

LOW POWER SCHOTTKY TTL ICs

DATABOOK

$1^{\text {st }}$ EDITION

JUNE 1991

USE IN LIFE SUPPORT DEVICES OR SYSTEMS MUST BE EXPRESSLY AUTHORIZED

SGS-THOMSON PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF SGS-THOMSON Microelectronics. As used herein:

1. Life support devices or systems are those which (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided with the product, can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can reasonably be expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

TABLE OF CONTENTS

INTRODUCTIONPage4ALPHANUMERICAL INDEX 5
SELECTION GUIDE 9
GENERAL INFORMATION

- PRODUCT OVERVIEW 18
- LIST OF SYMBOLS 23
- DESIGN CONSIDERATIONS 25
- AC TEST CIRCUITS AND WAVEFORMS 29
RELIABILITY REPORT 31
DATASHEETS 45
PACKAGES 549

Low Power Schottky integrated circuits are one of the three major logic families supplied in high volume by SGS-THOMSON. This databook contains datasheets on the companys range of Low Power Schottky ICs.

The information for each product, given in accordance with EIA/JEDEC specifications, has been specially presented in order that the performance of the product can be readily evaluated within any required equipment design.

The SGS-THOMSON range of packages includes all of the most commonly used plastic and ceramic dual-in-line as well as surface mounting packages. New developments in packaging include the PLCC package. As with all DIL packages all the surface out-line packages (SO) are made to JEDEC standards.

Additionally, general considerations that should be taken into account in the operation and application of Low Power Schottky integrated circuits are described.
Selection guides are included to simplify the task of choosing the best combination of circuits for a system.

The databook also contains the results of the reliability studies made by SGS-THOMSON of its Low Power Schottky devices.

ALPHANUMERICAL INDEX

Type Number	Function	Package DIP	Page Number
T74LS00	Quad 2-Input NAND Gate	14	47
T74LS01	Quad 2-Input NAND Gate (Open collector)	14	51
T74LS02	Quad 2-Input NOR Gate .	14	55
T74LS03	Quad 2-Input NAND Gate (Open collector)	14	59
T74LS04	Hex Inverter	14	63
T74LS05	Hex Inverter (Open Collector)	14	67
T74LS08	Quad 2-Input AND Gate	14	71
T74LS09	Quad 2-Input AND Gate (Open Collector)	14	75
T74LS10	Triple 3-Input NAND Gate	14	79
T74LS11	Triple 3-Input AND Gate	14	82
T74LS12	Triple 3-Input NAND Gate (Open Collector)	14	87
T74LS13	Dual 4-Input NAND Schmitt Trigger	14	91
T74LS14	Hex Schmitt Trigger Inverter	14	95
T74LS15	Triple 3-Input AND Gate (Open Collector)	14	99
T74LS20	Dual 4-Input NAND Gate	14	103
T74LS21	Dual 4-Input AND Gate	14	107
T74LS22	Dual 4-Input NAND Gate (Open Collector)	14	111
T74LS26	Quad 2-Input NAND Buffer (Open Collector)	14	115
T74LS27	Triple 3-Input NOR Gate	14	119
T74LS28	Quad 2-Input NOR Buffer	14	123
T74LS30	8-Input NAND Gate	14	127
T74LS32	Quad 2-Input OR Gate	14	131
T74LS33	Quad 2-Input NOR Buffer (Open Collector)	14	135
T74LS37	Quad 2-Input NAND Buffer	14	139
T74LS38	Quad 2-Input NAND Buffer (Open Collector)	14	143
T74LS40	Dual 4-Input NAND Buffer	14	147
T74LS42	1-of-10 Decoder	16	151
T74LS51	Dual 2-Wide 2-Input/3-Input AND-OR-INVERT Gate	14	155
T74LS54	2-3-3-2-Input AND-OR-INVERT Gate	14	159
T74LS55	2-Wide 4-Input AND-OR-INVERT Gate	14	163
T74LS74A	Dual D-Type Positive Edge-Triggered Flip-Flop	14	167
T74LS75	4-Bit D Latch	16	173
T74LS83A	4-Bit Full Adder with Fast Carry	16	177
T74LS86	Quad 2-Input Exclusive OR Gate	14	181
T74LS90	Decade Counter	14	185
T74LS91	8-Bit Shift Register Serial-In Serial-Out	14	193
T74LS92	Divide-by-12 Counter	14	185
T74LS93	4-Bit Binary Counter	14	185
T74LS95B	4-Bit Shift Register	14	197
T74LS109A	Dual JK Positive Edge-Triggered Flip-Flop	16	203
T74LS112A	Dual JK Negative Edge-Triggered Flip-Flop	16	209
T74LS113A	Dual JK Negative Edge-Triggered Flip-Flop	14	215
T74LS114A	Dual JK Negative Edge-Triggered Flip-Flop	14	221
T74LS125A	Quad 3-State Buffer (LOW Enable)	14	227
T74LS126A	Quad 3-State Buffer (HIGH Enable)	14	227
T74LS132	Quad 2-Input Schmitt Trigger NAND Gate	14	233
T74LS133	13-Input NAND Gate	16	237
T74LS136	Quad 2-Input Exclusive OR Gate (Open Collector)	14	241

Type Number	Function	Package DIP	Page Number
T74LS138	1-of-8 Decoder/Demultiplexer	16	245
T74LS139	Dual 1-of-4 Decoder/Demultiplexer	16	249
T74LS148	8-Input to 3-Line Priority Encoder	16	253
T74LS151	8-Input Multiplexer	16	257
T74LS152	8 -Input Multiplexer	14	261
T74LS153	Dual 4-Input Multiplexer	16	265
T74LS155	Dual 1-of-4 Decoder/Demultiplexer	16	269
T74LS156	Dual 1-of-4 Decoder/Demultiplexer (Open Collector)	16	269
T74LS157	Quad 2-Input Multiplexer (Non Inverting)	16	275
T74LS158	Quad 2-Input Multiplexer (Inverting)	16	279
T74LS160A	BCD Decade Counter, Asynchronous Reset	16	283
T74LS161A	4-Bit Binary Counter, Asynchronous Reset	16	283
T74LS162A	BCD Decade Counter, Synchronous Reset	16	283
T74LS163A	4-Bit Binary Counter, Synchronous Reset	16	283
T74LS164	8-Bit Shif Register (Serial-In Parallel-Out)	14	291
T74LS166	8-Bit Shift Register (Parallel-In Serial-Out)	16	297
T74LS168	Up/Down Decade Counter	16	303
T74LS169	Up/Down Binary Counter	16	303
T74LS170	4×4 Register File (Open Collector)	16	311
T74LS174	Hex D-Type Flip-Flop with Clear	16	317
T74LS175	Quad D-Type Flip-Flop with Clear	16	323
T74LS181	4-Bit ALU	24	329
T74LS190	Presettable BCD/Decade Up/Down Counter	16	337
T74LS191	Presettable 4-Bit Binary Up/Down Counter	16	337
T74LS192	Presettable BCD/Decade Up/Down Counter	16	347
T74LS193	Presettable 4-Bit Binary Up/Down Counter	16	347
T74LS194A	4-Bit Right/Left Shift Register	16	355
T74LS195A	4-Bit Shift Register	16	361
T74LS196	Decade Counter	14	367
T74LS197	4-Bit Binary Counter	14	367
T74LS240	Octal Inverting Bus/Line Driver (3-State)	20	375
T74LS241	Octal Bus Line Driver (3-State)	20	375
T74LS244	Octal Non Inverting Driver (3-State)	20	375
T74LS245	Octal Non Inverting Bus Transceiver (3-State)	20	379
T74LS248	BCD to 7-Segment Decoder/Driver with Pull-Ups	16	383
T74LS251	8 -Input Multiplexer (3-State)	16	387
T74LS253	Dual 4-Input Multiplexer (3-State)	16	393
T74LS256	Dual 4-Bit Addressable Latch	16	399
T74LS257A	Dual 2-Input Multiplexer (3-State)	16	405
T74LS258A	Dual 2-Input Multiplexer (3-State)	16	411
T74LS259	8-Bit Addressable Latch	16	417
T74LS260	Dual 5-Input NOR Gate	14	423
T74LS266	Quad 2-Input Exclusive NOR Gate (Open Collector)	14	427
T74LS273	Octal D-Type Flip-Flop with Master Reset	20	431
T74LS279	Quad Set-Reset Latch	16	435
T74LS280	9-Bit Odd/Even Parity Generator/Checker	14	439
T74LS283	4-Bit Binary Full Adder (Rotated LS83A)	16	443
T74LS290	Decade Counter	14	447

Type Number	Function	Package DIP	Page Number
T74LS293	4-Bit Binary Counter	14	447
T74LS295A	4-Bit Shift Register (3-State)	14	455
T74LS298	Quad 2-Input Multiplexer with Output Latches	16	461
T74LS352	Dual 4-Input Multiplexer (Inverting LS153)	16	467
T74LS353	Dual 4-Input Multiplexer (3-State LS352)	16	471
T74LS365A	Hex Buffer with Common Enable (3-State)	16	477
T74LS366A	Hex Inverter Buffer with Common Enable (3-State)	16	477
T74LS367A	Hex Buffer, 4-Bit and 2-Bit (3-State)	16	477
T74LS368A	Hex Inverter Buffer, 4-Bit and 2-Bit (3-State)	16	477
T74LS373	Octal Transparent Latch (3-State)	20	481
T74LS374	Octal D-Type Flip-Flop (3-State)	20	487
T74LS377	Octal D-Type Flip-Flop with Common Enable	20	493
T74LS378	Hex D-Type Flip-Flop with Enable	16	497
T74LS379	4-Bit D-Type Flip-Flop with Enable	16	501
T74LS390	Dual Decade Counter	16	505
T74LS393	Dual 4-Bit Binary Counter	14	505
T74LS395A	4-Bit Shift Register (3-State)	16	511
T74LS399	Quad 2-Input Multiplexer with Output Register	16	519
T74LS490	Dual Decade Counter	16	523
T74LS533	Octal Transparent Latch (3-State)	20	529
T74LS534	Octal D-Type Flip-Flop (3-State)	20	529
T74LS540	Octal Inverting Buffer/Line Driver (3-State)	20	533
T74LS541	Octal Buffer/Line Driver (3-State)	20	533
T74LS645	Octal Non Inverting Bus Transceiver (3-State)	20	539
T74LS670	4x4 Register File (3-State)	16	543

SGS-THOMSON
NACROELECTRONUCS

SELECTION GUIDE

Type Number	Function	Page
AND Gates		
LS08	Quad 2-Input AND Gate	71
LS09	Quad 2-Input AND Gate (Open Collector)	75
LS11	Triple 3-Input AND Gate	82
LS15	Triple 3-Input AND Gate (Open Collector)	99
LS21	Dual 4-Input AND Gate	107
OR Gate		
LS32	Quad 2-Input OR Gate	131
NAND Gate		
LSOO	Quad 2-Input NAND Gate	47
LS01	Quad 2-Input NAND Gate (Open Collector)	51
LS03	Quad 2-Input NAND Gate (Open Collector)	59
LS10	Triple 3-Input NAND Gate	79
LS12	Triple 3-Input NAND Gate (Open Collector)	87
LS13	Dual 4-Input NAND Schmitt Trigger	91
LS20	Dual 4-Input NAND Gate	103
LS22	Dual 4-Input NAND Gate (Open Collector)	111
LS26	Quad 2-Input NAND Buffer (Open Collector)	115
LS30	8-Input NAND Gate	127
LS37	Quad 2-Input NAND Buffer	139
LS38	Quad 2-Input NAND Buffer (Open Collector)	143
LS40	Dual 4-Input NAND Buffer	147
LS132	Quad 2-Input Schmitt Trigger NAND Gate	233
LS133	13-Input NAND Gate	237
NOR Gate		
LS02	Quad 2-Input NOR Gate	55
LS27	Triple 3-Input NOR Gate	119
LS28	Quad 2-Input NOR Buffer	123
LS33	Quad 2-Input NOR Buffer (Open Collector)	135
LS260	Dual 5-Input NOR Gate	423
EX OR		
LS86	Quad 2-Input Exclusive OR Gate	181
LS136	Quad 2-Input Exclusive OR Gate (Open Collector)	241

Type Number	Function	Page

EX NOR

LS266	Quad 2-Input Exclusive NOR Gate (Open Collector)	427
NOT		
LS04	Hex Inverter	63
LS05	Hex Inverter (Open Collector)	67
LS14	Hex Schmitt Trigger Inverter	95

AND-OR-INVERT

| LS51 | Dual 2-Wide 2-Input/3-Input AND-OR-INVERT Gate | 155 |
| :--- | :--- | :--- | :--- |
| LS54 | 2-3-3-2-Input AND-OR-INVERT | 159 |
| LS55 | 2-Wide 4-Input AND-OR-INVERT Gate | 163 |

BUFFERS

LS125A	Quad 3-State Buffer (LOW Enable)	227
LS126A	Quad 3-State Buffer (HIGH Enable)	227
LS240	Octal Inverting Bus/Line Driver (3-State)	375
LS241	Octal Bus Line Driver (3-State)	375
LS244	Octal Non Inverting Driver (3-State)	375
LS245	Octal Non Inverting Bus Transceiver (3-State)	379
LS365A	Hex Buffers with Common Enable (3-State)	477
LS366A	Hex Inverter with Common Enable (3-State)	477
LS367A	Hex Buffers, 4-Bit and 2-Bit (3-State)	477
LS368A	Hex Inverter Buffer, 4-Bit and 2-Bit (3-State)	477
LS540	Octal Inverting Buffer/Line Driver (3-State)	533
LS541	Octal Buffer/Line Driver (3-State)	533
LS645	Octal Non Inverting Bus Transceiver (3-State)	539

FLIP-FLOPS

| LS74A | Dual D-Type Positive Edge-Triggered Flip-Flop | 167 |
| :--- | :--- | :--- | :--- |
| LS109A | Dual JK Positive Edge-Triggered Flip-Flop | 203 |
| LS112A | Dual JK Negative Edge-Triggered Flip-Flop | 209 |
| LS113A | Dual JK Negative Edge-Triggered Flip-Flop | 215 |
| LS114A | Dual JK Negative Edge-Triggered Flip-Flop | 221 |

Type Number	Function	Page

ARITHMETIC OPERATORS

LS83A	4-Bit Full Adder with Fast Carry	177
LS181	4-Bit ALU	329
LS283	4-Bit Binary Adder (Rotated LS83A)	443

COUNTERS

| LS90 | Decade Counter . | 185 |
| :--- | :--- | :--- | :--- |4-Bit Binary Counter185

LS160A BCD Decade Counter, Asynchronous Reset 283
LS161A 4-Bit Binary Counter, Asynchronous Reset 283
LS162A BCD Decade Counter, Synchronous Reset 283
LS163A 4-Bit Binary Counter, Synchronous Reset 283
LS168 Up/Down Decade Counter 303
LS169 Up/Down Binary Counter 303
LS190 Presettable BCD/Decade Up/Down Counter 337
LS191 Presettable 4-Bit Binary Up/Down Conter 337
LS192 Presettable BCD/Decade Up/Down Counter 343
LS193 Presettable 4-Bit Binary Up/Down Counter 347
LS196 Decade Counter 367
LS197 4-Bit Binary Counter 367
LS290 Decade Counter 447
LS293 4-Bit Binary Counter 447
LS390 Dual Decade Counter 505
LS393 Dual 4-Bit Binary Counter 505
LS490 Dual Decade Counter 523
DECODER/DEMULTIPLEXERS

| LS42 | 1-of-10 Decoder . | 151 |
| :--- | :--- | :--- | :--- |
| LS138 | 1-of-8 Decoder/Demultiplexer . | 245 |
| LS139 | Dual 1-of-4 Decoder/Demultiplexer | 249 |
| LS155 | Dual 1-of-4 Decoder/Demultiplexer | 269 |
| LS156 | Dual 1-of-4 Decoder/Demultiplexer (Open Collector) | 269 |
| LS256 | Dual 4-Bit Addressable Latch . | 399 |
| LS259 | 8-Bit Addressable Latch . | 417 |

Type Number	Function	Page

MULTIPLEXERS

LS151	8-Input Multiplexer	257
LS152	8-Input Multiplexer	261
LS153	Dual 4-Input Multiplexer	265
LS157	Quad 2-Input Multiplexer (Non Inverting)	275
LS158	Quad 2-Input Multiplexer (Inverting)	279
LS251	8-Input Multiplexer (3-State)	387
LS253	Dual 4-Input Multiplexer (3-State)	393
LS257A	Quad 2-Input Multiplexer (3-State)	405
LS258A	Quad 2-Input Multiplexer (3-State)	411
LS298	Quad 2-Input Multiplexer with Output Latches	461
LS352	Dual 4-Input Multiplexer (Inverting LS153)	467
LS353	Dual 4-Input Multiplexer (3-State LS352)	471
LS399	Quad 2-Input Multiplexer with Output Register	519

LATCHES AND FLIP-FLOP

LS75	4-Bit D Latch	173
LS170	4×4 Register File (Open Collector)	311
LS174	Hex D-Type Flip-Flop with Clear	317
LS175	Quad D-Type Flip-Flop with Clear	323
LS197	4-Bit Binary Counter	367
LS256	Dual 4-Bit Addressable Latch	399
LS259	8-Bit Addressable Latch	417
LS273	Octal D-Type Flip-Flop with Master Reset	431
LS279	Quad Set-Reset Latch	435
LS298	Quad 2-Input Multiplexer with Output Latches	461
LS373	Octal Transparent Latch (3-State)	481
LS374	Octal D-Type Flip-Flop (3-State)	487
LS377	Octal D-Type Flip-Flop with Common Enable	493
LS378	Hex D-Type Flip-Flop with Enable	497
LS379	4-Bit D-Type Flip-Flop with Enable	501
LS533	Octal Transparent Latch (3-State)	529
LS534	Octal D-Type Flip-Flop (3-State)	529
LS670	4×4 Register File (3-State)	543

Type Number	Function	Page

REGISTERS

LS91	8-Bit Shift Register Serial-In Serial-Out	193
LS95B	4-Bit Shift Register	197
LS164	8-Bit Shift Register (Serial-In Parallel-Out)	291
LS166	8-Bit Shift Register (Parallel-In Serial-Out)	297
LS170	4×4 Register File (Open Collector)	311
LS174	Hex D-Type Flip-Flop with Clear	317
LS175	Quad D-Type Flip-Flop with Clear	323
LS194A	4-Bit Right/Left Shift Register	355
LS195A	4-Bit Shift Register	361
LS273	Octal D-Type Flip-Flop with Master Reset	431
LS295A	4-Bit Shift Register (3-State)	455
LS298	Quad 2-Input Multiplexer with Output Latches	461
LS374	Octal D-Type Flip-Flop (3-State)	487
LS377	Octal D-Type Flip-Flop with Common Enable	493
LS378	Hex D-Type Flip-Flop with Enable	497
LS379	4-Bit D-Type Flip-Flop with Enable	501
LS395A	4-Bit Shift Register (3-State)	511
LS399	Quad 2-Input Multiplexer with Output Register	519
LS534	Octal D-Type Flip-Flop (3-State)	529
LS670	4×4 Register File (3-State)	543

PRIORITY ENCODERS
LS148 \quad 8-Input to 3-Line Priority Encoder . $\quad 253$

DISPLAY DECODER/DRIVERS (BCD To Seven Segment)

LS248	BCD to 7-Segment Decoder/Driver with Pull-Ups

PARITY GENERATOR CHECKERS

| LS280 | 9-Bit Odd/Even Parity Generator/Checker | 439 |
| :--- | :--- | :--- | :---: |

GENERAL INFORMATION

THE PRODUCT FEATURES

In the world of semiconductors, the TTL family has been for several years, one of the most diffused technologies in the field of integrated circuits. The Low Power Schottky technology represents the most successful evolution of the basic TTL. Its main advantages are:

- reduced chip size
- lower power dissipation higher switching speed
Nowadays the LPS Family has substantially replaced the TTL Family, and it is the most diffused among bipolar digital ones. SGS-THOMSON is present in this field with a wide range of highly reliable TTL-LS products.
The TTL-LS devices are typically used in computer mainframes and peripherals, telecom equipment, industrial control systems, etc.

THE PRODUCT TECHNOLOGY

SGS-THOMSON has improved the already well known Schottky technology using the latest available facilities in design and in manufacturing. Our design "philosophy" is "quality oriented". This means that the lay-out rules give absolute priority to device quality, reliability and life-time.
The performance, the repeatability and the low leakage level of the principal parameters are fundamental principles in the philosophy of SGS-THOMSON. They are guaranteed by the use of advanced, fully automated equipment such as:

- ion implanters for all doping processes
- computer control and furnaces
- high precision projection mask aligners
- wafer by wafer sputtering equipment

For the TTL-LS Family SGS-THOMSON is the first semiconductor manufacturer to use only 5 " wafers

with fully implanted doping processes. In this way, wafer handling is greatly reduced leading to a much higher level of quality and productivity.
The Low Power Schottky TTL family combines a current and power reduction by a factor 5 , compared to 7400 TTL .

This is compled with anti-saturation Schottky diode clamping and advanced processing, using shallower diffusions and higher sheet resistivity to obtain circuit performances better than conventional TTL.
To the system designer the advantages of the TTLLS family are many:

- Lower supply current allows smaller, cheaper power supplies, reducing equipment cost, size and weight.
- Lower power consumption means less heat is generated, which simplifies thermal design. Packing density can be increased or cooling requirements reduced, or perhaps both. The number of cooling fans can be reduced, or slower, quieter ones substituted.
- Reliability is enhanced, since lower dissipation causes less chip temperature rise above ambient; lower junction temperature increases MTBF. Also, lower chip current densities minimizes metal related failure mechanisms.
- Less noise is generated, since the improved transistors and lower operating currents lead to much smaller current spikes than standard TTL, which in turn means that fewer or smaller power supply decoupling capacitors are needed.
In addition, load currents are only 25\% of standard TTL and 20% of HTTL, which means that when a logic transition occurs, current changes along signal lines are proportionately smaller, as are the changes in ground current.
Rise and fall times and thus wiring rules, are the same as for standard TTL and more relaxed than for HTTL or STTL.
Simplified MOS to TTL interfacing is provided, since the input load current of LSTTL is only 25% of a standard TTL load.
- Ideally suited for CMOS to TTL interfacing. CMOS and most other 4000 or 74 C CMOS are designed to drive one LS input load at 5.0V. The LS can also interface directly with CMOS operating up to 15 V due to high voltage Schottky input diodes.
- Best TTL to MOS or CMOS driver. With the modest input current of MOS or CMOS as a load, any LS output will rise up to within 1V of Vcc, and can be pulled up to 10 V with an external resistor.
- Interfaces directly with other TTL types, as indicated in the input and output loading tables.

SGS-THOMSON
MOCROEMECTROMOCS

Circuit Characteristics

The LS circuit features are most easily explained by using the 74LSOO 2-input NAND gate as an example of the input/output circuits of all LS TTL. While the logic function and the basic structure of LS circuis are the same as conventional TTL, there are also significant differences, as we can see in Figure 1.

Figure 1.

Input Configuration

The various input configurations which SGSTHOMSON uses are described below.
The most common input configuration used by SGS-THOMSON in the LS family includes a Schottky Diode (see Fig. 2).

Figure 2. Diode Input

With respect to the standard multi-emitter this layout is much faster and has a high input breakdown voltage.
The circuits including an input diode have been tested for leakage with

$$
\mathrm{V}_{\mathrm{IN}}=7 \mathrm{~V}
$$

The voltage breakdown is typically 15 V .
Fig. 7 shows the transfer characteristic of a gate with the structure of fig. 2.
The thereshold voltage is:

$$
\begin{aligned}
& V_{T H}= 2 V_{B E}-V_{F \cong} \cong 1.05 \mathrm{~V} \\
& \text { at: } T \cong 25^{\circ}
\end{aligned}
$$

Figure 3. Diode Cluster Input

This configuration (see fig. 3) is incorporated in some circuits to slightly improve the VTH with respect to the input diode configuration.
In this case the threshold voltage becomes.

$$
\mathrm{V}_{\mathrm{TH}}=2 \mathrm{~V}_{\mathrm{BE}} .
$$

Figure 4. PNP Input

This configuration (see fig. 4) is an improvement of the diode cluster. Besides $\mathrm{V}_{\mathrm{TH}}=2 \mathrm{~V}_{\mathrm{BE}}$ there is also a reduction of the current supplied by the input. Here the equivalent input resistance is amplified by the gain of the transistor with respect to the input diode configuration. Therefore: $\operatorname{RIN}(P N P)=\beta \mathrm{mb}(P N P) \times R I N$

Figure 5. Emitter Inputs

This is the standard layout (see fig. 5) used by the old TTL family this has both a breakdown voltage greater than 5.5 V and a threshold voltage:

$$
V_{T H}=2 V_{B E}-V_{C E S A T}
$$

which is slightly higher than that of the input diode configuration. All the inputs described have a Schottky clamping diode which conducts when the input signal becomes negative. (Fig. 6)
This limits the undershoot and minimizes the ringing in long interconnections which work as transmission lines. This ringing could become significant when the delay along an interconnection is greater than a quarter of the fall time of the driving signal.
The clamping diode must be used only to sink the transient current and not for "steady state clamping". The effective input capacitance of an LS-TTL is 3.3 pF .
For each internal function driven by the input, 1.5pF is added.

Figure 6. Typical Input Current Voltage Characteristics

Output Configuration

The base of the pull-down output transistor is returned to ground through a resistor-transistor network instead of through a simple resistor. This squares up the transfer characteristics (see fig. 7) since it prevents conduction in the phase splitter until base current is supplied to the pull-down output transistor.
The "squaring network" improves the propagation delay be creating a path of low resistence to discharge the base capacitance of Q5 during turn-off. The output pull-up circuit is a 2-transistor Darlington circuit with the base of the output transistor returned through a $5 \mathrm{k} \Omega$ resistor to the output terminal. This configuration allows the output to pull-up to one VBE below Vcc for low values of output current.

Figure 7. Typical Output Versus Input Voltage Characteristics

The LS outputs use a Schottky diode in series with the Darlington collector resistor. This diode allows the output to be pulled substantially higher than VCC (e.g., to +10 V , convenient for interfacing with CMOS). For the same reason the parasitic diode of the base return resistor is connected to the Darlington common collector, not to Vcc.
Figure 8 shows the extra circuitry used to obtain the "high Z" condition in 3-state outputs. When the Output Enable signal is LOW, both the phase splitter and the Darlington pull-up are turned off. In this condition the output of 2 or more such circuits to be connected together in a bus application where only one output is enabled at any particular time.

Figure 8. Typical 3-State Output Control

Output Charateristics

Figure 9 shows the Low state output characteristics.
For Low IOL values, the pull-down transistor is clamped Out of deep saturation which contributes to speed. The curves also show the clamping effect when lol tends to go negative, as it often does due to reflections on a long interconnection after a ne-gative-going transition.
This clamping effect helps to minimize ringing.
The waveform of a rising output signal resembles an exponential, except that the signal is slightly rounded at the beginning of the rise. Once past this initial rounded portion, the starting leading edge rate of rise is approximately $0.5 \mathrm{~V} / \mathrm{ns}$ with a 15 pF load and $0.25 \mathrm{~V} /$ ns with a 50 pF load. For analytical purposes, the rising waveform can be approximated by the following expression.

$$
v(t)=V_{O L}+3.7[1-\operatorname{esp}(-t / T)]
$$

where

$$
\begin{aligned}
\mathrm{T} & =8 \mathrm{~ns} \text { for } C_{L}=15 \mathrm{pF} \\
& =16 \mathrm{~ns} \text { for } C_{L}=50 \mathrm{pF}
\end{aligned}
$$

The waveform of a falling output signal resembles that part of a cosine wave between the angles 00° and 180°.
Fall times from 90% to 10% are approximately 4.5 ns with a 15 pF load and 8.5 ns with a 50 pF load. Equivalent edge rates are approximately $0.8 \mathrm{~V} / \mathrm{ns}$ and $0.4 \mathrm{~V} / \mathrm{ns}$, respectively. For analytical purposes, the falling waveform can be approximated by the following expression.

$$
\begin{gathered}
v(t)=V o L+1.9 \mu(t)[1+\cos \omega t]- \\
-1.9 \mu(t-a)[1+\cos \omega(t-a)]
\end{gathered}
$$

where
$\mu(\mathrm{t})=0$ for $\mathrm{t}<0$

$$
=1 \text { for } t>0
$$

and
$\mu(\mathrm{t}-\mathrm{a})=0$ for $\mathrm{t}<\mathrm{a}$

$$
=1 \text { for } t>a
$$

For t in nanoseconds
and $C_{L}=15 \mathrm{pF}$

$$
\mathrm{a}=7.5 \mathrm{~ns}, \omega=0.42
$$

For $\mathrm{CL}_{\mathrm{L}}=50 \mathrm{pF}$
$a=14 \mathrm{~ns}, \omega=0.23$

Figure 9. Typical Output Current - Voltage Characteristics

Figure 10. lout $=\mathrm{F}(\mathrm{VOH})$

AC Switching Characteristics

The average propagation delay of a Low Power Schottky gate is 5 ns at a load of 15 pF as shown in Figure 11. The delay times increase at an average of $0.08 \mathrm{~ns} / \mathrm{pF}$ for larger values of capacitive load. These delay times are relatively insensitive to variations in power supply and temperature. The average propagation delay time changes less than 1.0 ns over temperature range and less than 0.5 ns with Vcc for the military temperature and voltage ranges. (See Figures 12 and 13).

Figure 11. Typical Propagation Delay Versus Load Capacitance

Figure 12. Propagation Delay Change with
Temperature

Figure 13. Propagation Delay Change Supply Voltage

DC SYMBOLS AND DEFINITIONS

VOLTAGES - All voltages are referenced to ground. Negative voltage limits are specified as absolute values (i,e, -10 V is greater thant -1.0 V).
CURRENTS - Positive current is defined as conventional current flow into a device. Negative current is defined as conventional current flow out of a device. All current limits are specified absolute values.

Vcc	Supply voltage - The range of power supply voltage over which the device is guaranteed to operate within the specified limits.
$\mathrm{V}_{\text {CD(MAX }}$	Input clamp diode voltage - The most negative voltage at an input when 18 mA is forced out of that input terminal. This parameter guarantees the integrity of the input diode which is intended to clamp negative ringing at the input terminal.
V_{IH}	Input HIGH voltage - The range of input voltages that represents a logic HIGH in the system.
$\mathrm{VIH}_{(\mathrm{MIN}}$)	Minimum input HIGH voltage The minimum allowed input HIGH in a logic system. This value represents the guaranteed input HIGH threshold for the device.
VIL	Input LOW voltage - The range of input voltages that represents a logic LOW in the system.
VIL(MAX)	Maximum input LOW voltage The maximum allowed input LOW in a system. This value represents the guaranteed input LOW threshold for the device.
$\mathrm{VOH}_{\text {(MIN }}$	Output HIGH voltage - The minimum voltage at an output terminal for the specified output current IOH and the minimum value of Vcc .
Vol(max)	Output LOW voltage - The maximum voltage at an output terminal sinking the maximum specified load current lol.

$\mathrm{V}_{\text {+ }}$	Positive-going threshold voltage The input voltage of a variable threshold device (i.e., Schmitt Trigger) that is interpreted as a $\mathrm{V}_{\mathbb{H}}$ as the input transition rises from below $\mathrm{V}_{\mathrm{T}-(\mathrm{MIN}) \text {. }}$
$\mathrm{V}_{\mathrm{T} \text { - }}$	Negative-going threshold voltage The input voltage of a variable threshold device (i.e. Schmitt Trigger) that is interpreted as a V_{IL} as the input transition falls from above $\mathrm{V}_{\mathrm{T}+\text { (MAX). }}$
Icc	Supply current - The current flowing into the Vcc supply terminal of a circuit with the specified input conditions and the outputs open. When not specified, input conditions are chosen to guarantee worst case operation.
In	Input HIGH current - The current flowing into an input when a specified HIGH voltage is applied.
IIL	Input LOW current - The current flowing out of an input when a specified LOW voltage is applied.
IOH	Output HIGH current - The leakage current flowing into a turned off open collector output with a specified HIGH output voltage applied. For devices with a pull-up circuit, the loн is the current flowing out of an output which is in the HIGH state.
loL	Output LOW current - The current flowing into an output which is in the LOW state.
los	Output short circuit current The current flowing out of an output which is in the HIGH state when that output is short circuit to ground (or other specified potential).
lozh	Output off current HIGH - The current flowing into a disabled 3 -state output with a specified HIGH output voltage applied.
lozl	Output off current LOW - The current flowing out of a disabled 3-state output with a specified LOW output voltage applied.

AC SWITCHING PARAMETERS

\(\left.$$
\begin{array}{|l|l|}\hline \text { fMAX } & \begin{array}{l}\text { Troggle frequency/operating fre- } \\
\text { quency - The maximum rate at } \\
\text { which clock pulses may be applied } \\
\text { to a sequential circuit. Above this } \\
\text { frequency the device may cease to } \\
\text { function. } \\
\text { tpLH } \\
\text { Propagation delay time - The time } \\
\text { between the specified reference } \\
\text { points, normally 1.3V on the input } \\
\text { and output voltage waveforms, with } \\
\text { the output changing from the } \\
\text { defined LOW level to the defined }\end{array}
$$

HIGH level.

tPHL

Propagation delay time - The time

between the specified reference

points, normally 1.3V on the input

and output voltage waveforms, with

the output changing from the

defined HIGH level to the defined

LOW level.\end{array}\right\}\)| Pulse width - The time between 1.3 |
| :--- |
| v amplitude points on the leading |
| and trailing edges of a pulse. |
| th |
| Hold time - The interval immedi- |
| ately following the active transition |
| of the timing pulse (usually the clock |
| pulse) or following the transition of |
| the control input to its latching level, |
| during which interval the data to be |
| recognized must be maintained at |
| the input to ensure its continued rec- |
| ognition. A negative hold time indi- |
| cates that the correct logic level may |
| be released prior to the active tran- |
| sition of the timing pulse and still be |
| recognized. |

tPHZ	Output disable time (of a 3-state output) from LOW level - The time between the 1.3 V on the input and a voltage 0.5 V below the steady state output HIGH level with the 3 -state output changing from the defined HIGH level to a high-impedance (off) state.
tpLZ	Output disable time (of a 3-state output) from LOW level - The time between the 1.3 V level on the input and a voltage 0.5 V above the steady state output LOW level with the 3 -state output changing from the defined LOW level to a high-impedance (off) state.
tPzH	Output enable time (of a 3-state output) to a HIGH level - The time between the 1.3 V levels of the input and output voltage waveforms with the 3 -state output changing from a high-impedance (off) state to a HIGH level.
tpzL	Output enable time (of a 3-state output) to a LOW level - The time between the 1.3 V levels of the input and output voltage waveforms with the 3 -state output changing from a high-impedance (off) state to a LOW level.
trec	Recovery time - The time between the 1.3 V level on the trailing edge of an asynchronous input control pulse and the 1.3 V level on a synchronous input (clock) pulse such that the device will respond to the synchronous input.

SCS-THOMSO Microilzciromics

SUPPLY VOLTAGE AND TEMPERATURE RANGE

The nominal supply voltage (Vcc) for all TTL circuits is +5.0 V . Commercial grade parts are guaranteed to perform with a $\pm 5 \%$ supply tolerance ($\pm 250 \mathrm{mV}$) over an ambient temperature range of $0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$.

MIL-grade parts are guaranteed to perform with a $\pm 10 \%$ supply tolerance ($\pm 500 \mathrm{mV}$) over an ambient temperature range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
TTL families may be mixed for optimum system design. The following table specify the worst case noise immunity in mixed systems.

WORST CASE TTL DC NOISE IMMUNITY/NOISE MARGINS

Electrical Characteristics											
Item	Symbol	SGS-THOMSON TTL Families	Military (-55 to +125 ${ }^{\circ} \mathrm{C}$)				Commercial (0 to $\mathbf{7 5}^{\circ} \mathrm{C}$)				Units
			VIL	$\mathbf{V I H}_{\mathbf{H}}$	Vol	VOH	$\mathbf{V}_{\mathbf{L L}}$	$\mathbf{V I H}_{\mathbf{H}}$	Vol	V OH	
6	TTL	Standard TTL (54/74)	0.8	2.0	0.4	2.4	0.8	2.0	0.4	2.4	V
7	HTTL	High Speed TTL (54H/74H)	0.8	2.0	0.4	2.4	0.8	2.0	0.4	2.4	V
10	LSTTL	Low Power Schottky TTL (54LS/74LS)	0.7	2.0	0.4	2.5	0.8	2.0	0.5	2.7	V

$V_{O L}$ and $V_{O H}$ are the voltages generated at the output. $V_{\mathbb{K}}$ and $V_{\mathbb{I H}}$ are the voltage required at the input to generate the appropriate output levels. The numbers given above are guaranteed worst-case values.

LOW Level Noise Margins (Military)										
To							TTL	HTTL	LSTTL	Units
From										
TTL	400	400	300	mV						
HTTL	400	400	300	mV						
LSTTL	400	400	300	mV						

From "Vol" to "VIL"

HIGH Level Noise Margins (Military)				
	To	TTL	HTTL	LSTTL
From		Units		
TTL	400	400	400	mV
HTTL	400	400	400	mV
LSTTL	500	500	500	mV

From "V OH^{H} to " $\mathrm{V}_{\mathbf{H}}$ "

LOW Level Noise Margins (Commercial)										
To							TTL	HTTL	LSTTL	Units
From										
TTL	400	400	400	mV						
HTTL	400	400	400	mV						
LSTTL	300	300	300	mV						

From "Vol" to " $\mathrm{VIL}^{\prime \prime}$

LOW Level Noise Margins (Commercial)					
	To	TTL	HTTL	LSTTL	Units
From					
TTL	400	400	400	mV	
HTTL	400	400	400	mV	
LSTTL	700	700	700	mV	

From " $\mathrm{VOH}_{\mathrm{OH}}$ to " V_{H} "

FAN-IN AND FAN-OUT

In order to simplify designing with SGS-THOMSON LSTTL devices, the input and output loading parameters of all families are normalized to the following values:

> 1 TLL Unit Load (U.L.) $=40 \mu \mathrm{~A}$ in the HIGH state (Logic "1")
> 1 TL Unit Load (U.L.) $=1.6 \mathrm{~mA}$ in the LOW state (logic "0")

Input loading and output drive factors of all products described in this handbook are related to these definitions.

Examples-Input Load

1. A 7400 gate, wich has a maximum IIL of 1.6 mA and IIH of 40μ A is specified as having an input load factor of 1 U.L. (Also called a fan-in of 1 load).
2. The 74LS95 which has a value of IIL $=0.8 \mathrm{~mA}$ and $\mathrm{IIH}_{\mathrm{H}}$ of $40 \mu \mathrm{~A}$ on the CP terminal, is specified as having an input LOW load factor of

$$
\frac{0.8 \mathrm{~mA}}{1.6 \mathrm{~mA}} \text { or } 0.5 \mathrm{U} . \mathrm{L} .
$$

and an input HIGH load factor of

$$
\frac{40 \mu \mathrm{~A}}{40 \mu \mathrm{~A}} \text { or } 1 \mathrm{U} . \mathrm{L} .
$$

3. The 74LSOO gate which has an IIL of 0.36 mA and an IIH of $20 \mu \mathrm{~A}$, has input LOW load factor of

$$
\frac{0.36 \mathrm{~mA}}{1.6 \mathrm{~mA}} \text { or } 0.225 \mathrm{U} . \mathrm{L} .
$$

(normally rounded to 0.25 U.L.) and an input HIGH load factor of

$$
\frac{20 \mu \mathrm{~A}}{40 \mu \mathrm{~A}} \text { or } 0.5 \text { U.L. }
$$

Examples-Output Drive

1. The output of the 7400 will sink 16 mA in the LOW (logic "0") state and source $800 \mu \mathrm{~A}$ in the HIGH (logic "1") state. The normalized output LOW drive factor is therefore

$$
\frac{16 \mathrm{~mA}}{1.6 \mathrm{~mA}}=10 \mathrm{U} . \mathrm{L}
$$

and the output HIGH drive factor is

$$
\frac{800 \mu \mathrm{~A}}{40 \mu \mathrm{~A}} \text { or } 20 \mathrm{U} . \mathrm{L} .
$$

2. The output of the 74LSOO (Commercial Grade) will sink 8.0 mA in the LOW state and source 400 $\mu \mathrm{A}$ in the HIGH state. The normalized output LOW drive factor is

$$
\frac{80 \mathrm{~mA}}{1.6 \mathrm{~mA}} \text { or } 5 \text { U.L. }
$$

and the output HIGH drive factor is

$$
\frac{400 \mu \mathrm{~A}}{40 \mu \mathrm{~A}} \text { or } 10 \mathrm{U} . \mathrm{L} .
$$

Relative load and drive factors for the basic TTL families are given in Table 1.
Table 1

Family	Input Load		Output Drive	
	High	Low	High	Low
74 LS00	0.5 U.L.	0.25 U.L.	10 U.L.	5 U.L.
7400	1 U.L.	1 U.L.	20 U.L.	10 U.L.
9000	1 U.L.	1 U.L.	20 U.L.	10 U.L.
74 H00	1.25 U.L.	1.25 U.L.	25 U.L.	12.5 U.L.
74 S00	1.25 U.L.	1.25 U.L.	25 U.L.	12.5 U.L.

Values for MSI devices vary significant from one element to another Consult the appropriate data sheet for actual characteristics.

WIRED-OR APPLICATIONS

Certain TTL devices are provided with an "open" collector output to permit the Wired-OR (actually Wired-AND) function. This is achieved by connecting open collector outputs together and adding an external pull-up resistor.
The value of the pull-up resistor is determined by considering the fan-out of the OR tie and the number of devices in the OR tie.
The pull-up resistor value is chosen from a range between a maximum value (established to maintain the required VOH with all the OR tied outputs HIGH) and a minimum value (established so that the OR tie fanout is not exceeded when only one output is LOW).

Minimum and Maximum Pull-Up Resistor Values

$$
\begin{gathered}
R_{X(M I N)}=\frac{V_{C C(M A X)}-V_{O L}}{\mathrm{IOL}_{\mathrm{OL}}-\mathrm{N}_{2(\text { LOW })} \cdot 1.6 \mathrm{~mA}} \\
\mathrm{RXX}_{(\mathrm{MAX})}=\frac{\mathrm{V}_{\mathrm{CC}(\mathrm{MIN})}-\mathrm{V}_{\mathrm{OH}}}{\mathrm{~N}_{1} \cdot \mathrm{IOH}_{\mathrm{OH}}+\mathrm{N}_{2(H I G H)} \cdot 40 \mu \mathrm{~A}}
\end{gathered}
$$

where
RX = External Pull-up Resistor
$\mathrm{N}_{1} \quad=$ Number of Wired-OR Outputs
$\mathrm{N}_{2} \quad=$ Number of Input Unit Loads being Driven
IOH=ICEX = Output HIGH Leakage Current
IOL $=$ LOW Level Fan-out Current of Driving Element
VoL $\quad=$ Output LOW Voltage Level (0.5 V)
$\mathrm{VOH}=$ Output HIGH Voltage Level (2.4V)
Vcc = Power Supply Current
Example: Four 74LS03 gate outputs driving four other 74LS gates or MSI inputs.

$$
\begin{gathered}
\mathrm{RX}_{\mathrm{X}(\mathrm{MIN})}=\frac{5.25 \mathrm{~V}-0.5 \mathrm{~V}}{8 \mathrm{~mA}-1.6 \mathrm{~mA}}=\frac{4.75 \mathrm{~V}}{6.4 \mathrm{~mA}}=742 \Omega \\
\mathrm{RX}_{(\mathrm{MIN})}=\frac{4.75 \mathrm{~V}-2.4 \mathrm{~V}}{4 \cdot 100 \mu \mathrm{~A}+2 \cdot 40 \mu \mathrm{~A}}=\frac{2.35 \mathrm{~V}}{0.48 \mathrm{~mA}}=4.9 \mathrm{~K} \Omega
\end{gathered}
$$

where
$\mathrm{N}_{1}=4$
N_{2} (HIGH) $=4 \cdot 0.5$ U.L. $=2$ U.L.
N_{2} (LOW) $=4 \cdot 0.25 \mathrm{U} . \mathrm{L} .=1 \mathrm{U} . \mathrm{L}$.
$\mathrm{IOH}=100 \mu \mathrm{~A}$
$\mathrm{lOL}=8 \mathrm{~mA}$
$\mathrm{VOL}=0.5 \mathrm{~V}$
$\mathrm{VOH}=2.4 \mathrm{~V}$
Any value of pull-up resistor between 742Ω and $4.9 \mathrm{k} \Omega$ can be used. The lower values yield the fastest speeds while the higher values yield the lowest power dissipation.

UNUSED INPUTS

For best noise immunity and switching speed, unused TTL inputs should not be left floating, but should be held between 2.4 V and the absolute maximum input voltage.
Two possible ways of handing unused inputs are:

1. Connect unused input to Vcc. Most 74LS inputs have abreakdown voltage $>15 \mathrm{~V}$ and require, therefore, no series resistor. For all multi-emitter conventional TTL inputs, a 1 to $10 \mathrm{k} \Omega$ current limiting series resistor is recommended, to protect against VcC transients that exceed 5.5 V .
2. Connect the unused input to the output of an unused gate that is forced HIGH.
CAUTION: Do not connect an unused LSTTL input to another input of the same NAND or AND function. This method, recommended for normal TTL, increases the input coupling capacitance and thus reduces the ac noise immunity.

INTERCONNECTION DELAYS

For those parts of a system in which timing is critical, designers should take into account the finite delay along the interconnections. These range from about 0.12 to $0.15 \mathrm{~ns} / \mathrm{inch}$ for the type of interconnections normally used in TTL systems. Exceptions occur in system using ground planes with STTL to reduce ground noise during a logic transition; ground planes give higher distributed capacitance and delays of about 0.15 to $0.22 \mathrm{~ns} / \mathrm{inch}$.
Most interconnections on a logic board are short enough that the wiring and load capacitance can be treated as a lumped capacitance for purposes of estimating their effect on the propagation delay of the driving circuit.
When an interconnection is long enough that its delay is one-fourth to one-half of the signal transition time, the driver output waveform exhibits noticeable slope changes during a transition. This is evidence that during the initial portion of the output voltage transition the driver sees the characteristic impedance of the interconnection (normally 150Ω to 200 2), which for transient conditions appears as a resistor returned to the quiescent voltage existing just before the beginning of the transition. This characteristic impedance forms a voltage divider with the driver output impedance, tending to produce a signal transition having the same rise or fall time as in the no-load condition but with a reduced amplitude. This attenuated signal travels to the far end of the interconnection, which is essentially an unterminated transmission line, whereupon the signal starts doubling. Simultaneously, a reflection voltage is generated which has the same amplitude and polarity as the original signal, e.g., if the driver output signal is positive-going the reflection will be positive-going, and as it travels back toward the driver it adds to the line voltage. At the instant the reflection arrives at the driver it adds algebraically to the still-rising driver output, accelerating the transition rate and producing the noticeable change in slope.
If an interconnection is of such length that its delay is longer than half the signal transition time, the attenuated output of the driver has time to reach substantial completion before the reflection arrives. In the limit, the waveform observed at the driver output is a 2 -step signal with a pedestal. In this circumstance the first load circuit to receive a full signal is the one at the far end, because of the doubling effect, while the last one to receive a full signal is the one nearest the driver since it must wait for the reflection to complete the transition. Thus, in a worst-cast situation, the net contribution to the overall delay is twice the delay of the interconnection because the initial part of the signal must travel to the far end of the line and the reflection must return.

When load circuits are distributed along an interconnection, the input capacitance of each will cause a small reflection having a polarity opposite that of the signal transition, and each capacitance also slows the transition rate of the signal as it passes by. The series of small reflections, arriving back at the driver, is subtractive and has the effect of reducing the apparent amplitude of the signal. The successive slowing of the transition rate of the transmitted signal means that it takes longer for the signal to rise or fall to the threshold level of any particular load circuit. A rough but workable approach is to treal the load capacitances as an increase in the intrinsic distributed capacitance of the interconnection. Increasing the distributed capacitance of a transmission line reduces its impedance and increases its delay. A good approximation for ordinary TTL interconnections is that distributed load capacitance decreases the characteristic impedance by about one-third and increases the delay by one-half.

Another advantage of LSTTL has to do with its output impedance during a positive-going transition. Whereas the low output impedance of STTL and HTTL allows these circuits to force a larger initial swing into a low impedance interconnection, the low output impedance also has a disadvantage. It makes the reflection coefficient negative at the driven end of the interconnection, a situation that
exists any time a transmission line is terminated by an impedance lower than its characteristics impedance. This means that when the reflection from the (essentially) open end of the interconnection arrives back at the driver it will be re-reflected with the opposite polarity. The result is a sequence of reflected signal which alternate in sign and decrease in magnitude, commonly known as ringing. The lower the driver output impedance, the greater the amplitude of the ringing and the longer it takes to damp out.
The output impedance of LSTTL, on the other hand, is closer to the characteristic impedance of the interconnections commonly used with TTL, and ringing is practically non existent. Thus no special packaging is required. This advantage, combined with excellent speed, modest edge rates and very low transient currents, are some of the reasons that designers have found LSTTL extremely easy to work with and very cost effective.

METASTABLE CHARACTERISTIC

When a setup, hold or recovery time is violated, the response of a flip-flop is uncertain. Reliable operation under this condition cannot be guaranteed, since there is the probability that the output locks in the metastable region for a certain period.
The metastable state is defined as that time period in which the output level is not at logic " 0 " nor at logic "1", but stays in the region between 0.8 and 2 V .

The following test circuits and conditions represent SGS's-THOMSON typical AC test procedures. The output loading for standard Low Power Schottky devices is a 15 pF capacitor. Experimental evidence shows that test results using the additional dioderesistor load are within 0.2 ns of the capacitor only load.
The capacitor only load also has the advantage of repeatable, easily correlated test results. The input pulse rise and fall times are specified at 6 ns to closely approximate the Low Power Schottky output transitions through the active threshold region.
The specified propagation delay limits can be guaranteed with a 15 ns input rise time on all parameters except those requiring narrow pulse widths. Any frequency measurement over 15 MHz or pulse width less than 30 ns must be performed with a 6 ns input rise time.

Pulse Generator Settings (unless otherwise specified)

\square
Frequency $=1 \mathrm{MHz}$
Duty Cycle $=50 \%$
tTLH(trise) $=6 \mathrm{~ns}$
THL(tfall) $=6 \mathrm{~ns}$
Amplitude $=0$ to 3 V

Test Circuit for Standard Output Devices

Test Circuit for Open Collector Output Devices

Non-Inverting Outputs

Waveforms for Inverting Inputs

3-STATE

Fig. 1

Fig. 3

Fig. 2

Fig. 4

Fig. 5

SWITCHING POSITIONS

Symbol	SW1	SW2
tPZH	Open	Closed
tPZL	Closed	Open
tPLZ	Closed	Closed
tPHZ	Closed	Closed

RELIABILITY REPORT

RELIABILITY AND FAILURE MECHANISMS

FUNDAMENTALS

-Through accelerated stresses we ascertain the value of the components failure rates, in terms of how many devices (in percent) are expected to fail every 1000 hours of operation (λ or F.R.)
-Failure rate versus time of activity shows the wellknown trend.
-Failure rate

During the first time period the products are affected by the so-called "infant mortality" intrinsic to all semiconductor technologies. End users are very sensitive to this parameter which causes early operational failures in their equipment.

TARGETS

SGS-THOMSON periodically reviews and publishes lifetime results; at this time a new set of failure rate targets are being defined. These targets are translated into actual required test hours.
The goal is a steady shift of the limits.
Failure rate λ

TESTS

With accelerated tests we define the failure rate of the products, then, derating the data for different conditions, we know the life expectancy under the actual operating conditions.

In its simplest form the failure rate (at a given temperature) is:

$$
\begin{equation*}
\text { F.R. }=\frac{N}{D \cdot H} \tag{1}
\end{equation*}
$$

$$
N=\text { Number of failures }
$$

Where

$$
\mathrm{D}=\text { Number of components }
$$

$$
\mathrm{H}=\text { Number of testing hours }
$$

If we intend to determine the failure rate at other temperatures an acceleration factor must be considered.
Some tests are accelerated by means of increased temperature, based on the assumption of the Arrhenius law:

$$
\begin{equation*}
\text { F.R. }=A e^{-E a K T j} \tag{2}
\end{equation*}
$$

A = Constant
$\mathrm{Ea}=$ Activation energy
K = Boltzman's constant
$\mathrm{Tj}=$ Junction Absolute temperature
For two different temp. F.R. $\left(\mathrm{T}_{1}\right)=\mathrm{F}\left(\mathrm{T}_{1}, \mathrm{~T}_{2}\right) \mathrm{F} . \mathrm{R}_{\text {. }}\left(\mathrm{T}_{2}\right)$
from (2) it is: $F\left(T_{1}, T_{2}\right) \equiv \operatorname{EXP}\left[\frac{-E_{a}}{K}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)\right]$
Clearly the choice of an appropriate activation energy, Ea is of paramount importance.
The different mechanisms which could lead to circuit failure are characterized by specific activation energies whose values are published in the relevant literature.

THUS THE CORRECT PROCEDURE IS

Arrhenius equation (2) describes the rate of many processes responsible for degradation and failure of electronic components; it follows that if the transition of an item from an initial stable condition to a defined degraded state occurs by a thermally activated mechanism, then the time for the transition is given by an equation of the form:
MTBF = B EXP (Ea/Kt)
MTBF = Mean time between failure
B = Temperature-independent constant
MTBF can be defined as the time to suffer a device degradation. The dramatic effect of the choice of the Ea value can be seen by plotting equation (2).
The acceleration effect of a $125^{\circ} \mathrm{C}$ device junction test with respect to $70^{\circ} \mathrm{C}$ actual device junction operation is equal to a factor of 100 for $\mathrm{Ea}=1 \mathrm{eV}$ and respectively 4 for $\mathrm{Ea}=0.3 \mathrm{eV}$.
Some words of caution are needed about published values of Ea:
A)They are often related to high temperature test where a single Ea (with high value) mechanism has become significant.
B) They are specifically related to the devices produced by that supplier (and to its technology) and in that period of time.
C)They could be modified by the mutual action of other stresses (voltage, mechanical)
D)Field device-application conditions should be considered.

Life-Hours

Main Failure modes and relevant activation energies

Failure Mode	Activation Energy (eV)	Accelerating
SURFACE CHARGE	$1.0-1.05$	HIGH TEMPERATURE BIAS
IONIC CONTAMINATION	$1.0-1.4$	HIGH TEMPERATURE BIAS
DIELECTRIC DEFECTS	$0.3-0.6$	HIGH TEMPERATURE BIAS
ELECTROMIGRATION	$0.5-1.2$	HIGH TEMPERATURE BIAS
INTERMETALLIC GROWTH	$1.0-1.05$	HIGH TEMPERATURE BIAS, STORAGE
METAL CORROSION	$0.3-0.8$	HIGH HUMIDITY BIAS

WAFER FAB TYPICAL PRODUCTION PROCESS FLOW CHART

In-process control during wafer fabrication
The table emphasizes the most important fabrication steps with the relevant SPC measures and/or monitors performed.

PROCESS STEPS	IN-PROCESS INSPECTIONS/MONITORS
OXIDATION	- Visual - Thickness - Refractive Index - CV plot (stability of ionic concentration and contamination control)
DEPOSITION: Nitride, Poly Si	- Visual - Thickness - Refractive index - Doping content
PHOTOLITHOGRAPHY	- Mask and wafer cleanliness - Alignment and focusing accuracy - Critical dimensions
ETCHING	- Quality of etching and wafer cleanliness - Critical dimensions
DOPING BY IMPLANT ($\mathrm{P}, \mathrm{As}, \mathrm{B}$)	- Sheet resistance (dose and implant uniformity)
DOPING BY DIFFUSION (POCl_{3}, As)	- Sheet resistance - Thickness - CV plot (stability of ionic concentration and contamination control)
EPITAXIAL GROWTH	- Thickness - Resistivity - Crystal quality (stacking faults, bumps and others)
METALLIZATION	- Wafer cleanliness - Visual - SEM (step coverage and film quality) - Thickness - CV plot (stability of ionic concentration and contamination control)
INTERMEDIATE AND FINAL PASSIVATION	- Thickness - Doping content - Passivation integrity (density of pinholes and cracks) - Visual
BACK FINISHING	- Wafer thickness - Back metal thickness - Metal adherence
ELECTRICAL CHARACTERIZATION	- Main parameters for active and parasitic structures (e. g. threshold voltage, saturation current, hFE, resistances, capacitances ...)
WAFER INSPECTION	- Visual (microscope and/or laser surface inspection system)
ALL DEPOSITIONS AND PHOTOLITHOGRAPHY	- Surface Scan (to detect and to measure foreign particles)

ASSEMBLY TYPICAL PRODUCTION PROCESS FLOW CHART

[^0]In-process control during assembly process
The table emphasizes the most important fabrication steps with the relevant SPC measures and/or monitors performed.

PROCESS STEPS	TESTS	DESCRIPTION
11	DIE ATTACH	-Integrated Circuits MIL-STD-883 Method 2010 cond B (internal visual) and Method 2019 (die shear strength); CECC 90000 -Discrete Devices MIL-STD-750 Method 2072 (internal visual) and Method 2017 (die shear strength); CECC 50000
12	WIRE BOND	- Integrated Circuits MIL-STD-883 Method 2010 cond. B (internal visual) and Method 2011 cond. D (bond strength); CECC 90000 - Discrete Devices MIL-STD-750 Method 2072 (internal visual) and Method 2037 (bond strength); CECC 50000
14	QUALITY INSPECTION	- Integrated Circuits MIL-STD-883 Methods 2010 cond. B (internal visual); CECC 90000 -Discrete Devices MIL-STD-750 Method 2072 (internal visual); CECC 50000
16	MOULDING AND STABILIZATION BAKE	- Visual and temperature process control
17	SEALING ATMOSPHERE CONTROL	Moisture content: < 200 ppm for Ceramic packages < 100 ppm for Metal Can packages
18	SEAL CONTROL	Fine Leak - Integrated Circuits MIL-STD-883 Method 1014 cond. A1 Helium leak detector after pressurization in He for: 2 h at 5.1 atm Limit: $5 \times 10^{-8} \mathrm{cc} / \mathrm{s}$ for ICV $<0.05 \mathrm{cc}$ 4h at 5.1 atm Limit: $5 \times 10^{-8} \mathrm{cc} / \mathrm{s}$ for ICV $\geq 0.05<0.5 \mathrm{cc}$ 2 h at 3.0 atm Limit: $1 \times 10^{-7} \mathrm{cc} /$ s for ICV $\geq 0.5<1 \mathrm{cC}$ 5 h at 3.0 atm Limit: $5 \times 10^{-8} \mathrm{cc} / \mathrm{s}$ for ICV $\geq 1<10 \mathrm{cc}$ ICV = Internal Cavity Volume - Discrete Devices MIL-STD-750 Method 1071 cond. H1 Helium leak detector after pressurization in He for: 2 h at 4.1 atm Limit: $5 \times 10^{-8} \mathrm{cc} / \mathrm{s}$ for ICV $<0.4 \mathrm{cc}$ 2 h at 4.1 atm Limit: $2 \times 10^{-7} \mathrm{cc} / \mathrm{s}$ for $\mathrm{ICV} \geq 0.4 \mathrm{cc}$ 4 h at 2.0 atm Limit: $1 \times 10^{-7} \mathrm{cc} / \mathrm{s}$ for ICV $\geq 0.4 \mathrm{cc}$ Gross Leak - Integrated Circuits MIL-STD-883 Method 1014 cond. C1 (fluorocarbon gross leak) 5 Torr vacuum for 30 minutes minimum followed by pressurization of the devices immersed in mineral oil and subsequent immersion in another mineral oil at $\mathrm{Ta}=125^{\circ} \mathrm{C}$ - Discrete Devices MIL-STD-750 Method 1071 cond. C (fluorocarbon gross leak) 0.5 Torr vacuum for 1 h , except for ICV $\geq 0.1 \mathrm{cc}$, followed by pressurization of the devices immersed in mineral oil at: 4.1 atm for 2 h ICV $\leq 0.1 \mathrm{cc}$ or 5.1 atm for 2 h ICV $\geq 0.1 \mathrm{cc}$ and subsequent immersion in mineral oil at $\mathrm{Ta}=125^{\circ} \mathrm{C}$

In-process control during assembly process (cont'd)

PROCESS STEPS	TESTS	DESCRIPTION
$\begin{gathered} 18 \\ \text { (cont.d) } \end{gathered}$	LID TORQUE CONTROL	Ceramic packages only MIL-STD-883 Method 2024 (e.g. $\geq 60 \mathrm{Kg} \times \mathrm{cm}$ for seal area values between 1.41 and $1.73 \mathrm{~cm}^{2}$)
19	TRIM \& FORM AND LEAD FINISH	- Trim \& Form not for Metal Can packages - Dimensions, thickness and contamination control - Solderability control: Aging as per page 51 $215 \pm 5^{\circ} \mathrm{C}$ for $3 \pm 0.5 \mathrm{sec}$. (SMD only) $235 \pm 5^{\circ} \mathrm{C}$ for $2 \pm 0.5 \mathrm{sec}$. $245 \pm 5^{\circ} \mathrm{C}$ for $5 \pm 0.5 \mathrm{sec}$.
20	INTERNAL WATER VAPOR CONTENT CONTROL	Dew Point method MIL-STD-883 Method 1018 procedure 3 5000 ppm max (dew point temperature less than $-15^{\circ} \mathrm{C}$) Ceramic packages only
21	HIGH IMPACT SHOCK	Metal Can packages only (except TO3) 20000 g minimum; $\mathrm{t}=25 \mu \mathrm{sec}$. minimum; Y 1 axis only
22	FINAL BAKE	For SMD only (according to internal specifications)
23	RAW LINE INSPECTION	External Visual - Integrated Circuits MIL-STD-883 Method 2009; CECC 90000 - Discrete Devices MIL-STD-750 Method 2071; CECC 50000 Note: at this step some reliability tests (pressure pot, temperature cycling, life test etc.) are performed as a monitor, generally on a weekly basis, to have fast feedback on process behaviour (Real Time Control Tests)
25	GROUP A INSPECTION	See page 40
26	GROUPS B, C AND D TESTS	Performed on the product family representative types (by rotation); the results are extended to all the other devices of the same family according to the structure similarity concept
28	PACKING AND DOCUMENTATION INSPECTION	Inspection for: - right quantity - right type - right boxing - right labelling - right documentation - various

GROUP A INSPECTION - FINISHED PRODUCT ACCEPTANCE
ICs and Discrete devices

SUBGROUP	PARAMETERS	MINMMUM SAMPLE SIZE	ACCEPTANCE NUMBER
A1	Visual and mechanical inspection	315	0
A2+A3+A4	Cumulative electrical and inoperative mechanical fallures	315	0

Notes

- This product acceptance is valid for standard production, for agreed customer programs other sampling plans can be applied
- Specified temperature ranges according to SGS-THOMSON databooks

PPM (RESULTS AND TARGETS)

As a consequence of its quality improvement programmes SGS-THOMSON has continually improved outgoing quality and is pursuing ambitious quality targets.
PPM values and targets for cumulative electrical failures* (inoperative mechanical included)

LPS	1988	1989	1990	1991
	20	20	15	10

[^1]
GROUPS B，C AND D TESTS

Integrated circuits－Groups B，C and D tests

Every week or every three months on raw line and／or finished products

	$\begin{gathered} \text { TEST } \\ \text { PROCEDURE } \end{gathered}$			$\begin{aligned} & \text { SGS-THOMSON } \\ & \text { TEST CONDITIONS } \end{aligned}$	PACKAGE					嵒
					$\begin{aligned} & \text { 㤩 } \\ & \text { 豆 } \end{aligned}$	$\begin{aligned} & \text { 을 } \\ & \frac{1}{\mathbb{E}} \end{aligned}$				
1	Physical dimension	2016	4.3	Data Sheet Drawing	x	X	x	2	0	
2	Resistance to solvents	2015	44	1 minute immersion in solvent solution followed by 10 strokes with a hard brush as per MIL－STD method （the procedure shall be repeated 3 times）	x	x	X	4	0	
3	Solderability	2003	4．6．10 Cond 1	$\begin{aligned} & 215 \pm 5^{\circ} \mathrm{C} 3 \pm 05 \mathrm{sec} . \\ & 235 \pm 5^{\circ} \mathrm{C} 2 \pm 0.5 \mathrm{sec} \\ & 245 \pm 5^{\circ} \mathrm{C} 5 \pm 05 \mathrm{sec} \end{aligned}$	$\begin{aligned} & \bar{x} \\ & \text { x } \end{aligned}$	－ x x	x x x	22	0	2
4	Operatıng Life Test or Intermittent Life Test （for Power devices） end point electrical parameters	1005	48	1000 h according to detal spec 5000 Cycles as per device spec．	x x	x	x x x	45	0	3
5	Temperature cycling Constant acceleration Seal－fine －gross	$\begin{aligned} & 1010 \\ & 2001 \\ & 1014 \end{aligned}$	$\begin{aligned} & 4.68 \\ & 467 \\ & 469 \end{aligned}$	10 cycles $\mathrm{Ta}=-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ 30000 g see page 38	$\begin{aligned} & x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \\ & x \\ & x \end{aligned}$	\bar{x}	22	0	4
6	Pressure pot end point electrical parameters	－	－	$\mathrm{Ta}=121^{\circ} \mathrm{C}, 2 \mathrm{~atm}, 240 \mathrm{~h} \mathrm{mın}$ as per device spec．			$\begin{aligned} & x \\ & x \end{aligned}$	22	0	
7	HAST（Highly Accelerated Stress Test） end point electrical parameters	－	$\begin{aligned} & \hline 4.63 \\ & \text { Cond2 } \end{aligned}$	$130^{\circ} \mathrm{C} / 85 \%$ RH with blas $\mathrm{t}=150 \mathrm{~h}$ according to detall specficication as per device spec		- -	x	22	0	

Notes

1）Sample can be increased according to LTPD table，till $\mathrm{c}=2$
2）Aging of 8 h in steam vapor or 16 h at $155^{\circ} \mathrm{C}$ Soldering temperature of $215^{\circ} \mathrm{C}$ for SMD only
3）Ta such to have $T_{j}=T_{j}$ max
4） 20000 g for packages with cavity perimeter of 5 cm or more and／or with a mass of 5 grams or more

Integrated circuits - Groups B, C and D tests
Every six months on raw line and/or finished products

Notes

1) Sample can be increased according to LTPD table. till $\mathrm{c}=2$
2) Not for SMD
3) Leadless chip carrier only
4) For plastic packages $\mathrm{Ta}=-65 /-40^{\circ} \mathrm{C}$ according to device type
5) 20000 g for packages with cavity perimeter of 5 cm or more and/or with a mass of 5 grams or mnre
6) Test three devices If one fails test two additional devices with no failure
7) Applied only to packages which use glass-frit seal to lead the frame lead or package bodv 1 e s nerever frit seal establishes hermeticity or package integrity)

LPS - RESULTS SUMMARY

Test	Condition	Plastic				Ceramic				S.O. Package			
		1989		1990		1989		1990		1989		1990	
		SS	REJ										
HIGH TEMPERATURE BIAS	1000 hrs 2000 hrs	1971 540	0	1809 513	0	620 135	0	675	0	738 198	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 756 \\ & 216 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$
TEMPERATURE HUMIDITY BIAS	$\begin{aligned} & 1000 \mathrm{hrs} \\ & 2000 \mathrm{hrs} \end{aligned}$	$\begin{array}{r} 1951 \\ 513 \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 1890 \\ 378 \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	-	-	-	-	$\begin{aligned} & 738 \\ & 180 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 918 \\ & 216 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$
PRESSURE COOKER	168 hrs 336 hrs	$\begin{array}{r} 2125 \\ 675 \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 1830 \\ 630 \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	-	-	-	-	$\begin{aligned} & 795 \\ & 275 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 810 \\ & 270 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$
THERMAL SHOCKS	200 cyc	1425	0	1950	0	450	0	375	0	150	0	125	0
THERMAL CYCLES	$\begin{array}{r} 200 \text { cyc } \\ 1000 \text { cyc } \end{array}$	1070	0	1110	0	570	0	540	0	580	0	630	0
ENVIRONMENTAL SEQUENCE		-	-	-	-	1325	0	, 1275	0	-	-	-	-
MECHANICAL SEQUENCE		-	-	-	-	; 1325	0	1275	0	-	-	-	-
RESISTANCE TO SOLVENT		475	1	425	1	350	0	325	0	425	1	375	0
SOLDERABILITY		475	0	425	0	350	0	325	0	425	2	375	1
LEAD INTEGRITY		475	0	425	0	350	0	325	0				
HAST	$\begin{aligned} & 96 \mathrm{hrs} \\ & 240 \mathrm{hrs} \end{aligned}$	$\begin{aligned} & 175 \\ & 100 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 225 \\ & 100 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	-	-	-	-	100 50	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	125 75	$\begin{aligned} & 0 \\ & 0 \end{aligned}$

FAILURE RATE EVALUATION (AT 60\% CONFIDENCE LEVEL)

Package	Device x Hours	Failure Rate		
		Fail	FIT *	
			$125^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C}$
PLASTIC	3.78×10^{6}	0	242	0.5
CERAMIC	1.32×10^{6}	0	693	1.4
S.O. PACKAGE	149×10^{6}	0	613	1.3

* FIT = Faı' _re in Time. Number of falures $/ 10^{9}$ Hours of operatıon (or 10^{-9}). The activation energy, from analysis, was chosen as 07 eV based on our tests results: the failure rate at lower operatıng temperature can be extrapolated from the Arrhenius plot.

The actual junctoon temperature should be used; it can be computed using the relationship

$$
T j=T_{A}+(P \times \theta J A)
$$

Where | Tj | $=$ Junction temperature |
| ---: | :--- |
| T_{A} | $=$ Ambient temperature |
| θ_{JA} | $=$ Junction to ambient thermal resistance (typically $100^{\circ} \mathrm{C} /$ watt for a 16 pin DIP) |
| P | $=$ Power actual consumption |

SCS-THOMSON
NacRoE[EcTRONDES

DATASHEETS

QUAD 2-INPUT NAND GATE

DESCRIPTION

The T74LS00 is a high speed QUAD 2-INPUT NAND GATE fabricated in LOW POWER SCHOTTKY technology.

SCHEMATIC

PIN CONNECTION (top view)

DUAL IN LINE

CHIP CARRIER

NC $=$ No Internal Connection

LOGIC DIAGRAM AND TRUTH TABLE

\mathbf{A}	\mathbf{B}	\mathbf{Y}
\mathbf{L}	\mathbf{X}	H
\mathbf{X}	L	H
H	H	L

L = LOW Voltage Level
H = HIGH Voltage Level
X = Don't Care

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{C c}$	Supply Voltage	-0.5 to +7	V
V_{1}	Input Voltage, Applied to Input	-0.5 to 15	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage, Applied to Output	-0.5 to 10	V
I_{1}	Input Current, Into Inputs	-30 to 5	mA
I_{O}	Output Current, Into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage			Temperature
	Min.	Typ.	Max.	
T74LS00XX	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

XX = package type.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	2.0			Guaranteed Input HIGH Voltage		V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	Guaranteed Input LOW Voltage		V
$V_{C D}$	Input Clamp Diode Voltage		-0.65	-1.5	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$		V
V_{OH}	Output HIGH Voltage	2.7	3.4		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IOH}=-400 \mu \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \end{aligned}$		V
VoL	Output LOW Voltage		0.25	0.4	$\mathrm{l}_{\mathrm{OL}}=4.0 \mathrm{~mA}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} \\ & \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V} \end{aligned}$	V
			0.35	0.5	$\mathrm{l} \mathrm{OL}=8.0 \mathrm{~mA}$		V
IIH	Input HIGH Current		1.0	$\begin{aligned} & 20 \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{\mathrm{IN}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{\mathrm{IN}}=7.0 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$
IIL	Input LOW Current			-0.4	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$		mA
los	Output Short Circuit Current (note 2)	- 20		- 100	$V_{C C}=M A X, V_{\text {OUT }}=0 \mathrm{~V}$		mA
ICCH	Supply Current HIGH		0.8	1.6	$V_{C C}=M A X, V_{\text {IN }}=0 \mathrm{~V}$		mA
lCCL	Supply Current LOW		2.4	4.4	$V_{\text {cc }}=$ MAX, Inputs Open		mA

[^2]AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (for AC test circuits and waveforms see databook introduction)

Symbol	Parameter	Limits			Test Conditions	Unit
		Min.	Typ.	Max.		
tPLH	Turn Off Delay, Input to Output		9	15	$V_{C C}=5.0 \mathrm{~V}$	ns
tPHL	Turn On Delay, Input to Output		10	15	$C_{L}=15 \mathrm{pF}$	ns

.

QUAD 2-INPUT NAND GATE

DESCRIPTION

The T74LS01 is a high speed QUAD 2-INPUT NAND GATE (with open collector output) fabricated in LOW POWER SCHOTTKY technology.

SCHEMATIC

PIN CONNECTION (top view)

LOGIC DIAGRAM AND TRUTH TABLE

A	B	Y
L	X	H
X	L	H
H	H	L

$\mathrm{L}=$ LOW Voltage Level
$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
$H=H I G H$
X
X = Don't Care

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{c c}$	Supply Voltage	-0.5 to 7	V
V_{1}	Input Voltage, Applied to Input	-0.5 to 15	V
V_{0}	Output Voltage, Applied to Output	0 to 10	V
I_{1}	Input Current, Into Inputs	-30 to 5	mA
I_{0}	Output Current, Into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maximum Ratıngs" may cause permanent damage to the device This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied Exposure to absolute maximum rating conditions for extended periods may affect device reliability

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage			Temperature
	Min.	Typ.	Max.	
T74LS01XX	4.75 V	5.0 V	5.25 V	$0{ }^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
V_{IH}	Input HIGH Voltage	2.0			Guaranteed Input HIGH Voltage for all Inputs		V
VIL	Input LOW Voltage			0.8	Guaranteed Input LOW Voltage for all Inputs		V
$V_{C D}$	Input Clamp Diode Voltage		-0.65	-1.5	$V_{C C}=M I N, I_{\text {IN }}=-18 \mathrm{~mA}$		V
IOH	Output HIGH Current			100	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{OH}}=5.5 \mathrm{~V}$		$\mu \mathrm{A}$
V OL	Output LOW Voltage		0.25	0.4	$\mathrm{loL}=4.0 \mathrm{~mA}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \text { per Truth Table } \end{aligned}$	V
			0.35	0.5	$\mathrm{loL}=8.0 \mathrm{~mA}$		V
I_{1}	Input HIGH Current			$\begin{aligned} & 20 \\ & 01 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{\mathrm{IN}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{\mathrm{IN}}=7.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$
ILL	Input LOW Current			-0.4	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$		mA
Icc	Power Supply Current Total, Output HIGH Total, Output LOW			$\begin{aligned} & 16 \\ & 4.4 \end{aligned}$	$V_{C C}=M A X$,		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$

Notes: 1 For conditions shown as MIN or MAX, use the appropriate value specified under guaranteed operatıng ranges.
(*) Typıcal values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (for AC test circuits and waveforms see databook introduction)

Symbol	Parameter	Limits			Test Conditions	Unit
		Min.	Typ.	Max.		
tpLH	Turn Off Delay, Input to Output		17	32	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega \end{aligned}$	ns
tpHL	Turn On Delay, Input to Output		15	28		ns

QUAD 2-INPUT NOR GATE

DESCRIPTION

The T74LS02 is a high speed QUAD 2-INPUT NOR GATE fabricated in LOW POWER SCHOTTKY technology.

SCHEMATIC

PIN CONNECTION (top view)

LÓGIC DIAGRAM AND TRUTH TABLE

$A-\infty$	A	B	Y	$\begin{aligned} & L=\text { LOW Voltage Level } \\ & H=H I G H \text { Voltage Level } \\ & X=\text { Don't Care } \end{aligned}$
	H	X	L	
	X	H	L	
	L	L	H	

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{C C}$	Supply Voltage	-05 to 7	V
V_{1}	Input Voltage, Applied to Input	-05 to 15	V
V_{0}	Output Voltage. Applied to Output	-05 to 55	V
I_{1}	Input Current, Into Inputs	-30 to 5	mA
l_{0}	Output Current, Into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maximum Ratings" may cause permanent damage to the device
This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage		Temperature
	Min.	Typ.	

$X X=$ package type.
DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)	Unit
		Min.	Typ. (*)	Max.		
V_{IH}	Input HIGH Voltage	2.0			Guaranteed Input HIGH Voltage	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			08	Guaranteed Input LOW Voltage	V
$\mathrm{V}_{\text {CD }}$	Input Clamp Diode Voltage		-065	-1.5	$V_{C C}=$ MIN. $\mathrm{lin}^{\text {a }}=-18 \mathrm{~mA}$	V
V_{OH}	Output HIGH Voltage	2.7	3.4		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \end{aligned}$	V
VoL	Output LOW Voltage		025	04	$\begin{aligned} & \mathrm{V}_{C C}=\mathrm{MIN} \\ & \mathrm{~V}_{\mathbb{N}}=2.0 \mathrm{~V} \end{aligned}$	V
			035	0.5		V
$\mathrm{I}_{\mathbf{H}}$	Input HIGH Current		1.0	$\begin{aligned} & 20 \\ & 0.1 \end{aligned}$	$\begin{aligned} & V_{C C}=M A X, V_{I N}=2.7 \mathrm{~V} \\ & V_{C C}=M A X . V_{\mathbb{N}}=70 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$
IIL	Input LOW Current			-04	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$	mA
los	Output Short Circuit Current (note 2)	- 20		-100	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	mA
ICCH	Supply Current HIGH		1.6	3.2	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	mA
ICCL	Supply Current LOW		2.4	54	$V_{C C}=M A X$, Inputs Open	mA

Notes : 1 For conditions shown as MIN or MAX, use the appropriate value specified under guaranteed operatıng ranges.
2 Not more than one output should be shorted at a time.
(*) Typıcal values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (for AC test circuits and waveforms see databook introduction)

Symbol	Parameter	Limits			Test Conditions	Unit
		Min.	Typ.	Max.		
tplH	Turn Off Delay, Input to Output		10	15	$\begin{aligned} & V_{C C}=50 \mathrm{~V} \\ & C_{L}=15 \mathrm{pF} \end{aligned}$	ns
tphL	Turn On Delay, Input to Output		10	15		ns

QUAD 2-INPUT NAND GATE

DESCRIPTION

The T74LS03 is a high speed QUAD 2-INPUT NAND GATE fabricated in LOW POWER SCHOTTKY technology.

SCHEMATIC

PIN CONNECTION (top view)

B1
(Plastic Package)

M1 (Micro Package)

D1
(Ceramic Package)

C1
(Plastic Chip Camer)

ORDER CODES :
T74LS03 D1 T74LS03 B1

T74LS03 C1
T74LS03 M1

DUAL IN LINE

* Open Collector Outputs

CHIP CARRIER

NC = No Internal Connection

LOGIC DIAGRAM AND TRUTH TABLE

A	B	\mathbf{Y}
L	X	H
X	L	H
H	H	L

$L=$ LOW Voltage Level
$H=$ HIGH Voltage Level
X = Don't Care

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{cc}	Supply Voltage	-0.5 to +7	V
$\mathrm{~V}_{1}$	Input Voltage, Applied to Input	-0.5 to 15	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage, Applied to Output	-0.5 to 10	V
I_{I}	Input Current, Into Inputs	-30 to 5	mA
I_{O}	Output Current, Into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maximum Ratıngs" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specrication is not implied. Exposure to absolute maxımum rating conditions for extended periods may affect device reliability.

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage			Temperature
	Min.	Typ.	Max.	
T74LS03XX	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		U'nit
		Min.	Typ. (*)	Max.			
V_{IH}	Input HIGH Voltage	2.0			Guaranteed Input HIGH Voltage		V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	Guaranteed Input LOW Voltage		V
$V_{C D}$	Input Clamp Diode Voltage		-0.65	-1.5	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$		V
l OH	Output HIGH Current			100	$\begin{aligned} & V_{C C}=M I N, V_{O H}=5.5 \mathrm{~V}, \\ & V_{\text {IN }}=V_{\mathrm{IL}} \end{aligned}$		$\mu \mathrm{A}$
VoL	Output LOW Voltage		0.25	0.4	$\mathrm{l} \mathrm{LL}=4.0 \mathrm{~mA}$	$\begin{aligned} & V_{C C}=M I N \\ & V_{I N}=2.0 \mathrm{~V} \end{aligned}$	V
			0.35	0.5	$\mathrm{loL}^{2}=8.0 \mathrm{~mA}$		V
l_{H}	Input HIGH Current			$\begin{aligned} & 20 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{\mathbb{I N}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{\mathbb{I N}}=7.0 \mathrm{~V} \end{aligned}$		$\begin{array}{r} \mu \mathrm{A} \\ \mathrm{~mA} \\ \hline \end{array}$
$1 / 2$	Input LOW Current			-0.4	$V_{C C}=M A X, V_{I N}=0.4 \mathrm{~V}$		mA
ICCH	Supply Current HIGH			1.6	$V_{C C}=M A X, V_{\text {IN }}=0 \mathrm{~V}$		mA
ICCL	Supply Current LOW			4.4	$V_{C C}=$ MAX, Inputs Open		mA

Notes: 1. For conditions shown as MIN or MAX, use the appropriate value specified under guaranteed operatıng ranges
2. Not more than one output should be shorted at a time
$\left(^{*}\right)$ Typical values are at $\mathrm{V}_{\mathrm{Cc}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (for AC test circuits and waveforms see databook introduction)

Symbol	Parameter	Limits			Test Conditions	Unit
		Min.	Typ.	Max.		
tpLH	Turn Off Delay, Input to Output		17	32	$\mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	ns
tPHL	Turn On Delay, Input to Output		15	28	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{~K} \Omega$	ns

HEX INVERTER

DESCRIPTION

The T74LS04 is a high speed HEX INVERTER fabricated in LOW POWER SCHOTTKY technology.

SCHEMATIC

PIN CONNECTION (top view)

DUAL IN LINE

CHIP CARRIER

NC = No Internal Connection

LOGIC DIAGRAM AND TRUTH TABLE

$A \rightarrow-V$	A	Y	$L=$ LOid voltage Level $\mathrm{H}=\mathrm{HIGH}$ Voltage Level
	L	H	
	H	L	

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{0}=$	Supplv Va:age	-05 to 7	V
V_{1}	Input Voltage Applied to Input	-05 to 15	V
V_{3}	Output Voltage Applied to Output	-05 to 10	V
I_{1}	Input Currert. Intc !nouts	-30 to 5	mA
I_{2}	Output Current. Into Cutputs	50	mA

Stresses in excess of those listed under "Absolute Maximum Ratıngs" may cause permanent damage to the device This is a stress rating only and functional speration of the device at these or any other conditions in excess of those indicated in the cperational sections of this specitication is not implied Exposure to absoiute maximum rating conditions for extended periods may affect device reliability.

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage			Temperature
	Min.	Typ.	Max.	
T74LS04XX	475 V	50 V	525 V	$0^{\circ} \mathrm{C}$ to $+70{ }^{\circ} \mathrm{C}$

XX = package type
DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)	Unit
		Min.	Typ. (*)	Max.		
$V_{\text {i }}$	' Input HIG.H Voltage	20			Guaranteed Input HIGH Voltage	V
$V_{\text {L }}$	Input LOW Voltage			0.8	Guaranteed Input LOW Voltage	V
V'co	' Input Clamp Diode Voltage		-065	-15	$V_{C C}=M 1 N, I_{1}=-18 \mathrm{~mA}$	V
V_{OH}	Output HIGH Voltage	2.7	3.4		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{i}} \end{aligned}$	V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage		025	04	$I_{n}=40 \mathrm{~mA} \quad V_{c c}=\mathrm{MIN}$	V
			0.35	05	$\mathrm{I}_{\mathrm{L}}=80 \mathrm{~mA}, \mathrm{~V}_{1 \mathrm{~N}}=20 \mathrm{~V}$	V
liH	Input HIGH Current		10	$\begin{aligned} & 20 \\ & 01 \\ & \hline \end{aligned}$	$\begin{aligned} & V_{C C}=M A X, V_{I N}=2.7 \mathrm{~V} \\ & V_{C C}=M A X, V^{\prime N}=70 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
I_{1}	Input LOW Current			-0.4	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$	mA
los	Output Short Circuit Current (note 2)	-20		- 100	$V_{C C}=M A X, V_{\text {OUT }}=0 \mathrm{~V}$	mA
ICCH	Supply Current HIGH		1.2	2.4	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	mA
l CCL	Supply Current LOW		36	66	$V_{C C}=M A X$, Inputs Open	mA

Notes : 1 For conditions shown as MIN or MAX. use the appropriate value specified under guaranteed operating ranges
2 Not more than one output should be shorted at a time
(*) Typical values are at $V_{C C}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

AC CHARACTERISTICS: $T_{A}=25^{\circ} \mathrm{C}$ (for $A C$ test circl is and waveforms see databook introduction)

Symbol	Parameter	Limits			Test Conditions	Unit
		Min.	Typ.	Max.		
tplH	Tun CHf Delay. Input to		9	15	$\begin{aligned} & \therefore=59 V \\ & \therefore-5 p F \end{aligned}$	ns
tphL	Tu! On De'ay, Input to ni.p't		10	15		ns

HEX INVERTER

DESCRIPTION

The T74LS05 is a high speed HEX INVERTER fabricated in LOW POWER SCHOTTKY technology.

