ST6210/ST6215 ST6220/ST6225

DATABOOK

$3^{\text {rid }}$ EDITION

S-THOMSON

:ROELECTRONICS

ST6210/ST6215 ST6220/ST6225

DATABOOK

$3^{\text {rd }}$ EDITION

AUGUST 1993

USE IN LIFE SUPPORT DEVICES OR SYSTEMS MUST BE EXPRESSLY AUTHORIZED

SGS-THOMSON PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF SGS-THOMSON Microelectronics. As used herein:

1. Life support devices or systems are those which (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided with the product, can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can reasonably be expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

TABLE OF CONTENTS

INTRODUCTIONGENERAL INDEX 7
ST621x/2x DATASHEETS 9
ST621xB/2xB DATASHEETS 75
ST626x DATASHEETS 99
fuzzyTECH ${ }^{\text {TM }}$ 123
ST62 20 STARTER KIT 125
DEVELOPMENT TOOLS 127
PROGRAMMING MANUAL 141
APPLICATION NOTES 187

INTRODUCTION

SGS-THOMSON Microelectronics provides a wide range of microcontroller products to suit all major application environments. From the high level control of systems (INMOS Transputer, ST9 and ST10 families), through a range of intermediate level products (Second-sourced 6801, 6805, Z8) to controllers offering the economical solutions to the control of small systems. SGS-THOMSON has introduces the ST6 family, enhanced by the multi-purpose CMOS technology integratins non-volatile EPROM and EEPROM memories, to continue the level of economy initially offered by the COPs family.
The ST6 family has been developped to suit fully flexible control systems, by maximising the features integrated onto the silicon and accordingly minimising the number of external devices required. This brings the benefit of reducing the total system cost, very attractive for high volume control equipment among consumer, industrial and automotive applications. For example the 20 pin surface mounting ST6210 microcontroller, together with one crystal oscillator or ceramic resonator, two low value capacitors and an SGS-THOMSON logic-level triac can easily form the heart of a controller for a mains supplied motor. The 20mA output drive capability, timers, the built-in latchup protection and the integral Analog to Digital Converter altogether provide an economical solution.

For user input and feedback, ST6 family members also provide efficient keyboard scanning configurations, direct LCD display drive, as well as direct control through potentiometers.
Other family members offer high reliability EEPROM for parameter storage. All of them have EPROM and OTP ROM equivalent parts for quick preproduction evaluation and test, shortening the critical Time to Market during the development phase. This is aided by full-feature development support tools: Assemblers and Linkers, Software simulators, Real-time Hardware Emulators and production EPROM programmers.

Further ST6 family members are dedicated to TV and Satellite tuning control applications (please refer to the SGS-THOMSON Video Products Databook, Volume 1 Signal Processing, for further information on the ST63 dedicated products).

The ST62E10 EPROM version of the SGS-THOMSON ST62XX CMOS single chip microcomputer family, directly compatible with the ST621X ROM devices.

Type Number	Function	Page Number
ST6210/15/20/25	8-Bit HCMOS MCUs with A/D Converter .	11
$\begin{aligned} & \text { ST62T10/T15/T20/ } \\ & \text { T25/E20/E25 } \end{aligned}$	8-Bit OTP/EPROM HCMOS MCUs with A/D Converter	59
ST6210B/15B/20B/25B	8-Bit HCMOS MCUs with A/D Converter	77
$\begin{aligned} & \text { ST62T10B/T20B/E20B/ } \\ & \text { ST62T20B/T25B/E25B } \end{aligned}$	8-Bit OTP/EPROM HCMOS MCUs with A/D Converter	87
ST6260/65	8-Bit HCMOS MCUs with A/D Converter, EEPROM Auto-Reload Timer	101
ST62E60/T60/E65/T65	8-Bit EPROM HCMOS MCUs with A/D Converter, EEPROM \& Auto-Reload Timer	111
fuzzyTECH ${ }^{\text {TM }}$ ST6 Explorer Edition	Fuzzy Logic Compiler for ST6	123
ST62 20 Starter Kit	Starter Kit for ST622x/1x MCU Family	125
ST6-SW	Software Development Tools for ST6 MCU Family	129
ST6xxx-EMU	Real Time Development Tools for ST6 MCU Family	133
ST62Exx-EPB	EPROM Programming Board for ST62 MCU Family	137
ST62Exx-GANG	Gang Programmer for ST62 MCU Family	139
ST62-ST63	Programming Manual	143
AN392	Microcontroller and Triac on the 110/200V mains	189
AN431	Using ST6 Analog Inputs for Multiple key Decoding	201
AN433	Ultra Fast NiCd Battery Charging Using ST6210 MCU	215
AN594	Direct Software LCD Driver with ST621x	227
AN434	Movement Detector Concepts for Noisy Environments	253
AN435	Designing With Microcontroller in Noisy Environments	257
AN593	ST62 In-Circuit Programming	273

SCS-THOMSON
NOCROERECTRONACS

ST621x DATASHEETS

FI SGS-THOMSON
 MICROELECTRONUCS

8-BIT HCMOS MCUs WITH A/D CONVERTER

- 3.0 to 6.0V Supply Operating Range
- 8 MHz Maximum Clock Frequency
- -40 to $+85^{\circ} \mathrm{C}$ Operating Temperature Range
- Run, Wait \& Stop Modes
- 5 different interrupt vectors
- Look-up table capability in ROM
- User ROM: 1828 bytes (ST6210,15)

3876 bytes (ST6220,25)

- Data ROM: User selectable size (in program ROM)
- Data RAM: 64 bytes
- PDIP20, PSO20 $(S T 6210,20)$ packages
- PDIP28, PSO28 (ST6215,25) packages
- 12/20 fully software programmable I/O as:
- Input with pull-up resistor
- Input without Pull-up resistor
- Input with interrupt generation
- Open-drain or push-pull outputs
- Analog Inputs
- 4 I/O lines can sink up to 20 mA for direct LED or TRIAC driving
- 8 bit counter with a 7 -bit programmable prescaler (Timer)
- Digital Watchdog
- 8 bit A/D Converter with up to 8 (ST6210, ST6220) and up to 16 (ST6215, ST6225) analog inputs
- On-chip clock oscillator
- Power-on Reset
- One external not maskable interrupt
- 9 powerful addressing modes
- The development tool of the ST621x, ST622x microcontrollers consists of the ST621x-EMU emulation and development system connected via a standard RS232 serial line to an MS-DOS Personal Computer
Device Summary page 3/48

Figure 1. ST6210,ST6220 Pin Configuration

Figure 2. ST6215,ST6225 Pin Configuration

V Do 1	28	V ss
TIMER [2	27	PAO
OSCin [3	26	PA1
OSCout [4	25	PA2
NMI [5	24	PA3
Ain/PC7 [6	23	PA4 / An
Ain/PC6 [7	22	PA5 / Ain
Ain/PC5 8	21	PA6 / Ain
Ain/PC4 [9	20	PA7 / AIn
test \square_{10}	19	PBO / An
$\overline{\text { RESET }} 11$	18	PB1 / Aln
Ain/PB7 [12	17	PB2 / Aln
Ain/PB6 13	16	PB3 / AIn
Aln/PB5 [14	15	PB4 / An VRo01804

Figure 3. ST6210,15,20,25 Block Diagram

GENERAL DESCRIPTION

The ST6210, ST6215, ST6220 and ST6225 microcontrollers are members of the 8-bit HCMOS ST62xx family, a series of devices oriented to lowmedium complexity applications. All ST62xx members are based on a building block approach: a common core is surrounded by a combination of on-chip peripherals (macrocells). The macrocells of the ST6210, ST6215, ST6220 and ST6225 are: the Timer peripheral that includes an 8 -bit counter with a 7-bit software programmable prescaler (Timer), the 8 -bit A/D Converter with up to 8 (ST6210, ST6220) and up to 16 (ST6215, ST6225) analog inputs (A/D inputs are alternate functions of I/O pins), the Digital Watchdog (DWD). Thanks to these peripherals these devices are well suited for automotive, appliance and industrial applications. The ST62E10, ST62E15, ST62E20 and ST62E25 EPROM versions are available for prototypes and low-volume production; also OTP versions are available. The only difference between ST6210,15 and ST6220,25 is the program memory size which is 2 K bytes for the ST6210,15 and 4K bytes for the ST6220,25.

DEVICE SUMMARY

Device	ROM (Bytes)	I/O Pins
ST6210	2 K	12
ST6215	2 K	20
ST6220	4 K	12
ST6225	4 K	20

PIN DESCRIPTION

$V_{D D}$ and $V_{\text {Ss }}$. Power is supplied to the MCU using these two pins. $V_{D D}$ is power and $V_{S S}$ is the ground connection.
OSCIN and OSCOUT. These pins are internally connected with the on-chip oscillator circuit. A quartz crystal, a ceramic resonator or an external clock signal can be connected between these two pins in order to allow the correct operation of the MCU with various stability/cost trade-offs. The OSCIN pin is the input pin, the OSCOUT pin is the output pin.
$\overline{\text { RESET. The active low } \overline{\text { RESET }} \text { pin is used to }}$ restart the microcontroller to the beginning of its program.
TEST. The TEST pin is used to place the MCU into special operating mode. The TEST must be held at VSS for normal operation (an internal pulldown resistor selects normal operating mode if TEST pin is not connected).
NMI. The NMI pin provides the capability for asynchronous applying an external not maskable interrupt to the MCU. The NMI is falling edge sensitive. On ST6210,15 and ST6220,25 the user can select as ROM mask option (see option list at the end of the datasheet) the availability of an on-chip pull-up at NMI pin. On EPROM/OTP versions this pull-up is not available and should be provided externally.
TIMER. This is the timer I/O pin. In input mode it is connected to the prescaler and acts as external timer clock or as control gate for the internal timer clock. In the output mode the timer pin outputs the data bit when a time-out occurs. On ST6210,15 and ST6220,25 the user can select as ROM mask option (see option list at the end of the datasheet) the availability of an on-chip pull-up at TIMER pin. On EPROM/OTP versions this pull-up is not available and should be provided externally.
PA0-PA3,PA4-PA7(*). These 8 lines are organized as one I/O port (A). Each line may be configured under software control as inputs with or without internal pull-up resistors, interrupt generating inputs with pull-up resistors, open-drain or push-pull outputs. PAO-PA3 can also sink 20 mA for direct led driving while PA4-PA7 can be programmed as analog inputs for the A / D converter. (*) PA4-PA7 are not available on ST6210, ST6220.
PB0-PB7. These 8 lines are organized as one I/O port (B). Each line may be configured under software control as inputs with or without internal pull-up resistors, interrupt generating inputs with pull-up resistors, open-drain or push-pull outputs and as analog inputs for the A/D converter.
PC4-PC7(*). These 4 lines are organized as one I/O port (C). Each line may be configured under software control as inputs with or without internal pull-up resistors, interrupt generating inputs with pull-up resistors, open-drain or push-pull outputs and as analog inputs for the A/D converter.
${ }^{*}$) PC4-PC7 are not available on ST6210, ST6220.

SCS-THOMSON

ST62xx CORE

The core of the ST62xx Family is implemented independently from the I/O or memory configuration. Consequently, it can be treated as an independent central processor communicating with I/O and memory via internal addresses, data, and control busses. The in-core communication is arranged as shown in Figure 5; the controller being externally linked to both the reset and the oscillator, while the core is linked to the dedicated on-chip macrocells peripherals via the serial data bus and indirectly for interrupt purposes through the control registers.
Registers
The ST62xx Family core has six registers and three pairs of flags available to the programmer. They are shown in Figure 4 and are explained in the following paragraphs.
Accumulator (A). The accumulator is an 8 -bit general purpose register used in all arithmetic calculations, logical operations, and data manipulations. The accumulator is addressed in the data space as RAM location at address FFh. Accordingly, the ST62xx instruction set can use the accumulator as any other register of the data space.

Figure 4. ST62xx Core Programming Model

Figure 5. ST62xx Core Block Diagram

ST6xx CORE (Continued)

Indirect Registers (X, Y). These two indirect registers are used as pointers to the memory locations in the data space. They are used in the register-indirect addressing mode. These registers can be addressed in the data space as RAM locations at addresses 80h (X) and 81h (Y). They can also be accessed with the direct, short direct, or bit direct addressing modes. Accordingly, the ST62xx instruction set can use the indirect registers as any other register of the data space.
Short Direct Registers (V, W). These two registers are used to save one byte in short direct addressing mode. These registers can be addressed in the data space as RAM locations at addresses 82 h (V) and $83 \mathrm{~h}(\mathrm{~W})$. They can also be accessed with the direct and bit direct addressing modes. Accordingly, the ST62xx instruction set can use the short direct registers as any other register of the data space.

Program Counter (PC)

The program counter is a 12 -bit register that contains the address of the next ROM location to be processed by the core. This ROM location may be an opcode, an operand, or an address of operand. The 12-bit length allows the direct addressing of 4096 bytes in the program space. Nevertheless, if the program space contains more than 4096 locations, the further program space can be addressed by using the Program Bank Switch register.
The PC value is incremented, after it is read the address of the current instruction. To execute relative jumps the PC and the offset are shifted through the ALU, where they will be added, and the result is shifted back into the PC. The program counter can be changed in the following ways:

- JP (Jump) instruction . . . PC= Jump address
- CALL instruction PC= Call address
- Relative Branch instructions PC= PC \pm offset
- Interrupt PC= Interrupt vector
- Reset PC= Reset vector
- RET \& RETI instructions . PC= Pop (stack)
- Normal instruction PC= PC + 1

Flags (C, Z)

The ST62xx core includes three pairs of flags that correspond to3 different modes: normal mode, interrupt mode and Non-Maskable-Interrupt-Mode. Each pair consists of a CARRY flag and a ZERO flag. One pair (CN, ZN) is used during normal operation, one pair is used during the interrupt mode $(\mathrm{Cl}, \mathrm{ZI})$ and one is used during the not-maskable interrupt mode (CNMI, ZNMI).
The ST62xx core uses the pair of flags that correspond to the actual mode: as soon as an interrupt (resp. a Non-Maskable-Interrupt) is generated, the ST62xx core uses the interrupt flags (resp. the NMI flags) instead of the normal flags. When the RETI instruction is executed, the normal flags (resp. the interrupt flags) are restored if the MCU was in the normal mode (resp. in the interrupt mode) before the interrupt. It should be observed that each flag set can only be addressed in its own routine (Notmaskable interrupt, normal interrupt or main routine). The flags are not cleared during the context switching and so remain in the state they were at the exit of the last routine switching.
The Carry flag is set when a carry or a borrow occurs during arithmetic operations, otherwise it is cleared. The Carry flag is also set to the value of the bit tested in a bit test instruction, and participates in the rotate left instruction.
The Zero flag is set if the result of the last arithmetic or logical operation was equal to zero, otherwise it is cleared.
The switching between the three sets of flags is automatically performed when an NMI, an interrupt or a RETI instructions occurs. As the NMI mode is automatically selected after the reset of the MCU, the ST62xx core uses at first the NMI flags.

ST6xx CORE (Continued)

Stack

The ST62xx core includes true LIFO hardware stack that eliminates the need for a stack pointer. The stack consists of six separate 12-bit RAM locations that do not belong to the data space RAM area. When a subroutine call (or interrupt request) occurs, the contents of each level is shifted into the next level while the content of the PC is shifted into the first level (the value of the sixth level will be lost). When a subroutine or interrupt return occurs (RET or RETI instructions), the first level register is shifted back into the PC and the value of each level is popped back into the previous level. These two operating modes are described in Figure 6. Since the accumulator, as all other data space registers, is not stored in this stack the handling of these registers should be performed inside the subroutine. The stack pointer will remain in its deepest position if more than 6 calls or interrupts are executed, so that the last return address will be lost. It will also remain in its highest position if the stack is empty and a RET or RETI is executed. In this case the next instruction will be executed.

Figure 6. Stack Operation

MEMORY SPACES

The MCUs operate in three different memory spaces: Program Space, Data Space, and Stack Space. A description of these spaces is shown in the following tables.

Program Space

The program space is physically implemented in the ROM memory and includes all the instructions that are to be executed, as well as the data required for the immediate addressing mode instructions, the reserved test area and user vectors. It is addressed by the 12-bit Program Counter register (PC register) and so the ST62xx core can directly address up to 4K bytes of Program Space. Nevertheless, the Program Space can be extended by the addition of 2 -Kbyte ROM banks.

Table 1. ST6210,15 Program ROM Memory Map

Device Address	Description
0000h-07FFh $0800 \mathrm{H}-087 \mathrm{Fh}$	Not Implemented Reserved
0880h-0F9Fh	User Program ROM 1828 Bytes
OFA0h-0FEFh OFFOh-OFF7h OFF8h-0FFBh OFFCh-OFFDh OFFEh-0FFFh	Reserved Interrupt Vectors Reserved NMI Vector User Reset Vector

Table 2. ST6220,25 Program ROM Memory Map

Device Address	Description
$0000 \mathrm{~h}-007 \mathrm{Fh}$	Reserved
0080h-0F9Fh	User Program ROM 3872 Bytes
OFA0h-0FEFh	Reserved OFF0h-0FF7h OFF8h-0FFBh OFFCh-0FFDh OFFEh-0FFFh
Reserved NMI Vectors User Reset Vector	

MEMORY SPACES (Continued)
Table 3. ST6210,15,20,25 Data Memory Space

Data Space

The instruction set of the ST62xx core operates on a specific space, named Data Space, that contains all the data necessary for the processing of the program. The Data Space allows the addressing of RAM memory, ST62xx core/peripheral registers, and read-only data such as constants and look-up tables.
Data ROM addressing. All the read-only data is physically implemented in the ROM memory in which the Program Space is also implemented. The ROM memory contains consequently the program to be executed, the constants and the look-up tables needed for the program.
The locations of Data Space in which the different constants and look-up tables are addressed by the ST62xx core can be considered as being a 64-byte window through which it is possible to access to the read-only data stored in the ROM memory (see Figure 9).
This window is located from address 40 h to address 7Fh in the Data space and allows the direct reading of the bytes from address 000 h to address 03Fh in the ROM memory. All the bytes of the ROM memory can be used to store either instructions or read-only data. Indeed, the window can be moved by step of 64 bytes along the ROM memory in writing the appropriate code in the Data ROM Window register (DRW register).
The RAM memory can be also extended by the addition of 64 bytes RAM banks addressed as being located between the addresses 00 h and 7 Fh . In the ST6210, ST6215, ST6220 and ST6225 products the data space includes 60 bytes of RAM, the accumulator (A), the indirect registers (X), (Y), the short direct registers (V), (W), the I/O port registers, the peripheral data and control registers, the interrupt option register and the Data ROM Window register (DRW register).
As the data space is less than 256 bytes the ST62xx core can directly address this area and the Data Bank Switch register (DRBR) has not been implemented.

Stack Space

The stack space consists of six 12 bit registers that are used for stacking subroutine and interrupt return addresses plus the current program counter register.

MEMORY SPACES (Continued)

Read-only Data Window register (DWR)

The DWR register can be addressed like a RAM location in the Data Space at the address C9h, nevertheless it is a write only register that cannot be accessed with single-bit operations. This register is used to move the 64-byte read-only data window (from the 40 h address to 7Fh address of the Data Space) up and down the ROM memory of the MCU in steps of 64 bytes. The effective address of the byte to be read as a data in the ROM memory is obtained by the concatenation of the 6 least significant bits of the register address given in the instruction (as least significant bits) and the content of the DWR register (as most significant bits, see Figure 7). The DWR register is not cleared at reset, therefore it must be written to before the first access to the Data ROM window area.
Note: Care is required when handling the DWR register as it is write only. For this reason, it is not allowed to change the DWR contents while executing interrupt service routine, as the service routine cannot save and then restore its previous content. If it is impossible to avoid the writing of this register in the interrupt service routine, an image of this register must be saved in a RAM location, and each time the program writes to the DWR it must write also to the image register. The image register must be written first, so if an interrupt occurs between the two instructions the DWR is not affected.

Figure 8. Data ROM Window Register

D7. This bit is not used.
DWR6-DWRO. These are the Data ROM Window bits that correspond to the upper bits of the data ROM space.
This register is undefined on reset. Neither read nor single bit instructions may be used to address this register.

Figure 7. Data ROM Window Memory Addressing

MEMORY SPACES (Continued)

Figure 9. Memory Addressing Description Diagram

TEST MODE

For normal operation the TEST pin must be held low when reset is active. An on-chip $100 \mathrm{k} \Omega$ pulldown resistor; is internally connected to the TEST pin.

INTERRUPT

The ST62xx core can manage 4 different maskable interrupt sources, plus one non-maskable interrupt source (top priority level interrupt). Each source is associated with a particular interrupt vector that contains a Jump instruction to the related interrupt service routine. Each vector is located in the Program Space at a particular address (see Table 1). When a source provides an interrupt request, and the request processing is also enabled by the ST62xx core, then the PC register is loaded with the address of the interrupt vector, (i.e. of the Jump instruction).
Finally, the PC is loaded with the address of the Jump instruction and the interrupt routine is processed.
The ST6210, ST6215, ST6220 and ST6225 microcontrollers have six different interrupt sources associated to different interrupt vectors as it is described in table below.

Table 4. Interrupt Vector/Source Relationship

Interrupt Source	Associated Vector	Vector Address
NMI pin	Interrupt vector \#0 (NMI)	(FFCh, FFDh)
Port A pins	Interrupt vector \#1	(FF6h, FF7h)
Port B pins	Interrupt vector \#2	(FF4h, FF5h)
Port C pins	Interrupt vector \#2	(FF4h, FF5h)
TIMER peripheral	Interrupt vector \#3	(FF3h, FF2h)
ADC peripheral	Interrupt vector \#4	(FF0h, FF1h)

Interrupt Vectors Description

- The ST62xx core includes 5 different interrupt vectors in order to branch to 5 different interrupt routines in the static page of the Program Space.
- The interrupt vector associated with the nonmaskable interrupt source is named interrupt vector \#0. It is located at addresses FFCh,FFDh in the Program Space. On ST6210, ST6215, ST6220 and ST6225 this vector is associated with the external falling edge sensitive interrupt pin (NMI).
- The interrupt vector located at addresses FF6h, FF7h is named interrupt vector \#1. It is associated with Port A pins and can be programmed by software either in the falling edge detection mode or in the low level sensitive detection mode according to the code loaded in the Interrupt Option Register (IOR).
- The interrupt vector located at addresses FF4h, FF5h is named interrupt vector \#2. It is associated with Port B and C pins and can be programmed by software either in the falling edge detection mode or in the positive edge detection mode according to the code loaded in the Interrupt Option Register (IOR).
- The two interrupt vectors located respectively at addresses FF3h, FF2h and addresses FF1h, FFOh are respectively named interrupt vector \#3 and \#4. Vector \#3 is associated to the TIMER peripheral and vector \#4 to the A/D converter peripheral.
All the on-chip peripherals have an interrupt request flag bit (TMZ for timer, EOC for A/D), this bit is set to one when the device wants to generate an interrupt request and a mask bit (ETI for timer, EAI for A/D) that must be set to one to allow the transfer of the flag bit to the core.

Interrupt Priority

The non-maskable interrupt request has the highest priority and can interrupt any other interrupt routines at any time, nevertheless the four other interrupts can not interrupt each other. If more than one interrupt request are pending, they are processed by the ST62xx core according to their priority level: vector \#1 has the higher priority while vector \#4 the lower.
The priority of each interrupt source is fixed.

INTERRUPT (Continued)

Interrupt Option Register

The Interrupt Option Register (IOR register, location C 8 h) is used to enable/disable the individual interrupt sources and to select the operating mode of the external interrupt inputs. This register can be addressed in the Data Space as RAM location at the address C3h, nevertheless it is a write-only register that cannot be accessed with single-bit operations. The operating modes of the external interrupt inputs associated to interrupt vectors \#1 and \#2 are selected through bits 5 and 6 of the IOR register.
Figure 10. Interrupt Option Register

D7. D3-D0 These bits are not used.
LES. Level/Edge Selection Bit. When this bit is set to one, the interrupt \#1 (SPI) is low level sensitive, when cleared to zero the negative edge sensitive interrupt is selected.
ESB. Edge Selection Bit. When this bit is set to one, the interrupt \#2 (Port A \& B lines) is positive edge sensitive, when cleared to zero the negative edge sensitive interrupt is selected.
GEN. Global Enable Interrupt. When this bit is set to one, all the interrupts are enabled. When this bit is cleared to zero all the interrupts (excluding NMI) are disabled.
This register is cleared on reset.
Table 5. Interrupt Option Register

GEN	SET	Enable all the interrupts of the product
	CLEAR	Disable all the interrupts of the product
ESB	SET	Rising edge mode on interrupt input \#2
	CLEAR	Falling edge mode on interrupt input \#2
LES	SET	Level sensitive mode on interrupt input \#1
	CLEAR	Falling edge mode on interrupt input \#1

External Interrupts Operating Modes

The NMI interrupt is associated to the external interrupt pin of the ST6210, ST6215, ST6220 and ST6225 devices. This pin is falling edge sensitive and the interrupt pin signal is latched by a flip-flop which is automatically reset by the core at the beginning of the non-maskable interrupt service routine. A schmitt trigger is present on NMI pin.
The two interrupt sources associated with the falling/rising edge mode of the external interrupt pins (Ports A-vector \#1, Ports B and C-vector \#2) are connected to two internal latches. Each latch is set when a falling/rising edge occurs during the processing of the first one, will be processed as soon as the first one has been finished (if there is not a higher priority interrupt request). If more than one interrupt occurs during the processing of the first one, these other interrupt requests will be lost.
The storage of the interrupt requests is not available in the level sensitive detection mode. To be taken into account, the low level must be present on the interrupt pin when the core samples the line after the execution of the instructions.
During the end of each instruction the core tests the interrupt lines and if there is an interrupt request the next instruction is not executed and the related interrupt routine is executed.

Note

On ST6210,15 and ST6220,25 the user can select the availability of an on-chip pull-up at NMI pin as ROM mask option (see option list at the end of the datasheet).
When GEN = " 0 ", the NMI interrupt is active but cannot cause a restart from STOP/WAIT modes
Interrupt Procedure. The interrupt procedure is very similar to a call procedure, indeed the user can consider the interrupt as an asynchronous call procedure. As this is an asynchronous event, the user does not know about the context and the time at which it occurred. As a result the user should save all the data space registers which will be used inside the interrupt routines. There are separate sets of processor flags for normal, interrupt and non-maskable interrupt modes which are automatically switched and so these do not need to be saved.

INTERRUPT (Continued)

Figure 11. Interrupt Processing Flow-Chart

SGS-THOMSO
MルFoELEGTRONICs

INTERRUPT (Continued)

Interrupt Request and Mask Bits

Interrupt Option Register, IOR
Location 0C8h

- GEN. If this bit is set all the ST6210, ST6215, ST6220 and ST6225 interrupts are enabled, if reset all the interrupt are disabled (excluding the NMI).
- ESB. If this bit is set all the inputs lines associated to interrupt vector \#2 are rising edge sensitive, if reset they are falling edge sensitive.
- LES. If this bit is set all the inputs lines associated to interrupt vector \#1 are low level sensitive, if reset they are falling edge sensitive.
All other bits into this register are not used.

Timer Peripheral, TSCR register
Location D4h

- TMZ bit. A low-to-high transition indicates that the timer count register has decremented to zero. This means that an interrupt request can be generated in relation to the state of ETI bit.
- ETI bit. This bit, when set, enables the timer interrupt request.

A/D Converter Peripheral, ADCR register Location D1H

- C bit. This read only bit indicates when a conversion has been completed, by going to one. An interrupt request can be generated in relation to the state of EAI bit.
- EAI bit. This bit, when set, enables the A/D converter interrupt request.

Figure 12. Interrupt Circuit Diagram

RESET

The ST6210, ST6215, ST6220 and ST6225 MCUs can be reset in three ways: by the external reset input (RESET) tied low, by power-on reset and by the digital watchdog/timer peripheral

RESET Input

The $\overline{\text { RESET }}$ pin can be connected to a device of the application board in order to restart the MCU during its operation. The activation of the Reset pin may occur in the RUN, WAIT or STOP mode. This input has to be used to reset the MCU internal state and provide a correct start-up procedure. The pin is active low and has a schmitt trigger input. The internal reset signal is generated by adding a delay to the external signal. Therefore even short pulses at the reset pin will be accepted. This feature is valid providing that $V_{D D}$ has finished its rising phase and the oscillator is running correctly (normal RUN or WAIT modes).
If the Reset activation occurs in the RUN or Wait mode, the MCU is configured in the Reset mode for as long as the signal of the RESET pin is low. The processing of the program is stopped (in RUN mode only) and the Input/Outputs are in the Highimpedance with pull-up resistors switched on state. As soon as the level on the Reset pin becomes high, the initialization sequence is executed.
If a Reset pin activation occurs in the STOP mode, the oscillator starts and all the inputs/outputs are configured in the High-impedance with ppull-up resistors on state as long as the level on the RESET pin remains low. When the level of the RESET pin becomes high, a delay is generated by the ST62xx core to ensure that the oscillator becomes completely stabilized.
Then, the initialization sequence is started.

Power-on Reset

The function of the POR consists in waking up the MCU during the power-on sequence. At the beginning of this sequence, the MCU is configured in the Reset state: every Input/Output port is configured in the input mode (High-impedance with pull-up state) and no instruction is executed. When the power supply voltage becomes sufficient, the oscillator starts to operate, nevertheless the ST62xx core generates a delay to allow the oscillator to be completely stabilized before the execution of the first instruction. Then, the initialization sequence is executed.
The processor remains in reset state for as long as the reset pin is kept at low level. The reset will be released after the voltage at the reset pin reaches the related high level.

Notes

To have a correct start-up the user should take care that the reset input does not change to the high level before the $V_{D D}$ level is sufficient to allow MCU operation at the chosen frequency (see Recommended Operating Conditions).
An on-chip counter circuit provides a delay of 2048 oscillator cycles between the detection of the reset high level and the release of the MCU reset.
A proper reset signal for slow rising $V_{D D}$, i.e. the required delay between reaching sufficient operating voltage and the reset input changing to a high level, can be generally provided by an external capacitor connected between the RESET pin and $V_{\text {ss }}$.

RESET (Continued)

Watchdog Reset

The ST6210, ST6215, ST6220 and ST6225 provide an on-chip watchdog/timer function in order to provide a graceful recovery from a software upset. If the watchdog register is not refreshed, preventing the end-of-count being reached, an internal circuit pulls down the reset pin. The MCU will enter the reset state as soon as the voltage at RESET pin reaches the related low level. This also resets the watchdog which subsequently turns off the pulldown and activates the pull-up device at the reset pin. This causes the positive transition at the reset pin and terminates the reset state.

Application Notes

An external resistor between $V_{D D}$ and reset pin is not required because an internal pull-up device is provided. If the user prefers, for any reason, to add an external pull-up resistor its value must not be less than $30 \mathrm{~K} \Omega$. If the value is lower than $30 \mathrm{~K} \Omega$ the on-chip watchdog pull-down transistor might not be able to pull-down the reset pin resulting in an external deactivation of the watchdog function.
The POR device operates in a dynamic manner in the way that it brings about the initialization of the MCU when it detects a dynamic rising edge of the $V_{D D}$ voltage. The typical detected threshold is about 2 volts, but the actual value of the detected threshold depends on the way in which the VDD voltage rises up. The POR device DOES NOTallow the supervision of a static rising or falling edge of the $V_{D D}$ voltage.

Figure 13. Reset Circuit

RESET (Continued)
Figure 14. Reset \& Interrupt Processing Flow-Chart

MCU Initialization Sequence

When a reset occurs the stack is reset to the program counter, the PC is loaded with the address of the reset vecior (located in the program ROM at addresses FFEh \& FFFh). A jump instruction to the beginning of the program has to be written into these locations.
After a reset a NMI is automatically activated so that the core is in non-maskable interrupt mode to prevent false or ghost interrupts during the restart phase. Therefore the restart routine should be terminated by a RETI instruction to switch to normal mode and enable interrupts. If no pending interrupt is present at the end of the reset routine the ST62xx will continue with the instruction after the RETI; otherwise the pending interrupt will be serviced

Figure 15. Restart Initialization Program Flow-Chart

WAIT \& STOP MODES

The WAIT and STOP modes have been implemented in the ST62xx core in order to reduce the consumption of the product when the latter has no instruction to execute. These two modes are described in the following paragraphs

WAIT Mode

The configuration of the MCU in the WAIT mode occurs as soon as the WAIT instruction is executed. The microcontroller can also be considered as being in a "software frozen" state where the core stops processing the instructions of the routine, the contents of the RAM locations and peripheral registers are saved as long as the power supply voltage is higher than the RAM retention voltage but where the peripherals are still working. The WAIT mode is used when the user wants to reduce the consumption of the MCU when it is in idle, while not losing count of time or monitoring of external events. The oscillator is not stopped in order to provide a clock signal to the peripherals. The timer counting may be enabled (writing the PSI bit in TSCR register) and the timer interrupt may be also enabled before entering the WAIT mode; this allows the WAIT mode to be left when timer interrupt occurs. The above explanation related to the timers applies also to the A/D converter. If the exit from the WAIT mode is performed with a general RESET (either from the activation of the external pin or by watchdog reset) the MCU will enter a normal reset procedure as described in the RESET chapter. If an interrupt is generated during WAIT mode the MCU behavior depends on the state of the ST62xx core before the initialization of the WAIT sequence, but also of the kind of the interrupt request that is generated. This case will be described in the following paragraphs. In any case, the ST62xx core does not generate any delay after the occurrence of the interrupt because the oscillator clock is still available.

STOP Mode

If the Watchdog is disabled the STOP mode is available. When in STOP mode the MCU is placed in the lowest power consumption mode. In this operating mode the microcontroller can be considered as being "frozen", no instruction is executed, the oscillator is stopped, the contents of the RAM locations and peripheral registers are saved as long as the power supply voltage is higher than the RAM retention voltage, and the ST62xx core waits for the occurrence of an external interrupt request or Reset activation to output from the STOP state.
If the exit from the STOP mode is performed with a general RESET (by the activation of the external pin) the MCU will enter a normal reset procedure as described in the RESET chapter. The case of an interrupt depends on the state of the ST62xx core before the initialization of the STOP sequence and also of the kind of the interrupt request that is generated.
This case will be described in the following paragraphs. In any case, the ST62xx core generates a delay after the occurrence of the interrupt request in order to wait the complete stabilization of the oscillator before the execution of the first instruction.

Exit from WAIT and STOP Modes

The following paragraphs describe the output procedure of the ST62xx core from WAIT and STOP modes when an interrupt occurs (not a RESET). It must be noted that the restart sequence depends on the original state of the MCU (normal, interrupt or non-maskable interrupt mode) before the start of the WAIT or STOP sequence, but also of the type of the interrupt request that is generated.

WAIT \& STOP MODES (Continued)

Normal Mode. If the ST62xx core was in the main routine when the WAIT or STOP instruction has been executed, the ST62xx core outputs from the stop or wait mode as soon as any interrupt occurs; the related interrupt routine is executed and at the end of the interrupt service routine the instruction that follows the STOP or the WAIT instruction is executed if no other interrupts are pending.
Not Maskable Interrupt Mode. If the STOP or WAIT instruction has been executed during the execution of the non-maskable interrupt routine, the ST62xx core outputs from the stop or wait mode as soon as any interrupt occurs: the instruction that follows the STOP or the WAIT instruction is executed and the ST62xx core is still in the non-maskable interrupt mode even if another interrupt has been generated.
Normal Interrupt Mode. If the ST62xx core was in the interrupt mode before the initialization of the STOP or WAIT sequence, it outputs from the stop or wait mode as soon as any interrupt occurs. Nevertheless, two cases have to be considered:

- If the interrupt is a normal interrupt, the interrupt routine in which the wait or stop was entered will be completed with the execution of the instruction that follows the STOP or the WAIT and the ST6 core is still in the interrupt mode. At the end of this routine pending interrupts will be serviced in accordance to their priority.
- If the interrupt is a non-maskable interrupt, the non-maskable routine is processed at first. Then the routine in which the wait or stop was entered will be completed with the execution of the instruction that follows the STOP or the WAIT and the ST6 core remains in the normal interrupt mode.

Note

To reach the lowest power consumption the user software must put the A/D converter in its power down mode by clearing the PDS bit in the A / D control register before entering the STOP instruction.
If all the interrupt sources are disabled (including NMI if GEN="O"), the restart of the MCU can only be done by a Reset activation. The Wait and Stop instructions are not executed if an enabled interrupt request is pending.

ON-CHIP CLOCK OSCILLATOR

The internal oscillator circuit is designed to require a minimum of external components. A crystal, a ceramic resonator, or an external signal (provided to the OSCIN pin) may be used to generate a system clock with various stability/cost tradeoffs. The different clock generator options connection methods are shown in Figure 17.
One machine cycle takes 13 oscillator pulses; 12 clock pulses are needed to increment the PC while and additional 13th pulse is needed to stabilize the internal latches during memory addressing. This means that with a clock frequency of 8 MHz the machine cycle is $1.625 \mu \mathrm{~s}$. The crystal oscillator start-up time is a function of many variables: crystal parameters (especially RS), oscillator load capacitance (CL), IC parameters, ambient temperature, and supply voltage. It must be observed that the crystal or ceramic leads and circuit connections must be as short as possible. Typical values for CL1, CL2 are $15-22 \mathrm{pF}$ for a $4 / 8 \mathrm{MHz}$ crystal. The oscillator output frequency is internally divided by 13 to produce the machine cycle and by 12 to produce the Timer, the Watchdog and the A/D peripheral clock. A machine cycle is the smallest unit needed to execute any operation (i.e., increment the program counter). An instruction may need two, four, or five byte cycles to be executed.

Figure 16. Crystal Parameters

ON-CHIP OSCILLATOR (Continued)

Figure 17. Oscillator Connection
CRYSTAL CLOCK

INPUT/OUTPUT PORTS

The ST6210, ST6220 and ST6215, ST6225 microcontrollers have respectively 12 and 20 Input/Output lines that can be individually programmed either in the input mode or the output mode with the following options that can be selected by software:

- Input without pull-up and without interrupt
- Input with pull-up and with interrupt
- Input with pull-up without interrupt
- Analog input
- Push-pull output
- Standard Open drain output
- 20mA Open drain output

The lines are organized in three ports (port A,B,C). Each port occupies 3 registers in the data space. Each bit of these registers is associated with a particular line (for instance, the bits 0 of the Port A Data, Direction and Option registers are associated with the PAO line of Port A).
The three DATA registers (DRA, DRB, DRC), are used to read the voltage level values of the lines programmed in the input mode, or to write the logic value of the signal to be output on the lines con-
figured in the output mode. The port data registers can be read to get the effective logic levels of the pins, but they can be also written by the user software, in conjunction with the related option registers, to select the different input mode options.
Single-bit operations on I/O registers are possible but care is necessary because reading in input mode is done from I/O pins while writing will directly affect the Port data register causing an undesired changes of the input configuration.
The three Data Direction registers (DDRA, DDRB, DDRB) allow the selection of the data direction of each pin (input or output).
The three Option registers (ORPA, ORPB, ORPC) are used to select the different port options that are available both in input and in output mode.
All the I/O registers can be read or written as any other RAM location of the data space, so no extra RAM cell is needed for port data storing and manipulation. During the initialization of the MCU, all the I/O registers are cleared and the input mode with pull-up/no-interrupt is selected on all the pins, thus avoiding pin conflicts.

Figure 18. I/O Port Block Diagram

INPUT/OUTPUT PORTS (Continued)

I/O Pin Programming

Each pin can be individually programmed as input or output with different input and output configurations.
This is achieved by writing to the relevant bit in the data (DR), data direction register (DDR) and option registers (OR). Table 6 shows all the port configurations that can be selected by user software.

Figure 19. I/O Port Data Registers

Notes:

1. For complete codıng explanatıon refer to Table 6

2 PA4-PA7 and PC4-PC7 are not avallable on ST6210, ST6220/E20. PC0-PC3 are not available as pins.

Figure 20. I/O Port Data Direction Registers

Notes:

1. For complete coding explanatıon refer to Table 6.
2. PA4-PA7 and PC4-PC7 are not available on ST6210, ST6220. PC0-PC3 are not available as pins.
They should be programmed in output mode.

Figure 21. I/O Port Option Registers

Notes:

1. For complete coding explanation refer to Table 6.
2. PA4-PA7 and PC4-PC7 are not available on ST6210, ST6220 PC0-PC3 are not available as pins.

Table 6. I/O Port Options Selection

DDR	OR	DR	MODE	OPTION
0	0	0	Input	With pull-up, no interrupt (Reset state)
0	0	1	Input	No pull-up, no interrupt
0	1	0	Input	With pull-up, with interrupt
0	1	1	Input	No pull-up, no interrupt (for the PA0-PA3 pins).
			Analog input (for the PA4-PA7, PB0-PB7, PC4-PC7 pin)	
1	0	X	Output	20mA sink Open-drain output (for the PA0-PA3 pins)
			Standard Open-drain output (for the PA4-PA7, PB0-PB7, PC4-PC7 pins)	
1	1		Output	Push-pull output

Notes:

X. Means don't care.

1. PA4-PA7 and PC4-PC7 are not available on ST6210, ST6220.

INPUT/OUTPUT PORTS (Continued)

Input Option Description

Pull-up, High Impedance Option. All the input lines can be individually programmed with or without an internal pull-up according to the codes programmed in the OR and DR registers (see table 4). If the pull-up option is not selected, the input pin is in the high-impedance state.
Interrupt Option. All the input lines can be individually connected by software to the interrupt lines of the ST62xx core according to the codes programmed in the OR and DR registers (see table 4). The pins of Port A are AND-connected to the interrupt associated to the vector \#1. The pins of Port B \& C are AND-connected to the interrupt associated to the vector \#2. The interrupt modes (falling edge sensitive, rising edge sensitive, low level sensitive) can be selected by software for each port by programming the IOR register.
Analog Input Option. The sixteen PA4-PA7, PB0PB7, PC4-PC7 pins can be configured to be analog inputs according to the codes programmed in the OR and DR registers (see table 6). These analog inputs are connected to the on-chip 8-bit Analog to Digital Converter. ONLY ONE pin should be programmed as analog input at a time, otherwise the selected inputs will be shorted.

Notes

Switching the I/O ports from one state to another should be done in a way that no unwanted side effects can happen. The recommended safe transitions are shown below. All other transistions are risky and should be avoided during change of operation mode as it is most likely that there will be an unwanted side-effect such as interrupt generation or two pins shorted together by the analog inut lines.

Single bit SET and RES instructions should be used very carefully with Port A, B and C data registers becaues these instructions make an implicit read and write back of the whole addressed register byte. In port input mode however data register address reads from input pins, not from data register latches and data register information in input mode is used to set characteristics of the input pin (interrupt, pull-up, analog input), therefore these characteristics may be unintentionally reprogrammed depending on the state of input pins. As general rule is better to use SET and RES instructions on data register only when the whole port is in output mode. If input or mixed configuration is needed it is recommended to keep a copy of the data register in RAM. On this copy it is possible to use single bit instructions, then the copy register could be written into the port data register.

SET bit, datacopy
LD a, datacopy
LD DRA, a
The WAIT and STOP instructions allow the ST6210, ST6215, ST6220 and ST6225 to be used in situations where low power consumption is needed. The lowest power consumption is achieved by configuring I/Os in input mode with well-defined logic levels.
The user has to take care not to switch outputs with heavy loads during the conversion of one of the analog inputs in order to avoid any disturbance in the measurement.

Figure 22. I/O Port StateTransition Diagram for Safe Transitions

Note *. $x x x=$ DDR, OR, DR Bits

TIMER

The ST6210, ST6215, ST6220 and ST6225 offer one on-chip Timer peripheral consisting of an 8 -bit counter with a 7 -bit programmable prescaler, thus giving a maximum count of 2^{15}, and control logic that allows configuring the peripheral in three operating modes. Figure 23 shows the Timer block diagram. This timer has the external TIMER pin available for the user. The content of the 8 -bit counter can be read/written in the Timer/Counter register TCR that can be addressed in the data space as a RAM location at address D3h. The state of the 7 -bit prescaler can be read in the PSC register at address D2h. The control logic device is managed in the TSCR register (D4h address) as described in the following paragraphs.
The 8 -bit counter is decrement by the output (rising edge) coming from the 7 -bit prescaler and can be loaded and read under program control. When it decrements to zero then the TMZ (Timer Zero)bit in the TSCR is set to one. If the ETI (Enable Timer Interrupt) bit in the TSCR is also set to one an interrupt request, associated to interrupt vector \#3, is generated. The Timer interrupt can be used to exit the MCU from the WAIT mode.

The prescaler input can be the oscillator frequency divided by 12 or an external clock at TIMER pin. The prescaler decrements on the rising edge. Depending on the division factor programmed by PS2, PS1 and PS0 bits in the TSCR (see table 6), the clock input of the timer/counter register is multiplexed to different sources. On division factor 1, the clock input of the prescaler is also that of timer/counter; on factor 2, bit 0 of prescaler register is connected to the clock input of TCR. This bit changes its state with the half frequency of prescaler clock input. On factor 4, bit 1 of PSC is connected to clock input of TCR, and so on. The prescaler initialize bit (PSI) in the TSCR register must be set to one to allow the prescaler (and hence the counter) to start. If it is cleared to zero then all of the prescaler bits are set to one and the counter is inhibited from counting. The prescaler can be given any value between 0 and 7Fh by writing to address D2h, if bit PSI in the TSCR register is set to one. The tap of the prescaler is selected using the PS2/PS1/PS0 bits in the control register. Figure 24 shows the Timer working principle.

Figure 23. Timer Peripheral Block Diagram

TIMER (Continued)

Timer Operating Modes

There are three operating modes of the Timer peripheral. They are selected by the bits TOUT and DOUT (see TSCR register). These three modes correspond to the two clock frequencies that can be connected on the 7-bit prescaler (TOSC/12 or TIMER pin signal) and to the output mode.
Gated Mode (TOUT = " 0 ", DOUT = "1"). In this mode the prescaler is decremented by the Timer clock input (oscillator divided by 12) but ONLY when the signal at TIMER pin is held high (giving a pulse width measurement potential). This mode is selected by the TOUT bit in TSCR register cleared to "0" (i.e. as input) and DOUT bit set to "1".
Clock Input Mode (TOUT = "0", DOUT = "0"). In this mode the TIMER pin is an input and the prescaler is decremented on rising edge. The maximum input frequency that can be applied to the external pin in this mode is $1 / 8$ of the oscillator frequency when the processor is running but can be higher when the WAIT mode is entered (This is due to the need for synchronization with the core, this not being necessary during WAITing).

Output Mode (TOUT = "1", DOUT = data out). The TIMER pin is connected to the DOUT latch. Therefore the timer prescaler is clocked by the prescaler clock input (OSC/12).
The user can select the desired prescaler division ratio through the PS2, PS1, PS0 bits. When TCR count reaches 0 , it sets the TMZ bit in the TSCR. The TMZ bit can be tested under program control to perform a timer function whenever it goes high. The low-to-high TMZ bit transition is used to latch the DOUT bit of the TSCR and pass it to TIMER pin. This operating mode allows external signal generation on the TIMER pin.

Table 7. Timer Operating Modes

TOUT	DOUT	Timer Pin	Timer Function
0	0	Input	Event Counter
0	1	Input	Input Gated
1	0	Output	Output "0"
1	1	Output	Output "1"

Figure 24. Timer Working Principle

TIMER (Continued)

Timer Interrupt

When the counter register decrements to zero and the software controlled ETI (Enable Timer Interrupt) bit is set to one then an interrupt request associated to interrupt vector \#3 is generated. When the counter decrements to zero also the TMZ bit in the TSCR register is set to one.

Notes

On ST6210,15, ST6220,25 the user can select the availability of an on-chip pull-up at TIMER pin as ROM mask option (see option list at the end of the datasheet).
TMZ is set when the counter reaches 00h ; however, it may be set by writing $00 h$ in the TCR register or setting bit 7 of the TSCR register. TMZ bit must be cleared by user software when servicing the timer interrupt to avoid undesired interrupts when leaving the interrupt service routine. After reset, the 8 -bit counter register is loaded to FFh while the 7 -bit prescaler is loaded to 7 Fh , and the TSCR register is cleared which means that timer is stopped ($\mathrm{PSI}=\mathrm{F}^{0} 0$) and the timer interrupt is disabled.
If the Timer is programmed in output mode, DOUT bit is transferred to the TIMER pin when TMZ is set to one (by software or due to counter decrement). When TMZ is high, the latch is transparent and DOUT is copied to the timer pin. When TMZ goes low, DOUT is latched.
A write to the TCR register will predominate over the 8 -bit counter decrement to 00 h function, i.e. if a write and a TCR register decrement to 00h occur simultaneously, the write will take precedence, and the TMZ bit is not set until the 8-bit counter reaches 00h again. The values of the TCR and the PSC registers can be read accurately at any time.

Timer Registers

Figure 25. Timer Status Control Register

TMZ. Low-to-high transition indicates that the timer count register has decrement to zero. This bit must be cleared by user software before starting with a new count.
ETI. This bit, when set, enables the timer interrupt request (vector \#3). If $\mathrm{ETI}=0$ the timer interrupt is disabled. If $\mathrm{ETI}=1$ and $\mathrm{TMZ}=1$ an interrupt request is generated.
TOUT. When low, this bit selects the input mode for the TIMER pin. When high the output mode is selected.
DOUT. Data sent to the timer output when TMZ is set high (output mode only). Input mode selection (input mode only).
PSI. Used to initialize the prescaler and inhibit its counting. When $\mathrm{PSI}=" 0$ " the prescaler is set to 7 Fh and the counter is inhibited. When $\mathrm{PSI}=" 1$ " the prescaler is enabled to count downwards. As long as $\mathrm{PSI}=" 0$ " both counter and prescaler are not running.
PS2, PS1, PS0. These bits select the division ratio of the prescaler register.

Table 8. Prescaler Division Factors

PS2	PS1	PSO	Divided by
0	0	0	1
0	0	1	2
0	1	0	4
0	1	1	8
1	0	0	16
1	0	1	32
1	1	0	64
1	1	1	128

TIMER (Continued)

Figure 26. Timer Counter Register

Figure 27. Prescaler Register

DIGITAL WATCHDOG

The digital Watchdog of the ST6210, ST6215, ST6220 and ST6225 devices consists of a down counter that can be used to provide a controlled recovery from a software upset.
On ST6210, ST6215, ST6220 and ST6225 the Watchdog activation (hardware or software) is user selectable; on masked devices the Watchdog activation can be selected as ROM option while for EPROM/OTP versions different part numbers are available (see ordering information at the end of the datasheet). If the hardware option is selected the Watchdog is automatically initialized after reset so that this function does not need to be activated by the user program. As the Watchdog function is always activated this down counter cannot be used as a timer. In case of software option the Watchdog activation can be controlled by the user software so that the Low power mode (STOP, WAIT) may be used.
The Watchdog uses one data space register (DWDR location D8h). The Watchdog register is set to FEh on reset and immediately starts to count down, requiring no software start if the hardware option has been selected. The Watchdog time can be programmed using the 6 MSbits in the Watchdog register, this gives the possibility to generate a reset in a time between 3072 to 196608 clock cycles in 64 possible steps. (With a clock frequency of 8 MHz , this means from $384 \mu \mathrm{~s}$ to 24.576 ms$)$. The check time can be set differently for different routines within the general program. The reset is prevented if the register is reloaded with the desired value before bits 2-7 decrement from all zeros to all ones. If the software option is selected the Low power enable option (Watchdog deactivated) there are 7 available counter bits for timer functions. This is because when the cell is used as Watchdog function, bit 1 of the register is used for managing the watchdog.
Note: Care must be taken when using the software Watchdog as a timer as the Watchdog bits are in reverse order.
If the Watchdog is active (either by hardware or software activation) the STOP instruction is deactivated and a WAIT instruction is automatically executed instead of a STOP. Bit 1 of the watchdog register (set to one at reset) can be used to generate a software reset if cleared to zero.

DIGITAL WATCHDOG (Continued)

If the software option is selected, after a reset, the Watchdog/timer is in the off-state. The Watchdog should be activated inside the Reset restart routine by writing a " 1 " in Watchdog/timer register bit 0 (this is automatically done in the hardware activated option). Bit one of this register must be set to one before programming bit zero as otherwise a Reset will be immediately generated when bit 0 is set. This allows the user to generate a reset by software (bit $0=" 1$ ", bit $1=" 0$ "). Once bit 0 is set, it cannot be cleared by software without generating a Reset.

Note

In many applications the user may need to synchronize the RESET with the external circuitry and so when the watchdog initiates the ST6210, ST6215,E15 reset the external RESET pin will be held low until the on-chip reset circuit ensures the good start-up condition (see RESET description for additional information). This time is at least 50ns.

Figure 28. Digital Watchdog Block Diagram

Figure 29. Watchdog Working Principle

SGS-THOMSON

DIGITAL WATCHDOG (Continued)

Figure 30. Watchdog Register

DW DR DrgialW atchdog Register D8h, Read/W rite)								
D7	D6	D5	D4	D3	D2	D1	DO	

C. This is the Watchdog activation bit. This bit is hardware set to one if hardware option is selected and the user cannot change the value of this bit (the Watchdog is always active). When the software option is selected, if this bit is set to one the Watchdog function will be activated. When cleared to zero it allows the use of the counter as a 7-bit timer.
SR. This bit is set to one during the reset and will generate a software reset if cleared to zero. When $\mathrm{C}=0$ (Watchdog disabled, software option only) it is the MSB of the 7 -bit timer.
T1-T6. These are the Watchdog counter bits. It should be noted that D7 (T1) is the LSB of the counter and D2 (T6) is the MSB of the counter, these bits are in the opposite order to normal.

