BINAL -noc=G=INE

ANALOG PRODUCT catalog JANUARY 1988

Honeywell

SIGNAL PROCESSING TECHNOLOGIES

JANUARY 1988 ANALOG PRODUCT CATALOG

GENERAL DISCLAIMER

This data book presents technical data for a wide variety of integrated circuits and has been organized into sections by product type. Additional sections include product selection guides, ordering information, package specifications, quality flows and application notes.

There are three types of data sheets in this book:
ADVANCE INFORMATION - These data sheets contain the description of products that are in development. The specifications are based on engineering calculations, computer simulations and/or initial prototype evaluation.

PRELIMINARY - These data sheets contain minimum and maximum specifications that are based upon initial device characterization. These limits are subject to change upon the completion of full characterization over the specified temperature and supply voltage ranges.

FINAL - These data sheets contain specifications based on a complete characterization of the device over the specified temperature and supply voltage ranges.

Honeywell SPT reserves the right to make changes to its products or specifications at any time, without notice, to improve the design and/or performance in order to supply the best possible product. Honeywell SPT does not assume any responsibility for the use of any circuitry described in ths book other than the circuitry contained within a Honeywell SPT product. Honeywell SPT makes no representations that the circuitry described within this book is free from patent infringement or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent, patent rights, or other rights, of Honeywell SPT.

Honeywell Inc., Signal Processing Technologies, reserves the right to change products and specifications without notice. WARNING-LIFE SUPPORT APPLICATIONS POLICY-Honeywell SPT products shall not be used within any Life Support Systems without the specific written consent of Honeywell SPT. A Life Support System is a product or system intended to support or sustain life which, if it fails, can be reasonably expected to result in significant personal injury or death.
*Permission is hereby expressly granted to copy this literature for informational purposes only. Copying this material for any other use is strictly prohibited.

Honeywell

TABLE OF CONTENTS

SECTION 1 - Selection Guide 1-2
Product Cross Reference Guide $1-4$
SPT Product Identification Code $1-5$
Ordering Information $1-6$
SECTION 2 -Analog to Digital Converters
HADC574Z 2-3
HADC674Z 2-23
HADC77100 2-43
HADC77200 $2-63$
HADC77300 $2-83$
HADC77600 2-103
HADC78160 2-113
SECTION 3 -Digital to Analog Converters
HDAC10180A/B 3-3
HDAC10181A/B 3-15
HDAC34010 3-27
HDAC34020 $3-37$
HDAC50500 3-47
HDAC50600 $3-49$
HDAC50800 3-59
HDAC51400 3-69
HDAC51600 3-81
HDAC52160 3-101
HDAC7541Z 3-103
HDAC7542A 3-115
HDAC7543A 3-117
HDAC7545A 3-119
HDAC97000 3-131
HDAM51100 3-147
SECTION 4 -Comparators
HCMP96850 4-3
HCMP96870A 4-13
HCMP96900 4-23
SECTION 5 -Instrumentation Amplifiers
HINA522 5-3
HINA524 5-5
HINA624 5-7
SECTION 6 -Special Functions
HTHA27140 6-3
HSCF24040 6-5
SECTION 7 -Evaluation Boards
EB100 7-3
EB101 $7-5$
EB102 $7-7$
EB103 7.9
EB104 7-11
EB105 7-13
SECTION 8 -Applications Information AN100 8-3
AN101 $8-29$
AN102 8-42
AN103 8-67
AN104 $8-83$
AN106 8-89
AN108 8-111
AN109 8-117
AB100 8-123
AB101 $8-129$
AB102 8-131
AB103 8-133
AB104 8-137
SECTION 9 -Quality Assurance 9-1
SECTION 10 -Package Outlines
DIEPLOTS $10-2$
PACKAGING INFORMATION 10-9
SECTION 11 -Sales Representatives
DOMESTIC 11-2
INTERNATIONAL $11-4$

ANALOG TO DIGITAL CONVERTERS

SPECIAL FUNCTIONS

EVALUATION BOARDS

SALES OFFICES AND REPRESENTATIVES

PRODUCT SELECTION GUIDE

AID CONVERTERS

PART NO.	RESOLUTION (BITS)	SAMPLE RATE (MSPS)	CONVERSION TIME ($\mu \mathrm{s}$)	$\begin{aligned} & \text { LOGIC } \\ & \text { FAMILY } \end{aligned}$		$\begin{aligned} & \text { INEARITY } \\ & \text { IT } \end{aligned}$	FEATURES
HADC 77300A	8	250		ECL	1/2	1/2	PIN COMPATABLE WITH HADC77200 IMPROVED ANALOG PERFORMANCE
HADC 77300B	8	250		ECL	3/4	$3 / 4$	
HADC 77200A	8	150		ECL	$1 / 2$	1/2	DATA READY AND OVERRANGE OUTPUTS, QUARTER POINT LADDER TAPS, IMPROVED ANALOG PERFORMANCE
HADC 77200B	8	150		ECL	$3 / 4$	$3 / 4$	
HADC 77100A	8	150		ECL	1/2	1/2	PRE AMPLIFIER DESIGN
HADC 77100B	8	150		ECL	$3 / 4$	3/4	
HADC 77600	10	50		ECL	1	1/2	ON BOARD BUFFER, METASTABLE STATE ERROR REDUCTION
HADC 674A	12		15	TTL	$1 / 2$	$1 / 2$	S/H FUNCTION, LOW POWER, NO NEGATIVE SUPPLY REQUIRED, NO TRANSIENTS AT INPUT, FULL BIPOLAR INPUT, ALTERNATES FOR HI574, HI 674 AND AD574
HADC 674B	12		15	TTL	1/2	1/2	
HADC 674C	12		15	TTL	1	1	
HADC 574A	12		25	TTL	1/2	$1 / 2$	
HADC 574B	12		25	TTL	1/2	1/2	
HADC 574C	12		25	TTL	1	1	

DIA CONVERTERS

PART NO.	RESOLUTION (BITS)	UPDATE RATE (MSPS)	SETTLING TIME (ns)	LOGIC FAMILY	LINEARITY INT	DIF

COMPARATORS

PART NO.	PROP trft DELAY (ns) (ns)	VCM (V)	$\begin{aligned} & \text { Vos } \\ & (\mathrm{mV}) \end{aligned}$	RIN $\text { (k } \Omega)$	AV (VIV)	FEATURES
HCMP 96850	1.76/1.72 3.0	$\pm 2.5 \mathrm{~V}$	± 3.0	60	4k	SYMETRICAL $t_{r} / t_{\text {f }}$. ALTERNATE FOR SP9685, AM6685
HCMP 96870A	1.2/1.2 2.3	± 2.5	± 3.0	60	4k	HIGH PERFORMANCE, ALTERNATE FOR SP9687, AM6687
HCMP 96900	1.6/1.6 4.2	$\begin{gathered} +10 \\ -3 \end{gathered}$	± 0.5	10,000	1k	HIGH Vcm RANGE, SYMETRICAL t_{r} / t_{f} AND PROP DELAY INDEPENDENT OF OVERDRIVE AND Vcm
INSTRUMENTATION AMPLIFIERS						
PART NO.	NONLINEARITY	Vos ($\mu \mathrm{V}$)	GAIN BANDWIDTH (MHz)		SUPPLY VOLTAGE (V)	FEATURES
HINA 522	$\begin{aligned} & .001 \% \\ & \operatorname{MAX} \\ & A V=1 \end{aligned}$	25			± 15	
HINA 524		25	$\mathrm{AV} \stackrel{25}{=} 1000$		± 15	ALTERNATE SOURCES FOR ANALOG DEVICES MONOLITHIC CONSTRUCTION
HINA 624	$\begin{gathered} .001 \% \\ \text { MAX } \\ A V=1 \end{gathered}$	25	$\mathrm{AV}=1000$		± 15	
FILTER						
PART NO.	DYNAMIC RANGE (dB)	MAX BANDEDGE (kHz)	$\begin{aligned} & \text { BANDEDGE } \\ & \text { TOLERANCE } \\ & \text { (\%) } \end{aligned}$		SUPPLY VOLTAGE (V)	FEATURES
HSCF 24040	85	20	± 0.5		± 5	7TH ORDER LOW PASS, > 76dB STOPBAND ATTENUATION, ON CHIP ANTIALIAS FILTER, DIGITALLY PROGRAMMABLE BANDEDGE AND DC GAIN
EVALUATION BOARDS						FEATURES
EB 100	HADC77100					150MSPS A/D, D/A
EB 101	HADC77200					150MSPS AID, D/A
EB 102	N/A					100MHz BUFFER AMP, 8-BITS
EB 103	HADC77200/77300					300 MSPS AID, DIA PING-PONG
EB 104	HADC574/674					AD, D/A, OPTIONAL S/H
EB 105	HSCF24040					ON-BOARD OR EXTERNAL PROGRAMMING

PRODUCT CROSS REFERENCE GUIDE

INDUSTRY PART NO.	SPT EQUIVALENT	INDUSTRY PART NO.	SPT EQUIVALENT	INDUSTRY PART NO.	SPT EQUIVALENT
AD522AD	HINA522BIJ	AD7545AQ	HDAC7545ABID	MP7545LN	HDAC7545AACN
AD522BD	HINA522AN	AD7545BQ	HDAC7545ABID	MP7545SD	HDAC7545ABMD
AD622SD	HINA622BMJ	AD7545CHIPS	HDAC7545ABCU	MP7545TD	HDAC7545ABMD
AD524AD	HINA524CW	AD7545CQ	HDAC7545AAID	MP7545UD	HDAC7545AAMD
AD524BD	HINA524BLJ	AD7545GCQ	HDAC7545AAID/G	MP7623	HDAC75412CCU
AD524CD	HINA524ALJ	AD7545GLN	HDAC7545AACN/G	MP7623AD	HDAC7541ZBID
AD524SD	HINA524CMJ	AD7545GUD	HDAC7545AAMD/G	MP7623BD	HDAC7541ZAID
AD574AJD	HADC574ZCCJ	AD7545JN	HDAC7545ABCN	MP7623JN	HDAC7541ZBCN
AD574AJN	HADC574ZCCN	AD7545KN	HDAC7545ABCN	MP7623KN	HDAC7541ZACN
AD574AKD	HADC674ZBCJ	AD7545LN	HDAC7545AACN	MP7623SD	HDAC7541ZBMD
AD674AKN	HADC574ZBCN	AD7545SD	HDAC7545ABMD	MP7623TD	HDAC7541ZAMD
AD574ALD	HADC574ZACJ	AD7545TD	HDAC7545ABMD	PM7542AQ	HDAC7542AAMD/G
AD674ALN	HADC574ZACN	AD7546UD	HDAC7545AAMD	PM7542BQ	HDAC7542AAMD
AD624AD	HINA624ClJ	AD9700D22A	HDAC97000SJM	PM7542BQ	HDAC7542ABMD
AD624BD	HINA624BW	AM6685DL	HCMP96850SID	PM7542EQ	HDAC7542AAID/G
AD824CD	HINA624AW	AM6687DL	HCMP96870SID	PM7542FQ	HDAC7542AAID
AD624SD	HINA624CMJ	AM6687LL	HCMP96870SIC	PM7542FQ	HDAC7542ABID
AD7541AAQ	HDAC7541ZBID	CXO2116	HADC77100AN	PM7542G	HDAC7542ABCU
AD7541ABQ	HDAC7541ZAID	H11-574AJD-5	HADC574ZCCJ	PM7542GP	HDAC7542AACN/G
AD7541ACHIPS	HDAC75412BCU	H11-574AKD-5	HADC574ZBGJ	PM7542HP	HDAC7542AACN
AD7541AJN	HDAC75412BCN	H11-574ALD-5	HADC574ZACJ	PM7542HP	HDAC7542ABCN
AD7541AKN	HDAC7541ZACN	H11-674AND-5	HADC674ZCCJ	PM7543AQ	HDAC7543AAMD/G
AD7541ASD	HDAC7541ZBMD	H11.674AKD-5	HADC674ZBCJ	PM7543BQ	HDAC7543AAMD
AD7541ATD	HDAC7541ZAMD	H11-674ALD-6	HADC674ZACJ	PM7543BQ	HDAC7543ABMD
AD7542AD	HDAC7542ABID	MP7542	HDAC7542ABCU	PM7543EQ	HDAC7543AAID/G
AD7542BD	HDAC7542AAID	MP7542AD	HDAC7542ABID	PM7543FQ	HDAC7543AAID
AD7542CHIPS	HDAC7542ABCU	MP7542BD	HDAC7542AAID	PM7543FQ	HDAC7543ABID
AD7542GBD	HDAC7542AAID/G	MP7542JN	HDAC7542ABCN	PM7543G	HDAC7543ABCU
AD7542GKN	HDAC7542AACN/G	MP7542KN	HDAC7542AACN	PM7543GP	HDAC7543AACN/G
AD7542GTD	HDAC7542AAMD/G	MP7542SD	HDAC7542ABMD	PM7543HP	HDAC7543AACN
AD7542JN	HDAC7542ABCN	MP7542TD	HDAC7542AAMD	PM7543HP	HDAC7543ABCN
AD7542KN	HDAC7542AACN	MP7543	HDAC7543ABCU	PM7545AR	HDAC7545AAMD/G
AD7542SD	HDAC7542ABMD	MP7543AD	HDAC7543ABID	PM7545BR	HDAC7545AAMD
AD7542TD	HDAC7542AAMD	MP7543BD	HDAC7543AAID	PM7545BR	HDAC7545ABMD
AD7543AD	HDAC7543ABID	MP7543JN	HDAC7543ABCN	PM7545ER	HDAC7545AAID/G
AD7543BD	HDAC7543AAID	MP7543KN	HDAC7543AACN	PM7545FR	HDAC7545AAID
AD7543CHIPS	HDAC7543ABCU	MP7543SD	HDAC7543ABMD	PM7545FR	HDAC7545ABID
AD7543GBD	HDAC7543AAID/G	MP7543TD	HDAC7543AAMD	PM7545G	HDAC7545ABCU
AD7543GKN	HDAC7543AACN/G	MP7545	HDAC7545ABCU	PM7545GP	HDAC7545AACN/G
AD7543GTD	HDAC7543AAMD/G	MP7545AD	HDAC7545ABID	PM7545HP	HDAC7545AACN
AD7543JN	HDAC7543ABCN	MP7545BD	HDAC7545ABID	PM7545HP	HDAC7545ABCN
AD7543KN	HDAC7543AACN	MP7545CD	HDAC7545AAID	SP9685DG16	HCMP96850SID
AD7543SD	HDAC7543ABMD	MP7545JN	HDAC7545ABCN	SP9687DG16	HCMP96870AID
AD7543TD	HDAC7543AAMD	MP7545KN	HDAC7545ABCN	TDC1018J7C	HDAC10180AMJ

ORDERING INFORMATION

ANALOG TO DIGITAL CONVERTERS				
PART NUMBER	DESCRIPTION	PACKAGE TYPE	\#PINS	TEMPERATURE
HADC574ZACN	12-BIT RES ADC; 12-BIT LIN	PLASTIC*	28	COMMERCIAL
HADC574ZBCN	12-BIT RES ADC; 12-BIT LIN	PLASTIC*	28	COMMERCIAL
HADC574ZCCN	12-BIT RES ADC; 11-BIT LIN	PLASTIC*	28	COMMERCIAL
HADC574ZACJ	12-BIT RES ADC; 12-BIT LIN	SIDEBRAZED	28	COMMERCIAL
HADC574ZBCJ	12-BIT RES ADC; 12-BIT LIN	SIDEBRAZED	28	COMMERCIAL
HADC574ZCCJ	12-BIT RES ADC; 11-BIT LIN	SIDEBRAZED	28	COMMERCIAL
HADC574ZAMJ	12-BIT RES ADC; 12-BIT LIN	SIDEBRAZED	28	MILITARY
HADC574ZBMJ	12-BIT RES ADC; 12-BIT LIN	SIDEbrazed	28	MILITARY
HADC574ZCMJ	12-BIT RES ADC; 11-BIT LIN	SIDEBRAZED	28	MILITARY
HADC574ZCCU	12-BIT RES ADC; 11-BIT LIN	DIE		$+25^{\circ} \mathrm{C}$
HADC674ZACN	12-BIT RES ADC; 12-BIT LIN	PLASTIC*	28	COMMERCIAL
HADC674ZBCN	12-BIT RES ADC; 12-BIT LIN	PLASTIC*	28	COMMERCIAL
HADC674ZCCN	12-BIT RES ADC; 11-BIT LIN	PLASTIC*	28	COMMERCIAL
HADC674ZACJ	12-BIT RES ADC; 12-BIT LIN	SIDEBRAZED	28	COMMERCIAL
HADC674ZBCJ	12-BIT RES ADC; 12-BIT LIN	SIDEBRAZED	28	COMMERCIAL
HADC674ZCCJ	12-BIT RES ADC; 11-BIT LIN	SIDEBRAZED	28	COMMERCIAL
HADC674ZAMJ	12-BIT RES ADC; 12-BIT LIN	SIDEBRAZED	28	MILITARY
HADC674ZBMJ	12-BIT RES ADC; 12-BIT LIN	SIDEBRAZED	28	MILITARY
HADC674ZCMJ	12-BIT RES ADC; 11-BIT LIN	SIDEBRAZED	28	MILITARY
HADC674ZCCU	12-BIT RES ADC; 11-BIT LIN	DIE		$+25^{\circ} \mathrm{C}$
HADC77100AIJ	8-BIT, 150 MSPS ADC $\pm 1 / 2$ LSB	SIDEBRAZED	42	INDUSTRIAL
HADC77100AMJ	$8-\mathrm{BIT}, 150 \mathrm{MSPS}$ ADC $\pm 1 / 2$ LSB	SIDEBRAZED	42	MILITARY
HADC77100AMJ/MIL	8 -BIT, 150 MSPS ADC $\pm 1 / 2$ LSB	SIDEBRAZED	42	MILITARY
HADC77100BIJ	$8-\mathrm{BIT}, 150 \mathrm{MSPS}$ ADC $\pm 3 / 4$ LSB	SIDEBRAZED	42	INDUSTRIAL
HADC77100BMJ	8 -BIT, 150 MSPS ADC $\pm 3 / 4$ LSB	SIDEBRAZED	42	MILITARY
HADC77100AIG	$8 \cdot \mathrm{BIT}, 150 \mathrm{MSPS}$ ADC $\pm 1 / 2$ LSB	PGA	46	INDUSTRIAL
HADC77100AMG	8-BIT, 150 MSPS ADC $\pm 1 / 2$ LSB	PGA	46	MILITARY
HADC77100AMJ/MIL	$8-\mathrm{BIT}, 150 \mathrm{MSPS}$ ADC $\pm 1 / 2$ LSB	PGA	46	MILITARY
HADC77100BIG	8-BIT, 150 MSPS ADC $\pm 3 / 4$ LSB	PGA	46	INDUSTRIAL
HADC77100BMa	8 8-BIT, 150 MSPS ADC $\pm 3 / 4$ LSB	PGA	46	MILITARY
HADC77200AIJ	8-BIT, 150 MSPS ADC $\pm 1 / 2$ LSB	SIDEBRAZED	48	INDUSTRIAL
HADC77200AMJ	$8-\mathrm{BIT}, 150 \mathrm{MSPS}$ ADC $\pm 1 / 2$ LSB	SIDEBRAZED	48	MILITARY
HADC77200AMC/MIL	8-BIT, 150 MSPS ADC $\pm 1 / 2$ LSB	SIDEBRAZED	48	MILITARY
HADC77200BIJ	8-BIT, 150 MSPS ADC $\pm 3 / 4$ LSB	SIDEBRAZED	48	INDUSTRIAL
HADC77200BMJ	8-BIT, 150 MSPS ADC $\pm 3 / 4$ LSB	SIDEBRAZED	48	MILITARY
HADC77200AIG	$8-\mathrm{BIT}, 150 \mathrm{MSPS}$ ADC $\pm 1 / 2$ LSB	PGA	46	INDUSTRIAL
HADC77200AMG	$8 \cdot \mathrm{BIT}, 150 \mathrm{MSPS}$ ADC $\pm 1 / 2$ LSB	PGA	46	MILITARY
HADC77200AMJ/MIL	8-BIT, 150 MSPS ADC $\pm 1 / 2$ LSB	PGA	46	MILITARY
HADC77200BIG	8 -BIT, 150 MSPS ADC $\pm 3 / 4$ LSB	PGA	46	INDUSTRIAL
HADC77200BMG	8.BIT, 150 MSPS ADC $\pm 3 / 4$ LSB	PGA	46	MILITARY
HADC77300ACG	8-BIT, 250 MSPS ADC $\pm 1 / 2$ LSB	PGA	46	COMMERCIAL
HADC77300BCa	8-BIT, 250 MSPS ADC $\pm 3 / 4$ LSB	PGA	46	COMMERCIAL
HADC77800SCa	10-BIT, 50 MSPS ADC $\pm 1 / 2$ LSB	PGA	72	COMMERCIAL
HADC77800SIG	$10-\mathrm{BIT}, 50 \mathrm{MSPS}$ ADC $\pm 1 / 2$ LSB	PGA	72	INDUSTRIAL
HADC77600SMQ	$10-\mathrm{BIT}, 50 \mathrm{MSPS}$ ADC $\pm 1 / 2 \mathrm{LSB}$	PGA	72	MILITARY
HADC78180	CONTACT FACTORY FOR ORDER	MATION		

[^0]
ORDERING INFORMATION

DIGITAL TO ANALOG CONVERTERS

PART NUMBER	DESCRIPTION	PACKAGE TYPE	\# PINS	TEMPERATURE
HDAC10180AID	8-BIT, 275 MWPS DAC	CERDIP	24	INDUSTRIAL
HDAC10180AMJ	8-BIT, 275 MWPS DAC	SIDEBRAZED	24	MILITARY
HDAC10180BID	8-BIT, 165 MWPS DAC	CERDIP	24	INDUSTRIAL
HDAC10180BMJ	8-BIT, 165 MWPS DAC	SIDEBRAZED	24	MILITARY
HDAC10181AID	8-BIT, 275 MWPS DAC W/REF	CERDIP	24	INDUSTRIAL
HDAC10181AMJ	8-BIT, 275 MWPS DAC W/REF	SIDEBRAZED	24	MILITARY
HDAC10181BID	8-BIT, 165 MWPS DAC W/REF	CERDIP	24	INDUSTRIAL
HDAC10181BMJ	8-BIT, 165 MWPS DAC W/REF	SIDEBRAZED	24	MILITARY
HDAC34010SCJ	3×4-BIT DAC, 200 MWPS	SIDEBRAZED	28	COMMERCIAL
HDAC34020SCJ	3×4-BIT DAC, 100 MWPS	SIDEBRAZED	28	COMMERCIAL
HDAC50600ACN/G	12-BIT RES DAC; 12-BIT LIN	PLASTIC*	20	COMMERCIAL
HDAC50500ACN	12-BIT RES DAC; 12-BIT LIN	PLASTIC*	20	COMMERCIAL
HDAC50600BCN	12-BIT RES DAC; 11-BIT LIN	PLASTIC*	20	COMMERCIAL
HDAC50500AID/G	12-BIT RES DAC; 12-BIT LIN	CERDIP	20	INDUSTRIAL
HDAC50600AID	12-BIT RES DAC; 12-BIT LIN	CERDIP	20	INDUSTRIAL
HDAC50500BID	12-BIT RES DAC; 11-BIT LIN	CERDIP	20	INDUSTRIAL
HDAC50500AMD/G	12-BIT RES DAC; 12-BIT LIN	CERDIP	20	MILITARY
HDAC50500AMD	12-BIT RES DAC; 12-BIT LIN	CERDIP	20	MILITARY
HDAC50500BMD	12-BIT RES DAC; 11-BIT LIN	CERDIP	20	MILITARY
HDAC50500BCU	12-BIT RES DAC; 11-BIT LIN	DIE		$+25^{\circ} \mathrm{C}$
HDAC50600AID	14-BIT RES DAC; 14-BIT LIN	CERDIP	28	INDUSTRIAL
HDAC50600BID	14-BIT RES DAC; 13-BIT LIN	CERDIP	28	INDUSTRIAL
HDAC50600AMD	14-BIT RES DAC; 14-BIT LIN	CERDIP	28	MILITARY
HDAC50600BMD	14-BIT RES DAC; 13-BIT LIN	CERDIP	28	MILITARY
HDAC50600BCU	14-BIT RES DAC; 13-BIT LIN	DIE		$+25^{\circ} \mathrm{C}$
HDAC50800AID	14-BIT RES DAC; 14-BIT LIN	CERDIP	24	INDUSTRIAL
HDAC50800BID	14-BIT RES DAC; 13-BIT LIN	CERDIP	24	INDUSTRIAL
HDAC50800AMD	14-BIT RES DAC; 14-BIT LIN	CERDIP	24	MILITARY
HDAC50800BMD	14-BIT RES DAC; 13-BIT LIN	CERDIP	24	MILITARY
HDAC50800BCU	14-BIT RES DAC; 13-BIT LIN	DIE		$+25^{\circ} \mathrm{C}$
HDAC514008IJ	8-BIT, 385 MWPS DAC W/REF	SIDEBRAZED	24	INDUSTRIAL
HDAC51400SMJ	8-BIT, 385 MWPS DAC W/REF	SIDEBRAZED	24	MILITARY
HDAC61600SCG	8-BIT, 165 MWPS DAC	PGA	72	COMMERCIAL
HDAC52160SCG	CONTACT FACTORY FOR ORDERING INFORMATION			
HDAC76412ACN	12-BIT RES DAC; 12-BIT LIN	PLASTIC*	18	COMMERCIAL
HDAC75412BCN	12-BIT RES DAC; 11-BIT LIN	PLASTIC*	18	COMMERCIAL
HDAC75412AID	12-BIT RES DAC; 12-BIT LIN	CERDIP	18	INDUSTRIAL
HDAC75412BID	12-BIT RES DAC; 11-BIT LIN	CERDIP	18	INDUSTRIAL
HDAC75412AMD	12-BIT RES DAC; 12-BIT LIN	CERDIP	18	MILITARY
HDAC75412BMD	12-BIT RES DAC; 11-BIT LIN	CERDIP	18	MILITARY
HDAC75412BCU	12-BIT RES DAC; 11-BIT LIN	DIE		$+25^{\circ} \mathrm{C}$

*HONEYWELL RESERVES THE RIGHT TO SHIP CERDIP IN LIEU OF PLASTIC PACKAGES.

DIGITAL TO ANALOG CONVERTERS CONTINUED

PART NUMBER	DESCRIPTION	PACKAQE TYPE	\# PINS	TEMPERATURE
HDAC7542AACN/G	12-BIT RES DAC; 12-BIT LIN	PLASTIC*	16	COMMERCIAL
HDAC7542AACN	12-BIT RES DAC; 12-BIT LIN	PLASTIC*	16	COMMERCIAL
HDAC7542ABCN	12-BIT RES DAC; 11-BIT LIN	PLASTIC*	16	COMMERCIAL
HDAC7542AAID/G	12-BIT RES DAC; 12-BIT LIN	CERDIP	16	INDUSTRIAL
HDAC7542AAID	12-BIT RES DAC; 12-BIT LIN	CERDIP	16	INDUSTRIAL
HDAC7542ABID	12-BIT RES DAC; 11-BIT LIN	CERDIP	16	INDUSTRIAL
HDAC7542AAMD/G	12-BIT RES DAC; 12-BIT LIN	CERDIP	16	MILITARY
HDAC7542AAMD	12-BIT RES DAC; 12-BIT LIN	CERDIP	16	MILITARY
HDDC7542ABMD	12-BIT RES DAC; 11-BIT LIN	CERDIP	16	MILITARY
HDAC7542ABCU	12-BIT RES DAC; 11-BIT LIN	DIE		$+25^{\circ} \mathrm{C}$
HDAC7543AACN/G	12-BIT RES DAC; 12-BIT LIN	PLASTIC*	16	COMMERCIAL
HDAC7543AACN	12-BIT RES DAC; 12-BIT LIN	PLASTIC*	16	COMMERCIAL
HDAC7543ABCN	12-BIT RES DAC; 11-BIT LIN	PLASTIC*	16	COMMERCIAL
HDAC7543AAID/G	12-BIT RES DAC; 12-BIT LIN	CERDIP	16	INDUSTRIAL
HDAC7543AAID	12-BIT RES DAC; 12-BIT LIN	CERDIP	16	INDUSTRIAL
HDAC7543ABID	12-BIT RES DAC; 11-BIT LIN	CERDIP	16	INDUSTRIAL
HDAC7543AAMD/G	12-BIT RES DAC; 12-BIT LIN	CERDIP	16	MILITARY
HDAC7543AAMD	12-BIT RES DAC; 12-BIT LIN	CERDIP	16	MILITARY
HDAC7543ABMD	12-BIT RES DAC; 11-BIT LIN	CERDIP	16	MILITARY
HDAC7543ABCU	12-BIT RES DAC; 11-BIT LIN	DIE		$+25^{\circ} \mathrm{C}$
HDAC7545AACN/G	12-BIT RES DAC; 12-BIT LIN	PLASTIC*	20	COMMERCIAL
HDAC7545AACN	12-BIT RES DAC; 12-BIT LIN	PLASTIC*	20	COMMERCIAL
HDAC7545ABCN	12-BIT RES DAC; 11-BIT LIN	PLASTIC*	20	COMMERCIAL
HDAC7545AAID/G	12-BIT RES DAC; 12-BIT LIN	CERDIP	20	INDUSTRIAL
HDAC7545AAID	12-BIT RES DAC; 12-BIT LIN	CERDIP	20	INDUSTRIAL
HDAC7545ABID	12-BIT RES DAC; 11-BIT LIN	CERDIP	20	INDUSTRIAL
HDAC7545AAMD/G	12-BIT RES DAC; 12-BIT LIN	CERDIP	20	MILITARY
HDAC7545AAMD	12-BIT RES DAC; 12-BIT LIN	CERDIP	20	MILITARY
HDAC7545ABMD	12-8IT RES DAC; 11-BIT LIN	CERDIP	20	MILITARY
HDAC7545ABCU	12-BIT RES DAC; 11-BIT LIN	DIE		$+25^{\circ} \mathrm{C}$
HDAC97000SIJ	8-BIT, 200 MWPS DAC W/REF	SIDEBRAZED	22	INDUSTRIAL
HDAC97000SID	8-BIT, 200 MWPS DAC W/REF	CERDIP	22	INDUSTRIAL
HDAC97000SMJ	8 8-BIT, 200 MWPS DAC W/REF	SIDEBRAZED	22	MILITARY
HDAM51100SCG	125 MHz W/512 X 8 MEMORY	PGA	46	COMMERCIAL

*HONEYWELL RESERVES THE RIGHT TO SHIP CERDIP IN LIEU OF PLASTIC PACKAGES.

