SHARP

MICROCOMPUTERS DATA BOOK

MICROCOMPUTERS DATA BOOK

General Information

4-bit Single-chip Microcomputers

E
8-bit Single-chip Microcomputers 3
Development Support Tools 4
8-bit Microprocessors/Peripherals 5 16-bit Microprocessors 6

Preface

As we become more and more an information-oriented society, microcomputers have come to play a major role in numerous areas of computer application. As computerrelated services grow ever more sophisticated and diverse, we are faced with a growing demand for microcomputers using most advanced technology.

To keep pace with this rapid progress, we at SHARP will continue to direct our efforts at understanding the crucial trends of the moment in this area and supply our customers with products that truly meet their needs in short to contribute to a better life for all of us in this age of expanding technology.

SHARP has developed a wide range of 4 -bit, 8 -bit and 16 -bit microcomputer units which have numerous areas of computer-related applications from home and consumer appliances to office and industrial equipment.

This databook has been especially compiled for the use of our customers. Listed here is the entire range of microcomputer products developed and manufactured by SHARP, with detailed explanations of their many functions and outstanding features. We hope that you find this book useful in determining which SHARP products are best suited to your needs. Please contact us directly if you have any further questions.

Notice

Specifications contained in this databook are current as of the publication dated September, 1990.

SHARP reserves the right to make changes in the circuitry or specifications described herein at any time without notice in order to improve design or reliability. The system configuration examples described herein are just intended for LSI evaluation; the external circuit configuration, constants and other related conditions must be studied for application to an actual system. The information in this databook has been carefully checked to be accurate, however, SHARP makes no warranty for any errors which may appear in this document. Contact SHARP to obtain the latest version of device specifications before placing your order.

SHARP makes no representations that circuitry described herein is free from infringement of patent or other rights of third parties which may result from its use. No license is granted by implication under any patent rights or other rights of SHARP CORPORATION.

This is a newly revised 1990/91 Microcomputers Databook which can be used in place of the former editions.

Contents

1. General Information 1
Alphanumeric Index 2
Product Lineup 3
Package Outline 9
Quality Assurance 16
2. 4-bit Single-chip Microcomputers 25
3. 8-bit Single-chip Microcomputers 187
4. Development Support Tools 253
5. 8-bit Microprocessors/Peripherals 267
6 . 16 -bit Microprocessors 369

Sharp's IC Data Book Family

General Information

Alphanumeric Index

Model No.	Page						
SM4A	141	SM803	207	LH0083	329	LH5080	268
SM500	119	SM803A	207	LH0083A	329	LH5080A	268
SM510	149	SM805	207	LH00084	344	LH5081	274
SM511	159	SM805A	207	LH0084A	344	LH5081A	274
SM512	159	SM8202	226	LH0084B	344	LH5081B	274
SM530	100	SM8203	226	LH0085	344	LH5082	279
SM531	110	SM8320	243	LH0085A	344	LH5082A	279
SM550	36	SME-30	259	LH0085B	344	LH5082B	279
SM551	36	LH0080	284	LH0086	344	LH70108	370
SM552	36	LH0080A	284	LH0086A	344	LH70116	414
SM563	172	LH0080B	284	LH0086B	344	LH8530	354
SM578	49	LH0080E	284	LH0087	344	LH8530A	354
SM579	49	LH0081	309	LH0087A	344	LU5E4P0P	75
SM590	26	LH0081A	309	LH0087B	344	LU800V1	220
SM591	26	LH0081B	309	LH0801	188	LU800AV1	220
SM595	26	LH0081E	309	LH0801A	188	LU805BV2	220
SM5E4	65	LH0082	319	LH0811	188	LU8200H7	263
SM5J5	83	LH0082A	319	LH0811A	188	LU820XH4	263
SM5J6	83	LH0082B	319	LH0881	203	LUXXXH2	254
SM5K1	128	LH0082E	319	LH0881A	203		

Product Lineup

- 4-bit Single-chip Microcomputers
(1) Controller Series

(2) VFD Driver Series

Model No.	Memory(bit)		Port				$\begin{gathered} \mathrm{A} / \mathrm{D} \\ \text { conver- } \\ \text { sion } \end{gathered}$	$\begin{array}{\|c\|} \begin{array}{c} \text { nstruction } \\ \text { cycle } \\ \left(\mu_{\text {s }}\right) \end{array} \\ \hline \end{array}$	Current consumption		OSC	Supply voltage (V)	$\begin{gathered} \text { Operating } \\ \text { temp. } \\ \text { (} \left.^{\circ} \mathrm{C}\right) \end{gathered}$	Package	Evaluatión board	Ramarks	Page
	ROM	RAM	I	0	I/O	Total			Operating (mA)	Standby (μ_{A})							
SM590	508×8	32×4	-	-	$\begin{gathered} 15 \\ (\mathrm{MAX}) \end{gathered}$	15	-	1	1	1	Ceramic Resistor	2.5 to 5.5	-10 to 70	$\begin{gathered} \text { 16DIP } \\ \text { 18DP } \\ \text { 20DIP } \\ 18 \mathrm{MFP}^{*} 3 \end{gathered}$	LU590H2A		26
SM595	762×8	32×4															
SM591	1016×8	56×4															
SM550	1024×8	80×4	4	8	24	36	-	1.6	1	50	Resistor	2.7 to 5.5	-20 to 70	48QFP	LU550H2A	SIO (8-bit)	36
SM551	2048×8	128×4	4	16	28	48	-	1.6	1	50	Rasistor	2.7 to 5.5	-20 to 70	60QFP			
SM552	4096×8	256×4												64SDIP			
SM578	4064×9	192×4	9	2	41	52	$\begin{gathered} 8 \text {-bit } \\ 20 \text { pins } \end{gathered}$	2	1.6	1	Caramic	2.7 to 5.5	-10 to 70	64QFP 64SDIP	LU578H2A	SIO (8-bit)	49
SM579	6096×9	256×4															
SM5E4	6144×8	320×4	4	16	48	68	-	1.6	1	50	Resistor	2.7 to 5.5	-10 to 70	80QFP	LU5E3H2	SIO (8-bit)	65
LU5E4P0P	$6144 \times 8 * 1$	320×4							15	120		4.5 to 5.5					75
SM5J6	8192×9	256×4	9	12	31	52	$\begin{aligned} & 8 \text {-bit } \\ & 10 \text { pins } \end{aligned}$	2	5	10	Caramic	2.7 to 5.5	-10 to 80	$\begin{aligned} & \text { 64QFP } \\ & 64 \mathrm{SDIP} \end{aligned}$	LU5J5H2	SIO (8-bit)	83
SM5J5	8192×9	256×4	9	12	31	52	$\begin{aligned} & 8 \text {-bit } \\ & 10 \text { pins } \end{aligned}$	2.5	$3 * 2$	-	Caramic Resistor	4.5 to 5.5	-10 to 70	$\begin{aligned} & \text { 64QFP } \\ & 64 \mathrm{SDIP} \end{aligned}$	LU5J5H2	SIO (8 bit) Medium power output -40 V	

* 1 OTPROM
* $2 \mathrm{~V}_{\text {DSP }}$ open
*3 Applicable to SM595, SM591
(3) LCD Driver Series

8-bit Single-chip Microcomputers

(1) Controller Series (Z8 ${ }^{\circledR}$ Family/SM Series)

ROM (byte)	RAM (bit)	Model No.	Process	Application
		LH0881/A	NMOS	Controllers
ROMless	124×8	LU800V1/AV1	CMOS	Controllers
ROMless	236×8	LU805BV2	NMOS	Controllers
2 K	128×8	LH0801/A	NMOS	Controllers
4 K		LH0811/A	cmos	Controllers
	124×8	SM803/A	CMOS	Controllers
8K	256×8	SM805	CMOS	Contorllers

(2) ASSP Series

ROM (byte)	RAM (bit)	Model No.	Process	Application
10K	256×8	SM8202/SM8203	CMOS	$\mathrm{VCR}_{\text {S }}$
12K	512×8	SM8320	CMOS	Inverter air conditioners

Model No.	Process	Memory(bit)		External memory (bit)	Parl				Sub- rout ine	$\left\lvert\, \begin{gathered} \text { Inter- } \\ \text { rupt } \end{gathered}\right.$	in. struc. tion sel	Instructioncycle$(\mu \mathrm{S})$	Current consumption		OSC	Supply voltage (V)	Operating temp. (C)	Package	Evaluationboard(ICE)	Remarks	Page
		ROM	RAM		1	0	1/0	Total					Operating (mA)	$\begin{aligned} & \text { Slandby } \\ & \left(\mu_{\mathrm{A})}\right. \end{aligned}$							
LH0881/A	nMOS	-	124×8	128 K	4	4	8	16	Uses RAM area	6	231	1.5/1	180	-	Crystal	$\begin{gathered} 4.5 \\ \text { to } 5.25 \end{gathered}$	0 to 70	$\begin{aligned} & \text { 40DIP } \\ & 44 \mathrm{QFJ} \end{aligned}$	LH80H321	Built-in full duplex UART 28	203
LH0801/A	nMOS	2048×8	124×8	124K	4	4	24	32.													
LH0811/A	nMOS	4096×8	124×8	120K																	
LU800V1/AV1	cmOS	-	124×8	128K	4	4	8	16	Uses RAM area	6	233	1.5/1	15	0.3	Crystal	$\begin{gathered} 4.5 \\ \text { to } 5.5 \end{gathered}$	0 to 70	$\begin{aligned} & 440 \mathrm{FP} \\ & 40 \mathrm{DIP} \\ & 44 \mathrm{QFJ} \end{aligned}$	LH80H321 ${ }^{* 1}$	$\begin{aligned} & \text { Built-in } \\ & \text { full duplex } \\ & \text { UART } \\ & \text { CMOSZ8 } \end{aligned}$	220
LU805BV2	cmos	-	236×8	128K	4	4	8	16		6	233	0.75	15	0.3							
SM803/A	CMOS	4096×8	124×8	120K	4	4	24	32		6	233	1.5/1	15	0.3							207
SM805/A	cmos	8192×8	236×8	112K																	
SM8202	CMOS	10240×8	256×8	-	8	16	24	48	Uses RAM area	10	64	0.8	10	-	Crystal	$\begin{gathered} 4.5 \\ \text { to } 5.5 \end{gathered}$	$\begin{array}{r} -20 \\ \text { to } 70 \end{array}$	64SDIP	LU8200H7	Servo controller	226
SM8203																				Increased function	
SM8320	cmos	12288×8	256×4	-	8	6	40	54	Uses RAM area	8	81	1	-	-	Crystal Ceramic	$\begin{gathered} 4.5 \\ \text { to } 5.5 \end{gathered}$	$\begin{array}{r} -20 \\ \text { to } 70 \end{array}$	$\begin{aligned} & \text { 64SDIP } \\ & \text { 64QFP } \end{aligned}$	-	$*_{2,}{ }^{*} 3$	243

[^0]
Support Tools for 4-bit Single-chip Microcomputers

(1) 4-bit Single-chip Microcomputer Development Support System

The software program for 4 -bit singlechip microcomputers can be developed through a simple system composed of a personal computer running on an MS DOS $^{\text {TM }}$ operating system serving as a host computer, and a debugging unit that includes an emulator and an evaluation board. Sharp also offers a highperformance SM emulator (SME-30).

MS-DOS ${ }^{\mathrm{TM}}$ is a trademark of Microsoft Corporation.

(2) 4-bit Single-chip Microcomputer Development Support Tools (SME-30 System)

SME-30 System	SM series	Evaluation board	Evaluation card	Piggy-back	Page
Target microcomputers: 4-bit single-chip microcomputers - Emulator: SME-30 (LU4DH300) - Evaluation board - Host computer - Optional software: Cross-assembler Emulator software PROM programmer	SM4A	LU041H2	LU041H4	-	254
	SM500	LU500H2A	LU500H4A	-	
	SM510	LU510H2A	LU510H4A	-	
	SM511/512	Emulation by a bread board	Emulation by a bread board	-	
	SM530/531	LU530H2A	LU530H4A	-	.
	SM550/551/552	LU550H2A	LU550H4A	LU550H6	
	SM563	LU563H2	LU563H4	-	
	SM578/579	LU578H2A	LU578H4A	LU578H6	254
	SM590/591/595	LU590H2A	LU590H4A	LU590H6	
	SM5E4	LU5E3H2	LU5E3H4	-	
	SM5J5	LU5J5H2	LU5J5H4A	LU5J5H6	

Support Tools for 8-bit Single-chip Microcomputers

(1) 8-bit Single-chip Microcomputer Development Support System

The software program for 8 -bit sin-gle-chip microcomputers can be developed through a system consisting of a personal computer (MS-DOS ${ }^{\mathrm{TM}}$) serving as a host and in-circuit emulator tailored to each model.

MS-DOS ${ }^{\text {TM }}$ is a trademark of Microsoft Corporation.
(2) 8-bit Single-chip Microcomputer Development Support Tools

Model No.	Piggy-back	In-circuit emulator	Page
SM8202	LU8203H6	LU8200H7+LU8202H4	263
		LU8200H7+LU8203H4	

* The SM82 ICE (LU8200H7) with applicable emulation pods (LU820XH4) will meet each model of the SM82 series.

Support tool	Features	Page
SM82 In-circuit emulator (LU8200H7)	- 64 K bytes of emulation memory - RS232C interface with the host - Instruction cycle time count - Line assembler and reverse assembler - Centronics interface - Coverage function	263

(3) 8-bit Microprocessors (Z80 ${ }^{\circledR}$ Family)

Process	Product	Model No.	Function	Clock frequency (MHz)				Power consumption (mW)MAX.	Supply voltage (V)	Package	Page
				2.5	4	6	8				
CMOS	CPU	LH5080/M	Central Processing Unit	\bigcirc				138	$5 \pm 10 \%$	40DIP/44QFP	268
		LH5080A/AM			-					40DIP/44QFP	
	PIO	LH5081/M	Parallel I/O Unit	-				44	$5 \pm 10 \%$	40DIP/44QFP	274
		LH5081A/AM			-					40DIP/44QFP	
		LH5081B				-				40DIP	
	CTC	LH5082/M	Counter/Timer Circuit	-				44	$5 \pm 10 \%$	28DIP/44QFP	279
		LH5082A/AM			-					28DIP/44QFP	
		LH5082B				-				28DIP	
,	CPU	LH0080/M/U	Central Processing Unit	\bigcirc				1050	$5 \pm 5 \%$	40DIP/44QFP/44QFJ	284
		LH0080A/AM/AU			-					40DIP/44QFP/44QFJ	
		LH0080B/BU				-				40DIP/44QFJ	
		LH0080E					-			40DIP	
	PIO	LH0081/M/U	Parallel I/O Unit	-				525	$5 \pm 5 \%$	40DIP/44QFP/44QFJ	309
		LH0081A/AM/AU			-					40DIP/44QFP/44QFJ	
		LH0081B/BU				-				40DIP/44QFJ	
		LH0081E					-			40DIP	
NMOS	CTC	LH0082/M/U	Counter/Timer Circuit	-				630	$5 \pm 5 \%$	28DIP/44QFP/44QFJ	319
		LH0082A/AM/AU			-					28DIP/44QFP/44QFJ	
		LH0082B/BU				-				28DIP/44QFJ	
		LH0082E					-			28DIP	
	DMA	LH0083	Direct Memory Access	\bigcirc				1050	$5 \pm 5 \%$	40DIP	329
		LH0083A			-					40DIP	
	SIO	LH0084/85/86	Serial I/O Unit	-				525	$5 \pm 5 \%$	40DIP	344
		LH0087M/U		-						40QFP/44QFJ	
		LH0084A/85A/86A			-					40DIP	
		LH0087AM/AU			-					40QFP/44QFJ	
		LH0084B/85B/86B				\bigcirc				40DIP	
		LH0087BU				-				44 QFJ	
	SCC*1	LH8530P/U	Serial Communications Controller		\bigcirc			1313	$5 \pm 5 \%$	40DIP/44QFJ	354
		LH8530AP/AU				\bigcirc		1470		40DIP/44QFJ	

* $1 \quad Z 8500^{\mathrm{TM}}$ family
(4) 16-bit Microprocessors (V Series)

Process	Product	Model No.	Function	$\begin{aligned} & \text { Clock } \\ & \text { frequency } \\ & (\mathrm{MHz}) \end{aligned}$		Power consumption (mW) MAX.	Supply voltage (V)	Package	Page
				5	8				
CMOS	V20*1	LH70108-5	16 -bit Microprocessors (V Series)	\bigcirc		420	$5 \pm 5 \%$	40DIP	370
		LH70108-8			\bigcirc			40DIP	
	V30*1	LH70116-5		\bigcirc				40DIP	414
		LH70116-8			\bigcirc			40DIP	

* $1 \mathrm{~V} 20 / \mathrm{V} 30$ is a trademark of NEC Corporation.

Package Outline

16DIP (DIP16-P-300)

20DIP (DIP20-P-300)

28DIP (DIP28-P-600)

40DIP (DIP40-P-600)

42SDIP (SDIP42-P-600)

64SDIP (SDIP64-P-750)

44QFP (QFP44-P-1010A)

48QFP (QFP48-P-1010)

60QFP (QFP60-P-1414)

64QFP (QFP64-P-1420)

80QFP (QFP80-P-1818)

80QFP (QFP80-P-1420)

44QFJ (QFJ44-P-S650)

Quality Assurance

1. Quality Assurance System

Sharp develops and manufactures a wide range of consumer and industrial-use semiconductor products.

In recent years, the applications of ICs have expanded significantly, into fields where extremely high levels of quality are critical.

In response, Sharp has implemented a total quality assurance system that encompasses the entire production process from planning to after-sales service. This system ensures that reliability is a priority in the planning and manufacturing stages, and guarantees product quality through rigorous reliabirity testing. We will introduce a part of this system here.

Sharp's quality and reliability assurance activities are based on the following guidelines:
(1) All personnel should participate in quality assurance by continually cultivating a higher level of quality awareness.
(2) In the developmental stage of new products, create designs that consider reliability in every respect.
(3) In addtion to quality control in all manufacturing processes, all working environments, materials, equipment, and measuring devices should be carefully monitored to ensure quality and reliability from the very begining of the process.
(4) Confirm long-term reliability and obtain a thorough understanding of practical limits through reliabilty tesing.
(5) Continually work to improve quality through application of data from process inspections, reliabilty testing, and market surveys.

2. Quality and Reliability Contol in New Product Development

The development of new products begins with a thorough understanding of the product specifications and quality that will satisfy the purpose for which the product is intended and with developmental planning that carefully considers pricing, quantity, the time of introduction to the market and the target reliability.

In the design stage, reliability is designed into the product based on test data, process capability, and field data, and experimental models are made. These trial products are referred to as TS (technical samples), and are evaluated primarily for their

Fig. 1 New Product Development Steps
ability to function and their perfomance.
Next, ES (engineering samples) are made and evaluated to detemine whether the functions, performance and quality aimed for in the disign stage can be guaranteed under the existing manufacturing conditions. These ES are also evaluated in quality and reliability tests to determine whether their long-term reliability can be guaranteed.

At the final stage, the availability for massproduction will be deliberated based upon the evaluation result of TS and ES. After transition to the massproduction step, pilot production will be performed to confirm the quality and reliability obtained on the way of designing, and variations in the process. It will be judged whether or not massproduction is available according to the result.

DR (Desing Review) is performed to prevent from faulty operation and to enhance the functions, usability, quality and reliability, upon completion of structural design, software design, circuit design, TS/ES evaluation and reliability tests. Fig. 1 shows the steps in the development of new products.

Fig. 2 Example of process quality control

3. Quality and Reliability Control in Mass Production

(1) Quality Control of Materials

The quality and reliability of a product is affected by its component materials as well as the manufacturing processes and conditions.

The quality control of purchased component materials is basically ensured by a material supplier, based upon the quality control system between SHARP and a supplier as follows.

- Selection of suppliers prior to the placement of purchase order.
- Material qualification upon receipt of new materials. (Evaluation of device quality and reliability used with new materials.)
- Regular quality meeting based upon quality information when massproduction between both parties.
The incoming inspection may be performed according to the inspection standard based upon approved specifications.
(2) Control of Manufacturing Environment

Environmental conditions in the manufacturing process-such as temperature, humidity and dust -significantly affect the finished quality of semiconductor products.

Temperature is especially critical in maintaining the accuracy of the measurements of electrical characteristics and the accuracy of various devices. Humidity control is important for the prevention of moisture penetration into a device and the prevention of static electricity. Temperature and humidity are thus strictly maintained at constant levels.

A dust-free environment is vital in the manufacture of refined semiconductor circuits, as dust can be the critical determining factor in their quality and reliability. Thus, cleanliness of everything from air conditioning equipment to work benches to work clothes and office items is carefully controlled.

Sharp is also concerned about creating an environment conductive to error-free high-precision work, and so provides background music and interior colors appropriate for specific tasks.
(3) Control of Manufacturing Equipment and Measuring Devices
Tremendous technological innovations and progress has been made in integrated circuits and in the processes and equipment by which they are produced.

To achieve even higher levels of product uniformity and quality, Sharp is continually furthering the automation of its processes, strictly manag-
ing the maintenance of its manufacturing equipment, and carefully monitoring the accuracy of all measuring devices through daily and periodic inspections.

The productive control is systematized based upon TPM (Total Productive Maintenance). Sharp is cultivating experts in productive maintenance through a self-maintenance, a planning maintenance, a repair maintenance.

The measuring device is controlled with the regular proof by an officially authorized constitution based upon national standard, in order to keep high precision.

Fig. 3 Product inspection system

(4) Process Quality Control and Product inspections

Based on the fundamental concept of ensuring quality and reliability throughout the manufacturing process, we check at each stage to determine whether the prescribed characteristics are being obtained and to prevent defective items from going on to the next stage. We do this thorough strict monitoring, inspection of all items, sampling inspections, and other standardized methods of management.

We perform a final inspection of all finished products as well as further quality assurance inspections through sampling to fully ensure quality.

Detects found in these inspections are promptly reported to the design and production sections, and improvements made in the processes to upgrade our uniform quality capabilities.

Fig. 3 shows the product inspection system.
Fig. 4 shows an example of process quality contol.

(5) Reliability Assurance

To guarantee the long-term reliability of our products, we periodically sample products and subject
them to reliability testing such as life tests and environmental tests.

These tests are long-term reliability tests and the obtained data will be given to the related sections.

The inspections and tests for quality assurance are made to maintain and enhance the quality as well as to predict the reliability of products in the market. Thus assures quality and reliability of products from many aspect.

Table 1 Reliability test for memory products

Type	Test item	Test condition	Test objectives
Life tests	High temperature storage	$\mathrm{Ta}=150^{\circ} \mathrm{C}$	Evaluate resistance to high temperature in long-term storage.
	High temperature operation	$\begin{aligned} & \mathrm{Ta}=125^{\circ} \mathrm{C} \text { or } 150^{\circ} \mathrm{C} \\ & \text { power supply voltage (MAX.) } \end{aligned}$	Evaluate resistance to long-term high temperature and electrical stress.
	High temperature, humidity storage	(1) $85^{\circ} \mathrm{C} 85 \% \mathrm{RH}$ (2)Pressure cooker test, $121^{\circ} \mathrm{C}$ 100\%RH, 15PSIG	Evaluate resistance to high temperature and humidity in long-term storage.
	High temperature, humidity bias	$85^{\circ} \mathrm{C} 85 \% \mathrm{RH}$ Power supply voltage (MAX.)	Evaluate resistance to long-term high temperature, humidity and electrical stress.
	Low temperature storage	$\mathrm{Ta}=-65^{\circ} \mathrm{C}$	Evaluate resistance to low temperature in longterm storage.
Thermal environmental tests	Temperature cycling	Tstg(MAX.) Tstg(MIN.) $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ air	Evaluate resistance to sudden extreme temperature changes.
	Thermal shock	Tstg(MAX.).Tstg(MIN.) $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ liq	Evaluate resistance to sudden extreme temperature changes.
	Resistance to solder heat	$260{ }^{\circ} \mathrm{C} 10 \mathrm{~s}$	Evaluate resistance to thermal stress during soldering
Mechanical environment tests	Mechanical shock	1,500G, $0.5 \mathrm{~ms} \pm \mathrm{X}, \pm \mathrm{Y}, \pm \mathrm{Z}$	Evaluate structural and mechanical resistance to strong shocks.
	Variablefrequency vibration	20G, 100 to $2,000 \mathrm{~Hz}, \mathrm{X}, \mathrm{Y}, \mathrm{Z}$	Evaluate resistance to vibration during transport and use.
	Constant accelration	$20,000 \mathrm{G} \pm \mathrm{X}, \pm \mathrm{Y}, \pm \mathrm{Z}$	Evaluate resistance to constant acceleration.
	Lead fatigue	Lead pull: holds fixed load for 10 seconds Lead bend: bend once 90 in forward and reverse directions (Load is determined based on pin shape and the surface area of pins section.)	Evaluate resistance to mechanical stress applied to pins.
	Hermecity	Test for minute leaks using helium gas and large leaks using foaming.	Evaluate hermetic sealing.
	Salt atmosphere	Spray 5% salt solution at $\mathrm{Ta}=35^{\circ} \mathrm{C}$ for 24 hours	Evaluate resistance to corrosion in salt spray environment.
	Solderibility	$230^{\circ} \mathrm{C}$ for 5 seconds (with flux)	Evaluate solderability of pins.

Fig. 4 Quality assurance system

4. Reliability Tests

In addition to determining the extent to which product reliability can be assured, the objectives of reliability testing include getting an understanding of design limitations and the catastrophic failure mode, and prediction reliability in the field.

The major categories of reliability testing are life tests, thermal environmental tests, and mechanical environment tests. The standardized test methods used are those prescribed by official standards or associaitions such as the International Electronics Commission (IEC), and the U. S. Military Specifications (MIL). Sharp standardizes all specifications to conform with these standerds.
Table 1 shows a representative reliability test.

5. After-sales Service

If a product malfunction after shipment, we have the customer return the product for detailed analysis. We also obtain complete information concerning conditions of use, frequency of occurrence, and symptoms.

When the cause has been determined, we report
findings concerning the design, manufacturing process, or method of use to the departments concerned for preventive action against recurrence of the malfunction. We then submit a report to the customer.

This process of tracking the performance of our products in actual use is an extermely effective way to enchance product reliabilty. We direct a lot of energy forwards its full implementation.

Fig. 5 shows the quality information flowchart, and Fig. 6 shows the procedures used in their analysis.

6. Handling Precautions

All of the semiconductor products listed in this data book were manufactured based on exacting designs and under compreshensive quality control. However, to take full advantage of the features offered and assure the products' long-life service, please refer to this manual to help in designing systems that make best use of their capabilities.

(1) Maximum Ratings

It is generally known that the failure rate of semiconductor products increases as the tempera-

Fig. 5 Routes through which malfunctions outside the companiy are handlid
ture increases. It is necessary, of course, that the ambient temperature be within the maximum rated temperature. Further it is desirable from the standpoint of reliability that the ambient temperature be lowered as much as possible. The voltage, current, and electric power used are also factors that significantly influence the life of semiconductor products. Voltage or current that exceeds the rated level may damaged, the semiconductor product; even if applied only momentarily and the unit continues to operate properly, excessive voltage or current will likely increase the failure rate.

Therefore, in actual circuit design, it is important that the semiconductor products used have a certain degree of 1allowance with respect to the voltage, current and temperature conditions under which they will be used. The greater this allowance, the fewer the failures that will occur.

To keep failures to a minimum, the circuit should be designed so that under all conditions to absolute maximum, the ratings are not exceeded even momentarily and so that the maximum values for any two or more items are not achieved simultaneously. In addition, remember that the circuit functions of semiconductor products are guaranteed within the operating temperature range (Topr) of the absolute maximum ratings, but that storage temperature (Tstg) is the range in a nonoperating condition.

(2) Transportation and Storage

It is recommended to store semiconductor products under circumstances of normal temperature (5 to $30^{\circ} \mathrm{C}$ and normal humidity (45 to $75 \% \mathrm{RH}$)).

The products in moisture-proof package should be stored under circumstances of 5 to $30^{\circ} \mathrm{C}$ and less than $70 \% \mathrm{RH}$, and they should be mounted in systems immediately after unpacking.

During shipping and storage, keep semiconductor products in the packaging they were delivered in to prevent damage due to static electricity. If removed from their packaging, the terminals must be
shortcircuited with a conductive material or the entire units wrapped in aluminium foil. Also remember that nylon and plastic containers build up electrostatic charges easily and so should not be used for storage or transportation.

Mechanical vibration and shock also be kept to a minimum.

(3) Assembly

When attached to printed circuit boards, semiconductor products are removed from a conductive container, so electrical equipment, work benches and operators must be grounded to protect the products from static electricity. It is good to use grounded metal plating on the surfaces of work benches. Grounding metal rings and watch bands is a convenient method for grounding operators. The grounding of operators is required to prevent electric shock due to current leaks from electrical equipment, so it must be performed through a resistance of $1 \mathrm{M} \Omega$.

Working attire made of synthetic fabrics should be avoided in favor of fabrics such as cotton that do not easily genarate static electricity.

Keeping the relative humidity in working areas around 50% will also help to prevent the generation of static electricity.

Current leakage from electrical equipment is not desirable from the standpoint of safety. All equipment should therefore be checked periodically for current leakage.

When forming the lead wires of semiconductor products to be mounted, forceps or a similar tool that will prevent stress from being applied to the base of the wires should be used.

To prevent the input terminals of semiconductor products on completed printed circuit boards from becoming open during storage or transport, the terminals of the circuit board should be shortcircuited or the entire circuit board itself should be wrapped in aluminium foil.

Table 2

Bonding method	Temperature and time	Test position
Infrared reflow	Peak temp. $240^{\circ} \mathrm{Cor} \mathrm{less}. 230^{\circ} \mathrm{C}$ or more within 15 sec. Heating speed. 1 to $4{ }^{\circ} \mathrm{C} / \mathrm{sec}$.	Surface IC package
Flow dipping	$245^{\circ} \mathrm{C}$ or less, Within 3 sec./cycle Within 5 sec. in total	Solder bathe
VPS	$215^{\circ} \mathrm{C}$ or less, $200^{\circ} \mathrm{C}$ or less/within 40 sec.	Steam
Hand soldering	$260^{\circ} \mathrm{C}$ or less, within 10 sec.	IC outer lead

Fig. 6 Failure analysis procedure

(4) Soldering and Cleaning

When a semiconductor product are solderbonded, specify the best conditions according to the Table 2. If using a soldering iron, use one with no leakage from the soldering tip. An A class soldering iron with an insulation resistance of less than $10 \mathrm{M} \Omega$ is recommended. When using a solder bath, it should be grounded to prevent its having an unstable electric potential.

Using a strongly acidic or alkaline flux for soldering can cause corrosion of the lead wires. A resin flux is ideal for this type of soldering.

To assure the reliability of a system, removal of the flux used in soldering is generally required.

To prevent stress of semiconductor products and circuit board when using ultrasonic cleaning, a cleaning method must be used that will shadow the main unit from the vibrator and specify the best conditions according to the cleaning conditions as below.

Ultrasonic output: $25 \mathrm{~W} / 1$ or less
Cleaning time: 1 min . or less in total

Cleaning fluid temp.: 15 to $40^{\circ} \mathrm{C}$

(5) Adjustment and Tests

When the set is to be adjusted and tested upon completion of the printed circuit board, the printed circuit board must be checked to ensure that there are no solder bridges or cracks before the power is turned on. Also, if the market rated valtage and current are to be used, it is wise to use a current limiter.

Whenever a printed circuit board is to be removed or mounted or mounted on a socket, the power must be turned off.

When testing with a probe, care must taken to assure that the probe does to come in contact with other signals or the power supply. If the test location has been decided beforehand, it is wise to set up a specially designed test pin for testing.

When testing in high and low temperatures, the constant temperature bath must be grounded and measures taken to protect the set inside the bath from static electricity.

4-bit Single-chip Microcomputers

SM590/SM591/SM595

4-Bit Microcomputer (Controller for Low Power Systems)

- Description

The SM590/SM591/SM592 is a CMOS 4 -bit microcomputer which integrates a 762×8-bit ROM, a 41 instruction set, a 4 -level subroutine stack, a 15 I/O port (for 20-pin DIP), and a standby function in a single chip.
Operated from $1 \mu \mathrm{~s}$ instruction cycle with low power consumption, this microcomputer is applicable to replacement of a compact controller circuit or any circuits consisting of conventional standard ICs.

Features

1. CMOS process
2. ROM capacity

SM590: 508×8 bits
SM591: 1016×8 bits
SM595: 762×8 bits
3. RAM capacity

SM590: 32×4 bits
SM591: 56×4 bits
SM595: 32×4 bits
4. Instruction set 41
5. Subroutine nesting 4 levels
6. Input/Output ports

11 bits (16DIP)
13 bits (18DIP)
15 bits (20DIP)
7. Output current (10 bits MAX.)

SM590/SM591: 10mA (MAX.)
SM595: 7mA (MAX.)
8. Clock oscillator

- Ceramic oscillator
- Resistor
- External clock

9. Standby mode
10. Power supply (2.5 to 5.5 V)
11. Instruction cycle
$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}: 4 \mu \mathrm{~s}$ (MIN.)
$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}: 1 \mu \mathrm{~s}$ (MIN.)
12. 16-pin DIP (DIP16-P-300)

18-pin DIP (DIP18-P-300)
20-pin DIP (DIP20-P-300)

Pin Connections
16DIP

18DIP

20DIP

Block Diagram
Symbol description

Acc	: Accumulators	PC	: Program counter
ALU	: Arithmetic logic unit	R0-R3	: Registers
B	: RAM address register	SP	: Stack pointer
C	: Carry F/F	SR	: Stack register
CG	: Clock generator	X	: Temporary register

Note: Pin numbers apply to $20-$ pin DIP only.

Pin Description

Pin name	I/O	Circuit type	Function	Note
$\mathrm{R} 0_{0}-\mathrm{R} 0_{3}$	I / O	Pull down	Input/Output ports	1
$\mathrm{R} 1_{0}-\mathrm{R} 1_{3}$	I / O	Pull down	Input/Output ports	1
$\mathrm{R} 2_{0}-\mathrm{R} 2_{3}$	I / O	Pull down	Input/Output ports	2
$\mathrm{R} 3_{0}-\mathrm{R} 3_{2}$	I / O	Pull down	Input/Output ports	1
ACL	I	Pull down	Auto clear	
CL			System clock oscillation	
$\mathrm{R} 3_{3} / \mathrm{CL}_{2}$	O		Output/system clock oscillation	3
V DD			Power supply for logic circuit	
GND			Ground	

Note 1: Open drain I/O or CMOS outputs selectable with a mask option.
Note 2: Open drain I/O is selectable with a mask option.
Note 3: An external clock should be applied when the $\mathrm{R} 3_{3}$ output port is selected with a mask option.

Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Supply voltage	V_{DD}	-0.3 to +7.5	V
Input voltage	V_{1}	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Output voltage	V_{0}	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Source output current sum	$\Sigma \mathrm{I}_{\mathrm{OH}}$	120	mA
Sync output current sum	$\Sigma \mathrm{I}_{\mathrm{OL}}$	20	mA
Operating temperature	Topr	-10 to +70	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$

Recommended Operating Conditions			$\left(\mathrm{Ta}=-10\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$			
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Supply voltage	V_{DD}		2.5		5.5	V
Instruction cycle	$\mathrm{t}_{\mathrm{SYS}}$	$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} \pm 0.5 \mathrm{~V}$	4		50	$\mu \mathrm{s}$
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 0.5 \mathrm{~V}$	1		50	

Electrical Characteristics
$\left(\mathrm{V}_{\mathrm{DD}}=2.7\right.$ to $5.5 \mathrm{~V}, \mathrm{Ta}=-10$ to $\left.+70^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit	Note
Input voltage	$\mathrm{V}_{\text {IHI }}$			$0.7 \mathrm{~V}_{\text {DD }}$		V_{DD}	V	1
	$\mathrm{V}_{\text {IL1 }}$			0		$0.3 \mathrm{~V}_{\mathrm{DD}}$	V	
	$\mathrm{V}_{\mathrm{IH} 2}$			$\mathrm{V}_{\mathrm{DD}}-0.5$		V_{DD}	V	2
	$\mathrm{V}_{\mathrm{IL} 2}$			0		0.5	V	
	$\mathrm{V}_{\text {IL3 }}$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$	SM590/SM591	0.7	1.4	2.1	V	3
		$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$	SM595			0.5		
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	SM595			0.7		
	$\Delta \mathrm{V}_{\mathrm{I}}$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$	SM590/SM591	1.1	2.0	3.1	V	
	$\mathrm{V}_{\text {IH3 }}$	$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$	SM595	2.8			V	
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	SM595	4.6				
Input current	$\mathrm{I}_{\mathrm{H} 1}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$	$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} \pm 10 \%$	15	70	200	$\mu \mathrm{A}$	1
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$	70	250	750		
	$\mathrm{I}_{\mathrm{H} 2}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$	$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} \pm 10 \%$		7	20	$\mu \mathrm{A}$	4
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$		20	60		
Current consumption	$\mathrm{I}_{\text {A1 }}$	$\mathrm{t}_{\mathrm{SYS}}=2 \mu \mathrm{~s}$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$		1	3	mA	5
		$\mathrm{t}_{\mathrm{SYS}}=10 \mu \mathrm{~s}$	$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} \pm 10 \%$		100	200	$\mu \mathrm{A}$	
	$\mathrm{I}_{\text {A } 2}$		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$		200	500		
	$\mathrm{I}_{\text {ST }}$	Standby mode			1.	2	$\mu \mathrm{A}$	
Output current	$\mathrm{I}_{\mathrm{OH} 1}$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$	SM590/SM591	10			mA	6
		$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-2 \mathrm{~V}$	SM595	7				
		$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-0.5 \mathrm{~V}$		1				
	$\mathrm{I}_{\text {OL1 }}$	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$	1.6			mA	
		CMOS output		0.8				
		$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$	15			$\mu \mathrm{A}$	
		Pull-down output		8				
	$\mathrm{I}_{\mathrm{OH} 2}$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$	SM590/SM591	4		.	mA	7
		$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-2 \mathrm{~V}$	SM595	3				
		$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-0.5 \mathrm{~V}$	SM590/SM591	0.5				
			SM595	0.4				
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$					
	$\mathrm{I}_{\text {OL2 }}$	Pull-down output		8			$\mu \mathrm{A}$	
	$\mathrm{I}_{\text {OH3 }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \% \\ & \mathrm{~V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-2 \mathrm{~V} \end{aligned}$	SM590/SM591	4			mA	8
			SM595	3				
		$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-0.5 \mathrm{~V}$	SM590/SM591	0.5				
			SM595	0.4				
	$\mathrm{I}_{\text {OL3 }}$	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$ CMOS output		1.6			mA	
				0.8				
		$\mathrm{V}_{\text {OL }}=0.4 \mathrm{~V}$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$	15			$\mu \mathrm{A}$	
		Pull-down output		8				
	$\mathrm{I}_{\mathrm{OH} 4}$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$	SM590/SM591	10			mA	9, 10
		$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-2 \mathrm{~V}$	SM595	7				
		$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-0.5 \mathrm{~V}$		1				
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$	SM590/SM591	3				9,11
		$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-2 \mathrm{~V}$	SM595	2				
		$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-0.5 \mathrm{~V}$	SM590/SM591	0.4				
			SM595	0.3				
	$\mathrm{I}_{\text {OL4 }}$	$\mathrm{V}_{\text {OL }}=0.4 \mathrm{~V}$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$	1.6			mA	9
		CMOS output		0.8				
		$\mathrm{V}_{\text {OL }}=0.4 \mathrm{~V}$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$	15			$\mu \mathrm{A}$	
		Pull-down output		8				

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit	Note
Output current	$\mathrm{I}_{\mathrm{OH} 5}$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$	SM590/SM591	1			mA	12
		$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-2 \mathrm{~V}$	SM595	0.7				
		$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-0.5 \mathrm{~V}$	SM590/SM591	0.15				
			SM595	0.1				
	$\mathrm{I}_{\text {OL5 }}$	CMOS output		$\frac{0.6}{0.3}$			mA	

Note 1: Applied to pins $R 0_{0}-R 0_{3}, R 1_{0}-R 1_{3}, R 2_{0}-R 2_{3}, R 3_{0}-R 3_{3}$.
Note 2: Applied to pins ACL and CL_{1}.
Note 3: Applied to pin $\mathrm{R} 2_{2}$. (When a standby clear signal is input.)
$\mathrm{V}_{\mathrm{IL} 3}$: Oscillation start input voltage (No oscillation is occurred under this level.)
$\mathrm{V}_{\mathrm{IH} 3}$: Systemclock start voltage (See Fig. 7)
$\Delta \mathrm{V}_{1}: \mathrm{V}_{\mathrm{IH} 3}-\mathrm{V}_{\mathrm{IL} 3}$
Note 4: Applied to pin ACL.
Note 5: No load condition.
Note 6: Applied to pins $\mathrm{R} 0_{0}-\mathrm{R} 0_{3}, \mathrm{R} 1_{0}-\mathrm{R} 1_{3}, \mathrm{R} 3_{1}$.
Note 7: Applied to pins $\mathrm{R} 2_{0}-\mathrm{R} 2_{3}$.
Note 8: Applied to pin $\mathrm{R} 3_{0}$.
Note 9: Applied to pin R3 2 .
Note10: When the content of R latch is output from the pin $\mathrm{R} 3_{2}$.
Note11: When the clock input to the pin CL_{1} is output from pin $\mathrm{R} 3_{2}$.
Note12: Applied to pin $\mathrm{CL}_{2} / \mathrm{R}_{3}$.

Oscillator Circuits

CL_{1} and CL_{2} are the clock oscillator input and output ports respectively. The basic clock signal can be obtained by the ceramic oscillator and resistor. The external clock signal may also be provided. (See Fig. 1.)

For an external clock input, provide the external clock to the CL_{1} pin. In this case, the CL_{2} pin can be used as the output pin ($\mathrm{R} 3_{3}$ pin) with a mask option.

The internal system clock is equivalent to the basic clock supplied to the CL_{1} pin divided by four.

Fig. 1 Reference clock generator circuit

External Input Signal AC Characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Clock rise time	t_{r}	$\mathrm{V}_{\mathrm{DD}}=2.5$ to 5.5 V			50	ns
Clock fall time	t_{f}	$\mathrm{V}_{\mathrm{DD}}=2.5$ to 5.5 V			50	
Clock pulse width	t_{L}	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 0.5 \mathrm{~V}$	0.08		6.3	$\mu \mathrm{~s}$
	t_{H}	$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} \pm 0.5 \mathrm{~V}$	0.45		6.3	

Note: When external clock is input.

Pin Descriptions

(1) V_{DD}, GND (Power supply)

Apply 2.5 to 5.5 V power supply to the V_{DD} pin with respect to GND pin which provides a reference level of the LSI.

(2) ACL (Reset pin)

The ACL pin is used to initialize the LSI. The LSI will be reset upon completion of two instruction cycles after ACL pin goes High. The ACL (reset) mode will be cleared upon completion of one instruction cycle after ACL pin goes LOW.

Connect a capacitor between $A C L$ and $V_{D D}$ to reset when power on. Two or more instruction cycles should be taken for the ACL input.
When a ceramic oscillator is used for a system clock, take a certain period of ACL time with the oscillation to be stabled.

Fig. 2 ACL circuit

(3) $\mathrm{R} 3_{1}-\mathrm{RO}_{\mathrm{i}}(\mathrm{i}=0$ to 3$) \mathrm{I} / \mathrm{O}$ pin

$R 3_{i}-R 0_{i}$ ($\mathrm{i}=0$ to 3) pins may be used for both input and output, and a pull-down resistor is connected to the output buffer.

Data should be transferred between ports $\left(R 3_{i}-R 0_{i}\right)$ specified by the BL and the accumulator (A_{CC}) or data memory by instructions.
When $R 3_{i}-R 0_{i}$ pins are used as inputs, reset the output latch and connect a pull-down resistor to the I / O pins.

Note: Upon completion of RTA instruction for $\mathrm{R} 3_{2}$ pin, the contents of an internal output latch are loaded into the accumulator A_{CC}.

The circuit type of $R 3_{i}-R 0_{i}$ can be used not only as a pull-down type but also as the following two types with a mask option.

Mask option I

When the R port is used as only output port with a large sink current, it can be replaced with the CMOS buffer.

Applicable pins:

$$
\mathrm{R} 0_{0}-\mathrm{R} 0_{3}, \mathrm{R} 1_{0}-\mathrm{R} 1_{3}, \mathrm{R} 3_{0}-\mathrm{R} 3_{2}
$$

Not applicable pins:

$$
\mathrm{R} 2_{0}-\mathrm{R} 2_{3}
$$

Mask option II
When the R port is used as only input port with a reduced current flowing into the pull-down resistor, it can be replaced with an open drain with a protective diode not to be pulled-down.

Note: The $\mathrm{CL}_{2} / \mathrm{R} 3_{3}$ pin can be used as $\mathrm{R} 3_{3}$ output pin with a mask option, and the circuit type should be set to the CMOS buffer.

Hardware Configuration

(1) Program counter and stack

The ROM addresses can be specified by a program counter (PC).

The program counter (PC) consists of 10 bits including 1 bit $\left(\mathrm{P}_{\mathrm{U}}\right)$ for the field specification, 2 bits $\left(\mathrm{P}_{\mathrm{M}}\right)$ for the page specification and 7 bits $\left(\mathrm{P}_{\mathrm{L}}\right)$ for the step specification.

The P_{M} for the page specification is a binary counter, and the P_{L} for the step specification is a polynomial counter (provided that it is inhibited for $P_{L}=7 F$).

A 4-bit stack register enables 4 levels of subroutine nesting.

(2) Program memory (ROM)

The program memory (ROM) is used to store programs. See Fig. 3 and Fig. 4 for ROM configuration.

1 field has a configuration of 4 pages $\times 127$ steps $\times 8$ bits.

The SM590 has 508 bytes of ROM which consists of 1 field $(0) \times 127$ steps $\times 4$ pages.

The SM591 has 1016 bytes of ROM which consists of 2 fields (0 and 1) $\times 127$ steps $\times 4$ pages.

The SM595 has 762 bytes of ROM which consists of 1 field $(0) \times 127$ steps $\times 4$ pages +1 field $(1) \times 127$ steps $\times 2$ pages.

The ACL program starts at field 0 , page 0 and step 0.

When the standby mode is cleared, execute the program at field 0 , page 1 and step 0 .

P $_{M} \quad$ PU	Field 0	Field 1
Page 0	ACL start	
Page 1	Standby mode start	
Page 2		
Page 3		
	\leftarrow SM590 \longrightarrow	
	\leftarrow SM591 \longrightarrow	

Fig. 3 ROM configuration (SM590/SM591)

$P_{\mathrm{N}} \quad$ Pu	Field 0	Field 1
Page 0	ACL start	
Page 1	Standby mode start	
Page 2		
Page 3		

Fig. 4 ROM configuration (SM595)

The TR instruction is used to jump within a page, while the TL (two-word) instruction is used to jump to any desired address. The TLS instruction executes a subroutine jump to any desired address.

(3) Data memory (RAM) and B register

The data memory (RAM) is used to store data. The RAM size of the SM590 and SM595 is 16×2 $\times 4$ (128 bits), while that of the SM591 is 16×3.5 $\times 4$ (244 bits).

Each file consists of a 16 word $\times 4$-bit configuration as shown in Fig. 5.

The RAM address is specified by a B register composed of 1 -bit for the SM590/SM595 or 2 bits for the SM591 of B_{M} and 4 bits of B_{L}.

$\mathrm{B}_{\mathrm{L}} \mathrm{B}_{\mathrm{U}}$	0	1	2	3
0				
1				
2				
3				
4				
5				
6				
7				
8				
9				
A				
B				
C				
D				
E				
F				
	$-\mathrm{SM}$	95		

Fig. 5 RAM Configuration

(4) Accumulator ($A_{c c}$) and X register

The accumlator ($A_{C C}$) is a 4-bit register. It transfers data to I/O ports and performs operations in combination with an arithmetic and logic unit (ALU), a carry flag (C) and a RAM.

The X register is a 4-bit register used as a temporary register which transfers and compares data with the A_{CC}.
(5) Arithmetic and logic unit (ALU) and carry flag (C)
The arithmetic and logic unit (ALU) performs 4 -bit parallel arithmetic operations. Executing the ADC and ADCS instructions shifts the carry of operations into the carry flag (C).
(6) Output latches ($\mathrm{R}[0], \mathrm{R}[1] \mathrm{R}[2], \mathrm{R}[3])$

The output latches consist of 16 bits. 11 bits for 16 pin package, 13 bits for 18 pin package and 15 bits for 20 pin package of the output latches are connected to external pins. The rest of the output latches not connected to external pins can be used as temporary registers.
The R output latches are specified by B_{L}.

Fig. 6

(7) System clock generator circuit

The system clock generator circuit divides the basic clock supplied from the CL_{1} pin, generates the system clock.
The circuit externally outputs the clock signals generated from clock oscillators ($\mathrm{CL}_{1}, \mathrm{CL}_{2}$) through $R 3_{2}$ pin with a mask option.
This function enables to be synchronized with other LSIs.
Note that the instruction cycle time of 1 word instruction is equivalent to 1 cycle of system clocks.

Fig. 7 Clock timing for a ceramic ascillator

(8) Standby function

Executing an instruction places the device in standby mode to reduce current consumption.
The oscillator and the system clock are iactivated in standby mode.
When the $\mathrm{R} 2_{2}$ accepts High level in standby mode, the standby mode is cleared and restarts program execution at field 0 , page 1 and step 0 .
If a ceramic oscillator is used as a clock generator, a delay circuit shown in Fig. 6 is required to obtain the clock oscillation time to be stabled.
Fig. 7 shows the timing in this case.

(9) Reset function (ACL)

Applying a High level signal to the ACL pin resets the carry flag (c) and the output latch, and the input pins are pulled-down.
Be sure not to apply High level to both $\mathrm{R} 2_{0}$ and $\mathrm{R} 2_{1}$ pins in the reset (ACL) mode.
Applying a Low level signal to the ACL pin starts execution of the program at field 0 , page 0 , step 0 .

Instruction Set
(1) ROM address instructions

Mnemonic	Machine code	Operation
TR x	$80-\mathrm{FE}$	$\mathrm{P}_{\mathrm{L}} \leftarrow \mathrm{I}_{6}-\mathrm{I}_{0}$ (jump within a page)
TL xyz	$78-7 \mathrm{~B}$	$\mathrm{P}_{\mathrm{U}} \leftarrow \mathrm{I}_{9}, \mathrm{P}_{\mathrm{M}} \leftarrow \mathrm{I}_{8}, \mathrm{I}_{7}$
	$00-\mathrm{FE}$	$\mathrm{P}_{\mathrm{L}} \leftarrow \mathrm{I}_{6} \mathrm{I}_{0}$ (jump to any page)
TLS xyz	$7 \mathrm{C}-7 \mathrm{~F}$	$\mathrm{SP} \leftarrow \mathrm{SP}+1, \mathrm{SR} \leftarrow \mathrm{PC}+2$
	$00-\mathrm{FE}$	$\mathrm{P}_{\mathrm{U}} \leftarrow \mathrm{I}_{9}, \mathrm{P}_{\mathrm{M}} \leftarrow \mathrm{I}_{8}, \mathrm{I}_{7}, \mathrm{P}_{\mathrm{L}} \leftarrow \mathrm{I}_{6}-\mathrm{I}_{0}$
RTN	4 C	$\mathrm{SP} \leftarrow \mathrm{SP}-1, \mathrm{PC} \leftarrow \mathrm{SR}$
RTNS	4 D	$\mathrm{SP} \leftarrow \mathrm{SP}-1, \mathrm{PC} \leftarrow \mathrm{SR}$, Skip

(2) Data transfer instructions

Mnemonic	Machine code	Operation
LAX x	$30-3 \mathrm{~F}$	$\mathrm{A}_{\mathrm{CC}} \leftarrow \mathrm{I}_{3}-\mathrm{I}_{0}$ Skip if last instruc- tion is LAX
LBLX x	$20-2 \mathrm{~F}$	$\mathrm{~B}_{\mathrm{L}} \leftarrow \mathrm{I}_{3}-\mathrm{I}_{0}$
LBMX x	$74-77$	$\mathrm{~B}_{\mathrm{M}} \leftarrow \mathrm{I}_{1}, \mathrm{I}_{0}$
STR	4 A	$\mathrm{M} \leftarrow \mathrm{A}_{\mathrm{CC}}$
LDA	40	$\mathrm{~A}_{\mathrm{CC}} \leftarrow \mathrm{M}$
EXC	41	$\mathrm{M} \leftrightarrows \mathrm{A}_{\mathrm{CC}}$
EXCI	42	$\mathrm{M} \leftrightarrows \mathrm{A}_{\mathrm{CC}}, \mathrm{B}_{\mathrm{L}} \leftarrow \mathrm{B}_{\mathrm{L}}+1$ Skip if Carry $=1$
EXCD	43	$\mathrm{M} \leftrightarrows \mathrm{A}_{\mathrm{CC}}, \mathrm{B}_{\mathrm{L}} \leftarrow \mathrm{B}_{\mathrm{L}}-1$ Skip if Borrow $=1$
EXAX	5 D	$\mathrm{A}_{\mathrm{CC}} \leftrightarrows \mathrm{X}$

(3) Arithmetic instructions

Mnemonic	Machine code	Operation
ADX x	$00-0 \mathrm{~F}$	$\mathrm{~A}_{\mathrm{CC}} \leftarrow \mathrm{A}_{\mathrm{CC}}+\mathrm{x}$, Skip if Carry $=1$
ADD	70	$\mathrm{~A}_{\mathrm{CC}} \leftarrow \mathrm{A}_{\mathrm{CC}}+\mathrm{M}$
ADS	71	$\mathrm{~A}_{\mathrm{CC}} \leftarrow \mathrm{A}_{\mathrm{CC}}+\mathrm{M}$, Skip if Carry $=1$
ADC	72	$\mathrm{~A}_{\mathrm{CC}} \leftarrow \mathrm{A}_{\mathrm{CC}}+\mathrm{M}+\mathrm{C}, \mathrm{C} \leftarrow$ Carry
ADCS	73	$\mathrm{A}_{\mathrm{CC}} \leftarrow \mathrm{A}_{\mathrm{CC}}+\mathrm{M}+\mathrm{C}, \mathrm{C} \leftarrow$ Carry Skip if Carry $=1$
COMA	44	$\mathrm{~A}_{\mathrm{CC}} \leftarrow \overline{\mathrm{A}_{\mathrm{CC}}}$
INBL	52	$\mathrm{~B}_{\mathrm{L}} \leftarrow \mathrm{B}_{\mathrm{L}}+1$, Skip if Carry $=1$
DEBL	53	$\mathrm{~B}_{\mathrm{L}} \leftarrow \mathrm{B}_{\mathrm{L}}-1$, Skip if Borrow $=1$
INBM	50	$\mathrm{~B}_{\mathrm{M}} \leftarrow \mathrm{B}_{\mathrm{M}}+1$
DEBM	51	$\mathrm{~B}_{\mathrm{M}} \leftarrow \mathrm{M}_{\mathrm{M}}-1$

(4) Test instructions

Mnemonic	Machine code	Operation
TAX	$10-1 \mathrm{~F}$	Skip if $\mathrm{A}_{\mathrm{CC}}=\mathrm{x}$
TBA x	$64-67$	Skip if $\mathrm{A}_{\mathrm{CC}}=1(\mathrm{x}=3$ to 0$)$
TM x	$60-63$	Skip if $\mathrm{Mx}=1(\mathrm{x}=3$ to 0$)$
TAM	45	Skip if $\mathrm{A}_{\mathrm{CC}}=\mathrm{M}$
TC	54	Skip if $\mathrm{C}=1$

(5) Bit manipulation instructions

Mnemonic	Machine code	Operation
SM x	$6 \mathrm{C}-6 \mathrm{~F}$	$\mathrm{Mx} \leftarrow 1(\mathrm{x}=3$ to 0$)$
RM x	$68-6 \mathrm{~B}$	$\mathrm{Mx} \leftarrow 0(\mathrm{x}=3$ to 0$)$
SC	49	$\mathrm{C} \leftarrow 1$
RC	48	$\mathrm{C} \leftarrow 0$

(6) 1/O instructions

Mnemonic	Machine code	Operation
ATR	46	$\mathrm{R}\left(\mathrm{B}_{\mathrm{L}}\right) \leftarrow \mathrm{A}_{\mathrm{CC}}$
MTR	47	$\mathrm{R}\left(\mathrm{B}_{\mathrm{L}}\right) \leftarrow \mathrm{M}$
RTA	55	$\mathrm{~A}_{\mathrm{CC}} \leftarrow \mathrm{R}\left(\mathrm{B}_{\mathrm{L}}\right)$

(7) Special instructions

Mnemonic	Machine code	Operation
NOP	00	No Operation
CCTRL	4B	Standby Mode

System Configuration Example

Remote control receiver

SM550/SM551/SM552 (Controller)

Description
The SM550/SM551/SM552 is a CMOS 4 -bit microcomputer which integrates a 4 -bit parallel processing function, a ROM, a RAM, I/O ports, a serial interface, a timer/event counter in a single chip.
It provides five kinds of interrupt and a subroutine stack function using the RAM area, and accesses on a byte-by-byte basis.

Operated from 3 to 5 V single power supply with high speed, this microcomputers applicable to many applications from a battery back-up system to a high performance system.

Features

1. CMOS process
2. ROM capacity

SM550: $1,024 \times 8$ bits
SM551: $2,048 \times 8$ bits
SM552: $4,096 \times 8$ bits
3. RAM capacity

SM550: 80×4 bits
SM551: 128×4 bits
SM552: 256×4 bits
4. Instruction set: 94
5. Subroutine stack: using RAM area
6. Instruction cycle:
$1.74 \mu \mathrm{~s}$ (MIN.) ($\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$)
$5.3 \mu \mathrm{~s}$ (MIN.) ($\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$)
7. Interrupts

External interrupts: 2
Internal interrupts: 3
8. Input/output ports

SM550: I/O ports 24
Input ports 4
Output ports 8
SM551/SM552: I/O ports 28
Input ports 4
Output ports 16
9. 8 -bit serial I/O
10. Timer/counter: 1 set
11. On-chip crystal oscillator circuit and clock divider circuit
12. On-chip system clock oscillator
13. Standby function
14. Expandable external data ROM/RAM
15. Supply voltage: 2.7 to 5.5 V
16. SM550: 48-pin QFP (QFP48-P-1010)

SM551/SM552: 60-pin QFP
(QFP60-P-1414)
64-pin SDIP
(SDIP64-P-750)

Block Diagram

Note: Pin numbers apply to a $60-$ pin QFP.

Pin Description

Symbol	I/O	Circuit type	Function	Note
$\begin{aligned} & \mathrm{P} 0_{0}-\mathrm{P} 0_{3}, \mathrm{P1}_{0}-\mathrm{P} 1_{3}, \mathrm{P} 4_{0}-\mathrm{P} 4_{3}, \\ & \mathrm{P} 5_{0}-\mathrm{P} 5_{3}, \mathrm{P} 6_{0}-\mathrm{P6}_{3}, \mathrm{P} 8_{0}-\mathrm{P} 8_{3} \\ & \hline \end{aligned}$	I/O	Pull-up (I)	Input/output ports	
$\mathrm{P} 99_{0}-\mathrm{P} 9_{3}$	I/O	Pull-up (I)	Input/output ports	1
$\mathrm{P} 2_{0}-\mathrm{P} 2_{3}, \mathrm{P} 3_{0}-\mathrm{P} 3_{3}$	O		Output ports	
$\mathrm{PA}_{0}-\mathrm{PA}_{3}, \mathrm{~PB}_{0}-\mathrm{PB}_{3}$	0		Output ports	1
$\mathrm{P} 70-\mathrm{P} 7_{3}$	I	Pull-up	Input ports	
INTA, INTB	I	Pull-up	Interrupt input ports	
$\mathrm{CK}_{1}, \mathrm{CK}_{2}$			System clock CR oscillator	
$\mathrm{OSC}_{\text {IN }}, \mathrm{OSC}_{\text {OUT }}$			Crystal oscillator	
ϕ	0		Synchronous clock output	
V_{DD}, GND			Power supply	
TEST	I	Pull-down	Test input (normally connected to GND)	
RESET	I	Pull-up	Reset input	

Note 1: Applied to the SM551/SM552.

- Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit	Note
Supply voltage	V_{DD}	-0.3 to +7.5	V	1
Input voltage	V_{IN}	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V	1
Output voltage	$\mathrm{V}_{\mathrm{OUT}}$	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V	1
Output current	$\mathrm{I}_{\mathrm{OUT}}$	40	mA	2
Operating temperature	Topr	-20 to +70	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	

Note 1: The maximum applicable voltage on any pin with respect to GND.
Note 2: Sum of current output from (or flowing into) output pin.

- Recommended Operating Conditions

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	Note
Supply voltage	V_{DD}		2.7		5.5	V	
Crystal oscillator frequency	$\mathrm{f}_{\text {OSC }}$			32.768		kHz	1
Basic clock oscillator frequency	f	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	0.25		2.3	MHz	2
		$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$	0.25		0.75		

Note 1: Oscillation starting time: within 10 seconds
Note 2: Degree of fluctuation frequency: $\pm 30 \%$
(Tolerance of voltage fluctuation: $\pm 10 \%$)

Electrical Characteristics				$\left(\mathrm{V}_{\mathrm{DD}}=2.7\right.$ to $5.5 \mathrm{~V}, \mathrm{Ta}=-20$ to $\left.+70^{\circ} \mathrm{C}\right)$					
Parameter	Symbol	Cond	itions	MIN.	TYP.	MAX.	Unit	Note	
Input voltage	$\mathrm{V}_{\text {IHI }}$			$0.7 \mathrm{~V}_{\mathrm{DD}}$		V_{DD}	V	1	
	$\mathrm{V}_{\mathrm{IL} 1}$			0		$0.3 \mathrm{~V}_{\mathrm{DD}}$	V		
	$\mathrm{V}_{\mathrm{IH} 2}$			$\mathrm{V}_{\mathrm{DD}}-0.5$		V_{DD}	V	2,9	
	$\mathrm{V}_{\mathrm{IL} 2}$			0		0.5	V		
Input current	$\mathrm{I}_{\text {IN }}$	$\mathrm{V}_{\mathrm{IH}}=0 \mathrm{~V}$		2		200	$\mu \mathrm{A}$	1, 9	
			$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$	20		200			
Output current	$\mathrm{I}_{\mathrm{OH} 1}$	$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-0.5 \mathrm{~V}$		50			$\mu \mathrm{A}$	3	
	$\mathrm{I}_{\mathrm{OL} 1}$	$\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V}$		250			$\mu \mathrm{A}$		
	$\mathrm{I}_{\mathrm{OH} 2}$	$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-0.5 \mathrm{~V}$		100			$\mu \mathrm{A}$	4	
	$\mathrm{I}_{\mathrm{OL} 2}$	$\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V}$		500			$\mu \mathrm{A}$		
		$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-0.5 \mathrm{~V}$		100			$\mu \mathrm{A}$	5	
	$\mathrm{I}_{\mathrm{OH} 3}$		$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$	400					
	$\mathrm{I}_{\mathrm{OL} 3}$	$\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V}$		0.5			mA		
			$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$		1.6				
Current consumption	I_{OP}					0.3	1.2	mA	6
		$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{DD}}=5.0$	0V $\pm 10 \%$		1	4			
	$\mathrm{I}_{\text {ST }}$	Standby current			1	5.	$\mu \mathrm{A}$	7	
			$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \pm 10 \%$		12	40		8	
			$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$		50	200			

Note 1: Applied to pins $\mathrm{P0}_{0}-\mathrm{P} 0_{3}, \mathrm{P1}_{0}-\mathrm{P} 1_{3}, \mathrm{P} 4_{0}-\mathrm{P} 4_{3}, \mathrm{P} 5_{0}-\mathrm{P} 5_{3}, \mathrm{P} 6_{0}-\mathrm{P} 6_{3}, \mathrm{P} 8_{0}-\mathrm{P} 8_{3}$ (during input mode), $\mathrm{P} 7_{0}-\mathrm{P} 7_{3}$, RESET.
Note 2: Applied to pins $\mathrm{CK}_{1}, \mathrm{OSC}_{\mathrm{IN}}$, TEST.
Note 3: Applied to pin CK_{2}.
Note 4: Applied to pin ϕ.
Note 5: Applied to pins $\mathrm{P} 0_{0}-\mathrm{P} 0_{3}, \mathrm{P} 1_{0}-\mathrm{P} 1_{3}, \mathrm{P} 4_{0}-\mathrm{P} 4_{3}, \mathrm{P} 5_{0}-\mathrm{P} 5_{3}, \mathrm{P}_{0}-\mathrm{P} 6_{3}, \mathrm{P} 8_{0}-\mathrm{P} 8_{3}$ (during output mode), $\mathrm{P} 2_{0}-\mathrm{P} 2_{3}, \mathrm{P} 3_{0}-\mathrm{P} 3_{3}$.
Note 6: No-load condition.
Note 7: No-load condition when crystal oscillation circuit is not operating. Connect OSC $\mathrm{IN}_{\mathrm{IN}}$ pin to GND.
Note 8: No-load condition when crystal oscillation circuit is operating.
Note 9: Applied to pins INTA, INTB.

- AC Characteristics
$\left(\mathrm{V}_{\mathrm{DD}}=2.7\right.$ to $5.5 \mathrm{~V}, \mathrm{Ta}=-20$ to $\left.+70^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	Note
Reference clock oscillator frequency (CR oscillator)	$\mathrm{f}_{\text {CR }}$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$	1.7	2.0	2.3	MHz	1
		$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} \pm 10 \%$	0.5	0.75	1.0	MHz	2
		$\mathrm{R}=50 \mathrm{k} \Omega \pm 5 \%$	0.5	0.75	1.0	MHz	
Reference clock input frequency (CK_{1})	f_{K}	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$	0.25		2.3	MHz	
			0.25		1.0		
CK_{1} input rise time	t_{KR}				100	ns	
CK_{1} input fall time	t_{KF}				100	ns	
CK_{1} input HIGH width	t_{KH}	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$	0.1			$\mu \mathrm{s}$	
			0.4				
CK_{1} input LOW width	t_{KL}	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$	0.1			$\mu \mathrm{s}$	
			0.4				
Crystal oscillator frequency	$\mathrm{f}_{\text {OSC }}$			32.768		kHz	
OSC ${ }_{\text {OUT }}$ input cycle time	t_{fY}		2			$\mathrm{t}_{\mathrm{CYC}}$	3
OSC ${ }_{\text {OUT }}$ iuput rise time	t_{fR}				500	ns	
OSC ${ }_{\text {OUT }}$ input fall time	t_{fF}				500	ns	
$\mathrm{OSC}_{\text {OUT }}$ input HIGH width	t_{fH}		1			$\mathrm{t}_{\mathrm{CYC}}$	3
OSC $_{\text {OUT }}$ input LOW width	t_{fL}		1			$\mathrm{t}_{\mathrm{CYC}}$	3
$\overline{\text { INTA }}$ HIGH width	t_{AH}		2			$\mathrm{t}_{\mathrm{CYC}}$	3
INTA LOW width	t_{AL}		2			$\mathrm{t}_{\mathrm{CYC}}$	3
$\overline{\overline{I N T B}} \mathrm{HIGH}$ width	$\mathrm{t}_{\text {BH }}$		2			$\mathrm{t}_{\mathrm{CYC}}$	3
INTB LOW width	$\mathrm{t}_{\text {BL }}$		2			$\mathrm{t}_{\mathrm{CYC}}$	3
SCK cycle time	$\mathrm{t}_{\text {SY }}$		1			$\mathrm{t}_{\mathrm{CYC}}$	3
SCK HIGH width	$\mathrm{t}_{\text {SH }}$		1/2			$\mathrm{t}_{\mathrm{CYC}}$	3
SCK LOW width	$\mathrm{t}_{\text {SL }}$		$1 / 2$			$\mathrm{t}_{\mathrm{CYC}}$	3
SCK rise time	$\mathrm{t}_{\text {SR }}$				500	ns	
SCK fall time	$\mathrm{t}_{\text {SF }}$				500	ns	
RESET pulse LOW width	$\mathrm{t}_{\text {RST }}$		300			ns	

Note 1: SM550: $\mathrm{R}=17 \mathrm{k} \Omega \pm 5 \%$, SM551/SM552: $\mathrm{R}=10 \mathrm{k} \Omega \pm 5 \%$
Note 2: SM550: $\mathrm{R}=50 \mathrm{k} \Omega \pm 5 \%$, SM551/SM552: $\mathrm{IR}=33 \mathrm{k} \Omega \pm 5 \%$
Note 3: Cycle time at one fouth of a reference clock frequency.

Timing Diagram

- Hardware Configuration

(1) Program memory (ROM)

The on-chip ROM of the SM550/SM551/ SM552 has a configuration of $16 / 32 / 64$ pages \times 64 steps $\times 8$ bits respectively, and stores programs and table data.

The program counter of the SM550/SM551/ SM552 consists of a 4-bit/5-bit/6-bit page address counter P_{U} and a 6-bit binary counter P_{L} used to specify the steps within a page.

Fig. 1 shows the locations allocated in the on-chip ROM.
(2) Data memory (RAM)

Data memory of the SM550/SM551/SM552 has 80 -word/128-word/ 160 -word $\times 4$ bit configuration respectively.

Fig. 2 shows the RAM configuration.
(3) General-purpose registers (H, L, D, E)

Registers H and L are 4-bit general-purpose registers. They can transfer and compare data with the A_{CC} on 4-bit basis.

Registers D and E are 4-bit registers and can transfer data with the H and L registers on an

$\mathrm{Pus}_{5} \sim \mathrm{Pu}_{4}$ $\mathrm{Pu}_{3} \mathrm{Pu}_{0}$	0	1	2	3
0				
1				
2				
3				
4				
5				
6				
7				
8				
9				
A				
B				
C				
D				
E				
F				

Fig. 1 ROM configuration

8-bit basis.
The H and L as well as the D and E registers can be combined into 8 -bit register pairs, and can be used as pointers to data memory locations.

The L register can be incremented or decremented and is used to access I/O ports and mode registers.

(4) Clock divider (DIV)

The device contains a crystal oscillator and a 15 -stage divider. A real-time clock can be provided by connecting an external crystal oscillator between the oscillator pins.

The on-chip divider is reset by an ACL operation or an IDIV instruction. The low-order 8 bits of the divider can be loaded into the B / A register pair by the LDDIV instruction.

When an external 32.768 kHz crystal oscillator is used, the final state signal is set at a frequency of 1 Hz .

(5) Timer/event counter (TC)

The timer/event counter consists of an 8-bit count register (TC) and an 8 -bit modulo register (TM).

LU	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
1																
2																
3																
4																
5																
6																
7																
8																
9																
0																
A																
B																
C																
D																
E																
F																

Fig. 2 RAM configuration

Table 1 Interrupt request

Interrupt request		Int./Ext.	Priority	Interrupt routine start address
INTT	Timer/event counter interrupt	Int.	1	Page 1, Address 0
INTA	External signal INTA interrupt	Ext.	2	Address 2
INTS	Serial I/O interrupt	Int.	3	Address 4
INTB	External signal INTB and	Ext.	4	Address 6
INTV	frame frequency interrupts	Divider overflow interrupt	Int.	5

The count register is an 8 -bit incremental binary counter. It is incremented by one at the falling edge of its count pulse (CP) input. If the count register overflows, the timer interrupt request flag IFT is set, and the contents of the modulo register (TM) are loaded into the count register. The contents of the count register can be loaded into the B/A register pair by the LDTC instruction.

(6) Serial interface (SIO)

The serial interface consists of an 8 -bit shift register (SB) and a 3 -bit counter, which is used to input and output the serial data.

In serial shift operations, the highest bit data of the shift register (SB) is output from the SO pin at the falling edge of the serial clock, and the data input from the SI pin is loaded into the lowest bit of the shift register.

When the internal clock is used, the serial operation stops with 8 clocks of serial shift operations which are output from the SCK pin.

(7) Interrupts

The interrupts can be selected within three kinds of internal interrupts and two kinds of external interrupts as shown in Table 1.

(8) I/O ports and mode registers (RD, RE, RF)

The device has I/O ports and three mode registers (RED, RE, RF). Data can be transferred between these ports and registers under instruction control or L register control.

- Ports P0, P1, P4, P5, P8 and P9* can be switched between input and output modes, 4 bits at a time.
- Ports P2, P3, PA* and PB* are 4-bit parallel output ports.
- Port P7 is a 4-bit parallel input port.
- Each bit of port P2 can be independently placed in input or output mode by setting the corresponding bit of mode register RF.
- Ports (P0, P1), (P2, P3), (P8, P9) ${ }^{*}$, and (PA, $\mathrm{PB})^{*}$ can be paired for use in data transfer on a byte-by-byte basis. However, port pairs (P2, P 3) and ($\mathrm{PA}, \mathrm{PB})^{*}$ are usable only for output.
- The mode registers RD, RE and RF are treated in much the same way as output ports.
- Each bit of port P2 can be set to the I/O modes (SI, SO and SCK) of a serial interface under program control.
- Pins P50 and P51 can output the OD and R/W signals respectively when an external memory is accessed. In those cases, these pins should be kept High in output mode.
* Applicable to the SM551 and SM552.

Every input port has pull-up resistors.
Pull-up resistors can be omitted and output ports can be designed to consist of open-drain transistors with a mask option.

(9) Standby mode

Executing the CEND instruction places the device in standby mode. To reduce power consumption, the system clock is inactivated.

Standby mode may be cleared with the Interrupt request or the RESET signal.

(10) Reset function (ACL)

Applying a Low level signal to the RESET pin resets the internal logic of the device, and starts execution of the program at address 0 , page 0 .

Once the device is reset, all I/O ports are placed in input mode to disable all interrupts. The mode registers RD, RE and RF are all cleared. The output ports P2, P3, PA* and PB* are all cleared to output " 0 ". The device is also reset when it is powered up. The program starts (master clock period $\times 2{ }^{14}$) clock periods after the reset signal is ineffected.

* Applicable to the SM551 and SM552.
(11) Master clock oscillator circuit

The master clock oscillator requires an external resistor across pins CK_{1} and CK_{2}. Instead of using on-chip oscillator, an external clock may be applied to pin CK_{1}. In this case, pin CK_{2} should be left open.

The system clock ϕ has a frequency of one fourth that of the clock applied to pin CK_{1}. When applying an external clock to pin OSC OUT , the external clock frequency should be set at one eighth of the master clock frequency.

(a) CR oscillator

(b) External clock

Fig. 3

(a) Crystal oscillator

(b) External clock

Fig. 4

Instruction Set
(1) RAM address instructions

Mnemonic	Machine code	Operation
STL	69	$\mathrm{~L} \leftarrow \mathrm{~A}$
STH	68	$\mathrm{H} \leftarrow \mathrm{A}$
EXHD	3 F	$\mathrm{H} \leftrightarrow \mathrm{D}$ $\mathrm{L} \leftrightarrow \mathrm{E}$
LIHL xy (2-byte)	3 D $00-\mathrm{FF}$	$\mathrm{H} \leftarrow \mathrm{x}\left(\mathrm{I}_{7}-\mathrm{I}_{4}\right), \mathrm{L} \leftarrow \mathrm{y}\left(\mathrm{I}_{3}-\mathrm{I}_{0}\right)$

(2) ROM address instructions

Mnemonic	Machine code	Operation
TR x	$80-\mathrm{BF}$	$\mathrm{P}_{\mathrm{L}} \leftarrow \mathrm{x}\left(\mathrm{I}_{5}-\mathrm{I}_{0}\right)$
$\begin{aligned} & \text { TL xy } \\ & \text { (2-byte) } \end{aligned}$	$\begin{aligned} & \mathrm{E} 0-\mathrm{EF} \\ & 00-\mathrm{FF} \end{aligned}$	$\begin{aligned} & \mathrm{P}_{\mathrm{U}} \leftarrow \mathrm{x}\left(\mathrm{I}_{9}-\mathrm{I}_{6}\right) \\ & \mathrm{P}_{\mathrm{L}} \leftarrow \mathrm{y}\left(\mathrm{I}_{5}-\mathrm{I}_{0}\right) \\ & \hline \end{aligned}$
TRS x	C0-DF	$\begin{aligned} & (\mathrm{SP}-1),(\mathrm{SP}-2),(\mathrm{SP}-3) \leftarrow \mathrm{PC} \\ & \mathrm{SP} \leftarrow \mathrm{SP}-4 \\ & \mathrm{P}_{\mathrm{U}} \leftarrow 0(\mathrm{SM} 550), \\ & \mathrm{P}_{\mathrm{U}} \leftarrow 10_{\mathrm{H}}(\mathrm{SM} 551 / \mathrm{SM} 552) \\ & \mathrm{P}_{\mathrm{L}} \leftarrow \mathrm{x}\left(\mathrm{I}_{4} \mathrm{I}_{3} \mathrm{I}_{2} \mathrm{I}_{1} \mathrm{I}_{0} 0\right) \\ & \hline \end{aligned}$
$\begin{gathered} \text { CALL xy } \\ \text { (2-byte) } \end{gathered}$	$\begin{aligned} & \mathrm{F} 0-\mathrm{FF} \\ & 00-\mathrm{FF} \end{aligned}$	$\begin{aligned} & \text { (SP-1), (SP-2), }(\mathrm{SP}-3) \leftarrow \mathrm{PC} \\ & \mathrm{SP} \leftarrow \mathrm{SP}-4, \mathrm{P}_{\mathrm{U}} \leftarrow \mathrm{x}\left(\mathrm{I}_{9}-\mathrm{I}_{6}\right) \\ & \mathrm{P}_{\mathrm{L}} \leftarrow \mathrm{x}\left(\mathrm{I}_{5} \mathrm{I}_{4} \mathrm{I}_{3} \mathrm{I}_{2} \mathrm{I}_{1} \mathrm{I}_{0}\right) \end{aligned}$
$\begin{aligned} & \text { JBA x } \\ & \text { (2-byte) } \end{aligned}$	$\begin{aligned} & 7 \mathrm{~F} \\ & 30-3 \mathrm{~F} \end{aligned}$	$\begin{aligned} & \mathrm{P}_{\mathrm{U} 5}-\mathrm{P}_{\mathrm{U} 2} \leftarrow \mathrm{x}\left(\mathrm{I}_{3}-\mathrm{I}_{0}\right) \\ & \mathrm{P}_{\mathrm{U} 1}, \mathrm{P}_{\mathrm{U} 0}, \mathrm{P}_{\mathrm{L} 5}, \mathrm{P}_{\mathrm{L} 4} \leftarrow \mathrm{~B}, \\ & \mathrm{P}_{\mathrm{L} 3}-\mathrm{P}_{\mathrm{L} 0} \leftarrow \mathrm{~A} \end{aligned}$
RTN	61	$\begin{aligned} & \hline \mathrm{P}_{\mathrm{U}}, \mathrm{P}_{\mathrm{L}} \leftarrow(\mathrm{SP}+1),(\mathrm{SP}+2), \\ & (\mathrm{SP}+3), \mathrm{SP} \leftarrow \mathrm{SP}+4 \end{aligned}$
RTNS	62	$\begin{aligned} & \mathrm{P}_{\mathrm{U}}, \mathrm{P}_{\mathrm{L}} \leftarrow(\mathrm{SP}+1),(\mathrm{SP}+2), \\ & (\mathrm{SP}+3), \mathrm{SP} \leftarrow \mathrm{SP}+4 \end{aligned}$
RTNI	63	$\begin{aligned} & \mathrm{P}_{\mathrm{U}}, \mathrm{P}_{\mathrm{L}} \leftarrow(\mathrm{SP}+1),(\mathrm{SP}+2) \\ & (\mathrm{SP}+3), \mathrm{PSW} \leftarrow(\mathrm{SP}), \\ & \mathrm{SP} \leftarrow \mathrm{SP}+4, \mathrm{IME} \leftarrow 1 \\ & \hline \end{aligned}$

(3) Data transfer instructions

Mnemonic	Machine code	Operation
EX pr	5C-5F	$\mathrm{A} \leftrightarrow$ (pr)
LDX adr (2-byte)	$\begin{aligned} & \hline 7 \mathrm{D} \\ & 00-\mathrm{FF} \end{aligned}$	Aヶ(adr)
STX adr (2-byte)	$\begin{aligned} & 7 \mathrm{E} \\ & 00-\mathrm{FF} \\ & \hline \end{aligned}$	$(\mathrm{adr}) \leftarrow \mathrm{A}$
EXX adr (2-byte)	$\begin{aligned} & \hline 7 \mathrm{C} \\ & 00-\mathrm{FF} \end{aligned}$	$\mathrm{A} \leftrightarrow$ (adr)
LAX x	10-1F	$\mathrm{A} \leftarrow \mathrm{x}\left(\mathrm{I}_{3}-\mathrm{I}_{0}\right)$
LIBA xy (2-byte)	$\begin{aligned} & 3 \mathrm{C} \\ & 00-\mathrm{FF} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{B} \leftarrow \mathrm{x}\left(\mathrm{I}_{7}-\mathrm{I}_{4}\right) \\ & \mathrm{A} \leftarrow \mathrm{y}\left(\mathrm{I}_{3}-\mathrm{I}_{0}\right) \end{aligned}$
LBAT	60	$\begin{array}{\|l} \mathrm{B} \leftarrow \operatorname{ROM}\left(\mathrm{P}_{\mathrm{U} 5}-\mathrm{P}_{\mathrm{U} 2}, \mathrm{~B}, \mathrm{~A}\right)_{\mathrm{H}} \\ \mathrm{~A} \leftarrow \operatorname{ROM}\left(\mathrm{P}_{\mathrm{U} 5}-\mathrm{P}_{\mathrm{U} 2}, \mathrm{~B}, \mathrm{~A}\right)_{\mathrm{L}} \end{array}$
LDL	65	$\mathrm{A} \leftarrow \mathrm{L}$
LD pr	54-57	$\mathrm{A} \leftarrow(\mathrm{pr})$
ST pr	58-5B	$(\mathrm{pr}) \leftarrow \mathrm{A}$
EXH	6C	$\mathrm{A} \leftarrow \mathrm{H}$
EXL	6D	$\mathrm{A} \leftarrow \mathrm{L}$
EXB	6 E	$\mathrm{A} \leftarrow \mathrm{B}$
STB	6 A	$\mathrm{B} \leftarrow \mathrm{A}$
LDB	66	$\mathrm{A} \leftarrow \mathrm{B}$
LDH	64	$\mathrm{A} \leftarrow \mathrm{H}$
PSHBA	28	$\begin{aligned} & (\mathrm{SP}-1) \leftarrow \mathrm{B},(\mathrm{SP} \leftarrow 2) \leftarrow \mathrm{A}, \\ & \mathrm{SP} \leftarrow \mathrm{SP}-2 \end{aligned}$
PSHHL	29	$\begin{aligned} & (\mathrm{SP}-1) \leftarrow \mathrm{B},(\mathrm{SP} \leftarrow 2) \leftarrow \mathrm{A}, \\ & \mathrm{SP} \leftarrow \mathrm{SP}-2 \end{aligned}$
POPBA	38	$\begin{aligned} & \mathrm{B} \leftarrow(\mathrm{SP}+1), \mathrm{A} \leftarrow(\mathrm{SP}), \\ & \mathrm{SP} \leftarrow \mathrm{SP}+2 \\ & \hline \end{aligned}$
POPHL	39	$\begin{aligned} & \mathrm{H} \leftarrow(\mathrm{SP}+1), \mathrm{L} \leftarrow(\mathrm{SP}), \\ & \mathrm{SP} \leftarrow \mathrm{SP}+2 \\ & \hline \end{aligned}$
STSB	70	$\mathrm{SB}_{\mathrm{H}} \leftarrow \mathrm{B}, \mathrm{SB}_{\mathrm{L}} \leftarrow \mathrm{A}$
STSP	71	$\mathrm{SP}_{\mathrm{H}} \leftarrow \mathrm{B}, \mathrm{SP}_{\mathrm{L}} \leftarrow \mathrm{A}$
STTC	72	TC $\leftarrow \mathrm{TM}$
STTM	73	$\mathrm{TM}_{\mathrm{H}} \leftarrow \mathrm{B}, \mathrm{TM}_{\mathrm{L}} \leftarrow \mathrm{A}$
LDSB	74	$\mathrm{B} \leftarrow \mathrm{SB}_{\mathrm{H}}, \mathrm{A} \leftarrow \mathrm{SB}_{\mathrm{L}}$
LDSP	75	$\mathrm{B} \leftarrow \mathrm{SP}_{\mathrm{H}}, \mathrm{A} \leftarrow \mathrm{SP}_{\mathrm{L}}$
LDTC	76	$\mathrm{B} \leftarrow \mathrm{TC}_{\mathrm{H}}, \mathrm{A} \leftarrow \mathrm{TC}_{\mathrm{L}}$
LDDIV	77	$\mathrm{B} \leftarrow \mathrm{DIV}_{\mathrm{H}}, \mathrm{A} \leftarrow \mathrm{DIV}_{\mathrm{L}}$

(4) Arithmetic instructions

Mnemonic	Machine code	Operation
ADX x	00-0F	$\begin{aligned} & \mathrm{A} \leftarrow \mathrm{~A}+\mathrm{x}\left(\mathrm{I}_{3}-\mathrm{I}_{0}\right), \\ & \text { Skip if } \mathrm{Cy}=1 \end{aligned}$
ADD	36	$\mathrm{A} \leftarrow \mathrm{A}+(\mathrm{HL})$
ADDC	37	$\mathrm{A} \leftarrow \mathrm{~A}+(\mathrm{HL})+\mathrm{C}, \mathrm{C} \leftarrow \mathrm{Cy}$ Skip if $\mathrm{Cy}=1$
OR	31	$\mathrm{A} \leftarrow \mathrm{A}+(\mathrm{HL})$
AND	32	$\mathrm{A} \leftarrow \mathrm{A} \cdot(\mathrm{HL})$
EOR	33	$\mathrm{A} \leftarrow \mathrm{A} \oplus(\mathrm{HL})$
ANDB	22	$\mathrm{A} \leftarrow \mathrm{A} \cdot \mathrm{B}$
ORB	21	$A \leftarrow A+B$
EORB	23	$\mathrm{A} \leftarrow \mathrm{A} \oplus \mathrm{B}$
COMA	6 F	$\mathrm{A} \leftarrow \overline{\mathrm{A}}$
ROTR	25	$\mathrm{C} \rightarrow \mathrm{A}_{3} \rightarrow \mathrm{~A}_{2} \rightarrow \mathrm{~A}_{1} \rightarrow \mathrm{~A}_{0} \rightarrow \mathrm{C}$
ROTL	35	$\mathrm{C} \leftarrow \mathrm{A}_{3} \leftarrow \mathrm{~A}_{2} \leftarrow \mathrm{~A}_{1} \leftarrow \mathrm{~A}_{0} \leftarrow \mathrm{C}$
INCB	52	Skip if $B=F, B \leftarrow B+1$
DECB	53	Skip if $B=0, B \leftarrow B-1$
INCL	50	Skip if $\mathrm{L}=\mathrm{F}, \mathrm{L} \leftarrow \mathrm{L}+1$
DECL	51	Skip if $\mathrm{L}=0, \mathrm{~L} \leftarrow \mathrm{~L}-1$
DECM adr	$\begin{aligned} & \hline 79 \\ & 00-\mathrm{FF} \end{aligned}$	Skip if (adr) $=0$, (adr) $\leftarrow($ adr $)-1$
INCM adr	$\begin{aligned} & 78 \\ & 00-\mathrm{FF} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Skip if }(\text { adr })=F, \\ & \text { (adr) } \leftarrow(\text { adr })+1 \end{aligned}$

(5) Test instructions

Mnemonic	Machine code	Operation
TAM	30	Skip if $\mathrm{A}=(\mathrm{HL})$
TAH	24	Skip if $\mathrm{A}=\mathrm{H}$
TAL	34	Skip if $\mathrm{A}=\mathrm{L}$
TAB	20	Skip if $\mathrm{A}=\mathrm{B}$
TC	2 A	Skip if $\mathrm{C}=0$
TM x	$48-4 \mathrm{~B}$	Skip if $(\mathrm{HL}) \mathrm{x}=1$
TA x	$4 \mathrm{C}-4 \mathrm{~F}$	Skip if $\mathrm{Ax}=1$
TSTT	2B	Skip if IFT $=1$, IFT $\leftarrow 0$
TSTA	2C	Skip if IFA $=1$, IFA $\leftarrow 0$
TSTS	2D	Skip if IFS $=1$, IFS $\leftarrow 0$
TSTB	2E	Skip if $\mathrm{IFB}=1$, IFB $\leftarrow 0$
TSTV	2F	Skip if $\mathrm{IFV}=1$, IFV $\leftarrow 0$

(6) Bit manipulation instructions

Mnemonic	Machine code	Operation
SM x	$40-43$	$(\mathrm{HL}) \mathrm{x} \leftarrow 1$
RM x	$44-47$	$(\mathrm{HL}) \mathrm{x} \leftarrow 0$
RC	26	$\mathrm{C} \leftarrow 0$
SC	27	$\mathrm{C} \leftarrow 1$
RIME	3 A	IME $\leftarrow 0$
SIME	3 B	IME $\leftarrow 1$
DI x $(2$-byte $)$	7 F	C0-DF

(7) I/O instructions

Mnemonic	Machine code	Operation
IN	67	$\mathrm{A} \leftarrow \mathrm{P}(\mathrm{L})$
OUT	6B	$\mathrm{P}(\mathrm{L}), \mathrm{R}(\mathrm{L}) \leftarrow \mathrm{A}$
$\begin{aligned} & \text { INA x } \\ & \text { (2-byte) } \end{aligned}$	$\begin{aligned} & \hline 7 \mathrm{~F} \\ & \mathrm{~A} 0-\mathrm{A} 9 \\ & \hline \end{aligned}$	$\mathrm{A} \leftarrow \mathrm{P}(\mathrm{x})$
$\begin{aligned} & \text { OUTA x } \\ & \text { (2-byte) } \end{aligned}$	$\begin{aligned} & \hline 7 \mathrm{~F} \\ & \mathrm{BO}-\mathrm{BF} \end{aligned}$	$\mathrm{P}(\mathrm{x}), \mathrm{R}(\mathrm{x}) \leftarrow \mathrm{A}$
INBA x	$\begin{aligned} & 7 \mathrm{~F} \\ & 80 ; 82 \end{aligned}$	$\begin{aligned} & \mathrm{B} \leftarrow \mathrm{P}(\mathrm{x}+1) \\ & \mathrm{A} \leftarrow \mathrm{P}(\mathrm{x}) \end{aligned}$
$\begin{aligned} & \hline \text { OUTBA x } \\ & \text { (2-byte) } \\ & \hline \end{aligned}$	$\begin{aligned} & 7 \mathrm{~F} \\ & 90-93 \end{aligned}$	$\begin{aligned} & \mathrm{P}(\mathrm{x}+1) \leftarrow \mathrm{B} \\ & \mathrm{P}(\mathrm{x}) \leftarrow \mathrm{A} \\ & \hline \end{aligned}$
$\begin{aligned} & \text { SP xy } \\ & \text { (2-byte) } \end{aligned}$	$\begin{aligned} & 7 \mathrm{~A} \\ & 00-\mathrm{F} 6 \end{aligned}$	$\mathrm{P}(\mathrm{y}) \leftarrow \mathrm{P}(\mathrm{y})+\mathrm{x}$
$\begin{aligned} & \text { RP xy } \\ & \text { (2-byte) } \end{aligned}$	$\begin{aligned} & 7 \mathrm{~B} \\ & 00-\mathrm{F} 6 \end{aligned}$	$\mathrm{P}(\mathrm{y}) \leftarrow \mathrm{P}(\mathrm{y}) \mathrm{x}$
READ (2-byte)	$\begin{aligned} & \hline 7 \mathrm{~F} \\ & 60 \end{aligned}$	A \leftarrow P0 with O/D
WRIT (2-byte)	$\begin{aligned} & 7 \mathrm{~F} \\ & 70 \\ & \hline \end{aligned}$	$\mathrm{P} 0 \leftarrow \mathrm{~A}$ with R / W
$\begin{aligned} & \text { READB } \\ & \text { (2-byte) } \end{aligned}$	$\begin{aligned} & \hline 7 \mathrm{~F} \\ & 61 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{B} \leftarrow \mathrm{P} 1 \\ & \mathrm{~A} \leftarrow \mathrm{P} 0 \text { with } \mathrm{O} / \mathrm{D} \end{aligned}$
WRITB (2-byte)	$\begin{aligned} & \hline 7 \mathrm{~F} \\ & 71 \end{aligned}$	$\begin{aligned} & \mathrm{P} 1 \leftarrow \mathrm{~B} \\ & \mathrm{P} 0 \leftarrow \mathrm{~A} \text { with } \mathrm{R} / \mathrm{W} \\ & \hline \end{aligned}$

(8) Special instructions

Mnemonic	Machine code	Operation
SIO	3 E	Sperial I/O start
IDIV (2-byte)	7 F	DIV $\leftarrow 0$
SKIP	00	No operation
CEND $(2$-byte)	7 F 00	System clock stop

Note: The machine code consists of 8 bits including $\mathrm{I}_{7}, \mathrm{I}_{6}, \mathrm{I}_{5}$, $\mathrm{I}_{4}, \mathrm{I}_{3}, \mathrm{I}_{2}, \mathrm{I}_{1}$ and I_{0}.

- System Configuration Example (Mechanism controller)

* Ports $\mathrm{P} 8_{0}-\mathrm{P} 8_{3} \mathrm{P} 9_{0}-\mathrm{P} 9_{3}, \mathrm{PA}_{0}-\mathrm{PA}_{3}$ apply to the SM551 and SM552.

SM578/SM579
 4-Bit Microcomputer (Controller with A/D Converter)

- Description

The SM578/SM579 is a CMOS 4-bit microcomputer which integrates a 4 -bit parallel processing function, interrupts, an A/D converter, a comparator, a counter/timer circuit, and a tone output function in a single chip.
An A/D conversion can be executed by one instruction with simple software, and provides a high speed processing. This feature enables to accept analog signals from sensors.
Provided with unique features of 52 I/O ports, a couple of programmable counter/timers, and many instruction sets, this microcomputer is applicable to many applications such as home appliances, office equipment, simple measuring instruments, and battery backup systems.

Pin Connections

60QFP

Features

1. CMOS process
2. ROM capacity

SM578: $4,064 \times 9$ bits
SM579: $6,096 \times 9$ bits
3. RAM capacity

SM578: 192×4 bits
SM579: 256×4 bits
4. Instruction set

SM578: 93
SM579: 94
5. Subroutine nesting: 6 levels
6. Instruction cycle: $2 \mu \mathrm{~s}$ (MIN.)
7. Interrupts

External interrupts: 2
Internal interrupts: 3
8. Input/Output ports

I/O ports. 41
Input ports: 9
Output ports: 2
9. 8-bit serial I/O
10. Counter/timer: 2 sets
11. A/D converter:

8 bits (20 channels MAX.)
12. Standby function:

2-stage system clocks
13 On-chip crystal/system clock Oscillator circuits
14. Supply voltage: 2.7 to 5.5 V
15. 60-pin QFP (QFP60-P-1414)*

64-pin QFP (QFP64-P-1420)
64-pin SDIP (SDIP64-P-750)

* Usable when serial I/O ports are not used.

- Block Diagram

Note: Pin numbers apply to a 64 pin QFP.

- Clock Generator Circuit (preliminary constant)

Signal	I/O	Pin name
$\mathrm{P}_{0}-\mathrm{P}_{3}, \mathrm{Q}_{0}-\mathrm{Q}_{3}$	I / O	Input/Output ports (nibble unit)
$\mathrm{R} 0_{0}-\mathrm{R} 0_{3}$	I / O	Input/Output ports (nibble unit)
$\mathrm{R} 1_{0}-\mathrm{R} 1_{3}$	I / O	Input/Output ports (nibble unit)
$\mathrm{R} 2_{0}-\mathrm{R} 2_{3}$	I / O	Input/Output ports (nibble unit)
$\mathrm{R} 3_{0}-\mathrm{R} 3_{3}$	I / O	Input/Output ports (nibble unit)
$\mathrm{Z}_{0}-\mathrm{Z}_{15}$	I / O	Input/Output ports (Bit unit)
$\mathrm{KC}_{0}-\mathrm{KC} \mathrm{C}_{3}$	I	Input ports or analog input ports
KH, KL	I	Input ports
KI	I	Interrupt input port or input port
$\mathrm{OSC}_{\mathrm{IN}} / \mathrm{KT}$	I	Timer clock input port or input port
$\mathrm{OSC}_{\mathrm{OUT}}$		Timer clock oscillator
F	O	Sound output port or output port
$\mathrm{f}_{\mathrm{OUT}}$	O	System synchronous signal output port
CL_{1}		Clock signal input port
CL		Clock signal oscillator
ACL	I	Auto clear input port
$\mathrm{V}_{\mathrm{RH}}, \mathrm{V}_{\mathrm{RL}}$		A/D conversion
V_{DD}		Power supply
GND		Ground
T	I	Test input port
S_{IN}	I	Serial I/O data input port ${ }^{*}$
$\mathrm{~S}_{\mathrm{OUT}}$	O	Serial I/O data output port
$\mathrm{S}_{\mathrm{CLOCK}}$	I / O	Serial I/O clock I/O port ${ }^{*}$

* Applicable only to 64-pin QFP and 64-pin DIP.

- Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Supply voltage	V_{DD}	-0.3 to +7.5	V
Input voltage	V_{IN}	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Output voltage	$\mathrm{V}_{\mathrm{OUT}}$	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Output current ${ }^{*}$	$\mathrm{I}_{\mathrm{OUT}}$	30	mA
Operating temperature	Topr	-10 to +70	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$

* Source current from output pin or sum of sink current.

- Recommended Operating Conditions

Parameter	Symbol	Rating	Unit
Supply voltage	V_{DD}	2.7 to 5.5	V
System oscillator frequency	f_{CL}	4 to $0.2\left(\mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}\right)$	MH_{Z}
	2 to $0.2\left(\mathrm{~V}_{\mathrm{DD}}=3 \mathrm{~V}\right)$		
System clock frequency	f_{S}	500 to $50\left(\mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}\right)$	kH_{Z}
	250 to $50\left(\mathrm{~V}_{\mathrm{DD}}=3 \mathrm{~V}\right)$		
Timer clock frequency	fosc	$32.768(\mathrm{TYP})$.	kH_{Z}

Electrical Characteristics
$\left(\mathrm{V}_{\mathrm{DD}}=2.7\right.$ to $5.5 \mathrm{~V}, \mathrm{Ta}=-10$ to $\left.+70^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit	Note
Input voltage	$\mathrm{V}_{\mathrm{IH} 1}$			$0.7 \mathrm{~V}_{\mathrm{DD}}$,	V_{DD}	V	1
	$\mathrm{V}_{\mathrm{IL} 1}$			0		$0.3 \mathrm{~V}_{\mathrm{DD}}$		
	$\mathrm{V}_{\mathrm{IH} 2}$			$\mathrm{V}_{\mathrm{DD}}-0.5$		V_{DD}	V	2
	$\mathrm{V}_{1 \mathrm{~L} 2}$			0		0.5		
	$\mathrm{V}_{\mathrm{IH} 3}$			$\mathrm{V}_{\mathrm{DD}}-0.4$		V_{DD}	V	3, 4
	$\mathrm{V}_{\text {IL3 }}$			0		0.4		
Input current	$\mathrm{I}_{\mathrm{H} 1}$	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}}$	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$	80	300	800	$\mu \mathrm{A}$	5
			$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \pm 10 \%$	15	90	300		
	$\mathrm{I}_{\mathrm{H} 2}$	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}}$	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$	10	25	120	$\mu \mathrm{A}$	6
			$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \pm 10 \%$	1	8	50		
	$\mathrm{I}_{\mathrm{H} 3}$	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}}$	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$	100	400	800	$\mu \mathrm{A}$	3
			$\mathrm{V}_{\mathrm{DD}} \doteq 3.0 \mathrm{~V} \pm 10 \%$	10	80	300		
	$\mathrm{I}_{\text {IL }}$	$\mathrm{I}_{\mathrm{IL}}=0 \mathrm{~V}$	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$	10	100	200	$\mu \mathrm{A}$	4
			$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \pm 10 \%$	2	15	60		
Output current	$\mathrm{I}_{\mathrm{OH} 1}$	$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-0.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$	1.0			mA	7, 8
			$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \pm 10 \%$	0.4				
	$\mathrm{I}_{\mathrm{OL} 1}$	$\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$	10			$\mu \mathrm{A}$	7
	$\mathrm{I}_{\text {OL1 }}$			4				
		$\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$	1.0			mA	8
	IOL2			0.4				
	$\mathrm{I}_{\mathrm{OH} 3}$	$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-0.5 \mathrm{~V}$		100			$\mu \mathrm{A}$	9
	$\mathrm{I}_{\text {OL3 }}$	$\mathrm{V}_{\text {OL }}=0.5 \mathrm{~V}$		100				
		$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-0.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$	0.6			mA	10
	$\mathrm{O}_{\mathrm{OH} 4}$			0.3				
	$\mathrm{I}_{\text {OL4 }}$	$\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$	1.0				
				0.4				
ACL input pulse width	$\mathrm{t}_{\text {ACL }}$		$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$	1			$\mu \mathrm{s}$	16
			$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \pm 10 \%$					
Current consumption	$\mathrm{I}_{\text {A }}$	$\mathrm{f}_{\mathrm{S}}=500 \mathrm{kHz}$	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$		1.8		mA	11
		$\mathrm{f}_{\mathrm{S}}=100 \mathrm{kHz}$	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$		0.8			
			$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \pm 10 \%$		0.5			
	$\mathrm{I}_{\text {ST }}$	Off mode	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$		1		$\mu \mathrm{A}$	12
			$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \pm 10 \%$		0.5			
			$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$				$\mu \mathrm{A}$	13
			$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \pm 10 \%$					
		Hold mode	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$				$\mu \mathrm{A}$	14
			$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \pm 10 \%$.					
			$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \pm 10 \%$				$\mu \mathrm{A}$	15

Note 1: Applied to pins KH, KL, KI, $\mathrm{P}_{3}-\mathrm{P}_{0}, \mathrm{Q}_{3}-\mathrm{Q}_{0}, \mathrm{RO}_{3}-\mathrm{R} 0_{0}$, $R 1_{3}-R 1_{0}, R 2_{3}-R 2_{0}, R 3_{3}-R 3_{0}, \mathrm{KC}_{3}-K C_{0}$
Note 2: Applied to pins $Z_{15}-Z_{0}, \mathrm{CL}_{1}, \mathrm{OSC}_{\text {IN }} / \mathrm{KT}$, ACL
Note 3: Applied to pin S_{IN}
Note 4: Applied to pin $\mathrm{S}_{\text {clock }}$
Note 5: Applied to pins $\mathrm{Q}_{3}-\mathrm{Q}_{0}, Z_{15}-Z_{0}, R 0_{3}-R 0_{0}, R 1_{3}-R 1_{0}$
Note 6: Applied to pin ACL
Note 7: Applied to pins $\mathrm{Q}_{3}-\mathrm{Q}_{0}{ }^{*}, \mathrm{Z}_{15}-\mathrm{Z}_{0}{ }^{*}, \mathrm{RO}_{3}-\mathrm{R} 0_{0}, \mathrm{R} 1_{3}-\mathrm{R} 1_{0}$ (*If CMOS buffer is specified for mask option, note 8 applied to these pins.)
Note 8: Applied to pins $\mathrm{P}_{3}-\mathrm{P}_{0}$
Note 9: Applied to pin CL_{2}
Note 10: Applide to pins $\mathrm{S}_{\text {clock }}, \mathrm{S}_{\mathrm{OUT}}, \mathrm{F}, \mathrm{f}_{\text {OUT }}$
Note 11: No-load condition
Note 12: When the $\mathrm{OSC}_{\mathrm{IN}} / \mathrm{KT}$ pin is connected to GND and in no-load condition. (The reference clock has a frequency of 4 times of fs .)

Note 13: When the timer clock crystal oscillation circuit and timer 1 are operating and in no-load condition. (The reference clock has a frequency of 4 times of fs .)
Note 14: When the $\mathrm{OSC}_{\text {IN }} / \mathrm{KT}$ pin is connected to GND and in no-load condition, $\mathrm{fs}=100 \mathrm{kHz}$ (The reference clock has a frequensy of 4 times of fs.)
Note 15: When the $\mathrm{OSC}_{\text {IN }} / \mathrm{KT}$ pin is connected to GND and in no-load condition, fs $=500 \mathrm{kHz}$ (The reference clock has a frequency of 4 times of fs .)
Note 16: $\quad t_{A C L}$ is the ACL input pulse width required to cause ACL to operate when $V_{D D}$ has completely risen.

- Electrical Characteristics for A/D Conversion Block
($\mathrm{fs}=100 \mathrm{kHz}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{RH}}=4.608 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$)

Parameter	V_{RL} pin	MIN.	TYP.	MAX.	Unit
Non-linearity error	GND		$\pm 1 / 2$	± 1	LSB
	Open		± 1	$\pm 11 / 2$	
Diffrential non-linerarity error	GND		$\pm 1 / 2$	± 1	LSB
	Open		± 1	$\pm 11 / 2$	
Zero error	GND		$\pm 1 / 2$	± 1	LSB
	Open		± 1	$\pm 11 / 2$	
Full-scale error	GND		$\pm 1 / 2$	± 1	LSB
	Open		$\pm 1 / 2$	± 1	
V_{RH} pin voltage	-		100	300	$\mu \mathrm{A}$
Total error	GND		± 1	$\pm 11 / 2$	LSB
	Open		$\pm 11 / 2$	± 2	

Note: No quantizing tolerance ($\pm 1 / 2 \mathrm{LSB}$) should be specified.

$\left(\mathrm{fs}=100 \mathrm{kHz}, \mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{RH}}=3 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)$					
Parameter	V_{RL} pin	MIN.	TYP.	MAX.	Unit
Non-linearity error	GND		$\pm 11 / 2$	± 2	LSB
	Open		± 2	$\pm 21 / 2$	
Diffrential non-linerarity error	GND		± 1	$\pm 11 / 2$	LSB
	Open		$\pm 11 / 2$	± 2	
Zero error	GND		$\pm 1 / 2$	± 1	LSB
	Open		± 1	$\pm 11 / 2$	
Full-scale error	GND		$\pm 1 / 2$	± 1	LSB
	Open		$\pm 1 / 2$	± 1	
$\mathrm{~V}_{\text {RH }}$ pin voltage	-		60	200	
	GND		$\pm 1 / 2$	± 2	

Note: No quantizing tolerance ($\pm 1 / 2 \mathrm{LSB}$) should be specified.

Clock Generator Circuit (preliminary constant)
(1) System clock generator circuit example 1
(a) 400 kHz clock

Oscillator KBR-400B: KYOSERA
or CSB400P: MURATA
$R_{f}=1 \mathrm{M} \Omega$
$\mathrm{R}_{\mathrm{d}}=3.3 \mathrm{k} \Omega$
$\mathrm{C}_{1}=220 \mathrm{pF}$
$\mathrm{C}_{2}=220 \mathrm{pF}$
(b) 2 MHz clock

Oscillator KBR-2.0MS: KYOSERA
$\mathrm{R}_{\mathrm{f}}=1 \mathrm{M} \Omega$
$\mathrm{R}_{\mathrm{d}}=1 \mathrm{k} \Omega$
$\mathrm{C}_{1}=22 \mathrm{pF}$
$\mathrm{C}_{2}=68 \mathrm{pF}$
(2) System clock generator circuit example 2

(3) Timer clock generator example

(4) External clock input circuit

$\mathrm{f}_{\mathrm{OSC}}=32.768 \mathrm{kHz}$
$\mathrm{R}_{\mathrm{d}}=56 \Omega$
$\mathrm{C}_{1}=30 \mathrm{pF}, \mathrm{C}_{2}=16 \mathrm{pF}$
Crystal: 32.768 kHz .

Note:
The resistors, capacitors and crystal oscillators should be located as close to the LSI chip as possible to minimize the influence of stray capacitance.

- AC Characteristics for External Clock Input Signal
$\left(\mathrm{V}_{\mathrm{DD}}=2.7\right.$ to 5.5 V$)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	Note
Input rise time	t_{R}				100	ns	1
					200	ns	2
Input fall time	t_{F}				100	ns	2
					200	ns	2
Clock HIGH pulse	t_{H}	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$	0.125		2.5	$\mu \mathrm{s}$	1
			0.25		2.5	$\mu \mathrm{s}$	
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$	4			$\mu \mathrm{s}$	2
			4			$\mu \mathrm{s}$	
Clock LOW pulse	t_{L}	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$	0.125		2.5	$\mu \mathrm{s}$	1
			0.25		2.5	$\mu \mathrm{s}$	
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$	4			$\mu \mathrm{s}$	2
			4			$\mu \mathrm{s}$	

Note 1: Applied to CL_{1} pin.
Note 2: Applied to $\mathrm{OSK}_{\mathrm{IN}} / \mathrm{KT}$ pin.

External clock timing

Pin Functions

(1) GND, V_{DD} (Power supply inputs)

The $V_{D D}$ pin should be positive (2.7 to 5.5 V) with respect to GND.
The GND pin is the resference power supply for the LSI.

(2) $\mathrm{V}_{\mathrm{RH}}, \mathrm{V}_{\mathrm{RL}}$ (A/D converter inputs)

The V_{RL} pin is a GND pin for the A / D converter.
The V_{RH} pin provides the reference voltage V_{RH} for the A/D converter.

The current consumption and operating accuracy of the A / D converter must be changed according to the case where the $\mathrm{V}_{\text {RL }}$ pin is used to be left open or provide GND level.

(3) ACL (Reset input)

The ACL pin is used to reset the LSI.
The LSI should be reset with a transition of two instruction cycles after the rising edge of ACL.

Applying a Low level signal to the ACL pin starts execution of the program at field 0 , page 0 , step 0 after a transition of $t_{A C L}$.

The device is automatically reset when power on. But it is recommended to apply a capacitor between $A C L$ pin and $V_{D D}$ pin in order to prevent from external noise which affects the ACL circuit.
(4) $\mathrm{KC}_{0}-\mathrm{KC}_{3}$ (Analog inputs)

Executing the KCTA instruction transfers the KC input data to the accumulator A_{CC} through input buffers.
The KC input pin also provides analog input signals given to the A / D conversion block.

(5) $\mathrm{KH}, \mathrm{KI}, \mathrm{OSC}_{\mathrm{IN}^{\prime}} / \mathrm{KT}, \mathrm{KL}$ (Inputs)

The KH and KI input pins are connected to the noise debounce circuit, and the KL and $\mathrm{OSC}_{\mathrm{IN}} / \mathrm{KT}$ input pins to input buffers.

The KL, $\mathrm{OSC}_{\text {IN }} / \mathrm{KT}, \mathrm{KH}$ and KI should be loaded into the A_{0}, A_{1}, A_{2} and A_{3} bits of the accumulator $A_{C C}$ upon execution of KLTA instruction.

The noise debounce circuit does not accept the pulse input shorter than two instruction cycle width.

(6) $\mathrm{Z}_{0}-\mathrm{Z}_{15}$ (Input/output)

The $Z_{0}-Z_{15}$ can be controlled with the output latch F / F to be set or reset by instructions.

When used for the inputs, the Zi should be used with the outputs to be pulled down, and the input mode of Zi specified by lower 4 bits of B register B_{L} can be tested by instructions.

The $Z i$ pin transfers analog signals into the compator of A / D converter.

The Zi pin transfers analog signals into the comparator of A / D converter.

(7) $\mathrm{P}_{0}-\mathrm{P}_{3}$ (Input/output)

The $\mathrm{P}_{0}-\mathrm{P}_{3}$ are three-state I/O pins.
Executing the ATP instruction transfers the accumulator A_{CC} to the output latch F / F which is loaded into the $\mathrm{P}_{0}-\mathrm{P}_{3}$.

The $\mathrm{P}_{0}-\mathrm{P}_{3}$ can be loaded into the A_{CC} upon execution of the PTA instruction. Then the $\mathrm{P}_{0}-\mathrm{P}_{3}$ remain high impedance.

(8) $Q_{0}-Q_{3}$ (Input/output)

Executing the ATQ instruction transfers the accumulator $A_{C C}$ to the output latch F / F which is loaded into the $\mathrm{Q}_{0}-\mathrm{Q}_{3}$.

While, the $Q_{0}-Q_{3}$ can be loaded into the $A_{C C}$ upon execution of the QTA instruction. Then, the $Q_{0}-Q_{3}$ should be used to reset the output latch F / F with the outputs to be pulled down.

(9) $R 0_{0}-R 0_{3}, R 1_{0}-R 1_{3}, R 2_{0}-R 2_{3}, R 3_{0}-R 3_{3}$ (Input/output)

Upon execution of the ATR instruction, the R0i-R3i outputs the accumulator $A_{C C}$ specified by the lower 4 bits (BL) of the B register. While, executing the MTR instruction provides the RAM contents specified by the B register from the R0i-R3i.

The R3i-R0i are loaded into the $A_{C C}$ by an RTA instruction. Then, the output port resets the output latch F / F to be pulled down.

8-bit data transfer can be performed in parallel among the $\mathrm{R}[1] \mathrm{i}, \mathrm{R}[0] \mathrm{i}$ and A_{CC} or X register by the RTAX or AXTR instruction.

(10) F (Tone output)

The F output pin is used for a tone output as well as a general-purpose output.
(11) fout

The $f_{\text {OUt }}$ pin outputs the signal in synchronizing with the system clock f_{S}.

[^1]
Hardware Configuration

(1) Program counter and stack

The program counter (PC) is used to address a ROM location.

The PC consists of 12 bits (SM579: 13 bits) allocated 3 bits (P_{U}) (SM579: 4 bits) to the field specification of ROM, 2 bits (P_{M}) to the page specification, and 7 bits $\left(\mathrm{P}_{\mathrm{L}}\right)$ to the step specification. The P_{M} is a binary counter and the P_{L} is a polynomial counter for the page specifications.

The SM578 is unable to use the area of the ET 1 (feilds 8 to 11).

The SR consists of 6 stages available for up to 6 levels of subroutine nesting.

(2) Program memory (ROM)

The ROM is used to store programs.
The SM578 has a 4096×9-bit ROM, and the SM579 has a 6096×9-bit. The ROM consists of 8 fields (SM579: 12 fields) $\times 4$ pages $\times 127$ steps.

When power on with the ACL to be reset, the program starts execution at field 0 , page 0 , step 0 .

Fig. 1 shows the example of a jump to the ROM address by a ROM address instruction.

The TR instruction is used to jump within a page, and the TL instruction is used to jump to any address. A subroutine jump is executed by the TLS or TRS instruction.

	$\mathrm{ET}=0$ (0 to 7 field)								ET $=1$ (8 to 11 field)			
P_{M}	$\begin{gathered} \text { Field } \\ 0 \\ \hline \end{gathered}$	Field 1	$\begin{gathered} \text { Field } \\ 2 \end{gathered}$	$\begin{gathered} \text { Field } \\ 3 \\ \hline \end{gathered}$	Field 4	Field 5	$\begin{gathered} \text { Field } \\ 6 \end{gathered}$	Field 7	$\begin{gathered} \text { Field } \\ 8 \end{gathered}$	Field 9	$\begin{gathered} \text { Field } \\ 10 \end{gathered}$	Field 11
$\begin{gathered} \text { Page } \\ 0 \end{gathered}$	ACL								_TRS			
Page 1	Standby clear		-			-TL	$\begin{gathered} \text { COMET } \\ \text { TL } \end{gathered}$	7		COMET -TL		
$\begin{gathered} \text { Page } \\ 2 \end{gathered}$	Interrupt							RTi		COMET \rightarrow TLS		
$\begin{gathered} \text { Page } \\ 3 \end{gathered}$	Subrout TRC cover						COMET TLS \square		RTN	TL		
SM578												
	SM579											

Fig. 1 ROM configuration

(The SM578 has a configuration allocated from 0 through B)
Fig. 2 RAM configuration

However, when the ET value may change due to a jump or subroutine jump on the SM579, execute the TL or TLS instruction following the COMET instruction.

(3) Data memory (RAM) and B register

The RAM is used to store data.
The SM578 has a 768-bit RAM organized as 12 $\times 16 \times 4$ which consists of 12 files as shown in Fig. 2. The SM579 has 16 files of RAM organized as $16 \times 16 \times 4$. A file consists of 16 words $\times 4$ bits.

The RAM address is specified by a B register which consists of a 4-bit B_{M} for the file specification and a 4-bit B_{L} for the word specification.

(4) Accumulator $A_{c c}, X$ and G registers

The accumulator $A_{C C}$ is a 4-bit general-purpose register which transfers numerics and data. The $A_{C C}$ can be decremented and shifted to the left in combination with the carry flag (C).Furthermore, the $A_{C C}$ together with the arithmetic and logic unit (ALU), a carry flag (C) and RAM executes arithmetic operations.
It also transfers data to I/O ports.
The X register is a 4-bit register which can be used for a temporary register. It is incremented by instructions. It performs, in conjunction with the A_{CC}, logical sum and logical product.

An 8-bit parallel data of the A_{CC} and X register can be transferred to $R[0]$ and $R[1]$, a G register or a counter/timer.

On the other hand, each data on R0i and R1i, a G register or a countere timer can also be transferred to the $A_{C C}$ and X register with an 8 -bit parallel data.

The G register is an 8-bit register which is used for A/D conversion or comparison of analog signals.
(5) Arithmetic and logic unit (ALU), carry flag (C)

The arithmetic and logic unit (ALU) performs binary addition in conjunction with a RAM, a carry flag C and an accumulator A_{CC}.

The carry flag C latches the data incremented by the ADC or ADCS instruction.

(6) SB register

The SB register is an 8-bit register used for a save register.

(7) $P, Q, R[3]-R[0], Z$ (Output latch registers)

Registers P, Q, R0, R2, R3, Z connect with the output latch F / F.

The accumulator $A_{C C}$ can be transferred to reg. isters $P, Q, R[3]-R[0]$, and an 8 -bit data of the $A_{C C}$ and X register can be transferred, at the same time, to the output latch registers R [0] and R [1].

(8) System clock generator circuit

The system clock generator circuit generates a system clock of a base frequency input from the CL_{1} pin divided by 4 or 8.

The system clock speed can be controlled by a program. If it is not required for high speed operation, the system clock can be switched to the low speed in order to save the power consumption. This function is also applicable to the case where the power supply is replaced by a battery backup power.

The system clock when reset is equivalent to the base frequency divided by 8 .

The system clock fs is used to determine the instruction execution cycle, and the system clock cycle should be identical to the instruction execution cycle. However, the instruction execution cycle of a two word instruction should be two times as long as a one-word instruction.

(9) Counter/timer

A timer 1 and timer 2 are 8 -bit counter/timers. The data incremented by a count up is latched into the flags TF1 and TF2 to be used for an interrupt request. Executing the TTF1 and TTF2 flags checks the flags TF1 and TF2.

- Timer 1: An 8-bit data of the A_{CC} and X register can be transferred to the timer 1 . To the contrary, the timer 1 can be read out from the $A_{C C}$ and X register.
- Timer 2: The timer 2 contains a modulo register (MR register). The contents of the modulo register (TM) are loaded into the timer 2 each time the register is incremented by one.
An 8-bit data can be loaded into the MR register by instructions, and executing the next instruction cycle transfers the data to the timer 2 which can be read out from the $A_{C C}$ and X register.
The count up pulses of a counter/timer include $(1 / 2)^{9} f_{\mathrm{S}},(1 / 2)^{3} \mathrm{f}_{\mathrm{S}},(1 / 2)^{6} \mathrm{f}_{\mathrm{T}}$ and f_{T}, under conditions of a system clock f_{s} and KT input pulse f_{T}, which can be selected by a program.

A carry output of one counter can be used for a count up pulse of the other counter, and it can be counted up by a TCTRL instruction.

Fig. 3 Interrupt block
Table 1 Interrupt jump address

Interrupt request flag	Jump destination address			Priority
	Field	Page	Step (PL)	
Timer 1 carry (TF1)	0	2	$0(00)$	1
Timer 2 carry (TF2)	0	2	$2(60)$	2
KI input (IF)	0	2	$4(78)$	3
Analog input comparator (AF)	0	2	$6(7 \mathrm{E})$	4

(10) Interrupt

A KI input, the timer 1 and timer 2 carry and an analog input are available for the interrupt request, and the interrupt request flags include the IF, TF1, TF2 and AF flags.

The interrupt block consists of the mask flags $\left(\mathrm{E}_{3}, \mathrm{E}_{2}, \mathrm{E}_{1}\right.$ and E_{0}), E flag and interrupt processing circuits.
(See Fig. 3)
Table 1 shows the jump address caused by an interrupt request.

(11) A / D converter

The A/D conversion block consists of an 8-bit D/A converter, a comparator, an AM flag and AF flag.

The KC and Z pins input the analog signals.
Executing the COMP instruction allows the A/D conversion and the large/small comparison automatically. (See Fig. 4.)

The result of A/D conversion is stored in the G register with the interval of 16 instruction cycles after the COMP instruction is executed.

The result of the large/small comparison is stored in the AF flag with the interval of 3 instruc. tion cycles.

The G register is an 8 -bit register which can be transferred to the A_{CC} and X register with the GTAX instruction.

The KC_{0} pin can also be used for an external interrupt.

The D/A converter generates the voltage $\mathrm{V}_{\mathrm{REF}}$ according to the contents of the G register.

Assuming that the " n " is placed in the G register as a result of A / D conversion, the analog input voltage may be regarded as a below expression.

$$
\frac{256-\mathrm{n}}{256} \mathrm{~V}_{\mathrm{RH}}(\mathrm{n}=0 \text { to } 255)
$$

$* \mathrm{~V}_{\mathrm{RH}}$ is a reference voltage supply from the V_{RH} pin.
When even more strict accuracy is required in the A/D conversion block, an external GND level should be applied to the V_{RL} pin.
The A / D conversion is executed by the comparison among a G register, a D/A converter and a comparator in order.

The large/small comparison is executed by the comparator output $\mathrm{V}_{\text {REF }}$ according to a G register value and the analog signal of the KC_{0}. The result of comparison is stored in the AF flag.

(12) Tone output block

The F pin outputs the frequency obtained from a count-up pulse generator circuit.

The pulse frequency can be selected among ($1 /$ $2)^{5} \mathrm{f}_{\mathrm{S}},(1 / 2)^{6} \mathrm{f}_{\mathrm{S}},(1 / 2)^{2} \mathrm{f}_{\mathrm{T}}$ and $(1 / 2)^{3} \mathrm{f}_{\mathrm{T}}$ by programs. $*$ The f_{T} is a timer clock frequency input from the $\mathrm{OSC}_{\mathrm{IN}} / \mathrm{KT}$ pin, and the f_{S} is a system clock frequency.

(13) Standby mode

To reduce power consumption, the device is placed in standby mode, and the program execution is inactivated.

The following two types of standby mode can be selected.

- Off mode .. In the off mode, the system clock generator circuits except for a counter/timer and a count-up pulse generator circuit are inactivated.
- Hold mode In the hold mode, the systems except for a system clock generator circuit, a counter/timer and a count-up pulse generator circuit are inactivated.

While in standby mode, if a KH input or an interrupt request from an unmasked KI, timer 1 or timer 2, the device exits standby mode and starts program execution.

Fig. $4 \mathrm{~A} / \mathrm{D}$ converter block

(14) Reset function (ACL)

The device is reset with the interval of two instruction cycles from the rising edge of the ACL pin.

Immediately after the reset is cleared, the device starts execution of the program at the program counter 0 .

In case the noise may harm the ACL operation, apply a capacitor between $A C L$ pin and $V_{D D}$ pin.

(15) Serial I/O

The serial I/O consists of an 8-bit shift register, a 3-bit counter and a 6-bit mode flag, which have the following features.

- Selectable either an 8-bit or a 4-bit transfer system
- Interrupt request available at the end of transfer
- Selectable transfer clock among a system clock, a timer 2 output or an external clock.
- Connectable to multiple chips.
- Usable in standby mode.
- An 8 -bit shift register replaceable by the R/W register when the serial I/O is not used.

