

Return Instruction Register indicated by the Stack Pointer and the Stack

Pointer is automatically decremented by 1. This allows nesting of

subroutines up to 8 levels.

INTERRUPTS

An interrupt is similar to a subroutine call except that it is not

initiated by a Branch to Subroutine instruction. It is instead, initiated

by a logic signal applied to one of the pins of the 2650 microprocessor.

At any time and during the execution of any instruction this pin which

is called "INTREQ" for "Interrupt Request," may make a transition from a

logic 1 to a �l�o�g�i�c�~�.� The effect of this is similar to the effect of

inserting a Branch to Subroutine instruction following the instruction

during which the transition from a logic 1 to a logic �~� occurs.

In your Instructor 50, the subroutine is expected to start at location 7

in memory. Since this subroutine occurs in response to an interrupt request,

it is called an interrupt service routine. On your Instructor 50 the

interrupt signal may be activated by pushing the button labeled INT on

the Instructor 50 function keyboard. This is true so long as the

INTERRUPT SELECTOR switch on the bottom of your Instructor 50 is in the

KEYBOARD position. If the INTERRUPT SELECTOR switch is in the AC LINE

position an interrupt signal will be generated for each cycle of the

power line applied to your Instructor 50. In other words, in the

United States an interrupt request will be generated 60 times each

second, and in Europe 50 times each second, if the Interrupt Selector

switch is in the AC LINE position.

Response to an Interrupt Request will only occur if the Interrupt Inhibit

bit in the Program Status Word is �a�~�.� If this bit contains a 1 and an

Interrupt Request occurs, it will not be serviced until the Interrupt

Inhibit bit is changed to a �~�,� as by execution of a CPSU instruction.

To illustrate the use of interrupts in your Instructor 50 let's write a

simple program to change the state of the LED's of the parallel I/O port

5-22

whenever the Interrupt button is depressed. Our flow chart might look

like the one shown in Figure 5.13.

Figure 5.13 PROGRAM USING INTERRUPT

First, we will initialize the Program Status Word to make sure that the

Interrupt Inhibit bit is set to a~. Then we will place the value FF in

Register f6, and output the contents of Register f6 to the "Non-Extended

Data" port, thus turning on all the LED's. We will continue looping on

the last block of this flow chart waiting for an interrupt to occur.

When the interrupt occurs, the Interrupt Service Routine will complement

the value in Register f6 and return to the main program. Thus, when the

Interrupt button is pressed the first time all of the LED's will go off.

When it is pressed the second time they will go on. Figure 5.14 shows

this program converted into actual machine code on a coding form.

The instructions in locations f6 and 2 initialize the Program Status

Word. The instruction at location 4 branches beyond the Interrupt

Service Routine which must begin at location 7. The main program begins

at location A which we have labeled "Resume." It initializes Register

f6 to contain an FF and then outputs the contents of Register ~ to the

"Non-Extended Data" port. Finally, the program branches back to the

output instruction, whose location we have labeled "OUTPUT." The WRTD

and BeTA instructions will be executed in a loop until an interrupt

occurs. At that time the Exclusive-Or Immediate instruction, (EORI)

will complement all of the bits in Register f6. The Return and Enable

5-23

ROUTINE I [STAR~~~oo- .. -] I PART OF ~-OGR~-- II 2650 PROGRAMMING FORM

DESCRIPTION IIL-S_H_E_E_T ____ ~

>:rJ

DATA SYMBOLIC INSTRUCTION
LINE ADDRS

BO B1 B2
LABEL OPCODE OPERANDS

COMMENT

1-"
<Q

1 0000 74 FF CPSU FF INITIALIZE PSW
s::
Ii
Cl>

2 0002 75 FF CPSL FF
3 0004 IF 00 OA BCTA,UN RESUME BRANCH AROUND SERVICE ROUTINE

(JI 4 0007 24 FF INTSRV EORI, RO FF INTERRUPT SERVICE .
I-'

"'"
5 0009 37 RETE UN ROUTINE

6 OOOA 04 FF RESUME LOOl, RO FF i'INITIALIZE RO TO FF

8
@

7 OOOC FO OUTPUT WRTD OUTPUT CONTENTS OF RO

8 OOOD IF 00 OC BCTA,UN OUTPUT AND WAIT FOR INTERRUPT

9
>:rJ
0 (JI :;0

I

10

11
N '1j

"'" el
G1

12

13

~ 14

15
c::
Ul

16
H
Z 17
G1 18
H
Z

19

~ 20
:;0

e1
~

21

22

23

24

DIRECT RELATIVE ADDRS: SECOND .. 00 01 02 03 04 05 06 07 08 09 OA OB DC 00 OE OF " " " " " " " " " " ,. " " ,. " "-BYTE N 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
- 7F 7E 70 7C 7B 7A 79 78 77 76 75 74 73 72 71 70 6F 6E 60 6C 6B 6A 69 6B 67 66 65 64 63 62 61