ORDERING INFORMATION

COMPARATORS

PART NUMBER	DESCRIPTION	PACKAGE TYPE	\# PINS	TEMPERATURE
HCMP96850SID	HIGH SPEED COMPARATOR	CERDIP	16	INDUSTRIAL
HCMP96850SCU	HIGH SPEED COMPARATOR	DIE		
HCMP96870AID	DUAL HIGH SPEED COMPARATOR	CERDIP	16	$+25^{\circ} \mathrm{C}$
HCMP96870AIC	DUAL HIGH SPEED COMPARATOR	LCC	INDUSTRIAL	
HCMP96870AIJ	DUAL HIGH SPEED COMPARATOR	SIDEBRAZED	20	INDUSTRIAL
HCMP96870ACU	DUAL HIGH SPEED COMPARATOR	DIE	16	INDUSTRIAL
HCMP96900	CONTACT FACTORY FOR ORDERING INFORMATION	$+25^{\circ} \mathrm{C}$		

INSTRUMENTATION AMPLIFIER

PART NUMBER	DESCRIPTION	PACKAGE TYPE	\# PINS	TEMPERATURE
HINA522AIJ	INSTRUMENTATION AMPLIFIER	SIDEBRAZED	14	INDUSTRIAL
HINA522BIJ	INSTRUMENTATION AMPLIFIER	SIDEBRAZED	14	INDUSTRIAL
HINA522BMJ	INSTRUMENTATION AMPLIFIER	SIDEBRAZED	14	MILITARY
HINA522BCU	INSTRUMENTATION AMPLIFIER	DIE		$+25^{\circ} \mathrm{C}$
HINA524AIJ	INSTRUMENTATION AMPLIFIER	SIDEBRAZED	16	INDUSTRIAL
HINA524BIJ	INSTRUMENTATION AMPLIFIER	SIDEBRAZED	16	INDUSTRIAL
HINA524CIJ	INSTRUMENTATION AMPLIFIER	SIDEBRAZED	16	INDUSTRIAL
HINA524CMJ	INSTRUMENTATION AMPLIFIER	SIDEBRAZED	16	MILITARY
HINA524CCU	INSTRUMENTATION AMPLIFIER	DIE		$+25^{\circ} \mathrm{C}$
HINA624AIJ	INSTRUMENTATION AMPLIFIER	SIDEBRAZED	16	INDUSTRIAL
HINA624BIJ	INSTRUMENTATION AMPLIFIER	SIDEBRAZED	16	INDUSTRIAL
HINA624CIJ	INSTRUMENTATION AMPLIFIER	SIDEBRAZED	16	INDUSTRIAL
HINA624CMJ	INSTRUMENTATION AMPLIFIER	SIDEBRAZED	16	MILITARY
HINA624CCU	12-BIT INSTRUMENTATION AMPLIFIER	DIE		$+25^{\circ} \mathrm{C}$
SPECIAL FUNCTIONS				
PART NUMBER	DESCRIPTION	PACKAGE TYPE	\# PINS	TEMPERATURE
HTHA27140	CONTACT FACTORY FOR ORDERING	RMATION		
HSCF24040ACN	7 POLE LOW PASS SC FILTER	PLASTIC*	32	COMMERCIAL
HSCF24040ACJ	7 POLE LOW PASS SC FILTER	SIDEBRAZED	32	COMMERCIAL
HSCF24040AMJ	7 POLE LOW PASS SC FILTER	SIDEBRAZED	32	MILITARY
HSCF24040CCU	7 POLE LOW PASS SC FILTER	DIE		$+25^{\circ} \mathrm{C}$

EVALUATION BOARDS
PART NUMBER DESCRIPTION

EB100A	HADC77100AIJ DEMO BOARD
EB100B	HADC77100BIJ DEMO BOARD
EB101A	HADC77200AIJ DEMO BOARD
EB101B	HADC77200BIJ DEMO BOARD
EB102A	CLC221 BUFFER BOARD
EB102B	CLC231 BUFFER BOARD
EB103	HADC77200/77300 PING-PONG BOARD
EB104	HADC574 DEMO BOARD
EB105	HSCF24040 DEMO BOARD

*HONEYWELL RESERVES THE RIGHT TO SHIP CERDIP IN LIEU OF PLASTIC PACKAGES.

> SPECIAL FUNCTIONS

EVALUATION BOARDS

APPLICATIONS INFORMATION

PACKAGE OUTLINES

SALES OFFICES AND REPRESENTATIVES

FAST, COMPLETE 12-BIT μ P COMPATIBLE
 A/D CONVERTER WITH SAMPLE/HOLD
 PRELIMINARY INFORMATION

FEATURES:

- IMPROVED PIN-TO-PIN COMPATIBLE MONOLITHIC VERSION OF THE HI574A AND AD574A
- Complete 12-bit A/D Converter with Sample-Hold, Reference and Clock
- Low Power Dissipatlon (150 mW Max)
-12-bit Linearity (over temp)
- $25 \mu \mathrm{~s}$ Max Conversion Time
- No Negative Supply Required
- Full Bipolar and Unipolar Input Range

GENERAL DESCRIPTION

The HADC574Z is a complete, 12-bit successive approximation A/D converter. The device is integrated on a single die to make it the first monolithic CMOS version of the industry standard device, HI574A and AD574A. Included on chip is an internal reference, clock, and a sample and hold. The S/H is an additional feature not available on similar devices.

The HADC574Z features $25 \mu \mathrm{~s}$ (Max) conversion time of 10 or 20 Volt input signals. Also, a 3 -state output buffer is added for direct interface to an 8 -, 12 -, or 16 bit $\mu \mathrm{P}$ bus.

The HADC574Z is manufactured on Honeywell SPT's Bipolar Enhanced CMOS process (BEMOS) which combines CMOS logic and fast bipolar npn transistors to yield high performance digital and analog functions on one chip.

APPLICATIONS:

- MILITARY/INDUSTRIAL DATA

ACQUISITION SYSTEMS

- 8 OR 12-bit $\mu \mathrm{P}$ Input Functions
- Process Control Systems
- Test And Scientific Instruments
- Personal Computer Interface

The BEMOS process and monolithic construction reduces power consumption, ground noise, and keeps parasitics to a minimum. In addition, the thin film option on this process allows active adjustment of DAC and comparator offsets, linearity errors, and gain errors.

The HADC574Z has standard bipolar and unipolar input ranges of 10 V and 20 V that are controlled by a bipolar offset pin and laser trimmed for specified linearity, gain and offset accuracy.

Power requirements are +5 V and +12 V to +15 V with a maximum dissipation of 150 mW at the specified voltages. Power consumption is about five times lower than currently available devices, and a negative power supply is not needed.

ABSOLUTE MAXIMUM RATINGS (Beyond which damage may occur) ${ }^{\mathbf{1}} \mathbf{2 5}^{\mathbf{0}} \mathrm{C}$

Supply Voltages

Positive Supply Voltage (VCC to DGND)... 0 to +16.5 V Logic Supply Voltage (VLOGIC to DGND).......... 0 to +7 V Analog to Digital Ground (AGND to DGND)...- 0.5 to +1 V

Input Voltages

Control Input Voltages (to DGND).
(CE, $\overline{C S}, A o, 12 \overline{8}, R / C$) \qquad -0.5 to $\mathrm{V}_{\text {LOGIC }}+0.5 \mathrm{~V}$
Analog Input Voltage (to AGND) \qquad
(REF IN, BIP OFF, 10Vin)
20 V Vin Input Voltage (to AGND) \qquad

Output
Reference Output Voltage.........Indefinite short to GND Momentary short to $V_{C C}$

Temperature

Operating Temperature, ambient. -55 to +125 (case) ${ }^{\circ} \mathrm{C}$ junction $+175^{\circ} \mathrm{C}$
Lead Temperature, (soldering 10 seconds)....... $+300^{\circ} \mathrm{C}$ Storage Temperature -65 to $+150^{\circ} \mathrm{C}$
Power Dissipation 1000 mW
Thermal Resistance $\left(\theta_{\mathrm{j}}\right)$. $.48^{\circ} \mathrm{C} / \mathrm{W}$

Notes:

1. Operation at any Absolute Maximum Rating is not implied. See Operating Conditions for proper nominal applied conditions in typical applications.

COMMERCIAL TEMPERATURE RANGE 0 TO $+70^{\circ} \mathrm{C}$

Typical $@+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}$ or $+12 \mathrm{~V}, \mathrm{~V}_{\mathrm{LOGIC}}=+5 \mathrm{~V}$, Unless otherwise specified.

PARAMETER	TEST CONDITIONS	TEST LEVEL	HADC574ZCC MIN TYP MAX	HADC574ZBC MIN TYP MAX	HADC574ZAC MIN TYP MAX	UNITS

DC ELECTRICAL CHARACTERISTICS

Resolution		12	12	12	BITS	
Linearity Error	Tmin to Tmax	1	± 1	$\pm \frac{1}{2}$	$\pm \frac{1}{2}$	LSB
Differential Linearity Error	Tmin to Tmax	1		± 1	$\pm \frac{1}{2}$	$\pm \frac{1}{2}$

Note 1: Fixed 50Ω resistor from REF OUT to REF IN and REF OUT to BIP OFF.

COMMERCIAL TEMPERATURE RANGE 0 TO +70

Typical $@+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}$ or $+12 \mathrm{~V}, \mathrm{~V}_{\mathrm{LOGIC}}=+5 \mathrm{~V}$, Unless otherwise specified.

| PARAMETER | TEST
 CONDITIONS | TEST
 LEVEL | HADC574ZCC
 MIN TYP MAX | HADC574ZBC | HADC574ZAC | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| MIN TYP MAX | MIN TYP MAX | UNITS | | | | |

DC ELECTRICAL CHARACTERISTICS

Power Supply Rejection	Max change in full scale calibration									
$\begin{aligned} & +13.5 \mathrm{~V}<\mathrm{Vcc}<+16.5 \mathrm{~V} \text { or } \\ & +11.4 \mathrm{~V}<\mathrm{Vcc}<+12.6 \mathrm{~V} \end{aligned}$		1		± 2		± 1			± 1	LSB
$+4.5 \mathrm{~V}<\mathrm{V}_{\text {LOGIC }}<+5.5 \mathrm{~V}$		1		$\pm \frac{1}{2}$		$\pm \frac{1}{2}$			± 1	LSB
Analog Inputs Ranges Bipolar		1	$\begin{aligned} & -5 \\ & -10 \end{aligned}$	$\begin{array}{r} +5 \\ +10 \end{array}$	-5 -10	$\begin{array}{r} +5 \\ +10 \end{array}$	-5 -10		$\begin{array}{r} +5 \\ +10 \end{array}$	VOLTS VOLTS
Unipolar		1	0 0	$\begin{aligned} & +10 \\ & +20 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & +10 \\ & +20 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & +10 \\ & +20 \end{aligned}$	
Input Impedance 10 Volt Span 20 Volt Span		1	$\begin{array}{\|rr} 3.75 & 5 \\ 15 & 20 \\ \hline \end{array}$	$\begin{array}{r} 6.25 \\ \quad 25 \\ \hline \end{array}$	$\begin{array}{\|ll\|} 3.75 & 5 \\ 15 & 20 \\ \hline \end{array}$	$\begin{array}{r} 6.25 \\ 25 \\ \hline \end{array}$	$\begin{array}{\|l} 3.75 \\ 15 \\ \hline \end{array}$	$\begin{gathered} 5 \\ 20 \\ \hline \end{gathered}$	$\begin{array}{r} 6.25 \\ \quad 25 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \\ & \hline \end{aligned}$
Power Supplies Operating Voltage Range $V_{\text {LOGIC }}$		1	+4.5	+5.5	+4.5	+5.5	+4.5		+5.5	VOLTS
V_{CC}		1	+11.4	+16.5	+11.4	+16.5	+11.4		+16.5	VOLTS
V_{EE}	Not required for circuit operation.									VOLTS
Operating Current logic		1	1	3	1	3		1	3	mA
ICC		1	7	9	7	9		7	9	mA
IEE		II	0		0			0		mA
Power Dissipation $+15 \mathrm{~V},+5 \mathrm{~V}$		1	110	150	110	150		110	150	mW
Internal Reference Voltage		1	9.910	10.1	9.910	10.1	9.9	10	10.1	VOLTS
Output Current ${ }^{2}$		1		2		2			2	mA

Note 2: Available for external loads, external load should not change during conversion.
When supplying an external load and operating on a +12 V supply, a buffer amplifier must be provided for the reference output.
$\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}$ or $+12 \mathrm{~V}, \mathrm{~V}_{\text {LOGIC }}=+5 \mathrm{~V}$, Unless otherwise specified.

PARAMETER	TEST CONDITIONS	TEST LEVEL	HADC574ZCC MIN TYP MAX	HADC574ZBC MIN TYP MAX	HADC574ZAC MIN TYP MAX	UNITS

DIGITAL CHARACTERISTICS The following specifications are guaranteed over the full temperature range.

$\begin{gathered} \text { Logic Inputs (CE, } \overline{C S}, \\ R / \bar{C}, A 0,12 / \overline{8}) \\ \text { Logic "1"3 } \\ \hline \end{gathered}$		1	2.45	$2.4-5.5$	2.45	VOLTS
Logic "0"		1	$-0.5+0.8$	$-0.5+0.8$	-0.5 +0.8	VOLTS
Current	0 to 5.5V Input	1	$\pm .01+5$	$\pm .01+5$	$\pm .01+5$	$\mu \mathrm{A}$
Capacitance		11	5	5	5	pF
```Logic Outputs (DB11-DB0, STS) Logic "0"```	(ISink $=1.6 \mathrm{~mA}$ )	1	+0.4	+0.4	+0.4	VOLTS
Logic "1"	(ISOURCE $=500 \mu \mathrm{~A})$	1	+2.4	+2.4	+2.4	VOLTS
Leakage	(High Z State, DB11-DB0 Only)	1	$-5 \pm 0.1+5$	$-5 \pm 0.1+5$	$\begin{array}{lll}-5 & \pm 0.1\end{array}$	$\mu \mathrm{A}$
Capacitance		II	5	5	5	pF

Note 3: Although the guaranteed threshold is higher than the standard TTL threshold (+2 Volts), loading is much less than standard TTL due to the CMOS nature of the inputs.

## MILITARY TEMPERATURE RANGE -55 TO $+125^{\circ} \mathrm{C}$

Typical @ $+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}$ or $+12 \mathrm{~V}, \mathrm{~V}_{\mathrm{LOGIC}}=+5 \mathrm{~V}$, Unless otherwise specified.

| PARAMETER | TEST <br> CONDITIONS | TEST <br> LEVEL | HADC574ZCM <br> MIN TYP MAX | HADC574ZBM <br> MIN TYP MAX | HADC574ZAM <br> MIN TYP MAX | UNITS |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

DC ELECTRICAL CHARACTERISTICS


MILITARY TEMPERATURE RANGE $-55 \mathrm{TO}+125^{\circ} \mathrm{C}$
Typical @ $+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}$ or $+12 \mathrm{~V}, \mathrm{~V}_{\mathrm{LOGIC}}=+5 \mathrm{~V}$, Unless otherwise specified.
\(\left.$$
\begin{array}{l|l|l|l|l|l|l}\hline \text { PARAMETER } & \begin{array}{l}\text { TEST } \\
\text { CONDITIONS }\end{array} & \begin{array}{l}\text { TEST } \\
\text { LEVEL }\end{array}
$$ \& \begin{array}{l}HADC574ZCM <br>

MIN TYP MAX\end{array} \& HADC574ZBM \& HADC574ZAM TYP MAX \& MIN TYP MAX\end{array}\right\}\) UNITS | MIN |
| :--- |

DC ELECTRICAL CHARACTERISTICS


DIGITAL CHARACTERISTICS
The following specifications are guaranteed over the full temperature range.

Logic Inputs (CE, $\overline{C S}$, R/C, Ao, 12/8)   Logic "1"		1	2.45 .5	2.45 .5	2.4	5.5	VOLTS
Logic "0"		1	$-0.5+0.8$	$-0.5+0.8$	-0.5	+0.8	VOLTS
Current	O to +5.5V Input	1	$\pm .01+5$	$\pm .01+5$	$\pm .01$	+5	$\mu \mathrm{A}$
Capacitance		II	5	5	5		pF
$\begin{gathered} \text { Logic Outputs (DB11-DB0, } \\ \text { STS) } \\ \text { Logic " } 0 " \end{gathered}$	$\left(I_{\text {Sink }}=1.6 \mathrm{~mA}\right)$	1	+0.4	+0.4		+0.4	VOLTS
Logic "1"	$\begin{aligned} & \text { (ISOURCE = } \\ & 500 \mu \mathrm{~A}) \end{aligned}$	1	+2.4	+2.4	+2.4		VOLTS
Leakage	(High Z State, DB11-DB0 Only)		$-5 \pm 0.1+5$	$-5 \pm 0.1+5$	$-5 \pm 0.1$	+5	$\mu \mathrm{A}$
Capacitance		II	5	5	5		pF

[^1]
## CONVERT MODE TIMING CHARACTERISTICS

Typical @ $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}$ or $+12 \mathrm{~V}, \mathrm{~V}_{\mathrm{LOGIC}}=+5 \mathrm{~V}$, Unless otherwise specified.

| PARAMETER | TEST <br> CONDITIONS <br> NOTE 5 | TEST <br> LEVEL | HADC574ZC <br> MIN TYP MAX | HADC574ZB | HAD TYP MAX | MIN TYP MAX |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: | UNITS | MAD |
| :--- |

## AC ELECTRICAL CHARACTERISTICS



Note 5: Time is measured from $50 \%$ level of digital transitions. Tested with a 100 pF and $3 \mathrm{k} \Omega$ load for high impedance to drive and tested with 10 pF and $3 \mathrm{~K} \Omega$ load for drive to high impedance.


Figure 1 - Convert Mode Timing Diagram

READ MODE TIMING CHARACTERISTICS
Typical $@+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}$ or $+12 \mathrm{~V}, \mathrm{~V}_{\mathrm{LOGIC}}=+5 \mathrm{~V}$, Unless otherwise specified.

| PARAMETER | TEST <br> CONDITIONS <br> NOTE 5 | TEST <br> LEVEL | HADC574ZC | HADC574ZB | HADC574ZA |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| MIN TYP MAX | MIN TYP MAX | MIN TYP MAX | UNITS |  |  |

## AC ELECTRICAL CHARACTERISTICS

${ }^{\text {t }}$ DD Access Time from CE	1		150		150		150	ns
${ }^{t_{H D}}$ Data Valid After CE Low	I	25		25		25		ns
$t_{\text {HL }}$ Output Float Delay	I		150		150		150	ns
${ }^{\text {t SSR }}$ CS to CE Setup	I	50	0	50	0	50	0	ns
${ }^{\text {t SRR }}$ R/C/ ${ }^{\text {to }}$ CE Setup	1	0	0	0	0	0	0	ns
${ }^{\text {t SAR }}$ Ao to CE Setup	1	50		50		50		ns
$t_{\text {HSR }} \overline{\text { LS }}$ Valid After CE	1	0	0	0	0	0	0	ns
${ }^{\mathrm{t}} \mathrm{HRRR}_{\text {Low }}^{\text {R/C }}$ High After CE	1	0	0	0	0	0	0	ns
${ }^{t}$ HAR Ao Valid After CE $\qquad$	1	50		50		50		ns
${ }^{t}$ HS $\underset{\text { Valid }}{\text { STS Delay After Data }}$	1	300	1000	300	1000	300	1000	ns



Figure 2 - Read Mode Timing Diagram

Typical $@+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}$ or $+12 \mathrm{~V}, \mathrm{~V}_{\text {LOGIC }}=+5 \mathrm{~V}$, Unless otherwise specified.

| PARAMETER | TEST <br> CONDITIONS <br> NOTE 5 | TEST <br> LEVEL | HADC574ZC | HADC574ZB | HADC574ZA |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| MIN TYP MAX | MIN TYP MAX | MIN TYP MAX | UNITS |  |  |

AC ELECTRICAL CHARACTERISTICS

$t_{\text {HRL }}$ Low R/C Pulse Width	I	50	50	50	ns
${ }^{\text {t }}$ DS STS Delay from R/C	1	200	200	200	ns
$t_{\text {HDR }}$ Data Valid After R/CLow	I	25	25	25	ns
$t_{\text {HS }}$ STS Delay After Data Valid	\|	3001000	3001000	3001000	ns
$t_{\text {HRH }}$ High R/C Pulse Width	I	150	150	150	ns
$t_{\text {DDR }}$ Data Access Time	I	150	150	150	ns

SAMPLE AND HOLD

Acquisition Time		$I I$	1.8	2.4	3.0	1.8	2.4	3.0	1.8	2.4	3.0	$\mu \mathrm{~s}$
Aperture Uncertainty Time		$1 I$		20			20		20			



Figure 3 - Low Pulse For R/C - Outputs Enabled After Conversion


Figure 4 - High Pulse For R/C - Outputs Enabled While R/C is High, Otherwise High Impedance

## ELECTRICAL CHARACTERISTICS TESTING

All electrical characteristics are subject to the following conditions:

All parameters having Min./Max. specifications are guaranteed. The Test Level column indicates the specific device testing actually performed during production and Quality Assurance inspection. Any blank sections in the data columns indicates that the specification is not tested at the specified condition.

Unless otherwise noted, all tests are pulsed tests, therefore $\mathrm{T}_{\text {junc }}=\mathrm{T}_{\text {case }}=\mathrm{T}_{\text {ambient }}$.

## TEST LEVEL TEST PROCEDURE

1 Production tested at the specified conditions.

Parameter is guaranteed by design and sampled characterization data.

## DEFINITION OF SPECIFICATIONS

## INTEGRAL LINEARITY ERROR

Linearity error refers to the deviation of each individual code from a line drawn from "zero" through "full scale" with all offset errors nulled out (See Figure 5 and 7). The point used as "zero" occurs $1 / 2$ LSB ( 1.22 mV for a 10 Volt span) before the first code transistion (all zeros to only the LSB "on"). "Full scale" is defined as a level 1 and $1 / 2$ LSB beyond the last code transition (to all ones). The deviation of a code from the true straight line is measured from the middle of each particular code.

The HADC574Z A and B grades are guaranteed for maximum nonlinearity of $\pm 1 / 2$ LSB. For these grades, this means that an analog value which falls exactly in the center of a given code width will result in the correct digital output code. Values nearer the upper or lower transition of the code width may produce the next upper or lower digital output code. The HADC574ZCC and CM grades are guaranteed to $\pm$ 1LSB maximum error. For these grades, an analog value which falls within a given code width will result in either the correct code for that region or either adjacent one. The linearity is not user-adjustable.

## DIFFERENTIAL LINEARITY ERROR <br> (NO MISSING CODES)

A specification which guarantees no missing codes requires that every code combination appear in a monotonically increasing sequence as the analog input level is increased. Thus every code must have a finite width. For the HADC574Z type BC, AC, BM, and AM grades, which guarantee no missing codes to $12-$ bit resolution, all 4096 codes must be present over the entire operating temperature ranges. The HADC574Z CC and CM grades guarantee no missing codes to 11 bit resolution over temperature; this means that all code combinations of the upper 11 bits must be present; in practice, very few of the 12-bit codes are missing.

## DIFFERENTIAL NONLINEARITY

Differential nonlinearity is a measure of how much the actual quantization step width varies from the ideal step width of 1 LSB. Figure 7 shows a differential nonlinearity of 2 LSB - the actual step width is 3 LSB. The HADC574Z's specification gives the worst case differential nonlinearity in the A/D transfer function under specified dynamic operating conditions. Small, localized differential nonlinearities may be insignificant when digitizing full scale signals. However, if a low level input signal happens to fall on that part of the A/D transfer function with the differential nonlinearity error, the effect will be significant.

## MISSING CODES

Missing codes represent a special kind of differential nonlinearity. The quantization step width for a missing code is 0 LSB, which results in a differential nonlinearity of -1 LSB. Figure 7 points out two missed codes in the transfer function.


Figure 5-Static Input Conditions

## QUANTIZATION UNCERTAINTY

Analog-to-digital converters exhibit an inherent quantization uncertainty of $\pm 1 / 2$ LSB. This uncertainty is a fundamental characteristic of the quantization process and cannot be reduced for a converter of a given resolution.

## QUANTIZATION ERROR

Quantization error is the fundamental, irreducible error associated with the perfect quantizing of a continuous (analog) signal into a finite number of digital bits (ADD transfer function). A 12-bit A/D converter can represent an input voltage with a best case uncertainty of 1 part in $2^{12}$ ( 1 part in 4096). In real A/Ds under dynamic operating conditions, the quantization bands (bit change step vs input amplitude) for certain codes can be significantly larger (or smaller) than the ideal. The ideal width of each quantization step (or band) is $Q=F S R / 2^{N}$ where $F S R=$ full scale range and $N=12$. Non- ideal quantization bands represent differential nonlinearity errors (See Figures 5, 6 and 7).

## RESOLUTION - ACTUAL VS. AVAILABLE

The available resolution of an N -bit converter is 2 N . This means it is theoretically posssible to generate $2^{\mathrm{N}}$ unique output codes.


Figure 6-Quantizing error


Figure 7-Dynamic Conditions

## THROUGHPUT

Maximum throughput is the greatest number of conversions per second at which an ADC will deliver its full rated performance. This is equivalent to the inverse of the sum of the multiplex time (if applicable), the $\mathrm{S} / \mathrm{H}$ settling time and the conversion time.

GAIN
The slope of the transfer curve. Gain is generally user adjustable to compensate for long term drift.

## ACQUISITION TIME/APERTURE DELAY TIME

In the HADC574Z, this is the time delay between the $\mathrm{R} / \overline{\mathrm{C}}$ falling edge and the actual start of the HOLD mode in a sample and HOLD function.

## APERTURE JITTER

A specification indicating how much the aperture delay time varies between samples.

## SUCCESSIVE APPROXIMATION ADC

The successive approximation converter uses an architecture with inherently high throughput rates which converts high frequency signals with great accuracy. A sample and hold type circuit can be used on the input to freeze these signals during conversion.

An N -bit successive approximation converter performs a sequence of tests comparing the input voltage to a successively narrower voltage range. The first range is half full scale, the next is quarter full scale, etc., until it reaches the Nth test which narrows it to a range of $1 / 2^{\mathrm{N}}$ of full scale. The conversion time is fixed by the clock frequency and is thus independent of the input voltage.

## UNIPOLAR OFFSET

The first transition should occur at a level $1 / 2$ LSB above analog common. Unipolar offset is defined as the deviation of the actual transition from that point. This offset can be adjusted as discussed on the following pages. The unipolar offset temperature coefficient specifies the maximum change of the transition point over temperature, with and without external adjustment.

## BIPOLAR OFFSET

In the bipolar mode, the major carry transition (0111 11111111 to 100000000000 ) should occur for an analog value $1 / 2$ LSB below analog common. The bipolar offset error and temperature coefficient specify the initial deviation and maximum change in the error over temperature.

## CONVERSION TIME

The time required to complete a conversion over the specified operating range. Conversion time can be expressed as time/bit for a converter with selectable resolution or as time/conversion when the number of bits is constant. The HADC574Z is specified as time/conversion for all 12-bits. Conversion time should not be confused with maximum allowable analog input frequency which is discussed later.

## FULL SCALE CALIBRATION ERROR

The last transition (from 111111111110 to 1111 11111111 1111) should occur for an analog value 1 and $1 / 2$ LSB below the nominal full scale ( 9.9963 Volts for 10.000 Volts full scale). The full scale calibration error is the deviation of the actual level at the last transition from the ideal level. This error, which typically is 0.05 to $0.1 \%$ of full scale, can be trimmed out as shown in Figures 11 and 12. The full scale calibration error over temperature is given with and without the initial error trimmed out. The temperature coefficients for each grade indicate the maximum change in the full scale gain from the initial value using the internal 10 Volt reference.

## TEMPERATURE COEFFICIENTS

The temperature coefficients for full scale calibration, unipolar offset, and bipolar offset specify the maximum change from the initial $\left(25^{\circ} \mathrm{C}\right)$ value to the value at $T$ min or Tmax.

## POWER SUPPLY REJECTION

The standard specifications for the HADC574Z assume +5.00 and +15.00 or +12.00 Volt supplies. The only effect of power supply error on the performance of the device will be a small change in the full scale calibration. This will result in a linear change in all lower order codes. The specifications show the maximum change in calibration from the initial value with the supplies at the various limits.

## CODE WIDTH

A fundamental quantity for A/D converter specifications is the code width. This is defined as the range of analog input values for which a given digital output code will occur. The nominal value of a code width is equivalent to 1 least significant bit (LSB) of the full scale range or 2.44 mV out of 10 Volts for a 12 -bit ADC.

## LEFT-JUSTIFIED DATA

The data format used in the HADC574Z is left-justified. This means that the data represents the analog input as a fraction of full scale, ranging from 0 to 4095/4096. This implies a binary point to the left of the MSB.

## MONOTONICITY

This characteristic describes an aspect of the code to code progression from minimum to maximum input. A device is said to be monotonic if the output code continuously increases as the input signal increases, and if the output code continuously decreases as the input signal decreases. Figure 7 demonstrates nonmonotonic behavior.

## CIRCUIT OPERATION

The HADC574Z is a complete 12-bit Analog-To-Digital converter which consists of a single chip version of the industry standard 574. This single chip contains a precision 12-bit capacitor digital-to-analog converter (CDAC) with voltage reference, comparator, successive approximation register (SAR), sample \& hold, clock, output buffers and control circuitry to make it possible to use the HADC574Z with few external components.

When the control section of the HADC574Z initiates a conversion command, the clock is enabled and the successive-approximation register is reset to all zeros. Once the conversion cycle begins, it can not be stopped or re-started and data is not available from the output buffers.

The SAR, timed by the clock, sequences through the conversion cycle and returns an end-of-convert flag to the control section of the ADC. The clock is then disabled by the control section, the output status goes low, and the control section is enabled to allow the data to be read by external command.

The internal HADC574Z 12-bit CDAC is sequenced by the SAR starting from the MSB to the LSB at the beginning of the conversion cycle to provide an output voltage from the CDAC that is equal to the input signal voltage (which is divided by the input voltage divider network). The comparator determines whether the addition of each successively-weighted bit voltage causes the CDAC output voltage summation to be greater or less than the input voltage; if the sum is less, the bit is left on; if more, the bit is turned off. After testing all the bits, the SAR contains a 12-bit binary code which accurately represents the input signal to within $\pm 1 / 2$ LSB.

The internal reference provides the voltage reference to the CDAC with excellent stability over temperature and time. The reference is trimmed to 10.00 Volts $\pm 1 \%$ and can supply up to 2 mA to an external load in addition to that required to drive the reference input resistor ( 1 mA ) and offset resistor ( 1 mA ) when operating with $\pm 15 \mathrm{~V}$ supplies. If the HADC574Z is used with $\pm 12 \mathrm{~V}$ supplies, or if external current must be supplied over the full temperature range, an
external buffer amplifier is recommended. Any external load on the HADC574Z reference must remain constant during conversion.

The sample and hold feature is a bonus of the CDAC architecture. Therefore the majority of the S/H specifications are included within the A/D specifications.

Although the sample-and-hold circuit is not implemented in the classical sense, the sampling nature of the capacitive DAC makes the HADC574Z appear to have a built in sample-and-hold. This sample-and-hold action substantially increases the signal bandwidth of the HADC574Z over that of similar competing devices.

Note that even though the user may use an external sample and hold for very high frequency inputs, the internal sample and hold still provides a very useful isolation function. Once the internal sample is taken by the CDAC capacitance, the input of the HADC574Z is disconnected from the user's sample and hold. This prevents transients occuring during conversion from being inflicted upon the attached sample and hold buffer. All other 574 circuits will cause a transient load current on the sample and hold which will upset the buffer output and may add error to the conversion itself.

Furthermore, the isolation of the input after the acquisition time in the HADC574Z allows the user an opportunity to release the hold on an external sample and hold and start it tracking the next sample. This will increase system throughput with the user's existing components.

## SAMPLE AND HOLD FUNCTION

When using an external $\mathrm{S} / \mathrm{H}$, the HADC574Z acts as any other 574 device because the internal $\mathrm{S} / \mathrm{H}$ is transparent. The sample/hold function in the HADC574Z is inherent to the capacitor DAC structure, and its timing characteristics are determined by the internally generated clock. However, for limited frequency ranges, the internal S/H may eliminate the need for an external $\mathrm{S} / \mathrm{H}$. This function will be explained in the next two sections.

The operation of the S/H function is internal to the HADC574Z and is controlled through the normal R/C control line (refer to Figure 8.) When the R/C line makes a negative transition, the HADC574Z starts the timing of the sampling and conversion. The first 2 clock cycles are allocated to signal acquisition of the input by the CDAC (this time is defined as $T_{a c q}$ ). Following these two cycles, the input sample is taken and held. The A/D conversion follows this cycle with
the duration controlled by the internal clock cycle.
During $T_{\text {acq }}$, the equivalent circuit of the HADC574Z in-put is as shown in Figure 9 (the time constant of the input is independant of which input level is used.) This CDAC capacitance must be charged up to the input voltage during $T_{\text {acq. }}$. Since the CDAC time constant is 100 nsecs., there is more than enough time for settling the input to 12 bits of accuracy during $\mathrm{T}_{\text {acq }}$. The excess time left during $T_{\text {acq }}$ allows the user's buffer amp to settle after being switched to the CDAC load.

Note that because the sample is taken relative to the $\mathrm{R} / \overline{\mathrm{C}}$ transition, $\mathrm{T}_{\text {acq }}$ is also the traditional "aperture delay" of this internal sample and hold.

Since $T_{\text {acq }}$ is measured in clock cycles, its duration will vary with the internal clock frequency. This results in $\mathrm{T}_{\mathrm{acq}}=2.4 \mu$ secs $\pm 0.6 \mu$ secs. between units and over temperature.

Offset, gain and linearity errors of the S/H circuit, as well as the effects of its droop rate, are included in the overall specs for the HADC574Z.

## APERTURE UNCERTAINTY

Often the limiting factor in the application of the sample and hold is the uncertainty in the time the actual sample is taken - i.e. the "aperture jitter" or TAJ. The HADC574Z has a nominal aperture jitter of 20 nsecs. between samples. With this jitter, it is possible to accurately sample a wide range of input signals.

The aperture jitter causes an amplitude uncertainty for any input where the voltage is changing. The approximate voltage error due to aperture jitter depends on the slew rate of the signal at the sample point (See Figure 10). The magnitude of this change for a sinewave can be calculated:

Assume a sinusoidal signal, maximum slew rate, $\mathrm{Sr}=$ $2 \pi \mathrm{fVp}$ ( $\mathrm{Vp}=$ peak voltage, $\mathrm{f}=$ frequency of sine wave) For an N -bit converter to maintain $+/-1 / 2$ LSB accuracy :

Verr $\leq \mathrm{Vfs} / 2^{\mathrm{N}+1} \quad$ (where Verr is the allowable error voltage and Vfs is the full scale voltage)

From Figure 10:
$\mathrm{Sr}=\Delta \mathrm{V} / \Delta \mathrm{T}=2 \pi \mathrm{fVp}$
Let $\Delta V=\mathrm{Verr}=\mathrm{V}_{\mathrm{fs}}{ }^{-}(\mathrm{N}+1), \mathrm{Vp}=\mathrm{Vin} / 2$ and $\Delta \mathrm{T}=\mathrm{t}_{\mathrm{A}} \mathrm{J}$ (the time during which unwanted voltage change occurs)

The above conditions then yield:
$\mathrm{Vfs} / 2^{\mathrm{N}+1} \geq \pi \mathrm{fVint} \mathrm{t}_{\mathrm{AJ}}$ or $\mathrm{f}_{\max } \leq \mathrm{Vfs} /\left(\pi \mathrm{Vin} \mathrm{t}_{\mathrm{AJ}}\right) 2^{\mathrm{N}+1}$
For the HADC574Z, TAJ $=20 \mathrm{nsec}$, therefore $f_{\text {max }} \leq 2 \mathrm{KHz}$.

For higher frequency signal inputs, an external sample and hold is recommended.


Figure 8 - Sample and Hold Function


Figure 9 - Equivalent HADC574Z Input Circuit


Figure 10 - Aperture Uncertainty

## TYPICAL INTERFACE CIRCUIT

The HADC574Z is a complete A/D converter that is fully operational when powered up and issued a Start Convert Signal. Only a few external components are necessary as shown in Figures 11 and 12. The two typical interface circuits are for operating the HADC574Z in either a unipolar or bipolar input mode. Further information is given in the following sections on these connections, but first a few considerations concerning board layout to achieve the best operation.

For each application of this device, strict attention must be given to power supply decoupling, board layout (to reduce pickup between analog and digital sections), and grounding. Digital timing, calibration and the analog signal source must be considered for correct operation.

To achieve specified accuracy, a double-sided printed circuit board with a copper ground plane on the component side is recommended. Keep analog signal traces away from digital lines. It is best to lay the P.C. board out such that there is an analog section and a digital section with a single point ground connection between the two through an RF bead. If this is not possible, run analog signals between ground traces and cross digital lines at right angles only.

## POWER SUPPLIES

The supply voltages for the HADC574Z must be kept as quiet as possible from noise pickup and also regulated from transients or drops. Because the part has 12 -bit accuracy, voltage spikes on the supply lines can cause several LSB deviations on the output. Switching power supply noise can be a problem. Careful filtering and shielding should be employed to prevent the noise from being picked up by the converter.

Capacitor bypass pairs are needed from each supply pin to it's respective ground to filter noise and counter the problems caused by the variations in supply current. A $10 \mu \mathrm{~F}$ tantalum and a $0.1 \mu \mathrm{~F}$ ceramic type in parallel between $V_{\text {LOGIC }}$ (pin1) and digital common (pin15), and $\mathrm{V}_{\mathrm{CC}}$ (pin 7) and analog common (pin 9) is sufficient. $\mathrm{V}_{\mathrm{EE}}$ is generated internally so pin 11 may be grounded or connected to a negative supply if the HADC574Z is being used to upgrade an already existing design.

## GROUNDING CONSIDERATIONS

Any ground path from the analog and digital ground should be as low resistance as possible to accomodate the ground currents present with this device.

The analog ground current is approximately 6mADC while the digital ground is 3mADC. The analog and digital common pins should be tied together as close to the package as possible to guarantee best performance. The code dependant currents flow through the $\mathrm{V}_{\mathrm{LOGI}}$ and $\mathrm{V}_{\mathrm{CC}}$ terminals and not through the analog and digital common pins.

The HADC574Z may be operated by a $\mu \mathrm{P}$ or in the stand-alone mode. The part has four standard input ranges: 0 V to $+10 \mathrm{~V}, 0 \mathrm{~V}$ to $+20 \mathrm{~V}, \pm 5 \mathrm{~V}$ and $\pm 10 \mathrm{~V}$. The maximum errors that are listed in the specifications for gain and offset may be adjusted externally to zero as explained in the next two sections.

## CALIBRATION AND CONNECTION PROCEDURES

## UNIPOLAR

The calibration procedure consists of adjusting the converter's most negative output to its ideal value for offset adjustment, and then adjusting the most positive output to its ideal value for gain adjustment.

Starting with offset adjustment and referring to Figure 11, the midpoint of the first LSB increment should be positioned at the origin to get an output code of all 0 s . To do this, an input of $+1 / 2$ LSB or +1.22 mV for the 10 V range and +2.44 mV for the 20 V range should be applied to the HADC574Z. Adjust the offset potentiometer R1 for code transition flickers between 000000000000 and 000000000001.

The gain adjustment should be done at positive full scale. The ideal input corresponding to the last code change is applied. This is 1 and $1 / 2$ LSB below the nominal full scale which is +9.9963 V for the 10 V range and +19.9927 V for the 20 V range. Adjust the gain potentiometer R2 for flicker between codes 1111 11111110 and 11111111 1111. If calibration is not necessary for the intended application, replace R1 with a $50 \Omega, 1 \%$ metal film resister and remove the network from pin 12. Connect pin 12 to pin 9. Connect the analog input to pin 13 for the 0 V to 10 V range or to pin 14 for the 0 V to 20 V range.

## BIPOLAR

The gain and offset errors listed in the specifications may be adjusted to zero using the potentiometers R1
and R2 (See Figure 12). If adjustment is not needed, either or both pots may be replaced by a $50 \Omega, 1 \%$ metal film resistor.

To calibrate, connect the analog input signal to pin 13 for a $\pm 5 \mathrm{~V}$ range or to pin 14 for a $\pm 10 \mathrm{~V}$ range. First apply a DC input voltage $1 / 2$ LSB above negative full scale which is -4.9988 V for the $\pm 5 \mathrm{~V}$ range or 9.9976 V for the $\pm 10 \mathrm{~V}$ range. Adjust the offset potentiometer R1 for flicker between output codes 000000000000 and 00000000 0001. Next, apply a DC input voltage 1 and 1/2LSB below positive full scale which is +4.9963 V for the $\pm 5 \mathrm{~V}$ range or +9.9927 V for the $\pm 10 \mathrm{~V}$ range. Adjust the gain potentiometer R2 for flicker between codes 1111 11111110 and 111111111111.

## alternative

The $100 \Omega$ potentiometer R2 provides gain adjust for the 10 V and 20 V ranges. In some applications, a full scale of 10.24 V (for an LSB of 2.5 mV ) or 20.48 V (for an LSB of 5.0 mV ) is more convenient. For these, replace R2 by a $50 \Omega, 1 \%$ metal film resistor. Then to provide gain adjust for the 10.24 V range, add a $200 \Omega$ potentiometer in series with pin 13 . For the 20.48 V range, add a $1000 \Omega$ potentiometer in series with pin 14.

## CONTROLLING THE HADC574Z

The HADC574Z can be operated by most microprocessor systems due to the control input pins and on-chip logic. It may also be operated in the "stand-alone" mode and enabled by the R/X input pin. Full $\mu \mathrm{P}$ control consists of selecting an 8 or 12-bit conversion cycle, initiating the conversion, and reading the output data when ready. The output read has the options of choosing either 12 -bits at once or 8 followed by 4 -bits in a left-justified format. All five control inputs are TTL/CMOS compatible and include $12 / 8, \mathrm{CS}, \mathrm{Ao}, \mathrm{R} / \mathrm{C}$ and CE). The use of these inputs in controlling the converter's operations is shown in Table 1, and the internal control logic is shown in a simplified schematic in Figure 13.

## STAND-ALONE OPERATION

The simplest interface is a control line connected to $\mathrm{R} / \mathrm{C}$. The other controls must be tied to known states as follows: CE and $12 / 8$ are wired high, Ao and $\overline{C S}$ are wired low. The output data arrives in words of 12 -bits each. The limits on R/C duty cycle are shown in Figures 3 and 4. It may have duty cycle within and including the extremes shown in the specifications on the pages. In general, data may be read when R/C is high unless STS is also high, indicating a conversion is in progress.

A conversion start transition latches the state of Ao as shown in Figure 13 and Table 1. The latched state determines if the conversion stops with 8 -bits (Ao high) or continues for 12-bits (Ao low). If all 12-bits are read following an 8-bit conversion, the three LSB's will be a logic " 0 " and DB3 will be a logic "1". Ao is latched because it is also involved in enabling the output buffers as will be explained later. No other control inputs are latched.


Figure 11 - Unipolar Input Connections


Figure 12 - Bipolar Input Connections

A conversion may be initiated by a logic transition on any of the three inputs: $C E, C S, R / C$, as shown in Table 1. The last of the three to reach the correct state starts the conversion, so one, two or all three may be dynamically controlled. The nominal delay from each is the same and all three may change state simultaneously. In order to assure that a particular input controls the start of conversion, the other two should be setup at least 50 ns earlier. Refer to the convert mode timing specifications. The Convert Start timing diagram is illustrated in Figure 1.

The output signal STS is the status flag and goes high only when a conversion is in progress. While STS is high, the output buffers remain in a high impedance state so that data can not be read. Also, when STS is high, an additional Start Convert will not reset the converter or reinitiate a conversion. Note, if Ao changes state after a conversion begins, an additional Start Convert command will latch the new state of Ao and possibly cause a wrong cycle length for that conversion (8 versus 12-bits).

## READING THE OUTPUT DATA

The output data buffers remain in a high impedance state until the following four conditions are met: R/C is high, STS is low, CE is high and $\overline{C S}$ is low. The data lines become active in response to the four conditions and output data according to the conditions of $12 / 8$ and Ao. The timing diagram for this process is shown in Figure 2. When $12 / 8$ is high, all 12 data outputs become active simultaneously and the Ao input is ignored. This is for easy interface to a 12 or 16 -bit data bus. The $12 / \overline{8}$ input is usually tied high or low, although it is TTLCMOS compatible.

## Table 1-Truth Table for the HADC574Z Control Inputs

CE	CS	R/C̄	12/8	Ao	Operation
0	X	X	X	X	None
X	1	$\mathbf{x}$	$\mathbf{x}$	$\mathbf{x}$	None
4	0	0	$\mathbf{x}$	0	Intiate 12 bit conversion
4	0	0	$\mathbf{x}$	1	Initiate 8 blt conversion
1	$\downarrow$	0	$\mathbf{x}$	0	Initiate 12 blt conversion
1	$\dagger$	0	$\mathbf{x}$	1	Initiate 8 blt conversion
1	0	$\downarrow$	$\mathbf{x}$	0	Inltate 12 blt conversion
1	0	$\downarrow$	X	1	Initiate 8 bit converaion
1	0	1	1	X	Enable 12 bit Output
1	0	1	0	0	Enable 8 MSB's Only
1	0	1	0	1	Enable 4 LSB's Plus 4 Tralling Zeroes

When $12 / \overline{8}$ is low, the output is separated into two 8 bit bytes as shown below:

$$
\begin{array}{ll}
\text { BYTE } 1 & \text { BYTE } 2
\end{array}
$$



This configuration makes it easy to connect to an 8-bit data bus as shown in Figure 13. The Ao control can be connected to the least significant bit of the data bus in order to store the output data into two consecutive memory locations. When Ao is pulled low, the 8 MSBs are enabled only. When Ao is high, the 4 MSBs are disabled, bits 4 through 7 are forced to a zero and the four LSBs are enabled. The two byte format is "left justified data" as shown above and can be considered to have a decimal point or binary to the left of byte 1.

Ao may be toggled without damage to the converter at any time. Break-before-make action is guaranteed between the two data bytes. This assures that the outputs which are strapped together in Figure 13 will never be enabled at the same time.

In Figure 2, it can be seen that a read operation usually begins after the conversion is complete and STS is low. If earlier access is needed, the read can begin no later than the addition of times $t_{D D}$ and $t_{H S}$ before STS goes low.


Figure 13 - Interfacing the HADC574Z to an 8-bit Data Bus


Figure 14 - HADC574Z Control Logic


Figure 15 - Burn-in Schematic

PIN FUNCTIONS HADC574Z

PIN ASSIGNMENT HADC574Z
TOP VIEW


28 LEAD DIP

NAME FUNCTION

V LOGIC	Logic Supply Voltage,   Nominally +5 V
$12 / \overline{8}$	Data Mode Select
$\overline{\mathrm{CS}}$	Chip Select
Ao	Byte Address/Short cycle

# SIGNAL PROCESSING TECHNOLOGIES 

# FAST, COMPLETE 12-BIT $\mu$ P COMPATIBLE A/D CONVERTER WITH SAMPLE/HOLD <br> PRELIMINARY INFORMATION 

## FEATURES:

- IMPROVED PIN-TO-PIN COMPATIBLE MONOLITHIC VERSION OF THE HI674A
- Complete 12-bit A/D Converter with Sample-Hold, Reference and Clock
- Low Power Dissipation ( 150 mW Max)
- Faster Conversion and Pin Compatible with HADC574Z
-12-bit Linearity (over temp)
- $15 \mu \mathrm{~s}$ Max Conversion Time
- No Negative Supply Required
- Full Bipolar and Unipolar Input Range


## GENERAL DESCRIPTION

The HADC674Z is a complete, 12 -bit successive approximation A/D converter. The device is integrated on a single die to make it the first monolithic CMOS version of the industry standard device, H1674A. Included on chip is an internal reference, clock, and a sample and hold. The S/H is an additional feature not available on similar devices.

The HADC674Z features $15 \mu \mathrm{~s}$ (Max) conversion time of 10 or 20 Volt input signals. Also, a 3 -state output buffer is added for direct interface to an 8 -, 12-, or 16 bit $\mu \mathrm{P}$ bus.

The HADC674Z is manufactured on Honeywell SPT's Bipolar Enhanced CMOS process (BEMOS) which combines CMOS logic and fast bipolar npn transistors to yield high performance digital and analog functions on one chip.

## BLOCK DIAGRAM



# ABSOLUTE MAXIMUM RATINGS (Beyond which damage may occur) ${ }^{1} \mathbf{2 5}^{\circ} \mathrm{C}$ 