Application Notes

The hardware activation option is very useful when the external circuitry may inject noises on the reset pin, where there is an unstable supply voltage, or RF influence or other similar phenomena. If the Watchdog software activation is selected and the Watchdog is not used during power-on reset external noise may cause the undesired activation of the Watchdog with a generation of an unexpected reset. To avoid this risk, two additional instructions, that check the state of the watchdog and eventually reset the chip are needed within the first 27 instructions, after the reset. These instructions are:

```
jrx 0, WD, #+3
```

ldi WD, OFDH

These instructions should be executed at the very beginning of the customer program.
If the Watchdog is used (both hardware or software activated), during power-on reset the Watchdog register may be set to a low value, that could give a reset after 28 instructions earliest. To avoid undesired resets, the Watchdog must be set to the desired value within the first 27 instructions, the best is to put at the very beginning.
Alternatively the normal legal state can be checked with the following short routine:

```
ldi a, OFEH
and a, WD
cpi a, OFEH
jrz #+3
ldi WD, OFDH
```

This sequence is recommended for security applications, where possible stack confusion error loops must be avoided and the Watchdog must only be refreshed after extensive checks.

8-BIT A/D CONVERTER

The A/D converter of ST6210, ST6215, ST6220 and ST6225 is an 8-bit analog to digital converter with 8 (PBO-PB7 on ST6210, ST6220) or 16 (PA4PA7, PB0-PB7, PC4-PC7 on ST6215, ST6225) analog inputs (as alternate functions of $1 / O$ lines) offering 8-bit resolution with total accuracy ± 2 LSB and a conversion time of $70 \mu \mathrm{~s}$ (clock frequency of 8 MHz).
The A/D peripheral converts the input voltage by a process of successive approximations using a clock frequency derived from the oscillator with a division factor of twelve. With an oscillator clock frequency less than 1.2 MHz , the A / D converter accuracy is decreased.
The selection of the pin signal that has to be converted is done by configuring the related I/O line as analog input through the I/O ports option and data registers (refer to $1 / 0$ ports description for additional information). Only One I/O line must be configured as analog input at a time. The ADC uses two registers in the data space: the ADC data conversion register which stores the conversion result and the ADC control register used to program the ADC functions.

A conversion is started by writing a " 1 " to the Start bit (STA) in the ADC control register. This automatically clears (resets to "0") the End Of Conversion Bit (EOC). When a conversion has been finished this EOC bit is automatically set to " 1 " in order to flag that conversion is complete and that the data in the ADC data conversion register is valid. Each conversion has to be separately initiated by writing to the STA bit.
The STA bit is continually being scanned so that if the user sets it to "1" while a previous conversion is in progress then a new conversion is started before the previous one has been completed. The start bit (STA) is a write only bit, any attempt to read it will show a logical " 0 ".
The A/D converter has a maskable interrupt associated to the end of conversion. This interrupt is associated to the interrupt vector \#4 and occurs when the EOC bit is set, i.e. when a conversion is completed. The interrupt is masked using the EAI (interrupt mask) bit in the control register.

Figure 31. A/D Converter Block Diagram

A/D CONVERTER (Continued)

To reduce the power consumption of the devices by turning off the ADC peripheral. The PDS bit in the ADC control register must be cleared to " 0 ". If PDS $=11$ ", the A/D is supplied and enabled for conversion. This bit must be set at least one instruction before the beginning of the conversion to allow the stabilization of the A/D converter.This action is needed also before entering the STOP instruction as the A / D comparator is not automatically disabled by the STOP mode
During reset any conversion in progress is stopped, the control register is reset to all zeros and the A / D interrupt is masked (EAI=0).

A/D Converter Registers

Figure 32. A/D Converter Control Register

EAI. If this bit is set to one the A/D interrupt (vector \#4) is enabled, when EAI=0 the interrupt is disabled.
EOC. This read only bit indicates when a conversion has been completed. This bit is automatically reset to zero when the STA bit is written. If the user is using the interrupt option then this bit can be used as an interrupt pending bit. Data in the data conversion register are valid only when this bit is set to one.
STA. Writing a ' 1 ' in this bit will start a conversion on the selected channel and automatically reset to zero the EOC bit. If the bit is set again when a conversion is in progress, the present conversion is stopped and a new one will take place. This bit is write only, any attempt to read it will show a logical zero.
PDS. This bit activates the A/D converter if set to 1. Writing a zero into this bit will put the ADC in power down mode (idle mode).
D3-D0. Not used

A/D CONVERTER (Continued)

Figure 33. A/D Converter Data Register

D7-DO. These are the conversion result bits; the register is read only and stores the result of the last conversion. The contents of this register are valid only when EOC bit in the ADCR register is set to one (end-of-conversion).

Notes

The ST62 A/D converter does not feature a sample and hold. The analog voltage to be measured should therefore be stable during the conversion time. Variation should not exceed $\pm 1 / 2$ LSB for the best accuracy in measurement.
Since the ADC is on the same chip as the microprocessor the user should not switch heavily loaded output signals during conversion if high precision is needed. This is because such switching will affect the supply voltages which are used for comparisons.
A low pass filter can be used at the analog input pins to reduce input voltage variation during the conversion. For true 8 bit conversions the impedance of the analog voltage sources should be less than $30 \mathrm{k} \Omega$ while the impedance of the reference voltage should not exceed $2 k \Omega$.
The accuracy of the conversion depends on the quality of the power supply voltages ($V_{D D}$ and $V_{S S}$). The user must specially take care of applying regulated reference voltage on the VDD and Vss pins (the variation of the power supply voltage must be inferior to $5 \mathrm{~V} / \mathrm{ms}$).

It must be observed that the more accurate measurements are obtained on the pins PC4-PC7, but in all cases, no pin must be switched during the conversion to avoid any noise disturbance.
The converter can resolve the input voltage with an resolution of:

$$
\frac{V_{D D}-V_{S S}}{256}
$$

So if operating with a supply voltage of 5 V the resolution is about 20 mV . The Input voltage (Ain) which has to be converted must be constant for $1 \mu \mathrm{~s}$ before conversion and remain constant during the conversion.
The resolution of the conversion can be improved if the power supply voltage ($V_{D D}$) of the microcontroller becomes lower. For instance, if $\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$, a 15 mV resolution can be guaranteed.
In order to optimize the resolution of the conversion, the user can configure the microcontroller in the WAIT mode because this mode allows the minimization of the noise disturbances and the variations of the power supply voltages due to output the switching of the outputs. Nevertheless, it must be take care of executing the WAIT instruction as soon as possible after the beginning of the conversion because the execution of the WAIT instruction may provide a small variation of the $V_{D D}$ voltage (the negative effect of this variation is minimized at the beginning of the conversion because the latter is less sensitive than the end of the conversion when the less significant bits are determined). The best configuration from a accuracy point of view is the WAIT mode with the Timer stopped. Indeed, only the ADC peripheral and the oscillator are still working. The MCU has to be wake-up from the WAIT mode by the interrupt of the ADC peripheral at the end of the conversion. It must be noticed that the wake-up of the microcontroller could be done also with the interrupt of the TIMER, but in this case, the Timer is working and some noise could disturb the converter in terms of accuracy.

SOFTWARE DESCRIPTION

The ST62xx software has been designed to fully use the hardware in the most efficient way possible while keeping byte usage to a minimum; in short to provide byte efficient programming capability. The ST62xx core has the ability to set or clear any register or RAM location bit of the Data space with a single instruction. Furthermore, the program may branch to a selected address depending on the status of any bit of the Data space. The carry bit is stored with the value of the bit when the SET or RES instruction is processed.

Addressing Modes

The ST62xx core has nine addressing modes which are described in the following paragraphs. The ST62xx core uses three different address spaces : Program space, Data space, and Stack space. Program space contains the instructions which are to be executed, plus the data for immediate mode instructions. Data space contains the Accumulator, the $\mathrm{X}, \mathrm{Y}, \mathrm{V}$ and W registers, peripheral and Input/Output registers, the RAM locations and Data ROM locations (for storage of tables and constants). Stack space contains six 12-bit RAM cells used to stack the return addresses for subroutines and interrupts.
Immediate. In the immediate addressing mode, the operand of the instruction follows the opcode location. As the operand is a ROM byte, the immediate addressing mode is used to access constants which do not change during program execution (e.g., a constant used to initialize a loop counter).

Direct. In the direct addressing mode, the address of the byte that is processed by the instruction is stored in the location that follows the opcode. Direct addressing allows the user to directly address the 256 bytes in Data Space memory with a single two-byte instruction.
Short Direct. The core can address the four RAM registers $\mathrm{X}, \mathrm{Y}, \mathrm{V}, \mathrm{W}$ (locations $80 \mathrm{~h}, 81 \mathrm{~h}, 82 \mathrm{~h}, 83 \mathrm{~h}$) in the short-direct addressing mode. In this case, the instruction is only one byte and the selection of the location to be processed is contained in the opcode. Short direct addressing is a subset of the direct addressing mode. (Note that 80h and 81h are also indirect registers).
Extended. In the extended addressing mode, the 12-bit address needed to define the instruction is obtained by concatenating the four less significant bits of the opcode with the byte following the opcode. The instructions (JP, CALL) that use the extended addressing mode are able to branch to any address of the 4 K bytes Program space.
An extended addressing mode instruction is twobyte long.

Program Counter Relative. The relative addressing mode is only used in conditional branch instructions. The instruction is used to perform a test and, if the condition is true, a branch with a span of -15 to +16 locations around the address of the relative instruction. If the condition is not true, the instruction that follows the relative instruction is executed. The relative addressing mode instruction is onebyte long. The opcode is obtained in adding the three most significant bits that characterize the kind of the test, one bit that determines whether the branch is a forward (when it is 0) or backward (when it is 1) branch and the four less significant bits that give the span of the branch (0 Oh to Fh) that must be added or subtracted to the address of the relative instruction to obtain the address of the branch.
Bit Direct. In the bit direct addressing mode, the bit to be set or cleared is part of the opcode, and the byte following the opcode points to the address of the byte in which the specified bit must be set or cleared. Thus, any bit in the 256 locations of Data space memory can be set or cleared.
Bit Test \& Branch. The bit test and branch addressing mode is a combination of direct addressing and relative addressing. The bit test and branch instruction is three-byte long. The bit identification and the tested condition are included in the opcode byte. The address of the byte to be tested follows immediately the opcode in the Program space. The third byte is the jump displacement, which is in the range of -126 to +129 . This displacement can be determined using a label, which is converted by the assembler.
Indirect. In the indirect addressing mode, the byte processed by the register-indirect instruction is at the address pointed by the content of one of the indirect registers, X or $\mathrm{Y}(80 \mathrm{~h}, 81 \mathrm{~h})$. The indirect register is selected by the bit 4 of the opcode. A register indirect instruction is one byte long.
Inherent. In the inherent addressing mode, all the information necessary to execute the instruction is contained in the opcode. These instructions are one byte long.

SOFTWARE DESCRIPTION (Continued)

Instruction Set

The ST62xx core has a set of 40 basic instructions. When these instructions are combined with nine addressing modes, 244 usable opcodes can be obtained. They can be divided into six different types:load/store, arithmetic/logic, conditional branch, control instructions, jump/call, bit manipulation. The following paragraphs describe the different types.
All the instructions within a given type are presented in individual tables.

Load \& Store. These instructions use one,two or three bytes in relation with the addressing mode. One operand is the Accumulator for LOAD and the other operand is obtained from data memory using one of the addressing modes.
For Load Immediate one operand can be any of the 256 data space bytes while the other is always immediate data.

Table 9. Load \& Store Instructions

Instruction	Addressing Mode	Bytes	Cycles	Flags	
				Z	C
LD A, X	Short Direct	1	4	Δ	*
LD A, Y	Short Direct	1	4	Δ	*
LD A, V	Short Direct	1	4	Δ	*
LD A, W	Short Direct	1	4	Δ	*
LD X, A	Short Direct	1	4	Δ	*
LD Y, A	Short Direct	1	4	Δ	*
LD V, A	Short Direct	1	4	Δ	*
LD W, A	Short Direct	1	4	Δ	*
LD A, rr	Direct	2	4	Δ	*
LDrr, A	Direct	2	4	Δ	*
LD A, (X)	Indirect	1	4	Δ	*
LD A, (Y)	Indirect	1	4	Δ	*
LD (X), A	Indirect	1	4	Δ	*
LD (Y), A	Indirect	1	4	Δ	*
LDI A, \#N	Immediate	2	4	Δ	*
LDI rr, \#N	Immediate	3	4	*	*

[^0]
SOFTWARE DESCRIPTION (Continued)

Arithmetic and Logic. These instructions are used to perform the arithmetic calculations and logic operations. In AND, ADD, CP, SUB instructions one operand is always the accumulator while the other can be either a data space memory
content or an immediate value in relation with the addressing mode. In CLR, DEC, INC instructions the operand can be any of the 256 data space addresses. In COM, RLC, SLA the operand is always the accumulator.

Table 10. Arithmetic \& Logic Instructions

Instruction	Addressing Mode	Bytes	Cycles	Flags	
				Z	C
ADD A, (X)	Indirect	1	4	Δ	Δ
ADD A, Y)	Indirect	1	4	Δ	Δ
ADD A, rr	Direct	2	4	Δ	Δ
ADDI A, \#N	Immediate	2	4	Δ	Δ
AND A, (X)	Indirect	1	4	Δ	*
AND A, (Y)	Indirect	1	4	Δ	*
AND A, rr	Direct	2	4	Δ	*
ANDI A, \#N	Immediate	2	4	Δ	*
CLR A	Short Direct	2	4	Δ	Δ
CLR r	Direct	3	4	*	*
COM A	Inherent	1	4	Δ	Δ
CP A, (X)	Indirect	1	4	Δ	Δ
CP A, (Y)	Indirect	1	4	Δ	Δ
CP A, rr	Direct	2	4	Δ	Δ
CPIA, \#N	Immediate	2	4	Δ	Δ
DEC X	Short Direct	1	4	Δ	*
DEC Y	Short Direct	1	4	Δ	*
DEC V	Short Direct	1	4	Δ	*
DEC W	Short Direct	1	4	Δ	*
DEC A	Direct	2	4	Δ	*
DEC rr	Direct	2	4	Δ	*
DEC (X)	Indirect	1	4	Δ	*
DEC (Y)	Indirect	1	4	Δ	*
INC X	Short Direct	1	4	Δ	*
INC Y	Short Direct	1	4	Δ	*
INC V	Short Direct	1	4	Δ	*
INC W	Short Direct	1	4	Δ	*
INC A	Direct	2	4	Δ	*
INC rr	Direct	2	4	Δ	*
INC (X)	Indirect	1	4	Δ	*
INC (Y)	Indirect	1	4	Δ	*
RLC A	Inherent	1	4	Δ	Δ
SLA A	Inherent	2	4	Δ	Δ
SUB A, (X)	Indirect	1	4	Δ	Δ
SUB A, (Y)	Indirect	1	4	Δ	Δ
SUB A, rr	Direct	2	4	Δ	Δ
SUBI A, \#N	Immediate	2	4	Δ	Δ

Notes:
X, Y. Indırect Regıster Pointers, V \& W Short Dırect Registers
\# Immediate data (stored in ROM memory)
rr. Data space register
Δ Affected
*. Not Affected

SOFTWARE DESCRIPTION (Continued)

Conditional Branch. The branch instructions achieve a branch in the program when the selected condition is met. See Table 11.
Bit Manipulation Instructions. These instructions can handle any bit in data space memory. One group either sets or clears. The other group (see Conditional Branch) performs the bit test branch operations. See Table 12.

Control Instructions. The control instructions control the MCU operations during program execution. See Table 13.
Jump and Call. These two instructions are used to perform long (12-bit) jumps or subroutines call inside the whole program space. Refer to Table 14.

Table 11. Conditional Branch Instructions

Instruction	Branch If	Bytes	Cycles	Flags	
				Z	C
JRC e	$C=1$	1	2	*	*
JRNC e	$C=0$	1	2	*	*
JRZ e	$Z=1$	1	2	*	*
JRNZ e	$Z=0$	1	2	*	*
JRR b, rr, ee	Bit $=0$	3	5	*	Δ
JRS b, rr, ee	Bit $=1$	3	5	*	Δ

Notes:

b 3-bit address ir Data space register
e. 5 bit signed displacement in the range -15 to +16
\triangle Affected
ee. 8 bit signed displacement in the range -126 to +129
*. Not Affected
Table 12. Bit Manipulation Instructions

Instruction	Addressing Mode	Bytes	Cycles	Flags	
				C	
SET b,rr	Bit Direct	2	4	$*$	$*$
RES b,rr	Bit Direct	2	4	$*$	$*$

Notes:

b 3-bit address; *. Not Affected
rr Data space regıster;
Table 13. Control Instructions

Instruction	Addressing Mode	Bytes	Cycles	Flags	
				C	
NOP	Inherent	1	2	\star	\star
RET	Inherent	1	2	Δ	\star
RETI	Inherent	1	2	Δ	Δ
STOP (1)	Inherent	1	2	\star	\star
WAIT	Inherent	1	2	$*$	

Notes:

1. This instruction is deactivated and a WAIT is automatically executed instead of a STOP if (the hardware activated watchdog function is selected.
Δ. Affected * Not Affected
Table 14. Jump \& Call Instructions

Instruction	Addressing Mode	Bytes	Cycles	Flags	
				Z	C
CALL abc	Extended	2	4	$*$	$*$

[^1]
SOFTWARE DESCRIPTION (Continued)

Opcode Map Summary. The following table contains an opcode map for the instructions used on the MCU.

HI	0000	$\stackrel{1}{0}$	001	$0{ }^{3}$	$\begin{gathered} 4 \\ 0100 \end{gathered}$	$\begin{gathered} 5 \\ 0101 \end{gathered}$	$\underset{0110}{6}$	$\stackrel{7}{0111}$	$\stackrel{8}{8}$	$\stackrel{9}{1001}$		$\stackrel{{ }_{1011}^{B}}{ }$	$\underset{1100}{C}$	$\begin{gathered} \text { D } \\ 1101 \end{gathered}$	$\underset{1110}{E}$	$\underset{1111}{\mathrm{~F}}$	
00	2 JRNZ e 1		2 JRNC e 1	$\left\|\begin{array}{cc} 5 & \text { JRR } \\ \text { bo, rr,ee } \\ 3 & b t \end{array}\right\|$		\#	2 JRC e 1 prc	$\left\|\begin{array}{cc} 4 & \text { LD } \\ a,(x) \\ 1 & \text { ind } \end{array}\right\|$	2 JRNZ e 1 pcr				$\begin{array}{ll} \hline 2 & \mathrm{JRZ} \\ & \mathrm{e} \\ 1 & \mathrm{pcr} \end{array}$			$\begin{array}{cc}4 & \text { LD } \\ \text { a, }(y) \\ 1 & \text { ind }\end{array}$	$\begin{gathered} 0 \\ 0000 \end{gathered}$
000			2 JRNC e 1 pcr		$\begin{array}{ll}2 & \mathrm{JRZ} \\ & \mathrm{e} \\ 1 & \mathrm{pcr}\end{array}$	4 INC 1	2 JRC e 1 prc		2 JRNZ e $1 \quad \mathrm{pcr}$				$\begin{array}{ll} \hline 2 \mathrm{JRZ} \\ \mathrm{e} \\ 1 & \mathrm{pcr} \\ \hline \end{array}$				$\begin{gathered} 1 \\ 0001 \end{gathered}$
0_{0}^{2}	$\left\|\begin{array}{ll} & \mathrm{e} \\ 1 & \mathrm{pcr} \end{array}\right\|$		2 1 $\mathrm{e}^{2} \mathrm{pCr}$		$\begin{array}{\|ll} 2 & \mathrm{JRZ} \\ & \mathrm{e} \\ 1 & \mathrm{pcr} \\ \hline \end{array}$	\#	$\begin{array}{ll}2 & \text { JRC } \\ & \mathrm{e} \\ 1 & \mathrm{prc}\end{array}$		2 JRNZ e $1 \quad$ pcr				$\begin{array}{ll} \hline 2 & \text { JRZ } \\ & \mathrm{e} \\ 1 & \mathrm{pcr} \\ \hline \end{array}$		$\begin{array}{ll} \hline 2 & \mathrm{JRC} \\ & \mathrm{e} \\ 1 & \mathrm{pcr} \\ \hline \end{array}$		$\underset{0010}{2}$
$\stackrel{3}{3}_{0}$	$\left\|\begin{array}{ll} & \mathrm{e} \\ 1 & \mathrm{pcr} \end{array}\right\|$		2 JRNC		$\begin{array}{\|cc} \hline 2 & J R Z \\ & e \\ 1 & \mathrm{pcr} \end{array}$	$\left\|\begin{array}{cc} 4 & L D \\ & a, x \\ 1 & s d \end{array}\right\|$	2 JRC e 1 prc		2 JRNZ e 1 ecr				$\begin{aligned} & 2 \mathrm{JRZ} \\ & \mathrm{e} \\ & 1 \quad \mathrm{pcr} \end{aligned}$	$1^{4} \mathrm{x}, \mathrm{a} \mathrm{sd}$	$\begin{aligned} & 2 \mathrm{JRC} \\ & \mathrm{e} \\ & 1 \quad \mathrm{pcr} \end{aligned}$	4 $\mathbf{C P}$ $2, r r$ 2 dir	$\begin{gathered} 3 \\ 0011 \end{gathered}$
$\stackrel{4}{0100}$	$\left\|\begin{array}{ll} & e \\ 1 & \text { pcr } \end{array}\right\|$		2 JRNC	5 JRR b2,rree 3 $b t$	$\left\lvert\, \begin{array}{ll}2 & \text { JRZ } \\ & \text { e } \\ 1 & \text { pcr }\end{array}\right.$	\#	2 JRC e 1 prc		2 JRNZ e 1	4 JP 2 abc 2 ext	2 JRNC e 1		$\begin{array}{ll} \hline 2 & \text { JRZ } \\ & \mathrm{e} \\ 1 & \mathrm{pcr} \\ \hline \end{array}$	$2 \text { RETI }$ 1 inh			$\stackrel{4}{0100}$
$\begin{gathered} 5 \\ 0101 \end{gathered}$	$\left\|\begin{array}{ll} & e \\ 1 & \mathrm{pcr} \end{array}\right\|$		2 JRNC		$\begin{array}{ll}2 & \text { JRZ } \\ & e \\ 1 & \text { pcr }\end{array}$	$\left\lvert\, \begin{array}{ll}4 & \text { INC } \\ & y \\ 1 & \text { sd }\end{array}\right.$	2 JRC e 1 prc		$\begin{array}{cc}2 \text { JRNZ } \\ e \\ 1 & p c r\end{array}$	4 JP 2 ext	2 JRNC e 1		$\begin{array}{ll}2 & \mathrm{JRZ} \\ & \mathrm{e} \\ 1 & \mathrm{pcr}\end{array}$				$\begin{gathered} 5 \\ 0101 \end{gathered}$
$\begin{gathered} 6 \\ 011 \end{gathered}$	$\left\|\begin{array}{ll} \mathrm{e} \\ 1 & \mathrm{pcr} \end{array}\right\|$		2 JRNC pcr	5 JRR $\mathrm{b} 6, \mathrm{rr}, \mathrm{ee}$ 3 bt$\|$	2 JRZ e 1 pcr	\#	$\begin{array}{ll}2 & \text { JRC } \\ & \mathrm{e} \\ 1 & \mathrm{prc}\end{array}$		2 JRNZ e 1 pcr	4 JP 2 ext	2 JRNC		$\left\lvert\, \begin{array}{ll}2 & J R Z \\ & e \\ 1 & \text { pcr }\end{array}\right.$			4 INC (y)	$\begin{gathered} 6 \\ 0110 \end{gathered}$
0111	$\left\|\begin{array}{ll} & \mathrm{e} \\ 1 & \mathrm{pcr} \end{array}\right\|$		2 JRNC e $1 \quad \mathrm{pcr}$	5 JRS $\mathrm{b} 6, \mathrm{rr}, \mathrm{ee}$ 3 bt	$\begin{array}{ll}2 & J R Z \\ & e \\ 1 & \text { pcr }\end{array}$		$\begin{array}{ll}2 & \text { JRC } \\ & e \\ 1 & \mathrm{prc}\end{array}$		2 JRNZ e^{2} 1 pcr	4 JP 2 ext	2 JRNC e 1		$\left\lvert\, \begin{array}{ll}2 & J R Z \\ & e \\ 1 & \text { pcr }\end{array}\right.$		$\begin{array}{ll} \hline 2 & \text { JRC } \\ & \mathrm{e} \\ 1 & \mathrm{pcr} \\ \hline \end{array}$		$\begin{gathered} 7 \\ 0111 \end{gathered}$
$\stackrel{8}{1000}$	$\left\|\begin{array}{ll} & \mathrm{e} \\ 1 & \mathrm{pcr} \end{array}\right\|$		2 JRNC e 1 pcr	5 JRR b1,rr,ee 3 bt	$\left\lvert\, \begin{array}{ll}2 & J R Z \\ & e \\ 1 & \mathrm{pcr}\end{array}\right.$	\#	2 JRC		2 JRNZ e 1 pcr	$\begin{array}{cc}4 & \mathrm{JP} \\ 2 & \text { abc } \\ 2 & \text { ext }\end{array}$	2 JRNC pcr		$\left\lvert\, \begin{array}{ll}2 & J R Z \\ & e \\ 1 & \mathrm{pcr}\end{array}\right.$	\#	$\begin{array}{\|ll\|} \hline 2 & \text { JRC } \\ & \mathrm{e} \\ 1 & \mathrm{pcr} \\ \hline \end{array}$		$\stackrel{8}{8} 1000$
$\begin{gathered} 9 \\ 1001 \end{gathered}$	$\left\|\begin{array}{ll} 2 & \mathrm{e} \\ 1 & \mathrm{pcr} \end{array}\right\|$		2 JRNC 1 1	$\left\|\begin{array}{cc} 5 & \text { JRS } \\ b 1, \mathrm{rr}, \mathrm{ee} \\ 3 & b t \end{array}\right\|$	$\left\lvert\, \begin{array}{ll}2 & \text { JRZ } \\ & e^{2} \\ 1 & \text { pcr }\end{array}\right.$	$\left\lvert\, \begin{array}{ll}4 & \text { INC } \\ & v \\ 1 & \text { sd }\end{array}\right.$	2 JRC e 1 prc$\|$		$\left\|\begin{array}{ll} & \mathrm{e} \\ 1 & \mathrm{pcr} \end{array}\right\|$	$\left\lvert\, \begin{array}{cc}4 & \mathrm{JP} \\ 2 & \mathrm{ebc}\end{array}\right.$	2 JRNC e $1 \quad \mathrm{pcr}$		$\left\lvert\, \begin{array}{ll}2 & J R Z \\ & e \\ 1 & \mathrm{pcr}\end{array}\right.$	4 DEC v 1 sd	$\begin{array}{ll} \hline 2 & \mathrm{JRC} \\ \mathrm{e} \\ 1 & \mathrm{pcr} \\ \hline \end{array}$	4 LD 2 rra 2 dir	$\stackrel{9}{1001}$
$\begin{gathered} \text { A } \\ 1010 \end{gathered}$	2 JRNZ e 1			5 JRR $\mathrm{b} 5, \mathrm{rr}, \mathrm{ee}$ 3 bt	$\left\lvert\, \begin{array}{ll}2 & \text { JRZ } \\ & e \\ 1 & \text { pcr }\end{array}\right.$	\#	2 JRC e 1 prc	4 AND $\mathrm{a},(\mathrm{x})$ $1 \quad$ ind	2 JRNZ		2 JRNC e 1 pcr	$\begin{array}{\|cc} 4 & \text { RES } \\ b 5, r r \\ 2 & b d \end{array}$	$\left\lvert\, \begin{array}{ll}2 & \text { JRZ } \\ & \mathrm{e} \\ 1 & \mathrm{pcr}\end{array}\right.$	$\begin{array}{ll}4 & \text { RLC } \\ & \mathrm{a} \\ 1 & \mathrm{mh}\end{array}$	$\begin{aligned} & \hline 2 \text { JRC } \\ & \text { e } \\ & 1 \quad \mathrm{pcr} \\ & \hline \end{aligned}$	4 4 and $\mathrm{a}_{1} \quad$ ind	$\underset{1010}{A}$
$\begin{gathered} B \\ 1011 \end{gathered}$	2 JRNZ 1 1			$\left\|\begin{array}{cc} 5 & \text { JRS } \\ \mathrm{b} 5, \mathrm{rr}, \mathrm{ee} \\ 3 & \mathrm{bt} \end{array}\right\|$	$\left\lvert\, \begin{array}{ll}2 & J R Z \\ & e \\ 1 & \text { pcr }\end{array}\right.$	4 LD a, v 1 sd	2 JRC e 1 prc		2 JRNZ	4 JP 2 abc 2 ext	2 JRNC e $1 \quad \mathrm{pcr}$		2 $J R Z$ e 1 pcr	$\int_{1}^{4} \quad \text { LD } a^{2}$	$\begin{array}{ll} \hline 2 & \text { JRC } \\ & \mathrm{e} \\ 1 & \mathrm{pcr} \\ \hline \end{array}$	$\begin{array}{ll} \hline 4 & \text { AND } \\ \text { a,rr } \\ 2 & \text { dir } \\ \hline \end{array}$	$\begin{gathered} B \\ 1011 \end{gathered}$
$\begin{gathered} \mathrm{C} \\ 1100 \end{gathered}$			2 JRNC e $1 \quad \mathrm{pcr}$	5 JRR b3,rr,ee 3 $b t$	$\left\lvert\, \begin{array}{ll}2 & J R Z \\ & e \\ 1 & \text { pcr }\end{array}\right.$	\#	2 JRC e 1 prc	$\begin{array}{\|cc} \hline 4 & \text { SUB } \\ \mathrm{a}_{\text {, }}(\mathrm{x}) \\ 1 & \text { Ind } \end{array}$	2 JRNZ e 1 pcr	4 JP 2 abc 2 ext	2 JRNC $1 \quad \mathrm{e}$ $1 \quad \mathrm{pcr}$		$\left\lvert\, \begin{array}{ll}2 & J R Z \\ & e \\ 1 & \text { pcr }\end{array}\right.$	2 RET	$\begin{array}{ll} \hline 2 & \text { JRC } \\ & \mathrm{e} \\ 1 & \mathrm{pcr} \\ \hline \end{array}$	$\begin{array}{cc} \hline 4 & \text { SUB } \\ a_{\text {a }}(\mathrm{y}) \\ 1 & \text { Ind } \end{array}$	$\begin{gathered} \text { C } \\ 1100 \end{gathered}$
$\begin{gathered} \text { D } \\ 1101 \end{gathered}$			$\begin{array}{\|c} \hline 2 \text { JRNC } \\ \\ 1 \\ 1 \end{array}$	$\left\|\begin{array}{cc}5 & \text { JRS } \\ b 3, r r, e e \\ 3 & b t\end{array}\right\|$	$\left\|\begin{array}{ll} 2 & J R Z \\ & e \\ 1 & \mathrm{pcr} \end{array}\right\|$	$\left\|\begin{array}{ll} \hline 4 & \operatorname{INC} \\ & \mathrm{w} \\ 1 & \mathrm{Sd} \end{array}\right\| 1$	$\left\|\begin{array}{\|ll} \hline 2 & \mathrm{JRC} \\ & \mathrm{e} \\ 1 & \mathrm{prC} \end{array}\right\|$	$\begin{array}{\|cc\|c} \hline 4 & \text { SUBI } & 2 \\ \mathrm{a}, \mathrm{nn} & \\ 2 & \mathrm{mmm} & 1 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 2 \text { JRNZ } \\ \\ \hline 1 \\ 1 \end{array}$	$\begin{array}{\|cc} 4 & \mathrm{JP} \\ \text { abc } \\ 2 & \text { ext } \end{array}$	$\begin{array}{\|c} \hline 2 \text { JRNC } \\ \\ 1 \\ 1 \end{array}$	$\begin{array}{\|cc\|} \hline 4 & \text { SET } \\ \text { b3,rr } \\ 2 & \mathrm{bdd} \end{array}$	$\left.\begin{array}{\|cc} \hline 2 & \mathrm{JRZ} \\ & \mathrm{e} \\ 1 & \mathrm{pcr} \end{array} \right\rvert\,$	$\left.\begin{array}{\|ll\|} \hline 4 & \mathrm{DEC} \\ & \mathrm{w} \\ 1 & \mathrm{sd} \end{array} \right\rvert\,$	$\left.\begin{array}{\|ll\|} \hline 2 & \mathrm{JRC} \\ & \mathrm{e} \\ 1 & \mathrm{pcr} \end{array} \right\rvert\,$	$\left\|\begin{array}{cc} 4 & \text { SUB } \\ \text { a,rr } \\ 2 & d i r \end{array}\right\|$	$\begin{gathered} \text { D } \\ 1101 \end{gathered}$
$\underset{1110}{\mathrm{E}}$	2 JRNZ e 1 e pcr		2 JRNC	5 JRR b7,rr,ee 3 bt$\|$	$\left\lvert\, \begin{array}{ll}2 & \mathrm{JRZ} \\ & \mathrm{e} \\ 1 & \mathrm{pcr}\end{array}\right.$	\#	2 JRC e 1 prc	4 DEC (x) 1 ind	$\begin{array}{cc}2 \text { JRNZ } \\ e \\ 1 & \mathrm{pcr}\end{array}$		2 JRNC	$\begin{array}{\|cc\|} \hline 4 & \text { RES } \\ \text { b7,rr } \\ 2 & b d \\ \hline \end{array}$	$\left\|\begin{array}{ll} \hline 2 & \mathrm{JRZ} \\ & \mathrm{e} \\ 1 & \mathrm{pcr} \end{array}\right\|$	1 inh	2 JRC 1 pcr	$\begin{array}{cc} \hline 4 & \text { DEC } \\ & \text { (y) } \\ 1 & \text { ind } \\ \hline \end{array}$	$\underset{1110}{E}$
$\underset{1111}{F}$		4 CALL $a b c$ 2 ext	2 JRNC	5 JRS b7,rr,ee 3 $b t$$\|$	$\left\|\begin{array}{ll}2 & J R Z \\ & e \\ 1 & p c r\end{array}\right\|$	4 LD $a^{a, w}$ 1 sd	2 JRC e 1 prc	\#	2 JRNZ 1 pcr		2 JRNC pcr	4 SET b7,rr 2 $b d$	$\left.\begin{array}{\|ll} \hline 2 & \mathrm{JRZ} \\ & \mathrm{e} \\ 1 & \mathrm{pcr} \end{array}\right\|_{1}$	4 LD w, a 1 sd	2 JRC e 1 $p c r$$\|$	4 DEC πr 2 $d i r$	$\underset{1111}{F}$

Abbreviatıons for Addressıng Modes:

dır	Direct
sd	Short Direct
ımm	Immedıate
inh	Inherent
ext	Extended
bd	Bit Direct
bt	Bit Test
pcr	Program Counter Relative
ind	Indirect

Legend
\# Indicates Illegal Instructions
e 5 Bit Displacement
b 3 Bit Address
rr1byte dataspace address
nn 1 byte immediate data
abc 12 bit address
ee 8 bit Displacement

ABSOLUTE MAXIMUM RATINGS

This product contains devices to protect the inputs against damage due to high static voltages, however it is advised to take normal precaution to avoid application of any voltage higher than maximum rated voltages.
For proper operation it is recommended that V_{I} and V_{0} must be higher than $V_{S S}$ and smaller $V_{D D}$. Reliability is enhanced if unused inputs are connected to an appropriated logic voltage level (VDD or V_{ss}).

Power Considerations. The average chip-junction temperature, Tj , in Celsius can be obtained from :
$\mathrm{Tj}=\quad \mathrm{T}_{\mathrm{A}}+\mathrm{PD} \times$ RthJ A
Where : $T_{A}=$ Ambient Temperature.
RthJA = Package thermal resistance (junction-to ambient).
PD $=$ Pint + Pport .
Pint $=\quad \operatorname{lDD} \times V_{D D}$ (chip internal power).
Pport $=$ Port power dissipation (determinated by the user).

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage	-0.3 to 7.0	V
$\mathrm{~V}_{\mathrm{I}}$	Input Voltage	$\mathrm{V}_{\mathrm{SS}}-0.3$ to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage	$\mathrm{V}_{\mathrm{SS}}-0.3$ to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
I O	Current Drain per Pin Excluding $\mathrm{V}_{\mathrm{DD}} \& \mathrm{~V}_{\mathrm{SS}}$	± 10	mA
$\mathrm{IV}_{\mathrm{DD}}$	Total Current into V_{DD} (source)	50	mA
$\mathrm{~V}_{\mathrm{SS}}$	Total Current out of V_{SS} (sink)	50	mA
$\mathrm{~T}_{\mathrm{j}}$	Junction Temperature	150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{STG}}$	Storage Temperature	-60 to 150	${ }^{\circ} \mathrm{C}$

Note : Stresses above those listed as "absolute maximum ratings" may cause permanent damage to the device. This is a stress ratıng only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

THERMAL CHARACTERISTIC

Symbol	Parameter	Test Conditions	Value			Unit
			Min.	Typ.	Max.	
RthJA	Thermal Resistance	PDIP28			60	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		PDIP20			55	
		PSO28			80	
		PSO20			75	

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Test Conditions	Value			Unit
			Min.	Typ.	Max.	
$\mathrm{T}_{\text {A }}$	Operating Temperature	1 Suffix Version 6 Suffix Version	$\begin{gathered} 0 \\ -40 \end{gathered}$		$\begin{aligned} & 70 \\ & 85 \end{aligned}$	${ }^{\circ} \mathrm{C}$
VDD	Operating Supply Voltage		3.0		6.0	V
Fosc	Oscillator Frequency	$\begin{aligned} & 4.5<V_{D D}<6.0 \mathrm{~V} \\ & V_{D D}=3.5 \mathrm{~V} \\ & V_{D D}=3.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.01 \\ & 0.01 \end{aligned}$		$\begin{aligned} & \hline 8.0 \\ & 4.0 \\ & 2.0 \\ & \hline \end{aligned}$	MHz
$A V_{D D}$ $A V_{S S}$	Analog Supply Voltage ${ }^{(1)}$	$\mathrm{V}_{\mathrm{SS}} \leq \mathrm{AV}^{\text {SS }}<\mathrm{AV}_{\mathrm{DD}} \leq \mathrm{V}_{\mathrm{DD}}$	$V_{\text {SS }}$		$V_{D D}$	V
lins+	Pin Injection Current (positive) Digital Input Analog Inputs ${ }^{(2)}$	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V			+5	mA
lind.	Pin Injection Current (negative) Digital Input Analog Inputs ${ }^{(3)}$	$V_{D D}=4.5$ to 5.5 V			-5	mA

Notes:

1. An oscillator frequency above 1 MHz is recommended for reliable A / D results
2. A current of $\pm 5 \mathrm{~mA}$ can be forced on each pin of the digital section without affectıng the functional behaviour of the device. For a positive current injected into one pin, a part of this current (-10%) can be expected to flow from the neighbouring pins.
3 If a total current of +1 mA is flowing into the single analog channel or if the total current flowing into all the analog inputs is of 1 mA , all the resulting conversions are shifted by +1 LSB. If a total positive current is flowing into the single analog channel or if the total current flowing into all the analog inputs is of 5 mA , all the resulting conversions are shifted by +2 LSB.

DC ELECTRICAL CHARACTERISTICS

($T_{A}=-40$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Value			Unit
			Min.	Typ.	Max.	
VIL	Input Low Level Voltage	RESET Pin $V_{D D}=5 \mathrm{~V}$ $V_{D D}=3 V$			$\begin{gathered} 1.6 \\ 1 \end{gathered}$	V
V_{IH}	Input High Level Voltage	$\begin{aligned} & \text { RESET Pin } \\ & V_{D D}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=3 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{gathered} 3.4 \\ 2 \end{gathered}$			V
$\begin{aligned} & I_{\mathrm{IL}} \\ & I_{\mathrm{IH}} \end{aligned}$	Input Leakage Current	$\begin{aligned} & \text { RESET Pin } \\ & V_{I N}=V_{D D}^{(1)} \\ & V_{I N}=V_{D D}^{(2)} \\ & V_{I N}=V_{S S} \end{aligned}$	-8	-16	$\begin{gathered} 10 \\ 1 \\ -30 \end{gathered}$	$\mu \mathrm{A}$ mA $\mu \mathrm{A}$
VIL	Input Low Level Voltage	NMI,TIMER $V_{D D}=5 \mathrm{~V}$ $V_{D D}=3 V$			$0.3 x V_{\text {DD }}$	V
V_{IH}	Input High Level Voltage	NMI,TIMER $V_{D D}=5 \mathrm{~V}$ $V_{D D}=3 V$	$0.7 \mathrm{x} \mathrm{V}_{\text {DD }}$			V
VoL	Low Level Output Voltage	$\begin{aligned} & \text { TIMER, IOL=5.0mA } \\ & V_{D D}=5 \mathrm{~V} \end{aligned}$			$0.2 x V_{\text {DD }}$	V
V OH	High Level Output Voltage	$\begin{aligned} & \text { TIMER, loL=-5.0mA } \\ & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \end{aligned}$	$0.65 \mathrm{~V}_{\text {DD }}$			V
$\begin{aligned} & I_{\mathrm{IL}} \\ & I_{\mathrm{IH}} \end{aligned}$	Input Leakage Current ,	TIMER $V_{I N}=V_{D D}$ or $V_{S S}$ $\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}$ $\mathrm{V}_{\mathrm{IN}}=3.9 \mathrm{~V}$		$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\mu \mathrm{A}$
IDD	Supply Current in RESET Mode	$\begin{aligned} & V_{\text {RESET }}=V_{S S} \\ & \text { foSC }=8 \mathrm{MHz} \end{aligned}$			3.5	mA
	Supply Current in RUN Mode	$\begin{aligned} & \mathrm{f}_{\mathrm{SS}}=8 \mathrm{MHzz} \\ & \mathrm{I}_{\mathrm{LOAD}}=0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V} \end{aligned}$			3.5	mA
	Supply Current in WAIT Mode	$\begin{aligned} & \text { fosc }=8 \mathrm{MHz}^{(4)} \\ & \mathrm{l}^{(\mathrm{OAD}=0 \mathrm{~mA}} \\ & \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \end{aligned}$			1.5	mA
	Supply Current in STOP Mode ${ }^{(3)}$	$\begin{aligned} & I_{L O A D}=0 \mathrm{~mA} \\ & \mathrm{~V}_{D D}=5.0 \mathrm{~V} \end{aligned}$			10	$\mu \mathrm{A}$

Notes:

1. No Watchdog Reset Actived

2 Reset generated by Watchdog.
3 When the Watchdog function is activated the STOP instruction is deactivated. WAIT instruction is automatically executed
4 Timer and A/D in OFF state.

AC ELECTRICAL CHARACTERISTICS
($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Value			Unit
			Min.	Typ.	Max.	
fosc	Oscillator Frequency	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=5.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.01 \\ & 0.01 \end{aligned}$		1 8 8	MHz
tilit	Interrupt Pin Maximum Pulse Widht	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=5.5 \mathrm{~V} \end{aligned}$			$\begin{gathered} \text { no } \\ \text { limit } \end{gathered}$	$\mu \mathrm{s}$
tsu	Oscillator Start-up Time			5	10	ms
$\mathrm{tsR}_{\text {R }}$	Supply Rise Time		0.01		100	ms
$t_{\text {REC }}$	Supply Recovery Time		100			ms
Twnmı	Minimum Pulse Width	NMI Pin $V_{D D}=5 \mathrm{~V}$	100			ns
Twres	Minimum Pulse Width	RESET Pin	100			ns
$\mathrm{C}_{\text {IN }}$	Input Capacitance	All Inputs Pins			10	pF
Cout	Output Capacitance	All outputs Pins			10	pF

$I_{\text {DD }}$ CURRENT Versus FREQUENCY (WAIT Mode)
Typical Values @ Temp. $=25^{\circ} \mathrm{C}$
IDD ($\mu \mathrm{A}$)

$I_{D D}$ CURRENT Versus FREQUENCY (RUN Mode)
Typical Value @ Temp. $=25^{\circ} \mathrm{C}$

I/O PORT CHARACTERISTICS

Symbol	Parameter	Test Conditions	Value			Unit
			Min.	Typ.	Max.	
$\mathrm{V}_{\text {IL }}$	Input Low Level Voltage	I/O Pins			$0.3 \times \mathrm{VDD}$	V
V_{IH}	Input High Level Voltage	I/O Pins	$0.7 \times V_{D D}$			V
Vol	Low Level Output Voltage	$\begin{array}{\|l} \hline \mathrm{VDD}=5.0 \mathrm{~V} \\ \mathrm{loL}=10 \mu \mathrm{~A}, \mathrm{All} \mathrm{I} / \mathrm{O} \text { Pins } \\ \mathrm{loL}=5 \mathrm{~mA}, \text { Standard } \mathrm{I} / \mathrm{O} \\ \mathrm{loL}=10 \mathrm{~mA}, \text { PAO-PA3 } \\ \mathrm{loL}=20 \mathrm{~mA}, \text { PAO-PA3 } \end{array}$			$\begin{aligned} & 0.1 \\ & 0.8 \\ & 0.8 \\ & 1.3 \end{aligned}$	V
VOH	High Level Output Voltage	$\begin{aligned} & \mathrm{l}_{\mathrm{OH}}=-10 \mu \mathrm{~A} \\ & \mathrm{l}_{\mathrm{OH}}=-5 \mathrm{~mA}, \mathrm{VDD}=5.0 \mathrm{~V} \\ & \mathrm{l}_{\mathrm{OH}}=-1.5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V} \end{aligned}$	$\begin{array}{\|c} \hline V_{D D}-0.1 \\ 3.5 \\ 2.0 \end{array}$			V
$\begin{aligned} & \mathrm{I}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{IH}} \end{aligned}$	Input Leakage Current	$\begin{array}{\|l} V_{i n}=V_{D D} \text { or } V_{S S} \\ V_{D D}=3.0 \mathrm{~V} \\ V_{D D}=5.5 \mathrm{~V} \end{array}$		$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\mu \mathrm{A}$
RPU	Pull-up Resistor	$\mathrm{Vin}=0 \mathrm{~V}$	50	100	200	$\mathrm{K} \Omega$

TIMER CHARACTERISTICS

($T_{A}=-40$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Value			Unit
			Min.	Typ.	Max.	
tres	Resolution		$\frac{12}{\text { fosc }}$			second
$\mathrm{fin}^{\text {N }}$	Input Frequency on TIMER Pin	$\begin{aligned} & V_{D D}=3.0 \mathrm{~V} \\ & V_{D D}=4.5 \mathrm{~V} \end{aligned}$			$\frac{f_{\text {OSC }}}{8}$	MHz
tw	Pulse Width at TIMER Pin	$\begin{aligned} & V_{D D}=3.0 \mathrm{~V} \\ & V_{D D}=4.5 \mathrm{~V} \\ & V_{D D}=5.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} 1 \\ 125 \\ 125 \end{gathered}$			$\begin{aligned} & \mu \mathrm{s} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$

A/D CONVERTER CHARACTERISTICS

($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Value			Unit
			Min.	Typ.	Max.	
Res	Resolution			8		Bit
Атот	Total Accuracy	$\begin{aligned} & \text { fosc }>1.2 \mathrm{MHz} \\ & \text { fosc }>32 \mathrm{kHz} \end{aligned}$			$\begin{aligned} & 2 \\ & 4 \end{aligned}$	LSB
tc ${ }^{(1)}$	Conversion Time	fosc $=8 \mathrm{MHz}$		70		$\mu \mathrm{s}$
$\mathrm{V}_{\text {AN }}$	Conversion Range		$\mathrm{AV}_{\text {ss }}$		$\mathrm{AV}_{\mathrm{DD}}$	V
ZIR	Zero Input Reading	Conversion result when $\mathrm{Vin}=A V_{\text {SS }}$	00			Hex
FSR	Full Scale Reading	Conversion result when Vin $=A V_{D D}$			FF	Hex
$\begin{aligned} & \hline \mathrm{AV}_{s s{ }^{(2)}} \mathrm{AV} \mathrm{DD} \end{aligned}$	Analog Reference		Vss		VDD	V
$A D_{1}$	Analog Input Current During Conversion	$V_{D D}=4.5 \mathrm{~V}$			1.0	$\mu \mathrm{A}$
$\mathrm{ACIN}^{(3)}$	Analog Input Capacitance				2	pF
ASI	Analog Source Impedance				30	$\mathrm{K} \Omega$
SSI	Analog Reference Supply Impedence				2	$K \Omega$

Notes:

1. With oscillator frequencies less than 1 MHz , the A / D Converter accuracy is decreased. It is recommended not to use the A / D with fOSC $<1 \mathrm{Mhz}$.
2. In ST6210, ST6215, ST6220 and ST6225 AVSS and $A V_{D D}$ are internally connected to digital V_{SS} and V_{DD}.
3. Excluding Pad Capacitance.

PACKAGE MECHANICAL DATA

Figure 34. 20-Pin Dual in Line Plastic (B), 300-Mil Width

Figure 35. 28-Pin Dual in Line Plastic (B), 600-Mil Width

PACKAGES MECHANICAL DATA (Continued)

Figure 36. 20-Lead Small Outline Plastic (M), 300-Mil Width

Figure 37. 28-Lead Small Outline Plastic (M), 300-Mil Width

	Dm.		mm			nches	
		Mn	Typ	Max	Mn	Typ	Max
	A	205		255	0.081		0.10
	A1	0.1		03	0.004		0118
	B	0.35		0.49	0138		0192
	C	023		0.32	0091		0125
	D	17.7		181	6969		. 7125
	D1	-	-	-	-	-	-
	E	10.0		10.65	0394		0.419
	E1	7.40		7.60	2914		2992
	E2	-	-	-	-	-	-
	L	0.40		127	0.016		0.050
	e		127			0.05	
	α	-	-	-	-	-	-
	Numberofpns						
	N	28					

ORDERING INFORMATION

The following chapter deals with the procedure for transfer the Program/Data ROM codes to SGSTHOMSON.
Communication of the ROM content. To communicate the contents of Program/Data ROM memories to SGS-THOMSON, the customer has to send one diskette with the hexadecimal file generated by the development tool. All unused byte must be set to FFh.
Listing Generation \& Verification. When SGSTHOMSON receives the diskette, a computer listing is generated from it. This listing refers exactly to the mask that will be used to produce the microcontroller. Then the listing is returned to the customer that must thoroughly check, complete, sign and return it to SGS-THOMSON. The signed listing constitutes a part of the contractual agreement for the creation of the customer mask. SGS-THOMSON sales organization will provide detailed information on contractual points.

Table 15. ROM Memory Map
ST6210,ST6215 (2K ROM Devices)

Device Address	Description
0000h-087Fh	Reserved ${ }^{(1)}$
0880h-OF9Fh	User ROM
OFAOH-OFFFh	Reseved
OFFOh-FFF7h	Interrupt Vectors
OFF8h-OFFBh	Reserved
OFFCh-OFFD	NMI Interrupt Vector
OFFEh-OFFFh	Reset Vector

ST6220,ST6225 (4K ROM Devices)

Device Address	Description
0000h-007Fh	Reserved ${ }^{(1)}$
0080h-0F9Fh	User ROM
OFAOH-OFFFh	Reseved
OFFOh-OFF7h	Interrupt Vectors
OFF8h-OFFBh	Reserved
OFFC-OFFh	NMI Interrupt Vector
OFFEh-OFFFh	Reset Vector

Notes:

1. Reserved Areas should be filled with FFh

ORDERING INFORMATION TABLE

Sales Type	ROM x8	I/O	Additional Features	Temperature Range	Package
ST6210B1 ST6210B6	$\begin{gathered} 2 \mathrm{~K} \\ \text { Bytes } \end{gathered}$	12	A/D CONVERTER	$\begin{gathered} 0 \text { to }+70^{\circ} \mathrm{C} \\ -40 \text { to }+85^{\circ} \mathrm{C} \end{gathered}$	PDIP20
ST6210M1 ST6210M6				$\begin{gathered} 0 \text { to }+70^{\circ} \mathrm{C} \\ -40 \text { to }+85^{\circ} \mathrm{C} \end{gathered}$	PSO20
$\begin{aligned} & \text { ST6215B1 } \\ & \text { ST6215B6 } \end{aligned}$		20	AID CONVERTER	$\begin{gathered} 0 \text { to }+70^{\circ} \mathrm{C} \\ -40 \text { to }+85^{\circ} \mathrm{C} \end{gathered}$	PDIP28
ST6215M1 ST6215M6				$\begin{gathered} 0 \text { to }+70^{\circ} \mathrm{C} \\ -40 \text { to }+85^{\circ} \mathrm{C} \end{gathered}$	PSO28
$\begin{aligned} & \text { ST6220B1 } \\ & \text { ST6220B6 } \end{aligned}$	4K Bytes	12	A/D CONVERTER	$\begin{gathered} 0 \text { to }+70^{\circ} \mathrm{C} \\ -40 \text { to }+85^{\circ} \mathrm{C} \end{gathered}$	PDIP20
ST6220M1 ST6220M6				$\begin{gathered} 0 \text { to }+70^{\circ} \mathrm{C} \\ -40 \text { to }+85^{\circ} \mathrm{C} \end{gathered}$	PSO20
$\begin{aligned} & \text { ST6225B1 } \\ & \text { ST6225B6 } \end{aligned}$		20	A/D CONVERTER	$\begin{gathered} 0 \text { to }+70^{\circ} \mathrm{C} \\ -40 \text { to }+85^{\circ} \mathrm{C} \end{gathered}$	PDIP28
ST6225M1 ST6225M6				$\begin{gathered} 0 \text { to }+70^{\circ} \mathrm{C} \\ -40 \text { to }+85^{\circ} \mathrm{C} \end{gathered}$	PSO28

Note: Each ROM content is identifical by 2 alphabetic characters to be added to the sales type.

