PHILIPS

Data handbook

philup Electronic

components and materials

Components and materials

Book C20
1987

Wirewound components

for TV and monitors

WIREWOUND COMPONENTS FOR TV AND MONITORS

page
Selection guide
Recommended combinations for colour television 2
Recommended combinations for colour data graphic displays 4
Recommended combinations for monochrome data graphic displays 6
Glass delay lines 8
Degaussing coils 11
Device specifications
Line output transformers 13
Linearity correctors 147
Linearity control units 169
Amplitude control units 187
Luminaṇce delay lines 197
Glass delay lines and comb filters 215
Degaussing coils 265
Transformers, chokes and coils. 281
Mains transformers 419
Index of type numbers 458
Conversion list (catalogue number-to-type number) 461

DATA HANDBOOK SYSTEM

Our Data Handbook System comprises more than 60 books with specifications on electronic components, subassemblies and materials. It is made up of four series of handbooks:

ELECTRON TUBES BLUE

SEMICONDUCTORS RED

INTEGRATED CIRCUITS PURPLE

COMPONENTS AND MATERIALS GREEN
The contents of each series are listed on pages iv to vii.
The data handbooks contain all pertinent data available at the time of publication, and each is revised and reissued periodically.
When ratings or specifications differ from those published in the preceding edition they are indicated with arrows in the page margin. Where application information is given it is advisory and does not form part of the product specification.

Condensed data on the preferred products of Philips Electronic Components and Materials Division is given in our Preferred Type Range catalogue (issued annually).
Information on current Data Handbooks and on how to obtain a subscription for future issues is available from any of the Organizations listed on the back cover.
Product specialists are at your service and enquiries will be answered promptly.

ELECTRON TUBES (BLUE SERIES)

The blue series of data handbooks comprises:

T1 Tubes for r.f. heating

T2a Transmitting tubes for communications, glass types
T2b Transmitting tubes for communications, ceramic types
T3 Klystrons

T4

T5

T6
T8

T9
T10

T11
T12

T13

T15
T16 Monochrome tubes and deflection units
Black and white TV picture tubes, monochrome data graphic display tubes, deflection units

SEMICONDUCTORS (RED SERIES)

The red series of data handbooks comprises:

S1 Diodes

Small-signal silicon diodes, voltage regulator diodes ($<1,5 \mathrm{~W}$), voltage reference diodes, tuner diodes, rectifier diodes

S2a Power diodes

S2b Thyristors and triacs
S3 Small-signal transistors
S4a Low-frequency power transistors and hybrid modules
S4b High-voltage and switching power transistors
S5 Field-effect transistors
S6 R.F. power transistors and modules
S7 Surface mounted semiconductors

S8a Light-emitting diodes

S8b Devices for optoelectronics
Optocouplers, photosensitive diodes and transistors, infrared light-emitting diodes and infrared sensitive devices, laser and fibre-optic components

S9 Power MOS transistors

S10 Wideband transistors and wideband hybrid IC modules
S11 Microwave transistors
S12 Surface acoustic wave devices
S13 Semiconductor sensors
*S14 Liquid Crystal Displays
*To be issued shortly.

INTEGRATED CIRCUITS (PURPLE SERIES)

The NEW SERIES of handbooks is now completed. With effect from the publication date of this handbook the " N " in the handbook code number will be deleted. Handbooks to be replaced during 1986 are shown below.
The purple series of handbooks comprises:

IC01	Radio, audio and associated systems Bipolar, MOS	new issue 1986 ICO1N 1985
IC02a/b	Video and associated systems Bipolar, MOS	new issue 1986 ICO2Na/b 1985
$1 \mathrm{CO3}$	Integrated circuits for telephony Bipolar, MOS	new issue 1986 ICO3N 1985
IC04	HE4000B logic family CMOS	new issue 1986 IC4 1983
IC05N	HE4000B logic family - uncased ICs CMOS	published 1984
IC06N	High-speed CMOS; PC74HC/HCT/HCU Logic family	published 1986
IC08	ECL 10 K and 100K logic families	New issue 1986 ICO8N 1984
IC09N	TTL logic series	published 1986
IC10	Memories MOS, TTL, ECL	new issue 1986 IC7 1982
IC11N	Linear LSI	published 1985
Supplement to IC11N	Linear LSI	published 1986
IC12	$1^{2} \mathrm{C}$-bus compatible ICs	not yet issued
IC13	Semi-custom Programmable Logic Devices (PLD)	new issue 1986 IC13N 1985
IC14N	Microprocessors, microcontrollers and peripherals Bipolar, MOS	published 1985
IC15	FAST TTL logic series	new issue 1986 IC15N 1985
IC16	CMOS integrated circuits for clocks and watches	first issue 1986
IC17	Integrated Services Digital Networks (ISDN)	not yet issued
IC18	Microprocessors and peripherals	new issue 1986*

[^0]
COMPONENTS AND MATERIALS (GREEN SERIES)

The green series of data handbooks comprises:
C2 Television tuners, coaxial aerial input assemblies, surface acoustic wave filters
C3 Loudspeakers
C4 Ferroxcube potcores, square cores and cross cores
C5 Ferroxcube for power, audio/video and accelerators
C6 Synchronous motors and gearboxes
C7 Variable capacitors
C8 Variable mains transformers
C9 Piezoelectric quartz devices
C11 Varistors, thermistors and sensors
C12 Potentiometers, encoders and switches
C13 Fixed resistors
C14 Electrolytic and solid capacitors
C15 Ceramic capacitors
C16 Permanent magnet materials
C17 Stepping motors and associated electronics
C18 Direct current motors
C19 Piezoelectric ceramics
C20 Wire-wound components for TVs and monitors
C22 Film capacitors

SELECTION GUIDE

RECOMMENDED COMBINATIONS FOR COLOUR TELEVISION

Picture tube	A37-573X	$\begin{aligned} & \text { A } 37-590 X \\ & \text { A } 37-591 X \end{aligned}$
Deflection unit	AT1205	AT1206
Screen diagonal	37 cm	37 cm
Multipole	AT1052	AT1052
Degaussing coil single insulation	312213899840	312213899840
Mains filter choke	AT4043/90	AT4043/90
Switched mode driver transformer		AT4043/29
Switched mode transformer	AT3010/90	-
Mains transformer	-	TS561
Input choke	-	AT4043/81
Synchronous power pack transformer	-	AT2077/80 or AT2076/80
Line output transformer	AT2079/10	-
Linearity control unit	AT4042/04A or AT4042/91	AT4042/91
110°		
Picture tube	A51-540X	
Deflection unit	AT1850	
Screen diagonal	51 cm	
Degaussing coil single insulation double insulation	$\begin{aligned} & 312213855220 \text { or } \\ & 312213856320 \end{aligned}$	
Mains filter choke	AT4043/55 or /90	AT4043/55 or /90
Driver transformer	-	AT4043/29
Switched mode transformer	AT3010/110	-
Mains transformer	TS561	TS561
Current sensing transformer	-	AT4043/46
Bridge coil	AT4043/100	AT4043/100
East/west choke	AT4043/60	AT4043/60
Input choke	-	AT4043/16A
Line output transformer	AT2077/81	AT2077/82
Audio choke	-	AT4043/96
Power pack system line choke	-	AT4043/53
Linearity control unit or linearity corrector	AT4042/08A or AT4042/90	AT4042/90

SELECTION GUIDE

A42-570X	$\begin{aligned} & \text { A42-592X } \\ & \text { A42-593X } \end{aligned}$	A51-570X	$\begin{array}{\|l} \text { A51-590X } \\ \text { A51591X } \end{array}$
AT1215	AT1216 or AT1470	AT1237	AT1236 or AT1480
42 cm	42 cm	51 cm	51 cm
AT1052	AT1052	AT1052	AT1052
312213899850	312213899850	312213856070	312213856070
AT4043/90	AT4043/90	AT4043/90	AT4043/90
-	AT4043/29	-	AT4043/29
AT3010/90*	-	AT3010/90	-
-	TS561	-	TS561
-	AT4043/81	-	AT4043/81
-	AT2077/80 or AT2076/80	-	AT2077/80 or AT2076/80
AT2079/07*	-	AT2079/10	-
AT4042/04A or AT4042/91	AT4042/91	AT4042/04A or AT4042/91	AT4042/91

A56-540X AT1860 56 cm		A66-540X AT1870 66 cm	
$\begin{aligned} & 3122 \\ & 3122 \end{aligned}$	$\begin{aligned} & 13855220 \text { or } \\ & 13856320 \end{aligned}$		$\begin{aligned} & 13855230 \text { or } \\ & 13856310 \end{aligned}$
AT4043/55 or /90	AT4043/55 or 90 AT4043/29	AT4043/55 or /90	AT4043/55 or /90 AT4043/29
AT3010/110	-	AT3010/110	-
TS561	TS561	TS561	TS561
-	AT4043/46	-	AT4043/46
AT4043/100	AT4043/100	AT4043/100	AT4043/100
AT4043/60	AT4043/60	AT4043/60	AT 4043/60
-	AT4043/16A	-	AT4043/16A
AT2077/81	AT2077/82	AT2077/81	AT2077/82
-	AT4043/96	-	AT4043/96
-	AT4043/53	-	AT4043/53
AT4042/08A or AT4042/90	AT4042/90	AT4042/08A or AT4042/90	AT4042/90

SELECTION GUIDE

RECOMMENDED COMBINATIONS FOR COLOUR DATA GRAPHIC DISPLAYS

	line frequency			
	medium resolution	high resolution		24 kHz
	14 inch	10 inch	14 inch	high resolution
Colour monitor tube assembly	M34EAQ00X01 M34EAQ10X01	250ARB22N-TC03 (M25-100X/N/4130)	M37-103X/N/1020 M37-108X/N/1020 M37-118X/N/1020	M37-103X/N/1020 M37-108X/N/1020 M37-118X/N/1020
Inductance of line deflection coils	$1,9 \mathrm{mH}$	1,93 mH	AT	
Line output transformer	AT2077/81	AT2076/81	AT2076/81	AT2076/51
Linearity control unit Driver transformer	AT4042/34	AT4043/01	AT4042/04A or	AT4043/08A

SELECTION GUIDE

32 kHz		ine frequency $45 \mathrm{kHz}$	64 kHz
high resolution		high resolution	high resolution
14 inch	20 inch	14 inch	20 inch
M37-103X/N/1030 M37-108X/N/1030 M37-118X/N/1030	M51-107X/N/7171	M37-103X/N/1050 M37-108X/N/1050 M37-118X/N/1050	M48JFJ58X32
0,3 mH	$0,71 \mathrm{mH}$	0,14 to $0,16 \mathrm{mH}$	0,18 mH
AT2076/51	AT2076/51	AT2077/85	AT2076/60
AT4042/32A	AT4042/32A	AT4042/32A	AT4042/32A
AT4043/01	AT4043/01	AT4043/87	$\begin{aligned} & 2 \times \text { AT4043/87+ } \\ & 1 \times \text { AT4043/01 } \end{aligned}$
AT4043/09	AT4043/09	AT4043/09	AT4043/09
-	AT4043/67	-	-
AT4043/68	AT4043/68	AT4043/13	AT4043/08A

RECOMMENDED COMBINATIONS FOR MONOCHROME DATA GRAPHIC DISPLAYS

Line frequency	15 to 22 kHz	15 to 22 kHz	15 to 22 kHz
E.H.T.	11 kV	11 kV	11 kV
Number of characters/line	40 to 80	40 to 80	40 to 80
Picture tube	M24-306	M31-336/M31-340	M32EAA series
Screen diagonal	9 in	12 in	14 in
Deflection angle	90°	90°	90°
Format	landscape	landscape	landscape
Deflection unit	AT1077/09	AT1077/05	AT1077/13
Line output transformer	$\begin{aligned} & \text { AT2240/16** or } \\ & \text { AT2140/16B** } \end{aligned}$	AT2140/16B**	AT2140/16B**
Linearity control unit	AT4042/08A or AT4042/46	AT4042/08A or AT4042/46	AT4042/08A or AT4042/46
Line driver transformer	-	-	-
Dynamic focusing transformer	-	-	-
D.C. shift transformer	-	-	-
Amplitude control unit	AT4044/39D	AT4044/39D	AT4044/39D
Transductor	-	-	-

[^1]| $\begin{aligned} & 15,6 \mathrm{kHz} \\ & 17 \mathrm{kV} \\ & 80 \\ & \text { M31-326/ } \\ & \text { M38-328 } \end{aligned}$ | $\begin{array}{\|l\|} \hline 21,3 \mathrm{kHz} \\ 17 \mathrm{kV} \\ 80 \\ \text { M31-326/ } \\ \text { M38-328 } \end{array}$ | 15 to 25 kHz
 17 kV
 80
 M31-326/
 M38-328 | $\begin{aligned} & 15 \text { to } 50 \mathrm{kHz} \\ & 17 \mathrm{kV} \\ & 100 \text { to } 132 \\ & \text { M } 31-326 \end{aligned}$ | $\begin{aligned} & 15 \text { to } 50 \mathrm{kHz} \\ & 17 \mathrm{kV} \\ & 100 \text { to } 132 \\ & \mathrm{M} 38-328 \end{aligned}$ | $\begin{aligned} & 15 \text { to } 70 \mathrm{kHz} \\ & 17 \mathrm{kV} \\ & 100 \text { to } 132 \\ & \mathrm{M} 38-328 \end{aligned}$ | $\begin{aligned} & 125 \mathrm{kHz} \\ & 17 \mathrm{kV} \\ & 192 \\ & \mathrm{M} 38-200 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 12 \mathrm{in} / 15 \mathrm{in} \\ & 110^{\circ} \\ & \text { landscape } \end{aligned}$ | $\begin{aligned} & 12 \mathrm{in} / 15 \mathrm{in} \\ & 110^{\circ} \\ & \text { landscape } \end{aligned}$ | $\begin{aligned} & 12 \mathrm{in} / 15 \mathrm{in} \\ & 110^{\circ} \\ & \text { landscape } \end{aligned}$ | $\begin{aligned} & 12 \text { in } \\ & 110^{\circ} \\ & \text { landscape } \end{aligned}$ | $\begin{array}{\|l\|} \hline 15 \text { in } \\ 110^{\circ} \\ \text { landscape } \end{array}$ | 15 in
 110°
 portrait | 15 in 70° portrait |
| AT1038/41/42
 AT2102/04C ${ }^{\mathbf{\Delta}}$ | $\left\lvert\, \begin{aligned} & \text { AT1038/41/42 } \\ & \text { AT2102/06C } \end{aligned}\right.$ | AT1038/41/42
 AT2076/84* | AT1039/03
 AT2076/84* | AT1039/01
 AT2076/84* | $\begin{array}{\|l\|} \text { AT1039/00 } \\ \text { AT2076/84* } \end{array}$ | $\begin{array}{\|l\|} \hline \text { AT1991 } \\ \text { AT2076/54 } \end{array}$ |
| AT4042/08A | AT4042/08A | AT4042/08A | AT4042/08A or AT4042/33A | AT4042/08A or AT4042/33A | $\begin{array}{\|c} \text { AT4042/08A } \\ \text { or } \\ \text { AT4042/33A } \end{array}$ | |
| AT4043/59 | AT4043/59 | AT4043/64 | AT4043/64 | AT4043/64 | AT4043/64 | AT4043/87 |
| - | AT4043/67 | AT4043/67 | - | - | - | - |
| - | - | - | AT4043/29 | AT4043/29 | AT4043/29 | AT4043/29 |
| - | - | - | AT4044/35 | AT4044/35 | AT4044/35 | - |
| - | - | - | - | - | - | AT4041/52 |

GLASS DELAY LINES

type	DL63	DL680	DL701	DL703
catalogue number	432202784631	432202784661	432202784771 432202784772	432202784831
application	CTV	VLP	CTV/VCR	VCR
system	PAL-Brazil	PAL	PAL-Europe	PAL-Europe
nominal frequency	$3,575611 \mathrm{MHz}$	$7,500000 \mathrm{MHz}$	$4,433619 \mathrm{MHz}$	$4,433619 \mathrm{MHz}$
-3 dB lower limit	$2,8 \mathrm{MHz}$	$5,5 \mathrm{MHz}$	$3,43 \mathrm{MHz}$	$3,03 \mathrm{MHz}$
-3 dB upper limit	$4,5 \mathrm{MHz}$	$8,5 \mathrm{MHz}$	$5,23 \mathrm{MHz}$	$5,43 \mathrm{MHz}$
insertion loss	$9 \pm 3 \mathrm{~dB}$	max .17 dB	$9 \pm 3 \mathrm{~dB}$	$9 \pm 3 \mathrm{~dB}$
delay time	$63486 \pm 5 \mathrm{~ns}$	$64400 \pm 50 \mathrm{~ns}$	$63943 \pm 5 \mathrm{~ns}$	$63935 \pm 5 \mathrm{~ns}$
nominal phase	00	-	180°	180°
drift (+ 10/+ $60{ }^{\circ} \mathrm{C}$)	typ. 5 ns	$\leqslant 10 \mathrm{~ns}$	$\leqslant 5 \mathrm{~ns}$	$\leqslant 5 \mathrm{~ns}$
spurious (3 τ)	$\leqslant-22 \mathrm{~dB}$	$\leqslant-20 \mathrm{~dB}$	$\leqslant-28 \mathrm{~dB}$	$\leqslant-28 \mathrm{~dB}$
spurious ('others)	$\leqslant-30 \mathrm{~dB}$	$\leqslant-30 \mathrm{~dB}$	$\leqslant-33 \mathrm{~dB}$	$\leqslant-26 \mathrm{~dB}$
R1 (input)	560Ω	150Ω	390Ω	390Ω
R2 (output)	560Ω	150Ω	390Ω	390Ω
L1 eff. (input)	$18 \mu \mathrm{H}$	$2,2 \mu \mathrm{H}$	$10 \mu \mathrm{H}$	$18 \mu \mathrm{H}$
L2 eff. (output)	$18 \mu \mathrm{H}$	$2,2 \mu \mathrm{H}$	$10 \mu \mathrm{H}$	$18 \mu \mathrm{H}$
page	217	221	225	229

SELECTION GUIDE

DL711	DL720	DL721	DL722	DL750
$\begin{aligned} & 432202784781 \\ & 432202784782 \end{aligned}$	432202784721	432202784731	432202784741	$\begin{aligned} & 432202784751 \\ & 432202784752 \end{aligned}$
CTV	CTV	CTV	CTV	CTV comb f./VCR
PAL/SECAM	PAL-Argentina	PAL-Argentina	PAL-Argentina	NTSC
4,433619 MHz	$3,582056 \mathrm{MHz}$	$3,582056 \mathrm{MHz}$	3,582056 MHz	$3,579545 \mathrm{MHz}$
$3,43 \mathrm{NHz}$	$2,8 \mathrm{MHz}$	2,8 MHz	2,8 MHz	2,8 MHz
$5,23 \mathrm{MHz}$	$4,5 \mathrm{MHz}$	$4,5 \mathrm{MHz}$	$4,5 \mathrm{MHz}$	$4,5 \mathrm{MHz}$
$9 \pm 3 \mathrm{~dB}$				
$63943 \pm 5 \mathrm{~ns}$	$63929 \pm 5 \mathrm{~ns}$	$64069 \pm 5 \mathrm{~ns}$	$64069 \pm 5 \mathrm{~ns}$	$63555 \pm 5 \mathrm{~ns}$
180°	0^{0}	180°	180°	180°
$\leqslant 5 \mathrm{~ns}$	$\leqslant 5 \mathrm{~ns}$	$\leqslant 5 \mathrm{~ns}$	$\leqslant 5 \mathrm{~ns}$	typ. 5 ns
$\leqslant-33 \mathrm{~dB}$ *	$\leqslant-22 \mathrm{~dB}$	$\leqslant-22 \mathrm{~dB}$	$\leqslant-22 \mathrm{~dB}$	$\leqslant-22 \mathrm{~dB}$
$\leqslant-33 \mathrm{~dB} *$	$\leqslant-28 \mathrm{~dB}$	$\leqslant-28 \mathrm{~dB}$	$\leqslant-28 \mathrm{~dB}$	$\leqslant-28 \mathrm{~dB}$
390Ω	560Ω	560Ω	390Ω	560Ω
390Ω	560Ω	560Ω	390 ת	560Ω
$10 \mu \mathrm{H}$	$18 \mu \mathrm{H}$	$18 \mu \mathrm{H}$	$10 \mu \mathrm{H}$	$18 \mu \mathrm{H}$
$10 \mu \mathrm{H}$	$18 \mu \mathrm{H}$	$18 \mu \mathrm{H}$	$10 \mu \mathrm{H}$	$18 \mu \mathrm{H}$
233	237	237	237	241

[^2]
SELECTION GUIDE

GLASS DELAY LINES/COMB FILTERS

type	DL752	DL872	DL875	DL876	CF873
catalogue number	432202784882	432202784841	432202784501	432202784511	432202784581
application	VCR comb filter				
system	NTSC	PAL-Europe	PAL-Brazil	PAL-Argentina	PAL-Europe
nominal frequency	$3,579545 \mathrm{MHz}$	$4,433619 \mathrm{MHz}$	$3,575611 \mathrm{MHz}$	$3,582056 \mathrm{MHz}$	$4,433619 \mathrm{MHz}$
-3 dB lower limit	$3,08 \mathrm{MHz}$	$3,93 \mathrm{MHz}$	$3,08 \mathrm{MHz}$	$3,08 \mathrm{MHz}$	$3,93 \mathrm{MHz}$
-3 dB upper limit	$4,08 \mathrm{MHz}$	$4,93 \mathrm{MHz}$	$4,08 \mathrm{MHz}$	$4,08 \mathrm{MHz}$	$4,93 \mathrm{MHz}$
insertion loss	$10 \pm 3 \mathrm{~dB}$	$18 \pm 3 \mathrm{~dB}$			
delay time	$64 \mu \mathrm{~s}$	$128 \mu \mathrm{~s}$	$128 \mu \mathrm{~s}$	$128 \mu \mathrm{~s}$	$128 \mu \mathrm{~s}$
spurious (2 τ)	$\leqslant-20 \mathrm{~dB}$	$\leqslant-12 \mathrm{~dB}$	$\leqslant-15 \mathrm{~dB}$	$\leqslant-15 \mathrm{~dB}$	$\leqslant-18 \mathrm{~dB}$
spurious (3 τ)	$\leqslant-18 \mathrm{~dB}$				
spurious ('others')	$\leqslant-26 \mathrm{~dB}$	$\leqslant-23 \mathrm{~dB}$	$\leqslant-20 \mathrm{~dB}$	$\leqslant-20 \mathrm{~dB}$	$\leqslant-23 \mathrm{~dB}$
comb depth at f_{o}	$\geqslant 24 \mathrm{~dB}$	$\geqslant 20 \mathrm{~dB}$	$\geqslant 18 \mathrm{~dB}$	$\geqslant 18 \mathrm{~dB}$	$\geqslant 20 \mathrm{~dB}$
comb depth at f_{+}	$\geqslant 10 \mathrm{~dB}$	$\geqslant 10 \mathrm{~dB}$	$\geqslant 10 \mathrm{~dB}$	$\geqslant 10 \mathrm{~dB}$	$\geqslant 12 \mathrm{~dB}$
comb depth at $\mathrm{f}-$	$\geqslant 10 \mathrm{~dB}$	$\geqslant 10 \mathrm{~dB}$	$\geqslant 10 \mathrm{~dB}$	$\geqslant 10 \mathrm{~dB}$	$\geqslant 12 \mathrm{~dB}$
page	245	249	253	257	261

Note: $\mathrm{f}_{\mathrm{o}}=4,42971 \mathrm{MHz}$
$\mathrm{f}_{+}=4,92971 \mathrm{MHz}$
$\mathrm{f}_{-}=3,92971 \mathrm{MHz}$

SELECTION GUIDE

DEGAUSSING COILS

Screen diagonal of picture tube		14 inch	16 inch	20 inch	20 inch	20 inch 22 inch	26 inch
Degaussing system Mounting Ampere-turns	single coil twisted loop 500	single coil asymmetrical 600	single coil asymmetrical 600	single coil asymmetrical 700	double coil top + bottom 2×300	double coil top + bottom 2×300	double coil top + bottom 2×300
Catalogue number of degaussing coil 3122138 single insulation double insulation Diameter Mains voltage Resistance Number of turns	$\begin{aligned} & 56310 \\ & 435 \mathrm{~mm} \\ & 220 / 240 \mathrm{~V} \\ & 8,6 \Omega^{*} \\ & 52 \end{aligned}$	$\begin{aligned} & 99840 \\ & 51860 \\ & 300 \mathrm{~mm} \\ & 220 / 240 \mathrm{~V} \\ & 21,7 \Omega \\ & 97 \end{aligned}$	$\begin{aligned} & 99850 \\ & 51850 \\ & 330 \mathrm{~mm} \\ & 220 / 240 \mathrm{~V} \\ & 26,3 \Omega \\ & 107 \end{aligned}$	$\begin{aligned} & 56070 \\ & 56170 \\ & 435 \mathrm{~mm} \\ & 220 / 240 \mathrm{~V} \\ & 19,5 \Omega \\ & 120 \end{aligned}$	$\begin{aligned} & 55920 \\ & 385 \mathrm{~mm} \\ & 110 / 220 \mathrm{~V} \\ & 11,4 \Omega \\ & 65 \end{aligned}$	$\begin{aligned} & 55220 \\ & 56320 \\ & 385 \mathrm{~mm} \\ & 110 / 220 \mathrm{~V} \\ & 11,5 \Omega \\ & 49 \end{aligned}$	$\begin{aligned} & 55230 \\ & 56310 \\ & 435 \mathrm{~mm} \\ & 110 / 220 \mathrm{~V} \\ & 8,6 \Omega \\ & 52 \end{aligned}$

[^3]
DIODE-SPLIT LINE OUTPUT TRANSFORMER

- Three-layer e.h.t. coil, focus tap for hi-bi
- Aluminium foil primary winding
- Piggy-back type
- For Data Graphic Displays

QUICK REFERENCE DATA

For transistor line output stages

deflection angle	110°	90°
leht	max. 1,5 mA	max. 1 mA
E.H.T.	25 kV	25 kV
R_{i} (eht)	1,86 M	2,45 M Ω
I_{p-p} deflection (incl. 6\% overscan)	5,3 A	2,85 A
Supply voltage (V_{B})	151 V	151,5 V
Supply current ($\mathrm{I}_{\text {average }}$) at	$477 \mathrm{~mA}\left(1{ }_{\text {eht }}=1,5 \mathrm{~mA}\right)$	291 mA (${ }_{\text {beam }}=1 \mathrm{~mA}$)
Voltages of primary windings *	$\begin{aligned} V_{p}= & +114,+520 \\ & +1060,+1090 \end{aligned}$	$\begin{aligned} & +112,+515 \\ & +1050,+1080 \end{aligned}$
Voltages of auxiliary windings	$\begin{aligned} V_{p}= & -280,-149,+64, \\ & +227,+326 \end{aligned}$ picture tube heater voltage	$\begin{aligned} & -275,-146,+62 \\ & +223,+322 \end{aligned}$

APPLICATION

This transformer has been designed to provide the required scanning amplitude for 110° and 90° colour picture tubes in transistor equipped receivers presenting 625 lines at 50 fields per second (CCIR) or 525 lines at 60 fields per second (USA).
It is intended for use in conjunction with:

- deflection unit
- bridge coil
- linearity control unit
- line output transistor

deflection angle 110°	90°
AT1870, AT1860, AT1850	AT1235/00
AT4043/68	AT4043/68
AT4042/08A or $/ 30$	AT4042/04A or $/ 90$
BU508A	BU508A

- screened e.h.t. cable with a length of 1 m ; catalogue number 312213758254.

DESCRIPTION

The magnetic circuit of the transformer comprises 2 Ferroxcube U-cores, screwed together. The primary winding of aluminium foil and the secondary windings are situated on one leg of the core. The e.h.t. winding is moulded in flame retarding polyester, meeting the self-extinguishing requirements of IEC 65, para. 14.4 and UL492, para. 280-SE1. The transformer has 2 M 3 screw-studs for mounting.** External circuit connection is made to connecting pins, positioned as indicated in Fig. 1, enabling the unit to be soldered directly into a printed-wiring board (Fig. 2).

* D.C. component on these pulses is $V_{B^{\prime}}$ (see Fig. 3).
** For mounting on the printed-wiring board a washer of 20 mm in diameter has to be used. Tightening torque on printed-wiring board: $500+100 \mathrm{mNm}$.

MECHANICAL DATA

Dimensions in mm

Outlines

Fig. 1.

Solderability in accordance with IEC 68, Test T

MOUNTING

The transformer may be mounted on either a printed-wiring board or, under certain conditions, on a metal chassis. Two securing studs (M3) are provided. The fit of the connecting and the mounting pins in a printed-wiring grid with a pitch of $2,54 \mathrm{~mm}$ is illustrated in Fig. 2.

Fig. 2 Hole pattern for mounting on a printed-wiring board (solder side). Grid hole diameter $1,3 \pm 0,1 \mathrm{~mm}$.

Whether the transformer is board or chassis mounted, the core must be earthed.

Temperature

The operating temperature of the e.h.t. coil should not exceed $+85^{\circ} \mathrm{C}$ under worst conditions, i.e. taking into account:

- over-voltage on the coils;
- low atmospheric pressure (at high altitudes) implying bad cooling by convection;
- high ambient temperature (up to $45^{\circ} \mathrm{C}$).

To satisfy this requirement it is recommended to provide sufficient flow of cool air around the transformer.

Distances

The following minimum distances between the transformer and neighbouring conductive flat surfaces must be maintained:

From the e.h.t. coil radially, 10 mm
From the e.h.t. coil axially, 10 mm
Sharp edges of conductive parts must have greater distances than given above.
The transformer, leads and components carrying high voltage pulses, should be kept free from metal particles, solder drops etc.

ELECTRICAL DATA with 110° COLOUR PICTURE TUBES

E.H.T. supply	Ieht e.h.t. $\mathrm{R}_{\text {i' }}$ eht)	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{kV} \\ & \mathrm{M} \Omega \end{aligned}$	$\begin{aligned} & 0,03 \\ & 25,0 \end{aligned}$	$\begin{aligned} & 1 \\ & 23,2 \\ & -1,86- \end{aligned}$	$\begin{aligned} & 1,5 \\ & 22,2 \end{aligned}$
Power supply	V_{B}	V	158,5	158,5	158,5
	$V_{B}{ }^{\prime}$	\checkmark	151	147,2	145,0
	${ }^{\text {average }}$	mA	259	397	477
Output transistor	$\mathrm{V}_{\text {CEM }}$	V	1240	1210	1190
	$+{ }^{\text {C }}$ CEM	A	3,5	3,6	3,65
Deflection	I_{p-p}	A	5,3	5,2	5,15
	$\mathrm{t}_{\text {flyback }}$	$\mu \mathrm{s}$	11,4	-	-
	Overscan	\%	6	-	6,5
$\mathrm{V}_{\text {focus }}$		kV	8,6	8,1	7,8
Auxiliary windings: picture tube heater voltage V_{3-1} (r.m.s.) peak voltages at		V	9,04	8,74	8,54
pin 2	V_{2}	v	-280		
pin 6	V_{6}	V	-149		
pin 4	V_{4}	V	+64		
pin 11	V_{11}	V	+227		
pin 8	V_{8}	V	+326		
pin 9	$\mathrm{V}_{9}{ }^{*}$	v	+114		
pin 14	$\mathrm{V}_{14}{ }^{*}$	V	+520		
pin 16	V_{16} *	v	+ 1060		
pin 17	$\mathrm{V}_{17}{ }^{*}$	V	+ 1090		

Above measurements using circuits of Figs 3, 4a and 4b.
An alternative 3-diode modulator circuit is shown in Fig. 4c.

[^4]

Fig. 3 Circuit diagram of transformer, and e.h.t., focus voltage and $V_{\mathrm{g} 2}$ circuits.

Fig. 4a Diode modulator with split tuning.

Fig. 4b Diode modulator with tap on transformer.
(1) Transformer stray capacitance.

Fig. 4c Three-diode modulator circuit.

ELECTRICAL DATA with 90° COLOUR PICTURE TUBES.

			Figs 3 and 5 a$V_{B}=154,5 \mathrm{~V}$		Figs 3 and $5 b$ $V_{B}=134,3 \mathrm{~V}$	
E.H.T. supply	leht e.h.t. $R_{\text {i(eht) }}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{kV} \\ & \mathrm{M} \Omega \end{aligned}$	$\begin{aligned} & 0,03 \\ & 24,55 \\ & \quad-2, \end{aligned}$	$\begin{aligned} & 1 \\ & 22,1 \end{aligned}$	$\begin{aligned} & 0,03 \\ & 25,0 \end{aligned}$	$\begin{aligned} & 1 \\ & 22,5 \end{aligned}$
Power supply	$\mathrm{V}_{\mathrm{B}}{ }^{\prime}$	V	151,5	148,1	130,0	126,1
	${ }^{\text {average }}$	mA	168	291	226	375
Output transistor	$V_{\text {CEM }}$	V	1220	1150	1060	995
	+ ICEM	A	2,0	2,1	2,4	2,5
Deflection	$\mathrm{I}_{\mathrm{p}-\mathrm{p}}$	A	2,85	2,7	2,9	2,75
	$\mathrm{t}_{\text {fly back }}$	$\mu \mathrm{S}$	11,45		11,45	
	Overscan	\%	6	7,5	6	7,5
$V_{\text {focus }}$		kV	8,45	7,7	8,6	7,8
Auxiliary windings: picture tube heater voltage V_{3-1} (r.m.s.) peak voltages at		V	9,13	8,7	9,30	8,79
pin 2	V_{2}	V	-275		-280	
pin 6	V_{6}	V	-146		-149	
pin 4	V_{4}	V	+62		+64	
pin 11	V_{11}	V	+223		+227	
pin 8	V_{8}	V	+ 322		+326	
pin 9	$\mathrm{V}_{9}{ }^{*}$	V	+ 112		+114	
pin 14	$\mathrm{V}_{14}{ }^{*}$	V	+515		+520	
pin 15	V_{15} *	V			+ 1240	
pin 16	$\mathrm{V}_{16}{ }^{*}$	V	+ 1050			
pin 17	$\mathrm{V}_{17}{ }^{*}$	V	+1080		+1090	

Above measurements using circuits of Figs 3,5 and 5 b.

[^5]

Fig. 5a Diode modulator, $\mathrm{V}_{\mathrm{B}}=154,5 \mathrm{~V}$.

Fig. 5b Diode modulator, $V_{B}=134,3 \mathrm{~V}$.

DIODE-SPLIT LINE OUTPUT TRANSFORMER

- Three-layer e.h.t. coil
- Aluminium foil primary winding
- Piggy-back type
- For Data Graphic Displays.

QUICK REFERENCE DATA

For transistor line output stages

deflection angle	110°	90°
$l_{\text {eht }}$	max. 1,5 mA	max. 1 mA
E.H.T.	25 kV	25 kV
$\mathrm{R}_{\text {i }}$ (eht)	1,86 M Ω	2,45 M Ω
I_{p-p} deflection (incl. 6\% overscan)	5,3 A	2,85 A
Supply voltage (V_{B})	151 V	151,5 V
Supply current (laverage) at	$477 \mathrm{~mA}\left(l_{\text {eht }}=1,5 \mathrm{~mA}\right)$	$291 \mathrm{~mA}\left(1_{\text {beam }}=1 \mathrm{~mA}\right)$
Voltages of primary windings *	$\begin{aligned} \mathrm{V}_{\mathrm{p}}= & +114,+520 \\ & +1060,+1090 \end{aligned}$	$\begin{aligned} & +112,+515 \\ & +1050,+1080 \end{aligned}$
Voltages of auxiliary windings	$\begin{aligned} V_{p}= & -280,-149,+64 \\ & +227,+326 \end{aligned}$ picture tube heater voltage	$\begin{aligned} & -275,-146,+62 \\ & +223,+322 \end{aligned}$

APPLICATION

This transformer has been designed to provide the required scanning amplitude for 110° and 90° colour picture tubes in transistor equipped receivers presenting 625 lines at 50 fields per second (CCIR) or 525 lines at 60 fields per second (USA).
It is intended for use in conjunction with:

- deflection unit
- bridge coil
- linearity control unit
- line output transistor

deflection angle	110°	90°
	AT1270/00, AT1260, AT1250	AT1235/00
	AT4043/68	AT4043/68
	AT4042/08 or $/ 30$	AT4042/02 or $/ 90$
	BU508A	BU508A

- screened e.h.t. cable with a length of 1 m ; catalogue number 312213758254 .

DESCRIPTION

The magnetic circuit of the transformer comprises 2 Ferroxcube U-cores, screwed together. The primary winding of aluminium foil and the secondary windings are situated on one leg of the core. The e.h.t. winding is moulded in flame retarding polyester, meeting the self-extinguishing requirements of IEC65, para, 14.4 and UL492, para. 280-SE1. The transformer has 2 M3 screw-studs for mounting. ** External circuit connection is made to connecting pins, positioned as indicated in Fig. 1, enabling the unit to be soldered directly into a printed-wiring board (Fig. 2).

[^6]
MECHANICAL DATA

Dimensions in mm

Outlines

Fig. 1.
Solderability in accordance with IEC68, Test T

MOUNTING

The transformer may be mounted on either a printed-wiring board or, under certain conditions, on a metal chassis. Two securing studs (M3) are provided. The fit of the connecting and the mounting pins in a printed-wiring grid with a pitch of $2,54 \mathrm{~mm}$ is illustrated in Fig. 2.

Fig. 2 Hole pattern for mounting on a printed-wiring board (solder side). Grid hole diameter 1,3 $\pm 0,1 \mathrm{~mm}$.

Whether the transformer is board or chassis mounted, the core must be earthed.

Temperature

The operating temperature of the e.h.t. coil should not exceed $+85^{\circ} \mathrm{C}$ under worst conditions, i.e. taking into account:

- over-voltage on the coils;
- low atmospheric pressure (at high altitudes) implying bad cooling by convection;
- high ambient temperature (up to $45^{\circ} \mathrm{C}$).

To satisfy this requirement it is recommended to provide sufficient flow of cool air around the transformer.

Distances

The following minimum distances between the transformer and neighbouring conductive flat surfaces must be maintained:

From the e.h.t. coil radially, 10 mm .
From the e.h.t. coil axially, 10 mm .
Sharp edges of conductive parts must have greater distances than given above.
The transformer, leads and components carrying high voltage pulses, should be kept free from metal particles, solder drops etc.

ELECTRICAL DATA with 110° COLOUR PICTURE TUBES

E.H.T. supply	$I_{\text {eht }}$ e.h.t. $R_{i(\text { eht })}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{kV} \\ & \mathrm{M} \Omega \end{aligned}$	$\begin{aligned} & 0,03 \\ & 25,0 \end{aligned}$	$\begin{aligned} & 1 \\ & 23,2 \\ & -1,86- \end{aligned}$	$\begin{aligned} & 1,5 \\ & 22,2 \end{aligned}$
Power supply	V_{B}	V	158,5	158,5	158,5
	$V_{B}{ }^{\prime}$	\checkmark	151	147,2	145,0
	${ }^{\text {average }}$	mA	259	397	477
Output transistor	$\mathrm{V}_{\text {CEM }}$	V	1240	1210	1190
	+ ICEM	A	3,5	3,6	3,65
Deflection	${ }^{\text {p-p }}$	A	5,3	5,2	5,15
	tflyback	$\mu \mathrm{S}$	11,4	-	-
	Overscan	\%	6	-	6,5
$V_{\text {focus }}$		kV	8,6	8,1	7,8
Auxiliary windings: picture tube heater voltage V_{3-1} (r.m.s.) peak voltages at		V	9,04	8,74	8,54
pin 2	V_{2}	V	-280		
pin 6	V_{6}	V	-149		
pin 4	V_{4}	V	+64		
pin 11	V_{11}	V	+227		
pin 8	V_{8}	V	+326		
pin 9	$\mathrm{V}^{*}{ }^{*}$	V	+114		
pin 14	$\mathrm{V}_{14}{ }^{*}$	V	+520		
pin 16	$\mathrm{V}_{16}{ }^{*}$	V	+1060		
pin 17	$V_{17}{ }^{*}$	\checkmark	+1090		

Above measurements using circuits of Figs 3, 4a and 4b.
An alternative 3-diode modulator circuit is shown in Fig. 4c.

[^7]

Fig. 3 Circuit diagram of transformer, and e.h.t., focus voltage and $\mathrm{V}_{\mathrm{g} 2}$ circuits.

Fig. 4a Diode modulator with split tuning.

Fig. 4b Diode modulator with tap on transformer.
(1) Transformer stray capacitance.

Fig. 4c Three-diode modulator circuit.

ELECTRICAL DATA with 90° COLOUR PICTURE TUBES

			Figs 3 and 5 a$V_{B}=154,5 \mathrm{~V}$		Figs 3 and $5 b$$V_{B}=134,3 \mathrm{~V}$	
E.H.T. supply	leht e.h.t. R_{i} (eht)	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{kV} \\ & \mathrm{M} \Omega \end{aligned}$	$\begin{aligned} & 0,03 \\ & 24,55 \end{aligned}$	$\begin{aligned} & 1 \\ & 22,1 \end{aligned}$	$\begin{aligned} & 0,03 \\ & 25,0 \end{aligned}$	$\begin{aligned} & 1 \\ & 22,5 \end{aligned}$
Power supply	$\left\{\begin{array}{l} \mathrm{V}_{\mathrm{B}^{\prime}} \\ \mathrm{I}_{\text {average }} \end{array}\right.$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 151,5 \\ & 168 \end{aligned}$	$\begin{aligned} & 148,1 \\ & 291 \end{aligned}$	$\begin{aligned} & 130,0 \\ & 226 \end{aligned}$	$\begin{aligned} & 126,1 \\ & 375 \end{aligned}$
Output transistor	$\left\{\begin{array}{l} \mathrm{v}_{\text {CEM }} \\ +\mathrm{I}_{\text {CEM }} \end{array}\right.$	$\begin{aligned} & \text { V } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 1220 \\ & 2,0 \end{aligned}$	$\begin{aligned} & 1150 \\ & 2,1 \end{aligned}$	$\begin{aligned} & 1060 \\ & 2,4 \end{aligned}$	$\begin{aligned} & 995 \\ & 2,5 \end{aligned}$
Deflection	$\left\{\begin{array}{l}\text { l } \mathrm{p} \text {-p } \\ \text { tflyback } \\ \text { Overscan }\end{array}\right.$	A $\mu \mathrm{s}$ \%	$\begin{aligned} & 2,85 \\ & 11,45 \\ & 6 \end{aligned}$	$\begin{aligned} & 2,7 \\ & 7,5 \end{aligned}$	$\begin{aligned} & 2,9 \\ & 11,45 \\ & 6 \end{aligned}$	$\begin{aligned} & 2,75 \\ & 7,5 \end{aligned}$
$\mathrm{V}_{\text {focus }}$		kV	8,45	7,7	8,6	7,8
Auxiliary windings: picture tube heater voltage V_{3-1} (r.m.s.) peak voltages at		V	9,13	8,7	9,30	8,79
pin 2	V_{2}	V	-275		-280	
pin 6	v_{6}	V	-146		-149	
pin 4	V_{4}	V	+62		+64	
pin 11	V_{11}	V	+223		+227	
pin 8	V_{8}	V	+322		+326	
pin 9	V9*	V	+112		+114	
pin 14	$\mathrm{V}_{14}{ }^{*}$	v	+515		+520	
pin 15	$V_{15}{ }^{*}$	v			+1240	
pin 16	$\mathrm{V}_{16}{ }^{*}$	V	+ 1050			
pin 17	$V_{17}{ }^{*}$	V	+1080		+1090	

[^8][^9]

Fig. 5a Diode modulator, $\mathrm{V}_{\mathrm{B}}=154,5 \mathrm{~V}$.

Fig. 5b Diode modulator, $\mathrm{V}_{\mathrm{B}}=134,3 \mathrm{~V}$.

UNIVERSAL DIODE-SPLIT LINE OUTPUT TRANSFORMER

- For monochrome Data Graphic Displays
- Three-layer e.h.t. coil
- Aluminium foil primary winding
- Piggy oack type

QUICK REFERENCE DATA

For transistor line output stages, deflection angle 110°, scan frequency 32 kHz .

leht	$\max .0,5 \mathrm{~mA}$
E.H.T.	17 kV
$\mathrm{R}_{\text {i }} \mathrm{eht}$)	1,3 M
Ip-p deflection	3,8 A
Supply voltage (V_{B})	129 V
Supply current ($\mathrm{I}_{\text {average }}$)	210 mA
Flyback time	5,4 $\quad \mu \mathrm{s}$
Auxiliary voltages	$+6 V_{,}-6 V_{,}+11 V_{1}+26 V_{1}+41 V_{1}+52 V_{,}-150 V_{,}$ heater voltage $9,8 \mathrm{~V}$ (r.m.s.)

APPLICATION

This transformer has been designed to provide the required scanning amplitude for $38 \mathrm{~cm}(15 \mathrm{in}) / 110^{\circ}$ monochrome data graphic display tubes, at line scan frequencies of $15,625 \mathrm{kHz}, 32 \mathrm{kHz}$ or 64 kHz . It is intended for use in conjunction with:

- deflection unit AT1039/00 (for 'portrait' scan mode, scan frequency 64 kHz) or AT1039/01
(for 'landscape' scan mode, scan frequency $15,625 \mathrm{kHz}$ or 32 kHz);
- line output transistor BU508A;
- screened e.h.t. cable, length 1 m, catalogue number 312213758254.

DESCRIPTION

The magnetic circuit of the transformer comprises 2 Ferroxcube U-cores, screwed together. The primary winding of aluminium foil and the secondary windings are situated on one leg of the core. The e.h.t. winding is moulded in flame retarding polyester, meeting the self-extinguishing requirements of IEC 65, para. 14.4 and UL492, para. 280-SE1. The transformer has 2 M3 screw-studs for mounting.* External circuit connection is made to connecting pins, positioned as indicated in Fig. 1, enabling the unit to be soldered directly into a printed-wiring board (Fig. 2).

[^10]
MECHANICAL DATA

Outlines

Dimensions in mm

Fig. 1.
Mass approx. 500 g
Solderability in accordance with IEC 68, Test T

MOUNTING

The transformer may be mounted on either a printed-wiring board or, under certain conditions, on a metal chassis. Two securing studs (M3) are provided. The fit of the connecting and the mounting pins in a printed-wiring grid with a pitch of $2,54 \mathrm{~mm}$ is illustrated in Fig. 2.

Fig. 2 Hole pattern for mounting on a printed-wiring board (solder side). Grid hole diameter 1,3 $\pm 0,1 \mathrm{~mm}$.

Whether the transformer is board or chassis mounted, the core must be earthed.

Temperature

The operating temperature of the e.h.t. coil should not exceed $+85^{\circ} \mathrm{C}$ under worst conditions, i.e. taking into account:

- over-voltage on the coils;
- low atmospheric pressure (at high altitudes) implying bad cooling by convection;
- high ambient temperature (up to $45^{\circ} \mathrm{C}$).

To satisfy this requirement it is recommended to provide sufficient flow of cool air around the transformer.

Distances

The following minimum distances between the transformer and neighbouring conductive flat surfaces must be maintained:

From the e.h.t. coil radially, 10 mm .
From the e.h.t. coil axially, 10 mm .
Sharp edges of conductive parts must have greater distances than given above.
The transformer, leads and components carrying high voltage pulses, should be kept free from metal particles, solder drops etc.

ELECTRICAL DATA

Scan frequency	Hz	15625 (Fig. 3)		31250 (Fig. 4)		62500 (Fig. 5)	
$\begin{array}{ll} & \text { E.H.T. supply } \\ & \text { eht } \\ \text { e.h.t. } \\ & R_{i}(\text { eht })\end{array}$	mA kV $\mathrm{M} \Omega$	$\begin{aligned} & 0,035 \\ & 17,3 \end{aligned}$	$\begin{aligned} & 0,55 \\ & 16,8 \end{aligned}$	$\begin{aligned} & 0,035 \\ & 17,85 \end{aligned}$	$\begin{aligned} & 0,55 \\ & 17,25 \end{aligned}$	$\begin{aligned} & 0,035 \\ & 17,6 \end{aligned}$	$\begin{aligned} & 0,55 \\ & 16,6 \end{aligned}$
Power supply $\left\{\begin{array}{l}V_{B} \\ \mathrm{l}_{\text {average }}\end{array}\right.$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 68,5 \\ & 385 \end{aligned}$	$\begin{aligned} & 68,5 \\ & 530 \end{aligned}$	$\begin{aligned} & 129 \\ & 210 \end{aligned}$	$\begin{aligned} & 129 \\ & 285 \end{aligned}$	$\begin{aligned} & 100 \\ & 310 \end{aligned}$	$\begin{aligned} & 100 \\ & 410 \end{aligned}$
Output transistor $\mathrm{V}_{\text {CEM }}$	V	560		1120		780	
Deflection $\quad\left\{\begin{array}{l}\mathrm{I}_{\mathrm{p}-\mathrm{p}} \\ \mathrm{t}_{\text {flyback }}\end{array}\right.$	A $\mu \mathrm{S}$	$\begin{aligned} & 3,95 \\ & 11,2 \end{aligned}$	$\begin{aligned} & 3,95 \\ & 11,2 \end{aligned}$	$\begin{aligned} & 3,75 \\ & 5,4 \end{aligned}$	$\begin{aligned} & 3,75 \\ & 5,4 \end{aligned}$	$\begin{aligned} & 5,80 \\ & 3,0 \end{aligned}$	$\begin{aligned} & 5,80 \\ & 3,0 \end{aligned}$
Tuning capacitor C1	nF	20		2,2		1,6	
Auxiliary windings: heater voltage (r.m.s.) $\quad V_{4-6}$ voltages (d.c.)* at	V	9,53		9,83		9,92	
pin $15\left(\mathrm{~V}_{\mathrm{g} 2}\right.$, load $\left.1 \mathrm{M} \Omega\right) \mathrm{V}_{15}$	V	+757		+842		+773	
pin $1^{* *} \mathrm{~V}_{1}$	V	+49,7		+49,7		+55,4	
$\operatorname{pin} 3^{* *} \quad \mathrm{~V}_{3}$	V	+38,5		+38,5		+42,9	
pin 5 ** V_{5}	V	+24,5		+24,5		+27,3	
pin $2\left(V_{\mathrm{g} 1}\right.$, load $\left.10 \mathrm{k} \Omega\right) \mathrm{V}_{2}$	V	-156		-166		-155	
$\operatorname{pin} 8^{* *} \mathrm{~V}_{8}$	V	+10,5		+10,5		+11,8	
pin $11^{* *} \quad \mathrm{~V}_{11}$	V	+6,4		+6,4		+7,15	
pin $12^{* *} \quad \mathrm{~V}_{12}$	V	-6,4		-6,4		$-7,15$	

* Pins 9 and 10 connected to earth.
** Load $1 \mathrm{k} \Omega$.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6 Application circuit.

ASYNCHRONOUS POWER PACK TRANSFORMER

- For colour Data Graphic Displays
- Mains isolation
- Aluminium foil primary winding and screens

QUICK REFERENCE DATA

E.H.T.	25 kV
leht	max. 1,6 mA
R_{i} (eht)	$1 \mathrm{M} \Omega$
Supply voltage (d.c.)	$+300 \mathrm{~V}$
current ($l_{\text {eht }}=1,5 \mathrm{~mA}$)	400 mA
Voltages of auxiliary windings	$\begin{aligned} & -9 V_{1}+20 V_{1}+31 V_{r}+42 V_{1} \\ & +150 V_{1}+200 V_{1}+225 V \end{aligned}$

APPLICATION

This transformer has been designed for use as a mains isolated supply transformer in colour monitors. It provides the required stabilized auxiliary voltages including an e.h.t. supply with low internal resistance. The transformer is suitable for 90° and 110° deflection systems using 25 kV e.h.t. It is intended for use in conjunction with:

- mains filter choke AT4043/55;
- mains transformer TS561/2;
- line driver transformer AT4043/87;
and for 110° tubes:
- deflection unit AT1870; AT1860 and AT1850;
- line choke AT4043/53;
- linearity control unit AT4042/08A;
- line driver transformer AT4043/87 (if separate drive of line output stage is required);
and for 90° tubes:
- deflection unit AT1235/00;
- line choke AT4043/53;
- linearity control unit AT4042/04A;

DESCRIPTION

The magnetic circuit of the transformer comprises two Ferroxcube U-cores screwed together. The primary winding of aluminium foil with screens and the e.h.t. winding with incorporated diodes are moulded in flame retarding polyester.
The device is provided with two securing M3 studs. External circuit connection is made to connecting pins, positioned as indicated in Fig. 1, enabling the unit to be soldered directly into a printed-wiring board (Fig. 3).

MECHANICAL DATA

Dimensions in mm

Outlines

Fig. 1 Transformer AT2076/60.

Fig. 2 Plug for connection to e.h.t.

Mass $\quad 530 \mathrm{~g}$
Solderability $\quad \max .240^{\circ} \mathrm{C}$, max. $2,5 \mathrm{~s}$

Mounting

The transformer may be mounted on either a printed-wiring board or on a metal chassis. Two securing studs (M3) are provided. For mounting on a printed-wiring board, a washer of 20 mm outer diameter has to be used; the tightening torque on the printed-wiring board is $500+100 \mathrm{mNm}$. The fit of the connecting pins and the studs in a printed-wiring grid with a pitch of $2,54 \mathrm{~mm}$ is illustrated in Fig. 3. Whether the transformer is board or chassis mounted, the core must be earthed.

Fig. 3 Hole pattern for mounting on a printed-wiring board (solder side).

Temperature

The ambient temperature in the set should not exceed $+65^{\circ} \mathrm{C}$ under worst conditions, i.e. taking into account:

- maximum output power;
- maximum supply voltage;
- low atmospheric pressure (at high altitudes) implying bad cooling by convection;
- high ambient temperature (up to $45^{\circ} \mathrm{C}$).

To satisfy this requirement it may be necessary to provide an ample cool air flow around the transformer.

Distances

The following minimum distances between the transformer and neighbouring conductive flat surfaces must be maintained (it should be noted that edges of conductive parts must have a greater distance):
from the e.h.t. coil, radially 10 mm , axially 10 mm .
The transformer, and the leads and components carrying high voltage pulses, should be kept free from metal particles, solder drops etc.

ELECTRICAL DATA (measured in circuit of Fig. 4, mains voltage 220 V)

[^11]

SYNCHRONOUS POWER PACK TRANSFORMER

for colour television

- Piggy-back type
- Mains isolation
- Aluminium foil primary winding and screens

QUICK REFERENCE DATA

E.H.T.	$25 \mathrm{kV} \pm 3 \%$
leht	$\max .1,6 \mathrm{~mA}$
$\mathrm{R}_{\mathrm{i} \text { (eht) }}$	$1 \mathrm{M} \Omega$
V_{X} (see Fig. 3)	$6,25 \mathrm{kV} \pm 3 \%$
Supply	
\quad voltage d.c.	+295 V
\quad current (I eht =1,6 mA)	450 mA
Voltages of auxiliary windings	
\quad r.m.s.	$4,3 \mathrm{~V}, 8 \mathrm{~V}$
d.c.	$7,5 \mathrm{~V}, 18 \mathrm{~V}, 25 \mathrm{~V}, 33 \mathrm{~V}, 150 \mathrm{~V}, 205 \mathrm{~V}$

APPLICATION

This transformer has been designed for use as a mains isolated supply transformer in colour television sets. It provides the required stabilized auxiliary voltages including an e.h.t. supply with low internal resistance. The transformer is suitable for 90° and 110° deflection systems using 25 kV e.h.t. It is intended for use in conjunction with:
-. mains filter choke AT4043/55;

- mains transformer TS561/2;
- current sensing transformer AT4043/46;
- driver transformer AT4043/45;
- supply choke AT4043/52;
and for $110^{\circ} 20,22$ and 26 inch tubes:
- deflection unit AT1870, AT1860, and AT1850;
- line choke AT4043/53;
- linearity control unit AT4042/08A or AT4042/30;
- line driver transformer AT4043/87 (if separate drive of line output stage is required);
and for $90^{\circ} 20$ inch tubes:
- deflection unit AT1235/00;
.-. line choke AT4043/53;
- linearity control unit AT4042/04A or AT4042/90.