Instruction Set
(1) ROM address instructions

Mnemonic	Machine code	Operation
	$\begin{array}{llllllllll}\mathrm{I}_{8} & \mathrm{I}_{7} & \mathrm{I}_{6} & \mathrm{I}_{5} & \mathrm{I}_{4} & \mathrm{I}_{3} & \mathrm{I}_{2} & \mathrm{I}_{1} & \mathrm{I}_{0}\end{array}$	
TR x	100-17F	Jump (within a page) $\mathrm{P}_{\mathrm{L}} \leftrightarrows \mathrm{I}_{6}-\mathrm{I}_{0}$
TL x	0F0-0F7	Jump$\mathrm{P}_{\mathrm{U}} \leftarrow \mathrm{I}_{11}-\mathrm{I}_{9}, \mathrm{P}_{\mathrm{M}} \leftarrow \mathrm{I}_{8}-\mathrm{I}_{7}, \mathrm{P}_{\mathrm{L}}-\mathrm{I}_{6}-\mathrm{I}_{0}$
	000-1FF	
MTPL	08A	Jump (within a page) ($\mathrm{P}_{\mathrm{L}} \leftarrow \mathrm{A}_{2}-\mathrm{A}_{0} \mathrm{M}_{3}-\mathrm{M}_{0}$)
TRS x	180-1FF	CALL (Indirect address)
JUMP	000-1FF	$\mathrm{P}_{\mathrm{U}} \leftarrow 1, \mathrm{P}_{\mathrm{M}} \leftarrow \mathrm{I}_{8}, \mathrm{I}_{7}, \mathrm{P}_{\mathrm{L}} \leftarrow \mathrm{I}_{6}-\mathrm{I}_{0}$, if $\mathrm{DI}=1$
TLS x	0F8-0FF	Call to subroutine$\mathrm{P}_{\mathrm{U}} \leftarrow \mathrm{I}_{11}-\mathrm{I}_{9}, \mathrm{P}_{\mathrm{M}} \leftarrow \mathrm{I}_{8}-\mathrm{I}_{7}, \mathrm{P}_{\mathrm{L}} \leftarrow \mathrm{I}_{6}-\mathrm{I}_{0}$
	000-1FF	
RTN	0 C 0	Return
RTNS	0C1	Return and skip
RTNI	0C2	Return from interrupt
COMET	08B	$\mathrm{ET} \leftarrow \overline{\mathrm{ET}}$

(2) Data transfer instructions

Mnemonic	Machine code	Operation
	$\begin{array}{lllllllll}\mathrm{I}_{8} & \mathrm{I}_{7} & \mathrm{I}_{6} & \mathrm{I}_{5} & \mathrm{I}_{4} & \mathrm{I}_{3} & \mathrm{I}_{2} & \mathrm{I}_{1} & \mathrm{I}_{0}\end{array}$	
LAX x	040-04F	Acc $\leftarrow \mathrm{I}_{3}-\mathrm{I}_{0}$, Skip if last instruction is LAX
WLAX x	087	$\mathrm{X} \leftarrow \mathrm{I}_{7}-\mathrm{I}_{4}, \mathrm{Acc} \leftarrow \mathrm{I}_{3}-\mathrm{I}_{0}$
	000-0FF	
LBMX x	0E0-0EF	$\mathrm{B}_{\mathrm{M}} \leftarrow \mathrm{I}_{3}-\mathrm{I}_{0}$
LBLX x	020-02F	$\mathrm{B}_{\mathrm{L}} \leftarrow \mathrm{I}_{3}-\mathrm{I}_{0}$
STXI x	050-05F	$\mathrm{M} \leftarrow \mathrm{I}_{3}-\mathrm{I}_{0}, \mathrm{~B}_{\mathrm{L}} \leftarrow \mathrm{B}_{\mathrm{L}}+1$, Skip if $\mathrm{CY}=1$
EXCI x	070-077	$\begin{aligned} & \mathrm{M} \leftrightarrow \mathrm{Acc}, \mathrm{~B}_{\mathrm{M}} \leftarrow \mathrm{~B}_{\mathrm{M}} \oplus \mathrm{I}_{2}-\mathrm{I}_{0} \\ & \mathrm{~B}_{\mathrm{L}} \leftarrow \mathrm{~B}_{\mathrm{L}}+1, \text { Skip if } \mathrm{CY}=1 \end{aligned}$
EXCD x	078-07F	$\begin{aligned} & \mathrm{M} \leftrightarrow \mathrm{Acc}, \mathrm{~B}_{\mathrm{M}} \leftarrow \mathrm{~B}_{\mathrm{M}} \oplus \mathrm{I}_{2}-\mathrm{I}_{0} \\ & \mathrm{~B}_{\mathrm{L}} \leftarrow \mathrm{~B}_{\mathrm{L}}+\mathrm{F}_{\mathrm{H}}, \text { Skip if } \mathrm{CY}=1 \end{aligned}$
EXC x	068-06F	$\mathrm{M} \leftrightarrow \mathrm{Acc}, \mathrm{B}_{\mathrm{M}} \leftarrow \mathrm{B}_{\mathrm{M}} \oplus \mathrm{I}_{2}-\mathrm{I}_{0}$
LDA x	060-067	$\mathrm{Acc} \leftrightarrow \mathrm{M}, \mathrm{B}_{\mathrm{M}} \leftarrow \mathrm{B}_{\mathrm{M}} \oplus \mathrm{I}_{2}-\mathrm{I}_{0}$
STR	09E	$\mathrm{M} \leftarrow$ Acc
EXAX	0A6	Acc \leftrightarrow X
ATX	0AE	$\mathrm{X} \leftarrow$ Acc
GTAX	OBD	$\mathrm{X} \leftarrow \mathrm{G}_{7}-\mathrm{G}_{4}, \mathrm{Acc} \leftarrow \mathrm{G}_{3}-\mathrm{G}_{0}$
AXTG	08D	$\mathrm{G}_{7}-\mathrm{G}_{4} \leftarrow \mathrm{X}, \mathrm{G}_{3}-\mathrm{G}_{0} \leftarrow \mathrm{Acc}$
	0BD	
XBLA	0B3	$\mathrm{B}_{\mathrm{L}} \leftrightarrow \mathrm{Acc}$
BLTA	0B1	$\mathrm{Acc} \leftarrow \mathrm{B}_{\mathrm{L}}$
XBMA	0B2	$\mathrm{B}_{\mathrm{M}} \rightarrow \mathrm{Acc}$
BMTA	0BA	Acc $\leftarrow \mathrm{B}_{\mathrm{M}}$
XBSB	084	$\mathrm{B} \leftrightarrow \mathrm{SB}$
BTSB	085	$\mathrm{SB} \leftarrow \mathrm{B}$
SAG	08D	$\mathrm{B}_{\mathrm{M}} \leftarrow 0$, only next step
SGL x	0C8-0CF	$\mathrm{B}_{\mathrm{M}}=\mathrm{I}_{2}-\mathrm{I}_{0}, \mathrm{BL}=\mathrm{F}_{\mathrm{H}}$, only next step
ATIM	0B4	$\mathrm{Ei} \leftarrow \mathrm{Ai}(\mathrm{i}=3$ to 0)

(3) Arithmetic instructions

Mnemonic	Machine code	Operation
	$\begin{array}{llllllllll}\mathrm{I}_{8} & \mathrm{I}_{7} & \mathrm{I}_{6} & \mathrm{I}_{5} & \mathrm{I}_{4} & \mathrm{I}_{3} & \mathrm{I}_{2} & \mathrm{I}_{1} & \mathrm{I}_{0}\end{array}$	
ADX x	000-00F	Acc $\leftarrow \mathrm{Acc}+\mathrm{I}_{3}-\mathrm{I}_{0}$, Skip if $\mathrm{CY}=1$
ADA	09A	Acc $-\mathrm{Acc}+\mathrm{A}_{\mathrm{H}}$
ADD	090	$\mathrm{Acc} \leftarrow \mathrm{Acc}+\mathrm{M}$
ADS	091	Acc \leftarrow Acc + M, Skip if $\mathrm{CY}=1$
ADC	092	Acc $\leftarrow \mathrm{Acc}+\mathrm{M}+\mathrm{C}, \mathrm{C} \leftarrow \mathrm{CY}$
ADCS	093	Acc \leftarrow Acc $+\mathrm{M}+\mathrm{C}, \mathrm{C} \leftarrow \mathrm{CY}$, Skip if $\mathrm{CY}=1$
ADBL	0BB	$\mathrm{B}_{\mathrm{L}} \leftarrow \mathrm{Acc}+\mathrm{B}_{\mathrm{L}}$
AND	0A1	Acc \leftarrow Acc $\wedge \mathrm{x}$
OR	0B0	Acc \leftarrow Acc $\vee \mathrm{x}$
COMA	086	Acc $\leftarrow \overline{\mathrm{Acc}}$
ROT	09B	$\mathrm{C} \leftarrow \mathrm{A}_{3} \leftarrow \mathrm{~A}_{2} \leftarrow \mathrm{~A}_{1} \leftarrow \mathrm{~A}_{0} \leftarrow \mathrm{C}$
DECA	09F	Acc \leftarrow Acc $+\mathrm{F}_{\mathrm{H}}$, Skip if $\mathrm{CY}=0$
INCX	0A7	$\mathrm{X} \leftarrow \mathrm{X}+1$, Skip if $\mathrm{CY}=1$
INBL	0A3	$\mathrm{B}_{\mathrm{L}} \leftarrow \mathrm{B}_{\mathrm{L}}+1$, Skip if $\mathrm{CY}=1$
DEBL	0 AB	$\mathrm{B}_{\mathrm{L}} \leftarrow \mathrm{B}_{\mathrm{L}}+\mathrm{F}_{\mathrm{H}}$, Skip if $\mathrm{CY}=0$
INBM	0A2	$\mathrm{B}_{\mathrm{M}} \leftarrow \mathrm{B}_{\mathrm{M}}+1$, Skip if $\mathrm{CY}=1$
DEBM	0AA	$\mathrm{B}_{\mathrm{M}} \leftarrow \mathrm{B}_{\mathrm{M}}+\mathrm{F}_{\mathrm{H}}$, Skip if $\mathrm{CY}=0$

(4) Test instructions

Mnemonic	Machine code	Operation
TAX x	010-01F	Skip if Acc $=\mathrm{I}_{3}-\mathrm{I}_{0}$
TBA x	0D4-0D7	Skip if $\mathrm{Ai}=1$ ($\mathrm{i}=3$ to 0)
TM x	0D0-0D3	Skip if $\mathrm{Mi}=1$ ($\mathrm{i}=3$ to 0)
TAM	096	Skip if Acc $=\mathrm{M}$
TXM	0B6	Skip if $\mathrm{X}=\mathrm{M}$
TBLX x	030-03F	Skip if $\mathrm{B}_{\mathrm{L}}=\mathrm{I}_{3}-\mathrm{I}_{0}$
TC	0B8	Skip if $\mathrm{C}=1$
TS	0B9	Skip if $\mathrm{S}=1$
TIF	0C7	Skip and reset if $\mathrm{IF}=1$
THAF	0 C 6	$\begin{array}{r} \text { Skip and reset } \mathrm{if} \mathrm{HF}=1\left(\mathrm{AM}_{5}=0\right) \\ \text { if } \mathrm{AF}=1\left(\mathrm{AM}_{5}=1\right) \end{array}$
TTF1	0 C 5	Skip and reset if $\mathrm{TF}_{1}=1$
TTF2	0 C 4	Skip and reset if $\mathrm{TF}_{2}=1$
TQZ	0A0	Skip if $\mathrm{Q}=0$
TZ	080	SKip if $\mathrm{Z}\left[\mathrm{B}_{\mathrm{L}}\right]=1$

(5) Bit manipulation instructions

Mnemonic	Machine code	
	$\mathrm{I}_{8} \mathrm{I}_{7} \mathrm{I}_{6} \mathrm{I}_{5} \mathrm{I}_{4} \mathrm{I}_{3} \mathrm{I}_{2} \mathrm{I}_{1} \mathrm{I}_{0}$	
Operation		
	$0 \mathrm{DC}-0 \mathrm{DF}$	$\mathrm{Mi} \leftarrow 1(\mathrm{i}=3$ to 0)
RM x	$0 \mathrm{D} 8-0 \mathrm{DB}$	$\mathrm{Mi} \leftarrow 0(\mathrm{i}=3$ to 0$)$
SC	099	$\mathrm{C} \leftarrow 1$
RC	098	$\mathrm{C} \leftarrow 0$
SS	0 A 9	$\mathrm{~S} \leftarrow 1$
RS	0 A 8	$\mathrm{~S} \leftarrow 0$
SE	095	$\mathrm{E} \leftarrow 1$
ID	094	$\mathrm{E} \leftarrow 0$

(6) I/O instructions

Mnemonic	Machine code	Operation
ATQ	08E	Q \leftarrow Acc
QTA	0BE	Acc $\leftarrow \mathrm{Q}$
ATP	08F	$\mathrm{P} \leftarrow \mathrm{Acc}, \mathrm{P}_{\mathrm{M}} \leftarrow 1$
PTA	0A4	Acc $\leftarrow \mathrm{P}, \mathrm{P}_{\mathrm{M}} \leftarrow 0$
ATR	08C	$\mathrm{R}\left[\mathrm{B}_{\mathrm{L}}\right] \leftarrow \mathrm{Acc}$
RTA	0 C 3	$\mathrm{Acc} \leftarrow \mathrm{R}\left[\mathrm{B}_{\mathrm{L}}\right]$
AXTR	0AC	$\mathrm{R}[1] \leftarrow \mathrm{X}, \mathrm{R}[0] \leftarrow \mathrm{Acc}$
RTAX	OAD	$\mathrm{X} \leftarrow \mathrm{R}[1], \mathrm{Acc} \leftarrow \mathrm{R}[0]$
MTR	09C	$\mathrm{R}\left[\mathrm{B}_{\mathrm{L}} \mid \leftarrow \mathrm{M}\right.$
KCTA	0BC	Acc $\leftarrow \mathrm{KC}$
KITA	0BF	$\mathrm{A}_{3} \leftarrow \mathrm{~K}_{1}, \mathrm{~A}_{2} \leftarrow \mathrm{~K}_{\mathrm{H}}, \mathrm{A}_{1} \leftarrow \mathrm{~K}_{\mathrm{T}}, \mathrm{A}_{0} \leftarrow \mathrm{~K}_{\mathrm{L}}$
SZ	083	$\mathrm{Z}\left[\mathrm{B}_{\mathrm{L}}\right]^{\leftarrow} \mathrm{l}$
RZ	082	$\mathrm{Z}\left[\mathrm{B}_{\mathrm{L}}\right] \leftarrow 0$
SF	089	$\mathrm{F} \leftarrow 1, \mathrm{FM}_{1} \leftarrow \mathrm{~A}_{1}, \mathrm{FM}_{0} \leftarrow \mathrm{~A}_{0}$
RF	088	$\mathrm{F} \leftarrow 0$

(7) Timer control instructions

Mnemonic	Machine code	Operation
TCTRL x	0AF	$\mathrm{DM} \leftarrow \mathrm{I}_{7}-\mathrm{I}_{0}$
	000-0FF	
STM1	097	TIMER1ヶX, Acc
LTM1	09D	X, Acc \leftarrow TIMER1
STM2 x	0B7	TIMER2 $\leftarrow \mathrm{MR}, \mathrm{MR} \leftarrow \mathrm{I}_{7}-\mathrm{I}_{0}$
	000-0FF	
LTM2	081	X, AccヶTIMER2

(8) A/D conversion instructions

Mnemonic	Machine code	Operation
COMP	0A5	$\begin{aligned} & \mathrm{AM}_{5} \leftarrow \mathrm{~A}_{2} \wedge \mathrm{~A}_{1}, \mathrm{~A}_{4} \leftarrow \mathrm{~A}_{2} \wedge \mathrm{~A}_{0}, \mathrm{AM}_{3} \leftarrow \mathrm{~A}_{3} \\ & \mathrm{AM}_{2} \leftarrow \mathrm{~A}_{2}, \mathrm{AM}_{1} \leftarrow \mathrm{~A}_{1}, \mathrm{AM}_{0} \leftarrow \mathrm{~A}_{0} \\ & \text { A/D Conversion or comparison } \\ & \hline \end{aligned}$

(9) Standby instructions

Mnemonic	Machine code	Operation
	$\begin{array}{llllllllll}\mathrm{I}_{8} & \mathrm{I}_{7} & \mathrm{I}_{6} & \mathrm{I}_{5} & \mathrm{I}_{4} & \mathrm{I}_{3} & \mathrm{I}_{2} & \mathrm{I}_{1} & \mathrm{I}_{0}\end{array}$	
CCTRL	0B5	$\mathrm{CM}_{2} \leftarrow \mathrm{~A}_{2}, \mathrm{CM}_{1} \leftarrow \mathrm{~A}_{1}, \mathrm{CM}_{0} \leftarrow \mathrm{~A}_{0}$ Standby mode if $\mathrm{A}_{3}=0$

System Configuration Example (Air conditioner)

SM5E4
 Description

4-Bit Microcomputer (Controller with Multi I/O Ports)

The SM5E4 is a CMOS 4-bit microcomputer which integrates a 4-bit parallel processing function, a ROM, a RAM, I/Oports, a serial interface, a timer/event counter in a single chip.

Provided with five kinds of interrupt and a subroutine stack function using the RAM area, it allows data transfer in byte unit.

Operated from 3 to 5 V single power supply with high speed, this microcomputer is applicable to many applications from a battery back-up system to a high performance system. Especially, it is best suited to systems required for multiple control signals, due to equipped with $70 \mathrm{I} / \mathrm{O}$ pins.

Features

1. CMOS process
2. ROM capacity: $6,144 \times 8$ bits
3. RAM capacity: 320×4 bits
4. Instruction set: 98
5. Subroutine stack: using RAM area
6. Instruction cycle
7. $7 \mu \mathrm{~s}$ (MIN.) at 5 V power supply
8. $1 \mu \mathrm{~s}$ (MIN.) at 3 V power supply
9. Interrupts

External interrupts: 2
Internal interrupts: 3
8. Input/output ports

I/O ports: 48
Input ports: 6
Output ports: 16
9. 8 -bit serial I/O
10. 8 -bit counter/timer: 1 set
11. Standby function
12. Expandable external data ROM/RAM
13. 8-bit parallel I/O
14. On-chip crystal oscillator and clock divider circuit
15. On chip system clock CR oscillator
16. Single power supply: 2.7 to 5.5 V
17. 80-pin QFP (QFP80-P-1420)

Pin Connections

- Block Diagram

- Pin Discription

Symbol	I/O	Function
$\begin{gathered} \mathrm{P0}_{0}-\mathrm{P0}_{3}, \mathrm{P1}_{0}-\mathrm{P1}_{3} \\ \mathrm{P} 4_{0}-\mathrm{P} 4_{3}, \mathrm{P5}_{0}-\mathrm{P} 5_{3} \\ \mathrm{P}_{0}-\mathrm{PG}_{3}, \mathrm{P}_{0}-\mathrm{P8}_{3} \\ \mathrm{P}_{0}-\mathrm{Pg}_{3}, \mathrm{PG}_{0}-\mathrm{PG}_{3} \\ \mathrm{PH}_{0}-\mathrm{PH}_{3}, \mathrm{PI}_{0}-\mathrm{PI}_{3} \\ \mathrm{PJ}_{0}-\mathrm{PJ}_{3}, \mathrm{PK}_{0}-\mathrm{PK}_{3} \end{gathered}$	I/O	I/O ports
$\begin{aligned} & {\mathrm{P} 2_{0}-\mathrm{P} 2_{3},}, \mathrm{P} 3_{0}-\mathrm{P}_{3} \\ & \mathrm{PA}_{0}-\mathrm{PA}_{3}, \mathrm{~PB}_{0}-\mathrm{PB}_{3} \end{aligned}$	0	Output ports
$\mathrm{P} 7_{0}-\mathrm{P} 7_{3}$	I	Input ports
INTA, INTB	I	Interrupt input ports
$\mathrm{CK}_{1}, \mathrm{CK}_{2}$		System clock CR oscillator
$\mathrm{OSC}_{\text {IN }}$, OSC $_{\text {OUT }}$		Crystal oscillator
ϕ	0	Synchronous clock output port
V_{DD}, GND		Power supply
TEST		Test (normally connected to GND)
RESET	I	Reset input port

Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit	Note
Supply voltage	V_{DD}	-0.3 to +7.5	V	
Input voltage	V_{I}	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V	1
Output voltage	V_{O}	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V	
Output current	I_{O}	40	mA	2
Operating temperature	Topr	-20 to +70	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	

Note 1: The maximum applicable voltage on any pin with respect to GND.
Note 2: Sum of current output from (or flowing into) output pin.

Recommended Operating Conditions

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	Note
Supply voltage	V_{DD}		2.7		5.5	V	
Crystal oscillation frequency	fosc			32.768		kHz	1
Reference clock oscillation frequency	f	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	1.7		2.3	MHz	
	$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$	0.7		1.3			

Note 1: Oscillation start time: within 10 seconds.

- DC Characteristics
$\left(\mathrm{V}_{\mathrm{DD}}=2.7\right.$ to $5.5 \mathrm{~V}, \mathrm{Ta}=-20$ to $\left.+70^{\circ} \mathrm{C}\right)$

Note 1: Applied to pins $\mathrm{P}_{0}-\mathrm{P0}_{3}, \mathrm{P}_{1}-\mathrm{P} 1_{3}, \mathrm{P} 4_{0}-\mathrm{P} 4_{3}, \mathrm{P} 5_{0}-\mathrm{P} 5_{3}, \mathrm{P}_{0}-\mathrm{P} 6_{3}$.
$\mathrm{P} 8_{0}-\mathrm{P} 8_{3}, \mathrm{P} 9_{0}-\mathrm{P} 9_{3}$. (in input mode)
$\mathrm{P} 7_{0}-\mathrm{P7}_{3}, \overline{\mathrm{RESET}}, \mathrm{PG}_{0}-\mathrm{PG}_{3}, \mathrm{PH}_{0}-\mathrm{PH}_{3}, \mathrm{PI}_{0}-\mathrm{PI}_{3}, \mathrm{PJ}_{0}-\mathrm{PJ}_{3}, \mathrm{PK}_{0}-\mathrm{PK}_{3}$.
Note 2: Applied to pins $\mathrm{CK}_{1}, \mathrm{OSC}_{\text {IN }}$, TEST $_{0}, \overline{\mathrm{INTA}}, \overline{\mathrm{INTB}}$
Note 3: Applied to pin CK_{2}
Note 4: Applied to pin ϕ
Note 5: Applied to pins $\mathrm{P0}_{0}-\mathrm{P} 0_{3}, \mathrm{P} 1_{0}-\mathrm{P} 1_{3}, \mathrm{P} 4_{0}-\mathrm{P} 4_{3}, \mathrm{P} 5_{0}-\mathrm{P} 5_{3}, \mathrm{P} 6_{0}-\mathrm{P} 6_{3}$.
$\mathrm{P} 8_{0}-\mathrm{P8}_{3}, \mathrm{P9}_{0}-\mathrm{P9}_{3}$. (In output mode)
$\mathrm{P} 2_{0}-\mathrm{P} 2_{3}, \mathrm{P} 3_{0}-\mathrm{P} 3_{3}, \mathrm{PA}_{0}-\mathrm{PA}_{3}, \mathrm{~PB}_{0}-\mathrm{PB}_{3}$.
$\mathrm{PG}_{0}-\mathrm{PG}_{3}, \mathrm{PH}_{0}-\mathrm{PH}_{3}, \mathrm{PI}_{0}-\mathrm{PI}_{3}, \mathrm{PJ}_{0}-\mathrm{PJ}_{3}, \mathrm{PK}_{0}-\mathrm{PK}_{3}$.
Note 6: No-load condition
Note 7: When crystal oscillation circuit is activated under no load conditions.
Note 8: When crystal oscillation circuit is inactivated under no load conditions. OSC $_{\text {IN }}$ pin should be connected to GND.

AC Characteristics

(1) Clock characteristics
$\left(\mathrm{V}_{\mathrm{DD}}=2.7\right.$ to $5.5 \mathrm{~V}, \mathrm{Ta}=-20$ to $\left.+70^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	Note
Reference clock oscillation frequency (CR oscillation)	f_{CR}	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{R}=12 \mathrm{k} \Omega \pm 5 \%$	1.7	2.0	2.3	MHz	
		$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} \pm 10 \%, \mathrm{R}=39 \mathrm{k} \Omega \pm 5 \%$	0.5	0.75	1.0		
		$\mathrm{R}=39 \mathrm{k} \Omega \pm 5 \%$	0.5	0.75	1.0		
Reference clock input frequency (CK_{1})	f_{K}	$\mathrm{V}_{\mathrm{DD}}=5.0 \pm 10 \%$	0.25		2.3	MHz	
			0.25		1.0		
CK_{1} input rise time	t_{KR}				500	ns	
CK_{1} input fall time	t_{KF}				500	ns	
CK_{1} input high range	t_{KH}	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$	0.3			$\mu \mathrm{s}$	
			0.6				
CK_{1} input low range	t_{KL}	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$	0.3			$\mu \mathrm{s}$	
			0.6				
OSC crystal oscillation frequency	$\mathrm{f}_{\text {OSC }}$			32.768		kHz	
OSC ${ }_{\text {OUT }}$ input cycle time	t_{f}		2			$\mathrm{t}_{\mathrm{CYC}}$	1
$\mathrm{OSC}_{\text {OUT }}$ input rise time	t_{fR}				500	ns	
OSC ${ }_{\text {OUT }}$ input fall time	$\mathrm{t}_{\text {fF }}$				500	ns	
OSC ${ }_{\text {OUT }}$ input high range	t_{fH}		1			$\mathrm{t}_{\mathrm{CYC}}$	1
OSC ${ }_{\text {Out }}$ input low range	t_{fL}		1			$\mathrm{t}_{\mathrm{CYC}}$	1

Note 1: $t_{\text {cyc }}$: Cycle time of one fourth the reference clock oscillation frequency.
CK_{1} Input

OSC Input

Fig. 1 Clock timing
(2) Interrupt input
($\mathrm{V}_{\mathrm{DD}}=2.7$ to 5.5 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	Note
$\overline{\text { INTA }}$ high range	t_{AH}		2			$\mathrm{t}_{\mathrm{CYC}}$	
$\overline{\mathrm{INTA}}$ low range	t_{AL}		2			$\mathrm{t}_{\mathrm{CYC}}$	
$\overline{\overline{\text { INTB }} \text { high range }}$	t_{BH}		2			$\mathrm{t}_{\mathrm{CYC}}$	
$\overline{\mathrm{INTB}}$ low range	t_{BL}		2			$\mathrm{t}_{\mathrm{CYC}}$	

Note 1: $\quad t_{\mathrm{CYC}}$: Cycle time of one fourth the reference clock oscillation frequency.

Fig. 2 Interrupt input timing

(3) External Serial Input Clock

$\left(\mathrm{V}_{\mathrm{DD}}=2.7\right.$ to 5.5 V$)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	Note
SCK cycle time	$\mathrm{t}_{\text {SY }}$	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$	1			$\mathrm{t}_{\mathrm{CYC}}$	1
			1				
SCK high range	$\mathrm{t}_{\text {SH }}$	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$	$1 / 2$			$\mathrm{t}_{\mathrm{CYC}}$	
			1/2.				
SCK low range	$\mathrm{t}_{\text {SL }}$	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$	1/2			$\mathrm{t}_{\mathrm{CYC}}$	
			1/2				
SCK rise time	$\mathrm{t}_{\text {SR }}$				500	ns	
SCK fall time	$\mathrm{t}_{\text {SF }}$				500	ns	
Reset pulse width (low)	$\mathrm{t}_{\text {RST }}$		300			ns	

Note 1: $\mathrm{t}_{\mathrm{CyC}}$: Cycle time of one fourth the reference clock oscillation frequency.

Fig. 3 External serial input clock timing

Hardware Configuration

(1) Program counter (PC) and stack

The program counter consists of a 7 -bit page address register $\left(\mathrm{P}_{\mathrm{U}}\right)$ and 6 -bit binary counter (P_{L}) used to specify the steps within a page.
The stack pointer (SP) is a register which holds the starting address of the stack area of RAM space.

(2) Program memory (ROM)

The on-chip ROM has a configuration of 96 pages $\times 64$ steps $\times 8$ bits, and stores programs and table data. Fig. 4 shows the ROM configuration.

PU_{6}	0					
$\mathrm{PU}_{5} \sim \mathrm{PU}_{4}$	0	1	2	3	0	1
$\mathrm{PU}_{3} \sim \mathrm{PU}_{0}$						
0						
1						
2						
3						
4						
5						
6						
7						
\mathbf{y}						
B						
C						
D						
F						

Fig. 4 ROM configuration
(3) Data memory (RAM)

Data memory has a 320×4-bit configuration, and is used to store processing data and other information.

Data memory is also used as a subroutine stack. Fig. 5 shows the RAM configuration.

	$\mathrm{RY}=0$																		RY $=1$			
	0	1	2	3	3	45	5	6	7	8	9	A	B		CD	E	E F	F	0	1	2	3
0																						
1																						
2																						
3																						
4																						
5																						
6																						
7																						
8																						
9																						
A																						
B																						
C																						
D																						
E																						
F																						

Fig. 5 RAM configuration

Data memory is specified by a 9 -bit address, and the RY is placed in the highest bit.

(4) General-purpose register

Registers H and L are 4-bit general-purpose registers. They can transfer and compare data with the A_{CC} on a 4-bit basis. Registers D and E are 4bit registers and can transfer data with the H and L registers on an 8-bit basis.

(5) Clock divider and IFV flag

The SM5E4 contains a crystal oscillator and a 15 -stage divider. A real-time clock can be provided by connecting an external crystal oscillator between the oscillator pins.

(6) Timer/event counter

The timer/event counter consists of an 8-bit count register (TC) and an 8 -bit modulo register (TM).
The count register (TC) is an 8 -bit incremental binary counter. It is incremented by one at the falling edge of its count pulse (CP) input. If the count register overflows, the timer interrupt request flag IFT is set, and the contents of the modulo register (TM) are loaded into the count register.

(7) Serial interface

The serial interface consists of an 8 -bit shift register (SB) and a 3 -bit counter, which is used to input and output the serial data.
The input and output of serial data is controlled by the serial clock which can be selected with either an internal clock (system clock) or an external clock.

(8) Interrupts

The interrupts include three kinds of internal interrupts and two kinds of external interrupts (see Table 1).

(9) I/O ports and mode register

The SM5E4 has seventeen 4-bit ports (P0-PB, PG-PK), and three mode registers (RD, RE, RF). Data can be transferred between these ports and registers under direct instruction control or indirect L register control.
Ports P0, P1, P4, P5, P8, P9, PG, PH, PI, PJ and PK can be placed in input or output mode, 4-bits at a time.

Ports P2, P3, PA and PB are 4-bit parallel output ports. Port P7 is a 4-bit parallel input port.

Each bit of port P6 can be independently placed

Table 1 Interrupt request

Interrupt request	Int./Ext.	Priority	Interrupt routine start address	
INTT	Timer/event counter interrupt	Int.	1	Page 1, Address 0
INTA	External signal INTA interrupt	Ext.	2	Address 2
INTS	Serial I/O interrupt	Int.	3	Address 4
INTB	External signal INTB or frame frequency interrupt Divider overflow interrupt	Ext.	4	Address 6
INTV	Int.	5	Address 8	

in input or output mode by setting or resetting the corresponding bit of mode register RF as follows:

$$
\mathrm{RFi}=0: \mathrm{Pin} \mathrm{P} 6 \mathrm{i} \text { is an input pin. }
$$

$\mathrm{RFi}=1$: Pin P 6 i is an output pin.
(i=0,1,2,3)
Ports (P0, P1), (P2, P3), (P8, P9), and (PA, PB) can be paired for use in data transfer on a byte-by-byte basis. However, port pairs (P2, P3) and (PA, PB) are usable only for output.

(10) Standby mode

Executing the CEND instruction places the device in standby mode. To reduce power consumption, the system clock is inactivated. Standby mode may be cleared with the interrupt request or the $\overline{\text { RESETsignal. }}$

(11) Reset function (ACL: Auto Clear)

Applying a Low level signal to the RESET $p i n$ resets the internal logic of the device.

When the device is reset, it is placed in the following initial state:

- The program starts execution at address 0 and page 0 .
- I/O ports are placed in the input mode, mode registers RD, RE and RF are cleared, and all output ports ($\mathrm{P} 2, \mathrm{P} 3, \mathrm{PA}, \mathrm{PB}$) are cleared to 0 .
- All interrupt flags are reset to disable all interrupts.
- The contents of RX and RY are cleared to 0 .

The reset feature is also activated when the power is turned on.

The program starts after the reset condition is cleared upon completion of the master clock period $\times 2{ }^{14}$ clocks.

(12) Clock generator

The system clock generator requires an external resistor across pins CK_{1} and CK_{2}. Instead of using on-chip oscillator, an external clock may be ap-
plied to pin CK_{1}. In this case, pin CK_{2} should be left open (see Fig. 6).

The real-time clock generator used for the divider circuit is shown in Fig. 7 (a). The system clock ϕ has a frequency of one fourth that of the clock applied to pin CK_{1}. When applying an external clock to pin $\mathrm{OSC}_{\text {OUT }}$, the master clock frequency should be set at more than 8 times that of the external clock.

Fig. 6 Clock oscillator circuit

Fig. 7 Crystal oscillator circuit

Instruction Set

(1) ROM address instructions

Mnemonic	Machine code	Operation
TR x	80-BF	PL $\leftarrow x\left(I_{5}-I_{0}\right)$
$\begin{aligned} & \hline \text { TL xy } \\ & \text { (2-byte) } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{E} 0-\mathrm{EF} \\ & 00-\mathrm{FF} \end{aligned}$	$\begin{aligned} & \mathrm{PU} \leftarrow \mathrm{x}\left(\mathrm{I}_{11}-\mathrm{I}_{6}\right) \\ & \mathrm{PL} \leftarrow \mathrm{y}\left(\mathrm{I}_{5}-\mathrm{I}_{0}\right), \mathrm{PU} \mathrm{U}_{6} \leftarrow \mathrm{RX} \end{aligned}$
TRS x	C0-DF	$\begin{aligned} & (\mathrm{SP}-1),(\mathrm{SP}-2),(\mathrm{SP}-3), \\ & (\mathrm{SP}-4) \leftarrow \mathrm{PC} \\ & \mathrm{SP} \leftarrow \mathrm{SP}-4 \\ & \mathrm{PU} \leftarrow(10000)_{2} \\ & \mathrm{PL} \leftarrow \mathrm{x}\left(\mathrm{I}_{4} \mathrm{I}_{3} \mathrm{I}_{2} \mathrm{I}_{1} \mathrm{I}_{0} 0\right) \end{aligned}$
$\begin{aligned} & \text { CALL xy } \\ & \text { (2-byte) } \end{aligned}$	$\begin{aligned} & \mathrm{F} 0-\mathrm{FF} \\ & 00-\mathrm{FF} \end{aligned}$	$\begin{aligned} & (\mathrm{SP}-1),(\mathrm{SP}-2),(\mathrm{SP}-3), \\ & (\mathrm{SP}-4) \leftarrow \mathrm{PC} \\ & \mathrm{SP} \leftarrow \mathrm{SP}-4, \mathrm{PU} \leftarrow \mathrm{x}\left(\mathrm{I}_{11}-\mathrm{I}_{6}\right) \\ & \mathrm{PL} \leftarrow \mathrm{y}\left(\mathrm{I}_{5}-\mathrm{I}_{0}\right), \mathrm{PU} \mathrm{U}_{6} \leftarrow \mathrm{RX} \end{aligned}$
JBA x (2-byte)	$\begin{aligned} & 7 \mathrm{~F} \\ & 30-3 \mathrm{~F} \end{aligned}$	$\begin{aligned} & \mathrm{PU}_{5}-\mathrm{PU}_{2} \leftarrow \mathrm{x}\left(\mathrm{I}_{3}-\mathrm{I}_{0}\right), \\ & \mathrm{PU}_{1}, \mathrm{PU}_{0}, \mathrm{PL}_{5}, \mathrm{PL}_{4} \leftarrow \mathrm{~B}, \\ & \mathrm{PL}_{3}-\mathrm{PL}_{0} \leftarrow \mathrm{~A}_{0}, \mathrm{PU}_{6} \leftarrow 0 \end{aligned}$
RTN	61	$\begin{aligned} & \mathrm{PU}, \mathrm{PL} \leftarrow \mathrm{SP},(\mathrm{SP}+1),(\mathrm{SP}+2), \\ & (\mathrm{SP}+3) \\ & \mathrm{SP} \leftarrow \mathrm{SP}+4 \end{aligned}$
RTNS	62	$\begin{aligned} & \mathrm{PU}, \mathrm{PL} \leftarrow \mathrm{SP},(\mathrm{SP}+1),(\mathrm{SP}+2), \\ & (\mathrm{SP}+3) \\ & \mathrm{SP} \leftarrow \mathrm{SP}+4, \text { skip } \end{aligned}$
RTNI	63	$\begin{aligned} & \mathrm{PU}, \mathrm{PL}, \mathrm{PSW} \leftarrow \mathrm{SP},(\mathrm{SP}+1), \\ & (\mathrm{SP}+2),(\mathrm{SP}+3) \\ & \mathrm{SP} \leftarrow \mathrm{SP}+4 \\ & \mathrm{IME} \leftarrow 1 \end{aligned}$

(2) RAM address instructions

Mnemonic	Machine code	Operation
STL	69	$\mathrm{~L} \leftarrow \mathrm{~A}$
STH	68	$\mathrm{H} \leftarrow \mathrm{A}$
EXHD	3 F	$\mathrm{H} \longleftrightarrow \mathrm{D}$
	$\mathrm{L} \leftrightarrows \mathrm{E}$	
LIHL xy (2-byte)	3 D	$\mathrm{H} \leftarrow \mathrm{x}\left(\mathrm{I}_{7}-\mathrm{I}_{4}\right), \mathrm{L} \leftarrow \mathrm{y}\left(\mathrm{I}_{3}-\mathrm{I}_{0}\right)$

(3) Data transfer instructions

Mnemonic	Machine code	Operation
EX pr	5C-5F	$\mathrm{A} \longleftrightarrow(\mathrm{pr})$
LDX adr (2-byte)	$\begin{aligned} & \hline 7 \mathrm{D} \\ & 00-\mathrm{FF} \end{aligned}$	A $\leftarrow(\mathrm{adr})$
STX adr (2-byte)	$\begin{aligned} & 7 \mathrm{E} \\ & 00-\mathrm{FF} \end{aligned}$	$(\mathrm{adr}) \leftarrow \mathrm{A}$
EXX adr (2-byte)	$\begin{aligned} & 7 \mathrm{C} \\ & 00-\mathrm{FF} \end{aligned}$	A $\leftarrow(\mathrm{adr})$
LAX x	10-1F	$\mathrm{A} \leftarrow \mathrm{x}\left(\mathrm{I}_{3}-\mathrm{I}_{0}\right)$
$\begin{array}{l\|} \hline \text { LIBA xy } \\ \text { (2-byte) } \end{array}$	$\begin{aligned} & 3 \mathrm{C} \\ & 00-\mathrm{FF} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{B} \leftarrow \mathrm{x}\left(\mathrm{I}_{7}-\mathrm{I}_{4}\right) \\ & \mathrm{A} \leftarrow \mathrm{y}\left(\mathrm{I}_{3}-\mathrm{I}_{0}\right) \end{aligned}$
LBAT	60	$\begin{aligned} & \mathrm{B} \leftarrow \mathrm{ROM}\left(\mathrm{Pu}_{6}-\mathrm{Pu}_{2}, \mathrm{~B}, \mathrm{~A}\right) \mathrm{H} \\ & \mathrm{~A} \leftarrow \mathrm{ROM}\left(\mathrm{Pu}_{6}-\mathrm{Pu}_{2}, \mathrm{~B}, \mathrm{~A}\right) \mathrm{L} \end{aligned}$
LDL	65	$\mathrm{A} \leftarrow \mathrm{L}$
LD pr	54-57	$\mathrm{A} \leftarrow(\mathrm{pr})$
ST pr	58-5B	(pr) $\leftarrow \mathrm{A}$
EXH	6C	$\mathrm{A} \leftrightarrow \mathrm{H}$
EXL	6D	$\mathrm{A} \leftrightarrow \mathrm{L}$
EXB	6 E	$\mathrm{A} \leftrightarrow \mathrm{B}$
STB	6 A	$\mathrm{B} \leftarrow \mathrm{A}$
LDB	66	$\mathrm{A} \leftarrow \mathrm{B}$
LDH	64	$\mathrm{A} \leftarrow \mathrm{H}$
PSHBA	28	$\begin{aligned} & (\mathrm{SP}-1) \leftarrow \mathrm{B},(\mathrm{SP}-2) \leftarrow \mathrm{A}, \\ & \mathrm{SP} \leftarrow \mathrm{SP}-2 \end{aligned}$
PSHHL	29	$\begin{aligned} & (\mathrm{SP}-1) \leftarrow \mathrm{H},(\mathrm{SP}-2) \leftarrow \mathrm{L} \\ & \mathrm{SP} \leftarrow \mathrm{SP}-2 \end{aligned}$
POPBA	38	$\begin{aligned} & \mathrm{B} \leftarrow(\mathrm{SP}+1), \mathrm{A} \leftarrow(\mathrm{SP}), \\ & \mathrm{SP} \leftarrow \mathrm{SP}+2 \end{aligned}$
POPHL	39	$\begin{aligned} & \mathrm{H} \leftarrow(\mathrm{SP}+1), \mathrm{L} \leftarrow(\mathrm{SP}) \\ & \mathrm{SP} \leftarrow \mathrm{SP}+2 \end{aligned}$
STSB	70	$\mathrm{SB}_{\mathrm{H}} \leftarrow \mathrm{B}, \mathrm{SB}_{\mathrm{L}} \leftarrow \mathrm{A}$
STSP	71	$\mathrm{SP}_{\mathrm{H}} \leftarrow \mathrm{B}, \mathrm{SP}_{\mathrm{L}} \leftarrow \mathrm{A}$
STTC	72	TC ¢TM
STTM	73	$\mathrm{TM}_{\mathrm{H}} \leftarrow \mathrm{B}, \mathrm{TM}_{\mathrm{L}} \leftarrow \mathrm{A}$
LDSB	74	$\mathrm{B} \leftarrow \mathrm{SB}_{\mathrm{H}}, \mathrm{A} \leftarrow \mathrm{SB}_{\mathrm{L}}$
LDSP	75	$\mathrm{B} \leftarrow \mathrm{SP}_{\mathrm{H}}, \mathrm{A} \leftarrow \mathrm{SP}_{\mathrm{L}}$
LDTC	76	$\mathrm{B} \leftarrow \mathrm{TC}_{\mathrm{H}}, \mathrm{A} \leftarrow \mathrm{TC}_{\mathrm{L}}$
LDDIV	77	$\mathrm{B} \leftarrow \mathrm{DIV}_{\mathrm{H}}, \mathrm{A} \leftarrow \mathrm{DIV}_{\mathrm{L}}$

(4) Arithmetic instructions

Mnemonic	Machine code	Operation
ADX x	$00-0 \mathrm{~F}$	$\mathrm{~A} \leftarrow \mathrm{~A}+\dot{\mathrm{x}\left(\mathrm{I}_{3}-\mathrm{I}_{0}\right), \text { Skip if } \mathrm{Cy}=1}$
ADD	36	$\mathrm{~A} \leftarrow \mathrm{~A}+(\mathrm{HL})$
ADDC	37	$\mathrm{A} \leftarrow \mathrm{A}+(\mathrm{HL})+\mathrm{C}, \mathrm{C} \leftarrow \mathrm{Cy}$ Skip if $\mathrm{Cy}=1$
OR	31	$\mathrm{~A} \leftarrow \mathrm{~A}+(\mathrm{HL})$
AND	32	$\mathrm{~A} \leftarrow \mathrm{~A} \cdot(\mathrm{HL})$
EOR	33	$\mathrm{~A} \leftarrow \mathrm{~A} \oplus(\mathrm{HL})$
ANDB	22	$\mathrm{~A} \leftarrow \mathrm{~A} \cdot \mathrm{~B}$
ORB	21	$\mathrm{~A} \leftarrow \mathrm{~A}+\mathrm{B}$
EORB	23	$\mathrm{~A} \leftarrow \mathrm{~A} \oplus \mathrm{~B}$
COMA	6 F	$\mathrm{~A} \leftarrow \overline{\mathrm{~A}}$
ROTR	25	$\mathrm{C} \leftarrow \mathrm{A}_{0} \leftarrow \mathrm{~A}_{1} \leftarrow \mathrm{~A}_{2} \leftarrow \mathrm{~A}_{3} \leftarrow \mathrm{C}$
ROTL	35	$\mathrm{C} \leftarrow \mathrm{A}_{3} \leftarrow \mathrm{~A}_{2} \leftarrow \mathrm{~A}_{1} \leftarrow \mathrm{~A}_{0} \leftarrow \mathrm{C}$
INCB	52	Skip if $\mathrm{B}=\mathrm{F}_{\mathrm{H}}, \mathrm{B} \leftarrow \mathrm{B}+1$
DECB	53	Skip if $\mathrm{B}=0, \mathrm{~B} \leftarrow \mathrm{~B}-1$
INCL	50	Skip if $\mathrm{L}=\mathrm{F}_{\mathrm{H}}, \mathrm{L} \leftarrow \mathrm{L}+1$
DECL	51	Skip if $\mathrm{L}=0, \mathrm{~L} \leftarrow \mathrm{~L}-1$
DECM adr	79	Skip if $(\mathrm{adr})=0,(\mathrm{adr}) \leftarrow(\mathrm{adr})-1$
INCM adr	78 $00-\mathrm{FF}$	Skip if $(\mathrm{adr})=\mathrm{F}_{\mathrm{H}},(\mathrm{adr}) \leftarrow(\mathrm{adr})+1$

(5) Test instructions

Mnemonic	Machine code	Operation
TAM	30	Skip if $A=(\mathrm{HL})$
TAH	24	Skip if A $=\mathrm{H}$
TAL	34	Skip if $=\mathrm{L}$
TAB	20	Skip if $\mathrm{A}=\mathrm{B}$
TC	2 A	Skip if $\mathrm{C}=0$
TM x	$48-4 \mathrm{~B}$	Skip if $(\mathrm{HL}) \mathrm{x}=1$
TA x	$4 \mathrm{C}-4 \mathrm{~F}$	Skip if Ax $=1$
TSTT	2 B	Skip IFT $=1$, IFT $\leftarrow 0$
TSTA	2 C	Skip if IFA $=1$, IFA $\leftarrow 0$
TSTS	2 D	Skip if IFS $=1$, IFS $\leftarrow 0$
TSTB	2 E	Skip if IFB $=1$, IFB $\leftarrow 0$
TSTV	2F	Skip if $\mathrm{IFV}=1$, IFV $\leftarrow 0$

(6) Bit manipulation instructions

Mnemonic	Machine code	Operation
SM x	$40-43$	$(\mathrm{HL}) \mathrm{x} \leftarrow 1$
RM x	$44-47$	$(\mathrm{HL}) \mathrm{x} \leftarrow 0$
RC	26	$\mathrm{C} \leftarrow 0$
SC	27	$\mathrm{C} \leftarrow 1$
RIME	3 A	IME $\leftarrow 0$
SIME	3 B	IME $\leftarrow 1$
DI x $(2-$ byte $)$	$7 \mathrm{~F} 0-\mathrm{DF}$	IEF $\leftarrow \mathrm{IEF} \cdot \overline{\mathrm{x}}$
EI x $(2-b y t e)$	7F E0-FF	IEF +x

(7) I/O instructions

Mnemonic	Machine code	Operation
IN	67	$\mathrm{A} \leftarrow \mathrm{P}(\mathrm{L})$
OUT	6B	$\mathrm{P}(\mathrm{L}), \mathrm{R}(\mathrm{L}) \leftarrow \mathrm{A}$
$\begin{aligned} & \text { INA x } \\ & \text { (2-byte) } \end{aligned}$	$\begin{aligned} & 7 \mathrm{~F} \\ & \mathrm{~A} 0-\mathrm{A} 9 \\ & \hline \end{aligned}$	$\mathrm{A} \leftarrow \mathrm{P}(\mathrm{x})$
$\begin{aligned} & \text { OUTA x } \\ & \text { (2-byte) } \end{aligned}$	$\begin{aligned} & 7 \mathrm{~F} \\ & \mathrm{BO}-\mathrm{BF} \end{aligned}$	$\mathrm{P}(\mathrm{x}), \mathrm{R}(\mathrm{x}) \leftarrow \mathrm{A}$
INBA x	$\begin{aligned} & 7 \mathrm{~F} \\ & 80: 82 \end{aligned}$	$\begin{aligned} & \mathrm{B} \leftarrow \mathrm{P}(\mathrm{x}+1) \\ & \mathrm{A} \leftarrow \mathrm{P}(\mathrm{x}) \end{aligned}$
$\begin{aligned} & \hline \text { OUTBAx } \\ & \text { (2-byte) } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 7 \mathrm{~F} \\ 90-93 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{P}(\mathrm{x}+1) \leftarrow \mathrm{B} \\ & \mathrm{P}(\mathrm{x}) \leftarrow \mathrm{A} \\ & \hline \end{aligned}$
$\begin{aligned} & \begin{array}{l} \text { SP xy } \\ \text { (2-byte) } \end{array} \end{aligned}$	$\begin{array}{\|l\|} \hline 7 \mathrm{~A} \\ 00-\mathrm{F} 6 \\ \hline \end{array}$	$\mathrm{P}(\mathrm{y}) \leftarrow \mathrm{P}(\mathrm{y})+\mathrm{x}$
$\begin{aligned} & \text { RP xy } \\ & \text { (2-byte) } \end{aligned}$	$\begin{array}{\|l\|} \hline 7 \mathrm{~B} \\ 00-\mathrm{F} 6 \\ \hline \end{array}$	$P(y) \leftarrow P(y) \cdot x$
$\begin{aligned} & \text { READ } \\ & \text { (2-byte) } \end{aligned}$	$\begin{array}{\|l\|} \hline 7 \mathrm{~F} \\ 60 \\ \hline \end{array}$	$\mathrm{A} \leftarrow \mathrm{P} 0$
WRIT (2-byte)	$\begin{aligned} & \hline 7 \mathrm{~F} \\ & 70 \\ & \hline \end{aligned}$	P0ヶA
$\begin{aligned} & \text { READB } \\ & \text { (2-byte) } \end{aligned}$	$\begin{array}{\|l\|} \hline 7 \mathrm{~F} \\ 61 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{B} \leftarrow \mathrm{P} 1 \\ \mathrm{~A} \leftarrow \mathrm{P} 0 \\ \hline \end{array}$
$\begin{aligned} & \hline \text { WRITB } \\ & \text { (2-byte) } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 7 \mathrm{~F} \\ 71 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{P} 1 \leftarrow \mathrm{~B} \\ & \mathrm{P} 0 \leftarrow \mathrm{~A} \\ & \hline \end{aligned}$
INX x	$\begin{aligned} & 7 \mathrm{~F} \\ & 88-8 \mathrm{C} \end{aligned}$	$\mathrm{A} \leftarrow \mathrm{P}^{\prime}(\mathrm{x})$
OUTX x	$\begin{array}{\|l\|} \hline 7 \mathrm{~F} \\ 98-9 \mathrm{C} \\ \hline \end{array}$	$\mathrm{P}^{\prime}(\mathrm{x}) \leftarrow \mathrm{A}$

Note: $\quad P^{\prime}(x)=P G, P H, P I, P J$ and $P K$
(8) Special instructions

Mnemonic	Machine code	Operation
SIO	3 E	Serial I/O start
IDIV	7 F	DIV $\leftarrow 0$
(2-byte)	10	
SKIP	00	No operation
CEND	7 F	Stop CR oscillator and system
(2-byte)	00	clock
HALT	7 F	Stop only system clock
(2-byte)	01	$\mathrm{RX} \leftarrow \mathrm{x}\left(\mathrm{I}_{0}\right)$
LAP xy	7 F	$\mathrm{RY} \leftarrow \mathrm{y}\left(\mathrm{I}_{2}\right)$
(2-byte)	$20-25$	

Note: The machine code consists of 8 -bits including $\mathrm{I}_{7}, \mathrm{I}_{6}, \mathrm{I}_{5}$, $\mathrm{I}_{4}, \mathrm{I}_{3}, \mathrm{I}_{2}, \mathrm{I}_{1}$ and I_{0}

- System Configuration Example

LU5E4POP

Description

The LU5E4P0P is a CMOS 4-bit microcomputer which integrates a $6,144 \times 8$-bit OTPROM (One Time PROM), a 68 I/O port, a serial I/O, and a timer/counter in a single chip.

Provided with five kinds of interrupt and a subroutine stack function using the RAM area, it allows a data transfer in byte unit.

Operated from 5 V single power supply with high speed, this microcomputer is applicable to many applications from a hand-held system to a high performance system.

The differences between the LU5E4P0P and SM5E4 are the supply voltage range and the current consumption.

Features

1. CMOS process
2. OTPROM capacity: $6,144 \times 8$ bits
3. RAM capacity: 320×4 bits
4. Instruction set: 98
5. Subroutine stack: using RAM area
6. Instruction cycle: $1.6 \mu \mathrm{~s}$ (MIN.)
7. Interrupts

External interrupts: 2
Internal interrupts: 3
8. Input/output ports

I/O ports: 48
Input ports: 4
Output ports: 16
9. Timer/counter: 1 set
10. On-chip crystal oscillator and CR oscillator circuits
11. Standby function
12. Expandable external data ROM/RAM
13. 8-bit parallel I/O
14. 80 -pin QFP (QFP80-P-1420)

4-Bit Microcomputer
(Controller with On-Chip OTPROM)

- Pin Connections

Block Diagram

- Pin Description

(1) Microcomputer mode

Symbol	I/O	Function
$\begin{gathered} \mathrm{P0}_{0}-\mathrm{PO}_{3}, \mathrm{P1}_{0}-\mathrm{P1}_{3} \\ \mathrm{P} 4_{0}-\mathrm{P} 4_{3}, \mathrm{P5}_{0}-\mathrm{P} 5_{3} \\ \mathrm{P} 6_{0}-\mathrm{PG}_{3}, \mathrm{P}_{0}-\mathrm{P} 8_{3} \\ \mathrm{P9}_{0}-\mathrm{PG}_{3}, \mathrm{PG}_{0}-\mathrm{PG}_{3} \\ \mathrm{PH}_{0}-\mathrm{PH}_{3}, \mathrm{PI}_{0}-\mathrm{PI}_{3} \\ \mathrm{PJ}_{0}-\mathrm{PJ}_{3}, \mathrm{PK}_{0}-\mathrm{PK}_{3} \end{gathered}$	I/O	I/O ports
$\begin{array}{r} \mathrm{P}_{0}-\mathrm{P} 2_{3}, \mathrm{P3}_{0}-\mathrm{P}_{3} \\ \mathrm{PA}_{0}-\mathrm{PA}_{3}, \mathrm{~PB}_{0}-\mathrm{PB}_{3} \end{array}$	0	Output ports
$\mathrm{P} 7_{0}-\mathrm{P} 7_{3}$	I	Input ports
INTA, INTB	I	Interrupt input ports
$\mathrm{CK}_{1}, \mathrm{CK}_{2}$		System clock CR oscillator
$\mathrm{OSC}_{\text {IN }}$, OSC $_{\text {OUT }}$		Crystal oscillator
ϕ	0	Synchronous clock output port
V_{DD}, GND		Power supply
TEST		Test (normally connected to GND)
$\overline{\overline{R E S E T}}$	I	Reset input port

(2) PROM program mode

Symbol	I/O	Function
$\mathrm{A}_{0}-\mathrm{A}_{12}$	I	Address input ports
$\mathrm{D}_{0}-\mathrm{D}_{7}$	I / O	Data I/O ports
$\overline{\mathrm{CE}}$	I	Chip enable input port
$\overline{\mathrm{OE}}$	I	Output enable input port
$\overline{\mathrm{PGM}}$	I	Program enable input port
V_{PP}		Program power supply
V_{DD}, GND		Power supply

Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit	Note
Supply voltage	V_{DD}	-0.3 to +7.5	V	
Input voltage	V_{I}	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V	1
Output voltage	V_{O}	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V	
Output current	I_{O}	40	mA	2
Operating temperature	Topr	-20 to +70	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	

Note: 1 The maximum applicable voltage on any pin with respect to GND.
Note: 2 Sum of current output from (or flowing into) output pin.

Recommended Operating Conditions

Parameter	Symbol	Rating	Unit	Note
Supply voltage	V_{DD}	+4.5 to +5.5	V	
Crystal oscillation frequency	$\mathrm{f}_{\mathrm{OSC}}$	32.768 (TYP.)	kHz	1
Reference clock oscillation frequency	f	0.25 to 2.5	MHz	2

Note 1: Oscillation start time: within 10 seconds.
Note 2: Degree of fluctuation frequency: $\pm 30 \%$ (tolerance of current/voltage fluctuation to be within $\pm 10 \%$)

DC Characteristics
$\left(\mathrm{V}_{\mathrm{DD}}=4.5\right.$ to $5.5 \mathrm{~V}, \mathrm{Ta}=-20$ to $\left.+70^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	Note
Input voltage	$\mathrm{V}_{\mathrm{IH} 1}$		$0.7 \mathrm{~V}_{\mathrm{DD}}$		V_{DD}	V	1
	$\mathrm{V}_{\mathrm{IL1}}$		0		$0.3 \mathrm{~V}_{\mathrm{DD}}$	V	
	$\mathrm{V}_{\mathrm{IH} 2}$		$\mathrm{V}_{\mathrm{DD}}-0.5$		V_{DD}	V	2
	$\mathrm{V}_{\mathrm{IL} 2}$		0		0.5	V	
Input current	I_{IH}	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	20		200	$\mu \mathrm{A}$	1
Output current	$\mathrm{I}_{\mathrm{OH} 1}$	$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-0.5 \mathrm{~V}$	50			$\mu \mathrm{A}$	3
	$\mathrm{I}_{\mathrm{OL} 1}$	$\mathrm{V}_{\text {OL }}=0.5 \mathrm{~V}$	250			$\mu \mathrm{A}$	
	$\mathrm{I}_{\mathrm{OH} 2}$	$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-0.5 \mathrm{~V}$	100			$\mu \mathrm{A}$	4
	$\mathrm{I}_{\mathrm{OL} 2}$	$\mathrm{V}_{\text {OL }}=0.5 \mathrm{~V}$	500			$\mu \mathrm{A}$	
	$\mathrm{I}_{\mathrm{OH} 3}$	$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-0.5 \mathrm{~V}$	400			$\mu \mathrm{A}$	5
	$\mathrm{I}_{\text {OL3 }}$	$\mathrm{V}_{\text {OL }}=0.5 \mathrm{~V}$	1.6			mA	
Current consumption	$\mathrm{I}_{\text {OP }}$	$\mathrm{f}=1 \mathrm{MHz}$		15		mA	6
	$\mathrm{I}_{\text {ST }}$	Standby current		120		$\mu \mathrm{A}$	7

Note 1: Applied to pins $\mathrm{P}_{0}-\mathrm{P}_{3}, \mathrm{P}_{0}-\mathrm{P} 1_{3}, \mathrm{P} 4_{0}-\mathrm{P} 4_{3}, \mathrm{P} 5_{0}-\mathrm{P} 5_{3}, \mathrm{P} 6_{0}-\mathrm{P} 6_{3}$.
$\mathrm{P} 8_{0}-\mathrm{P} 8_{3}, \mathrm{P} 9_{0}-\mathrm{P} 9_{3}$. (In input mode)
$\mathrm{P}_{0}-\mathrm{P} 7_{3}, \mathrm{RESET}, \mathrm{PG}_{0}-\mathrm{PG}_{3}, \mathrm{PH}_{0}-\mathrm{PH}_{3}, \mathrm{PI}_{0}-\mathrm{PI}_{3}, \mathrm{PJ}_{0}-\mathrm{PJ}_{3}, \mathrm{PK}_{0}-\mathrm{PK}_{3}$
Note 2: Applied to pins $\mathrm{CK}_{1}, \mathrm{OSC}_{\mathrm{IN}}$, TEST $_{0}, \overline{\mathrm{INTA}}, \overline{\mathrm{INTB}}$
Note 3: Applied to pin CK_{2}
Note 4: Applied to pin ϕ
Note 5: Applied to pins $\mathrm{P}_{0}-\mathrm{P} 0_{3}, \mathrm{P} 1_{0}-\mathrm{P} 1_{3}, \mathrm{P} 4_{0}-\mathrm{P} 4_{3}, \mathrm{P} 5_{0}-\mathrm{P} 5_{3}, \mathrm{P} 6_{0}-\mathrm{P} 6_{3}$.
$\mathrm{P} 8_{0}-\mathrm{P} 8_{3}, \mathrm{P} 9_{0}-\mathrm{P} 9_{3}$, (In output mode)
$\mathrm{P} 2_{0}-\mathrm{P} 2_{3}, \mathrm{P}_{0}-\mathrm{P} 3_{3}, \mathrm{PA}_{0}-\mathrm{PA}_{3}, \mathrm{~PB}_{0}-\mathrm{PB}_{3}$.
$\mathrm{PG}_{0}-\mathrm{PG}_{3}, \mathrm{PH}_{0}-\mathrm{PH}_{3}, \mathrm{PI}_{0}-\mathrm{PI}_{3}, \mathrm{PJ}_{0}-\mathrm{PJ}_{3}, \mathrm{PK}_{0}-\mathrm{PK}_{3}$
Note 6: No-load condition
Note 7: When crystal oscillation circuit is inactivated under no load conditions. $\mathrm{OSC}_{\text {IN }}$ pin should be connected to GND.

AC Characteristics

(1) Clock characteristics
$\left(\mathrm{V}_{\mathrm{DD}}=4.5\right.$ to $5.5 \mathrm{~V}, \mathrm{Ta}=-20$ to $\left.+70^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	Note
Reference clock oscillation frequency (CR oscillation)	f_{CR}	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{R}=12 \mathrm{k} \Omega \pm 5 \%$	1.7	2.0	2.3	MHz	
		$\mathrm{R}=39 \mathrm{~K} \Omega \pm 5 \%$	0.5	0.75	1.0		
Reference clock input frequency (CK_{1})	f_{K}		0.25		2.3	MHz	
CK_{1} input rise time	t_{KR}				500	ns	
CK_{1} input fall time	t_{KF}				500	ns	
CK_{1} input high range	t_{KH}		0.3			$\mu \mathrm{s}$	
CK_{1} input low range	t_{KL}		0.3			$\mu \mathrm{s}$	
OSC crystal oscillation frequency	$\mathrm{f}_{\text {OSC }}$			32.768		kHz	
OSC ${ }_{\text {OUT }}$ input cycle time	t_{fY}		2			$\mathrm{t}_{\mathrm{CYC}}$	1
$\mathrm{OSC}_{\text {OUT }}$ input rise time	t_{fR}				500	ns	
OSC ${ }_{\text {OUT }}$ input fall time	t_{fF}				500	ns	
OSC ${ }_{\text {OUT }}$ input high range	t_{fH}		1			$\mathrm{t}_{\mathrm{CYC}}$	1
OSC ${ }_{\text {OUT }}$ input low range	t_{fL}		1			$\mathrm{t}_{\mathrm{CYC}}$	1

Note 1: Cycle time of one fourth the reference clock oscillation frequency.

Fig. 1 Clock timing
(2) Interrupt input

$$
\left(\mathrm{V}_{\mathrm{DD}}=4.5 \text { to } 5.5 \mathrm{~V}\right)
$$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	Note
$\overline{\overline{\text { INTA }} \text { high range }}$	t_{AH}		2			$\mathrm{t}_{\mathrm{CYC}}$	
$\overline{\text { INTA }}$ low range	t_{AL}		2			$\mathrm{t}_{\mathrm{CYC}}$	
$\overline{\overline{\text { INTA }} \text { high range }}$	t_{RH}		2			$\mathrm{t}_{\mathrm{CYC}}$	
$\overline{\overline{\text { INTA }} \text { low range }}$	t_{RL}		2			$\mathrm{t}_{\mathrm{CYC}}$	

Note 1: t_{CYC} : Cycle time of one fourth the reference clock oscillation frequency.

Fig. 2 Interrupt input timing
(3) External serial input clock
$\left(\mathrm{V}_{\mathrm{DD}}=4.5\right.$ to 5.5 V$)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	Note
SCK cycle time	t_{SY}		1			$\mathrm{t}_{\mathrm{CYC}}$	
SCK high range	t_{SH}		$1 / 2$			$\mathrm{t}_{\mathrm{CYC}}$	1
SCK low range	t_{SL}		$1 / 2$			$\mathrm{t}_{\mathrm{CYC}}$	
SCK rise time	I_{SR}				500	ns	
SCK fall time	t_{SF}				500	ns	
Reset pulse width (low)	$\mathrm{t}_{\mathrm{RST}}$		300			n	

Note 1: $t_{\text {CYC }}$: Cycle time of one fourth the reference clock oscillation frequency.

Fig. 3 External serial input clock timing
(4) PROM programming
$\left(\mathrm{V}_{\mathrm{DD}}=4.75\right.$ to $6.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=12.0$ to $\left.13.0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Address setup time	t_{AS}	$\overline{\mathrm{PGM}}-$ Address	2			$\mu \mathrm{~s}$
$\overline{\mathrm{CE}}$ setup time	$\mathrm{t}_{\mathrm{CES}}$	$\overline{\mathrm{PGM}}-\overline{\overline{\mathrm{CE}}}$	2			$\mu \mathrm{~s}$
$\overline{\overline{\mathrm{OE}} \text { setup time }}$	$\mathrm{t}_{\mathrm{OES}}$	Data $-\overline{\overline{\mathrm{OE}}}$	2			$\mu \mathrm{~s}$
Data setup time	t_{DS}	$\overline{\mathrm{PGM}}-$ Data	2			$\mu \mathrm{~s}$
Address hold time	t_{AH}	$\overline{\mathrm{OE}}-$ Address	0			$\mu \mathrm{~s}$
Data hold time	t_{DH}	$\overline{\mathrm{PGM}}-$ Data	2			$\mu \mathrm{~s}$
Output disable time	t_{DF}		0		150	ns
Output enable time	t_{OE}				150	ns
$\mathrm{~V}_{\mathrm{PP}}$ setup time	t_{VS}	$\overline{\mathrm{PGM}}-\mathrm{V}_{\mathrm{PP}}$	2			$\mu \mathrm{~s}$
$\overline{\mathrm{PGM} \text { pulse width }}$	t_{PW}		1		55	ms

- Hardware Configuration

The hardware configuration of the LU5E4P0P is the same as that of the SM5E4, except for an on-chip program memory of an OTPROM for the LU5E4P0P, and a ROM for the SM5E4, Refer to the SM5E4 for the hardware configuration.

PROM Programming

When data is written into an on-chip OTPROM, apply the conversion socket adapter (LROE82) to
the commercial EPROM writers.
Use the EPROM writer which allows the LH5764 mode set, and eliminates or clears the electric signature mode.

See Pin Connections for the signals in parentheses used PROM programming.

- Instruction set

See the SM5E4 for the instruction set which is the same as that of the LU5E4P0P.

System Configuration Example

SM5J5/SM5J6

4-Bit Microcomputer (VFD Driver)

4-Bit Microcomputer (Controller with A/D Converter)

Description

The SM5J5/SM5J6 is a CMOS 4-bit microcomputer which integrates a 4-bit parallel processing function, interrupts, an A/D converter, a comparator, a counter/timer circuit, and a sound output function in a single chip.

An A/D conversion can be executed by one instruction with simple software, and provides a high speed processing. This feature enables to accept analog signals from sensors.

Provided with unique features of 52 I/O ports, a couple of programmable counter/timers, and interrupt functions, this microcomputer is suitable for controlling functions required for a timer set.

The SM5J5 directly drives a fluorescent display tube, and the SM5J6 provides two modes of standby function for low power operations.

Features

1. CMOS process
2. ROM capacity: $8,192 \times 9$ bits
3. RAM capacity: 256×4 bits
4. Instruction set: 94
5. Subroutine nesting: 6 levels
6. Instruction cycle

SM5J5: $2.5 \mu \mathrm{~s}$ (MIN.)
SM5J6: $2 \mu \mathrm{~s}$ (MIN.)
7. Interrupts

External interrupts: 2
Internal interrupts: 3
8. Input/output ports

I/O ports: 31
Input ports: 9
Output ports: 12
9. 8-bit serial I/O

Pin Connections

10. A/D converter: 8 bits (10-channels MAX.)
11. Counter/timer: 2 sets
12. Standby function SM5J6: 2-stage system clocks
13. High voltage output: -40 V

SM5J5: 16-segment, 10-digit
14. Supply voltage

SM5J5: 4.5 to 5.5 V
SM5J6: 2.7 to 5.5 V
15. 64-pin SDIP (SDIP64-P-750)

64-pin QFP (QFP64-P-1420)

- Block Diagram

Note: Pin numbers apply to a 64-pin QFP.

- Pin Description

Symbol	I/O	Function	Note
$\mathrm{P}_{0}-\mathrm{P}_{3}, \mathrm{Q}_{0}-\mathrm{Q}_{3}$	I/O	Input/output ports (Nibble unit)	
$\mathrm{R} 0_{0}-\mathrm{R} 0_{3}$	I/O	Input/output ports (Nibble unit)	1
$\mathrm{R} 1_{0}-\mathrm{R} 1_{3}$	I/O	Input/output ports (Nibble unit)	1
$\mathrm{R} 2_{0}-\mathrm{R} 2_{3}$	I/O	Input/output ports (Nibble unit)	1
$\mathrm{R} 3_{0}-\mathrm{R} 3_{3}$	I/O	Input/output ports (Nibble unit)	1
$Z_{0}-Z_{9}$	0	Output ports (Bit unit)	1
$\mathrm{Z}_{10}-\mathrm{Z}_{15}$	I/O	Input/output ports (Bit unit)	
$\mathrm{KC}_{0}-\mathrm{KC}_{3}$	I	Input ports or analog input ports	
KH, KL	I	Input ports	
KI	I	Interrupt input port or input port	
$\mathrm{OSC}_{\text {IN }} / \mathrm{KT}$	I	Timer clock input port or input port	
OSC ${ }_{\text {OUT }}$		Timer clock oscillator	
F	0	Sound output port or output port	
$\mathrm{f}_{\text {OUT }}$	0	System sync. signal output port	
CL_{1}		Clock signal input port	
CL_{2}		Clock signal oscillator	
ACL	I	Auto clear input port	
$\mathrm{V}_{\mathrm{RH}}, \mathrm{V}_{\mathrm{RL}}$		A/D converter	
V_{DD}		Power supply	
GND		Ground	
T	I	Test input port	
$\mathrm{S}_{\text {IN }}$	I	Serial I/O data input port	
S ${ }_{\text {OUT }}$	0	Serial I/O data output port	
$\mathrm{S}_{\text {CLOCK }}$	I/O	Serial I/O clock port	2
$\mathrm{V}_{\mathrm{DSP}} / \mathrm{V}_{\mathrm{DD}}$		Power supply	3

Note 1: SM5J5, -40 V high voltage
Note 2: Input port in the ACL
Note 3: SM5J5, -30V (TYP.)
SM5J6, + 5V (TYP.)

Absolute Maximum Ratings

Parameter	Symbol	Applicable model	Rating	Unit	Note
Supply voltage	V_{DD}	SM5J5/5J6	-0.3 to +7.5	V	1
	$\mathrm{V}_{\text {OSP }}$	SM5J5	$\mathrm{V}_{\mathrm{DD}}-40$ to $\mathrm{V}_{\mathrm{DD}}+0.3$		1
Input voltage	$\mathrm{V}_{\text {I }}$	SM5J5/5J6	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$		1,2
	$\mathrm{V}_{\text {ID }}$	SM5J5	$\mathrm{V}_{\mathrm{DD}}-40$ to $\mathrm{V}_{\mathrm{DD}}+0.3$		1, 3
Output voltage	V_{O}	SM5J5/5J6	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$		1, 4
	V_{OD}	SM5J5	$\mathrm{V}_{\mathrm{DD}}-40$ to $\mathrm{V}_{\mathrm{DD}}+0.3$		1,5
Output HIGH voltage	I_{OH}	SM5J5	-40	mA	6,7
		SM5J6	-20		6,
		SM5J5	-12		8
		SM5J6	-10		
		SM5J5/5J6	-4		9
		SM5J5/5J6	-2.5		10
		SM5J5/5J6	-2		11
		SM5J5	-80		12
		SM5J6	-60		
		SM5J5/5J6	-20		13
Output LOW voltage	$\mathrm{I}_{\text {OL }}$	SM5J5/5J6	4.0	mA	14
		SM5J5/5J6	400	$\mu \mathrm{A}$	15
		SM5J5/5J6	2.0	mA	11
		SM5J5/5J6	25		16

Note 1: Referenced to GND.
Note 2: Applied to all input ports except for the case where the $R(0)-R(3), Z_{0}-Z_{9}$ of the SM5J5 are used as high voltage input ports.
Note 3: Applied to pins $\mathrm{R}(0)-\mathrm{R}(3), Z_{0}-Z_{9}$ which are used as high voltage input ports.
Note 4: Applied to all output ports except for the case where the $R(0)-R(3), Z_{0}-Z_{9}$ of the SM5J5 are used as high voltage input ports.
Note 5: Applied to pins $R(0)-R(3), Z_{0}-Z_{9}$ which are used as high voltage outputs.
Note 6: Applied to the case where only one port of $Z_{0}-Z_{9}$ is output.
Note 7: Applied to the case where the duty ratio during High level output is less than $1 / 7$ (cycle: 10 ms).
Note 8: Applied to the case where only one port of $R(0)-R(3)$ is output.
Note 9: Applied to the case where only one port of $P, Q, Z_{10}-Z_{15}$ is output.
Note 10: Applied to the case where only one port of $\mathrm{F}, \mathrm{f}_{\mathrm{OUT}}, \mathrm{S}_{\mathrm{CLOCK}}$ is output.
Note 11: Applied to CL_{2} pin.
Note 12: Applied to the sum of $R(0)-R(3), Z_{0}-Z_{9}$.
Note 13: Applied to the output ports except for ports mentioned in note 10.
Note 14: Applied to the case where only one port of $\mathrm{Q}, \mathrm{Z}_{10}-Z_{15}$ (CMOS output), P is output.
Note 15: Applied to the case where only one port of $\mathrm{Q}, \mathrm{Z}_{10}-\mathrm{Z}_{15}$ (with a pull-down resistor) is output.
Note 16: Applied to the sum of all ports.
${ }^{*} \mathrm{R}(0)-\mathrm{R}(3): \mathrm{R} 0_{0}-\mathrm{R} 0_{3}, \mathrm{R} 1_{0}-\mathrm{R} 1_{3}, \mathrm{R} 2_{0}-\mathrm{R} 2_{3}, \mathrm{R} 3_{0}-\mathrm{R} 3_{3}$.

Recommended Operating Conditions

(1) SM5J5

Parameter	Symbol	Condition	Rating	Unit
Supply voltage	V_{DD}		+4.5 to +5.5 V	V
System clock frequency	f_{S}		312.5	kHz

(2) SM5J6

Parameter	Symbol	Condition	Rating	Unit
Supply voltage	V_{DD}		+2.7 to +5.5	V
System clock frequency	f_{S}	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V	50 to 500	kHz
		50 to 250		

- DC Characteristics

Parameter	Symbol	Condition	Applicable model	MIN.	TYP.	MAX.	Unit	Note
Input voltage	$\mathrm{V}_{\mathrm{IH1}}$		SM5J5/5J6	$0.8 \mathrm{~V}_{\text {DD }}$		V_{DD}	V	1
	$\mathrm{V}_{\text {ILI }}$		SM5J5/5J6	0		$0.2 \mathrm{~V}_{\mathrm{DD}}$		
	$\mathrm{V}_{\text {IH2 }}$		SM5J5/5J6	$\mathrm{V}_{\mathrm{DD}}-0.5$		V_{DD}		2
	$\mathrm{V}_{\mathrm{IL} 2}$		SM5J5/5J6	0		0.5		
	$\mathrm{V}_{\text {IH3 }}$		SM5J5/5J6	$\mathrm{V}_{\mathrm{DD}}-0.4$		V_{DD}		3
	$\mathrm{V}_{\mathrm{IL} 3}$		SM5J5/5J6	0		0.4		
Input current	$\mathrm{I}_{\text {LH }}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {DD }}$	SM5J5/5J6		50		$\mu \mathrm{A}$	4
	$\mathrm{I}_{\text {IL }}$	$\mathrm{V}_{\text {IL }}=0 \mathrm{~V}$	SM5J5/5J6		-45			5
Input leakage current	$\mathrm{I}_{\text {LK }}$		SM5J5/5J6			10		6
Output current	$\mathrm{I}_{\mathrm{OH} 1}$	$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-0.5 \mathrm{~V}$	SM5J5			-0.8	mA	7
		$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-0.5 \mathrm{~V}$	SM5J6			-0.4		
	$\mathrm{I}_{\mathrm{OL} 1}$	$\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V}$	SM5J5/5J6	10			$\mu \mathrm{A}$	8
	$\mathrm{I}_{\mathrm{OH} 2}$	$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-0.5 \mathrm{~V}$	SM5J5/5J6			-100		9
	$\mathrm{I}_{\text {OL2 }}$	$\mathrm{V}_{\text {OL }}=0.5 \mathrm{~V}$	SM5J5	-0.8			mA	10
		$\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V}$	SM5J6	-0.4				
	$\mathrm{I}_{\text {онз }}$	$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-0.5 \mathrm{~V}$	SM5J5			-0.5		11
		$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-0.5 \mathrm{~V}$	SM5J6			-0.4		
	$\mathrm{I}_{\text {OL3 }}$	$\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V}$	SM5J5/5J6		30		$\mu \mathrm{A}$	12
	$\mathrm{I}_{\mathrm{OH} 4}$	$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-2.0 \mathrm{~V}$	SM5J5			-15	mA	13
		$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-2.0 \mathrm{~V}$	SM5J6			-7		
	$\mathrm{I}_{\mathrm{OL} 4}$	$\mathrm{V}_{\text {OL }}=0.5 \mathrm{~V}$	SM5J5/5J6			-100	$\mu \mathrm{A}$	9
	$\mathrm{I}_{\mathrm{OH} 5}$	$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-2.0 \mathrm{~V}$	SM5J5			-7	mA	14
			SM5J6			-4		
Output voltage	V_{OL}	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DSP}}=-30 \mathrm{~V}$	SM5J5			-28	V	15
Internal resistance	R_{1}	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$	SM5J5	10	30	60	$\mathrm{k} \Omega$	10
		$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$	SM5J6	5	25	50		
	R_{2}	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}}$	SM5J5	40	200	500		16
		$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}}$	SM5J6	30	100	200		
Current consumption	$\mathrm{I}_{\text {ST }}$	Standby mode	SM5J6			10	$\mu \mathrm{A}$	17
	I_{DD}	$\begin{aligned} & \mathrm{f}_{\mathrm{CL}}=500 \mathrm{kHz}, \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V} \text { operation } \end{aligned}$	SM5J6		5	10	mA	18
	$\mathrm{I}_{\mathrm{DD} 1}$	$\begin{aligned} & \mathrm{f}_{\mathrm{CL}}=312.5 \mathrm{kHz}, \\ & \mathrm{~V}_{\mathrm{DSP}}: \text { open } \end{aligned}$	SM5J5		5	8		17
	$\mathrm{I}_{\mathrm{DD} 2}$	$\begin{aligned} & \mathrm{f}_{\mathrm{CL}}=312.5 \mathrm{kHz}, \\ & \mathrm{~V}_{\mathrm{DSP}}:-30 \mathrm{~V} \\ & \hline \end{aligned}$	SM5J5		15	30		19

Note 1: Applied to pins KH, KL, KI, $\mathrm{P}_{0}-\mathrm{P}_{3}, \mathrm{Q}_{0}-\mathrm{Q}_{3}, \mathrm{KC}_{0}-\mathrm{KC}_{3}$.
Note 2: Applied to pins $Z_{10}-Z_{15}, \mathrm{CL}_{1}, \mathrm{OSC}_{\mathrm{IN}} / \mathrm{KT}, \mathrm{ACL}, \mathrm{R}(0)-\mathrm{R}$ (3).
Note 3: Applied to $\mathrm{S}_{\mathrm{IN}}, \mathrm{S}_{\text {Clock }}$.
Note 4: Applied to ACL pin.
Note 5: Applied to $\mathrm{S}_{\text {CLOCK }}$ pin.
Note 6: Applied to pins $Q_{0}-Q_{3}, Z_{10}-Z_{15}$ without any pull-down resistors, or $\mathrm{KH}, \mathrm{KL}, \mathrm{KI}, \mathrm{KC}_{0}-\mathrm{KC}_{3}, \mathrm{P}_{0}-\mathrm{P}_{4}, \mathrm{~S}_{\mathrm{IN}}, \mathrm{S}_{\mathrm{CLOCK}}, \mathrm{OSC}_{\mathrm{IN}} / \mathrm{KT}, \mathrm{ACL}$.
Note 7: Applied to pins $P_{0}-P_{3}, Q_{0}-Q_{3}, Z_{10}-Z_{15}$.
Note 8: Applied to the case where $Q_{0}-Q_{3}, Z_{10}-Z_{15}$ are used as open drain outputs.
Note 9: Applied to CL_{2} pin.
Note 10: Applied to pins $\mathrm{Q}_{0}-\mathrm{Q}_{3}, \mathrm{Z}_{10}-\mathrm{Z}_{15}$ used as CMOS outputs, or $\mathrm{P}_{0}-\mathrm{P}_{3}, \mathrm{~F}, \mathrm{f}_{\text {OUT }}, \mathrm{S}_{\text {OUT }}, \mathrm{S}_{\text {CLOCK }}$.
Note 11: Applied to pins $\mathrm{F}, \mathrm{f}_{\mathrm{OUT}}, \mathrm{S}_{\text {OUT }}, \mathrm{S}_{\text {CLOCK. }}$.
Note 12: Applied to pins $\mathrm{Q}_{0}-\mathrm{Q}_{3}, \mathrm{Z}_{10}-\mathrm{Z}_{15}$ with pull-down resistors.
Note 13: Applied to pins $Z_{0}-Z_{9}$.
Note 14: Applied to pins R (0)-R (3).
Note 15: Applied to pins $R(0)-R(3), Z_{0}-Z_{9}$ with pull-down resistors. (pull-down to $V_{\text {DSP. }}$.)
Note 16: Applied to pins $R(0)-\mathrm{R}(3), Z_{0}-Z_{9}$ with pull-down resistors. (SM5J5: pull-down to $\mathrm{V}_{\mathrm{DSP}}$ or GND with a mask option. SM5J6: pull-down to GND only.)
Note 17: No load condition. (the oscillation frequency should be 8 times of f_{S}, and the $\mathrm{OSC}_{\mathrm{IN}} / \mathrm{KT}$ port should be connected to GND.
Note 18: No load condition. (the oscillation frequency should be 8 times of f_{S}.)
Note 19: No load condition. (the oscillation frequency should be 8 times of f_{S}), ACL state, the $I_{D D}$ is a current flowing between $V_{D D}$ and $\mathrm{V}_{\mathrm{DSP}}$.
${ }^{*} \mathrm{R}(0)-\mathrm{R}(3): \mathrm{R} 0_{0}-\mathrm{R} 0_{3}, \mathrm{R} 1_{0}-\mathrm{R} 1_{3}, \mathrm{R} 2_{0}-\mathrm{R} 2_{3}, \mathrm{R} 3_{0}-\mathrm{R} 3_{3}$.

- A/D Conversion Characteristics

$$
\begin{aligned}
& \text { SM5J5 }\left(\mathrm{f}_{\mathrm{S}}=312.5 \mathrm{kHz}, \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{RH}}=5.0 \mathrm{~V}\right) \\
& \text { SM5J6 }\left(\mathrm{f}_{\mathrm{S}}=500 \mathrm{kHz}, \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{RH}}=5.0 \mathrm{~V}\right)
\end{aligned}
$$

Parameter	V RL $^{\prime}$ pin	MIN.	TYP.	MAX.	Unit
Non-linearity error	GND			± 3	LSB
Integration non-linerarity error	GND			± 3	LSB
Zero error	GND			± 3	LSB
Full-scale error	GND			± 3	LSB
V $_{\text {RH }}$ pin supply current	-		100	300	μA
Total error	GND			± 3	LSB

Oscillator Circuits

(1) Recommended oscillator circuit for the SM5J5

$\mathrm{R}_{\mathrm{f}}=1 \mathrm{M} \Omega$
$\mathrm{R}_{\mathrm{d}}=330 \Omega$
$\mathrm{C}_{1}=22 \mathrm{pF}$
$\mathrm{C}_{2}=22 \mathrm{pF}$
$\mathrm{X}_{1}=2.5 \mathrm{MHz}$ Ceramic oscillator
Above constants apply to the case where the oscillator is used with the CSA2.5MG (MURATA)
(2) Recommended oscillator circuit for the SM5J6

$\mathrm{R}_{\mathrm{f}}=1 \mathrm{M} \Omega$
$\mathrm{C}_{1}=15 \mathrm{pF}$
$\mathrm{C}_{2}=15 \mathrm{pF}$
$\mathrm{X}_{1}=4.0 \mathrm{MHz}$ Ceramic oscillator
Above constants apply to the case where the oscillator is used with the KBR-4.0MS (KYOSERA)

Pin Functions

(1) $V_{D D}, V_{D S P}$, GND (Power supply)

The V_{DD} pin is the positive power supply (3 V to 5 V) with respect to GND.

The SM5J5 provides the $V_{\text {DSP }}$ which is the negative power supply (-35 V) with respect to GND.
The GND pin is the reference power supply for the LSI.

(2) $\mathrm{V}_{\mathrm{RH}}, \mathrm{V}_{\mathrm{RL}}$ (A / D conversion)

The $V_{R L}$ pin is a GND pin for the A/D converter. The V_{RH} pin provides the reference voltage V_{RH} for the A/D converter.

The current consumption and operating accuracy of the A/D converter must be changed according to the case where the $V_{\text {RL }}$ pin is used to be left open or provide GND level.

(3) ACL (Reset input)

The ACL pin is used to reset the LSI.
The LSI should be reset with a transition of two instruction cycles after the rising edge of ACL.

Applying a Low level signal to the ACL pin starts execution of the program at field 0 , page 0 , step 0 after a transition of $\mathrm{t}_{\mathrm{ACL}}$.

It is recommended to apply a capacitor between ACL pin and $V_{D D}$ pin in order to prevent from external noise which affects the ACL circuit.

(4) $\mathrm{KC}_{0}-\mathrm{KC}_{3}$ (Analog inputs)

Executing the KCTA instruction transfers the KC input data to the accumulator A_{CC} through input buffers.

The KC input pin also provides analog input sig. nals given to the A/D conversion block.

(5) $\mathrm{KH}, \mathrm{KI}, \mathrm{OSC}_{1 \mathrm{I}} / \mathrm{KT}, \mathrm{KL}$ (Inputs)

The KH and KI input pins are connected to the noise debounce circuit, and the KL and $\operatorname{OSC}_{\mathrm{IN}} / \mathrm{KT}$ input pins to input buffers.

The KL, $\mathrm{OSC}_{\mathrm{IN}} / \mathrm{KT}$, KH and KI should be loaded into the $\mathrm{A}_{0}, \mathrm{~A}_{1}, \mathrm{~A}_{2}$ and A_{3} bits of the accumulator A_{CC} upon execution of KLTA instruction.

The noise debounce circuit does not accept the pulse input shorter than two instruction cycle width.

(6) $\mathrm{Z}_{0}-\mathrm{Z}_{9}$ (Outputs)

The $Z_{0}-Z_{9}$ can be controlled with the output latch F / F to be set or reset by instruction.

- SM5J5 The $Z_{0}-Z_{9}$ are normally be used as high voltage outputs $(-40 \mathrm{~V})$. They can be used as
the outputs with a pull-down resistor by a mask option. They can also be used with an open-drain transistor structure.
- SM5J6 The $Z_{0}-Z_{9}$ are normally be used as the outputs with a pull-down resistor. They can be used with an open-drain transistor structure.

(7) $\mathrm{Z}_{10}-\mathrm{Z}_{15}$ (Input/output)

The $Z_{10}-Z_{15}$ can be controlled with the output latch F / F to be set or reset by instructions.

When used for the inputs, the input mode of Zi specified by lower 4 bits of B register B_{L} can be tested by instructions.

The Zi pins transfer analog signals into the comparator of A/D converter.

The Zi pins are normally used as I/O pins with pull-down resistors. The Zi pins can be used as CMOS outputs or the open-drain transistor with a protection diode. After an ACL operation, the Zi pins are placed in input mode. When used for the inputs, the Zi pins can be used as the outputs to be pulled down with the output latch F/F to be reset.

(8) $\mathrm{P}_{0}-\mathrm{P}_{3}$ (Input/output)

The $\mathrm{P}_{0}-\mathrm{P}_{3}$ are three-state I/O pins.
Executing the ATP instruction transfers the accumulator A_{CC} to the output latch F / F which is loaded into the $\mathrm{P}_{0}-\mathrm{P}_{3}$.

The $\mathrm{P}_{0}-\mathrm{P}_{3}$ can be loaded into the A_{CC} upon execution of the PTA instructions. Then the $\mathrm{P}_{0}-\mathrm{P}_{3}$ remain high impedance.

(9) $Q_{0}-Q_{3}$ (Input/output)

Executing the ATQ instruction transfers the accumulator A_{CC} to the output latch F / F which is loaded into the $Q_{0}-Q_{3}$.

While, the $Q_{0}-Q_{3}$ can be loaded into the $A_{C C}$ upon execution of the QTA instruction. Then, the $Q_{0}-Q_{3}$ should be used with the outputs to be pulled down.

The Qi pins are normally used as I/O pins with pull-down resistors. The Qi pins can be used as CMOS outputs or the open-drain transistor with a protection diode. After an ACL operation, the Qi pins are placed in input mode. When used for the inputs, the Qi pins can be used as the outputs to be pulled down with the output latch F / F to be reset.
(10) $R 0_{0}-R 0_{3}, R 1_{0}-R 1_{3}, R 2_{0}-R 2_{3}, R 3_{0}-R 3_{3}$ (input/output)
Upon execution of the ATR instruction, the

R0i-R3i outputs the accumulator $A_{C C}$ specified by the lower 4 bits (BL) of the B register.

8-bit data transfer can be performed in parallel among the $\mathrm{R} 1 \mathrm{i}, \mathrm{R} 0 \mathrm{i}$ and A_{CC} or X register by the RTAX or AXTR instruction.

- SM5J5 The Ri pins are normally used as high voltage I/O pins $(-40 \mathrm{~V})$. They can be used as the I/O pins with pull-down resistors with a mask option.

When, used for the inputs, the Ri pins can be used as the I/O pins to be pulled down with the output latch F / F to be reset.

The Ri pins can also be used as open-drain transistor structure.

- SM5J6 The Ri pins are normally used as the I/O pins with pull-down resistors.

When used for the inputs, the Ri pins can be used as the input pins to be pulled down with the output latch F/F to be reset. They can also be used as an open-drain transistor structure.

(11) F (Sound output)

The F output pin is used for a sound output pin as well as a general-purpose output.
(12) fout

The $f_{\text {OUT }}$ pin outputs the the signal in synchronizing with the system clock f_{S}.

The system clock immediately after power on is a frequency of one eighth the reference clock frequency.

Hardware Configuration

(1) Program counter and stack

The program counter (PC) is used to address a ROM location.

The PC consists of 13 bits allocated 4 bits (ET, P_{U}) to the field specification of ROM, 2 bits (P_{M}) to the page specification, and 7 bits $\left(\mathrm{P}_{\mathrm{L}}\right)$ to the step specification. The P_{M} and P_{L} are binary counter for the page specifications.

The stack register (SR) consists of 6 stages available for up to 6 levels of subroutine nesting.

(2) Program memory (ROM)

The ROM is used to store programs.
The SM5J5/SM5J6 has a $8,192 \times 9$-bit ROM which consists of 16 fields $\times 4$ pages $\times 128$ steps.

When power on with the ACL to be reset, the program starts execution at field 0 , page 0 , step 0 .

Fig. 1 shows the example of a jump to the ROM
address by a ROM address instruction.
The TR instruction is used to jump within a page, and the TL instruction is used to jump to any address. A subroutine jump is executed by a TLS or TRS instruction. However, when the ET value may change due to a jump or subroutine jump, execute a TL or TLS instruction following a COMET instruction.

(3) Data memory (RAM) and B register

The RAM is used to store data.
The SM5J5/SM5J6 has a 1,024-bit RAM organized as $16 \times 16 \times 4$ which consists of 16 files as shown in Fig. 2. A file consists of 16 words $\times 4$ bits.

The RAM address is specified by a B register which consists of a 4 -bit B_{M} for the file specification and a 4-bit B_{L} for the word specification.

	$\mathrm{ET}=0$ (0 to 7 frield)								$\mathrm{ET}=1$ (8 to 15 field)				,
	$\begin{gathered} \text { Field } \\ 0 \end{gathered}$	$\begin{gathered} \text { Field } \\ 1 \end{gathered}$	$\begin{gathered} \text { Field } \\ 2 \end{gathered}$	$\begin{gathered} \hline \text { Field } \\ 3 \end{gathered}$	Field 4	$\begin{gathered} \hline \text { Field } \\ 5 \end{gathered}$	$\begin{gathered} \text { Field } \\ 6 \end{gathered}$	Field 7	$\begin{gathered} \text { Field } \\ 8 \end{gathered}$	$\begin{gathered} \hline \text { Field } \\ 9 \end{gathered}$	$\begin{gathered} \text { Field } \\ 10 \end{gathered}$	Field	Field 15
$\begin{gathered} \text { Page } \\ 0 \end{gathered}$	ACL								TRS				
$\begin{gathered} \text { Page } \\ 1 \end{gathered}$	Standby crear		-		\longleftarrow	-TL	$\begin{gathered} \text { COMET } \\ \text { TL } \end{gathered}$			$\begin{aligned} & \text { COMET } \\ & \text { TL } \end{aligned}$)
$\begin{gathered} \text { Page } \\ 2 \end{gathered}$	Interrupt	/								$\begin{aligned} & \text { COMET } \\ & =\text { TLS } \end{aligned}$			-
Page 3	Subrutine TRS cover						$\begin{gathered} \text { COMET } \\ \text { TLS } \end{gathered}$	-	RTN				

Fig. 1 ROM configuration

(4) Accumulator $A_{c c}, X$ and G registers

The accumulator $A_{C C}$ is a 4-bit general-purpose register which transfers numerics and data. The $A_{C C}$ can be decremented and shifted to the left in combination with the carry flag (C). Furthermore, the $A_{C C}$ together with the arithmetic logic unit (ALU), a carry flag (C) and RAM executes arithmetic operations. It also transfers data to I/O ports.

The X register is a 4-bit register which can be used for a temporary register. It is incremented by instructions. It performs, in conjunction with the A_{CC}, logical sum and logical product.

An 8-bit parallel data of the A_{CC} and X register can be transferred to $R[0]$ and $R[1]$, a G register or a counter/timer.

On the other hand, each data on R0i and R1i, a G register or a counter timer can also be transferred to the A_{CC} and X register with an 8-bit parallel data.

The G register is an 8-bit register which is used for A / D conversion or comparison of analog signals.
(5) Arithmetic and logic unit (ALU), carry flag (C)

The arithmetic and logic unit (ALU) performs, in conjunction with a RAM, a carry flag C and an accumulator A_{CC}, binary addition on a 4-bit basis by instructions.

The carry flag C latches the data incremented by the ADC or ADCS instruction.

(6) SB register

The SB register is an 8-bit register used for a save register.
(7) $P, Q, R[3]-R[0], Z$ (Output latch regis-
ters)

Registers P, Q, R0, R2, R3, Z connect with the output latch F/F.

The accumulator $A_{C C}$ can be transferred to reg. isters $P, Q, R[3]-R[0]$, and an 8 -bit data of the A_{CC} and X register can be transferred, at the same time, to the output latch registers $\mathrm{R}[0]$ and R [1].

(8) System clock generator circuit

The system clock generator circuit generates a system clock of a reference frequency input from the CL_{1} pin divided by 4 or 8 .

The system clock speed can be controlled with a program. If it is not required for high speed operation, the system clock can be switched to the low speed in order to save the power consumption. This function is also applicable to the case where
the power supply is replaced by a battery backup power.

The system clock when reset is the reference frequency divided by 8 .

The system clock f_{S} is used to determine the instruction execution cycle, and the system clock cycle should be identical to the instruction execution cycle. However, the instruction execution cycle of a two-word instruction should be two times as long as a one-word instruction.

(9) Counter/timer

A timer 1 and a timer 2 are 8 -bit counter/timers. The data incremented by a count up is latched into the flags TF1 and TF2 to be used for an interrupt request. Executing the TTF1 and TTF2 flags checks the flags TF1 and TF2.

- Timer 1: An 8-bit data of the A_{CC} and X register can be transferred to the timer 1 . To the contrary, the timer 1 can be read out from the A_{CC} and X register.
- Timer 2: The timer 2 contains a modulo register (MR register). The contents of the modulo register (TM) are loaded into the timer 2 each time the register is incremented by one.
An 8-bit data can be loaded into the MR register by instructions, and executing the next instruction cycle transfers the data to the timer 2 which can be read out from the $A_{C C}$ and X register.
The count up pulses of a counter/timer include $(1 / 2)^{9} \mathrm{f}_{\mathrm{S}},(1 / 2)^{6} \mathrm{f}_{\mathrm{S}},(1 / 2)^{3} \mathrm{f}_{\mathrm{S}},(1 / 2)^{6} \mathrm{f}_{\mathrm{T}}$ and f_{T}, under conditions of a system clock f_{S} and KT input pulse f_{T}, which can be selected by a program.

A carry output of one counter can be used for a count up pulse of the other counter.

(10) Interrupt

A KI input, the timer 1 and timer 2 carry and an analog input are available for the interrupt request, and the interrupt request flags include the IF, TF1, TF2, and AF flags.

The interrupt block consists of the mask flags $\left(E_{3}, E_{2}, E_{1}\right.$ and $\left.E_{0}\right)$, E flag and interrupt processing circuits.

(See Fig. 3)

Table 1 shows the jump address caused by an interrupt request.

(11) A/D converter

The A/D conversion block consists of an 8-bit D/A converter, a comparator, an AM flag and AF flag.

The KC and Z pins input the analog signals.
Executing the COMP instruction allows the A/D
conversion and the large/small comparison automatically. (See Fig. 4.)

The result of A / D conversion is stored in the G register with the interval of 32 instruction cycles after the COMP instruction is executed.

The result of the large/small comparison is stored in the AF flag with the interval of 6 instruction cycles.

The G register is an 8-bit register which can be transferred to the $A_{C C}$ and X register with the GTAX instruction.

The KC_{0} pin can also be used for external interrupt.

The D / A converter generates the voltage $\mathrm{V}_{\mathrm{REF}}$ according to the contents of the G register.

Assuming that the " n " is placed in the G register as a result of A/D conversion, the analog input voltage may be regarded as a below expression.

When even more strict accuracy is required in the A/D conversion block, an external GND level may be applied to the V_{RL} pin. -

The A/D conversion is executed by the comparison among a G register, a D/A converter and a comparator in order.

The large/small comparison is executed by the comparator output $\mathrm{V}_{\mathrm{REF}}$ according to the G register value and the analog signal of the KC_{0}. The result of comparison is stored in the AF flag.

(12) Sound output block

The F pin outputs the frequency obtained by a count-up pulse generator circuit.

The pulse frequency can be selected from (1/ $2)^{7} \mathrm{f}_{\mathrm{S}},(1 / 2)^{9} \mathrm{f}_{\mathrm{S}},(1 / 2)^{4} \mathrm{f}_{\mathrm{r}}$ and $(1 / 2)^{6} \mathrm{f}_{\mathrm{T}}$ by programs.
$*$ The f_{T} is a timer clock frequency input from the $\mathrm{OSC}_{\mathrm{IN}} / \mathrm{KT}$ pin, and the f_{S} is a system clock frequency.

$$
\frac{256-\mathrm{n}}{256} \mathrm{~V}_{\mathrm{RH}}(\mathrm{n}=0 \text { to } 255)
$$

$* V_{R H}$ is a reference voltage supply from the $V_{R H}$ pin.

Fig. 3 Interrupt block
Table 1 Interrupt jump address

Interrupt request flag	Jump destination address			Priority
	Field	Page	Step (PL)	
Timer 1 carry (TF1)	0	2	0	1
Timer 2 carry (TF2)	0	2	2	2
KI input (IF)	0	2	4	3
Analog input comparator (AF)	0	2	6	4

Fig. 4 A/D converter block

(13) Standby mode (for SM5J6)

To reduce power consumption, the device is placed in standby mode, and the program execution is inactivated.

The following two types of standby mode can be selected.

- Off mode In the off mode, the system clock generator circuits except for a counter/timer and a count-up pulse generator circuit are inactivated.
- Hold mode In the hold mode, the systems except for a system clock generator circuit, a counter/timer and a count-up pulse generator circuit are inactivated.

While in standby mode, if a KH input or an interrupt request from an unmasked KI, timer 1 or timer 2, the device exits standby mode and starts program execution.

(14) Reset function (ACL)

The device is reset with the interval of two instruction cycles from the rising edge of the ACL pin.

Applying a High level signal to the ACL pin resets the internal logic of the device and applying a

Low level signal starts execution of the program at address 0 , page 0 .

In case the noise may harm the ACL operation, apply a capacitor between $A C L$ pin and $V_{D D}$ pin.
(15) Serial I/O

The serial I/O consists of an 8-bit shift register, a 3-bit counter and a 6-bit mode flag, which have the following features.

- Selectable either an 8-bit, a 4-bit, a 2 -bit or a 1-bit transfer system.
- Interrupt request available at the end of transfer.
- Selectable transfer clock among a system clock, a timer 2 output or an external clock.
- Connectable to multiple chips.
- Usable in standby mode.
- An 8-bit shift register replaceable by the R/W register when the serial I/O is not used.

Instruction Set
(1) ROM address instructions

Mnemonic	Machine code	Operation
TR x	100-17F	Jump within a page, $\mathrm{P}_{\mathrm{L}} \leftarrow \mathrm{I}_{6}-\mathrm{I}_{0}$
TL x	0F0-0F7	Jump$\mathrm{Pu} \leftarrow \mathrm{I}_{11}-\mathrm{I}_{9}, \mathrm{P}_{\mathrm{M}} \leftarrow \mathrm{I}_{8}-\mathrm{I}_{7}, \mathrm{P}_{\mathrm{L}} \leftarrow \mathrm{I}_{6}-\mathrm{I}_{0}$
	000-1FF	
MTPL	08A	Jump within a page, ($\mathrm{P}_{\mathrm{L}} \leftarrow \mathrm{A}_{2}-\mathrm{A}_{0} \mathrm{M}_{3}-\mathrm{M}_{0}$)
TRS x	180-1FF	CALL indirect address
JUMP	000-1FF	$\mathrm{P}_{\mathrm{U}} \leftarrow 1, \mathrm{P}_{\mathrm{M}} \leftarrow \mathrm{I}_{8}, \mathrm{I}_{7}, \mathrm{P}_{\mathrm{L}} \leftarrow \mathrm{I}_{6}-\mathrm{I}_{0}$, if $\mathrm{DI}=1$
TLS x	0F8-0FF	CALL to sulbroutine$\mathrm{P}_{\mathrm{U}} \leftarrow \mathrm{I}_{11}-\mathrm{I}_{9}, \mathrm{P}_{\mathrm{M}} \leftarrow \mathrm{I}_{8}-\mathrm{I}_{7}, \mathrm{P}_{\mathrm{L}} \leftarrow \mathrm{I}_{6}-\mathrm{I}_{0}$
	000-1FF	
RTN	0C0	Return
RTNS	0 C 1	Return and skip
RTNI	0C2	Return from interrupt
COMET	08B	$\mathrm{ET} \leftarrow \overline{\mathrm{ET}}$

(2) Data transfer instructions

Mnemonic	Machine code	Operation
LAX x	040-04F	Acc $\leftarrow I_{3}-I_{0}$, Skip if last instruction is LAX
WLAX x	087	$\mathrm{X} \leftarrow \mathrm{I}_{7}-\mathrm{I}_{4}, \mathrm{Acc} \leftarrow \mathrm{I}_{3}-\mathrm{I}_{0}$
	000-0FF	
LBMX x	0E0-0EF	$\mathrm{B}_{\mathrm{M}} \leftarrow \mathrm{I}_{3}-\mathrm{I}_{0}$
LBLX x	020-02F	$\mathrm{B}_{\mathrm{L}} \leftarrow \mathrm{I}_{3}-\mathrm{I}_{0}$
STXI x	050-05F	$\mathrm{M} \leftarrow \mathrm{I}_{3}-\mathrm{I}_{0}, \mathrm{~B}_{\mathrm{L}} \leftarrow \mathrm{B}_{\mathrm{L}}+1$, Skip if $\mathrm{CY}=1$
EXCI x	070-077	$\begin{aligned} & \mathrm{M} \leftrightarrow \mathrm{Acc}, \mathrm{~B}_{\mathrm{M}} \leftarrow \mathrm{~B}_{\mathrm{M}} \oplus \mathrm{I}_{2}-\mathrm{I}_{0} \\ & \mathrm{~B}_{\mathrm{L}} \leftarrow \mathrm{~B}_{\mathrm{L}}+1, \text { Skip if } \mathrm{CY}=1 \end{aligned}$
EXCD x	078-07F	$\begin{aligned} & \mathrm{M} \leftrightarrow \mathrm{Acc}, \mathrm{~B}_{\mathrm{M}} \leftarrow \mathrm{~B}_{\mathrm{M}} \oplus \mathrm{I}_{2}-\mathrm{I}_{0} \\ & \mathrm{~B}_{\mathrm{L}} \leftarrow \mathrm{~B}_{\mathrm{L}}+\mathrm{F}_{\mathrm{H}} \text {, Skip if } \mathrm{CY}=1 \end{aligned}$
EXC x	068-06F	$\mathrm{M} \leftrightarrow$ Acc, $\mathrm{B}_{\mathrm{M}} \leftarrow \mathrm{B}_{\mathrm{M}} \oplus \mathrm{I}_{2}-\mathrm{I}_{0}$
LDA x	060-067	$\mathrm{Acc} \leftarrow \mathrm{M}, \mathrm{B}_{\mathrm{M}} \leftarrow \mathrm{B}_{\mathrm{M}} \oplus \mathrm{I}_{2}-\mathrm{I}_{0}$
STR	09E	$\mathrm{M} \leftarrow$ Acc
EXAX	0A6	Acc \leftrightarrow X
ATX	0AE	$\mathrm{X} \leftarrow$ Acc
GTAX	OBD	$\mathrm{X} \leftarrow \mathrm{G}_{7}-\mathrm{G}_{4}, \mathrm{Acc} \leftarrow \mathrm{G}_{3}-\mathrm{G}_{0}$
AXTG	08D	$\mathrm{G}_{7}-\mathrm{G}_{4} \leftarrow \mathrm{X}, \mathrm{G}_{3}-\mathrm{G}_{0} \leftarrow \mathrm{Acc}$
	0BD	
XBLA	0B3	$\mathrm{B}_{\mathrm{L}} \leftrightarrow \mathrm{Acc}$
BLTA	0B1	Acc $\leftarrow \mathrm{B}_{\mathrm{L}}$
XBMA	0B2	$\mathrm{B}_{\mathrm{M}} \leftrightarrow \mathrm{Acc}$
BMTA	0BA	Acc $\leftarrow \mathrm{B}_{\mathrm{M}}$
XBSB	084	$\mathrm{B} \leftrightarrow \mathrm{SB}$
BTSB	085	$\mathrm{SB} \leftrightarrow \mathrm{B}$
SAG	08D	$\mathrm{B}_{\mathrm{M}} \leftarrow 0$ only next step
SGL x	0C8-0CF	$\mathrm{B}_{\mathrm{M}}=\mathrm{I}_{2}-\mathrm{I}_{0} \mathrm{~B}_{\mathrm{L}}=\mathrm{F}_{\mathrm{H}}$ only next step
ATIM	0B4	$\mathrm{Ei} \leftarrow \mathrm{Ai}(\mathrm{i}=3$ to 0)

(3) Arithmetic instructions

Mnemonic	Machine code	Operation
ADX x	000-00F	Acc $\leftarrow \mathrm{Acc}+\mathrm{I}_{3}-\mathrm{I}_{0}$, Skip if $\mathrm{CY}=1$
ADA	09A	Acc \leftarrow Acc $+\mathrm{A}_{\mathrm{H}}$
ADD	090	Acc \leftarrow Acc +M
ADS	091	Acc - Acc + M, Skip if $\mathrm{CY}=1$
ADC	092	Acc $\leftarrow \mathrm{Acc}+\mathrm{M}+\mathrm{C}, \mathrm{C} \leftarrow \mathrm{CY}$
ADCS	093	Acc \leftarrow Acc $+\mathrm{M}+\mathrm{C}, \mathrm{C} \leftarrow \mathrm{CY}$, Skip if $\mathrm{CY}=1$
ADBL	0BB	$\mathrm{B}_{\mathrm{L}} \leftarrow \mathrm{Acc}+\mathrm{B}_{\mathrm{L}}$
AND	0A1	Acc \leftarrow Acc \wedge_{x}
OR	0B0	Acc \leftarrow Acc $\vee \mathrm{x}$
COMA	086	Acc $-\overline{\text { Acc }}$
ROT	09B	$\mathrm{C} \leftarrow \mathrm{A}_{3} \leftarrow \mathrm{~A}_{2} \leftarrow \mathrm{~A}_{1} \leftarrow \mathrm{~A}_{0} \leftarrow \mathrm{C}$
DECA	09F	Acc \leftarrow Acc $+\mathrm{F}_{\mathrm{H}}$, Skip if $\mathrm{CY}=0$
INCX	0A7	$\mathrm{X} \leftarrow \mathrm{X}+1$, Skip if $\mathrm{CY}=1$
INBL	0A3	$\mathrm{B}_{\mathrm{L}} \leftarrow \mathrm{B}_{\mathrm{L}}+1$, Skip if $\mathrm{CY}=1$
DNBL	0 AB	$\mathrm{B}_{\mathrm{L}} \leftarrow \mathrm{B}_{\mathrm{L}}+\mathrm{F}_{\mathrm{H}}$, Skip if $\mathrm{CY}=0$
INBM	0A2	$\mathrm{B}_{\mathrm{M}} \leftarrow \mathrm{B}_{\mathrm{M}}+1$, Skip if $\mathrm{CY}=1$
DEBM	0AA	$\mathrm{B}_{\mathrm{M}} \leftarrow \mathrm{B}_{\mathrm{M}}+\mathrm{F}_{\mathrm{H}}$, Skip if $\mathrm{CY}=0$

(4) Test instructions

Mnemonic	Machine code	Operation
TAX x	010-01F	Skip if $\mathrm{Acc}=\mathrm{I}_{3}-\mathrm{I}_{0}$
TBA x	0D4-0D7	Skip if $\mathrm{Ai}=1(\mathrm{i}=3$ to 0)
TM x	0D0-0D3	Skip if $\mathrm{Mi}=1$ ($\mathrm{i}=3$ to 0)
TAM	096	Skip if Acc $=\mathrm{M}$
TXM	0B6	Skip if $\mathrm{X}=\mathrm{M}$
TBLX x	030-03F	Skip if $\mathrm{B}_{\mathrm{L}}=\mathrm{I}_{3}-\mathrm{I}_{0}$
TC	0B8	Skip if $\mathrm{C}=1$
TS	0B9	Skip if $\mathrm{S}=1$
TIF	0С7	Skip and reset if $\mathrm{IF}=1$
THAF	0C6	$\begin{array}{r} \text { if } \mathrm{HF}=1\left(\mathrm{AM}_{5}=0\right) \\ \text { Skip and reset } \\ \text { if } \mathrm{AF}=1\left(\mathrm{AM}_{5}=1\right) \end{array}$
TTF1	0C5	Skip and reset if $\mathrm{TF}_{1}=1$
TTF2	0C4	Skip and reset if $\mathrm{TF}_{2}=1$
TQZ	0A0	Skip if $\mathrm{Q}=0$
TZ	080	Skip if $\mathrm{Z}\left[\mathrm{B}_{\mathrm{L}}\right]=1$

(5) Bit manipulation instructions

Mnemonic	Machine code	
	$\mathrm{I}_{8} \mathrm{I}_{7} \mathrm{I}_{6} \mathrm{I}_{5} \mathrm{I}_{4} \mathrm{I}_{3} \mathrm{I}_{2} \mathrm{I}_{1} \quad \mathrm{I}_{0}$	
SM x	0DC-0DF	$\mathrm{Mi} \leftarrow 1(\mathrm{i}=3$ to 0)
RM x	$0 \mathrm{D} 8-0 \mathrm{DB}$	$\mathrm{Mi} \leftarrow 0(\mathrm{i}=3$ to 0$)$
SC	099	$\mathrm{C} \leftarrow 1$
RC	098	$\mathrm{C} \leftarrow 0$
SS	0 A 9	$\mathrm{~S} \leftarrow 1$
RS	0 A 8	$\mathrm{~S} \leftarrow 0$
IE	095	$\mathrm{E} \leftarrow 1$
ID	094	$\mathrm{E} \leftarrow 0$

(6) I/O instructions

Mnemonic	Machine code	
	$\mathrm{I}_{8} \mathrm{I}_{7} \mathrm{I}_{6} \mathrm{I}_{5} \mathrm{I}_{4} \mathrm{I}_{3} \mathrm{I}_{2} \mathrm{I}_{1} \mathrm{I}_{0}$	Operation
ATQ	08 E	
QTA	0 BE	Acc $\leftarrow \mathrm{Q}$
ATP	08 F	$\mathrm{P} \leftarrow \mathrm{Acc}, \mathrm{P}_{\mathrm{M}} \leftarrow 1$
PTA	0 A 4	Acc $\leftarrow \mathrm{P}, \mathrm{P}_{\mathrm{M}} \leftarrow 0$
ATR	08 C	$\mathrm{R}\left[\mathrm{B}_{\mathrm{L}} \leftarrow \mathrm{Acc}\right.$
RTA	0 C 3	$\mathrm{Acc} \leftarrow \mathrm{R}\left[\mathrm{B}_{\mathrm{L}}\right]$
AXTR	0 AC	$\mathrm{R}[1] \leftarrow \mathrm{X}, \mathrm{R}[0] \leftarrow \mathrm{Acc}$
RTAX	0 AD	$\mathrm{X} \leftarrow \mathrm{R}[1], \mathrm{Acc} \leftarrow \mathrm{R}[0]$
MTR	09 C	$\mathrm{R}\left[\mathrm{B}_{\mathrm{L}} \leftarrow \mathrm{M}\right.$
KCTA	0 BC	$\mathrm{Acc} \leftarrow \mathrm{KC}$
KITA	0 BF	$\mathrm{A} \leftarrow \mathrm{K}_{1}, \mathrm{~A}_{2} \leftarrow \mathrm{~K}_{\mathrm{H}}, \mathrm{A}_{1} \leftarrow \mathrm{~K}_{\mathrm{T}}, \mathrm{A}_{0} \leftarrow \mathrm{~K}_{\mathrm{L}}$
SZ	083	$\mathrm{Z}[\mathrm{BL} \leftarrow 1$
RZ	082	$\mathrm{Z}[\mathrm{BL}] \leftarrow 0$
SF	089	$\mathrm{~F} \leftarrow 1, \mathrm{FM} \mathrm{F}_{1} \leftarrow \mathrm{~A}_{1}, \mathrm{FM}_{0} \leftarrow \mathrm{~A}_{0}$
RF	088	$\mathrm{~F} \leftarrow 0$

(7) Timer control instructions

Mnemonic	Machine code	
	$\mathrm{I}_{8} \mathrm{I}_{7} \mathrm{I}_{6} \mathrm{I}_{5} \mathrm{I}_{4} \mathrm{I}_{3} \mathrm{I}_{2} \mathrm{I}_{1} \mathrm{I}_{0}$	
Operation		
	$0 \mathrm{AF} \leftarrow \mathrm{I}_{7}-\mathrm{I}_{0}$	
STM1	$000-0 \mathrm{FF}$	TIMER1 $\leftarrow \mathrm{X}$, Acc
LTM1	097	X, Acc $\leftarrow \mathrm{TIMER1}$
STM2 x	09 D	TIMER2 $\leftarrow \mathrm{MR}$, MR $\leftarrow \mathrm{I}_{7}-\mathrm{I}_{0}$
	0 B 7	X, Acc $\leftarrow \mathrm{TIMER2}$

(8) A/D conversion instruction

Mnemonic	Machine code	Operation
COMP	0A5	$\begin{aligned} & \mathrm{AM}_{5} \leftarrow \mathrm{~A}_{2} \wedge \mathrm{~A}_{1}, \mathrm{~A}_{4} \leftarrow \mathrm{~A}_{2} \wedge \mathrm{~A}_{0}, \mathrm{AM}_{3} \leftarrow \mathrm{~A}_{3} \\ & \mathrm{AM}_{2} \leftarrow \mathrm{~A}_{2} \text {, AM } \mathrm{AM}_{1} \leftarrow \mathrm{~A}_{1}, \mathrm{AM}_{3} \leftarrow \mathrm{~A}_{0} \\ & \text { A/D Conversion or Comparing } \\ & \hline \end{aligned}$

(9) Standby instruction

Mnemonic	Machine code			Operation		
	I_{8}	I_{7}	I_{6}		\quad	$\mathrm{CM}_{2} \leftarrow \mathrm{~A}_{2}, \mathrm{CM}_{1} \leftarrow \mathrm{~A}_{1}, \mathrm{CM}_{0} \leftarrow \mathrm{~A}_{0}$
:---						
CCTRL						

(10) Table reference instruction

Mnemonic	Machine code	Operation
LAT	$\begin{gathered} 08 \mathrm{~A} \\ 000-0 \mathrm{FF} \end{gathered}$	$\begin{aligned} & \text { PUSH }(\mathrm{SP} \leftarrow \mathrm{SP}+1, \mathrm{SR} \leftarrow \mathrm{PC}+1) \\ & \mathrm{PL}_{6}-\mathrm{PL}_{4} \leftarrow \mathrm{~A}_{2}-\mathrm{A}_{0}, \mathrm{PL}_{3}-\mathrm{PL}_{0} \leftarrow \mathrm{M}_{3}-\mathrm{M}_{0} \\ & \mathrm{POP}(\mathrm{SP} \leftarrow \mathrm{SP}-1, \mathrm{PC} \leftarrow \mathrm{SR}) \\ & \mathrm{X} \leftarrow \mathrm{I}_{7}-\mathrm{I}_{4}, \mathrm{~A} \leftarrow \mathrm{I}_{3}-\mathrm{I}_{0} \\ & \hline \end{aligned}$

Comparison Table Between SM5J5 and SM5J6

The SM5J5 directly drives a fluorescent display tubes. The SM5J6 provides two modes of standby function for power saving.
Both models have the same function except for the specifications in the electrical characteristics and I/O ports. See the related sections for details.

Table 2

	SM5J5 -	SM5J6
ROM	$8,192 \times 9$ bits	
RAM	256×4 bits	
Instruction set	94 set	
Power supply	+4.5 to +5.5 V	+2.7 to +5.5 V
Instruction cycle	$2.5 \mu \mathrm{~s}$ (MIN.)	$2 \mu \mathrm{~s}$ (MIN.)
System clock	50 to 400 kHz (312.5 kHz TYP.)	50 to 500 kHz
$\begin{gathered} \text { Ports } \\ \mathrm{R}[0]-\mathrm{R}[3]^{*} \end{gathered}$	High voltage (-40 V) I/O ports	I/O ports with a pull-down resistors
$\begin{aligned} & \text { Ports } \\ & Z_{0}-Z_{9} \end{aligned}$	High votage (-40 V) output ports	Output ports with a pull-down resistor
Operating temperature	-10 to $+80^{\circ} \mathrm{C}$	
Package	64-pin SDIP	

[^2]
- System Configuration Example

*SM5J5: $\mathrm{V}_{\mathrm{DSP}}=-30 \mathrm{~V}$ (TYP.)
SM5J6: $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}$ (TYP.)

SM530

4-Bit Microcomputer (LCD Driver)

- Description

The SM530 is a CMOS 4-bit microcomputer, operated on a single 1.5 V power supply with a 1.5 $\mu \mathrm{A}$ power consumption in standby mode. This microcomputer integrates a 4-bit parallel processing function, a 2 K byte ROM, an 88 word RAM, a 96-segment LCD driver, a real-time counter circuit, and a melody generator circuit in a single chip. Provided with 1.5 V single power supply and a low power consumption design, it is applicable to compact systems required for battery back-up operation.

Features

1. CMOS process
2. ROM capacity: $2,016 \times 8$ bits
3. RAM capacity: 88×4 bits
4. Instruction set: 49
5. Subroutine nesting: 1 level
6. Instruction cycle: $91.6 \mu \mathrm{~s}$ (TYP.)
7. Input/output ports

Input ports: 9
Output ports: 8
LCD output ports: 48 for segment 2 for common
Melody output port: 1
8. On-chip clock divider
9. On-chip crystal oscillator (32.768 kHz)
10. Programmable interval timer ($10 \mathrm{sec}, 1 \mathrm{sec}, 1 / 2 \mathrm{sec}, 1 / 10 \mathrm{sec}$)
11. $1 / 100 \mathrm{sec}$ counter
12. Melody generator circuit
13. Standby function
14. Single power supply: -1.5 V (TYP.)
15. 80-pin QFP (QFP80-P-1818)

Block Diagram

Pin Description

Symbol	I/O	Circuit type	Function
$\mathrm{K}_{1}-\mathrm{K}_{4}, \mathrm{KE}_{1}-\mathrm{KE}_{4}$	I	pull-down	Input ports
$\mathrm{S}_{1}-\mathrm{S}_{4}, \mathrm{~F}_{1}-\mathrm{F}_{4}$	O		Output ports
$\mathrm{O}_{10}-\mathrm{O}_{4 \mathrm{~B}}$	O		Segment signal output ports
$\mathrm{H}_{1}-\mathrm{H}_{2}$	O		Common signal output ports
$\mathrm{OSC}_{\mathrm{IN}}, \mathrm{OSC}$		Crystal oscillator	
SO			Melody output port
ACL	O		Auto clear input port
BA	I	Pull-down	Battery alarm input port
V_{CC}, DDC, V_{DD}	I		Power supply for booster circuit
$\mathrm{V}_{\mathrm{M}}, \mathrm{GND}$			Power supply
Test			Test input (normally connected to V_{M})

- Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit	Note
Pin voltage	V_{M}	-2.0 to +0.3	V	1
	$\mathrm{~V}_{\mathrm{DD}}$	-4.0 to +0.3	V	1,2
	$\mathrm{~V}_{\mathrm{IN} 1}$	$\mathrm{~V}_{\mathrm{M}}-0.3$ to +0.3	V	1,3
	$\mathrm{~V}_{\mathrm{IN} 2}$	$\mathrm{~V}_{\mathrm{DD}}-0.3$ to +0.3	V	1
Operating temperature	Topr	0 to +50	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-20 to +70	${ }^{\circ} \mathrm{C}$	

Note 1: The maximum applicable voltage on any pin with respect to GND.
Note 2: Applied to pins $\mathrm{K}_{1}-\mathrm{K}_{4}, \mathrm{KE}_{1}-\mathrm{KE}_{4}, \mathrm{~S}_{1}-\mathrm{S}_{4}, \mathrm{~F}_{1}-\mathrm{F}_{4}$, SO, Test, DDC, BA, ACL, OSC ${ }_{\text {IN }}$, OSC
Note 3: Applied to pins $\mathrm{O}_{\mathrm{ij}}(\mathrm{i}=1$ to $4, \mathrm{j}=0$ to B$) \mathrm{H}_{\mathrm{i}}, \mathrm{H}_{2}, \mathrm{~V}_{\mathrm{CC}}$.

- Recommended Operating Conditions

Parameter	Symbol	Rating	Unit	Note
Supply voltage	V_{M}	-1.8 to -1.2	V	
	$\mathrm{~V}_{\mathrm{DD}}$	-3.6 to -2.3	V	
Oscillation start voltage	$\mathrm{V}_{\mathrm{osc}}$	-1.4	V	1
Oscillator frequency	$\mathrm{f}_{\text {osc }}$	$32.768(\mathrm{TYP})$.	kHz	

Note 1: Oscillation circuit constants: $\mathrm{C}_{\mathrm{G}}=15 \mathrm{pF}, \mathrm{C}_{\mathrm{D}}=22 \mathrm{pF}$
The oscillation start time should be within 10 sec .

- Electrical Characteristics $\quad\left(\mathrm{V}_{\mathrm{M}}=-1.45\right.$ to $1.55 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=-2.9$ to $\left.-3.1 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Hardware Configuration

(1) Program memory (ROM)

The on-chip ROM has a configuration of 32 pages $\times 63$ steps $\times 8$ bits (see Fig. 1).

The program counter consists of a 5 -bit page address counter (PU) used to specify the pages 0 to 31 , and a 6-bit polynomial counter (P_{L}) used to specify the steps 0 to 62 .

The stack register is an 11 bit register which allows 1 level of subroutine nesting.

(2) Data memory (RAM) and data address register (B_{M}, B_{L})

The data memory has a 352 bit organized as $4 \times$
$16 \times 4+2 \times 12 \times 4$, and its address is specified by the data address registers (B_{M}, B_{L}). The B_{M} is used to specify the file in the data memory, and the B_{L} used to specify the word within a file.

2 files ($\mathrm{B}_{\mathrm{M}}=4$ to 7) of data memory are allocated to the display RAM. The data set herein is loaded into the LCD segment pins. Fig. 2 shows the RAM configuration.

(3) $\mathrm{K}_{1}-\mathrm{K}_{4}, \mathrm{KE}_{1}-\mathrm{KE}_{4}, \mathrm{BA}$ (Inputs)

Ports K and $K E$ are 4-bit input ports with pull--down resistors. The contents of these pins can be loaded into the accumulator A_{CC} by instructions.

$\begin{array}{\|c} \mathrm{PU}_{5}, \mathrm{PU}_{4} \\ \hline \mathrm{PU}_{3} \sim \mathrm{PU}_{1} \\ \hline \end{array}$	00	01	10	11
000	Page 0 Note 1 and 4	8	16	24
001	1 Note 4	9	17	25
010	2 Note 4	10	18	26
011	Note 4	11	19	27
100	4 Note 4	12	20	28
101	5 Note 4	13	21	29
110	6 Note 4	14 Note 3	22	30
111	$\longdiv { 7 }$ Note 4	Note 2	23	31

Note 1: Page 0: The address where the clock restarts from the standby mode.
Note 2: Page 15: The starting address with the ACL.
Note 3: Page 14: Subroutine cover page
Note 4: Pages 0 through 7: The address which allows a jump by the JUMP instruction. $\mathrm{P}_{\mathrm{L} 6}=0$
Fig. 1 ROM configulation

Note: The shadowed area is allocated for a display RAM.