ST6210, ST6215, ST6220, ST6225 MICROCONTROLLER OPTION LIST

Customer
Address
Contact
Phone No
Reference

SGS-THOMSON Microelectronics references
Device:
[]ST6210, [] ST6215, [] ST6220, []ST6225

Package:
[] Dual in Line Plastic [] Small Outline Plastic
Temperature Range:
[] $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} \quad\left[\right.$] $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Special Marking:
[]No
[] Yes
" "
Authorized characters are letters, digits, '.,' '-', 'l' and spaces only.
Maximum character count are 10 char. for DIP packages and 8 char. for SO packages.

Input pull-up selection on NMI pin:	[] Yes	[] No
Input pull-up selection on TIMER pin:	[] Yes	[] No

Watchdog Selection:
[] Hardware Activation [] Software Activation (no STOP mode) (STOP mode available)

Notes

Signature

Date

8-BIT OTP/EPROM HCMOS MCUs WITH A/D CONVERTER

- 3.0 to 6.0V Supply Operating Range
- 8 MHz Maximum Clock Frequency
- -40 to $+85^{\circ} \mathrm{C}$ Operating Temperature Range
- Run, Wait \& Stop Modes
- 5 different interrupt vectors
- Look-up table capability in EPROM
- User ROM: 1828 bytes (ST62T10, T15) 3876 bytes (ST62x20, x25)
- Data ROM: User selectable size (in program ROM)
- Data RAM: 64 bytes
- PDIP20, PSO20 (ST62T10,T20) packages
- PDIP28, PSO28 (ST62T15,T25) packages
- FDIP20, CSO20 (ST62E20) packages
- FDIP28, CSO28 (ST62E25) packages
- 12/20 fully software programmable I/O as:
- Input with pull-up resistor
- Input without Pull-up resistor
- Input with interrupt generation
- Open-drain or push-pull outputs
- Analog Inputs
- 4 I/O lines can sink up to 20 mA for direct LED or TRIAC driving
- 8 bit counter with a 7-bit programmable prescaler (Timer)
- Digital Watchdog
- 8 bit A/D Converter with up to 8 (ST62T10, ST62x20) and up to 16 (ST62T15, ST62x25) analog inputs
- On-chip clock oscillator
- Power-on Reset
- One external not maskable interrupt
- 9 powerful addressing modes
- The ST62E20, E25 are the EPROM versions, the ST62T10, T15, T20, T25 are the OTP versions, fully compatible with ROM versions ST6210, 15, 20, 25.
Device Summary page 3/15

EPROM PACKAGES

Figure 1. ST62T10,ST62x20 Pin Configuration

Figure 2. ST62T15,ST62x25 Pin Configuration

$V _ { D D } \longdiv { 1 }$	28	$V_{S S}$
TIMER [2	27	PAO
OSCin [3	$26]$	PA1
OSCout [4	25	PA2
NMI 45	24	PA3
Ain / PC7 6	$23]$	PA4 / Ain
Ain / PC6 47	$22]$	PA5 / Ain
Ain / PC5 8	21	PA6 / Ain
Ain / PC4 9	$20]$	PA7 / Ain
$\mathrm{V}_{\mathrm{pP}} /$ TEST 10	19	PBO / Ain
RESET 111	$18]$	PB1 / Ain
Ain / PB7 ¢ 12	$17]$	PB2 / Ain
Ain / PB6 $\{13$	167	PB3 / Ain
Ain / PB5 14	$15]$	PB4 / Aın VR001804

Figure 3. ST62T10,T15,x20,x25 Block Diagram

GENERAL DESCRIPTION

The ST62T10, T15, T20, T25, E20 and E25 microcontrollers are members of the 8-bit HCMOS ST62xx family, a series of devices oriented to lowmedium complexity applications. They are the OTP/EPROM versions of the ST6210, ST6215, ST6220 and ST6225 devices respectively.
All ST62xx members are based on a building block approach: a common core is associated with a combination of on-chip peripherals (macrocells). The macrocells of the ST6210, 15, 20 and 25 (available on the EPROM/OTP products) are: The Timer peripheral that includes an 8-bit counter with a 7-bit software programmable prescaler, the digital watchdog (DWD), an 8 -bit A/D Converter with up to $8(S T 6210,20)$ or $16(S T 6215,25)$ analog inputs.
Thanks to these peripherals, these devices are well suited for automotive, appliance and industrial applications.
ST62E20, E25 are user programmable and erasable devices. They are best suited for development.
ST62T10,T15, T20,T25 are One Time Programmable devices (OTP). These offer the best cost/flexibility trade-off for prototyping and preseries as well as most low to medium volume applications.

DEVICE SUMMARY

Device	UV- EPROM	OTP ROM	I/O Pins	Emulated Device
ST62T10		2 k	12	ST6210
ST62T15		2 k	20	ST6215
ST62T20		4 k	12	ST6220
ST62T25		4 k	20	ST6225
ST62E20	4 k		12	ST6210 ST6220
ST62E25	4 k		20	ST6215 ST6225

PIN DESCRIPTION

$V_{D D}$ and $V_{s s}$. Power is supplied to the MCU using these two pins. $V_{D D}$ is power and $V_{S S}$ is the ground connection.
OSCIN and OSCOUT. These pins are internally connected with the on-chip oscillator circuit. A quartz crystal, a ceramic resonator or an external
clock signal can be connected between these two pins in order to allow the correct operation of the MCU with various stability/cost trade-offs. The OSCIN pin is the input pin, the OSCOUT pin is the output pin.
RESET. The active low RESET pin is used to restart the microcontroller to the beginning of its program.
TEST/VPP. The TEST must be held at $\mathrm{V}_{\text {SS }}$ for normal operation. If TEST pin is connected to a +12.5 V level during the reset phase, the EPROM programming Mode is entered.
NMI. The NMI pin provides the capability for asynchronous applying an external not maskable interrupt to the MCU. The NMI is falling edge sensitive. NMI pin is not internally connected to an on-chip pull-up resistor which is available as a mask option for ROM devices. The pull-up resistor has to be provided externally.
TIMER. This is the timer I/O pin. In input mode it is connected to the prescaler and acts as external timer clock or as control gate for the internal timer clock. In the output mode the timer pin outputs the data bit when a time-out occurs. TIMER pin is not internally connected to an on-chip pull-up resistor which is available as a mask option for ROM devices. The pull-up resistor has to be provided externally.
PAO-PA3,PA4-PA7(*). These 8 lines are organized as one I/O port (A). Each line may be configured under software control as inputs with or without internal pull-up resistors, interrupt generating inputs with pull-up resistors, open-drain or push-pull outputs. PAO-PA3 can also sink 20 mA for direct led driving while PA4-PA7 can be programmed as analog inputs for the A/D converter. (*) PA4-PA7 are not available on ST62T10, ST62x20.
PB0-PB7. These 8 lines are organized as one I/O port (B). Each line may be configured under software control as inputs with or without internal pullup resistors, interrupt generating inputs with pull-up resistors, open-drain or push-pull outputs and as analog inputs for the A/D converter.
PC4-PC7(*). These 4 lines are organized as one I/O port (C). Each line may be configured under software control as inputs with or without internal pull-up resistors, interrupt generating inputs with pull-up resistors, open-drain or push-pull outputs and as analog inputs for the A/D converter.
(*) PC4-PC7 are not available on ST62T10, ST62x20.

ST62T10, T15, T20, T25, E20 and E25, OTP/EPROM DESCRIPTION

The ST62E20 EPROM device emulates the ST6210 and ST6220 ROM devices. The ST62E25 EPROM device emulates the ST6215 and ST6225 ROM devices.

Care must be taken when emulating the 2 K ROM devices to start the program at the correct address (see Memory Map for 2K Devices)
EPROM parts are programmed using any programming equipment supporting it and validated by SGS-THOMSON. Once erased, the device can be reprogrammed.
The ST62T10, T15, T20, T25 are the OTP counterparts of the ST6210,15,20,25 ROM devices. OTP (One Time Programmable) parts are low cost devices which have to be programmed like EPROM devices. Unlike EPROM devices, OTPs cannot be erased once programmed.
From a user point of view, once programmed, the OTP and EPROM products have exactly the same software and hardware features as the ROM version, except for the following parts:

- No internal pull-up resistor available on pin NMI
- No internal pull-up resistor available on pin TIMER

Other than these exceptions, ST62T10, T15, T20, T25 and ST62E20, E25 are fully compatible with the ST6210, 15, 20, 25 equivalents, this datasheet thus provides only information specific to the EPROM based devices.
the reader is asked to refer to the DATASHEET OF THE ST6210, 15, 20, 25 ROM DEVICE FOR FURTHER DETAILS.

EPROM Programming Mode

An additional mode is used to configure the part for programming of the EPROM, this is set by a 12.5 V voltage applied to the TEST/VPP pin. The programming of the OTP and EPROM parts is described in the User Manual of the EPROM Programming board.

EPROM ERASING

The EPROM of the windowed package of the ST62E20, E25 may be erased by exposure to Ultra Violet light.
The erasure characteristic of the ST62E20, E25 is such that erasure begins when the memory is exposed to light with a wave lengths shorter than approximately $4000 \AA$. It should be noted that sunlights and some types of fluorescent lamps have wavelengths in the range $3000-4000 \AA$. It is thus recommended that the window of the ST62E20, E25 packages be covered by an opaque label to prevent unintentional erasure problems when testing the application in such an environment.

The recommended erasure procedure of the ST62E20, E25 EPROM is the exposure to short wave ultraviolet light which have a wave-length 2537A. The integrated dose (i.e. U.V. intensity x exposure time) for erasure should be a minimum of $15 \mathrm{~W}-\mathrm{sec} / \mathrm{cm} 2$. The erasure time with this dosage is approximately 15 to 20 minutes using an ultraviolet lamp with $12000 \mu \mathrm{~W} / \mathrm{cm} 2$ power rating. The ST62E20, E25 should be placed within 2.5 cm (1Inch) of the lamp tubes during erasure.

Table 1. OTP Memory Map
ST62T10, ST62T15 (2K ROM Devices)

Device Address	Description
0000h-087Fh	Reserved $^{(1)}$
0880h-0F9Fh	User ROM $^{(1)}$
OFAOh-OFEFh	Reserved $^{(1)}$
OFFOh-OFF7h	Interrupt Vectors $_{\text {OFF8h-OFFBh }}^{\text {Reserved }}{ }^{(1)}$
OFFCh-OFFDh	NMI Interrupt Vector
OFFEh-OFFFh	Reset Vector

Notes :

1. Reserved Areas should be filled with FFh

ST62T20, ST62T25 (4K ROM Devices)

Device Address	Description
0000h-007Fh	Reserved ${ }^{(1)}$
0080h-0F9Fh	User ROM
OFAOh-0FEFh	Reserved $^{(1)}$
OFFOh-OFF7h	Interrupt Vectors
OFFh-OFBh	Reserved
OFFCh-OFFDh	NMI Interrupt Vector
OFFEh-OFFFh	Reset Vector

Notes:

1 Reserved Areas should be filled with FFh

ABSOLUTE MAXIMUM RATINGS

This product contains devices to protect the inputs against damage due to high static voltages, however it is advised to take normal precaution to avoid application of any voltage higher than maximum rated voltages.
For proper operation it is recommended that V_{I} and Vo must be higher than $V_{S S}$ and smaller VDD. Reliability is enhanced if unused inputs are connected to an appropriated logic voltage level (VDD or $V_{S S}$).

Power Considerations. The average chip-junction temperature, Tj , in Celsius can be obtained from :
$\mathrm{Tj}=\quad \mathrm{T}_{\mathrm{A}}+\mathrm{PD} \times \mathrm{Rth} J \mathrm{~A}$
Where : $T_{A}=$ Ambient Temperature.
RthJA = Package thermal resistance (junction-to ambient).
PD $=$ Pint + Pport .
Pint $=\quad \operatorname{lDD} \times V_{D D}$ (chip internal power).
Pport $=$ Port power dissipation (determinated by the user).

Symbol	Parameter	Value	Unit
$V_{D D}$	Supply Voltage	-0.3 to 7.0	V
V_{1}	Input Voltage	$V_{S S}-0.3$ to $V_{D D}+0.3$	V
Vo	Output Voltage	$V_{S S}-0.3$ to $V_{D D}+0.3$	V
VPP	OTP/EPROM Programming Voltage	13	V
lo	Current Drain per Pin Excluding V $\mathrm{V}_{\text {d }}$ \& $\mathrm{V}_{\text {S }}$	± 10	mA
IV ${ }_{\text {D }}$	Total Current into V ${ }_{\text {DD }}$ (source)	50	mA
IVss	Total Current out of $\mathrm{V}_{\text {SS }}$ (sink)	50	mA
Tj	Junction Temperature	150	${ }^{\circ} \mathrm{C}$
Tstg	Storage Temperature	-60 to 150	${ }^{\circ} \mathrm{C}$

Note : Stresses above those listed as "absolute maxımum ratings" may cause permanent damage to the device. This is a stress rating only and functional operatıon of the device at these conditions is not implied Exposure to maximum ratıng conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS (Continued)

Symbol	Parameter	Test Conditions	Value			Unit
			Min.	Typ.	Max.	
$\mathrm{T}_{\text {A }}$	Operating Temperature	1 Suffix Version 6 Suffix Version	$\begin{gathered} 0 \\ -40 \end{gathered}$		$\begin{aligned} & 70 \\ & 85 \end{aligned}$	${ }^{\circ} \mathrm{C}$
$V_{D D}$	Operating Supply Voltage		3.0		6.0	V
$V_{\text {PP }}$	Programming Voltage		12	12.5	13	V
Fosc	Oscillator Frequency	$\begin{aligned} & 4.5<V_{D D}<6.0 \mathrm{~V} \\ & V_{D D}=3.5 \mathrm{~V} \\ & V_{D D}=3.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.01 \\ & 0.01 \end{aligned}$		$\begin{aligned} & 8.0 \\ & 4.0 \\ & 2.0 \end{aligned}$	MHz
$A V_{D D}$ $\mathrm{AV}_{\mathrm{SS}}$	Analog Supply Voltage ${ }^{(1)}$	$\begin{aligned} & V_{S S} \leq A V_{S S}<A V_{D D} \leq \\ & V_{D D} \end{aligned}$	Vss		$V_{D D}$	V
linJ_{+}	Pin Injection Current (positive) Digtal Input Analog Inputs ${ }^{(2)}$	$V_{D D}=4.5$ to 5.5 V			+5	mA
Ins.	Pin Injection Current (negative) Digital Input Analog Inputs ${ }^{(3)}$	$V_{D D}=4.5$ to 5.5 V			-5	mA

Notes:
1 An oscillator frequency above 1 MHz is recommended for reliable A / D results
2 A current of $\pm 5 \mathrm{~mA}$ can be forced on each pin of the digital section without affecting the functional behaviour of the device. For a positive current injected into one pın, a part of this current ($\sim 10 \%$) can be expected to flow from the neighbouring pins.
3. If a total current of +1 mA is flowing into the single analog channel or if the total current flowing into all the analog inputs is of 1 mA , all the resulting conversions are shifted by +1 LSB. If a total positive current is flowing into the single analog channel or if the total current flowing into all the analog inputs is of 5 mA , all the resulting conversions are shifted by +2 LSB

DC ELECTRICAL CHARACTERISTICS
($T_{A}=-25$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Value			Unit
			Min.	Typ.	Max.	
$\mathrm{V}_{\text {IL }}$	Input Low Level Voltage	RESET Pin $V_{D D}=5 \mathrm{~V}$ $V_{D D}=3 V$			$\begin{gathered} 1.6 \\ 1 \end{gathered}$	V
$\mathrm{V}_{\text {IH }}$	Input High Level Voltage	RESET Pin $V_{D D}=5 \mathrm{~V}$ $V_{D D}=3 V$	$\begin{gathered} 3.4 \\ 2 \end{gathered}$			V
$\begin{aligned} & I_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{H}} \end{aligned}$	Input Leakage Current	RESET Pin $\begin{aligned} & V_{I N}=V_{D D} \\ & V_{I N}=V_{D D}^{(1)} \\ & V_{I N}=V_{S S} \end{aligned}$	-8	-16	$\begin{gathered} 10 \\ 1 \\ -30 \end{gathered}$	$\mu \mathrm{A}$ mA $\mu \mathrm{A}$
VIL	Input Low Level Voltage	$\begin{aligned} & \text { NMI,TIMER } \\ & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=3 \mathrm{~V} \end{aligned}$			$0.3 \mathrm{x} \mathrm{V}_{\mathrm{DD}}$	V
$V_{\text {IH }}$	Input High Level Voltage	NMI,TIMER $V_{D D}=5 \mathrm{~V}$ $V_{D D}=3 V$	$0.7 \mathrm{x} V_{\text {DD }}$			V
Vol	Low Level Output Voltage	$\begin{aligned} & \text { TIMER, IOL=5.0mA } \\ & V_{D D}=5 \mathrm{~V} \end{aligned}$			$0.2 x V_{D D}$	V
V OH	High Level Output Voltage	$\begin{aligned} & \text { TIMER, loL=-5.0mA } \\ & V_{D D}=5 \mathrm{~V} \end{aligned}$	$0.65 \mathrm{~V}_{\text {DD }}$			V
$\begin{aligned} & I_{I L} \\ & I_{I H} \end{aligned}$	Input Leakage Current	TIMER $\mathrm{V}_{\text {IN }}=\mathrm{V}_{D D}$ or $\mathrm{V}_{S S}$ $\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}$ $\mathrm{V}_{\mathrm{IN}}=3.9 \mathrm{~V}$		$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\mu \mathrm{A}$
IDD	Supply Current in RESET Mode	$\begin{aligned} & V_{\text {RESET }}=V_{S S} \\ & \mathrm{fOSC}=8 \mathrm{MHz} \end{aligned}$			3.5	mA
	Supply Current in RUN Mode	$\begin{aligned} & \mathrm{f}_{\mathrm{OSC}}=8 \mathrm{MHz} \\ & \mathrm{I}_{\mathrm{LOAD}}=0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V} \\ & \hline \end{aligned}$			3.5	mA
	Supply Current in WAIT Mode	$\begin{aligned} & \text { fosc }=8 \mathrm{MHz}^{(4)} \\ & \text { LIOAD }^{(4) \mathrm{mA}} \\ & V_{D D}=5.0 \mathrm{~V} \end{aligned}$			1.5	mA
	Supply Current in STOP Mode ${ }^{(3)}$	$\begin{aligned} & \mathrm{I}_{\mathrm{LOAD}}=0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V} \end{aligned}$			10	$\mu \mathrm{A}$

Notes:

1 No Watchdog Reset Actived.
2. Reset generated by Watchdog
3. When the Watchdog function is activated the STOP instruction is deactivated. WAIT instruction is automatically executed.
4. Timer and A/D in OFF state.

AC ELECTRICAL CHARACTERISTICS
($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Value			Unit
			Min.	Typ.	Max.	
fosc	Oscillator Frequency	$\begin{aligned} & \mathrm{V}_{D D}=3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=5.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.01 \\ & 0.01 \end{aligned}$		2 8 8	MHz
tilu	Interrupt Pin Maximum Pulse Widht	$\begin{aligned} & V_{D D}=3.0 \mathrm{~V} \\ & V_{D D}=4.5 \mathrm{~V} \\ & V_{D D}=5.5 \mathrm{~V} \end{aligned}$			no limit	$\mu \mathrm{S}$
tsu	Oscillator Start-up Time			5	10	ms
tSR	Supply Rise Time		0.01		100	ms
$t_{\text {REC }}$	Supply Recovery Time		100			ms
Twnmi	Minimum Pulse Width	NMI Pin $V_{D D}=5 \mathrm{~V}$	100			ns
Twres	Minımum Pulse Width	RESET Pın	100			ns
$\mathrm{CIN}_{\text {IN }}$	Input Capacitance	All Inputs Pins			10	pF
Cout	Output Capacitance	All outputs Pins			10	pF

I/O PORT CHARACTERISTICS

Symbol	Parameter	Test Conditions	Value			Unit
			Min.	Typ.	Max.	
VIL	Input Low Level Voltage	I/O Pıns			$0.3 \times \mathrm{V}$ DD	V
V_{IH}	Input High Level Voltage	I/O Pins	$0.7 \times V_{\text {DD }}$			V
Vol	Low Level Output Voltage	$\begin{aligned} & V_{D D}=5.0 \mathrm{~V} \\ & \mathrm{loL}=10 \mu \mathrm{~A}, \mathrm{All} \mathrm{I/O} \mathrm{Pins} \\ & \mathrm{loL}=5 \mathrm{~mA}, \text { Standard } \mathrm{I} / \mathrm{O} \\ & \text { loL }=10 \mathrm{~mA}, \text { PAO-PA3 } \\ & \text { loL }=20 \mathrm{~mA}, \text { PAO-PA3 } \end{aligned}$			$\begin{aligned} & 0.1 \\ & 0.8 \\ & 0.8 \\ & 1.3 \end{aligned}$	V
V OH	High Level Output Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-10 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OH}}=-1.5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} V_{D D}-0.1 \\ 3.5 \\ 2.0 \end{gathered}$			V
$\begin{aligned} & I_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{H}} \end{aligned}$	Input Leakage Current	$\begin{aligned} & V i n=V_{D D} \text { or } V_{S S} \\ & V_{D D}=3.0 \mathrm{~V} \\ & V_{D D}=5.5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\mu \mathrm{A}$
Rpu	Pull-up Resistor	V ın $=0 \mathrm{~V}$	50	100	200	K Ω

TIMER CHARACTERISTICS

Symbol	Parameter	Test Conditions	Value			Unit
			Min.	Typ.	Max.	
tres	Resolution		$\frac{12}{f o s c}$			second
fin^{\prime}	Input Frequency on TIMER Pin	$\begin{aligned} & V_{D D}=3.0 \mathrm{~V} \\ & V_{D D}=4.5 \mathrm{~V} \end{aligned}$			$\frac{f_{\text {OSC }}}{4}$	MHz
tw	Pulse Width at TIMER Pin	$\begin{aligned} & V_{D D}=3.0 \mathrm{~V} \\ & V_{D D}=4.5 \mathrm{~V} \\ & V_{D D}=5.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} 1 \\ 125 \\ 125 \end{gathered}$			$\begin{aligned} & \mu \mathrm{s} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$

A/D CONVERTER CHARACTERISTICS

($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified)

\left.| Symbol | Parameter | Test Conditions | | Value | | Unit |
| :---: | :--- | :--- | :--- | :---: | :---: | :---: |
| | | | | Min. | Typ. | |$\right]$

Notes:

1. With oscillator frequencies less than 1 MHz , the $\mathrm{A} D$ Converter accuracy is decreased. It is recommended not to use the A / D with fOSC < 1Mhz.
2. In ST6210, ST6215, ST6220 and ST6225 AVSS and $A V_{D D}$ are internally connected to digital $V_{S S}$ and $V_{D D}$.
3. Excluding Pad Capacitance.

PACKAGE MECHANICAL DATA

20-Lead Frit Seal Ceramic Dual in Line Package, 300-Mil Width

28-Lead Frit Seal Ceramic Dual in Line Package, 600-Mil Widht

VROB1725

Dm .	mm			nches		
	Mn	Typ	Max	Mn	Typ	Max
A			5.71			0225
A1	0.50		1.78	0.020		0.070
B	0.40		0.55	0.016		0.022
B1	1.17		1.42	046		056
C	022		031	0.009		0.012
D			3810			1.500
D1	1.52		2.49	060		098
E	-	-	-	-	-	-
E1	13.05		1336	514		526
L	3.00			118		
el	229		2.79	0.090		0.110
\varnothing	686		736	270		290
	NumberofPns					
N	28					

PACKAGE MECHANICAL DATA (Continued)
20-Pin Dual in Line Plastic, 300-Mil Width

Dm .	mm			mches			
	Mn	Typ	Max	Mn	Typ	Max	
A			3.93			0.155	
A1	0.254			0.010			
B			0.45			0.017	
B1	1.39		1.65	0.055		0.065	
C			0.25			0.009	
D			25.4			1.000	
D1			1.34			0.053	
E		8.5			0.334		
E1			71			0.279	
K1	-	-	-	-	-	-	
K2	-	-	-	-	-	-	
L		330			0129		
E1		2.54			0.10		
Num berofPins							
N	20						

VROA1725

28-Pin Dual in Line Plastic, 600-Mil Width

DII	mm				nches		
	Mn	Typ	Max	Mn	Typ	Max	
A	22		48	0.086		0.189	
A1	0.51		1.77	0.010		0.069	
B	0.38		0.58	0.015		0.023	
B1	0.97		1.52	0.055		0.065	
C	02		0.3	0.008		0.009	
D	35.06		3622	1.400		1.425	
D1	-	-	-	-	-	-	
E			16.3			0.641	
E1		12.9				0.508	
K1	-	-	-	-	-	-	
K2	-	-	-	-	-	-	
L	3.18		4.44	1.25		0.174	
El		2.54			0.10		
NumberofPns							
N	28						

PACKAGES MECHANICAL DATA (Continued)

20-Lead Small Outline Plastic, 300-Mil Width

VR001726

Dm .	mm			mches			
	Mn	Typ	Max	Mn	Typ	Max	
A	2.05		2.55	0.081		0.10	
A1	0.1		0.3	0.004		0118	
B	035		0.49	0138		0192	
C	0.23		0.32	0091		0125	
D	12.6		13.0	4961		5118	
D1	-	-	-	-	-	-	
E	10.0		10.65	0.394		0.419	
E1	7.40		7.60	2914		2992	
E2	-	-	-	-	-	-	
L	0.40		127	0.016		0.050	
e		127			0.05		
α	-	-	-	-	-	-	
NumberofPns							
N	20						

28-Lead Small Outline Plastic, 300-Mil Width

VR001726

Din .	mm			inches			
	Mn	Typ	Max	Mn	Typ	Max	
A	2.05		2.55	0.081		0.10	
A1	0.1		0.3	0.004		0118	
B	0.35		0.49	0138		.0192	
C	0.23		0.32	0091		0125	
D	17.7		181	.6969		.7125	
D1	-	-	-	-	-	-	
E	10.0		10.65	0394		0.419	
E1	7.40		7.60	2914		2992	
E2	-	-	-	-	-	-	
L	0.40		127	0.016		0.050	
e		127			0.05		
α	-	-	-	-	-	-	
NumberofPns							
N	28						

PACKAGES MECHANICAL DATA (Continued)
20-Lead Small Outline Ceramic, 300-Mil Width

Dm .	mm			mches		
	Mn	Typ	Max	Mn	Typ	Max
A						
A1						
B						
C						
D						
D1	-	-	-	-	-	-
E						
E1						
E2	-	-	-	-	-	-
L						
e		127			0.05	
α	-	-	-	-	-	-
NumberofPns						
N	20					

28-Lead Small Outline Ceramic, 300-Mil Width

VROA1732

Din .	mm			nches			
	Mn	Typ	Max	Mn	Typ	Max	
A							
A1							
B							
C							
D							
D1	-	-	-	-	-	-	
E							
E1							
E2	-	-	-	-	-	-	
L							
E		127			0.05		
α	-	-	-	-	-	-	
NumberofPins							
N	28						

ORDERING INFORMATION TABLE

Sales Type	OTP/ EPROM	1/0	Additional Features	Temperature Range	Package
ST62T10B6/HWD ST62T10B6/SWD ST62T10M6/HWD ST62T10M6/SWD	$\begin{aligned} & \text { OTP } \\ & \text { 2K Bytes } \end{aligned}$	12	Hardware WatchDog Software WatchDog Hardware WatchDog Software WatchDog	-40 to $+85^{\circ} \mathrm{C}$	PDIP20 PSO20
ST62T15B6/HWD ST62T15B6/SWD ST62T15M6/HWD ST62T15M6/SWD		20	Hardware WatchDog Software WatchDog Hardware WatchDog Software WatchDog	-40 to $+85^{\circ} \mathrm{C}$	PDIP28 PSO28
ST62T20B6/HWD ST62T20B6/SWD ST62T20M6/HWD ST62T20M6/SWD	OTP 4K Bytes	12	Hardware WatchDog Software WatchDog Hardware WatchDog Software WatchDog	-40 to $+85^{\circ} \mathrm{C}$	PDIP20 PSO20
ST62T25B6/HWD ST62T25B6/SWD ST62T25M6/HWD ST62T25M6/SWD		20	Hardware WatchDog Software WatchDog Hardware WatchDog Software WatchDog	-40 to $+85^{\circ} \mathrm{C}$	PDIP28 PSO28
ST62E20F1/HWD ST62E20F1/SWD ST62E20S1/HWD ST62E20S1/SWD	EPROM 4K Bytes	12	Hardware WatchDog Software WatchDog Hardware WatchDog Software WatchDog	0 to $+70^{\circ} \mathrm{C}$	FDIP20 CSO20
ST62E25F1/HWD ST62E25F1/SWD ST62E25S1/HWD ST62E25S1/SWD		20	Hardware WatchDog Software WatchDog Hardware WatchDog Software WatchDog	0 to $+70^{\circ} \mathrm{C}$	FDIP28 CSO28

ST621xB DATASHEETS

 ST6215B, ST6225B
8-BIT HCMOS MCUs WITH A/D CONVERTER

PRELIMINARY DATA

- 2.5 to 6.0V Supply Operating Range
- 8 MHz Maximum Clock Frequency
- -40 to $+85^{\circ} \mathrm{C}$ Operating Temperature Range
- Run, Wait, Wait+ \& Stop Modes
- 5 different interrupt vectors
- Look-up table capability in ROM
- User ROM: . 1828 bytes (ST6210B, 15B) 3876 bytes (ST6220B, 25B)
- Data ROM: User selectable size (in program ROM)
- Data RAM: 64 bytes
- ROM readout Protection
- PDIP20, PSO20 (ST6210B, 20B) packages
- PDIP28, PSO28 (ST6215B, 25B) packages
- 12/20 fully software programmable I/O as:
- Input with pull-up resistor
- Input without pull-up resistor
- Input with interrupt generation
- Open-drain or push-pull outputs
- Analog Inputs
- 4 I/O lines can sink up to 20 mA for direct LED or TRIAC driving
- 8 bit counter with a 7-bit programmable prescaler
- Digital Watchdog and Oscillator Safe Guard for enhanced sefafety
- 8 bit A/D Converter with up to 8 (ST6210B, 20B) and up to 16 (ST6215B, 25B) analog inputs
- 8 bit Synchronous Peripheral Interface (SPI)
- On-chip clock oscillator (Quartz Crystal, Ceramic resonnator or RC network)
- Power-on Reset
- One external not maskable interrupt
- 9 powerful addressing modes
- The development tool of the ST621xB, $2 \times B$ microcontrollers consists of the ST621x-EMU emulation and development system connected via an RS232 serial line to an MS-DOS PC

Device Summary page 3

Figure 1. ST6210B, 20B Pin Configuration

Figure 2. ST6215B, 25B Pin Configuration

Figure 3. ST6210B, 15B, 20B, 25B Block Diagram

GENERAL DESCRIPTION

The ST6210, ST6215, ST6220 and ST6225 microcontrollers are members of the 8-bit HCMOS ST62xx family, a series of devices oriented to low-medium complexity applications.
All ST62xx members are based on a building block approach: a common core is surrounded by a combination of on-chip peripherals (macrocells).
The macrocells of the ST6210, 15, 20 and 25 are: the Timer peripheral that includes an 8 -bit counter with a 7-bit software programmable prescaler, the 8 -bit A/D Converter with up to 8 (ST6210, 20) and up to 16 (ST6215, 25) analog inputs (A/D inputs are alternate functions of I/O pins), the Digital Watchdog (DWD). The B versions of the ST621x, $2 x$ also provide enhanced safety through the Oscillator Safe Guard (OSG), a new low power mode (Wait+) and a new low voltage option.
These devices are well suited for automotive, appliance and industrial applications.
The ST62E20B and ST62E25B EPROM versions are available for prototypes and low-volume production; also OTP versions are available.
The only difference between these devices are program memory size and I/O pin number, following the table below.

DEVICE SUMMARY

Device	ROM (Bytes)	I/O Pins
ST6210B	2 K	12
ST6215B	2 K	20
ST6220B	$4 K$	12
ST6225B	$4 K$	20

PIN DESCRIPTION

$V_{D D}$ and $V_{s s}$. Power is supplied to the MCU using these two pins. $V_{D D}$ is power and $V_{S S}$ is the ground connection.
OSCin and OSCout. These pins are internally connected with the on-chip oscillator circuit.
When the quartz crystal resonnator mask option is selected, a quartz crystal resonnator, a ceramic resonator or an external clock signal can be connected between these two pins.

When the RC network mask option is selected, a resistor must be connected between these pins. The frequency at OSCin and OSCout is internally divided by 1,2 or 4 by a software controlled divider.The OSCin pin is the input pin, the OSCout pin is the output pin.
RESET. The active low RESET pin is used to restart the microcontroller to the beginning of its program.
TEST. The TEST must be held at VSS for normal operation (an internal pull-down resistor selects normal operating mode if TEST pin is not connected).
NMI. The NMI pin provides the capability for asynchronous interrupt applying an external not maskable interrupt to the MCU. The NMI is falling edge sensitive.
On ST6210B, 15B, 20B, 25B the user can select as ROM mask option the availability of an on-chip pull-up at NMI pin.
TIMER. This is the timer I/O pin. In input mode it is connected to the prescaler and acts as external timer clock or as control gate for the internal timer clock. In the output mode the timer pin outputs the data bit when a time-out occurs.
On ST6210B, 15B, 20B, 25B the user can select as ROM mask option the availability of an on-chip pull-up at TIMER pin.
PA0-PA3,PA4-PA7. These 8 lines are organized as one I/O port (A). Each line may be configured under software control as inputs with or without internal pull-up resistors, interrupt generating inputs with pull-up resistors, open-drain or push-pull outputs. PA0-PA3 can also sink 20mA for direct led driving while PA4-PA7 can be programmed as analog inputs for the A/D converter.
Note. PA4-PA7 are not available on ST6210B, ST6220B.
PB0-PB7. These 8 lines are organized as one I/O port (B). Each line may be configured under software control as inputs with or without internal pullup resistors, interrupt generating inputs with pull-up resistors, open-drain or push-pull outputs and as analog inputs for the A/D converter.
PC4-PC7. These 4 lines are organized as one I/O port (C). Each line may be configured under software control as inputs with or without internal pullup resistors, interrupt generating inputs with pull-up resistors, open-drain or push-pull outputs and as analog inputs for the A/D converter.
Note. PC4-PC7 are not available on ST6210B, ST6220B.

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings

This product contains devices to protect the inputs against damage due to high static voltages, however it is advised to take normal precaution to avoid application of any voltage higher than maximum rated voltages.
For proper operation it is recommended that V_{1} and V_{0} must be higher than $V_{S S}$ and smaller VDD. Reliability is enhanced if unused inputs are connected to an appropriated logic voltage level (V_{DD} or V_{SS}).

Power Considerations. The average chip-junction temperature, Tj , in Celsius can be obtained from :

	$\mathrm{Tj}=$	$T_{A}+\mathrm{PD} \times$ Rth $J A$
Where :	$\mathrm{T}_{\mathrm{A}}=$	Ambient Temperature.
	RthJA =	Package thermal resistance (junction-to ambient).
	$P D=$	Pint + Pport.
	Pint $=$	$l_{D D} \times V_{D D}$ (chip internal power).
	Pport $=$	Port power dissipation (determinated by the user).

Where: $T_{A}=$ Ambient Temperature.
RthJA = Package thermal resistance (junction-to ambient).
PD $=$ Pint + Pport.
Pint $=\quad I_{D D} \times V_{D D}$ (chip internal power).
Pport $=$ Port power dissipation (determinated by the user).

Symbol	Parameter	Value	Unit
V ${ }_{\text {D }}$	Supply Voltage	-0 3 to 7.0	V
V_{1}	Input Voltage	$V_{S S}-0.3$ to $V_{D D}+0.3^{(1)}$	V
Vo	Output Voltage	$V_{S S}-0.3$ to $V_{D D}+0.3^{(1)}$	V
10	Current Drain per Pin Excludıng V_{DD}, $\mathrm{V}_{\text {SS }}$	10	mA
linj+	Pin Injection current (positive), All I/O, $\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$	+5	mA
lins.	Pin Injection current (negative), All I/O, VDD $=4.5 \mathrm{~V}$	-5	mA
IV ${ }_{\text {DD }}$	Total Current into VDD (source)	$50^{(2)}$	mA
IV SS	Total Current out of V ${ }_{\text {SS }}$ (sink)	$50^{(2)}$	mA
Tj	Junction Temperature	150	${ }^{\circ} \mathrm{C}$
TSTG	Storage Temperature	-60 to 150	${ }^{\circ} \mathrm{C}$

Notes:

Stresses above those listed as "absolute maxımum ratıngs" may cause permanent damage to the device. This is a stress ratıng only and functional operation of the device at these conditions is not implied Exposure to maximum ratıng conditions for extended periods may affect device relıability
1 Within these limits, clamping dıodes are guarantee to be not conductive Voltages outside these limits are authorised as long as injection current is kept within the specification
2 The total current through all bits of ports A and B combined may not exceed 50 mA
The total current through all bits of port C may not exceed 50 mA
The total current, if the application is designed with care and observing the limits stated above, may reach 100 mA
THERMAL CHARACTERISTIC

Symbol	Parameter	Test Conditions	Value			Unit
			Min.	Typ.	Max.	
RthJA	Thermal Resistance	PDIP28			55	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		PDIP20			60	
		PSO28			75	
		PSO20			80	

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Test Conditions	Value			Unit
			Min.	Typ.	Max.	
$\mathrm{T}_{\text {A }}$	Operating Temperature	6 Suffix Version 1 Suffix Version	$\begin{gathered} -40 \\ 0 \end{gathered}$		$\begin{aligned} & 85 \\ & 70 \\ & \hline \end{aligned}$	${ }^{\circ} \mathrm{C}$
$V_{D D}$	Operating Supply Voltage	Low Voltage option fosc $=2 \mathrm{MHz}$ $\mathrm{f}_{\mathrm{INT}}=2 \mathrm{MHz}$ $\mathrm{fosc}=4 \mathrm{MHz}$ $\mathrm{f}_{\mathrm{N} T}=4 \mathrm{MHz}$ fosc $=8 \mathrm{MHz}$ $\mathrm{f}_{\mathrm{NT}}=8 \mathrm{MHz}$	$\begin{aligned} & 2.5 \\ & 3.0 \\ & 4.5 \end{aligned}$		6.0 6.0 6.0	v v v
fint	Internal Frequency ${ }^{(3)}$	$\begin{aligned} & V_{D D}=3 \mathrm{~V} \\ & V_{D D}=4.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 4.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
linj+	Pin Injection Current (positive) Digital Input ${ }^{(1)}$ Analog Inputs ${ }^{(2)}$	$V_{D D}=4.5$ to 55 V			+5	mA
lins.	Pin Injection Current (negative) Digital Input ${ }^{(1)}$ Analog Inputs	$V_{D D}=4.5$ to 5.5 V			-5	mA

Notes:

1. A current of $\pm 5 \mathrm{~mA}$ can be forced on each pin of the digital section without affecting the functional behaviour of the device. For a positive current injected into one pin, a part of this current ($\sim 10 \%$) can be expected to flow from the neighbouring pins
2. If a total current of +1 mA is flowing into the single analog channel or if the total current flowing into all the analog inputs is of 1 mA , all the resulting conversions are shifted by +1 LSB If a total positive current is flowing into the single analog channel or if the total current flowing into all the analog inputs is of 5 mA , all the resulting conversions are shifted by +2 LSB
3 An oscillator frequency above 1 MHz is recommended for reliable A / D results

The shaded area is outside the device operating range, device functionality is not guarenteed

DC ELECTRICAL CHARACTERISTICS
($T_{A}=-40$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Value			Unit
			Min.	Typ.	Max.	
$\mathrm{V}_{\text {IL }}$	Input Low Level Voltage All inputs				$V_{\text {DD }} \times 0.3$	V
$\mathrm{V}_{1 H}$	Input High Level Voltage All inputs		$V_{D D} \times 0.7$			V
V Hys	Hysteresis Voltage ${ }^{(4)}$ All Inputs	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=3 V \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.2 \end{aligned}$			V
Vol	Low Level Output Voltage Port A, C	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V} \mathrm{l}_{\mathrm{OL}}=+1.6 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DD}}=4.5 \mathrm{~V} \mathrm{l}_{\mathrm{OL}}=+5.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V} \mathrm{l}_{\mathrm{OL}}=+0.7 \mathrm{~mA} \end{aligned}$			$\begin{aligned} & 0.4 \\ & 1.3 \\ & 0.4 \end{aligned}$	V
Vol	Low Level Output Voltage Port B	$\begin{aligned} & \mathrm{VDD}=4.5 \mathrm{~V} \mathrm{I}_{\mathrm{OL}}=+1.6 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DD}}=4.5 \mathrm{~V} \mathrm{I}_{\mathrm{OL}}=+20.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V} \mathrm{I}_{\mathrm{OL}}=+0.7 \mathrm{~mA} \end{aligned}$			$\begin{aligned} & 0.4 \\ & 1.3 \\ & 0.4 \end{aligned}$	V
VOH	High Level Output Voltage Port A, B, C	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V} \mathrm{I}_{\mathrm{OL}}=-1.6 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DD}}=4.5 \mathrm{~V} \mathrm{I}_{\mathrm{OL}}=-5.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V} \mathrm{I}_{\mathrm{OL}}=-0.7 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 4.1 \\ & 3.5 \\ & 2.6 \end{aligned}$			V
Ipu	Input Pull-up Current Input Mode with Pull-up Port A, B, C, NMI	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {SS }}, \mathrm{V}_{\mathrm{DD}}=2.5-6 \mathrm{~V}$			100	$\mu \mathrm{A}$
$\begin{aligned} & I_{\mathrm{IL}} \\ & I_{\mathrm{IH}} \end{aligned}$	Input Leakage Current(1)	$\begin{aligned} & V_{I N}=V_{S S} \\ & V_{I N}=V_{D D} \end{aligned}$			1.0	$\mu \mathrm{A}$
IDD	Supply Current in RESET Mode	$\begin{aligned} & V_{\text {RESET }}=V_{S S} \\ & f_{O S C}=8 \mathrm{MHz} \end{aligned}$			3.5	mA
	Supply Current in RUN Mode ${ }^{(2)}$	$\begin{array}{ll} V_{D D}=5.0 \mathrm{~V} & f_{\text {INT }}=8 \mathrm{MHz} \\ V_{D D}=3.0 \mathrm{~V} & f_{\text {INT }}=4 \mathrm{MHz} \end{array}$			$\begin{gathered} 6.6 \\ \text { TBD } \end{gathered}$	mA
	Supply Current in WAIT Mode ${ }^{(3)}$	$\begin{array}{ll} V_{D D}=5.0 \mathrm{~V} & f_{\mathrm{INT}}=8 \mathrm{MHz} \\ V_{D D}=3.0 \mathrm{~V} & f_{\mathrm{INT}}=4 \mathrm{MHz} \end{array}$			$\begin{gathered} 1.5 \\ \text { TBD } \end{gathered}$	mA
	Supply Current in WAIT+ Mode ${ }^{(2)}$	$\begin{aligned} & V_{D D}=5.0 \mathrm{~V} \\ & V_{D D}=3.0 \mathrm{~V} \end{aligned}$			$\begin{aligned} & \text { TBD } \\ & \text { TBD } \end{aligned}$	mA
	Supply Current in STOP Mode ${ }^{(3)}$	$\begin{aligned} & I_{L O A D}=0 \mathrm{~mA} \\ & V_{D D}=5.0 \mathrm{~V} \end{aligned}$			20	$\mu \mathrm{A}$

Notes:

1. Only when pull-ups are not inserted

2 All peripherals running
3 A/D Converter in Stand-by
4 Hysteresis voltage between switching levels

AC ELECTRICAL CHARACTERISTICS
($T_{A}=-40$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Value			Unit
			Min.	Typ.	Max.	
fosc	Oscillator Frequency	$\begin{aligned} & V_{D D}=3.0 \mathrm{~V} \\ & V_{D D}=4.5 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 4 \\ & 8 \end{aligned}$	MHz
fosg	Auxilliary Oscillator Frequency		TBD	400	TBD	kHz
tohl	High to Low Transition Time	$\begin{aligned} & \text { Port A, B, C } \\ & C_{L=100 p F} \end{aligned}$		40		ns
tolh	Low to Hıgh Transition Time	$\begin{aligned} & \text { Port A, B, C } \\ & C_{L=100 p F} \end{aligned}$		40		
tsu	Oscillator Start-up Time	$\begin{aligned} & \mathrm{C}_{\mathrm{L} 1}=\mathrm{C}_{\mathrm{L} 2}=22 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{DD}} 0.1 \text { to } \mathrm{V}_{\mathrm{DD}} 0.9 \end{aligned}$		5	10	ms
$t_{\text {REC }}$	Supply Recovery Time ${ }^{(1)}$		100			
TwR	Minimum Pulse Width ($\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$) RESET pin NMI pin		$\begin{aligned} & 100 \\ & 100 \end{aligned}$			ns
$\mathrm{C}_{\text {IN }}$	Input Capacitance	All Inputs Pins			10	pF
Cout	Output Capacitance	All Outputs Pins			10	pF

Note:

1. Period for which $V_{D D}$ has to be connected at $O V$ to allow internal Reset function at next power-up.

I/O PORT CHARACTERISTICS

Symbol	Parameter	Test Conditions	Value			Unit
			Min.	Typ.	Max.	
VIL	Input Low Level Voltage	I/O Pins			$0.3 \times \mathrm{VDD}$	V
V_{H}	Input High Level Voltage	I/O Pins	$07 \times V_{D D}$			V
Vol	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=50 \mathrm{~V} \\ & \mathrm{l}=10 \mu \mathrm{~A}, \text { All } \mathrm{I} / \mathrm{O} \text { Pins } \\ & \mathrm{l}=5 \mathrm{~mA} \text {, Standard } \mathrm{I} / \mathrm{O} \\ & \mathrm{l}=5 \mathrm{O}=10 \mathrm{~mA} \text {, Port B } \\ & \mathrm{loL}=20 \mathrm{~mA} \text {, Port B } \end{aligned}$			$\begin{aligned} & 0.1 \\ & 0.8 \\ & 08 \\ & 1.3 \end{aligned}$	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{l}_{\mathrm{OH}}=-10 \mu \mathrm{~A} \\ & \mathrm{l}_{\mathrm{OH}}=-5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V} \\ & \mathrm{l}_{\mathrm{OH}}=-1.5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} V_{D D}-0.1 \\ 3.5 \\ 2.0 \end{gathered}$			V
$\begin{aligned} & I_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{H}} \end{aligned}$	Input Leakage Current I/O Pins (pull-up resistor off)	$\begin{aligned} & V_{I n}=V_{D D} \text { or } V_{S S} \\ & V_{D D}=3.0 \mathrm{~V} \\ & V_{D D}=55 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\mu \mathrm{A}$
R PU	Pull-up Resistor	Vin $=0 V$; All I/O Pins	50	100	200	K Ω

TIMER CHARACTERISTICS
($T_{A}=-40$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Value			Unit
			Min.	Typ.	Max.	
$t_{\text {tres }}$	Resolution		$\frac{12}{\text { fint }}$			s
fin^{\prime}	Input Frequency on TIM1 Pin ${ }^{(1)}$				$\frac{\mathrm{fint}}{4}$	MHz
tw	Pulse Width at TIM1 Pın ${ }^{(1)}$	$\begin{aligned} & V_{D D}=3.0 \mathrm{~V} \\ & V_{D D}=4.5 \mathrm{~V} \\ & V_{D D}=5.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} 1 \\ 125 \\ 125 \end{gathered}$			$\mu \mathrm{s}$ ns ns

A/D CONVERTER CHARACTERISTICS

($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Value			Unit
			Min.	Typ.	Max.	
Res	Resolution			8		Bit
Atot	Total Accuracy ${ }^{(1)(2)}$	$\begin{aligned} & \text { fosc }>1.2 \mathrm{MHz} \\ & \text { fosc }>32 \mathrm{kHz} \end{aligned}$			$\begin{aligned} & \pm 2 \\ & \pm 4 \end{aligned}$	LSB
tc	Conversion Time	$\mathrm{fosc}=8 \mathrm{MHz}$		70		$\mu \mathrm{S}$
$V_{\text {AN }}$	Conversion Range		$V_{S S}$		VDD	V
ZIR	Zero Input Reading	Conversion result when $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{SS}}$	00			Hex
FSR	Full Scale Readıng	Conversion result when $V_{I N}=V_{D D}$			FF	Hex
$A D_{1}$	Analog Input Current Durıng Conversion	$V_{D D}=4.5 \mathrm{~V}$			1.0	$\mu \mathrm{A}$
$\mathrm{AC}_{\mathbf{1}}{ }^{(3)}$	Analog Input Capacitance			2	5	pF
ASI	Analog Source Impedance	Analog Channel switched just before conversion start ${ }^{(4)}$			30	$k \Omega$

Notes:

1. NoIse at $V_{D D}, V_{S S}<10 \mathrm{mV}$

2 With oscillator frequencies less than 1 MHz , the A/D Converter accuracy is decreased
3 Excluding Pad Capacitance
4 ASI can be increased as long as the load of the A/D Converter input capacitor is ensured before conversion start

8-BIT OTP/EPROM HCMOS MCUs WITH A/D CONVERTER

PRELIMINARY DATA

- 3.0 to 6.0V Supply Operating Range
- 8 MHz Maximum Clock Frequency
- -40 to $+85^{\circ} \mathrm{C}$ Operating Temperature Range
- Run, Wait, Wait+ \& Stop Modes
- 5 different interrupt vectors
- Look-up table capability in EPROM
- User EPROM: 1828 bytes (ST62T10B, T15B) 3876 bytes (ST62x20B, x25B)
- Data EPROM: User selectable size (in program EPROM)
- Data RAM: 64 bytes
- EPROM readout protection
- PDIP20, PSO20 (ST62T10B,T20B) packages
- PDIP28, PSO28 (ST62T15B,T25B) packages
- FDIP20, CSO20 (ST62E20B) packages
- FDIP28, CSO28 (ST62E25B) packages
- 12/20 fully software programmable I/O as:
- Input with pull-up resistor
- Input without Pull-up resistor
- Input with interrupt generation
- Open-drain or push-pull outputs
- Analog Inputs
- 4 I/O lines can sink up to 20 mA for direct LED or TRIAC driving
- 8 bit counter with a 7-bit programmable prescaler. (Timer)
- Digital Watchdog and Oscillator Safe Guard for enhanced safety
- 8 bit A/D Converter with up to 8 (ST62T10B, ST62x20B) and up to 16 (ST62T15B, ST62x25B) analog inputs
- On-chip clock oscillator (Quartz Crystal, Ceramic resonnator or RC network)
- Power-on Reset
- One external not maskable interrupt
- 9 powerful addressing modes
- The ST62E20B, E25B are the EPROM versions, the ST62T10B, T15B, T20B, T25B are the OTP versions, fully compatible with ROM versions ST6210B, 15B, 20B, 25B.
Device Summary page 3

EPROM PACKAGES

Figure 1. ST62T10B, T20B, E20B Pin Config.

Figure 2. ST62T15B, T25B, E25B Pin Config.

	V DD	1	28	V ss
	TIMER	2	27	PAO
	OSCın	3	26	PA1
	OSCout	4	25	PA2
	NMI	5	24	PA3
	Ain / PC7	6	23	PA4 / Ain
	Ain / PC6	7	22	PA5 / Ain
	Ain / PC5	8	21	PA6 / Ain
	AIn / PC4	9	20	PA7 / Ain
V PP	1 TEST	10	19	PBO / Atn
	RESET	11	18	PB1 / Aın
	Ain / PB7	12	17	PB2 / Aln
	Aın / PB6	13	16	PB3 / Atn
	Ain / PB5	14	15	PB4 / Ain VR001804

Figure 3. ST62T10B,T15B,T20B,T25B - ST62E20,E25 Block Diagram

GENERAL DESCRIPTION

The ST62T10B, T15B, T20B, T25B, E20B and E25B microcontrollers are members of the 8 -bit HCMOS ST62xx family, a series of devices oriented to low-medium complexity applications. They are the OTP/EPROM versions of the ST6210B, ST6215B, ST6220B and ST6225B devices respectively.
EPROM are suited for development. OTPs are suited for prototyping, preseries, low to mid volume series and inventory optimization for customer having several applications using the same MCU.
All ST62xx members are based on a building block approach: a common core is associated with a combination of on-chip peripherals (macrocells).
The macrocells of the ST6210B, 15B, 20B and 25B (available on the EPROM/OTP products) are: The Timer peripheral that includes an 8-bit counter with a 7-bit software programmable prescaler, the digital watchdog (DWD), an 8-bit A/D Converter with up to 8 (ST6210B, 20B) or 16 (ST6215B, 25B) analog inputs. The B Version of the ST621x,2x also provide enhanced safety through the Oscillator Safe Guard (OSG)and a new low power mode (Wait+).
These devices are well suited for automotive, appliance and industrial applications.

