway
Pompano Beach, FL 33064
TEL: 305-785-8250
TWX: 510-956-9722

Price $\mathbf{\$ 1 5 . 0}$

[^0]: Notes: $A=-35 V$ VF Display Drive
 $\mathrm{B}=\mu \mathrm{COM}-4$ Evaluation Chip
 C $=\mu$ PD750× Evaluation Chip
 = LCD Controller/Driver
 = LED Display Controller/Driver
 = VF Display Controller/Driver
 G $\quad=$ Pin-Compatible with μ PD546
 O.D. = Open Drain

[^1]: Table 1 -Mode Selection

[^2]: Table 1 - Mode Selection

[^3]: X can be elther $V_{I L}$ or $V_{I H}$

[^4]: ABSOLUTE.MAXIMUM
 Operating Temperature $-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ RATINGS*

 Storage Temperature $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
 Supply Voltage, VGG.
 Input Voltages 15 to +0.3 V
 . 15 to +0.3V
 Output Voltages .-15 to +0.3V
 Output Current (Ports C through I, each bit) . -4 mA
 (Total, all ports) . - 25 mA
 $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
 *COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

[^5]: ABSOLUTE MAXIMUM
 Operating Temperature .$-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
 RATINGS* Storage Temperature . $40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
 Supply Voltage, VGG. 15 to +0.3V
 Input Voltages . 15 to +0.3V
 Output Voltages . -15 to +0.3V
 Output Current (Ports C through I, each bit) . - 4 mA
 (Total, all ports) . - 25 mA
 $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
 *COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

[^6]: ABSOLUTE MAXIMUM RATINGS* ${ }^{\text {On }}$ Storage Temperature . $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ $-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Supply Voltage, VGG. 15 to +0.3V

 (Ports C, D) . 40 to +0.3 V
 Output Voltages . 40 to +0.3 V
 Output Current (Ports C, D, each bit) . 4 mA
 (Ports E, F, G, each bit) . 15 mA
 (Total, all ports) . -60 mA
 $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
 *COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

[^7]: ABSOLUTE MAXIMUM RATINGS*

 Operating Temperature . $-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
 Storage Temperature . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
 Supply Voltage, VCC . 0.3 to 7.0 V
 Input Voltages (Ports A, C, D, INT, RESET) -0.3 to VCC +0.3 V
 Output Voltages . -0.3 to VCC +0.3 V
 Output Current (Ports C through G, each bit) . 2.5 mA
 (Total, all ports) . 28.0 mA
 $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
 "COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

[^8]: Notes:
 (1) Only R/C system clock is operating and consuming power. All other internal logic blocks are not active.
 (2) Only crystal oscillator clock is operating and consuming power. All other internal logic blocks are not active.

[^9]: Operating Temperature
 $-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
 Storage Temperature $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
 Supply Voltage, VGG -15 to +0.3 V
 Input Voltages -15 to +0.3 V
 Output Voltages
 -15 to +0.3 V
 Output Current (Total, all ports) $-4 \mathrm{~mA}$
 $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
 *COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

[^10]: TM：Z80 is a registered trademark of Zilog，Inc．

[^11]: Note: (1) Typical values for $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ and nominal supply voltage.

[^12]: *Open Drain

[^13]: Notes: (1) All digital outputs are put at a high level when $V_{1}>V_{\text {REF }}$.
 (2) The A / D conversion is started with $C S$ going to a high level and at the final step of the first A / D conversion the EOC is at a low.
 The conversion time is:
 tCONV $=14 \times 4 \times 1 / \mathrm{fcK}$
 (3) For fsCK $>500 \mathrm{kHz}$, the load capacitor (stray capacitance included) and the pull-up resistor which are connected to serial output are required to be not more than 30 pF and $4 \mathrm{~K} \Omega$ respectively.

[^14]: *Z80 is a registered trademark of Zilog Corporation.

[^15]: Operating Temperature $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
 Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
 All Output and Supply Voltages -0.5 to +7 Volts
 All Input Voltages \qquad 1.0 to +5.5 Volts Output Currents 100 mA
 $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
 *COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

[^16]: *ALL TIMING MEASUREMENTS ARE MADE AT 1.5V UNLESS OTHERWISE NOTED

[^17]: *TM - Multibus is a trademark of Intel Corporation.