DESCRIPTION

The magnetic circuit of the transformer comprises two Ferroxcube U-cores screwed together. The primary winding of aluminium foil with screens and the e.h.t. winding with incorporated diodes are moulded in flame retarding polyester.

The device is provided with two securing M3 studs. External circuit connection is made to connecting pins, positioned as indicated in Fig. 1, enabling the unit to be soldered directly into a printed-wiring board (Fig. 2).

MECHANICAL DATA

Dimensions in mm

Outlines

A

B

Fig. 1 A is plug for connection to $\mathrm{V}_{\mathrm{x}}, \mathrm{B}$ is plug for connection to e.h.t.

Mass $\quad 540 \mathrm{~g}$
Solderability max. $240^{\circ} \mathrm{C}$, max. $2,5 \mathrm{~s}$

Mounting

The transformer may be mounted on either a printed-wiring board or, on a metal chassis. Two securing studs (M3) are provided. For mounting on a printed-wiring board, a washer of 20 mm outer diameter has to be used. Tightening torque on printed-wiring board $500+100 \mathrm{mNm}$. The fit of the connecting pins and the studs in a printed-wiring grid with a pitch of $2,54 \mathrm{~mm}$ is illustrated in Fig. 2.

Fig. 2 Hole pattern for mounting on a printed-wiring board (solder side). Grid hole diameter
$1,3 \pm 0,1 \mathrm{~mm}$.

Whether the transformer is board or chassis mounted, the core must be earthed.

Temperature

The ambient temperature in the set should not exceed $+65^{\circ} \mathrm{C}$ under worst conditions, i.e. taking into account:

- maximum output power;
- maximum supply voltage;
- low atmospheric pressure (at high altitudes) implying bad cooling by convection;
- high ambient temperature (up to $45^{\circ} \mathrm{C}$).

To satisfy this requirement it may be necessary to provide an ample cool air flow around the transformer.

Distances

The following minimum distances between the transformer and neighbouring conductive flat surfaces must be maintained (it should be noted that edges of conductive parts must have a greater distance):
from the e.h.t. coil, radially 10 mm , axially 10 mm .
The transformer, and the leads and components carrying high voltage pulses, should be kept free from metal particles, solder drops etc.

ELECTRICAL DATA (measured in circuit of Fig. 3, mains voltage 220 V)

E.H.T. supply	$l_{\text {eht }}$ e.h.t. R_{i} (eht)	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{kV} \\ & \mathrm{M} \Omega \end{aligned}$	$\begin{gathered} 0,15 \\ 25,2 \end{gathered}$	1,0	$\begin{array}{r} 1,6 \\ 23,7 \end{array}$
Power supply		V	297		292
	\{ Iaverage	mA	230		450
V_{0} prim		V	150		150,5
Supply transistor (BU208A)	$V^{\text {CEM }}$	V	1250		1260
	+ $\mathrm{I}_{\text {CM }}$	A	2,8		3,1
Flyback time		$\mu \mathrm{s}$	14,8		15,0
V_{x}		kV	6,25		-
Auxiliary windings (typical value):		v	8,0 (730 mA)		
drive winding	V_{15-17} (r.m.s.)	V	4,3	(1 A)	
Voltages after rectification, pins 10 and 11 to earth:			33		
field time base	V_{8}	V		$(325 \mathrm{~mA})$	
line time base	V_{9}	V	150	$(125 \mathrm{~mA})$	
	V_{12}	V	7,5	$(1000 \mathrm{~mA})$	
video output	V_{13}	V	205	$(10 \mathrm{~mA})$	
audio output	V_{14}	V	24,6	$(500 \mathrm{~mA})$	
audio output	V_{16}	V	17,8	$(530 \mathrm{~mA})$	

Note: The power pack is capable of supplying 45 W extra output power if required, e.g. higher audio output power from pin 14.

[^12]

Fig. 3.

MINIATURE DIODE-SPLIT LINE OUTPUT TRANSFORMER

- For 90° colour TV and colour monitors
- Three-layer e.h.t. coil, focus tap for hi-bi
- Aluminium foil primary winding
- Simplified synchronous power pack system
- Raster correction free

QUICK REFERENCE DATA

For transistor line output stages; 90° deflection angle
leht
E.H.T.
$\mathrm{R}_{\mathrm{i} \text { (eht) }}$
I_{p-p} deflection
Supply voltage (V_{B})
Supply current (${ }_{\text {average }}$)
Auxiliary voltages

0 mA	$0,6 \mathrm{~mA}$
$23,0 \mathrm{kV}$	$21,2 \mathrm{kV}$

$3,2 \mathrm{~A}$	$2,6 \mathrm{M} \Omega$	
111 V		$3,12 \mathrm{~A}$
350 mA		$109,6 \mathrm{~V}$
		460 mA

7,9 V(r.m.s.), $\quad-500 \mathrm{~V}(p-p), \quad-420 \mathrm{~V}(\mathrm{p}-\mathrm{p})$,
$-210 \mathrm{~V}(\mathrm{p}-\mathrm{p}), \quad-124 \mathrm{~V}(\mathrm{p}-\mathrm{p}), \quad-14 \mathrm{~V}(\mathrm{p}-\mathrm{p})$,
$+28 V(p-p), \quad+210 V(p-p), \quad+440 V(p-p)$

APPLICATION

This transformer has been designed to provide the required scanning amplitude for 90° colour picture tubes in transistor or gate turn-off thyristor equipped television receivers presenting 625 lines at 50 fields per second (CCIR) or 525 lines at 60 fields per second (USA). The transformer may also be used in colour monitors.
It is intended for use in conjunction with:

- deflection unit AT1206/20, AT1216/20 or AT1236/20,
- input choke AT4043/81;
- driver transformer AT4043/82;
- sensing transformer AT4043/46;
- line output transistor BU508A;
- screened e.h.t. cable, length 1 m; catalogue number 3122137 63370;
- focus cable, length 31 cm ; catalogue number 312213100732.

Note: Types AT2076/80 and AT2076/80A differ only in manufacturing technique; apart from this the transformers are identical.

DESCRIPTION

The magnetic circuit of the transformer comprises 2 Ferroxcube U-cores, screwed together. The primary winding of aluminium foil and the secondary windings are situated on one leg of the core. The primary winding together with its e.h.t. winding are moulded in flame retarding polyester, meeting the selfextinguishing requirements of IEC 65, para. 14.4 and UL492, para. 280-SE1. The transformer has 2 M3 screw-studs for mounting. External circuit connection is made to connecting pins, positioned as indicated in Fig. 1, enabling the unit to be soldered directly into a printed-wiring board (Fig. 2).

MECHANICAL DATA
Dimensions in mm

Outlines

Fig. 1.

Mass
 325 g

Solderability in accordance with IEC 68, test T

Mounting

The transformer may be mounted on either a printed-wiring board or, under certain conditions, on a metal chassis. Two securing studs (M3) are provided. For mounting on a printed-wiring board a washer of 20 mm outer diameter has to be used; the tightening torque on the printed-wiring board is $500+100 \mathrm{mNm}$. The fit of the connecting pins and the studs in a printed-wiring grid with a pitch of $2,54 \mathrm{~mm}$ is illustrated in Fig. 2.

Fig. 2 Hole pattern for mounting on a printed-wiring board (solder side).

Whether the transformer is board or chassis mounted, the core must be earthed.

Temperature

The operating temperature of the e.h.t. coil should not exceed $+85^{\circ} \mathrm{C}$ under worst conditions, i.e. taking into account:

- over-voltage on the coils;
- low atmospheric pressure (at high altitudes) implying bad cooling by convection;
- high ambient temperature (up to $45^{\circ} \mathrm{C}$).

To satisfy this requirement it is recommended to provide sufficient flow of cool air around the transformer.

Distances

The following minimum distances between the transformer and neighbouring conductive flat surfaces must be maintained:

From the e.h.t. coil radially, 10 mm
From the e.h.t. coil axially, 10 mm
Sharp edges of conductive parts must have greater distances than given above.
The transformer, leads and components carrying high voltage pulses, should be kept free from metal particles, solder drops, etc.

ELECTRICAL DATA with 90° COLOUR PICTURE TUBES

Above measurements using circuit of Fig. 3.

Fig. 3 Application circuit.

MINIATURE DIODE-SPLIT LINE OUTPUT TRANSFORMER

- For 90° and 110° colour TV and colour monitors
- Three-layer e.h.t. coil, focus tap for hi-bi
- Aluminium foil primary winding
- Reduced dimensions, reduced mass

QUICK REFERENCE DATA

For transistor line output stages
leht
E.H.T.
R_{i} (eht)
I_{p-p} deflection (incl. 6\% overscan)
Supply voltage ($\mathrm{V}_{\mathrm{B}}{ }^{\prime}$)
Supply current (laverage)
Voltages of primary windings*
Voltages of auxiliary windings

110° deflection angle	90° deflection angle
max. 1,5 mA	max. 1 mA
25 kV	25 kV
1,6 M Ω	2,9 M Ω
5,3 A	2,85 A
150 V	148,1 V
466 mA	299 mA
$\begin{aligned} & +98 V_{p^{\prime}}+530 V_{p^{\prime}} \\ & +960 V_{p^{\prime}}+1060 V_{p} \end{aligned}$	$\begin{aligned} & +100 V_{p^{\prime}}+5 i 4 V_{p^{\prime}}+930 V_{p} \\ & +1030 V_{p,}+119 V_{p} \end{aligned}$
$\begin{aligned} & -290 v_{p,-230} v_{p,}-148 v_{p} \\ & +62 v_{p^{\prime}}+105 v_{p} \\ & \text { picture tube } \end{aligned}$	$\begin{aligned} & -270 v_{p^{\prime}}-222 v_{p^{\prime}}-141 v_{p} \\ & +60 v_{p}+105 v_{p} \end{aligned}$ e heater voltage

APPLICATION

This transformer has been designed to provide the required scanning amplitude for 110° and 90° colour picture tubes in transistor or gate turn-off thyristor equipped television receivers presenting 625 lines at 50 fields per second (CCIR) or 525 lines at 60 fields per second (USA). The transformer may also be used in colour monitors and monochrome monitors at 17 kV e.h.t.
It is intended for use in conjunction with:

- deflection unit
- bridge coil
- linearity control unit
- line output transistor

110° deflection angle	90° deflection angle
AT1870, AT1860, AT1850	AT1235/00, AT1235/40
AT4043/68	AT4043/68
AT4042/08A, AT4042/30	AT4042/04A, AT4042/90
BU508A	BU508A

- screened e.h.t. cable, length 1 m; catalogue number 312213763370.
- focus cable, length 31 cm ; catalogue number 312213100732.

Note: Types AT2076/81 and AT2076/81A differ only in manufacturing technique; apart from this the transformers are identical.

DESCRIPTION

The magnetic circuit of the transformer comprises 2 Ferroxcube U-cores, screwed together. The primary winding of aluminium foil and the secondary windings are situated on one leg of the core. The primary winding together with its e.h.t. winding are moulded in flame retarding polyester, meeting the selfextinguishing requirements of IEC65, para. 14.4 and UL492, para. 280-SE1. The transformer has 2 M3 screw-studs for mounting. External circuit connection is made to connecting pins, positioned as indicated in Fig. 1, enabling the unit to be soldered directly into a printed-wiring board (Fig. 2).

[^13]MECHANICAL DATA
Outlines

e.h.t. cable

focus cable
Fig. 1.
Mass $\quad 325 \mathrm{~g}$
Solderability in accordance with IEC68, test T

Mounting

The transformer may be mounted on either a printed-wiring board or, under certain conditions, on a metal chassis. Two securing studs (M3) are provided. For mounting on a printed-wiring board a washer of 20 mm outer diameter has to be used; the tightening torque on the printed-wiring board is $500+100 \mathrm{mNm}$. The fit of the connecting pins and the studs in a printed-wiring grid with a pitch of $2,54 \mathrm{~mm}$ is illustrated in Fig. 2.

Fig. 2 Hole pattern for mounting on a printed-wiring board (solder side).

Whether the transformer is board or chassis mounted, the core must be earthed.

Temperature

The operating temperature of the e.h.t. coil should not exceed $+85^{\circ} \mathrm{C}$ under worst conditions, i.e. taking into account:

- over-voltage on the coils;
- low atmospheric pressure (at high altitudes) implying bad cooling by convection;
- high ambient temperature (up to $45^{\circ} \mathrm{C}$).

To satisfy this requirement it is recommended to provide sufficient flow of cool air around the transformer.

Distances

The following minimum distances between the transformer and neighbouring conductive flat surfaces must be maintained:
From the e.h.t. coil radially, 10 mm
From the e.h.t. coil axially, 10 mm
Sharp edges of conductive parts must have greater distances than given above.
The transformer, leads and components carrying high voltage pulses, should be kept free from metal particles, solder drops, etc.

ELECTRICAL DATA with 110° COLOUR PICTURE TUBES

E.H.T. supply	$l_{\text {eht }}$ e.h.t. $\mathrm{R}_{\mathrm{i} \text { (eht) }}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{kV} \\ & \mathrm{M} \Omega \end{aligned}$	$\begin{aligned} & 0,03 \\ & 25,0 \\ & 1,6 \end{aligned}$	$\begin{aligned} & 1 \\ & 23,4 \\ & 1,6 \end{aligned}$	$\begin{aligned} & 1,5 \\ & 22,6 \\ & 1,6 \end{aligned}$
Power supply	V_{B}	V	157,8	157,8	157,8
	$V_{B}{ }^{\prime}$	V	150,2	145,7	143,3
	$l_{\text {average }}$	mA	242	393	466
Output transistor	$V_{\text {CEM }}$	V	1240	1220	1200
	+ ICEM	A	3,6	3,7	3,7
Deflection	$\mathrm{I}_{\mathrm{p} \text {-p }}$	A	5,3	5,1	5,0
	tflyback	$\mu \mathrm{s}$	11,4	-	-
	Overscan	\%	6	-	-
$\mathrm{V}_{\text {focus }}$		kV	8,1	7,9	7,8
Auxiliary windings: picture tube heater voltage V_{3-1} (r.m.s.) peak voltages at		V	8,3	8,0	7,8
pin 2	V_{2}	V	-290		
pin 6	V_{6}	V	-148		
pin 4	V_{4}	V	+62		
pin 5	V_{5}	V	-230		
pin 8	V_{8}	V	+ 105		
pin 9	V9*	V	+98		
pin 14	$\mathrm{V}_{14}{ }^{*}$	V	+530		
pin 17	$\mathrm{V}_{17}{ }^{*}$	V	+960		
pin 16	$\mathrm{V}_{16}{ }^{*}$	V	+ 1060		

Above measurements using circuits of Figs $3,4 a$ and $4 b$.
An alternative 3-diode modulator circuit is shown in Fig. 4c.

[^14]

Fig. 3 Circuit diagram of transformer, and e.h.t., focus voltage and $\mathrm{V}_{\mathrm{g} 2}$ circuits.

Fig. 4a Diode modulator with split tuning.

Fig. 4b Diode modulator with tap on transformer.
(1) Transformer stray capacitance.

Fig. 4c Three-diode modulator circuit.

ELECTRICAL DATA with 90° COLOUR PICTURE TUBES

			$\begin{aligned} & \text { Figs } 3 \\ & V_{B}=1 \end{aligned}$	$\begin{aligned} & \text { nd } 5 \mathrm{a} \\ & 54,5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { Figs } 3 \\ & \mathrm{~V}_{\mathrm{B}}=1 \end{aligned}$	$\begin{aligned} & d 5 b \\ & 4,3 \mathrm{~V} \end{aligned}$
E.H.T. supply	$l_{\text {eht }}$ e.h.t. $R_{i(e h t)}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{kV} \\ & \mathrm{M} \Omega \end{aligned}$	$\begin{aligned} & 0,03 \\ & 25,0 \\ & \quad 2, \end{aligned}$	$\begin{aligned} & 1 \\ & 22,1 \end{aligned}$	$\begin{aligned} & 0,03 \\ & 25,0 \end{aligned}$	$\begin{aligned} & 1 \\ & 22,0 \end{aligned}$
Power supply	$\left\{\begin{array}{l} \mathrm{V}_{\mathrm{B}^{\prime}} \\ \mathrm{I}_{\text {average }} \end{array}\right.$	V	$\begin{aligned} & 151,5 \\ & 173 \end{aligned}$	148,1 299	130,0	$\begin{aligned} & 126,1 \\ & 389 \end{aligned}$
Output transistor	$\left\{\begin{array}{l} V_{\text {CEM }} \\ +I_{\text {CEM }} \end{array}\right.$	V	1220 2,0	1150 2,2	2,4	995 2,6
Deflection	$\left\{\begin{array}{l} I_{\mathrm{p}-\mathrm{p}} \\ \mathrm{t}_{\text {flyback }} \\ \text { Overscan } \end{array}\right.$	A $\mu \mathrm{S}$ $\%$	2,90 11,45 6	2,78 7,0	2,92 11,45 6	2,89 7,0
$\mathrm{V}_{\text {focus }}$		kV	8,45	7,40	8,6	7,65
Auxiliary windings: picture tube heater voltage V_{3-1} (r.m.s.) peak voltages at		V	8,11		8,15	
pin 2	V_{2}	V	-270		-274	
pin 6	v_{6}	V	-141		-144	
pin 4	V_{4}	V	+60		+61	
pin 5	V_{5}	V	-222		-225	
pin 8	V_{8}	V	+ 105		+ 105	
pin 9	V9*	V	+ 100		+ 102	
pin 14	$V_{14}{ }^{*}$	V	+ 514		+ 520	
pin 15	$V_{15}{ }^{*}$	V	+ 1190		+ 1200	
pin 16	$V_{16}{ }^{*}$	V	+1030		+ 1040	
pin 17	$V_{17}{ }^{*}$	V	+930		+940	

Above measurements using circuits of Figs 3,5a and 5b.

[^15]

Fig. 5a Diode modulator, $\mathrm{V}_{\mathrm{B}^{\prime}}=150 \mathrm{~V}$.

Fig. 5b Diode modulator, $\mathrm{V}_{\mathrm{B}^{\prime}}=130 \mathrm{~V}$.

UNIVERSAL DIODE-SPLIT LINE OUTPUT TRANSFORMER

- For monochrome Data Graphic Displays
- Three-layer e.h.t. coil
- Aluminium foil primary winding
- Piggy-back type

QUICK REFERENCE DATA

For transistor line output stages, deflection angle 110°
le.h.t.
E.H.T. at $I_{B}=0 \mathrm{~mA}$
R_{i} e.h.t.)
Flyback time
Line scan frequency range
Primary voltages

Auxiliary voltages

landscape

APPLICATION

This transformer has been designed to provide the required scanning amplitude and e.h.t. for 110° monochrome data graphic display tubes, at line scan frequencies of 15 to 70 kHz in both landscape and portrait scan mode. A choice can be made from different flyback times.
The transformer is intended for use in conjunction with:

- deflection unit AT1039 series at line scan frequencies of 15 to 70 kHz (portrait scan mode) or of 15 to 50 kHz (landscape scan mode);
- line output transistor BUW12A;
- linearity control unit AT4042/08A or AT4042/33A
- screened e.h.t. cable, length 1 m; catalogue number 312213763370.

DESCRIPTION

The magnetic circuit of the transformer comprises 2 Ferroxcube U-cores, screwed together. The primary winding of aluminium foil and the secondary windings are situated on one leg of the core. The transformer is moulded in flame retarding polyester, meeting the self-extinguishing requirements of IEC 65, para. 14.4 and UL492, para. 280-SE1. The transformer has 2 M3 screw-studs for mounting. External circuit connection is made to connecting pins, positioned as indicated in Fig. 1, enabling the unit to be soldered directly into a printed-wiring board (Fig. 3).

MECHANICAL DATA

Outlines

Fig. 1 Line output transformer AT2076/84.

Fig. 2 E.H.T. cable 312213763370.

Mass
approx. 325 g
Solderability in accordance with IEC 68-2-20, test Ta.

Mounting

The transformer may be mounted on either a printed-wiring board or, under certain conditions, on a metal chassis. Two securing studs (M3) are provided. For mounting on a printed-wiring board a washer of 20 mm outer diameter has to be used; the tightening torque on the printed-wiring board is
$500+100 \mathrm{mNm}$. The fit of the connecting pins and the studs in a printed-wiring grid with a pitch of $2,54 \mathrm{~mm}$ is illustrated in Fig. 3.
Whether the transformer is board or chassis mounted, the core must be earthed.

Fig. 3 Hole pattern for mounting on a printed-wiring board (solder side).

Temperature

The operating temperature of the e.h.t. coil should not exceed $+65^{\circ} \mathrm{C}$ under worst conditions, i.e. taking into account:

- over-voltage on the coils;
- low atmospheric pressure (at high altitudes) implying bad cooling by convection;
- high ambient temperature (up to $45^{\circ} \mathrm{C}$).

To satisfy this requirement it is recommended to provide sufficient flow of cool air around the transformer.

Distances

The following minimum distances between the transformer and neighbouring conductive flat surfaces must be maintained:

From the e.h.t. coil radially, 10 mm .
From the e.h.t. coil axially, 10 mm .
Sharp edges of conductive parts must have greater distances than given above.
The transformer, leads and components carrying high voltage pulses, should be kept free from metal particles, solder drops etc.

ELECTRICAL DATA (see also Figs 4 and 5)
Landscape scan mode

Line scan frequency range	15 to 50 kHz					
	line deflection coils parallel connected			line deflection coils series connected		
Taps of primary winding to be used	13/17	14/17	15/17	15/18	13/17	14/17
Flyback time	4,0 $\mu \mathrm{s}$	$4,8 \mu \mathrm{~s}$	5,9 $\mu \mathrm{s}$	7,0 $\mu \mathrm{s}$	8,0 $\mu \mathrm{s}$	9,0 $\mu \mathrm{s}$
Flyback capacitor (C1)	7,5 nF	10 nF	18 nF	7,5 nF	10 nF	15 nF
Deflection current	8,4 A(p-p)	8,4 A(p-p)	8,4 A(p-p)	4,2 A(p-p)	4,2 A(p-p)	4,2 A(p-p)
Deflection voltage	730 V (p-p)	630 V (p-p)	540 V (p-p)	800 V (p-p)	730 V (p-p)	$630 \mathrm{~V}(\mathrm{p}-\mathrm{p})$

Portrait scan mode

Line scan frequency range

15 to 70 kHz

line deflection coils parallel connected			line deflection coils series connected		
13/17	14/17	15/17	15/18	13/17	14/17
3,1 $\mu \mathrm{s}$	4,2 $\mu \mathrm{s}$	$4,9 \mu \mathrm{~s}$	5,9 $\mu \mathrm{s}$	6,6 $\mu \mathrm{s}$	7,9 $\mu \mathrm{s}$
3,3 nF	6,8 nF	10 nF	4,7 nF	5,6 nF	10 nF
6,2 A(p-p)	6,2 A(p-p)	6,2 A (p-p)	3,1 A(p-p)	3,1 A(p-p)	3,1 A (p-p)
$730 \mathrm{~V}_{(p-p)}$	$630 \mathrm{~V}_{(p-p)}$	$540 \mathrm{~V}(\mathrm{p}-\mathrm{p})$	$800 \mathrm{~V}(\mathrm{p}-\mathrm{p})$	730 V (p-p)	$630 \mathrm{~V}_{(p-p)}$

Primary voltages (peak-to-peak values)
Pins 13/14

$$
+94 \mathrm{~V}
$$

Pins 13/15 + 188 V
Pins 13/16 +540 V
Pins 13/17 +730 V
Pins 13/18 +990 V

Auxiliary voltages (peak values)

Pins $5 / 8$	heater voltage
Pin 1	+55 V (video supply)
Pin 2	$-150 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{g} 1}\right)$
Pin 3	+24 V (field time base)
Pin 10	-85 V
Pin 11	+85 V

$\mathrm{V}_{\mathrm{g} 2}$-circuit supply should be taken from pin 17 or 18 by means of peak rectification.
Note: For detailed information see Technical Publication 115.

Fig. 5.

Fig. 4.

DIODE-SPLIT-BOX LINE OUTPUT TRANSFORMER

- For 90° colour TV with single switch power pack system ($S^{2} P^{2}$)
- Three-layer e.h.t. coil
- Aluminium foil primary winding
- Incorporated potentiometers for focusing and V_{g} adjustment
- Mains insulation

QUICK REFERENCE DATA

For transistor line output stages; 90° deflection angle

leht	0 mA
E.H.T.	23 kV
$\mathrm{R}_{\mathrm{i} \text { (eht) }}$	$\leqslant 2,4 \mathrm{M} \Omega$
$\mathrm{I}_{\mathrm{p}-\mathrm{p} \text { deflection }}$	$3,0 \mathrm{~A}$
Supply voltage $\left(\mathrm{V}_{\mathrm{B}}\right)$	112 V
Supply current at $\mathrm{l}_{\text {eht }}=0,6 \mathrm{~mA}$	460 mA
Focusing voltage control	5,1 to $7,6 \mathrm{kV}$
Grid 2 voltage adjustment	230 to 830 V
Auxiliary voltages	$6,3 \mathrm{~V}$ (heater supply)
	200 V (video supply)
	26 V (frame)
	16 V (small signal)

APPLICATION

This transformer has been designed to provide the required scanning amplitude for 90° colour picture tubes in transistor equipped television receivers presenting 625 lines at 50 fields per second (CCIR) or 525 lines at 60 fields per second (USA). The transformer may also be used in colour monitors.
It is intended for use in conjunction with:

- input choke AT4043/81;
- driver transformer AT4043/82;
- sensing transformer AT4043/46;
- mains transformer TS561/2 or TS521B;
- mains filter choke AT4043/90;
- linearity corrector AT4042/90 (for narrow neck tubes), or AT4042/91 (for mini neck tubes);
- screened e.h.t. cable, length 1 m ; catalogue number 3122137 63370;
- focus cable, length 31 cm ; catalogue number 312213100732.

DESCRIPTION

The magnetic circuit of the transformer comprises 2 Ferroxcube cores, glued together. The primary winding of aluminium foil and the secondary windings are situated on one leg of the core. The primary winding together with its e.h.t. winding and e.h.t. diodes are encapsulated with epoxy resin in a premoulded case. The transformer has potentiometers for focusing control and $\mathrm{V}_{\mathrm{g} 2}$ adjustment. The transformer case has 3 holes that enables fixing to a printed-wiring board with self-tapping screws. External circuit connection is made to connecting pins, positioned as indicated in Fig. 1, enabling the unit to be soldered directly into a printed-wiring board (Fig. 4).

MECHANICAL DATA
Outlines

7295104.1

Fig. 1 Line output transformer AT2077/80.

Fig. 2 Focus cable 312213100732.

Fig. 3 E.H.T. cable 312213763370.

Mass	approx. 375 g
Solderability	in accordance with IEC 68, test T
Packing	27 transformers per box

Mounting

The transformer may be mounted on a printed-wiring board. It can be secured with 3 self-tapping screws; the tightening torque on the board is $500+300 \mathrm{mNm}$. The fit of the connecting pins in a printed-wiring grid with a pitch of $2,54 \mathrm{~mm}$ is illustrated in Fig. 4. The transformer core must be earthed via the earth tag (see Fig. 1).

Fig. 4 Hole pattern for mounting on a printed-wiring board (solder side).

Temperature

The operating temperature of the e.h.t. coil should not exceed $+60^{\circ} \mathrm{C}$ under worst conditions, i.e. taking into account:

- over-voltage on the coils;
- Iow atmospheric pressure (at high altitudes) implying bad cooling by convection;
- high ambient temperature (up to $45^{\circ} \mathrm{C}$).

To satisfy this requirement it is recommended to provide sufficient flow of cool air around the transformer.

Distances

The following minimum distances between the transformer and neighbouring conductive flat surfaces must be maintained:

From the e.h.t. coil radially, 10 mm
From the e.h.t. coil axially, 10 mm
Sharp edges of conductive parts must have greater distances than given above.
The transformer leads and components carrying high-voltage pulses, should be kept free from metal particles, solder drops, etc.

ELECTRICAL DATA with 90° colour picture tubes

E.H.T. supply	leht e.h.t. $\mathrm{R}_{\mathrm{i} \text { (eht) }}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{kV} \\ & \mathrm{M} \Omega \end{aligned}$	$\begin{aligned} & 0 \\ & 23,0 \end{aligned}$	$\begin{aligned} & 0,1 \\ & 22,4 \\ & 2,4 \end{aligned}$	$\begin{aligned} & 0,6 \\ & 21,2 \end{aligned}$
Power supply	$\left\{\begin{array}{l} \mathrm{V}_{\mathrm{B}} \\ \mathrm{I}_{\text {average }} \end{array}\right.$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 112 \\ & 350 \end{aligned}$		$\begin{aligned} & 108,5 \\ & 460 \end{aligned}$
Output transistor	$\left\{\begin{array}{c} V_{\text {CEM }} \\ +I_{\text {CEM }} \end{array}\right.$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & 1285 \\ & 2,55 \end{aligned}$		$\begin{aligned} & 1270 \\ & 2,60 \end{aligned}$
Deflection	deflection current flyback time overscan	$\begin{aligned} & \mathrm{A}_{(\mathrm{p}-\mathrm{p})} \\ & \mu \mathrm{s} \\ & \% \end{aligned}$	$\begin{aligned} & 3,0 \\ & 11,95 \\ & 6 \end{aligned}$		$\begin{aligned} & 2,88 \\ & 11,95 \end{aligned}$
Focusing voltage	min. max.	$\begin{aligned} & \mathrm{kV} \\ & \mathrm{kV} \end{aligned}$	$\begin{aligned} & \hline 5,1 \\ & 7,6 \\ & \hline \end{aligned}$		
Grid 2 voltage ($\mathrm{V}_{\mathrm{g} 2}$)	min. max.	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & 230 \\ & 830 \\ & \hline \end{aligned}$		
Auxiliary voltages*	heater voltage pin 2 pin 3 pin 4 pin 5 pin 8 pin 9 pin 12	$V_{\text {(r.m.s.) }}$ $V_{(p-p)}$ $V_{(p-p)}$ $V_{(p-p)}$ $V(p-p)$ $V(p-p)$ $V(p-p)$ $V(p-p)$	$\begin{aligned} & 8,0 \\ & +190 \\ & -208 \\ & +27,5 \\ & -138 \\ & +845 \\ & +920 \\ & +70 \end{aligned}$		7,7

[^16]

Fig. 5 Application circuit.

DIODE-SPLIT-BOX LINE OUTPUT TRANSFORMER

- For 90° and 110° colour TV and colour monitors with separate power supply
- Three-layer e.h.t. coil
- Aluminium foil primary winding
- Incorporated potentiometers for focusing and $\mathrm{V}_{\mathrm{g} 2}$ adjustment

QUICK REFERENCE DATA

For transistor line output stages; 90° and 110° deflection angle	
$l_{\text {eht }}$	0 mA
E.H.T.	25 kV
$\mathrm{R}_{\mathrm{i} \text { (eht) }}$	$\leqslant 1,8 \mathrm{M} \Omega$
I_{p-p} deflection (6\% overscan)	4,4 A
Supply voltage (V_{B})	152 V
Voltages of primary windings (peak-to-peak values)*	+ 110 V , + 524 V , + 960 V , + 1064 V
Voltages of auxiliary windings (peak-to-peak values)	$\begin{aligned} & -283 \mathrm{~V},-226 \mathrm{~V},-149 \mathrm{~V},+59 \mathrm{~V}, \\ & +104 \mathrm{~V} \end{aligned}$
heater voltage (r.m.s. value)	8,2 V

APPLICATION

This transformer has been designed to provide the required scanning amplitude for 90° and 110° colour picture tubes in transistor equipped television receivers presenting 625 lines at 50 fields per second (CCIR) or 525 lines at 60 fields per second (USA). The transformer may also be used in colour monitors.
It is intended for use in conjunction with:

- linearity corrector AT4042/90 or /08A;
- bridge coil AT4043/100;
- screened e.h.t. cable, length 1 m ; catalogue number 312213763370 , or unscreened e.h.t. cable, length 59 cm ; catalogue number 3122137 63260;
- focus cable, length 31 cm ; catalogue number 312213100732 ;
$-\mathrm{V}_{\mathrm{g} 2}$ cable, length 30 cm ; catalogue number 312213764570.

DESCRIPTION

The magnetic circuit of the transformer comprises 2 Ferroxcube cores, glued together. The primary winding of aluminium foil and the secondary windings are situated on one leg of the core. The primary winding together with its e.h.t. winding and e.h.t. diodes are encapsulated with epoxy resin in a premoulded case. The transformer has potentiometers for focusing control and $\mathrm{V}_{\mathrm{g} 2}$ adjustment. The transformer case has 3 holes that enables fixing to a printed-wiring board with self-tapping screws. External circuit connection is made to connecting pins, positioned as indicated in Fig. 1, enabling the unit to be soldered directly into a printed-wiring board (Fig. 4).

[^17]MECHANICAL DATA Outlines

Fig. 1 Line output transformer AT2077/81.

Fig. 2 Focus cable 312213100732.

Fig. 3 E.H.T. cable 312213763370.

Mass

Solderability
Packing
approx. 375 g
in accordance with IEC 68, test T
27 transformers per box

Mounting

The transformer may be mounted on a printed-wiring board. It can be secured with 3 self-tapping screws; the tightening torque on the board is $500+300 \mathrm{mNm}$. The fit of the connecting pins in a printed-wiring grid with a pitch of $2,54 \mathrm{~mm}$ is illustrated in Fig. 4. The transformer core must be earthed via the earth pin (see Fig. 1).

Fig. 4 Hole pattern for mounting on a printed-wiring board (solder side).

Temperature

The operating temperature of the e.h.t. coil should not exceed $+60^{\circ} \mathrm{C}$ under worst conditions, i.e. taking into account:

- over-voltage on the coils;
- low atmospheric pressure (at high altitudes) implying bad cooling by convection;
- high ambient temperature (up to $45^{\circ} \mathrm{C}$).

To satisfy this requirement it is recommended to provide sufficient flow of cool air around the transformer.

Distances

The following minimum distances between the transformer and neighbouring conductive flat surfaces must be maintained:

From the e.h.t. coil radially, 10 mm
From the e.h.t. coil axially, 10 mm
Sharp edges of conductive parts must have greater distances than given above.
The transformer leads and components carrying high-voltage pulses, should be kept free from metal particles, solder drops, etc.
\rightarrow ELECTRICAL DATA; for use with 110° colour picture tubes, see Fig. 5.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline E.H.T. supply \& \(l_{\text {eht }}\) e.h.t. \(\mathrm{R}_{\mathrm{i} \text { (eht) }}\) \& \begin{tabular}{l}
mA \\
kV \\
\(\mathrm{M} \Omega\)
\end{tabular} \& \[
\begin{aligned}
\& \hline 0 \\
\& 25,6
\end{aligned}
\] \& \[
\begin{aligned}
\& 0,5 \\
\& 24,7
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 1 \\
\& 23,8
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 1,5 \\
\& 23,7
\end{aligned}
\] \\
\hline Power supply \& \[
\left\{\begin{array}{l}
v_{B} \\
v_{B^{\prime}} \\
I_{B}
\end{array}\right.
\] \& \[
\begin{aligned}
\& \hline \mathrm{V} \\
\& \mathrm{~V} \\
\& \mathrm{~mA} \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 152 \\
\& 148 \\
\& 250 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 152 \\
\& 146,9 \\
\& 330 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 152 \\
\& 144,6 \\
\& 435 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 152 \\
\& 142,6 \\
\& 458 \\
\& \hline
\end{aligned}
\] \\
\hline Output transistor \& \[
\left\{\begin{array}{l}
v_{\text {CEM }} \\
+I_{\text {CEM }}
\end{array}\right.
\] \& \[
\begin{aligned}
\& \mathrm{V} \\
\& \mathrm{~A}
\end{aligned}
\] \& \[
\begin{aligned}
\& 1200 \\
\& 3,2
\end{aligned}
\] \& \[
\begin{aligned}
\& 1185 \\
\& 3,3 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 1180 \\
\& 3,4 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 1175 \\
\& 3,5 \\
\& \hline
\end{aligned}
\] \\
\hline Deflection \& deflection current flyback time overscan \& \[
\begin{aligned}
\& \mathrm{A}_{(\mathrm{p}-\mathrm{p})} \\
\& \mu \mathrm{s} \\
\& \%
\end{aligned}
\] \& \[
\begin{array}{|l|}
\hline 4,4 \\
11,55 \\
6 \\
\hline
\end{array}
\] \& \[
\begin{aligned}
\& 4,35 \\
\& 11,55
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 4,3 \\
\& 11,55
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 4,25 \\
\& 11,75
\end{aligned}
\] \\
\hline Focusing voltage \& min. max. \& \[
\begin{aligned}
\& \mathrm{kV} \\
\& \mathrm{kV}
\end{aligned}
\] \& \multicolumn{4}{|l|}{\[
\begin{aligned}
\& 0,24 \times \text { e.h.t. } \\
\& 0,36 \times \text { e.h.t. }
\end{aligned}
\]} \\
\hline Grid 2 voltage (\(\mathrm{V}_{\mathrm{g} 2}\)) \& min. max. \& \[
\begin{aligned}
\& \mathrm{V} \\
\& \mathrm{~V}
\end{aligned}
\] \& \multicolumn{4}{|l|}{\[
\begin{array}{|l}
\hline 0,014 \times \text { e.h.t. } \\
0,04 \times \text { e.h.t. } \\
\hline
\end{array}
\]} \\
\hline Primary voltages* \& \begin{tabular}{l}
pin 9 \\
pin 14 \\
pin 16 \\
pin 17
\end{tabular} \& \[
\begin{aligned}
\& V_{(p-p)} \\
\& V_{(p-p)} \\
\& V_{(p-p)} \\
\& V_{(p-p)}
\end{aligned}
\] \& \[
\begin{aligned}
\& +110 \\
\& +524 \\
\& +1064 \\
\& +960
\end{aligned}
\] \& \& \& \\
\hline Auxiliary voltages \& heater voltage \(\left(\mathrm{V}_{1-3}\right)\)
pin 1
pin 2
pin 4
pin 5
pin 7
pin 8
pin 12 \& \begin{tabular}{l}
\(V\) (r.m.s.) \\
\(V_{(p-p)}\) \\
\(V(p-p)\) \\
\(V_{(p-p)}\) \\
\(V_{(p-p)}\) \\
\(V_{\text {(d.c.) }}\) \\
\(V_{(p-p)}\) \\
\(V_{(p-p)}\)
\end{tabular} \& \[
\begin{aligned}
\& 8,2 \\
\& +30 \\
\& -283 \\
\& +59 \\
\& -226 \\
\& 1265 \\
\& +104 \\
\& -149
\end{aligned}
\] \& 8,0

1240 \& 7,9

1215 \& 7,8

1200

\hline
\end{tabular}

[^18]

Fig. 5 Application circuit.
\rightarrow ELECTRICAL DATA; for use with $51 \mathrm{~cm}, 90^{\circ}$ Flat Square colour picture tube, see Fig. 6.

E.H.T. supply	$l_{\text {eht }}$ e.h.t. R_{i} (eht)	$\begin{aligned} & \hline \mathrm{mA} \\ & \mathrm{kV} \\ & \mathrm{M} \Omega \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 25,4 \end{aligned}$	$\begin{aligned} & \hline 0,5 \\ & 24,3 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 23,8 \end{aligned}$
Power supply	$\left\{\begin{array}{l}\mathrm{V}_{\mathrm{B}} \\ \mathrm{V}_{\mathrm{B}^{\prime}} \\ \mathrm{I}_{\mathrm{B}}\end{array}\right.$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 148,5 \\ & 145 \\ & 230 \end{aligned}$	$\begin{aligned} & 148,2 \\ & 142,9 \\ & 315 \end{aligned}$	$\begin{aligned} & 148,0 \\ & 140,9 \\ & 400 \end{aligned}$
Output transistor	$\left\{\begin{array}{l}v_{\text {CEM }} \\ +I_{\text {CEE }}\end{array}\right.$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & 1200 \\ & 2,38 \end{aligned}$	$\begin{aligned} & 1180 \\ & 2,43 \end{aligned}$	$\begin{aligned} & 1190 \\ & 2,5 \end{aligned}$
Deflection	$\left\{\begin{array}{l} \text { deflection current } \\ \text { flyback time } \\ \text { overscan } \end{array}\right.$	$\begin{aligned} & \mathrm{A}_{(\mathrm{p}-\mathrm{p})} \\ & \mu \mathrm{s} \\ & \% \end{aligned}$	$\begin{aligned} & 3,05 \\ & 10,6 \\ & 6 \end{aligned}$	$\begin{aligned} & 3,0 \\ & 10,7 \end{aligned}$	$\begin{aligned} & 2,95 \\ & 10,8 \end{aligned}$
Focusing voltage	\min. max.	$\begin{aligned} & \mathrm{kV} \\ & \mathrm{kV} \end{aligned}$	$\begin{aligned} & 0,24 \times \text { e.h.t. } \\ & 0,36 \times \text { e.h.t. } \end{aligned}$		
Grid 2 voltage ($\mathrm{V}_{\mathrm{g} 2}$)	\min. max.	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0,014 \times \text { e.h.t. } \\ & 0,04 \times \text { e.h.t. } \end{aligned}$		
Auxiliary voltages	pin 9* (video) pin 5** heater voltage pin 4 pin 12 pin 2 pin 14	$V_{\text {(d.c.) }}$ $V_{\text {(r.m.s.) }}$ $V_{(p-p)}$ $V_{(p-p)}$ $V_{(p-p)}$ $V_{(p-p)}$	$\begin{aligned} & 230 \\ & 55 \\ & 8,2 \\ & +59 \\ & -149 \\ & -283 \\ & -253 \end{aligned}$	$\begin{aligned} & 226 \\ & 54 \\ & 8,0 \end{aligned}$	$\begin{aligned} & 223 \\ & 53 \\ & 7,9 \end{aligned}$

* Values apply to voltages after rectification.
** Field time base; approx. 9 W .

Fig. 6 Application circuit.

DIODE-SPLIT-BOX LINE OUTPUT TRANSFORMER

- For 110° deflection colour TV with twin switch power pack system (TSP ${ }^{2}$)
- Three-layer e.h.t. coil, with tap for focusing voltage of 26 to 34% of e.h.t. voltage
- Aluminium foil primary winding
- Incorporated focusing potentiometer
- Main insulation

QUICK REFERENCE DATA

For transistor line output stages; 110° deflection angle

Ieht	0 mA
E.H.T.	25 kV
$R_{\text {i(eht) }}$	$\leqslant 1 \mathrm{M} \Omega$
Ip-p deflection $^{\text {Supply current at leht }=1,1 \mathrm{~mA}}$	$4,3 \mathrm{~A}$
Auxiliary voltages	$850 \mathrm{~mA} \pm 10 \%$
	$8,2 \mathrm{~V}$ (heater supply)
	210 V (video supply)
	26 V (frame)
	12 V (small signal)
	5 V (teletext)
	150 V (scan voltage)

APPLICATION

This transformer has been designed to provide the required scanning amplitude for 110° colour picture tubes in transistor equipped television receivers presenting 625 lines at 50 fields per second (CCIR) or 525 lines at 60 fields per second (USA). The transformer may also be used in colour monitors.

It is intended for use in conjunction with:

- input choke AT4043/16A;
- driver transformer AT4043/29;
- pulse transformer AT4043/76;
- mains filter choke AT4043/90;
- audio choke AT4043/96;
- screened e.h.t. cable, length 1 m ; catalogue number 3122137 63370;
- focus cable, length 31 cm ; catalogue number 312213100732.

DESCRIPTION

The magnetic circuit of the transformer comprises 2 Ferroxcube cores, glued together. The primary winding of aluminium foil and the secondary windings are situated on one leg of the core. The primary winding together with its e.h.t. winding and e.h.t. diodes are encapsulated with epoxy resin in a premoulded case. The transformer is provided with a focusing control potentiometer. The transformer case has 3 holes that enables fixing to a printed-wiring board with self-tapping screws. External circuit connection is made to connecting pins, positioned as indicated in Fig. 1, enabling the unit to be soldered directly into a printed-wiring board (Fig. 2).

MECHANICAL DATA

Outlines

7295107.1

Fig. 1 Line output transformer AT2077/82.

Fig. 2 Focus cable 312213100732.

7285932
Fig. 3 E.H.T. cable 312213763370.

```
Mass approx. 325 g
Solderability in accordance with IEC 68, test T
Packing
27 transformers per box
```


Mounting

The transformer may be mounted on a printed-wiring board. It can be secured with 3 self-tapping screws; the tightening torque on the board is $500+300 \mathrm{mNm}$. The fit of the connecting pins in a printed-wiring grid with a pitch of $2,54 \mathrm{~mm}$ is illustrated in Fig. 4. The transformer core must be earthed via the earth pin (see Fig. 1).

Fig. 4 Hole pattern for mounting on a printed-wiring board (solder side).

Temperature

The operating temperature of the e.h.t. coil should not exceed $+60^{\circ} \mathrm{C}$ under worst conditions, i.e. taking into account:

- over-voltage on the coils;
- low atmospheric pressure (at high altitudes) implying bad cooling by convection;
- high ambient temperature (up to $45^{\circ} \mathrm{C}$).

To satisfy this requirement it is recommended to provide sufficient flow of cool air around the transformer.

Distances

The following minimum distances between the transformer and neighbouring conductive flat surfaces must be maintained:

From the e.h.t. coil radially, 10 mm
From the e.h.t. coil axially, 10 mm
Sharp edges of conductive parts must have greater distances than given above.
The transformer leads and components carrying high-voltage pulses, should be kept free from metal particles, solder drops, etc.

ELECTRICAL DATA with 110° colour picture tubes

[^19]

LINE OUTPUT TRANSFORMER

"Micro slot"

- For 90° colour TV and colour monitors
- Incorporated potentiometers and cables for focusing and $\mathrm{V}_{\mathrm{g} 2}$ adjustment

QUICK REFERENCE DATA

For transistor line output stages; 90° deflection angle

I eht	$\leqslant 1 \mathrm{~mA}$
E.H.T.	23 kV
$\mathrm{R}_{\mathrm{i} \text { (eht) }}$	$\leqslant 2 \mathrm{M} \Omega$
$\mathrm{I}_{\mathrm{p}-\mathrm{p}}$ deflection	$2,2 \mathrm{~A}$
Supply voltage $\left(\mathrm{V}_{\mathrm{B}}\right)$	112 V
Supply current at $\mathrm{I}_{\text {eht }}=0,9 \mathrm{~mA}$	480 mA
Focusing voltage control	25 to $34,5 \%$ of E.H.T.
Grid 2 voltage control	110 to 1000 V
Auxiliary voltages	$7,2 \mathrm{~V}$ (r.m.s.) (heater supply)
	+178 V (video supply)
	$+27,2 \mathrm{~V}$ (frame)
	$+13,4 \mathrm{~V}$ (small signal)
	$140 \mathrm{~V}(\mathrm{p}-\mathrm{p})$

APPLICATION

This transformer has been designed to provide the required scanning amplitude for 90° colour picture tubes in transistor equipped television receivers presenting 625 lines at 50 fields per second (CCIR) or 525 lines at 60 fields per second (USA). The transformer may also be used in colour monitors.

DESCRIPTION

The magnetic circuit of the transformer comprises 2 Ferroxcube cores, glued together. The primary winding and the secondary windings are situated on one leg of the core. The primary winding together with its e.h.t. winding and e.h.t. diodes are encapsulated with epoxy resin in a pre-moulded case. The transformer has potentiometers for focusing control and $\mathrm{V}_{\mathrm{g} 2}$ adjustment. External circuit connection is made to connecting pins, positioned as indicated in Fig.1, enabling the unit to be soldered directly into a printed-wiring board.
For mechanized mounting this line output transformer can also be supplied without cables.

MECHANICAL DATA

Outlines

Fig. 1.

Mass approx. 190 g
Solderability in accordance with IEC 68, test Ta
Packing 24 transformers per box

Mounting

For mounting hole pattern see Fig. 2. The transformer core must be earthed via the earth tag (G, Fig. 1).

Fig. 2 Mounting hole pattern (solder side).

MECHANICAL DATA (continued)

Temperature

The operating temperature of the e.h.t. coil should not exceed $+60^{\circ} \mathrm{C}$ under worst conditions, i.e. taking into account:

- over-voltage on the coils;
- low atmospheric pressure (at high altitudes) implying bad cooling by convection;
- high ambient temperature (up to $45^{\circ} \mathrm{C}$).

To satisfy this requirement it is recommended to provide sufficient flow of cool air around the transformer.

Distances

The minimum distance between the e.h.t. coil and neighbouring conductive flat surfaces is 10 mm . Sharp edges of conductive parts must have greater distances.
The transformer leads and components carrying high-voltage pulses, should be kept free from metal particles, solder drops, etc.

ELECTRICAL DATA

E.H.T. supply	$l_{\text {eht }}$ E.H.T. $\mathrm{R}_{\mathbf{i}(\text { eht })}$	$\begin{aligned} & \leqslant 0,9 \mathrm{~mA} \\ & 23 \mathrm{kV} \\ & \leqslant 2 \mathrm{M} \Omega \end{aligned}$
Power supply	$\left\{\begin{array}{l} \mathrm{V}_{\mathrm{B}} \\ \mathrm{I}_{\text {average }} \end{array}\right.$	$\begin{aligned} & 112 \mathrm{~V} \\ & 480 \mathrm{~mA} \end{aligned}$
Output transistor	$\left\{\begin{array}{l} V_{\text {CEM }} \\ +I_{\text {CEM }} \end{array}\right.$	$\begin{aligned} & 970 \mathrm{~V} \\ & 1,9 \mathrm{~A} \end{aligned}$
Deflection	```deflection current (p-p) flyback time line frequency deflection coil inductance```	$\begin{aligned} & 2,2 \mathrm{~A} \\ & 10,9 \mu \mathrm{~s} \\ & 15625 \mathrm{~Hz} \\ & 2,7 \mathrm{mH} \end{aligned}$
Focusing voltage Focusing current	\min. max.	$\begin{aligned} & 25 \% \text { of E.H.T. } \\ & 34,5 \% \text { of E.H.T. } \\ & 120 \mu \mathrm{~A} \end{aligned}$
Grid 2 voltage ($\mathrm{V}_{\mathrm{g} 2}$)	\min. (d.c.) $\max .(d . c$.	$\begin{aligned} & 110 \mathrm{~V} \\ & 1000 \mathrm{~V} \end{aligned}$
Auxiliary voltages	$\begin{aligned} & \operatorname{pin} 3, \mathrm{~V}_{3} \text { (r.m.s.) } \\ & \text { pin } 2, \mathrm{~V}_{2} \text { (d.c.) } \\ & \operatorname{pin} 4, \mathrm{~V}_{4} \text { (d.c.) } \\ & \operatorname{pin} 6, \mathrm{~V}_{6} \text { (d.c.) } \\ & \operatorname{pin} 8, \mathrm{~V}_{8}(\text { p-p) } \end{aligned}$	$\begin{aligned} & 7,2 \mathrm{~V} \text { (heater voltage) } \\ & +178 \mathrm{~V} \text { (video supply) } \\ & +27,2 \mathrm{~V} \text { (frame supply) } \\ & +13,4 \mathrm{~V} \text { (small signal supply) } \\ & 140 \mathrm{~V} \text { (reference pulse) } \end{aligned}$

AT 2079/09

Fig. 3 Application circuit.

LINE OUTPUT TRANSFORMER

"Micro slot"

- For 90° colour TV and colour monitors
- Incorporated potentiometers and cables for focusing and $\mathrm{V}_{\mathrm{g} 2}$ adjustment

QUICK REFERENCE DATA

For transistor line output stages; 90° deflection angle

leht	$\leqslant 1 \mathrm{~mA}$
E.H.T.	$25,5 \mathrm{kV}$
$\mathrm{R}_{\text {i (eht) }}$	$\leqslant 2 \mathrm{M} \Omega$
$\mathrm{I}_{\mathrm{p} \text {-p }}$ deflection	2,6 A
Supply voltage (V_{B})	95 V
Supply current at $\mathrm{I}_{\text {eht }}=0,9 \mathrm{~mA}$	580 mA
Focusing voltage control	26 to $34,5 \%$ of E.H.T.
Grid 2 voltage control	220 to 830 V
Auxiliary voltages	$\begin{aligned} & 6,8 \mathrm{~V} \text { (heater supply) } \\ & +163,2 \mathrm{~V} \text { (video supply) } \\ & +12,7 \mathrm{~V} \\ & +7,3 \mathrm{~V} \end{aligned}$

APPLICATION

This transformer has been designed to provide the required scanning amplitude for 90° colour picture tubes in transistor equipped television receivers presenting 625 lines at 50 fields per second (CCIR) or 525 lines at 60 fields per second (USA). The transformer may also be used in colour monitors.

DESCRIPTION

The magnetic circuit of the transformer comprises 2 Ferroxcube cores, glued together. The primary winding and the secondary windings are situated on one leg of the core. The primary winding together with its e.h.t. winding and e.h.t. diodes are encapsulated with epoxy resin in a pre-moulded case. The transformer has potentiometers for focusing control and $\mathrm{V}_{\mathrm{g} 2}$ adjustment. External circuit connection is made to connecting pins, positioned as indicated in Fig. 1, enabling the unit to be soldered directly into a printed-wiring board.

For mechanized mounting this line output transformer can also be supplied without cables.

Fig. 1.
Mass approx. 210 g

Solderability in accordance with IEC 68, test Ta
Packing 24 transformers per box

Mounting

For mounting hole pattern see Fig. 2. The transformer core must be earthed via the earth tag (G, Fig. 1).

Fig. 2 Mounting hole pattern (solder side).

MECHANICAL DATA (continued)

Temperature

The operating temperature of the e.h.t. coil should not exceed $+60^{\circ} \mathrm{C}$ under worst conditions, i.e. taking into account:

- over-voltage on the coils;
- low atmospheric pressure (at high altitudes) implying bad cooling by convection;
- high ambient temperature (up to $45^{\circ} \mathrm{C}$).

To satisfy this requirement it is recommended to provide sufficient flow of cool air around the transformer.

Distances

The minimum distance between the e.h.t. coil and neighbouring conductive flat surfaces is 10 mm . Sharp edges of conductive parts must have greater distances.
The transformer leads and components carrying high-voltage pulses, should be kept free from metal particles, solder drops, etc.

ELECTRICAL DATA; see application circuit with diode modulator, Fig. 3.