DEVICE SUMMARY

Device	UV- EPROM	OTP ROM	I/O Pins	Emulated Device
ST62T10B		2 K	12	ST6210B
ST62T15B		2 K	20	ST6215B
ST62T20B		4 K	12	ST6220B
ST62T25B		4 K	20	ST6225B
ST62E20B	4 K		12	ST6210B ST6220B
ST62E25B	4 K		20	ST6215B ST6225B

PIN DESCRIPTION

$V_{D D}$ and $V_{S s}$. Power is supplied to the MCU using these two pins. $V_{D D}$ is power and $V_{S S}$ is the ground connection.
OSCin and OSCout. These pins are internally connected with the on-chip oscillator circuit. When the Quartz Crystal/Ceramic option is selected in the option byte, a quartz crystal, a ceramic resonator or an external clock signal can be connected between these two pins. When the RC network op-
tion is selected, a resistor must be connected between these two pins. The OSCin pin is the input pin, the OSCout pin is the output pin.
RESET. The active low RESET pin is used to restart the microcontroller to the beginning of its program.
TEST/VPp. The TEST must be held at $\mathrm{V}_{\text {ss }}$ for normal operation. If TEST pin is connected to a +12.5 V level during the reset phase, the EPROM programming Mode is entered.
NMI. The NMI pin provides the capability for asynchronous interrupt applying an external not maskable interrupt to the MCU. The NMI is falling edge sensitive. The user can select as EPROM mask option the availability of an on-chip pull-up at NMI pin.
TIMER. This is the timer I/O pin. In input mode it is connected to the prescaler and acts as external timer clock or as control gate for the internal timer clock. In the output mode the timer pin outputs the data bit when a time-out occurs.
The user can select as EPROM mask option the availability of an on-chip pull-up at TIMER pin.
PA0-PA3,PA4-PA7. These 8 lines are organized as one I/O port (A). Each line may be configured under software control as inputs with or without internal pull-up resistors, interrupt generating inputs with pull-up resistors, open-drain or push-pull outputs. PAO-PA3 can also sink 20 mA for direct led driving while PA4-PA7 can be programmed as analog inputs for the A/D converter.
Note. PA4-PA7 are not available on ST62T10B, ST62x20B.
PB0-PB7. These 8 lines are organized as one I/O port (B). Each line may be configured under software control as inputs with or without internal pullup resistors, interrupt generating inputs with pull-up resistors, open-drain or push-pull outputs and as analog inputs for the A/D converter.
PC4-PC7. These 4 lines are organized as one I/O port (C). Each line may be configured under software control as inputs with or without internal pullup resistors, interrupt generating inputs with pull-up resistors, open-drain or push-pull outputs and as analog inputs for the A/D converter.
Note. PC4-PC7 are not available on ST62T10B, ST62x20B.

THE USER IS ASKED TO REFER TO THE DATASHEET OF THE ST6210B, 15B, 20B, 25B ROM DEVICE FOR FURTHER DETAILS.
 EPROM/OTP DESCRIPTION

The ST62E20B, E25B are the EPROM versions of the ST6210B, 15B, 20B, 25B products. They are
intended for use during the development of an application and for pre-production and small volume production. ST62T10B, T15B, T20B, T25B OTP have the same characteristics. They all include EPROM memory instead of the ROM memory of the corresponding ST6210B, 15B, 20B, 25B and so the program can be easily modified by the user with the ST62E1X EPROM programming tools from SGS-THOMSON.
From a user point of view (with the following exceptions) the ST62E20B, E25B and ST62T10B, T15B, T20B, T25B products have exactly the same software and hardware features as the ROM version. An additional mode is used to configure the part for programming of the EPROM, this is set by a +12.5 V voltage applied to the TEST/VPP pin. The programming of the ST62E20B, E25B, T10B, T15B, T20B, T25B is described in the User Manual of the EPROM Programming Board.
Note also the Low Voltage option of ROM devices can not be emulated on EPROM or OTP devices

ROM Option Emulation

The ROM mask options that can be selected by the user in the ROM devices can be selected on the EPROM/OTP devices by an EPROM CODE byte that can be programmed with the EPROM programming tools available from SGS-THOMSON. This EPROM CODE byte is automatically read, and the selected options enabled, when the chip reset is activated.
The Option byte is written during programming either by using the PC menu (PC driven Mode) or automatically (stand-alone mode).

EPROM Programming Mode

An additional mode is used to configure the part for programming of the EPROM, this is set by a 12.5 V
voltage applied to the TEST/VPP pin. The programming of the ST62E20B, E25B, T10B, T15B, T20B, T25B is described in the User Manual of the EPROM Programming Board.

EPROM ERASING

The EPROM of the windowed package of the ST62E20B, E25B may be erased by exposure to Ultra Violet light.
The erasure characteristic of the ST62E20B, E25B is such that erasure begins when the memory is exposed to light with a wave lengths shorter than approximately 4000Å. It should be noted that sunlights and some types of fluorescent lamps have wavelengths in the range $3000-4000 \AA$. It is thus recommended that the window of the package be covered by an opaque label to prevent unintentional erasure problems when testing the application in such an environment.
The recommended erasure procedure of the ST62E20B, E25B EPROM is the exposure to short wave ultraviolet light which have a wave-length 2537A. The integrated dose (i.e. U.V. intensity x exposure time) for erasure should be a minimum of $15 \mathrm{~W}-\mathrm{s} / \mathrm{cm}^{2}$. The erasure time with this dosage is approximately 15 to 20 minutes using an ultraviolet lamp with $12000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ power rating. The ST62E20B, E25B should be placed within 2.5 cm (11nch) of the lamp tubes during erasure.

ST62xx CORE

Figure 4. EPROM Code Option Byte

D7. EPROM READOUT PROTECTION. When this bit is set, readout of the EPROM area is prevented by hardware. No programming equipment is able to gain access to the user program. This gives to users maximum assurance their software know how is kept secret. When this bit is low, user program can be readout. This bit emulates the ROM PROTECTION mask option available in ROM devices.
D6. OSCILLATOR. When this bit is high, the oscillator must be controlled by a quartz crystal, a ceramic resonnator or an external frequency. When it is low, the oscillator is controlled by an RC network, with only the resistor having to be externally provided. This bit emulates the OSCILLATOR mask option available in ROM devices.

D5. RESERVED. MUST BE SET TO 1

D4. DEVICE SELECTION. This bit must be set to one on the ST62T15B, T25B, E15B and E25B devices. It must be cleared to 0 on the ST62T10B, T20B, E10B and E20B. This bit is used to tight to VDD I/Os not connected in the 20 pin packaged devices in order to avoid having unconnected CMOS inputs.
D3. NMI PIN PULL-UP. This bit must be set high to configure the NMI pin with a pull up resistor. When it is low, no pull up is provided. This bit emulates the NMI PIN PULL-UP mask option available in ROM devices.

D2. TIMER PIN PULL-UP. This bit must be set high to configure the TIMER pin with a pull up resistor. When it is low, no pull up is provided. This bit emulates the TIMER PIN PULL-UP mask option available in ROM devices.
D1. WACHDOG ACTIVATION. When set thigh, the watchdog is selected to be hardware activated. When this bit is low, the watchdog's software activation is selected. This bit emulates the WATCHDOG ACTIVATION mask option available in ROM devices.
D0. OSG. This bit must be set high to enable the Oscillator Safe Guard. When this bit is low, the OSG is disabled. This bit emulates the OSG mask option available in ROM devices.

Table 1. OTP Memory Map
ST62T10B, ST62T15B (2K ROM Devices)

Device Address	Description
0000h-007Fh	Reserved $^{(1)}$
0880h-0F9Fh	User ROM
OFAOh-0FEFh	Reserved $^{(1)}$
OFFOh-OFF7h	Interrupt Vectors
OFF8h-OFFDh	Reserved $^{(1)}$
OFFEh-OFFFh	Reset Vector 2

Note:

1 Reserved Areas should be filled with FFh

ST62T10B, T15B, ST62E20B, E25B (4K ROM Devices)

Device Address	Description
0000h-007Fh	Reserved $^{(1)}$
0080h-0F9Fh	User ROM $^{(1)}$
0FA0h-0FEFh	Reserved $^{(1)}$
0FF0h-0FF7h	Interrupt Vectors $_{\text {0FF8h-0FFDh }}^{\text {OFFEh-0FFFh }}$

Note:

1 Reserved Areas should be filled with FFh

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings

This product contains devices to protect the inputs against damage due to high static voltages, however it is advised to take normal precaution to avoid application of any voltage higher than maximum rated voltages.
For proper operation it is recommended that V_{I} and V_{0} must be higher than $V_{S S}$ and smaller $V_{D D}$. Reliability is enhanced if unused inputs are connected to an appropriated logic voltage level (VDD or $\mathrm{V}_{S S}$).

Power Considerations. The average chip-junction temperature, Tj , in Celsius can be obtained from :
$T j=\quad T_{A}+P D \times R t h J A$
Where : $T_{A}=\quad$ Ambient Temperature.
RthJA $=$ Package thermal resistance (junction-to ambient).
PD $=\quad$ Pint + Pport .
Pint $=\quad \operatorname{lDD} \times V_{D D}$ (chip internal power).
Pport $=$ Port power dissipation (determinated by the user).

Symbol	Parameter	Value	Unit
VDD	Supply Voltage	-0.3 to 7.0	V
V I	Input Voltage	$\mathrm{V}_{S S}-0.3$ to $\mathrm{V}_{\mathrm{DD}}+0.3^{(1)}$	V
Vo	Output Voltage	$V_{S S}-0.3$ to $V_{D D}+0.3^{(1)}$	V
lo	Current Drain per Pin Excluding VDD, $\mathrm{V}_{\text {SS }}$	10	mA
$\mathrm{linJ}+$	Pin Injection current (positive), All I/O, $\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$	+5	mA
linj-	Pin Injection current (negative), All I/O, VDD $=4.5 \mathrm{~V}$	-5	mA
IV ${ }_{\text {D }}$	Total Current into V ${ }_{\text {DD }}$ (source)	$50^{(2)}$	mA
IV ss	Total Current out of V ${ }_{\text {SS }}$ (sink)	$50^{(2)}$	mA
Tj	Junction Temperature	150	${ }^{\circ} \mathrm{C}$
TSTG	Storage Temperature	-60 to 150	${ }^{\circ} \mathrm{C}$

Notes :
Stresses above those listed as "absolute maximum ratıngs" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

1. Within these limits, clamping diodes are guarantee to be not conductive Voltages outside these limits are authorised as long as injection current is kept within the specification.
2. The total current through all bits of ports A and B combined may not exceed 50 mA

The total current through all bits of port C may not exceed 50 mA .
The total current, if the application is designed with care and observing the limits stated above, may reach 100 mA .

THERMAL CHARACTERISTIC

Symbol		Parameter	Test Conditions	Value			Unit
				Min.	Typ.	Max.	
RthJA	The	Resistance	PDIP28			55	${ }^{\circ} \mathrm{C} / \mathrm{W}$
			PDIP20			60	
			PSO28			75	
			PSO20			80	

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Test Conditions	Value			Unit
			Min.	Typ.	Max.	
$\mathrm{T}_{\text {A }}$	Operating Temperature	6 Suffix Version 1 Suffix Version	$\begin{gathered} -40 \\ 0 \end{gathered}$		$\begin{aligned} & 85 \\ & 70 \end{aligned}$	${ }^{\circ} \mathrm{C}$
$V_{\text {DD }}$	Operating Supply Voltage	$\begin{aligned} & \mathrm{fosc}=4 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{INT}}=4 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{OSC}}=8 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{INT}}=8 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.5 \end{aligned}$		$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	
fint	Internal Frequency ${ }^{(3)}$	$\begin{aligned} & V_{D D}=3 V \\ & V_{D D}=4.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 4.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
linj+	Pin Injection Current (positive) Digital Input ${ }^{(1)}$ Analog Inputs ${ }^{(2)}$	$V_{\text {DD }}=4.5$ to 5.5 V			+5	mA
lins.	Pin Injection Current (negative) Digital Input ${ }^{(1)}$ Analog Inputs	$V_{D D}=4.5$ to 5.5 V			-5	mA

Notes:

1. A current of $\pm 5 \mathrm{~mA}$ can be forced on each pin of the digital section without affecting the functional behaviour of the device For a positive current injected into one pin, a part of this current ($\sim 10 \%$) can be expected to flow from the neighbouring pins
2. If a total current of +1 mA is flowing into the single analog channel or if the total current flowing into all the analog inputs is of 1 mA , all the resulting conversions are shifted by +1 LSB. If a total positive current is flowing into the single analog channel or if the total current flowing into all the analog inputs is of 5 mA , all the resulting conversions are shifted by +2 LSB.
3 An oscillator frequency above 1 MHz is recommended for reliable A / D results.

DC ELECTRICAL CHARACTERISTICS
($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Value			Unit
			Min.	Typ.	Max.	
VIL	Input Low Level Voltage All inputs				$V_{D D} \times 0.3$	V
V_{H}	Input High Level Voltage All inputs		$V_{D D} \times 0.7$			V
$V_{\text {Hys }}$	Hysteresis Voltage ${ }^{(4)}$ All Inputs	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.2 \end{aligned}$			V
VoL	Low Level Output Voltage Port A, C	$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$ IOL $=+1.6 \mathrm{~mA}$ $\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$ IoL $=+5.0 \mathrm{~mA}$ $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$ loL $=+0.7 \mathrm{~mA}$			$\begin{aligned} & 0.4 \\ & 1.3 \\ & 0.4 \end{aligned}$	V
Vol	Low Level Output Voltage Port B	$\mathrm{VDD}=4.5 \mathrm{~V}$ loL $=+1.6 \mathrm{~mA}$ $\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$ lol $=+20.0 \mathrm{~mA}$ $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \mathrm{I}_{\mathrm{OL}}=+0.7 \mathrm{~mA}$			$\begin{aligned} & 0.4 \\ & 1.3 \\ & 0.4 \end{aligned}$	V
VOH	High Level Output Voltage Port A, B, C	$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$ IOL $=-1.6 \mathrm{~mA}$ $V_{D D}=4.5 \mathrm{~V}$ IoL $=-5.0 \mathrm{~mA}$ $V_{D D}=3.0 \mathrm{~V}$ IoL $=-0.7 \mathrm{~mA}$	$\begin{aligned} & 4.1 \\ & 3.5 \\ & 2.6 \end{aligned}$			V
Ipu	Input Pull-up Current Input Mode with Pull-up Port A, B, C, NMI	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {SS }}, \mathrm{V}_{\text {DD }}=3-6 \mathrm{~V}$			100	$\mu \mathrm{A}$
$\begin{aligned} & I_{L} \\ & I_{H} \end{aligned}$	Input Leakage Current(1)	$\begin{aligned} & V_{I N}=V_{S S} \\ & V_{I N}=V_{D D} \end{aligned}$			1.0	$\mu \mathrm{A}$
ldo	Supply Current in RESET Mode	$\begin{aligned} & V_{\text {RESET }}=V_{S S} \\ & \text { fosc }=8 \mathrm{MHz} \end{aligned}$			3.5	mA
	Supply Current in RUN Mode ${ }^{(2)}$	$\begin{aligned} & V_{\mathrm{DD}=5.0 \mathrm{~V}} \quad \mathrm{f}_{\mathrm{f} T=8 \mathrm{MHz}} \\ & \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V} \text { fiNT }=4 \mathrm{MHz} \end{aligned}$			$\begin{gathered} 6.6 \\ \text { TBD } \end{gathered}$	mA
	Supply Current in WAIT Mode ${ }^{(3)}$	$\begin{array}{ll} V_{D D}=5.0 \mathrm{~V} & f_{\text {fiNT }}=8 \mathrm{MHz} \\ V_{D D}=3.0 \mathrm{~V} & \mathrm{f}_{\mathrm{INT}}=4 \mathrm{MHz} \end{array}$			$\begin{aligned} & 1.50 \\ & \text { TBD } \end{aligned}$	mA
	Supply Current in STOP Mode ${ }^{(3)}$	$\begin{aligned} & \mathrm{L} \mathrm{LOAD}=0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V} \end{aligned}$			20	$\mu \mathrm{A}$

Notes:

1 Only when pull-ups are not inserted
2. All peripherals running
3. A/D Converter in Stand-by

4 Hysteresis voltage between switching levels

AC ELECTRICAL CHARACTERISTICS

($T_{A}=-40$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Value			Unit
			Min.	Typ.	Max.	
fosc	Oscillator Frequency	$\begin{aligned} & V_{D D}=3.0 \mathrm{~V} \\ & V_{D D}=4.5 \mathrm{~V} \end{aligned}$			4 8	MHz
tohl	High to Low Transıtion Time	Port A, B, C $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$		40		ns
tolh	Low to High Transıtion Tıme	Port A, B, C $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$		40		
tsu	Oscillator Start-up Tıme	$\begin{aligned} & C_{L 1}=C_{L 2}=22 p F \\ & V_{D D X 0 .} 1 \text { to } V_{D D X} 0.9 \end{aligned}$		5	10	ms
$t_{\text {REC }}$	Supply Recovery Time ${ }^{(1)}$		100			
Twr	Minimum Pulse Width (VD $=5 \mathrm{~V}$) RESET pin NMI pın		$\begin{aligned} & 100 \\ & 100 \end{aligned}$			ns
$\mathrm{CIN}_{\text {I }}$	Input Capacitance	All Inputs Pins			10	pF
Cout	Output Capacitance	All Outputs Pins			10	pF

Note:

1 Perıod for which VDD has to be connected at $O V$ to allow internal Reset function at next power-up

I/O PORT CHARACTERISTICS

Symbol	Parameter	Test Conditions	Value			Unit
			Min.	Typ.	Max.	
VIL	Input Low Level Voltage	I/O Pins			$0.3 \times \mathrm{VDD}$	V
V_{IH}	Input High Level Voltage	I/O Pins	$0.7 \times V_{D D}$			V
$\mathrm{VOL}^{\text {O }}$	Low Level Output Voltage	$\begin{array}{\|l} V_{D D}=5.0 \mathrm{~V} \\ \mathrm{loL}=10 \mu \mathrm{~A}, \mathrm{All} \mathrm{I} / \mathrm{O} \text { Pins } \\ \mathrm{loL}=5 \mathrm{~mA} \text {, Standard } \mathrm{I} / \mathrm{O} \\ \mathrm{loL}=10 \mathrm{~mA} \text {, Port B } \\ \text { loL }=20 \mathrm{~mA} \text {, Port B } \end{array}$			$\begin{aligned} & 0.1 \\ & 0.8 \\ & 0.8 \\ & 1.3 \end{aligned}$	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{l}_{\mathrm{OH}}=-10 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-5 \mathrm{~mA}, \mathrm{~V} \mathrm{VD}=5.0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OH}}=-1.5 \mathrm{~mA}, \mathrm{~V}, \mathrm{DD}=3.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} V_{D D}-0.1 \\ 3.5 \\ 2.0 \end{gathered}$			V
$\begin{aligned} & I_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{IH}} \end{aligned}$	Input Leakage Current I/O Pins (pull-up resistor off)	$\begin{aligned} & V i n=V_{D D} \text { or } V_{S S} \\ & V_{D D}=3.0 \mathrm{~V} \\ & V_{D D}=5.5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\mu \mathrm{A}$
Rpu	Pull-up Resistor	Vin $=0 \mathrm{~V}$; All I/O Pins	50	100	200	K Ω

TIMER CHARACTERISTICS
($T_{A}=-40$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Value			Unit
			Min.	Typ.	Max.	
tres	Resolution		$\frac{12}{\mathrm{fiNT}^{\text {c }}}$			s
fin^{\prime}	Input Frequency on TIM1 Pin ${ }^{(1)}$				$\frac{\mathrm{f}_{1 / \mathrm{NT}}}{4}$	MHz
tw	Pulse Width at TIM1 Pin ${ }^{(1)}$	$\begin{aligned} & V_{D D}=3.0 \mathrm{~V} \\ & V_{D D}=4.5 \mathrm{~V} \\ & V_{D D}=5.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} 1 \\ 125 \\ 125 \end{gathered}$			$\begin{aligned} & \mu \mathrm{s} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$

A/D CONVERTER CHARACTERISTICS
($T_{A}=-40$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Value			Unit
			Min.	Typ.	Max.	
Res	Resolution ${ }^{(1)}$			8		Bit
Аtot	Total Accuracy ${ }^{(1)}$	$\begin{aligned} & \text { fosc }>1.2 \mathrm{MHz} \\ & \text { fosc }>32 \mathrm{kHz} \end{aligned}$			± 2 ± 4	LSB
$\mathrm{tc}^{(2)}$	Conversion Time	$\mathrm{fosc}=8 \mathrm{MHz}$		70		$\mu \mathrm{S}$
$V_{\text {AN }}$	Conversion Range		$\mathrm{V}_{\text {Ss }}$		$V_{D D}$	V
ZIR	Zero Input Readıng	Conversion result when $\mathrm{VIn}=\mathrm{V}_{\mathrm{SS}}$	00			Hex
FSR	Full Scale Reading	Conversion result when $V_{I n}=V_{D D}$			FF	Hex
$A D_{1}$	Analog Input Current During Conversion	$V_{D D}=4.5 \mathrm{~V}$			1.0	$\mu \mathrm{A}$
$\mathrm{AC}_{1 \mathrm{IN}^{(3)}}$	Analog Input Capacitance			2	5	pF
ASI	Analog Source Impedance				30	$K \Omega$
SSI	Analog Reference Supply Impedence				2	K Ω

Notes:

1 Noise at VDD, VSS < 10 mV
2 With oscillator frequencies less than 1 MHz , the A / D Converter accuracy is decreased
3 Excluding Pad Capacitance.
4. ASI can be increased as long as the load of the A/D Converter input capacitor is ensured before conversion start.

ST626x DATASHEETS

8-BIT HCMOS MCUs WITH A/D CONVERTER, EEPROM \& AUTO-RELOAD TIMER

PRELIMINARY DATA

- 2.5 to 6.0V Supply Operating Range
- 8 MHz Maximum Clock Frequency
- -40 to $+85^{\circ} \mathrm{C}$ Operating Temperature Range
- Run, Wait \& Stop Modes
- 5 different interrupt vectors
- Look-up table capability in ROM
- User ROM: 3868 bytes
- Data ROM: User selectable size (in program ROM)
- Data RAM: 128 bytes
- EEPROM: 128 bytes
- PDIP20, PSO20 (ST6260) packages
- PDIP28, PSO28 (ST6265) packages
- 13/21 fully software programmable I/O as:
- Input with pull-up resistor
- Input without pull-up resistor
- Input with interrupt generation
- Open-drain or push-pull outputs
- Analog Inputs
- 6/8 I/O lines can sink up to 20 mA for direct LED or TRIAC driving
- 8 bit counter with a 7 -bit programmable prescaler (Timer1)
- 8 bit auto-reload timer with 7-bit programmable prescaler (AR Timer)
- Digital Watchdog
- 8 bit A/D Converter with up to 7 (ST6260) and up to 13 (ST6265) analog inputs
- 8 bit Synchronous Peripheral Interface (SPI)
- On-chip clock oscillator (Quartz Crystal or Ceramic resonnator)
- Power-on Reset
- One external not maskable interrupt
- 9 powerful addressing modes
- The development tool of the ST626x microcontrollers consists of the ST626x-EMU emulation and development system connected via an RS232 serial line to an MS-DOS PC

Figure 1. ST6260 Pin Configuration

Figure 2. ST6265 Pin Configuration

Figure 3. ST6260,65 Block Diagram

GENERAL DEESCRIPTION

The ST6260 and ST6265 microcontrollers are members of the 8 -bit HCMOS ST62xx family, a series of devices oriented to low-medium complexity applications.
All ST62xx members are based on a building block approach: a common core is surrounded by a combination of on-chip peripherals (macrocells).
The macrocells of the ST6260 and ST6265 are: the Timer peripheral that includes an 8-bit counter with a 7-bit software programmable prescaler (Timer1), the 8 -bit Auto-reload Timer with 7 bit programmable prescaler (AR Timer), the 8-bit A/D Converter with up to 7 (ST6260) and up to 13 (ST6265) analog inputs (A/D inputs are alternate functions of I/O pins), the Digital Watchdog (DWD) and an 8-bit Serial synchronous Peripheral Interface (SPI). In addition, these devices offer 128 bytes of EEPROM for non volatile data storage.
ST6260 and ST6265 are well suited for automotive, appliance and industrial applications.
The ST62E60 and ST62E65 EPROM versions are available for prototypes and low-volume production; also OTP versions are available.

PIN DESCRIPTION

$V_{d D}$ and $V_{s s}$. Power is supplied to the MCU using these two pins. $V_{D D}$ is power and $V_{S S}$ is the ground connection.
OSCin and OSCout. These pins are internally connected with the on-chip oscillator circuit. A quartz crystal, a ceramic resonator or an external clock signal can be connected between these two pins in order to allow the correct operation of the MCU with various stability/cost trade-offs. The fre-quency at OSCin and OSCout is internally divided by 1,2 or 4 by a software controlled divider. The OSCin pin is the input pin, the OSCout pin is the output pin.
RESET. The active low RESET pin is used to restart the microcontroller to the beginning of its program.
TEST. The TEST must be held at VSS for normal operation (an internal pull-down resistor selects normal operating mode if TEST pin is not connected).
NMI. The NMI pin provides the capability for asynchronous interrupt applying an external not maskable interrupt to the MCU. The NMI is falling edge sensitive. It is provided with an on-chip pull-up resistor and Schmitt trigger characteristics.

PC1/TIM1/Ain. This pin can be used as a Port C I/O bit, as Timer 1 I/O pin or as analog input for the on-chip A/D converter. This pin is available only on the ST6265 (28 pin version). If programmed to be the Timer 1 pin, in input mode it is connected to the prescaler and acts as external timer clock or as control gate for the internal timer clock. In the output mode the timer pin outputs the data bit when a time out occurs.
To use this pin as Timer 1 output a dedicated bit in the TIMER 1 Status/Control Register must be set. To use this pin as input pin the I/O pin has to be programmed as input. The analog mode should be programmed to use the line as an analog input.
PB6/ARTIMin, PB7/ARTIMout. These pins are either Port B I/O bits or the Input and Output pins of the Auto-reload Timer. To be used as timer input function PB6 has to be programmed as input with or without pull-up. A dedicated bit in the AR TIMER Mode Control Register sets PB7 as timer output function.
PAO-PA7. These 8 lines are organized as one I/O port (A). PA4-PA7 are not available on ST6260 (20 pin version). Each line may be configured under software control as input with or without internal pull-up resistor, interrupt generating input with pullup resistor, analog input, open-drain or push-pull output.
PB0-PB3, PB4, PB5. These 6 lines are organized as one I/O port (B). PB4, PB5 are available only on the ST6265 (28 pin version). Each line may be configured under software control as input with or without internal pull-up resistor, interrupt generating input with pull-up resistor, open-drain or pushpull output. In output mode these lines can also sink 20 mA for direct LED and TRIAC driving. The reset configuration of PBO-PB3 can be selected by mask option (pull-up or high impedance).
PCO-PC4. These 5 lines are organized as one I/O port (C). PC0 and PC1 are not available on ST6260 (20 pin version). Each line may be configured under software control as input with or without internal pull-up resistor, interrupt generating input with pullup resistor, analog input for the A/D converter, open-drain or push-pull output. PC2-PC4 can also be used as respectively Data in, Data out and Clock I/O pins for the on-chip SPI to carry the synchronous serial I/O signals.

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings

This product contains devices to protect the inputs against damage due to high static voltages, however it is advised to take normal precaution to avoid application of any voltage higher than maximum rated voltages.
For proper operation it is recommended that V_{1} and V_{0} must be higher than $V_{S S}$ and smaller $V_{D D}$. Reliability is enhanced if unused inputs are connected to an appropriated logic voltage level (V_{DD} or $\mathrm{V}_{S S}$).

Power Considerations. The average chip-junction temperature, Tj, in Celsius can be obtained from :

	$\mathrm{Tj}=$	$\mathrm{T}_{\mathrm{A}}+\mathrm{PD} \times$ Rth $J A$
Where :	$\mathrm{T}_{\mathrm{A}}=$	Ambient Temperature.
	RthJA =	Package thermal resistance (junction-to ambient).
	$\mathrm{PD}=$	Pint + Pport.
	Pint $=$	$l_{\text {DD }} \times V_{\text {DD }}$ (chip internal power).
	Pport $=$	Port power dissipation (determinated by the user).

Symbol	Parameter	Value	Unit
$V_{D D}$	Supply Voltage	-0.3 to 7.0	V
V_{1}	Input Voltage	$V_{S S}-0.3$ to $V_{D D}+0.3^{(1)}$	V
Vo	Output Voltage	$V_{S S}-0.3$ to $V_{D D}+0.3^{(1)}$	V
10	Current Draın per Pin Excludıng V ${ }_{\text {DD }}$, $\mathrm{V}_{\text {SS }}$	10	mA
linj+	Pin Injection current (positive), All I/O, V ${ }_{\text {DD }}=4.5 \mathrm{~V}$	+5	mA
lins.	Pin Injection current (negative), All I/O, VDD $=4.5 \mathrm{~V}$	-5	mA
IV ${ }_{\text {D }}$	Total Current into V ${ }_{\text {DD }}$ (source)	50	mA
IVSS	Total Current out of V ${ }_{\text {SS }}$ (sink)	50	mA
Tj	Junction Temperature	150	${ }^{\circ} \mathrm{C}$
TSTG	Storage Temperature	-60 to 150	${ }^{\circ} \mathrm{C}$

Notes :

Stresses above those listed as "absolute maximum ratings" may cause permanent damage to the device. This is a stress ratıng only and functional operation of the device at these conditions is not implied Exposure to maximum ratıng conditions for extended periods may affect device reliability.
1 Within these limits, clamping diodes are guarantee to be not conductive. Voltages outside these limits are authorised as long as injection current is kept within the specification.

THERMAL CHARACTERISTIC

Symbol	Parameter	Test Conditions	Value			Unit
			Min.	Typ.	Max.	
RthJA	Thermal Resistance	PDIP28			55	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		PDIP20			60	
		PSO28			75	
		PSO20			80	

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Test Conditions	Value			Unit
			Min.	Typ.	Max.	
T_{A}	Operating Temperature	6 Suffix Version 1 Suffix Version	$\begin{gathered} -40 \\ 0 \end{gathered}$		$\begin{aligned} & 85 \\ & 70 \end{aligned}$	${ }^{\circ} \mathrm{C}$
$V_{D D}$	Operating Supply Voltage	Low Voltage option fosc $=2 \mathrm{MHz}$ $\mathrm{f}_{\mathrm{INT}}=2 \mathrm{MHz}$ fosc $=4 \mathrm{MHz}$ $\mathrm{fint}=4 \mathrm{MHz}$ fosc $=8 \mathrm{MHz}$ $\mathrm{fint}^{\mathrm{IN}}=8 \mathrm{MHz}$	2.5 3.0 4.5		6.0 6.0 6.0	
fint	Internal Frequency ${ }^{(3)}$	$\begin{aligned} & V_{D D}=3 \mathrm{~V} \\ & V_{D D}=4.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 4.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
linj+	Pin Injection Current (positive) Digital Input ${ }^{(1)}$ Analog Inputs ${ }^{(2)}$	$V_{D D}=4.5$ to 5.5 V			+5	mA
lins.	Pin Injection Current (negative) Digital Input ${ }^{(1)}$ Analog Inputs	$V_{D D}=4.5$ to 5.5 V			-5	mA

Notes:

1 A current of $\pm 5 \mathrm{~mA}$ can be forced on each pin of the digital section without affecting the functional behaviour of the device For a positive current injected into one pın, a part of this current (-10%) can be expected to flow from the neighbouring pins
2. If a total current of +1 mA is flowing into the single analog channel or if the total current flowing into all the analog inputs is of 1 mA , all the resulting conversions are shifted by +1 LSB If a total positive current is flowing into the single analog channel or if the total current flowing into all the analog inputs is of 5 mA , all the resulting conversions are shifted by +2 LSB
3 An oscillator frequency above 1 MHz is recommended for reliable A / D results

The shaded area is outside the ST6260/65 operatıng range, device functionality is not guarenteed.

DC ELECTRICAL CHARACTERISTICS
($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Value			Unit
			Min.	Typ.	Max.	
VIL	Input Low Level Voltage All inputs				$V_{\text {DD }} \times 0.3$	V
V/H	Input High Level Voltage All inputs		$V_{D D} \times 0.7$			V
$\mathrm{V}_{\text {Hys }}$	Hysteresis Voltage ${ }^{(4)}$ All Inputs	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.2 \end{aligned}$			V
Vol	Low Level Output Voltage Port A, C	$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$ IoL $=+1.6 \mathrm{~mA}$ $\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$ IOL $=+5.0 \mathrm{~mA}$ $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$ IoL $=+0.7 \mathrm{~mA}$			$\begin{aligned} & 0.4 \\ & 1.3 \\ & 0.4 \end{aligned}$	V
Vol	Low Level Output Voltage Port B	$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$ loL $=+1.6 \mathrm{~mA}$ $\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$ loL $=+20.0 \mathrm{~mA}$ $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$ IoL $=+0.7 \mathrm{~mA}$			$\begin{aligned} & 0.4 \\ & 1.3 \\ & 0.4 \end{aligned}$	V
Vон	High Level Output Voltage Port A, B, C	$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$ ILL $=-1.6 \mathrm{~mA}$ $V_{D D}=45 \mathrm{~V}$ ILL $=-5.0 \mathrm{~mA}$ $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$ ILL $=-0.7 \mathrm{~mA}$	$\begin{aligned} & 4.1 \\ & 3.5 \\ & 2.6 \end{aligned}$			V
Ipu	Input Pull-up Current Input Mode with Pull-up Port A, B, C, NMI	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}, \mathrm{V}_{\mathrm{DD}}=2.5-6 \mathrm{~V}$			100	$\mu \mathrm{A}$
$\begin{aligned} & I_{L L} \\ & I_{H} \end{aligned}$	Input Leakage Current(1)	$\begin{aligned} & V_{I N}=V_{S S} \\ & V_{I N}=V_{D D} \end{aligned}$			1.0	$\mu \mathrm{A}$
ldo	Supply Current in RESET Mode	$\begin{aligned} & V_{\text {RESET }}=V_{S S} \\ & f_{\text {OSC }}=8 \mathrm{MHz} \end{aligned}$			3.5	mA
	Supply Current in RUN Mode ${ }^{(2)}$	$\begin{aligned} & V_{D D=5.0 V} \quad f_{\text {iNT }}=8 \mathrm{MHz} \\ & V_{D D}=3.0 \mathrm{~V} \\ & f_{N T}=4 \mathrm{MHz} \end{aligned}$			$\begin{gathered} 6.6 \\ \text { TBD } \end{gathered}$	mA
	Supply Current in WAIT Mode ${ }^{(3)}$	$\begin{array}{ll} V_{D D}=5.0 \mathrm{~V} & f_{\mathrm{INT}}=8 \mathrm{MHz} \\ V_{D D}=3.0 \mathrm{~V} & \mathrm{f}_{\mathrm{NT}}=4 \mathrm{MHHz} \end{array}$			$\begin{aligned} & 1.50 \\ & \text { TBD } \end{aligned}$	mA
	Supply Current in STOP Mode ${ }^{(3)}$	$\begin{aligned} & \mathrm{L} \mathrm{LOAD}=0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V} \end{aligned}$			20	$\mu \mathrm{A}$

Notes :
1 Only when pull-ups are not inserted
2 All perıpherals runnıng
3 EEPROM and A/D Converter in Stand-by
4 Hysteresis voltage between switching levels

AC ELECTRICAL CHARACTERISTICS

($T_{A}=-40$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Value			Unit
			Min.	Typ.	Max.	
fosc	Oscillator Frequency	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=4.5 \mathrm{~V} \end{aligned}$			4 8	MHz
tohl	High to Low Transition Time	Port A, B, C $C_{L=100 p F}$		40		ns
toly	Low to High Transition Tıme	Port A, B, C $C_{L}=100 \mathrm{pF}$		40		
tsu	Oscillator Start-up Time	$\begin{aligned} & C_{L 1}=C_{L 2}=22 p F \\ & V_{D D} 0.1 \text { to } V_{D D} \times 0.9 \end{aligned}$		5	10	ms
$t_{\text {REC }}$	Supply Recovery Time ${ }^{(1)}$		100			
Twr	Minımum Pulse Width ($\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$) RESET pin NMI pin		$\begin{aligned} & 100 \\ & 100 \end{aligned}$			ns
Twee	EEPROM Write Time	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ One Byte		5	10	ms
Endurance	EEPROM WRITE/ERASE Cycle	Q_{A} Lot Acceptance	300,000			cycles
Retention	EEPROM Data Retention	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	10			years
$\mathrm{CIN}_{\text {IN }}$	Input Capacitance	All Inputs Pins			10	pF
Cout	Output Capacitance	All Outputs Pins			10	pF

Note:

1 Perıod for which $V_{D D}$ has to be connected at OV to allow internal Reset function at next power-up

I/O PORT CHARACTERISTICS

Symbol	Parameter	Test Conditions	Value			Unit
			Min.	Typ.	Max.	
VIL	Input Low Level Voltage	I/O Pins			0.3x VDD	V
V_{H}	Input High Level Voltage	I/O Pins	$0.7 \times V_{D D}$			V
Vol	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \\ & \mathrm{loL}=10 \mu \mathrm{~A}, \text { All } / / \mathrm{O} \text { Pins } \\ & \mathrm{loL}=5 \mathrm{~mA} \text {, Standard } \mathrm{I} / \mathrm{O} \\ & \mathrm{loL}=10 \mathrm{~mA} \text {, Port B } \\ & \text { lol }=20 \mathrm{~mA} \text {, Port B } \end{aligned}$			$\begin{aligned} & 0.1 \\ & 0.8 \\ & 0.8 \\ & 1.3 \\ & \hline \end{aligned}$	V
Vor	High Level Output Voltage	$\begin{aligned} & \text { loH }=-10 \mu \mathrm{~A} \\ & \mathrm{lOH}=-5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V} \\ & \mathrm{l}_{\mathrm{OH}}=-1.5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}-0.1 \\ 3.5 \\ 2.0 \end{gathered}$			V
$\begin{aligned} & \mathrm{I}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{H}} \end{aligned}$	Input Leakage Current I/O Pins (pull-up resistor off)	$\begin{aligned} & V_{\text {in }}=V_{D D} \text { or } V_{S S} \\ & V_{D D}=3.0 \mathrm{~V} \\ & V_{D D}=5.5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\mu \mathrm{A}$
RPu	Pull-up Resistor	Vin $=0 \mathrm{~V}$; All l/O Pins	50	100	200	K Ω

SPI CHARACTERISTICS

Symbol	Parameter	Test Conditions	Value			Unit
			Min.	Typ.	Max.	
ffL	Clock Frequency at SCK				500	kHz
tsv	Data Set up time on Sin			TBD		
t_{H}	Data hold time on Sin			TBD		
tts	Delay Transmission started on Sin	8 MHz	0	Note 1		$\mu \mathrm{S}$

Note

1. Minımum tıme $0 \mu \mathrm{~s}$

Maxımum tıme 1 instruction cycle

TIMER1 CHARACTERISTICS
($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Value			Unit
			Min.	Typ.	Max.	
$t_{\text {ReS }}$	Resolution		$\frac{12}{f_{\text {INT }}}$			S
fin^{\prime}	Input Frequency on TIM1 Pin ${ }^{(1)}$				$\frac{\mathrm{finT}}{4}$	MHz
tw	Pulse Width at TIM1 Pin ${ }^{(1)}$	$\begin{aligned} & V_{D D}=3.0 \mathrm{~V} \\ & V_{D D}=4.5 \mathrm{~V} \\ & V_{D D}=5.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} 1 \\ 125 \\ 125 \end{gathered}$			$\begin{aligned} & \mu \mathrm{s} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$

Note:
1 Not available for ST6260

AR TIMER CHARACTERISTICS

($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Value			Unit
			Min.	Typ.	Max.	
tres	Resolution		$\frac{1}{\mathrm{fiNT}^{\text {a }}}$			s
$\mathrm{f}_{\text {ARin }}$	Input Frequency on ARTIMin pin	STOP Mode RUN and WAIT Modes			$\begin{gathered} 2 \\ \frac{f_{I N T}}{4} \end{gathered}$	MHz MHz
tw	Pulse Width at ARTIMin Pin	$\begin{aligned} & V_{D D}=3.0 \mathrm{~V} \\ & V_{D D}=4.5 \mathrm{~V} \\ & V_{D D}=5.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 125 \\ & 125 \\ & 125 \end{aligned}$			ns ns ns

A/D CONVERTER CHARACTERISTICS

($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Value			Unit
			Min.	Typ.	Max.	
Res	Resolution			8		Bit
Atot	Total Accuracy ${ }^{(1)(2)}$	$\begin{aligned} & \text { fosc }>1.2 \mathrm{MHz} \\ & \text { fosc }>32 \mathrm{kHz} \end{aligned}$			$\begin{aligned} & \pm 2 \\ & \pm 4 \end{aligned}$	LSB
tc	Conversion Time	$\mathrm{fosc}=8 \mathrm{MHz}$		70		$\mu \mathrm{s}$
$V_{\text {AN }}$	Conversion Range		$V_{S S}$		$V_{D D}$	V
ZIR	Zero Input Reading	Conversion result when $V_{\mathbb{I N}}=V_{S S}$	00			Hex
FSR	Full Scale Reading	Conversion result when $V_{I N}=V_{D D}$			FF	Hex
$A D_{1}$	Analog Input Current During Conversion	$V_{D D}=4.5 \mathrm{~V}$			1.0	$\mu \mathrm{A}$
$\mathrm{AC}_{\mathrm{iN}}{ }^{(3)}$	Analog Input Capacitance			2	5	pF
ASI	Analog Source Impedance	Analog Channel switched just before conversion start ${ }^{(4)}$			30	k Ω

Notes:

1. Noise at $V_{D D}, V_{S S}<10 \mathrm{mV}$

2 With oscillator frequencies less than 1 MHz , the A/D Converter accuracy is decreased.
3 Excluding Pad Capacitance.
4 ASI can be increased as long as the load of the A/D Converter input capacitor is ensured before conversion start

8-BIT EPROM HCMOS MCUs WITH A/D CONVERTER, EEPROM \& AUTORELOAD TIMER

- 3.0 to 6.0V Supply Operating Range
- 8 MHz Maximum Clock Frequency
- -40 to $+85^{\circ} \mathrm{C}$ Operating Temperature Range
- Run, Wait \& Stop Modes
- 5 different interrupt vectors
- Look-up table capability in ROM
- User EPROM: 3868 bytes

Data ROM: User selectable size
(in program EPROM)
128 bytes
Data RAM:
128 bytes

- PDIP20, PSO20 (ST62T60) packages
- PDIP28, PSO28 (ST62T65) packages
- FDIP20W (ST62E60) packages
- FDIP28W (ST62E65) packages
- 13/21 fully software programmable I/O as:
- Input with pull-up resistor
- Input without Pull-up resistor
- Input with interrupt generation
- Open-drain or push-pull outputs
- Analog Inputs
- 6/8 I/O lines can sink up to 20 mA for direct LED or TRIAC driving
- 8 bit counter with a 7 -bit programmable prescaler (Timer1)
- 8 bit Autoreload timer with 7 -bit programmable prescaler (AR Timer)
- Digital Watchdog
- 8 bit A/D Converter with up to 7 (ST62E60,T60) and up to 13 (ST62E65,T65) analog inputs
- 8 bit Synchronous Peripheral Interface (SPI)
- On-chip clock oscillator (Quartz Crystal or Ceramic Resonnator)
- Power-on Reset
- One external not maskable interrupt
- 9 powerful addressing modes
- The development tool of the ST626x microcontrollers consists of the ST626x-EMU emulation and development system connected via a standard RS232 serial line to an MS-DOS Personal Computer

EPROM PACKAGES

The ST62E60 and ST62E65 are the EPROM versions; ST62T60 and ST62T65 are the OTP versions; both are fully compatible with ST6260 and ST6265

Figure 1. ST62E60/T60 Pin Configuration

Figure 2. ST62E65/T65 Pin Configuration

Figure 3. ST62E60,E65 Block Diagram

GENERAL DESCRIPTION

The ST62E60,T60,E65,T65 microcontrollers are members of the 8-bit HCMOS ST62xx family, a series of devices oriented to low-medium complexity applications. They are the EPROM and OTP versions of the ST6260 and ST6265 devices.
EPROM are suited for development. OTPs are suited for prototyping, preseries, low to mid volume series and inventory optimization for customer having several applications using the same MCU.
All ST62xx members are based on a building block approach: a common core is surrounded by a combination of on-chip peripherals (macrocells).
The macrocells of the ST62E60, T60, E65 and T65 are: the timer peripheral that includes an 8 -bit counter with a 7-bit software programmable prescaler (Timer1), the 8 -bit Auto-reload Timer with 7 bit programmable prescaler (AR Timer), the 8-bit A/D Converter with up to 7 (ST62E60,T60) and up to 13 (ST62E65,T65) analog inputs (A/D inputs are alternate functions of I/O pins), the Digital Watchdog (DWD) and an 8-bit Serial synchronous Peripheral Interface (SPI). In addition, these devices offer 128 bytes of EEPROM for non volatile data storage.
ST62E60 ,T60, E65 and T65 are well suited for automotive, appliance and industrial applications.

PIN DESCRIPTION

$V_{D D}$ and $V_{S S}$. Power is supplied to the MCU using these two pins. $V_{D D}$ is power and $V_{S S}$ is the ground connection.
OSCin and OSCout. These pins are internally connected with the on-chip oscillator circuit. A quartz crystal, a ceramic resonator or an external clock signal can be connected between these two pins in order to allow the correct operation of the MCU with various stability/cost trade-offs. The frequency at OSCin and OSCout is internally divided by 1,2 or 4 by a software controlled divider. The OSCin pin is the input pin, the OSCout pin is the output pin.
RESET. The active low RESET pin is used to restart the microcontroller to the beginning of its program.
TEST/VPp. The TEST must be held at $\mathrm{V}_{\text {SS }}$ for normal operation. If TEST pin is connected to a +12.5 V level during the reset phase, the EPROM programming Mode is entered.
NMI. The NMI pin provides the capability for asynchronous interrupt applying an external not maskable interrupt to the MCU. The NMI is falling edge sensitive. It is provided with an on-chip pull-up resistor and Schmitt trigger characteristics.

PC1/TIM1/Ain. This pin can be used as a Port C I/O bit, as Timer 1 I/O pin or as analog input for the on-chip A/D converter. This pin is available only on the ST62E65 and T65 (28 pin version). If programmed to be the Timer 1 pin, in input mode it is connected to the prescaler and acts as external timer clock or as control gate for the internal timer clock. In the output mode the timer pin outputs the data bit when a time out occurs.
To use this pin as Timer 1 output a dedicated bit in the TIMER 1 Status/Control Register must be set. To use this pin as input pin the I/O pin has to be programmed as input. The analog mode should be programmed to use the line as an analog input.
PB6/ARTIMin, PB7/ARTIMout. These pins are either Port B I/O bits or the Input and Output pins of the Auto-reload Timer. To be used as timer input function PB6 has to be programmed as input with or without pull-up. A dedicated bit in the AR TIMER Mode Control Register sets PB7 as timer output function.
PAO-PA7. These 8 lines are organized as one I/O port (A). PA4-PA7 are not available on ST62E60 and T60 (20 pin version). Each line may be configured under software control as input with or without internal pull-up resistor, interrupt generating input with pull-up resistor, analog input, open-drain or push-pull output.
PB0-PB3, PB4, PB5. These 6 lines are organized as one I/O port (B). PB4, PB5 are available only on the ST62E65 and T65 (28 pin version). Each line may be configured under software control as input with or without internal pull-up resistor, interrupt generating input with pull-up resistor, open-drain or push-pull output. In output mode these lines can also sink 20 mA for direct LED and TRIAC driving. The reset configuration of PB0-PB3 can be selected by mask option (pull-up or high impedance).
PCO-PC4. These 5 lines are organized as one I/O port (C). PC0 and PC1 are not available on ST62E60, T60 (20 pin version). Each line may be configured under software control as input with or without internal pull-up resistor, interrupt generating input with pull-up resistor, analog input for the A/D converter, open-drain or push-pull output. PC2-PC4 can also be used as respectively Data in, Data out and Clock I/O pins for the on-chip SPI to carry the synchronous serial I/O signals.

> THE READER IS ASKED TO REFER TO THE DATASHEET OF THE ST6260,65 ROM DEVICE FOR FURTHER DETAILS.

EPROM/OTP DESCRIPTION

The ST62E60/E65 are the EPROM versions of the ST6260/65 products. They are intended for use during the development of an application and for pre-production and small volume production. ST62T60/T65 OTP have the same characteristics. They all include EPROM memory instead of the ROM memory of the corresponding ST6260/65, and so the program can be easily modified by the user with the ST62E6X EPROM programming tools from SGS-THOMSON.
From a user point of view (with the following exceptions) the ST62E60/E65 and ST62T60/T65 products have exactly the same software and hardware features as the ROM version. An additional mode is used to configure the part for programming of the EPROM, this is set by a +12.5 V voltage applied to the TEST/VPP pin. The programming of the ST62E60, T60, E65, T65 is described in the User Manual of the EPROM Programming Board.
Note also the Low Voltage option of ROM devices can not be emulated on EPROM or OTP devices

ROM Option Emulation

The ROM mask options that can be selected by the user in the ROM devices can be selected on the EPROM/OTP devices by an EPROM CODE byte that can be programmed with the ST62E6x EPROM programming tools available from SGSTHOMSON. This EPROM CODE byte is automatically read, and the selected options enabled, when the chip reset is activated.
The Option byte is written during programming either by using the PC menu (PC driven Mode) or automatically (stand-alone mode).

EPROM Programming Mode

An additional mode is used to configure the part for programming of the EPROM, this is set by a 12.5 V voltage applied to the TEST/VPP pin. The programming of the ST62E60/E65 and ST62T60/T65 is described in the User Manual of the EPROM Programming board.

EPROM ERASING

The EPROM of the windowed package of the ST62E60/E65 may be erased by exposure to Ultra Violet light.
The erasure characteristic of the ST62E60/E65 is such that erasure begins when the memory is exposed to light with a wave lengths shorter than approximately $4000 \AA$. It should be noted that sunlights and some types of fluorescent lamps have wavelengths in the range $3000-4000 \AA$. It is thus recommended that the window of the ST62E60/E65 packages be covered by an opaque
label to prevent unintentional erasure problems when testing the application in such an environment.
The recommended erasure procedure of the ST62E60/E65 EPROM is the exposure to short wave ultraviolet light which have a wave-length 2537A. The integrated dose (i.e. U.V. intensity x exposure time) for erasure should be a minimum of $15 \mathrm{~W}-\mathrm{sec} / \mathrm{cm}^{2}$. The erasure time with this dosage is approximately 15 to 20 minutes using an ultraviolet lamp with $12000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ power rating. The ST62E60/E65 should be placed within 2.5 cm (1 Inch) of the lamp tubes during erasure.

ST62xx CORE

Table 1. OTP Memory Map

Device Address	Description
$0000 \mathrm{~h}-007 \mathrm{Fh}$	Reserved
0080h-0F9Fh	User Program ROM 3856 Bytes
OFA0h-0FEFh	Reserved OFF0h-0FF7h OFF8h-0FFBh OFFCh-OFFDh OFFEh-0FFFh
Reserved Vectors	
NMI Vector	
User Reset Vector	

Note. Reserved Areas should be filled with FFh

Figure 4. EPROM Code Option Byte

D7-D6. These bits are not used.
D5-D4. Must be cleared to zero.
D3. This bit selects the on-chip Watchdog activation. If cleared to zero this bit selects the software activation, if set to one, it selects the hardware activation option.
D2-D0. Must be cleared to zero.
D1. Must be set to one.

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings

This product contains devices to protect the inputs against damage due to high static voltages, however it is advised to take normal precaution to avoid application of any voltage higher than maximum rated voltages.
For proper operation it is recommended that V_{I} and V_{0} must be higher than $V_{S s}$ and smaller $V_{D D}$. Reliability is enhanced if unused inputs are connected to an appropriated logic voltage level (V_{DD} or $\mathrm{V}_{S S}$).

Power Considerations. The average chip-junction temperature, Tj , in Celsius can be obtained from :
$T j=\quad T_{A}+P D \times R t h J A$
Where : $T_{A}=\quad$ Ambient Temperature.
RthJA $=$ Package thermal resistance (junction-to ambient).
PD $=$ Pint + Pport .
Pint $=\quad \operatorname{lDD} \times V_{D D}$ (chip internal power).
Pport $=$ Port power dissipation (determinated by the user).

Symbol	Parameter	Value	Unit
$V_{D D}$	Supply Voltage	-0.3 to 7.0	V
V_{1}	Input Voltage	$V_{S S}-0.3$ to $V_{D D}+0.3^{(1)}$	V
V_{0}	Output Voltage	$V_{S S}-0.3$ to $V_{D D}+0.3^{(1)}$	V
10	Current Drain per Pin Excluding V_{DD}, V_{SS}	10	mA
linj+	Pin Injection current (positive), All I/O, $\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$	+5	mA
lins.	Pin Injection current (negative), All I/O, VDD $=4.5 \mathrm{~V}$	-5	mA
IV ${ }_{\text {D }}$	Total Current into V ${ }_{\text {DD }}$ (source)	50	mA
IV SS	Total Current out of $\mathrm{V}_{\text {SS }}$ (sink)	50	mA
Tj	Junction Temperature	150	${ }^{\circ} \mathrm{C}$
TSTG	Storage Temperature	-60 to 150	${ }^{\circ} \mathrm{C}$

Notes :
Stresses above those listed as "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability

1. Within these limits, clamping diodes are guarantee to be not conductive. Voltages outside these limits are authorised as long as injection current is kept within the specification

THERMAL CHARACTERISTIC

Symbol	Parameter	Test Conditions	Value			Unit
			Min.	Typ.	Max.	
RthJA	Thermal Resistance	PDIP28			55	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		PDIP20			60	
		PSO28			75	
		PSO20			80	

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Test Conditions	Value			Unit
			Min.	Typ.	Max.	
$\mathrm{T}_{\text {A }}$	Operating Temperature	6 Suffix Version 1 Suffix Version	$\begin{gathered} -40 \\ 0 \end{gathered}$		$\begin{aligned} & 85 \\ & 70 \end{aligned}$	${ }^{\circ} \mathrm{C}$
$V_{D D}$	Operating Supply Voltage	$\begin{aligned} & \mathrm{fosc}=4 \mathrm{MHz} \\ & \mathrm{fiNT}^{\mathrm{NJ}}=4 \mathrm{MHz} \\ & \mathrm{fosc}=8 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{INT}}=8 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.5 \end{aligned}$		$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	V v
fint	Internal Frequency ${ }^{(3)}$	$\begin{aligned} & V_{D D}=3 V \\ & V_{D D}=4.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 4.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
linj+	Pin Injection Current (positive) Digtal Input ${ }^{(1)}$ Analog Inputs ${ }^{(2)}$	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V			+5	mA
Ins.	Pin Injection Current (negative) Digital Input ${ }^{(1)}$ Analog Inputs	$V_{D D}=4.5$ to 5.5 V			-5	mA

Notes:
1 A current of $\pm 5 \mathrm{~mA}$ can be forced on each pin of the digital section without affecting the functional behaviour of the device For a positive current injected into one pin, a part of this current ($\sim 10 \%$) can be expected to flow from the neighbouring pins
2. If a total current of +1 mA is flowing into the single analog channel or if the total current flowing into all the analog inputs is of 1 mA , all the resulting conversions are shifted by +1 LSB If a total positive current is flowing into the single analog channel or if the total current flowing into all the analog inputs is of 5 mA , all the resulting conversions are shifted by +2 LSB
3 An oscillator frequency above 1 MHz is recommended for relıable A / D results

The shaded area is outside the device operating range, device functionality is not guarenteed.