* Executing the SABM instruction at the file 2 or 3 of the B_{M} register specifies the file 6 or 7 of the B_{M} in the same location of the file 4 or 5 .

Fig. 2 RAM configuration

While in standby mode, if the K or KE pin ac cepts an input signal, the CPU is initialized and sta rts execution of the program at $P_{U}=0_{H}, P_{L}=00_{H}$.

The BA pin can be used as an input pin which allows testing the input fixed at High or Low, by instructions.

(4) $F_{1}-F_{4}, S_{1}-S_{4}$ (Outputs)

Ports F and S are 4-bit output ports. The accumulator A_{CC} can be transferred to these ports by instructions.

(5) Divider and clock counter

The device contains a real-time clock divider, 1 sec counter and $1 / 100 \mathrm{sec}$ counter. These counters generate signals of $10 \mathrm{sec}, 1 \mathrm{sec}, 1 / 2 \mathrm{sec}, 1 / 10 \mathrm{sec}$ which can be tested by instructions, and constitute a real-time clock.
Either 1 sec counter or $1 / 100$ counter can be directly indicated on an LCD screen through a decoder. The contents of $1 / 100 \mathrm{sec}$ counter can be loaded into the accumulator A_{CC} by instructions.

(6) LCD driver

The SM530 contains an on-chip LCD driver which can directly drive a 96-segment LCD with a

$1 / 2$ duty and $1 / 2$ bias scheme.

Fig. 3 shows the common and segment waveform. The display frequency is 128 Hz , and 3 V of display voltage is obtained through an internal booster circuit.

The display data is transferred through an LCD driver circuit, and displayed on an LCD screen.

Fig. 4 shows an example of a seven-segment numeric LCD digit. The RAM data of $B_{M}=4,6$ corresponds to the H_{1} segment, and $B_{M}=5,7$ corresponds to the H_{2} segment.

($\mathrm{j}=0-9$)
Fig. 4 7-segment numeric LCD digit

Fig. 3 LCD driving signal waveform

(7) Display decoder

The 1 sec counter or $1 / 100 \mathrm{sec}$ counter is loaded into the display decoder, and output as segment signals through pins $\mathrm{O}_{10}-\mathrm{O}_{40}$. The display decoder can not be used when the RAM data is displayed on an LCD.

Fig. 5 shows the relationship between the display RAM and pins Oij. Table 1 shows the truth table of the display decoder.

Table 1 Display decoder truth table

lset or 1/100sec counter	Display character	lsec or 1/100sec counter	Display character
0000	0101		
0001		0110	
0010			

Note: The display segment of a floating point is specified by the first bit of a display RAM $\left(B_{M}, B_{L}\right)=(5,0)$
(8) Melody generator circuit

The contents of a melody ROM can be output with standard 12 musical scales (555 to 2114 Hz)
in two octaves from the SO pin.
The tone length can be selected between 250 ms and 125 ms depending on the melody ROM. The melody ROM provides a pause and a stop instruction.

Controlling the melody F / F (ME F/F) by instructions starts and stops melody. The melody ROM stores up to 256 steps of musical notes.

Table 2 shows the musical scales in one octave. Executing an instruction from a melody ROM outputs half frequencies of the standard frequencies shown in table 2, and generates lower 12 musical scales by one octave.

(9) ACL circuit

The ACL circuit contains a resistor and a capacitor, which does not require any external circuits. The ACL may be cleared with the interval of about 0.5 sec after a crystal oscillator circuit starts oscillation when the power is turned on, and starts execution of the program at $\mathrm{P}_{\mathrm{U}}=\mathrm{F}_{\mathrm{H}}, \mathrm{P}_{\mathrm{L}}=00_{\mathrm{H}}$.

(10) Standby mode

Executing an instruction places the device in standby mode. In this mode, the system clock is inactivated to reduce power consumption. While in standby mode, if the K or KE pin receives an input signal, or the selecting $\gamma \mathrm{F} / \mathrm{F}$ is set, the device exits standby mode and the CPU starts execution of the program at $\mathrm{P}_{\mathrm{U}}=0_{\mathrm{H}}, \mathrm{P}_{\mathrm{L}}=00_{\mathrm{H}}$.

Fig. 5 Display RAM and Oij

Table 2 Melody output frequency

Musical scale	do\#	re	re\#	mi	fa	fa\#	so	so\#	la	la\#	si	do
Frequency (Hz)	1110.8	1170.3	1236.5	1310.7	1394.4	1489.5	1560.4	1680.4	1771.2	1872.4	1985.9	2114.1

(11) Booster circuit

The device contains a booster circuit which generates a voltage two times higher than the 1.5 V power supply.
Then, it is necessary to apply external capacitors between DDC pin and $V_{C C}$ pin as well as $V_{D D}$ pin and GND (see Fig. 6).

Fig. 6 Booster circuit

Instruction Set
(1) RAM address instructions

Mnemonic	Machine code	Operation
INCB	4 C	$\mathrm{B}_{\mathrm{L}} \leftarrow \mathrm{B}_{\mathrm{L}}+1$ skip if $\mathrm{B}_{\mathrm{L}}=7$ or F
DECB	4 D	$\mathrm{B}_{\mathrm{L}} \leftarrow \mathrm{B}_{\mathrm{L}}-1$ skip if $\mathrm{B}_{\mathrm{L}}=0$
LB xy	$30-3 \mathrm{~F}$	$\mathrm{B}_{\mathrm{M} 3} \leftarrow 0$ $\mathrm{~B}_{\mathrm{M} 2}, \mathrm{~B}_{\mathrm{M} 1} \leftarrow \mathrm{x}\left(\mathrm{I}_{4}, \mathrm{I}_{3}\right)$ $\mathrm{B}_{\mathrm{L} 4}, \mathrm{~B}_{\mathrm{L} 1} \leftarrow \mathrm{y}\left(\mathrm{I}_{2}, \mathrm{I}_{1}\right)$ $\mathrm{B}_{\mathrm{L} 3}, \mathrm{~B}_{\mathrm{L} 2} \leftarrow(1,1)$
LBL xy	6 B $00-\mathrm{FF}$	$\mathrm{B}_{\mathrm{M}} \leftarrow \mathrm{x}\left(\mathrm{I}_{7}-\mathrm{I}_{5}\right)$ $\mathrm{B}_{\mathrm{L}} \leftarrow \mathrm{y}\left(\mathrm{I}_{4}-\mathrm{I}_{1}\right)$
SABM	72	$\mathrm{B}_{\mathrm{M} 3} \leftarrow 1$ next step only
SABL	73	$\mathrm{B}_{\mathrm{L} 4} \leftarrow 1$ next step only
EXBL	5 A	$\mathrm{~A}_{\mathrm{CC}} \leftarrow \mathrm{B}_{\mathrm{L}}$

(2) ROM address instructions

Mnemonic	Machine code	Operation
TR x	80-BF	$\mathrm{P}_{\mathrm{L}} \leftarrow \mathrm{x}\left(\mathrm{I}_{6}-\mathrm{I}_{1}\right)$
TL xy	$\begin{aligned} & 60-67 \\ & 00-\mathrm{FF} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{P}_{\mathrm{U}} \leftarrow \mathrm{x}\left(\mathrm{I}_{11}-\mathrm{I}_{7}\right) \\ & \mathrm{P}_{\mathrm{L}} \leftarrow \mathrm{y}\left(\mathrm{I}_{6}-\mathrm{I}_{1}\right) \end{aligned}$
TRS x	C0-FF	$\begin{aligned} & \mathrm{P}_{\mathrm{U}} \leftarrow 01110, \mathrm{P}_{\mathrm{L}} \leftarrow \mathrm{x}\left(\mathrm{I}_{6}-\mathrm{I}_{1}\right) \\ & \mathrm{SR} \leftarrow \mathrm{PC}+1 \end{aligned}$
JUMP xy	00-FF	$\begin{aligned} & \hline \mathrm{P}_{\mathrm{U} 5}, \mathrm{P}_{\mathrm{U} 4} \leftarrow(0,0) \\ & \mathrm{P}_{\mathrm{U} 3}-\mathrm{P}_{\mathrm{U} 1} \leftarrow \mathrm{x}\left(\mathrm{I}_{6}, \mathrm{I}_{8}, \mathrm{I}_{7}\right) \\ & \mathrm{P}_{\mathrm{L} 6} \leftarrow 0 \\ & \mathrm{P}_{\mathrm{L} 5}-\mathrm{P}_{\mathrm{L} 1} \leftarrow \mathrm{y}\left(\mathrm{I}_{5}-\mathrm{I}_{1}\right) \\ & \hline \end{aligned}$
ATPL	6A	$\mathrm{P}_{\mathrm{L} 4}-\mathrm{P}_{\mathrm{L} 1} \leftarrow \mathrm{~A}_{\mathrm{CC}}$
RTN	68	$\mathrm{PC} \leftarrow \mathrm{SR}$
RTNS	69	$\mathrm{PC} \leftarrow \mathrm{SR}$ skip the next step

(3) Data transfer instructions

Mnemonic	Machine code	Operation
LAX x	10-1F	$\mathrm{A}_{C C} \leftarrow \mathrm{x}\left(\mathrm{I}_{4}-\mathrm{I}_{1}\right)$
LDA x	20-23	$\begin{aligned} & \mathrm{A}_{\mathrm{CC}} \leftarrow \mathrm{M} \\ & \mathrm{~B}_{\mathrm{M} 2}, \mathrm{~B}_{\mathrm{M} 1} \leftarrow \mathrm{~B}_{\mathrm{M} 2}, \mathrm{~B}_{\mathrm{M} 1} \oplus \mathrm{x}\left(\mathrm{I}_{2}, \mathrm{I}_{1}\right) \end{aligned}$
EXC x	24-27	$\begin{aligned} & \mathrm{A}_{\mathrm{CC}} \leftrightarrows \mathrm{M} \\ & \mathrm{~B}_{\mathrm{M} 2}, \mathrm{~B}_{\mathrm{M} 1} \leftarrow \mathrm{~B}_{\mathrm{M} 2}, \mathrm{~B}_{\mathrm{M} 1} \oplus \mathrm{x}\left(\mathrm{I}_{2}, \mathrm{I}_{1}\right) \end{aligned}$
EXCI x	28-2B	$\begin{aligned} & \mathrm{A}_{\mathrm{CC}} \leftrightarrows \mathrm{M} \\ & \mathrm{~B}_{\mathrm{M} 2}, \mathrm{~B}_{\mathrm{M} 1} \leftarrow \mathrm{~B}_{\mathrm{M} 2}, \mathrm{~B}_{\mathrm{M} 1} \oplus \mathrm{x}\left(\mathrm{I}_{2}, \mathrm{I}_{1}\right) \\ & \mathrm{B}_{\mathrm{L}} \leftarrow \mathrm{~B}_{\mathrm{L}}+1 \\ & \text { skip if } \mathrm{B}_{\mathrm{L}}=7 \text { or } \mathrm{F} \\ & \hline \end{aligned}$
EXCD x	$2 \mathrm{C}-2 \mathrm{~F}$	$\begin{aligned} & \mathrm{A}_{\mathrm{CC}} \leftrightarrows \mathrm{M} \\ & \mathrm{~B}_{\mathrm{M} 2}, \mathrm{~B}_{\mathrm{M} 1} \leftarrow \mathrm{~B}_{\mathrm{M} 2}, \mathrm{~B}_{\mathrm{M} 1} \oplus \mathrm{x}\left(\mathrm{I}_{2}, \mathrm{I}_{1}\right) \\ & \mathrm{B}_{\mathrm{L}} \leftarrow \mathrm{~B}_{\mathrm{L}}-1 \\ & \text { skip if } \mathrm{B}_{\mathrm{L}}=0 \\ & \hline \end{aligned}$
DTA	52	$\mathrm{A}_{\mathrm{CC}} \leftarrow 1 / 100$ SEC. C.

(4) Arithmetic instructions

Mnemonic	Machine code	Operation
ADD	54	$\mathrm{~A}_{\mathrm{CC}} \leftarrow \mathrm{A}_{\mathrm{CC}}+\mathrm{M}$
ADDC	55	$\mathrm{A}_{\mathrm{CC}} \leftarrow \mathrm{A}_{\mathrm{CC}}+\mathrm{M}+\mathrm{C}$ $\mathrm{C} \leftarrow \mathrm{C}_{4}$ skip if $\mathrm{C}_{4}=1$
ADX x	$00-0 \mathrm{~F}$	$\mathrm{A}_{\mathrm{CC}} \leftarrow \mathrm{A}_{\mathrm{CC}}+\mathrm{x}\left(\mathrm{I}_{4}-\mathrm{I}_{1}\right)$ skip if $\mathrm{C}_{4}=1$
COMA	53	$\mathrm{~A}_{\mathrm{CC}} \leftarrow \mathrm{A}_{\mathrm{CC}}$

(5) Test instructions

Mnemonic	Machine code	Operation
TM x	$48-4 \mathrm{~B}$	skip if $\mathrm{Mi}=1\left(\mathrm{i}=\mathrm{I}_{2} \mathrm{I}_{1}\right)$
TC	5 B	skip if $\mathrm{C}=0$
TAM	59	skip if $\mathrm{A}_{\mathrm{CC}}=\mathrm{M}$
TABL	58	skip if $\mathrm{A}_{\mathrm{CC}}=\mathrm{B}_{\mathrm{L}}$
TG x	$6 \mathrm{C}-6 \mathrm{~F}$	skip if $\gamma=1, \gamma \leftarrow 0$ $\left(\gamma_{10 \mathrm{~S}}, \gamma_{1 \mathrm{~S}}, \gamma_{0.5 \mathrm{~S}}, \gamma_{0.1 \mathrm{~S}}\right)$
TBA	79	skip if $\mathrm{BA}=1$

(6) Bit manipulation instructions

Mnemonic	Machine code	Operation
RM x	$40-43$	$\mathrm{Mi} \leftarrow 0\left(\mathrm{i}=\mathrm{I}_{2} \mathrm{I}_{1}\right)$
$\mathrm{SM} \times$	$44-47$	$\mathrm{Mi} \leftarrow 1\left(\mathrm{i}=\mathrm{I}_{2} \mathrm{I}_{1}\right)$
RC	56	$\mathrm{C} \leftarrow 0$
SC	57	$\mathrm{C} \leftarrow 1$

(7) I/O instructions

Mnemonic	Machine code	Operation
KTA	50	$\mathrm{~A}_{\mathrm{CC}} \leftarrow \mathrm{K}$
KETA	51	$\mathrm{~A}_{\mathrm{CC}} \leftarrow \mathrm{KE}$
ATS	5 C	$\mathrm{S} \leftarrow \mathrm{A}_{\mathrm{CC}}$
ATF	5 D	$\mathrm{F} \leftarrow \mathrm{A}_{\mathrm{CC}}$
ATBP	5 E	$\mathrm{BP} \leftarrow \mathrm{A}_{\mathrm{CC}}$
SDS	4 F	$\mathrm{DS} \leftarrow 1$
RDS	4 E	$\mathrm{DS} \leftarrow 0$

(8) Melody instructions

Mnemonic	Machine code	Operation
PRE x	78 $00-\mathrm{FF}$	Melody ROM pointer preset
SME	77	ME $\leftarrow 1$
RME	76	ME $\leftarrow 0$
TMEL	75	skip if MES $=1$ MES $\leftarrow 0$

(9) Special instructions

Mnemonic	Machine code	Operation
CEND	74	System clock stop
IDIV	70	DIV $\leftarrow 0$ 1 SEC. C. $\leftarrow 0$
INIS	71	$1 / 100$ SEC. C. $\leftarrow 0$
SKIP	00	No operation

System Configuration Example (Calculator watch)

Key matrix

SM1531 4-Bit Microcomputer (LCD Driver)

- Description

The SM531 is a CMOS 4 -bit microcomputer, operated on a single 1.5 V power supply with a $1.5 \mu \mathrm{~A}$ power cosumption in standby mode. This microcomputer integrates a 4 -bit parallel processing function, a 1.2 K byte ROM, a 52 word RAM, an 80 -segment LCD driver, a real-time counter circuit, and a melody generator circuit in a single chip. Provided with 1.5 V single power supply and a low power consumption design, it is applicable to compact systems required for battery back-up operation.

Features

1. CMOS process

2. ROM capacity: $1,260 \times 8$ bits
3. RAM capacity: 52×4 bits
4. Instruction set: 45
5. Subroutine nesting: 1 level
6. Insturction cycle: $91.6 \mu \mathrm{~s}$ (TYP.)
7. Input/output ports

Input ports: 6
LCD output ports: 40 for segment
2 for common
Melody output ports: 2
8. On-chip clock divider
9. On-chip crystal oscillator $(32.768 \mathrm{kHz})$
10. Programmable interval timer
($1 \mathrm{sec}, 1 / 2 \mathrm{sec}, 1 / 10 \mathrm{sec}$)
11. $1 / 100 \mathrm{sec}$ counter
12. Melody generator circuit
13. Standby function
14. Single power supply: -1.5 V (TYP.)
15. 60-pin QFP (QFP60-P-1414)

- Pin Connections

Block Diagram

Pin Description

Symbol	I/O	Circuit type	Function
$\mathrm{K}_{1}-\mathrm{K}_{4}, \mathrm{KE}_{1}, \mathrm{KE}_{2}$	I	Pull-down	Input ports
$\mathrm{O}_{10}-\mathrm{O}_{49}$	O		Segment signal output ports
$\mathrm{H}_{1}-\mathrm{H}_{2}$	O		Common signal output ports
$\mathrm{OSC}_{\mathrm{IN}}, \mathrm{OSC}_{\mathrm{OUT}}$			Crystal oscillator
$\mathrm{SO}_{1}, \mathrm{SO}_{2}$	O		Melody output ports
ACL	I		Auto clear input port
BA	I		Battery alarm input port
$\mathrm{V}_{\mathrm{CC}}, \mathrm{DDC}, \mathrm{V}_{\mathrm{DD}}$			Power supply for booster circuit
$\mathrm{V}_{\mathrm{M}}, \mathrm{GND}$			Power supply
Test	I	Pull-down	Test input (normally connected to V_{M})

Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit	Note
Pin voltage	V_{M}	-2.0 to +0.3	V	1
	$\mathrm{~V}_{\mathrm{DD}}$	-4.0 to +0.3	V	1
	$\mathrm{~V}_{\mathrm{IN} 1}$	$\mathrm{~V}_{\mathrm{M}}-0.3$ to +0.3	V	1,2
	$\mathrm{~V}_{\mathrm{IN} 2}$	$\mathrm{~V}_{\mathrm{DD}}-0.3$ to +0.3	V	1,3
Operating temperature	Topr	0 to +50	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-20 to +70	${ }^{\circ} \mathrm{C}$	

Note 1: The maximum applicable voltage on any pin with respect to GND.
Note 2: Applied to pins $\mathrm{K}_{1}-\mathrm{K}_{4}, \mathrm{KE}_{1}, \mathrm{KE}_{2}, \mathrm{SO}_{1}, \mathrm{SO}_{2}$, Test, DDC, ACL, $\mathrm{OSC}_{\text {IN }}$, OSC OUt $_{\text {O }}$.
Note 3: Applied to pins $\mathrm{O}_{\mathrm{ij}}(\mathrm{i}=1$ to $4, \mathrm{j}=0$ to 9$), \mathrm{H}_{1}, \mathrm{H}_{2}, \mathrm{Vc}$.

- Recommended Operating Conditions

Parameter	Symbol	Rating	Unit	Note
Supply voltage	V_{M}	-1.8 to -1.2	V	
	$\mathrm{~V}_{\mathrm{DD}}$	-3.6 to -2.3	V	
Oscillation start valtage	$\mathrm{V}_{\mathrm{OSC}}$	-1.4	V	1
Oscillator frequency	$\mathrm{f}_{\mathrm{OSC}}$	32.768 (TYP.)	kHz	

Note 1: Oscillation circuit constant, $\mathrm{C}_{\mathrm{G}}=15 \mathrm{pF}, \mathrm{C}_{\mathrm{D}}=22 \mathrm{pF}$.
Oscillation start time: within 10 seconds.

Electrical Chara	istics	$\left(\mathrm{V}_{\mathrm{M}}=-1.45\right.$ to $-1.55 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=-2.9$ to $\left.-3.1 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)$					
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	Note
Input voltage	$\mathrm{V}_{\text {IH }}$		-0.5			V	1
	V_{IL}				$\mathrm{V}_{\mathrm{M}}+0.5$	V	
Input current	$\mathrm{I}_{\mathrm{HH1}}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	0.155		3	$\mu \mathrm{A}$	2
	$\mathrm{I}_{\mathrm{H} 2}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	1.55		50	$\mu \mathrm{A}$	3
Boost output voltage	$\mathrm{V}_{\mathrm{DD} 1}$	$\mathrm{V}_{\mathrm{M}}=-1.55 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{M} \Omega$			-2.80	V	4
	$\mathrm{V}_{\mathrm{DD} 2}$	$\mathrm{V}_{\mathrm{M}}=-1.30 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{M} \Omega$			-2.30	V	
Output current	I_{1}	$\mathrm{V}_{\mathrm{DS}}=0.5 \mathrm{~V}$	10			$\mu \mathrm{A}$	5
	$\mathrm{I}_{\mathrm{O} 2}$	$\mathrm{V}_{\mathrm{DS}}=0.5 \mathrm{~V}$	60			$\mu \mathrm{A}$	6
	I_{0}	$\mathrm{V}_{\mathrm{DS}}=0.5 \mathrm{~V}$	60			$\mu \mathrm{A}$	7
	I_{04}	$\mathrm{V}_{\mathrm{DS}}=0.5 \mathrm{~V}$	120			$\mu \mathrm{A}$	8
	I_{05}	$\mathrm{V}_{\mathrm{DS}}=0.5 \mathrm{~V}$	900			$\mu \mathrm{A}$	9
Current consumption	I_{DO}	During full-range operation		10		$\mu \mathrm{A}$	10
	I_{DS}	During system clock stop		1.5		$\mu \mathrm{A}$	
Oscillation starting time	$\mathrm{T}_{\text {osc }}$			10		s	11

Note 1: Applied to pins $\mathrm{K}_{1}-\mathrm{K}_{4}, \mathrm{KE}_{1}-\mathrm{KE}_{4}, \mathrm{ACL}, \mathrm{OSC}_{\text {IN }}$
Note 2: Applied to pins $\mathrm{K}_{1}-\mathrm{K}_{4}, \mathrm{KE}_{1}-\mathrm{KE}_{4}, \mathrm{ACL}$
Note 3: Applied to pin Test
Note 4: Applied to pin $V_{D D}$
Note 5: Applied to pins $\mathrm{O}_{\mathrm{ij}}(\mathrm{i}=1$ to $4, \mathrm{j}=0$ to 9)
Note 6: Applied to pins $\mathrm{H}_{1}, \mathrm{H}_{2}$
Note 7: Applied to pin DDC
Note 8: Applied to pin V_{CC}
Note 9: Applied to pins $\mathrm{SO}_{1}, \mathrm{SO}_{2}$
Note 10: Current consumption at 32.768 kHz
Note 11: Oscillation circuit constant, $\mathrm{C}_{\mathrm{G}}=15 \mathrm{pF}, \mathrm{C}_{\mathrm{D}}=22 \mathrm{pF}$

Hardware Configuration

(1) Program memory (ROM)

The on-chip ROM has a configuration of 20 pages $\times 63$ steps $\times 8$ bits (see Fig. 1). The program counter consists of a 5 -bit page address counter (PU) used to specify the pages 0 to 19 , and a 6 -bit polynomial counter $\left(\mathrm{P}_{\mathrm{L}}\right)$ used to specify the steps 0 to 62 .

The stack register is an 11-bit register which allows 1 level of subroutine nesting.
(2) Data memory (RAM) and data address register ($\mathrm{B}_{\mathrm{M}}, \mathrm{B}_{\mathrm{L}}$)
The data memory has a 208-bit organized as 2 $\times 16 \times 4+2 \times 12 \times 4$, and its address is specified by the data address registers ($\mathrm{B}_{\mathrm{M}}, \mathrm{B}_{\mathrm{L}}$). The B_{M} is used to specify the file in the data memory, and the B_{L} used to specify the word within a file.

2 files ($\mathrm{B}_{\mathrm{M}}=2,3$) of data memory are allocated to the display RAM. The data set herein is loaded into the LCD segment pins. Fig. 2 shows the RAM configuration.

$\begin{array}{\|c} \hline \mathrm{PU}_{5}, \mathrm{PU}_{4} \\ \mathrm{PU}_{3}-\mathrm{PU}_{1} \end{array}$	00	01	10
000	Page 0 Note 1 and 4	8	16
001	1 Note 4	9	17
010	2 Note 4	10	18
011	3 Note 4	11	19
100	4 Note 4	12	
101	15 Note 4	13	
110	16 Note 4	Note 3	
'111	7 Note 4	Note 2	

Note 1: Page 0 shows the address where the clock restarts from the standby mode.
Note 2: Page 15 shows the starting address with the ACL.
Note 3: Page 14 shows the subroutine cover page.
Note 4: Pages 0 through 7 show the addresses which allow a jump by the JUMP instruction, $\mathrm{P}_{\mathrm{L6}}=0$.

Fig. 1 ROM configuration

	0	1	2	3	4.	5	6	7	8	9	A	B	C	D	E	F
0								-								
1																
2																
3																

Note: The shadowed area is allocated for a display RAM.

Fig. 2 RAM configuration

(3) $\mathrm{K}_{1}-\mathrm{K}_{\mathbf{4}}, \mathrm{KE}_{1}, \mathrm{KE}_{2}$ (Inputs)

Ports K and KE are 4-bit input ports with pull -down resistors. The contents of these pins can be loaded into the accumulator $A_{C C}$ by instructions.

While in standby mode, if the K or KE pin accepts an input signal, the CPU is initialized and starts execution of the program at $\mathrm{P}_{\mathrm{U}}=0_{\mathrm{H}}, \mathrm{P}_{\mathrm{L}}=$ 00_{H}.

(4) Divider and clock counter

The device contains a real-time clock divider and a $1 / 100 \mathrm{sec}$ counter. These counters generate signals of $1 \mathrm{sec}, 1 / 2 \mathrm{sec}, 1 / 10 \mathrm{sec}$ which can be tested by instructions, and constitute a real-time clock.

The $1 / 100$ counter can be directly indicated on an LCD screen through a decoder. The contents of $1 / 100 \mathrm{sec}$ counter can be loaded into the accumulator A_{CC} by instructions.

(5) LCD driver

The SM531 contains an on-chip LCD driver which can directly drive an 80 -segment LCD with a $1 / 2$ duty and $1 / 2$ bias scheme.

Fig. 3 shows the common and segment waveform. The display frequency is 128 Hz , and 3 V of display voltage is obtained through an internal booster circuit.

The display data is transferred through an LCD driver circuit, and displayed on an LCD screen.

Fig. 4 shows an example of a seven-segment numeric LCD digit. The RAM data of $B_{M}=2$ correspond to the H_{1} segment, and $B_{M}=3$ corresponds to the H_{2} segment.

Fig. 3 LCD driving signal waveform

Fig. 4 7-segment numeric LCD digit

Table 1 Display decoder truth table

$1 / 100 \mathrm{sec}$ counter	Display character	$1 / 100 \mathrm{sec}$ counter	Display character
0000	0101		
0001		0110	
0010			

Note : The display segment of a floating point is specified by the first bit of display RAM $\left(\mathrm{B}_{\mathrm{M}}, \mathrm{B}_{\mathrm{L}}\right)=(3,0)$

Fig. 5 Display RAM and Oij

(6) Display decoder

The $1 / 100$ sec counter is loaded into the display decoder, and output as segment signals through pins $\mathrm{O}_{10}-\mathrm{O}_{40}$. The display decoder can not be used when the RAM data is displayed on an LCD.

Fig. 5 shows the relationship between the display RAM and pins O_{ij}. Table 1 shows the truth table of the display decoder.

(7) Melody generator circuit

The contents of a melody ROM can be output with standard 12 musical scales (555 to 2114 Hz) in two octaves from the SO_{1} and SO_{2} pins. The tone length can be selected between 250 ms and 125 ms
depending on the melody ROM. The melody ROM provides a pause and a stop instruction.

Controlling the melody F/F (ME F/F) by instructions starts and stops the melody. The melody ROM stores up to 128 steps of musical notes.

Table 2 shows the musical scales in one octave. Executing an instruction from a melody ROM outputs half frequencies of the standard frequencies shown in the table 2 , and generates lower 12 musical scales by one octave. Executing an instruction allows an envelope control for melodies. The SO_{1} output has an opposite phase with the SO_{2} output.

Table 2 Melody output frequency

Musical scale	do\#	re	re\#	mi	fa	fa\#	so	so\#	la	la\#	si	do
Frequency (Hz)	1110.8	1170.3	1236.5	1310.7	1394.4	1489.5	1560.4	1680.4	1771.2	1872.4	1985.9	2114.1

(8) ACL circuit

The ACL circuit contains a resistor and a capacitor, which does not require any external circuits. The ACL may by cleared with the interval of about 0.5 sec after a crystal oscillator circuit starts oscillation when the power is turned on, and starts execution of the program at $\mathrm{P}_{\mathrm{U}}=\mathrm{F}_{\mathrm{H}}, \mathrm{P}_{\mathrm{L}}=00_{\mathrm{H}}$.

(9) Standby mode

Executing an instruction places the device in standby mode. In this mode, the system clock is inactivated to reduce power consumption. While in standby mode, if the K or KE pin receives an input signal, or the selected $\gamma \mathrm{F} / \mathrm{F}$ is set, the device exits standby mode and the CPU starts execution of the program at $\mathrm{P}_{\mathrm{U}}=0_{\mathrm{H}}, \mathrm{P}_{\mathrm{L}}=00_{\mathrm{H}}$.

(10) Booster circuit

The device contains a booster circuit which generates a voltage two times higher than the 1.5 V power supply.

Then, it is necessary to apply external capacitors between DDC pin and V_{CC} pin as well as V_{DD} pin and GND (see Fig. 6).

Fig. 6 Booster circuit

(11) System clock

The system clock has a frequency of one third that of a 32.768 kHz clock.

The instruction cycle time should be $91.5 \mu \mathrm{~s}$.

Instruction Set
(1) RAM address instructions

Mnemonic	Machine code	Operation
INCB	4 C	$\mathrm{B}_{\mathrm{L}} \leftarrow \mathrm{B}_{\mathrm{L}}+1$ skip if $\mathrm{B}_{\mathrm{L}}=7$ or F
DECB	4 D	$\mathrm{B}_{\mathrm{L}} \leftarrow \mathrm{B}_{\mathrm{L}}-1$ skip if $\mathrm{B}_{\mathrm{L}}=0$
LB $_{\mathrm{xy}}$	$30-3 \mathrm{~F}$	$\mathrm{B}_{\mathrm{M} 2}, \mathrm{~B}_{\mathrm{M} 1} \leftarrow \mathrm{x}\left(\mathrm{I}_{4}, \mathrm{I}_{3}\right)$ $\mathrm{B}_{\mathrm{L} 4}, \mathrm{~B}_{\mathrm{L} 1} \leftarrow \mathrm{y}\left(\mathrm{I}_{2}, \mathrm{I}_{1}\right)$ $\mathrm{B}_{\mathrm{L} 3}, \mathrm{~B}_{\mathrm{L} 2} \leftarrow(1,1)$
LBL xy	6 B $00-\mathrm{FF}$	$\mathrm{B}_{\mathrm{M}} \leftarrow \mathrm{x}\left(\mathrm{I}_{7}-\mathrm{I}_{5}\right)$ $\mathrm{B}_{\mathrm{L}} \leftarrow \mathrm{y}\left(\mathrm{I}_{4}-\mathrm{I}_{1}\right)$
SABL	73	$\mathrm{B}_{\mathrm{L} 4} \leftarrow 1$ next step only
EXBL	5 A	Acc $\leftrightarrows \mathrm{B}_{\mathrm{L}}$

(2) ROM address instructions

Mnemonic	Machine code	Operation
TR x	80-BE	$\mathrm{P}_{\mathrm{L}} \leftarrow \mathrm{x}\left(\mathrm{I}_{6}-\mathrm{I}_{1}\right)$
TL xy	$\begin{aligned} & 60-64 \\ & 00-\mathrm{FE} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{P}_{\mathrm{U}} \leftarrow \mathrm{x}\left(\mathrm{I}_{11} \mathrm{I}_{7}\right) \\ & \mathrm{P}_{\mathrm{L}} \leftarrow \mathrm{y}\left(\mathrm{I}_{6}-\mathrm{I}_{1}\right) \end{aligned}$
TRS x	C0-FE	$\begin{aligned} & \mathrm{P}_{\mathrm{U}} \leftarrow 01110, \mathrm{P}_{\mathrm{L}} \leftarrow \mathrm{x}\left(\mathrm{I}_{6}-\mathrm{I}_{1}\right) \\ & \mathrm{SR} \leftarrow \mathrm{PC}+1 \end{aligned}$
JUMP xy	00-FF	$\begin{aligned} & \mathrm{P}_{\mathrm{U} 5}, \mathrm{P}_{\mathrm{U} 4} \leftarrow(0,0) \\ & \mathrm{P}_{\mathrm{U} 3}-\mathrm{P}_{\mathrm{U} 1} \leftarrow \mathrm{x}\left(\mathrm{I}_{6}, \mathrm{I}_{8}, \mathrm{I}_{7}\right) \\ & \mathrm{P}_{\mathrm{L} 6} \leftarrow 0 \\ & \mathrm{P}_{\mathrm{L} 5}-\mathrm{P}_{\mathrm{L} 1} \leftarrow \mathrm{y}\left(\mathrm{I}_{5}-\mathrm{I}_{1}\right) \end{aligned}$
ATPL	6A	$\mathrm{P}_{\mathrm{L} 4}-\mathrm{P}_{\mathrm{L} 1} \leftarrow \mathrm{Acc}$
RTN	68	$\mathrm{PC} \leftarrow \mathrm{SR}$
RTNS	69	$\mathrm{PC} \leftarrow \mathrm{SR}$ skip the next step

(3) Data transfer instructions

Mnemonic	Machine code	Operation
LAX x	$10-1 \mathrm{~F}$	Acc $\leftarrow \mathrm{x}\left(\mathrm{I}_{4}-\mathrm{I}_{1}\right)$
LDA x	$20-23$	Acc $\leftarrow \mathrm{M}$ $\mathrm{B}_{\mathrm{M} 2}, \mathrm{~B}_{\mathrm{M} 1} \leftarrow \mathrm{~B}_{\mathrm{M} 2}, \mathrm{~B}_{\mathrm{M} 1} \oplus \mathrm{x}\left(\mathrm{I}_{2}, \mathrm{I}_{1}\right)$
EXC x	$24-27$	Acc $\leftarrow \mathrm{M}$ $\mathrm{B}_{\mathrm{M} 2}, \mathrm{~B}_{\mathrm{M} 1} \leftarrow \mathrm{~B}_{\mathrm{M} 2}, \mathrm{~B}_{\mathrm{M} 1} \oplus \mathrm{x}\left(\mathrm{I}_{2}, \mathrm{I}_{1}\right)$
EXCI x	$28-2 \mathrm{~B}$	Acc $\leftarrow \mathrm{M}$
$\mathrm{B}_{\mathrm{M} 2}, \mathrm{~B}_{\mathrm{M} 1} \leftarrow \mathrm{~B}_{\mathrm{M} 2}, \mathrm{~B}_{\mathrm{M} 1} \oplus \mathrm{x}\left(\mathrm{I}_{2}, \mathrm{I}_{1}\right)$ $\mathrm{B}_{\mathrm{L}} \leftarrow \mathrm{B}_{\mathrm{L}}+1$ skip if $\mathrm{B}_{\mathrm{L}}=7$ or F		
EXCD x	$2 \mathrm{C}-2 \mathrm{~F}$	Acc $\leftarrow \mathrm{M}$ $\mathrm{B}_{\mathrm{M} 2}, \mathrm{~B}_{\mathrm{M} 1} \leftarrow \mathrm{~B}_{\mathrm{M} 2}, \mathrm{~B}_{\mathrm{M} 1} \oplus \mathrm{x}\left(\mathrm{I}_{2}, \mathrm{I}_{1}\right)$ $\mathrm{B}_{\mathrm{L}} \leftarrow \mathrm{B}_{\mathrm{L}}-1$ skip if $\mathrm{B}_{\mathrm{L}}=0$
DTA	52	Acc $\leftarrow 1 / 100 \mathrm{SEC} . \mathrm{C}$.

(4) Arithmetic instructions

Mnemonic	Machine code	Operation
ADD	54	Acc $\leftarrow \mathrm{Acc}+\mathrm{M}$

(5) Test instructions

Mnemonic	Machine code	Operation
TM x	$48-4 \mathrm{~B}$	skip if $\mathrm{Mi}=1\left(\mathrm{i}=\mathrm{I}_{2} \mathrm{I}_{1}\right)$
TC	5 B	skip if $\mathrm{C}=0$
TAM	59	skip if $\mathrm{Acc}=\mathrm{M}$
TABL	58	skip if $\mathrm{Acc}=\mathrm{B}_{\mathrm{L}}$
TG x	$6 \mathrm{C}-6 \mathrm{~F}$	skip if $\gamma=1, \gamma^{2} \leftarrow 0$ $\left(\gamma_{1 \mathrm{~S}}, \gamma_{0.55}, \gamma_{0.1 \mathrm{~S}}\right)$

(6) Bit manipulation instructions

Mnemonic	Machine code	Operation
RM x	$40-43$	$\mathrm{Mi} \leftarrow 0\left(\mathrm{i}=\mathrm{I}_{2} \mathrm{I}_{1}\right)$
SM x	$44-47$	$\mathrm{Mi} \leftarrow 1\left(\mathrm{i}=\mathrm{I}_{2} \mathrm{I}_{1}\right)$
RC	56	$\mathrm{C} \leftarrow 0$
SC	57	$\mathrm{C} \leftarrow 1$

(7) I/O instructions

Mnemonic	Machine code	Operation
KTA	50	Acc $\leftarrow \mathrm{K}$
KETA	51	Acc $\leftarrow \mathrm{KE}$
ATBP	5 E	BP \leftarrow Acc
SDS	4 F	DS $\leftarrow 1$
RDS	4 E	DS $\leftarrow 0$

(8) Melody instructions

Mnemonic	Machine code	Operation
PRE x	78 $00-\mathrm{FF}$	Melody ROM pointer preset
SME	77	ME $\leftarrow 1$
RME	76	ME $\leftarrow 0$
TMEL	75	skip if MES $=1$ MES $\leftarrow 0$

(9) Special instructions

Mnemonic	Machine code	Operation
CEND	74	System clock stop
IDIV	70	DIV $\leftarrow 0$
INIS	71	$1 / 100$ SEC. C. $\leftarrow 0$
SKIP	00	No operation

System Configuration Example (Melody alarm watch)

SM500

4-Bit Microcomputer (LCD Driver)

Description

The SM500 is a CMOS 4-bit microcomputer which integrates a 4-bit parallel processing function, a 1,197-byte ROM, a 40-word RAM, a 15 -stage divider and a 56 -segment LCD driver circuit in a single chip. This microcomputer is applicable to LCD systems with low power consumption and reduced cost.

Features

1. CMOS process
2. ROM capacity: $1,197 \times 8$ bits
3. RAM capacity: 40×4 bits
4. Instruction set: 52
5. Subroutine nesting: 1 level
6. Instruction cycle: $61 \mu \mathrm{~s}$ (TYP.)
7. Input/output ports

I/O ports: 8
(for switching with segment pin)
Input ports: 6
Output ports: 4
LCD output ports: 28 for segment
(including 8 I/O ports)
:2 for common
8. On-chip divider circuit for clock
9. On-chip crystal oscillator circuit
10. LCD driver circuit
(56-segment, $1 / 2$ bias, $1 / 2$ duty)
11. Standby function
12. Single power supply: -3 V or -5 V (TYP.)
13. 48-pin QFP (QFP48-P-1010)

Pin Connections

Block Diagram

Pin Description

Symbol	I/O	Circuit type	Function
$\mathrm{K}_{1}-\mathrm{K}_{4}$	I	Pull down	Acc $\leftarrow \mathrm{K}_{1}-\mathrm{K}_{4}$
α, β	I	Pull up	Independent test possible
$\mathrm{O}_{11}-\mathrm{O}_{41}$	I / O		W and W^{\prime} registers output or input/output to/from K_{F} register
$\mathrm{O}_{\mathrm{S1}}-\mathrm{O}_{\mathrm{S} 4}$	I / O		W and W^{\prime} registers output or input/output to/from K_{S} register
$\mathrm{O}_{12}-\mathrm{O}_{46}$	O		W and W^{\prime} registers output; used for LCD segment output
$\mathrm{H}_{1}, \mathrm{H}_{2}$	O		3 -state level output possible; used for LCD common output
$\mathrm{R}_{1}-\mathrm{R}_{4}$	O		$\mathrm{R}_{1}-\mathrm{R}_{4} \leftarrow$ Acc
$\overline{\mathrm{T}}$	I	Pull up	For test (Connected to GND normally)
ACL	I	pull down	Auto clear
$\mathrm{OSC}_{\mathrm{IN}}, \mathrm{OSC}$			
$\mathrm{V}_{\mathrm{OUT}}$			For clock oscillation
$\mathrm{V}_{\mathrm{DD}}, \mathrm{GND}$			Power supply for LCD driver

Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit	Note
Pin voltage	V_{DD}	-6.0 to +0.3	V	1
	$\mathrm{~V}_{\mathrm{M}}$	V_{DD} to +0.3	V	
	$\mathrm{~V}_{\mathrm{IN}}$	$\mathrm{V}_{\mathrm{DD}}-0.3$ to +0.3	V	
	$\mathrm{~V}_{\mathrm{OUT}}$	$\mathrm{V}_{\mathrm{DD}}-0.3$ to +0.3	V	
Operating temperature	Topr	-20 to +70	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	

Note 1: The maximum applicable voltage on any pin with respect to GND.

- Recommended Operating Conditions

(1) 3V power supply specification

$$
(\mathrm{GND}=0 \mathrm{~V})
$$

Parameter	Symbol	Rating	Unit	Note
Supply voltage	V_{DD}	-2.7 to -3.3	V	
	$\mathrm{~V}_{\mathrm{M}}$	$\mathrm{V}_{\mathrm{DD}} / 2$ (TYP.)	V	
Oscillator frequency	$\mathrm{f}_{\mathrm{OSC}}$	32.768 (TYP.)	kHz	
Oscillation start voltage	$\mathrm{V}_{\mathrm{OSC}}$	-2.7	V	1

(2) 5V power supply specification
$(\mathrm{GND}=0 \mathrm{~V})$

Parameter	Symbol	Rating	Unit	Note
Supply voltage	V_{DD}	-4.5 to -5.5	V	
	$\mathrm{~V}_{\mathrm{M}}$	$\mathrm{V}_{\mathrm{DD}} / 2$ (TYP.)	V	
Oscillator frequency	$\mathrm{f}_{\mathrm{OSC}}$	32.768 (TYP.)	kHz	
Oscillation start voltage	$\mathrm{V}_{\mathrm{OSC}}$	-4.5	V	1

Note 1: The oscillation start time should be within 10 sec .

Electrical Characteristics
(1) 3V power supply specification
$\left(\mathrm{V}_{\mathrm{DD}}=-3.0 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{Ta}=-20\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$.

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	Note
Input voltage	V_{IH}		-0.6		\cdots	V	1
	$\mathrm{V}_{\text {IL }}$				$\mathrm{V}_{\mathrm{DD}}+0.6$	V	
Input current	$\mathrm{I}_{\mathrm{H} 1}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$			15	$\mu \mathrm{A}$	2
	$\mathrm{I}_{\mathrm{H} 2}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$			3	$\mu \mathrm{A}$	3
	$\mathrm{I}_{\text {L3 }}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$			1	$\mu \mathrm{A}$	4
Output voltage	V_{OA}	No load $\mathrm{V}_{\mathrm{M}}=\mathrm{V}_{\mathrm{DD}} / 2$	-0.3			V	5
	$\mathrm{V}_{\text {OB }}$		$\mathrm{V}_{\mathrm{M}}-0.3$		$\mathrm{V}_{\mathrm{M}}+0.3$	V	
	$\mathrm{V}_{\text {OC }}$				$\mathrm{V}_{\mathrm{DD}}+0.3$	V	
Output current	$\mathrm{I}_{\mathrm{OH} 1}$	$\mathrm{V}_{\text {OUT }}=-0.5 \mathrm{~V}$	30			$\mu \mathrm{A}$	6
	$\mathrm{I}_{\mathrm{OL} 1}$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {DD }}+0.5 \mathrm{~V}$	10			$\mu \mathrm{A}$	
	$\mathrm{I}_{\mathrm{OH} 2}$	$\mathrm{V}_{\text {OUT }}=-0.5 \mathrm{~V}$	100			$\mu \mathrm{A}$	7
	$\mathrm{I}_{\mathrm{OL} 2}$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {DD }}+0.5 \mathrm{~V}$	10			$\mu \mathrm{A}$	
	$\mathrm{I}_{\mathrm{O} 3}$	$\mathrm{V}_{\mathrm{DS}}=0.3 \mathrm{~V}$	100			$\mu \mathrm{A}$	8
	$\mathrm{I}_{\mathrm{O} 4}$	$\mathrm{V}_{\mathrm{DS}}=0.5 \mathrm{~V}$	100			$\mu \mathrm{A}$	9
Supply current	$\mathrm{I}_{\text {DA }}$	During full-range operation		20		$\mu \mathrm{A}$	10
	$\mathrm{I}_{\text {DS }}$	When system clock is stationary		3		$\mu \mathrm{A}$	

(2) 5 V power supply specification
$\left(\mathrm{V}_{\mathrm{DD}}=-5.0 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{Ta}=-20\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	Note
Input voltage	V_{IH}		-0.6			V	1
	V_{IL}				$\mathrm{V}_{\mathrm{DD}}+0.6$	V	
Input current	$\mathrm{I}_{\mathrm{H} 1}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$			50	$\mu \mathrm{A}$	2
	$\mathrm{I}_{\mathrm{H} 2}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$			10	$\mu \mathrm{A}$	3
	$\mathrm{I}_{\mathrm{L} 3}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$			3	$\mu \mathrm{A}$	4
Output voltage	$\mathrm{V}_{\text {OA }}$	No load $\mathrm{V}_{\mathrm{M}}=\mathrm{V}_{\mathrm{DD}} / 2$	-0.3			V	5
	V_{OB}		$\mathrm{V}_{\mathrm{M}}-0.3$		$\mathrm{V}_{\mathrm{M}}+0.4$	V	
	V_{OC}				$\mathrm{V}_{\mathrm{DD}}+0.4$	V	
Output current	$\mathrm{I}_{\mathrm{OH} 1}$	$\mathrm{V}_{\text {OUT }}=-0.5 \mathrm{~V}$	35			$\mu \mathrm{A}$	6
	$\mathrm{I}_{\mathrm{OL} 1}$	$\mathrm{V}_{\text {OuT }}=\mathrm{V}_{\text {DD }}+0.5 \mathrm{~V}$	12			$\mu \mathrm{A}$	
	$\mathrm{I}_{\mathrm{OH} 2}$	$\mathrm{V}_{\text {OUT }}=-0.5 \mathrm{~V}$	120			$\mu \mathrm{A}$	7
	$\mathrm{I}_{\mathrm{OL} 2}$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {DD }}+0.5 \mathrm{~V}$	12			$\mu \mathrm{A}$	
	$\mathrm{I}_{\mathrm{O} 3}$	$\mathrm{V}_{\mathrm{DS}}=0.3 \mathrm{~V}$	120			$\mu \mathrm{A}$	8
	$\mathrm{I}_{\mathrm{O} 4}$	$\mathrm{V}_{\mathrm{DS}}=0.5 \mathrm{~V}$	120			$\mu \mathrm{A}$	9
Supply current	I_{DA}	During full-range operation		50	100	$\mu \mathrm{A}$	10
	I_{DS}	When system clock is stationary		10	30	$\mu \mathrm{A}$	

Note 1: Applied to pins $\mathrm{K}_{1}-\mathrm{K}_{4}, \alpha, \beta, \mathrm{ACL}, \mathrm{O}_{11}, \mathrm{O}_{21}, \mathrm{O}_{31}, \mathrm{O}_{41}, \mathrm{O}_{\mathrm{S} 1}-\mathrm{O}_{\mathrm{S} 4}$
Note 2: Applied to pins $\mathrm{K}_{1}-\mathrm{K}_{4}, \mathrm{O}_{11}, \mathrm{O}_{21}, \mathrm{O}_{31}, \mathrm{O}_{41}, \mathrm{O}_{\mathrm{S} 1}-\mathrm{O}_{\mathrm{S} 4}$
Note 3: Applied to pin ACL
Note 4: Applied to pins α, β
Note 5: Applied to pins $\mathrm{H}_{1}, \mathrm{H}_{2}$
Note 6: Applied to pins $\mathrm{O}_{\mathrm{ij}}(\mathrm{i}=1$ to $4, \mathrm{j}=2$ to 6)
Note 7: Applied to pins $\mathrm{O}_{11}-\mathrm{O}_{41}, \mathrm{O}_{\mathrm{S} 1}-\mathrm{O}_{\mathrm{S} 4}$
Note 8: Applied to pin R_{1}
Note 9: , Applied to pins $\mathrm{R}_{2}, \mathrm{R}_{3}, \mathrm{R}_{4}$
Note 10: $\quad \mathrm{f}_{\mathrm{OSC}}=32.768 \mathrm{kHz}$, supply current with no load, oscillator circuit parameter: $\mathrm{C}_{\mathrm{D}}=\mathrm{C}_{\mathrm{G}}=22 \mathrm{pF}$

Fig. 1 H1, H2 waveforms

$\mathrm{C}_{\mathrm{G}}=15 \mathrm{pF}, \mathrm{C}_{\mathrm{D}}=22 \mathrm{pF}$
Fig. 2 Oscillator circuit

Fig. 3 ACL circuit

Pin Functions

(1) $\mathrm{K}_{1}-\mathrm{K}_{4}$ (Inputs)

The $\mathrm{K}_{1}-\mathrm{K}_{4}$ are 4-bit parallel input ports which are connected to the accumulator Acc. The contents of the $\mathrm{K}_{1}-\mathrm{K}_{4}$ are loaded into the A_{CC} by the KTA instruction.

When a system clock is inactivated, if a High level signal is input to any one bit of ports $\mathrm{K}_{1}-\mathrm{K}_{4}$, the system clock restarts, and the program counter starts at page 0 , step 0 .

(2) α, β (Inputs)

The input ports α and β can be independently tested by the TA and TB instructions respectively.

These ports are pulled-up to the High level within a chip.

(3) $\mathbf{R}_{\mathbf{1}}-\mathrm{R}_{\mathbf{4}}$ (Outputs)

The $\mathrm{R}_{1}-\mathrm{R}_{4}$ are 4-bit parallel output ports which generate the data stored in the R register.

The R register is connected to the accumulator A_{Cc}. The contents of the Acc are loaded into the R register by the ATR instruction, which can be output at ports $\mathrm{R}_{1}-\mathrm{R}_{4}$.

The R_{1} of the R register performs, in conjunction with the f_{1}, f_{4} or f_{12} of a divider, the logical product. It can also provide an alarm output.

(4) $\mathrm{H}_{2}, \mathrm{H}_{1}$ (LCD common outputs)

The H_{2} and H_{1} pins are used to drive the common of an LCD with a $1 / 2$ duty, $1 / 2$ bias scheme, and provide a 3-level output.

The display can be turned on or off by the common outputs with the BP register.

(5) O_{11} (Segment output ports)

The segment output ports $\mathrm{O}_{\mathrm{ij}}(\mathrm{i}=1$ to $4, \mathrm{j}=2$ to 6) consist of 20 bits, which are used to output the contents of W^{\prime} and W registers for the display on or off with the BP register.

(6) $\mathrm{O}_{11}, \mathrm{O}_{21}, \mathrm{O}_{31}, \mathrm{O}_{41}$ (Input/output ports)

The I/O ports $\mathrm{O}_{11}-\mathrm{O}_{41}$ are used as segment output ports to generate the contents of W^{\prime} and W registers with the S register. The I/O ports can also be used as output ports as well as input ports for the K_{F} register. After ACL operation, it should be input ports with pull-down resistors.

(7) $\mathrm{O}_{\mathrm{S} 1}, \mathrm{O}_{\mathrm{S} 2}, \mathrm{O}_{\mathrm{S} 3}, \mathrm{O}_{\mathrm{S} 4}$ (Input/output ports)

The I/O ports $\mathrm{O}_{\mathrm{S} 1}-\mathrm{O}_{\mathrm{S} 4}$ are used as segment output ports to generate the contents of W^{\prime} and W registers with the S register. The I/O ports can also be used for output ports as well af input ports for the K_{S} register. After ACL operation, it should be input ports with pull-down resistor.

Hardware Configuration

(1) Program memory (ROM)

The on-chip ROM has 1,197 bytes organized as 19 pages $\times 63$ steps $\times 8$ bits. Fig. 1 shows the ROM configuration.

The program counter consists of a 1-bit $\mathrm{C}_{\mathrm{A}}, \mathrm{C}_{\mathrm{B}}$, a 4-bit page address counter P_{U} register and a 6-bit polynomial counter P_{L} (inhibit code: $P_{L}=$ 111111).

The C_{A} is used to specify the field, the P_{U} for the page, P_{L} for the steps within a page and the C_{B} for the case where the field boundary is crossed.

(2) Data memory (RAM)

The data memory has 160 bits organized as $4 \times$ 10×4 bits. Fig. 2 shows the RAM configuration.

The RAM address is specified by a 2-bit B_{M} register for the file specification, and a 4 -bit B_{L} register for the word (4-bit) specification.

(3) Crystal oscillator and Divider (DIV)

The device contains a crystal oscillator circuit for the system clock and timer oscillator. A 16.384 kHz system clock can be provided and 1 sec signal can be obtained from the final stage of a divider by connecting an external 32.768 kHz crystal oscillator between the oscillator pins.

The divider consists of 15 stages, and lower 4 stages can be loaded into the accumulator by the DTA instruction. The lowest 9 stages ($\mathrm{f}_{9}-\mathrm{f}_{1}$) can be reset with the IDIV instruction or an ACL operation.

(4) Segment decoder

The SM500 contains an on-chip LCD driver which can directly drive an LCD with a $3 \mathrm{~V}, 1 / 2$ duty, $1 / 2$ bias scheme. The device also contains a segment decoder which helps the software to be reduced.

The truth table of a segment decoder is shown in Fig. 5, the LCD segments relative to the decoder shown in Fig. 4, and the LCD driving signal waveform shown in Fig. 6. The display characters other than those described in Fig. 5 are available by directly setting data to W^{\prime} with the WR or WS instruction.

(5) Standby mode

The SM500 is a low power consumption design due to CMOS process. For further low power requirement, executing the CEND instruction places the device in standby mode. To reduce power consumption, the system clock is inactivated.

Fig. 1 ROM configuration

\rightarrow File					
	$B_{\mathrm{L}} \mathrm{~B}_{\mathrm{M}}$	0	1	2	3
	0				
	1				
	2				
\downarrow	3				
$\begin{aligned} & 0 \\ & 3 \\ & 3 \end{aligned}$	4				
	5				
	6				
	7				
	8				
	9				

Fig. 2 RAM configuration

Fig. 3 Crystal oscillator circuit

Fig. 4 LCD segment layout for segment decoders

While in standby mode, if more than one input of $\mathrm{K}_{1}-\mathrm{K}_{4}$ goes High, or $\gamma \mathrm{F} / \mathrm{F}$ is reset, the device exits standby mode and starts execution of the program at address $0000\left(\mathrm{C}_{\mathrm{A}}=0, \mathrm{P}_{\mathrm{U}}=0, \mathrm{P}_{\mathrm{L}}=0\right)$.

(6) Reset function

Connecting a capacitor between the ACL pin and the GND activates the ACL circuit when it is po-

Acc	Display character	Acc	Display character
0	18	6	E
1	1	7	17
2	İ	8	E1
3	-1	9	I
4	$1-1$	A	-
5	$\underline{1}$	B	Blank

wered up. The ACL is cleared in about 0.5 sec from a crystal oscillator circuit starts oscillation after power on, and starts execution of the program at $\mathrm{C}_{\mathrm{A}}=0, \mathrm{P}_{\mathrm{U}}=\mathrm{F}_{\mathrm{H}}, \mathrm{P}_{\mathrm{L}}=0$.
While in power on, applying a High level signal to the ACL pin activates the ACL operation. However, it takes about 0.5 sec to start execution of the program after the ACL goes Low. The lowest 9 stages of a divider are reset during the ACL goes High.

Fig. 7 ACL external circuit

Fig. 5 Display decoder truth table

Fig. 6 LCD driving signal waveforms

Instruction Set
(1) RAM address instructions

Mnemonic	Machine code	Operation
LB xy	$40-4 \mathrm{~F}$	$\mathrm{~B}_{\mathrm{L}} \leftarrow \mathrm{x}\left(\mathrm{I}_{3}, \mathrm{I}_{2}\right), \mathrm{B}_{\mathrm{M}} \leftarrow \mathrm{y}\left(\mathrm{I}_{1}, \mathrm{I}_{0}\right)$
LBL xy	5 F	$\mathrm{~B}_{\mathrm{M}} \leftarrow \mathrm{x}\left(\mathrm{I}_{5}, \mathrm{I}_{4}\right), \mathrm{B}_{\mathrm{L}} \leftarrow \mathrm{y}\left(\mathrm{I}_{3}, \mathrm{I}_{0}\right)$
$(2$ step $)$	$00-\mathrm{FF}$	Acc $\leftrightarrows \mathrm{B}_{\mathrm{L}}$
EXBLA	0 B	$\mathrm{~B}_{\mathrm{L}} \leftarrow \mathrm{B}_{\mathrm{L}}+1$, Skip if $\mathrm{B}_{\mathrm{L}}=7$
INCB	64	$\mathrm{~B}_{\mathrm{L}} \leftarrow \mathrm{B}_{\mathrm{L}}-1$, Skip if $\mathrm{B}_{\mathrm{L}}=0$
DECB	6 C	

(2) ROM address instructions

Mnemonic	Machine code	Operation
COMCB	6D	$\mathrm{C}_{\mathrm{B}} \leftarrow \mathrm{C}_{\mathrm{B}}$
RTN	6 E	$\mathrm{C}_{\mathrm{A}} \leftarrow \mathrm{C}_{\mathrm{S}}, \mathrm{P}_{\mathrm{U}} \leftarrow \mathrm{S}_{\mathrm{U}}, \mathrm{P}_{\mathrm{L}} \leftarrow \mathrm{S}_{\mathrm{L}}, \mathrm{R} \leftarrow 0$
RTNS	6 F	$\begin{aligned} & \mathrm{C}_{\mathrm{A}} \leftarrow \mathrm{C}_{\mathrm{S}}, \mathrm{P}_{\mathrm{U}} \leftarrow \mathrm{~S}_{\mathrm{U}}, \mathrm{P}_{\mathrm{L}} \leftarrow \mathrm{~S}_{\mathrm{L}} \\ & \mathrm{R} \leftarrow 0 \text {, skip the next step } \end{aligned}$
SSRx	70-7F	$\begin{array}{\|l} \hline \mathrm{S}_{\mathrm{U}} \leftarrow \mathrm{x}\left(\mathrm{I}_{3}-\mathrm{I}_{0}\right), \mathrm{E} \leftarrow 1 \text { next step } \\ \text { only } \end{array}$
TRx	80-BE	$\begin{aligned} & \text { if } \mathrm{R}=0 \text {; } \\ & \mathrm{P}_{\mathrm{L}} \leftarrow \mathrm{X}\left(\mathrm{I}_{5}-\mathrm{I}_{0}\right), \mathrm{P}_{\mathrm{U}} \leftarrow \mathrm{~S}_{\mathrm{U}}, \mathrm{C}_{\mathrm{A}} \leftarrow \mathrm{C}_{\mathrm{B}} \\ & \text { if } \mathrm{R}=1 ; \mathrm{P}_{\mathrm{L}} \leftarrow \mathrm{I}_{5}-\mathrm{I}_{0} \\ & \hline \end{aligned}$
TRSx	C0-FF	$\begin{aligned} & \text { if } \mathrm{R}=0, \mathrm{E}=0 ; \mathrm{P}_{\mathrm{L}} \leftarrow \mathrm{x}\left(\mathrm{I}_{5}-\mathrm{I}_{0}\right) \\ & \mathrm{P}_{\mathrm{U} 3} \leftarrow 1, \mathrm{P}_{\mathrm{U} 2}-\mathrm{P}_{\mathrm{U} 0} \leftarrow 0, \mathrm{~S}_{\mathrm{L}} \leftarrow \mathrm{P}_{\mathrm{L}}+1, \\ & \mathrm{~S}_{\mathrm{U}} \leftarrow \mathrm{P}_{\mathrm{U}}, \mathrm{C}_{\mathrm{S}} \leftarrow \mathrm{C}_{\mathrm{A}} \leftarrow 0, \mathrm{R} \leftarrow 1 \\ & \text { if } \mathrm{R}=0, \mathrm{E}=1 ; \mathrm{P}_{\mathrm{L}} \leftarrow \mathrm{x}\left(\mathrm{I}_{5}, \mathrm{I}_{0}\right), \\ & \mathrm{P}_{\mathrm{U}} \leftarrow \mathrm{~S}_{\mathrm{U}}, \mathrm{~S}_{\mathrm{L}} \leftarrow \mathrm{P}_{\mathrm{L}}+1, \mathrm{C}_{\mathrm{S}} \leftarrow \mathrm{C}_{\mathrm{A}} \leftarrow \mathrm{C}_{\mathrm{B}}, \\ & \mathrm{R} \leftarrow 1 \\ & \hline \end{aligned}$
TRSAxy	C0-FF	$\begin{aligned} & \text { if } \mathrm{R}=1 ; \mathrm{P}_{\mathrm{U} 1}, \mathrm{P}_{\mathrm{U} 0} \leftarrow \mathrm{x}\left(\mathrm{I}_{5}, \mathrm{I}_{4}\right) \\ & \mathrm{P}_{\mathrm{L} 3}-\mathrm{P}_{\mathrm{L} 0} \leftarrow \mathrm{y}\left(\mathrm{I}_{3}-\mathrm{I}_{0}\right), \mathrm{P}_{\mathrm{L} 5}, \mathrm{P}_{\mathrm{L} 4} \leftarrow 0 \\ & \hline \end{aligned}$

(3) Arithmetic instructions

Mnemonic	Machine code	Operation		
ADD	08	Acc $\leftarrow \mathrm{Acc}+\mathrm{M}$,	Acc $\leftarrow \mathrm{Acc}+\mathrm{M}+\mathrm{C}$,
:---				
$\mathrm{C} \leftarrow \mathrm{C}_{\mathrm{Y}}$, Skip if $\mathrm{C}_{\mathrm{Y}}=1$,	Acc \leftarrow Acc $+\mathrm{x}\left(\mathrm{I}_{3}-\mathrm{I}_{0}\right)$		
:---				
ADDC				
ADX x				
$31-3 \mathrm{~F}$				
Skip if $\mathrm{C}_{\mathrm{Y}}=1$ No skip if $\mathrm{I}_{3} \mathrm{I}_{2} \mathrm{I}_{1} \mathrm{I}_{0}=1010(30$ de- fines inhibit $)$				
COMA				

(4) Data transfer instruction

Mnemonic	Machine code	Operation
EXCx	$10-13$	Acc $\leftrightarrows M, \mathrm{~B}_{\mathrm{M}} \leftarrow \mathrm{B}_{\mathrm{M}} \oplus \mathrm{x}\left(\mathrm{I}_{1}, \mathrm{I}_{0}\right)$
EXCIx	$14-17$	Acc $\leftarrow \mathrm{M}, \mathrm{B}_{\mathrm{M}} \leftarrow \mathrm{B}_{\mathrm{M}} \oplus \mathrm{x}\left(\mathrm{I}_{1}, \mathrm{I}_{0}\right)$ $\mathrm{B}_{\mathrm{L}} \leftarrow \mathrm{B}_{\mathrm{L}}+1$, Skip if $\mathrm{B}_{\mathrm{L}}=7$
EXCDx	$1 \mathrm{C}-1 \mathrm{~F}$	Acc $\leftarrow \mathrm{M}, \mathrm{B}_{\mathrm{M}} \leftarrow \mathrm{B}_{\mathrm{M}} \oplus \mathrm{x}\left(\mathrm{I}_{1}, \mathrm{I}_{0}\right)$ $\mathrm{B}_{\mathrm{L}} \leftarrow \mathrm{B}_{\mathrm{L}}-1$, Skip if $\mathrm{B}_{\mathrm{L}}=0$

Mnemonic	Machine code	Operation
LAXx	20-2F	Acc $\leftarrow x\left(I_{3}-I_{0}\right)$
LDAx	18-1B	Acc $\leftarrow \mathrm{M}, \mathrm{B}_{\mathrm{M}} \oplus \mathrm{x}\left(\mathrm{I}_{1}, \mathrm{I}_{0}\right)$
ATBP	03	$\mathrm{B}_{\mathrm{P}} \leftarrow$ Acc
PTW	59	$\mathrm{W}_{\mathrm{i} 6} \leftarrow \mathrm{~W}^{\prime}{ }_{\mathrm{i} 6}^{\prime}, \mathrm{W}_{\mathrm{i} 5} \leftarrow \mathrm{~W}^{\prime}{ }_{\mathrm{i} 5}$ ($\mathrm{i}=1$ to 4)
PDTW	61	$\mathrm{W}^{\prime}{ }_{15} \leftarrow \mathrm{~W}^{\prime}{ }_{16} \leftarrow \mathrm{DECi}(\mathrm{i}=1$ to 4)
TW	5C	$\mathrm{W}_{\mathrm{ij}} \leftarrow \mathrm{W}^{\prime}{ }_{\mathrm{ij}}(\mathrm{i}=1, \mathrm{j}=0$ to 6$)$
DTW	5D	$\mathrm{W}^{\prime}{ }_{i 6} \leftarrow \mathrm{DEC}_{\mathrm{i}}$ $W^{\prime}{ }_{i j}$ write shift $(i=1$ to 4 , $\mathrm{j}=0$ to 6)
WR	62	$\begin{aligned} & \mathrm{W}_{46}^{\prime} \leftarrow 0, \mathrm{~W}^{\prime}{ }_{36} \leftarrow \mathrm{Acc}_{2}, \\ & \mathrm{~W}_{26}^{\prime} \leftarrow \mathrm{Acc}_{1} \\ & \mathrm{~W}^{\prime}{ }_{16} \leftarrow \mathrm{Acc}_{0}, \mathrm{~W}^{\prime}{ }_{\mathrm{ij}} \text { write shift } \\ & (\mathrm{i}=1 \text { to } 4, \mathrm{j}=0 \text { to } 6) \\ & \hline \end{aligned}$
WS	63	$\begin{aligned} & \mathrm{W}_{46}^{\prime} \leftarrow 1, \mathrm{~W}_{36}^{\prime} \leftarrow \mathrm{Acc}_{2} \\ & \mathrm{~W}_{26}^{\prime} \leftarrow \mathrm{Acc}_{1}, \mathrm{~W}_{16}^{\prime} \leftarrow \mathrm{Acc}_{0} \\ & \mathrm{~W}_{\mathrm{ij}}^{\prime} \text { write shift (i=1 to } 4, \\ & \mathrm{j}=0 \text { to } 6 \text {) } \\ & \hline \end{aligned}$

(5) I/O control instructions

Mnemonic	Machine code	Operation
ATR	01	R Acc
KTA	6 A	Acc $\leftarrow \mathrm{K}$
ATS	30	$\mathrm{~S} \leftarrow$ Acc
EXKSA	02	if $\mathrm{S}_{2}=1 ;$ Acc $\leftarrow \mathrm{K}_{\mathrm{S}}$ if $\mathrm{S}_{2}=0 ; \mathrm{K}_{\mathrm{S}} \leftarrow$ Acc
EXKFA	6 B	if $\mathrm{S}_{4}=1 ;$ Acc $\leftarrow \mathrm{K}_{\mathrm{F}}$ if $\mathrm{S}_{4}=0 ; \mathrm{K}_{\mathrm{F}} \leftarrow$ Acc

(6) Divider manipulation instructions

Mnemonic	Machine code	Operation
DTA	5 E	Acc $_{3} \leftarrow \mathrm{f}_{1}, \operatorname{Acc}_{2} \leftarrow \mathrm{f}_{2}$
(2 step)	04	$\mathrm{Acc}_{1} \leftarrow \mathrm{f}_{3}, \mathrm{Acc}_{0} \leftarrow \mathrm{f}_{4}$
IDIV	65	$\mathrm{f}_{9}-\mathrm{f}_{1} \leftarrow 0$

(7) Bit manipulation instructions

Mnemonic	Machine code	Operation
RMx	$04-07$	$\mathrm{Mx} \leftarrow 0$
SMx	$0 \mathrm{C}-0 \mathrm{~F}$	$\mathrm{Mx} \leftarrow 1$
RMF	68	$\mathrm{~m}^{\prime} \leftarrow 0$, Acc $\leftarrow 0$
SMF	69	$\mathrm{~m}^{\prime} \leftarrow 1$
COMCN	60	$\mathrm{C}_{\mathrm{N}} \leftarrow \overline{\mathrm{C}_{\mathrm{N}}}$
RC	66	$\mathrm{C} \leftarrow 0$
SC	67	$\mathrm{C} \leftarrow 1$

(8) Test instructions

Mnemonic	Machine code	Operation
TA	50	Skip if $\alpha=1$
TB	51	Skip if $\beta=1$
TC	52	Skip if $\mathrm{C}=0$
TAM	53	Skip if Acc $=\mathrm{M}$
TMx	$54-57$	Skip if $\mathrm{Mx}=1$
TG	58	Skip if $\gamma=0, \gamma \leftarrow 0$
TA0	5 A	Skip if Acc $=0$
TABL	5 B	Skip if Acc $=\mathrm{B}_{\mathrm{L}}$

(9) Clock control instruction

Mnemonic	Machine code	Operation
GEND	5 E	clock stop
$(2$ step $)$	00	

(10) Special instruction

Mnemonic	Machine code	Operation
SKIP	00	No operation

System Configuration Example (Digital watch)

SM5K1

Description

The SM5K1 is a CMOS 4-bit microcomputer which integrates a 4 -bit parallel processing function, a $1,280 \times 8$-bit ROM, a 16×4-bit RAM, a 15 -stage divider circuit in a single chip.

Provided with three kinds of interrupt, four levels of subroutine stack, 64-segment of LCD driver, two modes of standby, 4 bits of large current drive port (LED directly drive port), and 2 kinds of sound output functions, this microcomputer is applicable to battery back-up compact systems to home appliances such as an electronic microwave oven with a minimal external parts count and low power consumption.

Features

1. CMOS process
2. ROM capacity: $1,280 \times 8$ bits
3. RAM capactity

Data RAM: 64×4 bits
Display RAM: 16×4 bits
4. Instruction set: 51
5. Subroutine nesting: 4 levels
6. Instruction cycle: 5 to $61 \mu \mathrm{~s}$
7. Interrupts

External interrupts: 2
Internal interrupt: 1
8. Input/output ports

I/O ports: 8
Input ports: 6
Output ports: 5
LCD output ports: 16 for segment 4 for common
9. Built-in LCD driver circuit
$1 / 3$ bias
$1 / 3$ or $1 / 4$ duty selectable
10. Sound (pulse) output

2 kHz or 2.5 kHz
(400 kHz ceramic oscillator)
$2,048 \mathrm{kHz}$ or $4,096 \mathrm{kHz}$
(32.768 kHz crystal oscillator)
11. LED direct drive $\left(\overline{\mathrm{PO}}_{0}-\overline{\mathrm{P}}_{3}\right)$
$15 \mathrm{~mA}\left(\mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%\right)$
12. Built-in oscillator circuit

Ceramic oscillator $(400 \mathrm{kHz})$
Crystal oscillator (32.768 kHz)
13. 15-stage divider circuit
14. Single power supply: 2.4 to 5.5 V
15. 42-pin SDIP (SDIP42-P-600)

48-pin QFP (QFP 48-P-1010)

- Pin Connections

Block Diagram

Acc	: Accumulator
ACL	: Auto clear
ALU	: Arithmetic logic unit
$\mathrm{B}_{\mathrm{L}}, \mathrm{B}_{\mathrm{M}}$: RAM address register
C	: Carry flag
CG	:Clock generator
DIV	: Divider
HC	:Common signal circuit
IFA, IFB, IFD	: Interrupt request

IME
OSC
$\mathrm{P}_{\mathrm{U}}, \mathrm{P}_{\mathrm{L}}$
RD, RE, RF
SB
SR
X
: Interrupt mask enable F / F
: Clock generator
: Program counter
Mode register
SB register
: Stack register
X register

Note: Pin numbers apply to a 48-pin QFP.

- Pin Description

Symbol	Function	Symbol	Function
$\overline{\mathrm{P}}_{0}-\overline{\mathrm{PO}}_{3}$	Output ports: 15 mA Max. sink current at $5 \mathrm{~V} \pm 10 \%$	F	Sound output port
$\begin{aligned} & \mathrm{P} 1_{0}-\mathrm{P} 1_{3} \\ & \mathrm{P} 2_{0}-\mathrm{P} 2_{3} \\ & \hline \end{aligned}$	Input/output ports	T	Test input port (normally connected to GND)
$\mathrm{P} 3_{0}-\mathrm{P} 3_{3}$	Input ports	$\mathrm{OSC}_{\text {IN }}, \mathrm{OSC}_{\text {OUT }}$	Ceramic or crystal oscillator
$\mathrm{H}_{0}-\mathrm{H}_{3}$	Common signal output ports	$\overline{\text { ACL }}$	Reset input port
$\mathrm{S}_{0}-\mathrm{S}_{15}$	Segment signal output ports	V_{DD}, GND	Power supply
INTA, INTB	External interrupt input ports	$\mathrm{V}_{\mathrm{OA}} / \mathrm{V}_{\mathrm{DSP}}, \mathrm{V}_{\mathrm{OB}}$	LCD drive power supply

- Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit	Note
Supply voltage	V_{DD}	-0.3 to 6.5	V	
Input voltage	V_{1}	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V	
Output voltage	V_{O}	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V	
Source output current on each pin	$\mathrm{I}_{\mathrm{O} 1}$	4	mA	1
	$\mathrm{I}_{\mathrm{O} 2}$	4	mA	2
	I_{O}	4	mA	3
	$\mathrm{I}_{\mathrm{O} 4}$	2	mA	4
Sink output current on each pin	I_{05}	30	mA	1
	$\mathrm{I}_{\mathrm{O} 6}$	200	$\mu \mathrm{A}$	2
	I_{7}	4	mA	3
	$\mathrm{I}_{\mathrm{O} 8}$	2	mA	4
Sum of source output current	$\Sigma \mathrm{I}_{\mathrm{OH}}$	20	mA	
Sum of sink output current	$\Sigma \mathrm{I}_{\text {OL }}$	80	mA	
Operating temperature	Topr	-20 to 70	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to 150	${ }^{\circ} \mathrm{C}$	

Note 1: Applied to pins $\overline{\mathrm{P}}_{\mathrm{i}}(\mathrm{i}=3$ to 0$)$
Note 2: Applied to pins $\mathrm{P} 1_{\mathrm{i}}, \mathrm{P} 2_{\mathrm{i}}(\mathrm{i}=3$ to 0$)$
Note 3: Applied to pin F
Note 4: Applied to pins $\mathrm{H}_{0}-\mathrm{H}_{3}, \mathrm{~S}_{0}-\mathrm{S}_{15}$
Recommended Operating Conditions

Parameter	Symbol	Rating	Unit	Note
Supply voltage	V_{DD}	2.4 to 5.5	V	
Instruction cycle time	$\mathrm{t}_{\mathrm{sys}}$	61 to 5	$\mu \mathrm{~s}$	
Operating temperature	Topr	-20 to 70	${ }^{\circ} \mathrm{C}$	

DC Characteristics
$\left(\mathrm{V}_{\mathrm{DD}}=2.4 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{Ta}=-20^{\circ} \mathrm{C}$ to $\left.+70^{\circ} \mathrm{C}\right)$

Note 7: Applied to pins $\overline{\mathrm{PO}}_{\mathrm{i}}(\mathrm{i}=0$ to 3)
Note 8: Applied to pin OSC ${ }_{\text {OUT }}$
Note 9: Applied to pin F
Note 10: Applied to pins $\mathrm{H}_{0}-\mathrm{H}_{3}$
Note 11: Applied to pins $\mathrm{S}_{0}-\mathrm{S}_{15}$
Note 12: No load condition. Current consumption under the operation with an external clock input. LCD should be turned on.
Note 13: No load condition. Current consumption when driving an oscillator and turning LCD ON placed the device in hold mode.
Note 14: No load condition. Current consumption when driving an oscillator and turning an LCD bleeder resistor OFF placed the device in hold mode.
Note 15: No load condition. Current consumption when the entire system including ceramic oscillation is inactivated.
Note 16: No load condition. Current consumption when the entire system except for crystal oscillator is inactivated.

External clock Input characteristics
($\mathrm{V}_{\mathrm{DD}}=2.4$ to 5.5 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input rise time	t_{M}				50	ns
Input fall time	t_{F}				50	ns
Clock pulse width	t_{L}		1.20		30.47	$\mathrm{\mu}$
	t_{H}		1.20		30.47	

- External Input Clock Timing

- Oscillator Circuit

(a) 400 kHz clock

(b) 32.768 kHz clock

(c) External clock input circuit

Note: The resistors, capacitors and crystal oscillators should be located as close to the LSI chip as possible to minimize influence of stray capacitance.

Pin Functions

(1) GND, V_{DD} (Power supply)

The GND pin should be grounded.
The $V_{D D}$ pin is the power supply input which should be positive with respect to GND.

(2) T (Test input)

The test pin must be grounded and should not be used. It is connected to GND with a pull-down resistor.

(3) ACL (Reset input)

The ACL accepts an active-Low level which initializes the internal logic of the device. Normally a capacitor is connected between this pin and GND to .provide a power-on reset function.

(4) OSC $_{\text {IN }}$, OSC $_{\text {out }}$ (Crystal or ceramic oscillators)
The $\mathrm{OSC}_{\text {IN }}$ and $\mathrm{OSC}_{\text {OUT }}$ pins connect with an external crystal or ceramic oscillator, in conjunction with an on-chip oscillator circuit, constitute a real-time clock.
Either a crystal or ceramic oscillator is selectable with a mask option.

(5) F (Sound output)

The pin F serves exclusively as a sound output pin which can be selected between 2 kHz and 2.5 kHz at the base frequency of a 400 kHz ceramic oscillator, $2,048 \mathrm{kHz}$ and $4,096 \mathrm{kHz}$ at a 32.768 kHz crystal oscillator.

(6) $\mathrm{H}_{0}-\mathrm{H}_{3}$ (Common drive outputs)

The $\mathrm{H}_{0}-\mathrm{H}_{3}$ pins are used to drive the common output of an LCD.

(7) $\mathrm{S}_{0}-\mathrm{S}_{15}$ (Segment drive outputs)

The $\mathrm{S}_{0}-\mathrm{S}_{15}$ pins are used to drive LCD segments.

(8) INTA, INTB (External interrupt inputs)

The IFA flag is set at the rising edge of INTA input pin, and the IFB flag is set at the falling edge of INTB input pin.
Note: Both INTA and INTB pins are connected to the noise debounce circuit which does not accept the pulse shorter than two instruction cycles.
(9) $\overline{\mathrm{PO}}_{0}-\overline{\mathrm{PO}}_{3}$ (Output ports)

The $\overline{\mathrm{P} 0}$ port, output pins $\overline{\mathrm{P}}_{0}-\overline{\mathrm{P}}_{3}$ are used to directly drive an LED with a maximum of 15 mA of sink current $\left(V_{D D}=5 \mathrm{~V} \pm 10 \%\right)$.

(10) $\mathrm{P1}_{0}-\mathrm{P} 1_{3}, \mathrm{P2}_{0}-\mathrm{P} 2_{3}$ (I/O ports)

The P1 and P2 are I/O ports which can be switched between Input and Output modes through an instruction at a 4-bit unit.

These ports can also be used as output ports for a keymatrix.

(11) $\mathrm{P3}_{0}-\mathrm{P3}_{3}$ (Input ports)

The P3 port, input pins $\mathrm{P}_{30}-\mathrm{P}_{33}$ are connected to the positive supply with pull-down resistors, which can be used for a keymatrix.

Hardware Construction

(1) Program counter and stack register

The program counter (PC) is used to specify the ROM address.

The PC consists of 12 bits including a 6-bit page address count register $\left(\mathrm{P}_{\mathrm{U}}\right)$ and a 6 -bit binary counter (P_{L}) which addresses steps within each page.

The stack register (SR) consists of 4 stages which provides up to 4 levels of subroutine nesting.

(2) Program memory (ROM)

The SM5K1 has 1,280 steps of on-chip ROM organized as 20 pages $\times 64$ steps.

When the ACL resets the device (power-on), it starts execution of the program at page 0 , step 0 . Fig. 1 shows the jump address with a ROM address instruction.

A jump within a page is executed by a TR instruction, and a jump out of a page is executed by a TL instruction.

A subroutine jump is executed by a CALL or TRS instruction.

(3) Data memory (RAM) and B register

The RAM consists of a 256 -bit data RAM organized as $4 \times 16 \times 4$ bits and a 64 -bit display RAM organized as $8 \times 2 \times 4$ bits.

Fig. 2 shows the RAM configuration with 6 files of architecture.

The B register consists of a 4-bit BM which address files and a 4-bit BL which address words.
$2 \times 8 \times 4$ bits of RAM space, $(4 \times 16+2 \times 8) \times 4$ bits, is used as a display RAM area from which data is output to LCD segment driving pins. An LCD with a $1 / 4$ or $1 / 3$ duty and $1 / 3$ bias format can be directly driven by writing display data into the display RAM area.

Fig. 3 shows the relationship between the display RAM and LCD segments.

The shadowed area is allocated for a display RAM
Note: The file can be specified as long as the BM should be 0 , $1,2,3,8$ or 9 .

Fig. 2 RAM configuration
(4) Accumulator (Acc), X register, arithmetic and logic unit (ALU)
The accumulator (Acc) is a 4-bit general-purpose register which transfers data and numerics to memory, I/O ports, and registers. The Acc performs arithmetic operations in conjuction with a RAM, a carry flag and an ALU.

Page	0	1	2	3	4	5	6	7	8	9
P_{U}	000000	000001	000010	000011	000100	000101	000110	000111	001000	001001
	ACL	Subroutine TRS cover	Interrupt	Standby clear	Table reference page at the PAT instruction execution	TRS x				

Page	A	B	C	D	E	F	10_{H}	11_{H}	12_{H}	13_{H}	
P_{U}	001010	001011	001100	001101	001110	001111	010000	010001	010010	010011	
				TRS x	CALL xy						

Fig. 1 ROM configuration

The X register is a 4-bit register used as a temporary register which transfers and compares data with the Acc. The ROM data can be loaded into the X register and Acc using a table reference instruction.

The arithmetic and logic unit (ALU) performs binary addition, in conjunction with a RAM, a carry flag and an Acc.

(5) SB register

The SB register is an 8-bit register which can be used as a save register.
(6) Output latch register and mode register

Ports P0, P1 and P2 connect with output latch registers, and transfer the contents of the Acc to the output latch registers with an instruction.

The SM5K1 has mode registers RD, RE and RF for controlling an LCD and interrupt functions.
(7) System clock generator circuit, divider

The $\mathrm{OSC}_{\text {IN }}$ and OSC OUt provide a system clock f_{S} with the base frequency divided by two. One cy-
cle of the system clock is identical to the instruction cycle time.

The divider consists of 15 stages. The lower 8 -stage is reset with an instruction, and the lowest 4 -stage is transferred to the Acc by a DTA instruction.

The oscillator can be selected between the ceramic and crystal with a mask option.

The least stage of a divider f_{C} can be selected between 2 Hz and 1 Hz under crystal oscillation with a mask option (See Fig. 4).

(8) Sound output

The frequency obtained by a system clock generator circuit can be output from the F pin as a sound pulse.

Setting the RD register outputs and stops the sound pulse, and switches the frequency. The frequency can be selected between 2 kHz and 2.5 kHz at 400 kHz of a ceramic oscillator, while $2,048 \mathrm{kHz}$ and $4,096 \mathrm{kHz}$ at 32.768 kHz of a crystal oscillator.

[^3]Fig. 3 Display RAM and LCD segment outputs.

Fig. 4 System clock generator circuit ($\mathrm{fc}=1 \mathrm{~Hz}$ or 0.5 Hz)

Fig. 5 Interrupt handling
(9) Interrupts

The INTA, INTB inputs and the divider overflow flag can be used for the interrupt request. The IFA, IFB and IFD flags can be used as the interrupt request flag.
The interrupt block consists of mask flags (RE_{0}, $\mathrm{RE}_{1}, \mathrm{RE}_{2}$), an IME flag, and an interrupt processing circuit.

(10) Standby mode

To reduce power consumption, the device is placed in standby mode, and the program execution is inactivated.

- Stop mode

In the stop mode, the entire system clock is inactivated under ceramic oscillation, however, only a reference clock is operative under crystal oscillation.

- Hold mode

Only a system clock generator circuit (CG circuit) is inactivated, while the OSC and DIV circuit is in operative (see block diagram).

While in standby mode, if any one bit of P3 input port goes High during ACL, or an interrupt occurs from unmasked INTA, INTB or a divider, the device exits standby mode and starts program execution.

(11) Reset function (ACL)

Applying a Low level signal to the $\overline{\mathrm{ACL}}$ pin resets the internal logic of the device and applying a High level signal starts execution of the program at address 0 , page 0 .

Once the device is reset, all I/O ports are placed in input mode, and the mode registers RD, RE and RF are cleared. The output port P0 is cleared to output a High level signal.

The interrupt enable flags IFA, IFB and IFD, and the interrupt master enable flag IME are reset to disable all interrupts.

In case the noise may harm the ACL operation, apply a capacitor between $\overline{\mathrm{ACL}}$ pin and V_{DD} pin (see Fig. 6).

Fig. 6 ACL circuit
which can directly drive an LCD with a $1 / 4$ duty and $1 / 3$ bias as well as $1 / 3$ duty and $1 / 3$ bias scheme.

Fig. 7 shows an example of LCD segment configuration for $1 / 4$ duty.

Each segment of the LCD can be turned on or off by software control of the setting of the corresponding bit " 1 " or " 0 " in the display RAM area (see Fig. 3).

The LCD digit may have any shape, provided that the maximum number of segments does not exceed 64 (see Fig. 7).

Fig. 8 shows an example of a seven-segment numeric LCD digit.

- LCD driving signal waveform

Fig. 9 shows the LCD signal driving waveforms required to display the number " 5 " on the 7 -segment display for $1 / 4$ duty shown in Fig. 8 (a).

Fig. 10 shows the LCD signal driving waveforms required to display the number " 2 " on the 7 -segment display for $1 / 3$ duty shown in Fig. 8 (a).

(b) $1 / 3$ duty

Fig. 8 7-segment numeric LCD digit
(a) 1/4 duty

(12) LCD driver

- Display segment

The SM5K1 contains an on-chip LCD driver

Fig. 7 LCD configuration for $1 / 4$ duty

1/4 duty
Frame frequency $=1 / \mathrm{T}=62.5 \mathrm{~Hz}$ or 125 Hz

Fig. 9 LCD driving signal waveform

- V_{OA} and V_{OB} pins

The device contains bleeder resistors to allow 1/ 3 bias driving. When V_{DD} is 3 V , voltages of 2 V and 1 V are applied to pins V_{OA} and V_{OB} respectively.

Normally pins V_{OA} and V_{OB} are left open. When an LCD with a large display area is driven, connect capacitors across pins V_{OA} and V_{DD} and across V_{OB} and V_{DD} to improve the rise time of the LCD driving signal.

$1 / 3$ duty
Frame frequency $=1 / \mathrm{T}=83.3 \mathrm{~Hz}$ or 166.7 Hz

Fig. 10 LCD driving signal waveform

Instruction Set
(1) ROM address instructions

Mnemonic	Machine code	Operation
TR x	$80-\mathrm{BF}$	$\mathrm{P}_{\mathrm{L}} \leftarrow \mathrm{x}\left(\mathrm{I}_{5}-\mathrm{I}_{0}\right)$
TL xy	E0-E4 $00-\mathrm{FF}$	$\mathrm{P}_{\mathrm{U}} \leftarrow \mathrm{x}\left(\mathrm{I}_{11}-\mathrm{I}_{6}\right)$ $\mathrm{P}_{\mathrm{L}} \leftarrow \mathrm{y}\left(\mathrm{I}_{5}-\mathrm{I}_{0}\right)$
TRS x	C0-DF	$\mathrm{Push}, \mathrm{P}_{\mathrm{U}} \leftarrow 01 \mathrm{H}$, $\mathrm{P}_{\mathrm{L}} \leftarrow \mathrm{x}\left(\mathrm{I}_{4} \mathrm{I}_{3} \mathrm{I}_{2} \mathrm{I}_{1} \mathrm{I}_{0} 0\right)$
CALL xy	F0-F4 $00-\mathrm{FF}$	Push, $\mathrm{P}_{\mathrm{U}} \leftarrow \mathrm{x}\left(\mathrm{I}_{11}-\mathrm{I}_{6}\right)$ $\mathrm{P}_{\mathrm{L}} \leftarrow \mathrm{y}\left(\mathrm{I}_{5}-\mathrm{I}_{0}\right)$
RTN	7 D	Pop
RTNS	7 E	Pop, Skip the next step
RTNI	7 F	Pop, IME $\leftarrow 1$

(2) Data transfer instructions

Mnemonic	Machine code	Operation
LAX x	10-1F	Acc $\leftarrow \mathrm{x}\left(\mathrm{I}_{3}-\mathrm{I}_{0}\right)$
LBMX x	30-3F	$\mathrm{B}_{\mathrm{M}} \leftarrow \mathrm{x}\left(\mathrm{I}_{3}-\mathrm{I}_{0}\right)$
LBLX x	20-2F	$\mathrm{B}_{\mathrm{L}} \leftarrow \mathrm{x}\left(\mathrm{I}_{3}-\mathrm{I}_{0}\right)$
LDA x	50-53	Acc $\leftarrow \mathrm{M}, \mathrm{B}_{\mathrm{Mi}} \leftarrow \mathrm{B}_{\mathrm{Mi}} \oplus \times\left(\mathrm{l}_{1}, \mathrm{I}_{0}\right),(\mathrm{i}=1,0)$
EXC x	54-57	$\mathrm{M} \leftarrow$ Acc, $\mathrm{B}_{\mathrm{Mi}} \leftarrow \mathrm{B}_{\mathrm{Mi}} \oplus \times\left(\mathrm{I}_{1}, \mathrm{I}_{0}\right),(\mathrm{i}=1,0)$
EXCI x	58-5B	$\begin{aligned} & \mathrm{M} \leftrightarrow A c c, \mathrm{~B}_{\mathrm{L}} \leftarrow \mathrm{~B}_{\mathrm{L}}+1 \\ & \mathrm{~B}_{\mathrm{Mi}} \leftarrow \mathrm{~B}_{\mathrm{Mi}} \oplus \times\left(\mathrm{I}_{1}, \mathrm{I}_{0}\right),(\mathrm{i}=1,0) \\ & \text { Skip if } \mathrm{B}_{\mathrm{L}}=\mathrm{F}_{\mathrm{H}} \end{aligned}$
EXCD x	$5 \mathrm{C}-5 \mathrm{~F}$	$\begin{aligned} & \mathrm{M} \leftrightarrow A c c, \mathrm{~B}_{\mathrm{L}} \leftarrow \mathrm{~B}_{\mathrm{L}}-1 \\ & \mathrm{~B}_{\mathrm{Mi}} \leftarrow \mathrm{~B}_{\mathrm{Mi}} \oplus \times\left(\mathrm{I}_{1}, \mathrm{I}_{0}\right),(\mathrm{i}=1,0) \\ & \text { Skip if } \mathrm{B}_{\mathrm{L}}=0 \end{aligned}$
EXAX	64	Acc $\leftrightarrow \mathrm{X}$
ATX	65	$\mathrm{X} \leftarrow$ Acc
EXBM	66	$\mathrm{B}_{\mathrm{M}} \leftrightarrow \mathrm{Acc}$
EXBL	67	$\mathrm{B}_{\mathrm{L}} \leftrightarrow \mathrm{Acc}$
EX	68	$\mathrm{B} \leftrightarrow \mathrm{SB}$

(3) Arithmetic instructions

Mnemonic	Machine code	Operation
ADX x	$00-0 \mathrm{~F}$	Acc $\leftarrow \mathrm{Acc}+\mathrm{x}\left(\mathrm{I}_{3}-\mathrm{I}_{0}\right)$ Skip if $\mathrm{CY}=1$
ADD	7 A	Acc $\leftarrow \mathrm{Acc}+\mathrm{M}$
ADC	7 B	Acc $\leftarrow \mathrm{Acc}+\mathrm{M}+\mathrm{C}, \mathrm{C} \leftarrow \mathrm{CY}$ Skip if $\mathrm{CY}=1$
COMA	79	Acc \leftarrow Acc
INCB	78	$\mathrm{~B}_{\mathrm{L}} \leftarrow \mathrm{B}_{\mathrm{L}}+1$, Skip if $\mathrm{B}_{\mathrm{L}}=\mathrm{F}_{\mathrm{H}}$
DECB	7 C	$\mathrm{B}_{\mathrm{L}} \leftarrow \mathrm{B}_{\mathrm{L}}-1$, Skip if $\mathrm{B}_{\mathrm{L}}=0$

(4) Test instructions

Mnemonic	Machine code	Operation
TAM	6 F	Skip if $\mathrm{Acc}=\mathrm{M}$
TC x	6 E	Skip if $\mathrm{C}=1$
TM	48-4B	Skip if $\mathrm{M}_{\mathrm{i}}=1$, ($\mathrm{i}=3$ to 0)
TABL	6B	Skip if Acc $=\mathrm{B}_{\mathrm{L}}$
TPB x	4C-4F	Skip if $\mathrm{P}(\mathrm{R})_{\mathrm{i}}=1,\left(\mathrm{i}=\mathrm{I}_{1}, \mathrm{I}_{0}\right)$
TA	6C	Skip if IFA $=1 \quad$ IFA $\leftarrow 0$
TB	6D	Skip if IFB $=1 \quad$ IFB $\leftarrow 0$
TD	$\begin{aligned} & \hline 69 \\ & 02 \\ & \hline \end{aligned}$	Skip if $\mathrm{IFD}=1 \quad$ IFD $\leftarrow 0$

(5) Bit manipulation instructions

Mnemonic	Machine code	Operation
SM x	$44-47$	$\mathrm{M}_{\mathrm{i}} \leftarrow 1(\mathrm{i}=3$ to 0$)$
RM x	$40-43$	$\mathrm{M}_{\mathrm{i}} \leftarrow 0(\mathrm{i}=3$ to 0$)$
SC	61	$\mathrm{C} \leftarrow 1$
RC	60	$\mathrm{C} \leftarrow 0$
IE	63	IME $\leftarrow 1$
ID	62	IME $\leftarrow 0$

(6) I / O instructions

Mnemonic	Machine code	Operation
INL	70	Acc $\leftarrow \mathrm{P} 1_{\mathrm{i}}(\mathrm{i}=3$ to 0$)$
OUTL	71	$\mathrm{P} 0_{\mathrm{i}} \leftarrow \mathrm{Acc}(\mathrm{i}=3$ to 0$)$
ANP	72	$\mathrm{Pj} \leftarrow \mathrm{Pj} \wedge \mathrm{Acc}(\mathrm{j}=2$ to 0$)$
ORP	73	$\mathrm{Pj} \leftarrow \mathrm{Pj} \vee \mathrm{Acc}(\mathrm{j}=2$ to 0$)$
IN	74	Acc $\leftarrow \mathrm{Pj}(\mathrm{j}=3$ to 1$)$
OUT	75	$\mathrm{Pj} \leftarrow \operatorname{Acc}(\mathrm{j}=2$ to 0$), \mathrm{Pj} \leftarrow$ Acc $\left(\mathrm{j}=\mathrm{F}_{\mathrm{H}}-\mathrm{D}_{\mathrm{H}}\right)$

(7) Table reference instructions

Mnemonic	Machine code	Operation
PAT	6A	Push $\begin{aligned} & \mathrm{P}_{\mathrm{U}} \leftarrow 04 \mathrm{H}, \mathrm{PL} \leftarrow\left(\mathrm{X}_{1}, \mathrm{X}_{0}, \mathrm{Acc}\right) \\ & \mathrm{X} \leftarrow \mathrm{ROM} \text { H, Acc } \leftarrow \text { ROM L } \\ & \text { Pop } \\ & \hline \end{aligned}$

(8) Divider operation instructions

Mnemonic	Machine code	Operation
DR	69	DIV $\left(\mathrm{f}_{7}-\mathrm{f}_{0}\right)$ Reset
	03	
DTA	69	Acc \leftarrow DIV $\left(\mathrm{f}_{3}-\mathrm{f}_{0}\right)$
	04	

(9) Special instructions

Mnemonic	Machine code	Operation
STOP	76	Standby mode (STOP)
HALT	77	Standby mode (HALT)
NOP	00	No operation

System Configuration Example (Audio-timer)

SMAムA 4-Bit Microcomputer (LCD Driver)

Description

The SM4A is a CMOS 4-bit microcomputer which integrates a 4 -bit parallel procesing function, a 2,268-byte ROM, a 96 -word RAM, a 15 -stage divider, and a 68-segment LCD driver circuit in a single chip.

This microcomputer is applicable to the system having multiple LCD segment, with low power consumption.

Features

1. CMOS process
2. ROM capacity: $2,268 \times 8$ bits
3. RAM capacity: 96×4 bits
4. Instruction set: 54
5. Subroutine nesting: 1 level
6. Instruction cycle: $61 \mu \mathrm{~s}$ (TYP.)
7. Input/output ports

I/O ports: 4
Input ports: 6
Output ports: 4
LCD output ports: 34 for segment 2 for common
8. On-chip clock divider
9. On-chip crystal oscillator
10. External RAM access
11. LCD driver circuit
(68-segment, $1 / 2$ bias, $1 / 2$ duty)
12. Standby function
13. Single power supply: $-3 V$ (TYP.)
14. 60-pin QFP (QFP60-P-1414)

Pin Connections

Block Diagram

Pin Description	Circuit type	Function	
Symbol	I / O		
$\mathrm{K}_{1}-\mathrm{K}_{4}$	I	Pull down	Acc $\leftarrow \mathrm{K}_{1}-\mathrm{K}_{4}$
α	I	Pull down	Set by \uparrow, reset after test instruction execution
β	I	Pull down	Input signal is held for 1 instruction cycle, test possible
$\mathrm{DIO}_{1}-\mathrm{DIO}_{4}$	I / O	3-state output	Acc $\leftrightarrows \mathrm{DIO}_{1}-\mathrm{DIO}_{4}$
$\mathrm{R}_{1}-\mathrm{R}_{4}$	O	Complementary	$\mathrm{R}_{1}-\mathrm{R}_{4} \leftarrow \mathrm{Acc}$
$\mathrm{O}_{11}-\mathrm{O}_{48}$	O		W and W^{\prime} registers output: used for LCD segment output
$\mathrm{OS}_{1}, \mathrm{OS}_{2}$	O		$3-$ state level output possible, used for LCD common output
$\mathrm{H}_{1}, \mathrm{H}_{2}$	O		For test the input signal of High or Low
BA	I	Pull up	For test (Connected to V_{DD} normally)
$\mathrm{T}_{1}, \mathrm{~T}_{2}$	I		Auto clear
ACL	I		For clock oscillation
$\mathrm{OSC}_{\mathrm{IN}}, \mathrm{OSC} \mathrm{OST}_{\mathrm{OUT}}$			Power supply for LCD driver
V_{M}			Power supply for logic circuit
$\mathrm{GND}, \mathrm{V}_{\mathrm{DD}}$			

- Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit	Note
Pin voltage	V_{DD}	-3.5 to +0.3	V	1
	$\mathrm{~V}_{\mathrm{M}}$	-3.5 to +0.3	V	
	$\mathrm{~V}_{\mathrm{IN}}$	$\mathrm{V}_{\mathrm{DD}}-0.3$ to +0.3	V	
Operating temperature	Topr	-5 to +55	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	

Note 1: The maximum applicable voltage on any pin with respect to GND.

- Recommended Operating Conditions

Parameter	Symbol	Rating	Unit
Supply voltage	V_{DD}	-3.2 to -2.6	V
	$\mathrm{~V}_{\mathrm{M}}$	$\mathrm{V}_{\mathrm{DD}} / 2$ (TYP.)	V
Oscillator frequency	$\mathrm{f}_{\mathrm{OSC}}$	32.768 (TYP.)	kHz

Electrical Characteristics			$\left(\mathrm{V}_{\mathrm{DD}}=-3.2\right.$ to $\left.-2.6 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)$				
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	Note
Input voltage	$\mathrm{V}_{\mathrm{IH} 1}$		-0.6			V	1
	$\mathrm{V}_{\text {ILI }}$				$\mathrm{V}_{\mathrm{DD}}+0.6$	V	
	$\mathrm{V}_{\mathrm{IH} 2}$		-0.3			V	2
	$\mathrm{V}_{\mathrm{IL} 2}$				$\mathrm{V}_{\mathrm{DD}}+0.3$	V	
Output voltage	$\mathrm{V}_{\mathrm{OH} 1}$	$\mathrm{I}_{\text {OUT }}=50 \mu \mathrm{~A}$ to V_{DD}	-0.5			V	3
	$\mathrm{V}_{\text {OL1 }}$	$\mathrm{I}_{\text {OUT }}=5 \mu \mathrm{~A}$ to GND			$\mathrm{V}_{\mathrm{DD}}+0.5$	V	
	$\mathrm{V}_{\mathrm{OH} 2}$	$\mathrm{I}_{\text {OUT }}=50 \mu \mathrm{~A}$ to V_{DD}	-0.5			V	4
	$\mathrm{V}_{\text {OL2 }}$	$\mathrm{I}_{\text {OUT }}=30 \mu \mathrm{~A}$ to GND			$\mathrm{V}_{\mathrm{DD}}+0.5$	V	
	$\mathrm{V}_{\mathrm{OH} 3}$	$\mathrm{I}_{\mathrm{OUT}}=50 \mu \mathrm{~A}$ to V_{DD}	-0.5			V	5
	$\mathrm{V}_{\text {OL3 }}$	$\mathrm{I}_{\text {OUT }}=50 \mu \mathrm{~A}$ to GND			$\mathrm{V}_{\mathrm{DD}}+0.5$	V	
	V_{OA}	$\begin{aligned} & \text { No load } \\ & \mathrm{V}_{\mathrm{DD}}=-3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{M}}=-1.5 \mathrm{~V} \\ & \hline \end{aligned}$	-0.3			V	6
	$\mathrm{V}_{\text {OB }}$			-1.5		V	
	$\mathrm{V}_{\text {OC }}$				-2.7	V	
Output current	$\mathrm{I}_{\text {SO }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=-0.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{DD}}+0.2 \mathrm{~V} \end{aligned}$	100			$\mu \mathrm{A}$	7
	$\mathrm{I}_{\text {SIN }}$		100			$\mu \mathrm{A}$	
Supply current	I_{DA}	During full-range operation		50	100	$\mu \mathrm{A}$	
	I_{DS}	When system clock is stationary		10	20	$\mu \mathrm{A}$	

[^4]
Pin Functions

(1) $\mathrm{K}_{1}-\mathrm{K}_{4}$ (Inputs)

The input ports $\mathrm{K}_{1}-\mathrm{K}_{4}$ are connected to the accumulator Acc. The contents of the $\mathrm{K}_{1}-\mathrm{K}_{4}$ are loaded into the Acc.

(2) α, β (Inputs)

The input ports α and β can be independently tested. The α input latches the $\alpha \mathrm{F} / \mathrm{F}$ at the rising edge of the input, and can be tested by the TA instruction. The $\alpha F / F$ is reset after the test. The β is used to put the input signal into the $\beta \mathrm{F} / \mathrm{F}$ for the interval of one instruction, and can be tested by the TB instruction.

(3) $\mathrm{DIO}_{1}-\mathrm{DIO}_{4}$ (I/O ports)

The $\mathrm{DIO}_{1}-\mathrm{DIO}_{4}$ pins normally output the contents of the $\mathrm{F}_{1}-\mathrm{F}_{4} \mathrm{~F} / \mathrm{F}$. The $\mathrm{F}_{1}-\mathrm{F}_{4} \mathrm{~F} / \mathrm{F}$ data can be changed on transferring the accumulator Acc by the ATF instruction. Connecting the $\mathrm{DIO}_{1}-\mathrm{DIO}_{4}$ with the Acc allows the data transfer between the Acc and an external RAM by the READ and WRITE instructions. The output buffer of the $\mathrm{F}_{1}-\mathrm{F}_{4} \mathrm{~F} / \mathrm{F}$ is designed to be a three-state output, and it is kept high impedance when the DIO input is loaded into the Acc by the READ instruction.

(4) $\mathbf{R}_{\mathbf{1}}-\mathrm{R}_{\mathbf{4}}$ (Outputs)

Connecting the $\mathrm{DIO}_{1}-\mathrm{DIO}_{4}$ with the Acc outputs the contents of the Acc. And selecting the programmable logic array PLA generates a sound output, and allows a segment output on pins $\mathrm{O}_{\mathrm{S} 3}$ and $\mathrm{O}_{\mathrm{S} 4}$.
(5) $\mathrm{O}_{\mathrm{ij}}(\mathrm{i}=1$ to $4, \mathrm{j}=1$ to 8$), \mathrm{O}_{\mathrm{S} 1}, \mathrm{O}_{\mathrm{S} 2}$ (Outputs)
34 -bits of output ports $\mathrm{O}_{\mathrm{ij}}, \mathrm{O}_{\mathrm{S} 1}$ and $\mathrm{O}_{\mathrm{S} 2}$ are used to output the contents of the static shift register $\mathrm{W}_{\text {in }}^{\prime}, \mathrm{W}_{\text {in }}(\mathrm{i}=1$ to $4, \mathrm{n}=0$ to 8). The output signal can be used as a segment signal for a $1 / 2$ duty scheme, and a strobe signal for the key-scan, according to the display mode. These ports output the address of the external RAM upon execution of the READ or WRITE instruction.

(6) H_{1}, H_{2} (Output)

The H_{1} and H_{2} are used to output the common signal of an LCD with $1 / 2$ bias, $1 / 2$ duty scheme in a three output level inculding V_{DD}, GND and V_{M}.

(7) BA (Inputs)

The BA pin is used to test the input level of High or Low by instructions.

Hardware Cnfiguration

(1) Program memory (ROM)

The on-chip ROM has a 2,268 byte organized as 36 pages $\times 63$ steps $\times 8$ bits. The program counter consists of 1-bit registers C_{X} and C_{A}, a 4-bit register P_{U}, and a 6-bit polynomial counter P_{L}. The P_{L} is used to specify the steps, the P_{U} specify the pages, and the C_{A} specify the fields. The C_{X} register is only used to specify the subroutine pages.

$\mathrm{C}_{\mathrm{X}}=0$		$\mathrm{C}_{\mathrm{X}}=1$
$\mathrm{C}_{\mathrm{A}}=0$	$\mathrm{C}_{\mathrm{A}}=1$	-
0	16	32
1	17	33
2	18	34
3	19	35
4	20	
5	21	
6	22	
7	23	
8	24	
9	25	
10	26	
11	27	
12	28	
13	29	
14	30	
15	31	

Fig. 1 ROM configuration (fields and pages)

(2) Data memory (RAM)

Data memory has a 6×16 word $\times 4$-bit configuration, and is addressed by a 4 -bit B_{L} and a 4-bit B_{M}.

(3) Oscillator circuit

An on-chip crystal oscillator allows the oscillation with the external circuit shown in Fig. 3.

Fig. 3

(4) Divider

A 15-stage resettable divider outputs a 1 Hz signal at the lowest stage when a 32.768 kHz crystal oscillator is used. The output on each stage can be loaded into the accumulator Acc on an 4-bit basis.

(5) Reset function (ACL)

An on-chip reset circuit may sometimes require a capacitor between the ACL pin and GND pin. It takes 1 sec on an internal timer from the beginning of oscillation to clear the ACL mode when power on.

BM_{3}		0				1	
BM_{2}		0	0	1	1	-	
BM_{1}		0	1	0	1	0	1
B_{L}	0						
	1						
	2						
	3						
	4						
	5						
	6						
	7						
	8						
	9						
	10						
	11						
	12						
	13						
	14						
	15						
		X	Y	Z	M	U	T

Fig. 2 RAM configuration

Instruction Set

Mnemonic	Machine code	Operation
	$\begin{array}{lllllllll}\mathrm{I}_{8} & \mathrm{I}_{7} & \mathrm{I}_{6} & \mathrm{I}_{5} & \mathrm{I}_{4} & \mathrm{I}_{3} & \mathrm{I}_{2} & \mathrm{I}_{1}\end{array}$	
SBM	02	$1 \rightarrow \mathrm{~B}_{\mathrm{M} 3}$ ($\mathrm{B}_{\mathrm{M} 3}=1$ for next step only)
LB	40-4F	$\mathrm{I}_{4}, \mathrm{I}_{3} \rightarrow \mathrm{~B}_{\mathrm{L} 2}, \mathrm{~B}_{\mathrm{L} 1} \quad \mathrm{I}_{2}, \mathrm{I}_{1}-\mathrm{B}_{\mathrm{M} 2}, \mathrm{~B}_{\mathrm{M} 1}$
LBL	5F	$\mathrm{I}_{8}-\mathrm{I}_{5} \rightarrow \mathrm{~B}_{\mathrm{M} 4}-\mathrm{B}_{\mathrm{M} 1} \quad \mathrm{I}_{4}-\mathrm{I}_{1} \rightarrow \mathrm{~B}_{\mathrm{L} 4}-\mathrm{B}_{\mathrm{L} 1}$
	00-FF	
INCB	64	$\mathrm{B}_{\mathrm{L}}+1 \rightarrow \mathrm{~B}_{\mathrm{L}} \quad$ if $\mathrm{B}_{\mathrm{L}}=$ a; skip
DECB	6C	$\mathrm{B}_{\mathrm{L}}-1 \rightarrow \mathrm{~B}_{\mathrm{L}}$ if $\mathrm{B}_{\mathrm{L}}=$ b; skip
RM	04-07	$0 \rightarrow \mathrm{Mi}\left(\mathrm{i}=\mathrm{I}_{2} \mathrm{I}_{1}\right.$)
SM	0C-0F	$1 \rightarrow \mathrm{Mi}\left(\mathrm{i}=\mathrm{I}_{2} \mathrm{I}_{1}\right)$
ATPL	03	$\mathrm{Acc} \rightarrow \mathrm{P}_{\mathrm{L} 4}-\mathrm{P}_{\mathrm{L} 1}$
ADD	08	Acc $+\mathrm{M} \rightarrow$ Acc
ADD11	09	Acc $+\mathrm{M}+\mathrm{C} \rightarrow$ Acc $\quad \mathrm{C}_{4} \rightarrow \mathrm{C}$ if $\mathrm{C}_{4}=1$; skip
COMA	0A	$\overline{\text { Acc }} \rightarrow$ Acc
EXBLA	0B	Acc $\leftrightarrow \mathrm{B}_{\mathrm{L}}$
EXC	10-13	$\mathrm{Acc} \leftrightarrow \mathrm{M} \quad \mathrm{B}_{\mathrm{M} 2}, \mathrm{~B}_{\mathrm{M} 1} \oplus \mathrm{I}_{2}, \mathrm{I}_{1} \rightarrow \mathrm{~B}_{\mathrm{M} 2}, \mathrm{~B}_{\mathrm{M} 1}$
EXCI	14-17	$\mathrm{Acc} \rightarrow \mathrm{M} \quad \mathrm{B}_{\mathrm{M} 2,}, \mathrm{~B}_{\mathrm{M} 1} \oplus \mathrm{I}_{2}, \mathrm{I}_{1} \rightarrow \mathrm{~B}_{\mathrm{M} 2}, \mathrm{~B}_{\mathrm{M} 1} \quad \mathrm{~B}_{\mathrm{L}}+1 \rightarrow \mathrm{~B}_{\mathrm{L}} \quad$ if $\mathrm{B}_{\mathrm{L}}=$ a; skip
EXCD	$1 \mathrm{C}-1 \mathrm{~F}$	$\mathrm{Acc} \rightarrow \mathrm{M} \quad \mathrm{B}_{\mathrm{M} 2,}, \mathrm{~B}_{\mathrm{M} 1} \oplus \mathrm{I}_{2}, \mathrm{I}_{1} \rightarrow \mathrm{~B}_{\mathrm{M} 2}, \mathrm{~B}_{\mathrm{M} 1} \quad \mathrm{~B}_{\mathrm{L}}-1 \rightarrow \mathrm{~B}_{\mathrm{L}} \quad$ if $\mathrm{B}_{\mathrm{L}}=$ b; skip
LDA	18-1B	$\mathrm{M} \rightarrow$ Acc $\quad \mathrm{B}_{\mathrm{M} 2,}, \mathrm{~B}_{\mathrm{M} 1} \oplus \mathrm{I}_{2}, \mathrm{I}_{1} \rightarrow \mathrm{~B}_{\mathrm{M} 2}, \mathrm{~B}_{\mathrm{M} 1}$
LAX	20-2F	$\mathrm{I}_{4}-\mathrm{I}_{1} \rightarrow$ Acc
ADX	30-3F	$\mathrm{I}_{4}-\mathrm{I}_{1}+$ Acc \rightarrow Acc \quad if $\mathrm{C}_{4}=1$; skip
DC	3A	$10+$ Acc \rightarrow Acc
DTA	5E	DIV \rightarrow Acc
	04-07	
ROT	6B	$\mathrm{C} \rightarrow \mathrm{A}_{4} \rightarrow \mathrm{~A}_{3} \rightarrow \mathrm{~A}_{2} \rightarrow \mathrm{~A}_{1} \rightarrow \mathrm{C}$
ATBP	01	Acc \rightarrow Bp
ATW	5D	Acc $\rightarrow \mathrm{W}^{\prime}{ }_{\mathrm{i} 8}\left(\mathrm{i}=1\right.$ to 4) $\mathrm{W}^{\prime} \mathrm{in}$ Right Shift ($\mathrm{i}=1$ to $4, \mathrm{n}=7$ to 0)
PATW	00	$\mathrm{Acc} \rightarrow \mathrm{W}_{\mathrm{i} 8}^{\prime} \quad \mathrm{W}^{\prime}{ }_{8} \rightarrow \mathrm{~W}^{\prime}{ }_{\mathrm{i} 7}(\mathrm{i}=1$ to 4)
ATF	60	Acc \rightarrow F
ATR	61	Acc \rightarrow R
READ	68	DIO \rightarrow Acc
WRITE	69	Acc \rightarrow DIO
KTA	6A	$\mathrm{K}_{\mathrm{i}} \rightarrow$ Acc
RC	66	$0 \rightarrow \mathrm{C}$
SC	67	$1 \rightarrow \mathrm{C}$

Mnemonic	Machine code	Operation
	$\begin{array}{lllllllll}\mathrm{I}_{8} & \mathrm{I}_{7} & \mathrm{I}_{6} & \mathrm{I}_{5} & \mathrm{I}_{4} & \mathrm{I}_{3} & \mathrm{I}_{2} & \mathrm{I}_{1}\end{array}$	
TW	5 C	$\mathrm{W}^{\prime}{ }_{\text {in }} \rightarrow \mathrm{W}_{\text {in }}(\mathrm{i}=1$ to $4, \mathrm{n}=8$ to 0)
PTW	59	$\mathrm{W}^{\prime}{ }_{\text {in }}^{\prime} \rightarrow \mathrm{W}_{\text {in }}(\mathrm{i}=1$ to $4, \mathrm{n}=8,7)$
WR	62	$0 \rightarrow \mathrm{~W}^{\prime}{ }_{48} \quad \mathrm{~W}_{\text {in }}$ Right Shift
WS	63	$1 \rightarrow \mathrm{~W}^{\prime}{ }_{48} \quad \mathrm{~W}_{\text {in }}$ Right Shift
IDIV	65	$0 \rightarrow$ DIV
TA	50	if $\alpha=1$; skip
TB	51	if $\beta=1$; skip
TC	52	if $\mathrm{C}=0$; skip
TAM	53	if $\mathrm{Acc}=\mathrm{M}$; skip
TM	54-57	if $\mathrm{Mi}=1\left(\mathrm{i}=\mathrm{I}_{2} \mathrm{I}_{1}\right)$; skip
TA0	5A	if Acc $=0$; skip
TABL	5B	if $\mathrm{Acc}=\mathrm{B}_{\mathrm{L}}$; skip
TIS	58	if $1 \mathrm{~S}=0$; skip
(2) TAL	5 E	if $\mathrm{BA}=1$; skip
	02	
(2) CEND	5 E	Clock stop
	00	
(2) ST	5 E	$1 \rightarrow \mathrm{~T}$
	03	
COMCB	6D	$\overline{\mathrm{C}_{\mathrm{B}}} \rightarrow \mathrm{C}_{\mathrm{B}}$
SSR	70-7F	$\mathrm{I}_{4}-\mathrm{I}_{1} \rightarrow \mathrm{~S}_{\mathrm{U4}}-\mathrm{S}_{\mathrm{U} 1} \quad 1 \rightarrow \mathrm{E}$ (next step only)
TR0	80-BF	$\begin{array}{llll} \text { if } \mathrm{R}=0 ; & \mathrm{I}_{6}-\mathrm{I}_{1} \rightarrow \mathrm{P}_{\mathrm{L6}}-\mathrm{P}_{\mathrm{L} 1} \quad \mathrm{~S}_{\mathrm{U}} \rightarrow \mathrm{P}_{\mathrm{U}} \quad \mathrm{C}_{\mathrm{B}} \rightarrow \mathrm{C}_{\mathrm{A}} \\ \text { if } \mathrm{R}=1 ; & \mathrm{I}_{6}-\mathrm{I}_{1} \rightarrow \mathrm{P}_{\mathrm{L} 6}-\mathrm{P}_{\mathrm{L} 1} & & \\ \hline \end{array}$
TR1	C0-FF	
RTN0	6 E	$\mathrm{C}_{\mathrm{S}} \rightarrow \mathrm{C}_{\mathrm{A}} \quad \mathrm{S}_{\mathrm{U}} \rightarrow \mathrm{P}_{\mathrm{U}} \quad \mathrm{S}_{\mathrm{L}} \rightarrow \mathrm{P}_{\mathrm{L}} \quad 0 \rightarrow \mathrm{R}$
RTN1	6F	$\mathrm{C}_{\mathrm{S}} \rightarrow \mathrm{C}_{\mathrm{A}} \quad \mathrm{S}_{\mathrm{U}} \rightarrow \mathrm{P}_{\mathrm{U}} \quad \mathrm{S}_{\mathrm{L}} \rightarrow \mathrm{P}_{\mathrm{L}} \quad 0 \rightarrow \mathrm{R} \quad$ skip next step
JUMP	00-FF	if $\mathrm{D}=1 \quad \mathrm{I}_{8}-\mathrm{I}_{6} \rightarrow \mathrm{P}_{\mathrm{U} 4}, \mathrm{P}_{\mathrm{U} 3}, \mathrm{P}_{\mathrm{U} 1} \quad \mathrm{I}_{5}-\mathrm{I}_{1} \rightarrow \mathrm{P}_{\mathrm{L} 5}-\mathrm{P}_{\mathrm{L} 1}$

System Configuration Example (Radio PLL controller)

SMM510 4-Bit Microcomputer (LCD Driver)

Description

The SM510 is a CMOS 4-bit microcomputer which integrates a 4 -bit parallel processing function, a $2,772 \times 8$-bit ROM, a 128×4-bit RAM, a 15 stage divider and a 132 -segment LCD driver circuit.

This microcomputer is applicable to many applications having multiple LCD segments with low power consumption.

Features

1. CMOS process
2. ROM capacity: $2,772 \times 8$ bits
3. RAM capacity: 94×4 bits (Data RAM)
32×4 bits
(Display RAM)
4. Instruction set: 49
5. Subroutine nesting: 2 levels
6. Instruction cycle: $61 \mu \mathrm{~s}$ (TYP.)
7. Input/output ports

Input ports: 6 bits
Output ports: 10 bits
LCD output ports:
34 bits for segment
4 bits for common
8. 15 stage divider with reset
9. LCD drive circuit
$3 \mathrm{~V}, 1 / 4$ duty, $1 / 3$ bias,
132 segments (MAX.)
10. Crystal oscillator circuit $(32.768 \mathrm{kHz})$
11. Standby mode
12. Single-3V (TYP.) power supply
13. 60 -pin QFP (QFP60-P-1414)

Pin Connections

Block Diagram

Pin Description

Symbol	I/O	Circuit type	Function
$\mathrm{a}_{\mathrm{i}}, \mathrm{b}_{\mathrm{i}}$	0		Segment output ports ($\mathrm{i}=1$ to 16)
$\mathrm{b}_{\text {S }}$			
$\mathrm{H}_{1}-\mathrm{H}_{4}$	0		Common output ports
$\mathrm{S}_{1}-\mathrm{S}_{8}$	0		Strobe output ports
T	I		Test input port (normally connected to GND)
$\mathrm{K}_{1}-\mathrm{K}_{4}$	I	pull-down	Key input ports
$\mathrm{OSC}_{\text {IN }}$			Crystal oscillator
OSC ${ }_{\text {OUT }}$	\cdots		
BA, β	I	pull-up	Independent input ports
GND, V_{DD}			Power supply
$\mathrm{R}_{1}, \mathrm{R}_{2}$	0		Melody output ports
ACL	I	pull-down	Auto clear input port

- Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit	Note
Pin voltage	V_{DD}	-3.5 to +0.3	V	1
	$\mathrm{~V}_{\mathrm{IN}}$	V_{DD} to +0.3	V	
Operating temperature	Topr	0 to +50	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	

Note 1: The maximum applicable voltage on any pin with respect to GND.

- Recommended Operating Conditions

Parameter.	Symbol	Rating	Unit
Supply voltage	V_{DD}	-3.2 to -2.6	V
Oscillator frequency	$\mathrm{f}_{\mathrm{OSC}}$	32.768 (TYP.)	kHz

- Electrical Characteristics
$\left(\mathrm{V}_{\mathrm{DD}}=-3.2\right.$ to $-2.6 \mathrm{~V}, \mathrm{Ta}=0$ to $\left.50^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	Note
Input voltage	$\mathrm{V}_{\mathrm{IH1}}$		-0.6			V	1
	$\mathrm{V}_{\mathrm{IL} 1}$				$\mathrm{V}_{\mathrm{DD}}+0.6$	V	
	$\mathrm{V}_{\mathrm{IH} 2}$		-0.3			V	2
	$\mathrm{V}_{\mathrm{IL} 2}$				$\mathrm{V}_{\mathrm{DD}}+0.3$	V	
Input current	I_{IH}	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	1		15	$\mu \mathrm{A}$	3
	$\mathrm{I}_{\text {IL }}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {DD }}$	1		15	$\mu \mathrm{A}$	4
Output voltage	V_{OH}	$\mathrm{I}_{\text {OUT }}=50 \mu \mathrm{~A}$ to V_{DD}	-0.5			V	5
	V_{OL}	$\mathrm{I}_{\text {OUT }}=5 \mu \mathrm{~A}$ to GND			$\mathrm{V}_{\mathrm{DD}}+0.5$	V	
	$\mathrm{V}_{\text {OA }}$	$\mathrm{V}_{\mathrm{DD}}=-3.0 \mathrm{~V}$ No load	-0.3		0	V	6
	V_{OB}		-1.3	-1.0	-0.7	V	
	$\mathrm{V}_{\text {OC }}$		-2.3	-2.0	-1.7	V	
	$\mathrm{V}_{\text {OD }}$		-3.0		-2.7	V	
Output current	$\mathrm{I}_{\text {SO }}$	$\mathrm{V}_{\text {OUT }}=-0.2 \mathrm{~V}$	100			$\mu \mathrm{A}$	7
	$\mathrm{I}_{\text {SIN }}$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{DD}}+0.2 \mathrm{~V}$	100			$\mu \mathrm{A}$	
Supply current	I_{DA}	During full-range operation		40	80	$\mu \mathrm{A}$	8
	$\mathrm{I}_{\text {DS }}$	When system clock is stationary		15	25	$\mu \mathrm{A}$	

Note 1: Applied to pins $\mathrm{K}_{1}-\mathrm{K}_{4}, \beta_{\text {IN }}$
Note 2: Applied to pins ACL, BA
Note 3: Applied to pins $\mathrm{K}_{1}-\mathrm{K}_{4}$
Note 4: Applied to pin β
Note 5: Applied to pins $\mathrm{S}_{1}-\mathrm{S}_{8}$
Note 6: Applied to pins $\mathrm{a}_{1}-\mathrm{a}_{16}, \mathrm{~b}_{1}-\mathrm{b}_{16}, \mathrm{~b}_{\mathrm{S}}, \mathrm{H}_{1}-\mathrm{H}_{4}$
Note 7: Applied to pins $\mathrm{R}_{1}, \mathrm{R}_{2}$
Note 8: When a bleeder resistor is turned on.

Pin Functions

(1) $K_{1}-K_{4}$ (Inputs)

The $\mathrm{K}_{1}-\mathrm{K}_{4}$ ports normally pulled down are connected to, and loaded into the accumulator (Acc) by instructions.

