ST903x/4x FAMILY 8/16 BIT MCU

DATABOOK

ST903x/4x FAMILY 8/16 BIT MCU

DATABOOK

$1^{\text {st }}$ EDITION

MAY 1994

USE IN LIFE SUPPORT DEVICES OR SYSTEMS MUST BE EXPRESSLY AUTHORIZED

SGS-THOMSON PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF SGS-THOMSON Microelectronics. As used herein:

1. Life support devices or systems are those which (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided with the product, can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can reasonably be expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

TABLE OF CONTENTS

INTRODUCTION
ST9 FAMILY OVERVIEW 6
GENERAL INDEX 9
8/16 BIT MCUs DATASHEETS 11
ST9 INSTRUCTION SET 285

ST9 APPLICATION TAILORED MCU

The ST9 family of $8 / 16$ bit Microcontrollers (MCUs) was designed after the requirements of the most advanced applications in computer, consumer, telecom, industrial and automotive Segments.
Processed with the same proprietary CMOS EPROM and EEPROM technologies that have established SGS-THOMSON as a world leading supplier of non-volatile memories, the ST9 provides high speed computing with reduced power consumption.
Built around a high performance, register based core, the ST9 family offers different program and data memory sizes and a wide range of on-chip peripherals to meet the needs of most systems.
Time to market is minimized with ST9's well defined, socket compatible, evolution path, from application evaluation with EPROMs, to prototyping using OTPs, up to the high volume production using cost effective ROM versions.
All standard ST9 devices include a Serial Peripheral Interface, a Watchdog Timer to ensure system integrity against externally generated malfunctions, bit configurable I/Os, prioritizable Interrupts for real-time data handling, and DMA for fast data transfers with handshake (HSHK).
In addition ST9 family variants include up to three Multi-Function Timers, two Serial Communication Interfaces (SCI), an Analog to Digital converter (A/D) and On-Screen Display and Data-Slicer for TV control.

REGISTER BASED ARCHITECTURE

The Register based architecture provides more efficient data handling and reduced code size compared to an accumulator based MCU. It also provides the capability for fast context switching.
224 of the 2568 -bit Registers in the ST9 Register File are available as accumulators, index registers, or stack pointers and can be cascaded to perform all these functions as 16 -bit registers. The remaining registers are dedicated to system and peripheral control.
This architecture is common to all ST9 devices.

FLEXIBLE I/O

The flexibility of the ST9 I/O pins allow designers to match the MCU to the application, and not the application to the MCU.
Most I/Os can be individually programmed as input (TTL or CMOS thresholds), output (open-drain or push-pull), bidirectional, or as the Alternate Function of a peripheral, such as a Timer or an A/D Converter.

ST9 Architectural Block Diagram

COMPREHENSIVE SCI

Serial communication is easily implemented, using formats and facilities offered by the ST9 Serial Communication Interface.
This peripheral provide full flexibility in character format ($5,6,7,8$ databits), odd, even or no parity, address bit, $1,1.5$, or 2 stop bits in asynchronous mode, and an integral baud rate generator allowing communication at up to 370 k baud in asynchronous mode or $1.5 \mathrm{Mbyte} / \mathrm{s}$ in synchronous mode.
Industrial, telecom and communication systems users can furthermore benefit from the self-test and address bit wake-up facility offered by the character search mode.

FAST A/D WITH ANALOG WATCHDOG

Up to 8 analog input voltages can be sequentially converted by the Analog to Digital converter including on-chip sample and hold.
The 11μ s conversion time, and the possibility to trigger conversions either by the on-chip timers, or by external sources, allows real time processing of analog data.
CPU loading is also reduced by the analog watchdog on two channels, the peripheral interrupts the ST9 when the analog input voltage moves out of a preset threshold window.

UNIVERSAL SPI

A universal Serial Peripheral Interface, providing basic $I^{2} \mathrm{C}$-bus, Microwire-Bus and S-BUS functionality, allows efficient communication with low-cost external peripherals or serial access memories such as EEPROMs.

MULTI-FUNCTION TIMERS

The 16 bit up/down counter operating in 13 modes gives the ST9 Multi-function Timer the possibility to cover most application timing requirements.
Two input pins, programmable as external clock, gate or trigger, allow 16 modes of operation, including autodiscrimination of the direction of externally generated signals.
Pulse Width Generation can easily be implemented, using the overflow/underflow signal and the two 16 bit comparison registers, each of them able to independently set, reset, toggle or ignore two output bits.
The Multifunction Timer outputs may also generate interrupts for system scheduling, and trigger DMA transactions of a data byte to or from a data table in memory through an I/O Port with handshake.

ON-SCREEN DISPLAY

Interactive information display for television control is easily implemented with the powerful ST9 On-Screen Display. With up to 34 characters in 15 rows, and colour, italic, underline, flash, tranparent and fringe options, the 128 character set can be adapted for all needs.

DATA-SLICER

Closed Caption Data can be easily extracted from the video signal with the ST9 Data Slicer. When used in conjunction with the ST9 On-Screen Display, a powerful TV controller can be achieved with the minimum of components.

POWERFUL INSTRUCTION SET

The ST9 has 14 addressing modes and instructions (including multiply, divide, table search and block move) to cover all data manipulation needs, bit, byte and word, at the speed required by even the most demanding control application.
Its instruction set was conceived to facilitate the software designer's task, and to improve programming efficiency.
*All devices have 256 byte Register File with 224 General Purpose Registers (Accumulators/RAM), TWD and SPI Peripherals.

DEVICE	$\begin{gathered} \text { ROM } \\ \text { x8 } \end{gathered}$	$\begin{aligned} & \text { EPROM } \\ & \text { OTP ROM } \\ & \text { x8 } \end{aligned}$	RAM ${ }^{\star}$ x8	$\begin{gathered} \text { EEPROM } \\ \text { x8 } \end{gathered}$	MFT	SCI	A/D Inputs	BSS	$\begin{gathered} \text { MAX } \\ \text { I/O } \end{gathered}$	HSHK
ST9020 ST9027 ST9028 ST90E27 ST90E28 ST90T27 ST90T28 ST90R26	$\begin{aligned} & 12 \mathrm{~K} \\ & 16 \mathrm{~K} \\ & 16 \mathrm{~K} \end{aligned}$	$\begin{aligned} & 16 K \\ & 16 K \\ & 16 K^{(1)} \\ & 16 K^{(1)} \end{aligned}$	$\begin{aligned} & 256 \\ & 256 \\ & 256 \\ & 256 \\ & 256 \\ & 256 \\ & 256 \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$			$\begin{gathered} 32 \\ 32 \\ 36 \\ 32 \\ 36 \\ 32 \\ 36 \\ 24^{(4)} \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
ST9030 ST90E30 ST90T30 ST90R30	8K	8K $8 K^{(1)}$			$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & 8 \\ & 8 \end{aligned}$		$\begin{gathered} 56 \\ 56 \\ 56 \\ 40^{(4)} \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
ST9036	16K		256		2	1	8		56	1
ST9040 ST90E40 ST90T40 ST90R40	$16 \mathrm{~K}$	$\begin{aligned} & 16 \mathrm{~K} \\ & 16 \mathrm{~K}^{(1)} \end{aligned}$	$\begin{aligned} & 256 \\ & 256 \\ & 256 \\ & 256 \end{aligned}$	$\begin{aligned} & 512 \\ & 512 \\ & 512 \\ & 512 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & 8 \\ & 8 \end{aligned}$		$\begin{gathered} 56 \\ 56 \\ 56 \\ 40^{(4)} \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
ST90R50	-	-			3	2	8	1	$56^{(4)}$	2
ST90R51	-	-			3	2		1	$52^{(4)}$	2
ST90R91			1536		1		4	1	32	
ST9291 ST92E91 ST92T91	32K	$\begin{aligned} & 32 \mathrm{~K} \\ & 32 \mathrm{~K} \end{aligned}$	$\begin{array}{r} 640 \\ 640 \\ 640 \\ \hline \end{array}$				3 3 3		$\begin{aligned} & 42 \\ & 42 \\ & 42 \end{aligned}$	
ST9293 ST92E93 ST92T93	48K	$\begin{aligned} & 48 \mathrm{~K} \\ & 48 \mathrm{~K}^{(1,3)} \end{aligned}$	$\begin{aligned} & 768 \\ & 768 \\ & 768 \end{aligned}$				$\begin{aligned} & 4^{(2)} \\ & 4^{(2)} \\ & 4^{(2)} \end{aligned}$		$\begin{aligned} & 31 \\ & 31 \\ & 31 \end{aligned}$	
ST9294 ST92E94 ST92T94	24K	$\begin{aligned} & 24 \mathrm{~K} \\ & 24 \mathrm{~K} \end{aligned}$	$\begin{aligned} & 640 \\ & 640 \\ & 640 \end{aligned}$				3 3 3		42 42 42	

Keys :

TWD	Timer/Watchdog
SPI	Serial Peripheral Interface
MFT	Multi-Function Timer
I/O	In :TTL/CMOS, Out : OD/PP
	Alternate Functional Peripheral

Notes :

1. OTP ROM $=$ One Time Programmable
2. Contact Marketing

SCI Serial Communications Interface
A/D 8 bit 8 channel A/D Converter
BSS
HSHK

Bankswitch logic 16M byte address range \# Ports with Handshake Capability
2. 6 bit A/D Converter
4. Excluding $\mathbf{1 6}$ I/O Ports for external memory interface

ST903x Summary :

The ST903x, including ST9030, ST9036, ST9040, are all pin-to-pin package and functionally compatible members; the difference between devices being solely the available on-chip memory. This memory expands from 8 K bytes of ROM to 16K, with RAM up to 256 bytes, and on-chip EEPROM up to 512 bytes across the range, allowing the right memory mix to be chosen for the optimum system cost structure.

SGS-THOMSON
MOCROELECTRONDCS

DEVICE	OTHER FEATURES	PACKAGE (Operating temperature)		
		DIP	LCC	QFP
$\begin{aligned} & \text { ST9020 } \\ & \text { ST9027 } \\ & \text { ST9028 } \\ & \text { ST90E27 } \\ & \text { ST90E28 } \\ & \text { ST90T27 } \\ & \text { ST90T28 } \\ & \text { ST90R26 } \end{aligned}$		$\begin{aligned} & \mathrm{P} 40^{(1,6)} \\ & \mathrm{P} 40^{(1,6)} \\ & \mathrm{C} 40 \mathrm{~W}^{(1)} \\ & \mathrm{P} 40^{(6)} \\ & \mathrm{P} 48^{(6)} \end{aligned}$	$\begin{aligned} & \mathrm{P} 44^{(1,6)} \\ & \mathrm{C} 44 \mathrm{~W}^{(1)} \\ & \mathrm{P} 44^{(6)} \end{aligned}$	
ST9030 ST90E30 ST90T30 ST90R30		$\begin{aligned} & \text { PS56 } 6^{(1,6)} \\ & \text { CS56W } \\ & \text { PS56 }{ }^{(6)} \end{aligned}$	$\begin{aligned} & \text { P68 }{ }^{(1,6)} \\ & \text { C68W } \\ & \text { P68 } \\ & \text { P68 } \\ & \text { P6) } \end{aligned}$	$\begin{aligned} & \text { P80 }{ }^{(1)} \\ & \text { C80W } \\ & \text { P80 } \\ & \text { P80 } \\ & \text { P80 } \end{aligned}$
ST9036		PS56(${ }^{(1,6)}$	P68 ${ }^{(1,6)}$	P80 ${ }^{(1)}$
ST9040 ST90E40 ST90T40 ST90R40		$\begin{aligned} & \text { PS56 }{ }^{(1,6)} \\ & \text { CS56W } \\ & \text { PS56 } \end{aligned}$	$\begin{aligned} & \text { P68 }{ }^{(1,6)} \\ & \text { C68W } \\ & \text { P68 } \\ & \text { P68 } \\ & \text { (6) } \end{aligned}$	$\begin{aligned} & \mathrm{P} 80^{(1)} \\ & \mathrm{C} 8 \mathrm{~W}^{(1)} \\ & \mathrm{P} 0^{(1)} \\ & \mathrm{P} 0^{(1)} \end{aligned}$
ST90R50			P84 ${ }^{(6)}$	P80 ${ }^{(1)}$
ST90R51				P80 ${ }^{(1)}$
ST90R91			P68 ${ }^{(6)}$	P80 ${ }^{(1)}$
ST9291 ST92E91 ST92T91	OSD, VS PWM	$\begin{aligned} & \text { PS42,56 }{ }^{(1)} \\ & \text { CS42,56 } \\ & \text { PS42,56 } \\ & \\ & \\ & \end{aligned}{ }^{(1)}$		
$\begin{array}{\|l\|l} \hline \text { ST9293 } \\ \text { ST92E93 } \\ \text { ST92T93 } \\ \hline \end{array}$	OSD, STM	$\begin{aligned} & \text { PS42 }{ }^{(1)} \\ & \text { CS42W }^{(1)} \\ & \text { PS42 } \end{aligned}$		
ST9294 ST92E94 ST92T94	OSD, STM PWM, DSL	$\begin{aligned} & \text { PS42,56 }{ }^{(1)} \\ & \text { CS42,56 } \\ & \text { PS42,56 } \end{aligned}$		

Keys:

OSD	On Screen Display	Pxx	Plastic Package
STM	Slice Timer	PSxx	Plastic Shrink DIP Package
DSL	Data Slicer extracting Closed Caption Data	CxxW	Ceramic Package with window
VS	Voltage Synthesis	PWM	Pulse Width Modulation outputs
CSxxW	Ceramic Shrink DIP Package with window		

Temperature Ranges :

(1)One version available, 0 to $+70^{\circ} \mathrm{C}$
(6)One version available, -40 to $+85^{\circ} \mathrm{C}$
$(1,6)$ Two versions available, 0 to $+70^{\circ} \mathrm{C}$ and -40 to $+85^{\circ} \mathrm{C}$
ST903x Summary (Continued) :
Adding to this the standard peripheral mix with 2 powerful timers, serial communications, on-chip analog to digital conversion and up to 56 I/O pins, the family of ST903x is ideally matched to suit many system needs too. As with all ROM-based ST9 family members, each type is available with ROM replaced by reprogrammable EPROM in windowed ceramic packages or once-only programmable EPROM in OTP plastic packages.

FULL DEVELOPMENT SUPPORT

ST9 Development Tools are designed for application development efficiency.
A high level macro assembler (with IF/THEN, DO/WHILE, SYSTEM/CASE, PROCedure C language constructs in the assembler) is available, as well as an incremental linker able to link up to 16 Mbytes of program and data, a library maintainer for archiving common software routines and Software Simulation of the code execution, allowing off-line code development and timing analysis.

The validated ANSI standard C Compiler generates optimised code for the ST9. In addition a GNU C cross-compiler and Linker allows development support under the Microsoft Windows 3^{TM} environment.
Cost effective emulation is provided either through a software module running on standard PCs, or with the ST9 Starter Kit, offering hardware emulation capability.

Full real time hardware emulation is provided by the ST9-HDS system.
STANDARD ST9 FAMILY DEVELOPMENT TOOLS

SERIES	DEVICE		Emulator	Dedicated Board	EPROM Programmer	GANG Programmer	Compiler
	ROM Version	EPROM ROMIess					
ST9	ST902X	ST90E2X ST90R26	ST902X-EMU	ST902X-DBE	ST90E2X-EPB/T2X	ST90E2X-GP/DIL40 ST90E2X-GP/LCC44	ST9-SWC/PC ASS/LINKER/ SIMULATOR/ ANSI C COMP.
	ST903X	$\begin{aligned} & \text { ST90E3X } \\ & \text { ST90R30 } \end{aligned}$	ST904X-EMU	ST904X-DBE	ST90E4X-EPB/T4X	ST90E4X-GP/LCC68 ST90E4X-GP/QFP80	
	ST904X	ST90E4X ST90R40	ST904X-EMU	ST904X-DBE	ST90E4X-EPB/T4X	ST90E4X-GP/LCC68 ST90E4X-GP/QFP80	
		ST90R50 ST90R51	ST905X-EMU	ST905X-DBE			
		ST90R91	ST90R91-EMU	ST90R91-DBE			

Type Number	Function	Page
ST9030	8K ROM HCMOS MCU with A/D Converter	11
ST90E30	8K EPROM HCMOS MCU with A/D Converter	189
ST90T30	8K EPROM HCMOS MCU with A/D Converter	189
ST90R30	ROMLESS HCMOS MCU with A/D Converter	203
ST9036	16K ROM HCMOS MCU with RAM and A/D Converter	212
ST9040	16K ROM HCMOS MCU with EEPROM RAM and A/D Converter	225
ST90E40	16K EPROM HCMOS MCU with EEPROM, RAM and A/D Converter	261
ST90T40	16K EPROM HCMOS MCU with EEPROM, RAM and A/D Converter	261
ST90R40	ROMLESS HCMOS MCU with EEPROM, RAM and A/D Converter	275
ST9 Instruction Set	Reference Guide	285

DATASHEETS GENERAL INDEX

Page Number
Table of Contents
ST9030 1
1.1 GENERAL DESCRIPTION 4
1.2 PIN DESCRIPTION 5
1.2.1 I/O Port Alternate Functions 5
2 CORE ARCHITECTURE 9
2.1 CORE ARCHITECTURE 9
2.2 ADDRESS SPACES 9
2.2.1 Register File 9
2.2.2 Addressing Registers 11
2.2.3 Input/Output Ports 11
2.3 SYSTEM REGISTERS 13
2.3.1 Central Interrupt Control Register 13
2.3.2 Flag Register 14
2.3.3 Register Pointing Techniques 15
2.3.4 Page Configuration 17
2.3.5 Mode Registers 17
2.3.6 Stack Pointers 18
3 MEMORY 21
3.1 INTRODUCTION 21
3.2 PROGRAM SPACE DEFINITION 22
3.3 ROMLESS OPTION SUMMARY 22
3.4 DATA SPACE DEFINITION 22
4 INTERRUPTS 23
4.1 INTRODUCTION 23
4.2 INTERRUPT VECTORIZATION 23
4.3 INTERRUPT PRIORITY LEVEL ARCHITECTURE 25
4.4 PRIORITY LEVEL ARBITRATION 25
4.4.1 Concurrent Mode 26
4.4.2 Nested Mode 29
4.5 EXTERNAL INTERRUPTS 32
4.6 TOP LEVEL INTERRUPT 34
4.7 ON-CHIP PERIPHERAL INTERRUPTS 34
4.8 WAIT FOR INTERRUPT INSTRUCTION 36
4.9 INTERRUPT RESPONSE TIME 36
4.10 INTERRUPT REGISTERS 38

DATASHEETS GENERAL INDEX

PageNumber5 ON-CHIP DMA 41
5.1 INTRODUCTION 41
5.2 DMA PRIORITY LEVEL ARCHITECTURE 41
5.3 DMA TRANSACTIONS 43
5.4 DMA CYCLE TIME 43
5.5 THE SWAP-MODE 46
5.6 DMA REGISTERS 46
6 CLOCK 47
6.1 INTRODUCTION 47
6.2 CLOCK MANAGEMENT 47
6.3 CLOCK CONTROL REGISTER 48
6.4 OSCILLATOR CHARACTERISTICS 49
7 RESET 51
7.1 INTRODUCTION 51
7.2 RESET GENERATION 51
7.3 RESET PIN TIMING 51
7.4 PROCESSOR SYNCHRONIZATION UNDER RESET 51
7.5 EPROM PROGRAMMING PIN 52
8 EXTERNAL MEMORY INTERFACE 55
8.1 INTRODUCTION 55
8.2 CONTROL SIGNALS 55
8.3 MEMORY ACCESS CYCLE 57
8.4 STRETCHED ACCESS CYCLE 57
8.5 SHARED BUS 60
8.6 PORTS P0, P1, P6 INITIALIZATION AFTER RESET 61
8.7 ROMLESS FUNCTION 61
8.8 PIPELINE 62
8.9 "SPURIOUS" MEMORY READ ACCESSES 63
8.10 REGISTERS 64

DATASHEETS GENERAL INDEX

Page
Number
9 I/O PORTS 65
9.1 INTRODUCTION 65
9.2 CONTROL REGISTERS 65
9.3 PORT BIT STRUCTURE AND PROGRAMMING 66
9.4 ALTERNATE FUNCTION ARCHITECTURE 69
9.5 SPECIAL PORTS 70
9.5.1 Bit Structure For A/D Converter Inputs 70
9.6 I/O STATUS AFTER WFI, HALT AND RESET 70
10 HANDSHAKE/DMA CONTROLLER 71
10.1 INTRODUCTION 71
10.2 PROGRAMMABLE HANDSHAKE MODES 72
10.2.1 Input Handshake 72
10.2.2 Output Handshake 74
10.2.3 Bidirectional Handshake 76
10.2.4 Application example: Mapping an ST9 onto the memory bus of another ST9 77
10.3 PROGRAMMABLE DMA MODES 78
10.3.1 DMA Transfers Driven By Timer CAPTO Channel With Handshake 78
10.3.2 DMA Input transfers with two line input handshake 78
10.3.3 DMA output transfers with two lines output handshake 79
10.3.4 DMA input transfers with one line input handshake 79
10.3.5 DMA output transfers with one line output handshake 80
10.3.6 DMA input/output transfers with bidirectional handshake 80
10.3.7 DMA Transfers Driven By Timer Comp0 Channel With Handshake 81
10.4 HANDSHAKE/DMA CONTROL REGISTERS 82
11 SERIAL PERIPHERAL INTERFACE 85
11.1 INTRODUCTION 85
11.2 FUNCTIONAL DESCRIPTION 86
11.2.1 Input Signal Description 86
11.2.2 Output Signal Description 86
11.3 INTERRUPT STRUCTURE 87
11.4 SPI REGISTERS 88
11.5 WORKING with DIFFERENT PROTOCOLS 89
11.5.1 $\quad I^{2} \mathrm{C}$-bus Interface 89
11.5.2 S-Bus Interface 92
11.5.3 IM-Bus Interface 93

DATASHEETS GENERAL INDEX

PageNumber
12 TIMER/WATCHDOG 95
12.1 INTRODUCTION 95
12.2 FUNCTIONAL DESCRIPTION 96
12.2.1 Timer/Counter Input Modes 96
12.2.2 Timer/Watchdog Output Modes 96
12.2.3 Timer/Counter Control 96
12.2.4 Timer/Watchdog Mode 97
12.3 TIMER/WATCHDOG INTERRUPT 98
12.4 TIMER/WATCHDOG REGISTERS 99
13 MULTIFUNCTION TIMER 101
13.1 INTRODUCTION 101
13.2 FUNCTIONAL DESCRIPTION 103
13.2.1 One Shot Mode 103
13.2.2 Continuous Mode 103
13.2.3 Trigger And Retrigger Modes 103
13.2.4 Gate Mode 103
13.2.5 Capture Mode 103
13.2.6 Up/Down Mode 103
13.2.7 Free Running Mode 103
13.2.8 Monitor Mode 104
13.2.9 Autoclear Mode 104
13.2.10 Bivalue Mode 104
13.2.11 Parallel Mode 104
13.2.12 Autodiscriminator Mode 104
13.3 INPUT PIN ASSIGNMENT 105
13.3.1 \quad TxINA $=1 / O-$ Tx|NB $=1 / O$ 105
13.3.2 TxINA $=I / O-$ TxINB $=$ Trigger 105
13.3.3 Tx INA $=$ Gate - TxINB $=\mathrm{I} / \mathrm{O}$ 105
13.3.4 TxINA $=$ Gate - TxINB $=$ Trigger 106
13.3.5 Tx INA $=1 / \mathrm{O}-\mathrm{Tx}$ INB $=$ Ext. Clock 106
13.3.6 TxINA $=$ Trigger - TxINB $=\mathrm{I} / \mathrm{O}$ 106
13.3.7 TxINA $=$ Gate - TxINB $=$ Ext. Clock 106
13.3.8 TxINA $=$ Trigger - TxINB $=$ Trigger 106
13.3.9 TxINA = Clock Up - TxINB = Clock Down 106
13.3.10 TxINA = Up/Down - TxINB = Ext Clock 106
13.3.11 TxINA = Trigger Up - TxINB = Trigger Down 106
13.3.12 TxINA = Up/Down - TxINB $=1 / O$ 107
13.3.13 Autodiscrimination Mode 107
13.3.14 TxINA = Trigger - TxINB = Ext. Clock 107
13.3.15 TxINA = Ext. Clock - TxINB = Trigger 107
13.3.16 TxINA = Trigger - TxINB = Gate 107

DATASHEETS GENERAL INDEX

Page
Number
13.4 OUTPUT PIN ASSIGNMENT 108
13.5 INTERRUPT AND DMA 110
13.5.1 Timer Interrupt 110
13.5.2 Timer DMA 110
13.5.3 DMA Pointers 110
13.5.4 Priority During The DMA Transactions 111
13.5.5 The DMA Swap Mode 111
13.5.6 The DMA End Of Block Interrupt Routine 112
13.5.7 DMA Software Protection 112
13.6 TIMER DMA EXTERNAL MODES ON I/O PORTS 112
13.6.1 CMO Channel External Mode 112
13.6.2 CPO Channel In External Mode 112
13.6.3 DMA Channel Synchronization 113
13.7 REGISTER DESCRIPTION 114
13.7.1 Register 0 (REGOR) Registers 115
13.7.2 Register 1 (REG1R) Registers 115
13.7.3 Compare 0 (CMPOR) Registers 115
13.7.4 Compare 1 (CMP1R) Registers 115
13.7.5 Timer Control Register (TCR) 116
13.7.6 Timer Mode Register (TMR) 116
13.7.7 External Input Control Register(ICR) 117
13.7.8 Prescaler Register (PRSR) 118
13.7.9 Output A Control Register (OACR) 118
13.7.10 Output B Control Register (OBCR) 119
13.7.11 Flag Register (FLAGR) 119
13.7.12 Interrupt/DMA Mask Register (IDMR) 120
13.7.13 DMA Counter Pointer Register (DCPR) 120
13.7.14 DMA Address Pointer Register (DAPR) 121
13.7.15 Interrupt Vector Register (IVR) 121
13.7.16 Interrupt/DMA Control Register (IDCR) 122
13.7.17 I/O Connection Register (IOCR) 122
14 SERIAL COMMUNICATIONS INTERFACE 123
14.1 INTRODUCTION 123
14.2 FUNCTIONAL DESCRIPTION 124
14.2.1 Serial Frame Format 124
14.2.2 Clocks And Serial Transmission Rates 127
14.2.3 Input Signals 129
14.2.4 Output Signals 129
14.3 INTERRUPTS AND DMA 129
14.3.1 Interrupts 129
14.3.2 DMA 131
14.4 CONTROL REGISTERS 131

DATASHEETS GENERAL INDEX

Page
Number
15 A/D CONVERTER 139
15.1 INTRODUCTION 139
15.2 FUNCTIONAL DESCRIPTION 140
15.2.1 Operational Modes 140
15.2.2 Synchronisation 140
15.2.3 Analog Watchdog 141
15.2.4 Power down Mode 141
15.3 INTERRUPT 143
15.4 REGISTERS 144
15.4.1 Register Mapping 144
15.4.2 Data Registers (DiR) 144
15.4.3 Lower Threshold Registers (LTiR) 145
15.4.4 Compare Result Register (CRR) 145
15.4.5 Control Logic Register (CLR) 146
15.4.6 Interrupt Control Register (ICR) 147
15.4.7 Interrupt Vector Register (IVR) 147
REGISTER MAP 149
16 ELECTRICAL CHARACTERISTICS 152
ST90E30, ST90T30 173
17.1 GENERAL DESCRIPTION 177
17.2 PIN DESCRIPTION 178
17.2.1 I/O Port Alternate Functions 178
17.3 MEMORY 181
17.4 EPROM PROGRAMMING 181
17.4.1 Eprom Erasing 181
ST90R30 187
18.1 GENERAL DESCRIPTION 190
18.2 PIN DESCRIPTION 191
18.2.1 I/O Port Alternate Functions 191
18.3 MEMORY 194

ST9030

8K ROM HCMOS MCU WITH A/D CONVERTER

- Register oriented $8 / 16$ bit CORE with RUN, WFI and HALT modes
- Minimum instruction cycle time : 500 ns (12MHz internal)
- Internal Memory :

ROM 8K bytes
224 general purpose registers available as RAM, accumulators or index registers (register file)

- 80-pin PQFP package for ST9030Q
- 68-lead PLCC package for ST9030C
- 56-pin shrink DIP package for ST9030B
- DMA controller, Interrupt handler and Serial Peripheral Interface as standard features
- Up to 56 fully programmable I/O pins
- Up to 8 external plus 1 non-maskable interrupts
- 16 bit Timer with 8 bit Prescaler, able to be used as a Watchdog Timer
- Two 16 bit Multifunction Timers, each with an 8 bit prescaler and 13 operating modes
- 8 channel 8 bit Analog to Digital Converter, with Analog Watchdogs and external references
- Serial Communications Interface with asynchronous and synchronous capability
- Rich Instruction Set and 14 Addressing modes
- Division-by-Zero trap generation
- Versatile development tools, including assembler, linker, C-compiler, archiver, graphic oriented debugger and hardware emulators
- Real Time Operating System
- Windowed and One Time Programmable EPROM parts available for prototyping and pre-production development phases
- Pin to pin compatible with ST9036 and ST9040

Figure 1. 80 Pin PQFP Package

Table 1. ST9030Q Pin Description

Pin	Name
1	AV $_{\text {SS }}$
2	AV $_{\text {SS }}$
3	NC
4	P44/AIN4
5	P57
6	P56
7	P55
8	P54
9	INT7
10	INT0
11	P53
12	NC
13	P52
14	P51
15	P50
16	OSCOUT
17	$V_{S S}$
18	$V_{\text {SS }}$
19	NC
20	OSCIN
21	$\overline{R E S E T}$
22	P37/T1OUTB
23	P36/T1INB
24	P35/T1OUTA

Pin	Name
25	P34/T1INA
26	P33/T0OUTB
27	P32/TOINB
28	P31/T0OUTA
29	P30/P/D/TOINA
30	A15
31	A14
32	NC
33	A13
34	A12
35	A11
36	A10
37	A9
38	A8
39	P00/A0/D0
40	P01/A1/D1

Pin	Name
64	P20/NMI
63	NC
62	$V_{\text {SS }}$
61	P70/SIN
60	P71/SOUT
59	P72/INT4/TXCLK /CLKOUT
58	P73/INT5 /RXCLK/ADTRG
57	P74/P/D/INT6
56	P75/WAIT
55	$\begin{aligned} & \text { P76/WDOUT } \\ & \hline \text { BUSREQ } \end{aligned}$
54	$\frac{\text { P77/WDIN }}{\text { /BUSACK }}$
53	RMW
52	NC
51	DS
50	$\stackrel{\text { AS }}{ }$
49	NC
48	$V_{D D}$
47	VDD
46	P07/A7/D7
45	P06/A6/D6
44	P05/A5/D5
43	P04/A4/D4
42	P03/A3/D3
41	P02/A2/D2

Pin	Name
80	AV
79	NC
78	P47/AIN7
77	P46/AIN6
76	P45/AIN5
75	P43/AIN3
74	P42/AIN2
73	P41/AIN1
72	P40/AIN0
71	P27/RRDY5
70	P26/INT3 RRSTB5/P/D
69	P25/WRRDY5
68	P24/INT1 INRSTB5
67	P23/SDO
66	P22/INT2/SCK
65	P21/SDI/P/D

Figure 2. 68 Pin PLCC Package

Table 2. ST9030C Pin Description

Pin	Name
61	P44/AIN4
62	P57
63	P56
64	P55
65	P54
66	INT7
67	INT0
68	P53
1	P52
2	P51
3	P50
4	OSCOUT
5	VSS
6	OSCIN
7	RESET
8	P37/T1OUTB
9	P36/T1INB

Pin	Name
10	P35/T1OUTA
11	P34/T1INA
12	P33/T0OUTB
13	P32/T0INB
14	P31/T0OUTA
15	P30/P/D/TOINA
16	P17/A15
17	P16/A14
18	P15/A13
19	P14/A12
20	P13/A11
21	P12/A10
22	P11/A9
23	P10/A8
24	P00/A0/D0
25	P01/A1/D1
26	P02/A2/D2

Pin	Name
43	P70/SIN
42	P71/SOUT
41	P72/CLKOUT ITXCLK/INT4
40	P73/ADTRG /RXCLK/INT5
39	P74/P/D/INT6
38	$\overline{\text { P75/WAIT }}$
37	P76/WDOUT /BUSREQ
36	P77/WDIN /BUSACK
35	R/్̄
34	$\overline{\text { DS }}$
33	$\overline{\text { AS }}$
32	VDD
31	P07/A7/D7
30	P06/A6/D6
29	P05/A5/D5
28	P04/A4/D4
27	P03/A3/D3

Pin	Name
60	AV
59	AV
58	P47/AIN7
57	P46/AIN6
56	P45/AIN5
55	P43/AIN3
54	P42/AIN2
53	P41/AIN1
52	P40/AIN0
51	P27/RRDY5
50	P26/INT3 /RDSTB5/P/D 49
48	P25/WRRDY5 P24/INT1 WRSTB5
47	P23/SDO
46	P22/INT2/SCK
45	P21/SDI/P/D
44	P20/NMI

Figure 1b. 56 Pin Shrink DIP Pinout

Table 3. ST9030B Pin Description

Pin	Pin name
1	P42/AIN2
2	P43/AIN3
3	P45/AIN5
4	P46/AIN6
5	P47/AIN7
6	AVDD
7	AVSS
8	P44/AIN4
9	P57
10	P56
11	P55
12	P54
13	P53
14	P52
15	OSCOUT
16	Vss
17	OSCIN
18	RESET
19	P37/T1OUTB
20	P36/T1INB
21	NC
22	P35/T1OUTA
23	P34/T1INA
24	P33/T00UTB
25	P32/TOINB
26	P31/T00UTA
27	P30/P/D/TOINA
28	P13/A11

Pin	Pin name
56	P41/AIN1
55	P40/AIN0
54	P23/SDO
53	P22/INT2/SCK
52	P21/SDI/P/D
51	P20/NMI
50	P70/SIN
49	P71/SOUT
48	P72/CLKOUT TXCLK/INT4
47	P73/ADTRG RXCLK/INT5
46	P76WDOUTBUSREO
45	P77NDIN/BUSACK
44	R/W
43	DS
42	$\overline{\text { AS }}$
41	VDD
40	VSS
39	P07/A7/D7
38	P06/A6/D6
37	P05/A5/D5
36	P04/A4/D4
35	P03/A3/D3
34	P02/A2/D2
33	P01/A1/D1
32	P00/A0/D0
31	P10/A8
30	P11/A9
29	P12/A10

1.1 GENERAL DESCRIPTION

The ST9030 is a ROM member of the ST9 family of microcontrollers, completely developed and produced by SGS-THOMSON Microelectronics using a proprietary n -well HCMOS process.
The ROM device is fully compatible with its EPROM version, which may be used for the prototyping and pre-production phases of development, and can be configured as: a standalone microcontroller with 8 K bytes of on-chip ROM, a microcontroller able to manage up to 120 K bytes of external memory, or as a parallel processing element in a system with other processors and peripheral controllers.
The nucleus of the ST9030 is the advanced Core which includes the Central Processing Unit (CPU), the Register File, a 16 bit Timer/Watchdog with 8 bit Prescaler, a Serial Peripheral Interface supporting S-bus, $\mathrm{I}^{2} \mathrm{C}$-bus and IM-bus Interface, plus two 8 bit I/O ports. The Core has independent memory and register buses allowing a high degree of pipelining to add to the efficiency of the code execution speed of the extensive instruction set. The powerful I/O capabilities demanded by microcontroller applications are fulfilled by the ST9030 with up to 56 I/O lines dedicated to digital Input/Output. These lines are grouped into up to seven 8 bit I/O Ports and can be configured on a bit basis under software control to provide timing, status signals, an address/data bus for interfacing external memory, timer inputs and outputs, analog inputs, external interrupts and serial or parallel l/O with or without handshake.
Three basic memory spaces are available to support this wide range of configurations: Program Memory (internal and external), Data Memory (internal and external) and the Register File, which includes the control and status registers of the on-chip peripherals.
Two 16 bit MultiFunction Timers, each with an 8 bit Prescaler and 13 operating modes allow simple use for complex waveform generation and measurement, PWM functions and many other system timing functions by the usage of the two associated DMA channels for each timer. In addition there is an 8 channel Analog to Digital Converter with integral sample and hold, fast 11μ s conversion time and 8 bit resolution. An Analog Watchdog feature is included for two input channels.
Completing the device is a full duplex Serial Communications Interface with an integral 110 to 375,000 baud rate generator, asynchronous and 1.5Mbyte/s synchronous capability (fully programmable format) and associated address/wake-up option, plus two DMA channels.

1.2 PIN DESCRIPTION

AS. Address Strobe (output, active low, 3-state). Address Strobe is pulsed low once at the beginning of each memory cycle. The rising edge of AS indicates that address, Read/Write (R/W), and Data Memory signals are valid for program or data memory transfers. Under program control, $\overline{\mathrm{AS}}$ can be placed in a high-impedance state along with Port 0 and Port 1, Data Strobe ($\overline{\mathrm{DS}}$) and $\mathrm{R} / \overline{\mathrm{W}}$.
DS. Data Strobe (output, active low, 3-state). Data Strobe provides the timing for data movement to or from Port 0 for each memory transfer. During a write cycle, data out is valid at the leading edge of $\overline{\mathrm{DS}}$. During a read cycle, Data In must be valid prior to the trailing edge of DS. When the ST9030 accesses on-chip memory, $\overline{\mathrm{DS}}$ is held high during the whole memory cycle. It can be placed in a high impedance state along with Port 0 , Port $1, \overline{\mathrm{AS}}$ and $\mathrm{R} / \overline{\mathrm{W}}$.
R/W. Read/Write (output, 3-state). Read/Write determines the direction of data transfer for external memory transactions. R/W is low when writing to external program or data memory, and high for all other transactions. It can be placed in a high impedance state along with Port 0, Port 1, $\overline{\mathrm{AS}}$ and $\overline{\mathrm{DS}}$. RESET. Reset (input, active low). The ST9 is initialised by the Reset signal. With the deactivation of RESET, program execution begins from the Program memory location pointed to by the vector contained in program memory locations 00 h and 01 h .
INTO, INT7. External interrupts (input, active on rising or falling edge). External interrupt inputs 0 and

7 respectively. INTO channel may also be used for the timer watchdog interrupt.
OSCIN, OSCOUT. Oscillator (input and output). These pins connect a parallel-resonant crystal (24 MHz maximum), or an external source to the on-chip clock oscillator and buffer. OSCIN is the input of the oscillator inverter and internal clock generator; OSCOUT is the output of the oscillator inverter.
$A V_{D D}$. Analog $V_{D D}$ of the Analog to Digital Converter. $\mathbf{A V}_{\mathrm{Ss}}$. Analog V_{Ss} of the Analog to Digital Converter. Must be tied to VSs.
VDD. Main Power Supply Voltage ($5 \mathrm{~V} \pm 10 \%$)
Vss. Digital Circuit Ground.
P0.0-P0.7, P1.0-P1.7, P2.0-P2.7 P3.0-P3.7, P4.0P4.7, P5.0-P5.7, P7.0-P7.7 I/O Port Lines (Input/Output, TTL or CMOS compatible). 56 lines grouped into l/O ports of 8 bits, bit programmable under program control as general purpose I/O or as alternate functions.

1.2.1//O Port Alternate Functions

Each pin of the I/O ports of the ST9030 may assume software programmable Alternative Functions as shown in the Pin Configuration Drawings. Table 1-4 shows the Functions allocated to each I/O Port pins and a summary of packages for which they are available.

Figure 3. ST9030 Block Diagram

PIN DESCRIPTION (Continued)
Table 4. ST9030 I/O Port Alternate Function Summary

I/O PORT	Name	Function	Alternate Function	Pin Assignment		
Port. bit				PLCC	PQFP	PSDIP
P0.0	A0/D0	I/O	Address/Data bit 0 mux	24	39	32
P0.1	A1/D1	I/O	Address/Data bit 1 mux	25	40	33
P0.2	A2/D2	I/O	Address/Data bit 2 mux	26	41	34
P0.3	A3/D3	I/O	Address/Data bit 3 mux	27	42	35
P0. 4	A4/D4	1/O	Address/Data bit 4 mux	28	43	36
P0.5	A5/D5	I/O	Address/Data bit 5 mux	29	44	37
P0.6	A6/D6	I/O	Address/Data bit 6 mux	30	45	38
P0.7	A7/D7	1/O	Address/Data bit 7 mux	31	46	39
P1.0	A8	0	Address bit 8	23	38	31
P1.1	A9	0	Address bit 9	22	37	30
P1.2	A10	0	Address bit 10	21	36	29
P1.3	A11	0	Address bit 11	20	35	28
P1.4	A12	0	Address bit 12	19	34	
P1.5	A13	0	Address bit 13	18	33	
P1.6	A14	0	Address bit 14	17	31	
P1.7	A15	0	Address bit 15	16	30	
P2.0	NMI	1	Non-Maskable Interrupt	44	64	51
P2.0	ROMless	1	ROMless Select (Mask option)	44	64	51
P2.1	P/D	0	Program/Data Space Select	45	65	
P2.1	SDI	1	SPI Serial Data Out	45	65	52
P2.2	INT2	1	External Interrupt 2	46	66	53
P2.2	SCK	0	SPI Serial Clock	46	66	53
P2.3	SDO	0	SPI Serial Data In	47	67	54
P2.4	INT1	I	External Interrupt 1	48	68	
P2.4	$\overline{\text { WRSTB5 }}$	1	Handshake Write Strobe P5	48	68	
P2.5	WRRDY5	0	Handshake Write Ready P5	49	69	
P2.6	INT3	1	External Interrupt 3	50	70	
P2.6	RDSTB5	1	Handshake Read Strobe P5	50	70	
P2.6	P/D	0	Program/Data Space Select	50	70	
P2.7	RDRDY5	0	Handshake Read Ready P5	51	71	
P3.0	TOINA	1	MF Timer 0 Input A	15	29	27
P3.0	P/D	0	Program/Data Space Select	15	29	27
P3.1	TOOUTA	0	MF Timer 0 Output A	14	28	26
P3.2	TOINB	1	MF Timer 0 Input B	13	27	25
P3.3	T0OUTB	0	MF Timer 0 Output B	12	26	24
P3.4	TIINA	1	MF Timer 1 Input A	11	25	23

PIN DESCRIPTION (Continued)
Table 4. ST9030 I/O Port Alternate Function Summary(Continued)

I/O PORT	Name	Function	Alternate Function	Pin Assignment		
Port. bit				PLCC	PQFP	PSDIP
P3.5	T1OUTA	0	MF Timer 1 Output A	10	24	22
P3.6	T1INB	1	MF Timer 1 Input B	9	23	20
P3.7	T1OUTB	0	MF Timer 1 Output B	8	22	19
P4.0	AINO	1	A/D Analog Input 0	52	72	55
P4. 1	AIN1	1	A/D Analog Input 1	53	73	56
P4.2	AIN2	1	A/D Analog Input 2	54	74	1
P4.3	AIN3	1	A/D Analog Input 3	55	75	2
P4.4	AIN4	1	A/D Analog Input 4	61	4	8
P4.5	AIN5	1	A/D Analog Input 5	56	76	3
P4.6	AIN6	I	A/D Analog Input 6	57	77	4
P4.7	AIN7	1	A/D Analog Input 7	58	78	5
P5.0		I/O	I/O Handshake Port 5	3	15	
P5.1		I/O	I/O Handshake Port 5	2	14	
P5.2		I/O	I/O Handshake Port 5	1	13	14
P5.3		I/O	I/O Handshake Port 5	68	11	13
P5.4		I/O	I/O Handshake Port 5	65	8	12
P5.5		I/O	I/O Handshake Port 5	64	7	11
P5.6		1/O	I/O Handshake Port 5	63	6	10
P5.7		I/O	I/O Handshake Port 5	62	5	9
P7.0	SIN	1	SCI Serial Input	43	61	50
P7.1	SOUT	0	SCI Serial Output	42	60	49
P7.1	ROMless	I	ROMless Select (Mask option)	42	60	49
P7.2	INT4	1	External Interrupt 4	41	59	48
P7.2	TXCLK	1	SCI Transmit Clock Input	41	59	48
P7.2	CLKOUT	0	SCI Byte Sync Clock Output	41	59	48
P7.3	INT5	1	External Interrupt 5	40	58	47
P7.3	RXCLK	1	SCI Receive Clock Input	40	58	47
P7.3	ADTRG	1	A/D Conversion Trigger	40	58	47
P7.4	INT6	1	External Interrupt 6	39	57	
P7.4	P/D	0	Program/Data Space Select	39	57	
P7.5	$\overline{\text { WAIT }}$	1	External Wait Input	38	56	
P7.6	WDOUT	0	T/WD Output	37	55	46
P7.6	BUSREQ	1	External Bus Request	37	55	46
P7.7	WDIN	1	TMVD Input	36	54	45
P7.7	BUSACK	0	External Bus Acknowledge	36	54	45

Notes :

2 CORE ARCHITECTURE

2.1 CORE ARCHITECTURE

The Core or Central Processing Unit (CPU) of the ST9 includes the 8 bit Arithmetic Logic Unit and the 16 bit Program Counter, System and User Stack Pointers. The microcoded Instruction Set is highly optimised for both byte (8 bit) and word (16 bit) data, BCD and Boolean data types, with 14 addressing modes.
Three independent buses are controlled by the Core, a 16 bit Memory bus, an 8 bit Register addressing bus and a 6 bit Interrupt/DMA bus connected to the interrupt and DMA controllers in the on-chip peripherals and the Core. This multiple bus architecture allows a high degree of pipelining and parallel operation, giving the ST9 its efficiency in both numerical calculations and communication with the on-chip peripherals.

2.2 ADDRESS SPACES

The ST9 has three separate address spaces:

- Register File: 2408 -bit registers plus up to 64 pages of 16 bytes each, located in the on-chip peripherals.
- Data memory with up to 64K (65536) bytes
- Program memory with up to 64K (65536) bytes

The Data and Program memory spaces will be addressed in further detail in the next section.

2.2.1 Register File

The Register File consists of:

- 224 general purpose registers R0 to R223
- 16 system registers in the System Group (R224 to R239).
- I/O pages depending on the configuration of the ST9, each containing up to 16 registers, with paging facilities based on the top group (R240 to R255).

Figure 2-1. Address Spaces

ADDRESS SPACES (Continued)
Figure 2-2. Register Grouping

Figure 2-3. Page Pointer Configuration

Figure 2-4. Addressing the Register File

ADDRESS SPACES (Continued)

2.2.2 Addressing Registers

All registers in the Register File and pages can be specified by using a decimal, hex or binary address, e.g. R231, RE7h or R11100111b is the same register.
The registers can be referred to by their hexadecimal group address, so that registers R0-R15 form group 0, R160-R175 form group A and so on.

Working Register Addresses

The 8 -bit register address is formed by 2 nibbles, for example, for register R195 or RC3h or R11000011, 1100 specifies the 13th group (i.e. group C) and 0011 specifies the 3rd register in that group.
Working registers are addressed by supplying the least significant nibble in the instruction and adding it to the most significant nibble found in the Register Pointer (R233). Working register addressing is shown in Figures 2-4.

System Registers

The 16 system registers at addresses R224 to R239 form Group E.
The system registers are addressable using any of the 4 register addressing modes and the most significant nibble will, in all cases, be 14 (0Eh).

Paged Registers

There are a maximum of 64 pages each containing 16 registers. These are addressed using the register addressing modes with the addition of the Page Pointer register, R234. This register selects the page to be addressed in group F and once set, does not need to be changed if two or more registers on the same page are to be addressed in succession.
Therefore if the Page Pointer, R234, is set to 5, the instructions
spp 5
ld R242, r4
will load the contents of working register r 4 into the third register (R242) of page 5.
These paged registers hold data and control registers related to the on-chip peripherals, and thus the configuration depends upon the peripheral organisation of each ST9 family member. i.e. pages only exist if the peripheral exists.
Available pages are shown in Table 2-2.

2.2.3 Input/Output Ports

The Input/Output ports are located in two areas. The port registers for Ports 0-5 are located at the bottom of the System register group in locations R224 to R229, while port 6 and 7 are located in page three, in registers 251 and 255 respectively.
Each Port has three associated Control registers, which determine the individual pin modes (I/O, Open-Drain etc). These registers are located in pages 2 and 3 .

Table 2-1. Register File Organization

Hex. Address	Decimal Address	Function	Register File Group
F0-FF	240-255	Paged Registers	Group F
E0-EF	224-239	System Registers	Group E
DO-DF	208-223	General Purpose Registers	Group D
CO-CF	192-207		Group C
B0-BF	176-191		Group B
AO-AF	160-175		Group A
90-9F	144-159		Group 9
80-8F	128-143		Group 8
70-7F	112-127		Group 7
60-6F	96-111		Group 6
50-5F	80-95		Group 5
40-4F	64-79		Group 4
30-3F	48-63		Group 3
20-2F	32-47		Group 2
10-1F	16-31		Group 1
00-0F	00-15		Group 0

ADDRESS SPACES (Continued)
Table 2-2. Group F Peripheral Organization

2.3 SYSTEM REGISTERS

Following is the description of System Registers. For PORT0 to PORT5 Registers, please refer to I/O Port Chapter.

Figure 2-5. System Registers

R239 (EFh)	SYS. STACK POINTER LOW
R238 (EEh)	SYS. STACK POINTER HIGH
R237 (EDh)	USER STACK POINTER LOW
R236 (ECh)	USER STACK POINTER HIGH
R235 (EBh)	MODE REGISTER
R234 (EAh)	PAGE POINTER
R233 (E9h)	REGISTER POINTER 1
R232 (E8h)	REGISTER POINTER 0
R231 (E7h)	FLAGS
R230 (E6h)	CENTRAL INT. CNTL REG
R229 (E5h)	PORT5
R228 (E4h)	PORT4
R227 (E3h)	PORT3
R226 (E2h)	PORT2
R225 (E1h)	PORT1
R224 (E0h)	PORTO

2.3.1 Central Interrupt Control Register

This Register CICR is located in the system Register Group at the address R230 (E6h). Please refer to "INTERRUPT" and "DMA" chapters in order to get the background of the ST9 interrupt philosophy.
CICR R230 (E6h) Sytem Read/Write
Central Interrupt Control Register
Reset Value : 10000111
7

GCEN	TLIP	TLI	IEN	IAM	CPL2	CPL1	CPLO

b7 = GCEN: Global Counter Enable. This bit is the Global Counter Enable of the Multifunction Timers. The GCEN bit is ANDed with the CE (Counter Enable) bit of the Timer Control Register (explained in the Timer chapter) in order to enable the Timers when both bits are set. This bit is set after the Reset cycle.
b6 = TLIP: Top Level Interrupt Pending. This bit is automatically set when a Top Level Interrupt Request is recognized. This bit can also be set by Software in order to simulate a Top Level Interrupt Request.
b5 = TLI: Top Level Interrrupt bit. When this bit is set, a Top Level interrupt request is acknowledged depending on the IEN bit and the TLNM bit (in Nested Interrupt Control Register). If the TLM bit is reset the top level interrupt acknowledgement depends on the TLNM alone.
b4 = IEN: Enable Interrupt. This bit, (when set), allows interrupts to be accepted. When reset no interrupts other than the NMI can be acknowledged. It is cleared by interrupt acknowledgement for concurrent mode and set by interrupt return (iret). It can be managed by hardware and software (ei and di instruction).
b3 = IAM: Interrupt Arbitration Mode. This bit covers the selection of the two arbitration modes, the Concurrent Mode being indicated by the value " 0 " and the Fully Automatic Nested Mode by the value " 1 ". This bit is under software control.
b2-b0 = CPL2-CPL0: Current Priority Level. These three bits record the priority level of the interrupt presently under service (i.e. the Current Priority Level, CPL). For these priority levels 000 is the highest priority and 111 is the lowest priority. The CPL bits can be set by hardware or software and give the reference by which following interrupts are either left pending or able to interrupt the current interrupt. When the present interrupt is replaced by one of a greater priority, the current priority value is automatically stored until required.

SYSTEM REGISTERS (Continued)

2.3.2 Flag Register

The Flag Register contains 8 flags indicating the status of the ST9. During an interrupt the flag register is automatically stored in the system stack area and recalled at the end of the interrupt service routine so that the ST9 is returned to the original status. This occurs for all interrupts and, when operating in the nested mode, up to seven versions of the flag register may be stored.

FLAGR R231 (E7h) System Read/Write
Flag Register
Reset value: undefined
7
0

C	Z	S	V	$D A$	H	$U F$	$D P$

b7 = C: Carry Flag. The carry flag C is affected by the following instructions:
Addition (add, addw, adc, adcw), Subtraction (sub, subw, sbc, sbcw), Compare (cp, cpw),
Shift Right Arithmetic (sra, sraw),
Rotate (rrc, rrcw, rlc, rlcw, ror, rol), Decimal Adjust (da),
Multiply and Divide (mul, div, divws).
When set, it generally indicates a carry out of the most significant bit position of the register being used as an accumulator (bit 7 for byte and bit 15 for word operations).
The carry flag can be set by the Set Carry Flag (scf) instruction, cleared by the Reset Carry Flag (rcf) instruction, and complemented (changed to " 0 " if " 1 ", and vice versa) by the Complement Carry Flag (ccf) instruction.
b6 = Z: Zero Flag. The Zero flag is affected by the following instructions:
Addition (add, addw, adc, adcw),
Subtraction (sub, subw, sbc, sbcw),
Compare (cp, cpw),
Shift Right Arithmetic (sra, sraw),
Rotate (rrc, rrcw, rlc, rlcw, ror, rol), Decimal Adjust (da),
Multiply and Divide (mul, div, divws),
Logical (and, andw, or, orw, xor, xorw, cpl),
Increment and Decrement (inc, incw, dec, decw),
Test (tm, tmw, tcm, tcmw, btset).
In most cases, the Zero flag is set when the register being used as an accumulator register is zero, following one of the above operations.
b5 = S: Sign Flag. The Sign flag is affected by the same instructions as the Zero flag.
The Sign flag is set when bit 7 (for byte operation) or bit 15 (for word operation) of the register used as an accumulator is one.
b4 = V: Overflow Flag. The Overflow flag is affected by the same instructions as the Zero and Sign flags.
When set, the Overflow flag indicates that a two'scomplement number, in a result register, is in error, since it has exceeded the largest (or is less than the smallest), number that can be represented in twos-complement notation.
b3 = DA: Decimal Adjust Flag. The Decimal Adjust flag is used for BCD arithmetic. Since the algorithm for correcting BCD operations is different for addition and subtraction, this flag is used to specify which type of instruction was executed last, so that the subsequent Decimal Adjust (da) operation can perform its function correctly.
The Decimal Adjust flag cannot normally be used as a test condition by the programmer.
b2 = H: Half Carry Flag. The Half Carry flag indicates a carry out of (or a borrow into) bit 3, as the result of adding or subtracting two 8 -bit bytes, each representing two BCD digits. The Half Carry flag is used by the Decimal Adjust (da) instruction to convert the binary result of a previous addition or subtraction into the correct BCD result.
Like the Decimal Adjust flag, this flag is not normally accessed by the user.
b1 = UF: User Flag. Bit 1 in the flag register (UF) is available to the user, but it must be set or cleared by an instruction.
b0 = DP: Data/Program Memory Flag. This bit in the flag register indicates which memory area is addressed. Its value is affected by the Set Data Memory (sdm) and Set Program Memory (spm) instructions.
If the bit is set, the ST9 addresses the Data Memory Area; when the bit is cleared, the ST9 addresses the Program Memory Area. By reading this bit, the user can verify in which memory area the processor is working. The user writes this bit with the sdm or spm instructions.

SYSTEM REGISTERS (Continued)

2.3.3 Register Pointing Techniques

Two registers, R232 and R233, within the system register group, are available for register pointing. R232 and R233 may be used together as a single pointer for a 16 register working space or separately for two 8 register spaces, in which case R232 becomes Register Pointer 0 (RP0) and R233 becomes Register Pointer 1 (RP1).
The instructions srp, srp0 and srp1 (the Set Register Pointer instructions) automatically inform the ST9 whether the Register File is to operate with a single 16 -register group or two 8 -register groups. The $\operatorname{srp} 0$ and $\operatorname{srp} 1$ instructions automatically set the twin 8 -register group mode while the srp instruction sets the single 16 -register group mode. There is no limitation on the order or positions of these chosen register groups other than they must be on 8 or 16 register boundaries.
The addressing of working registers involves use of the Register Pointer value plus an offset value given by the number of the addressed working register.
When addressing a register, the most significant nibble (bits 4-7) gives the group address and the least significant nibble (bits $0-3$) gives the register within that group.

REGISTER POINTER 0

RPO R232 (E8h) System Read/Write Register Pointer 0
Reset Value : undefined
70

RG7	RG6	RG5	RG4	RG3	RPS	D1	D0

b7-b3 = RG7-RG3: Register Group number. These bits contain the number (from 0 to 31) of the group of working registers indicated in the instructions srp0 or srp. When using a 16 -register group, a number between 0 and 31 must be used in the srp instruction indicating one of the two adjacent 8 -register group of working registers used. RG7 is the MSB.
b2 = RPS: Register Pointer Selector. This bit is set by the instructions $\operatorname{srp0} 0$ and $\operatorname{srp1}$ to indicate that a double register pointing mode is used. Otherwise, the instruction srp resets the RPS bit to zero to indicate that a single register pointing mode is used.
$\mathrm{b} 1, \mathrm{~b} 0=\mathrm{D} 1, \mathrm{D} 0$: These bits are fixed by hardware to zero and are not affected by any writing instruction trying to modify their value.

REGISTER POINTER 1

RP1 R233 (E9h) System Read/Write
Register Pointer 1
Reset Value : undefined
70

RG7	RG6	RG5	RG4	RG3	RPS	D1	D0

This register is used only with double register pointing mode; otherwise, using single register pointing mode, the RP1R register has to be considered as reserved and not usable as a general purpose register.
b7-b3 = RG7-RG3: Register Group number. These bits contain the number (from 0 to 31) of the group of 8 working registers indicated in the instructions srp1. Bit 7 is the MSB.
b2 = RPS: Register Pointer Selector. This bit is automatically set by the instructions $\operatorname{srp0}$ and $\operatorname{srp1}$ to indicate that a double register pointing mode is used. Otherwise the instruction srp reset the RPS bit to zero to indicate that a single register pointing mode is used.
$\mathrm{b} 1, \mathrm{~b} 0=\mathrm{D} 1, \mathrm{D} 0$: These bits are hardware fixed to zero and are not affected by any writing instruction trying to modify their value.
Note. If working in twin 8-register group mode but only using $\operatorname{srp0}$ (i.e. only using one 8 -register group) the unused register (R233) is to be considered as reserved and not usable as a general purpose register.
The group of registers immediately below the system registers (i.e. group D, R208-R223) can only be accessed via the Register Pointers. To address group D then, it is necessary to set the Register Pointer to group D and then use the addressing procedure for working registers. The programmer is required to remember that the group D should be used as a stacking area. This point is also covered in the Stack Pointers paragraph.

SYSTEM REGISTERS (Continued)

EXAMPLES

Using the Single 16 Register Group

When the system is operating in the single 16-register group mode, the registers are referred to as r0-r15. In this mode, the offset value (i.e. the number of the working register referred to) is supplied in the address (preceded by a small r, e.g. r 5) and is added to the Register Pointer 0 value to give the absolute address.
For example, if the Register Pointer contains the value 70 h , then working register r 7 would have the absolute address, R77h.
In this mode, the single 16 -registers group will always start from the lowest even number equal or lower to the number given in the instruction.
Example: $\operatorname{srp} \# 3$ is equivalent to $\operatorname{srp} \# 2$.

Figure 2-6. Single 16 Register pointing Mode

Using the Twin 8-Register Group

When working in the twin working group mode, the registers pointed by Register Pointer 0 (RPOR), are referred as $\mathrm{r} 0-\mathrm{r} 7$ and those pointed by Register Pointer 1 (RP1R), are referred to as r8-r15, regardless of their absolute addresses. In this mode, when operating with the first 8 working registers (i.e. $\mathrm{rO}-\mathrm{r} 7$) the working register number acts as an offset which is added to the value in Register Pointer 0.
So if Register Pointer 0 contains the value 96, then working register 0 has the absolute address 96 , working register 5 has the absolute address 101, and so on. The second group of working registers, r8-r15, has the offset values 0 to 7 respectively (i.e. r8 has the offset value $0, r 9$ has the offset value 1 , and so on), this offset value being added to the value in Register Pointer 1.
For example, given that the value in Register Pointer 1 is 32 , then working register 12 supplies an offset value of 4 (given by 12 minus 8) to the value in Register Pointer 1 to give an absolute address of 36 .

Figure 2-7. Double Register pointing Mode

SYSTEM REGISTERS (Continued)

2.3.4 Page Configuration

The pages are available to be used for the storage of control information (such as interrupt vector pointers) relevant to particular peripherals. There are up to 64 pages (each with 16 registers) based on registers R240-R255. These paged registers are addressable via the page pointer register (PPR), which is system register R234.
To address a paged register the page pointer register (R234) must be loaded with the relevant page number using the spp instruction (Set Page Pointer) and subsequently any address from the top (F) group (R240-R255) will be referred to that page.
For example if register 23 contains the value 44 , the following sequence loads the third register R242 on page 5 with the value 44 .

```
spp 5
ld R242, R23
```

PPR R234 (EAh) System Read/Write
Page Pointer Register
Reset value : undefined

PP7	PP6	PP5	PP4	PP3	PP2	D1	D0

b7-b2 = PP7-PP2: Page Pointer. These bits contain the number (between 0 to 63) of the page chosen by the instruction ssp (Set Page Pointer). PP7 is the MSB of the page address. Once the page pointer has been set, there is no need to refresh it unless a different page is required.
b1-b0 = D1,D0: These bits are fixed by hardware to zero and are not affected by any writing instruction trying to modify their value.
PAGE 0 contains the control registers of:

- the external interrupt
- the watchdog timer
- the wait logic states
- the serial peripheral interface (SPI)
- the EEPROM (ST9030/E30/T30)

2.3.5 Mode Registers

This register MODER is located in the System Register Group at the address 235.
Using this register it is possible:

- to select either internal or external System and User Stack area,
- to manage the clock frequency
- to enable the Bus request and Wait signals when interfacing external memory.

MODER R235 (EBh) System Read/Write Mode Register

Reset value : 11100000
7 0

SSP	USP	DIV2	PRS2	PRS1	PRSO	BRQEN	HIMP

b7 = SSP: System Stack Pointer. This bit selects internal (in the Register File) or external (in the external Data Memory) System Stack area, logical " 1 " for internal, and logical " 0 " for external. After Reset the value of this bit is " 1 ".
b6 = USP: User Stack Pointer. Same as bit 7 for the User Stack Pointer;
b5 = DIV2: OSCIN Clock Divided by 2. This bit controls the divide by 2 circuit which operates on the OSCIN Clock. A logical "1" value means that the OSCIN clock is internally divided by 2 , and a logical " 0 " value means that no division of the OSCIN Clock occurs.
b4-b2 = PRS2-PRS0: ST9 CPUCLK Prescaler. These bits load the prescaling module of the internal clock (INTCLK). The prescaling value selects the frequency of the ST9 clock, which can be divided by 1 to 8 . See Clock chapter for more information.
b1 = BRQEN: Bus Request Enable. This bit is a software enable of an External Bus Request. When set to " 1 ", it enables a Bus Request on the BUSREQ pin.
b0 = HIMP: High Impedance Enable. When Port 0 and/or Port 1 are programmed as multiplexed address and Data lines to interface external Program and/or Data Memory, these lines and the Memory interface control lines ($\overline{\mathrm{AS}}, \overline{\mathrm{DS}}, \mathrm{R} / \overline{\mathrm{W}}$) can be forced into the High Impedance state by setting to "1" the HIMP bit. When this bit is reset, it has no effect on P0 and P1 lines.
If Port 1 is declared as an address AND as an I/O port (example: P10 ... P14 = Address, and P15 ... P17 = I/O), HIMP has no effect on the I/O lines (in the previous example: P15 ... P17).

SYSTEM REGISTERS (Continued)

2.3.6 Stack Pointers

There are two separate, double register stack pointers available (named System Stack Pointer and User Stack Pointer), both of which can address registers or memory.
The stack pointers point to the bottom of the stacks which are filled using the push commands and emptied using the pop commands. The stack pointer is automatically pre-decremented when data is "pushed in" and post-incremented when data is "popped out".
For example, the register address space is selected for a stack and the corresponding stack pointer register contains 220. When a byte of data is "pushed" into the stack, the stack pointer register is decremented to 219, then the data byte is "loaded" into register 219. Conversely, if a stack pointer register contains 189 and a byte of data is "popped" out, the byte of data is then extracted from the stack and then the stack pointer register is incremented to 190.
The push and pop commands used to manage the system stack area are made applicable to the user stack by adding the suffix U, while to use a stack instruction for a word a W is added.
For example push inserts data into the system stack, but an added U indicates the user stack and W means a word, so the instruction pushuw loads a word into the bottom of the user stack.
If the User Stack Pointer register contains 223 (working in register space) the instruction pushuw will decrement User Stack Pointer register to 222 and then load a word into register R222 and R221.
When bytes (or words) are "popped out" the values in those registers are left unchanged until fresh data is loaded into those locations. Thus when data is "popped" out from a stack area, the stack content remains unchanged.
Note. Stacks must not be located in the pages or the system register area.

The System Stack area and The System Stack Pointer

The System Stack area is used for the storage of temporarily suspended system and/or control registers, i.e. the Flag register and the Program counter, while interrupts are being serviced. For subroutine execution only the Program Counter needs to be saved in the System stack area.
There are two situations when this occurs automatically, one being when an interrupt occurs and the other when the instruction call subroutine is used. When the system stack area is in the Register File, the stack pointer, which points to the bottom of the stack, only needs one byte for addressing, in which case the System Stack Pointer Low Register (R239) is sufficient for addressing purposes. As a result the System Stack Pointer High Register (R238) becomes redundant BUT must be considered as reserved (please refer also to "spirious" memory access section). Clearly when the stack is external a full word address is necessary and so both registers are used to point, the even register providing the MSB and the odd register providing the LSB.

The User Stack area and User Stack Pointer

The User Stack area is completely free from all interference from automatic operations and so it provides a totally user controlled stacking area, that area being in any part of the memory which is of a RAM nature, or the first 14 groups of the general Register File i.e. not in the System register or Paged group.
The User Stack Pointer consists of two registers, R236 and R237, which are both used for addressing an external stack, while, when stacking in the Register File, the User Stack Pointer High Register, R236, becomes redundant but must be considered as reserved.

SYSTEM REGISTERS (Continued)

Stack location

Care is necessary when managing stacks as there is no limit to stack sizes apart from the bottom of any address space in which the stack is placed. Consequently programmers are advised to use a stack pointer value as high as possible, particularly when using the Register File as a stacking area. This will also benefit programmers who may locate the stacks in group D using, for example the instruction ld R237, \#223 which loads the value

Figure 2-8. System and/or User Stack in Register Stack Mode

USP R236 (ECh) Read/Write
User Stack Pointer High Byte
Reset value: undefined
7
0

USP15	USP14	USP13	USP12	USP11	USP10	USP9	USP8

USP R237 (EDh) Read/Write
User Stack Pointer Low Byte
Reset value: undefined
7 0

USP7	USP6	USP5	USP4	USP3	USP2	USP1	USP0

223 into the User Stack Pointer Low Register. The Programmer will not need to remember to set the Register Pointer to 208 to gain access to registers in the D-group, a problem outlined in Register Pointing Techniques paragraph.
Stacks may be located anywhere in the first 14 groups of the Register File (internal stacks) or the data memory (external stacks). It is not necessary to set the data memory using the instruction sdm as external stack instructions automatically use the data memory.

Figure 2-9. System and/or User Stack in Memory Stack Mode

SSP R238 (EEh) Read/Write
System Stack Pointer High Byte
Reset value: undefined

7
7
0 SSP15 SSP14 SSP13 SSP12 SSP11 SSP10 SSP9

SSP R239 (EFh) Read/Write

System Stack Pointer Low Byte
Reset value: undefined

SSP7	SSP6	SSP5	SSP4	SSP3	SSP2	SSP1	SSP0

ST9 - Architecture

Notes :

3 MEMORY

3.1 INTRODUCTION

The memory of the ST9 is divided into two spaces:

- Data memory with up to 64 K (65536) bytes
- Program memory with up to 64 K (65536) bytes

Thus, there is a total of 128 K bytes of addressable memory space.
The 8 K bytes of on-chip ROM memory of the ST9030 are selected at memory addresses 0 through 1FFFh (hexadecimal) in the PROGRAM space.
Off-chip memory, addressed using the multiplexed address and data buses (Ports 0 and 1) may be divided into the Program and Data spaces by the external decoding of the Program/Data select pin ($\mathrm{P} / \overline{\mathrm{D}}$) available as an Alternate Function output, allowing the full 128 K byte memory.
The memory spaces are selected by the execution of the sdm and spm instructions (Set Data Memory and Set Program Memory, respectively). There is no need to use either of these instructions again until the memory area required is to be changed. This requirement is not necessary in two cases:
first, when operating with external stacks (the Data memory is automatically selected) and, secondly, when using the memory indirect to memory indirect post-increment addressing mode (the memory types are specified in the instructions: ldpp, ldpd, lddp, lddd).
Program instructions and data in the immediate addressing mode are always read from the Progam space. For example:
sdm
ld R80,\#99
will load R80 with the value 99 decimal from the program space.
Either the Data Memory or the Program Memory, both external or internal, can be addressed using any of the memory addressing modes.
The 16 bit memory address may be supplied directly using the absolute memory location address or indirectly using a pair of registers. In addition the address can be given by an indexed mode when a short (byte) or long (word) offset is added to an indirect base word address.

Figure 3-1. Memory Map

3.2 PROGRAM SPACE DEFINITION

The Program memory space of the ST9030, from the 8 K bytes of on-chip ROM memory (0 through 1 FFFh) to the full 64 K bytes with off-chip memory expansion is fully available to the user. At addresses greater than the first 8 K bytes of Program space, external memory cycles are automatically executed for instruction fetches.
The first 256 memory locations from address 0 to FFh hold the Reset Vector, the Top-Level (Pseudo Non-Maskable) interrupt, the Divide by Zero Trap Routine vector and, optionally, the interrupt vector table for use with the on-chip peripherals and the external interrupt sources. Apart from this case no other part of the Frogram memory has a predetermined function.
Each vector is contained in two consecutive byte locations, the high order address held in the lower (even) byte, the low order address held in the upper (odd) byte, forming the address which is loaded into the Program Counter when selected by the interrupt vector provided by the interrupt source. This should point to the relevant Interrupt Service routine provided by the user for immediate response to the interrupt.

Table 3-1. First 6 Bytes of Program Space

0	Address high of Power on Reset routine
1	Address low of Power on Reset routine
2	Address high of Divide by zero trap Subroutine
3	Address low of Divide by zero trap Subroutine
4	Address high of Top Level Interrupt routine
5	Address low of Top Level Interrupt routine

3.3 ROMLESS OPTION SUMMARY

In the event of a program revision being required after the development of a ROM-based device, a mask option is available which enables the reconfiguration of the memory spaces to give a fully ROMless device. This means that the on-chip program ROM is disabled and ALL PROGRAM memory is seen as external, allowing the use of replacement program code in external ROM memory.
For more information on this option, please refer to the section "External Memory Interface".

3.4 DATA SPACE DEFINITION

The Data memory maximum size is 64 K bytes and has exactly the same addresses and addressing modes as the Program memory, the spaces being distinguished by the use of the memory setting command (sdm, Set Data Memory).
The on-chip general purpose registers may be used as additional RAM memory for minimum chip count systems.
The Data Space is selected by the execution of the sdm instruction. All subsequent operand and stack memory references will access the Data Space.
When a separate Data Space is not provided, data may also be stored in external RAM or ROM memory within the Program Space.

4 INTERRUPTS

4.1 INTRODUCTION

The ST9 responds to peripheral events and external events through its Interrupt channels. When such an event occurs, if previously enabled and according to a priority mechanism, the current program execution can be suspended to allow the ST9 to execute a specific response routine. If the event generates an interrupt request, the current program status is saved after the current instruction is completed and the CPU control passes to the Interrupt Service Routine.
The ST9 CPU can receive requests from the following type of sources:

- On-chip peripherals
- External pins
- Top-Level Pseudo-non-maskable interrupt

According to the on-chip peripheral features, an event occurrence can generate an Interrupt request depending on the selected mode.
Up to eight external interrupt channels, with programmable input trigger edge, are available. In addition, a dedicated interrupt channel, set to the Top-level priority, can be devoted either to the external pin NMI (to provide a Non-Maskable-Interrupt) or to the Timer/Watchdog. Interrupt service routines are addressed through a vector table mapped in Program Memory.

Figure 4-1. Interrupt Flow

4.2 INTERRUPT VECTORIZATION

The ST9 implements an interrupt vectoring structure that allows the on-chip peripheral to identify the location of the first instruction of the Interrupt Service Routine (IVR) automatically.
When the interrupt request is acknowledged, the peripheral interrupt module provides, through its Interrupt Vector Register (IVR), a vector to point into the vector table of locations containing the start addresses of the Interrupt Service Routines (defined by the programmer).
Each peripheral has a specific IVR mapped within its Register File pages.
The Interrupt Vector table, containing the list of the addresses of the Interrupt Service Routines, is located in the first 256 locations of the Program Memory. The first 6 locations of the Program Memory are reserved for:

Address Content

0	Address high of Power on Reset routine
1	Address low of Power on Reset routine
2	Address high of Divide by zero trap Subroutine
3	Address low of Divide by zero trap Subroutine
4	Address high of Top Level Interrupt routine
5	Address low of Top Level Interrupt routine

With one Interrupt Vector register, it is possible to address more interrupt service routines; in fact, several peripherals share the same interrupt vector register among several interrupt channels. The most significant bits of the vector are user programmable to define the base vector address inside the vector table in the program memory, the least significant bits are controlled by the interrupt module in hardware to select the specific vector.
Note: The first 256 locations of the program memory can contain program code. Other than the Reset vector, they are not exclusively reserved to the vector table.
Warning. Although the Divide by Zero Trap operates as an interrupt, the FLAG Register is not pushed onto the system Stack automatically. As a result it must be regarded as a subroutine, and the acknowledge routine must end with the RET instruction.

INTERRUPT VECTORIZATION (Continued)

Figure 4-2. Vectors and Associated Routines

Figure 4-3. Interrupt Architecture, Example of piority Allocations

4.3 INTERRUPT PRIORTTY LEVEL ARCHITECTURE

The ST9 supports a fully programmable interrupt priority structure. Figure 4-4 shows a conceptual description.
9 priority levels are available to define the channel priority relationship. Each channel has a 3 bit field, PRL (Priority Level), that defines its priority level among 8 programmable levels. The ninth level (Top Level Priority) is reserved for the Timer/Watchdog or the External Pseudo NonMaskable Interrupt. The On-chip peripheral channel and the eight external interrupt sources can be programmed within eight priority levels: level 7 has the lowest priority, level 0 has the highest priority.
If several units are located at the same priority level, an internal daisy chain, fixed for each ST9 device, defines the priority relationship within that level.
The PRL bits are used to define the priority level for interrupt requests.
Top level priority interrupt (highest) can be assigned either to the external Pseudo Non-Maskable interrupt or to the internal Timer/Watch-Dog. An Interrupt service routine at this level cannot be interrupted in any arbitration mode. Its mask can be both maskable (TLI) or non-maskable (TLNM).

4.4 PRIORITY LEVEL ARBITRATION

The 3 bits of CPL (Current Priority Level) in the Central Interrupt Control Register contain the priority of the currently running program (CPU priority). CPL is set to 7 (lowest priority) upon reset and can be modified during program execution either by software or automatically by hardware according to the selected Arbitration Mode.
During every instruction an arbitration phase is made between every channel capable of generating an Interrupt, each priority level is compared to all the other requests. If the highest priority request is an interrupt, it must be higherthan the CPL value in order to be acknowledged.
The priority of the Top Level Interrupt overrides every other priority.
If two or more requests occur at the same instant of time and at the same priority level, an on-chip daisy chain, specific to every ST9 version, selects the channel with the highest position in the chain. The position in the chain is shown in table 4-1.
ST9 provides two interrupt arbitration modes: Concurrent and Nested modes. The Concurrent mode is the standard interrupt arbitration mode while the Nested mode improves the effective interrupt response time when a nesting of the service routines is required according to the request priority levels.

Figure 4-4. Interrupt Logic

25/195

PRIORITY LEVEL ARBITRATION (Continued)

The control bit IAM (CICR.3) selects the Concurrent Arbitration mode (when reset to " 0 ") or the Nested Arbitration Mode (when set to "1").

Table 4-1. Daisy Chain Priorities

Applicable for ST9030, ST9036, ST9040

Highest Position	INTAO
	INTA1
	INTB0
	INTB1
	INTC0
	INTC1
	INTD0
	INTD1
	TIMER0
	SCI
	A/D
	TIMER1

4.4.1 Concurrent Mode

This mode is selected when the IAM bit is cleared (reset condition). The arbitration phase, performed during every instruction, selects the request with the highest priority level.
If the highest priority request is an interrupt request and its priority value is higher than the Current Priority Value CICR.2,1,0 (R230.2,1,0), the interrupt request will be acknowledged at the end of the current instruction. The interrupt Machine Cycle performs the following steps:

- 1. Disables all the maskable interrupt requests by clearing CICR.IEN
- 2. Pushes the PC low byte into the system stack
- 3. Pushes the PC high byte into the system stack
- 4. Pushes the Flag register into the system stack
- 5. Loads the PC with the 16 -bit vector stored in the Vector Table, pointed to by the Interrupt Vector Register (IVR).

Figure 4-5. Example of a Sequence of Interrupt Requests with :

- Concurrent mode
- El set to 1 during the interrupt routine execution

PRIORITY LEVEL ARBITRATION (Continued)

The Interrupt Service Routine must be concluded with the iret instruction. The iret instruction executes the following operations:

- 1. Pops off the Flag register from the system Stack
- 2. Pops off PC high byte from the system Stack
- 3. Pops off PC low byte from the system Stack
- 4. Enables all the un-masked Interrupts, by setting the CICR.IEN bit
The suspended program execution is thus recovered at the interrupted instruction. All pending interrupts existing, or having occurred during the interrupt service routine execution, remain pending until the Enable Interrupt instruction (even if it is executed during the interrupt service routine).
NOTE: When Concurrent mode is selected, the source priority level is meaningful only during the arbitration phase, where it is compared to all the other priority levels and the CPL, but no trace is kept of its value during the Interrupt Service Routine. Therefore, if other requests are issued, once the global CICR.IEN is enabled again, they will be acknowledged regardless of the Interrupt Service Routine priority value; if no care is taken by the programmer, unpleasant side effects can take place.

A typical case is the following: 3 pending requests with different priority levels (ie 2,3,4) generate requests at the same time (because the associated events occurred during the same instruction). The three interrupt service routines set Interrupt Enable (IEN, CICR.4) by the ei instruction at the beginning of the routine to avoid a high interrupt response time to requests with a priority higher than the one under service (usually, the higher the priority, the sooner the routine must be executed). Unfortunately, what will happen in this case is that the three interrupt servicing routines will be executed exactly in the opposite order of their priority. Interrupt routine level 2 will be acknowledged first, then, when the ei instruction is executed, it will be interrupted by interrupt routine level 3 , which itself will be interrupted by interrupt routine level 4 . When interrupt routine level 4 is completed, interrupt routine level 3 will be recovered and finally, interrupt routine level 2.
Therefore, it is recommended, in concurrent mode, to avoid the insertion of the ei instruction in the interrupt subroutine, which can trigger this LIFO (Last In, First Out) sequence of interrupt processing.

Figure 4-6. Example of a Sequence of Interrupt Requests with :

- Concurrent mode
- El unchanged by the interrupt routines

PRIORITY LEVEL ARBITRATION (Continued)

Figure 4-7. Interrupt Mode Flow-Chart

Notes:

1. The interrupt arbitration starts 6 CPUCLK cycles befoi the end of execution of each instruction (5 cycles during WFI).
2. Clear interrupt pending bit

PRIORITY LEVEL ARBITRATION (Continued)

4.4.2 Nested Mode

The difference of the Nested mode to the Concurrent mode consists of the modification of the CPL value during the interrupt processing. The arbitration phase is basically identical to the concurrent Mode, however once the request is acknowledged, the current CPL value is saved in the Nested Interrupt Control Register (NICR, R247 page 0) by setting the NICR bit corresponding to the CPL value (i.e. if the CPL is 3 , NICR. 3 bit will be set). The CPL value is then updated with the Priority value of the request just acknowledged, in this way the next arbitration cycle will be performed against the priority level of the Service Routine in progress.