E.H.T supply	$l_{\text {eht }}$ E.H.T. $\mathrm{R}_{\mathrm{i} \text { (eht) }}$	$\begin{aligned} & \leqslant 1 \mathrm{~mA} \\ & 25,5 \mathrm{kV} \\ & \leqslant 2 \mathrm{M} \Omega \end{aligned}$
Power supply	$\left\{\begin{array}{l} v_{B} \\ l_{\text {average }} \end{array}\right.$	$\begin{aligned} & 95 \mathrm{~V} \\ & 580 \mathrm{~mA} \end{aligned}$
Output transistor	$\left\{\begin{array}{l} V_{\text {CEM }} \\ 1+I_{\text {CEM }} \end{array}\right.$	$\begin{aligned} & 820 \mathrm{~V} \\ & 2,4 \mathrm{~A} \end{aligned}$
Deflection	deflection current (p pp) flyback time line frequency deflection coil inductance	$\begin{aligned} & 2,6 \mathrm{~A} \\ & 11,2 \mu \mathrm{~s} \\ & 15625 \mathrm{~Hz} \\ & 2,5 \mathrm{mH} \end{aligned}$
Focusing voltage Focusing current	min. max.	$\begin{aligned} & 26 \% \text { of E.H.T } \\ & 34,5 \% \text { of E.H.T. } \\ & 120 \mu \mathrm{~A} \end{aligned}$
Grid 2 voltage (Vg_{g})	$\begin{aligned} & \min (\text { d.c. }) \\ & \max \text { (d.c.) } \end{aligned}$	$\begin{aligned} & 220 \mathrm{~V} \\ & 830 \mathrm{~V} \end{aligned}$
Auxiliary voltages	pin 8, V_{8} (r.m.s.) $\operatorname{pin} 1, \mathrm{~V}_{1 \mathrm{a}}$ (d.c.) $\operatorname{pin} 2, \mathrm{~V}_{2 \mathrm{a}}$ (d.c.) $\operatorname{pin} 3, V_{3}$ (d.c.)	$\begin{aligned} & 6,8 \mathrm{~V} \text { (heater voltage) } \\ & +163,2 \mathrm{~V} \text { (video supply) } \\ & +12,7 \mathrm{~V} \\ & +7,3 \mathrm{~V} \end{aligned}$

Fig. 3 Application circuit with diode modulator.

ELECTRICAL DATA; see application circuit for 90° flat square picture tube A51EALO0X, Fig. 4.

E.H.T. supply	leht E.H.T. $R_{i(\text { eht })}$	$\begin{aligned} & \leqslant 1 \mathrm{~mA} \\ & 25,5 \mathrm{kV} \\ & \leqslant 2,5 \mathrm{M} \Omega \end{aligned}$
Power supply	V_{B}	116 V
Output transistor	$\left\{\begin{array}{l} V_{\text {CEM }} \\ +I_{\text {CEM }} \end{array}\right.$	$\begin{aligned} & 950 \mathrm{~V} \\ & 2,4 \mathrm{~A} \end{aligned}$
Deflection	$\left\{\begin{array}{l} \text { deflection current (p-p) } \\ \text { flyback time } \\ \text { line frequency } \\ \text { deflection coil inductance } \end{array}\right.$	$\begin{aligned} & 2,85 \mathrm{~A} \\ & 11,8 \mu \mathrm{~s} \\ & 15625 \mathrm{~Hz} \\ & 2,0 \mathrm{mH} \end{aligned}$
Focusing voltage Focusing current	min. max.	$\begin{aligned} & \text { 26\% of E.H.T. } \\ & 34,5 \% \text { of E.H.T. } \\ & 130 \mu \mathrm{~A} \end{aligned}$
Grid 2 voltage ($\mathrm{V}_{\mathrm{g} 2}$)	\min. (d.c.) max. (d.c.)	$\begin{aligned} & 220 \mathrm{~V} \\ & 830 \mathrm{~V} \end{aligned}$
Auxiliary voltages	pin 8, V_{8} (r.m.s.) pin $5, V_{5 a}$ (d.c.)	$6,8 \vee$ (heater voltage) +190 V (video supply)

Fig. 4 Application circuit for 90° flat square picture tube A51EALOOX.

LINE OUTPUT TRANSFORMER

- For Monochrome Data Graphic Displays

QUICK REFERENCE DATA

	used in conjunction with AT1071/03		used in conjunction with AT1074/01	
$l_{\text {eht }}$	$0 \mu \mathrm{~A}$	$100 \mu \mathrm{~A}$	$0 \mu \mathrm{~A}$	$100 \mu \mathrm{~A}$
E.H.T.	14,9 kV	$13,9 \mathrm{kV}$	14,7 kV	$13,6 \mathrm{kV}$
R_{i} (eht)	$10 \mathrm{M} \Omega$		$11 \mathrm{M} \Omega$	
Supply voltage (V_{B})	12 V	12 V	12 V	12 V
Supply current (I_{B})	1725 mA	1825 mA	1700 mA	1800 mA
Deflection current	8,5 A	8,4 A	5,0 A (p-p)	4,95 A (p-p)
Auxiliary voltages	6,3 \vee (r.m.s.), $11 \vee$ (r.m.s.), $66 \vee$ (d.c.), $790 \vee$ (d.c.)			

APPLICATION

This transformer has been designed to provide the required scanning amplitude for 24 cm (9 in) to 31 cm (12 in) 90° monochrome monitor tubes in video display monitors presenting 625 lines at 50 frames per second (CCIR) or 525 lines at 60 frames per second (USA).

It is intended for use in conjunction with the following packages of components:
deflection unit AT1071/03 or AT1071/07;
adjustable linearity control unit AT4036/00A;
line driver transformer AT4043/64;
deflection unit AT1074/01;
adjustable linearity control unit AT4042/26A;
line driver transformer AT4043/56.

DESCRIPTION

The magnetic circuit of the transformer comprises Ferroxcube U and I-cores clamped together with two screws. The primary windings and the auxiliary windings are situated on one leg of the core, the e.h.t. winding and the coupling winding are situated on the other leg. The e.h.t. winding is encapsulated in flame retardent polyester. An e.h.t. rectifier diode is incorporated in the transformer. The whole transformer meets the self-extinguishing and non-dripping properties of the American Underwriters' Laboratories rating mentioned in UL94SE-1.

The transformer is provided with four mounting pins; it can also be screwed to the printed-wiring board. External circuit connection is made to connecting pins, enabling the unit to be soldered directly into a printed-wiring board.

MECHANICAL DATA

Fig. 1 Line output transformer AT2102/02.

MOUNTING

The transformer may be mounted on a printed-wiring board. The fit of the connecting and mounting pins in a printed-wiring grid with a pitch of $2,54 \mathrm{~mm}(0,1 \mathrm{in})$ is illustrated in Fig. 2. The core of the transformer must be earthed.

Fig. 2 Hole pattern for mounting on a printed-wiring board (solder side).

Temperature

The operating temperature of the core and the coils should not exceed $90^{\circ} \mathrm{C}$, under worst conditions, i.e. taking into account:
over-voltage on the windings;
low atmospheric pressure (at high altitudes) implying bad cooling by convection;
high room temperature (up to $45^{\circ} \mathrm{C}$).
To satisfy this requirement it may be desired to provide ample cool air circulation around the transformer.

Distances

The following minimum distances between the transformer and neighbouring conductive flat surfaces must be maintained (in proportion to their sharpness protruding parts must have a greater distance):
a. From the e.h.t. winding, radially 15 mm , axially 10 mm .
b. From the e.h.t. lead 25 mm .

The transformer, and the leads and components carrying high-voltage pulses should be kept free from metal particles, solder drops etc.

ELECTRICAL DATA (see also Figs 3 and 4)

E.H.T. supply	leht E.H.T. R_{i} (eht)	AT2102/02 used in conjunction with AT1071/03		AT2102/02 used in conjunction with AT1074/01	
		$\begin{array}{r} 0 \mu \mathrm{~A} \\ 14,9 \mathrm{kV} \end{array}$	$\begin{array}{r} 100 \mu \mathrm{~A} \\ 13,9 \mathrm{kV} \end{array}$	$\begin{array}{r} 0 \mu \mathrm{~A} \\ 14,7 \mathrm{kV} \end{array}$	$\begin{aligned} & \quad \begin{array}{r} 100 \mu \mathrm{~A} \\ 13,6 \mathrm{kV} \end{array} \end{aligned}$
Power supply	$\begin{aligned} & \mathrm{V}_{\mathrm{B}} \\ & \mathrm{I}_{\mathrm{av}} \end{aligned}$	$\begin{gathered} 12 \mathrm{~V} \\ 1725 \mathrm{~mA} \end{gathered}$	$\begin{gathered} 12 \mathrm{~V} \\ 1825 \mathrm{~mA} \end{gathered}$	$\begin{gathered} 12 \mathrm{~V} \\ 1700 \mathrm{~mA} \end{gathered}$	$\begin{gathered} 12 \mathrm{~V} \\ 1800 \mathrm{~mA} \end{gathered}$
Output transistor	$\begin{aligned} & \mathrm{V}_{\text {CEM }} \\ & \mathrm{I}_{\mathrm{CM}} \end{aligned}$	$\begin{gathered} 144 \mathrm{~V} \\ 6,4 \mathrm{~A} \end{gathered}$	$\begin{gathered} 144 \mathrm{~V} \\ 6,4 \mathrm{~A} \end{gathered}$	$\begin{gathered} 142 \mathrm{~V} \\ 6,2 \mathrm{~A} \end{gathered}$	$\begin{array}{r} 142 \mathrm{~V} \\ 6,2 \mathrm{~A} \end{array}$
Deflection	Current Flyback time Scan variation	$\begin{aligned} & 8,5 \mathrm{~A}(\mathrm{p}-\mathrm{p}) \\ & 9,9 \mu \mathrm{~s} \\ & 1,5 \end{aligned}$	$\begin{aligned} & 8,4 \mathrm{~A}(p-p) \\ & 9,9 \mu \mathrm{~s} \end{aligned}$	$\begin{aligned} & \text { 5,0 A }(p-p) \\ & 10 \mu \mathrm{~s} \end{aligned}$	$\begin{aligned} & 4,95 \mathrm{~A}(\mathrm{p}-\mathrm{p}) \\ & 10 \mu \mathrm{~S} \end{aligned}$

[^20]

Fig. 3 Application circuit for use with deflection units AT1071/03 and AT1071/07.

Fig. 4 Application circuit for use with deflection unit AT1074/01.

LINE OUTPUT TRANSFORMER

- For Monochrome Data Graphic Displays

QUICK REFERENCE DATA

	used in con with AT	junction 1071/03	used in conju with AT107	ction 4/01
leht	$0 \mu \mathrm{~A}$	$100 \mu \mathrm{~A}$	$0 \mu \mathrm{~A}$	$100 \mu \mathrm{~A}$
E.H.T.	$14,9 \mathrm{kV}$	$13,9 \mathrm{kV}$	14,7 kV	$13,6 \mathrm{kV}$
R_{i} (eht)	$10 \mathrm{M} \Omega$		$11 \mathrm{M} \Omega$	
Supply voltage (V_{B})	12 V	12 V	12 V	12 V
Supply current (1_{B})	1725 mA	1825 mA	1700 mA	1800 mA
Deflection current	8,5 A	8,4 A	5,0 A (p-p)	4,95 A (p-p)
Auxiliary voltages	6,3 V (r.m.s.), 11 V (r.m.s.), 66 V (d.c.), 790 V (d.c.)			

APPLICATION

This transformer has been designed to provide the required scanning amplitude for 24 cm (9 in) to 31 cm (12 in) 90° monochrome monitor tubes in video display monitors presenting 625 lines at 50 frames per second (CCIR) or 525 lines at 60 frames per second (USA).

It is intended for use in conjunction with the following packages of components:
deflection unit AT1071/03 or AT1071/07;
adjustable linearity control unit AT4036/00A;
line driver transformer AT4043/64;
deflection unit AT1074/01;
adjustable linearity control unịt AT4042/26A;
line driver transformer AT4043/56.

DESCRIPTION

The magnetic circuit of the transformer comprises Ferroxcube U and I-cores clamped together with two screws. The primary windings and the auxiliary windings are situated on one leg of the core, the e.h.t. winding and the coupling winding are situated on the other leg. The e.h.t. winding is encapsulated in flame retardent polyester. An e.h.t. rectifier diode is incorporated in the transformer. The whole transformer meets the self-extinguishing and non-dripping properties of the American Underwriters' Laboratories rating mentioned in UL94SE-1.
The transformer is provided with four mounting pins; it can also be screwed to the printed-wiring board. External circuit connection is made to connecting pins, enabling the unit to be soldered directly into a printed-wiring board.

MECHANICAL DATA
Dimensions in mm

MOUNTING

The transformer may be mounted on a printed-wiring board. The fit of the connecting and mounting pins in a printed-wiring grid with a pitch of $2,54 \mathrm{~mm}(0,1 \mathrm{in})$ is illustrated in Fig. 2. The core of the transformer must be earthed.

Fig. 2 Hole pattern for mounting on a printed-wiring board
 (solder side).

Temperature

The operating temperature of the core and the coils should not exceed $90^{\circ} \mathrm{C}$, under worst conditions, i.e. taking into account:
over-voltage on the windings;
low atmospheric pressure (at high altitudes) implying bad cooling by convection;
high room temperature (up to $45^{\circ} \mathrm{C}$).
To satisfy this requirement it may be desired to provide ample cool air circulation around the transformer.

Distances

The following minimum distances between the transformer and neighbouring conductive flat surfaces must be maintained (in proportion to their sharpness protruding parts must have a greater distance):
a. From the e.h.t. winding, radially 15 mm , axially 10 mm .
b. From the e.h.t. lead 25 mm .

The transformer, and the leads and components carrying high-voltage pulses should be kept free from metal particles, solder drops etc.

ELECTRICAL DATA (see also Figs 3 and 4)

E.H.T. supply	leht E.H.T. R_{i} (eht)	AT2102/02A used in conjunction with AT1071/03		AT2102/02A used in conjunction with AT1074/01	
		$\begin{array}{rr} 0 \mu \mathrm{~A} & \\ 14,9 \mathrm{kV} & \\ & 10 \end{array}$	$\begin{gathered} 100 \mu \mathrm{~A} \\ 13,9 \mathrm{kV} \end{gathered}$	$\begin{array}{r} 0 \mu \mathrm{~A} \\ 14,7 \mathrm{kV} \end{array}$	$\begin{gathered} 100 \mu \mathrm{~A} \\ 13,6 \mathrm{kV} \end{gathered}$
Power supply	$\begin{aligned} & \mathrm{V}_{\mathrm{B}} \\ & \mathrm{I}_{\mathrm{av}} \end{aligned}$	$\begin{gathered} 12 \mathrm{~V} \\ 1725 \mathrm{~mA} \end{gathered}$	$\begin{gathered} 12 \mathrm{~V} \\ 1825 \mathrm{~mA} \end{gathered}$	$\begin{gathered} 12 \mathrm{~V} \\ 1700 \mathrm{~mA} \end{gathered}$	$\begin{gathered} 12 \mathrm{~V} \\ 1800 \mathrm{~mA} \end{gathered}$
Output transistor	$V_{\text {CEM }}$ ICM	$\begin{array}{r} 144 \mathrm{~V} \\ 6,4 \mathrm{~A} \end{array}$	$\begin{array}{r} 144 \mathrm{~V} \\ 6,4 \mathrm{~A} \end{array}$	$\begin{array}{r} 142 \mathrm{~V} \\ 6,2 \mathrm{~A} \end{array}$	$\begin{array}{r} 142 \mathrm{~V} \\ 6,2 \mathrm{~A} \end{array}$
Deflection	Current Flyback time Scan variation	$\begin{aligned} & 8,5 A(p-p) \\ & 9,9 \mu s \\ & \quad 1,5 \end{aligned}$	$\begin{aligned} & 8,4 \text { A (p-p) } \\ & 9,9 \mu \mathrm{~s} \end{aligned}$	$\begin{aligned} & \text { 5,0 A (p-p) } \\ & 10 \mu \mathrm{~s} \end{aligned}$	$\begin{aligned} & 4,95 \mathrm{~A}(\mathrm{p}-\mathrm{p}) \\ & 10 \mu \mathrm{~s} \end{aligned}$

[^21]6,3 \vee (r.m.s.)

11 V (r.m.s.)
790 V (d.c.)
66 V (d.c.)

Fig. 3 Application circuit for use with deflection units AT1071/03 and AT1071/07.

Fig. 4 Application circuit for use with deflection unit AT1074/01.

LINE OUTPUT TRANSFORMER

- For Monochrome Data Graphic Displays

QUICK REFERENCE DATA

$l_{\text {eht }}$	$0 \mu \mathrm{~A}$	$100 \mu \mathrm{~A}$
E.H.T.	17 kV	$16,35 \mathrm{kV}$
$\mathrm{R}_{\mathrm{i} \text { (eht) }}$		$6,5 \mathrm{M} \Omega$
Supply voltage (V_{B})	24 V	24 V
Supply current (I_{B})	820 mA	910 mA
Deflection current	$4,6 \mathrm{~A}(\mathrm{p}-\mathrm{p})$	$4,6 \mathrm{~A}(\mathrm{p}-\mathrm{p})$
Auxiliary voltages	$6,3 \mathrm{~V}$ (r.m.s.), 25 V (d.c.), 70 V (d.c.), 800 V (d.c.)	

APPLICATION

This transformer has been designed to provide the required scanning amplitude for 31 cm (12 in) to 38 cm (15 in) 110° monochrome monitor tubes with a neck diameter of 28 mm in video display monitors presenting 625 lines at 50 frames per second (CCIR) or 525 lines at 60 frames per second (USA).
It is intended for use in conjunction with:
deflection unit AT1038/40A;
adjustable linearity control unit AT4042/08A;
line driver transformer AT4043/59;
e.h.t. cable with a length of 450 mm , catalogue number 311110834160 or UL approved e.h.t.
cable, catalogue number 311110834740.

DESCRIPTION

The magnetic circuit of the transformer comprises Ferroxcube U and I-cores, clamped together with two screws. The primary windings, the auxiliary windings and the e.h.t. winding are situated on one leg of the core, and are encapsulated in flame retardent polyester. An e.h.t. rectifier diode is incorporated in the transformer. The whole transformer meets the self-extinguishing and non-dripping properties of the American Underwriters' Laboratories rating mentioned in UL94SE-1.
The transformer is provided with four mounting pins; it can also be screwed to the printed-wiring board. External circuit connection is made to connecting pins, enabling the unit to be soldered directly into a printed-wiring board.

MECHANICAL DATA
Dimensions in mm

Fig. 1a Line output transformer AT2102/04C.

Fig. 1b E.H.T. contact (transformer side).

MOUNTING

The transformer may be mounted on a printedwiring board. The fit of the connecting and mounting pins in a printed-wiring grid with a pitch of $2,54 \mathrm{~mm}(0,1 \mathrm{in})$ is illustrated in Fig. 2. The core of the transformer must be earthed.

Fig. 2 Hole pattern for mounting on a printed-wiring board (solder side).

Line output transformer

Temperature

The operating temperature of the core and the coils should not exceed $90^{\circ} \mathrm{C}$, under worst conditions, i.e. taking into account:
over-voltage on the windings;
low atmospheric pressure (at high altitudes) implying bad cooling by convection;
high room temperature (up to $45^{\circ} \mathrm{C}$).
To satisfy this requirement it may be desired to provide ample cool air circulation around the transformer.

Distances

The following minimum distances between the transformer and neighbouring conductive flat surfaces must be maintained (in proportion to their sharpness protruding parts must have a greater distance):
a. From the e.h.t. winding, radially 15 mm , axially 10 mm .
b. From the e.h.t. lead 25 mm .

The transformer, and the leads and components carrying high-voltage pulses should be kept free from metal particles, solder drops etc.

ELECTRICAL DATA (see also Fig. 3)

E.H.T. supply	$\begin{aligned} & l_{\text {eht }} \\ & \text { E.H.T. } \\ & R_{\text {i }} \text { (eht) } \end{aligned}$	$\begin{array}{r} 0 \mu \mathrm{~A} \\ 17 \mathrm{kV} \end{array}$	$\begin{aligned} & 100 \mu \mathrm{~A} \\ & 16,35 \mathrm{kV} \\ & \mathrm{~V} \Omega \end{aligned}$
Power supply	$\begin{aligned} & \mathrm{V}_{\mathrm{B}} \\ & \mathrm{I}_{\mathrm{av}} \end{aligned}$	$\begin{gathered} 24 \mathrm{~V} \\ 820 \mathrm{~mA} \end{gathered}$	$\begin{gathered} 24 \mathrm{~V} \\ 910 \mathrm{~mA} \end{gathered}$
Output transistor	$V_{\text {CEM }}$ ICM	$\begin{array}{r} 440 \mathrm{~V} \\ 3,6 \mathrm{~A} \end{array}$	$\begin{array}{r} 440 \mathrm{~V} \\ 3,6 \mathrm{~A} \end{array}$
Deflection	Current Flyback time Overscan variation	$\begin{aligned} & \text { 4,6 A (p-p) } \\ & 10,5 \mu \mathrm{~s} \end{aligned}$	$\begin{aligned} & \text { 4,6 A (p-p) } \\ & 10,5 \mu \mathrm{~s} \end{aligned}$

[^22]6,3 V (r.m.s.)
25 V (d.c.)
70 V (d.c.)
800 V (d.c.)

Fig. 3 Application circuit.

LINE OUTPUT TRANSFORMER

- For Monochrome Data Graphic Displays

QUICK REFERENCE DATA

leht	$0 \mu \mathrm{~A}$	$100 \mu \mathrm{~A}$
E.H.T.	$17,0 \mathrm{kV}$	$16,2 \mathrm{kV}$
R_{i} (eht)	$8 \mathrm{M} \Omega$	
Supply voltage (V_{B})	24 V	
Supply current (I_{B})	955 mA	
Deflection current	4,4 A (p-p)	4,35 A (p-p)
Auxiliary voltages	6,4 V (r.m.s.), 87,6 V (d.c.), 905 V (d	-144 V (d.c.)

APPLICATION

This transformer has been designed to provide the required scanning amplitude for 31 cm (12 in) to 38 cm (15 in) 110° CRTs with a neck diameter of 28 mm in video display monitors.
The line frequency is set to $21,3 \mathrm{kHz}$ at a fly-back time of $8,0 \mu \mathrm{~s}$. With a small modification the line frequency can be reduced to 19 kHz . A frame frequency of 50 or 60 Hz is possible without modification.
The transformer is intended for use in conjunction with:
deflection unit AT1038/40A;
adjustable linearity control unit AT4042/08A;
line driver transformer AT4043/59;
e.h.t. cable with a length of 450 mm (catalogue number 311110034160 or UL approved e.h.t. cable, catalogue number 311110834740.

Note

The transformer was originally developed for data display of 80 characters per row, 28 rows per page, having a 7×9 character matrix in a 9×14 character cell; dynamic focusing was applied in the line direction to improve picture performance.

DESCRIPTION

The magnetic circuit of the transformer comprises two Ferroxcube U-cores, clamped together with two screws. The primary windings, the auxiliary windings and e.h.t. winding are situated on one leg of the core, and are encapsulated in flame retardent polyester. An e.h.t. rectifier diode is incorporated in the transformer. The whole transformer meets the self-extinguishing and non-dripping properties of the American Underwriters' Laboratories rating mentioned in UL94SE-1.

The transformer is provided with four mounting pins; it can also be screwed to the printed-wiring board. External circuit connection is made to connecting pins, enabling the unit to be soldered directly into a printed-wiring board.

MECHANICAL DATA
Dimensions in mm

Fig. 1b E.H.T. contact (transformer side).

MOUNTING

The transformer may be mounted on a printedwiring board. The fit of the connecting and mounting pins in a printed-wiring grid with a pitch of $2,54 \mathrm{~mm}(0,1 \mathrm{in}$) is illustrated in Fig. 2. The core of the transformer must be earthed.

Fig. 2 Hole pattern for mounting on a printed-wiring board (solder side).

Temperature

The operating temperature of the core and the coils should not exceed $90^{\circ} \mathrm{C}$, under worst conditions, i.e. taking into account:
over-voltage on the windings;
low atmospheric pressure (at high altitudes) implying bad cooling by convection;
high room temperature (up to $45^{\circ} \mathrm{C}$).
To satisfy this requirement it may be desired to provide ample cool air circulation around the transformer.

Distances

The following minimum distances between the transformer and neighbouring conductive flat surfaces must be maintained (in proportion to their sharpness protruding parts must have a greater distance):
a. From the e.h.t. winding, radially 15 mm , axially 10 mm .
b. In general such that no corona occurs at 10% over-voltage of e.h.t., at an air pressure of 60 kPa and a relative humidity of 85%.
The transformer, and the leads and components carrying high-voltage pulses should be kept free from metal particles, solder drops etc.

ELECTRICAL DATA (see also Fig. 3)

E.H.T. supply	leht $0 \mu \mathrm{~A}$ E.H.T. $17,0 \mathrm{kV}$ $\mathrm{R}_{\mathrm{i} \text { (eht) }}$	$\int_{\mathrm{M} \Omega}$$100 \mu \mathrm{~A}$ $16,2 \mathrm{kV}$
Power supply	$\begin{aligned} & v_{B} \\ & I_{B} \end{aligned}$	$\begin{gathered} 24 \mathrm{~V} \\ 955 \mathrm{~mA} \end{gathered}$
Output transistor	$\mathrm{V}_{\text {CEM }}$ I_{CM}	$\begin{array}{r} 720 \mathrm{~V} \\ 3,3 \mathrm{~A} \end{array}$
Deflection	Current Flyback time Overscan variation	$\begin{aligned} & 4,4 \mathrm{~A}(p-p) \\ & 8,0 \mu \mathrm{~s}) \\ & 0,5 \% \end{aligned}$

Auxiliary windings
connecting pins 1 and 2 ; load 300 mA
connecting pin 12; load 40 mA
connecting pin 7 (pin 6 connected to earth); load $0,7 \mathrm{~mA}$ load 0,3 mA

6,4 V (r.m.s.) $\pm 5,5 \%$
87,6 \vee (d.c.)
905 V (d.c.) $\pm 5,5 \%$
$-144 \vee($ d.c. $) \pm 5,5 \%$

Fig. 3 Application circuit.

TESTS AND REQUIREMENTS

The line output transformer withstands the following tests.

$\begin{gathered} \text { IEC } 68-2 \\ \text { test } \\ \text { method } \end{gathered}$	name of test	procedure (quick reference)
Ua1	Tensile strength of terminations	
Ub (method 1)	Bending of terminations	
Fc	Vibration	Frequency range $10-55-10 \mathrm{~Hz}$, amplitude $0,35 \mathrm{~mm}, 3$ direc tions, 30 min per direction
Eb	Bump	250 bumps in 5 directions, acceleration 25 g .
Ea	Shock	Half-sine pulse shape, $11 \mathrm{~ms}, 490 \mathrm{~m} / \mathrm{s}^{2}, 6$ directions, 3 shocks per direction.
Ta (method 1)	Soldering	Solder temp. $230{ }^{\circ} \mathrm{C}$, dwell time 2 s.
Bb	Dry heat	96 h at $+100^{\circ} \mathrm{C}$.
Db	Damp heat, cyclic	21 cycles of 24 h at $+40^{\circ} \mathrm{C}$, R.H. 95%.
Ab	Cold	96 h at $-25^{\circ} \mathrm{C}$.
M	Low air pressure	$+55^{\circ} \mathrm{C}, 60 \mathrm{kPa}, 30 \mathrm{~min}$.
Ca	Damp heat, steady state	21 days.
Na	Rapid change of temperature	5 cycles of $-25^{\circ} \mathrm{C} /+100^{\circ} \mathrm{C}$.
	Flammability of transformer (IEC65-14.4); power test	$10 \mathrm{~W}, 20 \mathrm{~W}, 30 \mathrm{~W}$ and 40 W successively, for 2 min until encapsulation of e.h.t. coil cracks.
	Flammability of materials (UL94, class V1)	Line output transformer is self-extinguishing.

LINE OUTPUT TRANSFORMER

- For monochrome TV and inexpensive monitors

QUICK REFERENCE DATA

For transistor line output stages; 90° deflection angle
$l_{\text {eht }} \quad \leqslant 0,2 \mathrm{~mA}$
E.H.T. at $\mathrm{I}_{\mathrm{B}}=0 \mu \mathrm{~A} \quad 11,7 \mathrm{kV}$
$\mathrm{R}_{\mathrm{i} \text { (eht) }} \quad \leqslant 7 \mathrm{M} \Omega$
Flyback time
11,1 $\mu \mathrm{s}$
Line scan frequency
15625 Hz
Deflection coil inductance
$0,45 \mathrm{mH}$
Auxiliary voltages
$+25 \mathrm{~V},+110 \mathrm{~V},+84,5 \mathrm{~V}$

APPLICATION

This transformer has been designed to provide the required line scanning amplitude and e.h.t. for 90° monochrome picture tubes, presenting 625 lines at 50 fields per second (CCIR) or 525 lines at 60 fields per second (USA).
It is intended to be used in conjunction with e.h.t. cable, length 300 mm , catalogue number 3111108 87080, or the UL approved type, catalogue number 312213763920.

DESCRIPTION

The magnetic circuit of the transformer comprises two Ferroxcube U-cores. The primary windings, the auxiliary windings and e.h.t. winding are situated on one leg of the core, and are encapsulated in flame retardant polyester. An e.h.t. rectifier diode is incorporated in the transformer. The whole transformer meets the self-extinguishing requirements of IEC 65, para. 14.4.
External circuit connection is made to connecting pins, enabling the unit to be soldered directly into a printed-wiring board.

MECHANICAL DATA

Dimensions in mm

Fig. 1.

MOUNTING

The transformer may be mounted on a printed-wiring board. The fit of the connecting pins in a printed-wiring grid with a pitch of $2,54 \mathrm{~mm}(0,1 \mathrm{in})$ is illustrated in Fig. 2. The core of the transformer must be earthed.

Fig. 2 Hole pattern for mounting on a printed-wiring board (solder side).

Temperature

The operating temperature of the core and the coils should not exceed $90^{\circ} \mathrm{C}$, under worst conditions, i.e. taking into account:

- over-voltage on the windings;
- low atmospheric pressure (at high altitudes) implying bad cooling by convection;
- high room temperature (up to $60^{\circ} \mathrm{C}$).

To satisfy this requirement it may be desired to provide ample cool air circulation around the transformer.

Distances

The following minimum distances between the transformer and neighbouring conductive flat surfaces must be maintained (in proportion to their sharpness protruding parts must have a greater distance):
from the e.h.t. winding, radially 15 mm , axially 10 mm .
The transformer, and the leads and components carrying high-voltage pulses should be kept free from metal particles, solder drops etc.
The bending radius of the e.h.t. cable must be $\geqslant 12,5 \mathrm{~mm}$.

ELECTRICAL DATA (see also Fig. 3)

E.H.T. at $I_{B}=0 \mu A$
R_{i} (eht)
leht
Supply voltage (V_{B})
Supply current
Output transistor voltage, $\mathrm{V}_{\text {CEM }}$
Deflection current
Flyback time
Deflection coil inductance
Line scan frequency
Auxiliary voltages connecting pin $2, \mathrm{~V}_{2}$ connecting pin $6, \mathrm{~V}_{6}$ connecting pin $9, \mathrm{~V}_{9}$
$11,7 \mathrm{kV}$
$\max .7 \mathrm{M} \Omega$
max. 0,2 mA
11 V
640 mA
$200 \mathrm{~V}(p-p)$
2,95 A(p-p)
$11,1 \mu \mathrm{~s}$
$0,45 \mathrm{mH}$
15625 Hz
$+25 \mathrm{~V}$
$+84,5 \mathrm{~V}$
$+110 \mathrm{~V}$

Fig. 3 Application circuit.

LINE OUTPUT TRANSFORMERS

- For Monochrome Data Graphic Displays

QUICK REFERENCE DATA

For transistor line output stages; 90° deflection angle

Ieht
E.H.T. at $\mathrm{I}_{\mathrm{B}}=0 \mu \mathrm{~A}$
$\mathrm{R}_{\mathrm{i}(\mathrm{eht})}$
Flyback time
Line scan frequency range
Deflection coil inductance

AT2140/16	AT2140/17
max. $100 \mu \mathrm{~A}$	
$12,5 \mathrm{kV}$	$12,5 \mathrm{kV}$
$10 \mathrm{M} \Omega$	
$8 \mu \mathrm{~s}$	$6 \mu \mathrm{~s}$
15 to 23 kHz	22 to 30 kHz
$475 \mu \mathrm{H}$	
+ 60 V (d.c.)	d.c.), + 500 V

APPLICATION

These transformers have been designed to provide the required line scanning amplitude and e.h.t. for 90° monochrome data graphic display tubes, 20 mm neck diameter.
The transformers are intended for use in conjunction with:

- deflection unit AT1077 series,
- linearity control unit AT4042/08A,
- amplitude control unit AT4044/39D,
- e.h.t. cable, length 260 mm , catálogue number 311110834490 , or the UL approved type, catalogue number 312213763920 ,
- dynamic focusing transformer AT4043/67.

DESCRIPTION

The magnetic circuit of the transformer comprises two Ferroxcube U-cores. The primary windings, the auxiliary windings and e.h.t. winding are situated on one leg of the core, and are encapsulated in flame retardant polyester. An e.h.t. rectifier diode is incorporated in the transformer. The whole transformer meets the self-extinguishing and non-dripping properties of the American Underwriters' Laboratories rating mentioned in UL94SE-1.
External circuit connection is made to connecting pins, enabling the unit to be soldered directly into a printed-wiring board.

Fig. 1.

MOUNTING

The transformer may be mounted on a printedwiring board. The fit of the connecting pins in a printed-wiring grid with a pitch of $2,54 \mathrm{~mm}$ ($0,1 \mathrm{in}$) is illustrated in Fig. 2.
The core of the transformer must be earthed.

Fig. 2 Hole pattern for mounting on a printed-wiring board (solder side).

Temperature

The operating temperature of the core and the coils should not exceed $90^{\circ} \mathrm{C}$, under worst conditions, i.e. taking into account:
over-voltage on the windings;
low atmospheric pressure (at high altitudes) implying bad cooling by convection;
high room temperature (up to $45^{\circ} \mathrm{C}$).
To satisfy this requirement it may be desired to provide ample cool air circulation around the transformer.

Distances

The following minimum distances between the transformer and neighbouring conductive flat surfaces must be maintained (in proportion to their sharpness protruding parts must have a greater distance):
from the e.h.t. winding, radially 15 mm , axially 10 mm .
The transformer, and the leads and components carrying high-voltage pulses should be kept free from metal particles, solder drops etc.
The bending radius of the e.h.t. cable must be $\geqslant 7,5 \mathrm{~mm}$.
ELECTRICAL DATA (see also Fig. 3)
AT2140/16 and AT2140/17 used in conjunction with AT1077/05, AT4042/08A and AT4044/39D.

Line scan frequency range*
connecting pin 3
connecting pin 5
E.H.T. at $I_{B}=0 \mu \mathrm{~A}$
R_{i} (eht)
leht
Supply voltage (V_{B})
Input power
Deflection current
Deflection voltage
Flyback time
Flyback capacitor
Auxiliary voltages
connecting pin 1
connecting pin 7
connecting pin 10

AT2140/16	AT2140/17
15 to 20 kHz	22 to 26 kHz
20 to 23 kHz	26 to 30 kHz
$12,5 \mathrm{kV}$	$12,5 \mathrm{kV}$
$10 \mathrm{M} \Omega$	$10 \mathrm{M} \Omega$
$\max .100 \mu \mathrm{~A}$	$\max .100 \mu \mathrm{~A}$
11 to $14,5 \mathrm{~V}$	11 to $14,5 \mathrm{~V}$
7 W	10 W
$2,9 \mathrm{~A}$	$2,9 \mathrm{~A}$
300 V (p-p)	$450 \mathrm{~V}(\mathrm{p}-\mathrm{p})$
$8 \mu \mathrm{~s}$	$6 \mu \mathrm{~s}$
$8,2 \mathrm{nF}$	$5,6 \mathrm{nF}$
+500 V	+500 V
+60 V	+60 V
-60 V	-60 V

For further information see Technical Publication "A low-cost monochrome data and graphics display unit (C6E)".

[^23]

LINE OUTPUT TRANSFORMER

- For Monochrome Data Graphic Displays

QUICK REFERENCE DATA

APPLICATION

This transformer has been designed to provide the required scanning amplitude for 24 cm (9 in) to 31 cm (12 in) 90° monochrome monitor tubes in video display monitors presenting 625 lines at 50 frames per second (CCIR) or 525 lines at 60 frames per second (USA).

It is intended for use in conjunction with deflection unit AT1077/.., linearity control unit AT4034/05A or linearity corrector AT4042/46, and an e.h.t. cable, length 260 mm , catalogue number 3111100 32250, or the UL approved type, catalogue number 312213763920.

DESCRIPTION

The magnetic circuit of the transformer comprises two Ferroxcube U-cores. The primary windings, the auxiliary windings and e.h.t. winding are situated on one leg of the core, and are encapsulated in flame retardent polyester. An e.h.t. rectifier diode is incorporated in the transformer. The whole transformer meets the self-extinguishing and non-dripping properties of the American Underwriters' Laboratories rating mentioned in UL94SE-1.
External circuit connection is made to connecting pins, enabling the unit to be soldered directly into a printed-wiring board.

MECHANICAL DATA

Dimensions in mm

Fig. 1.

MOUNTING

The transformer may be mounted on a printed wiring board. The fit of the connecting pins in a printed-wiring grid with a pitch of $2,54 \mathrm{~mm}$ ($0,1 \mathrm{in}$) is illustrated in Fig. 2.
The core of the transformer must be earthed.

Fig. 2 Hole pattern for mounting on a printed-wiring board (solder side).

Temperature

The operating temperature of the core and the coils should not exceed $90^{\circ} \mathrm{C}$, under worst conditions, i.e. taking into account:
over-voltage on the windings;
low atmospheric pressure (at high altitudes) implying bad cooling by convection;
high room temperature (up to $45^{\circ} \mathrm{C}$).
To satisfy this requirement it may be desired to provide ample cool air circulation around the transformer.

Distances

The following minimum distances between the transformer and neighbouring conductive flat surfaces must be maintained (in proportion to their sharpness protruding parts must have a greater distance):
from the e.h.t. winding, radially 15 mm , axially 10 mm .
The transformer, and the leads and components carrying high-voltage pulses should be kept free from metal particles, solder drops etc.
The bending radius of the e.h.t. cable must be $\geqslant 7,5 \mathrm{~mm}$.
ELECTRICAL DATA (see also Fig. 3)
AT2140/16B used in conjunction with AT1077/05 and AT4042/46.

E.H.T. supply	$l_{\text {eht }}$ E.H.T. R_{i} (eht)	$\begin{array}{r} 0 \mu \mathrm{~A} \\ 10,8 \mathrm{kV} \end{array}$	$\int_{M \Omega} \quad \begin{array}{r} 100 \mu \mathrm{~A} \\ 10,4 \mathrm{kV} \end{array}$
Power supply	$\begin{aligned} & \mathrm{v}_{\mathrm{B}} \\ & \mathrm{I}_{\mathrm{B}} \end{aligned}$	$390 \mathrm{~mA}$	$480 \mathrm{~mA}$
Output transistor	$\begin{aligned} & \mathrm{V}_{\text {CEM }} \\ & \mathrm{I}_{\mathrm{CM}} \end{aligned}$	$\begin{array}{r} 265 \\ 2,3 \end{array}$	$\begin{aligned} & \text { V } \\ & \text { A } \end{aligned}$
Deflection	Current Flyback time		$\begin{aligned} & A(p-p) \\ & \mu \mathrm{s} \end{aligned}$
Auxiliary windings connecting pin 1 connecting pin 4 connecting pins 6/8 connecting pin 10		$\begin{array}{r} -70 \\ -165 \\ 11 \\ +450 \end{array}$	V(d.c.) V(d.c.) V(r.m.s.) V(d.c.)

LINE OUTPUT TRANSFORMER

"Alpha box"

- For Monochrome Data Graphic Displays with 90° monitor tubes
- With or without built-in bleeder resistor

QUICK REFERENCE DATA

$\mathrm{I}_{\text {eht }}$	$\max .100 \mu \mathrm{~A}$
E.H.T. at $\mathrm{I}_{\mathrm{B}}=0 \mu \mathrm{~A}$	13 kV
$\mathrm{R}_{\mathrm{i} \text { (eht) }}$	$\operatorname{max.} 5 \mathrm{M} \Omega$
Flyback time	$4,2 \mu \mathrm{~s}$
Line frequency range	30 to 40 kHz
Deflection coil inductance	$310 \mu \mathrm{H}$
Auxiliary voltages	$+60 \mathrm{~V}_{(\text {d.c. }),}-60 \mathrm{~V}_{(\text {(d.c. })}$
	$+500 \mathrm{~V}_{(\text {d.c. })}$

APPLICATION

This transformer has been designed to provide the required scanning amplitude and e.h.t. for 90° monochrome data graphic display tubes, 20 mm neck diameter, at line frequencies between 30 and 40 kHz .
It is intended for use in conjunction with:

- deflection unit AT1078 series;
- linearity control unit AT4042/08A;
- amplitude control unit AT4044/39D;
- dynamic focusing transformer AT4043/67;
- e.h.t. cable, catalogue number 312213764830.

DESCRIPTION

The magnetic circuit of the transformer comprises two Ferroxcube U-cores. The primary windings, the auxiliary windings and e.h.t. windings are situated on one leg of the core, and are encapsulated in flame retardent epoxy resin. An e.h.t. rectifier diode is incorporated in the transformer. The whole transformer meets the self-extinguishing and non-dripping properties of the American Underwriter's Laboratories rating mentioned in UL94SE-1.
External circuit connection is made to connecting pins, enabling the unit to be soldered directly into a printed-wiring board; the e.h.t. has a plug connection.
The transformer is available with or without e.h.t. bleeder resistor.

MECHANICAL DATA

Outlines

Fig. 1.
Mass approx. 130 g

Mounting

For mounting hole pattern see Fig. 2. The transformer core must be earthed.

Fig. 2 Mounting hole pattern.

Temperature

The operating temperature of the core and the coils should not exceed $60^{\circ} \mathrm{C}$, under worst conditions, i.e. taking into account:

- over-voltage on the windings;
- low atmospheric pressure (at high altitudes) implying bad cooling by convection;
- high room temperature (up to $45{ }^{\circ} \mathrm{C}$).

To satisfy this requirement it may be desired to provide ample cool air circulation around the transformer.

Distances

The minimum distance between the e.h.t. coil and neighbouring conductive flat surfaces is 5 mm . Sharp edges of conductive parts must have a minimum distance of 10 mm .
The transformer, leads and components carrying high voltage pulses, should be kept free from metal particles, solder drops etc.
The bending radius of the e.h.t. cable must be $\geqslant 12,5 \mathrm{~mm}$.
ELECTRICAL DATA (see also Fig. 3)
AT2250/14 used in conjunction with AT1078/10, AT4042/08A and AT4044/39D.

Line scan frequency range
E.H.T. at $\mathrm{I}_{\mathrm{B}}=0 \mu \mathrm{~A}$
$\mathrm{R}_{\mathrm{i} \text { (eht) }}$
leht
Supply voltage (V_{B})
Input power
Deflection current
Deflection voltage
Flyback time
Flyback capacitor
Auxiliary voltages (d.c.)
connecting pin 1
connecting pin 7
connecting pin 10

30 to 40 kHz
13 kV
$\leqslant 5 \mathrm{M} \Omega$
$\leqslant 100 \mu \mathrm{~A}$
38-55 V*
11 W
3,45 A
$550 \mathrm{~V}_{(\mathrm{p}-\mathrm{p})}$
$4,2 \mu \mathrm{~s}$
$3,3 \mathrm{nF}$
$+500 \mathrm{~V}$
$+60 \mathrm{~V}$
$-60 \mathrm{~V}$

[^24]

Fig. 3 Application circuit.

LINEARITY CORRECTORS

LINEARITY CORRECTOR

- For colour TV

APPLICATION

This linearity corrector is for the line deflection output stage of the 30AX system. It is compatible with linearity control unit AT4042/42 (connections 1 and 2 of the AT4042/42 on the printed-wiring board to be connected to 3 and 4 respectively).

DESCRIPTION

The linearity corrector consists of a coil, mounted on a Ferroxcube rod and a ring-shaped magnet of plastic-bonded Ferroxdure, which is placed around the rod at the bottom. The corrector has pins for mounting on a printed-wiring board.

MECHANICAL DATA

Dimensions in mm

The linearity correctors are packed in boxes of 108 pieces.

Mounting

The AT4042/30 can be mounted on printed-wiring boards by means of its two connection pins, see Fig. 2. To prevent distortion of the magnetic field, no magnetic-conductive materials should approach the magnetic parts nearer than 3 mm . The coil should be shunted with a carbon resistor to damp ringing phenomena; the value of the resistor depends on the line output transformer used (typical value 560Ω).

Fig. 2 Hole pattern for mounting on a printedwiring board.

ELECTRICAL DATA

When a sawtooth current (without S-correction) of 5,1 A (p-p), frequency 15625 Hz , flyback ratio 18\%, flows through the linearity corrector, the correction voltage is $11,8 \mathrm{~V} \pm 5,5 \%$.

Fig. 3 Circuit diagram.

Fig. 4 Inductance as a function of bias current.

ENVIRONMENTAL DATA

Maximum ambient temperature $\quad 70^{\circ} \mathrm{C}$

Flammability of assembly
Flammability of materials
according to IEC 65, clause 14.4
according to UL94, category V-1

TESTS

The linearity corrector withstands the following tests:

Vibration

Bump
Soldering
Cold
Dry heat
Damp heat, cyclic
Damp heat, steady state
Change of temperature

IEC 68-2-6, test Fc, procedure B4; $10-55-10 \mathrm{~Hz}$, amplitude $0,35 \mathrm{~mm}, 3 \times 30 \mathrm{~min}$.
IEC 68-2-29, test Eb; $40 \mathrm{~g}, 1000$ bumps, 3 directions.
IEC 68-2-20, test Ta, first part, method $1 ; 230 \pm 10^{\circ} \mathrm{C}, 2 \pm 0,5 \mathrm{~s}$.
IEC 68-2-1, test Aa; $96 \mathrm{~h},-25^{\circ} \mathrm{C}$.
IEC 68-2-2, test Ba; $96 \mathrm{~h},+100^{\circ} \mathrm{C}$.
IEC 68-2-30, test Db; 21 days, $+40^{\circ} \mathrm{C}$.
IEC 68-2-3, test $\mathrm{Ca}, 21$ days.
IEC 68-2-14, test $\mathrm{Na} ; 5$ cycles, $\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{B}}=+100^{\circ} \mathrm{C}$.
-

LINEARITY CORRECTOR

- For Colour Data Graphic Displays and Colour TV

APPLICATION

This linearity corrector is for the line deflection output stage of 90° colour monitors and TV receivers.

DESCRIPTION

The linearity corrector consists of a coil, mounted on a Ferroxcube rod and a ring-shaped magnet of plastic-bonded Ferroxdure, which is placed around the rod at the bottom.
The corrector has pins for mounting on a printed-wiring board.

MECHANICAL DATA

Dimensions in mm

Fig. 1.

The linearity correctors are packed in boxes of 108 pieces.

Mounting .

The AT4042/34 can be mounted on printed-wiring boards by means of its two connection pins, see
Fig. 2. To prevent distortion of the magnetic field, no magnetic-conductive materials should approach the magnetic parts nearer than 3 mm . The coil should be shunted with a carbon resistor to damp ringing phenomena; the value of the resistor depends on the line output transformer used (typical value 560Ω).

Fig. 2 Hole pattern for mounting on a printed-wiring board.

ELECTRICAL DATA

When a sawtooth current (without S-correction) of 3,0 A (p-p), frequency 15625 Hz , flyback ratio 18\%, flows through the linearity corrector, the correction voltage is $15,2 \mathrm{~V} \pm 5,5 \%$.

Fig. 3 Circuit diagram.

Reliability

Maximum cumulative percentage catastrophic failures

after 3000 h	$\leqslant 0,05 \%$
after 10000 h	$\leqslant 0,2 \%$
after 30000 h	$\leqslant 5 \%$

ENVIRONMENTAL DATA

Maximum ambient temperature
Flammability of assembly
Flammability of materials

70 oC
according to IEC 65, clause 14.4
according to UL94, category V-1

TESTS

The linearity corrector withstands the following tests:

Vibration

Bump
Soldering
Cold
Dry heat
Damp heat, cyclic
Damp heat, steady state
Change of temperature

IEC 68-2-6, test Fc, procedure B4;
$10-55-10 \mathrm{~Hz}$; amplitude $0,35 \mathrm{~mm}, 3 \times 30 \mathrm{~min}$.
IEC 68-2-29, test Eb; $40 \mathrm{~g}, 1000$ bumps, 3 directions.
IEC 68-2-20, test Ta, first part, method $1 ; 230 \pm 10 \circ \mathrm{C}, 2 \pm 0,5 \mathrm{~s}$.
IEC 68-2-1, test Aa; $96 \mathrm{~h},-25^{\circ} \mathrm{C}$.
IEC 68-2-2, test $\mathrm{Ba} ; 96 \mathrm{~h},+100{ }^{\circ} \mathrm{C}$.
IEC 68-2-30, test $\mathrm{Db} ; 21$ days, $+40{ }^{\circ} \mathrm{C}$.
IEC 68-2-3, test Ca, 21 days.
IEC 68-2-14, test $\mathrm{Na} ; 5$ cycles, $T_{A}=-25^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{B}}=+100^{\circ} \mathrm{C}$.

LINEARITY CORRECTOR

- For Colour TV

APPLICATION

This linearity corrector is for the line deflection output stage of colour TV receivers and 90° monitors.

DESCRIPTION

The linearity corrector consists of a coil, mounted on a Ferroxcube rod and a ring-shaped magnet of plastic-bonded Ferroxdure, which is placed around the rod at the bottom.
The corrector has pins for mounting on a printed-wiring board.

MECHANICAL DATA

Fig. 1.
The linearity correctors are packed in boxes of 108 pieces.

Mounting

The AT4042/36FS can be mounted on printed-wiring boards by means of its two connection pins, see Fig. 2. To prevent distortion of the magnetic field, no magnetic-conductive materials should approach the magnetic parts nearer than 3 mm . The coil should be shunted with a carbon resistor to damp ringing phenomena; the value of the resistor depends on the line output transformer used (typical value 560Ω).

Fig. 2 Hole pattern for mounting on a printedwiring board.

ELECTRICAL DATA

When a sawtooth current (without S-correction) of 1,9 A (p-p), frequency 15625 Hz , flyback ratio 18\%, flows through the linearity corrector, the correction voltage is $17,4 \mathrm{~V} \pm 5,5 \%$.

Fig. 3 Circuit diagram.

ENVIRONMENTAL DATA

Maximum ambient temperature
Flammability of assembly
Flammability of materials
$70^{\circ} \mathrm{C}$
according to IEC 65, clause 14.4
according to UL94, category V-1

TESTS

The linearity corrector withstands the following tests:

Vibration

Bump
Soldering
Cold
Dry heat
Damp heat, cyclic
Damp heat, steady state
Change of temperature

IEC 68-2-6, test Fc, procedure B4;
$10-55-10 \mathrm{~Hz}$, amplitude $0,35 \mathrm{~mm}, 3 \times 30 \mathrm{~min}$.
IEC 68-2-29, test Eb; $40 \mathrm{~g}, 1000$ bumps, 3 directions.
IEC 68-2-20, test Ta, first part, method $1 ; 230 \pm 10^{\circ} \mathrm{C}, 2 \pm 0,5 \mathrm{~s}$.
IEC 68-2-1, test $\mathrm{Aa} ; 96 \mathrm{~h},-25^{\circ} \mathrm{C}$.
IEC 68-2-2, test Ba; $96 \mathrm{~h},+100^{\circ} \mathrm{C}$.
IEC 68-2-30, test $\mathrm{Db} ; 21$ days, $+40^{\circ} \mathrm{C}$.
IEC 68-2-3, test $\mathrm{Ca}, 21$ days.
IEC 68-2-14, test $\mathrm{Na} ; 5$ cycles, $\mathrm{T}_{A}=-25^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{B}}=+100^{\circ} \mathrm{C}$.

LINEARITY CORRECTOR

- For colour TV

APPLICATION

This linearity corrector is for the line deflection output stage of 90° colour TV receivers and monitors.

DESCRIPTION

The linearity corrector consists of a coil, mounted on a Ferroxcube rod and a ring-shaped magnet of plastic-bonded Ferroxdure, which is placed around the rod at the bottom. The corrector has pins for mounting on a printed-wiring board.

MECHANICAL DATA

Dimensions in mm

Fig. 1.

Mounting

The AT4042/41FS can be mounted on printed-wiring boards by means of its two connection pins, see Fig. 2. To prevent distortion of the magnetic field, no magnetic-conductive materials should approach the magnetic parts nearer than 3 mm . The coil should be shunted with a carbon resistor to damp ringing phenomena; the value of the resistor depends on the line output transformer used (typical value 560Ω).

Fig. 2 Hole pattern for mounting on a printed-wiring board.

ELECTRICAL DATA

When a sawtooth current (without S-correction) of 2,1 A (p-p), frequency 15625 Hz , flyback ratio 18%, flows through the linearity corrector, the correction voltage is $12,7 \mathrm{~V} \pm 5,5 \%$.

Fig. 3 Circuit diagram.

Reliability

Maximum cumulative percentage catastrophic failures
after $300 \mathrm{~h} \quad \leqslant 0,05 \%$
after $10000 \mathrm{~h} \quad \leqslant 0,2 \%$
after $30000 \mathrm{~h} \leqslant 5 \%$

ENVIRONMENTAL DATA

Maximum ambient temperature
Flammability of assembly
Flammability of materials
$70^{\circ} \mathrm{C}$
according to IEC 65, clause 14.4
according to UL94, category V-1

TESTS

The linearity corrector withstands the following tests:

Vibration

Bump $/$
Soldering
Cold
Dry heat
Damp heat, cyclic
Damp heat, steady state
Change of temperature

IEC 68-2-6, test Fc, procedure B4;
$10-55-10 \mathrm{~Hz}$, amplitude $0,35 \mathrm{~mm}, 3 \times 30 \mathrm{~min}$.
IEC 68-2-29, test Eb; $40 \mathrm{~g}, 1000$ bumps, 3 directions.
IEC 68-2-20, test Ta, first part, method $1 ; 230 \pm 10{ }^{\circ} \mathrm{C}, 2 \pm 0,5 \mathrm{~s}$.
IEC 68-2-1, test Aa; $96 \mathrm{~h},-25^{\circ} \mathrm{C}$.
IEC 68-2-2, test $\mathrm{Ba} ; 96 \mathrm{~h},+100{ }^{\circ} \mathrm{C}$.
IEC 68-2-30, test $\mathrm{Db} ; 21$ days, $+40^{\circ} \mathrm{C}$.
IEC 68-2-3, test $\mathrm{Ca}, 21$ days.
IEC 68-2-14, test $\mathrm{Na} ; 5$ cycles, $\mathrm{T}_{A}=-25^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{B}}=+100^{\circ} \mathrm{C}$.

LINEARITY CORRECTOR

- For Monochrome Data Graphic Displays.

APPLICATION

This linearity corrector is for the line deflection output stage of 90° monitors for data graphic display in conjunction with line output transformer AT2140/16B or AT2240/16, and deflection unit AT1077/05.

DESCRIPTION

The linearity corrector consists of a coil, mounted on a Ferroxcube rod and a ring-shaped magnet of plastic-bonded Ferroxdure, which is placed around the rod at the bottom.
The corrector has pins for mounting on a printed-wiring board.

MECHANICAL DATA

Fig. 1.

Mounting

The AT4042/46 can be mounted on printed-wiring boards by means of its two connection pins, see Fig. 2. To prevent distortion of the magnetic field, no magnetic-conductive materials should approach the magnetic parts nearer than 3 mm . The coil should be shunted with a carbon resistor to damp ringing phenomena; the value of the resistor depends on the line output transformer used (typical value 560Ω).

Fig. 2 Hole pattern for mounting on a printed-wiring board.

ELECTRICAL DATA

When a sawtooth current (without S-correction) of 3 A (p-p), frequency 15625 Hz , flyback ratio 18%, flows through the linearity corrector, the correction voltage is $6 \mathrm{~V} \pm 5,5 \%$.

Fig. 3 Circuit diagram.