A matrix composed of K input ports and strobe output ports ($\mathrm{S}_{1}-\mathrm{S}_{8}$) enables up to 32 kinds of keys to be connected.

In this case, be sure to take the interval at least 1 step between strobe outputs and K inputs.

(2) $B A, \beta$ (Individual inputs)

The individual input ports BA and β normally pulled up can be tested using the TAL and TB instructions.

Applying a High level to these ports skips the next instruction.

(3) $\mathrm{S}_{1}-\mathrm{S}_{8}$ (Strobe outputs)

The strobe outputs ($\mathrm{S}_{1}-\mathrm{S}_{8}$) are used to output an 8-bit W register, and constitute a key input matrix in combination with the input ports $\mathrm{K}_{1}-\mathrm{K}_{4}$.

The W register is an 8 -bit register transferred by the PTW instruction in parallel.
The W'register is an 8 -bit shift register of which the least significant bit W_{1} is set and reset by WS and WR instructions, and the entire contents of W'register are shifted by one bit.
(4) $a_{1}-a_{16}, b_{1}-b_{16}$, bs

The segment outputs $a_{1}-a_{16}, b_{1}-b_{16}$ are connected to the display RAM. By transferring appropriate data to the display RAM, alphanumeric characters are automatically displayed.

The bs is used to output the contents of the L or Y register. Segment output ports are designed to drive an LCD with $1 / 4$ duty cycle. The bs is used to flash the display such as a colon under the control of Y register.

(5) $\mathrm{H}_{1}-\mathrm{H}_{4}$ (Common outputs)

The $\mathrm{H}_{1}-\mathrm{H}_{4}$-are used to drive an LCD with $1 / 4$ duty cycle and $1 / 3$ bias, and have the 4 levels of output.

The common outputs control the BP F/F, BC F/ F to select the display mode or blanking mode.

Below shows the conditions of a display mode to be selected.

$$
\mathrm{BP}=1 \text { and } \mathrm{BC}=0
$$

(6) R (Buzzer output)

The R_{1} and R_{2} output ports are used to directly drive a piezo electric buzzer.

The R port can generate the contents of the R register with a mask change, and used as a control signal.

Hardware Configuration

(1) Program counter and stack

The program counter consists of a 2-bit register P_{U}, a 4-bit register R_{M} and a 6-bit polynomial counter P_{L}. The P_{U} and P_{M} specify the pages and the P_{L} specifies the steps within a page.

The stack consists of registers $\mathrm{S}_{\mathrm{U}}, \mathrm{S}_{\mathrm{M}}, \mathrm{S}_{\mathrm{L}}$ and R_{U}, R_{M}, R_{L}, and has 2 levels of nesting.
(2) Program memory (ROM)

An on-chip 2,772-bit ROM is organized as 44 pages $\times 63$ steps. Fig. 1 shows the ROM configuration.

- When power on, the program starts execution from the address $\mathrm{P}_{\mathrm{U}}=3, \mathrm{P}_{\mathrm{M}}=7, \mathrm{P}_{\mathrm{L}}=0$ specified by an ACL circuit.

$\mathrm{P}_{\mathrm{M}} \mathrm{P}_{\mathrm{U}}$	0	1	2	
0	0	Subroutine cover page	10Start from CEND	20
1	1	11	21	30
2	2	12	22	31
3	3	13	23	32
4	4	14	24	33
5	5	15	25	34
6	6	16	26	35
7	7	17	27	36
8	8	18	28	37 Power on
9	9	19	29	38
A	A	1 A	2 A	39

Note: 1 page consists of 63 steps.
Fig. 1 ROM configuration

$\begin{array}{ll}\text { Note 1: } & \text { Jump address of TML, } \mathrm{P}_{\mathrm{M}}=0 \text { to } 3 \\ \text { Note 2: } & \text { Jump address of } \mathrm{TL} \text {, all addresses }\end{array}$
Fig. 2 Jump instruction and jump addresser

- When the program starts execution from the system clock halt state by a 1 S signal or a key input signal, the address starts at $\mathrm{P}_{\mathrm{U}}=1, \mathrm{P}_{\mathrm{M}}=0, \mathrm{P}_{\mathrm{L}}=$ 0.
- For the instructions except for a jump instruction, the polynomial counter P_{L} is shifted by 1 step according to a polynomial code.
- The combination of jump instructions including T, TL, TM, TML, RTN0, RTN1 and ATPL enables to jump to any page or any subroutine. Fig. 2 shows the relationship between jump instructions and jump addresses on a ROM map.

(3) Data memory RAM

A 512-bit data RAM consists of $8 \times 16 \times 4$-bits.
The RAM is specified by a 3 -bit B_{M} and a 4 -bit B_{L}. The B_{M} is used to specify the files and the B_{L} specify the words. Note that 1 word consists of 4 bits.

The SM510 has $2 \times 16 \times 4$ bits of display RAM area out of the entire RAM, and the display RAM is connected to external pins for segment outputs.

Writing data to the display RAM directly drives an LCD with $1 / 4$ duty and $1 / 3$ bias scheme.

Fig. 3 shows the RAM map.

B_{L}	X	Y	Z	M	P	Q	R	S
0000								
0001								
0010								
0011								
0100								
0101								
0110								
0111								
1000								
1001								
1010								
1011								
1100								
1101								
1110								
1111								

The area (R, S) enclosed by a thick frame is allocated for a display RAM.
Fig. 3 RAM configuration

(4) Divider circuit for clock function

An internal 15-stage divider circuit is used to make a clock system.

The divider outputs the signal at 1 sec . unit (1S), and $\gamma \mathrm{F} / \mathrm{F}$ is set at the rising edge of 1 S signal. γ F / F can be tested by an instruction, and reset by the test. A 1 sec . count is notified upon execution of this instruction.

(5) Standby function

The SM511/SM512 is a low power consumption design due to CMOS process. Further low power feature can also be obtained by halting almost all the system clocks through the CEND instruction for low power requirements.
$\gamma \mathrm{F} / \mathrm{F}$ must be reset or one or more inputs of $\mathrm{K}_{1}-\mathrm{K}_{4}$ must go High in order to restart the system clock from the halt state. Then the program starts at the ROM address $1000\left(\mathrm{P}_{\mathrm{U}}=1, \mathrm{P}_{\mathrm{M}}=0, \mathrm{P}_{\mathrm{L}}=0\right)$.

(6) Clock generator (CG)

The device contains an on-chip crystal oscillator circuit which consists of the external circuit shown in Fig. 4. The system clock has a frequency of one second that of the oscillator frequency.

Fig. 4

(7) ACL circuit

Resistors and Capacitors are mounted in an ACL circuit which does not normally require any external circuits.

The ACL will be cleared in about 0.5 sec from a crystal oscillator circuit starts oscillation after power on, and the program starts at $\mathrm{P}_{\mathrm{U}}=3, \mathrm{P}_{\mathrm{M}}=7$, $\mathrm{P}_{\mathrm{L}}=0$.

The ACL operations can be obtained by transferring signals into the ACL pin after power on. Note that it takes about 0.5 sec to start execution of the program after the ACL signal is released.

In case noise may harm the ACL operation, apply a 0.01 to $0.1 \mu \mathrm{~F}$ of capacitor between ACL pin and GND pin.

Fig. 5 shows the sample circuit.

Fig. 5 Compensator for ACL

(8) Buzzer output function

The R_{1} and R_{2} are buzzer output ports which are used to directly drive a piezo electric buzzer at a frequency of $4,096 \mathrm{kHz}$ with a 32.768 kHz crystal oscillator.

The R_{1} and R_{2} ports output different pulse phases which allow the volume control of a buzzer with the circuit shown in fig. 6. These ports can directly drive a piezo electric buzzer. However, it is recommended to use the drive circuits shown in Figs. 6 and 7, to prevent from the malfunction of a system caused by the counter electromotive force from a piezo electric buzzer.

(b) Output waveform

Fig. 6 Piezo electric buzzer driver circuit 1

Fig. 7 Piezo electric buzzer driver circuit 2 (Direct driver circuit)

(9) LCD driver

- LCD segment

The SM510 has an on-chip LCD driver circuit which can directly drive an LCD with a $3 \mathrm{~V}, 1 / 4$ duty and $1 / 3$ bias scheme.

The display RAM is connected to segment outputs of ai, bi ($\mathrm{i}=1$ to 16) according to LCD common outputs of $\mathrm{H}_{1}-\mathrm{H}_{4}$ as shown in fig 8.

The segment outputs provide 1-digit data $\left(\mathrm{M}_{1}-\mathrm{M}_{4}\right)$ of the display RAM in synchronizing with $\mathrm{H}_{1}-\mathrm{H}_{4}$ outputs.

Each segment of the LCD can be turned on or off by controlling the corresponding bit data " 1 " or " 0 " in the display RAM area.

The LCD driving waveform relative to the display mode is automatically generated. The device provides the maximum of 132 segments. Fig. 9 shows the segment display example.

Fig. 9 7-segment numeric LCD digit

- Dlsplay waveform

Fig. 10 shows the display waveforms required to display the number " 5 " on the LCD pattern shown in Fig. 9 (segment outputs $\mathrm{a}_{1}, \mathrm{~b}_{1}$ are used).

In the combination that the potential difference between the common output and segment output is 3 V (in the combination of H_{4} and a_{1}), shown in Fig. 10 , the segment is turned on, and in the case of 2 V or less (in the combinaiton of H_{4} and a_{1}), the segment is turned off.

- LCD flashing output (bs)

The bs output is used to flash symbols displayed on the LCD screen. Otherwise, the bs is used as a segment output in the same way as ai, bi ($\mathrm{i}=1$ to 16).

- Blanking the display

There are two ways for blanking the entire display depending on applications.

1. For blanking the display in a short period of time.

Fig. 8 Display RAM and LCD segment output

Frame frequency $=1 / T=64 \mathrm{~Hz}$,

Control the common signal generator circuit by the ATBP instruction.
2. For blanking the display in a long period of time to decrease power consumption.

Use the BDC instruction to turn on and off the liquid crystal bleeder current. In this case, cutting off the bleeder current decreases great amount of power consumption.

Fig. 10 LCD driving signal waveform

Instruction Set

(1) RAM address instructions

Mnemonic	Machine code	Operation
LB x	$40-4 \mathrm{~F}$	$\mathrm{B}_{\mathrm{L} 3}, \mathrm{~B}_{\mathrm{L} 2} \leftarrow \mathrm{x}\left(\mathrm{I}_{3}\right) \oplus \mathrm{x}\left(\mathrm{I}_{2}\right)$ $\mathrm{B}_{\mathrm{L} 1}, \mathrm{~B}_{\mathrm{L} 0} \leftarrow \mathrm{x}\left(\mathrm{I}_{3}, \mathrm{I}_{2}\right)$ $\mathrm{B}_{\mathrm{M} 1}, \mathrm{~B}_{\mathrm{M} 0} \leftarrow \mathrm{x}\left(\mathrm{I}_{1}, \mathrm{I}_{0}\right)$
LBL xy $(2-$ byte $)$	5 F	$00-\mathrm{FF}$

(2) ROM address instructions

Mnemonic	Machine code	Operation
ATPL	03	$\mathrm{P}_{\mathrm{L} 3}-\mathrm{P}_{\mathrm{L} 0} \leftarrow$ Acc
RTN0	6 E	$\begin{aligned} & \mathrm{P}_{\mathrm{U}} \leftarrow \mathrm{~S}_{\mathrm{U}} \leftarrow \mathrm{R}_{\mathrm{U}}, \mathrm{P}_{\mathrm{M}} \leftarrow \mathrm{~S}_{\mathrm{M}} \leftarrow \mathrm{R}_{\mathrm{M}} \\ & \mathrm{P}_{\mathrm{L}} \leftarrow \mathrm{~S}_{\mathrm{L}} \leftarrow \mathrm{R}_{\mathrm{L}} \end{aligned}$
RTN1	6 F	$\begin{aligned} & \mathrm{P}_{\mathrm{U}} \leftarrow \mathrm{~S}_{\mathrm{U}} \leftarrow \mathrm{R}_{\mathrm{U}}, \mathrm{P}_{\mathrm{M}} \leftarrow \mathrm{~S}_{\mathrm{M}} \leftarrow \mathrm{R}_{\mathrm{M}} \\ & \mathrm{P}_{\mathrm{L}} \leftarrow \mathrm{~S}_{\mathrm{L}} \leftarrow \mathrm{R}_{\mathrm{L}}, \text { Skip next step } \end{aligned}$
TL xyz (2-byte)	$\begin{aligned} & 70-7 \mathrm{~A} \\ & 00-\mathrm{FE} \end{aligned}$	$\begin{aligned} & \mathrm{P}_{\mathrm{M}} \leftarrow \mathrm{x}\left(\mathrm{I}_{3}-\mathrm{I}_{0}\right), \mathrm{P}_{\mathrm{U}} \leftarrow \mathrm{y}\left(\mathrm{I}_{7}-\mathrm{I}_{6}\right) \\ & \mathrm{P}_{\mathrm{L}} \leftarrow \mathrm{Z}\left(\mathrm{I}_{5}-\mathrm{I}_{0}\right) \end{aligned}$
$\begin{aligned} & \text { TML xyz } \\ & \text { (2-byte) } \end{aligned}$	$\begin{aligned} & 7 \mathrm{C}-7 \mathrm{~F} \\ & 00-\mathrm{FE} \end{aligned}$	$\begin{aligned} & \mathrm{R} \leftarrow \mathrm{~S} \leftarrow \mathrm{PC}+1, \mathrm{P}_{\mathrm{M} 3}, \mathrm{P}_{\mathrm{M} 2} \leftarrow(0,0) \\ & \mathrm{P}_{\mathrm{M} 1}, \mathrm{P}_{\mathrm{M} 0} \leftarrow \mathrm{x}\left(\mathrm{I}_{1}, \mathrm{I}_{0}\right), \mathrm{P}_{\mathrm{U}} \leftarrow \mathrm{y}\left(\mathrm{I}_{7}, \mathrm{I}_{6}\right) \\ & \mathrm{P}_{\mathrm{L}} \leftarrow \mathrm{z}\left(\mathrm{I}_{5}-\mathrm{I}_{0}\right) \end{aligned}$
TM x IDX yz (2-byte)	$\begin{aligned} & \mathrm{C} 0-\mathrm{FE} \\ & 00-\mathrm{FE} \end{aligned}$	$\begin{aligned} & \mathrm{R} \leftarrow \mathrm{~S} \leftarrow \mathrm{PC}+1, \mathrm{P}_{\mathrm{U}} \leftarrow 0, \mathrm{P}_{\mathrm{M}} \leftarrow 0 \\ & \mathrm{P}_{\mathrm{L}} \leftarrow \mathrm{x}\left(\mathrm{I}_{5}-\mathrm{I}_{0}\right), \mathrm{P}_{\mathrm{U}} \leftarrow \mathrm{y}\left(\mathrm{I}_{7}, \mathrm{I}_{6}\right) \\ & \mathrm{P}_{\mathrm{L}} \leftarrow \mathrm{Z}\left(\mathrm{I}_{5}-\mathrm{I}_{0}\right), \mathrm{P}_{\mathrm{M}} \leftarrow(0100)_{2} \end{aligned}$
T xy	80-BF	$\mathrm{P}_{\mathrm{L}} \leftarrow \mathrm{x}\left(\mathrm{I}_{5}-\mathrm{I}_{0}\right)$

(3) Data transfer instructions

Mnemonic	Machine code	Operation
EXC x	$10-13$	Acc $\leftarrow \mathrm{M}$ $\mathrm{B}_{\mathrm{M} 1}, \mathrm{~B}_{\mathrm{M} 0} \leftarrow \mathrm{~B}_{\mathrm{M} 1}, \mathrm{~B}_{\mathrm{M} 0} \oplus \mathrm{x}\left(\mathrm{I}_{1}, \mathrm{I}_{0}\right)$
BDC	6 D	$\mathrm{BC} \leftarrow \mathrm{C}$ Display on if $\mathrm{C}=0$ Display off if $\mathrm{C}=1$
EXCI x	$14-17$	Acc $\leftarrow \mathrm{M}$ $\mathrm{B}_{\mathrm{M} 1}, \mathrm{~B}_{\mathrm{M} 0} \leftarrow \mathrm{~B}_{\mathrm{M} 1}, \mathrm{~B}_{\mathrm{M} 0} \oplus \mathrm{x}\left(\mathrm{I}_{1}, \mathrm{I}_{0}\right)$ Skip if $\mathrm{B}_{\mathrm{L}}=\mathrm{F}_{\mathrm{H}}, \mathrm{B}_{\mathrm{L}} \leftarrow \mathrm{B}_{\mathrm{L}}+1$
EXCD x	$1 \mathrm{C}-1 \mathrm{~F}$	Acc $\leftarrow \mathrm{M}$ $\mathrm{B}_{\mathrm{M} 1}, \mathrm{~B}_{\mathrm{M} 0} \leftarrow \mathrm{~B}_{\mathrm{M} 1}, \mathrm{~B}_{\mathrm{M} 0} \oplus \mathrm{x}\left(\mathrm{I}_{1}, \mathrm{I}_{0}\right)$ Skip if $\mathrm{B}_{\mathrm{L}}=0, \mathrm{~B}_{\mathrm{L}} \leftarrow \mathrm{B}_{\mathrm{L}}-1$
LDA x	$18-1 \mathrm{~B}$	Acc $\leftarrow \mathrm{M}$ $\mathrm{B}_{\mathrm{M} 1}, \mathrm{~B}_{\mathrm{M} 0} \leftarrow \mathrm{~B}_{\mathrm{M} 1}, \mathrm{~B}_{\mathrm{M} 0} \oplus \mathrm{x}\left(\mathrm{I}_{1}, \mathrm{I}_{0}\right)$
LAX x	$20-2 \mathrm{~F}$	Acc $\leftarrow \mathrm{x}\left(\mathrm{I}_{4}-\mathrm{I}_{1}\right)$ Skip when in succession
WR	62	$\mathrm{W}_{7} \leftarrow \mathrm{~W}_{6} \leftarrow \cdots \leftarrow \mathrm{~W}_{0} \leftarrow 0$
WS	63	$\mathrm{~W}_{7} \leftarrow \mathrm{~W}_{6} \leftarrow \cdots \leftarrow \mathrm{~W}_{0} \leftarrow 1$

(4) I/O Instructions

Mnemonic	Machine code	Operation
KTA	6 A	Acc $\leftarrow \mathrm{K}$
ATBP	01	$\mathrm{BP} \leftarrow$ Acc
ATL	59	$\mathrm{~L} \leftarrow$ Acc
ATFC	60	$\mathrm{Y} \leftarrow$ Acc
ATR	61	$\mathrm{Ri} \leftarrow$ Acc, $\mathrm{i}=1,2$

(5) Arithmetic instructions

Mnemonic	Machine code	Operation
ADD	08	Acc $\leftarrow \mathrm{Acc}+\mathrm{M}$
ADD11	09	$\begin{array}{\|l\|} \hline \text { Acc } \leftarrow \text { Acc }+\mathrm{M}+\mathrm{C}, \mathrm{C} \leftarrow \mathrm{CY} \\ \text { Skip if } \mathrm{CY}=1 \\ \hline \end{array}$
ADX x	30-3F	$\text { Acc } \leftarrow \mathrm{Acc}+\mathrm{x}\left(\mathrm{I}_{3}-\mathrm{I}_{0}\right)$ $\text { Skip if } \mathrm{CY}=1$
COMA	0A	Acc $-\overline{\text { Acc }}$
DC	3A	Acc \leftarrow Acc $+(1010)^{2}$
ROT	6B	$\xrightarrow{\square} \mathrm{Acc}_{0} \leftarrow \mathrm{Acc}_{1} \leftarrow \cdots \mathrm{Acc}_{3} \square$
RC	66	$\mathrm{C} \leftarrow 0$
SC	67	$\mathrm{C} \leftarrow 1$

(6) Test instructions

Mnemonic	Machine code	Operation
TB	51	Skip it $\beta=1$
TC	52	Skip if $\mathrm{C}=0$
TAM	53	Skip if Acc $=\mathrm{M}$
TMI x	$54-57$	Skip if $\mathrm{M}=1,\left(\mathrm{i}=\mathrm{x}\left(\mathrm{I}_{1}, \mathrm{I}_{0}\right)\right)$
TA0	5 A	Skip if Acc $=0$
TABL	5 B	Skip if Acc $=\mathrm{B}_{\mathrm{L}}$
TIS	58	Skip if $1 \mathrm{~S}=0, \gamma \leftarrow 0$
TAL	5 E	Skip if $\mathrm{BA}=1$
TF1	68	Skip if $\mathrm{f}_{1}=1$
TF4	69	Skip if $\mathrm{f}_{4}=1$

(7) Bit manipulation instructions

Mnemonic	Machine code	Operation
RM x	$04-07$	$\mathrm{Mi} \leftarrow 0, \mathrm{i}=\left(\mathrm{I}_{1}, \mathrm{I}_{0}\right)$
SM x	$0 \mathrm{C}-0 \mathrm{~F}$	$\mathrm{Mi} \leftarrow 1, \mathrm{i}=\left(\mathrm{I}_{1}, \mathrm{I}_{0}\right)$

(8) Special instructions

Mnemonic	Machine code	Operation
SKIP	00	No operation
CEND	5 D	clock stop
IDIV	65	DIV $\leftarrow 0$

System Configuration Example (Electronic calculator with real-time clock function)

SM511/SM512

- Description

The SM511/SM512 is a CMOS 4-bit microcomputer which integrates a 4-bit parallel processing function, a $4,032 \times 8$-bit ROM, a $128 / 142 \times$ 4-bit RAM, a 15 stage divider and a 136/ 200-segment LCD driver circuit.

This microcomputer is applicable to many applications having multiple LCD segments with lowpower consumption.

Features

1. CMOS process
2. ROM capacity: $4,032 \times 8$ bits
3. RAM capacity:

Data RAM: 96×4 bits (SM511)

$$
80 \times 4 \text { bits (SM512) }
$$

Display RAM: 32×4 bits (SM511) 48×4 bits (SM512)
4. Instruction set: 55
5. Subroutine nesting: 2 levels
6. Instruction cycle: $61 \mu \mathrm{~s}$ (TYP.)
7. I/O ports

Input ports: 6 bits
Output ports: 9 bits
LCD output ports
Segment: 34 bits for SM511
: 50 bits for SM512
Common: 4 bits
8. 15-stage divider with reset
9. Melody generator circuit
(Output time for up to 32 sec .)
10. LCD drive circuit
$3 \mathrm{~V}, 1 / 4$ duty, $1 / 3$ bias,
136 segments (MAX.) for SM511
200 segments (MAX.) for SM512
11. Crystal oscillator circuit $(32.768 \mathrm{kHz})$
12. Standby mode: $20 \mu \mathrm{~A}$
(Current consumption at clock halt)
13. Single $-3 V$ (TYP.) power supply
14. 60-pin QFP (QFP60-P-1414) for SM511 80-pin QFP (QFP80-P-1420) for SM512

4-Bit Microcomputer (LCD Driver)
Pin Connections

Note: Pin numbers apply to the SM511. Signals $\mathrm{C}_{1}-\mathrm{C}_{16}$ apply to the SM512 only.

Pin Description

Symbol	I/O	Circuit type	Function
ai, bi, ci ${ }^{*}$	O		Segment output ports ($\mathrm{i}=1$ to 16)
$\mathrm{b}_{\mathrm{s} 1}, \mathrm{~b}_{\mathrm{S} 2}$			
$\mathrm{H}_{1}-\mathrm{H}_{4}$	O		Common output ports
$\mathrm{S}_{1}-\mathrm{S}_{8}$	O		Strobe output ports
T	I		Test input port (normally connected to V_{DD})
$\mathrm{K}_{1}-\mathrm{K}_{4}$	I	Pull down	Key input ports
$\mathrm{OSC}_{\text {IN }}$			Crystal oscillator
OSC ${ }_{\text {OUT }}$			
BA, β	I	Pull up	Independent input ports
GND, V_{DD}			Power supply
R	0		Melody output port
ACL	I	Pull down	Auto clear

* The Ci port applies to the SM512 only.

- Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit	Note
Pin voltage	V_{DD}	-3.5 to +0.3	V	1
	$\mathrm{~V}_{\mathrm{IN}}$	V_{DD} to +0.3	V	
Operating temperature	Topr	0 to 50	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	

Note 1: The maximum applicable voltage on any pin with respect to GND (GND $=0 \mathrm{~V}$).

Recommended Operating Conditions

Parameter	Symbol	Rating	Unit
Supply voltage	V_{DD}	-3.2 to -2.6	V
Oscillator frequency	$\mathrm{f}_{\mathrm{OSC}}$	32.768 (TYP.)	kHz

- Electrical Characteristics
$\left(\mathrm{V}_{\mathrm{DD}}=-3 \mathrm{~V} \pm 10 \%, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	Note
Input voltage	$\mathrm{V}_{\mathrm{IH} 1}$		-0.6			V	1
	$\mathrm{V}_{\mathrm{IL} 1}$				$\mathrm{V}_{\mathrm{DD}}+0.6$	V	
	$\mathrm{V}_{\mathrm{IH} 2}$		-0.3			V	2
	$\mathrm{V}_{\mathrm{IL} 2}$				$\mathrm{V}_{\mathrm{DD}}+0.3$	V	
Input current	$\mathrm{I}_{\text {H1 }}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	1		15	$\mu \mathrm{A}$	3
	$\mathrm{I}_{\mathrm{IH} 2}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}$	1		15	$\mu \mathrm{A}$	4
Output voltage	V_{OH}	$\mathrm{I}_{\text {OUT }}=50 \mu \mathrm{~A}$ to V_{DD}	-0.5			V	5
	V_{OL}	$\mathrm{I}_{\text {OUT }}=5 \mu \mathrm{~A}$ to GND			$\mathrm{V}_{\mathrm{DD}}+0.5$	V	
	V_{OA}	$\mathrm{V}_{\mathrm{DD}}=-3.0 \mathrm{~V}$ No load	-0.3	0		V	6
	$\mathrm{V}_{\text {OB }}$		-1.3	-1.0	-0.7	V	
	$\mathrm{V}_{\text {OC }}$		-2.3	-2.0	-1.7	V	
	$\mathrm{V}_{\text {OD }}$		-3.0	-3.0	-2.7	V	
Output current	$\mathrm{I}_{\text {So }}$	$\mathrm{V}_{\text {OUT }}=-0.2 \mathrm{~V}$	100			$\mu \mathrm{A}$	7
	$\mathrm{I}_{\text {SIN }}$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {DD }}+0.2 \mathrm{~V}$	100			$\mu \mathrm{A}$	
Supply current	$\mathrm{I}_{\mathrm{DA} 1}$	During full-range operation		50		$\mu \mathrm{A}$	8
	$\mathrm{I}_{\mathrm{DS} 1}$	When system clock is stationary		20		$\mu \mathrm{A}$	
	$\mathrm{I}_{\mathrm{DA} 2}$	During full-range operation		35		$\mu \mathrm{A}$	9
	$\mathrm{I}_{\mathrm{DS} 2}$	When system clock is stationary		17		$\mu \mathrm{A}$	

Note 1: Applied to pins $\mathrm{K}_{1}-\mathrm{K}_{4}, \beta$
Note 2: Applied to pins ACL, BA
Note 3: Applied to pins $\mathrm{K}_{1}-\mathrm{K}_{4}$
Note 4: Applied to pin β
Note 5: Applied to pins $\mathrm{S}_{1}-\mathrm{S}_{8}$
Note 6: Applied to pins $a_{1}-a_{16}, b_{1}-b_{16}, c_{1}-c_{16}, b_{S 1}, b_{S 2}, H_{1}-H_{4}\left(c_{1}-c_{15}\right.$ apply to the SM512 only)
Note 7: Applied to pin R
Note 8: When melody circuit is inoperative with V_{DD} at -3.0 V and system clock at 16.384 kHz .
Note 9: When melody circuit is inoperative with V_{DD} at -3.0 V and system clock at 8.192 kHz .

Pin Functions

(1) $K_{1}-K_{4}$ (Inputs)

The $\mathrm{K}_{1}-\mathrm{K}_{4}$ ports normally pulled down are connected to, and loaded into the accumulator (Acc) by instructions.

A matrix composed of K input ports and strobe output ports ($\mathrm{S}_{1}-\mathrm{S}_{8}$) enables up to 32 kinds of keys to be connected.

In this case, be sure to take the interval at least 1 step between strobe outputs and K inputs.
(2) BA, β (Individual inputs)

The individual input ports BA and β normally pulled up can be tested using the TAL and TB instructions.

Applying a High level signal to these ports skips the next instruction.

(3) $\mathrm{S}_{1}-\mathrm{S}_{8}$ (Strobe outputs)

The strobe outputs ($\mathrm{S}_{1}-\mathrm{S}_{8}$) are used to output an 8-bit W register, and compose a key input matrix in combination with the input ports $\mathrm{K}_{1}-\mathrm{K}_{4}$.

The W register is an 8-bit register transferred by the PTW instruction in parallel.

The W'register is an 8-bit shift register of which the least significant bit W_{1} is set and reset by WS and WR instructions, and the entire contents of W'register are shifted by one bit.
(4) $a_{1}-a_{16}, b_{1}-b_{16}, c_{1}-c_{16}, b s_{1}, b s_{2}$

The segment outputs $a_{1}-a_{16}, b_{1}-b_{16}$, including $c_{1}-c_{16}$ (for SM512 only) are connected to display RAM. By transferring appropriate data to the display RAM, alphanumeric characters are automatically displayed.

The bs_{1} and bs_{2} are used to output the contents of $L F / F$ and $X F / F$.

Segment output ports are designed to drive an LCD with $1 / 4$ duty cycle.

The bs_{1} is used to flash the display such as a colon under the control of $\mathrm{Y} F / \mathrm{F}$.

(5) $\mathrm{H}_{1}-\mathrm{H}_{4}$ (Common outputs)

The $\mathrm{H}_{1}-\mathrm{H}_{4}$ are used to drive an LCD with $1 / 4$ duty cycle and $1 / 3$ bias, and provide a 4 level output.

The common outputs control the BP F/F, BC F/ F to select a display mode or blanking mode.

Below shows the conditions of a display mode to be selected.

$$
\mathrm{BP}=1 \text { and } \mathrm{BC}=0
$$

(6) $\quad R$ (Melody output)

An internal melody generator circuit provides a variety of sound signals.

Hardware Configuration

(1) Program counter and stack

The program counter consists of a 2 -bit register P_{U}, a 4-bit register R_{M} and a 6-bit polynomial counter P_{L}. The P_{U} and P_{M} specify the pages and the P_{L} specifies the steps within a page.

The stack consists of registers $\mathrm{S}_{\mathrm{U}}, \mathrm{S}_{\mathrm{M}}, \mathrm{S}_{\mathrm{L}}$ and R_{U}, R_{M}, R_{L}, and has 2 levels of nesting.

(2) Program memory (ROM)

An on-chip 4,032-bit ROM is organized as 64 pages $\times 63$ steps. Fig. 1 shows the ROM configuration.

- When power on, the system starts execution from the address $\mathrm{P}_{\mathrm{U}}=3, \mathrm{P}_{\mathrm{M}}=7, \mathrm{P}_{\mathrm{L}}=0$ specified
by an ACL circuit.
- When the system starts execution from the system clock halt state by a 1 S signal or a key input signal, the address starts at $\mathrm{P}_{\mathrm{U}}=1, \mathrm{P}_{\mathrm{M}}=0, \mathrm{P}_{\mathrm{L}}=$ 0.
- For the instructions except for a jump instruction, the polynomial counter P_{L} is shifted by 1 step according to a polynomial code.
- The combination of jump instructions including T, TL, TM, TML, RTN0, RTN1 and ATPL enables to jump to any page or any subroutine. Fig. 2 shows the relationship between jump instructions and jump addresses on a ROM map.

$\mathrm{P}_{\mathrm{M}} \mathrm{P}_{\mathrm{U}}$	0	1.	- 2	, 3
0	0 Subroutine cover page	Start from CEND	20	30
1	1	11	21	31
2	2	12	22	32
3	3	13	23	33
4	4	14	24	34
5	. 5	15	25	35
6	6	16	26	36
7	7	17	27	37 Power on
8	8	18	28	38
9	9	19	29	39
A	A	1A	2A	3A
B	B	1B	2B	3B
C	C	1 C	2 C	3 C
D	D	1D	2D	3D
E	E	1E	2E	3E
F	F	1 F	2 F	3 F

Note: 1 page consists of 63 steps.

Fig. 1 ROM configuration

$P_{M} P_{U}$	0	1	2	3
0	$0 j^{\text {IDX }}$	10 [START]	20	30
1	1	11	21	31
2	2		${ }^{22}$	32
3	$3 \quad \mathrm{TM}$	13	23	33
4	4	14	$24>$	34
5	5 T)	15 TL (Note2)	25	35 TML (Notel)
6	6	16	26	36
7	7	17	27	37 [ACL]
8	8	18	28	38
$\sim \sim \sim$	$\sim \sim \sim \sim$	$\approx \sim \sim \sim$	$\sim \sim \sim \sim \sim$	$\sim \sim \sim \sim \sim$
F	F	1 F	2 F	3 F

Note 1: Jump address of TML should be $\mathrm{PM}=0$ to 3
Note 2: Jump address of TL should be all address.

Fig. 2 Jump instructions and jump address

B_{L}	$\begin{gathered} \mathrm{X} \\ 00 \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ 001 \end{gathered}$	$\begin{gathered} \text { Z } \\ 010 \end{gathered}$	$\begin{gathered} \mathrm{M} \\ 011 \end{gathered}$	$\begin{gathered} \mathrm{P} \\ 100 \end{gathered}$	$\text { vil } x \text { x }$
0000						
0001						
0001						-
0010						
0011						$\square \mathrm{n}$ -
						-
0100						
0101						
						+1+1)
01110						
0111						
						-
1000						
1001						
1010						$\pm 1+1$ P1
1010						- +1
1011						
1100						
1101						
1110						
1111						

Fig. 3 RAM configuration

(3) Data memory RAM

A 512 -bit data RAM consists of $8 \times 16 \times 4$ bits.
The RAM is specified by a 3 -bit B_{M} and a 4 -bit B_{L}. The B_{M} is used to specify the files and the B_{L} specify the words. Note that 1 word consists of 4-bits.

The SM511 has $2 \times 16 \times 4$-bits and the SM5 12
has $3 \times 16 \times 4$ bits of display RAM area out of the entire RAM, and the display RAM is connected to external pins for segment outputs.

Writing data to the display RAM directly drives an LCD with $1 / 4$ duty and $1 / 3$ bias scheme.

Fig. 3 shows the RAM map.

(4) Divider circuit for clock function

An internal 15-stage divider circuit is used to make a clock system.

The divider outputs the signal at 1 sec . unit (1S), and $\gamma \mathrm{F} / \mathrm{F}$ is set at the rising edge of 1 S signal. γ F / F can be tested by an instruction, and reset by the test. A 1 sec. count is notified upon execution of this instruction.

(5) Standby function

The SM511/SM512 is a low power consumption design due to CMOS process. Further low power feature can also be obtained by halting almost all the system clocks by executing the CEND instruction for low power requirements.
$\gamma \mathrm{F} / \mathrm{F}$ must be reset or one or more inputs of $\mathrm{K}_{1}-\mathrm{K}_{4}$ must go High in order to restart the system clock from the halt state. Then the program starts at the ROM address $1000\left(\mathrm{P}_{\mathrm{U}}=1, \mathrm{P}_{\mathrm{M}}=0, \mathrm{P}_{\mathrm{L}}=0\right)$.

(6) Selection of system clock

Either system clock of 16.384 kHz or 8.192 kHz can be selected by instructions. Selecting 8.192 kHz of clock offers low power consumption with low speed of execution time. The rest of functions are the same with the case when 16.384 kHz clock is selected.

The system clock immediately after executing ACL is set to 8.192 kHz of clock.

(7) ACL circuit

Resistors and Capacitors are mounted in an ACL circuit which does not normally require any external circuits.

The ACL will be cleared in about 0.5 sec from a crystal oscillator circuit starts oscillation after power on, and the program starts at $\mathrm{P}_{\mathrm{U}}=3, \mathrm{P}_{\mathrm{M}}=7$, $\mathrm{P}_{\mathrm{L}}=0$.

The ACL operations can be obtained by transferring signals into the ACL pin after power on. Note that it takes about 0.5 sec to start execution of program after the ACL signal is released.

In case noise may harm the ACL operation, apply a 0.01 to $0.1 \mu \mathrm{~F}$ of capacitor between ACL pin and GND pin.

Fig. 4 shows the sample circuit.

Fig. 4 Compensator for ACL

(8) Melody ROM

A melody ROM is organized as 256 steps $\times 6$ bits which executes musical notes, pause and stop instructions.

The melody ROM is used to output 12 musical scales (555 to 2097 Hz) in two octaves and select tone length either 125 ms or 62.5 ms .

It also generates melodies, effect sound, alarms and repeats any part of melodies.

	$\mathrm{m}_{3} \mathrm{~m}_{2} \mathrm{~m}_{1} \mathrm{~m}_{0}$	Output frequency (Hz)	Clock cycle*	(Note)
do	0010	2114.1	15.5	$7 \longdiv { 8 } 8 \longdiv { 8 }$
si	0011	1985.9	16.5	$78 \sqrt{8} 8 \sqrt{9}$
la \#	0100	1872.4	17.5	$7 8 \longdiv { 9 \square }$
la	0101	1771.2	18.5	9 $9 \boxed{9} 10$
so \#	0110	1680.4	19.5	$9 \sqrt { 1 0 } 1 0 \longdiv { 1 0 }$
so	0111	1560.4	21.0	10 $1 1 \quad 1 0 \longdiv { 1 1 }$
fa \#	1000	1489.5	22.0	11 $1 1 \quad 1 1 \longdiv { 1 1 }$
fa	1001	1394.4	23.5	$1 1 \longdiv { 1 2 } 1 2 \longdiv { 1 2 }$
mi	1010	1310.7	25.0	$1 2 \longdiv { 1 3 \quad 1 2 \longdiv { 1 3 } }$
re \#	1011	1236.5	26.5	$1 3 \longdiv { 1 3 } 1 3 \longdiv { 1 4 }$
re	1100	1170.3	28.0	$7 4 \longdiv { 1 4 } 1 4 \longdiv { 1 4 }$
do \#	1101	, 1110.8	29.5	$1 4 \longdiv { 1 5 } 1 5 \longdiv { 1 5 }$

* : Clock cycle of 32.768 kHz

Note: The numerics within waveforms show the clock cycle count of the crystal oscillation frequency 32.768 kHz .
As shown in table 1 , the melody output waveform is generated with the controlled frequency by amplifying the numerics.

Fig. 5 Melody output frequency

Fig. 6 Display RAM of the SM511 and LCD segment output

Fig. 7 Display RAM of the SM512 and LCD segment output

(9) LCD driver

- LCD segment

The SM511/SM512 has an on-chip LCD driver circuit which can directly drive an LCD with a 3 V , $1 / 4$ duty and $1 / 3$ bias scheme.

The display RAM is connected to segment outputs of $a_{1}-a_{16}, b_{1}-b_{16}$ for the SM511 and $a_{1}-a_{16}$, $\mathrm{b}_{1}-\mathrm{b}_{16}, \mathrm{c}_{1}-\mathrm{c}_{16}$ for the SM512 according to LCD common outputs of $\mathrm{H}_{1}-\mathrm{H}_{4}$ as shown in Fig. 6 and 7.

The segment outputs provide 1 -digit data $\left(\mathrm{M}_{0}-\mathrm{M}_{3}\right)$ of the display RAM in synchronizing with $\mathrm{H}_{1}-\mathrm{H}_{4}$ outputs.

Each segment of the LCD can be turned on or off by controlling the corresponding bit data " 1 " or " 0 " in the display RAM area.

The LCD driving waveform relative to the display mode is automatically generated. The SM511 provides the maximum of 136 segments, and the SM512 provides 200 segments. Fig. 8 shows the segment display example.

- Display waveform

Fig. 9 shows the display waveforms required to display the number " 5 " on the LCD pattern of the SM511 and "PM 5" on that of the SM512 shown in Fig. 8 (segment outputs a_{1}, b_{1} for SM511 and a_{1}, b_{1}, c_{1} for SM512 are used).

Fig. 8 7-segment numeric LCD digit

- LCD flashing output (bs_{1})

The bs_{1} output is used to flash symbols displayed on the LCD screen.

For the 4 segments determined by the combination of the segment output bs_{1} and common outputs $\mathrm{H}_{1}-\mathrm{H}_{4}$, each segment can be turned on and off or flashed.

The flashing time should be on for 0.5 sec and off for 0.5 sec .

- Blanking the display

There are two ways for blanking the entire dis-
play depending on applications.

1. When blanking the display for a short period of time, control the common signal generator circuit by the ATBP instruction.
2. When blanking the display for a long period of time to decrease power consumption, use the BDC instruction to turn on and off the liquid crystal bleeder current. In this case, to cut off the bleeder current decreases great amount of power consumption.

Fig. 9 LCD driving signal waveform

Comparison Table of The SM510 Series

		SM510	SM511	SM512	
Process		CMOS	CMOS	CMOS	
ROM capacity		$2,772 \times 8$	$4,032 \times 8$	$4,032 \times 8$	bit
RAM capacity		$96 \times 4+32 \times 4$	$96 \times 4+32 \times 4$	$80 \times 4+48 \times 4$	bit
Supply voltage		-3.2 to -2.6	-3.2 to -2.6	-3.2 to -2.6	V
Instruction set		49	55	55	
Subroutine nesting		2	2	2	level
Input port		6	6	6	
Output port		47	47	63	
Instruction cycle (MIN.)		61	61	61	$\mu \mathrm{s}$
System clock generator circuit		Yes	Yes	Yes	
Current consumption	CEND	$15 \mu \mathrm{~A}$ (TYP.) (Note 1)	$\begin{aligned} & 20 \mu \mathrm{~A} \text { (TYP.) (Note 1) } \\ & 17 \mu \mathrm{~A} \text { (TYP.) (Note 2) } \end{aligned}$	$\begin{aligned} & 20 \mu \mathrm{~A} \text { (TYP.) (Note 1) } \\ & 17 \mu \mathrm{~A} \text { (TYP.) (Note 2) } \end{aligned}$	$\mu \mathrm{A}$
	Operation	$40 \mu \mathrm{~A}$ (TYP.) (Note 1)	$\begin{aligned} & 50 \mu \mathrm{~A} \text { (TYP.) (Note 1) } \\ & 35 \mu \text { (TYP.) (Note 2) } \end{aligned}$	$\begin{aligned} & 50 \mu \mathrm{~A} \text { (TYP.) (Note 1) } \\ & 35 \mu \mathrm{~A} \text { (TYP.) (Note 2) } \\ & \hline \end{aligned}$	$\mu \mathrm{A}$
Operating temperature		0 to 50	0 to 50	0 to 50	${ }^{\circ} \mathrm{C}$
Package		60QFP	60QFP	80QFP	
Number of LCD segment		132 (MAX.)	136 (MAX.)	200 (MAX.)	
Melody output		No $(4,096 \mathrm{kHz}$ sound output)	Yes	Yes	

[^5]Instruction Set
(1) RAM address instructions

Mnemonic	Machine code	Operation
LB xy	$40-4 \mathrm{~F}$	$\mathrm{B}_{\mathrm{L} 1}, \mathrm{~B}_{\mathrm{L} 0} \leftarrow \mathrm{x}\left(\mathrm{I}_{3}, \mathrm{I}_{2}\right)$ $\mathrm{B}_{\mathrm{M} 1}, \mathrm{~B}_{\mathrm{M} 0} \leftarrow \mathrm{y}\left(\mathrm{I}_{2}, \mathrm{I}_{0}\right)$
LBL xy (2-byte)	5 F	$00-\mathrm{FF}$

(2) ROM address instructions

Mnemonic	Machine code	Operation		
ATPL	03	$\mathrm{P}_{\mathrm{L} 3}-\mathrm{P}_{\mathrm{L} 0} \leftarrow \mathrm{Acc}$,	$\mathrm{P}_{\mathrm{U}} \leftarrow \mathrm{S}_{\mathrm{U}} \leftarrow \mathrm{R}_{\mathrm{U}}, \mathrm{P}_{\mathrm{M}} \leftarrow \mathrm{S}_{\mathrm{M}} \leftarrow \mathrm{R}_{\mathrm{M}}$
:---				
$\mathrm{P}_{\mathrm{L}} \leftarrow \mathrm{S}_{\mathrm{L}} \leftarrow \mathrm{R}_{\mathrm{L}}$,			

(3) Data transfer instructions

Mnemonic	Machine code	Operation
EXC x	10-13	Acc $\leftrightarrow \mathrm{M}$ $\mathrm{B}_{\mathrm{M} 1}, \mathrm{~B}_{\mathrm{M} 0} \leftarrow \mathrm{~B}_{\mathrm{M} 1}, \mathrm{~B}_{\mathrm{M} 0} \oplus \mathrm{x}\left(\mathrm{I}_{1}, \mathrm{I}_{0}\right)$
BDC	60-34	$\mathrm{BC} \leftarrow \mathrm{C}$ Display on if $\mathrm{C}=0$ Display off if $\mathrm{C}=1$
EXCI x	14-17	Acc $\leftrightarrow \mathrm{M}$ $\mathrm{B}_{\mathrm{M} 1}, \mathrm{~B}_{\mathrm{M} 0} \leftarrow \mathrm{~B}_{\mathrm{M} 1}, \mathrm{~B}_{\mathrm{M} 0} \oplus \mathrm{x}\left(\mathrm{I}_{1}, \mathrm{I}_{0}\right)$ Skip if $B_{L}=F_{H}, B_{L} \leftarrow B_{L}+1$
EXCD x	1C-1F	Acc $\leftrightarrow \mathrm{M}$ $\mathrm{B}_{\mathrm{M} 1}, \mathrm{~B}_{\mathrm{M} 0} \leftarrow \mathrm{~B}_{\mathrm{M} 1}, \mathrm{~B}_{\mathrm{M} 0} \oplus \mathrm{x}\left(\mathrm{I}_{1}, \mathrm{I}_{0}\right)$ Skip if $B_{L}=0, B_{L} \leftarrow B_{L}-1$
LDA x	18-1B	Acc $\leftrightarrow \mathrm{M}$ $\mathrm{B}_{\mathrm{M} 1}, \mathrm{~B}_{\mathrm{M} 0} \leftarrow \mathrm{~B}_{\mathrm{M} 1}, \mathrm{~B}_{\mathrm{M} 0} \oplus \mathrm{x}\left(\mathrm{I}_{1}, \mathrm{I}_{0}\right)$
LAX x	20-2F	Acc $\leftarrow x\left(I_{4}-I_{1}\right)$ Skip when in succession
PTW	6D	$\mathrm{W}_{1} \leftarrow \mathrm{~W}_{\mathrm{i}}^{\prime}(\mathrm{i}=7$ to 0)
WR	62	$\mathrm{W}_{0}^{\prime} \leftarrow 0, \mathrm{~W}_{\mathrm{i}+1}^{\prime} \leftarrow \mathrm{W}_{\mathrm{i}}(\mathrm{i}=6$ to 0)
WS	63	$\mathrm{W}_{0}^{\prime} \leftarrow 1, \mathrm{~W}_{\mathrm{i}+1}^{\prime} \leftarrow \mathrm{W}_{\mathrm{i}}(\mathrm{i}=6$ to 0)

(4) I/O instructions

Mnemonic	Machine code	Operation
KTA	50	Acc $\leftarrow \mathrm{K}$
ATBP	60	BP \leftarrow Acc
(2-byte)	35	$\mathrm{X} \leftarrow$ Acc
ATX	5 C	L Acc
ATL	59	$\mathrm{Y} \leftarrow$ Acc
ATFC	60	

(5) Arithmetic instructions

Mnemonic	Machine code	Operation
ADD	08	Acc \leftarrow Acc +M
ADD11	09	$\begin{aligned} & \text { Acc } \leftarrow \text { Acc }+\mathrm{M}+\mathrm{C}, \mathrm{C} \leftarrow \mathrm{CY} \\ & \text { Skip if } \mathrm{CY}=1 \end{aligned}$
ADX x	30-3F	$\begin{aligned} & \text { Acc } \leftarrow A c c+x\left(\mathrm{I}_{3}-\mathrm{I}_{0}\right) \\ & \text { Skip if } \mathrm{CY}=1 \end{aligned}$
COMA	0A	Acc $\leftarrow \overline{\text { Acc }}$
DC	3A	Acc \leftarrow Acc $+(1010)_{2}$
ROT	00	$\begin{aligned} & \mathrm{C} \leftarrow \mathrm{Acc}_{\mathrm{o}}, \mathrm{Acc}_{\mathrm{i}}^{\leftarrow \mathrm{Acc}_{\mathrm{i}+1}} \\ & (\mathrm{i}=2 \text { to } 0), \mathrm{Acc}_{3} \leftarrow \mathrm{C} \end{aligned}$
RC	66	$\mathrm{C} \leftarrow 0$
SC	67	$\mathrm{C} \leftarrow 1$

(6) Test instructions

Mnemonic	Machine code	Operation
TB	51	Skip if $\beta=1$
TC	52	Skip if $\mathrm{C}=0$
TAM	53	Skip if $\mathrm{Acc}=\mathrm{M}$
TMI x	$54-57$	Skip if $\mathrm{M}_{\mathrm{i}}=1,\left(\mathrm{i}=\mathrm{x}\left(\mathrm{I}_{1}, \mathrm{I}_{0}\right)\right)$
TA0	5 A	Skip if $\mathrm{Acc}=0$
TABL	5 B	Skip if $\mathrm{Acc}=\mathrm{B}_{\mathrm{L}}$
TIS	58	Skip if $\mathrm{IS}=0, r \leftarrow 0$
TAL	5 E	Skip if $\mathrm{BA}=1$

(7) Bit manipulation instructions

Mnemonic	Machine code	Operation
RM x	$04-07$	$\mathrm{M}_{\mathrm{i}} \leftarrow 0\left(\mathrm{i}=\mathrm{x}\left(\mathrm{I}_{1}, \mathrm{I}_{\mathrm{i}}\right)\right)$
SM x	$0 \mathrm{C}-0 \mathrm{~F}$	$\mathrm{M}_{\mathrm{i}} \leftarrow \mathrm{I}\left(\mathrm{i}=\mathrm{x}\left(\mathrm{I}_{1}, \mathrm{I}_{0}\right)\right)$

(8) Melody control instructions
$\left.\begin{array}{l|l|l}\hline \text { Mnemonic } & \text { Machine code } & \text { Operation } \\ \hline \begin{array}{l}\text { PRE } x \\ \text { (2-byte) }\end{array} & 61 & 00-\text { FF }\end{array}\right)$ Melody ROM pointer preset \quad.

System Configulation Example

SM563

4-Bit Microcomputer (LCD Driver)

Description

The SM563 is a CMOS 4 -bit microcomputer which integrates a 4-bit parallel processing function, a ROM, a RAM, I/O ports, a serial interface, a timer/event counter in a single chip.

It provides five kinds of interrupt and a subroutine stack function using the RAM area.

Provided with a 128 -segment LCD driver circuit, this microcomputer is applicable to low power systems with multiple LCD segments.

Features

1. CMOS process
2. ROM capacity: $4,096 \times 8$ bits
3. RAM capacity

Data RAM: 128×4 bits
Display RAM: 32×4 bits
4. Instruction set: 98
5. Subroutine stack: using RAM area
6. Instruction cycle:

$$
6.67 \mu \mathrm{~s}\left(\mathrm{~V}_{\mathrm{DD}}=3 \mathrm{~V}\right)
$$

$2.0 \mu \mathrm{~s}\left(\mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}\right)$
7. Input/output ports

I/O ports: 26 *
Input ports: 4
LCD output ports: 32 (segment)
4 (common)
*Including 15 ports available for segment outputs
8. Interrupts

External interrupt: 1
Internal interrupts: 4
9. Timer/counter: 1 set
10. On-chip 32.768 kHz crystal oscillator and clock divider circuit.
11. On-chip system clock oscillator
12. LCD driver circuit (128-segment, $1 / 3$ bias, $1 / 4$ duty)
13. Standby function
14. Supply voltage: 2.7 to 5.5 V
15. 64-pin QFP (QFP64-P-1420)

Pin Connections

Block Diagram

Symbol description

A, B	: Accumulators
ACL	: Auto clear
ALU	: Arithmetic logic unit
BR, DS	: Common signal control F/F
CG	: clock generator
DIV	: Divider
D, E, H, L	: General-purpose registers
HC	: Common signal circuit
IE	: Interrupt enable F/F
IFA, IFB	
IFS, IFT, IFV	: Interrupt requests

IME
P1-P3
PL, PU
PSW
R4-R7
RD, RE, RF
SB
SP
TC
: Interrupt mask enable F/F
: Registers
: Program counters
: Program status word register
: General-purpose registers
: Mode registers
: Shift register
: Stack pointer
: Count register
: Module register

Symbol	I/O	Circuit type	Function
$\mathrm{P} 0_{0}-\mathrm{P} 0_{3}$	I	Pull up	$\mathrm{Acc} \leftarrow \mathrm{P} 0_{0}-\mathrm{P} 0_{3}$
$\mathrm{P1}_{0}-\mathrm{P} 1_{3}$	I/O	Pull up	I / O selectable by instructions
$\mathrm{P} 2_{0}-\mathrm{P} 2_{3}$	I/O	Pull up	I/O selectable independently Sound output only when $\mathrm{P} 2_{3}$ pin is used as an output
$\mathrm{P} 3_{0}-\mathrm{P} 3_{3}$	I/O	Pull up	Serial interface I/O capacity using RE register
$\mathrm{S}_{0}-\mathrm{S}_{14}$	$\begin{gathered} \mathrm{O} \text { or } \\ \mathrm{I} / \mathrm{O} \\ \hline \end{gathered}$		Selectable between segment ports and I/O ports through an RC register
$\mathrm{S}_{15}-\mathrm{S}_{31}$	0		Display RAM contents output as LCD segment signals
$\mathrm{H}_{1}-\mathrm{H}_{4}$	0		4 -value output capability; used for LCD common output
TEST	I	Pull down	For test (Connected to GND normally)
$\overline{\text { RESET }}$	I	Pull up	Auto clear
ϕ	0		System clock output
$\mathrm{CK}_{1}, \mathrm{CK}_{2}$			For system clock oscillation
$\mathrm{OSC}_{\text {IN }}, \mathrm{OSC}_{\text {OUT }}$			For clock oscillation
$\mathrm{V}_{\mathrm{DSP}} \mathrm{V}_{\mathrm{OA}}, \mathrm{V}_{\mathrm{OB}}$			Power supply for LCD driver
V_{DC}, GND			Power supply for logic circuit

- Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit	Note
Supply voltage	V_{DD}	-0.3 to +7	V	1
	$\mathrm{~V}_{\mathrm{DSP}}$	-0.3 to +7	V	
Input voltage	V_{IN}	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V	1
Output voltage	$\mathrm{V}_{\mathrm{OUT}}$	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V	1
Output current	$\mathrm{I}_{\mathrm{OUT}}$	20	mA	2
Operating temperature	Topr	-20 to +70	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	

Note 1: The maximum applicable voltage on any pin with respect to GND.
Note 2: Sum of current from (or flowing into) output pins.
Recommended Operating Conditions

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	Note
Supply voltage	V_{DD}		2.7		5.5	V	
	$\mathrm{V}_{\text {DSP }}$		2.7		V_{DD}	V	
Basic clock oscillator	f		250		600	kHz	1
frequency		$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V	250		2,000		
Instruction cycle	t		6.67		16	$\mu \mathrm{s}$	
		$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V	2		16		
Crystal oscillator frequency	$\mathrm{f}_{\text {OSC }}$			32.768		kHz	

Note 1: Degree of fluctuation frequency: $\pm 30 \%$

- Oscillation Circuit

Parameter	Symbol	Con	tions	MIN.	TYP.	MAX.	Unit	Note
Input voltage	$\mathrm{V}_{\text {IH1 }}$			$0.7 \mathrm{~V}_{\mathrm{DD}}$		V_{DD}	V	1
	$\mathrm{V}_{\text {IL1 }}$			0		$0.3 \mathrm{~V}_{\mathrm{DD}}$	V	
	$\mathrm{V}_{\mathrm{IH} 2}$			$\mathrm{V}_{\mathrm{DD}}-0.5$		V_{DD}	V	2
	$\mathrm{V}_{\mathrm{IL} 2}$			0		0.5	V	
Input current	I_{IH}	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$		2		200	$\mu \mathrm{A}$	1
			$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V	20		200		
Output current	$\mathrm{I}_{\mathrm{OH} 1}$	$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-0.5 \mathrm{~V}$		50			$\mu \mathrm{A}$	3
	$\mathrm{I}_{\mathrm{OL} 1}$	$\mathrm{V}_{\text {OL }}=0.5 \mathrm{~V}$		250			$\mu \mathrm{A}$	
	$\mathrm{I}_{\mathrm{OH} 2}$	$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-0.5 \mathrm{~V}$		5		250	$\mu \mathrm{A}$	4
	$\mathrm{I}_{\text {OL2 }}$	$\mathrm{V}_{\text {OL }}=0.5 \mathrm{~V}$		500			$\mu \mathrm{A}$	
		$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-0.5 \mathrm{~V} \mathrm{~V}_{\mathrm{DD}}=4.5$ to 5.5 V		100			$\mu \mathrm{A}$	5
	OH3			400				
	$\mathrm{I}_{\text {OL3 }}$	$\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V}$		0.5			mA	
			$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V	1.6				
Output impedance	R_{C}				5	20	$\mathrm{k} \Omega$	6
	R_{S}				10	40	$\mathrm{k} \Omega$	7
Output voltage	V_{1}	$\mathrm{V}_{\mathrm{DSP}}=3.0 \mathrm{~V}$ No load		2.7		3	V	8
	V_{2}			1.7	2	2.3	V	
	V_{3}			0.7	1	1.3	V	
	V_{4}			0		0.3	V	
Current consumption	$\mathrm{I}_{\text {OP }}$	$\mathrm{f}=600 \mathrm{kHz}, \mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$			0.4	1.5	mA	9
	$\mathrm{I}_{\text {SB }}$	Standby current	$\mathrm{V}_{\mathrm{DSP}}=3.0 \mathrm{~V}$		15	40	$\mu \mathrm{A}$	10
			$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$		8	20		11

Note 1: Applied to pins $\mathrm{PO}_{0}-\mathrm{PO}_{1}, \overline{\text { RESET, }}$

$$
\mathrm{P1}_{0}-\mathrm{P1}_{3}, \mathrm{P} 2_{0}-\mathrm{P} 2_{3}, \mathrm{P}_{0}-\mathrm{P} 3_{2} \text { (during input mode). }
$$

Note 2: Applied to pins CK_{1}, Test, $\mathrm{OSC}_{\text {IN }}$.
Note 3: Applied to pin CK_{2}
Note 4: Applied to pins $\mathrm{P}_{0}-\mathrm{P} 1_{3}$ (during output mode).
Note 5: Applied to pins $\mathrm{P} 2_{0}-\mathrm{P} 2_{3}, \mathrm{P} 3_{0}-\mathrm{P} 3_{2}$ (during output mode), ϕ
Note 6: Applied to pins $\mathrm{H}_{1}-\mathrm{H}_{4}$
Note 7: Applied to pins $\mathrm{S}_{0}-\mathrm{S}_{3}$
Note 8: Applied to pins $\mathrm{H}_{1}-\mathrm{H}_{4}, \mathrm{~S}_{0}-\mathrm{S}_{3.1}$

$$
\mathrm{C}_{O A}=1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{OB}}=1 \mu \mathrm{~F}
$$

Note 9: No load condition.
Note 10: No load condition when bleeder resistance is ON.
Note 11: No load condition when bleeder resistance is OFF.

Pin Functions

(1) GND, V_{DD} (Power supply inputs)

Both GND pins 26 and 58 should be grounded.
The $V_{D D}$ pin is the positive power supply with respect to GND.

The $V_{\text {DSP }}$ pin is the positive power supply for an LCD driver with respect to GND.

(2) TEST (Test input)

The test pin should be left open or connected to GND with a pull-down resistor.

(3) RESET (Input)

The RESET accepts an active Low system reset which initializes the internal logic of the device. Normally a capacitor of about $1.0 \mu \mathrm{~F}$ is connected between this pin and GND to provide a power on reset function.

(4) $\mathrm{OSC}_{\text {In }}, \mathrm{OSC}_{\text {out }}$ (Crystal oscillators)

The $\mathrm{OSC}_{\text {IN }}$ and $\mathrm{OSC}_{\text {out }}$ pins connect with an external crystal oscillator and these pins and the GND connect with a capacitor, which constitute an oscillator circuit.

The output of the oscillator is coupled to a clock divider for real-time clock operation.

(5) $\mathrm{CK}_{1}, \mathrm{CK}_{2}$ (System clock CR oscillators)

The CK_{1} and CK_{2} pins, in conjunction with a resistor between them, provide a system clock oscillator.

(6) $\mathrm{H}_{1}-\mathrm{H}_{4}$ (Common signal outputs)

The $\mathrm{H}_{1}-\mathrm{H}_{4}$ pins are used to drive the common of an LCD.

(7) $\mathrm{S}_{0}-\mathrm{S}_{31}$ (Segment outputs)

The $\mathrm{S}_{0}-\mathrm{S}_{31}$ pins drive LCD segments. Pins S_{0} through S_{14} may also be used as I/O ports when specified with the mode register RC.
(8) $\mathrm{PO}_{0}-\mathrm{PO}_{3}$ (Inputs)

The P0 pins are normally used to accept key input data. A falling edge at these pins resets the IFB flag.
(9) $\mathrm{P} 1_{0}-\mathrm{P} 1_{3}$ (Input/output)

The P1 are I/O pins connected to the positive supply with pull-up resistors.

They may be switched between Input and Output modes through an instruction.

(10) $\mathrm{P}_{0}-\mathrm{P}_{3}$ (Input/output)

The $\mathrm{P} 2_{0}-\mathrm{P} 2_{3}$ pins are bit-independent I/O ports which can be independently set to Input or Output mode with the mode register RF.

When the $\mathrm{P} 2_{3}$ is used for an output pin, it serves exclusively as a sound output pin, which can output a sound signal with any frequency set up by the timer counter.

Pins $\mathrm{P} 2_{0}$ and $\mathrm{P} 2_{1}$ output the OD and R / W sig. nals with the mode register RC.

(11) $\mathrm{P3}_{0}-\mathrm{P}_{2}$ (Input/output)

The $\mathrm{P} 3_{0}-\mathrm{P} 3_{2}$ pins are I/O pins which are connected to the positive supply with pull-up resistors.

These pins can be set to I/O mode for use in a serial interface with the mode register RE.

- Hardware Configuration

(1) ROM and program counter

The on-chip ROM has a configuration of 64 pages $\times 64$ steps $\times 8$ bits, and stores programs and table data.

The program counter consists of a 6-bit page address counter P_{U} and a 6-bit binary counter P_{L} used to specify the steps within a page.

The locations shown in Fig. 1 are allocated in the on-chip ROM.

(2) Stack pointer (SP)

The stack pointer (SP) is an 8-bit shift register which holds the starting address of the stack area of RAM space.

Immediately after the reset, the contents of the stack pointer are uninitialized and must be set to an appropriate value. If, for instance, the initial value of the stack pointer is set to 80_{H}, the data memory are begining with the highest address (excluding the display RAM area) $7 \mathrm{~F}_{\mathrm{H}}$, is usable as a stack area.

(3) RAM

Data memory has a 160 word $\times 4$-bit configuration, and is used to store processing data and other information.

Data memory is also used as a stack area to save register values, the program counter value, and program status word (PSW) at the time a subroutine jump or an interrupt occurs.

Fig. 3 shows the RAM configuration.
$2 \times 16 \times 4$ bits of entire RAM space is used as a display RAM area from which data is output to LCD segment driving pins. An LCD with a $1 / 4$ duty and $1 / 3$ bias format can be directly driven by writing display data into the display RAM area.

The display RAM outputs are, as shown in Fig. 4 , connected to segment output pins $\mathrm{S}_{0}-\mathrm{S}_{31}$ for individual set of common outputs $\mathrm{H}_{1}-\mathrm{H}_{4}$. The segment output pins provide a single digit of display RAM data $M_{0}-M_{3}$, as an LCD driving waveform signal according to $\mathrm{H}_{1}-\mathrm{H}_{4}$ outputs.

The operations of the display RAM are identical to those of other RAM areas.

Fig. 1 Program ROM map

L H	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001
0000									S_{0}	$\mathrm{S}_{16}{ }^{\text {a }}$
0001									S_{1}	施17
0010									S	－ $\mathrm{NS}_{18} \mathrm{~S}_{18}$
0011									S_{3}	－ NS_{19}
0100									S_{4}	－ $\mathrm{S}^{20}{ }^{\text {a }}$
0101									S_{5}	
0110									S6	
0111									S	－ $\mathrm{S}_{23}{ }^{\text {㑑 }}$
1000									S ${ }^{\text {S }}$	
1001										－ $\mathrm{E}^{\text {S }}$ 25
1010									S	为 ${ }^{\text {en }}$
1011									S ${ }^{\text {dil }}$	
1100									S ${ }^{\text {S }}$	－ S_{28}
1101					．				S ${ }^{\text {che }}$	－ $\mathrm{S}_{29} \mathrm{~S}^{\text {a }}$
1110									S ${ }^{4}$	S ${ }_{30}$
1111									Stis	㐌S S_{31}

Note：The area with oblique lines is allocated for a display RAM and the Sn shows the related segment outputs．
Fig． 3 RAM configuration

Fig． 4 Display RAM and its LCD segment outputs

(4) Accumulator (A), Subaccumulator (B) and Arithmetic and logic unit (ALU)

The accumulator (A) is a 4-bit working register which is the nucleus of the single chip system. It holds the results of operations and transfers data to memory, I/O ports, and registers.

A sub-accumulator (B) is another 4-bit register. It is used as one of general-purpose registers, and when combined with the Acc to form a B-A register pair, allows data transfer on a byte-by-byte (8-bit) basis.

The arithmetic and logic unit (ALU) performs, in conjunction with a carry flag (C), binary addition, shift operations, and logical operations such as AND, OR, EX-OR, and complement.
(5) General-purpose registers (H, L, D, E)

Registers H and L are 4-bit general-purpose registers. They can transfer and compare data with the Acc on 4-bit basis. Registers D and E are 4-bit registers and can transfer data with the H and L registers on an 8-bit basis.

The H and L as well as the D and E registers can be combined into 8 -bit register pairs, and can be used as pointers to data memory locations.

The L register can be incremented or decremented and is used to access I/O ports and mode registers.
(6) Clock divider, IFV flag, IFA flag

The device contians a crystal oscillator and a 15 -stage divider, as shown in Fig. 5. A real-time

Fig. 5 Real-time clock and divider

Fig. 6 Timer/event counter

Fig. 7 SND signal
clock can be provided by connecting an external crystal oscillator between the oscillator pins.

When an external 32.768 kHz crystal oscillator is used, the f_{0} signal is set at a frequency of 1 Hz .

(7) Timer/event counter and the SND signal

The timer/event counter consists of an 8-bit count register (TC) and an 8 -bit mudulo register (TM).

The count register is an 8 -bit incremental binary counter. It is incremented by one at the falling edge of its count pulse (CP) input. If the count register overflows, the timer interrupt request flag IFT is set, and the contents of the modulo register (TM) are loaded into the count register (See Fig. 6).

The count pulse CP can be selected from divider signals $f_{\text {IN }}, f_{8}$ and f_{0}, and the system clock, by using the mode register RD.

If the count register (TC) overflows, the SND flag
reverses its status at the falling edge of the TC output. A sound signal can be obtained at the TC output by putting P2 in output mode and sending a "1" to pin $\mathrm{P} 2_{3}$ (See Fig. 7).

(8) Serial interface and IFS

The serial interface consists of an 8-bit shift register (SB) and a 3-bit counter, which is used to input and output the serial data.

The serial clock can be selected with either an internal clock (system clock) or an external clock.

In Serial shift operations, the highest bit data of the shift register (SB) is output from the SO pin, and the data input from the SI pin at the rising edge of a serial clock is loaded into the lowest bit of the shift register.

When the internal clock is used, immediately after the SIO instruction is executed, the serial op-

Fig. 8 Serial interface

(注) SO: Serial data output
SI : Serial data input
Note: SO: Serial data output SI: Serial data input

Fig. 9 Serial I/O timing
eration begins and stops with 8 clocks which are output from the SCK pin.

Upon completion of an 8-bit shift operation, the serial I/O ending flag IFS is set each time a 3 -bit counter overflows, and an interrupt request occurs.

(9) Input port P0 and IFB flag

The IFB flag is set at the falling edge of the signal applied to the input port P0 by which the interrupt is enabled.

When port P 0 is used as a key input, it can cause an interrupt each time a key is operated.

Fig. 10 P0 port

(10) Interrupts

When an interrupt occurs, the corresponding interrupt request flag is set. The CPU acknowledges the interrupt if it is enabled (Master interrupt enable flag and the corresponding interrupt enable flag are set). If more than one interrupt occurs simultaneously, all of the corresponding interrupt request flags will be set, but the CPU will only ac knowledge that interrupt with the highest priority and other interrupts will be queued.

(11) $1 / O$ ports

Port P0 is a 4 bit parallel input port. The IFB flag is set at the falling edge of this port.

Port P1 can be switched between input and output modes, 4 bits at a time.

Each bit of port P2 can be independently placed in input or output mode by setting the corresponding bit of mode register RF.

Ports $\mathrm{P} 2_{0}$ and $\mathrm{P} 2_{1}$ can output the OD and R / W signals, respectively. In those cases, these pins should be kept High in an output mode. Port P2 3_{3} outputs the SND signal in the output mode.

Port P3 is a 4-bit I/O port which can be placed in input or output mode, 3 bits at a time. Each bit of port P3 can be set to the I/O modes (SI, SO, SCK) of a serial interface.

Ports P1 and P3 are placed in an output mode when a port output instruction is executed, and in an input mode when a port input instruction is executed. After an ACL operation, ports P1, P2 and P3 are all placed in an input mode.

Every input port has pull-up resistors. (Pull-up resistors for I/O ports are effective only when the ports are placed in an input mode.)

Ports P1 through P3 in an output mode can be independently set or reset by instructions.

When a key-matrix is configured by using I/O ports, if the short on output pins may occur caused by a multiple key depression, port P1 should be used as an output.

(12) Standby mode

Executing the CEND instruction places the de-

Fig. 11 Interrupt handling

Table 1 Characteristics of I/O ports and registers

Port	Function		Direct 4-bit parallel I/O		IN, OUT instruction	Bit independent output SPn
		Input (INA)	Output (OUTA)	Input (IN)	Output (OUT)	Direct pin-independent output RPn
P0	Input-only port	\bigcirc	\times	\bigcirc	\times	\times
P1	I/O port	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc
P2	I/O port, P_{23}-sound output	\bigcirc	\bigcirc	\times	\times	\bigcirc
P3	P3 $0_{0}-\mathrm{SI}, \mathrm{P} 3_{1}-\mathrm{SCK}, \mathrm{P} 3_{2}-\mathrm{SO}_{1}$, multi-control port	\bigcirc	\bigcirc	\times	\times	\bigcirc

\bigcirc : Yes, X : No
vice in standby mode. To reduce power consumption, the system clock is inactivated.

Standby mode may be cleared with the Interrupt request or the RESET signal.

(13) Reset function (ACL)

Applying a Low level signal to the RESET pin resets the internal logic of the device and applying a High level signal starts execution of the program at address 0 , page 0 .
Once the device is reset, all I/O ports are placed

Fig. 12 Master clock sources
in input mode to disable all interrupts, and the LCD screen is cleared.

The device is also reset when it is powered up.

(14) Master clock oscillator circuit

The master clock oscillator requires an external resistor across pins CK_{1} and CK_{2}. Instead of using on-chip oscillator, an external clock may be applied to pin CK_{1}. In this case, pin CK_{2} should be left open.

The system clock ϕ is a divided clock equivalent to $1 / 4$ of the clock applied to pin CK_{1}.
(15) LCD driver

- Display segment

The SM563 contains an on-chip LCD driver which can directly drive an LCD with a $1 / 4$ duty and $1 / 3$ bias scheme. Fig. 13 shows an example of LCD segment configuration for $1 / 4$ duty.
Each segment of the LCD can be turned on or off by software control of the setting of the corresponding bit " 1 " or " 0 " in the display RAM area (see Fig. 3).

Fig. 13 LCD segment configuration for $1 / 4$ duty

The LCD digit may have any shape, provided that the maximum number of segments does not exceed 128 (see Fig. 13). Fig. 14 shows an example of a seven-segment numeric LCD digit.

Fig. 14 - 7 -segment numeric LCD digit

- LCD driving signal waveform

Fig. 15 shows the LCD signal driving waveforms required to display the number " 5 " on the 7 -segment display shown in Fig. 14 (segment outputs S_{0} and S_{1} are used). A voltage of 3 V is applied to pin $V_{\text {DSP }}$ in the Fig. 15.

The frame frequency (I/T) can be selected between 64 Hz and 128 Hz by mask options.

- $V_{O A}$ and $V_{O B}$ pins

The device contains bleeder resistors to allow 1/ 3 bias driving. When $\mathrm{V}_{\mathrm{DSP}}$ is 3 V , voltages of 2 V and 1 V are applied to pins V_{OA} and V_{OB} respectively.

Normally pins $V_{O A}$ and $V_{O B}$ are left open. When an LCD with a large display area is driven, connect capacitors across pins $V_{O A}$ and $V_{D S P}$ and across V_{OB} and $\mathrm{V}_{\mathrm{DSP}}$ to improve the rise time of the LCD driving signal.

Fig. 15 LCD driving signal waveform (reguired to display the number 5)

Instruction Set

(1) ROM address instructions

Mnemonic	Machine code	Operation
TR x	80-BF	PL $\leftarrow x\left(\mathrm{I}_{5}-\mathrm{I}_{0}\right)$
$\begin{array}{c\|} \hline \text { TL xy } \\ \text { (2-byte) } \\ \hline \end{array}$	$\begin{aligned} & \mathrm{E} 0-\mathrm{EF} \\ & 00-\mathrm{FF} \end{aligned}$	$\begin{aligned} & \text { PU } \leftarrow \mathrm{x}\left(\mathrm{I}_{11}-\mathrm{I}_{4}\right) \\ & \text { PL } \leftarrow \mathrm{y}\left(\mathrm{I}_{5}-\mathrm{I}_{0}\right) \end{aligned}$
TRS x	C0-DF	$\begin{aligned} & (\mathrm{SP}-2),(\mathrm{SP}-3),(\mathrm{SP}-4) \leftarrow \mathrm{PC} \\ & \mathrm{SP} \leftarrow \mathrm{SP}-4 \\ & \mathrm{PU} \leftarrow(10000)_{2} \\ & \mathrm{PL} \leftarrow \mathrm{x}\left(\mathrm{I}_{4} \mathrm{I}_{3} \mathrm{I}_{2} \mathrm{I}_{1} \mathrm{I}_{0} \mathrm{O}\right) \\ & \hline \end{aligned}$
$\begin{aligned} & \text { CALL xy } \\ & (2 \text {-byte) } \end{aligned}$	$\begin{aligned} & \mathrm{F} 0-\mathrm{FF} \\ & 00-\mathrm{FF} \end{aligned}$	$\begin{array}{\|l} \hline(\mathrm{SP}-2),(\mathrm{SP}-3),(\mathrm{SP}-4) \leftarrow \mathrm{PC} \\ \mathrm{SP} \leftarrow \mathrm{SP}-4, \mathrm{PU} \leftarrow \mathrm{x}\left(\mathrm{I}_{11}-\mathrm{I}_{6}\right), \\ \mathrm{PL} \leftarrow \mathrm{y}\left(\mathrm{I}_{5}-\mathrm{I}_{0}\right) \\ \hline \end{array}$
$\begin{aligned} & \text { JBA x } \\ & \text { (2-byte) } \end{aligned}$	$\begin{aligned} & 7 \mathrm{~F} \\ & 30-3 \mathrm{~F} \end{aligned}$	$\begin{aligned} & \hline \mathrm{PU}_{5}-\mathrm{PU}_{2} \leftarrow \mathrm{x}\left(\mathrm{I}_{3}-\mathrm{I}_{0}\right), \\ & \mathrm{PU}_{1}, \mathrm{PU}_{0}, \mathrm{PL}_{5}, \mathrm{PL}_{4} \leftarrow \mathrm{~B}, \\ & \mathrm{PL}_{3}-\mathrm{PL}_{0} \leftarrow \mathrm{~A} \\ & \hline \end{aligned}$
RTN	61	$\begin{aligned} & \mathrm{PU}, \mathrm{PL} \leftarrow(\mathrm{SP}),(\mathrm{SP}+1), \\ & (\mathrm{SP}+2) \end{aligned}$
RTNS	62	$\begin{array}{\|l} \hline \mathrm{PU}, \mathrm{PL} \leftarrow(\mathrm{SP}),(\mathrm{SP}+1), \\ (\mathrm{SP}+2), \mathrm{SP} \leftarrow \mathrm{SP}+4 \\ \hline \end{array}$
RTNI	63	$\begin{aligned} & \hline \text { PU, PL } \leftarrow(\mathrm{SP}),(\mathrm{SP}+1), \\ & (\mathrm{SP}+2), \mathrm{PSW} \leftarrow(\mathrm{SP}+3), \\ & \mathrm{SP} \leftarrow \mathrm{SP}+4, \mathrm{IME} \leftarrow 1 \\ & \hline \end{aligned}$

(2) RAM address instructions

Mnemonic	Machine code	Operation
STL	69	$\mathrm{~L} \leftarrow \mathrm{~A}$
STH	68	$\mathrm{H} \leftarrow \mathrm{A}$
EXHD	3 F	$\mathrm{H} \leftrightarrow \mathrm{D}$
$\mathrm{L} \leftrightarrow \mathrm{E}$		

(3) Data transfer instructions

Mnemonic	Machine code	Operation
EX pr	5C-5F	$\mathrm{A} \leftrightarrow(\mathrm{pr})$
LDX adr (2-byte)	$\begin{aligned} & 7 \mathrm{D} \\ & 00-\mathrm{FF} \end{aligned}$	A $\leftarrow(\mathrm{adr})$
STX adr (2-byte)	$\begin{aligned} & 7 \mathrm{E} \\ & 00-\mathrm{FF} \end{aligned}$	$(\mathrm{adr}) \leftarrow \mathrm{A}$
EXX adr (2-byte)	$\begin{aligned} & \hline 7 \mathrm{C} \\ & 00-\mathrm{FF} \end{aligned}$	$\mathrm{A} \leftrightarrow$ (adr)
LAX x	10-1F	$\mathrm{A} \leftarrow \mathrm{x}\left(\mathrm{I}_{3}-\mathrm{I}_{0}\right)$
$\begin{aligned} & \text { LIBA xy } \\ & \text { (2-byte) } \end{aligned}$	$\begin{aligned} & 3 \mathrm{C} \\ & 00-\mathrm{FF} \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline \mathrm{B} \leftarrow \mathrm{x}\left(\mathrm{I}_{7}-\mathrm{I}_{4}\right) \\ \mathrm{A} \leftarrow \mathrm{y}\left(\mathrm{I}_{3}-\mathrm{I}_{0}\right) \\ \hline \end{array}$
LBAT	60	$\begin{aligned} & \mathrm{B} \leftarrow \mathrm{ROM}\left(\mathrm{Pu}_{5}-\mathrm{Pu}_{2}, \mathrm{~B}, \mathrm{~A}\right)_{\mathrm{H}} \\ & \mathrm{~A} \leftarrow \mathrm{ROM}\left(\mathrm{Pu}_{5}-\mathrm{Pu}_{2}, \mathrm{~B}, \mathrm{~A}\right)_{\mathrm{L}} \end{aligned}$
LDL	65	$\mathrm{A} \leftarrow \mathrm{L}$
LD pr	54-57	$\mathrm{A} \leftarrow(\mathrm{pr})$
ST pr	58-5B	$(\mathrm{pr}) \leftarrow \mathrm{A}$
EXH	6C	$\mathrm{A} \leftrightarrow \mathrm{H}$
EXL	6D	$\mathrm{A} \leftrightarrow \mathrm{L}$
EXB	6 E	$\mathrm{A} \leftrightarrow \mathrm{B}$
STB	6A	$B \leftarrow A$
LDB	66	$\mathrm{A} \leftarrow \mathrm{B}$
LDH	64	$\mathrm{A} \leftarrow \mathrm{H}$
PSHBA	28	$\begin{array}{\|l} \hline(\mathrm{SP}-1) \leftarrow \mathrm{B},(\mathrm{SP}-2) \leftarrow \mathrm{A}, \\ \mathrm{SP} \leftarrow \mathrm{SP}-2 \end{array}$
PSHHL	29	$\begin{aligned} & (\mathrm{SP}-1) \leftarrow \mathrm{H},(\mathrm{SP}-2) \leftarrow \mathrm{L}, \\ & \mathrm{SP} \leftarrow \mathrm{SP}-2 \end{aligned}$
POPBA	38	$\begin{aligned} & \mathrm{B} \leftarrow(\mathrm{SP}+1), \mathrm{A} \leftarrow(\mathrm{SP}), \\ & \mathrm{SP} \leftarrow \mathrm{SP}+2 \end{aligned}$
POPHL	39	$\begin{aligned} & \mathrm{H} \leftarrow(\mathrm{SP}+1), \mathrm{L} \leftarrow(\mathrm{SP}) \\ & \mathrm{SP} \leftarrow \mathrm{SP}+2 \end{aligned}$
STSB	70	$\mathrm{SB}_{\mathrm{H}} \leftarrow \mathrm{B}, \mathrm{SB}_{\mathrm{L}} \leftarrow \mathrm{A}$
STSP	71	$\mathrm{SP}_{\mathrm{H}} \leftarrow \mathrm{B}, \mathrm{SP}_{\mathrm{L}} \leftarrow \mathrm{A}$
STTC	72	TC ¢TM
STTM	73	$\mathrm{TM}_{\mathrm{H}} \leftarrow \mathrm{B}, \mathrm{TM}_{\mathrm{L}} \leftarrow \mathrm{A}$
LDSB	74	$\mathrm{B} \leftarrow \mathrm{SB}_{\mathrm{H}}, \mathrm{A} \leftarrow \mathrm{SB}_{\mathrm{L}}$
LDSP	75	$\mathrm{B} \leftarrow \mathrm{SP}_{\mathrm{H}}, \mathrm{A} \leftarrow \mathrm{SP}_{\mathrm{L}}$
LDTC	76	$\mathrm{B} \leftarrow \mathrm{TC}_{\mathrm{H}}, \mathrm{A} \leftarrow \mathrm{TC}_{\mathrm{L}}$
LDDIV	77	$\mathrm{B} \leftarrow \mathrm{DIV}_{\mathrm{H}}, \mathrm{A} \leftarrow \mathrm{DIV}_{\mathrm{L}}$

(4) Arithmetic instructions

Mnemonic	Machine code	Operation
ADX x	00-0F	$\begin{aligned} & A \leftarrow A+x\left(I_{3}-I_{0}\right), \\ & \text { Skip if } C_{Y}=1 \end{aligned}$
ADD	36	$\mathrm{A} \leftarrow \mathrm{A}+(\mathrm{HL})$
ADDC	37	$\begin{aligned} & \mathrm{A} \leftarrow \mathrm{~A}+(\mathrm{HL})+\mathrm{C}, \mathrm{C} \leftarrow \mathrm{C}_{\mathrm{Y}} \\ & \text { Skip iF } \mathrm{C}_{\mathrm{Y}}=1 \\ & \hline \end{aligned}$
OR	31	$\mathrm{A} \leftarrow \mathrm{A} \vee$ (HL)
AND	32	$\mathrm{A} \leftarrow \mathrm{A} \wedge$ (HL)
EOR	33	$\mathrm{A} \leftarrow \mathrm{A} \oplus(\mathrm{HL})$
ANDB	22	$A \leftarrow A \wedge B$
ORB	21	$\mathrm{A} \leftarrow \mathrm{A} \vee \mathrm{B}$
EORB	23	$\mathrm{A} \leftarrow \mathrm{A} \oplus \mathrm{B}$
COMA	6 F	$\mathrm{A} \leftarrow \overline{\mathrm{A}}$
ROTR	25	$\mathrm{C} \rightarrow \mathrm{A}_{3} \rightarrow \mathrm{~A}_{2} \rightarrow \mathrm{~A}_{1} \rightarrow \mathrm{~A}_{0} \rightarrow \mathrm{C}$
ROTL	35	$\mathrm{C} \leftarrow \mathrm{A}_{3} \leftarrow \mathrm{~A}_{2} \leftarrow \mathrm{~A}_{1} \leftarrow \mathrm{~A}_{0} \leftarrow \mathrm{C}$
INCB	52	$B \leftarrow B+1$, Skip if $B=F_{H}$
DECB	53	$B \leftarrow B-1$, Skip if $B=0$
INCL	50	$\mathrm{L} \leftarrow \mathrm{L}+1$, Skip if $\mathrm{L}=\mathrm{F}_{\mathrm{H}}$
DECL	51	$\mathrm{L} \leftarrow \mathrm{L}-1$, Skip if $\mathrm{L}=0$
DECM adr	$\begin{aligned} & 79 \\ & 00-\mathrm{FF} \end{aligned}$	$\begin{aligned} & \text { (adr) } \leftarrow(\mathrm{adr})-1, \\ & \text { Skip if }(\mathrm{adr})=0 \\ & \hline \end{aligned}$
INCM adr	$\begin{array}{\|l\|} \hline 78 \\ 00-\mathrm{FF} \\ \hline \end{array}$	$\begin{aligned} & (\text { (adr }) \leftarrow(\mathrm{adr})+1, \\ & \text { Skip if }(\mathrm{adr})=\mathrm{F}_{\mathrm{H}} \end{aligned}$

(5) Test instructions

Mnemonic	Machine code	Operation
TAM	30	Skip if $A=(H L)$
TAH	24	Skip if $A=H$
TAL	34	Skip if $A=L$
TAB	20	Skip if $A=B$
TC	2A.	Skip if $\mathrm{C}=0$
TM x	48-4B	Skip if (HL) $x=1$
TA x	4C-4F	Skip if $\mathrm{Ax}=1$
TSTT	2B	Skip if IFT $=1$, $\mathrm{IFT} \leftarrow 0$
TSTA	2C	Skip if $\mathrm{IFA}=1, \mathrm{IFA} \leftarrow 0$
TSTS	2D	Skip if IFS $=1, \mathrm{IFS} \leftarrow 0$
TSTB	2E	Skip if IFB $=1$, IFB $\leftarrow 0$
TSTV	2 F	Skip if IFV $=1$, IFB $\leftarrow 0$

(6) Bit manipulation instructions

Mnemonic	Machine code	Operation
SM x	40-43	(HL) $x \leftarrow 1$
RM x	44-47	(HL) $x \leftarrow 0$
RC	26	$\mathrm{C} \leftarrow 0$
SC	27	$\mathrm{C} \leftarrow 1$
RIME	3A	IME $\leftarrow 0$
SIME	3B	IME $\leftarrow 1$
$\begin{aligned} & \hline \text { DI x } \\ & \text { (2-byte) } \end{aligned}$	$\begin{aligned} & 7 \mathrm{~F} \\ & \mathrm{C} 0-\mathrm{DF} \end{aligned}$	$\mathrm{IEF} \leftarrow \mathrm{IEF} \wedge \mathrm{x}$
$\begin{aligned} & \text { EI x } \\ & \text { (2-byte) } \end{aligned}$	$\begin{aligned} & \hline 7 \mathrm{~F} \\ & \mathrm{E} 0-\mathrm{FF} \end{aligned}$	IEF $\vee \mathrm{x}$

(7) I/O instructions

Mnemonic	Machine code	Operation
IN	67	$\mathrm{A} \leftarrow \mathrm{P} 0$
OUT	6B	$\mathrm{P} 1 \leftarrow \mathrm{~A}$
$\begin{aligned} & \hline \text { INA x } \\ & \text { (2-byte) } \end{aligned}$	$\begin{aligned} & \hline 7 \mathrm{~F} \\ & \mathrm{~A} 0-\mathrm{A} 9 \\ & \hline \end{aligned}$	$\mathrm{A} \leftarrow \mathrm{P}(\mathrm{x}), \mathrm{R}(\mathrm{x})$
$\begin{aligned} & \text { OUTA x } \\ & \text { (2-byte) } \end{aligned}$	$\begin{aligned} & \hline 7 \mathrm{~F} \\ & \mathrm{B0}-\mathrm{BF} \end{aligned}$	$\mathrm{P}(\mathrm{x}), \mathrm{R}(\mathrm{x}) \leftarrow \mathrm{A}$
INBA x	$\begin{aligned} & 7 \mathrm{~F} \\ & 80-81 \end{aligned}$	$\begin{array}{\|l} \hline \mathrm{B} \leftarrow \mathrm{R}(\mathrm{x}+1) \\ \mathrm{A} \leftarrow \mathrm{R}(\mathrm{x}) \\ \hline \end{array}$
$\begin{aligned} & \text { OUTBA x } \\ & \text { (2-byte) } \\ & \hline \end{aligned}$	$\begin{aligned} & 7 \mathrm{~F} \\ & 90-91 \end{aligned}$	$\begin{aligned} & \mathrm{R}(\mathrm{x}+1) \leftarrow \mathrm{B} \\ & \mathrm{R}(\mathrm{x}) \leftarrow \mathrm{A} \\ & \hline \end{aligned}$
$\begin{aligned} & \text { SP xy } \\ & \text { (2-byte) } \end{aligned}$	$\begin{aligned} & 7 \mathrm{~A} \\ & 00-\mathrm{F} 3 \end{aligned}$	$P(y) \leftarrow P(y) x$
$\begin{aligned} & \text { BP xy } \\ & \text { (2-byte) } \end{aligned}$	$\begin{aligned} & \hline 7 \mathrm{~B} \\ & 00-\mathrm{F} 3 \end{aligned}$	$P(y) \leftarrow P(y) x$
$\begin{aligned} & \text { RDS } \\ & \text { (2-byte) } \end{aligned}$	$\begin{aligned} & 7 \mathrm{~F} \\ & 60 \\ & \hline \end{aligned}$	DS $\leftarrow 0$
$\begin{aligned} & \text { RBR } \\ & \text { (2-byte) } \end{aligned}$	$\begin{aligned} & 7 \mathrm{~F} \\ & 70 \\ & \hline \end{aligned}$	$\mathrm{BR} \leftarrow 0$
$\begin{aligned} & \text { SDS } \\ & \text { (2-byte) } \\ & \hline \end{aligned}$	$\begin{aligned} & 7 \mathrm{~F} \\ & 61 \\ & \hline \end{aligned}$	DS $\leftarrow 1$
$\begin{aligned} & \text { SBR } \\ & \text { (2-byte) } \\ & \hline \end{aligned}$	$\begin{aligned} & 7 \mathrm{~F} \\ & 71 \\ & \hline \end{aligned}$	BR $\leftarrow 0$
$\begin{aligned} & \text { READ } \\ & \text { (2-byte) } \end{aligned}$	$\begin{aligned} & 7 \mathrm{~F} \\ & 62 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{A} \leftarrow \mathrm{P} 4 \\ & \text { with } \mathrm{OD} \end{aligned}$
WRIT (2-byte)	$\begin{aligned} & 7 \mathrm{~F} \\ & 72 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { P4ヶA } \\ & \text { with } \mathrm{R} / \mathrm{W} \\ & \hline \end{aligned}$
$\begin{aligned} & \text { READB } \\ & \text { (2-byte) } \end{aligned}$	$\begin{aligned} & 7 \mathrm{~F} \\ & 63 \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{A} \leftarrow \mathrm{P} 4 \text {, with } \mathrm{OD} \\ \mathrm{~B} \leftarrow \mathrm{P} 5 \\ \hline \end{array}$
$\begin{aligned} & \text { WRITB } \\ & \text { (2-byte) } \\ & \hline \end{aligned}$	$\begin{aligned} & 7 \mathrm{~F} \\ & 73 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{P} 4 \leftarrow \mathrm{~A} \text {, with } \mathrm{R} / \mathrm{W} \\ & \mathrm{P} 5 \leftarrow \mathrm{~B} \end{aligned}$

(8) Special instructions

Mnemonic	Machine code	Operation
SIO	3 E	Serial I/O start
IDIV $(2$-byte $)$	7 F	10

System Configuration Example

8-bit Single-chip Microcomputers

LH0801/LH0801A LH0811/LH0811A

Z8 Microcomputer Unit

- Description

The LH0801/A, LH0811/A are 8-bit single chip microcomputers (Z8) which have 2 K bytes and 4 K bytes of ROM respectively.
The $Z 8$ offers faster execution; more efficient use of memory, more sophisticated interrupt, input/output and bit-manipulation capabilities, and easier system expansion.
Under program control, the Z8 can be tailored to the needs of its user. It can be configured as a stand-alone microcomputer with 2 K bytes for the LH0801/A or 4 K bytes for the LH0811/A of internal ROM, a traditional microprocessor that manages up to 124 bytes for the LH0801/A or 120 bytes for the LH0811/A of external memory, or a parallel processing device in a system with other processors and peripheral controllers linked by the Z-BUS. In all configurations, a large number of pins remain available for I/O.

Features

1. Complete single-chip microcomputer with internal ROM, RAM and I/O

RAM capacity: 124 bytes
ROM capacity: 2 K bytes (LH0801/A)
4K bytes (LH0811/A)
I/O ports: 32
2. On-chip two programmable 8-bit counter/timers, each with a 6 -bit programmable prescaler
3. Full-duplex UART
4. 144 byte register file
5. Register pointer so that short, fast instructions can access any working register groups
6. Vectored, priority interrupts for I/O, counter/ timers, and UART
7. Up to 62 K bytes for the LH0801/A or 60 K bytes for the LH0811/A addressable external space each for program and data memory
8. On-chip oscillator
9. Maximum clock frequency

8MHz (internal 4MHz): LH0801/LH0811
12MHz (internal 6MHz) :LH0801A/LH0811A

- Pin Conections

10. High speed instruction execution
($8 \mathrm{MHz} / 12 \mathrm{MHz}$)
Working register execution time:
$1.5 \mu \mathrm{~s} / 1.0 \mu \mathrm{~s}$
Average instruction execution time:
$2.2 \mu \mathrm{~s} / 1.5 \mu \mathrm{~s}$
Maximum instruction execution time:
$5.0 \mu \mathrm{~s} / 3.3 \mu \mathrm{~s}$
11. Low power standby option which retains contents of general-purpose registers
12. Single +5 V power supply
13. All pins are TTL compatible
14. 40-pin DIP (DIP40-P-600):

LH0801/A, LH0811/A
44-pin QFJ (QFJ44-P-S650):
LH0801U/AU, LH0811U/AU

- Ordering Information

LH08XX X X
$L_{\text {Package }}$
Blank: 40-pin DIP (DIP40-P-600) U: 44-pin QFJ (QFJ44-P-S650)

Clock frequency
Blank: 8 MHz
A: 12 MHz
Model No. LH0801 (On-chip 2K byte ROM) LH0811 (On-chip 4K byte ROM)

(Note) Pin numbers apply to 40 -pin DIP.

- Pin Description

Pin	Meaning	I/O	Function
$\mathrm{PO}_{0}-\mathrm{P} 0_{7}$	Port 0	I/O	8-bit I/O port, programmable for I/O.
$\mathrm{P}_{0}-\mathrm{P} 1_{7}$	Port 1	I/O	Programmable for I/O in bytes.
$\mathrm{P}_{0}-\mathrm{P} 2_{7}$	Port 2	I/O	Programmable for I / O in bits.
$\mathrm{P}_{0}-\mathrm{P} 3_{7}$	Port 3	I/O	$\mathrm{P} 3_{0}-\mathrm{P} 3_{3}$ for input, $\mathrm{P} 3_{4}-\mathrm{P} 3_{7}$ for output.
$\overline{\mathrm{AS}}$	Address Strobe	0	Active "Low", activated for external address memory transfer.
$\overline{\mathrm{DS}}$	Data Strobe	0	Active "Low", activated for external data memory transfer.
R/产	Read/Write	0	Read at "High", Write at "Low".
$\overline{\text { RESET }}$	Reset	I	Active "Low", Initializes,
XTALI	Clock 1	I	Clock terminal pin.
XTAL2	Clock 2	0	Clock terminal pin.

- Absolute Maximum Ratings

Parameter	Symbol	Ratings	Unit	Note
Input voltage	$\mathrm{V}_{\text {IN }}$	-0.3 to +7	V	1
Output voltage	$\mathrm{V}_{\text {OUT }}$	-0.3 to +7	V	
Operating temperature	Topr	0 to +70	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-65 to +150	${ }^{\circ} \mathrm{C}$	

Note 1: The maximum applicable voltage on any pin with respect to GND.

- DC Characteristics

$\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{Ta}=0\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit	Note
Clock input high voltage	V_{CH}	Driven by external clock oscillator	3.8		$\mathrm{~V}_{\mathrm{CC}}$	V	
Clock input low voltage	V_{CL}	Driven by external clock oscillator	-0.3		0.8	V	
Input high voltage	V_{IH}		2.0		$\mathrm{~V}_{\mathrm{CC}}$	V	
lnput low volltage	V_{IL}		-0.3		0.8	V	
Reset input high voltage	V_{RH}		3.8		$\mathrm{~V}_{\mathrm{CC}}$	V	
Reset input low voltage	V_{RL}		-0.3		0.8	V	
Output high voltage	V_{OH}	$\mathrm{I}_{\mathrm{OH}}=-250 \mu \mathrm{~A}$	2.4			V	1
Output low voltage	V_{OL}	$\mathrm{I}_{\mathrm{OL}}=+2.0 \mathrm{~mA}$			0.4	V	1
Input leakage current	I_{IL}	$0 \mathrm{~V} \leqq \mathrm{~V}_{\mathrm{IN}} \leqq+5.25 \mathrm{~V}$	-10		10	$\mu \mathrm{~A}$	
Output leakage current	I_{OL}	$0 \mathrm{~V} \leqq \mathrm{~V}_{\mathrm{IN}} \leqq+5.25 \mathrm{~V}$	-10		10	$\mu \mathrm{~A}$	
Reset input current	I_{IR}	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{RL}}=0 \mathrm{~V}$			-50	$\mu \mathrm{~A}$	
Supply current	I_{CC}				180	mA	
Back-up power supply	V_{MM}	Power down	3		$\mathrm{~V}_{\mathrm{CC}}$	V	

Note 1: $\mathrm{I}_{\mathrm{OH}}^{\cdot}=-100 \mu \mathrm{~A}$ and $\mathrm{I}_{\mathrm{OL}}=1.0 \mathrm{~mA}$ as to $\mathrm{A}_{0}-\mathrm{A}_{11}, \overline{\mathrm{MDS}}, \overline{\mathrm{SYNC}}, \mathrm{SCLK}$ and IACK in LH0802 $/ \mathrm{A}$

Test load 1

External clock generator circuit

Parameter	Symbol	8 MHz		12 MHz		Unit	Note
		MIN.	MAX.	MIN.	MAX.		
Address valid to AS \uparrow delay	TdA (AS)	50		35		ns	3, 4
$\overline{\mathrm{AS}} \uparrow$ to address float dalay	TdAS (A)	70		45		ns	3, 4
$\overline{\mathrm{AS}} \uparrow$ to input data required valid delay	TdAS (DR)		360		220	ns	3, 4, 5
$\overline{\mathrm{AS}} \uparrow$ low width	TwAS	80		55		ns	3, 4
Address float to $\overline{\mathrm{DS}} \downarrow$ delay	TdAz (DS)	0		0		ns	
$\overline{\mathrm{DS}}$ low width	TwDSR	250		185		ns	3, 4, 5
	TwDSW	160		110			3, 4, 5
$\overline{\overline{\mathrm{DS}}} \downarrow$ to input data required valid	TdDSR (DR)		200		130	ns	3, 4, 5
Input data hold time	ThDSR (DS)	0		0		ns	
$\overline{\mathrm{DS}} \uparrow$ to address active delay	TdDS (A)	70		45		ns	3, 4
$\overline{\mathrm{DS}} \uparrow$ to $\overline{\mathrm{AS}} \downarrow$ delay	TdDS (AS)	70		55		ns	3, 4
Read valid to $\overline{\mathrm{AS}} \uparrow$ delay	TdR/W (AS)	50		30		ns	3, 4
DS \uparrow to read not valid	TdDS (R/W)	60		35		ns	3,4
Output data valid to $\overline{\mathrm{DS}} \downarrow$ dalay	TdDW (DSW)	50		35		ns	3, 4
$\overline{\mathrm{DS}} \uparrow$ to output data not valid delay	TdDS (DW)	70		45		ns	3, 4
Write valid to $\overline{\mathrm{AS}} \uparrow$ dalay	TdA (DR)		410		255	ns	3, 4, 5
$\overline{\mathrm{DS}}$ to write not valid delay	TdAS (DS)	80		55		ns	3, 4

Note 1: All timing references use 2.0 V for a logic " 1 " and 0.8 V for a logic " 0 ".
Note 2: Test load 1
Note 3: The timing is defined at the minimum cycle of TpC.
Note 4: See "Clock Cycle Time Dependency" described later.
Note 5: Apply double cycle of input clock TpC for the expansion memory timing.

Input Clock, Timer Input, Interrupt Request Input

$$
\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{Ta}=0 \text { to }+70^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	8MHz		12 MHz		Unit	Note
		MIN.	MAX.	MIN.	MAX.		
Input clock cycle	TpC	125	1000	83	1000	ns	1
Input clock rise, fall time	TrC.TfC		25		15	ns	1
Input clock width	TwC	37		26		ns	1
Timer input low width	TwTinL	100		70		ns	2
Timer input high width	TwTinH	3 TpC		3 TpC		ns	2
Timer input cycle	TpTin	8 TpC		8 TpC		ns	2
Timer input rise, fall time	TrTin. TfTin		100		100	ns	2
Interrupt request input low time	TwIL	100		70		ns	2, 3
		3 TpC		3 TpC		ns	2, 4
Interrupt request input high time	TwIH	3 TpC		3TpC		ns	2, 3

Note 1: The clock timing references use 3.8 V for a logic " 1 " and 0.8 V for a logic " 0 ".
Note 2: The timing references use 0.2 V for a logic " 1 " and 0.8 V for a logic " 0 ".
Note 3: Interrupt request from port $3\left(\mathrm{P}_{1}-\mathrm{P} 3_{3}\right)$.
Note 4: Interrupt request from port $3\left(\mathrm{P}_{3}\right)$.

Handshake Timing (Note 4)				$\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{Ta}=0\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$			
Parameter	Symbol	8 MHz		12 MHz		Unit	Note
		MIN.	MAX.	MIN.	MAX.		
Data input setup time	TsDI(DAV)	0		0		ns	
Data input hold time	TsDI (DAV)	230		160		ns	
Data valid signal input width	TwDAV	175		120		ns	
$\overline{\mathrm{DAV}} \downarrow$ input to RDY \downarrow delay time	$\begin{gathered} \hline \text { TdDAVIf } \\ \text { (RDY) } \\ \hline \end{gathered}$		175		120	ns	1, 2
$\overline{\text { DAV }} \downarrow$ output to RDY \downarrow delay time	$\begin{gathered} \text { TdDAVOf } \\ \text { (RDY) } \end{gathered}$	0		0		ns	1, 3
$\overline{\mathrm{DAV}} \uparrow$ input to RDY \uparrow delay time	$\begin{gathered} \text { TdDAVIr } \\ \text { (RDY) } \\ \hline \end{gathered}$		175		120	ns	1, 2
$\overline{\mathrm{DAV}} \uparrow$ output to RDY \uparrow delay time	$\begin{gathered} \text { TdDAVOr } \\ \text { (RDY) } \\ \hline \end{gathered}$	0		0		ns	1,3
Data output to $\overline{\mathrm{DAV}} \downarrow$ delay time	TdDO (DAV)	50		30		ns	1
RDY \downarrow input to $\overline{\mathrm{DAV}} \uparrow$ delay time	TdRDY (DAV)	0	200	0	140	ns	1

Note 1: Test load 1.
Note 2: Input handshake
Note 3: Output handshake
Note 4: All timing references use 2.0 V for a logic " 1 " and 0.8 V for a logic " 0 ".

Input handshake

Clock Cycle Time Dependency		$\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{Ta}=0 \text { to }+70^{\circ} \mathrm{C}\right)$		
Symbol	8 MHz	12 MHz	Unit	Note
TdA (AS)	TpC-75	TpC-50	ns	
TdAS (A)	TpC-55	TpC-40	ns	
TdAS (DR)	$4 \mathrm{TpC}-140$	$4 \mathrm{TpC}-110$	ns	1
TwAS	TpC-45	TpC-30	ns	
TwDSR	$3 \mathrm{TpC}-125$	3TpC-65	ns	1
TwDSW	$2 \mathrm{TpC}-90$	$2 \mathrm{TpC}-55$	ns	1
TdDSR (DR)	$3 \mathrm{TpC}-175$	$3 \mathrm{TpC}-120$	ns	1
Td (DS) A	TpC-55	TpC-40	ns	
TdDS (AS)	TpC-55	TpC-30	ns	
TdR/W (AS)	TpC-75	TpC-55	ns	
TdDS(R/W)	TpC-65	TpC-50	ns	
TdDW (DSW)	TpC-75	TpC-50	ns	
TdDS (DW)	TpC-55	TpC-40	ns	
TdA (DR)	$5 \mathrm{TpC}-215$	$5 \mathrm{TpC}-160$	ns	1
TdAS (DS)	$\mathrm{TpC}-45$	$\mathrm{TpC}-30$	ns	

Note 1: Apply double cycle of input clock TpC for the expansion memory timing.

Power Down Standby Option

In low power standby mode, power dissipation can be reduced with retaining the contents of a 124 byte general-purpose register. Use the XTAL2 pin as the $\mathrm{V}_{\text {m }}$ power supply input with a bonding option to enter this mode.

Then, an external clock must be input in place of a crystal oscillator through the XTAL1 pin. An appropriate status must be saved in the register file with a software control prior to power reduction caused by a power down function or a lack of power. Fig. 1 shows the example of a power supply circuit with a battery back-up.

* The model numbers with a bonding option are changed from the LH0801/A and LH0811/A to the LH0805/A and LH0815/ A respectively.

Fig. 1 Recommended driver circuit for power down option

Architecture

(1) Address Spaces
(i) Program Memory The 16-bit program counter addresses 64 K bytes of program memory space. Program memory can be located in two areas : one internal and the other external (Fig. 2). The first 2048 bytes consist of on-chip mask-programmed ROM. At addresses 2048 and greater, the Z8 executes external program memory fetches.

The first 12 bytes of program memory are reserved for the interrupt vectors. These locations contain six 16 -bit vectors that correspond to the six available interrupts.
(ii) Data Memory The Z 8 can address 62 K bytes of external data memory beginning at location 2048 (Fig. 3). External data memory may be include with or separated from the external program memory space. $\overline{\mathrm{DM}}$, an optical I/O function that can be programmed to appear on pin $\mathrm{P} 3_{4}$, is used to distinguish between data and program memory space.
(iii) Register File The 144-byte register file includes four I/O port registers (R0-R3), 124 general-purpose registers (R4-R127) and 16 control and status registers (R240-R255). These registers are assigned the address locations shown in Fig. 4.
External ROM or RAM
Program start
address after reset

* LH0801/A = 2,048

LH0811/A $=4,096$

Z8 instructions can access registers directly or indirectly with an 8 -bit address field. The Z 8 also allows short 4-bit register addressing using the Register Pointer (one of the control registers). In the 4 -bit mode, the register file is divided into nine working-register groups, each occupying 16 contiguous locations. The Register Pointer addresses the starting location of the active working-register group.
(iv) Stacks Either the internal register file or the external data memory can be used for the stack. A16-bit Stack Pointer (R254 and R255) is used for the external stack, which can reside anywhere in data memory between locations 2048 and 65535. An 8-bit Stack Pointer (R255) is used for the internal stack that resides within the 124 general-purpose registers (R4-R127).

(2) $1 / O$ ports

The Z 8 has 32 lines dedicated to input and output. These lines are grouped into four ports of eight lines each and are configurable as input, out-

Fig. 3 Data memory map

[^6]Fig. 2 Program memory map

LOCATION

Fig. 4 The register file
put or address/data. Under software control, the ports can be programmed to provide address outputs, timing, status signals, serial I/O, and parallel I/O with or without handshake. All ports have active pull-ups and pull-downs compatible with TTL loads.
(i) Port 1 can be programmed as a byte I/O port or an address/data port for interfacing external memory.

Memory locations greater than 2048 are referenced through Port 1. To interface external memory. Port 1 must be programmed for the multiplexed Adress/Data mode. If more than 256 external locations are required, Port 0 must output the additional lines.
(ii) Port 0 can be programmed as a nibble I/O port, or as an address port for interfacing external memory.

For external memory references, Port 0 can provide address bits $\mathrm{A}_{8} \mathrm{~A}_{11}$ (lower nibble) or $\mathrm{A}_{8}-\mathrm{A}_{15}$

SM803/SM805

Fig. 5 The register pointer
(lower and upper nibble) depending on the required address space.
(iii) Port 2 bits can be programmed independently as input or output. The port is always available for I/O operations. In addition, Port 2 can be configured to provide open-drain outputs.
(iv) Port 3 lines can be configured as I/O or control lines. In either case, the direction of the eight lines is fixed as four input ($\mathrm{P} 3_{0}-\mathrm{P} 3_{3}$) and four output ($\mathrm{P} 3_{4}-\mathrm{P} 3_{7}$). For serial I/O, lines $\mathrm{P} 3_{0}$ and $\mathrm{P} 3_{7}$ are programmed as serial in and serial out respectively.

- handshake for Ports 0,1 and $2(\overline{\mathrm{DAV}}$ and RDY)
- four external interrupt request signals ($\left.\mathrm{IRQ}_{0}-\mathrm{IRQ} Q_{3}\right)$
- timer input and output signals ($\mathrm{T}_{\text {IN }}$ and TouT)
- Data Memory Select (DM).

Transmitted Data (No Parity)

Transmitted Data (With Parity)

Fig. 6 Serial data formats

(3) Serial Input/Output

Port 3 lines $\mathrm{P} 3_{0}$ and $\mathrm{P} 3_{7}$ can be programmed as serial I/O lines for full-duplex serial asynchronous receiver/transmitter operation. The bit rate is controlled by Counter/Timer 0 , with a maximum rate of 62.5 K bits/second.

The Z 8 automatically adds a start bit and two stop bits to transmitted data (Fig. 6). Odd parity is also available as an option.

(4) Counter/Timer

The $Z 8$ contains two 8 -bit programmable counter/timers (T_{0} and T_{1}), each driven by its own 6-bit programmable prescaler. The T_{1} prescaler can be driven by internal or external clock sources; however, the T_{0} prescaler is driven by the internal clock only.

The counters can be started, stopped, restarted to continue, or restarted from the initial value. The counters can also be programmed to stop upon reaching zero (single-pass mode) or to automatically reload the initial value and continue counting (modulo-n continuous mode). The counters, but not the prescalers, can be read any time without disturbing their value or count mode.

(5) Interrupts

The $Z 8$ allows six different interrupts from eight sources: the four Port 3 lines $\mathrm{P} 3_{0}-\mathrm{P} 3_{3}$, Serial In, Serial Out, and the two counter/timers. These interrupts are both maskable and prioritized.

All Z8 interrupts are vectored. Polled interrupt systems are also supported.

Instruction Set Notation

(1) Addressing modes

The following notation is used to describe the addressing modes and instruction operations as shown in the instruction summary.

IRR Indirect register pair or indirect working-register pair address
Irr Indirect working-register pair only
X Indexed address
DA Direct address
RA Relative address
IM : Immediate
R Register or working-register address
r Working-register address only
IR Indirect-register or indirect working-register address
Ir Indirect working-register address only
RR Register pair or working register pair address
(2) Symbols

The following symbols are used in describing the instruction set.
dst Destination location or contents
src Source location or contents
cc Condition code (see list)
(a) Indirect address prefix

SP Stack pointer (control registers 254-255)
PC Program counter

FLAGS Flag register (control register 252)
RP Register pointer (control register 253)
IMR Interrupt mask register (control register 251)

Assignment of a value is indicated by the symbol
"↔". For example.

$$
\mathrm{dst} \leftarrow \mathrm{dst}+\mathrm{src}
$$

indicates that the source data is added to the destination data and the result is stored in the destination location. The notation "addr (n)" is used to refer to bit " n " of a given location. For example, dst (7) refers to bit 7 of the destination operand.

(3) Flags.

Control Register R252 contains the following six flags :
C Carry flag
Z Zero flag
'S Sign flag
V Overflow flag
D Decimal-adjust flag
H Half-carry flag
Affected flags are indicated by :
$0 \quad$ Cleared to zero
1 Set to one

* \quad Set or cleared according to operation
- Unaffected
$\times \quad$ Undefined
(4) Condition codes

See Table 1.

Table 1 Condition codes

Value	Mnemonic	Meaning	Flags set
1000		Always true	\cdots
0111	C	Carry	$\mathrm{C}=1$
1111	NC	No carry	$\mathrm{C}=0$
0110	Z	Zero	Z $=1$
1110	NZ	Not Zero	$Z=0$
1101	PL	Plus	$\mathrm{S}=0$
0101	MI	Minus	$\mathrm{S}=1$
0100	OV	Overflow	$\mathrm{V}=1$.
1100	NOV	No overflow	$\mathrm{V}=0$
0110	EQ	Equal	$\mathrm{Z}=1$
1110	NE	Not equal	$Z=0$
1001	GE	Greater than or equal	$(\mathrm{S} \mathrm{XOR} \mathrm{V})=0$
0001	LT	Less than	$(\mathrm{S} \mathrm{XOR} \mathrm{V})=1$
1010	GT	Greater than	$[\mathrm{Z} \mathrm{OR}(\mathrm{S} \mathrm{XOR} \mathrm{V})]=0$
0010	LE	Less than or equal	$[\mathrm{Z}$ OR (S XOR V) $]=1$
1111	UGE	Unsigned greater than or equal	$\mathrm{C}=0$
0111	ULT	Unsigned less than	$\mathrm{C}=1$
1011	UGT	Unsigned greater than	$(\mathrm{C}=0$ AND $\mathrm{Z}=0)=1$
0011 0000	ULE	Unsigned less than or equal Never true	$(\mathrm{C} O R Z)=1$

(5) Opcode map

Lower Nibble (Hex)

(6) Instruction Summary

$\begin{array}{\|l\|} \hline \text { Instruction } \\ \text { and Operation } \end{array}$	Addr Mode	$\begin{aligned} & \text { Opcode Byte } \\ & \text { (Hex) } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Flags Affected } \\ \hline \text { C Z S V D H } \\ \hline \end{array}$
	dst src		
ADC dst,src dst $\leftarrow \mathrm{dst}+\mathrm{src}+\mathrm{C}$$\quad$ (Note 1)		$1 \square$	* * * 0 *
ADD dst,src dst $\leftarrow \mathrm{dst}+\mathrm{src}$$\quad$ (Note 1)		$0 \square$	* * * * 0 *
AND dst,src dst \leftarrow dst AND src (Note 1)		$5 \square$	- * * 0--
		$\begin{aligned} & \hline \mathrm{D} 6 \\ & \mathrm{D} 4 \end{aligned}$	----- -
$\begin{aligned} & \text { CCF } \\ & \mathrm{C} \leftarrow \mathrm{NOT} \mathrm{C} \end{aligned}$		E F	* - - -
$\begin{aligned} & \text { CLR dst } \\ & \text { dst } \leftarrow 0 \end{aligned}$	$\begin{gathered} \hline \mathrm{R} \\ \mathrm{IR} \end{gathered}$	$\begin{aligned} & \hline \text { B0 } \\ & \text { B } 1 \end{aligned}$	-----
$\begin{aligned} & \text { COM dst } \\ & \text { dst } \leftarrow \text { NOT dst } \end{aligned}$	$\begin{gathered} \hline \mathrm{R} \\ \mathrm{IR} \\ \hline \end{gathered}$	$\begin{aligned} & \hline 60 \\ & 61 \\ & \hline \end{aligned}$	- * * 0 -
CP dst,src dst src (Note 1)		A \square	****--
$\begin{aligned} & \hline \text { DA dst } \\ & \text { dst } \leftarrow \text { DA dst } \end{aligned}$	$\begin{aligned} & \hline \mathrm{R} \\ & \mathrm{IR} \end{aligned}$	$\begin{aligned} & 40 \\ & 41 \end{aligned}$	* * * X - -
$\begin{aligned} & \text { DEC dst } \\ & \text { dst } \leftarrow \mathrm{dst}-1 \end{aligned}$	$\begin{gathered} \hline \mathrm{R} \\ \mathrm{IR} \end{gathered}$	$\begin{aligned} & \hline 00 \\ & 01 \end{aligned}$	-***--
$\begin{aligned} & \text { DECW dst } \\ & \text { dst } \leftarrow \mathrm{dst}-1 \end{aligned}$		$\begin{aligned} & 80 \\ & 81 \end{aligned}$	-***--
$\begin{array}{\|l\|} \hline \mathrm{DI} \\ \mathrm{IMR}(7) \leftarrow 0 \\ \hline \end{array}$		8F	-----
$\begin{aligned} & \hline \text { DJNZ r,dst RA } \\ & \text { rヶr } \leftarrow 1 \text { R } 4 \text { PC } \leftarrow \mathrm{PC}+\text { dst } \\ & \text { Range: }+127,-128 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{rA} \\ & \mathrm{r}=0-\mathrm{F} \end{aligned}$	-----
$\begin{aligned} & \hline \operatorname{EI} \\ & \operatorname{IMR}(7) \leftarrow 1 \end{aligned}$		9 F	-- - - - -
$\begin{aligned} & \hline \text { INC dst } \\ & \text { dst } \leftarrow \mathrm{dst}+1 \end{aligned}$	$\begin{gathered} \hline \mathrm{r} \\ \mathrm{R} \\ \mathrm{IR} \end{gathered}$	$\begin{gathered} \mathrm{rE} \\ \mathrm{r}=0-\mathrm{F} \\ 20 \\ 21 \end{gathered}$	-***--
INCW dst dst \leftarrow dst +1		$\begin{aligned} & \text { A0 } \\ & \text { A1 } \end{aligned}$	-***--
IRET FLAGS \leftarrow @SP; SP $\leftarrow \mathrm{SP}+1$ $\mathrm{PC} \leftarrow @ \mathrm{SP} ; \mathrm{SP} \leftarrow \mathrm{SP}+2 ; \mathrm{IMR}(7) \leftarrow 1$		B F	******
JP cc, dst if Cc is true $\mathrm{PC} \leftarrow$ dst	$\begin{aligned} & \text { DA } \\ & \text { IRR } \end{aligned}$	$\begin{gathered} \mathrm{cD} \\ \mathrm{c}=0-\mathrm{F} \\ 30 \end{gathered}$	-----
JR cc, dst RA if ccis true, PC $\leftarrow P C+$ dst Range: $+127,-128$.		$\begin{gathered} \mathrm{cB} \\ \mathrm{c}=0-\mathrm{F} \end{gathered}$	\cdots
$\begin{aligned} & \text { LD dst,src } \\ & \mathrm{dst} \leftarrow \mathrm{src} \end{aligned}$	r IM r R R r r X X r r Ir Ir r r R R R R IR R IM IR IM IR R IR	$\begin{gathered} \mathrm{rC} \\ \mathrm{r} 8 \\ \mathrm{r} 9 \\ \mathrm{r}=0-\mathrm{F} \\ \mathrm{C} 7 \\ \mathrm{D} 7 \\ \mathrm{E} 3 \\ \mathrm{~F} 3 \\ \mathrm{E} 4 \\ \mathrm{E} 5 \\ \mathrm{E} 6 \\ \mathrm{E} 7 \\ \mathrm{~F} 5 \\ \hline \end{gathered}$	-----
$\begin{aligned} & \text { LDC dst,src } \\ & \text { dst } \leftarrow \text { src } \end{aligned}$	$\begin{array}{cc} \mathrm{r} & \mathrm{Irr} \\ \mathrm{Irr} & \mathrm{r} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{C} 2 \\ & \mathrm{D} 2 \end{aligned}$	- - - - - -
LDCI dst,sr dst \leftarrow src $\mathrm{r} \leftarrow \mathrm{r}+1 ; \mathrm{rr} \leftarrow$	Ir Irr Ir Ir	$\begin{aligned} & \hline \mathrm{C} 3 \\ & \mathrm{D} 3 \end{aligned}$	--- - --
LDE dst,src $\mathrm{dst} \leftarrow \mathrm{src}$	$\begin{array}{cc} \mathrm{r} & \mathrm{Irr} \\ \mathrm{Irr} & \mathrm{r} \end{array}$	$\begin{aligned} & 82 \\ & 92 \end{aligned}$	------

Instruction Addr Mode	Opcode Byte	Flags Affected
and Operation dst sre	(Hex)	CZSVDH
$\begin{array}{lll} \hline \text { LDEI dst,src } & \text { Ir } & \text { Irr } \\ \text { dst } \leftarrow \mathrm{src} & \text { Irr } & \text { Ir } \\ \mathrm{r} \leftarrow \mathrm{r}+1 ; \mathrm{rr} \leftarrow \mathrm{rr}+1 & \end{array}$	$\begin{aligned} & 83 \\ & 93 \end{aligned}$	-- - - -
NOP	FF	- -
OR dst,src dst \leftarrow dst OR src\quad (Note 1)	$4 \square$	- * * 0 -
POP dst R dst \leftarrow SP IR SP \leftarrow SP + 1 PUS	$\begin{aligned} & 50 \\ & 51 \end{aligned}$	- - -
PUSH src R SP \leftarrow SP $-1 ;$ @SP \leftarrow src IR	$\begin{aligned} & \hline 70 \\ & 71 \end{aligned}$	\cdots
$\begin{aligned} & \mathrm{RCF} \\ & \mathrm{C} \leftarrow 0 \end{aligned}$	C F	0-. - -
$\begin{aligned} & \text { RET } \\ & \text { PC @SP;SP } \leftarrow \mathrm{SP}+2 \\ & \hline \end{aligned}$	A F	- - - -
RL dst	$\begin{aligned} & \hline 90 \\ & 91 \\ & \hline \end{aligned}$	****--
RLC dst 4 Cl- 700 IR	$\begin{aligned} & 10 \\ & 11 \end{aligned}$	****--
	$\begin{aligned} & \mathrm{E} 0 \\ & \mathrm{E} 1 \\ & \hline \end{aligned}$	****--
RRC dst 4 ,	$\begin{aligned} & \mathrm{C} 0 \\ & \mathrm{C} 1 \end{aligned}$	****--
$\begin{array}{ll} \hline \begin{array}{l} \text { SBC dst,src } \\ \text { dst } \leftarrow \mathrm{dst}-\mathrm{src}-\mathrm{C} \end{array} & \text { (Note 1) } \\ \hline \end{array}$	$3 \square$	****1*
$\begin{aligned} & \hline \mathrm{SCF} \\ & \mathrm{C} \leftarrow 1 \\ & \hline \end{aligned}$	D F	1----
SRA dst	$\begin{aligned} & \hline \text { D0 } \\ & \text { D } 1 \end{aligned}$	* * * 0--
SRP src RP↔src IM	31	$\because-$
SUB dst,src (Note 1) dst \leftarrow dst - src \quad.	$2 \square$	****1*
	$\begin{aligned} & \text { F0 } \\ & \text { F1 } \end{aligned}$	$\mathrm{X} * * \mathrm{X}--$
TCM dst,src (NOT dst) AND src	$6 \square$	-** 0 --
TM dst,src dst AND src (Note 1) X0R dis	$7 \square$	-**0--
XOR dst,src dst \leftarrow dst XOR src (Note 1)	B \square	- * * 0 --

Note 1 These instructions have an identical set of addressing modes, which are encoded for brevity. The first opcode nibble is found in the instruction set table above. The second nibble is expressed symbolically by a \square in this table, and its value is found in the following table to the left of the applicable addressing mode pair.