The Interrupt Machine Cycle will perform the following steps:

- Disable all the maskable interrupts by clearing IEN
- Save the CPL value into the special stack NICR to hold the priority level of the suspended routine
- Store in CPL the priority level of the acknowledged routine, so that the next request priority will be compared with the one of the routine under service
- Push the PC-low byte into the System Stack
- Push the PC-high byte into the System Stack
- Push the Flag Register into the System Stack

Figure 4-8. Example of a Sequence of Interrupt Requests with :

- Nested mode
- El set to 1 during the interrupt routine execution

PRIORITY LEVEL ARBITRATION (Continued)

- Load the PC with the vector pointed by IVR.

The iret Interrupt Return instruction executes the following steps:

- 1. Pop off the Flag Register from the System Stack
- 2. Pop off the PC-high byte from the System Stack
- 3. Pop off the PC-low byte from the System Stack
- 4. Enable all the unmasked interrupts by setting the IEN bit
- 5. Recover the interrupted routine priority level by popping the value from the special register (NICR) and by copying it into CPL.
The suspended execution is thus recovered at the interrupted instruction.

REMARKS

1) Dynamic priority level modification: the main program and routines can be specifically prioritized. Since CPL is represented by 3 bits in a read/write register, it is possible to modify dynami-
cally the current priority value during the program execution. This means that a critical section can have a higher priority with respect to other interrupt requests. Furthermore it is possible to prioritize even the Main Program execution by modifying CPL during its execution.
2) Maximum number of nestings: No more than 8 routines can be nested. If an interrupt routine at level N is being serviced, no other Interrupts located at level N can interrupt it. This guarantees a maximum number of 8 nested levels including the Top Level Interrupt request.
3) Priority level 7 : Interrupt requests at level 7 cannot be acknowledged as their priority cannot be higher than the CPL value. This can be of use in a fully polled interrupt environment.
A nested/concurrent mode sequence is given on Figure 4-10. This example clearly shows that Nested and Concurrent modes are defined by the user. Note that here the Y axis is referenced by CPL, instead of the source priority level, and that Interrupt 1 stays pending, having a priority level lower than CPL.

Figure 4-9. Example of a Sequence of Interrupt Requests with :

- Nested mode
- El unchanged by the interrupt routiness

PRIORITY LEVEL ARBITRATION (Continued)
Figure 4-10. Example of a Nested and Concurrent Mode Sequence

4.5 EXTERNAL INTERRUPTS

The standard ST9 core contains 8 external interrupts sources grouped into four pairs.

Table 4-2. External Interrupt Channel Grouping

External Interrupt	Channel
INT7	INTD1
INT6	INTD0
INT5	INTD1
INT4	INTD0
INT3	INTD1
INT2	INTD0
INT1	INTD1
INT0	INTD0

Each source has a trigger control bit TEA0,..TED1 (R242,EITR.0,.., 7 Page 0) to select triggering on the rising or falling edge of the external pin. If the Trigger control bit is set to "1", the corresponding pending bit IPA0,...IPD1 (R243,EIPR.0,..,7 Page 0) is set on the input pin rising edge, if it is cleared, the pending bit is set on the falling edge of the input pin. Each source can be individually masked through the corresponding control bit IMAO,.., IMD1 (EIMR.7,..,0). See Figure 4-12.
The priority level of the external interrupt sources can be programmed among the eight priority levels with the control register EIPLR (R245). The priority level of each pair is software defined using the bits PRL2,PRL1. For each pair, the even channel ($\mathrm{A} 0, \mathrm{BO}, \mathrm{CO}, \mathrm{DO}$) of the group has the even priority level and the odd channel (A1, B1, C1,D1) has the odd (lower) priority level. Figure 4-11 shows an example of priority levels.

Figure 4-11. Priority Level Examples

- The source of the interrupt channel AO can be selected between the external pin INTO (when IAOS = "1", the reset value) or the On-chip Timer/Watchdog peripheral (when IA0S = " 0 ").
- The source of the interrupt channel BO can be selected between the external pin INT2 (when $(S P E N, B M S)=(0,0))$ or the on-chip SPI peripheral.
- The source of the interrupt channel CO can be selected between the external pin INT4 (when EEIEN = " 0 ") and the on-chip EEPROM write completion interrupt (when EEIEN="1").
All other interrupt channels have an input pin as source, however, the input line may be multiplexed with an on-chip peripheral I/O or connected to an input pin that performs also other function (as in the case of the handshake feature).

Table 4-3. Internal/External Interrupt Source

Channel	Internal Interrupt Source	External Interrupt Source
INTAO	Timer/Watchdog	INT0
INTBO	SPI Interrupt	INT2
INTCO	EEPROM	INT4

EXTERNAL INTERRUPTS (Continued)

Figure 4-12. External Interrupts Control Bits and Vectors

4.6 TOP LEVEL INTERRUPT

The Top Level Interrupt channel can be assigned either to the external pin NMI or to the Timer/Watchdog according to the status of the control bit EIVR.TLIS (R246.2, Page 0). If this bit is high (the reset condition) the source is the external pin NMI, if it is low, the source is the Timer/ Watchdog End Of Count. When the source is the NMI external pin, the control bit EIVR.TLTEV (R246.3; Page 0) selects between the rising (if set) or falling (if cleared) edge generating the interrupt request. When the selected event occurs, the CICR.TLIP bit (R230.6) is set. Depending on the mask situation, a Top Level Interrupt request may be generated. Two kinds of masks are available, a Maskable mask and a Non-Maskable mask. The first mask is the bit CICR.TLI (R230.5): it can be set or cleared to enable or disable respectively the Top Level Interrupt request. If it is enabled, the global Enable Interrupt bit CICR.IEN (R230.4) must also be enabled in order to allow a Top Level Request.
The second mask NICR.TLNM (R247.7) is a setonly mask. Once set, it enables the Top Level In-
terrupt request independently of the value of CICR.IEN and it cannot be cleared by program. Only the processor RESET cycle can clear this bit. The Top Level Interrupt Service Routine cannot be interrupted by any other interrupt request, in any arbitration mode, even by another Top Level Interrupt request.
Warning. The interrupt machine cycle of the Top Level Interrupt does not clear the CICR.IEN bit, and the corresponding iret does not set it.
Please refer to additional warning on last page of this chapter.

4.7 ON-CHIP PERIPHERAL INTERRUPTS

The general structure of the peripheral interrupt unit is described here, however each on-chip peripheral has its own specific interrupt unit containing one or more interrupt channels, or DMA channels. Please refer to the specific peripheral chapter for the description of its interrupt features and control registers.

Figure 4-13. Top Level Interrupt Structure

ON-CHIP PERIPHERAL INTERRUPTS (Continued)

The on-chip peripheral interrupt channels provide the following control bits:

- Interrupt Pending bit (IP)

Set by hardware when the Trigger Event occurs. Can be set/cleared by software to generate/cancel pending interrupts and give the status for Interrupt polling.

- Interrupt Mask bit (IM)

If $\mathrm{IM}=$ " 0 ", no interrupt request is generated. If $1 \mathrm{M}=$ " 1 " an interrupt request is generated whenever IP = " 1 " and CICR.IEN = " 1 ".

- Priority Level (PRL, 3 bits)

These bits define the source priority level
PRL=0: the highest priority
PRL=7: the lowest priority (the interrupt cannot be acknowledged)

- Interrupt Vector Register (IVR, up to 7 bits) The IVR points to the vector table which itself contains the interrupt routine start address.

Figure 4-14. Wait For Interrupt Timing

4.8 WAIT FOR INTERRUPT INSTRUCTION

The Wait For Interrupt instruction suspends program execution until an interrupt request is acknowledged. During the WFI instruction, the CPUCLK is halted while INTCLK keeps running. Under this state, the power consumption of the processor is lowered by the CORE power consumption value.

4.9 INTERRUPT RESPONSE TIME

Interrupt requests are sampled 6 CPUCLK cycles before the end of the instruction. If Wait For Interrupt is in progress, requests are sampled every 5 CPUCLK cycles. If the interrupt request comes from an external pin, the programmed event has to be set a minimum of one CPUCLK cycle before the sampling time.

Figure 4-15. Interrupt Acknowledge Timing

INTERRUPT RESPONSE TIME (Continued)

In order to guarantee the falling/rising edge detection, input signals must be kept low/high for a minimum of one CPUCLK cycle.
An interrupt machine cycle takes 26 internal clock cycles (CPUCLK), with some exceptions as follows:

- 28 internal clock cycles (CPUCLK), if a Wait For Interrupt is in progress
- 32 internal clock cycles (CPUCLK), if the acknowledge cycle follows a DMA transfer with Register File

Figure 4-16. External Interrupt Response Time

4.10 INTERRUPT REGISTERS

CICR R230 (E6h) System Read/Write Central Interrupt Control Register
Reset value: 10000111 (87h)
7

GCEN	TLIP	TLI	IEN	IAM	CPL2	CPL1	CPL0

b7 = GCEN: Global Counter Enable bit. When set the 16 bit MultiFunction Timers are enabled (see Timer Control Register in MULTI FUNCTION TIMER chapter)
b6 = TLIP: Top Level Interrupt Pending bit. Set by hardware when the Trigger Event occurs. Cleared by hardware when the Top Level Interrupt is acknowledged.
b5 = TLI: Top Level Interrupt bit. If TLI ="1", and IEN is set, a Top Level Interrupt request is generated as TLIP is set. If TLI = " 0 ", a request is generated only if TLNM is set.
b4 = IEN: Interrupt Enable. If IEN = "0", no maskable Interrupt requests are generated. This bit is cleared by the interrupt machine cycle and it is set by the IRET instruction of maskable routines.
b3 = IAM: Interrupt Arbitration Mode. If IAM = "0", Concurrent Arbitration Mode is selected; If IAM = " 1 " Nested Mode is selected.
b2-b0 = CPL2, CPL1, CPL0: Current Priority Level. Defines the Current Priority Level under service. $\mathrm{CPL}=0$ is the highest priority. $\mathrm{CPL}=7$ is the lowest priority. This bits may be modified directly by the interrupt hardware when the Nested Interrupt Mode is used.

EITR R242 (F2h) Page 0 Read/Write External Interrupt Trigger Event Register
Reset value: XXXX 0000 (00h)
7 0

TED1	TEDO	TEC1	TEC0	TEB1	TEB0	TEA1	TEA0

If TExy bit is set, the pending bit will be set upon the rising edge of the input signal.
If TExy is cleared, the pending bit will be set upon the falling edge of the input signal.
All bits are set/reset only by software.
b7 = TED1: Trigger Event of Interrupt Channel D1
b6 = TED0: Trigger Event of Interrupt Channel D0
b5 = TEC1: Trigger Event of Interrupt Channel C1
b4 = TEC0: Trigger Event of Interrupt Channel C0
b3 = TEB1: Trigger Event of Interrupt Channel B1
b2 = TEB0: Trigger Event of Interrupt Channel B0
b1 = TEA1: Trigger Event of Interrupt Channel A1
b0 $=$ TEA0: Trigger Event of Interrupt Channel AO
EIPR R243 (F3h) Page 0 Read/Write External Interrupt Pending Register
Reset value: 00000000 (00h)
7 0

IPD1	IPDO	IPC1	IPC0	IPB1	IPB0	IPA1	IPA0

b7 = IPD1: Interrupt Pending bit Channel D1
b6 = IPD0: Interrupt Pending bit Channel D0
b5 = IPC1: Interrupt Pending bit Channel C1
b4 = IPC0: Interrupt Pending bit Channel C0
b3 = IPB1: Interrupt Pending bit Channel B1
b2 = IPB0: Interrupt Pending bit Channel B0
b1 = IPA1: Interrupt Pending bit Channel A1
b0 = IPA0: Interrupt Pending bit Channel A0
IP bits are hardware set upon the occurence of the trigger event and are reset by the interrupt acknowledge machine cycle.
Note. IP bits may be set by the programmer to implement a software interrupt.

INTERRUPT REGISTERS (Continued)
EIMR R244 (F4h) Page 0 Read/Write External Interrupt Mask-bit Register
Reset value: 00000000 (00h)

IMD1	IMDO	IMC1	IMCO	IMB1	IMBO	IMA1	IMAO

EIMR bits are set/reset by software
When the IM bit is set (and the global IEN is enabled), an interrupt request is generated if the corresponding IP bit is set. When $\mathrm{IM}=$ " 0 ", no request will be generated.

- IMxy = "1": an interrupt request can be acknowledged (depending on IEN)
- $\operatorname{IMxy}=$ " 0 ": an interrupt request is masked.
b7 = IMD1: Interrupt Mask of Interrupt Channel D1
b6 = IMD0: Interrupt Mask of Interrupt Channel D0
b5 = IMC1: Interrupt Mask of Interrupt Channel C1
b4 = IMC0: Interrupt Mask of Interrupt Channel C0
b3 = IMB1: Interrupt Mask of Interrupt Channel B1
b2 = IMB0: Interrupt Mask of Interrupt Channel B0
b1 = IMA1: Interrupt Mask of Interrupt Channel A1
b0 = IMA0: Interrupt Mask of Interrupt Channel A0

EIPLR R245 (F5h) Page 0 Read/Write
External Interrupt Priority Level Register
Reset value: 11111111 (FFh)
7

PL2D	PL1D	PL2C	PLIC	PL2B	PL1B	PL2A	PL1A

EIPLR bits are set/reset by software
b7-b6 = PL1D, PL2D: Priority level for the Group INTDO, INTD1
b5-b4 = PL1C, PL2C: Priority level for the Group INTC0, INTC1
b3-b2 = PL1B, PL2B: Priority level for the Group INTB0, INTB1
b1-b0 = PL1A, PL2A: Priority level for the Group INTAO, INTA1

EIVR R246 (F6h) Page 0 Read/Write External Interrupt Vector Register
Reset value: xxxx 0110 (X6h)

7
V7

b7-b4 = V7 to V4: Most significant nibble of External Interrupt Vector. Not initialized by reset.
b3 = TLTEV: Top Level Trigger Event bit When set, the Top Level event is triggered on rising edge of NMI input pin. Triggering on the falling edge of the NMI input pin is activated when this bit is " 0 " (reset value)
b2 = TLIS: Top Level Input Selection bit This bit selects the source of the Top Level Interrupt between the external NMI pin (when " 1 ", the reset value) and the Timer/Watchdog End of Count (when " 0 ").
b1 = IAOS: Interrupt AO Selection bit When set, the External Interrupt pin is selected as the External Interrupt Channel A0 source. When reset the source is the Timer/Watchdog End of Count interrupt.
b0 = EWEN: External Wait Enable bit When set, this bit enables the WAIT input pin to stretch the external memory access cycle. For more details of the WAIT mode, the reader should refer to the Clock and Wait chapter or External memory Interface chapter.

NICR R247 (F7h) Page 0 Read/Write Nested Interrupt Control Register
Reset value: 00000000 (00h)
7 0

TLNM	HL6	HL5	HL4	HL3	HL2	HL1	HLO

b7 = TLNM: Top Level Not Maskable.
If TLNM = " 1 ", a top level request is generated as TLIP is set. Once TLNM is set, it can be cleared only with an hardware reset
bx = HLx: Hold Level x These bits are set to " 1 " when, in Nested Mode, an interrupt service routine at level x is interrupted from a request with higher priority (other than the Top Level interrupt request). It is cleared by the iret execution when the routine at level x is recovered.

WARNING

If a Maskable Top Level Interrupt is generated, and if the TLI pending bit is cleared by software, any further External Interrupt request is stopped until a new Top Level Interrupt is generated and serviced.
The conditions causing this are the following:

1) The Top Level Interrupt is maskable.
2) The arbitration cycle of the Top Level Interrupt happens during the first INTCLK cycle of the DI instruction.
3) The TLIP bit is cleared (Top Level Interrupt pending bit, R230, bit 6).
4) The IEN bit is set (Interrupt Enable bit, R230, bit 4).

A workaround to avoid this situation may be implemented in software, by exchanging the DI instruction in the program with any other instruction that clears IEN.
For example :

```
srp # 28 ; System Register Group
bres r6.4 ; Reset bit 4 (equivalent
to DI)
```


5 ON-CHIP DMA

5.1 INTRODUCTION

The ST9 includes on chip Direct Memory Access (DMA) channels to provide high-speed data transactions between peripherals and memory or the Register File. Multi-channel DMA is fully supported by peripherals with their own controller and DMA channel(s). Each DMA channel transfers data to or from contiguous locations of the Register File, Program Memory or Data Memory. The maximum number of transactions that each DMA channel can perform is 222 if the Register File is selected, or 65536 if Program or Data Memory is selected.
The DMA controller in the Peripheral uses an indirect addressing mechanism to DMA Pointers and Counter Registers stored in the Register File. This is the reason that the maximum number of transactions for Register File is 222, as two Registers are allocated for the Pointer and Counter. Register pairs are used for memory pointers and counters to offer the full 65536 byte and count capability.
The ST9 supports a fully programmable DMA priority structure included within the interrupt structure.

5.2 DMA PRIORITY LEVEL ARCHITECTURE

The 8 priority levels used for interrupts are also used to prioritize the DMA requests, which are arbitrated in the same arbitration phase as interrupt requests. If the event occurrence requires a DMA transaction, this will take place at the end of the current instruction execution. When an interrupt and a DMA request occur simultaneously, on the same priority level, the DMA request is serviced before the interrupt.
Note however that an interrupt priority request must be higher than the CPL value in order to be acknowledged. For a DMA transaction request, it must be equal to or higher than the CPL value in order to be executed.
Thus only DMA transaction requests can be acknowledged when CPL $=7$.
DMA requests do not modify the CPL value as the DMA transaction is non-interruptable.

Figure 5-1. DMA Overview

DMA TRANSACTIONS (Continued)
Figure 5-2. DMA Between Registers and peripherals

Figure 5-3. DMA Between Memory and peripherals

5.3 DMA TRANSACTIONS

The purpose of on-chip DMA channel is to transfer a block of data from/to the peripheral to/from Register File or Memory. Each DMA transfer consists of three operations:

- A load from/to the peripheral data register to a location of Register File (or Memory) addressed through the DMA Address Register (or Register pair)
- A post-increment of the DMA Address Register (or Register pair)
- A post-decrement of the DMA transaction counter, which contains the number of transactions that have still to be performed.
If the DMA transaction is made between the peripheral and the Register File (Figure 5-2), one register is required to hold the DMA Address and one to hold the DMA transaction counter. These two registers must be located in the Register File: the DMA Address Register in the even addressed register, the DMA transaction Counter in the following register (odd address). They are pointed to by the DMA Transaction Counter Pointer Register (DCPR) located in the page registers of the peripheral. In order to select the DMA transaction with the Register File, the control bit DCPR.RM (bit 0 of DCPR) must be set.
The Transaction Counter Register must be initialized with the number of DMA transfers to perform and will be decremented after each transaction. The DMA Address Register must be initialized with the starting address of the DMA table in the Register File, and is increased after each transaction. These two registers must be located between addresses 00h and DFh of the Register File.
If the transaction is made between the peripheral and Memory Space (Program or Data Memory), a register pair (16 bits) is required for the DMA Address and for the DMA transaction Counter (Figure 5-3. Thus, two register pairs must be located in the Register File. The DMA Transaction Counter is pointed to by the DMA Transaction Counter Pointer Register (DCPR), the DMA Address is pointed to by the DMA Address Pointer Register (DAPR), both DCPR and DAPR are located in the page registers of the peripheral. When selecting the DMA transaction with memory, the control bit DCPR.RM (bit 0 of DCPR) must be cleared to " 0 ".

To select between Program or Data Memory, the control bit DAPR.DP (bit 0 of DAPR) must be cleared or set respectively.
Once the DMA table is completed (the transaction counter reaches 0 value), an Interrupt request to the CPU is generated.
The DMA transaction Counter must be initialized with the number of transactions to perform and will be decremented after each transaction. The DMA Address must be initialized with the starting address of the DMA table and is increased after each transaction. These two register pairs must be located betweeen addresses 00h and DFh of the Register File.
Once a DMA channel is initialized, a transfer can start. The direction of the transfer (data from/to peripheral to/from memory or Register File) is automatically defined by the type of peripheral and programming mode.
When the Request Pending bit is set by a hardware event (or by software), and the DMA Mask bit is set, a DMA request is generated. If the Priority Level of the DMA source is higher than or equal to the Priority Level under service (CPL) the DMA transfer is executed at the end of the current instruction. DMA transfer reads/writes data from/to the location pointed by the DMA Address Register, increments the DMA Address register and decrements the Transaction Counter Register. When the content of the Transaction Counter is decremented to zero, the DMA Mask bit (DM) is cleared and an interrupt request is generated according to the Interrupt Mask bit (End of Block interrupt). This End-of-Block interrupt request is taken into account depending on the PRL value.
WARNING. DMA request are not acknowledged if the top level interrupt service is in progress.

5.4 DMA CYCLE TIME

DMA and Interrupt requests are sampled 6 INTCLK cycles before the end of the instruction. If Wait For Interrupt is in progress, requests are sampled every 5 INTCLK cycles. DMA transactions are executed if their priority allows it.
A DMA transfer with the Register file takes 8 CPUCLK cycles, except when the Wait For Interrupt is in progress (10 CPUCLK cycles).
A DMA transfer with the memory takes 16 CPUCLK cycles except when the Wait For Interrupt is in progress (18 CPUCLK cycles).

Figure 5-4. DMA Transaction to Memory

Figure 5-5. DMA Transaction from Memory

5.5 THE SWAP-MODE

An extra feature of ST9 DMA channels of some peripherals (i.e the MultiFunction TIMER) is the SWAP mode. This feature allows transaction from two DMA tables alternatively. All the DMA descriptors in the Register File are thus doubled. Two DMA transaction counters and two DMA address pointers allow the definition of two fully independent tables (they only have to belong the same space, Register file or Data memory or Program memory). The DMA transaction is programmed to start on one of the two tables (say table 0) and, at the end of block, the DMA controller automatically swaps to the other table (table 1) by pointing to the other DMA descriptors. In this case, the DMA mask (DM bit) control bit is not cleared, but the End Of Block interrupt request is generated to allow the optional updating of the first data table (table 0).
Until the swap mode is not disabled, the DMA controller will continue to swap between DMA Table 0 and DMA Table 1.

5.6 DMA REGISTERS

As each peripheral DMA channel has its own control registers, the following register list should be considered as a general example. The names and register bit allocation shown here may be different from those found in the peripheral chapters.

DCPR Address set by Peripheral Read/Write DMA Counter Pointer Register
Reset value: undefined
7 0

C7	C6	C5	C4	C3	C2	C1	RM

b7-b1 = C7-C1: DMA Transfer Counter Register(s) Address
b0 = RM: Register File/Memory Selector If set, the DMA transactions are done with the Register File; if cleared, the DMA transactions are done with the Program or Data memory (see DAPR.DP)

IDCR Address set by Peripheral Read/Write Generic Peripheral Interrupt and DMA Control Reset value: undefined

7

		$\mathbb{I P}$	DM	IM	PRL2	PRL1	PRLO

b5 = IP: Interrupt Pending. Set by hardware when the Trigger Event occurs. Cleared by hardware when the request is acknowledged for DMA cycles and external interrupts only. Can be set/cleared by software in order to generate/cancel a pending request. Identical in function to IP of ICR.
b4 = DM: DMA Mask. If $\mathrm{DM}=$ " 0 " no DMA request is generated when the trigger event occurs. This bit is cleared whenever the transaction counter reaches zero (unless SWAP mode is active).
b3 = IM: Interrupt Mask. If IM = "0" no interrupt request is generated. If $\mathrm{IM}=" 1$ " DMA requests depend on DM bit value as shown above.
b2-b0 = PRL2, PRL1, PRLO: Priority Leve/ Definition of the source priority level. PRL = 0 is highest priority. If $\mathrm{PRL}=7$, no interrupt can be acknowledged, DMA requests will be.

DAPR Address set by Peripheral Read/Write
DMA Address Pointer Register
Reset value: undefined

$$
\begin{array}{ll}
7 & 0
\end{array}
$$

A7	A6	A5	A4	A3	A2	A1	DP

b7-b1 = A7-A1: DMA Address Register(s) Address
b0 $=$ DP: Data/Program Memory Selector: (DAPR.RM is " 0 ") if set the DMA transactions are made with the Data Memory; if cleared the DMA transactions are made with the Program Memory.

6 CLOCK

6.1 INTRODUCTION

The ST9 Clock generator module generates the internal clock for the ST9 core and the on-chip peripherals. The Clock generator can be driven by an external crystal circuit, connected to the OSCIN and OSCOUT pins, or by an external pulse generator, connected to OSCIN.

6.2 CLOCK MANAGEMENT

The oscillator circuit generates an internal clock signal with the same period and phase as at the OSCIN input pin. The maximum frequency allowed is 24 MHz .
As shown in Figure 6-6, the CLOCK1 signal drives a programmable divider by two. If the control bit MODER.DIV2 (R235.5) is set, the internal clock CLOCK2 is CLOCK1 divided by two; otherwise, if DIV2 bit is cleared, the clock signal CLOCK2 has the same period and phase as CLOCK1. CLOCK2 drives the internal clock INTCLK delivered to all ST9 on-chip peripherals and acts as the central timebase for all timing functions (eg Multifunction Timer or Serial Communications Interface Baud Rate generator).
The maximum frequency allowed for INTCLK is 12 MHz . For internal operating frequencies above 8 MHz , it is recommended to work with the Clock Divider active in order to provide a duty cycle of 50\% for INTCLK.

CLOCK2 also drives a programmable prescaler which generates the basic time base, CPUCLK, for the instruction executer of the ST9 core. This allows the user to slow the program execution time to reduce power dissipation, and to locally speed up certain code segments for time critical routines. The internal peripherals are not affected by the CPUCLK prescaler. The prescaler value divides the input clock by the value programmed in the control bits MODER.PRS2,1,0 (R235.4,3,2). If the prescaler value is zero, no prescale is made, thus CPUCLK has the same period and phase as CLOCK2 and INTCLK. If the value is different from 0 , the prescaling is equal to the value plus one, ranging thus from two (PRS2, $1,0=1$) to eight (PRS2,1,0 = 7). The clock generated is shown in Figure 6-2. It must be noticed that the prescaling of the clock does not keep the duty cycle to 50%, but stretches the high level of the clock until completion.
When External Memory Wait (or Bus Request or Wait for Interrupt) events occur, CPUCLK is stretched on the high level for the whole period required by the function.
Note. The added wait cycles refer to the INTCLK frequency and not the original CPUCLK.
Figure 6-3 shows an example of a memory access cycle with the CPUCLK prescaled by 2 and with 5 added Wait states.

Figure 6-1. Peripheral and Core Clocks

6.3 CLOCK CONTROL REGISTER

The ST9 clock division by 2 and the clock prescaling are controlled by the MODER register.
Note. This register contains bits with other functions. Only the bits relating to control of the clock are shown here.

MODER R235 (EBh) System Read/Write Mode Register
Reset Value : 11100000 (EOh)

7							
X	X	DIV2	PRS2	PRS1	PRS0	X	X

b5 = DIV2: OSCIN Divided by 2. This bit controls the divide by 2 circuit which operates on the OSCIN Clock. A logical "1" value means that the OSCIN clock is internally divided by 2 , and a logical " 0 " value means that no division of the OSCIN Clock occurs.
b4-b2 = PRS2, PRS1, PRS0: Prescaling of ST9 Clock. These bits define the prescaler value used to prescale the CPUCLK from INTCLK. When these three bits are reset, the CPUCLK is not prescaled, and is equal to INTCLK; in all other cases, the internal clock is prescaled by the value of (PRS2, $1,0+1$).

Figure 6-2. Core Clock Prescaling

Figure 6-3. Memory Access with a Clock Prescaler by 2 and 5 Wait Cycle

6.4 OSCILLATOR CHARACTERISTICS

The on-chip oscillator circuit (Figure 6-4) is an inverting gate circuit.
Note. Owing to the Q factor required, Ceramic Resonators may not provide a reliable oscillator source.
In Halt mode, set by means of the HALT instruction, the parallel resistor R is disconnected and the oscillator is disabled, forcing the internal clock CLOCK1 to a high level and OSCOUT to a low level.
To exit the HALT condition and restart the oscillator, an external RESET pulse is required of a minimum duration of 12 ms (Figure 6-7).
It must be noted that if the Timer/Watchdog watchdog function is enabled, a HALT instruction will not disable the oscillator. This to avoid stopping the watchdog if, by an error, a HALT code is executed. When this occurs, the ST9 CPU falls into an endless loop ended by the watchdog (or external) reset.

Figure 6-5. Crystal Oscillator

Table 6-1. Crystal Specification ($\mathrm{CO}<7 \mathrm{pF}$)

Frequency (MHz)	C1=C2=56pF Rs Max	C1=C2=47pF Rs Max	C1=C2=22pF Rs Max
24	20	25	70
16	40	60	150
12	80	100	250
8	180	240	600
4	700	800	600

Figure 6-4. Internal Oscillator Schematic

Note: \quad ROUT $<50 \Omega \quad \mathrm{R}>1 \Omega \quad 300 \Omega<\operatorname{RIN}<500 \Omega$

Figure 6-6. External Clock

Table 6-2. Oscillator Transductance

gm	Min	Typ	Max
mA / V	3	5.8	9.5

Legend:

Rs: Parasitic Series Resistance of the quartz crystal (upper limit)
C0: Parasitic capacitance of the quartz crystal (upper lımıt, $<7 \mathrm{pF}$)
C1, C2: Maxımum Total Capacitances on pins OSCIN and
OSCOUT(the value includes the external capacitance tied to the pin plus the parasitic capacitance of the board and of the device)
gm: Transconductance of the oscillator
Notes.The tables are relative to the fundamental quartz crystal only (not ceramic resonator).

OSCILLATOR CHARACTERISTICS (Continued)
Figure 6-7. Oscillator Start-up Sequence

7 RESET

7.1 INTRODUCTION

The processor Reset overrides all the other conditions and forces the ST9 to the reset state. During Reset, the internal registers are set to the reset value, as shown in Table 7-1 for the system and Page 0 Registers and the I/O pins are set to the Bidirectional Weak Pull-up mode (see Warning). The programmer must then initialize the ST9 system and peripheral control registers to give the required functions.

7.2 RESET GENERATION

The reset condition can be generated by the external pin RESET or by the on-chip Timer/Watchdog.
The on-chip Timer/Watchdog generates a reset condition if the watchdog mode is enabled (WCR.WDEN cleared, R252 page 0), and if the programmed period elapses without the specific code (AAh,55h) written to the appropriate register. The input pin RESET is not driven low by the onchip reset generated by the Timer/Watchdog.
During reset, the $\overline{\mathrm{DS}}$ output signal is kept low and the $\overline{A S}$ output is toggled with the crystal frequency (input at OSCIN) divided by 32. This condition is recognized by off-chip Z-bus peripherals as a reset condition.

Figure 7-1. Signal to be applied on Reset Pin

7.3 RESET PIN TIMING

The RESET pin has a Schmitt trigger input circuit with hysteresis. The internal reset is generated by the external pin synchronized with the internal clock. The power up reset circuit must keep the RESET input low for a minimum of the crystal startup period plus 53 crystal periods.
Once the RESET pin reaches a logical " 1 ", the processor exits from the reset status after 67 crystal periods from the rising edge ($\overline{\mathrm{DS}}$ is set). The processor then fetches from Program Memory locations 0 and 1 (power-on reset vector) and begins program execution from the address contained in the vector. If the ST9 is a ROMLESS version, without on-chip program memory, ports Port0, Port1 (and Port6 for ST905x family) are set to external memory mode (i.e Alternate Function) and the memory accesses are made to external Program memory with wait cycles insertion.
WARNING: I/O pins are set to the Weak Pull-up mode during the Reset cycle. This state is forced during the reset sequence, but the I/O pins can be in a random state for up to 64 crystal periods.
The application circuit must take this into account if it can lead to critical situations in the external circuitry.

7.4 PROCESSOR SYNCHRONIZATION UNDER RESET

During reset, a specific procedure has been implemented to synchronize two or more oscillators in a multi-micro ST9 based system, for example a majority voting high reliability system. Figure 7-2 shows the principle schematic for the multi-microprocessor synchronization. The master processor delivers the synchronous signal, output at its AS pin, to the R $W \mathbf{W}$ pin of the slave processors. The $\mathrm{R} / \overline{\mathrm{W}}$ pin is, under reset status, set to input with a weak ($10 \mathrm{k} \Omega$ typical) pull up resistor. The slave processor(s) synchronizes its internal clock phase with the clock received at its $\mathrm{R} \overline{\mathrm{W}} \mathrm{pin}$. To guarantee the phase synchronization, the reset status must be at least $32 \times 31=992$ crystal periods. All the processors must have the same input clock.

RESET (Continued)
Table 7-1. Internal Registers Reset Values

Register Number	System Register	Reset Value	Page 0 Register	Reset Value
F	(SSPLR)	undefined	Reserved	
E	(SSPHR)	undefined	(SPICR)	00h
D	(USPLR)	undefined	(SPIDR)	undefined
C	(USPHR)	undefined	(WCR)	7Fh
B	(MODER)	EOh	(WDTCR)	12h
A	(Page Ptr)	undefined	(WDTPR)	undefined
9	(Reg Ptr 1)	undefined	(WDTLR)	undefined
8	(Reg Ptr 0)	undefined	(WDTHR)	undefined
7	(FLAGR)	undefined	(NICR)	00h
6	(CICR)	87h	(EIVR)	x2h
5	(PORT5)	FFh	(EIPLR)	FFh
4	(PORT4)	FFh	(EIMR)	OOh
3	(PORT3)	FFh	(EIPR)	00h
2	(PORT2)	FFh	(EITR)	00h
1	(PORT1)	FFh	(EEPROM)	xx00 0000b
0	(PORTO)	FFh	Reserved	

Figure 7-2. Synchronization Under Reset

7.5 EPROM PROGRAMMING PIN

The ST9 versions with on-chip EPROM memory require an external programming voltage Vpp to perform the programming procedure. The Vpp voltage must be applied to the RESET pin during the whole programming phase. Refer to the EPROM Programming Board Manual for specifications.

RESET (Continued)
Figure 7-3. Exit From Reset Timing

ST9 - Reset

Notes :

8 EXTERNAL MEMORY INTERFACE

8.1 INTRODUCTION

In the event of an application requiring more ROM space than available on-chip, or for easier program management and customization with external memory or peripherals, the ST9 microcontroller provides an external memory interface. The external memory interface provides the memory lines and timing and status control signals, plus enhanced features including programmable memory wait cycles, bus request/acknowledge cycles and shared memory bus access control.

The ST9 Memory Control Unit automatically recognizes if a memory location belongs to on-chip memory. When the memory location is on-chip, it performs a machine cycle without DS generation, and the access is performed on-chip. If the location does not belong to on-chip memory, an access to off-chip memory is performed (generating the DS low pulse) through the Ports 0,1 (and 6 for ST905x family).
During Reset, $\overline{\mathrm{AS}}$ and $\overline{\mathrm{DS}}$ are driven to perform external peripherals reset and to implement, in conjunction with the R \bar{W} pin, a multi-microprocessor synchronization procedure (see Clock and Reset chapters).

8.2 CONTROL SIGNALS

$\overline{\text { AS }}$

Address Strobe (Output, Active low, Tristate). The rising edge of $\overline{A S}$ indicates that Memory Address, $R \bar{W}$ and P / \bar{D} Memory signals are valid.
$\overline{\mathrm{AS}}$ is released in high-impedance during a Bus acknowledge cycle or under processor control by setting the HIMP bit (MODER.0).
$\overline{\mathrm{DS}}$
Data Strobe (Output, Active low, Tristate). Data Strobe provides the memory data timing during external memory access cycle. When internal memory is accessed, $\overline{\mathrm{DS}}$ is kept high during the whole memory cycle. During an External memory write cycle, the data output at Port 0 is valid when $\overline{D S}$ is active. During a read cycle, the data at Port 0 must be valid before the trailing edge of $\overline{\mathrm{DS}}$.
$\overline{D S}$ is released in high-impedance during a Bus Acknowledge cycle or under processor control by setting the HIMP bit (MODER.O).

\mathbf{R} / \bar{W}

Read/Write (Output, Active low, Tristate). The R \bar{W} output signal identifies the type of memory cycle. When R/W = " 1 ", the memory cycle is a Memory Read cycle; when $R \bar{W}=$ " 0 ", it is a Memory Write Cycle. $\mathrm{R} / \overline{\mathrm{W}}$ output signal is defined at the beginning of the memory cycle and is stable until the next Memory cycle.
R / W is released in high-impedance during Bus acknowledge cycle or under processor control by setting the HIMP bit.

P/D

Program/Data Memory_(Alternate Function Output, Active low). The P/D output signal selects between Program and Data Memory. When P/D = " 1 ", the memory referenced by the processor is the Program Memory; when $P / \bar{D}=$ " 0 ", the memory referenced is the Data Memory. The P/D output signal is defined at the beginning of the memory cycle and is stable until the next Memory cycle.
P / \bar{D} is enabled by software as the Alternate Function output of a parallel port bit (refer to the Pin Configuration and Alternate Function tables to identify the specific port and pin).

WAIT

External Memory Wait (Input, Active low). The WAIT input signal indicates to the ST9 that the external memory requires more time to complete the memory access cycle. The memory cycle will then be stretched. WAIT is enabled by setting EWEN (EIVR. 0 R246 Page 0).

BREQ

Bus Request (Input, Active low). The BREQ input signal indicates to the ST9 that a bus request has tried or is trying to gain control of the memory bus. BREQ is enabled by setting BRQEN (MODER. 1 R235).
$\overline{B A C K}$
Bus Acknowledge (Alternate Function Output, Active low). The BACK output signal indicates that the ST9 has relinquished control of the memory bus in response to a bus request.

CONTROL SIGNALS (Continued)

PO

Port 0 (Input/Output, Push-Pull/Open-Drain/Weak Pull-up). Port0 can be configured as a bit programmable Parallel I/O port or as External Memory interface for multiplexed Low-Address/Data (A0-7/D0-7).
P1
Port 1 (Input/Output, Push-Pull/Open-Drain/Weak Pull-up). Port1 can be configured as a bit program-
mable Parallel I/O port or as External Memory interface for the High-Address (A8-A15).
P6 (When available)
Port 6 (Input/output, Push-Pull/Open-Drain/Weak Pull-up). This port, when available, can be configured as bit programmable Parallel I/O port or as External Memory interface for the Low-Address (A0-7), allowing a non-multiplexed memory bus capability.

Figure 8-1. ST9 Accessing External Program and Data Memory.

8.3 MEMORY ACCESS CYCLE

Each memory access cycle is composed of three CPUCLK phases: T1, T2, T3. During phase T1, the memory address is output upon AS falling edge and is valid upon the rising edge of $\overline{\text { AS. Port1 and }}$ Port6 maintain the address stable until the next T1 phase.
If the Memory access cycle is a Read cycle, Port0 pins are released to high impedance with the falling edge of $\overline{\mathrm{DS}}$ until the next $\overline{\mathrm{AS}}$ falling edge.
If the Memory access is a Write cycle, Port0 is held active, the data is output during T2 and is maintained until the next address is output (upon the falling edge of $\overline{\mathrm{AS}}$). DS is pulled low during T2 only if the Memory access is an External Memory access. If the memory cycle is a Memory Read, it is pulled low at the beginning of T2. If it is a Memory Write, $\overline{\text { DS }}$ is kept low from the middle of T2 until the middle of T3.

Figure 8-2. External Memory Read/Write.

8.4 STRETCHED ACCESS CYCLE

The ST9 can interface to memory with slow access times by automatically inserting additional Wait cycles during the External Memory cycle. On-chip memory accesses do not require WAIT cycles and run at the full speed of CPUCLK.
Three Wait cycle sources are available:

- The input pin WAIT from external sources
- The internal programmable Wait cycle generator
- Internal memories with stretched access cycle (EEPROM)
The input pin WAIT (when enabled) is sampled on the CPUCLK falling edge of phase T2. If active (low), one INTCLK clock cycle will be added. During the added clock cycle, the WAIT pin is sampled again. CPUCLK is stretched for as long as the WAIT input is active.
The internal programmable WAIT cycle generator allows the extension of the External Memory cycle automatically by the programmed number of WAIT cycles. Two three bit fields in the Wait Control Register WCR (R252 Page 0) allow the stretching of Program and Data Memory access cycles independently by 0 to 7 cycles. WPM2,1,0 (WCR.5,4,1) contain the number of Program memory wait cycles to be added, WDM2,1,0 (WCR.2,1,0) contain the number of Data memory wait cycles to be added.

Table 8-1. Number of wait cycles added

WDM2 WPM2	WDM1 WPM1	WDMO WPMO	Nb of Clock cycle added	Note
0	0	0	0	No Wait cycle
0	0	1	1	
0	1	0	2	
0	1	1	3	
1	0	0	4	
1	0	1	5	
1	1	0	6	
1	1	1	7	Reset Value

STRETCHED ACCESS CYCLE (Continued)

Figure 8-3. External Memory Read/Write Sequence with External Wait.

STRETCHED ACCESS CYCLE (Continued)

Figure 8-4. External Memory Read/Write Sequence with Programmable Wait.

8.5 SHARED BUS

When the ST9 runs in a multi-master bus system, it is necessary to release the bus control to other bus master(s). This operation can be performed by the Bus Request/Acknowledge capability supported by the ST9.
Once enabled by setting BRQEN (MODER. 1 R235), BREQ is sampled by the ST9 upon the falling edge of the internal clock during the phase T3. When the BREQ signal is sampled low, the CPUCLK clock is stretched and the External Memory signals ($\overline{A S}, \overline{D S}, R / \bar{W}, ~ P 0, ~ P 1(, ~ P 6 ~ f o r ~ S T 905 x)) ~(~) ~$ are released to high-impedance. The input signal BREQ is then continuously monitored, and when it is sampled high the External Memory interface pins are driven again by the ST9 after two addi-
tional internal clock cycles. These cycles are used to fully drive and propagate the control and data signals through the external memory bus before CPUCLK is restarted.
The output signal BACK is driven low during the whole period when the External Memory interface is released to high impedance.
Under the Reset status, the bits of the I/O port(s) associated to BREQ and BACK are set to Bidirectional Weak pull-up mode and the enable bit BRQEN is cleared. To enable this function, the program must set the BACK port as an Alternate Function output and enable (set to " 1 ") the bit BRQEN.

Figure 8-5. Bus Request/Acknowledge Timing.

SHARED BUS (Continued)

When it is required to disable the external bus, but to keep the processor running in the on-chip memory, the external memory bus can be disabled by software programming of the HIMP (MODER.0) control bit. By setting HIMP, the External Memory Interface ($\overline{\mathrm{AS}}, \overline{\mathrm{DS}}, \mathrm{R} / \overline{\mathrm{W}}$ and Port0, Port1 (and Port6), if not configured as I/O lines) is set into a high impedance state. In this way, the external memory bus can be used by another resource (e.g. diagnostic equipment or external programming of system memories) and the ST9 program can continue accessing the on-chip memory. This feature can also be useful for high security applications where the flow and addresses of the on-chip security algorithms must not be shown on the external address pins.
When running in internal memory, disabling the external bus will reduce the noise emitted by the micro.
The disabling of the External Memory Interface by setting HIMP = " 1 " can be interrupt driven by applying the "Bus Request" input signal to an External Interrupt pin. In this case the bus disable response time will be longer than the automatic system using the BREQ request, however the ST9 can continue to execute the program written in the on-chip memory.

8.6 PORTS P0, P1, P6 INITIALIZATION AFTER RESET

The Port 0, Port 1 and Port 6 (for ST905x family) initialization after reset depends on the configuration of the ST9 as shown in Table 8-2.
If the device has on-chip Program memory (ROM or EPROM), the ports (or the existing parts of them) are set to Bidirectional Weak Pull-up Mode.

Table 8-2. Port status after Reset

Device	Port 0, 1, 6 Initialization
ROM EPROM	Bidirectional Weak-Pull-Up (P×C0, $\mathrm{PxC} 1, \mathrm{PxC2}=0,0,0 ;$ Data $=1)$
ROMLESS	Memory Address and Data Alternate Function Push-Pull (PxC0, $\mathrm{PxC1}, \mathrm{PxC2}=1,1,0 ;$ Data $=1)$

If the device is ROMLESS or a ROM device with the ROMless function enabled, the ports (or the existing part of them) are set to Alternate Function Push-Pull Mode, providing the Address and Data lines to interface to the external Program and Data Memory from Reset.

8.7 ROMLESS FUNCTION

In order to accomodate the use of ROM based ST9 devices in the event of a subsequent ROM code change, a ROMless function may be enabled on a specified Port I/O pin by Mask Option. This function is activated by pulling the ROMless select pin to ground with a 100 kohm resistor. This status is latched on the rising edge of the RESET pin and, when low, the on-chip PROGRAM memory (ROM or EPROM) is disabled, causing all instruction fetch cycles to be external.
If the ROMless function is enabled by the mask option, and the internal program is to be used, then the ROMless pin must be held to a high level (via a 100 kohm resistor to V_{DD}) during the Reset cycle. After the Reset cycle the ROMless pin may be programmed for any I/O or Alternate function.

Figure 8-6. ROMIess Selection

8.8 PIPELINE

The ST9 implements pipe-line stages on instruction fetch and execution in order to increase the execution speed. The instruction execution is in fact hidden by the Memory access cycles: the execution of one instruction is overlapped with the prefetch of the two successive bytes. The fetch of the first byte (opcode) is identified by the machine cycle M1, the fetch of the second byte by M2.

The 2 bytes instructions, whose execution time is 6 CPUCLK cycles, have the instruction execution hidden by the following instruction prefetch. For those instructions that require an execution time longer than the time to prefetch the following bytes, perform memory access during their execution or interrupt the sequential memory access, the pipe is flushed.

Figure 8-7. Instruction Pipe-line Stages

8.9 "SPURIOUS" MEMORY READ ACCESSES

The ST9 in certain cases produces external memory accesses which may be regarded as "Spurious" in their nature. While these do not affect the correct operation of the ST9, these accesses may cause misunderstandings when developing and debugging applications as the signals AS and DS are produced, and Ports 0, 1, (6 for ST905x) output updated addresses (if used to interface to external memory).
The spurious reading cycle is produced when executing specific instructions. This is one of 4 cases: double reading, reading before writing, reading when the stack is internal or prefetch reading.

- DOUBLE READING

A memory location read by the ST9 is read two times consecutively (instead of one).
Involved instruction(s):
DIV rr,r ; divide (16/8)
The first byte of the code following DIV is fetched two times. The double reading does not occur if the Overflow flag was set by DIV, or if Divide by zero was trapped. The P / \bar{D} line remains high during the cycle.

- READING BEFORE WRITING

A memory location which is to be written to by the ST9 is previously read.
Involved instruction(s):

$$
\begin{align*}
(\mathrm{rr})+,(\mathrm{r})+ & \text {;load (byte) } \tag{LD}\\
& \text {;Memory, Register }
\end{align*}
$$

The destination memory location is read before being written. The P/D line reflects the memory space of the destination memory location.

- READING WHEN THE STACK IS INTERNAL If the System and/or User Stack has been programmed to use the Register File, a memory location of Data Space is POPed in parallel.
Involved instruction(s):

While a byte is being poped from the Register File, a memory location in Data Space is read in parallel with its address given by SSPHR+SSPLR for POP instructions and by USPHR+USPLR for POPU instructions. The external data is ignored.
POPW RR ; POP (word) from System Stack POPUW RR ; POP (word) from User Stack
While the high er address byte is being popped from the Register File, a memory location in Data Space is read in parallel with its address given by SSPHR+SSPLR for POPW instructions and by USPHR+USPLR for POPUW instructions. No spurious reading is made for the lower byte.

RET ; Return from Subroutine

While the Program Counter Higher and Lower bytes are POPed from the Register File, two memory locations are read at addresses given by SSPHR+SSPLR.
IRET ; Return from Interrupt
While the Program Counter Higher and Lower bytes and the FLAGS are poped from the Register File, three memory locations are read at addresses given by SSPHR+SSPLR. When working with Internal Stacks, SSPHR and USPHR contents are don't care from the point of view of program execution, but they must be considered RESERVED by the User as the instructions listed in this section perform updating of SSPHR/USPHR, together with the spurious reading.

- PREFETCH READING Due to the ST9 Pipeline, instructions which stop the Core or which perform program branches can fetch bytes of the following program code while the pipeline is being flushed.
Involved instruction(s):
WF I ; Wait For Interrupt
reads two bytes of the following code.
HALT ; Halt
CALL (rr) ; Unconditional Call subroutine
read one byte of the following code in Program space ($\mathrm{P} / \overline{\mathrm{D}}$ high).

8.10 REGISTERS

WCR R252 (FCh) Page 0 Read/Write Wait Control Register
Reset Value: 01111111 (7Fh)
7
0

X	WDGEN	WDM2	WDM1	WDM0	WPM2	WPM1	WPM0

b7 = Reserved, reads as a "0".
b6 = WDGEN: refer to Timer/Watchdog chapter.
WARNING. Resetting this bit to zero has the effect of setting the Timer/Watchdog to the Watchdod mode. Unless this is desired, this must be set to " 1 ".
b5-b3 = WDM2-0: Data Space Wait Cycles. These bits contain the number of INTCLK cycles to be added automatically to external Data memory accesses. WDM $=0$ gives no additional wait cycles, WDM $=7$ provides the maximum 7 INTCLK cycles (this is the reset condition in order to allow the use of slow access time external memory, if faster memory is used, then this value may be modified by the User).
b2-b0 =WPM2-0: Program Space Wait Cycles. These bits contain the number of INTCLK cycles to be added automatically to external Program memory accesses. WPM $=0$ gives no additional wait cycles, WPM $=7$ provides the maximum 7 INTCLK cycles (this is the reset condition in order to allow the use of slow access time external memory, if faster memory is used, then this value may be modified by the User).
Note. the number of clock cycles added refer to INTCLK and NOT to CPUCLK.
WARNING. The Wait Control Register is reset to give the maximum number of Wait cycles for external memory. To give the optimum performance of the ST9 when used in single-chip mode (no external memory) the WDM2,1,0 and WPM2,1,0 bits should be reset to " 0 ".

9 I/O PORTS

9.1 INTRODUCTION

The ST9 is provided with dedicated lines for input/output. These lines, grouped into 8 -bit ports, can be independently programmed to provide parallel input/output, or to carry input/output signals to/from the on-chip peripherals and Core (e.g. Timers and SCI). All ports have active pullups and pull-down resistors compatible with TTL loads. In addition, pull-ups can be turned off for open-drain operation and weak pull-ups can be turned on to save off-chip resistive pull-ups. Input buffers can be either TTL or CMOS compatible.

9.2 CONTP.OL REGISTERS

Each port PX has a Data Register PX, and three associated control registers (PXC0, PXC1, PXC2) which define the port line configuration and allow dynamic change in port configuration during program execution. Ports and control registers are mapped into the Register File as shown in Figure 9-1 Ports and control registers are treated like any other general-purpose register. There are no special instruction for port manipulation, any instruction that addresses a register can address the ports. Data can be directly accessed in the port register, without passing through other memory or "accumulator" locations.

Figure 9-1. I/O Register Map

CONTROL REGISTERS (Continued)

During the reset state, all the Ports are set as bidirectional/weak pull-up mode, with the output data register set to FFh. This condition is also held after reset (except for Ports 0, 1 (, 6 for ST905x) in ROMless devices, see Memory chapter) and can be redefined under software control at any time.

9.3 PORT BIT STRUCTURE AND PROGRAMMING

By programming the control bits PXCO.n and PXC1.n (see Figure 9-2) it is possible to configure bit PX.n as Input, Output, Bidirectional or Alternate Function Output, where X is the number of the I/O port, and n the bit within the port ($n=0$ to 7).
When programmed as input, it is possible to select the input level as TTL or CMOS by programming the control bit PXC2.n.
The output buffer can be programmed as Pushpull or Open-drain. A Weak Pull-up configuration can be used when the port bit is programmed as Bidirectional. This is an Open-drain configuration with a high pull-up resistor value (turned on by writing a "1"), to avoid the requirement for external resistances.

The basic structure of the bit PX.n of a general purpose port PX is shown in Figure 9-3.
Independently to the chosen configuration, when the User addresses the port as an destination register of an instruction, the port is written to and the data is transferred from the internal Data Bus into the Output Master Latches. When the port is addressed as a source register for an instruction, the port is read and the data stored in the Input Latch is transferred onto the internal Data Bus.
When PX.n is programmed as Input: (Figure 9-4)

- The Output Buffer is forced tristate
- The data present on the I/O pin is sampled into the Input Latch at the beginning of the execution of the instruction which is accessing the port.
- The data stored in the Output Master Latch is copied into the Output Slave Latch at the end of the execution of each instruction. So if bit PX.n is reconfigured as Output or Bidirectional, the data stored in the Output Slave Latch is reflected on the I/O pin.

Figure 9-2. Control Bits

Table 9-1. Port Bit Configuration Table

PXC2n	1	0	1	0	1	0	1	0
PXC1n	0	0	0	0	1	1	1	1
PXC0n	0	0	1	1	0	0	1	1
PXn Configuration	BID	BID	IN	IN	OUT	OUT	AF	AF
PXn Output	OD	WP	TRI	TRI	OD	PP	OD	PP
PXn Input	TTL	TTL	TTL	CMOS	TTL	TTL	TTL	TTL

Notes:

| BID : BIDIRECTIONAL | OD : OPEN DRAIN |
| :--- | :--- | :--- |
| IN $:$ INPUT | WP : WEAK PULL-UP |
| OUT : OUTPUT | PP : PUSH-PULL |
| AF : OUTPUT ALTERNATE FUNCTION | TTL: TTL STANDARD INPUT |
| TRI :TRISTATE | CMOS: CMOS STANDARD INPUT |

PORT BIT STRUCTURE AND PROGRAMMING (Continued)

Figure 9-3. Basic Structure of an I/O Port Pin (except analog input)

Figure 9-4. Input Configuration

Figure 9-5. Output Configuration

PORT BIT STRUCTURE AND PROGRAMMING (Continued)

When PX. n is programmed as Output: (Figure 9.5)

- The Output Buffer is turned on in an Opendrain or Push-pull configuration
- The data stored in the Output Master Latch is copied both into the Input Latch and into the Output Slave Latch, driving the $1 / O$ pin, at the end of the execution of each instruction.
When PX.n is programmed as Bidirectional: (Figure 9-6)
- The Output Buffer is turned on in an Opendrain or Weak Pull-up configuration
- The data present on the I/O pin is sampled into the Input Latch at the beginning of the execution of each instruction
- The data stored in the Output Master Latch is copied into the Output Slave Latch, driving the I/O pin, at the end of the execution of each instruction.
WARNING. Due to the unique feature of the bidirectional mode of reading the external pin instead of the output latch, particular care must be taken with arithmetic/logic and boolean instructions performed on a bidirectional port pin.
These instructions use a read-modify-write sequence, and the result written in the port register depends on the logical level present on the external pin.
This may bring unwanted modifications to the port output register content.

Figure 9-6. Bidirectional Configuration

For example:
Port register content external port value OFh

03h
(Bits 3 and 2 are externally forced to 0)
Making a bset instruction on bit 7 will return:
Port register content external port value 83h 83h

(Bits 3 and 2 have been cleared.)

To avoid this situation, it is suggested that all the operations on a port, using at least one bit in bidirectional mode, are performed on a copy of the port register, then transferring the result with a load instruction to the I/O port.
When PX.n is programmed as Alternate Function Output (Figure 9-7) except fo Analog Inputs :

- The Output Buffer is turned on in an Opendrain or Push-pull configuration
- The data present on the I/O pin is sampled into the Input Latch at the beginning of the execution of each instruction
- A signal coming from an on-chip Function is allowed to load the Output Slave Latch driving the I/O pin. Signal timing is under control of the Function. If no Function is connected to PX.n the I/O pin is driven to a high level in Push-pull configuration and is driven to high impedance in open drain configuration.

Figure 9-7. Alternate Function Configuration

9.4 ALTERNATE FUNCTION ARCHITECTURE

Each single I/O pin may access three different types of ST9 internal signals:

- Data bus line (I/O)
- 'Alternate Function’ Input
- Alternate Function Output

Each pin configuration is made by software, thus allowing the User to choose the type of signal to access a pin. The choice of type of signal is made with the registers PXC2, PXC1, PXC0 of the I/O Port X (Please refer to the previous section for more details)

Pins Declared as an I/O

A pin declared as an I/O is a pin connected to the I/O buffer. In such a case, this pin may either be an Input or an Output or an I/O depending on the value stored in (PXC2, PXC1, PXC0)

Figure 9-8. Example of 3 Alternate Function Inputs

Figure 9-9. Example of 3 Alternate Function Inputs

Pin Declared As An 'Alternate Function' Input
A single pin may be directly connected to several Alternate Function inputs. In such a case, the User has to select the required input mode (TTL or CMOS levels) and to enable, by software, the selected Alternate Function module (by enabling it) and unselect all other Alternate Functions (by disabling them).
No specific configuration of the port is required to enable the input Alternate Function, as the input buffer is directly connected to each module using it. As more than one module can use the same input Alternate Function line, it is under User software control to enable a module to use the input Alternate Function.
The digital I/O remains operational even when using the Alternate Function input. The exception to this is for an I/O port bit connected to analog voltages (for the Analog to Digital Converter).
Pin Declared As An Alternate Function Output A pin declared as an Alternate function output corresponds to (PXC2,PXC1,PXC0) $=1,1,1$ or $0,1,1$. Several Alternate Function outputs may drive a common pin. In such a case, the Alternate Function output signals are ANDed before driving the common pin. The User has therefore to select, by software, the Alternate Function Output required by enabling it and disabling all other Alternate Function Outputs on the same pin (a disabled Alternate Function Output outputs a "1").
The inputs to on-chip Functions and Alternate Function Outputs are predefined for each I/O pin of an ST9. Please refer to the Alternate Function Table at the beginning of this datasheet for the exact configuration.

Figure 9-10. Example of One I/O Pin Configuration

ALTERNATE FUNCTION (Continued)

General Configuration
A single pin may be used, according to different phases of the software, as an I/O or connected to an input or an Alternate Function output. An example is given in Figure 9-10.
WARNING: When a pin is connected to an Input Function and to an Alternate Function output, the User must be aware of the fact that the Alternate Function output signal always input to the Alternate Function module(s) declared as input(s). Figure 910 shows an example where the signal P / D also enters RDSTB and INT3.

9.5 SPECIAL PORTS

9.5.1 Bit Structure For A/D Converter Inputs

When a port bit is used as input for an on-chip A/D Converter, its structure is modified as shown in Figure 9-11.
The behaviour of this bit is identical to the general purpose bit described in paragraph 9.66 except when it is programmed as Alternate Function. In this case, the Output Buffer is forced Tristate and the input of the Input Buffer is disconnected from the I/O pin and forced low. In this way the I/O pin is free to assume any analog value without causing power consumption in the Input Buffer. The bit MUST be programmed to (PXC2, PXC1, PXCO $=1,1,1$) to assume this special configuration.

Figure 9-11. A/D Input Port Bit Structure

9.6 I/O STATUS AFTER WFI, HALT AND RESET

The status of the ST9 I/O ports during the Wait For Interrupt, Halt and Reset operational modes is shown in the following table. The External Memory Interface ports are shown separately, however, if only the internal memory is being used and the ports are acting as I/O, the status is the same as shown for the other I/O ports.

- if ROMLESS (ST9 memory is Off-chip): P0, P1 are set to push-pull A.F. Push-pull, Output value is undefined.
- if not ROMLESS (ROM or EPROM parts) P0, P1 and P6 are set to Bidirectional Weak Pull-up, Output value is FFh (all pins high).
WARNING: I/O pins (other than the ROMless pin, if enabled by mask option) are set to the Weak Pull-up mode during the Reset cycle. This state is forced during the reset sequence, but the I/O pins can be in a random state for up to 64 crystal periods.
The application circuit must take this into account if it can lead to critical situations in the external circuitry.

Mode	P0	P1 [P6] ${ }^{(2)}$	I/O
WFI	HIgh Impedance	Next Address	No Affect (clocks output from ST9 running)
HALT	HIgh Impedance	Next Address	No Affect (clocks output from ST9 stopped)
RESET	Note 1	Bidirectional Weak Pull-up except: ROMless = weak weak pull-up	

Notes

1.P0 and P1 (when used to provide non-multiplexed low order address) setup depends on the ROMLESS condition. 2.for ST905x

10 HANDSHAKE/DMA CONTROLLER

10.1 INTRODUCTION

The handshake module allows the User to configure an I/O Port under handshake control or to support DMA operations, driven by an on-chip 16 bit Multifunction TIMER, between Data/Program Memory or Register File and an I/O port.
The module supports data exchange with handshake through port PX (where PX is predefined by the ST9 configuration) with up to 4 handshake lines: 2 Outputs (RDRDY and WRRDY) connected as Alternate Function Outputs and 2 Inputs (RDSTB and WRSTB).
Input, Output and Bidirectional Handshake modes are available.
Input Functions $\overline{\text { RDSTB }}$ and $\overline{\text { WRSTB }}$ are always associated to external interrupt channels. To synchronize handshake protocols generating interrupt
requests (as the following paragraph will show) the User must program the interrupt control register and the vector associated to the used line(s) (RDSTB and/or WRSTB). The active high output lines RDRDY and WRRDY are held high when not active in order to allow the Alternate Function Output connection of other ST9 peripherals.
DMA transfers can move data from Data/Program Memory or Register File to the I/O Port with Handshake capability or viceversa, using either the Multifunction Timer CAPTO or COMPO DMA Channels. In Figure 10-1 the four on-chip lines that connect the module to the on-chip Multifunction Timer to support DMA transfers are shown (DD (Data Direction), CO_SYNCHR(COmpare SYNCHronism), CA_SYNCHR (CApture SYNCHronism) and On Chip Event).

Figure 10-1. Handshake/DMA Controller Module Block Diagram

10.2 PROGRAMMABLE HANDSHAKE MODES

10.2.1 Input Handshake

Two Input Handshake Modes are available to synchronise input transitions on port bits programmed as Input or Bidirectional. Output or Alternate Function bits are not affected.
In the timings, READ PORT is an ST9 internal signal that transfers data from the Input Latches onto the Data bus.

Two Lines Input Handshake

When this mode is selected WRRDY is set to indicate that data can be loaded into the Input Latches of the Input and Bidirectional port pins. Data present on the pins is read when the peripheral forces a low level on WRSTB and is sampled on the rising edge of WRSTB.
When a rising edge on WRSTB occurs, WRRDY goes low signifying that the Input Latch is full and further loading must be inhibited until the ST9 reads the port. When the port register is read, WRRDY is set. Both low and high levels on WRSTB must last at least one INTCLK cycle.

The User is suggested to program the External Interrupt Channel associated with the WRSTB line to generate an interrupt request when a rising edge occurs. The ST9 can thus, in the course of its interrupt service routine, read the data furnished by the peripheral as soon as it is available.

Figure 10-2. Two Line Input Handshake

Figure 10-3. Two Line Input Handshake Timing

HANDSHAKE MODES (Continued)

One Line Input Handshake

Figures 10-4 and 10-5 illustrate the timing associated with the One Line (WRRDY) Input Handshake Mode.
When this mode is selected the ST9 sets WRRDY to indicate that data can be loaded into the Input Latches of the Input and Bidirectional port pins.
Data present on the pins is continuously sampled. When the ST9 is reading the port WRRDY goes low. As data is strobed into the port only when WRRDY goes high, the forced low state of WRRDY will prevent the Input Latch data from changing while ST9 is reading the port. When the ST9 read cycle finishes, WRRDY is set.

Figure 10-4. One Line Input Handshake

Figure 10-5. One Line Input Handshake Timing

HANDSHAKE MODES (Continued)

10.2.2 Output Handshake

Two Output Handshake Modes are available to synchronize output transitions on port bits programmed as Output or Bidirectional. I/O pins programmed as Input or Alternate Function Output are not affected.
In the timing diagrams, WRITE PORT is the internal signal that transfers data from the Internal Data Bus into the Port Output Master Latches.

Two Lines Output Handshake

Figure 10-7 illustrates the timing associated with the Two Lines (RDRDY, RDSTB) Output Handshake Mode (Figure 10-6).
When this mode is selected RDRDY is reset to indicate that no significant data is present on the Output and Bidirectional port pins. When the Output Slave Latches are written, RDRDY is set to indicate that data is ready for the peripheral device. In most systems the rising edge of RDRDY can be used as a latching signal in the peripheral device. RDRDY will remain high until a rising edge is received on RDSTB indicating that the peripheral has taken the data. Both low and high level on
$\overline{\text { RDSTB }}$ must last at least one ST9 INTCLK cycle. The User is suggested to program the External Interrupt Channel associated with the RDSTB line to generate an interrupt request when a rising edge occurs. The ST9 can thus, in the course of its interrupt service routine, furnish new data as soon as the previous data is taken by the peripheral.

Figure 10-6. Two Line Output Handshake

Figure 10-7. Two Line Output Handshake Timing

HANDSHAKE MODES (Continued)

One Line Output Handshake

Figure 10-9 illustrates the timing associated with the One Line (RDRDY) Output Handshake Mode Figure 10-8.
When this mode is selected RDRDY is reset to indicate that no significant data is present on the Output and Bidirectional port pins. When the Output Slave Latches are written to, RDRDY is set to indicate that data is ready for the peripheral device. In most systems the rising edge of RDRDY can be used as a latching signal in the peripheral device. No peripheral acknowledge is waited for. While ST9 is writing into the Output Slave Latches RDRDY goes low, RDRDY is set again when the new data is ready on the port pins.

Figure 10-8. One Line Output Handshake

Figure 10-9. One Line Output Handshake Timing

HANDSHAKE MODES (Continued)

10.2.3 Bidirectional Handshake

A Bidirectional Handshake Mode is available to synchronise bidirectional transitions on Port bits programmed as Bidirectional. When this mode is selected, the Output Buffer configuration of Bidirectional port pins programmed as W'eak Pull-up become Push-pull. Open-drain configuration is not modified. I/O bits set to Input, Output or Alternate Function Output are not affected.
Figure 10-11 illustrates the timing associated with the Bidirectional Handshake Mode. This mode is a combination of Two Lines Output Mode and Two Lines Input Mode using all four handshake lines, two for output (RDRDY, $\overline{\text { RDSTB }}$) and two for input control (WRRDY, WRSTB). In the timing INTCLK is the ST9 internal not stretched clock, WRITE PORT is the signal that transfers data from the Internal Data Bus into the port Output Master Latches and READ PORT is the signal that transfers data from the Input Latches onto the Data Bus. When Bidirectional Handshake mode is selected the Output Buffers of the Bidirectional port pins are forced tristate, WRRDY is set to indicate that data can be loaded into the Input Latches and RDRDY is reset to indicate that no significant data is present in the Output Slave Latches.
Input Transitions. Data present on the pins is sampled when the peripheral forces a low level on WRSTB. When a rising edge on WRSTB occurs, WRRDY goes low signifying that the Input Latches
are full and further loading must be inhibited until the ST9 reads the port. When the port register is read, WRRDY is set. Both low and high levels on WRSTB must last at least one ST9 INTCLK cycle.
The User is suggested to program the External interrupt Channel associated with the WRSTB line to generate an interrupt request when a rising edge occurs. The ST9 can thus, in the course of its interrupt service routine, read the data furnished by the peripheral as soon as it is available.

Figure 10-10. Four Line Bidirectional

Figure 10-11. Bidirectional Handshake Timing

HANDSHAKE MODES (Continued)
Output Transitions. When the Output Slave Latches are written to, RDRDY is set to indicate that data is ready for the peripheral device. When RDSTB goes low, data is allowed out onto the port pins. When a rising edge is received on RDSTB, indicating that the peripheral has taken the data, the Output Buffers are forced tristate and RDRDY goes low. Both low and high level on RDSTB must last at least one INTCLK cycle.
The User is suggested to program the External Interrupt Channel associated to the RDSTB line to generate an interrupt request when a rising edge occurs; The ST9 can thus, in the course of its interrupt service routine, write new data into the Output Slave Latches as soon as the previous data is taken by the peripheral.

10.2.4 Application example: Mapping an ST9 onto the memory bus of another ST9

Figure 10-12 shows a possible application of the bidirectional handshake protocol, used to connect an ST9 as a slave of another (master) ST9.
PX of the slave ST9 is connected to the Address/Data Memory Bus of the master ST9. A decoder enables, with a low level, the generation of $\overline{\text { RDSTB }}$ or WRSTB when $\overline{\text { DS }}$ is low and the master is reading from, or writing to, the memory.
To synchronize data transfers with the slave, the master ST9 uses RDRDY and WRRDY as External Interrupt Sources, programmed to generate an interrupt request when a rising edge occurs. The slave ST9 interrupts the master raising RDRDY when new data is ready in the port Output Slave Latches and raising WRRDY when the Input Latches can be filled with new data. According to the interrupt request received, the master ST9 can read the ready data from the slave (RDRDY interrupt routine) or write other data into the slave (WRRDY interrupt routine).

Figure 10-12. Bidirectional Application Example

SGS-THOMSON
77/195

10.3 PROGRAMMABLE DMA MODES

The Handshake Module supports DMA operations controlled by either the CAPTO or COMPO DMA Channel of a Multifunction Timer. The User enables this function writing a " 0 " in the DEN bit in the HDCTL register and selects the DMA Channel by writing the DCH bit: "0" for CAPT0, " 1 " for COMP0.
When the CAPTO Channel is chosen, the DD bit selects the Data Direction: " 0 " to move data from Data/Program Memory or Register File to the port (DMA Output), "1" to perform the opposite transfer (DMA Input). Signal CA_SYNCHR is sent by the Timer to the Handshake/DMA Controller for writing the port Output Master Latches or reading the Input latches (depending on DD), during the DMA operations when a capture occurs on the Timer.
If the Handshake section of the module is enabled, the data transfer from the Output Master Latches into the Output Slave Latches (Output Strobe, for pins programmed as Output or Bidirectional) or from the Pins into the Input Latches (Input Strobe, for pins programmed as Input or Bidirectional) is controlled by the logic supporting the chosen Handshake protocol.
If no Handshake is programmed the User can choose how to drive the Output or Input Strobe by writing the DST bit: a "0" leaves the Strobes under the normal port control, according to the chosen port bit configuration, a "1" selects the On Chip Event generated by the Timer as the Output or Input Strobe.
When the COMPO Channel is selected, DMA output transfers are only allowed independent of DD, and CO_SYNCHR is used for output Master Latch. If Handshake is disabled, DST selects how to control the Output Strobe. If enabled, the Handshake controls the Output Strobe.

10.3.1 DMA Transfers Driven By Timer CAPTO Channel With Handshake

The following descriptions are made assuming that DMA transfers are driven by Multifunction Timer 0. The following table shows the DMA Port capabilities of the ST9 family:

Multifunction Timer	Handshake Port
0	5

10.3.2 DMA Input transfers with two line input handshake

When

- Two Lines Input Handshake mode is selected (HS7="1", HS6="0", HS5="1")
- the port is enabled to support DMA input transfers driven by the Timer CAPTO DMA Channel ($\mathrm{DEN}=40$ ", DD="1", DCH="0")
- the Handshake $\overline{\text { WRSTB }}$ line is connected offchip to the Timer TOINA line
- TOINA DMA requests are enabled on rising edges
- $\overline{\text { WRSTB }}$ interrupt requests are disabled, data transfers on port pins programmed as Input (or Bidirectional) can be synchronized using the Handshake WRSTB line as DMA Request and the WRRDY line as DMA Acknowledge.
WRRDY is set to indicate that data can be loaded into the Input Latches of the Input (or Bidirectional) port pins. Data present on the port pins is sampled when the peripheral forces a low level on WRSTB. When a rising edge on WRSTB (TOINA) occurs WRRDY goes low, signifying that the Input Latches are full and further loading must be inhibited until the ST9 reads the port, and a DMA request is issued. When the port register is read, during the DMA transfer, WRRDY is set.

Figure 10-13. DMA with 2 Line Input Handshake Mode

PROGRAMMABLE DMA MODES (Continued)

10.3.3 DMA output transfers with two lines output handshake

When

- Two Lines Output Handshake is selected (HS7="1", HS6="1", HS5="0")
- the port is enabled to support DMA output transfers driven by the Timer CAPTO DMA Channel ($\mathrm{DEN}=$ " 0 ", $\mathrm{DD=}=0$ ", $\mathrm{DCH}={ }^{\text {" } 0 ") ~}$
- the Handshake $\overline{\text { RDSTB }}$ line is connected offchip to the Timer TOINA line
- TOINA DMA requests are enabled on rising edges
_ RDSTB interrupt requests are disabled
data transfers on port pins programmed as Output (or Bidirectional) can be synchronized when using the Handshake RDSTB and RDRDY lines as DMA Request and DMA Acknowledge.
When Two Lines Output Handshake is selected, RDRDY is reset to indicate that no significant data is present on the Output and Bidirectional port pins. When the Output Slave Latches are written, RDRDY is set to indicate that data is ready for the peripheral device. The first data value, whose usual meaning is that ST9 is ready to provide the following data by DMA transfers, is normally written by the DMA initialization routine.
When a rising edge is received on $\overline{\text { RDSTB }}$ (TOINA), indicating that the peripheral has taken the data, RDRDY is reset and a DMA request is issued to get the next data. When the ST9 Output Slave Latches are written, during the DMA transfer, RDRDY is set again. If the User wants to get

Figure 10-14. DMA output transfers with 2 lines output handshake

data from ST9 as soon as RDSTB goes low, external latches clocked by RDSTB can be added to create a pipeline stage, that is at each RDSTB low pulse on the falling edge the peripheral gets data transferred into the port by the previous DMA transfer and on the rising edge a DMA request is issued to get the next data.

10.3.4 DMA input transfers with one line input handshake

When

- One Line Input Handshake is selected (HS7="0", HS6="0", HS5="1")
- the port is enabled to support DMA input operations driven by the Timer CAPTO DMA Channel (DEN="0", DD="1", DCH="0")
- the Timer TOINA DMA requests are enabled on rising (or falling) edges data transfers on port pins programmed as Input (or Bidirectional) can be synchronized by using the Timer TOINA line as DMA Request, and the Handshake WRRDY line as DMA Acknowledge.
When One Line Input Handshake is selected WRRDY is set to indicate that data can be loaded into the Input Latches of the Input and Bidirectional port pins. Data present on the port pins is continuously sampled. While ST9 is reading the port, during the DMA transfer requested by a rising (or falling) edge on the Timer TOINA line, WRRDY goes low. If data is strobed into the port only when WRRDY is high, the forced low state of WRRDY will prevent Input Latches data from changing while ST9 is reading the port. When ST9 reading cycle finishes, WRRDY is set.

Figure 10-15. DMA input transfers with one line input handshake

PROGRAMMABLE DMA MODES (Continued)

10.3.5 DMA output transfers with one line output handshake

When

- One Line Output Handshake is selected (HS7="0", HS6="1", HS5="0")
- the port is enabled to support DMA output transfers driven by the Timer CAPTO DMA Channel ($\mathrm{DEN}=$ " 0 ", $\mathrm{DD=}=0$ ", $\mathrm{DCH}=" 0$ ")
- the Timer TOINA DMA requests are enabled on rising (or falling) edges
data transfers on port pins programmed as Output or Bidirectional can be synchronized using the Timer TOINA line as DMA Request, and the Handshake RDRDY line as DMA Acknowledge. RDRDY is reset to indicate that no significant data is present on the Output (or Bidirectional) port pins. When the ST9 Output Slave Latches are written, RDRDY is set to indicate that data are ready for the peripheral device. The first data, whose usual meaning is that the ST9 is ready to provide the following data by DMA transfers, is normally written by the DMA initialization routine.
When a rising (or falling) edge is received on TOINA, a DMA request is issued to get the next data. While ST9 is writing into the Output Slave Latches, during the DMA transfer, RDRDY goes low. RDRDY is set again when the new data is ready on the port pins.

Figure 10-16. DMA output transfers with one line output handshake

10.3.6 DMA input/output transfers with bidirectional handshake

When

- Bidirectional Handshake is selected (HS7="X", HS6="0", HS5="0")
- the port is enabled to support DMA transfers driven by the Timer CAPTO DMA Channel (DEN="0", DCH="0")
- the Handshake $\overline{\text { WRSTB }}$ and $\overline{\text { RDSTB }}$ lines are ANDed and connected off-chip to the Timer TOINA line
- TOINA DMA requests are enabled on rising edges
- $\overline{\text { WRSTB }}$ and $\overline{\text { RDSTB }}$ interrupt requests are disabled
data transfers on port pins programmed as Bidirectional can be synchronized using the Handshake WRSTB and WRRDY lines as DMA Request and DMA Acknowledge for DMA Input transfers (DD="1") and the Handshake RDSTB and RDRDY lines as DMA Request and DMA Acknowledge for DMA Output transfers (DD="0").
DMA Input Transfers. When Bidirectional Handshake is selected WRRDY is set to indicate that data can be loaded into the Input Latches of the Bidirectional port pins. Data present on the pins is sampled when the peripheral forces a low level on WRSTB. When a rising edge on WRSTB (TOINA) occurs WRRDY goes low, signifying that the Input Latches are full and further loading must be inhibited until the ST9 reads the port, and a DMA request is issued. When the port register is read, during the DMA transfer, WRRDY is set.

Figure 10-17. DMA input/output transfers with bidirectional handshake

PROGRAMMABLE DMA MODES (Continued)

DMA Output Transfers. When Bidirectional Handshake is selected, RDRDY is reset to indicate that no significant data is present on the Bidirectional port pins. When the Output Slave Latches are written, RDRDY is set to indicate that data is ready for the peripheral device. The first data, whose usual meaning is that ST9 is ready to provide the following data by DMA transfers, is normally written by the DMA initialization routine.
When RDSTB goes low data is allowed onto the port pins. When a rising edge is received on RDSTB (TOINA), indicating that the peripheral has taken the data, the Output Buffers are forced tristate, RDRDY is reset and a DMA request is issued to get the next data. When the Output Slave Latches are written during the DMA transfer, RDRDY is set again.
In the output data flow there is one pipeline stage, that is at each RDSTB low pulse on the falling edge the peripheral gets data transferred into the port by the previous DMA transfer and on the rising edge issues a DMA request to get the next data.
Example. As the direction of DMA transfers is controlled by software, the User must define a protocol to control the sequence of input/output data transfers.
The initialization routine defines the direction (DD) of the first DMA transfer and the address and size of the data buffer (Pointer and Counter associated to the DMA Channel). In the interrupt routine called when the DMA Transaction Counter $=0$, the User must define the new address and size of the data
buffer and can change (according to the chosen protocol) the direction of next DMA operations.
Figure $10-18$ shows how the application example of Figure 10-17 (an ST9 connected as a slave of another ST9) is modified when data transfer from/to the slave ST9 is performed by DMA transfers.

10.3.7 DMA Transfers Driven By Timer Comp0 Channel With Handshake

DMA output transfers with one line output handshake
when

- One Line Output Handshake is selected (HS7="0", HS6="1", HS5="0")
- the port is enabled to support DMA output transfers driven by the Timer COMPO DMA Channel (DEN="0", DCH="1")
data transferred by DMA transfers on port pins programmed as Output or Bidirectional can be strobed using the Handshake RDRDY line.
When One Line Output Handshake is selected RDRDY is reset to indicate that no significant data is present on the Output and Bidirectional port pins. When the Output Slave Latches are written RDRDY is set. The rising edge of RDRDY can be used as a latching signal. At every DMA transfer triggered by the COMP0 event new data is written into the port. While data is changing on the Output Slave Latches, RDRDY goes low. RDRDY is set again when the new data is ready on the port pins.

Figure 10-18. Bidirectional Application Example With DMA Transfer

VROOA178

81/195

10.4 HANDSHAKE/DMA CONTROL REGISTERS

To program the Handshake and DMA modes, the User has to write the Handshake/DMA Control register (HDCTL) according to the table shown in page 78. The different handshake protocols and the Port behaviour during DMA operations are explain in the previous paragraphs.

HDCTLx Read/Write
Handshake/DMA Control Register
Reset Value: 11111111 (OFFh)
7 0

HS7	HS6	HS5	DEN	DD	DST	DCH	1

b7-b5 = HS7, HS6, HS5: Handshake Mode Selection. These bits allow selection of the Handshake direction and the number of lines used in the handshake as shown in the following table.
b4 = DEN: DMA Enable. This bit (when reset) enables the DMA function with handshake through I/O Port 5. DMA is disabled when this bit $=$ " 1 ".
b3 = DD: DMA Data Direction. The direction of the DMA transfers through I/O Port 5 is set by this bit. A " 1 " sets DMA Input and a " 0 " sets DMA Output.
b2 = DST: DMA Strobe. This bit, when set, enables the use of the Multifunction Timer 0 On-Chip Event to trigger the DMA transaction.
b1 = DCH: DMA Channe/ When DST is set, allowing the DMA transactions to be triggered by Multifunction Timer 0, DCH selects the MFT source, a " 1 " selects the COMPO source, a "0" selects the CAPT0 source.
b0 = DO. This bit is fixed by hardware to a high level.