```
Supply Voltages
 Positive Supply Voltage (V}\mp@subsup{V}{CC}{}\mathrm{ to DGND)...0 to +16.5V
 Logic Supply Voltage (VLOGIC to DGND)..........0 to +7V
 Analog to Digital Ground (AGND to DGND)...-0.5 to +1V
Input Voltages
 Control Input Voltages (to DGND).
 (CE, CS, AO, 12/8, R/C)...............-0.5 to V LOGIC +0.5V
 Analog Input Voltage (to AGND)......................\pm16.5V
 (REF IN, BIP OFF, 10Vin)
 20V Vin Input Voltage (to AGND)........................土24V
```


## Output

Reference Output Voltage.........Indefinite short to GND Momentary short to $\mathrm{V}_{\mathrm{CC}}$
Temperature
Operating Temperature, ambient. -55 to +125 (case) ${ }^{\circ} \mathrm{C}$ junction
$+175^{\circ} \mathrm{C}$ Lead Temperature, (soldering 10 seconds)....... $+300^{\circ} \mathrm{C}$ Storage Temperature -65 to $+150^{\circ} \mathrm{C}$
Power Dissipation
1000 mW
Thermal Resistance $\left(\theta_{\mathrm{j}} \mathrm{A}\right)$............................... $48^{\circ} \mathrm{C} / \mathrm{W}$

## Notes:

1. Operation at any Absolute Maximum Rating is not implied. See Operating Conditions for proper nominal applied conditions in typical applications.

## COMMERCIAL TEMPERATURE RANGE O TO $+70^{\circ} \mathrm{C}$

Typical $@+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}$ or $+12 \mathrm{~V}, \mathrm{~V}_{\mathrm{LOGIC}}=+5 \mathrm{~V}$, Unless otherwise specified.

PARAMETER	TEST   CONDITIONS	TEST   LEVEL	HADC674ZCC   MIN TYP MAX	HADC674ZBC   MIN TYP MAX	HADC674ZAC   MIN TYP MAX	

DC ELECTRICAL CHARACTERISTICS

Resolution			12	12	12	BITS
Linearity Error	Tmin to Tmax	1	$\pm 1$	$\pm \frac{1}{2}$	$\pm \frac{1}{2}$	LSB
Differential Linearity Error	Tmin to Tmax	I	$\pm 1$	$\pm \frac{1}{2}$	$\pm \frac{1}{2}$	LSB
Unipolar Offset	Adjustable to zero	I	$\pm .1 \pm 2$	$\pm .1 \pm 2$	$\pm .1 \pm 2$	LSB
Bipolar Offset ${ }^{1}$	Adjustable to zero	1	$\pm 10$	$\pm 4$	$\pm 4$	LSB
Full Scale Calibration Error ${ }^{1}$		1	0.3	0.3	0.3	\% of FS
	No adjustment at $+25^{\circ} \mathrm{C}$ Tmin to Tmax	11	0.5	0.4	0.35	\% of FS
	With adjustment at $+25^{\circ} \mathrm{C}$ Tmin to Tmax	II	0.22	0.12	0.05	\% of FS
Temperature Coefficients	Using intemal reference					
Unipolar Offset		1	$\begin{array}{cc}  \pm .2 & \pm 2 \\ & (10) \\ \hline \end{array}$	$\begin{array}{ll}  \pm .1 & \pm 1 \\ & (5) \\ \hline \end{array}$	$\begin{array}{ll}  \pm .1 & \pm 1 \\ & (5) \\ \hline \end{array}$	$\begin{array}{\|l\|l} \text { LSB } \\ \left(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\right) \\ \hline \end{array}$
Bipolar Offset		1	$\begin{array}{cc}  \pm .2 & \pm 2 \\ & (10) \\ \hline \end{array}$	$\begin{array}{ll}  \pm .1 & \pm 1 \\ & (5) \\ \hline \end{array}$	$\begin{array}{ll}  \pm .1 & \pm 1 \\ & (5) \\ \hline \end{array}$	$\begin{aligned} & \text { LSB } \\ & \text { (ppm } \left./{ }^{\circ} \mathrm{C}\right) \end{aligned}$
Full Scale Calibration		1	$\begin{gathered} \pm 9 \\ (45) \\ \hline \end{gathered}$	$\begin{gathered} \pm 5 \\ (25) \end{gathered}$	$\begin{aligned} & \pm 2 \\ & (10) \end{aligned}$	$\begin{aligned} & \text { LSB } \\ & \left(\text { ppm } /{ }^{\circ} \mathrm{C}\right) \end{aligned}$

Note 1: Fixed $50 \Omega$ resistor from REF OUT to REF IN and REF OUT to BIP OFF.

COMMERCIAL TEMPERATURE RANGE 0 TO $+\mathbf{7 0} 0^{\circ} \mathrm{C}$
Typical @ $+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}$ or $+12 \mathrm{~V}, \mathrm{~V}_{\mathrm{LOGI}}=+5 \mathrm{~V}$, Unless otherwise specified.

PARAMETER	TEST   CONDITIONS	TEST   LEVEL	HADC674ZCC   MIN TYP MAX	HADC674ZBC	HADC674ZAC	

## DC ELECTRICAL CHARACTERISTICS

Power Supply Rejection	Max change in full scale calibration						
$\begin{aligned} & +13.5 \mathrm{~V}<V c c<+16.5 \mathrm{~V} \text { or } \\ & +11.4 \mathrm{~V}<\mathrm{Vcc}<+12.6 \mathrm{~V} \end{aligned}$		1	$\pm 2$	$\pm 1$		$\pm 1$	LSB
$+4.5 \mathrm{~V}<\mathrm{V}_{\text {LOGIC }}<+5.5 \mathrm{~V}$		I	$\pm \frac{1}{2}$	$\pm 1$		$\pm 1$	LSB
Analog Inputs Ranges   Bipolar		1	-5 +5   -10 +10	-5 +5   -10 +10	$\begin{aligned} & -5 \\ & -10 \end{aligned}$	$\begin{array}{r} +5 \\ +10 \end{array}$	VOLTS   VOLTS
Unipolar		1	0 +10   0 +20	0 +10   0 +20	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & +10 \\ & +20 \end{aligned}$	
Input Impedance 10 Volt Span 20 Volt Span		I	$\begin{array}{lrr} 3.75 & 5 & 6.25 \\ 15 & 20 & 25 \\ \hline \end{array}$	$\begin{array}{\|lcr} 3.75 & 5 & 6.25 \\ 15 & 20 & 25 \\ \hline \end{array}$	$\begin{array}{\|lc} 3.75 & 5 \\ 15 & 20 \\ \hline \end{array}$	$\begin{array}{r} 6.25 \\ 25 \\ \hline \end{array}$	$\begin{aligned} & k \Omega \\ & k \Omega \end{aligned}$
Power Supplies Operating Voltage Range $V_{\text {LOGIC }}$		1	+4.5 +5.5	+4.5 +5.5	+4.5	+5.5	VOLTS
V cc		1	+11.4 +16.5	+11.4 +16.5	+11.4	+16.5	VOLTS
$V_{\text {EE }}$	Not required for circuit operation.						VOLTS
Operating Current logic		1	13	13	1	3	mA
Icc		1	79	$7 \quad 9$	7	9	mA
$l_{\text {EE }}$		II	0	0	0		mA
Power Dissipation $+15 \mathrm{~V},+5 \mathrm{~V}$		1	110150	110150	110	150	mW
Internal Reference Voltage		1	$9.9 \quad 10 \quad 10.1$	$9.9 \quad 10 \quad 10.1$	9.910	10.1	VOLTS
Output Current ${ }^{2}$		I	2	2		2	mA

Note 2: Available for external loads, external load should not change during conversion.
When supplying an external load and operating on a +12 V supply, a buffer amplifier must be provided for the reference output.

## COMMERCIAL TEMPERATURE RANGE 0 TO $+70^{\circ} \mathrm{C}$

$\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}$ or $+12 \mathrm{~V}, \mathrm{~V}_{\text {LOGIC }}=+5 \mathrm{~V}$, Unless otherwise specified.

PARAMETER	TEST   CONDITIONS	TEST   LEVEL.	HADC674ZCC   MIN TYP MAX	HADC674ZBC   MIN TYP MAX	HADC674ZAC   MIN TYP MAX	UNITS

DIGITAL CHARACTERISTICS The following specifications are guaranteed over the full temperature range.

Logic Inputs (CE, $\overline{\mathrm{CS}}$, R/C, Ao, 12/8)   Logic "1"3		I	2.45	2.45 .5	2.4	5.5	VOLTS
Logic "0"		1	$-0.5+0.8$	$-0.5+0.8$	-0.5	+0.8	VOLTS
Current	0 to 5.5V Input	1	$\pm .01+5$	$\pm .01+5$	$\pm .01$	+5	$\mu \mathrm{A}$
Capacitance		II	5	5	5		pF
Logic Outputs (DB11-DB0, STS)   Logic "0"	$($ ISink $=1.6 \mathrm{~mA})$	1	+0.4	+0.4		+0.4	VOLTS
Logic "1"	(ISOURCE $=500 \mu \mathrm{~A})$	1	+2.4	+2.4	+2.4		VOLTS
Leakage	(High Z State, DB11- DB0 Only)	I	$-5 \pm 0.1+5$	$-5 \pm 0.1+5$	$-5 \pm 0.1$	+5	$\mu \mathrm{A}$
Capacitance		II	5	5	5		pF

Note 3: Although the guaranteed threshold is higher than the standard TTL threshold ( +2 Volts), loading is much less than standard TTL due to the CMOS nature of the inputs.

## MILITARY TEMPERATURE RANGE $-55 \mathrm{TO}+125^{\circ} \mathrm{C}$

Typical @ $+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}$ or $+12 \mathrm{~V}, \mathrm{~V}_{\mathrm{LOGIC}}=+5 \mathrm{~V}$, Unless otherwise specified.

PARAMETER	TEST   CONDITIONS	TEST   LEVEL	HADC674ZCM   MIN TYP MAX	HADC674ZBM   MIN TYP MAX	HADC674ZAM   MIN TYP MAX	UNITS

DC ELECTRICAL CHARACTERISTICS

Resolution					12			12			12	BITS
Linearity Error		1			$\pm 1$			$\pm 1$			$\pm 1$	LSB
Linearity Error	Tmin to Tmax	I			$\pm 1$			$\pm 1$			$\pm 1$	LSB
Differential Linearity Error	Tmin to Tmax	I			$\pm 1$			$\pm 1$			$\pm 1$	LSB
Unipolar Offset	Adjustable to zero	1			$\pm 2$			$\pm 2$			$\pm 2$	LSB
Bipolar Offset ${ }^{1}$	Adjustable to zero	1			$\pm 10$			$\pm 4$			$\pm 4$	LSB
Full Scale Calibration Error ${ }^{1}$		1			0.3			0.3			0.3	\% of FS
	No adjustment at $+25^{\circ} \mathrm{C}$ Tmin to Tmax	II		0.8			0.6			0.4		\% of FS
	$\begin{aligned} & \text { With adjustment at } \\ & +250^{50} \mathrm{C} \\ & \mathrm{Tmin}_{\text {to Tmax }} \\ & \hline \end{aligned}$	II		0.5			0.25			0.12		\% of FS
Temperature Coefficients	Using internal reference Tmin to Tmax											
Unipolar Offset		1			$\begin{aligned} & \pm^{2} \\ & (5) \\ & \hline \end{aligned}$			$\begin{array}{r}  \pm 1 \\ (2.5) \end{array}$			$\begin{array}{r}  \pm 1 \\ (2.5) \end{array}$	$\begin{aligned} & \mathrm{LSB} \\ & \left(\mathrm{ppm}{ }^{\circ} \mathrm{C}\right) \end{aligned}$
Bipolar Offset		1			$\begin{gathered} \pm 4 \\ (10) \end{gathered}$			$\begin{gathered} \pm 2 \\ (5) \end{gathered}$			$\begin{array}{r}  \pm 1 \\ (2.5) \end{array}$	$\begin{aligned} & \mathrm{LSB} \\ & \left(\mathrm{ppm}{ }^{\circ} \mathrm{C}\right) \end{aligned}$
Full Scale Calibration		I			$\begin{aligned} & \pm 20 \\ & (50) \\ & \hline \end{aligned}$			$\begin{aligned} & \pm 10 \\ & (25) \end{aligned}$			$\begin{array}{r}  \pm 5 \\ (12.5) \\ \hline \end{array}$	LSB (ppm ${ }^{\circ} \mathrm{C}$ C
Power Supply Rejection	Max change in full scale calibration											
$\begin{aligned} & +13.5 \mathrm{~V}<\mathrm{Vcc}<+16.5 \mathrm{~V} \text { or } \\ & +11.4 \mathrm{~V}<\mathrm{Vcc}<+12.6 \mathrm{~V} \end{aligned}$		1			$\pm 2$			$\pm 1$			$\pm 1$	LSB
$+4.5 \mathrm{~V}<\mathrm{V}_{\text {LOGIC }}<+5.5 \mathrm{~V}$		1			$\pm 1$			$\pm \frac{1}{2}$			$\pm \frac{1}{2}$	LSB
Analog Inputs Input Ranges Bipolar		1	$\begin{aligned} & -5 \\ & -10 \end{aligned}$		$\begin{array}{r} +5 \\ +10 \end{array}$	$\begin{aligned} & -5 \\ & -10 \end{aligned}$		$\begin{array}{r} +5 \\ +10 \end{array}$	$\begin{aligned} & -5 \\ & -10 \end{aligned}$		$\begin{array}{r} +5 \\ +10 \end{array}$	VOLTS
Unipolar		I	0		$\begin{aligned} & +10 \\ & +20 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & +10 \\ & +20 \end{aligned}$	$\left\lvert\, \begin{aligned} & 0 \\ & 0 \end{aligned}\right.$		$\begin{aligned} & +10 \\ & +20 \end{aligned}$	VOLTS   VOLTS
Input Impedance 10 Volt Span 20 Volt Span		I	$\begin{array}{l\|l} 3.75 \\ 15 \end{array}$	$\begin{array}{r} 5 \\ 20 \end{array}$		$\begin{aligned} & 3.75 \\ & 15 \end{aligned}$	$\begin{gathered} 5 \\ 20 \end{gathered}$		$\begin{array}{l\|l} 3.75 \\ 15 \end{array}$	$\begin{array}{r} 5 \\ 20 \end{array}$	$\begin{array}{r} 6.25 \\ 25 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \end{aligned}$

## MILITARY TEMPERATURE RANGE -55 TO $+125^{\circ} \mathrm{C}$

Typical @ $+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}$ or $+12 \mathrm{~V}, \mathrm{~V}_{\text {LOGIC }}=+5 \mathrm{~V}$, Unless otherwise specified.

PARAMETER	TEST CONDITIONS	TEST LEVEL	HADC674ZCM MIN TYP MAX			HADC674ZBM MIN TYP MAX			HADC674ZAM MIN TYP MAX			UNITS
DC ELECTRICAL CHARACTERISTICS												
Power Supplies Operating Voltage Range VLOGIC		1	+4.5		+5.5	+4.5		+5.5	+4.5		+5.5	VOLTS
$\mathrm{V}_{\mathrm{CC}}$		I	+11.4	,	+16.5	+11.4		+16.5	+11.4	-	+16.5	VOLTS
$\mathrm{V}_{\mathrm{EE}}$	Not required for circuit operation.											VOLTS
Operating Current logic		I		1	3		1	3		1	3	mA
Icc		1		7	9		7	9		7	9	mA
$\mathrm{I}_{\mathrm{EE}}$		II		0			0			0		mA
Power Dissipation $\pm 15 \mathrm{~V},+5 \mathrm{~V}$		1		110	150		110	150		110	150	mW
Internal Reference Voltage		1		10	10.1	9.9	10	10.1		10	10.1	VOLTS
Output Current ${ }^{4}$		I			2			2			2	mA

DIGITAL CHARACTERISTICS
The following specifications are guaranteed over the full temperature range.