DC ELECTRICAL CHARACTERISTICS

($T_{A}=-40$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Value			Unit
			Min.	Typ.	Max.	
VIL	Input Low Level Voltage All inputs				$V_{D D} \times 0.3$	V
V_{IH}	Input High Level Voltage All inputs		$V_{D D} \times 0.7$			V
$V_{\text {Hys }}$	Hysteresis Voltage All Inputs	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.2 \end{aligned}$			V
Vol	Low Ḷevel Output Voltage Port A, C	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V} \mathrm{l}_{\mathrm{OL}}=+1.6 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DD}}=4.5 \mathrm{~V} \mathrm{l}_{\mathrm{OL}}=+5.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V} \mathrm{l}_{\mathrm{OL}}=+0.7 \mathrm{~mA} \end{aligned}$			$\begin{aligned} & 0.4 \\ & 1.3 \\ & 0.4 \end{aligned}$	V
Vol	Low Level Output Voltage Port B	$\begin{aligned} & \mathrm{VDD}_{\mathrm{DD}}=4.5 \mathrm{~V} \mathrm{l}_{\mathrm{OL}}=+1.6 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DD}}=4.5 \mathrm{~V} \mathrm{l}_{\mathrm{OL}}=+20.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V} \mathrm{I}_{\mathrm{OL}}=+07 \mathrm{~mA} \end{aligned}$			$\begin{aligned} & 0.4 \\ & 1.3 \\ & 0.4 \end{aligned}$	V
V_{OH}	High Level Output Voltage Port A, B, C	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V} \mathrm{IOL}_{\mathrm{OL}}=-1.6 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DD}}=4.5 \mathrm{~V} \mathrm{I}_{\mathrm{OL}}=-5.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V} \mathrm{I}_{\mathrm{LL}}=-0.7 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 4.1 \\ & 3.5 \\ & 2.6 \end{aligned}$			V
Ipu	Input Pull-up Current Input Mode with Pull-up Port A, B, C, NMI	$V_{I N}=V_{S S}, V_{\text {DD }}=3-6 \mathrm{~V}$			100	$\mu \mathrm{A}$
$\begin{aligned} & I_{\mathrm{IL}} \\ & I_{\mathrm{H}} \end{aligned}$	Input Leakage Current(1)	$\begin{aligned} & V_{I N}=V_{S S} \\ & V_{I N}=V_{D D} \end{aligned}$			1.0	$\mu \mathrm{A}$
IDD	Supply Current in RESET Mode	$\begin{aligned} & V_{\text {RESET }}=V_{S S} \\ & \text { fosc }=8 \mathrm{MHz} \end{aligned}$			3.5	mA
	Supply Current in RUN Mode ${ }^{(2)}$	$\begin{aligned} & V_{D D}=5.0 \mathrm{~V} \quad f_{\mathrm{INT}}=8 \mathrm{MHz} \\ & V_{D D}=3.0 \mathrm{~V} \quad \mathrm{f}_{\mathrm{INT}}=4 \mathrm{MHz} \end{aligned}$			$\begin{gathered} 6.6 \\ \text { TBD } \end{gathered}$	mA
	Supply Current in WAIT Mode ${ }^{(3)}$	$\begin{array}{ll} V_{D D}=5.0 \mathrm{~V} & f_{\mathrm{INT}}=8 \mathrm{MHz} \\ V_{D D}=3.0 \mathrm{~V} & f_{\mathrm{INT} T}=4 \mathrm{MHz} \end{array}$			$\begin{aligned} & 1.50 \\ & \text { TBD } \end{aligned}$	mA
	Supply Current in STOP Mode ${ }^{(3)}$	$\begin{aligned} & I_{L O A D}=0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V} \end{aligned}$			20	$\mu \mathrm{A}$

Notes:

1 Only when pull-ups are not inserted
2 All peripherals running
3 EEPROM and A/D Converter in Stand-by
4 Hysteresis voltage between switching levels

AC ELECTRICAL CHARACTERISTICS

($T_{A}=-40$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Value			Unit
			Min.	Typ.	Max.	
fosc	Oscillator Frequency	$\begin{aligned} & V_{D D}=3.0 \mathrm{~V} \\ & V_{D D}=4.5 \mathrm{~V} \end{aligned}$			4 8	MHz
tohL	High to Low Transition Time	$\begin{aligned} & \text { Port A, B, C } \\ & \mathrm{C}_{\mathrm{L}=100 \mathrm{pF}} \end{aligned}$		40		ns
toly	Low to High Transition Time	$\begin{aligned} & \text { Port A, B, C } \\ & C_{L}=100 \mathrm{pF} \end{aligned}$		40		
tsu	Oscillator Start-up Time	$\begin{aligned} & \mathrm{C}_{\mathrm{L} 1}=\mathrm{C}_{\mathrm{L} 2}=22 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{DD}} \times 0.1 \text { to } \mathrm{V}_{\mathrm{DD}} \times 0.9 \end{aligned}$		5	10	ms
$t_{\text {fec }}$	Supply Recovery Time ${ }^{(1)}$		100			
Twr	Minimum Pulse Width ($\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$) RESET pin NMI pin		$\begin{aligned} & 100 \\ & 100 \end{aligned}$			ns
Twee	EEPROM Write Time	$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$ One Byte		5	10	ms
Endurance	EEPROM WRITE/ERASE Cycle	QA Lot Acceptance	300,000			cycles
Retention	EEPROM Data Retenton	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	10			years
$\mathrm{Clin}^{\text {d }}$	Input Capacitance	All Inputs Pins			10	pF
Cout	Output Capacitance	All Outputs Pins			10	pF

Note:

1. Period for which VDD has to be connected at $0 V$ to allow internal Reset function at next power-up

I/O PORT CHARACTERISTICS

Symbol	Parameter	Test Conditions	Value			Unit
			Min.	Typ.	Max.	
VIL	Input Low Level Voltage	I/O Pins			0.3 V VD	V
V_{IH}	Input High Level Voltage	I/O Pins	0.7 V VD			V
Vol	Low Level Output Voltage	$\begin{aligned} & V_{D D}=5.0 \mathrm{~V} \\ & \mathrm{loL}=10 \mu \mathrm{~A} \text {, All } 1 / \mathrm{O} \text { Pins } \\ & \mathrm{loL}=5 \mathrm{~mA} \text {, Standard } \mathrm{I} / \mathrm{O} \\ & \mathrm{loL}=10 \mathrm{~mA} \text {, Port B } \\ & \mathrm{loL}=20 \mathrm{~mA} \text {, Port B } \end{aligned}$			$\begin{aligned} & 0.1 \\ & 0.8 \\ & 0.8 \\ & 1.3 \end{aligned}$	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{l}_{\mathrm{OH}}=-10 \mu \mathrm{~A} \\ & \mathrm{l}_{\mathrm{OH}}=-5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V} \\ & \mathrm{l}_{\mathrm{OH}}=-1.5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}-0.1 \\ 3.5 \\ 2.0 \\ \hline \end{gathered}$			V
$\begin{aligned} & I_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{H}} \end{aligned}$	Input Leakage Current I/O Pins (pull-up resistor off)	$\begin{aligned} & V_{\text {in }}=V_{D D} \text { or } V_{S S} \\ & V_{D D}=3.0 V \\ & V_{D D}=5.5 V \end{aligned}$		$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\mu \mathrm{A}$
RPu	Pull-up Resistor	Vin $=0 \mathrm{~V}$; All I/O Pins	50	100	200	K Ω

SPI CHARACTERISTICS

Symbol	Parameter	Test Conditions	Value			Unit
			Min.	Typ.	Max.	
f_{CL}	Clock Frequency at SCK				500	kHz
t_{sv}	Data Set up time on Sin			TBD		
t_{H}	Data hold time on Sin			TBD		
t_{TS}	Delay Transmission started on Sin	8 MHz	0	Note 1		$\mu \mathrm{s}$

Note:

1 Minımum time 0 0 s
Maximum time 1 instruction cycle

TIMER1 CHARACTERISTICS
($T_{A}=-40$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Value			Unit
			Min.	Typ.	Max.	
$t_{\text {RES }}$	Resolution		$\frac{12}{f_{\text {INT }}}$			S
$\mathrm{fin}^{\text {N }}$	Input Frequency on TIM1 Pın ${ }^{(1)}$				$\frac{\mathrm{f}_{\text {INT }}}{4}$	MHz
tw	Pulse Width at TIM1 Pın ${ }^{(1)}$	$\begin{aligned} & V_{D D}=3.0 \mathrm{~V} \\ & V_{D D}=4.5 \mathrm{~V} \\ & V_{D D}=5.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} 1 \\ 125 \\ 125 \end{gathered}$			$\begin{aligned} & \mu \mathrm{s} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$

Note:

1. Not available for ST6260

AR TIMER CHARACTERISTICS

($T_{A}=-40$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Value			Unit
			Min.	Typ.	Max.	
$t_{\text {RES }}$	Resolution		$\frac{1}{f_{I N T}}$			S
$\mathrm{f}_{\text {ARin }}$	Input Frequency on ARTIMin pin	STOP Mode RUN and WAIT Modes			$\begin{gathered} 2 \\ \frac{\mathrm{f}_{\mathrm{INT}}}{4} \end{gathered}$	MHz MHz
tw	Pulse Width at ARTIMin Pin	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=5.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 125 \\ & 125 \\ & 125 \end{aligned}$			$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$

A/D CONVERTER CHARACTERISTICS

($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Value			Unit
			Min.	Typ.	Max.	
Res	Resolution ${ }^{(1)}$			8		Bit
Аtot	Total Accuracy ${ }^{(1)}$	$\begin{aligned} & \text { fosc }>1.2 \mathrm{MHz} \\ & \text { fosc }>32 \mathrm{kHz} \end{aligned}$			$\begin{aligned} & \pm 2 \\ & \pm 4 \end{aligned}$	LSB
$t c^{(2)}$	Conversion Time	$\mathrm{fosc}=8 \mathrm{MHz}$		70		$\mu \mathrm{s}$
$V_{\text {AN }}$	Conversion Range		VSS		$V_{D D}$	V
ZIR	Zero Input Reading	Conversion result when $\mathrm{VIn}=\mathrm{V}_{\mathrm{SS}}$	00			Hex
FSR	Full Scale Reading	Conversion result when $V_{i n}=V_{D D}$			FF	Hex
$A D_{1}$	Analog Input Current During Conversion	$V_{D D}=4.5 \mathrm{~V}$			1.0	$\mu \mathrm{A}$
$\mathrm{AC}_{\text {IN }}{ }^{(3)}$	Analog Input Capacitance			2	5	pF
ASI	Analog Source Impedance				30	$K \Omega$
SSI	Analog Reference Supply Impedence				2	$K \Omega$

Notes:

1 Noise at VDD, VSS $<10 \mathrm{mV}$
2 With oscillator frequencies less than 1 MHz , the A/D Converter accuracy is decreased
3 Excluding Pad Capacitance

FUZZY LOGIC COMPILER FOR ST6

GRAPHIC DESIGN EDITORS

- Linguistic Variable Editor
- Up to 7 labels per variable
- Full 8-bit resolution
- S.Z. Lambda and Pi-type membership functions
- Rules Editor
- Full graphical input as matrices or spreadsheets
- Supports standard Max-Min inference method
- Allows up to 125 rules
- Structure Editor
- Up to 4 Input variables per module
- 1 output variables per module
- Center-of-Maximum defuzzication method (includes Center-of-Area with singletons and Center-of-Area with overlap approximation) method

REAL-TIME CODE GENERATOR

- ST6 Code Generator
- Emits the fuzzy functions as optimized as-
sembly code
- No license fee for runtime code

OFFLINE SIMULATOR

- Interactive Debugging
- Full graphical testing of system performance
- Visualization of entire inference flow
- Interactive optimization of system parameters
- Real Data Simulation
- Uses prerecorded example data for a graphic simulation
- Timeplot features for real-time analysis
- Generates input/output files for interfacing with other simulation systems
- Model Simulation
- Connects to built-in simulation model
- Any programming language which runs under

MS-Windows can be used

- to program the simulation model
- Animation of the running controller
- Graphic Analyzer Tools
- Control surface analysis
- Rule tracing
- Membership function tracing

DESCRIPTION

The fuzzyTECHST6 Explorer Edition is a development software for fuzzy logic based systems on the entire ST6 microcontroller family.

Full Graphical Development

The fuzzyTECH ST6 Explorer Edition has graphical tools for all developments steps, such as design, optimization and verification. At the push of a button, the built-in code generator implements the developed system in ST6 assembly language code. Based on FTL, the hardware-independent fuzzy technologies language the designed system is compatible with all other fuzzyTECH Editions.

Get A Hands-on Experience With Fuzzy Technology

The fuzzyTECH ST6 Explorer Edition contains everything you need for a comprehensive working knowledge about designing fuzzy logic systems. Its easy-to- use, all-graphics editors and tools guide you step-by-step throught the development phases of fuzzy systems.

Experiment With The Prefabricated Graphic Simulation

To get you started right away, the fuzzyTECH ST6 Explorer Edition comes with an animated simulation of a container crane controller. By experimenting with the fuzzy rules and system structure and watching how your modifications affect the crane performance - you gain valuable insight into how fuzzy systems work.

Hardware/Software Requirements

- A 80386 (or higher) PC with at least 2MBytes memory
- MS-Windows 3.0 or higher and MS-DOS 3.3 or higher
- Hard disk with 5MB of free disk space and a 3.5" floppy
- VGA monitor supported by Windows

The generated ST6 assembly code runs on every member of the ST6 family. For the implementation, an ST6 assembler is required.
fuzzyTECH is a trademark of Inform Software Corp.
ST6 is a registered trademark of SGS-THOMSON. MS-Windows and MS-DOS are registered trademarks of Microsoft Corp.

Example of System Stucture

Example of Linguistic Variables

Example of Rules Generation

\square	Spreadsheet Rule Editor			\checkmark
Matrix	IF		THEN	
\#	Angle	Distance	Dos	Power
1	zero	far	100 [pos_medium
2	neg_small	far	1.00 [pos_high
3	neg_small	medium	100	pos_high
4	neg_bıg	medium	100	pos_medium
5	pos_small	close	100	neg_medium
6	zero	close	100	zero
7	neg_small	close	1.00	pos_medium
8	pos_small	zero	100	neg_medium
9	zero	zero	$\square 100$	zero
10				

ST6220-KIT

STARTER KIT FOR ST622x/1x MCU FAMILY

Preliminary Data

- Basic Programmer board enables to program EPROM device
- Power supply and 25 wire flat cable
- ST62E20F1 (20 pins): 2 pieces ST62E25F1 (28 pins): 2 pieces
- ST6 Software Tools includes the ST6 Assembler, the ST6 Linker, the ST6 Simulator and the interface to drive the Basic Programmer board.
- Application softwares are documented software modules that you may copy or link in your applications
- Documentation includes Kit Guide, ST621x/2x User Manual and ST62/ST63 Software Development Tools User Manual

DESCRIPTION

The STARTER KIT gives a quick entry to the ST62 world. It provides a basic development system that can be used by every design engineer. It is particularly useful for evaluation of the ST6210/15 and ST6220/25 Microcontrollers as well as for development of simple applications.

SYSTEM REQUIREMENTS

To use the Starter Kit, you must have a PC-AT compatible personnal computer equipped with:

- A hard disk and a 5"1/4 diskette drive
- 640 K of conventional main memory
- One Parallel Centronic compatible port
- MS-DOS version 3.10 or higher

Using the ST622x STARTER KIT

The ST621x/2x USER MANUAL gives extensive description of the hardware and software aspects of the ST6210, ST6215, ST6220 and ST6225 microcontrollers. It contains all the information design engineers require to design the application hardware and the ST6210/15 source software.
The enclosed ST6 Assembler enables the transformation of the ASCII source file into an executable file. The ST6 Assembler documentation is located in the ST6 SOFTWARE DEVELOPMENT TOOLS USER MANUAL.
Smart programming implies the use of several modules, each of them performing an elementary task. Because each module can be quickly individually tested and debugged, the overall debug time is drastically reduced thus speeding the development of bug free application software. The ST6 Linker is use to make one program out of several modules. The ST6 SOFTWARE DEVELOPMENT TOOLS USER MANUAL also contains the associated documentation.
Each module, and the linked program, may be tested and debugged using the ST6 Simulator, also described in the ST6 SOFTWARE DEVELOPMENT TOOLS USER MANUAL. Once debugged, the application software can then be regarded as functionally working. It can then be programmed into an EPROM device using the BASIC PROGRAMMER described later in this guide.

Once successfully simulated, application software must be tested in circuit in order to check that there are no errors due to differences between the functional description of the environment and the real operating conditions. This test can be made by plugging an EPROM device into the application hardware and performing standard hardware debugging. However, high level applications require a Real Time Development Tools to be used (see data sheet in the ST621x/2x USER MANUAL).
The last step in developping an ST62 application consists of checking the validity of the complete product specification by making prototypes. The One Time Programmable devices (OTP) available in the ST62 family are well suited to such field tests.
The user is then ready to go into production using either the economical ST62T1x/T2x OTPs or masked ROM devices.

Ordering Informations

Sales Type	Description
ST6220-KIT/220	Complete kit for operation from 220Vac mains
ST6220-KIT/110	Complete kit for operation from 110Vac mains
ST6220-KIT/UK	Complete kit for operation in UK

DEVELOPMENT TOOLS

SOFTWARE DEVELOPMENT TOOLS FOR ST6 MCU FAMILY

- Includes:
- Macro assembler
- Linker
- Software simulator
- Runs on MS-DOS systems
- Window based graphic interface
- Extensive symbol manipulation

GENERAL DESCRIPTION

Full software development tools is achieved using the ST6 Software Development Tools consisting of a powerful macro assembler, a linker and a software simulator.
The ST6 Macro assembler accepts a source file written in ST6 assembly language using any text editor package and transforms it in an ST6 executable file.
To enable good testability and fast debugging, many application software are made up of several modules, each of them performing an elementary
task. Each module is assembled independently of the others, thus producing a number of object files. The ST6 Linker combines these object files into a single executable program. Both object format and hexadecimal format are produced. The hexadecimal file is used to program an EPROM while the object file is used to run the simulator or the debugger.
The ST6 Software Simulator allows the user to debug and execute any executable program written for any member of the ST62/ST63 family of microcontrollers without the aid of additional hardware.
Once debugged with the simulator, the program can be programmed into an EPROM device by using the hexadecimal file and the ST6 programming board. By plugging the EPROM device into the application hardware, simple applications can be debugged without the need of an emulator.
The ST6 Hardware Development Tools are required where high performance debugging is needed.

Figure 1. Development Flow Chart

ST6 ASSEMBLER

- Macro call and conditional assembly
- Extensive symbol manipulation
- Error diagnostics

General Description

The ST6 Macro assembler accepts a source file written in ST6 assembly language and transforms
it into an executable file in relocatable object code format. When the whole program is in one file only, the assembler also generates an hexadecimal file (INTEL hex format) ready to be programmed into an EPROM device.
The assembler recognizes the use of section, symbols, macros and conditional assembly directives. In addition, the ST6 Assembler is able to produce detailed assembly listing and symbol cross reference file.

Figure 2. AST6 Directives

.ASCII	Stores in program space a string as a sequence of ASCII codes
.ASCIZ	Same as .ASCII followed by a null character
.BLOCK	Reserves a block of contiguous memory location
.BYTE	Stores successive bytes of data in program space
.DEF	Defines the characteristics of a data space location
.DISPLAY	Displays a string during assembly process
.DP_ON	Segments the data space
.EJECT	Starts a new listing page
.ELSE	Beginning of the alternative part in conditional assembly block
.END	End of source file
.ENDC	End of conditional assembly block
.ENDM	End of a macro definition
.EQU	Assigns the value of an expression to a label
.ERROR	User defined assembly error
.EXTERN	Defines a symbol as external
.IFC	Beginning of conditional assembly block
. INPUT	Includes an additional source file in the present one
.GLOBAL	Defines a symbol as global
.LABEL.W	Initializes Data ROM Window Register
.LABEL.D	Gains access to a label in a Data ROM Window
.LINESIZE	Set listing line length
.LIST	Enables the listing of specified fields of the source file
.MACRO	Beginning of a macro definition
. MEXIT	End of a macro expansion
.NOTRANSMIT Inhibits symbol transmission to the linker	
. ORG	Set current location counter
.PAGE_D	Specifies the page number in data space
.PL	Set listing page length
.PP_ON	Segments the program space in 2 K pages
.ROMSIZE	Defines the available ROM size
.SECTION	Provides a logical partitioning of program space
.SET	Same as .EQU, but can be redefined in the source file
.TITLE	Assigns title to the document
.TRANSMIT	Transmits symbol definitions to the linker
.VERS	Defines the target ST6 device
.WARNING	User defined assembly warning
.WINDOW	Defines a continuous relocatable block of program code
.W_ON	Enables the use of the.WINDOW directive
.WORD	Stores successive words of data in program space

ST6 LINKER

- Links up to 32 modules
- Extensive symbol manipulation
- 33 sections (including interrupt vectors)
- Error diagnostics

The ST6 Linker is responsible for combining a number of object files into a single program, associating an absolute address to each section of code, and resolving any external references.
The ST6 Linker produces an hexadecimal file in INTEL format to be down loaded into an EPROM device and an object code file to be used with the simulator. The linker also produces a map file which gives information about the sections, pages, modules and labels. Finally, listing files are produced which update the assembler listings with real addresses of symbols and statements.
This software program allows the user to develop modular programs, which may then be combined and addressed as defined by the user. The flexibility of the ST6 Linker is greatly increased by the use of sections allowing the user to group pieces of software from different modules. The location and the size of each section is user selectable.

ST6 SIMULATOR

- Window based graphic interface
- On line assembler/disassembler
- Supports symbolic debugging
- 128 breakpoints and 128 software traps
- TRACE mode
- I/O and CLOCK simulation

SIMST6 allows the user to debug and execute any program written for any of the current and future members of the ST6 family of microcontrollers, without the aid of additional hardware.
The user specifies the target device, its mapping and the object code file to be used. The simulator functionally duplicates the operation of the ST6 and completely supports the instruction set. I/O channels may be opened, read, and written, in order to simulate the I/O functions of peripherals, while interrupts may be set, and then set pending, in order to simulate the handling of interrupts. The simulator uses the clock frequency assigned by the user, along with the number of clock cycles needed by each instruction to keep track of the real time execution speed.
The ST6 Simulator accepts command lines in both interactive and batch mode.

ORDERING INFORMATION

Sales Type	Description
ST6-SW	ST6 software development tools (includes assembler, linker and emulator)

[^2]
ST6xxx-EMU

REAL TIME DEVELOPMENT TOOLS FOR ST6 MCU FAMILY

HARDWARE FEATURES

- Supports ST62xx and ST63xx family
- Real time emulation
- 32 KBytes of emulation memory
- Breakpoints on up to 256 events
- Events can be defined on program space, data space and on up to 4 external signals
- 1K of real trace memory
- Tracing of up to 32 bits including 4 external signals

SOFTWARE FEATURES

- Symbolic debugger
- Window based interface
- On line assembler/disassembler
- Log files capable of storing any displayed screen
- Command files able to execute a set of debugger commands

GENERAL DESCRIPTION

The ST6 Real Time Development System is an advanced hardware development system designed and configured to provide comprehensive support for the ST6 family of MCU's.
The mainframe consists of a basic part, common to all ST6 devices, and one (ST62 sub family) or two (ST63 sub family) dedicated board depending of specific device to emulate. Only the dedicated boards have to be changed to emulate a new device within the ST62/ST63 subfamilies.

The software part of the real time emulation tool is the symbolic debugger. It can be run on a PC compatible system and is common to all ST62/ST63 devices. It drives the emulator mainframe through an RS232 channel. The debugger uses a windowed menu driven user interface and enables the user to set the configuration of the emulator.

Once assembled and eventually linked and debugged by using the simulator, the application software is ready to be down loaded into the ST6-EMU. The device probe is connected into the application hardware. The development station will perform a real time emulation of the target device, thus allowing high performance test and debugging of both application hardware and software.
The breakpoints allow user to stop the MCU when the application software reaches selected addresses and/or addresses within a selected ranges and/or on data fetch (or read or write or both) cycles. The user is then able to read and modify any register and memory location. An on line assembler/disassembler is also available to ease the debugging.

The logic analyser can be used when real time emulation is needed. It allows to display the last 1024 cycles. The displayed cycles are either fetch cycles only or fetch cycles and data space accesses. Addresses, data, control/status bits and 4 user signals are displayed using mnemonic and user symbols.
Such a powerful tool enables the user to detect and trap any pattern and thus quickly debug the application. The trapping of random patterns is greatly improved by the capability to quit the emulation session while the emulator continue to run the application software. When the user re-enters the debugger, the emulation session resumes and information about any events of interest will be flashed to the screen in the form of a message.
Log files offer the ability to send any screen display to a text file. In particular, log files are very useful to save the contents of the logic analyser and/or the contents of data registers to be analysed or printed.
Command files can be used to execute a set of debugger commands in order to ease and speed up the emulation session.
A powerful help facility can be called at any time to give additional information about the commands, the processor or the emulator.
When the program is fully debugged, the ST6 EPROM remote programming board can be used to program the emulation device with the INTEL hex format file produced by the linker.

Figure 1. SDBST6 Command Summary

ALL	One Line Assembler
BASE	Change base of numbers
BREAK	Display/set breakpoint
CB	Clear breakpoints
CMP	Compare memory
DL	Display memory in listing ASM form
DM	Display/change memory
DOS	Branch to DOS
DR	Display/change registers
DS	Display symbol table
FM	Fill memory with pattern
GO	Start user program
GRAPH	Return to GRAPHIC interface
HELP	Call HELP utility
HWTEST	Execute diagnostic test
LOAD	Load memory from a file
LCONF	Load data pages configuration
MOVE	Move memory block
NEXT	Single/multi step mode
PM	Display/change paged Data ROM locations
QUIT	Abandon the program
RESET	Reset ST6 core dedications
SAVE	Save memory into a file
SB	Set address breakpoints
SCONF	Save data pages configuration
SEARCH	Search pattern in memory
REM	Put comment in a log file
SET	Set system options
SR	Set register
TRACE	Display traced execution
USE	Execute command file

ST6xxx-EMU

ORDERING INFORMATION

Sales Type	Description
ST621X-EMU	Complete emulator package for ST621X/2X devices (including dedicated board and ST6-SW software package)
ST624X-EMU	Complete emulator package for ST624X devices (including dedicated board and ST6-SW software package)
ST626X-EMU	Complete emulator package for ST626X devices (including dedicated board and ST6-SW software package)
ST629X-EMU	Complete emulater package for ST629X devices (including dedicated board and ST6-SW software package)
ST621X-DBE	Separate dedicated board for ST621X devices
ST624X-DBE	Separate dedicated board for ST624X devices
ST626X-DBE	Separate dedicated board for ST626X devices
ST629X-DBE	Separate dedicated board for ST629X devices

Note : The emulator power supply can be adjusted to 220 V or 110 V .

ST62Exx-EPB

EPROM PROGRAMMING BOARD FOR ST62 MCU FAMILY

HARDWARE FEATURES

- Programs the ST62Exx EPROM and OTP MCUs
- Standalone and PC driven modes
- All ST62Exx packages are supported

SOFTWARE FEATURES

- Menu driven software
- S19 or INTEL hex file formats

DESCRIPTION

Different programming boards are designed for programming of the various EPROM and OTP devices of the ST62 sub-family. For a particular device, all available packages are supported by the same programming board.
It can run either in standalone or remote mode under control of a DOS compatible PC.

In standalone mode, the microcontrollers can be programmed with a simple key operation directly from a master EPROM device or a master microcontroller. Two colour LEDs indicate the operational pass or fail.
In standalone mode an EPROM memory or a master MCU is plugged into the programming board. The code from the EPROM or the master MCU is read and programmed into the ST62 EPROM or OTP device. Both VERIFY and BLANK CHECK functions are provided.
In remote mode, the programming board is connected to a DOS compatible PC through an RS232 serial channel. Object code in either S19 or INTEL HEX format is read from disk file to program the ST62 EPROM or OTP device. The menu driven software also offers VERIFY, BLANK CHECK, READ MASTER and other utility functions.

ST62Exx-EPB

ORDERING INFORMATION

Sales Types ${ }^{(1)}$	Supported Devices	Supported Packages
ST62E1X- EPB/xxx	ST62E10 $^{(2)}$ ST62T10 ST62E15 (2) ST62T15 $^{(2)}$ ST62E20 $^{(2)}$ ST62T20 $^{(2)}$ ST62E25 ST62T25	$\begin{aligned} & \text { DIP20 } \\ & \text { DIP28 } \\ & \text { SO20 } \\ & \text { SO28 } \end{aligned}$
ST62E4X-EPB/xxx	$\begin{aligned} & \text { ST62E40 } \\ & \text { ST62E42 } \\ & \text { ST62E45 } \\ & \text { ST62T40 } \\ & \text { ST6T42 } \\ & \text { ST62T45 } \end{aligned}$	$\begin{aligned} & \text { QFP52 } \\ & \text { QFP64 } \\ & \text { QFP80 } \end{aligned}$
ST62E6X-EPB/xxx		$\begin{aligned} & \text { DIP20 } \\ & \text { SO20 } \\ & \text { DIP28 } \\ & \text { SO28 } \end{aligned}$
ST62E9X-EPB/xxx	$\begin{aligned} & \text { ST62E94 } \\ & \text { ST62E93 } \\ & \text { ST62T94 } \\ & \text { ST6T93 } \end{aligned}$	$\begin{aligned} & \text { DIP20 } \\ & \text { SO20 } \\ & \text { DIP28 } \\ & \text { SO28 } \end{aligned}$

Notes:

1. ST62Exx-EPB/110: 110V Power Supply ST62Exx-EPB/220: 220V Power Supply
2. Both /HWD and /SWD options are supported

ST62Exx-GANG

GANG PROGRAMMER FOR ST62 MCU FAMILY

HARDWARE FEATURES

- Programs simultaneously up to 10 ST62Exx EPROM and OTP MCUs
- Standalone and PC driven modes
- DIP and SO packages supported

SOFTWARE FEATURES

- Menu driven software
- S19 or INTEL hex file format

DESCRIPTION

The ST62 gang programmers are designed for programming up to 10 EPROM or OTP devices. It can run either in standalone or remote mode under control of a DOS compatible PC.

In standalone mode, the target ST62 MCUs are programmed with a simple key operation directly from a master EPROM memory or from a master EPROM MCU. Two color LEDs indicate for each target device the operational pass or fail. Both VERIFY and BLANK CHECK functions are provided.

In Remote mode, the gang programmer is connected to a DOS compatible PC through an RS232 serial channel. Object code in either S19 or INTEL HEX format is read from disk files to program the target devices. The menu driven software also offers VERIFY, BLANK CHECK, READ master and other utility functions.
The gang programmer is made up of a two parts, a base unit common to all ST62XX devices and a dedicated package adaptator.

ST62Exx-GANG

ORDERING INFORMATION

Sales Types	Description	Supported Devices ${ }^{(1)}$	Supported Packages
ST62E10-GANGDIP	Gang Programmer		DIP20
ST62E10-GANGSO	Gang Programmer		SO20
ST62E15-GANGDIP	Gang Programmer	$\begin{aligned} & \text { ST62E15 } \\ & \text { ST62T15 } \\ & \text { ST62E25 } \\ & \text { ST62T25 } \end{aligned}$	DIP28
ST62E15-GANGSO	Gang Programmer		SO28
ST62E45-GP/QFP	Gang Programmer	ST62E45 ST62T45	QFP52

Note 1. Both /HWD and /SWD options are supported.

PROGRAMMING MANUAL

 ST62-ST63
PROGRAMMING MANUAL

INTRODUCTION

This manual deals with the description of instruction set and addressing modes of ST62,63 microcontroller series. The manual is divided in two main sections. The first one includes, after a general family description, the addressing modes description. The second one includes the detailed description of ST62,63 instruction set. Here following each instruction is deeply described and are underlined the differences among each ST6 series. ST6 software has been designed to fully use the hardware in the most efficient way possible while keeping byte usage to a minimum; in short to provide byte efficient programming capability.

PROGRAMMING MODEL

It is useful at this stage to outline the programming model of the ST62,63 series, by which we mean the available memory spaces, their relation to one another, the interrupt philosophy and so on.

Memory Spaces. The ST6 devices have three different memory spaces: data, program and stack. All addressing modes are memory space specific so there is no need for the user to specify which space is being used as in more complex systems. The stack space, which is used automatically with subroutine and interrupt management for program counter storage, is not accessible to the user.

Figure 1. ST6 Family Programming Model

PROGRAMMING MODEL (Continued)

Figure 2. ST62 Data Space Example

b7	
NOT IMPLEMENTED	000H
	$\begin{aligned} & 03 \mathrm{FH} \\ & 040 \mathrm{H} \end{aligned}$
DATA ROM/EPROM WINDOW 64 BYTE	
	07FH
X REGISTER	080H
Y REGISTER	081H
\checkmark REGISTER	082H
W REGISTER	083H
DATA RAIA 60 BYTES	084H
	OBFH
PORT A DATA REGISTER	$\begin{aligned} & \mathrm{OCOH} \\ & \mathrm{OC} 1 \mathrm{H} \end{aligned}$
PORT B DATA REGISTER	
PORT C DATA REGISTER	0 C 2 H
RESERVED	$\begin{aligned} & 0 \mathrm{C} 3 \mathrm{H} \\ & 0 \mathrm{C} 4 \mathrm{H} \end{aligned}$
PORT A DIRECTION REGISTER	
PORT B DIRECTION REGISTER	0С5H
PORT C DIRECTION REGISTER	0 C 6 H
RESERVED	$\begin{aligned} & 0 \mathrm{C} 7 \mathrm{H} \\ & 0 \mathrm{C} 8 \mathrm{H} \end{aligned}$
INTERRUPT OPTION REGISTER	
DATA ROM WINDOW REGISTER	$\begin{aligned} & \text { OC9H } \\ & \text { OCAH } \end{aligned}$
RESERVED	OCAH
	OCBH
PORT A OPTION REGISTER	OCCH OCDH
PORT B OPTION REGISTER	
PORT C OPTION REGISTER	OCEH
RESERVED	OCFH ODOH
A/D DATA REGISTER	
A/D CONTROL REGISTER	0D1H
TIMER PSC REGISTER	$\begin{aligned} & \text { OD2H } \\ & \text { OD3H } \end{aligned}$
TIMER DATA REGISTER	
TIMER TSCR REGISTER	OD4H
RESERVED	OD5H
	$\begin{aligned} & \text { OD7H } \\ & \text { OD8H } \end{aligned}$
WATCHDOG REGISTER	
RESERVED	OD9H
	OFEH OFFH
ACCUMULATOR	

Figure 3. ST62 Program Memory Example

b7	
	0000H
	07FFH0800 H
	$\begin{aligned} & 087 \mathrm{FH} \\ & 0880 \mathrm{H} \end{aligned}$
USER PROGRAM ROM 1828 BYTES	
.	OF9FH OFAOH
RESERVED	
	OFEFH
INTERRUPT VECTOR \#4	$\begin{aligned} & \text { OFFOH } \\ & \text { OFF1H } \end{aligned}$
A/D INTERRUPT	
INTERRUPT VECTOR \#3	OFF2HOFF3H
TIMER INTERRUPT	
INTERRUPT VECTOR \#2	OFF4H
PORT B \& C INTERRUPT	0FF5H 0FF6H
INTERRUPT VECTOR \#1	
PORT AINTERRUPT	$\begin{aligned} & \text { OFF7H } \\ & \text { OFF8H } \end{aligned}$
RESERVED	
	OFFBH
INTERRUPT VECTOR \#0	OFFCH OFFDH
NMI INTERRUPT	
USER RESET VECTOR	OFFEH OFFFH
USER RESET VECTOR	
On EPROM versions there are no reserved areas. These reserved bytes are present on ROM/OTP versions.	

Data Memory Space. The following registers in the data space have fixed addresses which are hardware selected so as to decrease access times and reduce addressing requirements and hence program length. The Accumulator is an 8 bit register in location OFFH. The X, Y, V \& W registers have the addresses $80 \mathrm{H}-83 \mathrm{H}$ respectively. These are used for short direct addressing, reducing byte requirements in the program while the first two, X \& Y , can also be used as index registers in the indirect addressing mode. These registers are part of the data RAM space. In the ST62 and ST63 for data space ROM a 6 bit (64 bytes addressing) window multiplexing in program ROM is available through a dedicated data ROM banking register.

ST62,63 Programming Manual

PROGRAMMING MODEL (Continued)

For data RAM and I/O expansion the lowest 64 bytes of data space ($00 \mathrm{H}-03 \mathrm{FH}$) are paged through a data RAM banking register.
Self-check Interrupt Vector FF8H \& FF9H:
jp (self-check interrupt routine)
A jump instruction to the reset and interrupt routines must be written into these locations.
ST62 \& ST63 Program Memory Space. The ST62 and ST63 devices can directly address up to 4 K bytes (program counter is 12 -bit wide). A greater ROM size is obtained by paging the lower 2 K of the program ROM through a dedicated banking register located in the data space. The higher 2 K of the program ROM can be seen as static and contains the reset, NMI and interrupt vectors at the following fixed locations:
Reset Vector FFEH \& FFFH:
jp (reset routine)
NMI Interrupt Vector FFCH \& FFDH:
jp (NMI routine)
Non user Vector FFAH \& FFBH
Non user Vector FF8H \& FF9H
Interrupt \#1 Vector FF6H \& FF7H jp (Int 1 routine) Interrupt \#2 Vector FF4H \& FF5H jp (Int 2 routine) Interrupt \#3 Vector FF2H \& FF3H jp (Int 3 routine) Interrupt \#4 Vector FF0H \& FF1H jp (Int 4 routine)
Program Counter \& Stack Area. The program counter is a twelve bit counter register since it has to cover a direct addressing of 4 K byte program memory space. When an interrupt or a subroutine occurs the current PC value is forward "pushed" into a deep LIFO stacking area. On the return from the routine the top (last in) PC value is "popped" out and becomes the current PC value. The ST60/61 series offer a 4-word deep stack for program counter storage during interrupt and sub-routines calls. In the ST62 and ST63 series the stack is 6 -word deep.
Status Flags. Three pairs of status flags, each pair consisting of a Zero flag and a Carry flag, are available. In the ST62 and ST63 an additional third set is available. One pair monitors the normal status while the se-cond monitors the state during
interrupts; the third flags set monitors the status during Non Maskable interrupt servicing. The switching from one set to another one is automatic as the interrupt requests (or NMI request for ST62,ST63 only) are acknowledged and when the program returns after an interrupt service routine. After reset, NMI set is active, until the first RETI instruction is executed.
ST62 \& ST63 Interrupt Description. The ST62 and ST63 devices have 5 user interrupt vectors (plus one vector for testing purposes). Interrupt vector \#0 is connected to the not maskable interrupt input of the core. Interrupts from \#1 to \#4 can be connected to different on-chip and external sources (see individual datasheets for detailed information). All interrupts can be globally disabled through the interrupt option register. After the reset ST62 and ST63 devices are in NMI mode, so no other interrupts can be accepted and the NMI flags set is in use, until the RETI instruction is performed. If an interrupt is detected, a special cycle will be executed, during this cycle the program counter is loaded with the related interrupt vector address. NMI can interrupt other interrupt routines at any time while normal interrupt can't interrupt each other. If more then one interrupt is waiting service, they will be accepted according to their priority. Interrupt \#1 has the highest priority while interrupt \#4 the lowest. This priority relationship is fixed.

Figure 2. ST62 \& ST63 Stack Area

ST62,63 Programming Manual

ADDRESSING MODES

The ST6 family gives the user nine addressing modes for access to data locations. Some of these are specifically tailored to particular instruction types or groups while others are designed to reduce program length and operating time by using the hardware facilities such as the X, Y, V \& W registers. The data locations can be in either the program memory space or the data memory space when the ST6 is operating due to user software. In addition the ST6 has a stack space for the 12 bit program counter but this is controlled by internal programming and is not accessible by the user. This section will describe all the addressing modes which are provided to the user. The following is the complete list of the ST6 available addressing modes:

- Inherent
- Direct
- Short Direct
- Indirect
- Immediate
- Program Counter Relative
- Extended
- Bit Direct
- Bit Test \& Branch

Inherent. For instructions using the inherent addressing mode the opcode contains all the information necessary for execution. All instructions using this mode are One Byte instructions.

Example:

Instruction	Comments
WAIT	Puts ST6 into the low power WAIT mode
STOP	Puts the ST6 into the lowest power mode
RETI	Returns from interrupt. Pops the PC from the PC stack.Sets the normal set of flags

Direct. In the direct addressing mode the address of the data is given by the program memory byte immediately following the opcode. This data location is in the data memory space. All instructions using this mode are Two Bytes instructions, lasting Four Cycles.

OPC = Opcode
O. $\mathrm{A}=$ Operand Address

Example:

Instruction	Comments
LD A,OA3H	Loads the accumulator with the value found in location A3H in the data space.
SUB A,11H	The value found in locations 11H in the data memory is subtracted from the value in the accumulator.

ADDRESSING MODES (Continued)

Short Direct. ST6 core has four fixed location registers in the data space which may be addressed in a short direct manner. The addresses and names of these registers are $80 \mathrm{H}(\mathrm{X}), 81 \mathrm{H}(\mathrm{Y})$, $82 \mathrm{H}(\mathrm{V})$ and $83 \mathrm{H}(\mathrm{W})$. When using this addressing mode the data is in one of these registers and the address is a part of the opcode. All instructions using this mode are One Byte instructions, lasting Four Cycles.

OPC = Opcode
O.A . = Operand Address

Example:

Instruction	Comments
LD A,X	The value of the X register $(80 H)$ is loaded into the accumulator.
INC X	The X register is incremented.

Indirect. The indirect mode must use either the X $(80 \mathrm{H})$ or $\mathrm{Y}(81 \mathrm{H})$ register. This register contains the address of the data. The operand is at the data space address pointed to by the content of X or Y registers. All instructions using this mode are One Byte instructions, lasting Four Cycles.

OPC = Opcode
R A. = Regıster Address

Example:

Instruction	Comments
LD A,(X)	The value in the registers pointed to by the X register is loaded into the accumulator.
ADD A,(Y)	The value in the register pointed to by the Y register is added to the accumulator value.
INC (Y)	The value in the register pointed to by the Y register is incremented.

Immediate. In the immediate addressing mode the operand is found in the program ROM in a byte which is the last byte of the instruction. This addressing mode can be used for initializing data space registers and supplying constants. Instructions using this mode can be Two or Three Bytes instructions, lasting Four Cycles.

Program Memory			
OPC			
D.A.			
OPERAND			

OPC = Opcode
D.A. $=$ Destination Address

ADDRESSING MODES (Continued)

Example:

Instruction	Comments
LDI 34H,DFH	Loads immediate value DFH into data space location 34H.
SUBI A,22H	The immediate value 22H is sub- tracted from the acc.

Program Counter Relative. This addressing mode is used only with conditional branches within the program. The opcode byte contains the data which is a fixed offset value. This offset is added to the program counter to give the address of the next instruction. The offset can have any value in the range -15 to +16 . It is determined by the last five bits of the opcode. All instructions using this mode are One Byte Instructions, lasting Two Cycles.

OPC = Opcode
D.A. $=$ Destination Address

Example:

Instruction	Comments
JRC 3	If the carry flag is set then PC $=$ PC +3
JRNZ -7	If the zero flag is not set (i.e the result of a previous instruction is not zero) then PC = PC-7

The relative jump address can be also a label that is automatically handled by the assembler.
Extended. The extended addressing mode is used to make long jumps within the program memory space (4 K). The data requires 12 bits and is provided by half of the opcode byte and all of the second byte. All instructions using this mode are Two Bytes instructions, lasting Four Cycles.

OPC = Opcode

Example:

Instruction	Comments
JP 3FAH	Loads 3FAH into program counter and continues with the instruction at 3FAH.
CALL ROU1	The current PC is pushed onto the stack and PC loaded with the value as- sociated to the ROU1 label

The absolute jump address can be also a label that is automatically handled by the assembler.
Bit Direct. This addressing mode allows the user to set or clear any specified bit in a data memory register. The address of the bit is given in the form: " b, R " where b is the number of the bit and R is the address of the register. The bit is determined by three bits in the opcode and the register address is given by the second byte. All instructions using this mode are Two Byte instructions, lasting Four Cycles.

OPC = Opcode
D A = Destination Address

ADDRESSING MODES (Continued)

Example:

Instruction	Comments
SET 4,A	Sets bit 4 of the accumulator to 1.
RES 0,PORT	Clears bit 0 of PORT register

The register address can be associated to a label that is automatically handled by the assembler.

Bit Test \& Branch. The bit test addressing mode is used in conditional jump instructions in which the jump depends on the result of a bit test. The opcode specifies the bit to be tested, the byte following the opcode in the register address in data space, and the third byte is the jump displacement, which is in the range -126 to +129 . This displacement can be determined using a label, which is converted by the assembler. The state of the tested bit is also copied
into the carry flag. All instructions using this mode are Three Byte instructions, lasting Five Cycles.

Example:

Instruction	Comments
JRS 3,PORT,LAB1	If bit three of data memory register associated to PORT label is set then PC=PC+LAB1 (where LAB1 is the jump dis- placement associated to a label
JRR 0,0AH,-72	If bit 0 of data memory regis- ter OAH is reset to 0 then PC=PC-72.

The register address and the jump displacement can be associated to labels that are automatically handled by the assembler.

[^3]
ST62 \& ST63 INSTRUCTION SET

The ST62,63 instructions can be divided functionally into the following seven groups.

- LOAD AND STORE
- ARITHMETIC AND LOGIC
- CONDITIONAL BRANCH
- JUMP AND CALL
- BIT MANIPULATION
- CONTROL
- IMPLIED

The following summary shows the instructions belonging to each group, the number of operands required for each instructions and the number of machine cycles. The flag behaviour is usually the same for both ST62 and ST63. The only difference is present for CP and SUB instructions as specified in the detailed description.