TESTS

The linearity corrector withstands the following tests:

Vibration

Bump
Soldering
Cold
Dry heat
Damp heat, cyclic
Damp heat, steady state
Change of temperature
Flammability of assembly
Flammability of materials

IEC 68-2-6, test Fc, procedure B4;
$10-55-10 \mathrm{~Hz}$, amplitude $0,35 \mathrm{~mm}, 3 \times 30 \mathrm{~min}$.
IEC 68-2-29, test Eb; $40 \mathrm{~g}, 1000$ bumps, 3 directions.
IEC 68-2-20, test Ta, first part, method $1 ; 230 \pm 10^{\circ} \mathrm{C}, 2 \pm 0,5 \mathrm{~s}$.
IEC 68-2-1, test Aa; $96 \mathrm{~h},-25^{\circ} \mathrm{C}$.
IEC 68-2-2, test Ba; $96 \mathrm{~h},+100^{\circ} \mathrm{C}$.
IEC 68-2-30, test $\mathrm{Db} ; 21$ days, $+40^{\circ} \mathrm{C}$.
IEC 68-2-3, test $\mathrm{Ca}, 21$ days.
IEC 68-2-14, test $\mathrm{Na} ; 5$ cycles, $\mathrm{T}_{A}=-25^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{B}}=+100^{\circ} \mathrm{C}$.
IEC 65, clause 14.4.
UL94, category V1.

LINEARITY CORRECTOR

- For colour TV

APPLICATION

This linearity corrector is for the line deflection output stage of the 45AX system.

DESCRIPTION

The linearity corrector consists of a coil, mounted on a Ferroxcube rod and a ring-shaped magnet of plastic-bonded Ferroxdure, which is placed around the rod at the bottom. The corrector has pins for mounting on a printed-wiring board.

MECHANICAL DATA

Fig. 1.

The linearity correctors are packed in boxes of 108 pieces.

Mounting

The AT4042/51 can be mounted on printed-wiring boards by means of its two connection pins, see Fig. 2. To prevent distortion of the magnetic field, no magnetic-conductive materials should approach the magnetic parts nearer than 3 mm . The coil should be shunted with a carbon resistor to damp ringing phenomena; the value of the resistor depends on the line output transformer used (typical value 560Ω).

Fig. 2 Hole pattern for mounting on a printed-wiring board.

ELECTRICAL DATA

When a sawtooth current (without S-correction) of 3,15 A (p-p), frequency 15625 Hz , flyback ratio 18%, flows through the linearity corrector, the correction voltage is $12,9 \mathrm{~V} \pm 5,5 \%$.

Fig. 3 Circuit diagram.

Reliability

Maximum cumulative percentage catastrophic failures
after 300 h
after 10000 h
after 30000 h
$\leqslant 0,05 \%$
$\leqslant 0,2 \%$
$\leqslant 5 \%$

ENVIRONMENTAL DATA

Maximum ambient temperature
Flammability of assembly
Flammability of materials
$70^{\circ} \mathrm{C}$
according to IEC 65, clause 14.4
according to UL94, category V-1

TESTS

The linearity corrector withstands the following tests:

Vibration

Bump
Soldering
Cold
Dry heat
Damp heat, cyclic
Damp heat, steady state
Change of temperature

IEC 68-2-6, test Fc, procedure B4;
$10-55-10 \mathrm{~Hz}$, amplitude $0,35 \mathrm{~mm}, 3 \times 30 \mathrm{~min}$.
IEC 68-2-29, test Eb; $40 \mathrm{~g}, 1000$ bumps, 3 directions.
IEC 68-2-20, test Ta, first part, method $1 ; 230 \pm 10^{\circ} \mathrm{C}, 2 \pm 0,5 \mathrm{~s}$.
IEC 68-2-1, test Aa; $96 \mathrm{~h},-25^{\circ} \mathrm{C}$.
IEC 68-2-2, test $\mathrm{Ba} ; 96 \mathrm{~h},+100^{\circ} \mathrm{C}$.
IEC 68-2-30, test $\mathrm{Db} ; 21$ days, $+40^{\circ} \mathrm{C}$.
IEC 68-2-3, test Ca, 21 days.
IEC 68-2-14, test $\mathrm{Na} ; 5$ cycles, $\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{B}}=+100^{\circ} \mathrm{C}$.

LINEARITY CORRECTOR

- For colour Data Graphic Displays and Colour TV

APPLICATION

This linearity corrector is for the line deflection output stage of 90° monitors and TV receivers.

DESCRIPTION

The linearity corrector consists of a coil, mounted on a Ferroxcube rod and a ring-shaped magnet of plastic-bonded Ferroxdure, which is placed around the rod at the bottom.
The corrector has pins for mounting on a printed-wiring board.

MECHANICAL DATA

Fig. 1.

The linearity correctors are packed in boxes of 108 pieces.

Mounting

The AT4042/90 can be mounted on printed-wiring boards by means of its two connection pins, see Fig. 2. To prevent distortion of the magnetic field, no magnetic-conductive materials should approach the magnetic parts nearer than 3 mm . The coil should be shunted with a carbon resistor to damp ringing phenomena; the value of the resistor depends on the line output transformer used (typical value 560Ω).

Fig. 2 Hole pattern for mounting on a printedwiring board.

ELECTRICAL DATA

When a sawtooth current (without S-correction) of 2,9 A (p-p), frequency 15625 Hz , flyback ratio 18\%, flows through the linearity corrector, the correction voltage is $9,8 \mathrm{~V} \pm 5,5 \%$.

Fig. 3 Circuit diagram.

ENVIRONMENTAL DATA

Maximum ambient temperature
Flammability of assembly
Flammability of materials
$70^{\circ} \mathrm{C}$
according to IEC65, clause 14.4
according to UL94, category V-1

TESTS

The linearity corrector withstands the following tests:

Vibration

Bump
Soldering
Cold
Dry heat
Damp heat, cyclic
Damp heat, steady state
Change of temperature

IEC68-2-6, test Fc, procedure B4;
$10-55-10 \mathrm{~Hz}$, amplitude $0,35 \mathrm{~mm}, 3 \times 30 \mathrm{~min}$.
IEC 68-2-29, test Eb; 40g, 1000 bumps, 3 directions.
IEC 68-2-20, test Ta, first part, method $1 ; 230 \pm 10^{\circ} \mathrm{C}, 2 \pm 0,5 \mathrm{~s}$.
IEC68-2-1, test Aa; $96 \mathrm{~h},-25^{\circ} \mathrm{C}$.
IEC 68-2-2, test Ba; $96 \mathrm{~h},+100^{\circ} \mathrm{C}$.
IEC 68-2-30, test $\mathrm{Db} ; 21$ days, $+40^{\circ} \mathrm{C}$.
IEC 68-2-3, test $\mathrm{Ca}, 21$ days.
IEC 68-2-14, test Na; 5 cycles, $T_{A}=-25^{\circ} \mathrm{C}, T_{B}=+100^{\circ} \mathrm{C}$.

LINEARITY CORRECTOR

- For colour TV

APPLICATION

This linearity corrector is for 90° minineck applications.

DESCRIPTION

The linearity corrector consists of a coil, mounted on a Ferroxcube rod and a ring-shaped magnet of plastic-bonded Ferroxdure, which is placed around the rod at the bottom.
The corrector has pins for mounting on a printed-wiring board.

MECHANICAL DATA

Fig. 1.

The linearity correctors are packed in boxes of 108 pieces.

Mounting

The AT4042/91 can be mounted on printed-wiring boards by means of its two connection pins, see Fig. 2. To prevent distortion of the magnetic field, no magnetic-conductive materials should approach the magnetic parts nearer than 3 mm . The coil should be shunted with a carbon resistor to damp ringing phenomena; the value of the resistor depends on the line output transformer used (typical value 560Ω).

Fig. 2 Hole pattern for mounting on a printed-wiring board.

ELECTRICAL DATA

When a sawtooth current (without S-correction) of 2,3 A (p-p), frequency 15625 Hz , flyback ratio 18\%, flows through the linearity corrector, the correction voltage is $17,6 \mathrm{~V} \pm 5 \%$.

Fig. 3 Circuit diagram.

Reliability

Maximum cumulative percentage catastrophic failures

after 300 h	$\leqslant 0,05 \%$
after 10000 h	$\leqslant 0,2 \%$
after 30000 h	$\leqslant 5 \%$

ENVIRONMENTAL DATA

Maximum ambient temperature
Flammability of assembly
Flammability of materials
$70^{\circ} \mathrm{C}$
according to IEC 65, clause 14.4
according to UL94, category V-1

TESTS

The linearity corrector withstands the following tests:

Vibration

Bump
Soldering
Cold
Dry heat
Damp heat, cyclic
Damp heat, steady state
Change of temperature

IEC 68-2-6, test Fc, procedure B4;
$10-55-10 \mathrm{~Hz}$, amplitude $0,35 \mathrm{~mm}, 3 \times 30 \mathrm{~min}$.
IEC 68-2-29, test Eb; $40 \mathrm{~g}, 1000$ bumps, 3 directions.
IEC 68-2-20, test Ta, first part, method $1 ; 230 \pm 10{ }^{\circ} \mathrm{C}, 2 \pm 0,5 \mathrm{~s}$.
IEC 68-2-1, test Aa; $96 \mathrm{~h},-25^{\circ} \mathrm{C}$.
IEC 68-2-2, test BA; $96 h,+100{ }^{\circ} \mathrm{C}$.
IEC 68-2-30, test $\mathrm{Db} ; 21$ days, $+40^{\circ} \mathrm{C}$.
IEC 68-2-3, test Ca; 21 days.
IEC 68-2-14, test Na; 5 cycles, $T_{A}=-25^{\circ} \mathrm{C}, T_{B}=+100^{\circ} \mathrm{C}$.

LINEARITY CORRECTOR

- For colour TV

APPLICATION

This linearity corrector is for the line deflection output stage of colour TV receivers.

DESCRIPTION

The linearity corrector consists of a coil, mounted on a Ferroxcube rod and a ring-shaped magnet of plastic-bonded Ferroxdure, which is placed around the rod at the bottom. The corrector has pins for mounting on a printed-wiring board.

MECHANICAL DATA

Dimensions in mm

Fig. 1.

The linearity correctors are packed in boxes of 108 pieces.

Mounting

The AT4042/92 can be mounted on printed-wiring boards by means of its two connection pins, see Fig. 2. To prevent distortion of the magnetic field, no magnetic-conductive materials should approach the magnetic parts nearer than 3 mm . The coil should be shunted with a carbon resistor to damp ringing phenomena; the value of the resistor depends on the line output transformer used (typical value 560Ω).

Fig. 2 Hole pattern for mounting on a printed-wiring board.

ELECTRICAL DATA

When a sawtooth current (without S-correction) of 5,5 A (p-p), frequency 15625 Hz , flyback ratio 18\%, flows through the linearity corrector, the correction voltage is $14,7 \mathrm{~V} \pm 5 \%$.

Fig. 3 Circuit diagram.

Reliability

Maximum cumulative percentage catastrophic failures
after 300 h
after 10000 h
after 30000 h
$\leqslant 0,05 \%$
$\leqslant 0,2 \%$
$\leqslant 5 \%$

ENVIRONMENTAL DATA

Maximum ambient temperature
Flammability of assembly
Flammability of materials
$70^{\circ} \mathrm{C}$
according to IEC 65, clause 14.4
according to UL94, category V-1

TESTS

The linearity corrector withstands the following tests:

Vibration

Bump
Soldering
Cold
Dry heat
Damp heat, cyclic
Damp heat, steady state
Change of temperature

IEC 68-2-6, test Fc, procedure B4;
$10-55-10 \mathrm{~Hz}$, amplitude $0,35 \mathrm{~mm}, 3 \times 30 \mathrm{~min}$.
IEC 68-2-29, test Eb; 40g, 1000 bumps, 3 directions.
IEC 68-2-20, test Ta, first part, method $1 ; 230 \pm 10^{\circ} \mathrm{C}, 2 \pm 0,5 \mathrm{~s}$.
IEC 68-2-1, test Aa; $96 \mathrm{~h},-25^{\circ} \mathrm{C}$.
IEC 68-2-2, test $\mathrm{Ba} ; 96 \mathrm{~h},+100^{\circ} \mathrm{C}$.
IEC 68-2-30, test $\mathrm{Db} ; 21$ days, $+40^{\circ} \mathrm{C}$.
IEC 68-2-3, test Ca; 21 days.
IEC 68-2-14, test $\mathrm{Na} ; 5$ cycles, $\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{B}}=+100^{\circ} \mathrm{C}$.

ADJUSTABLE LINEARITY CONTROL UNIT

- For monochrome Data Graphic Displays

APPLICATION

This linearity control unit is for use in monochrome monitors.

DESCRIPTION

The unit consists of a coil, mounted on a Ferroxcube rod, and two Ferroxdure magnets. One ring-shaped magnet is placed around the Ferroxcube rod, at the bottom. The other magnet is positioned against the Ferroxcube rod opposite the bottom magnet and clamped. It is provided with a square hole to facilitate adjustment of the biasing field and, therefore,the linearity of the line deflection.

MECHANICAL DATA; Dimensions in mm

Fig. 1.

The linearity control units are packed in boxes of 300 pieces.

Mounting

The unit can be mounted on printed-wiring boards by means of its two connection pins, see Fig. 2. To prevent distortion of the magnetic field, no magnetic-conductive materials should approach the magnetic parts nearer than 3 mm . The coils should be shunted with a carbon resistor to damp ringing phenomena; the value of the resistor depends on the line output transformer used (typical value 560Ω).

Fig. 2 Hole pattern for mounting on a printed-wiring board. Grid hole diameter $=1,3 \pm 0,1 \mathrm{~mm}$;
${ }^{7246786} \mathrm{e}=2,54 \mathrm{~mm}$.

ELECTRICAL DATA

When a sawtooth current (without S-correction) of 6,0 A (p-p), frequency 16 kHz , flyback ratio 18%, flows through the linearity control unit, the correction voltage is adjustable between 0,95 and $2,15 \mathrm{~V} \pm 10 \%$.

Fig. 3 Circuit diagram.

ENVIRONMENTAL DATA

Maximum ambient temperature
Flammability of assembly
Flammability of materials
$70^{\circ} \mathrm{C}$
according to IEC 65, clause 14.4
according to UL94, category V-1

TESTS

The linearity control unit withstands the following tests:

Vibration

Bump

Soldering
Cold
Dry heat
Damp heat cyclic
Damp heat, steady state
Change of temperature

IEC 68-2-6, test Fc, procedure B4;
$10-55-10 \mathrm{~Hz}$, amplitude $0,35 \mathrm{~mm}, 3 \times 30 \mathrm{~min}$.
IEC 68-2-29, test Eb; $40 \mathrm{~g}, 1000$ bumps, 3 directions.
IEC 68-2-20, test Ta, first part, method $1 ; 230 \pm 10{ }^{\circ} \mathrm{C}, 2 \pm 0,5 \mathrm{~s}$.
IEC 68-2-1, test Aa; $96 \mathrm{~h},-25^{\circ} \mathrm{C}$.
IEC 68-2-2, test $\mathrm{Ba} ; 96 \mathrm{~h},+100^{\circ} \mathrm{C}$.
IEC 68-2-30, test $\mathrm{Db} ; 21$ days, $+40^{\circ} \mathrm{C}$.
IEC 68-2-3, test Ca, 21 days.
IEC 68-2-14, test $\mathrm{Na} ; 5$ cycles, $\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{B}}=+100^{\circ} \mathrm{C}$.

ADJUSTABLE LINEARITY CONTROL UNIT

- For Colour Data Graphic Displays

APPLICATION

This linearity control unit is for use in colour monitors. It can also be used in 90° colour and monochrome television sets.

DESCRIPTION

The unit consists of a coil, mounted on a Ferroxcube rod, and three Ferroxdure magnets. Two ring-shaped magnets are placed around the Ferroxcube rod, one at the top and one at the bottom. The third magnet is positioned against the Ferroxcube rod opposite the bottom magnet and clamped. It is provided with a square hole to facilitate adjustment of the biasing field and, therefore, the linearity of the line deflection.

MECHANICAL DATA; Dimensions in mm

Fig. 1.

7295277

The linearity control units are packed in boxes of 300 pieces.

Mounting

The unit can be mounted on printed-wiring boards by means of its two connection pins, see Fig. 2. To prevent distortion of the magnetic field, no magnetic-conductive materials should approach the magnetic parts nearer than 3 mm . The coils should be shunted with a carbon resistor to damp ringing phenomena; the value of the resistor depends on the line output transformer used (typical value 560Ω).

Fig. 2 Hole pattern for mounting on a printed-wiring board. Grid hole diameter $=1,3 \pm 0,1 \mathrm{~mm}$; $\mathrm{e}=2,54 \mathrm{~mm}$.

ELECTRICAL DATA

When a sawtooth current (without S-correction) of 2,8 A (p-p), frequency 16 kHz , flyback ratio 18%, flows through the linearity control unit, the correction voltage is adjustable between 12,5 and $29 \mathrm{~V} \pm 10 \%$.

Fig. 3 Circuit diagram.

ENVIRONMENTAL DATA

Maximum ambient temperature
Flammability of assembly
Flammability of materials
$70^{\circ} \mathrm{C}$
according to IEC 65, clause 14.4
according to UL94, category V-1

TESTS

The linearity control unit withstands the following tests:

Vibration

Bump
Soldering
Cold
Dry heat
Damp heat, cyclic
Damp heat, steady state
Change of temperature

IEC 68-2-6, test Fc, procedure B4;
$10-55-10 \mathrm{~Hz}$, amplitude $0,35 \mathrm{~mm}, 3 \times 30 \mathrm{~min}$.
IEC 68-2-29, test Eb; $40 \mathrm{~g}, 1000$ bumps, 3 directions.
IEC 68-2-20, test Ta, first part, method $1 ; 230 \pm 10^{\circ} \mathrm{C}, 2 \pm 0,5 \mathrm{~s}$.
IEC 68-2-1, test Aa; $96 \mathrm{~h},-25^{\circ} \mathrm{C}$.
IEC 68-2-2, test Ba; $96 \mathrm{~h},+100{ }^{\circ} \mathrm{C}$.
IEC 68-2-30, test $\mathrm{Db} ; 21$ days, $+40^{\circ} \mathrm{C}$.
IEC 68-2-3, test Ca, 21 days.
IEC 68-2-14, test $\mathrm{Na} ; 5$ cycles, $\mathrm{T}_{A}=-25^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{B}}=+100^{\circ} \mathrm{C}$.

ADJUSTABLE LINEARITY CONTROL UNIT

- For monochrome Data Graphic Displays

APPLICATION

This linearity control unit is for use in monochrome monitors. It is used in conjunction with a deflection unit of the AT1039 series, with series connected line coils.

DESCRIPTION

The unit consists of a coil, mounted on a Ferroxcube rod, and three Ferroxdure magnets. Two ring-shaped magnets are placed around the Ferroxcube rod, one at the top and one at the bottom. The third magnet is positioned against the Ferroxcube rod opposite the bottom magnet and clamped. It is provided with a square hole to facilitate adjustment of the biasing field and, therefore, the linearity of the line deflection.

MECHANICAL DATA; Dimensions in mm

Fig. 1.

The linearity control units are packed in boxes of 300 pieces.

Mounting

The unit can be mounted on printed-wiring boards by means of its two connection pins, see Fig. 2. To prevent distortion of the magnetic field, no magnetic-conductive materials should approach the magnetic parts nearer than 3 mm . The coils should be shunted with a carbon resistor to damp ringing phenomena; the value of the resistor depends on the line output transformer used (typical value 560Ω).

7246786
Fig. 2 Hole pattern for mounting on a printedwiring board. Grid hole diameter $=1,3 \pm 0,1 \mathrm{~mm}$; $\mathrm{e}=2,54 \mathrm{~mm}(0,1 \mathrm{in})$.

ELECTRICAL DATA

When a sawtooth current (without S-correction) of 6,0 A (p-p), frequency 16 kHz , flyback ratio 18%, flows through the linearity control unit, the correction voltage is adjustable between 15 and $25 \mathrm{~V} \pm 10 \%$.
Note: With a sawtooth current of 4,65 A (p-p) the correction voltage is adjustable between 8 and 15 V .

Fig. 3 Circuit diagram.

ENVIRONMENTAL DATA

Maximum ambient temperature
Flammability of assembly
Flammability of materials
$70^{\circ} \mathrm{C}$
according to IEC 65, clause 14.4
according to UL94, category V-1

TESTS

The linearity control unit withstands the following tests:

Vibration

Bump
Soldering
Cold
Dry heat
Damp heat, cyclic
Damp heat, steady state
Change of temperature

IEC 68-2-6, test Fc, procedure B4; $10-55-10 \mathrm{~Hz}$, amplitude $0,35 \mathrm{~mm}, 3 \times 30 \mathrm{~min}$.

IEC 68-2-29, test Eb; 40g, 1000 bumps, 3 directions.
IEC 68-2-20, test Ta, first part, method $1 ; 230 \pm 10^{\circ} \mathrm{C}, 2 \pm 0,5 \mathrm{~s}$.
IEC 68-2-1, test Aa; $96 \mathrm{~h},-25{ }^{\circ} \mathrm{C}$.
IEC 68-2-2, test Ba; $96 \mathrm{~h},+100$ oC.
IEC 68-2-30, test Db; 21 days, $+40{ }^{\circ} \mathrm{C}$.
IEC 68-2-3, test $\mathrm{Ca}, 21$ days.
IEC 68-2-14, test $\mathrm{Na} ; 5$ cycles, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{B}}=+100^{\circ} \mathrm{C}$.

ADJUSTABLE LINEARITY CONTROL UNIT

- For Colour Data Graphic Displays

APPLICATION

This linearity control unit is for use in colour monitors.

DESCRIPTION

The unit consists of a coil, mounted on a Ferroxcube rod, and three Ferroxdure magnets. Two ring-shaped magnets are placed around the Ferroxcube rod, one at the top and one at the bottom. The third magnet is positioned against the Ferroxcube rod opposite the bottom magnet and clamped. It is provided with a square hole to facilitate adjustment of the biasing field and, therefore, the linearity of the line deflection.

MECHANICAL DATA

Outlines; Dimensions in mm

Fig. 1.

The linearity control units are packed in boxes of 300 pieces.

Mounting

The unit can be mounted on printed-wiring boards by means of its two connection pins, see Fig. 2. To prevent distortion of the magnetic field, no magnetic-conductive materials should approach the magnetic parts nearer than 3 mm . The coils should be shunted with a carbon resistor to damp ringing phenomena; the value of the resistor depends on the line output transformer used (typical value 560Ω).

Fig. 2 Hole pattern for mounting on a printedwiring board ($e=2,54 \mathrm{~mm}(0,1 \mathrm{in}$); grid hole diameter 1,3 $\pm 0,1 \mathrm{~mm}$.

* Hole for bottom adjustment.

ELECTRICAL DATA

When a sawtooth current (with S-correction) of 4,4 A (p-p), frequency 32 kHz , flyback ratio 18%, flows through the linearity control unit, the correction voltage is adjustable between 0,65 and $3,2 \mathrm{~V} \pm 10 \%$.

Fig. 3 Circuit diagram.

Fig. 4 Inductance as a function of bias current.

ENVIRONMENTAL DATA

Maximum ambient temperature
Flammability of assembly
Flammability of materials
$70^{\circ} \mathrm{C}$
according to IEC 65 , clause 14.4
according to UL94, category V-1

TESTS

The linearity control unit withstands the following tests:

Vibration

Bump
Soldering
Cold
Dry heat
Damp heat, cyclic
Damp heat, steady state
Change of temperature

IEC 68-2-6, test Fc, procedure B4;
$10-55-10 \mathrm{~Hz}$, amplitude $0,35 \mathrm{~mm}, 3 \times 30 \mathrm{~min}$.
IEC 68-2-29, test Eb, 40 g .1000 bumps, 3 directions.
IEC 68-2-20, test Ta, first part, method $1 ; 230 \pm 10^{\circ} \mathrm{C}, 2 \pm 0,5 \mathrm{~s}$.
IEC 68-2-1, test Aa; $96 \mathrm{~h},-25^{\circ} \mathrm{C}$.
IEC 68-2-2, test Ba; $96 \mathrm{~h},+100^{\circ} \mathrm{C}$.
IEC 68-2-30, test Db , test $\mathrm{Db} ; 21$ days, $+40^{\circ} \mathrm{C}$.
IEC 68-2-3, test Ca, 21 days.
IEC 68-2-14, test $\mathrm{Na} ; 5$ cycles, $\mathrm{T}_{A}=-25^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{B}}=+100^{\circ} \mathrm{C}$.

ADJUSTABLE LINEARITY CONTROL UNIT

- For monochrome Data Graphic Displays

APPLICATION

This linearity control unit is for use in monochrome monitors. It is used in conjunction with a deflection unit of the AT1039 series, and line output transformer AT2076/84.

DESCRIPTION

The unit consists of a coil, mounted on a Ferroxcube rod, and three Ferroxdure magnets. Two ring-shaped magnets are placed around the Ferroxcube rod, one at the top and one at the bottom. The third magnet is positioned against the Ferroxcube rod opposite the bottom magnet and clamped. It is provided with a square hole to facilitate adjustment of the biasing field and, therefore, the linearity of the line deflection.

MECHANICAL DATA; Dimensions in mm

Fig. 1.

The linearity control units are packed in boxes of 300 pieces.

Mounting

The unit can be mounted on printed-wiring boards by means of its two connection pins, see Fig. 2. To prevent distortion of the magnetic field, no magnetic-conductive materials should approach the magnetic parts nearer than 3 mm . The coils should be shunted with a carbon resistor to damp ringing phenomena; the value of the resistor depends on the line output transformer used (typical value 560Ω).

Fig. 2 Hole pattern for mounting on a printedwiring board; $e=2,54 \mathrm{~mm}$.

ELECTRICAL DATA

When a sawtooth current (without S-correction) of 8,8 A (p-p), frequency 32 kHz , flyback ratio 18%, flows through the linearity control unit, the correction voltage is adjustable between 6 and 10 V .

Fig. 3 Circuit diagram.

ENVIRONMENTAL DATA

Maximum ambient temperature
Flammability of assembly
Flammability of materials
$70^{\circ} \mathrm{C}$
according to IEC 65, clause 14.4
according to UL94, category V-1

TESTS

The linearity control unit withstands the following tests:

Vibration

Bump
Soldering
Cold
Dry heat
Damp heat, cyclic
Damp heat, steady state
Change of temperature

IEC 68-2-6, test Fc, procedure B4; $10-55-10 \mathrm{~Hz}$, amplitude $0,35 \mathrm{~mm}, 3 \times 30 \mathrm{~min}$. IEC 68-2-29, test Eb; 40g, 1000 bumps, 3 directions.
IEC 68-2-20, test Ta, first part, method $1 ; 230 \pm 10^{\circ} \mathrm{C}, 2 \pm 0,5 \mathrm{~s}$.
IEC 68-2-1, test Aa; $96 \mathrm{~h},-25^{\circ} \mathrm{C}$.
IEC 68-2-2, test Ba; $96 \mathrm{~h},+100^{\circ} \mathrm{C}$.
IEC 68-2-30, test Db; 21 days, $+40^{\circ} \mathrm{C}$.
IEC 68-2-3, test Ca, 21 days.
IEC 68-2-14, test Na; 5 cycles, $T_{A}=-25^{\circ} \mathrm{C}, \mathrm{T}_{B}=+100^{\circ} \mathrm{C}$.

ADJUSTABLE LINEARITY CONTROL UNIT

- For Colour Data Graphic Displays and Colour TV

APPLICATION

This linearity control unit is for use in colour monitors and television sets.

DESCRIPTION

The unit consists of a coil, mounted on a Ferroxcube rod, and three Ferroxdure magnets. Two ring-shaped magnets are placed around the Ferroxcube rod, one at the top and one at the bottom. The third magnet is positioned against the Ferroxcube rod opposite the bottom magnet and clamped. It is provided with a square hole to facilitate adjustment of the biasing field and, therefore, the linearity of the line deflection.

MECHANICAL DATA; Dimensions in mm

Fig. 1.
7290840

The linearity control units are packed in boxes of 300 pieces.

Mounting

The unit can be mounted on printed-wiring boards by means of its two connection pins, see Fig. 2. To prevent distortion of the magnetic field, no magnetic-conductive materials should approach the magnetic parts nearer than 3 mm . The coils should be shunted with a carbon resistor to damp ringing phenomena; the value of the resistor depends on the line output transformer used (typical value 560Ω).

Fig. 2 Hole pattern for mounting on a printed-wiring board; $e=2,54 \mathrm{~mm}$. * Hole for bottom adjustment.

ELECTRICAL DATA

When a sawtooth current (without S-correction) of 6,0 A (p-p), frequency 16 kHz , flyback ratio 18%, flows through the linearity control unit, the correction voltage is adjustable between 8,5 and $12,4 \mathrm{~V}$.

Reliability

Maximum cumulative percentage catastrophic failures
after 300 h
$\leqslant 0,05 \%$
after 10000 h
after 30000 h

$$
\leqslant 0,2 \%
$$

$$
\leqslant \quad 5 \%
$$

Fig. 3 Circuit diagram.

ENVIRONMENTAL DATA

Maximum ambient temperature
Flammability of assembly
Flammability of materials
$70^{\circ} \mathrm{C}$
according to IEC 65, clause 14.4
according to UL94, category V-1

TESTS

The linearity control unit withstands the following tests:

Vibration

Bump
Soldering
Cold
Dry heat
Damp heat, cyclic
Damp heat, steady state
Change of temperature

IEC 68-2-6, test Fc, procedure B4;
$10-55-10 \mathrm{~Hz}$, amplitude $0,35 \mathrm{~mm}, 3 \times 30 \mathrm{~min}$.
IEC 68-2-29, test Eb; 40g, 1000 bumps, 3 directions.
IEC 68-2-20, test Ta, first part, method $1 ; 230 \pm 10^{\circ} \mathrm{C}, 2 \pm 0,5 \mathrm{~s}$.
IEC 68-2-1, test Aa; $96 \mathrm{~h},-25^{\circ} \mathrm{C}$.
IEC 68-2-2, test $\mathrm{Ba} ; 96 \mathrm{~h},+100^{\circ} \mathrm{C}$.
IEC 68-2-30, test $\mathrm{Db} ; 21$ days, $+40^{\circ} \mathrm{C}$.
IEC 68-2-3, test $\mathrm{Ca}, 21$ days.
IEC 68-2-14, test $\mathrm{Na} ; 5$ cycles, $\mathrm{T}_{A}=-25^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{B}}=+100^{\circ} \mathrm{C}$.

ADJUSTABLE LINEARITY CONTROL UNIT

- For Colour Data Graphic Displays and Colour TV

APPLICATION

This linearity control unit is for use in colour monitors and television sets.

DESCRIPTION

The unit consists of a coil, mounted on a Ferroxcube rod, and three Ferroxdure magnets. Two ring-shaped magnets are placed around the Ferroxcube rod, one at the top and one at the bottom. The third magnet is positioned against the Ferroxcube rod opposite the bottom magnet and clamped. It is provided with a square hole to facilitate adjustment of the biasing field and, therefore, the linearity of the line deflection.

MECHANICAL DATA; Dimensions in mm

Fig. 1.

The linearity control units are packed in boxes of 300 pieces.

Mounting

The unit can be mounted on printed-wiring boards by means of its two connection pins, see Fig. 2. To prevent distortion of the magnetic field, no magnetic-conductive materials should approach the magnetic parts nearer than 3 mm . The coils should be shunted with a carbon resistor to damp ringing phenomena; the value of the resistor depends on the line output transformer used (typical value 560Ω).

Fig. 2 Hole pattern for mounting on a printed-wiring board; $\mathrm{e}=2,54 \mathrm{~mm}$. * Hole for bottom adjustment.

ELECTRICAL DATA

When a sawtooth current (without S-correction) of 8,5 A (p-p), frequency 32 kHz , flyback ratio 18%, flows through the linearity control unit, the correction voltage is adjustable between 2,4 and $6,5 \mathrm{~V}$.

Reliability

Maximum cumulative percentage catastrophic failures
after 300 h
after 10000 h
after 30000 h

Fig. 3 Circuit diagram.

ENVIRONMENTAL DATA

Maximum ambient temperature
Flammability of assembly
Flammability of materials
$70^{\circ} \mathrm{C}$
according to IEC 65, clause 14.4
according to UL94, category V-1

TESTS

The linearity control unit withstands the following tests:

Vibration

Bump
Soldering
Cold
Dry heat
Damp heat, cyclic
Damp heat, steady state
Change of temperature

IEC 68-2-6, test Fc, procedure B4;
$10-55-10 \mathrm{~Hz}$, amplitude $0,35 \mathrm{~mm}, 3 \times 30 \mathrm{~min}$.
IEC 68-2-29, test Eb; 40g, 1000 bumps, 3 directions.
IEC 68-2-20, test Ta, first part, method $1 ; 230 \pm 10^{\circ} \mathrm{C}, 2 \pm 0,5 \mathrm{~s}$.
IEC 68-2-1, test Aa; $96 \mathrm{~h},-25^{\circ} \mathrm{C}$.
IEC 68-2-2, test $\mathrm{Ba} ; 96 \mathrm{~h},+100{ }^{\circ} \mathrm{C}$.
IEC 68-2-30, test Db; 21 days, $+40^{\circ} \mathrm{C}$
IEC 68-2-3, test $\mathrm{Ca}, 21$ days.
IEC 68-2-14, test $\mathrm{Na} ; 5$ cycles, $\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{B}}=+100^{\circ} \mathrm{C}$.

AMPLITUDE CONTROL UNITS

AMPLITUDE CONTROL UNIT

- For Monochrome Data Graphic Displays (C64 concept)

MECHANICAL DATA

Fig. 1.

The coil has five pins for mounting on a printed-wiring board. It can be adjusted at the top by means of a trimming key.

Torque for adjustment

Press-through force
$\Delta L / L$ per degree of angular rotation of core

3 to 40 mNm
$\geqslant \quad 30 \mathrm{~N}$
typ. $2,5 \times 10^{-4}$

Mounting

Fig. 2 Hole pattern for mounting on a printed-wiring board (solder side).

ELECTRICAL DATA

Inductance

L_{1-4}	125 to $290 \mu \mathrm{H}^{*}$
$\mathrm{~L}_{2-3}$	65 to $20 \mu \mathrm{H}^{* *}$
$\mathrm{~L}_{2-5}$	$16,3 \mu \mathrm{H} \pm 10 \%^{*}$
esistance (d.c.)	
R_{4-1}	\leqslant
R_{2-3}	$\leqslant 0,58 \Omega$

Current
11-4
12-5
I2-3
Operating voltage
V_{1-4} (flyback)
V_{2-5} and V_{2-3} (sawtooth)
Maximum voltage between windings $1-4$ and 2-3
Operating frequency
Temperature coefficient at 20 to $100{ }^{\circ} \mathrm{C}$
Operating temperature range
Inflammability
$\leqslant 120 \mathrm{~V}_{(p-p)}$
$\leqslant 150 \mathrm{~V}_{(\mathrm{p}-\mathrm{p})}$
$\leqslant 2,5 \mathrm{~A}(\mathrm{p}-\mathrm{p})$ at 15 kHz
$\leqslant 1,3 \mathrm{~A}(\mathrm{p}-\mathrm{p})$ at 64 kHz
$\leqslant 9 \mathrm{~A}(\mathrm{p}-\mathrm{p})$ at $\leqslant 50 \mathrm{kHz}$
$\leqslant 7 \mathrm{~A}(\mathrm{p}-\mathrm{p})$ at 50 to 70 kHz
$\leqslant 4,5 \mathrm{~A}(\mathrm{p}-\mathrm{p})$ at $\leqslant 50 \mathrm{kHz}$
$\leqslant 3,5 \mathrm{~A}(\mathrm{p}-\mathrm{p})$ at 50 to 70 kHz

800 Vp
15 to 64 kHz
approx. $300 \times 10^{-6} / \mathrm{K}$
-25 to $+100{ }^{\circ} \mathrm{C}$
according to UL94 V-1

7295279

Fig. 3 Electrical diagram.

Reliability

Maximum cumulative percentage catastrophic failures, at maximum current, $\mathrm{T}_{\mathrm{amb}}=55+5^{\circ} \mathrm{C}$:
after 300 h
after 1000 h
after 10000 h
$\leqslant 0,01 \%$
after 30000 h

$$
\begin{aligned}
& \leqslant 0,013 \% \\
& \leqslant 0,02 \% \\
& \leqslant 1 \%
\end{aligned}
$$

* At $250 \mathrm{mV}, 1 \mathrm{kHz}$; minimum value, measured with core in position L_{2-3} max.
** At $250 \mathrm{mV}, 1 \mathrm{kHz}$; minimum value, measured with core in position L_{1-4} max.

The coil withstands the following tests:

test	IEC 68 test method	procedure
Bump	Eb	1000 bumps, acceleration $245 \mathrm{~m} / \mathrm{s}^{2}, 6$ directions
Vibration	Fc	$10-55-10 \mathrm{~Hz}$, ampl. $0,35 \mathrm{~mm}, 3$ directions, $30 \mathrm{~min} /$ directions
Shock	Ea	half sine pulse shape, duration 11 ms , acceleration $490 \mathrm{~m} / \mathrm{s}^{2}, 6$ directions, 3 shocks per direction
Resistance to soldering heat	Tb	method 1A
Solderability	Ta	$230 \pm 10{ }^{\circ} \mathrm{C}, 2 \pm 0,5 \mathrm{~s}$
Robustness of terminations	U_{a} and U_{b}	
Cold	Ab	-25 ${ }^{\circ} \mathrm{C}, 96 \mathrm{~h}$
Dry heat	Bb	+ $100{ }^{\circ} \mathrm{C}, 96 \mathrm{~h}$
Damp heat, steady state	Ca	21 days, $+40^{\circ} \mathrm{C}, 93 \%$ R.H.
Damp heat, cyclic	Db	21 days, +40 ${ }^{\circ} \mathrm{C}$
Change of temperature	Na	-25 ${ }^{\circ} \mathrm{C},+100{ }^{\circ} \mathrm{C} ; 5$ cycles

AMPLITUDE CONTROL UNIT

- For Monochrome Data Graphic Displays

MECHANICAL DATA

Dimensions in mm

Fig. 1.

The coil has four pins for mounting on a printed-wiring board. It can be adjusted at the top by means of a trimming key.

Torque for adjustment	3 to 40 mNm
Press-through force	$\geqslant 30 \mathrm{~N}$
$\Delta \mathrm{~L} / \mathrm{L}$ per degree of angular rotation of core	typ. $2,5 \times 10^{-4}$

Mounting

$7 Z 95291.1$

Fig. 2 Hole pattern for mounting on a printed-wiring board (solder side)

ELECTRICAL DATA

Inductance
Resistance (d.c.)
Current
Maximum voltage
Operating frequency
Temperature coefficient at 20 to $100^{\circ} \mathrm{C}$
Operating temperature range
Inflammability

36 to $50 \mu \mathrm{H}^{*}$, typ. $43 \mu \mathrm{H}^{*}$
$<0,135 \Omega$
$\leqslant 3,5 \mathrm{~A}(\mathrm{p}-\mathrm{p})$ (sawtooth)
$30 \mathrm{~V}(\mathrm{p}-\mathrm{p})$ (flyback)
16 to 25 kHz
approx. $300 \times 10^{-6} / \mathrm{K}$
-25 to $+100^{\circ} \mathrm{C}$
according to UL94 V-1

7295292
Fig. 4 Electrical diagram.

Reliability

Maximum cumulative percentage catastrophic failures, at maximum current, $\mathrm{T}_{\mathrm{amb}}=55+5^{\circ} \mathrm{C}$:
after 300 h
after 1000 h
after 10000 h
after 30000 h
$\leqslant 0,01 \%$
$\leqslant 0,013 \%$
$\leqslant 0,02 \%$
$\leqslant 1 \%$

The amplitude control withstands the following tests:

test	IEC 68 test method	procedure
Bump	Eb	1000 bumps, acceleration $245 \mathrm{~m} / \mathrm{s}^{2}, 6$ directions
Vibration	Fc	$10-55-10 \mathrm{~Hz}$, ampl. $0,35 \mathrm{~mm}, 3$ directions, $30 \mathrm{~min} /$ directions
Shock	Ea	half sine pulse shape, duration 11 ms , acceleration $490 \mathrm{~m} / \mathrm{s}^{2}, 6$ directions, 3 shocks per direction
Resistance to soldering heat	Tb	method 1A
Solderability	Ta	$230 \pm 10^{\circ} \mathrm{C}, 2 \pm 0,5 \mathrm{~s}$
Robustness of terminations Cold Dry heat	$\begin{aligned} & U_{a} \text { and } U_{b} \\ & \mathrm{Ab} \\ & \mathrm{Bb} \end{aligned}$	$\begin{aligned} & -25^{\circ} \mathrm{C}, 96 \mathrm{~h} \\ & +100^{\circ} \mathrm{C}, 96 \mathrm{~h} \end{aligned}$
Damp heat, steady state	Ca	21 days, $+40^{\circ} \mathrm{C}, 93 \%$ R.H.
Damp heat, cyclic	Db	21 days, $+40^{\circ} \mathrm{C}$
Change of temperature	Na	$-25^{\circ} \mathrm{C}, 100^{\circ} \mathrm{C}, 5$ cycles

LUMINANCE DELAY LINES

LUMINANCE DELAY LINE

QUICK REFERENCE DATA

Delay 270 ns
Dimensions
$30 \times 19 \times 14 \mathrm{~mm}$
Self-extinguishing

APPLICATION

The DL270 is for use in the luminance circuit of colour television receivers.

DESCRIPTION

The delay line consists of two parallel connected coils which are astatically wound to decrease the influence of magnetic fields from other parts of the receiver. The delay line is in a plastic housing. Three pins enable the unit to be soldered directly onto a printed-wiring board.

MECHANICAL DATA

Outlines

Fig. 1.
Mass $\quad 6,5 \mathrm{~g}$

Mounting

The unit can be soldered onto a printed-wiring board pierced with three $1,0+0,1 \mathrm{~mm}$ diameter holes.
Packaging 108 delay lines per box.

ELECTRICAL DATA (Measured at $25^{\circ} \mathrm{C}$)

Delay

Characteristic impedance
Group delay (with respect to $0,5 \mathrm{MHz}$)
at $3,5 \mathrm{MHz}$
at $5,0 \mathrm{MHz}$
Bandwidth at -3 dB
Ripple with 2τ-pulse on pin 2
Breakdown voltage between pins 2 and 3
Permissible temperature range

270 ns $\pm 10 \%$
$0,9 \mathrm{k} \Omega \pm 10 \%$
max. 30 ns
max. 60 ns
5 MHz
max. 2,5\%
min. $50 \vee$ (d.c.)
-25 to $+70^{\circ} \mathrm{C}$

Fig. 2.

The luminance delay line withstands the following tests:

test	according to IEC 68-2 par.		procedure
Climatic			
cold	1	Ab	$-25^{\circ} \mathrm{C}, 96 \mathrm{~h}$
dry heat	2	Bb	$+70{ }^{\circ} \mathrm{C}, 96 \mathrm{~h}$
damp heat cyclic	30	Db	$+40^{\circ} \mathrm{C}, 21$ cycles
damp heat steady state	3	Ca	$+40^{\circ} \mathrm{C}, 21$ days
change of temperature	14	Na	$-25^{\circ} \mathrm{C} /+70^{\circ} \mathrm{C}, 5$ cycles
Mechanical			
vibration sinusoidal	6	Fc	$10-55-10 \mathrm{~Hz}$, amplitude $0,35 \mathrm{~mm}$ 3 perpendicular directions, 0,5 h each
bump	29	Eb	1000 bumps in 6 directions peak acceleration $245 \mathrm{~m} / \mathrm{s}^{2}$
shock	27	Ea	half-sinewave, 11 ms peak acceleration $490 \mathrm{~m} / \mathrm{s}^{2}$ 3 shocks per direction, 6 directions
resistance to soldering heat	20	Tb	method 1A
solderability	20	Ta	first part of method 1 $230 \pm 10^{\circ} \mathrm{C}, 2 \pm 0,5 \mathrm{~s}$
robustness of terminations	21	Ua Ub	tensile 10 N , thrust 2 N 2 bends, 5 N

LUMINANCE DELAY LINE

QUICK REFERENCE DATA

Delay	330 ns
Dimensions	$30 \times 19 \times 14 \mathrm{~mm}$
Self-extinguishing properties	

APPLICATION

The DL330 is for use in the luminance circuit of colour television receivers.

DESCRIPTION

The delay line consists of two parallel connected coils which are astatically wound to decrease the influence of magnetic fields from other parts of the receiver. The delay line is enclosed in a plastic housing. Three pins enable the unit to be soldered directly onto a printed-wiring board.

MECHANICAL DATA

Dimensions in mm

Outlines

$$
\mathrm{e}=2,54 \mathrm{~mm}
$$

Fig. 1.
Mass $\quad 6,5 \mathrm{~g}$

Mounting

The unit can be soldered directly onto a printed-wiring board pierced with three $1,0+0,1 \mathrm{~mm}$ diameter holes.

Packaging 108 delay lines per box.

ELECTRICAL DATA

Measured at $25^{\circ} \mathrm{C}$

Delay
Characteristic impedance
Group delay (with respect to $0,5 \mathrm{MHz}$)
at $3,5 \mathrm{MHz}$
at $5,0 \mathrm{MHz}$
Bandwidth at -3 dB
Ripple with 2τ-pulse on pin 2
Breakdown voltage between pins 2 and 3
Permissible temperature range
$330 \mathrm{~ns} \pm 10 \%$
$1 \mathrm{k} \Omega \pm 10 \%$
$\max .30 \mathrm{~ns}$
max. 60 ns
5 MHz
max. 2,5\%
min. 50 V (d.c.)
-25 to $+70^{\circ} \mathrm{C}$

Fig. 2.

The luminance delay line withstands the following tests:

test	according to IEC 68-2 par.		procedure
Climatic			
cold	1	Ab	$-25^{\circ} \mathrm{C}, 96 \mathrm{~h}$
dry heat	2	Bb	$+70^{\circ} \mathrm{C}, 96 \mathrm{~h}$
damp heat cyclic	30	Db	$+40^{\circ} \mathrm{C}, 21$ cycles
damp heat steady state	3	Ca	$+40^{\circ} \mathrm{C}, 21$ days
change of temperature	14	Na	$-25^{\circ} \mathrm{C} /+70^{\circ} \mathrm{C}, 5$ cycles
Mechanical			
vibration sinusoidal	6	Fc	$10-55-10 \mathrm{~Hz}$, amplitude $0,35 \mathrm{~mm}$ 3 perpendicular directions, $0,5 \mathrm{~h}$ each
bump	29	Eb	1000 bumps in 6 directions peak acceleration $245 \mathrm{~m} / \mathrm{s}^{2}$
shock	27	Ea	half-sinewave, 11 ms peak acceleration $490 \mathrm{~m} / \mathrm{s}^{2}$ 3 shocks per direction, 6 directions
resistance to soldering heat	20	Tb	method 1A
solderability	20	Ta	first part of method 1 $230 \pm 10^{\circ} \mathrm{C}, 2 \pm 0,5 \mathrm{~s}$
robustness of terminations	21	Ua Ub	tensile 10 N , thrust 2 N 2 bends, 5 N

LUMINANCE DELAY LINE

QUICK REFERENCE DATA

Delay	390 ns
Dimensions	$30 \times 19 \times 14 \mathrm{~mm}$
Self-extinguishing properties	

APPLICATION

The DL390 is for use in the luminance circuit of colour television receivers.

DESCRIPTION

The delay line consists of two parallel connected coils which are astatically wound to decrease the influence of magnetic fields from other parts of the receiver. The delay line is enclosed in a plastic housing. Three pins enable the unit to be soldered directly onto a printed-wiring board.

MECHANICAL DATA

Outlines

7285584
Fig. 1.

Mass
$6,5 \mathrm{~g}$

Mounting

The unit can be soldered directly onto a printed-wiring board pierced with three $1,0+0,1 \mathrm{~mm}$ diameter holes.

Packaging 108 delay lines per box.

ELECTRICAL DATA

Measured at $25^{\circ} \mathrm{C}$

Delay
Characteristic impedance
Group delay (with respect to $0,5 \mathrm{MHz}$)
at $3,5 \mathrm{MHz}$
at $5,0 \mathrm{MHz}$
Bandwidth at -3 dB
Ripple with 2τ-pulse on pin 2
Breakdown voltage between pins 2 and 3
Permissible temperature range
$390 \mathrm{~ns} \pm 10 \%$
$1,1 \mathrm{k} \Omega \pm 10 \%$
max. 45 ns
max. 60 ns
5 MHz
max. 3\%
$\min .50 \mathrm{~V}$ (d.c.)
-25 to $+70^{\circ} \mathrm{C}$

Fig. 2.

The luminance delay line withstands the following tests:

test	according to IEC68-2 par.		procedure
Climatic			
cold	1	Ab	$-25^{\circ} \mathrm{C}, 96 \mathrm{~h}$
dry heat	2	Bb	$+70^{\circ} \mathrm{C}, 96 \mathrm{~h}$
damp heat cyclic	30	Db	$+40^{\circ} \mathrm{C}, 21$ cycles
damp heat steady state	3	Ca	$+40^{\circ} \mathrm{C}, 21$ days
change of temperature	14	Na	$-25^{\circ} \mathrm{C} /+70^{\circ} \mathrm{C}, 5$ cycles
Mechanical			
vibration sinusoidal	6	Fc	$10-55-10 \mathrm{~Hz}$, amplitude $0,35 \mathrm{~mm}$ 3 perpendicular directions, $0,5 \mathrm{~h}$ each
bump	29	Eb	1000 bumps in 6 directions peak acceleration $245 \mathrm{~m} / \mathrm{s}^{2}$
shock	27	Ea	half-sinewave, 11 ms peak acceleration $490 \mathrm{~m} / \mathrm{s}^{2}$ 3 shocks per direction, 6 directions
resistance to soldering heat	20	Tb	method 1A
solderability	20	Ta	first part of method 1 $230 \pm 10^{\circ} \mathrm{C}, 2 \pm 0,5 \mathrm{~s}$
robustness of terminations	21	$\begin{aligned} & \text { Ua } \\ & \text { Ub } \end{aligned}$	tensile 10 N , thrust 2 N 2 bends, 5 N

.

LUMINANCE DELAY LINE

QUICK REFERENCE DATA

Delay	470 ns
Dimensions	$30 \times 19 \times 14 \mathrm{~mm}$
Self-extinguishing	

APPLICATION

The DL470 is for use in the luminance circuit or transposer circuit of colour television receivers.

DESCRIPTION

The delay line consists of two parallel connected coils which are astatically wound to decrease the influence of magnetic fields from other parts of the receiver. The delay line is in a plastic housing. Three pins enable the unit to be soldered directly onto a printed-wiring board.

MECHANICAL DATA

Dimensions in mm

Outlines

$$
\mathrm{e}=2,54 \mathrm{~mm}
$$

7285437

Fig. 1.

Mass
 $6,5 \mathrm{~g}$

Mounting

The unit can be soldered onto a printed-wiring board pierced with three $1,0+0,1 \mathrm{~mm}$ diameter holes.
Packaging 108 delay lines per box.

ELECTRICAL DATA (Measured at $25^{\circ} \mathrm{C}$)

Delay
$470 \mathrm{~ns} \pm 10 \%$
Characteristic impedance
Group delay (with respect to $1,0 \mathrm{MHz}$)
at $3,5 \mathrm{MHz}$
at $5,0 \mathrm{MHz}$
Bandwidth at -3 dB
Ripple with 2τ-pulse on pin 2
Breakdown voltage between pins 2 and 3
Permissible temperature range
$1150 \Omega \pm 10 \%$
max. 45 ns
$\max .60 \mathrm{~ns}$
5 MHz
max. 3\%
min. 50 V (d.c.)
-25 to $+70^{\circ} \mathrm{C}$

Fig. 2.

The luminance delay line withstands the following tests:

test	according to IEC 68-2 par.		procedure
Climatic			
cold	1	Ab	$-25^{\circ} \mathrm{C}, 96 \mathrm{~h}$
dry heat	2	Bb	$+70^{\circ} \mathrm{C}, 96 \mathrm{~h}$
damp heat cyclic	30	Db	$+40^{\circ} \mathrm{C}, 21$ cycles
damp heat steady state	3	Ca	$+40^{\circ} \mathrm{C}, 21$ days
change of temperature	14	Na	$-25^{\circ} \mathrm{C} /+70^{\circ} \mathrm{C}, 5$ cycles
Mechanical			
vibration sinusoidal	6	Fc	$10-55-10 \mathrm{~Hz}$, amplitude $0,35 \mathrm{~mm}$ 3 perpendicular directions, $0,5 \mathrm{~h}$ each
bump	29	Eb	1000 bumps in 6 directions peak acceleration $245 \mathrm{~m} / \mathrm{s}^{2}$
shock	27	Ea	half-sinewave, 11 ms peak acceleration $490 \mathrm{~m} / \mathrm{s}^{2}$ 3 shocks per direction, 6 directions
resistance to soldering heat	20	Tb	method 1A
solderability	20	Ta	first part of method 1 $230 \pm 10^{\circ} \mathrm{C}, 2 \pm 0,5 \mathrm{~s}$
robustness of terminations	21	Ua Ub	tensile 10 N , thrust 2 N 2 bends, 5 N

GLASS DELAY LINES AND COMB FILTERS

This chapter includes our standard range of glass delay lines and comb filters. Other specifications can be achieved at customer's request.

DL63

DELAY LINE

QUICK REFERENCE DATA

For receivers up to Brazilian PAL-M standard
Nominal frequency $\quad 3,575611 \mathrm{MHz}$
Phase delay time
63,486 $\mu \mathrm{s}$
Dimensions
$37 \times 7,5 \times 28,5 \mathrm{~mm}$
Self-extinguishing properties

APPLICATION

The DL63 is intended for use in decoder circuits of colour television receivers.

DESCRIPTION

A very thin slab of zero TC glass provided with two transducers is shock-proof mounted in a housing with self-extinguishing properties. Four pins enable the unit to be soldered directly onto a printedwiring board.

MECHANICAL DATA

Outlines

Fig. 1.
Mass $\quad 7 \mathrm{~g}$

Mounting

The unit can be soldered directly onto a printed-wiring board.

Fig. 2 Recommended hole pattern for mounting on a printed-wiring board: $\mathrm{e}=2,54 \mathrm{~mm}$. The tolerance on the distances of the different holes to the 0 -line is $\pm 0,1 \mathrm{~mm}$. Hole diameter is $1,0+0,1 \mathrm{~mm}$.

ELECTRICAL DATA

Measured with the circuit of Fig. 3 at $25^{\circ} \mathrm{C}$ and f_{O} (unless otherwise specified)
Nominal frequency (f_{0})
$3,575611 \mathrm{MHz}$
Phase delay time (τ)
$63,486 \pm 0,005 \mu \mathrm{~s}$
Bandwidth at -3 dB
Insertion loss
from $\leqslant 2,8$ to $\geqslant 4,5 \mathrm{MHz}$

Drift of phase delay from +10 to $+60^{\circ} \mathrm{C}$ (relative to $+25^{\circ} \mathrm{C}$)
typ. 5 ns
Maximum input voltage ($p-p$)
10 V
Spurious signals
3τ signals $\quad \leqslant-22 \mathrm{~dB}$ with respect to 1τ signal
other signals
Phase relation $\varphi_{4-3}-\varphi_{2-1}$ $\leqslant-30 \mathrm{~dB}$ with respect to 1τ signal

Storage temperature range 0°
-40 to $+70^{\circ} \mathrm{C}$

Fig. 3.
Terminations
$\mathrm{R} 1=\mathrm{R} 2=560 \Omega$
$\mathrm{C} 1=20 \mathrm{pF} \quad \mid \quad$ total capacitance of test jig without delay line i.e. wiring capacitance,
$\mathrm{C} 2=30 \mathrm{pF}$ capacitance of coil and extra trimming capacitor.
$\mathrm{L} 1=15,2 \mu \mathrm{H}$
$L 2=14,1 \mu \mathrm{H}$

Application circuit

Fig. 4.
$\left(R_{L} / / Z_{i}\right)=560 \Omega$
$\mathrm{C} 1, \mathrm{C} 2 \quad<30 \mathrm{pF}$ (wiring capacitance and capacitance of the coil)
L1, L2 nominal values depend on values of C 1 and C 2 to produce the reactances:

$$
\begin{aligned}
& \mathrm{X} 1=\frac{\omega_{\mathrm{o}} \mathrm{~L} 1}{1-\omega_{\mathrm{o}}^{2} \mathrm{~L} 1 \mathrm{C} 1}=405 \Omega \\
& \mathrm{X} 2=\frac{\omega_{\mathrm{O}} \mathrm{~L} 2}{1-\omega_{\mathrm{o}}^{2} \mathrm{~L} 2 \mathrm{C} 2}=405 \Omega \\
& \mathrm{f}_{\mathrm{O}}=3,575611 \mathrm{MHz} .
\end{aligned}
$$

Maximum bandwidth is obtained at minimum C 1 and C 2 .
Recommended adjustment range of the coils -19 to $+36 \%$.