```Logic Inputs (CE, \overline{CS} R/C,AO,12/8) Logic "1"```		1	2.45 .5	2.45	$2.4 \quad 5.5$	VOLTS
Logic "0"		1	-0.5 +0.8	$-0.5 \quad+0.8$	-0.5 +0.8	VOLTS
Current	0 to +5.5 V Input	I	$\pm .01+5$	$\pm .01+5$	$\pm .01+5$	$\mu \mathrm{A}$
Capacitance		11	5	5	5	pF
```Logic Outputs (DB11-DBO, STS) Logic "0"```	( ISink $=1.6 \mathrm{~mA}$ )	1	+0.4	+0.4	+0.4	VOLTS
Logic "1"	$\begin{aligned} & \text { (ISOURCE = } \\ & 500 \mu \mathrm{~A}) \end{aligned}$	1	+2.4	+2.4	+2.4	VOLTS
Leakage	$\begin{array}{\|l\|} \hline \text { (High Z State, } \\ \text { DB11-DBO Only) } \end{array}$		$-5 \pm 0.1+5$	$-5 \pm 0.1+5$	-5 $\pm 0.1+5$	$\mu \mathrm{A}$
Capacitance		II	5	5	5	pF

Note 4: Available for external loads, external load should not change during conversion.
When supplying an external load and operating on +12 V supplies, a buffer amplifier must be provided for the reference output.

CONVERT MODE TIMING CHARACTERISTICS
Typical @ $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}$ or $+12 \mathrm{~V}, \mathrm{~V}_{\text {LOGIC }}=+5 \mathrm{~V}$, Unless otherwise specified.
\(\left.$$
\begin{array}{l|l|l|c|c|c|c}\hline \text { PARAMETER } & \begin{array}{l}\text { TEST } \\
\text { CONDITIONS } \\
\text { NOTE 5 }\end{array} & \begin{array}{l}\text { TEST } \\
\text { LEVEL }\end{array}
$$ \& \begin{array}{c}HADC674ZC <br>

MIN TYP MAX\end{array} \& $$
\begin{array}{c}\text { HADC674ZB }\end{array}
$$ \& HAD TYP MAX \& MIN TYP MAX\end{array}\right\}\) UNITS | MAD |
| :--- |

## AC ELECTRICAL CHARACTERISTICS

$\mathrm{t}_{\text {DSC }}$ STS Delay from CE		1		200		200		200	ns
$\mathrm{t}_{\text {HEC }}$ CE Pulse Width		1	50		50		50		ns
${ }_{\text {t }}^{\text {SSC }}$ CS $\overline{C S}$ to CE Setup		1	50		50		50		ns
$\mathrm{t}_{\mathrm{HSC}}^{\overline{\mathrm{CS}} \text { Low during } \mathrm{CE}} \text { High }$		I	50		50		50		ns
${ }^{\text {t }}$ SRC $\mathrm{R} / \mathrm{C}$ to CE Setup		I	50		50		50		ns
$t_{\text {HRC }}$ R/C Low During CE High		1	50		50		50		ns
${ }^{\text {t }}$ SAC Ao to CE Setup		1	0		0		0		ns
${ }^{\mathrm{t}} \mathrm{HAC}$ Ao Valid During CE High		1	50		50		50		ns
$t_{c}$ Conversion Time 12-Bit Cycle	Tmin to Tmax	1	9	15	9	15	9	15	$\mu \mathrm{s}$
8 -Bit Cycle	Tmin to Tmax	1	6	10	6	10	6	10	$\mu \mathrm{s}$

Note 5: Time is measured from $50 \%$ level of digital transitions. Tested with a 100 pF and $3 \mathrm{k} \Omega$ load for high impedance to drive and tested with 10 pF and $3 \mathrm{~K} \Omega$ load for drive to high impedance.


Figure 1 - Convert Mode Timing Diagram

READ MODE TIMING CHARACTERISTICS

## HADC674Z

Typical $@+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}$ or $+12 \mathrm{~V}, \mathrm{~V}_{\text {LOGIC }}=+5 \mathrm{~V}$, Unless otherwise specified.

PARAMETER	TEST   CONDITIONS   NOTE 5	TEST   LEVEL	HADC674ZC   MIN TYP MAX	HADC674ZB	HADC674ZA	

AC ELECTRICAL CHARACTERISTICS



Figure 2 - Read Mode Timing Diagram

STAND-ALONE MODE TIMING CHARACTERISTICS
Typical @ $+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}$ or $+12 \mathrm{~V}, \mathrm{~V}_{\mathrm{LOGIC}}=+5 \mathrm{~V}$, Unless otherwise specified.
$\left.\begin{array}{l|l|l|l|l|l|l}\hline \text { PARAMETER } & \begin{array}{l}\text { TEST } \\ \text { CONDITIONS } \\ \text { NOTE 5 }\end{array} & \begin{array}{l}\text { TEST } \\ \text { LEVEL }\end{array} & \begin{array}{c}\text { HADC674ZC } \\ \text { MIN TYP MAX }\end{array} & \text { HADC674ZB } & \text { HADC674ZA }\end{array}\right\}$

AC ELECTRICAL CHARACTERISTICS

$t_{\text {HRL }}$ Low R/C Pulse Width		1	50		50		50		ns
${ }^{t}$ DS STS Delay from R/C		1		200		200		200	ns
$t_{\text {HDR }}$ Data Valid After R/CLow		1	25		25		25		ns
$t_{\text {HS }}$ STS Delay After Data Valid		1	100	600	100	600	100	600	ns
$t_{\text {HRH }}$ High R/C Pulse Width		1	150		150		150		ns
${ }^{\text {t }}$ DR Data Access Time		1		150		150		150	ns

SAMPLE AND HOLD

Acquisition Time		II	1.0	1.4	1.8	1.0	1.4	1.8	1.0	1.4	1.8	$\mu \mathrm{~s}$
Aperture Uncertainty Time		II		20			20			20	ns	



Figure 3 - Low Pulse For R/C - Outputs Enabled After Conversion


Figure 4 - High Pulse For R/C - Outputs Enabled While R/C is High, Otherwise High Impedance

## ELECTRICAL CHARACTERISTICS TESTING

All electrical characteristics are subject to the following conditions:

All parameters having Min./Max. specifications are guaranteed. The Test Level column indicates the specific device testing actually performed during production and Quality Assurance inspection. Any blank sections in the data columns indicates that the specification is not tested at the specified condition.

Unless otherwise noted, all tests are pulsed tests, therefore
$\mathrm{T}_{\text {junc }}=\mathrm{T}_{\text {case }}=\mathrm{T}_{\text {ambient }}$.

## TEST LEVEL TEST PROCEDURE

I Production tested at the specified conditions.

Parameter is guaranteed by design and sampled characterization data.

## DEFINITION OF SPECIFICATIONS

## INTEGRAL LINEARITY ERROR

Linearity error refers to the deviation of each individual code from a line drawn from "zero" through "full scale" with all offset errors nulled out (See Figure 5 and 7). The point used as "zero" occurs $1 / 2$ LSB ( 1.22 mV for a 10 Volt span) before the first code transistion (all zeros to only the LSB "on"). "Full scale" is defined as a level 1 and $1 / 2$ LSB beyond the last code transition (to all ones). The deviation of a code from the true straight line is measured from the middle of each particular code.

The HADC674Z A and B grades are guaranteed for maximum nonlinearity of $\pm 1 / 2 L S B$. For these grades, this means that an analog value which falls exactly in the center of a given code width will result in the correct digital output code. Values nearer the upper or lower transition of the code width may produce the next upper or lower digital output code. The HADC674ZCC and CM grades are guaranteed to $\pm 1$ LSB maximum error. For these grades, an analog value which falls within a given code width will result in either the correct code for that region or either adjacent one. The linearity is not user-adjustable.

## DIFFERENTIAL LINEARITY ERROR (NO MISSING CODES)

A specification which guarantees no missing codes requires that every code combination appear in a monotonically increasing sequence as the analog input level is increased. Thus every code must have a finite width. For the HADC674Z type BC, AC, BM, and AM grades, which guarantee no missing codes to 12bit resolution, all 4096 codes must be present over the entire operating temperature ranges. The HADC674Z CC and CM grades guarantee no missing codes to 11bit resolution over temperature; this means that all code combinations of the upper 11 bits must be present; in practice, very few of the 12-bit codes are missing.

## DIFFERENTIAL NONLINEARITY

Differential nonlinearity is a measure of how much the actual quantization step width varies from the ideal step width of 1 LSB. Figure 7 shows a differential nonlinearity of 2 LSB - the actual step width is 3 LSB. The HADC674Z's specification gives the worst case differential nonlinearity in the A/D transfer function under specified dynamic operating conditions. Small, localized differential nonlinearities may be insignificant when digitizing full scale signals. However, if a low level input signal happens to fall on that part of the A/D transfer function with the differential nonlinearity error, the effect will be significant.

## MISSING CODES

Missing codes represent a special kind of differential nonlinearity. The quantization step width for a missing code is 0 LSB, which results in a differential nonlinearity of -1 LSB. Figure 7 points out two missed codes in the transfer function.


Figure 5 - Static Input Conditions

## QUANTIZATION UNCERTAINTY

Analog-to-digital converters exhibit an inherent quantization uncertainty of $\pm 1 / 2$ LSB. This uncertainty is a fundamental characteristic of the quantization process and cannot be reduced for a converter of a given resolution.

## QUANTIZATION ERROR

Quantization error is the fundamental, irreducible error associated with the perfect quantizing of a continuous (analog) signal into a finite number of digital bits (AND transfer function). A 12-bit A/D converter can represent an input voltage with a best case uncertainty of 1 part in $2^{12}$ ( 1 part in 4096). In real A/Ds under dynamic operating conditions, the quantization bands (bit change step vs input amplitude) for certain codes can be significantly larger (or smaller) than the ideal. The ideal width of each quantization step (or band) is $Q=F S R / 2^{N}$ where $F S R=$ full scale range and $N=12$. Non- ideal quantization bands represent differential nonlinearity errors (See Figures 5, 6 and 7).

## RESOLUTION - ACTUAL VS. AVAILABLE

The available resolution of an N -bit converter is $2^{\mathrm{N}}$. This means it is theoretically posssible to generate $2^{N}$ unique output codes.
QUANTIZING ERROR



Figure 6-Quantizing error


Figure 7-Dynamic Conditions

## THROUGHPUT

Maximum throughput is the greatest number of conversions per second at which an ADC will deliver its full rated performance. This is equivalent to the inverse of the sum of the multiplex time (if applicable), the $\mathrm{S} / \mathrm{H}$ settling time and the conversion time.

GAIN
The slope of the transfer curve. Gain is generally user adjustable to compensate for long term drift.

## ACQUISITION TIME/APERTURE DELAY TIME

In the HADC674Z, this is the time delay between the R/C falling edge and the actual start of the HOLD mode in a sample and HOLD function.

## APERTURE JITTER

A specification indicating how much the aperture delay time varies between samples.

## SUCCESSIVE APPROXIMATION ADC

The successive approximation converter uses an architecture with inherently high throughput rates which converts high frequency signals with great accuracy. A sample and hold type circuit can be used on the input to freeze these signals during conversion.

An N -bit successive approximation converter performs a sequence of tests comparing the input voltage to a successively narrower voltage range. The first range is half full scale, the next is quarter full scale, etc., until it reaches the Nth test which narrows it to a range of $1 / 2^{\mathrm{N}}$ of full scale. The conversion time is fixed by the clock frequency and is thus independent of the input voltage.

## UNIPOLAR OFFSET

The first transition should occur at a level $1 / 2$ LSB above analog common. Unipolar offset is defined as the deviation of the actual transition from that point. This offset can be adjusted as discussed on the following pages. The unipolar offset temperature coefficient specifies the maximum change of the transition point over temperature, with and without external adjustment.

## BIPOLAR OFFSET

In the bipolar mode, the major carry transition (0111 11111111 to 100000000000 ) should occur for an analog value $1 / 2 L S B$ below analog common. The bipolar offset error and temperature coefficient specify the initial deviation and maximum change in the error over temperature.

## CONVERSION TIME

The time required to complete a conversion over the specified operating range. Conversion time can be expressed as time/bit for a converter with selectable resolution or as time/conversion when the number of bits is constant. The HADC674Z is specified as time/conversion for all 12-bits. Conversion time should not be confused with maximum allowable analog input frequency which is discussed later.

## FULL SCALE CALIBRATION ERROR

The last transition (from 111111111110 to 1111 11111111 1111) should occur for an analog value 1 and $1 / 2$ LSB below the nominal full scale ( 9.9963 Volts for 10.000 Volts full scale). The full scale calibration error is the deviation of the actual level at the last transition from the ideal level. This error, which typically is 0.05 to $0.1 \%$ of full scale, can be trimmed out as shown in Figures 11 and 12. The full scale calibration error over temperature is given with and without the initial error trimmed out. The temperature coefficients for each grade indicate the maximum change in the full scale gain from the initial value using the internal 10 Volt reference.

## TEMPERATURE COEFFICIENTS

The temperature coefficients for full scale calibration, unipolar offset, and bipolar offset specify the maximum change from the initial $\left(25^{\circ} \mathrm{C}\right)$ value to the value at $T_{m i n}$ or Tmax.

## POWER SUPPLY REJECTION

The standard specifications for the HADC674Z assume +5.00 and +15.00 or +12.00 Volt supplies. The only effect of power supply error on the performance of the device will be a small change in the full scale calibration. This will result in a linear change in all lower order codes. The specifications show the maximum change in calibration from the initial value with the supplies at the various limits.

## CODE WIDTH

A fundamental quantity for A/D converter specifications is the code width. This is defined as the range of analog input values for which a given digital output code will occur. The nominal value of a code width is equivalent to 1 least significant bit (LSB) of the full scale range or 2.44 mV out of 10 Volts for a 12 -bit ADC.

## LEFT-JUSTIFIED DATA

The data format used in the HADC674Z is left-justified. This means that the data represents the analog input as a fraction of full scale, ranging from 0 to 4095/4096. This implies a binary point to the left of the MSB.

## MONOTONICITY

This characteristic describes an aspect of the code to code progression from minimum to maximum input. A device is said to be monotonic if the output code continuously increases as the input signal increases, and if the output code continuously decreases as the input signal decreases. Figure 7 demonstrates nonmonotonic behavior.

## CIRCUIT OPERATION

The HADC674Z is a complete 12-bit Analog-To-Digital converter which consists of a single chip version of the industry standard 674. This single chip contains a precision 12-bit capacitor digital-to-analog converter (CDAC) with voltage reference, comparator, successive approximation register (SAR), sample \& hold, clock, output buffers and control circuitry to make it possible to use the HADC674Z with few external components.

When the control section of the HADC674Z initiates a conversion command, the clock is enabled and the successive-approximation register is reset to all zeros. Once the conversion cycle begins, it can not be stopped or re-started and data is not available from the output buffers.

The SAR, timed by the clock, sequences through the conversion cycle and returns an end-of-convert flag to the control section of the ADC. The clock is then disabled by the control section, the output status goes low, and the control section is enabled to allow the data to be read by external command.

The internal HADC674Z 12-bit CDAC is sequenced by the SAR starting from the MSB to the LSB at the beginning of the conversion cycle to provide an output voltage from the CDAC that is equal to the input signal voltage (which is divided by the input voltage divider network). The comparator determines whether the addition of each successively-weighted bit voltage causes the CDAC output voltage summation to be greater or less than the input voltage; if the sum is less, the bit is left on; if more, the bit is turned off. After testing all the bits, the SAR contains a 12-bit binary code which accurately represents the input signal to within $\pm 1 / 2$ LSB.

The internal reference provides the voltage reference to the CDAC with excellent stability over temperature and time. The reference is trimmed to 10.00 Volts $\pm 1 \%$ and can supply up to 2 mA to an external load in addition to that required to drive the reference input resistor ( 1 mA ) and offset resistor ( 1 mA ) when operating with $\pm 15 \mathrm{~V}$ supplies. If the HADC674Z is used with $\pm 12 \mathrm{~V}$ supplies, or if external current must be supplied over the full temperature range, an
external buffer amplifier is recommended. Any external load on the HADC674Z reference must remain constant during conversion.

The sample and hold feature is a bonus of the CDAC architecture. Therefore the majority of the $S / H$ specifications are included within the A/D specifications.

Although the sample-and-hold circuit is not implemented in the classical sense, the sampling nature of the capacitive DAC makes the HADC674Z appear to have a built in sample-and-hold. This sample-and-hold action substantially increases the signal bandwidth of the HADC674Z over that of similar competing devices.

Note that even though the user may use an external sample and hold for very high frequency inputs, the internal sample and hold still provides a very useful isolation function. Once the internal sample is taken by the CDAC capacitance, the input of the HADC674Z is disconnected from the user's sample and hold. This prevents transients occuring during conversion from being inflicted upon the attached sample and hold buffer. All other 674 circuits will cause a transient load current on the sample and hold which will upset the buffer output and may add error to the conversion itself.

Furthermore, the isolation of the input after the acquisition time in the HADC674Z allows the user an opportunity to release the hold on an external sample and hold and start it tracking the next sample. This will increase system throughput with the user's existing components.

## SAMPLE AND HOLD FUNCTION

When using an external S/H, the HADC674Z acts as any other 674 device because the internal $S / H$ is transparent. The sample/hold function in the HADC674Z is inherent to the capacitor DAC structure, and its timing characteristics are determined by the internally generated clock. However, for limited frequency ranges, the internal S/H may eliminate the need for an external $\mathrm{S} / \mathrm{H}$. This function will be explained in the next two sections.

The operation of the $S / H$ function is internal to the HADC674Z and is controlled through the normal R/C control line (refer to Figure 8.) When the R/C line makes a negative transition, the HADC674Z starts the timing of the sampling and conversion. The first 2 clock cycles are allocated to signal acquisition of the input by the CDAC (this time is defined as $T_{\text {acq }}$ ). Following these two cycles, the input sample is taken and held. The A/D conversion follows this cycle with
the duration controlled by the internal clock cycle.
During $T_{\text {acq }}$, the equivalent circuit of the HADC674Z in-put is as shown in Figure 9 (the time constant of the input is independant of which input level is used.) This CDAC capacitance must be charged up to the input voltage during $T_{\text {acq }}$. Since the CDAC time constant is 100 nsecs., there is more than enough time for settling the input to 12 bits of accuracy during $\mathrm{T}_{\text {acq- }}$. The excess time left during Tacq allows the user's buffer amp to settle after being switched to the CDAC load.

Note that because the sample is taken relative to the $\mathrm{R} / \overline{\mathrm{C}}$ transition, $\mathrm{T}_{\text {acq }}$ is also the traditional "aperture delay" of this internal sample and hold.

Since $T_{a c q}$ is measured in clock cycles, its duration will vary with the internal clock frequency. This results in $T_{\text {acq }}=1.4 \mu$ secs $\pm 0.4 \mu$ secs. between units and over temperature.

Offset, gain and linearity errors of the S/H circuit, as well as the effects of its droop rate, are included in the overall specs for the HADC674Z.

## APERTURE UNCERTAINTY

Often the limiting factor in the application of the sample and hold is the uncertainty in the time the actual sample is taken - i.e. the "aperture jitter" or TAJ. The HADC674Z has a nominal aperture jitter of 20 nsecs. between samples. With this jitter, it is possible to accurately sample a wide range of input signals.

The aperture jitter causes an amplitude uncertainty for any input where the voltage is changing. The approximate voltage error due to aperture jitter depends on the slew rate of the signal at the sample point (See Figure 10). The magnitude of this change for a sinewave can be calculated:

Assume a sinusoidal signal, maximum slew rate, $\mathrm{Sr}=$ $2 \pi \mathrm{fVp}$ (Vp = peak voltage, $\mathrm{f}=$ frequency of sine wave)
For an N -bit converter to maintain $+/-1 / 2$ LSB accuracy:

Verr $\leq \mathrm{Vfs} / 2^{\mathrm{N}+1}$ (where Verr is the allowable error voltage and Vfs is the full scale voltage)

From Figure 10:
$\mathrm{Sr}=\Delta \mathrm{V} / \Delta \mathrm{T}=2 \pi \mathrm{fVp}$
Let $\Delta \mathrm{V}=\mathrm{Verr}=\mathrm{V}_{\mathrm{fs}}{ }^{2}-(\mathrm{N}+1), \mathrm{Vp}=\mathrm{Vin} / 2$ and $\Delta \mathrm{T}=\mathrm{t}_{\mathrm{AJ}}$ (the time during which unwanted voltage change occurs)

The above conditions then yield:

Vfs $/ 2^{\mathrm{N}+1} \geq \pi \mathrm{VVint}_{\mathrm{AJ}}$ or $\mathrm{f}_{\max } \leq \mathrm{Vfs}^{\prime}\left(\pi \mathrm{Vint} \mathrm{A}_{\mathrm{A}}\right) 2^{\mathrm{N}+1}$
For the HADC674Z, TAJ=20 nsec, therefore $\mathrm{f}_{\max } \leq 2 \mathrm{KHz}$.

For higher frequency signal inputs, an external sample and hold is recommended.


Figure 8 - Sample and Hold Function


$$
\tau=\mathrm{R}_{\mathrm{eq}} \mathrm{c}_{\mathrm{eq}}=100 \mathrm{nsec} .
$$

Figure 9 - Equivalent HADC674Z Input Circuit


Figure 10 - Aperture Uncertainty

## TYPICAL INTERFACE CIRCUIT

The HADC674Z is a complete A/D converter that is fully operational when powered up and issued a Start Convert Signal. Only a few external components are necessary as shown in Figures 11 and 12. The two typical interface circuits are for operating the HADC674Z in either a unipolar or bipolar input mode. Further information is given in the following sections on these connections, but first a few considerations concerning board layout to achieve the best operation.

For each application of this device, strict attention must be given to power supply decoupling, board layout (to reduce pickup between analog and digital sections), and grounding. Digital timing, calibration and the analog signal source must be considered for correct operation.

To achieve specified accuracy, a double-sided printed circuit board with a copper ground plane on the component side is recommended. Keep analog signal traces away from digital lines. It is best to lay the P.C. board out such that there is an analog section and a digital section with a single point ground connection between the two through an RF bead. If this is not possible, run analog signals between ground traces and cross digital lines at right angles only.

## POWER SUPPLIES

The supply voltages for the HADC674Z must be kept as quiet as possible from noise pickup and also regulated from transients or drops. Because the part has 12 -bit accuracy, voltage spikes on the supply lines can cause several LSB deviations on the output. Switching power supply noise can be a problem. Careful filtering and shielding should be employed to prevent the noise from being picked up by the converter.

Capacitor bypass pairs are needed from each supply pin to it's respective ground to filter noise and counter the problems caused by the variations in supply current. A $10 \mu \mathrm{~F}$ tantalum and a $0.1 \mu \mathrm{~F}$ ceramic type in parallel between V LOGIC (pin1) and digital common (pin15), and $\mathrm{V}_{\mathrm{CC}}$ (pin 7) and analog common (pin 9) is sufficient. $\mathrm{V}_{\mathrm{EE}}$ is generated internally so pin 11 may be grounded or connected to a negative supply if the HADC674Z is being used to upgrade an already existing design.

## GROUNDING CONSIDERATIONS

Any ground path from the analog and digital ground should be as low resistance as possible to accomodate the ground currents present with this device.

The analog ground current is approximately 6 mADC while the digital ground is 3mADC. The analog and digital common pins should be tied together as close to the package as possible to guarantee best performance. The code dependant currents flow through the $V_{\text {LOGIC }}$ and $V_{\text {CC }}$ terminals and not through the analog and digital common pins.

The HADC674Z may be operated by a $\mu \mathrm{P}$ or in the stand-alone mode. The part has four standard input ranges: 0 V to $+10 \mathrm{~V}, 0 \mathrm{~V}$ to $+20 \mathrm{~V}, \pm 5 \mathrm{~V}$ and $\pm 10 \mathrm{~V}$. The maximum errors that are listed in the specifications for gain and offset may be adjusted externally to zero as explained in the next two sections.

## CALIBRATION AND CONNECTION PROCEDURES

## UNIPOLAR

The calibration procedure consists of adjusting the converter's most negative output to its ideal value for offset adjustment, and then adjusting the most positive output to its ideal value for gain adjustment.

Starting with offset adjustment and referring to Figure 11, the midpoint of the first LSB increment should be positioned at the origin to get an output code of all 0 s . To do this, an input of $+1 / 2$ LSB or +1.22 mV for the 10 V range and +2.44 mV for the 20 V range should be applied to the HADC674Z. Adjust the offset potentiometer R1 for code transition flickers between 000000000000 and 000000000001.

The gain adjustment should be done at positive full scale. The ideal input corresponding to the last code change is applied. This is 1 and $1 / 2 L S B$ below the nominal full scale which is +9.9963 V for the 10 V range and +19.9927 V for the 20 V range. Adjust the gain potentiometer R2 for flicker between codes 1111 11111110 and 11111111 1111. If calibration is not necessary for the intended application, replace R1 with a $50 \Omega, 1 \%$ metal film resister and remove the network from pin 12. Connect pin 12 to pin 9. Connect the analog input to pin 13 for the 0 V to 10 V range or to pin 14 for the 0 V to 20 V range.

## BIPOLAR

The gain and offset errors listed in the specifications may be adjusted to zero using the potentiometers R1
and R2 (See Figure 12). If adjustment is not needed, either or both pots may be replaced by a $50 \Omega, 1 \%$ metal film resistor.

To calibrate, connect the analog input signal to pin 13 for $\mathrm{a} \pm 5 \mathrm{~V}$ range or to pin 14 for $\mathrm{a} \pm 10 \mathrm{~V}$ range. First apply a DC input voltage 1/2LSB above negative full scale which is -4.9988 V for the $\pm 5 \mathrm{~V}$ range or 9.9976 V for the $\pm 10 \mathrm{~V}$ range. Adjust the offset potentiometer R1 for flicker between output codes 000000000000 and 000000000001 . Next, apply a DC input voltage 1 and 1/2LSB below positive full scale which is +4.9963 V for the $\pm 5 \mathrm{~V}$ range or +9.9927 V for the $\pm 10 \mathrm{~V}$ range. Adjust the gain potentiometer R2 for flicker between codes 1111 11111110 and 111111111111.

## ALTERNATIVE

The $100 \Omega$ potentiometer R2 provides gain adjust for the 10 V and 20 V ranges. In some applications, a full scale of 10.24 V (for an LSB of 2.5 mV ) or 20.48 V (for an LSB of 5.0 mV ) is more convenient. For these, replace R2 by a $50 \Omega$, $1 \%$ metal film resistor. Then to provide gain adjust for the 10.24 V range, add a $200 \Omega$ potentiometer in series with pin 13 . For the 20.48 V range, add a $1000 \Omega$ potentiometer in series with pin 14.

## CONTROLLING THE HADC674Z

The HADC674Z can be operated by most microprocessor systems due to the control input pins and on-chip logic. It may also be operated in the "stand-alone" mode and enabled by the R/C input pin. Full $\mu \mathrm{P}$ control consists of selecting an 8 or 12 -bit conversion cycle, initiating the conversion, and reading the output data when ready. The output read has the options of choosing either 12-bits at once or 8 followed by 4-bits in a left-justified format. All five control inputs are TTL/CMOS compatible and include $12 / 8, C S, A 0, R / C$ and CE). The use of these inputs in controlling the converter's operations is shown in Table 1, and the internal control logic is shown in a simplified schematic in Figure 13.

## STAND-ALONE OPERATION

The simplest interface is a control line connected to $R / \bar{C}$. The other controls must be tied to known states as follows: CE and $12 / \overline{8}$ are wired high, Ao and $\overline{\mathrm{CS}}$ are wired low. The output data arrives in words of 12-bits each. The limits on R/C duty cycle are shown in Figures 3 and 4. It may have duty cycle within and including the extremes shown in the specifications on the pages. In general, data may be read when R/C is high unless STS is also high, indicating a conversion is in progress.

## CONVERSION LENGTH

A conversion start transition latches the state of Ao as shown in Figure 13 and Table 1. The latched state determines if the conversion stops with 8-bits (Ao high) or continues for 12-bits (Ao low). If all 12-bits are read following an 8-bit conversion, the three LSB's will be a logic " 0 " and DB3 will be a logic "1". Ao is latched because it is also involved in enabling the output buffers as will be explained later. No other control inputs are latched.


Figure 11 - Unipolar Input Connections


Figure 12 - Bipolar Input Connections

A conversion may be initiated by a logic transition on any of the three inputs: $\mathrm{CE}, \overline{\mathrm{CS}}, \mathrm{R} / \overline{\mathrm{C}}$, as shown in Table 1. The last of the three to reach the correct state starts the conversion, so one, two or all three may be dynamically controlled. The nominal delay from each is the same and all three may change state simultaneously. In order to assure that a particular input controls the start of conversion, the other two should be setup at least 50 ns earlier. Refer to the convert mode timing specifications. The Convert Start timing diagram is illustrated in Figure 1.

The output signal STS is the status flag and goes high only when a conversion is in progress. While STS is high, the output buffers remain in a high impedance state so that data can not be read. Also, when STS is high, an additional Start Convert will not reset the converter or reinitiate a conversion. Note, if Ao changes state after a conversion begins, an additional Start Convert command will latch the new state of Ao and possibly cause a wrong cycle length for that conversion ( 8 versus 12-bits).

## READING THE OUTPUT DATA

The output data buffers remain in a high impedance state until the following four conditions are met: $\mathrm{R} / \overline{\mathrm{C}}$ is high, STS is low, CE is high and CS is low. The data lines become active in response to the four conditions and output data according to the conditions of $12 / 8$ and Ao. The timing diagram for this process is shown in Figure 2. When $12 / 8$ is high, all 12 data outputs become active simultaneously and the Ao input is ignored. This is for easy interface to a 12 or 16-bit data bus. The $12 / \overline{8}$ input is usually tied high or low, although it is TTLCMOS compatible.

## Table 1 - Truth Table for the HADC674Z Control Inputs

CE	CS	R/C	12/8	Ao	Operation
0	X	X	X	X	None
X	1	X	$\mathbf{X}$	X	None
4	0	0	$\mathbf{X}$	0	Initiate 12 bit conversion
4	0	0	$\mathbf{x}$	1	Initiate 8 blt conversion
1	$\dagger$	0	$\mathbf{x}$	0	Initiate 12 bit conversion
1	$\downarrow$	0	$\mathbf{x}$	1	Initiate 8 blt conversion
1	0	$\downarrow$	$\mathbf{x}$	0	Initiate 12 bit conversion
1	0	$\downarrow$	$\mathbf{x}$	1	Initiate 8 blt conversion
1	0	1	1	x	Enable 12 bit Output
1	0	1	0	0	Enable 8 MSB's Only
1	0	1	0	1	Enable 4 LSB's Plus 4
					Tralling Zeroes

When $12 / \overline{8}$ is low, the output is separated into two 8 bit bytes as shown below:

## BYTE 1 BYTE 2



This configuration makes it easy to connect to an 8-bit data bus as shown in Figure 13. The Ao control can be connected to the least significant bit of the data bus in order to store the output data into two consecutive memory locations. When Ao is pulled low, the 8 MSBs are enabled only. When Ao is high, the 4 MSBs are disabled, bits 4 through 7 are forced to a zero and the four LSBs are enabled. The two byte format is "left justified data" as shown above and can be considered to have a decimal point or binary to the left of byte 1.

Ao may be toggled without damage to the converter at any time. Break-before-make action is guaranteed between the two data bytes. This assures that the outputs which are strapped together in Figure 13 will never be enabled at the same time.

In Figure 2, it can be seen that a read operation usually begins after the conversion is complete and STS is low. If earlier access is needed, the read can begin no later than the addition of times $t_{D D}$ and $t_{H S}$ before STS goes low.


Figure 13 - Interfacing the HADC674Z to an 8-bit Data Bus


Figure 14 - HADC674Z Control Logic


Figure 15 - Burn-in Schematic

PIN ASSIGNMENT HADC674


[^2]NOTES:

# SIGNAL <br> PROCESSING <br> TECHNOLOGIES 

# 8-BIT, 150 MSPS FLASH A/D CONVERTER 

PRELIMINARY INFORMATION

## FEATURES

-150 MSPS NOMINAL CONVERSION RATE
-1/2 LSB Linearity

- Preamplifier Comparator Design
- Maximum Power Dissipation < 2.0 Watts


## GENERAL DESCRIPTION

The HADC77100 is a monolithic flash A/D converter capable of digitizing a 2 volt analog input signal with full scale frequency components to 50 MHz into 8 -bit digital words at a 150 MSPS update rate.

For most applications, no external sample-and-hold is required for accurate conversion due to the device's narrow aperture time. A single standard -5.2 Volt power supply is required for operation of the

## APPLICATIONS

- Digital Oscilloscopes
-Transient Capture
- Radar, EW, ECM
- Direct RF Down-conversion
- Medical Electronics: Ultrasound, CAT Instrumentation

HADC77100, with nominal power dissipation of less than 1.75 Watts.

The part is packaged in a 42 Lead Ceramic DIP that is pin compatible with the CX20116. Careful attention to design and layout has provided a device with better linearity, lower noise floor, stable input capacitance, and lower data error rates. The HADC77100 is available in Industrial and Military Temperature ranges.


## ABSOLUTE MAXIMUM RATINGS (Beyond which damage may occur) ${ }^{1} \mathbf{2 5} \mathbf{2 0}^{\circ} \mathrm{C}$

Supply Voltages OutputNegative Supply Voltage (VEE TO GND) ..-7.0 to +0.5 VGround Voltage Differential................-.......... 50.5 mV$\mathrm{A}_{\text {VEE }}$ to DVEE Differential..................

Output
Digital Output Current. $\qquad$ 0 to - 25 mA

Temperature
Operating Temperature, ambient........... 65 to $+150^{\circ} \mathrm{C}$ junction
$\ldots .+150^{\circ} \mathrm{C}$
Lead Temperature, (soldering 10 seconds)...... $+300^{\circ} \mathrm{C}$
Storage Temperature.
-65 to $+150^{\circ} \mathrm{C}$

## Notes:

1. Operation at any Absolute Máximum Rating is not implied. See Electrical Specifications for proper nominal applied conditions in typical applications.

## ELECTRICAL SPECIFICATIONS

INDUSTRIAL TEMPERATURE RANGE
$\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{R}_{\text {Source }}=10 \Omega, \mathrm{f}_{\text {clock }}=125 \mathrm{MHz}$, Duty Cycle $=50 \% \quad$ VRB $=-2.00 \mathrm{~V}, \mathrm{VRT}=0.00 \mathrm{~V}$, Unless otherwise specified

DC ELECTRICAL PARAMETERS	TEST CONDITIONS	TEST   LEVEL	$\begin{aligned} & \text { ROOM } \\ & +25^{\circ} \mathrm{C} \end{aligned}$			$\begin{gathered} \text { HOT } \\ +85^{\circ} \mathrm{C} \end{gathered}$		$\begin{aligned} & \text { COLD } \\ & -25^{\circ} \mathrm{C} \end{aligned}$		UNITS
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	

TRANSFER
CHARACTERISTICS

Integral Linearity, 77100A		$\\|$	$\pm \frac{1}{2}$	$\pm \frac{1}{2}$	$\pm \frac{1}{2}$	LSB
Differential Linearity,77100A		$\\|$	$\pm \frac{1}{2}$	$\pm \frac{1}{2}$	$\pm \frac{1}{2}$	LSB
Integral Linearity, 77100B		$\\|$	$\pm \frac{3}{4}$	$\pm \frac{3}{4}$	$\pm \frac{3}{4}$	LSB
Differential Linearity, 77100B   (No missing codes)		$\\|$	$\pm \frac{3}{4}$	$\pm \frac{3}{4}$	$\pm \frac{3}{4}$	LSB
Offset Error VRT		1	18	-30	-30	-30
Offset Error VRB		1	18	+30	+30	+30

ANALOG INPUT
CHARACTERISTICS

Input Voltage Range		I	-2.0	0.0			
Input Capacitance	Over full input range	V	26			pF	
Input Resistance		V	4			$\mathrm{k} \Omega$	
Input Current		$\\|$	$175 \quad 275$	225	350	$\mu \mathrm{~A}$	
Clock Synchronous   Input Currents		V	40		$\mu \mathrm{~A}$		

TEST LEVEL CODE: See page 7.

## INDUSTRIAL TEMPERATURE RANGE

$V_{E E}=-5.2 \mathrm{~V}, R_{\text {Source }}=10 \Omega, \mathrm{f}_{\text {clock }}=125 \mathrm{MHz}$, Duty Cycle $=50 \% \quad$ VRB $=-2.00 \mathrm{~V}, \mathrm{VRT}=0.00 \mathrm{~V}$, Unless otherwise specified

DC ELECTRICAL PARAMETERS	TEST CONDITIONS	TEST LEVEL	$\begin{aligned} & \text { ROOM } \\ & +25^{\circ} \mathrm{C} \end{aligned}$			$\begin{array}{r} \text { HOT } \\ +85^{\circ} \mathrm{C} \end{array}$		$\begin{aligned} & \text { COLD } \\ & -25^{\circ} \mathrm{C} \end{aligned}$		UNITS
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	

## POWER SUPPLIES

| Supply Current <br> (analog) |  | 11 | 280 | 300 | 300 | 300 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | mA 9

## REFERENCE

Positive Reference Voltage	Operating Condition	I	>VRT	0.0					VOLTS
Negative Reference Voltage	Operating Condition	1	-2.5	<VRB					VOLTS
Reference Tap Current	$\mathrm{V}_{\mathrm{RM}}=-1.00 \mathrm{~V}$	IV		4					mA
Ladder Resistance		II	100	160	100	180	80	120	$\Omega$
Reference Bandwidth		V	50						MHz

## DIGITAL LOGIC

Output High Voltage	$50 \Omega$ to -2 V	II	-0.98	-0.90	-0.82	-0.89	-0.70	-1.08	-0.91	
Output Low Voltage	$50 \Omega$ to -2V	II	-1.95	-1.80	-1.65	-1.95	-1.65	-1.95	-1.69	
VOLTS										
Input High Voltage (MINV, LINV)		$\\|$	-1.13	-0.81	-1.07	-0.67	-1.27	-0.87	VOLTS	
Output Rise Time 10\% to $90 \%$	$50 \Omega$ to -2V	IV		2					ns	
Output Fall Time 10\% to $90 \%$	$50 \Omega$ to -2V	IV		-1.95	-1.48	-1.95	-1.42	-1.95	-1.50	
VOLTS										


| $\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{R}_{\text {Source }}=10 \Omega, \mathrm{f}_{\text {clock }}=125 \mathrm{MHz}$, Duty Cycle $=50 \%$ | VRB $=-2.00 \mathrm{~V}$, VRT $=0.00 \mathrm{~V}$, Unless otherwise specified |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| AC ELECTRICAL | TEST | TEST | ROOM | HOT | COLD |  |