Table 2. Load \& Store Instructions

Instruction	Bytes	Cycles	Flags	
			Z	C
LD	1	4	Δ	$*$
LD rr	2	4	Δ	$*$
LDIA	2	4	Δ	$*$
LDI	3	4	$*$	$*$

Notes $\quad \Delta \cdot$ Affected
*. Not Affected
Table 3. Arithmetic \& Logic Instructions

Instruction	Bytes	Cycles	Flags	
			C	
ADD	2	4	Δ	Δ
ADD (X,Y)	1	4	Δ	D
ADDI	2	4	Δ	D
AND	2	4	Δ	$*$
AND (X,Y)	1	4	Δ	$*$
ANDI	2	4	Δ	$*$
CLRA	2	4	Δ	D
CLR	3	4	$*$	$*$
COM	1	4	Δ	D

Instruction	Bytes	Cycles	Flags	
			C	
CP	2	4	Δ	D
CP (X,Y)	1	4	Δ	D
CPI	2	4	Δ	D
DEC	1	4	Δ	$*$
DEC A/rr	2	4	Δ	$*$
INC	1	4	Δ	$*$
INC A/rr	2	4	Δ	$*$
RLC	1	4	Δ	D
SLA	2	4	Δ	D
SUB	2	4	Δ	D
SUB (X,Y)	1	4	Δ	D
SUBI	2	4	Δ	D

Notes $\quad \Delta \cdot$ Affected
*: Not Affected
Table 4. Conditional Branch Insructions

Instruction	Bytes	Cycles	Flags	
			Z	C
JRC	1	2	$*$	$*$
JRNC	1	2	$*$	$*$
JRR	3	5	$*$	Δ
JRS	3	5	$*$	Δ
JRZ	1	2	$*$	$*$
JRNZ	1	2	$*$	$*$

Notes. Δ : Affected
*. Not Affected
Table 5. Jump \& Call Instructions

Instruction	Bytes	Cycles	Flags	
			Z	C
CALL	2	4	$*$	$*$
JP	2	4	$*$	$*$

Notes: Δ. Affected
*: Not Affected

ST62 \& ST63 INSTRUCTION SET (Continued)
Table 6. Bit Manipulation Instructions

Instruction	Bytes	Cycles	Flags	
			Z	C
RES	2	4	$*$	$*$
SET	2	4	$*$	$*$

Notes $\quad \Delta$: Affected
*: Not Affected

Table 7. Control Instructions

Instruction	Bytes	Cycles	Flags	
			Z	C
NOP	1	2	$*$	$*$
RET	1	2	$*$	$*$
RETI	1	2	Δ	Δ
STOP	1	2	$*$	$*$
WAIT	1	2	$*$	$*$

Notes $\quad \Delta$: Affected
*: Not Affected

Table 8. Addressing Modes/Instruction Table

Instruction	Inh	Dir	Sh Dir	Ind	Imm	PCR	Ext	Bit Dir	$\begin{aligned} & \text { Bit } \\ & \text { Test } \end{aligned}$	Flags	
										Z	C
ADD		X	X	X						Δ	Δ
AND		X	x	X						Δ	*
CALL							x			*	*
CLR A		X								Δ	D
CLR		X								*	*
COM	X									Δ	Δ
CP		x		x	X					Δ	Δ
DEC		X	x	x						Δ	*
INC		X	X	X						Δ	*
JP							X			*	*
JRC, JRNC						x				*	*
JRZ, JRNZ						X				*	*
JRR, JRS									x	*	Δ
LD, LDI					X					Δ	*
NOP						X				*	*
RES, SET								x		*	*
RET	x									*	*
RETI	x									Δ	Δ
RLC	x									Δ	Δ
SLA	x									Δ	Δ
STOP, WAIT	X									*	*
SUB		X		X	X					Δ	Δ

[^4]
ST62 \& ST63 INSTRUCTION SET (Continued)

Table 9. ST62,63 Opcode Map

Hi	0000	$\begin{gathered} 1 \\ 0001 \end{gathered}$	$\underset{0010}{2}$	${ }_{0}^{3}+11$	$\begin{gathered} 4 \\ 0100 \end{gathered}$	$\begin{gathered} 5 \\ 0101 \end{gathered}$	$\underset{011}{6}$	$\begin{gathered} 7 \\ 0111 \end{gathered}$	$\begin{gathered} 8 \\ 1000 \end{gathered}$	$\begin{gathered} 9 \\ 1001 \end{gathered}$		$\underset{1011}{B}$	$\underset{1100}{\text { C }}$	$\begin{gathered} \text { D } \\ 1101 \end{gathered}$	$\underset{1110}{E}$	$\underset{1111}{F}$	Low
$\stackrel{0}{0} 0$	2 JRNZ		2 JRNC e 1 pcr	$\begin{array}{ll}5 & \text { JRR } \\ \text { bo,rr,ee } \\ 3 & \text { bt }\end{array}$	$\begin{array}{\|ll} 2 & \mathrm{JRZ} \\ \mathrm{t} & \mathrm{e} \\ \mathrm{t} & \mathrm{pcr} \\ \hline \end{array}$	\#	$\begin{array}{ll}2 & \mathrm{JRC} \\ & \mathrm{e} \\ 1 & \mathrm{prc}\end{array}$	$\left\lvert\, \begin{array}{cc} 4 & \text { LD } \\ & a,(x) \\ 1 & \text { Ind } \end{array}\right.$	2 JRNZ	$\left\lvert\, \begin{array}{cc}4 & \mathrm{JP} \\ 2 & \text { ext }\end{array}\right.$	2 JRNC pcr		$\begin{array}{ll}2 & J R Z \\ & e \\ 1 & \text { pcr }\end{array}$	4 LDI 3 mrnn	$\left\lvert\, \begin{array}{ll}2 & \mathrm{JRC} \\ & \mathrm{e} \\ 1 & \mathrm{pcr}\end{array}\right.$		$\begin{gathered} 0 \\ 0000 \end{gathered}$
0001	$\left\|\begin{array}{ll} 2 \\ & \mathrm{e} \\ 1 & \mathrm{pcr} \end{array}\right\|$		2 JRNC e pcr	$\left.\begin{array}{\|cc\|} \hline 5 & \text { JRS } \\ \text { b0,rr,ee } \\ 3 & b t \end{array} \right\rvert\,$	$\begin{array}{\|ll} \hline 2 & \text { JRZ } \\ & e \\ 1 & p c r \\ \hline \end{array}$	$\left\lvert\, \begin{array}{ll}4 & \text { INC } \\ & x \\ 1 & \text { sd }\end{array}\right.$	2 JRC e 1 prc		2 JRNZ e 1 $p c r$	$\left\lvert\, \begin{array}{cc}4 & J P \\ 2 & \text { abc } \\ 2 & \text { ext }\end{array}\right.$	2 JRNC		$\begin{array}{\|ll\|} \hline 2 & \text { JRZ } \\ & e \\ 1 & \mathrm{pcr} \\ \hline \end{array}$	$\left\lvert\, \begin{array}{lll}4 & \text { DEC } \\ & x \\ 1 & & \\ \text { Sd }\end{array}\right.$	$\left\lvert\, \begin{array}{ll}2 & J R C \\ & e \\ 1 & p c r\end{array}\right.$		$\begin{gathered} 1 \\ 0001 \end{gathered}$
0010	$\left\|\begin{array}{ll} & \mathrm{e} \\ 1 & \mathrm{pcr} \end{array}\right\|$		2 JRNC e 1 pcr		$\begin{array}{\|ll} 2 & \text { JRZ } \\ & e \\ 1 & \mathrm{pcr} \\ \hline \end{array}$	\#	2 JRC e 1 prc						$\begin{array}{\|ll} \hline 2 & \text { JRZ } \\ & e \\ 1 & \mathrm{pcr} \\ \hline \end{array}$		$\begin{array}{\|ll\|} \hline 2 & \text { JRC } \\ & e \\ 1 & \mathrm{pcr} \\ \hline \end{array}$	$\begin{array}{\|cc\|} \hline 4 & C P \\ a_{1}(y) \\ 1 & \text { ind } \\ \hline \end{array}$	$\stackrel{2}{0010}$
$\stackrel{3}{0} 11$	$\left\|\begin{array}{cc} 2 & \mathrm{JRNZ} \\ & \mathrm{e} \\ 1 & \mathrm{pcr} \end{array}\right\|$		2 JRNC pcr		$\begin{array}{\|ll\|} \hline & J R Z \\ & e \\ 1 & \mathrm{pcr} \\ \hline \end{array}$		2 JRC erc		2 JRNZ 1 pcr	$\left\|\begin{array}{cc}4 & J P \\ 2 & a b c \\ 2 & e x t\end{array}\right\|$	2 JRNC pcr		$\left\lvert\, \begin{array}{ll}2 & J R Z \\ & e \\ 1 & p c r\end{array}\right.$	$\begin{array}{\|cc} \hline 4 & \text { LD } \\ 1^{x}, & \mathrm{sd} \\ \hline \end{array}$	2 JRC e 1 pcr	$\begin{array}{\|cc} \hline 4 & \mathrm{CP} \\ & \mathrm{a}, \mathrm{rr} \\ 2 & \\ \hline \end{array}$	$\begin{gathered} 3 \\ 0011 \end{gathered}$
$\begin{gathered} 4 \\ 0100 \end{gathered}$	$\begin{array}{\|cc\|} \hline 2 & \text { JRNZ } \\ & \mathrm{e} \\ 1 & \mathrm{pcr} \\ \hline \end{array}$		$\begin{array}{\|c} 2 \\ \hline 2 \text { JRNC } \\ 1 \\ 1 \end{array}$	$\begin{array}{\|lr\|} \hline 5 & \text { JRR } \\ \text { b2,rree } \\ 3 & \mathrm{bt} \\ \hline \end{array}$	$\left.\begin{array}{\|ll\|} \hline & \text { JRZ } \\ & e \\ 1 & \mathrm{pcr} \end{array} \right\rvert\,$	\#	$\begin{array}{\|ll\|} \hline 2 & \mathrm{JRC} \\ & \mathrm{e} \\ 1 & \mathrm{prc} \end{array} \mathbf{1}^{2}$		$\begin{array}{\|c\|} \hline 2 \mathrm{JRNZ} \\ \mathrm{e} \\ 1 \end{array}$	$\|$4 $J P$ $2 b c$ 2 	$\begin{array}{\|c\|} \hline 2 \text { JRNC } \\ \\ \mathrm{e} \\ 1 \end{array}$		$\begin{array}{\|ll\|} \hline 2 & \text { JRZ } \\ & e \\ 1 & \text { pcr } \\ \hline \end{array}$		$\begin{array}{\|ll\|} \hline 2 & \mathrm{JRC} \\ & \mathrm{e} \\ 1 & \text { pcr } \\ \hline \end{array}$	$\begin{array}{\|cc\|} \hline 4 & \text { ADD } \\ a_{a}(y) \\ 1 & \text { ind } \end{array}$	$\begin{gathered} 4 \\ 0100 \end{gathered}$
$\begin{gathered} 5 \\ 0101 \end{gathered}$	2 JRNZ 1 pcr		2 JRNC 1 pcr	$\begin{array}{lr}5 & \text { JRS } \\ \mathrm{b} 2, \text { rree } \\ 3 & \mathrm{bt}\end{array}$	$\begin{array}{\|ll\|} \hline 2 & \text { JRZ } \\ & e \\ 1 & p c r \end{array}$	$\begin{array}{\|ll} \hline 4 & \mathrm{INC} \\ & y \\ 1 & \mathrm{sd} \\ \hline \end{array}$	2 JRC 1 prc		2 JRNZ e 1 pcr		2 JRNC pcr		$\left\lvert\, \begin{array}{ll}2 & \text { JRZ } \\ & e \\ 1 & p c r\end{array}\right.$	4 DEC y 1 Sd			$\begin{gathered} 5 \\ 0101 \end{gathered}$
$\begin{gathered} 6 \\ 0110 \end{gathered}$	2 JRNZ 1 pcr		2 JRNC 1 pcr		$\begin{array}{\|ll\|} \hline 2 & \text { JRZ } \\ & e \\ 1 & \text { pcr } \\ \hline \end{array}$	\#	2 JRC 1 prc		2 JRNZ 1 pcr		2 JRNC pcr		$\left\lvert\, \begin{array}{ll}2 & J R Z \\ & e \\ 1 & p c r\end{array}\right.$	2 STOP 1 Inh	$\left\lvert\, \begin{array}{ll}2 & \mathrm{JRC} \\ & \mathrm{e} \\ 1 & \mathrm{pcr}\end{array}\right.$	4 INC (y) ind	$\begin{gathered} 6 \\ 0110 \end{gathered}$
$\begin{gathered} 7 \\ 0111 \end{gathered}$	$\begin{array}{\|cc} \hline 2 & \text { JRNZ } \\ & \mathrm{e} \\ 1 & \mathrm{pcr} \end{array}$		$\begin{array}{\|cc} \hline 2 \text { JRNC } \\ & \mathrm{e} \\ 1 & \mathrm{pcr} \end{array}$	5 JRS b6,rr,ee 3 bt	$\left.\begin{array}{\|ll} \hline 2 & J R Z \\ & e \\ 1 & p c r \end{array} \right\rvert\,$	$\begin{array}{\|cc} \hline 4 & \text { LD } \\ & a, y \\ 1 & s d \\ \hline \end{array}$	$\begin{array}{\|ll\|} \hline 2 & \mathrm{JRC} \\ & \mathrm{e} \\ 1 & \mathrm{prC} \\ \hline \end{array}$		$\begin{array}{\|cc} \hline 2 \text { JRNZ } \\ & \mathrm{e} \\ 1 & \mathrm{pcr} \end{array}$	$\left\|\begin{array}{cc}4 & \mathrm{JP} \\ 2 \mathrm{abc} \\ 2 & \text { ext }\end{array}\right\|$	$\begin{array}{\|c\|} \hline 2 \text { JRNC } \\ \\ \hline \end{array}$		$\begin{array}{ll}2 & J R Z \\ \mathrm{e} \\ 1 & \mathrm{pcr}\end{array}$	$\|$4 $L D$ y, a 1	2 $J R C$ e 1 1 pcr	$\left\lvert\, \begin{array}{\|cc\|} \hline 4 & \mathrm{INC} \\ & \mathrm{rr} \\ 2 & \mathrm{dir} \\ \hline \end{array}\right.$	$\begin{gathered} 7 \\ 0111 \end{gathered}$
$\stackrel{8}{1000}$	$\left\lvert\, \begin{array}{cc} 2 & \text { JRNZ } \\ & \mathrm{e} \\ 1 & \mathrm{pcr} \end{array}{ }_{2}\right.$		$\begin{array}{\|cc} \hline 2 & \text { JRNC } \\ & \mathrm{e} \\ 1 & \mathrm{pcr} \\ \hline \end{array}$	5 JRR b1,rr,ee 3 $b t$$\|$	$\begin{array}{\|ll} \hline & J R Z \\ & e \\ 1 & \text { pcr } \\ \hline \end{array}$	\#	$\begin{array}{\|ll\|l\|} \hline 2 & \mathrm{JRC} \\ & \mathrm{e} \\ 1 & \mathrm{prC} & 1 \\ \hline \end{array}$						$\begin{array}{\|ll\|} \hline 2 & \text { JRZ } \\ & e \\ 1 & \text { pcr } \\ \hline \end{array}$	\#	$\begin{array}{\|ll\|} \hline 2 & \text { JRC } \\ & \mathrm{e} \\ 1 & \mathrm{pcr} \\ \hline \end{array}$	$\begin{array}{\|cc\|} \hline 4 & \text { LD } \\ & (y), a \\ 1 & \text { ind } \\ \hline \end{array}$	$\begin{gathered} 8 \\ 1000 \end{gathered}$
$\begin{gathered} 9 \\ 1001 \end{gathered}$	$\begin{array}{\|cc\|} \hline 2 & \text { JRNZ } \\ & \mathrm{e} \\ 1 & \mathrm{pcr} \end{array}$	$\begin{array}{\|cc\|} \hline 4 & C A L L \\ \text { abc } \\ 2 & \text { ext } \\ \hline \end{array}$	$\begin{array}{\|cc} \hline 2 & \text { JRNC } \\ & \mathrm{e} \\ 1 & \mathrm{pcr} \end{array}$	5 JRS b1,rr,ee 3 bt	$\begin{array}{\|ll} \hline 2 & J R Z \\ & e \\ 1 & p c r \\ \hline \end{array}$	$\begin{array}{\|cc\|} \hline 4 & \mathrm{INC} \\ & \mathrm{v} \\ 1 & \mathrm{sd} \\ \hline \end{array}$	$\left.\begin{array}{\|ll} \hline 2 & \mathrm{JRC} \\ & \mathrm{e} \\ 1 & \mathrm{prC} \end{array} \right\rvert\,$		$\left.\begin{array}{\|cc} \hline 2 \text { JRNZZ } \\ & \mathrm{e} \\ 1 & \mathrm{pcr} \end{array} \right\rvert\,$	4 JP $2 b c$ 2	$\begin{array}{\|cc\|} \hline 2 & \text { JRNCC } \\ & \mathrm{e} \\ 1 & \mathrm{pcr} \\ \hline \end{array}$		$\begin{array}{\|ll\|} \hline 2 & J R Z \\ & e \\ 1 & \mathrm{pcr} \\ \hline \end{array}$	$\|$4 DEC v 1	$\begin{array}{\|ll\|} \hline 2 & \text { JRC } \\ & \mathrm{e} \\ 1 & \mathrm{pcr} \\ \hline \end{array}$	$\left\lvert\, \begin{array}{\|cc\|} \hline 4 & \mathrm{LD} \\ & \mathrm{rr}, \mathrm{a} \\ 2 & \mathrm{dir} \\ \hline \end{array}\right.$	$\stackrel{9}{1001}$
$\underset{1010}{A}$	2 JRNZ 1		2 JRNC 1 pcr	5 JRR b5,rree 3 bt	$\begin{array}{\|ll\|} \hline 2 & \text { JRZ } \\ & \text { e } \\ 1 & p c r \\ \hline \end{array}$	\#	2 JRC 1 prc						$\begin{array}{ll}2 & J R Z \\ & e \\ 1 & p c r\end{array}$	4 RLC a 1 inh			$\underset{1010}{A}$
$\begin{gathered} B \\ 1011 \end{gathered}$	2 JRNZ 1 pcr		2 JRNC 1 pcr	5 JRS b5,rr,ee 3 bt	$\begin{array}{\|ll\|l\|} \hline 2 & \text { JRZ } \\ & \mathrm{e} \\ 1 & \mathrm{pcr} \\ \hline \end{array}$	$\begin{array}{\|cc\|} \hline 4 & L D \\ & a, v \\ \hline 1 & s d \\ \hline \end{array}$	2 JRC 1 prc				2 JRNC por		$\begin{array}{ll}2 & \mathrm{JRZ} \\ 1 & \mathrm{e} \\ 1 & \mathrm{pcr}\end{array}$	$\int^{4} \quad$ LD		$\begin{array}{ll} 4 & \text { AND } \\ 2, r r \\ 2 r \end{array}$	$\begin{gathered} B \\ 1011 \end{gathered}$
$\underset{1100}{\mathrm{C}}$	2 JRNZ		2 JRNC	$\left\lvert\, \begin{array}{cc}5 & \text { JRR } \\ \text { b3,rr,ee } \\ 3 & \mathrm{bt}\end{array}\right.$	$\begin{array}{\|ll\|} \hline 2 & \text { JRZ } \\ & e \\ 1 & p c r \\ \hline \end{array}$	\#	2 JRC e 1 prc				2 JRNC e 1 pcr	$\left\lvert\, \begin{array}{cc} 4 & \text { RES } \\ b 3, \pi \\ 2 & b d \end{array}\right.$	$\left\|\begin{array}{ll} 2 & \text { JRZ } \\ & e \\ 1 & \text { pcr } \end{array}\right\|$	2 RET 1 inh		$\left\lvert\, \begin{array}{cc} 4 & \text { SUB } \\ & a,(y) \\ 1 & \text { Ind } \end{array}\right.$	$\underset{1100}{C}$
$\begin{gathered} \text { D } \\ 1101 \end{gathered}$	2 JRNZ 1 por		2 JRNC		$\begin{array}{\|ll\|} \hline & \mathrm{JRZ} \\ & \mathrm{e} \\ \hline & \mathrm{pcr} \\ \hline \end{array}$	$\begin{array}{\|cc} \hline 4 & \text { INC } \\ & w \\ 1 & s d \\ \hline \end{array}$	2 JRC e 1 prc		2 JRNZ		2 JRNC					$\begin{array}{\|cc\|} \hline 4 & \text { SUB } \\ & \text { a,rr } \\ 2 & \text { dir } \\ \hline \end{array}$	$\begin{gathered} \text { D } \\ 1101 \end{gathered}$
$\underset{1110}{E}$	2 JRNZ e pcr		2 JRNC		$\left.\begin{array}{\|l\|ll} 2 & J R Z \\ & e \\ 1 & p c r \end{array} \right\rvert\,$	\#	2 JRC e 1 prc		2 JRNZ		2 JRNC	4 RES $b 7, \pi$ 2 $b d$	$\left.\begin{array}{\|ll} \hline 2 & J R Z \\ & \mathrm{e} \\ 1 & \text { pcr } \end{array} \right\rvert\,$	2 WAIT		4 DEC (y) 1 ind$\|$	$\underset{1110}{E}$
$\underset{1111}{F}$	$\begin{array}{\|c} \hline 2 \text { JRNZ } \\ \mathrm{e}^{2} \\ 1 \\ \hline \end{array}$	$\left.\begin{array}{\|cc\|} \hline 4 & \text { CALLL } \\ \text { abc } \\ 2 & \text { ext } \end{array} \right\rvert\,$	$\begin{array}{\|cc} \hline 2 \text { JRNC } \\ & \mathrm{e} \\ 1 & \mathrm{pcr} \end{array}$	$\begin{array}{\|lr\|} \hline 5 & \text { JRS } \\ \text { b7,rr,ee } \\ 3 & \text { bt } \\ \hline \end{array}$	$\left\|\begin{array}{ll} 2 & J R Z \\ & e \\ 1 & p c r \end{array}\right\|$	$\begin{array}{\|cc} 4 & \text { LD } \\ & \mathrm{a}, \mathrm{w} \\ 1 & \mathrm{sd} \end{array}$	$\left.\begin{array}{\|ll} \hline 2 & \mathrm{JRC} \\ & \mathrm{e} \\ 1 & \mathrm{prc} \end{array} \right\rvert\,$	\#	$\begin{array}{\|cc} \hline 2 & \text { JRNZ } \\ & \mathrm{e} \\ 1 & \mathrm{pcr} \end{array}{ }_{2}$	4 JP 2 abc 2 ext$\|$	$\begin{array}{\|cc} \hline 2 \text { JRNC } \\ & \mathrm{e} \\ 1 & \mathrm{pcr} \end{array}$	$\left\|\begin{array}{cc}4 & \text { SET } \\ b 7, \pi \\ 2 & b d\end{array}\right\|$	$\begin{array}{\|cc\|} \hline 2 & \text { JRZ } \\ & \mathrm{e} \\ 1 & \mathrm{pcr} \\ \hline \end{array}$	$\left.\begin{array}{\|cc\|} \hline 4 & \text { LD } \\ & \mathrm{w}, \mathrm{a} \\ 1 & \mathrm{sd} \end{array} \right\rvert\,$	$\begin{array}{\|ll\|} \hline 2 & \text { JRC } \\ & \mathrm{e} \\ 1 & \mathrm{pcr} \end{array}$	$\begin{array}{\|cc\|} \hline 4 & \text { DEC } \\ & \mathrm{rr} \\ 2 & \mathrm{dir} \end{array}$	$\underset{1111}{F}$

Abbreviatıons for Addressing Modes:	
dir	Direct
sd	Short Direct
imm	Immediate
inh	Inherent
ext	Extended
b.d	Bit Direct
bt	Bit Test
pcr	Program Counter Relative ind Indirect

Legend.

ST62 \& ST63 INSTRUCTION SET (Continued)

Table 10. Instruction Set Cycle-by-Cycle Summary

Instruction	Cycles	Cycles(\#)	Address Bus	Data Bus	CPU Activity	Notes
Indirect Addressing Mode						
ADD, AND, CP, DEC, INC, LD, SUB	4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$		Opcode (${ }^{*}$) Next Instruction Next Instruction Next Instruction	Decode Opcode Read Operand Address Read Operand Execute Instruction	ROM Data Space not Addressed
ADD, AND, CP, DEC, INC, LD, SUB	4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	Opcode Address(*) Opcode Address +1 Opcode Address +1 Data Space Rom Add	Opcode (*) Next Instruction Next Instruction Rom Data (\#)	Decode Opcode Read Operand Address Read Operand Execute Instruction	ROM Data Space Addressed
Direct Addressing Mode						
ADD, AND, CP, DEC, INC, LD, RES, SET, LSA, SUB, CLR	4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	Opcode Address(*) Opcode Address + 1 Opcode Address +1 (*) Opcode Address +2	Opcode (*) Operand Address Operand Address(*) Next Instruction	Decode Opcode Address Data Space Read Operand Execute Instruction	ROM Data Space not Addressed
ADD, AND, CP, DEC, INC, LD, RES, SET, LSA, SUB, CLR	4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	Opcode Address(*) Opcode Address +1 Opcode Address +1 (*) Data Space Rom Add. (*)	Opcode (*) Operand Address Operand Address(\#) Rom Data (\#)	Decode Opcode Address Data Space Read Operand Execute Instruction	ROM Data Space Addressed
Immediate Addressing Mode						
ADDI, ANDI, CPI, LDI, SUBI	4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	Opcode Address(*) Opcode Address +1 Opcode Address +1(*) Opcode Address +2(*)	Opcode (*) Immediate Operand Immediate Operand Next Instruction	Decode Opcode Idle Read Operand Execute Instruction	
LDI rr	4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	Opcode Address(*) Opcode Address +1 Opcode Address +2 Opcode AdDress +3	Opcode (*) Register Address Immediate Operand Next Opcode	Decode Opcode Read Register Address Read Immediate Operand Write Operand To Reg.	ROM Data Space not Addressed
LDI rr	4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	Opcode Address(*) Opcode Address +1 (*) Opcode Address +2 (\#) Data Space Rom Add.	Opcode (*) Register Address Immediate Operand Rom Operand (\#)	Decode Opcode Read Register Address Read Immediate Operand Write Operand To Reg.	ROM Data Space Addressed
Short Direct Addressing Mode						
DEC, INC, LD	4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$		Opcode (*) Next Opcode Next Opcode Next Opcode	Decode Opcode Define Data Space Add. Read Operand Execute Instruction	

Notes: *. Valıd only at the beginning of the cycle
\# Valid only untit 18 of the cycle

ST62 \& ST63 INSTRUCTION SET (Continued)
Table 10. Instruction Set Cycle-by-Cycle Summary (Continued)

Instruction	Cycles	Cycles(\#)	Address Bus	Data Bus	CPU Activity	Notes
Other Instructions						
CALL	4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	Opcode Address (*) Opcode Address +1 Opcode Address +1 Opcode Address +2(*)	Opcode (*) Subroutine Address Subroutine Address Next Instruction	Decode Opcode Increment Stack Pointer Push Return Address Calculate Subroutine Add.	
COM	4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	Opcode Address(*) Opcode Address +1 Opcode Address +1 Opcode Address +1	Opcode (*) Next Opcode Next Opcode Next Opcode	Decode Opcode Calculate Acc. Address Read Accumulator Complement Accumulator	
INTERRUPT	1	1.	Next opcode address	Next Opcode (*)	Calculate Interrupt Add. Push Return Address Switch Flag Set	Note 1
JP	4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	Opcode Address(*) opcode Address +1 opcode Address +1 opcode Address +2	Opcode (*) Jump Address Following Instr. Following Instr. (*)	Decode Opcode Idle Read Jump Address Calculate Jump Address	
JRC, JRNC, JRZ, JRNZ	2	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	Opcode Address(*) Opcode Address + 1	Opcode (*) Following Instr.	Decode Opcode Calculate Offset	
JRR, JRS	5	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	Opcode Address(*) Opcode Address +1 (*) Opcode Address +2(*) Opcode Address +2(*) Opcode Address +3(*)	Opcode (*) Operand Address (*) Branch Value Branch Value (*) Following Instr.	Decode Opcode Read Operand Test Operand Fetch Branch Value Calculate New Address	ROM Data Space not Addressed
JRR, JRS	5	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	Opcode Address(*) Opcode Address +1(*) Data Space Rom Add.(\#) Opcode Address +2(*) Data Space Rom Add.(\#)	Opcode (*) Operand Address (*) Rom Data (\#) Branch Value (*) Rom Data (\#)	Decode Opcode Read Operand Test Operand Fetch Branch Value Calculate New Address	ROM Data Space Addressed
RET	2	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	Opcode Address(*) Return Address	Opcode (*) Next Opcode	Decode Opcode Pop Return Address	
RETI	2	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	Opcode Address(*) Return Address	Opcode (*) Next Opcode	Decode Opcode Pop Return Address Switch Flag Set	
RLC	4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	Opcode Address(*) Opcode Address +1 Opcode Address +1 Opcode Address +1	Opcode (*) Next Opcode Next Opcode Next Opcode	Decode Opcode Calculate Acc Address Read Accumulator Shifted	
STOP, WAIT	2	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	Opcode Address(*) Opcode Address +1	Opcode (*) Next Opcode	Decode Opcode Stop/Wait the Oscillator	

Notes. *. Valıd only at the beginning of the cycle
\#. Valid only until t18 of the cycle

1. Add oscillator build up time plus 16 oscillator clocks if a stop instruction has been executed before the interrupt occured

Mnemonic: ADD

Function:

Description: The contents of the source byte is added to the accumulator leaving the result in the accumulator. The source register remains unaltered.

Operation:
dst \leftarrow dst + src
The destination must be the accumulator.

Instruction Format	Opcode (Hex)	Bytes	Cycles	Flags	
ADD dst,src				Z	C
ADD A,A	5F FF	2	4	Δ	Δ
ADD A, X	5F 80	2	4	Δ	D
ADD A, Y	5F 81	2	4	Δ	D
ADD A,V	5F 82	2	4	Δ	D
ADD A, W	5F 83	2	4	Δ	D
ADD A, (X)	47	1	4	Δ	D
ADD A, (Y)	4F	1	4	Δ	D
ADD A,rr	5F rr	2	4	Δ	D

Notes:

rr. 1 Byte dataspace address.
$\Delta: Z$ is set if the result is zero. Cleared otherwise.
C is cleared before the operation and than set if there is an overflow from the 8 -bit result.

Example: If data space register 22 H contains the value 33 H and the accumulator holds the value 20 H then the instruction,

ADD A,22H
will cause the accumulator to hold 53H (i.e. $33+20$).

Addressing Modes: Source: Direct, Indirect
Destination: Accumulator

ADDI

Addition Immediate

Mnemonic: ADDI

Function: Addition Immediate

Description: The immediately addressed data (source) is added to the accumulator leaving the result in the accumulator.

Operation: $\quad d s t \leftarrow d s t+$ src
The destination must be the accumulator.

Instruction Format	Opcode (Hex)	Bytes	Cycles	Flags	
ADDI dst,src			Z	\mathbf{C}	
ADDI A,nn	57 nn	2	4	Δ	Δ

Notes:

nn . 1 Byte immediate data
$\Delta^{-} \mathrm{Z}$ is set if result is zero. Cleared otherwise
C is cleared before the operation and than set if there is an overflow from the 8-bit result

Example: If the accumulator holds the value 20 H then the instruction, ADDI A,22H
will cause the accumulator to hold 42 H (i.e. $22+20$). ,

Addressing Modes: Source: Immediate
Destination: Accumulator

Mnemonic:
AND

Function: Logical AND
Description: This instruction logically ANDs the source register and the accumulator. The result is left in the destination register and the source is unaltered.

Operation: dst \leftarrow src AND dst
The destination must be the accumulator.

Inst. Format	OPCODE (Hex)	Bytes	Cycles	Flags	
AND dst,src				Z	C
AND A,A	BF FF	2	4	Δ	*
AND A, X	BF 80	2	4	Δ	*
AND A, Y	BF 81	2	4	Δ	*
AND A,V	BF 82	2	4	Δ	*
AND A, W	BF 83	2	4	Δ	*
AND A, X)	A7	1	4	Δ	*
AND A, Y)	AF	1	4	Δ	*
AND A,rr	BF rr	2	4	Δ	*

Notes:
*r. 1 Byte dataspace address
*. C is unaffected
ΔZ is set if the result is zero Cleared otherwise

Example: If data space register 54 H contains the binary value 11110000 and the accumulator contains the binary value 11001100 then the instruction,
AND A,54H
will cause the accumulator to be altered to 11000000 .

Addressing Modes: Source: Direct, Indirect.
Destination: Accumulator

ST62,63 Instruction Set Description

ANDI

Logical AND Immediate

Mnemonic: ANDI
Function: Logical AND Immediate
Description: This instruction logically ANDs the immediate data byte and the accumulator. The result is left in the accumulator.

Operation: $\quad d s t \leftarrow \operatorname{src}$ AND dst
The source is immediate data and the destination must be the accumulator.

Inst. Format	OPCODE (Hex)	Bytes	Cycles	Flags	
				Z	C
ANDI dst,src			4	Δ	*
ANDI A,nn	B7 nn	2	4		

Notes:

nn. 1 Byte immediate data
*. C is unaffected
$\dot{\Delta}$. Z is set if the result is zero Cleared otherwise.

Example: If the accumulator contains the binary value 00001111 then the instruction, ANDI A,33H
will cause the accumulator to hold the value 00000011.

Addressing Modes: Source: Immediate
Destination: Accumulator

Call Subroutine

Mnemonic: CALL

Function: Call Subroutine

Description: The CALL instruction is used to call a subroutine. It "pushes" the current contents of the program counter (PC) onto the top of the stack. The specified destination address is then loaded into the PC and points to the first instruction of a procedure. At the end of the procedure a RETurn instruction can be used to return to the original program flow. RET pops the top of the stack back into the PC. Because the ST6 stack is 4 levels deep (ST60) and 6 levels deep (ST62,ST63), a maximum of four/six calls or interrupts may be nested. If more calls are nested, the PC values stacked latest will be lost. In this case returns will return to the PC values stacked first.

Operation: $\quad \mathrm{PC} \leftarrow \mathrm{dst}$; Top of stack $\leftarrow \mathrm{PC}$

Inst. Format	OPCODE (Hex)	Bytes	Cycles	Flags	
				Z	C
CALL dst		2	4	$*$	$*$

Notes:
abc. the three half bytes of a twelve bit address, the start location of the subroutine.
*. C,Z not affected

Example: If the current PC is 345 H then the instruction,
CALL 8DCH
The current PC 345H is pushed onto the top of the stack and the PC will be loaded with the value 8 DCH . The next instruction to be executed will be the instruction at 8 DCH , the first instruction of the called subroutine.

Addressing Modes: Extended

CLR

Clear

Mnemonic: CLR

Function: Clear
Description: The destination register is cleared to 00 H .

Operation: $\quad d s t \leftarrow 0$

Inst. Format	OPCDE (Hex)	Bytes	Cycles	Flags	
CLR dst				Z	C
CLRA	DF FF	2	4	Δ	Δ
CLR X	OD 8000	3	4	*	*
CLR Y	0D 8100	3	4	*	*
CLR V	OD 8200	3	4	*	*
CLR W	OD 8300	3	4	*	*
CLR rr	OD rr 00	3	4	*	*

Notes:

rr. 1 Byte dataspace address
$\Delta \quad C, Z$ set
*. C,Z unaffected

Example: If data space register 22 H contains the value 33 H , CLR 22H
will cause register 22 H to hold 00 H .

Addressing Modes: Direct

Complement

Mnemonic: COM

Function: Complement
Description: This instruction complements each bit of the accumulator; all bits which are set to 1 are cleared to 0 and vice-versa.

Operation: \quad dst \leftarrow NOT dst
The destination must be the accumulator.

Inst. Format	OPCODE (Hex)	Bytes	Cycles	Flags	
				Z	C
COM dst			4	Δ	Δ

Note:

$\Delta \quad \mathrm{Z}$ is set if the result is zero. Cleared otherwise.
C will contaın the value of the MSB before the operation

Example: If the accumulator contains the binary value 10111001 then the instruction COM A
will cause the accumulator to be changed to 01000110 and the carry flag to be set (since the original MSB was 1).

Addressing Modes: Inherent

Compare

Mnemonic: CP

Function: Compare

Description: This instruction compares the source byte (subtracted from) with the destination byte, which must be the accumulator. The carry and zero flags record the result of this comparison.

Operation: dst-src
The destination must be the accumulator, but it will not be changed.

Inst. Format	OPCODE (Hex)	Bytes	Cycles	Flags	
CP dst,src				Z	C
CP A,A	3F FF	2	4	Δ	Δ
CP A, X	3F 80	2	4	Δ	Δ
CPA, Y	3F 81	2	4	Δ	Δ
CPA,V	3F 82	2	4	Δ	Δ
CP A,W	3F 83	2	4	Δ	Δ
CP A, (X)	27	1	4	Δ	Δ
CP A, (Y)	2F	1	4	Δ	Δ
CP A,rr	3F rr	2	4	Δ	Δ

Note: rr. 1 Byte dataspace address
$\Delta: Z$ is set if the result is zero. Cleared otherwise.
C is set if Acc $\geq \mathrm{src}$, cleared if $\mathrm{Acc}<\mathrm{src}$.

ST62/63
$\Delta: Z$ is set if the result is zero. Cleared otehrwise.
C is set if Acc < src, cleared if Acc $\geq s r c$.

Example: If the accumulator contains the value 11111000 and the register 34 H contains the value 00011100 then the instruction,
CP A,34H
will clear the Zero flag Z and set the Carry flag C, indicating that $A c c \geq \operatorname{src}$ (on ST60)

Addressing Modes: Source: Direct, Indirect
Destination: Accumulator

Compare Immediate

Mnemonic: CPI
Function: Compare Immediate

Description: This instruction compares the immediately addressed source byte (subtracted from) with the destination byte, which must be the accumulator. The carry and zero flags record the result of this comparison.
Operation: dst-src

The source must be the immediately addressed data and the destination must be the accumulator, that will not be changed.

Inst. Format	OPCODE (Hex)	Bytes	Cycles	Flags	
				Z	CPI dst,src
CPI A,nn	37 nn	2	4	Δ	Δ

Note: nn. 1 Byte ımmedıate data.

ST60
$\Delta: Z$ is set if the result is zero. Cleared otherwise.
C is set if $A c c \geq s r c$, cleared if $A c c<s r c$.

ST62/63
$\Delta: Z$ is set if the result is zero. Cleared otherwise.
C is set if $A c c<s r c$, cleared if $A c c \geq s r c$.
Example: If the accumulator contains the value 11111000 then the instruction, CPI A,00011100B will clear the Zero flag Z and set the Carry flag C indicating that $A c c \geq \operatorname{src}$ (on ST60).

Addressing Modes: Source: Immediate
Destination: Accumulator

DEC

Decrement

Mnemonica: DEC

Function: Decrement

Description: The destination register's contents are decremented by one.

Operation: $\quad \mathrm{dst} \leftarrow \mathrm{dst}$-1

Inst. Format	OPCODE (Hex)	Bytes	Cycles	Flags	
DEC dst				Z	C
DEC A	FF FF	2	4	Δ	*
DEC X	1D	1	4	Δ	*
DEC Y	5D	1	4	Δ	*
DEC V	9D	1	4	Δ	*
DEC W	DD	1	4	Δ	*
DEC (X)	E7	1	4	Δ	*
DEC (Y)	EF	1	4	Δ	*
DEC rr	FF rr	2	4	Δ	*

Notes:

rr 1 Byte dataspace address
*. C is unaffected
ΔZ is set if the result is zero. Cleared otherwise

Example: If the X register contains the value 45 H and the data space register 45 H contains the value 16 H then the instruction,
DEC (X)
will cause data space register 45 H to contain the value 15 H .

Addressing Modes: Short direct, Direct, Indirect.

Mnemonic: INC

Function: Increment

Description: The destination register's contents are incremented by one.

Operation: $\quad d s t \leftarrow d s t+1$

Inst. Format	OPCODE (Hex)	Bytes	Cycles	Flags	
INC dst				Z	C
INC A	7F FF	2	4	Δ	*
INC X	15	1	4	Δ	*
INC Y	55	1	4	Δ	*
INC V	95	1	4	Δ	*
INC W	D5	1	4	Δ	*
INC (X)	67	1	4	Δ	*
INC (Y)	6F	1	4	Δ	*
INC rr	7F rr	2	4	Δ	*

Notes:

${ }_{\star}^{\text {rr }} 1$ Byte dataspace address
*. C is unaffected
$\Delta \mathrm{Z}$ is set if the result is zero Cleared otherwise

Example: If the X register contains the value 45 H and the data space register 45 H contains the value 16 H then the instruction
INC (X)
will cause data space register 45 H to contain the value 17 H .

Addressing Modes: Short direct, Direct, Indirect.
Mnemonic: JP
Function: Jump (Unconditional)

Description: The JP instruction replaces the PC value with a twelve bit value thus causing a simple jump to another location in the program memory. The previous PC value is lost, not stacked.

Operation: $\quad \mathrm{PC} \leftarrow d s t$

Inst. Format	OPCODE (Hex)	Bytes	Cycles	Flags	
JP dst				Z	C
JP abc	c1001 ab	2	4	*	*

Notes:
abc. the three half bytes of a twelve bit address.
*. C,Z not affected

Example: The instruction, JP 5CDH
will cause the PC to be loaded with 5CDH and the program will continue from that location.

Addressing Modes: Extended

Jump Relative on Carry Flag

Mnemonic: JRC
Function: Jump Relative on Carry Flag

Description: \quad This instruction causes the carry (C) flag to be tested and if this flag is set then a jump is performed within the program memory. This jump is in the range -15 to +16 and is relative to the PC value. The displacemente is of five bits. If $\mathrm{C}=0$ than the next instruction is executed.
Operation: If $\mathrm{C}=1, \mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{e}$
where $\mathrm{e}=5$ bit displacement

Inst. Format	OPCODE (Hex)	Bytes	Cycles	Flags	
				Z	C
JRC e	e110	1	2	$*$	$*$

Notes:

e 5 bit displacement in the range -15 to +16
*. C,Z not affected

Example: If the carry flag is set then the instruction,
JRC + 8
will cause a branch forward to $\mathrm{PC}+8$. The user can use labels as indentifiers and the assembler will automatically allow the jump if it is in the range -15 to +16 .

Addressing Modes: Program Counter Relative

JRNC

Jump Relative on Non Carry Flag

Mnemonic: JRNC

Function: Jump Relative on Non Carry Flag

Description: This instruction causes the carry (C) flag to be tested and if this flag is cleared to zero then a jump is performed within the program memory. This jump is in the range -15 to +16 and is relative to the PC value. The dispacement is of five bits. If $\mathrm{C}=1$ then the next instruction is executed.

Operation:
If $\mathrm{C}=0, \mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{e}$
where $\mathrm{e}=5$ bit displacement

Inst. Format	OPCODE (Hex)	Bytes	Cycles	Flags	
				Z	C
JRNC e	e010	1	2	$*$	$*$

Notes:
e 5 bit displacement in the range -15 to +16
C,Z not affected

Example: If the carry flag is cleared then the instruction,
JRNC -5
will cause a branch backward to PC-5. The user can use labels as identifiers and the assembler will automatically allow the jump if it is in the range -15 to +16 .

Addressing Modes: Program Counter Relative

Jump Relative on Non Zero Flag

Mnemonic: JRNZ

Function: Jump Relative on Non Zero Flag
Description: \quad This instruction causes the zero (Z) flag to be tested and if this flag is cleared to zero then a jump is performed within the program memory. This jump is in the range -15 to +16 and is relative to the PC value. The displacement is of five bits. If $Z=1$ then the next instruction is executed.

Operation: \quad If $Z=0, P C \leftarrow P C+e$
where $\mathrm{e}=5$ bit displacement

Inst. Format	OPCODE (Hex)	Bytes	Cycles	Flags	
				\mathbf{Z}	C
JRNZ e	e000	1	2	$*$	$*$

Notes:

e. 5 bit displacement in the range -15 to +16 .
*. C,Z not affected

Example: | If the zero flag is cleared then the instruction, |
| :--- |
| JRNZ -5 |
| will cause a branch backward to PC-5. The user can use labels as identifiers and |
| the assembler will automatically allow the jump if it is in the range -15 to +16 . | l

Addressing Modes: Program Counter Relative

JRR

Jump Relative if Reset

Mnemonic: JRR

Function: Jump Relative if RESET

Description: This instruction causes a specified bit in a given dataspace register to be tested. If this bit is reset $(=0)$ then the PC value will be changed and a relative jump will be performed within the program. The relative jump range is -126 to +129 . If the tested bit is not reset then the next instruction is executed.

Operation: \quad If bit $=0, P C \leftarrow P C+e e$
where ee $=8$ bit displacement

Inst. Format	OPCODE (Hex)	Bytes	Cycles	Flags	
				Z	C
JRR b,rr,ee	b00011 rr ee	3	5	$*$	Δ

Notes:
b 3 bit-address
rr. 1 Byte dataspace address
ee. 8 bit displacement in the range -126 to +129
*. Z is not affected
Δ The tested bit is shifted into carry.

Example: If bit 4 of dataspace register 70 H is reset and the $\mathrm{PC}=110$ then the instruction, JRR 4, 70H, -20
will cause the PC to be changed to $90(110-20)$ and the instruction starting at that address in the program memory to be the next instruction executed.
The user is advised to use labels for conditional jumps. The relative jump will be calculated by the assembler. The jump must be in the range -126 to +129 .

Addressing Modes: Bit Test

Jump Relative if Set

Mnemonic: JRS

Function: Jump Relative if set
Description: \quad This instruction causes a specified bit in a given dataspace register to be tested. If this bit is set $(=1)$ then the PC value will be changed and a relative jump will be performed within the program. The relative jump range is -126 to +129 . If the tested bit is not set then the next instruction is executed.

Operation: \quad If $b i t=1, P C \leftarrow P C+e e$
where ee $=8$ bit displacement

Inst. Format	OPCODE (Hex)	Bytes	Cycles	Flags	
				Z	C
JRS b,rr,ee	b10011 rr ee	3	5	*	Δ

Notes:
b 3 bit-address
rr. 1 Byte dataspace address
ee. 8 bit displacement in the range -126 to +129
*. Z is not affected
Δ The tested bit is shifted into carry

Example: If bit 7 of dataspace register AFH is set and the $\mathrm{PC}=123$ then the instruction, JRS 7,AFH,+25
will cause the PC to be changed to $148(123+25)$ and the instruction starting at that address in the program memory to be the next instruction executed.
The user is advised to use labels for conditional jumps. The relative jump will be calculated by the assembler. The jump must be in the range -126 to +129 .

Addressing Modes: Bit Test

JRZ

Jump Relative on Zero Flag

Mnemonic: JRZ

Function: Jump Relative on Zero Flag

Description: This instruction causes the zero (Z) flag to be tested and if this flag is set to one then a jump is performed within the program memory. This jump is in the range -15 to +16 and is relative to the PC value. The displacement is of five bits. If $Z=0$ then next instruction is executed.

Operation:

If $Z=1, P C \leftarrow P C+e$
where $\mathrm{e}=5$ bit displacement

Inst. Format	OPCODE (Hex)	Bytes	Cycles	Flags	
				Z	C
JRZ e	e100	1	2	$*$	$*$

Notes:

e. 5 bit displacement in the range -15 to +16 .
*. C,Z not affected
Example: If the zero flag is set then the instruction,
JRZ +8
will cause a branch forward to $\mathrm{PC}+8$. The user can use labels as identifiers and the assembler will automatically allow the jump if it is in the range -15 to +16 .

Addressing Modes: Program Counter Relative

Mnemonic: LD

Function: Load

Description: \quad The contents of the source register are loaded into the destination register. The source register remains unaltered and the previous contents of the destination register are lost.

Operation: \quad dst \leftarrow src
Either the source or the destination must be the accumulator.

Inst. Format	OPCODE (Hex)	Bytes	Cycles	Flags	
LD dst,src				Z	C
LD A, X	35	1	4	Δ	*
LD A, Y	75	1	4	Δ	*
LD A,V	B5	1	4	Δ	*
LD A,W	F5	1	4	Δ	*
LD X,A	3D	1	4	Δ	*
LD Y,A	7D	1	4	Δ	*
LD V,A	BD	1	4	Δ	*
LD W,A	FD	1	4	Δ	*
LD A, (X)	07	1	4	Δ	*
LD (X), A	87	1	4	Δ	*
LD A, (Y)	OF	1	4	Δ	*
LD (Y), A	8F	1	4	Δ	*
LD A,rr	1F rr	2	4	Δ	*
LD rr,A	9F rr	2	4	Δ	*

Notes:

rr. 1 Byte dataspace address
*. C not affected
Δ. Z is set if the result is zero. Cleared otherwise.

Example: If data space register 34 H contains the value 45 H then the instruction;
LD A,34H
will cause the accumulator to be loaded with the value 45 H . Register 34 H will keep the value 45 H .

Addressing Modes: Source: Direct, Short Direct, Indirect
Destination: Direct, Short Direct, Indirect

Load Immediate

Mnemonic: LDI

Function: Load Immediate

Description: The immediately addressed data (source) is loaded into the destination data space register.

Operation: \quad dst \leftarrow src
The source is always an immediate data while the destination can be the accumulator, one of the $\mathrm{X}, \mathrm{Y}, \mathrm{V}, \mathrm{W}$ registers or one of the available data space registers.

Inst. Format	OPCODE (Hex)	Bytes	Cycles	Flags	
LDI dst,src				Z	C
LDI A,nn	17 nn	2	4	Δ	*
LDI X,nn	OD 80 nn	3	4	*	*
LDI Y,nn	OD 81 nn	3	4	*	*
LDI V,nn	OD 82 nn	3	4	*	*
LDI W,nn	OD 83 nn	3	4	*	*
LDI rr,nn	OD rr nn	3	4	*	*

Notes:

rr 1 Byte dataspace address
nn 1 Byte ımmediate value

* Z, C not affected
$\Delta \mathrm{Z}$ is set if the result is zero Cleared otherwise

Example: The instruction
LDI $34 \mathrm{H}, 45 \mathrm{H}$
will cause the value 45 H to be loaded into data register at location 34 H .

Addressing Modes: Source: Immediate
Destination: Direct

No Operation

Mnemonic:
Function:
NOP
Description:
No Operation
Operation:

Inst. Format	No Operation is performed by this instruction. It is typically used for timing delay.				
NOP	OPCODE (Hex)	Bytes	Cycles	Flags	

Note: *. C, Z not affected

Addressing Modes: Program Counter Relative

Reset Bit

Mnemonic: RES

Function: Reset Bit

Description: The RESET instruction is used to reset a specified bit in a given register in the data space.

Operation: \quad dst $(n) \leftarrow 0,0 \leq n \leq 7$

Inst. Format	OPCODE (Hex)	Bytes	Cycles	Flags	
RES bit,dst				Z	C
RES b,A	b01011 FF	2	4	*	*
RES b,rr	b01011 rr	2	4	*	*

Notes:

b. 3 bit-address
rr. 1 Byte dataspace address
*. C,Z not affected

$$
\begin{array}{ll}
\text { Example: } & \text { If register } 23 \mathrm{H} \text { of the dataspace contains } 11111111 \text { then the instruction, } \\
\text { RES } 4,23 \mathrm{H} \\
\text { will cause register } 23 \mathrm{H} \text { to hold } 11101111 .
\end{array}
$$

Addressing Modes: Bit Direct

ST62,63 Instruction Set Description
 RET

Return from Subroutine

Mnemonic: RET

Function: Return From Subroutine

Description: This instruction is normally used at the end of a subroutine to return to the previously executed procedure. The previously stacked program counter (stacked during CALL) is popped back from the stack. The next statement executed is that addressed by the new contents of the PC. If the stack had already reached its highest level (no more PC stacked) before the RET is executed, program execution will be continued at the next instruction after the RET.

Operation: $\quad P C \leftarrow$ Stacked $P C$

Inst. Format	OPCODE (Hex)	Bytes	Cycles	Flags	
				Z	C
RET	CD	1	2	\star	\star

Note: *. C,Z not affected

Example: If the current PC value is 456 H and the PC value at the top of the stack is 3DFH then the instruction,
RET
will cause the PC value 456 H to be lost and the current PC value to be 3 DFH .

Addressing Modes: Inherent

SGS-THOMSON

Return from Interrupt

Mnemonic: RETI

Function: Return from Interrupt

Description: This instruction marks the end of the interrupt service routine and returns the ST60/62/63 to the state it was in before the interrupt. It "pops" the top (last in) PC value from the stack into the current PC. This instruction also causes the ST60/62/63 to switch from the interrupt flags to the normal flags. The RETI instruction also applies to the end of NMI routine for ST62/63 devices; in this case the instruction causes the switch from NMI flags to normal flags (if NMI was acknowledged inside a normal routine) or to standard interrupt flags (if NMI was acknowledged inside a standard interrupt service routine).

In addition the RETI instruction also clears the interrupt mask (also NMI mask for ST62/63) which was set when the interrupt occurred. If the stack had already reached its highest level (no more PC stacked) before the RETI is executed, program execution will be continued with the next instruction after the RETI. Because the ST60 is in interrupt mode after reset (NMI mode for ST62/63), RETI has to be executed to switch to normal flags and enable interrupts at the end of the starting routine. If no call was executed during the starting routine, program execution will continue with the instruction after the RETI (supposed no interrupt is active).

Operation: \quad Actual Flags \leftarrow Normal Flags (1)
$\mathrm{PC} \leftarrow$ Stacked PC
$\mathrm{IM} \leftarrow 0$
(1) Standard Interrupt flags if NMI was acknowledged inside a standard interrupt service (ST62/63 only).

Inst. Format	OPCODE (Hex)	Bytes	Cycles	Flags	
				Z	C
RETI	$4 D$	1	2	Δ	Δ

Note: $\Delta \mathrm{C}, \mathrm{Z}$ normal flag will be used from now on.

Example: If the current PC value is 456 H and the PC value at the top of the stack is 3DFH then the instruction

RETI
will cause the value 456 H to be lost and the current PC value to be 3DFH. The ST6 will switch from interrupt flags to normal flags and the interrupt mask is cleared.

Addressing Modes: Inherent

Rotate Left Through Carry

Mnemonic: RLC

Function: Rotate Left through Carry
Description: This instruction moves each bit in the accumulator one place to the left (i.e. towards the MSBit. The MSBit (bit 7) is moved into the carry flag and the carry flag is moved into the LSBit (bit0) of the accumulator.

Operation:

$\operatorname{dst}(0) \leftarrow C$
$C \leftarrow \operatorname{dst}(7)$
$\operatorname{dst}(\mathrm{n}+1) \leftarrow \operatorname{dst}(\mathrm{n}), 0 \leq \mathrm{n} \leq 6$
This instruction can only be performed on the accumulator.

Inst. Format	OPCODE (Hex)	Bytes	Cycles	Flags	
				\mathbf{Z}	C
RLC A	AD	1	4	Δ	Δ

Note: $\Delta \cdot Z$ is set if the result is zero Cleared otherwise.
C will contain the value of the MSB before the operation

> Example: If the accumulator contains the binary value 10001001 and the carry flag is set to 0 then the instruction, RLC A will cause the accumulator to have the binary value 00010010 and the carry flag to be set to 1.

Addressing Modes: Inherent

ST62,63 Instruction Set Description

SET

Set Bit

Mnemonic: SET

Function: Set Bit

Description: The SET instruction is used to set a specified bit in a given register in the data space.

Operation: \quad dst $(n) \leftarrow 1,0 \leq n \leq 7$

Inst. Format	OPCODE (Hex)	Bytes	Cycles	Flags	
				Z	$\cdot \mathbf{C}$
SET bit,dst		2	4	\star	\star
SET b,A	b11011 FF	2	4	\star	\star
SET b,rr	b11011 rr				

Notes:
b. 3 bit-address
rr. 1 Byte dataspace address

* C,Z not affected

Example: If register 23H of the dataspace contains 00000000 then the instruction, SET 4,23H
will cause register 23 H to hold 00010000 .

Addressing Modes: Bit Direct

Shift Left Accumulator

Mnemonic: SLA

Function: Shift Left Accumulator

Description: This instruction implements an addition of the accumulator to itself (i.e a doubling of the accumulator) causing an arithmetic left shift of the value in the register.

Operation: ADD A,FFH
This instruction can only be performed on the accumulator.

Inst. Format	OPCPDE (Hex)	Bytes	Cycles	Flags	
				Z	C
SLAA	5F FF	2	4	Δ	Δ

Note: $\Delta^{\cdot} Z$ is set if the result is zero. Cleared otherwise.
C will contain the value of the MSB before the operation.

Example: If the accumulator contains the binary value 11001101 then the instruction, SLAA
will cause the accumulator to have the binary value 10011010 and the carry flag to be set to 1 .

Addressing Modes: Inherent

Stop Operation

Mnemonic: STOP

Function: Stop operation

Description: This instruction is used for putting the ST60/62/63 into a stand-by mode in which the power consumption is reduced to a minimum. All the on-chip peripherals and oscillator are stopped (for some peripherals,A/D for example, it is necessary to individually turn-off the macrocell before entering the STOP instruction). To restart the processor an external interrupt or a reset is needed.

Operation: Stop Processor

Inst. Format	OPCODE (Hex)	Bytes	Cycles	Flags	
				Z	C
STOP	$6 D$	1	2	$*$	$*$

Note : *: C,Z not affected

Addressing Mode: Inherent

Subtraction

Mnemonic: SUB

Function: Subtraction

Description: This instruction subtracts the source value from the destination value.
Operation: \quad dst \leftarrow dst-src

The destination must be the accumulator.

Inst. Format	OPCODE (Hex)	Bytes	Cycles	Flags	
				Z	C
SUB dst,Src		2	4	Δ	Δ
SUB A,A	DF FF	2	4	Δ	Δ
SUB A,X	DF 80	2	4	Δ	Δ
SUB A,Y	DF 81	2	4	Δ	Δ
SUB A,V	DF 82	2	4	Δ	Δ
SUB A,W	DF 83	1	4	Δ	Δ
SUB A, (X)	C7	1	4	Δ	Δ
SUB A,(Y)	CF	2	4	Δ	Δ
SUB A,rr	DF rr				

Note: rr. 1 Byte dataspace address
$\Delta: Z$ is set if the result is zero. Cleared otherwise.
C is set if $A c c \geq s r c$, cleared if $A c c<s r c$.
ST62/63
$\Delta: Z$ is set if the result is zero. Cleared otherwise.
C is set if $A c c<s r c$, cleared if $A c c \geq s r c$.

Example: If the Y register contains the value 23 H , dataspace register 23 H contains the value 53 H and the accumulator contains the value 78 H then the instruction,

SUB A,(Y)
will cause the accumulator to hold the value 25 H (i.e. 78-53). The zero flag is cleared and the carry flag is set (on ST60), indicating that result is >0.

Addressing Modes: Source: Indirect,Direct
Destination: Accumulator

SUBI

Subtraction Immediate

Mnemonic: SUBI

Function: Subtraction Immediate

Description: This instruction causes the immediately addressed source data to be subtracted from the accumulator.

Operation: $\quad d s t \leftarrow d s t-$ src
The destination must be the accumulator.

Inst. Format	OPCODE (Hex)	Bytes	Cycles	Flags	
$n n$				Z	C
SUBI dst,src		2	4	Δ	Δ

Note: nn. 1 Byte of immediate data
$\Delta: Z$ is set if the result is zero. Cleared otherwise. C is set if $\mathrm{Acc} \geq \mathrm{src}$, cleared if $\mathrm{Acc}<\mathrm{src}$.

ST62/63
$\Delta: Z$ is set if the result is zero. Cleared otherwise.
C is set if $A c c<s r c$, cleared if $A c c \geq s r c$.

Example: If the accumulator contains the value 56 H then the instruction, SUBI A, 25
will cause the accumulator to contain the value 31 H . The zero flag is cleared and the carry flag is set (on ST60), indicating that the result is >0.

Addressing Modes: Source: Immediate
Destination: Accumulator

Wait Processor

Mnemonic:	WAIT
Function:	Wait Processor
Description: \quadThis instruction is used for putting the ST60/62/63 into a stand-by mode in which the power consumption is reduced to a minimum. Instruction execution is stopped, but the oscillator and some on-chip peripherals continue to work. To restart the processor an interrupt from an active on-chip peripheral (eg. timer), an external interrupt or reset is needed. For on-chip peripherals active during wait, see ST60/62/63 data sheets.	