Table 10-1. Module Configuration Table

Handshake Modes							HS7	HS6	HS5
Disabled		X	1	1					
Output	(2 lines)	1	1	0					
Output	(1 line)	0	1	0					
Input	(2 lines)	1	0	1					
Input	(l line)	0	0	1					
Bidirectional	(4 lines)	X	0	0					

CONTROL REGISTERS (Continued)
Figure 10-19. Handshake/DMA Control Registers

Applicable for ST9030, ST9036, ST9040
PAGE 0

Notes:

11 SERIAL PERIPHERAL INTERFACE

11.1 INTRODUCTION

The Serial Peripheral Interface (SPI) is integrated into the Core module of the ST9 and provides a general purpose shift register based peripheral allowing several external peripherals to be linked through an SPI protocol bus. In addition, special modes allow reduced software overhead with $\mathrm{I}^{2} \mathrm{C}$ bus and IM-bus Communication standards.
The SPI uses 3 lines comprising Serial Data In (SDI) and Alternate Function outputs Serial Data Out (SDO) and Synchronous Serial Clock (SCK). Additional I/O pins may act as device selects or IMbus address ident signals.

Its Main Features are:

- Full duplex 3-wire synchronous transfer
- Master operation only
- 1.5 MHz max bit transfer frequency (INTCLK = 12MHz)
- 4 Programmable bit rates
- Programmable clock polarity and phase
- Busy Flag
- End of transmission interrupt
- Additional hardware to facilitate more complex protocols

Figure 11-1. Block Diagram

11.2 FUNCTIONAL DESCRIPTION

The SPI, when enabled, receives input data from the ST9 Core internal data bus into SPIDR, and originates the Serial Clock (SCK) based upon dividing of the internal processor clock (INTCLK). The data is parallel loaded into the 8 bit shift register (from the internal bus) during a write cycle and then shifted out serially through the SDO pin (Most Significant bit first) to the slave device, which responds by sending its data to the master device via the SDI pin. This implies full duplex transmission with data-out and data-in both synchronized with the same clock signal. Thus the transmitted byte is replaced by the byte received, eliminating the need to have separate "Tx empty" and "Rx full" status bits.
When the shift register is loaded, data is parallel transferred to the read buffer and data becomes available for the ST9 during a following read cycle.
The SPI requires three pins on an I/O port:

SCK	Serial Clock signal
SDO	Serial Data Out
SDI	Serial Data In

An additional output bit of an I/O port may be used to perform the slave chip select signal.

Figure 11-2. A Typical SPI Network

11.2.1 Input Signal Description Serial Data In (SDI)

Data is transferred serially from a slave to a master on this line, most significant bit first. In an SBUS $/ 1^{2} \mathrm{C}$-bus configuration, SDI line senses the value forced on the data line (by SDO or by another peripheral connected to the S -bus $/ /^{2} \mathrm{C}$-bus environment).

11.2.2 Output Signal Description Serial Data Out (SDO)

The SDO pin is configured as an output for the master device. This is obtained by programming the corresponding I/O pin as an output alternate function. Data is transferred serially from a master to a slave on SDO, most significant bit first. This pin is forced to the high impedance state when the SPI is disabled and is set to " 1 " when arbitration is lost (during an S -bus $/ \mathrm{I}^{2} \mathrm{C}$-bus protocol transmission). The master device always allows data to be applied on the SDO line one half cycle before the clock edge in order to latch the data for the slave device.

Master Serial Clock (SCK)

The master device uses SCK to latch the incoming data on the SDI line. This pin is forced to a high impedance state when SPI is disabled (SPEN, SPICR. 7 = " 0 "), in order to avoid clock contention from different masters in a multi-master system.
The master device generates SCK from INTCLK. SCK is used to synchronize the transfer of data both in and out of the device through its SDI and SDO pins. The SCK type and its relatıonship to data are controlled by the CPOL and CPHA bits in the Serial Peripheral Control Register.
This input is provided with a digital filter which cleans spikes lasting less than one INTCLK period.
Two bits (SPR1 and SPRO) in the Serial Peripheral Control Register, SPICR (R254) select the clock rate. Four frequencies can be selected, two in a high frequency range (mostly used with the SPI protocol) and two in a medium frequency range (mostly used for more complex protocols).

11.3 INTERRUPT STRUCTURE

SPI peripheral is associated with external interrupt channel BO (pin INT2). Multiplexing between the external pin and SPI internal source is controlled by the SPEN and BMS bits according to the following table.
The two possible SPI interrupt sources are: End of transmission (after each byte) and S-bus/I $/{ }^{2} \mathrm{C}$-bus start condition. Care should be taken when toggling SPEN or/and BMS bits from $(0,0)$ status, this should be done by masking the interrupt channel B0 (reset of EIMR.IMB0, bit 2 of External Interrupt Mask Register). Furthermore it is necessary to clear possible spurious requests on the corresponding channel by resetting the interrupt pending bit EIPR.IPBO (bit 2 of External Interrupts Pending Register).
The INT2 input Function is always mapped together with the SCK input Function to allow start/stop bit detection when using S-bus $/ /^{2} \mathrm{C}$-bus protocols.
A delay instruction (e.g. a NOP instruction) should be inserted between the SPEN toggle instruction and the interrupt pending bit reset instruction.

Table 11-1. Interrupt Configuration

SPEN	BMS	Interrupt Source
0	0	External channel INT2
0	1	S-bus/I² C bus start or stop condition End of one byte transmission

Figure 11-3. SPI I/O Pins

11.4 SPI REGISTERS

SPI uses two registers mapped on page 0 of the register file:

SPIDR R253 (FDh) Page 0 Read/Write SPI Data Register (R253)
Reset Value: 0000 0000b (00h)

7							
D7	D6	D5	D4	D3	D2	D1	D0

b7-b0 = D0-D7: SPI Data Bits. This register contains the data transmitted and received by the SPI. Data is transmitted b7 first, and receives incoming data into b0. Transmission is started by writing to this register.

SPICR R255 (FEh) Page 0 Read/Write
SPI Control Register (R254)
Reset Value: 0000 0000b (00h)

7	0						
SPEN	BMS	ARB	BUSY	CPOL	CPHA	SPR1	SPR0

b7 = SPEN: Serial Peripheral Enable. When set, the two alternate functions SCK and SDO are enabled. When disabled, SCK and SDO are kept in high impedance. Furthermore, SPEN affects the selection of the source for interrupt channel BO. Transmission will start by simply writing the data into the SPIDR Register.
b6 = BMS: S-bus/ $/ F^{2} C$-bus Mode Selector. This bit should be set to " 1 " when the SPI is used in an Sbus $/ 1^{2} \mathrm{C}$-bus protocol. It enables S -bus $/ \mathrm{I}^{2} \mathrm{C}$-bus arbitration, clock synchronization and Start/ Stop detection.
When this bit is reset to " 0 ", a reinitialisation of the SPI logic is performed allowing recovery procedures after a $\mathrm{Rx}_{\mathrm{x}} / \mathrm{T}_{x}$ failure. BMS (and SPEN) affects the selection of the source for interrupt channel BO.
b5 = ARB: Arbitration flag bit. This bit is set when the SPI, in S-bus $/{ }^{2} \mathrm{C}$-bus mode, loses arbitration, and is reset when an S-bus $/ I^{2} \mathrm{C}$-bus stop condition is detected. ARB can be reset by software. When ARB is set automatically, the SDO pin is set to high value until a write instruction on SPIDR is performed.
b4 = BUSY: SPI Busy Flag. BUSY flag is set when a transmission is in process. This bit allows the user to monitor the SPI status by polling its value.
b3 $=$ CPOL:Transmission Clock Polarity. CPOL controls the normal or steady state value of the clock when data is not being transferred.
As the SCK line is held in a high impedance state when the SPI is disabled (SPEN = " 0 "), the SCK pin must be connected to $\mathrm{V}_{s s}$ or V_{cc} through a resistor according to the CPOL state. Polarity should be selected during the reset routine according to the value set into all peripherals and must not be changed during program execution.
b2 = CPHA: Transmission Clock Phase. CPHA controls the relationship between the data on the SDI and SDO pins and the clock produced at the SCK pin. CPHA bit selects the clock edge which captures data and allows it to change state. It has its greatest impact on the first bit transmitted (MSB) because it does (or does not) allow a clock transition before the first data capture edge.
Figure 11-5 shows the relationship between CPHA, CPOL and SCK, and indicates active clock edges and strobe times.

CPOL	CPHA	SCK on Figure 11-5
0	0	(a)
0	1	(b)
1	0	(c)
1	1	(d)

b1-b0 = SPR1,SPR0: SPI Rate. These two bits select one (out of four) baud rates to be used as SCK.

SPR1	SPRO	Clock Divider	SCK Frequency (INTCLK $=12 M H z)$	
0	0	8	1500 kHz	$(\mathrm{T}=0.67 \mu \mathrm{~s})$
0	1	16	750 kHz	$(\mathrm{T}=1.33 \mu \mathrm{~s})$
1	0	128	93.75 kHz	$(\mathrm{T}=10.66 \mu \mathrm{~s})$
1	1	256	46.87 kHz	$(\mathrm{T}=21.33 \mu \mathrm{~s})$

11.5 WORKING with DIFFERENT PROTOCOLS

The SPI peripheral offers the following facilities to work with S-bus/I ${ }^{2} \mathrm{C}$-bus and IM-bus protocols:

- Interrupt request on start/stop detection
- Hardware clock synchronisation
- Arbitration lost flag with an automatic set of data line
Note that the I/O bit associated to the SPI should be returned to a defined state as a normal I/O pin before changing the SPI protocol.
The following paragraphs provide information to manage these protocols.

11.5.1 $\mathrm{I}^{2} \mathrm{C}$-bus Interface

$\mathrm{I}^{2} \mathrm{C}$-bus is a two-wire bidirectional data-bus, the two lines being SDA (Serial DAta) and SCL (Serial CLock). Both are open drain lines to allow arbitration. As shown in figure 11-6, data is toggled with clock low and Start and Stop conditions are detected when a high to low (start) or a low to high (stop) transition on the SDA line occurs with the SCL line high.
Each transmission consists of nine clock pulses (SCL line). The first 8 pulses transmit the byte (msb first), the ninth is used by the receiver to acknowledge.

Figure 11-4. S-Bus $/{ }^{2} \mathrm{C}$-bus Peripheral Compatibility without S-Bus Chip Select

Figure 11-5. SPI Data and Clock Timing

DIFFERENT PROTOCOLS (Continued)
Table 11-2. Typical $I^{2} C$-bus Sequences

Phase	Software	Hardware	Notes
INITIALIZE	SPICR.CPOL, CPHA $=0,0$ SPICR.SPEN = 0 SPICR.BMS = 1 SCK pin set as AF output SDI pin set as input Set SDO port bit to 1	$\begin{aligned} & \text { SCK, SDO IN HI-Z } \\ & \text { SCL, SDA = } 1,1 \end{aligned}$	Set polarity and phase SPI disable START/STOP interrupt Enable
START	SDO pin set as output Open Drain Set SDO port bit to 0	$S D A=0, S C L=1$ interrupt request	START condition receiver START detection
TRANSMISSION	SPICR.SPEN $=1$ SDO pin as Alternate Function output load data into SPIDR	$S C L=0$ Start transmission interrupt request	Managed by interrupt routine load FFh when receiving end of transmission detection
ACKNOWLEDGE	SPICR.SPEN = 0 Poll SDA line Set SDA line SPICR.SPEN = 1	$\begin{aligned} & \text { SCK, SDO in HIIZ } \\ & \text { SCL, SDA }=1 \\ & \text { SCL }=0 \end{aligned}$	SPI disable only if transmitting only if receiving only if transmitting
STOP	SDO pin set as output Open Drain SPICR.SPEN = 0 Set SDO port bit to 1	SDA = 1 interrupt request	STOP condition

Figure 11-6. SPI Data and Clock Timing

DIFFERENT PROTOCOLS (Continued)

The data on the SDA line is sampled with the low to high transition on the SCL line.

SPI Working With $I^{2} \mathrm{C}$-bus

To use the SPI with the I ${ }^{2}$ C-bus protocol, the SCK line is used as SCL, the SDI and SDO lines, externally wired-OR'd, are used as SDA. All the output pins must be configured as open drain (see Figure 11-4).
Table 11-2 shows the typical $I^{2} \mathrm{C}$-bus sequence divided in 5 phases: initialize, start, transmission, acknowledge and stop.
Software and hardware will take care of each phase. A master to slave transmission can be managed as example according to the following table.
During the transmission phase, the following $I^{2} \mathrm{C}$ bus features are also supported by hardware.

Clock Synchronization

In a multimaster $I^{2} \mathrm{C}$-bus system, when more masters generate their own clock, synchronization is needed. The first master which releases the SCL line stops internal counting, restarting only when
the SCL line goes high (released by all the other masters). In this way, devices using different clock sources and different frequencies can be interfaced.

Arbitration Lost

When more masters are sending data on SDA line, the following mechanism is performed: if the transmitter sends a " 1 " and SDA line is forced low by another device the ARB flag (SPICR.5) is set and the SDO buffer is "switched off. (ARB is reset and SDO buffer is "switched on" when SPIDR is written to again). When BMS is set to " 1 " the peripheral clock is supplied through the INT2 line by the external clock line (SCL). Due to potential noise spikes (which must last longer than one INTCLK period to be detected), RX or TX may gain a clock pulse.
Referring to Figure 11-7, if ST9-1 detects a noise spike and gains a clock pulse, it will stop its transmission in advance and hold the clock line low causing ST9-2 to be frozen at the 7th bit. To exit and recover from this condition the BMS bit must be reset to " 0 ", this will cause the reset of the SPI logic, aborting the current transmission. An End of Transmission interrupt is generated after this reset sequence.

Figure 11-7. SPI Arbitration

SGS-THOMSON

DIFFERENT PROTOCOLS (Continued)

11.5.2 S-Bus Interface

S-bus is a three-wire bidirectional data-bus, with functional features similar to $I^{2} \mathrm{C}$-bus. Differently from $I^{2} \mathrm{C}$-bus, the START/STOP conditions are given by encoding the information on 3 wires instead of 2, as shown in Figure 11-8. The additional line is referred as SEN.

SPI Working With S-bus

The S-bus protocol uses the same pin configuration as $I^{2} \mathrm{C}$-bus for generating the SCL and SDA lines. The additional SEN line is managed through a standard ST9 I/O port under software control (see Figure 11-9).

Figure 11-9. S-bus Configuration

Figure 11-8. Mixed S-bus and $\mathrm{I}^{2} \mathrm{C}$-bus system

Figure 11-10. ST9 and InterMetal Peripheral

DIFFERENT PROTOCOLS (Continued)

11.5.3 IM-Bus Interface

The IM-bus has a bidirectional data line and a clock line, and in addition it requires an IDENT line that distinguishes an address from a data byte (Figure 11-11). Unlike the $\mathrm{I}^{2} \mathrm{C}$-bus protocol, the IM-bus protocol sends the least significant bit first, this requires a software routine which reverses the bit order before sending, and after receiving a data byte. Figure 11-10 shows the connections for an IM-bus peripheral to an ST9 SPI. The SDO and SDI pins are connected to the bidirectional data pin of the peripheral device. The SDO alternate function is set in Open Drain (external 2.5K Ω pull-up resistors are required).
With this type of configuration, data is sent to the peripheral by writing the data byte to SPIDR. To receive data from the peripheral, the User should
write FFh into SPIDR in order to generate the shift clock pulses. As the SDO line is set to the Open Drain configuration, the incoming data bits that are set to one do not affect the SDO/SDI line status (which defaults to a high level due to the FFh in the transmit register), while incoming bits that are set to " 0 " pull the input line low.
In software it is necessary to initialise the ST9 SPI with CPOL and CPHA set to " 1 ", " 1 ". By using a general purpose I/O as the IDENT line and forcing it to a logical " 0 " when writing to SPIDR, an address is sent (or read). Then, by setting this bit to a logical " 1 " and writing to SPIDR, data is sent to the peripheral. When all the address and data pairs are sent it is necessary to drive the IDENT line low and high to create a short pulse. In this way the stop condition is generated.

Figure 11-11. IM bus Timing

Notes :

12 TIMER/WATCHDOG

12.1 INTRODUCTION

A programmable 16-bit down counter with an 8-bit prescaler is included in the ST9 Core. This Timer can be programmed to be used as a general purpose 16 -bit Timer, with associated input and output pins for timing functions, or as a Watchdog Timer offering security against possible processor malfunctions due to hardware or software failures.
The Timer/Watchdog functions can use inputs from an external pin and an Alternate Function output of an I/O Port. The Input pin can be used in one of the four programmable input modes:

- event counter,
- gated external input mode,
- triggerable input mode,
- retriggerable input mode.

The output pin can be used to generate a square or a Pulse Width Modulated signal.
An interrupt generated by the unit (when running as a 16 -bit Timer/counter and not as Watchdog) can be used as a Top Level Interrupt or as an interrupt source connected to channel A0 of the external interrupt structure (replacing the INTO interrupt input).
The clock for the counter can be driven either by an external clock or an internal clock equal to INTCLK divided by 4.
When using an external 24 MHz crystal (INTCLK = 12 MHz), the End Of Count rate is:
5.59 sec . for Max. Count (Timer Const. = FFFFh, Prescaler Const. = FFh)
333 nsec. for Min. Count (Timer Const. $=0000 \mathrm{~h}$, Prescaler Const. $=00 \mathrm{~h}$)

Figure 12-1. Block Diagram

12.2 FUNCTIONAL DESCRIPTION

12.2.1 Timer/Counter Input Modes

Setting the Input Enable (INEN) bit enables the input mode which is selected via the INMD1 and INMD2 bits. When INEN is reset to zero, the input section is disabled and the values of INMD1 and INMD2 are don't-care.

Event Counter Mode

(INMD1 = " 0 ", INMD2 = " 0 ")
The Timer is driven by the signal applied to the input pin which acts as an external clock. The unit works therefore as an event counter. The event is a high to low transition of the input signal.
Spacing between trailing edges should be at least 350ns (i.e. the maximum Watchdog Timer input frequency is 2.9 MHz with INTCLK $=12 \mathrm{MHz}$).

Gated Input Mode

(INMD1 = " 0 ", INMD2 = " 1 ")
The Timer uses the Watchdog internal clock (INTCLK divided by 4) and starts and stops the Timer according to the input pin. When the status of the Input pin is High the Timer Watchdog count operation proceeds, and when Low, counting is stopped.

Retriggerable Input Mode
 (INMD1 = "1", INMD2 = "1")

A Timer/Watchdog start is caused by:
a) a set of the Start-Stop bit, or
b) a High to Low (low trigger) transition on the input pin.
In order to stop the Timer, it is only necessary to reset the Start-Stop bit to zero.

Triggerable Input Mode

(INMD1 = "1", INMD2 = " 0 ")
In this mode when the Timer is running (TIMER/WATCHDOG internal clock), a High to Low transition of the input pin causes the counting to start from the initial value. When the Timer is stopped (ST_SP bit equal to zero), a High to Low transition of the input pin has no effect.

12.2.2 Timer/Watchdog Output Modes

OUTPUT modes are selected using 2 bits of WDTCR (R251): OUTEN (Output Enable) and OUTMD (Output Mode).
When OUTMD = " 0 ", the Timer outputs a signal with a frequency equal to half the End Of Count repetition rate. With INTCLK $=12 \mathrm{MHz}$, this allows
generation of a square wave with a period ranging from 666ns to 11.18 seconds.
The value of the WROUT bit is transferred to the output pin at the End Of Count and the value is held until the next End of Count when OUTMD = " 1 ". This allows the user to generate PWM signals, by modifying the status of WROUT between End of Count events, based on software counters decremented on the Timer/Watchdog interrupt.
OUTEN = " 1 " enables the output function selected via OUTMD
When OUTEN = " 0 ", the output is disabled and the output pin is held at a " 1 " level to allow several alternate functions on the same pin.

12.2.3 Timer/Counter Control Start/Stop

ST_SP (WDTCR.7) enables down-counting. An instruction which sets this bit will cause the Timer to start at the beginning of the following instruction. Resetting this bit will stop the counter.
If the counter is stopped and restarted, counting will resume from the last value unless a new constant has been entered in the Timer registers. A new constant can be written with the counter running. The new value will be loaded at the following End Of Count (EOC).
WARNING: In order to prevent incorrect counting of the Timer/Watchdog, the prescaler (WDTPR) and counter (WDTRL, WDTRH) registers must be initialised before the starting of the Timer/Watchdog. If this is not done, counting will start with the reset (un-initialised) values.

Single/Continuous Mode

SINGLE MODE: At End Of Count the Timer stops, reloads the constant, and resets the Start/Stop bit (WDTCR.6) (user may check the current status by reading this bit). Restarting is done by setting the Start/Stop bit. Note that the Timer constant is reloaded only if it has been modified during the stop period.
CONTINUOUS MODE: At End Of Count the counter automatically reloads the constant and restarts. It is stopped only if the Start/Stop bit is reset. This Mode bit can be written with the Timer stopped or running. It is possible to toggle the S_C bit and start the counter with the same instruction.

FUNCTIONAL DESCRIPTION (Continued)

12.2.4 Timer/Watchdog Mode

In this mode (WDGEN = " 0 ") the counter generates a fixed time basis. When End Of Count is reached the Timer generates a system Reset.
The time base is user-defined and must be written in the Timer registers before entering Watchdog mode. In Watchdog mode it is possible to modify only the Prescaler Constant. This new value will be loaded when the counter restarts.
Resetting WDGEN (bit 6 of the Wait Control Register) causes the counter to start regardless of the value of the Start-Stop. In order to prevent a system reset the sequence AAh, 55 h should be entered in WDTLR (Watchdog Timer register low). Once the writing of 55 h has been performed the Timer reloads the constant and counting restarts from the preset value.

The minimum time between the writing of the AAh and 55 h codes is zero, i.e. the writing is sequential, and the maximum time is given by the Watchdog timeout period.
In Watchdog-mode a halt instruction is regarded as illegal. Execution of the halt instruction stops further core execution by the CPU and interrupt acknowledgment, but does not stop INTCLK or CPUCLK or the Watchdog Timer, which will cause a System Reset when reaching the End of Count. Furthermore ST_SP, S_C and input mode selection bits are "don't-care". Hence regardless of their status, the counter always runs in Continuous Mode driven by the internal clock.
The Output mode should not be enabled since that particular mode of operation is meaningless.

Figure 12-2. Timer /Watchdog in Watchdog Mode

12.3 TIMER/WATCHDOG INTERRUPT

When enabled, the Timer/Watchdog will issue an interrupt request at every End Of Count.
A pair of control bits, IAOS (EIVR.1, Interrupt A0 selection bit) and TLIS (EIVR.2, Top Level Input Selection bit) allow the selection of 2 interrupt sources (the Timer/Watchdog End of Count or an external pin) in two different ways, as a top level non maskable interrupt (Software Reset) or as a source for channel A0 of the external interrupt logic.
In the Watchdog mode the End Of Count always causes a system reset.
A block diagram of the interrupt logic is given in Figure 12-3 (Note: software traps can be generated by setting the appropriate interrupt pending bit):
The following table shows all the possible configurations of the interrupt/reset sources which involve the Timer/Watchdog:

Figure 12-3. Interrupt Sources

Table 12-1. Interrupt Configuration

Control Bits		Enabled Sources			Watchdog Timer Status	
WDGEN	IAOS	TLIS	Reset	INTAO		
0	0	0	WDG/Ext Reset	SW TRAP	SW TRAP	Watchdog
0	0	1	WDG/Ext Reset	SW TRAP	Ext Pin	Watchdog
0	1	0	WDG/Ext Reset	Ext Pin	SW TRAP	Watchdog
0	1	1	WDG/Ext Reset	Ext Pin	Ext Pin	Watchdog
1	0	0	Ext Reset	Timer	Timer	Timer
1	0	1	Ext Reset	Timer	Ext Pin	Timer
1	1	0	Ext Reset	Ext Pin	Timer	Timer
1	1	1	Ext Reset	Ext Pin	Ext Pin	Timer

Note

WDG = Watchdog function
SW TRAP = Software Trap

12.4 TIMER/WATCHDOG REGISTERS

The Timer/Watchdog has 4 registers mapped into Group F, Page 0 of the Register File.

WDTHR (R248): Timer/Watchdog Counter High Register
WDTLR (R249): Timer/Watchdog Counter Low Register
WDTPR (R250): Timer/Watchdog Prescaler
Register
WDTCR (R251): Timer/Watchdog Control Register
Three additional control bits are mapped in the following registers of Page 0 :

- watchdog mode enable, WCR. 6
- top level interrupt selection, EIVR. 2
- interrupt A0 channel selection, EIVR. 1

Note: The registers containing these bits also contain other functions. Only the bits relevant to the operation of the Timer/Watchdog are shown here.

Counter Registers

This 16 bit register is used to load the 16 bit counter value. The registers can be read or written "on the fly".

WDTHR R248 (F8h) Page 0 Read/Write Timer/Watchdog Counter Register, High byte
Reset value: undefined

7							
R15	R14	R13	R12	R11	R10	R9	R8

WDTLR R249 (F9h) Page 0 Read/Write Timer/Watchdog Counter Register, Low byte.
Reset value: undefined

7
R7
R6

WDTPR R250 (FAh) Page 0 Read/Write Timer/Watchdog Prescaler Register
Reset value: undefined

7	0						
PR7	PR6	PR5	PR4	PR3	PR2	PR1	PR0

b7-b0 = PR7-PR0: Timer/Watchdog Prescaler. The value stored in this Register is used to select the prescaling factor from 1 (loading 00h) to 256 (loading FFh).
WARNING. In order to prevent incorrect counting of the Timer/Watchdog, the prescaler (WDTPR) and counter (WDTRL, WDTRH) registers must be initialised before the starting of the Timer/Watchdog. If this is not done, counting will start with the reset (un-initialised) values.

WDTCR R251 (FBh) Page 0 Read/Write Timer/Watchdog Control Register
Reset value: 00010010 (12h)
7
0

b7 = ST_SP: Start/Stop Bit. Setting this bit to a "1" starts the counting operation (see Warning above). When this bit is " 0 ", the counter is stopped (reset status)
b6 = S_C: Single/Continuous. When this bit is set, the counter operates in Single Count Mode. Continuous Mode is set when this bit is " 0 "
b5-b4 = INMD1, INMD2: Input mode selection bits.
b3 = INEN: Input Enable. This bit enables ("1") and disables ("0") the input section
b2 = OUTMD: Output Mode. When this bit is " 1 ", and the output is enabled, the value of WROUT is transferred to the output pin on every End Of Count. When " 0 ", the output is toggled on every End of Count
b 1 = WROUT: WROUT bit. The status of this bit is transferred to the Output pin when OUTMD = " 1 ", it is user definable to allow PWM output (at reset WROUT = "1")
b0 = OUTEN: Output Enable bit. The output is enabled by setting this bit to " 1 ", and disabled by resetting to " 0 "

TIMER/WATCHDOG REGISTERS (Continued)
WCR R252 (FCh) Page 0 Read/Write
Wait Control Register
Reset value: 01111111 (7Fh)

7		1					
X	WDGEN	X	X	X	X	X	X

b6 = WDGEN: Watchdog Enable Bit (active low). Resetting this bit to zero via software enters the Watchdog mode. Once reset, it cannot be set to " 1 " by the user program. At system reset, the Watchdog mode is disabled

EIVR R246 (F6h) Page 0 Read/Write External Interrupt Vector Register
Reset value: xxxx 0110 (X6h)

7							
X	X	X	X	X	TLIS	IAOS	X

b2 = TLIS: Top Level Input Selection bit. This bit selects the Top Level interrupt source. When "0", the Top Level interrupt source is the Watchdog/Timer end of count, when = " 1 ", it is the external pin NMI.
b1 = IAOS: Interrupt channel AO Selection Bit. This bit allows the Timer/Watchdog interrupt to channel through the external Interrupt A0 source, allowing the setting of user-defined priority levels.
WARNING. To avoid spurious interrupt requests, an access to the IAOS bit must be made only when the interrupt logic is disabled (i.e. after the DI instruction). It is also necessary to clear a possible interrupt pending request on channel AO before enabling this interrupt channel. A delay instruction (e.g. a NOP instruction) must be inserted between the reset of the interrupt pending bit and the IAOS write instruction.

13 MULTIFUNCTION TIMER

13.1 INTRODUCTION

The Multifunction Timer is a 16-bit Up/Down counter, driven by the output of an 8 -bit prescaler which may be driven by INTCLK/3 (giving a minimum timing resolution of 250 ns at INTCLK $=$ 12 MHz) or by an external source.
This timer is supported by two 16-bit Comparison Registers (CMPOR, CMP1R) for generating timed functions and two 16-bit Capture/(re)Load Registers (REGOR, REG1R) for timing and variable timebase functions. These features coupled with 2 input pins (TxINA and TxINB) and 2 Alternate Function output pins (TxOUTA and TxOUTB), where $x=$ the number of the Timer, give the Timer 12 operating modes including automatic PWM generation and frequency measurement.
Several functional configurations are possible, e.g.:

- 2 input captures on two different external lines and 2 independent output compare functions (counter in free running mode), or 1 output compare on a fixed repetition rate.
- 1 input capture, 1 counter reload and 2 independent output compares.
- 2 alternate autoreloads and 2 independent output compares.
- 2 alternate captures on the same external line and 2 independent output compares on a fixed repetition rate.
When two timers are present on ST9 chip, a combined mode is available.
Four internal signals are also available for timing of on-chip functions: the On Chip Event signal can be used to control other peripherals on the chip itself, and 3 other signals which can be internally connected to I/O port(s) in order to allow automatic, timed, DMA transfers.
The two external inputs (TxINA/TxINB) of the timer can be individually programmed to catch a particular external configuration, i.e.:
- rising edge
- falling edge
- rising and falling edges

The configuration of each input is fixed by the Input Control Register (ICR).

Figure 13-1. MFT Simplified Block Diagram

INTRODUCTION (Continued)

Each of the two output pins (TxOUTA/TxOUTB) can be driven from any of three possible sources:

- Compare Register 0 logic
- Compare Register 1 logic
- Overflow/Underflow logic

Each of these three sources can cause one of the following four effects, independently, on each of the two outputs:

- Nop
- Set
- Reset
- Toggle

Furthermore an additional on-chip Event signal can be generated by two of the three sources mentioned above, i.e. Over/Underflow event and Compare 0 event. This signal.can be used internally as synchronism for another on-chip peripheral or as strobe for an I/O port (see I/O port chapter).

Five maskable interrupt sources referring to an End Of Count condition, 2 input captures and 2 output compares, can generate 3 different interrupt requests (with hardware fixed priority), pointing to 3 interrupt routine vectors.
Two independent DMA channels are available for a MFtimer and can be used for quick data flow operations. Each DMA request (associated to a capture on REGOR register, or a compare on CMPOR register) has priority on the INT request generated by the same source.
Each DMA channel can be employed in external transfers to/from memory from/to an I/O port using three internal lines (one for setting the data flow direction, and two for the transfer synchronization).
A SWAP mode is also available to allow high speed continuous transfers (see Interrupt and DMA chapter).

Figure 13-2. Detailed Block Diagram

13.2 FUNCTIONAL DESCRIPTION

The operating modes of the timer can be selected by programming the Timer Control Register (TCR) and the Timer Mode Register (TMR).

13.2.1 One Shot Mode

When the counter generates an overflow (in upcount mode) or an underflow (in down-count mode), i.e. an End Of Count is reached, the counter stops and no counter reload occurs. The counter can be restarted only by an external or software trigger. The One Shot Mode is entered by setting TMR bit CO.

13.2.2 Continuous Mode

Whenever the counter reaches an End Of Count, the counting sequence is automatically restarted and the counter is reloaded from REGOR (or REG1R when selected in Biload Mode). Continuous Mode is entered by resetting TMR bit C0.

13.2.3 Trigger And Retrigger Modes

A trigger event may be generated either by software action (setting either CPO or CP1 bit in timer register FLAGR), or by an external source which may be programmed to be active on the rising edge, the falling edge or both, using the fields AOA 1 and $\mathrm{B0} 0-\mathrm{B} 1$ in ICR.
In One Shot and Trigger Mode, every trigger event (used as a reload and start count) arriving before an End Of Count, is masked. In One Shot and Retrigger Mode, every trigger (used as a reload and start count) received while the counter is running automatically reloads the counter from REGOR (or REG1R when the register is selected in Biload Mode). Trigger/Retrigger Mode is set by the REN bit in TMR.
TxINA input refers to REG0R and TxINB input refers to REG1R.
WARNING. If the Trigger Mode is selected when the counter is in Contınuous Mode, then every trigger to reload the counter starting value is disabled, so it is not possible to synchronize the counting cycle by hardware or software.

13.2.4 Gate Mode

In this mode the counting operation is performed only when the external gate input is active (logical state " 0 "). The selection of TxINA or TxINB input as gate input is made through INO-IN3 bits in ICR.

13.2.5 Capture Mode

REGOR and REG1R registers may be independently set in Capture Mode by setting RMO or RM1 in TMR, so that a capture of the current count value can be performed either on REGOR or REG1R, via software action (by setting CPO or CP1 in the FLAGR register) or a programmable event on the external input pins.
WARNING. Care should be taken when two software captures have to be performed on the same register. In this case. at least one extra instruction must be present between the first CP0/CP1 bit set and the subsequent CPO/CP1 bit reset.

13.2.6 Up/Down Mode

The counter can count up or down depending on the state of the UDC bit (Software Up/Down) in TCR. or on the configuration of the external input pins, which have priority over UDC (see Input pin assignment in ICR). When read, the UDCS bit always returns the counter up/down current status (see also the Up/Down Autodiscrimination mode in the Input Pin Assignment Section).

13.2.7 Free Running Mode

The timer performs full range counting (in up or down mode) without reloading from REGOR at an End Of Count. This mode is automatically selected either in Bicapture Mode or by settıng REGOR for capture function (Continuous Mode must also be set). In Autoclear Mode. free running with modulo less than 2^{16} may be obtained (see Autoclear Mode).

FUNCTIONAL DESCRIPTION (Continued)

13.2.8 Monitor Mode

When RM1 bit in TMR is reset and the timer is not in Bivalue Mode, then REG1R acts as monitor, reproducing the current U/D counter content enabling the ST9 to read the counter "on the fly".

13.2.9 Autoclear Mode

A clear command forces the counter to the value 0000h or OFFFFh, when counting in up or down count mode respectively. The counter reset may be obtained either directly, through CCL bit in TCR, or by entering the Autoclear Mode, through CCPO and CCMPO fields in TCR.
Every capture performed on REGOR (if CCPO = " 1 "), or every successful compare performed by CMPOR (if CCMPO = " 1 "), clears the counter and reloads the prescaler.
The Clear On Capture mode allows the direct measurement of delta time between successive captures on REGOR, while the Clear On Compare mode allows free running with modulo less than 2^{16}.

13.2.10 Bivalue Mode

Depending on the value of RMO bit in TMR, the Biload Mode ($\mathrm{RMO}=$ " 0 ") or the Bicapture Mode ($\mathrm{RM} 0=$ " 1 ") can be selected as explained in the following table:

Table 13-1. Bivalues Modes

TMR bits			Timer Operating Modes
RM0	RM1	BM	
0	X	1	BiLoad mode
1	X	1	BiCapture Mode

A) Biload Mode

The Biload Mode is entered by selecting the Bi value Mode ($\mathrm{BM}=$ " 1 " in TMR) and programming REGOR as a reload register ($\mathrm{RMO}=$ " 0 " in TMR).
At any End Of Count, the counter reloading is performed alternately from REG0R and REG1R, (a low level for BM bit always sets REGOR as the current register, so that, after a Low to High transition of BM bit, the first reload is always from REGOR).
Every software or external trigger event on REGOR performs a reload from REGOR resetting the Biload cycle. In One Shot mode (reload made by a software or external trigger), the reload is always from REGOR.

B) Bicapture Mode

The Bicapture Mode is entered selecting the Bi value Mode ($\mathrm{BM}=$ " 1 " in TMR) and programming REGOR as a capture register (RM0 $=$ " 1 " in TMR).
Every capture event, software simulated (by setting CPO flag) or from the TxINA input line, captures the current counter value alternately into REG0R and REG1R. A low level for BM bit always sets REGOR as current register, so that the first capture, after setting BM bit, is always into REGOR.

13.2.11 Parallel Mode

When there are two timers on ST9 chip, the parallel mode is entered with ECK $=$ " 1 " in TMR of Timer 1. Timer 1 prescaler input is internally connected to the Timer 0 prescaler output. Timer 0 prescaler input is connected to the system clock line.
By loading the Prescaler Register of Timer 1 with the value 00 h the two timers (Timer 0 and Timer 1) are driven by the same frequency in parallel mode.

13.2.12 Autodiscriminator Mode

Figure 13-3. Parallel Mode Description

The phase difference sign of two overlapped pulses (respectively on TxINB and TxINA) generates a one step up(down) count, so that the up/down control and the counter clock are both external. The setting of the UDC bit in the TCR register has no effect in this configuration.

13.3 INPUT PIN ASSIGNMENT

The two external inputs (TxINA and TxINB) of the timer can be individually configured to catch a particular external event (i.e. rising edge, falling edge, rising and falling edges) by programming the two relevant bits (A0, A1 and B0, B1) for each input in the external Input Control Register (ICR).
The 16 different functional modes of the two external inputs can be selected by programming INO IN3 bits of the ICR as explained in the following table.

Table 13-2. Input Pin Function

I C Reg. IN3-IN0 bits	TxINA Input Function	TxINB Input Function
0000	not used	not used
0001	not used	Trigger
0010	Gate	not used
0011	Gate	Trigger
0100	not used	Ext. Clock
0101	Trigger	not used
0110	Gate	Ext. Clock
0111	Trigger	Trigger
1000	Clock Up	Clock Down
1001	Up/Down	Ext. Clock
1010	Trigger Up	Trigger Down
1011	Up/Down	not used
1100	Autodiscr.	Autodiscr.
1101	Trigger	Ext. Clock
1110	Ext. Clock	Trigger
1111	Trigger	Gate

Some choices in the external input pin assignment are defined in conjunction with RM0 and RM1 bits in TMR.
For input pin assignment codes using the input pins as Trigger Inputs (except for code 1010, Trigger Up:Trigger Down):

- a trigger signal on TxINA input pin performs an U/D counter load if RMO $=$ " 0 ", or an external capture if RM0 = " 1 ".
- a trigger signal on TxINB input pin always performs an external capture on REG1R. The TxINB input pin is disabled when the Bivalue Mode is set.
Note. For proper operation of the External Input pins, the following must be observed:
- the minimum external clock/trigger pulse width cannot be less than the system clock (INTCLK) period if the input pin is programmed as rising or falling edge sensitive.
- the minimum external clock/trigger pulse width cannot be less than the prescaler clock period
(INTCLK/3) if the input pin is programmed as rising and falling edges sensitive (valid also in Autodiscrimination mode). - the minimum delay between two clock/trigger pulse active edges must be greater than the prescaler clock period (INTCLK/3), while the minimum delay between two consecutive clock/trigger pulses must be greater than the system clock (INTCLK) period.
- the minimum gate pulse width must be at least twice the prescaler clock period (INTCLK/3).
- in Autodiscrimination mode, the minimum delay between the input pin A pulse edge (inside the input pin B pulse) and the edges of the input pin B pulse, must be at least the system clock (INTCLK) period.
- if a number N of external pulses must be counted using a Compare Register of a Timer in External Clock mode, then the Compare Register used must be loaded with the value $[\mathrm{X}+/-(\mathrm{N}-1)]$, where X is the starting counter value and the sign is chosen depending if in Up or Down count mode respectively.
The sixteen external input functional modes available (referring to Table 13-2) are:

13.3.1 TxINA = I/O - TxINB = I/O

Input pins A and B are not used by the Timer. The counter clock is internally generated and the up/down control may be made only by software action through the UDC (Software Up/Down) bit in the TCR register.

13.3.2 TxINA $=\mathrm{I} / \mathrm{O}-\mathrm{Tx}$ INB $=$ Trigger

The signal applied to input pin B acts as a trigger signal on REG1R register. The prescaler clock is internally generated and the up/down control may be made only by software action through the UDC bit in the TCR register.

13.3.3 TxINA $=$ Gate - TxINB $=I / O$

The signal applied to input pin A acts as a gate signal for the internal clock (i.e. the counter runs only when the gate signal is at a low level). The counter clock is internally generated and the up/down control may be made only by software action through the UDC bit in the TCR register.

INPUT PIN ASSIGNMENT (Continued)

13.3.4 TxINA $=$ Gate - TxINB $=$ Trigger

Both input pins A and B are connected to the timer, with the resulting effect of combining the actions due to the above explained configurations.

13.3.5 TxINA $=1 / \mathrm{O}$ - TxINB $=$ Ext. Clock

The signal applied to input pin B is used as the external clock for the prescaler. The up/down control may be made only by software action through the UDC bit in the TCR register.

13.3.6 TxINA $=$ Trigger - TxINB $=1 / O$

The signal applied to input pin A acts as a trigger signal on REGOR register performing the action for which the register was programmed (i.e. a reload or capture). The prescaler clock is internally generated and the up/down control may be made only by software action through the UDC bit in the TCR register.

(*) The timer is in One shot mode and REGOR in Reload mode

13.3.7 TxINA = Gate - TxINB = Ext. Clock

The signal applied to input pin B. gated by the signal applied to input pin A, acts as external clock for the prescaler. The up/down control may be made only by software action through the UDC bit in the TCR register.

13.3.8 TxINA = Trigger - TxINB = Trigger

The signal applied to input pin A (or B) acts as trigger signal for the REGOR (or REG1R) register performing the action for which the register has been programmed. The counter clock is internally generated and the up/down control may be made only by software action through the UDC bit in the TCR register.

13.3.9 TxINA = Clock Up - TxINB = Clock Down

The pulse received on input pin A (or B) performs a one step up (or down) count, so that the counter clock and the up/down control are external. Setting the UDC bit in the TCR register has no effect in this configuration while input pin B has priority on input pin A.

13.3.10 TxINA = Up/Down - TxINB = Ext Clock

An High (or Low) level of the signal applied on input pin A sets the counter in the up (or down) count mode, while the signal applied to input pin B is used as clock for the prescaler. Setting the UDC bit in the TCR register has no effect in this configuration.

13.3.11 TxINA = Trigger Up - TxINB = Trigger Down
Up/down control is performed through both input pins A and B. A pulse on input pin A sets the up count mode, while a pulse on input pin B (which has priority on input pin A) sets the down count

INPUT PIN ASSIGNMENT (Continued)

mode. The counter clock is internally generated while setting the UDC bit in the TCR register has no effect in this configuration.

13.3.12 TxINA = Up/Down - TxINB = I/O

An High (or Low) level of the signal applied on input pin A sets the counter in the up (or down) count mode. The counter clock is internally generated. Setting the UDC bit in the TCR register has no effect in this configuration.

13.3.13 Autodiscrimination Mode

The phase between two pulses (respectively on input pin B and input pin A) generates a one step up (or down) count, so that the up/down control and the counter clock are both external. Thus, if the rising edge of TxINB arrives when TxINA is at level " 0 " the timer is incremented (no action if the rising edge of TxINB arrives when TxINA is at level "1"). If the falling edge of TxINB arrives when TxINA is at level " 0 " the timer is decremented (no action if the falling edge of TxINB arrives when TxINA is at level "1").

Setting the UDC bit in the TCR register has no effect in this configuration.

13.3.14 TxINA $=$ Trigger - TxINB $=$ Ext. Clock

The signal applied to input pin A acts as a trigger signal on REGOR register performing the action for which the register was programmed (i.e. a reload or capture), while the signal applied to input pin B is used as clock for the prescaler.

(') The timer is in One shot mode and REGOR in reload mode

13.3.15 TxINA = Ext. Clock - TxINB = Trigger

The signal applied to input pin B acts as a trigger, performing a capture on REG1R register. while the signal applied to the input pin A is used as clock for the prescaler.

13.3.16 TxINA = Trigger - TxINB = Gate

The signal applied to input pin A acts as a trigger signal on REG0R register performing the action for which the register was programmed (i.e. a reload or capture), while the signal applied to input pin B acts as a gate signal for the internal clock (i.e. the counter runs only when the gate signal is at a low level).

13.4 OUTPUT PIN ASSIGNMENT

Two external outputs are available for each timer when programmed as Alternate Function Outputs of the I/O pins.
Two registers for every timer, Output A Control Register (OACR) and Output B Control Register (OBCR) define the driver for the outputs and the actions to be performed.
Each of the two output pins can be driven from any of the three possible sources:

- Compare Register 0 event logic
- Compare Register 1 event logic
- Overflow/Underflow event logic.

Each of these three sources can cause one of the following four effects on any of the two outputs:

- Nop
- Set
- Reset
- Toggle.

Furthermore an On Chip Event signal can be driven by two of the three sources: the Over/Underflow event and Compare 0 event by programming the CEV bit of the OACR register and the OEV bit of OBCR register respectively. This signal can be used for another on-chip peripheral or as strobe for an I/O port (see Handshake chapter).

Output Waveforms

Depending on the different programmed values of OACR and OBCR the following example waveforms can be generated on TxOUTA and TxOUTB pins.

Configuration where TxOUTA is driven by Over/Underflow (OUF) and Compare 0 event (CMO), while TxOUTB is driven by the Over/Underflow and Compare 1 event (CM1).
OACR is programmed with TxOUTA preset to " 0 ", OUF sets TxOUTA, CM0 resets TxOUTA and CM1 does not affect the output.
OBCR is programmed with TxOUTB preset to " 0 ", OUF sets TxOUTB, CM1 resets TxOUTB while CMO does not affect the output.

```
OACR = [101100\times0]
OBCR = [110001\times1]
```


Configuration where TxOUTA is driven by Over/Underflow, Compare 0 and Compare 1, while TxOUTB is driven by both Compare 0 and Compare 1.
OACR is programmed with TxOUTA preset to " 0 ". OUF toggles the Output 0 as do CM0 and CM1. OBCR is programmed with TxOUTB preset to " 1 ". OUF does not affect the output while CMO resets TxOUTB and CM1 sets it.

OUTPUT PIN ASSIGNMENT (Continued)

Configuration where TxOUTA is driven by Over/Underflow and Compare 0, while TxOUTB is driven by Over/Underflow and Compare 1.
OACR is programmed with TxOUTA preset to " 0 ". OUF sets TxOUTA while CMO resets it and CM1 has no affect.
OBCR is programmed with TxOUTB preset to " 1 ". OUF toggles TxOUTB, CM1 sets it and CM0 has no affect.

```
OACR = [101100\times0]
OBCR = [110001\times1]
        TOOUTA 
```


Configuration where TxOUTA is driven by Over/Underflow and Compare 0 , while TxOUTB is driven by Compare 0 and 1 .
OACR is programmed with TxOUTA preset to " 1 ". OUF sets TxOUTA, CM0 resets it and CM1 has no affect.
OBCR is programmed with TxOUTB preset to " 0 ". OUF has no affect, CM0 sets TxOUTB and CM1 toggles it.

OACR $=[101100 \times 0]$
OBCR $=[110001 \times 1]$

Output Waveform Samples In Biload Mode

TxOUTA is programmed to monitor the two time intervals (t1 and t2) of the Biload Mode while TxOUTB is independent from the Over/Underflow and is driven by the different values of Compare 0 and Compare 1.
OACR is programmed with TxOUTA preset to " 0 ". OUF toggles the output and CMO and CM1 do not affect TxOUTA.
OBCR is programmed with TxOUTB preset to " 0 ". OUF has no effect, while CM1 resets TxOUTB and CMO sets it.
Depending on the CM1/CM0 values, three different example waveforms have been drawn starting from the above mentioned configuration of OBCR. In the last case, with a different programmed value of OBCR, only Compare 0 drives TxOUTB, toggling the output.

Note (*) Depending on the CMP1R/CMPOR values

13.5 INTERRUPT AND DMA

13.5.1 Timer Interrupt

The timer has 5 different Interrupt sources, grouped into 3 independent groups, assigned to the following Interrupt vectors:
Table 13-3. Timer Interrupt Structure

Interrupt Source	Vector Address
COMP 0	$\mathrm{xxxx} \times 110$
COMP 1	$\mathrm{xxxx} \times 100$
CAPT 0	
CAPT 1	$\mathrm{xxxx} \times 000$

The three least significant bits of the vector pointer address represent the relative priority assigned to each group, (000 value is the highest priority level) and are fixed by hardware depending on the source which generates the interrupt request. The 5 most significant bits are programmed by the user in the Interrupt Vector Register (IVR) of each Timer.
Each source can be masked by a dedicated bit in the Interrupt/DMA Mask Register (IDMR) of each timer, as well as a global mask enable bit (IDMR.7), masking all interrupts.
If an interrupt request (CMO or CPO) happens before the corresponding pending bit is reset, an overrun condition occurs. This condition is flagged in two dedicated overrun bits, concerning the Comp0 and Capt0 sources, and placed in the Timer Flag Register (FLAGR).

13.5.2 Timer DMA

Two Independent DMA channels, associated to Compare 0 and Capture 0 sources, respectively allow DMA transfers from Register File/Memory to Comp0 Register and vice versa from Capt0 Register to Register File/Memory (also transfers in/from Memory from/into an I/O port are available). Their priority is hardware set as follows:

- Compare 0 Destination Lower Priority
- Capture 0 Source Higher Priority

The two DMA request sources are independently maskable by two DMA Mask bits, mapped in the Timer Interrupt/DMA Mask register (IDMR).
The two End of Block procedures, associated to each Interrupt mask and DMA mask combination, follow the standard architecture as shown in the Interrupt and DMA chapters.

13.5.3 DMA Pointers

The 6 programmable most significant bits of the Timer Address and Counter Pointer registers (DAPR-DCPR) are common to both channels (Comp0 and Capt0 sources). As a consequence, the Comp0 and Capt0 Address pointers are mapped by pair in the Register File, as well as the Comp0 and Capt0 DMA Counter pair.
The different address specification, in order to point either Capt0 or Comp0 pointers, is provided by the Timer according to the channel under service (replacing the address bit 1 with " 0 " for CAPTO or with " 1 " for COMP0), when D0 bit on DCPR register is equal to zero (Word address in Register File). In this condition (register with program/data memory transfer), the pointers will be split in two groups of adjacent Address pointer and Counter pairs respectively.
In the case of register to register transfers (selected by programming the value " 1 " into bit 0 of the DCPR register), only one pair of pointers are required and the pointers are mapped into one group of adjacent positions.
DAPR (the DMA/Address Pointer Register) in this case in not used, but must be considered reserved.

INTERRUPT AND DMA (Continued)
Figure 13-4. Map Pointer for Register to Prog/Data Memory Transfer

Address Pointers	Register File	YYYYYY11(I) YYYYYY10(h)
	Comp0 16 bit Addr Pointer	
	Capt0 16 bit Addr Pointer	
		YYYYYY01(I) YYYYYYOO(h)
DMA Counters	Comp0 DMA 16 bit Counter	$\begin{aligned} & X X X X X X 11(I) \\ & X X X X X 10(h) \end{aligned}$
	Capt0 DMA 16 bit Counter	
		XXXXXX01(I) XXXXXX00(h)

Figure 13-5. Map Pointer for Register to Register Transfer

Register File		
8 bit Counter		XXXXXX11

13.5.4 Priority During The DMA Transactions

Each Timer DMA transaction is a 16-bit operation, therefore two different bytes must be transferred subsequently. This is accomplished by two DMA transfers. In order to speed up each word transfer, the second byte transfer is executed by forcing automatically the peripheral priority to the highest level (000) regardless to the previous set level. It will be then restored to the original value after executing this transfer. Furthermore, once one request is being served, its hardware priority is kept at the highest level regardless to the other Timer internal sources, i.e. once a Comp0 request is being served, it keeps a higher priority on the Capt0 channel, even if a Capt0 request occurs between the two byte transfers.

13.5.5 The DMA Swap Mode

After a complete data table transfer, the transaction counter is reset and an End Of Block condition occurs, the block transfer is completed.
The End Of Block Interrupt routine has at this point to reload both address and counter pointers of the channel referred by the End Of Block interrupt source if the application requires a continuous high speed data flow. This procedure causes speed limitations because of the time consumed by the reload routine.
The SWAP feature overcomes this drawback, allowing high speed continuous transfers. Bit 2 of the Timer Address and Counter Pointer registers (DAPR-DCPR), toggles after any End Of Block condition, alternately providing odd and even address (D2-D7) for the pair of pointers, thus pointing to an updated pair, after a block has been completely transferred. This allows the User to be updating or reading the first block, and to update the pointer values while the second is being transferred. These two toggle bits are software writable and readable, mapped in DCPR bit 2 for the CMO channel, and in DAPR bit 2 for the CPO channel (though a DMA event on a channel, in Swap mode, modifies a field in DAPR and DCPR common to both channels, the DAPR/DCPR content used in the transfer is always the bit related to the correct channel).
The SWAP mode can be enabled by a control bit placed in the Interrupt Control Register.
WARNING: this mode is always set for both channel (CMO and CPO).

INTERRUPT AND DMA (Continued)

13.5.6 The DMA End Of Block Interrupt Routine

This Interrupt request is generated after each block transfer (EOB) and its priority is the same as assigned in the usual Interrupt request, for the two channels. As a consequence, they will be served only when no DMA request occurs, and will be submitted to a possible OUF Interrupt request, which has higher priority.
Here is a typical EOB procedure (with swap mode enabled):

- Toggle bit test and Jump.
- Pointers (odd or even depending on toggle bit status) reload.
- Reset EOB bit: this bit must be reset only after the old couple of pointers has been restored, so that, if a new EOB condition occurs, the next pointers are ready to be swapped.
- Verify the software protection condition.
- Read the corresponding Overrun bit: this makes the user sure that NO DMA request has been lost in the meantime.
- Return.

WARNING: The EOB bits are read/write bits only for testing reasons. Writing a logical "1" by software (when SWEN bit is set) will cause a spurious interrupt request. During normal operation, these bits must only be reset by software.

13.5.7 DMA Software Protection

A second EOB condition may occur before the first EOB routine is completed, this would cause a not yet updated pointer couple to be addressed, with consequent overwriting of memory. To prevent these errors, a protection mechanism is provided, such that the attempted setting of the EOB bit before it has been reset by software will cause the DMA mask on that channel to be reset (DMA disabled), locking any further DMA operation. As shown above, this mask bit should always be checked in each EOB routine, to ensure all DMA transfers are properly served.

13.6 TIMER DMA EXTERNAL MODES ON I/O PORTS

Each Timer DMA channel can also be employed in external transfers to/from memory from/to an I/O port. In this case only Byte transfers are executed for any request. Two control bits (DCTS and DCTD) in the Interrupt/DMA Control Register (IDCR) set each channel in INT/EXT (Internal = Register to Memory/External = Memory to/from I/O ports) mode.
The relevant I/O port must then be programmed in DMA mode and the right direction of the port chosen by the HDCxR register of that port (see Handshake chapter).
The two modes, however, are not the same for both channels as explained in the following section.

13.6.1 CMO Channel External Mode

This mode is enabled when DCTD (DMA Compare Transaction Destination) bit is equal to " 1 " in the IDCR register.
This mode allows only Output transfers, from Register File/memory to the I/O port, under a request caused by a CMO event or a software request (writing " 1 " in the CMO flag). An application for this is a data flow under DMA to be output at fixed times.
The synchronization with the I/O port is accomplished by an internal signal, active when the data to be transfered is present on the internal Data Bus. If programmed, the on-chip event pulse can also be generated and used to strobe the output data on the selected handshake port.
In either case the DMA Output mode must be selected in the HDCTL Register of the port (see Handshake chapter).

13.6.2 CPO Channel In External Mode

This mode is enabled when DCTS (DMA Capture Transaction Source) bit is equal to " 1 " in the IDCR register.
This mode allows bi-directional transfers controlled (when the I/O port is programmed in DMA Input/Output mode in the HDCTL register) by the value of the DD bit of the HDCTL register (the DD bit selects the DMA input or DMA Output mode).
The DMA request can be either an External CPTO request (Timer External input A) or a software request (by writing " 1 " in the CP0 Flag).
This, along with a further internal synchronization signal, generated by the Timer Unit, allows handshake operations managed by the I/O port while the direction of the data to read or write on the I/O port is fixed by the value of the DD bit in the HDCTL register.

MODES ON I/O PORTS (Continued)

13.6.3 DMA Channel Synchronization

A CPO DMA request can be generated also by a CMO event, simply by setting the Timer External Input A on rising and falling edges sensitive, connecting it by hardware or software (though the IOCR register) to the Timer OUT 0, and programming the CMO action as output toggle.
This will cause a CPO request to be generated after
each CMO condition, thus synchronizing the 2 DMA channels (see the following application example).
The DCTS bit must be set and DCTD bit must be reset in the IDCR register. Figure 13-6 shows an example of two channel synchronisation. A new byte will be sent out through the I/O port at an interval specified by the COMP0 value mapped in the look-up table.

Figure 13-6. Timer DMA Channels Synchronization

13.7 REGISTER DESCRIPTION

Twenty control and data registers are associated to each Multifunction timer, and are located in the Group F I/O pages of the ST9 Register File.
The registers of the Multifunction Timers are located in the I/O pages as follows:
Note that unused registers must be regarded as reserved registers.

In the following pages there is a detailed description of every register with the meaning and the function of every bit. The register is referred without the absolute address which is depending on the number of the timer used (of course the configuration and the functions of the internal bits of i.e. TCR - TIMO are the same of TCR - TIM1 and so on.

Table 13-4. Multifunction Timer Register Map

$\begin{aligned} & \text { R255 } \\ & \text { R254 } \end{aligned}$	IMDR - TIMO	FF FE		IMDR - TIM1
	FLAGR - TIMO			FLAGR - TIM1
R253	OBCR - TIMO	FD		OBCR - TIM1
R252	OACR - TIMO	FC		OACR - TIM1
R251	PRSR - TIMO	FB		PRSR - TIM1
R250	ICR - TIMO	FA		ICR - TIM1
R249	TMR - TIMO	F9		TMR - TIM1
R248	TCR - timo	F8	IOCR	TCR - TIM1
R247	CMP1LR - TIM0	F7	IDCR - TIM 1	CMP1LR - TIM1
R246	CMP1HR - TIMO	F6	IVR - TIM1	CMP1HR - TIM1
R245	CMPOLR - TIMO	F5	DAPR - TIM 1	CMPOLR - TIM1
R244	CMPOHR - TIMO	F4	DCPR - TIM1	CMPOHR - TIM1
R243	REG1LR - TIM0	F3	IDCR - TIMO	REG1LR - TIM1
R242	REG1HR - TIMO	F2	IVR - TIMO	REG1HR - TIM1
R241	REGOLR - TIM0	F1	DAPR - TIMO	REGOLR - TIM1
R240	REGOHR - TIMO	Fo	DCPR - TIMO	REGOHR - TIM1
	Page 10 (OAh)		Page 9 (09h)	Page 8 (08h)

REGISTER DESCRIPTION (Continued)

13.7.1 Register 0 (REGOR) Registers

This pair of registers (REGOLR and REGOHR) is used to capture values from the U/D counter or to load preset values into the U/D counter.

REGOHR R240 (FOh) Read/Write Capture Load Register 0 (High)
Reset value: undefined

7	0						
R15	R14	R13	R12	R11	R10	R9	R8

REG0LR R241 (F1h) Read/Write
Capture Load Register 0 (Low)
Reset value: undefined
7 0

R7	R6	R5	R4	R3	R2	R1	R0

13.7.2 Register 1 (REG1R) Registers

This pair of registers (REG1LR and REG1HR) is used (as REGOR) to capture values from the U/D counter or to load preset values into the U/D counter.

REG1HR R242 (F2h) Read/Write
Capture Load Register 1 (High)
Reset value: undefined

7	0						
R15	R14	R13	R12	R11	R10	R9	R8

REG1LR R243 (F3h) Read/Write
Capture Load Register 1 (Low)
Reset value: undefined
7 0

R7	R6	R5	R4	R3	R2	R1	R0

13.7.3 Compare 0 (CMPOR) Registers

This pair of Registers (CMPOL and CMPOH) is used to store 16 -bit values to be compared to the U/D counter content.

CMPOHR R244 (F4h) Read/Write
Compare 0 Register (High)
Reset value: undefined

						0		
R15	R14	R13	R12	R11	R10	R9	R8	

CMPOLR R245 (F5h) Read/Write
Compare 0 Register (Low)
Reset value: undefined
7

R7	R6	R5	R4	R3	R2	R1	R0

13.7.4 Compare 1 (CMP1R) Registers

This pair of Registers (CMP1L and CMP1H) is used (as CMPOR) to store 16 -bit values to be compared to the U/D counter content.

CMP1HR R246 (F6h) Read/Write
Compare 1 Register (High)
Reset value: undefined

7					0		
R15	R14	R13	R12	R11	R10	R9	R8

CMP1LR R247 (F7h) Read/Write
Compare 1 Register (Low)
Reset value: undefined

R7	R6	R5	R4	R3	R2	R1	R0

REGISTER DESCRIPTION (Continued)

13.7.5 Timer Control Register (TCR)

This register is used to control the status of the timer.

TCR R248 (F8h) Read/Write
Timer Control Register
Reset value: $00000 \times x x b$

7							
CEN	CCPO	CCMPO	CCL	UDC	UDCS	OFO	CS

b7 = CEN: Counter Enable. This bit is ANDed with the Global Counter Enable bit (GCEN bit on R230 - Central Interrupt Control Register; the GCEN bit is set after the Reset cycle). Setting the CEN bit starts the counter and prescaler (without reload). When this bit is reset, the counter and prescaler stop.
b6 = CCPO: Clear on Capture. When this bit is set, a clear of the counter and a reload of the prescaler are performed on REG0R or REG1R capture. No effect when this bit is reset.
b5 = CCMP0: Clear on Compare. When this bit is set, a clear of the counter and a reload of the prescaler are performed on CMPOR compare. No effect when this bit is reset.
b4 = CCL: Counter clear. When this bit is set, the counter is cleared without generation of interrupt request. No effect when this bit is reset.
b3 = UDC: Software Up/Down. When the direction of the counter is not fixed by TxINA and/or TxINB (see par. 10.3) it can be software controlled by the UDC bit. Setting the UDC bit selects the Up mode counting. Resetting this bit the Down counting is performed.
b2 = UDCS: Up/Down Count status. This bit is read only and monitors the direction of the counter. Reading " 1 " means that the counter is using the Up mode counting. Reading " 0 " means that the Down mode counting is in use.
b1 = OF0: OVF/UNF state. This bit is read only and is set if an Overflow or an Underflow occurs during a Capture on Register 0.
b0 = CS: Counter Status. This bit is read only and monitors the status of the counter. Reading " 1 " means that the counter is running. Reading " 0 " indicates that the counter is halted.

13.7.6 Timer Mode Register (TMR)

This register is used to select the operating mode of the timer.

TMR R249 (F9h) Read/Write
Timer Mode Register
Reset value: 0000 0000b (00h)
7

$0 E 1$	$0 E 0$	$B M$	RM1	RM0	ECK	REN	CO

b7 = OE1: Output 1 Enable. Setting this bit enables the Output 1 (TxOUTB) of the relevant timer. When this bit is reset, the TxOUTB is disabled and forced to the logic state " 1 ". The relevant I/O bit must also be set to Alternate Function.
$\mathrm{b} 6=$ OEO: Output O Enable. Setting this bit enables the Output 0 (TxOUTA) of the relevant timer. When this bit is reset, the TxOUTA is disabled and forced to the logic state "1". The relevant I/O bit must also be set to Alternate Function.
b5 = BM: Bivalue Mode. This bit enables the Bivalue mode when is set. When the bit is reset, the Bivalue mode is disabled. After that, depending on the value of RMO bit (TMR - bit 3), the Biload or Bicapture mode is selected.
b 4 = RM1: REG1R mode. When this bit is set, the REG1R can be used to capture the value of the counter. When the bit is reset, the REG1R monitors the value of the counter. The selection performed by this bit has no effect when the Bivalue Mode is enabled.
b 3 = RM0: REGOR mode. When this bit is set, the REGOR can be used to capture the value of the counter (also the Bicapture mode can be selected if the BM bit is equal to 1). When the bit is reset, the REGOR can be used to load the new value of the counter (also the Biload mode can be selected if the BM bit is equal to " 1 ").
b2 = ECK: Timer clocking mode. This bit selects the clock source which drives the prescaler. When the ECK bit is reset, either the Internal or External clock is used depending on INO - IN3 configuration in ICR. When ECK bit is set, different functions are performed depending on the number of the relevant timer. For odd timers (Timer 1, Timer 3 and so on) setting the ECK bit enables the Parallel mode where the prescaler of the odd timer is driven by the prescaler output of the even timer.

REGISTER DESCRIPTION (Continued)

b1 = REN: Retrigger mode. When this bit is reset, the Retriggerable mode is enabled. When the bit is set, this operating mode is disabled.
b0 = CO: Continous/One shot mode. When this bit is reset, the Continuous mode is selected (with autoreload on condition). The bit must be set to select the one shot mode. The following table summarizes the different operating modes depending on the values of RM0, RM1 and BM bits.

Table 13-5. Timer Operating Modes

TMR Bits			Timer Operating Modes
BM	RM1	RM0	
1	X	0	Biload mode
1	X	1	Bicapture mode
0	0	0	Load from REG0R and Monitor on REG1R
0	1	0	Load from REG0R and Capture on REG1R
0	0	1	Capture on REG0R and Monitor on REG1R
0	1	1	Capture on REG0R and REG1R

13.7.7 External Input Control Register(ICR)

By this register it is possible to program the function and the operation to be performed on TxINA and TxINB inputs.

ICR R250 (FAh) Read/Write External Input Control Register
Reset value: 0000 xxxxb (0Xh)
7 0

$\mathbb{I N} 3$	$\mathbb{N} 2$	$\mathbb{N} 1$	$\mathbb{N} 0$	A 0	A 1	B 0	B 1

b7-b4 = IN3,IN2,IN1,IN0: Input pin assignment. The different functions of TxINA and TxINB inputs of every timer cari be selected by INO - IN3 bits as explained below.
b3-b2 = A0, A1: TxINA event programming. The following TxINA configurations can be selected according to the vai. ies of A0 and A1 bits:
$\mathrm{b} 1-\mathrm{b} 0=\mathrm{B0}, \mathrm{B1}: T x I N B$ event programming. The following TxINB configurations can be selected according to the values of B 0 and B 1 bits:

A0/B0	A1/B1	TxINA/TxINB Configuration
0	0	No operation
0	1	Falling edge sensitive
1	0	Rising edge sensitive
1	1	Rising and falling edges

IC Reg. IN3-INO bits	TxINA Input Function	TxINB Input Function
0000	not used	not used
0001	not used	Trigger
0010	Gate	not used
0011	Gate	Trigger
0100	not used	Ext. Clock
0101	Trigger	Eot used
0110	Gate	Trigger
0111	Trigger	Clock Down
1000	Clock Up	Ext. Clock
1001	Up/Down	Trigger Down
1010	Trigger Up	not used
1011	Up/Down	Autodiscr.
1100	Autodiscr.	Ext. Clock
1101	Trigger	Trigger
1110	Ext. Clock	Gate
1111	Trigger	

REGISTER DESCRIPTION (Continued)

13.7.8 Prescaler Register (PRSR)

This register holds the preset value for the 8-bit prescaler. The PRSR content may be modified at any time, but it will be loaded into the prescaler at the following prescaler underflow, or as a consequence of a counter reload (either by software or upon external request). On an external RESET condition, the prescaler is automatically loaded with the 00 h value, so that the prescaler divides by 1 and the maximum counter clock is generated (OSCIN frequency divided by 6 when MODER. $5=$ DIV2 bit is set).

PRSR R251 (FBh) Read/Write
Prescaler Register
Reset value: 0000 0000b (00h)

7	0						
P7	P6	P5	P4	P3	P2	P1	P0

The binary value stored (by programmer) in the PRSR register is equal to [divider value - 1]. For example, loading PRSR with 24 makes the prescaler divide by 25 .

13.7.9 Output A Control Register (OACR)

This register selects the sources that can perform actions on a TxOUTA pin. TxOUTA can be driven from any of three possible sources:

- OVF/UNF being an Overflow or Underflow event on the U/D counter,
- COMPO being a successful compare event on CMPOR register, and
- COMP1 being a successful compare event on CMP1R.
By programming bits B0 and B1 of the relevant source can cause one of the following four effects on TxOUTA (which can be preset previously):

B0	B1		Event
0	0	Set	
0	1	Toggle	
1	0	Reset	
1	1	Nop	

Note: In any case of contemporary events the actıon will be taken which results from 'ANDing' the B1-B0 fields. Through this register the action of COMPO on the on-chip event can be also selected.

OACR R252 (FCh) Read/Write Output A Control Register
Reset value: xxxx xx0xb

7	1						
B0	B 1	B 0	B 1	B 0	B 1	CEV	OP

< COMPO > < COMP1 > < OVF/UNF >
b7-b6 = B0, B1: Control bits of COMPO. Control bits for event driven by COMPO.
b5-b4 = B0, B1: Control bits of COMP1. Control bits for event driven by COMP1.
b3-b2 = B0, B1: Control bits of OVF/UNF. Control bits for event driven by OVF/UNF.
b1 = CEV: On-Chip Event on CMP0R. When this bit is set, a successful compare on CMPOR activates the on-chip event signal (a single pulse is generated). No action when this bit is reset.
b0 = OP: Control bit of TxOUTA preset. The value of this bit is the preset value of TxOUTA output pin. Reading this bit returns the current state of the TxOUTA output pin (i.e. useful when this output is selected in toggle mode).

REGISTER DESCRIPTION (Continued)

13.7.10 Output B Control Register (OBCR)

This register selects the sources that can perform actions on TxOUTB output pin. TxOUTB can be driven from any of three possible sources:

- OVF/UNF being an Overflow or Underflow event on the U/D counter,
- COMPO being a successful compare event on CMPOR register, and
- COMP1 being a successful compare event on CMP1R.
By programming bits B 0 and B 1 of the relevant source can cause one of the following four effects on TxOUTB (which can be previously preset):

B0	B1		Event
0	0	Set	
0	1	Toggle	
1	0	Reset	
1	1	Nop	

Note: In any case of contemporary events the action will be taken which results from 'ANDing' the B1-B0 fields Through this register the action of Overflow/Underflow on the on-chip event can be also selected.

OBCR R253 (FDh) Read/Write
Output B Control Register
Reset value: xxxx xx0xb

B0.	B1	B0	B1	B0	B1	OEV	OP

< COMPO > < COMP1 > < OVF/UNF >
$\mathrm{b} 7-\mathrm{b} 6=\mathrm{B0}, \mathrm{~B} 1$: control bits of COMPO. Control bits ior event driven by COMPO.
b5-b4 = B0, B1: control bits of COMP1. Control bits for event driven by COMP1.
b3-b2 = B0, B1: control bits of OVF/UNF. Control bits for event driven by OVF/UNF.
b1 = OEV: On-Chip Event on OVF/UNF. When this bit is set, a successful Overflow/Underflow activates the on-chip event signal (a single pulse is generated). No action when this bit is reset.
b0 = OP: control bit of TxOUTB preset. The value of this bit is the preset value of TxOUTB output pin. Reading this bit, it returns the current state of the TxOUTB output pin (i.e. useful when this output is selected in toggle mode).

13.7.11 Flag Register (FLAGR)

This register contains the flags of the successful captures or comparisons together with the Overflow/Underflow and overrunning indications. Also the mode of the Interrupt on capture can be selected. By writing into the capture flags it is possible to generate software captures. It is necessary to clear the capture flag before subsequent sofware captures can be generated. By reading this register, user can know which source has generated an interrupt (several sources may share the same interrupt vector).

FLAGR R254 (FEh) Read/Write
Flags Register
Reset value: 0000 0000b (00h)
7 0

CPO	CP1	CM0	CM1	OUF	OCPO	OCMO	AO

b7 = CP0: Flag on Capture 0 . This bit is set after a capture on REGOR register. Writing "1" acts as a software load/capture from/on REG0R.
b6 = CP1: Flag on Capture 1. This bit is set after a capture on REG1R register. Writing "1" acts as a software capture on REG1R, except when in Bicapture mode.
b5 = CM0: Flag on Compare 0 . This bit is set after a successful compare on CMPOR register.
b4 = CM1: Flag on Compare 1. This bit is set after a successful compare on CMP1R register.
b3 = OUF: Flag on Overflow/Underflow. This bit is set after a counter Over/Underflow condition.
b2 = OCPO: Flag of overrun on Capture 0. This bit is set when more than one INT/DMA request occurs before having reset the event flag CPO or whenever a capture is software simulated.
b1 = OCM0: Flag of overrun on Compare 0. This bit is set when more than one INT/DMA request occurs before having reset the event flag CMO.
b0 = A0: Capture Interrupt Function. When this bit is set the Interrupt is generated by an AND function of REG0R/REG1R captures while when the A0 bit is reset, the Interrupt is generated by an OR function of REGOR/REG1R captures.

REGISTER DESCRIPTION (Continued)

13.7.12 Interrupt/DMA Mask Register (IDMR)

This register contains the Global Timer Interrupt enable bit and the INT/DMA enable bits of the following events:

- Capture on REG0R (CPO field),
- Capture on REG1R (CP1I bit - only Interrupt mask),
- Compare on CMPOR (CMO field),
- Compare on CMP1R (CM1I bit- only Interrupt mask), and
- Overflow/Underflow (OUI bit - only Interrupt mask).

IDMR R255 (FFh) Read/Write Interrupt/DMA Mask Register
Reset value: 0000 0000b (00h)

7
GTIEN CPOD CPOI CP1I CMOD CMOI CM11 OUI

b7 = GTIEN: Global Timer Interrupt Enable. When this bit is set, all the Interrupts (of the enabled sources) of the timer are enabled. When the bit is reset, all the Interrupts of timer are disabled.
b6 = CPOD: Capture 0 DMA Mask. Capture on REGOR DMA is enabled when CPOD = "1."
b5 = CPOI: Capture 0 Interrupt Mask. Capture on REGOR interrupt is enabled when $\mathrm{CPOI}=$ " 1 ".
b4 = CP1I: Capture 1 Interrupt Mask. Capture on REG1R interrupt is enabled when CP1I = " 1 ".
b3 = CMOD: Compare 0 DMA Mask. Compare on CMPOR DMA is enabled when CMOD = "1".
b3 = CMOI: Compare 0 Interrupt Mask. Compare on CMPOR interrupt is enabled when CMOI = " 1 ".
b1 = CM1I: Compare 1 Interrupt Mask. Compare on CMP1R interrupt is enabled when CM1I = "1".
b0 = OUI: Overflow/Underflow Interrupt Mask. Overflow/Underflow condition interrupt is enabled when OUI = " 1 ".
Note. The following Registers show in square brackets ([]) the Register address in the case of an odd numbered (1,3.5...) Multifunction Timer being available on-chip. If only one Timer is present these addresses may be ignored.

13.7.13 DMA Counter Pointer Register (DCPR)

This register is not used only as DMA Counter pointer but also to define the DMA area and the DMA source.

DCPR R240 (F0h)[R244 (F4h)] Read/Write DMA Counter Pointer Register
Reset value: undefined
\qquad

DCP7	DCP6	DCP5	DCP4	DCP3	DCP2	DMA SRCE	REG MEM

b7-b2 = DCP7-DCP2: MSB of DMA counter register address. Those bits contain the most significant bits of the DMA counter register address and are user programmable. Though user programmable, the D2 bit may be hardware toggled if the Swap mode is set for the Timer DMA section related to Compare 0 channel.
b1 = DMA-SRCE: DMA source selection (hardware programmed). This bit is hardware fixed by the Timer DMA logic and is set if the DMA destination is a Compare on CMPOR register and reset if the DMA source is a Capture on REGOR register.
b0 $=$ REG/MEM: DMA area selection. When this bit is set, it selects the Source/Destination of the DMA area from/into Register File while when it is reset, the Source/Destination of the DMA area is from/to the External Program or Data Memory (according with the value of DO bit in DAPR).

REGISTER DESCRIPTION (Continued)

13.7.14 DMA Address Pointer Register (DAPR)

This register is not used only as DMA Address pointer but also to define the DMA area and the DMA source.
DAPR R241 (F1h)[R245 (F5h)] Read/Write
DMA Address Pointer Register
Reset value: undefined

| 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

DAP7	DAP6	DAP5	DAP4
DAP3	DAP2	DMA SRCE	PRG/ DAT

b7-b2 = DAP7-DAP2: MSB of DMA Address register location. Those bits contain the most significant bits of the DMA Address register location and are user programmable. Through user programmable, the bit D2 may be hardware toggled if the Swap mode is set for the Timer DMA section related to Capture 0 channel.
b1 = DMA-SRCE: DMA source selection (hardware programmed). This bit is hardware fixed by the Timer DMA logic and is set if the DMA destination is a Compare on CMPOR register and reset if the DMA source is a Capture on REGOR register.
b0 = PRG/DAT: DMA memory selection. When this bit is set it selects the Source/Destination of the DMA area from/into Data Memory while when it is reset the Source/Destination of the DMA area is from/into the External Program Memory (according with the value of DO bit in DCPR).

REG.MEM	PRG/DAT	DMA Source/Destination
0	0	Program memory
0	1	Data memory
1	0	Register file
1	1	Register file

13.7.15 Interrupt Vector Register (IVR)

This register is used as a vector pointing to the 16bit interrupt vectors in the program memory which contain the starting addresses of the three interrupt subroutines managed by every timer.
Only one Interrupt Vector Register is available for every timer and is able to manage the three interrupt groups because the 3 least significant bits are fixed by hardware depending on the group which generated the interrupt request.
In order to understand which request generated the interrupt inside the same group, the FLAGR register can be used to check the relevant flag of the interrupt source.

IVR R242 (F2h) [R246 (F6h)] Read/Write Interrupt Vector Register
Reset value: xxxx xxx0b
7
0

V4	V3	V2	V1	V0	Wi	W0	D0

$\mathrm{b} 7-\mathrm{b} 3=\mathrm{V} 4-\mathrm{V} 0: M S B$ of the Vector address. These bits are user programmable and contain the five most significant bits of the Timer interrupt vector addresses in the program memory. In any case, an 8 -bit address can be used to indicate the Timer interrupt vector locations because they are within the first 256 locations of the program memory (see Interrupt and DMA chapters).
b2-b1 = W1 - W0: Vector Address bits. These bits are equivalent to bit 1 and bit 2 of the Timer interrupt vector addresses in the program memory. They are fixed by hardware depending on the group of sources which generated the interrupt request as follows:
b0 = DO. This bit is fixed by hardware. It always returns the value " 0 " if read.

W1	W0	Interrupt Source
0	0	Overflow/Underflow even interrupts
0	1	Not available
1	0	Capture event interrupts
1	1	Compare event interrupts

REGISTER DESCRIPTION (Continued)

13.7.16 Interrupt/DMA Control Register (IDCR)

This register is used to control the Interrupt and DMA priority level, the DMA transfer source and destination and the Swap mode. This register contains also the two End Of Block bits.

IDCR R243 (F3h) [R247 (F7h)] Read/Write Interrupt/DMA Control Register
Reset value: 11000111 b (C7h)
7 0

CPE	CME	DCTS	DCTD	SWEN	PL2	PL1	PLO

b7 = CPE: Capture 0 EOB. This bit is set by hardware when the End Of Block condition is reached during a Capture 0 DMA operation with the Swap mode enabled. When the Swap mode is disabled (SWEN bit = " 0 ") the CPE bit is forced by hardware to "1".
b6 = CME: Compare 0 EOB. This bit is set by hardware when the End Of Block condition is reached during a Compare 0 DMA operation with the Swap mode enabled. When the Swap mode is disabled (SWEN bit = " 0 ") the CME bit is forced by hardware to "1".
b5 = DCTS: DMA Capture Transfer Source. This bit selects the source of the DMA operation related to the channel associated to the Capture 0 . When the DCTS bit is reset the selected source is the REGOR register. When the DCTS bit is set the ST9 port is selected as DMA transfer source (with this DMA channel the ST9 port can also be destination depending on the value of the DD bit in the HDCTL register of the port - see I/O port chapter 9).
b4 = DCTD: DMA Compare Transfer Destination. This bit selects the destination of the DMA operation related to the channel associated to the Compare 0 . When this bit is reset, the selected destination is the CMPOR register. When the bit is set, the ST9 port is selected as DMA transfer destination.
b3 = SWEN: Swap function Enable. When this bit is set, the Swap function is enabled for the two DMA channels. Resetting the SWEN bit disables the Swap mode.
b2-b0 = PL2 to PLO: Interrupt/DMA priority level. With these three bits it is possible to select the Interrupt and DMA priority level of every single timer within eight different levels (see Interrupt/DMA chapter).