SCHEMATIC

B1 (Plastic Package)

M1 (Micro Package)

D1
(Ceramic Package)

C1
(Plastic Chip Carrier)

ORDER CODES :
T74LS05 D1
T74LS05 C1 T74LS05 M1

PIN CONNECTION (top view)

DUAL IN LINE

CHIP CARRIER

NC = No Internal Connection

LOGIC DIAGRAM AND TRUTH TABLE

A

A	Y
L	H
H	L

$L=$ LOW Voltage Level
$H=$ HIGH Voltage Level

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	-0.5 to 7	V
V_{1}	Input Voltage, Applied to Input	-0.5 to 5.5	V
$\mathrm{~V}_{0}$	Output Voltage. Applied to Output	-0.5 to 10	V
I_{1}	Input Current, Into Inputs	-30 to 5	mA
I_{O}	Output Current. Into Outputs	50	mA

Stresses in excess of those histed under "Absolute Maxımum Ratıngs" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specrication is not implied Exposure to absolute maximum rating conditions for extended periods may affect device reliability

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage			Temperature
	Min.	Typ.	Max.	
T74LS05XX	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type
DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	2.0			Guaranteed In	ut HIGH Voltage	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	Guaranteed I	ut LOW Voltage	V
$V_{C D}$	Input Clamp Diode Voltage		-0.65	- 1.5	$V_{C C}=$ MIN, $\mathrm{IIN}^{\text {N }}$	- 18 mA	V
loh	Output HIGH Current			100	$\begin{aligned} & V_{C C}=M I N, V \\ & V_{I N}=V_{I L} \end{aligned}$	$t=5.5 \mathrm{~V},$	$\mu \mathrm{A}$
VoL	Output LOW Voltage		0.25	0.4	$\mathrm{lOL}=4.0 \mathrm{~mA}$	$\begin{aligned} & V_{C C}=M I N \\ & V_{I N}=2.0 \mathrm{~V} \end{aligned}$	V
			0.35	0.5	$\mathrm{loL}=8.0 \mathrm{~mA}$		V
IIH	Input HIGH Current			$\begin{aligned} & 20 \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & V_{C C}=M A X, V_{I N}=2.7 \mathrm{~V} \\ & V_{C C}=M A X, V_{I N}=7.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$
IIL	Input LOW Current			-04	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$		mA
ICCH	Supply Current HIGH			2.4	$V_{C C}=M A X, V_{\mathbb{N}}=0 \mathrm{~V}$		mA
ICCL	Supply Current LOW			6.6	$V_{C C}=$ MAX, Inputs Open		mA

Notes: 1 For conditions shown as MIN or MAX, use the appropriate value specified under guaranteed operating ranges.
(*) Typical values are at $\mathrm{V}_{\mathrm{Cc}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (for AC test circuits and waveforms see databook introduction)

Symbol	Parameter	Limits			Test Conditions	Unit	
			Min.	Typ.			ns
tPLH	Turn Off Delay, Input to Output		17	32	$V_{C C}=5.0 \mathrm{~V}$		
tPHL	Turn On Delay, Input to Output		15	28		ns	

QUAD 2-INPUT AND GATE

DESCRIPTION

The T74LS08 is a high speed QUAD 2-INPUT AND GATE fabricated in LOW POWER SCHOTTKY technology.

SCHEMATIC

ORDER CODES :
T74LS08 D1
T74LS08 C1 T74LS08 B1

T74LS08 M1

PIN CONNECTION (top view)

DUAL IN LINE

* Open Collector Outputs

CHIP CARRIER

NC = No Internal Connection

LOGIC DIAGRAM AND TRUTH TABLE

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{C C}$	Supply Voltage	-0.5 to +7	V
V_{1}	Irput Voltage, Applied to Input	-0.5 to 15	V
V_{0}	Output Voltage, Applied to Output	-0.5 to 10	V
I_{1}	Input Current, Into Inputs	-30 to 5	mA
I_{O}	Output Current, Into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maxımum Ratıngs" may cause permanent damage to the device. This is a stress ratung only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specrication is not implied Exposure to absolute maximum rating conditions for extended penods may affect device reliability.

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage			Temperature
	Min.	Typ.	Max.	
T74LS08XX	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

XX = package type

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
V_{IH}	Input HIGH Voltage	2.0			Guaranteed Input HIGH Voltage		V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	Guaranteed Input LOW Voltage		V
$V_{C D}$	Input Clamp Diode Voitage		-0.65	-1.5	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{l}_{\text {IN }}=-18 \mathrm{~mA}$		V
V OH	Output HIGH Voltage	2.7	34		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \end{aligned}$		V
VoL	Output LOW Voltage		0.25	0.4	$\mathrm{lOL}=4.0 \mathrm{~mA}$	$\left\{\begin{array}{l} V_{C C}=M I N \\ V_{I N}=V_{I L} \end{array}\right.$	V
			0.35	0.5	$\mathrm{l} \mathrm{LL}=8.0 \mathrm{~mA}$		V
$\mathrm{IIH}^{\text {H}}$	Input HIGH Current		1.0	$\begin{aligned} & 20 \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{\mathrm{IN}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{\mathbb{I N}}=7.0 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
IIL	Input LOW Current			-0.36	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$		mA
los	Output Short Circuit Current (note 2)	- 20		- 100	$V_{C C}=M A X, V_{\text {OUT }}=0 \mathrm{~V}$		mA
ICCH	Supply Current HIGH		2.4	4.8	$V_{C C}=M A X$, Inputs Open		mA
ICCL	Supply Current LOW		4.4	8.8	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0 \mathrm{~V}$		mA

Notes: 1 For conditions shown as MIN or MAX, use the appropriate value specified under guaranteed operating ranges
2 Not more than one output should be shorted at a tıme
(*) Typical values are at $\mathrm{V}_{\mathrm{Cc}}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (for AC test circuits and waveforms see databook introduction)

Symbol	Parameter	Limits			Test Conditions	Unit
		Min.	Typ.	Max.		
tpLH	Turn Off Delay, Input to Output		9	15	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & C_{L}=15 \mathrm{pF} \end{aligned}$	ns
tpHL	Turn On Delay, Input to Output		10	15		ns

QUAD 2-INPUT AND GATE

DESCRIPTION

The T74LS09 is a high speed QUAD 2-INPUT AND GATE (WITH OPEN COLLECTOR OUTPUT) fabricated in LOW POWER SCHOTTKY technology.

SCHEMATIC

PIN CONNECTION (top view)
DUAL IN LINE

LOGIC DIAGRAM AND TRUTH TABLE

\mathbf{A}	\mathbf{B}	\mathbf{Y}
L	X	L
\mathbf{X}	L	L
H	H	H

L = LOW Voltage Level
$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
$\mathrm{X}=$ Don't Care

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{C C}$	Supply Voltage	-0.5 to +7	V
V_{1}	Input Voltage, Applied to Input	-0.5 to 15	V
V_{0}	Output Voltage, Applied to Output	-0.5 to 10	V
I_{1}	Input Current, Into Inputs	-30 to 5	mA
I_{0}	Output Current, Into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maximum Ratıngs" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended penods may affect device reliability.

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage		Temperature	
	Min.	Typ.		
T74LS09XX	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
V_{IH}	Input HIGH Voltage	2.0			Guaranteed Input HIGH Voltage		V
V_{IL}	Input LOW Voltage			0.8	Guaranteed Input LOW Voltage		V
V_{CD}	Input Clamp Diode Voltage		-0.65	-1.5	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$		V
loh	Output HIGH Current			100	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{~V}_{\mathrm{OH}}=-5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \end{aligned}$		$\mu \mathrm{A}$
Vol	Output LOW Voltage		0.25	0.4	$\mathrm{loL}=4.0 \mathrm{~mA}$	$\begin{aligned} & V_{C C}=M I N \\ & V_{I N}=V_{I L} \end{aligned}$	V
			0.35	0.5	$\mathrm{l}_{\mathrm{OL}}=8.0 \mathrm{~mA}$		V
1 lH	Input HIGH Current		1.0	$\begin{aligned} & 20 \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & V_{C C}=M A X, V_{I N}=2.7 \mathrm{~V} \\ & V_{C C}=M A X, V_{\mathbb{N}}=7.0 \mathrm{~V} \end{aligned}$		$\mu \mathrm{A}$ mA
IIL	Input LOW Current			-0.4	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=04 \mathrm{~V}$		mA
ICCH	Supply Current HIGH		2.4	4.8	$V_{C C}=M A X$, Inputs Open		mA
ICCL	Supply Current LOW		4.4	8.8	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$		mA

Notes : 1. For conditions shown as MIN or MAX, use the appropriate value specified under guaranteed operating ranges. 2. Not more than one output should be shorted at a tıme.
(*) Typical values are at $V_{C C}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

AC CHARACTERISTICS: $T_{A}=25^{\circ} \mathrm{C}$ (for AC test circuits and waveforms see databook introduction)

Symbol	Parameter	Limits			Test Conditions	Unit	
			Min.	Typ.			
tpLH	Turn Off Delay, Input to Output		20	35	$V_{C C}=5.0 \mathrm{~V}$	ns	
tpHL	Turn On Delay, Input to Output		17	35	$C_{L}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{~K} \Omega$	ns	

TRIPLE 3-INPUT NAND GATE

DESCRIPTION

The T74LS10 is a high speed TRIPLE 3-INPUT NAND GATE fabricated in LOW POWER SCHOTTKY technology.

SCHEMATIC DIAGRAM

PIN CONNECTION (top view)

DUAL IN LINE

CHIP CARRIER

NC = No Internal Connection

LOGIC DIAGRAM AND TRUTH TABLE

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{C C}$	Supply Voltage	-0.5 to 7	V
V_{1}	Input Voltage, Applied to Input	-0.5 to 15	V
V_{0}	Output Voltage, Applied to Output	-0.5 to 5.5	V
I_{1}	Input Current, Into Inputs	-30 to 5	mA
I_{O}	Output Current, Into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maximum Ratıngs" may cause permanent damage to the device This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied Exposure to absolute maximum rating conditions for extended periods may affect device reliability

GUARANTEED OPERATING.RANGE

Part Numbers	Supply Voltage			Temperature
	Min.	Typ.	Max.	
T74LS10XX	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
V_{IH}	Input HIGH Voltage	2.0			Guaranteed Input HIGH Voltage		V
V_{IL}	Input LOW Voltage			0.8	Guaranteed Input LOW Voltage		V
V_{CD}	Input Clamp Diode Voltage		-0.65	-1.5	$\mathrm{V}_{C C}=\mathrm{MIN}, \mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$		V
V_{OH}	Output HIGH Voltage	2.7	3.4		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \end{aligned}$		V
VoL	Output LOW Voltage		0.25	0.4	$\mathrm{loL}=4.0 \mathrm{~mA}$	$\begin{aligned} & V_{C C}=M I N \\ & V_{I N}=20 \mathrm{~V} \end{aligned}$	V
			0.35	0.5	$\mathrm{loL}=8.0 \mathrm{~mA}$		V
IIH	Input HIGH Current		1.0	$\begin{aligned} & 20 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{\mathbb{N}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{\mathbb{N}}=7.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
$1 / 2$	Input LOW Current			-0.36	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$		mA
los	Output Short Circuit Current (note 2)	-20		- 100	$V_{C C}=M A X, V_{\text {OUT }}=0 \mathrm{~V}$		mA
ICCH	Supply Current HIGH		0.6	1.2	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$		mA
ICCL	Supply Current LOW		1.8	3.3	$V_{C C}=M A X$, Inputs Open		mA

Notes : 1 For conditions shown as MIN or MAX, use the appropriate value specified under guaranteed operatıng ranges
2. Not more than one output should be shorted at a tıme
(*) Typical values are at $V_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (for AC test circuits and waveforms see databook introduction)

Symbol	Parameter	Limits			Test Conditions	Unit		
		Min.	Typ.	Max.		ns		
tPLH	$\begin{array}{l}\text { Turn Off Delay, Input to } \\ \text { Output }\end{array}$		9	15	$\begin{array}{l}\text { V }\end{array}$			
tPHL	$\begin{array}{l}\text { Turn On Delay, Input to } \\ \text { Output }\end{array}$		10	15			$]$	ns
:---:								

TRIPLE 3-INPUT AND GATE

DESCRIPTION

The T74LS11 is a high speed TRIPLE 3-INPUT AND GATE fabricated in LOW POWER SCHOTTKY technology.

SCHEMATIC

ORDER CODES :
T74LS11 D1
T74LS11 C1
T74LS11 M1

PIN CONNECTION (top view)
CHAL IN LINE

LOGIC DIAGRAM AND TRUTH TABLE

A	B	C	Y
L	X	X	L
X	L	X	L
X	X	L	L
H	H	H	H

$\mathrm{L}=$ LOW Voltage Level
H = HIGH Voltage Level
X = Don't Care

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{C C}$	Supply Voltage	-0.5 to 7	V
V_{1}	Input Voltage, Applied to Input	-05 to 15	V
V_{O}	Output Voltage, Applied to Output	-0.5 to 10	V
I_{1}	Input Current, Into Inputs	-30 to 5	mA
I_{O}	Output Current, Into Outputs	50	mA

Stresses in excess of those histed under "Absolute Maximum Ratings" may cause permanent damage to the device
This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied Exposure to absolute maximum rating condrtions for extended periods may affect device reliability

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage			Temperature
	Min.	Typ.	Max.	
T74LS11XX	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
V_{IH}	Input HIGH Voltage	2.0			Guaranteed I	ut HIGH Voltage	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			08	Guaranteed I	ut LOW Voltage	V
$V_{C D}$	Input Clamp Diode Voltage		-0.65	-1.5	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IIN}$	$=-18 \mathrm{~mA}$	V
V OH	Output HIGH Voltage	2.7	3.4		$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I} \\ & \mathrm{~V}_{\mathbb{I N}}=\mathrm{V}_{\mathrm{IH}} \end{aligned}$	$=-400 \mu \mathrm{~A},$	V
VOL	Output LOW Voltage		0.25	0.4	$\mathrm{loL}=4.0 \mathrm{~mA}$	$\begin{aligned} & V_{C C}=M I N \\ & V_{I N}=V_{I L} \end{aligned}$	V
			0.35	0.5	$\mathrm{loL}=8.0 \mathrm{~mA}$		V
$\mathrm{IIH}^{\text {H}}$	Input HIGH Current		1.0	$\begin{aligned} & 20 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{\mathbb{N}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{\mathbb{N}}=7.0 \mathrm{~V} \end{aligned}$		$\mu \mathrm{A}$ mA
Ill	Input LOW Current			-0.4	$V_{C C}=M A X, V_{\mathbb{I N}}=0.4 \mathrm{~V}$		mA
los	Output Short Circuit Current (note 2)	-20		- 100	$V_{C C}=M A X, V_{\text {OUT }}=0 \mathrm{~V}$		mA
ICCH	Supply Current HIGH		1.8	36	$V_{C C}=M A X$, Inputs Open		mA
ICCL	Supply Current LOW		3.3	6.6	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathbb{N}}=0 \mathrm{~V}$		mA

Notes : 1 For conditions shown as MIN or MAX, use the appropriate value specified under guaranteed operating ranges
2 Not more than one output should be shorted at a time
(*) Typical values are at $\mathrm{V}_{\mathrm{CC}}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (for AC test circuits and waveforms see databook introduction)

Symbol	Parameter	Limits			Test Conditions	Unit
		Min.	Typ.	Max.		
tple	Turn Off Delay, Input to Output		8	15	$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}}=5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$	ns
tphL	Turn On Delay, Input to Output		10	20		ns

TRIPLE 3-INPUT NAND GATE

DESCRIPTION

The T74LS12 is a high speed TRIPLE 3-INPUT NAND GATE (with open collector output) fabricated in LOW POWER SCHOTTKY technology.

SCHEMATIC

PIN CONNECTION (top view)

DUAL IN LINE

[^3]CHIP CARRIER

NC = No Internal Connection

LOGIC DIAGRAM AND TRUTH TABLE

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	-0.5 to 7	V
$\mathrm{~V}_{1}$	Input Voltage, Applied to Input	-0.5 to 15	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage, Applied to Output	0 to 10	V
I_{I}	Input Current, Into Inputs	-30 to 5	mA
I_{O}	Output Current, Into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maximum Ratings" may cause permanent damage to the device
This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum ratıng conditions for extended periods may affect device reliability.

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage		Temperature		
	Min.	Typ.		Max.	

$X X=$ package type
DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
V_{IH}	Input HIGH Voltage	2.0			Guaranteed In	ut HIGH Voltage	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	Guaranteed In	ut LOW Voltage	V
$\mathrm{V}_{\text {CD }}$	Input Clamp Diode Voltage		-0.65	-1.5	$\mathrm{V}_{\text {cc }}=\mathrm{MIN}, \mathrm{IIN}$	- -18 mA	V
loH	Output HIGH Current			100	$\mathrm{V}_{\text {cc }}=\mathrm{MIN}, \mathrm{V}$	$=5.5 \mathrm{~V}$	$\mu \mathrm{A}$
VoL	Output LOW Voltage		0.25	0.4	$\mathrm{loL}=4.0 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MiN}$ $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL} per Truth Table	V
			0.35	0.5	$\mathrm{loL}=8.0 \mathrm{~mA}$		V
$\mathrm{IIH}^{\text {H}}$	Input HIGH Current			$\begin{aligned} & 20 \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & V_{C C}=M A X, V_{I N}=2.7 \mathrm{~V} \\ & V_{C C}=M A X, V_{I N}=7.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$
$1 / 2$	Input LOW Current			-0.4	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$		mA
Icc	Power Supply Current Total, Output HIGH Total, Output LOW			$\begin{aligned} & 1.4 \\ & 3.3 \end{aligned}$	$V_{C C}=$ MAX		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$

Notes : 1 For conditions shown as MIN or MAX, use the appropriate value specified under guaranteed operating ranges (*) Typical values are at $V_{C C}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (for AC test circuits and waveforms see databook introduction)

Symbol	Parameter	Limits			Test Conditions	Unit
		Min.	Typ.	Max.		
tpLH	Turn Off Delay, Input to Output		17	32	$\begin{aligned} & V_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{~K} \Omega \end{aligned}$	ns
tphL	Turn On Delay, Input to Output		15	28		ns

DUAL 4-INPUT SCHMITT TRIGGER

DESCRIPTION

The T74LS13 contains two-4 Input NAND Gates that accept standard TTL input signals and provide standard TTL output levels. They are capable of transforming slowly changing input signals into sharply defined, jitter-free output signals. Additionally, they have a greater noise margin than conventional NAND gates.
Each circuit contains a Schmitt trigger followed by a Darlington level shifter and a phase splitter that drives a TTL totem-pole output. The Schmitt trigger uses positive feedbak to effectively speed-up slow input transitions and provide different input threshold voltages for positive and negative-going transitions. This hysteresis between the positivegoing and negative-going input thresholds (typically 800 mV) is determined internally by resistor ratios and is essentially insensitive to temperature and supply voltage variations.

B1
(Plastic Package)

M1
(Micro Package)

D1
(Ceramic Package)

C1
(Plastic Chip Carrier)

ORDER CODES :

T74LS13 D1	T74LS13 C1
T74LS13 B1	T74LS13 M1

T74LS13 D1
T74LS13 M1

PIN CONNECTION (top view)

DUAL IN LINE

CHIP CARRIER

NC = No Internal Connection

SCHEMATIC

LOGIC DIAGRAM AND TRUTH TABLE

$\begin{aligned} & A \\ & C_{D}^{A} \equiv \square-r \end{aligned}$	A	B	c	D	Y	$\begin{aligned} & L=\text { LOW Voltage Level } \\ & H=\text { HIGH Vottage Level } \\ & X=\text { Don't Care } \end{aligned}$
	L	X	X	X	H	
	X	L	X	X	H	
	X	X	L	X	H	
	X	X	X	L	H	
	H	H	H	H	L	

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{C C}$	Supply Voltage	-0.5 to 7	V
V_{1}	Input Voltage, Applied to Input	-0.5 to 15	V
V_{O}	Output Voltage, Applied to Output	-0.6 to 5.5	V
I_{1}	Input Current, Into Inputs	-30 to 5	mA
I_{0}	Output Current, Into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maximum Ratıngs" may cause permanent damage to the device.
This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied Exposure to absolute maximum ratıng conditions for extended periods may affect device reliability.

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage			Temperature
	Min.	Typ.	Max.	
T74LS13XX	4.75 V	50 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
$\mathrm{V}_{\text {+ }+}$	Positive-going Threshold Voltage	1.5	1.8	2.0	$\mathrm{Vcc}=5.0 \mathrm{~V}$		V
V_{T} -	Negative-going Threshold Voltage	0.6	0.95	1.1	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$		V
$\mathrm{V}_{\mathrm{T}_{+}}-\mathrm{V}_{\mathrm{T}}$.	Hysteresis	0.4	0.8		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$		V
$\mathrm{V}_{C D}$	Input Clamp Diode Voltage		-0.65	-1.5	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$		V
Vor	Output HIGH Voltage	2.7	3.4		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IOH}=-400 \mu \mathrm{~A} \\ & \mathrm{~V}_{\text {IN }}=0.5 \mathrm{~V} \end{aligned}$		V
VoL	Output LOW Voltage		0.25	0.4	$\mathrm{loL}=4.0 \mathrm{~mA}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} \\ & \mathrm{~V}_{\mathrm{IN}}=1.9 \mathrm{~V} \end{aligned}$	V
			0.35	0.5	$\mathrm{loL}=8.0 \mathrm{~mA}$		V
I_{T+}	Input Current at Positive-going Threshold		-0.14		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {T+ }}$		mA
$1 \mathrm{~T}_{\text {- }}$	Input Current at Negative-going Threshold		-0.18		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{T}}$.		mA
${ }_{1 / 4}$	Input HIGH Current		1.0	$\begin{aligned} & 20 \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & V_{C C}=M A X, V_{I N}=2.7 \mathrm{~V} \\ & V_{C C}=M A X, V_{I N}=7.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} \mu \mathrm{A} \\ \mathrm{~mA} \\ \hline \end{gathered}$
1.1	Input LOW Current			-0.4	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$		mA
los	Output Short Circuit Current (note 2)	-20		- 100	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		mA
IcCH	Supply Current HIGH		3	6	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1 \mathrm{I}}=0 \mathrm{~V}$		mA
lcal	Supply Current LOW		4	7	$V_{C C}=M A X, V_{\text {IN }}=4.5 \mathrm{~V}$		mA

Notes: 1. For conditions shown as MIN or MAX, use the appropriate value specified under guaranteed operatıng ranges.
2. Not more than one output should be shorted at a time.
(*) Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

AC CHARACTERISTICS : $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter		Limits			Test Conditions

Figure 1 : VIN Versus Vout Transfer Function.

Figure 3 : Threshold Voltage and Hysteresis Versus Temperature.

Figure 2 : Threshold Voltage and Hysteresis Versus Power Supply Voltage.

Figure 4.

HEX SCHMITT TRIGGER INVERTER

DESCRIPTION

The T74LS14 contains six logic inverters which accept standard TTL input signals and provide standard TTL output levels. They are capable of transforming slowly changing input signals into sharply defined, jitter-free output signals. Additionally, they have greater a noise margin than conventional inverters.

Each circuit contains a Schmitt trigger followed by a Darlington level shifter and a phase splitter that drives a TTL totem-pole output. The Schmitt trigger uses positive feedback to effectively speed-up slow input transitions, and provide different input threshold voltages for positive and negative-going tran-sitions. This hysteresis between the positivegoing and negative-going input thresholds (typically 800 mV) is determined internally by resistor ratios and is essentially insensitive to temperature and supply voltage variations.

ORDER CODES :

T74LS14 D1	T74LS14 C1
T74LS14 B1	T74LS14 M1

T74LS14 D1
T74LS14 M1

PIN CONNECTION (top view)
DUAL IN LINE

SCHEMATIC DIAGRAM

LOGIC DIAGRAM AND TRUTH TABLE

\mathbf{A}	\mathbf{Y}
L	H
H	L

L = LOW Voltage Level
H = HIGH Voltage Level
X = Don't Care

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{c c}$	Supply Voltage	-0.5 to 7	V
V_{1}	Input Voltage, Applied to Input	-0.5 to 15	V
V_{0}	Output Voltage, Applied to Output	-0.5 to 10	V
I_{1}	Input Current, Into Inputs	-30 to 5	mA
I_{0}	Output Current, Into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maximum Ratngs" may cause permanent damage to the device.
This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating condrtions for extended periods may affect device reliability.

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage			Temperature
	Min.	Typ.	Max.	
T74LS14XX	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

| Symbol | $\begin{array}{c}\text { Parameter }\end{array}$ | $\begin{array}{c}\text { Limits }\end{array}$ | | $\begin{array}{c}\text { Test Condition } \\ \text { (note 1) }\end{array}$ | Unit |
| :---: | :--- | :---: | :---: | :---: | :--- | :---: |
| | $\begin{array}{l}\text { Positive-going Threshold } \\ \text { Voltage }\end{array}$ | 1.4 | 1.6 | 1.9 | $V_{C C}=5.0 \mathrm{~V}$ |$)$

Notes : 1 For conditions shown as MIN or MAX, use the appropriate value specified under guaranteed operatıng ranges 2. Not more than one output should be shorted at a time.
(*) Typıcal values are at $\mathrm{V}_{\mathrm{CC}}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

AC CHARACTERISTICS : $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Test Conditions	Unit
		Min.	Typ.	Max.		
tple	Turn Off Delay, Input to Output		15	22	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & C_{L}=15 \mathrm{pF} \end{aligned}$	ns
$\mathrm{t}_{\text {PHL }}$	Turn On Delay, Input to Output		15	22		ns

Figure 1 : $\mathrm{V}_{\mathbb{I N}}$ Versus Vout Transfer Function.

Figure 3 : Threshold Voltage and Hysteresis Versus Temperature.

Figure 2: Threshold Voltage and Hysteresis Versus Power Supply Voltage.

Figure 4.

TRIPLE 3-INPUT AND GATE

DESCRIPTION

The T74LS15 is a high speed TRIPLE 3-INPUT AND GATE (with open collector output) fabricated in LOW POWER SCHOTTKY technology.

SCHEMATIC

PIN CONNECTION (top view)

DUAL IN LINE

* Open Collector Outputs

CHIP CARRIER

NC = No Intemal Connection

LOGIC DIAGRAM AND TRUTH TABLE

	A	B	C	Y	L = LOW Voltage Level $\mathrm{H}=\mathrm{HIGH}$ Voltage Level X = Don't Care
	L	X	X	L	
	X	L	X	L	
	X	X	L	L	
	H	H	H	H	

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{c c}$	Supply Voltage	-0.5 to 7	V
V_{1}	Input Voltage, Applied to Input	-0.5 to 15	V
V_{0}	Output Voltage, Applied to Output	-0.5 to 10	V
I_{I}	Input Current, Into Inputs	-30 to 5	mA
I_{O}	Output Current, Into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maximum Ratings" may cause permanent damage to the device
This is a stress rating only and functional operation of the device at these or any other condrtons in excess of those indicated in the operational sections of this specrication is not implied. Exposure to absolute maximum ratıng conditions for extended periods may affect device reliability.

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage			Temperature
	Min.	Typ.	Max.	
T74LS15XX	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
V_{IH}	Input HIGH Voltage	2.0			Guaranteed In	ut HIGH Voltage	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	Guaranteed In	ut LOW Voltage	V
$V_{C D}$	Input Clamp Diode Voltage		-0.65	-1.5	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$, I	- 18 mA	V
loH	Output HIGH Current			100	$\begin{aligned} & V_{C C}=M I N, V \\ & V_{I N}=V_{I H} \end{aligned}$	$=5.5 \mathrm{~V}$	$\mu \mathrm{A}$
VoL	Output LOW Voltage		0.25	0.4	$\mathrm{loL}=4.0 \mathrm{~mA}$	$\begin{aligned} & V_{C C}=M I N \\ & V_{I N}=V_{I L} \end{aligned}$	V
			0.35	0.5	$\mathrm{l} \mathrm{OL}=8.0 \mathrm{~mA}$		V
$\mathrm{IIH}^{\text {H}}$	Input HIGH Current		1.0	$\begin{aligned} & 20 \\ & 0.1 \end{aligned}$	$\begin{aligned} & V_{C C}=M A X, V_{I N}=2.7 \mathrm{~V} \\ & V_{C C}=M A X, V_{I N}=7.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
IIL	Input LOW Current			-0.4	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$		mA
ICCH	Supply Current HIGH		1.8	3.6	$V_{C C}=M A X$, Inputs Open		mA
lCCL	Supply Current LOW		3.3	6.6	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$		mA

Notes : 1 For conditions shown as MIN or MAX, use the appropriate value specified under guaranteed operating ranges
(*) Typical values are at $\mathrm{V}_{\mathrm{CC}}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (for AC test circuits and waveforms see databook introduction)

| Symbol | Parameter | Limits | | | Test Conditions | Unit |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Min. | Typ. | Max. | | ns |
| tPLH | Turn Off Delay, Input to
 Output | | 20 | 35 | $\mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ | |
| tPHL | Turn On Delay, Input to
 Output | | 17 | 35 | | ns |

DUAL 4-INPUT NAND GATE

DESCRIPTION

The T74LS20 is a high speed DUAL 4-INPUT NAND GATE fabricated in LOW POWER SCHOTTKY technology.

SCHEMATIC

B1
(Plastic Package)

M1
(Micro Package)

D1 (Ceramic Package)

C1
(Plastic Chip Carrier)

ORDER CODES :
T74LS20 D1
T74LS20 C1
T74LS20 M1

PIN CONNECTION (top view)

DUAL IN LINE

CHIP CARRIER

NC = No Internal Connection

LOGIC DIAGRAM AND TRUTH TABLE

	A	B	C	D	Y	L = LOW Voltage Level $H=$ HIGH Voltage Level $\mathrm{X}=$ Don't Care
	L	X	X	X	H	
	X	L	X	X	H	
	X	X	L	X	H	
	X	X	X	L	H	
	H	H	H	H	L	

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{c c}$	Supply Voltage	-0.5 to 7	V
V_{1}	Input Voltage, Applied to Input	-0.5 to 15	V
V_{0}	Output Voltage, Applied to Output	-0.5 to 5.5	V
I_{1}	Input Current, Into Inputs	-30 to 5	mA
I_{0}	Output Current, Into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maxımum Ratıngs" may cause permanent damage to the device.
This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied Exposure to absolute maximum rating conditions for extended periods may affect device reliability

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage			Temperature
	Min.	Typ.	Max.	

$X X=$ package type.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	2.0			Guaranteed Input HIGH Voltage		V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	Guaranteed Input LOW Voltage		V
$V_{C D}$	Input Clamp Dıode Voltage		-0.65	-15	$V_{C C}=M 1 N, I_{1 N}=-18 \mathrm{~mA}$		V
V_{OH}	Output HIGH Voltage	2.7	3.4		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \end{aligned}$		V
Vol	Output LOW Voltage		025	0.4	$\mathrm{l} \mathrm{OL}=4.0 \mathrm{~mA}$	$\begin{aligned} & V_{C C}=\mathrm{MIN} \\ & \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V} \end{aligned}$	V
			0.35	0.5	$\mathrm{l} \mathrm{OL}=8.0 \mathrm{~mA}$		V
$\mathrm{IIH}^{\text {H}}$	Input HIGH Current		1.0	$\begin{aligned} & 20 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{\mathrm{IN}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{\mathrm{IN}}=7.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
IIL	Input LOW Current			-0.4	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$		mA
los	Output Short Circuit Current (note 2)	-20		- 100	$V_{C C}=M A X, V_{\text {OUT }}=0 \mathrm{~V}$		mA
ICCH	Supply Current HIGH		0.4	0.8	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$		mA
lCCL	Supply Current LOW		1.2	2.2	$V_{C C}=$ MAX, Inputs Open		mA

Notes : 1 For conditions shown as MIN or MAX, use the appropriate value specıfied under guaranteed operatıng ranges.
2 Not more than one output should be shorted at a tıme
(*) Typıcal values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

AC CHARACTERISTICS: $T_{A}=25^{\circ} \mathrm{C}$ (for AC test circuits and waveforms see databook introduction)

Symbol	Parameter	Limits			Test Conditions		Unit
		Min.	Typ.	Max.			
tpLH	Turn Off Delay, Input to Output		9	15	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & C_{L}=15 \mathrm{pF} \end{aligned}$	-	ns
tphL	Turn On Delay, Input to Output		10	15			ns

T74LS21

DUAL 4-INPUT AND GATE

DESCRIPTION

The T74LS21 is a high speed DUAL 4-INPUT AND GATE fabricated in LOW POWER SCHOTTKY technology.

SCHEMATIC

PIN CONNECTION (top view)
DUAL IN LINE

LOGIC DIAGRAM AND TRUTH TABLE

	A	B	C	D	Y	L = LOW Voltage Level H = HIGH Voltage Level X = Don't Care
	L	X	X	X	L	
	X	L	X	X	L	
	X	X	L	X	L	
	X	X	X	L	L	
	H	H	H	H	H	

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	-0.5 to 7	V
V_{1}	Input Volatge, Applied to Input	-0.5 to 15	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage, Applied to Output	-0.5 to 5.5	V
I_{I}	Input Current, Into Inputs	-30 to 5	mA
I_{0}	Output Current, Into Outputs	60	mA

Stresses in excess of those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.
This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specrication is not implied. Exposure to absolute maximum rating conditons for extended penods may affect device reliability.

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage		Temperature	
	Min.	Typ.		
T74LS21XX	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	2.0			Guaranteed Input HIGH Voltage		V
V_{IL}	Input LOW Voltage			0.8	Guaranteed Input LOW Voltage		V
$V_{C D}$	Input Clamp Diode Voltage		-0.65	-1.5	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IIN}=-18 \mathrm{~mA}$		V
V_{OH}	Output HIGH Voltage	2.7	3.4		$\begin{aligned} & V_{C C}=M I N, I_{O H}=-400 \mu \mathrm{~A} \\ & V_{I N}=V_{\mathbb{I H}} \end{aligned}$		V
Vol	Output LOW Voltage		0.25	0.4	$\mathrm{loL}=4.0 \mathrm{~mA}$	$\begin{aligned} & V_{C C}=M I N \\ & V_{I N}=V_{I L} \end{aligned}$	V
			0.35	0.5	$\mathrm{loL}=8.0 \mathrm{~mA}$		V
l_{H}	Input HIGH Current		1.0	$\begin{aligned} & 20 \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{\mathrm{IN}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{\mathbb{N}}=7.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$
ILL	Input LOW Current			-0.4	$V_{C C}=M A X, V^{\prime}=0.4 \mathrm{~V}$		mA
los	Output Short Circuit Current (note 2)	- 20		- 100	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		mA
ICCH	Supply Current HIGH		1.2	2.4	$V_{C C}=M A X$, Inputs Open		mA
ICCL	Supply Current LOW		2.2	4.4	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$		mA

Notes : 1. For conditions shown as MIN or MAX, use the appropriate value specified under guaranteed operatıng ranges.
2 Not more than one output should be shorted at a time.
(*) * Typical values are at $\mathrm{V}_{\mathrm{Cc}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

AC CHARACTERISTICS: $T_{A}=25^{\circ} \mathrm{C}$ (for AC test circuits and waveforms see databook introduction)

Symbol	Parameter	Limits			Test Conditions	Unit
		Min.	Typ.	Max.		
tpLH	Turn Off Delay, Input to Output		8	15	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & C_{L}=15 \mathrm{pF} \end{aligned}$	ns
tPHL	Turn On Delay, Input to Output		10	20		ns

Γ SCS-THOMSON
 MRCROERECTRONUCS

DUAL 4-INPUT NAND GATE

DESCRIPTION

The T74LS22 is a high speed DUAL 4-INPUT NAND GATE fabricated in LOW POWER SCHOTTKY technology.

SCHEMATIC

PIN CONNECTION (top view)

LOGIC DIAGRAM AND TRUTH TABLE

A	B	C	D	Y
L	X	X	X	H
X	L	X	X	H
X	X	L	X	H
X	X	X	L	H
H	H	H	H	L

L = LOW Voltage Level
$\mathrm{H}=$ HIGH Voltage Level
X = Don't Care

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{c c}$	Supply Voltage	-0.5 to 7	V
V_{1}	Input Voltage, Applied to Input	-0.5 to 15	V
$\mathrm{~V}_{0}$	Output Voltage, Applied to Output	-0.5 to 5.5	V
I_{1}	Input Current, Into Inputs	-30 to 5	mA
I_{O}	Output Current, Into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maximum Ratings" may cause permanent damage to the device
This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specrication is not implied. Exposure to absolute maximum ratıng conditions for extended periods may affect device reliability.

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage			Temperature
	Min.	Typ.	Max.	
T74LS22XX	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
V_{H}	Input HIGH Voltage	2.0			Guaranteed	ut HIGH Voltage	V
V_{IL}	Input LOW Voltage			0.8	Guaranteed In	ut LOW Voltage	V
$V_{C D}$	Input Clamp Dıode Voltage		-0.65	-1.5	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{\text {IN }}$	=-18 mA	V
loh	Output HIGH Current			100	$\begin{aligned} & V_{C C}=M I N, V_{C} \\ & V_{I N}=V_{\mathrm{IL}} \end{aligned}$	$=5.5$	$\mu \mathrm{A}$
Vol	Output LOW Voltage		0.25	0.4	$\mathrm{l} \mathrm{LL}=4.0 \mathrm{~mA}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} \\ & \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V} \end{aligned}$	V
			0.35	0.5	$\mathrm{l} \mathrm{L}=8.0 \mathrm{~mA}$		V
$\mathrm{IIH}^{\text {H}}$	Input HIGH Current		1.0	$\begin{aligned} & 20 \\ & 0.1 \end{aligned}$	$\begin{aligned} & V_{C C}=M A X, V_{\mathbb{I N}}=2.7 \mathrm{~V} \\ & V_{C C}=M A X, V_{\mathbb{I N}}=7.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$
$1 / 1$	Input LOW Current			-0.4	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$		mA
ICCH	Supply Current HIGH		0.4	0.8	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$		mA
ICCL	Supply Current LOW		1.2	2.2	$V_{C C}=M A X$, Inputs Open		mA

Notes : 1. For conditıons shown as MIN or MAX, use the appropriate value specified under guaranteed operatıng ranges.
2. Not more than one output should be shorted at a tıme.
$\left(^{*}\right)$ Typical values are at $V_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

AC CHARACTERISTICS: $T_{A}=25^{\circ} \mathrm{C}$ (for AC test circuits and waveforms see databook introduction)

Symbol	Parameter	Limits			Test Conditions	Unit
		Min.	Typ.	Max.		
tpLH	Turn Off Delay, Input to Output		17	32	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & C_{L}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{~K} \Omega \end{aligned}$	ns
tphL	Turn On Delay, Input to Output		15	28		ns

QUAD 2-INPUT NAND BUFFER

DESCRIPTION

The T74LS26 is a high speed QUAD 2-INPUT NAND BUFFER (with open collector output) fabricated in LOW POWER SCHOTTKY technology.

SCHEMATIC

B1 (Plastic Package)

M1 (Micro Package)

D1 (Ceramic Package)

C1
(Plastic Chip Carrier)

ORDER CODES :
T74LS26 D
T74LS26 C1
T74LS26 B1
T74LS26 M1

PIN CONNECTION (top view)

DUAL IN LINE

*Open Collector Outputs

CHIP CARRIER

NC = No Internal Connection

SCHEMATIC DIAGRAM

\mathbf{A}	\mathbf{B}	\mathbf{Y}
L	X	H
X	L	H
H	H	L

L = LOW Voltage Level
H = HIGH Voltage Level
X = Don't Care

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{c c}$	Supply Voltage	-0.5 to 7	V
V_{1}	Input Voltage, Applied to Input	-0.5 to 15	V
$\mathrm{~V}_{0}$	Output Voltage, Applied to Output	-0.5 to 15	V
I_{1}	Input Current, Into Inputs	-30 to 5	mA
I_{0}	Output Current, Into Outputs	60	mA

Stresses in excess of those listed under "Absolute Maxımum Ratıngs" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specrication is not implied. Exposure to absolute maxımum rating conditions for extended periods may affect device reliability.

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage			Temperature
	Min.	Typ.	Max.	
T74LS26XX	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)	Unit
		Min.	Typ. (*)	Max.		
V_{H}	Input HIGH Voltage	2.0			Guaranteed Input HIGH Voltage for All Input	V
VIL	Input LOW Voltage			0.8	Guaranteed Input LOW Voltage for All Input	V
$V_{C D}$	Input Clamp Diode Voltage		-0.65	-1.5	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{l}_{\mathrm{N}}=-18 \mathrm{~mA}$	V
loh	Output HIGH Current			$\begin{gathered} 1000 \\ 50 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{~V}_{\mathrm{OH}}=15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{~V}_{\mathrm{OH}}=12 \mathrm{~V} \end{aligned}$	$\mu \mathrm{A}$
VoL	Output LOW Voltage		0.25	0.4	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} \\ & \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V} \end{aligned}$	V
			0.35	0.5		V
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current		0.1	$\begin{aligned} & 2.0 \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & V_{C C}=M A X, V_{I N}=2.7 \mathrm{~V} \\ & V_{C C}=M A X, V_{I N}=7.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
IIL	Input LOW Current			-0.4	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$	mA
ICCH	Supply Current HIGH		0.8	1.6	$V_{C C}=M A X, V_{I N}=0 \mathrm{~V}$	mA
lCCL	Supply Current LOW		2.4	4.4	$V_{C C}=$ MAX, Input Open	mA

Notes : 1. For conditions shown as MIN or MAX, use the appropnate value specified under guaranteed operating ranges.
(*) Typical values are at $\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (for AC test circuits and waveforms see databook introduction)

Symbol	Parameter	Limits			Test Conditions	Unit
		Min.	Typ.	Max.		
tpLH	Turn Off Delay, Input to Output		17	32	$\begin{aligned} & \mathrm{VCC}=5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega \end{aligned}$	ns
tphL	Turn On Delay, Input to Output		15	28		ns

TRIPLE 3-INPUT NOR GATE

DESCRIPTION

The T74LS27 is a high speed TRIPLE 3-INPUT NOR GATE fabricated in LOW POWER SCHOTTKY technology.

SCHEMATIC

PIN CONNECTION (top view)

DUAL IN LINE

CHIP CARRIER

NC = No Internal Connection

LOGIC DIAGRAM AND TRUTH TABLE

	A	B	C	Y	$\begin{aligned} & L=\text { LOW Voltage Level } \\ & H=H I G H \text { Vottage Level } \\ & X=\text { Don't Care } \end{aligned}$
	L	L	L	H	
	H	X	x	L	
	X	H	X	L	
	X	X	H	L	

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{C C}$	Supply Voltage	-0.5 to 7	V
V_{1}	Input Voltage, Applied to Input	-0.5 to 15	V
V_{0}	Output Voltage, Applied to Output	-0.5 to 10	V
I_{1}	Input Current, Into Inputs	-30 to 5	mA
I_{0}	Output Current, Into Outputs	60	mA

Stresses in excess of those listed under "Absolute Maxımum Ratings" may cause permanent damage to the device This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage		Temperature	
	Min.	Typ.		
T74LS27X	4.75 V	50 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max. ${ }^{\text {f }}$			
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	2.0			Guaranteed Input HIGH Voltage		V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	Guaranteed Input LOW Voltage		V
V_{CD}	Input Clamp Diode Voltage		-0.65	-1.5	$V_{C C}=$ MIN, $\mathrm{l}^{\mathrm{N}}=-18 \mathrm{~mA}$		V
VOH	Output HIGH Voltage	2.7	3.4		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IOH}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \end{aligned}$		V
VoL	Output LOW Voltage		0.25	0.4	$\mathrm{loL}=4.0 \mathrm{~mA}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} \\ & \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V} \end{aligned}$	V
			0.35	0.5	$\mathrm{l} \mathrm{L}=8.0 \mathrm{~mA}$		V
$\mathrm{IIH}^{\text {H}}$	Input HIGH Current		1.0	$\begin{aligned} & 20 \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & V_{C C}=M A X, V_{\mathbb{N}}=2.7 \mathrm{~V} \\ & V_{C C}=M A X, V_{\mathbb{N}}=7.0 \mathrm{~V} \end{aligned}$		$\mu \mathrm{A}$ mA
IIL	Input LOW Current			-0.4	$V_{C C}=M A X, V_{\mathbb{I N}}=0.4 \mathrm{~V}$		mA
los	Output Short Circuit Current (note 2)	- 20		- 100	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$		mA
ICCH	Supply Current HIGH		2.0	4.0	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$		mA
ICCL	Supply Current LOW		3.4	6.8	$V_{C C}=M A X$, Inputs Open		mA

Notes : 1. For conditions shown as MIN or MAX, use the appropriate value specified under guaranteed operating ranges 2. Not more than one output should be shorted at a tıme.
(*) Typical values are at $\mathrm{V}_{\mathrm{CC}}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (for AC test circuits and waveforms see databook introduction)

Symbol	Parameter	Limits			Test Conditions	Unit
		Min.	Typ.	Max.		
tple	Turn Off Delay, Input to Output		10	15	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \end{aligned}$	ns
tpHL	Turn On Delay, Input to Output		10	15		ns

QUAD 2-INPUT NOR BUFFER

DESCRIPTION

The T74LS28 is a high speed QUAD 2-INPUT NOR BUFFER fabricated in LOW POWER SCHOTTKY technology.

SCHEMATIC

$\begin{aligned} & \text { ORDE } \\ & \text { T74LS28 D1 } \\ & \text { T74LS28 B1 } \end{aligned}$	DES : T74LS28 C1 T74LS28 M1

PIN CONNECTION (top view)
DUAL IN LINE

LOGIC DIAGRAM AND TRUTH TABLE

A	B	Y
H	X	L
X	H	L
L	L	H

L = LOW Voltage Level
H = HIGH Voltage Level
X = Don't Care

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{c c}$	Supply Voltage	-0.5 to 7	V
V_{1}	Input Voltage, Applied to Input	-0.5 to 15	V
V_{0}	Ouptut Voltage, Applied to Output	-0.5 to 5.5	V
I_{1}	Input Çurrent, Into Inputs	-30 to 5	mA
I_{0}	Output Current, Into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maximum Ratngs" may cause permanent damage to the device
This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied Exposure to absolute maximum rating conditions for extended periods may affect device reliability

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage		Temperature	
	Min.	Typ.		
T74LS28XX	4.75 V	50 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$x \dot{X}=$ package type

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
V_{IH}	Input HIGH Voltage	2.0			Guaranteed	ut HIGH Voltage	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	Guaranteed	ut LOW Voltage	V
$V_{C D}$	Input Clamp Diode Voltage		-0.85	-1.5	$\mathrm{V}_{\text {CC }}=$ MIN, I	$=-18 \mathrm{~mA}$	V
V_{OH}	Output HIGH Voltage	2.7			$\begin{aligned} & V_{C C}=M I N, \\ & V_{\mathrm{IN}}=V_{\mathrm{IL}} \end{aligned}$	$=-1.2 \mathrm{~mA} \text {, }$	V
VoL	Output LOW Voltage		0.25	0.4	$\mathrm{loL}=12 \mathrm{~mA}$	$\begin{aligned} & V_{C C}=M I N \\ & V_{I N}=\cdot V_{I H} \end{aligned}$	V
			0.35	05	$\mathrm{loL}=24 \mathrm{~mA}$		V
$\mathrm{IIH}^{\text {H}}$	Input HIGH Current		$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{gathered} 20 \\ 100 \\ \hline \end{gathered}$	$\begin{aligned} & V_{C C}=M A X, V_{I N}=2.7 \mathrm{~V} \\ & V_{C C}=M A X, V_{I N}=70 \mathrm{~V} \end{aligned}$		$\mu \mathrm{A}$ $\mu \mathrm{A}$
IIL	Input LOW Current			-0.4	$V_{C C}=M A X, V_{\mathbb{I N}}=0.4 \mathrm{~V}$		mA
los	Output Short Circuit Current (note 2)	- 20		- 100	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		mA
ICCH	Supply Current HIGH		2.1	3.6	$V_{C C}=M A X$		mA
ICCL	Supply Current LOW		11	13.8	$V_{C C}=M A X$		mA

Notes: 1 For conditions shown as MIN or MAX, use the appropriate value specified under guaranteed operating ranges 2 Not more than one output should be shorted at a tıme.
(*) Typical values are at $\mathrm{V}_{\mathrm{CC}}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (for AC test circuits and waveforms see databook introduction)

Symbol	Parameter	Limits			Test Conditions	Unit
		Min.	Typ.	Max.		
$t_{\text {PLH }}$	Turn Off Delay, Input to Output		12	24	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=45 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=667 \Omega \end{aligned}$	ns
tpHL	Turn On Delay, Input to Output		12	24		ns

8-INPUT NAND GATE

DESCRIPTION

The T74LS30 is a high speed 8 -INPUT NAND GATE fabricated in LOW POWER SCHOTTKY technology.

SCHEMATIC

PIN CONNECTION (top view)
DUAL IN LINE

LOGIC DIAGRAM AND TRUTH TABLE

	A	B	C	D	E	F	G	H	Y
	L	X	X	X	X	X	X	X	H
	X	L	X	x	X	X	X	X	H
	X	X	L	X	X	X	X	X	H
	X	X	x	L	X	x	X	x	H
O- $\mathrm{O}^{\text {r }}$	X	X	X	X	L	X	X	X	H
	X	X	X	X	X	L	X	X	H
- scos220	X	X	X	X	X	X	L	X	H
	X	X	X	X	X	X	X	L	H
	H	H	H	H	H	H	H	H	L

L = LOW Voltage Level H = HIGH Voltage Level X = Don't Care

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{c c}$	Supply Voltage	-0.5 to 7	V
V_{1}	Input Volatge, Applied to Input	-0.5 to 15	V
V_{0}	Output Voltage, Applied to Output	-0.5 to 5.5	V
I_{1}	Input Current, Into Inputs	-30 to 5	mA
l_{0}	Output Current, Into Outputs	60	mA

Stresses in excess of those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.
This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage			Temperature
	Min.	Typ.	Max.	
T74LS30XX	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
V_{IH}	Input HIGH Voltage	2.0			Guaranteed Input HIGH Voltage		V
V_{IL}	Input LOW Voltage			0.8	Guaranteed Input LOW Voltage		V
$V_{C D}$	Input Clamp Diode Voltage		-0.65	-1.5	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{l}_{1 /}=-18 \mathrm{~mA}$		V
Vor	Output HIGH Voltage	2.7	3.4		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IOH}_{2}=-400 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \end{aligned}$		V
VoL	Output LOW Voltage		0.25	0.4	$\mathrm{loL}=4.0 \mathrm{~mA}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} \\ & \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V} \end{aligned}$	V
			0.35	0.5	$\mathrm{loL}=8.0 \mathrm{~mA}$		V
${ }_{1+}$	Input HIGH Current		1.0	$\begin{aligned} & 20 \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & V_{C C}=M A X, V_{I N}=2.7 \mathrm{~V} \\ & V_{C C}=M A X, V_{I N}=7.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
$1 / 2$	Input LOW Current			-0.4	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$		mA
los	Output Short Circuit Current (note 2)	-20		- 100	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		mA
ICCH	Supply Current HIGH		0.35	0.5	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0 \mathrm{~V}$		mA
$\mathrm{I}_{\text {cal }}$	Supply Current LOW		0.6	1.1	$V_{C C}=M A X$, Inputs Open		mA

Notes : 1. For conditions shown as MIN or MAX, use the appropriate value specified under guaranteed operating ranges.
2. Not more than one output should be shorted at a time.
(*) Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (for AC test circuits and waveforms see databook introduction)

Symbol	Parameter	Limits			Test Conditions	Unit
		Min.	Typ.	Max.		
tpLH	Turn Off Delay, Input to Output		8	15	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & C_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$	ns
tPHL	Turn On Delay, Input to Output		13	20		ns

QUAD 2-INPUT OR GATE

DESCRIPTION

The T74LS32 is a high speed QUAD 2-INPUT OR GATE fabricated in LOW POWER SCHOTTKY technology.

SCHEMATIC

$\begin{gathered} \text { B1 } \\ \text { (Plastic Package) } \end{gathered}$	D1 (Ceramic Package)
M1 (Micro Package)	C1 (Plastic Chip Carrier)
ORDER CODES : T74LS32 D1 T74LS32 C1 T74LS32 B1 T74LS32 M1	

PIN CONNECTION (top view)
DUAL IN LINE

LOGIC DIAGRAM AND TRUTH TABLE

	A	B	Y	L = LOW Voltage Level $H=$ HIGH Voltage Level $\mathrm{X}=$ Don't Care
	L	L	L	
	X	H	H	
	H	X	H	

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{c c}$	Supply Voltage	-0.5 to +7	V
V_{1}	Input Voltage, Applied to Input	-0.5 to 15	V
V_{0}	Output Voltage, Applied to Output	-0.5 to 10	V
I_{1}	Input Current, Into Inputs	-30 to 5	mA
I_{0}	Output Current, Into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maximum Ratıngs" may cause permanent damage to the device This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
gUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage		Typ.	Temperature
	Min.	Typ.		
T74LS32XX	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	2.0			Guaranteed	ut HIGH Voltage	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	Guaranteed	ut LOW Voltage	V
$V_{C D}$	Input Clamp Diode Voltage		-0.65	- 1.5	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$, I	- 18 mA	V
V_{OH}	Output HIGH Voltage	2.7	3.4		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IO}_{\mathrm{C}} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \end{aligned}$	$=-400 \mu \mathrm{~A},$	V
VoL	Output LOW Voltage		0.25	0.4	$\mathrm{l}_{\mathrm{L}}=4.0 \mathrm{~mA}$	$\begin{aligned} & V_{C C}=M I N \\ & V_{I N}=V_{I L} \end{aligned}$	V
			0.35	0.5	$\mathrm{loL}=8.0 \mathrm{~mA}$		V
$\mathrm{IIH}^{\text {H}}$	Input HIGH Current		1.0	$\begin{aligned} & 20 \\ & 0.1 \end{aligned}$	$\begin{aligned} & V_{C C}=M A X, V_{I N}=2.7 \mathrm{~V} \\ & V_{C C}=M A X, V_{I N}=7.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$
IIL	Input LOW Current			-0.4	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$		mA
los	Output Short Circuit Current (note 2)	-20		- 100	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		mA
ICCH	Supply Current HIGH		3.1	6.2	$V_{C C}=M A X$, Inputs Open		mA
ICCL	Supply Current LOW		4.9	9.8	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0 \mathrm{~V}$		mA

Notes : 1 For conditions shown as MIN or MAX, use the appropriate value specified under guaranteed operatıng ranges.
2 Not more than one output should be shorted at a time
(*) Typical values are at $\mathrm{V}_{\mathrm{Cc}}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (for AC test circuits and waveforms see databook introduction)

Symbol	Parameter	Limits			Test Conditions	Unit
		Min.	Typ.	Max.		
tpLH	Turn Off Delay, Input to Output		14	22	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$	ns
tpHL	Turn On Delay, Input to Output		14	22		ns

QUAD 2-INPUT NOR BUFFER

DESCRIPTION

The T74LS33 is a high speed QUAD 2-INPUT NOR BUFFER fabricated in LOW POWER SCHOTTKY technology.

SCHEMATIC

B1
(Plastıc Package)

M1 (Micro Package)

D1
(Ceramıc Package)

C1
(Plastic Chip Carrier)

ORDER CODES :
T74LS33 D1
T74LS33 C1
T74LS33 B1
T74LS33 M1

PIN CONNECTION (top view)

DUAL IN LINE

* Open Collector Outputs

CHIP CARRIER

NC = No Internal Connectıon

LOGIC DIAGRAM AND TRUTH TABLE

\mathbf{A}	\mathbf{B}	\mathbf{Y}
H	X	L
X	H	L
L	L	H

$\mathrm{L}=$ LOW Voltage Level
$\mathrm{H}=$ HIGH Voltage Level
H = HIGH Voltage Level
X = Don't Care

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{C C}$	Supply Voltage	-05 to 7	V
V_{1}	Input Voltage, Applied to Input	-05 to 15	V
V_{O}	Output Voltage. Applied to Output	-0.5 to 10	V
I_{1}	Input Current. Into Inputs	-30 to 5	mA
I_{O}	Output Current, Into Outputs	60	mA

Stresses in excess of those listed under "Absolute Maximum Ratings" may cause permanent damage to the device This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied Exposure to absolute maximum rating conditions for extended periods may affect device reliability

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage		Temperature	
	Min.	Typ.		
T74LS33XX	475 V	50 V	525 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X$ = package type

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)	Unit
		Min.	Typ. (*)	Max.		
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	20			Guaranteed Input HIGH Voltage	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	Guaranteed Input LOW Voltage	V
$\mathrm{V}_{C D}$	Input Clamp Diode Voltage		-065	-15	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$	V
loH	, Output HIGH Current			100	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{~V}_{\mathrm{OH}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mu \mathrm{A}$
VoL	Output LOW Voltage		025	0.4	$\begin{aligned} & V_{c \mathrm{C}}=\mathrm{MIN} \\ & \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V} \end{aligned}$	V
			0.35	05		V
$1{ }_{1 /}$	Input HIGH Current		0.1	$\begin{array}{r} 20 \\ 0.1 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{\text {IN }}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{\text {IN }}=7.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$
$1 / 2$	Input LOW Current			-0.4	$V_{C C}=M A X, V_{\text {IN }}=0.4 \mathrm{~V}$	mA
ICCH	Supply Current HIGH		20	3.6	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1 \mathrm{~N}}=0 \mathrm{~V}$	mA
lcCL	Supply Current LOW		10	13.8	$V_{C C}=M A X$, Inputs Open	mA

Notes: 1. For conditions shown as MIN or MAX, use the appropriate value specified under guaranteed operating ranges 2. Typical values are at $\mathrm{V} c \mathrm{c}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

AC CHARACTERISTICS: $T_{A}=25^{\circ} \mathrm{C}$ (for $A C$ test circuits and waveforms see databook introduction)

Symbol	Parameter	Limits			Test Conditions	Unit	
	Turn Off Delay, Input to Output		Typ.	Max.		ns	
tPHL	Turn On Delay, Input to Output		18	32			

QUAD 2-INPUT NAND BUFFER

DESCRIPTION

The T74LS37 is a high speed QUAD 2-INPUT NAND BUFFER fabricated in LOW POWER SCHOTTKY technology.

SCHEMATIC

PIN CONNECTION (top view)
DUAL IN LINE

LOGIC DIAGRAM AND TRUTH TABLE

A	B	Y
L	X	H
X	L	H
H	H	L

$\mathrm{L}=$ LOW Vottage Level
$\mathrm{H}=\mathrm{HIGH}$ Vottage Level X = Don't Care

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{cc}	Supply Voltage	-0.5 to 7	V
$\mathrm{~V}_{1}$	Input Volatge, Applied to Input	-0.5 to 15	V
$\mathrm{~V}_{\mathrm{o}}$	Output Voltage, Applied to Output	-0.5 to 5.5	V
I_{I}	Input Current, Into Inputs	-30 to 5	mA
l_{0}	Output Current, Into Outputs	60	mA

Stresses in excess of those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended penods may affect device reliability.

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage		Temperature	
	Min.	Typ.		
T74LS37XX	4.75 V	5.0 V	5.25 V	$0{ }^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
V_{1}	Input HIGH Voltage	2.0			Guaranteed Input HIGH Voltage		V
V_{IL}	Input LOW Voltage			0.8	Guaranteed Input LOW Voltage		V
$V_{C D}$	Input Clamp Diode Voltage		-0.65	-1.5	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{l}_{\mathrm{I}}=-18 \mathrm{~mA}$		V
V_{OH}	Output HIGH Voltage	2.7	3.4		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IOH}=-1.2 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{LL}} \end{aligned}$		V
VoL	Output LOW Voltage		0.25	0.4	$\mathrm{lOL}=12 \mathrm{~mA}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} \\ & \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V} \end{aligned}$	V
			0.35	0.5	$\mathrm{loL}=24 \mathrm{~mA}$		V
	Input HIGH Current		1.0	$\begin{aligned} & 20 \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & V_{C C}=M A X, V_{I N}=2.7 \mathrm{~V} \\ & V_{C C}=M A X, V_{I N}=7.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} \mu \mathrm{A} \\ \mathrm{~mA} \end{gathered}$
$1 / 2$	Input LOW Current			-0.4	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$		mA
los	Output Short Circuit Current (note 2)	- 30		- 130	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		mA
ICCH	Supply Current HIGH		0.9	2.0	$V_{C C}=M A X, V_{\text {IN }}=0 \mathrm{~V}$		mA
ICCL	Supply Current LOW		6.0	12	$V_{C C}=M A X$, Inputs Open		mA

Notes: 1. For conditions shown as MIN or MAX, use the appropriate value specified under guaranteed operatıng ranges 2. Not more than one output should be shorted at a time

AC CHARACTERISTICS: $T_{A}=25^{\circ} \mathrm{C}$ (for AC test circuits and waveforms see databook introduction)

Symbol	Parameter	Limits			Test Conditions	Unit
		Min.	Typ.	Max.		ns
tpLH	$\begin{array}{l}\text { Turn Off Delay, Input to } \\ \text { Output }\end{array}$		12	24	$V_{\mathrm{CC}}=5.0 \mathrm{~V}$	

QUAD 2-INPUT NAND BUFFER

DESCRIPTION

The T74LS38 is a high speed QUAD 2-INPUT NAND BUFFER (open collector outputs) fabricated in LOW POWER SCHOTTKY technology.

SCHEMATIC

PIN CONNECTION (top view)

DUAL IN LINE

[^4]
CHIP CARRIER

NC = No Internal Connectıon

LOGIC DIAGRAM AND TRUTH TABLE

A	\mathbf{B}	\mathbf{Y}
L	X	H
X	L	H
H	H	L

$\mathrm{L}=$ LOW Voltage Level
$H=$ HIGH Voltage Level
X = Don't Care

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{C C}$	Supply Voltage	-05 to 7	V
V_{1}	Input Voltage. Applied to Input	-0.5 to 15	V
$\mathrm{~V}_{0}$	Output Voltage. Applied to Output	-05 to 10	V
I_{1}	Input Current. Into Inputs	-30 to 5	mA
I_{0}	Output Current. Into Outputs	60	mA

Stresses in excess of those listed under "Absolute Maximum Ratings" may cause permanent damage to the device
This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied Exposure to absolute maxımum rating conditions for extended periods may affect device reliability.

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage		Temperature	
	Min.	Typ.		
T74LS38XX	475 V	50 V	525 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type.
DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
$\mathrm{V}_{\text {iH }}$	Input HIGH Voltage	2.0			Guaranteed Input HIGH Voltage		V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	Guaranteed Input LOW Voltage		V
$V_{C D}$	Input Clamp Diode Voltage		-0.65	-1.5	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} . \mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$		V
IOH	Output HIGH Current			250	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{~V}_{\mathrm{OH}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \end{aligned}$		$\mu \mathrm{A}$
VoL	Output LOW Voltage		0.25	0.4	$\mathrm{loL}=12 \mathrm{~mA}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} \\ & \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V} \end{aligned}$	V
			035	05	$\mathrm{loL}=24 \mathrm{~mA}$		V
IIH	Input HIGH Current		1.0	$\begin{aligned} & 20 \\ & 0.1 \end{aligned}$	$\begin{aligned} & V_{C C}=M A X, V_{I N}=2.7 \mathrm{~V} \\ & V_{C C}=M A X, V_{I N}=7.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
IIL	Input LOW Current			-0.4	$V_{C C}=M A X, V_{I N}=0.4 \mathrm{~V}$		mA
ICCH	Supply Current HIGH		0.9	2.0	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$		mA
ICCL	Supply Current LOW		6.0	12	$V_{C C}=$ MAX, Inputs Open		mA

Notes : 1 For conditions shown as MIN or MAX, use the appropriate value specified under guaranteed operatıng ranges (*) Typıcal values are at $V C C=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (for AC test circuits and waveforms see databook introduction)

Symbol	Parameter	Limits			Test Conditions	Unit
		Min.	Typ.	Max.		
tplh	Turn Off Delay, Input to Output		20	32	$\begin{aligned} & V_{C C}=50 \mathrm{~V} \\ & C_{L}=45 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=667 \Omega \end{aligned}$	ns
tpHL	Turn On Delay, Input to Output			28		ns

DUAL 4-INPUT NAND BUFFER

DESCRIPTION

The T74LS40 is a high speed DUAL 4-INPUT NAND BUFFER fabricated in LOW POWER SCHOTTKY technology.

SCHEMATIC

PIN CONNECTION (top view)

CHIP CARRIER

NC = No Internal Connection

LOGIC DIAGRAM AND TRUTH TABLE

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{C c}$	Supply Voltage	-0.5 to 7	V
V_{1}	Input Voltage, Applied to Input	-0.5 to 15	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage, Applied to Output	-0.5 to 10	V
I_{1}	Input Current, Into Inputs	-30 to 5	mA
I_{O}	Output Current, Into Outputs	60	mA

Stresses in excess of those listed under "Absolute Maximum Ratıngs" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specrication is not implied Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage			Temperature
	Min.	Typ.	Max.	
T74LS40XX	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
V_{IH}	Input HIGH Voltage	2.0			Guaranteed	HIGH Voltage	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	Guaranteed	ut LOW Voltage	V
$V_{C D}$	Input Clamp Diode Voltage		-0.65	-1.5	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}$, I	$=-18 \mathrm{~mA}$	V
V OH	Output HIGH Voltage	2.7	3.4		$\begin{aligned} & V_{C C}=M I N, \\ & V_{I N}=V_{I L} \end{aligned}$	$=-1.2 \mathrm{~mA}$	V
VoL	Output LOW Voltage		0.25	0.4	$\mathrm{lOL}=12 \mathrm{~mA}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} \\ & \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V} \end{aligned}$	V
			0.35	0.5	$\mathrm{loL}=24 \mathrm{~mA}$		V
$\mathrm{IIH}^{\text {H}}$	Input HIGH Current		1.0	$\begin{aligned} & 20 \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{\mathbb{I}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{\mathbb{I}}=7.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$
112	Input LOW Current			-0.4	$V_{C C}=M A X, V_{\text {IN }}=0.4 \mathrm{~V}$		mA
los	Output Short Circuit Current (note 2)	- 30		- 130	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0 \mathrm{~V}$		mA
ICCH	Supply Current HIGH		045	1.0	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$		mA
ICCL	Supply Current LOW		3.0	6.0	$V_{C C}=M A X$, Inputs Open		mA

Notes: 1. For conditions shown as MIN or MAX, use the appropriate value specified under guaranteed operating ranges.
2 Not more than one output should be shorted at a time.
$\left(^{*}\right)$ Typical values are at $\mathrm{V}_{\mathrm{Cc}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (for AC test circuits and waveforms see databook introduction)

Symbol	Parameter	Limits			Test Conditions	Unit
		Min.	Typ.	Max.		
tpLH	Turn Off Delay, Input to Output		12	24		$\mathrm{~V}_{\mathrm{Cc}}=5.0 \mathrm{~V}$
tPHL	Turn On Delay, Input to Output		12	24	$\mathrm{C}_{\mathrm{L}}=45 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=667 \Omega$	ns

ONE-OF-TEN DECODER

- MULTI-FUNCTION CAPABILITY
- MUTUALLY EXCLUSIVE OUTPUTS
- DEMULTIPLEXING CAPABILITY
- INPUT CLAMP DIODES LIMIT HIGH SPEED
- TERMINATION EFFECTS
- FULLY TTL AND CMOS COMPATIBLE

DESCRIPTION

The LSTTL/MSI T74LS42 is a Multipurpose Decoder designed to accept four BCD inputs and provide ten mutually exclusive outputs. The LS42 is fabricated with the Schottky barrier diode proces for high speed and is completely compatible with all TTL families.

PIN NAMES

$\frac{A_{0}}{}$ to A_{3}	ADDRESS INPUTS
0 to $\overline{9}$	OUTPUTS, ACTIVE LOW

PIN CONNECTION (top view)

TRUTH TABLE

A_{0}	A_{1}	A_{2}	A_{3}	$\overline{0}$	$\overline{1}$	$\overline{2}$	$\overline{3}$	$\overline{4}$	$\overline{5}$	$\overline{6}$	$\overline{7}$	$\overline{8}$	$\overline{9}$
L	L	L	L	L	H	H	H	H	H	H	H	H	H
H	L	L	L	H	L	H	H	H	H	H	H	H	H
L	H	L	L	H	H	L	H	H	H	H	H	H	H
H	H	L	L	H	H	H	L	H	H	H	H	H	H
L	L	H	L	H	H	H	H	L	H	H	H	H	H
L	H	H	L	H	H	H	H	H	L	H	H	H	H
H	H	H	L	H	H	H	H	H	H	H	L	H	H
H	H												
L	L	L	H	H	H	H	H	H	H	H	H	L	H
H	L	L	H	H	H	H	H	H	H	H	H	H	L
H	H	L	H	H	H	H	H	H	H	H	H	H	L
L	H	H	H	H	H	H	H	H	H	H	H	H	
L	L	H	H	H	H	H	H	H	H	H	H	H	H
H	H	H	H	H	H	H	H	H	H	H	H	H	H

$H=$ HIGH Voltage Level
L = LOW Voltage Level

LOGIC SYMBOL AND LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{c c}$	Supply Voltage	-0.5 to 7	V
V_{1}	Input Voltage, Applied to Input	-0.5 to 15	V
$\mathrm{~V}_{0}$	Output Voltage, Applied to Output	-0.5 to 10	V
I_{1}	Input Current, into Inputs	-30 to 5	mA
I_{0}	Output Current, into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specrication is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage		Temperature	
	Min.	Typ.		
T74LS42X	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type.

FUNCTIONAL DESCRIPTION

The LS42 decoder accepts four active HIGH BCD inputs and provides ten mutually exclusive active LOW outputs, as shown by logic symbol or diagram. The active LOW outputs facilitate addressing other MSI units with active LOW input enables.
The logic design of the LS42 ensures that all outputs are HIGH when binary codes greater than nine are applied to the inputs.

The most significant input A_{3} produces a useful inhibit function when the LS42 is used as a one-ofeight decoder. The A_{3} input can also be used as the Data input in an 8-output demultiplexer application.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
V_{IH}	Input HIGH Voltage	2.0			Guaranteed Input HIGH Threshold Voltage for all Inputs		V
VIL	Input LOW Voltage			0.8	Guaranteed Input LOW Threshold Voltage for all Inputs		V
V_{CD}	Input Clamp Diode Voltage		-0.65	-1.5	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$		V
V OH	Output HIGH Voltage	2.7	3.4		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { MIN, I IOH }=-400 \mu \mathrm{~A} \\ & \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {IH }} \text { or } \mathrm{V}_{\text {IL }} \text { per Truth Table } \end{aligned}$		V
VoL	Output LOW Voltage		0.25	0.4	$\mathrm{loL}=4.0 \mathrm{~mA}$	$\begin{aligned} & V_{c C}=M I N \\ & V_{I N}=V_{1 H} \text { or } V_{I L} \\ & \text { per Truth Table } \end{aligned}$	V
			0.35	0.5	$\mathrm{loL}=8.0 \mathrm{~mA}$		v
${ }_{1 / 4}$	Input HIGH Current			$\begin{aligned} & \hline 20 \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & V_{C C}=M A X, V_{I N}=2.7 \mathrm{~V} \\ & V_{C C}=M A X, V_{I N}=7.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
$1 / 2$	Input LOW Current			-0.4	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$		mA
los	Output Short Circuit Current (note 2)	-20		- 100	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		mA
Icc	Power Supply Current		7.0	13	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,		mA

Notes: 1. For conditions shown as MIN or MAX, use the appropriate value specified under guaranteed operatıng ranges
2. Not more than one output should be shorted at a time
(*) Typıcal values are at $\mathrm{V}_{\mathrm{Cc}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (for AC test circuits and waveforms see databook introduction)

Symbol	Parameter	Limits			Test Conditions	Unit
		Min.		Typ.		
tPLH	Propagation Delay (2 levels)		15	25		ns
tPHL	Fig. 2		15	25	VCC $=5.0 \mathrm{~V}$	ns
tPLH	Propagation Delay (3 levels)		20	30	$\mathrm{CL}=15 \mathrm{pF}$	ns
tPHL	Fig. 1		20	30		ns

AC WAVEFORMS

Figure 1.

Figure 2.

DUAL 2-WIDE 2-INPUT / 3-INPUT AND-OR-INVERT GATE

DESCRIPTION

The T74LS51 is a high speed DUAL 2-WIDE 2INPUT / 3-INPUT AND-OR-INVERT GATE fabricated in LOW POWER SCHOTTKY technology.

SCHEMATIC

B1 (Plastic Package)	
M1 (Micro Package)	
ORDER CODES : T74LS51 D1 T74LS51 C1 T74LS51 B1 T74LS51 M1	

PIN CONNECTION (top view)

DUAL IN LINE

CHIP CARRIER

LOGIC DIAGRAMS

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{Cc}	Supply Voltage	-0.5 to 7	V
V_{1}	Input Voltage, Applied to Input	-0.5 to 15	V
$\mathrm{~V}_{0}$	Output Voltage, Applied to Output	-0.5 to 5.5	V
I_{1}	Input Current, Into Inputs	-30 to 5	mA
I_{O}	Output Current, Into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maxımum Ratıngs" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage		Temperature	
	Min.	Typ.		
T74LS38XX	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
V_{IH}	Input HIGH Voltage	2.0			Guaranteed Input HIGH Voltage		V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	Guaranteed Input LOW Voltage		V
$V_{C D}$	Input Clamp Diode Voltage		-0.65	-1.5	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$		V
V_{OH}	Output HIGH Voltage	2.7	3.4		$\begin{aligned} & V_{C C}=M I N, l_{O H}=-400 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \end{aligned}$		V
VoL	Output LOW Voltage		0.25	0.4	$\mathrm{l}_{\mathrm{OL}}=4.0 \mathrm{~mA}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} \\ & \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V} \end{aligned}$	V
			0.35	0.5	$\mathrm{loL}=8.0 \mathrm{~mA}$		V
IIH	Input HIGH Current		1.0	$\begin{aligned} & 20 \\ & 0.1 \end{aligned}$	$\begin{aligned} & V_{C C}=M A X, V_{I N}=2.7 \mathrm{~V} \\ & V_{C C}=M A X, V_{I N}=7.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
$1 / 2$	Input LOW Current			-0.4	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$		mA
los	Output Short Circuit Current (note 2)	- 20		- 100	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		mA
ICCH	Supply Current HIGH		0.8	1.6	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$		mA
ICCL	Supply Current LOW		1.4	2.8	$V_{C C}=M A X$, Inputs Open		mA

Notes : 1 For conditions shown as MIN or MAX, use the appropriate value specified under guaranteed operatıng ranges.
2 Not more than one output should be shorted at a tıme

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (for AC test circuits and waveforms see databook introduction)

Symbol	Parameter	Limits			Test Conditions	Unit
		Min.	Typ.	Max.		ns
tPLH	Turn Off Delay, Input to Output		12	20	$\mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	ns
tpHL	Turn On Delay, Input to Output		12.5	20		

FI SCS-THOMSON
 NDCROELECTRONNCS

3-2-2-3-INPUT AND-OR-INVERT GATE

DESCRIPTION

The T74LS54 is a high speed 3-2-2-3-INPUT AND-OR-INVERT GATE fabricated in LOW POWER SCHOTTKY technology.

SCHEMATIC

B1
(Plastic Package)

M1
(Micro Package)

D1
(Ceramic Package)

(Plastic Chip Carrier)

PIN CONNECTION (top view)
DiN LINE

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{c c}$	Supply Voltage	-0.5 to 7	V
V_{1}	Input Voltage, Applied to Input	-0.5 to 15	V
$\mathrm{~V}_{0}$	Output Voltage, Applied to Output	-0.5 to 10	V
I_{1}	Input Current, Into Inputs	-30 to 5	mA
I_{0}	Output Current, Into Outputs	60	mA

Stresses in excess of those listed under "Absolute Maxımum Ratıngs" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied Exposure to absolute maxımum rating conditions for extended periods may affect device reliability

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage			Temperature
	Min.	Typ.	Max.	
T74LS54XX	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	2.0			Guaranteed In	ut HIGH Voltage	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	Guaranteed In	ut LOW Voltage	V
$V_{C D}$	Input Clamp Diode Voltage		-0.65	-1.5	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IIN}^{\text {N }}$	$=-18 \mathrm{~mA}$	V
V OH	Output HIGH Voltage	2.7	3.4		$\begin{aligned} & V_{C C}=M I N, I \\ & V_{I N}=V_{I L} \end{aligned}$	$=-400 \mu \mathrm{~A}$	V
VoL	Output LOW Voltage		0.25	0.4	$\mathrm{lOL}=4.0 \mathrm{~mA}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} \\ & \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V} \end{aligned}$	V
			0.35	0.5	$\mathrm{l} \mathrm{L}=8.0 \mathrm{~mA}$		V
lin	Input HIGH Current		1.0	$\begin{aligned} & 20 \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{\mathrm{IN}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{\mathrm{IN}}=7.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$
IIL	Input LOW Current			-0.4	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathbb{I}}=0.4 \mathrm{~V}$		mA
los	Output Short Circuit Current (note 2)	- 20		- 100	$V_{C C}=M A X, V^{\prime N}=0 \mathrm{~V}$		mA
ICCH	Supply Current HIGH		0.8	1.6	$V_{C C}=M A X, V_{\text {IN }}=0 \mathrm{~V}$		mA
ICCL	Supply Current LOW		1.0	2.0	$V_{C C}=M A X$, Inputs Open		mA

Notes : 1. For conditions shown as MIN or MAX, use the appropriate value specified under guaranteed operating ranges. 2 Not more than one output should be shorted at a time.
$\left(^{*}\right)$ Typical values are at $V_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (for AC test circuits and waveforms see databook introduction)

Symbol	Parameter	Limits			Test Conditions	Unit
		Min.	Typ.	Max.		
tple	Turn Off Delay, Input to Output		12	20	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & C_{L}=15 \mathrm{pF} \end{aligned}$	ns
tphl	Turn On Delay, Input to Output		12.5	20		ns

2-WIDE 4-INPUT AND-OR-INVERT GATE

DESCRIPTION

The T74LS55 is a high speed 2-WIDE 4-INPUT AND-OR-INVERT GATE fabricated in LOW POWER SCHOTTKY technology.

SCHEMATIC

PIN CONNECTION (top view)

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{cc}	Supply Voltage	-0.5 to 7	V
$\mathrm{~V}_{1}$	Input Voltage, Applied to Input	-0.5 to 15	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage, Applied to Output	-0 to 10	V
I_{I}	Input Current, Into Inputs	-30 to 5	mA
I_{O}	Output Current, Into Outputs	60	mA

Stresses in excess of those listed under "Absolute Maximum Ratıngs" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended penods may affect device reliability

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage		Temperature	
	Min.	Typ.		
T74LS55XX	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

XX = package type

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	2.0			Guaranteed	ut HIGH Voltage	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	Guaranteed	ut LOW Voltage	V
$V_{C D}$	Input Clamp Diode Voltage		-0.65	- 1.5	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$, I	$=-18 \mathrm{~mA}$	V
V OH	Output HIGH Voltage	2.7	3.4		$\begin{aligned} & V_{\mathrm{Cc}}=\mathrm{MIN}, \text { lo } \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \end{aligned}$	$=-400 \mu \mathrm{~A}$	V
Vol	Output LOW Voltage		0.25	0.4	$\mathrm{loL}=4.0 \mathrm{~mA}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} \\ & \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V} \end{aligned}$	V
			0.35	0.5	$\mathrm{loL}=8.0 \mathrm{~mA}$		V
IIH	Input HIGH Current		1.0	$\begin{aligned} & 20 \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & V_{C C}=M A X, V_{I N}=2.7 \mathrm{~V} \\ & V_{C C}=M A X, V_{I N}=7.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$
IIL	Input LOW Current			-0.36	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$		mA
los	Output Short Circuit Current (note 2)	- 20		- 100	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$		mA
ICCH	Supply Current HIGH		0.4	0.8	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$		mA
ICCL	Supply Current LOW		0.7	1.3	$V_{C C}=$ MAX, Inputs Open		mA

Notes : 1. For conditions shown as MIN or MAX, use the appropriate value specified under guaranteed operatıng ranges 2. Not more than one output should be shorted at a time
(*) Typical values are at $\mathrm{V}_{\mathrm{C}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

AC CHARACTERISTICS: $T_{A}=25^{\circ} \mathrm{C}$ (for AC test circuits and waveforms see databook introduction)

Symbol	Parameter	Limits			Test Conditions	Unit
		Min.	Typ.	Max.		
tple	Turn Off Delay, Input to Output		12	20	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$	ns
tpHL	Turn On Delay, Input to Output		12.5	20		ns

DUAL D-TYPE POSITIVE EDGE-TRIGGERED FLIP-FLOP

DESCRIPTION

The T74LS74A dual edge-triggered flip-flop utilizes Schottky TTL circuitry to produce high speed D-type flip-flops. Each flip-flop has individual clear and set inputs, and also complementary Q and \bar{Q} outputs.
Information at input D is transferred to the Q output on the positive-going edge of the clock pulse. Clock triggering occurs at a voltage level of the clock pulse and is not directly related to the transition time of the positive-going pulse. When the clock input is at either the HIGH or the LOW level, the D input signal has no effect.

ORDER CODES :

$$
\begin{array}{ll}
\text { T74LS74A D1 } & \text { T74LS74A C1 } \\
\text { T74LS74A B1 } & \text { T74LS74A M1 }
\end{array}
$$

PIN CONNECTION (top view)

DUAL IN LINE

CHIP CARRIER

NC = No Internal Connection

LOGIC SYMBOL

LOGIC DIAGRAM AND TRUTH TABLE

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	-0.5 to 7	V
V_{1}	Input Voltage, Applied to Input	-0.5 to 15	V
V_{0}	Output Voltage, Applied to Output	-0.5 to 10	V
I_{1}	Input Current, into Inputs	-30 to 5	mA
I_{O}	Output Current, into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operatoonal sectons of this specrication is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage			Temperature
	Min.	Typ.	Max.	
T74LS74AXX	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter		Limits			Test Condition (note 1)		Unit
			Min.	Typ. (*)	Max.			
V_{IH}	Input HIGH Voltage		2.0			Guaranteed for All Input	ut HIGH Voltage	V
VIL	Input LOW Voltage				0.8	Guaranteed for All Input	ut LOW Voltage	V
$V_{C D}$	Input Clamp Diode Voltage			-0.65	-1.5	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$, I	$=-18 \mathrm{~mA}$	V
VOH	Output HIGH Voltage		2.7	3.4		$\begin{aligned} & V_{C C}=M I N, I \\ & V_{I N}=V_{\mathbb{I H}} \text { or } \end{aligned}$	$\begin{aligned} & =-400 \mu \mathrm{~A} \\ & \text { per Truth Table } \end{aligned}$	V
Vol	Output LOW Voltage			0.25	0.4	$\mathrm{loL}=4.0 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$	V
				0.35	0.5	$\mathrm{loL}=8.0 \mathrm{~mA}$	per Truth Table	V
$\mathrm{IIH}_{\mathrm{H}}$	Input HIGH Current	Data, Clock Set, Clear			$\begin{aligned} & 20 \\ & 40 \\ & \hline \end{aligned}$	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$		$\mu \mathrm{A}$
		Data, Clock Set, Clear			$\begin{aligned} & 0.1 \\ & 0.2 \\ & \hline \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$		mA
IIL	Input LOW Current	Data, Clock Set, Clear			$\begin{array}{r} -0.4 \\ -0.8 \\ \hline \end{array}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}$	= 0.4 V	mA
los	Output Short Circuit Current (note 2)		-20		- 100	$V_{C C}=$ MAX, V^{\prime}	= 0 V	mA
Icc	Power Supply Current				8.0	$\mathrm{V}_{C C}=\mathrm{MAX}$		mA

Notes : 1. For conditions shown as MIN or MAX, use the appropriate value specified under garanteed operating ranges .
2. Not more than one output should be shorted at a time.
(*) Typical values are at $\mathrm{V} c \mathrm{C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

AC CHARACTERISTICS : $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Tests Conditions		Unit
		Min.	Typ.	Max.			
$f_{\text {max }}$	Maximum Clock Frequency	25	33		Fig. 1	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & C_{L}=15 \mathrm{pF} \end{aligned}$	MHz
$\begin{aligned} & \hline t_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$	Clock, Clear, Set to Output		$\begin{aligned} & 13 \\ & 25 \end{aligned}$	$\begin{aligned} & 25 \\ & 40 \\ & \hline \end{aligned}$	Fig. 1		ns

AC SET-UP REQUIREMENTS : $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter		Limits			Test Conditions		Unit
			Min.	Typ.	Max.			
t_{w}	Clock, Clear, Set Pulse Width		25			Fig. 3	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	ns
t_{s}	Data Set-up Time	HIGH	25			Fig. 3		ns
		LOW	20					ns
t_{n}	Hold Time		5			Fig 3		ns

AC WAVEFORMS

Figure 1 : Clock to Output Delays, Data Set-up and Hold Times, Clock Pulse Width.

Figure 2 : Set and Clear to Output Delays, Set and Clear Pulse Widths.

Figure 3 : Clock to Output Delays, Data Set-up and Hold Times, Clock Pulse Width.

* The shaded areas indicate when the input is permitted to change for predictable output performance.

DUAL 4-INPUT MULTIPLEXER

DESCRIPTION

The T74LS75 is a 4-bit D latch; it is applied as temporary storage for binary information between processing units and input/output or indicator units. When the Enable is HIGH, the information present at data (D) input shifts to the Q output, wich follows the data input on conditio that the Enable remains HIGH. If the Enable goes LOW, the information is kept at the Qoutput until the Enable is allowed to go HIGH.