- For example, to determine the opcode of an ADC instruction use the addressing modes r (destination) and Ir (source). The result is 13

Addr Mode		Lower Opcode Nibble
dst	src	
r	r	2
r	Ir	3
R	R	4
R	IR	5
R	IM	$\frac{1}{6}$
IR	IM	7

Register

R240 (SIO)
Serial I/O Register
(F0н: Read/Write)

R241 (TMR)
Timer Mode Register
(F1H: Read/Write)

R244 (TO)
Counter/Timer 0 Register
(F4 H : Read/Write)

(WHEN WRITTEN)
(RANGE: 1-256 DECIMAL 01-00 HEX)
To CURRENT VALUE
(WHEN READ)
R245 (PRE0) Prescaler 0 Register
(F5н: Write Only)

D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}

Tout MODES $\quad|\quad| \quad|\quad| \quad 0=$ NO FUNCTION $\begin{aligned} \text { NOT USED } & =00 \\ \mathrm{~T}_{0} \text { OUT } & =01 \\ \mathrm{~T}_{1} \text { OUT } & =10\end{aligned}$
INTERNAL CLOCK OUT $=11$
T in MODES
EXTERNAL $=00$
CLOCK INPUT
GATE INPUT $=01$
TRIGGER INPUT $=10$
(NON-RETRIGGERABLE)
TRIGGER INPUT = 11
(RETRIGGERABLE)
R242 (T1)
Counter Timer 1 Register
$1=$ LOAD To

$$
0=\text { DISABLE } T_{0} \text { COUNT }
$$

$1=$ ENABLE T_{0} COUNT

- $0=$ NO FUNCTION
$1=$ LOAD T_{1}
($\mathrm{F} 2_{\mathrm{H}}$: Read/Write)

T ${ }_{1}$ INITIAL VALUE
(WHEN WRITTEN)
R246 (P2M)
Port 2 Mode Register
(F6н: Write Only)
PRESCALER MODULO
(RANGE : 1-64 DECIMAL
$01-00 \mathrm{HEX}$)
$1=$ ENABLE T_{1} COUNT

GE 1-256 DECIMAL 01-00
T_{1} CURRENT VALUE
(WHEN READ)

0 DEFINES BIT AS OUTPUT
1 DEFINES BIT AS INPUT
(RANGE 1-256 DECIMAL 01-00 HEX)

R247 (P3M)
R243 (PRE1)
Prescaler 1 Register
($\mathrm{F} 3_{\mathrm{H}}$: Write Only)

Port 3 Mode Register
(F7н: Write Only)

R248 (P01M)
Port 0 and 1 Mode Register
(F8н: Write Only)

R249 (IPR)
Interrupt Priority Register
($\mathrm{F} 9_{\mathrm{H}}$: Write Only)

R252 (FLAGS)
Flag Register
(FC_{H} : Read/Write)

R253 (RP)
Register Pointer
(FD ${ }_{\text {H }}$: Read/Write)

REGISTER POINTER

R250 (IRQ)
Interrupt Request Register
(FAн: Read/Write)

R254 (SPH)
Stack Pointer
(FEн : Read/Write)

$L_{\text {IRQ0 }}=\mathrm{P} 3_{2}$ INPUT
$-\operatorname{IRQ1} 1=\mathrm{P} 3_{3}$ INPUT
$-\mathrm{IRQ} 2=\mathrm{P} 3_{1}$ INPUT
$L_{\text {IRQ3 }}=\mathrm{P} 3_{0}$ INPUT, SERIAL INPUT

- IRQ4 $=\mathrm{T}_{0}$, SERIAL OUTPUT

IRQ5 $=\mathrm{T}_{1}$
RESERVED

R251 (IMR)
Interrupt Mask Register
(FB_{H} : Read/Write)

R255 (SPL)
Stack Pointer
(FF_{H} : Read/Write)

—1 ENABLES INTERRUPTS

LH0881/LH0881A
 Z8 Microcomputer Unit (ROMless)

Description

The LH0881/A is a ROMless version of the LH0801/A and LH0811/A Z8 single-chip microcomputers and offers the outstanding feature of the Z8 family architecture.

Because some I/O ports are used for address/ data bus, this device accesses up to 128 K bytes of the external memory space. Using the external memory in place of an on-chip ROM allows designing more powerful microcomputer system.

Features

1. Complete microcomputer, 24 I/O lines, and up to 64 K bytes addressable external space each for program and data memory.
2. 143 bytes register file

124 general-purpose registers
3 I/O port registers
16 status and control registers
3. Register pointer so that short, fast instructions can access any one of the nine working-register groups.
4. Full-duplex UART and two programmable 8 -bit counter/timers, each with a 6 -bit programmable prescaler.
5. Vectored priority interrupts for I/O, counter/ timers, and UART.
6. On-chip oscillation circuit
7. External clock

8 MHz MAX. (internal 4 MHz): LH0881/U
12 MHz MAX. (internal 6MHz): LH0881A/AU
8. Single +5 V power supply
9. 40-pin DIP (DIP40-P-600) LH0881/LH0881A
44-pin QFJ (QFJ44-P-S650) LH0881U/LH0881AU

Ordering Information

LH0881 X X

Package

Blank:40-Pin DIP (DIP40-P-600)
U: 44-pin QFJ (QFJ44-P-S650)
——Clock frequency
Blank: 8 MHz
A: 12 MHz
Model No.

Pin Connections

Block Diagram

(Note) Pin numbers apply to 40-pin DIP.

- Pin Description

Pin	Meaning	I/O	Function
$\mathrm{P} 0_{0}-\mathrm{P} 0_{7}$	Port 0	I/O	4 bits $\times 2$, programmable for I/O.
$\mathrm{P} 1_{0}-\mathrm{P} 1_{7}$	Port1• Address $/$ data bus	I/O	Multiplexed address/data bus
$\mathrm{P} 2_{0}-\mathrm{P} 2_{7}$	Port 2	I / O	Programmable for I / O in bits.
$\mathrm{P} 3_{0}-\mathrm{P} 3_{7}$	Port 3	I / O	$\mathrm{P} 3_{0}-\mathrm{P} 3_{3}$ for input, $\mathrm{P} 3_{4}-\mathrm{P} 3_{7}$ for output.
$\overline{\mathrm{AS}}$	Address Strobe	O	Active "Low", activated for external address memory transfer.
$\overline{\mathrm{DS}}$	Data Storobe	O	Active "Low", activated for external data memory transfer.
$\mathrm{R} / \overline{\mathrm{W}}$	Read/Write	O	Read at "High", Write at "Low".
$\overline{\mathrm{RESET}}$	Reset	I	Active "Low". Initializes.
XTAL1	Clock 1	I	Clock terminal pin.
XTAL2	Clock 2	O	Clock terminal pin.

Pin functions of the LH0881/A are identical to those of the LH0801/A, LH0811/A, except for pins $\mathrm{P}_{1}-\mathrm{P} 1_{7}$.

Address space

(1) Program Memory

The LH0881/A, having a 16-bit program counter, addresses 64 K -bytes of external program memory. All the command codes are fatched from these external program memories.

For the LH0881/A, the first 12 bytes of program memory are reserved for the interrupt vectors. These locations contain six 16 -bit vectors that correspond to the six available interrupts. Program execution begins at location $000 C_{H}$ after a reset.

(2) Data Memory

The LH0881/A can address 64 K bytes of external data memory. External data memory may be included with or separated from the external program memory space. $\overline{\mathrm{DM}}$, an optional I/O function that can be programmed to appear on pin $\mathrm{P} 3_{1}$, is used to distinguish between data and program memory space.

(3) Register File

The 143-byte register file includes three I/O port registers (R0, R2, R3), 124 general-purpose
registers ($\mathrm{R} 4-\mathrm{R} 127$) and 16 control and status registers (R240-R255).

These registers are assigned the address locations shown in Fig 2.

LH0881/A instructions can access registers directly or indirectly with an 8-bit address field. This also allows short 4-bit register addressing using the Register Pointer (one of control registers). In the 4 -bit mode, the register file is divided into nine working register groups, each occupying 16 contiguous locations. The Register Pointer addresses the starting location of the active work-ing-register group.

(4) Satcks

Either the internal register file or the external data memory can be used for the stack. A 16-bit Stack Pointer (R254 and R255) is used for the external stack, which can reside anywhere in data memory. An 8-bit Stack Pointer (R255) is used for the internal stack that resides within the 124 general-purpose registers (R4-R127).

Fig. 1 Program memory map
Location of first
byte of instruction
executed after reset

LOCATION

255	STACK POINTER (BITS 70$)$	SPL
254	STACK POINTER (BITS 158)	SPH
253	REGISTER POINTER	RP
252	PROGRAM CONTROL FLAGS	FLAGS
251	INTERRUPT MASK REGISTER	IMR
250	INTERRUPT PRIORITY REGISTER	IRO
249	INTERRUPT PRIORITY REGISTER	IPR
248	PORTS 0-1 MODE	$\mathrm{P}_{1} \mathrm{M}$
247	PORT 3 MODE	P3M
246	PORT 2 MODE	P2M
245	T0 PRESCALER	PRE0
244	TIMER/COUNTER 0	T0
243	T1 PRESCALER	PRE1
242	TIMER/COUNTER 1	T1
241	TIMER MODE	TM
240	SERIAL I/O	SIO
	$\begin{gathered} \text { NOT } \\ \text { IMPLEMENTED } \end{gathered}$	
127	GENERAL-PURPOSE REGISTERS	
4	PORT 3	P3
2	PORT 2	P2
1	NOT IMPLEMENTED	
0	PORT 0	P0

Fig. 2 The register file

Port Functions

The LH0881/A has a dedicated memory interface port (Port 1) and input/output ports (Port 0, $2,3)$. These ports are given eight lines each. The funtions of Port 0, 2 and 3 are the same as those of the LH0801/A, LH0811/A.

Port 1 is a dedicated Z-bus compatible memory interface. The operations of Port 1 are supported by the Address Strobe ($\overline{\mathrm{AS}}$) and Data Strobe ($\overline{\mathrm{DS}}$) lines, and by the Read/Write $(\mathrm{R} / \overline{\mathrm{W}})$ and Data Memory ($\overline{\mathrm{DM}}$) control lines.

The low-order program and data memory address $\left(\mathrm{A}_{0}-\mathrm{A}_{7}\right)$ are output through Port 1 and are multiplexed with data in/out ($\mathrm{D}_{0}-\mathrm{D}_{7}$). Instruction fetch and data memory read/write operations are done through this port.

Port 1 cannot be used as a register nor can a handshake mode be used with this port.

If more than eight address lines are reqired with the LH0881/A, additional lines can be obtained by programming Port 0 bits as address bits. The leastsignificant four bits of port 0 can be configured to supply address bits $\mathrm{A}_{8}-\mathrm{A}_{11}$ for 4 K byte addressing or both nibbles of Port 0 can be configured to supply address bits $\mathrm{A}_{8}-\mathrm{A}_{15}$ for 64 K byte addressing.

Registers

The LH0881/A control registers are the same as on the LH801/A, LH0811/A, except two bits D_{3} and D_{4} in the Port 0, 1 Mode Register (R248).

Serial Input/Output

The LH0881/A serial input/output functions are the same as those of the LH0801/A, LH0811/ A. (Refer back to the LH0801/A description.)

Counter/Timers

The LH0881/A counter/timer functions are the same as those of the LH0801/A, LH0811/A, (Refer back to the LH0801/A description.)

- Interrupts

The LH0881/A interrupt functions are the same as those of the LH0801/A, LH0811/A, (Refer back to the LH0801/ A description.)

Instructions and AC/DC Characteristics

These data of the LH0881/A are the same as for the LH0881/A, LH0811/A. (Refer back to the LH0801/A description.)

Fig 3 R248 (P01M) Port 0, 1 Mode Register ($\mathrm{F8}_{\mathrm{H}}$ Write only)

SM803/SM803A SM805/SM805A

Description

The SM803/A, SM805/A are CMOS 8-bit single chip microcomputers which have 4 K bytes and 8 K bytes of ROM respectively.

The devices offer faster execution; more efficient use of memory, more sophisticated interrupt, input/output and bit-manipulation capabilities, and easier system expansion.
Under program control, the devices can be tailored to the user's needs. It can be configured as a stand-alone microcomputer with 4 K bytes for the SM803/A or 8 K bytes for the SM805/A of internal ROM, a traditional microprocessor that manages up to 120 bytes for the SM803/A or 112 bytes for the SM805/A of external memory, or a parallel processing device in a system with other processors and peripheral controllers linked by the BUS. In all configurations, a large number of pins remain available for I/O.

Features

1. Complete single-chip microcomputer with internal ROM, RAM and I/O

RAM capacity: 124 bytes (SM803/A)
: 236 bytes (SM805/A)
ROM capacity: 4 K bytes (SM803/A)
: 8K bytes (SM805/A)
I/O ports: 32
2. On-chip two programmable 8-bit
couter/timers, each with a 6 -bit programmable prescaler
3. Full-duplex UART
4. 144 byte register file (SM803/A) 256 byte register file (SM805/A)
5. Register pointer so that short, fast instructions can access any working register groups
6. Vectored, priority interrupts for I/O, counter/ timers, and UART
7. Up to 60 K bytes for the SM803/A or 56 K bytes for the SM805/A addressable external space each for program and data memory
8. On-chip oscillator
9. Maximum clock frequency

8 MHz (internal 4MHz): SM803/SM805
8 MHz (internal 6MHz): SM803A/SM805A
10. High speed instruction execution
($8 \mathrm{MHz} / 12 \mathrm{MHz}$)
Working register execution time:
$1.5 \mu \mathrm{~s} / 1.0 \mu \mathrm{~s}$
Average instruction execution time:
$2.2 \mu \mathrm{~s} / 1.5 \mu \mathrm{~s}$
Maximum instruction execution time:
$5.0 \mu \mathrm{~s} / 3.3 \mu \mathrm{~s}$
11. Single +5 V power supply
12. $40-$ pin DIP (DIP40-P-600):

SM803/A, SM805/A
44-pin QFP (QFP44-P-1414)
SM803M/AM, SM805M/AM
44-pin QFJ (QFJ44-P-S650):
SM803U/AU, SM805U/AU

- Ordering Information

SM80X X X

LPackage

Blank: 40-pin DIP (DIP40-P-600)
M: 44-pin QFP (QFP44-P-1414)
U: 44-pin QFJ (QFJ44-P-S650)
—Clock frequency
Blank: 8 MHz
A: 12 MHz
\square Model No.
SM803 (On-chip 4K byte ROM) SM805 (On-chip 8K byte ROM)

Block Diagram

Note: Pin numbers apply to $40-$ pin DIP.

Pin Description

Pin	Meaning	I/O	Function
$\mathrm{P} 0_{0}-\mathrm{P} 0_{7}$	Port 0	I / O	8-bit I/O port, programmable for I/O.
$\mathrm{P} 1_{0}-\mathrm{P} 1_{7}$	Port 1	I / O	Programmable for I/O in btyes.
$\mathrm{P} 2_{0}-\mathrm{P} 2_{7}$	Port 2	I / O	Programmable for I/O in bits. $^{\mathrm{P} 3_{0}-\mathrm{P} 3_{7}}$
$\overline{\mathrm{AS}}$	Port 3	Address Strobe	O
$\mathrm{P} 3_{0}-\mathrm{P} 3_{3}$ for input, $\mathrm{P} 3_{4}-\mathrm{P} 3_{7}$ for output.			
$\overline{\mathrm{DS}}$	Active "Low", activated for external address memory transfer.		
$\mathrm{R} / \overline{\mathrm{W}}$	Read/Write	O	Read at "High", Write at "Low".
$\overline{\mathrm{RESET}}$	Reset	I	Active "Low". Initializes.
XTAL1	Clock 1	I	Clock terminal pin.
XTAL2	Clock 2	O	Clock terminal pin.

- Absolute Maximum Ratings

Parameter	Symbol	Ratings	Unit	Note
Input voltage	V_{IN}	-0.3 to V_{CC}	V	1
Output voltage	$\mathrm{V}_{\text {OUT }}$	-0.3 to V_{CC}	V_{n}	
Operating temperature	Topr	0 to +70	${ }^{\circ} \mathrm{C}$	
Storage temperatuer	Tstg	-65 to +150	${ }^{\circ} \mathrm{C}$	

Note: The maximum applicable voltage on any pin with respect to GND.

DC Characteristics

$\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{Ta}=0\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Condition	8 MHz		12 MHz		Unit	Note
			MIN.	MAX.	MIN.	MAX.		
Clock input high voltage	V_{CH}	Driven by external clock oscillator	3.8	V_{CC}	3.8	V_{CC}	V	
Clock input low voltage	V_{CL}	Driven by external clock oscillator	-0.3	0.8	-0.3	0.8	V	
Input high voltage (handshaking)	V_{IH}		$\begin{gathered} 2.0 \\ (2.2) \end{gathered}$	V_{Ce}	$\begin{gathered} 2.0 \\ (2.2) \end{gathered}$	V_{CC}	V	1
Input low voltage (handshaking)	V_{IL}		-0.3	$\begin{gathered} \hline 0.8 \\ (0.5) \end{gathered}$	-0.3	$\begin{gathered} \hline 0.8 \\ (0.5) \end{gathered}$	V	
Reset input high voltage	$\mathrm{V}_{\text {RH }}$		3.8	V_{Cc}	3.8	V_{cc}	V	
Reset input low voltage	V_{RL}		-0.3	0.8	-0.3	0.8	V	
Output high voltage	V_{OH}	$\mathrm{I}_{\mathrm{OH}}=-250 \mu \mathrm{~A}$	2.4		2.4		V	
Output low voltage	V_{OL}	$\mathrm{I}_{\mathrm{OL}}=+2.0 \mathrm{~mA}$		0.4		0.4	V	
Input leakage current	I_{IL}	$0 \mathrm{~V} \leqq \mathrm{~V}_{\text {IN }} \leqq+5.5 \mathrm{~V}$	-10	10	-10	10	$\mu \mathrm{A}$	
Output leakage current	I_{OL}	$0 \mathrm{~V} \leqq \mathrm{~V}_{\text {IN }} \leqq+5.5 \mathrm{~V}$	-10	10	-10	10	$\mu \mathrm{A}$	
Reset input current	$\mathrm{I}_{\text {IR }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{RL}}=0 \mathrm{~V}$					$\mu \mathrm{A}$	
Supply current	I_{CC}						mA	
Standby current	$\mathrm{I}_{\mathrm{CC} 1}$	HALT instruction		7		10	mA	
	$\mathrm{I}_{\mathrm{CC} 2}$	STOP intstruction		200		200	$\mu \mathrm{A}$	

Notel: For the SM805/A, the minimum value should be 2.2 V as well as when handshaking.

Test load 1

External clock generator circuit

- External I/O or Memory Read/Write ${ }^{\text {(Note 1) } \quad\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{Ta}=0 \text { to }+70^{\circ} \mathrm{C}\right) ~}$

Parameter	Symbol	8 MHz		12 MHz		Unit	Note
		MIN.	MAX.	MIN.	MAX.		
Address valid to $\overline{\mathrm{AS}} \uparrow$ delay	TdA (AS)	50		35		ns	2, 3
$\overline{\mathrm{AS}} \uparrow$ to input data required valid delay	TdAS (DR)		360		220	ns	2, 3, 4
$\overline{\mathrm{AS}} \uparrow$ low width	TwAS	80		55		ns	2, 3
' $\overline{\mathrm{DS}}$ low width	TwDSR	250		185		ns	2, 3, 4
	TwDSW	160		110		ns	2, 3, 4
$\overline{\overline{\mathrm{DS}}} \downarrow$ to input data required valid	TdDSR (DR)		200		130	ns	2, 3, 4
Input data hold time	ThDSR (DS)	0		0		ns	2
$\overline{\mathrm{DS}} \uparrow$ to address active delay	TdDS (A)	70		45		ns	2, 3
$\overline{\overline{\mathrm{DS}} \uparrow \text { to } \overline{\mathrm{AS}} \downarrow \text { delay }}$	TdDS (AS)	70		55		ns	2, 3
Read valid to $\overline{\mathrm{AS}} \uparrow$ delay	TdR/W (AS)	50		30		ns	2, 3
DS \uparrow to read not valid	TdDS (R/W)	60		35		ns	2, 3
Output data valid to $\overline{\mathrm{DS}} \downarrow$ delay	TdDW (DSW)	50		35		ns	2, 3
$\overline{\mathrm{DS}} \uparrow$ to output data not valid delay	TdDS (DW)	70		45		ns	2, 3
Write valid to $\overline{\mathrm{AS}} \uparrow$ delay	TdA (DR)		410		255	ns	2, 3, 4
$\overline{\overline{\mathrm{DS}}}$ to write not valid delay	TdAS (DS)	80		55		ns	2, 3

Note 1: All timing references use 2.0 V for a logic " 1 " and 0.8 V for a logic " 0 ".
Note 2: Test load 1
Note 3: The timing is defined at the minimum cycle of TpC .
Note 4: Apply double cycle of input clock TpC for the expansion memory timing.

Input Clock, Timer Input, Interrupt Request Input
$\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%\right.$, to $=0$ to $\left.+70^{\circ} \mathrm{C}\right)$

Parameter	Symbol	8 MHz		12 MHz		Unit	Note
		MIN.	MAX.	MIN.	MAX.		
Input clock cycle	TpC	125	1000	83	1000	ns	1
Input clock rise, fall time	TrC, TfC		25		15	ns	1
Input clock width	TwC	37		26		ns	1
Timer input low widtr	TwTinL	100		70		ns	2
Timer input high width	TwTinH	3 TpC		3 TpC		ns	2
Timer input cycle	TpTin	8TpC		8 TpC		ns	2
Timer input rise, fall time	TrTin. TfTin		100		100	ns	2
Interrupt request input low time	TwIL	100		70		ns	2, 3
		3 TpC		3 TpC		ns	2,4
Interrupt request input high time	TwIH	3 TpC		3 TpC		ns	2,3

Note 1: The clock timing references use 3.8 V for a logic " 1 " and 0.8 V for logic " 0 ".
Note 2: The timing references use $2.0 \mathrm{~V}(2.2 \mathrm{~V}$ for $\mathrm{SM} 805 / \mathrm{A})$ for a logic " 1 " and 0.8 V for a logic " 0 ".
Note 3: Interrupt request from port $3\left(\mathrm{P}_{1}-\mathrm{P} 3_{3}\right)$.
Note 4: Interrupt request from port $3\left(\mathrm{P}_{0}\right)$.

Handshake Timing ${ }^{\text {Note }}$		$\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{Ta}=0\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$					
Parameter	Symbol	8 MHz		12 MHz		Unit	Note
		MIN.	MAX.	MIN.	MAX.		
Data input setup time	TsDI (DAV)	0		0		ns	
Data input hold time	ThDI (DAV)	230		160		ns	
Data valid signal input width	TwDAV	175		120		ns	
$\overline{\mathrm{DAV}} \downarrow$ input to RDY \downarrow delay time	$\begin{gathered} \hline \text { TdDAVIf } \\ \text { (RDY) } \end{gathered}$		175		120	ns	2, 3
$\overline{\mathrm{DAV}} \downarrow$ output to RDY \downarrow delay time	TdDAVOf (RDY)	0		0		ns	2, 4
$\overline{\text { DAV }} \uparrow$ input to RDY \uparrow delay time	$\begin{gathered} \text { TdDAVIr } \\ \text { (RDY) } \\ \hline \end{gathered}$		175		120	ns	2, 3, 5
$\overline{\mathrm{DAV}} \uparrow$ output to RDY \uparrow delay time	$\begin{gathered} \text { TdDAVOr } \\ \text { (RDY) } \\ \hline \end{gathered}$	0		0		ns	2, 4
Data output to $\overline{\text { DAV }} \downarrow$ delay time	TdDO (DAV)	50		30		ns	2
RDY \downarrow input to $\overline{\mathrm{DAV}} \uparrow$ delay time	$\begin{aligned} & \hline \text { TdRDY } \\ & \text { (DAV) } \end{aligned}$	0	200	0	140	ns	2

Note 1: All timing references use 2.0 V for a logic " 1 " and 0.8 V for a logic " 0 ".
Note 2: Test load 1.
Note 3: Input handshake
Note 4: Output handshake
Note 5: When read out from the port before $\overline{\mathrm{DAV}} \uparrow$ input.

Input handshake

Output handshake

Architecture

(1) Address Spaces
(i) Program Memory The 16-bit program counter addresses 64 K bytes of program memory space. Program memory can be located in two areas : one internal and the other external (Fig. 2). The first 2048 bytes consist of on-chip mask-programmed ROM. At addresses 2048 and greater, the Z8 executes external program memory fetches.

The first 12 bytes of program memory are reserved for the interrupt vectors. These locations contain six 16-bit vectors that correspond to the six available interrupts.
(ii) Data Memory The Z8 can address 62K bytes of external data memory beginning at location 2048 (Fig. 3). External data memory may be include with or separated from the external program memory space. $\overline{\mathrm{DM}}$, an optical I/O function that can be programmed to appear on pin $\mathrm{P} 3_{4}$, is used to distinguish between data and program memory space.
(iii) Register File The 144-byte register file includes four I/O port registers (R0-R3), 124 general-purpose registers (R4-R127) and 16 control and status registers (R240-R255). These registers are assigned the address locations shown in Fig. 4.

Z8 instructions can access registers directly or indirectly with an 8 -bit address field. The Z 8 also allows short 4 -bit register addressing using the

Register Pointer (one of the control registers). In the 4 -bit mode, the register file is divided into nine working-register groups, each occupying 16 contiguous locations. The Register Pointer addresses the starting location of the active working-regsister group.

The 4 -bit address specifies the nth (0 to 15) address from the starting location (see Fig. 5).

* The addresses $\mathrm{OEO}_{\mathrm{H}}-\mathrm{OEF}_{\mathrm{H}}$ of SM805 register file can not be directly accessed due to the essential function of the register pointer. Either of the following two methods is available for accessing those 16 registers.

1) Working register addressing SRP \# $\mathrm{OEO}_{\mathrm{H}}$ (set the RP to $0 \mathrm{EO}_{\mathrm{H}}$)
2) Register indirect addressing ex.) LD $70 \mathrm{H}, \# 0 \mathrm{EO}_{\mathrm{H}}$ LD 40H, @70H (read) LD @ $70 \mathrm{H}, 40 \mathrm{H}$ (write)
(iv) Stacks Either the internal register file or the external data memory can be used for the stack. A 16-bit Stack Pointer (R254 and R255) is used for the external stack, which can reside anywhere in data memory between locations 4096 (8192 for SM805/A) and 65535. An 8-bit Stack Pointer (R255) is used for the internal stack that resides within the 124 (236 for SM805/A) gener-al-purpose registers.

Either an internal stack or an external stack may be selected with ports 0,1 and the bit D_{2} of mode register (248). The internal stack is specified with the device to be reset.

SM805/A $=4,096$
Fig. 2 Program memory map

LOCATION

Fig. 4 The register file

Fig. 3 Data memory map

SM803/SM805

The upper nibble of the register file address provided by the register pointer specifies the active working-register group.

Fig. 5 The register pointer

(2) $1 / O$ ports

The $Z 8$ has 32 lines dedicated to input and output. These lines are grouped into four ports of eight lines each and are configurable as input, output or address/data. Under software control, the ports can be programmed to provide address outputs, timing, status signals, serial I/O, and parallel I/O with or without handshake. All ports have active pull-ups and pull-downs compatible with TTL loads.
(i) Port 1 can be programmed as a byte I/O port or an address/data port for interfacing external memory.
Memory locations greater than 4095 (8191 for SM805/A) are referenced through Port 1. To interface external memory, Port 1 must be programmed for the multiplexed Adress/Data mode. If more than 257 external locations are required, Port 0 must output the additional lines.
(ii) Port 0 can be programmed as a nibble I/O port, or as an address port for interfacing external memory.

For external memory references, Port 0 can provide address bits $\mathrm{A}_{8} \mathrm{~A}_{11}$ (lower nibble) or $\mathrm{A}_{8}-\mathrm{A}_{15}$ (lower and upper nibble) depending on the required address space.
(iii) Port 2 bits can be programmed independently as input or output. The port is always available for I/O operations. In addition, Port 2 can be configured to provide open-drain outputs.
(iv) Port 3 lines can be configured as I/O or control lines. In either cases, the direction of the eight lines is fixed as four input ($\mathrm{P} 3_{0}-\mathrm{P} 3_{3}$) and four output ($\mathrm{P} 3_{4}-\mathrm{P} 3_{7}$). For serial I/O, lines $\mathrm{P} 3_{0}$ and $\mathrm{P} 3_{7}$ are programmed as serial in and serial out respectively

- handshake for Ports 0,1 ind $2(\overline{\mathrm{DAV}}$ and RDY)
- four external interrupt request signals $\left(\mathrm{IRQ}_{0}-\mathrm{IRQ}_{3}\right)$
- timer input and output signals ($\mathrm{T}_{\text {IN }}$ and TouT)
- Data Memory Select ($\overline{\mathrm{DM}})$.

(3) Serial Input/Output

Port 3 lines $\mathrm{P} 3_{0}$ and $\mathrm{P} 3_{7}$ can be programmed as serial I/O lines for full-duplex serial asynchronous receiver/transmitter operation. The bit rate is controlled by Counter/Timer 0 , with a maximum rate of 62.5 K -bits/second.

The device automatically adds a start bit and two stop bits to transmitted data (Fig. 6). Odd parity is also aviliable as an option.

(4) Counter/Timer

The device contains two 8-bit programmable counter/timers (T_{0} and T_{1}), each driven by its own 6-bit programmable prescaler. The T_{1} prescaler can be driven by internal or external clock sources; however, the T_{0} prescaler is driven by the internal clock only.

The counters can be started, stopped, restarted to continue, or restarted from the initial value. The counters can also be programmed to stop upon reaching zero (single-pass mode) or to automatically reload the initial value and continue counting (modulo-n continuos mode). The conters, but not the prescalers, can be read any time without disturbing their value or count mode.

(5) Interrupts

The device allows six different interrupts from eight sources: the four Port 3 lines $\mathrm{P} 3_{0}-\mathrm{P} 3_{3}$, Serial In, Serial Out, and the two conter/timers. These interrupts are both maskable and prioritized.

All device interrupts are vectored. Polled interrupt systems are also supported.

Transmitted Data (No Parity)

Transmitted Data (With Parity)

Received Data (No Parity)

Received Data (With Parity)

Fig. 6 Serial data formats

Instruction Set Notation

(1) Addressing modes

The following notation is used to describe the addressing modes and instruction operations as shown in the instruction summary.

IRR Indirect register pair or indirect working-register pair address
Irr Indirect working-register pair only
X Indexed address
DA Direct address
RA Relative address
IM Immediate
R Register or working-register address
r Working-register address only
IR Indirect-register or indirect working-register address
Ir Indirect working-register address only
RR Register pair or working register pair address
(2) Symbols

The following symbols are used in describing the instruction set.
dst Destination location or contents
sre Source location or contents
cc Condition code (see list)
(a) Indirect address prefix

SP Stack pointer (control registers 254-255)
PC Program counter

FLAGS Flag register (control register 252)
RP Register pointer (control register 253)
IMR Interrupt mask register (control register 251)

Assignment of a value is indicated by the symbol $" \leftarrow "$. For example.

$$
\mathrm{dst} \leftarrow \mathrm{dst}+\mathrm{src}
$$

indicates that the source data is added to the destination data and the result is stored in the destination location. The notation "addr (n)" is used to refer to bit " n " of a given location. For example, dst (7) refers to bit 7 of the destination operand.

(3) Flags

Control Register R252 contains the following six flags :
C Carry flag
Z Zero flag
S Sign flag
V Overflow flag
D Decimal-adjust flag
H Half-carry flag
Affected flags are indicated by :
$0 \quad$ Cleared to zero

1. Set to one

* Set or cleared according to operation
- Unaffected
$\times \quad$ Undefined
(4) Condition codes

See Table 1.

Table 1 Condition codes

Value	Mnemonic	Meaning	Flags set
1000		Always true
0111	C	Carry	$\mathrm{C}=1$
1111	NC	No carry	$\mathrm{C}=0$
0110	Z	Zero	$\mathrm{Z}=1$
1110	NZ	Not Zero	Z $=0$
1101	PL	Plus	$\mathrm{S}=0$
0101	MI	Minus	$\mathrm{S}=1$
0100	OV	Overflow	$\mathrm{V}=1$.
1100	NOV	No overflow	- V $=0$
0110	EQ	Equal	$\mathrm{Z}=1$
1110	NE	Not equal	$\mathrm{Z}=0$
1001	GE	Greater than or equal	$(\mathrm{S} \mathrm{XOR} \mathrm{V})=0$
0001	LT	Less than	$(\mathrm{S} \mathrm{XOR} \mathrm{V})=1$
1010	GT	Greater than	$[\mathrm{Z} \mathrm{OR} \mathrm{(S} \mathrm{XOR} \mathrm{V)}]=0$
0010	LE	Less than or equal	$[\mathrm{Z} \mathrm{OR} \mathrm{(S} \mathrm{XOR} \mathrm{V)}]=1$
1111	UGE	Unsigned greater than or equal	$\mathrm{C}=0$
0111	ULT	Unsigned less than	$\mathrm{C}=1$
1011	UGT	Unsigned greater than	$(\mathrm{C}=0$ AND $\mathrm{Z}=0)=1$
0011 0000.	ULE	Unsigned less than or equal Never true	$(C \text { OR } Z)=1$

(5) Opcode map

(6) Instruction Summary

Instruction and Operation	Addr Mode	Opcode Byte (Hex)	$\begin{array}{\|l\|} \hline \text { Flags Affected } \\ \hline \text { C Z S V D H } \\ \hline \end{array}$
	dst src		
ADC dst,srcdst $\leftarrow \mathrm{dst}+\mathrm{src}+\mathrm{C}$$\quad$ (Note 1)		$1 \square$	****0*
ADD dst,src dst \leftarrow dst + src		$0 \square$	* * * 0 *
AND dst,src dst \leftarrow dst AND src (Note 1)		$5 \square$	-**0--
CALL dst DA $\mathrm{SP} \leftarrow \mathrm{SP}-2$ IRR @SP $\leftarrow \mathrm{PC} ; \mathrm{PC} \leftarrow \mathrm{dst}$		$\begin{aligned} & \text { D6 } \\ & \text { D4 } \end{aligned}$	- - - -
$\begin{aligned} & \text { CCF } \\ & \text { C } \leftarrow \text { NOT C } \end{aligned}$		E F	* - - -
$\begin{aligned} & \text { CLR dst } \\ & \text { dst } \leftarrow 0 \end{aligned}$	$\begin{gathered} \hline \mathrm{R} \\ \mathrm{IR} \end{gathered}$	$\begin{aligned} & \text { B0 } \\ & \text { B1 } \end{aligned}$	- - - -
$\begin{aligned} & \hline \text { COM dst } \\ & \text { dst } \leftarrow \text { NOT } \end{aligned}$		$\begin{aligned} & 60 \\ & 61 \end{aligned}$	- * * 0--
CP dst,srcdst \leftarrow src		$\mathrm{A} \square$	* * * * -
$\begin{aligned} & \text { DA dst } \\ & \text { dst } \leftarrow \text { DA dst } \end{aligned}$		$\begin{aligned} & 40 \\ & 41 \end{aligned}$	* * * X -
$\begin{aligned} & \text { DEC dst } \\ & \text { dst } \leftarrow \mathrm{dst}-1 \end{aligned}$		$\begin{aligned} & 00 \\ & 01 \end{aligned}$	$-* * *-$
$\begin{aligned} & \text { DECW dst } \\ & \text { dst } \leftarrow \mathrm{dst}-1 \end{aligned}$		$\begin{aligned} & 80 \\ & 81 \end{aligned}$	- * * * - -
$\begin{aligned} & \hline \mathrm{DI} \\ & \operatorname{IMR}(7) \leftarrow 0 \end{aligned}$		8 F	- - - - -
DJNZ r,dst $\mathrm{r} \leftarrow \mathrm{r}-1 \mathrm{PC} \leftarrow \mathrm{PC}+$ dst if r 0 P Range: $+127,-128$		$\begin{gathered} \mathrm{rA} \\ \mathrm{r}=0-\mathrm{F} \end{gathered}$	- - - - -
$\begin{aligned} & \mathrm{EI} \\ & \mathrm{IMR}(7) \leftarrow 1 \end{aligned}$		9 F	- - - -
HALF		FF 7F	-
INC dst dst \leftarrow dst +1	$\begin{gathered} \mathrm{r} \\ \mathrm{R} \\ \mathrm{IR} \end{gathered}$	$\begin{gathered} \mathrm{rE} \\ \mathrm{r}=0-\mathrm{F} \\ 20 \\ 21 \end{gathered}$	- ***--
$\begin{aligned} & \text { INCW dst } \\ & \text { dst } \leftarrow \mathrm{dst}+1 \end{aligned}$		$\begin{aligned} & \text { A } 0 \\ & \text { A } 1 \end{aligned}$	$-* * *-$
$\begin{aligned} & \text { IRET } \\ & \text { FLAGS } \leftarrow @ \mathrm{SP} ; \mathrm{SP} \leftarrow \mathrm{SP}+1 \\ & \mathrm{PC} \leftarrow @ \mathrm{SP} ; \mathrm{SP} \leftarrow \mathrm{SP}+2 ; \mathrm{IMR}(7) \leftarrow 1 \end{aligned}$		B F	******
JP cc, dst if cc is true $\mathrm{PC} \leftarrow$ dst	$\begin{aligned} & \text { DA } \\ & \text { IRR } \end{aligned}$	$\begin{gathered} \mathrm{cD} \\ \mathrm{c}=0-\mathrm{F} \\ 30 \end{gathered}$	----
JR cc, dst RA if cc is true, PC $\leftarrow \mathrm{PC}+$ dst Range: $+127,-128$		$\begin{gathered} c B \\ c=0-F \end{gathered}$	- - - -
$\begin{aligned} & \text { LD dst,src } \\ & \text { dst } \leftarrow \mathrm{src} \end{aligned}$	 r $I M$ r R R r r r X X r r Ir Ir r R R R IR R IM IR IM IR R	rC r 8 r 9 $\mathrm{r}=0-\mathrm{F}$ C 7 D 7 E 3 F 3 E 4 E 5 E 6 E 7 F 5	- - -
$\begin{aligned} & \text { LDC dst,src } \\ & \text { dst } \leftarrow \mathrm{src} \end{aligned}$	$\begin{array}{cc} \mathrm{r} & \mathrm{Irr} \\ \mathrm{Irr} & \mathrm{r} \end{array}$	$\begin{aligned} & \mathrm{C} 2 \\ & \mathrm{D} 2 \end{aligned}$	-----
$\begin{aligned} & \text { LDCI dst,sr } \\ & \mathrm{dst} \leftarrow \mathrm{src} \\ & \mathrm{r} \leftarrow \mathrm{r}+1 ; \mathrm{rr} \leftarrow \end{aligned}$	Ir Irr Irr Ir	$\begin{aligned} & \mathrm{C} 3 \\ & \mathrm{D} 3 \end{aligned}$	- - - -
LDE dst,src $\mathrm{dst} \leftarrow \mathrm{src}$	$\begin{array}{cc} \mathrm{r} \\ \text { Irr } & \mathrm{Ir} \\ \mathrm{r} \end{array}$	$\begin{aligned} & 82 \\ & 92 \end{aligned}$	-----

Instruction Addr Mode	Opcode Byte	Flags Affected
and Operation dst src	(Hex)	C Z S V D H
LDEI dst,src \quad Ir Irr dst $\leftarrow \mathrm{src}$ Irr Ir $\mathrm{r} \leftarrow \mathrm{r}+1 ; \mathrm{rr} \leftarrow \mathrm{rr}+1$	$\begin{aligned} & 83 \\ & 93 \end{aligned}$	- - - - -
NOP	FF	- - - - -
OR dst,src dst \leftarrow dst OR src \quad (Note 1)	$4 \square$	- * * 0--
POP dst R dst \leftarrow @P IR SP \leftarrow SP + 1	$\begin{aligned} & 50 \\ & 51 \end{aligned}$	\cdots
PUSH src R SP \leftarrow SP $-1 ;$ @SP \leftarrow src IR	$\begin{aligned} & 70 \\ & 71 \end{aligned}$	-----
$\begin{aligned} & \text { RCF } \\ & \mathrm{C} \leftarrow 0 \end{aligned}$	C F	0-- - -
$\begin{aligned} & \text { RET } \\ & \mathrm{PC} @ \mathrm{SP} ; \mathrm{SP} \leftarrow \mathrm{SP}+2 \end{aligned}$	A F	- - - -
	$\begin{aligned} & 90 \\ & 91 \end{aligned}$	****--
	$\begin{aligned} & 10 \\ & 11 \end{aligned}$	* * * * -
	$\begin{aligned} & \text { E0 } \\ & \text { E1 } \end{aligned}$	****--
	$\begin{aligned} & \mathrm{C} 0 \\ & \mathrm{C} 1 \\ & \hline \end{aligned}$	* * * * -
SBC dst,src (Note 1)	$3 \square$	$* * * * 1 *$

$\begin{aligned} & \text { SBC dst,src } \\ & \text { dst } \leftarrow \mathrm{dst}-\mathrm{src}-\mathrm{C} \end{aligned}$	$3 \square$	$* * * * 1 *$
$\begin{aligned} & \mathrm{SCF} \\ & \mathrm{C} \leftarrow 1 \end{aligned}$	D F	1---
	$\begin{aligned} & \text { D0 } \\ & \text { D } 1 \end{aligned}$	* * * 0 - -
SRP src RP \leftarrow src	31	- -
STOP	FF 6F	- - - - -
SUB dst,src dst \leftarrow dst - src \quad (Note 1)	$2 \square$	$* * * * 1 *$
	$\begin{aligned} & \text { F } 0 \\ & \text { F } 1 \end{aligned}$	$\mathrm{X} * * \mathrm{X}-$ -
TCM dst,src (NOT dst) AND src	$6 \square$	- * 0 - -
TM dst,src dst AND src	$7 \square$	- * * 0 - -
XOR dst,src dst \leftarrow dst XOR src \quad (Note 1)	$\mathrm{B} \square$	- * * 0 -

Note 1 These instructions have an identical set of addressing modes, which are encoded for brevity. The first opcode nibble is found in the instruction set table above. The second nibble is expressed symbolically by a \square in this table, and its value is found in the following table to the left of the applicable addressing mode pair.

For example, to determine the opcode of an ADC instruction use the addressing modes r (destination) and Ir (source). The result is 13

Addr Mode		Lower Opcode Nibble
dst	src	
r	r	2
r	Ir	$\frac{2}{3}$
R	R	$\frac{4}{5}$
R	IR	$\frac{6}{6}$
R	IM	7
IR	IM	

- Register

R240 (SIO)
Serial I/O Register
($\mathrm{FO} \mathrm{H}_{\mathrm{H}}$: Read/Write)

R241 (TMR)
Timer Mode Register
(F1н : Read/Write)

T in MODES
EXTERNAL $=00$
CLOCK INPUT
GATE INPUT $=01$
TRIGGER INPUT $=10$
(NON-RETRIGGERABLE)
TRIGGER INPUT = 11
(RETRIGGERABLE)
R242 (T1)
Counter Timer 1 Register
($\mathrm{F} 2_{\mathrm{H}}$: Read/Write)

T_{1} INITIAL VALUE
(WHEN WRITTEN)
(RANGE 1-256 DECIMAL 01-00 HEX)
T1 CURRENT VALUE
(WHEN READ)
R243 (PRE1)
Prescaler 1 Register
($\mathrm{F} 3_{\mathrm{H}}$: Write Only)

R248 (P01M)
Port 0 and 1 Mode Register
(F8н: Write Only)

R249 (IPR)
Interrupt Priority Register
(F9H: Write Only)

R252 (FLAGS)
Flag Register
(FC_{H} : Read/Write)

R253 (RP)
Register Pointer
(FD ${ }_{\text {н }}$: Read/Write)

3

R254 (SPH)
Stack Pointer
(FE_{f} : Read/Write)

D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}

STACK POINTER UPPER BYTE ($\mathrm{SP}_{8}-\mathrm{SP}_{15}$)

R255 (SPL)
Stack Pointer
(FF_{H} : Read/Write)

1 ENABLES INTERRUPTS

LU800V1/LU800AV1/LU805BV2 CMOS 8Bit Single Chip Microcomputers (ROM less)

Description

The LU800V1/LU800AV1/LU805BV2 is a ROMless version of the SM803/A and SM805/A CMOS 8-bit single-chip microcomputers and offers the outstanding feature of the Z 8 family architecture.

Because some I/O ports are used for address/ data bus, this device accesses up to 128 K bytes of the external memory space. Using the external memory in place of an on-chip ROM allows designing more powerful microcomputer system.

Features

1. Complete microcomputer, 24 I/O lines, and up to 64 K bytes addressable external space each for program and data memory.
2. 143 bytes register file
(255 bytes register file for the LU805BV2)
124 general-purpose registers
(236 registers for the LU805BV2)
3 I/O port registers
16 status and control registers
3. Register pointer so that short, fast instructions can access any one of the 9 working-register groups.
(16 groups for the LU805BV2)

LU800V1M/LU800AVM/LU805BVM

Pin Connections
LU800V1/LU800AV1/LU805BV2

LU800V1U/LU800AVU/LU805BVU

4. Full-duplex UART and two programmable 8-bit counter/timers, each with a 6-bit programmable prescaler.
5. Vectored priority interrupts for I/O, counter/ timers, and UART.
6. On-chip oscillation circuit
7. External clock

8 MHz MAX. (internal 4 MHz): LU800V1/M 12 MHz MAX. (internal 6 MHz): LU800AV1/M 16 MHz MAX. (internal 8 MHz): LU805BV2/M
8. Single +5 V power supply
9. 40-pin DIP (DIP40-P-600) LU800V1/LU800AV1/LU805BV2
44-pin QFP (QFP44-P-1414) LU800V1M/LU800AVM/LU805BVM

44-pin QFJ (QFP44-P-S650)
LU800V1U/LU800AVU/LU805BVM

- Ordering Information

Model No.	Clock	Package
LU800V1	8 MHz	40DIP
LU800V1M		44QFP
LU800V1U		44 QFJ
LU800AV1	12 MHz	40DIP
LU800AVM		44QFP
LU800AVU		44 QFJ
LU805BV2	16 MHz	40DIP
LU805BVM		44 QFP
LU805BVU		44QFJ

- Block Diagram

- Pin Description

Pin	Meaning	I/O	Function
$\mathrm{PO}_{0}-\mathrm{P} 0_{7}$	Port 0	I/O	8-bit I/O port, programmable for I/O.
$\mathrm{P1}_{1}-\mathrm{P1}_{7}$	Address/data bus	I/O	Multipiexed Address/data bus
$\mathrm{P} 2_{0}-\mathrm{P} 2_{7}$	Port 2	I/O	Programmable for I/O in bits.
$\mathrm{P} 3_{0}-\mathrm{P} 3_{7}$	Port 3	I/O	$\mathrm{P} 3_{0}-\mathrm{P} 3_{3}$ for input, $\mathrm{P} 3_{4}-\mathrm{P} 3_{7}$ for output.
$\overline{\text { AS }}$	Address Strobe	0	Active "Low", activated for external address memory transfer.
$\overline{\mathrm{DS}}$	Data Strobe	0	Active "Low", activated for external data memory transfer.
R/ W	Read/Write	0	Read at "High", Write at "Low".
RESET	Reset	I	Active "Low", Initializes.
XTAL1	Clock 1	I	Clock terminal pin.
XTAL2	Clock 2	0	Clock terminal pin.

Pin functions of the LU800V1/LU800AV1/LU805BV2 are identical to those of the SM803/A, SM805/A, except for pins $\mathrm{P} 1_{0}-\mathrm{P} 1_{7}$.

Address space

(1) Program Memory

The ROMless device, having a 16 -bit program counter, addresses 64 K -bytes of external program memory. All the command codes are fetched from these external program memories.

For the ROMless device, the first 12 bytes of program memory are reserved for the interrupt vectors. These locations contain six 16 -bit vectors that correspond to the six available interrupts. Program execution begins at location $000 \mathrm{C}_{\mathrm{H}}$ after a resed.

(2) Data Memory*

The ROMless device can address 64 K bytes of external data memory. External data memory may be included with or separated from the external program memory space. $\overline{\mathrm{DM}}$, an optional I/O function that can be programmed to appear on pin $\mathrm{P} 3_{1}$, is used to distinguish between data and program memory space.

(3) Register File

The 143-byte register file inculdes three I/O port registers (R0, R2, R3), 124 general-purpose registers (R4-R127) and 16 control and status registers (R240-R255).

These registers are assigned the address locations shown in Fig 2.

The instructions can access registers directly or

Fig. 1 Program memory map
indirectly with an 8-bit address field. This also allows short 4-bit register addressing using the Register Pointer (one of the control registers). In the 4 -bit mode. the regiter file is divided into nine working register groups, each occupying 16 contiguous locations. The Register Pointer addresses the starting location of the active working-register group.

(4) Stacks

Either the internal register file or the external data memory can be used for the stack. A 16-bit Stack Pointer (R254 and R255) is used for the external stack, which can reside anywhere in data memory. An 8-bit Stack Pointer (R255) is used for the internal stack that resides within the $124 / 236$ for the LU805BV2 general-purpose registers (R4-R127/R4-R239).

Fig. 2 The register file

Port Functions

The LU800V1/LU800AV1/LU805BV2 has a dedicated memory interface port (Port 1) and input/output ports (Port 0, 2, 3). These ports are given eight lines each. The functions of port 0,2 and 3 are the same as those of the SM803/A, SM805/A.

Port 1 is a dedicated Z-bus compatible memory interface. The operations of Port 1 are supported by the Address Strobe ($\overline{\mathrm{AS}}$) and Data Strobe ($\overline{\mathrm{DS}}$) lines, and by the Read/Write ($\mathrm{R} / \overline{\mathrm{W}}$) and Data Memory ($\overline{\mathrm{DM}}$) control lines.

The low-order program and data memory address $\left(\mathrm{A}_{0}-\mathrm{A}_{7}\right)$ are output through Port 1 and are multiplexed with data in/out ($\mathrm{D}_{0}-\mathrm{D}_{7}$). Instruction fetch and data memory read/write operations are done through this port.

Port 1 cannot be used as a register nor can a handshake mode be used with this port.

If more than address lines are required with the ROMless device, additional lines can be obtained by programming Port 0 bits as address bits. The least significant four bits of Port 0 can be configured to supply address bits $\mathrm{A}_{8}-\mathrm{A}_{11}$ for 4 K byte addressing or both nibbles of Port 0 can be configured to supply address bits $\mathrm{A}_{8}-\mathrm{A}_{15}$ for 64 K byte addressing.

Registers

The LU800V1/LU800AV1/LU805BV2 control registers are the same as on the SM803/A, SM805/A, except two bits D_{3} and D_{4} in the port 0 , 1 mode register (R248).

Serial Input/Output

The LU800V1/LU800AV1/LU805BV2 serial input/output functions are the same as those of the SM803/A, SM805/A, (Refer back to the SM803/ A, SM805/A description.)

- Counter/Timers

The LU800V1/LU800AV1/LU805BV2 counter/timer functions are the same as those of the SM803/A, SM805/A, (Refer back to the SM803/ A, SM805/A description.)

- Interrupts

The LU800V1/LU800AV1/LU805BV2 interrupt functions are the same as those of the SM803/A, SM805/A, (Refer back to the SM803/ A, SM805/A description.)

- Instructions and AC/DC Characteristics

These data of the LU800V1/LU800AV1/ LU805BV2 are the same as for the SM803/A, SM805/A. (Refer back to the SM803/A, SM805/A description.)

R248 (P01M) Port 0, 1 Mode Register (F8 ${ }_{H}$ Write only)

Reset

When the NU800V1 is reset, the device must be kept Low for at least 50 msec from the device is stabled with the reset switch is turned on, or for 18 clock cycles from the power supply and clock oscillator are stabled.

The intervals reset the LU 800 Vl is obtained by connecting external capacitor of $1 \mu \mathrm{~F}$ and resistor of $100 \mathrm{k} \Omega$ as shown in Fig. 3.

Fig. 3

After reset, ports 0 and 2 are used as input ports, the program counter is reset at 000_{H} and the interputs are disabled.

When the reset input inactivated, the program memory starts execution at $000 \mathrm{C}_{\mathrm{H}}$.

Initialization

When the program, after reset, starts execution at $000 \mathrm{C}_{\mathrm{H}}$, the device must be initialized. Ports 0 and 2 after reset are used as inputs, and an expanded memory timing and an internal stack are selected with the $\overline{\mathrm{DM}}$ signal not to be output. The valid address lines include 8 lines of port 1 only. Usable memory sholud be limited to the first 256 bytes and the port 0 must be programmed as address lines within 256 bytes of memory for use of more than 257 bytes of memory.

Port $0, \mathrm{P}_{0}-\mathrm{P} 0_{7}$, is used as input port after reset, if is used as address lines, a constant address value must be held with an external circuit until it is initialized.

The port initialization sequence is:
(1) Write upper byte of address of an initialization routine to port 0 register.
(2) Configure port 0 and 1 mode register P01M. ($D_{1}=1$; lower 4 bits of port 0 should be $A_{8}{ }^{-}$ A_{11} address lines, $D_{7}=1$ every bit of port 0 should be $\mathrm{A}_{8}-\mathrm{A}_{15}$ address lines.)

Note: While the next byte of instruction indicated in the above item (2) are being fetched, be sure not to make a difference between an address output from port 0 and an address held in an external circuit. (This is because the instruction is executed in pipeline system.)

Initiflization with Pull-up Resistors

When connecting the lower bits $\mathrm{PO}_{0}-\mathrm{PO}_{3}$ of port 0 to a 4 K byte memory with a pull-up resistor, Fig. 4 shows that the addresses $\mathrm{A}_{8}-\mathrm{A}_{11}$ are kept during the port 0 is an unknown state, and must be phisically located in the latter address of $F O C_{H}$ of a 4 K byte memory. The $\mathrm{A}_{8}-\mathrm{A}_{11}$ will change according to the address output from port $\mathrm{PO}_{0}-\mathrm{PO}_{3}$, if the port 0 is used as address lines.

Fig. 4 Memory interface with pull-up resistors

Initialization of port 0

(1) Jump to the address $\mathrm{FXX}_{\mathrm{H}}$ in order to match the program counter to the address being accessed.
(2) Write $0 \mathrm{~F}_{\mathrm{H}}$ (upper byte of the address)into port 0 register at $\mathrm{FXX}_{\mathrm{H}}$.
(3) Set the proper bits in the port 0 and 1 mode register to output the port 0 .
(4) Set the proper bits in the port 0 and 1 mode register to use the port 0 as address lines.

Initialization with The LS157

Fig. 5 shows the memory interface between upper 4 bits $\left(\mathrm{PO}_{0}-\mathrm{PO}_{3}\right)$ of port 0 and a 4 K byte memory with the LS157 and a flip-flop.

After reset, in this case, the " b " inputs are selected and address bits $\mathrm{A}_{8}-\mathrm{A}_{11}$ go Low because the SELECT input to the LS157 is kept High until the $\mathrm{R} / \overline{\mathrm{W}}$ goes Low. If the $\mathrm{R} / \overline{\mathrm{W}}$ goes Low, the SELECT goes Low and $\mathrm{P}_{0}-\mathrm{PO}_{3}$ will be valid.
Initialization of port 0
(1) Write 00_{H} (upper byte address of initialization routine) to port 0 register.
(2) Set the proper bits in the port 0 and 1 mode registers.
(3) Write into the external memory upon execution of an LDC or LDE intruction. (This allows the $\mathrm{R} / \overline{\mathrm{W}}$ to go Low and the LS157 to switch to the "a" inputs.

Fig. 5 Memory interface with the LS157

SM8202/SM8203
 8-Bit Microcomputer (VCR System Controller)

- Description

The SM8202/SM8203 is an 8-bit microcomputer which integrates an 8 -bit CPU core, a ROM, a RAM, serial I/O ports, a timer, an A/D converter and a digital servo controller in a single chip.

An on-chip CPU core is organized as a new architecture with a full lineup of instruction sets, which allows the software to be easily developed.

An on-chip servo controller contains the hardware for controlling the speed and the phase of capstan and drum motors as well as for special playback with a software control. This microcomputer is applicable to a variety of VCR systems for an NTSC, a PAL, a movie, a 4-head mechanism, etc.

The SM8203 omits the CTL duty discriminating output circuit. (VISS) and adds the following two functions from the SM8202.

- An internal 4-head switching circuit for special playback of slow and search modes decreases external parts count.
- Switching the CTL signal with the timer input simplifies programming of a real time count.

Features

1. CMOS process
2. ROM capacity: $10,240 \times 8$ bits
3. RAM capacity: 256×8 bits
4. SM82 core

Pin Connections

- Instruction set: 64
(including for multiple and division function, a bit manipulation)
- Addressing mode: 22
- General-purpose register: 8 -bit $\times 8$

$$
16 \text {-bit } \times 4
$$

5. An on-chip servo controller

- Applicable to NTSC, PAL systems
- PWM: 10 bits/ 4 channels

6. Applicable to a 4-head VCR
7. Instruction cycle: $0.8 \mu \mathrm{~s}$ (MIN.)
8. Interrupt

- External interrupts: 2
- Internal interrupts: 8

9. Input/output ports

- I/O ports: 24
- Input ports: 8 (for switching with A / D converter)
- Output ports: 16 (for switching with a servo controller)

10. Serial I/O
11. Timer: 8 bits $\times 3$
12. A/D covnerter: 8 bits $/ 8$ channels
13. Built-in watchdog timer
14. Built-in crystal oscillation circuit
15. Supply voltage: $5 \mathrm{~V} \pm 10 \%$
16. 64-pin SDIP (SDIP64-P-750)

Block Diagram

SM8203

- Pin Description

Signal	I/O	Function	
$\mathrm{PO}_{0}-\mathrm{P} 0_{7}$	0	Output ports (medium voltage)	
$\mathrm{P} 10^{-} \mathrm{P} 1_{7}$	I/O	I/O ports (resettable I/O on each bit)	
$\mathrm{P} 2_{0}-\mathrm{P} 2_{7}$	I/O	I/O ports (resettable I/O on each bit)	
$\mathrm{P} 3_{0} / \mathrm{INT}_{0}, \mathrm{P}_{1} / \mathrm{INT}_{1}$	I/O/I	I/O ports/External interrupt input port	
$\mathrm{P} 32^{2} / \mathrm{TO}$	I/O / O	I/O port/Timer output port	
P3 3_{3} SI	I/O / I	I/O portt/Serial input port	
$\mathrm{P} 34^{4}$ /SCLK	I/O	I/O port/Serial clock	
$\mathrm{P}_{5} / \mathrm{SO}$	I/O / 0	I/O port/Serial output port	
$\mathrm{P} 3_{6} /$ VISS	I/O / 0	I/O port/CTL duty output port for VISS	SM8202
$\mathrm{P} 3_{6} / \mathrm{A}-\mathrm{HSW}$	I/O / 0	I/O port/Audio HSW	SM8203
$\mathrm{P} 3_{7} / \mathrm{A}-\mathrm{HSW}$	I/O / 0	I/O port/Audio HSW	SM8202
$\mathrm{P} 3_{7}$ /ENV	I/O / I	I/O port/ENV comparator input port	SM8203
$\mathrm{P} 4_{0} / \mathrm{AD}_{0}-\mathrm{P}_{4} / \mathrm{AD}_{7}$	I	Input pert/Analog input port	
$\mathrm{P}_{5} / \overline{\mathrm{PWM}_{0}}$	O	Output port/PWM output port (negative)	
$\mathrm{P5}_{1} / \mathrm{PWM}_{1}$	0	Output port/PWM output port (negative)	
$\mathrm{P5}_{2} / \mathrm{PWM}_{2}$	0	Output port/PWM output port (negative)	
$\mathrm{P5}_{3} / \mathrm{PWM}_{3}$	0	Output port/PWM output port (negative)	
$\mathrm{P} 5_{4}, \mathrm{P} 5_{5}$	0	Output ports	
$\mathrm{P} 5{ }_{6}, \mathrm{P} 57$	0	Output ports	SM8202
$\mathrm{P5}_{6} / \mathrm{HAMP}$	0	Output port/Head amp. control signal output port	SM8203
$\mathrm{P} 57^{7} / \mathrm{CHRO}$	0	Output port/Chroma rotation signal output port	
PG-ADJ	I	HSW adjustment	
D-PG	I	Drum PG input port	
D-FG	I	Drum FG input port	
VSYNC	I	Vertical synchronous signal (negative)	
FV	0	False synchronous signal output port	
HSW	I/O	Head switching pulse	
C-FG	I	Capstan FG input	
PB-CTL	I	PB-CTL input port	
REC-CTL \oplus	0	REC-CTL output port	
REC-CTL Θ	0	REC-CTL inverting output port	
$\mathrm{X}_{1}, \mathrm{X}_{2}$		System clock oscillator	
RESET	I	Reset input port	
$\overline{\text { TEST }}$	I	Test input port	
V_{DD}, GND		Power supply, Ground	

Absolute Maximum Ratings

Parameter	Symbol	Condition	Rating	Unit	Note
Supply voltage	V_{DD}		-0.3 to +7.0	V	
Input voltage	V_{IN}		-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V	
Output voltage	$\mathrm{V}_{\text {OUT }}$		-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V	
	$\mathrm{~V}_{\text {OUT } 0}$	Applied to port 0	-0.3 to +12	V	
Output current	I_{O}		20	mA	1
Operating temperature	Topr		-20 to +70	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg		-55 to +150	${ }^{\circ} \mathrm{C}$	

Note 1: The sum of source current or sink current from output ports.
Oscillation circuit

Operating Conditions

Parameter	Symbol	Condition	Rating	Unit
Oscillation frequency	f	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$	5	MHz

- DC Characteristics
$\left(\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{Ta}=-20\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit	Note
Input voltage	$\mathrm{V}_{\mathrm{IH} 1}$		$0.8 \mathrm{~V}_{\mathrm{DD}}$		V_{DD}	V	1
	$\mathrm{V}_{\text {IL1 }}$		0		$0.2 \mathrm{~V}_{\mathrm{DD}}$	V	
	$\mathrm{V}_{\mathrm{IH} 2}$		$0.75 \mathrm{~V}_{\mathrm{DD}}$		V_{DD}	V	2
	$\mathrm{V}_{\mathrm{IL} 2}$		0		$0.15 \mathrm{~V}_{\mathrm{DD}}$	V	
Input current	$\mathrm{I}_{\mathrm{IH} 1}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$			10	$\mu \mathrm{A}$	3
	$\mathrm{I}_{\text {IL1 }}$	$\mathrm{V}_{\mathrm{IN}}=0$			10	$\mu \mathrm{A}$	
Output current		$\mathrm{I}_{\mathrm{OH}}=-1.5 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{DD}}-0.5$			V	4
	$\mathrm{V}_{\mathrm{OH} 1}$	$\mathrm{I}_{\mathrm{OH}}=-6 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{DD}}-2.0$			V	
	$\mathrm{V}_{\text {OL1 }}$	$\mathrm{I}_{\mathrm{OL}}=1.5 \mathrm{~mA}$			0.5	V	
		$\mathrm{I}_{\mathrm{OL}}=6 \mathrm{~mA}$			2.0	V	
	$\mathrm{V}_{\mathrm{OH} 2}$	$\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{DD}}-0.5$			V	5
		$\mathrm{I}_{\mathrm{OH}}=-16 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{DD}}-2.0$			V	
	$\mathrm{V}_{\mathrm{OL} 2}$	$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$			0.5	V	
		$\mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$			2.0	V	
	$\mathrm{V}_{\text {OL3 }}$	$\mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{DD}}-0.5$			V	6
		$\mathrm{I}_{\text {OL }}=8 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{DD}}-2.0$			V	
	$\mathrm{V}_{\text {OL4 }}$	$\mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA}$			0.5	V	7
		$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$			2.0	V	
Current consumption	$\mathrm{I}_{\text {OP }}$			10		mA	8

Note 1: Applied to all pins except for D-PG, D-FG, C-FG, PB-CTL
Note 2: Applied to pins D-FG, D-PG, C-FG, PB-CTL
Note 3: Applied to all input pins.
Note 4: Applied to all output pins except for REC-CTL $\oplus, \mathrm{REC}-\mathrm{CTL} \ominus, \mathrm{PG}-\mathrm{ADJ}, \mathrm{P} 0_{0}$
Note 5: Applied to REC-CTL \oplus
Note 6: Applied to pins REC-CTL Θ, PG-ADJ
Note 7: Applied to pins $\mathrm{PO}_{0}-\mathrm{PO} 0_{7}$
Note 8: No load condition

AC Characteristics

- SIO Characteristics

$\left(\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{Ta}=-20\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit	Note
SIO clock cycle	$\mathrm{t}_{\text {8CYC }}$		16			$\mathrm{t}_{\mathrm{CYC}}$	1
SIO transmission data delay	$\mathrm{t}_{\text {SOD }}$				300	ns	
SIO receiving data setup time	$\mathrm{t}_{\text {SIS }}$		300			ns	
SIO receiving data hold time	$\mathrm{t}_{\text {SIH }}$				1	$\mathrm{t}_{\text {CYC }}$	1
SIO input clock pulse width	$\mathrm{t}_{\text {SCKW }}$		0.4		0.6	$\mathrm{t}_{\text {SCYC }}$	
SIO input clock pulse width	$\mathrm{t}_{\text {SCKR }}$				200	ns	
SIO input clock fall time	$\mathrm{t}_{\text {SCKF }}$				200	ns	

Note 1 : $\mathrm{t}_{\mathrm{CYC}}: 2 \times(\text { oscillation frequency })^{-1}$

- A/D Converter Accuracy $\quad\left(\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Parameter	MIN.	TYP.	MAX.	Unit
Non linearity error			6	LSB
Differential non-linearity			6	LSB
Zero-scale error			6	LSB
Full-scale error			6	LSB
Total tolerance			6	LSB

Pin Function

The device is provided with 58 I/O ports which include 8×6 ports and 10 ports only for servo controller.

Figures 1 and 2 show the pin function diagram. The function on each ports can be set with a software.

- I/O ports
- External interrupt input ports
- Serial I/O ports
- Timer output ports
- A/D converter input ports
- PWM output ports
- A-HSW output ports
- VISS output ports (for the SM8202 only)
- HAMP output port (for the SM8203 only)
- CHROMA output port (for the SM8203 only)

(1) Ports P0, P1, P2

Ports P0, P1, P2 are 8-bit I/O ports which can

Fig. 1 SM8202 pin functions
be switched between input and output modes with a directional register.

Port P0 is a medium voltage output port, and serves exclusively as an 8-bit output port.

(2) Port P3

Port P3 is an 8 -bit I/O port the same as ports P 1 and P 2 . Port P 3 is allocated $\mathrm{P} 3_{0}-\mathrm{P} 3_{1}$ for interrupt input ports, P 3 for a timer output port, $\mathrm{P} 3_{3}-\mathrm{P} 3_{5}$ for serial I/O ports. For the SM8202, the $\mathrm{P} 3_{6}$ is allocated for a VISS output port and $\mathrm{P} 3_{7}$ for an A-HSW output port. For the SM8203, the $\mathrm{P} 3_{6}$ is allocated for the A-HSW output, and the $\mathrm{P} 3_{7}$ is allocated for the ENV comparator input port for P 56 /HAMP, $\mathrm{P} 5_{7} /$ CHRO outputs, when used as the input port.

(3) Port P4

Port P4 is an only input port. This port can be

Fig. 2 SM8203 pin functions
set to an analog data input port of A/D converter with a program control.

(4) Port P5

Port P5 is only output port. Each bit of $\mathrm{P} 5_{0}-\mathrm{P} 5_{3}$ may be set to PWM output mode.

For the SM8203, the P 56 /HAMP may be set to the HAMP switching signal output port, and the $\mathrm{P} 5{ }_{7} /$ CHROMA to the CHROMA switching signal output port.

(5) C-FG, D-FG, DPG

The C-FG pin is used to input the signals from the FG (frequency generator) of a capstan motor, and control the speed and the phase, compared to the reference signals.

The $\mathrm{D}-\mathrm{FG}$ pin is used to input the signals from FG of a drum motor, and control the speed, compared to the reference signals.

The D-PG pin is used to input the signals from the PG (pulse generator) of a drum motor, and control the drum phase, compared to the reference signals.

(6) $\mathrm{PB}-\mathrm{CTL}, \mathrm{REC}-\mathrm{CTL} \oplus$, REC-CTL Θ

The PB-CTL pin is used to input the signals for the speed control of a capstan motor when playback.

The REC-CTL + and REC-CTL- control pins are used to record the control signals when recording.

(7) HSW, PG-ADJ

The HSW pin outputs the head switching signals or inputs the head switching pulses.

The PG-ADJ input pin is used to contorl the phase of a head positionning with an external capacitor and a variable resistor.

(8) $\mathrm{V}_{\mathrm{SYNC}}, \mathrm{FV}$

The $\mathrm{V}_{\text {SYNC }}$ pin inputs the vertical synchronous signals, and the FV pin outputs the synchronous signals when a trick motion.

Hardware Configuration

(1) Address space

The device contains an internal RAM, an I/O register and a status register which are so-called register file. The registers are located in the 64 K -byte address at the same memory space with the program memory. Fig. 3 shows the address space.

(2) Program memory (ROM)

The program memory space is allocated in the addresses from 1000 to FFFF within a program/ register memory. The first 10 K bytes of the program memory is a mask ROM within a chip. 16 interrupt vectors should be inserted into the addresses from 1000 to 101 F . After the device is reset, user's program starts execution at the address 1020 (see Fig. 4).

(3) Register file

The addresses from 0000 to 00FF are allocated for a register file, and 0100 to 0FFF for an internal RAM expansion.

The register file consists of a 16 bit generalpurpose register, a 7 bit I/O register, a 256 byte internal RAM and some control registers (see Fig. 5). The file may be accessed from an 8 bit address field.

(4) Register configuration

General-purpose registers' $\mathrm{R}_{0}-\mathrm{R}_{7}$ can be used as an 8 bit register as well as a 16 bit register with a couple of registers. Registers $R_{8}-R_{15}$ can be used as a 16 bit register with a couple of registers.

(5) Interrupt

The device has 10 different interrupt functions (see Table 1), and the priority order should be $7 \rightarrow$ $6 \rightarrow \ldots 2 \rightarrow 1$ shown in table 1 . For the interrupt inhibit, the device accepts the interrupt with higher priority than that specified by an interrupt mask IM of a processor status 0 (PSO).

Reseting the bit "I" of the processor status 1 (PS1) through DI instruction inhibits all of maskable interrupts (see Fig. 6).

(6) Reset function

Applying a High level signal to the RESET pin resets the internal logic of the device and starts execution of the program at address 1020 .

After reset, the following blocks are initialized.

- The output port is set to " 0 ", and I/O ports may be placed in input mode.
- The interrupt enable flag is reset.
- The peripheral I/O registers are initialized.

Fig. 3 Address architecture

Fig. 4 Program memory map

Fig. 5 The register file

Table 1 Interrupt

Vector location	Source	Priority
1000	External interrupt INT0	7 (Most priority)
	External interrupt INT1	4
1006	Watchdog timer	-
1008	Timer T0	6
100 A	Timer T1	3
100 C	Timer T2	3
100 E	SIO	1
1012	A/D converter	2
1014	Servo controller	5
101 E	Irregal instruction	-

Fig. 6 Interrupt mask

(7) A/D converter

The control register ADC allows 8 bit input ports $\mathrm{P} 4_{0}-\mathrm{P} 4_{7}$ to be selected from the input ports, the A / D converters or the comparators.

- Input ports

The port status with a digital data may be read out from the input ports.

- A/D converter

The analog data of any one of channels $\mathrm{P}_{0}-\mathrm{P} 4_{7}$ specified by the ADC is converted into the digital data through the A / D converter, the result of A / D conversion may be read out as a data register of port P4. The A/D converter may be started with a bit manipulation of ADC. Then the CPU acknowledges the interrupt if it is enabled. The A/D conversion is executed by the comparison between the analog input and the voltage based upon the ladder resistor applied between V_{CC} and GND. The conversion time should be 68μ s under 4 MHz of the clock frequency.

- Comparator mode

Selecting the comparator mode writes data into the internal register instead of the data register of port P4. The D/A conversion of the contents of an internal register is executed to compare with an analog data. The corresponding 1 bit of the ADC is set or reset specify the result of comparison.

(8) Serial I/O (SIO)

The serial I/O port transfers and receives an 8-bit data in synchronization with the shift clock. The serial I/O consists of a couple of registers, an octal counter and some controllers.

(9) Timer

The device contains 4 timers including three 8 -bit interval timers and a watchdog timer which may be selected by an 8 -bit select register (TS).

A 14-bit prescaler commonly used for each timer has the output which becomes the input clock at each timer. The input timer is a clock (ϕ_{11}) equivalent to the reference clock divided into 2. The corresponding input clock at each timer may be set with a program.

Note that the timer 0 of the SM8203 can also be used as a counter which counts the input clock of the CTL signal.
(10) Sound output ($\mathrm{P}_{2} / \mathrm{TO}$)

The $\mathrm{P}_{2} /$ TO may be switched to either an I/O port or a prescaler output port through the select register (TS). A 4 kHz clock for the sound output is output from the $\mathrm{P} 3_{2} / \mathrm{T}_{0}$.

(11) Timing

The internal clock of the device is a half frequency of the reference clock. The read cycle of the internal ROM is generated with 2 clocks, and that of the internal RAM or I/O register with 1 clock.

A high speed operation is obtained from the function that the operation code fetch overlaps the execution cycle and the next instruction operation code is taken during execution of one instruction cycle.

Servo Control Function

The device is provided with the hard block for exclusive use of servo control, which offers flexible servo control with a software. The hard block requires less software and performs servo control by simple load instructions and arithmetic instructions. Figures 7 and 8 show the block diagram of a servo controller.
(1) Drum servo speed comparator (D-AFC)

The drum speed signal ($\mathrm{D}-\mathrm{FG}$) is compared to the reference clock to calculate the tolerance.

(2) Drum phase comparator (D-APC)

The drum phase comparator signal ($D-P G$) is compared to the $\mathrm{V}_{\text {SYNC }}$ or reference clock to calculate the tolerance.
the reference clock to calculate the tolerance.
(4) Capstan phase comparator (C-APC)

The capstan phase comparator signal (HSW) is compared to the divided signal $\mathrm{C}-\mathrm{PG}$ of either the CTL or C-FG signal to calculate the tolerance.

(5) Head switching circuit (HSW)

The head switching circuit generates the head switching pulse (HSP) necessary for switching a drum head, based upon FG and PG signals of a drum. The mono multicircuit of a register allows a digital tracking control of a delay from the signal to the head with the head switching pulse to be delayed.
(3) Capstan speed comparator (C-AFC)

The capstan speed signal (C-FG) is compared to

Fig. 7 SM8202 servo control block

Fig. 8 SM8203 servo control block
(6) False synchronous circuit block (FV)

The false synchronous circuit block sets and outputs the intervals of programmable 3 levels of High, Low and High impedance, referenced to the rising edge and falling edge of a head switching pulse.

(7) Pulse width mudulation output block (PWM)

4 sets of the pulse width modulation (PWM) output circuits constitute a digital filter through an internal arithmetic operation, which may be allocated 2 sets for a drum and a capstan, or 4 sets for $\mathrm{D}-\mathrm{AFC}, \mathrm{D}-\mathrm{APC}, \mathrm{C}-\mathrm{AFC}$ and $\mathrm{C}-\mathrm{APC}$.

The PWM signal performs a modulation by 1 bit rate of a 10 bit differential data divided by upper 7 bits and lower 3 bits. And 1 pulse is incremented to the PWM signal of upper 7 bits according to the lower 3 -bit data. An 8 pulse is defined as one cycle. This function allows high resolution and high speed PWM features under the conditions of a

10 -bit quantization and a 28 kHz frequency ($\mathrm{f}_{\mathrm{SC}}=$ 3.579545 MHz).

(8) VISS circuit

The VISS circuit discriminates the CTL signal duty between " 1 " and " 0 ", and counts the cascading data of " 1 " to be stored into the latch circuit. The contents of the latch circuit may be transferred to the CPU through the data bus line, which allows a simple detection of the VISS signal.

The SM8202 outputs the discrimination results of the CTL signal duty from the $\mathrm{P}_{6} /$ VISS pin.
(9) HAMP/CHRO circuit (only for the SM8203)

The head amp./chroma-rotation circuit (HAMP/ CHRO) outputs the switching signal for a head amp. and chroma-rotation when a special playback.

Provided with these features, this microcomputer is applicable to 2 -head and HiFi 4 -head camcoders, a variety of servo controllers of NTSC, PAL and VHS-C.

Typical features are mentioned below:

- Applicable to a variety of video head system of a 2-head, and a-double azimuth 4 head, recording systems of an NTSC and a PAL, and high resolution system of VHS-C.
- A variety of trick motion with a software con-
trol.
- Built-in a tracking circuit and a REC CTL signal delay circuit.
- CTL signal duty discriminating circuit and VISS counter circuit.
- Variable CTL output signal (REC CTL) duty ratio when recording.
- High resolution and 4 high frequency RWM outputs.
- 1PG system HSP signal generator circuit, and external HSP input capability.
- False synchronous signal generator circuit.
- Automatic mode discrimination with a software control.
- Instruction set
(1) Load instructions

Instruction	Operand	Function
CLR	dst	Clear
MOV	dst, src	Move
MOVM	dst, IM, src	Move Under Mask
MOVW	dst, src	Move Word
POP	dst	Pop
POPW	dst	Pop Word
PUSH	src	Push
PUSHW	src	Push Word

(2) Arithmetic instructions

Instruction	Operand	Function
ADC	dst, src	Add With Carry
ADCW	dst, src	Add Word With Carry
ADD	dst, src	Add
ADDW	dst, src	Add Word
CMP	dst, src	Compare
CMPW	dst, src	Compare Word
DA	dst	Decimal Adjust
DEC	dst	Decrement
DECW	dst	Decrement Word
DIV	dst, src	Divide
INC	dst	Increment
INCW	dst	Increment Word
MULT	dst, src	Multiply
NEG	dst	Negate
SBC	dst, src	Subtract With Carry
SBCW	dst, src	Subtract Word With
SUB	dst, src	Carry
SUBW	dst, src	Subtract

(3) Logic instructions

Instruction	Operand	Function
AND	dst, src	Logical And
COM	dst	Complement
OR	dst, src	Logical Or
XOR	dst, src	Logical Exclusive Or

(4) Program control instructions

Instruction	Operand	Function
BBC	src, dst	Branch on Bit Clear
BBS	src, dst	Branch on Bit Set
BR	cc, dst	Branch
CALL	dst	Call Subroutine
CALS	dst	Short Call Subroutine
DBNZ	r, dst	Decrement and Branch
on Non-Zero		
IRET		Interrupt Return
JMP	cc, dst	Jump
RET		Return

(5) Bit manipulation instructions

Instruction	Operand	Function
BAND	BF, src	Bit And
BCLR	dst	Bit Clear
BCMP	BF, src	Bit Compare
BMOV	src, dst	Bit Move
BOR	BF, src	Bit Or
BTST	dst, src	Bit Test
BSET	dst	Bit Set
BXOR	BF, src	Bit Exclusive Or

(6) Rotate and shift instructions

Instruction	Operand	Function
RL	dst	Rotate Left
RLC	dst	Rotate Left through
Carry		
RR	dst	Rotate Right
RRC	dst	Rotate Right through
SLL	dst	Shiry
SRA	dst	Shift Right Arithmetic
SRL	dst	Shift Right Logical
SWAP	dst	Swap Nibbles

(7) CPU control instructions

Instruction	Operand	Function
COMC		Complement Carry Flag
CLRC		Clear Carry Flag
DI		Disable Interrupt
DM	src	Data Memory Prefix
EI		Enable Interrupt
HALT		Halt CPU
NOP		No Operation
SETC		Set Carry Flag
STOP		Stop CPU

System Configuration Example (VCR)

(1) SM8202

(2) SM8203

SM8320

8-Bit Microcomputer (Controller with An Inverter Drive Circuit)

Description

The SM8320 is a CMOS 8-bit microcomputer which integrates an 8 -bit core CPU, a ROM, a RAM, serial I/O, a timer/event counter, a watchdog timer, an A/D converter and a PWM waveform generator circuit. It is best suited to inverter airconditioners required for an inverter drive capability of the 3 -phase AC motor.

Features

1. CPU core: SM83
2. ROM capacity: $12,288 \times 8$ bits
3. RAM capacity: 256×8 bits
4. Instruction set: 81
5. Subroutine nesting: using RAM area
6. Instruction cycle time: $1 \mu \mathrm{~s}$ (MIN.)
7. Interrupts

External interrupt: 1
Internal interrupts: 7
8. Input/Output ports

I/O ports: 40
Input ports: 8 (for switching with A / D input)
PWM output ports: 6
9. A/D converter: 8 bits (8 channels)
10. Counter/timer: 2 sets
11. PWM waveform generator circuit
12. Watchdog timer
13. Standby function: STOP/HALT mode
14. Crystal or ceramic oscillator circuit
15. Supply voltage: $5 \mathrm{~V} \pm 10 \%$
16. Package

64-pin SDIP (SDIP64-P-750)
64-pin QFP (QFP64-P-1420)

Pin Conections

- Absolute Maximum Ratings

Parameter	Symbol	Conditions	Rating	Unit
Supply voltage	V_{DD}		-0.3 to +7.0	V
Input voltage	V_{1}		-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Output voltage	V_{0}		-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Output HIGH current	I_{OH}	All output ports	-4	mA
Output LOW current	$\mathrm{I}_{\mathrm{LL} 1}$	Output ports except for $\mathrm{PWM}_{0}-\mathrm{PWM}_{5}, \mathrm{P}_{0}-\mathrm{P} 3_{3}$	4	mA
	$\mathrm{I}_{\text {OL2 }}$	$\mathrm{PWM}_{0}-\mathrm{PWM}_{5}$	30	mA
	$\mathrm{I}_{\text {OL3 }}$	$\mathrm{P}_{0}-\mathrm{P} 3_{3}$	15	mA
Total output HIGH current	$\Sigma \mathrm{I}_{\mathrm{OH}}$	All output ports	-20	mA
Total output LOW current	$\Sigma \mathrm{I}_{\mathrm{OL} 1}$	Output ports export for $\mathrm{PWM}_{0}-\mathrm{PWM}_{5}, \mathrm{P}_{3}-\mathrm{P}_{3}$	20	mA
	$\Sigma \mathrm{I}_{\text {OL } 2}$	$\mathrm{PWM}_{0}-\mathrm{PWM}_{5}$	80	mA
	$\Sigma \mathrm{I}_{\mathrm{OL} 3}$	$\mathrm{P}_{0}-\mathrm{P} 3_{3}$	45	mA
Operating temperature	Topr		-20 to +70	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-55 to +150	${ }^{\circ} \mathrm{C}$

- Recommended Operating Conditions

$\left(\mathrm{Ta}=-20\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$			
Parameter	Symbol	Rating	Unit
Supply vortage	V_{DD}	+4.5 to +5.5	V
Instruction cycle	$\mathrm{t}_{\text {SYS }}$	16.0 to 0.95	$\mu \mathrm{~s}$
Oscillating clock frequency	f	0.25 to 8.0	MHz

- DC Characteristics
$\left(\mathrm{V}_{\mathrm{DD}}=4.5\right.$ to $5.5 \mathrm{~V}, \mathrm{Ta}=-20$ to $\left.+70^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	Note
Input voltage	$\mathrm{V}_{\mathrm{IH} 1}$		$0.7 \mathrm{~V}_{\mathrm{DD}}$		V_{DD}	V	1
	$\mathrm{V}_{\mathrm{IL} 1}$		0		$0.3 \mathrm{~V}_{\mathrm{DD}}$		
	$\mathrm{V}_{\mathrm{IH} 1}$		$\mathrm{V}_{\mathrm{DD}}-0.5$		V_{DD}	V	2
	$\mathrm{V}_{\text {IL1 }}$		0		0.5		
Input current	$\mathrm{I}_{\mathrm{H} 1}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$		50		$\mu \mathrm{A}$	3
	$\mathrm{I}_{\text {IL1 }}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$		-50		$\mu \mathrm{A}$	4
	$\mathrm{I}_{\mathrm{H} 2}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$			10	$\mu \mathrm{A}$	5
	$\mathrm{I}_{\text {LL2 }}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$			10		
Output voltage	$\mathrm{V}_{\mathrm{OH} 1}$	$\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{DD}}-0.5$			V	6
	$\mathrm{V}_{\text {OL1 }}$	$\mathrm{I}_{\mathrm{OL}}=1 \mathrm{~mA}$			0.5		
	$\mathrm{V}_{\mathrm{OH} 2}$	$\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{DD}}-0.5$			V	7
	$\mathrm{V}_{\text {OL2 }}$	$\mathrm{I}_{\mathrm{OL}}=10 \mathrm{~mA}$			2		
	$\mathrm{V}_{\mathrm{OH} 3}$	$\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{DD}}-0.5$			V	8
	$\mathrm{V}_{\text {OL3 }}$	$\mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA}$			2		
Current consumption	I_{DD}	$\mathrm{f}_{\mathrm{S}}=1 \mathrm{MHz}$		6		mA	
	$\mathrm{I}_{\text {DDH }}$	$\mathrm{f}_{\mathrm{S}}=1 \mathrm{MHz}$ HALT		2		mA	
	$\mathrm{I}_{\text {DDS }}$	Oscillation STOP		1	10	$\mu \mathrm{A}$	

[^7]
Pin Functions

(1) GND, $V_{D D}$ (Power supply inputs)

The V_{DD} pin should be positive +5 V (TYP.) with respect to GND.

(2) $\mathrm{TEST}_{1}, \mathrm{TEST}_{2}$ (Device test inputs)

The TEST pins must normally be connected to GND.

(3) RESET (System reset)

The RESET accepts an acvtive-Low system reset which initializes the internal logic of the device. It is internally connected to the positive supply V_{DD} with a pull-up resistor. Normally a capacitor is connected between this pin and GND to provide a power-on reset function.

(4) $\mathrm{CK}_{1}, \mathrm{CK}_{2}$ (System clock oscillator)

The CK_{1} and CK_{2} pins, in conjunction with an external ceramic or crystal oscillator, provide a system clock oscillator. An external clock must be input to the CK_{1} pin.

(5) ϕ (Clock output)

ϕ, the system clock output pin, provides a clock frequency which is one eighth the master clock frequency $\left(\mathrm{CK}_{1}\right)$.

(6) VRF, AGND (Reference power for A/D converter)

The VRF and AGND pins are reference power supplies for A/D conversion. A High level of reference voltage (MAX. $V_{D D}$) should be input to the VRF with respect to AGND, and a minimum GND level of voltage should be input to the AGND.
(7) $\mathrm{PO}_{0}-\mathrm{P0}_{7}, \mathrm{P1}_{0}-\mathrm{P1} 1_{7}, \mathrm{P2}_{0}-\mathrm{P2}_{7}, \mathrm{P3}_{0}-\mathrm{P} 3_{7}(1 / \mathrm{O}$ ports)
Ports P0, P1, P2 and P3 may be independently set to Input or Output mode. These ports are all set to Input mode after reset. The P3 port can output a large drive current (sink current).

(8) $\mathrm{P4}_{0}-\mathrm{P} 4_{7}$ (1/O ports)

Port P4 may be independently set to Input or Output mode. It serves for switching with a serial I/O, a timer, an input clock or a PWM output pause input.

(9) $\mathrm{P5}_{0}-\mathrm{P} 5_{7}$ (Input port)

The P5 is an input port, which can be used to input an analog data for A / D conversion.

(10) PWM $_{0}-$ PWM $_{5}$ (PWM output ports)

The PWM output port is used to output the inverter drive signals for a 3 -phase AC motor converted from the internal ROM data through an internal PWM generator circuit.

Functiond Connections

Hardware Configuration

(1) Address architecture

The on-chip ROM is allocated in the address at $0000-2 \mathrm{FFF}$ (12 K bytes), a RAM at FE80-FF7E (256 bytes) and port register at FFD0-FFFF.

Fig. 1 Address architecture

(2) Program memory (ROM)

The program memory has 12 K bytes and is allocated in the address at 0000-2FFF. 9 interrupt vectors and a jump destination of an RST instruc-
tion are allocated in the address shown in Fig. 2. Applying a Low level signal to the RESET pin starts excution of the user's program at address 0000.

(3) Data memory (RAM)

The data memory has 256 bytes and is allocated in the address at FE80-FF7F.

(4) Control register

The control registers including an I/O register and a mode register are allocated in the address at FFD0-FFFF.

(5) CPU core structure

The internal CPU core consists of an accumulator, a general-purpose register, a program counter, a stack pointer, an interrupt mask register, an interrupt master enable flag and an arithmetic logic unit (ALU).

IE Interrupt mask register (FFFF)

IME Interrupt master enable flag
Fig. 3 SM83 CPU core internal register structure

Address	
0000	Start address/RST0
0008	RST1
0010	RST2
0018	RST3
0020	RST4
0028	RST5
0030	RST6
0038	RST7
0040	INT0: External STP interrupt
0048	INT1: Start/End bit interrupt from a PWM generator circuit
0050	INT2: CNT12/CNTGG counter interrupt from a PWM generator circuit
0058	INT3: TIMA overflow interrupt
0060	INT4: Interrupts for the end of A/D conversion, comparison and SIO transfer
0068	INT5: TIMB overflow interrupt
0070	INT6: TIMC overflow interrupt
0078	INT7: DIV overflow interrupt
0080	NMI: Mask disable interrupt (watchdog timer overflow interrupt)

Fig. 2 Vector addresses

(6) P0, P1, P2 and P3 (I/O ports)

The P0, P1, P2 and P3, 8-bit I/O ports may be switched between Input (0) and Output (1) modes with a directional register. The contents of the output data register should also be transferred to the accumulator A_{CC}.

(7) P4 (I/O port)

The P4 is an 8 -bit I/O port, and with a program, pins $\mathrm{P} 4_{3}-\mathrm{P} 4_{5}$ serve as serial $\mathrm{I} / \mathrm{O}\left(\mathrm{S}_{\mathrm{IN}}, \mathrm{SCK}, \mathrm{S}_{\text {OUT }}\right)$, pin $\mathrm{P} 4_{6}$ serves as a counter/timer input (KT) and pin P_{7} as a stop signal input of a PWM output and an external interrupt input (STP).

(8) S_{IN}, SCK, $\mathrm{S}_{\text {out }}$ (Serial I/O)

The serial I/O ports consist of a couple of register, $8 / 4 / 2 / 1$ counter and controllers, which are used to transmit and receive 8 -bit data synchronized with the shift clock.

(9) P5 (Input port)

The P5, input port, can be set to the analog data input for an A/D converter with a program.

(10) $\mathrm{AD}_{0}-\mathrm{AD}_{7}$ (A/D converter)

The device contains an 8 -bit A / D converter with 8 -channel multiplexer analog inputs. The A/ D converter inputs can be set to 3 modes including an automatic A/D conversion mode, a comparator mode between analog input value and internal register, and an input mode. The mode is normally set to the input mode.

- Input mode When in input mode, there is no data transfer from accumulator to port P5, and the current status (digital value) of the port should be loaded into the accumulator.
- A/D conversion mode In the A/D conversion mode, an analog data of selected channel (one of ports $P 5_{0}-P 5_{7}$) is converted into digital data which
will be loaded into the accumulator. Then, if an interrupt is enabled, the CPU acknowledges the interrupt. The A/D conversion will be performed by comparing voltages determined by a ladder resistor placed between VRF and AGND with analog inputs. The A/D conversion cycle should be 68μ s at 8 MHz of oscillation frequency ($1 \mu \mathrm{~s}$ of system clock).
- Comparator mode In the comparator mode, one bit location of control register is determined according to large or small data obtained by the comparison between data registers and analog inputs. Upon completion of comparator operation, the port is used for switching with general-purpose input.

(11) Timer

The timer circuit consists of a 6 -stage prescaler, an 8-bit divider (DIV), an 8-bit timer A, B, C, and a timer control register (TMODE). The timer C can be used as a watchdog timer. The prescaler input clock is used for a system clock ϕ (reference clock $\mathrm{f} / 8$).

(12) Interrupts

The interrupt functions include 8 kinds of maskable interrupts (internal: 7, external: 1) and a non-maskable interrupt (see table 1).

The interrupt request flag $\left(\mathrm{IF}_{0}-\mathrm{IF}_{7}\right)$ is set if a maskable interrupt ($\mathrm{IRQ}_{0}-\mathrm{IRQ} \mathrm{I}_{7}$) occurs. Then, presetting the corresponding bit of interrupt masterenable flag (IME) and interrupt mask register issues the interrupt.

If more than one interrupt occurs simultaneously , all of the corresponding interrupt request flags will be set, but the CPU will only acknowledge that interrupt with the highest priority and other interrupts will be queued.

Table 1 Interrupt reguest

Priority	Address	Interrupt	Mask
1	0080	NMI: Mask disable interrupt (Overflow interrupt of watchdog timer)	Disable
2	0040	IRQ 0: External STP interrupt	Enable
3	0048	IRQ 1: Start/End bit interrupt from a PWM generator circuit	Enable
4	0050	IRQ 2: CNT12/CNTGG counter interrupt from a PWM generator circuit	Enable
5	0058	IRQ 3: TIMA overflow interrupt	Enable
6	0060	IRQ 4: Interrupts for the end of A/D conversion, comparison and SIO transfer	Enable
7	0068	IRQ 5: TIMB overflow interrupt	Enable
8	0070	IRQ 6: TIMC overflow interrupt	Enable
9	0078	IRQ 7: DIV overflow interrupt	Enable

(13) Reset function

Applying a Low level signal (master clock period $\times 2$) to the RESET pin resets the internal logic of the device and starts execution of the program at address 0000 .

The following two reset functions are also available:

1) The interrupt master enable flag IME, interrupt mask register IE and interrupt request flag IF are reset to disable all maskable interrupts.
2) The port and mode registers are initialized. The other registers are indefinite. Applying a High level signal to the RESET pin with a double master clock frequency (32.768 kHz at 8 MHz master clock) starts execution of the program.

(14) Standby mode

The standby mode includes HALT mode and STOP mode. In each standby modes, output ports, internal registers and internal RAM remain operative.

- HALT mode Executing the HALT instruction places the device in HALT standby mode. To reduce power consumption, the system clock is inactivated. However, the oscillator circuit between CK_{1} and CK_{2} is operating, and the DIV, SIO and timer remain operative, provided their operations do not depend on the system clock. The PWM circuit is inactivated. While in HALT mode, if a Low level signal is applied to the RESET pin, or an interrupt enable flag is set, the device exists HALT mode.
- STOP mode Executing the STOP instruction places the device in STOP standby mode, and the entire system clock except for external clock of SIO and timers is inactivated. While in STOP mode, if a Low level signal is applied to the RESET pin, or an interrupt occurs such as a High level signal is applied to the SIO, timer A or STP pin, the device exists STOP mode.

PWM Waveform Generator Circuit

The PWM waveform generator circuit automatically outputs inverter drive PWM waveforms which are 3 -phase AC waveforms required for driving compressors such as inverter air conditioners, from the $\mathrm{PWM}_{3}-\mathrm{PWM}_{5}$ pins. This circuit greatly reduces loads on software.

In addition, the lower 6 bits of the internal ROM data can be automatically output as they are from the $\mathrm{PWM}_{3}-\mathrm{PWM}_{5}$ pins. They can be used as drive waveform output for stepping motors.
(1) Basic operation of PWM waveform generator circuit
The PWM waveform data is written to the program area of ROM, and the start address and the waveform data output interval (sampling time) are specified on the register. Thus, every time waveform data is read from ROM, the waveform ROM address counter is automatically incremented or decremented, and the waveform data at the addressed area is directly transferred to the waveform data buffer.

Then, PWM waveforms are automatically generated via the data conversion circuit and the rise delay circuit, and output from the $\mathrm{PWM}_{0}-\mathrm{PWM}_{5}$ pins.

(2) PWM waveform data preparation

The waveform data provided in any way are generally obtained by comparing 3-phase AC waveforms (3 different sine curves having a phase difference of 120 degrees) with delta waveforms and converted into 3 -bit data and then written to ROM.

Fig. 4 shows an example for PWM waveform data preparation.

It is not necessary to have data for one cycle (360 degrees). Only having data for $30,60,120$ or 180 degrees allows waveforms of 360 degrees.

(3) Sampling time

The sampling time can be set in steps of $0.25 \mu \mathrm{~s}$. in the range from 10μ s to 256μ s.

The frequency of the PWM waveform (sine curve) can be varied based on the waveform data written to ROM by changing the sampling time.

(4) Delay time setting

When external transistors are used as the drive elements for the inverter and a pair of transistors which are vertically connected in push-pull configuration are alternately switched, one transistor must be turned ON considering the delay time at the time when the other transistor is turned OFF in order to prevent short circuit in the vertical direction.

The delay time varies depending on tarnsistor types and must be changed in accordance with them.

This microcomputer allows this delay time to be freely set in steps of $2 \mu \mathrm{~s}$ in the range from 0 to $30 \mu \mathrm{~s}$ or in steps of $0.25 \mu \mathrm{~s}$ in the range from 0 to $3.85 \mu \mathrm{~s}$.

a	0	0	0	0	1	1	1	1	1	0	0	0	1	1	1	1
b	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0
c	1	1	0	1	1	1	1	1	1	1	0	0	1	1	1	1

(a) 3-phase AC waveform
a, b and c indicate the 30 degree sample waveform of one cycle. 360 degree waveform can be obtained by combining inverted waveforms of a, b and c with in-verted-timeframe waveforms.
(b) Comparison with deltas

In comparing AC wave with daltas at certain interval (sampling time), if delta wave is positioned in upper part of $A C$ wave, the binary code should be 1 , and in lower part of $A C$ wave, it should be 0 .

(c) 30 degree PWM waveform data

One cycle of PWM waveform is automatically formed by an internal conversion circuit based upon 30 degree PWM waveform data.

(d) Output data from PWM

The ON signal is output with delay time not to simultaneously turn on the external power transistor composed of external push-pull type (see System Configuration Example).

Fig. 4 Example of PWM wavefrom data

Instruction Set

The SM8320 has 77 instruction set.
(1) 8-bit transfer instructions,

I/O instructions
(2 kinds, 19 instructions)
LD, LDX
(2) 16-bit transfer instructions
(4 kinds, 6 instructions)
LD, LDHL, POP, PUSH
(3) 8-bit arithmetic instructions, Logic instructions
(12 kinds, 12 instructions)
ADC, ADD, AND, CP, CPL, DAA, DEC, INC, OR, SBC, SUB, XOR
(4) 16-bit arithmetic instructions (3 kinds, 4 instructions)

ADD, DEC, INC
(5) Rotate, shift instructions
(12 kinds, 12 instructions) RLA, RLC, RLCA, RL, RRA, RRC, RRCA, RR, SLA, SRA, SRL, SWAP
(6) Bit manipulation instructions
(3 kinds, 6 instructions)
BIT, RES, SET
(7) Jump instructions
(2 kinds, 5 instructions)
JP, JR
(8) Call, return instructions
(4 kinds, 6 instructions) CALL, RET, RETI, RST
(9) CPU control instructions
(7 kinds, 7 instructions)
CCF, DE, EI, HALT, NOP, SCF, STOP

- System Configuration Example (Outdoor unit of inverter air-conditioner)

Development Support Tools

UUXXX -2 Evaluation Board for SM Series

Description

The LUXXXH2 is an evaluation board for use in developing programs of 4 -bit single chip microcomputer SM series. It is available for any types of evaluation board applicable to each SM series.

The evaluation board is equivalent to the SM series with ROMless in functions and electrical characteristics. It is designed to develop programs together with an EPROM or the development support tool SME-30 emulator in RAM basis.

Features

1. System debug with EPROM
2. Debug in RAM basis in conjunction with an emulator SME-30
3. Typical functions of the evaluation board

- Hold function
- One-step function
- Auto-stop function
- Program counter indicator
- Accumulator and carry F/F indicator
- RAM address register and memory indicator
- Instruction code indicator
- PLA specification function

■"Outline

Block Diagram (LU500H2A)

(LUXXXH4)

Fig. 1 Evaluation board structure

Components Layout on The Board

In explaining the LU500H2A, see Fig. 2 for the evaluation card (LU500H4A) and Fig. 3 for the control board (SM-EVBOARD).

Fig. 2 LU500H4A component layout

Table 1 LU500H4A Component Description

No.	Components	Description
1	C2 connector (50-pin connector)	Inputs and outputs data.
2	IC socket for programmed EPROM	Adapts an EPROM written with user's program.
3	C1 connector (40-pin connector)	Inputs and outputs data.
4	Power supply terminal	Applies DC voltage.
5	EPROM select switch	Selects between 2764 and 27256 for EPROMs.
6	Evaluation chip	LU500H5, provides the logic function of SM500.
7	C3 connector (50-pin connector)	User's connector Connects with the cable from the user's system.
8	PLA SW	Specifies the PLA.

Fig. 3 SM-EVBOARD-2 component layout

Tble 2 SM-EVBOARD-2 Component Description

No.	Components	Description
1	50 -pin connector	Inputs and outputs data

System Configuration Example

Connection between the emulator SME-30 and the evaluation board LU500H2A.

Fig. 4 System configuration

SME-30 (LU4DH300)

Description

The SME-30 (LU4DH300) is an emulation system for programming a 4-bit single chip microcomputer SM series. This system is used to develop programs in combination with a PROM writer as well as each type of evaluation board available for any of the 4-bit microcomputer SM series.

Provided with the serial interface (RS-232C), this system, connecting to the host system applicable to the software such as cross-assembler, debugs the program.

The host system is a personal computer which can be driven under control of the MS-DOS ${ }^{\mathrm{TM}}$ operation system.

* MS-DOS ${ }^{\mathrm{TM}}$ is a trademark of Microsoft Corporation.

Features

1. Exchanging the evaluation board and control software applies to any type of 4 -bit microcomputer SM series.
2. User's program area up to 16 K words (16 bits/word) for all of SM series can be supported.
The user's program area is expandable up to 64 K words at a 16 K word unit.
3. A 16 -bit step counter measures the program execution time.
4. Historical memory for tracing the program run.
5. Symbols defined by a cross-assembler for the operand.
6. Data rewrite with assembly languages
7. Symbolic reverse assembling.
8. Allows transition of the register and flag contents.
9. Program execution from any addresses

Outline

10. Break point set conditions

- Program counter: 2
- RAM address: 1
- Logical product of RAM address and RAM data: 1
- External signal: 1

11. Operation mode

- Real-time execution
- Single-step execution
- Trace execution
- Dummy execution
- Snap shot execution

Block Diagram

Specifications

Parameter	Specification	Remarks
Clock	Switchable between internal and user clocks	4-bit single-chip microcomputer SM series
Emulation CPU	Evaluation chip	Expandable up to 64K words (MAX.)
User's RAM	16 K words (16K $\times 16$ words)	
History RAM	2 K steps	
Dummy RAM	256 words	
Break point	5 circuits (hardware)	$(110$ to 9600 BPS) at 8 levels
Serial port	RS $-232 \mathrm{C} \times 2$	Current te be output
External current capacitance	$1 \mathrm{~A} \mathrm{(MAX)}$.	
Power supply	AC100V $\pm 10 \%, 50 / 60 \mathrm{~Hz}$	W $\times \mathrm{L} \times \mathrm{H}$ (Unit: mm) Not including projections
Operating temperature	0 to $40^{\circ} \mathrm{C}$	
Outer dimensions	$310 \times 270 \times 98$	

Connection Method

Two connection methods between the SME-30 emulator and the host system are available depending upon the types of the host system.

(1) Local mode

The local mode is available for the CRT separation type of host system. In this mode, connection is possible only with the RS-232C interface between
the emulator and the host system. Fig. 1 shows the connection diagram of the system in this mode.

(2) Remote mode

The remote mode is available for the host system embedded CRT. In this mode, the RS-232C interface and the software interface connect the emulator with the host system. Fig. 2 shows the connection diagram of the system in this mode.

Fig. 1 Connection at the local mode

Note: The TERMINAL pin is non connection.

Fig. 2 Connection at the remote mode

- Development Circumstances of MSDOS ${ }^{\text {TM }}$ personal computer and SME-30

(1) System Program

The system program is given by the each MS-DOS ${ }^{\text {TM }}$ disk which depends on models.

(2) Cross-assembler

The cross-assembler is used to assemble the source program provided by the editor, and make a list file and an objection file on request.

(3) Mapper

The objection mapper program is used to replace the objection file on the diskette assembled by a cross-assembler with the steps and pages for easy-to-read report.

(4) Terminal controller

The terminal controller is a program for the connection between the SME-30 emulator and the personal computer. The program depends on the personal computers.

LU8200H7/LU820XH4

SM82 Series In-circuit Emulator/Emulation Pod

Description

The SM82 in-circuit emulator is designed to effectively program an 8-bit single chip microcomputer SM82 series.

This system consists of an in-circuit emulator (LU8200H7) and a replaceable emulation pod (LU820XH4), which is available for any type of the SM82 series.

The host system must be controlled under the MS-DOS ${ }^{\text {TM }}$ operation system as well as provided with the RS-232C interface unit or the Centronics interface unit which allows a high speed transfer of the program to the emulator unit.

* MS-DOS ${ }^{\mathrm{TM}}$ is a trademark of Microsoft Corporation.

Features

1. 64 K bytes of emulation memory
2. A variety of brake and trace functions
3. Real-time operation
4. Execution time scale
5. Reverse assembler and line assembler
6. Symbolic debugger
7. The coverage function checks nonaccessed area under programming
8. Centronics interface unit allows a high speed down load and a connection to the printer
9. Exchangeable emulation pod applicable to any type of the SM82 series

Outline

Emulator unit (LU8200H7)

Emulation pod (LU8202H4)

4
Specifications

Parameter	Specification
Clock	On-chip/user clock switching
Emulation	SM82 evaluation-chip
Emulation memory	64 K byte
Break point	2 (hardware)
Break counter	16 -bit $\times 2$
Serial interface	RS-232C $\times 2$
Parallel interface	Centronics input $\times 1$ output $\times 1$
Power supply	AC100V $\pm 10 \% \quad 50 / 60 \mathrm{~Hz}$
Operating temperature	0 to $40^{\circ} \mathrm{C}$
Unit	$330(\mathrm{~W}) \times 315(\mathrm{D}) \times 150(\mathrm{H})$

Block Diagram

System Configuration

Below shows the development support system of an 8-bit single chip microcomputer SM82 series.

(1) SM82 in-circuit emulator

- Emulator unit
- SM82 emulation pod

(2) Host system

The host computer system operates under control of the MS-DOS ${ }^{\mathrm{TM}}$ operation system, which is designed to make a program of the SM82 with the cross-software mentioned below. The program
should be down-loaded into the SM82 in-circuit emulator, and debugged with the emulator. The host system must be provided with the RS-232C interface unit.

(3) SM82 cross-software

The cross-software consists of an assembler, a linker, HEX dumper and an emulator control software, which is offered by SHARP.

Note: The emulator may have some different function from an actual device. The operation must finally be checked with a pig-gy-back device.

Connection Method

(1) Connection between the emulator unit and the emulation pod
Fig. 1 shows the emulator unit from a front view, and Fig. 2 shows from a back view. Fig. 3 shows the emulation pod. The connector of the emulation pod must be connected to the connector located in the front of the emulator. The side of the emulation pod is provided with a connector for eight external ternal probe cables which accept the maximum of 0 to 5.5 V of input voltage.

Fig. 1 Front side of emulator

Fig. 2 Rear end of emulator

Fig. 3 Emulation pod
probe cables which accept the maximum of 0 to 5.5 V of input voltage.

(2) Connection between the emulation pod and the user's system

The connector of user's system must be inserted into the socket, adjusting the pin No. 1 (see Fig. 3). And at the same time, connect a ground clip to the ground of user's system. The external probes receive signals from user's system to store the signal levels into the trace memory and to be broken.
(3) Connection to the peripheral equipment

The connectors equipped with the back of the emulator unit may be used to connect with peripheral equipment (see Fig. 2). It is designed to connect to the host system in a serial interface cable (RS-232C) or in a parallel interface cable (Centronics).

The emulator makes a command control in a serial communication with the RS-232C interface. Be sure to connect the serial connector of a host system with the TERM connector of the emulator. A down-load interface type of user's program develped with a host system can be specified with a command control between the RS-232C serial interface and the Centronics parallel interface. When a high speed parallel down-load interface is selected, connect the printer connector of a host system with the PARA. IN connector of an emulator. When the display contents are printed using a printer, connect the Centronics interface connector of a printer with the PRINTER connector of an emulator. Fig. 4 shows the connection diagram between each equipment.

Fig. 4 Connection diagram between systems

SHARP offers the emulator control program together with the cross-assembler which enable the emulator command/data to be controlled by a keyboard/CRT of a host system.

Trigger Function of SM82 in-circuit emulator

(1) Trigger conditions

- Memory address
- Memory data
- Register address
- Register data
- Bus control signals (command fetch, memory read and write, register read and write)
- External probe signal
- Passing-through count

The above conditions can be set with the specifications for data area and "Don't care data" with a bit unit.
(2) Trigger mode

- 2-level of a sequencial trigger

When a multiple nesting program is triggered, a passing point must be specified by a sequencial trigger. This function becomes effective only when it passed through two points in order.

- Pre-trigger, center trigger and post trigger functions
- Acquisition trigger

The acquisition trigger function traces
a necessary condition, and specifies the trigger conditions as well as the machine cycle count to be traced.

- Time count

The execution time from the start condition to the stop condition is measured.

(3) Real-time trace

The trace capacity has a configuration of 64 bit words $\times 8,192$ steps which stores:

- Memory address
- Memory data
- Register address
- Register data
- Bus control signals
- External probe signal

The pre-trigger and post-trigger conditions can also be checked.

8-bit Microprocessors/Peripherals

LH5080

Description

The LH5080 is a Z 80 CPU fabricated with CMOS silicon-gate process technology and is compatible with the conventional Z80 NMOS CPU (LH0080)

Due to the CMOS static structure, it provides low power consumption and large operating margin.

The power save mode can be obtained with a software control on the models suffixed with "L".

Features

1. $Z 80$ CMOS CPU
2. Compatible with the $Z 80$ NMOS CPU (LH0080)
3. 158 instructions
4. 22 registers
5. 3 modes of maskable interrupt and a nonmaskable interrupt
6. Instruction fetch cycle $1.6 \mu \mathrm{~s} / 1.0 \mu \mathrm{~s}$
7. Single +5 V power supply and single phase clock
8. All inputs and outputs except clock input fully TTL compatible
9. Fully static operation DC to $2.5 \mathrm{MHz} / \mathrm{DC}$ to 4 MHz
10. Low power consumption
11. Power save mode (L suffix)
12. 40-pin DIP (DIP40-P-600)

44-pin QFP (QFP44-P-1010A)

Note: The Z80 CMOS CPU (LH5080) is compatible with the Z80 NMOS CPU (LH0080). So there is no description here about the pins, CPU registers, architecture, interrupts, basic timings, and instruction sets. Refer back to the $Z 80$ NMOS CPU described earlier.

Pin Connections

LH5080M/LH5080LM/LH5080AM/LH5080ALM

Block Diagram

Ordering Information

Blank: 40-pin DIP (DIP40-P-600)
M: 44-pin QFP (QFP44-P-1010A)
——Power save mode
Blank: No power save
L: Power save
Clock frequency
Blank: 2.5 MHz
A: 4 MHz
Model No.

Absolute Maximum Ratings

Parameter	Symbol	Ratings	Unit
Supply voltage	V_{CC}	-0.3 to +7.0	V
Input voltage	V_{IN}	-0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3$	V
Output voltage	$\mathrm{V}_{\mathrm{OUT}}$	-0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3$	V
Operating temperature	Topr	0 to +70	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg	-65 to +150	${ }^{\circ} \mathrm{C}$

Note 1: $\mathrm{TcC}=400 \mathrm{~ns}$
Note 2: $\mathrm{TcC}=250 \mathrm{~ns}$
Note 3-(1): For $\left|I_{\text {LI }}\right|$ Specification, see below circuits of $\overline{\text { INT }}$ pin.

Note 3-(2): For $\left|I_{\text {LI }}\right|$ Specification, see below circuits of $\overline{\text { WAIT }}, \overline{\text { NMI }}$ and BUSRQ.

Note 3 and 4: For $\left|I_{\text {LI }}\right|,\left|I_{\text {LOH }}\right|$ and $\left|I_{\text {LOL }}\right|$ Specifications,

Note 4: For' $\left|\mathrm{I}_{\mathrm{LOH}}\right|$ and $\left|\mathrm{I}_{\text {LOL }}\right|$ Specifications, see below circuit of $\mathrm{A}_{0}-\mathrm{A}_{15}$ pins.

- Capacititance

$$
\left(\mathrm{f}=1 \mathrm{MHz}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Conditions	MAX.	Unit
Clock capacitance	$\mathrm{C}_{\text {CLOCK }}$	Unmeasured pins returned to ground	5	pF
lnput capacitance	$\mathrm{C}_{\text {IN }}$		6	pF
Output capacitance	$\mathrm{C}_{\text {OUT }}$		10	pF

AC Characteristics			$\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{Ta}=0\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$				
No.	Parameter	Symbol	LH5080		LH5080A		Unit
			MIN.	MAX.	MIN.	MAX.	
1	Clock cycle time	TcC	400*		250*		ns
2	Clock pluse high width	TwCh	180^{*}		110*		ns
3	Clock pluse low width	TwCl	180		110		ns
4	Clock fall time	TfC		30		30	ns
5	Clock rise time	TrC		30		30	ns
6	Clock \uparrow to address valid delay	$\mathrm{TdCr}(\mathrm{A})$		145		110	ns
7	Address valid to $\overline{\mathrm{MREQ}} \downarrow$ delay	TdA (MREQf)	125*		65*		ns
8	Clock \downarrow to $\overline{\mathrm{MREQ}} \downarrow$ delay	TdCf (MREQf)		100		85	ns
9	Clock \uparrow to $\overline{\mathrm{MREQ}} \uparrow$ delay	TdCr (MREQr)		100		85	ns
10	$\overline{\text { MREQ }}$ pulse high width	TwMREQh	170*		110*		ns
11	$\overline{\text { MREQ }}$ pulse low width	TwMREQ1	360^{*}		220*		ns
12	Clock \downarrow to $\overline{\text { MREQ }} \uparrow$ delay	TdCf (MREQr)		100		85	ns
13	Clock \downarrow to $\overline{\mathrm{RD}} \downarrow$ delay	TdCf (RDf)		130		95	ns
14	Clock \uparrow to $\overline{\mathrm{RD}} \uparrow$ delay	TdCr (RDr)		100		85	ns
15	Data setup time to clock \uparrow	TsD (Cr)	50		35		ns
16	Data hold time after $\overline{\mathrm{RD}} \uparrow$	ThD (RDr)	15		15		ns
17	$\overline{\text { WAIT }}$ setup time to clock \downarrow	TsWAIT (Cf)	70		70		ns
18	WAIT hold time after clock \downarrow	ThWAIT (Cf)	15		15		ns
19	Clock \uparrow to $\overline{\mathrm{Ml}} \downarrow$ delay	TdCr (Mlf)		130		100	ns
20	Clock \uparrow to $\overline{\mathrm{Ml}} \uparrow$ delay	TdCr (M1r)		130		100	np
21	Clock \uparrow to $\overline{\text { RFSH }} \downarrow$ delay	TdCr (RFSHf)		180		130	ns
22	Clock \uparrow to $\overline{\mathrm{RFSH}} \uparrow$ delay	TdCr (RFSHr)		150		120	ns
23	Clock \downarrow to $\overline{\mathrm{RD}} \uparrow$ delay	TdCf (RDr)		110		85	ns
24	Clock \uparrow to $\overline{\mathrm{RD}} \downarrow$ delay	TdCr (RDf)		100		85	ns
25	Data setup to clock \uparrow during $\mathrm{M}_{2}, \mathrm{M}_{3}, \mathrm{M}_{4}$ or M_{5} cycles	TsD (Cf)	60		50		ns
26	Address stable prior to $\overline{\mathrm{IORQ}} \downarrow$	TdA (IORQf)	320*		180*		ns
27	Clock \uparrow to $\overline{\text { IORQ }} \downarrow$ delay	TdCr (IORQf)		90		75	ns
28	Clock \downarrow to $\overline{\mathrm{IORQ}} \uparrow$ delay	TdCf (IORQr)		110		85	ns
29	Data stable prior to $\overline{\mathrm{WR}} \downarrow$ (memory cycle)	TdDm (WRf)	190*		80*		ns
30	Clock \downarrow to $\overline{\mathrm{WR}} \downarrow$ delay	TdCf (WRf)		90		80	ns
31	$\overline{\mathrm{WR}}$ pulse width	TwWR	360 *		220*		ns
32	Clock \downarrow to $\overline{\mathrm{WR}} \uparrow$ delay	TdCf (WRr)		100		80	ns
33	Data stable prior to $\overline{\mathrm{WR}} \downarrow$ (I/O cycle)	TdDi (WRf)	20*		-10^{*}		ns
34	Clock \uparrow to $\overline{\mathrm{WR}} \downarrow$ delay	TdCr (WRf)		80		65	ns
35	Data stable from $\overline{\mathrm{WR}} \uparrow$	TdWRr (D)	120*		60*		ns
36	Clock \downarrow to $\overline{\text { HALT }} \uparrow$	TdCf (HALT)		300		300	ns
37	$\overline{\text { NM1 pulse width }}$	TwNMI	80		80		ns
38	$\overline{\text { BUSREQ }}$ setup time to clock \uparrow	TsBUSRQ (Cr)	80		50		ns
39	$\overline{\text { BUSREQ }}$ hold time after clock \uparrow	ThBUSRQ (Cr)	15		15		ns
40	Clock \uparrow to BUSACK \downarrow delay	TdCr (BUSAKf)		120		100	ns
41	Clock \downarrow to BUSACK \uparrow delay	TdCf (BUSAKr)		110		100	ns
42	Clock \uparrow data float delay	$\mathrm{TdCr}(\mathrm{Dz})$		90		90	ns
43	Clock \uparrow to control output float delay ($\overline{\mathrm{MREQ}}, \overline{\mathrm{IORQ}}, \overline{\mathrm{RD}}$, and $\overline{\mathrm{WR}}$)	$\mathrm{TdCr}(\mathrm{CTz}$)		110		80	ns

[^8]| No. | Parameter | Symbol | LH5080 | | LH5080A | | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | MIN. | MAX. | MIN. | MAX. | |
| 44 | Clock \uparrow to address float delay | $\mathrm{TdCr}(\mathrm{Az})$ | | 110 | | 90 | ns |
| 45 | $\overline{\mathrm{MREQ}} \uparrow, \overline{\mathrm{IORQ}} \uparrow, \overline{\mathrm{RD}} \uparrow$, and $\overline{\mathrm{WR}} \uparrow$ to address hold time | $\mathrm{TdCTr}(\mathrm{A})$ | 160^{*} | | 80^{*} | | ns |
| 46 | $\overline{\mathrm{RESET}}$ to clock \uparrow setup time | TsRESET (Cr) | 90 | | 60 | | ns |
| 47 | Clock \uparrow to $\overline{\text { RESET }}$ hold time | ThRESET (Cr) | 15 | | 15 | | ns |
| 48 | $\overline{\text { INT }}$ to clock \uparrow setup time | TsINTf (Cr) | 80 | | 80 | | ns |
| 49 | Clock \uparrow to $\overline{\text { INT }}$ hold time | Thintr (Cr) | 15 | | 15 | | ns |
| 50 | $\overline{\mathrm{Ml}} \downarrow$ to $\overline{\mathrm{IORQ}} \downarrow$ delay | TdMlf (IORQf) | 920* | | 565* | | ns |
| 51 | Clock \downarrow to $\overline{\text { IORQ }} \downarrow$ delay | TdCf (IORQf) | | 110 | | 85 | ns |
| 52 | Clock \uparrow to $\overline{\mathrm{IORQ}} \uparrow$ delay | TdCf (IORQr) | | 100 | | 85 : | ns |
| 53 | Clock \downarrow to data valid delay | TdCf (D) | | 230 | | 150 | ns |

\uparrow Rising edge, \downarrow Falling edge

* For clock periods other than the minimums shown in the table, calculate parameters using the expressions in the table below

Footnotes to AC Characteristics

No.	Symbol	Formula
1	TcC	TwCh $+\mathrm{TwCl}+\mathrm{TrC}+\mathrm{TfC}$
2	TwCh	MAX. $200 \mu \mathrm{~s}$
7	TdA (MREQf)	TwCh $+\mathrm{TfC}-75$
10	TwMREQh	$\mathrm{TwCh}+\mathrm{TfC}-30$
11	TwMREQ1	$\mathrm{TcC}-40$
26	TdA (IORQf)	$\mathrm{TcC}-80$
29	TdD (WRf)	$\mathrm{TcC}-210$
31	TwWR	$\mathrm{TcC}-40$
33	TdD (WRf)	$\mathrm{TwCl}+\mathrm{TrC}-180$
35	TdWRr (D)	$\mathrm{TwCl}+\mathrm{TrC}-80$
45	TdCTr (A)	$\mathrm{TwCl}+\mathrm{TrC}-40$
50	TdM1f (IORQf)	$2 \mathrm{TcC}+\mathrm{TwCh}+\mathrm{TfC}-80$

AC Test Conditions

- Input voltage amplitude : 0.4 V to 2.8 V
- Clock input voltage amplitude : 0.4 V to
$\mathrm{Vcc}-0.6 \mathrm{~V}$
- Input signal rise and fall time : 10 ns
- Input judge level : 0.8 V and 2.0 V
- Output judge level : 0.8 V and 2.0 V
- Output load : ITTL + 100 pF

Power Save Function

The LH5080L series features the power save (PS) function. After a HALT instruction has been executed, the internal clock signal is automatically cut off to bring the CPU into the halt mode.

(1) PS mode setting

With a HALT instruction executed, the PS mode will be automatically established. In this mode, the internal clock signal is cut off to save the power consumed for the clock signal operation. Cutting an external clock signal does not give any problem inside, therefore, in this mode. To cut off the external clock, it is possible to utilize the rise timing of a HALT signal output. It should be noted, however, that this timing cannot be used to restart the external clock.

In the PS mode, the bus request ($\overline{\mathrm{BUSRQ}})$ is not accepted and the memory refresh is not done, either.

* PS is internal signal, and not output externally.

PS mode setting

(2) PS mode clear

The PS mode is cleared by any of the following; reset (RESET), non-maskable interrupt (NMI) and maskable interrupt (INT).

When the external clock is shut down in the PS mode, a stable clock signal must be input before clearing the PS mode.
(i) Clearing with RESET: Input the $\overline{\text { RESET }}$ signal for more than 3 clock cycles. The PS mode
is then cleared and the reset just as before is carried out.
(ii) Clearing with $\overline{\mathrm{NMI}}$: Input the $\overline{\mathrm{NMI}}$ signal (edge trigger) to clear the PS mode and to carry out the instruction next to the HALT. Now the non-maskable interrupt processing routine will be introduced.
(iii) Clearing with $\overline{\mathrm{INT}}$: Input the $\overline{\mathrm{INT}}$ signal (level trigger) regardless of which state the interrupt enable flag is in. The PS mode is now cleared and the HALT instruction executed. If the interrupt enable flag is set up and the INT signal is "Low" at the clock pulse rise timing in the last clock cycle of the HALT instruction, the maskable interrupt processing routine will be introduced as the next machine cycle.

* PS is internal signal, and not output externally. PS mode clear by $\overline{\text { NMI, }} \overline{\text { INT }}$ signal

LH5081

Z80 CMOS PIO Parallel I/O Controller

Description

The LH5081 is a Z 80 PIO fabricated with CMOS silicon gate process technology and is compatible with the conventional Z80 NMOS PIO (LH0081)

Due to the CMOS static structure, it provides low power consumption and large operating margin.

The power save mode can be obtained with a software control on the models suffixed with "L".

Features

1. Z80 CMOS PIO
2. Compatible with NMOS Z80 PIO (LH0081)
3. Tow independent 8 -bit bidirectional peripheral interface ports with handshake data transfer control
4. 4 programmable operating modes

- Byte input mode
- Byte output mode
- Byte bidirectional bus mode (Port A only)
- Byte control mode

5. Programmable interrupt on peripheral status conditions
6. Vectored daisy chain priority interrupt
7. Darlington transistor drive capability (Port B output)
8. All inputs and outputs except clock input fully TTL compatible
9. Single +5 V power supply and single phase clock
10. Fully static operation (DC to $2.5 \mathrm{MHz} / 4 \mathrm{MHz} / 6 \mathrm{MHz}$)
11. Low power consumption
12. Power save mode (L suffix)
13. Status read mode (L suffix)
14. 40-pin DIP (DIP40-P-600)

44-pin QFP (QFP44-P-1010A)

Note: The Z80 CMOS CPU (LH5081) is compatible with the Z80 NMOS PIO (LH0081). So there is no description here about the pins, programming, and basic timings waveforms. Refer back to the Z80 NMOS PIO described earlier.

Pin Connections

LH5081M/LH5081AM LH5081LM/LH5081ALM

Block Diagram

Ordering Information

LH5081 X X X
-Package *
Blank: 40-pin DIP (DIP40-P-600)
M: 44-pin QFP (QFP44-P-1010A)

- Power save mode

Blank: No power save
L: Power save
Clock frequency
Blank: 2.5 MHz
A: 4 MHz
B: 6 MHz
Model No.

* The 6 MHz type is packaged in 40 -pin DIP only.

Absolute Maximum Ratings

Parameter	Symbol	Ratings	Unit
Supply voltage	V_{CC}	-0.3 to 7.0	V
Input voltage	V_{IN}	-0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3$	V
Output voltage	$\mathrm{V}_{\mathrm{OUT}}$	-0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3$	V
Operating temperature	Topr	0 to +70	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg	-65 to +150	${ }^{\circ} \mathrm{C}$

- DC Characteristics

$$
\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{Ta}=0 \text { to }+70^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit	Note
Clock input low voltage	$\mathrm{V}_{\text {ILC }}$		\cdots	-0.3		0.45	V	
Clock input high voltage	$\mathrm{V}_{\text {IHC }}$			$\mathrm{V}_{\mathrm{CC}}-0.6$		$\mathrm{V}_{\mathrm{Cc}}+0.3$	V	
Input low voltage	$\mathrm{V}_{\text {IL }}$			-0.3		0.8	V	
Input high voltage	V_{IH}			2.2		$\mathrm{V}_{\mathrm{CC}}+0.3$	V	
Output low voltage	V_{OL}	$\mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA}$				0.4	V	
Output high voltage	V_{OH}			2.4			V	
		$\mathrm{I}_{\mathrm{OH}}=-50 \mu \mathrm{~A}$		$\mathrm{V}_{\mathrm{CC}}-0.4 \mathrm{~V}$			V	
Current consumption	I_{CC}	$\mathrm{V}_{\mathrm{IL}}=0.4, \mathrm{~V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}-0.4 \mathrm{~V},$ output open	LH5081/L		1	3	mA	1
			LH5081A/AL		4	6	mA	2
			LH5081B		6	8	mA	3
Input leakage current	$\left\|\mathrm{I}_{\text {LI }}\right\|$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}$				10	$\mu \mathrm{A}$	4
3 -state output leakage current	$\mathrm{I}_{\mathrm{LOH}}$ \|	$\mathrm{V}_{\text {OuT }}=\mathrm{V}_{\text {CC }}$				10	$\mu \mathrm{A}$	5
3 -state output leakage current	$\mathrm{I}_{\text {LOL }}$ \|	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$				10	$\mu \mathrm{A}$	5
Data bus leakage current input	$\left\|\mathrm{I}_{\text {LD }}\right\|$	$0 \leqq \mathrm{~V}_{\text {IN }} \leqq \mathrm{V}_{\text {CC }}$				10	$\mu \mathrm{A}$	
Darlington drive current	$\mathrm{I}_{\text {OHD }}$	$\mathrm{V}_{\text {OH }}=1.5 \mathrm{~V}$, Port B only		-1.5			mA	
Current consumption in PS mode	$\mathrm{I}_{\text {CCPS }}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}$ Outputs open	LH5081L		1	100	$\mu \mathrm{A}$	1
			LH5081AL		1	100		2

Note 1: $\mathrm{TcC}=400 \mathrm{~ns}, \mathrm{~V}_{\mathrm{IL}}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}-0.4 \mathrm{~V}$, outputs open.
Note 2: $\mathrm{TcC}=250 \mathrm{~ns}$
Note 3: $\mathrm{TcC}=167 \mathrm{~ns}$
Note 4: (1) For $\left|I_{L I}\right|$ specification, see below circuit of $\overline{\mathrm{ASTB}}$ and $\overline{\mathrm{BSTB}} .2978$ (2) The $\overline{\mathrm{INT}}$ pin is arraged as shown below.