| PARAMETERS | CONDITIONS | LEVEL | $+25^{\circ} \mathrm{C}$ | $+85^{\circ} \mathrm{C}$ | $-25^{\circ} \mathrm{C}$ |  |

CONVERSION TIMING, See Figure 1A

Maximum Sample Rate		II	125	150	125	125	
Clock Low Width, TPW0		II	4	3	4		4
Clock High Width, TPW1		II	4	3	4		4
Output Latency		IV		1		1	
Output Delay, TD	Differential Clock	V		4.2		1	CYCLE
Output Delay Tempco	Differential Clock	V	15			ns	

TEST LEVEL CODE: See page 7.

## ELECTRICAL SPECIFICATIONS

INDUSTRIAL TEMPERATURE RANGE
$V_{E E}=-5.2 \mathrm{~V}$, R $_{\text {Source }}=10 \Omega, \mathrm{f}_{\text {clock }}=125 \mathrm{MHz}$, Duty Cycle $=50 \% \quad$ VRB $=-2.00 \mathrm{~V}, \mathrm{VRT}=0.00 \mathrm{~V}$, Unless otherwise specified

DC ELECTRICAL	TEST	TEST	ROOM	HOT	COLD	
PARAMETERS	CONDITIONS	LEVEL	MIN	TYP	MAX	$+85^{\circ} \mathrm{C}$
MIN MAX	MIN	MAX	MAX	UNITS		

ANALOG INPUTS

Large Signal Bandwidth	Vin= F.S.	II	60			MHz
Small Signal Bandwidth	Vin $=500 \mathrm{mV}$ PP	II	100120			MHz
Aperture Jitter		V	12			ps RMS
Aperture Delay	Differential Clock	V	1.8			ns
Aperture Delay Tempco	Differential Clock	V	7			$\mathrm{Ps} /{ }^{\circ} \mathrm{C}$
Aperture Time		V	$<100$			ps
Settle-to-Hold Time		V	3			ns
Input Slew Rate		V	300			$\mathrm{~V} / \mu \mathrm{s}$

$V_{E E}=-5.2 \mathrm{~V}$, R $_{\text {Source }}=10 \Omega, f_{\text {clock }}=125 \mathrm{MHz}$, Duty Cycle $=50 \% \quad$ VRB $=-2.00 \mathrm{~V}, \mathrm{VRT}=0.00 \mathrm{~V}$, Unless otherwise specified

AC ELECTRICAL PARAMETERS	TEST CONDITIONS	$\begin{aligned} & \text { TEST } \\ & \text { LEVEL } \end{aligned}$	$\begin{array}{\|cc\|} \hline \text { ROOM } & \\ \text { MIN }{ }^{+25^{\circ} \mathrm{C}} & \\ \hline \end{array}$	$\begin{gathered} \text { HOT } \\ +85^{\circ} \mathrm{C} \\ \text { MIN } \mathrm{MAX} \end{gathered}$	$\begin{gathered} \text { COLD } \\ -25^{\circ} \mathrm{C} \\ \operatorname{MIN} \text { MAX } \end{gathered}$	UNIT

SIGNAL QUALITY $\mathrm{f}_{\text {clock }}=125 \mathrm{MHz}$

RMS Sinewave Curve Fit	Vin=FS @ 1MHz	II	8			LSB
RMS Sinewave Curve Fit	Vin=FS @ 25MHz	II	7			LSB
RMS Sinewave Curve Fit	Vin=FS @ 50MHz	II	5.3			LSB
Signal to noise ratio	Vin=FS @ 1MHz	II	48			dB
Signal to noise ratio	Vin = FS @ 25MHz	II	43			dB
Signal to noise ratio	Vin = FS @ 50MHz	II	36			dB
Total Harmonic Distortion	$\mathrm{Vin}=\mathrm{FS} @ 1 \mathrm{MHz}$	V	44			dBc
Total Harmonic Distortion	$\mathrm{Vin}=\mathrm{FS} @ 25 \mathrm{MHz}$	V	35			dBc
Total Harmonic Distortion	Vin = FS @ 50MHz	V	24			dBC
Mean Differential NonLinearity		V	. 001			LSB
RMS Differential NonLinearity		V	. 2			LSB
Differential Gain	NTSC 40IRE mod. ramp, $\mathrm{Fc}=125 \mathrm{MSPS}$	V	1.0			\%
Differential Phase		V	. 5			DEG

[^3]$V_{E E}=-5.2 \mathrm{~V}$, R $_{\text {Source }}=10 \Omega, \mathrm{f}_{\text {clock }}=125 \mathrm{MHz}$, Duty Cycle $=50 \%, \quad$ VRB $=-2.00 \mathrm{~V}$, VRT $=0.00 \mathrm{~V}$, Unless otherwise specified

DC ELECTRICAL PARAMETERS	TEST CONDITIONS	TESTLEVEL	$\begin{aligned} & \text { ROOM } \\ & +25^{\circ} \mathrm{C} \end{aligned}$			$\begin{gathered} \text { HOT } \\ +125^{\circ} \mathrm{C} \end{gathered}$		$\begin{aligned} & \text { COLD } \\ & -55^{\circ} \mathrm{C} \end{aligned}$		UNITS
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	

TRANSFER
CHARACTERISTICS

Integral Linearity, 77100A		1	$\pm \frac{1}{4}$	$\pm \frac{1}{2}$	$\pm \frac{1}{2}$	$\pm \frac{1}{2}$	LSB
Differential Linearity, 77100A		1	$\pm \frac{1}{4}$	$\pm \frac{1}{2}$	$\pm \frac{1}{2}$	$\pm \frac{1}{2}$	LSB
Offset Error VRT		1	18	-30	-30	-30	mV
Offset Error VRB		1	18	30		30	mV

ANALOG INPUT
CHARACTERISTICS

Input Voltage Range		I	-2.5	+0.5	-2.5	+0.5	-2.5	+0.5
VOLTS								
Input Capacitance	Over full input range	V	56					pF
Input Resistance		V	4				$\mathrm{k} \Omega$	
Input Current		I	$175 \quad 275$	200	400	$\mu \mathrm{~A}$		
Clock Synchronous   Input Currents		V	40				$\mu \mathrm{~A}$	

POWER SUPPLIES

| Supply Current <br> (analog) |  | 1 | 210 | 250 | 300 | 330 | 330 |
| :--- | :--- | :--- | ---: | ---: | ---: | ---: | :--- | mA.

REFERENCE

Positive Reference Voltage	Operating Condition	1	$>$ VRT 0.0			VOLTS
Negative Reference Voltage	Operating Condition	1	-2.5 <VRB			VOLTS
Reference Tap Current	$\mathrm{V}_{\mathrm{RM}}=-1.00 \mathrm{~V}$	V	4			mA
Ladder Resistance		11	$100 \quad 160$	130210	$80 \quad 120$	$\Omega$
Reference Bandwidth		V	50			MHz

TEST LEVEL CODE: See page 7.

## ELECTRICAL SPECIFICATIONS

## MILITARY TEMPERATURE RANGE

$\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{R}_{\text {Source }}=10 \Omega, \mathrm{f}_{\text {clock }}=125 \mathrm{MHz}$, Duty Cycle $=50 \%, \quad$ VRB $=-2.00 \mathrm{~V}, \mathrm{VRT}=0.00 \mathrm{~V}$, Unless otherwise specified

DC ELECTRICAL PARAMETERS	TEST CONDITIONS	TESTLEVEL	$\begin{aligned} & \text { ROOM } \\ & +25^{\circ} \mathrm{C} \end{aligned}$			$\begin{gathered} \text { HOT } \\ +125^{\circ} \mathrm{C} \end{gathered}$		$\begin{aligned} & \text { COLD } \\ & -55^{\circ} \mathrm{C} \end{aligned}$		UNITS
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	

## DIGITAL LOGIC

Output High Voltage	$50 \Omega$ to -2 V	I	-0.98	-0.90	-0.82	-0.85	-0.66	-1.10	-0.95	VOLTS
Output Low Voltage	$50 \Omega$ to -2 V	I	-1.95	1.80	-1.65	-1.95	-1.65	-1.95	-1.70	VOLTS
Input High Voltage (MiNV, LINV)		1	-1.13	-0.81	-1.07	-0.67	-1.27	-0.87	VOLTS	
Input Low Voltage (MINV, LINV)		1	-1.95	-1.48	-1.95	-1.42	-1.95	-1.50	VOLTS	
Output Rise Time (10\% to $90 \%$ )	$50 \Omega$ to -2 V			2					ns	
Output Fall Time (10\% to $90 \%$ )	$50 \Omega$ to-2V			2					ns	

$\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}$, R Source $=10 \Omega, \mathrm{f}_{\text {clock }}=125 \mathrm{MHz}$, Duty Cycle $=50 \%, \quad$ VRB $=-2.00 \mathrm{~V}, \mathrm{VRT}=0.00 \mathrm{~V}$, Unless otherwise specified

AC ELECTRICAL PARAMETERS	TEST CONDITIONS	TEST LEVEL	$\begin{aligned} & \text { ROOM } \\ & +25^{\circ} \mathrm{C} \end{aligned}$		MAX	$\begin{gathered} \text { HOT } \\ +125^{\circ} \mathrm{C} \end{gathered}$		$\begin{aligned} & \hline \text { COLD } \\ & -55^{\circ} \mathrm{C} \end{aligned}$		UNITS
			MIN	TYP		MIN	MAX	MIN	MAX	

## CONVERSION TIMING (See Figure1A)

Maximum Sample Rate		II	125	150			
Clock Low Width, TPW0		II	4	3			
Clock High Width, TPW1		II	4	3			
Output Latency		IV			1		1
Data Ready Delay, TD		II		4.2		1	CYCLE
Output Delay, TD	Differential Clock	II	3.2	4.2	4.8	6.1	7.3
Output Delay Tempco		V		15			

ANALOG INPUTS


TEST LEVEL CODE: See page 7.

## MILITARY TEMPERATURE RANGE

$V_{E E}=-5.2 \mathrm{~V}$, R Source $=10 \Omega$, fclock $=125 \mathrm{MHz}$, Duty Cycle $=50 \%, \quad$ VRB $=-2.00 \mathrm{~V}, \mathrm{VRT}=0.00 \mathrm{~V}$, Unless otherwise specified

AC ELECTRICAL CHARACTERISTICS	TEST CONDITIONS	TEST   LEVEL		$\begin{aligned} & 300 \mathrm{M} \\ & 25^{\circ} \mathrm{C} \end{aligned}$	MAX		OT $5^{\circ} \mathrm{C}$   MAX	$\begin{array}{r} \text { C } \\ -5 \\ \text { MIN } \end{array}$	$\begin{aligned} & { }^{\text {LDD }} \\ & \\ & { }^{\circ} \mathrm{C} \end{aligned}$ MAX	UNITS

SIGNAL QUALITY $\mathrm{f}_{\text {clock }}=125 \mathrm{MHz}$

RMS Sinewave Curve Fit	Vin = FS @ 1MHz	11				LSB
RMS Sinewave Curve Fit	Vin = FS @ 25MHz	II				LSB
RMS Sinewave Curve Fit	Vin=FS @ 50MHz	II				LSB
Signal to noise ratio	Vin = FS @ 1MHz	II	48			dB
Signal to noise ratio	Vin $=$ FS @ 25MHz	II	43			dB
Signal to noise ratio	Vin = FS @ 50MHz	11	36			dB
Total Harmonic Distortion	$\mathrm{Vin}=\mathrm{FS}$ @ 1MHz	V	44			dBc
Total Harmonic Distortion	Vin = FS @ 25MHz	V	35			dBc
Total Harmonic Distortion	$\mathrm{Vin}=\mathrm{FS} @ 50 \mathrm{MHz}$	V	24			dBc
Mean Differential NonLinearity		V	. 001			LSB
RMS Differential NonLinearity		V	. 2			LSB

## TEST LEVEL CODES

## ELECTRICAL CHARACTERISTICS TESTING

All electrical characteristics are subject to the following conditions:

All parameters having Min./Max. specifications are guaranteed. The Test Level column indicates the specific device testing actually performed during production and Quality Assurance inspection. Any blank sections in the data columns indicates that the specification is not tested at the specified condition.

Unless otherwise noted, all tests are pulsed tests, therefore $T_{j}=T_{c}=T_{a}$.

TESTLEVEL	IEST PROCEDURE   $100 \%$ production tested at the   specified temperatures.
II	$100 \%$ production tested at $\mathrm{Ta}=$   $25^{\circ} \mathrm{C}$, and sample tested at the   specified temperatures.
III	QA sample tested only at the   specified temperatures.
IV	Parameter is guaranteed (but not   tested) by design and characteri-   zation data.
	Parameter is a typical value for   information purposes only.

## TESTLEVEL

I

II

III

IV

V

TEST PROCEDURE
$100 \%$ production tested at the specified temperatures.
$100 \%$ production tested at $\mathrm{Ta}=$ $25^{\circ} \mathrm{C}$, and sample tested at the

QA sample tested only at the specified temperatures.

Parameter is guaranteed (but not tested) by design and characterization data.

Parameter is a typical value for information purposes only.

## GENERAL DESCRIPTION

The HADC77100 is the fastest monolithic 8-bit parallel flash ADD converter available today. The nominal conversion rate is 150 MSPS and the analog bandwidth is in excess of 50 MHZ . A major advance over previous flash converters is the inclusion of 256 input preamplifiers between the reference ladder and input comparators (see block diagram). This not only reduces clock transient kickback to the input and reference ladder due to a low ac beta but also reduces the effect of the dynamic state of the input signal on the latching characteristics of the input comparators. The preamplifiers act as buffers and stabilize the input capacitance so that it remains constant over different input voltage and frequency ranges and therefore makes the part easier to drive than previous flash A/Ds. The preamplfiers also add a gain of six to the input signal so that each comparator
has a wider overdrive or threshold range to "trip" into or out of the active state. This gain reduces metastable states that can cause errors at the output.

The HADC77100 has true differential analog and digital data paths from the preamplifiers to the output buffers (Current Mode Logic) for reducing potential missing codes while rejecting common mode noise.

Signature errors are also reduced by careful layout of the analog circuitry. Every comparator also has a clock buffer to reduce differential delays and to improve signal-to-noise ratio. Furthermore, the HADC77100 has an on-board power supply bypass of 1500 pF to reduce external component needs, and the output drive capability of the device can provide full ECL swings into $50 \Omega$ loads.

## TYPICAL INTERFACE CIRCUIT

The HADC77100 is relatively easy to apply depending on the accuracy needed in the intended application. Wire-wrap may be employed with careful point-to-point ground connections if desired, but to achieve the best operation, a double sided PC board with a ground plane on the component side separated into digital and analog sections will give the best performance. The converter is bonded-out to place the digital pins on the left side of the package and the analog pins on the right side. Additionally, an RF bead connection through a single point from the analog to digital ground planes will reduce ground noise pickup.

The circuit in Figure 1 is intended to show the most elaborate method of achieving the least error by correcting for integral linearity, input induced distortion and power supply/ground noise. This is achieved by the use of external reference ladder tap connections, input buffer and supply decoupling. The function of each pin and external connections to other components are as follows:

## AVEE, DVEE, AGND, DGND

The analog and digital supply and ground pins are physically separated on the device. It is recommended to take advantage of the noise suppression benefits by utilizing separate ground and supply planes when operating the part above 50 MSPS clock rates.

If separate AVEE and DVEE are used, be sure to power both up simultaneously to avoid damaging the device. The digital and analog power supply terminals should be bypassed as close to the device as possible to their respective grounds with at least a $.01 \mu \mathrm{~F}$ ceramic capacitor. A $1 \mu \mathrm{~F}$ tantalum can also be used for low frequency suppression. The digital ground is further divided into internal circuit ground (DGND1) and output ground (DGND2). The digital output ground should be referenced to the pulldown voltage and bypassed to it as shown in Figure 1.

## VIN (Analog Input)

There are two analog input pins that are tied to the same point internally. Either one may be used as an analog input "sense" and the other for input "force". This is convenient for testing the source signal to see if there is sufficient drive capability. The pins can also be tied together and driven by the same source. The HADC77100 is superior to similar devices due to a preamplifier stage before the comparators. This makes the device easier to drive because it has constant capacitance and induces less slew rate distortion. If an input buffer is needed, a Harris HA2540 may be used in conjunction with an output transistor buffer for lower frequency applications. For higher frequencies, another option is to use an Elantec EL2004 video buffer or an HA2539 and a 2N5836/7 transistor. Very high performance can be achieved by using a comlinear CLC100.

FIGURE 1 HADCT7100 TYPICAL INTERFACE CIRCUIT


## CLK, CLK (Clock Inputs)

The clock inputs are designed to be driven differentially with ECL levels. The clock may be driven single-ended since CLK is internally biased to -1.3 V (see clock input circuit on page 12). It may be left open but a $.01 \mu \mathrm{~F}$ bypass capacitor from $\overline{\mathrm{CLK}}$ to DGND1 is recommended. The duty cycle of the clock should be kept at 50\% to avoid causing larger 2nd harmonics. If this is not important to the intended application, then duty cycles other than $50 \%$ may be used.

## MINV, LINV (Output Logic Control)

These are digital controls for changing the output code from straight binary to two's complement, etc. For more information, see Table 1. Both MINV and LINV are in the logic "low" (0) state when they are left open. The "high" state can be obtained by tying to DGND1 through a diode or $3.9 \mathrm{k} \Omega$ resistor.

## D0 to D7 (Digital Outputs)

The digital outputs can drive $50 \Omega$ to ECL levels when pulled down to -2 V . When pulled down to -5.2 V the outputs can drive $130 \Omega$ to $1 \mathrm{~K} \Omega$ loads.

## VRB, VRM, VRT (Reference Input)

There are two reference inputs and one external reference voltage tap. These are $-2 \mathrm{~V}(\mathrm{VRB})$, mid-tap (VRM), and AGND (VRT). The reference pins and tap can be driven by op amps as shown in Figure 1 or VRM may be bypassed for limited temperature operation. These voltage level inputs can be bypassed to AGND for further noise suppression if so desired.

## N/C

All "Not Connected" pins should be tied to DGND1 on the left side of the package and to AGND on the right side.

TABLE 1 - OUTPUT CODING

$\begin{aligned} & \hline \text { MINV } \\ & \text { LINV } \end{aligned}$	0	0	1	1
OV	111... 11	100... 00	011...11	000...00
.	111... 10	100... 01	011... 10	000... 01
-	-	-	-	-
-	.	.	.	.
$V_{\text {IN }}$	100...00	111... 11	000...00	011...11
.	011...11	000... 00	111... 11	100...00
$\cdot$	-	-	.	.
-	-	-	,	-
-	000... 01	011... 10	100... 01	111... 10
-2V	$000 . . .01$ $000 . .00$	011... 10	$100 . . .01$ $100 . .00$	111... 10 $111 . .11$

1: $V_{I H}, \quad V_{\mathrm{OH}}$
$0: V_{\mathrm{IL},} \mathrm{V}_{\mathrm{ol}}$

## OPERATION

The HADC77100 has 256 preamp/comparator pairs which are each supplied with the voltage from VRT to VRB divided equally by the resistive ladder as shown in the block diagram on page 1 . This voltage is applied
to the positive input of each preamplifier and comparator pair. An analog input voltage applied at VIN is connected to the negative inputs of each preamplifier/comparator pair. The comparators are then clocked through each one's individual clock buffer. When the CLK pin is in the low state, the master or input stage of the comparators compare the analog input voltage to the respective reference voltage. When the CLK pin changes from low to high the comparators are latched to the state prior to the clock transition and output logic codes in sequence from the top comparators, closest to VRT(OV), down to the point where the magnitude of the input signal changes sign (thermometer code). The output of each comparator is then registered into four 64-to-6 bit decoders when the CLK is changed from high to low. At the output of the decoders is a set of four 7-bit latches which are enabled ("track") when the clock changes from high to low. From here, the output of the latches are coded into 6 LSBs from four columns and 4 columns are coded into 2 MSBs. Next are the MINV and LINV controls for output inversions and they consist of a set of eight XOR gates. Finally, eight ECL output latches and buffers are used to drive the external loads. The conversion takes one clock cycle from the input to the data outputs.

FIGURE 1A - TIMING DIAGRAM


Dots (e) in the chart denote respective latch timings.


## CLOCK INPUT



MINV, LINV INPUT CIRCUIT


## OUTPUT CIRCUIT



## DYNAMIC EVALUATION




## BURN-IN CIRCUIT



## DEFINITION OF TERMS <br> SPECIFICATIONS

## AD CONVERTER ERROR SUMMARY

Honeywell SPT realizes that the transfer function for an $A / D$ converter is very dependent upon the slew rate of the signal it is digitizing. The transfer function under dynamic conditions may exhibit numerous errors (Figure 2B) while a static dc input level may appear close to the ideal (Figure 2A). That is why we are including many dynamic tests as well as the the industry standard dc specifications.

## EFFECTIVE BITS (SNR)

This is the difference between the measured data at the output of an A/D converter in response to a sinewave and an ideal sinewave's data best fitted to the measured data. The data is then plotted as usable (effective) output bits versus frequency. This is the most important specification since it is tested over the entire frequency range of the part and shows true dynamic performance. It also indicates the cumulative effect of many error sources. These are quantization error, dynamic differential nonlinearity, missing codes, integral nonlinearity, total harmonic distortion, aperture uncertainty and noise. Not included are DC specifications such as offset and gain errors. The result is calculated from measured rms error for the ideal sinewave and the measured actual rms error as follows:

$$
\text { eff bits }=8-\log _{2} \frac{\text { actual rms error }}{\text { ideal rms error }}
$$

Furthermore, signal-to-noise ratio (SNR) can be related to effective bits by the following formula:

$$
\mathrm{SNR}(\mathrm{~dB})=1.8+6.02 \times \mathrm{N} \text { (eff bits) }
$$

## QUANTIZATION ERROR

Quantization error is the fundamental, irreducible error associated with the perfect quantizing of a continuous (analog) signal into a finite number of digital bits (A/D tranfer function). An 8-bit A/D converter can represent an input voltage with a best case uncertainty of 1 part in $2^{8}$ ( 1 part in 256). In real A/Ds under dynamic operating conditions, the quantization bands (bit change step vs input amplitude) for certain codes can be significantly larger (or smaller) than the ideal. The ideal width of each quantization step (or band) is $Q=$ $\mathrm{FSR} / 2^{\mathrm{N}}$ where $\mathrm{FSR}=$ full scale range and $\mathrm{N}=8$. Nonideal quantization bands represent differential nonlinearity errors (See Figures 2A and 2B).

## DIFFERENTIAL NONLINEARITY

Differential nonlinearity is a measure of how much the actual quantization step width varies from the ideal step width of 1 LSB . Figure 2B shows a differential nonlinearity of 2 LSB - the actual step width is 3 LSB. The HADC77100's specification gives the worst case differential nonlinearity in the A/D transfer function under specified dynamic operating conditions. Small, localized differential nonlinearities may be insignificant when digitizing full scale signals. However, if a low level input signal happens to fall on that part of the A/D transfer function with the differential nonlinearity error, the effect will be significant.

## MISSING CODES

Missing codes represent a special kind of differential nonlinearity. The quantization step width for a missing code is 0 LSB, which results in a differential nonlinearity of -1 LSB. Figure 2 B points out two missed codes in the transfer function.


Figure 2A Static Input Conditions


Figure 2B Dynamic Conditions

## SPECIFICATIONS CONTINUED

## INTEGRAL NONLINEARITY

Integral nonlinearity is the maximum deviation of the A/D transfer function from a best fit straight line (Figure 3A). Integral nonlinearity does not include any gain and offset errors. Integral nonlinearity in an $A / D$ is generally more detrimental when digitizing full scale signals than low level signals which may fall on a part of the transfer function which is relatively linear. Figure 2 B shows an integral nonlinearity error of 2 LSB. The HADC77100's integral nonlinearity can be improved by using the external reference ladder taps as shown in Figure 1. The resulting effect on the linearity is shown in Figure 3B.

## APERTURE UNCERTAINTY

Aperture uncertainty is the time jitter in the sample point and is caused by short term stability errors in the timebase generating the sample (encode) command to the A/D converter. The approximate voltage error due to aperture uncertainty depends on the slew rate of the signal at the sample point. See Figure 3C .

As in any sampled data system, the aperture width affects the accuracy of the system. The aperture time can be considered an amplitude uncertainty for any input where the voltage is changing. The magnitude of this change for a sinewave can be calculated for time or voltage by the equation:


By calculating the aperture time for a given system accuracy and comparing it to the aperture time specification of the flash converter, the need for a track and hold can be determined. The graph in Figure 4 summarizes required aperture time for 8 -bit resolution high speed converters using sinusoidal frequencies.

An example using an 8 -bit flash converter follows. If the signal that is to be measured is known not to contain any sinusoidal frequencies above 10 MHz , then from Figure 4 it can be determined that to assure less than 8 -bits of error due to aperture alone, the AID converter must have an aperture time of less than 70 ps . Most data sheets do not state aperture time so usually a sample and hold is used. Unfortunately, the sample and holds generally available today are not faster than 70ps.

Aperture time and delay are very difficult to measure, however these values are needed to make intelligent design decisions. Honeywell SPT supplies these values for the HADC77100 based on both computer design simulations and verified by characterization of samples.


FIGURE 3B Linearity Curve with TAPS Forced to Within .5mV of Ideal


FIGURE 3C Aperture Uncertainty


FIGURE 4 Aperture Time - Sinewaves


Sinewave
Histogram
In the histogram test, A/D transfer function step widths larger than ideal show up as "spikes" in the histogram. Codes missing from the transfer function show up as "bins" with zero counts.

## CHARACTERISTIC TESTING

TESTING
All of the following tests can be performed using Hewlett-Packard equipment as referred to in H.P. Product Note 5180A-2. Test methods available to measure the previous specifications are explained as follows and listed in Table 2.

## HISTOGRAM TESTING

In histogram testing, a full scale sinewave of specified frequency is input to the HADC77100. The frequency of the sinewave is selected to be non-coherent with the sample rate of the A/D converter. Several hundred thousand samples of the signal are taken and processed into a histogram. At the end of the sampling, the histogram is plotted with possible output codes along the $x$-axis and frequency of occurance along the $y$-axis. Above each possible output code (the $x$-axis is from 0 to 256), a point is plotted whose height is proportional to the total number of times that code occurs. For a sinewave input, a perfect A/D converter would produce a cusp probability density function described by the equation:

$$
p(V)=\frac{1}{\pi\left(A^{2}-V^{2}\right)^{-1 / 2}}
$$

where $A$ is the peak amplitude of the sinewave and $\mathrm{p}(\mathrm{V})$ is the probability of an occurance at a voltage V . If a particular step is wider than the ideal width, then the code associated with that step will have accumulated more "counts" than a code corresponding to the ideal step. A step narrower than the ideal width will accumulate fewer counts. Missing codes are readily apparent because a missing code will show zero counts (See Figure 5).

## FAST FOURIER TRANSFORM TESTING

The Discrete Fourier Transform (DFT) is another useful tool for evaluating ADD converter dynamic performance. Implemented using a Fast Fourier Transform algorithm, the DFT converts a finite time sequence of sampled data into the frequency domain. From the frequency domain representation of the data, the linearity of the A/D converter's dynamic transfer function may be measured. Harmonics of the input sinewave, caused by the integral nonlinearity, are aliased

FIGURE 5 Histogram Testing

## SPECIFICATION TESTING CONTINUED:

into the baseband spectrum and can be readily identified and measured. Additional effects can be measured as shown in Table 2.

## SINEWAVE CURVE FITTING

In the sinewave curve fit test, a full scale sinewave of specified frequency is digitized by the HADC77100. Using least squared error minimization techniques, an idealized sinewave fit to the data is calulated by software. The sinewave is in the form:

$$
A \sin (2 \pi f t+\theta)+D C
$$

where $A, f, \theta, D C$ are the parameters which are selected for a best fit to the data. The idealized best fit sinewave, $A_{0} \sin \left(2 \pi f_{0} t+\theta_{0}\right)+D C_{0}$ is then subtracted from the digitized time record.

The rms errors are then calculated and the effective bits specification is found.

## BEAT FREQUENCY TEST

Beat frequency testing is a qualitative test for AJD converter dynamic performance and may be used to quickly judge whether or not there are any gross problems with the HADC77100. In this technique, a full scale sinewave input signal is offset slightly in frequency from the ADD converters sample rate. This frequency offset is selected such that on successive cycles of the input sinewave, the A/D's output ideally would change by 1 LSB at the point of maximum slope. Thus the A/D sample point "walks" through the input signal. When the data stored in memory is reconstructed using a low speed DAC, the beat frequency, $\Delta f$, is observed. Differential nonlinearities show up as nonuniform horizontal lines in the observed beat frequency waveform and missing codes show up as gaps.

## TABLE 2 TESTS

The following table summarizes the dynamic performance tests previously described and the dynamic errors which influence test results.
(Table from H. P. Product Note 5180A-2)

ERROR	HISTOGRAM	FFT	SINEWAVE CURVE FIT	BEAT   FREQUENCY   TEST
Differential Nonlinearity	Yes-shows up as spikes	Yes-shows up as elevated noise floor	Yes-part of RMS error	Yes
Missing Codes	Yes-shows up as bins with 0 counts	Yes-shows up as elevated noise floor	Yes-part of RMS error	Yes
Integral Nonlinearity	Yes (could be measured directly with highly linear ramp waveform)	Yes-shows up as harmonics of fundamental aliased into baseband	Yes-part of RMS error	Yes
Aperature Uncertainty	No-averaged out. Can be measured with "phase locked" histogram.	Yes-shows up as elevated noise floor	Yes-part of RMS error	No
Noise	No-averaged out. Can be measured with "phase locked" histogram.	Yes-shows up as elevated noise floor	Yes-part of RMS error	No
Bandwidth Errors	No	No	No	Yes-used to measure analog bandwidth.
Gain Errors	Yes-shows up in peak to peak of distribution.	No	No	No
Offset Errors	Yes-shows up in offset of distribution average.	No	No	No






## 42 LEAD CERAMIC SIDEBRAZED DIP

NAME	FUNCTION	NAME	FUNCTION
avee	Negative Analog Supply Nominally -5.2V	$\overline{\text { CLK }}$	ECL Clock Input Pin
		CLK	ECL Clock Input Pin
LINV	Do through D6 Output Inversion Control Pin	VRB	Reference Voltage Bottom Nominally -2.0V
DVEE	Digital Analog Supply Nominally -5.2 V	AGND	Analog Ground
DGND1	Digital Ground 1	VIN	Analog Input Can be connected to the input
DGND2	Digital Ground 2		signal or used as Sense
Do	Digital Data Output (LSB)	VRM	Reference Voltage Tap Middle
D1-D6	Digital Data Output	VIN	Analog Input Can be connected to the input signal or used as Sense
D7	Digital Data Output (MSB)	VRT	Reference Voltage, Top Nominally 0.0 V

.050 DIA. $\pm .005$


46 LEAD PIN GRID ARRAY

## **For Ordering Information See Section 1.

NOTES:

# SIGNAL PROCESSING TECHNOLOGIES 

## HADC77200

## 8-BIT, 150 MSPS FLASH A/D CONVERTER

## PRELIMINARY INFORMATION

## FEATURES

-150 MSPS CONVERSION RATE

- 100 MHz Full Scale Bandwidth
-1/2 LSB Linearity
- Preamplifier Comparator Design
- Maximum Power Dissipation <2.7 Watts


## GENERAL DESCRIPTION

The HADC77200 is a monolithic flash AD converter capable of digitizing a 2 Volt analog input signal with full scale frequency components to 100 MHz into 8 -bit digital words at a 150 MSPS update rate.

For most applications, no external sample-and-hold is required for accurate conversion due to the device's wide bandwidth. A single standard -5.2 Volt power supply is required for operation of the HADC77200, with nominal power dissipation of 2.2 Watts.

## APPLICATIONS

- Digital Oscilloscopes
-Transient Capture
- Radar, EW
- Medical Electronics: Ultrasound, CAT Instrumentation

The part is packaged in a 48 Lead Ceramic Sidebrazed DIP and a 46 Lead PGA. The HADC77200 includes five external reference ladder TAPS to gain better control over linearity; an overrange bit for use in higher resolution systems; and a data ready output pin for ease in interfacing to high-speed memory. Careful attention to design and layout has provided a device with low noise floor, stable input characteristics, and low data error rate. The HADC77200 is available in Industrial and Military Temperature ranges.


ABSOLUTE MAXIMUM RATINGS (Beyond which damage may occur) ${ }^{1} \mathbf{2 5}{ }^{\circ} \mathrm{C}$
Supply Voltages Output
Negative Supply Voltage (VEE TO GND) ..- 7.0 to +0.5 V
Ground Voltage Differential.................. -0.5 to +0.5 V
AVEE to DVEE Differential.................... 50 mV

Output
Digital Output Current. $\qquad$ 0 to - 25 mA
Temperature
Operating Temperature, ambient
-65 to $+150^{\circ} \mathrm{C}$
junction.
$+150^{\circ} \mathrm{C}$
Input Voltage
Analog Input Voltage +0.5 to $\mathrm{V}_{\text {EE }} \mathrm{V}$
Reference Input Voltage....................... +0.5 to $\mathrm{V}_{\mathrm{EE}} \mathrm{V}$
Digital Input Voltage.............................. +0.5 to $\mathrm{VEE}_{\mathrm{EE}} \mathrm{V}$
Reference Current VRT to VRB....................... 25 mA
Midtap Reference Current.
-6 to +6 mA
Notes:

1. Operation at any Absolute Maximum Rating is not implied. See Electrical Specifications for proper nominal applied conditions in typical applications.

ELECTRICAL SPECIFICATIONS

## INDUSTRIAL TEMPERATURE RANGE

$V_{E E}=-5.2 \mathrm{~V}$, R $_{\text {Source }}=10 \Omega, \mathrm{f}_{\text {clock }}=125 \mathrm{MHz}$, Duty Cycle $=50 \% \quad$ VRB $=-2.00 \mathrm{~V}, \mathrm{VRT}=0.00 \mathrm{~V}$, Unless otherwise specified

DC ELECTRICAL	TEST	TEST	ROOM	HOT	COL.D	
PARAMETERS	CONDITIONS	LEVEL	$+25^{\circ} \mathrm{C}$	$+85^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C}$	
			MIN TYP MAX	MIN MAX	MIN	MAX

TRANSFER
CHARACTERISTICS

Integral Linearity, 77200A		$\\|$	$\pm \frac{1}{2}$	$\pm \frac{1}{2}$	$\pm \frac{1}{2}$	LSB
Differential Linearity, 77200A		$\\|$	$\pm \frac{1}{2}$	$\pm \frac{1}{2}$	$\pm \frac{1}{2}$	LSB
Integral Linearity, 77200B		$\\|$	$\pm \frac{3}{4}$	$\pm \frac{3}{4}$	$\pm \frac{3}{4}$	LSB
Differential Linearity, 77200B   (No missing codes)		$\\|$	$\pm \frac{3}{4}$	$\pm \frac{3}{4}$	$\pm \frac{3}{4}$	LSB
Offset Error VRT		$\\|$	-8	-15	-15	-15
Offset Error VRB		1	+8	+15	+15	+15

ANALOG INPUT
CHARACTERISTICS

Input Voltage Range		I	-2.0	0.0			
Input Capacitance	Over full input range	V	56		VOLTS		
Input Resistance		V	4		pF		
Input Current		$\\|$	300	500	450	$\mathrm{k} \Omega$	
Clock Synchronous   Input Currents		V	40		650	$\mu \mathrm{~A}$	

TEST LEVEL CODE: See page 7.

## ELECTRICAL SPECIFICATIONS

INDUSTRIAL TEMPERATURE RANGE


## POWER SUPPLIES

Supply Current   (analog)		11	360	425	440	425
Supply   (digital)		11	60	80	85	80

## REFERENCE

Positive Reference   Voltage	Operating Condition	I	$>\mathrm{VRB}$	0.0		
Negative Reference   Voltage	Operating Condition	I	-2.5	<VRT		
Reference Tap   Current	$\mathrm{V}_{\mathrm{RM}}=-1.00 \mathrm{~V}$	IV		4		
Ladder Resistance		II	100	160	100	180
Reference Bandwidth		V		80	120	$\Omega$

DIGITAL LOGIC

Output High Voltage	$50 \Omega$ to -2V	II	-0.98	-0.90	-0.82	-0.89	-0.70	-1.08	-0.91	VOLTS
Output Low Voltage	$50 \Omega$ to -2 V	II	-1.95	-1.80	-1.65	-1.95	-1.65	-1.95	-1.69	VOLTS
Input High Voltage (MINV, LINV)		II	-1.13	-0.81	-1.07	-0.67	-1.27	-0.87	VOLTS	
Input Low Voltage (MINV, LINV)		II	-1.95	-1.48	-1.95	-1.42	-1.95	-1.50	VOLTS	
Output Rise Time 10\% to 90\%	$50 \Omega$ to -2V	IV		2					ns	
Output Fall Time 10\% to $90 \%$	$50 \Omega$ to -2V	IV		2					ns	

$\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}$, R Source $=10 \Omega, \mathrm{f}_{\text {clock }}=125 \mathrm{MHz}$, Duty Cycle $=50 \% \quad$ VRB $=-2.00 \mathrm{~V}$, VRT $=0.00 \mathrm{~V}$, Unless otherwise specified

| AC ELECTRICAL |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| PARAMETERS |

CONVERSION TIMING, See Figure 1A

Maximum Sample Rate		II	125	150	125	125	MSPS		
Clock Low Width, TPW0		II	4	3	4		4		
Clock High Width, TPW1		II	4	3	4		4		Output Latency
:---									

TEST LEVEL CODE: See page 7.

## ELECTRICAL SPECIFICATIONS

INDUSTRIAL TEMPERATURE RANGE


ANALOG INPUTS

Large Signal Bandwidth	Vin $=$ F.S.	II	100			MHz
Small Signal Bandwidth	Vin $=500 \mathrm{mV} \mathrm{PP}$	II	100 175			MHz
Aperture Jitter		V	12			ps RMS
Aperture Delay	Differential Clock	V	1.8			ns
Aperture Delay Tempco	Differential Clock	V	7			$\mathrm{ps} /{ }^{\circ} \mathrm{C}$
Aperture Time		V	$<100$			ps
Acquisition Time	F.S. to $\pm 1 / 2$ LSB	V	5			ns
Input Slew Rate		V	800			$\mathrm{~V} / \mathrm{\mu s}$


$\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{R}_{\text {Source }}$	$\mathrm{k}=125 \mathrm{MHz}$,	= $50 \%$	VR	.00V, V	$=0.0$	s otherwis	cified
AC ELECTRICAL PARAMETERS	TEST CONDITIONS	TEST LEVEL	$\begin{gathered} \text { ROOM } \\ \text { +250ㅇ } \\ \text { MIN }{ }^{\text {TYP }} \end{gathered}$	MAX	$\begin{gathered} \text { HOT } \\ +85^{\circ} \mathrm{C} \\ \text { MIN MAX } \end{gathered}$	$\begin{gathered} \text { COLD } \\ -25^{\circ} \mathrm{C} \\ \operatorname{MIN} \text { MAX } \end{gathered}$	S

SIGNAL QUALITY $\mathrm{f}_{\text {clock }}=125 \mathrm{MHz}$

RMS Sinewave Curve Fit	Vin = FS @ 1MHz	II	8			Bits
RMS Sinewave Curve Fit	Vin=FS@ 25MHz	II	7			Bits
RMS Sinewave Curve Fit	Vin = FS @ 50MHz	II	5.3			Bits
Signal to noise ratio	Vin = FS @ 1MHz	II	48			dB
Signal to noise ratio	Vin = FS @ 25MHz	II	46			dB
Signal to noise ratio	Vin = FS @ 50MHz	II	42			dB
Total Harmonic Distortion	Vin = FS @ 1MHz	V	46			dBc
Total Harmonic Distortion	$\mathrm{Vin}=\mathrm{FS}$ @ 25MHz	V	38			dBc
Total Harmonic Distortion	Vin = FS @ 50MHz	V	34			dBc
Mean Differential NonLinearity		V	. 001			LSB
RMS Differential NonLinearity		V	. 2			LSB
Differential Gain	NTSC 40IRE mod. ramp, $\mathrm{Fc}=125 \mathrm{MSPS}$	V	1.0			\%
Differential Phase		V	. 5			DEG

TEST LEVEL CODE: See page 7.

## MILITARY TEMPERATURE RANGE

$V_{E E}=-5.2 \mathrm{~V}, R_{\text {Source }}=10 \Omega, \mathrm{f}_{\text {clock }}=125 \mathrm{MHz}$, Duty Cycle $=50 \%, \quad$ VRB $=-2.00 \mathrm{~V}, \mathrm{VRT}=0.00 \mathrm{~V}$, Unless otherwise specified | DC ELECTRICAL |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| PARAMETERS | TEST | TEST | ROOM | HOT | COLD |  |
|  | CONDITIONS | LEVEL | $+25^{\circ} \mathrm{C}$ | $+125^{\circ} \mathrm{C}$ | $-55^{\circ} \mathrm{C}$ |  |
|  |  |  | MIN | TYP MAX | MIN | MAX | MIN MAX | MNITS |
| :--- | :--- |

TRANSFER
CHARACTERISTICS

Integral Linearity, 77200A	I	$\pm \frac{1}{4} \quad \pm \frac{1}{2}$	$\pm 1$	$\pm \frac{1}{2}$	LSB
Differential Linearity, 77200A	1	$\pm \frac{1}{4} \quad \pm \frac{1}{2}$	$\pm 1$	$\pm \frac{1}{2}$	LSB
Offset Error VRT	1	$18-30$	-30	-30	mV
Offset Error VRB	1	1830		30	mV

ANALOG INPUT
CHARACTERISTICS

Input Voltage Range		I	-2.5	+0.5	-2.5	+0.5

## POWER SUPPLIES

Supply Current   (analog)		1	360	425	450	425
Supply Current   (digital)		1	60	80	80	80

## REFERENCE

Positive Reference   Voltage	Operating Condition	I	$>$ VRB	0.0			
Negative Reference   Voltage	Operating Condition	I	-2.5	$<$ VRT			
Reference Tap   Current	VRM $=-1.00 \mathrm{~V}$	V		4			
Ladder Resistance		II	100	160	130	210	80
Reference Bandwidth		V		50		120	$\Omega$

TEST LEVEL CODE: See page 7.

## MILITARY TEMPERATURE RANGE

$V_{E E}=-5.2 \mathrm{~V}, R_{\text {Source }}=10 \Omega, \mathrm{f}_{\text {clock }}=125 \mathrm{MHz}$, Duty Cycle $=50 \%, \quad \mathrm{VRB}=-2.00 \mathrm{~V}, \mathrm{VRT}=0.00 \mathrm{~V}$, Unless otherwise specified

DC ELECTRICAL PARAMETERS	TEST CONDITIONS	$\begin{aligned} & \text { TEST } \\ & \text { LEVEL } \end{aligned}$	$\begin{aligned} & \text { ROOM } \\ & +25^{\circ} \mathrm{C} \end{aligned}$			$\begin{gathered} \text { HOT } \\ +125^{\circ} \mathrm{C} \end{gathered}$		$\begin{aligned} & \text { COLD } \\ & -55^{\circ} \mathrm{C} \end{aligned}$		UNITS
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	

## DIGITAL LOGIC

Output High Voltage	$50 \Omega$ to -2V	I	-0.98 -0.90	-0.82	-0.85	-0.66	-1.10	-0.95	VOLTS
Output Low Voltage	$50 \Omega$ to -2V	1	-1.95 1.80	-1.65	-1.95	-1.65	-1.95	-1.70	VOLTS
Input High Voltage (MINV, LINV)		I	-1.13	-0.81	-1.07	-0.67	-1.27	-0.87	VOLTS