13.7.17 I/O Connection Register (IOCR)

This register allows user to select (or not) an onchip connection between input A and output A of one same timer.

IOCR R248 (F8h) Read/Write I/O Connection Register
Reset value: 1111 1100b (FCh)
7

b7-b2 = not used.
b1 = SC1: Select Connection Odd. SC1 selects if connection between TxOUTA and TxINA for ODD timers is made on-chip or externally (physically on pins)
SC1 = " 0 ": TxOUTA and TxINA unconnected
SC1 = "1": TxOUTA and TxINA connected internally
b0 = SC0: Select Connection Even. SC0 selects if connection between TxOUTA and TxINA for EVEN timers is made on-chip or externally (physically on pins)
SCO="0": TxOUTA and TxINA unconnected
SC0="1": TxOUTA and TxINA connected internally

SGS-THOMSON
NTCRODLETCIONDC

14 SERIAL COMMUNICATIONS INTERFACE

14.1 INTRODUCTION

The ST9 Serial Communications Interface (SCI) offers a means of full-duplex serial data transfer to a wide range of external equipments.
The SCI has the following features:

- Full duplex character-oriented synchronous and asynchronous operation
- Synchronous serial port expansion capability
- Transmit, receive, line status, and device address interrupt generation
- Integral Baud Rate Generator capable of dividing the input clock by any value from 2 to $2^{16}-1$ (16 bit word) and generating the internal 16X clock for asynchronous operation or 1X clock for synchronous operation
- Fully programmable serial-interface characteristics:
$-5,6,7$, or 8 bit word length
- Even, odd, or no parity generation and detection
-1, 1-1/2, 2, 2-1/2 stop bit generation
- False start bit detection
- Complete status reporting capabilities
- Line break generation and detection
- Programmable address indication bit (wake-up bit) and User invisible compare logic to support network communication of multiple microcomputers. Optional character search function.
- Internal diagnostic capabilities:
- Local loopback for communications link fault isolation
- Auto-echo for communications link fault isolation
- Separate interrupt/DMA channels for both transmit and receive

Figure 14-1. SCI Block Diagram

14.2 FUNCTIONAL DESCRIPTION

SCl can run in three operational modes:

- Asynchronous mode
- Synchronous mode
- Serial expansion mode

Each of these three modes output data with the same serial frame format. The differences are derived from the clock rate ($1 \mathrm{X}, 16 \mathrm{X}$) and the sampling clock (for the serial expansion mode).

Asynchronous Mode

In this mode, data and clock can be asynchronous (the emitter and receiver can have their own clock to sample received data), each data bit is sampled 16 times per clock period. Thus the baud rate clock should be set to the $\div 16$ Mode and the frequency of the clock input (from an external source or the internal baud-rate generator output) set to suit this.

Synchronous Mode

In this mode, data and clock are synchronous, each data bit is sampled once per clock period.

Serial Expansion Mode

This mode is used to access to an external synchronous peripheral.
The transmitter will provide the clock waveform only during the period that data is being transmitted through CLKOUT pin (the Data Envelope). The data is latched on the rising edge of this clock.
Whenever the SCl is to receive data in the serial port expansion mode, the clock waveform must be supplied externally, synchronous with the data to the ST9. The SCI will latch the incoming data on the rising edge of the receiver I/O expansion clock. The clock input is supplied on pin RXCLK.

14.2.1 Serial Frame Format

Figure 14-3. Asynchronous mode

Figure 14-4. Synchronous Mode

Figure 14-5. Serial Expansion Mode

Figure 14-2. Sampling Times in Asynchronous Format

124/195

FUNCTIONAL DESCRIPTION (Continued)

Every character sent (or received) by the SCl has the following format:
This format is used by the SCl in all modes:
START: the start bit indicates the beginning of a data frame in the asynchronous mode. START bit is detected as a high to low transition
DATA: the DATA word is programmable to be from 5 to 8 bits long for both synchronous and asynchronous modes
PARITY: The Parity Bit is optional, and can be used with any length of word. It is used for error checking and resets in a resultant state (odd or even) depending on number of " 1 "s in DATA.
ADDRESS/9TH: The Address/9th Bit is optional and may be added to any word format. It is used in both synchronous or asynchronous mode to indicate that the data is an address (bit = " 1 ").
The ADDRESS/9TH bit is useful when several microcontrollers are exchanging data on the same serial bus. Individual microcontrollers can stay idle on the serial bus, waiting for a transmitted address. When a microcontroller recognizes its own address, it can begin Data Reception, likewise, on the transmit side, the microcontroller can transmit another address to begin communication with a different microcontroller.
The ADDRESS/9TH bit can be used as an additional data bit or to mark control words (9th bit).
STOP: Indicates the end of a data frame for both asynchronous and synchronous modes. The stop bit is programmed to be $1,1.5,2$, or 2.5 bits long. It returns the SCl to the quiescent marking state (i.e., a constant high-state condition) which lasts until a new start bit indicates an incoming word.

Data transfer

Data to be transmitted by the SCI is first loaded by the program into the Transmitter Buffer Register. The SCl will transfer the data into the Transmitter Shift Register when the Shift Register becomes available (empty). The Transmitter Shift Register converts the parallel data into the serial format for transmission through the SCI Alternate Function output, Serial Data Out. After the completion of the transfer, the transmitter buffer register interrupt pending bit will be updated.
If the selected word format is less than 8 bits, the unused most significant bits are "don't care".
Incoming serial data from the Serial Data Input pin is converted into parallel data for reception in the Receiver Shift Register. At the end of the input, the data portion of the received word is transferred from the Receiver Shift Register into the Receiver Buffer Register. All Receiver interrupt conditions are updated at the time of transfer.
If the selected character format is less than 8 bits, the unused most significant bits will have the value "1".
The Frame Control and Status block creates and checks the character configuration (Data length and stop bits), and the source for the transmitter/receiver clock.
The integral Baud Rate Generator contains a programmable divide by " N " counter which can be used to generate the clocks for the transmitter and/or receiver. The baud rate generator can use INTCLK or the Receiver clock input RXCLK.
The Address bit/D9 is optional and may be added to any word format. It is commonly used in network or machine control applications. When enabled (AB, CHCR. $4=$ " 1 "), an address or ninth data bit can be added to a transmitted word by setting the

Figure 14-6. SCI Character Format

		-				
	START	DATA	PARITY	ADDRESS	STOP	
\# bits	1	5,6,7,8	0,1	0,1	$\begin{gathered} 1,1.5,2,2.5 \\ 1,2,3 \end{gathered}$	$\begin{gathered} 16 X \\ 1 X \end{gathered}$
states			NONE ODD EVEN	$\begin{aligned} & \text { ON } \\ & \text { OFF } \end{aligned}$		

FUNCTIONAL DESCRIPTION (Continued)

Set Address bit (SA, IDPR.5). This is then appended to the next word entered into the (empty) Transmitter Buffer Register and then cleared by hardware.
On character input an Address Bit set can indicate that the data preceding the bit is an address which may be compared in hardware with the value in the Address Compare Register (ACR) to generate an Address Match interrupt when equal.
The Address bit and Address Comparison Register can also be combined to generate an Address Interrupt in 4 modes to suit different protocols, based upon the status of the Address Mode Enable bit (AMEN, IDPR.7) and the Address Mode bit (AM, CHCR.7).
Table 14-1. Address Interrupt Modes

If 9th Data Bit =1
If Character Match
If Character Match and 9th Data Bit $=1$
If Character Match on Word Immediately Following Break

The character match Address Interrupt mode may be used as a powerful character search mode, giving an interrupt on reception of a predetermined character e.g. Carriage Return or End of Block codes.
The Line Break condition is fully supported for both transmission and detection. Line Break is sent by setting the SET_BREAK bit (SB, IDPR.6). This causes the transmitter output to be held low (after all buffered data has been transmitted) for a minimum of one complete word length and until the SB bit is Reset.
Testing of the communications channel may be performed using the facilities of the SCI. Auto Echo mode (SCI SOUT disconnected, SIN pin internally connected to SOUT pin) and Loopback mode (SCl transmitter and receiver sections disconnected from SOUT and SIN pins and directly connected internally) may be used individually or together.

Figure 14-7. Auto Echo Configuration

Figure 14-8. Loop Back Configuration

Figure 14-9. Auto Echo and Loop Back Config.

FUNCTIONAL DESCRIPTION (Continued)

14.2.2 Clocks And Serial Transmission Rates

The communication bit frequency of the SCl transmitter and receiver sections can be provided from the integral Baud Rate Generator (allowing a maximum asynchronous bit rate of 350 k Baud) or from external sources (maximum bit rate 175k Baud). This clock is divided by 16 for asynchronous mode (CD, CCR.3, = "0"), or divided by 1 for synchronous modes (CD = "1").
External Clock Sources. The External Clock input pin TXCLK may be programmed by bits TXCLK (CCR.7) and OCLK (CCR.6) to be: the transmit clock input (respecting the $\div 16$ and $\div 1$ timing requirements), to act as the output of the Baud Rate Generator (allowing an external divider circuit to provide the receive clock for split rate transmit and receive e.g. 1200/75 baud), or to be CLKOUT, the clock output for the synchronous mode.
The Receive clock input via RXCLK input function is enabled by the XRX bit CCR.5, this input should be set according to the setting of the CD bit.
Baud Rate Generator. The integral Baud Rate Generator is a 16 -bit programmable divide by " N " counter which can be used to generate the clocks for the transmitter and/or receiver. The minimum baud rate divisor is 2 and the maximum divisor is $2^{16}-1$. After initialization of the baud rate generator, the divisor value is immediately loaded into the counter. This prevents potentially long random counts on the initial load.
Baud Rate generator frequency = Input Clock frequency/Divisor
WARNING. Programming the baud rate division to 0 or 1 will stop the divisor.
The output of the baud generator has an exact 50% duty cycle. The output can provide either the 16X clock for asynchronous operation or a 1X clock for synchronous and serial port expansion modes for the receiver and the transmitter. An additional divide by 16 may be appropriate to compute the SCI data rate if in this normal operating mode.
The Baud Rate generator can use INTCLK for the input clock source. In this case, INTCLK should be chosen to provide a suitable frequency for division
by the Baud Rate Generator to give the required transmit and receive bit rates.
Suitable INTCLK frequencies and the divider values for standard Baud rates are shown in Table 14-2.

Notes:

1) Writing to a Baud Rate Generator Register immediately disables and resets both the SCI baud rate generator, the transmitter and receiver circuitry. After writing to the remaining Baud Rate Generator Register, the transmitter and receiver circuits are enabled. The Baud Rate generator will load the new value and start counting.
Thus to initialize the SCI, the user should first initialize one Baud Rate Generator Divisor Register. This will reset all SCl circuitry. Initialize all other SCl registers for the desired operating mode, and then, to enable the SCI, initialize the remaining Baud Rate Generator Register.
2) For synchronous receive operation, the data and receive clock must not have significant skew between clock and data. The received data and clock are internally synchronized to INTCLK clock.
For synchronous transmit operation, a general purpose I/O port pin must be programmed to output the CLKOUT signal from the baud rate generator. If the SCI is provided with an external transmission clock source, there will be a skew equivalent to two INTCLK periods between clock and data.
The synchronous data will be transmitted on the fall of the transmit clock. The synchronous received data will be latched into the SCl on the rising edge of the provided receive clock.

The maximum data transfer rate is in synchronous mode ($1 \times$ mode):

- Maximum bit rate $=\operatorname{INTCLK} / 8=12 \mathrm{MHz} / 8=1.5$ Mbit/s
- Maximum byte rate $=1.5 \mathrm{Mbit} / 10=150 \mathrm{Kby}$ tes/s
(one byte $=8$ bits of data +1 stop bit +1 start bit $=$ 10 bits)

FUNCTIONAL DESCRIPTION (Continued)
Table 14-2. SCI Baud Rate Generator Divider Values

INTCLK: 7680.000 KHz							
Baud Rate	Clock Factor	Desired Freq (kHz)	Divisor		Actual Baud Rate	Actual Freq (kHz)	Deviation
			Dec	Hex			
50.00	16 X	0.80000	9600	2580	50.00	0.80000	0.0000\%
75.00	16 X	1.20000	6400	1900	75.00	1.20000	0.0000\%
110.00	16 X	1.76000	4364	110C	109.99	1.75985	0.0083\%
300.00	16 X	4.80000	1600	0640	300.00	4.80000	0.0000\%
600.00	16 X	9.60000	800	0320	600.00	9.60000	0.0000\%
1200.00	16 X	19.20000	400	0190	1200.00	19.20000	0.0000\%
2400.00	16 X	38.40000	200	00C8	2400.00	38.40000	0.0000\%
4800.00	16 X	76.80000	100	0064	4800.00	76.80000	0.0000\%
9600.00	16 X	153.60000	50	0032	9600.00	15360000	0.0000\%
19200.00	16 X	307.20000	25	0019	19200.00	307.20000	0.0000\%
38400.00	16 X	614.40000	13	000D	36923.08	590.76923	3.8462\%
76800.00	16 X	1228.80000	6	0006	80000.00	1280.00000	4.1667\%
INTCLK: 11059.20 kHz							
Baud Rate	Clock Factor	Desired Freq (kHz)	Divisor		Actual Baud Rate	Actual Freq (kHz)	Deviation
			Dec	Hex			
50.00	16 X	0.80000	13824	3600	50.00	0.80000	0.0000\%
75.00	16 X	1.20000	9216	2400	75.00	1.20000	0.0000\%
110.00	16 X	1.76000	6284	188C	109.99	1.75990	0.0058\%
300.00	16 X	4.80000	2304	0900	300.00	4.80000	0.0000\%
600.00	16 X	9.60000	1152	0480	600.00	9.60000	0.0000\%
1200.00	16 X	19.20000	576	0240	1200.00	19.20000	0.0000\%
2400.00	16 X	38.40000	288	0120	2400.00	38.40000	0.0000\%
4800.00	16 X	76.80000	144	0090	4800.00	76.80000	0.0000\%
9600.00	16 X	153.60000	72	0048	9600.00	153.60000	0.0000\%
19200.00	16 X	307.20000	36	0024	19200.00	307.20000	0.0000\%
38400.00	16 X	614.40000	18	0012	38400.00	614.40000	0.0000\%
76800.00	16 X	1228.80000	9	0009	76800.00	1228.80000	0.0000\%

FUNCTIONAL DESCRIPTION (Continued)

14.2.3 Input Signals

SIN: Serial Data Input. This pin is the serial data input to the SCl receiver shift register.
TXCLK: External Transmitter Clock Input. This pin is the external input clock driving the SCI transmitter. The TXCLK frequency must be greater than or equal to 16 times the transmitter data rate (depending on the selection of X16 or X1 clock operating mode). The use of the TXCLK pin is optional.
RXCLK: External Receiver Clock Input. This input is the clock to the SCl receiver when using an external clock source to the SCl baud rate generator. INTCLK is normally the clock source. A 50/50 duty cycle is not required for this input, however, the short period must last more than two INTCLK periods. The use of the RXCLK pin is optional.

14.2.4 Output Signals

SOUT: Serial Data Output. This Alternate Function output signal is the serial data output from the SCl transmitter shift register.
CLKOUT: Clock Output. The Alternate Function of this pin outputs either the data clock from the transmitter to an external shift register in the serial expansion mode or the clock output from the Baud rate generator. In serial expansion mode it will clock only the data portion of the frame. The data is valid on the rising edge of the clock. The CLKOUT idle state is low.

14.3 INTERRUPTS AND DMA

14.3.1 Interrupts

The SCl is able to generate interrupts from multiple sources. Receive interrupts include data pending, receive errors (overrun, framing and parity), address or break pending. Transmit interrupts are software selectable for either the Transmit Holding Register Empty (HSN, IMR. $7=$ "1") or for the Transmit Shift Register Empty (HSN = "0").
Typical Usage of the Interrupts provided by the SCI is shown in Figure 14-10.
The SCl is able to generate interrupt requests on 10 events. Several of these events share the same interrupt vector, so it is necessary to poll ISR, the Interrupt Status Register, to determine the active trigger. These bits should be reset by the programmer during the Interrupt Service routine.
The four major levels of interrupt are encoded in hardware to provide two bits of the interrupt vector register, allowing the position of the block of pointer vectors to be resolved to a block size of 8 bytes.
Table 14-3. SCI Interrupt Vector

Interrupt Source	Vector Address
Transmitter Buffer or Shift Register Empty Transmit DMA end of Block	$\mathrm{xxx} \times 110$
Received Ready Receive DMA end of Block	$\mathrm{xxxx} \times 100$
Break Detector Address Word Match	$\mathrm{xxxx} \times 010$
Receiver Error	$\mathrm{xxxx} \times 000$

The SCI interrupts have an internal priority structure in order to resolve simultaneous events.

Table 14-4. SCI Interrupt Internal Priority

Receive DMA Request	Highest Priority
Transmit DMA Request	
Receive Interrupt	
Transmit Interrupt	Lower Priority

INTERRUPTS AND DMA (Continued)

Figure 14-10. SCI Interrupt Typical Usage

ADDRESS AFTER BREAK CONDITION

ADDRESS WORD MARKED BY D9 $=1$

Character search mode

D9 ACTING AS DATA CONTROL WITH SEPARATE INTERRUPT

INTERRUPTS AND DMA (Continued)

14.3.2 DMA

Two DMA channels are associated with the SCl , for transmit and for receive. These follow the register scheme as described in DMA chapter. It should be noted that, after initializing the DMA counter and pointer registers and enabling DMA, data transmission is triggered by a character written into the Transmit Holding register.
When DMA is active the Receive Data Pending bit (RXDP, ISR.2), and the Transmit status bit interrupt sources are replaced by the DMA End Of Block Interrupt sources for transmit and receive, respectively.
The last DMA data word of a block of data will cause a DMA cycle followed by a transmit interrupt. This sequence will signal to the ST9 core to reinitialize the transmit DMA block counter. The Transmit End of Block status bit (TXEOB) should be reset by software in order to avoid undesired interrupt routines, especially in the initialisation routine (after reset) and after entering the End Of Block interrrupt routine.
Similarly the last DMA data word of a block of data will cause a DMA cycle followed by a receiver data ready interrupt. This sequence will signal to the ST9 core to reinitialize the receiver DMA block counter. The Received End of Block status bit (RXEOB) should be reset by software in order to avoid undesired interrupt routines, especially in the initialisation routine (after reset) and after entering the End Of Block interrupt routine.
Remark: If properly initialized, the DMA controller starts a data transfer after and only if the running program has loaded the Transmitter Buffer Register with a value. In order to execute properly a DMA transmission, the End Of Block interrupt routine must include the following actions:

- Load the Transmitter Buffer Register (TXBR) with the first byte to transmit.
- Restore the DMA counter (TDCPR)
- Restore the DMA pointer (TDAPR)
- Reset the transmitter end of block bit TXEOB (IMR.5)
- Reset the transmitter holding empty bit TXHEM (ISR.1)
- Enable DMA

14.4 CONTROL REGISTERS

The relative pages of the SCl in the $\mathrm{ST9}$ are:

- SCI number 1: page 24 (18h)
- SCI number 2: page 25 (19h) (when available)

The SCl is controlled by the following registers:

Address	Register
R240 (FOh)	Receiver DMA Transaction Counter Pointer Register
R241 (F1h)	Receiver DMA Source Address Pointer Register
R242 (F2h)	Transmitter DMA Transaction Counter Pointer Register
R243 (F3h)	Transmitter DMA Destination Address Pointer Register
R244 (F4h)	Interrupt Vector Register
R245 (F5h)	Address Compare Register
R246 (F6h)	Interrupt Mask Register
R247 (F7h)	Interrupt Status Register
R248 (F8h)	Receive Buffer Register same Address as Transmitter Buffer Register (Read Only)
R248 (F8h)	Transmitter Buffer Register same Address as Receive Buffer Register (Write only)
R249 (F9h)	Interrupt/DMA Priority Register
R250 (FAh)	Character Configuration Register
R251 (FBh)	Clock Configuration Register
R252 (FCh)	Baud Rate Generator Register
R253 (FDh)	Baud Rate Generator Register
R254 (FEh)	Reserved
R255 (FFh)	Reserved

CONTROL REGISTERS (Continued)
RDCPR R240 (F0h) Read/Write
Receiver DMA Transaction Counter Pointer
Reset value: undefined

7	RC7	RC6	RC5	RC4	RC3	RC2	RC1

b7-b1 = RC7-RC1: Receive DMA Counter Pointer. RDCPR contains the address of the pointer (in the Register File) of the DMA receiver transaction counter.
b0 = RR/M: Receiver Register File/Memory Selector. If this bit = " 1 " the Register File will be selected as Destination, if this bit = " 0 " the Memory space will be selected.

RDAPR R241 (F1h) Read/Write
Receiver DMA Source Address Pointer
Reset value: undefined
7 0

RA7	RA6	RA5	RA4	RA3	RA2	RA1	RD/P

b7-b1 = RA7-RA1: Receive DMA Address Pointer. RDAPR contains the address of the pointer (in the Register File) of the receiver DMA data source.
b0 = RD/P: Receive DMA Data/Program Memory
Selector. If memory (RR/M = "0") has been selected for DMA transfers, when this bit = "1" receiver DMA transfers will go to Data Memory. If this bit = "0" receiver DMA transfers will go to Program Memory.

TDCPR R242 (F2h) Read/Write Transmitter DMA Transaction Counter Pointer
Reset value: undefined
7
0

TC7	TC6	TC5	TC4	TC3	TC2	TC1	TRMM

b7-b1 = TC7-TC1: Transmitter DMA Counter Pointer. TDCPR contains the address of the pointer (in the Register File) of the DMA transmitter transaction counter.
b0 = TR/M: Transmitter Register File/Memory Selector. If this bit = " 1 " the Register File will be selected as Source, if this bit = " 0 " the Memory space will be selected.

TDAPR R243 (F3h) Read/Write
Transmitter DMA Destination Address Pointer
Reset value: undefined

7							
TA7	TA6	TA5	TA4	TA3	TA2	TA1	TD/P

b7-b1 = TA7-TA1: Transmitter DMA Address Pointer. TDAPR contains the address of the pointer (in the Register File) of the transmitter DMA data source.
b0 = TD/P: Transmitter DMA Data/Program Memory Selector. If memory (TR/M = "0") has been selected for DMA transfers, when this bit $=" 1$ " transmitter DMA transfers come from Data Memory. If this bit = " 0 " transmitter DMA transfers come from Program Memory

IVR R244 (F4h)Read/Write
Interrupt Vector Register
Reset value: undefined
7 0

V7	V6	V5	V4	V3	EV2	EV1	0

b7-b3 = V7-V3: SCI Interrupt Vector Base Address. User programmable interrupt vector bits for transmitter and receiver
b2-b1 = EV2-EV1: Encoded Interrupt Source (Read only). EV2 and EV1 are set by hardware according to the interrupt source.

EV2	EV1	Interrupt source
0	0	Receiver Error (Overrun, Framing, Parity) Break detect or address match
1	0	Receiver data ready/receiver DMA End of Block
1	1	Transmitter buffer or shift register empty transmitter DMA End of Block

b0 = D0: This bit is fixed by hardware. It always returns the value " 0 " when read.

SGS-THOMSON
NDCROERECTRONDCS

CONTROL REGISTERS (Continued)
ACR R245 (F5h) Read/Write
Address/Data Compare Register
Reset value: undefined

AC7	AC6	AC5	AC4	AC3	AC2	AC1	AC0

b7-b0 = AC7-AC0: Address/Compare Character. With either 9th bit address mode, address after break mode, or character search, the received address will be compared to the value stored in this register. When a valid address matches this register content, the Receive Address Pending bit is set. After the RXAP bit is set in an addressed mode all received data words will be transferred to the Receiver Buffer Register.

IMR R246 (F6h) Read/Write
Interrupt Mask Register
Reset value: 0xx0 0000b

$$
\begin{array}{ll}
7 & 0
\end{array}
$$

HSN	RXEOB	TXEOB	RXE	RXA	RXB	RXDI	TXDI

b7 = HSN: Holding or shift register empty interrupt. This bit selects the source of interrupt/DMA as the transmitter register empty event. If this bit is set to " 1 ", a holding register empty will generate a transmitter register empty interrupt.
If this bit has a " 0 " value, a shift register empty will generate a transmitter register empty interrupt.
b6 = RXEOB: Received End of Block. This bit is set after a receiver DMA cycle to mark the end of a block of data. The last DMA data word will cause a DMA cycle followed by a receiver data ready interrupt. This sequence will signal to the ST9 core to reinitialize the receiver DMA block counter. RXEOB should be reset by software in order to avoid undesired interrupt routines, especially in the initialisation routine (after reset) and after entering the End Of Block interrupt routine.

Writing " 0 " in this bit will cancel the interrupt request.
Note. RXEOB can only be written with a " 0 " (RXEOB = set only by the ST9 core).
b5 = TXEOB: Transmitter End of Block. This bit is set in a transmitter DMA cycle to mark the end of a block of data. The last DMA data word will cause a DMA cycle followed by a transmitter interrupt. This sequence will signal to the ST9 core to reinitialize the transmitter DMA block counter. TXEOB should be reset by software in order to avoid undesired interrupt routines, especially in initialisation routine (after reset) and after entering the End Of Block interrrupt routine.
Writing " 0 " in this bit will cancel the interrupt request.
Note. TXEOB can only be written with a 0 (TXEOB is set only by the ST9 core)
b4 = RXE: Receiver Error Mask. When this bit is set to " 0 ", the receiver error bits: Overrun Error (OE), Parity Error (PE), and Framing Error (FE), cannot generate an interrupt.
b3 = RXA: Receiver Address Mask. When this bit is set to " 0 ", the Receiver Address Pending (RXAP) bit cannot generate an interrupt.
b2 = RXB: Receiver Break Mask. When this bit is set to " 0 ", the Receiver Break Pending (RBP) bit cannot generate an interrupt.
b1 = RXDI: Receiver Data Interrupt Mask. When this bit is set to " 0 ", the Receiver Data Pending (RDP) bit and the Receiver End of Block (RXEOB) bit cannot generate an interrupt. RXDI has no effect on DMA transfers.
b0 = TXDI: Transmitter Data Interrupt Mask. When this bit is set to " 0 ", neither the Transmitter Holding or Shift Register Empty (TXHEM) bit or the Transmitter End of Block (TXEOB) bit can generate an interrupt. TXDI has no effect on DMA transfers.

CONTROL REGISTERS (Continued)

ISR R247 (F7h) Read/Write Interrupt Status Register

Reset value: undefined
7

OE	FE	PE	RXAP	RXBP	RXDP	TXHEM	TXSEM

b7 = OE: Overrun Error Pending. This bit is set to a logic " 1 " if the data in the Receiver Buffer Register was not read by the CPU before the next character was transferred into the Receiver Buffer Register (the previous data is lost). It is cleared by writing a zero into OE.
b6 = FE: Framing Error Pending bit. This bit is set to a logic " 1 " if the received data word did not have a valid stop bit. It is cleared by writing a zero to the bit. In the case where a framing error occurs when the SCl is programmed in an address mode, and is monitoring for an address, this interrupt is asserted and the corrupted data element is transferred to the Receiver Buffer Register.
b5 = PE: Parity Error Pending. This bit is set to a logic " 1 " if the received word did not have the correct even or odd parity bit. It is cleared by writing a zero into PE.
b4 = RXAP: Receiver Address Pending. RXAP is set to " 1 " after an interrupt acknowledged in the address mode. The source of this interrupt is given by the couple of bits (AMEN, AM) as detailed in the "Interrupt/DMA Priority Register" description. RXAP is cleared by software.
b3 = RXBP: Receiver Break Pending bit. This bit is set to a logic " 1 " if the received data input is held low for the full word transmission time (start bit, data bits, parity bit, stop bit). It is cleared by writing a zero into RXBP.
b2 = RXDP: Receiver Data Pending bit. This bit is set to a logic " 1 " when data is loaded into the Receiver Holding Register. It is cleared by writing a zero into RXDP.
b1 = TXHEM: Transmitter buffer register Empty. This bit is set to a logic " 1 " if the Holding Register is empty. It is cleared by writing a zero into TXHEM.
b0 = TXSEM: Transmitter Shift Register Empty. This bit is set to a logic "1" if the Shift Register has completed the transmission of the available data. It is cleared by writing a " 0 " into TXSEM.

Note.

The Interrupt Status Register bits can be reset by writing a " 0 " but it is not possible to write a " 1 " into any bit in this register. It is mandatory to clear the interrupt source by writing a " 0 " in the pending bit when executing the interrupt service routine.

When servicing an interrupt routine, the User should reset ONLY the pending bit relative to the serviced interrupt routine (and not reset the other pending bits).

RXBR R248 (F8h) Read only
Receive Buffer Register
Reset value: undefined

$$
\begin{array}{ll}
7 & 0
\end{array}
$$

$R D 7$	$R D 6$	$R D 5$	$R D 4$	$R D 3$	$R D 2$	$R D 1$	$R D 0$

b7-b0 = RD7-RD0: Received Data. This register stores the data portion of the received word. The data will be transferred from the Receiver Shift Register into the Receiver Buffer Register at the end of the word. All receiver interrupt conditions will be updated at the time of transfer. If the selected character format is less than 8 bits, unused most significant bits will forced to " 1 ".

TXBR R248 (F8h) Write only
Transmitter Buffer Register
Reset value: undefined

$$
\begin{array}{ll}
7 & 0
\end{array}
$$

TD7	TD6	TD5	TD4	TD3	TD2	TD1	TD0

b7-b0 = TD7-TD0: Transmit Data. The ST9 core will load the data for transmission into this register. The SCI will transfer the data from the buffer into the Shift Register when available. At the transfer, the Transmitter Buffer Register interrupt is updated. If the selected word format is less than 8 bits, the unused most significant bits are not significant.

SCS-THOMSON
MUCRESERCTRONTCS

CONTROL REGISTERS (Continued)
IDPR R249 (F9h) Read/Write Interrupt/DMA Priority Register
Reset value: undefined

7		0					
AMEN	SB	SA	RXD	TXD	PRL2	PRL1	PRL0

b7 = AMEN: Address Mode Enable. This bit, with AM (R250), decodes the desired addressing/9th data bit/character match operation.

AMEN	AM	
0	0	Address interrupt if 9th data bit =1
0	1	Address interrupt if character match 1
1	1	Address interrupt if character match and 9th data bit =1
Address interrupt if character match		
with word immediately following Break		

In an addressed mode the SCl will monitor the input serial data until its address is detected.
Upon reception of address, the RXAP bit (in the Interrupt Status Register) is set and an interrupt cycle can begin. The address character will not be transferred into the Receiver Buffer Register but, all data following the matched SCI address and preceeding the next address word will be transferred to the Receiver Buffer Register and the proper interrupts updated. If the address does not match, all data following this unmatched address will not be transferred to the Receiver Buffer Register.
In any of the cases the RXAP bit must be reset by software before the next word is transferred into the Buffer Register.
When AMEN = " 0 " and $A M=$ " 1 ", a useful character search function is performed. This allows the SCl to generate an interrupt whenever a specific character is encountered (e.g. Carriage Return).
$\mathrm{b} 6=$ SB: Set Break. If this bit is set, a break will be transmitted following the transmission of all data in the Transmitter Shift Register and the Buffer Regis-
ter. The break will be a " 0 " value on the transmitter data output for at least one complete word format. If software does not reset SB before the minimum break length has finished, the break condition will continue until software resets SB. The SCI terminates the break condition with a " 1 " on the transmitter data output for one transmission clock period.
b5 = SA: Set Address. If an address/9th data bit mode is selected, SA value will be loaded for transmission. Setting this bit indicates an address word. SA will be cleared by hardware after it is loaded into the Shift Register. Proper procedure would be, when the Transmitter Buffer Register is empty, to load the value of SA and then load the data into the Transmitter Buffer Register.
$\mathrm{b4}=$ RXD: Receiver DMA Mask. If this bit is " 0 ", no receiver DMA request will be generated, and the RXDP bit in the Interrupt Status Register can request an interrupt. If RXD is set to " 1 ", the RXDP bit can request a DMA transfer. This bit is reset by hardware when the transaction counter value decrements to zero. At that time a receiver "end of block" interrupt can occur.
b3 = TXD: Transmitter DMA Mask. If this bit is "0" no transmitter DMA request will be generated and the TXHEM (or TXSEM) bit in the Interrupt Status Register can request an interrupt. If TXD is set, the TXHEM (or TXSEM) bit can request a DMA transfer. This bit is reset by hardware when the transaction counter value decrements to zero. At that time a transmitter End Of Block interrupt can occur.
b2-b0 = PRL2, PRL2, PRL0: SCI Interrupt/DMA Priority bits. The priority for the SCI is encoded with (PRL2,PRL1,PRLO). A priority value of 0 has the highest priority, a value of 7 has no priority.
When user has defined a priority level for the SCl , priorities inside the SCl are hardware defined. These SCI internal priorities are:

receiver DMA request	higher priority
transmitter DMA request	
receiver interrupt	
transmitter interrupt	lower priority

CONTROL REGISTERS (Continued)

CHCR R250 (FAh) Read/Write
Character Configuration Register
Reset value: undefined
7 0

AM	EP	PEN	AB	SB1	SBO	WL1	WLO

b7 = AM: Address Mode. decodes the desired addressing/9th data bit/character match operation in conjunction with AMEN (IDPR.7, R249).
b6 = EP: Even Parity. When parity is enabled, this bit selects between even or odd parity. If this bit is equal to " 0 ", odd parity will be selected. If this bit is equal to " 1 ", even parity will be selected.
b5 = PEN: Parity Enable. When this bit is equal to " 1 ", a parity bit is generated (transmit data) or checked (received data) between the last word bit and the stop bits. If the address/9th bit is enabled, the parity bit will precede the address/9th bit
(The parity bit is used to produce an even or odd number of 1 's when the parity bit and all data bits are summed. The 9th bit is never included in the parity calculation).
b4 = AB: Address/9th Bit. If this bit equals "1" the transmit and receive character format will include a bit between the parity bit and the first stop bit. This bit can be used to address the SCl or as a ninth data bit.
b3-b2 = SB1-SB2: Stop Bits. This bit field specifies the number of stop bits to be included in the data format

SB2	SB1	Number of stop bits	
		in 16X mode	in 1X mode
0	0	1	1
0	1	1.5	2
1	0	2	2
1	1	2.5	3

b1-b0 = WL1, WL0: These two bits specify the number of data bits in each transmitted or received character. The following table shows the coding of WL.

WL1	WL0	Data Length
0	0	5 bits
0	1	6 bits
1	0	7 bits
1	1	8 bits

CCR R251 (FBh) Read/Write Clock Configuration Register
Reset value: 00000000 (00h)

7							
XTCLK	OCLK	XRX	XBRG	CD	AEN	LBEN	STPEN

b7 = XTCLK:
b6 = OCLK: These two bits select the source for the transmitter clock. The following table shows the coding of XTCLK and OCLK.

XTCLK	OCLK	Pin Function
0	0	Pin is used as a general I/O
0	1	Pin = TXCLK (used as an input)
1	0	Pin = CLKOUT (outputs the Baud Rate Generator clock) Pin = CLKOUT (outputs the Serial exp. mode clock)

b5 = XRX: External Receiver Clock Source. If this bit is " 1 ", the receiver will use the external receiver clock pin for its clock source. The external clock must be equal to 16 times the data rate or equal to the data rate depending on the bit CD.
b4 = XBRG: Baud Rate Generator Clock Source. If this bit is " 1 ", the baud rate generator will use the external receiver clock pin for its clock source. If this bit is " 0 ", the baud rate generator will use the ST9 system clock (INTCLK).
b3 = CD: Clock Divisor. If CD = "1", both the receiver and the transmitter will be in $1 \times$ clock mode. In 1X clock mode, the transmitter will transmit data at one data bit per clock period. If this bit is " 0 ", both the receiver and the transmitter will be in 16X mode. In 16X mode each data bit period will be 16 clock periods long.
The CD value will determine the synchronous/asynchronous SCl configuration mode.
b2 = AEN: Auto Echo Enable. If AEN = "1", the SCI is in auto echo mode. In this mode the SCl transmitter is disconnected from the transmitter dataout pin (SOUT). The transmitter data-out pin (SOUT) is driven directly by the receiver data-in pin (SIN). The receiver remains connected to the receiver data-in pin (SIN) and is operational, unless loopback mode is also selected.

SGS-THOMSON
MICROELECTRONDCS

CONTROL REGISTERS (Continued)

b1 = LBEN: Loopback Enable. If this bit is set to " 1 ", the loopback mode is enabled. In this mode the transmitter output is set to " 1 ", the receiver input is disconnected, and the output of the Transmitter Shift Register is looped back into the Receiver Shift Register input. All interrupt sources for both the transmitter and the receiver are operational.
b0 = STPEN: Stick Parity Enable. If this bit is set to " 1 ", the transmitter and the receiver will use the opposite parity type selected by the even parity bit (EP).

EP	SPEN	Parity (Transmitter \& Receiver)
0 (odd)	0	Odd
1 (even)	0	Even
0 (odd)	1	Even
1 (even)	1	Odd

BRGHR R252 (FCh) Read/Write Baud Rate Generator Register, High byte.
Reset value: undefined

15									
BG15	BG14	BG13	BG12	BG11	BG10	BG9	BG8		

BRGLR R253 (FDh) Read/Write
Baud Rate Generator Register, Low byte.
Reset value: undefined

$$
\begin{array}{ll}
7 & 0
\end{array}
$$

BG7	BG6	BG5	BG4	BG3	BG2	BG1	BG0

b15-b0: The Baud Rate generatoris a programmable divide by " N " counter which can be used to generate the clocks for the transmitter and/or receiver. This counter divides the clock input by the value in the Baud Rate Generator Register. The minimum baud rate divisor is 2 and the maximum divisor is $2^{16}-1$. After initialization of the baud rate generator, the divisor value is immediately loaded into the counter. This prevents potentially long random counts on the initial load.
If set to 0 or 1 , the Baud Rate Generator is stopped.

Figure 14-11. SCI Functional Scheme

Notes:

15 A/D CONVERTER

15.1 INTRODUCTION

The Analog to Digital Converter (A/D) is comprised of an 8 channel multiplexed input selector and a Successive Approximation converter. The conversion time is thus a function of the INTCLK frequency; for the maximum 12 MHz clock rate, conversion of the selected channel requires $11 \mu \mathrm{~s}$. This time also includes the 3μ s of the integral Sample and Hold circuitry, which minimizes the need for external components and allows quick sampling of the signal for the minimum warping effect and Integral conversion error.
The resolution of the converted channel is 8 bits, with $\pm 1 / 2$ LSB maximum DNL error between the Analog VSs and VDD references.
The converter uses a fully differential analog input configuration for the best noise immunity and precision performance, along with two separate supply references, allowing the best supply noise rejection and possible analog references lower
than the Digital VCc. In fact, the converted digital value, is referred to the Analog $\mathrm{V}_{\mathrm{cc}}\left(\mathrm{A} \mathrm{V}_{\mathrm{cc}}\right)$ as the full scale value, so that using, for example a value of 4 Volt for this supply, all conversions will accordingly refer to this 4 Volt full scale value $\left(A V_{S S}=V_{S S}\right.$ mandatory).
Up to 8 multiplexed Analog Inputs are available. A group of signals can be converted sequentially by simply programming the starting address of the first analog channel to be converted and using the AUTOSCAN feature.
Two Analog Watchdogs are provided, on analog input channels 6 and 7, allowing a continuous hardware monitoring of these two inputs. An alarm Interrupt request will be generated whenever the converted value of either of these two analog inputs exceed one of the two programmed threshold

Figure 15-1. Block Diagram

INTRODUCTION (Continued)

values (Upper and Lower) for each channel. The comparison result is stored in a dedicated register.
Single, continuous, or externally triggered conversion modes are available, internal clock sample synchronization is also available through the "On chip Event" synchronization logic of a Multifunction Timer Unit,
A Power-Down programmable bit allows to set the A/D converter to a minimum consumption idle status.
The ST9 A/D Interrupt Unit provides two maskable channels (Analog Watchdog and End of Conversion) with hardware fixed priority, and up to 7 programmable priority levels.

WARNING: A/D INPUT PIN DECLARATION

The input Analog channel is selected by using the Alternate Function setting (PXC2, PXC1, PXC0 = $1,1,1$) as shown in the I/O ports section. The I/O bit structure of the port connected to the A/D converter is modified as shown in Figure 11-2 to prevent the Analog voltage present at the I/O pin from causing high power dissipation across the input buffer. Un-selected analog channels should also

Figure 15-2. A/D Input Configuration Status

be maintained in the Alternate function mode for this reason.

15.2 FUNCTIONAL DESCRIPTION

15.2.1 Operational Modes

Two main operational modes are available: Continuous Mode and Single Mode. To enter one of these modes it is necessary to program the CONT bit of the Control Logic Register, the Continuous Mode is selected when CONT = " 1 ", while CONT = " 0 " enables the Single Mode.
Both modes operate in the AUTOSCAN configuration, allowing a sequential conversion flow of the input channels. It is possible to choose by software the number of analog inputs to be converted by writing into the Control Register (SC2, SC1, SC0 bits) the number of the first channel to be converted. Subsequentially, after each conversion is completed, the channel number is automatically incremented, up to channel 7. For example, if (SC2, SC1, SC0) $=0,1,1$ the conversion flow runs from channel 3 up to channel 7. If (SC2, SC1, SC0) = $1,1,1$ only channel 7 is converted.
When the ST bit of the Control Logic Register is written to " 1 " by software or hardware, the analog inputs are sequentially converted (from the first selected channel up to channel 7) and the results are stored in the relevant Data Registers.
In Single Mode (CONT = "0"), the ST bit is reset by hardware at the end of conversion of channel 7, an End of Conversion (ECV) interrupt request is issued, and the A/D waits for a new start event.
In Continuous Mode (CONT = " 1 "), a continuous conversion flow is entered by the start event. After the conversion of channel 7 ends, the conversion of channel 's' starts (where ' s ' is specified in the (SC2, SC1, SC0) bits), this will continue until the ST bit is reset by software. In all cases, an ECV interrupt is issued each time the channel 7 conversion ends.
When channel 'i' is converted ('s' < 'i' < 7), the Data Register is reloaded with the new conversion result and the previous value is lost. The ECV interrupt routine can be used to save the current values before a new conversion sequence (so as to create signal sample tables within Register File or Memory).

15.2.2 Synchronisation

Conversion start synchronisation for all modes may be internal or external. The external (ADTRG, as an Alternate Function input of an I/O port) or the internal (INTRG, produced by a Multifunction Timer peripheral) can be used to synchronise the conversion start with a trigger pulse. Both external

FUNCTIONAL DESCRIPTION (Continued)

and internal events can be seperately masked by the programming of the EXTG/INTG bits of the Control Logic Register. The events are internally OR'ed, thus avoiding potential hardware conflicts, however the correct procedure is to always enable only one alternate synchronisation input at any time.
The effect of the alternate synchronisation is to set the ST bit by hardware. This bit is reset, only in Single Mode, at the end of each group of conversions. In Continuous Mode all trigger pulses, following the first, are ignored.
The two synchronisation sources must have a clock cycle minimum length of 83ns (at INTCLK = 12 MHz), and a period greater (in Single Mode) than the total time of a group of conversions ($11.5 \mu \mathrm{~s} \times$ the number of channels scanned (at INTCLK $=12 \mathrm{MHz}$)). If a trigger occurs when the ST bit is still " 1 " (conversion is still in progress), it is ignored.

15.2.3 Analog Watchdog

Two internal Analog Watchdogs are available, allowing great flexibility in automatic threshold monitoring in those applications experiencing a maximum range of fluctuations. Analog channels 6 and 7 define a voltage window for the allowed values of the converted analog input. The range of values of the external voltage applied to input 6 and 7 are accepted as normal whenever below the Upper threshold and above or equal to the Lower threshold.
When the external voltage is greater or equal to the upper, or is less than the lower programmed voltage limits, a maskable interrupt request is generated and the Compare Results Register is updated to inform which threshold (Upper or Lower) of
which channel (6 or 7) has been exceeded. The 4 threshold voltages are user programmable in 4 dedicated registers (8 up to B) of the A/D register page, storing their 8 bit binary code. Only the 4 MSB of the Compare Results Register are used (the 4 LSB always return " 1 " if read), each bit for each threshold possible overflow or underflow status.
After an hardware reset, these bit values are " 0 ". During the normal A/D operation, the CRR bits are set to " 1 " to flag an over-range and are automatically reset by hardware after a software reset of the ana\log Watchdog request flag in the ECR Register.

15.2.4 Power down Mode

Before enabling any A/D conversion, it is mandatory to set the POW bit of the Control Logic Register to "1" at least $60 \mu \mathrm{~s}$ before the first conversion start. This is in order to correctly bias the analog section of the converter, if this is not done, then functionality of the converter will be locked.
Setting POW to " 0 " is useful when the A/D is not required in order to reduce the total power consumption. This is the reset configuration, and is also

Figure 15-3. A/D Trigger Source

FUNCTIONAL DESCRIPTION (Continued)

Figure 15-5. Analog Watchdog used in Motorspeed Control

entered automatically when the ST9 is in Halt Mode (following the execution of the hait instruction).

15.3 INTERRUPT

The A/D converter provides two interrupt sources, End of Conversion and an Analog Watchdog Request. The A/D Interrupt Vector Register (IVR) provides 1 bit generated in hardware to follow the interrupt source, allowing the automatic addressing of the relevant A/D Interrupt Service routine for the two sources.

The A/D Interrupt vector should be programmed by the User to point to the first memory location in the Interrupt Vector table containing the base address
of the four byte area of the interrupt vector table in which to store the address of the A/D interrupt service routines.
The Analog Watchdog Interrupt Pending bit (AWD, ICR.6), is automatically hardware set whenever any of the two guarded analog inputs goes out of bounds. The Compare Result Register (CRR) keeps track of the analog inputs exceeding the thresholds.
When 2 requests occur simultaneously the Analog watchdog request has priority over the End of Conversion request which is held pending, to be served after the current routine.
The Analog Watchdog Request requires the user to poll within the Compare Result Register (CRR) to determine which of the four thresholds has been exceeded. The threshold status bits are set to "1" to flag an over-range and are automatically reset by hardware after a software reset of the analog Watchdog request flag in the ECR Register. The interrupt pending flags, ECV (End of Conversion, ICR.7) and AWD should also be reset by the

User in the Interrupt service routine before the return. Setting either of these two bits by software will cause a software interrupt request to be generated.

15.4 REGISTERS

15.4.1 Register Mapping

A/D registers are mapped page 63.

15.4.2 Data Registers (DiR)

The result of the conversions of the 8 available channels are loaded in the 8 DiR (channel $0 \rightarrow \mathrm{DOR}$channel7 \rightarrow D7R); every Data Register is reloaded with a new value at the end of the conversion of the correspondent analog input.

D0R R240 (FOh) Page 63 Read/Write
Channel 0 Data Register
Reset Value: Undefined

D0.7	D0.6	D0.5	D0.4	D0.3	D0.2	D0.1	D0.0

b7-b0 = D0.7-D0.0: Channel 0 Data

D1R R241 (F1h) Page 63 Read/Write
Channel 1 Data Register
Reset Value: Undefined

7	0						
D1.7	D1.6	D1.5	D1.4	D1.3	D1.2	D1.1	D1.0

b7-b0 = D1.7-D1.0: Channel 1 Data
D2R R242 (F2h) Page 63 Read/Write Channel 2 Data Register
Reset Value: Undefined

D2.7	D2.6	D2.5	D2.4	D2.3	D2.2	D2.1	D2.0

b7-b0 = D2.7-D2.0: Channel 2 Data
D3R R243 (F3h) Page 63 Read/Write
Channel 3 Data Register
Reset Value: Undefined

7 0

D3.7	D3.6	D3.5	D3.4	D3.3	D3.2	D3.1	D3.0

b7-b0 = D3.7-D3.0: Channel 3 Data
D4R R244 (F4h) Page 63 Read/Write Channel 4 Data Register
Reset Value: Undefined

7	D4.7	D4.6	D4.5	D4.4	D4.3	D4.2	D4.1

b7-b0 = D4.7-D4.0: Channel 4 Data

D5R R245 (F5h) Page 63 Read/Write Channel 5 Data Register
Reset Value: Undefined

7							0			
D5.7	D5.6	D5.5	D5.4	D5.3	D5.2	D5.1	D5.0			

b7-b0 = D5.7-D5.0: Channel 5 Data

D6R R246 (F6h) Page 63 Read/Write
Channel 6 Data Register
Reset Value: Undefined

7		0					
D6.7	D6.6	D6.5	D6.4	D6.3	D6.2	D6.1	D6.0

b7-b0 = D6.7-D6.0: Channel 6 Data

D7R R247 (F7h) Page 63 Read/Write
Channel 7 Data Register
Reset Value: Undefined

REGISTERS (Continued)

b7-b0 = D7.7-D7.0: Channel 7 Data

15.4.3 Lower Threshold Registers (LTiR)

The 2 lower threshold registers are used to store the 2 user programmable lower threshold voltages (i.e. their 8 bit binary code) to be compared with the present channel 6 or 7 conversion result. They fix the lower voltage window limit.

LT6R R248 (F8h) Page 63 Read/Write Channel 6 Lower Threshold Register
Reset Value: Undefined

7		0					
LT6.7	LT6.6	LT6.5	LT6.4	LT6.3	LT6.2	LT6.1	LT6.0

b7-b0 = LT6.7-LT6.0: Channel 6 Lower Threshold

LT7R R249 (F9h) Page 63 Read/Write
Channel 7 Lower Threshold Register
Reset Value: Undefined

| 7 |
| :--- | | LT7.7 | LT7.6 | LT7.5 | LTT.4 | LT7.3 | LT7.2 | LT7.1 | LT7.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

b7-b0 = LT7.7-LT7.0: Channel 7 Lower Threshold 11.4.6 Upper Threshold Registers (UTiR)

The 2 upper threshold registers are used to store the 2 user programmable upper threshold voltages (i.e. their 8 bit binary code) to be compared with the present channel 6 or 7 conversion result. They fix the upper voltage window limit.

UT6R R250 (FAh) Page 63 Read/Write Channel 6 Upper Threshold Register
Reset Value: Undefined

7	0						
UT6.7	UT6.6	UT6.5	UT6.4	UT6.3	UT6.2	UT6.1	UT6.0

b7-b0 = UT6.7-UT6.0: Channel 6 Upper Threshold

UT7R R251 (FBh) Page 63 Read/Write Channel 7 Upper Threshold Register Reset Value: Undefined

70

UT7.7	UT7.6	UT7.5	UT7.4	UT7.3	UT7.2	UT7.1	UT7.0

b7-b0 = UT7.7-UT7.0: Channel 7 Upper Threshold

15.4.4 Compare Result Register (CRR)

The result of comparison between the current value of data registers 6 and 7 and the threshold registers is stored in this 4 bit register.

CRR R252 (FCh) Page 63 Read/Write Compare Result Register
Reset Value: 00001111 (0Fh)
7

C7U	C6U	C7L	C6L	x	x	x	x

b7 = C7U: Compare Reg 7 Upper threshold Set to " 1 " when converted data is greater than or equal to the threshold value. Not affected otherwise
b6 = C6U: Compare Reg 6 Upper threshold Set to " 1 " when converted data is greater than or equal to the threshold value. Not affected otherwise
b5 = C7L: Compare Reg 7 Lower threshold Set to " 1 " when converted data is less than the threshold value. Not affected otherwise.
b4 = C6L: Compare Reg 6 Lower threshold Set to " 1 " when converted data is less than the threshold value. Not affected otherwise.
These bits should be Software reset at the end of the 'Out of Bounds' Interrupt routine.
$\mathrm{b} 3-\mathrm{b0}=$ undefined, return " 1 " when read.

REGISTERS (Continued)

Note. any Software request reset in the ICR, will cause also all the Compare status bits to be hardware forced to zero, to prevent possible overwriting if an Interrupt request occurs between the Software reset and the Interrupt Request Software reset.

15.4.5 Control Logic Register (CLR)

This register manages the A/D logic operations. Writing into this register will cause the current conversion to be aborted and the autoscan logic to be re-initialized to the starting configuratıon. CLR is programmable as following:

CLR R253 (FDh) Page 63 Read/Write Control Logic Register
Reset Value: 00000000 (00h)

$$
\begin{array}{ll}
7 & 0
\end{array}
$$

SC2	SC1	SC0	EXTG	INTG	POW	CONT	ST

b7-b5 = SC2, SC1, SC0: Start Conversion Address. These 3 bits define the starting analog input in Autoscan mode. The first channel addressed by SC2-SC0 is converted, then the address is incremented for the successive conversion, until channel 7 (111) is converted. The (SC2. SC1. SC0) bits define the group of channels to be scanned. When setting $\mathrm{SC} 2=1 \mathrm{SC} 1=1 \mathrm{SC} 0=1$ only channel 7 is converted.
b4 = EXTG: External Trigger. When set to a logical " 1 ", this bit allows to start a group of conversion synchronized on the following edge of the external
signal applied on pin ADTRG (when enabled for AIternate Function)..
b3 = INTG: Internal Trigger. When set to a logical level " 1 ", this bit enables the start of a group of conversion, synchronized with an internal signal (On chip Event signial) from a Multifunction Timer Unit.
Both External and Internal Trigger inputs are internally OR'ed, thus avoiding Hardware conflicts, however the correct procedure is to enable only one alternate synchronization input at time.
b2 = POW: Power Up/Power Down A logical "1" enables the $A \prime D$ logic and analog circuitry.
A logical " 0 " disables all power consuming logic, thus allowing a low power idle status.
b1 = CONT: Continuous/Single. When this bit is set to " 1 " (Continuous Mode), the first group of conversions are started either by software (setting to " 1 " the ST bit) or by hardware (on an Internal or external trigger, depending on the INTG and EXTG bits status), and a continuous conversion flow is then processed.
When this bit is set to " 0 " (single mode), only a single group of conversions (1 up to 8) are started whenever any External (or Internal) trigger occurs. or the ST bit is set to " 1 " by software.
The effect of the alternate synchronization is to hardware set the START/STOP bit which is hardware reset when in SINGLE mode, at the end of each group of conversions.
Requirements:
The External Synchronisation Input must receive a pulse (low level) wider than an INTCLK period (83ns) minimum and for both External and On chip Event synchronisation, a period greater than the time required for a group of conversion (number of channels times $\times 11 \mu \mathrm{~s}$).

REGISTERS (Continued)

b0 = ST: Start/Stop A logical "1" level enables the starting of a group of conversions; a logical level " 0 " stops the conversion. When the A / D is running in the Single Mode, this bit is hardware reset at the end of a group of conversions.

15.4.6 Interrupt Control Register (ICR)

This register contains the three priority level bits, the two sources flags, and their bit mask:

ICR R254 (FEh) Page 63 Read/Write Interrupt Control Register
Reset Value: 00001111 (0Fh)

7	0						
ECV	AWD	ECI	AWDI	X	PL2	PL1	PLO

b7 = ECV: End of Conversion. ECV is automatically set by hardware after a group of conversions is completed.
b6 = AWD: Analog Watchdog. AWD is automatically hardware set whenever any of the two guarded analog inputs goes out of bounds. The threshold values are stored in registers F8h and FAh for channel 6, and in registers F9h and FBh for channel 7 respectively. The Compare Result Register (CRR) keeps track of the analog inputs exceeding the thresholds.
AWD and ECV must be reset by the user, before returning from the Interrupt service routine. Setting either of them by software will cause a software interrupt request to be generated.
b5 = ECI: End of Conversion Interrupt Enable This bit masks the End of Conversion interrupt request. A logical level " 1 " enables the request, a logical level " 0 " masks the request.
b4 = AWDI: Analog Watchdog Interrupt Enable. This bit masks the Analog Watchdog interrupt request.

A logical level " 1 " enables the request, a logical level " 0 " masks the request.
b3 = D3: Undefined
b2-b0 = PL2, PL1, PL0: A/D Interrupt Priority Level. With these three bits it is possible to select the Interrupt priority level of the A/D Converter.

15.4.7 Interrupt Vector Register (IVR)

IVR R255 (FFh) Page 63 Read/Write Interrupt Vector Register
Reset Value: xxxx xx10 (x2h)
7 0

V7	V6	V5	V4	V3	V2	W1	D0

b7-b2 = V7-V2: A/D Interrupt Vector. This vector should be programmed by the User to point to the first memory location in the Interrupt Vector table containing the starting addresses of the A/D interrupt service routines.
b1 = W1: Word Select. This bit is set by hardware, according to the A/D interrupt source. It is set to " 0 " if the source is the Analog Watchdog, pointing to the lower word of the A/D interrupt service block (defined by V7-V2). It is set to "1" if the source is the End of Conversion interrupt, thus pointing to the upper word.
When 2 requests occur simultaneously the Analog watchdog request has priority over the End of Conversion request which is held pending, to be served after the current routine.
b0 = D0: This bit is fixed by hardware. It always returns the value " 0 " if read.

Notes:

REGISTER MAP

Pages
2 CORE ARCHITECTURE
CICR R230 (E6h) System Read/Write Central Interrupt Control Register 13
FLAGR R231 (E7h) System Read/Write Flag Register 14
RP0 R232 (E8h) System Read/Write Register Pointer 0 15
Read/Write Register Pointer 1 15
RP1 R233 (E9h) System
Read/Write Page Pointer Register 17
Read/Write Mode Register 17
MODER R235 (EBh) System
4 INTERRUPTS

CICR	R230	(E6h) System	Read/Write Central Interrupt Control Register	38	
EITR	R242	(F2h)	Page 0	Read/Write External Interrupt Trigger Event Register	38
EIPR	R243	(F3h)	Page 0	Read/Write External Interrupt Pending Register	38
EIMR	R244	(F4h)	Page 0	Read/Write External Interrupt Mask-bit Register	39
EIPLR	R245	(F5h)	Page 0	Read/Write External Interrupt Priority Level Register	39
EIVR	R246	(F6h)	Page 0	Read/Write External Interrupt Vector Register	39
NICR	R247	(F7h)	Page 0	Read/Write Nested Interrupt Control Register	39

DCPR Address set by Peripheral Read/Write DMA Counter Pointer Register 46
IDCR Address set by Peripheral Read/Write Generic Peripheral Interrupt and DMA Control 46
DAPR Address set by Peripheral Read/Write DMA Address Pointer Register 46
6 CLOCK
MODER R235 (EBh) System Read/Write Mode Register 48
8 EXTERNAL MEMORY INTERFACE
WCR R252 (FCh) Page 0 Read/Write Wait Control Register 64
10 HANDSHAKE/DMA CONTROLLER HDCTLx Read/Write Handshake/DMA Control Register 82
11 SERIAL PERIPHERAL INTERFACE
SPIDR R253 (FDh) Page 0 Read/Write SPI Data Register (R253) 88
SPICR R255 (FEh) Page 0 Read/Write SPI Control Register (R254) 88
12 TIMER/WATCHDOG
WDTHR R248 (F8h) Page 0 Read/Write Timer/Watchdog Counter Register, High byte 99
Read/Write Timer/Watchdog Counter Register, Low byte. 99 99
Read/Write Timer/Watchdog Prescaler Register 99
WDTPR R250 (FAh) Page 0 99Read/Write Timer/Watchdog Control Register

13 MULTIFUNCTION TIMER					
REGOHR	R240	(FOh)	Read/Write	Capture Load Register 0 (High)	115
REGOLR	R241	(F1h)	Read/Write	Capture Load Register 0 (Low)	115
REG1HR	R242	(F2h)	Read/Write	Capture Load Register 1 (High)	115
REG1LR	R243	(F3h)	Read/Write	Capture Load Register 1 (Low)	115
CMPOHR	R244	(F4h)	Read/Write	Compare 0 Register (High)	115
CMPOLR	R245	(F5h)	Read/Write	Compare 0 Register (Low)	115
CMP1HR	R246	(F6h)	Read/Write	Compare 1 Register (High)	15
CMP1LR	R247	(F7h)	Read/Write	Compare 1 Register (Low)	115
TCR	R248	(F8h)	Read/Write	Timer Control Register	116
TMR	R249	(F9h)	Read/Write	Timer Mode Register	16
ICR	R250	(FAh)	Read/Write	External Input Control Register	117
PRSR	R251	(FBh)	Read/Write	Prescaler Register	118
OACR	R252	(FCh)	Read/Write	Output A Control Register	118
OBCR	R253	(FDh)	Read/Write	Output B Control Register	119
FLAGR	R254	(FEh)	Read/Write	Flags Register	119
IDMR	R255	(FFh)	Read/Write	Interrupt/DMA Mask Register	120
DCPR	R240	(FOh)[R244 (F4h)]	Read/Write	DMA Counter Pointer Register	120
DAPR	R241	(F1h)[R245 (F5h)]	Read/Write	DMA Address Pointer Register	121
IVR	R242	(F2h) [R246 (F6h)]	Read/Write	Interrupt Vector Register	121
IDCR	R243	(F3h) [R247 (F7h)]	Read/Write	Interrupt/DMA Control Register	122
IOCR	R248	(F8h)	Read/Write	I/O Connection Register	122
14 SERIAL COMMUNICATIONS INTERFACE					
RDCPR	R240	(FOh)	Read/Write	Receiver DMA Transaction Counter Pointer	132
RDAPR	R241	(F1h)	Read/Write	Receiver DMA Source Address Pointer	132
TDCPR	R242	(F2h)	Read/Write	Transmitter DMA Transaction Counter Pointer	132
TDAPR	R243	(F3h)	Read/Write	Transmitter DMA Destination Address Pointer	132
IVR	R244	(F4h)	Read/Write	Interrupt Vector Register	132
ACR	R245	(F5h)	Read/Write	Address/Data Compare Register	133
IMR	R246	(F6h)	Read/Write	Interrupt Mask Register	133
ISR	R247	(F7h)	Read/Write	Interrupt Status Register	134
RXBR	R248	(F8h)	Read only	Receive Buffer Register	134
TXBR	R248	(F8h)	Write only	Transmitter Buffer Register	134
IDPR	R249	(F9h)	Read/Write	Interrupt/DMA Priority Register	135
CHCR	R250	(FAh)	Read/Write	Character Configuration Register	136
CCR	R251	(FBh)	Read/Write	Clock Configuration Register	136
BRGHR	R252	(FCh)	Read/Write	Baud Rate Generator Register, High byte.	137
BRGLR	R253	(FDh)	Read/Write	Baud Rate Generator Register, Low byte.	137

15 A/D CONVERTER				
D0R	R240	(F0h) Page 63	Read/Write Channel 0 Data Register	144
D1R	R241	(F1h) Page 63	Read/Write Channel 1 Data Register	144
D2R	R242	(F2h)	Page 63	Read/Write Channel 2 Data Register
D3R	R243	(F3h) Page 63	Read/Write Channel 3 Data Register	144
D4R	R244	(F4h)	Page 63	Read/Write Channel 4 Data Register

16 ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{D D}$	Supply Voltage	-0.3 to 7.0	V
$A V_{D D}, A V_{S S}$	Analog Supply Voltage	$V_{S S}=A V_{S S}<A V_{D D} \leq V_{D D}$	V
V_{1}	Input Voltage	-0.3 to $V_{D D}+0.3$	V
Vo	Output Voltage	-0.3 to $V_{D D}+0.3$	V
Tstg	Storage Temperature	-55 to +150	${ }^{\circ} \mathrm{C}$
lins	Pin Injection Current Digital Input	-5 to +5	mA
linj	Pin Injection Current Analog Input	-5 to +5	mA
	Maximum Accumulated Pin injection Current in the device	-50 to +50	mA

Note: Stresses above those listed as "absolute maximum ratıngs" may cause permanent damage to the device. This is a stress rating only and functional operatıon of the device at these conditıons is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. All voltages are referenced to VSS

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value		Unit
		Min.	Max.	
T_{A}	Operating Temperature	-40	85	${ }^{\circ} \mathrm{C}$
V_{DD}	Operating Supply Voltage	4.5	5.5	V
fosce	External Oscillator Frequency		24	MHz
foscl	Internal Clock Frequency (INTCLK)		12	MHz

DC ELECTRICAL CHARACTERISTICS

$V_{D D}=5 \mathrm{~V} \pm 10 \% \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise specified)

| Symbol | Parameter | Test Conditions | Value | | |
| :---: | :--- | :--- | :---: | :---: | :---: | :---: |
| | | | Min. | Typ. | Max. |

Note: All I/O Ports are configured in Bidirectional Weak Pull-up Mode with no DC load, External Clock pin (OSCIN) is driven by square wave external clock. No peripheral working.

DC TEST CONDITIONS

FORCING CONDITION
FORCING CONDITION
CMOS INPUT
PUSH-PULL OUTPUT
TEST CONDITION

AC ELECTRICAL CHARACTERISTICS

($\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \% \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise specified)

Symbol	Parameter	Test Conditions	Value			Unit
			Min.	Typ.	Max.	
IDD	Run Mode Current no CPUCLK prescale, Clock divide by 2	24 MHz , Note 1			50	mA
IDP2	Run Mode Current Prescale by 2 Clock divide by 2	24 MHz , Note 1			30	mA
IWFI	WFI Mode Current no CPUCLK prescale, Clock divide by 2	24 MHz , Note 1			20	mA
Ihalt	HALT Mode Current	24 MHzz , Note 1			10	$\mu \mathrm{A}$

Note 1: All I/O Ports are configured in Bidirectional Weak Pull-up Mode with no DC load, External Clock pin (OSCIN) is driven by square wave external clock. No peripheral working.

CLOCK TIMING TABLE

($\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, INTCLK $=12 \mathrm{MHz}$, unless otherwise specified)

N°	Symbol	Parameter	Value		Unit	Note
			Min.	Max.		
1	TpC	OSCIN Clock Period	41.5		ns	1
			83		ns	2
2	TrC, TfC	OSCIN Rise and Fall Time		12	ns	
3	TwCL, TwCH	OSCIN Low and High Width	17	25	ns	1
			38		ns	2

Notes:

1. Clock divided by 2 internally (MODER.DIV2=1)
2. Clock not divided by 2 internally (MODER.DIV2=0)

CLOCK TIMING

OSCIN		3	$\begin{aligned} & \\ & V_{I H}=0.8 V_{\text {DD }} \\ & \\ & V_{\text {IL }}=0.2 V_{\text {DD }}\end{aligned}$

EXTERNAL BUS TIMING TABLE
($V_{D D}=5 \mathrm{~V} \pm 10 \%, T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, Cload $=50 \mathrm{pF}$, CPUCLK $=12 \mathrm{MHz}$, unless otherwise specified)

N°	Symbol	Parameter	Value (Note)				Unit
			OSCIN Divided By 2	OSCIN Not Divided By 2	Min.	Max.	
1	TsA (AS)	Address Set-up Time before AS \uparrow	TpC (2P+1) -22	TWCH+PTpC-18	20		ns
2	ThAS (A)	Address Hold Time after $\overline{\mathrm{AS}} \uparrow$	TpC -17	TwCL-13	25		ns
3	TdAS (DR)	$\overline{\mathrm{AS}} \uparrow$ to Data Available (read)	TpC ($4 \mathrm{P}+2 \mathrm{~W}+4$) -52	TpC (2P+W+2) -51		115	ns
4	TwAS	$\overline{\text { AS }}$ Low Pulse Width	TpC (2P+1)-7	TwCH+PTpC -3	35		ns
5	TdAz (DS)	Address Float to $\overline{\mathrm{DS}} \downarrow$	12	12	12		ns
6	TwDSR	$\overline{\mathrm{DS}}$ Low Pulse Width (read)	TpC (4P+2W+3)-20	$\begin{aligned} & \text { TwCH }+ \text { TpC } \\ & (2 P+W+1)-16 \end{aligned}$	105		ns
7	TwDSW	$\overline{\mathrm{DS}}$ Low Pulse Width (write)	TpC (2P+2W+2)-13	TpC ($\mathrm{P}+\mathrm{W}+1)-13$	70		ns
8	TdDSR (DR)	$\overline{\mathrm{DS}} \downarrow$ to Data Valid Delay (read)	TpC (4P+2W-3) -50	$\left.\right\|_{-46} ^{\mathrm{TwCH}+\mathrm{TpC}(2 \mathrm{P}+\mathrm{W}+1}$		75	ns
9	ThDR (DS)	Data to $\overline{\mathrm{DS}} \uparrow$ Hold Time (read)	0	0	0		ns
10	TdDS (A)	$\overline{\mathrm{DS}} \uparrow$ to Address Active Delay	TpC-7	TwCL-3	35		ns
11	TdDS (AS)	$\overline{\mathrm{DS}} \uparrow$ to $\overline{\mathrm{AS}} \downarrow$ Delay	TpC -18	TwCL-14	24		ns
12	TsR/W (AS)	$\mathrm{R} \bar{W}$ Set-up Time before $\overline{\mathrm{AS}} \uparrow$	TpC (2P+1)-22	TwCH+PTpC-18	20		ns
13	TdDSR (R/W)	$\overline{\mathrm{DS}} \uparrow$ to $\mathrm{R} \overline{\mathrm{W}}$ and Address Not Valid Delay	TpC-9	TwCL-5	33		ns
14	TdDW (DSW)	Write Data Valid to $\overline{\mathrm{DS}} \downarrow$ Delay (write)	TpC (2P+1)-32	TwCH+PTpC-28	10		ns
15	ThDS (DW)	Data Hold Time after $\overline{\mathrm{DS}} \uparrow$ (write)	TpC-9	TwCL-5	33		ns
16	TdA (DR)	Address Valid to Data Valid Delay (read)	TpC ($6 \mathrm{P}+2 \mathrm{~W}+5)-68$	$\begin{aligned} & \mathrm{TwCH}+\mathrm{TpC} \\ & (3 \mathrm{P}+\mathrm{W}+2)-64 \end{aligned}$		140	ns
17	TdAs (DS)	$\overline{\mathrm{AS}} \uparrow$ to $\overline{\mathrm{DS}} \downarrow$ Delay	TpC -18	TwCL-14	24		ns

EXTERNAL WAIT TIMING TABLE

(VDD $=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, Cload $=50 \mathrm{pF}$,
INTCLK $=12 \mathrm{MHz}$, Push-pull output configuration, unless otherwise specified)

N°	Symbol	Parameter	Value (Note)				Unit
			OSCIN Divided By 2	OSCIN Not Divided By 2	Min.	Max.	
1	TdAs (WAIT)	$\overline{\mathrm{AS}} \uparrow$ to $\overline{\text { WAIT }} \downarrow$ Delay	2(P+1)TpC-29	2(P+1)TpC-29		40	ns
2	TdAs (WAIT)	$\overline{\mathrm{AS}} \uparrow$ to $\overline{\text { WAIT }} \downarrow$ Min. Delay	$2(\mathrm{P}+\mathrm{W}+1) \mathrm{TpC}-4$	$2(\mathrm{P}+\mathrm{W}+1) \mathrm{TpC}-4$	80		ns
3	TdAs (WAIT)		$2(\mathrm{P}+\mathrm{W}+1) \mathrm{TpC}-29$	$2(\mathrm{P}+\mathrm{W}+1) \mathrm{TpC}-29$		$33 W+$ 40	ns

Note: (for both tables) The value in the left hand two columns show the formula used to calculate the timing minimum or maximum from the oscillator clock period, prescale value and number of wait cycles inserted.
The value in the right hand two columns show the timing minimum and maximum for an external clock at 24 MHz divided by 2, prescaler value of zero and zero watt status.

Legend:
$\mathrm{P}=$ Clock Prescaling Value
W = Wait Cycles

TpC =OSCIN Period

TwCH =High Level OSCIN half period
TwCL =Low Level OSCIN half period

EXTERNAL BUS TIMING

EXTERNAL WAIT TIMING

HANDSHAKE TIMING TABLE ($\mathrm{V} D \mathrm{DD}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, $\mathrm{Cload}=50 \mathrm{pF}$, INTCLK $=12 \mathrm{MHz}$, Push-pull output configuration, unless otherwise specified)

N ${ }^{\circ}$	Symbol	Parameter	Value (Note)				Min.	Max.	Unit
			OSCIN Divided By 2		OSCIN Not Divided By 2				
			Min.	Max.	Min.	Max.			
1	TwRDY	RDRDY, WRRDY Pulse Width in One Line Handshake	$\left\|\begin{array}{c} 2 \mathrm{TpC} \\ (\mathrm{P}+\mathrm{W}+1)-18 \end{array}\right\|$		$\begin{gathered} \mathrm{TpC} \\ (\mathrm{P}+\mathrm{W}+1)- \\ 18 \end{gathered}$		65		ns
2	TwSTB	$\overline{\text { RDSTB }}, \overline{\text { WRSTB }}$ Pulse Width	2TpC+12		TpC+12		95		ns
3	TdST (RDY)	$\overline{\text { RDSTB }}$, or $\overline{\text { WRSTB }} \uparrow$ to RDRDY or WRRDY \downarrow		TpC+45		$\begin{gathered} (T p C-T w C L) \\ +45 \end{gathered}$		87	ns
4	TsPD (RDY)	Port Data to RDRDY \uparrow Set-up Time	$\begin{gathered} (2 \mathrm{P}+2 \mathrm{~W}+1) \\ \mathrm{TpC}-25 \end{gathered}$		$\begin{gathered} \mathrm{TwCH}+ \\ (\mathrm{W}+\mathrm{P}) \\ \mathrm{TpC}-25 \end{gathered}$		16		ns
5	TsPD (RDY)	Port Data to WRRDY \downarrow Set-up Time in One Line Handshake	43		43		43		ns
6	ThPD (RDY)	Port Data to WRRDY \downarrow Hold Time in One Line Handshake	0		0		0		ns
7	$\begin{aligned} & \text { TsPD } \\ & \text { (STB) } \end{aligned}$	Port Data to $\overline{\text { WRSTB }} \uparrow$ Set-up Time	10		10		10		ns
8	$\begin{aligned} & \text { ThPD } \\ & \text { (STB) } \end{aligned}$	Port Data to $\overline{\text { WRSTB }} \uparrow$ Hold Time	25		25		25		ns
9	TdSTB (PD)	$\overline{\operatorname{RDSTBD}} \uparrow$ to Port Data Delay Time in Bidirectional Handshake		35		35		35	ns
10	$\begin{aligned} & \text { TdSTB } \\ & \text { (PHZ) } \end{aligned}$	$\overline{\text { RDSTB }} \uparrow$ to Port High-Z Delay Time in Bidirectional Handshake		25		25		25	ns

Note: The value in the left hand two columns show the formula used to calculate the timing minimum or maximum from the oscillator clock period, prescale value and number of wait cycles inserted.
The value in the right hand two columns show the timing minımum and maximum for an external clock at 24 MHz divided by 2 , prescaler value of zero and zero wait status.

Legend:

$\mathrm{P} \quad=$ Clock Prescaling Value (R235 4,3,2)
W = Programmable Wait Cycles (R252.2.1.0/5,4,3) + External Wait Cycles

HANDSHAKE TIMING

BUS REQUEST/ACKNOWLEDGE TIMING TABLE (VDD $=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, $\mathrm{Cload}=50 \mathrm{pF}$, INTCLK $=12 \mathrm{MHz}$, Push-pull output configuration, unless otherwise specified)

N°	Symbol	Parameter	Value (Note)				Unit
			OSCIN Divided By 2	OSCIN Not Divided By 2	Min.	Max.	
1	TdBR (BACK)	$\overline{\text { BREQ }} \downarrow$ to $\overline{\text { BUSACK }} \downarrow$	TpC+8	TwCL+12	50		ns
			TpC(6P+2W+7)+65	TpC($3 \mathrm{P}+\mathrm{W}+3$) + TwCL+65		360	ns
2	TdBR (BACK)	$\overline{\text { BREQ }} \uparrow$ to $\overline{\text { BUSACK }} \uparrow$	$3 T p \mathrm{C}+60$	TpC+TwCL+60		185	ns
3	TdBACK (BREL)	$\overline{\text { BUSACK }} \downarrow$ to Bus Release	20	20		20	ns
4	TdBACK (BACT)	$\overline{B U S A C K} \uparrow$ to Bus Active	20	20		20	ns

Note: The value left hand two columns show the formula used to calculate the tıming mınımum or maxımum from the oscillator clock perıod, prescale value and number of wait cycles inserted.
The value right hand two columns show the timıng mınimum and maximum for an external clock at 24 MHz divided by 2 , prescale value of zero and zero wait status.

BUS REQUEST/ACKNOWLEDGE TIMING

Note : MEMINT = Group of memory interface signals: $\overline{\mathrm{AS}}, \overline{\mathrm{DS}}, \mathrm{R} \overline{\mathrm{W}}, \mathrm{P} 00-\mathrm{P} 07, \mathrm{P} 10-\mathrm{P} 17$

EXTERNAL INTERRUPT TIMING TABLE (VDD $=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, $\mathrm{Cload}=50 \mathrm{pF}$, INTCLK $=12 \mathrm{MHz}$, Push-pull output configuration, unless otherwise specified)

N°	Symbol	Parameter	Value (Note)				Unit
			OSCIN Divided By 2 Min.	OSCIN Not Divided By 2 Min.	Min.	Max.	
1	TwLR	Low Level Minimum Pulse Width in Rising Edge Mode	$2 T p C+12$	TpC+12	95		ns
2	TwHR	High Level Minimum Pulse Width in Rising Edge Mode	$2 \mathrm{TpC}+12$	TpC+12	95		ns
3	TwHF	High Level Minimum Pulse Width in Falling Edge Mode	$2 \mathrm{TpC}+12$	TpC+12	95		ns
4	TwLF	Low Level Minimum Pulse Width in Falling Edge Mode	$2 \mathrm{TpC}+12$	TpC+12	95		ns

Note: The value left hand two columns show the formula used to calculate the timing minimum or maximum from the oscillator clock period, prescale value and number of wait cycles inserted.
The value right hand two columns show the timing minimum and maximum for an external clock at 24 MHz divided by 2 , prescale value of zero and zero wait status.

EXTERNAL INTERRUPT TIMING

SPI TIMING TABLE (VDD $=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, Cload $=50 \mathrm{pF}$, INTCLK $=12 \mathrm{MHz}$, Output Alternate Function set as Push-pull)

\mathbf{N}°	Symbol		Value		Unit
			Min.	Max.	
1	TsDI	Input Data Set-up Time	100		ns
2	ThDI (1)	Input Data Hold Time	$1 / 2$ TpC+100		ns
3	TdOV	SCK to Output Data Valid		100	ns
4	ThDO	Output Data Hold Time	-20		ns
5	TwSKL	SCK Low Pulse Width	300		ns
6	TwSKH	SCK High Pulse Width	300		ns

Note: TpC is the OSCIN Clock perıod.