Interrupt acknowledge

Note 5: For $\left|I_{\text {LOH }}\right|$ and $\left|I_{\text {LOL }}\right|$ specifications, see below circuit of $\mathrm{A}_{0}-\mathrm{A}_{7}$ and $\mathrm{B}_{0}-\mathrm{B}_{7}$

- Capacitance

$$
\left(\mathrm{f}=1 \mathrm{MHz}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Conditions	MAX.	Unit
Clock capacitance	$\mathrm{C}_{\text {CLOCK }}$	Unmeasured pins returned to ground	7	pF
Input capacitance	$\mathrm{C}_{\text {IN }}$		7	pF
Output capacitance	$\mathrm{C}_{\text {OUT }}$		10	pF

AC Characteristics			$\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{Ta}=0\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$							
No.	Parameter	Symbol	LH5081		LH5081A		LH5081B		Unit	Note
No.			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
1	Clock cycle time	TcC	400	(Note 1)	250	(Note 1)	165	(Note 1)	ns	
2	Clock high width	TwCh	170		105		65		ns	
3	Clock low width	TwCl	170		105		65		ns	
4	Clock fall time	TfC		30		30		20	ns	
5	Clock rise time	TrC		30		30		20	ns	
6	$\overline{\mathrm{CE}}, \mathrm{B} / \overline{\mathrm{A}}, \mathrm{C} / \overline{\mathrm{D}}$ to $\overline{\mathrm{RD}}, \overline{\mathrm{IORQ}} \downarrow$ setup time	TsCS (R1)	50		50		50		ns	6
7	Any hold times for specified setup time	Th	15		15		15		ns	
8	$\overline{\mathrm{RD}}, \overline{\mathrm{IORQ}}$ to clock \uparrow setup time	TsRI (C)	115		115		70		ns	
9	$\overline{\mathrm{RD}}, \overline{\mathrm{IORQ}} \downarrow$ to data output delay	TdRI (DO)		430	,	380		300	ns	2
10	$\overline{\mathrm{RD}}, \overline{\mathrm{IORQ}} \uparrow$ to data output float delay	TdRI (DOs)		160		110		70	ns	
11	Data in to clock \uparrow setup time	TsDI (C)	50		50		40		ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
12	$\overline{\mathrm{IORQ}} \downarrow$ to data out delay (INTACK cycle)	TdIO (DOI)		340		160		120	ns	3
13	$\overline{\mathrm{M} 1} \downarrow$ to clock \uparrow setup time	TsMl (Cr)	210		90		70		ns	
14	$\begin{aligned} & \overline{\overline{\mathrm{M} 1} \uparrow \text { to clock } \downarrow \text { setup time }} \\ & \text { (M1 cycle) } \end{aligned}$	TsMl (Cf)	0		0		0		ns	8
15	$\overline{\mathrm{MI}} \downarrow$ to IEO \downarrow delay (interrupt immediately precceding M1 \downarrow)	TdM1 (IEO)		300		190		100	ns	5, 7
16	IEI to $\overline{\text { IORQ }} \downarrow$ setup time (INTACK cycle)	TsIEI (IO)	140		140		100		ns	7
17	IEI \downarrow to IEO \downarrow delay	TdIEI (IEOf)		190		130		120	ns	$\begin{gathered} 5 \\ C_{L}=50_{\mathrm{p}} \end{gathered}$
18	IEI \uparrow to IEO \uparrow delay (after ED decode)	TdIEI (IEOr)		210		160		160	ns	5
19	$\overline{\mathrm{IORQ}} \uparrow$ to clock \downarrow setup time (to activate READY on next clock cycle)	TcIO (C)	220		200		170		ns	
20	Clock \downarrow to READY \uparrow delay	TdC (RDYr)		200		190		170	ns	$\begin{gathered} 5 \\ C_{L}=50 \mathrm{pF} \end{gathered}$
21	Clock \downarrow to READY \downarrow delay TdC (RDYf)	TdC (RDYr)		150		140		120	ns	5
22	STROBE pulse width	TwSTB	150		150		120		ns	4
23	$\overline{\text { STROBE }} \uparrow$ to clock \downarrow setup time (to activate READY on next clock cycle)	TsSTB (C)	220		220		150		ns	5
24	$\overline{\mathrm{IORQ}} \uparrow$ to PORT DATA stable delay (mode 0)	TdIO (PD)		200		180		160	ns	5
25	PORT DATA to $\overline{\text { STROBE }} \uparrow$ setup time (mode 1)	TsPD (STB)	260		230		190		ns	
26	$\overline{\text { STROBE }} \downarrow$ to PORT DATA stable (mode 2)	TdSTB (PD)		230		210		180	ns	5
27	$\overline{\text { STROBE }} \uparrow$ to PORT DATA float delay (mode 2)	TdSTB (PDr)		200		180		160	ns	$C_{L}=50 \mathrm{pF}$
28	PORT DATA match to $\overline{\text { INT }} \downarrow$ delay (mode 3)	TdPD (INT)		540		490		430	ns	
29	$\overline{\text { STROBE }} \uparrow$ to INT \downarrow delay	TdSTB (INT)		490		440		350	ns	

\dagger Rising edge, \downarrow Falling edge

Note $1: \mathrm{TcC}=\mathrm{TwCh}+\mathrm{TwCl}+\mathrm{TrC}+\mathrm{TIC}$.
Note 2 : Increase TdRI (DO) by 10 ns for each 50 pF increase in load up to 200 pF max.
Note 3 : Increase TdIO (DOI) by 10 ns for each 50 pF , increase in loading up to 200 pF max.
Note 4 : For Mode 2 : T:vSTB $>$ TsPD (STB).
Note 5 : Increase these values by 2 ns for each 10 pF increase in loading up to 100 pF max.
Note 6 : TsCS (RI) may be reduced. However, the time substracted from TsCS (RI) will be added to TdRI (DO).
Note $7: \frac{2.5}{\mathrm{Mc}} \mathrm{Tc}>(\mathrm{N}-2) \mathrm{TdIEI}$ (IEOf)+TdM1 (IEO) + TsIEI (IO) +TTL Buffer Delay, if any.
Note 8 : $\overline{\mathrm{M} 1}$ must be active for a minimum of two clock cycles to reset the PIO.

AC Test Conditions:

- Input voltage amplitude : 0.4 V to 2.8 V
- Clock input voltage amplitude : 0.4 V to $\mathrm{V}_{\mathrm{cc}}-0.6 \mathrm{~V}$
- Input signal rise and fall time : 10 ns
- Input judge level : 0.8 V and 2.0 V
- Output judge level : 0.8 V and 2.0 V
- Output load : ITTL +100 pF (unless otherwise specified)

Power Save and Status Information Read Function

Unlike the LH0081/LH5081, the LH5081L series has the power save (PS) and status information read functions.
(1) Power save function
(i) PS mode setting

When the CPU
(LH5080L series) has executed an HALT instruction in the PS mode, the LH5081L series reads this HALT instruction to automatically go into the PS mode. Now the internal clock signal is cut off. Therefore, cutting an external clock input gives no problem inside in this mode.

(ii) PS mode clear The PS mode is cleared by detecting the fall of the $\overline{\mathrm{M} 1}$ signal. When the external clock is off in the PS mode, however, a stable clock signal must be input before clearing the PS mode.

When the CPU (LH5080L series) is cleared from the PS mode and comes into the next fetch cycle, therefore, the LH5081L series is also cleared from its PS mode at the fall of the first $\overline{\mathrm{M} 1}$ signal in this cycle.

The PS mode clearing can be done by issuing an interrupt request.

Set up the interrupt generate conditions in Mode 3 of the LH5081L series. By this, an interrupt request (INT) is issued even in the PS mode, the CPU (LH5080L series) is cleared from the PS mode, and thus LH5081L series is also cleared.

(2) Status information read

Under the following conditions, the mode setup bits and handshake signals of Port A and Port B are read from the data bus during the read cycle. See the chart below.
Conditions: $\mathrm{CE}=$ "Low", $\overline{\mathrm{RD}}=$ "Low", $\overline{\mathrm{IORQ}}=$ "Low", C/D $=$ "High", $\mathrm{B} / \overline{\mathrm{A}}=\mathrm{X}$ (undefined)

LH5081L series status information words

LH5082
 Z80 CMOS CTC Counter Timer Circuit
 Description
 Pin Connections

The LH5082 is a 280 CTC fabricated with CMOS silicon-gate process technology and is compatible with the conventional Z80 NMOS CTC (LH0082)

The LH5082 is designed with CMOS fully static circuits and so provides low power consumption and wide range power supply voltage operation.

The LH5082L/LH5082LM provides power save mode controlled by software.

- Features

1. 280 CMOS CTC
2. Compatible with the $Z 80$ NMOS CTC (LH0082)
3. 4 independent programmable 8 -bit counter/ 16-bit timer channels
4. Selectable counter/timer mode for each channel
5. Programmable interrupt triggered by counter/ timer
6. Downcounters reloaded automatically at zero count
7. Readable downcounters
8. Selectable 16 or 256 prescaler (timer mode)
9. Selectable positive or negative triggers for timer and selectable positive or negative clock edge for counter
10. $\mathrm{ZC} / \mathrm{TO}$ outputs of three channels capable of driving Darlington transistors
11. Vectored and daisy chain piority interrupt
12. Single +5 V power supply and single phase clock
13. All inputs and outputs except clock input fully TTL compatible
14. Fully static operation (DC to $2.5 \mathrm{MHz} / 4 \mathrm{MHz} / 6 \mathrm{MHz}$)
15. Low power consumption
16. Power save mode (L suffix)
17. 28-pin DIP (DIP28-P-600)

44-pin QFP (QFP44-P-1010A)

Note: The Z80 CMOS CTC (LH5082) is compatible with the $Z 80$ NMOS CTC (LH0082). So there is no description here about the pins, programming, and basic timing waveform. Refer back to the Z80 NMOS CTC described earlier.

Block Diagram

Ordering Information

LH5082 X X•X
L Package *
Blank: 28-pin DIP (DIP28-P-600)
M: 44-pin QFP (QFP44-P-1010A)

- Power save mode

Blank: No power save
L: Power save
Clock frequency
Blank: 2.5 MHz
A: 4 MHz
B: 6 MHz
-Model No.

[^9]Absolute Maximum Ratings

Parameter	Symbol	Ratings	Unit
Supply voltage	V_{CC}	-0.3 to +7.0	V
Input voltage	V_{IN}	-0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3$	V
Output voltage	$\mathrm{V}_{\mathrm{OUT}}$	-0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3$	V
Operating temperature	Topr	0 to +70	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg	-65 to +150	${ }^{\circ} \mathrm{C}$

DC Characteristics
$\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{Ta}=0\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$

Parameter	Symbol			MIN.	TYP.	MAX.	Unit	Note
Clock input low voltage	$\mathrm{V}_{\text {ILC }}$	Conditions		-0.3		0.45	V	
Clock input high voltage	$\mathrm{V}_{\text {IHC }}$			$\mathrm{V}_{\mathrm{CC}}-0.6$		$\mathrm{V}_{\mathrm{CC}}+0.3$	V	
Input low voltage	$\mathrm{V}_{\text {IL }}$			-0.3		0.8	V	
Input high voltage	$\mathrm{V}_{\text {LH }}$			2.2		V_{cc}	V	
Output low voltage	V_{OL}	$\mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA}$				0.4	V	
		$\mathrm{I}_{\mathrm{OH}}=-250 \mu \mathrm{~A}$		2.4			V	
Output high voltage	V_{OH}	$\mathrm{I}_{\mathrm{OH}}=-50 \mu \mathrm{~A}$		$\mathrm{V}_{\text {cc }}-0.4 \mathrm{~V}$			V	
			LH5082/L		2	4	mA	1
Current consumption	$\left\|\mathrm{I}_{\mathrm{CC}}\right\|$	$\mathrm{V}_{\mathrm{IL}}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{cc}}-0.4 \mathrm{~V},$	LH5082A/AL		3	6	mA	2
		outputs open	LH5082B/BL		5	8	mA	3
Input leakage current	$\left\|\mathrm{I}_{\text {LI }}\right\|$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}$				10	$\mu \mathrm{A}$	4
3 -state output leakage current	$\left\|\mathrm{I}_{\text {LOH }}\right\|$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$				10	$\mu \mathrm{A}$	
3 -state output leakage current	$\left\|\mathrm{I}_{\mathrm{IOL}}\right\|$	$\mathrm{V}_{\text {OuT }}=0 \mathrm{~V}$				10	$\mu \mathrm{A}$	
Darlington drive current	$\mathrm{I}_{\text {OHD }}$	$\mathrm{V}_{\mathrm{OH}}=1.5 \mathrm{~V}$ Applicated to ZC / T	$\mathrm{O}_{0}-\mathrm{ZC} / \mathrm{TO}_{2}$	-1.5			mA	
			LH5082L		1	100		1
mode	$\mathrm{I}_{\text {CCPS }}$	Outputs open	LH5082AL		1	100	$\mu \mathrm{A}$	2
			LH5082BL		1	100		3

Note 1: $\mathrm{TcC}=400 \mathrm{~ns}$
Note 2: $\mathrm{TcC}=250 \mathrm{~ns}$
Note 3: $\mathrm{TcC}=167 \mathrm{~ns}$
5
Note 4: For $\left|I_{L I}\right|$ specification, see below circuit of $\mathrm{CLK} / \mathrm{TRG}_{0}-\mathrm{CLK} / \mathrm{TG}_{3}$.

Capacitance

$$
\left(\mathrm{f}=1 \mathrm{MHz}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Conditions	MAX.	Unit
Clock capacitance	$\mathrm{C}_{\text {Clock }}$	Unmeasured pins returned to ground	5	pF
Input capacitance	$\mathrm{C}_{\text {IN }}$		5	pF
Output capacitance	$\mathrm{C}_{\text {OUT }}$		10	pF

AC Characteristics					$\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{Ta}=0\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$					
No.	Parameter	Symbol	LH5082		LH5082A		LH5082B		Unit	Note
No.			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
1	Clock cycle time	TcC	400	(Note 1)	250	(Note 1)	165		ns	
2	Clock high width	TwCh	170		105		65		ns	
3	Clock low width	TwCl	170	.	105		65		ns	
4	Clock fall time	TIC		30		30		20	ns	
5	Clock rise time	TrC		30		30		20	ns	
6	All hold times	Th	15		15		15		ns	
7	CS to clock \uparrow setup time	TcCS (C)	250		160		100		ns	
8	$\overline{\mathrm{CE}}$ to clock \uparrow setup time	TsCE (C)	200		150		100		ns	
9	$\overline{\text { IORQ }} \downarrow$ to clock \uparrow setup time	TsIO (C)	250		115		70		ns	
10	$\overline{\mathrm{RD}} \downarrow$ clock \uparrow setup time	TsRD (C)	240		115		70		ns	
11	Clock \uparrow to data out delay	TdC (DO)		240		200		130	ns	2
12	Clock \downarrow to data out float dalay	TdC (DOz)		230		110		90	ns	
13	Data In to clock \uparrow setup time	TsDI (C)	60		50		40		ns	
14	$\overline{\mathrm{MI}}$ to clock \uparrow setup time	TsM1 (C)	210		90		70		ns	
15	$\overline{\text { M1 }} \downarrow$ to IEO \downarrow delay (interrupt immediately preceding $\overline{\mathrm{M} 1}$)	TdM1 (IEO)		300		190		130	ns	3
16	$\overline{\mathrm{IORQ}} \downarrow$ to data out delay (INTA cycle)	TdIO (DOI)		340		160		110	ns	2
17	IEI \downarrow to IEO \downarrow delay	TdIEI (IEOf)		190		130		100	ns	3
18	IEI \uparrow to IEO \uparrow delay \uparrow (after ED decode)	TdIEI (IEOr)		220		160		110	ns	3
19	Clock \uparrow to $\overline{\text { INT }} \downarrow$ delay	TdC (INT)		TcC +200		Tcc +140		TcC+120	ns	4
20	CLK/TRG \uparrow to $\overline{\text { INT }} \downarrow$ delay (tsCTR (C) satisfied)	TdClk (INT)		TeC+230		Tect160		TcC+130	ns	5
	CLK/TRG \uparrow to $\overline{\text { INT }} \downarrow$ delay (tsCTR (C) not satisfied)	TdCLK (INT)		$2 \mathrm{CCC}+530$		$27 \mathrm{c}+370$		27cC+280	ns	5
21	CLK/TRG cycte time	TcCTR	2 TcC		2 TcC		2 TcC		ns	5
22	CLK/TRG rise time	TrCTR		50		50		40	ns	
23	CLK/TRG fall time	TfCTR		50		50		40	ns	
24	CLK/TRG low width	TwCTR1	200		200		120		ns	
25	CLK/TRG high width	TwCTRh	200		200		120		ns	
26	CLK/TRG \uparrow to clock \uparrow setup time for immediate count	TsCTR (Cf)	300		210		150		ns	5
27	CLK/TRG \uparrow to clock \uparrow setup time for enabling of prescaler on following clock \uparrow	TsCTR (Ct)	210		210		150		ns	4
28	Clock \uparrow to $\mathrm{ZC} / \mathrm{TO} \uparrow$ delay	TdC (ZC/TOr)		260		190		140	ns	
29	Clock \uparrow to $\mathrm{ZC} / \mathrm{T} \mathrm{O} \downarrow$ delay	TdC (ZC/TOf)		190		190		140	ns	
30	IEI setup time $\overline{\mathrm{IORQ}} \downarrow$ (INTA cycle)	TsIEI (IO)	140		140		140		ns	

\uparrow Rising edge, \downarrow Falling edge
[A] $2.5 \mathrm{TcC}>(\mathrm{n}-2) \mathrm{TdIEI}$ (IEOf) +TdMI (IEO) + TsIEI (IO) + TTL buffer delay, if any.
[B] RESET must be active for minimum of 3 clock cycles
Note 1: TcC $=\mathrm{TwCh}+\mathrm{TwCl}+\mathrm{Tr} \mathrm{C}+\mathrm{TfC}$.
Note 2 : Increase delay by 10 ns for each 50 pF increase in loading, 200 pF maximum for data lines, and 100 pF for control lines.
Note 3 : Increase delay by 2 ns for each 10 pF increase in loading, 100 pF maximum.
Note 4 : Timer mode.
Note 5 : Counter mode.

* All timing are preliminary and subject to change.

AC Test Conditions

- Input voltage amplitude: 0.4 V to 2.8 V
- Clock input voltage amplitude: 0.4 V to $\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$
- Input signal rise and fall time: 10 ns
- Input judge level: 0.8 V and 2.0 V
- Output judge level: 0.8 V and 2.0 V
- Output load: ITTL +100 pF (unless otherwise specified)

Power Save Function

The LH5082L series has the power save (PS) functions.
(1) PS mode setting

When the CPU (LH5080L series) has executed a HALT instruction, the LH5082L series

reads this HALT instruction to autmatically go into the PS mode. In this mode, the internal clock signal is cut off. The external clock may be off during the PS mode.
About the external clock stop, the same is true as the power-saving CPU (LH5080L series)
(2) PS mode clear

The PS mode is cleared by the fall of $\overline{\mathrm{M} 1}$ signal or the RESET signal.

When the external clock is off the PS mode, however, a stable clock signal must be input before clearing the PS mode.

Once cleared from the PS mode, the power-saving CPU (LH5080L series) comes into the next fetch cycle. At the time when the first M1 signal during this cycle falls, the LH5082L series is also cleared from the PS mode.

L-10080 z80 CPU Central Processing Unit

Description

The LH0080 Z80 CPU (Z80 CPU for short below) is a general-purpose 8 -bit microprocessor fabricated using an N -channel silicon-gate process.

The LH0080A Z80A, LH0080B Z80B, LH0080E Z80E CPU are the high speed version which can operate at the $4 \mathrm{MHz}, 6 \mathrm{MHz}$ and 8 MHz system clock, respectively.

Features

1. 8-bit parallel processing microprocessor
2. N-channel silicon-gate process
3. 158 instructions (The instruction of the 8080 A are included as a subset ; 8080 A software compatibility is maintained)
4. 22 registers

5 . The capability of 3 modes maskable interrupt and non-maskable interrupt
6. On-chip dynamic memory refresh counter
7. Instruction fetch cycle: $1.6 \mu \mathrm{~s}(\mathrm{Z80}), 1.0 \mu \mathrm{~s}$ (Z80A), $0.67 \mu \mathrm{~s}(\mathrm{Z} 80 \mathrm{~B}), 0.5 \mu \mathrm{~s}(\mathrm{Z} 80 \mathrm{E})$
8 . Single +5 V power supply and single phase clock
9. All inputs and outputs fully TTL compatible
10. $40-\mathrm{pin}$ DIP (DIP40-P-600)

44-pin QFP (QFP44-P-1010A)
44-pin QFJ (QFJ44-P-S650)

Pin Connections

LH0080/LH0080A/LH0080B/LH0080E LH0080H/LH0080AH

LH0080U/LH0080AU/LH0080BU

[^10]Ordering Information

Product	Z80 CPU	Z80A CPU	Z80B CPU	Z80E CPU	Package	Operating temperature
Clock frequency	2.5 MHz	4 MHz	6 MHz	8 MHz		
Model No.	LH0080	LH0080A	LH0080B	LH0080E	40-pin DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
	LH0080H*	LH0080AH*				$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
	LH0080M	LH0080AM			44-pin QFP	$0^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
	LH0080U	LH0080AU	LH0080BU		44-pin QFJ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

* H suffix is a wide temperature spec, packaged in 40 -pin DIP.

- Block Diagram

- Pin Description

Signal	Pin name	I/O	Function
$\mathrm{A}_{0}-\mathrm{A}_{15}$	Address bus	3-state O	System address bus
$\mathrm{D}_{0}-\mathrm{D}_{7}$	Data bus	Bidirectional 3-state	System data bus
$\overline{\text { M1 }}$	Machine cycle one	0	Active "Low". Indicates that the current machine cycle is the OP code fetch cycle of an instruction execution.
$\overline{\text { MREQ }}$	Memory request	3 -state 0	Active "Low". Indicates that the address bus holds a valid address for a memory read or memory write operation.
$\overline{\text { IORQ }}$	I/O request	3 -state 0	Active "Low". Indicates that the lower 8 bits of the address bus holds a valid I/O address for an I/O read or write operation. Also generated concurrently with $\overline{\mathrm{M} 1}$ during an interrupt acknowledge cycle to indicate an interrupt response.
$\overline{\mathrm{RD}}$	Memory read	3 -state O	Active "Low". Indicates that the CPU wants to read data from memory or an I/O device.
$\overline{\mathrm{WR}}$	Memory write	3 -state O	Active "Low". Indicates that the CPU data bus holds valid data to be stored at the addressed memory or I/O location.
$\overline{\mathrm{RFSH}}$	Refresh	0	Active "Low". Indicates that the lower 7 bits of the system address bus can be used as a refresh address to the system's dynamic memories. Together with $\overline{\mathrm{MREQ}}$ at "Low".
$\overline{\text { HALT }}$	Halt state	0	Active "Low". Indicates that a Halt instruction is being executed. While halted, the CPU executes NOPs to maintain memory refresh. The Halt state is cleared with $\overline{\mathrm{RE}}$ $\overline{\mathrm{SET}}, \overline{\mathrm{NMI}}$, or $\overline{\mathrm{INT}}$ (when allowed).
$\overline{\text { WAIT }}$	Wait	I	Active "Low". Indicates to the CPU that the addressed memory or I/O devices are not ready for a data transfer. The CPU continues to enter a wait state as long as this signal is active.
$\overline{\mathrm{INT}}$	Maskable interrupt request	I	Active "Low". Generated by I/O devices. The CPU honors a request at the end of the current instruction if the interrupt enable flip-flop is enabled.
$\overline{\text { NMI }}$	Non-maskable interrupt request	I	Active "Low". Has a higher priority than INT. Always recognized at the end of the current instruction, independent of the status of the interrupt enable flip-flop. Automatically forces the Z80 CPU to restart at location 0066H.
$\overline{\text { RESET }}$	Reset	I	Active "Low". Resets the interrupt enable flip-flop, the program counter interrupt vector register and the memory refresh register, and sets the interrupt status to Mode O, in order to initialize the CPU.
$\overline{\text { BUSRQ }}$	Bus request	I	Active "Low". Has a higher priority than NMI. Always recognized at the end of the current machine cycle. Activated to allow a bus master other than the CPU to control the system bus.
$\overline{\text { BUSAK }}$	Bus acknowledge	O	Active "Low". Indicates to the requesting device that the external circuitry can control the system bus.
CLOCK	System clock	I	Inputs +5 V single-phase clock.

- Absolute Maximum Ratings

Parameter	Symbol	Ratings	Unit	Note
Input voltage	V_{IN}	-0.3 to +7.0	V	
Output voltage	$\mathrm{V}_{\mathrm{OUT}}$	-0.3 to +7.0	V	
Operating temperature	Topr	0 to +70	C	1
		0 to +60		2
		-20 to +85		3
Storage temperature	Tstg	-65 to +150	${ }^{\circ} \mathrm{C}$	

Note 1: 40-pin DIP and 44-pin QFJ
Note 2: 44 -pin QFP
Note 3: 40-pin DIP with wide temperature spec.

Standard Test Conditions

The characteristics below apply for the follow. ing standard test conditions, unless otherwise noted. All voltages are referenced to GND (0 V). Positive current flows into the referenced pin.

All ac parameters assume a load capacitance of 100 pF . Add 10 ns delay for each 50 pF increase in load up to a maximum of 200 pF for the data bus and 100 pF for address and control lines.

Note 1: $\mathrm{Ta}=0$ to $+60^{\circ} \mathrm{C}$ for 44 -pin QFP
$\mathrm{Ta}=-20$ to $+85^{\circ} \mathrm{C}$ for 40 -pin DIP with wide temperature spec.

Capacitance
$\left(\mathrm{f}=1 \mathrm{MHz}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Clock capacitance	$\mathrm{C}_{\text {CLOCK }}$	Unmeasured pins returned to ground			35	pF
Input capacitance	$\mathrm{C}_{\text {IN }}$				5	pF
Output capacitance	$\mathrm{C}_{\text {OUT }}$				10	pF

AC Characteristics
$\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{Ta}=0\right.$ to $\left.+70^{\circ} \mathrm{C}^{\text {Note } 1}\right)$

No.	Parameter	Symbol	LH0080		LH0080A		LH0080B		LH0080E*		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
1	Clock cycle time	TcC	400*		250*		165*		125*		ns
2	Clock pulse width (High)	TwCh	180*		110*		65*		55*		ns
3	Clock pulse width (Low)	TwCl	180	2000	110	2000	65	2000	55	2000	ns
4	Clock fall time	TfC		30		30		20		10	ns
5	Clock rise time	TrC		30		30		20		10	ns
6	Clock \uparrow to address valid delay	TdCr (A)		145		110		90		80	ns
7	Addreess valid to $\overline{\mathrm{MREQ}} \downarrow$ delay	TdA (MREQf)	125*		65*		35^{*}		20^{*}		ns
8	Clock \downarrow MREQ \downarrow delay	TdCf (MREQf)		100		85		70		60	ns
9	Clock \uparrow to $\overline{\mathrm{MREQ}} \uparrow$ delay	TdCr (MREQr)		100		85		70		60	ns
10	$\overline{\text { MREQ }}$ pulse width (High)	TwMREQh	170*		110*		65*		45*		ns
11	$\overline{\mathrm{MREQ}}$ pulse width (Low)	TwMREQ1	$360 *$		$220 *$		135*		100 *		ns
12	Clock \downarrow to $\overline{\mathrm{MREQ}} \uparrow$ delay	TdCf (MREQr)		100		85		70		60	ns
13	Clock \downarrow to $\overline{\mathrm{RD}} \downarrow$ delay	TdCf (RDf)		130		95		80		70	ns
14	Clock \uparrow to $\overline{\mathrm{RD}} \uparrow$ delay	TdCr (RDr)		100		85		70		60	ns
15	Data setup time to clock \uparrow	$\mathrm{TsD}(\mathrm{Cr})$	50		35		30		30		ns
16	Data hold time from $\overline{\mathrm{RD}} \uparrow$	ThD (RDr)	0		0		0		0		ns
17	$\overline{\text { WAIT }}$ setup time to clock \downarrow	TsWAIT (Cf)	70		70		60		50		ns
18	WAIT hold time after clock \downarrow	ThWAIT (Cf)	0		0		0		0		ns
19	Clock \uparrow to $\overline{\mathrm{M} 1} \downarrow$ delay	TdCr (M1f)		130		100		80		70	ns
20	Clock \uparrow to $\overline{\mathrm{M} 1} \uparrow$ delay	TdCr (M1r)		130		100		80		70	ns
21	Clock \uparrow to $\overline{\text { RFSH }} \downarrow$ delay	TdCr (RFSHf)		180		130		110		95	ns
22	Clock \uparrow to $\overline{\text { RFSH }} \uparrow$ delay	TdCr (RFSHr)		150		120		100		85	ns
23	Clock \downarrow to $\overline{\mathrm{RD}} \uparrow$ delay	TdCf (RDr)		110		85		70		60	ns
24	Clock \uparrow to $\overline{\mathrm{RD}} \downarrow$ delay	TdCr (RDf)		100		85		70		60	ns
25	Data Setup to clock \uparrow during $\mathrm{M}_{2}, \mathrm{M}_{3}, \mathrm{M}_{4}$ or M_{5} cycles	TsD (Cf)	60		50		40		30		ns
26	Address stable prior to $\overline{\mathrm{IORQ}} \downarrow$	TdA (IORQf)	320 *		180*		$110 *$		75*		ns
27	Clock $\uparrow \overline{\text { IORQ }} \downarrow$ delay	TdCr (IORQf)		90		75		65		55	ns
28	Clock \downarrow to $\overline{\text { IORQ }} \uparrow$ delay	TdCf (IORQr)		110		85		70		60	ns
29	Data stable prior to $\overline{\mathrm{WR}} \downarrow$	TdDm (WRf)	190*		80^{*}		25*		5*		ns
30	Clock \downarrow WR \downarrow delay	TdCf (WRf)		90		80		70		60	ns
31	$\overline{\mathrm{WR}}$ pulse width	TwWR	$360 *$		$220 *$		135*		100*		ns
32	Clock \downarrow to $\overline{\mathrm{WR}} \uparrow$ delay	TdCr (WRr)		100		80		70		60	ns
33	Data stable prior to $\overline{\mathrm{WR}} \downarrow$	TdDi (WRf)	20*		-10^{*}		-55^{*}		-55*		ns
34	Clock \uparrow to $\overline{\mathrm{WR}} \downarrow$ delay	TdCr (WRf)		80		65		60		55	ns
35	Data stable from $\overline{\mathrm{WR}} \uparrow$	TdWRr (D)	120*		60*		30^{*}		15*		ns
36	Clock \downarrow to $\overline{\text { HALT }} \uparrow$ or \downarrow	TdCf (HALT)		300		300		260		225	ns
37	NMI pulse width	TwNMI	80		80		70		80		ns
38	$\overline{\text { BUSREQ }}$ setup time to clock \uparrow	TsBUSRQ (Cr)	80		50		50		40		ns
39	BUSREQ hold time after clock \uparrow	ThBUSRQ (Cr)	0		0		0		0		ns
40	Clock \uparrow to $\overline{\text { BUSACK }} \downarrow$ delay	TdCr (BUSAKf)		120		100		90		80	ns
41	Clock \downarrow to BUSACK \uparrow delay	TdCf (BUSAKr)		110		100		90		80	ns
42	Clock \dagger to data float delay	$\mathrm{TdCr}(\mathrm{Dz}$)		90		90		80		70	ns
43	Clock \uparrow to control output float delay ($\overline{\mathrm{MREQ}}, \overline{\mathrm{IORQ}}, \overline{\mathrm{RD}}$, and $\overline{\mathrm{WR}})$	$\mathrm{TdCr}(\mathrm{CTz})$		110		80		70		60	ns
44	Clock \uparrow to address float delay	$\mathrm{TdCr}(\mathrm{Az})$		110		90		80		70	ns
45	$\overline{\mathrm{MREQ}} \uparrow, \overline{\mathrm{IORQ}} \uparrow, \overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}} \uparrow$ to address hold time	$\operatorname{TdCTr}(\mathrm{A})$	$160 *$		80*		35^{*}		20^{*}		ns

[^11]Note 1: $\mathrm{Ta}=0$ to $+60^{\circ} \mathrm{C}$ for 44 -pin QFP.
$\mathrm{Ta}=-20$ to $+85^{\circ} \mathrm{C}$ for 40 -pin DIP with wide temperature spec.

No.	Parameter	Symbol	LH0080		LH0080A		LH0080B		LH0080E*		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
46	$\overline{\text { RESET }} \downarrow$ to clock \uparrow setup time	TsRESET (Cr)	90		60		60		45		ns
47	RESET from clock! \uparrow hold time	ThRESET (Cr)	0		0		0		0		ns
48	INT to clock \uparrow setup time	Tsintf (Cr)	80		80		70		55		ns
49	INT from clock \uparrow hold time	ThinTr (Cr)	0		0		0		0		ns
50	$\overline{\mathrm{M1}} \downarrow$ to $\overline{\text { IORQ }} \downarrow$ delay	TdM1f (IORQf)	920*		565*		365*		270*		ns
51	Clockk \downarrow to $\overline{\mathrm{IORQ}} \downarrow$ delay	TdCf (IORQf)		110		85		70		60	ns
52	Clock \uparrow to $\overline{\mathrm{IORQ}} \uparrow$ delay	TdCf (IORQr)		100		85		70		60	ns
53	Clock \downarrow to data valid delay	TdCf (D)		230		150		130		115	ns

All ac parameters assume a load capacitance of 100 pF . Add 10 μs delay for each 50 pF increase in load up to a maximum of 200 pF for the data bus and 100 pF for address and control lines.
*For clock periods other than the minimums shown in the table, calculate parameters using the following expressions.

Footnotes to AC Characteristics

No.	Symbol	LH0080	LH0080A	LH0080B	LH0080E
1	TcC	TwCh + TwCl + TrC + TfC	TwCh + TwCl + TrC+TfC	TwCh $+\mathrm{TwCl}+\mathrm{TrC}+\mathrm{TfC}$	TwCh $+\mathrm{TwCl}+\mathrm{TrC}+\mathrm{TfC}$
2	TwCh	MAX. $200 \mu \mathrm{~s}$	MAX. $200 \mu \mathrm{~s}$	MAX: $200 \mu \mathrm{~s}$	MAX. $200 \mu \mathrm{~s}$
7	TdA (MREQf)	TwCh+TfC-75	TwCh+TfC-65	TwCh+TfC-50	TwCh+TfC-45
10	TwMREQh	TwCh+TfC-30	TwCh+TfC-20	TwCh+TfC-20	TwCh+TfC-20
11	TwMREQ1	$\mathrm{TcC}-40$	TcC-30	$\mathrm{TcC}-30$	TcC-25
26	TdA (IORQf)	$\mathrm{TcC}-80$	TcC-70	TcC-55	TcC-50
29	TdD (WRf)	$\mathrm{TcC}-210$	TcC-170	TcC-140	TcC-120
31	TwWR	$\mathrm{TcC}-40$	TcC-30	$\mathrm{Tc} \mathrm{C}-30$	TcC-25
33	TdD (WRf)	$\mathrm{TwCl}+\mathrm{TrC}-180$	TwCl + TrC- 140	TwCl $+\mathrm{TrC}-140$	$\mathrm{TwCl}+\mathrm{TrC}-120$
35	TdWRr (D)	$\mathrm{TwCl}+\mathrm{TrC}-80$	TwCl $+\mathrm{Tr} \mathrm{C}-70$	TwCl $+\mathrm{Tr} \mathrm{C}-55$	$\mathrm{TwCl}+\mathrm{Tr} \mathrm{C}-50$
45	$\mathrm{TdCTr}(\mathrm{A})$	$\mathrm{TwCl}+\mathrm{TrC}-40$	TwCl $+\mathrm{Tr} \mathrm{C}-50$	TwCl+TrC-50	TwCl $+\mathrm{TrC}-45$
50	TdMIf (IORQf)	$2 \mathrm{Tch}+$ TwCh + TfC -80	$2 \mathrm{TcC}+$ TwCh+TfC-65	$2 \mathrm{TcC}+\mathrm{TwCh}+\mathrm{TfC}-50$	$2 \mathrm{TcC}+$ TwCh + TfC -45

AC Test Conditions :

$\mathrm{V}_{\mathrm{H}}=2.0 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{HC}}=\mathrm{V}_{\mathrm{cc}}-0.6 \mathrm{~V}$	$\mathrm{~V}_{\text {он }}=2.0 \mathrm{~V}$	FLOAT $= \pm 0.5$
$\mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{HC}}=0.45 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{oL}}=0.8 \mathrm{~V}$	

CPU Timing

The Z80 CPU executes instructions by proceeding through a specific sequence of operations:

- Memory read or write
- I/O device read or write
- Interrupt acknowledge

The basic clock period is referred to as a T time or cycle, and three or more T cycles make up a machine cycle (M1, M2 or M3 for instance). Machine cycles can be extended either by the CPU automatically inserting one or more Wait states or by the insertion of one or more Wait states by the user.

(1) Instruction Opcode Fetch

The CPU places the contents of the Program Counter (PC) on the address bus at the start of the cycle (Fig. 1). Approximately one-half clock cycle later, $\overline{M R E Q}$ goes active. When active, $\overline{\mathrm{RD}}$ indicates that the memory data can be enabled onto the CPU data bus.

The CPU samples the $\overline{\mathrm{WAIT}}$ input with the falling edge of clock state T_{2}. During clock states T_{3} and T_{4} of an $\overline{\mathrm{M} 1}$ cycle dynamic RAM refresh can occur while the CPU starts decoding and executing the instruction. When the Refresh Control signal becomes active, refreshing of dynamic memory can take place.

Note: T_{w}-Wait cycle added when necessary for slow ancilliary devices.
Fig. 1 Instruction opcode fetch

(2) Memory Read or Write Cycles

Fig. 2 shows the timing of memory read or write cycles other than an opcode fetch (M1) cycle.
The $\overline{\mathrm{MREQ}}$ and $\overline{\mathrm{RD}}$ signals function exactly as in the fetch cycle. In a memory write cycle, MREQ also becomes active when the address bus is stable. The $\overline{W R}$ line is active when the data bus is stable, so that it can be used directly as an $\mathrm{R} / \overline{\mathrm{W}}$ pulse to most semiconductor memories.

(3) Input or Output Cycles

Fig. 3 shows the timing for an I/O read or I/O write operation.
During I/O operations, the CPU automatically inserts a single wait state (T_{w}). This extra wait state allows sufficient time for an I/O port to decode the address from the port address lines.

Fig. 2 Memory read or write cycles

Note: $\mathrm{Tw}=$ One wait cycle automatically inserted by CPU .
Fig. 3 Input or output

(4) Interrupt request/acknowledge cycle

The CPU samples the interrupt signal with the rising edge of the last clock at the end of any instruction (Fig. 4). When an interrupt is accepted, a special M1 cycle is generated. During this M1 cy-
cle, IORQ becomes active (instead of MREQ) to indicate that the interrupting device can place an 8 -bit vector on the data bus. The CPU automatically adds two wait states to this cycle.

Note 1: $\mathrm{T}_{\mathrm{L}}=$ Last state of previous instruction.
Note 2: Two wait cycles automatically inserted by CPU (*).

Fig. 4 Interrupt request/acknowledge cycle

(5) Non-maskable interrupt request cycle

$\overline{\mathrm{NMI}}$ is sampled at the same time as the maskable interrupt INT but hashigher priority and cannot be disabled under software control.

The subsequent timing is similar to that of a nor-
mal instruction fetch except that data put on the bus by the memory is ignored. The CPU instead executes a restart (RST) operation and jumps to the $\overline{\text { NMI }}$ service routine located at address 0066 H (Fig. 5).

*Although $\overline{\text { NMI }}$ is an asynchronous input, to guarantee its being recognized on the following machine cycle, NMI's falling edge must occur no later than rising edge of the clock cycle preceding $\mathrm{T}_{\text {LAST }}$.

Fig. 5 Non-maskable interrupt request operation

(6) Bus request/acknowledge cycle

The CPU samples $\overline{\mathrm{BUSREQ}}$ with the rising edge of the last clock period of any machine cycle (Fig. 6). If $\overline{B U S R E Q}$ is active, the CPU sets its address, data, and $\overline{\mathrm{MREQ}}, \overline{\mathrm{IORQ}}, \overline{\mathrm{RD}}$, and $\overline{\mathrm{WR}}$ lines to a high-impedance state with the rising edge of the next clock pulse. At that time, any external device can take control of these lines, usually to transfer data between memory and I/O devices.

(7) Reset cycle

$\overline{\text { RESET }}$ must be active for at least three clock cycles for the CPU to properly accept it. As long as $\overline{\text { RESET }}$ remains active, the address and data buses float, and the control outputs are inactive. Once $\overline{\text { RESET }}$ goes inactive, three internal T cycles are consumed before the CPU resumes normal processing operation. $\overline{\text { RESET clears the PC register, so }}$ the first opcode fetch will be location 0000 (Fig. 8).

$T x=A n$ arbitrary clock cycle used by requesting device.
Fig. 6 Z-bus request/acknowledge cycle

Note: $\overline{\mathrm{INT}}$ will also force a Halt exit.
Fig. 7 Halt acknowledge cycle

Fig. 9 Timing diagram when M1 cycle has no wait state

〈Reference〉

The RAM contents may be adversely affected by resetting the CPU while it is in operation.

To prevent this, a RESET signal should be input in the following timings.
(1) No walt state in the M1 cycle

Input a RESET signal to start sampling this signal at the clock rising in the M1 cycle's T_{2} state.
(See Fig. 9.)
(2) A walt state in the M1 cycle

Input a RESET signal to start sampling this signal at the clock rising in the M1 cycle's T_{3} state. (See Fig. 10.)

Fig. 10 Reset circuit and timing diagram when M1 cycle has a wait state

CPU Registers

A Accumulator	F Flag Register	A $^{\prime}$ Accumulator	F^{\prime} Flag Register
B General Purpose	C General Purpose	B^{\prime} General Purpose	C^{\prime} General Purpose
D General Purpose	E General Purpose	D^{\prime} General Purpose	E^{\prime} General Purpose
H General Purpose	L General Purpose	H^{\prime} General Purpose	L^{\prime} General Purpose

8 bits \longrightarrow	
I Interrupt Vector	R Memory Refresh
IX	Index Register
IY	Index Register
SP	Stack pointer
PC	Program Counter

Architecture

(1) CPU Registers
(i) Program Counter (PC) The program counter holds the 16 bits memory address of a current instruction. The CPU fetches the contents from memory address specified by the PC.

The PC feeds the data to the address line, automatically setting the PC value to +1 . When a program jump takes place, a new value is directly set to the PC.
(ii) Stack Pointer (SP) The stack pointer holds the top 16-bit address of the stack with an external RAM. An external file is based on LIFO (Last-In, First-Out).

The data are transferred between a CPU-specified register and the stack by a PUSH or POP instruction. The last-pushed data are first popped from the stack.
(iii) Index Register (IX \& IY) For index mode addressing, there are independent index registers IX and IY, each of which holds 16 -bit reference address.

In the index mode, the index registers are used to designate the memory area for data input/output.

With an INDEX ADDRESSING instruction, an effective address comes by adding a one-byte displacement to the register content. This displacement is an integral signed two's complement number
(iv) Interrupt Register (I) The Z80 CPU has indirect subroutine call mode for any memory area according to an interrupt. For this purpose, this register stores the upper 8 bits of memory address for vectored interrupt processing and the lower 8 bits for the interrupting device.
(v) Refresh Register (R) The built-in refresh register provides user-transparent dynamic memory refresh. Its lower 7 bits are automatically incremented during each instruction fetch cycle.

While the CPU records a fetched instruction and executes the instruction, the refresh register data are placed on the address bus by a REFRESH control signal.
(vi) Accumulator and Flag Register (A \& F)

The CPU has also two independent 8 -bit accumulators in combination with two 8 -bit flag registers.
The accumulators store an operand or the results of an 8 -bit operation. The flag registers, on the other hand, deal with the results of an 8-bit or 16 -bit operation; for example, seeing if the result is equal to 0 or not.
(vii) General-Purpose Registers There are several pairs of general-purpose registers. In each pair, they can be used separately or as a 16 -bit paired register. The paired registers are BC, DE, HL , as well as $\mathrm{BC}^{\prime} \mathrm{DE}^{\prime} \mathrm{HL}$. Either of these sets can work by an "Exchange" instruction at any time on a program.

(2) Arithmetic/Logical Unit (ALU)

An 8-bit arithmetic/logical operation instruction is executed by the ALU inside the CPU. The ALU connects to each register through the internal bus for data transfer between them.

(3) Instruction Register, CPU Control

Each instruction-is read out of the memory, held in the instruction register, and decoded. The con-
trol unit controls this action and gives control signals necessary to read and write data from and to the registers.

The control unit also makes ALU control signal and other external control signals.

〈Interrupts : General Operation〉 The Z80 CPU accepts two interrupt input signals: $\overline{\mathrm{NMI}}$ and $\overline{\mathrm{INT}}$. The $\overline{\text { NMI }}$ is a non-maskable interrupt and has the highest priority. $\overline{\mathrm{INT}}$ is a lower priority interrupt and it requires that interrupts be enabled in software in order to operate.

(1) Non-Maskable Interrupt ($\overline{\mathrm{NMI} \text {) }}$

The non-maskable interrupt will be accepted at all times by the CPU.

After recognition of the $\overline{\mathrm{NMI}}$ signal, the CPU jumps to restart location 0066H.
(2) Maskable Interrupt (INT)

The maskable interrupt, $\overline{\mathrm{INT}}$, has three programmable response modes available.
(i) Mode 0 Interrupt Operation. This mode is similar to the 8080A microprocessor interrupt service procedures. The interrupting de-
vice places an instruction on the data bus. This is a Restart instruction or a Call instruction.
(ii) Mode 1 Interrupt Operation. Mode 1 operation is very similar to that for the NMI. The principal difference is that the Mode 1 interrupt has a restart location of 0038 H only.
(iii) Mode 2 Interrupt Operation. This interrupt mode has been designed to utilize most effectively the capabilities of the $Z 80$ microprocessor and its associated peripheral family. The interrupting peripheral device selects the starting address (16 bits) of the interrupt service routine. It does this by placing an 8 -bit vector on the data bus during the interrupt acknowledge cycle. The CPU forms a pointer using this byte as the lower 8 -bits and the contents of the I register as the upper 8 -bits. This points to an entry in a table of addresses for interrupt service routines. The CPU then jumps to the routine at that address.

All the $Z 80$ peripheral devices have the interrupt priority circuit with a daisy-chain configuration. During an interrupt acknowledge cycle, vectors are automatically fed. For more details, refer to the $Z 80$ PIO description.

Fig. 1 Mode 2 interrupt diagram

Instruction Set

Table 1 8-bit load group

Mnemonic	Symbolic operation	OP code	HEX code	Flags						No. of Bytes	$\begin{array}{\|c\|} \hline \text { No. of } \\ \text { M Cycles } \end{array}$	No. ofT States	Comments	
		76543210	(Basic)	C	Z	P/v	S	N	H					
LD r, r^{\prime}	$\mathrm{r} \leftarrow \mathrm{r}^{\prime}$	$01{ }^{0} \mathrm{r} \quad \mathrm{r}^{\prime}$	40+	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	1	1	4		
LD r, n	$\mathrm{r} \leftarrow \mathrm{n}$	$\begin{array}{llr}00 & \mathrm{r} & 110 \\ \leftarrow & \mathrm{n} & \rightarrow\end{array}$	06+	\bullet	-	\bullet	\bullet	\bullet	\bullet	2	2	7	r,r	Reg.
LD r, (HL)	$\mathrm{r} \leftarrow(\mathrm{HL})$	$\begin{array}{llll}01 & \mathrm{r} & 110\end{array}$	46+	\bullet	-	-	-	\bullet	\bullet	1	2	7	000	
LD r, (IX + d)	$r \leftarrow(I X+d)$	$\begin{array}{ccc} \hline 11 & 011 & 101 \\ 01 & \mathrm{r} & 110 \\ \leftarrow & \mathrm{~d} & \rightarrow \end{array}$	$\begin{aligned} & \text { DD } \\ & 46+ \end{aligned}$	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	3	5	19	$\begin{aligned} & 001 \\ & 010 \\ & 011 \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{D} \\ & \mathrm{E} \end{aligned}$
LD r, (IY + d)	$\mathrm{r} \leftarrow(\mathrm{IY}+\mathrm{d})$	$\begin{array}{cccc}11 & 111 & 101 \\ 01 & \text { r } & 110 \\ \leftarrow & d & \rightarrow\end{array}$	$\begin{aligned} & \text { FD } \\ & 46 \end{aligned}$	\bullet	-	-	-	-	\bullet	3	5	19	$\begin{aligned} & 100 \\ & 101 \\ & 111 \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{~A} \end{aligned}$
LD (HL), r	(HL) $\leftarrow \mathrm{r}$	$\begin{array}{llll}01 & 110 & \mathrm{r}\end{array}$	$70+$	\bullet	-	-	\bullet	\bullet	\bullet	1	2	7		
LD (IX + d), r	$(\mathrm{IX}+\mathrm{d}) \leftarrow \mathrm{r}$	$\begin{array}{\|ccc\|} \hline 11 & 011 & 101 \\ 01 & 110 & \mathrm{r} \\ \leftarrow & \mathrm{~d} & \rightarrow \\ \hline \end{array}$	$\begin{aligned} & \hline \text { DD } \\ & 70+ \end{aligned}$	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	3	5	19		
LD (IY + d), r	$(\mathrm{I}+\mathrm{d}) \leftarrow \mathrm{r}$	$\begin{array}{\|ccc\|} \hline 11 & 111 & 101 \\ 01 & 110 & \mathrm{r} \\ \leftarrow & \mathrm{~d} & \rightarrow \\ \hline \end{array}$	$\begin{aligned} & \text { FD } \\ & 70+ \end{aligned}$	-	-	-	-	-	\bullet	3	5	19		
LD (HL), n	$(\mathrm{HL}) \leftarrow \mathrm{n}$	$\begin{array}{\|rrr\|} \hline 00 & 110 & 110 \\ \leftarrow & \mathrm{n} & \rightarrow \\ \hline \end{array}$	36	-	-	-	\bullet	\bullet	\bullet	2	3	10		
LD (IX+d), n	$(\mathrm{IX}+\mathrm{d}) \leftarrow \mathrm{n}$	$\left.\begin{array}{\|ccc\|} \hline 11 & 011 & 101 \\ 00 & 110 & 110 \\ \leftarrow & d & \rightarrow \\ \leftarrow & \mathrm{n} & \rightarrow \end{array} \right\rvert\,$	$\begin{aligned} & \hline \mathrm{DD} \\ & 36 \end{aligned}$	-	-	-	\bullet	-	\bullet	4	5	19		
LD (IY + d), n	$(\mathrm{Y}+\mathrm{d}) \leftarrow n$	$\begin{array}{\|ccc\|} \hline 11 & 111 & 101 \\ 00 & 110 & 110 \\ \leftarrow & d & \rightarrow \\ \leftarrow & \mathrm{n} & \rightarrow \\ \hline \end{array}$	$\begin{aligned} & \hline \text { FD } \\ & 36 \end{aligned}$	-	-	-	-	-	-	4	5	19		
LD A, (BC)	$\mathrm{A} \leftarrow(\mathrm{BC})$	00001010	0A	\bullet	\bullet	-	\bullet	\bullet	\bullet	1	2	7		
LD A, (DE)	$\mathrm{A} \leftarrow(\mathrm{DE})$	00011010	1A	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	1	2	7		
LD A, (nn)	$\mathrm{A} \leftarrow(\mathrm{nn})$	$\begin{array}{\|ccc\|} \hline 00 & 111 & 010 \\ \leftarrow & \mathrm{n} & \rightarrow \\ \leftarrow & \mathrm{n} & \rightarrow \\ \hline \end{array}$	3A	\bullet	-	-	\bullet	-	\bullet	3	4	13		
LD (BC), A	$(\mathrm{BC}) \leftarrow \mathrm{A}$	00000010	02	-	\bullet	-	\bullet	-	\bullet	1	2	7		
LD (DE), A	$(\mathrm{DE}) \leftarrow \mathrm{A}$	00010010	12	\bullet	\bullet	-	\bullet	\bullet	\bullet	1	2	7		
LD (nn), A	$(\mathrm{nn}) \leftarrow \mathrm{A}$	$\begin{array}{\|ccc} \hline 00 & 110 & 010 \\ \leftarrow & \mathrm{n} & \rightarrow \\ \leftarrow & \mathrm{n} & \rightarrow \\ \hline \end{array}$	32	\bullet	-	\bullet	\bullet	\bullet	-	3	4	13		
LD A, I	$\mathrm{A} \leftarrow \mathrm{I}$	$\begin{array}{\|llll\|} \hline 11 & 101 & 101 \\ 01 & 010 & 111 \\ \hline \end{array}$	$\begin{aligned} & \text { ED } \\ & 57 \\ & \hline \end{aligned}$	-	\ddagger	IFF	\ddagger	0	0	2	2	9		
LD A, R	$\mathrm{A} \leftarrow \mathrm{R}$	$\begin{array}{\|lll\|} \hline 11 & 101 & 101 \\ 01 & 011 & 111 \\ \hline \end{array}$	$\begin{aligned} & \text { ED } \\ & 5 \mathrm{~F} \end{aligned}$	\bullet	\ddagger	IFF	\ddagger	0	0	2	2	9		
LD I, A	$\mathrm{I} \leftarrow \mathrm{A}$	11 101 101 01 000 111 1 10	$\begin{aligned} & \text { ED } \\ & 47 \\ & \hline \end{aligned}$	\bullet	-	-	-	-	\bullet	2	2	9		
LD R, A	$\mathrm{R} \leftarrow \mathrm{A}$	$\begin{array}{\|llll} \hline 11 & 101 & 101 \\ 01 & 001 & 111 \\ \hline \end{array}$	$\begin{aligned} & \text { ED } \\ & 4 \mathrm{~F} \\ & \hline \end{aligned}$	\bullet	-	\bullet	\bullet	\bullet	\bullet	2	2	9		

Notes: r, r^{\prime} means any of the registers A, B, C, D, E, H, L, IFF the content of the interrupt enable flip-flop, (IFF) is copied into the P/V flag.
Flags: C (carry), Z (zero), S (sign), P/V (parity/overflow), H (half carry), N (add/substract).

- =unchanged, $0=$ reset, $1=$ set, $X=$ undefined.
\downarrow set or reset according to the result of the operation.

Table 2 16-bit load group

Mnemonic	Symbolic operation	OP code	$\begin{array}{\|c\|} \hline \text { HEX code } \\ \hline \text { (Basic) } \\ \hline \end{array}$	Flags						No. of Bytes	$\begin{array}{\|c\|} \hline \text { No. of } \\ \text { M Cycles } \\ \hline \end{array}$	$\begin{array}{\|c\|c\|} \hline \text { No. of } \\ \hline \text { T States } \\ \hline \end{array}$	Comments	
		76543210		C	Z	P/V	S	N	H					
LD dd, nn	$\mathrm{dd} \leftarrow \mathrm{nn}$	00 dd0 001 \leftarrow n \leftarrow n 	01+	\bullet	\bullet	-	\bullet	\bullet	\bullet	3	3	10	dd	Reg.
LD IX, nn	$\mathrm{IX} \leftarrow \mathrm{nn}$	11 011 101 00 100 001 \leftarrow n \rightarrow \leftarrow n \rightarrow	$\begin{aligned} & \text { DD } \\ & 21 \end{aligned}$	\bullet	\bullet	-	\bullet	\bullet	\bullet	4	4	14	$\begin{aligned} & 00 \\ & 01 \\ & 10 \end{aligned}$	BC DE HL
LD IY, nn	$\mathrm{IY} \leftarrow \mathrm{nn}$	11 111 101 00 100 001 \leftarrow n \rightarrow \leftarrow n \rightarrow	$\begin{aligned} & \text { FD } \\ & 21 \end{aligned}$	-	\bullet	-	\bullet	\bullet	\bullet	4	4	14	11	SP
LD HL, (nn)	$\begin{aligned} & \mathrm{H} \leftarrow(\mathrm{nn}+1) \\ & \mathrm{L} \leftarrow(\mathrm{nn}) \end{aligned}$	$\begin{array}{ccc} \hline 00 & 101 & 010 \\ \leftarrow & n & \rightarrow \\ \leftarrow & n & \rightarrow \end{array}$	2A	\bullet	\bullet	-	\bullet	\bullet	\bullet	3	5	16	nn : 2-b Lower after	number. just e.
LD dd, (nn)	$\begin{aligned} & \mathrm{ddH}_{\mathrm{H}} \leftarrow(\mathrm{nn}+1) \\ & \mathrm{ddL} \leftarrow(\mathrm{nn}) . \end{aligned}$	$\|$11 101 101 01 dd1 011 \leftarrow n \rightarrow \leftarrow n \rightarrow	$\begin{aligned} & \mathrm{ED} \\ & 4 \mathrm{~B}+ \end{aligned}$	\bullet	\bullet	-	\bullet	\bullet	\bullet	4	6	20	Upper next.	comes
LD IX, (nn)	$\begin{aligned} & \mathrm{IX}_{\mathrm{H}} \leftarrow(\mathrm{nn}+1) \\ & \mathrm{IX} \mathrm{~L} \end{aligned}$	$\begin{array}{\|ccc\|} \hline 11 & 011 & 101 \\ 00 & 101 & 010 \\ \leftarrow & n & \rightarrow \\ \leftarrow & n & \rightarrow \\ \hline \end{array}$	$\begin{aligned} & \text { DD } \\ & 2 \mathrm{~A} \end{aligned}$	-	\bullet	-	\bullet	\bullet	-	4	6	20		
LD IY, (nn)	$\begin{aligned} & \mathrm{I} Y_{\mathrm{H}} \leftarrow(\mathrm{nn}+1) \\ & \mathrm{I} \mathrm{Y}_{\mathrm{L}} \leftarrow(\mathrm{nn}) \end{aligned}$	$\begin{array}{\|ccc\|} \hline 11 & 111 & 101 \\ 00 & 101 & 010 \\ \leftarrow & \mathrm{n} & \rightarrow \\ \hline \end{array}$	$\begin{aligned} & \mathrm{FD} \\ & 2 \mathrm{~A} \end{aligned}$	\bullet	\bullet	-	\bullet	\bullet	\bullet	4	6	20		
LD (nn), HL	$\begin{aligned} & (\mathrm{nn}+1) \leftarrow \mathrm{H} \\ & (\mathrm{nn}) \leftarrow \mathrm{L} \end{aligned}$	$\begin{array}{\|ccc\|} \hline 00 & 100 & 010 \\ \leftarrow & \mathrm{n} & \rightarrow \\ \leftarrow & \mathrm{n} & \rightarrow \\ \hline \end{array}$	22	\bullet	\bullet	-	\bullet	\bullet	\bullet	3	5	16		
LD (nn), dd	$\begin{aligned} & (\mathrm{nn}+1) \leftarrow \mathrm{ddH} \\ & (\mathrm{nn}) \leftarrow \mathrm{dd} \mathrm{t} \end{aligned}$	$\begin{array}{\|ccc\|} \hline 11 & 101 & 101 \\ 01 & \text { dd0 } 0 & 011 \\ \leftarrow & n & \rightarrow \\ \leftarrow & n & \rightarrow \\ \hline \end{array}$	$\begin{aligned} & \hline \text { ED } \\ & 43+ \end{aligned}$	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	4	6	20		
LD (nn), IX	$\begin{aligned} & (\mathrm{nn}+1) \leftarrow \mathrm{IX}_{\mathrm{H}} \\ & (\mathrm{nn}) \leftarrow \mathrm{IX} . \end{aligned}$	$\|$11 011 101 00 100 010 \leftarrow n \rightarrow \leftarrow n \rightarrow	$\begin{aligned} & \hline \mathrm{DD} \\ & 22 \end{aligned}$	-	\bullet	-	\bullet	-	\bullet	4	6	20		
LD (nn), IY	$\begin{aligned} & (\mathrm{nn}+1) \leftarrow I Y_{H} \\ & (\mathrm{nn}) \leftarrow I Y_{L} \end{aligned}$	$\begin{array}{\|rrr\|} \hline 11 & 111 & 101 \\ 00 & 100 & 010 \\ \leftarrow & n & \rightarrow \\ \leftarrow & n & \rightarrow \\ \hline \end{array}$	$\begin{aligned} & \text { FD } \\ & 22 \end{aligned}$	\bullet	\bullet	-	\bullet	\bullet	\bullet	4	6	20		
LD SP, HL	$\mathrm{SP} \leftarrow \mathrm{HL}$	11111001	F9	\bullet	\bullet	-	\bullet	\bullet	\bullet	1	1	6		
LD SP, IX	SP $\leftarrow ~ I X ~$	11 011 101 11 111 001	$\begin{aligned} & \hline \mathrm{DD} \\ & \mathrm{~F} 9 \\ & \hline \end{aligned}$	\bullet	\bullet	-	\bullet	\bullet	\bullet	2	2	10		
LD SP, IY	SP $\leftarrow \mathrm{IY}$	11 111 101 11 111 001	$\begin{aligned} & \text { FD } \\ & \text { F9 } \\ & \hline \end{aligned}$	-	-	-	-	-	\bullet	2	2	10		
PUSH qq	$\begin{aligned} & (\mathrm{SP}-2) \leftarrow \mathrm{qqL} \\ & (\mathrm{SP}-1) \leftarrow \mathrm{qqH} \\ & \hline \end{aligned}$	11 qq0 101	C5 +	\bullet	\bullet	-	-	-	\bullet	1	3	11	qq	Reg.
PUSH IX	$\begin{aligned} & (\mathrm{SP}-2) \leftarrow \mathrm{IX} \mathrm{~L} \\ & (\mathrm{SP}-1) \leftarrow \mathrm{IX} \\ & \hline \end{aligned}$	$\begin{array}{\|lll\|} \hline 11 & 011 & 101 \\ 11 & 100 & 101 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{DD} \\ & \mathrm{E} 5 \\ & \hline \end{aligned}$	\bullet	-	-	\bullet	-	\bullet	2	4	15	00 01	$\begin{aligned} & \mathrm{BC} \\ & \mathrm{DE} \end{aligned}$
PUSH IY	$\begin{aligned} & (\mathrm{SP}-2) \leftarrow I \mathrm{Y}_{\mathrm{L}} \\ & (\mathrm{SP}-1) \leftarrow \mathrm{Y} \\ & \hline \end{aligned}$	$\begin{array}{\|lll\|} \hline 11 & 111 & 101 \\ 11 & 100 & 101 \\ \hline \end{array}$	$\begin{aligned} & \text { FD } \\ & \text { E5 } \\ & \hline \end{aligned}$	-	\bullet	-	\bullet	-	\bullet	2	4	15	10	HL AF
POP qq	$\begin{aligned} & \mathrm{qq} \mathrm{\%} \\ & \mathrm{qqL} \\ & \leftarrow(\mathrm{SP}+1) \\ & \end{aligned}$	11 qq0 001	C1+	\bullet	-	-	\bullet	-	\bullet	1	3	10		
POP IX	$\begin{aligned} & \mathrm{IX}_{\mathrm{H}} \leftarrow(\mathrm{SP}+1) \\ & \mathrm{IX} \mathrm{~L} \leftarrow(\mathrm{SP}) \end{aligned}$	$\begin{array}{\|llll\|} \hline 11 & 011 & 101 \\ 11 & 100 & 001 \\ \hline \end{array}$	$\begin{aligned} & \hline \text { DD } \\ & \text { E1 } \\ & \hline \end{aligned}$	-	\bullet	-	\bullet	-	\bullet	2	4	14		
POP IY	$\begin{aligned} & \mathrm{I} \mathrm{Y}_{\mathrm{H}} \leftarrow(\mathrm{SP}+1) \\ & \mathrm{I} \mathrm{Y}_{\mathrm{L}} \leftarrow(\mathrm{SP}) \\ & \hline \end{aligned}$	$\begin{array}{\|lll\|} \hline 11 & 111 & 101 \\ 11 & 100 & 001 \\ \hline \end{array}$	$\begin{aligned} & \text { FD } \\ & \text { 21 } \end{aligned}$	\bullet	\bullet	-	\bullet	-	\bullet	2	4	14		

Notes : dd is any of the register pairs BC, DE, HL, SP.
qq is any of the register pairs $\mathrm{AF}, \mathrm{BC}, \mathrm{DE}, \mathrm{HL}$.
(PAIR) $\mathrm{H},(\mathrm{PAIR}) \mathrm{L}$ refer to high order and low order eight bits of the register pair respectively, e.g., $\mathrm{BCL}_{\mathrm{L}}=\mathrm{C}_{5} \mathrm{AFH}_{\mathrm{H}}=\mathrm{A}$.
Flags : =unchanged, $0=$ reset, $1=$ set, $X=$ undefined, $\ddagger=$ set or reset according to the result of the operation

Table 3 Exchange, block transfer, block search groups

Mnemonic	Symbolic operation	OP code	HEX code	Flags						$\begin{aligned} & \hline \text { No. of } \\ & \text { Bytes } \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { No. of } \\ \text { M Cycles } \end{array} \\ \hline \end{array}$	No. of T States	Comments
		76543210	(Basic)	C	Z	P/V	S	N	H				
EX DE, HL	DE $\leftrightarrow \mathrm{HL}$	11101011	EB	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	1	1	4	
EX AF, AF'	$\mathrm{AF} \leftrightarrow \mathrm{AF}^{\prime}$	00001000	08	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	1	1	4	
EXX	$\left(\begin{array}{l}\mathrm{BC} \\ \mathrm{DE} \\ \mathrm{HL}\end{array}\right) \leftrightarrow\left(\begin{array}{c}\mathrm{BC}^{\prime} \\ \mathrm{DE}^{\prime} \\ \mathrm{HL}^{\prime}\end{array}\right)$	11011001	D9	\bullet	\bullet	-	\bullet	\bullet	\bullet	1	1	4	Register bank and auxiliary register bank exchange
EX (SP), HL	$\begin{aligned} & \mathrm{H} \leftrightarrow(\mathrm{SP}+1) \\ & \mathrm{L} \leftrightarrow(\mathrm{SP}) \\ & \hline \end{aligned}$	11100011	E3	\bullet	\bullet	-	\bullet	\bullet	\bullet	1	5	19	
EX (SP), IX	$\begin{aligned} & \mathrm{IX}_{\mathrm{H}} \leftrightarrow(\mathrm{SP}+1) \\ & \mathrm{IX} \stackrel{\mathrm{IS})}{ } \end{aligned}$	$\begin{array}{lll} \hline 11 & 011 & 101 \\ 11 & 100 & 011 \end{array}$	$\begin{aligned} & \text { DD } \\ & \text { E3 } \end{aligned}$	\bullet	\bullet	-	\bullet	-	\bullet	2	6	23	
EX (SP), IY	$\begin{aligned} & \mathrm{IY}_{\mathrm{H}} \leftrightarrow(\mathrm{SP}+1) \\ & \mathrm{I} \mathrm{Y}_{\mathrm{L}} \leftrightarrow(\mathrm{SP}) \end{aligned}$	$\begin{array}{\|lll\|} \hline 11 & 111 & 101 \\ 11 & 100 & 011 \end{array}$	$\begin{aligned} & \text { FD } \\ & \text { E3 } \end{aligned}$	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	2	6	23	
LDI	$\begin{aligned} & (\mathrm{DE}) \leftarrow(\mathrm{HL}) \\ & \mathrm{DE} \leftarrow \mathrm{DE}+1 \\ & \mathrm{HL} \leftarrow \mathrm{HL}+1 \\ & \mathrm{BC} \leftarrow \mathrm{BC}-1 \end{aligned}$	$\begin{array}{\|lll} \hline 11 & 101 & 101 \\ 10 & 100 & 000 \end{array}$	$\begin{aligned} & \text { ED } \\ & \text { A0 } \end{aligned}$	\bullet	\bullet	$\begin{aligned} & 1 \\ & 1 \\ & (1) \end{aligned}$	\bullet	0	0	2	4	16	Load (HL) into (DE), increment the pointers and decrement the byte counter (BC)
LDIR	$\begin{aligned} & \hline \mathrm{DE}) \leftarrow(\mathrm{HL}) \\ & \mathrm{DE} \leftarrow \mathrm{DE}+1 \\ & \mathrm{HL} \leftarrow \mathrm{HL}+1 \\ & \mathrm{BC} \leftarrow \mathrm{BC}-1 \\ & \hline \end{aligned}$	$\begin{array}{\|ccc\|} \hline 11 & 101 & 101 \\ 10 & 110 & 000 \\ \hline \end{array}$	$\begin{aligned} & \text { ED } \\ & \text { B0 } \end{aligned}$	\bullet	\bullet	0	\bullet	0	0	2	5	21	If $\mathrm{BC}=0$
	If $\mathrm{BC}=0$ end									2	4	16	If $\mathrm{BC}=0$
LDD	$\begin{aligned} & (\mathrm{DE}) \leftarrow(\mathrm{HL}) \\ & \mathrm{DE} \leftarrow \mathrm{DE}-1 \\ & \mathrm{HL} \leftarrow \mathrm{HL}-1 \\ & \mathrm{BC} \leftarrow \mathrm{BC}-1 \end{aligned}$	$\begin{array}{\|ccc\|} \hline 11 & 101 & 101 \\ 10 & 101 & 000 \\ \hline \end{array}$	$\begin{aligned} & \text { ED } \\ & \text { A8 } \end{aligned}$	\bullet	\bullet	$\begin{aligned} & 1 \\ & 1 \\ & (1) \end{aligned}$	\bullet	0	0	2	4	16	
LDDR	$\begin{aligned} & (\mathrm{DE}) \leftarrow(\mathrm{HL}) \\ & \mathrm{DE} \leftarrow \mathrm{DE}-1 \\ & \mathrm{HL} \leftarrow \mathrm{HL}-1 \\ & \mathrm{BC} \leftarrow \mathrm{BC}-1 \\ & \hline \end{aligned}$	$\begin{array}{lll} \hline 11 & 101 & 101 \\ 10 & 111 & 000 \end{array}$	$\begin{aligned} & \text { ED } \\ & \text { B8 } \end{aligned}$	\bullet	-	0	\bullet	0	0	2	5	21	If $\mathrm{BC} \neq 0$
	If $B C=0$ end									2	4	16	If $\mathrm{BC}=0$
CPI	$\begin{aligned} & \mathrm{A}-(\mathrm{HL}) \\ & \mathrm{HL} \leftarrow \mathrm{HL}+1 \\ & \mathrm{BC} \leftarrow \mathrm{BC}-1 \end{aligned}$	$\begin{array}{\|lll} \hline 11 & 101 & 101 \\ 10 & 100 & 001 \end{array}$	$\begin{aligned} & \text { ED } \\ & \text { A1 } \end{aligned}$	\bullet	$\begin{array}{\|l\|} \hline 1 \\ (2) \end{array}$	$\begin{aligned} & 1 \\ & 1 \\ & \text { (1) } \end{aligned}$	\ddagger	1	\ddagger	2	4	16	
CPIR	$\begin{aligned} & \mathrm{A}-(\mathrm{HL}) \\ & \mathrm{HL} \leftarrow \mathrm{HL}+1 \\ & \mathrm{BC} \leftarrow \mathrm{BC}-1 \\ & \hline \end{aligned}$	$\begin{array}{cccc} \hline 11 & 101 & 101 \\ 10 & 110 & 001 \end{array}$	$\begin{aligned} & \mathrm{ED} \\ & \mathrm{~B} 1 \end{aligned}$	\bullet	(2)	$\begin{array}{\|l\|} \hline 1 \\ 1 \\ 1 \end{array}$	\ddagger	1	\ddagger	2	5	21	$\begin{aligned} & \text { If } B C \neq 0 \text { and } \\ & A \neq(H L) \end{aligned}$
	$\begin{aligned} & \text { If } \mathrm{A}=(\mathrm{HL}) \text { or } \\ & \mathrm{BC}=0 \text { end } \end{aligned}$									2	4	16	$\text { If } \mathrm{BC}=0 \text { or }$ $\mathrm{A}=(\mathrm{HL})$
CPD	$\begin{aligned} & \mathrm{A}-(\mathrm{HL}) \\ & \mathrm{HL} \leftarrow \mathrm{HL}-1 \\ & \mathrm{BC} \leftarrow \mathrm{BC}-1 \end{aligned}$	$\begin{array}{\|lll\|} \hline 11 & 101 & 101 \\ 10 & 101 & 001 \end{array}$	$\begin{aligned} & \text { ED } \\ & \text { A9 } \end{aligned}$	-	$\begin{aligned} & \hline 1 \\ & \text { (2) } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & (1) \end{aligned}$	1	1	\ddagger	2	4	16	
CPDR	$\begin{aligned} & \mathrm{A}-(\mathrm{HL}) \\ & \mathrm{HL} \leftarrow \mathrm{HL}-1 \\ & \mathrm{BC} \leftarrow \mathrm{BC}-1 \\ & \hline \end{aligned}$	11 101 101 10 111 001	$\begin{aligned} & \text { ED } \\ & \text { B9 } \end{aligned}$	-	$\begin{array}{\|l\|} \hline 1 \\ (2) \end{array}$	$\begin{array}{\|c\|} \hline 1 \\ 1 \\ 1 \end{array}$	\ddagger	1	\ddagger	2	5	21	If $B C \neq 0$ and $A \neq(\mathrm{HL})$
	$\begin{aligned} & \text { If } \mathrm{A}=(\mathrm{HL}) \text { or } \\ & \mathrm{BC}=0 \text { end } \end{aligned}$									2	4	16	$\begin{aligned} & \text { If } B C=0 \text { or } \\ & A=(H L) \\ & \hline \end{aligned}$

Note: (1)P/V flag is 0 if the result of $\mathrm{BC}=0$, otherwise $\mathrm{P} / \mathrm{V}=1$
(2) Z flag is 1 if $A=(H L)$, otherwise $Z=0$

Flags : $\quad=$ unchanged
$0=$ set, $\quad 1=$ reset
$\ddagger=$ set or reset according to the result of the operation

Table 4 8-bit arithmetic and logical group

Mnemonic	Symbolic operation	OP code	HEX code	Flags						№. of Bytes	$\begin{array}{\|c\|} \hline \text { No. of } \\ \text { M Cycles } \end{array}$	No. of T States	Comments	
		76543210	(Basic)	C	Z	P/V	S	N	H					
ADD A, r	$\mathrm{A} \leftarrow \mathrm{A}+\mathrm{r}$	10 k r	80+	1	\ddagger	V	\ddagger	0	\downarrow	1	1	4	r	Reg.
ADD A, n	$A \leftarrow A+n$	$\begin{array}{lll}11 & \mathrm{k} & 110 \\ \leftarrow & \end{array}$	C6+	\ddagger	\ddagger	V	\ddagger	0	1	2	2	7	000	B
ADD A, (HL)	$A \leftarrow A+(H L)$	$\begin{array}{llll}10 & \mathrm{k} & 110\end{array}$	86+	1	\ddagger	V	\ddagger	0	\downarrow	1	2	7		C
ADD A, (IX+d)	$\mathrm{A} \leftarrow \mathrm{A}+(\mathrm{IX}+\mathrm{d})$	$\begin{array}{cccc}11 & 011 & 101 \\ 10 & \mathrm{k} & 110 \\ \leftarrow & \mathrm{~d} & \rightarrow\end{array}$	$\begin{aligned} & \hline \text { DD } \\ & 86+ \end{aligned}$	\downarrow	\ddagger	V	\ddagger	0	\ddagger	3	5	19	$\begin{aligned} & 011 \\ & 100 \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{H} \end{aligned}$
ADD A, (IY+d)	$\mathrm{A} \leftarrow \mathrm{A}+(\mathrm{IY}+\mathrm{d})$	$\begin{array}{ccc}11 & 111 & 101 \\ 10 & \mathrm{k} & 110 \\ \leftarrow & \mathrm{~d} & \rightarrow\end{array}$	$\begin{aligned} & \text { FD } \\ & 86+ \end{aligned}$	\ddagger	\dagger	V	\ddagger	0	\downarrow	3	5	19		L
ADC A, s	$A \leftarrow A+s+C$			\dagger	\ddagger	V	\downarrow	0	\ddagger				ADD	000
SUB s	$\mathrm{A} \leftarrow \mathrm{A}-\mathrm{s}$	4 types		1	\ddagger	V	\ddagger	1	\pm				ADC	001
SBC A, s	$\mathrm{A} \leftarrow \mathrm{A}-\mathrm{s}-\mathrm{C}$			\ddagger	1	V	\ddagger	1	\ddagger	1 \% 1	$1{ }^{*} 1$	$4 \ldots 1$	SUB	010
AND s	$\mathrm{A} \leftarrow \mathrm{A} \wedge \mathrm{s}$			0	\ddagger	P	\ddagger	0	1	2	2	7	SBC	011
OR s	$\mathrm{A} \leftarrow \mathrm{A} \vee \mathrm{s}$			0	\ddagger	P	1	0	0	1	2	7	AND	100
XOR s	$\mathrm{A} \leftarrow \mathrm{A} \oplus \mathrm{s}$			0	\ddagger	P	\ddagger	0	0	3	5	19	OR	110
CP s	A-s			\ddagger	\ddagger	V	1	1	\ddagger				XOR	101
INC r	$\mathrm{r} \leftarrow \mathrm{r}+1$	$00 \mathrm{r} \quad \ell$	00+	\bullet	\pm	V	\pm	0	\ddagger	1.	1	4	CP	111
INC (HL)	$(\mathrm{HL}) \leftarrow(\mathrm{HL})+1$	$\begin{array}{llll}00 & 110 & \ell\end{array}$	$30+$	\bullet	\ddagger	V	\ddagger	0	\ddagger	1	3	11	$\mathrm{S}=\mathrm{r}, \mathrm{n},(\mathrm{H}$	
INC (IX + d)	$\begin{aligned} & (\mathrm{IX}+\mathrm{d}) \leftarrow \\ & \quad(\mathrm{IX}+\mathrm{d})+1 \end{aligned}$	$\begin{array}{\|ccc\|} \hline 11 & 011 & 101 \\ 00 & 110 & \ell \\ \leftarrow & \text { d } & \rightarrow \end{array}$	$\begin{aligned} & \hline \mathrm{DD} \\ & 30+ \end{aligned}$	\bullet	\ddagger	V	\ddagger	0	\ddagger	3	6	23	(IX + d),	$\mathrm{Y}+\mathrm{d})$
INC (IY + d)	$\begin{aligned} & (\mathrm{IY}+\mathrm{d}) \leftarrow \\ & \quad(\mathrm{IY}+\mathrm{d})+1 \end{aligned}$	$\begin{array}{\|ccc\|} \hline 11 & 111 & 101 \\ 00 & 110 & \ell \\ \leftarrow & d & \rightarrow \\ \hline \end{array}$	$\begin{aligned} & \hline \text { FD } \\ & 30+ \end{aligned}$	-	\ddagger	V	\ddagger	0	\ddagger	3	6	23	Mnemonic INC DEC	$\begin{gathered} \ell \\ \hline 100 \\ 101 \end{gathered}$
DEC m	$\mathrm{m} \leftarrow \mathrm{m}-1$	4 types available based on the above INC instruction		-	\ddagger	V	\ddagger	1	\ddagger	$\left\lvert\, \begin{aligned} & 1 \times 2 \\ & 1 \\ & 3 \\ & 3\end{aligned}\right.$	$\left\|\begin{array}{l}1 \times 2 \\ 3 \\ 6 \\ 6\end{array}\right\|$	$\left\lvert\, \begin{aligned} & 4 * 2 \\ & 11 \\ & 23 \\ & 23\end{aligned}\right.$	$\begin{gathered} \mathrm{m}=\mathrm{r},(\mathrm{HL}), \\ (\mathrm{IX}+\mathrm{d}), \end{gathered}$	$[Y+d)$
$\begin{aligned} & \text { Note: } \\ & \text { Flags : } \mathrm{V} \text { and } \mathrm{F} \\ & \bullet=\text { un } \\ & 0=\text { re } \\ & 1=\text { set } \\ & X=\text { un } \\ & 1=\text { se } \end{aligned}$	mean overflow a hanged t efined or reset accordin	ad parity, respe g to the result	tively. of the oper										* 1 : depen ※2: depen	$\begin{aligned} & \text { son } \mathrm{s} \text { s. } \\ & \text { s on } \mathrm{m} \end{aligned}$

Table 5 General purpose arithmetic and CPU control groups

Mnemonic	Symbolic operation	OP code	$\begin{array}{\|l\|} \hline \text { HEX code } \\ \hline \text { (Basic) } \\ \hline \end{array}$	Flags						No. of Bytes	$\begin{array}{\|c\|} \hline \text { No. of } \\ \text { M Cycles } \end{array}$	$\begin{array}{\|c\|} \hline \text { No. of } \\ \text { T States } \\ \hline \end{array}$	Comments
		76543210		C	Z	P/V	S	N	H				
DAA	Decimal adjustment (add/subtract)	00100111	27	\ddagger	\ddagger	P	\downarrow	\bullet	\ddagger	1	1	4	Decimal adjust accumulator.
CPL	$\mathrm{A} \leftarrow \overline{\mathrm{A}}$	00101111	2 F	\bullet	-	-	-	1	1	1	1	4	Complement accumulator (one's complement).
NEG	$\mathrm{A} \leftarrow 0-\mathrm{A}$	$\begin{array}{\|lll\|} \hline 11 & 101 & 101 \\ 01 & 000 & 100 \\ \hline \end{array}$	$\begin{aligned} & \text { ED } \\ & 44 \end{aligned}$	\ddagger	\ddagger	V	1	1	\ddagger	2	2	8	Negate acc. (two's complement).
CCF	$\mathrm{C} \leftarrow \overline{\mathrm{C}}$	00111111	3F	\ddagger	\bullet	\bullet	\bullet	0	X	1	1	4	Complement carry flag.
SCF	$\mathrm{C} \leftarrow 1$	00110111	37	1	\bullet	\bullet	\bullet	0	0	1	1	4	Set carry flag.
NOP	No operation	00000000	00	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	1	1	4	
HALT	CPU halted	01110110	76	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	1	1	4	
DI	IFF $\leftarrow 0$	11110011	F3	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	1	1	4	Interrupt not enable
EI	IFF $\leftarrow 1$	11111011	FB	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	1	1	4	Interrupt enable
IM 0	Set interrupt mode 0	11 101 101 01 000 110	$\begin{aligned} & \text { ED } \\ & 46 \\ & \hline \end{aligned}$	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	2	2	8	Set interrupt mode.
IM 1	Set interrupt mode 1	$\begin{array}{llll} 11 & 101 & 101 \\ 01 & 010 & 110 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{ED} \\ & 56 \\ & \hline \end{aligned}$	\bullet	\bullet	-	\bullet	\bullet	\bullet	2	2	8	
IM 2	Set interrupt mode 2	$\begin{array}{llll} \hline 11 & 101 & 101 \\ 01 & 011 & 110 \\ \hline \end{array}$	$\begin{array}{r} \mathrm{ED} \\ 5 \mathrm{E} \\ \hline \end{array}$	\bullet	-	-	\bullet	\bullet	\bullet	2	2	8	

Note : IFF indicates the interrupt enable flip-flop, CY indicates the carry flip-flop.
Flags : = unchanged, $0=$ reset, $1=$ set, $X=$ undefined, $\ddagger=$ set or reset according to the result of the operation
Table 6 16-bit arithmetic group

Mnemonic	Symbolic operation	OP code	$\begin{array}{\|l\|} \hline \text { HEX code } \\ \hline \text { (Basic) } \\ \hline \end{array}$	Flags						No. of Bytes	$\begin{array}{\|c\|} \hline \text { No. of } \\ \text { M Cycles } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { No. of } \\ \mathrm{T} \text { States } \end{array}$	Comments	
		76543210		C	Z	P/V	S	N	H					
ADD HL, ss	$\begin{gathered} \mathrm{HL} \leftarrow \mathrm{HL} \\ +\mathrm{ss} \end{gathered}$	00 ss1 001	09+	1	\bullet	-	\bullet	0	X	1	3	11	ss	Reg.
ADC HL, ss	$\begin{aligned} & \mathrm{HL} \leftarrow \mathrm{HL} \\ & +\mathrm{ss}+\mathrm{C} \end{aligned}$	$\begin{array}{ccc} \hline 11 & 101 & 101 \\ 01 & \text { ssl } & 010 \end{array}$	$\begin{aligned} & \text { ED } \\ & 4 \mathrm{~A}+ \end{aligned}$	\ddagger	\ddagger	V	\ddagger	0	X	2	4	15	$\begin{aligned} & 00 \\ & 01 \end{aligned}$	BC
SBC HL, ss	$\begin{aligned} & \mathrm{HL} \leftarrow \mathrm{HL} \\ & -\mathrm{ss}-\mathrm{C} \end{aligned}$	$\begin{array}{lll} \hline 11 & 101 & 101 \\ 01 & \text { ss0 } & 010 \\ \hline \end{array}$	$\begin{aligned} & \text { ED } \\ & 42+ \end{aligned}$	1	\ddagger	V	\ddagger	1	X	2	4	15	10 11	HL SP
ADD IX, pp	IX $\leftarrow \mathrm{IX}+\mathrm{pp}$	$\begin{array}{\|lll\|} \hline 11 & 011 & 101 \\ 00 & \text { pp1 } & 001 \\ \hline \end{array}$	$\begin{aligned} & \hline \text { DD } \\ & 09+ \end{aligned}$	1	\bullet	-	\bullet	0	X	2	4	15	pp	Reg.
ADD IY, rr	$\mathrm{IY} \leftarrow \mathrm{IY}+\mathrm{rr}$	$\begin{array}{\|l\|l\|l\|} \hline 11 & 111 & 101 \\ 00 & \text { rr1 } & 001 \\ \hline \end{array}$	$\begin{aligned} & \hline \text { FD } \\ & 09+ \\ & \hline \end{aligned}$	1	\bullet	-	\bullet	0	X	2	4	15	00 01	BC
INC ss	$\mathrm{ss} \leftarrow \mathrm{ss}+1$	00 ss0 011	03+	\bullet	-	-	\bullet	-	\bullet	1	1	6	10	IX
INC IX	$\mathrm{IX} \leftarrow \mathrm{IX}+1$	$\begin{array}{llll} \hline 11 & 011 & 101 \\ 00 & 100 & 011 \end{array}$	$\begin{aligned} & \text { DD } \\ & 23 \end{aligned}$	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	2	2	10	11	SP
INC IY	IY $\leftarrow \mathrm{I} Y+1$	$\begin{array}{\|lll\|} \hline 11 & 111 & 101 \\ 00 & 100 & 011 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{FD} \\ & 23 \\ & \hline \end{aligned}$	\bullet	-	-	\bullet	\bullet	\bullet	2	2	10	rr	Reg.
DEC ss	$\mathrm{ss} \leftarrow \mathrm{ss}-1$	00 .ss1 011	0B+	\bullet	\bullet	-	\bullet	\bullet	\bullet	1	1	6	00	BC
DEC IX	$\mathrm{IX} \leftarrow \mathrm{IX}-1$	$\begin{array}{\|lll\|} \hline 11 & 011 & 101 \\ 00 & 101 & 011 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{DD} \\ & 2 \mathrm{~B} \\ & \hline \end{aligned}$	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	2	2	10	01 10	DE
DEC IY	IY $\leftarrow \mathrm{I} Y-1$	$\begin{array}{lll} \hline 11 & 111 & 101 \\ 00 & 101 & 011 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{FD} \\ & 2 \mathrm{~B} \end{aligned}$	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	2	2	10	11	SP

$\begin{aligned} \text { Note: } & \text { ss is any of the register pairs BC, DE, HL, SP. } \\ & \text { pp is any of the register pairs BC, DE, IX, SP. } \\ & \mathrm{rr} \text { is any of the register pairs BC, DE, IY, SP. }\end{aligned}$
Flags : - unchanged, $0=$ reset, $1=$ set, $X=$ undefinede, $\ddagger=$ set or reset according to the result of the operation

Table 7 Rotate and shift groups

Mnemonic	Symbolic operation	OP code	HEX code	Flags						No. of Bytes	$\begin{array}{\|c\|} \hline \text { No. of } \\ \text { M Cycles } \\ \hline \end{array}$	$\begin{array}{\|c\|c\|} \hline \text { No. of } \\ \mathrm{s} & \mathrm{~T} \text { States } \\ \hline \end{array}$	Comments		
		76543210	(Basic)	C	Z	P/V	S	N	H						
RLCA		00000111	07	\downarrow	\bullet	-	-	0	0	1	1	4	Rotate left circular accumulator.		
RLA	$\frac{\square \mathrm{cr}-\frac{7-0}{\mathrm{~T}-0}}{\mathrm{~A}}$	00010111	17	\downarrow	-	-	-	0	0	1	1	4	Rotate left accumulato		
RRCA	$\frac{\square \rightarrow 0}{\mathrm{~A}}-\mathrm{Cl}$	00001111	0F	\ddagger	-	-	-	0	0	1	1	4	Rotate right circular accumulator.		
RRA	$\frac{\square \rightarrow 0}{\mathrm{~A}}-\mathrm{Cr}$	00011111	1F	\ddagger	-	-	-	0	0	1	1	4	Rotate right accumulator.		
RLCr		$\begin{array}{\|rrrr} \hline 11 & 001 & 011 \\ 00 & \mathrm{k} & \mathrm{r} \\ \hline \end{array}$	$\begin{aligned} & \hline \text { CB } \\ & 00+ \\ & \hline \end{aligned}$	\ddagger	\ddagger	P	\ddagger	0	0	2	2	8	Rotate left circular register r.		
RLC (HL)		$\begin{array}{\|ccc\|} \hline 11 & 001 & 011 \\ 00 & \mathrm{k} & 110 \\ \hline \end{array}$	$\begin{aligned} & \hline \text { CB } \\ & 06+ \end{aligned}$	\ddagger	1	P	\ddagger	0	0	2	4	15	Reg.		
RLC (IX + d)		$\begin{array}{ccc} 11 & 011 & 101 \\ 11 & 001 & 011 \\ \leftarrow & \mathrm{~d} & \rightarrow \\ 00 & \mathrm{k} & 110 \\ \hline \end{array}$	DD CB $06+$	\ddagger	\ddagger	P	\downarrow	0	0	4	6	23	$\begin{aligned} & 000 \\ & 001 \\ & 010 \\ & 011 \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{C} \\ & \mathrm{D} \\ & \mathrm{E} \end{aligned}$	
RLC (IY + d)		11 111 101 11 001 011 \leftarrow d \rightarrow 00 k 110	FD CB $06+$	\ddagger	\ddagger	P	\ddagger	0	0	4	6	23	$\begin{aligned} & 100 \\ & 101 \\ & 111 \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{~A} \end{aligned}$	
RL m	[C- $7-0-\mathrm{m}$							0	0				Mnemonic	k	
RRC m				\ddagger	\ddagger	P	1	0	0				$\begin{aligned} & \text { RLC } \\ & \text { RRC } \\ & \text { RL } \end{aligned}$	$\begin{aligned} & 000 \\ & 001 \\ & 010 \end{aligned}$	
RR m	$\frac{-7 \rightarrow 0}{\mathrm{~m}}-\mathrm{C}$			\ddagger	\ddagger	P	\ddagger	0	0	$\left.\right\|^{2 *}$	$\\|^{2}$ *	$\left\lvert\, \begin{aligned} & 8^{*} \\ & 15 \end{aligned}\right.$	$\begin{aligned} & \text { RR } \\ & \text { SLA } \end{aligned}$	$\begin{aligned} & 011 \\ & 100 \end{aligned}$	
SLA m	$\mathrm{C}-7-0-$			\ddagger	\ddagger	P	\ddagger	0	0	$\left\lvert\, \begin{aligned} & 4 \\ & 4\end{aligned}\right.$	6	$\left\lvert\, \begin{aligned} & 23 \\ & 23 \end{aligned}\right.$	SRA SṘL	$\begin{aligned} & 101 \\ & 111 \end{aligned}$	
SRA m	$\frac{7 \rightarrow 0}{7 \mathrm{~m}}-\mathrm{C}$			\ddagger	\downarrow	P	\ddagger	0	0				$\begin{aligned} & \mathrm{m}=\mathrm{r},(\mathrm{HL}), \\ & (\mathrm{IX}+\mathrm{d}),(\mathrm{IY}+\mathrm{d}) \end{aligned}$		
SRL m	$-\frac{7 \longrightarrow 0}{\mathrm{~m}}-\mathrm{C}$		-	\ddagger	1	P	\ddagger	0	0				* depends on m.		
RLD	$\frac{A \sqrt{74 \sqrt[30]{30}}}{4} \frac{\sqrt{7430}}{4} \sqrt{4}(\mathrm{HL})$	$\begin{array}{lll} 11 & 101 & 101 \\ 01 & 101 & 111 \end{array}$	$\begin{aligned} & \text { ED } \\ & 6 F \end{aligned}$	\bullet	1	P	\ddagger	0	0	2	5	18	Rotate digit right betw accumulat location (HL)	left and n the and	
RRD		$\begin{array}{lll} 11 & 101 & 101 \\ 01 & 100 & 111 \end{array}$	$\begin{aligned} & \text { ED } \\ & 67 \end{aligned}$	-	\ddagger	P	\ddagger	0	0	2	5	18	The conten upper half accumulat affected.	of the f the is un-	

Flags

[^12]Table 8 Bit set, reset and test group

Mnemonic	Symbolic operation	OP code	HEX code	Flags						$\begin{aligned} & \hline \text { No. of } \\ & \text { Bytes } \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline \text { No. of } \\ \text { M Cycles } \\ \hline \end{array}$	No. of T States	Comments	
		76543210	(Basic)	C	2	P/v	S	N	H					
BIT b, r	$\mathrm{Z} \leftarrow \overline{\mathbf{r}}_{\mathrm{b}}$	$\begin{array}{\|rrr\|} \hline 11 & 001 & 011 \\ 01 & \mathrm{~b} & \mathrm{r} \end{array}$	$\begin{aligned} & \text { CB } \\ & 40+ \end{aligned}$	\bullet	\ddagger	X	X	0	1	2	2	8	r	Reg.
BIT b, (HL)	$\mathrm{Z} \leftarrow(\overline{\mathrm{HL}})_{\mathrm{b}}$	$\begin{array}{\|ccc\|} \hline 11 & 001 & 011 \\ 01 & b & 110 \\ \hline \end{array}$	$\begin{aligned} & \text { CB } \\ & 46+ \\ & \hline \end{aligned}$	-	\ddagger	X	X	0	1	2	3	12	000	$\begin{aligned} & \mathrm{B} \\ & \mathrm{C} \end{aligned}$
BIT b, (IX+d)	$Z \leftarrow(\overline{\text { IX }}+\mathrm{d})_{\bullet}$	$\begin{array}{\|ccc\|} \hline 11 & 011 & 101 \\ 11 & 001 & 011 \\ \leftarrow & \text { d } & \rightarrow \\ 01 & \mathrm{~b} & 110 \\ \hline \end{array}$	DD CB $46+$	\bullet	\ddagger	X	X	0	1	4	5	20	$\begin{aligned} & 011 \\ & 100 \\ & 101 \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$
BIT b, (IY +d)	$Z \leftarrow(\overline{\text { IY }+\mathrm{d}})_{\bullet}$	$\begin{array}{cccc\|} \hline 11 & 111 & 101 \\ 11 & 001 & 011 \\ \leftarrow & \text { d } & \rightarrow \end{array}$	$\begin{aligned} & \mathrm{FD} \\ & \mathrm{CB} \end{aligned}$	\bullet	\ddagger	X	X	0	1	4	5	20	b	Bit Tested
		01 b 110	46+										000	0
SET b, r	$\mathrm{r}_{\mathrm{b}} \leftarrow 1$	$\begin{array}{\|lrr\|} \hline 11 & 001 & 011 \\ \mathrm{a} & \mathrm{~b} & \mathrm{r} \\ \hline \end{array}$	CB	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	2	2	8	010	2
SET b, (HL)	$(\mathrm{HL})_{\circ} \leftarrow 1$	$\begin{array}{\|ccc} \hline 11 & 001 & 011 \\ \mathrm{a} & \mathrm{~b} & 110 \\ \hline \end{array}$	$\begin{aligned} & \hline \text { CB } \\ & 06+ \end{aligned}$	\bullet	-	\bullet	-	\bullet	\bullet	2	4	15	100	4
SET b, (IX+d)	$(\mathrm{IX}+\mathrm{d})_{\mathrm{b}} \leftarrow 1$	$\begin{array}{\|ccc\|} \hline 11 & 011 & 101 \\ 11 & 001 & 011 \\ \leftarrow & d & \rightarrow \\ a & b & 110 \\ \hline \end{array}$	DD CB $06+$	\bullet	\bullet	-	\bullet	\bullet	\bullet	4	6	23	$\begin{aligned} & 101 \\ & 110 \\ & 111 \end{aligned} .$	$\begin{aligned} & 5 \\ & 6 \\ & 7 \end{aligned}$
SET b, (IY+d)	$(\mathrm{IY}+\mathrm{d})_{\mathrm{b}} \leftarrow 1$	$\begin{array}{\|ccc\|} \hline 11 & 111 & 101 \\ 11 & 001 & 011 \\ \leftarrow & d & \rightarrow \\ a & b & 110 \\ \hline \end{array}$	FD CB $06+$	\bullet	-	\bullet	-	-	\bullet	4	6	23	$\begin{gathered} \text { Mnemonic } \\ \hline \text { SET } \\ \text { RES } \end{gathered}$	a 11 10
RES b, m	$\mathrm{m}_{\mathrm{b}} \leftarrow 0$									2 2 2 4 4	$\begin{aligned} & 2^{*} \\ & 4 \\ & 6 \\ & 6 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 8^{*} \\ 15 \\ 23 \\ 23 \\ \hline \end{gathered}$	$\begin{array}{r} \mathrm{m}=\mathrm{r},(\mathrm{HL}), \\ (\mathrm{IX}+\mathrm{d}),(\mathrm{IY} \\ \text { * depends } \end{array}$	$I Y+d)$ s on m

Note : The notation mbindicates bit $\mathbf{b}(0$ to 7) or location m.
Flags : $=$ unchanged
$0=$ reset
$1=$ set
$\mathrm{X}=$ undefined
$\downarrow=$ set or reset according to the result of the operation

Table 9 Jump group

Mnemonic	Symbolic operation	OP code	HEX code	Flags						No. of Bytes	$\begin{array}{\|c\|} \hline \text { No. of } \\ \text { M Cycles } \\ \hline \end{array}$	No. of T States	Comments	
		76543210	(Basic)	C	Z	P/V	S	N	H					
JP nn	$\mathrm{PC} \leftarrow \mathrm{nn}$	$\begin{array}{ccc}11 & 000 & 011 \\ \leftarrow & \mathrm{n} & \\ \\ \sim\end{array}$	C3	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	3	3	10	cc	Condition
		$\leftarrow \mathrm{n} \rightarrow$											000	NZ
JP ce, nn	If condition cc is true $\mathrm{PC} \leftarrow \mathrm{nn}$, otherwise continue	$\begin{array}{\|ccc\|} \hline 11 & \text { cc } & 010 \\ \leftarrow & \mathrm{n} & \rightarrow \end{array}$	C2+	-	-	-	\bullet	-	\bullet	3	3	10	$\begin{aligned} & 001 \\ & 010 \end{aligned}$	$\begin{gathered} \mathrm{Z} \\ \mathrm{NC} \end{gathered}$
		$\leftarrow \mathrm{n} \rightarrow$								3	3	10	100	PO
JR e	$\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{e}$	$\begin{array}{rrr} 00 & 011 & 000 \\ \leftarrow & \mathrm{e}-2 & \rightarrow \\ \hline \end{array}$	18	\bullet	-	-	-	-	\bullet	2	3	12	$\begin{aligned} & 101 \\ & 110 \end{aligned}$	$\begin{gathered} \text { PE } \\ \text { P } \end{gathered}$
JR C, e	$\begin{aligned} & \text { If } \mathrm{C}=1 \\ & \mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{e} \\ & \hline \text { If } \mathrm{C}=0 \\ & \text { continue } \\ & \hline \end{aligned}$	$\begin{array}{ccc} \hline 00 & 111 & 000 \\ \leftarrow & \mathrm{e}-2 & \rightarrow \end{array}$	38	\bullet	-	\bullet	\bullet	\bullet	\bullet	2	3	12	NZ: non-zero Z: zero C : carry PO : parity odd PE : parity even P : sign positive M : sign negative	
										2	2	7		
JR NC, e	$\begin{aligned} & \text { If } \mathrm{C}=0 \\ & \mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{e} \end{aligned}$	$\begin{array}{ccc} 00 & 110 & 000 \\ \leftarrow & \mathrm{e}-2 & \rightarrow \end{array}$	30	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	2	3	12		
	If $\mathrm{C}=1$ continue									2	2	7		
JR Z, e	$\begin{aligned} & \text { If } \mathrm{Z}=1 \\ & \mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{e} \\ & \hline \end{aligned}$	$\begin{array}{ccc} \hline 00 & 101 & 000 \\ \leftarrow & \mathrm{e}-2 & \rightarrow \end{array}$	28	\bullet	-	-	-	\bullet	\bullet	2	3	12		
	If $Z=0$ continue									2	2	7		
JR NZ, e	$\begin{aligned} & \text { If } Z=0 \\ & \mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{e} \\ & \hline \end{aligned}$	$\begin{array}{\|ccc} \hline 00 & 100 & 000 \\ \leftarrow & \text { e. } 2 & \rightarrow \end{array}$	20	-	\bullet	\bullet	\bullet	\bullet	\bullet	2	3	12		
	If $Z=1$ continue									2	2	7		
JP (HL)	$\mathrm{PC} \leftarrow \mathrm{HL}$	11101001	E9	\bullet	-	-	\bullet	\bullet	-	1	1	4		
JP (IX)	$\mathrm{PC} \leftarrow \mathrm{IX}$	$\begin{array}{\|lll\|} \hline 11 & 011 & 101 \\ 11 & 101 & 001 \\ \hline \end{array}$	$\begin{aligned} & \text { DD } \\ & \text { E9 } \\ & \hline \end{aligned}$	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	2	2	8		
JP (IY)	$\mathrm{PC} \leftarrow \mathrm{IY}$	$\begin{array}{\|lll\|} \hline 11 & 111 & 101 \\ 11 & 101 & 001 \\ \hline \end{array}$	$\begin{aligned} & \text { FD } \\ & \text { E9 } \\ & \hline \end{aligned}$	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	2	2	8		
DJNZ, e	$\begin{aligned} & \text { If } \mathrm{B} \leftarrow \mathrm{~B}-1 \\ & \mathrm{~B} \neq 0 \\ & \mathrm{PC} \leftarrow \mathrm{PC}+1 \end{aligned}$	$\begin{array}{\|ccc\|} \hline 00 & 010 & 000 \\ \leftarrow & \text { e-2 } & \rightarrow \end{array}$	10	\bullet	\bullet	\bullet	\bullet	\bullet	-	2	3	13		
	If $B=0$ continue									2	2	8		

Note : e represents the extension in the relative addressing mode.
e is a signed two's complement number in the range $<-126,129>$
$\mathrm{e}-2$ in the opcode provides an effective address of $\mathrm{pc}+\mathrm{e}$ as PC is incremented by 2 prior to the addition of e .
e itself is obtained from opcode position.
Flags: $=$ unchanged
$0=$ reset
$1=$ set
$X=$ undefined
$\ddagger=$ set or reset according to the result of the operation

Table 10 Call and return group

Mnemonic	Symbolic operation	OP code	$\begin{array}{\|l\|} \hline \text { HEX code } \\ \hline \text { (Basic) } \\ \hline \end{array}$	Flags						No. of Bytes	$\begin{array}{\|c\|} \hline \text { No. of } \\ \text { M Cycles } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { No. of } \\ \text { T States } \\ \hline \end{array}$	Comments	
		76543210		C	Z	P/v	S	N	H					
CALL nn	$\begin{aligned} & (\mathrm{SP}-1) \leftarrow \mathrm{PC}_{\mathrm{H}} \\ & (\mathrm{SP}-2) \leftarrow \mathrm{PC}_{L} \end{aligned}$	$\begin{array}{ccc} 11 & 001 & 101 \\ \leftarrow & \mathrm{n} & \rightarrow \end{array}$	CD	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	3	5	17	cc	Condition
	$\mathrm{PC} \leftarrow \mathrm{nn}$	$\leftarrow \begin{array}{lll} \leftarrow & \mathrm{n} & \rightarrow \\ \leftarrow & \mathrm{n} & \rightarrow \end{array}$											000	
CALL cc, nn	If condition cc is false continue, otherwise same as CALL nn	$\begin{array}{ccc} \hline 11 & \text { cc } & 100 \\ \leftarrow & n & \rightarrow \\ \leftarrow & n & \rightarrow \end{array}$	C4+	\bullet	-	\bullet	\bullet	\bullet	\bullet	3	5	17	010	NC
										3	3	10		
													01	PE
RET	$\begin{aligned} & \hline \mathrm{PC}_{\mathrm{L}} \leftarrow(\mathrm{SP}) \\ & \mathrm{PC}_{\mathrm{H}} \leftarrow(\mathrm{SP}+1) \end{aligned}$	11001001	C9	\bullet	\bullet	\bullet	\bullet	-	\bullet	1	3	10	110	P
RET cc	If condition cc is false continue, otherwise same as RET	11 cc 000	$\mathrm{C} 0+$	-	-	-	-	-	-	1	3	11	111	M
										1	1	5	r	p
													000	00\%
RETI	Return from interrupt	$\begin{array}{\|llll\|} \hline 11 & 101 & 101 \\ 01 & 001 & 101 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{ED} \\ & 4 \mathrm{D} \\ & \hline \end{aligned}$	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	2	4	14		$\begin{aligned} & 08_{\mathrm{H}} \\ & 10_{\mathrm{H}} \end{aligned}$
RETN	Return from non-maskable interrupt	$\begin{array}{lll} \hline 11 & 101 & 101 \\ 01 & 000 & 101 \end{array}$	$\begin{aligned} & \mathrm{ED} \\ & 45 \end{aligned}$	\bullet	-	-	\bullet	\bullet	\bullet	2	4	14	$\begin{aligned} & 011 \\ & 100 \\ & 101 \end{aligned}$	$\begin{aligned} & 18 \mathrm{H} \\ & 20_{\mathrm{H}} \\ & 28_{\mathrm{H}} \end{aligned}$
RST p	$\begin{aligned} & (\mathrm{SP}-1) \leftarrow \mathrm{PC}_{\mathrm{H}} \\ & (\mathrm{SP}-2) \leftarrow \mathrm{P} \mathrm{C}_{\mathrm{L}} \\ & \mathrm{PC}_{\mathrm{H}} \leftarrow 0 \\ & \mathrm{PC}_{\mathrm{L}} \leftarrow \mathrm{p} \\ & \hline \end{aligned}$	11 t 111	C7+	-	-	-	-	-	-	1	3	11	$\begin{aligned} & 110 \\ & 111 \end{aligned}$	$\begin{aligned} & 30_{\mathrm{H}} \\ & 38_{\mathrm{H}} \end{aligned}$
$\text { Flags : } \begin{aligned} \bullet & =\text { unc } \\ 0 & =\text { rese } \\ 1 & =\text { set } \\ X & =\text { und } \\ \ddagger & =\text { set } \end{aligned}$	anged fined reset according	to the result of	the operati			-								

Table 11 Input and output group

Note : (1)If the result of $B-1$ is zero the Z flag is set, otherwise it is reset.
(2) Z flag is set upon instruction completion only.

Flags: $-=$ unchanged
$0=$ reset
$1=$ set
$\mathrm{X}=$ undefined
$\ddagger=$ set or reset according to the result of the operation

LH0081

Z80 PIO Parallel Input/Output Controller

Description

The Z 80 product line is a complete set of microcomputer components, development systems and support software. The $Z 80$ microcomputer component set includes all of the circuits necessary to build high-performance microcomputer systems with virtually no other logic and a minimum number of low cost standard memory elements.

The LH0081 Z80 PIO (Z80 PIO for short below) is a programmable two port device which provides TTL compatible interfacing between peripheral devices and the $Z 80 \mathrm{CPU}$. The Z 80 CPU configures Z80 PIO to interface with standard peripheral devices such as printers, keyboards, etc.

The LH0081A Z80A and LH0081B Z80B PIO are the high speed version which can opeate at the 4 MHz and 6 MHz system clock, respectively.

Features

1. Two independent 8 -bit bidirectional peripheral interface ports with "handshake" data transfer control
2. N -channel silicon-gate process

- Pin Connections

LH0081/LH0081A/LH0081B/LH0081E

5

LH0081M/LH0081AM

LH0081U/LH0081AU

* The GND pins must be connected to the GND level.

3. Any one of the following four modes of operation may be selected.

- Byte output mode
- Byte input mode
- Byte bidirectional bus (available on Port A only)
- Bit mode

4. Programmable interrupt
5. Vectored daisy chain priority interrupt logic
included
6. The port B outputs can drive Darlington transistors
7. All inputs and outputs fully TTL compatible
8. Single +5 V power supply and single phase clock
9. 40-pin DIP (DIP40-P-600)

44-pin QFP (QFP44-P-1010A)
44-pin QFJ (QFJ44-P-S650)

Ordering Information

Product	Z80 PIO	Z80A PIO	Z80B PIO	Z80E PIO	Package	Operating temperature
Clock frequency	2.5 MHz	4 MHz	6 MHz	8 MHz		
Model No.	LH0081	LH0081A	LH0081B	LH0081E	40 -pin DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
	LH0081M	LH0081AM			40 -pin QFP	$0^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
	LH0081U	LH0081AU	LH0081BU		40 -pin QFJ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Block Diagram

- Pin Description

Pin	Meaning	I/O	Function
$\mathrm{D}_{0}-\mathrm{D}_{7}$	Data bus	Bidirectional 3 -state	System data bus.
B/A SEL	Port B or A select	I	Defines which port is accessed. A high selects port B, and a low port A.
C/D SEL	Control or data select	I	Defines the type of data transfer on the data bus. A high selects control, and a low data.
$\overline{\mathrm{CE}}$	Chip enable	I	Active "Low". A low enables the CPU to transmit and receive control words and data.
CLOCK	System clock	I	Standard Z80 system clock used for internal synchronization signals.
$\overline{\mathrm{M} 1}$	Machine cycle one	I	Active "Low". Indicates that the CPU is acknowledging an interrupt, when both M1 and IORQ are active.
$\overline{\text { IORQ }}$	Input/output request	I	Active "Low". Read operation when $\overline{\mathrm{RD}}$ is active, and write operation when it is not active. Indicates that the CPU is acknowledging an interrupt, when both $\overline{\mathrm{IORQ}}$ and $\overline{\mathrm{M} 1}$ are active.
$\overline{\mathrm{RD}}$	Read cycle status	I	Active "Low". Read operation when active.
IEI	Interrupt enable in	I	Active "High". Forms a priority-interrupt daisy-chain.
IEO	Interrupt enable out	0	Active "High". Forms a priority-interrupt daisy-chain.
INT	Interrupt request	Open drain, O	Active "Low". Active when requesting an interrupt.
$\mathrm{A}_{0}-\mathrm{A}_{7}$	Port A bus	$\begin{gathered} \text { Bidirectional } \\ 3 \text {-state } \\ \hline \end{gathered}$	Transfers information between port A and a peripheral device.
$\overline{\mathrm{A} \mathrm{STB}}$	Port A strobe	I	Active "Low". Used as a handshake line for data transfer synchronization on port A. Not used in the bit control mode.
A RDY	Port A ready	0	Active "High". Used as a handshake line for data transfer synchronization on port A. Not used in the bit control mode.
$\mathrm{B}_{0}-\mathrm{B}_{7}$	Port B bus	Bidirectional 3-state	Transfers information between port B and a peripheral device.
$\overline{\mathrm{BSTB}}$	Port B strobe	I	Active "Low". Used as a handshake line for data transfer synchronization on port B. Not used in the bit control mode.
B RDY	Port B ready	O	Active "High". Used as a handshake line for data transfer synchronization on port B. Not used in the bit control mode.

Absolute Maximum Ratings

Parameter	Symbol	Ratings	Unit
Input voltage	$\mathrm{V}_{\text {IN }}$	-0.3 to +7.0	V
Output voltage	$\mathrm{V}_{\text {OuT }}$	-0.3 to +7.0	V
Operating temperature	Topr	0 to +70	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg	-65 to +150	${ }^{\circ} \mathrm{C}$

DC Characteristics
$\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{Ta}=0\right.$ to $\left.+70^{\circ} \mathrm{C}^{\text {Note }{ }^{1}}\right)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Clock input low voltage	$\mathrm{V}_{\mathrm{ILC}}$		-0.3		0.45	V
Clock input high voltage	$\mathrm{V}_{\mathrm{IHC}}$		$\mathrm{V}_{\mathrm{CC}}-0.6$		$\mathrm{~V}_{\mathrm{CC}}+0.3$	V
Input low voltage	V_{IL}		-0.3		0.8	V
Input high voltage	V_{IH}		2.0		5.5	V
Output low voltage	V_{OL}	$\mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA}$			0.4	V
Output high voltage	V_{OH}	$\mathrm{I}_{\mathrm{OH}}=-250 \mu \mathrm{~A}$	2.4			V
Supply current	I_{CC}	$\mathrm{V}_{\mathrm{OH}}=1.5 \mathrm{~V}$			100	mA
Input leakage current	$\left\|\mathrm{I}_{\mathrm{LI}}\right\|$	$0 \leqq \mathrm{~V}_{\mathrm{IN}} \leqq \mathrm{V}_{\mathrm{CC}}$			10	$\mu \mathrm{~A}$
3 state output/data bus input leakage current	$\left\|\mathrm{I}_{\mathrm{z}}\right\|$	$0 \leqq \mathrm{~V}_{\mathrm{IN}} \leqq \mathrm{V}_{\mathrm{CC}}$			10	$\mu \mathrm{~A}$
Darlington drive current	$\mathrm{I}_{\mathrm{OHD}}$	$\mathrm{R}_{\mathrm{EXT}}=390 \Omega$	-1.5			mA

Note 1: $\mathrm{Ta}=0$ to $+60^{\circ} \mathrm{C}$ for 44 -pin QFP.
Capacitance
($\mathrm{f}=1 \mathrm{MHz}, \mathrm{Ta}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Clock capacitance	$\mathrm{C}_{\text {CLOCK }}$	Unmeasured pins returned to ground			12	pF
Input capacitance	$\mathrm{C}_{\text {IN }}$				7	pF
Output capacitance	Cout				10	pF

AC Characteristics
$\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{Ta}=0\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$

No.	Parameter	Symbol	LH0081		LH0081A		LH0081B		LH0081E		Unit	Note
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
1	Clock Cycle time	TcC	400	(Note 1)	250	(Note 1)	165	(Note 1)	125	(Note 1)	ns	
2	Clock width (high)	TwCh	170	2000	105	2000	65	2000	55	2000	ns	
3	Clock width (low)	TwCl	170	2000	105	2000	65	2000	55	2000	ns	
4	Clock fall time	TfC		30		30		20		10	ns	
5	Clock rise time	TrC		30		30		20		10	ns	
6	$\overline{\mathrm{CE}}, \mathrm{B} / \overline{\mathrm{A}}, \mathrm{C} / \overline{\mathrm{D}}$ to $\overline{\mathrm{RD}}, \overline{\mathrm{IORO}} \downarrow$ Setup time	TsCS (RI)	50		50		50		50		ns	6
7	Any hold times for specified setup time	Th	0		0		0		0		ns	
8	$\overline{\mathrm{RD}}, \overline{\mathrm{IORQ}}$ to clock \uparrow setup time	TsRI (C)	115		115		70		60		ns	
9	$\overline{\mathrm{RD}}, \overline{\mathrm{IORQ}} \downarrow$ to deta out delay	TdRI (DO)		430		380		300		210	ns	2
10	$\overline{\mathrm{RD}}, \overline{\mathrm{IORQ}} \uparrow$ to deta out float delay	TdRI (DOs)		160		110		70		60	ns	
11	Data in to clock \uparrow setup time	TsRI (C)	50		50		40		30		ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
12	IORQ \downarrow to vector out delay (INTACK cycle)	TdIO (DOI)	340		160		120		90		ns	3
13	M1 \downarrow to clock \uparrow setup time	TsMl (Cr)	210		90		70		55		ns	
14	$\overline{\text { M1 }} \uparrow$ to clock \downarrow setup time ($\overline{\mathrm{Ml}}$ cycle)	TsM1 (Cf)	0		0		0		0		ns	8
15	$\overline{\mathrm{M}} \downarrow$ to IEO \downarrow delay (interrupt immedietely preceding $\overline{\mathrm{Ml}} \downarrow$)	TdMl (IEO)		300		190		100		85	ns	5,7
16	IEI to $\overline{\text { IORQ }} \downarrow$ setup time (INTACK cycle)	TsIEI (IO)	140		140		100		100		ns	7
17	IEI \downarrow to IEO \downarrow delay	TdIEI (IEOf)		190		130		120		110	ns	$\begin{gathered} 5 \\ C_{L}=50 \mathrm{pF} \end{gathered}$
18	IEI \uparrow to IEO \uparrow delay (After ED decode)	TdIEI (IEOr)		210		160		160		150	ns	5

No.	Parameter	Symbol	LH0081		LH0081A		LH0081B		LH0081E		Unit	Note
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
19	$\overline{\mathrm{IORQ}} \uparrow$ to clock \downarrow setup time (to activate READY to next clock cycle)	TcIO (C)	220		200		170		160		ns	
20	Clock \downarrow to READY \uparrow delay	TdC (RDYr)	200		190		170		160		ns	$\begin{gathered} 5 \\ C_{L}=50 \mathrm{pF} \end{gathered}$
21	Clock \downarrow to READY \downarrow delay	TdC (RDYf)	150		140		120		110		ns	5
22	STROBE pulse width	TwSTB	150		150		120		100		ns	4
23	$\overline{\text { STROBE }} \uparrow$ to clock \downarrow setup time (to activate READY on next clock cycue)	TsSTB (C)	220		220		150		130		ns	5
24	$\overline{\text { IORQ }} \uparrow$ to PORT DATA stable delay (Mode 0)	TdIO (PD)		200		180		160		150	ns	5
25	PORT DATA to STROBE \uparrow setup time (mode 1)	TsPD (STB)	260		230		190		170		ns	
26	$\overline{\text { STROBE }} \downarrow$ to PORT DATA stable (mode 2)	TdSTB (PD)		230		210		180		160	ns	5
27	$\overline{\text { STROBE }} \uparrow$ to PORT DATA float delay (mode 2)	TdSTB (PDr)		200		180		160		140	ns	$C_{L}=50 \mathrm{pF}$
28	PORT DATA match to $\overline{\text { INT }} \downarrow$ delay (mode 3)	TdPD (INT)		540		490		430		380	ns	
29	$\overline{\text { STROBE }} \uparrow$ to $\overline{\text { INT }} \downarrow$ delay	TdSTB (INT)		490		440		350		300	ns	

\uparrow Rising edge, \downarrow Falling edge
$\mathrm{Ta}=0$ to $+60^{\circ} \mathrm{C}$ for 44 -pin QFP.
Note 1: $\mathrm{TcC}=\mathrm{TwCh}+\mathrm{TwCl}+\mathrm{TrC}+\mathrm{TfC}$.
Note 2: Increase TdRI (DO) by 10 ns for each 50 pF increase in load up to 200 pF max.
Note 3: Increase TdIO (DOI) by 10 ns for each 50 pF , increase in load up to 200 pF max.
Note 4: For Mode 2: TwSTB>TsPD (STB).
Note 5: Increase these values by 2 ns for each 10 pF increase in load up to 100 pF max.
Note 6: TsCS (RI) may be reduced. However, the time subtracted from TsCS (RI) will be added to TdRI (DO).
Note 7: $2.5 \mathrm{TcC}>(\mathrm{N}-2$) TdIEI (IEOf) + TdM1 (IEO) + TsIEI (IO) + TTL buffer delay, if any.
Note 8: $\quad \bar{M} 1$ must be active for a minimum of two clock cycles to reset the PIO.
Note 9: Z80B PIO numbers are preliminary and subject to change.

AC Timing Chart

Programming

(1) Interrupt vector read

An interrupting device needs giving an 8-bit interrupt vector to the CPU. Using this vector, the CPU forms an interrupt service routine address.

(2) Operation mode select

An operation mode is selected by writing data to the 2 -bit mode control register in the following manner.

X means they are not used

Mode	M1	M0
Byte output mode	0	0
Byte input mode	0	1
Bidirectional byte bus mode	1	0
Bit control mode	1	1

In selecting the bit control mode, an input/output direction should be set later.

I/O $=1:$ Input ; $I / O=0:$ Output

- Timing

(1) Output mode (Mode 0)

An output cycle is always started by the execution of an output instruction by the CPU. The WR ${ }^{*}$ pulse from the CPU latches the data from the CPU data bus into the selected port's output register. The $\overline{\mathrm{WR}}^{*}$ pulse sets the Ready flag after a Lowgoing edge of CLK, indicating data is available.

(3) Interrupt control

The interrupt control words are as follows.

Bit7 $=1$: Interrupt enable flag is set to enable an interrupt.
Bit7 $=0$: Interrupt enable flag is reset to disable an interrupt.
Bit6 to 4: Defines interrupt conditions in the bit mode. Ignored in other modes.
Bit3 to 0: Indicates interrupt control words.
If bit $4=1$, the following control words are supposed to be written in the mask register.

Only the port data line with $\mathrm{MB}=0$ is monitored. When the interrupt conditions are satisfied, an interrupt takes place.

Ready stays active until the positive edge of the strobe line is received, indication that data was taken by the peripheral. The positive edge of the strobe pulse generates an INT if the interrupt enable flipflop has been set and if this device has the highest priority.

Fig. 1 Byte output mode timing
(2) Input mode (Mode 1)

When $\overline{\text { STROBE }}$ goes Low, data is loaded into the selected port input register. The next rising edge of strobe activates INT, if Interrupt Enable is set and this is the highest-priority requesting device. The following falling edge of CLK resets Ready to an inactive state, indicating that the input register is full
and cannot accept any more data until the CPU completes a read. When a read is complete, the positive edge of $\overline{\mathrm{RD}}$ sets Ready at the next Lowgoing transition of CLK. At this time new data can be loaded into the PIO.

Fig. 2 Byte input mode timing

(3) Bidirectional mode (Mode 2)

This is a combination of Modes 0 and 1 using all four handshake lines and the eight Port A I/O lines. Port B must be set to the bit mode and its inputs must be masked. The Port A handshake lines are used for output control and the Port B lines are used for input control. If interrupts occur,

Port A's vector will be used during port output and Port B's will be used during port input. Data is allowed out onto the Port A bus only when $\overline{\text { ASTB }}$ is Low. The rising edge of this strobe can be used to latch the data into the peripheral.

Fig. 3 Byte bidirectional bus mode timing

(4) Bit mode (Mode 3)

The bit mode does not utilize the handshake signals, and a normal port write or port read can be executed at any time. When writing, the data is latched into the output registers with the same timing as the output mode.
When reading the PIO, the data returned to the CPU is composed of output register data from those port data lines assigned as outputs and input regis-
ter data from those port data lines assigned as inputs. The input register contains data that was present immediately prior to the falling edge of $\overline{\mathrm{RD}}$. An interrupt is generated if interrupts from the port are enabled and the data on the port data lines satisfy the logical equation defined by the 8 -bit mask and 2 -bit mask control registers. However, if Port A is programmed in bidirectional mode, Port B does not issue an interrupt in bit mode and must therefore be polled.

Fig. 4 Bit mode timing

(5) Interrupt acknowledge timing

During $\overline{\mathrm{M} 1}$ time, peripheral controllers are inhibited from changing their interrupt enable status, permitting the Interrupt Enable signal to ripple through the daisy chain. The peripheral with IEI High and IEO Low during INTACK places a pre-
programmed 8-bit interrupt vector on the data bus at this time. IEO is held Low until a Return From Interrupt (RETI) instruction is executed by the CPU while IEI is High. The 2-byte RETI instruction is decoded internally by the PIO for this purpose.