Operation: Put ST6 in stand-by mode

Inst. Format	OPCODE (Hex)	Bytes	Cycles	Flags	
				Z	C
WAIT	ED	1	2	\star	\star

Note : *. C, Z not affected

Addressing Modes: Inherent

APPLICATION NOTES

Philippe RABIER/Laurent PERIER

INTRODUCTION

Today, electronics is used in home appliances for purposes as different as the motor regulation of a washing machine, the control of a vacuum cleaner, the light dimming of a lamp or the heating in a coffee machine. This pervasion increases rapidly because appliances require enhanced features, easy to built and modify while electronics based solutions become cheaper and more sophisticated.
Within this evolution, the microcontrollers (MCU) progressively replace analog controllers and discrete solutions even in low cost applications. They are more flexible, often need less components and provide faster time to market. With an analog IC, the designer is limited to a fixed function frozen inside the device. With a DIAC control, features like sensor feedback or enhanced motor drive can not be easily implemented. With the MCU proposed in this note (the ST6210), the designer can include his own ideas and test them directly using EPROM or One Time Programmable (OTP) versions.
The triac is the least expensive power switch to operate directly on the $110 / 240 \mathrm{~V}$ mains. Thus it is the optimal switch for most of the low-cost power applications operating on-line. The LOGIC LEVEL or SNUBBERLESS triacs are a complement to the ST6210 MCU for such appliances. These triacs can operate with low gate current and can be directly triggered by the MCU, while still maintaining a high switching capability.
This application note describes three different MCU based applications: a universal motor drive, an AC switch and a light dimmer. They all operate with the same user interfaces and almost the same software and hardware.

UNIVERSAL MOTOR DRIVE

Basic function

Universal motor drives with DIAC or analog controllers are currently used today. These circuits have the disadvantage of requiring many external components when controls include sophisticated features such as speed control with torque limiting or when parameters have to be easily changed from one design to an other. They are also limited in the choice of user interfaces.
A universal motor drive circuit, supplied directly from the $110 \mathrm{~V} / 240 \mathrm{~V}$ mains has been realized using a MCU ST6210 and a SNUBBERLESS triac. The user interface is a touch sensor, a push button or a potentiometer. The board includes a minimum of components in order to save cost and size. The auxiliary supply is derived from the mains voltage.

Power control

The power device is a triac because it is the most economical on-line switch. The output power, and therefore the motor speed, are controlled by the phase delay of the triac drive. This delay is referred to the zero crossing of the line voltage which is detected by means of a connection to the mains neutral (fig.1). Changing operation from 60 Hz to 50 Hz can be achieved by making simple modifications to the MCU EPROM/ROM table defining the triac conduction angle versus power level. Automatic selection of the $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ tables could be done.

Figure 1. Mains synchronisation

A universal motor is an inductive load which may generate very strong dynamic constraints on the circuit at turn-off. Because of the phase lag of current with respect to voltage, the reapplied voltage can be different from zero. So the leading edge of the reapplied voltage across the triac can be very sharp because it is limited only by parasitic capacitances (fig.8). A SNUBBERLESS triac is well adapted to this kind of loads because fast commutation characteristics can be obtained with low current rating devices. Otherwise, inrush current at motor startup is limited by the soft start feature included in the control.

Triac drive

The triac is directly driven by the MCU. The pulse driving the triac is short (100s) in order to minimize the +5 V supply circuit size. The SNUBBERLESS triac is driven in quadrants QII and QIII with 60 mAgate current provided by three I/O bits of the ST6210 in parallel. This pulse is sufficiently long to insure the triac is latched at the end of the pulse. Pulse length can be modified if another triac or motor is used.

User Interfaces

There are three different user interfaces: a touch control, a push button and a potentiometer. Four modes can be selected on the board in order to define how the transmitted power is related to the user interface.
Three modes operate with the touch sensor or the push button. Dimming is obtained when the sensor or the button is touched for more than 330 ms . If the touch duration is between 50 ms and 330 ms , the circuit is switched on or off. A contact of less than 50 ms causes no action. Modes 1,2,3 differ in the way the motor speed is changed by
Figure 2. User interfaces

sensor or button contact. (These values are given for the 60 Hz version, for a 50 Hz mains values are respectively 400 ms and 50 ms).
Mode 4 directly relates transmitted power to potentiometer position (fig.2). All modes include a soft start.
When operating together, the SNUBBERLESS triac and the ST6210 MCU save components on the drive, logic power supply, mains connection, and the power side (fig.3).
The MCU chosen (ST6210) includes an 8 bit accumulator, $2 k$ ROM, 64 bytes RAM, an 8 bit A / D converter that can be connected to 8 different inputs, $4 / / O$ lines with 10 mA sink current capability and a timer. Hysteresis protection is included in series with each I/O pin. The ST6210 is packaged in DIL or SMD packages. The ports, the timer and interrupts configurations can be chosen by software, providing high flexibility. The ST6210 has been designed to operate in very disturbed environments. Each I/O line contains internal diodes which clamp the input voltage between Vdd and Vss. These diodes are sized to withstand a continuous current of 1 mA (typ.). With EPROM and OTP versions, the equipment development and preproduction can be done directly from the design lab providing a fast time to market.
The SNUBBERLESS triac (BTA 16-400CW for 110 V, BTA10-600CW for 220V) has been specially designed to drive loads which generate very strong dynamic con-

Figure 3. Motor drive circuit diagram

Figure 4. Major steps of the software

straints such as a vacuum cleaner motor. This triac can be triggered in quadrants QI, QII or QIII with gate and latching current of 35 mA and 80 mA respectively. In this application it is driven by three I/O lines of the ST6210 in parallel. This triac has high current switching capability ($[\mathrm{dl} / \mathrm{dt}] \mathrm{c}>8.5 \mathrm{~A} / \mathrm{ms}$ and $5.5 \mathrm{~A} / \mathrm{ms}$ for BTA10-600CW), and high static dv/dt ($[\mathrm{dV} / \mathrm{dt}]>250 \mathrm{~V} / \mu \mathrm{s}$). So, in this circuit, it can operate without a snubber.
Total consumption of the board is 3 mA with an 8 MHz oscillator. The board supply comes from the mains through a simple RCD circuit. The +5 V is referred to anode 1 of the triac in order to provide the negative gate current necessary to drive the triac in quadrants QII and QIII. The 5 V supply capacitance is mounted as near as possible to the MCU with very short interconnecting traces to maximize RFI immunity.
The touch sensor is a voltage divider between line and neutral. It operates when the +5 V supply input of the circuit is connected to the line potential. This connection to the mains must be provided.

Software

All operating features are contained in a 700 byte program. More than 1byte of ROM is available for additional features. The architecture of the software is modular in order to provide maximum flexibility.
A lockup table relating delay time to the power requirement contains 64 different levels. The conduction time of the triac can vary from 1.7 ms to 6.7 ms for a 60 Hz application and from 2 ms to 8 ms to a 50 Hz application. The user can easily adjust the minimum and maximum power levels because the corresponding delay times are slowly changing at the top and bottom of the table. The table can
be modified in ROM/EPROM to meet different conditions e.g. 50 Hz or 60 Hz operation or varying loads.
One software version covers all four user interface modes without hardware change.
All inputs are digitally filtered so that an input is validated only if it remains constant for 15 s or more. So, passive filter components can be saved. The mains supply carries disturbances (glitches, telecommand signals, ...) which could disturb the triac drive. For this reason, a mains voltage zero crossing is only validated if it occurs during a window of time (1.7 ms each 16.6 ms for 60 Hz operation and 2 ms each 200 ms for 50 Hz operation) selected by the internal timer of the MCU. This block acts as a filter and again eliminates external components (fig.4).
This circuit can be used as a basis for development of more sophisticated features such as vacuum regulation in a vacuum cleaner, speed control in a food processor, speed regulation with torque limiting in a drill, unbalance detection in a washing machine or door opener with remote control.

Figure 5. Delay time in drive of an AC switch

AC SWITCH

AC switches operate as relays. They have to turn-on as soon as possible after a mains voltage zero crossing in order to prevent the disturbances induced by a sharp leading edge of current. Their operating current has to be small in order to minimize the supply coming from the mains. Also, they are usually driven through isolated interfaces such as an optocoupler or transformer.
The motor drive circuit described previously can be used as a basis for such applications. When the zero crossing of the mains voltage is detected, this triac is turned-on.
A SNUBBERLESS triac such as the BTA 16-600BW is suitable for an AC switch. Its switching characteristics ([dl/dt]c>14A/ms) allows it to control various types of resistive and inductive loads.
The figure 5 shows that a ST6210 can turn-on a triac $35 \mu \mathrm{~s}$ after the mains voltage zero crossing. With such phase delay $\left(0.75^{\circ} / 60 \mathrm{~Hz}\right.$ and $\left.0.63^{\circ} / 50 \mathrm{~Hz}\right)$, the voltage reapplied across the load is small (V) and the leading edge of current is minimal.
Such an AC switch can include additional features such as voltage and current monitoring or feedback features. This AC switch can also be used, for instance, in a refrigerator (with smaller triacs) with several compartments where the MCU controls different temperatures. The MCU can then interface the sensors, solve the priority conflicts and drive the AC switches with the optimal sequence.
Figure 6. Light dimmer circuit diagram

LIGHT DIMMER

Basic function

The motor drive board can also operate as a light dimmer. However, the board can be slightly modified such that the neutral connection is no longer necessary. Then, the board can be plugged in series with the line wire like a mechanical switch. The synchronization and the auxiliary supply are obtained from the voltage across the triac (Fig.6).
A light dimmer operating directly on the 110 V or 240 V mains has been realized using a MCU ST6210 and a LOGICLEVEL triac. This circuit drives halogen or incandescent lamps supplied directly from the mains or through a low voltage transformer. It includes softstart and protection against transformer saturation and against open load. The user interfaces are the same as with the motor drive.

Power control

Power is controlled by the phase delay (td) of the triac drive. In the previous design, td is referred to the zero crossing of the line voltage. In order to avoid a connection to the mains neutral and connect the circuit directly in series with the load, the trigger delay is referred to the previous zero crossing of the current (fig.1). When the current in the triac is zero, the mains voltage is reapplied across it. Synchronization is achieved by measuring this voltage. This main voltage is monitored over each halfwave with a network of resistances connected to two I/O lines of the ST6210. This allows detection of spurious open load and the retriggering of the triac with multipulse operation if it is not latched after the first gate pulse.

Operation with a transformer

Low power halogen spots use low voltage lamps (12V typ.) usually supplied through a low voltage transformer. Dimming these lamps is simple with this circuit thanks to the program features included in the ST6210:

* At the start, the delay time between the first gate pulse and the synchronization instant is greater than 5 ms . This limits induction in the transformer and the risk of saturation.
* The circuit starts on a positive line halfwave and stops on a negative one. Thus it starts with positive induction and stops after negative induction has been applied. This helps to minimize the size of the magnetic core material, and the current rating of the triac.
* The timer is precisely tuned in order to obtain 8.3 ms (for 60 Hz) or 10 ms (for 50 Hz) delay between two gate pulses. As a result, the triac is driven symmetrically in both phases so that continuous voltage in the transformer is avoided and noise in the transformer is reduced. Otherwise, the voltage across the triac is monitored to detect a spurious open load condition at the secondary of the transformer.
The inrush current at the turn-on of a lamp (halogen or incandescent) is also reduced due to the soft start feature of the circuit (fig.7).

Triac drive

The triac is directly driven by the MCU. The pulse driving the triac is 50μ s long. The LOGIC LEVEL triac is driven in quadrants QII and QIII with a gate current of 20 mA provided by two I/O lines of the ST6210 in parallel. The LOGICLEVEL triac has a maximum specified gate triggering current of 10 mA at $25^{\circ} \mathrm{C}$.
The triac is multi-pulse driven. Therefore, inductive loads can be driven without the use of long pulse drives. As a result, the consumption on the +5 V supply can be minimized and the supply circuit becomes very small. Before supplying the first drive pulse, the triac voltage is tested. If no voltage is detected, a spurious open load or a supply disconnection is assumed to have occurred and the circuit is stopped. After the first driving pulse, the triac voltage is monitored. If the triac is not ON, another pulse is sent. The same process can be repeated up to four times. Then, if the triac is still not ON , the circuit is switched off.

Figure 7. Soft start with lamps
HALOGEN LAMP AT THE SECONDARY OF A TRANSFORMER
TRIAC ANODE CURRENT : $1 \mathrm{~A} / \mathrm{div} 200 \mathrm{~ms} / \mathrm{div}$

240 V INCANDESCENT LAMP
TRIAC ANODE CURRENT : 1 A/div $100 \mathrm{~ms} / \mathrm{div}$

Hardware

The light dimmer board is almost the same as the motor drive board (fig.6). The major differences concern the position where the voltage is measured and the triac choice. When the board is dimming a resistive load, an RFI filter should be added in order to the RFI standards (i.e. VDE 875).
In a dimmer, because of the resistive load, dynamic constraints are lower than in a motor control, so a LOGIC LEVEL triac (BTA08-400SW or BTA08-600SW) is used for safe gate current. This triac has been especially designed to operate with a MCU. It is a sensitive triac (IGT<10mA) which can be triggered in quadrants I, II and III. This triac has high switching capabilities ($\mathrm{d} / / \mathrm{dtt}]_{c}>3.5 \mathrm{~A} / \mathrm{ms}$), $\left([\mathrm{dV} / \mathrm{dtt}]_{c}>20 \mathrm{~V} / \mu \mathrm{s}\right)$. Thus it can also operate without a snubber in this circuit.
This board is supplied when the triac is off. A minimum off-time of the triac $(1.7 \mathrm{~ms} / 60 \mathrm{~Hz}$ and $2 \mathrm{~ms} / 50 \mathrm{~Hz}$) is necessary to ensure its supply. The RCD circuit is the same as the one used for the motor drive board.

Software

The light dimmer software is practically the same as with the motor drive. The major difference concerns the mains disturbances rejection in order to prevent lamp flickering. The timing is carried out internally by the MCU timer. The period of operation can be modified to follow the variations of the mains frequency but not the spurious disturbances. The mains synchronisation signal is received every cycle. The corresponding mains period is measured and compared to the internal timer period. If a difference remains after many cycles, the timer period is modified to follow the mains. This block acts like a low band filter which eliminates external filtering components.
The user interface can be modified to fit other applications such as IR presence detection or alarm, remote control, etc .

PRACTICAL RESULTS

Figure 7 presents the soft start operation with a halogen lamp operating from the secondary of a low voltage transformer and with a high voltage tungsten filament lamp. With soft start, the peak in-rush current is about 3 times the nominal current compared with 10 to 15 times otherwise. Therefore, the lamp life time is maximized, blowing the input fuse is prevented and the size of the triac is minimized. The figure 8 presents the current and voltage in a triac driving a universal motor.

Figure 8. Universal motor drive: Current and Voltage in the Triac

SUMMARY

Microcontrollers (MCU) are in common use in most areas of electronics. They are now set to penetrate the very cost sensitive area of home appliances. The applications described in this paper show that enhanced appliance circuits can be designed with fast prototyping using a ST6210 MCU and a SNUBBERLESS or LOGIC LEVEL triac. These circuits are low cost and they can provide more features with less components than classical solutions.

The presented circuits are a universal motor drive, a AC switch and a light dimmer operating from the $110 / 240 \mathrm{~V}$ mains. The light dimmer drives incandescent and halogen lamps supplied either directly from the mains or through a low voltage transformer. The motor drive can be adapted, for instance, to vacuum cleaners, food processors, drills or washing machines. Those circuits include soft start and protection features. Different user interfaces can be chosen: touch sensor, push button or potentiometer.
Such features are obtained with only few components: a ST6210 MCU in 20pin DIL/SMD package with a LOGIC LEVEL or SNUBBERLESS triac in TO220 package and some passive components.
Additional features like motor speed regulation, torque limitation, vacuum or unbalance control, IR presence detection, remote control, alarm, homebus interface or electronic shortcircuit protection with IGBT/Mosfet can be implemented from these circuits.

Bibliography

Thyristors and triacs application manual 1986 / SGS-THOMSON Microelectronics Universal Motor Speed Control / P.Rault + Y.Bahout
Thyristors and triacs application manual 1989 / SGS-THOMSON Microelectronics Microcontroller based universal motor speed control / M.Queyrol
ST62 user manual 1991 / SGS-THOMSON Microelectronics
Power control with ST6210MCU and triac / Ph.Rabier + L.Perier

APPLICATION NOTE

USING ST6 ANALOG INPUTS FOR MULTIPLE KEY DECODING

J.Stockinger

INTRODUCTION

The ST6 on-chip Analog to Digital Converter (ADC) is a useful peripheral integrated into the silicon of the ST6 family members. The flexibility of the I/O port structure allows the multiplexing of up to 13/8 Analog Inputs into the converter in a $28 / 20$ pin device for the ST6210/15 2 k ROM and ST6220/25 4k ROM families, enabling full freedom in circuit layout. Many other members of the ST6 family also offer the Analog to Digital converter.
One of the more novel and practical applications of this converter, is to decode a number of keys. The technique is to connect the keys by resistive voltage dividers to the converter inputs. An example of key detection using 10 keys is illustrated in this note.

Using the Analog to Digital converter in this fashion does not require a static current and avoids false key detection.

BASIC CIRCUIT

The basic circuit of the key decoder consists of a pull-up resistor connected to the ST6 Analog to Digital converter input with the first key directly switching to ground. The following keys are then connected in sequence to the ADC input through serial resistors. The number of keys which may be detected depends on the tolerance of the resistors used. It can be seen that if more than one key is pressed at the same time, the key detected will be the next key in the chain closest to the ADC input. This also allows the keys in the keyboard to be prioritized.

PRINCIPLE OF OPERATION

The combination of the pull-up resistor, the serial resistors and the pressed key form a resistive voltage divider, generating a different voltage at the ADC input for each key pressed. The serial resistors are selected in order to give an equal distribution of voltage between VDD and VSs for each switch combination to give the best noise margin between keys.
When a key is pressed, the voltage at the ADC input is given by the activated voltage divider. This analog voltage is converted by the ADC and the digital value is used to determine which switch is closed. Two successive conversions may be made to avoid the influence of key bounce.

Figure 1. Analog Keyboard resistor key matrix

Figure 2. Multiple key press

Table 1. Key code ranges

Key Nr	Valid Code Range	Distance to next key
1	0	24
2	$18-1 \mathrm{~A}$	22
3	$30-33$	22
4	$49-4 \mathrm{E}$	21
5	$63-68$	20
6	$7 C-81$	22
7	$97-9 B$	21
8	B0-B4	22
9	CA-CD	24
10	E5-E6	25

If the top key is pressed, the voltage measured is always zero. For n keys, the resistor values should be selected such that the voltage for the second key from top is $V_{D D} / n$, for the 3rd $-2 x V_{D D} / n$, for the 4th $-3 \times V_{D D} / n$ and for the nth $-(n-1) \times V_{D D} / n$. Resistor values from the tolerance set used must be selected to meet this requirement.
The recommended resistor values for a 10-key keyboard with 2% resistors from the E24 series, used with a $10 \mathrm{k} \Omega$ pull-up resistor, are shown in table 2. If more current can be allowed, then a $1 \mathrm{k} \Omega$ resistor can be used in which case the serial resistor values should be divided by 10 .

Table 2. Used resistors and Tolerance

Resistor	Value ($\Omega \mathbf{)}$	$\mathbf{- 2 \%}(\Omega)$	$\mathbf{+ 2 \%}(\Omega)$
Rp	10000	9800	10200
R1	1100	1078	1122
R2	1300	1274	1326
R3	1800	1764	1836
R4	2400	2352	2448
R5	3300	3234	3366
R6	5100	4998	5202
R7	8200	8036	8364
R8	16000	15680	16320
R9	51000	49980	52020

PRACTICAL LIMITATIONS

Theoretically, for an ideal power supply, ADC and resistors, 255 keys could be detected. Practically however, it is necessary to take into account potential errors coming from:

- the power supply - the key resistivity - the resistor tolerance - the ADC error

The power supply tolerance can normally be neglected providing noise is not present at a frequency within or above the frequency range of the RC delay of the resistive divider, as the ADC reference is normally provided by the power supply of the ST6. For ST6 family members with external ADC reference voltage inputs, AV may be used instead of VDD and VSS.
The sensitivity of the key can normally be neglected, as the resistance of the divider is high in comparison to it. If the key resistivity is significant, it should be added to the "serial" pull-down resistance of the different dividers. The key resistivity variation must also be added to the tolerance of the serial pull-down resistor (see resistor tolerance following).
The resistor tolerance affects the tolerance of the dividers. Two situations must be taken into account:
a) minimum value of pull-up combined with maximum values of pull-down = maximum voltage of the divider at the ADC input.
b) maximum value of the pull-up combined with the minimum values of pull-down = minimum voltage at the ADC input. These two cases give the maximum voltage variation of each divider (see Table 3). The voltage variation ranges of two dividers must not overlap otherwise the key cannot be decoded, even with an ideal converter.

Table 3. Effective Divider Resistors

Active Key	$\mathbf{R - 2 \% (\Omega)}$	$\mathbf{R + 2 \%}(\Omega)$
S0	0	0
S1	1078	1122
S2	2352	2448
S3	4116	4284
S4	6468	6732
S5	9702	10098
S6	22736	15300
S7	38416	23664
S8	88396	39984
S9		92004

Realistic converters require a margin between the range of variation. In the case of a significant variation in the key resistivity, the maximum resistivity of the key has to be added to the value of the pulldown resistor in case a). For case b) no error needs to be added as the resistivity cannot be less than 0Ω.

The linearity of the ADC converter of the ST6 is normally specified for ± 2 LSB, therefore a minimum distance of 4 LSB is needed between the edges of the resistance tolerance ranges. For the best results, a minimum of 8 LSB should be used (see Table 4).

Table 4. Voltage at the ADC-Input,Converter Results (5V supply)

Active Key	V (Rxmin-Rpmax)			V (Rxmax-Rpmin)		
	V	hex.	dec.	V	hex.	dec.
S0	0.00	00	0	0.00	00	0
S1	0.48	18	24	0.51	1 A	26
S2	0.94	30	48	1.00	33	51
S3	1.44	49	73	1.52	4 E	78
S4	1.94	63	99	2.04	68	104
S5	2.44	$7 C$	124	2.54	81	129
S6	2.95	97	151	3.05	$9 B$	155
S7	3.45	B0	176	3.54	B4	180
S8	3.95	C9	201	4.02	CD	205
S9	4.48	E5	229	4.52	E6	230

Table 5. AD-Converter Results

Active Key	R Error Range (LSB)	Distance to next Key	Valid Key Range
S0	0	24	$0-0$
$S 1$	2	22	$18-1 \mathrm{~A}$
S2	3	22	$30-33$
$S 3$	4	21	$49-4 \mathrm{E}$
S4	5	20	$63-68$
$S 5$	5	22	7 C-81
$S 6$	5	21	$97-9 B$
$S 7$	4	22	B0-B4
$S 8$	3	24	C9-CD
$S 9$	2	25	E5-E6

EXTENSION FOR WAKE UP

ST6 family members with the Analog input capacity can also generate a wakeup operation (from WAIT or STOP modes) on the pressing of a key. This can be achieved by a modification of the circuit shown in figure 1. The pull-up resistor is not connected to $V_{D D}$ but to an additional I/O port bit. During key polling, this additional port bit is set to output mode active high, thus effectively switching $V_{D D}$ to the pull-up resistor. The resistance of the pull-up resistor must be high enough to give no significant voltage drop, or the resulting error must be calculated and taken into account. The other I/O bit is used as the Analog input to the ADC as in the original circuit.
During the wait for the key press, the first I/O pin, used to pull the pull-up resistor high to $V_{D D}$ while polling, is switched into a high impedance state (e.g. open drain output mode). The second I/O pin, used as the ADC input while polling, is switched to the interrupt input with pullup mode. The internal pull-up is in the range of 100 k , in comparison to the 1 k 10k of the external resistor used during polling. If any key is now pressed an interrupt will be generated if the voltage at the second I / O pin is below the Schmitt trigger low level threshold. The serial resistors in the keyboard chain must not be too high in this case, therefore the maximum number of keys is reduced in comparison to the normal mode.

Figure 3. Keyboard wake-up circuit

Figure 4. Keyboard reading

Figure 5. Interrupt configuration

APPENDIX A: Key Input by Polling


```
sw6: cpi a,peg6_7 ; compare with peg6_7
\begin{tabular}{ll} 
jrnz & sw7 \\
jp & s6
\end{tabular}
;A/D result was smaller than peg6_7
; -- switch6 was pressed: jump to s6
sw7:
\begin{tabular}{ll} 
cpi & a,peg7_8 \\
jrnz & sw8 \\
jp & s7
\end{tabular}
; compare with peg7_8
;A/D result was smaller than peg7_8
; -- switch7 was pressed: jump to s7
sw8:
cpi a,peg8_9
jrnz sw9
jp s8
; compare with peg8_9
;A/D result was smaller than peg8_9
; -- switch8 was pressed: jump to s8
sw9:
cpi a,peg9_10
; compare with peg9_10
;A/D result was smaller than peg9_10
junz sw10
jp s9
; --> switch9 was pressed: jump to s9
sw10: jp s10
;A/D result was greater than peg9_10 ; -- switch10 was pressed: 0
```

;*** the routines handling to the reaction to the individual key presses ;*** are to be included here.
s1:
s2:
s3:
s4:
s5:
s6:
s7:
s8:
s9:
s10:

APPENDIX B: Key Input by Interrupt


```
en_kint:
```

$1 d i$	ddrpb, inpall	; sets all port B pins low -- all input
ldi	orpb, 02h	; option register:
ldi	drpb, 01h	; sets bit bl high, the rest low ;data register:
		```; sets bit b0 high, the rest low ;-- pbO becomes input, no pull-up, no int ; pbl becomes input with pull-up and int.```
		; pb2-7 become input with pull-up, but   ; are not used here
ldi	ior, 10h	;interrupt option register:
		;-- set D4: enable all interrupts
		; reset D5: falling edge on int.input (\#2)
ret		; return to the calling address

;*** hd_kint (handle key interrupt) interrupt service routine
;*** evaluates the data resulting in pushing a key.
;*** Interrupt vector \#2 ( $0 f f 4 h$ and $0 f f 5 h$ ) must point (jump) to hd_kint.

hd_kint:	ldi	dxpb, 03h	$\begin{aligned} & \text {; data register: } \\ & \text {; } 00000011 \end{aligned}$
	Idi	ddrpb, 01h	```;data direction register: ; 0000 0001 ; -- pbO becomes output```
	ldi	orpb,03h	```; option register: ; 0000 0011 ; -- pb0: push-pull output ; -- pbl: ADC-input ; pb2-7 become input with pull-up, but ; are not used here```
	ldi	adcr, 30h	```;A/D control register: ; 0011 0000 -- -activate A/D converter ; -start conversion ; -disable A/D interrupt```
loop:	jrr	6, adcr, loop	```; waits until the End Of Conversion ; bit is set (indicator that a conversion ; has been completed)```
	1d	a, adr	```;load acc with the result of the A/D ; conversion ; now the result is compared with the ; values which represent the different ; switches```


;*** The routines handling the reaction to the individual key presses ;*** are to be included here

```
s1:
s2:
s3:
s4:
s5:
s6:
s7:
s8:
s9:
```

;*** Each routine must end with the following lines in order to enable ;*** another interrupt when the next key is pressed.
call en_kint ; enable another interrupt
return: reti
.

# ULTRA FAST NiCd BATTERY CHARGING USING ST6210 MICROCONTROLLER 

L. Wuidart, P. Richter

## INTRODUCTION

Today many cordless and portable equipments are supplied by a Nickel-Cadmium (NiCd) battery. The ultra fast charging of these batteries in less than half an hour is a very attractive service for users. Such a short charging time requires an "Ultra Fast" battery, a supply with a relatively high output power, and a charge control circuit more complex than for standard chargers. Moreover, automatic battery voltage identification is an appreciable feature.
The power converter proposed in this note is able to fully charge a common NiCd battery pack of $1.2 \mathrm{Ah} / 7.2 \mathrm{~V}$ within 15 minutes. The power converter has thus a corresponding output power capability of roughly 80 W . The converter operates as a current source providing a constant 7A current to the battery while charging.
The battery charge is controlled by an economical microcontroller, the ST6210, a member of the ST6 microcontroller family. The programmed control provided by the ST6210 allows the charging of NiCd battery packs from 2 to 6 cells ( 2.4 V to 7.2 V ). The supply to the microcontroller is simply generated from an auxiliary winding of the power transformer.

## THE POWER CONVERTER

The asymmetrical half-bridge is today considered as one of the most attractive topologies for the primary side of a 220Vac off-line Switch Mode Power Supply (SMPS, see Figure 1). Adding the SGS-THOMSON AVS10 kit allows the automatic sensing and adaptation to input voltages in the range of 90 to 240 Vac .
Contrary to single switch structures, the leakage inductance of the power transformer is much less critical. The two demagnetization diodes (BYT01/400) provide a simple non-dissipative way to systematically clamp the voltage across the switches to the input DC voltage Vin. This allows the use of standard 500 V power MOSFET devices, such as the IRF830FI (in isolated ISOWATT 220 package), simply driven by a small pulse transformer.

Figure 1. Ultra Fast NiCd battery charger schematic (80W AC/DC)


The power converter is totally controlled from the primary side with a standard Pulse Width Modulation (PWM) control IC, the UC3845 regulating in current mode. A single optocoupler makes this SMPS operate as a battery charger. The SMPS is turned on or off from the secondary by the ST6210 microcontroller via this optocoupler.
The switching frequency is fixed at 100 kHz in order to keep the magnetic part to a reasonable manufacturing cost level. The power transformer and the output inductor can be integrated on a single ferrite core [4]. This integrated magnetic technique can be optimised to allow a significant shrinking of the power converter size.
For more information on the power converter, refer to reference [4] of the bibliography.

## BATTERY CHARGE CONTROL

## Ultra Fast Charge Control Method

For Ultra fast charge systems - under half an hour - the majority of battery manufacturers recommend the negative delta voltage method $(-\Delta \mathrm{V})$ otherwise called the negative slope cut-off circuit [2] [3].

Figure 2. One NiCd Cell Charge Characteristic


When a NiCd battery reaches full charge, its voltage decreases slightly (Figure 2). The negative delta voltage method $(-\Delta \mathrm{V})$ consists of stopping the charge as soon as the voltage characteristic slope becomes negative. This technique allows the very rapid charge of a NiCd battery, near to its full capacity. Moreover, no compensation for the age of the battery is required because only relative voltages are measured.
In this application, the battery voltage is sensed by a ST6210 microcontroller housed in 20 pin dual in line package. The integrated Analog to Digital converter (ADC) of this micro-controller is able to detect a typical voltage drop of $-10 \mathrm{mV} / \mathrm{cell}$.

## MONITORING FUNCTIONS

The battery charge is totally monitored by the HCMOS ST6210 in PDIP or PSO 20 pin package, the ST6210. By using this micro-controller, additional monitoring functions can be easily added to the Ultra fast charge control program.

## Stand-by current charge: Burst mode

Once the negative voltage drop has been detected by the ST6210, the ultra-fast charging is stopped and the power converter supplies the battery with a stand-by current around 120 mA . This stand-by charge is provided by burst mode current control. The converter is successively turned on and off at 25 Hz with a small duty cycle of 0.016 . The ST6210 manages this burst mode from the secondary side via an optocoupler to the auxiliary supply of the PWM control IC (UC3845).
A small $100 \mu \mathrm{~F}$ reservoir capacitor is sufficient to keep the ST6210 correctly supplied during the off periods ( 40 ms ) of the burst mode. This is possible due to the low current consumption in run mode of the ST6210 HCMOS micro-controller (typically 3mA with an 8 MHz oscillator, reducing to typically 1 mA for a 2 MHz oscillator).

## Battery temperature protection

Temperature protection is simply realized by using an NTC resistor placed on the battery pack. This NTC resistor is directly connected to another input of the ADC of the ST6210. When the battery temperature reaches $40^{\circ} \mathrm{C}$ during an Ultra Fast charge phase, the converter is switched into burst mode to protect the battery.

## Battery presence

The ST6210 program detects whether the battery pack is connected or not. When the battery is not connected, the converter is turned into burst mode. The resulting stand-by current ( 120 mA ) flows into the output Transil diode (BZW 50-12).

## CHARGE CONTROL PROGRAM DESCRIPTION

Figure 3 shows the main flow chart of the program for the complete charge control. The overall system is reset after each new mains connection.

## Battery voltage measurement:

The battery voltage is directly measured by the ST6210 Analog to Digital Converter through a resistor divider chain. The technique used allows the ST6210 to automatically adapt to the battery type and voltage (from 2 to 6 cells, 2.4 V to 7.2 V ).

Figure 3. Main flow chart of the Ultra Fast Charge control program


## Monitoring principle

The ST6210 averages a series of 256 battery voltage measurements ( $\Sigma \mathrm{Mn}$ ). The 256 conversions are made in a time frame of around 19 ms , with an inter-frame delay time of 1 s (in this example). An average AVr of the last 8 averaged values is made according to the formula:

$$
\mathrm{AV}_{\mathrm{r}}=\sum \frac{\sum \mathrm{M}_{\mathrm{n}} \ldots \sum \mathrm{M}_{\mathrm{n}-8}}{8}
$$

This $A V r$ value is compared to the previous average $A V r-1$ and the highest value is stored. This rolling average value follows the battery voltage curve. Once the AVr value begins to decrease, indicating the battery is fully charged, the ST6210 stops the Ultra Fast charging.

Figure 4. Sequencing principle of the Battery Voltage measurement.


The response time to detect the battery voltage drop ranges from 1 to 8 seconds, depending on the slope of the battery voltage curve at the charge completion. A longer delay time is able to increase the noise immunity, but at the cost of an extended response time.

Figure 5. VBAT and Pack.Temp Vs time


## PRACTICAL RESULTS

Tests made with different battery packs confirm that the battery charge is efficiently controlled by the ST6210 using its internal A/D converter. Results on the battery voltage and temperature pack versus charging time are shown below.
These recordings have been made with a common 1.2Ah/7.2V NiCd battery pack for cordless drills. The temperature of the battery pack does not exceed $33^{\circ} \mathrm{C}$ for an ambient temperature of $26^{\circ} \mathrm{C}$.

## SUMMARY

Charging a NiCd battery in less than half an hour saves battery packs and time. It can enlarge the use of battery powered equipments, especially in professional applications.
Such ultra fast charging has to be carefully monitored to maximize the life time of the battery and the charge safety. Moreover, this improvement needs to be achieved with a compact equipment including a minimum of components.
The proposed power charger is realized with a conventional SMPS topology. The size and number of the magnetic components are minimized by using an integrated magnetic technique.
This note shows that an ultra fast charge can be totally monitored by a single 20 pin HCMOS micro-controller, the ST6210.
The program used in the validation of this Battery Charger is available from SGSTHOMSON. This software routine has the basic ultra fast charger and many additional features including stand-by charge, temperature protection, battery presence detection and automatic battery voltage sensing. Given the flexibility offered by the programmability of the ST6210, other specific requirements can be implemented. Consult your local SGS-THOMSON sales office or franchised distributor.

## REFERENCES

[1] G.E. BLOOM, "CORE SELECTION FOR INTEGRATED-MAGNETIC POWER CONVERTERS", Powertechnics Magazine - June 1990.
[2] A. WATSON-SWAGER, "FAST-CHARGE BATTERIES", EDN, Dec. 7, 1989.
[3] M. GROSSMAN, "FOCUS ON RE-CHARGEABLE BATTERIES: ECONOMIC PORTABLE POWER", Electronic Design, March 3, 1988.
[4] L. WUIDART, "ULTRA FAST NiCd BATTERY CHARGER WITH INTEGRATED MAGNETIC", PCIM - June 1991 - Nürnberg/G

## ANNEX

The application presented in this note is basically an 80 W off-line AC/DC power supply with a battery monitoring block. It can be easily extended to other power ranges or DC/DC applications, keeping the battery monitoring block identical.
This annex presents the schematic of two different versions (35W AC/DC and 15W DC/DC). The table below summarizes the major characteristics of these applications:

Output Power   (W)	Charge Current   (A)	Battery Pack	Charging Time   (mn)	Input Voltage   (V)	Typical   Applications
80	7	$7.2 \mathrm{~V}-1.2 \mathrm{Ah}$   2 to 6 cells	15	$90-250(\mathrm{AC})$	Power tool
35	3.5	$7.2 \mathrm{~V}-1.2 \mathrm{Ah}$   2 to 6 cells	30	$190-245$ (AC)	Mobile Phone   Note Book   Camcorder
15	1.2	$4.8 \mathrm{~V}-0.6 \mathrm{Ah}$   2 to 4 cells	30	12 (DC)	Mobile Phone   Toys

Figure 6. 35W AC/DC Battery Charger Schematic


Figure 7. 15W DC/DC Battery Charger Schematic


$$
\because
$$

T.Castagnet / J. Nicolai / N. Michel

## INTRODUCTION

This note describes a technique for driving a Liquid Crystal Display (LCD) with a standard ST62 microcontroller (MCU), without any dedicated LCD driver. This technique offers a display capability for applications which require a small display at a low cost together with the versatile capabilities of the standard ST62xx MCU. Higher display requirements are easily handled by dedicated members of the ST62 MCU family, for example the ST6240.
The first part of this note describes the typical waveforms required to drive an LCD correctly with a multiplexing rate of 1 or 2 (duplex). The following parts present two solutions based on standard ST62 MCUs driving directly the LCD. The first is based on an ST6215 without using software interrupts and the second on an ST6265 where the LCD is controlled by timer interrupts.
In both examples the program size, the CPU time occupation due to the LCD drive and the number of surrounding components are minimized. Consequently many additional tasks can be added to the MCU program.

## LCD requirements

With a zero Root Mean Square (RMS) voltage applied to it, an LCD is practically transparent. The LCD contrast, which makes the segments turn dark or opaque and thus "on", is caused by the difference between the RMS LCD voltage applied and the LCD threshold voltage, specific to each LCD type.
The applied LCD voltage must alternate to give a zero DC value in order to ensure a long life time of the LCD. The higher the multiplexing rate is, the lower the contrast, also the period of the signal has to be short enough to avoid visible flickering of the LCD display.
The LCD voltage for each segment equals to the difference between the $S$ and COM voltages (see Figure 1).

Figure 1. Equivalent Electrical Schematic of an LCD Segment


- DC value should never be more than 100 mV . Else time life can be shorten.
- Frequency range is $30-2000 \mathrm{~Hz}$ typically. Less, it flickers; more, consumption grows.


## Direct LCD drive

Each LCD segment is connected to an I/O "Segment" and to one backplane common to all the segments. A display using $S$ segments is driven with $\mathrm{S}+1 \mathrm{MCU}$ output lines. The backplane is driven with a signal "COM" controlled between 0 and VDD with a duty cycle of $50 \%$.
When selecting a segment "ON", a signal with opposite polarity to "COM" is sent to the corresponding "Segment" pin. When the non-inverted signal "COM" is sent to the "Segment" pin, the segment is "OFF". Using an MCU the I/O operate in output mode either at the logic levels 0 or 1.

Figure 2. LCD Signals for Direct drive


## Duplexed LCD drive

For duplexed drive, two backplanes are used instead of one. Each LCD pin is connected to two LCD segments, each one connected on the other side to one of the two backplanes. Thus, only (S/2)+2 MCU pins are necessary to drive an LCD with $S$ segments.
Three different voltage levels have to be generated on the backplanes: $0, V_{D D} / 2$ and $V_{D D}$. The "Segment" voltage levels are 0 and Vdd only. The LCD segment is inactive if the RMS voltage is below the LCD threshold voltage and is active if the LCD RMS voltage is above the threshold voltage. Figure 4 shows typical Backplane, Segment and LCD waveforms.
The intermediate voltage $\mathrm{V}_{\mathrm{DD}} / 2$ is only required for the "Backplane" voltages. The ST62 I/O pins selected as "Backplanes" are set by software to output mode for 0 or Vdd levels and to high impedance input mode for $\mathrm{V}_{\mathrm{DD}} / 2$. This voltage $\mathrm{Vdd} / 2$ is defined by two equal valued resistors externally connected to the I/O pin.
By using an MCU with flexible I/O pin configuration such as the ST6215 or ST6265, duplexed LCD drive can be made with only 4 additional resistors.

Figure 3. Basic LCD Segment Connection in duplexed mode


Figure 4. LCD Signals for Duplexed Mode (Used in ST6215 Example)


## EXAMPLE OF DUPLEXED LCD DRIVE WITH ST6215

The following example describes the drive in duplexed mode of an LCD with an ST6215. The software is made in such way that no interrupt is generated and an OFF state for the LCD is possible. The only components necessary are those to drive the ST62 (oscillator, reset,...) and four resistors to generate the backplane intermediate voltages.
The ST6215 has 20 I/O pins, thus it is able to drive up to 36 LCD segments and 2 backplanes. One digiṭ is defined with 8 segments connected to 2 backplanes. Each digit can display 11 values, from 0 to 9 and no display.
Each value to be displayed is associated to a certain LCD waveform. One LCD waveform period is separated in 4 steps corresponding to the 3 I/O configurations (1-0-input). A look-up table stores the bytes which relate the I/O configuration to the value to display.

Figure 5. ST6215 Based Example


The following tables show an example of linking one LCD digit of the display with the relevant MCU port sequences. The second digit follows the same scheme. These examples are for the sample LCD display, please adapt these tables to your particular LCD.
The digit segments are connected to PB0-PB3 lines in this example. Schematic is shown in Figure 5.
Each digit configuration defines a segment status. Each couple of segments defines a timing sequence to be output by MCU "Segment" lines (see Figure 4). These sequences are coded inside the ST6215.
Table 1: Example of drive of a digit with ST6215

Digit Segments to Display


Segment Connections

Segment Line	PB3	PB2	PB1	PB0
COM1 (PA6)	d	e	$f$	a
COM2 (PA7)	OFF	c	g	b


Digit Required	Segments Status					MCU   Output Sequences
	COM1	OFF	OFF	OFF	OFF	
	COM2	OFF	OFF	OFF	OFF	
Blank	Timing Sequences					
	T1	1	1	1	1	Fh
	T2	0	0	0	0	Oh
	T3	1	1	1	1	Fh
	T4	0	0	0	0	Oh


Digit Required	SegmentsStatus					MCU   Output   Sequences
	COM1	OFF	OFF	ON	OFF	
	COM2	OFF	ON	ON	ON	
	Timing Sequences					
	T1	1	1	0	1	Dh
	T2	0	1	1	1	7h
	T3	1	0	0	0	8h
	T4	0	0	1	0	2 h


Digit Required	SegmentsStatus					MCU   Output Sequences
	COM1	ON	OFF	ON	ON	
	COM2	OFF	ON	ON	OFF	
	Timing Sequences					
	T1	0	1	0	0	4h
	T2	0	1	1	0	6 h
	T3	1	0	0	1	9 h
	T4	1	0	1	1	Bh


Digit
Requred
COM1 ON ON ON ON   COM2 OFF ON ON OFF
T1 0 0 0 0   T 2 0 1 1 0   T 3 1 0 0 1   T 4 1 1 1 1

MCU
Output Sequences

0 h
6 h
9 h
Fh


Digit Required	Segments Status					MCU Output Sequences
	COM1	OFF	OFF	OFF	ON	
	COM2	OFF	ON	OFF	ON	
	Timing Sequences					
	T1	1	1	1	0	Eh
	T2	0	1	0	1	5h
	T3	1	0	1	0	Ah
	T4	0	0	0	1	1h
Digit Requred	Segments Status					MCU   Output Sequences
	COM1	ON	ON	ON	ON	
	COM2	OFF	ON	ON	ON	
	Timing Sequences					
	T1	0	0	0	0	Oh
	T2	0	1	1	1	7 h
	T3	1	0	0	0	8h
	T4	1	1	1	1	Fh


Digit Requred	Segments Status					MCU   Output Sequences
	COM1	ON	OFF	ON	ON	
	COM2	OFF	ON	ON	ON	
	Timing Sequences					
	T1	0	1	0	0	4h
	T2	0	1	1	1	7 h
	T3	1	0	0	0	8 h
	T4	1	0	1	1	Bh

## EXAMPLE OF DUPLEXED LCD DRIVE WITH ST6265

In this example the LCD drive tasks are controlled by interrupts from an on-chip timer. This software block can be easily included in a central task such as motor control, temperature measurement or heating Figure 6 shows the circuit of the application. Only 4 resistors are added to drive the LCD in the duplexed mode.

Figure 6. ST6265 Based Example


The software for the LCD display operates in interrupt mode, driving I/O pins by the CPU at instants defined by the Timer1 interrupts. When the LCD drive tasks are finished, the main application program can continue.
The major tasks of the LCD display routine are:

- generation of the alternate signals which control the backplanes (PB0, PB1)
- drive of the LCD segments through PortA
- conversion of the hexadecimal data to decimal data
- program Timer1 for the next drive sequence

The backplane pattern sequences are different between ST6215 and ST6265 examples. The ST6215 software is based on non-symetrical signals (see Figure 4). The backplane patterns are symetrical in the ST6265 software. Both are equivalent on the LCD viewpoint.
The ROM code size used is 300 bytes for the program and 256 bytes for the tables. With an CPU frequency of 8 MHz , the display task duration is $240 \mu \mathrm{~s}$ and the full task duration including decimal conversion is $510 \mu \mathrm{~s}$. With an LCD period signal of 14 ms , the CPU duty cycle of occupation is $2.5 \%$ for the LCD drive task. The program can be adjusted to other applications by modifying the timer duration (FASTIM) and the segment drive byte table. The LCD drive phase may also be synchronized to the mains zero crossing or a software loop duration, saving the timer for other tasks.

## Summary

The examples presented in this note show that a simple LCD can be driven directly by standard ST621x/2x/6x/9x microcontrollers. The ST62's flexible I/O configuration and the large voltage range of operation of the ST62 family MCU allow an LCD driver to be achieved with very few surrounding components, small CPU time occupation and reduced ROM program size.
Such an approach is a very cost effective solution for simple LCD displays operating with a multiplexing rate of 1 or 2 and up to 36 segments. For LCDs requiring more segment drive capability and/or higher multiplexing rates ST624x and ST628x provide highly integrated and easy to implement solutions.
Such LCD drive features can easily be included in a larger application including keyboard interface, sensor display or motor control.
We thank the company Akotronic for the ST6215 application example they have developed for this note.
Annex 1: Software of the ST6215 based application
Annex 2: Flowchart and software of the ST6265 based application

ANNEX 1: Software of the ST6215 Based Application

```
;***
;*DEMONSTRATION SOFTWARE FOR MANAGEMENT OF A BIPLEXED LIQUID CRISTAL
;*DISPLAY (LCD) WITH ST621X OR ST622X SGS THOMSON MICROCONTROLLERS
;***
;* This program has been developped by AKOTRONIC comp.
;* PARC DE LA MOTHE 03400 YZEURE FRANCE
;***
;* PROGRAM FOR LIQUID CRISTAL DISPLAY DRIVE
;**
;* REGISTER DECLARATION
;*************
VERS "ST6225"
; SWD, 4MHZ
x .DEF 80h!m ; INDEX REGISTER
Y .DEF 81h!m ; INDEX REGISTER
V .DEF 82h ; SHORT DIRECT REGISTER
W .DEF 83h ; SHORT DIRECT REGISTER
A .DEF OFFh!m ; ACCUMULATOR
DRA .DEF OCOh ; PORT A DATA REGISTER
DRB .DEF 0C1h ; PORT B DATA REGISTER
DRC .DEF OC2h ; PORT C DATA REGISTER
DDRA .DEF 0C4h ; PORT A DIRECTION REGISTER
DDRB .DEF 0C5h ; PORT B DIRECTION REGISTER
DDRC .DEF 0C6h ; PORT C DIRECTION REGISTER
IOR .DEF OC8h ; INTERRUPT OPTION REGISTER
DWR .DEF OC9h ; DATA ROM WINDOW REGISTER
ORA .DEF OCCh ; PORT A OPTION REGISTER
ORB .DEF OCDh ; PORT B OPTION REGISTER
ORC .DEF OCEh ; PORT C OPTION REGISTER
ADR .DEF ODOh ; A/D DATA REGISTER
ADCR .DEF OD1h ; A/D CONTROL REGISTER
PSC .DEF OD2h ; TIMER PRESCALER REGISTER
TCR .DEF OD3h ; TIMER COUNTER REGISTER
TSCR .DEF OD4h ; TIMER STATUS CONTROL REGISTER
WDR .DEF OD8h ; WATCHDOG REGISTER
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{;* DATA DECLARATION} \\
\hline \multicolumn{3}{|l|}{} \\
\hline TOUCHU & . DEF 084h & ; Low Significant DIGIT button (L.S. DIGIT) \\
\hline TOUCHD & . DEF 085h & ; More significant DIGIT button (M.S. DIGIT) \\
\hline TOUCH & . DEF 086h & ; pushed button \\
\hline COPYA & . DEF 087h & ; COPY of PORT A \\
\hline COPYB & . DEF 088h & ; COPY of PORT B \\
\hline COPYC & . DEF 089h & ; COPY of PORT C \\
\hline TABD & . DEF 08Ah & ; data/ROM window address to display M.S. DIGIT \\
\hline tabu & . DEF 08Bh & ; data/ROM window address to display L.S. DIGIT \\
\hline LOOP & . DEF 08Ch & ; LOOP \\
\hline \multicolumn{2}{|l|}{RELACHE.DEF 08Dh} & ; latch counter \\
\hline TOUCHP & . DEF 08Eh & ; previous valided button \\
\hline FLAGS & . DEF 08Fh & ;FLAGS : 0/ push on/off \\
\hline
\end{tabular}
```


## ANNEX 1: Software of the ST6215 Based Application (Continued)



## ANNEX 1: Software of the ST6215 Based Application (Continued)

```
;***
;* INITIALIZATION SUBROUTINE
;***
.ORG 880h
DEBUT REMI
 ; END OF RESET INTERRUPT
 LDI DDRA,0C7H ; A0 to A2 PUSH PULL OUTPUT = 0
 LDI ORA,0C7H ; A3 to A5 pull up input ; A6 & A7 output = 0
 LDI DRA,00H ; A3 to A5 for keyboard ; A6 -> BP1, A7 -> BP2
 LDI COPYA,00H
 LDI DDRB,OFFH ; B0 A B7 push pull output = 0
 LDI ORB,OFFH ; port B controls LC Display
 LDI DRB,OOH ;
 LDI COPYB,OOH ;
 LDI DDRC,00H ;
 LDI ORC,OOH ; C4 C5 C6 C7 unused inputs
 LDI DRC,OOH
 LDI COPYC,OOH ;
 LDI DWR,3CH ; origin of the table
 LDI FLAGS,00h ; reset flags
;***
;* END OF INITIALIZATION SUBROUTINE
;***
;***
;* MAIN LCD DRIVE SUBROUTINE
;*
;* task : generate alternative signals to control LCD backplanes BP1/BP2
;* drive the segments of the LCD
;* calculate duration of each duration phase
;**
SOMMEIL RES 0,FLAGS
 LDI ORA,OCFh ; A3 becomes interrupt input
 LDI IOR,10h ; valid interrupt
 STOP ; wait at ON/OFF button activation
 LDI ORA,0C7h ;
 CLR IOR ; inihibit INTERRUPTS
 CALL CLAVIER ; keyboard test
 JRR 0,FLAGS,SOMMEIL ; IF no push on ON/OFF button, THEN stand by
IIBOUCLE RES 0,FLAGS ; ELSE INITIALIZATION of MAIN LOOP
 LDI TOUCHU,00h ; ON/OFF FLAG is reset, UNITEE A 0
 LDI TOUCHD,OOh ; reset M.S. DIGIT
 LDI IOR,10h ; valid interrupts
BOUCLE1 LDI TCR,18 ; initialization of timer
 LDI TSCR,7Fh ; program it at 1,5 ms
 LD A,TOUCHU ; determine data/rom window address
 SLA A
 SLA A ; multiply TOUCHU by 4
 LD TABU,A ; initialize data/rom address
 LD A,TOUCHD ; Of TABLES 1 & 2
 SLA A
 SLA A
 LD TABD,A ;
 CALL DATALCD ; determine segments driver byte for PHASE 1
 LDI ORA,47h ; BP1 = Vdd ; BP2 = Vdd/2 therefore
 LDI DDRA,47h ; A6 becomes push pull output at VDD
 LDI DRA,0C0h ; A7 becomes high impedance input
 LD DRB,A ; load segments driver byte on port
 CALL CLAVIER ; test of keyboard
```



## ANNEX 1: Software of the ST6215 Based Application (Continued)



ANNEX 1: Software of the ST6215 Based Application (Continued)


ANNEX 1: Software of the ST6215 Based Application (Continued)


## ANNEX 1: Software of the ST6215 Based Application (Continued)

```
;***
;* PORT A INTERRUPT SUBROUTINE
;**
T_ITPA NOP
 RETI
;**
;* END OF PORT A INTERRUPT SUBROUTINE
;***
|**
;* OTHER INTERRUPTS SUBROUTINE
;**
T_IT_TIMER LDI TSCR,OOh
 RETI
T_ITPBC NOP
 RETI
; **
```


## ANNEX 2: Flowchart of the ST6265 Based Application



## ANNEX 2: Software of the ST6265 Based Application

```
;***
;* SGS THOMSON MICROELECTRONICS
 CENTRAL APPLICATIONS LABORATORY
 ROUSSET FRANCE

;**
 19 FEB }199
 LCD005
;*
|**
**
** LCD DRIVER SOFTWARE PROGRAM
 ST62E65
 DUPLEXED CONTROL OF 2 DIGITS WITH PORT A;
 PA0 to PA3 FOR DIGIT1;PA4 to PA7 FOR DIGIT2;
 BACPLANES ON PBO & PB1
 with 4 phase sequences generator
 with Hexadecimal/Decimal DATA conversion
;*
;**
**
** ST6265/6 Registers Declaration
;**
x .def 80h ; Index register.
y .def 81h ; Index register.
V .def 82h ; Short direct register.
.def 83h ; Short direct register.
a .def 0ffh ; Accumulator.
pa .def 0c0h ; Port a data register.
pb .def 0c1h ; Port b data register.
pc .def 0c2h ; Port c data register.
padir .def 0c4h ; Port a direction register.
pbdir .def 0c5h ; Port b direction register.
pcdir .def 0c6h ; Port c direction register.
paopt .def Occh ; Port a option register.
pbopt .def Ocdh ; Port b option register.
pcopt .def Oceh ; Port c option register.
ior .def 0c8h ; Interrupt Option Register.
drwr .def 0c9h ; Data rom window register.
adc .def OdOh ; A/D result register.
adcc .def 0d1h ; A/D control register.
pscl .def 0d2h ; Timer I prescaler register.
tcr1 .def 0d3h ; Timer 1 counter register.
tscr1 .def 0d4h ; Timer 1 status control register.
```


## ANNEX 2: Software of the ST6265 Based Application (Continued)



SGS-THOMSON

## ANNEX 2: Software of the ST6265 Based Application (Continued)