Input Low Voltage (MINV, LINV)		I	-1.95	-1.48	-1.95	-1.42	-1.95	-1.50	VOLTS
Output Rise Time (10\% to 90\%)	$50 \Omega$ to -2V			2					ns
Output Fall Time (10\% to 90\%)	$50 \Omega$ to -2V			2					ns

$\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}$, R $_{\text {Source }}=10 \Omega, \mathrm{f}_{\text {clock }}=125 \mathrm{MHz}$, Duty Cycle $=50 \%, \quad$ VRB $=-2.00 \mathrm{~V}, \mathrm{VRT}=0.00 \mathrm{~V}$, Unless otherwise specified

| AC ELECTRICAL |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| PARAMETERS |

CONVERSION TIMING (See Figure1A)

Maximum Sample Rate		II	125	150				
Clock Low Width, TPW0		II	4	3				
MSPS								
Clock High Width, TPW1		II	4	3				
(IV								
Output Latency			1	1	1	1	1	1

## ANALOG INPUTS

Large Signal Bandwidth	Vin = F.S.	$\\|$	100			
Small Signal Bandwidth	Vin = 500mVPP	$\\|$	100	175		
Aperture Jitter		V	12			
Aperture Delay	Differential Clock	$\\|$	1.2	1.8	2.4	2.4
Aperture Time		V	$<100$		MH	
Settle-to-Hold Time		V	3		ns	
Aperture Delay Tempco	Differential Clock	V	7		ps	

TEST LEVEL CODE: See page 7.

## MILITARY TEMPERATURE RANGE

$V_{E E}=-5.2 \mathrm{~V}$, R Source $=10 \Omega, \mathrm{f}_{\text {clock }}=125 \mathrm{MHz}$, Duty Cycle $=50 \%, \quad$ VRB $=-2.00 \mathrm{~V}, \mathrm{VRT}=0.00 \mathrm{~V}$, Unless otherwise specified

| AC ELECTRICAL |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| PARAMETERS |

SIGNAL QUALITY $\mathrm{f}_{\text {clock }}=125 \mathrm{MHz}$

RMS Sinewave Curve Fit	Vin $=$ FS @ 1 MHz	II	8			Bits
RMS Sinewave Curve Fit	$\mathrm{Vin}=\mathrm{FS} @ 25 \mathrm{MHz}$	I	7			Bits
RMS Sinewave Curve Fit	$\mathrm{Vin}=\mathrm{FS} @ 50 \mathrm{MHz}$	II	5.3			Bits
Signal to noise ratio	$\mathrm{Vin}=\mathrm{FS} @ 1 \mathrm{MHz}$	II	48		dB	
Signal to noise ratio	$\mathrm{Vin}=\mathrm{FS} @ 25 \mathrm{MHz}$	I	46			dB
Signal to noise ratio	$\mathrm{Vin}=\mathrm{FS} @ 50 \mathrm{MHz}$	II	42		dB	
Total Harmonic Distortion	$\mathrm{Vin}=\mathrm{FS} @ 1 \mathrm{MHz}$	V	46		dBC	
Total Harmonic Distortion	$\mathrm{Vin}=\mathrm{FS} @ 25 \mathrm{MHz}$	V	38		dBC	
Total Harmonic Distortion	$\mathrm{Vin}=\mathrm{FS} @ 50 \mathrm{MHz}$	V	34		dBC	
Mean Differential Non-   Linearity		V	.001		LSB	
RMS Differential Non-   Linearity		V	.2		LSB	

## TEST LEVEL CODES

## ELECTRICAL CHARACTERISTICS TESTING

All electrical characteristics are subject to the following conditions:

All parameters having Min./Max. specifications are guaranteed. The Test Level column indicates the specific device testing actually performed during production and Quality Assurance inspection. Any blank sections in the data columns indicates that the specification is not tested at the specified condition.

Unless otherwise noted, all tests performed after a 3 min . power soak.

## TEST LEVEL <br> 1 <br> TEST PROCEDURE <br> $100 \%$ production tested at the specified temperatures. <br> $100 \%$ production tested at $\mathrm{Ta}=$ $25^{\circ} \mathrm{C}$, and sample tested at the specified temperatures. <br> QA sample tested only at the specified temperatures. <br> Parameter is guaranteed (but not tested) by design and characterization data. <br> Parameter is a typical value for information purposes only.

## GENERAL DESCRIPTION

The HADC77200 is the fastest monolithic 8-bit parallel flash ADD converter available today. The conversion rate is 150 MSPS and the analog bandwidth is in excess of 100 MHZ . A major advance over previous flash converters is the inclusion of 256 input preamplifiers between the reference ladder and input comparators (see block diagram). This reduces clock transient kickback to the input and reference ladder. The preamplfiers also add a gain of six to the input signal so that each comparator has a wider overdrive or threshold range to "trip" into or out of the active state. This gain reduces meta-stable states that can cause errors at the output.

An additional advantage of the HADC77200 over similar devices is a better integral linearity specification over the part's entire usable range.

The center reference ladder taps are optional as needed to futher decrease this specification.

The HADC77200 has true differential analog and digital data paths from the preamplifiers to the output buffers (Current Mode Logic) for reducing potential missing codes while rejecting common mode noise.

Signature errors are also reduced by careful layout of the analog circuitry. Every comparator also has a clock buffer to reduce differential delays and to improve signal-to-noise ratio. Furthermore, the HADC77200 has an on-board power supply bypass of 1500 pF to reduce external component needs, and the output drive capability of the device can provide full ECL swings into $50 \Omega$ loads.

## TYPICAL INTERFACE CIRCUIT

The HADC77200 is relatively easy to apply depending on the accuracy needed in the intended application. Wire-wrap may be employed with careful point-to-point ground connections if desired, but to achieve the best operation, a double sided PC board with a ground plane on the component side separated into digital and analog sections will give the best performance. The converter is bonded-out to place the digital pins on the left side of the package and the analog pins on the right side. Additionally, an RF bead connection through a single point from the analog to digital ground planes will reduce ground noise pickup.

The circuit in Figure 1 is intended to show the most elaborate method of achieving the least error by correcting for integral linearity, input induced distortion and power supply/ground noise. This is achieved by the use of external reference ladder tap connections, input buffer and supply decoupling. The function of each pin and external connections to other components are as follows.

## AVEE, DVEE, AGND, DGND

The analog and digital supply and ground pins are physically connected on the device. It is recommended to take advantage of the noise suppression benefits by utilizing separate ground and supply planes when operating the part above 50 MSPS clock rates.

If separate AVEE and DVEE are used, be sure to power both up simultaneously to avoid damaging the device. The digital and analog power supply terminals should be bypassed as close to the device as possible to their respective grounds with at least a $.01 \mu \mathrm{~F}$ ceramic capacitor. A $1 \mu \mathrm{~F}$ tantalum can also be used for low frequency suppression. The digital ground is further divided into internal circuit ground (DGND1) and output ground (DGND2). The digital output ground should be referenced to the pulldown voltage and bypassed to it as shown in Figure 1.

## VIN (Analog input)

There are two analog input pins that are tied to the same point internally. Either one may be used as an analog input "sense" and the other for input "force". This is convenient for testing the source signal to see if there is sufficient drive capability. The pins can also be tied together and driven by the same source. The HADC77200 is superior to similar devices due to a preamplifier stage before the comparators. If an input buffer is needed, a Harris HA2540 may be used in conjunction with an output transistor buffer for lower frequency applications. For higher frequencies, another option is to use an Elantec EL2004 video buffer or an HA2539 and a 2N5836 transistor. Very high performance can be achieved by using a Comlinear CLC221/231.


## CLK, $\overline{\text { CLK }}$ (Clock Inputs)

The clock inputs are designed to be driven differentially with ECL levels. The clock may be driven singleended since CLK is internally biased to -1.3 V (see clock input circuit on page 12). It may be left open but a $.01 \mu \mathrm{~F}$ bypass capacitor from CLK to DGND1 is recommended. The duty cycle of the clock is not important as long as minimum pulse width is maintained.

## MINV, LINV (Output Logic Control)

These are digital controls for changing the output code from straight binary to two's complement, etc. For more information, see Table 1. Both MINV and LINV are in the logic "low" ( 0 ) state when they are left open. The "high" state can be obtained by tying to DGND1 through a diode or $3.9 \mathrm{k} \Omega$ resistor.

## D0 to D7 (Digital Outputs)

The digital outputs can drive $50 \Omega$ to ECL levels when pulled down to -2 V . When pulled down to -5.2 V the outputs can drive $130 \Omega$ to $1 \mathrm{~K} \Omega$ loads.

VRBF, VRBS, VR1, VR2, VR3, VRTF, VRTS (Reference Inputs)

These are five external reference voltage taps from -2 V (VRB) to AGND (VRT) which can be used to control integral linearity over temperature. The TAPS can be can be driven by Op amps as shown in Figure 1. These voltage level inputs can be bypassed to AGND for futher noise suppression if so desired. VRB and VRT have "force" and "sense" pins for monitoring the top and bottom voltage references.

DREAD (Data Ready), DRINV (Data Ready Inverse)

The data ready pin is a flag that goes high or low at the output when data is valid or ready to be received. It is essentially a delay line that accounts for the time necessary for information to be clocked through the HADC77200's decoders and latches. This function is useful for interfacing with high speed memory. Using the data ready output to latch the output data ensures minimum setup and hold times. DRINV is a data ready inverse control pin. Timing is shown in Figure 1A.

## D8 (Overrange)

This is an overrange function. When the HADC77200 is in an overrange condition, D8 goes high and all data outputs go high as well. This makes it possible to include the HADC77200 into higher resolution systems.

N/C
All "Not Connected" pins should be tied to DGND1 on the left side of the package and to AGND on the right side.

TABLE 1 - OUTPUT CODING

$\begin{aligned} & \text { MINV } \\ & \text { LINV } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0 1	1	1 1
ov	111...11	100... 00	011...11	000...00
.	111... 10	100... 01	011... 10	000... 01
.	.	.	.	.
-	$\cdots$	.	$\stackrel{.}{ }$	$\cdots$
$\mathrm{v}_{\text {IN }}$	100...00	111... 11	000... 00	011... 11
.	011...11	000...00	111...11	100...00
.	.		.	.
$\cdot$	$\stackrel{.}{ }$			$\stackrel{.}{ }$
.	000... 01	011... 10	100... 01	111... 10
-2V	000... 00	011...11	100... 00	111... 11

## OPERATION

The HADC77200 has 256 preamp/comparator pairs which are each supplied with the voltage from VRT to VRB divided equally by the resistive ladder as shown in the block diagram on page 1 . This voltage is applied to the positive input of each preamplifier and comparator pair. An analog input voltage applied at VIN is connected to the negative inputs of each preamplifier/comparator pair. The comparators are then clocked through each one's individual clock buffer. When the CLK pin is in the low state, the master or input stage of the comparators compare the analog input voltage to the respective reference voltage. When the CLK pin changes from low to high the comparators are latched to the state prior to the clock transition and output logic codes in sequence from the top comparators, closest to VRT(OV), down to the point where the magnitude of the input signal changes sign (thermometer code). The output of each comparator is then registered into four 64-to-6 bit decoders when the CLK is changed from high to low. At the output of the decoders is a set of four 7-bit latches which are enabled ("track") when the clock changes from high to low. From here, the output of the latches are coded into 6 LSBs from four columns and 4 columns are coded into 2 MSBs. Next are the MINV and LINV controls for output inversions and they consist of a set of eight XOR gates. Finally, eight ECL output latches and buffers are used to drive the external loads. The conversion takes one clock cycle from the input to the data outputs.

FIGURE 1A - TIMING DIAGRAM


## CLOCK INPUT



DRINV, MINV, LINV INPUT CIRCUIT DO THROUGH D8, DREAD


## DYNAMIC EVALUATION




CIRCUIT TO GENERATE CLOCK AND INPUT FOR BURN-IN CIRCUIT


Pin numbers refer to dip packages only.

## DEFINITION OF TERMS

## SPECIFICATIONS

## AID CONVERTER ERROR SUMMARY

Honeywell SPT realizes that the transfer function for an $A / D$ converter is very dependent upon the slew rate of the signal it is digitizing. The transfer function under dynamic conditions may exhibit numerous errors (Figure 2B) while a static dc input level may appear close to the ideal (Figure 2A). That is why we are including many dynamic tests as well as the the industry standard dc specifications.

## EFFECTIVE BITS (SNR)

This is the difference between the measured data at the output of an A/D converter in response to a sinewave and an ideal sinewave's data best fitted to the measured data. The data is then plotted as usable (effective) output bits versus frequency. This is the most important specification since it is tested over the entire frequency range of the part and shows true dynamic performance. It also indicates the cumulative effect of many error sources. These are quantization error, dynamic differential nonlinearity, missing codes, integral nonlinearity, total harmonic distortion, aperture uncertainty and noise. Not included are DC specifications such as offset and gain errors. The result is calculated from measured rms error for the ideal sinewave and the measured actual rms error as follows:

$$
\text { eff bits }=8-\log _{2} \frac{\text { actual rms error }}{\text { ideal rms error }}
$$

Furthermore, signal-to-noise ratio (SNR) can be related to effective bits by the following formula:

$$
\mathrm{SNR}(\mathrm{~dB})=1.8+6.02 \times \mathrm{N} \text { (eff bits) }
$$

## QUANTIZATIONERROR

Quantization error is the fundamental, irreducible error associated with the perfect quantizing of a continuous (analog) signal into a finite number of digital bits (A/D tranfer function). An 8-bit A/D converter can represent an input voltage with a best case uncertainty of 1 part in $2^{8}$ ( 1 part in 256). In real A/Ds under dynamic operating conditions, the quantization bands (bit change step vs input amplitude) for certain codes can be significantly larger (or smaller) than the ideal. The ideal width of each quantization step (or band) is $Q=$ FSR/2 ${ }^{N}$ where $\operatorname{FSR}=$ full scale range and $N=8$. Nonideal quantization bands represent differential nonlinearity errors (See Figures 2A and 2B).

Differential nonlinearity is a measure of how much the actual quantization step width varies from the ideal step width of 1 LSB. Figure 2 B shows a differential nonlinearity of 2 LSB - the actual step width is 3 LSB. The HADC77200's specification gives the worst case differential nonlinearity in the A/D transfer function under specified dynamic operating conditions. Small, localized differential nonlinearities may be insignificant when digitizing full scale signals. However, if a low level input signal happens to fall on that part of the A/D transfer function with the differential nonlinearity error, the effect will be significant.

## MISSING CODES

Missing codes represent a special kind of differential nonlinearity. The quantization step width for a missing code is 0 LSB, which results in a differential nonlinearity of -1 LSB. Figure 2 B points out two missed codes in the transfer function.


Figure 2A Static Input Conditions


Figure 2B Dynamic Conditions

## SPECIFICATIONS CONTINUED

## INTEGRAL NONLINEARITY

Integral nonlinearity is the maximum deviation of the A/D transfer function from a best fit straight line (Figure 3A). Integral nonlinearity does not include any gain and offset errors. Integral nonlinearity in an $A / D$ is generally more detrimental when digitizing full scale signals than low level signals which may fall on a part of the transfer function which is relatively linear. Figure 2B shows an integral nonlinearity error of 2 LSB. The HADC77200's integral nonlinearity can be improved by using the external reference ladder taps as shown in Figure 1. The resulting effect on the linearity is shown in Figure 3B.

## APERTURE UNCERTAINTY

Aperture uncertainty is the time jitter in the sample point and is caused by short term stability errors in the timebase generating the sample (encode) command to the A/D converter. The approximate voltage error due to aperture uncertainty depends on the slew rate of the signal at the sample point. See Figure 3C.

As in any sampled data system, the aperture width affects the accuracy of the system. The aperture time can be considered an amplitude uncertainty for any input where the voltage is changing. The magnitude of this change for a sinewave can be calculated for time or voltage by the equation:


Bit Number
FIGURE 3A Linearity Curve with no TAP adjustment

By calculating the aperture time for a given system accuracy and comparing it to the aperture time specification of the flash converter, the need for a track and hold can be determined. The graph in Figure 4 summarizes required aperture time for 8 -bit resolution high speed converters using sinusoidal frequencies.

An example using an 8-bit flash converter follows. If the signal that is to be measured is known not to contain any sinusoidal frequencies above 10 MHz , then from Figure 4 it can be determined that to assure less than 8 -bits of error due to aperture alone, the A/D converter must have an aperture time of less than 70ps. Most data sheets do not state aperture time so usually a sample and hold is used. Unfortunately, the sample and holds generally available today are not faster than 70ps.

Aperture time and delay are very difficult to measure, however these values are needed to make intelligent design decisions. Honeywell SPT supplies these values for the HADC77200 based on both computer design simulations and verified by characterization of samples.


Bit Number
FIGURE 3B Linearity Curve with TAPS Forced to Within . 5 mV of Ideal


FIGURE 3C Aperture Uncertainty


FIGURE 4 Aperture Time - Sinewaves


In the histogram test, $A D$ transfer function step widths larger than ideal show up as "spikes" in the histogram. Codes missing from the transfer function show up as "bins" with zero counts.

## CHARACTERISTIC TESTING

## TESTING

All of the following tests can be performed using Hewlett-Packard equipment as referred to in H.P. Product Note 5180A-2. Test methods available to measure the previous specifications are explained as follows and listed in Table 2.

## HISTOGRAM TESTING

In histogram testing, a full scale sinewave of specified frequency is input to the HADC77200. The frequency of the sinewave is selected to be non-coherent with the sample rate of the AID converter. Several hundred thousand samples of the signal are taken and processed into a histogram. At the end of the sampling, the histogram is plotted with possible output codes along the $x$-axis and frequency of occurance along the $y$-axis. Above each possible output code (the $x$-axis is from 0 to 256), a point is plotted whose height is proportional to the total number of times that code occurs. For a sinewave input, a perfect A/D converter would produce a cusp probability density function described by the equation:

$$
p(V)=\frac{1}{\pi\left(A^{2}-V^{2}\right)^{-1 / 2}}
$$

where $A$ is the peak amplitude of the sinewave and $p(\mathrm{~V})$ is the probability of an occurance at a voltage V . If a particular step is wider than the ideal width, then the code associated with that step will have accumulated more "counts" than a code corresponding to the ideal step. A step narrower than the ideal width will accumulate fewer counts. Missing codes are readily apparent because a missing code will show zero counts (See Figure 5).

## FAST FOURIER TRANSFORM TESTING

The Discrete Fourier Transform (DFT) is another useful tool for evaluating A/D converter dynamic performance. Implemented using a Fast Fourier Transform algorithm, the DFT converts a finite time sequence of sampled data into the frequency domain. From the frequency domain representation of the data, the linearity of the A/D converter's dynamic transfer function may be measured. Harmonics of the input sinewave, caused by the integral nonlinearity, are aliased

FIGURE 5 Histogram Testing

## SPECIFICATION TESTING CONTINUED:

into the baseband spectrum and can be readily identified and measured. Additional effects can be measured as shown in Table 2.

## SINEWAVECURVE FITTING

In the sinewave curve fit test, a full scale sinewave of specified frequency is digitized by the HADC77200. Using least squared error minimization techniques, an idealized sinewave fit to the data is calulated by software. The sinewave is in the form:

$$
A \sin (2 \pi f t+\theta)+D C
$$

where $A, f, \theta, D C$ are the parameters which are selected for a best fit to the data. The idealized best fit sinewave, $A_{0} \sin \left(2 \pi f_{0} t+\theta_{0}\right)+D C_{0}$ is then subtracted from the digitized time record.

The rms errors are then calculated and the effective bits specification is found.

BEAT FREQUENCY TEST

Beat frequency testing is a qualitative test for A/D converter dynamic performance and may be used to quickly judge whether or not there are any gross problems with the HADC77200. In this technique, a full scale sinewave input signal is offset slightly in frequency from the A/D converters sample rate. This frequency offset is selected such that on successive cycles of the input sinewave, the A/D's output ideally would change by 1 LSB at the point of maximum slope. Thus the A/D sample point "walks" through the input signal. When the data stored in memory is reconstructed using a low speed DAC, the beat frequency, $\Delta \mathrm{f}$, is observed. Differential nonlinearities show up as nonuniform horizontal lines in the observed beat frequency waveform and missing codes show up as gaps.

## TABLE 2

## TESTS

The following table summarizes the dynamic performance tests previously described and the dynamic errors which influence test results.
(Table from H. P. Product Note 5180A-2)

ERROR	HISTOGRAM	FFT	SINEWAVE CURVE FIT	BEAT   FREQUENCY   TEST
Differential Nonlinearity	Yes-shows up as spikes	Yes-shows up as elevated noise floor	Yes-part of RMS error	Yes
Missing Codes	Yes-shows up as bins with 0 counts	Yes-shows up as elevated noise floor	Yes-part of RMS error	Yes
Integral Nonlinearity	Yes (could be measured directly with highly linear ramp waveform)	Yes-shows up as harmonics of fundamental aliased into baseband	Yes-part of RMS error	Yes
Aperature Uncertainty	No-averaged out. Can be measured with "phase locked" histogram.	Yes-shows up as elevated noise floor	Yes-part of RMS error	No
Noise	No-averaged out. Can be measured with "phase locked" histogram.	Yes-shows up as elevated noise floor	Yes-part of RMS error	No
Bandwidth Errors	No	No	No	Yes-used to measure analog bandwidth.
Gain Errors	Yes-shows up in peak to peak of distribution.	No	No	No
Offset Errors	Yes-shows up in offset of distribution average.	No	No	No



FULL SCALE ANALOG INPUT FREQUENCY (MHZ)
DFT DERIVED THD VERSUS INPUT FREQUENCY FOR 125 MSPS


FULL SCALE ANALOG INPUT FREQUENCY (MHZ)
dFt derived snr versus INPUT FREQUENCY FOR 125MSPS


DIE LAYOUT


NOTES:

## SIGNAL PROCESSING TECHNOLOGIES

## HADC77300

## 8-BIT, 250 MSPS FLASH A/D CONVERTER

## ADVANCE INFORMATION

## FEATURES

-250 MSPS CONVERSION RATE
-150 MHz Full Scale Bandwidth

- 1/2 LSB Linearity
- Preamplifier Comparator Design
- Maximum Power Dissipation < 4.3 Watts


## APPLICATIONS

- Digital Oscilloscopes
- Transient Capture
- Radar, EW
- Medical Electronics: Ultrasound, CAT Instrumentation


## GENERAL DESCRIPTION

The HADC77300 is a monolithic flash AD converter capable of digitizing a 2 Volt analog input signal with full scale frequency components to 150 MHz into 8 -bit digital words at a 250 MSPS update rate.

For most applications, no external sample-and-hold is required for accurate conversion due to the device's wide bandwidth. A single standard -5.2 Volt power supply is required for operation of the HADC77300, with nominal power dissipation of 4 Watts .

Supply Voltages Output
Negative Supply Voltage (VEE TO GND) ... 7.0 to +0.5 VGround Voltage Differential0.5 to +0.5 V
Avee to DVEE Differential ..... 50 mV
Input Voltage
Analog Input Voltage ..... +0.5 to $\mathrm{V}_{\mathrm{EE}} \mathrm{V}$
Reference Input Voltage ..... +0.5 to $\mathrm{V}_{\mathrm{EE}} \mathrm{V}$
Digital Input Voltage ..... +0.5 to $\mathrm{V}_{\text {EE }} \mathrm{V}$
Reference Current VRT to VRB. ..... 25 mA
Midtap Reference Current ..... -6 to +6 mA
Output
Digital Output Current

$\qquad$
0 to - 25 mA
TemperatureOperating Temperature, ambient........... 65 to $+150^{\circ} \mathrm{C}$junction.................... $175^{\circ} \mathrm{C}$
Lead Temperature, (soldering 10 seconds)-65 to $+150^{\circ} \mathrm{C}$

Notes:

1. Operation at any Absolute Maximum Rating is not implied. See Electrical Specifications for proper nominal applied conditions in typical applications.

## ELECTRICAL SPECIFICATIONS

INDUSTRIAL TEMPERATURE RANGE
$\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{R}_{\text {Source }}=10 \Omega, \mathrm{f}_{\text {clock }}=250 \mathrm{MHz}$, Duty Cycle $=50 \% \quad \mathrm{VRB}=-2.00 \mathrm{~V}$, VRT $=0.00 \mathrm{~V}$, Unless otherwise specified

DC ELECTRICAL	TEST	TEST	ROOM	HOT	COLD	
PARAMETERS	CONDITIONS	LEVEL	$+25^{\circ} \mathrm{C}$	$+85^{\circ} \mathrm{C}$	$\mathbf{- 2 5}{ }^{\circ} \mathrm{C}$	
		MIN TYP MAX	MIN MAX	MIN	MAX	UNITS

TRANSFER
CHARACTERISTICS

Integral Linearity, 77300A		$\\|$	$\pm \frac{1}{2}$	$\pm \frac{1}{2}$	$\pm \frac{1}{2}$	LSB
Differential Linearity, 77300A		$\\|$	$\pm \frac{1}{2}$	$\pm \frac{1}{2}$	$\pm \frac{1}{2}$	LSB
Integral Linearity, 77300B		$\\|$	$\pm \frac{3}{4}$	$\pm \frac{3}{4}$	$\pm \frac{3}{4}$	LSB
Differential Linearity, 77300B   (No missing codes)		$\\|$	$\pm \frac{3}{4}$	$\pm \frac{3}{4}$	$\pm \frac{3}{4}$	LSB
Offset Error VRT		1	-8	-15	-15	-15
Offset Error VRB		1	+8	+15	+15	+15

ANALOG INPUT
CHARACTERISTICS

Input Voltage Range		I	-2.0	0.0		
Input Capacitance	Over Full Input Range	V	20		Volts	
Input Resistance		V	4		pF	
Input Current		II			$\mathrm{k} \Omega$	
Clock Synchronous   Input Currents		V	40		mA	

TEST LEVEL CODE: See page 7.

INDUSTRIAL TEMPERATURE RANGE


## POWER SUPPLIES

Supply Current   (Analog)		$I I$	750	775	750	mA
Supply Current   (Digital)		11	60	80	85	80

REFERENCE

Positive Reference   Voltage	Operating Condition	I	$>$ VRB	0.0			
Negative Reference   Voltage	Operating Condition	I	-2.5	<VRT			Volts
Reference Tap   Current	$\mathrm{V}_{\mathrm{RM}}=-1.00 \mathrm{~V}$	IV		8			
Ladder Resistance		II	100	160	100	180	80
Reference Bandwidth		V		50	120	$\Omega$	

## DIGITAL LOGIC

Output High Voltage	$50 \Omega$ to -2V	II	-0.98	-0.90	-0.82	-0.89	-0.70	-1.08	-0.91
Output Low Voltage	$50 \Omega$ to -2 V	II	-1.95	-1.80	-1.65	-1.95	-1.65	-1.95	-1.69
Volts									
Input High Voltage (MINV, LINV)		II	-1.13	-0.81	-1.07	-0.67	-1.27	-0.87	Volts
Output Low Voltage (MINV, LINV)		II	-1.95	-1.48	-1.95	-1.42	-1.95	-1.50	Volts
Output Fall Time 20\% to 80\%	$50 \Omega$ to -2V	IV		1					ns

$\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{R}_{\text {Source }}=10 \Omega$, $\mathrm{f}_{\text {clock }}=250 \mathrm{MHz}$, Duty Cycle $=50 \% \quad \mathrm{VRB}=-2.00 \mathrm{~V}$, VRT $=0.00 \mathrm{~V}$, Unless otherwise specified


CONVERSION TIMING, See Figure 1A

Maximum Sample Rate		II	250	250	250	
Clock Low Width, TPW0		II	2		MSPS	
Clock High Width, TPW1		II	2	2	2	ns
Output Delay, TD	Differential Clock	V		2.1		2
Output Delay Tempco	Differential Clock	V		15		ns

TEST LEVEL CODE: See page 7.

## ELECTRICAL SPECIFICATIONS

INDUSTRIAL TEMPERATURE RANGE
$\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{R}_{\text {Source }}=10 \Omega, \mathrm{f}_{\text {clock }}=250 \mathrm{MHz}$, Duty Cycle $=50 \% \quad \mathrm{VRB}=-2.00 \mathrm{~V}$, VRT $=0.00 \mathrm{~V}$, Unless otherwise specified

DC ELECTRICAL PARAMETERS	TEST CONDITIONS	$\begin{aligned} & \text { TEST } \\ & \text { LEVEL } \end{aligned}$	$\begin{aligned} & \text { ROOM } \\ & +25^{\circ} \mathrm{C} \end{aligned}$			$\begin{array}{r} \text { HOT } \\ +85^{\circ} \mathrm{C} \end{array}$		$\begin{aligned} & \text { COLD } \\ & -25^{\circ} \mathrm{C} \end{aligned}$		UNITS
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	

ANALOG INPUTS

Large Signal Bandwidth	Vin $=$ F.S.	II	150			MHz
Small Signal Bandwidth	Vin $=500 \mathrm{mV}$ PP	II	200			MHz
Aperture Jitter		V	8			ps RMS
Aperture Delay	Differential Clock	V	1.0			ns
Aperture Delay Tempco	Differential Clock	V	7			$\mathrm{ps} /{ }^{\circ} \mathrm{C}$
Aperture Time		V	$<70$			ps
Acquisition Time	F.S. to $\pm 1 / 2$ LSB	V	2			ns
Input Slew Rate		V	2			V/ns


$=-5.2 \mathrm{~V}$, $\mathrm{R}_{\text {S }}$	$\mathrm{k}=250 \mathrm{MHz}$,	\%	VRB $=-2.00 \mathrm{~V}, \mathrm{VRT}=0.00 \mathrm{~V}$, Unless otherwise specified					
AC ELECTRICAL PARAMETERS	TEST CONDITIONS	TEST LEVEL	$\begin{gathered} \text { ROOM } \\ \text { +2250 } \\ \text { MIN }{ }^{\circ} \mathrm{TYP} \end{gathered}$		$\begin{gathered} \text { HOT } \\ +85^{\circ} \mathrm{C} \\ \text { MIN MAX } \end{gathered}$		LD ${ }^{\circ} \mathrm{C}$ MAX	
			MIN TYP	MAX	MIN MAX			UNITS

SIGNAL QUALITY $\mathrm{f}_{\text {clock }}=250 \mathrm{MHz}$

RMS Sinewave Curve Fit	Vin=FS @ 1MHz	II	8			Bits
RMS Sinewave Curve Fit	Vin=FS @ 50MHz	II	7			Bits
RMS Sinewave Curve Fit	Vin=FS @ 100MHz	II	5.3			Bits
Signal to Noise Ratio	Vin = FS @ 1MHz	II	48			dB
Signal to Noise Ratio	Vin = FS @ 50MHz	II	46			dB
Signal to Noise Ratio	$\mathrm{Vin}=\mathrm{FS} @ 100 \mathrm{MHz}$	II	42			dB
Total Harmonic Distortion	Vin=FS@ 1MHz	V	46			dBc
Total Harmonic Distortion	Vin = FS @ 50MHz	V	38			dBc
Total Harmonic Distortion	Vin=FS @ 100MHz	V	34			dBc

TEST LEVEL CODE: See page 7.

MILITARY TEMPERATURE RANGE

TRANSFER
CHARACTERISTICS

Integral Linearity, 77300A		$I$	$\pm \frac{1}{4}$	$\pm \frac{1}{2}$	$\pm \frac{1}{2}$	$\pm \frac{1}{2}$
LSB						
Differential Linearity, 77300A		$I$	$\pm \frac{1}{4}$	$\pm \frac{1}{2}$	$\pm \frac{1}{2}$	$\pm \frac{1}{2}$
Offset Error VRT		$I$	-15	-15	-15	mV
Offset Error VRB		$I$	+15		+15	mV

ANALOG INPUT
CHARACTERISTICS

Input Voltage Range	Over Full Input Range	I	-2.5	+0.5	-2.5	+0.5	-2.5	+0.5

## POWER SUPPLIES

Supply Current   (Analog)		1	750	775	750	mA
Supply Current   (Digital)		1	60	80	80	80

## REFERENCE

Positive Reference Voltage	Operating Condition	1	>VRB 0.0			Volts
Negative Reference Voltage	Operating Condition	1	-2.5 <VRT			Volts
Reference Tap Current	$\mathrm{V}_{\mathrm{RM}}=-1.00 \mathrm{~V}$	V	8			mA
Ladder Resistance		II	$100 \quad 160$	$130 \quad 210$	$80 \quad 120$	$\Omega$
Reference Bandwidth		V	50			MHz

TEST LEVEL CODE: See page 7.

## MILITARY TEMPERATURE RANGE

$V_{E E}=-5.2 \mathrm{~V}$, R $_{\text {Source }}=10 \Omega, f_{\text {clock }}=250 \mathrm{MHz}$, Duty Cycle $=50 \%, \quad$ VRB $=-2.00 \mathrm{~V}, \mathrm{VRT}=0.00 \mathrm{~V}$, Unless otherwise specified

DC ELECTRICAL PARAMETERS	TEST CONDITIONS	$\begin{aligned} & \text { TEST } \\ & \text { LEVEL } \end{aligned}$		$\begin{aligned} & \text { 100M } \\ & 25^{\circ} \mathrm{C} \\ & \text { TYP } \end{aligned}$	MAX		$\begin{aligned} & \text { OT } \\ & 5^{\circ} \mathrm{C} \end{aligned}$ MAX	$\operatorname{MIN}$	OLD ${ }^{\circ} \mathrm{C}$	UNITS

DIGITAL LOGIC

Output High Voltage	$50 \Omega$ to -2 V	I	-0.98	-0.90	-0.82	-0.85	-0.66	-1.10	-0.95	Volts
Output Low Voltage	$50 \Omega$ to -2 V	I	-1.95	1.80	-1.65	-1.95	-1.65	-1.95	-1.70	Volts
Input Low Voltage (MINV, LINV)		I	-1.13	-0.81	-1.07	-0.67	-1.27	-0.87	Volts	
Input High Voltage (MINV, LINV)		I	-1.95	-1.48			-1.95	-1.50	Volts	
Output Rise Time (20\% to 80\%)	$50 \Omega$ to -2V			1					ns	
Output Fall Time (20\% to 80\%)	$50 \Omega$ to -2V			1					ns	

$\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}$, R Source $=10 \Omega, \mathrm{f}_{\text {clock }}=250 \mathrm{MHz}$, Duty Cycle $=50 \%, \quad \mathrm{VRB}=-2.00 \mathrm{~V}, \mathrm{VRT}=0.00 \mathrm{~V}$, Unless otherwise specified

| AC ELECTRICAL |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| PARAMETERS |

CONVERSION TIMING (See Figure1A)

Maximum Sample Rate		II	250			MSPS
Clock Low Width, TPW0		II	2			ns
Clock High Width, TPW1		II	2			ns
Data Ready Delay, TD		II	2.1			ns
Output Delay, TD	Differential Clock	II	2.1			ns
Output Delay Tempco		V	15			$\mathrm{ps} /{ }^{\circ} \mathrm{C}$

ANALOG INPUTS

Large Signal Bandwidth	Vin= F.S.	II	150			MHz
Small Signal Bandwidth	Vin $=500 \mathrm{mVPP}$	II	200			MHz
Aperture Jitter		V	12			ps RMS
Aperture Delay	Differential Clock	II	1.0			ns
Aperture Time		V	$<70$		ps	
Acquisition Time			2			ns
Aperture Delay Tempco	Differential Clock	V	7		$\mathrm{ps} /{ }^{\circ} \mathrm{C}$	

TEST LEVEL CODE: See page 7.

## MILITARY TEMPERATURE RANGE

$\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}$, R Source $=10 \Omega, \mathrm{f}_{\text {clock }}=250 \mathrm{MHz}$, Duty Cycle $=50 \%, \quad \mathrm{VRB}=-2.00 \mathrm{~V}, \mathrm{VRT}=0.00 \mathrm{~V}$, Unless otherwise specified

| AC ELECTRICAL <br> PARAMETERS | TEST |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| CONDITIONS |  |

SIGNAL QUALITY $\mathrm{f}_{\text {clock }}=250 \mathrm{MHz}$

RMS Sinewave Curve Fit	Vin = FS @ 1MHz	II	8			Bits
RMS Sinewave Curve Fit	Vin=FS@ 50MHz	1	7			Bits
RMS Sinewave Curve Fit	Vin = FS @ 100MHz	II	5.3			Bits
Signal to noise ratio	Vin = FS @ 1MHz	II	48			dB
Signal to noise ratio	Vin = FS @ 50MHz	1	46			dB
Signal to noise ratio	Vin $=$ FS @ 100MHz	II	42			dB
Total Harmonic Distortion	$\mathrm{Vin}=\mathrm{FS}$ @ 1 MHz	V	46			dBC
Total Harmonic Distortion	$\mathrm{Vin}=\mathrm{FS} @ 50 \mathrm{MHz}$	V	38			dBC
Total Harmonic Distortion	Vin $=$ FS @ 100MHz	V	34			dBc

TEST LEVEL CODE: See following chart.

## TEST LEVEL CODES

## ELECTRICAL CHARACTERISTICS TESTING

All electrical characteristics are subject to the following conditions:

All parameters having Min./Max. specifications are guaranteed. The Test Level column indicates the specific device testing actually performed during production and Quality Assurance inspection. Any blank sections in the data columns indicates that the specification is not tested at the specified condition.

Unless otherwise noted, all tests performed after a 3 min . power soak.

TEST LEVEL	TEST PROCEDURE   I   IO0\% production tested at the   specified temperatures.
II	$100 \%$ production tested at $\mathrm{Ta}=$   $25^{\circ} \mathrm{C}$, and sample tested at the   specified temperatures.
III	QA sample tested only at the   specified temperatures.
IV	Parameter is guaranteed (but not   tested) by design and characteri-   zation data.
V	Parameter is a typical value for   information purposes only.
Int	

## GENERAL DESCRIPTION

The HADC77300 is ta very wide bandwidth monolithic 8 -bit parallel flash A/D converter available today. The minimum conversion rate is 250 MSPS and the analog bandwidth is in excess of 200 MHz . A major advance over previous flash converters is the inclusion of 256 input preamplifiers between the reference ladder and input comparators (see block diagram). This reduces clock transient kickback to the input and reference ladder. The preamplfiers also add a gain of six to the input signal so that each comparator has a wider overdrive or threshold range to "trip" into or out of the active state. This gain reduces meta- stable states that can cause errors at the output.

An additional advantage of the HADC77300 over similar devices is a better integral linearity specification over the part's entire usable range.

## TYPICAL INTERFACE CIRCUIT

The HADC77300 is relatively easy to apply depending on the accuracy needed in the intended application. Wire-wrap may be employed with careful point-to-point ground connections if desired, but to achieve the best operation, a double sided PC board with a ground plane on the component side separated into digital and analog sections will give the best performance. The converter is bonded-out to place the digital pins on the left side of the package and the analog pins on the right side. Additionally, an RF bead connection through a single point from the analog to digital ground planes will reduce ground noise pickup.

The circuit in Figure 1 is intended to show the most elaborate method of achieving the least error by correcting for integral linearity, input induced distortion and power supply/ground noise. This is achieved by the use of external reference ladder tap connections, input buffer and supply decoupling. The function of each pin and external connections to other components are as follows:

## AVEE, DVEE, AGND, DGND

The analog and digital supply and ground pins are physically separated on the device. It is recommended to take advantage of the noise suppression benefits by utilizing separate ground planes when operating the part above 50 MSPS clock rates. Separate supply planes are not necessary for the HADC77300.

The specification is improved from $1 / 2$ LSB to $1 / 4$ LSB. The center reference ladder tap is optional as needed to futher decrease this specification.

The HADC77300 has true differential analog and digital data paths from the preamplifiers to the output buffers (Current Mode Logic) for reducing potential missing codes while rejecting common mode noise.

Signature errors are also reduced by careful layout of the analog circuitry. Every comparator also has a clock buffer to reduce differential delays and to improve signal-to-noise ratio. Furthermore, the HADC77300 has an on-board power supply bypass of 1500 pF to reduce external component needs, and the output drive capability of the device can provide full ECL swings into $50 \Omega$ loads.

If separate AVEE and DVEE planes are used on a board, the AVEE plane can be tied together at the device pins to DVEE because the digital and analog supply pins are connected internally through a $50 \Omega$ resistor. There is no need for supply sequencing on the HADC77300 if separate supplies are used. The digital and analog power supply terminals should be bypassed as close to the device as possible to their respective grounds with at least a $.01 \mu \mathrm{~F}$ ceramic capacitor. A $1 \mu \mathrm{~F}$ tantalum can also be used for low frequency suppression. The digital ground is further divided into internal circuit ground (DGND1) and output ground (DGND2). The digital output ground should be referenced to the pulldown voltage and bypassed to it as shown in Figure 1. DGND1 should be connected to AGND if DVEE is connected to AVEE.