ADD H'80' TO DISPLACEMENT FOR + 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 20 2E 2F 30 31 32 33 34 35 36 37 38 39 3A 38 3C 3D 3E 3F
INOIRECT ADDRESS OEFINITION N 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

- 60 5F 5E 50 5C 58 5A 59 58 57 56 55 54 53 52 51 50 4F 4E 40 4C 48 4A 49 48 47 46 45 44 43 42 41 40

instruction is the same instruction used to return from subroutines. It

will allow the main program to continue with the Inhibit Interrupt bit

in the Program Status Word set to a ~.

You are encouraged to load this code into your Instructor 50's memory

and try it out. Make sure tpa,t the "Direct-Indirect Interrupt" switch

is placed in the "Direct" position for this program to work. Also, be

sure that the INTERRUPT SELECTOR switch on the bottom of your Instructor

50 is placed in the KEYBOARD position, and that the 3-position switch

below the eight LED's on the left hand side of your Instructor 50 opera­

tor's panel is placed in the downward position, labeled "Non-Extended

Data" port. This allows the LED's to be activated by the WRTD instruction.

Each time you press the Interrupt button, the eight-LED's should assume

the condition opposite to what they have previously been. While the

program is running place the switch on the botton of your Instructor 50

into the AC LINE position. You should see the LEOs flickering rapidly,

turning on and off as each cycle of the power line generates an Interrupt

Request signal. The DESKCLOCK program on your Instructor 50 Introductory

Cassette makes use of the AC LINE Interrupt to keep track of time. Each

60 interrupts (50 in Europe) mark the passage of one second of time.

If we wish to modify this program to use Indirect Interrupting, this may

be done as shown in Figure 5.15. This is similar to the coding for

Figure 5.14, except that in location 7 we have placed not the first

instruction of our Interrupt Service Routine but the address of the

first instruction of our Interrupt Service Routine. We have selected

~l~~ as this address. Then at location l~~ in memory we have placed the

code for the actual Interrupt Service Routine. For this version of the

program to execute properly on your Instructor 50 the INTERRUPT switch

just to the lower left hand side of the function keyboard must be in the

INDIRECT position. Try this modification and verify that it works as

well.

5-25

I'Zj ...,-
'§
I;
(1)

U1 .
I-'
U1

8
~
I'Zj
0
!XI
ttf

U1 ~ , (j)

'" ~ m

c:::
Ul
H

~

!zl
0
H

~
(')
8
H
~

~

~
ttf
8

ROUTINE I §T-~~~-R 1 [PART OF PROGRAM . ul ~PROGRAMMING FORM

DESCRIPTION 1 1 S_H_E_E_T ____ ...I

DATA SYMBOLIC INSTRUCTION
LINE ADDRS BO B1 B2 LABEL OPCODE OPERANDS COMMENT

1
2
3
4

5
6
7
8
9

10
11 0000 74 FF CPS U FF INITIALIZE PSW
12 0002 75 FF CPS L FF t-';.:.....:;..~=~;..;;:...;.'-------------1

13 0004 IF 00 OA BCTA, UN RESUME BRANCH AROUND SERVICE ROUTINE
14 0007 0 I 00 INTSRV EORI , RO FF {ADDRESS OF INTERRUPT

15 ROUTINE

16 OOOA 04 FF RESUME LODI, RO FF r- INITIALIZE RO TO FF
r-~=~~~~~~~----------------~

17 oooe FO OUTPUT WRTD OUTPUT CONTENTS OF RO
18 OOOD IF 00 OC BCTA, UN OUTPUT AND WAIT FOR INTERRUPT

19
20 0100 24 FF INTSRV EORI, RO FF I--=IN-'-CT;..::E=R.;;.;:R-"'U:..;;P'-"T'-'S=E=R.:...V'-"I:..:.C.;::.E __________ -I
21 0102 37 RETE, UN ROUTINE

22
23
24

~--------------------------------~

DIRECT RELATIVE ADDRS: SECOND'" 00 01 02 03 04 05 06 07 08 09 OA 08 OC 00 OE OF 10 11 12 13 14 15 16 17 18 19 1A 18 1C 10 1E 1F ,:,:,::::>
8YTE N 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 :,:,:,:,:>