```
;***,
;* INTERRUPT VECTORS
;***
.org OffOh
it_tim1 jp LCD_LP ; timerl interrupt synchronizes LCD drive
it_tim2 nop - ; it.timer2
it_pc_spi nop ; it.port c & SPI
it_pa_pb nop ; it. port a & port b
 reti
 nop
 nop
 nop
 nop
nmi nop
 reti
res jp START
```


;* MAIN PROGRAM EXAMPLE
; ***********************************************************************
.org 0880h
START reti ; end of reset interrupt
call INIT
MAIN call DUTYO
jp MAIN
; *********************************************************************
;* END OF MAIN PROGRAM

; ***********************************************************************
; * MAIN INITIALIZATION SUBROUTINE

INIT ldi wdt, 00000111 b ; watchdog initialization
ldi eecr,040h ; EEPROM in stand by for power saving
ldi oscr,008h ; CKOUT output disabled for power saving
ldi pbdir, 00110000b ; b0 \& bl is common : Hi/Impedance Input
ldi pbopt,00110000b ; b2 \&b3 is input for $+/-$ push button
ldi pbbuf, $00000011 b$; pb buffer byte load
ldi pb,00000011b ; b6,b7 in input with pull up
ldi padir,Offh ; a0 to a7 in push pull output
ldi paopt,Offh ; pa = driver of LCD segments
ldi pa,00h ; output is zero
ldi pcdir,00h ;
ldi pcopt,00h $; c 0 \rightarrow c 7$ inputs with pull up
ldi pc,00h ;
ldi drwr,3ch ; data/rom window origin
clr LCDCTL ; clear LCD phase sequence control
ldi ior , 010h ; interrupt validation
ldi tcrl, 009h ; load timerl for LCD phase generation
ldi tscrl,07fh ; timer initialization
clr dutyo
ldi wdt, 00000111 b ; hello watchdog
ret


## ANNEX 2: Software of the ST6265 Based Application (Continued)

```
;***
;* MAIN TASK EXAMPLE : ACQUISITION OF USER SPEED REFERENCE DUTYO *
;* *
;* duty0 is a user reference that can vary from 0 to 255d *
;**
DUTYO jrr 2,pb,slower ; if PB2=0,then slower ; priority on slower
 jrr 3,pb,faster ; if PB3=0,then faster ; else continue
 ret ; If PB2 & PB3 are high; then continue
slower ld a,duty0
 cpi a,000h
 jumpz retour
 ld a,counter1
 addi a,01h
 ld counterl,a
 jumpnc retour
 dec duty0 ; increment duty cycle
 ret
 ld a,duty0
 cpi a,0ffh
 jrz retour
 ld a,counter1
 addi a,01h
 ld counter1, a
 jrnc retour
 inc duty0 ; decrement duty cycle
retour ret
;***
;* end subroutine get_dut0
;*************************************法********************************

;* DUPLEXED LCD DRIVER INTERRUPT SUBROUTINE
* task : generate alternative signals of LCD backpl
** drive the segments of LCD through port a
 calculate duration of each LCD phase
;*
; ***
LCD_LP ldi wdt,Offh ; hello watchdog
; ld AUXI, a ; |
; ld a, x ; I save context of main task (if needed)
; ld AUX3, a ; 1
; ldi tscr1,00h ; timer stop (if needed)
 ldi tcrl, FASTIM ; LCD phase duration calculation
 ldi tscrl, 07fh ; timer initialization
;**
;* LCD phase generation can be here synchronized by other clock system.
;* for instance : mains voltage synchronization or external clock
; ***
 jrr 0,LCDCTL,LOOP1; determine phasel operation
 jrr 1,LCDCTL,LOOP2; determine phase2 operation
 Jrr 2,LCDCTL,LOOP3; determine phase3 operation
```

ANNEX 2: Software of the ST6265 Based Application (Continued)

;*************************			PHASE 4 *******************************
LOOP 4	inc	DIG1	; increment DIG1 \& DIG2 for phase 4
	inc	DIG2	
	call	DATALCD	; calculate phase 4 segments driver byte
	ldi	pbbuf, 00000011 b ; pb buffer load   $\mathrm{pb}, 00000011 \mathrm{~b}$; pb1 in High Impedance (HI) \& pb0 to 0	
	ldi		
	ldi	pbdir,00110001b ; pb buffer load	
	ldi		
	ldi	pbbuf,00000010b ; pb buffer load   pb ,00000010b ;	
	ld	$\mathrm{pb}, 0000010 \mathrm{~b}$; $\quad$; load segment driver byte on port a	
	1 d	a, AUX3	; 1
	ld	$\mathrm{x}, \mathrm{a}$	; 1
	1 d	a, AUX2	; Ireturn to main tasks with context ;
	1 d	drwr,a	; ( AUX2 <== drwr in main program );
	ld	a, AUX1	
	$\begin{aligned} & \text { clr } \\ & \text { retı } \end{aligned}$	LCDCTL	; end of loop4 \& full LCD sequence
LOOP 3	inc	DIG1	; increment DIG1 \& DIG2 for phase 3
	inc	DIG2	
	call	DATALCD	; calculate phase3 segments driver byte
	ldi	pbopt, 00110000b ; pb0 in HI \& pb1 to 0	
	ldi	pbdir, 00110010 b ; ${ }^{\text {pbbuf,00000001b }}$; pb buffer load	
	ldi		
	$1 d i$	pbbuf, 00000001 b$\mathrm{pb}, 0000001 \mathrm{~b}$	
	ld	pb, 00000001b ;   pa ,a ; load segment driver byte on port a	
;	1d	a, AUX3	;
;	ld		; 1
;	1 d	a, AUX2	; \|return to main tasks with context
;	ld	drwr,a	; ( AUX2 <== drwr in main program )
;	1d	a, AUX1	
	set   reti	2, LCDCTL	; end of loop3
; *************************			
LOOP2	inc	DIG1	; increment DIG1 \& DIG2 for phase 2
	inc	DIG2	
	call	DATALCD	; calculate phase2 segments driver byte
	ldi	pbopt, 00110000b ; pb1 in HI \& pb0 to 1   pbdir, 00110001b ;	
	ldi		
	ldi	pbopt,00110001b ;	
	1 d	pa, a	; load segment driver byte on port a
;	ld	a, AUX3	; 1
;	1 d	$\mathrm{x}, \mathrm{a}$	;
;	1 d	a, AUX2	; Ireturn to main tasks with context
;	1 d	drwr,a	; ( AUX2 <== drwr in main program )
;	ld	a, AUX1	; 1
	$\begin{aligned} & \text { set } \\ & \text { reti } \end{aligned}$	1, LCDCTL	; end of loop2

## ANNEX 2: Software of the ST6265 Based Application (Continued)



```
;***
;* END OF LCD DRIVER SUBROUTINE
;**
;**
;* DEC DATA/LCD SEGMEMTS CONVERSION SUBROUTINE
;* task : calculate the segments driver byte of the LCD
;* depends on the displayed data AND on the # of phase
;* based on DIG1 & DIG2 calculation
;* LCD segments driver full byte is in accumulator
;***
DATALCD ldı drwr,3ch ; move data/rom window on DIGIT2 table
 ld a,DIG2
 ld x,a
 ld a,(x)
 ld y,a ; load DIGIT2 driver half byte (MSB)
 ldi drwr,3dh ; move data/rom window on DIGIT1 table
 ld a,DIG1
 ld x,a
 ld a,(x)
 and a,y ; load DIGITl driver half byte (LSB)
 ret
l
```


## ANNEX 2: Software of the ST6265 Based Application (Continued)

```
;**
;* HEXADECIMAL - > DECIMAL DATA CONVERSION SUBROUTINE
;*
;* task : convert an hexadecimal data in a Binary Coded Decimal data
;* determine data/rom window address of segments driver byte
* hexadecimal data is a stable data varying from 0 to 25
 result is a percent decimal data varying from 0 to 99
 BCD Binary Coded Decimal data
 for instance, data is duty0
 DIG1 = data/rom WDW @ of DIGIT1 segments driver = 01WxYzAB
 DIGIT1 = wXYz (from 0 to 9) and
 AB are defined by phase operation : AB = 00 for phasel ...
 AB = 11 for phase4
 DIG2 = data/rom WDXW @ of DIGIT2 segments driver
 similar writing than DIG1
;*
DECCONV jrr 7,duty0,ET1 ; DATA <== duty0
 di drwr,039h ; b7 of DATA is 1 : 50< DATA < 99
ET1 Idi drwr,038h ; b7 of DATA is 0 : 00< DATA<49
ET2 ld a,duty0 ;
 rlc a ;
 rlc a ; calculation of BinCodDec DATA
 rlc a ; address
 rlc a ;
 rlc a ;
 rlc a ;
 rlc a
 res 7,a ;
 ld
 ld a,(x)
 andi a,OOfh ; determine DIGIT1 value and the
 sla a ; data/rom address of DIGIT1 segments
 sla a ; driver
 addi a,040h ; ; DIG1 = data/rom @ of segment driver
 ld a,BCD ; determine DIGIT2 value and the
 andi a,OfOh ; data/rom address of DIGIT2 segments
 rlc a ; driver
 rlc a ;
 rlc a ;
 rlc a ;
 rlc a ;
 sla a ;
 sla a ;
 addi a,040h ;
 ld DIG2,a ; DIG2 = data/rom @ of LCD driver
 ret
; ***
;* END OF HEXA - > DECIMAL DATA CONVERSION SUBROUTINE
;**
```


## ANNEX 2: Software of the ST6265 Based Application (Continued)

```
; **
;* TABLE OF HEXA - > DECIMAL DATA CONVERSION (00 TO 49 BinCodDec)
;***
.org 0e00h
.byte 00h,01h,02h,02h,03h,04h,05h,05h
.byte 06h,07h,08h,09h,09h,10h,11h,12h
.byte 12h,13h,14h,15h,16h,16h,17h,18h
.byte 19h,20h,20h,21h,22h,23h,23h,24h
.byte 25h,26h,27h,27h,28h,29h,30h,30h
.byte 31h,32h,33h,34h,34h,35h,36h,37h
.byte 37h,38h,39h,40h,41h,41h,42h,43h
.byte 44h,45h,45h,46h,47h,48h,48h,49h
;***
;* END OF HEXA }->\mathrm{ DECIMAL DATA CONVERSION TABLE (00 to 49)
;***
;***
;* TABLE OF HEXA }->\mathrm{ DECIMAL DATA CONVERSION (}50\mathrm{ to }99\mathrm{ BlnCodDec)
;***
.org 0e40h
.byte 50h,51h,52h,52h,53h,54h,55h,55h
.byte 56h,57h,58h,59h,59h,60h,61h,62h
.byte 62h,63h,64h,65h,66h,66h,67h,68h
.byte 69h,70h,70h,71h,72h,73h,73h,74h
.byte 75h,76h,77h,77h,78h,79h,80h,80h
.byte 81h,82h,83h,84h,84h,85h,86h,87h
.byte 88h,88h,89h,90h,91h,91h,92h,93h
.byte 94h,95h,95h,96h,97h,98h,98h,99h
;***
;* END OF HEXA - > DECIMAL DATA CONVERSION TABLE (50 to 99)
; ***
;***
;* SEGMENT CONTROL WITHOUT ANY POINT DISPLAY
; *PA0,4 --> SEG CB
;*PA1,5 --> SEG DH
;*PA2,6 --> SEG DH
;*PA3,7 --> SEG GA
;*
;*PA0,PA1,PA2,PA3--> DIGIT1
;*PA4,PA5,PA6,PA7--> DIGIT2
;*
;*Backplane #1 (pb1) blases C,D,E,G
```



```
;*Backplane #2 (pb0) biases A,B,F,H
;*
;*These tables are dedicated to one LCD type with two digits and LCD
;*control is described above ; when LCD is changing these tables have
;* to be modified
```


## ANNEX 2: Software of the ST6265 Based Application (Continued)

```
;**
;* DIGIT2 TABLE
;**
 .org 0f00h
 .byte 08fh,02fh,07fh,0dfh,0efh,0efh,01fh,01fh
 .byte 01fh,06fh,0efh,09fh,04fh,06fh,0bfh,09fh
 .byte 06fh,0afh,09fh,05fh,04fh,03fh,0bfh,0cfh
 .byte 00fh,03fh,0ffh,0cfh,0efh,06fh,01fh,09fh
 .byte 00fh,02fh,0ffh,0dfh,04fh,02fh,0bfh,0dfh
 .byte 0ffh,0ffh,00fh,00fh,000h,000h,000h,000h
 .byte 000h,000h,000h,000h,000h,000h,000h,000h
 .byte 000h,000h,000h,000h,000h,000h,000h,000h
;**
;* DIGIT1 TABLE
;**
 .org 0f40h
 .byte 0f %h,0f2h,0f7h,0fdh,0feh,0feh,0f1h,0f1h
 .byte 0f1h,0f6h,0feh,0f9h,0f4h,0f6h,0fbh,0f9h
 .byte 0f6h,0fah,0f9h,0f5h,0f4h,0f3h,0fbh,0fch
 .byte 0f0h,0f3h,0ffh,0fch,0feh,0f6h,0f1h,0f9h
 .byte 0f0h,0f2h,0ffh,0fdh,0f4h,0f2h,0fbh,0fdh
 .byte Offh,0ffh,0f0h,0f0h,000h,000h,000h,000h
 .byte 000h,000h,000h,000h,000h,000h,000h,000h
 .byte 000h,000h,000h,000h,000h,000h,000h,000h
```



## APPLICATION NOTE

## MOVEMENT DETECTOR CONCEPTS FOR NOISY ENVIRONMENTS

Herbert SAX

## INTRODUCTION

The sales of movement detectors, which react to human-body temperature, are increasing at a fantastic rate.
No Do-it-Yourself shop proposes less than 4 models for sale if it is serious about its image, however the majority of clients are novices who wish to install the system themselves. This installation often causes frustration, partly caused by a lack of knowledge of the operation of the system, but also by the weakness of the products. This weakness can be improved by the use of microcontrollers.

## MOVEMENT DETECTORS

Most movement detectors available, whether using discrete components or integrated circuits, have a circuit concept as shown in Figure 1.
The movement of a source of heat is projected onto the sensor by a array of Fresnel lenses mounted on the detector. This induces a Chopper effect which generates an alternating voltage in the sensor. The frequency is dependent on the number of Lens segments, the distance and the speed of the heat source.
The array of lenses is positioned so that it provides, at a detection distance of around 10 m and normal movement, a frequency between 0.1 and 3 Hz , which corresponds to the maximum sensitivity of the sensor.
The output level of the sensors is in the order of mV which requires an amplification of more than 60 dB . The amplifier also acts as a band-pass filter to eliminate parasitic signals.
A window comparator follows which digitalises the alternating voltage. This monostable removes parasitic pulses providing also a high immunity to noise. A pulse longer than the monostable delay time starts a second monostable which, in general, is externally programmable between 10 seconds and several minutes. This then triggers the interface which drives the Triac in place of a relay.

Figure 1. Discrete Components System Overview


Two other functions are equally as important:

1. A photosensitive resistor prevents the lamp from being triggered by daylight, the level of activation can be adjusted to function in the diverse number of mounting conditions. The filter which follows the resistor to ignore transient changes in light level.
2. After the turn-off of the lamp by the timer, the function of the timer can be inhibited for several 100 mS . This is needed for environments where the lamp is situated in the movement detector. There is a danger that the movement of the filaments of the lamp on cooling, themselves a source of heat, can be interpreted in an erroneous fashion by the sensor as a moving source of heat. This is followed by a further operation of the lamp which appears as a fault.
This is the type of malfunction that is found experimentally as the most frequent reason which prevents a movement detector from working in a satisfactory way. Badly positioned sensors or lamps can increase these problems despite the delay in retriggering. These malfunctions are found, in particular, by halogen lamps, the preferred lighting source, and are not resolved.
One additional problem is the switching on of the halogen lamps, this often requires more current than either the triac in the detector or the fuses can support. The solution lies only in a motion detector which presents more flexibility and more intelligence than the concept shown in Figure 1.

## Why not a microcontroller?

Figure 2 shows that, apart from the window comparator, all the signals are largely read as digital by means of inputs to Analog inputs of a microcontroller.
The modern CMOS microcontroller, with low power consumption, can be powered without difficulty directly by the mains power supply. For protection against extended voltage input, a low cost and simple Zener diode is used as show in Figure 2.
The power capacity of $2 \mathrm{I} / \mathrm{O}$ pins mounted in parallel is sufficient to drive "sensitive gate" triacs by themselves. An operational amplifier is necessary for its high signal amplification capability.
Cost is not an essential factor, but carries a high prejudice against this concept. The decision to use a Microcontroller with analog inputs carries a series of advantages, together with its logical functionality.

1. Programming is possible independent of the duration of lighting from several milliseconds to hours.
2. Programming of the inhibition time of the Infra Red detector after the turn-off of the lamp by an external component, or by self-teaching.
3. Progressive startup by variation of the phase control angle.
4. An equally progressive turn-off by phase control.
5. The possibility to limit the limit the light level of the lamp, as with a classical light dimmer.
6. Compensation of the detection level against changes in the ambient temperature is easily possible with an external NCT resistor.
7. Control of the lamp is possible not only by the Infra Red detecter, but also by other user interfaces such as switches or photoelectric cells.
8. Program options are easily selected, for example by an external switch.
9. Control is possible of one lamp by many detectors.
10. Control can be made through a domestic bus such as EIB or ESPRIT.

In addition, other functions can be envisioned, defined by imagination or by specific demand. The ADC inputs, with a resolution of 8 bits, such as those of the ST6210 from SGS-THOMSON, are for controllers the door to the external world. They can handle all existing analog signals, including the zero crossing point of the mains supply.
Despite the connection directly to the mains, external components for protection are not necessary for the microcontroller inputs. The internal structures of the chip protect the controller from external noise and equally from destruction even with a relatively high level of noise on the supply.
This microcontroller is also able to function, as the majority of ASICs, on a large range of supply voltage. The functionality of the ST6210 is guaranteed between 3 and 6 volts.

Figure 2. Microcontroller System Overview.


## Bibliography:

Pyroelekriche Infrarot-Detektoren (PHILIPS GmbH)
Auf der Suche nach menschlicher Wärme (ELRAD 11/89)

## APPLICATION NOTE

## DESIGNING WITH MICROCONTROLLERS IN NOISY ENVIRONMENTS

## INTRODUCTION

Microcontrollers (MCU) make possible the design of integrated and flexible controls for a constantly decreasing cost. As a result, they are spreading rapidly among most electronic applications and especially noise sensitive equipments such as for power control or automotive use.
An MCU operates with sequential logic, so the control of an application can be lost during a disturbance, as with analog control, but also after a power glitch in the system.
In addition, a modern MCU includes several tens of thousands of transistors switching in the MHz range, potentially radiating interference of high magnitude in a large frequency spectrum. Consequently, noise sensitivity and generation have to be considered as early as possible in MCU based designs.
This Application note presents numerous methods to effectively reduce noise problems. The first part presents a short overview on noise and proposes hardware solutions to increase the equipment immunity to noise. The second part concerns the writing of software more immune to disturbances. The behaviour versus disturbances of an MCU designed for noisy environments, the ST6210, is presented and practical examples and results are shown.

## NOISE PREVENTION

The major noise receptors and generators are the tracks and wiring on the Printed Circuit Board (PCB), especially those near the MCU. The first actions to prevent noise problems thus concern the PCB layout and the design of the power supply.

## Optimized PCB layout

Noise is basically received and transmitted through tracks and components which, once excited, act as antennas. Each loop and track includes parasitic inductances and capacitances which radiate and absorb energy once submitted to a variation of current, voltage or electromagnetic flux.
An MCU chip itself presents high immunity to and low generation of EMI since its dimensions are small versus the wave lengths of EMI signals (typically mm versus 10 's of cm for EMI signals in the GHz range). So a single chip solution with small loops and short wires reduces noise problems.
The initial action at the PCB level is to reduce the number of possible antennas. The loops and wires connected to the MCU such as supply, oscillator and I/O should be considered with a special attention (Figure 1). The oscillator loop has to be especially small since it operates at high frequency.
A reduction of both the inductance and the capacitance of a track is generally difficult. Practical experience suggests that in most cases the inductance is the first parameter to be minimized.

Figure 1. PCB Board Oscillator Layout Examples


The reduction of inductance can be obtained by making the lengths and surfaces of the track smaller. This can be obtained by placing the track loops closer on the same PCB layer or on top of one another (Figure 2). The resulting loop area is small and the electromagnetic fields reduce one another.
The ratio in order of magnitude relating to the inductance value and the area defined by the wire loop is around $10 \mathrm{nH} / \mathrm{cm}^{2}$. Typical examples of low inductivity wires are coaxial, twisted pair cables or multiple layer PCBs with one ground and one supply layers. The current density in the track can also be smaller due to track enlargement or the paralleling of several small capacitances mounted in the current flow.
In critical cases, the distance between the MCU and the PCB, and therefore the surfaces of the loops between an MCU and its environment, has also to be minimized. This can be achieved by removing any socket between the MCU package and the PCB, by replacing a ceramic MCU package by a plastic one or by using Surface Mounting instead of Dual In Line packages.

## Power supply filtering

The power supply is used by all parts of the circuit, so it has to be considered with special attention. The supply loops have to be decoupled to make sure that signal levels and power currents do not interfere. These loops can be separated using star wiring with one node designated as common for the circuit (Figure 3).

Figure 2. Reduction of PCB Tracks Loop Surfaces


Note: This test is done with a double sided PCB. Insulator thickness is 1.5 mm , copper thickness is 0.13 mm . The overall board size is $65 \times 200 \mathrm{~mm}$

The decoupling capacitance should be placed very close to the MCU supply pins to minimize the resultant loop. It should be also large enough to absorb, without significant voltage increase, parasitic currents coming from the MCU via the input protection diodes. The decoupling of the board can be done with electrolytic capacitors (typ. $10 \mu \mathrm{~F}$ to $100 \mu \mathrm{~F}$ ) since the dielectric used in such capacitors provides a high volumic capacitance. However these capacitors behave like inductances at high frequency (typ. above 10 MHz ) while ceramic or plastic capacitances keep a capacitive behaviour at higher frequency. A ceramic capacitance of, for instance, $0.1 \mu \mathrm{~F}$ to $1 \mu \mathrm{~F}$ should be used as high frequency supply decoupling for critical chips operating at high frequency.
The supply circuit must be sized in such way that its components can absorb energy peaks during supply overvoltages. For instance, in a power supply done with a capacitor in series between the mains supply and the MCU supply (typically +5 V ), this capacitance is a short circuit when a voltage spike occurs. The corresponding short circuit current has to be absorbed by a protection zener diode. Depending on the maximum energy to withstand, a standard 0.5W Zener diode (e.g. BZX55C) may have to be replaced by a 1.3 W (BZX85C) or

2W (BZV47C) Zener diode (Figure 15). Additional filtering with serial resistance or inductance can be included to reduce the influence of voltage spikes and to absorb transients coming from the input supply line.

## I/O configuration

In general, the smaller the number of components surrounding the MCU, the better the immunity versus noise. A ROMless solution, for instance, is typically more sensitive to and a bigger generator of noise than an embedded circuit.
If the output buffers are embedded in the MCU, their switching speed has to be controlled in order to avoid parasitic oscillations when they are switching. A trade-off between noise and speed has to be found by the MCU designers.
I/O pins which are not used in the application should be preferably grounded or connected via a large impedance (i.e. $100 \mathrm{k} \Omega$ ) to a fixed potential, depending on the MCU reset configuration. Here, the trade-off is between immunity and consumption.
If a current can be forced in an input pin, clamping protection with diodes has to be included in the circuit connected to the pin to divert the current

Figure 3. Supply Lay-out Examples


## BYTE AND NOISE

from the MCU structure and to avoid the risk of latch-up (Figure 4). In an MCU such as the ST62, these dioJes are integrated inside the chip.

## Shielding

Shielding can help in reducing noise reception and emission, but its success depends directly on the material chosen as shield (high permeability, low resistivity) and on its connection to a stable voltage source including a decoupling capacitance via a low serial impedance (low inductance, low resistance).
If the generator of major disturbances is near to the MCU board and can be identified as a strong $\mathrm{dV} / \mathrm{dt}$ generator (i.e. a transformer or Klystron), the noise is carried mainly by the electrostatic field. The critical coupling between the noise generator and the control board is capacitive. A highly conductive shield (i.e. copper) creating a Faraday cage around the control board may strongly increase the immunity.
If the strongest source of perturbations is a dl/dt generator (i.e. a relay), it is a high source of electromagnetic fields. Therefore, the permeability of the shielding material (i.e. alloy) is crucial to increase the immunity of the board. In addition, the number and size of the holes on the shield should be reduced as much as possible to increase its efficiency.
In critical cases, the implantation of a ground plane below the MCU and the removal of sockets between the device and the PCB can reduce the MCU noise sensitivity. Indeed, both actions lead to a reduction of the apparent surface and loop between the MCU, its supply, its I/O and the PCB.

Figure 4. Standard MCU I/O Block Protection


## WRITING SAFER SOFTWARE

The hardware solutions described help in reducing the noise received and radiated by the MCU. Nevertheless if the MCU is disturbed, a modification of a register, for instance the program counter, can occur. In this case, control of the application should not be lost.
Writing safe software can prevent most of the problems due to parasitic modifications of registers or program counter. Many register errors can be quickly identified and masked in the program flow without influence on the environment.
The examples and indications given in this section are written for the ST62 MCU family.
The basic precepts for the writing of a safe software are:
-Test only configurations clearly defined in the flow chart
-Regularly check vital data stored in RAM
-Control the program flow
-Fill the unused memory
It is useful for the program to identify to itself that it is following the correct program flow. This can be implemented by using trace points held in several bits of a specific register (Figure 5). If more bit flags are included in the decision than strictly necessary, the program may enter in a mode which it never leaves. Spikes may set an unused bit, so an error can be generated and an exit should be defined for every trace point condition.

Figure 5. Trace Point of a Program Flow


The trace points can be used also to control the flow of the tasks. In such a case, a "called" task can be only called by a "calling" task. Such checks can be done at the beginning and at the end of each task.
The program flow can be also monitored by controlling the duration of a subroutine, for instance, by reading a timer value at the beginning and at the end of the task.
The contents of the data RAM may be changed by noise, therefore it is good practice to check regularly the consistency of vital data. For example, the fact that the RAM value is inside a predefined interval, its coherence with a value previously stored, a checksum or a comparison with a copy (inverted or not) can be checked. Constant values can be stored in non-used RAM addresses and regularly checked to make sure that the RAM data are not disturbed. The control registers of the MCU peripherals (used or not) can also be reinitialized regularly inside the main routine.
Unused parts of the program memory can be filled with the NOP instruction plus a reset of the chip at the end of the unused area (LDI WDT,01h). If the program counter is modified after a glitch and sends the program to the unused area, the program will not hang in an endless loop and the core is finally reset.

Example:

```
unused area
\begin{tabular}{ll}
\(04 h\) & \(;\) NOP \\
\(04 h\) & \(;\) NOP \\
\(\cdots \cdots\) & \(;\) NOP \\
\(04 h\) & \(;\) generate reset \\
LDI WDT, 01h & \\
& \\
& Of chip
\end{tabular}
```

end of unused area
The unused part of the program memory can also be filled with the ST62 JP X9X instruction since this instruction has its two hexadecimal bytes identical (hex instruction code X9X9). If an unforseeen disturbance to the program counter sends the program to the unused area, the program immediately jumps to address X9X. This address can be at the beginning of the program ( 090 for $4 \mathrm{kROM}, 898$ for 2kROM versions) or a reset instruction (LDI WDT,01h).

The Watchdog should be refreshed a minimum of times and in the main loop. Its refresh value can be calculated in order to minimize the reload value and therefore the duration without a potential watchdog reset. In addition, the user has to make sure that the main routine is executed from time to time. The Watchdog should never be used for tests in the main routines, especially not as a timer.
Additional flags and trace points in the subroutines can be used to check that the program path is correct before reloading the watchdog. Instead of refreshing the watchdog with a constant value using a LDI instruction (i.e. LDI WDT,\#OFFh), the refresh value can be preselected or calculated depending on the trace point TP, using the accumulator A (i.e. LD A,TP and LD WDT,A).
The program presented in annex 1 has been written for the ST621x/2x. It checks the flags, the trace points and adjusts the watchdog refresh value. It is written in such way that the watchdog is reloaded only in the main loop and not in a subroutine or an interrupt routine. If the watchdog has to be reloaded out of the main loop, the application safety is reduced and this example has to be modified. It can be implemented in applications which can start again after a reset and where the reset configuration of the MCU I/O pins may occur without damage in any step of operation of the equipment.
The ROM content has also to be checked in order to avoid data combinations where the watchdog register may be written unintentionally. This can occur if a byte follows another byte which, read as an instruction, can modify the watchdog, and if the program counter is corrupted. For instance in the ST62, the watchdog address byte (D8) is the same as the JRNZ instruction.

## Example:

Initial version:

```
CPI A,#OD =370D
JRNZ OUTloop =D8nn (ODD8 sequence
 in program)
```

Modified version:

CPI A, \#OD	$=370 \mathrm{D}$
NOP	$=04$
JRNZ OUTloOp	$=\mathrm{D} 8 \mathrm{nn}$

The following table lists the critical bytes not to be placed before this byte.

Two Successive Bytes	Equivalent Instructions
OD D8	LDI WDT
2B D8	RES 4,WDT
3B D8	SET 4,WDT
4B D8	RES 2,WDT
5B D8	SET 2,WDT
6B D8	RES 6,WDT
7B D8	SET 6,WDT
9B D8	SET 1,WDT
AB D8	RES 5,WDT
BB D8	SET 5,WDT
CB D8	RES 3,WDT
DB D8	SET 3,WDT
EB D8	RES 7,WDT
FB D8	SET 7,WDT
7F D8	INC WDT
9F D8	LD WDT,A

If the program flow is such that the watchdog register byte address follows one of the critical bytes listed, the watchdog contents can be corrupted. The solution to this problem can be either to modify the first byte i.e. by changing the data

RAM location (if used) or to insert a NOP instruction between the 2 critical bytes.
In addition, if possible, the data in the X or Y index registers should never be identical to the WDT address.
Operation may also be disturbed due to noise on input lines. All inputs can be digitally filtered, so that an input (analog or digital) is valid only if it remains constant for a defined time. This reduces the number of passive components.

Example:
Main1 LDI loop,04h
Main2 JRR 4,PB, Main1; continue flow ; if $\mathrm{PB4} 4=0$
DEC loop ; for 4 successive ; measurements
JRNZ Main2
Main3 LDI loop, 04h
Main4 JRS 4,PB,Main3; continue flow ; if $\mathrm{PB}=1$
DEC loop ; for 4 successive ; measurements
JRNZ Main4

## ST62, AN MCU FAMILY DESIGNED FOR NOISE IMMUNITY

This section presents some technology and design solutions used in the ST62 MCU family to enable safe operation when used in products in disturbed or noise sensitive environments (Figure 6).

## High destruction limits

Destruction of an MCU is usually due to Electrostatic discharge (ESD), a peak voltage or latchup which causes uncontrolled current to flow in the chip and to concentrate in some parts of the structure where a high voltage is applied. The common action of the current and voltage is the creation of hot spots which burn the silicon of the device.
Such defects mechanisms are modelled and corresponding tests are applied on the chips. The ESD test simulates the action of electrostatic energy stored in the parasitic capacitance of a person, which is discharged in the chip. It is modelled by standards such as MIL STD 883.5 (Figure 7).
The latch-up test determines ruggedness of the device to overvoltage and current injection. An SGS-THOMSON corporate quality specification defines the test procedure. In the first test, an

Figure 7. ESD Test Schematic

overvoltage higher than the maximum specified rating is applied on the supply pins. For the second test, a high current pulse is injected in I/O pins of a device supplied normally. In both tests, latch-up is

Figure 6. Major ST62 Features Increasing its Noise Immunity

observed by measuring the supply (and I/O pin) current and by making sure that no discontinuity occurs in the current growth (Figure 8).
When the MCU is used inside its specified characteristics with normal handling precautions, such defects mechanism should not occur.

## High noise immunity

Several optimization technics have been implemented in the technology and design of the ST62 to minimize its sensitivity to external disturbances.
Voltage potential wells have been integrated between the I/O cells and between other I/O and logic cells, avoiding noisy line influences on other MCU blocks. Protection diodes are included inside each I/O pin, the timer and the NMI cells. If the current in these diodes is limited with external resistances, the diodes can be used functionally, providing that the total current in the supply is also limited. Typical values of the diode current for the ST6210 are 2.5 mA per I/O, 0.5 mA for NMI/timer and 25 mA total.

Schmitt triggers are included in each input to filter noisy signals. The hysteresis levels of comparison on the digital inputs are typically 3.5 V for level "1" and 1.5 V for level " 0 " with a +5 V supply.
Capacitances are included in the pads (typ. 5pF) to provide a minimum of filtering if an external resistance is connected. These capacitances are internally associated to resistances to avoid capacitive coupling. The A/D converter also includes its own filter to help stabilizing the input signal during the conversion (Figure 9).
The wide supply voltage range between 3 V and 6 V allows the ST6210 to operate safely inside these limits even if the voltage is not stable, providing that the oscillator frequency is compatible with the voltage (Figure 10).
The $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{SS}}$ and oscillator pins of the ST6210 are close to each other. In this way, the surface of the most critical loops is minimized.

Figure 8. Latch-up Test Schematics


Figure 9. A/D Converter Input Schematic on ST6210


Figure 10. Relation Between Oscillator Frequency and Supply Voltage on ST6210


Figure 11. Reset Pin Connection of the ST6210


## Low noise generation

High current buffers (20mAtyp.) are included in the outputs of the ST62 MCU. The output edges are slowed down in order to avoid over-oscillation at the commutations (typ. 10ns switching time). This is especially useful when inductive loads are driven with the 20 mA ports, in parallel or not.
The internal databus of the ST62 CPU is serial, meaning that only few transistors switch at the same time (typically $1 / 13$ th versus an MCU with a parallel bus). The radiated spectrum and the noise on the supply are reduced compared to a parallel architecture running at the same oscillator frequency.

## Reset modes

A strong glitch or a power line failure may stop or strongly disturb the operation of the program. In such case, the MCU has also to recover safely. This is achieved via a hardware reset. With ST621X such a reset can come from an external pin, the watchdog or the power-on-reset (POR) block.
The reset pin allows the reset from an external component, i.e. a voltage regulator L4947. If this pin is not used and with a +5 V supply, the reset pin of the ST6210 can be directly connected to Vdd, providing therefore a high noise immunity on this pin (Figure 11).
After the reset, the I/O configuration has to be checked in order to avoid problems such as short circuits or parasitic drive of external components before the software initialisation. In addition, a system status has to be made to make sure that the program will not restart in a bad step of the process. If necessary, the process can be forced to a clear configuration at the software initialisation phase.
Watchdog. If the program counter is disturbed and the program lost in a loop where the watchdog is not reloaded, the watchdog counts down to zero and resets the MCU in a similar way as the external reset pin. When the program comes out of a loop, an exit condition can be checked and if the condition is not met, the watchdog is activated. An example of reset by watchdog activation is given in Annex 1. In any case, a watchdog reset should never happen in normal operation.
For a safe operation in noisy environment, the user should use a "hardware" watchdog. This circuit is activated when the MCU is supplied with power and when the oscillator runs. Once activated, it can not be deactivated by any means. A "software" activated watchdog can be chosen when a low power consumption mode is required but it does not provide the same level of safety. This watchdog, once
initialized by the software, has the same behaviour as the hardware activated watchdog and can not be deactivated by the program. However, until it is activated there is no watchdog protection.
The two versions of the watchdog ("software" and "hardware" activated) are available on the ST62 MCU.
An embedded counting watchdog can be replaced or doubled with an external analog watchdog designed with a resistance and a capacitor connected to the reset pin. In normal operation, the capacitance is discharged through an I/O port of the MCU at a rhythm defined by the software. The reset occurs if the oscillator stops or the program does not go through the corresponding I/O port drive.
Power On Reset (POR). In the ST6210, both the watchdog and the POR blocks participate to a safe start. When the supply voltage grows above 0.7 V to 1 V , the oscillator starts. Depending on the type of oscillator (RC, crystal, ceramic resonator), its startup lasts around 2 ms to 10 ms . Once the oscillator voltage reaches the trigger limits, a clean
signal is available and the counter counts 2048 clock periods to ensure a full and valid reset of the ST62. The POR then allows the CPU to exit from the reset state (Figure 12).
Since there is not a precise voltage source inside CMOS technology products and considering that the oscillator startup can vary strongly from one type of oscillator to another, the simplest approach for the user is to make sure that the supply has reached its nominal level 2048 clock periods after the start. In applications supplied directly from the mains, a capacitive supply enables a very fast voltage growth while a resistive supply slows it down.

## Disturbances on the supply.

By design, the minimum voltage for watchdog operation is lower than for the CPU (typically 3.5 V versus 4 V at 8 Mhz ). So if the supply voltage does not decrease below, for instance 3.5 V , the watchdog resets the CPU when it counts down to zero. If the supply goes down below 3.5 V , both the CPU and the watchdog are stopped. The watchdog rest-

Figure 12. Power-On-Reset (POR) Timing

arts when the voltage increases up and resets the CPU when it counts down to zero.
If the supply voltage drops down below 0.7 to 1 V , the POR acts when the supply rises again. Then two resets can occur, coming from the POR and the watchdog (Figure 13).
If the supply voltage changes, its speed of variation is normally limited by the decoupling capacitance. If the voltage variations remain inside the limits specified for the given oscillator frequency, the ST6210 CPU operation will not be disturbed.
The ST6210 includes an A/D converter, allowing additional supply voltage monitoring to be achieved using an external Zener diode (Figure 14). The circuit consumption is slightly increased due to the polarization of the diode. With the A/D converter, the supply level can be accurately measured and a back-up procedure can be decided if the converted value increases above a certain limit.

Figure 14. Supply Monitoring via The A/D Converter


Figure 13. Reset Sequences after Power Disturbances


## EXPERIMENTAL RESULTS

The noise immunity of a ST6210 can be tested in a functional manner. One input is forced with high current when the neighbouring input pin is connected to a potentiometer. All other pins are connected in output mode to LEDs. The program converts the analog value to a LED display. When a current is forced in a pin close to the functional pins, no defect appears on the display.
This clamping feature included in the I/O pins can be also used for detection of the mains zero crossing. The mains voltage is directly connected to the ST6210 via a high impedance which limits the
current. The internal I/O diodes clamp the signal and the I/O works safely without external diode networks (Figure 15).
Noise generation can be tested using a TEM cell. Such an antenna is a type of coaxial cable with space available inside to put the equipment under test (Figure 16). It can be used either as a noise generator to check the ruggedness of an equipment versus EMI or as a receiver to measure the EMI generated by an equipment. Such test equipment is much less expensive than an anechoic chamber.

Figure 15. Power Control Using ST6210 and Snubberless Triac


Figure 16. The TEM Cell in Receiver Mode


## SUMMARY

Microcontrollers (MCU) are spreading out from applications well protected against noise such as telecom or computer, to noisy environment such as automotive and power control.
Protection against noise goes through the choice of an adapted MCU. The ST62 family, for instance, has been designed to operate safely in disturbed or noise sensitive environment. Its major design characteristics concern the I/O design, the reset modes and the supply voltage range.
Even when using an MCU designed for noisy environment, special care has to be taken during the design on the circuitry, on the PCB lay-out and on the writing of the software. This article presents some concrete solutions applicable to these fields.
With caution on these points, the designer can use MCU's for applications such as motor control, battery charger, light dimming or alarm. And here the real advantages of an MCU can be taken: fast time to market, high flexibility with a minimum of components on the board and treatment of relatively complex algorithms.

## Bibliography:

US patent: An integrated Controlled FET switch (J.Stockinger/SGS-THOMSON Microelectronics)

Power semiconductors and EMI reduction (L.Perier/Powertechnics 1-91)

Environmental design rules for Mosfet (B.Maurice/Power transistor manual 91/ SGSTHOMSON)

## ANNEX 1

This program checks the flags, the trace points and adjusts the watchdog refresh value. It is organized in such way that the watchdog is reloaded only in the main loop and not in a subroutine or an interrupt routine. It is written for the ST621x/2x MCU. It can
be implemented in applications which can start again after a reset and where the reset configuration of the MCU I/O pins may occur without damage in any step of operation of the equipment.

Program Example


Program example (Continued)


APPLICATION NOTE

## ST62 IN-CIRCUIT PROGRAMMING

## IN-CIRCUIT PROGRAMMING

This note provides information on the steps required in order to perform in-circuit programming of ST62Exx EPROM or OTP devices for both on-chip EPROM and EEPROM.
In-circuit EPROM programming is possible if the relevant pins of the programming socket located on the ST62 EPROM Programming tool (either the ST6 Starter kit, Remote Programming board or Gang programmer) are connected to a 16 -pin connector ( $8 \times 2$ header HE10), which must be provided on the application board by the customer.
Note: In-circuit programming embedded in production test is not possible. If the EPROM programmer cable is connected to the application, the RESET signal for instance is tied to GND before and after programming.

## In Circuit Programming Procedure

The procedure for in-circuit programming is as follows:

- Power up the PC and invoke the ST6 EPROM programmer software.
- Connect the programmer to the application board which must be in the power off condition.
- Power on the application board ( +5 V ) and use the ST6 EPROM programmer software in the usual way. The target chip may be supplied by the programmer (in the case where the power supply of the chip can be separated from the remaining parts of the application).
Only a few signals of the 16 -pin cable are used. These are listed below including their functional characteristics, seen from the programming tool point of view, and the interconnection to ST62 family members:

Figure 1. 16-pin PCB Socket Connection

Connect to						Connect to ALL
ST621x/2x	ST624x	ST626x/9x		HE10		
PB6	PA6	PB3	$\longrightarrow 1$	$0 \quad 0$	2	
PB5	PAS	PBO	$\rightarrow 3$	$0$	4	$\mathrm{V}_{\text {SS }}$
OSCin	OSCIn	OSCin	$\rightarrow 5$	$0 \quad 0$	6 NC	
PB7	PA7	PB2	- 7	$\bigcirc \quad \bigcirc$	8	
RESET	RESET	RESET	$\rightarrow 9$	$\bigcirc \quad \bigcirc$	10 NC	
OSCout	OSCout	Not used	- 11		12 NC	
$V_{P P} / T M$	$\mathrm{V}_{\mathrm{PP}} / \mathrm{TM}$	$\mathrm{V}_{\mathrm{PP}} / \mathrm{TM}$	$\longrightarrow 13$   NC 15	$\bullet$ $\bullet$   - 0	14	$\begin{aligned} & -1 V_{D D} \\ & \text { (optional) } \end{aligned}$
				TOP VIEW		VR001856

## ST62 IN CIRCUIT PROGRAMMING

The signals shown in Figure 1 should be completely separated from the application circuitry for the time of programming and all signals must be connected to the ST62Exx on the application board. In addition it is mandatory to add a ceramic capacitor with a value of 100 nF between VPP/TM and Vss!
Separation of $V_{\text {ss }}$ to the application board GND is not necessary.

## Programming Conditions

If separation between the ST62Exx and its application circuitry is not possible, certain conditions concerning the application circuitry must be fullfilled:

- VPP/TM (TEST) on the ST62Exx application must not be connected directly to VSs, instead it should be pulled down by a resistor with a minimum value of $10 \mathrm{k} \Omega$. It is mandatory to add a ceramic capacitor with a value of 100 nF between $\mathrm{V}_{\mathrm{Pp}} / \mathrm{TM}$ and $\mathrm{V}_{\mathrm{ss}}$ !
- Both EPROM programmer pins for $V_{S S}$ must be connected to the $V_{S S}$ input of the ST62Exx to be programmed.
_ Connection of the EPROM Programmmer pin $V_{D D}$ is optional (and not recommended). If the ST62Exx chip is supplied by the application power circuit, the supplied VDD voltage must be +5 V to avoid excessive current through the ST62Exx CMOS input protection diodes. If the ST62Exx is supplied by the Programmer, the total load current should not exceed 100 mA and the capacitive load must be lower than $50 \mu \mathrm{~F}$.
- The RESET pin on the application ST62Exx must be left open or pulled up by a resistor with a minimum value of $2 \mathrm{k} \Omega$. The capacitive load should not exceed $1 \mu \mathrm{~F}$.
- OSCin on the application ST62Exx must not be connected to a clock generator. A quartz crystal or a ceramic resonator is allowed.
- The Programmer cable header's Pin 1 and Pin 3 are applied to different members of the ST62Exx families as shown in Figure 1. These signals must not be connected to any other output on the application to prevent any voltage contention. Pullup resistors of a minimum value of $2 \mathrm{k} \Omega$ and pulldown resistors of $10 \mathrm{k} \Omega$ minimum are allowed.
Note: The connection of Pin 5 of the cable header is not necessary if a high voltage level on the ST62Exx pin is guaranteed. This pin is set to input with pullup mode during reset, meaning another pullup, or CMOS inputs, are allowed for the application.
- Pin 7 of the cable header is applied to the members of the ST6 family, as shown in Figure1. On the application board this signal must not be connected to any other output. A pullup resistor of a minimum value of $2 \mathrm{k} \Omega$ and a pulldown resistor of $2 \mathrm{k} \Omega$ minimum are allowed.
- For ST626X and ST629X only: Pin EXTAL = OSCout must be tied directly to VDD. PB7 must not be connected to any other output. PB6 must be at a high voltage level. PB6 is set to input with pullup mode during reset, meaning another pullup, or CMOS inputs, may be connected.
- For ST624X only: Pin PBO must be at a high voltage level. It is set to input with pullup mode during reset, meaning another pullup, or CMOS inputs, may be connected.


## EUROPE

## DENMARK

2730 HERLEV
Herlev Torv, 4
Tel (45-44) 9485.33
Telex• 35411
Telefax (45-44) 948694

## FINLAND

LOHJA SF-08150
Ratakatu, 26
Tel (358-12) 155.11
Telefax (358-12) 15566

## FRANCE

94253 GENTILLY Cedex
7 -avenue Gallienı-BP. 93
Tel. (33-1) 47407575
Telex 632570 STMHQ
Telefax (33-1) 47407910
67000 STRASBOURG
20, Place des Halles
Tel (33-88) 755066
Telefax (33-88) 222932

## GERMANY

85630 GRASBRUNN
Bretonischer Ring 4
Postfach 1122
Tel.. (49-89) 460060
Telefax (49-89) 4605454
Teletex 897107=STDISTR
60327 FRANKFURT
Gutleutstrasse 322
Tel (49-69) 237492-3 Telefax• (49-69) 231957
Teletex $6997689=$ STVBF
30695 HANNOVER 51
Rotenburger Strasse 28A
Tel (49-511) 615960-3
Teletex. 5118418 CSFBEH
Telefax (49-511) 6151243
90441 NÜRNBERG 20
Erlenstegenstrasse, 72
Tel (49-911) 59893-0
Telefax (49-911) 5980701
70499 STUTTGART 31
Mittlerer Pfad 2-4
Tel (49-711) 13968-0
Telefax (49-711) 8661427

## ITALY

20090 ASSAGO (MI)
Vle Milanofiori - Strada 4 - Palazzo A/4/A
Tel (39-2) 57546.1 (10 linee)
Telex 330131-330141 SGSAGR
Telefax (39-2) 8250449
40033 CASALECCHIO DI RENO (BO)
ViaR Fucini, 12
Tel (39-51) 593029
Telex 512442
Telefax (39-51) 591305

## 00161 ROMA

Via A Torlonia, 15
Tel (39-6) 8443341
Telex 620653 SGSATE I
Telefax (39-6) 8444474

## NETHERLANDS

## 5652 AR EINDHOVEN

Meerenakkerweg 1
Tel • (31-40) 550015
Telex 51186
Telefax (31-40) 528835

## SPAIN

08021 BARCELONA
Calle Platon, $64^{\text {th }}$ Floor, $5^{\text {th }}$ Door
Tel. (34-3) 4143300-4143361
Telefax (34-3) 2021461

## 28027 MADRID

Calle Albacete, 5
Tel (34-1) 4051615
Telex 46033 TCCEE
Telefax (34-1) 4031134

## SWEDEN

S-16421 KISTA
Borgarfjordsgatan, 13-Box 1094
Tel • (46-8) 7939220
Telex 12078 THSWS
Telefax (46-8) 7504950

## SWITZERLAND

1218 GRAND-SACONNEX (GENEVA)
Chemin Francois-Lehmann, 18/A
Tel (41-22) 7986462
Telex 415493 STM CH
Telefax (41-22) 7984869

## UNITED KINGDOM and EIRE

MARLOW, BUCKS
Planar House, Parkway
Globe Park
Tel. (44-628) 890800
Telex 847458
Telefax. (44-628) 890391

## AMERICAS

## BRAZIL

## 05413 SÃO PAULO

R Henrique Schaumann 286-CJ33
Tel (55-11) 883-5455
Telex• (391)11-37988 "UMBR BR"
Telefax - (55-11) 282-2367

## CANADA

NEPEAN ONTARIO K2H 9C4
301 Moodie Drive
Suite 307
Tel. (613) 829-9944

## U.S.A.

NORTH \& SOUTH AMERICAN
MARKETING HEADQUARTERS
1000 East Bell Road
Phoenix, AZ 85022
(1-602) 867-6100
SALES COVERAGE BY STATE
ALABAMA
Huntsville - (205) 533-5995

## ARIZONA

Phoenix - (602) 867-6217

## CALIFORNIA

Santa Ana - (714) 957-6018
San Jose - (408) 452-8585
COLORADO
Boulder (303) 449-9000
ILLINOIS
Schaumburg - (708) 517-1890
INDIANA
Kokomo - (317) 455-3500

## MASSACHUSETTS

Lincoln - (617) 259-0300

## michigan

Livonia - (313) 953-1700

## NEW JERSEY

Voorhees - (609) 772-6222
NEW YORK
Poughkeepsie - (914) 454-8813
NORTH CAROLINA
Raleigh - (919) 787-6555

## TEXAS

Carrollton - (214) 466-8844
FOR RF AND MICROWAVE
POWER TRANSISTORS CON-
TACT
THE FOLLOWING REGIONAL
OFFICE IN THE U.S.A.

## PENNSYLVANIA

Montgomeryville - (215) 361-6400

## ASIA / PACIFIC

## AUSTRALIA

NSW 2220 HURTSVILLE
Suite 3, Level 7, Otis House
43 Bridge Street
Tel (61-2) 5803811
Telefax (61-2) 5806440

## HONG KONG

## WANCHAI

22nd Floor - Hopewell centre 183 Queen's Road East
Tel (852) 8615788
Telex. 60955 ESGIES HX
Telefax (852) 8656589

## INDIA

NEW DELHI 110001
LasonOffice
62 , Upper Ground Floor
World Trade Centre
Barakhamba Lane
Tel (91-11) 6424603
Telex 031-66816 STMI IN
Telefax (91-11) 6424615
MALAYSIA
SELANGOR, PETALING JAYA 46200
Unit BM-10
PJ Industrial Park
Jalan Kemajuan 12/18
Tel (03) 7581189
Telefax (03) 7581179
PULAU PINANG 10400
4th Floor - Suite 4-03
Bangunan FOP-123D Jalan Anson
Tel (04) 379735
Telefax (04) 379816
KOREA
SEOUL 121
8th floor Shinwon Building
823-14, Yuksam-Dong
Kang-Nam-Gu
Tel (82-2) 553-0399
Telex SGSKOR K29998
Telefax (82-2) 552-1051

## SINGAPORE

SINGAPORE 2056
28 Ang Mo Kio - Industrial Park 2
Tel (65) 4821411
Telex RS 55201 ESGIES
Telefax (65) 4820240

## TAIWAN

TAIPEI
12th Floor
325, Section 1 Tun Hua South Road
Tel (886-2) 755-4111
Telex 10310 ESGIE TW
Telefax ( 886-2) 755-4008

TOKYO 108
Nissekı - Takanawa Bld 4F
2-18-10 Takanawa
Minato-Ku
Tel (81-3) 3280-4121
Telefax (81-3) 3280-4131

Information furnished is belleved to be accurate and reliable However, SGS-THOMSON Mıcroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.
© 1993 SGS-THOMSON Microelectronics - Printed in Italy - All Rights Reserved
TM• fuzzyTECH is a Trademark of Inform Software Corp
SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - United Kingdom - U.S.A.




[^0]:    Notes:
    X,Y Indirect Register Pointers, V \& W Short Direct Registers
    \# Immediate data (stored in ROM memory)
    rr Data space regıster
    $\Delta$ Affected
    *. Not Affected

[^1]:    Notes:
    abc.12-bit address;

    * Not Affected

[^2]:    Note : The ST6 software package is included in all ST6xxx-EMU real time develoment tools

[^3]:    OPC = Opcode
    R.A. $=$ Relative Address
    J.D. $=$ Jump Displacement

[^4]:    Notes:
    INH. Inherent, DIR: DIrect, SH.DIR: Short Direct,
    IND. Indirect, IMM: Immediate, PCR: Program Counter Relative
    EXT. Extended, BIT DIR: Bit Direct, BIT TEST.: Bit Test
    $\Delta$. Affected

    * . Not Affected