PIN NAMES

$D_{1}-D_{4}$	Data Inputs
E_{0-1}	Enable Input Latches 0,1
E_{2-3}	Enable Input Latches 2,3
$Q_{1}-Q_{4}$	Latch Outputs
$\mathrm{Q}_{1}-\mathrm{Q}_{4}$	Compementary Latch Outputs

B1
(Plastic Package)

M1
(Micro Package)

D1
(Ceramic Package)

C1
(Plastic Chip Carrier)

ORDER CODES :

T74LS75 D1	T74LS75 C1
T74LS75 B1	T74LS75 M1

PIN CONNECTION (top view)

LOGIC SYMBOL AND LOGIC DIAGRAM AND TRUTH TABLE

(Each Latch)

$\mathbf{t}_{\mathbf{n}}$	$\mathbf{t}_{\mathrm{n}+1}$
D	Q
H	H
L	L

Notes: $t_{n}=$ bit itme before clock negative-going transition $t_{n+1}=$ bit time after clock negative-going transition
$V_{c c}=\operatorname{Pin} 16$
GND $=\operatorname{Pin} 8$
()$=P$ in numbers

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{cc}	Supply Voltage	-0.5 to 7	V
$\mathrm{~V}_{1}$	Input Voltage, Applied to Input	-0.5 to 15	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage, Applied to Output	-0.5 to 10	V
I_{I}	Input Current, Into Inputs	-30 to 5	mA
I_{O}	Output Current, Into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maximum Ratings" may cause permanent damage to the device This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied Exposure to absolute maxımum rating conditions for extended penods may affect device relability

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage		Temperature	
	Min.	Typ.		
T74LS75XX	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type
dC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter		Limits			Test Condition (note 1)		Unit
			Min.	Typ. (*)	Max.			
V_{IH}	Input HIGH Voltage		2.0			Guaranteed for All Input	ut HIGH Voltage	V
VIL	Input LOW Voltage				0.8	Guaranteed for All Input	ut LOW Voltage	V
$V_{C D}$	Input Clamp Diode Voltage			-0.65	-1.5	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{II}^{1}$	$=-18 \mathrm{~mA}$	V
V_{OH}	Output HIGH Voltage		2.7	3.5		$\begin{aligned} & V_{C C}=M I N, I \\ & V_{I N}=V_{\mathbb{I H}} \text { or } \end{aligned}$	$\begin{aligned} & =-400 \mu \mathrm{~A} \\ & \text { per Truth Table } \end{aligned}$	V
VoL	Output LOW Voltage			0.25	0.4	$\mathrm{l}_{\mathrm{OL}}=4.0 \mathrm{~mA}$	$\mathrm{V}_{\text {cc }}=\mathrm{MIN}$	V
				0.35	0.5	$\mathrm{loL}=8.0 \mathrm{~mA}$	per Truth Table	V
IIH	Input HIGH Current	D Input E Input			$\begin{aligned} & 20 \\ & 80 \\ & \hline \end{aligned}$	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$		$\mu \mathrm{A}$
		D Input E Input			$\begin{aligned} & 0.1 \\ & 0.4 \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$		mA
IIL	Input LOW Current	D Input E Input			$\begin{array}{r} -0.4 \\ -1.6 \\ \hline \end{array}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	= 0.4 V	mA
los	Output Short Circuit Current (note 2)		-20		- 100	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}^{\prime}$	$=0 \mathrm{~V}$	mA
Icc	Power Supply Current				12	$V_{C C}=M A X$		mA

Notes : 1. Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions
2. Not more than one output should be shorted at a time.
(*) Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Test Conditions	Units
		Min.	Typ.	Max.		
tpLH tPHL	Propagation Delay, Data to Q		$\begin{aligned} & 15 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 27 \\ & 17 \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$	ns
$\begin{aligned} & \text { tpLH } \\ & \text { tphL }^{2} \end{aligned}$	Propagation Delay, Data to Q		$\begin{array}{r} 12 \\ 7.0 \\ \hline \end{array}$	$\begin{aligned} & 20 \\ & 15 \\ & \hline \end{aligned}$		ns
$\begin{aligned} & \text { tpLH } \\ & \text { tphL }^{2} \end{aligned}$	Propagation Delay, Enable to Q		$\begin{aligned} & 15 \\ & 14 \end{aligned}$	$\begin{aligned} & 27 \\ & 25 \end{aligned}$		ns
$\begin{aligned} & \text { tpLH } \\ & \text { tphL } \end{aligned}$	Propagation Delay, Enable to Q		$\begin{aligned} & 16 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 30 \\ & 15 \end{aligned}$		ns
tw	Enable Pulse Width	20			$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$	ns
t_{s}	Set-up Time	20				ns
t_{n}	Hold Time	5				ns

DEFINITION OF TERMS:

SET-UP TIME (t_{s}) - is defined as the minimum time required for the correct logic level to be present at the logic input prior to the clock transition from LOW to HIGH in order to be recognized and transferred to the outputs.
HOLD TIME (t_{n}) - is defined as the maximum time
following the clock transition from LOW to HIGH that the logic level must be maintained at the input in order to ensure continued recognition. A negative HOLD TIME indicates that the correct logic level may be released prior to the clock transition from LOW to HIGH and still be recognized.

AC WAVEFORMS

D

E

4-BIT BINARY FULL ADDER WITH FAST CARRY

DESCRIPTION

The T74LS83A is a high-speed 4-Bit Binary Full Adder with internal carry lookahead.
It accepts two 4-bit binary words ($\mathrm{A}_{1}-\mathrm{A}_{4}, \mathrm{~B}_{1}-\mathrm{B}_{4}$) and a Carry (C_{I}). It ganerates the binary Sum outputs ($\Sigma_{1}-\Sigma_{4}$) and the Carry Output (Cout) from the most significant bit. The LS83A operates with either active HIGH or LOW operand (positive or negative logic). The T74LS83A is recommented for new designs since it is identical in function with this device and features standard corner power pins.

PIN NAMES

$\mathrm{A}_{1}-\mathrm{A}_{4}$	Operand A Inputs
$\mathrm{B}_{1}-\mathrm{B}_{4}$	Operand B Inputs
$\mathrm{C}_{\mathbf{N}}$	Carry Inputs
$\mathrm{S}_{1}-\mathrm{S}_{4}$	Sum Outputs
Cout $^{\text {Cout }}$	Carry Outputs

B1 (Plastic Package)

M1
(Micro Package)

D1
(Ceramic Package)

C1
(Plastic Chip Carrier)

ORDER CODES :

```
T74LS83A D1
T74LS83A C1 T74LS83A B1 T74LS83A M1
```

PIN CONNECTION (top view)

LOGIC SYMBOL AND LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	-0.5 to 7	V
$\mathrm{~V}_{1}$	Input Voltage, Applied to Input	-0.5 to 15	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage, Applied to Output	-0.5 to 10	V
I_{1}	Input Current, Into Inputs	-30 to 5	mA
I_{O}	Output Current, Into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maximum Ratings" may cause permanent damage to the device This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage			Temperature
	Min.	Typ.	Max.	
T74LS83AXX	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type

FUNCTIONAL DESCRIPTION

The LS83A adds to 4-bit binary words (A plus B) plus the incoming carry. The binary sum appears on the
sum outputs ($\Sigma_{1}-\Sigma_{4}$) and outgoing carry (Cout) outputs.

$$
\mathrm{C}_{\mathrm{IN}}+\left(\mathrm{A}_{1}+\mathrm{B}_{1}\right)+2\left(\mathrm{~A}_{2}+\mathrm{B}_{2}\right)+4\left(\mathrm{~A}_{3}+\mathrm{B}_{3}\right)+8\left(\mathrm{~A}_{4}+\mathrm{B}_{4}\right)=\Sigma_{1}+2 \Sigma_{2}+4 \Sigma_{3}+8 \Sigma_{4}+16 \text { Cout }^{2}
$$

Where : $(+)=$ plus

Due to the symmetry of the binary add function the LS83A can be used with either all input and otput active HIGH (positive logic) or with all inputs and output active LOW (negative logic).

Note that with active HIGH inputs Carry In can not be left open, but must be held LOW when no carry in is intended.

Example:

	$\mathrm{CiN}_{\text {N }}$	A_{1}	A_{2}	A_{3}	A_{4}	B_{1}	B_{2}	B_{3}	B_{4}	Σ_{1}	Σ_{2}	Σ_{3}	Σ_{4}	Cout	
Logic Levels	L	L	H	L	H	H	L	L	H	H	H	L	L	H	
Active HIGH	0	0	1	0	1	1	0	0	1	1	1	0	0	1	$10+9=19$
Active LOW	1	1	0	1	0	0	1	1	0	0	0	1	1	0	Carry $+5+6=12$

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
V_{IH}	Input HIGH Voltage	2.0			Guaranteed Input HIGH Voltage for All Input		V
VIL	Input LOW Voltage			0.8	Guaranteed Input LOW Voltage for All Input		V
$V_{C D}$	Input Clamp Diode Voltage		-0.65	- 1.5	$\mathrm{V}_{C C}=\mathrm{MIN}, \mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$		V
VOH	Output HIGH Voltage	2.7	3.5		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \text { per Truth Table } \end{aligned}$		V
VoL	Output LOW Voltage		0.25	0.4	$\mathrm{l}_{\mathrm{OL}}=4.0 \mathrm{~mA}$	$\begin{aligned} & V_{C C}=M I N \\ & V_{I N}=V_{I H} \text { or } V_{I L} \\ & \text { per Truth Table } \end{aligned}$	V
			0.35	0.5	$\mathrm{loL}=8.0 \mathrm{~mA}$		V
IIH	Input HIGH Current CIN Any A or B			$\begin{aligned} & 20 \\ & 40 \\ & \hline \end{aligned}$	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$		$\mu \mathrm{A}$
	CIN Any A or B			$\begin{aligned} & 0.1 \\ & 0.2 \\ & \hline \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$		mA
IIL	Input LOW Current CIN Any A or B			$\begin{array}{r} -0.4 \\ -0.8 \\ \hline \end{array}$	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$		mA
los	Output Short Circuit Current (note 2)	-20		- 100	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$		mA
IGc	Power Supply Current		$\begin{aligned} & 22 \\ & 19 \\ & \hline \end{aligned}$	$\begin{aligned} & 39 \\ & 34 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \text { All Inputs } 0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~A} \text { Inputs }=4.5 \mathrm{~V} \end{aligned}$		mA

Notes : 1. Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions
2. Not more than one output should be shorted at a time.
(*) Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Test Conditions	Units
		Min.	Typ.	Max.		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, C_{IN} Input to Any Σ Output		$\begin{aligned} & 16 \\ & 15 \end{aligned}$	$\begin{aligned} & 24 \\ & 24 \\ & \hline \end{aligned}$	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & C_{L}=15 \mathrm{pF} \end{aligned}$ Figures 1 and 2	ns
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, Any A or B Input to Σ Output		$\begin{aligned} & \hline 15 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 24 \\ & 24 \\ & \hline \end{aligned}$		ns
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay, CIN Input to Cout Output		$\begin{aligned} & 11 \\ & 15 \\ & \hline \end{aligned}$	$\begin{array}{r} 17 \\ 22 \\ \hline \end{array}$		ns
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay, Any A or B Input to COUT Output		$\begin{aligned} & \hline 11 \\ & 12 \\ & \hline \end{aligned}$	$\begin{aligned} & 17 \\ & 17 \\ & \hline \end{aligned}$		ns

AC WAVEFORMS

Figure 1

Figure 2

QUAD 2-INPUT EXCLUSIVE OR GATE

DESCRIPTION

The T74LS86 is a high speed QUAD 2-INPUT EXCLUSIVE OR GATE fabricated in LOW POWER SHOTTKY technology.

SCHEMATIC

PIN CONNECTION (top view)

DUAL IN LINE

CHIP CARRIER

NC = No Internal Connection

LOGIC DIAGRAM AND TRUTH TABLE

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{C C}$	Supply Voltage	-0.5 to 7	V
V_{1}	Input Voltage, Applied to Input	-0.5 to 15	V
V_{0}	Output Voltage, Applied to Output	-0 to 10	V
I_{1}	Input Current, into Inputs	-30 to 5	mA
I_{0}	Output Current, Into Outputs	60	mA

Stresses in excess of those listed under "Absolute Maximum Ratings" may cause permanent damage to the device This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended penods may affect device reliability

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage			Temperature
	Min.	Typ.	Max.	
T74LS86XX	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type.
dC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
V_{IH}	Input HIGH Voltage	2.0			Guaranteed In	ut HIGH Voltage	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	Guaranteed In	ut LOW Voltage	V
$V_{C D}$	Input Clamp Diode Voltage		-0.65	- 1.5	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{\text {IN }}$	$=-18 \mathrm{~mA}$	V
V_{OH}	Output HIGH Voltage	2.7	3.4		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \text { per Truth Table } \end{aligned}$		V
VoL	Output LOW Voltage		0.25	0.4	$\mathrm{loL}=4.0 \mathrm{~mA}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \text { per Truth Table } \end{aligned}$	V
			0.35	0.5	$\mathrm{loL}=8.0 \mathrm{~mA}$		V
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current			$\begin{aligned} & 40 \\ & 0.2 \end{aligned}$	$\begin{aligned} & V_{C C}=M A X, V \\ & V_{C C}=M A X, V \end{aligned}$	$\begin{aligned} & \mathrm{V}=2.7 \mathrm{~V} \\ & \mathrm{~V}=7.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$
IIL	Input LOW Current			-0.6	$V_{C C}=M A X, V$	$=0.4 \mathrm{~V}$	mA
los	Output Short Circuit Current (note 2)	-20		- 100	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}$	$=0 \mathrm{~V}$	mA
ICCH	Supply Current HIGH		6.0	10	$V_{C C}=M A X$		mA

Notes : 1 For conditions shown as MIN or MAX, use the appropriate value specified under guaranteed operatıng ranges.
2. Not more than one output should be shorted at a tıme.
$\left(^{*}\right)$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (for AC test circuits and waveforms see databook introduction)

Symbol	Parameter	Limits			Test Conditions	Unit
		Min.	Typ.	Max.		
$t_{\text {PLH }}$	Propagation Delay Other		12	23		ns
$t_{\text {PHL }}$	Input LOW		10	17	$\mathrm{VCC}=5.0 \mathrm{~V}$	ns
tPLH	Propagatıon Delay Other		10	30	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	ns
t $_{\text {PHL }}$	Input HIGH		13	22		ns

SGS-THOMSON WMCROELECTRONUCS

COUNTERS: LS90 DECADE LS92 DIVIDE BY TWELVE LS93 4-BIT BINARY

- LOW POWER CONSUMPTION TYPICALLY 45 mW
- HIGH COUNT RATES TYP 50 MHz
- CHOICE OF COUNTING MODES BCD, BI-QUINARY, DIVIDE-BY-TWELVE BINARY
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS
- FULLY TTL AND MOS COMPATIBLE

DESCRIPTION

The T74LS90 T74LS92 and T74LS93 are high speed 4-bit ripple type counters partitioned into two sections. Each counter has a divide-by-two section and either a divide-by-five (LS90), or divide-by-eight (LS93) section which are triggered by a HIGH-toLOW transition on the clock inputs. Each section can be used separately or tied together (Q to $\overline{\mathrm{CP}}$) to from BCD, bi-quinary, modulo-12, or modulo-16 counters. All of the counters have a 2 -input gated Master Reset (Clear), and the LS90 also has a 2input gated Master Set (Preset 9).

B1
(Plastic Package)

M1
(Micro Package)

D1
(Ceramic Package)

C1
(Plastic Chip Carrier)
ORDER CODES :

T74LSXX D1	T74LSXX C1
T74LSXX B1	T74LSXX M1

PIN NAMES

$\overline{\mathrm{CP}}_{0}$	Clock (Active LOW Going Edge) Input to +2 Section
$\overline{\mathrm{CP}}_{1}$	Clock (Active LOW Going Edge) Input to +5 Section (LS90), $\div 6$ Section (LS92)
$\overline{\mathrm{CP}}_{1}$	Clock (Active LOW Going Edge) Input to $\div 8$ Section (LS93)
$\mathrm{MR}_{1}, \mathrm{MR}_{2}$	Master Reset (Clear) Inputs
$\mathrm{MS}_{1}, \mathrm{MS}_{2}$	Master Set (Preset-9, LS90) Inputs
Q_{0}	Output from $\div 2$ Section
$\mathrm{Q}_{1}, \mathrm{Q}_{2}, \mathrm{Q}_{3}$	Outputs from $\div 6$ (LS90), $\div 6$ (LS92) $\div 8$ (LS93) Section

Note : The Q Outputs are guaranteed to drive the full fan out plus the CP_{1} input of the device.

PIN CONNECTION (top view)

LS90	LS92	LS93

CHIP CARRIER

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{c c}$	Supply Voltage	-0.5 to 7	V
V_{1}	Input Voltage, Applied to Input	-0.5 to 15	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage, Applied to Output	-0.5 to 10	V
I_{1}	Input Current, into Inputs	-30 to 5	mA
I_{O}	Output Current, Into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maximum Ratngs" may cause permanent damage to the device.
This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied Exposure to absolute maximum rating conditions for extended periods may affect device reliability

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage		Temperature	
	Min.	Typ.		
T74LS90/92/93XX	4.75 V	5.0 V	5.25 V	$0{ }^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type.

LOGIC DIAGRAM AND LOGIC SYMBOL

FUNCTIONAL DESCRIPTION

The LS90 LS92 and LS93 are 4-bit ripple type Decade, Divide-By-Twelve and Binary Counters respectively. Each device consists of four master/slave flip-flops which are internally connected to provide a divide-by-two section and a divide-by-five (LS90), divide by six (LS92) or divide-by-eigh (LS93) section. Each section has a separate clock input which initiates state change of the counter on the HIGH-to-LOW clock transition. State changes of the Q outputs do not occur simultaneously because of internal ripple delays. Therefore, decoded output signals are subject to decoding spikes and should not be used for clocks or strobes. The Q0 output of each device is designed and specified to drive the rated fan-out plus the CP_{1} input of the device.
A gated AND asynchronous Master Reset (MR1. $M R_{2}$) is provided on all counters which overrides and clocks and resets (clears) all the flip-flops. A gated AND asynchronous Master Set ($\mathrm{MS}_{1} \cdot \mathrm{MS}_{2}$) is provided on the LS90 which overrrides the clocks and the MR inputs and sets the outputs to nine (HLLH).
Since the output from the divide-by-two section is not internally connected to the succeeding stages, the devices may be operated in various counting modes.

LS90

A. BCD Decade (8421) Counter - The $\overline{\mathrm{CP}}_{1}$ input must be externally connected to the Q_{0} output. The CP_{0} input receives the incoming count and a BCD count sequence is produced.
B. Symmetrical Bi-quinary Divide-By-Ten counter. The Q_{3} output must be externally connected to the $\overline{\mathrm{CP}}{ }_{0}$ input. The input count is then applied to the CP_{1} input and a divide-
by-ten square wave is obtained at outpt Q_{0}.
C. Divide-By-Two and Divide-By-Five counter No external interconections are required. The first flip-flop is used as a binary element for the divide-by-two (CP_{0} as the input and Q_{0} as the output). The CP_{1} input is used to obtain binary divide-by-five operation at the Q3 output.

LS92

A. Modulo12, Divide By Twelve Counter - The CP_{1} input must be externally connected to the Q_{0} output. The $\overline{C P}_{0}$ input receivers the incoming count and Q_{3} produces a symmetrical divide by twelve square wave output.
B. Divide By Two and Divide By Six Counter External interconnections are required. The first flip-flop is used as a binary element for the divide by two function. The CP_{1} input is used to obtain divide by three operation at the Q_{1} and Q_{2} outputs and divide by six at the Q_{3} output.
LS93
A. 4-bit Ripple Counter - The output Q_{0} must be externally connected to input CP_{1}. The input count pulses are applied to input CPo. Simultaneous divisions of $2,4,8$, and 16 are performed at the Q_{0}, Q_{1}, Q_{2} and Q_{3} outputs as shown in the truth table.
B. 3-Bit Ripple Counter - the input count pulses are applied to input $\overline{\mathrm{CP}}_{1}$. Simultaneous frequency divisions fo 2,4 , and 8 are available at the $\mathrm{Q}_{1}, \mathrm{Q}_{2}$ and Q_{3} outputs. Independent use of the first flip-flop is available if the reset function coincides with reset of the 3 bit ripple through counter.

MODE SELECTION LS90

RESET/SET INPUTS				OUTPUTS			
M \mathbf{R}_{1}	M \mathbf{R}_{2}	MR ${ }_{1}$	MR ${ }_{2}$	Q_{0}	Q_{1}	\mathbf{Q}_{2}	\mathbf{Q}_{3}
H	H	L	X	L	L	L	L
H	H	X	L	L	L	L	L
X	X	H	H	H	L	L	H
L	X	L	X				
x	L	x	1				
L	X	X	L				
X	L	L	X				

$\mathrm{H}=$ HIGH Voltage Level
$\mathrm{L}=$ LOW Vottage Level
$X=$ Don't Care.

BCD COUNT SEQUENCE LS90

COUNT	OUTPUT			
	$\mathbf{Q}_{\mathbf{0}}$	$\mathbf{Q}_{\mathbf{1}}$	$\mathbf{Q}_{\mathbf{2}}$	$\mathbf{Q}_{\mathbf{3}}$
0	L	L	L	L
1	H	L	L	L
2	L	H	L	L
3	H	H	L	L
4	L	L	H	L
5	H	L	H	L
6	L	H	H	L
7	H	H	H	L
8	L	L	L	H
9	H	L	L	H

Note : Output Q_{0} connected to input $\overline{C P}$, for BCD count.

MODE SELECTION LS92 AND LS93

RESET/NPUTS		OUTPUT			
MR ${ }_{1}$	$\mathbf{M R}_{2}$	\mathbf{Q}_{0}	a_{1}	Q_{2}	\mathbf{Q}_{3}
H	H	L	L	L	L
L	H				
H	L				
L	L				

TRUTH TABLE LS92

COUNT	OUTPUT			
	$\mathbf{Q}_{\mathbf{0}}$	\mathbf{Q}_{1}	$\mathbf{Q}_{\mathbf{2}}$	$\mathbf{Q}_{\mathbf{3}}$
0	L	L	L	L
1	H	L	L	L
2	L	H	L	L
3	H	H	L	L
4	L	L	H	L
5	H	L	H	L
6	L	H	H	L
7	H	H	H	L
8	L	L	L	H
9	H	L	L	H
10	L	H	L	H
11	H	H	L	H

Note : Output Q_{0} connected to input $\overline{P_{P}}$,

TRUTH TABLE LS93

COUNT	OUTPUT			
	$\mathbf{Q}_{\mathbf{0}}$	\mathbf{Q}_{1}	$\mathbf{Q}_{\mathbf{2}}$	$\mathbf{Q}_{\mathbf{3}}$
0	L	L	L	L
1	H	L	L	L
2	L	H	L	L
3	H	H	L	L
4	L	L	H	L
5	H	L	H	L
6	L	H	H	L
7	H	H	H	L
8	L	L	L	H
9	H	L	L	H
10	L	H	L	H
11	H	H	L	H
12	L	L	H	H
13	H	L	H	H
14	L	H	H	H
15	H	H	H	H

Note : Output Q_{0} connected to input $\overline{\mathrm{CP}}_{1}$

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
V_{IH}	Input HIGH Voltage	2.0			Guaranteed Input HIGH Threshold Voltage for All Input		V
VIL	Input LOW Voltage			0.8	Guaranteed Input LOW Threshold Voltage for All Input		V
$V_{C D}$	Input Clamp Diode Voltage		-0.65	-1.5	$\mathrm{V}_{C C}=\mathrm{MIN}, \mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$		V
V_{OH}	Output HIGH Voltage	2.7	3.4		$\begin{aligned} & V_{C C}=M I N, I_{O H}=-400 \mu \mathrm{~A} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \text { per Truth Table } \end{aligned}$		V
Vol	Output LOW Voltage		0.25	0.4	$\mathrm{loL}=40 \mathrm{~mA}$	$\begin{aligned} & V_{c c}=M I N, \\ & V_{I N}=V_{I H} \text { or } V_{I L} \\ & \text { per Truth Table } \end{aligned}$	V
			0.35	0.5	$\mathrm{loL}=8.0 \mathrm{~mA}$		V
IIH	Input HIGH Current MS, MR CP_{0} CP_{1} (LS93) CP_{1} (LS90, LS92)			$\begin{gathered} 2.0 \\ 120 \\ 40 \\ 80 \\ \hline \end{gathered}$	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$		$\mu \mathrm{A}$
	MS, MR			0.1	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$		mA
	$\begin{aligned} & \overline{\mathrm{CP}}_{0}, \overline{\mathrm{CP}}_{1} \text { (LS93) } \\ & \overline{\mathrm{CP}}_{1} \text { (LS90, LS92) } \end{aligned}$			$\begin{aligned} & 0.4 \\ & 0.8 \\ & \hline \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$		mA
IIL	Input LOW Current MS, MR CP0 CP1 (LS93) $\overline{\mathrm{CP}}_{1} \text { (LS90, LS92) }$			$\begin{array}{r} -0.4 \\ -2.4 \\ -1.6 \\ -3.2 \\ \hline \end{array}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$		mA
los	Output Short Circuit Current (note 2)	- 20		- 100	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0 \mathrm{~V}$		mA
Icc	Power Supply Current		9	15	$V_{C C}=\mathrm{MAX}$		mA

Notes : 1 Conditions for testıng, not shown in the Table, are chosen to guarantee operation under "worst case" conditions.
2 Not more than one output should be shorted at a time
(*) Typical values are at $\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
AC SET-UP REQUIREMENTS: $\mathrm{T}_{\mathrm{A}}=25{ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

Symbol	Parameter	Limits						Note	Units
		LS90		LS92		LS93			
		Min.	Max.	Min.	Max.	Min.	Max.		
tw	$\overline{\mathrm{CP}}_{0}$ Pulse Width	15		15		15		Fig. 1	
tw	CP1 Pulse Width	30		30		30		Fig. 1	
tw	MR Pulse Width	30		30		30		Fig. 2	ns
tw	MS Pulse Width	30						Fig. 2, 3	
$t_{\text {rec }}$	Recovery Time MR to $\overline{\mathrm{CP}}$	25		25		25		Fig. 2	
$t_{\text {rec }}$	Recovery Time MS to $\overline{\mathrm{CP}}$	25						Fig. 2, 3	

RECOVERY TIME (trec) - is defined as the minimum time required between the end of the reset pulse and the clock transition from HIGH to LOW in order to recognize and transfer HIGH data to Q output

AC CHARACTERISTICS $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$

Symbol	Parameter	Limits						Note	Unit
		LS90		LS92		LS93			
		Min.	Max.	Min.	Max.	Min.	Max.		
$\mathrm{f}_{\text {max }}$	$\overline{\mathrm{CP}}_{0}$ Input Count Frequency	32		32		32		Fig. 1	MHz
$\mathrm{f}_{\text {MAX }}$	$\overline{\mathrm{CP}}_{1}$ Input Count Frequency	16		16		16		Fig. 1	MHz
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay, $\overline{\mathrm{CP}}_{0}$ Input to Q_{0} Output		$\begin{aligned} & 16 \\ & 18 \end{aligned}$		$\begin{aligned} & 16 \\ & 18 \end{aligned}$		$\begin{aligned} & 16 \\ & 18 \end{aligned}$	Fig. 1	ns
$\begin{aligned} & \hline t_{\text {PLH }} \\ & t_{\text {PHLL }} \end{aligned}$	Propagation Delay, $\overline{\mathrm{CP}}_{1}$ Input to Q_{1} Output		$\begin{aligned} & 16 \\ & 21 \end{aligned}$		$\begin{aligned} & \hline 16 \\ & 21 \\ & \hline \end{aligned}$		$\begin{aligned} & 16 \\ & 21 \end{aligned}$	Fig. 1	ns
$\begin{aligned} & \hline t_{\text {PLH }} \\ & t_{\text {PHLL }} \\ & \hline \end{aligned}$	Propagation Delay, $\overline{\mathrm{CP}}_{1}$ Input to Q_{2} Output		$\begin{aligned} & 32 \\ & 35 \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 16 \\ & 21 \\ & \hline \end{aligned}$		$\begin{aligned} & 32 \\ & 35 \\ & \hline \end{aligned}$	Fig. 1	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay, $\overline{\mathrm{CP}}_{1}$ Input to Q_{3} Output		$\begin{aligned} & 32 \\ & 35 \\ & \hline \end{aligned}$		$\begin{aligned} & 32 \\ & 35 \end{aligned}$		$\begin{aligned} & \hline 51 \\ & 51 \\ & \hline \end{aligned}$	Fig. 1	ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay, $\overline{\mathrm{CP}}_{0}$ Input to Q_{3} Output		$\begin{aligned} & 48 \\ & 50 \end{aligned}$		$\begin{aligned} & 48 \\ & 50 \end{aligned}$		$\begin{aligned} & 70 \\ & 70 \end{aligned}$	Fig. 1	ns
$\mathrm{t}_{\text {PHL }}$	MS Input to Q_{0} and Q_{3} Outputs		30					Fig. 3	ns
$\mathrm{t}_{\text {PHL }}$	MS Input to Q_{1} and Q_{2} Outputs		40					Fig. 2	ns
tPHL	MR Input to any Output		40		40		40	Fig. 2	ns

Figure1.

[^5]Figure 2.

Figure 3.

8-BIT SHIFT REGISTER

DESCRIPTION

The T74LS91 is an 8 Bit Serial-In/Serial-Out Shift Register. This device is composed of eight RS master slave flip-flops, input gating and a clock driver. Single-rail data and input control are gated through inputs A, B and an internal inverter, in order to form the complementary inputs to the first bit of the shift register. Drive for internal common clock line is obtained by means of an inverter. The clock signal inverter driver causes this circuitry to shift information one-bit on the positive edge of the input clock pulse.

TRUTH TABLE

INPUTS AT $\mathbf{t}_{\mathbf{n}}$		OUTPUTS AT $\mathbf{t}_{\mathbf{n}+\mathbf{8}}$	
\mathbf{A}	\mathbf{B}	$\mathbf{O}_{\mathbf{H}}$	$\overline{\mathbf{O}}_{\mathbf{H}}$
H	H	H	L
L	X	L	H
X	L	L	H

H = HIGH, L = LOW, X = Don't Care
$\mathrm{t}_{\mathrm{n}}=$ Reference bit time
$\mathrm{t}_{n+8}=$ Bit tme after LOW to High Clock Transition

B1
(Plastic Package)

M1
(Micro Package)

D1
(Ceramic Package)

ORDER CODES :
T74LS91 D1
T74LS91 C1
T74LS91 B1
T74LS91 M1

PIN CONNECTION (top view)

FUNCTIONAL BLOCK DIAGRAM

$V_{c c}=\operatorname{Pin} 16$
GND $=\operatorname{Pin} 8$
() = Pin numbers

ABSOLUTE MAXIMUM RATING

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	-0.5 to 7	V
V_{1}	Input Voltage, Applied to Input	-0.5 to 15	V
$\mathrm{~V}_{\mathrm{o}}$	Output Voltage, Applied to Output	-0.5 to 10	V
I_{I}	Input Current, Into Inputs	-30 to 5	mA
l_{0}	Output Current, Into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress ratng only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specrication is not implied. Exposure to absolute maxımum rating conditions for extended periods may affect device reliability.

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage		Temperature	
	Min.	Typ.		
T74LS91XX	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
V_{H}	Input HIGH Voltage	2.0			Guaranteed Input HIGH Voltage for All Input		V
VIL	Input LOW Voltage			0.8	Guaranteed Input LOW Voltage for All Input		V
$\mathrm{V}_{C D}$	Input Clamp Diode Voltage		-0.65	-1.5	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$		V
$\mathrm{V}_{\text {OH }}$	Output HIGH Voltage	2.7	3.5		$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=\mathrm{MIN}, \mathrm{IoH}=-400 \mu \mathrm{~A} \\ & \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \text { per Truth Table } \end{aligned}$		V
V OL	Output LOW Voltage		0.25	0.4	$\mathrm{loL}=4.0 \mathrm{~mA}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \text { per Truth Table } \\ & \hline \end{aligned}$	v
			0.35	0.5	$\mathrm{loL}=8.0 \mathrm{~mA}$		V
$1{ }_{1}$	Input HIGH Current			$\begin{aligned} & 20 \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & V_{C C}=M A X, V_{I N}=2.7 \mathrm{~V} \\ & V_{C C}=M A X, V_{I N}=7.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$
ILI	Input LOW Current			-0.4	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$		mA
los	Output Short Circuit Current (note 2)	-20		- 100	$\mathrm{V}_{\text {cc }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		mA
Icc	Power Supply Current			20	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$		mA

Notes : 1. Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions
2. Not more than one output should be shorted at a time.
(*) Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Test Conditions	Units
		Min.	Typ.	Max.		
$f_{\text {max }}$	Maximum Clock Frequency	10	18		$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & C_{L}=15 \mathrm{pF} \end{aligned}$	MHz
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay		$\begin{aligned} & 24 \\ & 27 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$		ns

AC SET-UP REQUIREMENTS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Test Conditions	Units
		Min.	Typ.	Max.		
tw	Clear Pulse Width	25			$\mathrm{Vcc}=5.0 \mathrm{~V}$	ns
t_{s}	Set-Up Time	25				ns
th	Hold Time	0				ns

4-BIT SHIFT REGISTER

- SYNCHRONOUS, EXPANDABLE SHIFT RIGHT
- SYNCHRONOUS, SHIFT LEFT CAPABILITY
- SYNCHRONOUS, PARALLEL LOAD
- SEPARATE SHIFT AND LOAD CLOCK INPUTS
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS
- FULLY TTL AND CMOS COMPATIBLE

DESCRIPTION

The T74LS95B is a 4-Bit Shift Register with serial and parallel synchronous operating modes. The serial shift right and parallel load are activated by separate clock inputs which are selected by a mode control input. The data is transferred from the serial or parallel D inputs to the Q outputs synchronous with the HIGH to LOW transition of the appropriate clock input.

PIN NAMES

S	MODE CONTROL INPUT
D_{s}	SERIAL DATA INPUT
$\mathrm{P}_{0}-\mathrm{P}_{3}$	PARALLEL DATA INPUTS
CP_{1}	SERIAL CLOCK (active LOW
$\overline{\mathrm{CP}}_{2}$	going edge) INPUT
	PARALLEL CLOCK (active $\mathrm{Q}_{0}-\mathrm{Q}_{3}$

The LS95B is fabricated with the Schottky barrier diode process for high speed and is completely compatible with all TTL families.

PIN CONNECTION (top view)

LOGIC DIAGRAM AND LOGIC SYMBOL

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{C C}$	Supply Voltage	-0.5 to 7	V
V_{1}	Input Voltage, Applied to Input	-0.5 to 15	V
V_{0}	Output Voltage, Applied to Output	-0.5 to 10	V
I_{1}	Input Current, Into Inputs	-30 to 5	mA
I_{0}	Output Current, into Outputs	60	mA

Stresses in excess of those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specrication is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage		Temperature	
	Min.	Typ.		
T74LS95BXX	4.75 V	5.0 V	5.25 V	$0{ }^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type

TRUTH TABLE

OperatingMode	Inputs					Outputs			
	S	$\overline{\mathbf{C P}}_{1}$	$\overline{\mathbf{C P}}_{2}$	D_{s}	P_{n}	\mathbf{Q}_{0}	Q_{1}	\mathbf{Q}_{2}	\mathbf{Q}_{3}
Shift	L	乙	X	1	X	L	90	q_{1}	q_{2}
	L	乙	x	h	X	H	q_{0}	q_{1}	q_{2}
Parallel Load	H	x	乙	X	p_{n}	p_{0}	p_{1}	p_{2}	p_{3}
Mode Change	乙	L	L	x	x	No Change No Change No Change Undetermined Undetermined No Change Undetermined No Change			
	」	L	L	X	X				
	乙	H	L	X	X				
	」	H	L	X	x				
	乙	L	H	X	X				
	」	L	H	X	X				
	L	H	H	X	X				
	\checkmark	H	H	X	X				

L＝LOW Voltage Level
H＝HIGH Voltage Level
X＝Don＇t Care
I＝LOW Voltage Level one set－up time pror to the High to LOW clock transition．
$h=$ HIGH Voltage Level one set－up time pror to the HIGH to LOW clock transtion．
$\mathrm{Pn}=$ Lower case letters indicate the state of the referenced input（or output）one set－up time pnor to the HIGH to LOW clock Transition．

FUNCTIONAL DESCRIPTION

The LS95B is a 4－Bit Shift Register with serial and parallel synchronous operating modes．It has a Serial（ Ds_{5} ）and four Parallel（ $\mathrm{P}_{0}-\mathrm{P}_{3}$ ）Data inputs and four Parallel Data outputs（ $\mathrm{Q}_{0}-\mathrm{Q}_{3}$ ）．The serial or parallel mode of operation is controlled by a Mode Control input（S）and two Clock inputs（ $\overline{\mathrm{CP}} 1$ ）and （ $\overline{\mathrm{CP}}_{2}$ ）．The serial（right－shift）or parallel data trans－ fers occur synchronous with the HIGH to LOW tran－ sition of the selected clock input．
When the Mode Control input（S）is HIGH，$\overline{\mathrm{CP}}_{2}$ is enabled．A HIGH to LOW transition on enabled $\overline{\mathrm{CP}} 2$ transfers parallel data from the $\mathrm{P}_{0}-\mathrm{P}_{3}$ inputs to the $\mathrm{Q}_{0}-\mathrm{Q}_{3}$ outputs．
When the Mode Control input（S）is LOW，$\overline{\mathrm{CP}}_{1}$ is enable．A HIGH to LOW transition on enabled $\overline{\mathrm{CP}}{ }_{1}$
transfers the data from serial input（Ds）to Q_{0} and shifts the data in Q_{0} to Q_{1}, Q_{1} to Q_{2} ，and Q_{2} to Q_{3} respectively（right－shift）．A left－shift is accomplished by externally connecting Q_{3} to P_{2}, Q_{2} to P_{1} ，and Q_{1} to P_{0} ，and operating the LS95B in the parallel mode （ $\mathrm{S}=\mathrm{HIGH}$ ）．
For normal operation，S should only change states when both Clock inputs are LOW．However，chang－ ing S from LOW to HIGH while $\overline{\mathrm{CP}}_{2}$ is HIGH，or changing S from HIGH to LOW while $\overline{C P}_{1}$ is HIGH and $\overline{C P}_{2}$ is LOW will not cause any changes on the register outputs．

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
V_{IH}	Input HIGH Voltage	2.0			Guaranteed Input HIGH Voltage		V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	Guaranteed Input LOW Voltage		V
$V_{C D}$	Input Clamp Diode Voltage		-0.65	-1.5	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{l} \mathrm{IIN}=-18 \mathrm{~mA}$		V
V_{OH}	Output HIGH Voltage	2.7	3.4		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { MIN, } \mathrm{IOH}=-400 \mu \mathrm{~A} \\ & \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {IH }} \text { or } \mathrm{V}_{\text {IL }} \text { per Truth Table } \end{aligned}$		V
VoL	Output LOW Voltage		0.25	0.4	$\mathrm{loL}=4.0 \mathrm{~mA}$	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \text { per Truth Table } \end{aligned}$	V
			0.35	0.5	$\mathrm{loL}=8.0 \mathrm{~mA}$		\checkmark
$1_{1 H}$	Input HIGH Current $\mathrm{D}_{\mathrm{S}}, \mathrm{P}_{0}, \mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}, \overline{\mathrm{CP}}_{1}, \overline{\mathrm{CP}}_{2},$ s			$\begin{aligned} & 20 \\ & 40 \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathbb{N}}=2.7 \mathrm{~V}$		$\mu \mathrm{A}$
	$\begin{aligned} & \mathrm{D}_{\mathrm{s}}, \mathrm{P}_{\mathrm{o}}, \mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}, \overline{\mathrm{CP}}_{1}, \overline{\mathrm{CP}}_{2}, \\ & \mathrm{~S} \end{aligned}$			$\begin{aligned} & 0.1 \\ & 0.2 \\ & \hline \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=70 \mathrm{~V}$		mA
11.	Input LOW Current Ds, $\mathrm{P}_{0}, \mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}, \overline{\mathrm{CP}}_{1}, \overline{\mathrm{CP}}_{2}$, S			-0.4	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$		mA
los	Output Short Circuit Current (note 2)	-20		- 100	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		mA
Icc	Power Supply Current		13	21	$V_{C C}=M A X$		mA

Notes : 1. For conditions shown as MIN or MAX, use the appropriate value specified under guaranteed operating ranges 2. Not more than one output should be shorted at a tıme.
(*) Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

AC SET-UP REQUIREMENTS : $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Tests Conditions		Unit
		Min.	Typ.	Max.			
$\mathrm{tw}_{\text {W }}(\mathrm{CP})$	Clock Pulse Width	25			Fig. 1	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$	ns
t_{s} (data)	Set-up Time, Data to Clock	20			Fig. 1		ns
t_{h} (data)	Hold Time, Data to Clock	20					ns
$\mathrm{t}_{\text {sL }}$	Set-up Time LOW Mode Control to Clock	20			Fig. 1		ns
$t_{\text {LL }}$	Hold Time, LOW Mode Control to Clock	0					ns
$\mathrm{t}_{\text {sH }}$	Set-up Time, HIGH Mode Control to Clock	20			Fig. 1		ns
$t_{\text {nH }}$	Hold Time, HOGH Mode Control to Clock	0					ns

SET-UP TIME (t_{s}) - is defined as the minimum time required for the correct logic level to be present at the logic input prior to the clock transition from HIGH to LOW in order to be recognized and transfered to the output.
HOLD TIME (t_{n}) - is defined as the mınimum time followng the clock transition from HIGH to LOW that the logic level must be mantained at the input in order to ensure continued recognitıon A negative HOLD TIME indıcates that the correct logic level may be relased prior to the clock transition from HIGH to LOW and still be recognized

AC CHARACTERISTICS : $\left(T_{A}=25^{\circ} \mathrm{C}\right)$

Symbol	Parameter	Limits			Tests Conditions		Unit
		Min.	Typ.	Max.			
$\mathrm{f}_{\text {max }}$	Shift Frequency	25	36		Fig. 1	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$	MHz
$\begin{aligned} & \hline t_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \end{aligned}$	Propagation Delay, Clock to Output		$\begin{aligned} & 18 \\ & 21 \end{aligned}$	$\begin{aligned} & 27 \\ & 32 \end{aligned}$	Fig. 2		ns

AC WAVEFORMS

Figure 1.

The shaded areas indicate when the input is permitted to change for predictable output performance

*The Data Input is (D_{s} for $\overline{\mathrm{CP}}_{1}$) or (P_{n} for $\overline{\mathrm{CP}}_{2}$)
Figure 2.
The shaded areas indicate when the input is permitted to change for predictable output performance

* The Data Input is (D_{s} for $\overline{\mathrm{CP}}_{1}$) or (P_{n} for $\overline{\mathrm{CP}}_{2}$)

DUAL JK POSITIVE EDGE-TRIGGERED FLIP-FLOP

DESCRIPTION

The T74LS109A consist of two high speed completely independent transition clocked JK flip-flops. The clocking operation is independent of rise and fall times of the clock waveform. The $\sqrt{\bar{K}}$ design allows operation as a D flip-flop by simply connecting the J and K pins together.

PIN CONNECTION (top view)

LOGIC SYMBOL

LOGIC DIAGRAM AND TRUTH TABLE

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{C C}$	Supply Voltage	-0.5 to 7	V
V_{1}	Input Voltage, Applied to Input	-0.5 to 15	V
V_{0}	Output Voltage, Applied to Output	-0.5 to 10	V
I_{1}	Input Current, into Inputs	-30 to 5	mA
I_{O}	Output Current, Into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maxımum Ratıngs" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied Exposure to absolute maxımum rating conditions for extended periods may affect device reliability

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage			Temperature
	Min.	Typ.	Max.	
T74LS109AXX	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter		Limits			Test Condition (note 1)		Unit
			Min.	Typ. (*)	Max.			
V_{IH}	Input HIGH Voltage		2.0			Guaranteed In	ut HIGH Voltage	V
V_{IL}	Input LOW Voltage				0.8	Guaranteed In	ut LOW Voltage	V
$V_{C D}$	Input Clamp Diode Voltage			-0.65	-1.5	$\mathrm{V}_{C C}=\mathrm{MIN}, \mathrm{IIN}$	- 18 mA	V
V OH	Output HIGH Voltage		2.7	3.4		$\begin{aligned} & V_{C C}=M I N, I O \\ & V_{I N}=V_{I H} \text { or } V \end{aligned}$	$\begin{aligned} & =-400 \mu \mathrm{~A} \\ & \text { per Truth Table } \end{aligned}$	V
VoL	Output LOW Voltage			0.25	0.4	$\mathrm{loL}=4.0 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{cc}}=\mathrm{MIN}$	V
				0.35	0.5	$\mathrm{loL}=8.0 \mathrm{~mA}$	per Truth Table	V
${ }_{1 / 4}$	Input HIGH Current	J, K, Clock Set, Clear			$\begin{aligned} & 20 \\ & 40 \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$		$\mu \mathrm{A}$
		J, K, Clock Set, Clear			$\begin{aligned} & 0.1 \\ & 0.2 \\ & \hline \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{I}}=7.0 \mathrm{~V}$		mA
IIL	Input LOW Current	J, K, Clock Set, Clear			$\begin{array}{r} -0.4 \\ -0.8 \\ \hline \end{array}$	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}$	$=0.4 \mathrm{~V}$	mA
los	Output Short Circuit Current (note 2)		- 20		- 100	$V_{C C}=\mathrm{MAX}$		mA
Icc	Power Supply Current				8.0	$V_{C C}=$ MAX		mA

Notes: 1. For conditions shown as MIN or MAX, use the appropriate value specified under guaranteed operating ranges. 2. Not more than one output should be shorted at a time.
(*) Typical values are at $\mathrm{V}_{\mathrm{cc}}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

AC CHARACTERISTICS : $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Test Conditions	Unit
		Min.	Typ.	Max.		
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency	25	33		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$	MHz
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Clock, Clear Set to Output		$\begin{aligned} & 13 \\ & 25 \end{aligned}$	$\begin{aligned} & 25 \\ & 40 \end{aligned}$		ns

AC SET-UP REQUIREMENTS : $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter		Timits			Test Conditions	Unit
				Min.	Typ.		

AC WAVEFORMS

Figure 1 :Clock to Output Delays, Data Set-up and Hold Times, Clock Pulse Width.

- The shaded areas indicate when the input is permitted to change for predictable output performance.

Figure 2 :Set and Clear to Output Delays, Set and Clear Pulse Widths.

Figure 3 :Clock to Output Delays, Data Set-up and Hold Times, Clock Pulse Width.

* The shaded areas indicate when the input is permitted to change for predictable output performance.

DUAL JK NEGATIVE EDGE-TRIGGERED FLIP-FLOP

DESCRIPTION

The T74LS112A is a dual JK flip-flop featuring individual J, K, clock, and asynchronous set and clear inputs to each flip-flop. When the clock goes HIGH, the inputs are enabled and data will be accepted. The logic level of the J and K may be allowed to change when the clock pulse is HIGH and the bistable will perform according to the truth table as long as minimum set-up and hold time are observed. Input data is transferred to the outputs on the nega-tive-going clock pulse edge.

PIN CONNECTION (top view)

DUAL IN LINE

CHIP CARRIER

NC = No Intemal Connection

LOGIC SYMBOL

LOGIC DIAGRAM AND TRUTH TABLE

Operating Mode	Inputs				Outputs	
	$\bar{S}_{\text {D }}$	$\bar{C}_{\text {d }}$	J	K	Q	$\overline{\mathbf{Q}}$
Set	L	H	X	X	H	L
Reset (clear)	H	L	X	X	L	H
* Undetermined	L	L	X	X	H	H
Toggle	H	H	h	h	\bar{q}	q
Load "0" (reset)	H	H	1	h	L	H
Load "1" (set)	H	H	h	1	H	$\underline{\text { L }}$
Hold	H	H	1	1	q	\underline{q}

* Both outputs will be HIGH while both $\overline{\mathrm{S}}_{\mathrm{D}}$ and $\overline{\mathrm{C}}_{\mathrm{D}}$ are LOW, but the output states are unpredictable if \bar{S}_{0} and $\overline{\mathrm{C}}_{0}$ go HIGH simultaneously.
The output levels in this configuration are not guaranteed to meet the minımum levels for V_{OH} if the lows at Preset and Clear are near V_{IL} maximum. Furthermore, this configuration is nonstable ; that is, it will not persist when either Preset or Clear returns to its inactive (high) level
H,h = HIGH Voltage Level
L,I = LOW Voltage Level
$\mathrm{X}=$ Don't Care
$\mathrm{I}, \mathrm{h},(\mathrm{q})=$ Lower case letters indicate the state of the referenced input (or output) one set-up time prior to the LOW to HIGH clock transition.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{C C}$	Supply Voltage	-0.5 to 7	V
V_{1}	Input Voltage, Applied to Input	-0.5 to 15	V
$\mathrm{~V}_{0}$	Output Voltage, Applied to Output	-0.5 to 10	V
I_{1}	Input Current, into Inputs	-30 to 5	mA
I_{O}	Output Current, into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maxımum Ratıngs" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specrication is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage			Temperature
	Min.	Typ.	Max.	
T74LS112AXX	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter		Limits			Test Condition (note 1)		Unit
			Min.	Typ. (*)	Max.			
V_{IH}	Input HIGH Voltage		2.0			Guaranteed Inp for all Inputs	ut HIGH Voltage	V
VIL	Input LOW Voltage				0.8	Guaranteed In for all Inputs	ut LOW Voltage	V
$V_{C D}$	Input Clamp Diode Voltage			-0.65	-1.5	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}$	-18 mA	V
V OH	Output HIGH Voltage		2.7	3.4		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \text { per Truth Table } \end{aligned}$		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage			0.25	0.4	$\mathrm{loL}=4.0 \mathrm{~mA}$	$\begin{aligned} & V_{C C}=M I N \\ & V_{I N}=V_{I L} \text { or } V_{I H} \\ & \text { per Truth Table } \end{aligned}$	V
				0.35	0.5	$\mathrm{loL}=8.0 \mathrm{~mA}$		V
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current	J, K Set, Clear Clock			$\begin{aligned} & 20 \\ & 60 \\ & 80 \\ & \hline \end{aligned}$	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$		$\mu \mathrm{A}$
		J, K Set, Clear Clock			$\begin{aligned} & 0.1 \\ & 0.3 \\ & 0.4 \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$		mA
IIL	Input LOW Current	J, K Set, Clear Clock			$\begin{array}{r} -0.4 \\ -0.8 \\ -0.8 \\ \hline \end{array}$	$\mathrm{V}_{\mathrm{Cc}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$		mA
los	Output Short Circuit Current (note 2)		-20		- 100	$\mathrm{V}_{C C}=\mathrm{MAX}$		mA
Icc	Power Supply Current				8.0	$V_{C C}=M A X$		mA

Notes : 1. For conditions shown as MIN or MAX, use the appropriate value specified under guaranteed operatıng ranges.
2. Not more than one output should be shorted at a tıme.

AC CHARACTERISTICS : $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Test Conditions	Unit
		Min.	Typ.	Max.		
$f_{\text {MAX }}$	Maximum Clock Frequency	30	45		$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & C_{L}=15 \mathrm{pF} \end{aligned}$	MHz
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Clock, Clear Set to Output		$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$		ns

AC SET-UP REQUIREMENTS : $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Test Conditions	Unit
		Min.	Typ.	Max.		
t_{w}	Clock, Set Pulse Width	20			$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$	ns
$t_{\text {w }}$	Clear, Set Pulse Width	25				ns
t_{s}	Set-up Time	20				ns
$t_{\text {h }}$	Hold Time	0				ns

AC WAVEFORMS

Figure 1 :Clock to Output Delays, Data Set-up and Hold Times, Clock Pulse Width.

* The shaded areas indicate when the input is permitted to change for predictable output performance.

Figure 2 :Set and Clear to Output Delays, Set and Clear Pulse Widths.

Figure 3 :Clock to Output Delays, Data Set-up and Hold Times, Clock Pulse Width.

DUAL JK NEGATIVE EDGE-TRIGGERED FLIP-FLOP

DESCRIPTION

The T74LS113A offers individual J, K, set and clock inputs. These monolithic dual flip-flops are designed so that when the clock goes HIGH, the inputs are enabled and data will be accepted. The logic level of the J and K may be allowed to change when the clock pulse is HIGH and the bistable will perform according to the truth table as long as minimum set-up times are observed. Input data is transferred to the outputs on the negative-going edge of the clock pulse.

B1
(Plastıc Package)

M1
(Micro Package)

D1
(Ceramic Package)

C1
(Plastic Chip Carrier)

ORDER CODES :

T74LS113A D1 T74LS113A C1 T74LS113A B1 T74LS113A M1

PIN CONNECTION (top view)

DUAL IN LINE

CHIP CARRIER

NC = No Internal Connection

LOGIC SYMBOL

LOGIC DIAGRAM AND TRUTH TABLE

Operating Mode	Inputs			Outputs		$\begin{aligned} & \mathrm{H}, \mathrm{~h} \\ & \mathrm{~L}, \mathrm{I} \\ & \mathrm{X} \\ & \mathrm{I}, \mathrm{~h},(\mathrm{q}) \end{aligned}$	= HIGH Voltage Level
	$\bar{S}_{\text {d }}$	J	K	Q	$\overline{\mathbf{Q}}$		
Set	L	X	X	H	L		
Toggle	H	h	h	\bar{q}	q		= LOW Voltage Level
Load "0" (reset)	H	1	h	L	H		= Don't Care
Load "1" (set)	H H	h	1	H	$\frac{L}{q}$		$=$ Lower case letters indicate the state of the referenced input (or output) one set-up time pror to the
Hold	H	1	I	9	q		HIGH-to-LOW clock transition.

$V_{c c}=\operatorname{PIn} 14$
GND $=$ Pin 7

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{c c}$	Supply Voltage	-0.5 to 7	V
V_{1}	Input Voltage. Applied to Input	-0.5 to 15	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage, Applied to Output	-0.5 to 10	V
I_{1}	Input Current, into Inputs	-30 to 5	mA
I_{O}	Output Current, Into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended penods may affect device reliability.

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage		$* * * * ~ T e m p e r a t u r e ~$	
	Min.	Typ.		
T74LS113AXX	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter		Limits			Test Condition (note 1)		Unit
			Min.	Typ. (*)	Max.			
V_{IH}	Input HIGH Voltage		2.0			Guaranteed In for all Inputs	ut HIGH Voltage	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	Guaranteed In for all Inputs	ut LOW Voltage	V
$V_{C D}$	Input Clamp Diode Voltage			-0.65	- 1.5	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IIN}$	$=-18 \mathrm{~mA}$	V
V OH	Output HIGH Voltage		2.7	3.4		$\begin{aligned} & V_{C C}=M I N, I \\ & V_{I N}=V_{I H} \text { or } \end{aligned}$	$\begin{aligned} & =-400 \mu \mathrm{~A} \\ & \text { per Truth Table } \end{aligned}$	V
Vol	Output LOW Voltage			0.25	0.4	$\mathrm{loL}^{2}=4.0 \mathrm{~mA}$	$V_{C C}=\mathrm{MIN}$	V
				0.35	0.5	$\mathrm{loL}=8.0 \mathrm{~mA}$	per Truth Table	V
$\mathrm{IIH}^{\text {H}}$	Input HIGH Current	J, K Set Clock			$\begin{array}{r} 20 \\ 60 \\ 80 \\ \hline \end{array}$	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$		$\mu \mathrm{A}$
		J, K Set Clock			$\begin{aligned} & 0.1 \\ & 0.3 \\ & 0.4 \end{aligned}$	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$		mA
IIL	Input LOW Current	$\begin{aligned} & \text { J, K } \\ & \text { Set.Clock } \end{aligned}$			$\begin{array}{r} -0.4 \\ -0.8 \\ \hline \end{array}$	$\mathrm{V}_{C C}=\mathrm{MAX}$,	$=0.4 \mathrm{~V}$	mA
los	Output Short Circuit Current (note 2)		- 20		- 100	$V_{C C}=M A X$		mA
Icc	Power Supply Current				8.0	$V_{C C}=\mathrm{MAX}$		mA

Notes: 1. For conditions shown as MIN or MAX, use the appropriate value specified under guaranteed operating ranges.
2. Not more than one output should be shorted at a time.
(*) Typical values are at $\mathrm{V}_{\mathrm{Cc}}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

AC CHARACTERISTICS : $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Test Conditions	Unit
		Min.	Typ.	Max.		
$f_{\text {max }}$	Maximum Clock Frequency	30	45		$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & C_{L}=15 \mathrm{pF} \end{aligned}$	MHz
$\begin{aligned} & \hline t_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$	Propagation Delay, Clock Set to Output		$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$		ns

AC SET-UP REQUIREMENTS : $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Test Conditions	Unit
		Min.	Typ.	Max.		
$t_{\text {w }}$	Clock Pulse Width	20			$\mathrm{V}_{C C}=5.0 \mathrm{~V}$	ns
t_{w}	Set Pulse Width	25				ns
$\mathrm{t}_{\text {s }}$	Set-up Time	20				ns
$t_{\text {h }}$	Hold Time	0				ns

AC WAVEFORMS

Figure 1 : Clock to Output Delays, Data Set-up and Hold Times, Clock Pulse Width.

* The shaded areas indicate when the input is permitted is change to predictable output performance.

Figure 2 : Set and Clear to Output Delays, Set and Clear Pulse Widths.

Figure 3 : Clock to Output Delays, Data Set-up and Hold Times, Clock Pulse Width.

* The shaded areas indicate when the input is permitted is change to predictable output performance.

DUAL JK NEGATIVE EDGE-TRIGGERED FLIP-FLOP

DESCRIPTION

The T74LS114A offer common clock and common clear inputs and individual J, K, and set inputs. These monolithic dual flip-flops are designed so that when the clock goes HIGH, the inputs are enabled and data will be accepted. The logic level of the J and K inputs may be allowed to change when the clock pulse is HIGH and the bistable will perform according to the truth table as long as minimum set-up times are observed. Input data is transferred to the outputs on the negative-going edge of the clock pulse.

PIN CONNECTION (top view)

DUAL IN LINE

CHIP CARRIER

NC = No Internal Connection

LOGIC SYMBOL

LOGIC DIAGRAM AND TRUTH TABLE

Operating Mode	Inputs				Outputs	
	$\bar{S}_{\text {d }}$	$\bar{C}_{\text {D }}$	J	K	Q	$\overline{\mathbf{Q}}$
Set	L	H	X	X	H	L
Reset (clear)	H	L	X	X	L	H
* Undetermined	L	L	X	X	H	H
Toggle	H	H	h	h	\bar{q}	q
Load "0" (reset)	H	H	1	h	L	H
Load "1" (set)	H	H	h	1	H	\underline{L}
Hold	H	H	1	1	q	\bar{q}

* Both outputs will be HIGH while both $\overline{\mathrm{S}}_{\mathrm{D}}$ and $\overline{\mathrm{C}}_{D}$ are LOW, but the output states are unpredictable if \bar{S}_{D} and $\overline{\mathrm{C}}_{\mathrm{D}}$ go HIGH simultaneously.
The output levels in this configuration are not guaranteed to meet the munimum levels for $\mathrm{V}_{\text {OH }}$ if the lows at Preset and Clear are near $V_{\text {II }}$ maximum. Furthermore, this configuration is nonstable ; that is, it will not persist when either Preset or Clear returns to its inactive (high) level.
H,h = HIGH Voltage Level
L,I = LOW Voltage Level
$\mathrm{X}=$ Don't Care
$\mathrm{I}, \mathrm{h},(\mathrm{q})=$ Lower case letters indicate the state of the referenced input (or output) one set-up time prior to the HIGH to LOW clock transition.
$V_{c c}=\operatorname{Pin} 14$
GND $=\operatorname{Pin} 7$
() = Pin numbers

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{C C}$	Supply Voltage	-0.5 to 7	V
V_{1}	Input Voltage, Applied to Input	-0.5 to 15	V
V_{O}	Output Voltage, Applied to Output	-0.5 to 10	V
I_{I}	Input Current, into Inputs	-30 to 5	mA
I_{O}	Output Current, into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maximum Ratngs" may cause permanent damage to the device.
This is a stress rating only and functional operaton of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage			Temperature
	Min.	Typ.	Max.	
T74LS114AXX	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter			Limits		Test Condition (note 1)		Unit
			Min.	Typ. (*)	Max.			
V_{IH}	Input HIGH Voltage		2.0			Guaranteed Input HIGH Voltage for all Inputs		V
VIL	Input LOW Voltage				0.8	Guaranteed Input LOW Voltage for all Inputs		V
$\mathrm{V}_{C D}$	Input Clamp Diode Voltage			-0.65	-1.5	$\mathrm{V}_{\mathrm{CC}}=$ MIN, $\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$		V
VOH	Output HIGH Voltage		2.7	3.4		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { MIN, } \mathrm{IOH}=-400 \mu \mathrm{~A} \\ & \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {IH }} \text { or } \mathrm{V}_{\text {IL }} \text { per Truth Table } \end{aligned}$		V
VoL	Output LOW Voltage			0.25	0.4	$\mathrm{loL}=4.0 \mathrm{~mA}$	$\begin{aligned} & V_{C C}=M I N \\ & V_{I N}=V_{I L} \text { or } V_{I H} \\ & \text { per Truth Table } \end{aligned}$	V
				0.35	0.5	$\mathrm{loL}=8.0 \mathrm{~mA}$		V
І ${ }_{\text {H }}$	Input HIGH Current	J, K Set Clear Clock			$\begin{gathered} 20 \\ 60 \\ 120 \\ 160 \\ \hline \end{gathered}$	$\mathrm{V}_{\mathrm{cc}}=\mathrm{MAX}, \mathrm{V}$	=2.7 V	$\mu \mathrm{A}$
		J, K Set Clear Clock			$\begin{aligned} & \hline 0.1 \\ & 0.3 \\ & 0.6 \\ & 0.8 \\ & \hline \end{aligned}$	$\mathrm{V}_{\text {cc }}=\mathrm{MAX}, \mathrm{V}$	=7.0 V	mA
IIL	Input LOW Current	$\begin{aligned} & \hline \text { J, K } \\ & \text { Set } \\ & \text { Clear,Clock } \\ & \hline \end{aligned}$			$\begin{aligned} & -0.4 \\ & -0.8 \\ & -1.6 \end{aligned}$	$\mathrm{V}_{\mathrm{cc}}=\mathrm{MAX}, \mathrm{V}$	= 0.4 V	mA
los	Output Short Circuit Current (note 2)		-20		-100	$V_{\text {cc }}=\mathrm{MAX}$		mA
Icc	Power Supply Current				6.0	$V_{C C}=M A X$		mA

Notes: 1. For conditions shown as MIN or MAX, use the appropriate value specified under guaranteed operatıng ranges.
2 Not more than one output should be shorted at a time.
(*) Typıcal values are at $\mathrm{V}_{\mathrm{CC}}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

AC CHARACTERISTICS : $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Test Conditions	Unit
		Min.	Typ.	Max.		
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency	30	45		$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$	MHz
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay, Clock Clear Set to Output		$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$		ns

AC SET-UP REQUIREMENTS : $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Test Conditions	Unit
		Min.	Typ.	Max.		
t_{w}	Clock Pulse Width	20			$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$	ns
t_{w}	Clear, Set Pulse Width	25				ns
t_{s}	Set-up Time	20				ns
t_{n}	Hold Tıme	0				ns

AC WAVEFORMS

Figure 1 : Clock to Output Delays, Data Set-up and Hold Times, Clock Pulse Width.

Figure 2 : Set and Clear to Output Delays, Set and Clear Pulse Widths.

Figure 3 : Clock to Output Delays, Data Set-up and Hold Times, Clock Pulse Width.

DESCRIPTION

The T74LS125A/126A are high speed QUAD 3STATE BUFFERS WITH ACTIVE HIGH ENABLES fabricated in LOW POWER SCHOTTKY technology.

B1
(Plastic Package)

M1
(Micro Package)

D1
(Ceramic Package)

C1
(Plastic Chip Carrier)

ORDER CODES :
T74LSXXXX D1 T74LSXXXX B1

T74LSXXXX C1 T74LSXXXX M1

SCHEMATIC

PIN CONNECTION (top view)

CHIP CARRIER

NC = No Internal Connection

LOGIC DIAGRAM AND TRUTH TABLE

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vcc	Supply Voltage	-0.5 to 7	V
$\begin{array}{ll} V_{1} & 125 A \\ & 126 A \end{array}$	Input Voltage, Applied to Input	$\begin{gathered} 0.5 \text { to } 10 \\ -0.5 \text { to } 15 \\ \hline \end{gathered}$	V
$\begin{array}{ll} \hline V_{0} & 125 A \\ & 126 A \end{array}$	Output Voltage, Applied to Output	0 to 15 0 to 10	V
11	Input Current, into Inputs	-30 to 5	mA
10	Output Current, into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied. Exposure to absolute maxımum rating conditions for extended periods may affect device reliability.

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage			Temperature
	Min.	Typ.	Max.	
T74LS125A126A XX	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

XX = package type.
AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits						Test Conditions		Unit
		LS125A			LS126A					
		Min.	Typ.	Max.	Min.	Typ.	Max.			
TPLH TPHL	Propagation Delay Data to Output		$\begin{aligned} & 9 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 15 \\ & 18 \\ & \hline \end{aligned}$		$\begin{aligned} & 9 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 15 \\ & 18 \\ & \hline \end{aligned}$	Figs 1, 2		ns
TPZH	Output Enable Time to HIGH Level		12	20		16	25	Figs. 4, 5	$\begin{aligned} & C_{L}=45 \mathrm{pF} \\ & R_{L}=667 \Omega \end{aligned}$	ns
TPZL	Output Enable Time to LOW Level		15	25		21	35	Figs. 3, 5		ns
TPLZ	Output Enable Time from LOW Level			20			25	Figs. 3, 5	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & C_{L}=5 \mathrm{pF} \end{aligned}$	ns
TPHZ	Output Disable Time from HIGH Level			20			25	Figs. 4, 5	$R_{L}=667 \Omega$	ns

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter		Limits			Test Condition (note 1)		Unit
			$\begin{gathered} \text { Min. } \\ \hline 2.0 \\ \hline \end{gathered}$	Typ. (*)	Max.			
V_{IH}	Input HIGH Voltage					Guaranteed Input HIGH Voltage		V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	Guaranteed Input LOW Voltage		V
$V_{C D}$	Input Clamp Diode Voltage			-0.65	-1.5	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$, I	- 18 mA	V
V_{OH}	Output HIGH Voltage		2.4	3.1		$\begin{aligned} & V_{C C}=\text { MIN, loH }=-2.6 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{\text {IL }} \text { per Truth Table } \end{aligned}$		V
VoL	Output LOW Voltage			0.25	0.4	$\mathrm{lOL}=12 \mathrm{~mA}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \text { per Truth Table } \end{aligned}$	v
				0.35	0.5	$\mathrm{lOL}=24 \mathrm{~mA}$		V
lozh	Output Off Current-HIGH	125A			20	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \\ & \mathrm{~V}_{\mathrm{E}}=\mathrm{V}_{\mathrm{IH}} \end{aligned}$	$U T=2.7 \mathrm{~V},$	$\mu \mathrm{A}$
lozl	Output Off Current-LOW	125A			-20	$\begin{aligned} & V_{C C}=M A X, \\ & V_{E}=V_{I H} \end{aligned}$	$U T=0.4 \mathrm{~V}$	$\mu \mathrm{A}$
lozh	Output Off Current-HIGH	126A			20	$\begin{aligned} & V_{C C}=M A X, \\ & V_{E}=V_{I L} \end{aligned}$	$U T=2.7 \mathrm{~V},$	$\mu \mathrm{A}$
lozı	Output Off Current-LOW	126A			-20	$\begin{aligned} & V_{C C}=M A X, \\ & V_{E}=V_{I L} \end{aligned}$	$U T=0.4 \mathrm{~V},$	$\mu \mathrm{A}$
IH_{H}	Input HIGH Curr				$\begin{aligned} & 20 \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & V_{C C}=M A X, \\ & V_{C C}=M A X, \end{aligned}$	$\begin{aligned} & =2.7 \mathrm{~V} \\ & =7.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
$1 / 2$	Input LOW Curre				-0.4	$V_{C C}=M A X$,	$=0.4 \mathrm{~V}$	mA
los	Output Short CIr (note 2)	urrent	-40		- 225	$V_{C C}=$ MAX,	UT $=0 \mathrm{~V}$	mA
Icc	Power Supply	125A			16	$\mathrm{V}_{\mathrm{E}}^{-}=0 \mathrm{~V}$		mA
	Current Outputs LOW	126A			20	$\mathrm{V}_{\mathrm{E}}=4.5 \mathrm{~V}$	$V_{c c}=$ MAX,	
	Power Supply	125A			20	$\mathrm{V}_{\mathrm{E}}^{-}=4.5 \mathrm{~V}$	V	mA
	Current Outputs HIGH	126A			24			

Notes : 1. For conditions shown as MIN or MAX, use the appropriate value specified under guaranteed operating ranges 2. Not more than one output should be shorted at a time
(*) Typical values are at $\mathrm{V}_{\mathrm{Cc}}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

AC WAVEFORMS

Figure 1.

Figure 3.

Figure 2.

Figure 4.

AC LOAD CIRCUIT

Figure 5.

QUAD 2-INPUT SCHMITT TRIGGER NAND GATE

DESCRIPTION

The T74LS132 contains four 2-input NAND Gates which accept standard TTL input signals and provide standard TTL output levels. They are capable of transforming slowly changing input signals into sharply defined, jitter-free output signals. Additionally, they have greater noise margin than conventional NAND Gates.
Each circuit contains a 2 -input Schmitt trigger follo wed by a Darlington level shifter and a phase splitter that drive a TTL totem pole output. The Schmitt trigger uses positive feedback to effectively speedup slow input transitions, and provide different input threshold voltages for positive and negative-going transitions. This hysteresis between the positivegoing and negative-going input thresholds (typically 800 mV) is determined internally by resistor ratios and is essentially insensitive to temperature and supply voltage variations. As long as one input remains at a more positive voltage than $\mathrm{V}_{\mathrm{T}_{+}}$(MAX), the gare will respond to the transition of the other input as shown in figure 1.

B1
(Plastic Package)

M1
(Micro Package)

D1
(Ceramic Package)

C1
(Plastic Chip Carrier)

ORDER CODES :

```
T74LS132 C1
T74LS132 B1 T74LS132 M1
```

PIN CONNECTION (top view)

DUAL IN LINE

CHIP CARRIER

NC = No Internal Connection

SCHEMATIC DIAGRAM

LOGIC DIAGRAM AND TRUTH TABLE

IN		OUT
A	B	\mathbf{Y}
L	X	H
X	L	H
H	H	L

L = LOW Voltage Level H = HIGH Voltage Level X = Don't Care

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{cc}	Supply Voltage	-0.5 to 7	V
$\mathrm{~V}_{1}$	Input Voltage, Applied to Input	-0.5 to 15	V
$\mathrm{~V}_{\mathrm{o}}$	Output Voltage, Applied to Output	-0.6 to 5.5	V
I_{I}	Input Current, into Inputs	-30 to 5	mA
I_{o}	Output Current, into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage		Temperature	
	Min.	Typ.		
T74LS132XX	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)	Unit
		Min.	Typ. (*)	Max.		
$\mathrm{V}_{\mathrm{T}+}$	Positive-going Threshold Voltage	1.4	1.6	1.9	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$	V
V_{T}.	Negative-going Threshold Voltage	0.5	0.8	1.0	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$	V
	Hysteresis	0.4	0.8		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	V
$V_{C D}$	Input Clamp Diode Voltage		-0.65	-1.5	$V_{C C}=M 1 N, l_{\text {l }}=-18 \mathrm{~mA}$	V
V_{OH}	Output HIGH Voltage	2.7	3.4		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{IN}}=0.5 \mathrm{~V} \end{aligned}$	V
Va	Output LOW Voltage		0.25	0.4	$\mathrm{l}_{\mathrm{L}}=4.0 \mathrm{~mA} \quad \mathrm{~V}_{\mathrm{Cc}}=\mathrm{MIN}$	V
			0.35	0.5	$\mathrm{l}_{\mathrm{OL}}=8.0 \mathrm{~mA} \quad \mathrm{~V}_{1 \mathrm{~N}}=1.9 \mathrm{~V}$	V
I_{T+}	Input Current at Positive-going Threshold		-0.14		$\mathrm{V} C \mathrm{CC}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\mathrm{T}_{+}}$	mA
I_{T} -	Input Current at Negative-going Threshold		-0.18		$\mathrm{V}_{C C}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{T}}$.	mA
$\mathrm{IIH}^{\text {a }}$	Input HIGH Current		1.0	$\begin{aligned} & 20 \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & V_{C C}=M A X, V_{\mathbb{N}}=2.7 \mathrm{~V} \\ & V_{C C}=M A X, V_{\mathbb{N}}=7.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
11.	Input LOW Current			-0.4	$V_{C C}=M A X, V_{\mathbb{I}}=0.4 \mathrm{~V}$	mA
los	Output Short Circuit Current (note 2)	-20		- 100	$V_{C C}=M A X, V_{\text {OUT }}=0 \mathrm{~V}$	mA
ІсС.	Supply Current HIGH		6.0	11	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathbb{N}}=0 \mathrm{~V}$	mA
ICCL	Supply Current LOW		8.0	14	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=4.5 \mathrm{~V}$	mA

Notes : 1. For conditions shown as MIN or MAX, use the appropriate value specified under guaranteed operatıng ranges. 2. Not more than one output should be shorted at a tıme.
(*) Typical values are at $\mathrm{V}_{\mathrm{Cc}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

AC CHARACTERISTICS : $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Test Conditions	Unit
		Min.	Typ.	Max.		
$\mathrm{t}_{\mathrm{PLH}}$	Turn Off Delay, Input to Output		15	22	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & C_{L}=15 \mathrm{pF} \end{aligned}$	ns
$\mathrm{t}_{\text {PHL }}$	Turn On Dealy, Input to Output		15	22		ns

Figure 1.

Figure 3.

Figure 2.
THRESHOLD VOLTAGE AND HYSTERESIS VERSUS POWER SUPPLY VOLTAGE

Figure 4.

13-INPUT NAND GATE

DESCRIPTION

The T74LS133 is a high speed 13 -INPUT NAND GATE fabricated in silicon LOW POWER SCHOTTKY technology.

SCHEMATIC

B1 (Plastic Package)

M1 (Micro Package)

D1
(Ceramic Package)

C1
(Plastic Chip Carrier)

ORDER CODES :
T74LS133 D1
T74LS133 C1
T74LS133 B1

PIN CONNECTION (top view)

LOGIC DIAGRAM AND TRUTH TABLE

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{c c}$	Supply Voltage	-0.5 to 7	V
V_{1}	Input Voltage, Applied to Input	-0.5 to 15	V
V_{0}	Output Voltage, Applied to Output	-0.5 to 10	V
I_{1}	Input Current, into Inputs	-30 to 5	mA
I_{0}	Output Current, into Outputs	60	mA

Stresses in excess of those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied. Exposure to absolute maxımum rating conditions for extended penods may affect device reliability.

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage		Temperature	
	Min.	Typ.		
T74LS133XX	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
V_{IH}	Input HIGH Voltage	2.0			Guaranteed In	ut HIGH Voltage	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	Guaranteed In	ut LOW Voltage	V
$V_{C D}$	Input Clamp Diode Voltage		-0.65	-1.5	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IIN}$	$=-18 \mathrm{~mA}$	V
V_{OH}	Output HIGH Voltage	2.7	3.4		$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \end{aligned}$	$=-400 \mu \mathrm{~A}$	$\mu \mathrm{A}$
VOL	Output LOW Voltage		0.25	0.4	$\mathrm{lOL}=4.0 \mathrm{~mA}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} \\ & \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V} \end{aligned}$	V
			0.35	0.5	$\mathrm{loL}=8.0 \mathrm{~mA}$		V
$\mathrm{IIH}^{\text {H}}$	Input HIGH Current		1.0	$\begin{aligned} & 20 \\ & 0.1 \end{aligned}$	$\begin{aligned} & V_{C C}=M A X, V_{\mathbb{N}}=2.7 \mathrm{~V} \\ & V_{C C}=M A X, V_{\mathbb{N}}=7.0 \mathrm{~V} \end{aligned}$		$\mu \mathrm{A}$ mA
IIL	Input LOW Current			-0.4	$V_{C C}=M A X, V_{I N}=0.4 \mathrm{~V}$		mA
los	Output Short Circuit Current (note 2)	-20		- 100	$V_{C C}=M A X, V_{\text {OUT }}=0 \mathrm{~V}$		mA
ICCH	Supply Current HIGH		0.35	0.5	$V_{C C}=M A X, V_{\text {IN }}=0 \mathrm{~V}$		mA
l CCL	Supply Current LOW		0.6	1.1	$V_{C C}=$ MAX, Inputs Open		mA

Notes: 1. For conditions shown as MIN or MAX, use the appropriate value specified under guaranteed operating ranges.
2. Not more than one output should be shorted at a time.
$\left(^{*}\right)$ Typical values are at $\mathrm{V}_{\mathrm{Cc}}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (for AC test circuits and waveforms see databook introduction)

Symbol	Parameter	Limits			Test Conditions	Unit
		Min.	Typ.	Max.		
tple	Turn Off Delay, Input to Output		10	15	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & C_{L}=15 \mathrm{pF} \end{aligned}$	ns
tphL	Turn On Delay, Input to Output		25	38		ns

QUAD 2-INPUT EXCLUSIVE OR GATE

DESCRIPTION

The T74LS136 is a high speed QUAD 2-INPUT EXCLUSIVE OR GATE (with open collector output) fabricated in LOW POWER SCHOTTKY technology.

SCHEMATIC DIAGRAM

B1
(Plastic Package)

M1
(Micro Package)

D1
(Ceramic Package)

C1
(Plastic Chip Carrier)

ORDER CODES

T74LS136 D1
T74LS136 C1
T74LS136 B1
T74LS136 M1

PIN CONNECTION (top view)

DUAL IN LINE

* Open Collector Outputs

CHIP CARRIER

NC = No Internal Connection

LOGIC DIAGRAM AND TRUTH TABLE

S-7975

\mathbf{A}	\mathbf{B}	\mathbf{Y}
L	L	L
L	H	H
H	L	H
H	H	L

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{c c}$	Supply Voltage	-0.5 to 7	V
V_{1}	Input Voltage, Applied to Input	-0.5 to 15	V
$\mathrm{~V}_{0}$	Output Voltage, Applied to Output	-0.5 to 10	V
I_{1}	Input Current, Into Inputs	-30 to 5	mA
I_{0}	Output Current, Into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maximum Ratıngs" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specrication is not implied. Exposure to absolute maxımum rating conditions for extended penods may affect device reliability

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage		Temperature	
	Min.	Typ.		
T74LS136XX	4.75 V	5.0 V	5.25 V	$0{ }^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
V_{IH}	Input HIGH Voltage	2.0			Guaranteed Input HIGH Voltage for All Inputs		V
V_{IL}	Input LOW Voltage			0.8	Guaranteed Input LOW Voltage for All Inputs		v
$V_{C D}$	Input Clamp Diode Voltage		-0.65	-1.5	$\mathrm{V}_{C C}=\mathrm{MIN}, \mathrm{I} \mathrm{IN}=-18 \mathrm{~mA}$		V
loh	Output HIGH Voltage			100	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{OH}}=-5.5 \mathrm{~V}$ $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$ per Truth Table		V
VoL	Output LOW Voltage		0.25	0.4	$\mathrm{loL}=4.0 \mathrm{~mA}$	$\begin{aligned} & V_{C C}=M I N \\ & V_{I N}=V_{I H} \text { or } V_{I L} \\ & \text { per Truth Table } \end{aligned}$	V
			0.35	0.5	$\mathrm{loL}=8.0 \mathrm{~mA}$		V
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current			$\begin{aligned} & 40 \\ & 02 \end{aligned}$	$\begin{aligned} & V_{C C}=M A X, V_{I N}=2.7 \mathrm{~V} \\ & V_{C C}=M A X, V_{I N}=5.5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
$1 / 2$	Input LOW Current			-0.6	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$		mA
lcc	Supply Current LOW		6.0	10	$V_{C C}=M A X$		mA

Notes : 1. For conditions shown as MIN or MAX, use the appropriate value specified under guaranteed operating ranges.
(*) Typıcal values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (for AC test circuits and waveforms see databook introduction)

Symbol	Parameter		Limits			Test Conditions

1-OF-8 DECODER/DEMULTIPLEXER

- DEMULTIPLEXING CAPABILITY
- MULTIPLE INPUT ENABLE FOR EASY EXPANSION
- TYPICAL POWER DISSIPATION OF 32 mW
- ACTIVE LOW MUTUALLY EXCLUSIVE OUTPUTS
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS
- FULLY TTL AND CMOS COMPATIBLE

DESCRIPTION

The T74LS138 is a high speed 1-of-8 Decoder/Demultiplexer. This device is ideally suited for high speed bipolar memory chip select address decoding. The multiple input enables allowparallel expansion to a 1 -of-24 decoder using just three LS138 devices or to a 1-of-32 decoder

PIN NAMES

$\bar{A}_{0}-A_{3}$	ADDRESS INPUTS
$\bar{E}_{1}-\bar{E}_{2}$	ENABLE (active LOW) INPUTS
$\bar{E}_{3}-\bar{O}_{7}$	ENABLE (active HIGH) INPUT
$\mathrm{O}_{0}-$ ACTIVE LOW OUTPUTS 2	

using four LS138 and one inverter. The LS138 is fabricated with the Schottky barrier diode process for high speed and is compatible with all TTL families.

PIN CONNECTION (top view)

LOGIC SYMBOL AND LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{Cc}	Supply Voltage	-0.5 to 7	V
V_{1}	Input Voltage, Applied to Input	-0.5 to 5.5	V
$\mathrm{~V}_{0}$	Output Voltage, Applied to Output	-0.5 to 10	V
I_{1}	Input Current, into Inputs	-30 to 5	mA
I_{0}	Output Current, into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.
This is a stress rating only and functional operatoon of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied. Exposure to absolute maxımum rating conditions for extended periods may affect device relability.

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage		Temperature	
	Min.	Typ.		
T74LS138XX	4.75 V	5.0 V	5.25 V	$0{ }^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type.

FUNCTIONAL DESCRIPTION

The LS138 is a high speed 1 -of-8 Decoder/Demultiplexer fabricated with the low power Schottky barrier diode process. The decoder accepts three binary weigthed inputs (A_{0}, A_{1}, A_{2}) and when enable provides eight mutually exclusive active LOW outputs ($\mathrm{O}_{0}-\mathrm{O}_{7}$). The LS138 features three Enable inputs two active LOW ($\mathrm{E}_{1}, \mathrm{E}_{2}$) and one active HIGH (E_{3}). All outputs will be H IGH uneless E_{1} and E_{2} are LOW and E_{3} is HIGH. This multiple enable function allows easy parallel expansion of the device of a 1 -
of-32 (5 lines to 32) decoded with just four LS138s and one inverter. (see figure 1).
The LS138 can be used as an 8-output demultiplexer by using one of the active LOW Enable Inputs as the data input and the other Enable Inputs as strobes. The Enable inputs which are not used must be permanently tied to their appropriate active HIGH or active LOW state.

TRUTH TABLE

Inputs						Outputs							
\bar{E}_{1}	\bar{E}_{2}	\bar{E}_{3}	A_{0}	A_{1}	A_{2}	\bar{O}_{0}	\bar{O}_{1}	$\overline{\mathbf{O}}_{2}$	$\overline{\mathrm{O}}_{3}$	\bar{O}_{4}	\bar{O}_{5}	$\overline{\mathbf{O}}_{6}$	\bar{O}_{7}
H	X	X	X	X	X	H	H	H	H	H	H	H	H
X	H	X	X	X	X	H	H	H	H	H	H	H	H
X	X	L	X	X	X	H	H	H	H	H	H	H	H
L	L	H	L	L	L	L	H	H	H	H	H	H	H
L	L	H	H	L	L	H	L	H	H	H	H	H	H
L	L	H	L	H	L	H	H	L	H	H	H	H	H
L	L	H	H	H	L	H	H	H	L	H	H	H	H
L	L	H	L	L	H	H	H	H	H	L	H	H	H
L	L	H	H	L	H	H	H	H	H	H	L	H	H
L	L	H	L	H	H	H	H	H	H	H	H	L	H
L	L	H	H	H	H	H	H	H	H	H	H	H	L

[^6]Figure 1.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
V_{H}	Input HIGH Voltage	2.0			Guaranteed In Voltage for All	ut HIGH Treshold nputs	V
VIL	Input LOW Voltage			0.8	Guaranteed In Voltage for All	ut LOW Treshold nputs	V
$V_{C D}$	Input Clamp Diode Voltage		-0.65	-1.5	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{lin}$	=-18 mA	V
$\mathrm{V}_{\text {OH }}$	Output HIGH Voltage	2.7	3.4		$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=\mathrm{MIN}, \mathrm{IOF}_{\mathrm{O}} \\ & \mathrm{~V}_{\mathbf{I N}}=\mathrm{V}_{\mathbb{H}} \text { or } \mathrm{V}_{\mathrm{I}} \end{aligned}$	$=-400 \mu \mathrm{~A}$ per Truth Table	V
VoL	Output LOW Voltage		0.25	0.4	$\mathrm{IOL}=4.0 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$, $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL} per Truth Table	V
			0.35	0.5	$\mathrm{loL}=8.0 \mathrm{~mA}$		V
$\mathrm{IH}_{\text {H }}$	Input HIGH Current		1.0	$\begin{aligned} & 20 \\ & 0.1 \end{aligned}$	$\begin{aligned} & V_{C C}=M A X, V_{I N}=2.7 \mathrm{~V} \\ & V_{C C}=M A X, V_{I N}=7.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$
$1 / 2$	Input LOW Current			-0.4	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$		mA
los	Output Short Circuit Current (note 2)	- 20		-100	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		mA
Icc	Power Supply Current		6.0	10	$V_{C C}=$ MAX		mA

Notes: 1. For conditions shown as MIN or MAX, use the appropriate value specified under guaranteed operatıng ranges 2. Not more than one output should be shorted at a time.
3. Typical values are at $\mathrm{V}_{\mathrm{CC}}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

AC CHARACTERISTICS : $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Level of Delay	Limits			Test Conditions	Unit
			Min.	Typ.	Max.		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay, Address to Output	$\begin{aligned} & 2 \\ & 2 \end{aligned}$		$\begin{array}{r} 13 \\ 27 \\ \hline \end{array}$	$\begin{aligned} & 20 \\ & 41 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}}=5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$	ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay, Address to Output	$\begin{aligned} & 3 \\ & 3 \\ & \hline \end{aligned}$		$\begin{array}{r} 18 \\ 26 \\ \hline \end{array}$	$\begin{aligned} & 27 \\ & 39 \\ & \hline \end{aligned}$		ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay, E to any Output	$\begin{aligned} & 2 \\ & 2 \end{aligned}$		$\begin{aligned} & 12 \\ & 21 \end{aligned}$	$\begin{aligned} & 18 \\ & 32 \end{aligned}$		ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay, E to any Output	$\begin{aligned} & 3 \\ & 3 \end{aligned}$		$\begin{aligned} & 17 \\ & 25 \end{aligned}$	$\begin{aligned} & 26 \\ & 38 \end{aligned}$		ns

AC WAVEFORMS

Figure 2.

Figure 3.

DUAL 1-OF-4 DECODER

- SCHOTTKY PROCESS FOR HIGH SPEED
- MULTIFUNCTION CAPABILITY
- TWO COMPLETELY INDEPENDENT 1-OF-4 DECODERS
- ACTIVE LOW MUTUALLY EXCLUSIVE OUTPUTS
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS
- FULLY TTL AND CMOS COMPATIBLE

DESCRIPTION

The T74LS139 is a high speed Dual 1-of-4 Decoder/Demultiplexer. This device has two independent decoders, each accepting two inputs and providing four mutually exclusive active LOW outputs. Each decoder has an active LOW Enable input which can be used as a data input for a 4-output demultiplexer. Each half of the LS139 can be used

PIN NAMES

$\mathrm{A}_{0}-\mathrm{A}_{1}$	ADDRESS INPUTS
$\overline{\mathrm{E}}_{0}-\overline{\mathrm{O}}_{3}$	ENABLE (active LOW) INPUT
O_{0}	ACTIVE LOW OUTPUTS

as a function generator providing all four minterms of two variables. The LS139 is fabricated with the Schottky barrier diode process for high speed and is completely compatible with all TTL families.