DELAY LINE

QUICK REFERENCE DATA

Nominal frequency	$7,5 \mathrm{MHz}$
Phase delay time	$64,4 \mu \mathrm{~s}$
Dimensions	$37 \times 7,5 \times 28,5 \mathrm{~mm}$
Self-extinguishing properties	.

APPLICATION

The DL680 is for use in video long play equipment.

DESCRIPTION

A very thin slab of zero TC glass provided with two transducers is shock-proof mounted in a housing with self-extinguishing properties. Four pins enable the unit to be soldered directly onto a printedwiring board.

MECHANICAL DATA

Outlines

Fig. 1.

Mass 7 g

Mounting

The unit can be soldered directly onto a printed-wiring board.

Fig. 2 Recommended hole pattern for mounting on a printed-wiring board: $\mathrm{e}=2,54 \mathrm{~mm}$. The tolerance on the distances of the different holes to the 0 -line is $\pm 0,1 \mathrm{~mm}$. Hole diameter is $1,0+0,1 \mathrm{~mm}$.

ELECTRICAL DATA

Measured with the circuit of Fig. 3 at $25^{\circ} \mathrm{C}$ and f_{O} (unless otherwise specified)
Nominal frequency (f_{0})
$7,5 \mathrm{MHz}$
Phase delay time (τ)
Bandwidth at -3 dB
Insertion loss
Drift of phase delay from +10 to $+60^{\circ} \mathrm{C}$
(relative to $+25^{\circ} \mathrm{C}$)
Maximum input voltage ($p-p$)
$64,4 \pm 0,05 \mu \mathrm{~s}$
from $\leqslant 5,5$ to $\geqslant 8,5 \mathrm{MHz}$
$\leqslant 17 \mathrm{~dB}$

Spurious signals
3τ signals $\quad \leqslant-20 \mathrm{~dB}$ with respect to 1τ signal
other signals
Storage temperature range
$\leqslant-30 \mathrm{~dB}$ with respect to 1τ signal -40 to $+70^{\circ} \mathrm{C}$

Fig. 3.

Terminations

$\mathrm{R} 1=\mathrm{R} 2=150 \Omega$
$\mathrm{C} 1=20 \mathrm{pF}$ | total capacitance of test jig without delay-line i.e. wiring capacitance, capacitance of coil
$\mathrm{C} 2=20 \mathrm{pF}$, and extra trimming capacitor.
$L 1=2,0 \mu \mathrm{H}$
$L 2=2,0 \mu \mathrm{H}$

DELAY LINE

QUICK REFERENCE DATA

For receivers up to European PAL standard
Nominal frequency $\quad 4,433619 \mathrm{MHz}$
Phase delay time
Dimensions
$37 \times 7,5 \times 28,5 \mathrm{~mm}$
Self-extinguishing properties

APPLICATION

The DL701 is intended for use in decoder circuits of colour television receivers, or in drop-out circuits of video cassette recorders.

DESCRIPTION

A very thin slab of zero TC glass provided with two transducers is shock-proof mounted in a housing with self-extinguishing properties. Four pins enable the unit to be soldered directly onto a printedwiring board.

MECHANICAL DATA
Dimensions in mm
Outlines

Fig. 1.

Mass $7 g$

Mounting

The unit can be soldered directly onto a printed-wiring board.

Fig. 2 Recommended hole pattern for mounting on a printed-wiring board: $e=2,54 \mathrm{~mm}$. The tolerance on the distances of the different holes to the 0 -line is $\pm 0,1 \mathrm{~mm}$. Hole diameter is $1,0+0,1 \mathrm{~mm}$.

ELECTRICAL DATA

Measured with the circuit of Fig. 3 at $25^{\circ} \mathrm{C}$ and f_{O} (unless otherwise specified)
Nominal frequency (f_{0})
Phase delay time (τ)
$4,433619 \mathrm{MHz}$

Bandwidth at -3 dB

Insertion loss

$63,943 \pm 0,005 \mu \mathrm{~s}$

Drift of phase delay from +10 to $+60^{\circ} \mathrm{C}$ (relative to $+25^{\circ} \mathrm{C}$)
Maximum input voltage ($p-p$) from $\leqslant 3,43$ to $\geqslant 5,23 \mathrm{MHz}$ $9 \pm 3 \mathrm{~dB}$

Spurious signals
3τ signals other signals
Phase relation $\varphi 4$-3 - φ_{2-1}
max. 5 ns, typ. 3 ns
10 V

Storage temperature range
$\leqslant-28 \mathrm{~dB}$ with respect to 1τ signal \leftarrow
$\leqslant-33 \mathrm{~dB}$ with respect to 1τ signal
180°
-40 to $+70{ }^{\circ} \mathrm{C}$

Fig. 3.

Terminations
$\mathrm{R} 1=\mathrm{R} 2=390 \Omega$
$\mathrm{C} 1=20 \mathrm{pF} \quad \mid$ total capacitance of test jig without delay-line i.e. wiring capacitance, $\mathrm{C} 2=30 \mathrm{pF} \quad \int$ capacitance of coil and extra trimming capacitor.
$L 1=8,64 \mu \mathrm{H}$
$L 2=8,10 \mu \mathrm{H}$

Application circuit

Fig. 4.
$\left(R_{L} / / Z_{i}\right)=390 \Omega$
$\mathrm{C} 1, \mathrm{C} 2<30 \mathrm{pF}$ (wiring capacitance and capacitance of the coil)
L1, L2 nominal values depend on values of C1 and C2 to produce the reactances:

$$
\begin{aligned}
\mathrm{X} 1 & =\frac{\omega_{\mathrm{o}} \mathrm{~L} 1}{1-\omega_{\mathrm{o}}{ }^{2} \mathrm{~L} 1 \mathrm{C} 1}=278 \Omega \\
\mathrm{X} 2 & =\frac{\omega_{\mathrm{o}} \mathrm{~L} 2}{1--\omega_{\mathrm{o}}{ }^{2} \mathrm{~L} 2 \mathrm{C} 2}=278 \Omega \\
\mathrm{f}_{\mathrm{O}} & =4,433619 \mathrm{MHz}
\end{aligned}
$$

Maximum bandwidth is obtained at minimum C 1 and C 2 .
Recommended adjustment range of the coils -19 to $+36 \%$.

DELAY LINE

QUICK REFERENCE DATA

For video recorders to European PAL standard

Nominal frequency	$4,433619 \mathrm{MHz}$
Phase delay time	$63,935 \mu \mathrm{~s}$
Dimensions	$37 \times 7,5 \times 28,5 \mathrm{~mm}$

Self-extinguishing properties

APPLICATION

The DL703 is intended for use in dropout circuits of PAL video recorders. It has been designed to have a wider bandwidth at both the -3 dB and -10 dB points.

DESCRIPTION

A very thin slab of zero TC glass provided with two transducers is shock-proof mounted in a housing with self-extinguishing properties. Four pins enable the unit to be soldered directly onto a printedwiring board.

MECHANICAL DATA

Outlines

Fig. 1.

Mass
 7 g

Mounting

The unit can be solderd directly onto a printed-wiring board.

Fig. 2 Recommended hole pattern for mounting on a printed-wiring board: $\mathrm{e}=2,54 \mathrm{~mm}$. The tolerance on the distances of the different holes to the 0 -line is $\pm 0,1 \mathrm{~mm}$. Hole diameter is $1,0+0,1 \mathrm{~mm}$.

ELECTRICAL DATA

Measured with the circuit of Fig. 3 at $25^{\circ} \mathrm{C}$ and f_{o} (unless otherwise specified)

Nominal frequency (f_{0})
Phase delay time (τ)
Bandwidth at -3 dB
Bandwidth at -10 dB
Insertion loss
Drift of phase delay from +10 to $+60^{\circ} \mathrm{C}$ (relative to $+25^{\circ} \mathrm{C}$)

Maximum input voltage ($p-p$)
Spurious signals
3τ signals $\quad \leqslant-28 \mathrm{~dB}$ with respect to 1τ signal
other signals
Phase relation $\varphi_{4-3}-\varphi_{2-1}$
Storage temperature range
$4,433619 \mathrm{MHz}$
$63,935 \pm 0,005 \mu \mathrm{~s}$
from $\leqslant 3,03$ to $\geqslant 5,43 \mathrm{MHz}$
from $\leqslant 2,63$ to $\geqslant 6,23 \mathrm{MHz}$
$9 \pm 3 \mathrm{~dB}$
max. 5 ns , typ. 3 ns
15 V
$\leqslant-26 \mathrm{~dB}$ with respect to 1τ signal
180°
-40 to $+70^{\circ} \mathrm{C}$

Fig. 3.
Terminations
R1 $=$ R2 $=390 \Omega$
$L 1=L 2=13,0 \mu H$

DELAY LINE

QUICK REFERENCE DATA

For receivers up to European PAL and SECAM standard

Nominal frequency	$4,433619 \mathrm{MHz}$
Phase delay time	$63,943 \mu \mathrm{~s}$
Dimensions	$37 \times 7,5 \times 28,5 \mathrm{~mm}$

Self-extinguishing properties

APPLICATION

The DL711 is intended for use in decoder circuits of colour television receivers.

DESCRIPTION

A very thin slab of zero TC glass provided with two transducers is shock-proof mounted in a housing with self-extinguishing properties. Four pins enable the unit to be soldered directly onto a printedwiring board.

MECHANICAL DATA

Outlines

Fig. 1.

Mass
 7 g

Mounting

The unit can be soldered directly onto a printed-wiring board.

Fig. 2 Recommended hole pattern for mounting on a printed-wiring board: $e=2,54 \mathrm{~mm}$. The tolerance on the distances of the different holes to the 0 -line is $\pm 0,1 \mathrm{~mm}$. Hole diameter is $1,0+0,1 \mathrm{~mm}$.

ELECTRICAL DATA

Measured with the circuit of Fig. 3 at $25^{\circ} \mathrm{C}$ and f_{O} (unless otherwise specified)

Nominal frequency (f_{O})
Phase delay time (τ)
Bandwidth at -3 dB
Insertion loss
Drift of phase delay from +10 to $+60^{\circ} \mathrm{C}$ (relative to $+25^{\circ} \mathrm{C}$)

Maximum input voltage ($p-p$)
Spurious signals*
3τ signals
other signals
Phase relation $\varphi_{\text {4-3 - }}$ - φ_{2-1}
Storage temperature range
$4,433619 \mathrm{MHz}$
$63,943 \pm 0,005 \mu \mathrm{~s}$
from $\leqslant 3,43$ to $\geqslant 5,23 \mathrm{MHz}$
$9 \pm 3 \mathrm{~dB}$
max. 5 ns , typ. 3 ns
10 V
$\leqslant-33 \mathrm{~dB}$ with respect to 1τ signal
$\leqslant-33 \mathrm{~dB}$ with respect to 1τ signal
180°
-40 to $+70^{\circ} \mathrm{C}$

Fig. 3.

Terminations

$\mathrm{R} 1=\mathrm{R} 2=390 \Omega$
C1 $=20 \mathrm{pF} \quad \mid$ total capacitance of test jig without delay-line i.e. wiring capacitance,
$\mathrm{C} 2=30 \mathrm{pF} \quad \mid$ capacitance of coil and extra trimming capacitor.
$L 1=8,64 \mu \mathrm{H}$
$L 2=8,10 \mu \mathrm{H}$

* Measured in frequency range 3,9 to $4,75 \mathrm{MHz}$.

Application circuit

Fig. 4.
$\left(R_{L} / / Z_{i}\right)=390 \Omega$
$\mathrm{C} 1, \mathrm{C} 2<30 \mathrm{pF}$ (wiring capacitance and capacitance of the coil)
L1, L2 nominal values depend on values of C1 and C2 to produce the reactances:

$$
\begin{aligned}
& \mathrm{X} 1=\frac{\omega_{\mathrm{O}} \mathrm{~L} 1}{1-\omega_{\mathrm{O}}^{2} \mathrm{~L} 1 \mathrm{C} 1}=278 \Omega \\
& \mathrm{X} 2=\frac{\omega_{\mathrm{o}} \mathrm{~L} 2}{1-\omega_{\mathrm{o}}^{2} \mathrm{~L} 2 \mathrm{C} 2}=278 \Omega \\
& \mathrm{f}_{\mathrm{o}}=4,433619 \mathrm{MHz}
\end{aligned}
$$

Maximum bandwidth is obtained at minimum C 1 and C 2 .
Recommended adjustment range of the coils -19 to $+36 \%$.

DELAY LINES

QUICK REFERENCE DATA

For receivers up to Argentina PAL-N standard
Nominal frequency $\quad 3,582056 \mathrm{MHz}$
Phase delay time
DL720 63,929 $\mu \mathrm{s}$
DL721
64,069 $\mu \mathrm{s}$
DL722
64,069 $\mu \mathrm{s}$
Dimensions
$37 \times 7,5 \times 28,5 \mathrm{~mm}$
Self-extinguishing properties

APPLICATION

These delay lines are for use in decoder circuits of colour television receivers.

DESCRIPTION

A very thin slab of zero TC glass provided with two transducers is shock-proof mounted in a housing with self-extinguishing properties. Four pins enable the unit to be soldered directly onto a printedwiring board.

MECHANICAL DATA

Outlines

Fig. 1.

Mass 7 g

Mounting

The unit can be soldered directly onto a printed-wiring board.

Fig. 2 Recommended hole pattern for mounting on a printed-wiring board: $\mathrm{e}=2,54 \mathrm{~mm}$. The tolerance on the distances of the different holes to the 0 -line is $\pm 0,1 \mathrm{~mm}$. Hole diameter is $\mathbf{1 , 0 + 0 , 1 \mathrm { mm }}$.

Delay lines

ELECTRICAL DATA

Measured with the circuit of Fig. 3 at $25^{\circ} \mathrm{C}$ and f_{O} (unless otherwise specified)

Nominal frequency (f_{0})
Phase delay time (τ)
DL720 $\quad 63,929 \pm 0,005 \mu \mathrm{~s}$
DL721 and DL722
Bandwidth at -3 dB
Insertion loss
Drift of phase delay from +10 to $+60^{\circ} \mathrm{C}$
(relative to $+25^{\circ} \mathrm{C}$)
Maximum input voltage ($\mathrm{p}-\mathrm{p}$)
Spurious signals
3τ signals
other signals
Phase relation $\varphi_{4-3}-\varphi_{2-1}$
DL720
DL721 and DL722
Storage temperature range
$3,582056 \mathrm{MHz}$
$64,069 \pm 0,005 \mu \mathrm{~s}$
from $\leqslant 2,8$ to $\geqslant 4,5 \mathrm{MHz}$
$9 \pm 3 \mathrm{~dB}$
max. 5 ns, typ. 3 ns
10 V
$\leqslant-22 \mathrm{~dB}$ with respect to 1τ signal
$\leqslant-28 \mathrm{~dB}$ with respect to 1τ signal
0^{0}
180°
-40 to $+70^{\circ} \mathrm{C}$

Fig. 3.
Terminations
$R 1=R 2=560 \Omega$ for $D L 720$ and $D L 721 ; R 1=R 2=390 \Omega$ for $D L 722$.
$\mathrm{C} 1=20 \mathrm{pF} \quad \mid$ total capacitance of test jig without delay-line i.e. wiring capacitance,
$\mathrm{C} 2=30 \mathrm{pF} \quad$ capacitance of coil and extra trimming capacitor.
$L 1=15,2 \mu \mathrm{H}$ for DL720; L1 $=8,64 \mu \mathrm{H}$ for DL722.
$L 2=14,1 \mu \mathrm{H}$ for DL721; $L 2=8,10 \mu \mathrm{H}$ for DL722.

Application circuit

Fig. 4.
$\left(R_{L} / / Z_{i}\right)=560 \Omega$ for DL720 and DL721; $\left(R_{L} / / Z_{i}\right)=390 \Omega$ for DL722.
$\mathrm{C} 1, \mathrm{C} 2<30 \mathrm{pF}$ (wiring capacitance and capacitance of the coil)
L1, L2 nominal values depend on values of C1 and C2 to produce the reactances:
$\mathrm{X} 1=\frac{\omega_{0} L 1}{1-\omega_{0}^{2} L 1 C 1}=405 \Omega$ for DL720 and DL721; X1 $=278 \Omega$ for DL722.
$X 2=\frac{\omega_{0} L 2}{1-\omega_{0}^{2} L 2 C 2}=405 \Omega$ for DL720 and DL721; X2 $=278 \Omega$ for DL722.
$f_{0}=3,582056 \mathrm{MHz}$.
Maximum bandwidth is obtained at minimum C 1 and C 2 .
Recommended adjustment range of the coils -19 to $+36 \%$.

DELAY LINE

QUICK REFERENCE DATA

Nominal frequency	$3,579545 \mathrm{MHz}$
Phase delay time	$63,555 \mu \mathrm{~s}$
Dimensions	$37 \times 7,5 \times 28,5 \mathrm{~mm}$
Self-extinguishing properties	

APPLICATION

The DL750 is intended for use as a comb filter in colour television receivers to NTSC standard.

DESCRIPTION

A very thin slab of zero TC glass provided with two transducers is shock-proof mounted in a housing with self-extinguishing properties. Four pins enable the unit to be soldered directly onto a printedwiring board.

MECHANICAL DATA

Outlines

Fig. 1.

Mass $\quad 7 \mathrm{~g}$

Mounting

The unit can be soldered directly onto a printed-wiring board.

Fig. 2 Recommended hole pattern for mounting on a printed-wiring board: $e=2,54 \mathrm{~mm}$. The tolerance on the distances of the different holes to the 0 -line is $\pm 0,1 \mathrm{~mm}$. Hole diameter is $1,0+0,1 \mathrm{~mm}$.

ELECTRICAL DATA

Measured with the circuit of Fig. 3 at $25^{\circ} \mathrm{C}$ and f_{o} (unless otherwise specified)

Nominal frequency (f_{0})
Phase delay time (τ)
Bandwidth at -3 dB
Insertion loss
Drift of phase delay from +10 to $+60^{\circ} \mathrm{C}$ (relative to $+25^{\circ} \mathrm{C}$)
Maximum input voltage (p - p)
Spurious signals
3τ signals $\quad \leqslant-30 \mathrm{~dB}$ with respect to 1τ signal
other signals
Phase relation $\varphi_{4-3}-\varphi_{2-1}$
Storage temperature range
$3,579545 \mathrm{MHz}$
$63,555 \pm 0,005 \mu \mathrm{~s}$
from $\leqslant 2,8$ to $\geqslant 4,5 \mathrm{MHz}$
$9 \pm 3 \mathrm{~dB}$
typ. 5 ns
10 V
$\leqslant-28 \mathrm{~dB}$ with respect to 1τ signal 180°
-40 to $+70^{\circ} \mathrm{C}$

Fig. 3.

Terminations

$\mathrm{R} 1=\mathrm{R} 2=560 \Omega$
$\mathrm{C} 1=20 \mathrm{pF} \mid$ total capacitance of test jig without delay-line i.e. wiring capacitance,
$\mathrm{C} 2=30 \mathrm{pF} \quad$ capacitance of coil and extra trimming capacitor.
$\mathrm{L} 1=15,2 \mu \mathrm{H}$
$L 2=14,1 \mu \mathrm{H}$

Application circuit

Fig. 4.
$\left(R_{L} / / Z_{i}\right)=560 \Omega$
$\mathrm{C} 1, \mathrm{C} 2 \quad<30 \mathrm{pF}$ (wiring capacitance and capacitance of the coil)
L1, L2 nominal values depend on values of C1 and C2 to produce the reactances:

$$
\begin{aligned}
& \mathrm{X} 1=\frac{\omega_{\mathrm{o}} \mathrm{~L} 1}{1-\omega_{\mathrm{o}}^{2} \mathrm{~L} 1 \mathrm{C} 1}=405 \Omega \\
& \mathrm{X} 2=\frac{\omega_{\mathrm{o}} \mathrm{~L} 2}{1-\omega_{\mathrm{o}}^{2} \mathrm{~L} 2 \mathrm{C} 2}=405 \Omega \\
& \mathrm{f}_{\mathrm{O}}=3,579545 \mathrm{MHz} .
\end{aligned}
$$

Maximum bandwidth is obtained at minimum C 1 and C 2 .
Recommended adjustment range of the coils -19 to $+36 \%$.

DELAY LINE

QUICK REFERENCE DATA

For video recorders to NTSC standard
Nominal frequency $\quad 3,579545 \mathrm{MHz}$
Phase delay time
$64 \mu \mathrm{~s}$
Dimensions
$37 \times 7,5 \times 28,5 \mathrm{~mm}$
Self-extinguishing properties

APPLICATION

The DL752 is for use in comb filter circuits of NTSC video recorders.

DESCRIPTION

A very thin slab of zero TC glass provided with two transducers is shock-proof mounted in a housing with self-extinguishing properties. Four pins enable the unit to be soldered directly onto a printedwiring board.

MECHANICAL DATA

Outlines

Fig. 1.
Mass $\quad 7 \mathrm{~g}$

Mounting

The unit can be soldered directly onto a printed-wiring board.

Fig. 2 Recommended hole pattern for mounting on a printed-wiring board; $e=2,54 \mathrm{~mm}$. The tolerance on the distances of the different holes to the O-line is $\pm 0,1 \mathrm{~mm}$. Hole diameter is $1,0+0,1 \mathrm{~mm}$.

ELECTRICAL DATA

Measured with the circuit of Fig. 3 at $25 \pm 5^{\circ} \mathrm{C}$, R.H. $=40$ to 60%.
Nominal frequency (f_{O}) $\quad 3,579545 \mathrm{MHz}$
Central comb frequency (f_{1})
Lower comb frequency (f _-)
Upper comb frequency (f_{+})
Transducer attenuation at f_{0}
Comb depth at f_{1} with respect to f_{0} *

$$
3,57168 \mathrm{MHz}
$$

$3,11538 \mathrm{MHz}$

Comb depth at f_{-}and f_{+}with respect to f_{o}
Phase delay time (τ)
Bandwidth (-3 dB), measured with switch S open
Maximum input voltage ($p-p$)
$4,05944 \mathrm{MHz}$
$10 \pm 3 \mathrm{~dB}$
purious signals at the output, at $\mathrm{f}_{\mathrm{o}}{ }^{*}$
2τ signals with respect to 1τ signal
$\leqslant \quad-20 \mathrm{~dB}$
other signals with respect to 1τ signal
$\leqslant \quad-26 \mathrm{~dB}$
3τ signals with respect to 1τ signal
$\leqslant \quad-18 \mathrm{~dB}$
Operating temperature range $\boldsymbol{\wedge}$
+10 to $+60{ }^{\circ} \mathrm{C}$

Fig. 3 Test circuit.

* Comb depth is adjusted to a maximum at f_{1} by varying direct path resistor $R(0-1 \mathrm{k} \Omega)$.
** Reflections are measured using a 5μ s long input pulse.

4. Over the whole temperature range the comb depth at f_{1} is $\geqslant 18 \mathrm{~dB}$, and at f_{+}and $f_{-} \geqslant 8 \mathrm{~dB}$.

DELAY LINE

QUICK REFERENCE DATA

For video recorders to European PAL standard
Nominal frequency
Phase delay time
$4,433619 \mathrm{MHz}$

Dimensions
Self-extinguishing properties

APPLICATION

The DL872 is for use in comb filter circuits of PAL video recorders.

DESCRIPTION

A very thin slab of zero TC glass provided with a split transducer is shock-proof mounted in a housing with self-extinguishing properties. Four pins enable the unit to be soldered directly onto a printedwiring board.

MECHANICAL DATA

Outlines

Fig. 1.

Mass
 7 g

Mounting

The unit can be soldered directly onto a printed-wiring board.

Fig. 2 Recommended hole pattern for mounting on a printed-wiring board; $e=2,54 \mathrm{~mm}$. The tolerance on the distances of the different holes to the 0 -line is $\pm 0,1 \mathrm{~mm}$. Hole diameter is $1,0+0,1 \mathrm{~mm}$.

ELECTRICAL DATA

Measured with the circuit of Fig. 3 at $25 \pm 5^{\circ} \mathrm{C}$, R.H. $=40$ to 60%.
Nominal frequency (f_{0})
$4,433619 \mathrm{MHz}$
Central comb frequency (f_{1})
Lower comb frequency (f _)
$4,42971 \mathrm{MHz}$

Upper comb frequency (f_{+})
Transducer attenuation at f_{o}
Comb depth at f_{1} with respect to f_{0} *
$3,92971 \mathrm{MHz}$

Comb depth at f_{-}and f_{+}with respect to f_{o}
Phase delay time (τ)
Bandwidth (-3 dB), measured with switch S open
Maximum input voltage ($p-p$)
$4,92971 \mathrm{MHz}$
$18 \pm 3 \mathrm{~dB}$
$\geqslant 20 \mathrm{~dB}$

Spurious signals at the output, at $\mathrm{f}_{\mathrm{o}}{ }^{* *}$
2τ signals with respect to 1τ signal
other signals with respect to 1τ signal
Operating temperature range $\boldsymbol{\Delta}$
$\geqslant 10 \mathrm{~dB}$
$128 \mu \mathrm{~s}$
$\mathrm{f}_{\mathrm{o}} \pm 0,5 \mathrm{MHz}$
10 V
$\leqslant-12 \mathrm{~dB}$
$\leqslant-23 \mathrm{~dB}$
+10 to $+60^{\circ} \mathrm{C}$

Fig. 3 Test circuit.

* Comb depth is adjusted to a maximum at f_{1} by varying direct path resistor $R(1,0$ to $2,4 \mathrm{k} \Omega)$.
** Reflections are measured using a 5μ s long input pulse.
^ Over the whole temperature range the comb depth at f_{1} is $\geqslant 15 \mathrm{~dB}$, and at f_{+}and $f_{-} \geqslant 8 \mathrm{~dB}$.

DELAY LINE

QUICK REFERENCE DATA

For video recorders to Brazilian PAL-M standard
Nominal frequency
$3,575611 \mathrm{MHz}$
Phase delay time
Dimensions
$37 \times 7,5 \times 28,5 \mathrm{~mm}$
Self-extinguishing properties

APPLICATION

The DL875 is for use in comb filter circuits of PAL-M video recorders.

DESCRIPTION

A very thin slab of zero TC glass provided with a split transducer is shock-proof mounted in a housing with self-extinguishing properties. Four pins enable the unit to be soldered directly onto a printedwiring board.

MECHANICAL DATA

Outlines

Fig. 1.

Mass $\quad 7 \mathrm{~g}$

Mounting

The unit can be soldered directly onto a printed-wiring board.

Fig. 2 Recommended hole pattern for mounting on a printed-wiring board; $\mathrm{e}=2,54 \mathrm{~mm}$. The tolerance on the distances of the different holes to the 0 -line is $\pm 0,1 \mathrm{~mm}$. Hole diameter is $1,0+0,1 \mathrm{~mm}$.

ELECTRICAL DATA

Measured with the circuit of Fig. 3 at $25 \pm 5^{\circ}{ }^{\circ} \mathrm{C}$, R.H. $=40$ to 60%.
Nominal frequency (f_{o})
$3,575611 \mathrm{MHz}$

Central comb frequency (f_{1})
$3,57168 \mathrm{MHz}$
Lower comb frequency (f _)
Upper comb frequency (f_{+})
Transducer attenuation at f_{0} $3,07605 \mathrm{MHz}$

Comb depth at f_{1} with respect to $f_{0}{ }^{*}$
$4,06731 \mathrm{MHz}$

Comb depth at f_{-}and f_{+}with respect to f_{o} $18 \pm 3 \mathrm{~dB}$

Phase delay time (τ)
Bandwidth (-3 dB), measured with switch S open
Maximum input voltage ($p-p$) 10 dB $128 \mu \mathrm{~s}$

Spurious signals at the output, at $\mathrm{f}_{\mathrm{O}}{ }^{* *}$
2τ signals with respect to 1τ signal $\leqslant-15 \mathrm{~dB}$
other signals with respect to 1τ signal

$$
\leqslant \begin{array}{r}
-20 \mathrm{~dB} \\
+10 \text { to }+60 \mathrm{oC}
\end{array}
$$

Operating temperature range $\boldsymbol{\Delta}$

Fig. 3 Test circuit.

* Comb depth is adjusted to a maximum at f_{1} by varying direct path resistor $R(2,0-4,5 \mathrm{k} \Omega)$.
** Reflections are measured using a 5μ s long input pulse.
4 Over the whole temperature range the comb depth at f_{1} is $\geqslant 15 \mathrm{~dB}$, and at f_{+}and $f_{-} \geqslant 8 \mathrm{~dB}$.

DELAY LINE

QUICK REFERENCE DATA

For video recorders to Argentinian PAL-N standard
Nominal frequency
Phase delay time
3,582056 MHz

Dimensions
Self-extinguishing properties

APPLICATION

The DL876 is for use in comb filter circuits of PAL-N video recorders.

DESCRIPTION

A very thin slab of zero TC glass provided with a split transducer is shock-proof mounted in a housing with self-extinguishing properties. Four pins enable the unit to be soldered directly onto a printedwiring board.

MECHANICAL DATA

Outlines

Fig. 1.

Mass $\quad 7 \mathrm{~g}$

Mounting

The unit can be soldered directly onto a printed-wiring board.

Fig. 2 Recommended hole pattern for mounting on a printed-wiring board; $e=2,54 \mathrm{~mm}$. The tolerance on the distances of the different holes to the 0 -line is $\pm 0,1 \mathrm{~mm}$. Hole diameter is $1,0+0,1 \mathrm{~mm}$.

ELECTRICAL DATA

Measured with the circuit of Fig. 3 at $25 \pm 5{ }^{\circ} \mathrm{C}$, R.H. $=40$ to 60%.
Nominal frequency (f_{O}) $\quad 3,582056 \mathrm{MHz}$
Central comb frequency (f_{f})
$3,57815 \mathrm{MHz}$
Lower comb frequency (f_)
Upper comb frequency (f_{+})
Transducer attenuation at f_{0} $3,08596 \mathrm{MHz}$

Comb depth at f_{1} with respect to f_{0} *
$4,07034 \mathrm{MHz}$

Comb depth at f_{-}and f_{+}with respect to f_{o} $18 \pm 3 \mathrm{~dB}$

Phase delay time (τ)
Bandwidth (-3 dB), measured with switch S open
Maximum input voltage ($p-p$)
Spurious signals at the output, at $\mathrm{f}_{\mathrm{o}}{ }^{* *}$
2τ signals with respect to 1τ signal
$\leqslant \quad-15 \mathrm{~dB}$
other signals with respect to 1τ signal
Operating temperature range ${ }^{\Delta}$

Fig. 3 Test circuit.

* Comb depth is adjusted to a maximum at f_{1} by varying direct path resistor $R(2,0-5,5 \mathrm{k} \Omega)$.
** Reflections are measured using a $5 \mu \mathrm{~s}$ long input pulse.
- Over the whole temperature range the comb depth at f_{1} is $\geqslant 15 \mathrm{~dB}$, and at f_{+}and $f_{-} \geqslant 8 \mathrm{~dB}$.

COMB FILTER

QUICK REFERENCE DATA

For video recorders to European PAL standard	
Nominal frequency	$4,433619 \mathrm{MHz}$
Phase delay time	$128 \mu \mathrm{~s}$
Dimensions	$37 \times 7,5 \times 28,5 \mathrm{~mm}$
Self-extinguishing properties	

APPLICATION

The CF873 is for use in comb filter circuits of PAL video recorders.

DESCRIPTION

A very thin slab of zero TC glass provided with a split transducer is shock-proof mounted in a housing with self-extinguishing properties. The filter incorporates a direct path resistor matched to the glass delay line which gives optimum combing properties. Four pins enable the unit to be soldered directly onto a printed-wiring board.

MECHANICAL DATA

Outlines

7271207.2

Fig. 1.

Mass
 7 g

Mounting

The unit can be soldered directly onto a printed-wiring board.

Fig. 2 Recommended hole pattern for mounting on a printed-wiring board; $\mathrm{e}=2,54 \mathrm{~mm}$. The tolerance on the distances of the different holes to the 0 -line is $\pm 0,1 \mathrm{~mm}$. Hole diameter is $1,0+0,1 \mathrm{~mm}$.

ELECTRICAL DATA

Measured with the circuit of Fig. 3 at $25 \pm 5^{\circ} \mathrm{C}$, R.H. $=40$ to 60%.
Nominal frequency (f_{0})
$4,433619 \mathrm{MHz}$
Central comb frequency (f_{1})
$4,42971 \mathrm{MHz}$
Lower comb frequency (f _)
$3,92971 \mathrm{MHz}$
Upper comb frequency (f_{+})
Transducer attenuation at f_{o}
Comb depth at f_{1} with respect to f_{0}
$4,92971 \mathrm{MHz}$

Comb depth at f_{-}and f_{+}with respect to f_{o}
$18 \pm 3 \mathrm{~dB}$

Phase delay time (τ)
Bandwidth (-3 dB), measured with pin 4 disconnected
Maximum input voltage (p - p)
$\geqslant 20 \mathrm{~dB}$

Spurious signals at the output, at $\mathrm{f}_{\mathrm{o}}{ }^{*}$
2τ signals with respect to 1τ signal
other signals with respect to 1τ signal
$\geqslant 12 \mathrm{~dB}$

Operating temperature range **
$128 \mu \mathrm{~s}$
$\mathrm{f}_{\mathrm{O}} \pm 0,5 \mathrm{MHz}$
10 V
$\leqslant-18 \mathrm{~dB}$
$\leqslant-23 \mathrm{~dB}$
+10 to $+60^{\circ} \mathrm{C}$

Fig. 3 Test circuit.

* Reflections are measured using a 5μ s long input pulse.
** Over the whole temperature range the comb depth at f_{1} is $\geqslant 15 \mathrm{~dB}$, and at f_{+}and $f_{-} \geqslant 8 \mathrm{~dB}$.

DEGAUSSING COILS

DEGAUSSING COILS

- For $220 / 240 \mathrm{~V}$ mains voltage
- Double insulation

APPLICATION

For 14 in and 16 in, 90° colour picture tubes and high resolution data graphic display tubes. One coil asymmetrically mounted on the top and bottom of the cone of the tube, in conjunction with PTC thermistor 2322662 98009, produces a decaying alternating field.
Degaussing coil 312213851860 to be used with 14 in tubes, degaussing coil 312213851850 to be used with 16 in tubes.

MECHANICAL DATA

Dimensions in mm
The coils of aluminium wire are completely sleeved with a flame-retardent foil; the coil ends are connected to pins in a holder. For connecting the coils to the circuit, a cable, length 40 cm , catalogue number 822228936971 is available to special order.

Fig. 1.

ELECTRICAL DATA

Coil resistance
coil 312213851850 (16 in)
$26,3 \Omega \pm 10 \%$
coil 312213851860 (14 in)
$21,7 \Omega \pm 10 \%$

Number of turns coil 312213851850 (16 in) 107
coil 312213851860 (14 in)
97
Test voltage (d.c.)
between interconnected pins and insulation foil 6000 V between interconnected pins and holder 6000 V

Maximum working temperature
$70^{\circ} \mathrm{C}$

DEGAUSSING COILS

- Single insulation

APPLICATION

For $26 \mathrm{in}, 22$ in and $20 \mathrm{in}, 110^{\circ}$ colour picture tubes. Two coils mounted on the top and bottom of the cone of the picture tube produce in conjunction with PTC thermistor 232266298009 a decaying alternating field. The coils have to be connected in such a way that they operate magnetically in series, producing flux lines which flow from the top coil through the picture tube into the bottom coil or vice versa.

MECHANICAL DATA

Dimensions in mm
The coils are completely double sleeved with a flame-retardent foil; to guarantee mains isolation the coil ends are connected to a holder. For connecting the coils to the circuit, a cable, length 40 cm , catalogue number 822228936971 , is available to special order

Fig. 1.

ELECTRICAL DATA

Coil resistance coil 312213855220 (20, 22 in) coil 312213855230 (26 in)
Number of turns coil $312213855220(20,22$ in)
$11,5 \Omega \pm 10 \%$
coil 312213855230 (26 in)
Safety

Maximum working temperature

DEGAUSSING COIL

- For 117 V and $220 / 240 \mathrm{~V}$ mains voltage
- Single coil
- Single insulation

APPLICATION

For 14 in, 90° colour picture tubes and high resolution data graphic display tubes. One coil asymmetrically mounted on the top and bottom of the cone of the tube, in conjunction with PTC thermistor 2322662 98009, produces a decaying alternating field.

MECHANICAL DATA

Dimensions in mm
The coil of aluminium wire is completely sleeved with a flame-retardent foil; the coil ends are connected to pins in a holder. For connecting the coils to the circuit, a cable, length 40 cm , catalogue number 822228936971 is available to special order.

Fig. 1.

ELECTRICAL DATA

Coil resistance $14 \Omega \pm 10 \%$
Number of turns 134
Test voltage (d.c.)
between interconnected pins and insulation foil 6000 V
between interconnected pins and holder 6000 V
Maximum working temperature $70^{\circ} \mathrm{C}$

DEGAUSSING COIL

- For 110 V and $220 / 240 \mathrm{~V}$ mains voltage
- Double insulation

APPLICATION

For 20 in, 90° colour picture tubes and high resolution data graphic display tubes. Two coils mounted on the top and bottom of the cone of the tube, in conjunction with PTC thermistor 232266298009 , produce a decaying alternating field.

MECHANICAL DATA

Dimensions in mm
The coil of aluminium wire is completely sleeved with a flame-retardent foil; the coil ends are connected to pins in a holder. For connecting the coils to the circuit, a cable, length 40 cm , catalogue number 822228936971 is available to special order.

Fig. 1.

ELECTRICAL DATA

Coil resistance
$11,4 \Omega \pm 10 \%$
Number of turns 65
Test voltage (d.c.)
between interconnected pins and insulation foil 6000 V
between interconnected pins and holder
Safety
Maximum working temperature 6000 V
according to IEC 65.10 and UL 1410
$70^{\circ} \mathrm{C}$

DEGAUSSING COILS

- For $220 / 240 \mathrm{~V}$ mains voltage
- Coil 312213856070 with single insulation, coil 312213856170 with double insulation

APPLICATION

For 20 in, 90° colour picture tubes and high resolution data graphic display tubes. One coil asymmetrically mounted on the top and bottom of the cone of the tube, in conjunction with PTC thermistor 2322662 98009, produces a decaying alternating field.

MECHANICAL DATA

Dimensions in mm
The coils of aluminium wire are completely sleeved with a flame-retardent foil; the coil ends are connected to pins in a holder. For connecting the coils to the circuit, a cable, length 40 cm , catalogue number 822228936971 is available to special order.

Fig. 1.

ELECTRICAL DATA

Coil resistance	$19,5 \Omega \pm 10 \%$
Number of turns	120
Test voltage (d.c.)	6000 V
between interconnected pins and insulation foil	6000 V
between interconnected pins and holder	$70^{\circ} \mathrm{C}$

DEGAUSSING COILS

- Double insulation

APPLICATION

For $26 \mathrm{in}, 22$ in and $20 \mathrm{in}, 110^{\circ}$ colour picture tubes. Two coils mounted on the top and bottom of the cone of the picture tube produce in conjunction with PTC thermistor 232266298009 a decaying alternating field. The coils have to be connected in such a way that they operate magnetically in series, producing flux lines which flow from the top coil through the picture tube into the bottom coil or vice versa.

MECHANICAL DATA

Dimensions in mm
The coils are completely double sleeved with a flame-retardent foil; to guarantee mains isolation the coil ends are connected to a holder. For connecting the coils to the circuit, a cable, length 40 cm , catalogue number 822228936971 , is available to special order.

Fig. 1.

ELECTRICAL DATA

Coil resistance
coil 312213856310 (26 in)
coil $312213856320(20,22$ in
coil 312213856320 (20, 22 in)
Number of turns
coil 312213856310 (26 in) 52
coil 312213856320 (20, 22 in) 49
Safety
Maximum working temperature
8,6 $\Omega \pm 10 \%$
$11,5 \Omega \pm 10 \%$

Manum working
according to IEC 65.10 and UL1410
$70^{\circ} \mathrm{C}$

DEGAUSSING COILS

- For $220 / 240 \mathrm{~V}$ mains voltage
- Single insulation

APPLICATION

For 14 in and $16 \mathrm{in}, 90^{\circ}$ colour picture tubes and high resolution data graphic display tubes. One coil asymmetrically mounted on the top and bottom of the cone of the tube, in conjunction with PTC thermistor 2322662 98009, produces a decaying alternating field.

Degaussing coil 312213899840 to be used with 14 in tubes, degaussing coil 312213899850 , to be used with 16 in tubes.

MECHANICAL DATA

Dimensions in mm
The coils of aluminium wire are completely sleeved with a flame-retardent foil; the coil ends are connected to pins in a holder. For connecting the coils to the circuit, a cable, length 40 cm , catalogue number 8222289 36971, is available to special order.

Fig. 1.

ELECTRICAL DATA

Coil resistance	
coil $312213899840(14 \mathrm{in})$	$21,7 \Omega \pm 10 \%$
coil $312213899850(16 \mathrm{in})$	$26,3 \Omega \pm 10 \%$
Number of turns	
coil $312213899840(14 \mathrm{in})$	107
coil $312213899850(16 \mathrm{in})$	6000 V
Test voltage (d.c.)	6000 V
between interconnected pins and insulation foil between interconnected pins and holder	$70^{\circ} \mathrm{C}$

SWITCHED-MODE TRANSFORMER

- Aluminium foil winding
- Mains insulation
- 60 W output power
- $12 \mathrm{~V} / 2 \mathrm{~A}, 5 \mathrm{~V} / 3,5 \mathrm{~A}$ outputs

APPLICATION

This transformer is for use as a flyback switched-mode transformer for monochrome monitors with mains insulation.

MECHANICAL DATA

Dimensions in mm
The magnetic circuit of the transformer comprises two Ferroxcube U-cores with a rectangular leg, and a cylindrical leg on which the windings are situated.
The transformer has 11 pins for mounting on a printed-wiring board.

Fig. 1.

Fig. 2 Hole pattern for mounting on a printed wiring board (solder side).

ELECTRICAL DATA

Inductance, primary (4-6)*
Leakage inductance, primary (4-6)**
Resistance, primary (4-6), at $25^{\circ} \mathrm{C}$
Resistance, secondary, at $25^{\circ} \mathrm{C}$
(15-11)
(14-10)
(13-9)
(2-5)
Transformation ratio ${ }^{\boldsymbol{\Delta}}$
(4-6)/(15-11)
$(4-6) /(14-10)$
(4-6)/(13-9)
(4-6)/(2-5)
Test voltage (d.c.) for 1 min between primary and secondary between windings and core
Mains insulation

Maximum operating temperature
$1,2 \mathrm{mH} \pm 10 \%$
$<45 \mu \mathrm{H}$
$<0,9 \Omega$
$<0,05 \Omega$
$<0,05 \Omega$
$<0,13 \Omega$
$<0,085 \Omega$
$17,5 \pm 5 \%$
$17,5 \pm 5 \%$
6,3 $\pm 5 \%$
$13,45 \pm 5 \%$
5600 V 500 V
according to IEC 65,
14-3-1a, and
UL 1410-1411
$115^{\circ} \mathrm{C}$

* At $\mathrm{f}=1 \mathrm{kHz}, \mathrm{I} \geqslant 100 \mathrm{~mA}$.
** At $\mathrm{f} \geqslant 100 \mathrm{kHz},(13-9)$ short-circuited.
- At $\mathrm{V}_{4-6}=1 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}$.

SWITCHED-MODE TRANSFORMER

- Aluminium foil winding
- Mains insulation
- 55 W output power
- $105 \mathrm{~V} / 0,4 \mathrm{~A}, 25 \mathrm{~V} / 1 \mathrm{~A}, 15 \mathrm{~V} / 0,6 \mathrm{~A}, 6 \mathrm{~V} / 1$ A outputs

APPLICATION

This transformer is for use as a flyback switched-mode transformer for 90° colour TV receivers and colour monitors with mains insulation.

It can be used in conjunction with line output transformer AT2079 (Micro slot).

MECHANICAL DATA

Dimensions in mm
The magnetic circuit of the transformer comprises two Ferroxcube U-cores with a rectangular leg, and a cylindrical leg on which the windings are situated.

The transformer has 13 pins for mounting on a printed-wiring board.

Fig. 1.

Fig. 2 Hole pattern for mounting on a printed wiring board (solder side).

ELECTRICAL DATA

Inductance, primary (10-9)*
Leakage inductance, primary (10-9)**
Resistance, primary (10-9), at $25^{\circ} \mathrm{C}$
Resistance, secondary, at $25^{\circ} \mathrm{C}$
(12-3)
(15-2)
(13-14)
Transformation ratio ${ }^{\wedge}$
(10-9)/(12-3)
$(10-9) /(15-2)$
(10-9)/(13-1)
(10-9)/(13-14)
(10-9)/(8-6)
(10-9)/(6-7)
Test voltage (d.c.) for 1 min
between primary and secondary
between windings and core
Mains insulation

Maximum operating temperature
$1,15 \mathrm{mH} \pm 10 \%$
$\leqslant 55 \mu \mathrm{H}$
$<1 \Omega$
$<0,18 \Omega$
$<0,06 \Omega$
$<1 \Omega$
$4,55 \pm 5 \%$
$12,1 \pm 5 \%$
7,2 $\pm 5 \%$
$1,1 \pm 5 \%$
$17 \pm 5 \%$
6,2 $\pm 5 \%$

5600 V
500 V
according to IEC 65,
14-3-1a, and
UL 1410-1411
$115^{\circ} \mathrm{C}$

[^25]
SWITCHED-MODE TRANSFORMER

- Aluminium foil winding
- Mains insulation
- 120 W or $70 \mathrm{~W}^{*}$ output power
- $145 \mathrm{~V} / 0,4 \mathrm{~A}, 25 \mathrm{~V} / 0,25 \mathrm{~A}, 25 \mathrm{~V} / 1 \mathrm{~A}, 15 \mathrm{~V} / 0,6 \mathrm{~A}, 8 \mathrm{~V} / 1 \mathrm{~A}$ outputs

APPLICATION

This transformer is for use as a flyback switched-mode transformer for 90° and 110° colour TV receivers and colour monitors with mains insulation.

MECHANICAL DATA

Dimensions in mm
The magnetic circuit of the transformer comprises two Ferroxcube ETD-cores with a rectangular leg, and a cylindrical leg on which the windings are situated.

The transformer has 14 pins for mounting on a printed-wiring board.

Fig. 1.
*At mains input voltage 90 to 264 V

Fig. 2 Hole pattern for mounting on a printed wiring board (solder side).

ELECTRICAL DATA

Inductance, primary (6-8)*
Maximum current, primary (6-8)
Leakage inductance, primary (6-8)**
Resistance, primary ($6-8$), at $25^{\circ} \mathrm{C}$
Resistance, secondary, at $25^{\circ} \mathrm{C}$
(11-18)
(10-15)
(12-14)
Transformation ratio ${ }^{\boldsymbol{\Delta}}$
(8-6)/(11-18)
$(8-6) /(10-15)$
(8-6)/(12-16)
(8-6)/(12-14)
(8-6)/(2-4)
(8-6)/(4-3)
Test voltage (d.c.) for 1 min between primary and secondary
between windings and core
Mains insulation

Maximum operating temperature
$1,08 \mathrm{mH} \pm 10 \%$
3 A
$\leqslant 55 \mu \mathrm{H}$
$<0,6 \Omega$
< 0,06 Ω
$<0,05 \Omega$
$<0,3 \Omega$

9,1 $\pm 5 \%$
$25 \pm 5 \%$
$14,4 \pm 5 \%$
$1,7 \pm 5 \%$
$17 \pm 5 \%$
$11,6 \pm 5 \%$

5600 V 500 V
according to IEC 65,
14-3-1a, and
UL 1410-1411
$115{ }^{\circ} \mathrm{C}$

* At $\mathrm{f}=1 \mathrm{kHz}, \mathrm{I} \geqslant 100 \mathrm{~mA}$.
** At $f \geqslant 100 \mathrm{kHz}$, (12-14) short-circuited.
- At $\mathrm{V}_{6-8}=1 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}$.

Fig. 5 Application circuit; 90-264 V mains input, 70 W output power.

SWITCHED-MODE TRANSFORMER

- Aluminium foil winding
- Mains insulation
- 120 W output power
- $145 \mathrm{~V} / 0,4 \mathrm{~A}, 105 \mathrm{~V} / 0,4 \mathrm{~A}, 25 \mathrm{~V} / 0,11 \mathrm{~A}, 18 \mathrm{~V} / 0,7 \mathrm{~A}, 8 \mathrm{~V} / 0,2 \mathrm{~A}$ outputs

APPLICATION

This transformer is for use as a flyback switched-mode transformer for 90° and 110° colour TV receivers and colour monitors with mains insulation.

MECHANICAL DATA

Dimensions in mm
The magnetic circuit of the transformer comprises two Ferroxcube ETD-cores with a rectangular leg and a cylindrical leg on which the windings are situated.

The transformer has 15 pins for mounting on a printed-wiring board.

Fig. 1.

Fig. 2 Hole pattern for mounting on a printed wiring board (solder side).

ELECTRICAL DATA

Inductance, primary (7-5)*
Leakage inductance, primary (7-5)**
Resistance, primary (7-5), at $25^{\circ} \mathrm{C}$
Resistance, secondary, at $25^{\circ} \mathrm{C}$
(10-12)
(11-12)
(13-18)
(14-17)
Transformation ratio ${ }^{\mathbf{4}}$
(7-5)/(3-2)
(7-5)/(2-1)
$(7-5) /(12-16)$
(7-5)/(12-11)
$(7-5) /(12-10)$
$(7-5) /(14-17)$
(7-5)/(13-18)
Test voltage (d.c.) for 1 min between primary and secondary between windings and core
Mains insulation

Maximum operating temperature
$1,7 \mathrm{mH} \pm 10 \%$
$<65 \mu \mathrm{H}$
$<0,7 \Omega$
$<0,3 \Omega$
$<0,4 \Omega$
$<0,08 \Omega$
$<0,05 \Omega$
$14,5 \pm 5 \%$
$24,1 \pm 5 \%$
$11,9 \pm 5 \%$
2,2 $\pm 5 \%$
$1,6 \pm 5 \%$
23,5 $\pm 5 \%$
$8,7 \pm 5 \%$

5600 V
500 V
according to IEC 65,
14-3-1a, and
UL 1410-1411
$115{ }^{\circ} \mathrm{C}$

* At $\mathrm{f}=1 \mathrm{kHz}, \mathrm{I} \geqslant 100 \mathrm{~mA}$.
** At $\mathrm{f} \geqslant 100 \mathrm{kHz}$, (10-12) short-circuited.
- At $V_{7-5}=1 \mathrm{~V}, \mathrm{f}=\mathbf{1 k H z}$.

LINE DRIVER TRANSFORMER

- For Colour Data Graphic Displays

APPLICATION

For drive of 1500 V transistors in line deflection and power supply circuits.

MECHANICAL DATA

Dimensions in mm
The magnetic circuit comprises two Ferroxcube U15 cores, grade 3C8. The transformer has four pins for mounting on a printed-wiring board, and a reference pin.

Outlines

Fig. 1.

Mounting

Fig. 2 Hole pattern for mounting on a printedwiring board (component side).

ELECTRICAL DATA

Inductance, L2-1
Resistance, R_{2-1}, at $25^{\circ} \mathrm{C}$
Leakage inductance, L_{3-4}
Maximum permissible current, I_{2-1} (peak value)
Resistance, R_{4-3}, at $25^{\circ} \mathrm{C}$
Voltage ratio, $\mathrm{V}_{2-1} / \mathrm{V}_{4-3}$, at $\mathrm{V}_{2-1}=1 \mathrm{~V}, 1 \mathrm{kHz}$
Test voltage (d.c.) between the windings, and between windings and core
$140 \mathrm{mH} \pm 15 \%^{*}$
$26,5 \Omega \pm 12 \%$
$7,8 \mu \mathrm{H}^{* *}$
40 mA
$0,29 \Omega \pm 12 \%$
$15 \pm 5 \%$
mbient temperature range operating
storage
Inflammability -40 to $+115^{\circ} \mathrm{C}$ according to UL94 V-1

The transformer withstands the following tests:

test	IEC 68 test method	procedure
bump	Eb	1000 bumps, acceleration $245 \mathrm{~m} / \mathrm{s}^{2}, 6$ directions
vibration	Fc	$10-55-10 \mathrm{~Hz}$, ampl. $0,35 \mathrm{~mm}, 3$ directions, $30 \mathrm{~min} /$ direction
damp heat, steady state	Ca	21 days, $40^{\circ} \mathrm{C}, 93 \%$ R.H.
damp heat, cyclic	Db	21 days, $40^{\circ} \mathrm{C}$
change of temperature	Na	$-25^{\circ} \mathrm{C},+100{ }^{\circ} \mathrm{C} ; 5$ cycles
dry heat	Bb	$96 \mathrm{~h},+100^{\circ} \mathrm{C}$
solderability	Ta	$230 \pm 10^{\circ} \mathrm{C}, 2 \pm 0,5 \mathrm{~s}$

Reliability

Maximum cumulative percentage catastrophic failures

after 300 h	$\leqslant 0,01 \%$
after 10000 h	$\leqslant 0,02 \%$
after 30000 h	$\leqslant 1 \%$

[^26]
EAST/WEST CHOKE

- For Colour Data Graphic Displays

APPLICATION

The AT4043/08A is for use as an east/west choke in colour monitors.

MECHANICAL DATA

The magnetic circuit of the choke comprises two Ferroxcube U20 cores. The choke has four pins for mounting on a printed-wiring board.

Outlines
 Dimensions in mm

Fig. 1.

Fig. 2 Hole pattern for mounting on a printedwiring board (component side).

ELECTRICAL DATA

Inductance, L2-3*
Resistance, $\mathrm{R}_{2-3}{ }^{*}$, at $25^{\circ} \mathrm{C}$
Maximum current (peak value)
Maximum working temperature
$\geqslant 2 \mathrm{mH}$; typ. $2,6 \mathrm{mH}$
$0,5 \Omega$
0,7 A
$115{ }^{\circ} \mathrm{C}$

Fig. 3.

Fig. 4 Application circuit.

* Terminals 1 and 4 interconnected.

The choke withstands the following tests:

test	IEC 68 test method	procedure
bump	Eb	1000 bumps, acceleration $245 \mathrm{~m} / \mathrm{s}^{2}, 6$ directions
vibration	Fc	$10-55-10 \mathrm{~Hz}$, ampl. $0,35 \mathrm{~mm}, 3$ directions, 30/min/direction
damp heat, steady state	Ca	21 days, $40^{\circ} \mathrm{C} ; 93 \%$ R.H.
damp heat, cyclic	Db	21 days, $40^{\circ} \mathrm{C}$
change of temperature	Na	$-25^{\circ} \mathrm{C},+100^{\circ} \mathrm{C} ; 5$ cycles
dry heat	Bb	$96 \mathrm{~h},+100^{\circ} \mathrm{C}$
solderability	Ta	$230 \pm 10^{\circ} \mathrm{C}, 2 \pm 0,5 \mathrm{~s}$

Reliability

Maximum cumulative percentage catastrophic failures
after 300 h
$\leqslant 0,01 \%$
after 10000 h
after 30000 h
$\leqslant 0,02 \%$
$\leqslant 1 \%$

UNIVERSAL HORIZONTAL SHIFT TRANSFORMER

- For Colour Data Graphic Displays

APPLICATION

This shift transformer is for use in colour data graphic display monitors.
MECHANICAL DATA
Dimensions in mm
The magnetic circuit comprises two Ferroxcube U25 cores, grade 3C8. The transformer has 10 pins for mounting on a printed-wiring board.