SPI TIMING

WATCHDOG TIMING TABLE (VDD $=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, Cload $=50 \mathrm{pF}$, CPUCLK $=12 \mathrm{MHz}$, Push-pull output configuration, unless otherwise specified)

\mathbf{N}°	Symbol	Parameter		Values	
		Unit			
1	TwWDOL		Min.	Max.	
2	TwWDOH	WDOUT High Pulse Width	620		ns
3	TwWDIL	WDIN High Pulse Width	620		ns
4	TwWDIH	WDIN Low Pulse Width	350		ns

WATCHDOG TIMING

A/D CONVERTER

EXTERNAL TRIGGER TIMING (VDD $=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, $\mathrm{Cload}=50 \mathrm{pF}$)

N°	Symbol	Parameter	Oscin divided by $2^{(1)}$		Oscin not divided ${ }^{(1)}$		Value ${ }^{(2)}$		Unit
			Min.	Max.	Min.	Max.	Min.	Max.	
1	TLow	External Trigger pulse width	$2 \times \mathrm{TPC}$		TPC		83		ns
2	THIGH	External Trigger pulse	$2 \times T_{P C}$		TPC		83		ns
3	Text	External trigger active edges distance	$138 \times$ TPC		$69 \times$ TPC		5.75		$\mu \mathrm{s}$
4	Tstr	Internal delay between EXTRG falling edge and first conversion start	TPC	$3 \times T$ PC	0.5xTPC	$1.5 \times \mathrm{TPC}$	41.5	125	ns

Notes:

1. Variable clock (TPC=OSCIN clock perıod)
2. INTCLK=12MHz

A/D External Trigger Timing

A/D INTERNAL TRIGGER TIMING TABLE

N°	Symbol	Parameter	OSCIN Divided by 2 (2)		OSCIN Not Divided by 2 (2)		Value (3)		Unit
			Min.	Max.	Min.	Max.	Min.	Max.	
1	Twhigh	Internal trigger pulse width	Tpc		. $5 \times \mathrm{Tpc}$		41.5	-	ns
2	TwLow	Internal trigger pulse distance	$6 \times \mathrm{Tpc}$		$3 \times \mathrm{Tpc}$		250	-	ns
3	Twext	Internal trigger active edges distance (1)	$276 \mathrm{n} \times$ Tpc		$138 \mathrm{n} \times \mathrm{Tpc}$		$\mathrm{n} \times 11.5$	-	$\mu \mathrm{S}$
4	Twstr	Internal delay between INTRG rising edge and first conversion start	Tpc	$3 \times \mathrm{Tpc}$. $5 \times \mathrm{Tpc}$	$1.5 \times \mathrm{Tpc}$	41.5	125	ns

A/D INTERNAL TRIGGER TIMING

A/D CHANNEL ENABLE TIMING TABLE

N°	Symbol	Parameter	OSCIN Divided by 2 (2)		OSCIN Not Divided by 2 (2)		Value (3)		Unit
			Min.	Max.	Min.	Max.	Min.	Max.	
1	Twext	CEn Pulse width (1)	$276 \mathrm{n} \times \mathrm{Tpc}$		$138 \mathrm{n} \times \mathrm{Tpc}$		$n \times 11.5$	-	$\mu \mathrm{s}$

Notes:

1. $n=$ number of autoscanned channels $(1<n<8)$
2. Variable clock ($\mathrm{Tpc}=\mathrm{OSCIN}$ clock period)
3. $C P U C L K=12 M H z$

A/D CHANNEL ENABLE TIMING

VR001402

A/D ANALOG SPECIFICATIONS

Parameter	Typical (1)	Minimum	Maximum	Units (2)	Notes
Analog Input Range Avcc		3	Avcc $V_{c c}$	V	
Conversion time		11.5		$\mu \mathrm{s}$	$(3,4)$
Sample time		3		$\mu \mathrm{s}$	(3)
Power-up time		60		$\mu \mathrm{S}$	
Resolution	8	8		$\beta \iota \tau \sigma$	
Monotonicity	GUAP	EED			
No missing codes	GUAP	EED			
Zero input reading		00		Hex	
Full scale reading			FF	Hex	
Offset error	. 5		1	LSBs	$(2,6)$
Gain error	. 5		1	LSBs	(6)
Diff. Non Linearity	$\pm .3$	$\pm .2$	$\pm .5$	LSBs	(6)
Int. Non Linearity			1	LSBs	(6)
Absolute Accuracy			1	LSBs	(6)
S/N		45	49	dB	
Avcc/Avss Resistance	13.5	16	11	$\mathrm{K} \Omega$	
Input Resistance	12	8	15	K Ω	(5)
Hold Capacitance			30	pF	
Input Leakage			± 3	$\mu \mathrm{A}$	

Notes:

1. The values are expected at 25 degree Centigrade with $\mathrm{AVCC}=5 \mathrm{~V}$
2. "LSBs", as used here, has a value of AVCC/256
3. @ 12MHz internal clock
4. Including sample time
5. It must be intended as the internal series resistance before the sampling capacitor

6 This is a typical expected value, but not a tested production parameter.
If $\mathrm{V}(1)$ is the value of the 1 -th transition level ($0<\mathrm{i}<254$), the performance of the A / D converter has been valued as follows:
OFFSET ERROR = deviation between the actual $\mathrm{V}(0)$ and the ideal $\mathrm{V}(0)(=1 / 2 \mathrm{LSB})$
GAIN ERROR = deviation between the actual $\mathrm{V}(254)$ and the ideal $\mathrm{V}(254)$ (=AVCC-3/2 LSB)
DNL ERROR $=\max \{[\mathrm{V}(\mathrm{i})-\mathrm{V}(\mathrm{i}-1)] / \mathrm{LSB}-1\}$
INL ERROR $=\max \{[\mathrm{V}(1)-\mathrm{V}(0)] / L S B-1\}$

MULTIFUNCTION TIMER UNIT EXTERNAL TIMING TABLE

N°	Symbol	Parameter	OSCIN Divided by 2 (3)	OSCIN Not Divided by 2 (3)	Value (4)		Unit	Note
					Min.	Max.		
1	Twctw	External clock/trigger pulse width	$2 \mathrm{n} \times$ Tpc	$\mathrm{n} \times$ Tpc	$n \times 83$	-	ns	1
2	Twatd	External clock/trigger pulse distance	$2 \mathrm{n} \times$ Tpc	$\mathrm{n} \times$ Tpc	$\mathrm{n} \times 83$	-	ns	1
3	Twaed	Distance between two active edges	$6 \times \mathrm{Tpc}$	$3 \times \mathrm{Tpc}$	249	-	ns	
4	Twgw	Gate pulse width	$12 \times \mathrm{Tpc}$	$6 \times$ Tpc	498	-	ns	
5	TwLBA	Distance between TINB pulse edge and the following TINA pulse edge	$2 \times$ Tpc	Tpc	83	-	ns	2
6	Twlab	Distance between TINA pulse edge and the following TINB pulse edge	0		0	-	ns	2
7	TwAD	Distance between two TxINA pulses	0		0	-	ns	2
8	Twowd	Minimum output pulse width/distance	$6 \times$ Tpc	$3 \times \mathrm{Tpc}$	249	-	ns	

Notes:

1. $n=1$ if the input is rising $O R$ falling edge sensitive
$n=3$ if the input is rising AND falling edge sensitive
2. In Autodıscrimination mode 3. Variable clock (Tpc $=$ OSCIN period) 4. $\mathrm{INTCLK}=12 \mathrm{MHz}$

MULTIFUNCTION TIMER UNIT EXTERNAL TIMING

SCI TIMING TABLE

$\left(V_{D D}=5 \mathrm{~V} \pm 10 \%, T_{A}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$. Cload $=50 \mathrm{pF}$, INTCLK $=12 \mathrm{MHz}$, Output Alternate Function set as Push-pull)

N°	Symbol	Parameter	Condition	Value		Unit
				Min.	Max.	
	$\mathrm{F}_{\text {RxCKIN }}$	Frequency of RxCKIN	$1 \times$ mode		$\mathrm{FCK} / 8$	Hz
			$16 \times$ mode		$\mathrm{F}_{\mathrm{CK}} / 4$	Hz
	Tw $W_{\text {RXCKIN }}$	RxCKIN shortest pulse	$1 \times$ mode	4 TCK		S
			$16 \times$ mode	2 TCK		S
	$\mathrm{F}_{\text {TXCKIN }}$	Frequency of TxCKIN	$1 \times$ mode		$\mathrm{FCK} / 8$	Hz
			$16 \times$ mode		$\mathrm{FCK}^{\prime} / 4$	Hz
	TWTxCKIN	TxCKIN shortest pulse	$1 \times$ mode	4 TCK		S
			$16 \times$ mode	2 TCK		S
1	TSDS	DS (Data Stable) before rising edge of RxCKIN	$1 \times$ mode reception with RxCKIN	TpC/2		ns
2	TdD1	TxCKIN to Data out delay Time	$1 \times$ mode transmission with external clock C load <100pF		2.5 TPC	ns
3	TdD2	CLKOUT to Data out delay Time	$1 \times$ mode transmissıon with CLKOUT	350		ns

Note: FCK $=1 /$ TCK

SCI TIMING

FIG 1: RECEPTION WTH EXTERNAL CLOCK $1 \times$ MODE

FIG 2: TRANSMISSION WITH EXTERNAL CLOCK $1 \times$ MODE

FIG 3 TRANSMISSION WITH CLKOUT $1 \times$ MODE

PACKAGE MECHANICAL DATA

80-Pin Plastic Quad Flat Package

Short Footprint Measurement

Short Footprint recommended Padding

68-Pin Plastic Leadless Chip Carrier

	Dim.	mm			inches		
		Min	Typ	Max	Min	Typ	Max
	A	4.20		508	0165		0200
	A1	051			0020		
	A3	2.29		3.30	0.090		0.130
	B	-	-	-	-	-	-
	B1	-	-	-	-	-	-
	D	2502		25.27	0985		0.995
	D1	24.13		24.33	0.950		0.958
	D3		2032			0800	
	E	2502		25.27	0.985		0995
	E1	24.13		24.33	0.950		0958
	E3		2032			0.800	
	K1	-	-	-	-	-	-
	h						
	e		127			0.050	
				Number	of Pin		
	N			68	8		
	ND			16	6		
	NE			16	6		

56-Pin Plastic Shrink Dual-In-line Package, 600 Mil Width

ORDERING INFORMATION

Sales Type	Frequency	Temperature Range	Package
ST9030Q1/XX	24 MHz	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	PQFP80
ST9030C1/XX			PLCC68
ST9030B1/XX			PSDIP56
ST9030C6/XX		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	PLCC68
ST9030B6/XX			PSDIP56

Note: "XX" is the ROM code identifier that is allocated by SGS-THOMSON after receipt of all required options and the related ROM file.

SGS-THOMSON

ST9030 STANDARD OPTION LIST

```
Please copy this page (enlarge if possible) and complete ALL sections.
Send the form, with the ROM code image required, to your local SGS-THOMSON sales office.
```

```
Customer Company : [.
``` \(\qquad\)
```

Company Address :
[.............................. ...................................]
[....................................................................]
Telephone :
[.........................]
FAX :
Contact :
[.
[.........................]
Telephone (Direct) : [.

Please confirm characteristics of device :
Device ST9030



Please consult your local SGS-THOMSON sales office for other marking details if required.
Notes:
ROMIess Option (Consult text)
$\begin{array}{lllll}{[ } & \text { ] No } & & & \\ \text { [ ] Yes } & \text { Port Bit } & \text { [ } \mathrm{P} 7.1 & \text { [ ] P2.0 }\end{array}$
Code: [ ] EPROM $(27128,27256)$
[ ] HEX format files on IBM-PC® compatible disk filename: [...................]

Confirmation : [ ] Code checked with EPROM device in application

Yearly Quantity forecast :
[.
] k units

- for a period of : [. . ........................].] years

Preferred Production start dates : [ ] (YY/MM/DD)

Customer Signature :
Date :

ST90E30 ST90T30

## 8K EPROM HCMOS MCU WITH A/D CONVERTER

- Register oriented 8/16 bit CORE with RUN, WFI and HALT modes
- Minimum instruction cycle time: 500 ns (12MHz internal)
- Internal Memory :

EPROM 8K bytes
224 general purpose registers available as
RAM, accumulators or index pointers
(Register File)

- 80-pin Plastic Quad Flat Pack package for ST90T30Q
- 68-lead Plastic Leaded Chip Carrier package for ST90T30C
- 56-pin shrink DIP package for ST90T30B
- 80-pin Windowed Ceramic Quad Flat Pack package for ST90E30G
- 68-lead Windowed Ceramic Leaded Chip Carrier package for ST90E30L
- 56-pin Shrink Windowed Ceramic package for ST90E30D
- DMA controller, Interrupt handler and Serial Peripheral Interface as standard features
- 56 fully programmable I/O pins
- Up to 8 external plus 1 non-maskable interrupts
- 16 bit Timer with 8 bit Prescaler, able to be used as a Watchdog Timer
- Two 16 bit Multifunction Timers, each with an 8 bit prescaler and 13 operating modes
- 8 channel 8 bit Analog to Digital Converter, with Analog Watchdogs and external references
- Serial Communications Interface with asynchronous and synchronous capability
- Rich Instruction Set and 14 Addressing modes
- Division-by-Zero trap generation
- Versatile Development tools, including assembler, linker, C-compiler, archiver, graphic oriented debugger and hardware emulators
- Real Time Operating System
- Compatible with ST9030 8K ROM device


PSDIP56


CQFP80W


CSDIP56W
(Ordering Information at the end of the Datasheet)

Figure 1. 80 Pin QFP Package


Table 1. ST90E30G-ST90T30Q Pin Description

Pin	Name	Pin	Name	Pin	Name	Pin	Name
1	$\mathrm{AV}_{\text {SS }}$	25	P34/T1INA	64	P20/NMI	80	$\mathrm{AV}_{\mathrm{DD}}$
2	$\mathrm{AV}_{\text {SS }}$	26	P33/TOOUTB	63	NC	79	NC
3	NC	27	P32/TOINB	62	$\mathrm{V}_{\text {ss }}$	78	P47/AIN7
4	P44/AIN4	28	P31/TOOUTA	61	P70/SIN	77	P46/AIN6
5	P57	29	P30/P/D/TTOINA	60	P71/SOUT	76	P45/AIN5
6	P56	30	P17/A15	59	P72/INT4/TXCLK	75	P43/AIN3
7	P55	31	P16/A14	59	ICLKOUT	74	P42/AIN2
8	P54	32	NC	58	P73/INT5	73	P41/AIN1
9	INT7	33	P15/A13	58	/RXCLK/ADTRG	72	P40/AINO
10	INTO	34	P14/A12	57	P74/P/D/INT6	71	P27/RRDY5
11	P53	35	P13/A11	56	P75/WAIT	70	P26/INT3
12	NC	36	P12/A10	55	P76/WDOUT	70	/RDSTB5/P/D
13	P52	37	P11/A9	5	/BUSREQ	69	P25/WRRDY5
14	P51	38	P10/A8	54	P77/WDIN	68	P24/NT1
15	P50	39	P00/A0/D0	54	/BUSACK	68	WRSTB5
16	OSCOUT	40	P01/A1/D1	53	R $\bar{W}$	67	P23/SDO
17	$V_{\text {SS }}$			52	NC	66	P22/INT2/SCK
18	$V_{S S}$			51	$\overline{\text { DS }}$	65	P21/SDI/P/ $/ \overline{\text { D }}$
19	NC			50	$\overline{\text { AS }}$		
20	OSCIN			49	NC		
21	$\overline{\mathrm{RESET}} / \mathrm{V}_{\text {PP }}$			48	$V_{D D}$		
22	P37/T10UTB			47	$V_{D D}$		
23	P36/T1INB			46	P07/A7/D7		
24	P35/T10UTA			45	P06/A6/D6		
				44	P05/A5/D5		
				43	P04/A4/D4		
				42	P03/A3/D3		
				41	P02/A2/D2		

Figure 2. 68 Pin LCC Package
(1)

Table 2. ST90E30L-ST90T30C

Pin	Name
61	P44/AIN4
62	P57
63	P56
64	P55
65	P54
66	INT7
67	INT0
68	P53
$\bullet 1$	P52
2	P51
3	P50
4	OSCOUT
5	$V_{\text {SS }}$
6	OSCIN
7	$\overline{\text { RESET } / \text { PP }}$
8	P37/T1OUTB
9	P36/T1INB


Pin	Name
10	P35/T1OUTA
11	P34/T1INA
12	P33/T0OUTB
13	P32/TOINB
14	P31/T0OUTA
15	P30/P/D/TOINA
16	P17/A15
17	P16/A14
18	P15/A13
19	P14/A12
20	P13/A11
21	P12/A10
22	P11/A9
23	P10/A8
24	P00/A0/D0
25	P01/A1/D1
26	P02/A2/D2


Pin	Name
43	P70/SIN
42	P71/SOUT
41	P72/CLKOUT   TXXCLKINT4
40	P73/ADTRG   /RXCLK/INT5
39	P74/P/D/INT6
38	$\overline{\text { P75/WAIT }}$
37	P76/WDOUT   /BUSREQ
36	P77/WDIN   /BUSACK
35	R/్̄W
34	$\overline{\text { DS }}$
33	$\overline{\text { AS }}$
32	VDD
31	P07/A7/D7
30	P06/A6/D6
29	P05/A5/D5
28	P04/A4/D4
27	P03/A3/D3


Pin	Name
60	AV
59	AV
58	P47/AIN7
57	P46/AIN6
56	P45/AIN5
55	P43/AIN3
54	P42/AIN2
53	P41/AIN1
52	P40/AIN0
51	P27/RRDY5
50	P26/INT3   /RDSTB5/P/D
49	P25/WRRDY5
48	P24/INT1   FWRSTB5
47	P23/SDO
46	P22/INT2/SCK
45	P21/SDI/P/D
44	P20/NMI

Figure 1b. 56 Pin Shrink DIP Pinout


Table 3. ST90E30D-ST90T30B Pin Description

Pin	Pin name
1	P42/AIN2
2	P43/AIN3
3	P45/AIN5
4	P46/AIN6
5	P47/AIN7
6	AVDD
7	AVSS
8	P44/AIN4
9	P57
10	P56
11	P55
12	P54
13	P53
14	P52
15	OSCOUT
16	VSS
17	OSCIN
18	$\overline{\text { RESET }}$
19	P37/T1OUTB
20	P36/T1INB
21	NC
22	P35/T1OUTA
23	P34/T1INA
24	P33/T0OUTB
25	P32/TOINB
26	P31/T0OUTA
27	P30/P/D/TOINA
28	P13/A11
10	


Pin	Pin name
56	P41/AIN1
55	P40/AIN0
54	P23/SDO
53	P22/NT2/SCK
52	P21/SDI/P/D
51	P20/NMI
50	P70/SIN
49	P71/SOUT
48	P72/CLKOUT   TXCLK/INT4
47	P73/ADTRG   RXCLK/NT5
46	P76WDOUTBUSREO
45	P77NDIN/BUSACK
44	R/̄
43	DS
42	$\overline{\text { AS }}$
41	V $D \mathrm{DD}$
40	VSS
39	P07/A7/D7
38	P06/A6/D6
37	P05/A5/D5
36	P04/A4/D4
35	P03/A3/D3
34	P02/A2/D2
33	P01/A1/D1
32	P00/A0/D0
31	P10/A8
30	P11/A9
29	P12/A10

### 17.1 GENERAL DESCRIPTION

The ST90E30 and ST90T30 (following mentioned as ST90E30) are EPROM members of the ST9 family of microcontrollers, in windowed ceramic ( E ) and plastic OTP (T) packages respectively, completely developed and produced by SGS-THOMSON Microelectronics using a n-well proprietary HCMOS process.
The EPROM parts are fully compatible with their ROM versions and this datasheet will thus provide only information specific to the EPROM based devices.

## the reader is asked to refer to the DATASHEET OF THE ST9030 ROM-BASED DEVICE FOR FURTHER DETAILS.

The EPROM ST90E30 may be used for the prototyping and pre-production phases of development, and can be configured as: a standalone microcontroller with 8 K bytes of on-chip ROM, a microcontroller able to manage external memory, or as a parallel processing element in a system with other processors and peripheral controllers.

The nucleus of the ST90E30 is the advanced Core which includes the Central Processing Unit (CPU), the Register File, a 16 bit Timer/Watchdog with 8 bit Prescaler, a Serial Peripheral Interface supporting S-bus, I ${ }^{2} \mathrm{C}$-bus and IM-bus Interface, plus two 8 bit I/O ports. The Core has independent memory and register buses allowing a high degree of pipelining to add to the efficiency of the code execution speed of the extensive instruction set.
The powerful I/O capabilities demanded by microcontroller applications are fulfilled by the ST90E30 with up to 56 I/O lines dedicated to digital Input/Output. These lines are grouped into up to seven 8 bit I/O Ports and can be configured on a bit basis under software control to provide timing, status signals, an address/data bus for interfacing external memory, timer inputs and outputs, analog inputs, external interrupts and serial or parallel I/O with or without handshake.

Figure 3. ST90E30 Block Diagram


## GENERAL DESCRIPTION (Continued)

Three basic memory spaces are available to support this wide range of configurations: Program Memory (internal and external), Data Memory (external) and the Register File, which includes the control and status registers of the on-chip peripherals.
Two 16 bit MultiFunction Timers, each with an 8 bit Prescaler and 13 operating modes allow simple use for complex waveform generation and measurement, PWM functions and many other systemmsiming functions by the usage of the two associated DMA channels for each timer.

### 17.2 PIN DESCRIPTION

$\overline{\text { AS. Address Strobe (output, active low, 3-state). }}$ Address Strobe is pulsed low once at the beginning of each memory cycle. The rising edge of AS indicates that address, Read/Write (R/W), and Data Memory signals are valid for program or data memory transfers. Under program control, $\overline{\mathrm{AS}}$ can be placed in a high-impedance state along with Port 0 and Port 1, Data Strobe ( $\overline{\mathrm{DS}}$ ) and R/W.
$\overline{\text { DS. Data Strobe (output, active low, 3-state). Data }}$ Strobe provides the timing for data movement to or from Port 0 for each memory transfer. During a write cycle, data out is valid at the leading edge of $\overline{\mathrm{DS}}$. During a read cycle, Data In must be valid prior to the trailing edge of DS. When the ST9040 accesses onchip memory, $\overline{D S}$ is held high during the whole memory cycle. It can be placed in a high impedance state along with Port 0 , Port $1, \overline{\mathrm{AS}}$ and $\mathrm{R} / \overline{\mathrm{W}}$.
R/W. Read/Write (output. 3-state). Read/Write determines the direction of data transfer for external memory transactions. $\mathrm{R} / \overline{\mathrm{W}}$ is low when writing to external program or data memory, and high for all other transactions. It can be placed in a high impedance state along with Port 0, Port 1, $\overline{\mathrm{AS}}$ and $\overline{\mathrm{DS}}$.
RESET/VPp. Reset (input, active low) or VPP (input). The ST9 is initialised by the Reset signal. With the deactivation of RESET, program execution begins from the Program memory location pointed to by the vector contained in program memory locations 00h and 01h. In the EPROM programming Mode, this pin acts as the programming voltage input VPP.
iNTO, INT7. External interrupts (input, active on rising or falling edge). External interrupt inputs 0 and 7 respectively. INTO channel may also be used for the timer watchdog interrupt.

In addition there is an 8 channel Analog to Digital Converter with integral sample and hold, fast $11 \mu \mathrm{~s}$ conversion time and 8 bit resolution. An Analog Watchdog feature is included for two input channels.
Completing the device is a full duplex Serial Communications Interface with an integral 110 to 375,000 baud rate generator, asynchronous and $1.5 \mathrm{Mbyte} / \mathrm{s}$ synchronous capability (fully programmable format) and associated address/wake-up option, plus two DMA channels.

OSCIN, OSCOUT. Oscillator (input and output). These pins connect a parallel-resonant crystal ( 24 MHz maximum), or an external source to the on-chip clock oscillator and buffer. OSCIN is the input of the oscillator inverter and internal clock generator; OSCOUT is the output of the oscillator inverter.
$A V_{D D}$. Analog $V_{D D}$ of the Analog to Digital Converter.
AVss. Analog Vss of the Analog to Digital Converter. Must be tied to Vss.
Vdd. Main Power Supply Voltage ( $5 \mathrm{~V} \pm 10 \%$ )
Vss. Digital Circuit Ground.
P0.0-P0.7, P1.0-P1.7, P2.0-P2.7 P3.0-P3.7, P4.0P4.7, P5.0-P5.7, P7.0-P7.7 I/O Port Lines (Input/Output, TTL or CMOS compatible). 56 lines grouped into I/O ports of 8 bits, bit programmable under program control as general purpose I/O or as alternate functions.

### 17.2.1 I/O PORT ALTERNATE FUNCTIONS

Each pin of the I/O ports of the ST90E30/T30 may assume software programmable Alternative Functions as shown in the Pin Configuration Tables. Due to Bonding options for the packages, some functions may not be present, Table 4 shows the Functions allocated to each I/O Port pin and a summary of packages for which they are available.

PIN DESCRIPTION (Continued)
Table 4. ST90E30, T30 I/O Port Alternate Function Summary

I/O PORT	Name	Function	Alternate Function	Pin Assignment		
Port. bit				PLCC	PQFP	PSDIP
P0.0	A0/D0	1/O	Address/Data bit 0 mux	24	39	32
P0. 1	A1/D1	I/O	Address/Data bit 1 mux	25	40	33
P0.2	A2/D2	I/O	Address/Data bit 2 mux	26	41	34
P0.3	A3/D3	I/O	Address/Data bit 3 mux	27	42	35
P0.4	A4/D4	I/O	Address/Data bit 4 mux	28	43	36
P0. 5	A5/D5	1/O	Address/Data bit 5 mux	29	44	37
P0.6	A6/D6	1/O	Address/Data bit 6 mux	30	45	38
P0.7	A7/D7	1/O	Address/Data bit 7 mux	31	46	39
P1.0	A8	0	Address bit 8	23	38	31
P1.1	A9	0	Address bit 9	22	37	30
P1.2	A10	0	Address bit 10	21	36	29
P1.3	A11	0	Address bit 11	20	35	28
P1.4	A12	0	Address bit 12	19	34	
P1.5	A13	0	Address bit 13	18	33	
P1.6	A14	0	Address bit 14	17	31	
P1.7	A15	0	Address bit 15	16	30	
P2.0	NMI	1	Non-Maskable Interrupt	44	64	51
P2.0	ROMless	1	ROMless Select (Mask option)	44	64	51
P2.1	P/D	0	Program/Data Space Select	45	65	NC
P2.1	SDI	1	SPI Serial Data Out	45	65	52
P2.2	INT2	1	External Interrupt 2	46	66	53
P2.2	SCK	0	SPI Serial Clock	46	66	53
P2.3	SDO	0	SPI Serial Data In	47	67	54
P2.4	INT1	1	External Interrupt 1	48	68	
P2.4	WRSTB5	1	Handshake Write Strobe P5	48	68	
P2. 5	WRRDY5	0	Handshake Write Ready P5	49	69	
P2.6	INT3	1	External Interrupt 3	50	70	
P2.6	$\overline{\text { RDSTB5 }}$	1	Handshake Read Strobe P5	50	70	
P2.6	P/D	0	Program/Data Space Select	50	70	
P2.7	RDRDY5	0	Handshake Read Ready P5	51	71	
P3.0	TOINA	1	MF Timer 0 Input A	15	29	27
P3.0	P/D	0	Program/Data Space Select	15	29	27
P3.1	TOOUTA	0	MF Timer 0 Output A	14	28	26
P3.2	TOINB	1	MF Timer 0 Input B	13	27	25
P3.3	TOOUTB	0	MF Timer 0 Output B	12	26	24
P3.4	TIINA	1	MF Timer 1 Input A	11	25	23

179/195

PIN DESCRIPTION (Continued)
Table 4. ST90E30, T30 I/O Port Alternate Function Summary

I/O PORT	Name	Function	Alternate Function	Pin Assignment		
Port. bit				PLCC	PQFP	PSDIP
P3.5	T1OUTA	0	MF Timer 1 Output A	10	24	22
P3.6	T1INB	1	MF Timer 1 Input B	9	23	20
P3.7	T1OUTB	0	MF Timer 1 Output B	8	22	19
P4.0	AINO	1	A/D Analog Input 0	52	72	55
P4. 1	AIN1	1	A/D Analog Input 1	53	73	56
P4.2	AIN2	1	A/D Analog Input 2	54	74	1
P4.3	AIN3	1	A/D Analog Input 3	55	75	2
P4.4	AIN4	I	A/D Analog Input 4	61	4	8
P4.5	AIN5	1	A/D Analog Input 5	56	76	3
P4.6	AlN6	1	A/D Analog Input 6	57	77	4
P4.7	AIN7	1	A/D Analog Input 7	58	78	5
P5.0		1/O	I/O Handshake Port 5	3	15	
P5.1		1/O	I/O Handshake Port 5	2	14	
P5.2		I/O	I/O Handshake Port 5	1	13	14
P5.3		1/O	I/O Handshake Port 5	68	11	13
P5.4		I/O	I/O Handshake Port 5	65	8	12
P5.5		I/O	I/O Handshake Port 5	64	7	11
P5.6		1/O	I/O Handshake Port 5	63	6	10
P5.7		1/0	I/O Handshake Port 5	62	5	9
P7.0	SIN	1	SCI Serial Input	43	61	50
P7.1	SOUT	0	SCI Serial Output	42	60	49
P7.1	ROMless	1	ROMless Select (Mask option)	42	60	49
P7.2	INT4	1	External Interrupt 4	41	59	48
P7.2	TXCLK	1	SCI Transmit Clock Input	41	59	48
P7.2	CLKOUT	0	SCI Byte Sync Clock Output	41	59	48
P7.3	INT5	1	External Interrupt 5	40	58	47
P7.3	RXCLK	1	SCI Receive Clock Input	40	58	47
P7.3	ADTRG	1	A/D Conversion Trigger	40	58	47
P7.4	INT6	1	External Interrupt 6	39	57	
P7.4	P/D	0	Program/Data Space Select	39	57	
P7.5	WAIT	1	External Wait Input	38	56	
P7.6	WDOUT	0	T/WD Output	37	55	46
P7.6	BUSREQ	1	External Bus Request	37	55	46
P7.7	WDIN	1	T/WD Input	36	54	45
P7.7	BUSACK	0	External Bus Acknowledge	36	54	45

### 17.3 MEMORY

The memory of the ST90E30 is functionally divided into two areas, the Register File and Memory. The Memory is divided into two spaces, each having a maximum of 65,536 bytes. The two memory spaces are separated by function, one space for Program code, the other for Data. The ST90E30 8 K bytes of on-chip EPROM memory are selected at memory addresses 0 through 1FFFh (hexadecimal) in the PROGRAM space, while the ST90T30 OTP version has the top 64 bytes of the EPROM reserved by SGS-THOMSON for testing purposes.

WARNING. The ST90T30 has its 64 upper bytes in the internal EPROM reserved for testing purpose.
External memory may be addressed using the multiplexed address and data buses (Alternate Functions of Ports 0 and 1). At addresses greater than the first 8 K of program space, the ST90E30 executes external memory cycles for instruction fetches. Data Memory may be decoded externally by using the P/D Alternate Function output. The on-chip general purpose (GP) Registers may also be used as RAM memory for minimum chip count systems.

Figure 4. Memory Spaces

### 17.4 EPROM PROGRAMMING

The 8192 bytes of EPROM memory of the ST90E30 ( 8128 for the ST90T30) may be programmed by using the EPROM Programming Boards (EPB) available from SGS-THOMSON.

### 17.4.1 Eprom Erasing

The EPROM of the windowed package of the ST90E30 may be erased by exposure to Ultra-Violet light.
The erasure characteristic of the ST90E30 is such that erasure begins when the memory is exposed to light with a wave lengths shorter than approximately $4000 \AA$. It should be noted that sunlight and some types of fluorescent lamps have wavelengths in the range $3000-4000 \AA$. It is thus recommended that the window of the ST90E30 packages be covered by an opaque label to prevent unintentional erasure problems when testing the application in such an environment.
The recommended erasure procedure of the EPROM is the exposure to short wave ultraviolet light which have a wave-length $2537 \AA \AA$. The integrated dose (i.e. U.V. intensity $x$ exposure time) for erasure should be a minimum of $15 \mathrm{~W}-\mathrm{sec} / \mathrm{cm} 2$. The erasure time with this dosage is approximately 15 to 20 minutes using an ultraviolet lamp with $12000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ power rating. The ST90E30 should be placed within 2.5 cm (1Inch) of the lamp tubes during erasure.


181/195

## ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{D D}$	Supply Voltage	-0.3 to 7.0	V
$A V_{D D} . A V_{S S}$	Analog Supply Voltage	$\mathrm{V}_{S S}=A V_{S S}<A V_{D D} \leq V_{D D}$	V
$\mathrm{~V}_{I}$	Input Voltage	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
$\mathrm{~V}_{\mathrm{PP}}$	Input Voltage on $\mathrm{V}_{\mathrm{DP}}$ Pin	-0.3 to 13.5	V
$\mathrm{~T}_{\mathrm{STG}}$	Storage Temperature	-55 to +150	${ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\mathrm{INJ}}$	Pin Injection Current Digital	-5 to 5	mA
$\mathrm{I}_{\mathrm{INJ}}$	Pin Injection Current Analog	-5 to 5	mA
	Maximum accumulated pin injection Current in the device	-50 to 50	mA

Note Stresses above those listed as "absolute maximum ratıngs" may cause permanent damage to the device This is a stress rating only and functional operation of the device at these conditions is not implied Exposure to maximum rating conditions for extended periods may affect device reliability All voltages are referenced to VSS

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value		Unit
		Min.	Max.	
$T_{A}$	Operating Temperature	-40	85	${ }^{\circ} \mathrm{C}$
$V_{D D}$	Operating Supply Voltage	4.5	5.5	V
$f_{\text {SSCE }}$	External Oscillator Frequency		24	MHz
$f_{\text {OS: }}$	Internal Clock Frequency (INTCLK)		12	MHz

DC ELECTRICAL CHARACTERISTICS
$V_{D D}=5 \mathrm{~V} \pm 10 \% \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise specified)

Symbol	Parameter	Test Conditions	Value			Unit
			Min.	Typ.	Max.	
$V_{\text {IHCK }}$	Clock Input Hıgh Level	External Clock	07 VDD		$V_{D D}+0.3$	V
VIICK	Clock Input Low Level	External Clock	-0.3		$0.3 \mathrm{~V}_{\mathrm{DD}}$	V
$\mathrm{V}_{\text {IH }}$	Input High Level	TTL	20		$V_{D D}+03$	V
		CMOS	07 V DD		$V D D+03$	V
VIL	Input Low Level	TTL	-0.3		08	V
		CMOS	-0.3		$0.3 \mathrm{~V}_{\text {DD }}$	V
$V_{\text {IHRS }}$	$\overline{\text { RESET Input High Level }}$		$0.7 \mathrm{~V}_{\mathrm{DD}}$		$V_{D D}+0.3$	V
$V_{\text {ILRS }}$	RESET Input Low Level		-0.3		0.3 VDD	V
$V_{\text {HYRS }}$	RESET Input Hysteresis		0.3		1.5	V
$\mathrm{V}_{\mathrm{OH}}$	Output High Level	Push Pull, lload $=-0.8 \mathrm{~mA}$	$V_{D D}-0.8$			V
$\mathrm{VOL}_{\text {O }}$	Output Low Level	Push Pull or Open Drain, lload $=16 \mathrm{~mA}$			0.4	V

DC ELECTRICAL CHARACTERISTICS (continued)

Symbol	Parameter	Test Conditions	Value			Unit
			Min.	Typ.	Max.	
Iwpu	Weak Pull-up Current	Bidirectional Weak Pullup. $\mathrm{V}_{\mathrm{OL}}=\mathrm{OV}$	- 50	-200	-420	$\mu \mathrm{A}$
lapu	Active Pull-up Current, for INTO and INT7 only	$\mathrm{V}_{\text {IN }}<08 \mathrm{~V}$, under Reset	-80	$-200$	-420	$\mu \mathrm{A}$
ILKıo	I/O Pin Input Leakage	Input $/$ Tr-State, $O V<V_{I N}<V_{D D}$	$-10$		$+10$	$\mu \mathrm{A}$
lLKRS	Reset Pın Input Leakage	$O \mathrm{~V}<\mathrm{V}_{\text {IN }}<V_{\text {DD }}$	$-30$		$+30$	4 A
llkad	A'D Pin Input Leakage	Alternate Function, Open Drain, $O V<V_{I N}<V_{D C}$.	-3		+3	$\mu \mathrm{A}$
likap	Active Pull-up Input Leakage	$\mathrm{OV}<\mathrm{V}_{\text {'in }}<0.8 \mathrm{~V}$	$-10$		+ 10	$!1 \mathrm{~A}$
ILKOS	OSCIN Pın Input Leakage	$O V<V_{I N}<V_{D D}$	$-10$		$+10$	11 A
VPP	EPROM Programmıng Voltage		122	125	128	V
lpp	EPROM Programming Current				30	mA

## DC TEST CONDITIONS



## AC ELECTRICAL CHARACTERISTICS

( $V_{D D}=5 \mathrm{~V} \pm 10 \% T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise specified)

Symbol	Parameter	Test Conditions	Value			Unit
			Min.	Typ.	Max.	
IDD	Run Mode Current no CPUCLK prescale, Clock divide by 2	24 MHz			50	mA
ldP2	Run Mode Current Prescale by 2 Clock divide by 2	24 MHz			30	mA
IWFI	WFI Mode Current no CPUCLK prescale, Clock divide by 2	24 MHz			20	mA
Ihalt	HALT Mode Current	24 MHz		50	100	$\mu \mathrm{A}$

## PACKAGE MECHANICAL DATA

## 80-Pin Ceramic Quad Flat Package with Window



68-Pin Ceramic Leadless Chip Carrier with Window

VROA1534	Dim.	mm			inches		
		Min	Typ	Max	Min	Typ	Max
	A		447			0176	
	A1		089			0035	
	A3		-			-	
	B		0.48			0.019	
	B1		-			-	
	D		251			0990	
	D1		236			0930	
	D3		203			0800	
	E		251			0990	
	E1		236			0.930	
	E3		203			0800	
	0		8			032	
	e		127			0050	
				umber	of Pins		
	N			68			
	ND			16			
	NE			16			

## 56-Pin Ceramic Shrink Dual-In-line Package with window, 600 Mil Width



## ORDERING INFORMATION

Sales Type	Frequency	Temperature Range	Package
ST90E30L: ES ${ }^{\prime \prime}$	24 MHz	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	CLCC68W
ST90E30G1/ES ${ }^{\text {! }}$		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	CQFP80W
ST90E30D $/$ /ES ${ }^{\prime \prime}$		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	CSDIP56W
ST90T30C6	24 MHz	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	PLCC68
ST90T30Q1		$0^{\circ} \mathrm{C}$ to $+70{ }^{\circ} \mathrm{C}$	PQFP80
ST90T30B6		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	PSDIP56

Note EPROM parts are tested at $25^{\circ} \mathrm{C}$ only

ST90R30

- Register oriented $8 / 16$ bit CORE with RUN, WFI and HALT modes
- Minimum instruction cycle time:500ns (12MHz internal)
- ROMless to allow maximum external memory flexibility
- Internal Memory :

224 general purpose registers available as RAM, accumulators or index pointers (register file)

- 80-pin Plastic Quad Flat Pack Package for ST90R30Q
- 68-lead Plastic Leaded Chip Carrier package for ST90R30C
- DMA controller, Interrupt handler and Serial Peripheral Interface as standard features
- 40 fully programmable I/O pins
- Up to 8 external plus 1 non-maskable interrupts
- 16 bit Timer with 8 bit Prescaler, able to be used as a Watchdog Timer
- Two 16 bit Multifunction Timers, each with an 8 bit prescaler and 13 operating modes
- 8 channel 8 bit Analog to Digital Converter, with Analog Watchdogs and external references
- Serial Communications Interface with asynchronous and synchronous capability
- Rich Instruction Set and 14 Addressing modes
- Division-by-Zero trap generation
- Versatile development tools, including assembler, linker, C-compiler, archiver, graphic orinted debugger and hardware emulators
- Real Time Operating System
- Compatible with ST9030 8K ROM device (also available in windowed and One Time Programmable EPROM packages)


Figure 1. 80 Pin PQFP Package)


Table 1. ST90R30Q Pin Description

Pin	Name
1	AV $_{\text {SS }}$
2	AV
3	NC
4	P44/AIN4
5	P57
6	P56
7	P55
8	P54
9	INT7
10	INT0
11	P53
12	NC
13	P52
14	P51
15	P50
16	OSCOUT
17	VSS
18	VSS
19	NC
20	OSCIN
21	$\overline{\text { RESET }}$
22	P37/T1OUTB
23	P36/T1INB
24	P35/T1OUTA


Pin	Name
25	P34/T1INA
26	P33/TOOUTB
27	P32/TOINB
28	P31/T0OUTA
29	P30/P/D/TOINA
30	A15
31	A14
32	NC
33	A13
34	A12
35	A11
36	A10
37	A9
38	A8
39	P00/A0/D0
40	P01/A1/D1


Pin	Name
64	P20/NMI
63	NC
62	$V_{\text {SS }}$
61	P70/SIN
60	P71/SOUT
59	P72/INT4/TXCLK /CLKOUT
58	P73/INT5 /RXCLK/ADTRG
57	P74/P/D/INT6
56	P75/WAIT
55	$\frac{\mathrm{P} 76 / \text { WDOUT }}{\text { /BUSREQ }}$
54	$\frac{\mathrm{P} 77 / \mathrm{WDIN}}{\text { /BUSACK }}$
53	R/W
52	NC
51	DS
50	$\overline{\text { AS }}$
49	NC
48	$V_{D D}$
47	VDD
46	P07/A7/D7
45	P06/A6/D6
44	P05/A5/D5
43	P04/A4/D4
42	P03/A3/D3
41	P02/A2/D2


Pin	Name
80	AV
79	NC
78	P47/AIN7
77	P46/AIN6
76	P45/AIN5
75	P43/AIN3
74	P42/AIN2
73	P41/AIN1
72	P40/AIN0
71	P27/RRDY5
70	P26/INT3   /RDSTB5/P/D
69	P25/WRRDY5
68	P24/INT1   INRSTB5
67	P23/SDO
66	P22/INT2/SCK
65	P21/SDI/P/D

Figure 2. 68 Pin PLCC Package)


Table 2. ST90R30C Pin Description

Pin	Name	Pin	Name
61	P44/AIN4	10	P35/T1OUTA
62	P57	11	P34/T1INA
63	P56	12	P33/T00UTB
64	P55	13	P32/TOINB
65	P54	14	P31/T0OUTA
66	INT7	15	P30/P/D/TOINA
67	INT0	16	A15
68	P53	17	A14
- 1	P52	18	A13
2	P51	19	A12
3	P50	20	A11
4	OSCOUT	21	A10
5	VSS	22	A9
6	OSCIN	23	A8
7	RESET	24	A0/D0
8	P37/T10UTB	25	A1/D1
9	P36/T1INB	26	A2/D2


Pin	Name
43	P70/SIN
42	P71/SOUT
41	P72/CLKOUT   ITXCLK/INT4
40	P73/ADTRG   /RXCLK/INT5
39	P74/P/D//INT6
38	$\overline{\text { P75/WAIT }}$
37	P76/WDOUT   /BUSREQ
36	P77/WDIN   /BUSACK
35	R/W
34	$\overline{\overline{D S}}$
33	$\overline{\text { AS }}$
32	VDD
31	A7/D7
30	A6/D6
29	A5/D5
28	A4/D4
27	A3/D3


Pin	Name
60	AV
59	AV
58	P47/AIN7
57	P46/AIN6
56	P45/AIN5
55	P43/AIN3
54	P42/AIN2
53	P41/AIN1
52	P40/AIN0
51	P27/RRDY5
50	P26/INT3   /RDSTB5/P/D   49
48	P25/WRRDY5   P24/INT1   WRSTB5
47	P23/SDO
46	P22/INT2/SCK
45	P21/SDI/P/D $\bar{D}$
44	P20/NMI

### 18.1 GENERAL DESCRIPTION

The ST90R30 is a ROMLESS member of the ST9 family of microcontrollers, completely developed and produced by SGS-THOMSON Microelectronics using a proprietary n-well HCMOS process.
The ROMLESS part may be used for the prototyping and pre-production phases of development, and offers the maximum in program flexibility in production systems.
The ST90R30 is fully compatible with the ST9030 ROM version and this datasheet will thus provide only information specific to the ROMLESS device.
the reader is asked to refer to the DATASHEET OF THE ST9030 ROM-BASED DEVICE.
The ROMLESS ST90R30 can be configured as a microcontroller able to manage external memory, or as a parallel processing element in a system with other processors and peripheral controllers.
The nucleus of the ST90R30 is the advanced Core which includes the Central Processing Unit (CPU), the Register File, a 16 bit Timer/Watchdog with 8 bit Prescaler, a Serial Peripheral Interface supporting S-BUS, $\mathrm{I}^{2} \mathrm{C}$-bus and IM-bus Interface, plus two

8 bit I/O ports. The Core has independent memory and register buses allowing a high degree of pipelining to add to the efficiency of the code execution speed of the extensive instruction set.
The powerful I/O capabilities demanded by microcontroller applications are fulfilled by the ST90R30 with up to 56 I/O lines dedicated to memory addressing or digital Input/Output. These lines are grouped into up to seven 8 bit I/O Ports and can be configured on a bit basis under software control to provide timing and status signals, address lines, timer inputs and outputs, analog inputs, external interrupts and serial or parallel I/O with or without handshake.
Three memory spaces are available: Program Memory (external), Data Memory (internal and external) and the Register File, which includes the control and status registers of the on-chip peripherals.
Two 16 bit MultiFunction Timers, each with an 8 bit Prescaler and 13 operating modes allow simple use for complex waveform generation and measurement, PWM functions and many other system timing functions by the usage of the two associated DMA channels for each timer.

Figure 3. Block Diagram


## GENERAL DESCRIPTION (Continued)

In addition there is an 8 channel Analog to Digital Converter with integral sample and hold, fast $11 \mu \mathrm{~s}$ conversion time and 8 bit resolution. An Analog Watchdog feature is included for two input channels.

### 18.2 PIN DESCRIPTION

$\overline{\mathbf{A S}}$. Address Strobe (output, active low, 3-state). Address Strobe is pulsed low once at the beginning of each memory cycle. The rising edge of AS indicates that address, Read/Write (R/W), and Data Memory signals are valid for program or data memory transfers. Under program control, $\overline{A S}$ can be placed in a high-impedance state along with Port 0 and Port 1, Data Strobe ( $\overline{\mathrm{DS}}$ ) and R/W.
$\overline{\text { DS. }}$ Data Strobe (output, active low, 3-state). Data Strobe provides the timing for data movement to or from Port 0 for each memory transfer. During a write cycle, data out is valid at the leading edge of $\overline{\text { DS }}$. During a read cycle, Data In must be valid prior to the trailing edge of $\overline{\mathrm{DS}}$. When the ST90R30 accesses on-chip Data memory, $\overline{D S}$ is held high during the whole memory cycle. It can be placed in a high impedance state along with Port 0, Port 1, $\overline{\mathrm{AS}}$ and $R \bar{W}$.
R/W. Read/Write (output, 3-state). Read/Write determines the direction of data transfer for memory transactions. R/W is low when writing to program or data memory, and high for all other transactions. It can be placed in a high impedance state along with Port 0, Port 1, $\overline{A S}$ and $\overline{\mathrm{DS}}$.
RESET. Reset (input, active low). The ST9 is initialised by the Reset signal. With the deactivation of RESET, program execution begins from the Program memory location pointed to by the vector contained in program memory locations 00 h and 01h.

Completing the device is a full duplex Serial Communications Interface with an integral 110 to 375000 baud rate generator, asynchronous and 1.5Mbyte/s synchronous capability (fully programmable format) and associated address/wake-up option, plus two DMA channels.

OSCIN, OSCOUT. Oscillator (input and output). These pins connect a parallel-resonant crystal ( 24 MHz maximum), or an external source to the on-chip clock oscillator and buffer. OSCIN is the input of the oscillator inverter and internal clock generator: OSCOUT is the output of the oscillator inverter.
$A V_{D D}$. Analog $V_{D D}$ of the Analog to Digital Converter.
AVss. Analog Vss of the Analog to Digital Converter. Must be tied to Vss.
VDD. Main Power Supply Voltage ( $5 \mathrm{~V} \pm 10 \%$ )
Vss. Digital Circuit Ground.
ADO-AD7, (P0.0-P0.7) Address/Data Lines (Input/Output, TTL or CMOS compatible). 8 lines providing a multiplexed address and data bus, under control of the $\overline{\mathrm{AS}}$ and $\overline{\mathrm{DS}}$ timing signals.
A8-A15 Address Lines (Output, TTL or CMOS compatible). 8 lines providing non-multiplexing address bus, under control of the $\overline{\mathrm{AS}}$ and $\overline{\mathrm{DS}}$ timing signals.
P2.0-P2.7 P3.0-P3.7, P4.0-P4.7, P5.0-P5.7, P7.0P7.7 I/O Port Lines (Input/Output. TTL or CMOS compatible). 40 lines grouped into I/O ports of 8 bits, bit programmable under program control as general purpose I/O or as Alternate functions (see next section).

### 18.2.1 I/O PORT ALTERNATE FUNCTIONS

Each pin of the I/O ports of the ST90R30 may assume software programmable Alternative Functions as shown in the Pin Configuration Drawings. Table 3 shows the Functions allocated to each I/O Port pins.

PIN DESCRIPTION (Continued)
Table 3. I/O Port Alternate Function Summary

I/O PORT	Name	Function IN/OUT	Alternate Function	Pin Assignment	
Port.bit				PQFP80	PLCC68
P0.0	A0/D0	I/O	Address/Data bit 0 mux	39	24
P0.1	A1/D1	I/O	Address/Data bit 1 mux	40	25
P0.2	A2/D2	1/O	Address/Data bit 2 mux	41	26
P0.3	A3/D3	1/O	Address/Data bit 3 mux	42	27
P0.4	A4/D4	1/O	Address/Data bit 4 mux	43	28
P0.5	A5/D5	1/O	Address/Data bit 5 mux	44	29
P0.6	A6/D6	1/O	Address/Data bit 6 mux	45	30
P0.7	A7/D7	I/O	Address/Data bit 7 mux	46	31
P1.0	A8	0	Address bit 8	38	23
P1.1	A9	0	Address bit 9	37	22
P1.2	A10	0	Address bit 10	36	21
P1.3	A11	0	Address bit 11	35	20
P1.4	A12	0	Address bit 12	34	19
P1.5	A13	0	Address bit 13	33	18
P1.6	A14	0	Address bit 14	31	17
P1.7	A15	0	Address bit 15	30	16
P2.0	NMI	1	Non-Maskable Interrupt	64	44
P2.1	P/ $\overline{\mathrm{D}}$	0	Program/Data Space Select	65	45
P2.1	SDI	1	SPI Serial Data Out	65	45
P2.2	INT2	1	External Interrupt 2	66	46
P2.2	SCK	0	SPI Serial Clock	66	46
P2.3	SDO	0	SPI Serial Data In	67	47
P2.4	INT1	1	External Interrupt 1	68	48
P2.4	$\overline{\text { WRSTB5 }}$	0	Handshake Write Strobe P5	68	48
P2.5	WRRDY5	1	Handshake Write Ready P5	69	49
P2.6	INT3	1	External Interrupt 3	70	50
P2.6	$\overline{\text { RDSTB5 }}$	1	Handshake Read Strobe P5	70	50
P2.6	P/D	0	Program/Data Space Select	70	50
P2.7	RDRDY5	0	Handshake Read Ready P5	71	51
P3.0	TOINA	1	MF Timer 0 Input A	29	15
P3.0	P/D	0	Program/Data Space Select	29	15
P3.1	TOOUTA	0	MF Timer 0 Output A	28	14
P3.2	TOINB	1	MF Timer 0 Input B	27	13
P3.3	T0OUTB	0	MF Timer 0 Output B	26	12
P3.4	TIINA	I	MF Timer 1 Input A	25	11

PIN DESCRIPTION (Continued)
Table 3. I/O Port Alternate Function Summary (Continued)

I/O PORT	Name	Function IN/OUT	Alternate Function	Pin Assignment	
Port.bit				PQFP80	PLCC68
P3.5	T1OUTA	0	MF Timer 1 Output A	24	10
P3.6	T1INB	1	MF Timer 1 Input B	23	9
P3.7	T1OUTB	0	MF Tımer 1 Output B	22	8
P4.0	AINO	1	A/D Analog Input 0	72	52
P4.1	AlN1	1	A/D Analog Input 1	73	53
P4.2	AIN2	1	A/D Analog Input 2	74	54
P4.3	AlN3	1	A/D Analog Input 3	75	55
P4.4	AIN4	1	A/D Analog Input 4	4	61
P4.5	AIN5	1	A/D Analog Input 5	76	56
P4.6	AIN6	1	A/D Analog Input 6	77	57
P4.7	AIN7	1	A/D Analog Input 7	78	58
P5.0		1/O	I/O Handshake Port 5	15	3
P5.1		1/O	I/O Handshake Port 5	14	2
P5.2		1/O	I/O Handshake Port 5	13	1
P5.3		I/O	I/O Handshake Port 5	11	68
P5.4		I/O	I/O Handshake Port 5	8	65
P5.5		I/O	I/O Handshake Port 5	7	64
P5.6		I/O	I/O Handshake Port 5	6	63
P5.7		I/O	I/O Handshake Port 5	5	62
P7.0	SIN	1	SCI Serial Input	61	43
P7.1	SOUT	0	SCI Serial Output	60	42
P7.2	INT4	1	External Interrupt 4	59	41
P7.2	TXCLK	1	SCI Transmit Clock Input	59	41
P7.2	CLKOUT	0	SCI Byte Sync Clock Output	59	41
P7.3	INT5	1	External Interrupt 5	58	40
P7.3	RXCLK	1	SCI Receive Clock Input	58	40
P7.3	ADTRG	1	A/D Conversion Trigger	58	40
P7.4	INT6	1	External Interrupt 6	57	39
P7.4	P/D	0	Program/Data Space Select	57	39
P7.5	$\overline{\text { WAIT }}$	1	External Wait Input	56	38
P7.6	WDOUT	0	T/WD Output	55	37
P7.6	$\overline{\text { BUSREQ }}$	1	External Bus Request	55	37
P7.7	WDIN	1	T/WD Input	54	36
P7.7	$\overline{\text { BUSACK }}$	0	External Bus Acknowledge	54	36

### 18.3 MEMORY

The memory of the ST90R30 is functionally divided into two areas, the Register File and Memory. The Memory may optionally be divided into two spaces, each having a maximum of 65,536 bytes. The two memory spaces are separated by function, one space for Program code, the other for Data. The ST90R30 addresses all program memory in the external PROGRAM space.

The External Memory spaces are addressed using the multiplexed address and data buses on Ports 0 and 1. Data Memory may be decoded externally by using the P/D Alternate Function output. The onchip general purpose (GP) Registers may be used as RAM memory.

Figure 4. Memory Spaces


## ORDERING INFORMATION

Sales Type	Frequency	Temperature Range	Package
ST90R30C6	24 MHz	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	PLCC68
ST90R30Q1		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	PQFP80

## Table of Contents

ST9036
1.1 GENERAL DESCRIPTION ..... 6
1.2 PIN DESCRIPTION ..... 7
1.2.1 I/O Port Alternate Functions ..... 7
1.3 MEMORY ..... 10
1.3.1 INTRODUCTION ..... 10

- Register oriented 8/16 bit CORE with RUN, WFI and HALT modes
- Minimum instruction cycle time : 500ns (12MHz internal)
- Internal Memory :

ROM	16Kbytes
RAM	256 bytes

224 general purpose registers available as RAM, accumulators or index registers (register file)

- 80-pin PQFP package for ST9036Q
- 68-lead PLCC package for ST9036C
- 56-pin shrink DIP package for ST9036B
- DMA controller, Interrupt handler and Serial Peripheral Interface as standard features
- Up to 56 fully programmable I/O pins
- Up to 8 external plus 1 non-maskable interrupts
- 16 bit Timer with 8 bit Prescaler, able to be used as a Watchdog Timer
- Two 16 bit Multifunction Timers, each with an 8 bit prescaler and 13 operating modes
- 8 channel 8 bit Analog to Digital Converter, with Analog Watchdogs and external references
- Serial Communications Interface with asynchronous and synchronous capability
- Rich Instruction Set and 14 Addressing modes
- Division-by-Zero trap generation
- Versatile development tools, including assembler, linker, C-compiler, archiver, graphic oriented debugger and hardware emulators
- Real Time Operating System
- Windowed and One Time Programmable EPROM parts available for prototyping and pre-production development phases
- Pin to pin compatible with ST9030 and ST9040


Figure 1. 80 Pin PQFP Package


Table 1. ST9036Q Pin Description

Pin	Name
1	AV $_{\text {SS }}$
2	AV $_{\text {SS }}$
3	NC
4	P44/AIN4
5	P57
6	P56
7	P55
8	P54
9	INT7
10	INT0
11	P53
12	NC
13	P52
14	P51
15	P50
16	OSCOUT
17	V $_{\text {SS }}$
18	V SS
19	NC
20	OSCIN
21	$\overline{R E S E T}$
22	P37/T1OUTB
23	P36/T1INB
24	P35/T1OUTA


Pin	Name
25	P34/T1INA
26	P33/T0OUTB
27	P32/TOINB
28	P31/T0OUTA
29	P30/P/D/TOINA
30	A15
31	A14
32	NC
33	A13
34	A 12
35	A 11
36	A 10
37	A9
38	A8
39	P00/A0/D0
40	P01/A1/D1


Pin	Name
64	P20/NMI
63	NC
62	$V_{S S}$
61	P70/SIN
60	P71/SOUT
59	P72/INT4/TXCLK /CLKOUT
58	P73/INT5 /RXCLK/ADTRG
57	P74/P/D/INT6
56	P75M WAIT
55	$\frac{\mathrm{P} 76 / \text { WDOUT }}{\text { /BUSREQ }}$
54	$\frac{\text { P77/WDIN }}{\text { /BUSACK }}$
53	R/W
52	NC
51	$\overline{\mathrm{DS}}$
50	$\overline{\text { AS }}$
49	NC
48	VDD
47	$V_{D D}$
46	P07/A7/D7
45	P06/A6/D6
44	P05/A5/D5
43	P04/A4/D4
42	P03/A3/D3
41	P02/A2/D2


Pin	Name
80	AV
79	NC
78	P47/AIN7
77	P46/AIN6
76	P45/AIN5
75	P43/AIN3
74	P42/AIN2
73	P41/AIN1
72	P40/AIN0
71	P27/RRDY5
70	P26/INT3   /RDSTB5/P/D
69	P25/WRRDY5
68	P24/INT1   IWRSTB5
67	P23/SDO
66	P22/INT2/SCK
65	P21/SDI/P/D $\bar{D}$

Figure 2. 68 Pin PLCC Package


Table 2. ST9036C Pin Description

Pin	Name
61	P44/AIN4
62	P57
63	P56
64	P55
65	P54
66	INT7
67	INT0
68	P53
11	P35/T1OUTA
12	P34/T1INA
12	P33/T0OUTB
13	P32/TOINB
2	P51
3	P50
4	OSCOUT
5	VSS
6	OSCIN
7	P31/T0OUTA
15	P30/P/D/TOINA
16	P17/A15
17	P16/A14
18	P15/A13
8	P37/T1OUTB
9	P36/T1INB
19	P14/A12
20	P13/A11
21	P12/A10
22	P11/A9
23	P10/A8
24	P00/A0/D0
25	P01/A1/D1
26	P02/A2/D2


Pin	Name	Pin	Name
43	P70/SIN	60	$A V_{S S}$
42	P71/SOUT	59	AV ${ }_{\text {DD }}$
41	P72/CLKOUT	58	P47/AIN7
41	/TXCLK/INT4	57	P46/AIN6
40	P73/ADTRG	56	P45/AIN5
40	/RXCLK/INT5	55	P43/AIN3
39	P74/P/D/INT6	54	P42/AIN2
38	P75/WAIT	53	P41/AIN1
37	P76/WDOUT	52	P40/AIN0
37	/BUSREQ	51	P27/RRDY5
36	$\frac{\text { P77/WDIN }}{\text { /BUSACK }}$	50	$\frac{\text { P26/INT3 }}{\text { RDSTB5/P/D }}$
35	R/W	49	P25/WRRDY5
34	DS	48	P24/INT1
33	$\overline{\text { AS }}$	48	WRSTB5
32	VDD	47	P23/SDO
31	P07/A7/D7	46	P22/INT2/SCK
30	P06/A6/D6	45	P21/SDI/P/D
29	P05/A5/D5	44	P20/NMI
28	P04/A4/D4		
27	P03/A3/D3		

Figure 1b. 56 Pin Shrink DIP Pinout


Table 3. ST9036B Pin Description

Pin	Pin name	Pin	Pin name
1	P42/AIN2	56	P41/AIN1
2	P43/AIN3	55	P40/AIN0
3	P45/AIN5	54	P23/SDO
4	P46/AIN6	53	P22/INT2/SCK
5	P47/AIN7	52	P21/SDI/P:D
6	AVDD	51	P20/NMI
7	AVSS	50	P70/SIN
8	P44/AIN4	49	P71/SOUT
9	P57	48	P72/CLKOUT
10	P56	8	TXCLK/INT4
11	P55	47	P73/ADTRG
12	P54		RXCLKNT5
13	P53	46	PT6MDOUTBUSREQ
14	P52	45	P77WDINBUSACK
15	OSCOUT	44	R/W
16	VSS	43	DS
17	OSCIN	42	AS
18	RESET	41	$V_{D D}$
19	P37/T10UTB	40	VSS
20	P36/T1INB	39	P07/A7/D7
21	NC	38	P06/A6/D6
22	P35/T1OUTA	37	P05/A5/D5
23	P34/T1INA	36	P04/A4/D4
24	P33/T00UTB	35	P03/A3/D3
25	P32/TOINB	34	P02/A2/D2
26	P31/T0OUTA	33	P01/A1/D1
27	P30/P/D/TOINA	32	P00/A0/D0
28	P13/A11	31	P10/A8
		30	P11/A9
		29	P12/A10

### 1.1 GENERAL DESCRIPTION

The ST9036 is a ROM member of the ST9 family of microcontrollers, completely developed and produced by SGS-THOMSON Microelectronics using a proprietary n-well HCMOS process.
The ST9036 EPROM peripheral and functional actions are fully compatible throughout the ST903x/4x family. This datasheet will thus provide only information specific to this ROM device.

## THE READER IS ASKED TO REFER TO THE DATASHEET OF THE ST9030 ROM-BASED DEVICE FOR FURTHER DETAILS.

The nucleus of the ST9036 is the advanced Core which includes the Central Processing Unit (CPU), the Register File, a 16 bit Timer,'Watchdog with 8 bit Prescaler, a Serial Peripheral Interface supporting S-bus, $\mathrm{I}^{2} \mathrm{C}$-bus and IM -bus Interface, plus two 8 bit I/O ports. The Core has independent memory and register buses allowing a high degree of pipelining to add to the efficiency of the code execution speed of the extensive instruction set. The powerful I/O capabilities demanded by microcontroller applications are fulfilled by the ST9036 with up to 56 I/O lines dedicated to digital Input/Output. These lines are grouped into up to seven 8 bit I/O Ports and can be configured on a bit basis under software control to provide timing, status signals, an address/data bus for interfacing external memory, timer inputs and outputs, analog inputs, external interrupts and serial or parallel I/O with or without handshake.
Three basic memory spaces are available to support this wide range of configurations: Program Memory (internal and external), Data Memory (internal and external) and the Register File, which includes the control and status registers of the on-chip peripherals.
Two 16 bit MultiFunction Timers, each with an 8 bit Prescaler and 13 operating modes allow simple use for complex waveform generation and measurement, PWM functions and many other system timing functions by the usage of the two associated DMA channels for each timer. In addition there is an 8 channel Analog to Digital Converter with integral sample and hold, fast $11 \mu$ s conversion time and 8 bit resolution. An Analog Watchdog feature is included for two input channels.
Completing the device is a full duplex Serial Communications Interface with an integral 110 to 375,000 baud rate generator, asynchronous and 1.5Mbyte/s synchronous capability (fully programmable format) and associated address/wake-up option, plus two DMA channels.

### 1.2 PIN DESCRIPTION

$\overline{\mathbf{A S}}$. Address Strobe (output, active low, 3-state). Address Strobe is pulsed low once at the beginning of each memory cycle. The rising edge of AS indicates that address, Read/Write (R/W), and Data Memory signals are valid for program or data memory transfers. Under program control, $\overline{\mathrm{AS}}$ can be placed in a high-impedance state along with Port 0 and Port 1, Data Strobe (DS) and R/W.
DS. Data Strobe (output, active low, 3-state). Data Strobe provides the timing for data movement to or from Port 0 for each memory transfer. During a write cycle, data out is valid at the leading edge of $\overline{\text { DS. During a read cycle, Data In must be valid prior }}$ to the trailing edge of DS. When the ST9036 accesses on-chip memory, $\overline{\mathrm{DS}}$ is held high during the whole memory cycle. It can be placed in a high impedance state along with Port 0, Port $1, \overline{\mathrm{AS}}$ and $\mathrm{R} / \overline{\mathrm{W}}$.
R/W. Read/Write (output, 3-state). Read/Write determines the direction of data transfer for external memory transactions. R/W is low when writing to external program or data memory, and high for all other transactions. It can be placed in a high impedance state along with Port 0, Port $1, \overline{\mathrm{AS}}$ and $\overline{\mathrm{DS}}$.
RESET. Reset (input, active low). The ST9 is initialised by the Reset signal. With the deactivation of RE$\overline{S E T}$, program execution begins from the Program memory location pointed to by the vector contained in program memory locations 00 h and 01 h .
INTO, INT7. External interrupts (input, active on rising or falling edge). External interrupt inputs 0 and

7 respectively. INTO channel may also be used for the timer watchdog interrupt.
OSCIN, OSCOUT. Oscillator (input and output). These pins connect a parallel-resonant crystal ( 24 MHz maximum), or an external source to the on-chip clock oscillator and buffer. OSCIN is the input of the oscillator inverter and internal clock generator; OSCOUT is the output of the oscillator inverter.