- ,::::::: 7F 7E 70 7C 78 7A 79 78 77 76 75 74 73 72 71 70 6F 6E 60 6C 68 6A 69 68 67 68 65 64 63 62 61 }:::::::
ADD H'80' TO DISPLACEMENT FOR ... 20 21 22 23 24 25 26 27 28 29 2A 28 2C 20 2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F :::::::::::
INDIRECT ADDRESS DEFINITION N 32 33 34 35 36 37 3B 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64··

- 60 5F 5E 50 5C 58 5A 59 58 57 56 55 54 53 52 51 50 4F 4E 40 4C 48 4A 49 48 47 46 45 44 43 42 41 40

Note:

CHAPTER VI

Since its inception, Chapter Six of this introductory

manual has been expanded considerably in scope. As

a convenience to our customers, it is now being

printed as a separate manual entitled, "The Instructor

50 111 Computer Applications Manual."

GLOSSARY

ACCUMULATOR

A register of the Arithmetic Logic Unit (ALU) of a central processor

used as intermediate storage during the formation of algebraic sums, or

for other intermediate logical and arithmetic operations.

Register and related circuitry that holds one operand for arithmetic and

logical operations.

ADDRESS

A unique label, name, or number that identifies a memory location or a

device register for access by a computer.

A number used by the CPU to specify a location in memory.

ADDRESSING MODE

The method of specifying the memory location of an operand. Common

addressing modes are: REGISTER, IMMEDIATE, ABSOLUTE, RELATIVE, INDIRECT,

AND INDEXED. These modes are important factors in program efficiency.

ALGORITHM

A prescribed set of well-defined rules or processes for the solution of

a problem. Algorithms are implemented on a computer by a programmed

sequence of instructions.

ASSEMBLER PROGRAM

A computer program which converts a symbolic assembly language program

into an executable object (binary-coded) program.

ASSEMBLY LANGUAGE

A huma~ oriented symbolic-mnemonic source language which is used by the

programmer to encode programs and associated data bases. Assembly

language programs are read by the assembler and converted to executable

machine language programs during the assembly processes. Assembly

language is easier to remember and manipulate than machine language.

i

BIT

Aminimurn logic element. A binary number of either ~ or 1. A bit is

the smallest unit of information in a binary system of notation. It is

the choice between two possible states, usually designated one (1) and

zero (~).

BYTE

A set of contiguous binary bits, usually eight, which are operated on as

a unit. A byte can also be a subset of a computer word.

BUSS

An electrical conductor or group of electrical conductors which provide

a communication path between two or more devices, such as between a

central processor, memory, and peripherals.

CALLING

See "SUBROUTINE CALL."

CLEARING

Setting to binary zero, as with a register or an individual bit.

CONDITIONAL BRANCH INSTRUCTION (Also Conditional Jump)

An instruction causing a program transfer to an instruction location

other than the next sequential instruction only if a specific condition

tested by the instruction is satisfied. If the condition is not satis­

fied, the next sequential instruction in the program line is executed.

CONDITIONAL LOOP

A loop which mayor may not be executed depending on a condition tested

by a Conditional Branch Instruction.

CONTENTS

The binary value stored in a flip/flop, register, or memory location.

ii

1-

CPU

Central Processing Unit. Usually contains the Timing and Control section

and the Arithmetic and Logic section of a computer.

DECISION BLOCK.

A diamond shaped element in a flow chart which initiates one of two

possible actions based on the results of a decision. When translated to

assembly language, it will include a Conditional Branch Instruction.

EXECUTE

To perform a specified computer instruction. To run a program.

FETCH

1) The action of obtaining an instruction from a stored program and

decoding that instruction. Also refers to that portion of a computer's

instruction cycle when that action is performed.

2) A process of addressing the memory and reading into the CPU the

information word, or byte, stored at the addressed location. Most

often, fetch refers to the reading out of an instruction from the

membry.

FIRMWARE

A computer program stored in Read-Only-Memory (ROM).

FLIP/FLOP

A circuit whose output may be set to either a 1 or a ~ by manipulating

its inputs in a specific sequence. The output is then retained until

this specific manipulation is performed again. A flip/flop is used to

store one bit of information.

FLOWCHART

A graphical representation of the processing steps performed by a computer

program or of the sequence of logic operations implemented in hardware.

iii

HARDWARE

The physical material comprising a computer or other electronic system.

HEXADECIMAL

The base 16 number system using ~, 1, • • • , A, B, C, 0, E, F to represent

all the possible values of a 4-bit digit. The decimal equivalent is ~

to 15. Two hexadecimal digits can be used to specify a byte.