Outlines

Fig. 1.

Mounting

Fig. 2 Hole pattern for mounting on a printed-wiring board (solder side).

ELECTRICAL DATA

Inductance, $\mathrm{L}_{5-1^{*}}$
Resistance, R_{5-1}, at $25^{\circ} \mathrm{C}$
Resistance, R_{10-6}, at $25^{\circ} \mathrm{C}$
Voltage ratio*
$\mathrm{V}_{5-1} / \mathrm{V}_{2-1}$
V_{5-1} / V_{3-1}
$\mathrm{V}_{5-1} / \mathrm{V}_{4-1}$
V_{5-1} / V_{7-6}
$\mathrm{V}_{5-1} / \mathrm{V}_{8-6}$
$\mathrm{V}_{5-1} / \mathrm{V}_{9-6}$
$\mathrm{V}_{5-1} / \mathrm{V}_{10-6}$
Test voltage (d.c.) of winding 1-5
to winding 6-10 and core, for 1 min
Test voltage (d.c.) between winding 6-10 and core, for 1 min
Ambient temperature range
operating
storage
Inflammability
The transformer withstands the following tests:

test	IEC 68 test method	procedure
bump	Eb	1000 bumps, acceleration $245 \mathrm{~m} / \mathrm{s}^{2}, 6$ directions
vibration	Fc	$10-55-10 \mathrm{~Hz}$, ampl. $0,35 \mathrm{~mm}, 3$ directions, damp heat, steady state damp heat, cyclic
change of temperature	Ca	$30 \mathrm{~min} /$ direction
dry heat	Db	21 days, $40^{\circ} \mathrm{C}, 93 \% \mathrm{R} . \mathrm{H}$.
solderability	Na	21 days, $40^{\circ} \mathrm{C}$
	Bb	$-25^{\circ} \mathrm{C},+100^{\circ} \mathrm{C} ; 5$ cycles
	Ta	$96 \mathrm{~h},+100^{\circ} \mathrm{C}$
	$230 \pm 10^{\circ} \mathrm{C}, 2 \pm 0,5 \mathrm{~s}$	

Reliability

Maximum cumulative percentage catastrophic failures

after 300 h	$\leqslant 0,01 \%$
after 10000 h	$\leqslant 0,02 \%$
after 30000 h	$\leqslant 1 \%$

* Measured at $\mathrm{V}_{5-1}=5 \mathrm{~V}, 1 \mathrm{kHz}$.

INPUT CHOKE

- For 110° deflection colour TV in twin switch power pack system
- For $30 \mathrm{~V} / 2 \mathrm{~A}$ audio power
- Mains insulation

APPLICATION

The AT4043/16A is for use as a supply choke in the twin switch power pack system (TSP ${ }^{2}$) for 110° colour TV receivers and colour monitors. It is used in conjunction with mains transformer TS561/2 or TS521B, mains filter choke AT4043/55, current sensing transformer AT4043/46, driver transformer AT4043/17 and diode-split line output transformer AT2077/82.
The secondary winding of the choke can be used for generating the stereo audio power in 110° colour TV receivers, up to $2 \times 15 \mathrm{~W}$.

MECHANICAL DATA

Dimensions in mm
The magnetic circuit comprises two Ferroxcube E42 cores, grade 3C8. The choke has 11 pins for mounting on a printed-wiring board.

Outlines

Fig. 1.

Mounting

7285914
Fig. 2 Hole pattern for mounting on a printed-wiring board (solder side).

ELECTRICAL DATA

Inductance, L1-4* *
Resistance, R_{1-2}
Resistance, R_{2-4}
Resistance, R7-8
Resistance, R9-10
Turns ratio 1-4/7-8
iurns ratio 1-4/9-10
Test voltage (d.c.) of winding 1-4 to winding 7-10 and core for 1 min
Test voltage (d.c.) of winding 7-10 to core for 1 min
Maximum operating temperature
Inflammability
$14 \mathrm{mH} \pm 10 \%$
$0,44 \Omega \pm 12 \%$
$0,98 \Omega \pm 12 \%$
$68 \mathrm{~m} \Omega \pm 12 \%$
$68 \mathrm{~m} \Omega \pm 12 \%$
$27,7 \pm 5 \%$
$27,7 \pm 5 \%$
5600 V
500 V
$115{ }^{\circ} \mathrm{C}$
according to UL94 V-1

Fig. 3.

[^27]The choke withstands the following tests:

test	IEC 68 test method	procedure
bump	Eb	1000 bumps, acceleration $245 \mathrm{~m} / \mathrm{s}^{2}, 6$ directions
vibration	Fc	$10-55-10 \mathrm{~Hz}$, ampl. $0,35 \mathrm{~mm}, 3$ directions,
		$30 \mathrm{~min} /$ direction
damp heat, steady state	Ca	21 days, $40^{\circ} \mathrm{C}, 93 \% \mathrm{R} . \mathrm{H}$.
damp heat, cyclic	Db	21 days, $40^{\circ} \mathrm{C}$
change of temperature	Na	$-25^{\circ} \mathrm{C},+100^{\circ} \mathrm{C} ; 5 \mathrm{cycles}$
dry heat	Bb	$96 \mathrm{~h},{ }^{\circ} 100^{\circ} \mathrm{C}$
solderability	Ta	$230 \pm 10^{\circ} \mathrm{C}, 2 \pm 0,5 \mathrm{~s}$

Reliability

Maximum cumulative percentage catastrophic failures

after 300 h	$\leqslant 0,01 \%$
after 10000 h	$\leqslant 0,02 \%$
after 30000 h	$\leqslant 1 \%$

DRIVER TRANSFORMER

- For 110° deflection colour TV in twin single switch power pack system
- Mains insulation

APPLICATION

The AT4043/17 is for use as a power supply and line driver transformer in the twin switch power pack system (TSP^{2}) for 110° colour TV receivers and colour monitors. It is used in conjunction with mains transformer TS561/2 or TS5621B, mains filter choke AT4043/55, current sensing transformer AT4043/ 46, input choke AT4043/16A and diode-split line output transformer AT2077/82.

MECHANICAL DATA

Dimensions in mm
The magnetic circuit comprises two Ferroxcube U20 cores, grade 3C8. The primary and secondary windings are wound in a two-part coil former with large creepage distances and clearances, which ensure safe insulation between the mains and control circuits. The transformer has six pins for mounting on a printed-wiring board, and one lead (connecting point 7).

Outlines

Fig. 1.

Mounting

Fig. 2 Hole pattern for mounting on a printedwiring board (component side); hole diameter is $1,3+0,1 \mathrm{~mm}$.

ELECTRICAL DATA

Inductance, L5-4
Resistance, R_{5-4}, at $25^{\circ} \mathrm{C}$
Resistance, R_{1-2}, at $25^{\circ} \mathrm{C}$
Resistance, R_{6-7}, at $25^{\circ} \mathrm{C}$
Turns ratio 1-2/5-4
Turns ratio 1-2/6-7
Maximum primary current (peak value)
Test voltage (d.c.) of winding 1-2 to winding 5-4 and core for 1 min

Test voltage (d.c.) of winding 5-4 to core for 1 min
Ambient temperature range
operating
storage
Inflammability
The transformer withstands the following tests:

test	IEC 68 test method	procedure
bump	Eb	1000 bumps, acceleration $400 \mathrm{~m} / \mathrm{s}^{2}, 6$ directions
vibration	Fc	$10-55-10 \mathrm{~Hz}$, ampl. $0,35 \mathrm{~mm} 3$ directions, $30 \mathrm{~min} /$ direction
damp heat, steady state	Ca	21 days, $40^{\circ} \mathrm{C}, 93 \%$, R.H.
damp heat, cyclic	Db	21 days, $40^{\circ} \mathrm{C}$
change of temperature	Na	$-25^{\circ} \mathrm{C},+85^{\circ} \mathrm{C} ; 5$ cycles
dry heat	Bb	$96 \mathrm{~h},+100^{\circ} \mathrm{C}$
Solderability	Ta	$230 \pm 10^{\circ} \mathrm{C}, 2 \pm 0,5 \mathrm{~s}$

Reliability

Maximum cumulative percentage catastrophic failures

after 300 h	$\leqslant 0,01 \%$
after 10000 h	$\leqslant 0,02 \%$
after 30000 h	$\leqslant 1 \%$

[^28]
LINE DRIVER/D.C. SHIFT TRANSFORMER

APPLICATION

This line driver, or d.c. shift, transformer, is for all transistor colour television receivers and monochrome data graphic display monitors.

MECHANICAL DATA

Dimensions in mm
The magnetic circuit comprises two Ferroxcube U20 cores, grade 3C8. The transformer has four connecting pins and a location pin for mounting on a printed-wiring board.

Outlines

Fig. 1.

Mounting

$$
\mathrm{e}=2,54 \mathrm{~mm}
$$

Fig. 2 Hole pattern for mounting on a printed-wiring board, hole diameter $1,3+0,1 \mathrm{~mm}$.

ELECTRICAL DATA

Inductance primary (1-4)
Leakage inductance secondary (2-3)*
Resistance secondary (2-3) at $25^{\circ} \mathrm{C}$
Transformation ratio 4-1/2-3
Maximum working temperature
$370 \mathrm{mH} \pm 12 \%$
$14 \mu \mathrm{H} \pm 20 \%$
0,35 Ω
31: 1
$100^{\circ} \mathrm{C}$

* Primary short circuited.

SWITCHED-MODE DRIVER TRANSFORMER
 with mains isolation

APPLICATION

The transformer AT4043/45 has been designed for use as a driver transformer in the synchronous power pack system for colour tv receivers with mains isolation. It is used in conjunction with current sensing transformer AT4043/46 and mains transformer TS561/2.

MECHANICAL DATA

Dimensions in mm
The magnetic circuit of the transformer comprises two Ferroxcube U20-cores. Two separate coil formers guarantee the required isolation between primary and secondary. The transformer is provided with 6 pins for mounting on a printed-wiring board.

Outlines

Fig. 1.

Mounting

Fig. 2 Hole pattern for mounting on a printed-wiring board; hole diameter $1,3+0,1 \mathrm{~mm}$. Viewed from the component side.

ELECTRICAL DATA

Inductance, primary	$(4-6)$	$\geqslant 16 \mathrm{mH}^{*}$
Resistance at $25^{\circ} \mathrm{C}$	$(4-6)$	$2 \Omega \pm 12 \%$
Leakage inductance, secondary	$(1-3)$	$\leqslant 6 \mu \mathrm{H}^{* *}$
Resistance at $25^{\circ} \mathrm{C}$	$(1-3)$	$0,05 \Omega \pm 12 \%$
Turns ratio		$5: 1$
Mains isolation	acc. to IEC 65	
Maximum working temperature		$115{ }^{\circ} \mathrm{C}$

Fig. 3.

* Measuring condition: $E=8 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}$.
** Measuring condition (primary short-circuited): $E \leqslant 250 \mathrm{mV}, 0,9 \mathrm{MHz} \leqslant \mathrm{f} \leqslant 1,1 \mathrm{MHz}$.

CURRENT SENSING TRANSFORMER
 with mains isolation

APPLICATION

The transformer AT4043/46 has been designed for use as a sensing transformer in switched-mode power supply circuits.

MECHANICAL DATA

The magnetic circuit of the transformer comprises two Ferroxcube U15-cores. The primary turn is potted in the coil former to guarantee the required isolation. The transformer is provided with 4 pins for mounting on a printed-wiring board.

Outlines
Dimensions in mm

Fig. 1

Mounting

Fig. 2 Hole pattern for mounting on a printed-wiring board; hole diameter $1,3+0,1 \mathrm{~mm}$. Viewed from the component side.

ELECTRICAL DATA

Inductance, secondary
Resistance, secondary, at $25^{\circ} \mathrm{C}$

$(3-4)$	$\geqslant 700 \mathrm{mH}{ }^{*}$
$(3-4)$	$65 \Omega \pm 12 \%$
	$1: 800$
	acc. to IEC 65
	$115^{\circ} \mathrm{C}$

Fig. 3

APPLICATION CIRCUIT

Fig. 4.

[^29]
CURRENT SENSING TRANSFORMER

with mains isolation

APPLICATION

The AT4043/47 is a current sensing transformer in professional switched-mode power supply circuits. It can also be used as a measuring device in many applications.

MECHANICAL DATA

 Dimensions in mmThe ungapped magnetic circuit of the transformer comprises two Ferroxcube U15-cores in grade 3C8. The primary turn is potted in the coil former to guarantee the required isolation. The transformer is provided with 4 pins for mounting on a printed-wiring board.

Outlines

Fig. 1.

Mounting

Fig. 2 Hole pattern for mounting on a printedwiring board; hole diameter $1,3+0,1 \mathrm{~mm}$. Viewed from the component side.

$$
\mathrm{e}=2,54 \mathrm{~mm}
$$

ELECTRICAL DATA

Inductance, secondary
Resistance, secondary, at $25^{\circ} \mathrm{C}$

$$
\begin{array}{ll}
(4-3) & \geqslant 12,5 \mathrm{mH}^{*} \\
(4-3) & 1 \Omega \pm 12 \% \\
& 1 \text { prim., } 100 \text { sec. } \\
& \text { acc. to IEC } 435 \\
& 115^{\circ} \mathrm{C} \\
& \text { acc. to UL94V-1 }
\end{array}
$$

Number of turns
Mains isolation at 5600 V d.c.
Maximum working temperature Inflammability

Fig. 3.

APPLICATION CIRCUIT

	typical values			
I_{p}	V_{o}	$R 1$	t_{p}	droop
A	V	Ω	μs	$\%$
10	1	10	20	3
5	1	22	20	5
2,5	1	39	20	10
2,5	1	39	10	5

Fig. 4.

Fig. 5.

[^30]The transformer withstands the following tests:

test	IEC68 test method	procedure
bump vibration	Eb	1000 bumps, acceleration $40 \mathrm{~g}, 6$ directions freq. $10-55-10 \mathrm{~Hz}$, ampl. $0,75 \mathrm{~mm}, 6$ directions, $30 \mathrm{~min} /$ direction 21 days $40^{\circ} \mathrm{C} ; 93 \% \mathrm{R} . \mathrm{H}$. damp heat, steady state damp heat, cyclic change of temperature dry heat solderability

THYRISTOR TRIGGER AND TRANSISTOR DRIVER TRANSFORMERS

- Mains isolation

APPLICATION

These transformers have been designed for use as thyristor and triac trigger transformers in professional applications where highly reliable primary to secondary voltage isolation is required, and as transistor driver transformers typically for use in switched-mode power supplies.

MECHANICAL DATA

Dimensions in mm
The magnetic circuits of the transformers comprise two Ferroxcube U20 cores in grade 3C8. Type AT4043/48 is ungapped, type AT4043/63 has two $60 \mu \mathrm{~m}$ gap spacers. The primary and secondary windings are wound on a two-part coil former with large creepage and clearance distances which ensure very safe isolation between mains and control circuits. The transformers are provided with pins for mounting on a printed-wiring board.

Outlines

Fig. 1.

Mounting

Fig. 2 Hole pattern for mounting on a printed-wiring board; hole diameter $1,3+0,1 \mathrm{~mm}$. Viewed from the component side.

Fig. 3.

ELECTRICAL DATA (see Fig. 3)

Inductance primary *	$(4-6)$
Resistance at $25^{\circ} \mathrm{C}$	$(4-6)$
Inductance, secondary	$(1-3)$
Resistance at $25^{\circ} \mathrm{C}$	$(1-3)$

Leakage inductance primary, secondary short-circuited *
Leakage inductance secondary, primary short-circuited *

Turns ratio 4-6/3-1
-haximum Et product
Maximum primary current (r.m.s.) for non-simultaneous switching
Test voltage (d.c.) of winding 1-3 to winding 4-6 and core for 1 min

Test voltage (d.c.) of winding 4-6 to core for 1 mm
Ambient temperature range operating storage
Inflammability

AT4043/48	AT4043/63
$\geqslant 6 \mathrm{mH}$	$\geqslant 1,9 \mathrm{mH}$
$0,9 \Omega \pm 12 \%$	$0,9 \Omega \pm 12 \%$
$0,66 \mathrm{mH}$	$0,22 \mathrm{mH}$
$0,05 \Omega \pm 12 \%$	$0,05 \Omega \pm 12 \%$

$\leqslant 60 \mu \mathrm{H}$
$\leqslant 6 \mu \mathrm{H}$
3/1
1 mWb

1 A

5600 V
500 V
-25 to $+80^{\circ} \mathrm{C}$
-40 to $+100^{\circ} \mathrm{C}$
acc. to UL94 V-1

[^31]Thyristor trigger and transistor driver transformers

Environmental tests

The transformers withstand the following tests:

test	IEC68 test method	procedure
bump	Eb	1000 bumps, acceleration $40 \mathrm{~g}, 6$ directions
vibration	Fc	freq. $10-55-10 \mathrm{~Hz}$, ampl. $0,75 \mathrm{~mm} 3$ directions, $30 \mathrm{~min} /$ direction
damp heat, steady state	Ca	21 days, $40^{\circ} \mathrm{C}, 93 \%$ R.H.
damp heat, cyclic	Db	21 days, $40^{\circ} \mathrm{C}$
change of temperature	Na	$-25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}, 5$ cycles
dry heat	Bb	$16 \mathrm{~h},+125^{\circ} \mathrm{C}$
solderability	T	$230 \pm 10^{\circ} \mathrm{C}, 2 \pm 0,5 \mathrm{~s}$

APPLICATION CIRCUITS

Type AT4043/48 used as a thyristor trigger transformer. This transformer is suitable for triggering all our thyristors and triacs.
Typical operating conditions:

Rise time
Pulse duration
Duty factor
Trigger peak current
$\leqslant 0,5 \mu \mathrm{~s}$
$15 \mu \mathrm{~s}$
0,25
750 mA

Fig. 4 Typical circuit.

Type AT4043/48 or type AT4043/63 as a transistor driver transformer.

Fig. 5 Typical circuit.

Typical operating conditions:

AT4043/48 frequency kHz	I_{dc}	$\mathrm{I}_{\mathrm{B} 1}$	$\mathrm{I}_{\mathrm{B} 2}$
20	mA	A	A
50	160	0,9	0,4
$\mathrm{AT} 4043 / 63$ frequency kHz	I_{dc}	$\mathrm{I}_{\mathrm{B} 1}$	$\mathrm{I}_{\mathrm{B} 2}$
20	mA	A	A
20	310	1,5	1,0
50	290	1,2	1,0

Fig. $6 \frac{\mathrm{t}}{\mathrm{T}}=0,4$.

POWER PACK SYSTEM SUPPLY CHOKE

- For Colour Television

APPLICATION

The DT4043/52A is for use as a supply choke in a power pack system for colour TV receivers. It is used in conjunction with mains transformer TS61/2, mains filter choke AT4043/55, current sensing transformer AT4043/46, line choke AT4043/53 and synchronous power pack transformer AT2076/70A.

MECHANICAL DATA

Dimensions in mm
The magnetic circuit comprises two Ferroxcube U25 cores, grade 3C8. The choke has 10 pins ($\phi 1+0,1 \mathrm{~mm}$, length $4,5 \pm 0,5 \mathrm{~mm}$) for mounting on a printed-wiring board. The maximum height of the choke is 36 mm .

Mounting

Fig. 1 Hole pattern for mounting on a printed-wiring board, viewed from the solder side.

ELECTRICAL DATA

Inductance, L8-2
Resistance, R8-2
Maximum peak current
Maximum working temperature
Flammability
$9 \mathrm{mH} \pm 10 \%$
$2,3 \Omega \pm 12 \%$
1,4 A
$115{ }^{\circ} \mathrm{C}$
according to UL94, category V-1

Fig. 2.

POWER PACK SYSTEM LINE CHOKE

for colour television

APPLICATION

The AT4043/53 has been designed for use as a line choke in a power pack system in conjunction with mains transformer TS561/2, power pack transformer AT2076/70A, etc. (see data on relevant transformer).

MECHANICAL DATA

Dimensions in mm
The magnetic circuit of the line choke comprises two Ferroxcube U-cores. The unit is provided with pins for mounting on a printed-wiring board.

Outlines

Fig. 1.

Mounting

Fig. 2 Hole pattern for mounting on a printed-wiring board, viewed from component side. Hole diameter $1,3+0,1 \mathrm{~mm}$.

ELECTRICAL DATA

Inductance (1-2)*	$12 \mathrm{mH} \pm 10 \%$
Resistance (1-2)	$9,2 \Omega \pm 10 \%$
Maximum peak current (1-2)	525 mA
Turns ratio 1-3/1-2	0,32
Maximum working temperature	$115^{\circ} \mathrm{C}$
Inflammability	$\mathrm{UL} 94 \mathrm{~V}-1$
Corona test voltage at 70 kHz	1700 V peak

7279526

Fig. 3.

With the choke connected in the line timebase circuit with deflection unit AT1270, AT1260 or AT1250:

Deflection current p-p	$5,35 \mathrm{~A}$
Flyback time	$11,5 \mu \mathrm{~s}$
BU208A	
V CEM $^{\text {IC }}$	1150 V
I	$3,1 \mathrm{~A}$

With deflection unit AT1035/00:

Deflection current p-p	$2,85 \mathrm{~A}$
Flyback time	$11,6 \mu \mathrm{~s}$
BU205 or BU208A	
V CEM $^{\text {IC }}$	1000 V
C 2	$1,7 \mathrm{~A}$

[^32]
APPLICATION CIRCUITS

Fig. 4 Circuit for 110° deflection.

Fig. 5 Circuit for 90° deflection.

MAINS FILTER CHOKE FOR 1,5 A rms

APPLICATION

The AT4043/55 has been designed for use in consumer and professional equipment as part of the filter network in the power supply.

MECHANICAL DATA

The magnetic circuit of the filter choke comprises two Ferroxcube U25 cores. The unit is provided with four pins for mounting on a printed-wiring board.

Outlines

Dimensions in mm

Fig. 1.

Fig. 2 Hole pattern for mounting on a printed-wiring board. Viewed from the solder side. The windings may be interchanged because the coil is symmetrical.

Marking

The catalogue number is printed on the Ferroxcube core.

ELECTRICAL DATA

Inductance, $L_{1-2}=L_{3-4}$	$\geqslant 25 \mathrm{mH}$
Resistance, $R_{1-2}=R_{3-4}$, at $25{ }^{\circ} \mathrm{C}$	$0,5 \Omega$
Leakage inductance	
$L_{s(1-2)}, L_{3-4}$ short-circuited	$0,65 \mathrm{mH}$
$L_{s(3-4),} L_{1-2}$ short-circuited	$0,65 \mathrm{mH}$
Capacitance	37 pF
Maximum current (r.m.s.)	2 A
Maximum working temperature	$115{ }^{\circ} \mathrm{C}$

Fig. 3.

Fig. 4 Insertion loss measured in the 60Ω circuit of Fig. 5.

Fig. 5
$\mathrm{C} 1=\mathrm{C} 3=\mathrm{C} 4=2200 \mathrm{pF}, 250 \mathrm{~V}$. $\mathrm{C} 2=0,47 \mu \mathrm{~F}, 250 \mathrm{~V}$.

LINE DRIVER TRANSFORMER

- For Monochrome Data Graphic Displays

APPLICATION

This transformer has been designed for use in monochrome monitors. The required supply voltage is 12 V . The transformer is used in conjunction with deflection unit AT1071/03 or AT1074, lineoutput transformer AT2102/02, and linearity control unit AT4036/00A.

MECHANICAL DATA

Dimensions in mm
The magnetic circuit of the transformer comprises two Ferroxcube U-cores. The unit is provided with pins for mounting on a printed-wiring board.

Fig. 1 Line driver transformer AT4043/56.

Fig. 2 Hole pattern for mounting on a printedwiring board (component side).

ELECTRICAL DATA

Inductance (primary, 1-2)	$5,8 \mathrm{mH} \pm 15 \%$
Inductance (secondary)	$\leqslant 10 \mu \mathrm{H}$
Transformation ratio	$4: 1$
Maximum operating temperature	$95^{\circ} \mathrm{C}$

Application circuit

Fig. 3 Circuit diagram.

Fig. 4.

LINE DRIVER TRANSFORMER

- For Monochrome Data Graphic Displays

APPLICATION

This transformer has been designed for use in monochrome monitors. The required supply voltage is 24 V . The transformer is used in conjunction with deflection unit AT1038/40A, line-output transformer AT2102/04C and linearity control unit AT4042/08A.

MECHANICAL DATA

Dimensions in mm
The magnetic circuit of the transformer comprises two Ferroxcube U-cores. The unit is provided with pins for mounting on a printed-wiring board.

Fig. 1 Line driver transformer AT4043/59.

Fig. 2 Hole pattern for mounting on a printedwiring board (component side). Hole diameter $1,3+0,1 \mathrm{~mm} . e=2,54 \mathrm{~mm}(0,1 \mathrm{in})$.

ELECTRICAL DATA

Inductance (primary, 1-2)
Leakage inductance (secondary)
Transformation ratio
Maximum operating temperature
$6,1 \mathrm{mH}$
$12 \mu \mathrm{H} \pm 15 \%$
4,18: 1
$95^{\circ} \mathrm{C}$

Application circuit

Fig. 3 Circuit diagram.

Fig. 4.

E/W INJECTION COIL

- For colour Television

APPLICATION

This injection coil is for the line deflection output stage of the $45 A X$ system.
MECHANICAL DATA
Dimensions in mm
The magnetic circuit of the injection coil comprises two Ferroxcube U15-cores. The coil has four pins for mounting on a printed-wiring board.

Outlines

Fig. 1.

Mounting

Fig. 2 Hole pattern for mounting on a printed-wiring board (component side).

ELECTRICAL DATA

Inductance *
Resistance
Maximum current (r.m.s. value)
Maximum working temperature

Fig. 3.

* Measuring conditions: $\mathrm{E}=3,3 \mathrm{~V} ; \mathrm{f}=1000 \mathrm{~Hz}$.

LINE DRIVER TRANSFORMER

- For Monochrome Data Graphic Displays

APPLICATION

This transformer has been designed for use in monochrome monitors. The required supply voltage is 12 V . The transformer is used in conjunction with deflection unit AT1071/03, line-output transformer AT2102/02, and linearity control unit AT4036/00A.

MECHANICAL DATA

Dimensions in mm
The magnetic circuit of the transformer comprises two Ferroxcube U-cores. The unit is provided with pins for mounting on a printed-wiring board.

Fig. 1 Line driver transformer AT4043/64.

Fig. 2 Hole pattern for mounting on a printedwiring board (component side). Hole diameter
 $1,3+0,1 \mathrm{~mm} . e=2,54 \mathrm{~mm}(0,1 \mathrm{in})$.

ELECTRICAL DATA

Inductance (primary, 1-2)	$1,2 \mathrm{mH}$
Leakage inductance (secondary)	$5 \mu \mathrm{H} \pm 10 \%$
Transformation ratio	$2: 1$
Maximum operating temperature	$95{ }^{\circ} \mathrm{C}$
Application circuit	

Fig. 3 Circuit diagram.

Fig. 4.

DYNAMIC FOCUSING TRANSFORMER

- For Monochrome Data Graphic Displays

APPLICATION

This transformer has been designed to improve the overall picture sharpness of the CRT. It is applied in series with the line coils of the deflection unit to generate a voltage which is fed to the focus electrode.

MECHANICAL DATA

 Dimensions in mmThe magnetic circuit of the transformer comprises two Ferroxcube U20-cores, grade 3C8. The primary and secondary windings are wound on a two-part coil former.

The transformer is provided with 6 pins for mounting on a printed-wiring board.

Outlines

Fig. 1.

Mounting

Fig. 2 Hole pattern for mounting on a printed-wiring board; hole diameter $1,3+0,1 \mathrm{~mm}$. Viewed from the component side.

ELECTRICAL DATA

Inductance, secondary (1-3)*
Resistance, primary (4-6), at $23{ }^{\circ} \mathrm{C}$
Resistance, secondary (1-3), at $23{ }^{\circ} \mathrm{C}$
Voltage ratio $E_{1-3} / E_{4-6}{ }^{* *}$
Maximum permissible current (r.m.s. value)
primary (4-6)
secondary (1-3)
Mains isolation
Breakdown voltage
between winding 1-3 and winding 4-6 or core
between winding 4-6 and core
Maximum working temperature

$\geqslant 1 \mathrm{H}$
$\leqslant 0,05 \Omega$
$\leqslant 44 \Omega$
$60,75 \pm 5 \%$

3 A
0,125 A
according to IEC 65

$$
\begin{aligned}
& \geqslant 5600 \mathrm{~V} \text { (d.c.) } \\
& \geqslant 500 \mathrm{~V} \text { (d.c.) } \\
& 115^{\circ} \mathrm{C}
\end{aligned}
$$

Application circuit

Fig. 4 Application circuit for use with deflection unit AT1038/40A.

[^33]
TESTS AND REQUIREMENTS

The dynamic focusing transformer withstands the following tests.

$\begin{aligned} & \text { IEC } 68-2 \\ & \text { test } \\ & \text { method } \end{aligned}$	name of test	procedure (quick reference)
Ua1	Tensile strength of terminations	
Ub (method 1)	Bending of terminations	
Fc	Vibration	Frequency range $10-55-10 \mathrm{~Hz}$, amplitude $0,35 \mathrm{~mm}, 3$ directions, 30 min per direction.
Eb	Bump	1000 bumps in 6 directions, acceleration 25 g .
Ea	Shock	Half-sine pulse shape, $11 \mathrm{~ms}, 50 \mathrm{~g}, 6$ directions, 3 shocks per direction.
$\begin{aligned} & \mathrm{Ta} \\ & \text { (method 1) } \end{aligned}$	Soldering	Solder temp. $230{ }^{\circ} \mathrm{C}$, dwell time 2 s.
Tb (method 1A)	Resistance to soldering heat	
Bb	Dry heat	96 h at $+100^{\circ} \mathrm{C}$.
Db	Damp heat, cyclic	21 cycles of 24 h at $+40^{\circ} \mathrm{C}$, R.H. 95%.
Ab	Cold	96 h at $-40^{\circ} \mathrm{C}$.
Ca	Damp heat, steady state	21 days.
Na	Rapid change of temperature	5 cycles of $-25^{\circ} \mathrm{C} /{ }^{100}{ }^{\circ} \mathrm{C}$.
	Flammability	UAN-L1082, class b.

BRIDGE COIL

APPLICATION

The AT4043/68 is designed for the horizontal deflection output stage of 110° and 90° colour deflection systems. It is used in conjunction with the three-layer diode-split line output transformer AT2076/51, AT2076/81 or AT2077/81.

MECHANICAL DATA (Dimensions in mm)
The coil is wound on a combination of two Ferroxcube U15-cores. It has four termination pins for mounting through a printed-wiring board.

Outlines

Fig. 1.

Mounting

Fig. 2 Hole pattern for mounting on a printed-wiring board (component side). Hole diameter $1,3+0,1 \mathrm{~mm} . e=2,54 \mathrm{~mm}(0,1 \mathrm{in})$.

ELECTRICAL DATA

Inductance*	$0,52 \mathrm{mH} \pm 10 \%$
Resistance	$\max .0,6 \Omega$
Maximum peak-to-peak voltage	800 V
Maximum peak-to-peak current	$2,9 \mathrm{~A}$
Maximum working temperature	$100^{\circ} \mathrm{C}$

Fig. 3.

* Measuring conditions: $E=0,3 \mathrm{~V} ; \mathrm{f}=1000 \mathrm{~Hz}$.

BRIDGE COIL

- For Colour Data Graphic Displays

APPLICATION

The AT4043/69 is for the horizontal deflection output stage of 90° colour deflection systems. It is used in conjunction with the three-layer diode-split line output transformer AT2076/81 or AT2076/51, driver transformer AT4043/01, shift transformer AT4043/09 and dynamic focusing transformer AT4043/67.

MECHANICAL DATA

The coil is wound on a Ferroxcube $1-15$ core. It has four termination pins for mounting on a printedwiring board.

Outlines

Fig. 1.

Mounting

Fig. 2 Hole pattern for mounting on a printedwiring board (component side).

ELECTRICAL DATA

Inductance *	$1,0 \mathrm{mH} \pm 10 \%$
Resistance	$\operatorname{max.} 1,07 \Omega$
Maximum working temperature	$100^{\circ} \mathrm{C}$

Fig. 3.

* Measuring conditions: $\mathrm{E}=2,7 \mathrm{~V} ; \mathrm{f}=1000 \mathrm{~Hz}$.

INPUT CHOKE

- For single switch power pack system

APPLICATION

The AT4043/81 is for use as a supply choke in the single switch power pack system ($\mathrm{S}^{2} \mathrm{P}^{2}$) for colour TV receivers. It is used in conjunction with mains transformer TS561/2 or TS521B, mains filter choke AT4043/55, current sensing transformer AT4043/46, driver transformer AT4043/82 and diode-split line output transformer AT2076/80.

MECHANICAL DATA

Dimensions in mm
The magnetic circuit comprises two Ferroxcube $U 25$ cores, grade 3C8. The choke has 10 pins ($\phi 1+0,1 \mathrm{~mm}$, length $4,5 \pm 0,5 \mathrm{~mm}$) for mounting on a printed-wiring board. The maximum height of the choke is 36 mm .

Mounting

Fig. 1 Hole pattern for mounting on a printed-wiring board, viewed from the solder side.

ELECTRICAL DATA

Inductance (1-7)
Resistance (1-4)
Resistance (4-7)
Resistance (10-3)
Maximum peak current (1-7)
Maximum peak current (1-4)
Maximum working temperature
Flammability

$25 \mathrm{mH} \pm 10 \%$ *
$1,45 \Omega \pm 10 \%$
$1,85 \Omega \pm 10 \%$
$28 \Omega \pm 10 \%$
0,55 A
1,1 A
$115^{\circ} \mathrm{C}$
according to UL94,
category V 1 .

7285498

Fig. 2.

[^34]
DRIVER TRANSFORMER

- For single switch power pack system
- Mains insulation

APPLICATION

The AT4043/82 is for use as a transistor driver transformer in the single switch power pack system $\left(S^{2} \mathrm{P}^{2}\right)$ for colour TV receivers. It is used in conjunction with mains transformer TS561/2 or TS521B, mains filter choke AT4043/90, current sensing transformer AT4043/46, input choke AT4043/81 and diode-split line output transformer AT2076/80 or AT2077/80.

MECHANICAL DATA

Dimensions in mm
The magnetic circuit comprises two Ferroxcube U20 cores, grade 3C8. The primary and secondary windings are wound on a two-part coil former with large creepage distances and clearances, which ensure safe insulation between the mains and control circuits. The transformer has six pins for mounting on a printed-wiring board.

Outlines

Fig. 1.

Mounting

Fig. 2 Hole pattern for mounting on a printed-wiring board; hole diameter $1,3+0,1 \mathrm{~mm}$. Viewed from the component side.

ELECTRICAL DATA

Inductance, primary (4-6)
Resistance, primary (4-6), at $25^{\circ} \mathrm{C}$
Leakage inductance, secondary (1-3)
Resistance, secondary (1-3)
Transformation ratio
$\geqslant 6,8 \mathrm{mH}^{*}$
$2,6 \Omega \pm 10 \%$
$17 \mu \mathrm{H} \pm 10 \%^{*} *$
$0,11 \Omega \pm 10 \%$

Permissible current (r.m.s. value)
primary (4-6)
secondary (1-3)
Mains isolation
3,24

Breakdown voltage (d.c.)

between secondary (1-3) and primary (4-6) or core $\geqslant 5600 \mathrm{~V}$
between primary (4-6) and core
Maximum working temperature
200 mA
500 mA

Fig. 3.

* Measuring condition: $E=3 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}$.
** Measuring condition (primary short-circuited): $\mathrm{E} \leqslant 250 \mathrm{mV}, 500 \mathrm{kHz} \leqslant \mathrm{f} \leqslant 600 \mathrm{kHz}$.

LINE DRIVER TRANSFORMER

- For Monochrome Data Graphic Displays

APPLICATION

This transformer is for use in monochrome monitors. The required supply voltage is 70 V . The transformer is used in conjunction with deflection unit AT1039/01, line-output transformer AT2076/53 and linearity control unit AT4036/00A.

MECHANICAL DATA

Dimensions in mm
The magnetic circuit of the transformer comprises two Ferroxcube U20-cores. The unit has pins for mounting on a printed-wiring board.

Fig. 1 Line driver transformer AT4043/83.

Fig. 2 Hole pattern for mounting on a printedwiring board (component side). Hole diameter $1,3+0,1 \mathrm{~mm} ; e=2,54 \mathrm{~mm}(0,1 \mathrm{in})$.

7Z65178.2

ELECTRICAL DATA

Inductance (primary, 1-4)	$80 \mathrm{mH} \pm 12 \%$
Leakage inductance (secondary)	$6 \mu \mathrm{H} \pm 15 \%$
Transformation ratio	$12,1: 1$
Maximum operating temperature	$95^{\circ} \mathrm{C}$

Application circuit

Fig. 3 Circuit diagram.

Fig. 4.
Note: Complete description is given in Technical Publication 058: "A full-page data graphic display unit (C62) operating at a line frequency of 32 kHz ".

LINE DRIVER TRANSFORMER

APPLICATION

The transformer AT4043/87 has been designed for all-transistor black/white and colour television sets. In black and white television sets it can be used in the single-transistor (BU205) line-output circuit in conjunction with the line-output transformer AT2048/12; in colour television sets it can be used in the single-transistor (BU208A) line-output circuit in conjunction with the line-output transformer AT2076/30.

MECHANICAL DATA

Dimensions in mm
The magnetic circuit of the transformer comprises two Ferroxcube U-cores. The unit is provided with pins for mounting on a printed-wiring board.

Outlines

Mounting

Hole pattern for mounting on a printed-wiring board; hole diameter $1,3+0,1 \mathrm{~mm}$.

ELECTRICAL DATA

Inductance (primary, 1-4)
Leakage inductance (secondary)*
Transformation ratio 4-1/2-3
Maximum working temperature
$76 \mathrm{mH} \pm 12 \%$
$\leqslant 2,0 \mu \mathrm{H}$
29:1
$100^{\circ} \mathrm{C}$

7266952

* Primary short circuited.

LINE DRIVER TRANSFORMER

- For colour TV ("Two Chip Design")

APPLICATION

This transformer is for use in economic colour TV receivers with 14 or 16 in 90° picture tubes, in conjunction with line-output transformer AT2078/06 and linearity corrector AT4042/90 or AT4042/91.

MECHANICAL DATA

Dimensions in mm
The magnetic circuit of the transformer comprises two Ferroxcube U10-cores. The unit has pins for mounting on a printed-wiring board.

Fig. 1 Line driver transformer AT4043/89.

Fig. 2 Hole pattern for mounting on a printed-wiring board (component side).

ELECTRICAL DATA
Inductance (primary, 1-2)
Transformation ratio
Maximum operating temperature

$$
3,85 \mathrm{mH} \pm 15 \%
$$

5:1

$$
95^{\circ} \mathrm{C}
$$

Fig. 3 Circuit diagram.

MAINS FILTER CHOKE FOR 1,0 A rms

APPLICATION

The AT4043/90 is for use in consumer and professional equipment as a part of the filter network in the power supply.

MECHANICAL DATA

The magnetic circuit of the filter choke comprises two Ferroxcube U20 cores. The choke has four pins for mounting on a printed-wiring board.

Outlines
 Dimensions in mm

Fig. 1.

Fig. 2 Hole pattern for mounting on a printed-wiring board (component side). The windings may be interchanged because the coil is symmetrical.

Marking

The 12-digit catalogue number is printed on the Ferroxcube cores.

ELECTRICAL DATA

Inductance, $L_{1-2}=L_{3-4}$	$\geqslant 28 \mathrm{mH}^{*}$
Resistance, $R_{1-2}=R_{3-4}$, at $25^{\circ} \mathrm{C}$	$1,0 \Omega$
Leakage inductance	
$L_{s(1-2)}, L_{3-4}$ short-circuited	$0,75 \mathrm{mH}$
$\quad L_{s}(3-4), L_{1-2}$ short-circuited	$0,75 \mathrm{mH}$
Maximum current (r.m.s.)	$1,0 \mathrm{~A}$
Maximum working temperature	$115^{\circ} \mathrm{C}$

Fig. 4 Application circuit.
$\mathrm{C} 1=\mathrm{C} 3=\mathrm{C} 4=3300 \mathrm{pF}, 250 \mathrm{~V}$;
$C 2=0,47 \mu \mathrm{~F}, 250 \mathrm{~V}$.
The choke withstands the following tests:

test	IEC 68 test method	procedure
bump	Eb	1000 bumps, acceleration $245 \mathrm{~m} / \mathrm{s}^{2}, 6$ directions
vibration	Fc	$10-55-10 \mathrm{~Hz}$, ampl. $0,35 \mathrm{~mm}, 3$ directions, $30 \mathrm{~min} /$ direction
damp heat, steady state	Ca	21 days, $40{ }^{\circ} \mathrm{C}$; 93% R.H.
damp heat, cyclic	Db	21 days, $40^{\circ} \mathrm{C}$
change of temperature	Na	$-25^{\circ} \mathrm{C},+100^{\circ} \mathrm{C} ; 5$ cycles
dry heat	Bb	$96 \mathrm{~h},+100{ }^{\circ} \mathrm{C}$
solderability	Ta	$230 \pm 10^{\circ} \mathrm{C}, 2 \pm 0,5 \mathrm{~s}$

Reliability

Maximum cumulative percentage catastrophic failures

after 300 h	$\leqslant 0,01 \%$
after 10000 h	$\leqslant 0,02 \%$
after 30000 h	$\leqslant 1 \%$

[^35]
MAINS FILTER CHOKE FOR 0,25 A rms

APPLICATION

The AT4043/91A is for use in consumer and professional equipment as a part of the filter network in the power supply.

MECHANICAL DATA

The magnetic circuit of the filter choke comprises two Ferroxcube U15 cores. The choke has four pins for mounting on a printed-wiring board.

Outlines
 Dimensions in mm

Fig. 1.
Fig. 2 Hole pattern for mounting on a printed-wiring board (component side); $\mathrm{e}=2,54 \mathrm{~mm}$; hole diameter is $1,3+0,1 \mathrm{~mm}$. The windings may be interchanged because the coil is symmetrical.

Marking

The 12-digit catalogue number is printed on the Ferroxcube cores.

ELECTRICAL DATA

Inductance, $\mathrm{L}_{1-2}=\mathrm{L}_{3-4}$
$\geqslant 40 \mathrm{mH}^{*}$
$5,0 \Omega \pm 12 \%$
$1,5 \mathrm{mH}$
$1,5 \mathrm{mH}$
$0,25 \mathrm{~A}$
$115{ }^{\circ} \mathrm{C}$
Leakage inductance
$\mathrm{L}_{s(1-2)}, \mathrm{L}_{3-4}$ short-circuited
$\mathrm{L}_{s(3-4)}$, L1-2 short-circuited
Maximum current (r.m.s.)
Maximum working temperature

Fig. 3.

Fig. 4 Application circuit.
$\mathrm{C} 1=\mathrm{C} 3=\mathrm{C} 4=3300 \mathrm{pF} ; 250 \mathrm{~V}$;
$\mathrm{C} 2=0,47 \mu \mathrm{~F}, 250 \mathrm{~V}$.
The choke withstands the following tests:

test	IEC 68 test method	procedure
bump	Eb	1000 bumps, acceleration $245 \mathrm{~m} / \mathrm{s}^{2}, 6$ directions
vibration	Fc	$10-55-10 \mathrm{~Hz}$, ampl. $0,35 \mathrm{~mm}, 3$ directions, $30 \mathrm{~min} /$ direction
damp, heat, steady state	Ca	21 days, $40^{\circ} \mathrm{C}$; 93\% R.H.
damp heat, cyclic	Db	21 days, $40{ }^{\circ} \mathrm{C}$
change of temperature	Na	$-25^{\circ} \mathrm{C},+100{ }^{\circ} \mathrm{C} ; 5$ cycles
dry heat	Bb	$96 \mathrm{~h},+100^{\circ} \mathrm{C}$
solderability	Ta	$230 \pm 10^{\circ} \mathrm{C} ; 2 \pm 0,5 \mathrm{~s}$

Reliability

Maximum cumulative percentage catastrophic failures

after 300 h	$\leqslant 0,01 \%$
after 10000 h	$\leqslant 0,02 \%$
after 30000 h	$\leqslant 1 \%$

[^36]
MAINS FILTER CHOKE FOR 0,5 A rms

APPLICATION

The AT4043/92 is for use in consumer and professional equipment as a part of the filter network in the power supply.

MECHANICAL DATA

The magnetic circuit of the filter choke comprises two Ferroxcube U15 cores. The choke has four pins for mounting on a printed-wiring board.

Outlines

Dimensions in mm

Fig. 1.
Fig. 2 Hole pattern for mounting on a printed-wiring board (component side); $\mathrm{e}=2,54 \mathrm{~mm}$; hole diameter is $1,3+0,1 \mathrm{~mm}$. The windings may be interchanged because the coil is symmetrical.

Marking

The 12 -digit catalogue number is printed on the Ferroxcube cores.

ELECTRICAL DATA

Inductance, $L_{1-2}=L_{3-4}$	$\geqslant 15 \mathrm{mH}^{*}$
Resistance, $R_{1-2}=R_{3-4}$, at $25^{\circ} \mathrm{C}$	$2,0 \Omega$
Leakage inductance	
$L_{s(1-2),} L_{3-4}$ short-circuited	$0,7 \mathrm{mH}$
$L_{s}(3-4), L_{1-2}$ short-circuited	$0,7 \mathrm{mH}$
Maximum current (r.m.s.)	$0,5 \mathrm{~A}$
Maximum working temperature	$115{ }^{\circ} \mathrm{C}$

Fig. 3.

Fig. 4 Application circuit.
$\mathrm{C} 1=\mathrm{C} 3=\mathrm{C} 4=3300 \mathrm{pF}, 250 \mathrm{~V}$;
$\mathrm{C} 2=0,47 \mu \mathrm{~F}, 250 \mathrm{~V}$.
The choke withstands the following tests:

test	IEC 68 test method	procedure
bump	Eb	1000 bumps, acceleration $245 \mathrm{~m} / \mathrm{s}^{2}, 6$ directions
vibration	Fc	$10-55-10 \mathrm{~Hz}$, ampl. $0,35 \mathrm{~mm}, 3$ directions, $30 \mathrm{~min} /$ direction
damp heat, steady state	Ca	21 days, $40{ }^{\circ} \mathrm{C} ; 93 \%$ R.H.
damp heat, cyclic	Db	21 days, $40^{\circ} \mathrm{C}$
change of temperature	Na	$-25^{\circ} \mathrm{C},+100^{\circ} \mathrm{C} ; 5$ cycles
dry heat	Bb	$96 \mathrm{~h},+100{ }^{\circ} \mathrm{C}$
solderability	Ta	$230 \pm 10^{\circ} \mathrm{C}, 2 \pm 0,5 \mathrm{~s}$

Reliability

Maximum cumulative percentage catastrophic failures

after 300 h	$\leqslant 0,01 \%$
after 10000 h	$\leqslant 0,02 \%$
after 30000 h	$\leqslant 1 \%$

* Measured at $1,6 \mathrm{~V}, 1 \mathrm{kHz}$.

MAINS FILTER CHOKE FOR 1,5 A rms

APPLICATION

The AT4043/93 is for use in consumer and professional equipment as a part of the filter network in the power supply.

MECHANICAL DATA

The magnetic circuit of the filter choke comprises two Ferroxcube U20 cores. The choke has four pins for mounting on a printed-wiring board.

Outlines

Dimensions in mm

Fig. 1.

Fig. 2 Hole pattern for mounting on a printed-wiring board (component side). The windings may be interchanged because the coil is symmetrical.

Marking

The 12 -digit catalogue number is printed on the Ferroxcube cores.

ELECTRICAL DATA

Inductance, $\mathrm{L}_{1-2}=\mathrm{L}_{3-4}$	$\geqslant 12 \mathrm{mH}^{*}$
Resistance, $\mathrm{R}_{1-2}=\mathrm{R}_{3-4}$, at $25^{\circ} \mathrm{C}$	0,4 $\Omega \pm 10 \%$
Leakage inductance	
$\mathrm{L}_{\mathrm{s}(1-2)}, \mathrm{L}_{3-4}$ short-circuited	$0,5 \mathrm{mH}$
$\mathrm{L}_{\mathrm{s}}(3-4), \mathrm{L}_{1-2}$ short-circuited	$0,5 \mathrm{mH}$
Maximum current (r.m.s.)	1,5 A

Test voltage (d.c.) between the windings, and between windings and core

2000 V
Maximum working tepmerature
$115{ }^{\circ} \mathrm{C}$
The choke withstands the following tests:

test	IEC 68 test method	procedure		
bump vibration	Eb	1000 bumps, acceleration $245 \mathrm{~m} / \mathrm{s}^{2}, 6$ directions		
damp heat,			$\quad \mathrm{Fc} \quad$	$10-55-10 \mathrm{~Hz}$, ampl. $0,35 \mathrm{~mm}, 3$ directions,
:---				
steady state				
damp heat, cyclic				
change of temperature dry heat				
solderability				

Reliability

Maximum cumulative percentage catastrophic failures	
after 300 h	$\leqslant 0,01 \%$
after 10000 h	$\leqslant 0,02 \%$
after 30000 h	$\leqslant 1 \%$

[^37]
BRIDGE COIL

APPLICATION

This bridge coil is for the line deflection output stage of the 45AX system.
MECHANICAL DATA
Dimensions in mm
The magnetic circuit comprises two Ferroxcube U20 cores, grade 3C8. The transformer has four connecting pins and a location pin for mounting on a printed-wiring board.

Outlines

Fig. 1.

Mounting

Fig. 2 Hole pattern for mounting on a printed-wiring board (component side).

ELECTRICAL DATA

Inductance (1-4)	$1 \mathrm{mH} \pm 12 \%$	$10-12 \%$
Resistance (1-4) at $25{ }^{\circ} \mathrm{C}$	$0,125 \Omega \pm 12 \%$	
Maximum permissible peak current	$1,3 \mathrm{~A}$	0

Fig. 3.

CE134h

SWITCHED-MODE TRANSFORMER

- For consumer applications, e.g. record players, cassette recorders, television sets.

DESCRIPTION

The magnetic circuit of the transformer comprises two Ferroxcube E12,6-cores. The transformer has 4 pins for mounting on a printed-wiring board.

MECHANICAL DATA
Dimensions in mm

CE134h

ELECTRICAL DATA

catalogue number 311233830910
(1-12) $3,3 \mathrm{mH} \pm 10 \%$
(1-6) 10\%
(1-6) 320 mA
$(1-12)=228$
$(11-3)=16$

500 V

Test voltage (d.c.) between primary and secondary

Approbation

Sets with transformers of this construction are released by Demko, Nemko, Semko, EI, SEV, UL and BSI.

TESTS

The transformer withstands the following tests:

Vibration
Bump
Dry heat
Damp heat, steady state
Damp heat, accelerated
Rapid change of temperature

IEC 68-2-6, test Fc; 10-55-10 Hz, amplitude $0,35 \mathrm{~mm} 3 \times 30 \mathrm{~min}$
IEC $68-2-29$, test $\mathrm{Eb} ; 25 \mathrm{~g}, 4000$ bumps, 6 directions
IEC 68-2-2, test Bb; $96 \mathrm{~h},+125$ OC
IEC 68-2-3, test Ca; 21 days, R.H. 95%
IEC 68-2-4, test Db; $+40{ }^{\circ} \mathrm{C}$, R.H. 95 to 100%
IEC 68-2-14, test $\mathrm{Na} ; 5$ cycles, $\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{B}}=+100^{\circ} \mathrm{C}$

[^38]
SWITCHED-MODE TRANSFORMER

- For consumer applications, e.g. record players, cassette recorders, television sets

DESCRIPTION

The magnetic circuit of the transformer comprises two Ferroxcube E12,6 cores. The transformer has 5 pins for mounting on a printed-wiring board.

8099

CE134v

ELECTRICAL DATA

catalogue number 311233830440
Inductance, primary (1-2)*
Leakage inductance, primary (1-2)
$3 \mathrm{mH} \pm 10 \%$

Maximum current, primary (1-2)
0,2\%

Number of turns
primary (1-2) 220
secondary (10-12) 22
Test voltage (d.c.)
between primary and secondary 1500 V
between primary and core 1500 V

Approbation

Sets with transformers of this construction are released by Demko, Nemko, Semko, EI, SEV, UL and BSI.

TESTS

The transformer withstands the following tests:

Vibration
Bump
Dry heat
Damp heat, steady state
Damp heat, accelerated
Rapid change of temperature

IEC 68-2-6, tests Fc; 10-55-10 Hz, amplitude $0,35 \mathrm{~mm} 3 \times 30 \mathrm{~min}$ IEC 68-2-29, test Eb; 25g, 4000 bumps, 6 directions
IEC 68-2-2, test Bb; 96 h, $+125^{\circ} \mathrm{C}$
IEC 68-2-3, test $\mathrm{Ca} ; 21$ days, R.H. 95%
IEC 68-2-4, test Db; $+40^{\circ} \mathrm{C}$, R.H. 95 to 100%
IEC 68-2-14, test $\mathrm{Na} ; 5$ cycles, $\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{B}}=+100^{\circ} \mathrm{C}$

[^39]
SWITCHED-MODE TRANSFORMER

- For consumer applications, e.g. record players, cassette recorders, television sets.

DESCRIPTION

The magnetic circuit of the transformer comprises two Ferroxcube E12,6-cores. The transformer has 4 pins for mounting on a printed-wiring board.

MECHANICAL DATA

Dimensions in mm

CE137h

ELECTRICAL DATA

Inductance, primary*
Leakage inductance, primary
Maximum current, primary
Number of turns
primary
secondary

Test voltage (d.c.)
between primary and secondary 1500 V
between primary and core 1500 V

Approbation

Sets with transformers of this construction are released by Demko, Nemko, Semko, EI, SEV, UL and BSI.

TESTS

The transformer withstands the following tests:

Vibration
Bump
Dry heat
Damp heat, steady state
Damp heat, accelerated
Rapid change of temperature

IEC 68-2-6, test Fc; 10-55-10 Hz, amplitude $0,35 \mathrm{~mm} 3 \times 30 \mathrm{~min}$ IEC 68-2-29, test Eb; 25g, 4000 bumps, 6 directions
IEC 68-2-2, test Bb; $96 \mathrm{~h},+125^{\circ} \mathrm{C}$
IEC 68-2-3, test Ca; 21 days, R.H. 95\%
IEC 68-2-4, test $\mathrm{Db} ;+40^{\circ} \mathrm{C}$, R.H. 95 to 100%
IEC 68-2-14, test $\mathrm{Na} ; 5$ cycles, $\mathrm{T}_{A}=-25^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{B}}=+100^{\circ} \mathrm{C}$

[^40]
SWITCHED-MODE TRANSFORMER

- For consumer applications, e.g. video recorders, television sets, monitors.