Fig. 5 Interrupt acknowledge timing

(6) Return from interrupt cycle

If a $Z-80$ peripheral has no interrupt pending and is not under service, then its IEO=IEI. If it has an interrupt under service (i.e., it has already interrupted and received an interrupt acknowledge) then its IEO is always Low, inhibiting lower priority devices from interrupting. If it has an interrupt pending which has not yet been acknowledged, IEO is Low unless an "ED" is decoded as the first byte of a 2-byte opcode. In this case, IEO goes High until the next opcode byte is decoded, whereupon it
goes Low again. If the second byte of the opcode was a "4D", then the opcode was an RETI instruction.

After an "ED" opcode is decoded, only the peripheral device which has interrupted and is currently under service has its IEI High and its IEO Low. This device is the highest-priority device in the daisy chain that has received an interrupt acknowledge. All other peripherals have IEI = IEO. If the next opcode byte decoded is " 4 D ". this peripheral device resets its "interrupt under service" condition.

Fig. 6 Return from interrupt cycle timing

LH0082

Z80 CTC Counter Timer Circuit

Description

The $Z 80$ product line is a complete set of microcomputer components, development systems and support software. The Z 80 microcomputer component set includes all of the circuits necessary to build high-performance microcomputer systems with virtually no other logic and a minimum number of low cost standard memory elements.

The LH0082 Z80 CTC (Z80 CTC for short below) is a programmable, four channel device that provides counting and timing functions for the $Z 80$ CPU. The Z80 CPU configures the Z80 CTC's four independent channels to operate under various modes and conditions as required.

The LH0082A Z80A and LH0082B Z80B CTC are the high speed version which can operate at the 4 MHz and 6 MHz system clock, respectively.

Features

1. Four independent programmable 8 -bit coun-ter/16-bit timer channels
2. N -channel silicon gate process
3. Each channel may be selected to operate in either a counter mode or timer mode

LH0082M/LH0082AM

LH0082U/LH0082AU/LH0082BU

* The GND pins must be connected to the GND level.

4. Programmable interrupts on counter or timer states
5. When the down-counter reaches the zero count the CTC reloads its time constant automatically and continues it's channel operation
6. Readable down counter
7. Selectable 16 or 256 clock prescaler for each timer channels
8. Selectable positive or negative trigger may initiate timer or counter operation
9. Three channels have ZC/TO outputs capable of driving Darlington transistors
10. Vectored daisy chain priority interrupt logic included
11. Single +5 V power supply and single phase clock
12. All inputs and outputs fully TTL compatible
13. 28-pin DIP (DIP28-P-600)

44-pin QFP (QFP44-P-1010A)
44-pin QFJ (QFJ44-P-S650)

- Ordering Information

Product	Z80 CTC	Z80A CTC	Z80B CTC	Z80E CTC	Package	Operating temperature
Clock frequency	2.5 MHz	4 MHz	6 MHz	8 MHz		
Model No.	LH0082	LH0082A	LH0082B	LH0082E	28 -pin DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
	LH0082M	LH0082AM			44 -pin QFP	$0^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
	LH0082U	LH0082AU	LH0082BU		44 -pin QFJ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

- Block Diagram

- Pin Description

Pin	Meaning	I/O	Function
$\mathrm{D}_{0}-\mathrm{D}_{7}$	Data bus	Bidirectional 3 -state	System data bus.
$\mathrm{CS}_{0}, \mathrm{CS}_{1}$	Channel select	I	Selects one of the four independent channels.
$\overline{\mathrm{CE}}$	Chip enable	I	Active "Low". A Low enables the CPU to transmit and receive control words and data.
CLOCK	System clock	I	Standard Z80 system clock used for internal synchro- nization signals.
$\overline{\mathrm{M1}}$	Machine cycle one	I	Active "Low". Indicates that the CPU is acknowledging an interrupt, when both M1 and IORQ are active.
$\overline{\mathrm{IORQ}}$	I/O request	Active "Low". Read operation when RD is active, and write operation when it is not active. Indicates the CPU is acknowledging an interrupt, when both IORQ and $\overline{M 1}$ are active.	
$\overline{\mathrm{RD}}$	Read cycle status	I	Active "Low". Read operation when active.
IEI	Interrupt enable in	I	Active "High". Forms a priority-interrupt daisy-chain.
IEO	Interrupt enable out	O	Active "High". Forms a priority-interrupt daisy-chain.
$\overline{\mathrm{INT}}$	Interrupt request	Open drain, O	Active "Low". Active when requesting an interrupt.
$\overline{\mathrm{RESET}}$	Reset	I	Active "Low". Resets the interrupt bits.
$\mathrm{CLK} / \mathrm{TRG}$ 0^{-}	External clock/timer trigger input	I	Counter/timer input for four independent channels.

- Absolute Maximum Ratings

Parameter	Symbol	Ratings	Unit	Note
Input voltage	$\mathrm{V}_{\text {IN }}$	-0.3 to +7.0	V	
Output voltage	$\mathrm{V}_{\text {OUT }}$	-0.3 to +7.0	V	
Operating temperature	Topr	0 to +70	${ }^{\circ} \mathrm{C}$	1
Storage temperature	Tstg	-65 to +150	${ }^{\circ} \mathrm{C}$	

Note 1: Topr $=0$ to $+60^{\circ} \mathrm{C}$ for 44 -pin QFP.

DC Characteristics			$\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{Ta}=0\right.$ to $\left.+70^{\circ} \mathrm{C}^{\text {Note } 1}\right)$			
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Clock input low voltage	$\mathrm{V}_{\text {ILC }}$		-0.3		0.45	V
Clock input high voltage	$\mathrm{V}_{\mathrm{IHC}}$		$\mathrm{V}_{\mathrm{CC}}-0.6$		$\mathrm{V}_{\mathrm{cc}}+0.3$	V
Input low voltage	$\mathrm{V}_{\text {IL }}$		-0.3		0.8	V
Input high voltage	V_{IH}		2.0		V_{Cc}	V
Output low voltage	V_{OL}	$\mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA}$			0.4	V
Output high voltage	V_{OH}	$\mathrm{I}_{\mathrm{OH}}=-250 \mu \mathrm{~A}$	2.4			V
Supply current	I_{CC}	$\mathrm{t}_{\mathrm{c}}=400 \mathrm{~ns}$			120	mA
Input leakage current	I_{LI}	$0 \leqq \mathrm{~V}_{\text {IN }} \leqq \mathrm{V}_{\text {CC }}$			10	$\mu \mathrm{A}$
3 -state output leakage current	$\mathrm{I}_{\text {LOH }}$	$2.4 \mathrm{~V} \leqq \mathrm{~V}_{\text {OUT }} \leqq \mathrm{V}_{\text {CC }}$			10	$\mu \mathrm{A}$
3-state output leakage current	$\mathrm{I}_{\text {LOL }} \mid$	$\mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}$			10	$\mu \mathrm{A}$
Darlington drive current	$\mathrm{I}_{\text {OHD }}$	$\mathrm{V}_{\mathrm{OH}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{EXT}}=390 \Omega$	-1.5			mA

Note 1: $\mathrm{Ta}=0$ to $+60^{\circ} \mathrm{C}$ for 44 -pin QFP.

- Capacitance

$$
\left(\mathrm{f}=1 \mathrm{MHz}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Clock capacitance	$\mathrm{C}_{\text {CLOCK }}$	Unmeasured pins returned to ground			20	pF
Input capacitance	$\mathrm{C}_{\text {IN }}$				5	pF
Output capacitance	$\mathrm{C}_{\text {OUT }}$				10	pF

AC Characteristics							$\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{Ta}=0\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$					
No.	Parameter	Symbol	LH0082		LH0082A		LH0082B		LH0082E		Unit	Note
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
1	Clock cycle time	TcC	400	(Note 1)	250	(Note 1)	165	(Note 1)	125	(Note 1)	ns	
2	Clock width (high)	TwCh	170	2000	105	2000	65	2000	55	2000	ns	
3	Clock width (low)	TwCl	170	2000	105	2000	65	2000	55	2000	ns	
4	Clock fall time	TfC		30		30		20		10	ns	
5	Clock rise time	TrC		30		30		20		10	ns	
6	All hold times	Th	0		0		0		0		ns	
7	CS to clock \uparrow setup time	TsCS (C)	250		160		100		80		ns	
8	$\overline{\mathrm{CE}}$ to clock \uparrow setup time	TsCE (C)	200		150		100		75		ns	
9	$\overline{\mathrm{IORQ}} \uparrow$ to clock \uparrow setup time	TsIO (C)	250		115		70		60		ns	
10	$\overline{\mathrm{RD}} \downarrow$ to clock \uparrow setup time	TsRD (C)	240		115		70		60		ns	
11	Clock \uparrow to data out delay	TdC (DO)		240		200		130		100	ns	2
12	Clock \downarrow to data out float delay	TdC (DOz)		230		110		90		75	ns	
13	Data in to clock \uparrow setup time	TsDI (C)	60		50		40		30		ns	
14	$\overline{\mathrm{Ml}}$ to clock \uparrow setup time	TsMl (C)	210		90		70		55		ns	
15	$\overline{\mathrm{M} 1} \downarrow$ to IEO \downarrow delay (interrupt immediately preceding $\overline{\mathrm{Ml}}$)	TdM1 (IEO)		300		190		130		90	ns	3
16	$\overline{\overline{\mathrm{ORQ}}} \downarrow$ to data out delay (INTA cycle)	TdIO (DOI)		340		160		110		80	ns	2
17	$\overline{\text { IEI }} \downarrow$ to IEO \downarrow delay	TdIEI (IEOf)		190		130		100		80	ns	3
18	IEI \uparrow to IEO \uparrow delay (after ED decode)	TdIEI (IEOr)		220		160		110		80	ns	3
19	Clock \dagger to $\overline{\text { INT }} \downarrow$ delay	TdC (INT)		TIC +200		TeC+140		TCC+120		TeC +100	ns	4
	CLK/TRG \uparrow to $\overline{\text { INT }} \downarrow$ delay tsCTR (C) satisfied			TIC +230		TeC+160		TeC+130		TCC+110	ns	5
20	CLK/TRG \uparrow to INT \downarrow delay tsCTR (C) not satisfied	TdCLK (INT)		$27 \mathrm{CC}+530$		$27 \mathrm{CC}+370$		$27 \mathrm{CC}+280$		$2 \mathrm{TcC}+190$	ns	5
21	CLK/TRG cycle time	TsCTR	2 TcC		2 TcC		2 TcC		2 TcC		ns	5
22	CLK/TRG rise time	TrCTR		50		50		40		35	ns	
23	CLK/TRG fall time	TfCTR		50		50		40		35	ns	
24	CLK/TRG width (low)	TwCTRI	200		200		120		100		ns	
25	CLK/TRG width (high)	TwCTRh	200		200		120		100		ns	
26	CLK/TRG \uparrow to clock \uparrow setup time for immediate count	TsCTR (Cs)	300		210		150		110		ns	5
27	CLK/TRG \uparrow to clock \uparrow setup time for enabling of prescaler on following clock \uparrow	TsCTR (Ct)	210		210		150		110		ns	4
28	Clock \uparrow to ZC/TO \uparrow delay	TdC (ZC/TOr)		260		190		140		110	ns	
29	Clock \downarrow to $\mathrm{ZC} / \mathrm{TO} \downarrow$ delay	TdC (ZC/TOf)		190		190		140		110	ns	

\uparrow Rising edge, \downarrow falling edge

$\mathrm{Ta}=0$ to $+60^{\circ} \mathrm{C}$ for 44 -pin QFP
$[\mathrm{A}] 2.5 \mathrm{TcC}>(\mathrm{n}-2)$ TdIEI (IEOf) + TdMI (IEO) + TsIEI (IO) + TTL buffer delay, if any.
[B] RESET must be active for a minimum of 3 clock cycles.
Note 1: $\mathrm{TcC}=\mathrm{TwCh}+\mathrm{TwCl}+\mathrm{TrC}+\mathrm{TfC}$.
Note 2 : Increase delay by 10 ns for each 50 pF increase in loading, 200 pF maximum for data lines, and 100 pF for control lines.
Note 3 : Increase delay by 2 ns for each 10 pF increase in loading, 100 pF maximum.
Note 4 : Timer mode.
Note 5 : Counter mode.

AC Timing Chart

Programming

(1) Operation mode select

To select a channel operating mode, write a channel control word having bit 0 changed to 1 in the channel control register.

D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}	
Inter- rupt enable	Mode	Pre- scaler value	CLK/ TRO	Trigger TRedge eelection	Time mode	constant mode	Reset	1

D_{3} and D_{5} are used in timer mode only.

- Bit $7=0$: Disables a channel interrupt.
- Bit 7 = 1: Enables a channel interrupt each time the down-counter counts down to zero. No interrupt is produced even with bit 7 as 1 , after the counter has counted down to zero with bit 7 as 0 .
- Bit $6=0$: Selects the timer mode, having the prescaler output as the down-counter clock. The timer's period comes in t_{C}. P. TC. Where t_{C} represents system clock period, P has 16 or 256 (divisional scale by the prescaler), and TC means an 8 -bit programmable time constant (max. 256).
- Bit $6=1$: Selects the counter mode, having the external clock (CLK input) signal as the downcounter clock. The prescaler is not used.
- Bit $5=0$: Used for the timer mode only. The prescaler divides the system clock into 16 sections.
- Bit $5=1$: Used for the timer mode only. The prescaler divides the system clock into 256 sections.
- Bit $4=0$: Starts the timer operation at the trigger input falling edge in the timer mode. In the counter mode, the down-counter comes on at the clock input rising edge.
- Bit $4=1$: Starts the timer operation at the trigger input rising edge in the timer mode. In the counter mode, the down-counter comes on at the clock input rising edge.
- Bit $3=0$: Effective in the timer mode only.

With bit $1=1$, the timer starts at the rising edge of the machine cycle T_{2} which is next to the write cycle of a time constant. With bit $1=0$, the timer starts at the rising edge of the machine cycle T_{1} which is next to the write cycle of this control information.

- Bit $3=1$: Effective in the timer mode only. The timer starts by an external trigger input that is given after the rising of the machine cycle T_{2} next to the write cycle of a time constant.

The operation starts at the second clock rising if the trigger input meets the set-up time, and at the third clock rising if it does not. If an external trigger input is given before writing a time constant the condition of bit $3=0$ is caused.

- Bit $2=0$: Indicates that there is no time constant written after the channel control word. This bit cannot be 0 for the channel control word to be immediately given when the channel is reset.
- Bit $2=1$: Indicates that there is a time constant written after the channel control word. When a time constant is written during a downcounter operation, the new constant is set into the time constant register. But the counter keeps on counting. Once the counter counts zero, the new constant is available to use.
- Bit $1=0$: The channel acts as a down-counter.
- Bit 1 = 1: Stops the operation as a down-counter. With bit $2=1$, the operation restarts after a time contant is written.
With bit $2=0$, the channel does not act until a new control word is given.

(2) Time constant programming

An 8-bit time constant is written into the time constant register, following the channel control word with bit $2=1$. "00" (hexadecimal) indicates the time constant 256.

D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}
TC_{7}	TC_{6}	TC_{5}	TC_{4}	TC_{3}	TC_{2}	TC_{1}	TC_{0}

(3) Interrupt vector programming

If the Z-80 CTC has one or more interrupts enabled, it can supply interrupt vectors to the $Z-80$ CPU. To do so, the Z-80 CTC must be pre-programmed with the most-significant five bits of the interrupt vector. Programming consists of writing a vector word to the I/O port corresponding to the Z-80 CTC Channel 0 . Note that D_{0} of the vector word is always zero, to distinguish the vector from a channel control word. D_{1} and D_{2} are not used in programming the vector word. These bits are supplied by the interrupt logic to identify the channel requesting interrupt service with a unique interrupt vector. Channel 0 has the highest priority.

D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}
V_{7}	V6	V_{5}	V_{4}	V_{3}	V_{2}	V_{1}	V_{0}

D_{2}	D_{1}	Channel
0	0	0
0	1	1
1	0	2
1	1	3

Timing

(1) Write cycle timing

Fig. 1 shows write cycle timing for loading control, time constant or vector words.

The CTC does not have a write signal input, so it generates one internally when the read ($\overline{\mathrm{RD}})$ input is High during T_{1}. During $\mathrm{T}_{2} \overline{\mathrm{IORQ}}$ and $\overline{\mathrm{CE}}$ inputs are Low. M1 must be High to distinguish a write cycle from an interrupt acknowledge. A 2-bit binary code at inputs CS_{1} and CS_{0} selects the channel to be addressed, and the word being written is placed on the $\mathrm{Z}-80$ data bus. The data word is latched into the appropriate register with the rising edge of clock cycle T_{3}.
(2) Read cycle timing

Fig. 2 shows read cycle timing. This cycle reads the contents of a down-counter without disturbing the count.

During clock cycle T_{2}, the Z-80 CPU initiates a read cycle by driving the following inputs Low: $\overline{\mathrm{RD}}$, $\overline{\text { IORQ }}$, and $\overline{\mathrm{CE}}$. A 2-bit binary code at inputs CS_{1}
and CS_{0} selects the channel to be read. $\overline{\mathrm{M} 1}$ must be High to distinguish this cycle from an interrupt acknowledge. No additional wait states are allowed.
(3) Interrupt acknowledge timing

Fig. 3 shows interrupt acknowledge timing. After an interrupt request, the $\mathrm{Z}-80 \mathrm{CPU}$ sends an interrupt acknowledge ($\overline{\mathrm{M} 1}$ and IORQ). All channels are inhibited from changing their interrupt request status when M1 is active-about two clock cycles earlier than IORQ. $\overline{\mathrm{RD}}$ is High to distinguish this cycle from an instruction fetch.

The CTC interrupt logic determines the highest priority channel requesting an interrupt. If the CTC interrupt enable input. (IEI) is High, the highest proiority interrupting channel within the CTC places its interrupt vector on the data bus when $\overline{I O R Q}$ goes Low. Two wait states (T_{wA}) are automatically inserted at this time to allow the daisy chain to stabilize. Additional wait states may be added.

(4) Return from interrupt cycle

If a $Z-80$ peripheral has no interrupt pending and is not under service, then its IEO = IEI. If it has an interrupt under service (i.e.,it has already interrupted and received an interrupt acknowledge) then its IEO is always Low, inhibiting lower priority devices from interrupting. If it has an interrupt pending which has not yet been acknowledged, IEO is Low unless an "ED" is decoded as the first byte of a 2-byte opcode. In this case, IEO goes High until the next opcode byte is decoded, whereupon it goes Low again. If the second byte of the opcode

Fig. 1 Write cycle timing
was a "4D," then the opcode was an RETI instruction.

After an "ED" opcode is decoded, only the peripheral device which has interrupted and is currently under service has its IEI High and its IEO Low. This device is the highest-priority device
in the daisy chain that has received an interrupt acknowledge. All other peripherals have IEI = IEO. If the next opcode byte decoded is " 4 D ", this peripheral device resets its "interrupt under service" condition.

Fig. 2 Read cycle timing

Fig. 3 Interrupt acknowledge timing

Fig. 4 Return from interrupt cycle

(1) Daisy chain prior to interrupt

(2) When Channel 2 requests interrupt and receives acknow ledge.

(3) When Channel 1 requests interrupt and receives acknowledge.

In this case, Channel 2 service is discontinued temporarily.

(4) When Channel 1 service is completed and RETI instruction is executed. In this case, Channel 2 service is restarted.

(5) When Channel 2 service is completed and RETI instruction is executed.

Fig. 5 Daisy-chain interrupt service

(5) Daisy-chain interrupt service

Fig. 5 shows a typical nested interrupt order with the CTC. Channel 2 first requests an interrupt to be serviced. If the higher-priority Channel 1 requests an interrupt while Channel 2 is in service, the Channel 2 service is interrupted and Channel 1 is serviced instead. Now the Channel 1 service routine has been completely executed, an RETI instruction can be given to indicate that Channel 1 has been serviced. At this moment, Channel 2 will be in service again.

(6) Counter operation/timer operation

In the counter mode, the CLK/TRG pulse input decrements the down-counter. The trigger is asynchronous, but the count is synchronized with CLK. For the decrement to occur on the next rising edge of CLK, the trigger edge must precede CLK by a minimum lead time. In the timer mode, a CLK/TRG pulse input starts the timer on the second succeeding rising edge of CLK. The trigger pulse is asynchronous, and it must have a minimun width. A minimun lead time (210 ns) is required between the active edge of the CLK/TRG and the next rising edge of CLK to enable the prescaler on the following clock edge.

LH0083
 Z80 DMA Direct Memory Access

Description

The LH0083 Z80 DMA (Z80 DMA for short below) is a powerful and versatile device for controlling and processing of data transfers. Its basic function of managing CPU-independent transfers between two ports is augmented by an array of features that optimize transfer speed and control with little or no external logic in systems using an 8-or 16 -bit data bus and a 16 -bit address bus.

Transfers can be done between any two ports (source and destination), including memory-to-I/O, memory-to-memory, and I/O-to-I/O. Dual port addresses are automatically generated for each transaction and may be either fixed or incrementing/ decrementing. In addition, bitmaskable byte searches can be performed either concurrently with transfers or as an operation in itself.

The LH0083A Z80A DMA is a high speed version which can operate at the 4 MHz system clock.

Features

1. Transfers, searches and search/transfers in byte-at-a-time, burst or continuous modes
2. Cycle length and edge timing can be programmed
3. Dual port addresses generated for memory-to-I/O, memory-to-memory, or I/O-to-I/O operations Adderess may be fixed or automatically incremented/decremented
4. Next-operation loading without disturbing current operations via buffered starting-address registers and an entire previous sequence can be repeated automatically
5. Extensive programmability of functions CPU can read complete channel status
6. Vectored daisy chain priority interrupt logic
7. Single +5 V power supply and single phase clock
8. TTL compatible inputs and outputs
9. N -channel silicon-gate process
10. 40-pin DIP (DIP40-P-600)

Pin Connections

5

- Ordering Information

 LH0083L
Clock frequency
Blank: 2.5MHz
A: 4 MHz
Model No.

Block Diagram

Pin Description

Pin	Meaning	I/O	Function
$\mathrm{A}_{0}-\mathrm{A}_{15}$	Address bus	3-state O	System address bus.
$\mathrm{D}_{0}-\mathrm{D}_{7}$	Data bus	Bidirectional 3-state	System data bus.
BAI	Bus acknowledge in	I	Active "low". Used to form a bus priority-interrupt daisy-chain.
$\overline{\mathrm{BAO}}$	Bus acknowledge out	0	Active "low". Used to form a bus priority-interrupt daisy-chain.
$\overline{\overline{B U S R Q}}$	Bus request	Open drain, O	Active "low". Active when controlling the bus.
$\overline{\mathrm{CE}} / \overline{\mathrm{WAIT}}$	Chip enable	I	Active "low". Acts as CE when the CPU accesses the DAM, and as WAIT when the DAM is the bus master.
CLOCK	System clock	I	Standard Z80 system clock used for internal synchronization signals.
$\overline{\text { M1 }}$	Machine cycle one	I	Active "low". Indicates that CPU is acknowledging an interrupt, when both $\overline{\mathrm{M} 1}$ and $\overline{\mathrm{IORQ}}$ are active.
$\overline{\text { IORQ }}$	Input/output request	Bidirectional 3-state	Active "low". Transmits and receives data from the CPU as an input line. Acts as $\overline{\mathrm{IORQ}}$ for anòther device as an output line. Indicates that the CPU is acknowledging an interrupt, when both $\overline{\mathrm{IORQ}}$ and $\overline{\mathrm{M} 1}$ are active.
$\overline{\text { MREQ }}$	Memory request	3 -state 0	Active "low". Requests a transfer from or to memory with the DMA as a bus master.
IEI	Interrupt enable in	I	Active "high". Used to form a priority-interrupt daisy-chain.
IEO	Interrupt enable out	0	Active "low". Used to form a priority-interrupt daisy-chain.
$\overline{\text { INT }} / \overline{\text { PULSE }}$	Interrupt request/pulse	Open drain, O	Active "low". Active when requesting an interrupt. Can also generate pulses.
$\overline{\mathrm{RD}}$	Read	Bidirectional 3-state	Active "low". Reads data from the CPU as an input line. Acts as $\overline{\mathrm{RD}}$ for another device as an output line.
$\overline{\mathrm{WR}}$	Write	Bidirectional 3 -state	Active "low". Writes data from the CPU as an input line. Acts as $\overline{\mathrm{WR}}$ for another device as an output line.
RDY	Ready	I	With the DMA as a bus master, starts DMA operation when active, and stops it when not active.

Absolute Maximum Ratings

Parameter	Symbol	Ratings	Unit
Input voltage	$\mathrm{V}_{\text {IN }}$	-0.3 to +7.0	V
Output voltage	$\mathrm{V}_{\text {OuT }}$	-0.3 to +7.0	V
Operating temperature	Topr	0 to +70	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg	-65 to +150	${ }^{\circ} \mathrm{C}$

DC Characteristics			$\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{Ta}=0\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$			
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Clock input low voltage	$\mathrm{V}_{\text {ILC }}$		-0.3		0.45	V
Clock input high voltage	$\mathrm{V}_{\text {IILC }}$		$\mathrm{V}_{\mathrm{cc}}-0.6$		5.5	V
Input low voltage	$\mathrm{V}_{\text {IL }}$		-0.3		0.8	V
Input high voltage	V_{IH}		2.0		5.5	V
Output low voltage	$\mathrm{V}_{\text {OL }}$	$\mathrm{I}_{\mathrm{OL}}=3.2 \mathrm{~mA}$ for BUSREQ $\mathrm{I}_{\mathrm{OL}}=2.0 \mathrm{~mA}$ for all others			0.4	V
Output high voltage	V_{OH}	$\mathrm{I}_{\mathrm{OH}}=-250 \mu \mathrm{~A}$	2.4			V
Current ${ }^{\text {c }}$ LH0083		$\mathrm{t}_{\mathrm{c}}=400 \mathrm{~ns}$			150	mA
consumption ${ }^{\text {a }}$ ¢ ${ }^{\text {a }}$	I_{CC}	$\mathrm{t}_{\mathrm{c}}=250 \mathrm{~ns}$			200	mA
Input leakage current	$\left\|\mathrm{I}_{\mathrm{L} 1}\right\|$	$0 \leqq \mathrm{~V}_{\text {IN }} \leqq \mathrm{V}_{\text {CC }}$			10	$\mu \mathrm{A}$
3 -state output leakage current	$\left\|\mathrm{I}_{\text {LOH }}\right\|$	$\mathrm{V}_{\text {OUT }}=2.4 \mathrm{~V}$			10	$\mu \mathrm{A}$
3-state output leakage current	$\left\|\mathrm{I}_{\text {LOL }}\right\|$	$\mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}$			10	$\mu \mathrm{A}$
Data bus leakage current in input mode	$\left\|I_{L D}\right\|$	$0 \mathrm{~V} \leqq \mathrm{~V}_{\mathrm{IN}} \leqq \mathrm{V}_{\mathrm{CC}}$			10	$\mu \mathrm{A}$

- Capacitance

$$
\left(\mathrm{f}=1 \mathrm{MHz}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Clock capacitance	$\mathrm{C}_{\text {CLOCK }}$	Unmeasured pins returned to ground			35	pF
Input capacitance	$\mathrm{C}_{\text {IN }}$				5	pF
Output capacitance	$\mathrm{C}_{\text {OUT }}$				10	pF

AC Characteristics

(1)	ing as CPU peripheral (inactive state)		$\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{Ta}=0\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$				
No.	Parameter	Symbol	LH0083		LH0083A		Unit
			MIN.	MAX.	MIN.	MAX.	
1	Clock cycle time	TcC	400	4000	250	4000	ns
2	Clock width (high)	TwCh	170	2000	110	2000	ns
3	Clock width (low)	TwCl	170	2000	110	2000	ns
4	Clock rise time	TrC		30		30	ns
5	Clock fall time	TfC		30		30	ns
6	Hold time for any specified setup time	Th	0		0		ns
7	$\overline{\mathrm{IORQ}}, \overline{\mathrm{WR}}, \overline{\mathrm{CE}} \downarrow$ to clock \uparrow setup time	$\mathrm{TsC}(\mathrm{Cr})$	280		145		ns
8	$\overline{\mathrm{RD}} \downarrow$ to data output delay	TdDO(RDf)		500		380	ns
9	Data in to clock \uparrow setup ($\overline{\mathrm{WR}}$ or $\overline{\mathrm{M} 1}$)	TsWM(Cr)	50		50		ns
10	$\overline{\mathrm{IORQ}} \downarrow$ to data out delay (INTA cycle)	TdCf(DO)		340		160	ns
11	$\overline{\mathrm{RD}} \uparrow$ to data float delay (output buffer disable)	TdRD(DZ)		160		110	ns
12	IEI \downarrow to $\overline{\text { IORQ }} \downarrow$ setup (INTA cycle)	TsIEI(IORQ)	140		140		ns
13	IEI \uparrow to IEO \uparrow delay	TdIEOr(IEIr)		210		160	ns
14	IEI \downarrow to IEO \downarrow delay	TdIEOf(IEIf)		190		130	ns
15	$\overline{\mathrm{M} 1} \downarrow$ to IEO \downarrow delay (interrupt just prior to $\overline{\mathrm{M} 1} \downarrow$)	TdM1(IEO)		300		190	ns
16	$\overline{\mathrm{M} 1} \downarrow$ to clock \uparrow setup	TsMIf(Cr)	210		90		ns
17	$\overline{\mathrm{M} 1} \uparrow$ to clock \downarrow setup	$\mathrm{TsMlr}(\mathrm{Cf})$	20		-10		ns
18	$\overline{\mathrm{RD}} \downarrow$ to clock \uparrow setup ($\overline{\mathrm{M} 1}$ cycle)	TsRD(Cr)	240		115		ns
19	Interrupt cause to $\overline{\text { INT }} \downarrow$ delay (INT generated only when DMA is inactive)	TdI(INT)		500		500	ns
20	$\overline{\mathrm{BAI}} \uparrow$ to $\overline{\mathrm{BAO}} \uparrow$ delay	TdBAIr(BAOr)		200		150	ns
21	$\overline{\overline{\mathrm{BAI}} \downarrow \text { to } \overline{\mathrm{BAO}} \downarrow \text { delay }}$	TdBAIf(BAOf)		200		150	ns
22	RDY active to clock \uparrow setup time	TsRDY(Cr)	150		100		ns

Note : \uparrow Rising edge, \downarrow Falling edge.
Note 1: Negative minimum setup values mean that the first-mentioned event can come after the second-mentioned event.

(2)	Acting as bus controller (active state)	$\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{Ta}=0\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$					
No.	Parameter	Symbol	LH0083		LH0083A		Unit
			MIN.	MAX.	MIN.	MAX.	
1	Clock cycle time	TcC	400		250		ns
2	Clock width (high)	TwCh	180	2000	110	2000	ns
3	Clock width (low)	TwCl	180	2000	110	2000	ns
4	Clock rise time	TrC		30		30	ns
5	Clock fall time	TfC		30		30	ns
6	Address output delay	TdA		145		110	ns
7	Clock \uparrow to address float delay	TdC(AZ)		110		90	ns
8	Address to $\overline{\mathrm{MREQ}} \downarrow$ setup (memory cycle)	TsA(MREQ)	(2)+(5)-75		$(2)+(5)-75$		ns
9	Address stable to $\overline{\mathrm{IORQ}}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}} \downarrow$ setup (I/O cycle)	TsA(IRW)	(1)-80		(1)-70		ns
${ }^{*} 10$	$\overline{\mathrm{RD}}, \overline{\mathrm{WR}} \uparrow$ to addr. stable delay	TdRW(A)	$(3)+(4)-40$		(3) $+(4)-50$		ns
${ }^{*} 11$	$\overline{\mathrm{RD}}, \overline{\mathrm{WR}} \uparrow$ to addr. float delay	TdRW(AZ)	(3) $+(4)-60$		(3) $+(4)-45$		ns
12	Clock \downarrow to data out delay	TdCf(DO)		230		150	ns
${ }^{*} 13$	Clock \uparrow to data float delay (write cycle)	$\mathrm{TdCr}(\mathrm{Dz})$		90		90	ns
14	Data in to clock \uparrow setup (read cycle when rising edge ends read)	TsDI(Cf)	50		35		ns
15	Data in to clock \downarrow setup (read cycle when falling edge ends read)	TsDO(WfM)	60		50		ns
*16	Data out to WR \downarrow setup (memory clcle)	TsDO(WPI)	(1)-210		(1)-170		ns
17	Data out to $\overline{\mathrm{WR}} \downarrow$ setup (I/O cycle)	TsDO(WPI)	100		100		ns
*18	$\overline{\mathrm{WR}} \uparrow$ to data out hold time	TdWr(DO)	(3) $+(4)-80$		(3) $+(4)-70$		ns
19	Hold time for any specified setup time	Th	0		0		ns
20	Clock \uparrow to MREQ \downarrow delay	$\mathrm{TdCr}(\mathrm{Mf})$		100		85	ns
21	Clock \downarrow to $\overline{\text { MREQ }} \downarrow$ delay	TdCf(Mf)		100		85	ns
22	Clock \uparrow to $\overline{\text { MREQ }} \uparrow$ delay	$\mathrm{TdCf}(\mathrm{Mr})$		100		85	ns
23	Clock \downarrow to $\overline{\mathrm{MREQ}} \uparrow$ delay	$\mathrm{TdCf}(\mathrm{Mr})$		100		85	ns
24	MREQ low pulse width	TwMl	(1)-40		(1)-30		ns
* 25	MREQ high pulse width	TwMh	(2) $+(5)-30$		(2) $+(3)-20$		ns
26	Clock \downarrow to MREQ \downarrow delay	TdCf(Mf)		110		85	ns
27	Clock \uparrow to $\overline{\text { IORQ }} \downarrow$ delay	TdCr (If)		90		75	ns
28	Clock \uparrow to $\overline{\text { IORQ }} \uparrow$ delay	$\mathrm{TdCr}(\mathrm{Ir})$		100		85	ns
* 29	Clock \downarrow to $\overline{\mathrm{IORQ}} \uparrow$ delay	$\mathrm{TdCr}(\mathrm{Ir})$		110		85	ns
30	Clock \uparrow to $\overline{\mathrm{RD}} \downarrow$ delay	$\mathrm{TdCr}(\mathrm{Rf})$		100		85	ns
31	Clock \downarrow to $\overline{\mathrm{RD}} \downarrow$ delay	$\mathrm{TdCr}(\mathrm{Rf})$		130		95	ns
32	Clock \uparrow to $\overline{\mathrm{RD}} \uparrow$ delay	$\mathrm{TdCr}(\mathrm{Rr})$		100		85	ns
33	Clock \downarrow to $\overline{\mathrm{RD}} \uparrow$ delay	$\mathrm{TdCr}(\mathrm{Rr})$		110		85	ns
34	Clock \uparrow to $\overline{\mathrm{WR}} \downarrow$ delay	$\mathrm{TdCr}(\mathrm{Wf})$		80		65	ns
35	Clock \downarrow to $\overline{\mathrm{WR}} \downarrow$ delay	TdCf(Wf)		90		80	ns
36	Clock \uparrow to $\overline{\mathrm{WR}} \uparrow$ delay	$\mathrm{TdCr}(\mathrm{Wr})$		100		80	ns
37	Clock \downarrow to $\overline{\mathrm{WR}} \uparrow$ delay	$\mathrm{TdCf}(\mathrm{Wr})$		100		80	ns
38	$\overline{\mathrm{WR}}$ Low pulse width	TwWl	(1)-40	\cdots	(1)-30		ns
39	$\overline{\text { WAIT }}$ to clock \downarrow setup	TsWA(Cf)	70		70		ns
40	Clock \uparrow to $\overline{\text { BUSREQ }}$ delay	$\mathrm{TdCr}(\mathrm{B})$		150		100	ns
41	Clock \uparrow to $\overline{\mathrm{IORQ}}, \overline{\mathrm{MREQ}}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ float delay	$\mathrm{TdCr}(\mathrm{Iz})$		100		80	ns

Note : \uparrow Rising edge, \downarrow Falling edge
Note 1: Numbers in parentheses are other parameter numbers in this table; their values should be substituted in equations.
Note 2: All equations imply DMA default (standard) timing.
Note 3: Data must be enabled onto data bus when RD is active.
Note 4: Asterisk (*) before parameter number means the parameter is not illustrated in the AC Timing Diagrams.

Programming

The Z-80 DMA has two programmable fundamental states.

- an enabled state, in which it can gain control of the system buses and direct the transfer of data between ports, and
- a disabled state, in which it can initiate neither bus requests nor data transfers. When the DMA is powered up or reset by any means, it is automatically placed into the disabled state.

(1) Reading

The Read Registers (RR0-RR6) are read by the CPU by addressing the DMA as an I/O port using an Input instruction. The readable bytes contain DMA status, byte-counter values, and port addresses since the last DMA reset. The registers are always read in a fixed sequence beginning with RR0 and ending with RR6.

Read Register 0

$\begin{array}{llllllllllll}\mathrm{D}_{7} & \mathrm{D}_{6} & \mathrm{D}_{5} & \mathrm{D}_{4} & \mathrm{D}_{3} & \mathrm{D}_{2} & \mathrm{D}_{1} & \mathrm{D}_{0}\end{array}$ | \times | X | 0 | 0 | 0 | X | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

STATUS BYTE $\begin{aligned} L_{1} & =\text { DMA TRANSFER HAS OCCURRED } \\ 0 & =\text { READY ACTIVE }\end{aligned}$ $0=$ READY ACTIVE $0=$ INTERRUPT PENDING $0=$ MATCH FOUND $0=$ END OF BLOCK INTERRUPT PENDING

- Read Register 1

BYTE COUNTER
(LOW BYTE)

- Read Register 2
\square BYTE COUNTER (HIGH BYTE)

Read Register 3

PORT A ADDRESS COUNTER (LOW BYTE)

Read Register 4

PORT A ADDRESS
COUNTER (HIGH BYTE)

- Read Register 5

PORT B ADDRESS COUNTER (LOW BYTE)

- Read Register 6

PORT B ADDRESS
COUNTER (HIGH BYTE)

(2) Writing

Control or command bytes are written into one or more of the Write Register groups (WR0-WR6) by first writing to the base register byte in that group. All groups have base registers and most groups have additional associated registers. The associated registers in a group are sequentially accessed by first writing a byte to the base register containing register-group identification and pointer bits (I, s) to one or more of that base register's associated registers.

- Write Register 0

D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}	
0								

- Write Register 2
$\begin{array}{lllllllll}\mathrm{D}_{7} & \mathrm{D}_{6} & \mathrm{D}_{5} & \mathrm{D}_{4} & \mathrm{D}_{3} & \mathrm{D}_{2} & \mathrm{D}_{1} & \mathrm{D}_{0}\end{array}$

$0=$ PORT B ADDRESS DECREMENTS
1 = PORT B ADDRESS INCREMENTS $=$ PORT B ADDRESS VARIABLE
$=$ PORT B ADDRESS FIXED

- Write Register 3

- Write Register 4

- Write Register 5

$\begin{array}{lllllllll}\mathrm{D}_{7} & \mathrm{D}_{6} & \mathrm{D}_{5} & \mathrm{D}_{4} & \mathrm{D}_{3} & \mathrm{D}_{2} & \mathrm{D}_{1} & \mathrm{D}_{0}\end{array}$

- Write Register 6

Timing

(1) Inactive state timing (DMA as CPU Peripheral)

In its disabled or inactive state, the DMA is addressed by the CPU as an I/O peripheral for write and read (control and status) operations. Write timing is illustrated in Fig. 1.

Reading of the DMA's status byte, byte counter or port address counters is illustrated in Fig. 2.
(2) Active state timing (DMA as BUS Controller)
(i) Default read and write cycles

By default, and after reset, the DMA's timing of read and write operations is exactly the same as the Z-80 CPU's timing of read and write cycles for memory and I/O peripherals, with one exception: during a read cycle, data is latched on the falling edge of T_{3} and held on the data bus across the boundary between read and write cycles, through the end of the following write cycle.

Fig. 3 illustrates the timing for memory to-I/O port transfers and Fig. 4 illustrates I/O-to-memory transfers. Memory-to-memory and I/O-to-I/O transfer timings are simply permutations of these diagrams.

The default timing uses three T-cycles for memory transactions and four T-cycles for I/O transactions, which include one automatically inserted
wait cycle between T_{2} and T_{3}. If the $\overline{\mathrm{CE}} / \overline{\mathrm{WAIT}}$ line is programmed to act as a WAIT line during the DMA's active state, it is sampled on the falling edge of T_{2} for memory transactions and the falling edge of T_{w} for I/O transactions. If $\overline{\mathrm{CE}} / \overline{\mathrm{WAIT}}$ is Low during this time another T -cycle is added, during which the $\overline{\mathrm{CE}} / \overline{\mathrm{WAIT}}$ line will again be sampled. The duration of transactions can thus be indefinitely extended.

Fig. 1 CPU-DMA write cycle timing

Fig. 2 CPU-DMA read cycle timing

Fig. 3 Transfer from memory to I/O device

Fig. 4 Transfer from I/O device to memory
(ii) Variable cycle and edge timing The Z-80 DMA's default operation-cycle length for the source (read) port and destination (write) port can be independently programmed. This variable-cycle feature allows read or write cycles consisting of two, three or four T-cycles (more if Wait cycles are inserted), thereby increasing or decreasing the speed of all signals generated by the DMA. In addition, the trailing edges of the $\overline{\mathrm{IORQ}}, \overline{\mathrm{MREQ}}, \overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ signals can be independently terminated one-half cycle early. Fig. 5 illustrates this.

In the variable-cycle mode, unlike default timing, $\overline{\mathrm{IORQ}}$ comes active one-half cycle before MREQ, $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}} . \overline{\mathrm{CE}} / \overline{\mathrm{WAIT}}$ can be used to extend only the 3 or 4 T -cycle variable memory cycles and only the 4 -cycle variable I/O cycle. The $\overline{\mathrm{CE}} / \overline{\mathrm{WAIT}}$ line is sampled at the falling edge of T_{2} for 3 -or 4 -cycle memory cycles, and at the falling edge of T_{3} for 4 -cycle I/O cycles.

During transfers, data is latched on the clock edge causing the rising edge of $\overline{\mathrm{RD}}$ and held through the end of the write cycle.
(iii) Bus requests Fig. 6 illustrates the bus request and acceptance timing. The RDY line, which may be programmed active High or Low, is sampled on every rising edge of CLK.
If it is found to be active, and if the bus is not in use by any other device, the following rising edge of CLK drives BUSREQ low. After receiving BUS$\overline{\mathrm{REQ}}$ the CPU acknowledges on the BAI input either directly or through a multiple-DMA daisy chain. When a Low is detected on $\overline{\text { BAI }}$ for two consecutive rising edges of CLK, the DMA will begin transferring data on the next rising edge of CLK.

(iv) Bus release byte-at-a-time In Byte at

 a Time mode, $\overline{\text { BUSREQ }}$ is brought High on the rising edge of CLK prior to the end of each read cycle (search-only) or write cycle (transfer and transfer/ search) as illustrated in Fig. 7. This is done regardless of the state of RDY.The next bus request for the next byte will come after both $\overline{\text { BUSREQ }}$ and BAI have returned High.
(v) Bus release at end of block In Burst and Continuous modes, an end of block causes $\overline{\text { BUSREQ }}$ to go High usually on the same rising edge of CLK in which the DMA completes the transfer of the data block (Fig. 8). The last byte in the block is transferred even if RDY goes inactive before completion of the last byte transfer.
(vi) Bus release on not ready In Burst mode, when RDY goes inactive it causes $\overline{\mathrm{BUSREQ}}$ to go High on the next rising edge of CLK after the completion of its current byte operation (Fig. 9). The action on BUSREQ is thus somewhat delayed
from action on the RDY line. The DMA always completes its current byte operation in an orderly fashion before releasing the bus.

By contrast, $\overline{\mathrm{BUSREQ}}$ is not released in Continuous mode when RDY goes inactive.
Instead, the DMA idles after completing the current byte operation, awaiting an active RDY again.
(vii) Bus release on match If the DMA is programmed to stop on match in Burst or Continuous modes, a match causes BUSREQ to go inactive on the next DMA operation, i.e., at the end of the next read in a search or at the end of the following write in a transfer (Fig. 10). Due to the pipelining scheme, matches are determined while the next DMA read or write is being performed.

The RDY line can go inactive after the matching operation begins without affecting this bus-release timing.
(viii) Interrupts Timings for interrupt acknowledge and return from interrupt are the same as timings for these in other Z-80 peripherals. (Refer to the Z 80 PIO .)

Interrupt on RDY (interrupt before requesting bus) does not directly affect the BUSREQ line. Instead, the interrupt service routine must handle this by issuing the following commands.
a. Enable after return from interrupt (RETI) (Command code 87 H)
b. Enable DMA (Command code 87r)
c. An RETI instruction

Fig. 5 Variable cycle and edge timing

Fig. 6 Bus request and acknowledgement

Fig. 7 Bus clear (byte mode)

Fig. 8 End of block bus clear (burst, continuous mode)

Fig. 9 No READY bus clear (burst mode)

Fig. 10 Mating bus clear (burst, continuous mode)

LH0084/LH0085 LH0086/LH0087

Z80 SIO Serial

 Input/Output Controller
- Description

The LH0084/85/86/87, Z80 SIO (Z80 SIO for short below) is a dual-channel multi-function peripheral component designed to satisfy a wide variety of serial data communications requirements in microcomputer systems. Its basic function is a serial-to-parallel, parallel-to-serial converter/ controller, but-within that role-it is configurable by systems software so its "personality" can be optimized for a given serial data communications application.

The Z80 SIO is capable of handling asynchronous and synchronous byte-oriented protocols such as IBM Bisync, and synchronous bit-oriented protocols such as HDLC and IBM SDLC. This versatile device can also be used to support virtually any other serial protocol for applications other than data communications (cassette or floppy disk interfaces, for example).

The 280 SIO can generate and check CRC codes in any synchronous mode and can be programmed to check data integrity in various modes. The device also has facilities for modem controls in both channels. In applications where these controls are not needed, the modem controls can be used for

* The GND pins must be connected to the GND level.
general-purpose I/O.
The Z80 SIO has six types as below according it's system clock and bonding option. The Z80A SIO and the Z80B SIO are a high speed version which can operate at the 4 MHz and 6 MHz system clock, respectively.
- LH0084 Z80 SIO/0 - LH0084B Z80B SIO/0
- LH0085 Z80 SIO/1 - LH0085B Z80B SIO/1
- LH0086 Z80 SIO/2 - LH0086B Z80B SIO/2
- LH0087 Z80 SIO - LH0087B Z80B SIO
- LH0084A Z80A SIO/0
- LH0085A Z80A SIO/1
- LH0086A Z80A SIO/2
- LH0087A Z80A SIO

Features

1. N-channel silicon-gate process
2. Single +5 V power supply and single phase clock
3. Two independent full duplex channels
4. Data rates : 0 to 500 K bits/second (at 2.5 MHz system clock)
: 0 to 800 K bits/second (at 4 MHz system clock)
: 0 to 1200 K bits/second (at 6 MHz system clock)
5. Asynchronous operation

- $5,6,7$ or 8 bits/character
- $1,11 / 2$ or 2 stop bits/character
- Even, odd or no parity
- $\times 1, \times 16, \times 32$ and $\times 64$ clock modes
- Break generation and detection
- Parity, Overrun and Framing error detection

6. Binary synchronous operation

- Internal or external character synchronization
- One or two Sync characters in separate registers
- Automatic Sync character insertion
- CRC generation and checking

7. HDLC or IBM SDLC operation

- Abort sequence generation and detection
- Automatic zero insertion and detection
- Automatic flag insertion
- Address field recognition
- I-field residue handling
- Valid receive messages protected from overrun
- CRC generation and checking

8. Vectored daisy chain priority interrupt logic
9. CRC-16 or CRC-CCITT block check
10. Separate modem control inputs and outputs for both channels
11. Modem status can be monitored
12. 40-pin DIP (DIP40-P-600)

44-pin QFP (QFP44-P-1010A)
44-pin QFJ (QFJ44-P-S650)

Ordering Information

Product	Z80 SIO	Z80A SIO	Z80B SIO	Package	Operating temperature
Clock frequency	2.5 MHz	4 MHz	6 MHz		
Model No.	LH008X	LH008XA	LH008XB	40 -pin DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
	LH008XH	LH008XAH			
	LH0087M	LH0087AM		$44-$ pin QFP	$0^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
	LH0087U	LH0087AU	LH0087BU	44 -pin QFJ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

X : It is the bonding option to select one of $\mathrm{SIO} / 0, \mathrm{SIO} / 1$ and $\mathrm{SIO} / 2$ on 40 -pin DIP.
$\mathrm{X}=4$: SIO/0
$\mathrm{X}=5: \mathrm{SIO} / 1$
$\mathrm{X}=6: \mathrm{SIO} / 2$
$\mathrm{H}: \quad \mathrm{H}$ affix indicates a wide temperature spec, packaged in 40 -pin DIP.

Block Diagram

Pin Description

Pin	Meaning	I/O	Function
$\mathrm{D}_{0}-\mathrm{D}_{7}$	Data bus	Bidirectional 3 -state	System data bus
B/A	Channel A or B select	I	Defines which channel is accessed. Channel B at "High", channel A at "Low".
C/ $\overline{\mathrm{D}}$	Control or data select	I	Defines the type of information transfer on the data bus. Control word at "High", data at "Low".
$\overline{\mathrm{CE}}$	Chip enable	I	Active "Low". A Low enables the CPU to transmit and receive control words and data.
CLOCK	System clock	I	Standard $Z 80$ system clock used for internal synchronization signals.
M1	Machine cycle one	I	Active "Low". Indicates that the CPU is acknowledging an interrupt, when both $\overline{\mathrm{M1}}$ and $\overline{\mathrm{IORQ}}$ are active.
$\overline{\text { IORQ }}$	Input/output request	I	Active "Low". Read operation when $\overline{\mathrm{RD}}$ is active, and write operation when it is not active. Indicates that the CPU is acknowledging an interrupt, when both IORQ and $\overline{\mathrm{M} 1}$ are active.
$\overline{\mathrm{RD}}$	Read cycle status	I	Active "Low". Read operation when active.
RESET	Reset	I	Active "Low". Resets the interrupt bits.
IEI	Interrupt enable in	I	Active "High". Used to form a priority-interrupt daisy chain.
IEO	Interrupt enable out	0	Active "High." Used to form a priority-interrupt daisy chain.
INT	Interrupt request	Open drain, O	Active "Low". Active when requesting an interrupt.
$\begin{aligned} & \overline{\mathrm{W}} / \overline{\mathrm{RDYA}} \\ & \overline{\mathrm{~W}} / \overline{\mathrm{RDYB}} \end{aligned}$	Wait/ready	Open drain, O	Active "Low". $\overline{\text { READY }}$ when the DMA is a bus master, WAIT when the CPU is a bus master.
$\overline{\mathrm{CTSA}}, \overline{\mathrm{CTSB}}$	Clear to send	I	Active "Low". Enables the respective transmitters. Also applicable as general-purpose input pins.
$\overline{\text { DCDA }}, \overline{\text { DCDB }}$	Data carrier detect	I	Active "Low". Enables the respective receivers. Also applicable as general-purpose input pins.
RxDA, RxDB	Receive data	I	Active "Low". Data line for receiving
TxDA, TxDB	Transmit data	0	Active "Low". Data line for transmitting.
RxCA, $\overline{\mathrm{RxCB}}$	Receiver clock	I	Active "Low". Receiving synchronization clock.
$\overline{\mathrm{TxCA}}, \overline{\mathrm{TxCB}}$	Transmitter clock	I	Active "Low". Transmitting synchronization clock.
$\overline{\mathrm{RTSA}}, \overline{\mathrm{RTSB}}$	Request to send	0	Active "Low". Indicates that the transmitter is empty during transfer. Also applicable as general-purpose output pins.
$\overline{\text { DTRA }}$, $\overline{\text { DTRB }}$	Data terminal ready	0	Active "Low". Also applicable as general-purpose output pins.
$\frac{\overline{\text { SYNCA }},}{\overline{\text { SYNCB }}}$	External character synchronization	I	Active "Low". Acts the same way as $\overline{\mathrm{CTS}}$ and $\overline{\mathrm{DCD}}$ in the asynchronous mode. Driven "Low" in the synchronous mode when a synchronizing pattern is achieved.

- Absolute Maximum Ratings

Parameter	Symbol	Ratings	Unit	Note
Input voltage	$\mathrm{V}_{\text {IN }}$	-0.3 to +7.0	V	
Output voltage	$\mathrm{V}_{\text {OUT }}$	-0.3 to +7.0	V	
Operating temperature		0 to +70		C
	Topr	0 to +60	2	
		-20 to +85		3
Storage temperature		Tstg	-65 to +150	${ }^{\circ} \mathrm{C}$

Note 1: Specified for 40-pin DIP and 44-pin QFJ
Note 2: Specified for 44-pin QFP
Note 3: Specified for wide temperature type

- DC Characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Clock input low voltage	$\mathrm{V}_{\mathrm{ILC}}$		-0.3		0.45	V
Clock input high voltage	$\mathrm{V}_{\mathrm{IEC}}$		$\mathrm{Vcc}-0.6$		5.5	V
Input low voltage	V_{IL}		-0.3		0.8	V
Input high voltage	V_{IH}		2.0		5.5	V
Output low voltage	V_{OL}	$\mathrm{I}_{\mathrm{OL}}=2.0 \mathrm{~mA}$			0.4	V
Output high voltage	V_{OH}	$\mathrm{I}_{\mathrm{OH}}=-250 \mu \mathrm{~A}$.	2.4			V
Input leakage current	$\left\|\mathrm{I}_{\mathrm{LI}}\right\|$	$0<\mathrm{V}_{\mathrm{IN}}<\mathrm{V}_{\mathrm{CC}}$			10	$\mu \mathrm{~A}$
3-state output/data bus input leakage curreut	$\left\|\mathrm{I}_{\mathrm{Z}}\right\|$	$0<\mathrm{V}_{\mathrm{IN}}<\mathrm{V}_{\mathrm{CC}}$			10	$\mu \mathrm{~A}$
SYNC pin leakage current	$\mathrm{I}_{\mathrm{L}(\mathrm{SY})}$	$0<\mathrm{V}_{\mathrm{IN}}<\mathrm{V}_{\mathrm{CC}}$			10	
Current consumption	I_{CC}				10	$\mu \mathrm{~A}$

Note 1: $\mathrm{Ta}=0$ to $+60^{\circ} \mathrm{C}$ for 44 -pin $\mathrm{QFP}, \mathrm{Ta}=-20$ to $+85^{\circ} \mathrm{C}$ for wide temperature types.

Capacitance
$\left(\mathrm{f}=1 \mathrm{MHz}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Clock capacitance	$\mathrm{C}_{\text {CLOCK }}$	Unmeasured pins returned to ground			40	pF
Input capacitance	$\mathrm{C}_{\text {IN }}$				5	pF
Output capacitance	$\mathrm{C}_{\text {Out }}$				10	pF

AC Characteristics

AC characteristics (I)			$\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{Ta}=0\right.$ to $\left.+70^{\circ} \mathrm{C}^{\text {Note } 1}\right)$						
No.	Parameter	Symbol	LH0084/5/6/7		LH0084A/5A/6A/7A		LH0084B/5B/6B/7B		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
1	Clock cycle time	TcC	400	4000	250	4000	165	4000	ns
2	Clock high width	TwCh	170	2000	105	2000	70	2000	ns
3	Clock fall time	TfC		30		30		15	ns
4	Clock rise time	TrC		30		30		15	ns
5	Clock low width	TwCl	170	2000	105	2000	70	2000	ns
6		TsAD(C)	160		145		60		ns
7	$\overline{\mathrm{IORQ}}, \overline{\mathrm{RD}}$ to clock \uparrow setup time	TsCS(C)	240		115		60		ns
8	Clock \uparrow to data out delay	TdC(DO)		240		220		150	ns
9	Data in to clock \uparrow setup (Write or $\overline{\mathrm{M} 1}$ cycle)	$\mathrm{TsDI}(\mathrm{C})$	50		50		30		ns
10	$\overline{\mathrm{RD}} \uparrow$ to data out float delay	TdRD(DOz)		230		110		90	ns
11	$\overline{\overline{\mathrm{ORQ}}} \downarrow$ to data out delay (INTACK cycle)	TdIO(DOI)		340		160		100	ns

No.	Parameter	Symbol	LH0084/5/6/7		LH0084A/5A/6A/7A		LH0084B/5B/6B/7B		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
12	$\overline{\text { M1 }}$ to clock \dagger setup time	TsM1(C)	210		90		75		ns
13	IEI to $\overline{\overline{O R Q Q}} \downarrow$ setup time (INTACK cycle)	TsIEI(IO)	200		140		120		ns
14	$\overline{\text { M1 }} \downarrow$ to IEO \downarrow delay (interrupt before $\overline{\mathrm{M} 1)}$	TdM1(IEO)		300		190		160	ns
15	IEI \uparrow to IEO \uparrow delay (after ED decode)	TdIEI(IEOr)		150		100		70	ns
16	IEI \downarrow to $\overline{\text { INT }} \downarrow$ delay	TdIEI(IEOf)		150		100		70	ns
17	Clock \uparrow to $\overline{\mathrm{INT}} \downarrow$ delay	TdC(INT)		200		200		150	ns
18	$\overline{\text { IORQ }} \downarrow$ or $\overline{\mathrm{CE}} \downarrow$ to $\overline{\mathrm{W}} / \overline{\text { RDY }} \downarrow$ delay (wait mode)	TdIO(W/RWf)		300		210		175	ns
19	Clock \uparrow to $\overline{\mathrm{W}} / \overline{\mathrm{RDY}} \downarrow$ delay (ready mode)	$\mathrm{TdC}(\mathrm{W} / \mathrm{PR})$		120		120		100	ns
20	Clock \downarrow to $\overline{\mathrm{W}} / \overline{\mathrm{RDY}}$ float delay (wait mode)	TdC(W/RWz)		150		130		110	ns
21	Any unspecified hold when setup is specified	Th	0		0		0		ns

\uparrow Rising edge, \downarrow Falling edge.
Note 1: $\mathrm{Ta}=0$ to $+60^{\circ} \mathrm{C}$ for 44-pin QFP
$\mathrm{Ta}=-20$ to $+85^{\circ} \mathrm{C}$ for wide temperature types
(2) AC timing chart (I)

\uparrow Rising edge, \downarrow Falling edge
Note 1: $\mathrm{Ta}=0$ to $+60^{\circ} \mathrm{C}$ for 44 -pin QFP
$\mathrm{Ta}=-20$ to $+85^{\circ} \mathrm{C}$ for wide temperature types
Note 2: In all mode, the System Clock rate must be at least five times the maximum data rate.

(4) AC timing chart (II)

Fig. 1 Transmit and receive data path

Programming

The system program first issues a series of commands that initialize the basic mode of operation and then other commands that qualify conditions within the selected mode.

Both channels contain registers that must be programmed via the system program prior to operation.

(1) Read Registers

The SIO contains three read registers for Channel B and three read registers for Channel A (RR0-RR2) that can be read to obtain the status information. The status information includes error conditions, interrupt vector and standard communi-cations-interface signals

$$
\text { - Read Register } 0 \text { (RR 0) }
$$

| D_{7} | D_{6} | D_{5} | D_{4} | D_{3} | D_{2} | D_{1} | D_{0} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Break
 /abort | Tx
 under-
 run
 /EOM | CTS | Sync
 /hunt | DCD | Tx
 buffer
 empty | $\left.\begin{array}{c}\text { INT } \\ \text { pending } \\ \text { (ch.A } \\ \text { only }\end{array}\right)$ | Rx char-
 acter
 avai-
 able |

- Read Register 1 (RR 1)

The RR1 contains the status bits for specific receiving coditions as well as the one-field fraction codes for the SDLC receive mode.

| D_{7} | D_{6} | D_{5} | D_{4} | D_{3} | D_{2} | D_{1} | D_{0} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| End
 of
 frame | CRC
 framing
 error | Rx
 overrun
 error | Parity
 error | Fraction
 code
 2 | Fraction
 code
 1 | Fraction
 code
 0 | All
 sent |

- Read Register 2 (RR 2)

(2) Write Registers

The SIO contains eight write registers for Channel B and eight write registers for Channel A (WR0-WR7) that are programmed separately to configure the functional personality of the channels.

- Write Register 0 (WR 0)

| D_{7} | D_{6} | D_{5} | D_{4} | D_{3} | D_{2} | D_{1} | D_{0} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CRC
 reset
 code
 1 | CRC
 reset
 code
 0 | Command
 bit
 2 | Command
 bit
 1 | Command
 bit
 0 | Pointer
 bit
 2 | Pointer
 bit
 1 | Pointer
 bit
 0 |

- Write Register 1 (WR 1)

D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D	D
Wait/ ready enable	Wait/ ready function	Wait/ ready onR/T	Receive interrupt mode 1	Receive interrupt mode 0	Status affects vector	Tx INT enable	Ext INT enable

- Write Register 2 (WR 2)

The WR2 contains the interrupt vector for both channels and is only in the Channel B . When the status affected vector (WR1, D_{2}) is 1 , the vector from the SIO during the interrupt acknowledge cycle varies $\left(V_{3}-V_{1}\right)$ depending on the interrupt conditions. The WR2 contents do not vary then.

D_{7}	D_{6}		D_{5}	D_{4}	D_{3}	D_{2}	D_{1}
$\mathrm{~V}_{7}$	$\mathrm{~V}_{6}$	$\mathrm{~V}_{5}$	$\mathrm{~V}_{4}$	$\mathrm{~V}_{3}$	$\mathrm{~V}_{2}$	$\mathrm{~V}_{1}$	$\mathrm{~V}_{0}$

- Write Register 3 (WR 3)

The WR 3 contains the bits and parameters to control the receivers.

D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}
Rx bits character 1	Rx bits character 0	Auto enable	Enter hunt phase	Rx CRC enable	Address search mode	Sync charac. ter load inhibit	$\begin{gathered} \mathrm{Rx} \\ \text { enable } \end{gathered}$

- Write Register 4 (WR 4)

The WR4 has the bits control both receivers and transmitters.

In initializing for transmitting and receiving, these bits must be set up before the WR1, WR3, WR5, WR6, and WR7.

D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}
$\begin{array}{\|c} \hline \text { Clock } \\ \text { rate } \\ 1 \\ \hline \end{array}$	$\begin{gathered} \hline \text { Clock } \\ \text { rate } \\ 0 \end{gathered}$	Sync mode 1	$\begin{gathered} \text { Sync } \\ \text { mode } \\ 0 \end{gathered}$	$\begin{gathered} \text { Stop } \\ \text { bit } \\ 1 \end{gathered}$	$\begin{gathered} \text { Stop } \\ \text { bit } \\ 0 \end{gathered}$	$\begin{aligned} & \text { Parity } \\ & \text { Even } \\ & \text { /ODD } \end{aligned}$	Parity enable

- Write Register 5 (WR 5)

The WR5 contains the bits (except for D_{2}) to control the transmitters.

D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}
DTR	Tx bits /char- acter 1	Tx bits /char- acter 0	Send break	Tx enable	CRC16	RTS	Tx /SDLC
CRC							
enable							

- Write Register 6 (WR 6)

D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}
SYNC	SYNC	SYNC	SYNC	SYNC	SYNC	SYNC	SYNC
7	6	5	4	3	2	1	0

- Write Register 7 (WR 7)

D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}
$\begin{gathered} \text { SYNC } \\ 15 \end{gathered}$	$\begin{gathered} \text { SYNC } \\ 14 \end{gathered}$	$\underset{13}{\text { SYNC }}$	$\begin{aligned} & \text { SYNC } \\ & 12 \end{aligned}$	$\begin{aligned} & \text { SYNC } \\ & 11 \end{aligned}$	$\begin{array}{\|c} \hline \text { SYNC } \\ 10 \end{array}$	$\begin{array}{\|c} \hline \text { SYNC } \end{array}$	$S Y$

Timing

(1) Read cycle

The timing signals generated by a Z-80 CPU input instruction to read a data or status byte from the SIO are illustrated in Fig. 2.
(2) Write cycle

Fig. 3 illustrates the timing and data signals gener-
ated by a Z-80 CPU output instruction to write a data or control byte into the SIO.
(3) Interrupt cycle

The interrupt-acknowledging and return-fr-om-interrupt cycles are of the same timing as for other Z80 peripherals. (Refer to the Z80 PIO.)

Fig. 2 Read cycle timing

LH8530

 Z8530 ${ }^{\text {TM }}$ SCC Serial Communications Controller
- Description

The LH8530 Z8530 SCC Serial Communications Controller is a dual-channel, multi-protocol data communications peripheral designed for use with conventional non-multiplexed buses. The LH8530 functions as a serial-to-parallel, parallel-to-serial converter controller. The LH8530 can be softwareconfigured to satisfy a wide variety of serial communications applications. The device contains a variety of new, sophisticated internal functions including on-chip baud rate generators, Digital Phase-Locked Loops, and crystal oscillators that dramatically reduce the need for external logic.

The LH8530 handles asynchronous formats, Synchronous byte-oriented protocols such as IBM Bisync, and Synchronous bit-oriented protocols such as HDLC and IBM SDLC. This versatile device supports virtually any serial date transfer application (cassette, disk tape drives, etc).

The device can generate and check CRC codes in any Synchronous mode and can be programmed to check data integrity in various modes. The LH8530 also has facilities for modem controls in both channels. In applications where these controls are not needed, the modem controls can be used for general-purpose I/O.

The daisy-chain interrupt hierarchy is also supported by the LH8530.

The LH8530A Z8530A SCC is the high speed version which can operate at 6 MHz system clock.

Features

1. Two independent, 0 to $1.5 \mathrm{M} \mathrm{bit/second}, \mathrm{full-}$ duplex channels, each with a separate crystal oscillator, baud rate generator, and Digital Phase-Locked Loop for clock recovery.
2. Multi-protocol operation under program control; programmable for NRZ, NRZI, or FM data encoding.
3. Asychronous mode with five to eight bits and one, one and one-half, or two stop bits per character; programmable clock factor, break detection and generation; parity, overrun, and framing error detection.

Pin Connections

4, Synchronous mode with internal or external character synchronization on one or two synchronous characters and CRC generation and checking with CRC-16 or CRC-CCITT preset to either 1 s or 0 s .
5. SDLC/HDLC mode with comprehensive framelevel control, automatic zero insertion and de-
letion. I-field residue handling, abort generation and detection, CRC generation and checking, and SDLC Loop mode operation.
6. Local Loopback and Auto Echo modes.
7. 40-pin DIP (DIP40-P-600)

44-pin QFJ (QFJ44-P-S650)

- Block Diagram

- Ordering Information LH8530 X X

$$
\hat{\tau}_{\text {Package }}
$$

P: 40-pin DIP (DIP40-P-600)
U: 44-pin QFJ (QFJ44-P-S650)

- Clock frequency

Blank: 4 MHz
A: 6 MHz
Model No.

- Pin Description

Pin	Meaning	I/O	Function
A/ $\overline{\mathrm{B}}$	Channel A/ Channel B select	I	Channel select signal.
$\overline{\mathrm{CE}}$	Chip enable	I	Active low. Enables the CPU to transmit and receive command and data when low.
$\frac{\overline{\mathrm{CTSA}}}{\overline{\mathrm{CTSB}}}$	Clear to send	I	Active low. Enables the respective transmitters.
D/ \bar{C}	Data/control select	I	This signal defines the type of information on the data bus. High means data; Low indicates a command.
$\overline{\overline{\mathrm{DCDA}}} \overline{\mathrm{DCDB}}$	Data carrier detect	I	Active low. Enables the respective receivers.
$\mathrm{D}_{0}-\mathrm{D}_{7}$	Data bus	Bidirectional 3-state	System data bus.
$\begin{aligned} & \overline{\mathrm{DTR}} / \overline{\mathrm{REQA}} \\ & \overline{\mathrm{DTR}} / \overline{\mathrm{REQB}} \\ & \hline \end{aligned}$	Data terminal ready/request	0	Active low. These outputs follow the state programmed into the DTR bit.
IEI	Interrupt enable input	I	Active high. IEI is used to form a daisy chain that determines the interrupt priority order.
IEO	Interrupt enable output	0	Active high. IEO is used to form a daisy chain that determines the interrupt priority order.
$\overline{\text { INT }}$	Interrupt request	Open-drain	Active low, open-drain. Indicates an interrupt request to the CPU.
INTACK	Interrupt acknowledge	I	Active low. This signal indicates an active interrupt acknowledge cycle.
$\overline{\overline{\mathrm{RD}}}$	Read	I	Active low. This signal indicates a read operation.
$\begin{aligned} & \mathrm{R} \times \mathrm{DA} \\ & \mathrm{R} \times \mathrm{DB} \end{aligned}$	Receive data	I	Active high. These are receive data lines.
$\begin{aligned} & \overline{\mathrm{RT}} \times \overline{\mathrm{CA}} \\ & \overline{\mathrm{RT}} \times \overline{\mathrm{CB}} \\ & \hline \end{aligned}$	Receive/transmit clocks	I	Active low. These are communication clock lines.
$\frac{\overline{\mathrm{RTSA}}}{\mathrm{RTSB}}$	Request to send	0	Active low. Goes high after the transmitter is empty.
$\overline{\overline{\text { SYNCA }}} \overline{\text { SYNCB }}$	Synchronization	I/O	Active low. Indicates that a synchronization pattern has been recognized.
$\begin{aligned} & \mathrm{T} \times \mathrm{DA} \\ & \mathrm{~T} \times \mathrm{DB} \end{aligned}$	Transmit data	0	Active high. These are transmit data lines.
$\begin{aligned} & \overline{\mathrm{TR}} \times \overline{\overline{\mathrm{CA}}} \\ & \overline{\mathrm{TR}} \times \overline{\mathrm{CB}} \end{aligned}$	Transmit/receive clocks	I/O	These are communication clocks.
$\overline{\mathrm{WR}}$	Write	I	Active low. This signal indicates a write operation.
$\begin{aligned} & \overline{\mathrm{W}} / \overline{\mathrm{REQA}} \\ & \overline{\mathrm{~W}} / \overline{\mathrm{REQB}} \end{aligned}$	Wait/request	Open-drain	Active low. Operate as request lines when the DMA is the bus master or as wait lines when the CPU is the bus master.
PCLK	Clock	I	Single-phase clock. It does not have to be the CPU clock.

Absolute Maximum Ratings

Parameter	Symbol	Ratings	Unit
Input voltage	$\mathrm{V}_{\text {IN }}$	-0.3 to +7.0	V
Output voltage	$\mathrm{V}_{\text {OUT }}$	-0.3 to +7.0	V
Operating temperature	Topr	0 to +70	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg	-65 to +150	${ }^{\circ} \mathrm{C}$

DC Characteristics
($\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{Ta}=0$ to $+70^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Input high voltage	$\mathrm{V}_{\text {IH }}$		2	$\mathrm{Vcc}+0.3$	V
Input low voltage	VIL		-0.3	0.8	V
Output high voltage	Voh	Іон $=-250 \mu \mathrm{~A}$	2.4		V
Output low voltage	Vol	Iol $=+2 \mathrm{~mA}$		0.4	V
Input leakage current	\mid IIL \mid	$0.4 \leqq \mathrm{~V}_{\text {IN }} \leqq 2.4 \mathrm{~V}$		10	$\mu \mathrm{A}$
Output leakage current	IoL 1	$0.4 \leqq$ Vout $\leqq 2.4 \mathrm{~V}$		10	$\mu \mathrm{A}$
Current consumption	I_{CC}	LH8530		250	mA

- Capacitance
$\left(\mathrm{f}=1 \mathrm{MHz}, \mathrm{Ta}=0\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Input capacitance	Cin			10	pF
Output capacitance	Cout	Unmeasured Pins Returned to Ground		15	pF
Bidirectional capacitance	$\mathrm{Cl}_{1 / 0}$			20	pF

- AC Characteristics

(1) CPU interface timing, interrupt timing, and interrupt acknowledge timing

No.	Symbol	Parameter	LH8530		LH8530A		Unit	Note
			MIN.	MAX.	MIN.	MAX.		
1	TwPCl	PCLK low width	105	2000	70	1000	ns	
2	TwPCh	PCLK high width	105	2000	70	1000	ns	
3	TfPC	PCLK fall time		20		10	ns	
4	TrPC	PCLK rise time		20		15	ns	
5	TcPC	PCLK cycle time	250	4000	165	2000	ns	
6	TsA(WR)	Address to $\overline{\mathrm{WR}} \downarrow$ setup time	80		80		ns	
7	ThA(WR)	Address to $\overline{\mathrm{WR}} \uparrow$ hold time	0		0		ns	
8	TsA(RD)	Address to $\overline{\mathrm{RD}} \downarrow$ setup time	80		80		ns	
9	ThA(RD)	Address to $\overline{\mathrm{RD}} \uparrow$ hold time	0		0		ns	
10	TsIA(PC)	$\overline{\text { INTACK }}$ to PCLK \uparrow setup time	0		0		ns	
11	TsIAi(WR)	$\overline{\text { INTACK }}$ to $\overline{\mathrm{WR}} \downarrow$ setup time	200		160		ns	1
12	ThIA(WR)	$\overline{\text { INTACK }}$ to $\overline{\mathrm{WR}} \uparrow$ hold time	0		0		ns	
13	TsIAi(RD)	$\overline{\text { INTACK }}$ to $\overline{\mathrm{RD}} \downarrow$ setup time	200		160		ns	1
14	ThIA(RD)	$\overline{\text { INTACK }}$ to $\overline{\mathrm{RD}} \uparrow$ hold time	0		0		ns	
15	ThIA(PC)	$\overline{\text { INTACK }}$ to PCLK \uparrow hold time	100		100		ns	
16	TsCEl(WR)	$\overline{\overline{\mathrm{CE}}}$ low to $\overline{\mathrm{WR}} \downarrow$ setup time	0		0		ns	
17	ThCE(WR)	$\overline{\overline{\mathrm{CE}}}$ to $\overline{\mathrm{WR}} \uparrow$ hold time	0		0		ns	
18	$\mathrm{TsCEh}(\mathrm{WR})$	$\overline{\overline{\mathrm{CE}}}$ high to $\overline{\mathrm{WR}} \downarrow$ setup time	100		70		ns	
19	TsCEl(RD)	$\overline{\mathrm{CE}}$ low to $\overline{\mathrm{RD}} \downarrow$ setup time	0		0		ns	1
20	ThCE(RD)	$\overline{\mathrm{CE}}$ to $\overline{\mathrm{RD}} \uparrow$ hold time	0		0		ns	1
21	TsCEh(RD)	$\overline{\overline{\mathrm{CE}}}$ high to $\overline{\mathrm{RD}} \downarrow$ setup time	100		70		ns	1
22	TwRD1	$\overline{\mathrm{RD}}$ low width	390		250		ns	1
23	TdRD(DRA)	$\overline{\mathrm{RD}} \downarrow$ to read data active delay	0		0		ns	
24	TdRDr(DR)	$\overline{\mathrm{RD}} \uparrow$ to read data not valid delay	0		0		ns	
25	TdRDf(DR)	$\overline{\mathrm{RD}} \downarrow$ to read data valid delay		250		180	ns	
26	TdRD(DRz)	$\overline{\mathrm{RD}} \uparrow$ to read data float delay		70		45	ns	2
27	TdA(DR)	Address required valid to read data valid delay		590		420	ns	
28	TwWR1	$\overline{\text { WR }}$ low width	390		250		ns	
29	TsDW(WR)	Write data to $\overline{\mathrm{WR}} \downarrow$ setup time	0		0		ns	

No.	Symbol	Parameter	LH8530		LH8530A		Unit	Note
			MIN.	MAX.	MIN.	MAX.		
30	ThDW(WR)	Write data to $\overline{\mathrm{WR}} \uparrow$ hold time	0		0		ns	
31	TdWR(W)	$\overline{\mathrm{WR}} \downarrow$ to wait valid delay		240		200	ns	4
32	TdRD(W)	$\overline{\mathrm{RD}} \downarrow$ to wait valid delay		240		200	ns	4
33	TdWRf(REQ)	$\overline{\mathrm{WR}} \downarrow$ to $\overline{\mathrm{W}} / \overline{\mathrm{REQ}}$ not valid delay		240		200	ns	
34	TdRDf(REQ)	$\overline{\mathrm{RD}} \downarrow$ to $\overline{\mathrm{W}} / \overline{\mathrm{REQ}}$ not valid delay		240		200	ns	
35	TdWRr(REQ)	$\overline{\mathrm{WR}} \uparrow$ to $\overline{\mathrm{DTR}} / \overline{\mathrm{REQ}}$ not valid delay		$5 \mathrm{TcPC}+300$		$5 \mathrm{TcPC}+250$	ns	
36	TdRDr(REQ)	$\overline{\mathrm{RD}} \uparrow$ to $\overline{\mathrm{DTR}} / \overline{\mathrm{REQ}}$ not valid delay		$5 \mathrm{TcPC}+300$		5TcPC+250	ns	
37	TdPC(INT)	PCLK \downarrow to $\overline{\text { INT }}$ valid delay		500		500	ns	4
38	TdIAi(RD)	$\overline{\text { INTACK }}$ to $\overline{\mathrm{RD}} \downarrow$ (acknowledge) delay					ns	5
39	TwRDA	$\overline{\mathrm{RD}}$. (acknowledge) width	285		250		ns	
40	TdRDA(DR)	$\overline{\mathrm{RD}} \downarrow$ (acknowledge) to read data valid delay		190		180	ns	
41	TsIEI(RDA)	IEI to $\overline{\mathrm{RD}} \downarrow$ (acknowledge) setup time	120		100		ns	
42	ThIEI(RDA)	IEI to $\overline{\mathrm{RD}} \uparrow$ (acknowledge) hold time	0		0		ns	
43	TdIEI(IEO)	IEI to IEO delay time		120		100	ns	
44	TdPC(IEO)	PCLK \uparrow to IEO delay		250		250	ns	
45	TdRDA(INT)	$\overline{\mathrm{RD}} \downarrow$ to $\overline{\mathrm{INT}}$ inactive delay		500		500	ns	4
46	TdRD(WRQ)	$\overline{\mathrm{RD}} \uparrow$ to $\overline{\mathrm{WR}} \downarrow$ delay for no reset	30		15		ns	
47	TdWRQ(RD)	$\overline{\mathrm{WR}} \uparrow$ to $\overline{\mathrm{RD}} \downarrow$ delay for no reset	30		30		ns	
48	TwRES	$\overline{\mathrm{WR}}$ and $\overline{\mathrm{RD}}$ coincident low for reset	250		250		ns	
49	Trc	Valid access recovery time	$67 \mathrm{cPC}+200$		6TcPC +130		ns	3

Note 1: Parameter does not apply to Interrupt Acknowledge transactions.
Note 2: Float delay is defined as the time required for a $\pm 0.5 \mathrm{~V}$ change in the output with a maximum DC load and minimum AC load.
Note 3: Parameter applies only between transactions involving the SCC.
Note 4: Open-drain output, measured with open-drain test load.
Note 5: Parameter is system dependent. For any SCC in the daisy chain, TdIAi (RD) must be greater than the sum of TdPC (IEO) for the highest priority device in the daisy chain, TsIEI (RDA) for the SCC, and TdIEIf (IEO) for each device separating them in the daisy chain.

Read and write timing

Reset timing
$\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$

(2) System timing

No.	Symbol	Parameter	LH8530		LH8530A		Unit	Note
			MIN.	MAX.	MIN.	MAX.		
1	TdRxC(REQ)	$\overline{\mathrm{RxC}} \uparrow$ to $\overline{\mathrm{W}} / \overline{\mathrm{REQ}}$ valid delay	8	12	8	12	TcPC	2
2	TdRxC(W)	$\overline{\mathrm{RxC}} \uparrow$ to wait inactive delay	8	12	8	12	TcPC	1,2
3	TdRxC(SY)	$\overline{\mathrm{RxC}} \uparrow$ to $\overline{\text { SYNC }}$ valid delay	4	7	4	7	TcPC	2
4	TdRxC(INT)	$\overline{\mathrm{RxC}} \uparrow$ to $\overline{\mathrm{INT}}$ valid delay	10	16	10	16	TcPC	1,2
5	TdTxC(REQ)	$\overline{\mathrm{TxC}} \downarrow$ to $\overline{\mathrm{W}} / \overline{\mathrm{REQ}}$ valid delay	5	8	5	8	TcPC	3
6	TdTxC(W)	$\overline{\mathrm{TxC}} \downarrow$ to wait inactive delay	5	8	5	8	TcPC	1,3
7	TdTxC(DRQ)	$\overline{\mathrm{TxC}} \downarrow$ to $\overline{\mathrm{DTR}} / \overline{\mathrm{REQ}}$ valid delay	4	7	4	7	TcPC	3
8	TdTxC(INT)	$\overline{\mathrm{TxC}} \downarrow$ to $\overline{\mathrm{INT}}$ valid delay	6	10	6	10	TcPC	1,3
9	TdSx(INT)	$\overline{\text { SYNC }}$ transition to $\overline{\text { INT }}$ valid delay	2	6	2	6	TcPC	1
10	TdExT(INT)	$\overline{\overline{D C D}}$ or $\overline{\mathrm{CTS}}$ transition to $\overline{\mathrm{INT}}$ valid delay	2	6	2	6	TcPC	1

Note 1: Open-drain output, measured with open-drain test load.
Note 2: $\overline{\mathrm{RxC}}$ is $\overline{\mathrm{RTxC}}$ or $\overline{\mathrm{TRxC}}$, whichever is supplying the receive clock.
Note 3: $\overline{T x C}$ is $\overline{T R x C}$ or $\overline{\mathrm{RTxC}}$, whichever is supplying the transmit clock.

System timing
(3) General timing

No.	Symbol	Parameter	LH8530		LH8530A		Unit	Note
			MIN.	MAX.	MIN.	MAX.		
1	TdPC(REQ)	PCLK \downarrow to $\overline{\mathrm{W}} / \overline{\mathrm{REQ}}$ valid delay		250		250	ns	
2	TdPC(W)	PCLK \downarrow to wait inactive delay		350		350	ns	
3	TsRXC(PC)	$\overline{\mathrm{RxC}} \uparrow$ to PCLK \uparrow setup time (PCLK $\div 4$ case only)	80	TwPC1	70	TwPC1	ns	1,4
4	TsRXD(RXCr)	RxD to $\overline{\mathrm{RxC}} \uparrow$ setup time (XI mode)	0		0		ns	1
5	ThRXD(RXCr)	RxD to $\overline{\mathrm{RxC}} \uparrow$ hold time (XI mode)	150		150		ns	1
6	TsRXD(RXCf)	RxD to $\overline{\mathrm{RxC}} \downarrow$ setup time (XI mode)	0		0		ns	1,5
7	ThRXD(RXCf)	RxD to $\overline{\mathrm{RxC}} \downarrow$ hold time (XI mode)	150		150		ns	1,5
8	TsSY(RXC)	$\overline{\text { SYNC }}$ to $\overline{\mathrm{RxC}} \uparrow$ setup time	-200		-200		ns	1
9	ThSY(RXC)	$\overline{\text { SYNC }}$ to $\overline{\mathrm{RxC}} \uparrow$ hold time	3TcPC+200		3TcPC +200		ns	1
10	TsTXC(PC)	$\overline{\text { TxC }} \downarrow$ to PCLK \uparrow setup time	0		0		ns	2,4
11	TdTXCf(TXD)	$\overline{\mathrm{TxC}} \downarrow$ to TxD delay (XI mode)		300		300	ns	2
12	TdTXCr(TXD)	$\overline{\mathrm{TxC}} \uparrow$ to TxD delay (XI mode)		300		300	ns	2,5
13	TdTXD(TRX)	TxD to $\overline{\mathrm{TRxC}}$ delay (send clock echo)		200		200	ns	
14	TwRTXh	$\overline{\mathrm{RTxC}}$ high width	180		180		ns	6
15	TwRTXI	$\overline{\mathrm{RTxC}}$ low width	180		180		ns	6
16	TcRTX	$\overline{\mathrm{RTxC}}$ cycle time	400		400		ns	6
17	TcRTXX	Crystal oscillator period	250	1000	250	1000	ns	3
18	TwTRXh	$\overline{\mathrm{TRxC}}$ high width	180		180		ns	3
19	TwTRXI	$\overline{\text { TRxC }}$ low width	180		180		ns	6
20	TcTRX	$\overline{\mathrm{TRxC}}$ cycle time	400		400		ns	6
21	TwEXT	$\overline{\mathrm{DCD}}$ or $\overline{\mathrm{CTS}}$ pulse width	200		200		ns	
22	TwSY	$\overline{\text { SYNC }}$ pulse width	200		200		ns	

Note 1: $\overline{\mathrm{RxC}}$ is $\overline{\mathrm{RTxC}}$ or $\overline{\mathrm{TRxC}}$, whichever is supplying the receive clock.
Note 2: $\overline{\mathrm{TxC}}$ is $\overline{\mathrm{TRxC}}$ or $\overline{\mathrm{RTxC}}$, whichever is supplying the transmit clock.
Note 3: Both $\overline{\mathrm{RTxC}}$ and $\overline{\mathrm{SYNC}}$ have 30 pF capacitors to ground connected to them.
Note 4: Parameter applies only if the data rate is one-fourth the PCLK rate. In all other cases, no phase relationship between RxC and PCLK or $\overline{T x C}$ and PCLK is required.

Note 5: Parameter applies only to FM encoding/decoding.
Note 6: Parameter applies only for transmitter and receiver; DPLL and baud rate generator timing requirements are identical to chip PCLK requirements.

Data Communications Capabilities

The LH8530 provides two independent fullduplex channels programmable for use in any common Asynchronous or Synchronous data communication protocol. Fig. 1 illustrates these protocols.

Fig. 1 Some SCC protocols

SDLC Loop Mode

The LH8530 supports SDLC Loop mode in addition to normal SDLC. In an SDLC Loop, there is a primary controller station that manages the message traffic flow on the loop and any number of secondary stations. In SDLC Loop mode, the LH8530 performs the functions of a secondary station while an LH8530 operating in regular SDLC mode can act as a controller (Fig. 2).
A secondary station in an SDLC Loop is alway listening to the messages being sent around the loop, and in fact must pass these messages to the rest of the loop by retransmitting them with a one-bit-time delay. The secondary station can place its own message on the loop only at specific times. The controller signals that secondary stations may transmit messages by sending a special character, called an EOP (End Of Poll), around the loop. The EOP character is the bit pattern 11111110. Because of zero insertion during messages, this bit pattern is unique and easily recognized.
When a secondary station has a message to transmit and recognizes an EOP on the line, it changes the last binary 1 of the EOP to a 0 before transmission. This has the effect of turning the EOP into a flag sequence. The secondary station now places its message on the loop and terminates the message with an EOP. Any secondary stations further down the loop with messages to transmit can then append their messages to the message of the
first secondary station by the same process. Any secondary stations without messages to send merely echo the incoming messages and are prohibited from placing messages on the loop (except upon recognizing an EOP).
SDLC Loop mode is a programmable option in the LH8530. NRZ, NRZI, and FM coding may all be used in SDLC Loop mode.

Data Encoding

The LH8530 may be programmed to encode and decode the serial data in four different ways (Fig. 3). In NRZ encoding, a 1 is represented by a High level and a 0 is represented by a Low level. In NRZI encoding, a 1 is represented by no change in level and a 0 is represented by a change in level. In FM1 (more properly, bi-phase mark), a transition occurs at the beginning of every bit cell. A 1 is represented by an additional transition at the center of the bit cell and a 0 is represented by no additional transition at the center of the bit cell. In FM0 (biphase space), a transition occurs at the beginning of every bit cell. A 0 is represented by an additional transition at the center of the bit cell, and a 1 is represented by no additional transition at the center of the bit cell. In addition to these four methods, the LH8530 can be used to decode Manchester (bi-phase level) data by using the DPLL in the FM mode and programming the receiver for NRZ data. Manchester encoding always produces a transition at the center of the bit cell. If the transition is 0 to 1 , the bit is a 0 . If the transition is 1 to 0 , the bit is a 1 .

Fig. 3 Data encoding methods

Auto Echo and Local Loopback

The LH8530 is capable of automatically echoing everything it receives. This feature is useful mainly in Asynchronous modes, but works in Synchronous and SDLC modes as well. In Auto Echo mode, TxD is RxD. Auto Echo mode can be used with NRZI or FM encoding with no additional delay, because the data stream is not decoded before retransmission. In Auto Echo mode, the $\overline{\mathrm{CTS}}$ input is ignored as a transmitter enable (although transitions on this input can still cause interrupts if programmed to do so). In this mode, the transmitter is actually bypassed and the programmer is responsible for disabling transmitter interrupts and WAIT/REQUEST on transmit.
The LH8530 is also capable of local loopback. In this mode TxD is RxD, just as in Auto Echo mode. However, in Local Loopback mode, the internal transmit data is tied to the internal receive data and RxD is ignored (except to be echoed out via TxD). The $\overline{\mathrm{CTS}}$ and $\overline{\mathrm{DCD}}$ inputs are also ignored as transmit and receive enables. However, transitions on these inputs can still cause interrupts. Local Loopback works in Asynchronous, Synchronous and SDLC modes with NRZ, NRZI or FM coding of the data stream.

Baud Rate Generator

Each channel in the LH8530 contains a prog. rammable baud rate generator. Each generator consists of two 8 -bit time constant registers that form a 16 -bit time constant, a 16 -bit down counter, and a flip-flop on the output producing a square wave. On startup, the flip-flop on the output is set in a High state, the value in the time constant register is loaded into the counter, and the counter starts counting down. The output of the baud rate generator toggles upon reaching 0 , the value in the time constant register is loaded into the counter, and the process is repeated. The
time constant may be changed at any time, but the new value does not take effect until the next load of the counter.

The output of the baud rate generator may be used as either the transmit clock, the receive clock, or both. It can also drive the Digital PhaseLocked Loop (see next section).

If the receive clock or transmit clock is not programmed to come from the $\overline{\mathrm{TRxC}}$ pin, the output of the baud rate generator may be echoed out via the $\overline{T R x C}$ pin.

The following formula relates the time constant to the baud rate (the baud rate is in bits/second and the BR clock period is in seconds).

$$
\text { baud rate }=\frac{1}{2(\text { time constant }+2) \times(\text { BR clock period })}
$$

Digital Phase-Locked Loop

The LH8530 contains a Digital Phase-Locked Loop (DPLL) to recover clock information from a data stream with NRZI or FM encoding. The DPLL is driven by a clock that is nominally 32 (NRZI) or 16 (FM) times the data rate. The DPLL uses this clock, along with the data stream, to construct a clock for the data. This clock may then be used as the SCC receive clock, the transmit clock, or both.
For NRZI encoding, the DPLL counts the 32X clock 60 create nominal bit times. As the 32X clock is counted, the DPLL is searching the incoming data stream for edges (either 1 to 0 or 0 to 1). Whenever an edge is detected, the DPLL makes a count adjustment (during the next counting cycle), producing a terminal count closer to the center of the bit cell.

For FM encoding, the DPLL still counts from 0 to 31 , but with a cycle corresponding to two bit times. When the DPLL is locked, the clock edges in the data stream should occur between counts 15 and 16 and between counts 31 and 0 . The DPLL looks for edges only during a time centered on the 15 to 16 counting transition.

The 32 X clock for the DPLL can be programmed to come from either the $\overline{\mathrm{RTxC}}$ input or the output of the baud rate generator. The DPLL output may be programmed to be enchoed out of the LH8530 via the $\overline{T R x C}$ pin (if this pin is not being used as an input).

Read Registers

- Read Register 0

- Read Register 1

- Read Register 2

*MODIFIED IN CHANNEL B

- Read Register 3*

*ALWAYS 0 IN CHANNEL B

- Read Register 10

- Read Register 12

LOWER BYTE OF
TIME CONSTANT

- Read Register 13

- Read Register 15

Write Registers

- Write Register 0

- Write Register 1

- $\overline{\text { WAIT/DMA REQUEST FUNCTION }}$
-wait/DMA REQUEST ENABLE

- Write Register 2

- Write Register 3

0	0
0	1
1	0
1	1

Rx 5 BITS/CHARACTER
Rx 7 BITS/CHARACTER
Rx 6 BITS/CHARACTER
Rx 8 BITS/CHARACTER

- Write Register 4

 SYNC MODES ENABLE 1 STOP BIT/CHARACTER 11/2 STOP BITS/CHARACTER 2 STOP BITS/CHARACTER

0	0
0	1
1	0
1	1

8 BIT SYNC CHARACTER 16 BIT SYNC CHARACTER SDLC MODE (01111110 FLAG) EXTERNAL SYNC MODE

0	0
0	1
1	0
1	1

$\times 1$ CLOCK MODE
$\times 16$ CLOCK MODE
$\times 32$ CLOCK MODE
$\times 64$ CLOCK MODE

- Write Register 5

- Write Register 6

- Write Register 7

- Write Register 9

- Write Register 10

D_{7} D_{6} D_{5} D_{4} D_{3} D_{2} D_{1} D_{0}

- Write Register 11

- Write Register 12

D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}

LOWER BYTE OF TIME CONSTANT

- Write Register 13

- Write Register 14

- Write Register 15

16-bit Microprocessors

LH70108(V20)
 High-Performance 16-Bit Microprocessor

- Description

The LH70108(V20) is a CMOS 16-bit microprocessor with internal 16-bit architecture and an 8-bit external data bus. The LH70108 additionally has a powerful instruction set including bit processing, packed BCD operations, and high-speed multiplication/division operations. The LH70108 can also execute the entire 8080 instruction set comes with a standby mode that significantly reduces power consumption. It is software-compatible with the LH70116 16-bit microprocessor.

Features

1. Minimum instruction execution time: 250 ns (at 8 MHz)
2. Maximum addressable memory: 1 M byte
3. Abundant memory addressing modes
4. 14×16-bit register set
5. 101 instructions
6. Bit, byte, word, and block operations
7. Bit field operation instructions
8. Packed BCD instructions
9. Multiplication/division instruction execution time: $2.4 \mu \mathrm{~s}$ to $7.1 \mu \mathrm{~s}$ (at 8 MHz)
10. High-speed block transfer instructions: 1 M byte/s (at 8 MHz)
11. Hign-speed calculation of effective addresses: 2 clock cycles in any addressing mode
12. Maskable (INT) and nonmaskable (NMI) interrupt inputs
13. IEEE-796 bus compatible interface 8080 emulation mode
14. CMOS technology
15. Low-power consumption
16. Low-power standby mode
17. Single power supply
18. 5 MHz or 8 MHz clock
19. 40-pin DIP (DIP40-P-600)

Pin Connections

* V20 is a trademark of NEC corporation.

Block Diagram

- Pin Identification

No.	Symbol	Direction	Function
1	IC*		Internally connected
2-8	$\mathrm{A}_{14}-\mathrm{A}_{8}$	Out	Address but, middle bits.
9-16	$\mathrm{AD}_{7}-\mathrm{AD}_{0}$	In/Out	Address/data bus
17	NMI	In	Nonmaskable interrupt input
18	INT	In	Maskable interrupt input
19	CLK	In	Clock input
20	GND		Ground potential
21	RESET	In	Reset input
22	READY	In	Ready input
23	$\overline{\text { POLL }}$	In	Poll input
24	$\begin{gathered} \hline \overline{\text { INTAK }} \\ \left(\mathrm{QS}_{1}\right) \end{gathered}$	Out	Interrupt acknowledge output (queue status bit 1 output)
25	$\begin{aligned} & \hline \text { ASTB } \\ & \left(\mathrm{QS}_{0}\right) \end{aligned}$	Out	Address strobe output (queue status bit 0 output)
26	$\begin{gathered} \hline \overline{\mathrm{BUFEN}} \\ \left(\mathrm{BS}_{0}\right) \\ \hline \end{gathered}$	Out	Buffer enable output (bus status bit 0 output)
27	$\begin{gathered} \text { BUF } \overline{\mathrm{R}} / \mathrm{W} \\ \left(\mathrm{BS}_{1}\right) \end{gathered}$	Out	Buffer read/write output (bus status bit 1 output)

No.	Symbol	Direction	Function
28	$\begin{aligned} & \mathrm{IO} / \overline{\mathrm{M}} \\ & \left(\mathrm{BS}_{2}\right) \end{aligned}$	Out	Access is I/O or memory (bus status bit 2 output)
29	$\frac{\text { WR }}{(\text { BUSLOCK })}$	Out	Write strobe output (bus lock output)
30	$\begin{gathered} \left.\frac{\mathrm{HLDAK}}{(\mathrm{RQ}} / \mathrm{AK}_{1}\right) \end{gathered}$	$\begin{gathered} \text { Out } \\ \text { (In/Out) } \end{gathered}$	Hold acknowledge output, (bus hold request input/ acknowledge output 1)
31	$\frac{\mathrm{HLDRQ}}{\left(\overline{\mathrm{RQ}} / \overline{\mathrm{AK}}_{0}\right)}$	$\begin{gathered} \text { In } \\ \text { (In/Out) } \end{gathered}$	Hold request input (bus hold request input/ acknowledge output 0)
32	$\overline{\mathrm{RD}}$	Out	Read strobe output
33	S/ $/ \overline{\mathrm{LG}}$	In	Small-scale/large-scale system input
34	$\begin{gathered} \mathrm{LBS}_{0} \\ (\mathrm{HIGH}) \end{gathered}$	Out	Latched bus status output 0 (always high in large-scale systems)
35-38	$\begin{gathered} \mathrm{A}_{19} / \mathrm{PS}_{3-} \\ \mathrm{A}_{16} / \mathrm{PS}_{0} \\ \hline \end{gathered}$	Out	Address bus, high bits or processor status output
39	A_{15}	Out	Address bus, bit 15
40	V_{DD}		Power supply

Notes: * IC should be connected to ground.
Where pins have different functions in small-and large-scale systems, the large-scale system pin symbol and function are in parentheses.
Unused input pins should be tied to ground or V_{DD} to minimize power dissipation and prevent the flow of potentially harmful currents.

- Absolute Maximum Ratings ($\mathrm{Ta}=+25^{\circ} \mathrm{C}$)

Parameter	Symbol	Ratings	Units
Supply voltage	V_{DD}	-0.5 to +7.0	V
Input voltage	V_{I}	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
CLK input voltage	V_{K}	-0.5 to $\mathrm{V}_{\mathrm{DD}}+1.0$	V
Output voltage	V_{O}	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Operating temperature	Topr	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg	-65 to +150	${ }^{\circ} \mathrm{C}$

Capacitance		$\left(\mathrm{Ta}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}\right)$			
Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Input capacitance	C_{I}	$\mathrm{fc}=1 \mathrm{MHz}$ Unmeasured		15	pF .
I/O capacitance	C_{10}	pins returned $\text { to } \mathrm{OV}$		15	pF

- DC Characteristics
(LH70108-5, $\mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{pp}}=+5 \mathrm{~V} \pm 10 \%$) (LH70108-8, $\mathrm{Ta}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{pp}}=+5 \mathrm{~V} \pm 5 \%$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input HIGH voltage	V_{IH}			2.2		$\mathrm{V}_{\mathrm{DD}}+0.3$	V
Input LOW voltage	$\mathrm{V}_{\text {IL }}$			-0.5		0.8	V
CLK input HIGH voltage	V_{KH}			3.9		$\mathrm{V}_{\mathrm{DD}}+1.0$	V
CLK input LOW voltage	V_{KL}			-0.5		0.6	V
Output HIGH voltage	V_{OH}	$\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$		$0.7 \mathrm{~V}_{\mathrm{DD}}$			V
Output LOW voltage	$\mathrm{V}_{\text {OL }}$	$\mathrm{I}_{\mathrm{OL}}=2.5 \mathrm{~mA}$				0.4	V
Input leakage HIGH current	$\mathrm{I}_{\text {LH }}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}$				10	$\mu \mathrm{A}$
Input leakage LOW current	$\mathrm{I}_{\text {LIL }}$	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$				-10	$\mu \mathrm{A}$
Output leakage HIGH current	$\mathrm{I}_{\text {LOH }}$	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}}$				10	$\mu \mathrm{A}$
Output leakage LOW current	$\mathrm{I}_{\text {LOL }}$	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$				-10	$\mu \mathrm{A}$
HLDRQ input HIGH current	$\mathrm{I}_{\mathrm{HQH}}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}$				10	$\mu \mathrm{A}$
HLDRQ input LOW current	$\mathrm{I}_{\mathrm{HQL}}$	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$				-0.5	mA
Supply current	I_{DD}	Normal operation	$70108-5$ 5 MHz		30	60	mA
		Standby mode			5	10	mA
		Normal operation	$\begin{aligned} & 70108-8 \\ & 8 \mathrm{MHz} \end{aligned}$		45	80	mA
		Standby mode			6	12	mA

- AC Characteristics
(LH70108-5, Ta $=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \%$) (LH70108-8, $\mathrm{Ta}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 5 \%$)

Parameter	Symbol	Conditions	LH70108-5		LH70108-8		Unit
			MIN.	MAX.	MIN.	MAX.	
Small/Large Scale							
Clock cycle	$\mathrm{t}_{\text {CYK }}$		200	500	125	500	ns
Clock pulse HIGH width	$\mathrm{t}_{\text {KKH }}$	$\mathrm{V}_{\mathrm{KH}}=3.0 \mathrm{~V}$	69		44		ns
Clock pulse LOW width	$\mathrm{t}_{\mathrm{KKL}}$	$\mathrm{V}_{\mathrm{KL}}=1.5 \mathrm{~V}$	90		60		ns
Clock rise time	t_{KR}	1.5 V to 3.0 V		10		10	ns
Clock fall time	t_{KF}	3.0 V to 1.5 V		10		10	ns
READY inactive setup to CLK \downarrow	$\mathrm{t}_{\text {SRYLK }}$		-8		-8		ns
READY inactive hold after CLK \uparrow	$\mathrm{t}_{\text {HKRYH }}$		30		20		ns
READY active setup to CLK \uparrow	$\mathrm{t}_{\text {SRYHK }}$		$\mathrm{t}_{\mathrm{KKL}}-8$		$\mathrm{t}_{\mathrm{KKL}}-8$		ns
READY active hold after CLK \uparrow	$\mathrm{t}_{\text {HKRYL }}$		30		20		ns
Data setup time to CLK \downarrow	$\mathrm{t}_{\text {SDK }}$		30		20		ns
Data hold time after CLK \downarrow	$\mathrm{t}_{\mathrm{HKD}}$		10		10		ns
NMI, INT, $\overline{\text { POLL }}$ setup time to CLK \uparrow	$\mathrm{t}_{\text {SIK }}$		30		15		ns
Input rise time (except CLK)	$\mathrm{t}_{\text {IR }}$	0.8 V to 2.2 V		20		20	ns
Input fall time (except CLK)	$\mathrm{t}_{\text {IF }}$	2.2 V to 0.8 V		12		12	ns
Output rise time	t_{OR}	0.8 V to 2.2 V		20		20	ns
Output fall time	t_{OF}	2.2 V to 0.8 V		12		12	ns

Small Scale

Address delay time from CLK \downarrow	$\mathrm{t}_{\mathrm{DKA}}$	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	10	90	10	60	ns
Address hold time from CLK \downarrow	$\mathrm{t}_{\mathrm{HKA}}$		10		10		ns
PS delay time from CLK \downarrow	$\mathrm{t}_{\mathrm{DKP}}$		10	90	10	60	ns
PS float delay time from CLK \uparrow	$\mathrm{t}_{\text {FKP }}$		10	80	10	60	ns
Address setup time to ASTB \downarrow	$\mathrm{t}_{\text {SAST }}$		$\mathrm{t}_{\mathrm{KKL}}-60$		$\mathrm{t}_{\mathrm{KKL}}-30$		ns
Address float delay time from CLK \downarrow	$\mathrm{t}_{\text {FKA }}$		$\mathrm{t}_{\mathrm{HKA}}$	80	$\mathrm{t}_{\text {HKA }}$	60	ns
ASTB \uparrow delay time from CLK \downarrow	$\mathrm{t}_{\text {DKSTH }}$			80		50	ns
ASTB \downarrow delay time from CLK \uparrow	$\mathrm{t}_{\text {DKSTL }}$			85		55	ns
ASTB HIGH width	$\mathrm{t}_{\text {STST }}$		$\mathrm{t}_{\text {KKL }}-20$		$\mathrm{t}_{\mathrm{KKL}}-10$		ns
Address hold time from ASTB \downarrow	$\mathrm{t}_{\mathrm{HSTA}}$		$\mathrm{t}_{\text {KKH }}-10$		$\mathrm{t}_{\text {KкН }}-10$		ns
Control delay time from CLK	$\mathrm{t}_{\text {DKCT }}$		10	110	10	65	ns
Address float to $\overline{\mathrm{RD}} \downarrow$	$\mathrm{t}_{\text {AFRL }}$		0		0		ns
$\overline{\mathrm{RD}} \downarrow$ delay time from CLK \downarrow	$\mathrm{t}_{\text {DKRL }}$		10	165	10	80	ns
$\overline{\mathrm{RD}} \uparrow$ delay time from CLK \downarrow	$\mathrm{t}_{\text {DKRH }}$		10	150	10	80	ns
Address delay time from $\overline{\mathrm{RD}} \uparrow$	$\mathrm{t}_{\text {DRHA }}$		$\mathrm{t}_{\text {cYK }}-45$		$\mathrm{t}_{\mathrm{CYK}}-40$		ns
$\overline{\mathrm{RD}}$ LOW width	t_{RR}		$2 \mathrm{t}_{\text {CYK }}-75$		$2 \mathrm{t}_{\mathrm{CYK}}-50$		ns
Data output delay time from CLK \downarrow	$\mathrm{t}_{\text {DKD }}$		10	90	10	60	ns
Data float delay time from CLK \downarrow	$\mathrm{t}_{\text {FKD }}$		10	80	10	60	ns
$\overline{\text { WR LOW width }}$	t_{ww}		$22^{\text {CYK }}-60$		$2 \mathrm{t}_{\text {CYK }}-40$		ns
HLDRQ setup time to CLK \uparrow	$\mathrm{t}_{\text {SHQK }}$		35		20		ns
HLDAK delay time from CLK \downarrow	$\mathrm{t}_{\text {DKHA }}$		10	160	10	100	ns
$\overline{\text { BUFEN }} \uparrow$ from $\overline{\mathrm{WR}} \uparrow$	$\mathrm{t}_{\mathrm{WCT}}$		$\mathrm{t}_{\text {KKL }}-20$		$\mathrm{t}_{\text {KKL }}-20$		ns

- AC Characteristics (cont)
(LH70108-5, $\mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=-5 \mathrm{~V} \pm 10 \%\right)$ (LH70108-8, $\mathrm{Ta}=-10^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 5 \%$)

Parameter	Symbol	Conditions	LH70108-5		LH70108-8		Unit
			MIN.	MAX.	MIN.	MAX.	
Large Scale							
Address delay time from CLK \downarrow	$\mathrm{t}_{\mathrm{DKA}}$	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	10	90	10	60	ns
Address hold time from CLK \downarrow	$\mathrm{t}_{\mathrm{HKA}}$		10		10		ns
PS delay time from CLK \downarrow	$\mathrm{t}_{\text {DKP }}$		10	90	10	60	ns
PS float delay time from CLK \uparrow	$\mathrm{t}_{\mathrm{FKP}}$		10	80	10	60	ns
Address float delay time from CLK \downarrow	$\mathrm{t}_{\mathrm{FKA}}$		$\mathrm{t}_{\mathrm{HKA}}$	80	$\mathrm{t}_{\mathrm{HKA}}$	60	ns
Address delay time from $\overline{\mathrm{RD}} \uparrow$	$\mathrm{t}_{\text {DRHA }}$		$\mathrm{t}_{\text {CYK }}-45$		$\mathrm{t}_{\text {CYK }}-40$		ns
ASTB delay time from BS \downarrow	$\mathrm{t}_{\text {DBST }}$			15		15	ns
BS \downarrow delay time from CLK \uparrow	$\mathbf{t}_{\text {DKBL }}$		10	110	10	60	ns
BS \uparrow delay time from CLK \downarrow	$\mathrm{t}_{\text {DKBH }}$		10	130	10	65	ns
$\overline{\mathrm{RD}} \downarrow$ delay time from address float	$\mathrm{t}_{\text {DAFRL }}$		0		0		ns
$\overline{\mathrm{RD}} \downarrow$ delay time from CLK \downarrow	$\mathrm{t}_{\text {DKRL }}$		10	165	10	80	ns
$\overline{\mathrm{RD}} \uparrow$ delay time from CLK \downarrow	$\mathrm{t}_{\text {DKRH }}$		10	150	10	80	ns
$\overline{\mathrm{RD}}$ LOW width	t_{RR}		$2 \mathrm{t}_{\text {CYK }}-75$		$2 \mathrm{t}_{\text {CYK }}-50$		ns
Data output delay time from CLK \downarrow	$\mathrm{t}_{\mathrm{DKD}}$		10	90	10	60	ns
Data float delay time from CLK \uparrow	$\mathrm{t}_{\mathrm{FKD}}$		10	80	10	60	ns
$\overline{\mathrm{AK}}$ delay time from CLK \downarrow	$\mathrm{t}_{\text {DKAK }}$			70		50	ns
$\overline{\mathrm{RQ}}$ setup time to CLK \uparrow	$\mathrm{t}_{\text {SRQK }}$		20		10		ns
$\overline{\mathrm{RQ}}$ hold time after CLK \downarrow	$\mathrm{t}_{\text {HKRQ1 }}$		0		0		ns
$\overline{\mathrm{RQ}}$ hold time after CLK \uparrow	$\mathrm{t}_{\text {HKRQ2 }}$		40		30		ns

Pin Functions

Some pins of the LH70108 have different functions according to whether the microprocessor is used in a small- or large-scale system. Other pins function the same way in either type of system.

$\mathrm{A}_{15}-\mathrm{A}_{8}$ (Address Bus)

For small- and large-scale systems.
The CPU uses these pins to output the middle 8 bits of the 20 -bit address data. They are threestate outputs and become high impedance during hold acknowledge.

$A D_{7}-A D_{0}$ (Address/Data Bus)

For small- and large-scale systems.
The CPU uses these pins as the time-multiplexed address and data bus. When high, and $A D$ bit is a one; when low, an AD bit is a zero. This bus contains the lower 8 bits of the 20 -bit address during T1 of the bus cycle and is used as an 8-bit data bus during T2, T3, and T4 of the bus cycle.

Sixteen-bit data I/O performed in two steps. The low byte is sent first, followed by the high byte. The address/data bus is a three-state bus and can be at a high or low level during standby mode. The bus will be high impedance during hold and interrupt acknowledge.

NMI (Nonmaskable Interrupt)

For small- and large-scale systems.
This pin is used to input nonmaskable interrupt requests. NMI cannot be masked by software. This input is positive edge triggered and must be held high for five clocks to guarantee recognition. Actual interrupt processing begins, however, after completion of the instruction in progress.

The contents of interrupt vector 2 determine the starting address for the interrupt-servicing routine. Note that a hold request will be accepted even during NMI acknowledge.

This interrupt will cause the LH70108 to exit the standby mode.

INT (Maskable Interrupt)

For small- and large-scale systems.
This pin is an interrupt request that can be masked by software.

INT is active high level and is sensed during the last clock of the instruction. The interrupt will be accepted if the interrupt enable flag IE is set. The CPU outputs the INTAK signal to inform external devices that the interrupt request has been granted. INT must be asserted until the interrupt
acknowledge is returned.
If NMI and INT interrupts occur at the same time, NMI has higher priority than INT and INT cannot be accepted. A hold request will be accepted during INT acknowledge.

This interrupt causes the LH70108 to exit the standby mode.

CLK (Clock)

For small- and large-scale systems.
This pin is used for external clock input.

RESET (Reset)

For small- and large-scale systems.
This pin is used for the CPU reset signal. It is an active high level. Input of this signal has priority over all other operations. After the reset signal input returns to a low level, the CPU begins execution of the program starting at address FFFF0H.

In addition to causing normal CPU start, RESET input will cause the LH70108 to exit the standby mode.

READY (Ready)

For small- and large-scale systems.
When the memory or I/O device being accessed cannot complete data read or write within the CPU basic access time, it can generate a CPU wait state (Tw) by setting this signal to inactive (low level) and requesting a read/write cycle delay.

If the READY signal is active (high level) during either the T3 or Tw state, the CPU will not generate a wait state.

This signal must be input in synchronization with external clock signals to satisfy the setup/ hold time for normal operation.

$\overline{\text { POLL }}$ (Poll)

For small- and large-scale systems.
The CPU checks this input upon execution of the $\overline{\mathrm{POLL}}$ instruction. If the input is low, then execu: tion continues. If the input is high, the CPU will check the $\overline{\text { POLL }}$ input every five clock cycles until the input becomes low again.

The POLL and READY functions are used to synchronize CPU program execution with the operation of external devices.

$\overline{\mathrm{RD}}$ (Read Strobe)

For small- and large-scale systems.
The CPU outputs this strobe signal during data read from an I/O device or memory. The IO/ $\overline{\mathrm{M}}$ sig-
nal is used to select between I/O and memory.
The three-state output is held high during standby mode and enters the high-impedance state during hold acknowledge.

S/LG (Small/Large)

For small- and large-scale systems.
This signal determines the operation mode of the CPU. This signal is fixed at either a high or low level. When this signal is a high level, the CPU will operate in small-scale system mode, and when low, in the large-scale system mode.

Pins 24 to 31 and pin 34 function differently depending on the operating mode of the CPU. Separate nomenclature is adopted for these signals in the two operating modes.

Pin No.	Function	
	S/言G-high	S/ $\overline{\mathrm{LG}}$-low
24	INTAK	QS_{1}
25	ASTB	QS_{0}
26	BUFEN	BS_{0}
27	BUF/ $/$ / W	BS_{1}
28	IO/M	BS_{2}
29	$\overline{\mathrm{WR}}$	BUSLOCK
30	HLDAK	$\overline{\mathrm{RQ}} / \overline{\mathrm{AK}}_{1}$
31	HLDRQ	$\overline{\mathrm{RQ}} / \overline{\mathrm{AK}}_{0}$
34	LBS_{0}	Always high

$\overline{\text { INTAK }}$ (Interrupt Acknowledge)

For small-scale systems.
The CPU generates the INTAK signal low when it accepts an INT signal.

The interrupting device synchronizes with this signal and outputs the interrupt vector to the CPU via the data bus $\left(A D_{7}-A D_{0}\right)$.

ASTB (Address Strobe)

For small-scale systems.
The CPU outputs this strobe signal to latch address information at an external latch.

ASTB is held at a low level during standby mode however, goes high at one time for a half clock cycle to latch $\mathrm{L}_{\mathrm{BS} 0}$ output.

BUFEN (Buffer Enable)

For small-scale systems
This is used as the output enable signal for an external bidirectional buffer. The CPU generates this signal during data transfer operations with external memory or I/O devices or during input of an interrupt vector.

This three-state output is held high during standby mode and enters the high-impedance state
during hold acknowledge.

BUF \bar{R} / W (Buffer Read/Write)

For small-scale systems.
The output of this signal determines the direction of data transfer with an external bidirectional buffer. A high output causes transmission from the CPU to the external device; a low signal causes data transfer from the external device to the CPU.

BUF \bar{R} / W is a three-state output and becomes impedance during hold acknowledge.

10/M (IO/Memory)

For small-scale systems.
The CPU generates this signal to specify either I/O access or memory access. A high-level output specifies I/O and a low-level signal specifies memory.

IO/M's output is three state and becomes high impedance during hold acknowledge.

$\overline{\text { WR }}$ (Write Strobe)

For small-scale systems.
The CPU generates this strobe signal during data write to an I/O device or memory. Selection of either I/O or memory is performed by the IO/M signal.

This three-state output is held high during standby mode and enters the high-impedance state during hold acknowledge.

HLDAK (Hold Acknowledge)

For small-scale systems.
The HLDAK signal is used to indicate that the CPU accepts the hold request signal (HLDRQ). When this signal is a high level, the address bus, address/data bus, and the control lines become high impedance.

HLDRQ (Hold Request)

For small-scale systems.
This input signal is used by external devices to request the CPU to release the address bus, address/data bus, and the control bus.

This signal must be input in synchronization with external clock signals to satisfy the setup/ hold time for normal operation.

LBS $_{0}$ (Latched Bus Status 0)
 For small-scale systems.

The CPU uses the signal along with the IO/ \bar{M} and $B U F \bar{R} / W$ signals to inform an external device what the current bus cycle is.

$\mathrm{IO} / \overline{\mathrm{M}}$	BUFR $/ \overline{\mathrm{W}}$	LBS $_{0}$	Bus Cycle
0	0	0	Program fetch
0	0	1	Memory read
0	1	0	Memory write
0	1	1	Passive state
1	0	0	Interrupt acknowledge
1	0	1	I/O read
1	1	0	I/O write
1	1	1	Halt

$\mathrm{A}_{19} / \mathrm{PS}_{3}-\mathrm{A}_{16} / \mathrm{PS}_{0}$ (Address Bus/Processor Status)

For small- and large-scale systems.
These pins are time multiplexed to operate as an address bus and as processor status signals.

When used as the address bus, these pins are the high 4 bits of the 20-bit memory address. During I/O access, all 4 bits output data 0 .

The processor status signal are provided for both memory and I/O use. PS_{3} is always 0 in the native mode and 1 in 8080 emulation mode. The interrupt enable flag (IE) is output to PS_{2}. Pins PS_{1} and PS_{0} indicate which memory segment is being accessed.

$\mathrm{A}_{17} / \mathrm{PS}_{1}$	$\mathrm{~A}_{16} / \mathrm{PS}_{0}$	Segment
0	0	Data segment 1
0	1	Stack segment
1	0	Program segment
1	1	Data segment 0

The output of these pins is three state and becomes high impedance during hold acknowledge.

QS $_{1}$, QS $_{0}$ (Queue Status)

For large-scale systems.
The CPU uses these signals to allow external devices, such as the floating-point arithmetic processor chip, about the status of the internal CPU instruction queue.

QS_{1}	QS_{0}	Instruction Queue Status
0	0	NOP (Queue does not change)
0	1	First byte of instruction
1	0	Queue empty
1	1	Subsequent bytes of instruction

The insturction queue status indicated by these signals is the status when the execution unit (EXU) accesses the instruction queue. The data output from these pins is therefore valid only for one clock cycle immediately following queue access. These status signals are provided so that the floating-point processor chip can monitor the

CPU's program execution status and synchronize its operation with the CPU when control is passed to it by the FPO (Floating Point Operation) instructions.

$\mathrm{BS}_{2}-\mathrm{BS}_{0}$ (Bus Status)

For large-scale systems.
The CPU uses these status signals to allow an external bus controller to monitor what the current bus cycle is.

The external bus controller decodes these signals and generates the control signals required to perform access of the memory or I/O device.

BS_{2}	BS_{1}	BS_{0}	Bus Cycle
0	0	0	Interrupt acknowledge
0	0	1	I/O read
0	1	0	$\mathrm{I} /$ O write
0	1	1	Halt
1	0	0	Program fetch
1	0	1	Memory read
1	1	0	Memory write
1	1	1	Passive state

The output of these signals is three state and becomes high impedance during hold acknowledge.

These signals will be high from the rising edge of clock immediately after RESET signal is active to the next clock rise.

BUSLOCK (Bus Lock)

For large-scale systems.
The CPU uses this signal to secure the bus while executing the instruction immediately following the BUSLOCK prefix instruction, or during an interrupt acknowledge cycle. It is a status signal to the other bus masters in a multiprocessor system, inhibiting them from using the system bus during this time.

The output of this signal is three state and becomes high impedance during hold acknowledge. $\overline{B U S L O C K}$ is high during standby mode except if the HALT instruction has a BUSLOCK prefix.

$\overline{\mathrm{RQ}} / \overline{\mathrm{AK}}_{1}, \overline{\mathrm{RQ}} / \overline{\mathrm{AK}}_{\mathbf{0}}$ (Hold Request/Acknowledge)
 For large-scale systems.

These pins function as bus hold request inputs $(\overline{\mathrm{RQ}})$ and as bus hold acknowledge outputs ($\overline{\mathrm{AK}}$). $\overline{\mathrm{RQ}} / \mathrm{AK}_{0}$ has a higher priority than $\overline{\mathrm{RQ}} / \overline{\mathrm{AK}}_{1}$.

These pins have three-state outputs with on-chip pull-up resistors which keep the pin at a high level when the output is high impedance.

Bus Hold Request Input (RQ) must be input in
synchronization with external clock signals to satisfy the setup/hold time for normal operation.

$V_{D D}$ (Power Supply)

For small- and large-scale systems. This pin is used for the +5 V power supply.

GND (Ground)

For small- and large-scale systems. This pin is used for ground.

IC (Internally Connected)

This pin is used for tests performed at the factor by SHARP. The LH70108 is used with this pin at ground potential.

- Register Configuration

Program Counter (PC)

The program counter is a 16 -bit binary counter that contains the segment offset address of the next instruction which the EXU is to execute.

The PC increments each time the microprogram fetches an instruction from the instruction queue. A new location value is loaded into the PC each time a branch, call, return, or break instruction is executed. At this time, the contents of the PC are the same as the Prefetch Pointer (PFP).

Prefetch Pointer (PFP)

The prefetch pointer (PFP) is a 16 -bit binary counter which contains a segment offset which is used to calculate a program memory address that the bus control unit (BCU) uses to prefetch the next byte for the instruction queue. The contents of PFP are an offset from the PS (Program Segment) register.

The PFP is incremented each time the BCU prefetches an instruction from the program memory. A new location will be loaded into the PFP whenever a branch, call, return, or break instruction is executed. At that time the contents of the PFP will be the same as those of the PC (Program Counter).

Segment Registers (PC, SS, DS_{0}, and DS_{1})

The memory addresses accessed by the LH70108 are divided into 64 K -byte logical segments. The starting (base) address of each segment is specified by a 16 -bit segment register, and the offset from this starting address is specified by the contents of another register or by the effective address.

These are the four types of segment registers used.

Segment Register	Default Offset
PS (Program Segment)	PFP
SS (Stack Segment)	PS, effective address
DS_{0} (Data Segment 0)	IX, effective address
DS_{1} (Data segment 1)	IY

General-Purpose Registers (AW, BW, CW, and DW)

There are four 16-bit general-purpose registers. Each one can be used as one 16 -bit register or as two 8 -bit registers by dividing them into their high and low bytes (AH, AL, BH, BL, CH, CL, DH, DL).

Each register is also used as a default register for processing specific instructions. The default assignments are:
AW: Word multiplication/division, word I/O, data conversion
AL: Byte multiplication/division, byte I/O, BCD rotation, data conversion, translation
AH: Byte multiplication/division
BW: Translation
CW: Loop control branch, repeat prefix
CL: Shift instructions, rotation instructions, BCD operations
DW: Work multiplication/division, indirect addressing I/O

Pointers (SP, BP) and Index Registers (IX, IY)

These registers serve as base pointers or index registers when accessing the memory using based addressing, indexed addressing, or based indexed addressing.

These registers can also be used for data transfer and arithmetic and logical operations in the same manner as the general-purpose registers. They cannot be used as 8 -bit registers.

Also, each of these registers acts as a default register for specific operations. The default assignments are:
SP: Stack operations
IX: Block transfer (source), BCD string operations
IY: Block transfer (destination), BCD string operations

Program Status Word (PSW)

The program status word consists of the following six status and four control flags.

Status Flags

- V (Overflow)
- S (Sign)
- Z (Zero)

Control Flags

- MD (Mode)
- DIR (Direction)
- IE (Interrupt Enable)
- AC (Auxiliary Carry) •BRK (Break)
- P (Parity)
- CY (Carry)

When the PSW is pushed on the stack, the word images of the various flags are as shown here.
PSW

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
M	1	1	1	V	D	I	B	S	Z	0	A	0	P	1	C
D					I	E	R				C				Y
					R		K								

The status flags are set and reset depending upon the result of each type of instruction executed.

Instructions are provided to set, reset, and complement the CY flag directly.

Other instructions set and reset the control flags and control the operation of the CPU.

$\mathrm{Q}_{0}-\mathrm{Q}_{3}$ (Prefetch Queue)

The LH70108 has 4 byte instruction queue (FIFO), and it can store up to 4 instruction byte prefetched by the BCU. The instruction codes stored in the queue are fetched and executed by the EXU. The queue is cleared and prefetched with branch, call, return, or break instruction has been executed and when external interrupt has been acknowledged. Normally, the LH70108 prefetches if the queue has one byte or more space. If the time required to prefetch the instruction code from the external memory is less than the mean execution time of instructions which are executed sequentially, then the actual instructions cycle will be shortened by this amount of time i. e. the instruction code to be next executed by the EXU can be available in the queue immediately after the completion of one instruction. As the result, processing speed is highly upgraded compared with the conventional CPU which fetch and execute instructions one by one. Queuing effect is lowered if there were many instructions which clears queue like the branch instruction or in the case of continuous instructions with too short instruction time.

DP (Data Pointer)

The data pointer is a 16 -bit register indicates read/write addresses of variables. Effective address made in the effective address generator and the register contents including memory address offsets are transferred to the DP.

TEMP (Temporary Communication Register)

This is a 16 -bit temporary register used by communications between external data bus and the

EXU. The TEMP can be read or written by upper byte or lewer byte independently for byte access. Basically, the EXU completes write operation with transferring data to the TEMP and completes read operation with recognizing the data has been transferred to the TEMP from external data bus.

EAG (Effective Address Generator)

The Effective Address Generator (EAG) performs high-speed effective address calculation necessary for memory access. This completes all the calculations with 2 clocks for every addressing mode.

This fetches the instruction byte (2nd or 3rd byte) which has operand specifying field, if the instruction needs memory access. Then calculates effective address and transfers it to the DP (Data Pointer) and generates control signals relating to handling ALU and corresponding registers. In addition, if it is necessary, the EAG requests to the BCU for starting the bus cycle (memory read).