INDEX REGISTER

A register that contains a quantity which may be used to modify the

memory address specified by an instruction.

INDEXED ADDRESSING

An addressing mode in which the address part of an instruction is modified

by the contents in an auxiliary (index) register during the execution of

that instruction.

INDEXING

The process of using an Index Register.

INDIRECT ADDRESSING

An addressing mode in which the address of the operand of an instruction

is specified by the contents of memory location(s). The address of the

memory location(s) is, in turn, specified by the instruction.

INPUT

Signals entering a computer, circuit, or system from the outside world.

INPUT/OUTPUT PORT

A device for connecting a computer to the outside world.

INSTRUCTION

A set of bits that defines a computer operation, and is a basic command

understood by the CPU. It may move data, do arithmetic and logic functions,

control I/O devices, or make decisions as to which instruction to execute

next.
iv

INTERRUPT

An interrupt involves the suspension of the normal programming routine

of a microprocessor in order to handle a sudden request for service •

. The importance of the interrupt capability of a microprocessor depends

on the kind of applications to which it will be exposed. When a number

of peripheral devices interface the microprocessor, one or several

simultaneous interrupts may occur on a frequent basis. Multiple inter­

rupt requests require the processor to be able to accomplish the fol­

lowing: to delay or prevent further interrupts; to break into an interrupt

in order to handle a more urgent interrupt; to establish a method of

handling interrupt priorities; and, after compl~tion of interrupt

service, to resume the interrupted program from the point where it was

interrupted.

INTERRUPT SERVICE ROUTINE

Similar to a Subroutine, except that it is initiated by a physical

signal, called an Interrupt Request, rather than a Branch to Subroutine

Instruction.

INTERRUPT REQUEST

A logic signal applied to the CPU which initiates an Interrupt Service

Routine.

JUMP

1) An instruction which, when executed, can cause the computer to fetch

the next instruction to be executed from a location other than the next

sequential location. Synonymous with branch.

2) A departure from the normal one-step incrementing of the program

counter. By forcing a new value (address) into the program counter, the

next instruction can be fetched from an arbitrary location (either

further ahead or back). For example, a program jump can be used to go

from the main program to a subroutine, from a subroutine back to the

main program, or from the end of a short routine back to the beginning

of the same routine to form a loop. See also BRANCH INSTRUCTION. If

you reached this point from branch, you have executed a jump. Now

return.

v

LABEL

A name used to represent a specific location in memory. Labels are

often used in writing assembly language programs because a) the specific

location may not be known while the program is being written but may be

easily identified later by its label and b) the use of labels makes

assembly language programs easier to read and understand.

LATCHES

Flip/flops.

LEAST SIGNIFICANT

Of lowest value. The right-most digits of a number.

LISTING

A printout of a computer program or data.

LOCATION

A specific storage position in memory, identified by its address.

LOGIC SIGNAL

An information signal which transmits one of two possible states or

meanings.

LOOP

A program segment which is executed repeatedly, usually until some

condition is satisfied.

LOOP COUNTER

A register which keeps track of the number of times a loop has been

executed.

LOWEST ORDER

Least significant.

vi

MACHINE LANGUAGE

The numeric form of specifying instructions ready for loading into

memory and execution by the machine. This is the lowest level language

in which to write programs. The value of every bit in every instruction

in the program must be specified (e.g., by giving a string of binary,

octal, or hexadecimal digits for the contents of each word in memory).

MEMORY

A general .term which refers to any storage media for binary data. Basic

memory functional types include read/write and read-only.

That part of a computer that holds data and instructions. Each instruc­

tion or datum is assigned a unique address that is used by the CPU when

fetching or storing the information.

MNEMONIC

Computer instructions written in brief, easy-to-learn, symbolic or

abbreviated form. Mnemonic code is also recognizable by the assembly

program. For example, ADD, SUB, CLR, and MOV are mnemonic codes for

instructions which will be executed as machine code.

MULTIPLEXOR

A device which allows several signals to share a single transmission

path. Typically, a multiplexor is similar to a switch which allows any

one of several inputs to be connected to its output.

NESTED SUBROUTINE

A subroutine which is called by another subroutine. The called sub­

routine is said to be nested within the calling subroutine.

OBJECT CODE/OBJECT PROGRAM

The binary form of a source program produced by an assembler or a

compiler. The object program is composed of machine-coded instructions

that the computer can execute.

vii

OPERAND

The data on which an instruction is to operate.