$A V_{D D}$. Analog $V_{D D}$ of the Analog to Digital Converter.
AVss. Analog Vss of the Analog to Digital Converter. Must be tied to Vss.
Vdd. Main Power Supply Voltage ( $5 \mathrm{~V} \pm 10 \%$ )
Vss. Digital Circuit Ground.
P0.0-P0.7, P1.0-P1.7, P2.0-P2.7 P3.0-P3.7, P4.0P4.7, P5.0-P5.7, P7.0-P7.7 I/O Port Lines (Input/Output, TTL or CMOS compatible). 56 lines grouped into I/O ports of 8 bits, bit programmable under program control as general purpose I/O or as alternate functions.

### 1.2.1 I/O Port Alternate Functions

Each pin of the I/O ports of the ST9036 may assume software programmable Alternative Functions as shown in the Pin Configuration Drawings. Table 1-4 shows the Functions allocated to each l/O Port pins and a summary of packages for which they are available.

Figure 3. ST9036 Block Diagram


PIN DESCRIPTION (Continued)
Table 4. ST9036 I/O Port Alternate Function Summary

I/O PORT	Name	Function	Alternate Function	Pin Assignment		
Port. bit				PLCC	PQFP	PSDIP
P0.0	A0/D0	1/0	Address/Data bit 0 mux	24	39	32
P0.1	A1/D1	1/0	Address/Data bit 1 mux	25	40	33
P0.2	A2/D2	1/0	Address/Data bit 2 mux	26	41	34
P0.3	A3/D3	1/0	Address/Data bit 3 mux	27	42	35
P0.4	A4/D4	1/0	Address/Data bit 4 mux	28	43	36
P0.5	A5/D5	1/0	Address/Data bit 5 mux	29	44	37
P0.6	A6/D6	1/0	Address/Data bit 6 mux	30	45	38
P0.7	A7/D7	1/0	Address/Data bit 7 mux	31	46	39
P1.0	A8	0	Address bit 8	23	38	31
P1.1	A9	0	Address bit 9	22	37	30
P1.2	A10	0	Address bit 10	21	36	29
P1.3	A11	0	Address bit 11	20	35	28
P1.4	A12	0	Address bit 12	19	34	
P1.5	A13	0	Address bit 13	18	33	
P1.6	A14	0	Address bit 14	17	31	
P1.7	A15	$\bigcirc$	Address bit 15	16	30	
P2.0	NMI	1	Non-Maskable Interrupt	44	64	51
P2.0	ROMless	1	ROMless Select (Mask option)	44	64	51
P2.1	P/D	0	Program/Data Space Select	45	65	
P2.1	SDI	1	SPI Serial Data Out	45	65	52
P2. 2	INT2	1	External Interrupt 2	46	66	53
P2. 2	SCK	0	SPI Serial Clock	46	66	53
P2.3	SDO	$\bigcirc$	SPI Serial Data In	47	67	54
P2.4	INT1	1	External Interrupt 1	48	68	
P2.4	WRSTB5	1	Handshake Write Strobe P5	48	68	
P2.5	WRRDY5	0	Handshake Write Ready P5	49	69	
P2. 6	INT3	1	External Interrupt 3	50	70	
P2.6	$\overline{\text { RDSTB5 }}$	1	Handshake Read Strobe P5	50	70	
P2.6	P/ $\overline{\mathrm{D}}$	0	Program/Data Space Select	50	70	
P2.7	RDRDY5	0	Handshake Read Ready P5	51	71	
P3.0	TOINA	1	MF Tımer 0 Input A	15	29	27
P3.0	P/ $\overline{\mathrm{D}}$	0	Program/Data Space Select	15	29	27
P3.1	TOOUTA	0	MF Timer 0 Output A	14	28	26
P3.2	TOINB	1	MF Timer 0 Input B	13	27	25
P3.3	TOOUTB	$\bigcirc$	MF Timer 0 Output B	12	26	24
P3.4	T1INA	1	MF Timer 1 Input A	11	25	23

PIN DESCRIPTION (Continued)
Table 4. ST9036 I/O Port Alternate Function Summary(Continued)

I/O PORT	Name	Function	Alternate Function	Pin Assignment		
Port. bit				PLCC	PQFP	PSDIP
P3.5	T1OUTA	0	MF Timer 1 Output A	10	24	22
P3.6	T1INB	I	MF Timer 1 Input B	9	23	20
P3.7	T1OUTB	0	MF Timer 1 Output B	8	22	19
P4.0	AINO	1	A/D Analog Input 0	52	72	55
P4.1	AIN1	1	A/D Analog Input 1	53	73	56
P4.2	AIN2	1	A/D Analog Input 2	54	74	1
P4.3	AIN3	1	A/D Analog Input 3	55	75	2
P4.4	AIN4	1	A/D Analog Input 4	61	4	8
P4.5	AIN5	1	A/D Analog Input 5	56	76	3
P4.6	AIN6	1	A/D Analog Input 6	57	77	4
P4.7	AIN7	1	A/D Analog Input 7	58	78	5
P5.0		1/0	I/O Handshake Port 5	3	15	
P5.1		1/0	I/O Handshake Port 5	2	14	
P5.2		1/O	I/O Handshake Port 5	1	13	14
P5.3		1/0	I/O Handshake Port 5	68	11	13
P5.4		$1 / \mathrm{O}$	I/O Handshake Port 5	65	8	12
P5.5		1/0	I/O Handshake Port 5	64	7	11
P5.6		I/O	I/O Handshake Port 5	63	6	10
P5.7		I/O	I/O Handshake Port 5	62	5	9
P7.0	SIN	1	SCI Serial Input	43	61	50
P7.1	SOUT	0	SCI Serial Output	42	60	49
P7.1	ROMless	1	ROMless Select (Mask option)	42	60	49
P7.2	INT4	1	External Interrupt 4	41	59	48
P7.2	TXCLK	1	SCI Transmit Clock Input	41	59	48
P7.2	CLKOUT	0	SCI Byte Sync Clock Output	41	59	48
P7.3	INT5	1	External Interrupt 5	40	58	47
P7.3	RXCLK	1	SCI Receive Clock Input	40	58	47
P7.3	ADTRG	I	A/D Conversion Trigger	40	58	47
P7.4	INT6	1	External Interrupt 6	39	57	
P7.4	P/ $\overline{\mathrm{D}}$	0	Program/Data Space Select	39	57	
P7.5	WAIT	1	External Wait Input	38	56	
P7.6	WDOUT	0	T/WD Output	37	55	46
P7.6	BUSREQ	1	External Bus Request	37	55	46
P7.7	WDIN	1	T/WD Input	36	54	45
P7.7	$\overline{\text { BUSACK }}$	0	External Bus Acknowledge	36	54	45

### 1.3 MEMORY

### 1.3.1 INTRODUCTION

The memory of the ST9 is divided into two spaces:
. Data memory with up to 64 K (65536) bytes

- Program memory with up to 64 K (65536) bytes

Thus, there is a total of 128 K bytes of addressable memory space.
The 16K bytes of on-chip ROM memory of the ST9036 are selected at memory addresses 0 through 3FFFh (hexadecimal) in the PROGRAM
space. The data space includes 256 bytes of onchip RAM at address 200h through 2FFh.
Off-chip memory, addressed using the multiplexed address and data buses (Ports 0 and 1) may be divided into the Program and Data spaces by the external decoding of the Program/Data select pin (P/D) available as an Alternate function output, allowing the full 127.5 K byte memory
The first 512 bytes of the data space are not accessible.

Figure 1-4. Memory Map


## AC ELECTRICAL CHARACTERISTICS

(VDD $=5 \mathrm{~V} \pm 10 \% \mathrm{~T}_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise specified)

Symbol	Parameter	Test Conditions		Value		
			Min.	Typ.	Max.	
IDD	Run Mode Current   no CPUCLK prescale,   Clock divide by 2	24 MHz , Note 1			50	mA
IDP2	Run Mode Current   Prescale by 2   Clock divide by 2	24 MHz , Note 1			30	mA
IWFI	WFI Mode Current   no CPUCLK prescale,   Clock divide by 2	24 MHz, Note 1			20	mA
IHALT	HALT Mode Current	24 MHz, Note 1			100	$\mu \mathrm{~A}$

Note 1: All I/O Ports are configured in Bidirectional Weak Pull-up Mode with no DC load, External Clock pin (OSCIN) is driven by square wave external clock. No peripheral working.

68-Pin Plastic Leadless Chip Carrier


56-Pin Plastic Shrink Dual-In-line Package, 600 Mil Width


ORDERING INFORMATION

Sales Type	Frequency	Temperature Range	Package
ST9036Q1/XX	24 MHz	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	PQFP80
ST9036C1/XX			PLCC68
ST9036B1/XX			PSDIP56
ST9036C6/XX		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	PLCC68
ST9036B6/XX			PSDIP56

Note: "XX" is the ROM code identifier that is allocated by SGS-THOMSON after receipt of all required options and the related ROM file.

## ST9036 STANDARD OPTION LIST

Please copy this page (enlarge if possible) and complete ALL sections.
Send the form, with the ROM code image required, to your local SGS-THOMSON sales office.

Customer Company :	[.	. $]$
Company Address :		.......]
	[.............	..]
Telephone:	[.....................]	
FAX :	[......................]	
Contact :	[........... ..........]	Telephone (Direct) : [.

Please confirm characteristics of device :
Device ST9036

Package	[ ] PQFP80	[ ] PLCC68	[ ] PSDIP56
Temperature Range	$\left[\right.$ ] $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\left[\right.$ ] $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	

Special Marking [ ] No $\quad[$ Y Yes 14 characters $[|||||||||||\mid]$
Authorized characters are letters, digits, '.', '-', 'l' and spaces only.
Please consult your local SGS-THOMSON sales office for other marking details if required. Notes:

ROMless Option (Consult text)
[ ] No
[ ] Yes Port Bit [ ] P7.1 [ ] P2.0

Code: [ ] EPROM $(27128,27256)$
[ ] HEX format files on IBM-PC® compatible disk filename: [. .]

Confirmation : [ ] Code checked with EPROM device in application

Yearly Quantity forecast : [. ......... . ...........] k units

- for a period of : [.......................] years

Preferred Production start dates : [ ....................] (YY/MM/DD)

Customer Signature :
Date :

## NOTES :

## GENERAL INDEX

## TABLE OF CONTENTS

ST9040 ..... 1
1.1GENERAL DESCRIPTION ..... 4
1.2 PIN DESCRIPTION ..... 5
1.2.1 I/O Port Alternate Functions ..... 5
1.3 MEMORY ..... 9
1.3.1 INTRODUCTION ..... 9
1.3.2 EEPROM ..... 9
1.3.2.1 Introduction ..... 9
1.3.2.2 EEPROM Programming Procedure ..... 10
1.3.2.3 Parallel Programming Procedure ..... 10
1.3.2.4 EEPROM Programming Voltage ..... 10
1.3.2.5 EEPROM Programming Time ..... 10
1.3.2.6 EEPROM Interrupt Management ..... 10
1.3.2.7 EEPROM Control Register ..... 11
1.3.3 REGISTER MAP ..... 11
2 ELECTRICAL CHARACTERISTICS ..... 13
ST90E40, ST90T40 ..... 35
1.1 GENERAL DESCRIPTION ..... 39
1.2 PIN DESCRIPTION ..... 40
1.2.1 I/O PORT ALTERNATE FUNCTIONS ..... 40
1.1 MEMORY ..... 43
1.2 EPROM PROGRAMMING ..... 43
1.2.1 Eprom Erasing ..... 43
ST90R40 ..... 49
1.1 GENERAL DESCRIPTION ..... 52
1.2 PIN DESCRIPTION ..... 53
1.2.1 I/O PORT ALTERNATE FUNCTIONS ..... 53
1.3 MEMORY ..... 56

## 16K ROM HCMOS MCU WITH EEPROM, RAM AND A/D CONVERTER

- Register oriented 8/16 bit CORE with RUN, WFI and HALT modes
- Minimum instruction cycle time : 500ns (12MHz internal)
- Internal Memory :

ROM	16 K bytes
RAM	256 bytes
EEPROM	512 bytes

224 general purpose registers available as RAM, accumulators or index registers (register file)

- 80-pin PQFP package for ST9040Q
- 68-lead PLCC package for ST9040C
- 56-pin shrink DIP package for ST9040B
- DMA controller, Interrupt handler and Serial Peripheral Interface as standard features
- Up to 56 fully programmable I/O pins
- Up to 8 external plus 1 non-maskable interrupts
- 16 bit Timer with 8 bit Prescaler, able to be used as a Watchdog Timer
- Two 16 bit Multifunction Timers, each with an 8 bit prescaler and 13 operating modes
- 8 channel 8 bit Analog to Digital Converter, with Analog Watchdogs and external references
- Serial Communications Interface with asynchronous and synchronous capability
- Rich Instruction Set and 14 Addressing modes
- Division-by-Zero trap generation
- Versatile development tools, including assembler, linker, C-compiler, archiver, graphic oriented debugger and hardware emulators
- Real Time Operating System
- Windowed and One Time Programmable EPROM parts available for prototyping and pre-production development phases
- Pin to pin compatible with ST9030 and ST9036


Figure 1. 80 Pin PQFP Package


Table 1. ST9040Q Pin Description

Pin	Name	Pin	Name	Pin	Name	Pin	Name
1	AVSS	25	P34/T1INA	64	P20/NMI	80	AVDD
2	$\mathrm{AV}_{\text {SS }}$	26	P33/T00UTB	63	NC	79	NC
3	NC	27	P32/TOINB	62	$\mathrm{V}_{\text {SS }}$	78	P47/AIN7
4	P44/AIN4	28	P31/T0OUTA	61	P70/SIN	77	P46/AIN6
5	P57	29	P30/P/D/TOINA	60	P71/SOUT	76	P45/AIN5
6	P56	30	A15	59	P72/INT4/TXCLK	75	P43/AIN3
7	P55	31	A14	59	/CLKOUT	74	P42/AIN2
8	P54	32	NC	58	P73/INT5	73	P41/AIN1
9	INT7	33	A13	58	/RXCLK/ADTRG	72	P40/AIN0
10	INT0	34	A12	57	P74/P/D/INT6	71	P27/RRDY5
11	P53	35	A11	56	P75MAIT	70	P26/INT3
12	NC	36	A10	55	P76/WDOUT	70	/RDSTB5/P/D
13	P52	37	A9	55	/BUSREQ	69	P25/WRRDY5
14	P51	38	A8	54	P77/WDIN	68	P24/INT1
15	P50	39	P00/A0/D0	54	/BUSACK	68	WRSTB5
16	OSCOUT	40	P01/A1/D1	53	$\mathrm{R} \overline{\mathrm{W}}$	67	P23/SDO
17	$V_{S S}$			52	NC	66	P22/INT2/SCK
18	$V_{S S}$			51	$\overline{\mathrm{DS}}$	65	P21/SDI/P/D
19	NC			50	$\overline{\text { AS }}$		
20	OSCIN			49	NC		
21	RESET			48	$V_{D D}$		
22	P37/T1OUTB			47	$V_{D D}$		
23	P36/T1INB			46	P07/A7/D7		
24	P35/T1OUTA			45	P06/A6/D6		
				44	P05/A5/D5		
				43	P04/A4/D4		
				42	P03/A3/D3		
				41	P02/A2/D2		

Figure 2. 68 Pin PLCC Package


Table 2. ST9040C Pin Description

Pin	Name	Pin	Name
61	P44/AIN4	10	P35/T1OUTA
62	P57	11	P34/T1INA
63	P56	12	P33/T0OUTB
64	P55	13	P32/T0INB
65	P54	14	P31/T00UTA
66	INT7	15	P30/P/D/TOINA
67	INTO	16	P17/A15
68	P53	17	P16/A14
- 1	P52	18	P15/A13
2	P51	19	P14/A12
3	P50	20	P13/A11
4	OSCOUT	21	P12/A10
5	$V_{\text {SS }}$	22	P11/A9
6	OSCIN	23	P10/A8
7	RESET	24	P00/A0/D0
8	P37/T1OUTB	25	P01/A1/D1
9	P36/T1INB	26	P02/A2/D2


Pin	Name
43	P70/SIN
42	P71/SOUT
41	P72/CLKOUT   ITXCLK/NT4
40	P73/ADTRG   /RXCLK/INT5
39	P74/P/D/INT6
38	$\overline{\text { P75/WAIT }}$
37	P76/WDOUT   /BUSREQ
36	P77/WDIN   /BUSACK
35	R/్̄
34	$\overline{\text { DS }}$
33	$\overline{\text { AS }}$
32	VDD
31	P07/A7/D7
30	P06/A6/D6
29	P05/A5/D5
28	P04/A4/D4
27	P03/A3/D3


Pin	Name
60	AV $_{\text {SS }}$
59	AV $_{\text {DD }}$
58	P47/AIN7
57	P46/AIN6
56	P45/AIN5
55	P43/AIN3
54	P42/AIN2
53	P41/AIN1
52	P40/AIN0
51	P27/RRDY5
50	P26/INT3   /RDSTB5/P/D
49	P25/WRRDY5
48	P24/INT1   NRSTB5
47	P23/SDO
46	P22/INT2/SCK
45	P21/SDI/P/D
44	P20/NMI

Figure 1b. 56 Pin Shrink DIP Pinout


Table 3. ST9040B Pin Description

Pin	Pin name
1	P42/AIN2
2	P43/AIN3
3	P45/AIN5
4	P46/AIN6
5	P47/AIN7
6	AVDD
7	AVSS
8	P44/AIN4
9	P57
10	P56
11	P55
12	P54
13	P53
14	P52
15	OSCOUT
16	$\mathrm{V}_{\text {Ss }}$
17	OSCIN
18	RESET
19	P37/T1OUTB
20	P36/T1INB
21	NC
22	P35/T1OUTA
23	P34/T1INA
24	P33/T00UTB
25	P32/T0INB
26	P31/T00UTA
27	P30/P/D/TOINA
28	P13/A11


Pin	Pin name
56	P41/AIN1
55	P40/AIN0
54	P23/SDO
53	P22/NT2/SCK
52	P21/SDI/P/D
51	P20/NMI
50	P70/SIN
49	P71/SOUT
48	P72/CLKOUT   TXCLK/NT4
47	P73/ADTRG   RXCLK/NT5
46	P76WDOUTBUSREO
45	P77MDIN/BUSACK
44	R/W
43	DS
42	$\overline{\text { AS }}$
41	VDD
40	VSS
39	P07/A7/D7
38	P06/A6/D6
37	P05/A5/D5
36	P04/A4/D4
35	P03/A3/D3
34	P02/A2/D2
33	P01/A1/D1
32	P00/A0/D0
31	P10/A8
30	P11/A9
29	P12/A10

### 1.1GENERAL DESCRIPTION

The ST9040 is a ROM member of the ST9 family of microcontrollers, completely developed and produced by SGS-THOMSON Microelectronics using a proprietary n-well HCMOS process.
The ST9040 peripheral and functional actions are fully compatible throughout the ST903x/4x family. This datasheet will thus provide only information specific to this ROM device.

## the reader is asked to refer to the DATASHEET OF THE ST9030 ROM-BASED DEVICE FOR FURTHER DETAILS.

The nucleus of the ST9040 is the advanced Core which includes the Central Processing Unit (CPU), the Register File, a 16 bit Timer/Watchdog with 8 bit Prescaler, a Serial Peripheral Interface supporting S-bus, $\mathrm{I}^{2} \mathrm{C}$-bus and IM-bus Interface, plus two 8 bit I/O ports. The Core has independent memory and register buses allowing a high degree of pipelining to add to the efficiency of the code execution speed of the extensive instruction set. The powerful I/O capabilities demanded by microcontroller applications are fulfilled by the ST9040 with up to 56 I/O lines dedicated to digital Input/Output. These lines are grouped into up to seven 8 bit I/O Ports and can be configured on a bit basis under software control to provide timing, status signals, an address/data bus for interfacing external memory, timer inputs and outputs, analog inputs, external interrupts and serial or parallel I/O with or without handshake.
Three basic memory spaces are available to support this wide range of configurations: Program Memory (internal and external), Data Memory (internal and external) and the Register File, which includes the control and status registers of the on-chip peripherals.
Two 16 bit MultiFunction Timers, each with an 8 bit Prescaler and 13 operating modes allow simple use for complex waveform generation and measurement, PWM functions and many other system timing functions by the usage of the two associated DMA channels for each timer. In addition there is an 8 channel Analog to Digital Converter with integral sample and hold, fast $11 \mu$ s conversion time and 8 bit resolution. An Analog Watchdog feature is included for two input channels.
Completing the device is a full duplex Serial Communications Interface with an integral 110 to 375,000 baud rate generator, asynchronous and $1.5 \mathrm{Mbyte} / \mathrm{s}$ synchronous capability (fully programmable format) and associated address/wake-up option, plus two DMA channels.

### 1.2 PIN DESCRIPTION

$\overline{\text { AS. }}$ Address Strobe (output, active low, 3-state). Address Strobe is pulsed low once at the beginning of each memory cycle. The rising edge of AS indicates that address, Read/Write (R/W), and Data Memory signals are valid for program or data memory transfers. Under program control, $\overline{\mathrm{AS}}$ can be placed in a high-impedance state along with Port 0 and Port 1, Data Strobe ( $\overline{\mathrm{DS}}$ ) and R/W.
DS. Data Strobe (output, active low, 3-state). Data Strobe provides the timing for data movement to or from Port 0 for each memory transfer. During a write cycle, data out is valid at the leading edge of DS. During a read cycle, Data In must be valid prior to the trailing edge of DS. When the ST9040 accesses on-chip memory, $\overline{\mathrm{DS}}$ is held high during the whole memory cycle. It can be placed in a high impedance state along with Port 0, Port $1, \overline{\mathrm{AS}}$ and $\mathrm{R} / \overline{\mathrm{W}}$.
R/W. Read/Write (output, 3-state). Read/Write determines the direction of data transfer for external memory transactions. R/W is low when writing to external program or data memory, and high for all other transactions. It can be placed in a high impedance state along with Port 0, Port 1, $\overline{\mathrm{AS}}$ and $\overline{\mathrm{DS}}$.
$\overline{\text { RESET. Reset (input, active low). The ST9 is initial- }}$ ised by the Reset signal. With the deactivation of RE$\overline{S E T}$, program execution begins from the Program memory location pointed to by the vector contained in program memory locations 00 h and 01 h .
INTO, INT7. External interrupts (input, active on rising or falling edge). External interrupt inputs 0 and

7 respectively. INTO channel may also be used for the timer watchdog interrupt.
OSCIN, OSCOUT. Oscillator (input and output). These pins connect a parallel-resonant crystal ( 24 MHz maximum), or an external source to the on-chip clock oscillator and buffer. OSCIN is the input of the oscillator inverter and internal clock generator; OSCOUT is the output of the oscillator inverter.
$A V_{D D}$. Analog $V_{D D}$ of the Analog to Digital Converter.
AVss. Analog Vss of the Analog to Digital Converter. Must be tied to Vss.
VDD. Main Power Supply Voltage ( $5 \mathrm{~V} \pm 10 \%$ )
Vss. Digital Circuit Ground.
P0.0-P0.7, P1.0-P1.7, P2.0-P2.7 P3.0-P3.7, P4.0P4.7, P5.0-P5.7, P7.0-P7.7 I/O Port Lines (Input/Output, TTL or CMOS compatible). 56 lines grouped into I/O ports of 8 bits, bit programmable under program control as general purpose I/O or as alternate functions.

### 1.2.1 I/O Port Alternate Functions

Each pin of the I/O ports of the ST9040 may assume software programmable Alternative Functions as shown in the Pin Configuration Drawings. Table 1-4 shows the Functions allocated to each I/O Port pins and a summary of packages for which they are available.

Figure 3. ST9040 Block Diagram


PIN DESCRIPTION (Continued)
Table 4. ST9040 I/O Port Alternate Function Summary

I/O PORT	Name	Function	Alternate Function	Pin Assignment		
Port. bit				PLCC	PQFP	PSDIP
P0.0	AO/D0	I/O	Address/Data bit 0 mux	24	39	32
P0.1	A1/D1	I/O	Address/Data bit 1 mux	25	40	33
P0.2	A2/D2	I/O	Address/Data bit 2 mux	26	41	34
P0.3	A3/D3	I/O	Address/Data bit 3 mux	27	42	35
P0.4	A4/D4	I/O	Address/Data bit 4 mux	28	43	36
P0.5	A5/D5	I/O	Address/Data bit 5 mux	29	44	37
P0.6	A6/D6	1/O	Address/Data bit 6 mux	30	45	38
P0.7	A7/D7	I/O	Address/Data bit 7 mux	31	46	39
P1.0	A8	0	Address bit 8	23	38	31
P1.1	A9	0	Address bit 9	22	37	30
P1.2	A10	0	Address bit 10	21	36	29
P1.3	A11	0	Address bit 11	20	35	28
P1.4	A12	0	Address bit 12	19	34	
P1.5	A13	0	Address bit 13	18	33	
P1.6	A14	0	Address bit 14	17	31	
P1.7	A15	0	Address bit 15	16	30	
P2.0	NMI	1	Non-Maskable Interrupt	44	64	51
P2.0	ROMless	1	ROMless Select (Mask option)	44	64	51
P2.1	P/D	0	Program/Data Space Select	45	65	
P2.1	SDI	1	SPI Serial Data Out	45	65	52
P2.2	INT2	1	External Interrupt 2	46	66	53
P2.2	SCK	0	SPI Serial Clock	46	66	53
P2.3	SDO	0	SPI Serial Data In	47	67	54
P2.4	INT1	1	External Interrupt 1	48	68	
P2.4	WRSTB5	1	Handshake Write Strobe P5	48	68	
P2.5	WRRDY5	0	Handshake Write Ready P5	49	69	
P2.6	INT3	1	External Interrupt 3	50	70	
P2.6	RDSTB5	1	Handshake Read Strobe P5	50	70	
P2.6	P/ $\bar{D}$	0	Program/Data Space Select	50	70	
P2.7	RDRDY5	0	Handshake Read Ready P5	51	71	
P3.0	TOINA	1	MF Timer 0 Input A	15	29	27
P3.0	P/ $\bar{D}$	0	Program/Data Space Select	15	29	27
P3.1	TOOUTA	0	MF Timer 0 Output A	14	28	26
P3.2	TOINB	1	MF Timer 0 Input B	13	27	25
P3.3	T0OUTB	0	MF Timer 0 Output B	12	26	24
P3.4	T1INA	1	MF Timer 1 Input A	11	25	23

PIN DESCRIPTION (Continued)
Table 4. ST9040 I/O Port Alternate Function Summary(Continued)

I/O PORT	Name	Function	Alternate Function	Pin Assignment		
Port. bit				PLCC	PQFP	PSDIP
P3.5	T1OUTA	0	MF Timer 1 Output A	10	24	22
P3.6	T1INB	1	MF Timer 1 Input B	9	23	20
P3.7	T1OUTB	0	MF Timer 1 Output B	8	22	19
P4.0	AINO	1	A/D Analog Input 0	52	72	55
P4.1	AIN1	1	A/D Analog Input 1	53	73	56
P4.2	AIN2	1	A/D Analog Input 2	54	74	1
P4.3	AIN3	1	A/D Analog Input 3	55	75	2
P4.4	AIN4	I	A/D Analog Input 4	61	4	8
P4.5	AIN5	1	A/D Analog Input 5	56	76	3
P4.6	AIN6	1	A/D Analog Input 6	57	77	4
P4.7	AIN7	1	A/D Analog Input 7	58	78	5
P5.0		I/O	I/O Handshake Port 5	3	15	
P5.1		I/O	I/O Handshake Port 5	2	14	
P5.2		I/O	I/O Handshake Port 5	1	13	14
P5.3		I/O	I/O Handshake Port 5	68	11	13
P5.4		I/O	I/O Handshake Port 5	65	8	12
P5.5		I/O	I/O Handshake Port 5	64	7	11
P5.6		1/O	I/O Handshake Port 5	63	6	10
P5.7		1/O	I/O Handshake Port 5	62	5	9
P7.0	SIN	1	SCI Serial Input	43	61	50
P7.1	SOUT	0	SCI Serial Output	42	60	49
P7.1	ROMless	1	ROMless Select (Mask option)	42	60	49
P7.2	INT4	1	External Interrupt 4	41	59	48
P7.2	TXCLK	1	SCI Transmit Clock Input	41	59	48
P7.2	CLKOUT	0	SCI Byte Sync Clock Output	41	59	48
P7.3	INT5	1	External Interrupt 5	40	58	47
P7.3	RXCLK	1	SCI Receive Clock Input	40	58	47
P7.3	ADTRG	1	A/D Conversion Trigger	40	58	47
P7.4	INT6	1	External Interrupt 6	39	57	
P7.4	P/D	0	Program/Data Space Select	39	57	
P7.5	WAIT	1	External Wait Input	38	56	
P7.6	WDOUT	O	T/WD Output	37	55	46
P7.6	BUSREQ	1	External Bus Request	37	55	46
P7.7	WDIN	1	T/WD Input	36	54	45
P7.7	BUSACK	0	External Bus Acknowledge	36	54	45

## ADDRESS SPACES

Table 1-5. Group F Peripheral Organization


### 1.3 MEMORY

### 1.3.1 INTRODUCTION

The memory of the ST9 is divided into two spaces:

- Data memory with up to $64 \mathrm{~K}(65536)$ bytes
- Program memory with up to 64K (65536) bytes

Thus, there is a total of 128 K bytes of addressable memory space.
The 16K bytes of on-chip ROM memory of the ST9040 are selected at memory addresses 0 through 3FFFh (hexadecimal) in the PROGRAM space.
The DATA space includes the 512 bytes of on-chip EEPROM at addresses 0 through 1FFh and the 256 bytes of on-chip RAM memory at addresses 200h through 2FFh.

### 1.3.2 EEPROM

### 1.3.2.1 Introduction

The EEPROM memory provides user-programmable non-volatile memory on-chip, allowing fast and reliable storage of user data. As there is also no off-chip access required, as for an external serial EEPROM, high security levels can be achieved.
The EEPROM memory is read as normal RAM memory at Data Space addresses 0 to 1 FFh, however one WAIT cycle is automatically added for a Read cycle, while a byte write cycle to the

EEPROM will cause the start of an ERASE/WRITE cycle at the addressed location. Word (16 bit) writes are not allowed.
The programming cycle is self-timed, with a typical programming time of 6 ms . The voltage necessary for programming the EEPROM is internally generated with $\mathrm{a}+18 \mathrm{~V}$ charge pump circuit.
Up to 16 bytes of data may be programmed into the EEPROM during the same write cycle by using the PARALLEL WRITE function.

A standby mode is also available which disables all power consumption sources within the EEPROM for low power requirements. When STBY is high, any attempt to access the EEPROM memory will produce unpredictable results. After the re-enabling of the EEPROM, a delay of 6 INTCLK cycles must be allowed before the selection of the EEPROM.
The EEPROM of the ST9040 has been implemented in a high reliability technology developed by SGS-THOMSON, this, together with the double bit structure, allow 300k Erase/Write cycles and 10 year data retention to be achieved on a microcontroller.

Control of the EEPROM is performed through one register mapped at register address R241 in Page 0.

Figure 1-4. Memory Map


## EEPROM (Continued)

### 1.3.2.2 EEPROM Programming Procedure

The programming of a byte of EEPROM memory is equivalent to writing a byte into a RAM location after verifying that EEBUSY bit is low. Instructions operating on word data ( 16 bits) will not access the EEPROM.

The EEPROM ENABLE bit EEWEN must first be set before writing to the EEPROM. When this bit is low, attempts to write data to the EEPROM have no affect, this prevents any spurious memory accesses from affecting the data in the EEPROM.
Termination of the write operation can be detected by polling on the EEBUSY status bit, or by interrupt, taking the interrupt vector from the External Interrupt 4 channel. The selection of the interrupt is made by EEPROM Interrupt enable bit EEIEN. It should be noted that the Mask bit of External Interrupt 4 should be set, and the Interrupt Pending bit reset, before the setting of EEIEN to prevent unwanted interrupts. A delay (eg a nop instruction) should also be included between the operations on the mask and pending bits of External Interrupt 4.
If polling on EEBUSY is used, a delay of 6 INTCLK clock cycles is necessary after the end of programming, this can be a nop instruction or, normally, therequired time to test the EEBUSY bit and to branch to the next instruction will be sufficient. While EEBUSY is active, any attempt to access the EEPROM matrix will be aborted and the data read will be invalid. EEBUSY is a read only bit and cannot be reset by the user if active.
An erased bit of the EEPROM memory will read as a logic " 0 ", while a programmed cell will be read as a logic "1". For applications requiring the highest level of reliability, the Verify Mode, set by EEPROM control register bit VRFY, allows the reading of the EEPROM memory cells with a reduced gate voltage (typically $20 \%$ ). If the EEPROM memory cell has been correctly programmed, a logic " 1 " will be read with the reduced voltage, otherwise a logic " 0 " will be read.

### 1.3.2.3 Parallel Programming Procedure

Parallel programming is a feature of the EEPROM macrocell. One up to sixteen bytes of a same row can be programmed at once.

The constraint is that each of the bytes occur in the same ROW of the EEPROM memory (A4 constant, A3-A0 variable). To operate this mode, the Parallel Mode enable bit, PLLEN, must be set. The data written is then latched into buffers (at the addresses specified, which may be non-sequential) and then transferred to the EEPROM memory by the setting of the PLLST bit of the control register. Both PLLST and PLLEN are internally reset at the end of the programming cycle. Any attempt to read the EEPROM memory when PLLEN is set will give invalid data. In the event that the data in the buffer latches is not required to be written into the memory by the setting of PLLST, the correct way to terminate the operation is to reset PLLEN and to perform a dummy read of the EEPROM memory. This termination will clear all data present in the latches.

### 1.3.2.4 EEPROM Programming Voltage

No external Vpp voltage is required, an internal 18 Volt charge-pump gives the required energy by a dedicated oscillator pumping at a typical frequency of 5 MHz , regardless of the external clock.

### 1.3.2.5 EEPROM Programming Time

No timing routine is required to control the programming time as dedicated circuitry takes care of the EEPROM programming time (The typical programming time is 6 ms ).

### 1.3.2.6 EEPROM Interrupt Management

At the end of each write procedure the EEPROM sends an interrupt request (if EEIEN bit is set). The EEPROM shares its interrupt channel with the external interrupt source INT4, from which the priority level is derived.
Care must be taken when EEIEN is reset. The associated external interrupt channel must be disabled (by reseting bit 4 of EIMR, R244) along with reseting the interrupt pending bit (bit 4 of EIPR, R243) to prevent unwanted interrupts. A delay instruction (at least 1 nop instruction) must be inserted between these two operations
WARNING. The content of the EEPROM of the ST9040 family after the out-going test at SGSTHOMSON's manufacturing location is not guarenteed.

EEPROM (Continued)
1.3.2.7 EEPROM Control Register

EECR R241 (F1h) Page 0 Read/Write
(except EEBUSY: read only)
EEPROM Control Register
Reset value : 0000 0000b (00h)


0	VERIFY	EESTBY	EEIEN	PLLST	PLLEN	EEBUSY	EEWEN

bit 7 = B7: This bit is forced to " 0 " after reset and MUST not be modified by the user.
bit $6=$ VERIFY: Set Verify mode. Verify (active high) is used to activate the verify mode.
The verify mode provides a guarentee of good retention of the programmed bit. When active, the reading voltage on the cell gate is decreased from 1.2 V to 0.0 V , decreasing the current from the programmed cell by $20 \%$. If the cell is well programmed (to " 1 "), a " 1 " will still be read, otherwise a " 0 " will be read.
Note. The verify mode must not be used during an erasing or a programming cycle).
bit 5 = EESTBY: EEPROM Stand-By. EESTBY = " 1 " switches off all power consumption sources inside the EEPROM. Any attempt to access the EEPROM when EESTBY = " 1 " will produce unpredictable results.

Note. After EESTBY is reset, the user must wait 6 CPUCLK cycles (e.g. 1 nop instruction) before selecting the EEPROM.
bit 4 = EEIEN: EEPROM Interrupt Enable. INTEN = "1" disables the external interrupt source INT4, and enables the EEPROM to send its interrupt request to the central interrupt unit at the end of each write procedure.
bit 3 = PLLST: Parallel Write Start. Setting PLLST to "1" starts the parallel writing procedure. It can be set only if PLLEN is already set. PLLST is internally reset at the end of the programming sequence.
bit $2=$ PLLEN: Parallel write Enable. Setting PLLEN to " 1 " enables the parallel writing mode which allows the user to write up to 16 bytes at the same time. PLLEN is internally reset at the end of the programming sequence.
bit 1 = EEBUSY: BUSY. When this read only bit is high, an EEPROM write operation is in progress and any attempt to access the EEPROM is aborted.
bit $0=$ EEWEN: EEPROM Write Enable. Setting this bit allows programming of the EEPROM, when low a writing attempt has no effect.

### 1.3.3 REGISTER MAP

Please refer to the Register Map of the ST9030 for all general registers with the exception of the register shown in the following table.

Table 1-6. Register Map Addendum

EECR	R241	(F1h)	Page 0	Read/Write	Control Registers

Figure 1-5. EEPROM Parallel Programming Rows

ROW 31   ROW 30	0	1	2	3	4	5	6	7	8	9	$\begin{gathered} A \\ 10 \end{gathered}$	$\begin{gathered} B \\ 11 \end{gathered}$	$\begin{gathered} c \\ 12 \end{gathered}$	$\begin{gathered} D \\ 13 \end{gathered}$	$\begin{gathered} E \\ 14 \end{gathered}$	$\begin{gathered} F \\ 15 \end{gathered}$	ADDRESS
																	$\begin{aligned} & 1 \mathrm{FOh}-1 \mathrm{FFh} \\ & 1 E O h-1 E F h \end{aligned}$
		!					$\begin{aligned} & \text { i } \\ & \text { 1 } \\ & \text { i } \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$									$1$	
ROW 2																	20h- 2 Fh
ROW 1																	10h - 1Fh
ROW 0																	OOh - OFh
																	VR001356

NOTES :

## 2 ELECTRICAL CHARACTERISTICS

## ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{D D}$	Supply Voltage	-0.3 to 7.0	V
$\mathrm{AV}_{\mathrm{DD}}, \mathrm{AV}^{\text {SS }}$	Analog Supply Voltage		V
$V_{1}$	Input Voltage	-0.3 to $V_{D D}+0.3$	V
Vo	Output Voltage	-0.3 to $V_{D D}+0.3$	V
Tstg	Storage Temperature	-55 to +150	${ }^{\circ} \mathrm{C}$
lins	Pin Injection Current Digital Input	-5 to +5	mA
lins	Pin Injection Current Analog Input	-5 to +5	mA
	Maximum Accumulated Pin injection Current in the device	-50 to +50	mA

Note: Stresses above those listed as "absolute maxımum ratıngs" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. All voltages are referenced to VSS

## RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value		Unit
		Min.	Max.	
$T_{A}$	Operating Temperature	-40	85	${ }^{\circ} \mathrm{C}$
$V_{D D}$	Operating Supply Voltage	4.5	5.5	V
fOSCE	External Oscillator Frequency		24	MHz
foscl	Internal Clock Frequency (INTCLK)		12	MHz

## DC ELECTRICAL CHARACTERISTICS

$V_{D D}=5 \mathrm{~V} \pm 10 \% \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise specified)

Symbol	Parameter	Test Conditions	Value			Unit
			Min.	Typ.	Max.	
$\mathrm{V}_{\text {IHCK }}$	Clock Input High Level	External Clock	$0.7 \mathrm{~V}_{\mathrm{DD}}$		$\mathrm{V}_{\mathrm{DD}}+0.3$	V
VILCK	Clock Input Low Level	External Clock	-0.3		0.3 VDD	V
$\mathrm{V}_{\mathrm{H}}$	Input High Level	TTL	2.0		$\mathrm{V}_{\mathrm{DD}}+0.3$	V
		CMOS	$0.7 \mathrm{~V}_{\mathrm{DD}}$		$\mathrm{V}_{\mathrm{DD}}+0.3$	V
$\mathrm{V}_{\text {IL }}$	Input Low Level	TTL	-0.3		0.8	V
		CMOS	-0.3		0.3 VDD	V
$\mathrm{V}_{\text {IHRS }}$	$\overline{\text { RESET Input High Level }}$		0.7 VDD		$V_{D D}+0.3$	V
$\mathrm{V}_{\text {ILAS }}$	$\overline{\text { RESET Input Low Level }}$		-0.3		$0.3 \mathrm{~V}_{\mathrm{DD}}$	V
$\mathrm{V}_{\text {HYRS }}$	$\overline{\text { RESET Input Hysteresis }}$		0.3		1.5	V
$\mathrm{V}_{\mathrm{OH}}$	Output High Level	Push Pull, lload $=-0.8 \mathrm{~mA}$	$V_{D D}-0.8$			V
VoL	Output Low Level	Push Pull or Open Drain, lload $=1.6 \mathrm{~mA}$			0.4	V
Iwpu	Weak Pull-up Current	$\begin{aligned} & \text { Bidirectional Weak Pull- } \\ & \text { up, } V_{\mathrm{OL}}=0 \mathrm{~V} \end{aligned}$	-50	-200	-420	$\mu \mathrm{A}$
Iapu	Active Pull-up Current, for INTO and INT7 only	$\mathrm{V}_{\mathrm{IN}}<0.8 \mathrm{~V}$, under Reset	-80	-200	-420	$\mu \mathrm{A}$
ILkıo	I/O Pin Input Leakage	Input/Tri-State, $O V<V_{I N}<V_{D D}$	-10		+ 10	$\mu \mathrm{A}$
lLKRS	$\overline{\text { Reset Pin Input Leakage }}$	$\mathrm{OV}<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\mathrm{DD}}$	-30		+30	$\mu \mathrm{A}$
ILKad	A/D Pin Input Leakage	Alternate Function, Open Drain, $O V<V_{I N}<V_{D D}$	-3		+ 3	$\mu \mathrm{A}$
ILKAP	Active Pull-up Input Leakage	$\mathrm{OV}<\mathrm{V}_{\text {IN }}<0.8 \mathrm{~V}$	-10		+ 10	$\mu \mathrm{A}$
L LKos	OSCIN Pin Input Leakage	$\mathrm{O}<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\mathrm{DD}}$	-10		+ 10	$\mu \mathrm{A}$

Note: All I/O Ports are configured in Bidirectıonal Weak Pull-up Mode with no DC load, External Clock pin (OSCIN) is driven by square wave external clock. No perıpheral working.

## DC TEST CONDITIONS

FORCING CONDITION
FORCING CONDITION
CMOS INPUT
PUSH-PULL OUTPUT
TEST CONDITION
WEAK PULL-UP OUTPUT
TEST CONDITION

AC ELECTRICAL CHARACTERISTICS
( $V D D=5 \mathrm{~V} \pm 10 \% \mathrm{~T}_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise specified)

Symbol	Parameter	Test Conditions	Value			Unit
			Min.	Typ.	Max.	
ldo	Run Mode Current no CPUCLK prescale, Clock divide by 2	24 MHz , Note 1			50	mA
IDP2	Run Mode Current Prescale by 2 Clock divide by 2	24 MHz , Note 1			30	mA
IWFI	WFI Mode Current no CPUCLK prescale, Clock divide by 2	24 MHz , Note 1			20	mA
Ihalt	HALT Mode Current	24 MHz , Note 1			100	$\mu \mathrm{A}$

Note 1: All I/O Ports are configured in Bidirectional Weak Pull-up Mode with no DC load, External Clock pin (OSCIN) is driven by square wave external clock. No peripheral working.

CLOCK TIMING TABLE
$\left(V_{D D}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, INTCLK $=12 \mathrm{MHz}$, unless otherwise specified)

$\mathrm{N}^{\circ}$	Symbol	Parameter	Value		Unit	Note
			Min.	Max.		
1	TpC	OSCIN Clock Period	41.5		ns	1
			83		ns	2
2	TrC, TfC	OSCIN Rise and Fall Time		12	ns	
3	TwCL, TwCH	OSCIN Low and High Width	17	25	ns	1
			38		ns	2

Notes:

1. Clock divided by 2 internally (MODER.DIV2 $=1$ )
2. Clock not divided by 2 internally (MODER.DIV2=0)

## CLOCK TIMING



## EXTERNAL BUS TIMING TABLE

(VDD $=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, Cload $=50 \mathrm{pF}$, CPUCLK $=12 \mathrm{MHz}$, unless otherwise specified)

$\mathrm{N}^{\circ}$	Symbol	Parameter	Value (Note)				Unit
			OSCIN Divided By 2	OSCIN Not Divided By 2	Min.	Max.	
1	TsA (AS)	Address Set-up Time before $\overline{\mathrm{AS}} \uparrow$	TpC (2P+1)-22	TWCH+PTpC -18	20		ns
2	ThAS (A)	Address Hold Time after $\overline{\mathrm{AS}} \uparrow$	TpC -17	TwCL-13	25		ns
3	TdAS (DR)	$\overline{\mathrm{AS}} \uparrow$ to Data Available (read)	TpC (4P+2W+4)-52	TpC (2P+W+2) -51		115	ns
4	TwAS	$\overline{\text { AS Low Pulse Width }}$	TpC (2P+1)-7	TwCH+PTpC-3	35		ns
5	TdAz (DS)	Address Float to $\overline{\mathrm{DS}} \downarrow \mathrm{t}$	12	12	12		ns
6	TwDSR	$\overline{\text { DS }}$ Low Pulse Width (read)	TpC (4P+2W+3) -20	$\begin{array}{\|l} \hline \mathrm{TwCH}+\mathrm{TpC} \\ (2 \mathrm{P}+\mathrm{W}+1)-16 \end{array}$	105		ns
7	TwDSW	$\overline{\mathrm{DS}}$ Low Pulse Width (write)	TpC (2P+2W+2)-13	TpC ( $\mathrm{P}+\mathrm{W}+1)-13$	70		ns
8	TdDSR (DR)	$\overline{\mathrm{DS}} \downarrow$ to Data Valid Delay (read)	TpC (4P+2W-3)-50	$\begin{aligned} & \mathrm{TwCH}+\mathrm{TpC}(2 \mathrm{P}+\mathrm{W}+1) \\ & -46 \end{aligned}$		75	ns
9	ThDR (DS)	Data to $\overline{\mathrm{DS}} \uparrow$ Hold Time (read)	0	0	0		ns
10	TdDS (A)	$\overline{\mathrm{DS}} \uparrow$ to Address Active Delay	TpC-7	TwCL-3	35		ns
11	TdDS (AS)	$\overline{\mathrm{DS}} \uparrow$ to $\overline{\mathrm{AS}} \downarrow$ Delay	TpC-18	TwCL-14	24		ns
12	TsR/W (AS)	$\mathrm{R} \bar{W}$ Set-up Time before $\overline{\mathrm{AS}} \uparrow$	TpC (2P+1)-22	TwCH+PTpC-18	20		ns
13	TdDSR (R/W)	$\overline{\mathrm{DS}} \uparrow$ to $\mathrm{R} \bar{W}$ and Address Not Valid Delay	TpC-9	TwCL-5	33		ns
14	TdDW (DSW)	Write Data Valid to $\overline{\mathrm{DS}} \downarrow$ Delay (write)	TpC (2P+1) -32	TwCH+PTpC -28	10		ns
15	ThDS (DW)	Data Hold Time after $\overline{\mathrm{DS}} \uparrow$ (write)	TpC-9	TwCL -5	33		ns
16	TdA (DR)	Address Valid to Data Valid Delay (read)	TpC (6P+2W+5) -68	$\begin{aligned} & \mathrm{TwCH}+\mathrm{TpC} \\ & (3 \mathrm{P}+\mathrm{W}+2)-64 \\ & \hline \end{aligned}$		140	ns
17	TdAs (DS)	$\overline{\mathrm{AS}} \uparrow$ to $\overline{\mathrm{DS}} \downarrow$ Delay	TpC-18	TwCL-14	24		ns

## EXTERNAL WAIT TIMING TABLE

( $V_{D D}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, Cload $=50 \mathrm{pF}$,
INTCLK $=12 \mathrm{MHz}$, Push-pull output configuration, unless otherwise specified)

N ${ }^{\circ}$	Symbol	Parameter	Value (Note)				Unit
			OSCIN Divided By 2	OSCIN Not Divided By 2	Min.	Max.	
1	TdAs (WAIT)	$\overline{\mathrm{AS}} \uparrow$ to $\overline{\text { WAIT }} \downarrow$ Delay	2(P+1)TpC-29	2(P+1)TpC-29		40	ns
2	TdAs (WAIT)	$\overline{\text { AS }} \uparrow$ to $\overline{\text { WAIT }} \downarrow$ Min. Delay	$2(\mathrm{P}+\mathrm{W}+1) \mathrm{TpC}-4$	$2(\mathrm{P}+\mathrm{W}+1) \mathrm{TpC}-4$	80		ns
3	TdAs (WAIT)		$2(\mathrm{P}+\mathrm{W}+1) \mathrm{TpC}-29$	$2(\mathrm{P}+\mathrm{W}+1) \mathrm{TpC}-29$		$\begin{gathered} 33 W_{+} \\ 40 \end{gathered}$	ns

Note: (for both tables) The value in the left hand two columns show the formula used to calculate the timing minimum or maximum from the oscillator clock period, prescale value and number of wait cycles inserted.
The value in the right hand two columns show the timing minimum and maxımum for an external clock at 24 MHz divided by 2 , prescaler value of zero and zero wait status.

Legend:
$P=$ Clock Prescaling Value
W=Wait Cycles

## TpC =OSCIN Period

TwCH =High Level OSCIN half period
TwCL =Low Level OSCIN half period

EXTERNAL BUS TIMING


## EXTERNAL WAIT TIMING



HANDSHAKE TIMING TABLE $\left(\mathrm{VDD}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, Cload $=50 \mathrm{pF}$, INTCLK $=12 \mathrm{MHz}$, Push-pull output configuration, unless otherwise specified)

${ }^{\circ}$	Symbol	Parameter	Value (Note)				Min.	Max.	Unit
			OSCIN Divided By 2		OSCIN Not Divided By 2				
			Min.	Max.	Min.	Max.			
1	TwRDY	RDRDY, WRRDY Pulse   Width in One Line Handshake	$\left\|\begin{array}{c} 2 \mathrm{TpC} \\ (\mathrm{P}+\mathrm{W}+1)-18 \end{array}\right\|$		$\begin{gathered} \mathrm{TpC} \\ (\mathrm{P}+\mathrm{W}+1)- \\ 18 \end{gathered}$		65		ns
2	TwSTB	$\overline{\text { RDSTB }}, \overline{\text { WRSTB }}$ Pulse Width	$2 \mathrm{TpC}+12$		TpC+12		95		ns
3	$\begin{aligned} & \text { TdST } \\ & \text { (RDY) } \end{aligned}$	$\overline{\text { RDSTB }}$, or $\overline{\text { WRSTB }} \uparrow$ to RDRDY or WRRDY $\downarrow$		TpC+45		$\begin{gathered} (T p C-T w C L) \\ +45 \end{gathered}$		87	ns
4	TsPD (RDY)	Port Data to RDRDY $\uparrow$ Set-up Time	$\begin{array}{\|c} (2 \mathrm{P}+2 \mathrm{~W}+1) \\ \mathrm{TpC}-25 \end{array}$		$\begin{gathered} \mathrm{TwCH}+ \\ (\mathrm{W}+\mathrm{P}) \\ \mathrm{TpC}-25 \end{gathered}$		16		ns
5	$\begin{aligned} & \text { TsPD } \\ & \text { (RDY) } \end{aligned}$	Port Data to WRRDY $\downarrow$   Set-up Time in One Line Handshake	43		43		43		ns
6	ThPD (RDY)	Port Data to WRRDY $\downarrow$   Hold   Time in One Line Handshake	0		0		0		ns
7	$\begin{aligned} & \text { TsPD } \\ & \text { (STB) } \end{aligned}$	Port Data to $\overline{\text { WRSTB }} \uparrow$ Set-up Time	10		10		10		ns
8	$\begin{aligned} & \text { ThPD } \\ & \text { (STB) } \end{aligned}$	Port Data to $\overline{W R S T B} \uparrow$ Hold Time	25		25		25		ns
9	TdSTB (PD)	$\overline{\operatorname{RDSTBD}} \uparrow$ to Port Data Delay Time in Bidirectional Handshake		35		35		35	ns
10	$\begin{aligned} & \text { TdSTB } \\ & \text { (PHZ) } \end{aligned}$	$\overline{\operatorname{RDSTB}} \uparrow$ to Port High-Z   Delay Time in   Bidirectional Handshake		25		25		25	ns

Note: The value in the left hand two columns show the formula used to calculate the tımıng mınimum or maxımum from the oscillator clock period, prescale value and number of wait cycles inserted.
The value in the right hand two columns show the timing minimum and maximum for an external clock at 24 MHz divided by 2 , prescaler value of zero and zero wait status.

## Legend:

$\mathrm{P}=$ Clock Prescalıng Value (R235 4,3,2)
$\mathrm{W}=$ Programmable Wait Cycles (R252.2.1.0/5,4,3) + External Wait Cycles

HANDSHAKE TIMING


BUS REQUEST/ACKNOWLEDGE TIMING TABLE (VDD $=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, $\mathrm{Cload}=50 \mathrm{pF}$, INTCLK $=12 \mathrm{MHz}$, Push-pull output configuration, unless otherwise specified)

$\mathrm{N}^{\circ}$	Symbol	Parameter	Value (Note)				Unit
			OSCIN Divided By 2	OSCIN Not Divided By 2	Min.	Max.	
1	TdBR (BACK)	$\overline{\text { BREQ }} \downarrow$ to $\overline{\text { BUSACK }} \downarrow$	TpC+8	TwCL+12	50		ns
			TpC( $6 \mathrm{P}+2 \mathrm{~W}+7$ ) +65	TpC(3P+W+3)+TwCL+65		360	ns
2	TdBR (BACK)		$3 T p C+60$	TpC+TwCL+60		185	ns
3	TdBACK (BREL)	$\overline{\text { BUSACK }} \downarrow$ to Bus   Release	20	20		20	ns
4	TdBACK (BACT)	$\overline{B U S A C K} \uparrow$ to Bus Active	20	20		20	ns

Note: The value left hand two columns show the formula used to calculate the timing minimum or maximum from the oscillator clock period, prescale value and number of wait cycles inserted.
The value right hand two columns show the timing minimum and maximum for an external clock at 24 MHz divided by 2 , prescale value of zero and zero wait status.

## BUS REQUEST/ACKNOWLEDGE TIMING



Note : MEMINT = Group of memory interface signals: $\overline{A S}, \overline{\mathrm{DS}}, \mathrm{R} / \bar{W}, \mathrm{P} 00-\mathrm{P} 07, \mathrm{P} 10-\mathrm{P} 17$

EXTERNAL INTERRUPT TIMING TABLE $\left(V D D=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, Cload $=50 \mathrm{pF}$, INTCLK $=12 \mathrm{MHz}$, Push-pull output configuration, unless otherwise specified)

$\mathrm{N}^{\circ}$	Symbol	Parameter	Value (Note)				Unit
				OSCIN Not   Divided By 2 Min.	Min.	Max.	
1	TwLR	Low Level Minimum Pulse Width in Rising Edge Mode	$2 T p C+12$	TpC+12	95		ns
2	TwHR	High Level Minimum Pulse Width in Rising Edge Mode	$2 \mathrm{TpC}+12$	TpC+12	95		ns
3	TwHF	High Level Minimum Pulse Width in Falling Edge Mode	$2 \mathrm{TpC}+12$	TpC+12	95		ns
4	TwLF	Low Level Minimum Pulse Width in Falling Edge Mode	2TpC+12	TpC+12	95		ns

Note: The value left hand two columns show the formula used to calculate the timing minimum or maximum from the oscillator clock period, prescale value and number of wait cycles inserted.
The value right hand two columns show the timing minimum and maximum for an external clock at 24 MHz divided by 2 , prescale value of zero and zero wait status.

## EXTERNAL INTERRUPT TIMING



SPI TIMING TABLE (VDD $=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, Cload $=50 \mathrm{pF}$, INTCLK $=12 \mathrm{MHz}$, Output Alternate Function set as Push-pull)

$\mathbf{N}^{\circ}$	Symbol		Value		Unit
			Min.	Max.	
1	TsDI	Input Data Set-up Time	100		ns
2	ThDI (1)	Input Data Hold Time	$1 / 2$ TpC +100		ns
3	TdOV	SCK to Output Data Valid		100	ns
4	ThDO	Output Data Hold Time	-20		ns
5	TwSKL	SCK Low Pulse Width	300		ns
6	TwSKH	SCK High Pulse Width	300		ns

Note: $T p C$ is the OSCIN Clock period.

## SPI TIMING



WATCHDOG TIMING TABLE(VDD $=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, $\mathrm{Cload}=50 \mathrm{pF}$, CPUCLK $=12 \mathrm{MHz}$, Push-pull output configuration, unless otherwise specified )

$\boldsymbol{N}^{\circ}$	Symbol	Parameter		Values	
		Unit			
1	TwWDOL		Min.	Max.	
2	TwWDOH	WDOUT High Pulse Width	620		ns
3	TwWDIL	WDIN High Pulse Width	620		ns
4	TwWDIH	WDIN Low Pulse Width	350		ns

## WATCHDOG TIMING



## A/D CONVERTER

EXTERNAL TRIGGER TIMING (VDD $=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, $\mathrm{Cload}=50 \mathrm{pF}$ )

$\mathrm{N}^{\circ}$	Symbol	Parameter	Oscin divided by $2^{(1)}$		Oscin not divided ${ }^{(1)}$		Value ${ }^{(2)}$		Unit
			Min.	Max.	Min.	Max.	Min.	Max.	
1	TLow	External Trigger pulse width	$2 \times T$ PC		TPC		83		ns
2	THIGH	External Trigger pulse	$2 \times T_{\text {PC }}$		TPC		83		ns
3	Text	External trigger active edges distance	$138 \times \mathrm{TPC}$		$69 \times$ Tpc		5.75		$\mu \mathrm{s}$
4	TStR	Internal delay between EXTRG falling edge and first conversion start	TPC	$3 \times T$ PC	$0.5 \times$ TPC	$1.5 \times \mathrm{TPC}$	41.5	125	ns

Notes:

1. Variable clock (TPC=OSCIN clock period)
2. $\operatorname{INTCLK}=12 \mathrm{MHz}$

## A/D External Trigger Timing



## A/D INTERNAL TRIGGER TIMING TABLE

$\mathrm{N}^{\circ}$	Symbol	Parameter	OSCIN   Divided by 2 (2)		OSCIN   Not Divided by 2 (2)		Value (3)		Unit
			Min.	Max.	Min.	Max.	Min.	Max.	
1	Twhigh	Internal trigger pulse width	Tpc		. $5 \times \mathrm{Tpc}$		41.5	-	ns
2	TwLow	Internal trigger pulse distance	$6 \times \mathrm{Tpc}$		$3 \times$ Tpc		250	-	ns
3	Twext	Internal trigger active edges distance (1)	276n $\times$ Tpc		$138 \mathrm{n} \times$ Tpc		$n \times 11.5$	-	$\mu \mathrm{s}$
4	Twstr	Internal delay between INTRG rising edge and first conversion start	Tpc	$3 \times$ Tpc	. $5 \times$ Tpc	$1.5 \times$ Tpc	41.5	125	ns

## A/D INTERNAL TRIGGER TIMING



## A/D CHANNEL ENABLE TIMING TABLE

$\mathrm{N}^{\circ}$	Symbol	Parameter	OSCIN   Divided by 2 (2)		OSCIN   Not Divided by 2 (2)		Value (3)		Unit
			Min.	Max.	Min.	Max.	Min.	Max.	
1	Twext	CEn Pulse width (1)	$276 \mathrm{n} \times \mathrm{Tpc}$		138n $\times$ Tpc		$\mathrm{n} \times 11.5$	-	$\mu \mathrm{s}$

## Notes:

1. $\mathrm{n}=$ number of autoscanned channels $(1<\mathrm{n}<8)$
2. Variable clock ( $\mathrm{Tpc}=\mathrm{OSCIN}$ clock period)
3. CPUCLK $=12 \mathrm{MHz}$

## A/D CHANNEL ENABLE TIMING



SGS-THOMSON

## A/D ANALOG SPECIFICATIONS

Parameter	Typical (1)	Minimum	Maximum	Units (2)	Notes
Analog Input Range Avcc		3	Avcc $V_{c c}$	V	
Conversion time		11.5		$\mu \mathrm{s}$	$(3,4)$
Sample time		3		$\mu \mathrm{s}$	(3)
Power-up time		60		$\mu \mathrm{s}$	
Resolution	8	8		$\beta \iota \tau \sigma$	
Monotonicity	GUAR	EED			
No missing codes	GUAR	EED			
Zero input reading		00		Hex	
Full scale reading			FF	Hex	
Offset error	. 5		1	LSBs	$(2,6)$
Gain error	. 5		1	LSBs	(6)
Diff. Non Linearity	$\pm .3$	$\pm .2$	$\pm .5$	LSBs	(6)
Int. Non Linearity			1	LSBs	(6)
Absolute Accuracy			1	LSBs	(6)
S/N		45	49	dB	
Avcc/Avss Resistance	13.5	16	11	$K \Omega$	
Input Resistance	12	8	15	K $\Omega$	(5)
Hold Capacitance			30	pF	
Input Leakage			$\pm 3$	$\mu \mathrm{A}$	

## Notes:

1. The values are expected at 25 degree Centigrade with $\mathrm{AVCC}=5 \mathrm{~V}$
2. "LSBs", as used here, has a value of AVCC/256
3. @ 12 MHz internal clock
4. Including sample time
5. It must be intended as the internal series resistance before the sampling capacitor
6. This is a typical expected value, but not a tested production parameter.

If $\mathrm{V}(\mathrm{t})$ is the value of the i -th transition level $(0<1<254)$, the performance of the $\mathrm{A} / \mathrm{D}$ converter has been valued as follows:
OFFSET ERROR $=$ deviation between the actual $\mathrm{V}(0)$ and the ideal $\mathrm{V}(0)(=1 / 2 \mathrm{LSB})$
GAIN ERROR $=$ deviation between the actual $V(254)$ and the ideal $V(254)$ (=AVCC-3/2 LSB)
DNL ERROR $=\max \{[\mathrm{V}(\mathrm{i})-\mathrm{V}(\mathrm{i}-1)] / L S B-1\}$
INL ERROR $=\max \{[V(i)-V(0)] / L S B-i\}$

## MULTIFUNCTION TIMER UNIT EXTERNAL TIMING TABLE

$\mathrm{N}^{\circ}$	Symbol	Parameter	OSCIN Divided by 2(3)	OSCIN   Not Divided by 2 (3)	Value (4)		Unit	Note
					Min.	Max.		
1	Twctw	External clock/trigger pulse width	$2 \mathrm{n} \times \mathrm{Tpc}$	$n \times$ Tpc	$\mathrm{n} \times 83$	-	ns	1
2	Twcto	External clock/trigger pulse distance	$2 \mathrm{n} \times \mathrm{Tpc}$	$\mathrm{n} \times$ Tpc	$\mathrm{n} \times 83$	-	ns	1
3	TwaEd	Distance between two active edges	$6 \times$ Tpc	$3 \times \mathrm{Tpc}$	249	-	ns	
4	Twgw	Gate pulse width	$12 \times \mathrm{Tpc}$	$6 \times \mathrm{Tpc}$	498	-	ns	
5	Twlba	Distance between TINB pulse edge and the following TINA pulse edge	$2 \times \mathrm{Tpc}$	Tpc	83	-	ns	2
6	Twlab	Distance between TINA pulse edge and the following TINB pulse edge	0		0	-	ns	2
7	T $\mathrm{w}_{\text {AD }}$	Distance between two TxINA pulses	0		0	-	ns	2
8	Twowd	Minimum output pulse width/distance	$6 \times$ Tpc	$3 \times \mathrm{Tpc}$	249	-	ns	

Notes:

1. $n=1$ if the input is rising $O R$ falling edge sensitive
2.In Autodıscrimınation mode
3.Varıable clock ( $\mathrm{Tpc}=$ OSCIN period)
2. $\mathrm{INTCLK}=12 \mathrm{MHz}$

## MULTIFUNCTION TIMER UNIT EXTERNAL TIMING



## SCI TIMING TABLE

$\left(\mathrm{V} D \mathrm{D}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{Cload}=50 \mathrm{pF}$, INTCLK $=12 \mathrm{MHz}$,
Output Alternate Function set as Push-pull)

$\mathrm{N}^{\circ}$	Symbol	Parameter	Condition	Value		Unit
				Min.	Max.	
	$\mathrm{F}_{\text {RxCKIN }}$	Frequency of RxCKIN	$1 \times$ mode		$\mathrm{F}_{\mathrm{CK} / 8}$	Hz
			$16 \times$ mode		$\mathrm{F}_{\mathrm{CK} / 4}$	Hz
	TwnxCKIN	RxCKIN shortest pulse	$1 \times$ mode	4 TCK		S
			$16 \times$ mode	2 TCK		S
	$F_{\text {TxCKIN }}$	Frequency of TxCKIN	$1 \times$ mode		FcK/8	Hz
			$16 \times$ mode		FCK/4	Hz
	TwTxCKIN	TxCKIN shortest pulse	$1 \times$ mode	4 Tск		S
			$16 \times$ mode	2 Tck		s
1	TSDS	DS (Data Stable) before rising edge of RxCKIN	$1 \times$ mode reception with RxCKIN	Tpc/2		ns
2	Tdd1	TxCKIN to Data out delay Time	$1 \times$ mode transmission with external clock C load <100pF		2.5 TPC	ns
3	Tdd2	CLKOUT to Data out delay Time	$1 \times$ mode transmission with CLKOUT	350		ns

Note: FCK $=1 /$ TCK

## SCI TIMING

FIG 1: RECEPTON with external Clock 1x mode


FIG 2: TRANSMISSION WTH EXTERNAL CLOCK 1X MODE


FIG 3: transmission with clkout $1 \times$ mode


## PACKAGE MECHANICAL DATA

## 80-Pin Plastic Quad Flat Package



## Short Footprint Measurement



Short Footprint recommended Padding


## 68-Pin Plastic Leadless Chip Carrier



56-Pin Plastic Shrink Dual-In-line Package, 600 Mil Width


## ORDERING INFORMATION

Sales Type	Frequency	Temperature Range	Package
ST9040Q1/XX	24 MHz	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	PQFP80
ST9040C1/XX			PLCC68
ST9040B1/XX			PSDIP56
ST9040C6/XX		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	PLCC68
ST9040B6/XX			PSDIP56

Note: "XX" is the ROM code identifier that is allocated by SGS-THOMSON after receipt of all required options and the related ROM file.

## ST9040 STANDARD OPTION LIST

Please copy this page (enlarge if possible) and complete ALL sections.
Send the form, with the ROM code image required, to your local SGS-THOMSON sales office.