PIN CONNECTION (top view)

DUAL IN LINE	CHIP CARRIER
	き?
	미니니닌
(3) $1 m_{1} \quad 2 a, 9$	${ }_{10} \square_{6} \quad 20{ }^{18}$
(6) 20 回	${ }_{10} \square_{5}{ }^{5}$
$6 \mathrm{~B}_{2}$	${ }_{10,1080}{ }^{15}$
	${ }^{10} 0^{\circ}$
n c-me	
	NC = No Internal Connection

LOGIC SYMBOL AND LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{Cc}	Supply Voltage	-0.5 to 7	V
$\mathrm{~V}_{\mathrm{I}}$	Input Voltage, Applied to Input	-0.5 to 15	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage, Applied to Output	-0.6 to 10	V
I_{I}	Input Current, into Inputs	-30 to 5	mA
I_{O}	Output Current, into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress ratong only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specrication is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device relability.

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage		Temperature	
	Min.	Typ.		
T74LS139XX	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type.

FUNCTIONAL DESCRIPTION

The LS139 is a high speed dual 1-of-4 Decoder/Demultiplexer fabricated with the Schottky barrier diode process. The device has two independent decoders, each of which accept two binary weighted inputs ($\mathrm{A}_{0}-\mathrm{A}_{1}$) and provide four mutually exclusive active LOW outputs ($\overline{\mathrm{O}_{0}-\overline{\mathrm{O}}_{3} \text {). Each }}$ decoder has an active LOW Enable $(\overline{\mathrm{E}})$. When $\overline{\mathrm{E}}$ is HIGH all output are forced HIGH.

The enable can be used as the data input for a 4-output demultiplexer application.
Each half of the LS139 generates all four minterms of two variables. These four minterms are useful in some applications, replacing multiple gate functions as shown in fig. 1 , and thereby reducing the number of packages required in a logic network.

TRUTH TABLE

Inputs			Outputs			
$\overline{\mathrm{E}}$	\mathbf{A}_{0}	\mathbf{A}_{1}	$\overline{\mathbf{O}}_{\mathbf{0}}$	$\overline{\mathbf{O}}_{1}$	$\overline{\mathbf{O}}_{\mathbf{2}}$	$\overline{\mathbf{O}}_{3}$
H	X	X	H	H	H	H
L	L	L	L	H	H	H
L	H	L	H	L	H	H
L	L	H	H	H	L	H
L	H	H	H	H	H	L

H = HIGH Voltage Level
L = LOW Voltage Level
X = Don't Care

Figure 1.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
V_{IH}	Input HIGH Voltage	2.0			Guaranteed Inp	ut HIGH Voltage	V
V_{IL}	Input LOW Voltage			0.8	Guaranteed In	ut LOW Voltage	V
$V_{C D}$	Input Clamp Diode Voltage		-0.65	-1.5	$\mathrm{V}_{C \mathrm{C}}=\mathrm{MIN}, \mathrm{IIN}$	- 18 mA	V
VOH	Output HIGH Voltage	2.7	3.4		$\begin{aligned} & V_{C C}=M I N, ~ I O \\ & V_{I N}=V_{I H} \text { or } V \end{aligned}$	$=-400 \mu \mathrm{~A}$ per Truth Table	V
VoL	Output LOW Voltage		0.25	0.4	$\mathrm{loL}=4.0 \mathrm{~mA}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{LL}} \\ & \text { per Truth Table } \end{aligned}$	V
			0.35	0.5	$\mathrm{loL}=8.0 \mathrm{~mA}$		V
$1{ }_{\text {IH }}$	Input HIGH Current		1.0	$\begin{aligned} & 20 \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{\text {IN }}=2.7 \mathrm{~V} \\ & V_{\mathrm{CC}}=M A X, \mathrm{~V}_{\text {IN }}=7.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$
$1 / 2$	Input LOW Current			-0.36	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$		mA
los	Output Short Circuit Current (note 2)	- 20		- 100	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		mA
Icc	Power Supply Current		7.0	11	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$		mA

Notes: 1. Conditıons shown as MIN or MAX, use the appropriate value specified under guaranteed operatıng ranges.
2. Not more than one output should be shorted at a tıme.
(*) Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

AC CHARACTERISTICS : $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Level of Delay	Limits			Test Conditions	Unit
			Min.	Typ.	Max.		
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHLL }} \end{aligned}$	Propagation Delay, Address to Output	$\begin{aligned} & 2 \\ & 2 \end{aligned}$		$\begin{aligned} & 13 \\ & 22 \end{aligned}$	$\begin{aligned} & 20 \\ & 33 \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLL}} \\ & \mathrm{t}_{\mathrm{PHLL}} \end{aligned}$	Propagation Delay, Enable to Output	$\begin{aligned} & 3 \\ & 3 \\ & \hline \end{aligned}$		$\begin{aligned} & 18 \\ & 25 \\ & \hline \end{aligned}$	$\begin{aligned} & 29 \\ & 38 \end{aligned}$		ns
$\begin{aligned} & \hline t_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$	Propagation Delay, Enable to Output	$\begin{aligned} & 2 \\ & 2 \end{aligned}$		$\begin{aligned} & 16 \\ & 21 \end{aligned}$	$\begin{aligned} & 24 \\ & 32 \end{aligned}$		ns

AC WAVEFORMS

Figure 2.

Figure 3.

8-LINE TO 3-LINE PRIORITY ENCODERS

DESCRIPTION

This priority Encoder decodes the inputs to ensure that only the highest order data line is encoded. All inputs and outputs data are active at the low logic level.
The LS148 encloses eigt data lines to three line (4-2-1) binary (octal). Cascading circuitry (Enable Input El and Enable Output EO) has been provided to allow octal expansion without needing external circuitry.

TRUTH TABLE

INPUTS									OUTPUTS				
El	0	1	2	3	4	5	6	7	A_{2}	A_{1}	A_{0}	GS	EO
H	X	X	X	X	X	X	X	X	H	H	H	H	H
L	H	H	H	H	H	H	H	H	H	H	H	H	L
L	X	X	X	X	X	X	X	L	L	L	L	L	H
L	X	X	X	X	X	X	L	H	L	L	H	L	H
L	X	X	X	X	X	L	H	H	L	H	L	L	H
L	X	X	X	X	L	H	H	H	L	H	H	L	H
L	X	X	X	L	H	H	H	H	H	L	L	L	H
L	X	X	L	H	H	H	H	H	H	L	H	L	H
L	X	L	H	H	H	H	H	H	H	H	L	L	H
L	L	H	H	H	H	H	H	H	H	H	H	L	H

FUNCTIONAL BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{C C}$	Supply Voltage	-0.5 to 7	V
V_{1}	Input Voltage, Applied to Input	-0.5 to 15	V
V_{O}	Output Voltage, Applied to Output	-0.5 to 10	V
I_{1}	Input Current, Into Inputs	-30 to 5	mA
I_{O}	Output Current, Into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maxımum Ratings" may cause permanent damage to the device This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operatıonal sections of this specification is not implied Exposure to absolute maximum ratıng conditions for extended penods may affect device reliability

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage		Temperature	
	Min.	Typ.		
T74LS148XX	4.75 V	5.0 V	5.25 V	$0{ }^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
V_{H}	Input HIGH Voltage	2.0			Guaranteed Input HIGH Voltage for All Input		V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	Guaranteed Input LOW Voltage for All Input		V
$V_{C D}$	Input Clamp Diode Voltage		-0.65	-1.5	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$		V
Vон	Output HIGH Voltage	2.7	3.5		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IOH}_{\mathrm{O}}=-400 \mu \mathrm{~A}$ $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\text {IL }}$ per Truth Table		V
VoL	Output LOW Voltage		0.25	0.4	$\mathrm{loL}=4.0 \mathrm{~mA}$	$\begin{aligned} & V_{C C}=M I N \\ & V_{I N}=V_{I H} \text { or } V_{I L} \\ & \text { per Truth Table } \end{aligned}$	v
			0.35	0.5	$\mathrm{loL}=8.0 \mathrm{~mA}$		V
$1{ }_{1 /}$	Input HIGH Current All Others Inputs 1-7			$\begin{aligned} & 20 \\ & 40 \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$		$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
	All Others Inputs 1-7			$\begin{aligned} & 0.1 \\ & 0.2 \\ & \hline \end{aligned}$	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$		
$1 / 2$	Input LOW Current All Others Inputs 1-7			$\begin{array}{r} -0.4 \\ -0.8 \\ \hline \end{array}$	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$		mA
los	Output Short Circuit Current (note 2)	- 20		- 120	$V_{C C C}=M A X, V_{\text {IN }}=0 \mathrm{~V}$		mA
Icc	Power Supply Current			20	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$, Inputs 7 and EI Grounded, Others Open		mA
				17	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$, All Inputs and Outputs Open		mA

Notes: 1. Condrions for testang, not shown in the Table, are chosen to guarantee operation under "worst case" conditions
2. Not more than one output should be shorted at a time
(*) Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	From (Input)	To (Output)	Waveforms	Limits			Test Conditions	Units
				Min.	Typ.	Max.		
tpLH tphL	1 thru 7	A0, A1 or A2	In-Phase Output		$\begin{aligned} & 14 \\ & 15 \\ & \hline \end{aligned}$	$\begin{array}{r} 18 \\ 25 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{~K} \Omega \end{aligned}$	ns
tpLH $\mathrm{t}_{\mathrm{PHL}}$	1 thru 7	A0, A1 or A2	Out-of-Phase Output		$\begin{aligned} & 20 \\ & 16 \end{aligned}$	$\begin{aligned} & 36 \\ & 29 \\ & \hline \end{aligned}$		ns
tpLH tphL	0 thru 7	EO	Out-of-Phase Output		$\begin{aligned} & 7.0 \\ & 25 \\ & \hline \end{aligned}$	$\begin{aligned} & 18 \\ & 40 \\ & \hline \end{aligned}$		ns
$t_{\text {PLH }}$ tPHL	0 thru 7	GS	In-Phase Output		$\begin{aligned} & 35 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 55 \\ & 21 \end{aligned}$		ns
tpLH tPHL	EI	A0, A1 or A2	In-Phase Output		$\begin{aligned} & 16 \\ & 12 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \\ & \hline \end{aligned}$		ns
tpLH tpHL	EI	GS	In-Phase Output		$\begin{aligned} & 12 \\ & 14 \\ & \hline \end{aligned}$	$\begin{aligned} & 17 \\ & 36 \\ & \hline \end{aligned}$		ns
tpLH tpHL	EI	EO	In-Phase Output		$\begin{aligned} & 12 \\ & 23 \\ & \hline \end{aligned}$	$\begin{aligned} & 21 \\ & 35 \\ & \hline \end{aligned}$		ns

8-INPUT MULTIPLEXER

- SCHOTTKY PROCESS FOR HIGH SPEED
- MULTIFUNCTION CAPABILITY
- ON-CHIP SELECT LOGIC DECODING
- FULLY BUFFERED COMPLEMENTARY OUTPUTS
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS
- FULLY TTL AND CMOS COMPATIBLE

DESCRIPTION

The T74LS151 is a high speed 8-input Digital Multiplexer. It provides in one package, the ability to select one bit of data from up to eight sources. The LS151 can be a universal function generator to generete any logic function of four variables. Both assertion and negation outputs are provided.

PIN NAMES

$\frac{\mathrm{S}_{0}-\mathrm{S}_{2}}{\overline{\mathrm{E}}}$	SELECT INPUT
$\mathrm{I}_{0}-\mathrm{I}_{7}$	ENABLE (active LOW) INPUT
$\frac{\mathrm{Z}}{\mathrm{Z}}$	MULTIPLEXER INPUTS
	MULTIPLEXER OUTPUT
	COMPLEMENTARY
	MULTIPLEXER OUTPUT

PIN CONNECTION (top view)
DUAL IN LINE

LOGIC SYMBOL AND LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	-0.5 to 7	V
V_{1}	Input Voltage, Applied to Input	-0.5 to 15	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage, Applied to Output	-0.6 to 5.5	V
I_{1}	Input Current, into Inputs	-0.5 to 5	mA
I_{O}	Output Current, Into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maxımum Ratings" may cause permanent damage to the device.
This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied Exposure to absolute maximum ratıng conditions for extended periods may affect device reliability

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage			Temperature
	Min.	Typ.	Max.	
T74LS151XX	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type

FUNCTIONAL DESCRIPTION

The LS151 is a logical implementation of a single pole, 8-position switch with the switch position controlled by the state of three Select inputs $\mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{2}$. Both assertion and negation outputs are provide.

The Enable input (E) is active LOW. When it is not activated, the negation output is HIGH and the assertion output is LOW regardless of all other inputs. The logic functions provides at the output is:

$$
\begin{aligned}
\mathrm{Z}= & \overline{\mathrm{E}} \cdot\left(\mathrm{I}_{0} \cdot \overline{\mathrm{~S}}_{0} \cdot \overline{\mathrm{~S}}_{1} \cdot \overline{\mathrm{~S}}_{2}+\mathrm{I}_{1} \cdot \mathrm{~S}_{0} \cdot \overline{\mathrm{~S}}_{1} \cdot \overline{\mathrm{~S}}_{2}+\mathrm{I}_{2} \cdot \overline{\mathrm{~S}}_{0} \cdot \mathrm{~S}_{1} \cdot \overline{\mathrm{~S}}_{2}+\mathrm{I}_{3} \cdot \mathrm{~S}_{0} \cdot \mathrm{~S}_{1} \cdot \overline{\mathrm{~S}}_{2}+\right. \\
& \left.+\mathrm{I}_{4} \cdot \overline{\mathrm{~S}}_{0} \cdot \overline{\mathrm{~S}}_{1} \cdot \mathrm{~S}_{2}+\mathrm{I}_{5} \cdot \mathrm{~S}_{0} \cdot \overline{\mathrm{~S}}_{1} \cdot \mathrm{~S}_{2}+\mathrm{I}_{6} \cdot \overline{\mathrm{~S}}_{0} \cdot \mathrm{~S}_{1} \cdot \mathrm{~S}_{2}+\mathrm{I}_{7} \cdot \mathrm{~S}_{0} \cdot \mathrm{~S}_{1} \cdot \mathrm{~S}_{2}\right) .
\end{aligned}
$$

The LS151 provides the ability, in one package, to select from eight sources of data or control information. By proper manipulation of the inputs, the LS51
can provide any logic function of four variables and its negation.

TRUTH TABLE

\bar{E}	\mathbf{S}_{2}	S_{1}	S_{0}	I_{0}	I_{1}	I_{2}	I_{3}	I_{4}	I_{5}	I_{6}	17	$\overline{\mathbf{z}}$	Z
H	X	X	X	X	X	X	X	X	X	X	X	H	L
L	L	L	L	L	X	X	X	x	X	X	X	H	L
L	L	L	L	H	X	X	X	X	x	X	X	L	H
L	L	L	H	X	L	X	X	X	X	X	X	H	L
L	L	L	H	X	H	X	X	x	X	X	X	L	H
L	L	H	L	X	X	L	X	X	X	X	X	H	L
L	L	H	L	X	X	H	X	X	X	X	X	L	H
L	L	H	H	X	X	X	L	X	X	X	X	H	L
L	L	H	H	X	X	X	H	X	X	X	X	L	H
L	H	L	L	X	X	X	X	L	X	X	X	H	L
L	H	L	L	x	X	x	x	H	X	x	x	L	H
L	H	L	H	X	X	x	X	X	L	X	x	H	L
L	H	L	H	X	X	X	X	X	H	X	X	L	H
L	H	H	L	X	X	X	X	X	X	L	X	H	L
L	H	H	L	X	X	X	X	X	X	H	X	L	H
L	H	H	H	X	X	X	X	X	x	X	-	H	L
L	H	H	H	X	X	X	X	X	X	X	H	L	H

H = HIGH Voltage Level
$L=$ LOW Voltage Level
X = Don't Care
DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
V_{IH}	Input HIGH Voltage	2.0			Guaranteed In Voltage for Al	ut HIGH Treshold nputs	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	Guaranteed In Voltage for All	ut LOW Treshold nputs	V
$V_{C D}$	Input Clamp Diode Voltage		-0.65	-1.5	$\mathrm{V}_{C C}=\mathrm{MIN}, \mathrm{I}_{\text {I }}$	$=-18 \mathrm{~mA}$	V
V_{OH}	Output HIGH Voltage	2.7	3.4		$\begin{aligned} & V_{C C}=M I N, I O \\ & V_{I N}=V_{I H} \text { or } V \end{aligned}$	$\begin{aligned} & =-400 \mu \mathrm{~A} \\ & \text { per Truth Table } \end{aligned}$	V
VOL	Output LOW Voltage		0.25	0.4	$\mathrm{l} \mathrm{OL}=4.0 \mathrm{~mA}$	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I N}=V_{I H} \text { or } V_{I L} \\ & \text { per Truth Table } \end{aligned}$	V
			0.35	0.5	$\mathrm{lOL}=8.0 \mathrm{~mA}$		V
I_{H}	Input HIGH Current		1.0	$\begin{aligned} & 20 \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & V_{C C}=M A X, V_{I N}=2.7 \mathrm{~V} \\ & V_{C C}=M A X, V_{I N}=7.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$
IIL	Input LOW Current			-0.4	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$		mA
los	Output Short Circuit Current (note 2)	- 20		- 100	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		mA
Icc	Power Supply Current		6.0	10	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$		mA

Notes: 1. Conditions for testing, not shown in the table, are chosen to guarantee under "worst case" conditions.
2. Not more than one output should be shorted at a time.
(*) * Typical values are at $\mathrm{V}_{\mathrm{Cc}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

AC CHARACTERISTICS : $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Tests Conditions		Unit
		Min.	Typ.	Max.			
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay, Select to \bar{Z} Output		$\begin{aligned} & 14 \\ & 20 \end{aligned}$	$\begin{aligned} & 33 \\ & 32 \end{aligned}$	Fig. 1	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$	ns
$t_{\text {PLH }}$ tphL	Propagation Delay, Select to Z Output		$\begin{aligned} & \hline 27 \\ & 18 \\ & \hline \end{aligned}$	$\begin{aligned} & 43 \\ & 30 \\ & \hline \end{aligned}$	Fig. 2		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \\ & \hline \end{aligned}$	Propagation Delay, Enable to \bar{Z} Output		$\begin{aligned} & 15 \\ & 18 \\ & \hline \end{aligned}$	$\begin{aligned} & 24 \\ & 30 \\ & \hline \end{aligned}$	Fig. 2		ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay, Enable to Z Output		$\begin{aligned} & 26 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 42 \\ & 32 \\ & \hline \end{aligned}$	Fig. 1		ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \end{aligned}$	Propagation Delay, Data to \bar{Z} Output		$\begin{aligned} & 13 \\ & 12 \end{aligned}$	$\begin{aligned} & 21 \\ & 20 \end{aligned}$	Fig. 1		ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay, Data to Z Output		$\begin{aligned} & \hline 20 \\ & 16 \\ & \hline \end{aligned}$	$\begin{aligned} & 32 \\ & 26 \\ & \hline \end{aligned}$	Fig. 2		ns

AC WAVEFORMS

Figure 1.

Figure 2.

8-INPUT MULTIPLEXER

- SCHOTTKY PROCESS FOR HIGH SPEED
- MULTIFUNCTION CAPABILITY
- ON-CHIP SELECT LOGIC DECODING
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS
- FULLY TTL AND CMOS COMPATIBLE

DESCRIPTION

The T74LS152 is a MSI high speed 8-input Digital Multiplexer. It provides, in one package, the ability to select one bit of data from up to eight sources. It can be used as a universal function generator to generate any logic function of four variables.

PIN CONNECTION (top view)
DUAL IN LINE

CHIP CARRIER

LOGIC SYMBOL AND LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	-0.5 to 7	V
$\mathrm{~V}_{1}$	Input Voltage, Applied to Input	-1.5 to 15	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage, Applied to Output	-0.5 to 5.5	V
I_{1}	Input Current, Into Inputs	-30 to 5	mA
I_{O}	Output Current, into Outputs	60	mA

Stresses in excess of those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operatonal sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device relability

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage		Temperature	
	Min.	Typ.		
T74LS152XX	4.75 V	5.0 V	5.25 V	$0{ }^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type

FUNCTIONAL DESCRIPTION

This device is a logical implementation of a single pole, 8 -position switch with the switch position controlled by the state of three Select inputs, $\mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{2}$. The logic function provided at the output is :

$$
\begin{aligned}
\overline{\mathrm{Z}} & =\left(\mathrm{I}_{0} \cdot \overline{\mathrm{~S}}_{0} \cdot \overline{\mathrm{~S}}_{1} \cdot \overline{\mathrm{~S}}_{2}+\mathrm{I}_{1} \cdot \mathrm{~S}_{0} \cdot \overline{\mathrm{~S}}_{1} \cdot \overline{\mathrm{~S}}_{2}+\mathrm{I}_{2} \cdot \overline{\mathrm{~S}}_{0} \cdot \mathrm{~S}_{1} \cdot \overline{\mathrm{~S}}_{2}+\mathrm{I}_{3} \cdot \mathrm{~S}_{0} \cdot \mathrm{~S}_{1} \cdot \overline{\mathrm{~S}}_{2}+\right. \\
& \left.+\mathrm{I}_{4} \cdot \overline{\mathrm{~S}}_{0} \cdot \overline{\mathrm{~S}}_{1} \cdot \mathrm{~S}_{2}+\mathrm{I}_{5} \cdot \mathrm{~S}_{0} \cdot \overline{\mathrm{~S}}_{1} \cdot \mathrm{~S}_{2}+\mathrm{I}_{6} \cdot \overline{\mathrm{~S}}_{0} \cdot \mathrm{~S}_{1} \cdot \mathrm{~S}_{2}+\mathrm{I}_{7} \cdot \mathrm{~S}_{0} \cdot \mathrm{~S}_{1} \cdot \mathrm{~S}_{2}\right) .
\end{aligned}
$$

TRUTH TABLE

S_{2}	S_{1}	S_{0}	I_{0}	l_{1}	I_{2}	I_{3}	14	I_{5}	I_{6}	I_{7}	$\overline{\mathbf{Z}}$
L	L	L	L	X	X	X	X	X	X	X	H
L	L	L	H	X	x	X	X	X	X	X	L
L	L	H	X	L	x	X	X	X	X	X	H
L	L	H	X	H	X	X	X	X	X	X	L
L	H	L	X	X	L	X	X	X	x	x	H
L	H	L	X	X	H	X	X	X	X	X	L
L	H	H	X	X	X	L	X	X	X	X	H
L	H	H	X	X	X	H	X	X	X	X	L
H	L	L	X	X	X	X	L	X	X	X	H
H	L	L	X	X	X	X	H	X	X	X	L
H	L	H	X	X	X	X	X	L	X	X	H
H	L	H	X	X	X	X	X	H	X	X	L
H	H	L	X	X	X	X	X	X	L	X	H
H	H	L	X	X	x	X	X	X	H	X	L
H	H	H	X	X	X	X	X	X	X	L	H
H	H	H	X	X	X	X	X	X	X	H	L

$H=H I G H$ Voltage Level
$L=$ LOW Voltage Level
X = Don't Care

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
V_{IH}	Input HIGH Voltage	2.0			Guaranteed Input HIGH Treshold Voltage for All Inputs		V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	Guaranteed Input LOW Treshold Voltage for All Inputs		V
$V_{C D}$	Input Clamp Diode Voltage		-0.65	-1.5	$\mathrm{V}_{C C}=\mathrm{MIN}, \mathrm{l}_{\mathrm{N}}=-18 \mathrm{~mA}$		V
V OH	Output HIGH Voltage	2.7	3.4		$\begin{aligned} & V_{C C}=M I N, I_{O H}=-400 \mu \mathrm{~A} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \text { per Truth Table } \end{aligned}$		V
VoL	Output LOW Voltage		0.25	0.4	$\mathrm{lOL}=4.0 \mathrm{~mA}$	$\begin{aligned} & V_{C C}=M I N, \\ & V_{\mathbb{I N}}=V_{I H} \text { or } V_{\mathrm{IL}} \\ & \text { per Truth Table } \end{aligned}$	V
			0.35	0.5	$\mathrm{loL}=8.0 \mathrm{~mA}$		V
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current			$\begin{aligned} & 20 \\ & 0.1 \end{aligned}$	$\begin{aligned} & V_{C C}=M A X, V_{I N}=2.7 \mathrm{~V} \\ & V_{C C}=M A X, V_{I N}=7.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
11.	Input LOW Current			-0.4	$\mathrm{V}_{\mathrm{Cc}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$		mA
los	Output Short Circuit Current (note 2)	-20		- 100	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		mA
Icc	Power Supply Current		6.0	9.0	$V_{C C}=$ MAX		mA

Notes : 1 Conditions for testing, not shown in the table, are chosen to guarantee under "worst case" conditions.
2 Not more than one output should be shorted at a tıme.
(*) Typical values are at $\mathrm{V}_{\mathrm{CC}}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

AC CHARACTERISTICS : $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Tests Conditions		Unit
		Min.	Typ.	Max.			
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay, Select to \bar{Z} Output		$\begin{aligned} & 14 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 23 \\ & 32 \\ & \hline \end{aligned}$	Fig. 1	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & C_{L}=15 \mathrm{pF} \end{aligned}$	ns
$t_{\text {PLH }}$ t_{PHL}	Propagation Delay, Select to \bar{Z} Output		$\begin{aligned} & 13 \\ & 12 \end{aligned}$	$\begin{aligned} & 21 \\ & 20 \end{aligned}$	Fig. 1		ns

AC WAVEFORMS

Figure 1.

SC-0009

DUAL 4-INPUT MULTIPLEXER

- MULTIFUNCTION CAPABILITY
- NON-INVERTING OUTPUTS
- SEPARATE ENABLE FOR EACH MULTIPLEXER
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS
- FULLY TTL AND CMOS COMPATIBLE

DESCRIPTION
The T74LS153 is a high speed Dual 4-input Multiplexer with common select inputs and individual enable inputs for each section. It can select two bits data from four sources. The two buffered outputs present data in the true (non-inverted) form. In addition to multiplexer operation, the LS153 can generate any two functions of three variables. The

PIN NAMES

\underline{S}_{0}	COMMON SELECT INPUT
\bar{E}	ENABLE (active LOW) INPUT
$\mathrm{I}_{0}, \mathrm{I}_{1}$	MULTIPLEXER INPUTS
z	MULTIPLEXER OUTPUT

LS153 is fabricated with the Schottky barrier diode process for high speed and is completely compatible with all TTL families.

B1
(Plastic Package)

M1 (Micro Package)

D1
(Ceramic Package)

C1 (Plastıc Chip Carner)

ORDER CODES :

T74LS153 D1	T74LS153 C1
T74LS153 B1	T74LS153 M1

PIN CONNECTION (top view)

DUAL IN LINE

CHIP CARRIER

NC = No Internal Connection

LOGIC SYMBOL AND LOGIC DIAGRAM

Vcc $=\operatorname{Pin} 16$
$G N D=P \ln 8$
() = Pin numbers

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{c c}$	Supply Voltage	-0.5 to 7	V
V_{1}	Input Voltage, Applied to Input	-0.5 to 15	V
V_{O}	Output Voltage, Applied to Output	-0.6 to 10	V
I_{1}	Input Current, into Inputs	-30 to 5	mA
I_{O}	Output Current, into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maximum Ratings" may cause permanent damage to the device
This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specrication is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage		Temperature	
	Min.	Typ.		
T74LS153XX	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type

FUNCTIONAL DESCRIPTION

The LS153 is a Dual 4 -Input Multiplexer fabricated with Low Power Schottky barrier diode process for high speed. It can select two bits of data from up to four sources under the control of the common Select Inputs ($\mathrm{S}_{0}, \mathrm{~S}_{1}$). The two 4 -input multiplexer circuits
have individual active LOW Enables ($\overline{\mathrm{E}}_{\mathrm{a}}, \overline{\mathrm{E}}_{\mathrm{b}}$) which can be used to strobe the outputs independently. When the Enables (\bar{E}_{a}, \bar{E}_{b}) are HIGH, the corresponding outputs $\left(\mathrm{Z}_{\mathrm{a}}, \mathrm{Z}_{\mathrm{b}}\right)$ are forced LOW.

The LS153 is the logic implementation of a 2-pole, 4 -position switch, where the position of the switch is determined by the logic levels supplied to the two

Select Inputs. The logic equations for the outputs are shown below.

$$
\begin{aligned}
& Z_{a}=\bar{E}_{a} \cdot\left(l_{0 a} \cdot \bar{S}_{1} \cdot \bar{S}_{0}+I_{1 a} \cdot \bar{S}_{1} \cdot S_{0}+I_{2 a} \cdot S_{1} \cdot \bar{S}_{0}+I_{3 a} \cdot S_{1} \cdot S_{0}\right) \\
& Z_{b}=\bar{E}_{b} \cdot\left(l_{0 b} \cdot \bar{S}_{1} \cdot \bar{S}_{0}+I_{1 b} \cdot \bar{S}_{1} \cdot \mathrm{~S}_{0}+I_{2 b} \cdot \mathrm{~S}_{1} \cdot \bar{S}_{0}+I_{3 b} \cdot \mathrm{~S}_{1} \cdot \mathrm{~S}_{0}\right)
\end{aligned}
$$

The LS153 can be used to move data from a group of registers to a common output bus. The particular register from which the data came would be determined by the state of the Select Inputs. A less ob-
vious application is a function generator. The LS153 can generate two functions of three variables. This is useful for implementing highly irregular random logic.

TRUTH TABLE

Select Inputs		Input (a or b)					Output
S_{0}	S_{1}	\bar{E}	I_{0}	I_{1}	I_{2}	I_{3}	Z
X	X	H	X	X	X	X	L
L	L	L	L	X	X	X	L
L	L	L	H	X	X	X	H
H	L	L	X	L	X	X	L
H	L	L	X	H	X	x	H
L	H	L	X	X	L	X	L
L	H	L	X	X	H	X	H
H	H	L	X	X	X	L	L
H	H	L	X	X	X	H	H

H = HIGH Voltage Level
L = LOW Voltage Level
X = Don't Care

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
V_{IH}	Input HIGH Voltage	2.0			Guaranteed Input HIGH Treshold Voltage for all Input		v
VII	Input LOW Voltage			0.8	Guaranteed Input LOW Treshold Voltage for all Input		V
$\mathrm{V}_{\text {CD }}$	Input Clamp Diode Voltage		-0.65	-1.5	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{l}_{\mathrm{I}}=-18 \mathrm{~mA}$		V
Vor	Output HIGH Voltage	2.7	3.4		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IOH}_{\mathrm{O}}=-400 \mu \mathrm{~A}$ $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$ per Truth Table		V
Vol	Output LOW Voltage		0.25	0.4	$\mathrm{loL}=4.0 \mathrm{~mA}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \text { per Truth Table } \end{aligned}$	V
			0.35	0.5	$\mathrm{loL}=8.0 \mathrm{~mA}$		V
${ }_{1 / 4}$	Input HIGH Current		1.0	$\begin{aligned} & 20 \\ & 0.1 \end{aligned}$	$\begin{aligned} & V_{C C}=M A X, V_{I N}=2.7 \mathrm{~V} \\ & V_{C C}=M A X, V_{I N}=7.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$
$1 / 1$	Input LOW Current			-0.36	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$		mA
los	Output Short Circuit Current (note 2)	-20		-100	$V_{C C}=M A X, V_{\text {OUT }}=0 \mathrm{~V}$		mA
lcc	Power Supply Current		6.0	10	$V_{C C}=$ MAX		mA

Notes: 1. Conditions for testing, not shown in the table, are chosen to guarantee under "worst case" conditions.
2. Not more than one output should be shorted at a time.
(*) Typıcal values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

AC CHARACTERISTICS : $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Tests Conditions		Unit
		Min.	Typ.	Max.			
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay, Select to Output		$\begin{aligned} & 19 \\ & 25 \end{aligned}$	$\begin{aligned} & 25 \\ & 38 \end{aligned}$	Fig. 2	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$	ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay, Enable to Output		$\begin{aligned} & 16 \\ & 21 \end{aligned}$	$\begin{aligned} & 24 \\ & 32 \end{aligned}$	Fig. 1		ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay, Data to Output		$\begin{aligned} & 10 \\ & 17 \end{aligned}$	$\begin{aligned} & 15 \\ & 26 \end{aligned}$	Fig. 2		ns

AC WAVEFORMS

Figure 1.

Figure 2.

T74LS155 T74LS156

DUAL 1-OF-4 DECODER/DEMULTIPLEXER

- SCHOTTKY PROCESS FOR HIGH SPEED
- MULTIFUNCTION CAPABILITY
- COMMON ADDRESS INPUTS
- TRUE OR COMPLEMENT DATA DEMULTIPLEXING
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS
- FULLY TTL AND CMOS COMPATIBLE

DESCRIPTION

The TTLMSI T74LS155 and T74LS156 are high speed Dual 1-of-4 Decoder/Demultiplexers. These devices have two decoders with common 2-bit Address inputs and separate gated Enable inputs.
Decoder "a" has an Enable gate with one active HIGH and one active LOW input. Decoder "b" has two active LOW Enable inputs.If the Enable functions are satisfied, one input of each decoder will be LOW as selected by the address inputs. The LS156 has open collector outputs for wired-OR (DOT-

PIN NAMES
$\bar{A}_{0}-\bar{A}_{1}$
$\bar{E}_{a}-\bar{E}_{b}$
$\bar{E}_{a} \bar{O}_{0}-\bar{O}_{3}$

ADDRESS INPUTS
ENABLE (active LOW) INPUTS ENABLE (active HIGH) INPUT ACTIVE LOW OUTPUTS

AND) decoding and function generator applications. The LS155 and LS156 are fabricated with the Schottky barrier diode process for high speed and are completely compatible with all TTL families.

PIN CONNECTION (top view)

LOGIC SYMBOL AND LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATING

Symbol	Parameter	Value	Unit
$V_{C C}$	Supply Voltage	-0.5 to 7	V
V_{I}	Input Voltage, Applied to Input	LS155	-0.5 to 15
		LS156	-1.5 to 5.5
V_{0}	Output Voltage, Applied to Output	-0.5 to 10	V
I_{1}	Input Current, Into Inputs	-30 to 5	V
I_{0}	Output Current, into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maximum Ratıngs" may cause permanent damage to the device This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied Exposure to absolute maximum rating conditıons for extended periods may affect device reliability

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage		Temperature	
	Min.	Typ.		
T74LS155/156XX	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type

FUNCTIONAL DESCRIPTION

The LS155 and LS156 are Dual 1-of-4 Decoder/demultiplexer with common Address inputs and separate gated Enable inputs. Whenenabled, each decoder section accepts the binary weighted Address inputs ($\mathrm{A}_{0}-\mathrm{A}_{1}$) and provides four mutually exclusive active LOW outputs $\left(\mathrm{O}_{0}-\mathrm{O}_{3}\right)$. If the Enable requirements of each decoder are not met, all ouputs of that decoder are HIGH.
Each decoder section has a 2 -input enable gate. The enable gate for Decoder "a" requires one active HIGH input and one active LOW input ($\bar{E}_{\mathrm{a}} \bullet \mathrm{E}_{\mathrm{a}}$). In demultiplexing applications, Decoder "a" can accepts either true or complemented data by using the
\bar{E}_{a} or \bar{E}_{a} inputs respectively. The enable gate for Decoder "b" requires two active LOW inputs ($\mathrm{E}_{\mathrm{b}} \bullet \mathrm{E}_{\mathrm{b}}$). The LS155 or LS156 can be used as a 1-of-8 Decoder/Demultiplexer by tying \bar{E}_{a} to $\overline{\mathrm{E}}_{\mathrm{b}}$ and relabeling the common connection as (A2). The other \bar{E}_{b} to $\overline{\mathrm{E}}_{\mathrm{a}}$ are connected together to form the common enable.
The LS155 and LS156 can be used to generate all four minterms of two variables. These four minterms are used in some applications replacing multiple gate functions as shown in Fig. 1. The LS156 has the further advantage of being able to AND the minterm functions by tying outputs together. Any number of terms can be wired-AND as shown below.

$$
\begin{gathered}
f=\left(E+A_{0}+A_{1}\right) \bullet\left(E+\bar{A}_{0}^{-}+A_{1}\right) \bullet\left(E+A_{0}+\bar{A}_{1}^{-}\right) \bullet\left(E+\bar{A}_{0}^{-}+\bar{A}_{1}\right) \\
\text { where } E=E_{a}+E_{a}^{-} ; E=E_{b}+E_{b}^{-}
\end{gathered}
$$

Figure 1.

TRUTH TABLE

Address		Enable "a"		Output "a"				Enable 'b"		Output 'b"			
A_{0}	A_{1}	E_{a}	$\overline{\mathbf{E}}_{\mathbf{a}}$	$\overline{O_{0}}$	\bar{O}_{1}	$\overline{\mathrm{O}}_{2}$	\bar{O}_{3}	$\bar{E}_{\text {b }}$	$\bar{E}_{\text {b }}$	\bar{O}	\bar{O}_{1}	$\overline{\mathrm{O}}_{2}$	$\overline{\mathbf{O}}_{3}$
X	X	L	X	H	H	H	H	H	X	H	H	H	H
X	X	X	H	H	H	H	H	X	H	H	H	H	H
L	L	H	L	L	H	H	H	L	L	L	H	H	H
H	L	H	L	H	L	H	H	L	L	H	L	H	H
L	H	H	L	H	H	L	H	L	L	H	H	L	H
H	H	H	L	H	H	H	L		L	H	H	H	L

[^7]DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
V_{H}	Input HIGH Voltage	2.0			Guaranteed Input HIGH Treshold Voltage for All Inputs		V
VIL	Input LOW Voltage			0.8	Guaranteed Input LOW Treshold Voltage for All Inputs		V
$\mathrm{V}_{C D}$	Input Clamp Diode Voltage		-0.65	-1.5	$\mathrm{V}_{C C}=\mathrm{MIN}, \mathrm{IIN}=-18 \mathrm{~mA}$		V
V OH	Output HIGH Voltage for LS155 Only	2.7	3.4		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IOH}=-400 \mu \mathrm{~A}$ $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL} per Truth Table		V
Іон	Output HIGH Current for LS156 Only			100	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{OH}}=-5.5 \mathrm{~V}$ $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$ per Truth Table		$\mu \mathrm{A}$
VoL	Output LOW Voltage		0.25	0.4	$\mathrm{loL}=4.0 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$, $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL} per Truth Table	V
			0.35	0.5	$\mathrm{loL}=8.0 \mathrm{~mA}$		V
$1{ }_{1 /}$	Input HIGH Current			$\begin{aligned} & \hline 20 \\ & 0.1 \end{aligned}$	$\begin{aligned} & V_{C C}=M A X, V_{I N}=2.7 \mathrm{~V} \\ & V_{C C}=M A X, V_{I N}=7.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
$1 / 1$	Input LOW Current			-0.4	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$		mA
los	Output Short Circuit Current (note 2)	-20		- 100	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		mA
lcc	Power Supply Current		6.0	10	$V_{C C}=$ MAX		mA

Notes: 1. Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions
2. Not more than one output should be shorted at a tıme.
(*) Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

AC CHARACTERISTICS : $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits				Test Conditions		Unit
		LS155		LS156				
		Typ.	Max.	Typ.	Max.			
tpLH $t_{\text {PHL }}$	Propagation Delay, Address to Output	$\begin{aligned} & 17 \\ & 19 \end{aligned}$	$\begin{aligned} & 26 \\ & 30 \end{aligned}$	$\begin{aligned} & 31 \\ & 34 \end{aligned}$	$\begin{aligned} & 46 \\ & 51 \end{aligned}$	Fig. 2	$\mathrm{V}_{\mathrm{Cc}}=5.0 \mathrm{~V}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay, \bar{E}_{a} or \bar{E}_{b} to Output	$\begin{aligned} & 10 \\ & 19 \end{aligned}$	$\begin{aligned} & 15 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & 25 \\ & 34 \\ & \hline \end{aligned}$	$\begin{aligned} & 40 \\ & 51 \\ & \hline \end{aligned}$	Fig. 3	$\begin{aligned} \mathrm{C}_{\mathrm{L}} & =15 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =2 \mathrm{k} \Omega \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay, E_{a} to Output	$\begin{aligned} & 18 \\ & 18 \end{aligned}$	$\begin{aligned} & 27 \\ & 27 \\ & \hline \end{aligned}$	$\begin{aligned} & 32 \\ & 32 \end{aligned}$	$\begin{aligned} & 48 \\ & 48 \end{aligned}$	Fig. 2	(only LS156)	ns

AC WAVEFORMS

Figure 2.

Figure 3.

QUAD 2-INPUT MULTIPLEXER

- SCHQTTKY PROCESS FOR HIGH SPEED
- MULTIFUNCTION CAPABILITY
- NON-INVERTING OUTPUTS
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS
- FULLY TTL AND CMOS COMPATIBLE

DESCRIPTION

The TTL/MSI T74LS157 is a very high speed Quad 2-input Multiplexer, Four bits of data from two sources can be selected using the common Select and Enable inputs. The four buffered outputs present the selected data in the true (non-inverted) from. The LS157 can also be used to generate any four of the 16 different functions of two variables. The LS157 is

PIN NAMES

$\frac{\mathrm{S}}{\mathrm{E}}$	COMMON SELECT INPUT
$\mathrm{I}_{0 \mathrm{a}}-\mathrm{I}_{\mathrm{ob}}$	ENABLE (active LOW) INPUT
$\mathrm{I}_{1 \mathrm{a}}-\mathrm{I}_{1 \mathrm{~b}}$	DATA INPUTS FROM SOURCE 0
$\mathrm{Z}_{\mathrm{a}}-\mathrm{Z}_{\mathrm{b}}$	DATA INPUTS FROM SOURCE 1

fabricated with the Schottky barrier diode process for high speed and is completely compatible with all TLL families.

	D1 (Ceramic Package)
ORDER CODES: T74LS157 D1 T74LS157 C1 T74LS157 B1 T74LS157 M1	

PIN CONNECTION (top view)

DUAL IN LINE

CHIP CARRIER

NC = No Internal Connection

LOGIC SYMBOL AND LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{C C}$	Supply Voltage	-0.5 to 7	V
V_{1}	Input Voltage, Applied to Input	-0.5 to 15	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage, Applied to Output	-0.6 to 10	V
I_{1}	Input Current, into Inputs	-30 to 5	mA
I_{O}	Output Current, into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maximum Ratngs" may cause permanent damage to the device.
This is a stress rating only and functional operaton of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage		Temperature
	Min.	Typ.	

$X X=$ package type.

FUNCTIONAL DESCRIPTION

The LS157 is a Quad 2-Input Multiplexer fabricated with the Schottky barrier diode process for high speed. It selects four bits of data from two sources under the control or the common Select Input (S). The Enable Input (\bar{E}) is active LOW. When \bar{E} is HIGH, all of the outputs (Z) are forced LOW regardless of all other inputs.
The LS157 is the logic implementation of a 4-pole, 2-position switch, where the position of the switch is
determined by the logic levels supplied to the Select Inputs. The logic equation for the outputs are shown below.

$$
\begin{aligned}
& \mathbf{Z}_{\mathrm{a}}=\overline{\mathrm{E}} \cdot\left(\mathrm{I}_{1 \mathrm{a}} \cdot \mathrm{~S}+\mathrm{I}_{0 \mathrm{a}} \cdot \overline{\mathrm{~S}}\right) \\
& \mathbf{Z}_{\mathrm{b}}=\overline{\mathrm{E}} \cdot\left(\mathrm{I}_{1 \mathrm{~b}} \cdot \mathrm{~S}+\mathrm{I}_{0 \mathrm{~b}} \cdot \overline{\mathrm{~S}}\right) \\
& \mathbf{Z}_{\mathrm{c}}=\overline{\mathrm{E}} \cdot\left(\mathrm{I}_{1 \mathrm{c}} \cdot \mathrm{~S}+\mathrm{I}_{0 \mathrm{c}} \cdot \overline{\mathrm{~S}}\right) \\
& \mathbf{Z}_{\mathrm{d}}=\mathrm{E} \cdot\left(\mathrm{I}_{1 \mathrm{~d}} \cdot \mathrm{~S}+\mathrm{I}_{0 \mathrm{~d}} \cdot \mathrm{~S}\right)
\end{aligned}
$$

A common use of the LS157 is the moving of data from two groups of registers to four common output buses. The particular register from which the data comes is determined by the state of the Select Input. A less obvious use is as a function generator. The LS157 can generate any four of the 16 different functions of two variables with one variable common. This is useful for implementing highly irregular logic.

TRUTH TABLE

Enable	Select Input	Inputs		Output
$\overline{\mathrm{E}}$	S	I $_{0}$	I_{1}	Z
H	X	X	X	L
L	H	X	L	L
L	H	X	H	H
L	L	L	X	L
L	L	H	X	H

H = HIGH Voltage Level
L = LOW Voltage Level
X = Don't Care

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
V_{IH}	Input HIGH Voltage	2.0			Guaranteed Input HIGH Treshold Voltage for All Inputs		V
VIL	Input LOW Voltage			0.8	Guaranteed Input LOW Treshold Voltage for All Inputs		v
$V_{C D}$	Input Clamp Diode Voltage		-0.65	-1.5	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{l} \mathrm{IIN}=-18 \mathrm{~mA}$		V
Vor	Output HIGH Voltage	2.7	3.4		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IOH}=-400 \mu \mathrm{~A}$ $\mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\mathbb{I H}}$ or $\mathrm{V}_{\text {IL }}$ per Truth Table		V
VoL	Output LOW Voltage		0.25	0.4	$\mathrm{loL}=4.0 \mathrm{~mA}$	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \text { per Truth Table } \end{aligned}$	V
			0.35	0.5	$\mathrm{loL}=8.0 \mathrm{~mA}$		V
$\mathrm{IH}^{\text {H}}$	Input HIGH Current $\mathrm{I}_{\mathrm{o}}, \mathrm{I}_{1}$ E, S			$\begin{aligned} & 20 \\ & 40 \end{aligned}$	$\mathrm{V}_{\text {cC }}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$		$\mu \mathrm{A}$
	Input HIGH Current at Max Input Voltage Io, I_{1} E, S			$\begin{aligned} & 0.1 \\ & 0.2 \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$		mA
IIL	Input LOW Current $\mathrm{I}_{\mathrm{o}}, \mathrm{I}_{1}$ E, S			$\begin{aligned} & -0.4 \\ & -0.8 \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$		mA
los	Output Short Circuit Current (note 2)	-20		-100	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		mA
Icc	Power Supply Current		10	16	$V_{\text {cc }}=$ MAX		mA

Notes : 1 Conditions for testing, not shown in the table, are chosen to guarantee under "worst case" conditions.
2. Not more than one output should be shorted at a time
(*) Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

AC CHARACTERISTICS : $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Tests Conditions		Unit
		Min.	Typ.	Max.			
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay, Select to Output		$\begin{aligned} & 15 \\ & 18 \end{aligned}$	$\begin{aligned} & 23 \\ & 27 \end{aligned}$	Fig. 2	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$	ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay, Enable to Output		$\begin{aligned} & 13 \\ & 14 \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 21 \end{aligned}$	Fig. 1		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay, Data to Output		9 9	$\begin{aligned} & 14 \\ & 14 \\ & \hline \end{aligned}$	Fig. 2		ns

AC WAVEFORMS

Figure 1.

Figure 2.

QUAD 2-INPUT MULTIPLEXER

- SCHOTTKY PROCESS FOR HIGH SPEED
- MULTIFUNCTION CAPABILITY
- INVERTING OUTPUTS
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS
- FULLY TTL AND CMOS COMPATIBLE

DESCRIPTION

The T74LS158 is a high speed Quad 2-input Multiplexer. It selects four bits of data from two sources using common Select and Enable inputs. The four buffered outputs present the selected data in the true inverted from. The LS158 can also generate any four of the 16 different functions of two variables.

PIN NAMES

$\frac{S}{E}$	COMMON SELECT INPUT
$I_{0 a}-I_{0 d}$	ENABLE (active LOW) INPUT
$I_{1 a}-I_{1 d}$	DATA INPUTS FROM SOURCE 0
$Z_{a}-Z_{d}$	INTA INPUTS FROM SOURCE 1

The LS158 is fabricated with the Schottky barnier diode process for high speed and is completely compatible with all TTL families.

$\begin{gathered} \text { B1 } \\ \text { (Plastic Package) } \end{gathered}$	D1 (Ceramic Package)
M1 (Micro Package)	(Plastic Chip Carrier)
$\begin{array}{r} \text { ORDE } \\ \text { T74LS158 D1 } \\ \text { T74LS158 B1 } \end{array}$	ES : T74LS158 C1 T74LS158 M1

PIN CONNECTION (top view)
DUAL IN LINE

LOGIC SYMBOL AND LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{C C}$	Supply Voltage	-0.5 to 7	V
V_{1}	Input Voltage, Applied to Input	-0.5 to 15	V
V_{0}	Output Voltage, Applied to Output	-0.6 to 10	V
I_{1}	Input Current, into Inputs	-30 to 5	mA
I_{O}	Output Current, into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maxımum Ratings" may cause permanent damage to the device This is a stress rating only and functional operation of the device at these or any other condrtions in excess of those indicated in the operational sections of this specification is not implied. Exposure to absolute maxımum rating conditıons for extended periods may affect device reliability

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage		Temperature	
	Min.	Typ.		
T74LS158XX	4.75 V	5.0 V	5.25 V	$0{ }^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type

FUNCTIONAL DESCRIPTION

The LS158 is a Quad 2-Input Multiplexer fabricated with the Schottky barrier diode process for high speed. It selects four bits of data from two sources under the control or the common Select Input (S) and pre-
sent the data in inverted form at the four outputs. The Enable Input ($\overline{\mathrm{E}}$) is active LOW. When $\overline{\mathrm{E}}$ is HIGH, all of the outputs ($\overline{\mathrm{Z}}$) are forced HIGH regardless of all other inputs.

The LS158 is the logic implementation of a 4-pole, 2 -position switch, where the position of the switch is determined by the logic levels supplied to the Select Inputs.
A common use of the LS158 is the moving of data from two groups of registers to four common output buses. The particular register from which the data comes is determined by the state of the Select Input. A less obvious use is as a function generator. The LS158 can generate four functions of two variables with one variable common. This is useful for implementing gating functions.

TRUTH TABLE

Enable	Select Input	Inputs		Output
$\overline{\mathrm{E}}$	S	I_{0}	I_{1}	\bar{Z}
H	X	X	X	H
L	L	L	X	H
L	L	H	X	L
L	H	X	L	H
L	H	X	H	L

H = HIGH Voltage Level
L = LOW Voltage Level
X = Don't Care

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
V_{H}	Input HIGH Voltage	2.0			Guaranteed Input HIGH Treshold Voltage for all Input		V
VIL	Input LOW Voltage			0.8	Guaranteed Input LOW Treshold Voltage for all Input		V
$V_{C D}$	Input Clamp Diode Voltage		-0.65	-1.5	$\mathrm{V}_{C C}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$		V
VOH	Output HIGH Voltage	2.7	3.4		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IOH}_{\mathrm{O}}=-400 \mu \mathrm{~A}$ $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$ per Truth Table		V
VoL	Output LOW Voltage		0.25	0.4	$\mathrm{OL}=4.0 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{cc}}=\mathrm{M} \mathrm{IN}$ $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL} per Truth Table	V
			0.35	0.5	$\mathrm{loL}=8.0 \mathrm{~mA}$		V
${ }_{1 / 4}$	Input HIGH Current $\mathrm{Io}_{\mathrm{o}} \mathrm{I}_{1}$ E, S			$\begin{aligned} & 20 \\ & 40 \\ & \hline \end{aligned}$	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$		$\mu \mathrm{A}$
	Input HIGH Current at Max Input Voltage I_{o}, I_{1} E, S			$\begin{aligned} & 0.1 \\ & 0.2 \\ & \hline \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$		mA
ILL	Input LOW Current $\mathrm{I}_{\mathrm{o}}, \mathrm{I}_{1}$ E, S			$\begin{array}{r} -0.4 \\ -0.8 \\ \hline \end{array}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$		mA
los	Output Short Circuit Current (note 2)	-20		-100	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		mA
Icc	Power Supply Current		5.0	8.0	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$		mA

Notes: 1. Conditions for testing, not shown in the table, are chosen to guarantee under "worst case" conditions.
2. Not more than one output should be shorted at a time.
(*) Typical values are at $\mathrm{V}_{\mathrm{Cc}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

AC CHARACTERISTICS : $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Tests Conditions		Unit
		Min.	Typ.	Max.			
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay, Select to Output		$\begin{aligned} & 13 \\ & 16 \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 24 \\ & \hline \end{aligned}$	Fig. 1	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & C_{L}=15 \mathrm{pF} \end{aligned}$	ns
$t_{\text {pLH }}$ $t_{\text {PHL }}$	Propagation Delay, Enable to Output		$\begin{aligned} & 11 \\ & 18 \end{aligned}$	$\begin{array}{r} 17 \\ 24 \\ \hline \end{array}$	Fig. 2		ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay, Data to Output		$\begin{gathered} 7 \\ 10 \end{gathered}$	$\begin{aligned} & 12 \\ & 15 \end{aligned}$	Fig. 1		ns

AC WAVEFORMS

Figure 1.

Figure 2.

SGS-THOMSON NDCROELECTRONUCS

LS160A/162A : BCD DECADE COUNTERS LS161A/163A : 4-BIT BINARY COUNTERS

- SYNCHRONOUS COUNTING AND LOADING
- TWO COUNT ENABLE INPUTS FOR HIGHSPEED SYNCHRONOUSLY EXPANSION
- EDGE-TRIGGERED OPERATION
- TYPICAL COUNT RATE OF 35 MHz
- FULLY TTL AND CMOS COMPATIBLE

DESCRIPTION

The LS160A/161A/162A/163A are high-speed 4-bit synchronous counters. They are edge-triggered, synchronously presettable, and cascadable MSI building, blocks for counting, memory addressing, frequency division and other applications. The LS160A and LS162A count modulo 10 (BCD). The LS161A and LS163A count modulo 16 (binary).
The LS160A and LS161A have an asynchronous Master Reset (Clear) input that overrides, and is in-

	BCD Modulo 10	Binary (modulo 16)
Asynchronous Reset	LS160A	LS161A
Synchronous Reset	LS162A	LS163A

dependent of, the clock and all other control inputs. The LS162A and LS163A have a Synchronous Reset (Clear) input that overrides all other control inputs, but is active only during the rising clock edge.

PIN CONNECTION (top view)

PIN NAMES

$\overline{\mathrm{PE}}$	PARALLEL ENABLE (active LOW) INPUT $\mathrm{P}_{0}-\mathrm{P}_{3}$ CEP
	PARALLEL INPUTS
CET	COUNT ENABLE PARALLEL
CP	INPUT
$\overline{M R}$	COUNT ENABLE TICKLE INPUT
	CLOCK (avtive HIGH going edge)
INPUT	
$\overline{\mathrm{SR}}$	MASTER RESET (active LOW)
	INPUT
$\mathrm{Q}_{0}-\mathrm{Q}_{3}$	SYNCHRONOUS RESET
TC	(active LOW) INPUT

LOGIC SYMBOL AND TRUTH TABLE

$* \overline{M R}$ for LS160A/161A$*$ SR for LS162A/163A					
${ }^{9} 140^{5}$	L	X	X	X	Reset (clear)
	H	L	X	X	Load ($P_{n} \rightarrow Q_{n}$)
7 CEP ${ }_{\text {P }} \mathrm{P}_{0} \mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{3}$	H	H	H	H	Count (increment)
10-l $\begin{aligned} & \text { CET }\end{aligned}$	H	H	L	X	No Change (hold)
$2-\left[P_{4 R} a_{4} a_{1} a_{2} a_{3}\right.$	H	H	X	L	No Change (hold)
	*For the LS162A and LS163A only				
114131211	H = HIGH Voltage Level				
V cc $=\operatorname{Pin} 16$	L = LOW Voltage Level				
GND $=\operatorname{Pin} 8$	$\mathrm{X}=\mathrm{Don} \text { 't Care }$				

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	-0.5 to 7	V
$\mathrm{~V}_{1}$	Input Voltage, Applied to Input	-0.5 to 15	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage, Applied to Output	-0.5 to 10	V
I_{1}	Input Current, into Inputs	-30 to 5	mA
I_{O}	Output Current, into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.
This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage		Temperature	
	Min.	Typ.		
T74LS160A/161A/162A/163AXX	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type.

FUNCTIONAL DESCRIPTION

The LS160A/161A/162A/163A are 4-bit synchronous counters with a synchronous Parallel Enable (Load) feature. These counters consist of four edge-triggered D flip-flops with the appropriate data routing networks feeding the D inputs. All changes of the Q outputs (except due to the asynchronous Master Reset in the LS160A and LS161A) occur as a result of, and synchronous with, the LOW to HIGH transition of the Clock input (CP). As long as the set-up time requirements are met, there are no special timing or activity constraints on any of the mode control or data inputs.
Three control inputs - Parallel Enable ($\overline{\mathrm{PE}}$), Count Enable Parallel (CEP) and Count Enable Trickle (CET) - select the mode of operation as shown in the tables. The Count Mode is enabled when the CEP, CET, and PE inputs are HIGH.
When the $\overline{P E}$ is LOW, the counters will synchronously load the data from the parallel inputs into the flip-flops on the LOW to HIGH transition of the clock. Either the CEP or CET inputs can be used to inhibit the count sequence. With the PE held HIGH, a LOW on either the CEP or CET inputs at least one set-up time prior to the LOW to HIGH clock transition will cause the existing output states to be retained. The AND feature of the two Count Enable inputs (CET-CEP) allows synchronous cascading without external gating and without delay accumulation over any pratical number of bits or digits.
The Terminal Count (TC) output is HIGH when the Count Enable Trickle (CET) input is HIGH while the counter is in its maximum count state (HLLH for the

BCD counters, HHHH for the Binary counters). Note that TC is fully decoded and will, therefore, be HIGH only for one count state.
The LS160A and LS162A count modulo 10 following a binary coded decimal (BCD) sequence. They generate a TC output when the CET input is HIGH while the counter is in state 9 (HLLH). From this state they increment to state 0 (LLLL). If loaded with a code in excess of 9 they return to their legitimate sequence within two counts, as explained in the state diagram. States 10 through 15 do not generated a TC output.
The LS161A and LS163A count modulo 16 following a binary sequence. They generated a TC when the CET input is HIGH while the counter is in state 15 (HHHH). From this state they increment to state 0 (LLLL).
The Master Reset ($\overline{\mathrm{MR}}$) of the LS160A and LS161A is asynchronous. When the $\overline{M R}$ is LOW, it overrides all other input conditions and sets the outputs LOW. The MR pin should never be left open. If not used, the MR pin should be tied through a resistor to Vcc, or to a gate output which is permanently set to a HIGH logic level.
The active LOW Sinchronous Reset ($\overline{\mathrm{SR}}$) input of the LS162A and LS163A acts as an edge-triggered control input, overriding CET, CEP and PE, and resetting the four counter flip-flops on the LOW to HIGH transition of the clock. This simplifies the design from race-free logic controlled reset circuits, e.g. to reset the counter synchronously after reaching a predetermined value.

STATE DIAGRAM

LOGIC EQUATIONS

Count Enable = CEP•CET•PE
TC for LS160A \& LS162A $=$ CET $\bullet Q_{0} \bullet \bar{Q}_{1} \bullet \bar{Q}_{2} \bullet Q_{3}$
TC for LS161A \& LS163A $=$ CET $\bullet Q_{0} \bullet Q_{1} \bullet Q_{2} \bullet Q_{3}$
Preset $=\overline{\mathrm{PE}} \bullet \mathrm{CP}+$ (rising clock edge)
Reset $=$ MR (LS160A \& LS161A)
Reset $=\mathbf{S R} \bullet C P+($ nsing clock edge (LS162A \& LS163A) $)$

Note : The LS160A and LS162A can be preset to any state, but will not count beyond 9 . If preset to state 10, 11, 12, 13, 14 or 15, it will return to its normal sequence within two clock pulses.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
V_{H}	Input HIGH Voltage	2.0			Guaranteed Input HIGH Voltage for All Inputs		V
VIL	Input LOW Voltage			0.8	Guaranteed Input LOW Voltage for All Inputs		V
$V_{C D}$	Input Clamp Diode Voltage		-0.65	-1.5	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{l} \mathrm{IIN}=-18 \mathrm{~mA}$		V
$\mathrm{V}_{\text {OH }}$	Output HIGH Voltage	2.7	3.4		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IOH}=-400 \mu \mathrm{~A} \\ & \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {IH }} \text { or } \mathrm{V}_{\text {IL }} \text { per Truth Table } \end{aligned}$		V
VoL	Output LOW Voltage		0.25	0.4	$\mathrm{loL}=4.0 \mathrm{~mA}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \text { per Truth Table } \end{aligned}$	V
			0.35	0.5	$\mathrm{loL}=8.0 \mathrm{~mA}$		V
${ }_{1 / 4}$	Input HIGH Current MR, Data CEP Clock PE CET (LS160A161A)			$\begin{aligned} & 20 \\ & 40 \\ & \hline \end{aligned}$	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$		$\mu \mathrm{A}$
	MR, Data CEP Clock PE CET (LS160A/161A)			$\begin{aligned} & 0.1 \\ & 0.2 \\ & \hline \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$		mA
	Data, CEP, Clock PE, CET, SR (LS162A/163A)			$\begin{aligned} & 20 \\ & 40 \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$		$\mu \mathrm{A}$
	Data, CEP, Clock PE, CET, SR (LS162A/163A)			$\begin{aligned} & 0.1 \\ & 0.2 \\ & \hline \end{aligned}$	$\mathrm{V}_{\text {cc }}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$		mA
IL	Input LOW Current MR, Data CEP Clock PE CET (LS160A/161A)			$\begin{aligned} & -0.4 \\ & -0.8 \end{aligned}$	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$		mA
	Data, CEP, Clock $\overline{\mathrm{PE}}, \mathrm{CET}, \overline{\mathrm{SR}}$ (LS162A163A)			$\begin{array}{r} \hline-0.4 \\ -0.8 \\ \hline \end{array}$	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$		mA
los	Output Short Circuit Current (note 2)	- 20		-100	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		mA
$\begin{aligned} & \mathrm{ICCH} \\ & \mathrm{ICCL} \end{aligned}$	Power Supply Current		$\begin{aligned} & 18 \\ & 19 \end{aligned}$	$\begin{aligned} & 31 \\ & 32 \end{aligned}$	$V C C=M A X$		mA

Notes: 1. Conditions for testing, not shown in the table, are chosen to guarantee operation under "worst case" conditions
2. Not more than one output should be shorted at a time
(*) Typical values are at $\mathrm{V}_{\mathrm{CC}}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

AC CHARACTERISTICS : $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Tests Conditions	Unit
		Min.	Typ.	Max.		
$\begin{aligned} & \mathbf{t}_{\mathrm{PLH}} \\ & \mathbf{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay, Clock to TC		$\begin{aligned} & 20 \\ & 18 \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$	ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay, Clock to Q		$\begin{aligned} & 13 \\ & 18 \end{aligned}$	$\begin{aligned} & 24 \\ & 27 \end{aligned}$		ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay, CET to TC		$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	$\begin{gathered} 14 \\ 14 \end{gathered}$		ns
$\mathrm{t}_{\text {PHL }}$	$\overline{\mathrm{MR}}$ or $\overline{\mathrm{SR}}$ to Q		20	28		ns
$f_{\text {MAX }}$	Maximum Clock Frequency	25	32			MHz

AC CHARACTERISTICS : $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Test Conditions	Unit
		Min.	Typ.	Max.		
$t_{w} \mathrm{CP}$	Clock Pulse Width	25			$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$	ns
t_{w}	$\overline{M R}$ or SR Pulse Width	20				ns
t_{s}	Set-up Time, any Input	20				ns
t_{n}	Hold Time, any Input	0				ns

DEFINITION OF TERMS

SET-UP-TIME (t_{s}) - is defined as the minimum time required for the correct logic level to be present at the logic input prior to the clock transition from LOW to HIGH in order to be recognized and transferred to the outputs.
HOLD TIME $\left(\mathrm{t}_{\mathrm{h}}\right)$ - is defined as the minimum time following the clock transition from LOW to HIGH that the logic level must be maintained at the input in order to ensure continued recognition. A negative

HOLD TIME indicates that the correct logic level may be released prior to the clock transition from LOW to HIGH and still be recognized.
RECOVERY TIME (trec) - is defined as the minimum time required between the end of the reset pulse and the clock transition from LOW to HIGH in order to recognized and transfer HIGH Data to the Q outputs.

AC WAVEFORMS

Figure 1 :Clock to Output Delays, Count Frequency, and Clock Pulse Width.

Figure 2 :Master Reset to Output Delay, Master Reset Pulse Width, and Master Reset Recovery

Figure 3 :Count Enable Trickle Input to Terminal Count Output Delays.

The positve TC pulse occurs when the outputs are in the $\left(Q_{0} \bullet \bar{Q}_{1} \bullet \bar{Q}_{2} \bullet Q_{3}\right)$ state for the LS160A and LS162A and the $\left(Q_{0} \bullet Q_{1} \bullet Q_{2} \bullet Q_{3}\right)$ state for the LS161A and LS163A

Other Conditions
$\mathrm{CP}=\overline{\mathrm{PE}}=\mathrm{CEP}=\overline{\mathrm{MR}}=\mathrm{H}$
Figure 4 :Clock to Terminal Count Delays.

The positive TC pulse in coincident with the output state ($\mathrm{Q}_{0} \bullet \overline{\mathrm{Q}}_{1} \bullet \overline{\mathrm{Q}}_{2} \bullet \mathrm{Q}_{3}$) state for the LS160A and LS162A and the $\left(\mathrm{Q}_{0} \bullet \mathrm{Q}_{1} \bullet \mathrm{Q}_{2} \bullet \mathrm{Q}_{3}\right)$ state for the LS161A and LS163A.

Other Conditions:
$\overline{\mathrm{PE}}=\mathrm{CEP}=\mathrm{CET}=\overline{\mathrm{MR}}=\mathrm{H}$
Figure 5 :Set-up Time (t_{s}) and Hold Time (t_{h}) for Parallel Data Inputs.

Other Conditions: $\overline{\mathrm{PE}}=\mathrm{L}, \overline{\mathrm{MR}}=\mathrm{H}$
The shaded areas indicate when the input is permitted to change for predictable output performance.

Figure 6 :Set-up Time (t_{s}) and Hold Time (t_{h}) for Count Enable (CEP) and (CET) and Parallel Enable (PE) Inputs.

Figure 7.

Other Conditions. $\overline{\mathrm{PE}}=\mathrm{L}, \overline{\mathrm{MR}}=\mathrm{H}$

SERIAL-IN PARALLEL-OUT SHIFT REGISTER

- TYPICAL SHIFT FREQUENCY OF 35 MHz
- ASYNCHRONOUS MASTER RESET
- GATED SERIAL DATA INPUT
- FULLY SYNCHRONOUS DATA TRANSFERS
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS
- FULLY TTL AND CMOS COMPATIBLE

DESCRIPTION

The T74LS164 is a 8-Bit Serial-In Parallel-Out Shift Register. Serial data is entered through a 2-Input AND gate synchronous with LOW to HIGH transition of the clock. The device features an asincronous Master Reset which clears the register setting all outputs LOW indipendent of the clock. It utilizes the Schottky diode clamped process to archive high sppeds and is fully compatible with all TTL roducts.

PIN NAMES

A, B	Data Input
CP	Clock (Active HIGH Going Edge) Input
MR	Master Reset (Active LOW) Input
$Q_{0}-Q_{7}$	Outputs

B1
(Plastic Package)

M1
(Micro Package)

D1
(Ceramic Package)

C1
(Plastic Chip Carrier)

ORDER CODES :

PIN CONNECTION (top view)

LOGIC SYMBOL AND LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{C C}$	Supply Voltage	-0.5 to 7	V
$\mathrm{~V}_{1}$	Input Voltage, Applied to Input	-0.5 to 15	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage, Applied to Output	-0.5 to 10	V
I_{1}	Input Current, Into Inputs	-30 to 5	mA
I_{O}	Output Current, Into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maximum Ratings" may cause permanent damage to the device This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operatıonal sections of this specification is not implıed. Exposure to absolute maximum ratıng conditions for extended periods may affect device reliability

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage		Temperature	
	Min.	Typ.		
T74LS164XX	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type.

FUNCTIONAL DESCRIPTION

The LS164 is an edge-triggered 8-bit shift register with serial data entry and an output from each of the eight stages. Data is entered serially through one of two inputs (A or B); either of these inputss can be used as an active HIGH Enable for data entry through the other input. An unused input must be tied HIGH, or both inputs connected together.
Each LOW to HIGH transition on the Clock (CP) input shifts data one place to the right and enters into Q0 the logoical AND of the two inputs (A B) that existed before the rising clock edge.
A LOW level on the Master Reset (MR) input overrides all other inputs and clears the register asynchronous, forcing all Q outputs LOW.

TRUTH TABLE

OPERATING MODE	INPUTS			\mathbf{Q}_{0}	$Q_{1}-Q_{7}$
	$\overline{M R}$	A	B		
Reset (Clear)	L	X	X	L	L-L
Shift	H H H H	$\begin{aligned} & \mathrm{l} \\ & \mathrm{l} \\ & \mathrm{~h} \\ & \mathrm{~h} \end{aligned}$	$\begin{aligned} & \text { l } \\ & \text { h } \\ & \text { l } \\ & \text { h } \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \hline \end{aligned}$	$q_{0}-q_{6}$ $90-96$ q0-q6 $90-q_{6}$

L (I) = LOW Voltage Levels
H $(\mathrm{h})=$ HIGH Voltage Levels
X = Don't Care
$\mathrm{q}_{\mathrm{n}}=$ Lower case letters indicate the state of the referenced input or output one set-up time pnor to the LOW to HIGH clock transition.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
V_{H}	Input HIGH Voltage	2.0			Guaranteed Input HIGH Voltage for All Input		V
VIL	Input LOW Voltage			0.8	Guaranteed Input LOW Voltage for All Input		V
$V_{C D}$	Input Clamp Diode Voltage		-0.65	-1.5	$\mathrm{V}_{C \mathrm{C}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$		V
$\mathrm{V}_{\text {OH }}$	Output HIGH Voltage	2.7	3.5		$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IOH}=-400 \mu \mathrm{~A} \\ \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {IH }} \text { or } \mathrm{V}_{\text {IL }} \text { per Truth Table } \\ \hline \end{array}$		V
VoL	Output LOW Voltage		0.25	0.4	$\mathrm{loL}=4.0 \mathrm{~mA}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \text { per Truth Table } \end{aligned}$	V
			0.35	0.5	$\mathrm{loL}=8.0 \mathrm{~mA}$		V
$1_{1 /}$	Input HIGH Current			$\begin{aligned} & 20 \\ & 0.1 \end{aligned}$	$\begin{aligned} & V_{C C}=M A X, V_{I N}=2.7 \mathrm{~V} \\ & V_{C C}=M A X, V_{I N}=7.0 \mathrm{~V} \end{aligned}$		$\begin{array}{r} \mu \mathrm{A} \\ \mathrm{~mA} \\ \hline \end{array}$
ILI	Input LOW Current			-0.4	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$		mA
los	Output Short Circuit Current (note 2)	-20		- 100	$\mathrm{V}_{\text {cc }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		mA
Icc	Power Supply Current (Note 3)		16	27	$\mathrm{V}_{\text {cc }}=\mathrm{MAX}$		mA

Notes: 1. Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions
2. Not more than one output should be shorted at a time.
3. Icc is measured with outputs open senal input at 2.4 V , and a momentary ground, hen 4.5 V applied to clear.
(*) Typical values are at $\mathrm{V}_{\mathrm{CC}}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Test Conditions		Units
		Min.	Typ.	Max.			
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency	25	36		Figures 1	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$	MHz
$\begin{aligned} & \mathrm{tpLH}^{2} \\ & \mathrm{t}_{\mathrm{PHLL}} \\ & \hline \end{aligned}$	Propagation Delay, Positive Going Clock to Outputs		$\begin{aligned} & 17 \\ & 21 \\ & \hline \end{aligned}$	$\begin{aligned} & 27 \\ & 32 \\ & \hline \end{aligned}$	Figures 1		nS
tphL	Propagation Delay, Negative Going MR to Outputs		24	36	Figures 2		ns

AC SET-UP REQUIREMENTS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Test Conditions		Units
		Min.	Typ.	Max.			
ts	Set-Up Time, A or B Input to Positive-Going CP	15			Figure 3	$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}}=5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$	ns
t_{n}	Hold Time, A or B Input to Positive-Going CP	5			Figure 3		ns
twCP(H)	CP Pulse Width (HIGH)	20			Figure 1		ns
twCP(L)	CP Pulse Width (LOW)	20			Figure 1		ns
twMR(L)	MR Pulse Width (LOW)	20			Figure 2		ns
trec	Recovery Time, Positive-Going MR to Positive-Going CP	20			Figure 2		ns

AC WAVEFORMS

Figure 1

Figure 2

Figure 3

$3 \cos 430$

SGS-THOMSON

8-BIT SHIFT REGISTER

- DIRECT OVERRIDING CLEAR

- PARALLEL CONVERSION
- SYNCHRONOUS LOAD

DESCRIPTION

The T74LS166 is an 8-bit shift register. It consists of a parallel-in or serial-in, serial-out 8 bit shift register with gated clock inputs and an overriding clear input. The parallel-in or serial-in modes are controlled by the SHIFT/LOAD input. When the SHIFT/LOAD input is held high, the serial data input is enabled and the eight flip-flop perform serial shifting with each clock pulse. When held LOW, the parallel data inputs are enabled and synchronous loading occurs on the next clock pulse. Clocking is accomplished on the low-to-high level edge of the clock pulse via a two input positive NOR gate. Clocking is inhibited when either of the clock inputs are held high, holding either input low enables the other clock inputs this will allow the system clock to be free running and the register stopped on command with the other clock inputs. The clock inhibit input should be changed to the high level only when the clock input is held high. A buffered direct input overrides all other inputs, including the clock, and sets all flip-flops to zero.

PIN NAMES

A, B, C, D,	
E, F, G, H,	PARALLEL INPUTS
CLR	CLEAR
SIL	SHIFT LOAD
Q $_{H}$	OUTPUTS
SI	SERIAL INPUT
CP	CLOCK PULSE
CPI	CLOCK INHIBIT

PIN CONNECTION (top view)
DUAL IN LINE

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	-0.5 to 7	V
$\mathrm{~V}_{1}$	Input Voltage, Applied to Input	-0.5 to 15	V
$\mathrm{~V}_{0}$	Output Voltage, Applied to Output	0 to 10	V
I_{1}	Input Current, into Inputs	-30 to 5	mA
I_{0}	Output Current, into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specificaton is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage		Temperature	
	Min.	Typ.		
T74LS166XX	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

TRUTH TABLE

Inputs						Internal Outputs		Output \mathbf{Q}_{H}
Clear	Shift/ Load	Clock Inhibit	Clock	Serial	Parallel			
					A...H	a_{A}	Q_{B}	
L	X	X	X	X	X	L	L	L
H	X	L	,	X	X	Q_{AO}	Q_{BO}	Q ${ }_{\text {но }}$
H	L	L	\uparrow	X	a...h	a	b	h
H	H	L	\uparrow	H	X	H	$\mathrm{Q}_{\text {An }}$	Q_{Gn}
H	H	L	\uparrow	-	X	L	$Q_{\text {An }}$	Q_{G}
H	X	H	\uparrow	X	X	Q_{AO}	$\mathrm{Q}_{\text {BO }}$	Q ${ }_{\text {но }}$

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
V_{IH}	Input HIGH Voltage	2.0			Guaranteed Input HIGH Voltage for All Inputs		V
VIL	Input LOW Voltage			0.8	Guaranteed Input LOW Voltage for All Inputs		v
$V_{C D}$	Input Clamp Diode Voltage		-0.65	-1.5	$\mathrm{V}_{C C}=\mathrm{MIN}, \mathrm{l} \mathrm{IN}=-18 \mathrm{~mA}$		V
VOH	Output HIGH Voltage	2.7	3.4		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$ $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\text {IL }}$ per Truth Table		V
VoL	Output LOW Voltage		0.25	0.4	$\mathrm{loL}=4.0 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$, $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL} per Truth Table	V
			0.35	0.5	$\mathrm{loL}=8.0 \mathrm{~mA}$		V
${ }_{1 H}$	Input HIGH Current			$\begin{aligned} & \hline 20 \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{\mathrm{IN}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{I N}=7.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$
$1 / 2$	Input LOW Current			-0.4	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$		mA
los	Output Short Circuit Current (note 2)	-20		- 100	$V_{\text {cc }}=$ MAX		mA
Icc	Power Supply Current			38	$V_{\text {cc }}=$ MAX		mA

Notes: 1. For conditions shown as MIN or MAX, use the appropriate value specified under guaranteed operating ranges.
2. Note more than one output should be shorted at a time.
$\left(^{*}\right)$ Typical values are at $\mathrm{V}_{\mathrm{Cc}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

AC CHARACTERISTICS : $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Test Conditions	Unit
		Min.	Typ.	Max.		
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency	25	35		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$	MHz
$\mathrm{t}_{\text {PHL }}$	Clear to Output		19	30		ns
$\begin{aligned} & \hline \mathbf{t}_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$	Clock to Output		$\begin{aligned} & 23 \\ & 24 \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \end{aligned}$		ns

AC WAVEFORMS

TEST TABLE

 FOR SYNCHRONOUS INPUT| Data Input
 for Test | Shift/load | Output
 Tested |
| :---: | :---: | :---: |
| H | 0 V | O_{H} at $\mathrm{t}_{\mathrm{n}}+1$ |
| Serial
 Input | 4.5 V | O_{H} at $\mathrm{t}_{\mathrm{n}}+8$ |

Notes: tn = bit tıme before clocking transition.
tn $+1=$ bit time after one clocking transition
tn $+8=$ bit time after eight clocking transitions.

AC SET-UP REQUIREMENTS : $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Test Conditions	Unit
		Min.	Typ.	Max.		
t_{w}	Clock Clear Pulse Width	30			$\mathrm{V}_{C C}=5.0 \mathrm{~V}$	ns
t_{s}	Mode Control Set-up Time	30				ns
$\mathrm{t}_{\text {s }}$	Data Set-up Time	20				ns
t_{n}	Hold Time, Any Input	15				ns

TYPICAL CLEAR, SHIFT, LOAD, INHIBIT, AND SHIFT SEQUENCES

SYNCHRONOUS BI-DIRECTIONAL COUNTERS LS168-BCD DECADE LS169-MODULO 16 BINARY

- LOW POWER DISSIPATION 100 mW TYPICAL
- HIGH SPEED COUNT FREQUENCY 30 MHz TYPICAL
- FULLY SYNCHRONOUS OPERATION
- FULL CARRY LOOKAHEAD FOR EASY CASCADING
- SINGLE UP/DOWN CONTROL INPUT
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS
- FULLY TTL AND CMOS COMPATIBLE
- POSITIVE EDGE-TRIGGER OPERATION

DESCRIPTION

The T74LS168 and T74LS169 are fully synchronous 4 -stage up/down counters featuring a present capability for programmable operation, carry lookahead for easy cascading and a U / \bar{D} input to control the direction of counting. The T54LS/T74LS168 counts in a BCD decade (8, 4, 2, 1) sequence, while the T54LS/T74LS169 operates in a Modulo 16 binary sequence. All state changes, whether in counting or parallel loading, are initiated by the LOW-to-HIGH transition of the clock.

PIN CONNECTION (top view)

MODE SELECT TABLE

$\overline{\mathbf{P E}}$	$\overline{\mathbf{C E P}}$	$\overline{\mathbf{C E T}}$	$\mathbf{U / \overline { D }}$	Action on Rising Clock Edge
L	X	X	X	Load (Pn \rightarrow Qn)
H	L	L	H	Count Up (increment) H
L	L	L	Count Down (decrement)	
H	H	X	X	No Change (hold)
H	X	H	X	No Change (hold)

$H=$ HIGH Volyge Level
L = LOW Voltage Level
$\mathrm{X}=$ Don't Care

PIN NAMES

$\overline{\mathrm{CEP}}$	COUNT ENABLE PARALLEL (active LOW) INPUT
$\overline{\mathrm{CET}}$	COUNT ENABLE TRICKLE (active LOW) INPUT
CP	CLOCK PULSE (active positive going edge) INPUT
$\overline{\mathrm{PE}}$	PARALLEL ENABLE (active LOW) INPUT
U/ \bar{D}	UP-DOWN COUNT CONTROL INPUT
$\mathrm{P}_{0}-\mathrm{P}_{3}$	PARALLEL DATA INPUTS
$\mathrm{Q}_{0}-\mathrm{Q}_{3}$	FLIP-FLOP OUTPUTS
	TERMINAL COUNT (active LOW) OUTPUT

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{Cc}	Supply Voltage	-0.5 to 7	V
$\mathrm{~V}_{1}$	Input Voltage, Applied to Input	-0.5 to 15	V
$\mathrm{~V}_{0}$	Output Voltage, Applied to Output	-0.5 to 10	V
I_{1}	Input Current, into Inputs	-30 to 5	mA
I_{O}	Output Current, into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maximum Ratıngs" may cause permanent damage to the device This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied Exposure to absolute maxımum rating conditions for extended periods may affect device reliability.

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage		Temperature	
	Min.	Typ.		
T74LS1668/169XX	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

[^8]LOGIC DIAGRAM

LOGIC SYMBOL AND STATE DIAGRAMS

FUNCTIONAL DESCRIPTION

The LS168 and LS169 use edge-triggered D-type flip-flops and have no constraints on changing the control or data input signals in either state of the Clock. The only requirement is that the various inputs attain the desired state at least a set-up time before the rising edge of the clock and remain valid for the recommended hold time thereafter.
The parallel load operation takes precedence over the other operation, as indicated in the Mode Select Table. When $\overline{\mathrm{PE}}$ is LOW, the data on the $\mathrm{P}_{0}-\mathrm{P}_{3}$ inputs enters the flip-flips on the next rising edge of the Clock. In order for counting to occur, both CEP and $\overline{\mathrm{CET}}$ must be LOW an $\overline{\mathrm{PE}}$ must be HIGH. The U/D input the, determines the direction of counting.

The terminal count ($\overline{\mathrm{TC}}$) output is normally HIGH and goes LOW, provided that CET is LOW, when a counter reaches zero in the COUNT DOWN mode or reaches 15 (9 for the T54LS/T74LS168) in the COUNT UP mode. The TC output state is not a function of the Count Enable Parallel ($\overline{\mathrm{CEP}}$) input level. The TC output of the LS168 decade counter can asobeLOW in the illegal states 11.13 and via parallel loading. If an illegal state occurs, the LS168 will return to the legitmate sequence within two counts. Since the TC signal is derived by decoding the flipflop states, there exist the possibility of decoding to spikes on TC. For this reasons the use of TC as a clock signal is not recommended.

dC Characteristics over operating temperature range

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
V_{H}	Input HIGH Voltage	2.0			Guaranteed Input HIGH Voltage for All Inputs		V
VIL	Input LOW Voltage			0.8	Guaranteed Input LOW Voltage for All Inputs		V
$V_{C D}$	Input Clamp Diode Voltage		-0.65	-1.5	$\mathrm{V}_{\mathrm{CCC}}=\mathrm{MIN}, \mathrm{l}_{1 /}=-18 \mathrm{~mA}$		V
VOH	Output HIGH Voltage	2.7	3.5		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IOH}=-400 \mu \mathrm{~A}$ $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$ per Truth Table		V
VoL	Output LOW Voltage		0.25	0.4	$\mathrm{loL}=4.0 \mathrm{~mA}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \text { per Truth Table } \end{aligned}$	V
			0.35	0.5	$\mathrm{loL}=8.0 \mathrm{~mA}$		V
$\mathrm{IIH}^{\text {H}}$	Input HIGH Current CET			$\begin{aligned} & 20 \\ & 40 \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$		$\mu \mathrm{A}$
	Input HIGH Current U/D, CP, $\overline{C E P}, P_{0}-P_{3}, \overline{P E}$ CET			$\begin{aligned} & 0.4 \\ & 0.2 \\ & \hline \end{aligned}$	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$		mA
ILL	Input LOW Current U/D, CP, $\overline{C E P}, P_{0}-P_{3}, \overline{P E}$ CET			$\begin{array}{r} -0.4 \\ -0.8 \\ \hline \end{array}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$		mA
los	Output Short Circuit Current (note 2)	-20		- 100	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		mA
lcc	Power Supply Current		20	34	$V_{C C}=\mathrm{MAX}$		mA

Notes : 1. Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions.
2. Not more than one output should be shorted at a tıme.
(*) Typical values are at $\mathrm{V}_{\mathrm{Cc}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

AC CHARACTERISTICS : $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Test Conditions		Unit
		Min.	Typ.	Max.			
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$	CP to Q		$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$	Fig. 1	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$	ns
$\begin{aligned} & \hline t_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	CP to $\overline{\mathrm{TC}}$		$\begin{aligned} & 22 \\ & 22 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & \hline \end{aligned}$	Fig. 3		ns
$t_{\text {PLH }}$ tphL $^{\text {Pr }}$	$\overline{\mathrm{CET}}$ to $\overline{\mathrm{TC}}$		$\begin{aligned} & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 15 \\ & 20 \\ & \hline \end{aligned}$	Fig. 2		ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	$U / \overline{\mathrm{D}}$ to $\overline{\mathrm{TC}}$		$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	Fig. 6		ns
$\mathrm{f}_{\text {MAX }}$	Maxımum Clock Frequency	25	32		Fig. 1		MHz

AC SET-UP REQUIREMENTS : $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Test Conditions		Unit
		Min.	Typ.	Max.			
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \hline \end{aligned}$	Set-up LOW, Data to CP Set-up HIGH, Data to CP	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \end{aligned}$		Fig. 4	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \end{aligned}$	Hold LOW, Data to CP Hold HIGH, Data to CP	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		Fig. 4		ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \hline \end{aligned}$	Set-up LOW, $\overline{\text { PE }}$ to CP Set-up HIGH, PE to CP	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \end{aligned}$		Fig. 5		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{n}}(\mathrm{~L}) \\ & \mathrm{th}_{\mathrm{n}}(\mathrm{H}) \\ & \hline \end{aligned}$	Hold LOW, $\overline{\text { PE }}$ to CP Hold HIGH, $\overline{\text { PE }}$ to CP	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		Fig. 5		ns
$\begin{aligned} & t_{s}(L) \\ & t_{s}(H) \end{aligned}$	Set-up LOW, CET or $\overline{C E P}$ to CP Set-up HIGH, CET or CEP to CP	$\begin{aligned} & 15 \\ & 15 \\ & \hline \end{aligned}$	$\begin{array}{r} 12 \\ 12 \\ \hline \end{array}$		Fig. 5		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{n}}(\mathrm{~L}) \\ & \mathrm{t}_{\mathrm{n}}(\mathrm{H}) \end{aligned}$	Hold LOW, CET or CEP to CP Hold HIGH, CET or CEP to CP	$\begin{array}{r} 15 \\ 15 \\ \hline \end{array}$	$\begin{aligned} & 12 \\ & 12 \\ & \hline \end{aligned}$		Fig. 5		ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \hline \end{aligned}$	Set-up LOW, U/D to CP Set-up HIGH, U/D to CP	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$		Fig. 6		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{n}}(\mathrm{~L}) \\ & \mathrm{th}_{\mathrm{h}}(\mathrm{H}) \\ & \hline \end{aligned}$	Hold LOW, U/ $\overline{\mathrm{D}}$ to CP Hold HIGH, U/D to CP	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & -4.0 \\ & -4.0 \\ & \hline \end{aligned}$		Fig. 6		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{w}} \mathrm{CP}(\mathrm{~L}) \\ & \mathrm{t}_{\mathrm{w}} \mathrm{CP}(\mathrm{H}) \end{aligned}$	Clock Pulse Width LOW Clock Pulse Width HIGH	$\begin{aligned} & 20 \\ & 10 \\ & \hline \end{aligned}$	$\begin{array}{r} 18 \\ 5.0 \\ \hline \end{array}$		Fig. 1		ns

DEFINITION OF TERMS

SET-UP TIME (t_{s}) - is defined as the minimum time required for the correct logic level to be present at the logic input prior to the clock transition from LOW to HIGH in order to be recognizeed and transferred to the outputs.