POINT TO

The act of specifying a particular memory location or register. For

instance, a register which contains the address of a memory location is

said to point to that location.

PORT

See "INPUT/OUTPUT PORT."

PROCESSING THE DATA

Manipulating or operating on data as directed by a computer program.

PROGRAM

A complete sequence of computer instructions necessary to solve a specific

problem, perform a specific action, or respond to external stimuli in a

prescribed manner. As a verb, it means to develop a program.

PROGRAM STATUS WORD (PSW)

A special-purpose register within the 2650 processor that contains

status and control bits. It is 16 bits wide and is divided into two

bytes called Program Status Upper (PSU) -and the Program Status Lower

(PSL) •

PSEUDO-OPERATION

Also called "pseudo instruction," "assembler directive," or "Pseudo-Op."

This appears to be an instruction written in assembly language. However,

instead of translating directly into a machine instruction, it provides

information for the assembler to use in the process of translating other

assembly language instructions into machine language.

RANDOM ACCESS MEMORY

1) Memory in which any random location may be easily accessed.

viii

2) Usually implies that any location may be written into, as well as

read from. (See Read-Only Memory)

READ-ONLY MEMORY

A memory whose data is permanently stored at the time of manufacture.

Data contained in it may be read, but new data may not be stored.

REGISTER

A storage location for a group of one or more bits; especially within a

cPU.

RETURN ADDRESS REGISTER

A register used to save the address of the instruction to be executed

following the execution of (and return from) a subroutine.

SOFTWARE

Computer programs.

SOURCE CODE/SOURCE PROGRAM

A program coded in other than machine language (in assembly or compiler

language) that must be translated into machine language for use. Assembly

and compiler language programs are human readable whereas object programs

are machine readable.

STACK POINTER

In the 2650 microprocessor, a 3-bit value stored in the Program Status

Word which points to the Return Address Register which is currently in

use on the Return Address Stack.

SUBROUTINE

1) A short program segment which performs a specific function and is

available for general use by other programs and routines.

2) A subprogram (group of instructions) reached from more than one

place in a main program. The process of passing control from the main

program to a subroutine is a subroutine call, and the mechanism is a

ix

subroutine linkage. Often data or data addresses are made available by

the main program to the subroutine. The process of returning control

from subroutine to main program is subroutine return. The linkage auto­

matically returns control to the original position in the main program

or to another subroutine.

3) Programming technique that allows the same instruction sequence or

subprogram to be given control and used repeatedly by other sections of

the program.

SUBROUTINE CALL

Transferring program control to a Subroutine while saving the location

of the instruction to be executed following the Subroutine in a Return

Address Register.

TIMING PULSE

A short transition of a logic signal to its opposite state and back

again which is used to trigger some event.

TWO'S COMPLEMENT

A system of binary notation which can represent both positive and negative

quantities. In two's complement notation, the most significant bit

represents the sign of the quantity (~ for positive, I for negative) and

the remaining bits represent its magnitude. To find the negative equivalent

of a two's complement number invert all of its bits and add I to the

result (complement and increment).

WORD

A set of binary bits handled by the computer as the primary unit of

information. The length of a computer word is determined by the hardware

design. Typically, each system memory location contains one word.

x

c:
:J
~'

"0 ,
c: ,

'"
o
....
"'.
~

COMMENT SHEET

TITLE:

REVISION:

This form is not intended to be used as an order blank. Signetics Corporation solicits your comments about this

manual with a view to improving its usefulness in later editions.

Applications for which you use this manual.

Do you find it adequate for your purpose?

What improvements to this manual do you recommend to better serve your purpose?

Note specific errors discovered (please include page number reference).

General comments;

FROM NAME: POSITION:
--~~~~~~--------------------------

COMPANY
NAME: __ __

ADDRESS:, __ _

FOLD ON DOTTED LINES AND STAPLE

STAPLE

FOLD

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

POSTAGE WILL BE PAID BY

!i!!)OotiC!i
a subsidiary of U.S. Philips Corporation

Signetics Corporation
P.O. Box 9052

811 East Arques Avenue
Sunnyvale, California 94086

Bin No. 038 MOS Microprocessor Division

FOLD

STAPLE

STAPLE

STAPLE

FOLD

FIRST CLASS
PERMIT NO. 166

SUNNYVALE, CALIF.

FOLD

,

I.

It
I
i

!ii!llllliC!i
a subsidiary of U.S. Philips Corporation

Signetics Corporation
P.O. Box 9052

811 East Arques Avenue
Sunnyvale, california 94086

Telephone 4081739-7700

It
I'~
I"
i'

h-
\'
I·
I
I