## VIN (Analog input)

There are two analog input pins that are tied to the same point internally. Either one may be used as an analog input "sense" and the other for input "force". This is convenient for testing the source signal to see if there is sufficient drive capability. The pins can also be tied together and driven by the same source. The HADC77300 is superior to similar devices due to a preamplifier stage before the comparators.

FIGURE 1 HADC77300 TYPICAL INTERFACE CIRCUIT


## CLK, CLK (Clock Inputs)

The clock inputs are designed to be driven differentially with ECL levels. The clock may be driven singleended since CLK is internally biased to -1.3V (see clock input circuit on page 12). It may be left open but a $.01 \mu \mathrm{~F}$ bypass capacitor from CLK to DGND1 is recommended. The duty cycle of the clock is not important as long as minimum pulse width is maintained.

## MINV, LINV (Output Logic Control)

These are digital controls for changing the output code from straight binary to two's complement, etc. For more information, see Table 1. Both MINV and LINV are in the logic "low" ( 0 ) state when they are left open. The "high" state can be obtained by tying to DGND1 through a diode or $3.9 \mathrm{k} \Omega$ resistor.

## D0 to D7 (Digital Outputs)

The digital outputs can drive $50 \Omega$ to ECL levels when pulled down to -2 V . When pulled down to -5.2 V the outputs can drive $130 \Omega$ to $1 \mathrm{~K} \Omega$ loads.

VRBF, VRBS, VR1, VR2, VR3, VRTF, VRTS
(Reference Inputs) (Reference Inputs)

These are five external reference voltage taps from $-2 V$ (VRB) to AGND (VRT) which can be used to control integral linearity over temperature. The TAPS can be can be driven by Op amps as shown in Figure 1. These voltage level inputs can be bypassed to AGND for futher noise suppression if so desired. VRB and VRT have "force" and "sense" pins for monitoring the top and bottom voltage references.

DREAD (Data Ready), DRINV (Data Ready
Inverse) Inverse)

The data ready pin is a flag that goes high or low at the output when data is valid or ready to be received. It is essentially a delay line that accounts for the time necessary for information to be clocked through the HADC77300's decoders and latches. This function is useful for interfacing with high speed memory. Using the data ready output to latch the output data ensures minimum setup and hold times. DRINV is a data ready inverse control pin. Timing is shown in Figure 1A.

This is an overrange function. When the HADC77300 is in an overrange condition, D8 goes high and all data outputs go high as well. This makes it possible to include the HADC77300 into higher resolution systems.

N/C
All "Not Connected" pins should be tied to DGND1 or AGND.

## TABLE 1 - OUTPUT CODING

MINV   LINV	0	0	1	1
OV	111... 11	100... 00	$011 . .11$	000... 00
.	111... 10	100... 01	011... 10	000... 01
-	-	-	-	-
-	-	-	-	-
VIN	100... 00	111... 11	000... 00	011... 11
in	011... 11	000... 00	111... 11	100... 00
-	-	-	-	-
-	-	-	-	-
-	- 000	011	.	111
-	000... 01	011... 10	100... 01	111... 10
-2V	000... 00	011.. 11	100... 00	111... 11

1: $\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{OH}}$
$0: V_{\text {IL, }} \quad V_{\text {ol }}$

## OPERATION

The HADC77300 has 256 preamp/comparator pairs which are each supplied with the voltage from VRT to VRB divided equally by the resistive ladder as shown in the block diagram on page 1 . This voltage is applied to the positive input of each preamplifier and comparator pair. An analog input voltage applied at VIN is connected to the negative inputs of each preamplifier/comparator pair. The comparators are then clocked through each one's individual clock buffer. When the CLK pin is in the low state, the master or input stage of the comparators compare the analog input voltage to the respective reference voltage. When the CLK pin changes from low to high the comparators are latched to the state prior to the clock transition and output logic codes in sequence from the top comparators, closest to VRT(OV), down to the point where the magnitude of the input signal changes sign (thermometer code). The output of each comparator is then registered into four 64-to-6 bit decoders when the CLK is changed from high to low. At the output of the decoders is a set of four 7-bit latches which are enabled ("track") when the clock changes from high to low. From here, the output of the latches are coded into 6 LSBs from four columns and 4 columns are coded into 2 MSBs. Next are the MINV and LINV controls for output inversions and they consist of a set of eight XOR gates. Finally, eight ECL output latches and buffers are used to drive the external loads. The conversion takes one clock cycle from the input to the data outputs.


INPUT CIRCUIT


CLOCK INPUT


DGND1


## DYNAMIC EVALUATION



CIRCUIT TO GENERATE CLOCK AND INPUT FOR BURN-IN CIRCUIT


## BURN-IN CIRCUIT



## DEFINITION OF TERMS

## SPECIFICATIONS

## A/D CONVERTER ERROR SUMMARY

Honeywell SPT realizes that the transfer function for an A/D converter is very dependent upon the slew rate of the signal it is digitizing. The transfer function under dynamic conditions may exhibit numerous errors (Figure 2B) while a static dc input level may appear close to the ideal (Figure 2A). That is why we are including many dynamic tests as well as the the industry standard dc specifications.

## EFFECTIVE BITS (SNR)

This is the difference between the measured data at the output of an A/D converter in response to a sinewave and an ideal sinewave's data best fitted to the measured data. The data is then plotted as usable (effective) output bits versus frequency. This is the most important specification since it is tested over the entire frequency range of the part and shows true dynamic performance. It also indicates the cumulative effect of many error sources. These are quantization error, dynamic differential nonlinearity, missing codes, integral nonlinearity, total harmonic distortion, aperture uncertainty and noise. Not included are DC specifications such as offset and gain errors. The result is calculated from measured rms error for the ideal sinewave and the measured actual rms error as follows:

$$
\text { eff bits }=8-\log _{2} \frac{\text { actual rms error }}{\text { ideal rms error }}
$$

Furthermore, signal-to-noise ratio (SNR) can be related to effective bits by the following formula:

$$
\mathrm{SNR}(\mathrm{~dB})=1.8+6.02 \times \mathrm{N}(\mathrm{eff} \text { bits) }
$$

## QUANTIZATIONERROR

Quantization error is the fundamental, irreducible error associated with the perfect quantizing of a continuous (analog) signal into a finite number of digital bits (A/D tranfer function). An 8-bit A/D converter can represent an input voltage with a best case uncertainty of 1 part in $2^{8}$ ( 1 part in 256). In real A/Ds under dynamic operating conditions, the quantization bands (bit change step vs input amplitude) for certain codes can be significantly larger (or smaller) than the ideal. The ideal width of each quantization step (or band) is $Q=$ FSR/ $2^{N}$ where $\operatorname{FSR}=$ full scale range and $N=8$. Nonideal quantization bands represent differential nonlinearity errors (See Figures 2A and 2B).

## DIFFERENTIAL NONLINEARITY

Differential nonlinearity is a measure of how much the actual quantization step width varies from the ideal step width of 1 LSB. Figure 2B shows a differential nonlinearity of 2 LSB - the actual step width is 3 LSB. The HADC77300's specification gives the worst case differential nonlinearity in the ADD transfer function under specified dynamic operating conditions. Small, localized differential nonlinearities may be insignificant when digitizing full scale signals. However, if a low level input signal happens to fall on that part of the A/D transfer function with the differential nonlinearity error, the effect will be significant.

## MISSING CODES

Missing codes represent a special kind of differential nonlinearity. The quantization step width for a missing code is 0 LSB, which results in a differential nonlinearity of -1 LSB. Figure 2 B points out two missed codes in the transfer function.


Figure 2A Static Input Conditions


Figure 2B Dynamic Conditions

## SPECIFICATIONS CONTINUED

## INTEGRAL NONLINEARITY

Integral nonlinearity is the maximum deviation of the A/D transfer function from a best fit straight line (Figure 3A). Integral nonlinearity does not include any gain and offset errors. Integral nonlinearity in an $A / D$ is generally more detrimental when digitizing full scale signals than low level signals which may fall on a part of the transfer function which is relatively linear. Figure 2 B shows an integral nonlinearity error of 2 LSB. The HADC77300's integral nonlinearity can be improved by using the external reference ladder taps as shown in Figure 1. The resulting effect on the linearity is shown in Figure 3B.

## APERTURE UNCERTAINTY

Aperture uncertainty is the time jitter in the sample point and is caused by short term stability errors in the timebase generating the sample (encode) command to the A/D converter. The approximate voltage error due to aperture uncertainty depends on the slew rate of the signal at the sample point. See Figure 3C.

As in any sampled data system, the aperture width affects the accuracy of the system. The aperture time can be considered an amplitude uncertainty for any input where the voltage is changing. The magnitude of this change for a sinewave can be calculated for time or voltage by the equation:

By calculating the aperture time for a given system accuracy and comparing it to the aperture time specification of the flash converter, the need for a track and hold can be determined. The graph in Figure 4 summarizes required aperture time for 8 -bit resolution high speed converters using sinusoidal frequencies.

An example using an 8 -bit flash converter follows. If the signal that is to be measured is known not to contain any sinusoidal frequencies above 10 MHz , then from Figure 4 it can be determined that to assure less than 8 -bits of error due to aperture alone, the AID converter must have an aperture time of less than 70ps. Most data sheets do not state aperture time so usually a sample and hold is used. Unfortunately, the sample and holds generally available today are not faster than 70 ps .

Aperture time and delay are very difficult to measure, however these values are needed to make intelligent design decisions. Honeywell SPT supplies these values for the HADC77300 based on both computer design simulations and verified by characterization of samples.



FIGURE 3C Aperture Uncertainty


FIGURE 4 Aperture Time - Sinewaves


Sinewave
Histogram
In the histogram test, AD transfer function step widths larger than ideal show up as "spikes" in the histogram. Codes missing from the transfer function show up as "bins" with zero counts.

## CHARACTERISTIC TESTING

TESTING
All of the following tests can be performed using Hewlett-Packard equipment as referred to in H.P. Product Note 5180A-2. Test methods available to measure the previous specifications are explained as follows and listed in Table 2.

## HISTOGRAM TESTING

In histogram testing, a full scale sinewave of specified frequency is input to the HADC77300. The frequency of the sinewave is selected to be non-coherent with the sample rate of the A/D converter. Several hundred thousand samples of the signal are taken and processed into a histogram. At the end of the sampling, the histogram is plotted with possible output codes along the $x$-axis and frequency of occurance along the $y$-axis. Above each possible output code (the $x$-axis is from 0 to 256), a point is plotted whose height is proportional to the total number of times that code occurs. For a sinewave input, a perfect A/D converter would produce a cusp probability density function described by the equation:

$$
p(V)=\frac{1}{\pi\left(A^{2}-V^{2}\right)^{-1 / 2}}
$$

where A is the peak amplitude of the sinewave and $\mathrm{p}(\mathrm{V})$ is the probability of an occurance at a voltage V . If a particular step is wider than the ideal width, then the code associated with that step will have accumulated more "counts" than a code corresponding to the ideal step. A step narrower than the ideal width will accumulate fewer counts. Missing codes are readily apparent because a missing code will show zero counts (See Figure 5).

## FAST FOURIER TRANSFORM TESTING

The Discrete Fourier Transform (DFT) is another useful tool for evaluating A/D converter dynamic performance. Implemented using a Fast Fourier Transform algorithm, the DFT converts a finite time sequence of sampled data into the frequency domain. From the frequency domain representation of the data, the linearity of the A/D converter's dynamic transfer function may be measured. Harmonics of the input sinewave, caused by the integral nonlinearity, are aliased

FIGURE 5 Histogram Testing

## SPECIFICATION TESTING CONTINUED:

into the baseband spectrum and can be readily identified and measured. Additional effects can be measured as shown in Table 2.

## SINEWAVE CURVE FITTING

In the sinewave curve fit test, a full scale sinewave of specified frequency is digitized by the HADC77300. Using least squared error minimization techniques, an idealized sinewave fit to the data is calulated by software. The sinewave is in the form:

$$
A \sin (2 \pi f t+\theta)+D C
$$

where $A, f, \theta, D C$ are the parameters which are selected for a best fit to the data. The idealized best fit sinewave, $A_{0} \sin \left(2 \pi f_{0} t+\theta_{0}\right)+D C_{0}$ is then subtracted from the digitized time record.

The RMS errors are then calculated and the effective bits specification is found.

## BEAT FREQUENCY TEST

Beat frequency testing is a qualitative test for ADD converter dynamic performance and may be used to quickly judge whether or not there are any gross problems with the HADC77300. In this technique, a full scale sinewave input signal is offset slightly in frequency from the ADD converters sample rate. This frequency offset is selected such that on successive cycles of the input sinewave, the A/D's output ideally would change by 1 LSB at the point of maximum slope. Thus the A/D sample point "walks" through the input signal. When the data stored in memory is reconstructed using a low speed DAC, the beat frequency, $\Delta \mathrm{f}$, is observed. Differential nonlinearities show up as nonuniform horizontal lines in the observed beat frequency waveform and missing codes show up as gaps.

## TABLE 2

TESTS

The following table summarizes the dynamic performance tests previously described and the dynamic errors which influence test results.
(Table from H. P. Product Note 5180A-2)

ERROR	HISTOGRAM	FFT	SINEWAVE CURVE FIT	BEAT   FREQUENCY TEST
Differential Nonlinearity	Yes-shows up as spikes	Yes-shows up as elevated noise floor	Yes-part of RMS error	Yes
Missing Codes	Yes-shows up as bins with 0 counts	Yes-shows up as elevated noise floor	Yes-part of RMS error	Yes
Integral Nonlinearity	Yes (could be measured directly with highly linear ramp waveform)	Yes-shows up as harmonics of fundamental aliased into baseband	Yes-part of RMS error	Yes
Aperature Uncertainty	No-averaged out. Can be measured with "phase locked" histogram.	Yes-shows up as elevated noise floor	Yes-part of RMS error	No
Noise	No-averaged out. Can be measured with "phase locked" histogram.	Yes-shows up as elevated noise floor	Yes-part of RMS error	No
Bandwidth Errors	No	No	No	Yes-used to measure analog bandwidth.
Gain Errors	Yes-shows up in peak to peak of distribution.	No	No	No
Offset Errors	Yes-shows up in offiset of distribution average.	No	No	No



FULL SCALE ANALOG INPUT FREQUENCY (MHz)
DFT DERIVED THD VERSUS INPUT FREQUENCY FOR 250 MSPS


FULL SCALE ANALOG INPUT FREQUENCY (MHz)
DFT DERIVED SNR VERSUS INPUT FREQUENCY FOR 250 MSPS


DIE LAYOUT
DIE SIZE $225 \times 280$

NAME	FUNCTION	NAME
DRINV	Data Ready Inverse	CLK
LINV	Do through D6 Output   Inversion Control Pin	CLK
AVEE	Negative Analog Supply   Nominally -5.2V	VRBS
DVEE	Digital Analog Supply   Nominally -5.2V	VRBF
DGND1	Digital Ground 1	VR1
DGND2	Digital Ground 2	AGND1
DREAD	Data Ready Output	VIN
DO	Digital Data Output Pin 1   (LSB)	AGND2
D1~D6	Digital Data Output Pin 2   Through 6	VR2
D7	Digital Data Output Pin 7   (MSB)	VR3
D8	Overrange Output	VRTS
MINV	D7 Output Inversion   Control Pin	VRTF

FUNCTION
Inverse ECL Clock Input Pin
ECL Clock Input Pin
Reference Voltage Bottom, Sense
Nominally -2.0V
Reference Voltage Bottom, Force
Nominally -2.0V
Reference Voltage Tap 1
Analog Ground 1
Analog Input, can be connected to the input signal or used as a Sense

Analog Ground 2
Reference Voltage Tap 2

Analog Input, can be connected to the input signal or used as a Sense.

Reference Voltage Tap 3
Reference Voltage Top, Sense Nominally 0 V

Reference Voltage Top, Force Nominally OV

## HADC77300 PACKAGING INFORMATION


**For Ordering Information See Section 1.

NOTES:

## 10-BIT, 50 MSPS FLASH ANALOG TO DIGITAL CONVERTER

## ADVANCE INFORMATION

## FEATURES:

- Output Glitches Eliminated
- Trimmed to $\pm 3 / 4$ LSB
- On-Chip Input Buffer Amplifier
- Gray Coded Logic for Low Noise
- Preamplifier/Comparator Inputs


## APPLICATIONS:

- Radar
- Digital Oscilloscopes
- Video Equipment
- Spectrum Analyzers
- Medical Imaging


## GENERAL DESCRIPTION

The HADC77600 is a monolithic 10-bit parallel converter with an on-chip buffer amplifier for ease in driving the input. The sample rate can be set up to 50MSPS (75MSPS TYPICAL) for digitizing signals up to 25 MHz . Without the input buffer, the full scale input range is -2.0 to +2.0 Volts. With the input amplifier connected, the input range is $\pm 400 \mathrm{mV}$ into a $1 \mathrm{~K} \Omega$ in parallel with 5 pF input impedance.

The HADC77600 has a wide bandwidth to allow it to be used in many applications without a track and hold. If a track and hold is required for the application, the converter has excellent step response.

## BLOCK DIAGRAM




## ABSOLUTE MAXIMUM RATINGS $25^{\circ} \mathrm{C}$ (1)

Supply Votages
Positive Supply Votage (VCC to AGND)...... +6.0 to -0.5 V
Negative Supply Voltage (VEE to AGND)....-6.0 to +0.5 V
GND Voltage Differential (AGND to DGND).. +0.5 to -0.5 V

Input Voltages
Data, Controls (ECL, measured to AGND)..... +0.5 to VEE Analog (VIN) $+/-2.5 \mathrm{~V}$ for $+/-2.0 \mathrm{~V}$ Ref

## Output

Applied Voltage................................ -8 V to +.4 V
Temperature
Temperature, ambient....................... 60 to $+140^{\circ} \mathrm{C}$
, junction................................ $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering 10 seconds).... $+300^{\circ} \mathrm{C}$
Storage Temperature $\qquad$ -65 to $+150^{\circ} \mathrm{C}$

Note: Operation at any Absolute Maximum Rating is not implied. See Electrical Specifications for proper nominal applied conditions in typical applications.

## ELECTRICAL SPECIFICATIONS

$\mathrm{VCC}=+5.0 \mathrm{~V}$, VEE $=-5.2 \mathrm{~V}, \mathrm{VBIAS}=+2.0 \mathrm{~V}, \mathrm{fCLOCK}=50 \mathrm{MHz}, \mathrm{VRT}=2.0 \mathrm{~V}, \mathrm{VRB}=-2.0 \mathrm{~V}$, Duty Cycle $=50 \%$, unless otherwise specified.

DC Electrical Characteristics	Test Conditions	$\begin{gathered} \text { Test } \\ \text { Level (1) } \end{gathered}$	$\begin{aligned} & \text { Room }+25^{\circ} \mathrm{C} \\ & \text { Min Typ Max } \end{aligned}$	Hot $+70^{\circ} \mathrm{C}$ Min Typ Max	Cold $-25^{\circ} \mathrm{C}$ Min Typ Max	Units

TRANSFER CHARACTERISTICS

Integral Linearity			$\pm 1$			LSB
Differential Linearity			$\pm 3 / 4$			LSB
Offset Error VRT			-15			mV
Offset Error VRB			15		mV	

ANALOG INPUT CHARACTERISTICS (ADC)

Input Voltage Range			-2	+2	-2	+2

ANALOG INPUT CHARACTERISTICS (Amplifier)

| Input Voltage Range | Inverting Input |  | $-500 \quad+500$ | -500 | +500 | -500 | +500 | mV |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| Input Voltage Range | Non-Inverting <br> Input |  | $-400 \quad+400$ | -400 | +400 | -400 | +400 | mV |
| Input Capacitance |  |  | 5 |  |  |  |  | pF |
| Input Resistance | Inverting <br> Non-Inverting |  | 1 <br> 500 |  |  |  | K Ohms |  |
| Input Current |  |  | 3 |  |  |  | $\mu \mathrm{~A}$ |  |

[^4]
## ELECTRICAL SPECIFICATIONS

$\mathrm{VCC}=+5.0 \mathrm{~V}, \mathrm{VEE}=-5.2 \mathrm{~V}, \mathrm{VBIAS}=+2.0 \mathrm{~V}, \mathrm{fCLOCK}=50 \mathrm{MHz}, \mathrm{VRT}=2.0 \mathrm{~V}, \mathrm{VRB}=-2.0 \mathrm{~V}$, Duty Cycle $=50 \%$, unless otherwise specified.

DC Electrical Characteristics	Test Conditions	Test Level (1)	Room $+25^{\circ} \mathrm{C}$ Min Typ Max	Hot $+70^{\circ} \mathrm{C}$ Min Typ Max	Cold $-25^{\circ} \mathrm{C}$ Min Typ Max	Units

## POWER SUPPLY CHARACTERISTICS

Positive Supply Current			440			mA
Negative Supply Current			380		mA	
Bias Supply Current			130			mA
Power Dissipation			4.7			Watts

## REFERENCE CHARACTERISTICS

Positive Reference Voltage			+2.5			Volts
Negative Reference Voltage			-2.5			Volts
Reference Current			6			mA
Reference Tap Currents			$0.4 \quad 15$		mA	
Ladder Resistance			650			Ohms
Reference Bandwidth			10			MHz

DIGITAL LOGIC CHARACTERISTICS

Output High Voltage	100 Ohms to -2 V		-0.98	-0.91	-0.89	-0.70	-1.10	-0.87	Volts
Output Low Voltage	100 Ohms to -2V		-1.95	-1.65	-1.95	-1.57	-1.95	-1.65	Volts
Input High Voltage			-1.13	-0.81	-1.07	-0.67	-1.27	-0.87	Volts
Input Low Voltage			-1.95	-1.48	-1.95	-1.42	-1.95	-1.50	Volts


AC Electrical Characteristics	Test Conditions	$\left\lvert\, \begin{gathered} \text { Test } \\ \text { Level (1) } \end{gathered}\right.$	Room $+25^{\circ} \mathrm{C}$ Min Typ Max	Hot $+70^{\circ} \mathrm{C}$ Min Typ Max	Cold $-25^{\circ} \mathrm{C}$ Min Typ Max	Units
CONVERSION TIMING CHARACTERISTICS						
Minimum Sample Rate			$50 \quad 75$			MSPS
Clock Width (tPW)	Figure 1		10			ns
Output Latency			1			Cycle
Output Delay (tD)			5 TBD	8	2	ns
Acquisition Time	Figure 2; Full Scale to .1\%		20			ns
Aperture Jitter			12			psRMS
Aperture Delay (tAP)			5			ns

## ANALOG INPUT CHARACTERISTICS (Amplifier)

Slew Rate			300			$\mathrm{~V} / \mu \mathrm{S}$
Bandwidth	-3 dB		45		MHz	
Bandwidth	$45^{\circ}$ Phase Shift		25		MHz	
Settling Time	Full Scale   to $.1 \%$		30			ns

(1) See page 4.

ELECTRICAL SPECIFICATIONS
$\mathrm{VCC}=+5.0 \mathrm{~V}, \mathrm{VEE}=-5.2 \mathrm{~V}, \mathrm{VBIAS}=+2.0 \mathrm{~V}, \mathrm{fCLOCK}=50 \mathrm{MHz}, \mathrm{VRT}=2.0 \mathrm{~V}, \mathrm{VRB}=-2.0 \mathrm{~V}$, Duty Cycle $=50 \%$, unless otherwise specified.

DC Electrical Characteristics	Test Conditions	$\begin{array}{\|c\|} \text { Test } \\ \text { Level (1) } \end{array}$	Room $+\mathbf{2 5}^{\circ} \mathrm{C}$ Min Typ Max	Hot $+70^{\circ} \mathrm{C}$ Min Typ Max	Cold $-25^{\circ} \mathrm{C}$ Min Typ Max	Units
SIGNAL QUALITY CHARACTERISTICS (filock $=50 \mathrm{MHz}$ )						
Total Harmonic Distortion	$V I N=F S$ $\text { @ } 1 \text { MHz }$		55			dB
Total Harmonic Distortion	VIN $=\mathrm{FS}$   @ 5 MHz		50			dB
Total Harmonic Distortion	$\begin{aligned} & \text { VIN = FS } \\ & @ 10 \mathrm{MHz} \end{aligned}$		44	,		dB
Signal to Noise Ratio	VIN $=\mathrm{FS}$   @ 1 MHz		58			dB
Signal to Noise Ratio	VIN $=\mathrm{FS}$ @ 5 MHz		55			dB
Signal to Noise Ratio	$\begin{aligned} & \mathrm{VIN}=\mathrm{FS} \\ & @ 10 \mathrm{MHz} \end{aligned}$		48			dB
Differential Gain	NTSC 140 IRE Mod. Ramp		TBD			\%
Differential Phase			TBD			Degrees

(1) All electrical characteristics are subject to the following conditions:

All parameters having $\min /$ max specifications are guaranteed. The Test Level Column indicates the specific device testing actually performed during production and Quality Assurance inspection. Any blank sections in the data columns indicates that the specification is not tested at the specified condition. Unless otherwise noted, all tests performed after a three minute power soak.

Test Level I-100\% production tested at the specified temperatures.
Test Level $11-100 \%$ production tested at $\mathrm{Ta}=25^{\circ} \mathrm{C}$ and sample tested at the specified temperatures.
Test Level III - QA sample tested only at the specified temperatures.
Test Level IV - Parameter is guaranteed (but not tested) by design and characterization data.
Test Level V - Parameter is a typical value for information purposes only.

FIGURE 1. CONVERSION TIME CHARACTERISTICS


FIGURE 2. ACQUISITION TIME IS WORST CASE VALUE


RECONSTRUCTED OUTPUT

## DESCRIPTION

The HADC77600 is a full parallel 10-bit, 50MSPS (75MSPS Typical) flash converter with linearity trimmed to $\pm 3 / 4$ LSB and random error reduction to the LSB level. It is designed with preamplifier inputs to each comparator and has an on-chip input amplifier. Linearity is trimmed to better than $\pm 3 / 4$ LSB without affecting temperature performance or reliability. Data sheet specifications include both time and frequency domain data to assist the designer in making accurate predictions of system performance.

## TRIMMING

The linearity of the HADC77600 is capable of being trimmed to at least $\pm 3 / 4$ LSB. The trimming is accomplished by adjusting each of the comparator offsets that is off by greater than $3 / 4$ LSB. The trim sites are set for bipolar adjustments so that either direction of offset is capable of being trimmed. Adjustments are done in discrete steps on metal link sites. This method of trimming completely removes resistors from the circuit. This results in a trim that does not affect either reliability of long-term stability. Stability and reliability are not effected because current carrying structures are not altered, they are either left in the circuit or they are completely removed. The resistor ladder is not altered in any manner.

## ERROR REDUCTION

All flash converters prior to the HADC77600 exhibit random errors that are called metastable states or sparkle codes. These errors have the possibility of occurring at any speed or at any code. A similar error is signature error, commonly referred to as glitches. They are most likely to appear at mid, quarter or eighth scale points and the possibility of these errors increases as the input frequency increases. The latter is especially true at the very highest input frequencies that the part is capable of accepting, while random errors increase with clock frequency at a rate that appears to be exponential.

The HADC77600 addresses this problem in a new manner. First a Gray code is used to decrease the internal data synchronous noise. The Gray code also allows the addition of circuitry after the comparators to eliminate errors. The error detection is accomplished by looking for the thermometer code output from the comparators and making an error detection decision based on the comparator outputs.

This thermometer code should have the specific form of all comparators being in either a "0" or a "1" state, and all codes above a certain point should be zeroes and all below should be ones. If this does not occur then an error will be detected. Once an error is detected, the logic looks at a number of codes near the error code or codes, and makes a logical decision of what the correct code should have been. This logical decision can either choose the correct code or it can be off by one LSB. For this reason errors will not be any greater than 1 LSB.

## TABLE 1. LOGIC TABLE

Data Format: OVR, D9, D8, D7 through D0

MINV LINV		$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 1 \end{aligned}$		$\begin{aligned} & 1 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	
>+1.998V	1	1111111111	1	1000000000	0	0111111111	0	0000000000
$\begin{aligned} & +1.996 \mathrm{~V} \\ & +1.992 \mathrm{~V} \end{aligned}$	0	$\begin{aligned} & 1111111111 \\ & 1111111110 \end{aligned}$	0	$\begin{aligned} & 1000000000 \\ & 1000000001 \end{aligned}$	1	$\begin{aligned} & 0111111111 \\ & 0111111110 \end{aligned}$	1 1	$0000000000$ $0000000001$
$\begin{aligned} & 0.0 \mathrm{~V} \\ & -0.004 \mathrm{~V} \end{aligned}$	0	$\begin{aligned} & 1000000000 \\ & 011111111 \end{aligned}$	0	$\begin{aligned} & 1111111111 \\ & 0000000000 \end{aligned}$	1 1	$\begin{aligned} & 0000000000 \\ & 111111111 \end{aligned}$	1 1	$\begin{aligned} & 0111111111 \\ & 1000000000 \end{aligned}$
$\begin{aligned} & -1.996 \mathrm{~V} \\ & <-1.998 \mathrm{~V} \end{aligned}$	0	$\begin{aligned} & 0000000001 \\ & 0000000000 \end{aligned}$	0	0111111110   0111111111	1	$\begin{aligned} & 1000000001 \\ & 1000000000 \end{aligned}$	1 1	$\begin{aligned} & 11111111110 \\ & 1111111111 \\ & \hline \end{aligned}$

Note:Voltages given are the mid-point for the codes.
$1=\mathrm{VOH}, 0=\mathrm{VOL}$.

## REFERENCE LADDER

The ladder of the HADC77600 is composed of 1023 metal resistors of approximately 63 Ohms each and a resistor of half that value at each end of the ladder. Each resistor is actually a different value, with each value calculated to offset the typical $25^{\circ} \mathrm{C}$ bias current value of the preamplifiers. This results in a typical integral linearity curve that has very little, if any bow due to the effects of the summation of bias currents. The reference top and bottom are both connected to sense pins to reduce the offset of the ladder. In addition to the top and bottom reference points to the ladder there are also external taps to the ladder at $1 / 8$ scale increments. These taps can be used to maintain the ladder's linearity if operation over a wide temperature range in required.

A better use for the ladder taps is in applications, where the linearity of the ladder is to be changed to piece-wise approximate a non-linear transfer function. This is often done to increase the dynamic range of the converter. Each ladder tap has been designed to handle the full reference current so that a wide variety of curves can be accommodated.

The top reference to the ladder is typically driven to +2.0 Volts, and the bottom of the ladder to -2.00 Volts. These points can be driven by any op amp that can supply 6 mA . Care must be taken to assure that the amplifier offsets and drifts are commensurate with the system design. Ladder taps can be driven in a similar manner if desired. If they are not used they can be left open or by-passed to VRT or VRB.

## INPUT PREAMPLIFIERS

The input to each comparator is buffered by a preamplifier to prevent currents caused by the dynamic switching of the comparator latches from feeding back to the input. These preamplifiers also isolate the ladder from these same currents.

## INPUT AMPLIFIER

A wide bandwidth input amplifier has been provided for driving the input to the flash converter. This amplifier has an inverting gain of 4 to reduce the input swing from the $\pm 2$ Volt full-scale input swings to $\pm 500 \mathrm{mV}$. If the amplifier is not used, then the inputs should be tied to ground and the output should be left floating.

## CLK AND CLK INPUTS

The clock inputs are designed to be driven with differential ECL levels. Single-ended operation can be accomplished by bypassing the CLK input, which is internally biased to -1.3 V , and driving CLK input.

## OVER-RANGE

The over-range output can be used to either alarm the system when an over-range occurs or it can be used in applications where the dynamic range of the system is to be increased by stacking two converters. Over-range is true when the top reference (VRT) is exceeded by $1 / 2$ and LSB. The $1 / 2$ rather than 1 LSB limit is the result of the top ladder resistor being $1 / 2$ the value of the other ladder resistors.

## OPERATING TEMPERATURE RANGE

The HADC77600 is designed to operate over the full military temperature range. A custom package with the cavity down has been designed for the HADC77600. There is an internal heat sink built into the package. This package has a $\theta_{\mathrm{JA}}$ of approximately $30^{\circ} \mathrm{C} / \mathrm{W}$. This can be reduced to $15^{\circ} \mathrm{C} / \mathrm{W}$ by airflow at a rate of 500 LFPM across the package. Further reduction can be obtained by adding a heat sink.

FIGURE 3. BURN-IN SCHEMATIC


FIGURE 4. 77600 DIE PLOT


## HADC77600 PIN DESCRIPTION

Pins	Description
VEE	Analog and digital negative supply. Typically -5.2 Volts.
VBIAS	Supply voltage. Typically +2.0 Volts.
VCC	Positive digital supply. Typically +5.0 Volts.
AGND	Analog ground.
DGND	Digital ground. Return for ECL outputs. Return to termination ground.
VRT	Most positive reference. Typically +2.00 Volts.
VRTS	Sense pin for the positive referen ce.
VRB	Most negative reference. Typically -2.00 Volts.
VRBS	Sense pin for the negative reference.
VR1 thru VR7	Reference ladder taps in 1/8 scale increments for ladder adjustments.
LINV	Data complement control for bits 0 through 8.
MINV	Data complement control for bits 9 and 10 (OVR).
AMPIN-	Inverting amplifier input.
AMPIN+	Non-inverting amplifier input.
AMPOUT	Amplifier output.
VIN	Flash converter input.
D0 thru D9	Digital ECL outputs. Capable of driving 100 Ohm loads to 10KH specifications.
D10 or OVR	Over-range bit. True when the input exceeds the voltage at VRT.

## HADC77600 PIN OUT

TOP VIEW


[^5]NOTES:

# 16-BIT, $\mu$ P COMPATIBLE HIGH PERFORMANCE A/D CONVERTER <br> ADVANCE INFORMATION 

## FEATURES

- $3 \mu$ S CONVERSION RATE
- Low Power - .9W
- Parallel, serial or 2-byte output configuration
- 16 or 8 -bit $\mu$ P Compatible
$- \pm 2.5 \mathrm{~V}$ or $\pm 5 \mathrm{~V}$ pin programmable input
- External or Internal clock


## GENERAL DESCRIPTION

The HADC78160 is a 16 -bit, hybrid successive approximation AD converter containing $\mu \mathrm{P}$ compatible control pins. It is capable of digitizing up to a $\pm 5$ Volt analog signal at an $3 \mu \mathrm{~S}$ conversion rate.

The device contains a 16 -bit DAC, comparator, and a successive approximation register that can output 16 -bit parallel, serial or 2-byte configuration. The part has an internal clock but can be externally clocked if necessary. The input voltage is pin programmable at either $\pm 2.5 \mathrm{~V}$ or $\pm 5 \mathrm{~V}$ full scale input ranges. The HADC78160 is fully $\mu \mathrm{P}$ compatible with all

## APPLICATIONS

- Sonar
- Digital Scales
- Instrumentation
- Communications
- DSP Interface
- Acoustic Analysis
the necessary control pins for various applications. These include a ready to convert control, SAR busy flag, external clock enable, convert start, serial data clock, tristate control for a high impedance output state, NRZ serial output data option, LSBs and MSB invert, and swap bytes output format. The outputs are TTL compatible. On-board power supply bypass capacitors add additional noise immunity and a smaller overall decrete parts count.

The part is packaged in a 40 Lead , 600 MIL Ceramic DIP and operates on $\pm 15 \mathrm{~V}$ and +5 V power supplies.


## MILITARY TEMPERATURE RANGE

@ $25^{\circ} \mathrm{C}$ case temperature and nominal supplies.

ELECTRICAL   PARAMETERS	TEST CONDITIONS	TEST LEVEL	$\begin{aligned} & \text { ROOM } \\ & +25^{\circ} \mathrm{C} \end{aligned}$			$\begin{aligned} & \text { HOT } \\ & +125^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & \text { COLD } \\ & -55^{\circ} \mathrm{C} \end{aligned}$		UNITS
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	

ANALOG-TO-DIGITAL CONVERTER

Conversion Time			3			$\mu \mathrm{~S}$
Linearity			$\pm 1 / 2$			LSB
Differential Linearity			$\pm 1$			LSB
Gain Error			$\pm .1$			$\%$
Gain Temperature Coefficient			$\pm 20$			$\mathrm{PPM} /{ }^{\circ} \mathrm{C}$
Offset			$\pm 3$			mV
Offset Temperature Coefficient			$\pm 10$			$\mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
Analog Input			$\pm 2.5 / \pm 5$		V	
Input Impedance			2			$\mathrm{~K} \Omega$

POWER REQUIREMENTS

Supply Current   (Analog)	$\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}$		5			mA
	$\mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}$		40			
Supply Current   (Digital)	$\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}$		45			

[^6][^7]
## SELECTION GUIDE, CROSS REFERENCE ORDERING INFORMATION

## DIGITAL TO ANALOG CONVERTERS

## COMPARATORS

INSTRUMENTATION AMPLIFIERS

SPECIAL FUNCTIONS

EVALUATION BOARDS

## APPLICATIONS INFORMATION

QUALITY ASSURANCE

## SALES OFFICES AND REPRESENTATIVES

## 8-BIT, HIGH SPEED D/A CONVERTERS

## FEATURES

- 275 MWPS Conversion Rate - A Version
- 165 MWPS Conversion Rate - B Version
- Compatible with TDC1018 with Improved Performance
- RS-343-A Compatible
- Complete Video Controls: Sync, Blank, Bright and Reference White (Force High)
- 10KH, 100K ECL Compatible
- Single Power Supply
- Registered Data And Video Controls
- Differential Current Outputs


## APPLICATIONS

- High Resolution Color or Monochrome Raster Graphics Displays
- Medical Electronics: CAT, PET, MR Imaging Displays
- CAD/CAE Workstations
- Solids Modeling
- General Purpose High-Speed DIA Conversion
- Digital Synthesizers
- Automated Test Equipment
- Digital Transmitters/Modulators


## GENERAL DESCRIPTION

The HDAC10180 is a monolithic 8-bit digital-to-analog converter capable of accepting video data at a 165 or 275 MWPS rate. Complete with video controls (Sync, Blank, Reference White, [Force High] Bright), the HDAC10180 directly drives doubly-terminated 50 or 75 Ohm loads to standard composite video levels. Standard set-up level is 7.5 IRE, and O IRE set-up is
available as a mask programmed option. The HDAC10180 is pin-compatible with the TDC1018, with improved performance, and two can be used with the HDAC10181. The HDAC10180 contains data and control input registers, video control logic, reference buffer, and current switches in 24 Lead CERDIP, or ceramic sidebrazed DIP.

BLOCK DIAGRAM


## ABSOLUTE MAXIMUM RATINGS (Beyond which the useful life will be impaired) ${ }^{1}$

## Supply Voltages

$D$ (measured to $V_{\text {cco }}$ )	5V
$\mathrm{V}_{\text {EEA }}$ (measured to $\mathrm{V}_{\text {CCA }}$ ).	to 0
$\mathrm{V}_{\mathrm{CCA}}$ (measured to $\mathrm{V}_{\mathrm{C}}$	0.5 to 0

## Input Voltages

CONV, Data, and Controls VEED to 0.5 V
(measured to $\mathrm{V}_{\mathrm{CCD}}$ )