DESCRIPTION

The magnetic circuit of the transformer comprises two Ferroxcube E42/15 cores. The coil is built-up in layers of copper wire, separated from each other by insulation foils. A screen between primary and secondary guarantees the required insulation between the windings.
The transformer has 22 pins for mounting on a printed-wiring board.
MECHANICAL DATA Dimensions in mm

$$
\mathrm{Cu} \text {-side of printed board }
$$

CE410

ELECTRICAL DATA

Inductance, primary*
Leakage inductance, primary
Maximum current, primary
Number of turns
primary
secondary

catalogue number	
311233831070	311233831150 **
(7-5) $0,94 \mathrm{mH} \pm 10 \%$	(5-7) $0,67 \mathrm{mH} \pm 10 \%$
(7-5) 2,1\%	(5-7) 2,1\%
(7-5) 2,03 A	(5-7) 2,5 A
$(2-1)=4$	$(2-1)=5$
$(4-3)=1$	$(4-3)=1$
$(7-5)=34$	$(7-5)=32$
$(20-19)=6$	$(20-19)=6$
$(21-22)=3$	$(21-22)=4$
$(16-18)=5$	$(16-18)=7$
$(15-14)=7$	$(15-14)=16$
$(13-12)=14$	$(13-12)=4$
$60 \square \square 17$	
10	
70	
\{ 14	
5015	
18	
组 16	
$40 \cdot 19$	
100	
絸	
$2 \bigcirc{ }^{2} \mathrm{O}$	

Test voltage (d.c.)

between primary and secondary
between primary and core
Mains insulation

Maximum operating temperature

5600 V
5600 V 5600 V
according to IEC 65 class 2, VDE0860 and UL1411
$115{ }^{\circ} \mathrm{C}$

Approbation

Sets with transformers of this construction are released by Demko, Nemko, Semko, EI, SEV, UL and BSI.

TESTS

The transformer withstands the following tests:

Vibration
Bump
Dry heat
Damp heat, steady state
Damp heat, accelerated
Rapid change of temperature

IEC 68-2-6, test Fc; 10-55-10 Hz, amplitude $0,35 \mathrm{~mm} 3 \times 30 \mathrm{~min}$
IEC 68-2-29, test Eb; 25g, 4000 bumps, 6 directions
IEC 68-2-2, test Bb; $96 \mathrm{~h},+125{ }^{\circ} \mathrm{C}$
IEC 68-2-3, test Ca; 21 days, R.H. 95\%
IEC 68-2-4, test $\mathrm{Db} ;+40{ }^{\circ} \mathrm{C}$, R.H. 95 to 100%
IEC 68-2-14, test $\mathrm{Na} ; 5$ cycles, $\mathrm{T}_{A}=-25^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{B}}=+55^{\circ} \mathrm{C}$

* Measured at $10 \mathrm{kHz}, \mathrm{B}_{\text {max }}=0,3 \mathrm{~T}$.
** UL approved.

SWITCHED-MODE TRANSFORMER

- For consumer applications, e.g. television sets, monitors

DESCRIPTION

The magnetic circuit of the transformer comprises two Ferroxcube E42/15 cores. The coil is built-up in layers of copper wire, separated from each other by insulation foils.
The transformer has 14 pins for mounting on a printed-wiring board.

MECHANICAL DATA

Dimensions in mm

ELECTRICAL DATA

Approbation

Sets with transformers of this construction are released by Demko, Nemko, Semko, EI, SEV, UL and BSI.

TESTS

The transformer withstands the following tests:

Vibration
Bump
Dry heat
Damp heat, steady state
Damp heat, accelerated
Rapid change of temperature

IEC 68-2-6, test Fc; $10-55-10 \mathrm{~Hz}$, amplitude $0,35 \mathrm{~mm} 3 \times 30 \mathrm{~min}$
IEC 68-2-29, test Eb; 25g, 4000 bumps, 6 directions
IEC 68-2-2, test Bb; 96 h, $+125^{\circ} \mathrm{C}$
IEC 68-2-3, test Ca; 21 days, R.H. 95\%
IEC 68-2-4, test Db; $+40^{\circ} \mathrm{C}$, R.H. 95 to 100%
IEC 68-2-14, test $\mathrm{Na} ; 5$ cycles, $\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{B}}=+85^{\circ} \mathrm{C}$

[^41]
SWITCHED-MODE TRANSFORMER

- For consumer applications, e.g. television sets, monitors.

DESCRIPTION

The magnetic circuit of the transformer comprises two Ferroxcube E42/15 cores. The coil is built-up in layers of copper wire, separated from each other by insulation foils.
The transformer has 18 pins for mounting on a printed-wiring board.

MECHANICAL DATA

Dimensions in mm

ELECTRICAL DATA
catalogue number 311233830940
(4-6) $1,8 \mathrm{mH} \pm 10 \%$
(4-6) $1,4 \%$
(4-6) $1,7 \mathrm{~A}$
$(1-2)=1$
$(8-9)=1$
$(3-7)=3$
$(4-6)=50$
$(13-15)=19$
$(11-10)=13$
$(16-12)=4$
$(18-17)=3$
Test voltage (d.c.)
between primary and secondary 5600 V
between primary and core 5600 V
Mains insulation
Maximum operating temperature
according to IEC 65 class 2, and VDE0860 $115^{\circ} \mathrm{C}$

Approbation

Sets with transformers of this construction are released by Demko, Nemko, Semko, EI, SEV, UL and BSI.

TESTS

The transformer withstands the following tests:

Vibration
Bump
Dry heat
Damp heat, steady state
Damp heat, accelerated
Rapid change of temperature

IEC 68-2-6, test Fc; 10-55-10 Hz, amplitude $0,35 \mathrm{~mm} 3 \times 30 \mathrm{~min}$ IEC $68-2-29$, test $\mathrm{Eb} ; 25 \mathrm{~g}, 4000$ bumps, 6 directions
IEC 68-2-2, test $\mathrm{Bb} ; 96 \mathrm{~h},+125{ }^{\circ} \mathrm{C}$
IEC 68-2-3, test Ca; 21 days, R.H. 95%
IEC 68-2-4, test Db; $+40^{\circ}$ C, R.H. 95 to 100%
IEC 68-2-14, test $\mathrm{Na} ; 5$ cycles, $\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{B}}=+55^{\circ} \mathrm{C}$

[^42]
SWITCHED-MODE TRANSFORMER

- For consumer applications, e.g. television sets, monitors.

DESCRIPTION

The magnetic circuit of the transformer comprises two Ferroxcube E42/20 cores. The coil is built-up in layers of copper wire, separated from each other by insulation foils. A screen between primary and secondary guarantees the required insulation between the windings.
The transformer has 22 pins for mounting on a printed-wiring board.

MECHANICAL DATA

Dimensions in mm

Cu-side of printed board

ELECTRICAL DATA

Inductance, primary*
Leakage inductance, primary
Maximum current, primary
Number of turns primary
secondary

catalogue number	
311233830620	311233831040
$(5-7) 1,5 \mathrm{mH} \pm 10 \%$	$(7-5) 0,4 \mathrm{mH} \pm 10 \%$
$(5-7) 2 \%$	$(7-5) 3,75 \%$
$(5-7) 2,9 \mathrm{~A}$	
$(1-2)=1$	$(2-1)=2$
$(8-9)=1$	$(9-8)=2$
$(10-11)=4$	$(11-10)=2$
$(5-7)=51$	$(7-5)=31$
$(18-16)=25$	$(18-16)=45$
$(12-13)=10$	$(20-19)=11$
$(15-14)=3$	$(22-21)=9$
	$(14-15)=9$
	$(12-13)=5$

Test voltage (d.c.)
between primary and secondary
between primary and core
Mains insulation

Maximum operating temperature

5600 V
5600 V
according to IEC 65 class 2, and VDE0860

115 OC

Approbation

Sets with transformers of this construction are released by Demko, Nemko, Semko, EI, SEV, UL and BSI.

TESTS

The transformer withstands the following tests:

Vibration
Bump
Dry heat
Damp heat, steady state
Damp heat, accelerated
Rapid change of temperature

IEC 68-2-6, test Fc; 10-55-10 Hz, amplitude $0,35 \mathrm{~mm} 3 \times 30 \mathrm{~min}$ IEC 68-2-29, test Eb; 25g, 4000 bumps, 6 directions
IEC 68-2-2, test Bb; 96 h, $+125{ }^{\circ} \mathrm{C}$
IEC 68-2-3, test Ca; 21 days, R.H. 95%
IEC 68-2-4, test Db; $+40{ }^{\circ} \mathrm{C}$, R.H. 95 to 100%
IEC 68-2-14, test $\mathrm{Na} ; 5$ cycles, $\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{B}}=+55^{\circ} \mathrm{C}$

[^43]
SWITCHED-MODE TRANSFORMER

- For consumer applications, e.g. television sets, monitors.

DESCRIPTION

The magnetic circuit of the transformer comprises two Ferroxcube E42/20 cores. The coil is built-up in layers of copper wire, separated from each other by insulation foils. A screen between primary and secondary guarantee the required insulation between the windings.
The transformer has 22 pins for mounting on a printed-wiring board.

MECHANICAL DATA

Dimensions in mm

Cu-side of printed board

ELECTRICAL DATA

Inductance, primary*
Leakage inductance, primary
Maximum current, primary
Number of turns
primary
secondary

Test voltage (d.c.)

between primary and secondary 5600 V
between primary and core
Mains insulation
Maximum operating temperature
5600 V 115 oC
catalogue number 311233830740
(5-7) $1,35 \mathrm{mH} \pm 10 \%$
(5-7) 1,5\%
(5-7) 3,55 A
$(1-2)=2$
$(8-9)=1$
$(10-11)=5$
$(5-7)=68$
$(18-16)=37$
$(12-13)=15$
$(15-14)=4$
$(19-20)=6$
$(21-22)=6$
according to IEC 65 class 2, and VDE0860

Approbation

Sets with transformers of this construction are released by Demko, Nemko, Semko, EI, SEV, UL and BSI.

TESTS

The transformer withstands the following tests:

Vibration
Bump
Dry heat
Damp heat, steady state
Damp heat, accelerated
Rapid change of temperature

IEC 68-2-6, test Fc; $10-55-10 \mathrm{~Hz}$, amplitude $0,35 \mathrm{~mm} 3 \times 30 \mathrm{~min}$ IEC 68-2-29, test Eb; $25 \mathrm{~g}, 4000$ bumps, 6 directions
IEC 68-2-2, test Bb; $96 \mathrm{~h},+125^{\circ} \mathrm{C}$
IEC 68-2-3, test Ca; 21 days, R.H. 95%
IEC 68-2-4, test Db; $+40^{\circ} \mathrm{C}$, R.H. 95 to 100%
IEC 68-2-14, test $\mathrm{Na} ; 5$ cycles, $\mathrm{T}_{A}=-25^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{B}}=+35^{\circ} \mathrm{C}$

[^44]
Cl10

BRIDGE COIL

- For consumer applications, e.g. record players, cassette recorders, television sets, monitors

DESCRIPTION

The coil is wound on a Ferroxcube $1-10$ core. It has four termination pins for mounting on a printedwiring board.

MECHANICAL DATA
Dimensions in mm

Cl10

ELECTRICAL DATA

	catalogue number				
	312213871330	312213874310	312213874290	311233830790	311233830460
Inductance*	(1-4) $0,14 \mathrm{mH}$	(1-4) $0,2 \mathrm{mH}$	(1-2) $0,05 \mathrm{mH}$	(1-2) 0,03 mH	(3-1) $0,38 \mathrm{mH}$
Resistance**	(1-4) 0,29 Ω	(1-4) 0,37 Ω	(1-2) $0,17 \Omega$	(1-2) 0,056 Ω	(3-1) 0,68 Ω

Approbation

Sets with coils of this construction are released by Demko, Nemko, Semko, EI, SEV, UL and BSI.

TESTS

The bridge coil withstands the following tests:

Vibration
Bump
Dry heat
Damp heat, steady state
Damp heat, accelerated
Rapid change of temperature

IEC 68-2-6, test Fc; 10-55-10 Hz, amplitude $0,35 \mathrm{~mm} 3 \times 30 \mathrm{~min}$ IEC 68-2-29, test Eb; 25g, 4000 bumps, 6 directions
IEC 68-2-2, test Bb; $96 \mathrm{~h},+125^{\circ} \mathrm{C}$
IEC 68-2-3, test Ca; 21 days, R.H. 95\%
IEC 68-2-4, test $\mathrm{Db} ;+40^{\circ} \mathrm{C}$, R.H. 95 to 100%
IEC 68-2-14, test $\mathrm{Na} ; 5$ cycles, $\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{B}}=+100^{\circ} \mathrm{C}$

* Tol. $\pm 10 \%$; measured at $1 \mathrm{kHz}, \mathrm{B}_{\text {max }}=0,3 \mathrm{~T}$.
** Tol. $\pm 12 \%$; measured at $\mathrm{T}_{\mathrm{amb}}=23^{\circ} \mathrm{C}$.

Cl10d2

PULSE TRANSFORMER

- For use in switched mode power supplies
- For consumer applications, e.g. record players, cassette recorders, television sets.

DESCRIPTION

The coil is wound on a Ferroxcube $\mathrm{I}-10$ core. It has four termination pins for mounting on a printed--wiring board.
The coil former has three sections, of which the middle section is a safety distance between the other two.

MECHANICAL DATA
Dimensions in mm

Withdrawal force of each pin min. 20 N

Cu - side of printed board
8112

Cl10d2

ELECTRICAL DATA

Resistance, primary secondary
Maximum current, primary
Turns ratio

catalogue number	
311233831010	311233831190
(1-2) 18Ω	(1-2) $20,5 \Omega$
(3-4) 18Ω	(3-4) $3,5 \Omega$
(1-2) 610 mA	(1-2) 690 mA
200:200	225:45

Insulation resistance between primary and secondary
Test voltage (d.c.) between primary and secondary
Mains insulation
$>60 \mathrm{M} \Omega$
5600 V
according to IEC 65 class 2, and VDE0860

Approbation

Sets with transformers of this construction are released by Demko, Nemko, Semko, EI, SEV, UL and BSI.

TESTS

The transformer withstands the following tests:

Vibration
Bump
Dry heat
Damp heat, steady state
Damp heat, accelerated
Rapid change of temperature

IEC 68-2-6, test Fc; 10-55-10 Hz, amplitude $0,35 \mathrm{~mm} 3 \times 30 \mathrm{~min}$ IEC 68-2-29, test Eb; 25g, 4000 bumps, 6 directions
IEC 68-2-2, test Bb; 96 h, $+125{ }^{\circ} \mathrm{C}$
IEC 68-2-3, test Ca; 21 days, R.H. 95\%
IEC 68-2-4, test Db; $+40{ }^{\circ} \mathrm{C}$, R.H. 95 to 100%
IEC 68-2-14, test $\mathrm{Na} ; 5$ cycles, $\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{B}}=+100^{\circ} \mathrm{C}$

BRIDGE COIL

- For consumer applications, e.g. record players, cassette recorders, television sets

DESCRIPTION

The coil is wound on a Ferroxcube l-15 core. It has four termination pins for mounting on a printedwiring board.

MECHANICAL DATA
 Dimensions in mm

Cl15

ELECTRICAL DATA

catalogue number					
	312213871800	312213829390	312213829360	311233830650	3112338302004
Inductance*	$(2-3) 1,0 \mathrm{mH}$	$(1-3) 0,18 \mathrm{mH}$	$(1-4) 0,14 \mathrm{mH}$	$(3-4) 0,43 \mathrm{mH}$	$(3-4) 0,2 \mathrm{mH}$
Resistance** $^{*}(2-3) 1,07 \Omega$	$(1-3) 0,3 \Omega$	$(1-4) 0,23 \Omega$	$(3-4) 0,48 \Omega$	$(3-4) 0,3 \Omega$	

Approbation

Sets with coils of this construction are released by Demko, Nemko, Semko, EI, SEV, UL and BSI.

TESTS

The bridge coil withstands the following tests:

Vibration
Bump
Dry heat
Damp heat, steady state
Damp heat, accelerated
Rapid change of temperature

IEC 68-2-6, test Fc; $10-55-10 \mathrm{~Hz}$, amplitude $0,35 \mathrm{~mm} 3 \times 30 \mathrm{~min}$
IEC 68-2-29, test Eb; $25 \mathrm{~g}, 4000$ bumps, 6 directions
IEC 68-2-2, test Bb; $96 \mathrm{~h},+125^{\circ} \mathrm{C}$
IEC 68-2-3, test Ca; 21 days, R.H. 95\%
IEC 68-2-4, test Db; $+40^{\circ} \mathrm{C}$, R.H. 95 to 100%
IEC 68-2-14, test Na; 5 cycles, $T_{A}=-25^{\circ} \mathrm{C}, \mathrm{T}_{B}=+100^{\circ} \mathrm{C}$

* Tol. $\pm 10 \%$; measured at $1 \mathrm{kHz}, \mathrm{B}_{\text {max }}=0,3 \mathrm{~T}$.
** Tol. $\pm 12 \%$; measured at $\mathrm{T}_{\mathrm{amb}}=23^{\circ} \mathrm{C}$.
^ UL approved.

BRIDGE COIL

- For consumer applications, e.g. record players, cassette recorders, television sets.

DESCRIPTION

The coil is wound on a Ferroxcube I-20 core. It has four termination pins for mounting on a printed--wiring board.

MECHANICAL DATA

left or right

Cu -side of printed board

Dimensions in mm

8094

Cl 20

ELECTRICAL DATA

Inductance*
Resistance**
Maximum current

catalogue number			
311233830920	312213894810	312213828870	
$(1-2) 1,05 \mathrm{mH}$	$(1-2) 0,43 \mathrm{mH}$	$(1-2) 0,35 \mathrm{mH}$	
$(1-2) 1,17 \Omega$	$(1-2) 0,55 \Omega$	$(1-2) 0,21 \Omega$	
$(1-2) 3 \mathrm{~A}$			

Approbation

Sets with coils of this construction are released by Demko, Nemko, Semko, EI, SEV, UL and BSI.

TESTS

The bridge coil withstands the following tests:

Vibration
Bump
Dry heat
Damp heat, steady state
Damp heat, accelerated
Rapid change of temperature

IEC 68-2-6, test Fc; $10-55-10 \mathrm{~Hz}$, amplitude $0,35 \mathrm{~mm} 3 \times 30 \mathrm{~min}$
IEC 68-2-29, test Eb; 25g, 4000 bumps, 6 directions
IEC 68-2-2, test $\mathrm{Bb} ; 96 \mathrm{~h},+125{ }^{\circ} \mathrm{C}$
IEC 68-2-3, test Ca; 21 days, R.H. 95\%
IEC 68-2-4, test Db; $+40^{\circ} \mathrm{C}$, R.H. 95 to 100%
IEC 68-2-14, test Na; 5 cycles, $T_{A}=-25^{\circ} \mathrm{C}, T_{B}=+100^{\circ} \mathrm{C}$

* Tol. $\pm 10 \%$; measured at $1 \mathrm{kHz}, B_{\max }=0,3 \mathrm{~T}$.
** Tol. $\pm 12 \%$; measured at $\mathrm{T}_{\mathrm{amb}}=23{ }^{\circ} \mathrm{C}$.

LINE DRIVER TRANSFORMERS, BRIDGE COILS AND CHOKES

- For consumer applications, e.g. television sets, monitors, video recorders

DESCRIPTION

The magnetic circuit of the unit comprises two Ferroxcube U10 cores. The unit has four pins for mounting on a printed-wiring board.

MECHANICAL DATA

Dimensions in mm

8092

FILTER COIL

- For applications where a low winding capacitance and a small stray field are required, e.g. car radios, video recorders.

DESCRIPTION

The magnetic circuit consists of a Ferroxcube U11 core. The winding is split up over two coil formers, each of which is mounted on a leg of the core.

MECHANICAL DATA

Cu -side of printed board

8097

ELECTRICAL DATA

Inductance*
Resistance**
Maximum current

Diagram

catalogue number	
312213851020	312213899460
(1-2) $0,75 \mathrm{mH} \pm 10 \%$	(1-2) $0,185 \mathrm{mH} \pm 10 \%$
(1-2) 0,45 $\Omega \pm 12 \%$	(1-2) $0,11 \Omega \pm 12 \%$
530 mA	2500 mA
10	

Approbation

Sets with coils of this construction are released by Demko, Nemko, Semko, EI, SEV, UL and BSI.

TESTS

The coil withstands the following tests:

Vibration
IEC 68-2-6, test Fc; 10-55-10 Hz, amplitude $0,35 \mathrm{~mm}$ $3 \times 30 \mathrm{~min}$
Bump
Dry heat
Damp heat, steady state
Damp heat, accelerated
IEC 68-2-29, test Eb; 25g, 4000 bumps, 6 directions
IEC 68-2-2, test Bb; $96 \mathrm{~h},+125{ }^{\circ} \mathrm{C}$
IEC 68-2-3, test Ca; 21 days, R.H. 95\%
IEC 68-2-4, test Db; $+40^{\circ}$ C, R.H. 95 to 100%
Rapid change of temperature IEC $68-2 \cdot 14$, test $\mathrm{Na} ; 5$ cycles, $\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}$,
$\mathrm{T}_{\mathrm{B}}=+100^{\circ} \mathrm{C}$

* Measured at $1 \mathrm{kHz}, \mathrm{B}_{\text {max }}=0,1 \mathrm{~T}$.
** Measured at $\mathrm{T}_{\mathrm{amb}}=23^{\circ} \mathrm{C}$.

CU15

LINE DRIVER TRANSFORMERS, BRIDGE COILS AND CHOKES

- For consumer applications, e.g. television sets, monitors

DESCRIPTION

The magnetic circuit of the unit comprises two Ferroxcube U15 cores. The unit has four pins for mounting on a printed-wiring board.

MECHANICAL DATA
Dimensions in mm

CU15

ELECTRICAL DATA

	catalogue number			
	312213893520	312213893870	\| 312213896550	311233831120
	driver transformer	E/W injection coil	bridge coil	choke
$\begin{aligned} & \text { Inductance* }(\pm 10 \%) \\ & \text { Resistance** } \left.^{*} \pm 12 \%\right) \end{aligned}$	$\begin{aligned} & (1-2) 6,1 \mathrm{mH} \\ & (1-2) 2,3 \Omega \\ & (3-4) 0,22 \Omega \end{aligned}$	$\begin{aligned} & (1-2) 15 \mathrm{mH} \\ & (1-2) 2,6 \Omega \end{aligned}$	$\begin{aligned} & (1-2) 0,52 \mathrm{mH} \\ & (1-2) 0,6 \Omega \end{aligned}$	$\begin{aligned} & (3-4) 8 \mathrm{mH} \\ & (3-4) 1,7 \Omega \end{aligned}$
Leakage inductance Maximum current Transformation ratio	$\begin{aligned} & (1-2)<13,8 \mu \mathrm{H} \\ & 180: 43 \end{aligned}$	$\text { (1-2) } 1200 \mathrm{~mA}$	$\text { (1-2) } 1850 \mathrm{~mA}$	$(3-4) 300 \mathrm{~mA}$
Diagram				

Approbation

Sets with units of this construction are released by Demko, Nemko, Semko, EI, SEV, UL and BSI.

TESTS

The unit withstands the following tests:

Vibration
Bump
Dry heat
Damp heat, steady state
Damp heat, accelerated
Rapid change of temperature

IEC 68-2-6, test Fc; 10-55-10 Hz, amplitude $0,35 \mathrm{~mm}$ $3 \times 30 \mathrm{~min}$
IEC 68-2-29, test Eb; 25g, 4000 bumps, 6 directions
IEC 68-2-2, test Bb; $96 \mathrm{~h},+125{ }^{\circ} \mathrm{C}$
IEC 68-2-3, test Ca; 21 days, R.H. 95%
IEC 68-2-4, test Db; $+40^{\circ}$ C, R.H. 95 to 100%
IEC 68-2-14, test $\mathrm{Na} ; 5$ cycles, $\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}$, $T_{B}=+100^{\circ} \mathrm{C}$.

[^45]Line driver transformers, bridge coils and chokes
CU15

311233830980	312213895450	311233830840	311233830820	311233830420
driver transformer				
$(1-2) 8,5 \mathrm{mH}$	$(1-2) 1,2 \mathrm{mH}$	$(1-2) 12,8 \mathrm{mH}$	$(1-2) 470 \mathrm{mH}$	$(1-2) 1000 \mathrm{mH}$
$(1-2) 2,8 \Omega$	$(1-2) 0,55 \Omega$	$(1-2) 9 \Omega$	$(1-2) 320 \Omega$	$(1-2) 105 \Omega$
$(3-4) 0,16 \Omega$	$(3-4) 0,3 \Omega$	$(3-4) 0,14 \Omega$	$(3-4) 0,28 \Omega$	$(3-4) 1,65 \Omega$
	$(3-4)<6 \mu \mathrm{H}$	$(3-4)<9 \mu \mathrm{H}$	$(3-4)<8,4 \mu \mathrm{H}$	$(3-4)<25 \mu \mathrm{H}$
$(1-2) 200 \mathrm{~mA}$		$(1-2) 220 \mathrm{~mA}$	$(1-2) 35 \mathrm{~mA}$	$(1-2) 15 \mathrm{~mA}$
$186: 27$	$100: 50$	$300: 43$	$1750: 51$	$1600: 63$

FILTER COIL

- For applications where a low winding capacitance and a small stray field are required, e.g. record players, cassette recorders, car radios.

DESCRIPTION

The magnetic circuit consists of a Ferroxcube U15 core. The winding is split up over two coil formers, each of which is mounted on a leg of the core.
The transformer has 4 pins for mounting on a printed-wiring board.

MECHANICAL DATA

Dimensions in mm

CU15b2

ELECTRICAL DATA

Inductance (1-3)*
Resistance (1-3)**
Maximum current (1-3)

Diagram
catalogue number 311233830720
$0,16 \mathrm{mH} \pm 10 \%$
$0,055 \Omega \pm 12 \%$
5000 mA

7297607

Approbation

Sets with coils of this construction are released by Demko, Nemko, Semko, EI, SEV, UL and BSI.

TESTS

The coil withstands the following tests:

Vibration
Bump
Dry heat
Damp heat, steady state
Damp heat, accelerated
Rapid change of temperature

IEC 68-2-6, test Fc; 10-55-10 Hz, amplitude $0,35 \mathrm{~mm} 3 \times 30 \mathrm{~min}$
IEC $68-2-29$, test Eb; $25 \mathrm{~g}, 4000$ bumps, 6 directions
IEC 68-2-2, test Bb; $96 \mathrm{~h},+125{ }^{\circ} \mathrm{C}$
IEC 68-2-3, test Ca; 21 days, R.H. 95%
IEC 68-2-4, test Db; $+40{ }^{\circ} \mathrm{C}$, R.H. 95 to 100%
IEC 68-2-14, test Na; 5 cycles, $T_{A}=-25^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{B}}=+100^{\circ} \mathrm{C}$

* Measured at $1 \mathrm{kHz}, \mathrm{B}_{\max }=0,1 \mathrm{~T}$.
** Measured at $\mathrm{T}_{\mathrm{amb}}=23^{\circ} \mathrm{C}$.

MAINS FILTER CHOKE

- For filter networks in the power supply
- For consumer applications, e.g. television sets, monitors, compact disc players.

DESCRIPTION

The magnetic circuit of the filter choke comprises two Ferroxcube U15 cores. The choke has four pins for mounting on a printed-wiring board.

MECHANICAL DATA

Dimensions in mm

ELECTRICAL DATA

	catalogue number			
	312213852560	311233830640	311233830170	311233831020
$\begin{gathered} \text { Inductance }{ }^{*}(\pm 10 \%) \\ L_{1-2}=L_{3-4} \end{gathered}$	$0,7 \mathrm{mH}$	$70 \mathrm{mH}$	25 mH	$0,7 \mathrm{mH}$
$\begin{aligned} & \text { Resistance }{ }^{* *}(\pm 12 \%) \\ & R_{1-2}=R_{3-4} \end{aligned}$	2,0 Ω	$5,0 \Omega$	$1,9 \Omega$	$0,08 \Omega$
Maximum current, I_{1-2}	500 mA	250 mA	480 mA	290 mA
		$\operatorname{lum}_{L_{0}^{2}}^{2}$		
		Diagram.		

Test voltage (d.c.)	
between windings	
between windings and core	2000 V
	2000 V

Approbation

Sets with chokes of this construction are released by Demko, Nemko, Semko, EI, SEV, UL and BSI.

TESTS

The choke withstands the following tests:

Vibration
Bump
Dry heat
Damp heat, steady state
Damp heat, accelerated
Rapid change of temperature

IEC 68-2-6, test Fc; $10-55-10 \mathrm{~Hz}$, amplitude $0,35 \mathrm{~mm}$ $3 \times 30 \mathrm{~min}$
IEC $68-2-29$, test Eb; $25 \mathrm{~g}, 4000$ bumps, 6 directions
IEC 68-2-2, test Bb; $96 \mathrm{~h},+125^{\circ} \mathrm{C}$
IEC 68-2-3, test Ca; 21 days, R.H. 95\%
IEC 68-2-4, test Db; $+40^{\circ}$ C, R.H. 95 to 100%
IEC 68-2-14, test $\mathrm{Na} ; 5$ cycles, $\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}$,
$\mathrm{T}_{\mathrm{B}}=+100^{\circ} \mathrm{C}$

* Measured at $1 \mathrm{kHz}, \mathrm{B}_{\text {max }}=0,1 \mathrm{~T}$.
** Measured at $\mathrm{T}_{\mathrm{amb}}=23^{\circ} \mathrm{C}$.

LINE DRIVER TRANSFORMERS, BRIDGE COILS AND CHOKES

- For consumer applications, e.g. record players, cassette recorders, television sets

DESCRIPTION

The magnetic circuit of the unit comprises two Ferroxcube U 20 cores. The unit has four pins for mounting on a printed-wiring board.

MECHANICAL DATA
Dimensions in mm

8089

ELECTRICAL DATA

Inductance＊（ $\pm 10 \%$ ）
Resistance＊（ $\pm 12 \%$ ）

Leakage inductance
Maximum current
Transformation ratio
Diagram

catalogue number					
311233830160	312213826060	311233830830	311233831000	311233830380	311233830210
driver transformer	driver transformer	bridge coil	bridge coil	driver transformer	choke
（1－4） 80 mH （1－4） 42Ω （2－3） $0,64 \Omega$ （2－3）$<6,9 \mu \mathrm{H}$ （1－4） 95 mA 184 ： 40	$\begin{aligned} & (1-4) 76 \mathrm{mH} \\ & (2-3)<2 \mu \mathrm{H} \\ & (1-4) 120 \mathrm{~mA} \\ & 574: 20 \end{aligned}$	$\begin{aligned} & (1-4) 1 \mathrm{mH} \\ & (1-4) 0,14 \Omega \\ & (1-4) 1,3 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & (1-2) 0,05 \mathrm{mH} \\ & (1-2) 0,04 \Omega \\ & (1-2) 5000 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & (1-4) 0,3 \mathrm{mH} \\ & (1-4) 0,17 \Omega \\ & (2-3) 0,01 \Omega \\ & \text { (1-4) } 3400 \mathrm{~mA} \\ & 62: 3 \end{aligned}$	（2－3） 20 mH （2－3） $13,5 \Omega$ （2－3） 400 mA

Approbation

Sets with units of this construction are released by Demko，Nemko，Semko，EI，SEV，UL and BSI．

TESTS

The unit withstands the following tests：

Vibration

IEC 68－2－6，test Fc；10－55－10 Hz，amplitude $0,35 \mathrm{~mm}$
$3 \times 30 \mathrm{~min}$
Bump
IEC 68－2－29，test Eb；25g， 4000 bumps， 6 directions

Dry heat

Damp heat，steady state
Damp heat，accelerated
Rapid change of temperature

IEC 68－2－2，test $\mathrm{Bb} ; 96 \mathrm{~h},+125{ }^{\circ} \mathrm{C}$
IEC 68－2－3，test Ca； 21 days，R．H． 95%
IEC 68－2－4，test Db；$+40{ }^{\circ}$ C，R．H． 95 to 100%
IEC 68－2－14，test $\mathrm{Na} ; 5$ cycles， $\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}$ ，
$\mathrm{T}_{\mathrm{B}}=+100^{\circ} \mathrm{C}$.
＊Measured at $1 \mathrm{kHz}, B_{\text {max }}=0,1 \mathrm{~T}$ ．
＊＊Measured at $\mathrm{T}_{\mathrm{amb}}=23^{\circ} \mathrm{C}$ ．

DRIVER TRANSFORMER

- For consumer applications, e.g. television sets, monitors

DESCRIPTION

The magnetic circuit of the transformer comprises two Ferroxcube U20 cores. The primary and secondary windings are on separate coil formers, and concentrically mounted on one leg of the core. The transformer has six pins for mounting on a printed-wiring board.