AC WAVEFORMS

Figure 1 : Clock to Output Delays, Count Frequency, and Clock Pulse Width.

HOLD TIME (t_{h}) - is defined as the minimum time following the clock transition from LOW to HIGH that the logic level must be maintained at the input in order to ensure continued recognition. A negative HOLD TIME indicates that the correct logic level may be released prior to the clock transition from LOW to HIGH and still be recognized.

Figure 2 : Count Enable Trickle Input To Terminal Count Output Delays.

Figure 3 : Clock to Terminal Delays.

Figure 4 : Set-Up Time (t_{s}) and Hold (t_{h}) for Parallel Data Inputs.

Figure 5 : Set-Up Time (t_{s}) and Hold Time (t_{n}) for Count Enable (CEP) and (CET), Parallel Enable (PE) Inputs, and Up-Down (U/D) Control Inputs.

The shaded areas indicate when the input is permitted to change for predictable output performance.

Figure 6 : Up-Down Input to Terminal Count Output Delays.

4×4 REGISTER FILE

- SIMULTANEOUS READWRITE OPERATION
- EXPANDABLE TO 512 WORDS OF n-BIT
- TYPICAL ACCESS TIME OF 20 ns
- LOW LEAKAGE OPEN COLLECTOR OUTPUTS FOR EXPANSION
- TYPICAL POWER DISSIPATION OF 125 mW
- INPUT CLAMP DIODE LIMIT HIGH SPEED TERMINATION EFFECTS
- FULLY COMPATIBLE

DESCRIPTION

The J74LS170 is a high speed, low power $4 \times 4 \mathrm{Re}$ gister File organized as four word by four bits. Separate read and write inputs, both address and enable, allow simultaneous read and write operation.
Open Collector outputs make it possible, to connect up to 128 outputs in a wired-AND configuration to increase the word capacity up to 512 words. Any number of these devices can be operated in parallel to generate an n -bit length.
The T74LS670 provides a similar function tothis device but it features 3 -state outputs.

PIN NAMES

$D_{1}-D_{4}$	Data Inputs
$W_{A}-W_{B}$	Write Address Inputs
\bar{E}_{W}	Write Enable (Active LOW) Input
$R_{A}-R_{B}$	Read Address Inputs
\bar{E}_{R}	Read Enable (Active LOW) Input
$Q_{1}-Q_{4}$	Outputs

LOGIC DIAGRAM

B1
(Plastic Package)

M1
(Micro Package)

D1
(Ceramic Package)

C1
(Plastic Chip Carrier)

ORDER CODES :

```
T74LS170 D1
T74LS170 C1
T74LS170 M1
```

T74LS170 M1

PIN CONNECTION (top view)

DUAL IN LINE

WRITE TRUTH TABLE

WRITE INPUTS			WORD				
$\mathbf{W}_{\mathbf{B}}$	$\mathbf{W}_{\mathbf{A}}$	$\overline{\mathrm{E}}_{\mathbf{W}}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	
L	L	L	$\mathrm{Q}=\mathrm{D}$	Q_{0}	$\mathrm{Q}_{\mathbf{0}}$	Q_{0}	
L	H	L	Q_{0}	$\mathrm{Q}=\mathrm{D}$	Q 0	Q 0	
H	L	L	Q_{0}	Q 0	$\mathrm{Q}=\mathrm{D}$	Q 0	
H	H	L	Q_{0}	Q 0	Q 0	$\mathrm{Q}=\mathrm{D}$	
X	X	H	Q_{0}	Q 0	Q 0	Q 0	

READ TRUTH TABLE

READ INPUTS			OUTPUTS			
$\mathbf{R}_{\mathbf{B}}$	$\mathbf{R}_{\mathbf{A}}$	$\overline{\mathbf{E}}_{\mathbf{R}}$	$\mathbf{Q}_{\mathbf{1}}$	$\mathbf{Q}_{\mathbf{2}}$	$\mathbf{Q}_{\mathbf{3}}$	$\mathbf{Q}_{\mathbf{4}}$
L	L	L	W0B1	W0B2	W0B3	W0B4
L	H	L	W1B1	W1B2	W1B3	W1B4
H	L	L	W2B1	W2B2	W2B3	W2B4
H	H	L	W3B1	W3B2	W3B3	W3B4
X	X	H	H	H	H	H

NOTES: $H=$ HIGH Level, $L=$ LOW Level, $X=$ Don't Care
$(Q=D)=$ The four selected intemal fipp-flop outputs will assume the states appled to the four extemal data inputs.
$Q 0=$ The level of Q before the indicated input conditions were estabilished.
WOB1 $=$ The first bit of word 0 etc.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	-0.5 to 7	V
$\mathrm{~V}_{\mathrm{I}}$	Input Voltage, Applied to Input	-0.5 to 15	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage, Applied to Output	0 to 10	V
I_{I}	Input Current, into Inputs	-30 to 5	mA
I_{O}	Output Current, into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maximum Ratings" may cause permanent damage to the device This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied Exposure to absolute maximum rating conditions for extended periods may affect device reliability

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage		Temperature	
	Min.	Typ.		
T74LS170XX	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

XX = package type.

LOGIC DIAGRAMS

$V_{C C}=P$ in 16
GND $=\operatorname{Pin} 8$
()$=P$ in numbers

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
V_{IH}	Input HIGH Voltage	2.0			Guaranteed Input HIGH Voltage for All Inputs		V
VIL	Input LOW Voltage			0.8	Guaranteed Input LOW Voltage for All Inputs		V
$V_{C D}$	Input Clamp Diode Voltage		-0.65	-1.5	$\mathrm{V}_{C C}=\mathrm{MIN}, \mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$		V
loh	Output HIGH Current			20	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{~V}_{\mathrm{OH}}=-5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \text { per Truth Table } \end{aligned}$		$\mu \mathrm{A}$
Vol	Output LOW Voltage		0.25	0.4	$\mathrm{loL}=4.0 \mathrm{~mA}$	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \text { per Truth Table } \end{aligned}$	V
			0.35	0.5	$\mathrm{loL}=8.0 \mathrm{~mA}$		V
IIH	Input HIGH Current Any D, R or W E_{R} or E_{w}			$\begin{aligned} & 20 \\ & 40 \\ & \hline \end{aligned}$	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$		$\mu \mathrm{A}$
	Any D, R or W E_{R} or E_{w}			$\begin{aligned} & 0.1 \\ & 0.2 \\ & \hline \end{aligned}$	$\mathrm{VCC}=\mathrm{MAX}, \mathrm{V}_{\mathbb{N}}=7.0 \mathrm{~V}$		mA
IIL	Input LOW Current Any D, R or W $E_{\text {R }}$ or E_{w}			$\begin{array}{r} -0.4 \\ -0.8 \\ \hline \end{array}$	$V C C=M A X, V_{\text {IN }}=0.4 \mathrm{~V}$		mA
Icc	Power Supply Current (Note 2)		25	40	$V_{C C}=M A X$		mA

Notes: 1 For conditions shown as MIN or MAX, use the appropriate value specified under guaranteed operatıng ranges
2 Icc is measured under the following worst case conditions 4.5 V is applied to all data inputs and both enable inputs, all address inputs are grounded, and all outputs are open
(*) Typical values are at $\mathrm{V}_{\mathrm{Cc}}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Test Conditions		Units
		Min.	Typ.	Max.			
$\begin{aligned} & \text { tPLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay, Negative Going E_{R} to Q Outputs		$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	Figures 1	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{~K} \Omega \end{aligned}$	ns
$\begin{aligned} & \text { tpLH } \\ & \text { tphL } \end{aligned}$	Propagation Delay, RA or R_{B} to Q Outputs		$\begin{aligned} & 25 \\ & 24 \\ & \hline \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \\ & \hline \end{aligned}$	Figures 2		ns
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay, Negative Going Ew to Q Outputs		$\begin{aligned} & 30 \\ & 26 \\ & \hline \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$	Figures 1		ns
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay, Data Inputs to Q Outputs		$\begin{aligned} & 30 \\ & 22 \\ & \hline \end{aligned}$	$\begin{aligned} & 45 \\ & 35 \end{aligned}$	Figures 1		ns

AC SET-UP REQUIREMENTS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Test Conditions	Units
		Min.	Typ.	Max.		
tw	Clock Pulse Width (LOW) for E_{w}	25			$V_{\mathrm{CC}}=5.0 \mathrm{~V}$ Fig. 3	ns
$\begin{gathered} \mathrm{t}_{\mathrm{s}} \mathrm{D} \\ \text { (Note 3) } \end{gathered}$	Set-up Time, Data Inputs whith Respect to Positive-Going ${ }_{\text {E }}^{w}$	10				ns
$\begin{gathered} \mathrm{tnD} \\ \text { (Note 4) } \end{gathered}$	Hold Time, Data Inputs whith Respect to Positive-Going Ew	15				ns
$\begin{gathered} \mathrm{t}_{\mathrm{t}} \mathrm{~W} \\ \text { (Note 5) } \end{gathered}$	Set-up Time, Write Select Input W_{A} and W_{B} whith Respect to Positive-Going \bar{E}_{w}	15				ns
$\begin{gathered} t_{n} W \\ (\text { Note 4) } \end{gathered}$	Hold Time, Write Select Input W_{A} and W_{B} whith Respect to Positive-Going \bar{E}_{w}	15				ns
tlatch	Latch Time	25				ns

Notes: 3) The Data to Enable Set-up Time is defined as the tıme required for the logic level to be present at the Data input prior to the enable transition for LOW to HIGH in order from the latch to recognize and store the new data.
4) The Hoid Time (th) is defined as the minımum time following the enable transition from LOW to HIGH that the logic level must be maintained at the input inorder toensure continued recognition
5) The address to Enable Set-up Time is the time before the HIGH to LOW Enable transition the Address must be stable so that the crrect latch is addressed and the other latches are not affect.

AC WAVEFORM

Fig 1.

Fig 2.

Fig 3.

The shaded areas indicate when the inputs are permitted to change for predictable output performance

- EDGE-TRIGGERED D-TYPE INPUTS
- BUFFERERD-POSITIVE EDGE TRIGGERED CLOCK
- ASYNCHRONOUS COMMON RESET
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS
- FULLY TTL AND CMOS COMPATIBLE

DESCRIPTION

The LSTTL/MSI T74LS174 is a high speed Hex D Flip-Flop. The device is used primarily as a 6-bit ed-ge-triggered storage register. The information on the Dinputs is transferred to storage during the LOW to HIGH clock transition. The device has a Master Reset to simultaneously clear all plip-flops.
The LS174 is fabricated with the Schottky barrier diode process for high speed and is completely compatible with all TTL families

B1
(Plastic Package)

M1
(Micro Package)

D1 (Ceramic Package)

C1
(Plastic Chip Carrier)

ORDER CODES :
T74LS174 D1 T74LS174 C1
T74LS174 B1 T74LS174 M1

PIN CONNECTION (top view)

DUAL IN LINE	CHIP CARRIER
$\overline{M R ~[1 ~}{ }^{16}{ }^{16} \mathrm{~V}_{C c}$	
$Q_{0} \square^{2}$	$\square_{3}^{\square \square \square} \square_{20} \square_{19}$
$\mathrm{D}_{0}\left[3{ }^{3} 14\right] \mathrm{D}_{5}$	
$\left.\mathrm{D}_{1} \mathrm{C} 4{ }^{13}\right] \mathrm{D}_{4}$	$\mathrm{D}_{1} \square^{5}$
$Q_{1} 0_{5}$	NC $\square^{50}{ }^{5}{ }^{16}$ NC
$Q_{1}{ }^{5}$	$Q_{1} \square^{7} \quad 15 \square Q_{4}$
$\mathrm{D}_{2} \mathrm{l}^{6}$	
$\mathrm{Q}_{2}\left[710{ }^{\text {a }}\right.$	
CND[8 ${ }^{\text {a }}$	
PC10410	
	NC = No Internal Connection

LOGIC SYMBOL AND LOGIC DIAGRAM

$V_{c c}=\operatorname{Pin} 16$
GND $=\operatorname{Pin} 8$
() = Pin numbers

TRUTH TABLE

Inputs $(\mathbf{t}=\mathbf{n}, \overline{\mathbf{M R}}=\mathbf{H})$	Outputs $(\mathbf{t}=\mathbf{n}+\mathbf{1})$ Note $\mathbf{1}$
D	Q
H	H
L	L

PIN NAMES

$D_{0}-D_{5}$	Data Input
CP	Clock (Actıve HIGH Goıng-Edge) Input
$\overline{\mathrm{MR}}$	Master Reset (Active LOW) Input
$\mathrm{Q}_{0}-\mathrm{Q}_{5}$	Outputs

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{c c}$	Supply Voltage	-0.5 to 7	V
V_{1}	Input Voltage, Applied to Input	-0.5 to 15	V
$\mathrm{~V}_{0}$	Output Voltage, Applied to Output	-0.5 to 10	V
I_{1}	Input Current, Into Inputs	-30 to 5	mA
I_{0}	Output Current, Into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maximum Ratngs" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage		Temperature	
	Min.	Typ.		
T74LS174XX	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X$ = package type

FUNCTIONAL DESCRIPTION

The LS174 consist of six edge-triggered D flip-flops with individual D inputs and Q outputs. The Clock (CP) and Master Reset (MR) are common to all flipflops. Each D input's state is transferred to corresponding flip-flop'ss output following the LOW to HIGH Clock (CP) transition.

A LOW input to Master Reset (MR) will force all outputs LOW independent of Clock or Data inputs. The LS174 is useful for applications where the true output only is required and the Clock and Master Reset are common to all storage elements.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
V_{IH}	Input HIGH Voltage	2.0			Guaranteed Input HIGH Voltaçfor All Input		v
VIL	Input LOW Voltage			0.8	Guaranteed Input LOW Voltage for All Input		V
$V_{C D}$	Input Clamp Diode Voltage		-0.65	-1.5	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{l} \mathrm{IN}=-18 \mathrm{~mA}$		V
Vон	Output HIGH Voltage	2.7	3.4		$V_{C C}=\mathrm{MIN}, \mathrm{IOH}=-400 \mu \mathrm{~A}$ $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$ per Truth Table		V
VoL	Output LOW Voltage		0.25	0.4	$\mathrm{loL}=4.0 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$ $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL} per Truth Table	V
			0.35	0.5	$\mathrm{loL}=8.0 \mathrm{~mA}$		V
$1 \mathbf{I H}^{\text {H}}$	Input HIGH Current			$\begin{aligned} & \hline 20 \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & V_{C C}=M A X, V_{I N}=2.7 \mathrm{~V} \\ & V_{C C}=M A X, V_{I N}=7.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
IIL	Input LOW Current			-0.36	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$		mA
los	Output Short Circuit Current (note 2)	-20		- 100	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		mA
Icc	Power Supply Current		16	26	$V_{C C}=$ MAX		mA

Notes : 1. Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions
2. Not more than one output should be shorted at a time.
(*) Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Test Conditions		Units
		Min.	Typ.	Max.			
$\begin{aligned} & \text { tPLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay, Clock to Outputs		$\begin{aligned} & 20 \\ & 21 \\ & \hline \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	Figures 1	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$	ns
tpLH	Propagation Delay, MR to Outputs		23	35	Figures 2		ns
$f_{\text {max }}$	Maximum Input Clock Frequency	30	40		Figures 1		MHz

AC SET-UP REQUIREMENTS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

DEFINITION OF TERMS:

SET-UP TIME (t_{s}): is defined as the minimum time required for the corret logic level to be present at the logic input prior the clock transition from LOW to HIGH in order to be recognized and transferred to the outputs.
HOLD TIME (th): is defined as the minimum time following the clock transition from LOW to HIGH at which the logiclevel must be maintained at the input
in order to ensure continued recognition. A negative HOLD TIME indicates that the correct logic level may be relased prior to the clock transitio from LOW to HIGH and still be recognized.
RECOVERY TIME (trec) : is defined as the minimum time required between the end of the reset pulse and the clock transition from LOW to HIGH in order to recognize and transfer HIGH Data to the Q outputs.

AC WAVEFORMS

Figure 1: Clock to Output Delays, Clock Pulse Width, Frequency Set-up and Hold Times Data to Clock

* The shaded areas indicate when the input is permitted to chang for predictable output performance

Figure 2: Master Reset to Output Delay, Master Reset Pulse Width and Master Reset Recovery Time

QUAD D FLIP-FLOP

- EDGE-TRIGGERED D-TYPE INPUTS
- BUFFERERD-POSITIVE EDGE TRIGGERED CLOCK
- ASYNCHRONOUS COMMON RESET
- TRUE AND COMPLEMENT OUTPUT
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS
- FULLY TTL AND CMOS COMPATIBLE

DESCRIPTION

The LSTTLMSI T74LS175 is a high speed Quad D Flip-Flop. The device is useful for general flip-flop requirements where clock and clear inputs are common. The information on the D inputs is stored during the LOW to HIGH clock transition. Both true and complemented outputs of each flip-flop are provided. A Master Reset input reset all flip-flop, independent of the Clock or D inputs, when LOW.
The LS175 is fabricated with the Schottky barrier diode process for high speed and is completely compatible with all TTL families

B1
(Plastic Package)

M1 (Micro Package)

D1 (Ceramic Package)

C1
(Plastic Chip Carrier)

ORDER CODES :
T74LS175 D1 T74LS175 C1 T74LS175 B1 T74LS175 M1

PIN CONNECTION (top view)

LOGIC SYMBOL AND LOGIC DIAGRAM

$V_{C C}=P$ In 16

GND $=\operatorname{Pin} 8$
() = Pin numbers

TRUTH TABLE

Inputs $(\mathbf{t}=\mathbf{n}, \overline{\mathbf{M R}}=\mathbf{H})$	Outputs $(\mathbf{t}=\mathbf{n}+\mathbf{1})$ Note $\mathbf{1}$	
D	Q	$\overline{\mathrm{Q}}$
L	L	H
H	H	L

Note 1: $\mathrm{t}=\mathrm{n}+1$ indicates conditions after next clock

PIN NAMES

$D_{0}-D_{3}$	Data Input
$C P$	Clock (Active HIGH Going-Edge) Input
$M R$	Master Reset (Active LOW) Input
$\mathrm{Q}_{0}-\mathrm{Q}_{3}$	True Outputs
$\bar{Q}_{0}-\bar{Q}_{3}$	Complemented Outputs

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{C C}$	Supply Voltage	-0.5 to 7	V
$\mathrm{~V}_{1}$	Input Voltage, Applied to Input	-0.5 to 15	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage, Applied to Output	-0.5 to 10	V
I_{1}	Input Current, Into Inputs	-30 to 5	mA
I_{O}	Output Current, Into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maxımum Ratngs" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage			Temperature
	Min.	Typ.	Max.	
T74LS175XX	475 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type

FUNCTIONAL DESCRIPTION

The LS175 consist of four edge-triggered D flip-flops with individual inputs and Q and $\overline{\mathrm{Q}}$ outputs. The Clock and Master Resret are common. The four flipflops will store the state of their individual D inputs on the LOW to HIGH Clock (CP) transition, causing individual Q and \bar{Q} outputss to follow. A LOW input on the Master Reset (MR) will force all Q outputs

LOW and \bar{Q} outputs HIGH indipendent of Clock or Data input.
The LS LS175 is useful for general logic applications where a common Master Reset and Clock are acceptable.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
V_{IH}	Input HIGH Voltage	2.0			Guaranteed Input HIGH Voltage for All Input		V
VIL	Input LOW Voltage			0.8	Guaranteed Input LOW Voltage for All Input		V
V_{CD}	Input Clamp Diode Voltage		-0.65	-1.5	$\mathrm{V}_{C C}=\mathrm{MIN}, \mathrm{l}_{\mathrm{N}}=-18 \mathrm{~mA}$		V
V OH	Output HIGH Voltage	2.7	3.4		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \text { per Truth Table } \end{aligned}$		V
Vol	Output LOW Voltage		0.25	0.4	$\mathrm{loL}=4.0 \mathrm{~mA}$	$\begin{aligned} & V_{C C}=M I N \\ & V_{I N}=V_{I H} \text { or } V_{I L} \\ & \text { per Truth Table } \end{aligned}$	V
			0.35	0.5	$\mathrm{loL}=8.0 \mathrm{~mA}$		V
$\mathrm{IIH}^{\text {H}}$	Input HIGH Current			$\begin{aligned} & 20 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{\mathbb{N}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{\mathbb{I N}}=7.0 \mathrm{~V} \end{aligned}$		$\underset{\mathrm{mA}}{\mu \mathrm{~A}}$
IIL	Input LOW Current			-0.4	$V_{C C}=M A X, V_{\mathbb{I N}}=0.4 \mathrm{~V}$		mA
los	Output Short Circuit Current (note 2)	-20		- 100	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		mA
Icc	Power Supply Current		11	18	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$		mA

Notes : 1 Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions
2. Not more than one output should be shorted at a time.
(*) Typical values are at $\mathrm{V}_{\mathrm{CC}}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Test Conditions		Units
		Min.	Typ.	Max.			
tpLH tpHL	Propagation Delay, Clock to Outputs		$\begin{aligned} & 13 \\ & 16 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	Figures 1		ns
tple	Propagation Delay, MR to Q Outputs		20	30	Figures 2		ns
tpLH	Propagation Delay, MR to Q Outputs		20	30	Figures 2		ns
$f_{\text {max }}$	Maximum Input Clock Frequency	30	40		Figures 1		MHz

AC SET-UP REQUIREMENTS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

DEFINITION OF TERMS:

SET-UP TIME (t_{s}): is defined as the minimum time required for the corret logic level to be present at the logic input prior the clock transition from LOW to HIGH in order to be recognized and transferred to the outputs.
HOLD TIME (th_{h}): is defined as the minimum time following the clock transition from LOW to HIGH at which the logiclevel must be maintained at the input
in order to ensure continued recognition. A negative HOLD TIME indicates that the correct logic level may be relased prior to the clock transitio from LOW to HIGH and still be recognized.
RECOVERY TIME (trec $^{\prime}$) : is defined as the minimum time required between the end of the reset pulse and the clock transition from LOW to HIGH in order to recognize and transfer HIGH Data to the Q outputs.

AC WAVEFORMS

Figure 1: Clock to Output Delays, Clock Pulse Width, Frequency Set-up and Hold Times Data to Clock

*The shaded areas indicate when the input is permitted to chang for predictable output performance

Figure 2: Master Reset to Output Delay, Master Reset Pulse Width and Master Reset Recovery Time

4-BIT ARITHMETIC LOGIC UNIT

- PROVIDES 16 ARITHMETIC OPERATIONS ADD, SUBTRACT, COMPARE, DOUBLE, PLUS TWELVW OTHER ARITHMETIC OPERATIONS
- PROVIDES ALL 16 LOGIC OPERATIONS OF TWO VARIABLES: EXCLUSIVE-OR COMPARE, AND, NAND, OR, NOR, PLUS TEN OTHER LOGIC OPERATION
- FULL LOOKAHEAD FOR HIGH SPEED ARITHMETIC OPERATION ON LONG WORDS
- INPUT CLAMP DIODES

DESCRIPTION

The T74LS181 is a 4-bit Arithmetic Logic Unit (ALU) which can perform all possible 16 logic, operations on two variables and a variety of arithmetic operations.

PIN NAMES

$\overline{\mathrm{A}}_{1}-\overline{\mathrm{A}}_{3}, \overline{\mathrm{~B}}_{0}-\overline{\mathrm{B}}_{3}$	Operand (ACTIVE low) Inputs
$\mathrm{S}_{0}-\mathrm{S}_{3}$	Function-Select Inputs
M	Mode Control Input
C_{I}	Carry Input
$\overline{\mathrm{F}}_{0}-\bar{F}_{3}$	Function (Active LOW) Outputs
$\mathrm{A}=\mathrm{B}$	Comparator Output
$\overline{\mathrm{G}}$	Carry Generate (Active LOW) Output
P	Carry Propagate (Active LOW) Output
C_{n+4}	Corry Output

LOGIC SYMBOL

B1
(Plastic Package)

B1
(Plastic Package)

D1
(Ceramic Package)

ORDER CODES :

T74LS181 D1	T74LS181 C1
T74LS181 B1	T74LS181 M1

LOGIC SYMBOL AND LOGIC DIAGRAM

$V_{c c}=\operatorname{Pin} 16$
GND $=\operatorname{Pin} 8$
() = Pin numbers

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	-05 to 7	V
$\mathrm{~V}_{\mathrm{I}}$	Input Voltage, Applied to Input	-0.5 to 15	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage, Applied to Output	-0.5 to 10	V
I_{I}	Input Current, Into Inputs	-30 to 5	mA
I_{O}	Output Current, Into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maxımum Ratıngs" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied Exposure to absolute maximum ratıng conditions for extended penods may affect device reliability

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage		Temperature	
	Min.	Typ.		
T74LS181XX	4.75 V	5.0 V	525 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type.

TRUTH TABLE

MODE SELECT INPUTS				ACTIVE LOW INPUTS \& OUTPUS		ACTIVE HIGH INPUTS \& OUTPUTS	
S_{3}	S_{2}	S_{1}	So	LOGIC $(M=H)$	ARITHMETIC ** $(\mathrm{M}=\mathrm{L})\left(\mathrm{C}_{\mathrm{n}}=\mathrm{L}\right)$	LOGIC $(M=H)$	ARITHMETIC ** $(M=L)\left(C_{n}=H\right)$
L	L	L	L	$\overline{\mathrm{A}}$	A minus 1	$\overline{\mathrm{A}}$	A
L	L	L	H	$\overline{\mathrm{AB}}$	$A B$ minus 1	$\overline{A+B}$	A+B
L	L	H	L	$\overline{A+B}$	$A \bar{B}$ minus 1	$\bar{A} B$	$A+\bar{B}$
L	L	H	H	Logical 1	minus 1	Logical 0	minus 1
L	H	L	L	$\overline{A+B}$	A plus ($A+B$)	$\overline{\mathrm{AB}}$	A plus $A \bar{B}$
L	H	L	H	\bar{B}	$A B$ plus ($A+\bar{B}$)	\bar{B}	$(A+B)$ plus $A \bar{B}$
L	H	H	L	$\bar{A} \oplus \mathrm{~B}$	A minus B minus 1	$A \oplus B$	A minus B minus 1
L	H	H	H	$A+\bar{B}$	$A+\bar{B}$	AB	$A B$ minus 1
H	L	L	L	$\bar{A} B$	A plus ($A+B$)	$\bar{A}+B$	A plus AB
H	L	L	H	$A \oplus B$	A plus B	$\overline{\mathrm{A} \oplus \mathrm{B}}$	A plus B
H	L	H	L	B	$A \bar{B}$ plus $(A+B)$	B	$(A+\bar{B})$ plus $A B$
H	L	H	H	A + B	$A+B$	$A B$	$A B$ minus 1
H	H	L	L	Logical 0	A plus A *	Logical 1	A plus A*
H	H	L	H	$A \bar{B}$	$A B$ plus A	$A+\bar{B}$	$(A+B)$ plus A
H	H	H	L	AB	$A \bar{B}$ plus A	A+B	$(A+\bar{B})$ plus A
H	H	H	H	A	A	A	A minus 1

$L=$ Low Vottage Level, $H=$ HiGH Vottage Level

- Each bit is shifted to the next more significant postion.
* Arithmetc operations expressed in 2s complement notation

ACTIVE LOW

ACTIVE HIGH

FUNCTIONAL DESCRIPTION

The T74LS181 is a 4 -bit high speed Arithmetical Logic Unit (ALU). Controlled by the four Fuction Select Inputs ($\mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}$) and the Mode Control Input (M), it can perform all the possible 16 logic operations or 16 different arithmetic operations or active HIGH or active LOW operands. The Function Table lists these operations.
When the Mode Control Input (M) is HIGH, all internal carriers are inhibited and the device performs logic operations on the individual bits as listed. When the Mode Control Input is LOW, the carriers are enabled and the device perform arithmetic operations on the two 4 -bit words. The device incorporates full internal carry lookahead and provides for either ripple carry between devices using the $\mathrm{C}_{\mathrm{n}+4}$ output, or for carry lokahead between packages using the signal \bar{P} (Carry Proptage) and \bar{G}. (Carry Generate). \bar{P} and \bar{G} are not affect by carry in. When speed reqirements are not stringent, the LS181 can be used in a simple ripple carry mode by connecting the Carry Output (C_{n+4}) signal to the Carry Input (C_{n}) of the next unit. For high speed operation the LS181 is used in conjunction with other carry lookahead circuits. One carry lookahead package is required for each group of four LS181 devices. Carry lookahead can be provided at
various levels and offers high spped capability over extremely long word lengths. The $A=B$ output from the LS181 goes HIGH when all four $\overline{\mathrm{F}}$ outputs are HIGH and can be used to indicate logic equivalence over four bits when the unit is in the substract mode. The $A=B$ output is open collector and can be wiredAND with other $A=B$ outputs to give a comparison for more than four bits. The $\mathrm{A}=\mathrm{B}$ signal can also be used with the $\mathrm{C}_{\mathrm{n}+4}$ signal to indicate $\mathrm{A}>\mathrm{B}$ and $\mathrm{A}<\mathrm{B}$. The Function Table lists the arithmetic operations that are performed without a carry in. An incoming carry adds a one to each operation. Thus, select code LHHL generates A minus B minus 1 (2s complement notation) without a carry in and generates A and B when carry is applied. Because subtraction is actually performed by complementary addition (1s complement), a carry out means borrow; thus a carry out means underflow and no carry is generated when there is underflow.
As indicated, the LS181 can be used with either active LOW input producing active LOW inputs or with active HIGH inputs producing active HIGH outputs. For either case the table lists the operations that are performed to the operands labeled inside the logic symbol.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
V_{H}	Input HIGH Voltage	2.0			Guaranteed Input HIGH Voltage for All Input		V
VIL	Input LOW Voltage			-0.8	Guaranteed Input LOW Voltage for All Input		v
$V_{C D}$	Input Clamp Diode Voltage		-0.65	-1.5	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{l} \mathrm{IN}=-18 \mathrm{~mA}$		V
Vor	Output HIGH Voltage	2.7	3.5		$\begin{aligned} & V_{\text {CC }}=\text { MIN, IoH }=-400 \mu \mathrm{~A} \\ & V_{\text {IN }}=V_{\text {IH }} \text { or } V_{\text {IL }} \text { per Truth Table } \end{aligned}$		V
Іон	Output HIGH Current			100	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{OH}}=5.5 \mathrm{~V}$		$\mu \mathrm{A}$
VoL	Output LOW Voltage Except \bar{G} and \bar{P}		0.25	0.4	$\mathrm{loL}=4.0 \mathrm{~mA}$	VIL per Truth Table	V
			0.35	0.5	$\mathrm{loL}=8.0 \mathrm{~mA}$		V
	Output $\overline{\mathbf{G}}$		0.47	0.7	$\mathrm{OLL}=1.6 \mathrm{~mA}$		V
	Output \bar{P}		0.35	0.7	$\mathrm{loL}=8.0 \mathrm{~mA}$		V
$1{ }_{1+}$	Input HIGH Current Mode Input A and B Inputs S Input Carry Inputs			$\begin{gathered} 20 \\ 60 \\ 80 \\ 100 \\ \hline \end{gathered}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$		$\mu \mathrm{A}$
	Mode Input A and B Inputs S Input Carry Inputs			$\begin{aligned} & 0.1 \\ & 0.3 \\ & 0.4 \\ & 0.5 \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$		mA
ILL	Input LOW Current Mode Input A and B Inputs S Input Carry Inputs			$\begin{aligned} & -0.36 \\ & -1.08 \\ & -1.44 \\ & -2.0 \\ & \hline \end{aligned}$	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$		mA
los	Output Short Circuit Current (note 2)	-20		- 100	$V_{C C}=M A X, V_{\text {IN }}=0 \mathrm{~V}$		mA
Icc	Power Supply Current Condition A (Note 3)		20	34	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$		mA
	Power Supply Current Condition B (Note 3)		21	37			mA

Notes : 1 Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions
2. Not more than one output should be shorted at a tıme.

3 With output open, ICC is measured for the following conditions•
A. S_{0} through $\mathrm{S}_{3}, \mathrm{M}$ and A inputs are at 45 V , all other inputs are grounded B. S_{0} through S_{3} and M are at 45 V , all other inputs are grounded
(*) Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits		Test Conditions	Units
		Min.	Max.		
$\begin{aligned} & \text { tPLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay, (C_{n} to C_{n+4})	$\begin{aligned} & 18 \\ & 13 \end{aligned}$	$\begin{aligned} & 27 \\ & 20 \\ & \hline \end{aligned}$	$\mathrm{M}=\mathrm{OV}$, (Sum or Diff Mode) See Figure 1 and Tables I and II	ns
$\begin{aligned} & \text { tPLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay, (Cn to Foutput)	$\begin{aligned} & 17 \\ & 13 \end{aligned}$	$\begin{aligned} & 26 \\ & 20 \end{aligned}$	$\mathrm{M}=\mathrm{OV}$, (Sum Mode) See Figure 1 and Table I	ns
$\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, (\bar{A} or \bar{B} Inputs to \bar{G} Outputs)	$\begin{aligned} & 19 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 29 \\ & 23 \end{aligned}$	$\mathrm{M}=\mathrm{S}_{1}=\mathrm{S}_{2}=\mathrm{OV}, \mathrm{~S}_{0}=\mathrm{S}_{3}=4.5 \mathrm{~V}$ (Sum Mode) See Figure 1 and Table I	ns
$\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, ($\overline{\mathrm{A}}$ or $\overline{\mathrm{B}}$ Inputs to G Outputs)	$\begin{aligned} & 21 \\ & 21 \\ & \hline \end{aligned}$	$\begin{aligned} & 32 \\ & 32 \\ & \hline \end{aligned}$	$\mathrm{M}=\mathrm{S}_{0}=\mathrm{S}_{3}=0 \mathrm{~V}, \mathrm{~S}_{1}=\mathrm{S}_{2}=4.5 \mathrm{~V}$ (Diff Mode) See Figure 2 and Table II	ns
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay, (\bar{A} or \bar{B} Inputs to \bar{P} Outputs)	$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & \hline \end{aligned}$	$\mathrm{M}=\mathrm{S}_{1}=\mathrm{S}_{2}=0 \mathrm{~V}, \mathrm{~S}_{0}=\mathrm{S}_{3}=4.5 \mathrm{~V}$ (Sum Mode) See Figure 1 and Table I	ns
$\begin{aligned} & \text { tpLH } \\ & \text { tppl } \end{aligned}$	Propagation Delay, (\bar{A} or \bar{B} Inputs to \bar{P} Outputs)	$\begin{aligned} & 20 \\ & 22 \\ & \hline \end{aligned}$	$\begin{aligned} & 30 \\ & 33 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{M}=\mathrm{S}_{0}=\mathrm{S}_{3}=0 \mathrm{~V}, \mathrm{~S}_{1}=\mathrm{S}_{2}=4.5 \mathrm{~V} \\ & \text { (Diff Mode) See Figure } 2 \text { and Table II } \end{aligned}$	ns
tpL tpHL	Propagation Delay, ($\overline{\mathrm{A}}$ or $\overline{\mathrm{B}}$ Inputs to any \bar{F} Outputs)	$\begin{aligned} & 21 \\ & 13 \\ & \hline \end{aligned}$	$\begin{aligned} & 32 \\ & 20 \\ & \hline \end{aligned}$	$\mathrm{M}=\mathrm{S}_{1}=\mathrm{S}_{2}=\mathrm{OV}, \mathrm{~S}_{0}=\mathrm{S}_{3}=4.5 \mathrm{~V}$ $\text { (Sum Mode) See Figure } 1 \text { and Table I }$	ns
$\begin{aligned} & \text { tpLH } \\ & \text { tpht } \end{aligned}$	Propagation Delay, ($\overline{\mathrm{A}}$ or $\overline{\mathrm{B}}$ Inputs to any $\overline{\mathrm{F}}$ Outputs)	$\begin{aligned} & 21 \\ & 21 \end{aligned}$	$\begin{aligned} & 32 \\ & 32 \\ & \hline \end{aligned}$	$\mathrm{M}=\mathrm{S}_{0}=\mathrm{S}_{3}=0 \mathrm{~V}, \mathrm{~S}_{1}=\mathrm{S}_{2}=4.5 \mathrm{~V}$ $\text { (Diff Mode) See Figure } 2 \text { and Table II }$	ns
tPLH tPHL	Propagation Delay, ($\overline{\mathrm{A}}$ or $\overline{\mathrm{B}}$ Inputs to any \bar{F} Outputs)	$\begin{gathered} 22 \\ 6 \\ \hline \end{gathered}$	$\begin{aligned} & 32 \\ & 38 \end{aligned}$	$\mathrm{M}=\mathrm{OV}$, (Logic Mode) See Figure 1 and Table III	ns
$\begin{aligned} & \text { tPL } \\ & \text { tpHL } \end{aligned}$	Propagation Delay, ($\overline{\mathrm{A}}$ or $\overline{\mathrm{B}}$ Inputs to $\mathrm{C}_{\mathrm{n}+4}$ Outputs)	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 38 \\ & 38 \end{aligned}$	$\mathrm{M}=\mathrm{S}_{1}=\mathrm{S}_{2}=0 \mathrm{~V}, \mathrm{~S}_{0}=\mathrm{S}_{3}=4.5 \mathrm{~V}$ (Sum Mode) See Figure 3 and Table I	ns
$\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, ($\overline{\mathrm{A}}$ or $\overline{\mathrm{B}}$ Inputs to C_{n+4} Outputs)	$\begin{aligned} & 27 \\ & 27 \\ & \hline \end{aligned}$	$\begin{array}{r} 41 \\ 41 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{M}=\mathrm{S}_{0}=\mathrm{S}_{3}=0 \mathrm{~V}, \mathrm{~S}_{1}=\mathrm{S}_{2}=4.5 \mathrm{~V} \\ & \text { (Diff Mode) } \end{aligned}$	ns
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \\ & \hline \end{aligned}$	Propagation Delay, ($\overline{\mathrm{A}}$ or $\overline{\mathrm{B}}$ Inputs to $\mathrm{A}=\mathrm{B}$ Outputs)	$\begin{aligned} & \hline 33 \\ & 41 \\ & \hline \end{aligned}$	$\begin{aligned} & 50 \\ & 62 \\ & \hline \end{aligned}$	$\mathrm{M}=\mathrm{S}_{0}=\mathrm{S}_{3}=0 \mathrm{~V}, \mathrm{~S}_{1}=\mathrm{S}_{2}=4.5 \mathrm{~V}$ (Diff Mode) See Figure 2 and Table II	ns

AC WAVEFORMS

Figure 1

Figure 2

Figure 3

SUM MODE TEST TABLE I: $\mathrm{S}_{0}=\mathrm{S}_{3}=4.5 \mathrm{~V}, \mathrm{~S}_{1}=\mathrm{S}_{2}=\mathrm{M}=0 \mathrm{~V}$

Parameter	Input Under Test	OTER INPUT SAME BIT		OTHER DATA INPUTS		Output Under Test
		APPLY 4.5V	APPLY GND	APPLY 4.5V	APPLY GND	
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	\bar{A}_{1}	\bar{B}_{1}	None	Remaining A and B	C_{n}	\bar{F}_{1}
$\begin{aligned} & \text { tPLH } \\ & \text { tpHL } \end{aligned}$	\bar{B}_{1}	\bar{A}_{1}	None	Remaining A and B	C_{n}	\bar{F}_{1}
$\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$	\bar{A}_{1}	\bar{B}_{1}	None	C_{n}	Remaining $\overline{\mathrm{A}}$ and $\overline{\mathrm{B}}$	F_{1+1}
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	\bar{B}_{1}	\bar{A}_{1}	None	C_{n}	Remaining \bar{A} and \bar{B}	F_{1+1}
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	$\overline{\text { A }}$	$\overline{\mathrm{B}}$	None	None	Remaining $\overline{\mathrm{A}}$ and $\overline{\mathrm{B}}, \mathrm{C}_{n}$	P
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	$\overline{\text { B }}$	$\overline{\text { A }}$	None	None	Remaining $\overline{\mathrm{A}}$ and $\overline{\mathrm{B}}, \mathrm{C}_{\mathrm{n}}$	$\overline{\mathrm{P}}$
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	A	None	\bar{B}	$\begin{gathered} \text { Remainıng } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Remaining } \\ & \bar{A}, C_{n} \end{aligned}$	$\overline{\mathrm{G}}$
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	\bar{B}	None	$\overline{\text { A }}$	$\begin{gathered} \text { Remaining } \\ \bar{B} \end{gathered}$	$\begin{gathered} \text { Remaining } \\ \overline{\mathrm{A}}, \mathrm{C}_{\mathrm{n}} \end{gathered}$	$\overline{\mathrm{G}}$
$\begin{aligned} & \text { tpLL } \\ & \text { tpht } \end{aligned}$	A	None	\bar{B}	$\text { Remaining }_{\bar{B}}$	Remaining \bar{A}, C_{n}	Cn+4
$\begin{aligned} & \text { tpLH } \\ & \text { tpht } \end{aligned}$	\bar{B}	None	$\overline{\text { A }}$	$\operatorname{Remaining~}_{\bar{B}}$	Remaining \bar{A}, C_{n}	$\mathrm{Cn}+4$
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	C_{n}	None	None	$\frac{\mathrm{A} l l}{\mathrm{~A}}$	$\begin{aligned} & \frac{\text { All }}{\bar{B}} \end{aligned}$	Any $\overline{\mathrm{F}}$ or C_{n+4}

DIFF MODE TEST TABLE II: $\mathrm{S}_{0}=\mathrm{S}_{3}=4.5 \mathrm{~V}, \mathrm{~S}_{1}=\mathrm{S}_{2}=\mathrm{M}=0 \mathrm{~V}$

Parameter	Input Under Test	OTER INPUT SAME BIT		OTHER DATA INPUTS		Output Under Test
		APPLY 4.5V	APPLY GND	APPLY 4.5V	APPLY GND	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	A	None	B	$\begin{gathered} \text { Remaining } \\ \text { A } \\ \hline \end{gathered}$	Remaınıng B, C_{n}	F_{1}
tpLH $\mathrm{t}_{\mathrm{PHL}}$	\bar{B}	A	None	$\operatorname{Remaining}_{\bar{A}}$	Remaining B, C_{n}	\bar{F}_{1}
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \\ & \hline \end{aligned}$	\bar{A}_{1}	None	\bar{B}_{1}	Remaınıng B, C_{n}	$\operatorname{Remaining~}_{\bar{A}}$	F_{1+1}
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	\bar{B}_{1}	\bar{A}_{1}	None	Remaining B, C_{n}	$\operatorname{Remanning~}_{\bar{A}}$	F_{1+1}
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	A	None	B	None	Remaining \bar{A} and \bar{B}, C_{n}	P
$\begin{aligned} & \mathrm{t}_{\mathrm{PLL}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	\bar{B}	A	None	None	Remaining $\overline{\mathrm{A}}$ and $\overline{\mathrm{B}}, \mathrm{C}_{\mathrm{n}}$	\bar{P}
$\begin{aligned} & \text { tpLH } \\ & t_{\text {PHL }} \\ & \hline \end{aligned}$	\bar{A}	B	None	None	Remanning \bar{A} and \bar{B}, C_{n}	$\overline{\mathrm{G}}$
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	\bar{B}	None	$\overline{\text { A }}$	None	Remainıng \bar{A} and \bar{B}, C_{n}	$\overline{\mathrm{G}}$
$\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	\bar{A}	None	\bar{B}	$\frac{\text { Remaining }}{\mathrm{A}}$	Remaınıng B, C_{n}	$A=B$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	\bar{B}	$\overline{\mathrm{A}}$	None	$\operatorname{Reman}_{\bar{A}}$	Remaining B, C_{n}	$A=B$
$\begin{aligned} & \hline \text { tPLH } \\ & \text { tphL } \end{aligned}$	$\overline{\text { A }}$	\bar{B}	None	None	Remainıng A and $\mathrm{B}, \mathrm{C}_{\mathrm{n}}$	Cn+4
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	\bar{B}	None	$\overline{\mathrm{A}}$	None	Remainıng A and $\mathrm{B}, \mathrm{C}_{\mathrm{n}}$	$C n+4$
tPLH tphL	Cn	None	None	$\overline{\mathrm{All}} \overline{\mathrm{~A}} \mathrm{~B}$	None	C_{n+4}

LOGIC MODE TEST TABLE III: $\mathrm{S}_{1}=\mathrm{S}_{2}=\mathrm{M}=4.5 \mathrm{~V}, \mathrm{~S}_{0}=\mathrm{S}_{3}=0 \mathrm{~V}$

Parameter	Input Under Test	OTER INPUT SAME BIT		OTHER DATA INPUTS		Output Under Test
		APPLY 4.5V	APPLY GND	APPLY 4.5V	APPLY GND	
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \\ & \hline \end{aligned}$	$\overline{\text { A }}$	None	\bar{B}	None	Remanning A and B, C_{n}	\bar{F}_{1}
tpLH tphL	\bar{B}	None	A	None	Remainıng $\overline{\mathrm{A}}$ and $\overline{\mathrm{B}}, \mathrm{C}_{\mathrm{n}}$	\bar{F}_{1}

LS190 - PRESETTABLE BCD/DECADE UP/DOWN COUNTERS LS191 - PRESETTABLE 4-BIT BINARY UP/DOWN COUNTERS

- LOW POWER 90 mW TYPICAL DISSIPATION
- SYNCHRONOUS COUNTING
- INDIVIDUAL PRESET INPUTS
- CASCADABLE
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS
- HIGH SPEED 35 MHz TYPICAL COUNT FREQUENCY
- ASYNCHRONOUS PARALLEL LOAD
- COUNT ENABLE AND UP/DOWN CONTROL INPUT
- FULLY TTL AND CMOS COMPATIBLE

DESCRIPTION

The T74LS190 is a synchronous UP/DOWN BCD Decade (8421) Counter and the T74LS191 is a synchronous UP/DOWN Modulo-16 Binary Counter. State changes of the counters are synchronous with the LOW to HIGH transition of the Clock Pulse input.
An asynchronous Parallel Load ($\overline{\mathrm{PL}}$) input overrides counting and loads the data present on the P_{n} inputs into the flip-flops, which makes it possible to use the circuits as programmable counters.
A Count Enable ($\overline{\mathrm{CE}}$) input serves as the carry/borrow input in multi-stage counters. An Up/Down Count Control (\bar{U} / D) input determines whether a circuit count up or down. A Terminal Count (TC) output and a Ripple Clock ($\overline{\mathrm{RC}}$) output provide overflow/underflow indication and make possible a variety of methods for generating carry/borrow signal in multistage counter applications.

B1
(Plastic Package)

M1
(Micro Package)

D1
(Ceramic Package)

C1
(Plastic Chip Carrier)

ORDER CODES :
T74LSXXX D1
T74LSXXX C1 T74LSXXX B1 T74LSXXX M1

PIN CONNECTION (top view) DUAL IN LINE

CHIP CARRIER

NC = No Internal Connection

LOGIC SYMBOL AND STATE DIAGRAM

MODE SELECT TABLE

INPUTS				MODE
$\overline{\mathbf{P L}}$	$\overline{\mathbf{C E}}$	$\overline{\mathbf{U}} / \mathbf{D}$	CP	
H	L	L	J	Count Up
H	L	H	J	Count Down
L	X	X	X	Preset (Asyn.)
H	H	X	X	No Change (Hold)
L LOW Voltage Level, H $=$ HIGH Voltage Level, X = Don't Care,				

RC TRUTH TABLE

INPUTS			$\overline{\text { RC OUTPUT }}$
$\overline{\mathbf{C E}}$	TC *	CP	
L	H	L	U
H	X	X	H
X	L	X	H

*TC is generated internally
= LOW to HIGH transtion. $\zeta=$ LOW Pulse

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{cc}	Supply Voltage	-0.5 to 7	V
V_{1}	Input Voltage, Applied to Input	-0.5 to 15	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage, Applied to Output	0 to 10	V
I_{1}	Input Current, into Inputs	-30 to 5	mA
I_{O}	Output Current, into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress ratung only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage		Temperature	
	Min.	Typ.		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
T74LS190/191XX	4.75 V	5.0 V	5.25 V	

LOGIC DIAGRAMS

FUNCTIONAL DESCRIPTION

The LS190 is a synchronous Up/Down BCD Decade Counter and the LS191 is a synchronous Up/Down 4-Bit Binary Counter. The operating modes of the LS190 decade counter and the LS191binary counterare identical, with the only difference being the count sequences as noted in the state diagrams. Each circuit contains four master slave flip-flops, with internal gating and steering logic to provide individual preset, count-up and count-down operations.
Each circuit has a n asynchronous parallel loas capability permitting the counter to be preset to any desired number. When the Parallel Load ($\overline{\mathrm{PL}}$) input is LOW, information present on the Parallel Data inputs ($\mathrm{P}_{0}-\mathrm{P}_{3}$) is loaded into the counter and appears on the Q outputs. This operation overrides the counting functions, as indicated in the Mode Select Table.
A HIGH signal on the $\overline{\mathrm{CE}}$ input inhibit counting. When CE is LOW, internal state changes are initiaded synchronously by thee LOW to HIGH transition of the clock input.. The direction of counting is determined by the \bar{U} / D input signal, as indicate in the Mode Select Table. When counting is to be enabled, the $\overline{C E}$ signal can be made LOW when the clock is in either state.
However, when counting is to be inhibited, the LOW to HIGH CE transition must occur only while the clock is HIGH. Similary, the $\overline{\mathrm{U}} / \mathrm{D}$ signal should only be changed when either $\overline{\mathrm{CE}}$ or the clock is HIGH.
Two types of outputs are provided as overflow/underflow indicators. The Terminal Count (TC) output is normally LOW and goes HIGH when a circuit reaches zero in the count-down mode or raches maximum (9 for LS190, 15 for the LS191) in the count-up mode. The TC output will then remain HIGH until a stage changeoccurs, wheter by counting or presetting or until U/D is changed. The TC output should not be used as a clock signal because it
is subject to decoding spikes.
The TC signal is also used internally to be enable the Rpple Clock ($\overline{\mathrm{RC}}$) output. The $\overline{\mathrm{RC}}$ output is normally HIGH. When CE is LOW and TC is HIGH, the RC output will go LOW when the clock next goes HIGH again. This feature simplifies the design of multistage counters, as indicated in Figures a and b. In Figure a, each $\overline{\mathrm{RC}}$ output is used as the clock input for the next higher stage. This configuration is particularly advantageous when the clock source has a limited drive capability, since it drives only the first stage. To prevent counting in all stages it is only necessary to inhibit the first stage, since a HIGH signals on $\overline{\mathrm{CE}}$ inhibit the $\overline{\mathrm{RC}}$ output pulse, as indicated in the $\overline{\mathrm{RC}}$ Truth Table. A disadvantage of this configuration, in some applications, is the timing skew between state changes in the first and last stages.
This represent the cumulative delay of the clock as it ripples through the preceding stages. A method of causing state changes to occur simultaneously in all stages is shown in Figure b. All Clock inputs are driven in parallel and the RC output propagate the carry/borrow signals ripple fashion. In this configuration the LOW state duration of the clock must be long enough to allow the negative going edge of the of the carry/borrow signal to ripple through to the last stage before the clock goes HIGH. There is no such restriction on the HIGH state duration of the clock, since the $\overline{\mathrm{RC}}$ output of any package goes HIGH shortly after its CP input goes HIGH.
The configuration shown in Figure c avoids ripple delays and their associated restrictions. The CE input signal for a given stage is formad by combining the TC signals from all the preceding stages. Note that in order to inhibit counting an enable signal must be included in each carry gate. The simple inhibit scheme of Figure a and b doesn't apply, because the TC output of a given stage is not affect by its own $\overline{C E}$.

Fig. a: n-stage counter using ripple clock

Fig.b: Synchronous n-stage counter using ripple carry/borrow

Fig. c: Synchronous n-stage counter with parallel gated carry/borrow

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
V_{IH}	Input HIGH Voltage	2.0			Guaranteed Input HIGH Voltage for All Inputs		V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	Guaranteed Input LOW Voltage for All Inputs		V
$V_{C D}$	Input Clamp Diode Voltage		-0.65	-1.5	$\mathrm{V}_{C C}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$		V
V OH	Output HIGH Voltage	2.7	3.4		$\begin{aligned} & V_{C C}=M I N, I_{O H}=-400 \mu \mathrm{~A} \\ & V_{I N}=V_{\text {IH }} \text { or } V_{\text {IL }} \text { per Truth Table } \end{aligned}$		V
Vol	Output LOW Voltage		0.25	0.4	$\mathrm{loL}=4.0 \mathrm{~mA}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \text { per Truth Table } \end{aligned}$	V
			0.35	0.5	$\mathrm{lOL}=8.0 \mathrm{~mA}$		V
I_{H}	$\begin{aligned} & \text { Input HIGH Current } \\ & \frac{P_{0},}{\mathrm{PL}}, \mathrm{CP}, \mathrm{U} / \mathrm{D} \end{aligned}$			$\begin{aligned} & 20 \\ & 60 \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$		$\mu \mathrm{A}$
	$\frac{\mathrm{P}_{0}, \overline{\mathrm{PL}}, \mathrm{CP}, \overline{\mathrm{U}} / \mathrm{D}}{\mathrm{CE}}$			$\begin{aligned} & 01 \\ & 0.3 \end{aligned}$	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$		mA
IIL	Input LOW Current $\mathrm{P}_{0}, \overline{\mathrm{PL}}, \mathrm{CP}, \mathrm{U} / \mathrm{D}$ CE			$\begin{array}{r} -0.4 \\ -1.08 \\ \hline \end{array}$	$V_{C C}=M A X, V_{\text {IN }}=0.4 \mathrm{~V}$		mA
los	Output Short Circuit Current (note 2)	-20		- 100	$V_{C C}=M A X, V_{\text {OUT }}=0 \mathrm{~V}$		mA
Icc	Power Supply Current		20	35	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$, All Inputs OV		mA

Notes: 1 For conditions shown as MIN or MAX, use the appropriate value specified under guaranteed operatıng ranges.
2. Note more than one output should be shorted at a time.
(*) Typical values are at $V_{C C}=5.0 \mathrm{~V}, T_{A}=25{ }^{\circ} \mathrm{C}$

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Test Conditions		Units
		Min.	Typ.	Max.			
$f_{\text {max }}$	Max Input Count Frequency	20	25		Figures 1	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$	MHz
$\begin{aligned} & \mathrm{t}_{\text {PLH }} \\ & \mathrm{t}_{\text {PHL }} \\ & \hline \end{aligned}$	Propagation Delay, CP Input to Q Outputs		$\begin{aligned} & 16 \\ & 24 \end{aligned}$	$\begin{aligned} & 24 \\ & 36 \end{aligned}$	Figures 1		ns
$t_{P L H}$ tpHL^{2}	Propagation Delay, CP Input to RC Outputs		$\begin{aligned} & 13 \\ & 16 \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 24 \\ & \hline \end{aligned}$	Figures 2		ns
$\begin{aligned} & \mathrm{tPLH} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay, CP Input to TC Outputs		$\begin{aligned} & 28 \\ & 37 \end{aligned}$	$\begin{aligned} & 42 \\ & 52 \\ & \hline \end{aligned}$	Figures 1		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}}{ }^{*} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay, U/D Input to RC Outputs		$\begin{aligned} & 30 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	Figures 7		ns
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL }^{*} \end{aligned}$	Propagation Delay, U/D Input to TC Outputs		$\begin{aligned} & 21 \\ & 22 \\ & \hline \end{aligned}$	$\begin{aligned} & 33 \\ & 33 \\ & \hline \end{aligned}$	Figures 7		ns
$\begin{aligned} & \mathrm{tPLH} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay, PO-P3 Inputs to $\mathrm{Q}_{0}-\mathrm{Q}_{3}$ Outputs		$\begin{aligned} & 20 \\ & 27 \end{aligned}$	$\begin{aligned} & 32 \\ & 40 \\ & \hline \end{aligned}$	Figures 3		ns
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	Propagation Delay, PL Input to Any Output		$\begin{aligned} & 22 \\ & 33 \\ & \hline \end{aligned}$	$\begin{aligned} & 33 \\ & 50 \\ & \hline \end{aligned}$	Figures 4		ns
$\begin{gathered} \mathrm{tPLH}^{*} \\ \mathrm{t}_{\text {PHL }} \end{gathered}$	Propagation Delay, $\overline{C E}$ Input to $\overline{R C}$ Output		$\begin{aligned} & 21 \\ & 22 \\ & \hline \end{aligned}$	$\begin{aligned} & 33 \\ & 33 \end{aligned}$	Figures 2		ns

* It is possible to get these timing relationnship, but they should not occur duning normal operation since the CP would be HIGH.

AC SET-UP REQUIREMENTS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Test Conditions		Units
		Min.	Typ.	Max.			
tw	CP Pulse Width	25			Figure 1	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$	ns
iw	PL Pulse Width	35			Figure 4		ns
$\mathrm{ts}_{\text {s }}$	Set-Up Time LOW, Data to PL	30					ns
$t_{n} \mathrm{~L}$	Hold Time LOW, Data to PL	5			Figure 6		ns
ts_{5}	Set-Up Time HIGH, Data to PL	30					ns
th H	Hold Time HIGH, Data to PL	5					ns
$\mathrm{trec}^{\text {che }}$	Recovery Time, PL to CP	40			Figure 5		ns
$\mathrm{ts}_{\text {s }}$	Set-Up Time LOW, CE to Clock	30			Figure 8		ns
thL	Hold Time LOW, CE to Clock	5					ns

DEFINITION OF TERMS:

SET-UP TIME (t_{s} : is defined as the minimum time required for the corret logic level to be present at the logic input prior the clock transition from LOW to HIGH in order to be recognized and transferred to the outputs.
HOLD TIME $\left(\mathrm{t}_{\mathrm{h}}\right)$: is defined as the minimum time following the clock transition from LOW to HIGH at which the logiclevel must be maintained at the input
in order to ensure continued recognition. A negative HOLD TIME indicates that the correct logic level may be relased prior to the clock transitio from LOW to HIGH and still be recognized.
RECOVERY TIME (trec) : is defined as the minimum time required between the end of the reset pulse and the clock transition from LOW to HIGH in order to recognize and transfer HIGH Data to the Q outputs.

AC WAVEFORM

Fig 1.

Fig 2.

Fig 3.

Fig 4.

Fig 5.

Fig 6.

The shaded areas indicate when the input is permitted to change for predictable output performance
Fig 7.

\qquad

Fig 8.

LS192 - PRESETTABLE BCD/DECADE UP/DOWN COUNTERS LS193 - PRESETTABLE 4-BIT BINARY UP/DOWN COUNTERS

- LOW POWER 95 mW TYPICAL DISSIPATION
- SYNCHRONOUS COUNTING
- CASCADING CIRCUITRY INTERNALLY PROVIDED
- ASYNCHRONOUS MASTER RESET AND PARALLEL LOAD
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS
- HIGH SPEED 40 MHz TYPICAL COUNT FREQUENCY
- INDIVIDUAL PRESET INPUTS
- FULLY TTL AND CMOS COMPATIBLE

DESCRIPTION

The T74LS192 is a synchronous UP/DOWN BCD Decade (8421) Counter and the T74LS193 is a synchronous UP/DOWN Modulo-16 Binary Counter. Separate Count Down Clocks are used as in eithes counting mode the circuits operate synchronously. The ouputs change state synchronous with the LOW to HIGH transitions on the clock inputs.
Separate Terminal Count Up and Terminal Count Down outputs are provided which are used as the clock for subsequent stages without extra logic, thus simplifying multistage counter designs.
Individual preset inputs allow the circuits to be used as programmable counters. Both the Parallel Load (PL) and the Master Reset inputs asynchronously override the clock.

PIN NAMES

CP_{\cup}	Count Up Clock Pulse Input
CP_{D}	Count Down Clock Pulse Input
MR	Asynchronous Master Reset (Clear) Input
$\overline{\mathrm{PL}}$	Asynchronous Parallel Load (Active LOW) Input
P_{n}	Parallel Data Inputs
Q_{n}	Flip-flop Outputs
$\overline{\overline{T C}_{\mathrm{D}}}$	Terminal Count Down (Borrow) Output
$\overline{\mathrm{TC}}$	Terminal Count Up (Carry) Output

B1
(Plastic Package)

M1
(Micro Package)

D1
(Ceramic Package)

C1
(Plastic Chip Carrier)

ORDER CODES :

```
T74LSXXX D1
T74LSXXX C1 T74LSXXX B1
T74LSXXX M1
```

PIN CONNECTION (top view)
DUAL IN LINE

NC $=$ No Internal Connection

LOGIC SYMBOL AND STATE DIAGRAM

\begin{tabular}{|c|c|c|}
\hline \& LS192

LS193 \&

\hline
\end{tabular}

MODE SELECT TABLE

MR	$\overline{\text { PL }}$	CP_{u}	CPD	MODE
H	X	X	X	Reset (Asynchronous)
L	L	X	X	Preset (Asynchronous)
L	H	H	H	No Change
L	H	J	H	Count Up
L	H	H	5	Count Down

$\mathrm{L}=$ LOW Voltage Level, $\mathrm{H}=$ HIGH Voltage Level, $\mathrm{X}=$ Don't Care, $\int=$ LOW to HIGH transiton.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{C C}$	Supply Voltage	-0.5 to 7	V
V_{1}	Input Voltage, Applied to Input	-0.5 to 15	V
V_{O}	Output Voltage, Applied to Output	0 to 10	V
I_{1}	Input Current, into Inputs	-30 to 5	mA
I_{O}	Output Current, into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maximum Ratings" may cause permanent damage to the device This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage		Temperature	
	Min.	Typ.		
T74LS192/193XX	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

LOGIC DIAGRAMS

FUNCTIONAL DESCRIPTION

The LS192 and LS193 are Asynchronously Presettable Decade and 4-Bit Binary Synchronous Up/DOWN (Reversable) Counter. The operating modes of the LS192 decade counter and the LS193 binary counterare identica, with the only difference being the count sequences as noted in the state diagrams. Each circuit contains four master slave flip-flops, with internal gating and steering logic to provide individual preset, count-up and count-down operations.
Each flip-flop contains JK feedback from slave to master such that a LOW to HIGH transition on its T input causes the slave, and thus the Q output to change state. Synchronous switching, as opposed to ripple counting, is achived by driving the steering gates of all stages from a common Count Up line and a common Count Down line, thereby causing all state changes to be initiated simultaneously. A LOW to HIGH transition on the Count-Up input will advance the count by one; asimilar transition on the Count Down input will decrease the count by one. While counting with one clock input, the other should be held HIGH. Otherwise, the circuit, will either count by two or not at all, depending of the state of the first flip-flop, chich can not toggle as long as either Clock input is LOW. The Terminal Count Up ($\overline{\mathrm{TC}} \mathrm{u}$) and Terminal Count Down ($\overline{\mathrm{TC}}_{\mathrm{D}}$) outputs are normally HIGH. When a circuit has reached the
maximum count state (9 for the LS192, 5 for the LS193), the next HIGH to LOW transition of the Count Up Clock will cause TCu to go LOW. $\overline{T C}_{U}$ will stay LOW until CPU goes HIGH again, thus effectively repeating the Count Up Clock, but delayed by two gate delays.
Similary, the $\overline{T C}_{D}$ output will go to LOW when the circuit is in the zero state and the Count Down Clock goes LOW. Since the TC outputs repeat the clock waveforms, they can be used as the clock input signals to hte next higher order circuit in a multistage counter.
Each circuit has an asynchronous parallel load capability permitting the counter to be preset.
When the Parallel Load ($\overline{\mathrm{PL}}$) and the Master Resert (MR) inputs are LOW, information present on the Parallel Data inputs ($\mathrm{P}_{0}, \mathrm{P}_{3}$) is loaded into the counter and appears on the outputs regardless of the conditions of the clock inputs. A HIGH signal on the Master Reset input will disable the present gates, override both Clock inputs, and latch each Q output in the LOW state. If one of the Clock inputs is LOW during and after a reset or load operation, the next LOW to HIGH transition of that Clock will be interpreted as a legitimate signal and will be counted.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
V_{IH}	Input HIGH Voltage	2.0			Guaranteed Input HIGH Voltage for All Inputs		V
VIL	Input LOW Voltage			0.8	Guaranteed Input LOW Voltage for All Inputs		V
$V_{C D}$	Input Clamp Diode Voltage		-0.65	- 1.5	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$		V
VOH	Output HIGH Voltage	2.7	3.4		$\begin{aligned} & \mathrm{V}_{C C}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\text {IL }} \text { per Truth Table } \end{aligned}$		V
VoL	Output LOW Voltage		0.25	0.4	$\mathrm{loL}=4.0 \mathrm{~mA}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \text { per Truth Table } \end{aligned}$	V
			0.35	0.5	$\mathrm{loL}=8.0 \mathrm{~mA}$		V
IIH	Input HIGH Current			$\begin{aligned} & 20 \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & V_{C C}=M A X, V_{I N}=2.7 \mathrm{~V} \\ & V_{C C}=M A X, V_{I N}=7.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
ILL	Input LOW Current			-0.4	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$		mA
los	Output Short Circuit Current (note 2)	-20		- 100	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		mA
Icc	Power Supply Current		19	34	$V_{C C}=M A X$		mA

Notes : 1. For conditions shown as MIN or MAX, use the appropriate value specified under guaranteed operatıng ranges.
2. Note more than one output should be shorted at a time
$\left(^{*}\right)$ Typical values are at $\mathrm{V}_{\mathrm{Cc}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Test Conditions		Units
		Min.	Typ.	Max.			
$f_{\text {max }}$	Max Input Count Frequency	25	32		Figures 1	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & C_{L}=15 \mathrm{pF} \end{aligned}$	MHz
$\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, CPu Input to $\overline{T C}_{u}$ Outputs		$\begin{array}{r} 17 \\ 18 \\ \hline \end{array}$	$\begin{aligned} & 26 \\ & 24 \\ & \hline \end{aligned}$	Figures 2		ns
$\begin{aligned} & \text { tPL } \\ & \text { tpHL } \end{aligned}$	Propagation Delay, CPD Input to TC_{D} Outputs		$\begin{aligned} & 16 \\ & 15 \end{aligned}$	$\begin{array}{r} 24 \\ 24 \\ \hline \end{array}$			ns
$\begin{aligned} & \text { tpLL } \\ & \text { tpht } \end{aligned}$	Propagation Delay, $C P u$ or $C P_{D}$ to Q_{n} Outputs		$\begin{aligned} & 17 \\ & 30 \end{aligned}$	$\begin{aligned} & 38 \\ & 47 \end{aligned}$			ns
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay, $\overline{\mathrm{PL}}$ Inputs to Any Outputs		$\begin{aligned} & 24 \\ & 25 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$	Figures 4		ns
tpHL	Propagation Delay, MR Inputs to Any Outputs		23	35	Figures 7		ns

* It is possible to get these timing relationnship, but they should not occur during normal operation since the CP would be HIGH.

AC SET-UP REQUIREMENTS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Test Conditions		Units
		Min.	Typ.	Max.			
tw	CPu Pulse Width	20			Figure 1	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$	ns
tw	PLo Pulse Width	20					ns
tw	PL Pulse Width	20			Figure 4		ns
tw	MR Pulse Width	20					ns
$\mathrm{t}_{\text {s }} \mathrm{L}$	Set-Up Time LOW, Data to $\overline{P L}$	20			Figure 6		ns
thL	Hold Time LOW, Data to $\overline{\mathrm{PL}}$	5					ns
$\mathrm{ts}_{\text {s }}$	Set-Up Time HIGH, Data to PL	20					ns
th H	Hold Time HIGH, Data to $\overline{\text { PL }}$	5					ns
trec	Recovery Time	40			Figure 5		ns

DEFINITION OF TERMS:

SET-UP TIME (t_{s}): is defined as the minimum time required for the corret logic level to be present at the logic input prior the clock transition from LOW to HIGH in order to be recognized and transferred to the outputs.
HOLD TIME (t_{h}): is defined as the minimum time following the clock transition from LOW to HIGH at which the logiclevel must be maintained at the input
in order to ensure continued recognition. A negative HOLD TIME indicates that the correct logic level may be relased prior to the clock transitio from LOW to HIGH and still be recognized.
RECOVERY TIME (trec) : is defined as the minimum time required between the end of the reset pulse and the clock transition from LOW to HIGH in order to recognize and transfer HIGH Data to the Q outputs.

AC WAVEFORM

Fig 1.

Fig 2.

SC05510

Fig 3.

SC05520

Fig 4.

Fig 5.

Fig 6.

Fig 7.

UNIVERSAL 4-BIT SHIFT REGISTER

- TYPICAL SHIFT REGISTER FREQUENCY OF 40 MHz
- ASYNCHRONOUS MASTER RESET
- HOLD (DO NOTHING) MODE
- FULLY SYNCHRONOUS SERIAL OR PARALLEL DATA TRANSFERS
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS
- FULLY TTL AND CMOS COMPATIBLE

DESCRIPTION

The T74LS194A is a High Speed Bidirectional Universal Shift Register. As a hgih spped multifuntional sequential bulding block, it is useful in a wide variety of applications. It may be used in serialserial, shift left, shift right, serial-parallel, parallelserial and parallel-parallel data register transfers. The LS194A is similar in operation to be LS195 Universal Shift Register, with added features of shift left without external connections and hold (do nothing) modes of operation. It utilizes the Schottky diode clamped process to achieve high speed and is fully compatible with allTTL families.

B1 (Plastic Package)

M1 (Micro Package)

D1 (Ceramic Package)

C1
(Plastic Chip Carrier)

ORDER CODES :
T74LS194A D1 T74LS194A C1 T74LS194A B1 T74LS194A M1

PIN CONNECTION (top view)

PIN NAMES

$S_{0}-S_{3}$	Mode Control to Input
$P_{0}-P_{3}$	Parallel Data Inputs
$D_{S R}$	Serial (Shift Right) Data Input
$D_{S L}$	Serial (Shift Left) Data Input
$C P$	Clock (Active HIGH Going Edge) Input
$\overline{M R}$	Master Reset (Active LOW) Input
$Q_{0}-Q_{3}$	Parallel Outputs

LOGIC SYMBOL

LOGIC DIAGRAM

LC10000
$V_{c c}=\operatorname{PIn} 16$
GND $=$ Pin 8
() = Pin numbers

TRUTH TABLE

OPERATING MODE	INPUTS						OUTPUTS			
	$\overline{\text { MR }}$	S_{1}	S_{0}	$\mathrm{D}_{\text {SR }}$	$\mathrm{D}_{\text {SL }}$	P_{n}	\mathbf{Q}_{0}	a_{1}	Q_{2}	O_{3}
Reset	L	X	X	X	X	X	L	L	L	L
Hold	H	1	1	X	X	X	90	q1	q_{2}	q3
Shift Left	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \hline \mathrm{h} \\ & \mathrm{~h} \end{aligned}$	1	$\begin{aligned} & \hline X \\ & \mathrm{X} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{I} \\ & \mathrm{~h} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{q}_{1} \\ & \mathrm{q}_{1} \end{aligned}$	$\begin{aligned} & \mathrm{q} 2 \\ & \mathrm{q}_{2} \end{aligned}$	$\begin{aligned} & \mathrm{q3} \\ & \mathrm{q}_{3} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$
Shift Right	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \hline \end{aligned}$	1	$\begin{aligned} & \mathrm{h} \\ & \mathrm{~h} \end{aligned}$	h	$\begin{array}{r} \mathrm{X} \\ \mathrm{x} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{q}_{0} \\ & \mathrm{q}_{0} \end{aligned}$	$\begin{aligned} & \mathrm{q}_{1} \\ & \mathrm{q}_{1} \end{aligned}$	$\begin{aligned} & \mathrm{q}_{2} \\ & \mathrm{q}_{2} \end{aligned}$
Paralled Load	H	h	h	X	X	P_{n}	P_{0}	P_{1}	P_{2}	P_{3}

$\mathrm{L}=$ LOW Vottage Level
H = HIGH Voltage Level
X = Don't Care
I = LOW voltage level one set-up time prior to the LOW to HIGH clock transition
$h=$ HIGH voltage level one set-up time pror to the LOW to HIGH clock transition
$\mathrm{Pn}(\mathrm{qn})=$ Lower case letters indicate the state of the referenced input (or output) one set-up tme pror to the LOW to HIGH clock transition.

FUNCTIONAL DESCRIPTION

The Logic Diagram and Truth Table indicate the functional characteristics of the LS194A 4-Bit Bidirectional Shift Register. The LS194A is similar in operation to the LS195A Universal Shift Register when used in serial or parallel data register transfers. Some of the common features of the two devices are described below:

1) All data and mode control inputs are edge-triggered, responding only to the LOW to HIGH transition of the clock (CP). The only timing restriction, therefore, is that the mode control and selected data inputs must be stable one set-up time prior to the positive transition of the clock pulse.
2) The register is fully synchronous, with all operations taking place in less than 15 ns (typical) making the device especially useful for implementing very high speed CPUs, or the memory buffer registers.
3) The four parallel data inputs ($\mathrm{P}_{0}, \mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$) are D-type inputs. When both S_{0} and S_{1} are HIGH, the data appearing on P_{0}, P_{1}, P_{2} and P_{3} inputs is transferred to the Q_{0}, Q_{1}, Q_{2} and Q_{3} outputs respectively following the next

LOW to HIGH transition of the clock.
4) The asynchronous Master Reset ($\overline{\mathrm{MR}}$), when LOW, overrides all other input conditions and forces the Q outputs LOW.
Special logic features of the LS194A design which increase the range of application are described below:

1) Two mode control inputs ($\mathrm{S}_{0}, \mathrm{~S}_{1}$) determine the synchronous operation of he devices. As shown in the Mode Selection Table, data can be entered and shifted from left to righ (shift right, $Q_{0} \rightarrow Q_{1}$, etc.) or right to left (shift left, $Q_{3} \rightarrow Q_{2}$, etc.), or parallel data can be entered loading all four bits of the register simultaneously. When both S_{0} and S_{1} are LOW, the existing data is retained in a "do nothing" mode without restricting the HIGH to LOW clock transition.
2) D-type serial data inputs ($\mathrm{D}_{\text {SR }}, \mathrm{D}_{S L}$) are provided on both the first and last stages to allow multistage shift right or shift left data transfers without interfering with parallel load operation.

ABSOLUTE MAXIMUM RATING

Symbol	Parameter	Value	Unit
$V_{C C}$	Supply Voltage	-0.5 to 7	V
V_{1}	Input Voltage, Applied to Input	-0.5 to 15	V
V_{0}	Output Voltage, Applied to Output	-0.5 to 10	V
I_{I}	Input Current, Into Inputs	-30 to 5	mA
I_{0}	Output Current, Into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied. Exposure to absolute maxımum rating conditons for extended penods may affect device relablity.

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage			Temperature
	Min.	Typ.	Max.	
T74LS194AXX	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type.

dC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
V_{IH}	Input HIGH Voltage	2.0			Guaranteed Input HIGH Voltage for All Input		V
VIL	Input LOW Voltage			0.8	Guaranteed Input LOW Voltage for All Input		V
$V_{C D}$	Input Clamp Diode Voltage		-065	-1.5	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$		V
V_{OH}	Output HIGH Voltage	2.7	3.4		$\begin{aligned} & V_{C C}=M I N, I_{O H}=-400 \mu A \\ & V_{I N}=V_{I H} \text { or } V_{I L} \text { per Truth Table } \end{aligned}$		V
VoL	Output LOW Voltage		0.25	0.4	$\mathrm{loL}=4.0 \mathrm{~mA}$	$\begin{aligned} & V_{C C}=M I N \\ & V_{I N}=V_{I H} \text { or } V_{I L} \\ & \text { per Truth Table } \end{aligned}$	V
			0.35	0.5	$\mathrm{loL}=8.0 \mathrm{~mA}$		V
I_{H}	Input HIGH Current			$\begin{aligned} & 20 \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{\mathbb{N}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{\mathbb{N}}=7.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$
IIL	Input LOW Current			- 0.4	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$		mA
los	Output Short Circuit Current (note 2)	- 20		- 100	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		mA
Icc	Power Supply Current		15	23	$V_{C C}=M A X$		mA

Notes : 1. Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions
2. Not more than one output should be shorted at a time.
(*) Typical values are at $\mathrm{V}_{\mathrm{CC}}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Test Conditions		Units
		Min.	Typ.	Max.			
$\mathrm{f}_{\text {MAX }}$	Shift Frequency	25	36		Figures 1	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$	MHz
tpLh $t_{\text {PHL }}$	Propagation Delay, Clock to Outputs		$\begin{aligned} & 14 \\ & 17 \\ & \hline \end{aligned}$	$\begin{aligned} & 22 \\ & 26 \\ & \hline \end{aligned}$	Figures 1		ns
tpHL	Propagation Delay, MR to Outputs		19	30	Figures 2		ns

AC SET-UP REQUIREMENTS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Test Conditions		Units
		Min.	Typ.	Max.			
twCP	Clock Pulse Width	20			Figure 1	$V_{C C}=5.0 \mathrm{~V}$	ns
$\mathrm{t}_{\text {s }}$ (Data)	Set-Up Time Data to Clock	20			Figure 3		ns
t_{n} (Data)	Hold Time Data to Clock	0					ns
$\mathrm{t}_{\mathrm{s}}(\mathrm{S})$	Set-Up Time Mode Control to Clock	30			Figure 4		ns
$\mathrm{th}_{\mathrm{L}}(\mathrm{S})$	Hold Tıme Mode Control to Clock	0					ns
$\mathrm{tw}_{\mathrm{w}}(\overline{\mathrm{MR}})$	Master Reset Pulse Width	20			Figure 2		ns
$\left.\mathrm{trec}^{(\mathrm{MR}}\right)$	Recovery Time Mater Reset to Clock	25					ns

DEFINITION OF TERMS:

SET-UP TIME (t_{s}): is defined as the minimum time required for the corret logic level to be present at the logic input prior the clock transition from LOW to HIGH in order to be recognized and transferred to the outputs.
HOLD TIME (t_{h}): is defined as the minimum time following the clock transition from LOW to HIGH at which the logiclevel must be maintained at the input
in order to ensure continued recognition. A negative HOLD TIME indicates that the correct logic level may be relased prior to the clock transitio from LOW to HIGH and still be recognized.
RECOVERY TIME (trec) : is defined as the minimum time required between the end of the reset pulse and the clock transition from LOW to HIGH in order to recognize and transfer HIGH Data to the Q outputs.

AC WAVEFORMS

Figure 1: Clock to Output Delays Clock Pulse Width and $\mathrm{f}_{\text {max }}$

Other Conditons: $S_{1}=L, \overline{M R}=H, S_{0}=\bar{K}$

Figure 2: Master Reset Pulse Width, Master Reset to Output Delay and Master Reset to Clock Recovery Time

The shaded areas indicate when the input is permitted to change for predictable output performance.

Figure 3: Set-up (ts_{s}) and Hold (t_{h}) Time for Serial Data ($\mathrm{D}_{\text {sR }}, \mathrm{D}_{\mathrm{s}}$) and Parallel Data ($\mathrm{P}_{0}, \mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$)

Figure 4: Set-up (t_{s}) and Hold (t_{h}) Time for S Input

The shaded areas indicate when the input is permitted to change for predictable output performance.

UNIVERSAL 4-BIT SHIFT REGISTER

- TYPICAL SHIFT REGISTER FREQUENCY OF 40 MHz
- ASYNCHRONOUS MASTER RESET
- J, K INPUT TO FIRST STAGE
- FULLY SYNCHRONOUS SERIAL OR PARALLEL DATA TRANSFERS
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS
- FULLY TTL AND CMOS COMPATIBLE

DESCRIPTION

The T74LS194A is a High Speed Bidirectional Universal Shift Register. As a hgih spped multifuntional sequential bulding block, it is useful in a wide variety of applications. It may be used in serialserial, shift left, shift right, serial-parallel, parallelserial and parallel-parallel data register transfers.

B1
(Plastıc Package)

M1
(Micro Package)

D1
(Ceramic Package)

C1
(Plastic Chip Carrier)

ORDER CODES :
T74LS195A D1 T74LS195A C1 T74LS195A B1 T74LS195A M1

PIN CONNECTION (top view)

PIN NAMES

$\overline{\mathrm{PE}}$	Parallel Enable (Active LOW) Input
$\mathrm{P}_{0}-\mathrm{P}_{3}$	Parallel Data Inputs
J	First Stage J (Active HIGH) Input
$\overline{\bar{K}}$	First Stage K (Active LOW) Input
CP	Clock (Active HIGH Goıng Edge) Input
$\overline{\mathrm{MR}}$	Master Reset (Active LOW) Input
$\mathrm{Q}_{0}-\mathrm{Q}_{3}$	Parallel Outputs
$\overline{\mathrm{Q}}_{3}$	Complementary Last Stage Output

LOGIC SYMBOL

LOGIC DIAGRAM

TRUTH TABLE

OPERATING	INPUTS					OUTPUTS				
	$\overline{M R}$	$\overline{\mathbf{P E}}$	J	$\overline{\mathbf{K}}$	P_{n}	\mathbf{Q}_{0}	\mathbf{Q}_{1}	\mathbf{Q}_{2}	Q_{3}	$\overline{\mathbf{Q}}_{3}$
Asynchronous Reset	L	X	X	X	X	L	L	L	L	H
Shift, Set First Stage	H	h	h	h	x	H	q_{0}	q_{1}	q_{2}	$\overline{\mathrm{q}}_{2}$
Shift, Reset First Stage	H	h	1	1	x	\underline{L}	q_{0}	q_{1}	q_{2}	g_{2}
Shift, Toggle First Stage	H	h	h	1	X	\bar{q}_{0}	q_{0}	q_{1}	q_{2}	q_{2}
Shift, Retain First Stage	H	h	1	h	X	q_{0}	q_{0}	q_{1}	q_{2}	q_{2}
Paralled Load	H	1	X	\times	P_{n}	p_{0}	P_{1}	P2	P3	\bar{p}_{3}

$L=$ LOW Voltage Level
$H=$ HIGH Voltage Level
X = Don't Care
I = LOW voltage level one set-up tme prior to the LOW to HIGH clock transition
$h=$ HIGH voltage level one set-up time pnor to the LOW to HIGH clock transitio
$\mathrm{Pn}(\mathrm{qn})=$ Lower case letters indicate the state of the reference input (or output) one set-up tme prior to the LOW to HIGH clock transiton.

FUNCTIONAL DESCRIPTION

The Logic Diagram and Truth Table indicate the functional characteristics of the LS195A Shift register. The device is useful in a wide variety of shifting, counting and storage applications. It performs serial, parallel, serial to parallel, or parallel to serial data transfers at very high speeds.
The LS195A has not two primary modes of operation, shift right ($Q_{0}->Q_{1}$) and parallel load which are controlled by the state of the Parallel Enable ($\overline{\mathrm{PE}}$) input. When the PE input is HIGH, serial data enters the first flip-flop Q_{0} via the J and \bar{K} inputs and is shifted one bit in the direction $Q_{0} \rightarrow Q_{1} \rightarrow Q_{2} \rightarrow Q_{3}$ following each LOW to HIGH clock transition. The J \bar{K} inputs provide the flexibility of the JK type input for special applications, are the simple D type input
for general applications by tying the two pins togheter. When the $\overline{P E}$ input is LOW, the LS195A appears as four common clocked D flip-flop. The data on the parallel inputs $\mathrm{P}_{0}, \mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$ is transferred to the respective $Q_{0}, Q_{1}, Q_{2}, Q_{3}$ outputs to the $\mathrm{P}_{\mathrm{n}-1}$ inputs and holding the PE input LOW. All serial and parallel data transfers are synchronous, occurring after each LOW to HIGH clock transition. Since the LS195A utilizes edge-triggering, there is no restriction on the activity of the $\mathrm{J}, \mathrm{K}, \mathrm{P}_{\mathrm{n}}$ and $\overline{\mathrm{PE}}$ inputs for logic operation - except for the set-up and release time requirements.
A LOW on the asynchronous Master Reser ($\overline{\mathrm{MR}}$) input sets all Q outputs LOW, independent for any other input condition.

ABSOLUTE MAXIMUM RATING

Symbol	Parameter	Value	Unit
V_{cc}	Supply Voltage	-0.5 to 7	V
$\mathrm{~V}_{\mathrm{l}}$	Input Voltage, Applied to Input	-0.5 to 15	V
$\mathrm{~V}_{\mathrm{o}}$	Output Voltage, Applied to Output	-0.5 to 10	V
I_{I}	Input Current, Into Inputs	-30 to 5	mA
lo_{o}	Output Current, Into Outputs	30	mA

Stresses in excess of those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliablity.