```
Company Address: [..
 [..]
 [..
Telephone: [.....................]
FAX :
Contact: [......................]
Telephone (Direct) :
```

$\qquad$

Please confirm characteristics of device :
Device ST9040
Package [ ] PQFP80 [ ] PLCC68 [ ] PSDIP56
Temperature Range ..... [ ] $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
[ ] $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Special Marking ..... [ ] No
[ ] Yes 14 characters [ | | || | | | | | | | ]Authorized characters are letters, digits, '. ', '-', 'l' and spaces only.
Please consult your local SGS-THOMSON sales office for other marking details if required.Notes :
ROMless Option (Consult text)
[ ] No
[ ] Yes ..... Port Bit [ ] P7.1 [ ] P2.0
Code : [ ] EPROM $(27128,27256)$
[ ] HEX format files on IBM-PC® compatible disk filename: [. ..... ]
Confirmation : [ ] Code checked with EPROM device in application
Yearly Quantity forecast :

- for a period of : ..... [.
.] $k$ units
Preferred Production start dates : [. ..... ] (YY/MM/DD)

Customer Signature :
Date :

NOTES :

# FI SGS-THOMSON <br> WMCROELECTRONCS <br> <br> 16K EPROM HCMOS MCU <br> <br> 16K EPROM HCMOS MCU WITH EEPROM, RAM AND A/D CONVERTER 

 WITH EEPROM, RAM AND A/D CONVERTER}

- Register oriented 8/16 bit CORE with RUN, WFI and HALT modes
- Minimum instruction cycle time: 500 ns (12MHz internal)
- Internal Memory :

$$
\begin{array}{ll}
\text { EPROM } & \text { 16Kbytes } \\
\text { RAM } & 256 \text { bytes }
\end{array}
$$

256 bytes
EEPROM

224 general purpose registers available as RAM, accumulators or index pointers (Register File)

- 80-pin Plastic Quad Flat Pack package for ST90T40Q
- 68-lead Plastic Leaded Chip Carrier package for ST90T40C
- 56-pin shrink DIP package for ST90T40B
- 80-pin Windowed Ceramic Quad Flat Pack package for ST90E40G
- 68-lead Windowed Ceramic Leaded Chip Carrier package for ST90E40L
- 56-pin Shrink Windowed Ceramic package for ST90E40D
- DMA controller, Interrupt handler and Serial Peripheral Interface as standard features
- 56 fully programmable I/O pins
- Up to 8 external plus 1 non-maskable interrupts
- 16 bit Timer with 8 bit Prescaler, able to be used as a Watchdog Timer
- Two 16 bit Multifunction Timers, each with an 8 bit prescaler and 13 operating modes
- 8 channel 8 bit Analog to Digital Converter, with Analog Watchdogs and external references
- Serial Communications Interface with asynchronous and synchronous capability
- Rich Instruction Set and 14 Addressing modes
- Division-by-Zero trap generation
- Versatile Development tools, including assembler, linker, C-compiler, archiver, graphic oriented debugger and hardware emulators


## - Real Time Operating System

- Compatible with ST9036 and ST9040 16K ROM devices


Figure 1． 80 Pin QFP Package


Table 1．ST90E40G－ST90T40Q Pin Description

Pin	Name	Pin	Name	Pin	Name	Pin	Name
1	$\mathrm{AV}_{\text {SS }}$	25	P34／T1INA	64	P20／NMI	80	$\mathrm{AV}_{\text {DD }}$
2	$\mathrm{AV}_{\text {SS }}$	26	P33／T00UTB	63	NC	79	NC
3	NC	27	Р32／T0INB	62	$V_{s s}$	78	P47／AIN7
4	P44／AIN4	28	P31／T00UTA	61	P70／SIN	77	P46／AIN6
5	P57	29	P30／P／D／TOINA	60	P71／SOUT	76	P45／AIN5
6	P56	30	P17／A15		P72／NT4／TXCLK	75	P43／AIN3
7	P55	31	P16／A14		／CLKOUT	74	P42／AIN2
8	P54	32	NC		P73／INT5	73	P41／AIN1
9	INT7	33	P15／A13	58	／RXCLK／ADTRG	72	P40／AIN0
10	INTO	34	P14／A12	57	P74／P／D／INT6	71	P27／RRDY5
11	P53	35	P13／A11	56	P75／WAIT	70	P26／INT3
12	NC	36	P12／A10		P76／WDOUT	70	／RDSTB5／P／D
13	P52	37	P11／A9		IBUSREQ	69	P25／WRRDY5
14	P51	38	P10／A8	54	P77／WDIN	68	P24／INT1
15	P50	39	POO／AO／DO		／BUSACK		WRSTB5
16	OSCOUT	40	P01／A1／D1	53	R⿳亠丷厂彡	67	P23／SDO
17	$V_{\text {ss }}$			52	NC	66	P22／INT2／SCK
18	$\mathrm{V}_{\text {ss }}$			51	DS	65	P21／SDI／P／D
19	NC			50	AS		
20	OSCIN			49	NC		
21	RESET $/ V_{\text {PP }}$			48	$V_{D D}$		
22	P37／T10UTB			47	$V_{D D}$		
23	P36／T1INB			46	P07／A7／D7		
24	P35／T10UTA			45	P06／A6／D6		
				44	P05／A5／D5		
				43	P04／A4／D4		
				42	P03／A3／D3		
				41	P02／A2／D2		

Figure 2. 68 Pin LCC Package


Table 2. ST90E40L-ST90T40C

Pin	Name
61	P44/AIN4
62	P57
63	P56
64	P55
65	P54
66	INT7
10	P35/T1OUTA
11	P34/T1INA
67	INT0
68	P53
12	P33/T0OUTB
13	P32/TOINB
14	P31/T0OUTA
2	P51
3	P50
4	OSCOUT
5	VSS
6	OSCIN
7	$\overline{R E S E T} / V_{\text {PP }}$
16	P30/P/D/TOINA
17	P17/A15
17	P16/A14
18	P15/A13
19	P14/A12
20	P13/A11
21	P12/A10
22	P11/A9
23	P10/A8
24	P00/A0/D0
25	P01/A1/D1
26	P02/A2/D2


Pin	Name
43	P70/SIN
42	P71/SOUT
41	P72/CLKOUT   TXCLK/INT4
40	P73/ADTRG   /RXCLK/INT5
39	P74/P/D/INT6
38	$\overline{\text { P75/WAIT }}$
37	P76/WDOUT   /BUSREQ
36	P77/WDIN   /BUSACK
35	R/̄
34	$\overline{\text { DS }}$
33	$\overline{\text { AS }}$
32	VDD
31	P07/A7/D7
30	P06/A6/D6
29	P05/A5/D5
28	P04/A4/D4
27	P03/A3/D3


Pin	Name
60	AV
59	AV
58	P47/AIN7
57	P46/AIN6
56	P45/AIN5
55	P43/AIN3
54	P42/AIN2
53	P41/AIN1
52	P40/AIN0
51	P27/RRDY5
50	P26/INT3   /RDSTB5/P/D
49	P25/WRRDY5
48	P24/INT1   IWRSTB5
47	P23/SDO
46	P22/NT2/SCK
45	P21/SDI/P/D
44	P20/NMI

Figure 1b. 56 Pin Shrink DIP Pinout


Table 3. ST90E40D-ST90T40B Pin Description

Pin	Pin name	Pin	Pin name
1	P42/AIN2	56	P41/AIN1
2	P43/AIN3	55	P40/AIN0
3	P45/AIN5	54	P23/SDO
4	P46/AIN6	53	P22/INT2/SCK
5	P47/AIN7	52	P21/SDI/P/D
6	AVDD	51	P20/NMI
7	AVSS	50	P70/SIN
8	P44/AIN4	49	P71/SOUT
9	P57	48	P72/CLKOUT
10	P56		TXCLK/INT4
11	P55	47	P73/ADTRG
12	P54		
13	P53	46	PTGWDOUTBUSREG
14	P52	45	P77NDIN/BUSACK
15	OSCOUT	44	R/W
16	$V_{S S}$	43	DS
17	OSCIN	42	AS
18	RESET	41	$V_{D D}$
19	P37/T1OUTB	40	VSS
20	P36/T1INB	39	P07/A7/D7
21	NC	38	P06/A6/D6
22	P35/T1OUTA	37	P05/A5/D5
23	P34/T1INA	36	P04/A4/D4
24	P33/T00UTB	35	P03/A3/D3
25	P32/TOINB	34	P02/A2/D2
26	P31/T00UTA	33	P01/A1/D1
27	P30/P/D/TOINA	32	P00/A0/D0
28	P13/A11	31	P10/A8
		30	P11/A9
		29	P12/A10

### 1.1 GENERAL DESCRIPTION

The ST90E40 and ST90T40 (following mentioned as ST90E40) are EPROM members of the ST9 family of microcontrollers, in windowed ceramic (E) and plastic OTP (T) packages respectively, completely developed and produced by SGS-THOMSON Microelectronics using a n-well proprietary HCMOS process.
The EPROM parts are fully compatible with their ROM versions and this datasheet will thus provide only information specific to the EPROM based devices.

## THE READER IS ASKED TO REFER TO THE DATASHEET OF THE ST9040 ROM-BASED DEVICE FOR FURTHER DETAILS.

The EPROM ST90E40 may be used for the prototyping and pre-production phases of development, and can be configured as: a standalone microcontroller with 16 K bytes of on-chip EPROM, a microcontroller able to manage external memory, or as a parallel processing element in a system with other processors and peripheral controllers.

The nucleus of the ST90E40 is the advanced Core which includes the Central Processing Unit (CPU), the Register File, a 16 bit Timer/Watchdog with 8 bit Prescaler, a Serial Peripheral Interface supporting S-bus, $\mathrm{I}^{2} \mathrm{C}$-bus and IM-bus Interface, plus two 8 bit I/O ports. The Core has independent memory and register buses allowing a high degree of pipelining to add to the efficiency of the code execution speed of the extensive instruction set.
The powerful I/O capabilities demanded by microcontroller applications are fulfilled by the ST90E40 with up to 56 I/O lines dedicated to digital Input/Output. These lines are grouped into up to seven 8 bit l/O Ports and can be configured on a bit basis under software control to provide timing, status signals, an address/data bus for interfacing external memory, timer inputs and outputs, analog inputs, external interrupts and serial or parallel I/O with or without handshake.

Figure 3. ST90E40 Block Diagram


## GENERAL DESCRIPTION (Continued)

Three basic memory spaces are available to support this wide range of configurations: Program Memory (internal and external), Data Memory (external) and the Register File, which includes the control and status registers of the on-chip peripherals.
Two 16 bit MultiFunction Timers, each with an 8 bit Prescaler and 13 operating modes allow simple use for complex waveform generation and measurement, PWM functions and many other systemmsiming functions by the usage of the two associated DMA channels for each timer.

In addition there is an 8 channel Analog to Digital Converter with integral sample and hold, fast $11 \mu \mathrm{~s}$ conversion time and 8 bit resolution. An Analog Watchdog feature is included for two input channels.
Completing the device is a full duplex Serial Communications Interface with an integral 110 to 375,000 baud rate generator, asynchronous and 1.5Mbyte/s synchronous capability (fully programmable format) and associated address/wake-up option, plus two DMA channels.

OSCIN, OSCOUT. Oscillator (input and output). These pins connect a parallel-resonant crystal ( 24 MHz maximum), or an external source to the on-chip clock oscillator and buffer. OSCIN is the input of the oscillator inverter and internal clock generator; OSCOUT is the output of the oscillator inverter.
$A V_{D D}$. Analog $V_{D D}$ of the Analog to Digital Converter.
AVss. Analog VSs of the Analog to Digital Converter. Must be tied to Vss.
VDD. Main Power Supply Voltage ( $5 \mathrm{~V} \pm 10 \%$ )
Vss. Digital Circuit Ground.
P0.0-P0.7, P1.0-P1.7, P2.0-P2.7 P3.0-P3.7, P4.0P4.7, P5.0-P5.7, P7.0-P7.7 I/O Port Lines (Input/Output, TTL or CMOS compatible). 56 lines grouped into l/O ports of 8 bits, bit programmable under program control as general purpose I/O or as alternate functions.

### 1.2.1 I/O PORT ALTERNATE FUNCTIONS

Each pin of the I/O ports of the ST90E40/T30 may assume software programmable Alternative Functions as shown in the Pin Configuration Tables. Due to Bonding options for the packages, some functions may not be present, Table 4 shows the Functions allocated to each I/O Port pin and a summary of packages for which they are available.

PIN DESCRIPTION (Continued)
Table 4. ST90E40, T40 I/O Port Alternate Function Summary

I/O PORT	Name	Function	Alternate Function	Pin Assignment		
Port. bit				PLCC	PQFP	PSDIP
P0.0	A0/D0	I/O	Address/Data bit 0 mux	24	39	32
P0.1	A1/D1	I/O	Address/Data bit 1 mux	25	40	33
P0.2	A2/D2	I/O	Address/Data bit 2 mux	26	41	34
P0.3	A3/D3	I/O	Address/Data bit 3 mux	27	42	35
P0.4	A4/D4	I/O	Address/Data bit 4 mux	28	43	36
P0.5	A5/D5	I/O	Address/Data bit 5 mux	29	44	37
P0.6	A6/D6	1/O	Address/Data bit 6 mux	30	45	38
P0.7	A7/D7	1/O	Address/Data bit 7 mux	31	46	39
P1.0	A8	0	Address bit 8	23	38	31
P1.1	A9	0	Address bit 9	22	37	30
P1.2	A10	0	Address bit 10	21	36	29
P1.3	A11	0	Address bit 11	20	35	28
P1.4	A12	0	Address bit 12	19	34	
P1.5	A13	0	Address bit 13	18	33	
P1.6	A14	0	Address bit 14	17	31	
P1.7	A15	0	Address bit 15	16	30	
P2.0	NMI	1	Non-Maskable Interrupt	44	64	51
P2.0	ROMless	1	ROMless Select (Mask option)	44	64	51
P2.1	P/D	0	Program/Data Space Select	45	65	NC
P2.1	SDI	1	SPI Serial Data Out	45	65	52
P2.2	INT2	1	External Interrupt 2	46	66	53
P2.2	SCK	0	SPI Serial Clock	46	66	53
P2.3	SDO	0	SPI Serial Data In	47	67	54
P2.4	INT1	1	External Interrupt 1	48	68	
P2.4	WRSTB5	1	Handshake Write Strobe P5	48	68	
P2.5	WRRDY5	0	Handshake Write Ready P5	49	69	
P2.6	INT3	1	External Interrupt 3	50	70	
P2.6	$\overline{\text { RDSTB5 }}$	1	Handshake Read Strobe P5	50	70	
P2.6	P/D	0	Program/Data Space Select	50	70	
P2.7	RDRDY5	0	Handshake Read Ready P5	51	71	
P3.0	TOINA	1	MF Timer 0 Input A	15	29	27
P3.0	P/ $\overline{\mathrm{D}}$	0	Program/Data Space Select	15	29	27
P3.1	TOOUTA	0	MF Timer 0 Output A	14	28	26
P3.2	TOINB	1	MF Timer 0 Input B	13	27	25
P3.3	TOOUTB	0	MF Timer 0 Output B	12	26	24
P3.4	TIINA	1	MF Timer 1 Input A	11	25	23

PIN DESCRIPTION (Continued)
Table 4. ST90E40, T40 I/O Port Alternate Function Summary

I/O PORT	Name	Function	Alternate Function	Pin Assignment		
Port. bit				PLCC	PQFP	PSDIP
P3. 5	T1OUTA	0	MF Timer 1 Output A	10	24	22
P3.6	T1INB	1	MF Timer 1 Input B	9	23	20
P3.7	T1OUTB	0	MF Timer 1 Output B	8	22	19
P4.0	Ain0	I	A/D Analog Input 0	52	72	55
P4.1	Ain1	I	A/D Analog Input 1	53	73	56
P4.2	Ain2	I	A/D Analog Input 2	54	74	1
P4.3	Ain3	1	A/D Analog Input 3	55	75	2
P4.4	Ain4	1	A/D Analog Input 4	61	4	8
P4.5	Ain5	1	A/D Analog Input 5	56	76	3
P4.6	Ain6	1	A/D Analog Input 6	57	77	4
P4.7	Ain7	1	A/D Analog Input 7	58	78	5
P5.0		I/O	I/O Handshake Port 5	3	15	
P5.1		I/O	I/O Handshake Port 5	2	14	
P5.2		I/O	I/O Handshake Port 5	1	13	14
P5.3		I/O	I/O Handshake Port 5	68	11	13
P5.4		I/O	I/O Handshake Port 5	65	8	12
P5.5		I/O	I/O Handshake Port 5	64	7	11
P5.6		I/O	I/O Handshake Port 5	63	6	10
P5.7		I/O	I/O Handshake Port 5	62	5	9
P7.0	SIN	1	SCI Serial Input	43	61	50
P7.1	SOUT	0	SCI Serial Output	42	60	49
P7.1	ROMless	1	ROMless Select (Mask option)	42	60	49
P7.2	INT4	1	External Interrupt 4	41	59	48
P7.2	TXCLK	1	SCI Transmit Clock Input	41	59	48
P7.2	CLKOUT	0	SCI Byte Sync Clock Output	41	59	48
P7.3	INT5	1	External Interrupt 5	40	58	47
P7.3	RXCLK	1	SCI Receive Clock Input	40	58	47
P7.3	ADTRG	I	A/D Conversion Trigger	40	58	47
P7.4	INT6	I	External Interrupt 6	39	57	
P7.4	P/D	0	Program/Data Space Select	39	57	
P7.5	WAIT	1	External Wait Input	38	56	
P7.6	WDOUT	0	T/WD Output	37	55	46
P7.6	BUSREQ	1	External Bus Request	37	55	46
P7.7	WDIN	1	T/WD Input	36	54	45
P7.7	BUSACK	0	External Bus Acknowledge	36	54	45

### 1.1 MEMORY

The memory of the ST90E40 is functionally divided into two areas, the Register File and Memory. The Memory is divided into two spaces, each having a maximum of 65,536 bytes. The two memory spaces are separated by function, one space for Program code, the other for Data. The ST90E40 16 K bytes of on-chip EPROM memory are selected at memory addresses 0 through 3FFFh (hexadecimal) in the PROGRAM space, while the ST90T40 OTP version has the top 64 bytes of the EPROM reserved by SGS-THOMSON for testing purposes. The DATA space includes the 512 bytes of on-chip EEPROM at addresses 0 through 1FFh and the 256 bytes of on-chip RAM memory at memory addresses 200h through 2FFh.
WARNING. The ST90T40 has its 64 upper bytes in the internal EPROM reserved for testing purpose.
External memory may be addressed using the multiplexed address and data buses (Alternate Functions of Ports 0 and 1). At addresses greater than the first 16 K of program space, the ST90E40 executes external memory cycles for instruction fetches. Additional Data Memory may be decoded externally by using the P/D Alternate Function output. The on-chip general purpose (GP) Registers may also be used as RAM memory for minimum chip count systems.

### 1.2 EPROM PROGRAMMING

The 16384 bytes of EPROM memory of the ST90E40 (16320 for the ST90T40) may be programmed by using the EPROM Programming Boards (EPB) available from SGS-THOMSON.

### 1.2.1 Eprom Erasing

The EPROM of the windowed package of the ST90E40 may be erased by exposure to Ulltra-Violet light.
The erasure characteristic of the ST90E40 is such that erasure begins when the memory is exposed to light with a wave lengths shorter than approximately $4000 \AA$. It should be noted that sunlight and some types of fluorescent lamps have wavelengths in the range $3000-4000 \AA$. It is thus recommended that the window of the ST90E40 packages be covered by an opaque label to prevent unintentional erasure problems when testing the application in such an environment.
The recommended erasure procedure of the EPROM is the exposure to short wave ultraviolet light which have a wave-length $2537 \AA$ A. The integrated dose (i.e. U.V. intensity x exposure time) for erasure should be a minimum of $15 \mathrm{~W}-\mathrm{sec} / \mathrm{cm} 2$. The erasure time with this dosage is approximately 15 to 20 minutes using an ultraviolet lamp with $12000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ power rating. The ST90E40 should be placed within 2.5 cm (11nch) of the lamp tubes during erasure.

Figure 4. Memory Spaces


43/57

## ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{\text {DD }}$	Supply Voltage	-0.3 to 7.0	V
$\mathrm{AV}_{\mathrm{DD}}, \mathrm{AV}_{S S}$	Analog Supply Voltage	$\mathrm{V}_{S S}=A V_{S S}<A V_{D D} \leq V_{D D}$	V
$V_{1}$	Input Voltage	-0.3 to $V_{D D}+0.3$	V
$\mathrm{V}_{0}$	Output Voltage	-0.3 to $V_{D D}+0.3$	V
VPP	Input Voltage on VPP Pin	-0.3 to 13.5	V
Tstg	Storage Temperature	-55 to +150	${ }^{\circ} \mathrm{C}$
lins	Pin Injection Current Digital	-5 to 5	mA
linj	Pin Injection Current Analog	-5 to 5	mA
	Maximum accumulated pin injection Current in the device	-50 to 50	mA

Note: Stresses above those listed as "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. All voltages are referenced to VSS

## RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value		Unit
		Min.	Max.	
$T_{\text {A }}$	Operating Temperature	-40	85	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{DD}}$	Operating Supply Voltage	4.5	5.5	V
fosce	External Oscillator Frequency		24	MHz
foscl	Internal Clock Frequency (INTCLK)		12	MHz

DC ELECTRICAL CHARACTERISTICS
$V_{D D}=5 \mathrm{~V} \pm 10 \% T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise specified)

Symbol	Parameter	Test Conditions	Value			Unit
			Min.	Typ.	Max.	
VIHCK	Clock Input High Level	External Clock	0.7 V DD		$V_{D D}+0.3$	V
VILCK	Clock Input Low Level	External Clock	-0.3		0.3 VDD	V
$\mathrm{V}_{\mathrm{IH}}$	Input High Level	TTL	2.0		$V_{D D}+0.3$	V
		CMOS	0.7 VDD		$\mathrm{VDD}+0.3$	V
VIL	Input Low Level	TTL	-0.3		0.8	V
		CMOS	-0.3		0.3 VDD	V
VIHRS	RESET Input High Level		0.7 VDD		$V_{D D}+0.3$	V
$\mathrm{V}_{\text {ILRS }}$	RESET Input Low Level		-0.3		$0.3 \mathrm{~V}_{\mathrm{DD}}$	V
$V_{\text {HYRS }}$	RESET Input Hysteresis		0.3		1.5	V
$\mathrm{V}_{\mathrm{OH}}$	Output High Level	Push Pull, lload $=-0.8 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{DD}}-0.8$			V
VoL	Output Low Level	Push Pull or Open Drain, lload $=1.6 \mathrm{~mA}$			0.4	V

DC ELECTRICAL CHARACTERISTICS (continued)

Symbol	Parameter	Test Conditions	Value			Unit
			Min.	Typ.	Max.	
Iwpu	Weak Pull-up Current	Bidirectional Weak Pullup, $\mathrm{V}_{\mathrm{oL}}=0 \mathrm{~V}$	-50	-200	-420	$\mu \mathrm{A}$
$l_{\text {APU }}$	Active Pull-up Current, for INT0 and INT7 only	$\mathrm{V}_{\mathrm{IN}}<0.8 \mathrm{~V}$, under Reset	-80	$-200$	-420	$\mu \mathrm{A}$
ILKio	I/O Pin Input Leakage	Input/Tri-State, $O V<V_{I N}<V_{D D}$	-10		+ 10	$\mu \mathrm{A}$
lLKRS	$\overline{\text { Reset Pin Input Leakage }}$	$\mathrm{OV}<\mathrm{V}_{\mathrm{IN}}<\mathrm{V}_{\mathrm{DD}}$	-30		$+30$	$\mu \mathrm{A}$
ILKad	A/D Pin Input Leakage	Alternate Function, Open Drain, $O V<V_{I N}<V_{D D}$	-3		+3	$\mu \mathrm{A}$
lıkap	Active Pull-up Input Leakage	$\mathrm{OV}<\mathrm{V}_{\text {IN }}<0.8 \mathrm{~V}$	-10		+ 10	$\mu \mathrm{A}$
ILKOS	OSCIN Pin Input Leakage	$0 \mathrm{~V}<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\mathrm{DD}}$	-10		$+10$	$\mu \mathrm{A}$
$V_{\text {PP }}$	EPROM Programming Voltage		12.2	12.5	12.8	V
Ipp	EPROM Programming Current				30	mA

## DC TEST CONDITIONS



## AC ELECTRICAL CHARACTERISTICS

( $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \% \mathrm{~T}_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise specified)

Symbol	Parameter	Test Conditions	Value			Unit
			Min.	Typ.	Max.	
IDD	Run Mode Current   no CPUCLK prescale,   Clock divide by 2	24 MHz			50	mA
IDP2	Run Mode Current   Prescale by 2   Clock divide by 2	24 MHz		30	mA	
IWFI	WFI Mode Current   no CPUCLK prescale,   Clock divide by 2	24 MHz			20	mA
IHALT	HALT Mode Current	24 MHz		50	100	$\mu \mathrm{~A}$

## PACKAGE MECHANICAL DATA

## 80-Pin Ceramic Quad Flat Package with Window



## 68-Pin Ceramic Leadless Chip Carrier with Window

VROA1534	Dim.	mm			inches		
		Min	Typ	Max	Min	Typ	Max
	A		4.47			0.176	
	A1		0.89			0.035	
	A3		-			-	
	B		048			0019	
	B1		-			-	
	D		251			0.990	
	D1		23.6			0.930	
	D3		203			0.800	
	E		25.1			0990	
	E1		236			0.930	
	E3		20.3			0.800	
	0		8			0.32	
	e		127			0050	
				Number	of Pin		
	N			68			
	ND			16			
	NE			16			

56-Pin Ceramic Shrink Dual-In-line Package with window, 600 Mil Width


## ORDERING INFORMATION

Sales Type	Frequency	Temperature Range	Package
ST90E40L1/ES ${ }^{(1)}$	24 MHz	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	CLCC68W
ST90E40G1/ES ${ }^{(1)}$		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	CQFP80W
ST90E40D1/ES ${ }^{(1)}$		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	CSDIP56W
ST90T40C6	24 MHz	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	PLCC68
ST90T40Q1		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	PQFP80
ST90T40B6		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	PSDIP56

Note . EPROM parts are tested at $25^{\circ} \mathrm{C}$ only

- Register oriented $8 / 16$ bit CORE with RUN, WFI and HALT modes
- Minimum instruction cycle time:500ns (12MHz internal)
- ROMless to allow maximum external memory flexibility
- Internal Memory :


## RAM <br> 256 bytes <br> EEPROM <br> 512 bytes

224 general purpose registers available as
RAM, accumulators or index pointers (register file)

- 80-pin Plastic Quad Flat Pack Package for ST90R40Q
- 68-lead Plastic Leaded Chip Carrier package for ST90R40C
- DMA controller, Interrupt handler and Serial Peripheral Interface as standard features
- 40 fully programmable I/O pins
- Up to 8 external plus 1 non-maskable interrupts
- 16 bit Timer with 8 bit Prescaler, able to be used as a Watchdog Timer
- Two 16 bit Multifunction Timers, each with an 8 bit prescaler and 13 operating modes
- 8 channel 8 bit Analog to Digital Converter, with Analog Watchdogs and external references
- Serial Communications Interface with asynchronous and synchronous capability
- Rich Instruction Set and 14 Addressing modes
- Division-by-Zero trap generation
- Versatile development tools, including assembler, linker, C-compiler, archiver, graphic orinted debugger and hardware emulators
- Real Time Operating System
- Compatible with ST9040 16K ROM device (also available in windowed and One Time Programmable EPROM packages)


Figure 1. 80 Pin PQFP Package


Table 1. ST90R40Q Pin Description

Pin	Name
1	AV $_{\text {SS }}$
2	AV $_{\text {SS }}$
3	NC
4	P44/AIN4
5	P57
6	P56
7	P55
8	P54
9	INT7
10	INT0
11	P53
12	NC
13	P52
14	P51
15	P50
16	OSCOUT
17	V SS
18	V SS
19	NC
20	OSCIN
21	$\overline{\text { RESET }}$
22	P37/T1OUTB
23	P36/T1INB
24	P35/T1OUTA


Pin	Name
25	P34/T1INA
26	P33/TOOUTB
27	P32/TOINB
28	P31/T0OUTA
29	P30/P/D/TOINA
30	A15
31	A14
32	NC
33	A13
34	A12
35	A11
36	A10
37	A9
38	A8
39	A0/D0
40	A1/D1


Pin	Name
64	P20/NMI
63	NC
62	$\mathrm{V}_{\text {SS }}$
61	P70/SIN
60	P71/SOUT
59	P72/INT4/TXCLK /CLKOUT
58	P73/INT5   /RXCLK/ADTRG
57	P74/P/D/INT6
56	P75/WAIT
55	$\frac{\mathrm{P} 76 / \text { WDOUT }}{\text { /BUSREQ }}$
54	$\frac{\text { P77/WDIN }}{\text { /BUSACK }}$
53	$\mathrm{R} / \overline{\mathrm{W}}$
52	NC
51	$\overline{\mathrm{DS}}$
50	$\overline{\mathrm{AS}}$
49	NC
48	$V_{D D}$
47	VDD
46	A7/D7
45	A6/D6
44	A5/D5
43	A4/D4
42	A3/D3
41	A2/D2


Pin	Name
80	AV
79	NC
78	P47/AIN7
77	P46/AIN6
76	P45/AIN5
75	P43/AIN3
74	P42/AIN2
73	P41/AIN1
72	P40/AIN0
71	P27/RRDY5
70	P26/INT3   /RDSTB5/P/D
69	P25/WRRDY5
68	P24/INT1   MWRSTB5
67	P23/SDO
66	P22/INT2/SCK
65	P21/SDI/P/ $\overline{\mathrm{D}}$

Figure 2. 68 Pin PLCC Package


Table 2. ST90R40C Pin Description


### 1.1 GENERAL DESCRIPTION

The ST90R40 is a ROMLESS member of the ST9 family of microcontrollers, completely developed and produced by SGS-THOMSON Microelectronics using a proprietary n-well HCMOS process.
The ROMLESS part may be used for the prototyping and pre-production phases of development, and offers the maximum in program flexibility in production systems.
The ST90R40 is fully compatible with the ST9040 ROM version and this datasheet will thus provide only information specific to the ROMLESS device.

## THE READER IS ASKED TO REFER TO THE DATASHEET OF THE ST9040 ROM-BASED DEVICE.

The ROMLESS ST90R40 can be configured as a microcontroller able to manage external memory, or as a parallel processing element in a system with other processors and peripheral controllers.
The nucleus of the ST90R40 is the advanced Core which includes the Central Processing Unit (CPU). the Register File, a 16 bit Timer/Watchdog with 8 bit Prescaler, a Serial Peripheral Interface supporting S-BUS, $I^{2} \mathrm{C}$-bus and IM-bus Interface, plus two

8 bit I/O ports. The Core has independent memory and register buses allowing a high degree of pipelining to add to the efficiency of the code execution speed of the extensive instruction set.
The powerful I/O capabilities demanded by microcontroller applications are fulfilled by the ST90R40 with up to 56 I/O lines dedicated to memory addressing or digital Input/Output. These lines are grouped into up to seven 8 bit I/O Ports and can be configured on a bit basis under software control to provide timing and status signals, address lines, timer inputs and outputs, analog inputs, exterrial interrupts and serial or parallel I/O with or without handshake.
Three memory spaces are available: Program Memory (external), Data Memory (internal and external) and the Register File, which includes the control and status registers of the on-chip peripherals.
Two 16 bit MultiFunction Timers, each with an 8 bit Prescaler and 13 operating modes allow simple use for complex waveform generation and measurement, PWM functions and many other system timing functions by the usage of the two associated DMA channels for each timer.

Figure 3. Block Diagram


## GENERAL DESCRIPTION (Continued)

In addition there is an 8 channel Analog to Digital Converter with integral sample and hold, fast $11 \mu \mathrm{~s}$ conversion time and 8 bit resolution. An Analog Watchdog feature is included for two input channels.

### 1.2 PIN DESCRIPTION

$\overline{\mathbf{A S}}$. Address Strobe (output, active low, 3-state). Address Strobe is pulsed low once at the beginning of each memory cycle. The rising edge of AS indicates that address, Read/Write (R/W), and Data Memory signals are valid for program or data memory transfers. Under program control, $\overline{\mathrm{AS}}$ can be placed in a high-impedance state along with Port 0 and Port 1, Data Strobe ( $\overline{\mathrm{DS}}$ ) and R $\bar{W}$.
$\overline{\text { DS. Data Strobe (output, active low, 3-state). Data }}$ Strobe provides the timing for data movement to or from Port 0 for each memory transfer. During a write cycle, data out is valid at the leading edge of $\overline{\mathrm{DS}}$. During a read cycle, Data In must be valid prior to the trailing edge of $\overline{D S}$. When the ST90R40 accesses on-chip Data memory. $\overline{D S}$ is held high during the whole memory cycle. It can be placed in a high impedance state along with Port 0 , Port 1, $\overline{\mathrm{AS}}$ and $R / W$.
R/W. Read/Write (output, 3-state). Read/Write determines the direction of data transfer for memory transactions. R/W is low when writing to program or data memory, and high for all other transactions. It can be placed in a high impedance state along with Port 0, Port 1, $\overline{\mathrm{AS}}$ and $\overline{\mathrm{DS}}$.
$\overline{\text { RESET. Reset (input, active low). The ST9 is ini- }}$ tialised by the Reset signal. With the deactivation of RESET, program execution begins from the Program memory location pointed to by the vector contained in program memory locations 00 h and 01h.

Completing the device is a full duplex Serial Communications Interface with an integral 110 to 375000 baud rate generator, asynchronous and 1.5Mbyte/s synchronous capability (fully programmable format) and associated address/wake-up option, plus two DMA channels.

OSCIN, OSCOUT. Oscillator (input and output). These pins connect a parallel-resonant crystal ( 24 MHz maximum), or an external source to the on-chip clock oscillator and buffer. OSCIN is the input of the oscillator inverter and internal clock generator; OSCOUT is the output of the oscillator inverter.

AVDD. Analog VDD of the Analog to Digital Converter.
AVss. Analog $V_{S S}$ of the Analog to Digital Converter. Must be tied to Vss.
VDD. Main Power Supply Voltage ( $5 \mathrm{~V} \pm 10 \%$ )
Vss. Digital Circuit Ground.
AD0-AD7, (P0.0-P0.7) Address/Data Lines (Input/Output, TTL or CMOS compatible). 8 lines providing a multiplexed address and data bus, under control of the $\overline{\mathrm{AS}}$ and $\overline{\mathrm{DS}}$ timing signals.
A8-A15 Address Lines (Output, TTL or CMOS compatible). 8 lines providing non-multiplexing address bus, under control of the $\overline{\mathrm{AS}}$ and $\overline{\mathrm{DS}}$ timing signals.
P2.0-P2.7 P3.0-P3.7, P4.0-P4.7, P5.0-P5.7, P7.0P7.7 I/O Port Lines (Input/Output, TTL or CMOS compatible). 40 lines grouped into I/O ports of 8 bits, bit programmable under program control as general purpose I/O or as Alternate functions (see next section).

### 1.2.1 I/O PORT ALTERNATE FUNCTIONS

Each pin of the l/O ports of the ST90R40 may assume software programmable Alternative Functions as shown in the Pin Configuration Drawings. Table 3 shows the Functions allocated to each I/O Port pins.

PIN DESCRIPTION (Continued)
Table 3. I/O Port Alternate Function Summary

I/O PORT	Name	Function IN/OUT	Alternate Function	Pin Assignment	
Port.bit				PQFP80	PLCC68
P0.0	A0/D0	1/O	Address/Data bit 0 mux	39	24
P0.1	A1/D1	1/O	Address/Data bit 1 mux	40	25
P0.2	A2/D2	I/O	Address/Data bit 2 mux	41	26
P0.3	A3/D3	I/O	Address/Data bit 3 mux	42	27
P0.4	A4/D4	1/O	Address/Data bit 4 mux	43	28
P0.5	A5/D5	1/O	Address/Data bit 5 mux	44	29
P0.6	A6/D6	1/O	Address/Data bit 6 mux	45	30
P0.7	A7/D7	1/O	Address/Data bit 7 mux	46	31
P1.0	A8	0	Address bit 8	38	23
P1.1	A9	0	Address bit 9	37	22
P1.2	A10	0	Address bit 10	36	21
P1.3	A11	0	Address bit 11	35	20
P1.4	A12	0	Address bit 12	34	19
P1.5	A13	0	Address bit 13	33	18
P1.6	A14	0	Address bit 14	31	17
P1.7	A15	0	Address bit 15	30	16
P2.0	NMI	1	Non-Maskable Interrupt	64	44
P2.1	P/D	0	Program/Data Space Select	65	45
P2.1	SDI	1	SPI Serial Data Out	65	45
P2.2	INT2	1	External Interrupt 2	66	46
P2.2	SCK	0	SPI Serial Clock	66	46
P2.3	SDO	0	SPI Serial Data In	67	47
P2.4	INT1	1	External Interrupt 1	68	48
P2.4	WRSTB5	0	Handshake Write Strobe P5	68	48
P2.5	WRRDY5	1	Handshake Write Ready P5	69	49
P2.6	INT3	1	External Interrupt 3	70	50
P2.6	$\overline{\text { RDSTB5 }}$	1	Handshake Read Strobe P5	70	50
P2.6	P/D	0	Program/Data Space Select	70	50
P2.7	RDRDY5	0	Handshake Read Ready P5	71	51
P3.0	TOINA	1	MF Timer 0 Input A	29	15
P3.0	P/D	0	Program/Data Space Select	29	15
P3.1	TOOUTA	0	MF Timer 0 Output A	28	14
P3.2	TOINB	1	MF Timer 0 Input B	27	13
P3.3	TOOUTB	0	MF Timer 0 Output B	26	12
P3.4	TIINA	1	MF Timer 1 Input A	25	11

## PIN DESCRIPTION (Continued)

Table 3. I/O Port Alternate Function Summary (Continued)

I/O PORT	Name	Function IN/OUT	Alternate Function	Pin Assignment	
Port.bit				PQFP80	PLCC68
P3.5	T1OUTA	0	MF Timer 1 Output A	24	10
P3.6	T1INB	I	MF Timer 1 Input B	23	9
P3.7	T1OUTB	0	MF Timer 1 Output B	22	8
P4.0	Ain0	1	A/D Analog Input 0	72	52
P4.1	Ain1	1	A/D Analog Input 1	73	53
P4.2	Ain2	1	A/D Analog Input 2	74	54
P4.3	Ain3	1	A/D Analog Input 3	75	55
P4.4	Ain4	1	A/D Analog Input 4	4	61
P4.5	Ain5	1	A/D Analog Input 5	76	56
P4.6	Ain6	1	A/D Analog Input 6	77	57
P4.7	Ain7	1	A/D Analog Input 7	78	58
P5.0		I/O	I/O Handshake Port 5	15	3
P5.1		I/O	I/O Handshake Port 5	14	2
P5.2		I/O	I/O Handshake Port 5	13	1
P5.3		I/O	I/O Handshake Port 5	11	68
P5.4		I/O	I/O Handshake Port 5	8	65
P5.5		1/O	I/O Handshake Port 5	7	64
P5.6		I/O	I/O Handshake Port 5	6	63
P5.7		I/O	I/O Handshake Port 5	5	62
P7.0	SIN	1	SCI Serial Input	61	43
P7.1	SOUT	0	SCI Serial Output	60	42
P7.2	INT4	1	External Interrupt 4	59	41
P7.2	TXCLK	I	SCI Transmit Clock Input	59	41
P7.2	CLKOUT	0	SCI Byte Sync Clock Output	59	41
P7.3	INT5	1	External Interrupt 5	58	40
P7.3	RXCLK	1	SCI Receive Clock Input	58	40
P7.3	ADTRG	1	A/D Conversion Trigger	58	40
P7.4	INT6	1	External Interrupt 6	57	39
P7.4	P/ $\bar{D}$	0	Program/Data Space Select	57	39
P7.5	$\overline{\text { WAIT }}$	1	External Wait Input	56	38
P7.6	WDOUT	0	T/WD Output	55	37
P7.6	BUSREQ	1	External Bus Request	55	37
P7.7	WDIN	1	TMWD Input	54	36
P7.7	BUSACK	0	External Bus Acknowledge	54	36

55/57

### 1.3 MEMORY

The memory of the ST90R40 is functionally divided into two areas, the Register File and Memory. The Memory may optionally be divided into two spaces, each having a maximum of 65,536 bytes. The two memory spaces are separated by function, one space for Program code, the other for Data. The ST90R40 addresses all program memory in the external PROGRAM space. The DATA space includes the 512 bytes of on-chip EEPROM at addresses 0 through 1FFh and the 256 bytes of
on-chip RAM memory at addresses 200h through 2 FFh.

The External Memory spaces are addressed using the multiplexed address and data buses on Ports 0 and 1 . Data Memory may be decoded externally by using the P/D Alternate Function output. The onchip general purpose (GP) Registers may be used as RAM memory.

Figure 4. Memory Spaces


ORDERING INFORMATION

Sales Type	Frequency	Temperature Range	Package
ST90R40C6	24 MHz	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	PLCC68
ST90R40Q1		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	PQFP80

## ST9 INSTRUCTION SET

## 1 SOFTWARE DESCRIPTION

1.1ADDRESSING MODES ..... 1
1.1.1 Register Addressing Modes ..... 4
1.1.2 Memory Addressing Modes ..... 5
1.2 INSTRUCTION SET ..... 8
1.2.1 ST9 Processor Flags ..... 14
1.2.2 Condition Codes ..... 14
1.2.3 Notation ..... 15
1.3 INSTRUCTION SUMMARY ..... 17

## 1 SOFTWARE DESCRIPTION

### 1.1ADDRESSING MODES

The ST9 offers a wide variety of established and new addressing modes and combinations to facilitate full and rapid access to the address spaces while reducing program length. The available addressing modes are shown in Table 1-1:

Single operand arithmetic, logic and shift byte instructions have direct register and indirect register addressing modes. For a full list of the possible combinations for each instruction type, please refer to the ST9 Programming Manual.

Table 1-1. Addressing Modes

Operand is In	Addressing Mode	Destination Location	Notation
Instruction	Immediate	Byte Word	$\begin{aligned} & \# N \\ & \# N N \end{aligned}$
Register File	Direct	Byte   Word	$\begin{aligned} & \mathrm{r} \\ & \mathrm{rr} \end{aligned}$
	Indirect	Byte/Word	(r)
	Indexed	Byte/Word	$N(r)$
	Indirect Post-Increment	Byte	(r)+
Program or Data Memory	Direct	Byte/Word	NN
	Indirect	Byte/Word	(rr)
	Indirect Post-Increment	Byte/Word	(rr)+
	Indirect Pre-Decrement	Byte/Word	-(rr)
	Short Indexed	Byte/Word	$N(\mathrm{rr})$
	Long Indexed	Byte/Word	$\mathrm{NN}(\mathrm{rr})$
	Register Indexed	Byte/Word	rr(rr)
Any bit of any working register	Direct	Bit	r.b
Any bit in program or data memory	Indirect	Bit	(rr).b

ADDRESSING MODES (Continued)

Two Operands Arithmetic and Logic Instructions	
Destination	Source
Register Direct	Register Direct
Register Direct	Register Indirect
Register Direct	Memory Indirect
Register Direct	Memory Indexed
Register Direct	Memory Indirect with Post-Increment
Register Direct	Memory Indirect with Pre-Decrement
Register Direct	Memory Direct
Register Indirect	Register Direct
Memory Indirect	Register Direct
Memory Indexed	Register Direct
Memory Indirect with Post-Increment	Register Direct
Memory Indirect with Pre-Decrement	Register Direct
Memory Direct	Register Direct
Register Direct	Immediate
Memory Direct	Immediate
Memory Indirect	Immediate


Two Operands Arithmetic, Logic and Load Instructions	
Destination	Source
Memory Indirect	Memory Direct

ADDRESSING MODES (Continued)

Two Operands Load Instructions	
Destination	Source
Register Direct   Register Direct	Register Direct   Register Indirect   Register Indexed   Memory Indirect   Memory Indexed   Memory Indirect with Post-Increment   Memory Indirect with Pre-Decrement   Memory Direct
Register Indirect   Register Indexed   Memory Indirect   Memory Indexed   Memory Indirect with Post-Increment   Memory Indirect with Pre-Decrement   Memory Direct	Register Direct   Register Direct
Register Direct   Memory Direct   Memory Indirect	Immediate Immediate Immediate
Long Indexed Memory ${ }^{(1)}$	Immediate


Two Operands Load Instructions ${ }^{(2)}$	
Destination	Source
Register Indirect with Post-Increment	Memory Indirect with Post-Increment
Memory Indirect with Post-Increment	Register Indirect with Post-Increment
Memory Indirect with Post-Increment	Memory Indirect with Post-Increment

## Notes:

1. Word Instructions Only
2. Load Byte Only

## ADDRESSING MODES (Continued)

### 1.1.1 Register Addressing Modes

Immediate Addressing Mode
In the Immediate addressing mode, the data is found in the instruction. When using immediate data, a hash-mark (\#) is used to distinguish it from an absolute address in memory.
Example: Idw RR42,\#65536
loads the immediate value 65536 into the register pair R42 \& R43. While the example shows decimal data, hexadecimal and binary values may also be used.
Example: ldw RR42, \#OFFFFh.
Figure 1-1. Immediate Register

Addressing   Mode	In The   Instruction	In a Working   Register	In an Absolute   Register	In   Memory   IMMEDIATE   REGISTER
	DATA		VROA1845	

## Direct Addressing Mode

In the direct addressing mode, a register can be addressed by using its absolute address in the Register File (in decimal, hexadecimal or binary form). Alternatively a register can be addressed directly as a working register;
Example: xch R0A2h,r4
exchanges the values in the register RA2h and working register number 4.

Figure 1-2. Direct Register


## Indirect Addressing Mode

In the Indirect Register Addressing mode, the address of the data does not appear in the instruction but is located in a working register. The address of this register is given in the instruction. The indirect addressing mode is indicated by the use of parentheses.
Example:
If register 200 contains 178 and working register 11 contains 86 then the instruction ld (r11), R200 loads the value 178 into register 86.
Note: the indirect address can only be contaned in a working register.
Figure 1-3. Indirect Register


Indexed Addressing Mode
To address a register using the Indexed mode, an offset value is used to add to an index value (which acts as a base or starting value). The offset value is the Immediate value given in the instruction while the index value is given by the contents of the working register.
Example: if working register 10 contains 55 then the instruction
Id 40(r10),r18
loads register 95 (i.e. $55+40$ ) with the contents of working register 18.
The Register File never needs an absolute value requiring more than one byte and therefore only requires a short offset and a single register to contain the index.
Note. The index value can only be contained in a working register.
Figure 1-4. Indexed Register


## ADDRESSING MODES (Continued)

Indirect Register Post-increment Addressing Mode In this addressing mode, both destination and source addresses are given by the contents of working registers which are then post-incremented. The address of the memory location is contained in a working register pair, and the address of the register is contained into a single working register. Only working registers may be used to contain the addresses, this mode being indicated by both source and destination using parentheses followed by plus sign.
Example: if working register 8 contains the value 44, working register pair rr2 contains the value 2000 , and register 44 contains the value 56 , then by using the instruction
Id (r22)+,(r8)+
the memory location 2000 will be loaded with the value 56 . Immediately following this, the contents of r 8 is incremented to 45 and the contents of rr 2 is incremented to 2001.
This addressing mode is useful for moving blocks of data either from Register File to Memory or from Memory to Register File.
Direct Bit Addressing Mode
Figure 1-5. Register Indirect Post-Increment


In the direct bit addressing mode, any bit in any working register can be addressed
Examples: bset r7.3
This instruction sets the bit 3 of the working register 7.
bld r7.3, r12.6
This instruction loads the bit 6 of the working register 12 in bit 3 of working register 7

### 1.1.2 Memory Addressing Modes

The memory addressing modes described in this section are available to data and program memory. Thus before addressing the memory, it is necessary to indicate by use of the Set Program/Data Memory instructions, spm and sdm, in which memory the instructions are working. Since each memory space is 64 K byte long, a word address is necessary to specify memory locations.
Direct Addressing Mode
The Memory Direct addressing mode requires the specific location within the memory. This only needs the absolute offset value which can be given in decimal, hex or binary form.
Thus the instruction
ld 12345,r9
loads working register 9 data into memory location 12345
In the memory direct mode, it is possible to use an immediate addressing mode for the source operand.
Examples:
Id 12354,\#34
will load the value 34 into the memory location 12354.

Idw 12354,\#3457
will load the location pair 12354 and 12355 with the value 3457.

Figure 1-6. Memory Direct


## ADDRESSING MODES (Continued)

## Indirect Addressing Mode

When using the indirect addressing mode to access memory, the address is contained in a pair of working registers.
Example: if the working register pair r 8 and r 9 contains the value 2000 then the instruction
Id (rr8),\#34
loads the value 34 into memory location 2000.
If the data to be stored is a word then the instruction $1 d w$ will automatically interpret the address as a pair of memory locations. So if rr8 contains 2000 then the instruction
ldw (rr8),\#3467
loads the memory locations 2000 and 2001 with the value 3467.

Figure 1-7. Memory Indirect


Indirect With Post-increment Adressing Mode
The indirect with post-increment addressing mode is similar to the memory indirect addressing mode but, in addition, after accessing the data in the currently pointed address, the value in the pointing working register pair is incremented. This mode is indicated by a plus sign following a working register pair in parentheses, e.g. (rr4) + .

## Example:

If the working register pair rr4 (working registers r4 and r 5 ) contains the value 3000 and memory location 3000 contains the value 88 , then the instruction
Id R50,(rr4)+
loads register 50 with the value 88 and then the value in rr 4 to be incremented to 3001 .
This mode uses only working registers to contain the address. Thus the Indirect with Post-Increment addressing mode is most useful in repeated situations when a number of adjacent items of data are
required in succession. The use of this addressing mode saves both time and program memory space since it cuts the usual increment instruction.

Figure 1-8. Memory Indirect Post-Increment


Indirect With Pre-decrement Addressing Mode
This indirect memory addressing mode has an automatic pre-decrement. The address can only be contained in working registers and the mode is indicated by a minus sign in front of the working registers which are in parentheses, e.g. - (rr6).
Thus if the working register pair rr6 contains the value 1111 and location 1110 contains the value 40 then the instruction
Id R56,-(rr6)
decrements the value in rr6 to 1110 and then loads the value 40 into register 56 .
This addressing mode allows the ST9 to deal in the reverse order with data previously managed using the indirect post-increment mode without resetting the pointing registers (of the last post-increment).
The pre-decrement mode has the same benefits of time and program memory saving as the post-increment mode.

Figure 1-9. Memory Indirect Pre-Decrement


## ADDRESSING MODES (Continued)

## Indexed Addressing Modes

There are three indexed addressing modes, each using an indirect address plus offset format. The index address is given as an indirect address contained in a working register pair, while the offset can be long or short (a word or a byte). The address of the data required is given by the value of the working register pair indicated (the index), plus the value of the given offset. The specification of this offset which differentiates the three modes, is as follows:

- Indexed with an Immediate Short and Long Offset
In these indexed modes the offset is a fixed and Immediate value included in the instruction. It may be either a short or long index as required, this immediate value being added to the address given by the working register pair.
Example: if the working register pair, rr6, contains the value 8000 and memory location 8034 contains the value 254 then the instruction
Id R55,34(rr6)
loads the value 254 into register 55.
Or, as another example, if the working register pair rr2 contains the value 2000 and register 78 contains the value 34 then the instruction.
Id 322(rr2), r78
loaded the value 34 into memory location 2322.
- Indexed with a Register Offset

In this addressing mode, the index is supplied by one pair of working registers and the offset is supplied by a second pair of working registers. The format is rrx(rry), $x$ and $y$ being in the range 0,2,4...12,14.

## Example

If working register pair rr0 contains the value 2222 and working register pair rr4 contains 3333 while register 45 contains the value 78 then the instruction
Id rr4(rr0),R45
loads the value 78 into memory location 5555.

Figure 1-10. Memory Indexed with Immediate Short Offset


Figure 1-11. Memory Indexed with Immediate Long Offset


Figure 1-12. Memory Indexed with Register Offset


Indirect Memory Bit Addressing Mode
In the indirect memory bit addressing mode, any bit of Program/Data memory location can be addressed with the btset (Bit Test and SET) instruction.
Example
btset (rr8). 3
This instruction sets bit 3 of the memory location addressed by the working registers $\mathrm{r} 8, \mathrm{r} 9$ contents.

### 1.2 INSTRUCTION SET

The ST9 instruction set consists of 87 instruction types which can be divided into eight groups:

- Load (two operands)
- Arithmetic \& logic (two operands)
- Arithmetic Logic and Shift (one operand)
- Stack (one operand)
- Multiply \& Divide (two operands)
- Boolean (one or two operands)
- Program Control (zero to three operands)
- Miscellaneous (zero to two operands)

The wide range of instructions eases use of the register file and address spaces, reducing operation times, while the register pointers mechanism allows an unmatched code efficiency and ultrafast context switching. A particularly notable feature is the comprehensive "Any Bit, Any Register" (ABAR) addressing capability of the Boolean instructions.

The ST9 can operate with a wide range of data lengths from single bits, 4-bit nibbles which can be in the form of Binary Coded Decimal (BCD) digits, 8 -bit bytes, and 16-bit words.

The following summary shows the instructions belonging to each group and the number of operands required for each instruction. The source operand is "src", "dst" is the destination operand, and "cc" is a condition code.

INSTRUCTION SET (Continued)

## Load Instructions (Two Operands)

Mnemonic	Operands	Instruction
LD	dst,src   dst,src	Load
LDW	Load Word	
LDPP	dst,src	Load Program Memory -s Program Memory
LDPD	Load Data Memory -s Program Memory	
LDDP	dost,src	Load Program Memory -> Data Memory
LDDD	Load Data Memory -src Data Memory	

## Arithmetic and Logic Instructions (Two Operands)

Mnemonic	Operands	Instruction
ADD   ADDW	dst,src   dst,src	Add   Add Word
ADC   ADCW	dst,src   dst,src	Add With carry Add Word With Carry
SUB   SUBW	dst,src   dst,src	Substract   Substract Word
$\begin{aligned} & \text { SBC } \\ & \text { SBCW } \end{aligned}$	dst,src   dst,src	Substract With Carry   Substract Word With Carry
AND ANDW	dst,src   dst,src	Logical AND Logical Word AND
OR   ORW	dst,src dst,src	Logical OR Logical Word OR
$\begin{aligned} & \text { XOR } \\ & \text { XORW } \end{aligned}$	dst,src dst,src	Logical Exclusive OR Logical Word Exclusive OR
CP CPW	dst,src dst,src	Compare Compare Word
TM TMW	dst, src dst,src	Test Under Mask Test Word Under Mask
TCM TCMW	dst,src dst,src	Test Complement Under Mask Test Word Complement Under Mask

INSTRUCTION SET (Continued)
Arithmetic Logic and Shift Instructions (One Operand)

Mnemonic	Operands	Instruction
INC   INCW	dst   dst	Increment   Increment Word
DEC   DECW	dst   dst	Decrement   Decrement Word
SLA   SLAW	dst   dst	Shift Left Arithmetic   Shift Word Left Arithmetic
SRA   SRAW	dst   dst	Shift Right Arithmetic   Shift Word Right Arithmetic
RRC   RRCW	dst	Rotate Right Through Carry   Rotate Word Right Through Carry
RLC   RLCW	dst	Rotate Left Through Carry   Rotate Word Left Through Carry
ROR	dst	Rotate Right
ROL	dst	Rotate Left
CLR	dst	Clear Register
CPL	dst	Complement Register
SWAP	dst	Swap Nibbles
DA	Decimal Adjust	

## Stack Instructions (One Operand)

Mnemonic	Operands	Instruction
PUSH   PUSHW   PEA	src	Push on System Stack   Push Word on System Stack   Push Effective Address on System Stack
POP	src	dst
POPW	dst	Pop From System Stack   Pop Word from System Stack
PUSHU	src	Push on User Stack   Push Word on User Stack   Push Effective Address on User Stack
PEAU	src	dst
POPU	dst	Pop From User Stack   Pop Word From User Stack

INSTRUCTION SET (Continued)
Multiply and Divide Instructions (Two Operands)

Mnemonic	Operands	Instruction
MUL	dst,src	Multiply 8x8
DIV dst,src   dst,src Divide 16/8   Divide Word Stepped 32/16		

Boolean Instructions (One or Two Operands)

Mnemonic	Operands	Instruction
BSET	dst	Bit Set
BRES	dst	Bit Reset
BCPL	dst	Bit Complement
BTSET	dst	Bit Load
BLD	dst,src	Bit AND
BAND	dst,src	Bit OR
BOR	dst,src	Bit XOR
BXOR	dst,src	

## INSTRUCTION SET (Continued)

## Program Control Instructions (One, Two or Three Operands)

Mnemonic	Operands	Instruction
RET		Return from Subroutine
IRET		Return from Interrupt   WFI
HALT	Stop Program Execution and Wait for   the next Enabled Interrupt. If a DMA   request is present, the CPU executes   the DMA service routine and then   automatically returns to the WFI	
JR	cc,dst	Stop Program Execution Until Next System Reset
JP	dst	Jump Relative If Condition is Met
JP	dst	Jump if Condition is Met
CALL	dst,N	Unconditional Jump
BTJF	dst,N	Unconditional Call
BTJT	dst,N	Bit Test and Jump if False
DJNZ	dst,N	Bit Test and Jump if True
DWJNZ	Decrement a Working Register and Jump   if Non Zero	
CPJFI	Decrement a Register Pair and Jump if   Non Zero	
Post Increment		

## INSTRUCTION SET (Continued)

## Miscellaneous (None, One or Two Operands)

Mnemonic	Operands	Instruction
XCH	dst,src	Exchange Registers
SRP	src	Set Register Pointer Long (16 working registers)
SRP0	src	Set Register Pointer 0 (8 LSB working register)
SRP1	src	Set Register Pointer 1 (8 MSB working register)
SPP	src	Set Page Pointer
EXT	dst	Sign Extend
EI		Enable Interrupts
DI		Disable Interrupts
SCF		Set Carry Flag
RCF		Reset Carry Flag
CCF		Semplement Carry Flag
SPM		Select Data Memory
SDM		No Operation
NOP		

## INSTRUCTION SET (Continued)

### 1.2.1 ST9 Processor Flags

An important feature of a single chip microcomputer is the ability to test data and make the appropriate action based on the results. In order to provide this facility, FLAGR (register 231) in the register file is used as a flag register. Six bits of this register are used as the following flags:
C - Carry
Z - Zero
S-Sign
V - Overflow
D - Decimal Adjust
H - Half Carry

Bit 1 is available to the user. Bit 0 is the Program/Data Memory selector bit.
The Flag Register is further described in the Architecture Chapter.

### 1.2.2 Condition Codes

Flags C, Z, S, and OV control the operation of the "conditional" Jump instructions. The next table shows the condition codes and the flag settings.
Note: Some of the Status flags are used to indicate more than one condition e.g. Zero and Equal. In such cases the condition code is the same for both conditions.

Table 1-2. Condition Codes Table

Mnemonic code	Meaning	Flag setting	Hex. value	Binary value
F	Always False	----	0	0000
T	Always True	----	8	1000
C	Carry	$\mathrm{C}=1$	7	0111
NC	Not carry	$\mathrm{C}=0$	F	1111
Z	Zero	Z=1	6	0011
NZ	Not Zero	Z=0	E	1110
PL	Plus	S=0	D	1101
MI	Minus	$\mathrm{S}=1$	5	0101
OV	Overflow	$\mathrm{V}=1$	4	0100
NOV	No Overflow	$\mathrm{V}=0$	C	1100
EQ	Equal	$\mathrm{Z}=1$	6	0110
NE	Not Equal	$\mathrm{Z}=0$	E	1110
GE	Greater Than or Equal	( S xor V)=0	9	1001
LT	Less Than	( S xor V)=1	1	0001
GT	Greater Than	$(\mathrm{Z}$ or( S xor V)) $=0$	A	1010
LE	Less Than or Equal	$(\mathrm{Z}$ or $(\mathrm{S} \times \mathrm{or} \mathrm{V})$ ) $=1$	2	0010
UG	Unsigned Greater Than or Equal	$\mathrm{C}=0$	F	1111
UL	Unsigned Less Than	$\mathrm{C}=1$	7	0111
UGT	Unsigned Greater Than	$(\mathrm{C}=0$ and $\mathrm{Z}=0$ ) $=1$	B	1011
ULE	Unsigned Less Than or Equal	( C or Z$)=1$	3	0011

## INSTRUCTION SET (Continued)

### 1.2.3 Notation

Operands and status flags are represented by a notational shorthand in the detailed instruction description (see programming manual).

The notation for operands (condition codes and address modes) and the actual operands they represent are as follows:

## Table 1-3. Notation (Part 1)

Notation	Significance	Actual Operand/Range	
cc	Condition Code		
\#N   \#NN	Immediate Byte Immediate Word	\# data   \# data	where data is a byte expression where data is a word expression
r	Direct Working Register	rn	where $\mathrm{n}=0-15$
R	Direct Register	Rn	where $\mathrm{n}=0-255$
rr	Direct Working Register Pair	rn	where n is an even number in the range 0-15. $(n=0,2,4,6 \ldots .14)$
RR	Direct Register Pair	RRn	where n is an even number in the range 0-254. $(n=0,2,4,6 \ldots .254)$
(r)	Indirect Working Register	(rn)	where $\mathrm{n}=0-15$
(R)	Indirect register	(Rn)	where $\mathrm{n}=0-255$
(r)+	Indirect working register post increment	(rn)+	where $\mathrm{n}=0-15$
$\mathrm{N}(\mathrm{rx})$	Indexed register	$N(\mathrm{rx})$	where $\mathrm{x}=0-15 ; \mathrm{N}=0-255$ (one byte)
$N$	Memory relative Short Address		Program label or expression in the range $+127 /-128$ starting from the address of the next instruction
NN	Direct Memory Long Address		Program label or expression in the range $0-65535$ in memory area
(rr)	Indirect Pair of Working Register Pointers	(rrn)	Where n is an even number in the range $0-15 .(n=0,2,4,6 \ldots .14)$
(rr)+	Indirect Pair of Working Register Pointers with Post Increment	(rn) +	where n is an even number in the range $0-15 .(n=0,2,4,6 \ldots . .14)$
-(rr)	Indirect Pair of Working Register Pointers with Pre Decrement	-(rrn)	where n is an even number in the range $0-15 .(n=0,2,4,6 \ldots .14)$

INSTRUCTION SET (Continued)
Table 1-4. Notation (Part 2)

Notation	Significance	Actual Operand/Range	
$N(r r x)$	Indexed Pair of Working Register Pointers with Short Offset	$N(r r x)$	where $x$ is an even number in the range $0-15 .(n=0,2,4,6 \ldots .14)$ and $N$ is a signed one byte expression between $+127 /-128$
NN(rrx)	Indexed Pair of Working Register Pointers with Long Offset	NN(rrx)	where $x$ is an even number in the range $0-15 .(n=0,2,4,6 \ldots 14)$ and $N N$ is word expression in the range between 0 and 65535
N(RRx)	Indexed Pair of Register Pointers with Short Offset	$N(R R x)$	where $x$ is an even number in the range $0-255 .(n=0,2,4,6 \ldots 254)$ and $N$ is a one byte signed expression in the range $+127 /-128$
NN (RRx)	Indexed Pair of Register Pointers with Long Offset	$\mathrm{NN}(\mathrm{RR} \mathrm{x})$	where $x$ is an even number in the range $0-255 .(\mathrm{n}=0,2,4,6 \ldots .14)$ and NN is word expression in the range between 0 and 65535
rr(rrx)	Indexed Pair of Working Registers with a Pair of Working Registers used as Offset	rrn(rrx)	where n and x are two even numbers in the range 0-15. ( $n, x=0,2,4,6 \ldots . .14$ )
r.b	Bit pointer in a direct working register	rn.b	$\mathrm{n}=0.15$ and b is a number between 0-7;0 LSB   7 MSB
(rr).b	Bit pointer in a Memory Location using a Pair of Indirect Working Registers as Address Pointer	(rrn).b	where n is an even number in the range $0-15 .(n=0,2,4,6 \ldots 14)$ and $b$ is a number between 0-7 0 LSB   7 MSB
(RR)	Indirect pair of Register Pointer	(RRn)	where n is an even number in the range $0-255 .(n=0,2,4,6 \ldots .254)$

### 1.3 INSTRUCTION SUMMARY

The following tables summarize the operation for each of the instructions which are listed with their corresponding mnemonic codes, addressing modes, byte counts, timing information, and affected flags.
GENERAL NOTES:

FLAGS STATUS:

- ^: affected
-     - : not affected
- 0 : reset to zero
- 1 : set to one
- ?: undefined

Note: for detailed information on the instruction set refer to the ST9 programming manual.

- dst: destination operand
- src: source operand
- SSP: system stack pointer
- USP: user stack pointer
- PC: program counter
- cc: condition code
- C: carry flag
- Z: zero flag
- S: sign flag
- V: overflow flag
- D: decimal adjust flag
- CIC: central interrupt control register
- DP : data/program memory flag

INSTRUCTION SUMMARY (Continued)

Mnemo.	dst	src	Bytes	Clock cycles	Operation	$\begin{gathered} \text { Flags } \\ \text { cZSVH } \end{gathered}$
ADC : Addition of 2 bytes with carry						
ADC	r	$r$	2	6	dst<-dst+src+C	$\wedge \wedge \wedge \wedge 0$
ADC	R	R	3	10	dst<-dst+src+C	$\wedge \wedge \wedge \wedge 0$
ADC	r	R	3	10	dst--dst+src+C	$\wedge \wedge \wedge \wedge 0 \wedge$
ADC	R	r	3	10	dst--dst+src+C	$\wedge \wedge \wedge \wedge 0 \wedge$
ADC	r	(r)	2	6	dst--dst+src+C	$\wedge \wedge \wedge \wedge 0 \wedge$
ADC	R	(r)	3	10	dst--dst+src+C	$\wedge \wedge \wedge \wedge 0 \wedge$
ADC	$r$	(rr)	3	12	dst--dst+src+C	$\wedge \wedge \wedge 10 \wedge$
ADC	R	(rr)	3	12	dst<-dst+src+C	$\wedge \wedge \wedge \wedge 0 \wedge ~$
ADC	$r$	NN	4	18	dst--dst+src+C	$\wedge \wedge \wedge \wedge 0 \wedge$
ADC	$r$	$N(r \mathrm{rx})$	4	24	dst--dst+src+C	$\wedge \wedge \wedge \wedge 0 \wedge$
ADC	R	$\mathrm{N}(\mathrm{rrx})$	4	24	dst--dst+src+C	$\wedge \wedge \wedge \wedge 0$
ADC	$r$	NN (rrx)	5	26	dst--dst+src+C	$\wedge \wedge \wedge \wedge 0 \wedge$
ADC	R	$\mathrm{NN}(\mathrm{rrx})$	5	26	dst--dst+src+C	$\wedge \wedge \wedge \wedge 0$
ADC	$r$	rr(rx)	3	22	dst--dst+src+C	^^^^0^
ADC	r	(rr)+	3	16	$\begin{aligned} & \mathrm{dst}<-\mathrm{dst}+\mathrm{src}+\mathrm{C} \\ & \mathrm{rr}<-\mathrm{rr}+1 \end{aligned}$	$\wedge \wedge \wedge \wedge 0 \wedge$
ADC	R	(rr)+	3	16	$\begin{aligned} & \mathrm{dst}<-\mathrm{dst}+\mathrm{src}+\mathrm{C} \\ & \mathrm{rr}<\mathrm{rr}+1 \end{aligned}$	$\wedge \wedge \wedge \wedge 0 \wedge$
ADC	r	-(rr)	3	16	$\begin{aligned} & \mathrm{rr}<-\mathrm{rr}-1 \\ & \mathrm{dst}<-\mathrm{dst}+\mathrm{src}+\mathrm{C} \end{aligned}$	$\wedge \wedge \wedge \wedge 0 \wedge$
ADC	R	-(rr)	3	16	$\begin{aligned} & \mathrm{rr}<-\mathrm{rr}-1 \\ & \mathrm{dst}<-\mathrm{dst}+\mathrm{src}+\mathrm{C} \end{aligned}$	$\wedge \wedge \wedge \wedge 0$
ADC	(r)	$r$	3	10	dst--dst+src+C	$\wedge \wedge \wedge \wedge 0 ~$
ADC	(r)	R	3	10	dst--dst+src+C	$\wedge \wedge \wedge \wedge 0 \wedge$
ADC	(rr)	$r$	3	18	dst--dst+src+C	$\wedge \wedge \wedge \wedge 0 \wedge ~$
ADC	(rr)	R	3	18	dst--dst+src+C	$\wedge \wedge \wedge 0 \wedge$
ADC	(rr)+	r	3	22	$\begin{aligned} & \mathrm{dst}<-\mathrm{dst}+\mathrm{src}+\mathrm{C} \\ & \mathrm{rr}<-\mathrm{rr}+1 \end{aligned}$	$\wedge \wedge \wedge \wedge 0 \wedge$
ADC	(rr)+	R	3	22	$\begin{aligned} & \mathrm{dst}<-\mathrm{dst}+\mathrm{src}+\mathrm{C} \\ & \mathrm{rr}<-\mathrm{rr}+1 \end{aligned}$	$\wedge \wedge \wedge 10$
ADC	NN	$r$	4	20	dst--dst+src+C	
ADC	$N(r \mathrm{rx})$	r	4	26	dst--dst+src+C	$\wedge \wedge \wedge 0 \wedge$
ADC	$N(r \mathrm{rx})$	R	4	26	dst--dst+src+C	$\wedge \wedge \wedge 0 \wedge$
ADC	NN(rx)	r	5	28	dst--dst+src+C	$\wedge \wedge \wedge \wedge 0 \wedge$
ADC	$\mathrm{NN}(\mathrm{rrx})$	R	5	28	dst--dst+src+C	$\wedge \wedge \wedge \wedge 0 \wedge$
ADC	rr(rx)	r	3	24	dst<-dst+src+C	$\wedge \wedge \wedge \wedge 0 \wedge$
ADC	-(rr)	r	3	24	$\begin{aligned} & \mathrm{rr}<-\mathrm{rr}-1 \\ & \mathrm{dst}<-\mathrm{dst}+\mathrm{src}+\mathrm{C} \end{aligned}$	$\wedge \wedge \wedge \wedge 0 \wedge$
ADC	-(rr)	R	3	22	$\begin{aligned} & \mathrm{rr}<-\mathrm{rr}-1 \\ & \mathrm{dst}<-\mathrm{dst}+\mathrm{src}+\mathrm{C} \end{aligned}$	$\wedge \wedge \wedge 10 \wedge$
ADC	$r$	\#N	3	10	dst--dst+src+C	$\wedge \wedge \wedge \wedge 0 \wedge$
ADC	R	\#N	3	10	dst--dst+src+C	$\wedge \wedge \wedge \wedge 0 \wedge$
ADC	(rr)	\#N	3	16	dst--dst+src+C	$\wedge \wedge \wedge \wedge 0 \wedge$
ADC	NN	\#N	5	24	dst--dst+src+C	$\wedge \wedge \wedge \wedge 0 \wedge$
ADC	(rr)	(rr)	3	20	dst--dst+src+C	$\wedge \wedge \wedge \wedge 0 \wedge$
ADC	(RR)	(rr)	3	20	dst<-dst+src+C	$\wedge \wedge \wedge \wedge 0 \wedge$

INSTRUCTION SUMMARY (Continued)


INSTRUCTION SUMMARY (Continued)

Mnemo.	dst	src	Bytes	Clock cycles	Operation	$\begin{gathered} \text { Flags } \\ \mathrm{CZSVDH} \end{gathered}$
ADD : Addition of 2 bytes without carry						
ADD	r	r	2	6	dst<-dst+src	$\wedge \wedge \wedge \wedge 0$
ADD	R	R	3	10	dst--dst+src	$\wedge \wedge \wedge \wedge 0$
ADD	r	R	3	10	dst--dst+src	^ ^ ^^0
ADD	R	r	3	10	dst--dst+src	^ ^ ^ ^0
ADD	r	(r)	2	6	dst--dst+src	^ ^ ^ ^0
ADD	R	(r)	3	10	dst--dst+src	^^^^0
ADD	r	(rr)	3	12	dst--dst+src	$\wedge \wedge \wedge 0$
ADD	R	(rr)	3	12	dst<-dst+src	$\wedge \wedge \wedge 0$
ADD	r	NN	4	18	dst--dst+src	^ ^ ^ ^0
ADD	r	$N(r r x)$	4	24	dst--dst+src	$\wedge \wedge \wedge 10$
ADD	R	$N(r \mathrm{rx})$	4	24	dst--dst+src	$\wedge \wedge \wedge \wedge 0 \wedge$
ADD	r	NN(rrx)	5	26	dst--dst+src	$\wedge \wedge \wedge 10 \wedge$
ADD	R	$\mathrm{NN}(\mathrm{rrx})$	5	26	dst--dst+src	$\wedge \wedge \wedge \wedge 0 \wedge$
ADD	r	rr(rx)	3	22	dst--dst+src	$\wedge \wedge \wedge 0 \wedge$
ADD	r	$(\mathrm{rr})+$	3	16	$\begin{aligned} & \mathrm{dst}<-\mathrm{dst}+\mathrm{src} \\ & \mathrm{rr}<-\mathrm{rr}+1 \end{aligned}$	$\wedge \wedge \wedge \wedge 0$
ADD	R	(rr)+	3	16	$\begin{aligned} & \mathrm{dst}<-\mathrm{dst}+\mathrm{src} \\ & \mathrm{rr}<-\mathrm{rr}+1 \end{aligned}$	$\wedge \wedge \wedge \wedge 0 \wedge$
ADD	r	-(rr)	3	16	rr<-rr-1   dst<-dst+src	$\wedge \wedge \wedge \wedge 0 \wedge$
ADD	R	-(rr)	3	16	rr<-rr-1   dst--dst+src	$\wedge \wedge \wedge \wedge 0 \wedge$
ADD	(r)	$r$	3	10	dst--dst+src	$\wedge \wedge \wedge \wedge 0 \wedge$
ADD	(r)	R	3	10	dst--dst+src	$\wedge \wedge \wedge \wedge 0$
ADD	(rr)	r	3	18	dst--dst+src	^^^^0
ADD	(rr)	R	3	18	dst--dst+src	^^^^0
ADD	(rr) +	r	3	22	$\begin{aligned} & \mathrm{dst}<-\mathrm{dst}+\mathrm{src} \\ & \mathrm{rr}<-\mathrm{rr}+1 \end{aligned}$	$\wedge \wedge \wedge \wedge 0 \wedge$
ADD	(rr)+	R	3	22	$\begin{aligned} & \text { dst<-dst+src } \\ & \mathrm{rr}<-\mathrm{rr}+1 \end{aligned}$	$\wedge \wedge \wedge \wedge 0$
ADD	NN	r	4	20	dst<-dst+src	$\wedge \wedge \wedge \wedge 0 \wedge$
ADD	$N(r \times x)$	r	4	26	dst--dst+src	$\wedge \wedge \wedge \wedge 0 \wedge$
ADD	$N(r$ r $)$	R	4	26	dst--dst+src	$\wedge \wedge \wedge \wedge 0$
ADD	NN (rix)	$r$	5	28	dst--dst+src	$\wedge \wedge \wedge \wedge 0$
ADD	$\mathrm{NN}(\mathrm{rrx})$	R	5	28	dst--dst+src	$\wedge \wedge \wedge \wedge 0$
ADD	rr(rrx)	r	3	24	dst<-dst+src	$\wedge \wedge \wedge \wedge 0$
ADD	-(rr)	$r$	3	22	$\begin{aligned} & \text { rr<-rr-1 } \\ & \text { dst<-dst+src } \end{aligned}$	$\wedge \wedge \wedge \wedge 0$
ADD	-(rr)	R	3	22	$\begin{aligned} & \mathrm{rr}<-\mathrm{rr}-1 \\ & \mathrm{dst}<-\mathrm{dst}+\mathrm{src} \end{aligned}$	$\wedge \wedge \wedge 00$
ADD	$r$	\#N	3	10	dst--dst+src	$\wedge \wedge \wedge \wedge 0 \wedge$
ADD	R	\#N	3	10	dst--dst+src	$\wedge \wedge \wedge \wedge 0 \wedge$
ADD	(rr)	\#N	3	16	dst<-dst+src	$\wedge \wedge \wedge \wedge 0 \wedge$
ADD	NN	\#N	5	24	dst--dst+src	$\wedge \wedge \wedge \wedge 0 \wedge$
ADD	(rr)	(rr)	3	20	dst--dst+src	$\wedge \wedge \wedge \wedge 0 \wedge$
ADD	(RR)	(rr)	3	20	dst--dst+src	$\wedge \wedge \wedge \wedge 0 \wedge$

INSTRUCTION SUMMARY (Continued)

Mnemo.	dst	src	Bytes	Clock cycles	Operation	Flags C Z S V D H
ADDW : Add word without carry						
ADDW	rr	r	2	10	dst<-dst+src	
ADDW	RR	RR	3	12	dst<-dst+src	
ADDW	rr	RR	3	12	dst<-dst+sic	
ADDW	RR	rr	3	12	dst<-dst+sic	
ADDW	rr	(r)	3	14	dst<-dst+src	
ADDW	RR	(r)	3	14	dst<-dst+src	
ADDW	rr	(rr)	2	16	dst<-dst+src	
ADDW	RR	(rr)	3	18	dst--dst+src	
ADDW	rr	NN	4	22	dst--dst+src	
ADDW	rr	$N(r \times x)$	4	28	dst--dst+stc	
ADDW	RR	$\mathrm{N}(\mathrm{rrx})$	4	28	dst--dst+src	
ADDW	rr	$\mathrm{NN}(\mathrm{rrx})$	5	30	dst--dst+src	
ADDW	RR	$\mathrm{NN}(\mathrm{rrx})$	5	30	dst--dst+src	
ADDW	rr	rr(rx)	3	26	dst--dst+src	
ADDW	rr	(rr)+	3	22	$\begin{aligned} & \mathrm{dst}<-\mathrm{dst}+\mathrm{src} \\ & \mathrm{rr}<-\mathrm{rr}+2 \end{aligned}$	
ADDW	RR	(rr)+	3	22	$\begin{aligned} & \text { dst<-dst+src } \\ & \mathrm{rr}<-\mathrm{rr}+2 \end{aligned}$	
ADDW	rr	-(rr)	3	24	$\begin{aligned} & \mathrm{rr}<-\mathrm{rr}-2 \\ & \mathrm{dst}<\mathrm{dst}+\mathrm{src} \end{aligned}$	
ADDW	RR	-(rr)	3	24	$\begin{aligned} & \mathrm{rr}<-\mathrm{rr}-2 \\ & \mathrm{dst}<-\mathrm{dst}+\mathrm{src} \end{aligned}$	$\wedge \wedge \wedge \wedge ? ~$
ADDW	(r)	rr	3	14	dst--dst+src	
ADDW	(r)	RR	3	14	dst--dst+src	
ADDW	(rr)	rr	2	30	dst--dst+src	
ADDW	(rr)	RR	3	30	dst--dst+stc	
ADDW	(rr)+	rr	3	32	$\begin{aligned} & \mathrm{dst}<-\mathrm{dst}+\mathrm{src} \\ & \mathrm{rr}<-\mathrm{rr}+2 \end{aligned}$	