MECHANICAL DATA

Dimensions in mm

8090

ELECTRICAL DATA

	catalogue number			
	312213896570	312213890290	312213890580	311233830780
```Inductance * primary```	$(1-3)>1 \mathrm{mH}$	$(4-6)>16 \mathrm{mH}$	$(4-6)>6 \mathrm{mH}$	$(1-2) 5 \mathrm{mH}$
Leakage inductance primary			(4-6) 1\%	(1-2) 1\%
Number of turns primary secondary	$\begin{aligned} & (1-3)=800 \\ & (4-6)=13 \end{aligned}$	$\begin{aligned} & (4-6)=100 \\ & (1-3)=20 \end{aligned}$	$\begin{aligned} & (4-6)=60 \\ & (1-3)=20 \end{aligned}$	$\begin{aligned} & (1-2)=200 \\ & (2-3)=20 \\ & (4-5)=15 \\ & (5-6)=4 \end{aligned}$
Diagram				

Test voltage (d.c.)
between (1-2-3) and (4-5-6) 5600 V
between (1-2-3) and core 5600 V
between (4-5-6) and core 500 V
Mains insulation
according to IEC 65 class 2, VDE 0860

## Approbation

Sets with transformers of this construction are released by Demko, Nemko, Semko, EI, SEV, UL and BSI.

## TESTS

The transformer withstands the following tests:

Vibration

Bump
Dry heat
Damp heat, steady state
Damp heat, accelerated
Rapid change of temperature

IEC 68-2-6, test Fc; 10-55-10 Hz, amplitude $0,35 \mathrm{~mm}$ $3 \times 30 \mathrm{~min}$
IEC 68-2-29, test Eb; 25g, 4000 bumps, 6 directions
IEC 68-2-2, test Bb; 96 h, +125 OC
IEC 68-2-3, test Ca; 21 days, R.H. 95\%
IEC 68-2-4, test Db; $+40{ }^{\circ} \mathrm{C}$, R.H. 95 to $100 \%$
IEC 68-2-14, test $\mathrm{Na} ; 5$ cycles, $\mathrm{T}_{\mathrm{A}}=-25{ }^{\circ} \mathrm{C}$,
$\mathrm{T}_{\mathrm{B}}=+100^{\circ} \mathrm{C}$

[^46]
## CU20d

## MAINS FILTER CHOKE

- For filter networks in the power supply
- For consumer applications, e.g. record players, cassette recorders, television sets


## DESCRIPTION

The magnetic circuit of the filter choke comprises two Ferroxcube U20 cores. The choke has four pins for mounting on a printed-wiring board.

## MECHANICAL DATA

Dimensions in mm


8086

## ELECTRICAL DATA

catalogue number
Inductance* $( \pm 10 \%)$   $L_{1-2}=L_{3-4}$
Resistance** $\pm 12 \%)$   $R_{1-2}=R_{3-4}$
Leakage inductance   $L_{I(1-2)}=L_{I(3-4)}$
Maximum current,   $I_{1-2}$

Test voltage (d.c.)
between winding between windings and core

Approbation
Sets with chokes of this construction are released by Demko, Nemko, Semko, EI, SEV, UL and BSI.

## TESTS

The choke withstands the following tests:

Vibration

## Bump

Dry heat
Damp heat, steady state
Damp heat, accelerated
Rapid change of temperature

IEC 68-2-6, test Fc; $10-55-10 \mathrm{~Hz}$, amplitude $0,35 \mathrm{~mm}$ $3 \times 30 \mathrm{~min}$
IEC 68-2-29, test Eb; 25g, 4000 bumps, 6 directions
IEC 68-2-2, test Bb; $96 \mathrm{~h},+125^{\circ} \mathrm{C}$
IEC 68-2-3, test Ca; 21 days, R.H. $95 \%$
IEC 68-2-4, test Db; $+40^{\circ} \mathrm{C}$, R.H. 95 to $100 \%$
IEC 68-2-14, test $\mathrm{Na} ; 5$ cycles, $\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}$,
$T_{B}=+100^{\circ} \mathrm{C}$

* Measured at $1 \mathrm{kHz}, \mathrm{B}_{\text {max }}=0,1 \mathrm{~T}$.
** Measured at $\mathrm{T}_{\mathrm{amb}}=23^{\circ} \mathrm{C}$.


## CU25

## CHOKE

- To be used as a choke or a transformer
- For consumer applications, e.g. monitors and television sets


## DESCRIPTION

The magnetic circuit of the choke comprises two Ferroxcube U25 cores. The choke has 10 pins for mounting on a printed-wiring board.

## MECHANICAL DATA

Dimensions in mm


## 8093

## ELECTRICAL DATA



Test voltage (d.c.)
between primary and secondary 2000 V
between windings and core 500 V

## Approbation

Sets with chokes of this construction are released by Demko, Nemko, Semko, EI, SEV, UL and BSI.

## TESTS

The choke withstands the following tests:

Vibration
Bump
Dry heat
Damp heat, steady state
Damp heat, accelerated
Rapid change of temperature

IEC 68-2-6, test Fc; 10-55-10 Hz, amplitude $0,35 \mathrm{~mm}$ $3 \times 30 \mathrm{~min}$
IEC 68-2-29, test Eb; $25 \mathrm{~g}, 4000$ bumps, 6 directions
IEC 68-2-2, test $\mathrm{Bb} ; 96 \mathrm{~h},+125{ }^{\circ} \mathrm{C}$
IEC 68-2-3, test Ca; 21 days, R.H. $95 \%$
IEC 68-2-4, test Db; $+40^{\circ} \mathrm{C}$, R.H. 95 to $100 \%$
IEC 68-2-14, test $\mathrm{Na} ; 5$ cycles, $\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}$,
$\mathrm{T}_{\mathrm{B}}=+100^{\circ} \mathrm{C}$

* Measured at $10 \mathrm{kHz}, \mathrm{B}_{\text {max }}=0,1 \mathrm{~T}$.


## SWITCHED-MODE TRANSFORMER

- For consumer applications, e.g. monitors and television sets


## DESCRIPTION

The magnetic circuit of the transformer comprises two Ferroxcube U25 cores. The primary and secondary windings are on separate coil formers, and concentrically mounted on one leg of the core. The transformer has 8 pins for mounting on a printed-wiring board.

## MECHANICAL DATA

Dimensions in mm


8104

## ELECTRICAL DATA



Diagram


Test voltage (d.c.)
between primary and secondary 5600 V
between primary and core 5600 V
Mains insulation

## Approbation

Sets with transformers of this construction are released by Demko, Nemko, Semko, EI, SEV, UL and BSI.

## TESTS

The transformer withstands the following tests:

Vibration

Bump
Dry heat
Damp heat, steady state
Damp heat, accelerated
Rapid change of temperature

IEC 68-2-6, test Fc; 10-55-10 Hz, amplitude $0,35 \mathrm{~mm}$ $3 \times 30 \mathrm{~min}$
IEC $68-2-29$, test Eb; 25g, 4000 bumps, 6 directions
IEC 68-2-2, test $\mathrm{Bb} ; 96 \mathrm{~h},+125$ OC
IEC 68-2-3, test Ca; 21 days, R.H. 95\%
IEC 68-2-4, test Db; $+40{ }^{\circ}$ C, R.H. 95 to $100 \%$
IEC 68-2-14, test $\mathrm{Na} ; 5$ cycles, $\mathrm{T}_{\mathrm{A}}=-25{ }^{\circ} \mathrm{C}$,
$T_{B}=+100{ }^{\circ} \mathrm{C}$

* Measured at $1 \mathrm{kHz}, \mathrm{B}_{\text {max }}=0,1 \mathrm{~T}$.


## CHOKE

- To be used as a choke or a transformer
- For consumer applications, e.g. monitors and television sets


## DESCRIPTION

The magnetic circuit of the choke comprises two Ferroxcube U30 cores. The choke has 10 pins for mounting on a printed-wiring board. It can be fixed to the board with four screws.

## MECHANICAL DATA

Dimensions in mm


8105

## CU30

## ELECTRICAL DATA

Inductance (8-9)*
Resistance (8-9)**
(6-7)**
Maximum current (8-9)

catalogue number 311233830150
$16 \mathrm{mH} \pm 10 \%$
$1,65 \Omega \pm 12 \%$
$0,054 \Omega \pm 12 \%$
1000 mA

## Diagram

Test voltage (d.c.)
between windings

500 V

## Approbation

Sets with chokes of this construction are released by Demko, Nemko, Semko, EI, SEV, UL and BSI.

## TESTS

The choke withstands the following tests:
Vibration IEC 68-2-6, test Fc; 10-55-10 Hz, amplitude $0,35 \mathrm{~mm}$ $3 \times 30 \mathrm{~min}$
Bump
IEC 68-2-29, test Eb; 25g, 4000 bumps, 6 directions
IEC 68-2-2, test $\mathrm{Bb} ; 96 \mathrm{~h},+125{ }^{\circ} \mathrm{C}$
IEC 68-2-3, test Ca; 21 days, R.H. 95\%
IEC 68-2-4, test Db; $+40^{\circ} \mathrm{C}$, R.H. 95 to $100 \%$
IEC 68-2-14, test $\mathrm{Na} ; 5$ cycles, $\mathrm{T}_{A}=-25^{\circ} \mathrm{C}$,
$\mathrm{T}_{\mathrm{B}}=+100^{\circ} \mathrm{C}$

* Measured at $1 \mathrm{kHz}, B_{\text {max }}=0,1 \mathrm{~T}$.
** Measured at $\mathrm{T}_{\mathrm{amb}}=23^{\circ} \mathrm{C}$.


## CURRENT SENSING TRANSFORMER

- For switched-mode power supply circuits.
- For consumer applications, e.g. record players, casette recorders, television sets.


## DESCRIPTION

The magnetic circuit of the transformer comprises two Ferroxcube U15-cores. The primary turn is potted in the coil former to guarantee the required isolation. The transformer has 4 pins for mounting on a printed-wiring board.

## MECHANICAL DATA

Dimensions in mm


## ELECTRICAL DATA

Inductance (3-4)*
Resistance (3-4)**
Maximum current (1-2)
Turns ratio

catalogue number	
312213890300	312213893390
$>700 \mathrm{mH}$	$>12,5 \mathrm{mH}$
$44 \Omega$	$1 \Omega$
2,5 A	10 A
1:800	1:100

Test voltage (d.c.) between primary and core
Mains insulation

5600 V
according to IEC 65 class 2, and VDE0860

## Approbation

Sets with transformers of this construction are released by Demko, Nemko, Semko, EI, SEV, UL and BSI.

## TESTS

The transformer withstands the following tests:

Vibration
=imp
Dry heat
Damp heat, steady state
Damp heat, accelerated
Rapid change of temperature

IEC 68-2-6, test Fc; $10-55-10 \mathrm{~Hz}$, amplitude $0,35 \mathrm{~mm} 3 \times 30 \mathrm{~min}$
IEC 68-2-29, test Eb; 25g, 4000 bumps, 6 directions
IEC 68-2-2, test Bb; $96 \mathrm{~h},+125{ }^{\circ} \mathrm{C}$
IEC 68-2-3, test Ca; 21 days, R.H. 95\%
IEC 68-2-4, test $\mathrm{Db} ;+40^{\circ} \mathrm{C}$, R.H. 95 to $100 \%$
IEC 68-2-14, test $\mathrm{Na} ; 5$ cycles, $T_{A}=-25^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{B}}=+100^{\circ} \mathrm{C}$

* Measured at $1 \mathrm{kHz}, B_{\text {max }}=0,1 \mathrm{~T}$.
** Measured at $\mathrm{T}_{\mathrm{amb}}=23^{\circ} \mathrm{C}$.


## MAINS TRANSFORMER

- Output power 8 VA
- For consumer applications, e.g. record players, cassette recorders, television sets


## DESCRIPTION

This transformer has a laminated iron core (welded E-I combination). The primary and secondary windings are wound on separate coil formers, which are concentrically mounted on the centre leg of the E-I combination.
The transformer has 12 pins for mounting on printed-wiring boards (A), or solder tags with eyelets for wire connections (B).

MECHANICAL DATA


Cu -side of printed board

8041

## Mounting

The transformer is secured by means of four self-tapping screws of 3 mm .

## ELECTRICAL DATA

Output power at $\mathrm{T}=115{ }^{\circ} \mathrm{C}\left(\mathrm{T}_{\mathrm{amb}}=60^{\circ} \mathrm{C}\right)$
8 VA
Note: for over-temperature protection a built-in temperature/current fuse for $123^{\circ} \mathrm{C}$ is used.

	catalogue number		
	311231838130	311234830110	311234830330
Primary voltage	$\begin{aligned} & (3-5)^{*} 110 \mathrm{~V} \\ & (3-1)^{*} 127 \mathrm{~V} \\ & (3-2)^{*} 220 \mathrm{~V} \\ & (3-1)^{* *} 240 \mathrm{~V} \end{aligned}$	(3-5) 110 V   (3-2) 220 V   (3-1) 240 V	$\begin{aligned} & (3-5)^{*} 110 \mathrm{~V} \\ & (3-1)^{*} 127 \mathrm{~V} \\ & (3-2)^{* *} 220 \mathrm{~V} \\ & (3-1)^{* *} 240 \mathrm{~V} \end{aligned}$
Primary resistance   (at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ )	$\begin{aligned} & (3-5)^{*} 150 \Omega \\ & (3-1)^{*} 202 \Omega \\ & (3-2)^{*} 600 \Omega \\ & (3-1)^{* *} 652 \Omega \end{aligned}$	(3-5) $250 \Omega$   (3-2) $590 \Omega$   (3-1) $649 \Omega$	$\begin{aligned} & (3-5)^{*} 105 \Omega \\ & (3-1)^{*} 140 \Omega \\ & (3-2)^{* *} 420 \Omega \\ & (3-1)^{* *} 455 \Omega \end{aligned}$
Secondary voltage	$\begin{aligned} & (8-9) 17,3 \vee \\ & (10-11) 28,3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & (9-10) 9,2 \mathrm{~V} \\ & (8-11) 21 \mathrm{~V} \end{aligned}$	$\begin{aligned} & (8-9) 12,5 \mathrm{~V} \\ & (9-11) 12,5 \mathrm{~V} \end{aligned}$
Secondary resistance $\text { (at } \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \text { ) }$	$\begin{aligned} & (8-9) 4,4 \Omega \\ & (10-11) 110 \Omega \end{aligned}$	$\begin{aligned} & \text { (9-10) } 2,1 \Omega \\ & (8-11) 4,8 \Omega \end{aligned}$	$\begin{aligned} & (8-9) 3,25 \Omega \\ & (9-11) 3,25 \Omega \end{aligned}$
Diagram			

Insulation resistance
between primary and secondary
between primary and core
Test voltage (d.c.)
between primary and secondary
between primary and core
Mains insulation
$>60 \mathrm{M} \Omega$
$>60 \mathrm{M} \Omega$
5600 V
5600 V
according to IEC 65 class 2, VDE 0860

* (4-5) parallel connected to (6-2).
** Terminals 5 and 6 interconnected.


## Approbation

Sets with transformers of this construction are released by Demko, Nemko, Semko, EI, SEV, UL and BSI.

## TESTS

The mains transformer withstands the following tests:

Vibration

Bump
Dry heat
Damp heat, steady state
Damp heat, accelerated
Change of temperature
Flammability

IEC 68-2-6, test Fc,
$10-55-10 \mathrm{~Hz}$, amplitude $0,35 \mathrm{~mm}, 3 \times 30 \mathrm{~min}$.
IEC 68-2-29, test Eb; $40 \mathrm{~g}, 4000$ bumps, 3 directions.
IEC 68-2-2, test Bb; $96 \mathrm{~h},+125{ }^{\circ} \mathrm{C}$.
IEC 68-2-3, test Ca, 21 days, R.H. 95\%.
IEC 68-2-4, test D, $+55^{\circ} \mathrm{C}$, R.H. 95 to $100 \%$.
IEC $68-2-14$, test $\mathrm{Na} ; 5$ cycles, $\mathrm{T}_{A}=-25^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{B}}=+125^{\circ} \mathrm{C}$.
UL94, category V2.

## MAINS TRANSFORMER

- Output power 8 VA
- For consumer applications, e.g. record players, cassette recorders, television sets


## DESCRIPTION

This transformer has a laminated iron core (welded E-I combination). The primary and secondary windings are wound on separate coil formers, which are concentrically mounted on the centre leg of the E-I combination.
The transformer has 7 pins for mounting on printed-wiring boards.

MECHANICAL DATA


8048

## Mounting

The transformer is secured by means of four self-tapping screws of 3 mm .

## ELECTRICAL DATA

Output power at $\mathrm{T}=115^{\circ} \mathrm{C}\left(\mathrm{T}_{\mathrm{amb}}=60^{\circ} \mathrm{C}\right)$
8 VA
Note: for over-temperature protection a built-in temperature/current fuse for $123^{\circ} \mathrm{C}$ is used.

	catalogue number $3112318 \ldots$.			
	35730	36940	37490	39190
Primary voltage	$\begin{aligned} & (1-2) 220 \mathrm{~V} \\ & (1-2) 240 \mathrm{~V} \end{aligned}$	(1-2) 220 V	(1-2) 220 V	(1-2) 240 V
Primary resistance   (at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ )	(1-2) $400 \Omega$	(1-2) $400 \Omega$	(1-2) $540 \Omega$	(1-2) $540 \Omega$
Secondary voltage	$\begin{aligned} & (10-11) 25,2 \mathrm{~V}^{*} \\ & (11-13) 25,2 \mathrm{~V}^{*} \end{aligned}$	$\begin{aligned} & (10-11) 10,5 \mathrm{~V} \\ & (11-13) 10,5 \mathrm{~V} \end{aligned}$	(10-13) $10,8 \mathrm{~V}$	(10-13) $22,3 \mathrm{~V}$
Secondary resistance (at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ )	$\begin{aligned} & (10-11) 14 \Omega \\ & (11-13) 14 \Omega \end{aligned}$	$\begin{aligned} & (10-11) 2,2 \Omega \\ & (11-13) 2,2 \Omega \end{aligned}$	(10-13) $1,5 \Omega$	(10-13) 5,6 $\Omega$
Diagram				

Insulation resistance
between primary and secondary
between primary and core
Test voltage (d.c.)
between primary and secondary
between primary and core
Mains insulation
$>60 \mathrm{M} \Omega$
$>60 \mathrm{M} \Omega$

5600 V
5600 V
according to IEC 65 class 2, VDE 0860

[^47]
## Approbation

Sets with transformers of this construction are released by Demko, Nemko, Semko, EI, SEV, UL and BSI.

## TESTS

The mains transformer withstands the following tests:

Vibration
Bump
Dry heat
Damp heat, steady state
Damp heat, accelerated
Change of temperature
Flammability

IEC 68-2-6, test Fc, $10-55-10 \mathrm{~Hz}$, amplitude $0,35 \mathrm{~mm}, 3 \times 30 \mathrm{~min}$.
IEC 68-2-29, test Eb; 40g, 4000 bumps, 3 directions.
IEC 68-2-2, test Bb; $96 \mathrm{~h},+125^{\circ} \mathrm{C}$.
IEC 68-2-3, test $\mathrm{Ca}, 21$ days, R.H. $95 \%$.
IEC 68-2-4, test D, $+55^{\circ} \mathrm{C}$, R.H. 95 to $100 \%$.
IEC 68-2-14, test Na; 5 cycles, $\mathrm{T}_{A}=-25^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{B}}=+125^{\circ} \mathrm{C}$. UL94, category V2.

## MAINS TRANSFORMER

- Output power 25 VA
- For consumer applications, e.g. record players, cassette recorders, television sets


## DESCRIPTION

This transformer has a laminated iron core (welded E-I combination). The primary and secondary windings are wound on separate coil formers, which are concentrically mounted on the centre leg of the E-I combination.

## MECHANICAL DATA

Dimensions in mm


## 8103

## Mounting

The transformer is secured by means of four self-tapping screws of 3 mm .

## ELECTRICAL DATA

Output power at $\mathrm{T}=115^{\circ} \mathrm{C}\left(\mathrm{T}_{\mathrm{amb}}=60^{\circ} \mathrm{C}\right) \quad 25 \mathrm{VA}$
Note: for over-temperature protection a built-in temperature/current fuse for $123^{\circ} \mathrm{C}$ is used.

	catalogue number 3112			
	31838020	31839560	31839970	348 30340*
Primary voltage	(4-5) 220 V	$\begin{aligned} & (4-12)^{* *} 110 \mathrm{~V} \\ & (4-14)^{* *} 127 \mathrm{~V} \\ & (4-5) \pm 220 \mathrm{~V} \\ & (4-14) \pm 240 \mathrm{~V} \end{aligned}$	(4-5) 220 V	(4-5) 120 V
Primary resistance $\text { (at } \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \text { ) }$	(4-5) $79,5 \Omega$	$\begin{aligned} & (4-12)^{* *} 22,3 \Omega \\ & (4-14)^{* *} 30,2 \Omega \\ & (4-5) \pm 89,3 \Omega \\ & (4-14) \pm 97,2 \Omega \end{aligned}$	(4-5) $61 \Omega$	(4-5) $20,5 \Omega$
Secondary voltage	$(20-23) 14,8 \mathrm{~V}$	$\begin{aligned} & (20-21) 12,3 \mathrm{~V} \\ & (21-22) 12,3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & (20-21) 9,7 \mathrm{~V} \\ & (22-23) 17,1 \mathrm{~V} \end{aligned}$	$\begin{aligned} & (32-31) 10,3 \mathrm{~V} \\ & (31-33) 10,3 \mathrm{~V} \end{aligned}$
Secondary resistance (at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ )	(20-23) $0,37 \Omega$	$\begin{aligned} & (20-21) 0,7 \Omega \\ & (21-22) 0,7 \Omega \end{aligned}$	$\begin{aligned} & (20-21) 0,19 \Omega \\ & (22-23) 2,3 \Omega \end{aligned}$	$\begin{aligned} & (32-31) 0,46 \Omega \\ & (31-33) 0,46 \Omega \end{aligned}$
Diagram				

[^48]* UL approved.
** (1-12) parallel connected to (10-5).
- Terminals 10 and 12 interconnected.


## Approbation

Sets with transformers of this construction are released by Demko, Nemko, Semko, EI, SEV, UL and BSI.

## TESTS

The mains transformer withstands the following tests:
Vibration
IEC 68-2-6, test Fc, $10-55-10 \mathrm{~Hz}$, amplitude $0,35 \mathrm{~mm}, 3 \times 30 \mathrm{~min}$.
Bump IEC 68-2-29, test Eb; 40g, 4000 bumps, 3 directions.
Dry heat
Damp heat, steady state
Damp heat, accelerated
Change of temperature
Flammability

IEC 68-2-2, test Bb; $96 \mathrm{~h},+125^{\circ} \mathrm{C}$.
IEC 68-2-3, test Ca, 21 days, R.H. 95\%.
IEC 68-2-4, test D, $+55^{\circ}$ C, R.H. 95 to $100 \%$.
IEC 68-2-14, test $\mathrm{Na} ; 5$ cycles, $\mathrm{T}_{A}=-25^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{B}}=+125^{\circ} \mathrm{C}$.
UL94, category V2.

## MAINS TRANSFORMER

- Output power 48 VA
- For consumer applications, e.g. record players, video recorders, television sets


## DESCRIPTION

This transformer has a laminated iron core (welded E-I combination). The primary and secondary windings are wound on separate coil formers, which are concentrically mounted on the centre leg of the E-I combination.

MECHANICAL DATA
Dimensions in mm


## 8061

## Mounting

The transformers can be fitted with four screws M4; the mounting holes are positioned according to DIN 41302.

## ELECTRICAL DATA

Output power at $\mathrm{T}=115^{\circ} \mathrm{C}\left(\mathrm{T}_{\mathrm{amb}}=60^{\circ} \mathrm{C}\right)$

Note: for over-temperature protection a built-in temperature/current fuse for $123^{\circ} \mathrm{C}$ is used.

	catalogue number 3112 .			
	31839480	31839700	31839990	34830000
Primary voltage	$\begin{aligned} & (5-15)^{*} 110 \mathrm{~V} \\ & (5-1)^{*} 127 \mathrm{~V} \\ & (5-6)^{* *} 220 \mathrm{~V} \\ & (5-1)^{* *} 240 \mathrm{~V} \end{aligned}$	(5-6) 220 V	$\begin{aligned} & (5-6)^{*} 110 \mathrm{~V} \\ & (5-10)^{*} 127 \mathrm{~V} \\ & (5-6)^{* *} 220 \mathrm{~V} \\ & (5-10)^{* *} 240 \mathrm{~V} \end{aligned}$	$\begin{aligned} & (5-6)^{*} 110 \mathrm{~V} \\ & (5-10)^{*} 127 \mathrm{~V} \\ & (5-6)^{* *} 220 \mathrm{~V} \\ & (5-10)^{* *} 240 \mathrm{~V} \end{aligned}$
Primary resistance   (at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ )	$\begin{aligned} & (5-15)^{*} 10,2 \Omega \\ & (5-1)^{*} 13,8 \Omega \\ & (5-6)^{* *} 41 \Omega \\ & (5-1)^{* *} 44,6 \Omega \end{aligned}$	(5-6) $39 \Omega$	$\begin{aligned} & (5-6)^{*} 9,5 \Omega \\ & (5-10)^{*} 13 \Omega \\ & (5-6)^{* *} 38 \Omega \\ & (5-10)^{* *} 41,5 \Omega \end{aligned}$	$\begin{aligned} & (5-6)^{*} 9,5 \Omega \\ & (5-10)^{*} 13 \Omega \\ & (5-6)^{* *} 38 \Omega \\ & (5-10)^{* *} 41,5 \Omega \end{aligned}$
Secondary voltage	(21-25) $62,5 \mathrm{~V}$	$\begin{aligned} & (24-23) 9,1 \mathrm{~V} \\ & (23-25) 9,1 \mathrm{~V} \end{aligned}$	$\begin{aligned} & (34-33) 18,8 \mathrm{~V} \\ & (33-30) 10,2 \mathrm{~V} \end{aligned}$	$\begin{aligned} & (34-35) 27 \mathrm{~V} \\ & (33-30) 10,6 \mathrm{~V} \end{aligned}$
Secondary resistance (at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ )	(21-25) $3,1 \Omega$	$\begin{aligned} & (24-23) 0,16 \Omega \\ & (23-25) 0,16 \Omega \end{aligned}$	$\begin{aligned} & \text { (34-33) 0,29 } \Omega \\ & (33-30) 2,6 \Omega \end{aligned}$	$\begin{aligned} & (34-35) 0,8 \Omega \\ & (33-30) 0,7 \Omega \end{aligned}$
Diagram				


Insulation resistance   between primary and secondary   between primary and core	
Test voltage (d.c.)    between primary and secondary    between primary and core    Main insulation $560 \mathrm{M} \Omega$    5600 V        according to IEC 65 class 2,    VDE 0860	

[^49]
## Approbation

Sets with transformers of this construction are released by Demko, Nemko, Semko, EI, SEV, UL and BSI.

## TESTS

The mains transformer withstands the following tests:

Vibration

Bump
Dry heat
Damp heat, steady state
Damp heat, accelerated
Change of temperature
Flammability

IEC 68-2-6, test Fc,
$10-55-10 \mathrm{~Hz}$, amplitude $0,35 \mathrm{~mm}, 3 \times 30 \mathrm{~min}$.
IEC 68-2-29, test Eb; 40g, 4000 bumps, 3 directions.
IEC 68-2-2, test Bb; $96 \mathrm{~h},+125^{\circ} \mathrm{C}$.
IEC 68-2-3, test Ca, 21 days, R.H. 95\%.
IEC 68-2-4, test D, $+55^{\circ} \mathrm{C}$, R.H. 95 to $100 \%$.
IEC 68-2-14, test $\mathrm{Na} ; 5$ cycles, $\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{B}}=+125^{\circ} \mathrm{C}$.
UL94, category V2.

## MAINS TRANSFORMER

- Output power 60 VA
- For consumer applications, e.g. amplifiers, cassette recorders, television sets


## DESCRIPTION

This transformer has a laminated iron core (welded E-I combination). The primary and secondary windings are wound on separate coil formers, which are concentrically mounted on the centre leg of the E-I combination.
The transformer has solder tags with eyelets for wire connections.

## MECHANICAL DATA <br> Dimensions in mm



## Mounting

The transformers can be fitted with four screws M4; the mounting holes are positioned according to DIN 41302.

ELECTRICAL DATA
Output power at $\mathrm{T}=115^{\circ} \mathrm{C}\left(\mathrm{T}_{\mathrm{amb}}=60^{\circ} \mathrm{C}\right)$
60 VA
Note: for over-temperature protection a built-in temperature/current fuse for $123^{\circ} \mathrm{C}$ is used.

	catalogue number $3112318 \ldots$			
	38620	38820	39010	39440*
Primary voltage	$\begin{aligned} & (3-4) 220 \mathrm{~V} \\ & (3-1) 240 \mathrm{~V} \end{aligned}$	$\begin{aligned} & (3-14)^{* *} 110 \mathrm{~V} \\ & (3-10)^{* *} 127 \mathrm{~V} \\ & (3-4) \leq 220 \mathrm{~V} \\ & (3-10) \pm 240 \mathrm{~V} \end{aligned}$	(3-4) 220 V	(1-4) 120 V
Primary resistance   (at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ )	$\begin{aligned} & \text { (3-4) } 27 \Omega \\ & \text { (3-1) } 29,3 \Omega \end{aligned}$	$\begin{aligned} & (3-14)^{* *} 6,7 \Omega \\ & (3-10)^{* *} 9,2 \Omega \\ & (3-4) \pm 27 \Omega \\ & (3-10) \pm 29,5 \Omega \end{aligned}$	(3-4) $21 \Omega$	(1-4) 7,0 $\Omega$
Secondary voltage	(20-21) $15,5 \mathrm{~V}$	$\begin{aligned} & \text { (34-33) } 25,6 \mathrm{~V} \\ & (33-35) 25,6 \mathrm{~V} \end{aligned}$	(32-34) 28 V	(30-34) 17,2 V
Secondary resistance   (at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ )	(20-21) $0,13 \Omega$	$\begin{aligned} & (34-33) 0,65 \Omega \\ & (33-35) 0,65 \Omega \end{aligned}$	(32-34) $0,37 \Omega$	(30-34) 0,18 $\Omega$
Diagram				

Insulation resistance
between primary and secondary
between primary and core
Test voltage (d.c.)
between primary and secondary
between primary and core
Mains insulation
$>60 \mathrm{M} \Omega$
$>60 \mathrm{M} \Omega$

5600 V
5600 V
according to IEC 65 class 2, VDE 0860

* Without temperature/current fuse.
** (1-14) parallel connected to (15-4).
- Terminals 14 and 15 interconnected.


## Approbation

Sets with transformers of this construction are released by Demko, Nemko, Semko, EI, SEV, UL and BSI.

## TESTS

The mains transformer withstands the following tests:

Vibration

Bump
Dry heat
Damp heat, steady state
Damp heat, accelerated
Change of temperature
Flammability

IEC 68-2-6, test Fc,
$10-55-10 \mathrm{~Hz}$, amplitude $0,35 \mathrm{~mm}, 3 \times 30 \mathrm{~min}$.

IEC 68-2-29, test Eb; $40 \mathrm{~g}, 4000$ bumps, 3 directions.
IEC 68-2-2, test Bb; $96 \mathrm{~h},+125^{\circ} \mathrm{C}$.
IEC 68-2-3, test $\mathrm{Ca}, 21$ days, R.H. 95\%.
IEC 68-2-4, test D, $+55^{\circ} \mathrm{C}$, R.H. 95 to $100 \%$.
IEC 68-2-14, test $\mathrm{Na} ; 5$ cycles, $\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{B}}=+125^{\circ} \mathrm{C}$.
UL94, category V2.

## MAINS TRANSFORMER

- Output power 95 VA
- For consumer applications, e.g. amplifiers, cassette recorders, television sets


## DESCRIPTION

This transformer has a laminated iron core (welded E-I combination). The primary and secondary windings are wound on separate coil formers, which are concentrically mounted on the centre leg of the E-I combination.
The transformer has solder tags with eyelets for wire connections.

## MECHANICAL DATA <br> Dimensions in mm



## Mounting

The transformers can be fitted with four screws M4; the mounting holes are positioned according to DIN 41302.

## ELECTRICAL DATA

Output power at $\mathrm{T}=115^{\circ} \mathrm{C}\left(\mathrm{T}_{\mathrm{amb}}=60^{\circ} \mathrm{C}\right)$
95 VA
Note: for over-temperature protection a built-in temperature/current fuse for $123^{\circ} \mathrm{C}$ is used.

	catalogue number 3112318			
	37600	38710*	39030	39640**
Primary voltage	(2-4) 220 V	(3-4) 120 V	$\begin{aligned} & (3-12) \leq 110 \mathrm{~V} \\ & (3-14) \pm 127 \mathrm{~V} \\ & (3-4) \Delta 220 \mathrm{~V} \\ & (3-14) \Delta \pm 240 \mathrm{~V} \end{aligned}$	$\begin{aligned} & (1-3) 120 \mathrm{~V} \\ & (1-4) 240 \mathrm{~V} \end{aligned}$
Primary resistance $\text { (at } \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \text { ) }$	(2-4) $13 \Omega$	(3-4) $3 \Omega$	$\begin{aligned} & (3-12) \triangle 4 \Omega \\ & (3-14) \Delta 5,4 \Omega \\ & (3-4) \Delta \pm 16,0 \Omega \\ & (3-14) \Delta \pm 17,4 \Omega \end{aligned}$	$\begin{aligned} & \text { (1-3) } 5,3 \Omega \\ & \text { (1-4) } 23,5 \Omega \end{aligned}$
Secondary voltage	$\begin{aligned} & (22-24) 29,8 \mathrm{~V} \\ & (24-23) 29,8 \mathrm{~V} \end{aligned}$	$\begin{aligned} & (24-23) 28,4 \mathrm{~V} \\ & (23-25) 28,4 \mathrm{~V} \end{aligned}$	$\begin{aligned} & (24-23) 27,2 \mathrm{~V} \\ & (23-25) 27,2 \mathrm{~V} \end{aligned}$	(30-34) 49,7 V
Secondary resistance $\text { (at } \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \text { ) }$	$\begin{aligned} & (22-24) 0,6 \Omega \\ & (24-23) 0,6 \Omega \end{aligned}$	$\begin{aligned} & (24-23) 0,36 \Omega \\ & (23-25) 0,36 \Omega \end{aligned}$	$\begin{aligned} & (24-23) 0,55 \Omega \\ & (23-25) 0,55 \Omega \end{aligned}$	(30-34) $0,78 \Omega$
Diagram				

Insulation resistance
between primary and secondary
$>60 \mathrm{M} \Omega$
between primary and core
$>60 \mathrm{M} \Omega$
Test voltage (d.c.)
between primary and secondary
between primary and core
Mains insulation

5600 V
5600 V
according to IEC 65 class 2, VDE 0860

* UL approved.
** UL and CSA approved.
^ (1-12) parallel connected to (10-4).
44 Terminals 10 and 12 interconnected.


## Approbation

Sets with transformers of this construction are released by Demko, Nemko, Semko, EI, SEV, UL and BSI.

## TESTS

The mains transformer withstands the following tests:

Vibration

Bump
Dry heat
Damp heat, steady state
Damp heat, accelerated
Change of temperature
Flammability

IEC 68-2-6, test Fc, $10-55-10 \mathrm{~Hz}$, amplitude $0,35 \mathrm{~mm}, 3 \times 30 \mathrm{~min}$.
IEC 68-2-29, test Eb; $40 \mathrm{~g}, 4000$ bumps, 3 directions.
IEC 68-2-2, test Bb; $96 \mathrm{~h},+125^{\circ} \mathrm{C}$.
IEC 68-2-3, test Ca, 21 days, R.H. $95 \%$.
IEC 68-2-4, test D, $+55^{\circ} \mathrm{C}$, R.H. 95 to $100 \%$.
IEC 68-2-14, test $\mathrm{Na} ; 5$ cycles, $\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{B}}=+125^{\circ} \mathrm{C}$.
UL94, category V2.

## MAINS TRANSFORMER

- Output power 12 VA
- For consumer applications, e.g. record players, cassette recorders, television sets


## DESCRIPTION

This transformer has a laminated iron core (welded E-I combination). The primary and secondary windings are wound on separate coil formers, which are concentrically mounted on the centre leg of the E-I combination.
The transformer has 12 pins for mounting on printed-wirings boards $(A)$, or solder tags with eyelets for wire connections (B).

## MECHANICAL DATA <br> Dimensions in mm



## Mounting

The transformer is secured by means of four self-tapping screws of 3 mm .

## ELECTRICAL DATA

Output power at $\mathrm{T}=115^{\circ} \mathrm{C}\left(\mathrm{T}_{\mathrm{amb}}=60^{\circ} \mathrm{C}\right)$
12 VA
Note: for over-temperature protection a built-in temperature/current fuse for $123^{\circ} \mathrm{C}$ is used.

	catalogue number $3112 \ldots . .$. .			
	34830410	31839470	34830190	348 30430*
Primary voltage	$\begin{aligned} & (3-5)^{* *} 110 \mathrm{~V} \\ & (3-1)^{* *} 127 \mathrm{~V} \\ & (3-2) \pm 220 \mathrm{~V} \\ & (3-1) \pm 240 \mathrm{~V} \end{aligned}$	(3-5) 240 V	$\begin{aligned} & \text { (3-5) } 127 \mathrm{~V} \\ & \text { (3-6) } 220 \mathrm{~V} \end{aligned}$	(3-5) 220 V   (3-6) 240 V   (1-2) 7,9 V
Primary resistance   (at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ )	$\begin{aligned} & (3-5)^{* *} 79 \Omega \\ & (3-1)^{* *} 106 \Omega \\ & (3-2) \pm 315 \Omega \\ & (3-1) \pm 342 \Omega \end{aligned}$	(3-5) $270 \Omega$	$\begin{aligned} & \text { (3-5) } 147 \Omega \\ & \text { (3-6) } 275 \Omega \end{aligned}$	$\begin{aligned} & \text { (3-5) } 268 \Omega \\ & \text { (3-6) } 294 \Omega \end{aligned}$
Secondary voltage	$\begin{aligned} & (8-9) 11,9 \mathrm{~V} \\ & (9-11) 11,9 \mathrm{~V} \end{aligned}$	$\begin{aligned} & (8-9) 18,3 \mathrm{~V} \\ & (9-10) 18,3 \mathrm{~V} \end{aligned}$	(7-8) $11,8 \mathrm{~V}$	$\begin{aligned} & (11-10) 10,9 \mathrm{~V} \\ & (9-8) 21,5 \mathrm{~V} \end{aligned}$
Secondary resistance (at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ )	$\begin{aligned} & \text { (8-9) } 2,2 \Omega \\ & (9-11) 2,2 \Omega \end{aligned}$	$\begin{aligned} & (8-9) 3,7 \Omega \\ & (9-10) 3,7 \Omega \end{aligned}$	(7-8) $1,23 \Omega$	$\begin{aligned} & (11-10) 1,2 \Omega \\ & (9-8) 18 \Omega \end{aligned}$
Diagram				

Insulation resistance
between primary and secondary
between primary and core
Test voltage (d.c.)
between primary and secondary
between primary and core
Mains insulation
$>60 \mathrm{M} \Omega$
$>60 \mathrm{M} \Omega$
5600 V
5600 V
according to IEC 65 class 2, VDE 0860

* Vacuum sealed, VDE 0551 approved.
** (4-5) parallel connected to (6-2).
ム Terminals 5 and 6 interconnected.


## Approbation

Sets with transformers of this construction are released by Demko, Nemko, Semko, EI, SEV, UL and BSI.

## TESTS

The mains transformer withstands the following tests:

Vibration

Bump
Dry heat
Damp heat, steady state
Damp heat, accelerated
Change of temperature
Flammability

IEC 68-2-6, test Fc, $10-55-10 \mathrm{~Hz}$, amplitude $0,35 \mathrm{~mm}, 3 \times 30 \mathrm{~min}$.
IEC 68-2-29, test Eb; 40g, 4000 bumps, 3 directions.
IEC 68-2-2, test Bb; $96 \mathrm{~h},+125^{\circ} \mathrm{C}$.
IEC 68-2-3, test Ca, 21 days, R.H. 95\%.
IEC 68-2-4, test D, $+55^{\circ} \mathrm{C}$, R.H. 95 to $100 \%$.
IEC 68-2-14, test $\mathrm{Na} ; 5$ cycles, $\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{B}}=+125^{\circ} \mathrm{C}$.
UL94, category V2.

## MAINS TRANSFORMER

- Output power 3,2 VA
- For consumer applications, e.g. record players, radio-cassette recorders


## DESCRIPTION

This transformer has a laminated iron core (welded E-I combination). The primary and secondary windings are wound on separate coil formers, which are concentrically mounted on the centre leg of the E-I combination.

MECHANICAL DATA


Dimensions in mm


## ELECTRICAL DATA

Output power at $\mathrm{T}=115^{\circ} \mathrm{C}\left(\mathrm{T}_{\mathrm{amb}}=60^{\circ} \mathrm{C}\right)$ 3,2 VA

Note: for over-temperature protection a built-in temperature/current fuse for $123^{\circ} \mathrm{C}$ is used.

	catalogue number 3112318 . . . .			
	36510	38000	38010	39410*
Primary voltage	$\begin{aligned} & (3-1) 127 \mathrm{~V} \\ & (3-4) 220 \mathrm{~V} \\ & (3-4) 240 \mathrm{~V} \end{aligned}$	(3-4) 220 V	(3-4) 240 V	(2-4) 120 V
Primary resistance (at $T_{a m b}=25^{\circ} \mathrm{C}$ )	$\begin{aligned} & (3-1) 640 \Omega \\ & (3-4) 1140 \Omega \end{aligned}$	(3-4) $830 \Omega$	(3-4) $1140 \Omega$	(2-4) $290 \Omega$
Secondary voltage	$\begin{aligned} & (10-11) 10,3 \mathrm{~V} \\ & (11-12) 10,3 \mathrm{~V} \end{aligned}$	(10-12) 9,9 V	(10-12) 10 V	(10-12) 9,8 V
Secondary resistance (at $T_{a m b}=25^{\circ} \mathrm{C}$ )	$\begin{aligned} & (10-11) 7 \Omega \\ & (11-12) 7 \Omega \end{aligned}$	$(10-12) 1,7 \Omega$	(10-12) $1,8 \Omega$	(10-12) $1,7 \Omega$
Diagram				

Insulation resistance between primary and secondary between primary and core
$>60 \mathrm{M} \Omega$
$>60 \mathrm{M} \Omega$
Test voltage (d.c.)
between primary and secondary
between primary and core
5600 V

Mains insulation
5600 V
according to IEC 65 class 2, VDE 0860

[^50]
## Approbation

Sets with transformers of this construction are released by Demko, Nemko, Semko, EI, SEV, UL and BSI.

## TESTS

The mains transformer withstands the following tests:

Vibration

Bump
Dry heat
Damp heat, steady state
Damp heat, accelerated
Change of temperature
Flammability

IEC 68-2-6, test Fc, $10-55-10 \mathrm{~Hz}$, amplitude $0,35 \mathrm{~mm}, 3 \times 30 \mathrm{~min}$.

IEC 68-2-29, test Eb; 40g, 4000 bumps, 3 directions.
IEC 68-2-2, test $\mathrm{Bb} ; 96 \mathrm{~h},+125^{\circ} \mathrm{C}$.
IEC 68-2-3, test Ca, 21 days, R.H. 95\%.
IEC 68-2-4, test D, $+55^{\circ} \mathrm{C}$, R.H. 95 to $100 \%$.
IEC 68-2-14, test $\mathrm{Na} ; 5$ cycles, $\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{B}}=+125^{\circ} \mathrm{C}$.
UL94, category V2.

## MAINS TRANSFORMER

- Output power 3,2 VA
- For consumer applications, e.g. record players, radio-cassette recorders, television sets


## DESCRIPTION

This transformer has a laminated iron core (welded E-I combination). The primary and secondary windings are wound on separate coil formers, which are concentrically mounted on the centre leg of the E-I combination.
The transformer has 7 pins for mounting on printed-wiring boards.

## MECHANICAL DATA

Dimensions in mm


8060

## Mounting

The transformer is secured by means of four self-tapping screws of 3 mm .

## ELECTRICAL DATA

Output power at $\mathrm{T}=115^{\circ} \mathrm{C}\left(\mathrm{T}_{\mathrm{amb}}=60^{\circ} \mathrm{C}\right) \quad 3,2 \mathrm{VA}$
Note: for over-temperature protection a built-in temperature/current fuse for $123^{\circ} \mathrm{C}$ is used.

	catalogue number 3112			
	31838210	318 39320*	318 39870**	34830050
Primary voltage	$\begin{aligned} & \text { (3-1) } 115 \mathrm{~V} \\ & \text { (3-4) } 220 \mathrm{~V} \end{aligned}$	(2-1) 120 V	$\begin{aligned} & (3-1) 120 \mathrm{~V} \\ & (3-4) 230 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { (3-1) } 127 \mathrm{~V} \\ & \text { (3-4) } 220 \mathrm{~V} \\ & (3-4) 240 \mathrm{~V} \end{aligned}$
Primary resistance $\text { (at } \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \text { ) }$	$\begin{aligned} & (3-1) 360 \mathrm{k} \Omega \\ & (3-4) 1430 \Omega \end{aligned}$	(2-1) $150 \Omega$	$\begin{aligned} & \text { (3-1) } 850 \Omega \\ & \text { (3-4) } 2100 \Omega \end{aligned}$	$\begin{aligned} & (3-1) 640 \Omega \\ & (3-4) 1140 \Omega \end{aligned}$
Secondary voltage	$\begin{aligned} & (10-11) 8,8 \mathrm{~V} \\ & (11-12) 8,8 \mathrm{~V} \end{aligned}$	$(10-12) 14,6 \mathrm{~V}$	$\begin{aligned} & (10-11) 20 \mathrm{~V} \\ & (11-12) 20 \mathrm{~V} \end{aligned}$	$\begin{aligned} & (10-11) 10,3 \mathrm{~V} \\ & (11-12) 10,3 \mathrm{~V} \end{aligned}$
Secondary resistance (at $T_{a m b}=25^{\circ} \mathrm{C}$ )	$\begin{aligned} & (10-11) 4,1 \Omega \\ & (11-12) 4,1 \Omega \end{aligned}$	(10-12) $2,4 \Omega$	$\begin{aligned} & (10-11) 38 \Omega \\ & (11-12) 38 \Omega \end{aligned}$	$\begin{aligned} & (10-11) 5,9 \Omega \\ & (11-12) 5,9 \Omega \end{aligned}$
Diagram				


Insulation resistance   between primary and secondary   between primary and core	$>60 \mathrm{M} \Omega$
Test voltage (d.c.)	$>60 \mathrm{M} \Omega$
between primary and secondary	
$\quad$ between primary and core	5600 V
Mains insulation	5600 V
	according to IEC 65 class 2,
	VDE 0860

* UL approved.
** UL and CSA approved.


## Approbation

Sets with transformers of this construction are released by Demko, Nemko, Semko, EI, SEV, UL and BSI.

## TESTS

The mains transformer withstands the following tests:
Vibration
IEC 68-2-6, test Fc,
$10-55-10 \mathrm{~Hz}$, amplitude $0,35 \mathrm{~mm}, 3 \times 30 \mathrm{~min}$.
Bump
Dry heat
Damp heat, steady state
Damp heat, accelerated
Change of temperature
Flammability
IEC 68-2-29, test Eb; 40g, 4000 bumps, 3 directions.
IEC 68-2-2, test $\mathrm{Bb} ; 96 \mathrm{~h},+125^{\circ} \mathrm{C}$.
IEC 68-2-3, test $\mathrm{Ca}, 21$ days, R.H. 95\%.
IEC 68-2-4, test $D,+55^{\circ} \mathrm{C}$, R.H. 95 to $100 \%$.
IEC 68-2-14, test $\mathrm{Na} ; 5$ cycles, $\mathrm{T}_{A}=-25^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{B}}=+125^{\circ} \mathrm{C}$.
UL94, category V2.

INDEX OF TYPE NUMBERS
CONVERSION LIST

## INDEX OF TYPE NUMBERS

type number	description	catalogue number	page
AT2076/51	diode-split line output transformer	312213835990	15
AT2076/53	diode-split line output transformer	312213836230	25
AT2076/54	universal diode-split line output transformer	312213836310	35
AT2076/60	asynchronous power pack transformer	312213835840	41
AT2076/70A	synchronous power pack transformer	312213836440	47
AT2076/80	miniature diode-split line output transformer	312213836290	53
AT2076/80A	miniature diode-split line output transformer	312213836200	53
AT2076/81	miniature diode-split line output transformer	312213836300	59
AT2076/81A	miniature diode-split line output transformer	312213836240	59
AT2076/84	universal diode-split line output transformer	312213836660	69
AT2077/80	diode-split-box line output transformer	312213836560	75
AT2077/81	diode-split-box line output transformer	312213836570	81
AT2077/82	diode-split-box line output transformer	312213836580	89
AT2079/09	line output transformer	312213837011	95
AT2079/10	line output transformer	312213836922	101
AT2102/02	line output transformer	312213835610	109
AT2102/02A	line output transformer	312213837071	115
AT2102/04C	line output transformer	311110834030	121
AT2102/06C	line output transformer	311110834040	125
AT2140/00A	line output transformer	311110835400	131
AT2140/16	line output transformer	311110835570	135
AT2140/16B	line output transformer	311110834450	139
AT2140/17	line output transformer	311110835630	135
AT2250/14	line output transformer	312213837121	143
AT3010/40	switched-mode transformer	311110834390	283
AT3010/90L	switched-mode transformer	311110835500	287
AT3010/110L	switched-mode transformer	311126830010	289
AT3010/110LS	switched-mode transformer	311110835690	293
AT4036/00A	adjustable linearity control unit	312213857030	171
AT4042/04A	adjustable linearity control unit	312213857050	173
AT4042/08A	adjustable linearity control unit	312213856491	175
AT4042/30	linearity corrector	312213897750	149
AT4042/32A	adjustable linearity control unit	312213857080	177
AT4042/33A	adjustable linearity control unit	312213857090	181
AT4042/34	linearity corrector	312213855310	153
AT4042/35A	adjustable linearity control unit	31.2213859101	183
AT4042/36FS	linearity corrector	312213857760	155
AT4042/41FS	linearity corrector	312213858281	157
AT4042/43A	adjustable linearity control unit	312213858191	185
AT4042/46	linearity corrector	312213898990	159

# TYPE NUMBER INDEX 

type number	description	catalogue number	page
AT4042/51FS	linearity corrector	312213856330	161
AT4042/90	linearity corrector	312213854000	163
AT4042/91	linearity corrector	312213856660	165
AT4042/92	linearity corrector	312213858621	167
AT4043/01	line driver transformer	311233830140	297
AT4043/08A	east/west choke	311233830700	299
AT4043/09	universal horizontal shift transformer	311233830230	303
AT4043/16A	input choke	311233830320	305
AT4043/17	driver transformer	311233830330	309
AT4043/29	line driver/d.c. shift transformer	3122.13873740	311
AT4043/45	switched-mode driver transformer	312213890290	313
AT4043/46	current sensing transformer	312213890300	315
AT4043/47	current sensing transformer	312213893390	317
AT4043/48	thyristor trigger and transistor driver transformer	312213890580	321
AT4043/52A	power pack system supply choke	311233830660	325
AT4043/53	power pack system line choke	312213893420	327
AT4043/55	mains filter choke	312213893240	331
AT4043/56	line driver transformer	311110832290	333
AT4043/59	line driver transformer	312213893520	335
AT4043/60	east/west injection coil	312213893870	337
AT4043/63	thyristor trigger and transistor driver transformer	312213893400	321
AT4043/64	line driver transformer	822227952121	339
AT4043/67	dynamic focusing transformer	312213896570	341
AT4043/68	bridge coil	312213896550	345
AT4043/69	bridge coil	312213871800	347
AT4043/81	input choke	312213850000	349
AT4043/82	driver transformer	312213850240	351
AT4043/83	line driver transformer	311233830160	353
AT4043/87	line driver transformer	312213826060	355
AT4043/89	line driver transformer	312213890070	357
AT4043/90	mains filter choke	311110833100	359
AT4043/91A	mains filter choke	311233830640	361
AT4043/92	mains filter choke	312213852860	363
AT4043/93	mains filter choke	312213853860	365
AT4043/100	bridge coil	311233830830	367
AT4044/35	amplitude control unit	312213856441	189
AT4044/39D	amplitude control unit	312213857021	193
CE134h	switched-mode transformer	311233830910	369
CE134v	switched-mode transformer	311233830440	371
CE137h	switched-mode transformer	311233830800	373
CE410	switched-mode transformer	*	375
CE411	switched-mode transformer	*	377
CE412v	switched-mode transformer	311233830940	379
CE420	switched-mode transformer	*	381
CE440	switched-mode transformer	311233830740	383
CF873	comb filter	432202784581	261

[^51]| type number | description | catalogue number | page |
| :--- | :--- | :---: | :--- |
| CI10 | bridge coil | $*$ | 385 |
| CI10d2 | pulse transformer | $*$ | 387 |
| CI15 | bridge coil | $*$ | 389 |
| CI20 | bridge coil | $*$ | 391 |
| CU10 | line driver transformer/bridge coil/choke | $*$ | 393 |
| CU11b2 | filter coil | $*$ | 395 |
| CU15 | line driver transformer/bridge coil/choke | $*$ | 397 |
| CU15b2 | filter coil | 311233830720 | 401 |
| CU15d | mains filter choke | $*$ | 403 |
| CU20 | line driver transformer/bridge coil/choke | $*$ | 405 |
| CU20c2 | driver transformer | $*$ | 407 |
| CU20d | mains filter choke | $*$ | 409 |
| CU25 | choke | $*$ | 411 |
| CU25c2 | switched-mode transformer | 311233830120 | 413 |
| CU30 | choke | 311233830150 | 415 |
| CU150 | current sensing transformer | $*$ | 417 |
| DL63 | glass delay line | 432202784630 | 217 |
| DL270 | luminance delay line | 312213899420 | 199 |
| DL330 | luminance delay line | 312213896042 | 203 |
| DL390 | luminance delay line | 312213850450 | 207 |
| DL470 | luminance delay line | 312213899471 | 211 |
| DL680 | glass delay line | 432202784661 | 221 |
| DL701 | glass delay line | 432202784771 | 225 |
| DL703 | glass delay line | 432202784831 | 229 |
| DL711 | glass delay line | 432202784781 | 233 |
| DL720 | glass delay line | 432202784721 | 237 |
| DL721 | glass delay line | 432202784731 | 237 |
| DL722 | glass delay line | 432202784741 | 237 |
| DL750 | glass delay line | 432202784751 | 241 |
| DL752 | glass delay line | 432202784882 | 245 |
| DL872 | glass delay line | 432202784841 | 249 |
| DL875 | glass delay line | 432202784501 | 253 |
| DL876 | glass delay line | 432202784511 | 257 |
| TS519 | mains transformer | $*$ | 421 |
| TS521 | mains transformer | $*$ | 425 |
| TS522 | mains transformer | $*$ | 429 |
| TS523 | mains transformer | $*$ | 433 |
| TS524 | mains transformer | $*$ | 437 |
| TS525 | mains transformer | $*$ | 441 |
| TS531 | mains transformer | $*$ | 445 |
| TS561 | mains transformer | $*$ | 449 |
| TS561/3 | mains transformer |  | 453 |
|  |  |  |  |
|  |  | $*$ |  |

* Various versions.


## CONVERSION LIST

Conversion of catalogue number to type number.

catalogue number	description	type number	page
311110832290	line driver transformer	AT4043/56	333
33100	mains filter choke	AT4043/90	359
34030	line output transformer	AT2102/04C	121
34040	line output transformer	AT2102/06C	125
34390	switched-mode transformer	AT3010/40	283
34450	line output transformer	AT2140/16B	139
35400	line output transformer	AT2140/00A	131
35500	switched-mode transformer	AT3010/90L	287
35570	line output transformer	AT2140/16	135
35630	line output transformer	AT2140/17	135
35690	switched-mode transformer	AT3010/110LS	293
311126830010	switched-mode transformer	AT3010/110L	289
311231835730	mains transformer	TS521	425
36510	mains transformer	TS561	449
36940	mains transformer	TS521	425
37490	mains transformer	TS521	425
37600	mains transformer	TS525	441
38000	mains transformer	TS561	449
38010	mains transformer	TS561	449
38020	mains transformer	TS522	429
38130	mais transformer	TS559	421
38210	mains transformer	TS561/3	453
38620	mains transformer	TS524	437
38710	mains transformer	TS525	441
38820	mains transformer	TS524	437
39010	mains transfromer	TS524	437
39030	mains transformer	TS525	441
39190	mains transformer	TS521	425
39320	mains transformer	TS561/3	453
39410	mains transformer	TS561	449
39440	mains transformer	TS524	437
39470	mains transformer	TS531	445
39480	mains transformer	TS523	433
39560	mains transformer	TS522	429
39640	mains transformer	T525	441
39700	mains transformer	TS523	433
39870	mains transformer	T561/3	453
39970	mains transformer	TS522	429
39990	mains transformer	TS523	433


CONVERSION LIST			
catalogue number	description	type number	page
311233830070	line driver transformer/bridge coil/choke	CU10	393
30120	switched-mode transformer	CU25c2	413
30140	line driver transformer	AT4043/01	297
30150	choke	CU30	415
30160	line driver transformer	AT4043/83	353
30170	mains filter choke	CU15d	403
30190	mains filter choke	CU20d	409
30200	bridge coil	Cl15	389
30210	choke	CU20	405
30220	mains filter choke	CU20d	409
30230	universal horizontal shift transformer	AT4043/09	303
30320	input choke	AT4043/16A	305
30330	driver transformer	AT4043/17	309
30380	driver transformer	CU20	405
30390	line driver transformer/bridge coil/choke	CU10	393
30420	driver transformer	CU15	397
30440	switched-mode transformer	CE134v	371
30460	bridge coil	CI 10	385
30550	switched-mode transformer	CE411	377
30620	switched-mode transformer	CE420	381
30640	mains filter choke	AT4043/91A	361
30650	bridge coil	Cl15	389
30660	power pack system supply choke	AT4043/52A	325
30700	east/west choke	AT4043/08A	299
30720	filter coil	CU15b2	401
30740	switched-mode transformer	CE440	383
30780	driver transformer	CU20c2	407
30790	bridge coil	Cl10	385
30800	switched-mode transformer	CE137h	373
30810	mains filter choke	CU20d	409
30820	driver transformer	CU15	397
30830	bridge coil	AT4043/100	367
30840	driver transformer	CU15	397
30860	mains filter choke	CU20d	409
30880	line driver transformer/bridge coil/choke	CU10	393
30910	switched-mode transformer	CE134h	369
30920	bridge coil	Cl 20	391
30940	switched-mode transformer	CE412v	379
30970	switched-mode transformer	CE411	377
30980	driver transformer	CU15	397
31000	bridge coil	CU20	405
31010	pulse transformer	Cl10d2	387
31020	mains filter choke	CU15d	403
31030	line driver transformer/bridge coil/choke	CU10	393
31040	switched-mode transformer	CE420	381
31070	switched-mode transformer	CE410	375


catalogue number	description	type number	page
311233831090	line driver transformer/bridge coil/choke	CU10	393
31120	choke	CU15	397
31150	switched-mode transformer	CE410	375
31190	pulse transformer	CI10d2	387
311234830000	mains transformer	TS523	433
30050	mains transformer	TS561/3	453
30110	mains transformer	TS519	421
30190	mains transformer	TS531	445
30330	mains transformer	TS519	421
30340	mains transformer	TS522	429
30410	mains transformer	TS531	445
30430	mains transformer	TS531	445
312213826060	line driver transformer	AT4043/87	355
28870	bridge coil	Cl 20	391
29360	bridge coil	Cl 15	389
29390	bridge coil	Cl 15	389
35610	line output transformer	AT2102/02	109
35840	asynchronous power pack transformer	AT2076/60	41
35990	diode-split line output transformer	AT2076/51	15
36200	miniature diode-split line output transformer	AT2076/80A	53
36230	diode-split line output transformer	AT2076/53	25
36240	miniature diode-split line output transformer	AT2076/81A	59
36290	miniature diode-split line output transformer	AT2076/80	53
36300	miniature diode-split line output transformer	AT2076/81	59
36310	universal diode-split line output transformer	AT2076/54	35
36440	synchronous power pack transformer	AT2076/70A	47
36560	diode-split-box line output transformer	AT2077/80	75
36570	diode-split-box line output transformer	AT2077/81	81
36580	diode-split-box line output transformer	AT2077/82	89
36660	universal diode-split line output transformer	AT2076/84	69
36922	line output transformer	AT2079/10	101
37011	line output transformer	AT2079/09	95
37071	line output transformer	AT2102/02A	115
37121	line output transformer	AT2250/14	143
50000	input choke	AT4043/81	349
50050	choke	CU25	411
50240	driver transformer	AT4043/82	351
50450	luminance delay line	DL390	207
51020	filter coil	CU11b2	395
51850	degaussing coil		267
51860	degaussing coil		267
52560	mains filter choke	CU15d	403


catalogue number	description	type number	page
312213852860	mains filter choke	AT4043/92	363
53860	mains filter choke	AT4043/93	365
54000	linearity corrector	AT4042/90	163
55220	degaussing coil		269
55230	degaussing coil		269
55260	degaussing coil		271
55310	linearity corrector	AT4042/34	153
55920	degaussing coil		273
56070	degaussing coil		275
56170	degaussing coil		275
56310	degaussing coil		277
56320	degaussing coil		277
56330	linearity corrector	AT4042/51FS	161
56441	amplitude control unit	AT4044/35	189
56491	adjustable linearity control unit	AT4042/08A	175
56660	linearity corrector	AT4042/91	165
57021	amplitude control unit	AT4044/39D	193
57030	adjustable linearity control unit	AT4036/00A	171
57050	adjustable linearity control unit	AT4042/04A	173
57080	adjustable linearity control unit	AT4042/32A	177
57090	adjustable linearity control unit	AT4042/33A	181
57760	linearity corrector	AT4042/36FS	155
58191	adjustable linearity control unit	AT4042/43A	185
58281	linearity corrector	AT4042/41FS	157
58621	linearity corrector	AT4042/92	167
59101	adjustable linearity control unit	AT4042/35A	183
71330	bridge coil	CI 10	385
71800	bridge coil	AT4043/69	347
73740	line driver/d.c. shift transformer	AT4043/29	311
74290	bridge coil	Cl10	385
74310	bridge coil	Cl10	385
90070	line driver transformer	AT4043/89	357
90290	switched-mode driver transformer	AT4043/45	313
90300	current sensing transformer	AT4043/46	315
90580	thyristor trigger and transistor driver transformer	AT4043/48	321
. 93240	mains filter choke	AT4043/55	331
93390	current sensing transformer	AT4043/47	317
93400	thyristor trigger and transistor driver transformer	AT4043/63	321
93420	power pack system line choke	AT4043/53	327
93520	line driver transformer	AT4043/59	335
93870	east/west injection coil	AT4043/60	337
94810	bridge coil	CI20	391
95450	driver transformer	CU15	397
96042	luminance delay line	DL330	203
96550	bridge coil	AT4043/68	345


catalogue number	description	type number	page
312213896570	dynamic focusing transformer	AT4043/67	341
97750	linearity corrector	AT4042/30	149
98990	linearity corrector	AT4042/46	159
99420	luminance delay line	DL270	199
99460	filter coil	CU11b2	395
99471	luminance delay line	DL470	211
99840	degaussing coil		279
99850	degaussing coil		279
432202784501	glass delay line	DL875	253
84511	glass delay line	CF876	257
84581	comb filter	DL63	261
84631	glass delay line	DL680	217
84661	glass delay line	DL720	221
84721	glass delay line	DL721	237
84731	glass delay line	DL722	237
84741	glass delay line	DL750	241
84751	glass delay line	DL750	241
84752	glass delay line	DL701	225
84771	glass delay line	DL701	225
84772	glass delay line	DL711	233
84781	glass delay line	DL711	233
84782	glass delay line	DL703	229
84831	glass delay line	DL872	249
84841	glass delay line	DL752	245
84882	glass delay line	AT4043/64	339
827952121	line driver transformer		

# Electronic components and materials for professional, industrial and consumer uses from the world-wide Philips Group of Companies 

Argentina: PHILIPS ARGENTINA S.A., Div. Elcoma, Vedia 3892, 1430 BUENOS AIRES, Tel. 541-7141/7242/7343/7444/7545.
Australia: PHILIPS INDUSTRIES HOLDINGS LTD., Elcoma Division, 11 Waltham Street, ARTARMON, N.S.W. 2064, Tel. (02) 4393322.
Austria: ÖSTERREICHISCHE PHILIPS BAUELEMENTE INDUSTRIE G.m.b.H., Triester Str. 64, A-1101 WIEN, Tel. 629111-0.
Belgium: N.V. PHILIPS \& MBLE ASSOCIATED, 9 rue du Pavillon, B-1030 BRUXELLES, Tel. (02) 2427400.
Brazil: IBRAPE, Caixa Postal 7383, Av. Brigadeiro Faria Lima, 1735 SAO PAULO, SP, Tel. (011) 211-2600.
Canada: PHILIPS ELECTRONICS LTD., Elcoma Division, 601 Milner Ave., SCARBOROUGH, Ontario, M1B 1M8, Tel. 292-5161.
Chile: PHILIPS CHILENA S.A., Av. Santa Maria 0760, SANTIAGO, Tel. 39-4001.
Colombia: IND. PHILIPS DE COLOMBIA S.A., c/o IPRELENSO LTD., Cra. 21, No. 56-17, BOGOTA, D.E., Tel. 2497624
Denmark: MINIWATT A/S, Strandlodsvej 2, P.O. Box 1919, DK 2300 COPENHAGEN S, Tel. (01) 541133.
Finland: OY PHILIPS AB, Elcoma Division, Kaivokatu 8, SF-00100 HELSINKI 10, TeI. 17271.
France: RTC-COMPELEC, 130 Avenue Ledru Rollin, F-75540 PARIS 11, Tel, 43388000.
Germany (Fed. Republic): VALVO, UB Bauelemente der Philips G.m.b.H., Valvo Haus, Burchardstrasse 19, D-2 HAMBURG 1, Tel. (040) 3296-0.
Greece: PHILIPS HELLENIQUE S.A., Elcoma Division, 54, Syngru Av., ATHENS 11742, Tel. $9215311 / 319$.
Hong Kong: PHILIPS HONG KONG LTD., Elcoma Div., 15/F Philips Ind. Bldg., 24-28 Kung Yip St., KWAI CHUNG, Tel. (0)-245121.
India: PEICO ELECTRONICS \& ELECTRICALS LTD., Elcoma Dept., Band Box Building,
254-D Dr. Annie Besant Rd., BOMBAY - 400025, Tel. 4930311/4930590.
Indonesia: P.T. PHILIPS-RALIN ELECTRONICS, Elcoma Div., Setiabudi II Building, 6th Fl., Jalan H.R. Rasuna Said (P.O. Box 223/KBY) Kuningan,
JAKARTA - Selatan, Tel. 512572.
Ireland: PHILIPS ELECTRICAL (IRELAND) LTD., Newstead, Clonskeagh, DUBLIN 14, Tel. 693355.
Italy: PHILIPS S.p.A., Sezione Elcoma, Piazza IV Novembre 3, I-20124 MILANO, Tel. 2-6752.1.
Japan: NIHON PHILIPS CORP., Shuwa Shinagawa Bldg., 26-33 Takanawa 3-chome, Minato-ku, TOKYO (108), Tel. 448-5611.
(IC Products) SIGNETICS JAPAN LTD., 8-7 Sanbancho Chiyoda-ku, TOKYO 102, Tel. (03) 230-1521.
Korea (Republic of): PHILIPS ELECTRONICS (KOREA) LTD., Elcoma Div., Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. 794-5011.
Malaysia: PHILIPS MALAYSIA SDN. BERHAD, No. 4 Persiaran Barat, Petaling Jaya, P.O.B. 2163, KUALA LUMPUR, Selangor, Tel. 774411.
Mexico: ELECTRONICA, S.A de C.V., Carr. México-Toluca km. 62.5, TOLUCA, Edo. de México 50140, Tel. Toluca 91 (721) 613-00.
Netherlands: PHILIPS NEDERLAND, Marktgroep Elonco, Postbus 90050, 5600 PB EINDHOVEN, Tel. (040) 793333.
New Zealand: PHILIPS NEW ZEALAND LTD., Elcoma Division, 110 Mt. Eden Road, C.P.O. Box 1041, AUCKLAND, Tel. 605-914.
Norway: NORSK A/S PHILIPS, Electronica Dept., Sandstuveien 70, OSLO 6, Tel. 680200.
Peru: CADESA, Av. Alfonso Ugarte 1268, LIMA 5, Tel. 326070.
Philippines: PHILIPS INDUSTRIAL DEV. INC., 2246 Pasong Tamo, P.O. Box 911, Makati Comm. Centre, MAKATI-RIZAL 3116, Tel. 86-89-51 to 59.
Portugal: PHILIPS PORTUGUESA S.A.R.L., Av. Eng. Duarte Pacheco 6, 1009 LISBOA Codex, Tel. 683121.
Singapore: PHILIPS PROJECT DEV. (Singapore) PTE LTD., Elcoma Div., Lorong 1, Toa Payoh, SINGAPORE 1231, Tel. 3502000. .
South Africa: EDAC (PTY.) LTD., 3rd Floor Rainer House, Upper Railway Rd. \& Ove St., New Doornfontein, JOHANNESBURG 2001, Tel. 614-2362/9.
Spain: MINIWATTS.A., Balmes 22, BARCELONA 7, Tel. 3016312.
Sweden: PHILIPS KOMPONENTER A.B., Lidingövägen 50, S-11584 STOCKHOLM 27, Tel. 08/7821000.
Switzerland: PHILIPS A.G., Elcoma Dept., Allmendstrasse 140-142, CH-8027 ZÜRICH, Tel. 01-4882211.
Taiwan: PHILIPS TAIWAN LTD., 150 Tun Hua North Road, P.O. Box 22978, TAIPEI, Taiwan, Tel. 7120500.
Thailand: PHILIPS ELECTRICAL CO. OF THAILAND LTD., 283 Silom Road, P.O. Box 961, BANGKOK, Tel. 233-6330-9.
Turkey: TÜRK PHILIPS TICARET A.S., Elcoma Department, Inönü Cad, No. 78-80, P.K.504, 80074 ISTANBUL, Tel. 435910.
United Kingdom: MULLARD LTD., Mullard House, Torrington Place, LONDON WC1E 7HD, Tel. 01-5806633.
United States: (Active Devices \& Materials) AMPEREX SALES CORP., Providence Pike, SLATERSVILLE, R.I. 02876, Tel. (401) 762-9000.
(Passive Devices) MEPCO/ELECTRA INC., Columbia Rd., MORRISTOWN, N.J. 07960, Tel. (201) 539-2000.
(Passive Devices \& Electromechanical Devices) CENTRALAB INC., 5855 N. Glen Park Rd., MILWAUKEE, WI 53201, Tel. (414)228-7380.
(IC Products) SIGNETICS CORPORATION, 811 East Arques Avenue, SUNNYVALE, California 94086, Tel. (408) 991-2000.
Uruguay: LUZILEGTRON S.A., Avda Uruguay 1287, P.O. Box 907, MONTEVIDEO, Tel. 914321.
Venezuela: IND. VENEZOLANAS PHILIPS S.A., c/o MAGNETICA S.A., Calle 6, Ed. Las Tres Jotas, App. Post. 78117, CARACAS, Tel. (02) 2393931.

For all other countries apply to: Philips Electronic Components and Materials Division, International Business Relations, P.O. Box 218,
5600 MD EINDHOVEN, The Netherlands, Telex 35000 phtenl


[^0]:    * The Microprocessors were included in handbook IC14N 1985, so IC18 will replace that part of IC14N.

[^1]:    * E.H.T. cable, catalogue number 312213763370 , to be ordered separately.
    ** E.H.T. cable, catalogue number 312213763920 , to be ordered separately.
    4 E.H.T. cable, catalogue number 311110834740 , to be ordered separately.
    $\triangle$ E.H.T. cable, catalogue number 312213758254 , to be ordered separately.

[^2]:    * Spurious signals measured in frequency range 3,9 to $4,75 \mathrm{MHz}$.

[^3]:    * Resistor $10 \Omega$ to be connected in series.

[^4]:    * D.C. component on these pulses is $V_{B^{\prime}}$.

[^5]:    * D.C. component on these pulses is $\mathrm{V}_{\mathrm{B}}{ }^{\prime}$.

[^6]:    ${ }^{*}$ D.C. component on these pulses is $\mathrm{V}_{\mathrm{B}}$ (see Fig. 3).
    ** For mounting on the printed-wiring board a washer of 20 mm in diameter has to be used. Tightening torque on printed-wiring board: $500+100 \mathrm{mNm}$.

[^7]:    * D.C. component on these pulses is $V_{B}{ }^{\prime}$.

[^8]:    Above measurements using circuits of Figs 3,5 a and 5 b.

[^9]:    * D.C. component on these pulses is $V_{B^{\prime}}$.

[^10]:    * For mounting on the printed-wiring board a washer of 20 mm in diameter has to be used. Tightening torque on printed-wiring board: $500+100 \mathrm{mNm}$.

[^11]:    * Stabilization range $\mathrm{V}_{\mathrm{B}}$ from 215 V d.c. ( 165 V mains) to 350 V d.c. ( 265 V mains).
    ** Values apply to voltages after rectification, and pins 3,11 and 12 connected to earth.

[^12]:    * Stabilization range $\mathrm{V}_{\mathrm{B}}$ from 215 V d.c. ( 165 V mains) to 350 V d.c. ( 265 V mains).

[^13]:    * D.C. component on these pulses is $\mathrm{V}_{\mathrm{B}}$ (see Fig. 3).

[^14]:    * D.C. component on these pulses is $V_{B}{ }^{\prime}$.

[^15]:    * D.C. componenton these pulses is $\mathrm{V}_{\mathrm{B}}{ }^{\prime}$.

[^16]:    * Pins 1 and 18 connected to earth.

[^17]:    * D.C. component on these pulses is $\mathrm{V}_{\mathrm{B}}{ }^{\prime}$ (see Fig. 5).

[^18]:    * D.C. component on these pulses is $V_{B}{ }^{\prime}$.

[^19]:    * At mains voltage $220 \mathrm{~V} . \quad$ ** Pin 18 connected to earth.

[^20]:    Auxiliary windings
    connection pins 1 and 2
    6,3 V (r.m.s.)
    connecting pins 1 and 3
    connecting pin 5 (pin 6 connected to earth)
    connecting pin 7 (pin 6 connected to earth)

    11 V (r.m.s.)
    $790 \vee$ (d.c.)
    66 V (d.c.)

[^21]:    Auxiliary windings
    connection pins 1 and 2
    connecting pins 1 and 3
    connecting pin 5 (pin 6 connected to earth)
    connecting pin 7 (pin 6 connected to earth)

[^22]:    Auxiliary windings
    connecting pins 1 and 2
    connecting pin 4 (pin 5 connected to earth)
    connecting pin 3 (pin 5 connected to earth)
    connecting pin 7 (pin 6 connected to earth)

[^23]:    * The transformers are provided with two booster diode connections: pin 3 and pin 5, enabling selection of frequency ranges.

[^24]:    * Dependent on operating frequency.

[^25]:    * At $f=1 \mathrm{kHz}, 1 \geqslant 100 \mathrm{~mA}$.
    ** At $f \geqslant 100 \mathrm{kHz},(13-14)$ short-circuited.
    - $\mathrm{V}_{10-9}=1 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}$.

[^26]:    * Measured at $9 \mathrm{~V}, 1 \mathrm{kHz}$.
    ** Primary 2-1 short-circuited.

[^27]:    * Measured at $17,2 \mathrm{~V}, 1 \mathrm{kHz}$.

[^28]:    * Measured at $4,4 \mathrm{~V}, 1 \mathrm{kHz}$.

[^29]:    * Measuring condition: $\mathrm{E}=10 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}$.

[^30]:    * Measuring condition: $E=1,3 \mathrm{~V} ; \mathrm{f}=1 \mathrm{kHz}$.

[^31]:    * Measuring condition: $E=1,5 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}$.
    ** Measuring condition: $\mathrm{E} \leqslant 250 \mathrm{mV} ; 0,8 \mathrm{MHz} \leqslant f \leqslant 1 \mathrm{MHz}$.

[^32]:    * Measuring condition: $\mathrm{E}=1 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}$.

[^33]:    * Measuring condition: $\mathrm{E}=20 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}$.
    ** Measuring condition: $\mathrm{E}_{1-3}=5 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}$.

[^34]:    ${ }^{*}$ Measuring conditions: $E=20 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}$.

[^35]:    * Measured at $1 \mathrm{~V}, 1 \mathrm{kHz}$.

[^36]:    * Measured at $1 \mathrm{~V}, 1 \mathrm{kHz}$.

[^37]:    * Measured at $2,2 \mathrm{~V}, 1 \mathrm{kHz}$.

[^38]:    * Measured at $10 \mathrm{kHz}, \mathrm{B}_{\text {max }}=0,3 \mathrm{~T}$.

[^39]:    * Measured at $10 \mathrm{kHz}, \mathrm{B}_{\text {max }}=0,3 \mathrm{~T}$.

[^40]:    * Measured at $10 \mathrm{kHz}, \mathrm{B}_{\text {max }}=0,3 \mathrm{~T}$.

[^41]:    * Measured at $10 \mathrm{kHz}, \mathrm{B}_{\text {max }}=0,3 \mathrm{~T}$.

[^42]:    * Measured at $10 \mathrm{kHz}, \mathrm{B}_{\text {max }}=0,3 \mathrm{~T}$.

[^43]:    * Measured at $10 \mathrm{kHz}, B_{\text {max }}=0,3 \mathrm{~T}$.

[^44]:    * Measured at $10 \mathrm{kHz}, \mathrm{B}_{\text {max }}=0,3 \mathrm{~T}$.

[^45]:    * Measured at $1 \mathrm{kHz}, \mathrm{B}_{\text {max }}=0,1 \mathrm{~T}$.
    ** Measured at $\mathrm{T}_{\mathrm{amb}}=23^{\circ} \mathrm{C}$

[^46]:    * Measured at $1 \mathrm{kHz}, \mathrm{B}_{\text {max }}=0,1 \mathrm{~T}$.

[^47]:    * At primary voltage of 220 V .

[^48]:    Insulation resistance
    between primary and secondary
    $>60 \mathrm{M} \Omega$
    between primary and core
    $>60 \mathrm{M} \Omega$
    Test voltage (d.c.)
    between primary and secondary
    5600 V
    between primary and core
    Mains insulation
    5600 V
    according to IEC 65 class 2, VDE 0860

[^49]:    * (2-15) parallel connected to (14-6).
    ** Terminals 14 and 15 interconnected.

[^50]:    * Without fuse; UL approved.

[^51]:    * Various versions.