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage			$* * *$
	Min.	Typ.	Max.	
T74LS195AXX	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
V_{IH}	Input HIGH Voltage	2.0			Guaranteed for All Input	ut HIGH Voltage	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	Guaranteed for All Input	ut LOW Voltage	V
$V_{C D}$	Input Clamp Diode Voltage		-0.65	-1.5	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}$	$=-18 \mathrm{~mA}$	V
V OH	Output HIGH Voltage	2.7	3.4		$\begin{aligned} & V_{C C}=M I N, I_{O H}=-400 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \text { per Truth Table } \end{aligned}$		V
VOL	Output LOW Voltage		0.25	0.4	$\mathrm{lOL}^{2}=12 \mathrm{~mA}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} \\ & \mathrm{~V}_{\mathbb{I N}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \text { per Truth Table } \end{aligned}$	V
			0.35	0.5	$\mathrm{lOL}=24 \mathrm{~mA}$		V
IIH^{\prime}	Input HIGH Current			$\begin{aligned} & 20 \\ & 0.1 \end{aligned}$	$\begin{aligned} & V_{C C}=M A X, \\ & V_{C C}=M A X, \end{aligned}$	$\begin{aligned} & \mathrm{V}=2.7 \mathrm{~V} \\ & \mathrm{v}=70 \mathrm{~V} \end{aligned}$	$\mu \mathrm{A}$ mA
IIL	Input LOW Current			- 0.4	$V_{C C}=\mathrm{MAX}$,	= 0.4 V	mA
los	Output Short Circuit Current (note 2)	- 20		- 100	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	UT $=0 \mathrm{~V}$	mA
Icc	Power Supply Current		14	21	$\mathrm{V}_{C C}=\mathrm{MAX}$		mA

Notes : 1 Condtions for testing, not shown in the Table, are chosen to guarantee operaton under "worst case" conditions
2 Not more than one output should be shorted at a time.
(*) Typical values are at $\mathrm{V}_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Test Conditions		Units
		Min.	Typ.	Max.			
$f_{\text {max }}$	Shift Frequency	30	40		Figures 1	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & C_{L}=15 \mathrm{pF} \end{aligned}$	MHz
tpLH tPHL	Propagation Delay, Clock to Outputs		$\begin{aligned} & 14 \\ & 17 \\ & \hline \end{aligned}$	$\begin{aligned} & 22 \\ & 26 \\ & \hline \end{aligned}$	Figures 1		ns
$t_{\text {PHL }}$	Propagation Delay, MR to Outputs		19	30	Figures 3		ns

AC SET-UP REQUIREMENTS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter		Limits			Test Conditions	

DEFINITION OF TERMS:

SET-UP TIME (t_{s}): is defined as the minimum time required for the corret logic level to be present at the logic input prior the clock transition from LOW to HIGH in order to be recognized and transferred to the outputs.

HOLD TIME $\left(\mathrm{t}_{\mathrm{h}}\right)$: is defined as the minimum time following the clock transition from LOW to HIGH at which the logiclevel must be maintained at the input
in order to ensure continued recognition. A negative HOLD TIME indicates that the correct logic level may be relased prior to the clock transitio from LOW to HIGH and still be recognized.
RECOVERY TIME (trec) : is defined as the minimum time required between the end of the reset pulse and the clock transition from LOW to HIGH in order to recognize and transfer HIGH Data to the Q outputs.

AC WAVEFORMS

Figure 1: Clock to Output Delays and Clock Pulse Width

Figure 2: Set-up (ts) and Hold (th) Time for Serial Data ($\mathrm{J} \& \mathrm{~K}$) and Parallel Data ($\mathrm{P}_{0}, \mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$)

The shaded areas indicate when the input is permitted to change for predictable output performance.

Figure 3: Master Reset Pulse Width, Master Reset to Output Delay and Master Reset to Clock Recovery Time

Other Conditions: $\overline{\mathrm{PE}}=\mathrm{L}, \mathrm{P}_{0}=\mathrm{P}_{1}=\mathrm{P}_{2}=\mathrm{P}_{3}=\mathrm{H}$

Figure 4: Set-up (t_{s}) and Hold (t_{h}) Time for $\overline{\mathrm{PE}}$ Input

Condtions• $M R=H, Q_{0}$ state will be determined by J and \bar{K} input

The shaded areas indicate when the input is permitted to change for predictable output performance.

4-STAGE PRESETTABLE RIPPLE COUNTERS

- LOW POWER CONSUMPITION: TYPICALLY 80 mW
- ASYNCHRONOUS PRESETTABLE
- EASY MULTISTAGE CASCADING
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS
- HIGH COUNTING RATES: TYPICALLY 70 MHz
- ASYNCHRONOUS MASTER RESET
- CHOICE OF COUNTING MODES: BCD, BIQUINARY, BINARY
- FULLY TTL AND CMOS COMPATIBLE

DESCRIPTION

The T74LS196 decade counter is partioned into divide-by-two and divide-by five section which can be combined to count either in $\operatorname{BCD}(8,4,2,1)$ sequence or in a bi-quinary mode producing a 50% duty cycle output. The T74LS197 contains divide-by-two and divide-by-eight sections which can be combined to form a modulo-16 binary counter. Low Power Schottky technology is used to achive typical count rates of 70 MHz and power dissipation of only 80 mW . Both circuit types have Master Reset (MR) input which overrides all other inputs and asynchronously forces all outputs LOW. A Parallel Load input (PL) overrides clocked operations and asynchronously loads the data on the Parallel Data Inputs $\left(P_{n}\right)$ into the flip-flops. This preset feature makes the circuits usable as programmable counters. The circuits can also be used as 4 -bit latches, loading data from the Parallel Data inputs when $P \mathrm{LL}$ is LOW and storing the data when $P \mathrm{~L}$ is HIGH.

PIN NAMES

$\overline{\mathrm{CP}}_{0}$	Clock (Active LOW Goıng Edge) Input to Divide-by-Two Section
$\overline{\mathrm{CP}}_{1}$	Clock (Active LOW Goıng Edge) Input to Divide-by-Five Section (LS196)
$\overline{\mathrm{CP}}_{1}$	Clock (Active LOW Goıng Edge) Input to Divide-by-Eıght Section (LS197)
$\overline{\mathrm{MR}}$	Master Reset (Actıve LOW) Input
$\overline{\mathrm{PL}}$	Parallel Load (Active LOW) Input
$\mathrm{P}_{0}-\mathrm{P}_{3}$	Data Inputs
$\mathrm{Q}_{0}-\mathrm{Q}_{3}$	Outputs

(Plastic Package)

M1
(Micro Package)

D1
(Ceramic Package)

C1
(Plastic Chip Carrier)

ORDER CODES :

T74LSXXX D1	T74LSXXX C1
T74LSXXX B1	T74LSXXX M1

PIN CONNECTION (top view) DUAL IN LINE

ABSOLUTE MAXIMUM RATING

Symbol	Parameter	Value	Unit
V_{cc}	Supply Voltage	-0.5 to 7	V
$\mathrm{~V}_{1}$	Input Voltage, Applied to Input	-0.5 to 15	V
$\mathrm{~V}_{\mathrm{o}}$	Output Voltage, Applied to Output	-0.5 to 10	V
I_{1}	Input Current, Into Inputs	-30 to 5	mA
I_{0}	Output Current, Into Outputs	60	mA

Stresses in excess of those listed under "Absolute Maxımum Ratıngs" may cause permanent damage to the device This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage			Temperature
	Min.	Typ.	Max.	
T74LS196/197XX	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type.

FUNCTIONAL DESCRIPTION

The LS196 and LS197 are asynchronous presettable decade and binary ripple counters. The LS196 Decade Counter is partitioned into divide-by-two and divide-by-five sections while the LS197 is partitioned into divide-by-two and divide-by-eight sections, with all section having a separate Clock input. In the counting modes, the state changes are initiated by the HIGH to LOW transition of the clock signals. State changes of the Q outputs, however, do not occur simultaneously bacause of the internal ripple delays. When using external logic to decode the Q outputs, designers should bear in mind that the unequal delays can lead to decoding spikes and thus a decoded signal should not be used as a clock or strobe. The CP_{0} input serves the Q_{0} flip-flop in both circuit types while the $\overline{\mathrm{CP}}_{1}$ serves the divide-byfive or divide-by-eight section. The Q_{0} output is designed and specified to drive the rated fan-out plus the $\overline{\mathrm{CP}}_{1}$ input. With the input frequency connected to $\overline{\mathrm{CP}}_{0}$ and Q_{0} driving $\overline{\mathrm{CP}}_{1}$, the LS197 form a strightforward module-16 counter, with Q0 the least significant output and Q_{3} the most significant
output.
The LS196 Decade Counter can be connecetd up to operate in two different count sequences, as indicated in the Table A. With the input frequency connected to $\overline{\mathrm{CP}}_{0}$ and with Q_{0} driving $\overline{\mathrm{CP}}_{1}$, the circuit counts in the $\operatorname{BCD}(8,4,2,1)$ sequence.
With the input frequency connected to $\overline{\mathrm{CP}}_{1}$ and Q_{3} driving $\overline{\mathrm{CP}}_{0}, \mathrm{Q}_{0}$ becomes the low frequency output and as a 50% duty cycle waveform. Note that the maximum counting rate is reduced in the later (biquinary) configuration because of the interstage gating delay within the divide-by-five section. The LS196 and LS197 have an asynchronous active LOW Master Reset input (MR) which overrides all other inputs and forces all outputs LOW. The counters are also asynchronously presettable. A LOW on the Parallel Load input (PL) overrides the clock inputs and loads the data from Parallel Data ($\mathrm{P}_{0}-\mathrm{P}_{3}$) inputs into flip-flops. While PL is LOW, the counters act as trasparent latches and any change in the P_{n} inputs will be reflected in the outputs.

TRUTH TABLE

INPUTS			RESPONSE
$\overline{\mathbf{M R}}$	$\overline{\mathbf{P L}}$	$\overline{\mathbf{C P}}$	
L	X	X	
H	L	X	Reset (Clear)
H	H	L	Parallel Load
$\mathrm{H}=$ HIGH Vottage Level, $\mathrm{L}=$ LOW Voltage Level $\mathrm{X}=$ Don't Care	$=$ HIGH	Count	

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level, $\mathrm{L}=$ LOW Voltage Level, $\mathrm{X}=$ Don't Care, $\mathrm{L}=\mathrm{HIGH}$ to LOW Clock Transition

TABLE A: LS196 COUNT SEQUENCES

DECADE (NOTE 1)										BI-QUINARY (NOTE 2)				
COUNT	$\mathbf{Q}_{\mathbf{3}}$	$\mathbf{Q}_{\mathbf{2}}$	$\mathbf{Q}_{\mathbf{1}}$	$\mathbf{Q}_{\mathbf{0}}$	$\mathbf{C O U N T}$	$\mathbf{Q}_{\mathbf{0}}$	$\mathbf{Q}_{\mathbf{3}}$	$\mathbf{Q}_{\mathbf{2}}$	$\mathbf{Q}_{\mathbf{1}}$					
$\mathbf{0}$	L	L	L	L	0	L	L	L	L					
1	L	L	L	H	1	L	L	L	H					
2	L	L	H	L	2	L	L	H	L					
3	L	L	H	H	3	L	L	H	H					
4	L	H	L	L	4	L	H	L	L					
5	L	H	L	H	5	H	L	L	L					
6	L	H	H	L	6	H	L	L	H					
7	L	H	H	H	7	H	L	H	L					
8	H	L	L	L	8	H	L	H	H					
9	H	L	L	H	9	H	H	L	L					

Notes: 1. Sıgnal Applied to $\overline{\mathrm{CP}}_{0}, Q_{0}$ connected to $\overline{\mathrm{CP}}_{1}$
2. Signal Applied to $\overline{C P}_{1}, Q_{3}$ connecetd to $\overline{C P_{0}}$

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)	Unit
		Min.	Typ. (*)	Max.		
V_{IH}	Input HIGH Voltage	2.0			Guaranteed Input HIGH Voltage for All Inputs	V
V_{L}	Input LOW Voltage			0.8	Guaranteed Input LOW Voltage for All Inputs	v
$V_{C D}$	Input Clamp Diode Voltage		-0.65	-1.5	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{l}_{\mathrm{I}}=-18 \mathrm{~mA}$	V
V_{OH}	Output HIGH Voltage	2.7	3.4		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IOH}=-400 \mu \mathrm{~A} \\ & \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {IH }} \text { or } \mathrm{V}_{\text {IL }} \text { per Truth Table } \end{aligned}$	V
VoL	Output LOW Voltage		0.25	0.4	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IN}}=V_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \text { per Truth Table } \end{aligned}$	V
			0.35	0.5		V
$1{ }_{1+}$	Input HIGH Current $\mathrm{PL}, \mathrm{P}_{0}, \mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$ $\overline{\mathrm{MR}}, \overline{\mathrm{CP}}_{0}, \overline{\mathrm{CP}}_{1}$ (LS197) $\overline{\mathrm{CP}}_{1}$ (LS196)			$\begin{aligned} & 20 \\ & 40 \\ & 80 \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$	$\mu \mathrm{A}$
	$\begin{aligned} & \overline{\overline{\mathrm{PL}}, \mathrm{P}_{0}, \mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}} \\ & \overline{\mathrm{MR}}, \mathrm{CP}_{0}, \overline{\mathrm{CP}},{ }_{1}(\mathrm{LS} 197) \\ & \overline{\mathrm{CP}}(\mathrm{LS} 196) \end{aligned}$			$\begin{aligned} & 0.1 \\ & 0.2 \\ & 0.4 \\ & \hline \end{aligned}$	$\mathrm{V}_{C C}=\mathrm{MAX} . \mathrm{V}_{\text {IN }}=55 \mathrm{~V}$	$\mu \mathrm{A}$
	Input LOW Current $\mathrm{PL}, \mathrm{P}_{0}, \mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$ MR ${ }_{-P_{0}}$ CP_{1} (LS196) CP 1 (LS197)			$\begin{array}{r} -0.36 \\ -0.72 \\ -2.4 \\ -2.8 \\ -1.3 \\ \hline \end{array}$	$V_{C C}=M A X, V_{I N}=04 \mathrm{~V}$	mA
los	Output Short Circuit Current (note 2)	-20		-100	$\mathrm{V}_{\text {CC }}=\mathrm{MAX} . \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	mA

Notes: 1. For conditions shown as MIN or MAX, use the appropriate value specified under guaranteed operating ranges 2. Note more than one output should be shorted at a time.
(*) Typıcal values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (L196)

Symbol	Parameter	Limits			Test Conditions		Units
		Min.	Typ.	Max.			
$f_{\text {max }}$	Input Count Frequency	30	40		Figures 1	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & C_{L}=15 \mathrm{pF} \end{aligned}$	MHz
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, $\overline{C P}_{0}$ Input to Q_{0} Outputs		$\begin{gathered} \hline 8 \\ 13 \end{gathered}$	$\begin{aligned} & 15 \\ & 20 \end{aligned}$	Figures 1		ns
$\begin{aligned} & \text { tPL } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, $\overline{C P}_{1}$ Input to Q_{1} Outputs		$\begin{aligned} & 16 \\ & 22 \end{aligned}$	$\begin{aligned} & 24 \\ & 33 \end{aligned}$			ns
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay, $\overline{\mathrm{CP}}_{1}$ Input to Q_{2} Outputs		$\begin{aligned} & \hline 38 \\ & 41 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 57 \\ & 62 \\ & \hline \end{aligned}$			ns
$\begin{aligned} & \text { tpL } \\ & \text { tpHL } \end{aligned}$	Propagation Delay, $\overline{C P}_{1}$ Input to Q_{3} Outputs		$\begin{aligned} & 12 \\ & 30 \end{aligned}$	$\begin{aligned} & 18 \\ & 45 \\ & \hline \end{aligned}$			ns
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay, $\mathrm{P}_{0}, \mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$ Inputs to $Q_{0}, Q_{1}, Q_{2}, Q_{3}$ Outputs		$\begin{aligned} & 20 \\ & 29 \end{aligned}$	$\begin{aligned} & 30 \\ & 44 \end{aligned}$	Figures 2		ns
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, PL Inputs to Any Outputs		$\begin{array}{r} 27 \\ 30 \\ \hline \end{array}$	$\begin{aligned} & \hline 41 \\ & 45 \\ & \hline \end{aligned}$	Figures 3		ns
tpHL	Propagation Delay, MR Inputs to Any Outputs		34	51	Figures 4		ns

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (LS197)

Symbol	Parameter	Limits			Test Conditions		Units
		Min.	Typ.	Max.			
$f_{\text {max }}$	Input Count Frequency	30	40		Figures 1	$\begin{aligned} & V_{c C}=5.0 \mathrm{~V} \\ & C_{L}=15 \mathrm{pF} \end{aligned}$	MHz
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, $\overline{\mathrm{CP}} 0$ Input to Q_{0} Outputs		$\begin{gathered} \hline 8 \\ 14 \\ \hline \end{gathered}$	$\begin{aligned} & 15 \\ & 21 \\ & \hline \end{aligned}$	Figures 1		ns
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay, $\overline{C P}_{1}$ Input to Q_{1} Outputs		$\begin{aligned} & \hline 12 \\ & 23 \end{aligned}$	$\begin{aligned} & 19 \\ & 35 \end{aligned}$			ns
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay, CP_{1} Input to Q_{2} Outputs		$\begin{array}{r} 34 \\ 42 \\ \hline \end{array}$	$\begin{aligned} & \hline 51 \\ & 63 \\ & \hline \end{aligned}$			ns
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, $\overline{\mathrm{CP}} \overline{1}_{1}$ Input to Q_{3} Outputs		$\begin{aligned} & 55 \\ & 63 \end{aligned}$	$\begin{aligned} & 78 \\ & 95 \\ & \hline \end{aligned}$			ns
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation Delay, $\mathrm{P}_{0}, \mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$ Inputs to $Q_{0}, Q_{1}, Q_{2}, Q_{3}$ Outputs		$\begin{aligned} & 18 \\ & 29 \end{aligned}$	$\begin{aligned} & 27 \\ & 44 \end{aligned}$	Figures 2		ns
tPLH tpHL	Propagation Delay, PL Inputs to Any Outputs		$\begin{aligned} & 26 \\ & 30 \end{aligned}$	$\begin{aligned} & 39 \\ & 45 \end{aligned}$	Figures 3		ns
tphl	Propagation Delay, MR Inputs to Any Outputs		34	51	Figures 4		ns

AC SET-UP REQUIREMENTS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Test Conditions		Units
		Min.	Typ.	Max.			
tw	$\overline{\mathrm{CP}}_{0}$ Pulse Width	20			Figure 1	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$	ns
tw	$\overline{\mathrm{CP}}_{1}$ Pulse Width	30					ns
tw	$\overline{\text { PL Pulse Width }}$	20			Figure 3		ns
tw	$\overline{M R}$ Pulse Width	15			Figure 4		ns
$\mathrm{t}_{\mathrm{s}} \mathrm{L}$	Set-Up Time LOW	15			Figure 6		ns
thL	Hold Time LOW	20					ns
$\mathrm{ts}^{\text {H }}$	Set-Up Time HIGH	10					ns
$t_{n} \mathrm{H}$	Hold Time HIGH	20					ns
trec	Recovery Time	30			Figure 5		ns

DEFINITION OF TERMS:

SET-UP TIME (t_{s}): is defined as the minimum time required for the corret logic level to be present at the logic input prior the clock transition from LOW to HIGH in order to be recognized and transferred to the outputs.
HOLD TIME (t_{h}): is defined as the minimum time following the clock transition from LOW to HIGH at which the logiclevel must be maintained at the input
in order to ensure continued recognition. A negative HOLD TIME indicates that the correct logic level may be relased prior to the clock transitio from LOW to HIGH and still be recognized.
RECOVERY TIME (trec) : is defined as the minimum time required between the end of the reset pulse and the clock transition from LOW to HIGH in order to recognize and transfer HIGH Data to the Q outputs.

AC WAVEFORM

Fig 1.

Fig 2.

SC05520

Fig 3.

Fig 4.

Fig 5.

The shaded areas indicate when the input is permitted to change for predictable output performance

OCTAL BUFFER/LINE DRIVERS WITH 3-STATE OUTPUTS

- 3-STATE OUTPUTS DRIVE BUS LINES OR BUFFER MEMORY ADDRESS REGISTERS
- HYSTERESIS AT INPUTS TO IMPROVE NOISE MARGING
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS

DESCRIPTION

The T74LS240/241/244 are Octal Buffers and Line Drivers. These devices are designed to be used with 3 -state memory address drivers, etc. They are organized as two lines of 4-bit with inverting or non-inverting data.

LOGIC DIAGRAM AND PIN CONNECTION (top view)

PIN CONNECTION (top view)

T74LS240 TRUTH TABLE

INPUTS		OUTPUT
$\overline{\mathbf{E}}_{1}, \overline{\mathbf{E}}_{\mathbf{2}}$	\mathbf{D}	
L	L	H
L	H	L
H	X	(Z)

T74LS244 TRUTH TABLE

INPUTS		OUTPUT
$\bar{E}_{1}, \quad \bar{E}_{\mathbf{2}}$	\mathbf{D}	
L	L	L
L	H	H
H	X	(Z)

T74LS241 TRUTH TABLE

INPUTS		OUTPUT	INPUTS		OUTPUTS
	\bar{E}_{1}			E2	

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{C C}$	Supply Voltage	-0.5 to +7	V
V_{1}	Input Voltage, Applied to Input	-0.5 to +15	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage, Applied to Output	-0.5 to +10	V
I_{1}	Input Current, Into Inputs	-30 to +5	mA
I_{O}	Output Current, Into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maxımum Ratıngs" may cause permanent damage to the device This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage			Temperature
	Min.	Typ.	Max.	
T74LS240/241/244XX	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit	
		Min.	Typ. (*)	Max.				
V_{IH}	Input HIGH Voltage	2.0			Guaranteed Voltage for	ut HIGH nputs	V	
VIL	Input LOW Voltage			0.8	Guaranteed Voltage for	ut LOW nputs	V	
V_{CD}	Input Clamp Diode Voltage		-0.65	-1.5	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}$,	$-18 \mathrm{~mA}$	V	
V OH	Output HIGH Voltage	$\begin{aligned} & 2.4 \\ & 2.0 \\ & \hline \end{aligned}$	3.4		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-3.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA} \end{aligned}$		V	
Vol	Output LOW Voltage		0.25	0.4	$\mathrm{loL}=12 \mathrm{~mA}$	$\begin{aligned} & V_{C C}=M I N \\ & V_{I N}=V_{I H} \text { or } V_{I L} \\ & \text { per Truth Table } \end{aligned}$	V	
			0.35	0.5	$\mathrm{loL}=24 \mathrm{~mA}$		V	
$\mathrm{V}_{\mathrm{T}_{+}}-\mathrm{V}_{\mathrm{T}}$	Hysteresis	0.2	0.4		$V_{C C}=\mathrm{MIN}$		V	
lozh	Output Off Current HIGH			20	$V_{C C}=M A X, V_{I N}=2.7 \mathrm{~V}$			
lozl	Output Off Current LOW			- 20	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$			
$\mathrm{IIH}^{\text {I }}$	Input HIGH Current			$\begin{aligned} & 20 \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{\mathrm{IN}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{\mathrm{IN}}=7.0 \mathrm{~V} \end{aligned}$		$\mu \mathrm{A}$ mA	
IIL	Input LOW Current			-0.2	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$		mA	
los	Output Short Circuit Current (note 2)	-40		- 225	$V_{C C}=$ MAX		mA	
Icc	Power Supply Current Total, Output HIGH			27	$V_{c c}=M A X$		mA	
	Total, Output LOW $\begin{array}{r}\text { LS240 } \\ \text { LS241/244 }\end{array}$			$\begin{aligned} & 44 \\ & 46 \end{aligned}$				
	Total at HIGH Z $\begin{array}{r}\text { LS240 } \\ \text { LS241/244 }\end{array}$ 居			$\begin{aligned} & 50 \\ & 54 \end{aligned}$				

Notes : 1) Conditions for testing, not shown in the Table, are chosen to guarantee operatıon under "worst case" conditions.
2) Not more than one output should be shorted at a tıme.
(*) Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Test Conditions	Units
		Min.	Typ.	Max.		
tpLH tphL	Propagation Delay, Data to Outputs LS240		$\begin{gathered} 9 \\ 12 \end{gathered}$	$\begin{aligned} & 14 \\ & 18 \end{aligned}$	$\begin{aligned} & C L=45 \mathrm{pF} \\ & \mathrm{RL}=667 \Omega \end{aligned}$	ns
$\begin{aligned} & \text { tPLH } \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay, Data to Outputs LS240/241/244		$\begin{aligned} & 12 \\ & 12 \\ & \hline \end{aligned}$	$\begin{aligned} & 18 \\ & 18 \\ & \hline \end{aligned}$		ns
tpzH	Output Enable Time to HIGH Level		15	23		ns
tpzL	Output Enable Time to LOW Level		20	30		ns
tpLz	Output Disable Time from LOW Level		15	25	$\mathrm{CL}=5.0 \mathrm{pF}$	ns
tpHz	Output Disable Time from HIGH Level		10	18		ns

AC WAVEFORMS

Figure 1.

Figure 3.

Figure 2.

Figure 4.

AC LOAD CIRCUIT

Figure 5.

OCTAL BUS TRANSCEIVER

- 2-WAY ASYNCHRONOUS DATA BUS COMUNICATION
- HYSTERESIS INPUTS TO IMPROVE NOISE IMMUNITY
- INPUT DIODES LIMIT HIGH-SPEED TERMINATION EFFECTS

DESCRIPTION

The T74LS245 is an Octal Bus Transceiver intended for 8 -line asynchronous 2-way data communication between data buses. Direction Input (DR) takes over the transmission of Data from bus A to bus B or bus B to bus A depending on its logic level. Enable input is usable for isolation of the buses.

TRUTH TABLE

INPUTS		OUTPUT
E	DR	
L	L	Bus B Data to Bus A
L	H	Bus A Data to Bus B
H	X	Isolation

$\mathrm{H}=\mathrm{H}$ HGH Vottage Level $\mathrm{L}=$ LOW Vottage Level $\mathrm{X}=$ Don't Care

PIN CONNECTION (top view)
CHIP CARRIER

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{C C}$	Supply Voltage	-0.5 to +7	V
V_{1}	Input Voltage, Applied to Input	-0.5 to +15	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage, Applied to Output	-0.5 to +10	V
I_{I}	Input Current, Into Inputs	-30 to +5	mA
I_{O}	Output Current, Into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maxımum Ratıngs" may cause permanent damage to the device This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage			Temperature
	Min.	Typ.	Max.	
T74LS245XX	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

XX = package type.
DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
V_{IH}	Input HIGH Voltage	2.0			Guaranteed Input HIGH Voltage for all Inputs		V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	Guaranteed Input LOW Voltage for all Inputs		V
$V_{T+}-V_{T-}$	Hysteresis	02	04		$V_{C C}=\mathrm{MIN}$		V
$V_{C D}$	Input Clamp Diode Voltage		-0.65	-1.5	$\mathrm{V}_{C C}=\mathrm{MIN}, \mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$		V
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 2.4 \\ & 20 \end{aligned}$	3.4		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-3.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA} \end{aligned}$		V
Vol	Output LOW Voltage		0.25	0.4	$\mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}$	$\begin{aligned} & V_{C C}=M I N \\ & V_{I N}=V_{I H} \text { or } V_{I L} \\ & \text { per Truth Table } \end{aligned}$	V
			0.35	0.5	$\mathrm{l} \mathrm{OL}=24 \mathrm{~mA}$		V
lozh	Output Off Current HIGH			20	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathbb{I N}}=2.7 \mathrm{~V}$		$\mu \mathrm{A}$
lozı	Output Off Current LOW			- 200	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$		$\mu \mathrm{A}$
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current A or B, DR or \bar{E} DR or E A or B			$\begin{aligned} & 20 \\ & 0.1 \\ & 01 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{\mathbb{I N}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{\mathbb{N}}=7.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{\mathbb{I N}}=5.5 \mathrm{~V} \end{aligned}$		$\mu \mathrm{A}$ mA mA
112	Input LOW Current			-0.2	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$		mA
los	Output Short Circuit Current (note 2)	- 40		- 225	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		mA
Icc	Power Supply Current Total, Output HIGH Total, Output LOW Total at HIGH Z			$\begin{aligned} & 70 \\ & 90 \\ & 95 \\ & \hline \end{aligned}$	$V_{C C}=$ MAX		mA

Notes: 1) Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions
2) Not more than one output should be shorted at a tıme.
(*) Typical values are at $\mathrm{V}_{\mathrm{CC}}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Test Conditions	Units
		Min.	Typ.	Max.		
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay, Clock to Outputs		$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & \mathrm{CL}=45 \mathrm{pF} \\ & \mathrm{RL}=667 \Omega \end{aligned}$	ns
tpzH	Output Enable Time to HIGH Level		25	40		ns
tpzL	Output Enable Time to LOW Level		27	40		ns
tplz	Output Disable Time from LOW Level		15	25	$\mathrm{CL}=5.0 \mathrm{pF}$	ns
tphz	Output Disable Time from HIGH Level		15	25		ns

BCD TO SEVEN SEGMENT DECODER/DRIVES

- INTERNAL PULL-UPS ELIMINATE NEED FOR EXTERNAL RESISTORS
- LAMP-TEST PROVISION
- LEADING/TRAILING ZERO SUPPRESSION

DESCRIPTION

The T74LS248 are BCD to seven segment decoder/Drivers. They compose the and with the tails. It ha active high outputs for driving lamp buffers. Both types feature a lamp test input and full ripple blanking input/output controls. An automatic leading and/or trailing edge zero blanking control (RBI and RBO) is incorporated. An over-riding blanking input (BI) is incorporated. An over riding blanking input (BI) may be used to control the lamp intensity. Display pattern for BCD input counts above 9 are unique symbols to authenticate input conditions.

DUAL IN LINE

CHIP CARRIER

ALL CIRCUIT TYPES FEATURE LAMP INTENSITY MODULATION CAPABILITY

	DRIVER OUTPUTS			TYPICAL
ACTIVE LEVEL	OUTPUT CONFIGURATION	SINK CURRENT	$\begin{gathered} \text { MAX } \\ \text { VOLTAGE } \end{gathered}$	POWER DISSIPATION
HigH	$2 \mathrm{~K} \Omega$ pull-up	2.0 mA	55 V	125 mW
HigH	2 KS - pull-up	60 mA	55 V	125 mW

TRUTH TABLE

| DECIMAL
 OR
 FUNCTION | LT RBI | D | C | B | A | BI/RBO |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

$H=$ HIGH Level $L=$ LOW voltage Level $X=$ Don t Care
NOTES: 1) The Blanking input (BI) must be open or held at a high logic level when output functions) throught 15 are desired The ripple blanking input (RBI) must be open or high if blanking of a decimal zero is not desired
2) When a low logic level is applied direct.ly to the blanking input (BI) all segment outputs are off regardiess of the level of any other inputt
3) When ripple-blanking input (RBI) and inputs A. B. C and D are at low level with he lamp test input high, all segment outputs go off and the ripple -blanking output (RBO) goes to a low level (response condition)
4) When the blanking input ripple blanking output 'BI RBC is open or held high and a low is applied to the lamptest input. all segment outputs are on

* BI RBO swire-AND logic serving as biank ng input (B), and or ripple-blanking output (RBO)

LOGIC DIAGRAMS

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{c c}$	Supply Voltage	-0.5 to 7	V
V_{1}	Input Voltage, Applied to Input	-0.5 to 15	V
V_{0}	Output Voltage, Applied to Output	0 to 10	V
I_{1}	Input Current, Into Inputs	-30 to 5	mA
I_{O}	Output Current, into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maximum Ratıngs" may cause permanent damage to the device This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied Exposure to absolute maximum rating conditions for extended periods may affect device reliability

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage		
	Min.	Typ.	Max.
	Temperature		
	4.75 V	50 V	5.25 V

[^9]DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
V_{IH}	Input HIGH Voltage	2.0			Guaranteed Input HIGH Voltage for All Inputs		V
VIL	Input LOW Voltage			0.8	Guaranteed Input LOW Voltage for All Inputs		V
$V_{C D}$	Input Clamp Diode Voltage		-0.65	-1.5	$V_{C C}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$		V
V_{OH}	Output HIGH Voltage	2.4	4.2		$\begin{aligned} & V_{C C}=M I N, I_{O H}=M A X{ }^{* *} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \text { per TrutH Table } \end{aligned}$		V
10	Output Current a-g	- 1.3	- 20		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{~V}_{\mathrm{O}}=0.85 \mathrm{~V}$ Input Conditions as for V_{OH}		mA
VOL	Output LOW Voltage a-g		0.25	0.4	$\mathrm{loL}=2.0 \mathrm{~mA}$	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I N}=20 \mathrm{~V} \end{aligned}$	V
			0.35	0.5	$\mathrm{l} \mathrm{L}=3.2 \mathrm{~mA}$		V
	BI/RBO		0.25	0.4	$\mathrm{loL}=1.6 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{IL}}=\text { per Truth }$ Table	V
			0.35	0.5	$\mathrm{lOL}=3.2 \mathrm{~mA}$		V
I_{H}	Input HIGH Current			$\begin{aligned} & 20 \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & V_{C C}=M A X, V_{\mathbb{N}}=2.7 \mathrm{~V} \\ & V_{C C}=M A X, V_{\mathbb{N}}=7.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$
IIL	Input LOW Current Any Input, except BI/RBO BI/RBO			$\begin{array}{r} -04 \\ -1.2 \\ \hline \end{array}$	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathbb{I}}=04 \mathrm{~V}$		mA
los	Output SHort Circuit Current BI/RBO (note 2)	-0.3		- 2.0	$V_{C C}=$ MAX		mA
Icc	Power Supply Current		25	38	$\mathrm{V}_{C C}=\mathrm{MAX}$		mA

Notes : 1 For conditions shown as MIN or MAX, use the appropriate value specified under guaranteed operatıng ranges
2. Note more than one output should be shorted at a time.
${ }^{(*)}$) Typical values are at $\mathrm{V}_{c c}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
** Іон $=-50 \mu \mathrm{~A}$ for BI/RBO, loн $=-100 \mu \mathrm{~A}$ for a-g
AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Test Conditions	Units
		Min.	Typ.	Max.		
$t_{\text {PHL }}$ tpLH	Propagation Delay, Output from A Input			$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=4.0 \mathrm{~K} \Omega \end{aligned}$	ns
t_{PH} tplh	Propagation Delay, Output from RBI Input			$\begin{aligned} & 100 \\ & 100 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=6.0 \mathrm{~K} \Omega \end{aligned}$	ns

8-INPUT MULTIPLEXER WITH 3-STATE OUTPUTS

- SCHOTTKY PROCESS FOR HIGH SPEED
- MULTIFUNCTION CAPABILITY
- ON-CHIP SELECT LOGIC DECODING
- INVERTING AND NON-INVERTING 3-STATE OUTPUTS
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS
- FULLY TTL AND CMOS COMPATIBLE

DESCRIPTION

The TTL/MSI T74LS251 is a high speed 8-Input Digital Multiplexer. It provides, in one package, the ability to select one bit of data from up to eight sources. The LS251 can be used as a universal function generator to generate any logic function of four variables. Both assertion and negation outputs are provided.

PIN NAMES

$\mathrm{S}_{0}-\mathrm{S}_{2}$	Select Input
$\overline{\mathrm{E}}_{0}$	Output Enable (Active LOW) Input
$\mathrm{I}_{0}-\mathrm{I}_{7}$	Multiplexer Inputs
Z	Multiplexer Outputs
$\overline{\mathrm{Z}}$	Complementary Multiplexer Output

PIN CONNECTION
(top view)
DUAL IN LINE

CHIP CARRIER

LOGIC SYMBOL AND LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{C C}$	Supply Voltage	-0.5 to 7	V
$\mathrm{~V}_{1}$	Input Voltage, Applied to Input	-0.5 to 15	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage, Applied to Output	-0.5 to 5.5	V
I_{1}	Input Current, Into Inputs	-30 to 5	mA
I_{0}	Output Current, Into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maximum Ratungs" may cause permanent damage to the device. This is a stress ratıng only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied Exposure to absolute maxımum rating conditions for extended penods may affect device reliability.

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage			Temperature
	Min.	Typ.	Max.	
T74LS251XX	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type.

FUNCTIONAL DESCRIPTION

The LS251 is a logical implementation of a single pole, 8 -position switch the swith position controlled by the state of three Select inputs, $\mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{2}$. Both
assertion and negation outputs are provided. The Output Enable input (E_{0}) is active LOW. When is is activated, the logic function provided a the output is:

$$
\begin{aligned}
\mathrm{Z}= & \overline{\mathrm{E}} \cdot\left(\mathrm{I}_{0} \cdot \overline{\mathrm{~S}}_{0} \cdot \overline{\mathrm{~S}}_{1} \cdot \overline{\mathrm{~S}}_{2}+\mathrm{I}_{1} \cdot \mathrm{~S}_{0} \cdot \overline{\mathrm{~S}}_{1} \cdot \overline{\mathrm{~S}}_{2}+\mathrm{I}_{2} \cdot \overline{\mathrm{~S}}_{0} \cdot \mathrm{~S}_{1} \cdot \overline{\mathrm{~S}}_{2}+\mathrm{I}_{3} \cdot \mathrm{~S}_{0} \cdot \mathrm{~S}_{1} \cdot \overline{\mathrm{~S}}_{2}+\right. \\
& \left.+\mathrm{I}_{4} \cdot \overline{\mathrm{~S}}_{0} \cdot \overline{\mathrm{~S}}_{1} \cdot \mathrm{~S}_{2}+\mathrm{I}_{5} \cdot \mathrm{~S}_{0} \cdot \overline{\mathrm{~S}}_{1} \cdot \mathrm{~S}_{2}+\mathrm{I}_{6} \cdot \overline{\mathrm{~S}}_{0} \cdot \mathrm{~S}_{1} \cdot \mathrm{~S}_{2}+\mathrm{I}_{7} \cdot \mathrm{~S}_{0} \cdot \mathrm{~S}_{1} \cdot \mathrm{~S}_{2}\right) .
\end{aligned}
$$

When the output Enable is HIGH, both outputs are in the high impedance (high Z) state. This feature allows multiplexer expansion by tying the outputs of up the 128 devices together. When the output sof the 3 -state devices are tied together, all but one,
device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. The Outputs Enable signals should be designed to ensure there is no overlap in the active LOW portion of the enable voltage.

TRUTH TABLE

E_{0}	S_{2}	S_{1}	S_{0}	I_{0}	I_{1}	I_{2}	I_{3}	I_{4}	I_{5}	I_{6}	17	$\overline{\mathbf{z}}$	z
H	X	X	X	X	X	X	X	X	X	X	X	(Z)	(Z)
L	L	L	L	L	X	X	X	X	X	X	X	H	L
L	L	L	L	H	x	X	X	X	X	X	X	L	H
L	L	L	H	X	L	X	X	X	X	X	X	H	L
L	L	L	H	X	H	X	X	X	X	X	X	L	H
L	L	H	L	X	X	L	X	X	X	X	X	H	L
L	L	H	L	X	X	H	X	X	X	X	X	L	H
L	L	H	H	x	x	X	L	x	x	X	x	H	L
L	L	H	H	X	X	X	H	X	X	X	X	L	H
L	H	L	L	X	x	X	X	L	X	X	X	H	L
L	H	L	L	X	X	X	X	H	x	X	x	L	H
L	H	L	H	x	X	X	X	X	L	x	X	H	L
L	H	L	H	X	X	X	X	X	H	X	X	L	H
L	H	H	L	x	X	X	X	x	x	L	x	H	L
L	H	H	L	X	x	X	X	X	X	H	X	L	H
L	H	H	H	X	X	X	X	X	X	X	L	H	L
L	H	H	H	X	X	X	X	X	X	X	H	L	H

H = HIGH Voltage Level
L = LOW Voltage Level
X = Don't Care
(Z) = High impedance
dC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
V_{IH}	Input HIGH Voltage	2.0			Guaranteed Voltage for all	ut HIGH nputs	V
VIL	Input LOW Voltage			0.8	Guaranteed Voltage for	ut LOW nputs	V
$V_{C D}$	Input Clamp Diode Voltage		-0.65	-1.5	$\mathrm{V}_{C C}=$ MIN, I	$=-18 \mathrm{~mA}$	V
V OH	Output HIGH Voltage	2.4	3.4		$\begin{aligned} & V_{C C}=M I N, \\ & V_{I N}=V_{I H} \text { or } \end{aligned}$	$\begin{aligned} & =-2.6 \mathrm{~mA} \\ & \text { per Truth Table } \end{aligned}$	V
VoL	Output LOW Voltage		0.25	0.4	$\mathrm{lOL}=4.0 \mathrm{~mA}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \text { per Truth Table } \end{aligned}$	V
			0.35	0.5	$\mathrm{lOL}=8.0 \mathrm{~mA}$		V
lozh	Output Off Current HIGH			20	$\begin{aligned} & V_{C C}=M A X, V_{\text {OUT }}=2.7 \mathrm{~V}, \\ & V_{E}=2.0 \mathrm{~V} \end{aligned}$		$\mu \mathrm{A}$
lozı	Output Off Current LOW			- 20	$\begin{aligned} & V_{C C}=M A X, V_{\text {OUT }}=2.7 \mathrm{~V}, \\ & V_{E}=2.0 \mathrm{~V} \end{aligned}$		$\mu \mathrm{A}$
$I_{1 H}$	Input HIGH Current			$\begin{aligned} & 20 \\ & 0.1 \end{aligned}$	$\begin{aligned} & V_{C C}=M A X, V_{\mathbb{N}}=2.7 \mathrm{~V} \\ & V_{C C}=M A X, V_{\mathbb{N}}=7.0 \mathrm{~V} \end{aligned}$		$\mu \mathrm{A}$ mA
$1 / 1$	Input LOW Current			-0.4	$V_{C C}=M A X, V_{\text {IN }}=0.4 \mathrm{~V}$		mA
los	Output Short Circuit Current (note 2)	-30		- 130	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		mA
Icc	Power Supply Current Outputs LOW Outputs Off		$\begin{aligned} & 6.0 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & 12 \end{aligned}$	$\begin{aligned} & V_{\text {CC }}=\mathrm{MAX}, \\ & \mathrm{~V}_{\text {OUT }}=4.5 \mathrm{~V}, V_{\mathrm{E}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=4.5 \mathrm{~V}, V_{\mathrm{E}}=4.5 \mathrm{~V} \end{aligned}$		mA

AC CHARACTERISTICS : $\left(T_{A}=25^{\circ} \mathrm{C}\right)$

Symbol	Parameter	Limits			Test Conditions		Unit
		Min.	Typ.	Max.			
$t_{\text {PLH }}$ t_{PHL}	Propagatıon Delay, Select to \bar{Z} Output		$\begin{aligned} & 20 \\ & 21 \end{aligned}$	$\begin{aligned} & 33 \\ & 33 \end{aligned}$	Fig. 1	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & C_{L}=15 \mathrm{pF} \end{aligned}$	ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagatıon Delay, Select to Z Output		$\begin{aligned} & 28 \\ & 28 \\ & \hline \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	Fig. 2		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay, Data to \bar{Z} Output		$\begin{array}{r} 10 \\ 9.0 \\ \hline \end{array}$	$\begin{array}{r} 15 \\ 15 \\ \hline \end{array}$	Fig. 1		ns
t_{PLH} t_{PHL}	Propagatıon Delay, Data to Z Output		$\begin{aligned} & 17 \\ & 18 \\ & \hline \end{aligned}$	$\begin{aligned} & 28 \\ & 28 \\ & \hline \end{aligned}$	Fig. 1		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Tıme to Z Output		$\begin{aligned} & 17 \\ & 24 \end{aligned}$	$\begin{aligned} & 27 \\ & 40 \end{aligned}$	Figs 4,5		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time to Z Output		$\begin{aligned} & 30 \\ & 26 \\ & \hline \end{aligned}$	$\begin{aligned} & 45 \\ & 40 \\ & \hline \end{aligned}$	Figs 3,5		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time to Z Output		$\begin{aligned} & 37 \\ & 15 \end{aligned}$	$\begin{aligned} & 55 \\ & 25 \\ & \hline \end{aligned}$	Figs 3,5	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	Output Disable Time to Z Output		$\begin{aligned} & 30 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 45 \\ & 25 \end{aligned}$	Figs 4,5		ns

Notes: 1) Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions.
2) Not more than one output be shorted at a time
3) Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

3-STATE AC WAVEFORMS AC LOAD CIRCUIT

Figure 1.

Figure 3.

Figure 2.

Figure 4.

Figure 5.

51
 SGS-THOMSON
 WMCROELECTRONUCS

DUAL 4-INPUT MULTIPLEXER WITH 3-STATE OUTPUTS

- SCHOTTKY PROCESS FOR HIGH SPEED
- MULTIFUNCTION CAPABILITY
- NON INVERTING 3-STATE OUTPUTS
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS
- FULLY TTL AND CMOS COMPATIBLE

DESCRIPTION

The LSTTLMSI T74LS253 is a very high speed Dual 4-Input Multiplexer with 3-state outputs. It can select two bits data from four sources using commun select inputs. The outputs may be individually switched to a high impedance state with a HIGH on the respective Output Enable (E_{0}) inputs, allowing the outputs to interface directly with bus oriented systems. It is fabricated with the Schottky barrier diode process for high speed and is completely compatible with all TTL families.

B1
(Plastic Package)

M1
(Micro Package)

D1
(Ceramic Package)

C1 (Plastıc Chip Carrier)
DES :
T74LS253 D1 T74LS253 C1
T74LS253 B1
T74LS253 M1

PIN CONNECTION (top view)
DUAL IN LINE

CHIP CARRIER

NC = No Internal Connection

LOGIC SYMBOL AND LOGIC DIAGRAM

TRUTH TABLE

Select Inputs	Data Inputs					Output Enable	Output
$\mathbf{S}_{\mathbf{0}}$	$\mathbf{S}_{\mathbf{1}}$	$\mathrm{I}_{\mathbf{0}}$	$\mathrm{I}_{\mathbf{1}}$	$\mathrm{I}_{\mathbf{2}}$	$\mathrm{I}_{\mathbf{3}}$	$\overline{\mathbf{E}}_{\mathbf{0}}$	Z
X	X	X	X	X	X	H	(Z)
L	L	L	X	X	X	L	L
L	L	H	X	X	X	L	H
H	L	X	L	X	X	L	L
H	L	X	H	X	X	L	H
L	H	X	X	L	X	L	L
L	H	X	X	H	X	L	H
H	H	X	X	X	L	L	L
H	H	X	X	X	H	L	H

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
$L=$ LOW Vottage Level
$\mathrm{X}=$ Don't Care
(Z) $=$ High Impedance (off)

Address inputs S_{0} and S_{1} are common to both sections.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	-0.5 to 7	V
$\mathrm{~V}_{1}$	Input Voltage, Applied to Input	-05 to 15	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage, Applied to Output	-0.6 to 10	V
I_{1}	Input Current, into Inputs	-30 to 5	mA
I_{O}	Output Current, into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maxımum Ratings" may cause permanent damage to the device This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied Exposure to absolute maxımum rating conditions for extended perıods may affect device relıability

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage		Temperature	
	Min.	Typ.		
T74LS253XX	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type.

FUNCTIONAL DESCRIPTION

The LS253 contains two identical 4-Input Multiplexers with 3 -state outputs. They select two bits from four sources selected by common select inputs (SO, S1). The 4 -input multiplexers have individual Output Enable ($\mathrm{E}_{0 \mathrm{a}}, \mathrm{E}_{0 \mathrm{~b}}$) inputs which when HIGH, forces the outputs to a high impedance (high Z) state.

$$
\begin{aligned}
& Z_{a}=\bar{E}_{a} \bullet\left(I_{0 a} \bullet \bar{S}_{1} \bullet \bar{S}_{0}+I_{1 \mathrm{a}} \bullet \bar{S}_{1}\right. \\
& Z_{\mathrm{b}}=\overline{\mathrm{E}}_{\mathrm{b}} \bullet\left(\mathrm{l}_{0 \mathrm{~b}} \bullet \overline{\mathrm{~S}}_{1} \bullet \overline{\mathrm{~S}}_{0}+\mathrm{I}_{1 \mathrm{~b}} \bullet \overline{\mathrm{~S}}_{1} \bullet \mathrm{~S}_{0}+\mathrm{I}_{\mathrm{a}} \bullet \mathrm{~S}_{1} \bullet \overline{\mathrm{~S}}_{0}+\mathrm{I}_{\mathrm{a}} \bullet \mathrm{~S}_{1} \bullet \mathrm{~S}_{0}\right)
\end{aligned}
$$

If the outputs of 3 -state devices are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. Designers should ensure that Outputs

The LS253 is the logic implementation of a 2-pole, 4-position switch, where the position of the switch is determined by the logic levels supplied to the two Select Inputs. The logic equations for the outputs are shown below.

Enable signals to 3 -state devices whose outputs are tied together are designed so that there is no overlap.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
V_{IH}	Input HIGH Voltage	2.0			Guaranteed In for All Inputs	ut HIGH Voltage	V
VIL	Input LOW Voltage			0.8	Guaranteed In for All Inputs	ut LOW Voltage	V
$V_{C D}$	Input Clamp Diode Voltage		-0.65	-1.5	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{1}$	$-18 \mathrm{~mA}$	V
V OH	Output HIGH Voltage	2.4	3.1		$\begin{aligned} & V_{C C}=M I N, I_{O} \\ & V_{I N}=V_{I H} \text { or } V_{I} \end{aligned}$	$=-2.6 \mathrm{~mA}$ per Truth Table	V
Vol	Output LOW Voltage		0.25	0.4	$\mathrm{loL}=4.0 \mathrm{~mA}$	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I N}=V_{I H} \text { or } V_{I L} \\ & \text { per Truth Table } \end{aligned}$	V
			0.35	0.5	$\mathrm{lOL}=8.0 \mathrm{~mA}$		V
lozh	Output Off Current HIGH			20	$\begin{aligned} & V_{\mathrm{CC}}=M A X, V_{\text {OUT }}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{E}}=2.0 \mathrm{~V} \end{aligned}$		$\mu \mathrm{A}$
lozı	Output Off Current LOW			- 20	$\begin{aligned} & V_{C C}=M A X, V_{I N}=0.4 \mathrm{~V} \\ & V_{E}=2.0 \mathrm{~V} \end{aligned}$		$\mu \mathrm{A}$
I_{H}	Input HIGH Current			$\begin{aligned} & 20 \\ & 0.1 \end{aligned}$	$\begin{aligned} & V_{C C}=M A X, V_{I N}=2.7 \mathrm{~V} \\ & V_{C C}=M A X, V_{I N}=7.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
IIL	Input LOW Current			- 0.4	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$		mA
los	Output Short Circuit Current (note 2)	- 30		- 130	$V_{C C}=M A X$		mA
Icc	Power Supply Current Outputs LOW Outputs Off		7.0 8.5	12 14	$\begin{aligned} & V_{C C}=M A X, V_{I N}=0 \mathrm{~V}, \\ & V_{E}=2.0 \mathrm{~V} \\ & V_{C C}=M A X, V_{I N}=4.5 \mathrm{~V}, \\ & V_{E}=2.0 \mathrm{~V} \end{aligned}$		mA

Notes: 1. Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions
2. Not more than one output should be shorted at a time.
(*) Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

AC CHARACTERISTICS : $\mathrm{T}_{\mathrm{A}}={25^{\circ}}^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Test Conditions		Unit
		Min.	Typ.	Max.			
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay, Data to Output		$\begin{aligned} & 17 \\ & 13 \end{aligned}$	$\begin{aligned} & 25 \\ & 20 \end{aligned}$	Fig. 1	$C_{L}=15 \mathrm{pF}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay, Select to Output		$\begin{aligned} & 30 \\ & 21 \end{aligned}$	$\begin{aligned} & 45 \\ & 32 \end{aligned}$	Fig. 1		ns
$t_{\text {Pz }}$	Output Enable Time to HIGH Level		15	28	Figs. 4, 5	$\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$	ns
tpzl	Output Enable Time to LOW Level		15	23	Figs. 3, 5		ns
tplz	Output Disable Time from LOW Level		18	27	Figs. 3, 5	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$	ns
$\mathrm{t}_{\text {PHZ }}$	Output Disable Time from HIGH Level		27	41	Figs. 4, 5		ns

STATE AC WAVEFORMS AND LOAD CIRCUIT

Figure 1.

Figure 3.

Figure 2.

Figure 4.

Figure 5.

DUAL 4-BIT ADDRESSABLE LACTH

- SERIAL-TO-PARALLEL CAPABILITY
- OUTPUT FROM EACH STORAGE BIT AVAILABLE
- RANDOM (addressable) DATA ENTRY
- EASILY EXPANDABLE
- ACTIVE LOW COMMON CLEAR
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS
- FULLY TTL AND CMOS COMPATIBLE

DESCRIPTION

The T74LS256 is a Dual 4-Bit Addressable Latch with common control inputs; these include two Address inputs ($\mathrm{A}_{0}, \mathrm{~A}_{1}$), an active LOW Enable input $(\overline{\mathrm{E}})$ and an active LOW Clear input ($\overline{\mathrm{C}}$). Each latch has a Data input (D) and four outputs ($\mathrm{Q}_{0}-\mathrm{Q}_{3}$).
When the Enable ($\overline{\mathrm{E}}$) is HIGH and the Clear input ($\overline{\mathrm{C}}$) is LOW, all outputs ($\mathrm{Q}_{0}-\mathrm{Q}_{3}$), are LOW. Dual 4-channel demultiplexing occurs when the $\overline{\mathrm{C}}$ and $\overline{\mathrm{E}}$ are both

PIN NAMES

A_{0}, A_{1}	ADDRESS INPUTS
D_{a}, D_{b}	DATA INPUTS
\bar{E}	ENABLE (active LOW) INPUT
C	CLEAR (active LOW) INPUT
$Q_{0 \mathrm{a}}-Q_{3 a}$,	PARALLEL LATCH OUTPUTS
$Q_{0 \mathrm{~b}}-Q_{3 \mathrm{~b}}$	

LOW. When C is HIGH and \bar{E} is LOW, the selected outputs ($\mathrm{Q}_{0}-\mathrm{Q}_{3}$), determined by the Address inputs, follows D. When the E goes HIGH, the contents of the lacth are stored. When operating in the addressable latch mode ($\overline{\mathrm{E}}=\mathrm{LOW}, \overline{\mathrm{C}}=$ HIGH), changing more than one bit of the Address ($\mathrm{A}_{0}, \mathrm{~A}$: could impose a transient wrong address. Therefore, this should be done only while in the memory mode ($\overline{\bar{E}}$ $=\overline{\mathrm{C}}=\mathrm{HIGH}$).

B1
(Plastic Package)

D1 (Ceramic Package)

C1
(Plastic Chip Carrier) ORDER CODES :

T74LS256 D1	T74LS256 C1
T74LS256 B1	T74LS256 M1

PIN CONNECTION (top view)

LOGIC SYMBOL AND LOGIC DIAGRAM

MODE SELECTION

$\overline{\mathbf{E}}$	$\overline{\mathbf{C}}$	Mode
L	H	Addressable Latch
H	H	Memory
L	L	Dual 4-Channel Demultiplexer
H	L	Clear

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	-0.5 to 7	V
$\mathrm{~V}_{1}$	Input Voltage, Applied to Input	-0.5 to 15	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage, Applied to Output	-0.5 to 10	V
I_{1}	Input Current, into Inputs	-30 to 5	mA
I_{O}	Output Current, into Outputs	30	mA

Stresses in excess of those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage		Temperature	
	Min.	Typ.		
T74LS256XX	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

XX = package type.
TRUTH TABLE

$\overline{\mathbf{C}}$	$\overline{\mathbf{E}}$	D	A_{0}	A_{1}	\mathbf{Q}_{0}	\mathbf{Q}_{1}	\mathbf{Q}_{2}	Q_{3}	Mode
L	H	X	X	X	L	L	L	L	Clear
L	L	L	L	L	L	L	L	L	Demultiplexer
L	L	H	L	L	H	L	L	L	
L	L	L	H	L	L	L	L	L	
L	L	H	H	L	L	H	L	L	
L	L	L	L	H	L	L	L	L	
L	L	H	L	H	L	L	H	L	
L	L	L	H	H	L	L	L	L	
L	L	H	H	H	L	L	L	H	
H	H	X	X	X	$\mathrm{Q}_{\mathrm{n}-1}$	$\mathrm{Q}_{\mathrm{n}-1}$	$\mathrm{Q}_{\mathrm{n}-1}$	$\mathrm{Q}_{\mathrm{n}-1}$	Memory
H	L	L	L	L	L	$\mathrm{Q}_{\mathrm{n}-1}$	$\mathrm{Q}_{\mathrm{n}-1}$	$Q_{\text {n-1 }}$	Addressable
H	L	H	L	L	H	$\mathrm{Q}_{\mathrm{n}-1}$	$\mathrm{Q}_{\mathrm{n}-1}$	$\mathrm{Q}_{\mathrm{n}-1}$	Latch
H	L	L	H	L	$\mathrm{Q}_{\mathrm{n}-1}$	L	$\mathrm{Q}_{\mathrm{n}-1}$	$\mathrm{Q}_{\mathrm{n}-1}$	
H	L	H	H	L	$\mathrm{Q}_{\mathrm{n}-1}$	H	$\mathrm{Q}_{\mathrm{n}-1}$	$\mathrm{Q}_{\mathrm{n}-1}$	
H	L	L	L	H	$\mathrm{Q}_{\mathrm{n}-1}$	$\mathrm{Q}_{\mathrm{n}-1}$	L	$\mathrm{Q}_{\mathrm{n}-1}$	
H	L	H	L	H	$\mathrm{Q}_{\mathrm{n}-1}$	$\mathrm{Q}_{\mathrm{n}-1}$	H	$\mathrm{Q}_{\mathrm{n}-1}$	
H	L	L	H	H	$\mathrm{Q}_{\mathrm{n}-\mathrm{q}}$	$\mathrm{Q}_{\mathrm{n}-1}$	$\mathrm{Q}_{\mathrm{n}-1}$	L	
H	L	H	H	H	$\mathrm{Q}_{\mathrm{n}-1}$	$\mathrm{Q}_{\mathrm{n}-1}$	$\mathrm{Q}_{\mathrm{n}-1}$	H	

$H=$ HIGH Voltage Level, $L=$ LOW Voltage Level, $X=$ Don't Care

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
V_{IH}	Input HIGH Voltage	2.0			Guaranteed Input HIGH Voltage for All Inputs		V
VIL	Input LOW Voltage			0.8	Guaranteed Input LOW Voltage for All Inputs		V
$\mathrm{V}_{C D}$	Input Clamp Diode Voltage		-0.65	-1.5	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{l} \mathrm{IIN}=-18 \mathrm{~mA}$		V
VOH	Output HIGH Voltage	2.7	3.4		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { MIN, IOH }=-400 \mu \mathrm{~A} \\ & \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {IH }} \text { or } \mathrm{V}_{\text {IL }} \text { per Truth Table } \end{aligned}$		V
VoL	Output LOW Voltage		0.25	0.4	$\mathrm{loL}=4.0 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$, $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL} per Truth Table	v
			035	0.5	$\mathrm{loL}=8.0 \mathrm{~mA}$		V
${ }_{1 / 4}$	Input HIGH Current $A_{0}, A_{1}, \bar{C}, D_{a}, D_{b}$, E			$\begin{array}{r} 20 \\ 40 \\ \hline \end{array}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}=2.7 \mathrm{~V}}$		$\mu \mathrm{A}$
	Input HIGH Current $\mathrm{A}_{\mathrm{o}}, \mathrm{A}_{1}, \mathrm{C}, \mathrm{D}_{\mathrm{a}}, \mathrm{D}_{\mathrm{b}}$, $\overline{\mathrm{E}}$			$\begin{aligned} & 0.1 \\ & 02 \\ & \hline \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$		mA
$1 /$.	Input LOW Current $\frac{A_{0}}{E}, A_{1}, \bar{C}, D_{a}, D_{b}$,			$\begin{array}{r} -0.4 \\ -0.8 \end{array}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$		mA
los	Output Short Circuit Current (note 2)	-20		- 100	$V_{C C}=M A X$		mA
Icc	Power Supply Current		20	25	$V_{C C}=$ MAX		mA

Notes: 1. Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions
2. Not more than one output should be shorted at a time.
(*) Typical values are at $\mathrm{V}_{\mathrm{CC}}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

AC CHARACTERISTICS : $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Test Conditions		Unit
		Min.	Typ.	Max.			
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Turn-off Delay, Enab. to Out. Turn-on Delay, Enab. to Out.		$\begin{aligned} & 20 \\ & 16 \end{aligned}$	$\begin{aligned} & 27 \\ & 24 \end{aligned}$	Fig. 1	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$	ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Turn-off Delay, Data to Out. Turn-on Delay, Data to Out.		$\begin{aligned} & 2 C \\ & 13 \end{aligned}$	$\begin{aligned} & 30 \\ & 20 \end{aligned}$	Fig. 2		ns
$t_{\text {PLH }}$ t_{PHL}	Turn-off Delay, Addr. to Out. Turn-on Delay, Addr. to Out.		$\begin{aligned} & 20 \\ & 14 \end{aligned}$	$\begin{aligned} & 30 \\ & 24 \end{aligned}$	Fig. 3		ns
$\mathrm{t}_{\text {PHL }}$	Turn-on Delay, Clear to Output		12	23	Fig. 5		ns

AC SET-UP REQUIREMENTS : $T_{A}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Test Conditions		Unit
		Min.	Typ.	Max.			
$\mathrm{t}_{\mathrm{s}} \mathrm{H}$	Set-up Time HIGH, Data to Enable	20	13		$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$	Fig. 4	ns
$t_{n} \mathrm{H}$	Hold Time HIGH, Data to Enable	0	- 7.0				
$\mathrm{t}_{\mathrm{s}} \mathrm{L}$	Set-up Time LOW, Data to Enable	15	7.0				ns
$\mathrm{t}_{\mathrm{n}} \mathrm{L}$	Hold Time LOW, Data to Enable	0	10				
$\mathrm{t}_{\mathrm{s}} \mathrm{A}-\overline{\mathrm{E}}$	Set-up Time, Address to Enable (note 4)	0	- 7.0		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	Fig. 6	ns
$t_{w} \overline{\mathrm{E}}$	Enable Pulse Width	17	12		$\mathrm{V}_{\mathrm{Cc}}=5.0 \mathrm{~V}$	Fig. 1	ns

Notes : 4. The address to Enable Set-up Time is the time befor the HIGH to LOW Enable transition that the Address must be stable so that the correct latch is addressed and the other latches are not affected.
5: The shaded areas indicate when the inputs are permitted to change for predictable output performance

AC WAVEFORMS

Figure 1 : Turn-On and Turn-Off Delays, Enable to Output and Enable Pulse Width.

Figure 3 : Turn-On and Tum-Off Delays, Address to Output.

Figure 2 : Tum-On and Turn-Off Delays, Data to Output.

Figure 4 : Set-up and Hold Time, Data toEnable.

Figure 5 : Turn-On Delays, Clear to Output.

Figure 6 : Set-up Time, Address to Enable (see notes 4 and 5).

T74LS257A

QUAD 2-INPUT MULTIPLEXER WITH 3-STATE OUTPUTS

- SCHOTTKY PROCESS FOR HIGH SPEED
- MULTIPLEXER EXPANSION BY TYING OUTPUTS TOGETHER
- NON-INVERTING 3 STATE OUTPUTS
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS
- FULLY TTL AND CMOS COMPATIBLE

DESCRIPTION

The LSTTLMSI T74LS257A is a Quad 2-Input Multiplexer with 3 -state outputs. Four bits of data from two sources can be selected using a Common Data Select input. The four outputs present the selected data in true (non-inverted) form. The outputs may be switched to a high impedance state with a HIGH on the common Outputs Enable (\bar{E}_{0}) Input, allowing the

PIN NAMES

S	COMMON SELECT INPUT
E_{0}	Output Enable (active LOW) INPUT
$I_{0_{a}-l_{0 d}}$	DATA INPUTS FROM SOURCE 0
$l_{1} l_{1 d}-l_{1 d}$	DATA INPUTS FROM SOURCE 1
$Z_{a}-Z_{d}$	MULTIPLEXER OUTPUT

outputs to interface directly with bus oriented systems. It is fabricated with the Schottky barrier diode process for high speed and is completely compatible with all TTL families.

PIN CONNECTION (top view)

DUAL IN LINE

CHIP CARRIER

NC = No Internal Connection

LOGIC SYMBOL AND LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{C C}$	Supply Voltage	-0.5 to +7	V
V_{1}	Input Voltage, Applied to Input	-0.5 to +5.5	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage, Applied to Output	-0.5 to +5.5	V
I_{1}	Input Current, Into Inputs	-30 to +5	mA
I_{O}	Output Current, Into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.
This is a stress rating only and functional operation of the device at these or any other conditons in excess of those indicated in the operatonal sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended penods may affect device reliability

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage		Temperature	
	Min.	Typ.		
T74LS257AXX	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type

FUNCTIONAL DESCRIPTION

The LS257A is a Quad 2-Input Multiplexer with 3state outputs. It selects four bits of data from two sources under control of a Common Data Select Input. When the Select Input is LOW, the Io inputs are selected and when Selected is HIGH, the l_{1} inputs are selected. The data on the selected inputs appear at the outputs in true (non-inverted) form. The LS257A is the logic implementation of a 4-pole, 2-position switch where the position of the switch is determined by the logic levels supplied to the Select Input. The logic equations for outputs are show below:
$Z_{a}=\bar{E} 0 \bullet(11 a \cdot S+10 a \cdot \bar{S}) Z_{b}=\bar{E} 0 \bullet(11 b \bullet S+10 b \bullet \bar{S})$ $Z_{c}=\bar{E} 0 \bullet(11 \mathrm{c} \bullet \mathrm{S}+10 \mathrm{c} \cdot \overline{\mathrm{S}}) \mathrm{Z}_{\mathrm{d}}=\overline{\mathrm{E}} 0 \bullet(11 \mathrm{~d} \bullet \mathrm{~S}+10 \mathrm{~d} \bullet \overline{\mathrm{~S}})$
When the Output Enable Input ($\overline{\mathrm{E}}_{0}$) is HIGH, the outputs are forced to a high impedance "off" state. If the outputs are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. Designers should ensure that Output Enable signals to 3-state devices whose outputs are tied together are designed so there is no overlap.

TRUTH TABLE

Output Enable	Select Input	Data Inputs		Outputs
\bar{E}_{0}	S	I_{0}	I_{1}	Z
H	X	x	X	(Z)
L	H	X	L	L
L	H	X	H	H
L	L	L	X	L
L	L	H	X	H

$H=$ HIGH Voltage Level
L = LOW Voltage Level
X = Don't Care
(Z) = High impedance (off)

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter		Limits			Test Condition (note 1)		Unit
			Min.	Typ. (*)	Max.			
V_{IH}	Input HIGH Voltage		20			Guaranteed In for All Inputs	ut HIGH Voltage	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	Guaranteed In for All Inputs	ut LOW Voltage	V
$V_{C D}$	Input Clamp Diode Voltage			-065	-1.5	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{\mathrm{N}}$	$=-18 \mathrm{~mA}$	V
V_{OH}	Output HIGH Voltage		2.4	31		$\begin{aligned} & V_{\mathrm{CC}}=M I N, I_{O} \\ & V_{I N}=V_{I H} \text { or } V^{2} \end{aligned}$	$\begin{aligned} & =-2.6 \mathrm{~mA} \\ & \text { per Truth Table } \end{aligned}$	V
VoL	Output LOW Voltage			0.25	0.4	$\mathrm{lOL}=12 \mathrm{~mA}$	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I N}=V_{I H} \text { or } V_{I L} \\ & \text { per Truth Table } \end{aligned}$	V
				0.35	0.5	$\mathrm{lOL}=24 \mathrm{~mA}$		V
lozh	Output Off Current HIGH			1 20		$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$		$\mu \mathrm{A}$
lozı	Output Off Current LOW				- 20	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}$	= 0.4 V	$\mu \mathrm{A}$
$\mathrm{IIH}^{\text {H}}$	Input HIGH Current	Other Inputs S Input			$\begin{aligned} & 20 \\ & 40 \\ & \hline \end{aligned}$	$\mathrm{V}_{\mathrm{Cc}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$		$\mu \mathrm{A}$
		Other Inputs S Input			$\begin{aligned} & 0.1 \\ & 0.2 \\ & \hline \end{aligned}$	$V_{C C}=$ MAX, V	$=7.0 \mathrm{~V}$	mA
IIL	Input LOW Current	Other Inp S Input			$\begin{array}{r} -0.4 \\ -0.8 \\ \hline \end{array}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}$	= 0.4 V	mA
los	Output Short Circuit Current (note 2)		-30		-130	$V_{C C}=\mathrm{MAX}$		mA
Icc	Power Supply Current Total Output HIGH Total Output LOW Total output 3-state				$\begin{aligned} & 10 \\ & 16 \\ & 19 \\ & \hline \end{aligned}$	$V_{C C}=M A X$		mA

Notes: 1, Conditions for testing, not shown in the Table. are chosen to guarantee operation under "worst case" conditions.
2) Not more than one output should be shorted at a time
(*) Typical values are at $V_{\llcorner c}=50 \mathrm{~V} T_{A}=25^{\circ} \mathrm{C}$

AC CHARACTERISTICS : $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Test Conditions (note 1)		Unit
		Min.	Typ.	Max.			
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \\ & \hline \end{aligned}$	Propagation Delay, Data to Output		$\begin{gathered} \hline 9 \\ 11 \end{gathered}$	$\begin{aligned} & 18 \\ & 18 \end{aligned}$	fig. 1	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=45 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay, Select to Output		$\begin{aligned} & \hline 16 \\ & 19 \\ & \hline \end{aligned}$	$\begin{aligned} & 21 \\ & 25 \\ & \hline \end{aligned}$	fig. 1		ns
$\mathrm{t}_{\text {Pz }}$	Output Enable Time to HIGH Level		17	30	figs. 4, 5		ns
$t_{\text {pzL }}$	Output Enable Time to LOW Level		17	30	figs. 3, 5		ns
tplz	Output Disable Time from LOW Level		15	25	figs. 3, 5	$\begin{aligned} \mathrm{V}_{\mathrm{CC}} & =5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =5 \mathrm{pF} \end{aligned}$	ns
$\mathrm{t}_{\text {PHZ }}$	Output Disable Time from HIGH Level		17	30	figs. 4, 5		ns

WAVEFORMS

Figure 1.

Figure 3.

Figure 2.

Figure 4.

Figure 5.

QUAD 2-INPUT MULTIPLEXER WITH 3-STATE OUTPUTS

- SCHOTTKY PROCESS FOR HIGH SPEED
- MULTIPLEXER EXPANSION BY TYING OUTPUTS TOGETHER
- INVERTING 3 STATE OUTPUTS
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS
- FULLY TTL AND CMOS COMPATIBLE

DESCRIPTION

The T74LS258A is a Quad 2-Input Multiplexer with 3-state outputs. Four bits of data from two sources can be selected using a Common Data Select Input. The four outputs present the selected data in the complement (inverted) form. The outputs may be switched to a high impedance state with a HIGH on the common Outputs Enable ($\overline{\mathrm{E}}_{0}$) Input, allowing the

PIN NAMES

$\frac{S}{}$	COMMON SELECT INPUT
E_{0}	Output Enable (active LOW) Input
$I_{0 a}-I_{0 d}$	DATA INPUTS FROM SOURCE 0
$I_{1}-I_{1 d}$	DATA INPUTS FROM SOURCE 1
$Z_{a}-Z_{d}$	Multiplexer Output

outputs to interface directly with bus oriented systems. It is fabricated with the Schottky barrier diode process for high speed and is completely compatible with all TTL families.

PIN CONNECTION (top view)

DUAL IN LINE

CHIP CARRIER

NC = No Internal Connection

LOGIC SYMBOL AND LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	-0.5 to +7	V
$\mathrm{~V}_{1}$	Input Voltage, Applied to Input	-0.5 to +15	V
$\mathrm{~V}_{\mathrm{o}}$	Output Voltage, Applied to Output	-0.5 to +5.5	V
I_{1}	Input Current, Into Inputs	-30 to +5	mA
I_{0}	Output Current, Into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maximum Ratngs" may cause permanent damage to the device
This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage		Temperature	
	Min.	Typ.		
T74LS258XX	4.75 V	5.0 V	5.25 V	$0{ }^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type.

FUNCTIONAL DESCRIPTION

The LS258A is a Quad 2-Input Multiplexer with 3state outputs. It selects four bits of data from two sources under control of a Common Select Input (S). When the Select is LOW, the I_{0} inputs are selected and when Selected is HIGH, the l_{1} inputs are selected. The data on the selected inputs appear at the outputs in inverted form.
The LS258A Quad 2-Input Multiplexer is the logic implementation of a 4-pole, 2-position switch where
the position of the switch is determined by the logic levels supplied to the Select Input. The Logic equations for the outputs are show below :
$Z_{a}=\bar{E} 0 \bullet(11 a \bullet S+10 a \bullet \bar{S})$
$Z_{b}=\bar{E} 0 \cdot(11 b \cdot S+10 b \cdot \bar{S})$
$Z_{c}=\bar{E} 0 \bullet(11 c \bullet S+10 \mathrm{c} \bullet \bar{S})$
$Z_{d}=\bar{E} 0 \bullet(11 \mathrm{~d} \bullet \mathrm{~S}+10 \mathrm{~d} \bullet \overline{\mathrm{~S}})$
When the Output Enable Input ($\overline{\mathrm{E}}_{0}$) is HIGH, the out-
puts are forced to a high impedance "off" state. If the outputs of the 3-state are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum
ratings. Designers shoud ensure that Output Enable signals to 3-state devices whose outputs are tied together are designed so there is no overlap.

TRUTH TABLE

Output Enable	Select Input	Data Inputs		Outputs
$\overline{\mathrm{E}}_{0}$	S	I_{0}	I_{1}	Z
H	X	X	X	(Z)
L	H	X	L	H
L	H	X	H	L
L	L	L	X	H
L	L	H	X	L

H = HIGH Voltage Level
L = LOW Voltage Level
X = Don't Care
$(Z)=$ High impedance (off)

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter		Limits			Test Condition (note 1)		Unit
			Min.	Typ. (*)	Max.			
V_{IH}	Input HIGH Voltage		2.0			Guaranteed I	ut HIGH Voltage	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	Guaranteed	ut LOW Voltage	V
$V_{C D}$	Input Clamp Diode Voltage			-0.65	-1.5	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}$, III	-18 mA	V
Vor	Output HIGH Voltage		2.4	3.1		$\begin{aligned} & V_{c C}=M I N, ~ \\ & V_{I N}=V_{I H} \text { or } \end{aligned}$	$\begin{aligned} & =-2.6 \mathrm{~mA} \\ & \text { per Truth Table } \end{aligned}$	V
VoL	Output LOW Voltage			0.25	0.4	$\mathrm{loL}=12 \mathrm{~mA}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \text { per Truth Table } \end{aligned}$	V
				0.35	0.5	$\mathrm{loL}=24 \mathrm{~mA}$		V
lozh	Output Off Current-HIGH				20	$\mathrm{V}_{C C}=\mathrm{MAX}$,	Ut $=2.7 \mathrm{~V}$,	$\mu \mathrm{A}$
lozl	Output Off Current-LOW				-20	$V_{C C}=$ MAX,	UT $=0.4 \mathrm{~V}$,	$\mu \mathrm{A}$
$\mathrm{IH}^{\text {H}}$	Input HIGH Current	Other Inputs S Inputs			$\begin{aligned} & 20 \\ & 40 \end{aligned}$	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$		$\mu \mathrm{A}$
		Other Inputs S Inputs			$\begin{aligned} & 0.1 \\ & 0.2 \\ & \hline \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$		mA
IIL	Input LOW Current	Other Inputs S Inputs			$\begin{array}{r} \hline-0.4 \\ -0.8 \\ \hline \end{array}$	$V_{C C}=M A X,{ }^{\text {c }}$	$=0.4 \mathrm{~V}$	mA
los	Output Short Circuit Current (note 2)		- 30		-130	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	Ut $=0 \mathrm{~V}$	mA
Icc	Power Supply Current Total, Output HIGH Total, Output LOW Total, Output 3-state				$\begin{aligned} & 7 \\ & 14 \\ & 19 \\ & \hline \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$		mA

Notes: 1) Conditions for testıng, not shown in the Table, are chosen to guarantee operation under "worst case" conditions.
2) Not more than one output should be shorted at a time
(*) Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

AC CHARACTERISTICS : $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Test Conditions		Unit
		Min.	Typ.	Max.			
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay, Data to Output		$\begin{gathered} \hline 8 \\ 11 \end{gathered}$	$\begin{aligned} & 18 \\ & 18 \end{aligned}$	fig. 1	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=45 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \\ & \hline \end{aligned}$	Propagation Delay, Select to Output		$\begin{aligned} & 15 \\ & 18 \\ & \hline \end{aligned}$	$\begin{aligned} & 21 \\ & 25 \\ & \hline \end{aligned}$	fig. 1		ns
$t_{\text {pzH }}$	Output Enable Time to HIGH Level		18	30	figs. 4, 5		ns
tpzL	Output Enable Time to LOW Level		18	30	figs. 3, 5		ns
tplz	Output Disable Time from LOW Level		16	25	figs. 3, 5	$\begin{aligned} \mathrm{V}_{\mathrm{CC}} & =5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =5 \mathrm{pF} \end{aligned}$	ns
$\mathrm{t}_{\mathrm{PHZ}}$	Output Disable Time from HIGH Level		18	30	figs. 4, 5		ns

WAVEFORMS

Figure 1.

Figure 3.

Figure 2.

Figure 4.

Figure 5.

8-BIT ADDRESSABLE LATCH

- SERIAL-TO-PARALLEL CONVERSION
- EIGHT BITS OF STORAGE WITH OUTPUT OF EACH BIT AVAILABLE
- RANDOM (addressable) DATA ENTRY
- ACTIVE HIGH DEMULTIPLEXING OR DECODING CAPABILITY
- EASILY EXPANDABLE
- COMMON CLEAR
- FULLY TTL AND CMOS COMPATIBLE

DESCRIPTION

The T74LS259 is a high speed 8 -bit Addressable Latch designed for general purpose storage applications in digital systems. It is a multifunc- tional device capable of storing single line data in eight addressable latches, and also a 1 -of-8 decoder and demultiplexer with active HIGH outputs. The device also incorporates an active LOW common Clear for resetting all latches, as well as, an active LOW Enables.

PIN NAMES

A_{0}, A_{1}, A_{2}	ADDRESS INPUTS
$\frac{D}{E}$	DATA INPUT
\bar{E}	ENABLE (active LOW) INPUT
Q_{0} to Q_{7}	CLEAR (active LOW) INPUT
PARALLEL LATCH OUTPUTS	

B1
(Plastic Package)

M1
(Micro Package)

D1 (Ceramic Package)

C1 (Plastic Chip Carrier)

ORDER CODES :
$\begin{array}{ll}\text { T74LS259 D1 } & \text { T74LS259 C1 } \\ \text { T74LS259 B1 } & \text { T74LS259 M1 }\end{array}$

PIN CONNECTION (top view)
DUAL IN LINE

CHIP CARRIER

NC = No Internal Connection

LOGIC SYMBOL AND LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{cc}	Supply Voltage	-0.5 to 7	V
$\mathrm{~V}_{\mathrm{I}}$	Input Voltage, Applied to Input	-0.5 to 15	V
$\mathrm{~V}_{\mathrm{o}}$	Output Voltage, Applied to Output	-0.5 to 10	V
I_{I}	Input Current, into Inputs	-30 to 5	mA
I_{O}	Output Current, into Outputs	30	mA

Stresses in excess of those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only oand functional operation to the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended penods may affect device reliability.

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage		Temperature	
	Min.	Typ.		
T74LS259XX	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

TRUTH TABLE - PRESENT OUTPUT STATES AND MODE SELECTION

$\overline{\mathbf{E}}$	$\overline{\mathbf{C}}$	Mode
L	H	Addressable Latch
H	H	Memory
L	L	Active HIGH Eight- H Lhannel Lemultiplexer Lear

X = Don't Care
$\mathrm{L}=$ LOW Voltage Level
H = HIGH Voltage Level
Qn-1 = Previous Output State

FUNCTIONAL DESCRIPTION

The LS259 has four modes of operation as shown in the mode selection table. In the addressable latch mode, data on the Data line (D) is written into the addressed latch. The address latch will follow three data input with all non-addressed latches remaining in their previous states. In the memory mode, all latches remain in their previous state and are unaffected by the Data or Address input. In one-of-eight decoding or demultiplexing mode, the addressed output will follow the state of the D input with all
other inputs in the LOW stae. In the clear mode all outputs are LOW and unaffected by the address and data inputs.
When operating the LS259 as an addressable latch, changing more than one bit of the address could impose a transient wrong address. Therefore, this should only be done while in the memory mode. The truth table below summarizes the operations of the LS259.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
V_{H}	Input HIGH Voltage	2.0			Guaranteed Input HIGH Voltage for all Inputs		V
VIL	Input LOW Voltage			0.8	Guaranteed Input LOW Voltage for all Inputs		V
$V_{C D}$	Input Clamp Diode Voltage		-0.65	-1.5	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{lin}=-18 \mathrm{~mA}$		V
V OH	Output HIGH Voltage	2.4	3.1		$\begin{aligned} & V_{C C}=M I N, I_{O H}=-400 \mu \mathrm{~A} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \text { per Truth Table } \end{aligned}$		V
Vol	Output LOW Voltage		0.25	0.4	$\mathrm{lOL}=4.0 \mathrm{~mA}$	$\begin{aligned} & V_{C C}=M I N \\ & V_{I N}=V_{I H} \text { or } V_{I L} \\ & \text { per Truth Table } \end{aligned}$	V
			0.35	0.5	$\mathrm{lOL}=8.0 \mathrm{~mA}$		V
${ }_{1 / 4}$	Input HIGH Current $\mathrm{A}_{0}, \mathrm{~A}_{1}, \mathrm{~A}_{2}, \mathrm{D}, \overline{\mathrm{C}}$, E			$\begin{aligned} & 20 \\ & 40 \\ & \hline \end{aligned}$	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$		$\mu \mathrm{A}$
	Input HIGH Current $A_{0}, A_{1}, A_{2}, D, C$, E			$\begin{aligned} & 0.1 \\ & 0.2 \\ & \hline \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$		mA
IIL	Input LOW Current $A_{0}, A_{1}, A_{2}, D, C, E$			-0.4	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$		mA
los	Output Short Circuit Current (note 2)	- 20		- 100	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		mA
ICC	Supply Current		20	36	$V_{C C}=M A X$		mA

Notes • 1 Conditions for testing, notshown in the table are chosen to guarantee operationunder "worst case" conditions.
2. Not more than one output should be shorted at a tıme.
(*) Typical values are at $\mathrm{V}_{C C}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

AC CHARACTERISTICS : $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Test Conditions		Unit
		Min.	Typ.	Max.			
$\begin{aligned} & \hline t_{\mathrm{PLH}} \\ & t_{\mathrm{PHLL}} \end{aligned}$	Turn-off Delay, Enab. to Out. Turn-on Delay, Enab. to Out.		$\begin{aligned} & 22 \\ & 15 \end{aligned}$	$\begin{aligned} & 35 \\ & 24 \\ & \hline \end{aligned}$	Fig. 1	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & C_{L}=15 \mathrm{pF} \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Turn-off Delay, Data to Output Turn-on Delay, Data to Output		$\begin{aligned} & 20 \\ & 13 \end{aligned}$	$\begin{aligned} & 32 \\ & 21 \end{aligned}$	Fig. 2		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Turn-off Delay, Addr. to Out. Turn-on Delay, Addr. to Out.		$\begin{aligned} & 24 \\ & 18 \end{aligned}$	$\begin{aligned} & 38 \\ & 29 \end{aligned}$	Fig. 3		ns
$\mathrm{t}_{\text {PHL }}$	Turn-on Delay, Clear to Output		17	27	Fig. 5		ns

AC SET-UP REQUIREMENTS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Test Conditions		Unit
		Min.	Typ.	Max.			
$\mathrm{t}_{\mathrm{s}} \mathrm{H}$ $\mathrm{t}_{\mathrm{n}} \mathrm{H}$	Set-up Time HIGH, Data to Enable Hold Time HIGH, Data to Enable	$\begin{gathered} 20 \\ 0 \\ \hline \end{gathered}$	$\begin{array}{r} 13 \\ -7.0 \\ \hline \end{array}$		Fig. 4	$\mathrm{VCC}=5.0 \mathrm{~V}$	ns
$t_{s} \mathrm{H}$ $\mathrm{t}_{\mathrm{n}} \mathrm{H}$	Set-up Time LOW, Data to Enable Hold Time LOW, Data to Enable	$\begin{aligned} & 15 \\ & 0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 10 \end{aligned}$				ns
${ }_{\text {ts }} \mathrm{A}-\overline{\mathrm{E}}$	Set-up Time, Address to Enable (note 4)	0	-7.0		Fig. 6		ns
$\mathrm{t}_{\mathrm{p} W} \overline{\mathrm{E}}$	Enable Pulse Widht	17	12		Fig. 1		ns

AC WAVEFORMS

Figure 1 : Turn-On and Turn-Off Delays, Enable Output and Enable Pulse Width.

Figure 3 : Turn-On and Turn-Off Delays, Address to Output.

Figure 2 : Turn-On and Turn-Off Delays, Data to Output.

Figure 4 : Set-up and Hold Time, Data to Enable

Figure 5 : Turn-On Delay Clear to Output.

Figure 6 : Set-up Time, Address to Enable (see notes 4 and 5).

T74LS260

DUAL 5-INPUT NOR GATE

DESCRIPTION

The T74LS260 is a high speed DUAL5-INPUTNOR GATE fabricated in LOW POWER SCHOTTKY technology.

SCHEMATIC DIAGRAM

B1
(Plastic Package)

M1
(Micro Package)

D1 (Ceramic Package)

C1
(Plastic Chip Carrier)

ORDER CODES :
T74LS260 D1 T74LS260 B1

T74LS260 C1 T74LS260 M1

PIN CONNECTION (top view)

DUAL IN LINE

CHIP CARRIER

NC = No Internal Connection

SCHEMATIC DIAGRAM

A	B	C	D	E	Y
L	L	L	L	L	H
x	X	X	X	H	L
x	X	X	H	x	L
X	X	H	X	X	L
x	H	X	X	x	L
H	X	X	X	X	L

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{c c}$	Supply Voltage	-0.5 to 7	V
V_{1}	Input Voltage, Applied to Input	-0.5 to 15	V
$\mathrm{~V}_{0}$	Output Voltage, Applied to Output	-0.5 to 10	V
I_{1}	Input Current, Into Inputs	-30 to 5	mA
I_{0}	Output Current, Into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maximum Ratıngs" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied Exposure to absolute maxımum ratıng conditıons for extended perıods may affect device reliability

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage		Temperature
	Min.	Typ.	
T74LS260XX	475 V	$50 \mathrm{~V}, 525 \mathrm{~V}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
XX = package type			

dC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Notes: 1 Conditions for testing, not shown in the table, are chosen to guarantee under "worst case" conditions
2 Not more than one output should be shorted at a time
(*) Typical values are at $\mathrm{V}_{\mathrm{CC}}=50 \mathrm{~V} . \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

AC CHARACTERISTICS : $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Test Conditions	Unit
		Min.	Typ.	Max.		
t $_{\text {PLH }}$	Turn Off Delay, Input to Output		5.0	15	$\mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	ns
t_{PH}	Turn On Delay. Input to Output		6.0	15	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	ns

QUAD 2-INPUT EXCLUSIVE NOR GATE

DESCRIPTION

The T74LS266 is a high speed QUAD 2-INPUT EXCLUSIVE NOR GATE (with open collector output)fabricated in LOW POWER SCHOTTKY technology.