Instruction Decoder

The Instruction Decoder classifies 1st byte of an instruction code into some groups with specific function and holds them during micro-instruction execution.

Microaddress Register

The microaddress register specifies the address of a microinstruction ROM to be next executed. At starting of a microinstruction execution, the 1st byte of instruction bytes stored in the queue is fetched in this register and it specifies a start address of the corresponding microinstruction sequence.

Microinstruction ROM

The Microinstruction ROM has 1024 words by 29 bits of micro-instructions.

Microinstruction Sequencer

The Microinstruction Sequencer controls the microaddress register operation, microinstruction ROM output, and synchronizing the EXU with BCU.

ADM (Address Modifier)

Address Modifier performs the generation of physical address (adding segment register and PFP or DP) and increment of PFP (Prefetch Pointer).

TA/TB (Temporary Register/Shifter A, B)

The TA/TB are 16-bit temporary register/shif-
ter used with execution of multiply/divided and shift/rotate (including BCD rotate) instructions. When executing multiply or divide instruction TA +TB operates as a 32-bit temporary register/ shifter when executing shift/rotate instructions. Both the TA and TB can be read or written to and from the internal bus by upper byte or lower byte independently. The contents of the TA and TB are input to the ALU.

TC (Temporary Register C)

The TC is a 16 -bit temporary register used with internal processing like the multiply or divide operation, etc. The TC content is output to the ALU.

ALU (Arithmetic \& Logic Unit)

The Arithmetic and Logic Unit consists of a full adder and logical operation circuit and performs these operations:

1) Arithmetic operation (Add, Subtract, Multiply, Divide, increment, decrement, and complement)
2) Logical operation (test, AND, OR, XOR and bit test, set, clear, and complement)

LC (Loop Counter)

The Loop Counter (LC) is a 16-bit register which counts below items.

1) Loop number of the primitive block transfer and input/output instructions (MOVBK, OUTM, etc.) controlled with repeat prefix instructions (REP, REPC, etc.).
2) Shift number of the multi-bit shift/rotate instructions.

High-Speed Execution of Instructions

This section highlinghts the major architectural features that enhance the performance of the LH70108.

- Dual data bus in EXU
- Effective address generator
- 16/32-bit temporary registers/shifters (TA, TB)
- 16-bit loop counter
- PC and PFP

Dual Data Bus Method

To reduce the number of processing steps for instruction execution, the dual data bus method has been adopted for the LH70108 (figure 1). The two data buses (the main data bus and the subdata bus) are both 16 bits wide. For addition/subtraction and logical and comparison operations, processing time has been speeded up some 30% over sing-le-bus systems.

Fig. 1 Dual Data Buses

Example

ADD AW, BW; AW $\leftarrow \mathrm{AW}+\mathrm{BW}$

Single Bus
Step 1 TA $\leftarrow A W$
Step 2 TB \leftarrow BW
Dual Bus

Step 3 AW $\leftarrow T A+T B$

Effective Address Generator

This circuit (figure 2) performs high-speed processing to calculate effective addresses for accessing memory.

Calculation an effective address by the microprogramming method normally requires 5 to 12 clock cycles. This circuit requires only two clock cycles for address to be generated for any addressing mode. Thus, processing is several times faster.

Fig. 2 Effective Address Generator

16/32-Bit Temporary Registers/Shifters (TA, TB)

These 16-bit temporary registers/shifters (TA, TB) are provided for multiplication/division and shift/rotation instructions.

These circuits have decreased the execution time of multiplication/division instructions. In fact, these instructions can be executed about four times faster than with the microprogramming method.

TA + TB: 32-bit temporary register/shifter for multiplication and divison instructions.

TB 16-bit temporary register/shifter for shift/ rotation instructions.

Loop Counter (LC)

This counter is used to count the number of loops for a primitive block transfer instruction controlled by a repeat prefix instruction and the number of shifts that will be performed for a multiple bit shift/rotation instruction.

The processing performed for a multiple bit rotation of a register is shown below. The average speed is approximately doubled over the microprogram method.

Example
 RORC AW, CL; CL=5
 Microprogram method
 $$
8+(4 \times 5)=28 \text { clocks } \quad 7+5=12 \text { clocks }
$$

Program Counter and Prefetch Pointer (PC and PFP)

The LH70108 microprocessor has a program counter, (PC) which addresses the program memory location of the instruction to be executed next, and a prefetch pointer (PFP), which addresses the program memory location to be accessed next. Both functions are provided in hardware. A time saving of several clocks is realized for branch, call, return, and break instruction execution, compared with microprocessors that have only one instruction pointer.

Unique Instructions

Variable Length Bit Field Operation Instructions

This category has two instructions: INS (insert Bit Field) and EXT (Extract Bit Field). These instructions are highly effective for computer graphics and high-level languages. They can, for example, be used for data structures such as packed arrays and record type data used in PASCAL.
(1) INS reg8, reg8/INS reg8, imm4

This instruction (figure 3) transfers low bits from the 16 -bit AW register (the number of bits is specified by the second operand) to the memory location specified by the segment base $\left(\mathrm{DS}_{1}\right.$ register) pulse the byte offset (IY register). The starting bit position within this byte is specified as an offset by the lower 4 bits of the first operand.

After each complete data transfer, the IY register and the register specified by the first operand are automatically updated to point to the next bit field.

Either immediate data or a register may specify the number of bits transferred (second operand). Because the maximum transferable bit length is 16 bits, only the lower 4 bits of the specified register $(00 \mathrm{H}$ to 0 FH$)$ will be valid.

Bit field data may overlap the byte boundary of memory.

Fig. 3 Bit Field Insertion

Fig. 4 Bit Field Extraction

(2) EXT reg8, reg8/EXT reg8, imm4

This instruction (figure 4) loads to the AW register the bit field data whose bit length is specified by the second operand of the instruction from the memory location that is specified by the DS_{0} segment register (segment base), the IX index register (byte offset), and the lower 4 bits of the first operand (bit offset).

Packed BCD Operation Instructions

The instructions described here process packed BCD data either as strings (ADD4S, SUB4S, CMP4S) or byte-format operands (ROR4, ROL4).

After the transfer is complete, the IX register and the lower 4 bits of the first operand are automatically updated to point to the next bit field.

Either immediate data or a register may be specified for the second operand. Because the maximum transferrable bit length is 16 bits, however, only the lower 4 bits of the specified register $(0 \mathrm{H}$ to 0 FH) will be valid.

Bit field data may overlap the byte boundary of memory.

(1) ADD4S

This instruction adds the packed BCD string addressed by the IX index register to the packed $B C D$ string addressed by the IY index register, and stores the result in the string addressed by the IY register. The length of the string (number of $B C D$ digits) is specified by the CL register, and the result of the operation will affect the overflow flag (V), the carry flag (CY), and zero flag (Z).
$B C D$ string (IY, CL) $\leftarrow \mathrm{BCD}$ string (IY, CL) +BCD string (IX, CL)

(2) SUB4S

This instruction subtracts the packed BCD string addressed by the IX index register from the packed BCD string addressed by the IY register, and stores the result in the string addressed by the IY register. The length of the string (number of BCD digits) is specified by the CL register, and the result of the operation will affect the overflow flag (V), the carry flag (CY), and zero flag (Z).

BCD string (IY, CL) $\leftarrow \mathrm{BCD}$ string (IY, CL) -BCD String (IX, CL)
(3) CMP4S

This instruction performs the same operation as SUB4S except that the result is not stored and only the overflow (V), carry flags (CY) and zero flag (Z) are affected.

BCD string (IY, CL)-BCD string (IX, CL)
(4) ROL4

This instruction (figure 5) treats the byte data of the register or memory directly specified by the instruction byte as BCD data and uses the lower 4 bits of the AL register $\left(\mathrm{AL}_{\mathrm{L}}\right)$ to rotate that data one $B C D$ digit to the left.

Fig. 5 BCD Rotate Left (ROL4)

（5）ROR4

This instruction（figure 6）treats the byte data of the register or memory directly specified by the in－ struction byte as BCD data and uses the lower 4 bits of the AL register $\left(\mathrm{AL}_{\mathrm{L}}\right)$ to rotate the data one BCD digit to the right

Fig． 6 BCD Rotate Right（ROR4）

Stack Operation Instruction

（1）PREPARE imm16，imm8

This instruction is used to generate＂stack frames＂required by the block structures of high－ level languages such as Pascal and Ada．The stack frame includes a local variable area as well as pointers．These frame pointers point to the frame containing the variables that can be referenced from the current procedure．

The program example based upon Pascal lan－ guage is shown below．

```
program EXAMPLE;
    procedure \(P\);
        var a, b, c;
        procedure Q;
            var d, e;
            procedure R;
                var f, g;
            begin
                    \(\mathrm{d}:=\mathrm{a}+\mathrm{f}+\mathrm{g} ;\)
            end:
            begin
                R;
                    \(\mathrm{b}:=\mathrm{d}+\mathrm{e}\);
            end;
        begin
            \(\mathrm{a}:=\mathrm{b}+\mathrm{c}\);
            Q;
        end;
( \(*\) main program \(*\) )
    begin
        P;
    end.
```

Note：The variables are defined as the words．

This program is an example of a procedure block with a triple nesting．

Procedure	Variables
P	$\mathrm{a}, \mathrm{b}, \mathrm{c}$
Q	d, e
R	f, g

Accordingly，the global variables of a, b and c are referenced from the procedure Q ，and a, b, c, d and e from the procedure R ．

This instruction copies frame－pointers to re－ serve the local variable area and to enable global variable references．The first operand（16－bit im－ mediate data）specifies（in bytes）the size of the loc－ al variable area．The second operation（8－bit im－ mediate data）specifies the depth（or lexical level） of the procedure block．The frame base address generated by this instruction is set in the BP base pointer．

To compile the EXAMPLE program follows the assembler program shown next．（The DISPOSE in－ struction in the assembler program is used to re－ turn the stack pointer SP and the base pointer BP to the state just before the PREPARE instruction is executed．See DISPOSE section mentioned later．）
START：MOV SP，SPTOP

MOV	BP，SP	；（1）
CALL	P	； 2$)$
BR	SYSTEM	
PREPARE	6,1	；3）
MOV	AW，［BP］［B＋BLEVEL $* 2]$	
ADD	AW，［BP］［C＋CLEVEL $* 2]$	
MOV	［BP）［A＋ALEVEL $* 2]$, AW	

CALL Q
DISPOSE
RET
Q：PREPARE
4， 2
CALL \quad R
MOV AW，（BP）［D＋DLEVEL＊2］
ADD AW，（BP）［E＋ELEVEL＊2］
MOV IY，［BP］［BLEVEL＊2〕
MOV SS：［IY］［B＋BLEVEL＊2］，AW
DISPOSE
RET
PREPARE
4， 3
MOV AW，［BP〕［F＋FLEVEL＊2］
ADD AW，［BP］［G＋GLEVEL＊2］
MOV IY，（BP）［ALEVEL＊2］
ADD AW，SS：［IY〕［A＋ALEVEL＊2〕
MOV IY，（BP）［DLEVEL＊ 2 ）
MOV SS：［IY］［D＋DLEVEL＊2］，AW
DISPOSE
RET
; $\mathrm{A}=-2 \quad$ ALEVEL $=-1$
; $\mathrm{B}=-4 \quad$ BLEVEL $=-1$
; $\mathrm{C}=-6 \quad$ CLEVEL $=-1$
; $\mathrm{D}=-2 \quad$ DLEVEL $=-2$
; $\mathrm{E}=-4 \quad$ ELEVEL $=-2$
; $\mathrm{F}=-2 \quad$ FLEVEL $=-3$
$; \mathrm{G}=-4 \quad$ GLEVEL $=-3$

The process of the generation of the stack frame according to the program is shown next. The numbers are referred to that in the program.

First the old BP value is saved to the stack. This is done so that BP of the calling procedure can be restored when the called procedure terminates. The frame pointer (BP value saved to the stack) that indicates the range of variables that can be referenced by the called procedure is placed on the stack. This range is always a value one less than the lexical level of the procedure.

If the lexical level of a procedure is greater than 1 , the pointers of that procedure will also be saved on the stack. This is so that the frame pointer of the calling procedure can also be copied when frame pointer copy is performed within the called procedure.

Next the new frame pointer value is set in BP and the area for local variables used by the procedure is reserved in the stack. In other words, SP is decremented only for the amount of stack memory required by the local variables.

$$
\begin{gathered}
\text { display }=2 \text { nd operand } \\
\text { dynamics }=1 \text { st operand } \\
\mathrm{SP}=\mathrm{SP}-2 ; \\
(\mathrm{SP})=\mathrm{BP} ; \\
\text { temp }=\mathrm{SP} ; \\
\text { if display }>0 \text { then begin } \\
\text { repeat display }-1 \text { times } \\
\text { begin } \\
\mathrm{SP}=\mathrm{SP}-2 ; \\
\mathrm{BP}=\mathrm{BP}-2 ; \\
(\mathrm{SP})=(\mathrm{BP}) ; \\
\text { end; } \\
\mathrm{SP}=\mathrm{SP}-2 ; \\
(\mathrm{SP})=\text { temp; } \\
\text { end; } \\
\mathrm{BP}=\text { temp/ } \\
\mathrm{SP}=\mathrm{SP}-\text { dynamics }
\end{gathered}
$$

Data Access

(1) Local variable access

The local variables are assigned in the frame of the procedure. The effective address EA. L of the local variables is defined by the formula:

$$
\text { EA. } \mathrm{L}=\mathrm{SS}:(\mathrm{BP}+\text { offset })
$$

The offset value is defined as the sum of the frame size (referenced frame base) and the variable from the base of the local variable area.

(2) Global variable access

The global variable is located at the address added by the offset of variables which are refer-
enced to the accessed value of the base pointer of the old one saved on the stack frame.

The effective address EA. G is defined as below. EA. $G=$ SS: $((S S:(B P+o f f s e t 1))+$ offset 2$)$
The offset 1 is defined by the offset value from the frame base (BP) to the address stored by the base address of the frame including the global variables.

The offset 2 is defined by the offset value from the frame base including variables to be referenced to the variables.

DISPOSE

This instruction releases the last stack frame generated by the PREPARE instruction. It returns the stack and base pointers to the values they had before the PREPARE instruction was used to call a procedure.

$$
\begin{aligned}
& \mathrm{SP}=\mathrm{BP} ; \\
& \mathrm{BP}=(\mathrm{SP}) ; \\
& \mathrm{SP}=\mathrm{SP}+2
\end{aligned}
$$

Check Array Boundary Instruction

This instruction is used to verify that index values pointing to the elements of an array data structure are within the defined range. The lower limit of the array should be in memory location mem 32 , the upper limit in mem $32+2$. If the index value in reg16 is not between these limits when CHKIND is executed, a BRK 5 will occur. This causes a jump to the location in interrupt vector 5 .

CHKIND reg16, mem 32
When (mem32)>reg16 or (mem $32+2)<$ reg 16

$$
\left.\begin{array}{l}
\mathrm{TA} \leftarrow(015 \mathrm{H}, 014 \mathrm{H}) \\
\mathrm{TC} \leftarrow(017 \mathrm{H}, 016 \mathrm{H}) \\
\mathrm{SP} \leftarrow \mathrm{SP}-2,(\mathrm{SP}+1, \mathrm{SP}) \leftarrow \mathrm{PSW} \\
\mathrm{IE} \leftarrow 0, \mathrm{BREK} \leftarrow 0 \\
\mathrm{SP} \leftarrow \mathrm{SP}-2,(\mathrm{SP}+1, \mathrm{SP}) \leftarrow \mathrm{PS} \\
\mathrm{PS} \leftarrow \mathrm{TC} \\
\mathrm{SP} \leftarrow \mathrm{SP}-2,(\mathrm{SP}+1, \mathrm{SP}) \leftarrow \mathrm{PC} \\
\mathrm{PC} \leftarrow \mathrm{TA}
\end{array}\right\}=\mathrm{BRK} 5
$$

Mode Operating Instructions

The LH70108 has two operating modes (figure 7). One is the native mode, and the other is the emulation mode in which the instruction set of the

8080A is emulated. A mode flag (MD) is provided to select between these two modes. Native mode is selected when MD is 1 and emulation mode when MD is 0 . MD is set and reset, directly and indirectly, by executing the mode manipulation instructions.

Two instructions are provided to switch operation from the native mode to the emulation mode and back: BRKEM (Break for Emulation), and RETEM (Return from Emulation).

Two instructions are used to switch from the emulation mode to the native mode and back: CALLN (Call Native Routine), and RETI (Return from Interrupt).
The system will return from the 8080 emulation mode to the native mode when the RESET signal is present, or when an external interrupt (NMI or INT) is present.

Fig. 7 V20 Modes

(1) BRKEN imm8

This is the basic instruction used to start the 8080 emulation mode. This instruction operates exactly the same as the BRK instruction, except that BRKEM resets the mode flag (MD) to 0. PSW, PS, and PC are saved to the stack. MD is then reset and the interrupt vector specified by the operand imm8 of this command is loaded into PS and PC.

The instruction codes of the interrupt processing routine jumped to are then fetched. Then the CPU executes these codes as 8080 A instructions.

In 8080 emulation mode, registers and flags of the 8080 A are performed by the following registers and flags of the LH70108.
In the native mode, SP is used for the stack pointer. In the 8080 emulation mode this function is performed by BP.

This use of independent stack pointers allows independent stack areas to be secured for each mode

	8080 A	LH70108
Registers:	A	AL
	B	CH
	C	CL
	D	DH
	E	DL
	H	BH
	L	BL
	SP	BP
Flags:	PC	PC
	C	CY
	Z	Z
	S	S
	P	P

and keeps the stack of one of the modes from being destroyed by an erroneous stack operation in the other mode.

The SP, IX, IY and AH registers and the four segment registers (PS, $\mathrm{SS}, \mathrm{DS}_{0}$, and DS_{1}) used in the native mode are not affected by operations in 8080 emulation mode.

In the 8080 emulation mode, the segment register for instructions is determined by the PS register (set automatically by the interrupt vector) and the segment register for data is the DS_{0} register (set by the programmer immediately before the 8080 emulation mode is entered).

It is prohibited to nest BRKEM instructions.
(2) RETEM (no operand)

When RETEM is executed in 8080 emulation mode (interpreted by the CPU as a 8080 A instruction), the CPU restores PS, PC, and PSW (as it would when returning from an interrupt processing routine), and returns to the native mode. At the same time, the contents of the mode flag (MD) which was saved to the stack by the BRKEM instruction, is restored to $\mathrm{MD}=1$. The CPU is set to the native mode.
(3) CALLN imm8

This instruction makes it possible to call the native mode subroutines from the 8080 emulation mode. To return from subroutine to the emulation mode, the RETI instruction is used.
The processing performed when this instruction is executed in the 8080 emulation mode (it is interpreted by the CPU as 8080 A instruction), is similar to that performed when a BRK instruction is
executed in the native mode. The imm8 operand specifies an interrupt vector type. The contents of PS, PC, and PSW are pushed on the stack and an MD flag value of 0 is saved. The mode flag is set to 1 and the interrupt vector specified by the operand is loaded into PS and PC.

(4) RETI (no operand)

This is a general-purpose instruction used to return from interrupt routines entered by the BRK instruction or by an external interrupt in the native mode. When this instruction is executed at the end of a subroutine entered by the execution of the CALLN instruction, the operation that restores PS, PC, and PSW is exactly the same as the native mode execution. When PSW is restored, however, the 8080 emulation mode value of the mode flag (MD) is restored, the CPU is set in emulation mode, and all subsequent instructions are interpreted and executed as 8080 A instructions.

RETI is also used to return from an initerrupt procedure initiated by an NMI or INT interrupt in the emulation mode.

Floating Point Operation Chip Instructions

FPO1 fp-op, mem/FPO2 fp-op, mem

These instructions are used for the external floating point processor. The floating point operation is passed to the floating point processor when the CPU fetches one of these instructions. From this point the CPU performs only the necessary auxiliary processing (effective address calculation, generation of physical addresses, and start-up of the memory read cycle).

The floating point processor always monitors the instructions fetched by the CPU. When it interprets one as an instruction to itself, it performs the appropriate processing. At this time, the floating point processor chip uses either the address alone or both the address and read data of the memory read cycle executed by the CPU. This difference in the data used depends on which of these instructions is executed.
Note: During the memory read cycle initiated by the CPU for FPO1 or FPO2 execution, the CPU does not accept any read data on the data bus from memory. Although the CPU generates the memory address, the data is used by the floating point processor.

Interrupt Operation

The interrupts used in the LH70108 can be divided into two types: interrupts generated by external interrupt requests and interrupts generated by software processing. These are the classifications.
(1) External Interrupts
(a) NMI input (nonmaskable)
(b) INT input (maskable)
(2) Software Processing

As the result of instruction execution

- When a divide error occurs during execution of the DIV or DIVU instruction
- When a memory-boundary-over error is detected by the CHKIND instruction
Conditional break instruction
- When $V=1$ during execution of the BRKV instruction
Unconditional break instructions
- 1-byte break instruction: BRK3
- 2-byte break instruction: BRK imm8

Flag processing

- When stack operations are used to set the BRK flag
8080 Emmulation mode instructions
- BRKEM imm8
- CALLN imm8

Interrupt Vectors

Starting addresses for interrupt processing routines are either determined automatically by a single location of the interrupt vector table or selected each time interrupt processing is entered.
The interrupt vector table is shown in figure 8. The table uses 1 K bytes of memory addresses 000 H to 3 FFH and can store starting address data for a maximum of 256 vectors (4 bytes per vector).

The corresponding interrupt sources for vectors 0 to 5 are predetermined and vectors 6 to 31 are reserved. These vectors consequently cannot be used for general applications

The BRKEM instruction and CALLN instruction (in the emulation mode) and the INT input are available for general applications for vectors 32 to 255.

A single interrupt vector is made up of 4 bytes (figure 9). The 2 bytes in the low addresses of memory are loaded into PC as the offset, and the high 2 bytes are loaded into PS as the base address. The bytes are combined in reverse order. The lower-order bytes in the vector become the most significant bytes in the PC and PS, and the higher-order bytes become the least significant
bytes.

Fig. 8 Interrupt Vector Table

Fig. 9 Interrupt Vector 0

Based on this format, the contents of each vector should be initialized at the beginning of the program.

The basic steps to jump to an interrupt processing routine are now shown.
TA \leftarrow vector low bytes (offset)
TC \leftarrow vector high bytes (segment base)
$\mathrm{SP} \leftarrow \mathrm{SP}-2,(\mathrm{SP}+1, \mathrm{SP}) \leftarrow \mathrm{PSW}$
$\mathrm{IE} \leftarrow 0, \mathrm{BRK} \leftarrow 0, \mathrm{MD} \leftarrow 0$
$\mathrm{SP} \leftarrow \mathrm{SP}-2,(\mathrm{SP}+1, \mathrm{SP}) \leftarrow \mathrm{PS}$
PS $\leftarrow \mathrm{TC}$
$\mathrm{SP} \leftarrow \mathrm{SP}-2,(\mathrm{SP}+1, \mathrm{SP}) \leftarrow \mathrm{PC}$
$\mathrm{PC} \leftarrow \mathrm{TA}$

Standby Function

The LH70108 has a standby mode to reduce power consumption during program wait states. This mode is set by the HALT instruction in both the native and the emulation mode.

In the standby mode, the internal clock is supplied only to those circuits related to functions required to release this mode and bus hold control functions. As a result, power consumption can be reduced to $1 / 10$ the level of normal operation in either native or emulation mode.

The standby mode is released by inputting a RESET signal or an external interrupt (NMI, INT).

The bus hold function is effective during standby mode. The CPU returns to standby mode when the bus hold request is removed.

During standby mode, all control outputs are disabled and the address/data bus will be at either high or low levels.

I/O Address Reservation

Reserve upper 256 bytes of I/O address ($\mathrm{FF} 00 \mathrm{H}-\mathrm{FFFH}$) in case it may be used in future.

- Timing Diagram

(1) AC test input waveform (Except CLK)

(2) AC output test points

(3) Clock timing

(4) Wait (Ready) timing

* Read signal must be held at LOW
or HIGH during this period.
(5) $\overline{\text { POLL, NMI, INT input timing }}$

(6) $\overline{\text { BUSLOCK }}$ output timing

(7) Read timing (small scale)

(8) Write timing (small scale)

(9) Read timing (large scale)

(10) Write timing (large scale)

(11) Interrupt acknowledge timing

(12) Hold request/acknowledge timing (small scale)

${ }^{*} \mathrm{~A}_{19} / \mathrm{PS}_{3}-\mathrm{A}_{16} / \mathrm{PS}_{0}, \mathrm{~A}_{15}-\mathrm{A}_{8}, \mathrm{AD}_{7}-\mathrm{AD}_{0}, \overline{\mathrm{RD}}, \mathrm{LSB} 0, \mathrm{IO} / \overline{\mathrm{M}}, \mathrm{BUF} \overline{\mathrm{R}} / \mathrm{W}$, $\overline{\mathrm{WR}} \overline{\mathrm{BUFEN}}$
(13) Bus request/acknowledge timing (large scale)

${ }^{*} \mathrm{~A}_{19} / \mathrm{PS}_{3}-\mathrm{A}_{16} / \mathrm{PS}_{0}, \mathrm{~A}_{15}-\mathrm{A}_{8}, \mathrm{AD}_{7}-\mathrm{AD}_{0}, \mathrm{BS}_{2}-\mathrm{BS} 0, \overline{\mathrm{RD}}, \overline{\mathrm{BUSLOCK}}$

Instruction Set

The following tables briefly describe the LH70108's instruction set.
\square Operation and Operand Type-defines abbreviations used in the Instruction Set table.Flag Operations-defines the symbols used to describe flag operations.Memory Addressing-shows how mem and modcombinations specify memory addressing modes.Selection of 8-and 16-Bit Registers-shows how reg and W select a register when $\bmod =111$.Selection of Segment Registers-shows how sreg selects a segment register.Instruction Set-shows the instruction mnemonics, their sffect, their operation codes the number of bytes in the instruction, the number of clocks required for execution, and the effect on the LH70108 flags.

Table 1 Operand Types

Identifier	Description
reg	8- or 16-bit general-purpose register
reg8	8-bit general-pourpose register
reg16	16-bit general-purpose register
dmem	8 - or 16-bit direct memory location
mem	8 - or 16-bit memory location
mem8	8 -bit memory location
mem16	16-bit memory location
mem32	32-bit memory location
imm	Constant (0 to FFFFFH)
imm16	Constant (0 to FFFFF)
imm8	Constant (0 to FFH)
imm4	Constant (0 to FH)
imm3	Constant (0 to 7)
acc	AW or AL register
sreg	Segment register
src-table	Name of 256-byte translation table
src-block	Name of block addressed by the IX register
dst-block	Name of block addressed by the IY register
near-proc	Procedure within the current program segment
far-proc	Procedure located in another program segment
near-label	Label in the current program segment
short-label	Label between -128 and +127 bytes from the end of instruction
far-label	Label in another program segment
memptr 16	Word containing the offset of the memory location whin the current program segment to which control is to be transferred
memptr32	Double word containing the offset and segment base address of the memory location to which control is to be transferred
regptr 16	16 -bit register containing the offset of the memory location within the program segment to which control is to be transferred
pop-value	Number of bytes of the stack to be discarded (0 to 64 K bytes, usually even addresses)
fp -op	Immediate data to identify the instruction code of the external floating point operation

Table 2 Operation Code Types

Identifier	Description
R	Register set
W	Word/byte field (0 to 1$)$
reg	Register field $(000$ to 111$)$
mem	Memory field (000 to 111)
mod	Mode field (00 to 10$)$
$\mathrm{S}: \mathrm{W}$	When $\mathrm{S}: \mathrm{W}=01$ or 11, data $=16$ bits. At all other times, data $=8$ bits.
X, XXX,	Data to identify the instruction code of the external floating point arithmetic chip

Table 3 Operational Description

Identifier	Description
AW	Accumulator (16 bits)
AH	Accumulator (high byte)
AL	Accumulator (low byte)
BW	BW register (16 bits)
CW	CW register (16 bits)
CL	CW register (low byte)
DW	DW register (16 bits)
BP	Base pointer (16 bits)
SP	Stack pointer (16 bits)
PC	Program counter (16 bits)
PSW	Program status word (16 bits)
IX	Index register (source)(16 bits)
IY	Index register (destination)(16 bits)
PS	Program segment register (16 bit)
SS	Stack segment register (16 bits)
DS	Data segment 0 register (16 bits)
DS	Data segment 1 register (16 bits)
AC	Auxiliary carry flag
CY	Carry flag
P	Parity flag
S	Sign flag
Z	Zero flag
DIR	Direction flag
IE	Interrupt enable flag
V	Overflow flag
BRK	Break flag
MD	Mode flag
(\cdots)	Values in parentheses are memory contents
disp	Displacement (8 or 16 bits)
ext-disp8	16 -bit displacement (sign-extension byte +8 -bit displacement)
temp	Temporary register (8/16/32 bit) TA: Temporary resister A $(16$ bits) TB: Temporary resister B (16 bits) TC: Temporary resister C (16 bits)

Identifier	Description
tmpcy	Temporary carry flag (1 bit)
seg	Immediate segment data (16 bits)
offset	Immediate offset data (16 bit)
\leftarrow	Transfer direction
+	Addition
-	Subtraction
\times	Multiplication
\div	Division
$\%$	Modulo
AND A	Logical product
OR V	Logical sum
XOR \forall	Exclusive logical sum
XXH	Two-digit hexadecimal value
XXXXH	Four-digit hexadecimal value

Table 4 Flag Operations

Identifier	Description
(blank)	No change
0	Cleared to 0
1	Set to 1
X	Set or cleared according to the result
U	Undefined
R	Value saved earlier is restored

Table 5 Memory Addressing

men	mod		
	00	01	10
000	BW + IX	BW+IX+disp8	BW+IX+disp16
001	BW + IY	BW+IY+disp8	BW+IY+disp16
010	BP+IX	BP+IX+disp8	BP+IX+disp16
011	BP+IY	BP+IY+disp8	BP+IY+disp16
100	IX	IX + disp8	IX + disp16
101	IY	IY + disp8	IY + disp16
110	Direct address	BP+disp8	BP+disp16
111	BW	BW + disp8	BW+disp16

Table 6 Selection of 8- and 16-Bit Registers $(\bmod 11)$

reg	$\mathrm{W}=0$	$\mathrm{~W}=1$
000	AL	AW
001	CL	CW
010	DL	DW
011	BL	BW
100	AH	SP
101	CH	BP
110	DH	IX
111	BH	IY

Table 7 Selection of Segment Registers

sreg	
00	DS_{1}
01	PS
10	SS
11	DS_{0}

The table on the following pages shows the instruction set.

At "No. of Clocks," for instructions referencing memory operands, the left side of the slash (/) is the number of clocks for byte opereands and the right side is for word operands. For conditional control transfer instructions, the left side of the slash (/) is the number of clocks if a control transfer takes place. The right side is the number of clocks when no control transfer or branch occurs. Some instructions show a range of clock times, separated by a hyphen. The execution time of these instructions varies from the minimum value to the maximum, depending on the operands involved.
"No. of Clocks"includes these times:

- Decoding
- Effective address generation
- Operand fetch
- Execution

It assumes that the instruction bytes have been prefetched.

Mnemonic	Operand	Operation	Operation Code													No. of Clocks	No. of Bytes	Flags					
					65	4	3	2	10		6	5	4	3	210				CY	V		S	Z
Shift Instructions (cont)																							
SHR	reg, 1	CY \leftarrow LSB of reg, reg \leftarrow reg $\div 2$ When MSB of reg \neq bit following MSB of reg: $\mathrm{V} \leftarrow 1$ When MSB of reg=bit following MSB of reg: $\mathrm{V} \leftarrow 0$									1	1	0	1	reg	2	2	u	x	x	x	x	x
	mem, 1	CY \leftarrow LSB of $(\mathrm{mem}),(\mathrm{mem}) \leftarrow(\mathrm{mem}) \div 2$ When MSB of (mem) \neq bit following MSB of (mem): V $\leftarrow 1$ When MSB of (mem) = bit following MSB of (mem): V $\leftarrow 0$		$\begin{array}{lllllllll}1 & 1 & 0 & 1 & 0 & 0 & 0 & \mathrm{~W} \\ & & & & & & \end{array}$						mod		1	0	1 	mem	16/24	2-4	u	x	x	x	x	x
	reg, CL	temp \leftarrow CL, while time $\neq 0$, repeat this operation, $\mathrm{CY} \leftarrow \mathrm{LSB}$ or reg, reg \leftarrow reg $\div 2$, temp \leftarrow temp -1			10	1	0	0	0 W		1	1	0	1	reg	$7+n$	2	u	x	u	x	x	x
	mem, CL	temp \leftarrow CL, while temp $\neq 0$ repeat this operation, $\mathrm{CY} \leftarrow \mathrm{LSB}$ or (mem), $(\mathrm{mem}) \leftarrow(\mathrm{mem}) \div 2$, temp \leftarrow temp -1		1	10	1	0	0	1 W		nod	1	0	1	mem	19/27+n	2-4	u	x	u	x	x	x
	reg, imm8	temp \leftarrow imm 8 , while temp $\neq 0$, repeat this operation, $\mathrm{CY} \leftarrow \mathrm{LSB}$ or reg, reg \leftarrow reg $\div 2$, temp \leftarrow temp -1		1	10	0	0	0	0 W		1	1	0	1	reg	$7+n$	3	u	x	u	x	x	x
	mem, imm8	temp \leftarrow imm8, while temp $\neq 0$ repeat this operation, CY $\leftarrow \mathrm{LSB}$ of (mem), $(\mathrm{mem}) \leftarrow(\mathrm{mem}) \div 2$, temp \leftarrow temp -1			0	0	0	0							mem	19/27+n	3-5	u	x	u	x	x	x
SHRA	reg, 1	$\mathrm{CY} \leftarrow \mathrm{LSB}$ of reg, reg $\leftarrow \mathrm{reg} \div 2, \mathrm{~V} \leftarrow 0$ MSB of operand does not change			0	1	0	0	0 W		1	1	1	1	reg	2	2	u	x	0	x	x	x
	mem, 1	CY \leftarrow LSB of (mem), $(\mathrm{mem}) \leftarrow(\mathrm{mem}) \div 2$, $\mathrm{V} \leftarrow 0$, MSB of operand does not change			10	1	0	0	0 W		mod	1	1	1	mem	16/24	2-4	u	x	0	x	x	x
	reg, CL	$\begin{aligned} & \text { temp } \leftarrow \text { CL, while temp } \neq 0, \\ & \text { repeat this operation, CY } \leftarrow \text { LSB of reg, } \\ & \text { reg } \leftarrow \text { reg } \div 2 \text {, temp } \leftarrow \text { temp }-1 \\ & \text { MSB of operand does not change } \end{aligned}$		1	10	1	0	0	1 W		1	1	1	1	reg	$7+n$	2	u	x	u	x	x	x
	mem, CL	temp $\leftarrow \mathrm{CL}$, while temp $\neq 0$, repeat this operation, $\mathrm{CY} \leftarrow \mathrm{LSB}$ of (mem), (mem) $\leftarrow(\mathrm{mem}) \div 2$, temp \leftarrow temp -1 MSB of operand does not change		1	10	1	0	0	1 W			1	1	1	mem	19/27+n	2-4	u	x	u	x	x	x
	reg, imm8	temp \leftarrow imm8, while temp $\neq 0$, repeat this operation, $\mathrm{CY} \leftarrow \mathrm{LSB}$ of reg, reg \leftarrow reg $\div 2$, temp \leftarrow temp -1 MSB of operand does not change		1		0		0	0 W		1	1	1	1	reg	$7+n$	3	u	x	u	x	x	x
	mem, imm8	$\begin{aligned} & \text { temp } \leftarrow \text { imm } 8 \text {, while temp } \neq 0 \text {, } \\ & \text { repeat this operation, CY } \leftarrow \text { LSB of (mem), } \\ & (\text { mem }) \leftarrow \text { (mem) } \div 2 \text {, temp } \leftarrow \text { temp }-1 \\ & \text { MSB of operand does not change } \\ & \hline \end{aligned}$	1								nod			fts	mem	19/27+n	3-5	u	x	u	x	x	x

LH70116 (V30)
 High-Performance 16-Bit Microprocessor

Description

The LH70116 (V30) is a CMOS 16-bit microprocessor with internal 16-bit architecture and a 16 -bit external data bus. The LH70116 additionally has a powerful instruction set including bit processing, packed BCD operations, and high-speed multiplication/division operations. The LH70116 can also execute the entire 8080 instruction set and comes with a standby mode that significantly reduces power consumption. It is soft-ware-compatible with the LH70108 16-bit microprocessor.

Features

1. Minimum instruction execution time: 250 ns (at 8 MHz)
2. Maximum addressable memory: 1 Mbyte
3. Abundant memory addressing modes
4. 14×16-bit register set
5. 101 instructions
6. Bit, byte, word, and block operations
7. Bit field operation instructions
8. Packed BCD instructions
9. Multiplication/division instruction execution time: $2.4 \mu \mathrm{~s}$ to $7.1 \mu \mathrm{~s}$ (at 8 MHz), $3.8 \mu \mathrm{~s}$ to $11.4 \mu \mathrm{~s}$ (at 5 MHz)
10. High-speed block transfer instructions: 2 Mbyte /s (at 8 MHz)
11. High-speed calculation of effective addresses: 2 clock cycles in any addressing mode
12. Maskable (INT) and nonmaskable (NMI) interrupt inputs
13. IEEE-796 bus compatible interface
14. 8080 emulation mode
15. CMOS technology
16. Low-power consumption
17. Low-power standby mode
18. Single power supply
19. 5 MHz or 8 MHz clock
20. 40-pin DIP (DIP40-P-600)

Pin Connections

Top View

[^13]- Block Diagram

- Pin Identification

No.	Symbol	Direction	Function
1	IC*		Internally connected
2-8	$\mathrm{AD}_{14}-\mathrm{AD}_{8}$	Out	Address bus, middle bits
9-16	$\mathrm{AD}_{7}-\mathrm{AD}_{0}$	In/Out	Address/data bus
17	NMI	In	Nonmaskable interrupt input
18	INT	In	Maskable interrupt input
19	CLK	In	Clock input
20	GND		Ground potential
$\underline{21}$	RESET	In	Reset input
$\underline{22}$	READY	In	Ready input
$\underline{23}$	$\overline{\text { POLL }}$	In	Poll input
24	$\begin{gathered} \hline \overline{\text { INTAK }} \\ \left(\mathrm{QS}_{1}\right) \end{gathered}$	Out	Interrupt acknowledge output (queue status bit 1 output)
25	$\begin{aligned} & \text { ASTB } \\ & \left(\mathrm{QS}_{0}\right) \end{aligned}$	Out	Address strobe output (queue status bit 0 . output)
26	$\begin{gathered} \hline \overline{\mathrm{BUFEN}} \\ \left(\mathrm{BS}_{0}\right) \\ \hline \end{gathered}$	Out	Buffer enable output (bus status bit 0 output)
27	$\begin{gathered} \hline \text { BUF } \overline{\mathrm{R}} / \mathrm{W} \\ \left(\mathrm{BS}_{1}\right) \\ \hline \end{gathered}$	Out	Buffer read/write output (bus status bit 1 output)

No.	Symbol	Direction	Function
28	$\begin{aligned} & \overline{\mathrm{IO}} / \mathrm{M} \\ & \left(\mathrm{BS}_{2}\right) \end{aligned}$	Out	Access is I/O or memory (bus status bit 2 output)
29	$\frac{\text { WR }}{(\overline{\text { BUSLOCK }})}$	Out	Write strobe output (bus lock output)
30	$\begin{aligned} & \frac{\mathrm{HLDAK}}{\left(\overline{\mathrm{RQ}} / \overline{\mathrm{AK}}_{1}\right)} \end{aligned}$	$\begin{gathered} \text { Out } \\ \text { (In/Out) } \end{gathered}$	Hold acknowledge output, (bus hold request input/ acknowledge output 1)
31	$\begin{gathered} \mathrm{HLDRQ} \\ \left(\overline{\mathrm{RQ}} / \overline{\mathrm{AK}}_{0}\right) \end{gathered}$	$\begin{gathered} \text { In } \\ \text { (In/Out) } \end{gathered}$	Hold request input (bus hold request input/acknowledge output 0)
32	$\overline{\mathrm{RD}}$	Out	Read strobe output
33	S/ $\overline{\mathrm{LG}}$	In	Small-scale/large-scale system input
34	UBE	Out	Latched bus status output 0 (always high in large-scale systems)
35-38	$\begin{gathered} \mathrm{A}_{19} / \mathrm{PS}_{3-} \\ \mathrm{A}_{16} / \mathrm{PS}_{0} \end{gathered}$	Out	Address bus, high bits or processor status output
39	AD_{15}	Out	Address bus, bit 15
40	V_{DD}		Power supply
Notes:	*IC should be connected to ground. Where pins have different functions in small-and large-systems, the large-scale system pin symbol and function are in parentheses. Unused input pins should be tied to ground or V_{DD} to minimize power dissipation and prevent the flow of potentially harmful currents.		

- Absolute Maximum Ratings $\quad\left(\mathrm{Ta}=+25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Ratings	Units
Supply voltage	V_{DD}	-0.5 to +7.0	V
Power dissipation	$\mathrm{PD}_{\mathrm{MAX}}$	0.5	W
Input voltage	V_{1}	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
CLK input voltage	V_{K}	-0.5 to $\mathrm{V}_{\mathrm{DD}}+1.0$	V
Output voltage	V_{O}	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Operating temperature	Topr	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg	-65 to +150	${ }^{\circ} \mathrm{C}$

Capacitance				$\left(\mathrm{Ta}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}\right)$			
Parameter	Symbol	Conditions	MIN.	MAX.	Unit		
Input capacitance	C_{1}	fc $=1 \mathrm{MHz}$ Unmeasured		15	pF		
I/O capacitance	C_{I}	pins returned to 0V			15		

- DC Characteristics
(LH70116-5, $\mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \%$) (LH70116-8, $\mathrm{Ta}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 5 \%$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input HIGH voltage	V_{IH}			2.2		$\mathrm{V}_{\mathrm{DD}}+0.3$	V
Input LOW voltage	$\mathrm{V}_{\text {IL }}$			-0.5		0.8	V
CLK input HIGH voltage	$\mathrm{V}_{\text {KH }}$			3.9		$\mathrm{V}_{\mathrm{DD}}+1.0$	V
CLK input LOW voltage	V_{KL}			-0.5		0.6	V
Output HIGH voltage	V_{OH}	$\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$		$0.7 \mathrm{~V}_{\mathrm{DD}}$			V
Output LOW voltage	$\mathrm{V}_{\text {OL }}$	$\mathrm{I}_{\mathrm{OL}}=2.5 \mathrm{~mA}$				0.4	V
Input leakage HIGH current	$\mathrm{I}_{\text {LIH }}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}$				10	$\mu \mathrm{A}$
Input leakage LOW current	$\mathrm{I}_{\text {LIL }}$	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$				-10	$\mu \mathrm{A}$
Output leakage HIGH current	$\mathrm{I}_{\text {LOH }}$	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}}$				10	$\mu \mathrm{A}$
Output leakage LOW current	$\mathrm{I}_{\text {LOL }}$	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$				-10	$\mu \mathrm{A}$
Supply current	I_{DD}	Normal operation	$\begin{aligned} & \hline 70108-5 \\ & 5 \mathrm{MHz} \end{aligned}$		30	60	mA
		Standby mode			5	10	mA
		Normal operation	$\begin{aligned} & 70108-8 \\ & 8 \mathrm{MHz} \end{aligned}$		45	80	mA
		Standby mode			6	12	mA

AC Characteristics

(LH70116-5, Ta $=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \%$) $\left(\mathrm{LH} 70116-8, \mathrm{Ta}=-10^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 5 \%\right)$

Parameter	Symbol	Conditions	LH70116-5		LH70116-8		Unit
			MIN.	MAX.	MIN.	MAX.	
Small/Larg Scale							
Clock cycle	$\mathrm{t}_{\text {CYK }}$		200	500	125	500	ns
Clock pulse HIGH width	$\mathrm{t}_{\text {KKH }}$	$\mathrm{V}_{\mathrm{KH}}=3.0 \mathrm{~V}$	69	<	44		ns
Clock pulse LOW width	$\mathrm{t}_{\text {KKL }}$	$\mathrm{V}_{\mathrm{KL}}=1.5 \mathrm{~V}$	90		60		ns
Clock rise time	t_{KR}	1.5 V to 3.0 V		10		10	ns
Clock fall time	t_{KF}	3.0 V to 1.5 V		10		10	ns
READY inactive setup to CLK \downarrow	$\mathrm{t}_{\text {SRYLK }}$		-8		-8		ns
READY incative hold after CLK \uparrow	$\mathrm{t}_{\text {HKRYH }}$		30		20		ns
READY active setup to CLK \uparrow	$\mathrm{t}_{\text {SRYHK }}$		$\mathrm{t}_{\text {KKL }}-8$		$\mathrm{t}_{\text {KKL }}-8$		ns
READY active hold after CLK \uparrow	$\mathrm{t}_{\text {HKRYL }}$		30		20		ns
Data setup time to CLK \downarrow	$\mathrm{t}_{\text {SDK }}$		30		20		ns
Data hold time after CLK \downarrow	$\mathrm{t}_{\mathrm{HKD}}$		10		10		ns
NMI, INT, POLL setup time to CLK \uparrow	$\mathrm{t}_{\text {SIK }}$		30		15		ns
Input rise time (except CLK)	t_{IR}	0.8 V to 2.2 V		20		20	ns
Input fall time (except CLK)	t_{IF}	2.2 V to 0.8 V		12		12	ns
Output rise time	$\mathrm{t}_{\text {OR }}$	0.8 V to 2.2 V		20		20	ns
Output fall time	$\mathrm{t}_{\text {OF }}$	2.2 V to 0.8 V		12		12	ns
Small Scale							
Address delay time from CLK \downarrow	$\mathrm{t}_{\text {DKA }}$	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	10	90	10	60	ns
Address hold time CLK \downarrow	$\mathrm{t}_{\mathrm{HKA}}$		10		10		ns
PS delay time from CLK \downarrow	$\mathrm{t}_{\text {DKP }}$		10	90	10	60	ns
PS float delay time from CLK \uparrow	$\mathrm{t}_{\mathrm{FKP}}$.		10	80	10	60	ns
Address setup time to ASTB \downarrow	$\mathrm{t}_{\text {SAST }}$		$\mathrm{t}_{\mathrm{KKL}}-60$		$\mathrm{t}_{\mathrm{KKL}}-30$		ns
Address float delay time from CLK \downarrow	$\mathrm{t}_{\mathrm{FKA}}$		$\mathrm{t}_{\mathrm{HKA}}$	80	$\mathrm{t}_{\mathrm{HKA}}$	60	ns
ASTB \uparrow delay time from CLK \downarrow	$\mathrm{t}_{\text {DKSTH }}$			80		50	ns
ASTB \downarrow delay time from CLK \uparrow	$\mathrm{t}_{\text {DKSTL }}$			85		55	ns
ASTB HIGH width	$\mathrm{t}_{\text {STST }}$		$\mathrm{t}_{\mathrm{KKL}}-20$		$\mathrm{t}_{\mathrm{KKL}}-10$		ns
Address hold time from ASTB \downarrow	$\mathrm{t}_{\text {HSTA }}$		$\mathrm{t}_{\text {KкН }}-10$		$\mathrm{t}_{\text {KКН }}-10$		ns
Control delay time from CLK	$\mathrm{t}_{\text {DKCT }}$	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	10	110	10	65	ns
Address float to $\overline{\mathrm{RD}} \downarrow$	$\mathrm{t}_{\text {AFRL }}$		0		0		ns
$\overline{\mathrm{RD}} \downarrow$ delay time from CLK \downarrow	$\mathrm{t}_{\text {DKRL }}$		10	165	10	80	ns
$\overline{\mathrm{RD}} \uparrow$ delay time from CLK \downarrow	$\mathrm{t}_{\text {DKRH }}$		10	150	10	80	ns
Address delay time from $\overline{\mathrm{RD}} \uparrow$	$\mathrm{t}_{\text {DRHA }}$		$\mathrm{t}_{\text {CYK }}-45$		$\mathrm{t}_{\text {CYK }}-40$		ns
$\overline{\mathrm{RD}}$ LOW width	$\mathrm{t}_{\text {RR }}$		$2 \mathrm{t}_{\text {CYK }}-75$		$2 \mathrm{t}_{\text {CYK }}-50$		ns
Data output delay time from CLK \downarrow	$t_{\text {DKD }}$		10	90	10	60	ns
Data float delay time from CLK \downarrow	$\mathrm{t}_{\mathrm{FKD}}$		10	80	10	60	ns
WR LOW width	$\mathrm{t}_{\text {ww }}$		$2 \mathrm{t}_{\mathrm{CYK}}-60$		$2 \mathrm{t}_{\mathrm{CYK}}-40$		ns
HLDRQ setup time to CLK \uparrow	$\mathrm{t}_{\text {SHQK }}$		35		20		ns
HLDAK delay time from CLK \downarrow	$\mathrm{t}_{\text {DKHA }}$		10	160	10	100	ns

- AC Characteristics (Cont)
(LH70116-5, Ta $=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \%$)
$\left(\mathrm{LH} 70116-8, \mathrm{Ta}=-10^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 5 \%\right)$

Parameter	Symbol	Conditions	LH70116-5		LH70116-8		Unit
			MIN.	MAX.	MIN.	MAX.	
Large Scale							
Address delay time from CLK	$\mathrm{t}_{\mathrm{DKA}}$	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	10	90	10	60	ns
Address hold time from CLK	$\mathrm{t}_{\mathrm{HKA}}$		10		10		ns
PS delay time from CLK \downarrow	$\mathrm{t}_{\mathrm{DKP}}$		10	90	10	60	ns
PS float delay time from CLK \uparrow	$\mathrm{t}_{\mathrm{FKP}}$		10	80	10	60	ns
Address float delay time from CLK \downarrow	$\mathrm{t}_{\mathrm{FKA}}$		$\mathrm{t}_{\mathrm{HKA}}$	80	$\mathrm{t}_{\mathrm{HKA}}$	60	ns
Address delay time from $\overline{\mathrm{RD}} \uparrow$	$\mathrm{t}_{\text {DRHA }}$		$\mathrm{t}_{\mathrm{CYK}}-45$		$\mathrm{t}_{\text {CYK }}-40$		ns
ASTB delay time from BS \downarrow	$\mathrm{t}_{\text {DBST }}$			15		15	ns
BS \downarrow delay time from CLK \uparrow	$\mathrm{t}_{\text {DKBL }}$		10	110	10	60	ns
BS \uparrow delay time from CLK \downarrow	$\mathrm{t}_{\text {DKBH }}$		10	130	10	65	ns
$\overline{\mathrm{RD}} \downarrow$ delay time from address float	$\mathrm{t}_{\text {DAFRL }}$		0		0		ns
$\overline{\overline{\mathrm{RD}}} \downarrow$ delay time from CLK \downarrow	$\mathrm{t}_{\text {DKRL }}$		10	165	10	80	ns
$\overline{\mathrm{RD}} \uparrow$ delay time from CLK \downarrow	$\mathrm{t}_{\mathrm{DKRH}}$		10	150	10	80	ns
$\overline{\mathrm{RD}}$ LOW width	t_{RR}		$2 \mathrm{t}_{\mathrm{CYK}}-75$		$2 \mathrm{t}_{\mathrm{CYK}}-50$		ns
Data output delay time from CLK \downarrow	$\mathrm{t}_{\mathrm{DKD}}$		10	90	10	60	ns
Data float delay time from CLK \uparrow	$\mathrm{t}_{\text {FKD }}$		10	80	10	60	ns
$\overline{\overline{\mathrm{AK}}}$ delay time from CLK \downarrow	$\mathrm{t}_{\text {DKAK }}$			70		50	ns
$\overline{\overline{\mathrm{RQ}}}$ setup time to CLK \uparrow	$\mathrm{t}_{\text {SRQK }}$		20		10		ns
$\overline{\mathrm{RQ}}$ hold time after CLK \downarrow	$\mathrm{t}_{\text {HKRQ1 }}$		0		0		ns
$\overline{\mathrm{RQ}}$ hold time after CLK \dagger	$\mathrm{t}_{\mathrm{HKRQ} 2}$		40		30		ns

Pin Functions

Some pins of the LH70116 have different functions according to whether the microprocessor is used in a small- or large-scale system. Other pins function the same way in either type of system.

$\mathrm{AD}_{15}-\mathrm{AD}_{0}$ (Address/Data Bus)

For small and large scale systems
The $\mathrm{AD}_{15}-\mathrm{AD}_{0}$ is a time-multiplexed Address/ Data bus. This performs output of lower 16 bits of 20 bits address information and input/output of byte or word data. The LH70116 locates memory and I/O operand to a byte-data bank to be accessed with even address $\left(\mathrm{AD}_{0}=0\right)$ and a byte-data bank to be accessed with odd address $\left(\mathrm{AD}_{0}=1\right)$. The LSB $\left(\mathrm{AD}_{0}\right)$ has no meaning as a word data address but used for selecting the odd or even address bank. The $\overline{\mathrm{UBE}}$ (Upper Byte Enable) signal is provided to access byte/word data besides AD_{0}. This is used as the combination of the following table.

Operand	$\overline{\mathrm{UBE}}$	AD_{0}	No. of bus cycle
Word of Even Address	0	0	1
Word of Odd Address	0	1^{\star}	2
	1	$0^{\star \star}$	
Byte of Even Address	1	0	1
Byte of Odd Address	0	1	1

${ }^{\star}$ First time, $\quad{ }^{\star \star}$ Second time
A word operand in odd address is performed via two continuous access of odd-byte bank and even-byte bank. In this case, first $\mathrm{AD}_{0}=1$ showing odd bank is output, and second $\mathrm{AD}_{0}=1$ showing continuous even bank is output automatically. These outputs are held to high or low level in the standby mode. These are 3 -state output and becomes high impedance in the hold acknowledge and interrupt acknowledge states.

NMI (Nonmaskable Interrupt)

For small- and large-scale systems.
This pin is used to input nonmaskable interrupt requests. NMI cannot be masked by software. This input is positive edge triggered and must be held high for five clocks to guarantee recognition. Actual interrupt processing begins, however, after completion of the instruction in progress.

The contents of interrupt vector 2 determine the starting address for the interrupt-servicing routine. Note that a hold request will be accepted even during NMI acknowledge.

This interrupt will cause the LH70116 to exit the standby mode.

INT (Maskable Interrupt)

For small- and large-scale systems.
This pin is an interrupt request that can be masked by software.

INT is active high level and is sensed during the last clock of the instruction. The interrupt will be accepted if the interrupt enable flag IE is set. The CPU outputs the INTAK signal to inform external devices that the interrupt request has been granted. INT must be asserted until the interrupt acknowledge is returned.

If NMI and INT interrupts occur at the same time, NMI has higher priority than INT and INT. cannot be accepted. A hold request will be accepted during INT acknowledge.

This interrupt causes the LH70116 to exit the standby mode.

CLK (Clock)

For small- and large-scale systems.
This pin is used for external clock input.

RESET (Reset)

For small- and large-scale systems.
This pin is used for the CPU reset signal. It is an active high level. Input of this signal has priority over all other operations. After the reset signal input returns to a low level, the CPU begins execution of the program starting at address FFFF0H.

In addition to causing normal CPU start, RESET input will cause the LH70116 to exit the standby mode.

READY (Ready)

For small- and large-scale systems.
When the memory or I/O device being accessed cannot complete data read or write within the CPU basic access time, it can generate a CPU wait state (Tw) by setting this signal to inactive (low level) and requesting a read/write cycle delay.

If the READY signal is active (high level) during either the T3 or Tw state, the CPU will not generate a wait state.

This signal must be input in synchronization with external clock signals to satisfy the setup/ hold time for normal operation.

$\overline{\text { POLL }}$ (Poll)

For small- and large-scale systems.
The CPU checks this input upon execution of the $\overline{\text { POLL }}$ instruction. If the input is low, then execution continues. If the input is high, the CPU will
check the $\overline{\text { POLL }}$ input every five clock cycles until the input becomes low again.

The POLL and READY functions are used to synchronize CPU program execution with the operation of external devices.

$\overline{\mathrm{RD}}$ (Read Strobe)

For small- and large-scale systems.
The CPU outputs this strobe signal during data read from an I/O device or memory. The $\overline{\mathrm{IO}} / \mathrm{M}$ signal is used to select between I/O and memory.

The three-state output is held high during standby mode and enters the high-impedance state during hold acknowledge.

S/LG (Small/Large)

For small- and large-scale systems.
This signal determines the operation mode of the CPU. This signal is fixed at either a high or low level. When this signal is a high level, the CPU will operate in small-scale system mode, and when low, in the large-scale system mode.Pins 24 to 31 and 34 function differently depending on the operating mode of the CPU. Separate nomenclature is adopted for these signals in the two operating modes.

Pin No.	Function	
	S/ $\overline{\mathrm{LG}}-$ high	$\mathrm{S} / \overline{\mathrm{LG}}-$ low
24	$\overline{\mathrm{INTAK}}$	QS_{1}
25	ASTB	QS_{0}
26	$\overline{\mathrm{BUFEN}}$	BS_{0}
27	$\mathrm{BUF} / \mathrm{W}$	BS_{1}
28	$\overline{\mathrm{IO}} / \mathrm{M}$	BS_{2}
29	$\overline{\mathrm{WR}}$	$\overline{\mathrm{BUSLOCK}}$
30	HLDAK	$\overline{\mathrm{RQ}} / \overline{\mathrm{AK}}_{1}$
31	HLDRQ	$\overline{\mathrm{RQ}} / / \overline{\mathrm{AK}}_{0}$

INTAK (Interrupt Acknowledge)

For small-scale systems.
The CPU generates the $\overline{\mathrm{INTAK}}$ signal low when it accepts an INT signal.

The interrupting device synchronizes with this signal and outputs the interrupt vector to the CPU via the data bus $\left(A D_{7}-A D_{0}\right)$.

ASTB (Address Strobe)

For small-scale systems.

The CPU outputs this strobe signal to latch address information at an external latch.

ASTB is held at a low level after held at a high level for a half clock cycle during standby mode.

$\overline{B U F E N}$ (Buffer Enable)

For small-scale systems

This is used as the output enable signal for an external bidirectional buffer. The CPU genarates this signal during data transfer operations with external memory or I/O devices or during input of an interrupt vector.

This three-state output is held high during standby mode and enters the high-impedance state during hold acknowledge.

BUFR/W (Buffer Read/Write)

For small-scale systems.
The output of this signal determines the direction of data transfer with an external bidirectional buffer. A high output causes transmission from the CPU to the external device; a low signal causes data transfer from the external device to the CPU.

BUFR/W is a three-state output and becomes high impedance during hold acknowledge.

$\overline{\mathrm{O} / \mathrm{M}}$ (IO/Memory)

For small-scale systems.
The CPU generates this signal to specify either I/O access or memory access. A high-level output specifies memory and a low-level signal specifies I/O.

IO/M's output is three state and becomes high impedance during hold acknowledge.

$\overline{W R}$ (Write strobe)

For small-scale systems.
The CPU generates this strobe signal during data write to an I/O device or memory. Selection of either I/O or memory is performed by the $\overline{\mathrm{IO}} / \mathrm{M}$ signal.

This three-state output is held high during standby mode and enters the high-impedance state during hold acknowledge.

HLDAK (Hold Acknowledge)

For small-scale systems.
The HLDAK signal is used to indicate that the CPU accepts the hold request signal (HLDRQ). When this signal is a high level, the address bus, address/data bus, and the control lines become high impedance.

HLDRQ (Hold Request)

For small-scale systems.
This input signal is used by external devices to request the $C P U$ to release the address bus, address/data bus, and the control bus.

This signal must be input in synchronization with external clock signals to satisfy the setup/ hold time for normal operation.

UBE (Upper Byte Enable)

For small- and large-scale systems.
This output indicates the use of the upper 8 bits $\left(\mathrm{AD}_{15}-\mathrm{AD}_{8}\right)$ of the Address/Data bus during T2-T4 of bus cycle. This signal is active low and output during T1-T4 of the bus cycle. Bus cycles in which the UBE is active are shown in the following table.

Operand	UBE	AD_{0}	No. of bus cycle
Word of Even Address	0	0	1
Word of Odd Address	0	1^{\star}	2
	1	$0^{\star \star}$	
Byte of Even Address	1	0	1
Byte of Odd Address	0	1	1

*First time, ${ }^{\star \star}$ Second time
The UBE signal goes low level continuously during interrupt acknowledge state (because of necessity of word access of even address for vector read).

This signal is held to high level in the standby mode. The UBE is 3 -state output and becomes high impedance during hold acknowledge.

$\mathrm{A}_{19} / \mathrm{PS}_{3}-\mathrm{A}_{16} / \mathrm{PS}_{0}$ (Address Bus/Processor Status)

For small-and large-scale systems.
These pins are time multiplexed to operate as an address bus and as proccessor status signals.

When used as the address bus, these pins are the high 4 bits of the 20 -bit memory address. During I/O access, all 4 bits output data 0 .

The proccessor status signals are provided for both memory and I/O use. PS_{3} is always 0 in the native mode and 1 in 8080 emulation mode. The interrupt enable flag (IE) is output to PS_{2}. Pins PS_{1} and PS_{0} indicate which memory segment is being accessed.

$\mathrm{A}_{17} / \mathrm{PS}_{1}$	$\mathrm{~A}_{16} / \mathrm{PS}_{0}$	Segment
0	0	Data segment 1
0	1	Stack segment
1	0	Program segment
1	1	Data segment 0

The output of these pins is three state and becomes high impedance during hold acknowledge.

QS $_{1}$, QS $_{0}$ (Queue Status)

For large-scale systems.
The CPU uses these signals to allow external devices, such as the floating-point arithmetic processor chip, about the status of the internal CPU instruction queue.

QS_{1}	QS_{0}	Instruction Queue Status
0	0	NOP (Queue does not change)
0	1	First byte of instruction
1	0	Queue empty
1	1	Subsequent bytes of instruction

The instruction queue status indicated by these signals is the status when the execution unit (EXU) accesses the instruction queue. The data output from these pins is therefore valid only for one clock cycle immediately following queue access. These status signals are provided so that the floating-point processor chip can monitor the CPU's program execution status and synchronize its operation with the CPU when control is passed to it by the FPO (Floating Point Operation) instructions.

$\mathrm{BS}_{2}-\mathrm{BS}_{0}$ (Bus Status)

For large-scale systems.
The CPU uses these status signals to allow an external bus controller to monitor what the current bus cycle is.

The external bus controller decodes these sig. nals and generates the control signals required to perform access of the memory or I/O device.

BS_{2}	BS_{1}	BS_{0}	Bus Cycle
0	0	0	Interrupt acknowledge
0	0	1	I/O read
0	1	0	I/O write
0	1	1	Halt
1	0	0	Program fetch
1	0	1	Memory read
1	1	0	Memory write
1	1	1	Passive state

The output of these signals is three state and becomes high impedance during hold acknowledge.

These signals will be high from the rising edge of clock immediately after RESET signal is active to the next clock rise.

BUSLOCK (Bus Lock)

For large-scale systems.
The CPU uses this signal to secure the bus while executing the instruction immediately following the BUSLOCK prefix instruction, or during an interrupt acknowledge cycle. It is a status signal to the other bus masters in a multiprocessor system, inhibiting them from using the system bus during this time.

The output of this signal is three state and becomes high impedance during hold acknowledge.
$\overline{\text { BUSLOCK }}$ is high during standby mode except if the HALT instruction has a BUSLOCK prefix.

$\overline{\mathrm{RQ}} / \overline{\mathrm{AK}}_{1}, \overline{\mathrm{RQ}} / \overline{\mathrm{AK}}_{\mathbf{0}}$ (Hold Request/Acknowledge)

For large-scale systems.
These pins function as bus hold request inputs $(\overline{\mathrm{RQ}})$ and as bus hold acknowledge outputs ($\overline{\mathrm{AK}})$. $\overline{\mathrm{RQ}} / \overline{\mathrm{AK}}_{0}$ has a higher priority than $\overline{\mathrm{RQ}} / \overline{\mathrm{AK}}_{1}$.

These pins have three-state outputs with on-chip pull-up resistors which keep the pin at a high level when the output is high impedance.

Bus Hold Request Input (RQ) must be input in synchronization with external clock signal to satisfy the setup/hold time for normal operation.

$V_{\text {DD }}$ (Power Supply)

For small- and large-scale systems.
This pin is used for the +5 V power supply.

GND (Ground)

For small- and large-scale systems. This pin is used for ground.

IC (Internally Connected)

The LH70116 is used with this pin at grouwd potential.

Register Configuration

Program Counter (PC)

The program counter is a 16 -bit binary counter that contains the segment offset address of the next instruction which the EXU is to execute.

The PC increments each time the microprogram fetches an instruction from the instruction queue. A new location value is loaded into the PC each time a branch, call, return, or break instruction is executed. At this time, the contents of the PC are the same as the Prefetch Pointer (PEP).

Prefetch Pointer (PFP)

The prefetch pointer (PFP) is a 16 -bit binary counter which contains a segment offset which is used to calculate a program memory address that the bus control unit (BCU) uses to prefetch the next byte for the instruction queue. The contents of PFP are an offset from the PS (Program Segment) register.

The PFP is incremented each time the BCU prefetches an instruction from the program memory. A new location will be loaded into the PFP whenever a branch, call, return, or break instruction is executed. At that time the contents of the PFP will be the same as those of the PC (Program Counter).

Segmet Registers (PC, SS, DS ${ }_{0}$, and DS_{1})

The memory addresses accessed by the LH70116 are divided into 64 K -byte logical segments. The starting (base) address of each segment is specified by a 16 -bit segment register, and the offset from this starting address is specified by the contents of another register or by the effective address.

These are the four types of segment registers used.

Segment Register	Default Offset
PS (Program Segment)	PFP
SS (Stack Segment)	PS, effective address
DS_{0} (Data Segment 0)	IX, effective address
DS_{1} (Data Segment 1)	IY

General-Purpose Registers (AW, BW, CW, and DW)

There are four 16-bit general-purpose registers. Each one can be used as one 16 -bit register or as two 8-bit registers by dividing them into their high and low bytes (AH, AL, BH, BL, CH, CL, DH, DL).

Each register is also used as a default register for processing specific instructions. The default assignments are:
AW: Word multiplication/division, word I/O, data conversion
AL: Byte multiplication/division, byte I/O, BCD rotation, data conversion, translation
AH: Byte multiplication/division
BW: Translation
CW: Loop control branch, repeat prefix
CL: Shift instructions, rotation instructions, BCD operations
DW: Work multiplication/division, indirect addressing I/O

Pointers (SP, BP) and Index Registers (IX, IY)
These registers serve as base pointers or index registers when accessing the memory using based addressing, indexed addressing, or based indexed addressing.

These registers can also be used for data transfer and arithmetic and logical operations in the same manner as the general-purpose registers. They cannot be used as 8 -bit registers.

Also, each of these registers acts as a default register for specific operations. The default assignments are:
SP: Stack operations
IX: Block transfer (source), BCD string operations

IY: Block transfer (destination), BCD string operations

Program Status Word (PSW)

The program status word consists of the following six status and four control flags.

Status Flags

Control Flags

- V (Overflow)
- S (Sign)
- Z (Zero)
- AC (Auxiliary Carry)

MD (Mode)

- DIR (Direction)
- IE (Interrupt Enable)
- BRK (Break)
- P (Parity)
- CY (Carry)

When the PSW is pushed on the stack, the word images of the various flags are as shown here. PSW

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
M	1	1	1	V	D	I	B	S	Z	0	A	0	P	I	C
D					I	E	R				C				Y
				R		K									

The status flags are set and reset depending upon the result of each type of instruction executed.
Instructions are provided to set, reset, and complement the CY flag directly.

Other instructions set and reset the control flags and control the operation of the CPU.

$Q_{0}-Q_{5}$ (Prefetch Queue)

The LH70116 has 6 byte instruction queue (FIFO), and it can store up to 6 instruction byte prefetched by the BCU. The instruction codes stored in the queue are fetched and executed by the EXU. The queue is cleared and prefetched with branch, call, return, or break instruction has been executed and when external interrupt has been acknowledged. Normally, the LH70108 prefetches if the queue has one word (two bytes) or more space. If the time required to prefetch the instruction code from the external memory is less than the mean execution time of instructions which are executed sequentially, then the actual instructions cycle will be shortened by this amount of time i. e. the instruction code to be next executed by the EXU can be available in the queue immediately after the completion of one instruction. As the result, processing speed is highly upgraded compared with the conventional CPU which fetch and execute instructions one by one. Queuing effect is lowered if there were many instructions which clears queue like the branch instruction or in the case of continuous instructions with too short instruction time.

DP (Data Pointer)

The data pointer is a $16^{- \text {bit }}$ register indicates read/write addresses of variables. Effective address made in the effective address generator and the register contents including memory address offsets are transferred to the DP.

TEMP (Temporary Communication Register)

This is a 16 -bit temporary register used by communications between external data bus and the EXU. The TEMP can be read or written by upper byte or lewer byte independently for byte access. Basically, the EXU completes write operation with transferring data to the TEMP and completes read operation with recognizing the data has been transferred to the TEMP from external data bus.

EAG (Effective Address Generator)

The Effective Address Generator (EAG) performs high-speed effective address calculation necessary for memory access. This completes all the calculations with 2 clocks for every addressing mode.

This fetches the instruction byte (2nd or 3rd byte) which has operand specifying field, if the instruction needs memory access. Then calculates effective address and transfers it to the DP (Data Pointer) and generates control signals relating to handling ALU and corresponding registers. In addition, if it is necessary, the EAG requests to the BCU for starting the bus cycle (memory read).

Instruction Decoder

The Instruction Decoder classifies lst byte of an instruction code into some groups with specific function and holds them during micro-instruction execution.

Microaddress Register

The microaddress register specifies the address of a microinstruction ROM to be next executed. At starting of a microinstruction execution, the 1st byte of instruction bytes stored in the queue is fetched in this register and it specifies a start address of the corresponding microinstruction sequence.

Microinstruction ROM

The Microinstruction ROM has 1024 words by 29 bits of microinstructions.

Microinstruction Sequencer

The Microinstruction Sequencer controls the microaddress register operation, microinstruction

ROM output, and synchronizing the EXU with BCU.

ADM (Address Modifier)

Address Modifier performs the generation of physical address (adding segment register and PFP or DP) and increment of PFP (Prefetch Pointer).

TA/TB (Temporary Register/Shifter A, B)

The TA/TB are 16-bit temporary register/shifter used with execution of multiply/divided and shift/rotate (including BCD rotate) instructions. When executing multiply or divide instruction TA +TB operates as a 32-bit temporary register/ shifter when executing shift/rotate instructions. Both the TA and TB can be read or written to and from the internal bus by upper byte or lower byte independently. The contents of the TA and TB are input to the ALU.

TC (Temporary Register C)

The TC is a 16 -bit temporary register used with
internal processing like the multiply or divide operation, etc. The TC content is output to the ALU.

ALU (Arithmetic \& Logic Unit)

The Arithmetic and Logic Unit consists of a full adder and logical operation circuit and performs these operations:

1) Arithmetic operation (Add, Subtract, Multiply, Divide, increment, decrement, and complement)
2) Logical operation (test, AND, OR, XOR and bit test, set, clear, and complement)

LC (Loop Counter)

The Loop Counter (LC) is a 16 -bit register which counts below items.

1) Loop number of the primitive block transfer and input/output instructions (MOVBK, OUTM, etc.) controlled with repeat prefix instructions (REP, REPC, etc.).
2) Shift number of the multi-bit shift/rotate instructions.

High-Speed Execution of Instructions

This section highlights the major architectural features that enhance the performance of the LH70116.

- Dual data bus in EXU
- Effective address generator
- 16/32-bit temporary registers/shifters (TA, TB)
- 16-bit loop counter
- PC and PFP

Dual Data Bus Method

To reduce the number of processing steps for instruction execution, the dual data bus method has been adopted for the LH70116 (figure 1). The two data buses (the main data bus and the subdata bus) are both 16 bits wide. For addition/subtraction and logical and comparison operations, processing time has been speeded up some 30% over sing-le-bus systems.

Fig. 1 Dual Data Buses

Example

ADD AW, BW; AW $\leftarrow \mathrm{AW}+\mathrm{BW}$
Single Bus
Step 1 TA $\leftarrow A W$
Dual Bus
$T A \leftarrow A W, T B \leftarrow B W$
Step $2 \mathrm{~TB} \leftarrow \mathrm{BW}$
$A W \leftarrow T A+T B$
Step 3 AW $\leftarrow T A+T B$

Effective Address Generator

This circuit (figure 2) performs high-speed processing to calculate effective addresses for accessing memory.

Calculation an effective address by the microprogramming method normally requires 5 to 12 clock cycles. This circuit requires only two clock cycles for address to be generated for any addressing mode. Thus, processing is several times faster.

Fig. 2 Effective Address Generator

16/32-Bit Temporary Registers/Shifters (TA, TB)

These 16-bit temporary registers/shifters (TA, TB) are provided for multiplication/division and shift/rotation instructions.

These circuits have decreased the execution time of multiplication/division instructions. In fact, these instructions can be executed about four times faster than with the microprogramming method.

TA + TB: 32-bit temporary register/shifter for multiplication and division instructions.

TB 16-bit temporary register/shifter for shift/ rotation instructions.

Loop Counter (LC)

This counter is used to count the number of loops for a primitive block transfer instruction controlled by a repeat prefix instruction and the number of shifts that will be performed for a multiple bit shift/rotation instruction.

The processing performed for a multiple bit rotation of a register is shown below. The average speed is approximately doubled over the microprogram method.

Example

RORC AW, CL; CL=5
$\begin{array}{ll}\begin{array}{l}\text { Microprogram } \\ \text { method } \\ 8+(4 \times 5)=28 \text { clocks }\end{array} & \text { LC method } \\ 8+5=12 \text { clocks }\end{array}$

Program Counter and Prefetch Pointer (PC and PFP)

The LH70116 microprocessor has a program counter (PC), which addresses the program memory location of the instruction to be executed next, and a prefetch pointer (PFP), which addresses the program memory location to be accessed next. Both functions are provided in hardware. A time saving of several clocks is realized for branch, call, return, and break instruction execution, compared with microprocessors that have only one instruction pointer.

- Unique Instructions

Variable Length Bit Field Operation Instructions

This category has two instructions: INS (insert Bit Field) and EXT (Extract Bit Field). These instructions are highly effective for computer graphics and high-level languages. They can, for example, be used for data structures such as packed arrays and record type data used in PASCAL.
(1) INS reg8, reg8/INS reg8, imm4

This instruction (figure 3) transfers low bits from the 16 -bit AW register (the number of bits is specified by the second operand) to the memory location specified by the segment base (DS_{1} register) pulse the byte offset (IY register). The starting bit position within this byte is specified as an offset by the lower 4 bits of the first operand.

After each complete data transfer, the IY register and the register specified by the first operand are automatically updated to point to the next bit field.
Either immediate data or a register may specify the number of bits transferred (second operand). Because the maximum transferable bit length is 16 bits, only the lower 4 bits of the specified register $(00 \mathrm{H}$ to 0 FH$)$ will be valid.
Bit field data may overlap the byte boundary of memory.

Fig. 3 Bit Field Insertion

Fig. 4 Bit Field Extraction

(2) EXT reg8, reg8/EXT reg8, imm4

This instruction (figure 4) loads to the AW register the bit field data whose bit length is specified by the second operand of the instruction from the memory location that is specified by the DS_{0} segment register (segment base), the IX index register (byte offset), and the lower 4 bits of the first operand (bit offset).

Packed BCD Operation Instructions

The instructions described here process packed BCD data either as strings (ADD4S, SUB4S, CMP4S) or byte-format operands (ROR4, ROL4). After the transfer is complete, the IX register and the lower 4 bits of the first operand are automatically updated to point to the next bit field.

Either immediate data or a register may be specified for the second operand. Because the maximum transferrable bit length is 16 bits, however, only the lower 4 bits of the specified register $(0 \mathrm{H}$ to 0 FH) will be valid.

Bit field data may overlap the byte boundary of memory.

(1) ADD4S

This instruction adds the packed BCD string addressed by the IX index register to the packed $B C D$ string addressed by the IY index register, and stores the result in the string addressed by the IY register. The length of the string (number of BCD digits) is specified by the CL register, and the result of the operation will affect the overflow flag (V), the carry flag (CY), and zero flag (Z).
$B C D$ string (IY, CL) $\leftarrow \mathrm{BCD}$ string (IY, CL) +BCD string (IX, CL)

(2) SUB4S

This instruction subtracts the packed BCD string addressed by the IX index register from the packed BCD string addressed by the IY register, and stores the result in the string addressed by the IY register. The length of the string (number of BCD digits) is specified by the CL register, and the result of the operation will affect the overflow flag (V), the carry flag (CY), and zero flag (Z).
$B C D$ string (IY, CL) $\leftarrow B C D$ string (IY, CL) $-B C D$ String (IX, CL)

(3) CMP4S

This instruction performs the same operation as SUB4S except that the result is not stored and only the overflow (V), carry flags (CY) and zero flag (Z) are affected.
$B C D$ string (IY, CL) $-B C D$ string (IX, CL)

(4) ROL4

This instruction (Fig. 5) treats the byte data of the register or memory directly specified by the instruction byte as BCD data and uses the lower 4-bits of the $A L$ register $\left(A L_{L}\right)$ to rotate that data one BCD digit to the left.

Fig. 5 BCD Rotate Left (ROL4)

(5) ROR4

This instruction (Fig. 6) treats the byte data of the register or memory directly specified by the instruction byte as BCD data and uses the lower 4 -bits of the $A L$ register $\left(\mathrm{AL}_{\mathrm{L}}\right)$ to rotate the data one BCD digit to the right

Fig. 6 BCD Rotate Right (ROR4)

Stack Operation Instruction

(1) PREPARE imm16, imm8

This instruction is used to generate "stack frames" required by the block structures of highlevel languages such as Pascal and Ada. The stack frame includes a local variable area as well as pointers. These frame pointers point to the frame containing the variables that can be referenced from the current procedure.

The program example based upon Pascal language is shown below.
program EXAMPLE ;
procedure P ;
var a, b, c;
procedure Q ;
var d, e;

```
    procedure R ;
        var f, \(g\);
        begin
                \(\mathrm{d}:=\mathrm{a}+\mathrm{f}+\mathrm{g}\);
            end ;
        begin
            R ;
            \(\mathrm{b}:=\mathrm{d}+\mathrm{e}\);
            end;
        begin
            \(\mathrm{a} ;=\mathrm{b}+\mathrm{c}\);
            Q :
        end ;
(*main program*)
    begin
        P;
    end.
```

Note: The variables are defined as the words.
This program is an example of a procedure block with a triple nesting.

Procedure	Variables
P	$\mathrm{a}, \mathrm{b}, \mathrm{c}$
Q	d, e
R	f, g

Accordingly, the global variables of a, b and c are referenced from the procedure Q, and a, b, c, d and e from the procedure R.

This instruction copies frame-pointers to reserve the local variable area and to enable global variable references. The first operand (16-bit immediate data) specifies (in bytes) the size of the local variable area. The second operation (8 -bit immediate data) specifies the depth (or lexical level) of the procedure block. The frame base address generated by this instruction is set in the BP base pointer.

To compile the EXAMPLE program follows the G assembler program shown next. (The DISPOSE instruction in the assembler program is used to return the stack pointer SP and the base pointer BP to the state just before the PREPARE instruction is executed. See DISPOSE section mentioned later.)

START :	MOV	SP, SPTOP	
	MOV	BP, SP	; ${ }^{(1)}$
	CALL	P	; (2)
	BR	SYSTEM	
P :	PREPARE	6, 1	; 3)
	MOV	AW, [BP][B	VEL×2]
	ADD	AW, [BP][C	VEL×2]
	MOV	[BP]\| $\mathrm{A}+\mathrm{AL}$	- 2], AW
	CALL	Q	
	DISPOSE		
	RET		

The process of the generation of the stack frame according to the program is shown next. The numbers are referred to that in the program.

First the old BP value is saved to the stack. This is done so that BP of the calling procedure can be restored when the called procedure terminates. The frame pointer ($B P$ value saved to the stack) that indicates the range of variables that can be referenced by the called procedure is placed on the stack. This range is always a value one less than the stack. This range is always a value one less than the lexical level of the procedure.

If the lexical level of a procedure is greater than 1 , the pointers of that procedure will also be saved on the stack. This is so that the frame pointer of the calling procedure can also be copied when frame pointer copy is performed within the called procedure.

Next the new frame pointer value is set in BP and the area for local variables used by the procedure is reserved in the stack. In other words, SP is decremented only for the amount of stack memory required by the local variables.

$$
\begin{aligned}
& \text { display }=2 \text { nd operand } \\
& \text { dynamics }=1 \text { st operand } \\
& \mathrm{SP}=\mathrm{SP}-2 ; \\
& (\mathrm{SP})=\mathrm{BP} ; \\
& \text { temp }=\mathrm{SP} ; \\
& \text { if display }>0 \text { then begin } \\
& \text { repeat display }-1 \text { times }
\end{aligned}
$$

$$
\begin{gathered}
\text { begin } \\
\mathrm{SP}=\mathrm{SP}-2 ; \\
\mathrm{SP}=\mathrm{BP}-2 ; \\
(\mathrm{SP})=(\mathrm{BP}) ; \\
\text { end ; } \\
\mathrm{SP}=\mathrm{SP}-2 ; \\
(\mathrm{SP})=\text { temp ; } \\
\text { end ; } \\
\mathrm{BP}=\text { temp ; } \\
\mathrm{SP}=\mathrm{SP}-\text { dynamics }
\end{gathered}
$$

Mode Operating Instructions

The LH70116 has two operating modes (Fig. 7). One is the native mode, the other is the emulation mode in which the instruction set of the 8080A is emulated. A mode flag (MD) is provided to select between these two modes. Native mode is selected when MD is 1 and emulation mode when MD is 0 . MD is set and reset, directly and indirectly, by executing the mode manipulation instructions.

Two instructions are provided to switch operation from the native mode to the emulation mode and back: BRKEM (Break for Emulation), and RETEM (Return from Emulation).

Two instructions are used to switch from the emulation mode to the native mode and back: CALLN (Call Native Routine), and RETI (Return from Interrupt).

The system will return from the 8080 emulation mode to the native mode when the RESET signal is present, or when an external interrupt (NMI or INT) is present.

Fig. 7 V30 Modes

Data Access

(1) Local variable access

The local variables are assigned in the frame of the procedure. The effective address EA. L of the local variables is defined by the formula :

$$
\text { EA. } \mathrm{L}=\mathrm{SS}:(\mathrm{BP}+\text { offset })
$$

The offset value is defined as the sum of the frame size (referenced frame base) and the variable from the base of the local variable area.

(2) Global variable access

The global variable is located at the address added by the offset of variables which are referenced to the accessed value of the base pointer of the old one saved on the stack frame.

The effective address EA. G is defined as below. EA. $\mathrm{G}=\mathrm{SS}:((\mathrm{SS}:(\mathrm{BP}+$ offset 1$))+$ offset 2$)$
The offset 1 is defined by the offset value from the frame base (BP) to the address stored by the base address of the frame including the global variables.

The offset 2 is defined by the offset value from the frame base including variables to be referenced to the variables.

DISPOSE

This instruction releases the last stack frame generated by the PREPARE instruction. It returns the stack and base pointers to the values they had before the PREPARE instruction was used to call a procedure.

$$
\begin{aligned}
& \mathrm{SP}=\mathrm{BP} ; \\
& \mathrm{BP}=(\mathrm{SP}) ; \\
& \mathrm{SP}=\mathrm{SP}+2
\end{aligned}
$$

Check Array Boundary Instruction

This instruction is used to verify that index values pointing to the elements of an array data structure are within the defined range. The lower limit of the array should be in memory location mem 32 , the upper limit in mem $32+2$. If the index value in reg16 is not between these limits when CHKIND is executed, a BRK 5 will occur. This causes a jump to the location in interrupt vector 5.

CHKIND reg16, mem32
When $($ mem 32$)>$ reg1 6 or $($ mem $32+2)<$ reg 16

$$
\left.\begin{array}{l}
\mathrm{TA} \leftarrow(015 \mathrm{H}, 014 \mathrm{H}) \\
\mathrm{TC} \leftarrow(017 \mathrm{H}, 016 \mathrm{H}) \\
\mathrm{SP} \leftarrow \mathrm{SP}-2,(\mathrm{SP}+1, \mathrm{SP}) \leftarrow \mathrm{PSW} \\
\mathrm{IE} \leftarrow 0, \mathrm{BREK} \leftarrow 0 \\
\mathrm{SP} \leftarrow \mathrm{SP}-2,(\mathrm{SP}+1, \mathrm{SP}) \leftarrow \mathrm{PS} \\
\mathrm{PS} \leftarrow \mathrm{TC} \\
\mathrm{SP} \leftarrow \mathrm{SP}-2,(\mathrm{SP}+1, \mathrm{SP}) \leftarrow \mathrm{PC} \\
\mathrm{PC} \leftarrow \mathrm{TA}
\end{array}\right\}=\mathrm{BRK} 5
$$

(1) BRKEN imm8

This is the basic instruction used to start the 8080 emulation mode. This instruction operates exactly the same as the BRK instruction, except that BRKEM resets the mode flag (MD) to 0. PSW, PS, and PC are saved to the stack. MD is then reset and the interrupt vector specified by the operand imm8 of this command is loaded into PS and PC.
The instruction codes of the interrupt processing routine jumped to are then fetched. Then the CPU executes these codes as 8080 A instructions.

In 8080 emulation mode, registers and flags of the 8080 A are performed by the following registers and flags of the LH70116

	8080 A	LH 70116
Registers:	A	AL
	B	CH
	C	CL
	D	DH
	D	DL
	E	BH
	H	BL
	L	BP
Flags:	SP	PC
	PC	CY
	C	Z
	Z	S
	S	P
	P	AC

In the native mode, SP is used for the stack pointer. In the 8080 emulation mode this function is performed by BP.

The use of independent stack pointers allows independent stack areas to be secured for each mode and keeps the stack of one of the modes from being destroyed by an erroneous stack operation in the other mode.

The SP, IX, IY and AH registers and the four segment registers ($\mathrm{PS}, \mathrm{SS}, \mathrm{DS}_{0}$, and DS_{1}) used in the native mode are not affected by operations in 8080 emulation mode.

In the 8080 emulation mode, the segment register for instructions is determined by the PS register (set automatically by the interrupt vector) and the segment register for data is the DS_{0} register (set by the programmer immediately before the 8080 emulation mode is entered).

It is prohibited to nest BRKEM instructions.

(2) RETEM (no operand)

When RETEM is executed in 8080 emulation mode (interpreted by the CPU as an 8080A instruction), the CPU restores PS, PC, and PSW (as it would when returning from an interrupt processing routine), and returns to the native mode. At the same time, the contents of the mode flag (MD) which was saved to the stack by the BRKEM instruction, is restored to $\mathrm{MD}=1$. The CPU is set to the native mode.

(3) CALLN imm8

This instruction makes it possible to call the native mode subroutines from the 8080 emulation mode. To return from subroutine to the emulation mode, the RETI instruction is used.

The processing performed when this instruction is executed in the 8080 emulation mode (it is interpreted by the CPU as 8080 A instruction), is similar to that performed when a BRK instruction is executed in the native mode. The imm8 operand specifies an interrupt vector type. The contents of PS, PC, and PSW are pushed on the stack and an MD flag value of 0 is saved. The mode flag is set to 1 and the interrupt vector specified by the operand is loaded into PS and PC.

(4) RETI (no operand)

This is a general-purpose instruction used to return from interrupt routines entered by the BRK instruction or by an external interrupt in the native mode. When this instruction is executed at the end of a subroutine entered by the execution of the CALLN instruction, the operation that restores PS, PC , and PSW is exactly the same as the the native mode execution. When PSW is restored, however, the 8080 emulation mode value of the mode flag (MD) is restored, the CPU is set in emulation mode, and all subsequent instructions are interpreted and executed as 8080 A instructions.

RETI is also used to return from an interrupt procedure initiated by an NMI or INT interrupt in the emulation mode.

Floating Point Operation Chip Instructions FPO1 fp-op, mem/FPO2 fp-op, mem

These instructions are used for the external floating point processor. The floating point operation is passed to the floating point processor when the CPU fetches one of these instructions. From this point the CPU performs only the necessary auxiliary processing (effective address calculation, generation of physical addresses, and start-up of the memory read cycle).

The floating point processor always monitors the
instructions fetched by the CPU. When it interprets one as an instruction to itself, it performs the appropriate processing. At this time, the floating point processor chip uses either the address alone or both the address and read data of the memory read cycle executed by the CPU. This difference in the data used depends on which of these instructions is executed.
Note: During the memory read cycle initiated by the CPU for FPO1 or FPO2 execution, the CPU does not accept any read data on the data bus from memory. Although the CPU generates the memory address, the data is used by the floating point processor.

Interrupt Operation

The interrupts used in the LH70116 can be divided into two types: interrupts generated by external interrupt requests and interrupts generated by software processing. These are the classifications.
(1) External Interrupts
(a) NMI input (nonmaskable)
(b) INT input (maskable)
(2) Software Processing

As the result of instruction execution

- When a divide error occurs during execution of the DIV or DIVU instruction
- When a memory-boundary-over error is detected by the CHKIND instruction
Conditional break instruction
- When $\mathrm{V}=1$ during execution of the BRKV instruction
Unconditional break instructions
- 1-byte break instruction: BRK3
- 2-byte break instruction: BRK imm8

Flag processing

- When stack operaitons are used to set the BRK flag
8080 Emulation mode instructions
- BRKEM imm8
- CALLN imm8

Interrupt Vectors

Starting addresses for interrupt processing routines are either determined automatically by a single location of the interrupt vector table or selected each time interrupt processing is entered.

The interrupt vector table is shown in figure 8. The table uses 1 K bytes of memory addresses 000 H to 3 FFH and can store starting address data for a maximum of 256 vectors (4 bytes per vector).

The correponding interrupt sources for vectors

0 to 5 are predetermined and vectors 6 to 31 are reserved These vectors consequently cannot be used for general applications

The BRKEM instruction and CALLN instruction (in the emulation mode) and the INT input are available for general applications for vectors 32 to 255.

A single interrupt vector is made up of 4 bytes (Fig. 9). The 2 bytes in the low addresses of memory are loaded into PC as the offset, and the high 2 bytes are loaded into PS as the base address. The bytes are combined in reverse order. The lowerorder bytes in the vector become the most significant bytes in the PC and PS, and the higher-order bytes become the least significant bytes.

Fig. 8 Interrupt Vector Table

Fig. 9 Interrupt Vector 0

Based on this format, the contents of each vector should be initialized at the beginning of the program.
The basic steps to jump to an interrupt processing routine are now shown.

TA \leftarrow vector low bytes (offset)
TC \leftarrow vector high bytes (segment base)
$\mathrm{SP} \leftarrow \mathrm{SP}-2,(\mathrm{SP}+1, \mathrm{SP}) \leftarrow \mathrm{PSW}$
IE $\leftarrow 0, \mathrm{BRK} \leftarrow 0, \mathrm{MD} \leftarrow 0$
$\mathrm{SP} \leftarrow \mathrm{SP}-2,(\mathrm{SP}+1, \mathrm{SP}) \leftarrow \mathrm{PS}$
$\mathrm{PS} \leftarrow \mathrm{TC}$
$\mathrm{SP} \leftarrow \mathrm{SP}-2,(\mathrm{SP}+1, \mathrm{SP}) \leftarrow \mathrm{PC}$
$\mathrm{PC} \leftarrow \mathrm{TA}$

Standby Function

The LH70116 has a standby mode to reduce power consumption during program wait states. This mode is set by the HALT instruction in both the native and the emulation mode.

In the standby mode, the internal clock is supplied only to those circuits related to functions required to release this mode and bus hold control functions. As a result, power consumption can be reduced to $1 / 10$ the level of normal operation in either native or emulation mode.

The standby mode is released by inputting a RESET signal or an external interrupt (NMI, INT).

The bus hold function is effective during standby mode. The CPU returns to standby mode when the bus hold request is removed.

During standby mode, all control outputs are disabled and the address/data bus will be at either high or low levels.

I/O Address Reservation

Reserve upper 256 bytes of I/O address ($\mathrm{FF} 00 \mathrm{H}-\mathrm{FFFFH}$) in case it may be used in future.

Timing Diagram

(1) AC Test Input Waveform (Except CLK)

(2) AC Output Test Points

(3) Clock Timing

(4) Wait (Ready) Timing

* Read signal must be held at LOW or HIGH during this period.
(5) $\overline{\text { POLL, NMI, INT Input Timing }}$

(6) $\overline{\text { BUSLOCK }}$ Output Timing

(7) Read Timing (Small Scale)

(8) Write Timing (Small Scale)

(9) Read Timing (Large Scale)

(10) Write Timing (Large Scale)

(11) Interrupt Acknowledge Timing

(12) Hold Request/Acknowledge Timing (Small Scale)

(13) Bus Request/Acknowledge Timing (Large Scale)

Table 1 Operand Types

Identifier	Description
reg	8 -or 16-bit general-purpose register
reg8	8 -bit general-pourpose register
reg16	16-bit general-purpose register
dmem	8 -or 16 -bit direct memory location
mem	8 -or 16-bit memory location
mem8	8 -bit memory location
mem16	16-bit memory locotion
mem32	32-bit memory location
imm	Constant (0 to FFFFH)
imm16	Constant (0 to FFFFH)
imm8	Constant (0 to FFH)
imm4	Constant (0 to FH)
imm3	Constant (0 to 7)
acc	AW or AL register
sreg	Segment register
src-table	Name of 256-byte translation table
src-block	Name of block addressed by the IX register
dst-block	Name of block addressed by the IY register
near-proc	Procedure within the current program segment
far-proc	Procedure located in another program segment
near-label	Label in the current program segment
short-label	Label between -128 and +127 bytes from the end of instruction
far-label	Label in another program segment
memptr 16	Word containing the offset of the memory location within the current program segment to which control is to be transferred
memptr32	Double word containing the offset and segment base address of the memory location to which control is to be transferred
regptr 16	16-bit register containing the offset of the memory location within the program segment to which control is to be transferred
pop-value	Number of bytes of the stack to be discarded (0 to 64 K bytes, usually even addresses)
fp-op	Immediate data to identify the instruction code of the external floating point operation
R	Register set

Table 2 Operation Code Types

Identifier	Description
W	Word/byte field (0 to 1$)$
reg	Register field $(000$ to 111$)$
mem	Memory field (000 to 111)
mod	Mode field (00 to 10)
S: W	When S: $\mathrm{W}=01$ or 11, data $=16$ bits. At all other times, data $=8$ bits.
X, XXX,	Data to identify the instruction code of the external floating point arithmetic chip
YYY, ZZZ	

Table 3 Operational Description Types

Identifier	Description
AW	Accumulator (16 bits)
AH	Accumulator (high byte)
AL	Accumulator (low byte)
BW	BW register (16 bits)
CW	CW register (16 bits)
CL	CW register (low byte)
DW	DW register (16 bits)
SP	Stack pointer (16 bits)
PC	Program counter (16 bits)
PSW	Program status word (16 bits)
IX	Index register (source 16 bits)
IY	Index register (destination 16 bits)
PS	Program segment register (16 bits)
SS	Stack segment register (16 bits)
DS_{0}	Data segment 0 register (16 bits)
DS_{1}	Data segment 1 register (16 bits)
AC	Auxiliary carry flag
CY	Carry flag
P	Parity flag
S	Sign flag
Z	Zero flag
DIR	Direction flag
IE	Interrupt enable flag
V	Overflow flag
BRK	Break flag
MD	Mode flag
(...)	Values in parentheses are memory contents
disp	Displacement (8 or 16 bits)
ext-disp8	16 -bit displacement (sign-extension byte +8 -bit displacement)
temp	Temporary register ($8 / 16 / 32$ bits) TA: Temporary register A (16 bits) TB: Temporary register B (16 bits) TC: Temporary register C (16 bits)

Operational Description Types (cont)

Identifier	Description
tmpcy	Temporary carry flag (1 bit)
seg	Immediate segment data (16 bits)
offset	Immediate offset data (16 bits)
\leftarrow	Transfer direction
+	Addition
-	Subtraction
\times	Multiplication
\div	Division
$\%$	Modulo
AND	Logical product
OR	Logical sum
XOR	Exclusive logical sum
XXH	Two-digit hexadecimal value
XXXXH	Four-digit hexadecimal value

Table 4 Operations

Identifier	Description
(blank)	No change
0	Cleared to 0
1	Set to 1
X	Set or cleared according to the result
U	Undefind
R	Value seved earlier is restored

Table 5 Memory Address

mem	mod		
	00	01	10
000	BW+IX	BW + IX + disp8	BW + IX + disp16
001	BW+IY	BW + IY + disp8	BW + IY + disp16
010	BP+IX	BP+IX + disp8	BP+IX + disp16
011	BP+IY	BP+IY+disp8	BP+IY+disp16
100	IX	IX + disp8	IX + disp16
101	IY	IY + disp8	IY + disp16
110	Direct address	BP+disp8	BP+disp16
111	BW	BW + disp8	BW + disp16

Table 7 Selection of Segment Registers

sreg	
00	DS_{1}
01	PS
10	SS
11	DS_{0}

The table on the following pages shows the instruction set.

At "No. of Clocks," for instructions referencing memory operands, the left side of the slash (/) is the number of clocks for byte operands and the right side is for word operands. For conditional control transfer instructions, the left side of the slash (/) is the number of clocks if a control transfer takes place. The right side is the number of clocks when no control transfer or branch occurs. Some instructions show a range of clock times, separated by a hyphen. The execution time of these instructions varies from the minimum value to the maximum, depending on the operands involved.
Note: Add four clocks these times for each word transfer made to an odd address.
"No. of Clocks" includes these times:

- Decoding
- Effective address generation
- Operand fetch
- Execution

It assumes that the instruction bytes have been prefetched.

Table 6 Selection of 8-and 16-Bit Registers (mod 11)

reg	$\mathrm{W}=0$	$\mathrm{~W}=1$
000	AL	AW
001	CL	CW
010	DL	DW
011	BL	BW
100	AH	SP
101	CH	BP
110	DH	IX
111	BH	IY

Table 8 Primitive Block Transfer Instructions
(n : number of transfers)

Mnemonic	Byte clocks $(\mathrm{W}=0)$	Word clock (W=1)		
		Odd, Odd address	Odd, Even address	Even, Even address
MOVBK		$11+12 \mathrm{n}$	$11+8 \mathrm{n}$	
	(11)	(19)	(15)	(11)
CMPBK	$7+14 \mathrm{n}$	$7+22 \mathrm{n}$	$7+18 \mathrm{n}$	$7+14 \mathrm{n}$
	(13)	(21)	(17)	(13)

Note: Values in parentheses apply to the case of single processing.

Table 9 Primitive I/O Instructions (n : number of transfers)

Mnemonic	Byte clocks $(\mathrm{W}=0)$	Word clock (W=1)	
		Odd address	Even address
CMPM	(7)	(11)	$7+10 \mathrm{n}$
	$7+9 \mathrm{n}$	$7+13 \mathrm{n}$	(7)
LDM	(7)	(11)	$7+9 \mathrm{n}$
	$7+4 \mathrm{n}$	$7+8 \mathrm{n}$	(7)
STM	(7)	(11)	$7+4 \mathrm{n}$
	$9+8 \mathrm{n}$	$9+16 \mathrm{n}$	(7)
INM	(10)	(18)	$9+8 \mathrm{n}$
	$9+8 \mathrm{n}$	$9+16$	(10)
OUTM	(10)	(18)	$9+8$
			(10)

[^14]

Mnemonic	Operand	Operation	Operation Code													No. of Clocks	No. of Bytes	Flags				
				76	6	5	4	3	2100	176	6	5	4	3	210			ACCY	V	P	S	Z
Addition/Subtraction Instructions (cont)																						
SUBC	reg, reg	reg $\leftarrow \mathrm{reg}-\mathrm{reg}-\mathrm{CY}$		0	0	0	1	1	0.1 W	1.1	1		reg		reg	2	2	x x	x	x	x	x
	mem, reg	(mem) $\leftarrow(\mathrm{mem})-\mathrm{reg}-\mathrm{CY}$		0	0	0	1	1	$00^{0} 0 \mathrm{~W}$	mod			reg		mem	16/24	2-4	$\mathrm{x} \quad \mathrm{x}$	x	x	x	x
	reg, mem	$\mathrm{reg} \leftarrow \mathrm{reg}-(\mathrm{mem})-\mathrm{CY}$		0	0	0	1	1	$0{ }_{0} 1$	mod			reg		mem	11/15	2-4	x X	X	x	X	
	reg, imm	$\begin{aligned} & \text { reg } \leftarrow \mathrm{reg}-(\mathrm{mem})-\mathrm{CY} \\ & \text { reg } \leftarrow \mathrm{reg}-\mathrm{imm}-\mathrm{CY} \end{aligned}$		10	0	0	0	0	0 S W	11	1	0	1	1	reg	4	3-4.	x x	x	x	x	x
	mem, imm	$(\mathrm{mem}) \leftarrow(\mathrm{mem})-\mathrm{imm}-\mathrm{CY}$		10	0	0	0	0	0 S	mod	d	0	1	1	mem	18/26	3-6	x X	X	X	x	x
	acc, imm	When $\mathrm{W}=0 \mathrm{AL} \leftarrow \mathrm{AL}-\mathrm{imm}-\mathrm{CY}$ When $\mathrm{W}=1 \mathrm{AW} \leftarrow \mathrm{AW}-\mathrm{imm}-\mathrm{CY}$	$\begin{array}{llllllll}0 & 0 & 0 & 1 & 1 & 1 & 0 & \mathrm{~W}\end{array}$													4	2-3	x X	X	x	x X	
BCD Operation Instructions																						
ADD4S		dst $B C D$ string \leftarrow dst $B C D$ string + sre BCD string		0	0	0	0	1	111	0	0	1	0	0	000	$7+19 n$	2	$\mathrm{u} \quad \mathrm{x}$	u	u	u	x
SUB4S		dst $B C D$ string \leftarrow dst $B C D$ string - src BCD string	$\begin{array}{llllllll}0 & 0 & 0 & 0 & 1 & 1 & 1 & 1\end{array}$							00						$7+19 n$	2	$\mathrm{u} \quad \mathrm{x}$	u	u	u	
CMP4S		dst BCD string-scr BCD string		$0 \quad 0$		0	$\begin{array}{lcccc} 0 & 1 & 1 & 1 & 1 \\ n: n u m b e r ~ o f ~ \end{array}$			$\begin{array}{llllllll}0 & 0 & 1 & 0 & 0 & 1 & 1 & 0\end{array}$ BCD digits divided by 2						$7+19 n$	2	$\mathrm{u} \quad \mathrm{x}$	u	u	u	x
ROL4	reg8		0 0 0 0 1 1 1 1 1 1 0 0 0 reg							$\begin{array}{llllllll} \hline 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \end{array}$						13	3					
	mem8		$\begin{array}{cccccccc} 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ \text { mod } & & 0 & 0 & & \text { mem } & & \end{array}$							$\begin{array}{llllllll} \hline 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \end{array}$						28	3-5					
ROR4	reg8		0 0 0 0 1 1 1 1 1 1 0 0 0 reg							$\begin{array}{lllllllll}0 & 0 & 1 & 0 & 1 & 0 & 1 & 0\end{array}$						17	3					
	mem8		0 0 0 0 1 1 1 mod 0 0 0 mem							$\begin{array}{llllllll}0 & 0 & 1 & 0 & 1 & 0 & 1 & 0\end{array}$						32	3-5					

Increment/Decrement Instructions

Mnemonic

\qquad Flag lags \qquad

Interrupt Instructions

BRK	3	$\begin{array}{\|l} \hline \text { TA } \leftarrow(00 \mathrm{DH}, 00 \mathrm{CH}), \text { TA } \leftarrow(00 \mathrm{FH}, 00 \mathrm{EH}) \\ \text { SP } \leftarrow \mathrm{SP}-2,(\mathrm{SP}+1, \mathrm{SP}) \leftarrow \mathrm{PSW}, \mathrm{IE} \leftarrow 0, \mathrm{BRK} \leftarrow 0 \\ \text { SP } \leftarrow \mathrm{SP}-2,(\mathrm{SP}+1, \mathrm{SP}) \leftarrow \mathrm{PS}, \mathrm{PS} \leftarrow \mathrm{TC} \\ \text { SP } \leftarrow \mathrm{SP}-2,(\mathrm{SP}+1, \mathrm{SP}) \leftarrow \mathrm{PC}, \mathrm{PC} \leftarrow \mathrm{TA} \\ \hline \end{array}$		11 0 0 1 1 0 0		38	1	
	$\begin{aligned} & \mathrm{imm} 8 \\ & (\neq 3) \end{aligned}$	$\begin{aligned} & \text { TA } \leftarrow(4 \mathrm{n}+1,4 \mathrm{n}), \mathrm{TC} \leftarrow 4 \mathrm{n}+3,4 \mathrm{n}+2) \mathrm{n}=\mathrm{Imm} 8 \\ & \mathrm{SP} \leftarrow \mathrm{SP}-2,(\mathrm{SP}+1, \mathrm{SP}) \leftarrow \mathrm{PSW}, \mathrm{IE} \leftarrow 0, \mathrm{BRK} \leftarrow 0 \\ & \mathrm{SP} \leftarrow \mathrm{SP}-2,(\mathrm{SP}+1, \mathrm{SP}) \leftarrow \mathrm{PS}, \mathrm{PS} \leftarrow \mathrm{TC} \\ & \mathrm{SP} \leftarrow \mathrm{SP}-2,(\mathrm{SP}+1, \mathrm{SP}) \leftarrow \mathrm{PC}, \mathrm{PC} \leftarrow \mathrm{TA} \\ & \hline \end{aligned}$		$1 \begin{array}{lllllll}1 & 0 & 0 & 1 & 1 & 0 & 1\end{array}$		38	2	
BRKV		$\begin{aligned} & \text { When } \mathrm{V}=1 \\ & \mathrm{TA} \leftarrow(011 \mathrm{H}, 010 \mathrm{H}), \mathrm{TC} \leftarrow(013 \mathrm{H}, 012 \mathrm{H}) \\ & \mathrm{SP} \leftarrow \mathrm{SP}-2,(\mathrm{SP}+1, \mathrm{SP}) \leftarrow \mathrm{PSW}, \mathrm{IE} \leftarrow 0, \mathrm{BRK} \leftarrow 0 \\ & \mathrm{SP} \leftarrow \mathrm{SP}-2,(\mathrm{SP}+1, \mathrm{SP}) \leftarrow \mathrm{PS}, \mathrm{PS} \leftarrow \mathrm{TC} \\ & \mathrm{SP} \leftarrow \mathrm{SP}-2,(\mathrm{SP}+1, \mathrm{SP}) \leftarrow \mathrm{PC}, \mathrm{PC} \leftarrow \mathrm{TA} \\ & \hline \end{aligned}$		$\begin{array}{lllllllll}1 & 0 & 0 & 1 & 1 & 1 & 0\end{array}$		40/3	1	
RETI		$\begin{aligned} & \mathrm{PC} \leftarrow(\mathrm{SP}+1, \mathrm{SP}), \mathrm{PS} \leftarrow(\mathrm{SP}+3, \mathrm{SP}+2), \\ & \mathrm{PSW} \leftarrow(\mathrm{SP}+5, \mathrm{SP}+4), \mathrm{SP} \leftarrow \mathrm{SP}+6 \end{aligned}$		$\begin{array}{llllllll}1 & 0 & 0 & 1 & 1 & 1 & 1\end{array}$		27	1	$\begin{array}{lllllll}\mathrm{R} & \mathrm{R} & \mathrm{R} & \mathrm{R} & \mathrm{R} & \mathrm{R}\end{array}$
CHKIND	reg16, mem32	$\begin{aligned} & \text { When }(\text { mem } 32)>\text { reg16 or }(\text { mem } 32+2)< \\ & \text { reg16 } \\ & \text { TA } \leftarrow(4 \mathrm{n}+1,4 \mathrm{n}), \mathrm{TC} \leftarrow(4 \mathrm{n}+3,4 \mathrm{n}+2) \mathrm{n}= \\ & \text { imm8 } \\ & \text { SP } \leftarrow \mathrm{SP}-2,(\mathrm{SP}+1, \mathrm{SP}) \leftarrow \mathrm{PSW}, \mathrm{MD} \leftarrow 0 \\ & \text { MD Bit Write Enable } \\ & \mathrm{SP} \leftarrow \mathrm{SP}-2 \text {, (SP+1, SP }) \leftarrow \mathrm{PS}, \mathrm{PS} \leftarrow \mathrm{TC} \\ & \mathrm{SP} \leftarrow \mathrm{SP}-2,(\mathrm{SP}+1, \mathrm{SP}) \leftarrow \mathrm{PC}, \mathrm{PC} \leftarrow \mathrm{TA} \\ & \hline \end{aligned}$) $1 \begin{array}{lllllll} & 1 & 0 & 0 & 0 & 1 & 0\end{array}$	mod reg mem	$\begin{aligned} & \hline 53-56 / \\ & 18 \end{aligned}$	2-4	
BRKEM	imm8	$\begin{aligned} & \text { TA } \leftarrow(015 \mathrm{H}, 014 \mathrm{H}), \mathrm{TC} \leftarrow(017 \mathrm{H}, 016 \mathrm{H}) \\ & \mathrm{SP} \leftarrow \mathrm{SP}-2,(\mathrm{SP}+1, \mathrm{SP}) \leftarrow \mathrm{PSW}, \mathrm{IE} \leftarrow 0, \mathrm{BRK} \leftarrow 0 \\ & \mathrm{SP} \leftarrow \mathrm{SP}-2,(\mathrm{SP}+1, \mathrm{SP}) \leftarrow \mathrm{PS}, \mathrm{PS} \leftarrow \mathrm{TC} \\ & \mathrm{SP} \leftarrow \mathrm{SP}-2,(\mathrm{SP}+1, \mathrm{SP}) \leftarrow \mathrm{PC}, \mathrm{PC} \leftarrow \mathrm{TA} \end{aligned}$		0	$\begin{array}{llllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$	38	3	

Data Conversion Instructions

CVTBD	$\mathrm{AH} \leftarrow \mathrm{AL}=0 \mathrm{AH}, \mathrm{AL} \leftarrow \mathrm{AL} \% 0 \mathrm{AH}$	1	1	0	1	0	1	$0 \quad 0$	0	0	0	0	0	1	0	1	0	15	2	u	u	u	X	X	x
CVTDB	$\mathrm{AH} \leftarrow 0, \mathrm{AL} \leftarrow \mathrm{AH} \times 0 \mathrm{AH}+\mathrm{AL}$	1	1	0	1	0	1	0	0					1	0	1	0	7	2	U	u	u	X	X	x
CVTBW	When $\mathrm{AL}<80 \mathrm{H}, \mathrm{AH} \leftarrow 0$, all other times $\mathrm{AH} \leftarrow \mathrm{FFH}$		0	0	1	1	0	0										2	1						
CVTWL	When AL<8000H, DW $\leftarrow 0$, all other times DW \leftarrow FFFFH			0	1	1	0	01										4-5	1						

Comparaision Instructions

CMP	reg, reg	reg-reg	0		0	1	1	1	0	1	W	11	reg		reg	2	2	X	x	x	X	X	x
	mem, reg	(mem)-reg	0		0	1	1	1	0	0	W	mod	reg		mem	11/15	2-4	X	X	X	X	X	x
	reg, mem	reg-(mem)	0		0	1	1	1	0	1	W	mod	reg		mem	11/15	2-4	X	x	X	X	X	X
	reg, imm	reg-imm			0	0	0	0	0	S	W	11	11	1	reg	4	3-4	X	x	x	X	x	x
	mem, imm	(mem) -imm	1		0	0	0	0	0	S	W	mod	11	1	mem	13/17	3-6	X	X	X	X	X	x
	acc, imm	When $\mathrm{W}=0, \mathrm{AL}-\mathrm{imm}$ When $\mathrm{W}=1$, AW -imm			0	1	1	1	1	0						4	2-3	X	X	X	x	X	X

Complement Instructions

Mnemonic	Operand	Operation	Operation Code		No．of Clocks	No．of Bytes	Flags			
			$\begin{array}{llllllll}7 & 6 & 5 & 4 & 3 & 2 & 1 & 0\end{array}$	$\begin{array}{llllllll}7 & 6 & 5 & 4 & 3 & 2 & 1 & 0\end{array}$			ACCY	V	P	S Z
Bit Operation Instructions（cont）										
TEST1	mem8，imm3	$\begin{aligned} & \text { (mem8) bit no. imm } 3=0: Z \leftarrow 1 \\ & \text { (mem8) bit no. imm } 3=1: Z \leftarrow 0 \end{aligned}$	$\begin{array}{llllllll}0 & 0 & 0 & 1 & 1 & 0 & 0 & 0\end{array}$	mod $0000000 m$	9	4－6	u 0	0	u	$\mathrm{u} \quad \mathrm{x}$
	reg16，imm4	$\begin{aligned} & \text { reg16 bit no. imm } 4=0: Z \leftarrow 1 \\ & \text { reg16 bit no. imm } 4=1: Z \leftarrow 0 \end{aligned}$	0	$\begin{array}{llllll}1 & 1 & 0 & 0 & 0 & \text { reg }\end{array}$	4	4	u 0	0	u	u x
	mem16，imm4	$\begin{aligned} & \text { (mem16) bit no. imm } 4=0: Z \leftarrow 1 \\ & \text { (mem16) bit no. imm } 4=1: Z \leftarrow 0 \end{aligned}$		\bmod 0 0 0 mem	9／13	4－6	u 0	0	u	u x
NOT1	reg8，CL	reg8 bit no． $\mathrm{CL} \leftarrow \overline{\text { reg8 bit no．CL }}$	2nd byte 0 0 0 1 0 1 1 0 0 0 0 1 0 1 1 0		4	3				
	mem8，CL	（mem8）bit no．CL \leftarrow（mem8）bit no．CL	$00_{0} 00$	$\bmod 0$	13	3－5				
	reg16，CL	reg16 bit no．CL \leftarrow reg16 bit no．CL	$0 \begin{array}{llllllll} & 0 & 0 & 1 & 0 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 0 & 0 & 0 & \text { reg }\end{array}$	4	3				
	mem16，CL	（mem16）bit no．LC \leftarrow（mem16）bit no．CL	$\begin{array}{llllllll}0 & 0 & 0 & 1 & 0 & 1 & 1 & 1\end{array}$	$\bmod 000000 m$	13／21	3－5				
	reg8，imm3	reg8 bit no．imm3ヶreg8 bit no．imm3	$0 \begin{array}{llllllll} & 0 & 0 & 1 & 1 & 1 & 1 & 0\end{array}$	$\begin{array}{lllllll}1 & 1 & 0 & 0 & 0 & \text { reg }\end{array}$	5	4				
	mem8，imm3	（mem8）bit no．imm3ヶ（mem8）bit no．imm3	$\begin{array}{lllllllll}0 & 0 & 0 & 1 & 1 & 1 & 1 & 0\end{array}$	$\bmod 000000 m$	14	4－6				
	reg16，imm4	reg16 bit no．imm $4 \leftarrow($ reg 16）bit no．imm4	$\begin{array}{llllllll}0 & 0 & 0 & 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 0 & 0 & 0 & \text { reg }\end{array}$	5	4				
	mem16，imm4	（mem16）bit no．imm4ヶ－（mem16）bit no．imm4			14／22	4－6				
	CY	CYヶ¢ $\overline{\mathrm{CY}}$	$\begin{array}{llllllllll}1 & 1 & 1 & 1 & 0 & 1 & 0 & 1\end{array}$		2	1	x			
CLR1	reg8，CL	reg8 bit no． $\mathrm{CL} \leftarrow 0$	$\|$2nd byte $\left\|\begin{array}{\|ccccccccc}\star \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0\end{array}\right\|$	3rd byte 1 1 0 0 0 reg	5	3				
	mem8，CL	（mem8）bit no．CL $\leftarrow 0$	0	$\bmod 000000 m$	14	3－5				
	reg16，CL	reg16 bit no．CL $\leftarrow 0$	$0 \begin{array}{llllllll}0 & 0 & 0 & 1 & 0 & 0 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 0 & 0 & 0 & \text { reg }\end{array}$	5	3				
	mem 16，CL	（mem16）bit no．CL $\leftarrow 0$	$\begin{array}{lllllllll}0 & 0 & 0 & 1 & 0 & 0 & 1 & 1\end{array}$	$\bmod 000000 \mathrm{mem}$	14／22	3－5				
	reg8，imm 3	reg8 bit no．imm3 $\leftarrow 0$	$0 \begin{array}{llllllll}0 & 0 & 0 & 1 & 1 & 0 & 1 & 0\end{array}$	$\begin{array}{lllllll}1 & 1 & 0 & 0 & 0 & \text { reg }\end{array}$	6	4	－			
	mem8，imm3	（mem8）bit no．imm3ヶ0	$0 \begin{array}{llllllll}0 & 0 & 0 & 1 & 1 & 0 & 1 & 0\end{array}$	$\bmod 0000000 m$	15	4－6				
	reg16，imm4	reg 16 bit no．imm $4 \leftarrow 0$	0 0 0 0 1 1 0 1 1	$\begin{array}{llllll}1 & 1 & 0 & 0 & 0 & \text { reg }\end{array}$	6	4				
	mem16，imm4	（mem16）bit no．imm $4 \leftarrow 0$			15／23	4－6				
	CY	CY $\leftarrow 0$	1 1 1 1 1 0 0 0		2	1	0			
	DIR	DIR $\leftarrow 0$	$\begin{array}{lllllllll}1 & 1 & 1 & 1 & 1 & 1\end{array}$		2	1				

SHARP

SHARP CORPORATION Japan

IC SALES DEPARTMENT
INTERNATIONAL SALES \& MARKETING GROUP
-IC/ELECTRONIC COMPONENTS
2613-1 ICHINOMOTO-CHO TENRI-CITY NARA 632, JAPAN
PHONE: (07436) 5 -1321
TELEX: LABOMETA-B J63428
FACSIMILE: (07436) 5-1532
NORTH AMERICA: SHARP ELECTRONICS CORPORATION
Microelectronics Division
Sharp Plaza, Mahwah, New Jersey 07430-2135, U.S.A
PHONE: (201) 529-8757
TELEX: 134327 (SHARPAM MAWA)/426903 (SHARPAM MAWA)
FACSIMILE: (201) 529-8759
EUROPE: SHARP ELECTRONICS (EUROPE) GmbH
Microelectronics Division
SonninstraBe 3, 2000 Hamburg 1, F.R. Germany
PHONE: (40) 23-775-216
TELEX: 2161867 (HEEG D)
FACSIMILE: (40) 23-775-232
HONG KONG: SHARP-ROXY (HONG KONG) LTD.
1701-1710, Admiralty Centre, Tower 1,
Harcourt Road, Hong Kong
PHONE: (5) 8229379
TELEX: 61950 (SRHL HX)
FACSIMILE: (5) 8660779
SINGAPORE: SHARP-ROXY SALES (SINGAPORE) PTE. LTD.
100G Pasir Panjang Road, Singapore 0511
PHONE: 4731911
TELEX: 55504 (SRSSIN RS)
FACSIMILE: 4794105
KOREA: SHARP ELECTRONICS INDUSTRIAL CORPORATION
4F. Dae San Bldg. 14-27 Yeoyido-dong,
Young Deung Po-ku, Seoul, Korea
PHONE: 782-8637 ~40
TELEX: SHARPEI K26754
FACSIMILE: (02) 782-5070

MICROCOMPUTERS DATA BOOK

SHARP

NORTH AMERICA: SHARP ELECTRONICS CORPORATION

Microelectronics Group
5700 Northwest, Pacific Rim Boulevard - Suite 20 Camas, Washington 98607, U.S.A
PHONE: (206) 834-2500
TELEX: 49608472 SHARPCAM
FAX: (206) 834-8903
EUROPE: SHARP ELECTRONICS (EUROPE) GmbH
Microelectronics Division
Sonninstraße 3, 2000 Hamburg 1, F.A. Germany PHONE: (040) 23775-286 PHONE: (040) $23775-286$ FAX: (40) 231480
HONG KONG: SHARP-ROXY (HONG KONG) LTD.
3rd Business Division,
Room 1701-1710, Admiralty Centre, Tower 1,
Harcourt Road, Hong Kong
PHONE: $8229311 / 822934$
TELEX: 74258 SRHL HX
FAX: 5297561/8660779
SINGAPORE: SHARP-ROXY SALES (SINGAPORE) PTE. LTD.
100G Pasir Panjang Road, Singapore 0511
PHONE: 4731911
TELEX: 55504 (SRSSIN RS)
FAX: 4794105
KOREA: SHARP ELECTRONICS INDUSTRIAL CORPORATION
4th Floor Daesan Bldg., 14-27, Yeo Yido-dong
Youngdungpo-gu, Seoul 150-010, Korea
PHONE: (782) 8637-40
TELEX: SHARPEI K26754
FAX: (782) 5070

[^0]: *1 There is a slight difference in the I/O characteristics between the LH8DH321 and the SM800 series.
 *2 Built-in PWM generator circuits
 *3 Built-in A/D, SIO

[^1]: Note: When the I/O pins Z, Q, R are used for the outputs, the buffer with a pull down resistor can be replaced by the CMOS buffer with a mask option.

 The output buffer with a pull-down resistor can also be structured by an open-drain transistor.
 However, the $R 0_{3}-R 0_{0}, R 1_{3}-R 1_{0}$ and $R 2_{0}$ can not be replaced by the COMS buffer.

[^2]: ${ }^{*} \mathrm{R}(0)-\mathrm{R}(3): \mathrm{R} 0_{0}-\mathrm{R} 0_{3}, \mathrm{R} 1_{0}-\mathrm{R} 1_{3}, \mathrm{R} 2_{0}-\mathrm{R} 2_{3}, \mathrm{R} 3_{0}-\mathrm{R} 3_{3}$.

[^3]: *The common outputs cannot be used when applied to an LCD with a $1 / 3$ duty, $1 / 3$ bias scheme.

[^4]: Note 1: Applied to pins $\mathrm{K}_{1}, \mathrm{~K}_{2}, \mathrm{~K}_{3}, \mathrm{~K}_{4}, \alpha, \beta$
 Note 2: Applied to pin ACL
 Note 3: Applied to pins $\mathrm{O}_{48}-\mathrm{O}_{11}, \mathrm{O}_{\mathrm{S} 1}, \mathrm{O}_{\mathrm{S} 2}$
 Note 4: Applied to pins $\mathrm{DIO}_{1}-\mathrm{DIO}_{4}$
 Note 5: Applied to pins $\mathrm{R}_{2}, \mathrm{R}_{3}, \mathrm{R}_{4}$
 Note 6: Applied to pins $\mathrm{H}_{1}, \mathrm{H}_{2}$
 Note 7: Applied to pin R_{1}

[^5]: Note 1: System clock: 16.384 kHz
 Note 2: System clock: 8.192 kHz

[^6]: * LH0801/A $=2,048$

 LH0811/A $=4,096$

[^7]: Note 1: Applied to pins $\mathrm{P}_{0}-\mathrm{P} 0_{7}, \mathrm{P} 1_{0}-\mathrm{P} 1_{7}, \mathrm{P} 2_{0}-\mathrm{P} 2_{7}, \mathrm{P} 3_{0}-\mathrm{P} 3_{7}, \mathrm{P} 4_{0}-\mathrm{P} 4_{7}, \mathrm{P} 5_{0}-\mathrm{P} 5_{7}$, and $\overline{\text { RESET. }}$
 Note 2: Applied to pins $\mathrm{TEST}_{1}, \mathrm{TEST}_{2}$, and CK_{1}.
 Note 3: Applied to pins $\mathrm{P}_{0}-\mathrm{P} 0_{7}, \mathrm{P} 1_{0}-\mathrm{P} 1_{7}, \mathrm{P} 2_{0}-\mathrm{P} 2_{7}, \mathrm{P} 3_{0}-\mathrm{P} 3_{7}$, and $\mathrm{P} 4_{0}-\mathrm{P} 4_{7}$ that have a pull-down resistor.
 Note 4: Applied to pin SCK that has a pull up resistor.
 Note 5: Applied to pins $\mathrm{P}_{0}-\mathrm{P}_{7}$, RESET, TEST ${ }_{1}, \mathrm{TEST}_{2}$, and P0-P4 that have no pull down resistor (when in input mode).
 Note 6: Applied to pins $\mathrm{P} 0_{0}-\mathrm{P} 0_{7}, \mathrm{P} 1_{0}-\mathrm{P} 1_{7}, \mathrm{P} 2_{0}-\mathrm{P} 2_{7}, \mathrm{P} 4_{0}-\mathrm{P} 4_{7}$, and CK_{2}.
 Note 7: Applied to pins $\mathrm{P} 3_{0}-\mathrm{P} 3_{7}$.
 Note 8: Applied to pins $\mathrm{PWM}_{0}-\mathrm{PWM}_{5}$.

[^8]: \uparrow Rising edge, \downarrow Falling edge.

[^9]: * The 6 MHz type is packaged in 28-pin DIP only.

[^10]: * The GND pins must be connected to the GND level.

[^11]: \uparrow Rising edge, \downarrow Falling edge

[^12]: $0=$ unchanged
 $0=$ reset
 $1=$ set
 $x=$ undefined
 $\ddagger=$ set or reset according to the result of the operation

[^13]: * V30 is a trademark of NEC corporation.

[^14]: Note: Values in parentheses apply to the case of single proccesing.