ADDW	(rr)+	RR	3	32	$\begin{aligned} & \mathrm{dst}<-\mathrm{dst}+\mathrm{src} \\ & \mathrm{rr}<-\mathrm{rr}+2 \end{aligned}$	
ADDW	NN	rr	4	32	dst-dst+src	
ADDW	$\mathrm{N}(\mathrm{rrx})$	rr	4	38	dst--dst+src	
ADDW	$\mathrm{N}(\mathrm{rrx})$	RR	4	38	dst<-dst+src	
ADDW	$\mathrm{NN}(\mathrm{rrx})$	rr	5	38	dst<-dst+src	
ADDW	$\mathrm{NN}(\mathrm{rrx})$	RR		38	dst--dst+src	
ADDW	$\mathrm{rr}(\mathrm{rrx})$	rr		34	dst<-dst+src	
ADDW	-(rr)	r		32	$\begin{aligned} & \mathrm{rr}<-\mathrm{rr}-2 \\ & \mathrm{dst}<-\mathrm{dst}+\mathrm{src} \end{aligned}$	
ADDW	-(rr)	RR	3	32	$\begin{aligned} & \mathrm{rr}<-\mathrm{rr}-2 \\ & \mathrm{dst}<-\mathrm{dst}+\mathrm{src} \end{aligned}$	$\wedge \wedge \wedge \wedge ? ~$
ADDW	,	\#NN	4	14	dst<-dst+src	
ADDW	RR	\#NN	4	14	dst--dst+src	
ADDW	(rr)	\#NN	4	32	dst--dst+src	
ADDW	NN	\#NN	6	36	dst<-dst+src	
ADDW	$N(r \mathrm{r})$	\#NN	5	36	dst<-dst+src	
ADDW	NN(rrx)	\#NN	6	38	dst<-dst+src	
ADDW	(rr)	(rr)	2	32	dst--dst+src	

INSTRUCTION SUMMARY (Continued)

Mnemo.	dst	src	Bytes	Clock cycles	Operation	$\begin{gathered} \text { Flags } \\ \text { CZSVH } \end{gathered}$
AND : Logical AND between 2 bytes						
AND	r	$r$	2	6	dst<-dst AND src	- ^^0
AND	R	R	3	10	dst<-dst AND src	- ^ ^ 0
AND	r	R	3	10	dst<-dst AND src	- ^ ^ 0
AND	R	$r$	3	10	dst<-dst AND src	-^^0-
AND	r	(r)	2	6	dst<-dst AND src	-^^0-
AND	R	(r)	3	10	dst<-dst AND src	- ^ ^ 0
AND	r	(rr)	3	12	dst<-dst AND src	- ^ ^ 0
AND	R	(rr)	3	12	dst<-dst AND src	- ^ ^ 0
AND	r	NN	4	18	dst<-dst AND src	- ^ ^ 0
AND	r	$N(r \mathrm{rx})$	4	24	dst<-dst AND src	- ^^0
AND	R	$\mathrm{N}(\mathrm{rrx})$	4	24	dst-dst AND src	- ^^0
AND	$r$	NN(rrx)	5	26	dst<-dst AND src	- ^ ^ 0
AND	R	NN(rrx)	5	26	dst<-dst AND src	- ^^0
AND	r	rr(rix)	3	22	dst<-dst AND src	- ^^0
AND	r	(rr)+	3	16	dst<-dst AND src $\mathrm{rr}<-\mathrm{rr}+1$	- ^ ^ 0
AND	R	(rr)+	3	16	dst<-dst AND src $\mathrm{rr}<-\mathrm{rr}+1$	- ^ ^ 0
AND	$r$	-(rr)	3	16	$\begin{aligned} & \mathrm{rr}<-\mathrm{rr}-1 \\ & \mathrm{dst}<-\mathrm{dst} \text { AND src } \end{aligned}$	- ^ ^ 0
AND	R	-(rr)	3	16	$\mathrm{rr}<-\mathrm{r}-1$   dst<-dst AND src	- ^ ^ 0
AND	(r)	r	3	10	dst<-dst AND src	- ^ ^ 0
AND	(r)	R	3	10	dst<-dst AND src	- ^ ^ 0
AND	(rr)	r	3	18	dst<-dst AND src	-^^0
AND	(rr)	R	3	18	dst<-dst AND src	- ^^0
AND	(rr)+	r	3	22	dst<-dst AND src rr<-ri+1	- ^ ^ 0
AND	(rr)+	R	3	22	dst<-dst AND src $\mathrm{rr}<-\mathrm{rr}+1$	- ^ ^ 0
AND	NN	r	4	20	dst<-dst AND src	- ^ ^ 0
AND	N(rrx)	$r$	4	26	dst<-dst AND src	-^^0
AND	$N(\mathrm{rrx})$	R	4	26	dst<-dst AND src	- ^ ^ 0
AND	$\mathrm{NN}(\mathrm{rrx})$	$r$	5	28	dst<-dst AND src	- ^ ^ 0
AND	$\mathrm{NN}(\mathrm{rrx})$	R	5	28	dst<-dst AND src	- ^ ^ 0
AND	rr(rx)	r	3	24	dst<-dst AND src	- ^ ^ 0
AND	-(rr)	r	3	22	$\mathrm{rr}<-\mathrm{rr}-1$   dst<-dst AND src	- ^ ^ 0
AND	-(rr)	R	3	22	$\mathrm{rr}<-\mathrm{rr}-1$   dst<-dst AND src	- ^ ^ 0
AND	$r$	\#N	3	10	dst<-dst AND src	- ^ ^ 0
AND	R	\#N	3	10	dst<-dst AND src	- ^ ^ 0
AND	(rr)	\#N	,	16	dst<-dst AND src	- ^ ^ 0
AND	NN	\#N	5	24	dst<-dst AND src	-^^0
AND	(rr)	(rr)	3	20	dst<-dst AND src	- ^ ^ 0
AND	(RR)	(rr)	3	20	dst<-dst AND src	- ^ ^ 0

INSTRUCTION SUMMARY (Continued)

Mnemo.	dst	src	Bytes	Clock cycles	Operation	$\begin{gathered} \text { Flags } \\ \mathrm{CZSVDH} \end{gathered}$
ANDW : Logical AND between two words						
ANDW	rr	rr	2	10	dst<-dst AND src	- ^ ^ 0 -
ANDW	RR	RR	3	12	dst<-dst AND src	- ^^00
ANDW	rr	RR	3	12	dst<-dst AND src	- ^ ^ 0
ANDW	RR	rr	3	12	dst<-dst AND src	- ^ ^ 0 -
ANDW	rr	(r)	3	14	dst<-dst AND src	- ^ ^ 0 -
ANDW	RR	(r)	3	14	dst<-dst AND src	- ^ ^ 0 -
ANDW	rr	(rr)	2	16	dst<-dst AND src	- ^^0.
ANDW	RR	(rr)	3	18	dst<-dst AND src	- ^ ^ 0 -
ANDW	rr	NN	4	22	dst<-dst AND src	- ^ ^ 0 -
ANDW	rr	$N(r r x)$	4	28	dst<-dst AND src	- ^ ^ 0 -
ANDW	RR	$N(r r x)$	4	28	dst<-dst AND src	- ^^0.
ANDW	rr	$N N(r r x)$	5	30	dst<-dst AND src	- ^ ^ 0 -
ANDW	RR	NN(rrx)	5	30	dst<-dst AND src	- ^^0 -
ANDW	rr	rr(rrx)	3	26	dst<-dst AND src	- ^ ^ 0 -
ANDW	rr	(rr)+	3	22	dst<-dst AND src $\mathrm{rr}<-\mathrm{rr}+2$	- ^ ^ 0 -
ANDW	RR	(rr) +	3	22	dst<-dst AND src $\mathrm{rr}<-\mathrm{rr}+2$	- ^ ^ $0-$
ANDW	rr	-(rr)	3	24	$\begin{aligned} & \mathrm{rr}<-\mathrm{rr}-2 \\ & \mathrm{dst}<-\mathrm{dst} \text { AND src } \end{aligned}$	- ^ ^ 0 -
ANDW	RR	-(rr)	3	24	rr<-rr-2   dst<-dst AND src	- ^ ^ $0-$
ANDW	(r)	rr	3	14	dst<-dst AND src	- ^ $\wedge_{0}$ -
ANDW	(r)	RR	3	14	dst<-dst AND src	- ^^ 0 -
ANDW	(rr)	rr	2	30	dst<-dst AND src	- ^^0 -
ANDW	(rr)	RR	3	30	dst<-dst AND src	- ^^ 0 -
ANDW	(rr)+	rr	3	32	dst<-dst AND src rr<-rr+2	- ^ ^ 0 - -
ANDW	(rr) +	RR	3	32	dst<-dst AND src rr<-rr+2	- ^ ^ 0 -
ANDW	NN	rr	4	32	dst<-dst AND src	- ^^ $0 \ldots$
ANDW	$N(r r x)$	rr	4	38	dst<-dst AND src	- ^^0 -
ANDW	$N(r r x)$	RR	4	38	dst<-dst AND src	- ^^0 -
ANDW	NN(rrx)	rr	5	38	dst<-dst AND src	- ^^0 -
ANDW	NN(rrx)	RR	5	38	dst<-dst AND src	- ^^ 0 -
ANDW	rr(rrx)	rr	3	34	dst<-dst AND src	- ^ ^ 0 -
ANDW	-(rr)	rr	3	32	$\mathrm{rr}<-\mathrm{rr}-2$   dst<-dst AND src	- ^ ^ 0 -
ANDW	-(rr)	RR	3	32	rr<-rr-2   dst<-dst AND src	- ^ ^ 0 -
ANDW	rr	\#NN	4	14	dst<-dst AND src	$\cdots \wedge 0-$
ANDW	RR	\#NN	4	14	dst<-dst AND src	- ^^ 0 -
ANDW	(rr)	\#NV	4	32	dst<-dst AND src	- ^^ 0 -
ANDW	NN	\#NN	6	36	dst<-dst AND src	- ^ ^ 0 -
ANDW	$N(r r x)$	\#NN	5	36	dst<-dst AND src	$\cdots \wedge \wedge 0 \cdots$
ANDW	NN(rrx)	\#NN	6	38	dst<-dst AND src	- ^^^0
ANDW	(ri)	(rr)	2	32	dst<-dst AND src	- ^^0--

## INSTRUCTION SUMMARY (Continued)

Mnemo.	dst	src	Bytes	Clock cycles	Operation	$\begin{gathered} \text { Flags } \\ \text { CZSVDH } \end{gathered}$
BAND : Bit AND						
BAND BAND	$\begin{aligned} & \text { r.b } \\ & \text { r.b } \end{aligned}$	$\begin{gathered} \text { r.b } \\ \text { r. } \mathrm{lb} \end{gathered}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 14 \\ & 14 \end{aligned}$	dst bit<-dst bit AND src bit dst bit<-dst bit AND complemented src bit	------
BCPL : Bit Complement						
BCPL	r.b		2	6	dst bit<-dst bit complemented	-----
BLD : Bit Load						
$\begin{aligned} & \text { BLD } \\ & \text { BLD } \end{aligned}$	$\begin{aligned} & \text { r.b } \\ & \text { r.b } \end{aligned}$	$\begin{aligned} & \text { r.b.b } \\ & \text { r.Ib } \end{aligned}$	3 3	14 14	dst bit<-src bit dst bit<-src bit complemented	------
BOR : Bit OR						
$\begin{aligned} & \text { BOR } \\ & \text { BOR } \end{aligned}$	$\begin{aligned} & \text { r.b } \\ & \text { r.b } \end{aligned}$	$\begin{aligned} & \text { r.b } \\ & \text { r.!b } \end{aligned}$	3	14 14	dst bit<-dst bit OR src bit dst bit<-dst bit OR complemented src bit	-----
BRES : Bit Reset						
BRES	r.b		2	6	dst bit<-0	
BSET : Bit Set						
BSET	r.b		2	6	dst bit<-1	-----
BTJF, BTJT : Bit test and jump						
$\begin{aligned} & \text { BTJF } \\ & \text { BTJT } \end{aligned}$	$\begin{aligned} & \text { r.b } \\ & \text { r.b } \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \end{aligned}$	$3$	$\begin{aligned} & 14 / 16 \\ & 14 / 16 \end{aligned}$	If test bit is $0, \mathrm{PC}<-\mathrm{PC}+\mathrm{N}$   If test bit is $1, \mathrm{PC}<-\mathrm{PC}+\mathrm{N}$	--
BXOR : Bit Exclusive OR						
BXOR BXOR	$\begin{aligned} & \text { r.b } \\ & \text { r.b } \end{aligned}$	$\begin{aligned} & \text { r.b } \\ & \text { r.!b } \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 14 \\ & 14 \end{aligned}$	dst bit<-dst bit XOR src bit dst bit<-dst bit XOR complemented src bit	------
BTSET : Bit Test and Set						
$\begin{aligned} & \text { BTSET } \\ & \text { BTSET } \end{aligned}$	$\begin{gathered} \text { r.b } \\ (\mathrm{rr}) . \mathrm{b} \end{gathered}$		$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{gathered} 8 \\ 20 \end{gathered}$	$\begin{aligned} & \text { If test bit }=0 \text {, test bit }<-1, Z<-1 \\ & \text { If test bit }=0 \text {, test bit }<-1, Z<-1 \end{aligned}$	$\begin{aligned} & -\wedge \wedge 0-- \\ & -\wedge \wedge 0-- \end{aligned}$

INSTRUCTION SUMMARY (Continued)

Mnemo.	dst	src	Bytes	Clock cycles	Operation	$\begin{gathered} \text { Flags } \\ C Z S V D H \end{gathered}$
CALL : Call a subroutine						
CALL			3	18	$\begin{aligned} & \mathrm{SSP}<-\mathrm{SSP}-2,(\mathrm{SP})< \\ & \mathrm{PC}, \mathrm{PC}<-\mathrm{dst} \end{aligned}$	- - - -
CALL	(rr)		2	16	" "	-----
CALL	(RR)		2	16	" "	- - - -
CCF : Complement Carry Flag						
CCF			1	6	$\mathrm{C}<-\mathrm{C}$   complemented	-..-.
CLR : Clear register						
CLR	$r$		2	6	dst<-0	- - - -
CLR	R		2	6	dst<-0	- - - -
CLR	(r)		2	6	dst<-0	-----
CLR	(R)		2	6	dst<-0	- - - -

INSTRUCTION SUMMARY (Continued)

Mnemo.	dst	src	Bytes	Clock cycles	Operation	$\begin{gathered} \text { Flags } \\ \mathrm{CZSVDH} \end{gathered}$
CP : Compare bytes						
CP	r	r	2	6	dst-src	$\wedge \wedge \wedge \wedge$
CP	R	R	3	10	dst-src	$\wedge \wedge \wedge \wedge$
CP	r	R	3	10	dst-src	$\wedge \wedge \wedge \wedge$
CP	R	$r$	3	10	dst-src	$\wedge \wedge \wedge$
CP	r	(r)	2	6	dst-src	$\wedge \wedge \wedge \wedge$
CP	R	(r)	3	10	dst-src	$\wedge \wedge \wedge \wedge$
CP	,	(rr)	3	12	dst-src	$\wedge \wedge \wedge \wedge$
CP	R	(rr)	3	12	dst-src	$\wedge \wedge \wedge \wedge$
CP	r	NN	4	18	dst-src	$\wedge \wedge \wedge \wedge$
CP	$r$	$N(r r x)$	4	24	dst-src	$\hat{\wedge} \wedge \wedge \wedge$
CP	R	$N(r r x)$	4	24	dst-src	$\wedge \wedge \wedge \wedge$
CP	r	NN(rrx)	5	26	dst-src	$\wedge \wedge \wedge \wedge$
CP	R	NN(rrx)	5	26	dst-src	$\wedge \wedge \wedge \wedge$
CP	r	rr(rrx)	3	22	dst-src	$\wedge \wedge \wedge \wedge$
CP	$r$	(rr) +	3	16	dst-src, $\mathrm{rr}<-\mathrm{rr}+1$	$\wedge \wedge \wedge \wedge$
CP	R	(rr) +	3	16	dst-src, $\mathrm{rr}<-\mathrm{rr}+1$	$\wedge \wedge \wedge \wedge$
CP	r	-(rr)	3	16	rr<-rr-1,dst-src	$\wedge \wedge \wedge \wedge$
CP	R	-(rr)	3	16	rr<-rr-1,dst-src	$\hat{\wedge} \wedge \wedge \wedge$
CP	(r)	r	3	10	dst-src	$\wedge \wedge \wedge \wedge$
CP	(r)	R	3	10	dst-src	$\wedge \wedge \wedge \wedge$
CP	(rr)	r	3	18	dst-src	$\wedge \wedge \wedge \wedge$
CP	(rr)	R	3	18	dst-src	$\wedge \wedge \wedge \wedge$
CP	(rr)+	r	3	22	dst-src, rr<-rr+1	$\wedge \wedge \wedge \wedge$
CP	(rr)+	R	3	22	dst-src, $\mathrm{rr}<-\mathrm{rr}+1$	$\wedge \wedge \wedge \wedge$
CP	NN	r	4	20	dst-src	$\wedge \wedge \wedge \wedge$
CP	$N(r r x)$	$r$	4	26	dst-src	$\wedge \wedge \wedge \wedge$
CP	$N(r r x)$	R	4	26	dst-src	$\wedge \wedge \wedge \wedge$
CP	NN(rrx)	r	5	28	dst-src	$\wedge \wedge \wedge \wedge$
CP	NN(rrx)	R	5	28	dst-src	$\wedge \wedge \wedge \wedge$
CP	rr(rrx)	r	3	24	dst-src	$\wedge \wedge \wedge \wedge$
CP	-(rr)	$r$	3	22	rr<-rr-1,dst-src	$\wedge \wedge \wedge \wedge$
CP	-(rr)	R	3	22	rr<-rr-1,dst-src	$\wedge \wedge \wedge \wedge$
CP	r	\#N	3	10	dst-src	$\wedge \wedge \wedge \wedge$
CP	R	\#N	3	10	dst-src	$\wedge \wedge \wedge \wedge$
CP	(rr)	\#N	3	16	dst-src	$\wedge \wedge \wedge \wedge$
CP	NN	\#N	5	22	dst-src	$\wedge \wedge \wedge \wedge$
CP	(rr)	(rr)	3	18	dst-src	$\wedge \wedge \wedge \wedge$
CP	(RR)	(rr)	3	18	dst-src	$\wedge \wedge$
CPL : Complement register						
CPL	r		2	6	dst<- NOT dst	- ^ ^ 0
CPL	R		2	6	dst<- NOT dst	$-\wedge \wedge 0$
CPL	(r)		2	6	dst<- NOT dst	$\wedge \wedge 0$
CPL	(R)		2	6	dst<- NOT dst	$\wedge \wedge 0$
CPJFI, CPJTI : Compare with post-increment						
CPJFI	(rr)	$r, N$	3	22/24	If compare not verified jump otherwise postincrement	- - - -
CPJTI	(rr)	r,N	3	22/24	If compare verified jump otherwise postincrement	- - - -

INSTRUCTION SUMMARY (Continued)

Mnemo.	dst	src	Bytes	Clock cycles	Operation	$\begin{gathered} \text { Flags } \\ \mathrm{czSVDH} \end{gathered}$
CPW : Compare word						
CPW	rr	rr	2	10	dst-src	^^^^
CPW	RR	RR	3	12	dst-src	$\wedge \wedge \wedge$
CPW	rr	RR	3	12	dst-src	$\wedge \wedge \wedge$
CPW	RR	rr	3	12	dst-src	^^^^
CPW	rr	(r)	3	14	dst-src	$\wedge \wedge \wedge$
CPW	RR	(r)	3	14	dst-src	$\wedge \wedge \wedge$
CPW	rr	(rr)	2	16	dst-src	$\wedge \wedge \wedge \wedge$
CPW	RR	(rr)	3	18	dst-src	$\wedge \wedge \wedge \wedge$
CPW	rr	NN	4	22	dst-src	^ ^ ^ ^
CPW	rr	$N(\mathrm{rrx})$	4	28	dst-src	^^^^
CPW	RR	N (rrx)	4	28	dst-sic	^^^^
CPW	rr	$\mathrm{NN}(\mathrm{rrx})$	5	30	dst-src	$\wedge \wedge \wedge \wedge$
CPW	RR	$\mathrm{NN}(\mathrm{rrx})$	5	30	dst-src	$\wedge \wedge \wedge \wedge$
CPW	rr	rr(rxx)	3	26	dst-src	$\wedge \wedge \wedge \wedge$
CPW	rr	(rr)+	3	22	dst-src   rr<-rr+2	$\wedge \wedge \wedge$
CPW	RR	(rr)+	3	22	dst-src   rr<-rr+2	$\wedge \wedge \wedge$
CPW	rr	-(rr)	3	24	$\begin{aligned} & \mathrm{rr}<-\mathrm{rr}-2 \\ & \mathrm{dst}-\mathrm{src} \end{aligned}$	$\wedge \wedge \wedge \wedge$
CPW	RR	-(rr)	3	24	$\begin{aligned} & \begin{array}{l} \mathrm{r}<-\mathrm{rr}-2 \\ \text { dst-src } \end{array} \end{aligned}$	$\wedge \wedge \wedge \wedge$
CPW	(r)	rr	3	14	dst-src	$\wedge \wedge \wedge$
CPW	(r)	RR	3	14	dst-src	$\wedge \wedge \wedge \wedge$
CPW	(rr)	rr	2	26	dst-src	^^^^
CPW	(rr)	RR	3	28	dst-src	$\wedge \wedge \wedge \wedge$
CPW	(rr) +	rr	3	30	dst-src   rr<-rr+2	$\wedge \wedge \wedge \wedge$
CPW	(rr)+	RR	3	30	dst-src $\mathrm{rr}<-\mathrm{rr}+2$	$\wedge \wedge \wedge \wedge$
CPW	NN	rr	4	30	dst-src	$\wedge \wedge \wedge \wedge$
CPW	$\mathrm{N}(\mathrm{rrx})$	rr	4	36	dst-src	$\wedge \wedge \wedge$
CPW	N(rrx)	RR	4	36	dst-src	$\wedge \wedge \wedge$
CPW	NN(rrx)	rr	5	36	dst-src	$\wedge \wedge \wedge$
CPW	$\mathrm{NN}(\mathrm{rrx})$	RR	5	36	dst-src	$\wedge \wedge \wedge$
CPW	rr(rrx)	rr	3	32	dst-src	$\wedge \wedge \wedge$
CPW	-(rr)	rr	3	30	$\begin{aligned} & \mathrm{rr<-rr-2} \\ & \text { dst-src } \end{aligned}$	$\wedge \wedge$
CPW	-(rr)	RR	3	30	$\begin{aligned} & \mathrm{rr}<-\mathrm{rr}-2 \\ & \text { dst-src } \end{aligned}$	^ ^ ^ ^
CPW	r	\#NN	4	14	dst-src	$\wedge \wedge \wedge \wedge$
CPW	RR	\#NN	4	14	dst-src	$\wedge \wedge \wedge \wedge$
CPW	(rr)	\#NN	4	30	dst-src	$\wedge \wedge \wedge$
CPW	NN	\#NN	6	34	dst-src	$\wedge \wedge \wedge$
CPW	$\mathrm{N}(\mathrm{rrx})$	\#NN	5	34	dst-src	$\wedge \wedge \wedge$
CPW	$\mathrm{NN}(\mathrm{rrx})$	\#NN	6	36	dst-src	$\wedge \wedge$
CPW	(rr)	(r)	2	32	dst-src	$\wedge \wedge$

## INSTRUCTION SUMMARY (Continued)

Mnemo.	dst	src	Bytes	Clock cycles	Operation	$\begin{gathered} \text { Flags } \\ \text { CZSVDH } \end{gathered}$
DA : Decimal adjust						
$\begin{aligned} & \text { DA } \\ & \text { DA } \\ & \text { DA } \\ & \text { DA } \end{aligned}$	$\begin{gathered} r \\ R \\ R \\ (r) \\ (R) \end{gathered}$		2 2 2 2	$\begin{aligned} & 6 \\ & 6 \\ & 6 \\ & 6 \end{aligned}$	dst<- DA dst   dst<- DA dst   dst<- DA dst   dst<- DA dst	
DEC : Decrement						
DEC   DEC   DEC   DEC	$\begin{gathered} r \\ R \\ R \\ (r) \\ (R) \end{gathered}$		2 2 2 2	6 6 6 6	dst<- dst-1   dst<- dst-1   dst<- dst-1   dst<- dst-1	$-\wedge \wedge \wedge--$ $-\wedge \wedge \wedge---~$
DECW : Decrement Word						
$\begin{aligned} & \text { DECW } \\ & \text { DECW } \end{aligned}$	$\begin{gathered} \mathrm{rr} \\ \mathrm{RR} \end{gathered}$		$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	dst<-dst-1 dst<-dst-1	-^^^^- $-\wedge \wedge \wedge$
DI : Disable Interrupts						
DI			1	6	Bit 4 of the CIC Register is set to 0	-----
DIV : Divide 16 by 8						
DIV	rr	r	2	28/20	dst / src <- dst high=remaınder   16/8 <-dst low=result	note 1
DIVWS : Divide Word Stepped 32 by 16						
DIVWS	rrhigh rrlow	rr	3	28	32/16	note 1
DJNZ : Decrement a working register and Jump if Non Zero						
DJNZ	r	N	2	10/12	$r<-r-1$, If $r=0$ then PC<-PC+N	note 2
DWJNZ : Decrement a register pair and Jump if Non Zero						
DWJNZ DWJNZ	$\begin{gathered} \mathrm{rr} \\ \mathrm{RR} \end{gathered}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \end{aligned}$	$3$	$\begin{aligned} & 12 / 16 \\ & 12 / 16 \end{aligned}$	$\mathrm{rr}<-\mathrm{rr}-1$, If $\mathrm{rr}=0$ then $\mathrm{PC}<-\mathrm{PC}+\mathrm{N}$   $R R<-R R-1$, If $R R=0$ then $P C<-P C+N$	note 2

## Notes:

1. Refer to the ST9 Programming Manual for detailed information.
2. Working registers in groups $\mathrm{D}, \mathrm{E}$ and F are not allowed.

INSTRUCTION SUMMARY (Continued)

Mnemo.	dst	src	Bytes	Clock cycles	Operation	$\begin{gathered} \text { Flags } \\ \text { CZSVDH } \end{gathered}$
EI : Enable Interrupts						
El			1	6	Bit 4 of the CICR register is set to 1	-----
EXT : Sign extend						
$\begin{aligned} & \text { EXT } \\ & \text { EXT } \end{aligned}$	$\stackrel{\mathrm{mr}}{\mathrm{RR}}$		2	10 10	$\begin{aligned} & r(7) \longrightarrow r(n) n=8-15 \\ & R(7) \longrightarrow R(n) n=8-15 \end{aligned}$	-------
HALT : Halt Operation						
HALT			2	6	Stops all internal clocks until next system reset if not in Watchdog Mode	- . . . -
INC : Increment						
$\begin{aligned} & \text { INC } \\ & \text { INC } \\ & \text { INC } \\ & \text { INC } \end{aligned}$	r $R$ (r) (R)		2 2 2 2	6 6 6 6	dst<-dst+1   dst<-dst+1   dst<-dst+1   dst<-dst+1	
INCW : Increment Word						
INCW INCW	$\begin{gathered} \mathrm{rr} \\ \mathrm{RR} \end{gathered}$		2 2	8	dst<-dst+1 dst<-dst+1	$-\wedge \wedge \wedge$ $-\wedge \wedge$
IRET : Return from Interrupt Routine						
IRET			1	16	$\begin{aligned} & \text { FLAGS<-(SSP),SSP<-SSP+1, } \\ & \text { PC }<-(S S P), S S P<-S P P+2, C I C(4)<-1 \end{aligned}$	note 1
JP : Jump to a Routine						
JP	NN		3	10	PC<-dst	- - -
JP	(rr)		2	8	PC<-dst	- - - -
JP	(RR)		2	8	PC<-dst	- - - -
JPcc	NN		3	10	IF cc(condition code) is true, PC<-dst	- - - -
JRcc : Conditional Relative Jump to a Routine						
JRcc	N		2	10/12	IF cc(condition code) is true, PC<-PC+dst	-

Note 1 : All flags are restored to original setting (before interrupt occured).

INSTRUCTION SUMMARY (Continued)

Mnemo.	dst	src	Bytes	Clock cycles	Operation	Flags CZSVDH
LD : Load byte instructions						
LD	r	$r$	2	6	dst<-src	--- - -
LD	R	R	3	10	dst<-src	-
LD	r	R	2	6	dst<-src	- - . -
LD	R	$r$	2	6	dst<-src	- -
LD	r	(r)	2	6	dst<-src	- -
LD	R	(r)	3	10	dst<-src	- .
LD	,	(rr)	2	10	dst<-src	- . . - .
LD	R	(rr)	3	12	dst<-src	-...-
LD	$r$	NN	4	18	dst<-src	- - - -
LD	$r$	$\mathrm{N}(\mathrm{rx})$	3	10	dst<-src	$\cdots$
LD	$r$	$\mathrm{N}(\mathrm{rrx})$	4	24	dst<-src	- -
LD	R	$N(r r x)$	4	24	dst<-src	- -
LD	r	$\mathrm{NN}(\mathrm{rrx})$	5	26	dst<-src	- . -
LD	R	$\mathrm{NN}(\mathrm{rrx})$	5	26	dst<-src	- .
LD	r	rr(rrx)	3	22	dst<-src	- - - -
LD	r	(ri)+	3	16	dst<-src,rr<-rr+1	-...- -
LD	R	(rr)+	3	16	dst<-src, rr<-rr+1	- -
LD	r	-(rr)	3	16	rr<-rr-1,dst<-src	- - -
LD	R	-(rr)	3	16	rr<-rr-1,dst<-src	- . -
LD	(r)	$r$	2	6	dst<-src	. . -
LD	(r)	R	3	10	dst<-src	- - -
LD	(rr)	$r$	2	10	dst<-src	- -
LD	(rr)	R	3	14	dst<-src	- -
LD	(rr)+	$r$	3	18	dst<-src, rr<-rr+1	- -
LD	(rr)+	R	3	18	dst<-src, rr<-rr+1	$\cdots$
LD	NN	$r$	4	18	dst-src	- -
LD	$N(1 x)$	$r$	3	10	dst-src	- -
LD	$N(r r x)$	$r$	4	24	dst-src	- .
LD	$N(\mathrm{rrx})$	R	4	24	dst-src	- -
LD	$\mathrm{NN}(\mathrm{rrx})$	r	5	26	dst-src	- . - -
LD	$\mathrm{NN}(\mathrm{rrx})$	R	5	26	dst-src	-....
LD	rr(rix)	r	3	22	dst-src	-....
LD	-(rr)	$r$	3	18	rre-rr-1, dst<-src	- - . -
LD	-(rr)	R	3	18	rr<-rr-1,dst<-src	-.... -
LD	r	\#N	2	6	dst<-src	- . . - -
LD	R	\#N	3	10	dst<-src	-....
LD	(rr)	\#N	3	12	dst<-src	- -
LD	NN	\#N	5	20	dst<-src	- -
LD	(rr)	(rr)	3	16	dst<-src	- . . - -
LD	(RR)	(rr)	3	16	dst<-src,	- - - -
LD	(r)+	(rr) +	2	14	$\mathrm{rr}<-\mathrm{rr}+1, \mathrm{r}<-\mathrm{r}+1$	- - - -
LD	(rr)+	(r) +	2	18	$\mathrm{rr}<-\mathrm{rr}+1, \mathrm{r}<-\mathrm{r}+1$	- - . -
LDPP,LDDP,LDPD, LDDD : Load from / to program / data memory						
LDPP	(rr)+	(rr)+	2	16	dst<-src ${ }^{(1)}$,rr<-rr+1	- - - -
LDDP	(rr)+	(rr)+	2	16	dst<-src ${ }^{(2)}$, $\mathrm{rr}<$ - $\mathrm{rr}+1$	- - . -
LDPD	(rr)+	(rr)+	2	16	dst<-src ${ }^{(3)}$ ) $\mathrm{rr}<-\mathrm{rr}+1$	-....
LDDD	(rr)+	(rr)+	2	16	dst<-src ${ }^{(4)}$,rr<-rr+1	- . - - -

Notes:

1. dst in Program Memory, src in Program Memory 3.dst in Program Memory, src in Data Memory
2. dst in Data Memory, src in Program Memory
4.dst in Data Memory, src in Data Memory

INSTRUCTION SUMMARY (Continued)

Mnemo.	dst	src	Bytes	Clock cycles	Operation	$\begin{gathered} \text { Flags } \\ \text { czSVDH } \end{gathered}$
LDW : Load word instructions						
LDW	rr	rr	2	10	dst<-src	- - - -
LDW	RR	RR	3	10	dst<-src	---.
LDW	rr	RR	3	10	dst<-src	----
LDW	RR	rr	3	10	dst<-src	- . - -
LDW	rr	(r)		10	dst<-src	-. - . -
LDW	RR	(r)	3	10	dst<-src	-.... -
LDW	rr	(rr)	2	16	dst<-src	. . . . . -
LDW	RR	(rr)	3	18	dst<-src	- - - -
LDW	rr	NN	4	22	dst<-src	- - . -
LDW	rr	$N(\mathrm{rx})$	3	16	dst<-src	- - - -
LDW	rr	$N(\mathrm{rrx})$	4	28	dst<-ssc	-....
LDW	RR	$N(r \mathrm{rx})$	4	28	dst<-src	- . . .
LDW	rr	$\mathrm{NN}(\mathrm{rrx})$	5	30	dst<-src	- . - . -
LDW	RR	$\mathrm{NN}(\mathrm{rrx})$	5	30	dst<-src	-....
LDW	rr	rr(rx)	3	24	dst<-src	-. . . -
LDW	rr	(rr)+	3	20	dst<-src, rr<-rr+2	- - . . -
LDW	RR	(rr)+	3	20	dst<-src, $\mathrm{rr}<-\mathrm{rr}+2$	-....
LDW	rr	-(rr)	3	22	rr<-rr-2,dst<-src	- - . -
LDW	RR	-(rr)	3	22	$\mathrm{rr}<-\mathrm{rr}-2, \mathrm{dst}<-\mathrm{src}$	- -
LDW	(r)	rr	3	10	dst<-src	- . . . -
LDW	(r)	RR	3	10	dst<-src	- -
LDW	(rr)	rr	2	18	dst<-src	- .
LDW	(rr)	RR	3	20	dst<-src	- - . -
LDW	(rr)+	rr	3	24	rr<-rr+2, dst<-src	- . . . -
LDW	(rr)+	RR	3	24	$\mathrm{rr}<-\mathrm{rr}+2, \mathrm{dst}<-\mathrm{src}$	.....
LDW	NN	rr	4	22	dst<-src	-. .-. -
LDW	$N(\mathrm{rx})$	rr	3	14	dst<-src	- . . -
LDW	$N(r r x)$	RR	4	26	dst<-src	.....
LDW	$N(r \mathrm{rx})$	rr	4	26	dst<-src	-. .-.
LDW	$\mathrm{NN}(\mathrm{rrx})$	RR	5	28	dst<-src	- - . -
LDW	$\mathrm{NN}(\mathrm{rrx})$	rr	5	28	dst<-src	-. .-.
LDW	rr(rrx)	rr	3	24	dst<-src	.... -
LDW	-(rr)	rr	3	26	rr<-rr-2,dst<-src	-....
LDW	-(rr)	RR	3	26	$\mathrm{rr}<-\mathrm{rr}-2, \mathrm{dst}<-\mathrm{src}$	- . . -
LDW	rr	\#NN	4	12	dst<-src	.....
LDW	RR	\#NN	4	12	dst<-src	- . . . -
LDW	(rr)	\#NN	4	22	dst<-src	-....
LDW	$\mathrm{N}(\mathrm{rrx})$	\#NN	5	28	dst<-src	. . . . -
LDW	$\mathrm{NN}(\mathrm{rrx})$	\#NN	6	30	dst<-src	- . . . -
LDW	NN	\#NN	6	26	dst<-src	-. .-. -
LDW	(rr)	(rr)	2	22	dst<-src	-

INSTRUCTION SUMMARY (Continued)

Mnemo.	dst	src	Bytes	Clock cycles	Operation	Flags CZSVDH
MUL : Multiply						
MUL	rr	r	2	22	dst <- dst x src, $8 \times 8$ multiply	note 1
NOP : No operation						
NOP			1	6	No Operation	- - - - -
OR : Logical OR between 2 bytes						
OR	r	r	2	6	dst--dst OR src	$\wedge \wedge 0$
OR	R	R	3	10	dst--dst OR src	- ^ ^0-
OR	r	R	3	10	dst--dst OR src	- ^ ^ 0 -
OR	R	r	3	10	dst--dst OR src	- ^ ^ 0
OR	r	(r)	2	6	dst--dst OR src	- ^ ^0-
OR	R	(r)	3	10	dst--dst OR src	- ^ ^ 0
OR	r	(rr)	3	12	dst--dst OR src	- ^ ^ 0
OR	R	(rr)	3	12	dst--dst OR src	-^^0
OR	r	NN	4	18	dst--dst OR src	- ^^0.
OR	r	$\mathrm{N}(\mathrm{rrx})$	4	24	dst--dst OR src	- ^ ^ 0
OR	R	$\mathrm{N}(\mathrm{rrx})$	4	24	dst--dst OR src	- ^ ^ 0
OR	r	$\mathrm{NN}(\mathrm{rrx})$	5	26	dst--dst OR src	- ^ ^ 0
OR	R	$\mathrm{NN}(\mathrm{rrx})$	5	26	dst--dst OR src	- ^ ^0-
OR	r	rr(rx)	3	22	dst<-dst OR src	-^^0-
OR	r	(rr)+	3	16	dst<-dst OR src rr<-ri+1	- ^ ^ 0 -
OR	R	(rr)+	3	16	dst<-dst OR src $\mathrm{rr}<-\mathrm{r}+1$	- ^ ^ 0 -
OR	r	-(rr)	3	16	$\mathrm{rr}<-\mathrm{rr}-1$   dst<-dst OR src	- ^ ^ 0 -
OR	R	-(rr)	3	16	rr<-rr-1   dst<-dst OR src	- ^ ^ 0 -
OR	(r)	r	3	10	dst--dst OR src	- ^ ^ 0 -
OR	(r)	R	3	10	dst--dst OR src	- ^^0
OR	(rr)	r	3	18	dst--dst OR src	- ^ ^0.
OR	(rr)	R	3	18	dst<-dst OR src	- ^^0.
OR	(rr)+	r	3	22	dst<-dst OR src rre-rr+1	- ^ ^ 0
OR	(rr)+	R	3	22	dst<-dst OR src $r r<-r r+1$	- ^ ^ 0 -
OR	NN	r	4	20	dst<-dst OR src	- ^ ^ 0 -
OR	$N(r r x)$	$r$	4	26	dst--dst OR src	- ^^0 -
OR	$N(\mathrm{rrx})$	R	4	26	dst<-dst OR src	- ^^0.
OR	NN(rrx)	r	5	28	dst--dst OR src	- ^^0
OR	$\mathrm{NN}(\mathrm{rrx})$	R	5	28	dst--dst OR src	- ^ ^0
OR	rr(rrx)	$r$	3	24	dst--dst OR src	- ^^0
OR	-(rr)	r	3	22	dst<-dst OR src rr<-rr-1	- ^ ^ 0
OR	-(rr)	R	3	22	dst<-dst OR src rr<-rr-1	- ^ ^ 0 -
OR	r	\#N	3	10	dst<-dst OR src	- ^^0
OR	R	\#N	3	10	dst--dst OR src	- ^^0
OR	(rr)	\#N	3	16	dst--dst OR src	- ^^0
OR	NN	\#N	5	24	dst--dst OR src	- ^ ^0
OR	(rr)	(rr)	3	20	dst--dst OR src	- ^ ^ 0
OR	(RR)	(rr)	3	20	dst--dst OR src	- ^ ^ 0

Note 1. Refer to ST9 programming manual for detalled information.

INSTRUCTION SUMMARY (Continued)

Mnemo.	dst	src	Bytes	Clock cycles	Operation	$\begin{gathered} \text { Flags } \\ C Z S V D H \end{gathered}$
ORW : Logical OR between two words						
ORW	rr	rr	2	10	dst<-dst OR src	-^^0-
ORW	RR	RR	3	12	dst<-dst OR src	- ^^0 -
ORW	rr	RR	3	12	dst--dst OR src	- ^ ^ 0
ORW	RR	rr	3	12	dst<-dst OR src	- ^ ^ 0
ORW	rr	(r)	3	14	dst<-dst OR src	- ^ ^ 0
ORW	RR	(r)	3	14	dst<-dst OR src	- ^ ^ 0
ORW	rr	(rr)	2	16	dst<-dst OR src	- ^ ^ 0
ORW	RR	(rr)	3	18	dst<-dst OR src	- ^ ^ 0
ORW	rr	NN	4	22	dst--dst OR src	- ^ ^ 0
ORW	rr	$N(r \mathrm{rx})$	4	28	dst--dst OR src	- ^ ^ 0
ORW	RR	$N(r \mathrm{rx})$	4	28	dst--dst OR src	- ^ ^0
ORW	rr	$\mathrm{NN}(\mathrm{rrx})$	5	30	dst<-dst OR src	- ^ ^ 0
ORW	RR	$\mathrm{NN}(\mathrm{rrx})$	5	30	dst<-dst OR src	- ^ ^ 0
ORW	rr	rr(rrx)	3	26	dst<-dst OR src	- ^^0
ORW	rr	(rr)+	3	22	dst<-dst OR src $\mathrm{rr}<-\mathrm{rr}+2$	- ^ ^ 0
ORW	RR	(rr)+	3	22	dst<-dst OR src rr<-rr+2	- ^ ^ 0
ORW	r	-(rr)	3	24	$\begin{aligned} & \begin{array}{l} \mathrm{rr}<-\mathrm{rr}-2 \\ \mathrm{dst}<-\mathrm{dst} \end{array} \mathrm{sr} \text { src } \end{aligned}$	- ^ ^ 0
ORW	RR	-(rr)	3	24	$\begin{aligned} & \mathrm{rr}<-\mathrm{rr}-2 \\ & \mathrm{dst}<\mathrm{dst} \text { OR src } \end{aligned}$	- ^ ^ 0
ORW	(r)	rr	3	14	dst<-dst OR src	- ^^0
ORW	(r)	RR	3	14	dst<-dst OR src	- ^ ^ 0
ORW	(rr)	rr	2	30	dst<-dst OR src	- ^ ^ 0
ORW	(rr)	RR	3	30	dst<-dst OR src	- ^ ^ 0
ORW	(ri)+	rr	3	32	dst<-dst OR src $\mathrm{rr}<-\mathrm{rr}+2$	- ^ ^ 0
ORW	(rr)+	RR	3	32	dst<-dst OR src $\mathrm{rr}<-\mathrm{rr}+2$	- ^ ^ 0
ORW	NN	rr	4	32	dst<-dst OR src	- ^ ^ 0
ORW	N(rrx)	rr	4	38	dst--dst OR src	- ^ ^0
ORW	$N(\mathrm{rrx})$	RR	4	38	dst--dst OR src	- ^ ^ 0
ORW	NN(rrx)	rr	5	38	dst<-dst OR src	- ^ ^ 0
ORW	NN(rrx)	RR	5	38	dst<-dst OR src	- ^ ^0
ORW	rr(rxx)	rr	3	34	dst<-dst OR src	- ^ ^ 0
ORW	-(rr)	rr	3	32	$\begin{aligned} & \text { rr<-rr-2 } \\ & \text { dst<-dst OR src } \end{aligned}$	- ^ ^ 0
ORW	-(rr)	RR	3	32	$\begin{aligned} & \begin{array}{l} \mathrm{r}<-\mathrm{rr}-2 \\ \mathrm{dst}<-\mathrm{dst} \\ \text { OR src } \end{array} \end{aligned}$	- ^ ^ 0
ORW	r	\#NN	4	14	dst<-dst OR src	- ^ ^ 0
ORW	RR	\#NN	4	14	dst<-dst OR src	- ^ ^ 0
ORW	(rr)	\#NN	4	32	dst<-dst OR src	- ^ ^ 0
ORW	NN	\#NN	6	36	dst<-dst OR src	- ^^0
ORW	$N(r r x)$	\#NN	5	36	dst<-dst OR src	$\wedge \wedge 0$
ORW	$\mathrm{NN}(\mathrm{rrx})$	\#NN	6	38	dst<-dst OR src	- ^ ^ 0
ORW	(rr)	(r)	2	32	dst<-dst OR src	-^^0

INSTRUCTION SUMMARY (Continued)

Mnemo.	dst	src	Bytes	Clock cycles	Operation	$\begin{gathered} \text { Flags } \\ \text { CZSVDH } \end{gathered}$
PEA : Push effective address on system stack						
PEA		$N(r r x)$	4	20	SSP<-USP-2, (SSP)<-rrx+N	---
PEA		NN(rrx)	5	26	SSP<-USP-2, (SSP)<-rrx+N	-----
PEA		$N(R R x)$	4	20	SSP<-USP-2, (SSP)<-RRx+N	-----
PEA		NN(RRx)	5	26	SSP<-USP-2, (SSP)<-RRx+N	-----
PEAU : Push effective address on user stack						
PEAU		$N(\mathrm{rrx})$	4	20	USP<-USP-2, (USP)<-rrx+N	---
PEAU		NN(rrx)	5	26	USP<-USP-2, (USP)<-rrx+N	-----
PEAU		$N(R R x)$	4	20	USP<-USP-2, (USP)<-RRx+N	-----
PEAU		NN(RRx)	5	26	USP<-USP-2, (USP)<-RRx+N	-----
POP : Pop system stack						
POP	$r$		2	10	dst<-(SSP), SSP<-SSP+1	----
POP	R		2	10	dst<-(SSP), SSP<-SSP+1	-----
POP	(r)		2	10	dst<-(SSP), SSP<-SSP+1	-----
POP	(R)		2	10	dst<-(SSP), SSP<-SSP+1	-----
POPU : Pop user stack						
POPU	,		2	10	dst<-(USP), USP<-USP+1	-----
POPU	R		2	10	dst<-(USP), USP<-USP+1	-----
POPU	(r)		2	10	dst<-(USP), USP<-USP+1	- .-. -
POPU	(R)		2	10	dst<-(USP), USP<-USP+1	-----
POPUW : Pop word from user stack						
POPUW	rr		2	14	dst<-(USP), USP<-USP+2	---
POPUW	RR		2	14	dst<-(USP), USP<-USP+2	-----
POPW : Pop word from system stack						
POPW	rr		2	14	dst<-(SSP), SSP<-SSP+2	-----
POPW	RR		2	14	dst<-(SSP), SSP<-SSP+2	-----
PUSH : Push system stack						
PUSH		r	2	10	SSP<-SSP-1, (SSP)<-src	----
PUSH		R	2	10	SSP<-SSP-1, (SSP)<-src	-
PUSH		(r)	2	10	SSP<-SSP-1, (SSP)<-src	- - . -
PUSH		(R)	2	10	SSP<-SSP-1, (SSP)<-src	-----
PUSH		\#N	3	16	SSP<-SSP-1, (SSP)<-src	- - - - -
PUSHU : Push user stack						
PUSHU		$r$	2	10	USP<-USP-1, (USP)<-src	-
PUSHU		R	2	10	USP<-USP-1, (USP)<-src	--. --
PUSHU		(r)	2	10	USP<-USP-1, (USP)<-src	---- -
PUSHU		(R)	2	10	USP<-USP-1, (USP)<-src	-----
PUSHU		\#N	3	16	USP<-USP-1, (USP)<-src	-----
PUSHUW : Push word on user stack						
PUSHUW		rr	2	12	USP<-USP-2, (USP)<-src	--
PUSHUW		RR	2	12	USP<-USP-2, (USP)<-src	--...-
PUSHUW		\#NN	4	20	USP<-USP-2, (USP)<-src	.-...-
PUSHW : Push Word on System Stack						
PUSHW		rr	2	12	SSP<-SSP-2, (SSP)<-src	----
PUSHW		RR	2	12	SSP<-SSP-2, (SSP)<-src	--. - -
PUSHW		\#NN	4	20	SSP<-SSP-2, (SSP)<-src	---.--

INSTRUCTION SUMMARY (Continued)

Mnemo.	dst	src	Bytes	Clock cycles	Operation	$\begin{gathered} \text { Flags } \\ \text { CZSVDH } \end{gathered}$
RCF : Reset carry flag						
RCF			1	6	C <-0	0....-
RET : Return from subroutine						
RET			1	12	PC <- (SSP), SSP <- SPP+2	-----
RLC : Rotate left through carry						
RLC	$r$		2	6	$\begin{aligned} & \operatorname{dst}(0)<-C, C<-\operatorname{dst}(7) \\ & \operatorname{dst}(n+1)<-\operatorname{dst}(n) \mathrm{n}=0-6 \end{aligned}$	^^^^ - -
RLC	R		2	6		^^^^. -
RLC	(r)		2	6	" "	^^^^.
RLC	(R)		2	6	" "	$\wedge \wedge \wedge \wedge$.


RLCW : Rotate word left through carry					
RLCW RLCW	rr RR	2 2	8	$\begin{aligned} & \operatorname{dst}(0)<-C, C<-\operatorname{dst}(15) \\ & \operatorname{dst}(\mathrm{n}+1)<-\operatorname{dst}(\mathrm{n}) \mathrm{n}=0-14 \end{aligned}$	
ROL : Rotate left					
ROL	r	2	6	$\begin{aligned} & C<-\operatorname{dst}(7), \operatorname{dst}(0)<-\operatorname{dst}(7) \\ & \mathrm{dst}(\mathrm{n}+1)<-\operatorname{dst}(\mathrm{n}) \mathrm{n}=0-6 \end{aligned}$	$\wedge \wedge \wedge \wedge$
ROL	R	2	6		^^^^.
ROL	(r)	2	6	" "	$\wedge \wedge \wedge \wedge$.
ROL	(R)	2	6	" "	$\wedge \wedge \wedge \wedge$
ROR : Rotate right					
ROR	r	2	6	$\begin{aligned} & C<-\operatorname{dst}(0), \operatorname{dst}(7)<-\operatorname{dst}(0) \\ & \operatorname{dst}(n)<-\operatorname{dst}(n+1) \mathrm{n}=0-6 \end{aligned}$	$\wedge \wedge \wedge \wedge$
ROR	R	2	6		^^^^
ROR	(r)	2	6	" "	$\wedge \wedge \wedge \wedge$
ROR	(R)	2	6	" "	$\wedge \wedge \wedge \wedge$

RRC : Rotate right through carry

RRC	r	2	6	$\begin{aligned} & \operatorname{dst}(7)<-C, C<-d s t(0) \\ & \operatorname{dst}(n)<-\operatorname{dst}(n+1) n=0-6 \end{aligned}$	$\wedge \wedge \wedge \wedge$
RRC	R	2	6		$\wedge \wedge \wedge \wedge$.
RRC	(r)	2	6	" "	$\wedge \wedge \wedge \wedge$.
RRC	(R)	2	6	" "	^^^^ - -
RRCW : Rotate word right through carry					
		2	8	$\operatorname{dst}(15)<-C, C<-d s t(0)$   $\operatorname{dst}(n)<-\operatorname{dst}(n+1) \quad n=0-14$	$\wedge \wedge \wedge \wedge$
RRCW	RR	2	8		^^^^

SGS-THOMSON
35/48
NMCROELECTRONDCS

INSTRUCTION SUMMARY (Continued)

Mnemo.	dst	src	Bytes	Clock cycles	Operation	$\begin{gathered} \text { Flags } \\ \mathrm{czSVDH} \end{gathered}$
SBC : Subtraction of 2 bytes with carry						
SBC	$r$	r	2	6	dst<-dst-src-c	$\wedge \wedge \wedge \wedge 1 \wedge$
SBC	R	R	3	10	dst<-dst-stc-C	^^^^1^
SBC	r	R	3	10	dst<-dst-src-C	$\wedge \wedge \wedge \wedge 1 \wedge$
SBC	R	r	3	10	dst<-dst-src-C	$\wedge \wedge \wedge \wedge 1 \wedge$
SBC	r	(r)	2	6	dst<-dst-stc-C	^ ^ ^ ^1^
SBC	R	(r)	3	10	dst<-dst-stc-C	^^^^1^
SBC	r	(rr)	3	12	dst<-dst-stc-C	^ ^ ^ ^1^
SBC	R	(rr)	3	12	dst<-dst-src-C	$\wedge \wedge \wedge \wedge 1 \wedge$
SBC	r	NN	4	18	dst<-dst-src-C	$\wedge \wedge \wedge \wedge 1 \wedge$
SBC	r	$\mathrm{N}(\mathrm{rrx})$	4	24	dst<-dst-src-C	$\wedge \wedge \wedge \wedge 1 \wedge$
SBC	R	$N(\mathrm{rrx})$	4	24	dst<-dst-src-C	$\wedge \wedge \wedge \wedge 1 \wedge$
SBC	r	$\mathrm{NN}(\mathrm{rrx})$	5	26	dst<-dst-scc-C	$\wedge \wedge \wedge \wedge 1 \wedge$
SBC	R	$\mathrm{NN}(\mathrm{rrx})$	5	26	dst<-dst-stc-C	^ ^ ^ ^1^
SBC	r	rr(rx)	3	22	dst<-dst-src-C	$\wedge \wedge \wedge \wedge 1 \wedge$
SBC	r	(rr)+	3	16	$\begin{aligned} & \text { dst<-dst-src-C } \\ & \mathrm{rr}<-\mathrm{rr}+1 \end{aligned}$	$\wedge \wedge \wedge \wedge 1 \wedge$
SBC	R	(rr)+	3	16	$\begin{aligned} & \text { dst<-dst-src-C } \\ & \mathrm{rr}<-\mathrm{rr}+1 \end{aligned}$	$\wedge \wedge \wedge \wedge 1 \wedge$
SBC	r	-(rr)	3	16	$\begin{aligned} & \mathrm{rr}<-\mathrm{rr}-1 \\ & \mathrm{dst}<-\mathrm{dst}-\mathrm{src}-\mathrm{C} \end{aligned}$	$\wedge \wedge \wedge \wedge 1 \wedge$
SBC	R	-(rr)	3	16	$\begin{aligned} & \mathrm{rr}<-\mathrm{rr}-1 \\ & \mathrm{dst}<-\mathrm{dst}-\mathrm{src}-\mathrm{C} \end{aligned}$	$\wedge \wedge \wedge \wedge 1 \wedge$
SBC	(r)	r	3	10	dst<-dst-src-C	$\wedge \wedge \wedge \wedge 1 \wedge$
SBC	(r)	R	3	10	dst<-dst-src-C	^ ^ ^ ^1^
SBC	(rr)	r	3	18	dst<-dst-src-C	$\wedge \wedge \wedge \wedge 1 \wedge$
SBC	(rr)	R	3	18	dst<-dst-src-C	$\wedge \wedge \wedge \wedge 1 \wedge$
SBC	(rr)+	r	3	22	$\begin{aligned} & \text { dst<-dst-src-C } \\ & \mathrm{rr}<-\mathrm{rr}+1 \end{aligned}$	$\wedge \wedge \wedge \wedge 1 \wedge$
SBC	(rr)+	R	3	22	$\begin{aligned} & \text { dst<-dst-src-C } \\ & \mathrm{rr}<-\mathrm{rr}+1 \end{aligned}$	$\wedge \wedge \wedge \wedge 1 \wedge$
SBC	NN	r	4	20	dst<-dst-src-C	$\wedge \wedge \wedge \wedge 1 \wedge$
SBC	$N(r \mathrm{rx})$	r	4	26	dst<-dst-scc-C	$\wedge \wedge \wedge \wedge 1 \wedge$
SBC	$N(\mathrm{rrx})$	R	4	26	dst<-dst-src-C	$\wedge \wedge \wedge \wedge 1 \wedge$
SBC	$\mathrm{NN}(\mathrm{rrx})$	$r$	5	28	dst<-dst-src-C	$\wedge \wedge \wedge \wedge 1 \wedge$
SBC	$\mathrm{NN}(\mathrm{rrx})$	R	5	28	dst<-dst-src-C	$\wedge \wedge \wedge \wedge 1 \wedge$
SBC	$\mathrm{rr}(\mathrm{rrx})$	r	3	24	dst<-dst-src-C	$\wedge \wedge \wedge \wedge 1 \wedge$
SBC	-(rr)	$r$	3	22	$\begin{aligned} & \mathrm{rr}<-\mathrm{rr}-1 \\ & \mathrm{dst}<\text { dst-src-C } \end{aligned}$	$\wedge \wedge \wedge 110$
SBC	-(rr)	R	3	22	$\begin{aligned} & \mathrm{rr}<-\mathrm{rr}-1 \\ & \mathrm{dst}<\text { dst-src-C } \end{aligned}$	$\wedge \wedge \wedge 110$
SBC	$r$	\#N	3	10	dst<-dst-src-C	$\wedge \wedge \wedge \wedge 1 \wedge$
SBC	R	\#N	3	10	dst<-dst-src-C	$\wedge \wedge \wedge \wedge 1 \wedge$
SBC	(rr)	\#N	3	16	dst<-dst-src-C	$\wedge \wedge \wedge \wedge 1 \wedge$
SBC	NN	\#N	5	24	dst<-dst-stc-C	$\wedge \wedge \wedge \wedge 1 \wedge$
SBC	(rr)	(rr)	3	20	dst<-dst-src-C	$\wedge \wedge \wedge \wedge 1 \wedge$
SBC	(RR)	(rr)	3	20	dst<-dst-src-C	$\wedge \wedge \wedge 110$

INSTRUCTION SUMMARY (Continued)

Mnemo.	dst	src	Bytes	Clock cycles	Operation		$\begin{aligned} & \text { Flags } \\ & Z S V D H \end{aligned}$
SBCW : Subtract word with carry							
SBCW	rr	rr	2	10	dst<-dst-src-C	$\wedge$	$\wedge \wedge \wedge$ ? ?
SBCW	RR	RR	3	12	dst<-dst-src-C		$\wedge \wedge \wedge$ ? ?
SBCW	rr	RR	3	12	dst--dst-src-C		$\wedge \wedge \wedge ?$ ?
SBCW	RR	rr	3	12	dst<-dst-src-C	$\wedge$	$\wedge \wedge \wedge ?$ ?
SBCW	rr	(r)	3	14	dst--dst-src-C	$\wedge$	$\wedge \wedge \wedge$ ? ?
SBCW	RR	(r)	3	14	dst--dst-src-C	$\wedge$	$\wedge \wedge \wedge$ ? ?
SBCW	rr	(rr)	2	16	dst<-dst-src-C		$\wedge \wedge \wedge$ ? ?
SBCW	RR	(rr)	3	18	dst<-dst-src-C		$\wedge \wedge \wedge$ ? ?
SBCW	rr	NN	4	22	dst<-dst-src-C		$\wedge \wedge \wedge$ ? ?
SBCW	rr	$N(r x)$	4	28	dst<-dst-src-C	$\wedge$	$\wedge \wedge \wedge$ ? ?
SBCW	RR	$N(r r x)$	4	28	dst<-dst-src-C	$\wedge$	$\wedge \wedge \wedge$ ? ?
SBCW	rr	NN(rrx)	5	30	dst<-dst-src-C		$\wedge \wedge \wedge$ ? ?
SBCW	RR	NN(rrx)	5	30	dst<-dst-src-C		$\wedge \wedge \wedge$ ? ?
SBCW	rr	rr(rrx)	3	26	dst<-dst-src-C		$\wedge \wedge \wedge$ ? ?
SBCW	rr	(rr) +	3	22	$\begin{aligned} & \text { dst<-dst-src-C } \\ & \mathrm{rr}<-\mathrm{rr}+2 \end{aligned}$	$\wedge$	$\wedge \wedge \wedge$ ? ?
SBCW	RR	(rr)+	3	22	$\begin{aligned} & \mathrm{dst}<-\mathrm{dst}+\mathrm{src}+\mathrm{C} \\ & \mathrm{rr}<-\mathrm{rr}+2 \end{aligned}$	$\wedge$	$\wedge \wedge \wedge ? ~ ? ~$
SBCW	rr	-(rr)	3	24	$\begin{aligned} & \mathrm{rr}<-\mathrm{rr}-2 \\ & \mathrm{dst}<-\mathrm{dst}-\mathrm{src}-\mathrm{C} \end{aligned}$	$\wedge$	$\wedge \wedge \wedge ? ~ ? ~$
SBCW	RR	-(rr)	3	24	$\begin{aligned} & \mathrm{rr}<-\mathrm{rr}-2 \\ & \mathrm{dst}<-\mathrm{dst}-\mathrm{src}-\mathrm{C} \end{aligned}$	$\wedge$	$\wedge \wedge \wedge ? ~ ? ~$
SBCW	(r)	rr	3	14	dst<-dst-src-C	$\wedge$	$\wedge \wedge \wedge$ ? ?
SBCW	(r)	RR	3	14	dst<-dst-src-C		$\wedge \wedge \wedge$ ? ?
SBCW	(rr)	rr	2	30	dst<-dst-src-C		$\wedge \wedge \wedge$ ? ?
SBCW	(rr)	RR	3	30	dst<-dst-src-C	$\wedge$	$\wedge \wedge \wedge$ ? ?
SBCW	(rr) +	rr	3	32	$\begin{aligned} & \text { dst<-dst-src-C } \\ & \mathrm{rr}<-\mathrm{rr}+2 \end{aligned}$	$\wedge$	$\wedge \wedge \wedge$ ? ?
SBCW	(rr)+	RR	3	32	$\begin{aligned} & \mathrm{dst}<-\mathrm{dst}-\mathrm{src}-\mathrm{C} \\ & \mathrm{rr}<-\mathrm{rr}+2 \end{aligned}$	$\wedge$	$\wedge \wedge \wedge ?$ ?
SBCW	NN	rr	4	32	dst<-dst-src-C	$\wedge$	$\wedge \wedge \wedge$ ? ?
SBCW	$N(r r x)$	rr	4	38	dst<-dst-src-C	$\wedge$	$\wedge \wedge \wedge$ ? ?
SBCW	$N(r r x)$	RR	4	38	dst<-dst-src-C	$\wedge$	$\wedge \wedge \wedge$ ? ?
SBCW	NN(rrx)	rr	5	38	dst<-dst-src-C		$\wedge \wedge \wedge$ ? ?
SBCW	NN(rrx)	RR	5	38	dst<-dst-src-C	$\wedge$	
SBCW	r(rrx)	rr	3	34	dst<-dst-src-C	$\wedge$	
SBCW	-(rr)	rr	3	32	$\begin{aligned} & \mathrm{rr}<-\mathrm{rr}-2 \\ & \mathrm{dst}<-\mathrm{dst}-\mathrm{src}-\mathrm{C} \end{aligned}$	$\wedge$	$\wedge \wedge \wedge$ ?
SBCW	-(rr)	RR	3	32	$\begin{aligned} & \mathrm{rr}<-\mathrm{rr}-2 \\ & \mathrm{dst}<-\mathrm{dst}-\mathrm{src}-\mathrm{C} \end{aligned}$	$\wedge$	$\wedge \wedge \wedge ? ?$
SBCW	rr	\#NN	4	14	dst<-dst-src-C		$\wedge \wedge \wedge$ ? ?
SBCW	RR	\#NN	4	14	dst<-dst-src-C		$\wedge \wedge \wedge$ ? ?
SBCW	(rr)	\#NN	4	32	dst<-dst-src-C		$\wedge \wedge \wedge$ ? ?
SBCW	NN	\#NN	6	36	dst<-dst-src-C		$\wedge \wedge \wedge ?$ ?
SBCW	$N(r r x)$	\#NN	5	36	dst<-dst-src-C		
SBCW	NN(rrx)	\#NN	6	38	dst<-dst-src-C		$\wedge \wedge \wedge$ ? ?
SBCW	(rr)	(rr)	2	32	dst<-dst-src-C		$\wedge \wedge \wedge$ ? ?

INSTRUCTION SUMMARY (Continued)

Mnemo.	dst	src	Bytes	Clock cycles	Operation	$\begin{gathered} \text { Flags } \\ \text { CZSVD } \end{gathered}$
SCF : Set carry flag						
SCF			1	6	$\mathrm{C}<-1$	1----
SDM : Set data memory						
SDM			1	6	Set Data Memory $\mathrm{DP}_{2}<1$ Note 1	-----
SLA : Shift left arithmetic						
SLA	$\begin{gathered} r \\ R \\ R \\ (r r) \end{gathered}$		$\begin{aligned} & 2 \\ & 3 \\ & 3 \end{aligned}$	$\begin{gathered} 6 \\ 10 \\ 20 \end{gathered}$	$\begin{gathered} \text { dst } \mathrm{C}<-\operatorname{dst}(7), \operatorname{dst}(0)<-0 \\ \operatorname{dst}(\mathrm{n}+1)<-\operatorname{dst}(\mathrm{n}) \mathrm{n}=0-6 \\ u \\ " \end{gathered}$	
SLAW : Shift word left arithmetic						
SLAW	rr   RR   (rr)		$\begin{aligned} & 2 \\ & 3 \\ & 2 \end{aligned}$	$\begin{aligned} & 10 \\ & 12 \\ & 32 \end{aligned}$	$\begin{aligned} & \mathrm{C}<-\operatorname{dst}(15), \operatorname{dst}(0)<-0 \\ & \mathrm{dst}(n+1)<-\operatorname{dst}(n) \mathrm{n}=1-14 \end{aligned}$	$\begin{aligned} & \wedge \wedge \wedge \wedge-- \\ & \wedge \wedge \wedge \wedge-- \end{aligned}$
SPM : Set program memory						
SPM			1	6	Set Program Memory DP<-0 Note 2	-----
SPP : Set page pointer						
SPP		\#N	2	6	Set Page Pointer	-----
SRA : Shift right arithmetic						
SRA	r		2	6	$\begin{aligned} & \operatorname{dst}(7)<-\operatorname{dst}(7), C<-\operatorname{dst}(0) \\ & \operatorname{dst}(n)<-\operatorname{dst}(\mathrm{n}+1) \mathrm{n}=0-6 \end{aligned}$	^^^^0^
SRA	R		2	6	" "	^^^^0^
SRA	(r)		2	6	.	^^^^0^
SRA	(R)		2	6	"	^^^^0^
SRAW : Shift word right arithmetic						
SRAW	rr		2	6	$\begin{aligned} & \operatorname{dst}(15)<-\operatorname{dst}(15), \mathrm{C}<-\operatorname{dst}(0) \\ & \operatorname{dst}(\mathrm{n})<-\operatorname{dst}(\mathrm{n}+1) \mathrm{n}=0-14 \end{aligned}$	^^^0--
SRAW	RR		2	8	" "	^^^0--

## Notes:

1 Following this instruction, all addressing modes referring to address spaces will refer to the Data Space.
2 Following this instructın, all addressing modes referring to address spaces will refer to the Program Space, except for the following instructions which operate with Dataspace independently of the setting of the DP flag:
PUSH(W)/PUSHU(W), POP(W)/POPU(W), PEA/PEAU, and CALL, RET, IRET and interrupt execution (assuming the Stack Pointers are not pointing to the Register File).

INSTRUCTION SUMMARY (Continued)

Mnemo.	dst	src	Bytes	Clock cycles	Operation	$\begin{gathered} \text { Flags } \\ \text { CZSVDH } \end{gathered}$
SRP : Set register pointer						
SRP		\#N	2	6	Set Register Pointer	-
SRP0 : Set register pointer 0						
SRPO		\#N	2	6	Set Register Pointer 0	---
SRP1 : Set register pointer 1						
SRP1		\#N	2	6	Set Register Pointer 1	..-.-


v 1－v v v v	2ds－1sp－＞isp	02	$\varepsilon$	（11）	（ $y$ प）	gกS
vトv v v v	01s－1sp－＞1sp	02	$\varepsilon$	（1）	（ $\downarrow$ ）	8กS
v 1 v v v v	ग¢S－1sp－＞1sp	七乙	G	N\＃	NN	gกS
v1v v v v	2as－1sp－＞15p	91	$\varepsilon$	N\＃	（1）	gกS
vトv v v v	2x－1sp－＞1sp	Of	$\varepsilon$	N\＃	y	gกs
v $\downarrow$ v v v	0¢S－1sp－＞1sp	Of	$\varepsilon$	N\＃	1	gกS
	0ıs－lsp－＞1sp					
vトv v v v	$\begin{array}{r} 1-1 \lambda->11 \\ 0 \text { as-1sp->isp } \end{array}$	乙乙	$\varepsilon$	y	（11）－	gกs
vトv v v v	$\xrightarrow{1-\lambda-\gg 1}$	ટ己	$\varepsilon$	1	（」）－	8กS
v v v v	02s－lsp－＞1sp	七乙	$\varepsilon$	1	（xı） 1	gกs
$v \cdot 1 v v^{\text {v }}$	0．s－1sp－＞1sp	82	G	y	（x＾1） NN	8กS
$v \vdash \vee v v v$	01s－lsp－＞1sp	82	G	1	$(x \Perp) \mathrm{NN}$	8กS
v 1 v v v v	21s－1sp－＞1sp	92	†	H	$(\mathrm{x} \mu) \mathrm{N}$	gกS
v1v＊vv	21s－1sp－＞1sp	92	$\downarrow$	1	$(x \perp 1) N$	gกS
vトv v v v	0xs－1sp－＞1sp	02	$\downarrow$	1	NN	gกs
	$1+1$－＞11					
v 1 v v v v	$\begin{array}{r} 0 \text { دs-1sp->1sp } \\ 1+\mu->\lambda 1 \end{array}$	乙乙	$\varepsilon$	y	＋（」）	gกs
v 1 v v v v	0－1s－lsp－＞1sp	乙乙	$\varepsilon$	1	＋（ل）	8กS
v 1 vvv	01s－1sp－＞1sp	81	$\varepsilon$	y	（」）	gns
v 1 vvv	0．s－1sp－＞1sp	81	$\varepsilon$	1	（1）	gกs
v 1 v v v	2．s－1sp－＞1sp	아	$\varepsilon$	y	（」）	gกs
v1vvv＊	01s－1sp－＞1sp	O1．	$\varepsilon$	$\downarrow$	（ 1 ）	ans
	0x－1sp－＞1sp					
vトv v v v	｜－11－＞1」	91	$\varepsilon$	（11）－	y	gกS
	01s－lsp－＞1sp					
vトv v v v	$1-\downarrow$－＞1」	91	$\varepsilon$	（11）－	1	gกS
	$1+1$－＞11					
v1vvvv	0ıs－lsp－＞1sp	91	$\varepsilon$	＋（1）	y	gกs
	$1+11->11$					
v 1 v v v v	ว－s－1sp－＞1sp	91	$\varepsilon$	$+(\Lambda)$	1	gกS
v 1 vvv	0ıs－1sp－＞1sp	乙	$\varepsilon$	（xı1） 1	1	gกS
v 1 vvv	งมs－1sp－＞1sp	92	9	（xı1） NN	y	gกs
vLvvvo	0．s－1sp－＞1sp	92	G	（xı） NN	1	gกs
$v 1 \mathrm{v} v \mathrm{v}$	0ıs－lsp－＞1sp	七乙	$\downarrow$	$(\mathrm{x} 11) \mathrm{N}$	4	gกs
$v 1 v v v v$	01s－1sp－＞1sp	$\dagger$ ¢	†	（x」） N		ans
$v \vdash v v v^{\text {v }}$	गss－1sp－＞1sp	81	†	NN	1	gกs
$v \vdash v \vee v{ }^{\text {d }}$	วas－lsp－＞1sp	21	$\varepsilon$	（ 1 ）	y	gกs
v 1 v v v	2as－lsp－＞isp	て1	$\varepsilon$	（ $\downarrow$ ）	1	gกs
v 1 vvvv	01s－1sp－＞1sp	O1	$\varepsilon$	（1）	y	gกs
$v \vdash v \vee v{ }^{\text {v }}$	01s－1sp－＞1sp	9	乙	（ 1	1	gกS
v 1 vvv	01s－1sp－＞1sp	O1	$\varepsilon$	1	Y	8กS
$v \vdash v v^{\text {v }}$	0．s－1sp－＞1sp	O1．	$\varepsilon$	y	1	gกs
$v \vdash v \vee v v$	0ıs－1sp－＞isp	O1－	$\varepsilon$	y	y	gns
$v \vdash v<v$ v	0xs－lsp－＞1sp	9	乙	1	1	gกs
	uolyesado	səןŋっ Үプロ	solKg	0.5	ISp	＇omouw

（pənu！̣uoう）$\wedge$ UVWWกS NOI

INSTRUCTION SUMMARY (Continued)

Mnemo.	dst	src	Bytes	Clock cycles	Operation	$\begin{gathered} \text { Flags } \\ \mathrm{CZSVDH} \\ \hline \end{gathered}$
SUBW : Subtract words						
SUBW	rr	rr	2	10	dst--dst-src	$\wedge \wedge \wedge \wedge ? ?$
SUBW	RR	RR	3	12	dst<-dst-src	$\wedge \wedge \wedge \wedge ? ?$
SUBW	rr	RR	3	12	dst--dst-src	$\wedge \wedge \wedge \wedge ? ?$
SUBW	RR	rr	3	12	dst<-dst-src	$\wedge \wedge \wedge \wedge ? ?$
SUBW	rr	(r)	3	14	dst<-dst-src	$\wedge \wedge \wedge \wedge ? ?$
SUBW	RR	(r)	3	14	dst--dst-src	$\wedge \wedge \wedge \wedge ? ?$
SUBW	rr	(rr)	2	16	dst--dst-src	
SUBW	RR	(rr)	3	18	dst<-dst-src	$\wedge \wedge \wedge \wedge ? ?$
SUBW	rr	NN	4	22	dst--dst-src	$\wedge \wedge \wedge \wedge ? ?$
SUBW	rr	$\mathrm{N}(\mathrm{rrx})$	4	28	dst<-dst-src	$\wedge \wedge \wedge \wedge ? ?$
SUBW	RR	$\mathrm{N}(\mathrm{rrx})$	4	28	dst<-dst-src	$\wedge \wedge \wedge \wedge ? ?$
SUBW	rr	$\mathrm{NN}(\mathrm{rrx})$	5	30	dst<-dst-src	$\wedge \wedge \wedge \wedge ? ?$
SUBW	RR	$\mathrm{NN}(\mathrm{rrx})$	5	30	dst--dst-src	$\wedge \wedge \wedge \wedge ? ?$
SUBW	rr	rr(rrx)	3	26	dst--dst-src	$\wedge \wedge \wedge \wedge ? ?$
SUBW	rr	(rr)+	3	22	dst<-dst-src   $\mathrm{rr}<-\mathrm{rr}+2$	$\wedge \wedge \wedge \wedge ? ?$
SUBW	RR	(rr)+	3	22	dst<-dst-src   $\mathrm{rr}<-\mathrm{rr}+2$	$\wedge \wedge \wedge \wedge ? ~ ? ~$
SUBW	rr	-(rr)	3	24	$\mathrm{rr}<-\mathrm{rr}-2$   dst--dst-src	$\wedge \wedge \wedge \wedge ? ?$
SUBW	RR	-(rr)	3	24	$\begin{aligned} & \mathrm{rr}<-\mathrm{rr}-2 \\ & \mathrm{dst}<-\mathrm{dst} t-\mathrm{src} \end{aligned}$	$\wedge \wedge \wedge \wedge ? ?$
SUBW	(r)	rr	3	14	dst<-dst-src	
SUBW	(r)	RR	3	14	dst<-dst-src	$\wedge \wedge \wedge \wedge ? ?$
SUBW	(rr)	rr	2	30	dst<-dst-src	$\wedge \wedge \wedge \wedge ? ?$
SUBW	(rr)	RR	3	30	dst<-dst-src	$\wedge \wedge \wedge \wedge ? ?$
SUBW	(rr)+	rr	3	32	dst<-dst-src   $\mathrm{rr}<-\mathrm{rr}+2$	$\wedge \wedge \wedge \wedge ? ?$
SUBW	(rr)+	RR	3	32	dst<-dst-src   $\mathrm{rr}<-\mathrm{rr}+2$	
SUBW	NN	rr	4	32	dst<-dst-src	$\wedge \wedge \wedge \wedge ? ?$
SUBW	$N(r r x)$	rr	4	38	dst<-dst-src	$\wedge \wedge \wedge \wedge ? ?$
SUBW	$N(\mathrm{rrx})$	RR	4	38	dst<-dst-src	$\wedge \wedge \wedge \wedge ? ?$
SUBW	NN(rix)	rr	5	38	dst--dst-src	$\wedge \wedge \wedge \wedge ? ?$
SUBW	$\mathrm{NN}(\mathrm{rrx})$	RR	5	38	dst<-dst-src	$\wedge \wedge \wedge \wedge ? ?$
SUBW	rr(rxx)	rr	3	34	dst--dst-src	$\wedge \wedge \wedge \wedge ? ?$
SUBW	-(rr)	rr	3	32	$\begin{aligned} & \mathrm{rr}<-\mathrm{rr}-2 \\ & \mathrm{dst}<-\mathrm{dst}-\mathrm{src} \end{aligned}$	$\wedge \wedge \wedge \wedge ? ?$
SUBW	-(rr)	RR	3	32	rr<-rr-2   dst-dst-src	$\wedge \wedge \wedge \wedge ? ?$
SUBW	rr	\#NN	4	14	dst<-dst-ssc	
SUBW	RR	\#NN	4	14	dst<-dst-src	$\wedge \wedge \wedge \wedge ? ?$
SUBW	(rr)	\#NN	4	32	dst<-dst-src	
SUBW	NN	\#NN	6	36	dst<-dst-src	$\wedge \wedge \wedge \wedge ? ?$
SUBW	$N(r x)$	\#NN	5	36	dst<-dst-src	$\wedge \wedge \wedge \wedge ? ?$
SUBW	$\mathrm{NN}(\mathrm{rx})$	\#NN	6	38	dst<-dst-src	$\wedge \wedge \wedge \wedge ? ?$
SUBW	(rr)	(rr)	2	32	dst<-dst-src	$\wedge \wedge \wedge \wedge ? ?$
SWAP : Swap nibbles						
SWAP	r		2	8	$\mathrm{dst}(0-3) \ll>d s t(4-7)$	?^^ ?
SWAP	R			8	$\mathrm{dst}(0-3)<\longrightarrow \mathrm{dst}(4-7)$	?^^?
SWAP	(r)			8	$\mathrm{dst}(0-3)<\longrightarrow \mathrm{dst}(4-7)$	?^^? -
SWAP	(R)		2	8	$\mathrm{dst}(0-3)<\longrightarrow \mathrm{dst}(4-7)$	?^^ ?

INSTRUCTION SUMMARY (Continued)

Mnemo.	dst	src	Bytes	Clock cycles	Operation	$\begin{gathered} \text { Flags } \\ \text { CZSVD } \end{gathered}$
TCM : Test and complement byte under mask						
TCM	r	r	2	6	NOT dst AND src	- ^ ^ 0
TCM	R	R	3	10	NOT dst AND src	- ^^ ${ }^{\text {^ }}$
TCM	r	R	3	10	NOT dst AND src	- ^^0 -
TCM	R	$r$	3	10	NOT dst AND src	- ^^0
TCM	r	(r)	2	6	NOT dst AND src	- ^^0
TCM	R	(r)	3	10	NOT dst AND src	- ^ ^ 0
TCM	r	(rr)	3	12	NOT dst AND src	- ^^0 -
TCM	R	(rr)	3	12	NOT dst AND src	- ^^0
TCM	r	NN	4	18	NOT dst AND src	- ^ ^ 0
TCM	r	$\mathrm{N}(\mathrm{rrx})$	4	24	NOT dst AND src	- ^^0
TCM	R	$N(r \mathrm{r})$	4	24	NOT dst AND src	- ^^0 -
TCM	$r$	$\mathrm{NN}(\mathrm{rrx})$	5	26	NOT dst AND src	- ^^0 -
TCM	R	$\mathrm{NN}(\mathrm{rrx})$	5	26	NOT dst AND src	- ^^0
TCM	r	rr(rrx)	3	22	NOT dst AND src	- ^^0
TCM	r	(rr)+	3	16	NOT dst AND src rr<-rr+1	- ^ ^ 0
TCM	R	(ri)+	3	16	NOT dst AND src $\mathrm{rr}<-\mathrm{rr}+1$	- ^ ^ 0
TCM	r	-(rr)	3	16	rr<-rr-1   NOT dst AND src	- ^ ^ 0
TCM	R	-(rr)	3	16	$\begin{aligned} & \mathrm{rr}<-\mathrm{rr}-1 \\ & \text { NOT dst AND src } \end{aligned}$	- ^^0-
TCM	(r)	$r$	3	10	NOT dst AND src	- ^ ^ 0
TCM	(r)	R	3	10	NOT dst AND src	- ^^0
TCM	(r)	$r$	3	18	NOT dst AND src	- ^ ^ 0
TCM	(rr)	R	3	18	NOT dst AND src	- ^^0-
TCM	(rr)+	r	3	22	NOT dst AND src $\mathrm{rr}<-\mathrm{rr}+1$	- ^ ^ 0
тCM	(rr)+	R	3	22	dst<-ds AND src $\mathrm{rr}<-\mathrm{rr}+1$	- ^ ^ 0
TCM	NN	r	4	20	NOT dst AND src	- ^ ^ 0
TCM	$\mathrm{N}(\mathrm{rrx})$	r	4	26	NOT dst AND src	- ^ ^ 0
TCM	$N(\mathrm{rrx})$	R	4	26	NOT dst AND src	- ^^ 0
TCM	NN (rix)	$r$	5	28	NOT dst AND src	- ^^0
TCM	$\mathrm{NN}(\mathrm{rrx})$	R	5	28	NOT dst AND src	- ^^0
TCM	rr(rrx)	r	3	24	NOT dst AND src	- ^ ^ 0
TCM	-(rr)	$r$	3	22	NOT dst AND src rr<-rr-1	- ^ ^ 0
тСМ	-(rr)	R	3	22	NOT dst AND src rre-rr-1	- ^ ^ 0
TCM	r	\#N	3	10	NOT dst AND src	- ^^0
TCM	R	\#N	3	10	NOT dst AND src	- ^^0
TCM	(rr)	\#N	3	16	NOT dst AND src	- ^ ^ 0
TCM	NN	\#N	5	22	NOT dst AND src	- ^ ^ 0
TCM	(rr)	(rr)	3	18	NOT dst AND src	- ^ ^ 0
тСм	(RR)	(rr)	3	18	NOT dst AND src	- ^ ^ 0

INSTRUCTION SUMMARY (Continued)

Mnemo.	dst	src	Bytes	Clock cycles	Operation	$\begin{gathered} \text { Flags } \\ \mathrm{czs} \mathrm{~V} \mathrm{H} \end{gathered}$
TCMW : Test and complement word under mask						
TCMW	rr	rr	2	10	NOT dst AND src	- ^ ^ 0
TCMW	RR	RR	3	12	NOT dst AND src	- ^ ^ 0 -
TCMW	rr	RR	3	12	NOT dst AND src	- ^ ^ 0 -
TCMW	RR	rr	3	12	NOT dst AND src	- ^^0.
TCMW	rr	(r)	3	14	NOT dst AND src	- ^^0.
TCMW	RR	(r)	3	14	NOT dst AND src	- ^^0
TCMW	rr	(rr)	2	16	NOT dst AND src	- ^ ^ 0
TCMW	RR	(rr)	3	18	NOT dst AND src	- ^ ^ 0
TCMW	rr	NN	4	22	NOT dst AND src	- ^^0
TCMW	rr	N (rx)	4	28	NOT dst AND src	- ^^0
TCMW	RR	$\mathrm{N}(\mathrm{rrx})$	4	28	NOT dst AND src	- ^^0
TCMW	rr	$\mathrm{NN}(\mathrm{rrx})$	5	30	NOT dst AND src	- ^ ^ 0
TCMW	RR	$\mathrm{NN}(\mathrm{rrx})$	5	30	NOT dst AND src	- ^ ^ 0
TCMW	rr	rr(rx)	3	26	NOT dst AND src	- ^^0.
TCMW	rr	(rr)+	3	22	NOT dst AND src $\mathrm{rr}<-\mathrm{rr}+2$	- ^ ^ 0
TCMW	RR	(rr)+	3	22	NOT dst AND src $\mathrm{rr}<-\mathrm{rr}+2$	- ^^0.
TCMW	rr	-(rr)	3	24	$\mathrm{rr}<-\mathrm{rr}-2$   NOT dst AND src	- ^ ^ 0
TCMW	RR	-(rr)	3	24	$\mathrm{rr}<-\mathrm{rr}-2$   NOT dst AND src	- ^ ^ 0 -
TCMW	(r)	rr	3	14	NOT dst AND src	- ^ ^ 0
TCMW	(r)	RR	3	14	NOT dst AND src	- ^^0
TCMW	(rr)	rr	2	30	NOT dst AND src	- ^^ ${ }^{\text {a }}$
TCMW	(rr)	RR	3	28	NOT dst AND src	- ^^ ${ }^{\text {A }}$
TCMW	(rr)+	rr	3	30	NOT dst AND src $\mathrm{rr}<\mathrm{rr}+2$	- ^ ^ 0
TCMW	(rr)+	RR	3	30	NOT dst AND src $\mathrm{rr}<-\mathrm{rr}+2$	- ^ ^ 0
TCMW	NN	rr	4	30	NOT dst AND src	- ^ ^ 0
TCMW	$N(\mathrm{rrx})$	r	4	36	NOT dst AND src	- ^ ^0
TCMW	$N(\mathrm{rrx})$	RR	4	36	NOT dst AND src	- ^ ^ 0
TCMW	$\mathrm{NN}(\mathrm{rrx})$	rr	5	36	NOT dst AND src	- ^ ^ 0
TCMW	$\mathrm{NN}(\mathrm{rrx})$	RR	5	36	NOT dst AND src	- ^ ^ 0
TCMW	$\mathrm{rr}(\mathrm{rrx})$	rr	3	32	NOT dst AND src	- ^ ^0
TCMW	-(rr)	rr	3	30	$\mathrm{rr}<-\mathrm{r}-2$   NOT dst AND src	- ^ ^ 0
TCMW	-(rr)	RR	3	30	$\mathrm{rr}<-\mathrm{rr}-2$   NOT dst AND src	- ^ ^ 0
TCMW	rr	\#NN	4	14	NOT dst AND src	- ^ ^ 0
TCMW	RR	\#NN	4	14	NOT dst AND src	- ^^^0
TCMW	(rr)	\#NN	4	30	NOT dst AND src	- ^^ ^0
TCMW	NN	\#NN	6	34	NOT dst AND src	- ^^ ^0
TCMW	$\mathrm{N}(\mathrm{rrx})$	\#NN	5	34	NOT dst AND src	- ^^0
TCMW	$\mathrm{NN}(\mathrm{rrx})$	\#NN	6	36	NOT dst AND src	- ^ ^ 0
TCMW	(rr)	(rr)	2	32	NOT dst AND src	- ^ ^ 0

INSTRUCTION SUMMARY (Continued)

Mnemo.	dst	src	Bytes	Clock cycles	Operation	$\begin{aligned} & \text { Flags } \\ & \mathrm{CZSVDH} \end{aligned}$
TM : Test byte under mask						
TM	$r$	$r$	2	6	dst AND src	- ^ ^ 0
TM	R	R	3	10	dst AND src	- ^ ^ 0
TM	$r$	R	3	10	dst AND src	- ^^0-
TM	R	r	3	10	dst AND src	- ^ ^ 0
TM	r	(r)	2	6	dst AND src	- ^ ^ 0 -
TM	R	(r)	3	10	dst AND src	- ^^0-
TM	r	(rr)	3	12	dst AND src	- ^^0-
TM	R	(rr)	3	12	dst AND src	- ^^0-
TM	r	NN	4	18	dst AND src	- ^^0-
TM	r	$N(r r x)$	4	24	dst AND src	- ^^0 -
TM	R	$N(r \mathrm{rx})$	4	24	dst AND src	- ^^0 -
TM	r	NN(rrx)	5	26	dst AND src	- ^ ^ 0
TM	R	$\mathrm{NN}(\mathrm{rrx})$	5	26	dst AND src	- ^ ^ 0
TM	r	rr(rx)	3	22	dst AND src	- ^ ^ 0
TM	$r$	(rr)+	3	16	dst AND src rr<-rr+1	- ^ ^ 0
TM	R	(r) +	3	16	$\begin{aligned} & \mathrm{dst} \text { AND -src } \\ & \mathrm{rr}<-\mathrm{rr}+1 \end{aligned}$	- ^ ^ 0 -
TM	$r$	-(rr)	3	16	$\begin{aligned} & \mathrm{rr}<-\mathrm{rr}-1 \\ & \mathrm{dst} \text { AND src } \end{aligned}$	- ^^0-
TM	R	-(rr)	3	16	rr<-rr-1 dst AND src	- ^ ^ 0 -
TM	(r)	$r$	3	10	dst AND src	- ^ ^ 0 -
TM	(r)	R	3	10	dst AND src	- ^^0 -
TM	(rr)	$r$	3	18	dst AND src	- ^ ^ 0
TM	(rr)	R	3	18	dst AND src	- ^^0 -
TM	(rr)+	r	3	22	dst AND src rr<-rr+1	- ^ ^ 0 -
TM	(rr)+	R	3	22	dst AND src $\mathrm{rr}<-\mathrm{rr}+1$	- ^ ^ 0 -
TM	NN	r	4	20	dst AND src	- ^ ^ 0
TM	$N(r \mathrm{x})$	$r$	4	26	dst AND src	- ^ ^ 0
TM	$N(\mathrm{rrx})$	R	4	26	dst AND src	- ^ ^ 0
TM	NN (rix)	$r$	5	28	dst AND src	- ^ ^ 0
TM	NN(rrx)	R	5	28	dst AND src	- ^^0 -
TM	rr(rxx)	$r$	3	24	dst AND src	- ^^0 -
TM	-(rr)	$r$	3	22	$\begin{aligned} & \mathrm{rr}->\mathrm{rr}-1 \\ & \mathrm{dst} \text { AND src } \end{aligned}$	- ^ ^ 0 -
TM	-(rr)	R	3	22	$\begin{aligned} & \text { rr->rr-1 } \\ & \text { dst AND src } \end{aligned}$	- ^^0-
TM	r	\#N	3	10	dst AND src	- ^ ^ 0
TM	R	\#N	3	10	dst AND src	- ^ ^ 0
TM	(rr)	\#N	3	16	dst AND src	- ^^0-
TM	NN	\#N	5	22	dst AND src	- ^^0 -
TM	(rr)	(ir)	3	18	dst AND src	- ^^0-
TM	(RR)	(rr)	3	18	dst AND src	- ^ ^ 0 - -

INSTRUCTION SUMMARY (Continued)

Mnemo.	dst	src	Bytes	Clock cycles	Operation	$\begin{gathered} \text { Flags } \\ \mathrm{CZSVD} H \end{gathered}$
TMW : Test word under mask						
TMW	rr	rr	2	10	dst AND src	- ^ ^ 0 -
TMW	RR	RR	3	12	dst AND src	- ^ ^0.
TMW	rr	RR	3	12	dst AND src	- ^ ^ 0
TMW	RR	rr	3	12	dst AND src	- ^^^0
TMW	rr	(r)	3	14	dst AND src	- ^^0 -
TMW	RR	(r)	3	14	dst AND src	- ^^0 -
TMW	rr	(rr)	2	16	dst AND src	- ^^0.
TMW	RR	(rr)	3	18	dst AND src	- ^^0--
TMW	rr	NN	4	22	dst AND src	- ^ ^ 0 - -
TMW	rr	$N(\mathrm{rrx})$	4	28	dst AND src	- ^ ^ 0 -
TMW	RR	$N(r \mathrm{rx})$	4	28	dst AND src	- ^ ^ 0 -
TMW	rr	$\mathrm{N} N(\mathrm{rrx})$	5	30	dst AND src	- ^^^O--
TMW	RR	$\mathrm{NN}(\mathrm{rrx})$	5	30	dst AND src	- ^^0
TMW	rr	rr(rrx)	3	26	dst AND src	- ^^0
TMW	rr	(rr)+	3	22	dst AND src rr<-ri+2	- ^ ^ 0
TMW	RR	(rr)+	3	22	dst AND src $\mathrm{rr}<-\mathrm{rr}+2$	- ^ ^ 0
TMW	rr	-(rr)	3	24	$\begin{aligned} & \mathrm{rr}<-\mathrm{rr}-2 \\ & \mathrm{dst} \text { AND src } \end{aligned}$	- ^ ^ 0
TMW	RR	-(rr)	3	24	$\begin{aligned} & \mathrm{rr}<-\mathrm{rr}-2 \\ & \mathrm{dst} \text { AND src } \end{aligned}$	- ^ ^ 0
TMW	(r)	rr	3	14	dst AND src	- ^ ^ 0 -
TMW	(r)	RR	3	14	dst AND src	- ^^ 0
TMW	(rr)	rr	2	28	dst AND src	- ^^0
TMW	(rr)	RR	3	28	dst AND src	- ^^^0
TMW	(rr)+	rr	3	30	dst AND src rr<-ri+2	- ^ ^0
TMW	(rr)+	RR	3	30	dst AND src $\mathrm{rr}<-\mathrm{rr}+2$	- ^ ^ 0
TMW	NN	rr	4	30	dst AND src	- ^ ^ 0
TMW	N (rix)	rr	4	36	dst AND src	- ^^0
TMW	$N(\mathrm{rrx})$	RR	4	36	dst AND src	- ^^0
TMW	NN(rrx)	rr	5	36	dst AND src	- ^^0
TMW	NN(rix)	RR	5	36	dst AND src	- ^^0
TMW	rr(rix)	rr	3	32	dst AND src	- ^^0
TMW	-(rr)	rr	3	30	$\mathrm{rr}<-\mathrm{rr}-2$   dst AND src	- ^ ^ 0
TMW	-(rr)	RR	3	30	$\begin{aligned} & \mathrm{rr}<-\mathrm{rr}-2 \\ & \text { dst AND src } \end{aligned}$	- ^ ^ 0
TMW	rr	\#NN	4	14	dst AND src	- ^^0-
TMW	RR	\#NN	4	14	dst AND src	- ^^0-
TMW	(rr)	\#NN	4	30	dst AND src	- ^^0-
TMW	NN	\#NN	6	34	dst AND src	- ^^^0-
TMW	$N(\mathrm{rrx})$	\#NN	5	34	dst AND src	- ^^^0-
TMW	$\mathrm{NN}(\mathrm{rrx})$	\#NN	6	36	dst AND src	- ^^0
TMW	(rr)	(rr)	2	32	dst AND src	$\wedge$
WFI : Wait for Interrupt						
WFI			2	18	wait for interrupt	- - - -

INSTRUCTION SUMMARY (Continued)

Mnemo.	dst	src	Bytes	Clock cycles	Operation	$\begin{gathered} \text { Flags } \\ \mathrm{CZSVDH} \end{gathered}$
XCH : Exchange Register						
XCH	$r$	r	3	12	dst <-> src	- - - -
XCH	R	R	3	12	dst $<->$ src	- - - - -
XCH	r	r	3	12	dst <-> src	- - - -
XCH	R	R	3	12	dst <-> src	- - . - -
XOR : Logical exclusive OR						
XOR	$r$	$r$	2	6	dst<-dst XOR src	- ^ ^ 0--
XOR	R	R	3	10	dst<-dst XOR src	- ^^0
XOR	r	R	3	10	dst<-dst XOR src	- ^^0
XOR	R	$r$	3	10	dst<-dst XOR src	- ^ ^ 0 -
XOR	$r$	(r)	2	6	dst<-dst XOR src	- ^^人0
XOR	R	(r)	3	10	dst<-dst XOR src	- ^^^0
XOR	r	(rr)	3	12	dst<-dst XOR src	- ^^ 0
XOR	R	(rr)	3	12	dst<-dst XOR src	- ^ ^ 0
XOR	$r$	NN	4	18	dst<-dst XOR src	- ^ ^ 0 -
XOR	r	$\mathrm{N}(\mathrm{rrx})$	4	24	dst<-dst XOR src	- ^ ^ 0 -
XOR	R	$\mathrm{N}(\mathrm{rrx})$	4	24	dst<-dst XOR src	- ^ ^ 0 -
XOR	r	$\mathrm{NN}(\mathrm{rrx})$	5	26	dst<-dst XOR src	- ^ ^ 0
XOR	R	$\mathrm{NN}(\mathrm{rrx})$	5	26	dst<-dst XOR src	- ^^0-
XOR	$r$	$r$ r(rx)	3	22	dst<-dst XOR src	- ^ ^ 0
XOR	$r$	(rr)+	3	16	dst<-dst XOR src rr->rr+1	^ ^ 0
XOR	R	(rr)+	3	16	dst<-dst XOR src $r r->\mathrm{r}+1$	- ^ ^ 0
XOR	r	-(rr)	3	16	$\begin{aligned} & \mathrm{rr}->\mathrm{rr}-1 \\ & \mathrm{dst}<-\mathrm{dst} \text { XOR } \mathrm{src} \end{aligned}$	- ^ ^ 0
XOR	R	-(rr)	3	16	$\begin{aligned} & \mathrm{rr}-\mathrm{rr}-1 \\ & \mathrm{dst}<-\mathrm{dst} \text { XOR src } \end{aligned}$	- ^ ^ 0 -
XOR	(r)	r	3	10	dst<-dst XOR src	- ^^0
XOR	(r)	R	3	10	dst<-dst XOR src	- ^^^0
XOR	(rr)	$r$	3	18	dst<-dst XOR src	- ^^ 0
XOR	(rr)	R	3	18	dst<-dst XOR src	- ^^0
XOR	(rr)+	r	3	22	dst<-dst XOR src rr->rr+1	- ^ ^ 0
XOR	(rr)+	R	3	22	dst<-dst XOR src rr->rr+1	- ^ ^ 0
XOR	NN	$r$	4	20	dst<-dst XOR src	- ^ ^ 0
XOR	$\mathrm{N}(\mathrm{rrx})$	$r$	4	26	dst<-dst XOR src	- ^^0
XOR	$\mathrm{N}(\mathrm{rrx})$	R	4	26	dst<-dst XOR src	- ^^0
XOR	NN(rx)	r	5	28	dst<-dst XOR src	- ^^0
XOR	$\mathrm{NN}(\mathrm{rrx})$	R	5	28	dst<-dst XOR src	- ^^0
XOR	rr(rxx)	r	3	24	dst<-dst XOR src	- ^^0
XOR	-(rr)	r	3	22	$\begin{aligned} & \mathrm{rr}-\mathrm{rr}-1 \\ & \mathrm{dst}<-\mathrm{dst} \text { XOR src } \end{aligned}$	- ^ ^ 0
XOR	-(rr)	R	3	22	$\begin{aligned} & \mathrm{rr}->\mathrm{rr}-1 \\ & \mathrm{dst}<\mathrm{dst} \mathrm{XOR} \text { src } \end{aligned}$	- ^^ 0
XOR	r	\#N	3	10	dst<-dst XOR src	- ^^0
XOR	R	\#N	3	10	dst<-dst XOR src	- ^^0
XOR	(rr)	\#N	3	16	dst<-dst XOR src	- ^^0
XOR	NN	\#N	5	24	dst<-dst XOR src	- ^^0
XOR	(rr)	(rr)	3	20	dst<-dst XOR src	- ^^0
XOR	(RR)	(rr)	3	20	dst<-dst XOR src	- ^ ^ 0

INSTRUCTION SUMMARY (Continued)

Mnemo.	dst	src	Bytes	Clock cycles	Operation	$\begin{gathered} \text { Flags } \\ C Z S V D H \end{gathered}$
XORW : Logical exclusive OR between words						
XORW	rr	rr	2	10	dst<-dst XOR src	$\cdots \wedge \wedge 0$
XORW	RR	RR	3	12	dst<-dst XOR src	- ^ ^ 0 -
XORW	rr	RR	3	12	dst<-dst XOR src	- ^^0--
XORW	RR	rr	3	12	dst<-dst XOR src	- ^^0 - -
XORW	rr	(r)	3	14	dst<-dst XOR src	-^^0 - -
XORW	RR	(r)	3	14	dst<-dst XOR src	- ^^0-
XORW	rr	(rr)	2	16	dst<-dst XOR src	$-\wedge \wedge 0-$
XORW	RR	(rr)	3	18	dst<-dst XOR src	- ^^0 -
XORW	rr	NN	4	22	dst<-dst XOR src	- ^^ 0 -
XORW	rr	$N(r r x)$	4	28	dst<-dst XOR src	- ^ ^ 0 -
XORW	RR	$N(r r x)$	4	28	dst<-dst XOR src	- ^^ 0 -
XORW	rr	NN(rrx)	5	30	dst<-dst XOR src	- ^^ $0--$
XORW	RR	NN(rrx)	5	30	dst<-dst XOR src	$\cdots \wedge 0$ -
XORW	rr	rr(rrx)	3	26	dst<-dst XOR src	- ^^ 0 -
XORW	rr	(rr) +	3	22	dst<-dst XOR src $\mathrm{rr}<-\mathrm{rr}+2$	- ^^0 - -
XORW	RR	(rr) +	3	22	dst<-dst XOR src $\mathrm{rr}<-\mathrm{rr}+2$	- ^^0--
XORW	rr	-(rr)	3	24	$\begin{aligned} & \mathrm{rr}<-\mathrm{rr}-2 \\ & \mathrm{dst}<-\mathrm{dst} \text { XOR src } \end{aligned}$	$\cdots \wedge 0 \sim$
XORW	RR	-(rr)	3	24	rr<-rr-2   dst<-dst XOR src	- ^^0--
XORW	(r)	rr	3	14	dst<-dst XOR src	
XORW	(r)	RR	3	14	dst<-dst XOR src	- ^^ $0-\cdots$
XORW	(rr)	rr	2	30	dst<-dst XOR src	- ^ ^ 0 -
XORW	(rr)	RR	3	30	dst<-dst XOR src	- ^^ $\wedge^{\wedge}$
XORW	(rr) +	rr	3	32	dst<-dst XOR src $\mathrm{rr}<-\mathrm{rr}+2$	- ^ ^ 0 - -
XORW	(rr) +	RR	3	32	dst<-dst XOR src $\mathrm{rr}<\mathrm{rr}+2$	$\cdots \wedge 0$ -
XORW	NN	rr	4	32	dst<-dst XOR src	- ^ ^ $0--$
XORW	$N(r r x)$	rr	4	38	dst<-dst XOR src	- ^^ $0^{-}$
XORW	$N(r r x)$	RR	4	38	dst<-dst XOR src	- ^^0 $0-$
XORW	NN(rrx)	rr	5	38	dst<-dst XOR src	- ^^ 0 -
XORW	NN(rrx)	RR	5	38	dst<-dst XOR src	- ^^ 0 -
XORW	rr(rrx)	rr	3	34	dst<-dst XOR src	- ^^ $0^{-}$
XORW	-(rr)	rr	3	32	$\begin{aligned} & \mathrm{rr}<-\mathrm{rr}-2 \\ & \mathrm{dst}<-\mathrm{dst} \text { XOR src } \end{aligned}$	- ^ ^ 0 - -
XORW	-(rr)	RR	3	32	$\begin{aligned} & \mathrm{rr}<-\mathrm{rr}-2 \\ & \mathrm{dst}<-\mathrm{dst} \text { XOR src } \end{aligned}$	$\cdots \wedge 0$ -
XORW	rr	\#NN	4	14	dst<-dst XOR src	$-\wedge \wedge 0--$
XORW	RR	\#NN	4	14	dst<-dst XOR src	- ^^0 - -
XORW	(rr)	\#NN	4	32	dst<-dst XOR src	- ^^ $0^{\wedge}$
XORW	NN	\#NN	6	36	dst<-dst XOR src	- ^^^0-
XORW	$N(r r x)$	\#NN	5	36	dst<-dst XOR src	- ^^^0-
XORW	NN(rrx)	\#NN	6	38	dst<-dst XOR src	- ^^0 0
XORW	(rr)	(rr)	2	32	dst<-dst XOR src	- ^ ^ 0 -

## NOTES :

## EUROPE

## DENMARK

## 2730 HERLEV

Herlev Torv, 4
Tel (45-44) 948533
Telex 35411
Telefax (45-44) 948694

## FINLAND

LOHJA SF-08150
Ratakatu, 26
Tel (358-12) 155.11
Telefax (358-12) 15566

## FRANCE

94253 GENTILLY Cedex
7 - avenue Gallienı - BP. 93
Tel (33-1) 47407575
Telex 632570 STMHQ
Telefax (33-1) 47407910

## 67000 STRASBOURG

20, Place des Halles
Tel (33-88) 755066
Telefax (33-88) 222932

## GERMANY

85630 GRASBRUNN
Bretonischer Ring 4
Postfach 1122
Tel. (49-89) 460060
Telefax (49-89) 4605454
Teletex 897107=STDISTR

## 60327 FRANKFURT

Gutleutstrasse 322
Tel (49-69) 237492-3 Telefax (49-69) 231957
Teletex 6997689=STVBF
30695 HANNOVER 51
Rotenburger Strasse 28A
Tel (49-511) 615960-3
Teletex 5118418 CSFBEH
Telefax (49-511) 6151243

## 90491 NÜRNBERG 20

Erlenstegenstrasse, 72
Tel (49-911) 59893-0
Telefax (49-911) 5980701
70499 STUTTGART 31
Mittlerer Pfad 2-4
Tel (49-711) 13968-0
Telefax (49-711) 8661427

## ITALY

20090 ASSAGO (MI)
Vle Milanofiori - Strada 4 - Palazzo A/4/A
Tel (39-2) 575461 ( 10 linee)
Telex 330131-330141 SGSAGR
Telefax. (39-2) 8250449
40033 CASALECCHIO DI RENO (BO)
ViaR Fucini, 12
Tel (39-51) 593029
Telex 512442
Telefax (39-51) 591305

## 00161 ROMA

Via A . Torlonia, 15
Tel (39-6) 8443341
Telex 620653 SGSATE
Telefax (39-6) 8444474

## NETHERLANDS

5652 AR EINDHOVEN
Meerenakkerweg 1
Tel (31-40) 550015
Telex 51186
Telefax (31-40) 528835

## SPAIN

08004 BARCELONA
Calle Gran Via Corts Catalanes, 322
$6^{\text {th }}$ Floor, $2^{\text {th }}$ Door
Tel (34-3) 4251800
Telefax (34-3) 4253674
28027 MADRID
Calle Albacete, 5
Tel (34-1) 4051615
Telex 46033 TCCEE
Telefax. (34-1) 4031134

## SWEDEN

S-16421 KISTA
Borgarfjordsgatan, 13-Box 1094
Tel (46-8) 7939220
Telex 12078 THSWS
Telefax (46-8) 7504950

## SWITZERLAND

1218 GRAND-SACONNEX (GENEVA)
Chemin Francois-Lehmann, 18/A
Tel (41-22) 7986462
Telex 415493 STM CH
Telefax (41-22) 7984869

## UNITED KINGDOM and EIRE

## MARLOW, BUCKS

Planar House, Parkway
Globe Park
Tel (44-628) 890800
Telex 847458
Telefax (44-628) 890391

## AMERICAS

## BRAZIL

05413 SÃO PAULO
R Henrıque Schaumann 286-CJ33
Tel (55-11) 883-5455
Telex (391)11-37988 "UMBR BR"
Telefax (55-11) 282-2367
CANADA
NEPEAN ONTARIO K2H 9C4
301 Moodie Drive Sulte 307 Tel (613) 829-9944
Telefax (613) 829-8998

## U.S.A.

NORTH \& SOUTH AMERICAN
MARKETING HEADQUARTERS
55 Old Bedford Road
Lincoln, MA 01773
Tel (617) 259-0300
Telefax (617) 259-4421
SALES COVERAGE BY STATE
ALABAMA
Huntsville - Tel (205) 533-5995
Fax (205) 533-9320
ARIZONA
Phoenix - Tel (602) 867-6217
Fax (602) 867-6200
CALIFORNIA
Santa Ana - Tel (714) 957-6018 Fax (714) 957-3281
San Jose - Tel (408) 452-8585 Fax (452) 1549
COLORADO
Boulder - Tel (303) 449-9000 Fax (303) 449-9505
FLORIDA
Boca Raton - Tel (407) 997-7233 Fax (407) 997-7554

GEORGIA
Norcross - Tel (404) 242-7444
Fax (404) 368-9439

## ILLINOIS

Schaumburg - Tel (708) 517-1890 Fax (708) 517-1899
INDIANA
Kokomo - Tel (317) 455-3500 Fax (317) 455-3400
Indıanapolis - Tel (317) 575-5520
Fax. (317) 575-8211
MICHIGAN
Livonia - Tel • (313) 953-1700
Fax. (313) 462-4071

## MINNESOTA

Bloomington - Tel (612) 944-0098 Fax (612) 944-0133

## NORTH CAROLINA

Cary - Tel (919) 469-1311 Fax (919) 469-4515
NEW JERSEY
Voorhees - Tel (609) 772-6222
Fax (609) 772-6037
NEW YORK
Poughkeepsie - Tel : (914) 454-8813 Fax: (914) 454-1320

OREGON
Lake Oswego - Tel (503) 635-7650
TENNESSEE
Knoxville - Tel (615) 524-6239
TEXAS
Austin - Tel (512) 502-3020
Fax (512) 346-6260
Carrollton - Tel (214) 466-8844 Fax (214) 466-8130
Houston- Tel (713) 376-9936 Fax (713) 376-9948
FOR RF AND MICROWAVE
POWER TRANSISTORS CON-
TACT
THE FOLLOWING REGIONAL
OFFICE IN THE U.S.A.

## PENNSYLVANIA

Montgomeryville - Tel (215) 361-6400 Fax (215) 361-1293

## ASIA / PACIFIC

## AUSTRALIA

NSW 2220 HURTSVILLE
Suite 3, Level 7, Otis House
43 Bridge Street
Tel (61-2) 5803811
Telefax (61-2) 5806440

## HONG KONG

## WANCHAI

22nd Floor - Hopewell centre
183 Queen's Road East
Tel (852) 8615788
Telex 60955 ESGIES HX
Telefax (852) 8656589

## INDIA

NEW DELHI 110019
Liason Office
3rd Floor, F-Block
Internatıonal Trade Tower
Nehru Place
Tel (91-11) 644-5928/647-9415
Telex 031-70193 STMI IN
Telefax (91-11) 6443054

## MALAYSIA

## SELANGOR, PETALING JAYA 46200

Unit BM-10
PJ Industrial Park
Jalan Kemajuan 12/18
Tel (03) 7581189
Telefax (03) 7581179

## PULAU PINANG 10400

4th Floor - Suite 4-03
Bangunan FOP-123D Jalan Anson
Tel (04) 379735
Telefax (04) 379816

## KOREA

SEOUL 121
8th floor Shinwon Building
823-14, Yuksam-Dong
Kang-Nam-Gu
Tel (82-2) 553-0399
Telex. SGSKOR K29998
Telefax (82-2) 552-1051

## SINGAPORE

SINGAPORE 2056
28 Ang Mo Kio - Industrial Park 2
Tel. (65) 4821411
Telex RS 55201 ESGIES
Telefax (65) 4820240

## TAIWAN

TAIPEI
11th Floor
105. Section 2 Tun Hua South Road

Tel (886-2) 755-4111
Telex 10310 ESGIE TW
Telefax (886-2) 755-4008
THAILAND
BANGKOK 10110
54 Asoke Road
Sukhumvit 21
Tel (662) 2607870
Telefax (662) 2607871

## JAPAN

TOKYO 108
Nıssekı - Takanawa Bld 4F 2-18-10 Takanawa
Minato-Ku
Tel (81-3) 3280-4121
Telefax (81-3) 3280-4131

Information furnıshed is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.
© 1994 SGS-THOMSON Microelectronics - Printed in Italy - All Rights Reserved
Purchase of $I^{2} C$ Components by SGS-THOMSON Microelectronics, conveys a license under the Philips $I^{2} C$ Patent. Rights to use these components in an $I^{2} C$ system is granted provided that the system conforms to the $I^{2} C$ Standard Specifications as defined by Philips.
SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.


## 5 C