SCHEMATIC

PIN CONNECTION (top view)
(

LOGIC DIAGRAM AND TRUTH TABLE

	In		Out
	L L H H	L H L H	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{C C}$	Supply Voltage	-0.5 to 7	V
V_{1}	Input Voltage, Applied to Input	-1.5 to 15	V
V_{0}	Output Voltage, Applied to Output	0 to 10	V
I_{1}	Input Current, Into Inputs	-30 to 5	mA
I_{O}	Output Current, Into Outputs	60	mA

Stresses in excess of those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage		Temperature	
	Min.	Typ.		
T74LS266XX	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type.
DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
V_{IH}	Input HIGH Voltage	2.0			Guaranteed Input HIGH Voltage		V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	Guaranteed Input LOW Voltage		V
$V_{C D}$	Input Clamp Diode Voltage		-0.65	-1.5	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$		V
loh	Output HIGH Current			100	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{~V}_{\mathrm{OH}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \text { per Truth Table } \end{aligned}$		V
Vol	Output LOW Voltage		0.25	0.4	$\mathrm{lOL}=4.0 \mathrm{~mA}$	$\begin{aligned} & V_{C C}=M I N \\ & V_{I N}=V_{I H} \text { or } V_{I L} \\ & \text { per Truth Table } \\ & \hline \end{aligned}$	V
			0.35	0.5	$\mathrm{loL}=8.0 \mathrm{~mA}$		V
IIH	Input HIGH Current			$\begin{aligned} & 40 \\ & 0.2 \\ & \hline \end{aligned}$	$\begin{aligned} & V_{C C}=M A X, V_{\mathbb{N}}=2.7 \mathrm{~V} \\ & V_{C C}=M A X, V_{\mathbb{N}}=7.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$
IIL	Input LOW Current			-0.6	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$		mA
Icc	Power Supply Current		8.0	13	$V_{C C}=M A X$		mA

Notes : 1 For conditions shown as MIN or MAX, use the appropriate value specified under guaranteed operating range.
(*) Typıcal values are at $\mathrm{V}_{\mathrm{Cc}}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (for AC test circuits and waveforms see databook introduction)

Symbol	Parameter	Limits			Test Conditions	Unit
		Min.	Typ.	Max.		
tPLH	Propagation Delay, Other		18	30		ns
tPHL	Input LOW		18	30	$\mathrm{VCC}=5.0 \mathrm{~V}$	
tPLH	Propagation Delay, Other		18	30	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	ns
tPHL	Input HIGH		18	30		

8-BIT REGISTER WITH CLEAR

- 8-BIT HIGH SPEED REGISTER
- PARALLEL REGISTER
- COMMON CLOCK AND MASTER RESET
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS
- FULLY TTL AND CMOS COMPATIBLE

DESCRIPTION

The T74LS273 is a high speed 8-Bit Register. The register consists of eight D-Type Flip-flops with a Common Clock and an asynchronous active LOW Master Reset. This device is supplied in a 20-pin package featuring 0.3 inch lead spacing.

PIN NAMES

$C P$	CLOCK (active HIGH going edge) INPUT
$D_{0}-D_{7}$	DATA INPUTS
$M R$	MASTER RESET (active LOW) INPUT
$Q_{0}-Q_{7}$	REGISTER OUTPUTS

PIN CONNECTION (top view)

DUAL IN LINE	CHIP CARRIER
	 NC = No internal Connection

LOGIC SYMBOL AND LOGIC DIAGRAM

FUNCTIONAL DESCRIPTION

The LS273 is an 8-Bit Parallel Register with a common Clock and common Master Reset.

When the MR is LOW, the Q output are LOW, independent of the other inputs. Information meeting the
set-up and hold time requirements of the D inputs is transferred to the Q outputs on the LOW-to-HIGH transition of the clock input.

TRUTH TABLE

$\overline{\mathbf{M R}}$	$\mathbf{C P}$	$\mathbf{D}_{\mathbf{x}}$	$\mathbf{Q}_{\mathbf{x}}$
L	\mathbf{X}	X	L
H	J	H	H
H	J	L	L

H = HIGH Logic Level
L = LOW Logic Level
X = Don't Care

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{C C}$	Supply Voltage	-05 to +7	V
$\mathrm{~V}_{\mathrm{i}}$	Input Voltage. Applied to Input	-05 to +15	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage. Applied to Output	-0.5 to +10	V
I_{1}	Input Current. Into Inputs	-30 to +5	mA
I_{O}	Output Current, Into Outputs	50	mA

[^10]
GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage		Temperature	
	Min.	Typ.		
T74LS273XX	4.75 V	5.0 V	5.25 V	$00^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)	Unit
		Min.	Typ. (*)	Max.		
V_{H}	Input HIGH Voltage	2.0			Guaranteed Input HIGH Voltage for all Inputs	V
VIL	Input LOW Voltage			0.8	Guaranteed Input LOW Voltage for all Inputs	V
$V_{C D}$	Input Clamp Diode Voltage		-0.65	-1.5	$V_{\text {CC }}=\mathrm{MIN}, \mathrm{l}_{1}=-18 \mathrm{~mA}$	V
Voh	Output HIGH Voltage	2.7	3.4		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \text { IoH }=-400 \mu \mathrm{~A} \\ & \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {IH }} \text { or } \mathrm{V}_{\text {IL }} \text { per Truth Table } \end{aligned}$	V
Vol	Output LOW Voltage		0.25	0.4	$\mathrm{loL}=4.0 \mathrm{~mA} \quad \mathrm{~V}_{\mathrm{CC}}=\mathrm{MIN}$	V
			035	0.5	$V_{c c}=\mathrm{MIN}$ $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL} per Truth Table	V
	Input HIGH Current			$\begin{aligned} & 20 \\ & 0.1 \end{aligned}$	$\begin{aligned} & V_{C C}=M A X, V_{I N}=2.7 \mathrm{~V} \\ & V_{C C}=M A X, V_{I N}=7.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
$1 / 2$	Input LOW Current			-0.4	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=04 \mathrm{~V}$	mA
los	Output Short Circuit Current (note 2)	- 20		-100	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	mA
Icc	Supply Current		17	27	$V_{C C}=$ MAX	mA

Notes: 11 Conditions for testing. not shown in the Table. are chosen to guarantee operation under "worst case" conditions
2) Not more than one output should be shorted at a time
(*) Typıcal values are at $\mathrm{V}_{\mathrm{Cc}}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

AC CHARACTERISTICS : $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Test Conditions		Unit
		Min.	Typ.	Max.			
$\overline{t_{P L H}}$ $t_{P H L}$	Propagation Delay. Clock to Output		$\begin{aligned} & 17 \\ & 18 \end{aligned}$	$\begin{aligned} & 27 \\ & 27 \\ & \hline \end{aligned}$	fig. 1	$\mathrm{V}_{C C}=5.0 \mathrm{~V}$	ns
tphl	Propagation Delay, MR to Q Output		18	27	fig 1		ns
$f_{\text {max }}$	Maxımum Input Clock Frequency	30	40		fig 2		MHz

AC SET-UP REQUIREMENTS : $T_{A}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Test Conditions		Unit
		Min.	Typ.	Max.			
$\mathrm{t}_{\mathrm{w}}(\mathrm{CP})$	Minimum Clock Pulse Width	20			fig. 1	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$	ns
$\mathrm{t}_{\text {s }}$	Set-up Data to Clock (high or low)	20			fig. 1		ns
t_{n}	Hold Time, Data to Clock (high or low)	5			fig. 1		ns
$\mathrm{t}_{\text {rec }}$	Recovery Time	25			fig. 2		ns
twMR	Minimum MR Pulse Width	20			fig 2		ns

DEFINITION OF TERMS :

SET-UP TIME (t_{s}) - is defined as the minimum time required for the correct logic level to be present at the logic input prior to the clock transition from LOW to HIGH in order to be recognized and transferred to the outputs.
HOLD TIME $\left(\mathrm{t}_{\mathrm{h}}\right)$ - is defined as the minimum time following the clock transition from LOW to HIGH that the logic level must be maintained at the input in order to ensure continued recognition. A negative

HOLD TIME indicates that the correct logic level may be released prior to the clock transition from LOW to HIGH and still be recognized.
RECOVERY TIME (trec) - is defined as the minimum time required between the end of the reset pulse and the clock transition from LOW to HIGH in order to recognize and transfer HIGH Data to the Q outputs.

AC WAVEFORMS

Figure 1 :Clock to Output Delays, Clock Pulse Width, Frequency, Set-Up and Hold Times Data to Clock.

Figure 2 :Master Reset to Output Delay, Master Reset Pulse Width, and Master Reset Recovery Time.

QUAD SET - RESET LATCH

DESCRIPTION

The T74LS279 is a high speed QUAD SET-RESET LATCH fabricated in LOW POWER SCHOTTKY technology.

B1
(Plastic Package)

M1
(Micro Package)

D1
(Ceramic Package)

C1
(Plastıc Chip Carner)

ORDER CODES :
T74LS279 D1
T74LS279 C1
T74LS279 B1

PIN CONNECTION (top view)

DUAL IN LINE

CHIP CARRIER

NC = No Internal Connectıon

LOGIC DIAGRAMS

TRUTH TABLE

INPUTS			OUTPUT
$\overline{\mathbf{S}}_{1}$	$\overline{\mathbf{S}}_{2}$	R	(Q)
L	L	L	h
L	X	H	H
X	L	H	L
H	H	L	No Change

L = LOW Voltage Level
H = HIGH Voltage Level
X = Don't Care
$h=T$ he output is HIGH as long as S_{1} or S_{2} is LOW If all inputs go HIGH simultaneously, the output state is indetermintate, otherwse, it follows the Truth Table.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	-0.5 to 7	V
$\mathrm{~V}_{1}$	Input Voltage, Applied to Input	-0.5 to 15	V
$\mathrm{~V}_{\mathrm{o}}$	Output Voltage, Applied to Output	-05 to 10	V
I_{I}	Input Current, Into Inputs	-30 to 5	mA
I_{0}	Output Current, Into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage			$* * *$
	Temperature			
T74LS279XX	4.75 V	50 V	525 V	

$X X=$ package type

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
V_{IH}	Input HIGH Voltage	2.0			Guaranteed Input HIGH Voltage for All Input		V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	Guaranteed Input LOW Voltage for All Input		V
$V_{C D}$	Input Clamp Diode Voltage		-0.65	- 1.5	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$		V
V OH	Output HIGH Voltage	2.7	3.4		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \text { per Truth Table } \end{aligned}$		V
Vol	Output LOW Voltage		0.25	0.4	$\mathrm{l}_{\mathrm{OL}}=4.0 \mathrm{~mA}$	$\begin{aligned} & V_{C C}=M I N \\ & V_{I N}=V_{I H} \text { or } V_{I L} \\ & \text { per Truth Table } \end{aligned}$	V
			0.35	0.5	$\mathrm{loL}=8.0 \mathrm{~mA}$		V
IIH^{\prime}	Input HIGH Current			$\begin{aligned} & 20 \\ & 0.1 \end{aligned}$	$\begin{aligned} & V_{C C}=M A X, V_{I N}=2.7 \mathrm{~V} \\ & V_{C C}=M A X . V_{I N}=7.0 \mathrm{~V} \end{aligned}$		$\mu \mathrm{A}$ $\mathrm{m} A$
IIL	Input LOW Current			-0.4	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$		mA
los	Output Short Circuit Current (note 2)	-20		- 100	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$		mA
Icc	Power Supply Current		3.8	7.0	$\mathrm{V}_{C C}=\mathrm{MAX}$		mA

Notes: 1. For conditions shown as MIN or MAX, use the appropnate value specified under guaranteed operating conditions for the device type.
2. Not more that one output should be shorted at a tume.
(*) Typical values are at $\mathrm{V}_{\mathrm{CC}}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

AC CHARACTERISTICS : $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (see page 576 for AC test circuit and waveforms)

Symbol	Parameter	Limits			Tes	Conditions	Unit
		Min.	Typ.	Max.			
$\overline{t_{\text {PLH }}}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay, S to Output		$\begin{aligned} & 12 \\ & 13 \end{aligned}$	$\begin{aligned} & 22 \\ & 21 \end{aligned}$	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & C_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$		ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay, $\overline{\mathrm{R}}$ to Output		15	27			ns

9-BIT ODD/EVEN PARITY GENERATORS/CHECKERS

- GENERATES EITHER ODD OF EVEN PARITY FOR NINE DATA LINES
- CASCADABLE FOR n-BIT
- TYPICAL DATA TO OUTPUT DELAY OF ONLY 33 ns
- CAN BE USED TO UPGRADE SYSTEMS USING MSI PARITY CIRCUITS
- TYPICAL DISSIPATION $=80 \mathrm{~mW}$

DESCRIPTION

The T74LS280 is a (universal) 9-Bit Odd-Even Parity Generator/Checker. It is composed of odd/even outputs to facilitate either odd or even parity. By cascading, the word length can be easily expanded. The LS280 has no expander input implementation, but the corresponding function is supplied by an input at pin 4 and the absence of any connection at pin 3 . This configuration allows the LS280 to be a replacement for the LS180 which results in improved performance. The LS280 has buffered inputs to reduce the drive requirements to onee LD unit load.

FUNCTION TABLE

Number of Inputs a	Outputs	
Thru 1 that are High	\sum EVEN \sum ODD	
$0,2,4,6,8$	H	L
$1,3,5,7,9$	L	H

[^11]

B1
(Plastic Package)

M1
(Micro Package)

D1
(Ceramtic Package)

C1
(Plastic Chip Carrier)
ORDER CODES :
T74LS280 D1 T74LS280 C1 T74LS280 B1 T74LS280 M1

PIN CONNECTION (top view)

DUAL IN LINE

CHIP CARRIER

FUNCTIONAL BLOCK DIAGRAM

$\mathrm{V}_{\mathrm{CC}}=$ Pin 16
GND $=$ Pin 8
()$=$ Pin numbers

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{C C}$	Supply Voltage	-0.5 to 7	V
V_{1}	Input Voltage, Applied to Input	-0.5 to 15	V
V_{0}	Output Voltage, Applied to Output	-0 to 10	V
I_{1}	Input Current, Into Inputs	-30 to 5	mA
I_{O}	Output Current, Into Outputs	50	mA

Stresses in excess of those listed "Absolute Maxımum Ratıngs" may cause permanent damage to the device. This is a stsress ratıng only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied. Exposure to absolute maxımum rating conditions for extended periods may affect device reliability.

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage			Temperature
	Min.	Typ.	Max.	
T74LS280XX	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
V_{IH}	Input HIGH Voltage	2.0			Guaranteed Input HIGH Treshold Voltage for all Input		V
VIL	Input LOW Voltage			0.8	Guaranteed Input LOW Treshold Voltage for all Input		V
V_{CD}	Input Clamp Diode Voltage		-0.65	-1.5	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}^{\mathrm{N}}=-18 \mathrm{~mA}$		V
V OH	Output HIGH Voltage	2.7	3.4		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \\ & \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \text { per Truth Table } \end{aligned}$		V
VoL	Output LOW Voltage		0.25	0.4	$\mathrm{lOL}=4.0 \mathrm{~mA}$	$\begin{aligned} & V_{\mathrm{Cc}}=\mathrm{MIN} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \text { per Truth Table } \end{aligned}$	V
			0.35	0.5	$\mathrm{loL}=8.0 \mathrm{~mA}$		V
IIH	Input HIGH Current			$\begin{aligned} & 20 \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & V_{C C}=M A X, V_{I N}=2.7 \mathrm{~V} \\ & V_{C C}=M A X, V_{I N}=7.0 \mathrm{~V} \end{aligned}$		$\underset{\mathrm{mA}}{\mu \mathrm{~A}}$
IIL	Input LOW Current			-0.4	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$		mA
los	Output Short Circuit Current (note 2)	-20		- 100	$V_{C C}=M A X$		mA
Icc	Power Supply Current			27	$V_{C C}=M A X$		mA

Notes 1. For Conditions shown as MIN or MAX, use the appropriate value specified under guarantee operating range.
2. Not more than one output should be shorted at a time.
(*) Typical values are at $\mathrm{V}_{\mathrm{Cc}}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

AC CHARACTERISTICS : $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter		Limits			Test Conditions	Unit

4-BIT BINARY FULL ADDER WITH FAST CARRY

DESCRIPTION

The T74LS283 is a high speed 4-bit Binary Full Adder with internal carry lookahead. It accepts two 4-bit binary words ($\mathrm{A}_{1}-\mathrm{A}_{4}, \mathrm{~B}_{1}-\mathrm{B}_{4}$) and a Carry Input (CIN). It generates the binary Sum outputs ($\mathrm{S}_{1}-\mathrm{S}_{4}$) and the Carry Output (Cout) from the most significant bit. The LS283 operates with either active HIGH or active LOW operands (positive or negative logic).

PIN CONNECTION (top view)

DUAL IN LINE

CHIP CARRIER

LOGIC SYMBOL AND LOGIC DIAGRAM

VCC=Pin 16
LC 002

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{C C}$	Supply Voltage	-0.5 to 7	V
V_{1}	Input Voltage, Applied to Input	-0.5 to 15	V
V_{O}	Output Voltage, Applied to Output	-0.5 to 10	V
I_{I}	Input Current, Into Inputs	-30 to 5	mA
I_{O}	Output Current, Into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maxımum Ratıngs" may cause permanent damage to the device This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied. Exposure to absolute maxımum rating conditıons for extended perıods may affect device reliability

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage			Temperature
	Min.	Typ.	Max.	
T74LS283XX	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type

FUNCTIONAL DESCRIPTION

The LS283 adds two 4-bits binary words (A plus B) plus the incoming carry. The binary sum appears on
the sum outputs (Σ_{1}, Σ_{4}) and outgoing carry (Cout) outputs.

$$
\mathrm{C}_{1 N}+\left(\mathrm{A}_{1}+\mathrm{B}_{1}\right)+2\left(\mathrm{~A}_{2}+\mathrm{B}_{2}\right)+4\left(\mathrm{~A}_{3}+\mathrm{B}_{3}\right)+8\left(\mathrm{~A}_{4}+\mathrm{B}_{4}\right)=\Sigma_{1+2} \Sigma_{2}+4 \Sigma_{3+8} \Sigma_{4}+16 \text { Cout }
$$

Where : $(+)$) plus

Due to the symmetry of the binary add function the LS283 can be used with either all input and outputs active HIGH (positive logic) or with all inputs and out-
puts active LOW (negative logic). Note that with active HIGH inputs, Carry In can not be left open, but must be held LOW when no carry in is intended.

Example :

	$\mathbf{C}_{\text {IN }}$	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{A}_{\mathbf{4}}$	$\mathbf{B}_{\mathbf{1}}$	$\mathbf{B}_{\mathbf{2}}$	$\mathbf{B}_{\mathbf{3}}$	$\mathbf{B}_{\mathbf{4}}$	$\Sigma_{\mathbf{1}}$	$\Sigma_{\mathbf{2}}$	$\Sigma_{\mathbf{3}}$	$\Sigma_{\mathbf{4}}$	$\mathbf{C o u t ~}_{\text {OU }}$
Logic Levels	L	L	H	L	H	H	L	L	H	H	H	L	L	H
Active HIGH	0	0	1	0	1	1	0	0	1	1	1	0	0	1
Active LOW	1	1	0	1	0	0	1	1	0	0	0	1	1	0

(carry $+5+6=12$)
Interchanging inputs of equal weight does not affect operation, thus $\mathrm{C}_{\mathbb{N}}, \mathrm{A}_{1}, \mathrm{~B}_{1}$, can be arbitranly assigned to pins 7 , 5 , or 3

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
V_{H}	Input HIGH Voltage	2.0			Guaranteed Input HIGH Voltage for All Input		V
VIL	Input LOW Voltage			0.8	Guaranteed Input LOW Voltage for All Input		v
$V_{C D}$	Input Clamp Diode Voltage		-0.65	-1.5	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IIN}=-18 \mathrm{~mA}$		V
Vor	Output HIGH Voltage	2.7	3.4		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IOH}_{\mathrm{H}}=-400 \mu \mathrm{~A}$ $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$ per Truth Table		v
VoL	Output LOW Voltage		0.25	04	$\mathrm{loL}=4.0 \mathrm{~mA}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} \\ & \mathrm{~V}_{\mathrm{IN}}=V_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \text { per Truth Table } \end{aligned}$	V
			0.35	0.5	$\mathrm{loL}=8.0 \mathrm{~mA}$		V
$1{ }_{1 /}$	Input HIGH Current C_{An} Any A or B			$\begin{aligned} & 20 \\ & 40 \\ & \hline \end{aligned}$	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$		$\mu \mathrm{A}$
	$\begin{aligned} & \mathrm{C}_{\mathrm{iN}} \\ & \text { Any A or B } \\ & \hline \end{aligned}$			$\begin{aligned} & 0.1 \\ & 0.2 \\ & \hline \end{aligned}$	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1 \times}=7.0 \mathrm{~V}$		mA
$1 / 1$	Input LOW Current C_{IN} Any A or B			$\begin{array}{r} -0.4 \\ -0.8 \end{array}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$		mA
los	Output Short Circuit Current (note 2)	-20		- 100	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0 \mathrm{~V}$		mA
Icc	Power Supply Current		$\begin{aligned} & 22 \\ & 19 \end{aligned}$	$\begin{aligned} & 39 \\ & 34 \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$, All Inputs 0 V $\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{A}$ Input 4.5 V		mA

Notes: 1. Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions
2. Not more than one output should be shorted at a time
(*) Typical values are at $\mathrm{V}_{\mathrm{CC}}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

AC CHARACTERISTICS : $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Test Conditions	Unit
		Min.	Typ.	Max.		
$\mathrm{t}_{\mathrm{PLH}}$ t_{PHL}	Propagation Delay, $\mathrm{C}_{\text {IN }}$ Input to Any \sum Output		$\begin{aligned} & 16 \\ & 15 \end{aligned}$	$\begin{aligned} & 24 \\ & 24 \end{aligned}$	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & C_{L}=15 \mathrm{pF} \end{aligned}$ Figures 1 and 2	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagatıon Delay, Any A or B Input to \sum Outputs		$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 24 \\ & 24 \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay, $\mathrm{C}_{\mathbb{I N}}$ Input to Cout Output		$\begin{aligned} & 11 \\ & 11 \end{aligned}$	$\begin{aligned} & 17 \\ & 22 \end{aligned}$		ns
$\mathrm{t}_{\mathrm{PLH}}$ t_{PHL}	Propagation Delay, Any A or B Input to Cout Output		$\begin{aligned} & 11 \\ & 12 \end{aligned}$	$\begin{aligned} & 17 \\ & 17 \end{aligned}$		ns

AC WAVEFORMS

Figure 1.

Figure 2.

T74LS290 T74LS293

LS290-DECADE COUNTER LS293-4-BIT BINARY COUNTER

- CORNER POWER PIN VERSION OF THE LS90 AND LS93
- LOW POWER CONSUMPTION... TYPICALLY 45 mW
- HIGH CUNT RATES... TYPICALLY 50MHZ
- CHOICE OF COUNTING MODES... BCD, BIQUINARY, BINARY
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS
- FULLY TTL AND CMOS COMPATIBLE

DESCRIPTION

The T74LS290 and T74LS293 are high-speed 4-bit ripple type counters partitioned into two sections. Each counter has a divide-by-two section and either a divide-by-five (LS290) or divided-by-eight (LS293) section which are triggered by a HIGH-to-LOW transition on the clock inputs. Each section can be used separately or tied together (Q to $\overline{C P}$) to form BCD, Bi-quinary, or Modulo-16 counters. Both of the counters have a 2 -input gated Master Reset (Clear), and the LS90 also has a 2 -input gated Master Set (Preset 9).

B1
(Plastic Package)

M1 (Micro Package)

D1 (Ceramic Package)

C1 (Plastic Chip Carrier)

ORDER CODES :
T74LSXXX74LSXXX C1 T74LSXXX78LSXXX M1

PIN CONNECTION (top view)
DUAL IN LINE

PIN NAMES

$\overline{\mathrm{CP}}_{0}$	CLOCK (active LOW going edge)
	INPUT TO + 2 SECTION
CP_{1}	CLOCK (active LOW going edge) INPUT TO $\div 5$ SECTION (LS290)
$\overline{\mathrm{CP}}_{1}$	CLOCK (active LOW going edge) INPUT TO $\div 8$ SECTION (LS293)
$\begin{aligned} & \mathrm{MR}_{1}, \mathrm{MR}_{2} \\ & \mathrm{MR}_{1}, \mathrm{MR}_{2} \end{aligned}$	MASTER RESET (clear) INPUTS MASTER RESET (preset-9 LS290) INPUTS
Q_{0}	OUTPUT FROM - 2 SECTION
$\mathrm{Q}_{1}, \mathrm{Q}_{2}, \mathrm{Q}_{3}$	OUTPUTS FROM - 5 \& - 8 SECTIONS

CHIP CARRIER

NC = No Intemal Connection

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	-0.5 to 7	V
$\mathrm{~V}_{1}$	Input Voltage, for $\overline{\mathrm{CP}}$	-0.5 to 5.5	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage, Applied to Output	-0.5 to 10	V
I_{1}	Input Current, into Inputs	-30 to 5	mA
I_{O}	Output Current, into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maximum Ratıngs" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied Exposure to absolute maximum rating conditions for extended periods may affect device reliability

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage		Temperature	
	Min.	Typ.		
T74LS290/293XX	4.75 V	5.0 V	5.25 V	$0{ }^{\circ} \mathrm{C}$ to $+70{ }^{\circ} \mathrm{C}$

$X X=$ package type

LOGIC DIAGRAMS

LOGIC SYMBOL

FUNCTIONAL DESCRIPTION

The LS290 and LS293 are 4-bit ripple Decade, and 4 -bit Binary counters respectively. Each device consists of four master/slave flip-flops wich are internally connected to provide a divide-by-two section and divide-by-five (LS290) or divide-by-eight (LS293) section. Each section has a separate clock input which initiates state changes of the counter on the HIGH-to-LOW clock transition. State changes of the Q outpouts do not occur simultaneously because of intemal ripple delays. Therefore, decoded outpout signals are subject to decoding spikes and should not be used for clocks or strobes. The Qo outpout of each device is designed and specified to drive the rated fan-out plus the CP1 input of device.
A gated AND asynchronous Master Reset (MR1.MS2) is provided on both counters wich overrides the clocks and resets (clears) all the flip-flops. A gated AND asynchronous master Set $\left(\mathrm{MS}_{1} \cdot \mathrm{MS}_{2}\right)$ is provid on the LS290 which overrides the clocks and the MR inputs and sets the ouptuts to nine (HLLH).
Since the outpout from the devide-by-two section is not internally connected to the succeding stages, the devices may be operated in various counting modes:

LS290

A. BCD Decade (8421) Counter-the $\overline{\mathrm{CP}}_{1}$ input mus tbe externally connected to the \bar{Q}_{0} outpout. The CPo input receives the incoming count and BCD count sequence is produced.
B. Symmetricel Bi-quinary Divide-By-Ten Counter -The Q_{3} outpout must be externally connected to the $\overline{\mathrm{CP}}$ o input. The input count is then applied to the CP_{1} input and a divide-by-ten square is obtenaidat outpout Q_{0}.
C. Divide-By-Two and Divide-By-Five CounterNo external interconnections are required. The first flip-flop is used as a binary element for the divide-by-two functions ($\overline{\mathrm{CP}} \mathrm{P}_{0}$ as the input and Q_{0} as the outpout). The CP_{1} input is used to obtain binary divide-by-five operation at the Q_{3} outpout.

LS293

A. 4-Bit Ripple Counter-The outpout Q_{0} must be externally connected to input $\overline{\mathrm{CP}}_{1}$ The input count pulses are applied to input $\overline{\mathrm{CP}}_{0}$. Simultaneous division of $2,4,8$, and 16 are performed at the Q_{0}, Q_{1}, Q_{2}, and Q_{3} outpouts as shown in the truth table.
B. 3-Bit Ripple Counter-The input count pulses are applied to input $\overline{\mathrm{CP}}_{1}$. Simultaneous frequency divisions of 2,4 , and 8 are available at the Q_{0}, Q_{1}, Q_{2}, and Q_{3} outpouts. Independent us of the first flip-flop is available if the reset function coincides with reset of the 3-bit ripple-through counter.

BCD COUNT SEQUENCE LS290

Count	Output			
	\mathbf{Q}_{0}	$\mathbf{Q}_{\mathbf{1}}$	$\mathbf{Q}_{\mathbf{2}}$	$\mathbf{Q}_{\mathbf{3}}$
0	L	L	L	L
1	H	L	L	L
2	L	H	L	L
3	H	H	L	L
4	L	L	H	L
5	H	L	H	L
6	L	H	H	L
7	H	H	H	L
8	L	L	L	H
9	H	L	L	H

Note: Output Q_{0} is Connected to Input CP1 for BCD Count.
TRUTH TABLE LS293

Count	Output			
	$\mathbf{Q}_{\mathbf{0}}$	$\mathbf{Q}_{\mathbf{1}}$	$\mathbf{Q}_{\mathbf{2}}$	\mathbf{Q}_{3}
0	L	L	L	L
1	H	L	L	L
2	L	H	L	L
3	H	H	L	L
4	L	L	H	L
5	H	L	H	L
6	L	H	H	L
7	H	H	H	L
8	L	L	L	H
9	H	L	L	H
10	L	H	L	H
11	H	H	L	H
12	L	L	H	H
13	H	L	H	H
14	L	H	H	H
15	H	H	H	H

Note: Output Q_{0} is Connected to Input CP1
H = HIGH Voltage Level
L = LOW Voltage Level
X = Don't Care

MODE SELECTION LS290

Reset/Set Inputs				Outputs			
M R ${ }_{1}$	M \mathbf{R}_{2}	MS ${ }_{1}$	$\mathrm{MS}_{\mathbf{2}}$	\mathbf{Q}_{0}	Q_{1}	\mathbf{Q}_{2}	\mathbf{Q}_{3}
H	H	L	X	L	L	L	L
H	H	X	L	L	L	L	L
x	x	H	H	H	L	L	H
L	X	L	X				
X	L	X	L				
L	x	x	L				
X	L	L	X				

MODE SELECTION LS293

Reset Inputs		Outputs			
$\mathbf{M R}_{\mathbf{1}}$	$\mathbf{M R}_{\mathbf{2}}$	$\mathbf{Q}_{\mathbf{0}}$	$\mathbf{Q}_{\mathbf{1}}$	$\mathbf{Q}_{\mathbf{2}}$	$\mathbf{Q}_{\mathbf{3}}$
H	H	L	L	L	L
L	H		Count		
H	L		Count		
L	L		Count		

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
V_{IH}	Input HIGH Voltage	2.0			Guaranteed Input HIGH Voltage for All Inputs		V
VIL	Input LOW Voltage			08	Guaranteed Input LOW Voltage for All Inputs		V
$V_{C D}$	Input Clamp Diode Voltage		-0.65	-1.5	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{l}_{\mathrm{IN}}=-18 \mathrm{~mA}$		V
V_{OH}	Output HIGH Voltage	2.7	3.4		$\begin{aligned} & V_{C C}=M I N, I_{O H}=-400 \mu \mathrm{~A} \\ & V_{I N}=V_{\mathbb{H}} \text { or } V_{\mathbb{I L}} \text { per Truth Table } \end{aligned}$		V
Vol	Output LOW Voltage		025	04	$\mathrm{loL}=40 \mathrm{~mA}$	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I N}=V_{I H} \text { or } V_{I L} \\ & \text { per Truth Table } \end{aligned}$	V
			0.35	0.5	$\mathrm{loL}=8.0 \mathrm{~mA}$		V
liH	Input HIGH Current MS, MR CP_{0} CP_{1} (LS290) CP1 (LS293)			$\begin{aligned} & 20 \\ & 40 \\ & 80 \\ & 40 \\ & \hline \end{aligned}$	$V_{C C}=M A X, V_{\text {IN }}=27 \mathrm{~V}$		$\mu \mathrm{A}$
	$\begin{aligned} & \frac{\mathrm{MS}}{1}, \mathrm{MR} \\ & \frac{\mathrm{CP}}{0} \\ & \mathrm{CP}_{1} \\ & \frac{\mathrm{CP}}{1} \\ & \text { (LS293) } \end{aligned}$			$\begin{aligned} & 0.1 \\ & 0.2 \\ & 0.4 \\ & 0.2 \end{aligned}$	$V_{C C}=M A X, V_{i N}=5.5 \mathrm{~V}$		mA
IIL	Input LOW Current $\begin{aligned} & \mathrm{MS}, M R \\ & \frac{C P_{0}}{} \\ & \begin{array}{l} C P_{1} \\ \hline \mathrm{CP} \\ 1 \end{array} \text { (LS290) } \end{aligned}$			$\begin{array}{r} -0.4 \\ -2.4 \\ -3.2 \\ -1.6 \\ \hline \end{array}$	$V_{C C}=M A X, V_{\text {IN }}=0.4 \mathrm{~V}$		mA
los	Output Short Circuit Current (note 2)	- 20		- 100	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		mA
Icc	Power Supply Current		9	15	$V_{C C}=M A X$		mA

Notes : 1 Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions
2 Not more than one output should be shorted at a time
(*) Typical values are at $\mathrm{V}_{\mathrm{CC}}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
AC SET-UP REQUIREMENTS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

Symbol	Parameter	Limits				Note	Units
		LS290		LS293			
		Min.	Max.	Min.	Max.		
tw	$\overline{\mathrm{CP}}_{0}$ Pulse Width	15		15		Fig. 1	
tw	CP1 Pulse Width	30		30		Fig 1	
tw	MR Pulse Width	30		30		Fig. 2	ns
tw	MS Pulse Width	30				Fig 2, 3	
trec	Recovery Time MR to $\overline{\mathrm{CP}}$	25		25		Fig. 2	
trec	Recovery Time MS to $\overline{\mathrm{CP}}$	25				Fig. 2, 3	

RECOVERY TIME (trec) - Is defined as the minimum time required between the end of the reset pulse and the clock transition from HIGH to LOW in order to recognize and transfer HIGH data to Q output

AC CHARACTERISTICS : $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits				Test Conditions		Unit
		LS290		LS293				
		Min.	Max.	Min.	Max.			
$f_{\text {max }}$	$\overline{\mathrm{CP}}_{0}$ Input Count Frequency	32		32		Fig. 1	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & C_{L}=15 \mathrm{pF} \end{aligned}$	MHz
$\mathrm{f}_{\text {max }}$	$\overline{\mathrm{CP}}_{1}$ Input Count Frequency	16		16		Fig. 1		MHz
	Propagation Delay, $\overline{\mathrm{CP}}_{0}$ Input to Q_{0} Output		$\begin{aligned} & 16 \\ & 18 \end{aligned}$		$\begin{aligned} & 16 \\ & 18 \end{aligned}$	Fig. 1		ns
$\begin{aligned} & \mathbf{t}_{\text {LLH }} \\ & t_{\text {PHL }} \end{aligned}$	Propagation Delay, $\overline{\mathrm{CP}}_{1}$ Input to Q_{1} Output		$\begin{aligned} & 16 \\ & 21 \end{aligned}$		$\begin{aligned} & 16 \\ & 21 \end{aligned}$			ns
$\begin{aligned} & t_{\text {LLH }} \\ & t_{\text {PHL }} \end{aligned}$	Propagation Delay, $\overline{C P}_{1}$ Input to Q_{2} Output		$\begin{aligned} & 32 \\ & 35 \end{aligned}$		$\begin{aligned} & 32 \\ & 35 \end{aligned}$			ns
tLLH ${ }_{\text {thiL }}$	Propagation Delay, $\overline{\mathrm{CP}}_{1}$ Input to Q_{3} Output		$\begin{aligned} & 32 \\ & 35 \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 51 \\ & 51 \\ & \hline \end{aligned}$			ns
$\begin{aligned} & \mathbf{T} P \mathrm{LH} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay, $\overline{\mathrm{CP}}_{0}$ Input to Q_{3} Output		$\begin{aligned} & 48 \\ & 50 \end{aligned}$		$\begin{aligned} & 70 \\ & 70 \end{aligned}$			ns
toth	MS Input to Q_{0} and Q_{3} Outputs		30			Fig. 3		ns
t_{HL}	MS Input to Q_{1} and Q_{2} Outputs		40			Fig. 2		ns
t_{HL}	MR Input to any Output		40		40	Fig. 2		ns

AC WAVEFORMS

Figure 1.

Figure 2.

Figure 3.

4-BIT SHIFT REGISTER WITH 3-STATE OUTPUTS

- FULLY SYNCHRONOUS SERIAL OR PARALLEL DATA TRANSFERS
- NEGATIVEEDGE-TRIGGERED CLOCK INPUT
- PARALLEL ENABLE MODE CONTROL INPUT
- 3-STATE BUSSABLE OUTPUT BUFFERS
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS

DESCRIPTION

The T74LS295A is a 4-Bit Shift Register with serial and parallel synchronous operating modes, independent 3 -state output buffers. The Parallel Enable input (PE) controls the shift-right or parallel load operation. All data transfer and shifting occur synchronously with the HIGH to LOW clock transition.
The 3-State output buffers are controlled by an active HIGH Output Enable input (EO).
Disabling the output buffers does not affect the shifting or loading of input data, but it does inhibit serial expansion.
The LS295A is fabricated with the Schottky barrier diode process for high speed and is completely compatible with all TTL families.

PIN NAMES

PE	PARALLEL ENABLE INPUT
Ds_{5}	SERIAL DATA INPUT
$\mathrm{P}_{0}-\mathrm{P}_{3}$	PARALLEL DATA INPUTS
E_{0}	OUTPUT ENABLE INPUT
CP	CLOCK PULSE (active LOW $\mathrm{Q}_{0}-\mathrm{Q}_{3}$

B1
(Plastic Package)

M1
(Micro Package)

D1
(Ceramic Package)

C1
(Plastic Chip Carrier) ORDER CODES :
T74LS295A D1 T74LS295A B1

T74LS295A C1
T74LS295A M1

PIN CONNECTION (top view)
DUAL IN LINE

CHIP CARRIER

NC = No Internal Connection

LOGIC SYMBOL AND LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{C C}$	Supply Voltage	-0.5 to 7	V
$\mathrm{~V}_{1}$	Input Voltage, Applied to Input	-0.5 to 15	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage, Applied to Output	-05 to 10	V
I_{1}	Input Current, Into Inputs	-0.5 to 30	mA
I_{O}	Output Current, Into Outputs	60	mA

Stresses in excess of those listed under "Absolute Maximum Ratıngs" may cause permanent damage to the device This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied Exposure to absolute maximum rating conditions for extended periods may affect device reliability

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage			Temperature
	Min.	Typ.	Max.	
T74LS295AXX	475 V	50 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

[^12]TRUTH TABLE - PRESENT OUTPUT STATES AND MODE SELECTION

FUNCTIONAL DESCRIPTION

The LS295A is a 4-Bit Shift Register with serial and parallel synchronous operating modes. It has a $\mathrm{Se}-$ rial (Ds) and four Parallel Data outputs ($\mathrm{P}_{0}-\mathrm{P}_{3}$) inputs and four parallel 3-State output buffers ($\mathrm{Q}_{0}-\mathrm{Q}_{3}$). When the parallel Enable (PE) input is HIGH, data is transferred from the Parallel Data Inputs ($\mathrm{P}_{0}-\mathrm{P}_{3}$) into the register synchronously with the HIGH to LOW transition of the Clock (CP). When the PE is LOW, a HIGH to LOW transition on the clock transfers the serial data on the D_{s} input to register Q_{0}, and shifts data from Q_{0} to Q_{1}, Q_{1} to Q_{2} and Q_{2} to Q_{3}. The input data and parallel enable are fully edge-triggered and must be stable only one set-up time before the HIGH to LOW clock transition.
The 3-State Output buffers are controlled by an active HIGH Output Enable input (E_{0}). When the E_{0} is

HIGH, the four register outputs appear at the $\mathrm{Q}_{0}-\mathrm{Q}_{3}$ outputs. When E_{0} is LOW, the outputs are forced to high impedance "off" state. The 3-State output buffers are completely independent of the register operation, i.e. the input transition on the E_{0} input do not affect the serial or parallel data transfers of the register. If the outputs are tied together, all but one devices must be in the high impedance state to avoid high currents that would exceed the maximum rating.
Designers should ensure that Output Enable signals to 3-State devices whose outputs are tied together are designed so there is no overlap.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
V_{IH}	Input HIGH Voltage	2.0			Guaranteed for All Inputs	ut HIGH Voltage	V
VIL	Input LOW Voltage			0.8	Guaranteed for All Inputs	ut LOW Voltage	V
$\mathrm{V}_{C D}$	Input Clamp Diode Voltage		-0.65	-1.5	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	- 18 mA	V
Vон	Output HIGH Voltage	2.4	3.4		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IoH}=-2.6 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \text { per Truth Table } \end{aligned}$		V
VoL	Output LOW Voltage		0.25	0.4	$\mathrm{loL}=4 \mathrm{~mA}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \text { per Truth Table } \end{aligned}$	V
			0.35	0.5	$\mathrm{loL}=8 \mathrm{~mA}$		V
lozH	Output Off Current HIGH			20	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$		$\mu \mathrm{A}$
lozı	Output Off Current LOW			-20	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$		$\mu \mathrm{A}$
${ }_{1 / 4}$	Input HIGH Current			$\begin{aligned} & \hline 20 \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & V_{C C}=M A X, V_{I N}=2.7 \mathrm{~V} \\ & V_{C C}=M A X, V_{I N}=7.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$
$1 / 2$	Input LOW Current			- 0.4	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$		mA
los	Output Short Circuit Current (note 2)	-20		-100	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		mA
Icc	Power Supply Current Output HIGH		14	23	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{\mathrm{CP}}=\square \\ & \mathrm{V}_{\mathrm{E}}=4.5 \mathrm{~V} \end{aligned}$		mA
	Power Supply Current Output HIGH		14	25	$\begin{aligned} & V_{C C}=M A X, V_{C P}=0 \mathrm{~V}, \\ & V_{E}=0 \mathrm{~V} \end{aligned}$		mA

Notes : 1. Conditions for testing, not shown in the table are chosen to guarantee operationunder "worst case" conditions. 2. Not more than one output should be shorted at a time.
(*) * Typical values are at $\mathrm{V}_{\mathrm{Cc}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

AC CHARACTERISTICS : $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Test Conditions		Unit
		Min.	Typ.	Max.			
$f_{\text {MAX }}$	Shift Frequency	30	45		Fig. 1	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & C_{L}=15 \mathrm{pF} \end{aligned}$	MHz
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay, Clock to Output		$\begin{aligned} & 24 \\ & 16 \end{aligned}$	$\begin{aligned} & 30 \\ & 26 \end{aligned}$	Fig. 1		ns
$\mathrm{t}_{\text {PZH }}$	Output Enable Time to HIGH Level		12	18	Figs. 4, 5	$\begin{aligned} & C_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$	ns
$t_{\text {PZL }}$	Output Enable Time to LOW Level		14	20	Figs. 3, 5		ns
$t_{\text {PLZ }}$	Output Disable Time from LOW Level		17	24	Figs. 3, 5	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$	ns
$t_{\text {PHZ }}$	Output Disable Time from HIGH Level		15	20	Figs. 4, 5		ns
$t_{w}(\mathrm{CP})$	Clock Pulse Width	20			Fig. 1	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & C_{L}=15 \mathrm{pF} \end{aligned}$	ns
$\mathrm{t}_{\text {s }}$ (Data)	Set-up Time, Data to Clock	20			Fig. 1		ns
t_{s} (Data)	Hold Time, Data to Clock	10					ns
$\mathrm{ts}_{\mathbf{s}}$ (PE)	Set-up Time, PE to Clock	20			Fig. 1		ns
$t_{\text {h }}$ (PE)	Hold Time, PE to Clock	0					ns

DEFINITION OF TERMS

SET-UP TIME (t_{s}) - is defined as the minimum time required for the correct logic level to be present at the logic input prior to the clock transition from HIGH to LOW in order to be recognized and transferred to the outputs.
HOLD TIME (t_{h}) - is defined as the minimum time following the clock transition from HIGH to LOW that
the logic level must be maintained at the input in order to ensure continued recognition. A negative HOLD TIME indicates that the correct logic level may be released prior to the clock transition from HIGH to LOW and still be recognized.

AC WAVEFORMS

The shaded areas indicate when the input is permitted to change for predictable output performance.
Figure 1.

* The data input is D_{s} for $P E=L O W$ and P_{n} for $P E=H I G H$.

Figure 2.

SCS-THOMSON

QUAD 2-PORT REGISTER (QUAD 2-INPUT MULTIPLEXER WITH STORAGE)

- SELECT FROM TWO DATA SOURCES
- FULLY EDGE-TRIGGERED OPERATION
- TYPICAL POWER DISSIPATION OF 65 mW
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS
- FULLY TTL AND CMOS COMPATIBLE

DESCRIPTION

The T74LS298 is a Quad 2-Port Register. It is the logical equivalent of a quad 2 -input multiplexer followed by a quad 4 -bit edge-triggered register. A Common Select input selects between two 4-bit input ports (data sources). The selected data is transferred to the output register synchronously with the HIGH to LOW transition of the Clock input. The

PIN NAMES

$\frac{S}{C P}$	COMMON SELECT INPUT CLOCK (active LOW going edge) INPUT
$\mathrm{I}_{\mathrm{a}-\mathrm{ob}}$	DATA INPUTS FROM SOURCES 0
$\mathrm{I}_{1 \mathrm{a}-\mathrm{b}}$	DATA INPUTS FROM SOURCES 1 $\mathrm{Q}_{\mathrm{a}}-\mathrm{Q}_{\mathrm{b}}$

LS298 is fabricated with the Schottky barrier diode process for high speed and is completely compatible with all TTL families.

D1 (Ceramic Package)

B1 (Plastic Package)

M1 (Mıcro Package)

ORDER CODES :
$\begin{array}{ll}\text { T74LS298 D1 } & \text { T74LS298 C1 } \\ \text { T74LS298 B1 }\end{array}$

PIN CONNECTION (top view)

LOGIC SYMBOL AND LOGIC DIAGRAM

$V_{c c}=\operatorname{Pin} 16$
GND $=\operatorname{Pin} 8$
()$=$ Pin numbers

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{cc}	Supply Voltage	-0.5 to 7	V
$\mathrm{~V}_{1}$	Input Voltage, Applied to Input	-0.5 to 15	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage, Applied to Output	-0.5 to 10	V
I_{1}	Input Current, into Inputs	-30 to 5	mA
I_{O}	Output Current, Into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maximum Ratıngs" may cause permanent damage to the device This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied Exposure to absolute maximum rating conditions for extended periods may affect device reliability

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage			Temperature
	Min.	Typ.	Max.	
T74LS298XX	4.75 V	50 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ Package type

TRUTH TABLE - PRESENT OUTPUT STATES AND MODE SELECTION

TRUTH TABLE

Inputs			Output
\mathbf{S}	$\mathrm{I}_{\mathbf{0}}$	$\mathrm{I}_{\mathbf{1}}$	\mathbf{Q}
I	I	X	L
I	h	X	H
h	X	I	L
h	X	h	H

L = LOW Voltage Level
H = HIGH Voltage Level
X = Don't Care
I = LOW Voltage Level one set-up tume prior to the LOW to HIGH clock transition.
$h=$ HIGH Voltage Level one set-up time prior to the LOW to HIGH clock transition.

FUNCTIONAL DESCRIPTION

The LS298 is a high speed Quad 2-Port Register. It selects four bits of data from two sources (ports) under the control of a Common Select input (S). The selected data is transferred to the 4-bit output register synchronous with the HIGH to LOW transition
of the Clock input (CP). The 4-bit output register is fully edge-triggered. The Data inputs (I) and Select input (S) must be stable only one set-up time prior to the HIGH to LOW transition of the clock for predectable operation.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
V_{IH}	Input HIGH Voltage	2.0			Guaranteed Input HIGH Treshold Voltage for All Inputs		V
VIL	Input LOW Voltage			0.8	Guaranteed Input LOW Treshold Voltage for All Inputs		V
$\mathrm{V}_{\text {CD }}$	Input Clamp Diode Voltage		-0.65	-1.5	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{l}_{\text {IN }}=-18 \mathrm{~mA}$		V
V_{OH}	Output HIGH Voltage	2.7	3.4		$\begin{aligned} & V_{C C}=M I N, l_{\text {OH }}=-400 \mu \mathrm{~A} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \text { per Truth Table } \end{aligned}$		V
Vol	Output LOW Voltage		0.25	0.4	$\mathrm{loL}=4.0 \mathrm{~mA}$	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I N}=V_{I H} \text { or } V_{I L} \\ & \text { per Truth Table } \end{aligned}$	V
			0.35	0.5	$\mathrm{lOL}=8.0 \mathrm{~mA}$		V
$\mathrm{IIH}^{\text {H}}$	Input HIGH Current		1.0	$\begin{aligned} & 20 \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & V_{C C}=M A X, V_{\mathbb{N}}=2.7 \mathrm{~V} \\ & V_{C C}=M A X, V_{\mathbb{N}}=7.0 \mathrm{~V} \end{aligned}$		$\mu \mathrm{A}$ $m A$
IIL	Input LOW Current			- 0.4	$V_{C C}=M A X, V_{\mathbb{I N}}=0.4 \mathrm{~V}$		mA
los	Output Short Circuit Current (note 2)	- 20		- 100	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		mA
Icc	Power Supply Current		13	21	$V_{C C}=M A X$		mA

Notes : 1 Conditions for testing, not shown in the table are chosen to guarantee operation under "worst case" conditions
2 Not more than one output should be shorted at a time
(*) Typical values are at $\mathrm{V}_{\mathrm{Cc}}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

AC CHARACTERISTICS : $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Test Conditions		Unit
		Min.	Typ.	Max.			
$t_{\text {PLH }}$	Propagatıon Delay. Clock to Output		18	27	F'g 1	$\begin{aligned} & V_{C C}=50 \mathrm{~V} \\ & C_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$	ns
$\mathrm{taHL}^{\text {che }}$	Propagation Delay. Clock to Output		21	32	Fig 1		ns

DEFINITION OF TERMS :

SET-UP TIME (t_{s} - is defined as the minimum time required for the correct logic level to be present at the logic input prior to the clock transition from LOW to HIGH in order to be recognized and transferred to the outputs.

HOLD TIME (t_{h}) - is defined as the minimum time following the clock transition from LOW to HIGH that the logic level must be maintained at the input in order to ensure continued recognition. A negative HOLD TIME indicates that the correct logic level may be released prior to the clock transition from LOW to HIGH and still be recognized.

AC SET-UP REQUIREMENTS : $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Test Conditions		Unit
		Min.	Typ.	Max.			
$\mathrm{tw}_{\mathrm{w}}(\mathrm{H})$	Clock Pulse Width (HIGH)	20	11		Fig 1	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	ns
$t_{w}(\mathrm{~L})$	Clock Pulse Width (LOW) (HIGH or LOW)	2 C	11				ns
t_{s} (data)	Set-up Time, Data to Clock	15	10		Fig. 1		ns
t_{n} (data)	Hold Time, Data to Clock	50	1				ns
$\mathrm{t}_{\mathrm{s}}(\mathrm{S})$	Set-up Time, Select to Clock	25	20		Fig. 2		ns
$\mathrm{tn}^{(S)}$	Hold Time, Select to Clock	0	-2				ns

AC WAVEFORMS

Figure 1.

The shaded areas indicate when the input is permitted to change for predictable output performance

Figure 2.

The shaded areas indicate when the input is permitted to change for predictable output performance.

T74LS352

DUAL 4-INPUT MULTIPLEXER

- INVERTED VERSION OF THE 54/74LS153
- SEPARATE ENABLES FOR EACH MULTIPLEXER
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS
- FULLY TTL AND CMOS COMPATIBLE

DESCRIPTION

The T74LS352 is a very high speed Dual 4 -Input Multiplexer with Common Select inputs and individual Enable inputs for each section. It can select two bits data from the sources. The two buffered outputs present data in the inverted (complementary) form.

The T74LS352 is the functional equiva-lent of the T74LS153 except with inverted outputs.

PIN NAMES

$\frac{S_{0}-S_{1}}{\mathrm{E}}$	COMMON SELECT INPUTS
$\frac{\mathrm{I}_{0}-\mathrm{I}_{1}}{\mathrm{Z}}$	ENABLE (active LOWW) INPUT

B1
(Plastic Package)

M1 (Micro Package)

D1 (Ceramic Package)

C1
(Plastic Chip Carrier)

ORDER CODES :
T74LS352 D1
T74LS352 C1 T74LS352 M1

PIN CONNECTION (top view)

LOGIC SYMBOL AND LOGIC DIAGRAM

$V_{c c}=\operatorname{Pin} 16$
GND $=\operatorname{Pin} 8$
()$=$ Pin numbers

TRUTH TABLE

Select Inputs		Inputs (a or b)					Ouputs
S_{0}	S_{1}	$\overline{\mathbf{E}}$	I_{0}	I_{1}	I_{2}	I_{3}	$\overline{\mathbf{Z}}$
X	X	H	X	X	X	X	H
L	L	L	L	X	X	X	H
L	L	L	H	X	X	X	L
H	L	L	X	L	X	X	H
H	L	L	X	H	X	X	L
L	H	L	X	X	L	X	H
L	H	L	X	X	H	X	L
H	H	L	X	X	X	L	H
H	H	L	X	X	X	H	L

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
L = LOW Voltage Level
X = Don't Care

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{c c}$	Supply Voltage	-0.5 to 7	V
$\mathrm{~V}_{1}$	Input Voltage, Applied to Input	-0.5 to 15	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage, Applied to Output	-0.5 to 10	V
I_{I}	Input Current, Into Inputs	-30 to 5	mA
I_{O}	Output Current, Into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maximum Ratngs" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specrication is not implied. Exposure to absolute maxımum ratıng conditions for extended penods may affect device reliability.

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage			Temperature
	Min.	Typ.	Max.	
T74LS352XX	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type.

FUNCTIONAL DESCRIPTION

The LS352 is a Dual 4-Input Multiplexer. It selects two bits of data from up to four sources under the control of the common Select Inputs ($\mathrm{S}_{0}, \mathrm{~S}_{1}$). The two 4-input multiplexer circuits have individual active LOW Enables (E_{a}, E_{b}) which can be used to
strobe outputs independently. When the Enable (E_{a}, E_{b}) are HIGH , the corresponding outputs ($\mathrm{Z}_{\mathrm{a}}, \mathrm{Z}_{\mathrm{b}}$) are forced HIGH.
The logic equations for the outputs are shown below.

$$
\begin{aligned}
& \overline{\mathrm{Z}}_{\mathrm{a}}=\overline{\mathrm{E}}_{\mathrm{a}} \bullet\left(\overline{\mathrm{l}_{\mathrm{a}} \bullet \overline{\mathrm{~S}}_{1} \bullet \overline{\mathrm{~S}}_{0}+\mathrm{I}_{\mathrm{a}} \bullet \overline{\mathrm{~S}}_{1} \bullet \mathrm{~S}_{0}+\mathrm{l}_{2 \mathrm{a}} \bullet \mathrm{~S}_{1} \bullet \overline{\mathrm{~S}}_{0}+\mathrm{I}_{3 \mathrm{a}} \bullet \mathrm{~S}_{1} \bullet \mathrm{~S}_{0}}\right) \\
& \overline{\mathrm{Z}}_{\mathrm{b}}=\overline{\mathrm{E}}_{\mathrm{b}} \bullet\left(\overline{\mathrm{lob}_{\mathrm{b}} \bullet \overline{\mathrm{~S}}_{1} \bullet \overline{\mathrm{~S}}_{0}+\mathrm{I}_{1 \mathrm{~b}} \bullet \overline{\mathrm{~S}}_{1} \bullet \mathrm{~S}_{0}+\mathrm{l}_{2 \mathrm{~b}} \bullet \mathrm{~S}_{1} \bullet \overline{\mathrm{~S}}_{0}+\mathrm{I}_{\mathrm{bb}} \bullet \mathrm{~S}_{1} \bullet \mathrm{~S}_{0}}\right)
\end{aligned}
$$

The LS352 can be used to move data from a group of registers to a common output bus. The particular register from which the data came would be determined by the state of the Select Inputs. A less ob-
vious application is a function generator. The LS352 can generate two functions of three variables. This is useful for implementing highly irregular random logic.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)	Unit
		Min.	Typ. (*)	Max.		
V_{IH}	Input HIGH Voltage	2.0			Guaranteed Input HIGH Voltage for All Input	V
VIL	Input LOW Voltage			0.8	Guaranteed Input LOW Voltage for All Input	V
$V_{C D}$	Input Clamp Diode Voltage		-0.65	-1.5	$V_{C C}=\mathrm{MIN}, \mathrm{l}_{1 \times}=-18 \mathrm{~mA}$	V
V_{OH}	Output HIGH Voltage	2.7	3.4		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\text {OH }}=-400 \mu \mathrm{~A} \\ & \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {IH }} \text { or } \mathrm{V}_{\text {IL }} \text { per Truth Table } \end{aligned}$	V
VoL	Output LOW Voltage		0.25	0.4	$\begin{aligned} & V_{C C}=M I N \\ & V_{I N}=V_{I H} \text { or } V_{I L} \\ & \text { per Truth Table } \end{aligned}$	V
			0.35	0.5		V
IIH	Input HIGH Current		1.0	$\begin{aligned} & 20 \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & V_{C C}=M A X, V_{I N}=2.7 \mathrm{~V} \\ & V_{C C}=M A X, V_{I N}=7.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
IIL	Input LOW Current			- 0.36	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$	mA
los	Output Short Circuit Current (note 2)	-20		- 100	$V_{C C}=M A X, V_{I N}=0 V$	mA
Icc	Power Supply Current		6.2	10	$V_{C C}=M A X$	mA

Notes : 1. Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions
2. Not more than one output should be shorted at a time
(*) Typical values are at $\mathrm{V}_{\mathrm{CC}}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

AC CHARACTERISTICS : $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Test Conditions		Unit
		Min.	Typ.	Max.			
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay, Select to Output		$\begin{aligned} & 19 \\ & 25 \end{aligned}$	$\begin{aligned} & 29 \\ & 38 \end{aligned}$	Fig. 2	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & C_{L}=15 \mathrm{pF} \end{aligned}$	ns
$\begin{aligned} & t_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay, Enable to Output		$\begin{aligned} & 16 \\ & 21 \end{aligned}$	$\begin{aligned} & 24 \\ & 32 \end{aligned}$	Fig. 1		ns
$\mathrm{t}_{\mathrm{PLH}}$ t_{PHL}	Propagation Delay, Data to Output		$\begin{aligned} & 13 \\ & 17 \end{aligned}$	$\begin{aligned} & 20 \\ & 26 \end{aligned}$	Fig. 2		ns

AC WAVEFORMS

Figure 1.

Figure 2.

DUAL 4-INPUT MULTIPLEXER WITH 3-STATE OUTPUTS

- INVERTED VERSION OF T74LS253
- SCHOTTKY PROCESS FOR HIGH SPEED
- MULTIFUNCTION CAPABILITY
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS
- FULLY TTL AND CMOS COMPATIBLE

DESCRIPTION

The LSTTLMSI T74LS353 is a Dual 4-Input Multiplexer with 3-state outputs. It can select two bits data from four sources using common select inputs. The outputs may be individually switched to a high impedance state with a HIGH on the respective Output Enable (E_{0}) inputs, allowing the outputs to interface directly with bus oriented systems. It is fabricated with the Schottky barrier diode process for high speed and is completely compatible with all TTL families.

PIN NAMES

$S_{0}-S_{1}$	COMMON SELECT INPUTS
MULTIPLEXER A	
$E_{0 a}$	OUTPUT ENABLE (actIve LOW)
$I_{0 a}-I_{3 a}$	INPUT
Z_{a}	MULTIPLEXER INPUTS
MULTIPLEXER B	MULTIPLEXER OUTPUTS
$E_{0 b}$	OUTPUT ENABLE (active LOW)
$I_{0 b}-I_{3 b}$	INPUT
Z_{b}	MULTIPLEXER INPUTS

PIN CONNECTION (top view)
DUAL IN LINE

CHIP CARRIER

LOGIC SYMBOL AND LOGIC DIAGRAM

$V_{c c}=\operatorname{Pin} 16$
GND $=\operatorname{Pin} 8$
() = Pin numbers

t. 0106

ABSOLUTE MAXIMUM RATINGS

Stresses in excess of those listed under "Absolute Maxirnurr Ratirigs' may cause permarient damage to the devite This sa stress tating only and functionai operation of the device at these or any other conditions in excess of those indicated in the operationid sections of this specitication is not implied Expoure to absolute maximum rating conditons rou extended periods may affect device reliability

GUARANTEED OPERATING RANGE

TRUTH TABLE

Select Inputs		Data Inputs				Output Enable	Ouput
S_{0}	S_{1}	10	I_{1}	I_{2}	I_{3}	\bar{E}_{0}	z
X	X	X	X	X	X	H	(Z)
L	L	L	x	X	x	L	H
L	L	H	X	X	X		L
H	L	X	L	X	X	L	H
H	L	X	H	X	X	L	L
L	H	X	X	L	x	L	H
L	H	X	X	H	X	L	L
H	H	X	X	X	L	L	H
H	H	X	X	X	H		L

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
$L=$ LOW Voltage Level
X = Don't Care
$(Z)=$ High Impedance (off)
Address inputs S0 and S1 are common to both sections

FUNCTIONAL DESCRIPTION

The LS353 contains two identical 4-Input Multiplexer with 3-state outputs. They select two bits from four sources selected by common select inputs (S_{0}, S_{1}). The 4 -input multiplexers have individual Output Enable ($E_{0 a}, E_{0 b}$) inputs which when HIGH, forces the outputs to a high impedance (high Z) state.

The LS353 is the logic implementation of a 2-pole, 4-position switch, where the position of the switch is determined by the logic levels supplied to the two Select Inputs. The logic equations for the outputs are shown below.

$$
\begin{aligned}
& \bar{Z}_{a}=\overline{\overline{\bar{E}}_{a} \cdot\left(I_{\text {oa }} \cdot \bar{S}_{1} \cdot \bar{S}_{\left.0+I_{1 a} \cdot \bar{S}_{1} \cdot S_{0}+I_{2 a} \cdot S_{1} \cdot \bar{S}_{0}+I_{3 a} \cdot S_{1} \cdot S_{0}\right)}\right.} \\
& \bar{Z}_{b}=\overline{\bar{E}_{b} \cdot\left(I_{\text {ob }} \cdot \bar{S}_{1} \cdot \bar{S}_{0+I_{b b}} \cdot \bar{S}_{1} \cdot S_{0}+I_{2 b} \cdot S_{1} \cdot \bar{S}_{0+}+I_{3 b} \cdot S_{1} \cdot S_{c}\right)}
\end{aligned}
$$

If the outputs of 3 -state devices are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. Designers should ensure that Outputs

Enable signals to 3-state devices whose outputs are tied together are designed so that there is no overlap.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)	Unit
		Min.	Typ. (*)	Max.		
V_{IH}	Input HIGH Voltage	2.0			Guaranteed Input HIGH Voltage for All Inputs	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	Guaranteed Input LOW Voltage for All Inputs	V
$V_{C D}$	Input Clamp Diode Voltage		-0.65	-15	$\mathrm{V}_{C C}=\mathrm{MIN}, \mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$	V
V_{OH}	Output HIGH Voltage	2.7	3.1		$\begin{aligned} & V_{C C}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-2.6 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathbb{I H}} \text { or } \mathrm{V}_{\mathrm{IL}} \text { per Truth Table } \end{aligned}$	V
VOL	Output LOW Voltage		0.25	0.4	$\begin{aligned} & V_{C C}=M I N \\ & V_{I N}=V_{I H} \text { or } V_{I L} \\ & \text { per Truth Table } \end{aligned}$	V
			0.35	0.5		V
lozh	Output Off Current HIGH			20	$\begin{aligned} & V_{C C}=M A X, \quad V_{\text {OUT }}=2.7 \mathrm{~V}, \\ & V_{E}=2.0 \mathrm{~V} \end{aligned}$	$\mu \mathrm{A}$
lozl	Output Off Current LOW			- 20	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{\text {OUT }}=0.4 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{E}}=2.0 \mathrm{~V} \end{aligned}$	$\mu \mathrm{A}$
$\mathrm{IIH}^{\text {H}}$	Input HIGH Current			$\begin{aligned} & 20 \\ & 0.1 \end{aligned}$	$\begin{aligned} & V_{C C}=M A X, V_{\mathbb{N}}=2.7 \mathrm{~V} \\ & V_{C C}=M A X, V_{\mathbb{N}}=7.0 \mathrm{~V} \end{aligned}$	$\mu \mathrm{A}$ mA
IIL	Input LOW Current			-0.4	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$	mA
los	Output Short Circuit Current (note 2)	- 30		- 130	$V_{C C}=M A X, V_{i N}=0 V$	mA
Icc	Supply Current Outputs LOW Outputs HIGH		$\begin{aligned} & 7.0 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 12 \\ & 14 \end{aligned}$	$\begin{array}{ll} V_{C C}=M A X, & V_{I N}=0 V, \quad V_{E}^{-}=0 V \\ V_{C C}=M A X, & V_{I N}=0 V, \quad V_{E}=4.5 V \end{array}$	mA

Notes : 1 Conditions for testing, not shown in the Table, are chosen to guarantee operation under "wrost case" conditions
2 Not more than one output should be shorted at a time
(*) Typical values are at $\mathrm{V}_{\mathrm{CC}}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

AC CHARACTERISTICS : $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Test Conditions		Unit
		Min.	Typ.	Max.			
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay, Data to Output		$\begin{aligned} & 11 \\ & 13 \end{aligned}$	$\begin{aligned} & 25 \\ & 20 \end{aligned}$	Fig 1	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & C_{L}=15 \mathrm{pF} \end{aligned}$	ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagatıon Delay, Select to Output		$\begin{aligned} & 20 \\ & 21 \end{aligned}$	$\begin{aligned} & 45 \\ & 32 \end{aligned}$	Fig 1		ns
tPZH	Output Enable Time to HIGH Level		11	23	Figs. 4,5		ns
$t_{\text {PZL }}$	Output Enable Time to LOW Level		15	23	Figs. 3,5		ns
$t_{\text {PLZ }}$	Output Disable Time from LOW Level		12	27	Figs 3,5	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \end{aligned}$	ns
tPHZ	Output Disable Time from HIGH Level		27	41	Figs 4,5		ns

3-STATE AC WAVEFORMS AND LOAD CIRCUIT

Figure 1.

Figure 3.

Figure 2.

Figure 4.

Figure 5.

जा

 SGS-THOMSONT74LS365A/366A T74LS367A/368A

3-STATE HEX BUFFERS

DESCRIPTION

These devices are high-speed Hex Buffers with 3state outputs. They are organized as single 6-bit or 2-bit/4-bit, with inverting or non-inverting data (D) paths. The outputs are designed to drive 15 TTL Unit Loads or 60 Low Power Schottky loads when the Enable ($\overline{\mathrm{E}}$) is LOW.
When the output Enable input ($\overline{\mathrm{E}}$) is HIGH, the outputs are forced to a high impedance "off" state. If the outputs of the 3 -state devices are tied together, all but one device must be in the high impedence state to avoid high currents that woud exceed the maximum ratings. Designers should ensure that Output Enable signals to 3 -state devices, whose outputs are tied together, are designed so there is no overlap.

PIN CONNECTION (top view) DUAL IN LINE

CHIP CARRIER

LS365A/LS367A	LS366A/LS368A

TRUTH TABLES

LS365A

Inputs			Output
$\overline{\mathbf{E}}_{\mathbf{1}}$	$\overline{\mathbf{E}}_{\mathbf{2}}$	\mathbf{D}	
L	L	L	L
L	L	H	H
H	X	X	(Z)
X	H	X	(Z)

LS367A

Inputs		Output
\bar{E}	\mathbf{D}	
L	L	L
L	H	H
H	X	(Z)

LS366A

Inputs			Output
$\overline{\mathbf{E}}_{\mathbf{1}}$	$\overline{\mathbf{E}}_{\mathbf{2}}$	\mathbf{D}	
L	L	L	H
L	L	H	L
H	X	X	(Z)
X	H	X	(Z)

LS368A

Inputs		Output
$\overline{\text { E }}$	D	
L	L	L
L	H	(Z)
H	X	

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{C C}$	Supply Voltage	-0.5 to 7	V
V_{1}	Input Voltage, Applied to Input	-0.5 to 15	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage, Applied to Output	0 to 10	V
I_{1}	Input Current, into Inputs	-30 to 5	mA
I_{O}	Output Current, into Outputs	50	mA

Stresses in excess of those listed "Absolute Maximum Ratings" may cause permanent damage to the device This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied Exposure to absolute maximum rating conditions for extended periods may affect device reliability

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage		Temperature	
	Min.	Typ.		
T74LS365A/366A/367A/368AXX	4.75 V	5.0 V	525 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

XX = Package type

dC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter		Limits			Test Condition (note 1)		Unit
			Min.	Typ. (*)	Max.			
V_{IH}	Input HIGH Voltage		2.0			Guaranteed Input HIGH Voltage for All Inputs		V
VIL	Input LOW Voltage				0.8	Guaranteed for All Inputs	ut LOW Voltage	V
$V_{C D}$	Input Clamp Diode Voltage			-0.65	-1.5	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{1}$	$=-18 \mathrm{~mA}$	V
V OH	Output HIGH Voltage		2.4	3.1		$\begin{aligned} & V_{C C}=M I N, I \\ & V_{I N}=V_{I H} \text { Or } \end{aligned}$	$\begin{aligned} & =-2.6 \mathrm{~mA} \\ & \text { per Truth Table } \end{aligned}$	V
VOL	Output LOW Voltage			0.25	0.4	$\mathrm{lOL}_{\mathrm{O}}=12 \mathrm{~mA}$	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I N}=V_{I H} \text { or } V_{I L} \\ & \text { per Truth Tablf } \end{aligned}$	V
				0.35	0.5	$\mathrm{lOL}^{\text {a }} 24 \mathrm{~mA}$		V
lozh	Output Off Current HIGH				20	$\begin{aligned} & V_{C C}=M A X, V_{\text {OUT }}=2.7 \mathrm{~V} \\ & V_{E}=2.0 \mathrm{~V} \end{aligned}$		$\mu \mathrm{A}$
lozz	Output Off Current LOW				- 20	$\begin{aligned} & V_{C C}=M A X, V_{I N}=0.4 \mathrm{~V} \\ & V_{E}=2.0 \mathrm{~V} \end{aligned}$		$\mu \mathrm{A}$
$\mathrm{IIH}^{\text {H}}$	Input HIGH Current				$\begin{aligned} & 20 \\ & 0.1 \end{aligned}$	$\begin{aligned} & V_{C C}=M A X, \\ & V_{C C}=M A X, \end{aligned}$	$\begin{aligned} & V=2.7 \mathrm{~V} \\ & \mathrm{~V}=7.0 \mathrm{~V} \end{aligned}$	$\mu \mathrm{A}$
IIL	Input LOW Current	D Inputs			- 20	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$ Either E Input at 2 V		mA
					-0.4	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{\mathrm{IN}}=0.4 \mathrm{~V} \\ & \text { Both E Inputs at } 0.4 \mathrm{~V} \end{aligned}$		mA
		E Inputs			-0.4			mA
los	Output Short Circuit Current (note 2)		- 40		- 225	$\mathrm{V}_{\mathrm{cc}}=\mathrm{MAX}$,	UT $=0 \mathrm{~V}$	mA
Icc	Power Supply Current	LS365A/367A		13.5	24	$\begin{aligned} & V_{C C}=M A X, V_{I N}=0.4 \mathrm{~V} \\ & V_{E}^{-}=4.5 \mathrm{~V} \end{aligned}$		mA
		LS366A/368A		11.8	21			mA

Notes: 1. For Condtions shown as MIN or MAX, use the appropnate value specified under guaranteed operating conditions for the device type. 2. Not more than one output should be shorted at a time.
(*) Typical values are at $\mathrm{V}_{\propto C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

AC CHARACTERISTICS : $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits						Test Conditions	Unit
		LS365A/367A			LS366A/368A				
		Min.	Typ.	Max.	Min.	Typ.	Max.		
$\begin{aligned} & t_{\mathrm{PLH}} \\ & t_{\mathrm{PHLL}} \end{aligned}$	Propagation Delay,		$\begin{aligned} & 10 \\ & 9.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 16 \\ & 22 \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 7.0 \\ & 12 \\ & \hline \end{aligned}$	$\begin{aligned} & 15 \\ & 18 \\ & \hline \end{aligned}$	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$	ns
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHLL }} \end{aligned}$	Output Enable Time		$\begin{aligned} & 19 \\ & 24 \end{aligned}$	$\begin{aligned} & 35 \\ & 40 \end{aligned}$		$\begin{aligned} & 18 \\ & 28 \end{aligned}$	$\begin{aligned} & 35 \\ & 45 \end{aligned}$	$R_{L} 667 \Omega$	ns
$\overline{t_{\text {PLH }}}$ $t_{\text {PHL }}$	Output Disable Time			$\begin{aligned} & 30 \\ & 35 \end{aligned}$			$\begin{aligned} & 32 \\ & 35 \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF} \end{aligned}$	ns

AC WAVEFORMS

Figure 1.

Figure 3.

Figure 2.

Figure 4.

OCTAL TRANSPARENT LATCH WITH 3-STATE OUTPUTS

- EIGHT LATCHES IN A SINGLE PACKAGE
- 3-STATE OUTPUTS FOR BUS INTERFACING
- HYSTERESIS ON LATCH ENABLE
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS
- FULLY TTL AND CMOS COMPATIBLE

DESCRIPTION

The T74LS373 consists of eight latches with 3-state outputs for bus organized system applications. The flip-flops appear transparent to the data (data changes asynchronously) when Latch Enable (LE) is HIGH. When LE is LOW, the data that meets the setup times is latched. Data appears on the bus when the Output Enable ($\overline{\mathrm{OE}})$ is LOW. When $\overline{\mathrm{OE}}$ is HIGH the bus outputs is in the high impedance state.

PIN NAMES

$\mathrm{D}_{0}-\mathrm{D}_{7}$	DATA INPUTS
LE	LATCH ENABLE (active HIGH) INPUT
OE	OUTPUT ENABLE (active LOW) INPUT
$\mathrm{O}_{0}-\mathrm{O}_{7}$	OUTPUTS

PIN CONNECTION (top view)

LOGIC SYMBOL AND LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	-0.5 to 7	V
$\mathrm{~V}_{1}$	Input Voltage, Applied to Input	-0.5 to 15	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage, Applied to Output	-0.5 to 10	V
I_{I}	Input Current, Into Inputs	-30 to 5	mA
I_{O}	Output Current, Into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device relability

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage		Temperatufe	
	Min.	Typ.		
T74LS373XX	4.75 V	5.0 V	5.25 V	$0{ }^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Notes : 1. Conditions for testing, not shown in the Table, are chosen to guarantee operation under "wrost case" conditions 2. Not more than one output should be shorted at a time.
(*) Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

AC CHARACTERISTICS : $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Test Conditions		Unit
		Min.	Typ.	Max.			
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \\ & \hline \end{aligned}$	Propagation Delay, Data to Output		$\begin{aligned} & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & 18 \\ & 18 \end{aligned}$	Fig. 1	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & C_{L}=45 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay, Clock or LE to Output		$\begin{aligned} & 20 \\ & 18 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	Fig. 1		ns
$\mathrm{t}_{\mathrm{PzH}}$	Output Enable Time to HIGH Level		15	28	Figs. 3,4		ns
$\mathrm{t}_{\text {PzL }}$	Output Enable Time to LOW Level		25	36	Figs. 2,4		ns
$\mathrm{t}_{\text {PLZ }}$	Output Disable Time from LOW Level		15	25	Figs. 2,4	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \end{aligned}$	ns
$\mathrm{t}_{\text {PHz }}$	Output Disable Time from HIGH Level		12	20	Figs. 3,4		ns

AC SET-UP REQUIREMENTS : $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Test Conditions		Unit
		Min.	Typ.	Max.			
t_{s} D	Set-up Time Data to Negative Going LE	5			Fig. 1	$\mathrm{V}_{\mathrm{cc}}=50 \mathrm{~V}$	ns
$t_{\text {n }} \mathrm{D}$	Hold Time Data to Negative Going LE	20					ns
$t_{\text {w }}$ LE	Minımum LE Pulse Width HIGH to LOW	15					ns

DEFINITION OF TERMS

SET-UP TIME (t_{s}) is defined as the minimum time required for the correct logic level to be present at the logic input to LE transition from HIGH to LOW in order to be recognized and transferred to the outputs.

HOLD TIME (t_{n}) is defined as the minimum time following LE transition from LOW to HIGH that the logic level must be maintained at the input in order to ensure continued recognition.

AC WAVEFORMS

Figure 1.

Figure 2.

Figure 3.

AC LOAD CIRCUIT

Figure 4.

\mp SGS-THOMSON
 WHCREBHECTRENTSE

OCTAL D-TYPE FLIP-FLOP WITH 3-STATE OUTPUTS

- EDGE-TRIGGERED D-TYPE INPUTS
- BUFFERED POSITIVE EDGE-TRIGGERED CLOCK
- 3-STATE OUTPUTS FOR BUS ORIENTED APPLICATIONS
- HYSTERESIS ON OUTPUT ENABLE INPUT TO IMPROVE NOISE MARGIN
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS
- FULLY TTL AND CMOS COMPATIBLE

DESCRIPTION

The T74LS374 is a high-speed, low-power Octal Dtype Flip-Flop featuring separate D-type inputs for each flip-flop and 3 -state outputs for oriented applications. A buffered Clock (CP) and Output Enable ($\overline{\mathrm{OE}}$) are common to all flip-flops.

PIN NAMES

$\mathrm{D}_{0}-\mathrm{D}_{7}$	DATA INPUTS
CP	CLOCK (active HIGH going edge) INPUT
OE	OUTPUT ENABLE (active LOW) INPUT
$\mathrm{O}_{0}-\mathrm{O}_{7}$	OUTPUTS

PIN CONNECTION (top view)

DUAL IN LINE

CHIP CARRIER

NC = No Internal Connection

LOGIC SYMBOL AND LOGIC DIAGRAM

VCC $=\operatorname{Pin} 20$
GND $=\operatorname{Pin} 10$
() $=$ Pin numbers

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{C C}$	Supply Voltage	-05 to +7	V
V_{1}	Input Voltage, Applied to Input	-0.5 to +15	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage, Applied to Output	-0.5 to +10	V
I_{1}	Input Current, Into Inputs	-30 to +5	mA
I_{O}	Output Current, Into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maxımum Ratungs" may cause permanent damage to the device
This is a stress ratung only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied Exposure to absolute maximum rating conditions for extended periods may affect device reliability

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage		Temperature	
	Min.	Typ.		
T74LS374XX	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type

TRUTH TABLE

$\mathbf{D}_{\boldsymbol{n}}$	$\mathbf{C P}$	$\overline{\mathbf{O E}}$	$\mathbf{Q}_{\boldsymbol{n}}$
H	I	L	H
L	I	L	L
X	X	H	Z^{*}

H = HIGH Voltage Level L = LOW Voltage Level X = Don't Care $(Z)=$ High impedance

* Note. Contents of flip-flops unaffected by the state of the Output Enable input ($\overline{\mathrm{OE}})$.

FUNCTIONAL DESCRIPTION

The LS374 consist of eight edge-triggered flip-flops with individual D-type inputs and 3 -state true outputs. The Clock and Output Enable are common. The eight flip-flops will store the state of their individual D inputs that meet the set-up and hold time requirements on the LOW-to-HIGH Clock (CP) tran-
sition. With the Output Enable ($\overline{\mathrm{OE}})$ LOW, the contents of the eight flip-flops are refected on the outputs. When the OE is HIGH, the outputs go to the high impedance state. Operation of the OE input does not affect the state of the flip-flops.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
V_{H}	Input HIGH Voltage	2.0			Guaranteed Input HIGH Voltage for All Inputs		V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	Guaranteed Input LOW Voltage for All Inputs		V
$V_{C D}$	Input Clamp Diode Voltage		-0.65	-1.5	$\mathrm{V}_{C C}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$		V
Vor	Output HIGH Voltage	2.4	3.1		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IOH}_{\mathrm{OH}}=-2.6 \mathrm{~mA} \\ & \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {IH }} \text { or } \mathrm{V}_{\mathrm{IL}} \text { per Truth Table } \end{aligned}$		V
V OL	Output LOW Voltage		0.25	0.4	$\mathrm{loL}=12 \mathrm{~mA}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \text { per Truth Table } \end{aligned}$	V
			0.35	0.5	$\mathrm{loL}=24 \mathrm{~mA}$		V
lozh	Output Off Current HIGH			20	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{\text {OUT }}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{E}}=2.0 \mathrm{~V} \end{aligned}$		$\mu \mathrm{A}$
lozl	Output Off Current LOW			-20	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{\text {OUT }}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{E}}=2.0 \mathrm{~V} \end{aligned}$		$\mu \mathrm{A}$
${ }_{1 / 4}$	Input HIGH Current			20	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$		$\mu \mathrm{A}$
	Input HIGH Current at MAX Input Voltage			0.1	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$		mA
$1 / 2$	Input LOW Current			-0.4	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$		mA
los	Output Short Circuit Current (note 2)	- 30		- 130	$V_{C C}=M A X, V_{\text {OUT }}=0 \mathrm{~V}$		mA
Icc	Power Supply Current Output Off		27	45	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{E}}=4.5 \mathrm{~V} \end{aligned}$		mA

Notes : 1) Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions.
2) Not more than one output should be shorted at a time
(*) Typıcal values are at $\mathrm{V}_{\mathrm{CC}}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

AC CHARACTERISTICS : $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Test Conditions (note 1)		Unit
		Min.	Typ.	Max.			
$\begin{aligned} & t_{\mathrm{PLH}} \\ & t_{\mathrm{PHL}} \end{aligned}$	Propagatıon Delay, CP to Output		$\begin{aligned} & 15 \\ & 19 \end{aligned}$	$\begin{aligned} & 28 \\ & 28 \end{aligned}$	fig. 1	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=45 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \end{aligned}$	ns
$t_{\text {PZ }}$	Output Enable Time to HIGH Level		20	28	figs. 3, 4		ns
$t_{\text {PZL }}$	Output Enable Time to LOW Level		21	28	figs. 2, 4		ns
tplz	Output Disable Time from LOW Level		12	20	figs. 2, 4	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \end{aligned}$	ns
$t_{\text {PHZ }}$	Output Disable Time from HIGH Level		15	25	figs. 3, 4		ns
$f_{\text {MAX }}$	Maxımum Input Frequency	35	50		fig 1		MHz

AC SET-UP REQUIREMENTS : $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limit			Test Conditions		Unit
		Min.	Typ.	Max.			
$t_{w} \mathrm{CP}$	Minımum Clock Pulse Width HIGH or LOW	13	10		fig. 1	$\mathrm{V}_{\mathrm{Cc}}=5.0 \mathrm{~V}$	ns
t_{s}	Minimum Set-up Time, Data to CP	20	15				ns
t_{n}	Minımum Hold Time, Data to CP	0	- 3				ns

DEFINITION OF TERMS :

SET-UP TIME (t_{s}) - is defined as the minimum time required for the correct logic level to be present at the logic input prior to the clock transition from HIGH to LOW in order to be recognized and transferred to the outputs.
HOLD TIME $\left(\mathrm{t}_{\mathrm{n}}\right)$ - is defined as the minimum time following the clock transition from LOW to HIGH that
the logic level must be maintained at the input in order to ensure continued recognition. A negative HOLD TIME indicates that the correct logic level may be released prior to the clock transition from LOW to HIGH and still be recognized.

AC WAVEFORMS AND LOAD CIRCUIT

Figure 1.

Figure 2.

Figure 3.

Figure 4.

OCTAL D FLIP-FLOP WITH COMMON ENABLE AND CLOCK

- 8-BIT HIGH SPEED PARALLEL REGISTERS
- POSITIVE EDGE-TRIGGED D-TYPE FLIPFLOP
- FULLY BUFFERED COMMON CLOCK AND ENABLE INPUTS
- INPUT CLAMP DIODES LIMIT HIGH-SPEED TERMINATION EFFECTS
- FULLY TTL AND CMOS COMPATIBLE

DESCRIPTION

The T54LS377 is an 8-Bit register built using advanced Low Power Schottky technology. This register consists of eight D-type flip-flops with a buffered common clock and a buffered common clock enable. The device is packaged in the spacesaving (0.3 inch row spacing) 20 pin package.

$\overline{\mathrm{E}}$	Enable (Active LOW) Input
$\mathrm{D}_{0}-\mathrm{D}_{7}$	Data Inputs
CP	Clock (Active HIGH Going Edge) Input
$\mathrm{Q}_{0}-\mathrm{Q}_{7}$	True Outputs

PIN CONNECTION (top view)

TRUTH TABLE

\mathbf{E}	$\mathbf{C P}$	$\mathbf{D}_{\boldsymbol{n}}$	$\mathbf{Q}_{\boldsymbol{n}}$
H	S	\mathbf{X}	No Change
L	S	H	H
L	S	L	L

L = LOW Voltage Level
H = HIGH Voltage Level
X= Don't Care

LOGIC SYMBOL AND LOGIC DIAGRAM

FUNCTIONAL DESCRIPTION

The LS377 consists of eight edge-triggered D flipflop with individual D inputs and Q outputs. The Clock (CP) and Enable input ($\overline{\mathrm{E}}$) are common to all flip-flop.

When $\overline{\mathrm{E}}$ is LOW, new datais entered into the register on the next LOW to HIGH transition of (CP).
When $\overline{\mathrm{E}}$ is HIGH, the register will retaint the present data independent of the CP.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{cc}	Supply Voltage	-0.5 to +7	V
$\mathrm{~V}_{1}$	Input Voltage, Applied to Input	-0.5 to +15	V
$\mathrm{~V}_{\mathrm{o}}$	Output Voltage, Applied to Output	-0.5 to +10	V
I_{1}	Input Current, Into Inputs	-30 to +5	mA
I_{O}	Output Current, Into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of thus specrication is not implied. Exposure to absolute maxımum rating conditions for extended periods may affect device reliability.

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage		Temperature	
	Min.	Typ.		
T74LS377XX	4.75 V	5.0 V	5.25 V	$0{ }^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	2.0			Guaranteed Voltage for	ut HIGH nputs	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	Guaranteed Voltage for	ut LOW nputs	V
$V_{C D}$	Input Clamp Diode Voltage		-0.65	-1.5	$\mathrm{V}_{\text {CC }}=$ MIN, $\mathrm{I}_{\text {I }}$	$=-18 \mathrm{~mA}$	V
$\mathrm{VOH}_{\mathrm{OH}}$	Output HIGH Voltage	2.5	3.5		$\begin{aligned} & V_{C C}=M I N, I_{O H}=-400 \mu \mathrm{~A} \\ & V_{I N}=V_{\text {IH }} \text { or } V_{I L} \text { per Truth Table } \end{aligned}$		V
Vol	Output LOW Voltage		0.25	0.4	$\mathrm{lOL}=4.0 \mathrm{~mA}$	$\begin{aligned} & V_{C C}=M I N \\ & V_{I N}=V_{I H} \text { or } V_{I L} \\ & \text { per Truth Table } \end{aligned}$	V
			0.35	0.5	$\mathrm{lOL}=8.0 \mathrm{~mA}$		V
IIH	Input HIGH Current			$\begin{aligned} & 20 \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & V_{C C}=M A X, \\ & V_{C C}=M A X, \end{aligned}$	$\begin{aligned} & \mathrm{V}=2.7 \mathrm{~V} \\ & \mathrm{v}=7.0 \mathrm{~V} \end{aligned}$	$\mu \mathrm{A}$ mA
IIL	Input LOW Current			-0.4	$V_{C C}=M A X, V^{\prime}$	$\mathrm{N}=0.4 \mathrm{~V}$	mA
los	Output Short Circuit Current (note 2)	- 20		- 100	$V_{C C}=M A X,{ }^{\text {c }}$	UT $=0 \mathrm{~V}$	mA
Icc	Power Supply Current		18	28	$V_{C C}=M A X$		mA

Notes : 1) Conditions for testıng, not shown in the Table, are chosen to guarantee operation under "worst case" conditions.
2) Not more than one output should be shorted at a tıme.
(*) Typical values are at $\mathrm{V}_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Test Conditions		Units
		Min.	Typ.	Max.			
$f_{\text {max }}$	Maximum Clock Frequency	30	40		Figures 1	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & C_{L}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{~K} \Omega \end{aligned}$	MHz
tple	Propagation Delay, Clock to Outputs		17	27	Figures 1		ns
tpHL	Propagation Delay, Clock to Outputs		18	27	Figures 1		ns

AC SET-UP REQUIREMENTS: $T_{A}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Test Conditions		Units
		Min.	Typ.	Max.			
tw(CP)	Minimum Clock Pulse Width	20			Figure 1	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{~K} \Omega \end{aligned}$	ns
ts	Set-Up Time, Data to Clock (HIGH or LOW)	20			Figure 1		ns
t_{n}	Hold Time, Data to Clock (HIGH or LOW)	5			Figure 1		ns
ts H	Set-Up Time HIGH Enable to Clock	10			Figure 1		ns
thH	Hold Time HIGH Enable to Clock	5			Figure 1		ns
tsL	Set-Up Time LOW Enable to Clock	25			Figure 1		ns
thL	Hold Time LOW Enable to Clock	5			Figure 1		ns

DEFINITION OF TERMS:

SET-UP TIME (t_{s}): is defined as the minimum time required for the corret logic level to be present at the logic input prior the clock transition from LOW to HIGH in order to be recognized and transferred to the outputs.
HOLD TIME $\left(\mathrm{t}_{\mathrm{h}}\right)$: is defined as the minimum time fol-
lowing the clock transition from LOW to HIGH at which the logiclevel must be maintained at the input in order to ensure continued recognition. A negative HOLD TIME indicates that the correct logic level may be relased prior to the clock transitio from LOW to HIGH and still be recognized.

AC WAVEFORMS

Figure 1: Clock to Output Delays, Clock Pulse Width, Frequency Set-up and Hold Times Data to Clock

[^13]- 8-BIT HIGH SPEED PARALLEL REGISTER
- POSITIVE EDGE-TRIGGERED D-TYPE FLIPFLOPS
- FULLY BUFFERED COMMON CLOCK AND ENABLE INPUTS
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS
- FULLY TTL AND CMOS COMPATIBLE

DESCRIPTION

The T74LS378 is an 6-Bit Register with a buffered common enable. This device is similar to the T74LS174, but with common Enable rather than common Master Reset.

PIN NAMES

$\overline{\mathrm{E}}$	ENABLE (active LOW) INPUT
$\mathrm{D}_{0}-\mathrm{D}_{5}$	DATA INPUTS
CP	CLOCK (active HIGH going edge)
$\mathrm{Q}_{0}-\mathrm{Q}_{5}$	INPUT
TRUE OUTPUTS	

PIN CONNECTION (top view)

DUAL IN LINE

CHIP CARRIER

NC = No Internal Connection

LOGIC SYMBOL AND LOGIC DIAGRAM

LC- 1093
$V_{c c}=\operatorname{Pin} 16$
GND $=\operatorname{Pin} 8$
() $=$ Pin numbers

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{cc}	Supply Voltage	-0.5 to 7	V
$\mathrm{~V}_{1}$	Input Voltage, Applied to Input	-0.5 to 15	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage, Applied to Output	-0.5 to 10	V
I_{1}	Input Current, into Inputs	-30 to 5	mA
I_{O}	Output Current, into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied. Exposure to absolute maxımum rating conditions for extended penods may affect device reliability.

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage			Temperature
	Min.	Typ.	Max.	
T74LS378XX	4.75 V	5.0 V	5.25 V	$0{ }^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type.

FUNCTIONAL DESCRIPTION

The LS378 consists of eight edge-triggered D flipflops with individual D inputs and Q outputs. The Clock (CP) and Enable (E) input are common to all flip-flops.

When \bar{E} input is LOW, new data is entered intothe register on the LOW-to-HIGH transition of CP input. When the $\overline{\mathrm{E}}$ input is HIGH the register will retain the present data independent of the CP input.

TRUTH TABLE

$\overline{\mathbf{E}}$	$\mathbf{C P}$	$\mathbf{D}_{\boldsymbol{n}}$	$\mathbf{Q}_{\boldsymbol{n}}$
\mathbf{H}	J	\mathbf{X}	No charge
L	J	H	H
L	J	L	L

$$
\begin{aligned}
& H=\text { HIGH Voltage Level } \\
& L=\text { LOW Voltage Level } \\
& X=\text { Don't Care }
\end{aligned}
$$

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
V_{IH}	Input HIGH Voltage	2.0			Guaranteed Input HIGH Treshold Voltage for All Inputs		V
V_{IL}	Input LOW Voltage			0.8	Guaranteed Input LOW Treshold Voltage for All Inputs		V
$V_{C D}$	Input Clamp Diode Voltage		-0.65	-1.5	$\mathrm{V}_{C C}=\mathrm{MIN}, \mathrm{l}_{\mathrm{N}}=-18 \mathrm{~mA}$		V
V_{OH}	Output HIGH Voltage	2.7	3.4		$\begin{aligned} & V_{C C}=M I N, I_{O H}=-400 \mu \mathrm{~A} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \text { per Truth Table } \end{aligned}$		V
VoL	Output LOW Voltage		0.25	0.4	$\mathrm{lOL}=4.0 \mathrm{~mA}$	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I N}=V_{I H} \text { or } V_{I L} \\ & \text { per Truth Table } \end{aligned}$	V
			0.35	0.5	$\mathrm{lOL}=8.0 \mathrm{~mA}$		V
liH	Input HIGH Current			$\begin{aligned} & 20 \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & V_{C C}=M A X, V_{\mathbb{I N}}=2.7 \mathrm{~V} \\ & V_{C C}=M A X, V_{\mathbb{I N}}=7.0 \mathrm{~V} \end{aligned}$		$\begin{array}{r} \mu \mathrm{A} \\ \mathrm{~mA} \\ \hline \end{array}$
11.	Input LOW Current			- 0.4	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$		mA
los	Output Short Circuit Current (note 2)	- 20		- 100	$\mathrm{V}_{\mathrm{Cc}}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		mA
Icc	Power Supply Current		16	27	$V_{C C}=M A X$		mA

Notes : 1. Conditions for testing, not shown in the table, are chosen to guarantee operation under "worst case" conditions.
2. Not more than one output should be shorted at a tıme
(*) Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

AC CHARACTERISTICS : $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter		Limits			Test Conditions	

AC SET-UP REQUIREMENTS : $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Test Conditions		Unit
		Min.	Typ.	Max.			
t_{s}	Set-up Time, Data to Clock (HIGH or LOW)	20			Fig. 1	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$	ns
t_{n}	Hold Time, Data to Clock (HIGH or LOW)	5			Fig. 1		ns
$t_{\text {s }}$	Set-up Time, Enable to Clock (HIGH or LOW)	30			Fig. 1		ns
$t_{\text {h }}$	Hold Tıme, Enable to Clock (HIGH or LOW)	5			Fig. 1		ns
$t_{w C P}$	Mınımum Clock Pulse Width	20					ns

AC WAVEFORMS

Figure 1 : Clock to Output Delays, Clock Pulse Width, Frequency, Set-up and Hold Times Data, Enable to Clock.

DEFINITION OF TERMS :

SET-UP TIME (ts)- is defined as the minimum time required for the correct logic level to be present at the logic input prior to the clock transition from LOW to HIGH in order to be recognized and transferred to the outputs.

HOLD-TIME (th)- is defined as the minimum time following the clock transition from LOW to HIGH that the logic lecel muqt be maintained at the input in order to ensure continued recognition.A negative HOLD TIME indicates that the correct logic level may be released prior to the clock transition from LOW to HIGH and still be recognized.

QUAD PARALLEL REGISTER WITH ENABLE

- EDGE-TRIGGERED D-TYPE INPUTS
- BUFFERED POSITIVE EDGE-TRIGGERED CLOCK
- BUFFERED COMMON ENABLE INPUT
- TRUE AND COMPLEMENT OUTPUT
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS
. FULLY TTL AND CMOS COMPATIBLE

DESCRIPTION

The T74LS379 is a 4-Bit Register with buffered common Enable. This device is similar to the T74LS175 but feature the common Enble rather than common Master Reset.

PIN NAMES

$\overline{\mathrm{E}}$	ENABLE (active LOW) INPUT
$\mathrm{D}_{0}-\mathrm{D}_{3}$	DATA INPUTS
CP	CLOCK (active HIGH going edge)
	INPUT $\mathrm{Q}_{0}-\mathrm{Q}_{3}$ $\mathrm{Q}_{0}-\underline{\mathrm{Q}}_{3}$

PIN CONNECTION (top view)

B1
(Plastıc Package)

M1
(Micro Package)

D1 (Ceramic Package)

C1
(Plastıc Chip Carner)
ORDER CODES :
T74LS379 D1 T74LS379 C1 T74LS379 B1 T74LS379 M1

CHIP CARRIER

$N C=$ No Internal Connection

LOGIC SYMBOL AND LOGIC DIAGRAM

$V_{c c}=P \operatorname{In} 16$
GND $=\operatorname{Pin} 8$
() = Pin numbers

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{c c}$	Supply Voltage	-0.5 to 7	V
V_{1}	Input Voltage, Applied to Input	-0.5 to 15	V
$\mathrm{~V}_{0}$	Output Voltage, Applied to Output	-0.5 to 10	V
I_{1}	Input Current, Into Inputs	-30 to 5	mA
I_{0}	Output Current, into Outputs	60	mA

Stresses in excess of those listed under "Absolute Maximum Ratıngs" may cause permanent damage to the device. This is a stress ratung only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended penods may affect device reliability

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage		Temperature	
	Min.	Typ.		
T74LS379XX	4.75 V	5.0 V	5.25 V	$0{ }^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type

FUNCTIONAL DESCRIPTION

The LS379 consist of four edge-triggered D-type flip-flops with individual Dinputs and Q outputs. The Clock (CP) and Enable ($\overline{\mathrm{E}}$) inputs are common to all flip-flops.

When the $\overline{\mathrm{E}}$ input is HIGH, the register will retain the present data independent of the CP input.

TRUTH TABLE

$\overline{\mathbf{E}}$	$\mathbf{C P}$	$\mathbf{D}_{\boldsymbol{n}}$	$\mathbf{Q}_{\boldsymbol{n}}$	$\overline{\mathbf{Q}}_{\boldsymbol{n}}$
H	J	X	No change	No Change
L	J	H	H	L
L	J	L	L	H

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
$\mathrm{L}=$ LOW Voltage Level
$\mathrm{X}=$ Don't Care

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
V_{1+}	Input HIGH Voltage	2.0			Guaranteed Input HIGH Voltage for All Inputs		V
VIL	Input LOW Voltage			0.8	Guaranteed Input LOW Voltage for All Inputs		V
$V_{C D}$	Input Clamp Diode Voltage		-0.65	-1.5	$\mathrm{V}_{C C}=\mathrm{MIN}, \mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$		V
V OH	Output HIGH Voltage	2.7	3.4		$\begin{aligned} & V_{C C}=M I N, l_{O H}=-400 \mu \mathrm{~A} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \text { per Truth Table } \end{aligned}$		V
Vol	Output LOW Voltage		0.25	0.4	$\mathrm{l}_{\mathrm{OL}}=4.0 \mathrm{~mA}$	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I N}=V_{I H} \text { or } V_{I L} \\ & \text { per Truth Table } \end{aligned}$	V
			0.35	0.5	$\mathrm{loL}=8.0 \mathrm{~mA}$		V
$\mathrm{IIH}^{\text {H}}$	Input HIGH Current			20	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$		$\mu \mathrm{A}$
	Input HIGH Current at MAX Input Voltage E, $\mathrm{D}_{0}-\mathrm{D}_{3}, \mathrm{CP}$			0.1	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$		mA
IIL	Input LOW Current $E, D_{0}-D_{3}, C P$			-0.4	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathbb{I N}}=0.4 \mathrm{~V}$		mA
los	Output Short Circuit Current (note 2)	-20		-100	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		mA
Icc	Power Supply Current		11	16	$\mathrm{V}_{C C}=\mathrm{MAX}$		mA

Notes: 1. Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions.
2. Not more than one output should be shorted at a time.
(*) Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

AC CHARACTERISTICS : $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Test Conditions		Unit
		Min.	Typ.	Max.			
$t_{\text {PLH }}$	CP to Output		17	27	Fig. 1	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$	ns
$t_{\text {PHL }}$	CP to Output		18	27			ns
$f_{\text {MAX }}$	Maximum Clock Frequency	30	40				MHz

AC SET-UP REQUIREMENTS : $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Test Conditions		Unit
		Min.	Typ.	Max.			
$\mathrm{t}_{\text {s }}$	Set-up Time. Data to Llock (HIGH or LOW)	20			Fig. 1	$\mathrm{V}_{C C}=5.0 \mathrm{~V}$	ns
t_{n}	Hold Time. Data to Ciock (HIGH or LOW)	5			Fg 1		ns
t_{s}	Set-up Time, Enable to Clock	30			Fig. 1		ns
t_{n}	Hold Time, Enable to Clock	5			Fig. 1		ns
$t_{\text {WCP }}$	Minımum Clock Pulse Width	17	10				ns

AC WAVEFORMS

Figure 1 : Clock to Output Delays, Clock Pulse Width, Frequency, Set-up and Hold Times Data, Enable to Clock.

DEFINITION OF TERMS :

SET-UP TIME (ts)- is defined as the minimum time required for the correct logic level to be present at the logic input prior to the clock transition from LOW to HIGH in order to be recogrized and transferred to the outputs.

HOLD-TIME (th)- is defined as the minimum time following the clock transition from LOW to HIGH that the logic level must be maintained at the input in order to ensure continued recognition.A negative HOLD TIME indicates that the correct logic level may be released prior to the clock transition from LOW to HIGH and still be recognized.

DUAL DECADE COUNTER DUAL 4-STAGE BINARY COUNTER

- DUAL VERSION OF LS290 AND 293
- LS390 HAS SEPARATE CLOCKS ALLOWING $\div 2, \div 2.5 \div 5$
- INDIVIDUAL ASYNCHRONOUS CLEAR FOR EACH COUNTER
- TYPICAL MAX COUNT FREQUENCY OF 50 MHz
- INPUT CLAMP DIODES MINIMIZE HIGH SPEED TERMINATION EFFECTS

DESCRIPTION

The T74LS390 and T74LS393 each contain a pair of high-speed 4 -stage ripple counters. Each half of the LS390 is partitioned into a divide-by-two section and a divide-by-five section, with a separate clock input for each section. The two section can be connected to count in the 8.4.2.1 BCD code or they can count in a biquinary sequence to provide a square wave (50% duty cycle) at the final output.
Each half of the LS393 operates as a Modulo-16 binary divider, with the last three stages triggered in a ripple fashion. In both the LS390 and the LS393, the flip-flops are triggered by a HIGH-to-LOW tran-si-tion of their CP inputs. Each circuit type has a Master Reset input which responds to a HIGH signal by forcing all four outputs to the LOW state.

PIN CONNECTION (top view)

CHIP CARRIER

LS390	LS393
NC = No Internal Connection	

PIN NAMES

$\overline{\mathrm{CP}}$	CLOCK ACTIVE LOW GOING EDGE INPUT TO -16 (LS393) $\overline{\mathrm{CP}}_{0}$
$\overline{\mathrm{CP}}_{1}$	CLOCK ACTIVE LOW GOING EDGE INPUT TO -2 (LS390) CLOCK ACTIVE LOW GOING EDGE MR INPUT TO -5 (LS390) MASTER RESET (active HIGH) INPUT $\mathrm{Q}_{0}-\mathrm{Q}_{3}$

TRUTH TABLES

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{C C}$	Supply Voltage	-0.5 to 7	V
V_{1}	Input Voltage, Applied to Input	-0.5 to 15	V
V_{0}	Output Voltage, Applied to Output	-0.5 to 10	V
I_{1}	Input Current, into Inputs	-30 to 5	mA
I_{O}	Output Current, into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage			Temperature
	Min.	Typ.	Max.	
T74LS390XX	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type.

LOGIC SYMBOLS AND LOGIC DIAGRAMS

FUNCTIONAL DESCRIPTION

Each half of the LS393 Operates in the Modulo 16 binary sequences, as indicated in the $\div 16$ Truth Table. The first flip-flop is triggered by HIGH-toLOW transitions of the CP input signal. Each of the other flip-flops is triggered by a HIGH-to-LOW transition of the Q output of the preceding flip-flop. Thus state changes of the Q outputs for not occur simultaneously. This means that logic signals derived from combinations of these outputs will be subject to decoding spikes and, therefore, should not be used as clocks for other counters, registers or flipflops. A HIGH signal on MR forces all outputs to the LOW state and prevents counting.
Each half of the LS390 contains a $\div 5$ section that is independent except for the common MR function.

The $\div 5$ section operates in 4.2.1 binary sequence, as shown in the $\div 5$ Truth Table, with the third stage output exhibiting a 20% duty cycle when the input frequency is constant. To obtain a $\div 10$ funtion having a 50 \% duty cycle output, connect the input signal to CP_{1} and connect Q_{3} output to the CP_{0} input ; the Qo output provides the 50% duty cycle output. If the input frequency is connected to CP_{0} and the Q_{0} output is connected to $C P_{1}$, a decade divider operating in the 8.4.2.1 BCD code is obtained, as show in the BCD Truth Table. Since the flip-flops change state asynchronously, logic signal derived from combinations of LS390 outputs are also subject to decading spikes. A HIGH signal on MR forces all ouputs LOW and prevents counting.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter		Limits			Test Condition (note 1)		Unit
			Min.	Typ. (*)	Max.			
V_{IH}	Input HIGH Voltage		2.0			Guaranteed Input HIGH Voltage for All Inputs		V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	Guaranteed I for All Inputs	ut LOW Voltage	V
$V_{C D}$	Input Clamp Diode Voltage			-0.65	-1.5	$\mathrm{V}_{C C}=$ MIN, I	-18 mA	V
V_{OH}	Output HIGH Voltage		2.7	3.4		$\begin{aligned} & V_{C C}=M I N, \\ & V_{I N}=V_{I H} \text { or } \end{aligned}$	$\begin{aligned} & =-400 \mu \mathrm{~A} \\ & \text { per Truth Table } \end{aligned}$	V
Vol	Output LOW Voltage			0.25	0.4	$\mathrm{lOL}=4.0 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	V
				0.35	0.5	$\mathrm{lOL}=8.0 \mathrm{~mA}$	per Truth Table	V
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current	$\begin{aligned} & \overline{\mathrm{CP}}, \overline{\mathrm{CP}}_{0} \\ & \mathrm{CP}_{1} \\ & \mathrm{MR} \end{aligned}$			$\begin{aligned} & 40 \\ & 80 \\ & 20 \end{aligned}$	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$		$\mu \mathrm{A}$
		$\begin{aligned} & \overline{\mathrm{CP}}, \overline{\mathrm{CP}}_{0} \\ & \overline{\mathrm{CP}} \\ & \mathrm{MR} \end{aligned}$			$\begin{aligned} & 400 \\ & 800 \\ & 100 \\ & \hline \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$		$\mu \mathrm{A}$
IIL	Input LOW Current	$\begin{aligned} & \overline{\mathrm{CP}}, \overline{\mathrm{CP}}_{0} \\ & \overline{\mathrm{CP}}, \\ & \mathrm{MR} \end{aligned}$			$\begin{aligned} & -2.4 \\ & -3.2 \\ & -0.4 \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$		mA
los	Output Short Circuit Current (note 2)		- 20		- 120	$V_{C C}=M A X, ~$	UT $=0 \mathrm{~V}$	mA
Icc	Power Supply Current	LS290		20	30	$V_{C C}=M A X$		mA
		LS293		20	30			mA

Notes : 1. For conditions shown as MIN or MAX, use the appropnate value specified under guaranteed operating conditions for the device type.
2. Not more than one output should be shorted at a time.
(*) Typical values are at $\mathrm{V}_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

AC CHARACTERISTICS : $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

Symbol	Parameter	Limits			Test Conditions	Unit
		Min.	Typ.	Max.		
$f_{\text {max }}$	Maximum Clock Frequency $\mathrm{CP}_{0} \text { to } \mathrm{Q}_{0}$	25	35		$C_{L}=15 \mathrm{pF}$	MHz
$f_{\text {max }}$	Maximum Clock Frequency $\mathrm{CP}_{1} \text { to } \mathrm{Q}_{1}$	12.5	20			MHz
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay, CP to Q_{0} LS393		$\begin{aligned} & 12 \\ & 13 \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$		ns
$\begin{aligned} & \hline t_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \\ & \hline \end{aligned}$	$\overline{\mathrm{CP}}_{0}$ to $\mathrm{Q}_{0} \quad$ LS390		$\begin{array}{r} 12 \\ 13 \\ \hline \end{array}$	$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$		ns
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$	$\overline{\mathrm{CP}}$ to $\mathrm{Q}_{3} \quad$ LS393		$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & \hline 60 \\ & 60 \end{aligned}$		ns
$\begin{aligned} & \hline t_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \\ & \hline \end{aligned}$	$\overline{\mathrm{CP}}_{0}$ to $\mathrm{Q}_{2} \quad$ LS390		$\begin{aligned} & 37 \\ & 39 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 60 \\ & 60 \\ & \hline \end{aligned}$		ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	$\overline{\mathrm{CP}}_{1}$ to $\mathrm{Q}_{1} \quad$ LS390		$\begin{aligned} & 13 \\ & 14 \end{aligned}$	$\begin{array}{r} 21 \\ 21 \\ \hline \end{array}$		ns
$\begin{aligned} & \hline t_{\text {PLH }} \\ & t_{\text {PHLL }} \end{aligned}$	$\overline{\mathrm{CP}}_{1}$ to $\mathrm{Q}_{2} \quad$ LS390		$\begin{aligned} & 24 \\ & 26 \end{aligned}$	$\begin{aligned} & 39 \\ & 39 \end{aligned}$		ns
$t_{P L H}$ $t_{\text {PHL }}$	$\overline{\mathrm{CP}}_{1}$ to $\mathrm{Q}_{3} \quad$ LS390		$\begin{aligned} & 13 \\ & 14 \end{aligned}$	$\begin{array}{r} 21 \\ 21 \\ \hline \end{array}$		ns
$\mathrm{t}_{\text {PHL }}$	MR to any Input LS390/393		24	39		ns

AC SET-UP REQUIREMENTS : $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter		Limits			Test Conditions

RECOVERY TIME (trec) - is defined as the minimum time required between the end of the reset pulse and the clock transition from HIGH to LOW in order to recognized and transfer HIGH Data to the Q outputs.

AC WAVEFORMS

Figure 1.

The number of Clock Pulses required between the tpHL and tpLH measurements can be determined from the appropriate Truth Table.
Figure 2.

4-BIT SHIFT REGISTER WITH 3-STATE OUTPUTS

- SHIFT LEFT OR PARALLEL 4-BIT REGISTER
- 3-STATE OUTPUTS
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS
- FULLY TTL AND CMOS COMPATIBLE

DESCRIPTION

The T74LS395A is a 4-Bit Registers with 3-state outputs and can operate in either a synchronous parallel load or a serial shift-right mode, as determined by the Select input. An asynchonous active LOW Master Reset (MR) input overrides the synchonous operations and clears the register. An active Low Outputs Enable (OE) input controls the 3-state output buffer, but does not interfere with the operations. The fourth stage also has a conventional output for linking purposes in multistage serial operations.

B1 (Plastıc Package)

M1
(Micro Package)

D1 (Ceramic Package)

C1
(Plastic Chip Carner)

ORDER CODES :
T74LS395A D1 T74LS395A C1 T74LS395A B1 T74LS395A M1

PIN CONNECTION (top view)

PIN NAMES

$P_{0}-P_{3}$	Parallel Inputs
$D_{\mathbf{s}}$	Serial Data Inputs
S	Mode Select Input
$C P$	Clock (Active LOW) Input
$M R$	Master Reset (Active LOW) Input
$O E$	Output Enable (Active LOW) Input
$Q_{0}-Q_{3}$	3-State Register Outputs
Q_{3}	Register Output

LOGIC SYMBOL

LOGIC DIAGRAM

FUNCTIONAL DESCRIPTION

The LS395A contains four D-type edge-triggered flip-flop and auxiliary gating to select a D input either from a Parallel $\left(P_{n}\right)$ input or from the preceding stage. When the Select input is HIGH, the P_{n} inputs are enabled. A IOW signal on the S input enables the serial inputs for shift-righ operations, as indicated in the Truth Table.
Stage changes are initiated by HIGH to LOW transitions on the Clock Pulse (CP) input. Signals on the P_{n}, D_{s} and S inputs can change when the Clock is in either state, provided that the recommended set-
up and hold times are observed. When the S input is LOW, a CP HIGH-LOW transition transfers data Q_{0} to Q_{1}, Q_{1} to Q_{2} and Q_{2} to Q_{3}. A left-shift is accomplished by connecting the outputs back to the P_{n} inputs but offset one place to the left, i.e., O_{3} to P_{2}, O_{2} to P_{1} and O_{1} to P_{0}, with P_{3} acting as the linking input from another package.
When the $\overline{\mathrm{OE}}$ input is HIGH, the output buffers are disable and $\mathrm{O}_{0}-\mathrm{O}_{3}$ outputs are in a high impedance condition. The shifting, parallel loading or resetting operations can still be accomplished, however.

MODE SELECT - TRUTH TABLE

Operating Mode	Inputs @ $\mathbf{t n}^{\text {l }}$					Outputs @ $\mathbf{t n + 1}^{\text {n }}$			
	$\overline{M R}$	$\overline{\mathbf{C P}}$	S	$\mathrm{D}_{\text {s }}$	P_{n}	O_{0}	O_{1}	O_{2}	O_{3}
Asynchronous Reset Shift, SET First Stage	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	\underline{x}	$\begin{aligned} & \mathrm{X} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{gathered} \mathrm{L} \\ \mathrm{O}_{0 n} \end{gathered}$	$\begin{gathered} \mathrm{L} \\ \mathrm{O}_{1 \mathrm{n}} \end{gathered}$	$\begin{gathered} \mathrm{L} \\ \mathrm{O}_{2 \mathrm{n}} \end{gathered}$
Shift, RESET First Stage Parallel Load	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \hline \end{aligned}$	\boxed{L}	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{X} \\ & \hline \end{aligned}$	$\begin{aligned} & P_{n} \\ & X \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{P}_{0} \end{aligned}$	$\begin{aligned} & \mathrm{O}_{0} \\ & \mathrm{P}_{1} \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{O}_{1 \mathrm{n}} \\ \mathrm{P}_{2} \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{O}_{2 n} \\ & \mathrm{P}_{3} \\ & \hline \end{aligned}$

$\mathrm{H}=$ HIGH Voltage Level
L = LOW Voltage Level
X = Don't Care
tn, $\mathrm{tn}+1$ = time before and after CP HIGH to LOW transition
NOTE: When $\overline{\mathrm{OE}}$ is LOW, outputs $\mathrm{O}_{0}-\mathrm{O}_{3}$ are in the high impedance state, however, this does not affect other operation or the O_{3} output.

ABSOLUTE MAXIMUM RATING

Symbol	Parameter	Value	Unit
$V_{C C}$	Supply Voltage	-0.5 to 7	V
V_{1}	Input Voltage, Applied to Input	-0.5 to 15	V
V_{0}	Output Voltage, Applied to Output	-05 to 10	V
I_{1}	Input Current, Into Inputs	-30 to 5	mA
lo	Output Current, Into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maximum Ratings" may cause permanent damage to the device This is a stress rating only and functional operation of the device at these or any other conditons in excess of those indicated in the operational sections of this specification is not implied Exposure to absolute maximum rating conditions for extended periods may affect device reliability

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage	Temperature		
	Min.		Max.	
T74LS395AXX	4.75 V	5.0 V	5.25 V	$0{ }^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

[^14]
dC Characteristics over operating temperature range

Symbol	Parameter			Limits		Test Condition (note 1)		Unit	
			Min.	Typ. (*)	Max.				
V_{H}	Input HIGH Voltage		2.0			Guaranteed Input HIGH Voltage for All Input		V	
VIL	Input LOW Voltage				0.8	Guaranteed In for All Input	ut LOW Voltage	v	
$\mathrm{V}_{C D}$	Input Clamp Diode Voltage				-1.5	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{liN}$	- 18 mA	V	
Vor	Output HIGH Voltage	$\begin{aligned} & \mathbf{Q}_{0}, \mathrm{Q}_{1}, \\ & \mathrm{Q}_{2}, \mathrm{Q}_{3} \end{aligned}$	2.4			$\mathrm{l}_{\mathrm{OH}}=-2.6 \mathrm{~mA}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\text {IH }}=2.0 \mathrm{~V} \\ & \mathrm{~V}_{\text {IL }}=\mathrm{V}_{\mathrm{LL}} \mathrm{max} \end{aligned}$	V	
		Q_{3}	2.7			$\mathrm{l}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$			
VoL	Output LOW Voltage	$\begin{aligned} & \mathbf{Q}_{0}, \mathrm{Q}_{1}, \\ & \mathrm{Q}_{2}, \mathrm{Q}_{3} \end{aligned}$		0.35	0.5	$\mathrm{loL}=24 \mathrm{~mA}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\text {IH }}=2.0 \mathrm{~V} \\ & \mathrm{~V}_{\text {IL }}=\mathrm{V}_{\mathrm{IL}} \text { max } \end{aligned}$	V	
		Q_{3}		0.35	0.5	$\mathrm{loL}=8.0 \mathrm{~mA}$			
lozh	Output Off Current HIGH	$\begin{aligned} & \mathbf{Q}_{0}, Q_{1}, \\ & \mathbf{Q}_{2}, Q_{3} \end{aligned}$			20	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{\text {OUT }}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{E}}=2.0 \mathrm{~V} \end{aligned}$		$\mu \mathrm{A}$	
lozL	Output Off Current LOW	$\begin{aligned} & \mathbf{Q}_{0}, Q_{1}, \\ & Q_{2}, Q_{3} \end{aligned}$			-20	$\begin{aligned} & V_{\text {CC }}=M A X, V_{\text {OUT }}=0.5 \\ & V_{E}=2.0 \mathrm{~V} \end{aligned}$		$\mu \mathrm{A}$	
IH_{H}	Input HIGH Current				$\begin{aligned} & 20 \\ & 01 \\ & \hline \end{aligned}$	$\begin{aligned} & V_{c c}=M A X, V_{1} \\ & V_{C C}=M A X, V_{I} \end{aligned}$	$\begin{aligned} & \mathrm{V}=2.7 \mathrm{~V} \\ & \mathrm{~V}=7.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$	
11.	Input LOW Current				-04	$V_{C C}=$ MAX, $\mathrm{V}_{\text {I }}$	$=0.4 \mathrm{~V}$	mA	
los	Output Short Circuit Current (note 2)	$\begin{aligned} & \mathbf{Q}_{0}, Q_{1}, \\ & \mathbf{Q}_{2}, \mathrm{Q}_{3} \end{aligned}$	-30		-130	$V_{C C}=M A X, V_{\text {OUT }}=0 \mathrm{~V}$		mA	
		Q_{3}	-20		-100				
Icc	Power Supply Current				$\begin{aligned} & 34 \\ & 31 \end{aligned}$	Cond. a Cond. b	$V_{C C}=$ MAX (See Note 3)	mA	

Notes : 1 Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions
2. Not more than one output should be shorted at a time

3 Icc is measured with the outputs open, DS input and S input at 45 V and Pn inputs grounded under the following conditions a $O E$ at 45 V and a 3 V positive pulse applied to CP input b. OE and CP input grounded
(*) Typical values are at $\mathrm{V}_{\mathrm{CC}}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Test Conditions	Units
		Min.	Typ.	Max.		
$f_{\text {max }}$	Maximum Clock Frequency	30	45		$\mathrm{O}_{0}, \mathrm{O}_{1}, \mathrm{O}_{2}, \mathrm{O}_{3}$ outputs: $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=667 \Omega \\ & \mathrm{C}_{\mathrm{L}}=45 \mathrm{pF} \end{aligned}$ O_{3} output: $\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{~K} \Omega$ $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	MHz
$t_{\text {PHL }}$	Propagation Delay, High to Low Level Output from Clear		22	35		ns
tpLH	Propagation Delay Time Low to High Level Output		15	30		ns
tphL	Propagation Delay Time High to Low Level Output		20	30		ns
tpzH	Output Enable Time to High Level		15	25		ns
tpzL	Output Enable Time to Low Level		17	25		ns
tphz	Output Disable Time from High Level		11	17	$C_{L}=5 \mathrm{pF}$	ns
tplz	Output Disable Time from Low Level		12	20		ns

AC SET-UP REQUIREMENTS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter		Limits			Test Conditions	Units
			Min.	Typ.	Max.		
$t w(C P)$	Clock Pulse Width		16			$V_{C C}=5.0 \mathrm{~V}$	ns
ts^{*}	Set-up Time	Load/Shift Input All other Inputs	$\begin{aligned} & 40 \\ & 20 \\ & \hline \end{aligned}$				ns
$t^{*}{ }^{*}$	Hold Time		10				ns

* High or Low Level Data

AC WAVEFORMS AND LOAD CIRCUIT

Figure 1

The shaded areas indicate when the input is permitted to change for predictable output performance.

Figure 2

The shaded areas indicate when the input is permitted to change for predictable output performance
Figure 3

Figure 4

SC-0124

Figure 5.

QUAD 2-PORT REGISTER

- FULLY POSITIVE EDGE-TRIGGERED OPERATION
- SELECT FROM TWO DATA SOURCES
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS

DESCRIPTION

The T74LS399 is a Quad 2-Port Register. It is logical equivalent to a quad 2 -input multiplexer followed by a 4-bit edge-triggered register. The selected data is transferred to the output register on the LOW-toHIGH transition of the Clock input.

PIN NAMES

\mathbf{S}	COMMON SELECT INPUT
CP	CLOCK (Active HIGH going edge) INPUT
$\mathrm{I}_{\mathrm{a}}-\mathrm{l}_{\mathrm{od}}$	DATA INPUT FROM SOURCE 0
$\mathrm{I}_{\mathrm{a}}-\mathrm{I}_{1 \mathrm{~d}}$	DATA INPUT FROM SOURCE 1
$\mathrm{Q}_{\mathrm{a}}-\mathrm{Q}_{\mathrm{d}}$	REGISTER TRUE OUTPUTS
$Q_{\mathrm{a}}-Q_{\mathrm{d}}$	REGISTER COMPLEMENTARY OUTPUTS

PIN CONNECTION (top view)

FUNCTIONNAL DESCRIPTION

This high speed Quad 2-Port Register selects four bits of data from two sources (Port) under the control of a Common Select Input (S). The 4-bit Output Register where selected data are transferred is synchronous with the LOW-to-HIGH transition of the

Clock input (CP). The 4-bit RS type output register is fully edge-triggered. Predictable operation is assured if Data inputs (I) and select inputs (S) are kept stable only a set-up time prior to and hold time after the LOW-to-HIGH transition of the Clock input.

TRUTH TABLE

Inputs			Outputs
\mathbf{S}	$\mathrm{I}_{\mathbf{0}}$	$\mathrm{I}_{\mathbf{1}}$	\mathbf{Q}
I	I	X	L
I	h	X	H
h	X	I	L
h	X	h	H

L = LOW Voltage Level
$H=H I G H$ Voltage Level
$X=$ Don't care
I = LOW Voltage Level one set-up Tıme Prıor to the LOW-to-HIGH Clock Transition
$\mathrm{h}=$ High Voltage Level one set-up Time Prior to the LOW-to-HIGH Clock Transition

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{C C}$	Supply Voltage	-0.5 to 7	V
V_{1}	Input Voltage, Applied to Input	-0.5 to 15	V
V_{0}	Output Voltage, Applied to Output	0 to 10	V
I_{1}	Input Current, Into Inputs	-30 to 5	mA
I_{O}	Output Current, Into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maximum Ratıngs" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage		Temperature	
	Min.	Typ.		
T74LS399XX	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
V_{IH}	Input HIGH Voltage	2.0			Guaranteed Voltage for a	ut HIGH puts	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	Guaranteed I Voltage for al	ut LOW puts	V
V_{CD}	Input Clamp Diode Voltage		-0.65	-1.5	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{IIN}$	- 18 mA	V
V_{OH}	Output HIGH Voltage	2.7	3.4		$\begin{aligned} & V_{C C}=M I N, I_{C} \\ & V_{I N}=V_{I H} \text { or } V \end{aligned}$	$\begin{aligned} & =-400 \mu \mathrm{~A} \\ & \text { per Truth Table } \end{aligned}$	V
VoL	Output LOW Voltage		0.25	0.4	$\mathrm{lOL}=4.0 \mathrm{~mA}$	$\begin{aligned} & V_{C C}=M I N \\ & V_{I N}=V_{I H} \text { or } V_{I L} \\ & \text { per Truth Table } \end{aligned}$	V
			0.35	0.5	$\mathrm{loL}=8.0 \mathrm{~mA}$		V
IH	Input HIGH Current			$\begin{aligned} & 20 \\ & 40 \\ & \hline \end{aligned}$	$\begin{aligned} & V_{C C}=M A X, V_{I N}=2.7 \mathrm{~V} \\ & V_{C C}=M A X, V_{I N}=7.0 \mathrm{~V} \end{aligned}$		$\mu \mathrm{A}$ mA
I/L	Input LOW Current			- 0.4	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$		mA
los	Output Short Circuit Current (note 2)	- 20		- 100	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		mA
Icc	Supply Current			13	$V_{C C}=M A X$		mA

Notes : 1 For conditions shown as MIN or MAX, use the appropriate value specified under garanteed operating ranges. 2. Not more than one output should be shorted at a time
(*) Typical values are at $\mathrm{V}_{\mathrm{cc}}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

AC CHARACTERISTICS : $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter		Limits			Test Conditions
		Min.	Typ.	Max.		
t						
t PLH	Propagation Delay, Clock to		18	27	$\mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	ns

AC SET-UP REQUIREMENTS : $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter		Limits		Test Conditions	Unit
		Min.	Typ.	Max.		
t_{w}	Clock Pulse Width	20				ns
t_{s}	Data Set-up Time	25			$V_{c c}=5.0 \mathrm{~V}$	ns
t_{s}	Select Set-up Time	45				ns
t_{h}	Hold Time, Any Input	0				ns

DEFINITION OF TERMS

SET-UP TIME (t_{s}) is defined as the minimum time required for the correct logic level to be present at the logic input prior to the clock transition from LOW to HIGH in order to be recognized and transferred to the outputs.
HOLD TIME (th_{h}) is defined as the minimum time fol-
lowing the clock transition from LOW to HIGH that the logic level must be maintained at the input in order to ensure continued recognition. A negative HOLD TIME indicates that the correct logic level may be released prior to the clock transition from LOW to HIGH and still be recognized.

AC WAVEFORMS

Figure 1.

* The shaded areas indicate when the input is permitted to change for predictable output performance

Figure 2.

*The shaded areas indicate when the input is permitted to change for predictable output performance
Figure 3.

DUAL DECADE COUNTER

- DUAL VERSION OF 74LS90
- INDIVIDUAL ASYNCHRONOUS CLEAR AND PRESET TO 9 FOR EACH COUNTER
- COUNT FREQUENCY - TYPICALLY 35 MHz
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS
- TTL AND CMOS COMPATIBLE

DESCRIPTION

The T74LS490 contains a pair of high-speed 4stage ripple counters. Each half of the T74LS490 has individual Clock, Master Reset and Master Set (Preset 9) inputs. Each section counts in 8, 4, 2, 1 BCD code.

PIN NAMES

MS	MASTER SET (set to 9) INPUT
MR	MASTER RESET
CP	CLOCK INPUT (active HIGH
$Q_{0}-Q_{3}$	gorng edge)
COUNTER OUTPUTS	

B1
(Plastic Package)

M1 (Micro Package)

D1
(Ceramic Package)

C1
(Plastic Chip Carrier)

PIN CONNECTION (top view)

DUAL IN LINE

CHIP CARRIER

NC $=$ No Internal Connection

LOGIC SYMBOL AND LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	-0.5 to 7	V
$\mathrm{~V}_{1}$	Input Voltage, Applied to Input	-0.5 to 5.5	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage, Applied to Output	-0.5 to 10	V
I_{1}	Input Current, into Inputs	-30 to 5	mA
I_{O}	Output Current, into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maxımum Ratıngs" may cause permanent damage to the device. This is a stress ratıng only oand functional operation to the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage			Temperature
	Min.	Typ.	Max.	
T74LS490XX	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

XX = Package type

TRUTH TABLE

Count	Outputs			
	Q3	Q2	Q1	Q0
0	L	L	L	L
1	L	L	L	H
2	L	L	H	L
3	L	L	H	H
4	L	H	L	L
5	L	H	L	H
6	L	H	H	L
7	L	H	H	H
8	H	L	L	L
9		H	L	L

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter		Limits			Test Condition (note 1)		Unit
			Min.	Typ. (*)	Max.			
V_{IH}	Input HIGH Voltage		2.0			Guaranteed Input HIGH Voltage for All Inputs		V
VIL	Input LOW Voltage				0.8	Guaranteed for All Inputs	ut LOW Voltage	V
$V_{C D}$	Input Clamp Diode Voltage			-0.65	-1.5	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IIN}$	- 18 mA	V
VOH	Output HIGH Voltage		2.7			$\begin{aligned} & V_{C C}=M I N, I O \\ & V_{I N}=V_{I H} \text { or } V \end{aligned}$	$\begin{aligned} & =-400 \mu \mathrm{~A} \\ & \text { per Truth Table } \end{aligned}$	V
Vol	Output LOW Voltage			0.25	0.4	$\mathrm{loL}=4.0 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{cc}}=\mathrm{MIN}$,	V
				0.35	0.5	$\mathrm{loL}=8.0 \mathrm{~mA}$	per Truth Table	V
${ }_{1 H}$	Input HIGH Current	MR, MS			20	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$		$\mu \mathrm{A}$
		$\overline{\mathrm{CP}}$			60			
		$\overline{\mathrm{CP}}$			-300	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=\mathrm{MAX}, \mathrm{~V}_{\mathrm{IN}}=7.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=5.5 \mathrm{~V} \mathrm{CP} \text { Only } \end{aligned}$		$\mu \mathrm{A}$
		MR, MS			100			
$1 / 2$	Input LOW Current	$\overline{\mathrm{CP}}$			-2.4	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$		mA
		MR, MS			-0.4			
los	Output Short Circuit Current (note 2)		-20		- 100	$\mathrm{V}_{\text {cc }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		mA
Icc	Power Supply Current			19	30	$V_{C C}=M A X$		mA

Notes : 1. For condrtions shown as MIN or MAX, use the appropnate value specified under guaranteed operating conditions for the device type 2. Not more than one output should be shorted at a time.
(*) Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

AC CHARACTERISTICS : $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

	Parameter		Limits			Test Conditions		Unit
Symbol			Min.	Typ.	Max.			
$f_{\text {max }}$	Maximum Input Count Frequency		25	35		Fig. 1	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & C_{L}=15 \mathrm{pF} \\ & R_{L}=2 \mathrm{kS} 2 \end{aligned}$	MHz
$\begin{aligned} & \overline{t_{\mathrm{PLH}}} \\ & \mathrm{t}_{\mathrm{PHLL}} \end{aligned}$	Propagation Delay, $\overline{\mathrm{CP}}$ to Q_{0}			$\begin{aligned} & 12 \\ & 13 \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$	Fig. 1		ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay, $\overline{\mathrm{CP}}$ to Q_{1} or Q_{3}			$\begin{aligned} & 24 \\ & 26 \\ & \hline \end{aligned}$	$\begin{aligned} & 39 \\ & 39 \\ & \hline \end{aligned}$	Fig. 3		ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \\ & \hline \end{aligned}$	Propagation Delay, $\overline{\mathrm{CP}}$ to Q_{2}			$\begin{aligned} & \hline 32 \\ & 36 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 54 \\ & 54 \\ & \hline \end{aligned}$	Fig. 2		ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay, MR to Output			24	39	Fig. 2		ns
$\begin{aligned} & \overline{t_{\text {PLH }}} \\ & t_{\text {PHHL }} \end{aligned}$	Propagation Delay, MS to Output	$\mathrm{Q}_{0}, \mathrm{Q}_{3}$		24	39	Fig. 2		ns
		$\mathrm{Q}_{1}, \mathrm{Q}_{2}$		20	36			

AC WAVEFORMS

Figure 1.

The number of Clock Pulses required between the tph and tple measurements can be determined from the Truth Table

Figure 2.

Figure 3.

LS533 - OCTAL TRANSPARENT LATCH WITH 3-STATE OUTPUTS LS534-OCTAL D-TYPE FLIP-FLOP WITH 3-STATE OUTPUTS

DESCRIPTION

The T74LS533 is an Octal Transparent latch with 3State Outputs designed for bus organised sustem applications. When Latch Enable (LE) is High the data appears transparent to the flip-flop when it is Low the data is latched. When the output Enable goes HIGH the bus output is in the high impedance state. The LS533 is functionally indentical to the LS373, with the exception of the inverted outputs.
The T74LS534 is an octal D-Type flip-flop with 3State Outputs designed for bus oriented applications. It is composed of a buffered clock and an output Enable common to all flip-flops. The LS534 is functionally identical to the LS374 with the exception that the outputs are inverted.

PIN NAMES

$\mathrm{D}_{0}-\mathrm{D}_{7}$	DATA INPUTS
LE	LACTCH ENABLE (active HIGH) INPUT
CP	CLOCK (active HIGH going edge)
OE	INPUT
$\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{7}$	OUTPUT ENABLE (active LOW) INPUT
OUTPUTS	

PIN CONNECTION (top view)

CHIP CARRIER

LOGIC SYMBOL

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{C C}$	Supply Voltage	-0.5 to 7	V
V_{I}	Input Voltage, Applied to Input	-0.5 to 15	V
V_{0}	Output Voltage, Applied to Output	-0.5 to 10	V
I_{I}	Input Current, into Inputs	-30 to 5	mA
I_{O}	Output Current, into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maximum Ratings" may cause permanent damage to the device This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage		Temperature	
	Min.	Typ.		
T74LS533/534XX	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type .

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
V_{IH}	Input HIGH Voltage	2.0			Guaranteed Input HIGH Voltage for All Inputs		V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	Guaranteed Input LOW Voltage for All Inputs		V
$V_{C D}$	Input Clamp Diode Voltage		-0.65	-1.5	$\mathrm{V}_{C C}=\mathrm{MIN}, \mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$		V
V_{OH}	Output HIGH Voltage	2.4	3.1		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IOH}=-2.6 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathbb{H}} \end{aligned}$		V
VoL	Output LOW Voltage		0.25	0.4	$\mathrm{loL}=12 \mathrm{~mA}$	$\begin{aligned} & V_{\mathrm{CC}}=M I N \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \end{aligned}$	V
			0.35	0.5	$\mathrm{loL}=24 \mathrm{~mA}$		V
lozh	Output Off Current HIGH			20	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$		
lozl	Output Off Current LOW			-20	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}$		
$1{ }_{1+}$	Input HIGH Current			$\begin{aligned} & 20 \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & V_{C C}=M A X, V_{I N}=2.7 \mathrm{~V} \\ & V_{C C}=M A X, V_{I N}=7.0 \mathrm{~V} \end{aligned}$		$\mu \mathrm{A}$ mA
1.1	Input LOW Current			-0.4	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$		mA
los	Output SHort Circuit Current (note 2)	- 30		- 130	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		mA
Icc	Power Supply Current			40	$V_{C C}=M A X$		mA

Notes: 1. Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions.
2. Not more than one output should be shorted at a tume.
(*) Typical values are at $\mathrm{V}_{\mathrm{Cc}}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Test Condition	Unit
		Min.	Typ.	Max.		
$\begin{aligned} & \text { tpLH } \\ & \text { tpht } \end{aligned}$	Propagation Delay, Data to Output (LS533 Only)		15	25	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \\ & \mathrm{C}_{\mathrm{L}}=45 \mathrm{pF} \end{aligned}$	ns
tpli	Propagation Delay, LE to Ouptput (LS533 Only)		20	35		ns
tpHL	Propagation Delay, LE to Ouptput (LS533 Only)		22	35		ns
tpLH	Propagation Delay, Clock to Output (LS534 Only)		16	30		ns
tphL	Propagation Delay, Clock to Output (LS534 Only)		24	30		ns
tpzH	Enable Time to High Level (LS533 Only)		16	30		ns
tpzı	Enable Time to Low Level (LS533 Only)		19	36		ns
tpzH	Enable Time to High Level (LS534 Only)		18	30		ns
tpzL	Enable Time to Low Level (LS534 Only)		18	30		ns
tpLz	Disable Time from Low Level (LS533 Only)		13	29	$\begin{aligned} & V_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \\ & \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \end{aligned}$	ns
tplz	Disable Tıme from Low Level (LS533 Only)		12	29		ns
tphz	Disable Time from High Level		11	24		ns

AC SET-UP REQUIREMENTS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Test Condition	Unit
		Min.	Typ.	Max.		
$\mathrm{t}_{\text {s }}$	Set-up Time (LS533 Only)	5			$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	ns
$\mathrm{t}_{\text {s }}$	Set-up Time (LS534 Only)	15	20			ns
t_{n}	Hold Time (LS533 Only)	20				ns
t_{n}	Hold Time (LS534 Only)	-3	0			ns
t_{w}	$\begin{array}{\|l} \hline \begin{array}{l} \text { Minimum Pulse WidtH } \\ \text { (LS533 Only) } \end{array} \\ \hline \end{array}$	15				ns
t_{w}	Minımum Pulse WidtH (LS534 Only)	10	13			ns

OCTAL BUFFER/LINE DRIVERS WITH 3-STATE OUTPUTS

- PNP INPUTS REDUCE LOADING
- 3-STATE OUTPUTS DRIVE BUS LINES
- INPUTS AND OUTPUTS OPPOSITE SIDE OF PACKAGE, ALLOWING EASIERS INTERFACE TO MICROPROCESSOR
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS

DESCRIPTION

The T74LS540/541 are Octal Buffers and Line Drivers. Although they have the same functions as LS240 and LS241, they offer a pinout with inputs and outputs on apposite sides of the package. These device are disigned to be used with 3-state memory address drivers, etc.

TRUTH TABLE

Inputs		Outputs		
$\bar{E}_{\mathbf{1}}$	$\overline{\mathrm{E}}_{\mathbf{2}}$	D	LS540	LS541
L	L	H	L	H
H	X	X	Z	Z
X	H	X	Z	Z
L	L	L	H	L

$\mathrm{L}=$ LOW Voltage Level
$\mathrm{H}=$ HIGH Voltage Level
$\mathrm{X}=$ Don't Care
$\mathrm{Z}=$ HIGH Impedance

PIN CONNECTION (top view)
DUAL IN LINE

LS540

LS541

NC = No Internal Connection

CHIP CARRIER

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{C C}$	Supply Voltage	-0.5 to 7	V
V_{1}	Input Voltage, Applied to Input	-0.5 to 15	V
V_{0}	Output Voltage, Applied to Output	0 to 10	V
I_{1}	Input Current, into Inputs	-30 to 5	mA
I_{O}	Output Current, into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage		Temperature	
	Min.	Typ.		
T74LS540/541XX	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit	
		Min.	Typ. ($\left.{ }^{(}\right)$	Max.				
V_{IH}	Input HIGH Voltage	2.0			Guaranteed Input HIGH Voltage for All Input		V	
VIL	Input LOW Voltage			0.8	Guaranteed Input LOW Voltage for All Input		V	
$V_{C D}$	Input Clamp Diode Voltage		-0.65	-1.5	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{liN}$	- 18 mA	V	
V OH	Output HIGH Voltage	2.4	3.4		$\mathrm{V}_{C C}=\mathrm{MIN}$, $\mathrm{l}^{\text {H}}$	$=-3.0 \mathrm{~mA}$	V	
		2.0			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IO} \\ & \mathrm{~V}_{\mathrm{IL}}=0.5 \mathrm{~V} \end{aligned}$	$=-15 \mathrm{~mA}$	V	
Vol	Output LOW Voltage		0.25	0.4	$\mathrm{loL}=4.0 \mathrm{~mA}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{H}} \\ & \text { per Truth Table } \end{aligned}$	V	
			0.35	0.5	$\mathrm{loL}=8.0 \mathrm{~mA}$		V	
$\mathrm{V}_{\mathrm{T}_{+}} \mathrm{V}_{\mathrm{T}_{-}}$	Hysteresis	0.2	0.4		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$			
lozh	Output Off Current HIGH			20	$V_{C C}=M A X, V$	UT $=2.7 \mathrm{~V}$	$\mu \mathrm{A}$	
lozz	Output Off Current LOW			-20	$V_{C C}=M A X, V^{\prime}$	Ut $=0.4 \mathrm{~V}$	$\mu \mathrm{A}$	
$\mathrm{liH}^{\text {H}}$	Input HIGH Current			$\begin{aligned} & 20 \\ & 0.1 \end{aligned}$	$\begin{aligned} & V_{C C}=M A X, V_{I N}=2.7 \mathrm{~V} \\ & V C C=M A X, V_{I N}=7.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$	
11.	Input LOW Current			-0.2	$\mathrm{VCC}=\mathrm{MAX}$,	$\mathrm{N}=0.4 \mathrm{~V}$	mA	
los	Output Short Circuit Current (note 2)	-40		- 225	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		mA	
Icc	Power Supply Current $\begin{array}{lr}\text { Total, Output HIGH } & \text { LS540 } \\ & \text { LS541 }\end{array}$			$\begin{aligned} & 25 \\ & 32 \end{aligned}$	$\mathrm{V}_{\mathrm{cc}}=\mathrm{MAX}$		mA	
	Total, Output LOW $\begin{array}{lr}\text { LS540 } \\ & \text { LS541 }\end{array}$			$\begin{aligned} & 45 \\ & 52 \\ & \hline \end{aligned}$				
				$\begin{aligned} & 52 \\ & 55 \\ & \hline \end{aligned}$				

Notes : 1. For conditions shown as MIN or MAX, use the appropriate value specified under guaranteed operating ranges.
2. Not more than one output should be shorted at a time.
(*) Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

AC CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right)$

Symbol	Parameter		Limits			Test Conditions (note 1)	Unit
			Min.	Typ.	Max.		
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay, Data to Output	$\begin{aligned} & \text { LS540 } \\ & \text { LS541 } \\ & \text { LS540 } \\ & \text { LS541 } \end{aligned}$		$\begin{aligned} & 9.0 \\ & 12 \\ & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & 15 \\ & 18 \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=45 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \end{aligned}$	ns ns
$t_{\text {PZH }}$	Output Enable Time to HIGH Level	$\begin{aligned} & \text { LS540 } \\ & \text { LS541 } \end{aligned}$		$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 25 \\ & 32 \end{aligned}$		ns
$t_{\text {PzL }}$	Output Enable Time to LOW LEvel	$\begin{aligned} & \text { LS540 } \\ & \text { LS541 } \end{aligned}$		$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 38 \\ & 38 \end{aligned}$		ns
$t_{\text {PHZ }}$	Output Disable Tıme from HIGH Level	$\begin{aligned} & \text { LS540 } \\ & \text { LS541 } \end{aligned}$		$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 18 \\ & 18 \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}$	ns
tplz	Output Diable Time to LOW Level	$\begin{aligned} & \text { LS540 } \\ & \text { LS541 } \end{aligned}$		$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 25 \\ & 29 \end{aligned}$		ns

AC WAVEFORMS

Figure 1.

Figure 3.

Figure 2.

Figure 4.

AC LOAD CIRCUIT

Figure 5.

OCTAL BUS TRANSCEIVERS

DESCRIPTION

The T74LS645 is an octal bus transceiver designed for asynchronous two-way communication between data buses. Control function implementation reduces to a minimum external timing requirements. This circuit permits transmission of data from the A bus to B or from the B bus to A bus depending upon the logic level of the direction control (DIR) input. The device can be disabled by the Enable input (G) causing the buses to be effectively isolated.

TRUTH TABLE

CONTROL INPUTS		OPERATION
$\overline{\mathbf{G}}$	DIR	
L	L	B Data to A Bus
L	H	A Data to B Bus
H	X	Isolation

L = LOW Voltage Level
$H=H I G H$ Voltage Level
X = Don't Care

PIN CONNECTION (top view)

CHIP CARRIER

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	-0.5 to 7	V
$\mathrm{~V}_{1}$	Input Voltage, Applied to Input	-0.5 to 15	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage, Applied to Output	-0.5 to 10	V
I_{I}	Input Current, into Inputs	-30 to 5	mA
I_{O}	Output Current, into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied. Exposure to absolute maxımum rating conditions for extended periods may affect device reliability.

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage		Temperature	
	Min.	Typ.		
T74LS645XX	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ package type.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
V_{IH}	Input HIGH Voltage	2.0			Guaranteed Input HIGH Voltage for all Inputs		V
VIL	Input LOW Voltage			0.6	Guaranteed Input LOW Voltage for all Inputs		V
$V_{C D}$	Input Clamp Diode Voltage		-0.65	-1.5	$\mathrm{V}_{C C}=\mathrm{MIN}, \mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$		V
V OH	Output HIGH Voltage	$\begin{aligned} & 2.4 \\ & 2.0 \end{aligned}$	3.4		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-3.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Vol	Output LOW Voltage		0.25	0.4	$\mathrm{lOL}=12 \mathrm{~mA}$	$\begin{aligned} & V_{C C}=M I N \\ & V_{I N}=V_{I H} \text { or } V_{I L} \\ & \text { per Truth Table } \end{aligned}$	V
			0.35	0.5	$\mathrm{lOL}=24 \mathrm{~mA}$		V
lozh	Output Off Current HIGH			20	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$		$\mu \mathrm{A}$
lozl	Output Off Current LOW			-400	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}$		$\mu \mathrm{A}$
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current DIR or $\overline{\mathrm{G}}$ DIR or \bar{G} A or B			$\begin{aligned} & 20 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & V_{C C}=M A X, V_{\mathbb{N}}=2.7 \mathrm{~V} \\ & V_{C C}=M A X, V_{\mathbb{N}}=7.0 \mathrm{~V} \\ & V_{C C}=M A X, V_{\mathbb{N}}=5.5 \mathrm{~V} \end{aligned}$		$\mu \mathrm{A}$ mA mA
IlL	Input LOW Current			-0.4	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$		mA
los	Output Short Circuit Current (note 2)	-40		- 225	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		mA
Icc	Supply Current Total, Output HIGH Total, Output LOW Total at HIGH Z			$\begin{aligned} & 70 \\ & 90 \\ & 95 \end{aligned}$	$V_{C C}=M A X$		mA

Notes :1. For conditions shown as MIN or MAX, use the appropriate value specified under guaranteed operating ranges.
2. Not more than one output should be shorted at a time.
(*) Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Test Conditions	Units
		Min.	Typ.	Max.		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, A to B		$\begin{aligned} & 8.0 \\ & 11 \\ & \hline \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=45 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \end{aligned}$	ns
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, B to A		$\begin{aligned} & 8.0 \\ & 11 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$		ns
$\begin{aligned} & \text { tpzL } \\ & \text { tpzH } \end{aligned}$	Output Enable Time, G DIR to A		$\begin{aligned} & 31 \\ & 26 \\ & \hline \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$		ns
$\begin{aligned} & \text { tpz1 } \\ & t_{\text {PZH }} \end{aligned}$	Output Enable Time, \bar{G} DIR to B		$\begin{aligned} & 31 \\ & 26 \\ & \hline \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \\ & \hline \end{aligned}$		ns
$\begin{aligned} & \text { tPLZ } \\ & t_{\text {PHZ }} \end{aligned}$	Output Disable Time, \bar{G} DIR to A		$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}$	ns
$\begin{aligned} & \mathrm{tPLZ} \\ & \mathrm{tPHZ}^{2} \end{aligned}$	Output Disable Time, \bar{G} DIR to B		$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$		ns

SGS-THOMSON
NACROELECTRONICS

4 X 4 REGISTER FILE WITH 3-STATE OUTPUTS

- SIMULTANEOUS READWRITE OPERATION
- EXPANDABLE TO 512 WORDS OF n-BIT
- TYPICAL ACCESS TIME OF 20 ns
- 3-STATE OUTPUTS FOR EXPANSION
- TYPICAL POWER DISSIPATION OF 125 mW

DESCRIPTION

The TTLMSI T74LS670 is a high speed, low-power 4×4 Register File organized as four words by four bits. Separate read and write inputs, both address and enable, allow simultaneous read and write operation.
The 3-State outputs make it possible to connect up to 128 outputs to increase the word capacity up to 512 words. Any number of these device can be operated in parallel to generate an n-bit lenght.

PIN NAMES

$\mathrm{D}_{1}-\mathrm{D}_{4}$	DATA INPUTS
$\mathrm{W}_{\mathrm{A}}, \mathrm{W}_{\mathrm{B}}$	WRITE ADDRESS INPUTS
E_{W}	WRITE ENABLE (active LOW)
	INPUT
$\mathrm{R}_{\mathrm{A}}, \mathrm{R}_{\mathrm{B}}$	READ ADDRESS INPUTS
E_{R}	READ ENABLE (active LOW)
$\mathrm{Q}_{1}-\mathrm{Q}_{4}$	INPUT

The T74LS170 provides a simular function to this device but is features open-collector outputs.

PIN CONNECTION (top view)

WRITE FUNCTION TABLE AND READ FUNCTION TABLE

(see notes A, B and C)

Write Inputs			Word				
WB	WA	EW	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	
L	L	L	Q = D	00	00	00	
L	H	L	00	Q =D	00	00	
H	L	L	00	00	Q $=\mathrm{D}$	00	
H	H	L	00	00	00	Q $=\mathrm{D}$	
X	X	H	00	00	00	00	

(see notes A, and D)

Read			Inputs	Outputs			
RB	RA	ER	$\mathbf{0 1}$	$\mathbf{0 2}$	$\mathbf{0 3}$	$\mathbf{0 4}$	
L	L	L	W0B1	W0B2	W0B3	W0B4	
L	H	L	W1B1	W1B2	W1B3	W1B4	
H	L	L	W2B1	W2B2	W2B3	W2B4	
H	H	L	W3B1	W3B2	W3B3	W3B4	
X	X	H	Z	Z	Z	Z	

Notes : A. $H=H I G H$ Voltage Level, $L=$ LOW Voltage Level, $X=$ Don't Care, $Z=H I G H$ Impedance
B $Q=D=$ The four selected internal filp-flops will assume the state applied to the 4 external data inputs
C. $00=$ The level of 0 before the indicated input conditions were established.
D. W0B1 = The first bit word 0 , etc.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{C C}$	Supply Voltage	-0.5 to 7	V
V_{1}	Input Voltage, Applied to Input	-0.5 to 15	V
V_{O}	Output Voltage, Applied to Output	-0.5 to 10	V
I_{1}	Input Current, into Inputs	-50 to 5	mA
I_{0}	Output Current, into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maxımum Ratıngs" may cause permanent damage to the device This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied. Exposure to absolute maxımum rating conditions for extended periods may affect device reliability

GUARANTEED OPERATING RANGE

Part Numbers	Supply Voltage			Temperature
	Min.	Typ.	Max.	
T74LS670XX	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$X X=$ Package type .

LOGIC SYMBOL AND LOGIC DIAGRAM

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition (note 1)		Unit
		Min.	Typ. (*)	Max.			
V_{H}	Input HIGH Voltage	2.0			Guaranteed for All Input	ut HIGH Voltage	V
VIL	Input LOW Voltage			0.8	Guaranteed for All Input	ut LOW Voltage	V
$V_{C D}$	Input Clamp Diode Voltage		-0.65	-1.5	$\mathrm{V}_{C C}=\mathrm{MIN}, \mathrm{l}$	- 18 mA	V
Vor	Output HIGH Voltage	2.4	3.1		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { MIN, } \mathrm{IOH}=-2.6 \mathrm{~mA} \\ & \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {IH }} \text { or } \mathrm{V}_{\mathrm{IL}} \text { per Truth Table } \end{aligned}$		V
VoL	Output LOW Voltage		0.25	0.4	$\mathrm{loL}=4.0 \mathrm{~mA}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \text { per Truth Table } \end{aligned}$	V
			0.35	0.5	$\mathrm{loL}=8.0 \mathrm{~mA}$		V
lozh	Output Off Current HIGH			20	$\begin{aligned} & V_{C C}=M A X, V_{\text {OUT }}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{I H}=2.0 \mathrm{~V} \end{aligned}$		$\mu \mathrm{A}$
lozl	Output Off Current LOW			-20	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{\text {OUT }}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\text {IH }}=2.0 \mathrm{~V} \end{aligned}$		$\mu \mathrm{A}$
$\mathrm{IH}^{\text {H }}$	Input HIGH Current Any D, R or W Ew \bar{E}_{E}			$\begin{array}{r} 20 \\ 40 \\ 60 \\ \hline \end{array}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$		$\mu \mathrm{A}$
	$\begin{aligned} & \text { Any D, R or W } \\ & \bar{E}_{w} \\ & E_{R} \end{aligned}$			$\begin{aligned} & \hline 0.1 \\ & 0.2 \\ & 0.3 \end{aligned}$	$V C C=M A X, V_{1 N}=7.0 \mathrm{~V}$		mA
ILL	Input LOW Current Any D, R or W Ew \bar{E}_{F}			$\begin{array}{r} -0.4 \\ -0.8 \\ -1.2 \\ \hline \end{array}$	$\mathrm{VCC}=\mathrm{MAX}, \mathrm{V}_{1 \mathrm{~N}}=0.4 \mathrm{~V}$		mA
los	Output Short Circuit Current (note 2)	- 30		- 130	$\mathrm{V}_{\text {cc }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		mA
Icc	Power Supply Current (note 3)		30	50	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$		mA

Notes : 1. For conditions shown as MIN or MAX, use the appropnate value specified under guaranteed operating ranges.
2 Not more than one output should be shorted at a tıme.
3. Maximum lec is guaranteed for the following worst-case conditions: 45 V is applied to all data inputs and both enable inputs, all address inputs are grounded, and all outputs are open.
(*) Typical values are at $\mathrm{V}_{\mathrm{Cc}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

AC CHARACTERISTICS : $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Test Conditions		Unit
		Min.	Typ.	Max.			
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \end{aligned}$	Propagation Delay, R_{A} or R_{B} to Q Outputs		$\begin{aligned} & 23 \\ & 25 \end{aligned}$	$\begin{aligned} & 40 \\ & 45 \\ & \hline \end{aligned}$	Fig. 2	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$	ns
$\begin{aligned} & \text { tPLH } \\ & t_{\text {PHLL }} \end{aligned}$	Propagation Delay, Negative Going Ew to Q Outputs		$\begin{aligned} & 26 \\ & 28 \\ & \hline \end{aligned}$	$\begin{aligned} & 45 \\ & 50 \end{aligned}$	Fig. 1		ns
${ }^{\text {tpLH }}$ tphL	Propagation Delay, Data Inputs to Q Outputs		$\begin{aligned} & 25 \\ & 23 \\ & \hline \end{aligned}$	$\begin{aligned} & 45 \\ & 40 \end{aligned}$	Fig. 1		ns
$\mathrm{t}_{\text {PZ }}$	Enable Time, Negative Going E_{R} to Q Outputs Going HIGH		15	35	Figs. 4, 5	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF} \end{aligned}$	ns
tpzL	Enable Time, Negative Going E_{R} to Q Outputs Going LOW		22	40	Figs. 3, 5		ns
$\mathrm{t}_{\text {PHZ }}$	Disable Time, Positive Going \bar{E}_{R} to Q Outputs Off from HIGH		30	50	Figs. 4, 5		ns
$t_{\text {pLz }}$	Disable Time, Positive Going \bar{E}_{R} to Q Outputs Off from LOW		16	35	Figs. 3, 5		ns

AC CHARACTERISTICS : $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Test Conditions	Unit
		Min.	Typ.	Max.		
$t_{\text {w }}$	Clock Pulse Width (LOW) for $\overline{\mathrm{E}}_{\text {W }}$	25			$V_{c C}=5.0 \mathrm{~V}$ Fig. 3	ns
$\begin{gathered} \mathrm{t}_{\mathrm{s}} \mathrm{D} \\ (\text { note } 5) \end{gathered}$	Set-up Time, Data Inputs with Respect to Positive-going \bar{E}_{W}	10				ns
$t_{n} \mathrm{D}$	Hold Time, Data Inputs with Respect to Positive-going \bar{E}_{W}	15				ns
(note 7)	Set-up Time, Write Select Inputs W_{A} and W_{B} with Respect to Negative-going E_{w}	15				ns
$t_{\text {h }} \mathrm{W}$	Hold Time, Write Select Inputs W_{A} and W_{B} with Respect to Negative-going \bar{E}_{W}	5				ns
trec	Recovery Time	25				ns

Notes: 5. The data to Enable Set-up time is defined as the time required for the logic level to be present at the data input prior to the enable transition from LOW to HIGH in order for latch to recognize and store the new data.
6. The hold time $\left(t_{h}\right)$ is defined as the minimum time following the enable transition from LOW to HIGH that the logic level must be maintained at the input in order to ensure continued recognition.
7. The address to Enable Set-up Time is the time before the HIGH to LOW Enable transtion that the address must be stable so that the correct latch is addressed and the other latches are not affected.
8. The Shaded areas indicate when the input is permitted to change for predictable output performance.

AC WAVEFORMS

Figure 1.

Figure 2.

SC-0086

Figure 3.

SC-0087

PACKAGES

	men					
a1	0.51			0.020		
B	1.39		1.65	0.055		0.065
b		0.5			0.020	
b1		0.25			0.010	
D			20			0.787
E		8.5			0.335	
e		2.54			0.100	
e3		15.24			0.600	
F			7.1			0.280
I			5.1			0.201
L		3.3			0.130	
Z	1.27		2.54	0.050		0.100

Plastic DIP14.

P001A

a1	0.51			0.020		
B	0.77		1.65	0.030		0.065
b		0.5			0.020	
b1		0.25			0.010	
D			20			0.787
E		8.5			0.335	
e		2.54			0.100	
e3		17.78			0.700	
F			7.1			0.280
1			5.1			0.201
L		3.3			0.130	
Z			1.27			0.050

§/. SGS-THOMSON

					Inch	
a1	0.254			0.010		
B	1.39		1.65	0.055		0.065
b		0.45			0.018	
b1		0.25			0.010	
D			25.4			1.000
E		8.5			0.335	
e		2.54			0.100	
e3		22.86			0.900	
F			7.1			0.280
I			3.93			0.155
L		3.3			0.130	
Z			1.34			0.053

FI. SGS-THOMSON

OUTLUNE AND mechanical data

P001J

DIM.	mm			Inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
a1		0.63			0.025	
b		0.45			0.018	
b1	0.23		0.31	0.009		0.012
b2		1.27			0.050	
D			32.2			1.268
E	15.2		16.68	0.598		0.657
e		2.54			0.100	
e3		27.94			1.100	
F			14.1			0.555
I		4.445			0.175	
L		3.3			0.130	

OUTLINE AND MECHANICAL DATA

P043A

				Inch \because		
	Tinic:	TYP.	Max.	Imal	TYR.'	Max.
A			20			0.787
B			7.0			0.276
D		3.3			0.130	
E	0.38			0.015		
e3		15.24			0.600	
F	2.29		2.79	0.090		0.110
G	0.4		0.55	0.016		0.022
H	1.17		1.52	0.046		0.060
L	0.22		0.31	0.009		0.012
M	1.52		2.54	0.060		0.100
N			10.3			0.406
P	7.8		8.05	0.307		0.317
Q			5.08			0.200

OUTLINE AND MECHANICAL DATA

P053C

DMM.	mm			inch		
	MM.	TYP.	MAX.	MM.	TYP.	MAX.
A			20			0.787
B			7			0.276
D		3.3			0.130	
E	0.38			0.015		
e3		17.78			0.700	
F	2.29		2.79	0.090		0.110
G	0.4		0.55	0.016		0.022
H	1.17		1.52	0.046		0.060
L	0.22		0.31	0.009		0.012
M	0.51	,	1.27	0.020		0.050
N			10.3			0.406
P	7.8		8.05	0.307		0.317
Q			5.08			0.200

OUTLINE AND MECHANICAL DATA

P053D

A			25			0.984
B			7.8			0.307
D		3.3			0.130	
E	0.5		1.78	0.020		0.070
e3		22.86			0.900	
F	2.29		2.79	0.090		0.110
G	0.4		0.55	0.016		0.022
1	1.27		1.52	0.050		0.060
L	0.22		0.31	0.009		0.012
M	0.51		1.27	0.020		0.050
N1			${ }^{\circ}$ (min.),	15° (max		
P	7.9		8.13	0.311		0.320
Q			5.71			0.225

P057H

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A			32.3			1.272
B	1305		13.36	0514		0.526
C	3.9		5.08	0.154		0.200
D	3			0.118		
E	0.5		1.78	0.020		0.070
e3		2794			1.100	
F	2.29		2.79	0.090		0.110
G	0.4		0.55	0.016		0022
I	117		1.52	0.046		0060
L	0.22		031	0.009		0.012
M	1.52		2.49	0.060		0.098
N1		40	$(m i n),. 15^{\circ}(m a x)$.			
P	15.4		15.8	0.606		0.622
Q			5.71			0.225

MECHANICAL DATA

Ceramic DIP24

P058C

A	9.78		10.03	0.385		0.395
B	8.89		9.04	0.350		0.356
D	4.2		4.57	0.165		0.180
d1		2.54			0.100	
d2		0.56			0.022	
E	7.37		8.38	0.290		0.330
e		1.27			0.050	
e3		5.08			0.200	
F		0.38			0.015	
G			0.101			0.004
M		1.27			0.050	
M1		1.14			0.045	

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A			1.75			0.069
a1	0.1		0.2	0.004		0.008
a2			1.6			0.063
b	0.35		0.46	0.014		0.018
b1	0.19		0.25	0.007		0.010
C		0.5			0.020	
c1			$45^{\circ}($ typ. $)$			
D	8.55		8.75	0.336		0.344
E	5.8		6.2	0.228		0.244
e		1.27			0.050	
e3		7.62			0.300	
F	3.8		4.0	0.15		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0020		0.050
M			0.68			0.027
S			$8^{\circ}($ max.)			

OUTLINE AND MECHANICAL DATA

Dim	man			Inch		
	MM.	TYP.	MAX	MMN.	TYP.	MAX.
A			1.75			0.069
a1	0.1		0.2	0.004		0.008
a2			1.6			0.063
b	0.35		0.46	0.014		0.018
b1	0.19		0.25	0.007		0.010
C		0.5			0.020	
C1			$45^{\circ}(t y p)$.			
D	9.8		10	0.386		0.394
E	5.8		6.2	0.228		0.244
e		1.27			0.050	
e3		8.89			0.350	
F	3.8		4.0	0.150		0.157
G	4.6		5.3	0.181		0.209
L	0.5		1.27	0.020		0.050
M			0.62			0.024
S			$80^{\circ}(m a x)$.			

OUTLINE AND MECHANICAL DATA

P013H

DIM.	mm			Inch		
	MiN.	TYP.	MAX.	MiN.	TYP.	MAX.
A			2.65			0.104
a1	0.1		0.2	0.004		0.008
a2			2.45			0.096
b	0.35		0.49	0.014		0.019
b1	0.23		0.32	0.009		0.013
C		0.5			0.020	
c1			45° (typ.)			
D	12.6		13.0	0.496		0.510
E	10		10.65	0.394		0.419
e		1.27			0.050	
e3		11.43			0.450	
F	7.4		7.6	0.291		0.300
L	0.5		1.27	0.020		0.050
M			0.75			0.030
S			$80^{\circ}($ max.)			

OUTLINE AND MECHANICAL DATA

P013L

r	$5 x^{2}-7$ nm			Inch		
	VIM.	TRP.	MAX	(man.	TVP.	max.
A			2.65			0.104
a1	0.1		0.2	0.004		0.008
a2			2.45			0.096
b	0.35		0.49	0.014		0.019
b1	0.23		0.32	0.009		0.013
C		0.5			0.020	
c1	45° (typ.)					
D	15.2		15.6	0.598		0.614
E	10		10.65	0.394		0.419
e		1.27			0.050	
e3		13.97			0.550	
F	7.4		7.6	0.291		0.300
L	0.5		1.27	0.020		0.050
M			0.75			0.030
S	8° (max.)					

OUTLINE AND NECHANICAL DATA

EUROPE

DENMARK

2730 HERLEV
Herlev Torv, 4
Tel (45-42) 948533
Telex 35411
Telefax (45-42) 948694

FINLAND

LOHJA SF-08150
Karjalankatu, 2
Tel 1215511
Telefax 1215566

FRANCE

94253 GENTILLY Cedex
7 - avenue Gallient - BP 93
Tel (33-1) 47407575
Telex 632570 STMHQ
Telefax (33-1) 47407910
67000 STRASBOURG
20, Place des Halles
Tel (33) 88755066
Telex 870001F
Telefax (33) 88222932

GERMANY

6000 FRANKFURT
Gutleutstrasse 322
Tel (49-69) 237492-3
Telex 176997689
Telefax (49-69) 231957
Teletex 6997689=STVBP

8011 GRASBRUNN

Bretonischer Ring 4
Neukeferloh Technopark
Tel (49-89) 46006-0
Telex 528211
Telefax (49-89) 4605454
Teletex 897107=STDISTR

3000 HANNOVER 51

Rotenburger Strasse 28A
Tel (49-511) 615960
Telex 175118418
Teletex 5118418 CSFBEH
Telefax (49-511) 6151243

5202 HENNEF

Reuther Strasse 1A-C
Tel (02242) 6088/6089
(02242) 4019/4010

Telefax (02242) 84181

8500 NÜRNBERG 20

Erlenstegenstrasse, 72
Tel (49-911) 59893-0
Telex 626243
Telefax (49-911) 5980701

7000 STUTTGART 1

Oberer Kırchhaldenweg 135
Tel (49-711) 692041
Telex 721718
Telefax (49-711) 691408

ITALY

20090 ASSAGO (MI)
Vle Mılanofiorı - Strada 4 - Palazzo A/4/A
Tel (39-2) 892131 (10 linee)
Telex 330131-330141 SGSAGR
Telefax (39-2) 8250449

40033 CASALECCHIO DI RENO (BO)

ViaR Fucinı, 12
Tel (39-51) 591914
Telex 512442
Telefax (39-51) 591305

00161 ROMA

Via A Torlonia, 15
Tel (39-6) 8443341
Telex 620653 SGSATE I
Telefax (39-6) 8444474

NETHERLANDS

5652 AR EINDHOVEN

Meerenakkerweg 1
Tel (31-40) 550015
Telex 51186
Telefax (31-40) 528835

SPAIN

08021 BARCELONA
Calle Platon, $64^{\text {th }}$ Floor, $5^{\text {th }}$ Door
Tel (34-3) 4143300-4143361
Telefax (34-3) 2021461

28027 MADRID

Calle Albacete, 5
Tel (34-1) 4051615
Telex 46033 TCCEE
Telefax (34-1) 4031134

SWEDEN

S-16421 KISTA

Borgarfjordsgatan, 13-Box 1094
Tel (46-8) 7939220
Telex 12078 THSWS
Telefax (46-8) 7504950

SWITZERLAND

1218 GRAND-SACONNEX (GENEVA)
Chemin Francois-Lehmann, 18/A
Tel (41-22) 7986462
Telex 415493 STM CH
Telefax (41-22) 7984869

UNITED KINGDOM and EIRE

MARLOW, BUCKS

Planar House, Parkway
Globe Park
Tel (44-628) 890800
Telex 847458
Telefax (44-628) 890391

AMERICAS

BRAZIL
05413 SÃO PAULO
R Henrique Schaumann 286-CJ33
Tel (55-11) 883-5455
Telex (391)11-37988 "UMBR BR"
Telefax 11-551-128-22367

U.S.A.

NORTH \& SOUTH AMERICAN
MARKETING HEADQUARTERS
1000 East Bell Road
Phoenix, AZ 85022
(1)-(602) 867-6100

SALES COVERAGE BY STATE

ALABAMA

Huntsville - (205) 533-5995

ARIZONA

Phoenix-(602) 867-6217

CALIFORNIA

Santa Ana - (714) 957-6018
San Jose - (408) 452-8585

COLORADO

Boulder (303) 449-9000

ILLINOIS

Schaumburg - (708) 517-1890
INDIANA
Kokomo - (317) 459-4700
MASSACHUSETTS
Lincoln - (617) 259-0300

MICHIGAN

Livonia - (313) 462-4030

NEW JERSEY

Voorhees - (609) 772-6222

NEW YORK

Poughkeepsie - (914) 454-8813
NORTH CAROLINA
Raleigh - (919) 787-6555

TEXAS

Carrollton - (214) 466-8844
FOR RF AND MICROWAVE
POWER TRANSISTORS CON-
TACT
THE FOLLOWING REGIONAL
OFFICE IN THE U.S.A.

PENNSYLVANIA

Montgomeryville - (215) 362-8500

ASIA / PACIFIC

AUSTRALIA

NSW 2027 EDGECLIFF
Suite 211, Edgecliff centre
203-233, New South Head Road
Tel (61-2) 3273922
Telex 071126911 TCAUS
Telefax (61-2) 3276176

HONG KONG

WANCHAI

22nd Floor - Hopewell centre
183 Queen's Road East
Tel (852-5) 8615788
Telex 60955 ESGIES HX
Telefax (852-5) 8656589

INDIA

NEW DELHI 110001

LiasonOffice
62, Upper Ground Floor
World Trade Centre
Barakhamba Lane
Tel 3715191
Telex 031-66816 STMI IN
Telefax 3715192

MALAYSIA

PULAU PINANG 10400

4th Floor - Surte 4-03
Bangunan FOP-123D Jalan Anson
Tel (04) 379735
Telefax (04) 379816

KOREA

SEOUL 121
8th floor Shinwon Building
823-14, Yuksam-Dong
Kang-Nam-Gu
Tel (82-2) 553-0399
Telex SGSKOR K29998
Telefax (82-2) 552-1051

SINGAPORE

SINGAPORE 2056

28 Ang Mo Kio - Industrial Park 2
Tel (65) 4821411
Telex RS 55201 ESGIES
Telefax (65) 4820240

TAIWAN

TAIPEI

12th Floor
571, Tun Hua South Road
Tel (886-2) 755-4111
Telex 10310 ESGIE TW
Telefax (886-2) 755-4008

JAPAN

TOKYO 108

Nissekı - Takanawa Bld 4F 2-18-10 Takanawa

Minato-Ku

Tel (81-3) 3280-4121
Telefax (81-3) 3280-4131

Information furnıshed is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent nghts of SGS-THOMSON Microelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied SGS-THOMSON Microelectronics products are not authorized for use as critical components in Ife support devices or systems without express written approval of SGS-THOMSON Microelectronics.

Cover design by Keith \& Koppel, Segrate, Italy
Printed by Garzantı, Cernusco S./N., Italy
© 1991 SGS-THOMSON Microelectronics - Printed in Italy - All Rights Reserved
SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - United Kingdom - U.S.A.

[^0]: * Omitted when the intnnsic quality meets the specified quality level
 ** For non military products, these reliability tests can be performed after step 23 on 100% electrically tested samples (when requested)

[^1]: * Values referred to the end of each year.

[^2]: Notes : 1. For conditions shown as MIN or MAX, use the appropriate value specified under guaranteed operatıng ranges.
 2. Not more than one output should be shorted at a tıme.
 $\left(^{*}\right)$ Typical values are at $\mathrm{V}_{\mathrm{Cc}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^3]: * With Open Collector Output

[^4]: * Open Collector Ouputs

[^5]: * The number of Clock Pulses required between the tphl and tpur measurements can be determined from the appropriate Truth Tables.

[^6]: $H=H I G H$ Voltage Level
 L = LOW Voltage Level
 $X=$ Don't Care

[^7]: H = HIGH Voltage Level L = LOW Voltage Level $X=$ Don't Care

[^8]: $X X=$ package type

[^9]: $X X=$ package type

[^10]: Stresses in excess of those listed under "Absolute Maximum Ratings" may cause permanent damage to the device This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specrication is not implied Exposure to absolute maximum rating conditions for extended periods may affect device reliability

[^11]: H = HIGH Voltage Level
 L = LOW Voltage Level

[^12]: $X X=$ Package type

[^13]: * The shaded areas indicate when the input is permitted to chang for predictable output performance

[^14]: XX = package type