```
\(\mathrm{REF}+\) (measured to \(\left.\mathrm{V}_{\mathrm{CCA}}\right) \ldots V_{\text {EEA }}\) to 0.5 V
REF - (measured to \(V_{C C A}\)) \(V_{\text {EEA }}\) to 0.5 V
```

Temperature
Operating, Ambient -60 to $+140^{\circ} \mathrm{C}$ Junction
$+175^{\circ} \mathrm{C}$
Lead, Soldering ( 10 seconds) . . . . . . . . . . . . $+300^{\circ} \mathrm{C}$
Storage . . . . . . . . . . . . . . . . . . . . . . . -60 to $+150^{\circ} \mathrm{C}$

## Notes:

1. Operation at any Absolute Maximum Ratings is not implied. See Electrical Specifications for proper nominal applied conditions in typical applications.

## ELECTRICAL SPECIFICATIONS

PARAMETER	TEST   CONDITIONS	TEST   LEVEL	MIN	TYP	MAX	UNITS

DC ELECTRICAL CHARACTISTICS $v_{C C A}=0.0 \mathrm{~V}, \mathrm{v}_{\text {EEA }}=v_{\text {EED }}=-5.2 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{C}}=0 \mathrm{PF} ., 1_{\mathrm{SET}}=1.105 \mathrm{~mA}$

$E_{L I}$	Integral Linearity Error	$1.0 \mathrm{~mA}<1_{\mathrm{SET}}<1.3 \mathrm{~mA}$	1	$\begin{aligned} & -0.2 \\ & -1 / 2 \end{aligned}$	$\begin{aligned} & +0.2 \\ & +1 / 2 \end{aligned}$	\% Full Scale LSB
$\mathrm{E}_{\mathrm{LD}}$	Differential Linearity Error	$1.0 \mathrm{~mA}<1{ }_{\mathrm{SET}}<1.3 \mathrm{~mA}$	1	$\begin{aligned} & -0.2 \\ & -1 / 2 \end{aligned}$	$\begin{aligned} & +0.2 \\ & +1 / 2 \end{aligned}$	\% Full Scale LSB
$\mathrm{E}_{\mathrm{G}}$	Gain Error		III	-5	+5	\% Full Scale
$\mathrm{TC}_{\mathrm{G}}$	Gain Error Tempco		V			PPM $/{ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{BG}}$	Bandgap Voltage	(measured to $\mathrm{V}_{\text {CCA }}$ )	V			V
${ }_{\text {IREF }}$	Reference Output Current		1	-50		$\mu \mathrm{A}$
$\mathrm{C}_{\text {REF }}$	Input Capacitance, REF + , REF -		V			pF
$V_{\text {OCP }}$	Compliance Voltage, + Output		1	-1.5	+3	V
$V_{\text {OCN }}$	Compliance Voltage, - Output		1	-1.5	+3	V
${ }^{\text {R OUT }}$	Equivalent Output Resistance		1	20		K Ohm
$\mathrm{C}_{\text {OUT }}$	Output Capacitance		V			pF
${ }^{\text {IOP }}$	Maximum Current, + Output		V		45	mA
${ }_{\text {ION }}$	Maximum Current, - Output		V		45	mA
Ios	Output Offset Current		1		1/2	LSB
$\mathrm{V}_{\mathrm{IH}}$	Input Voltage, Logic HIGH		1		-1.4	V
$V_{\text {IL }}$	Input Voltage, Logic LOW		1	-1.0		V
$V_{\text {ICM }}$	Convert Voltage, Common Mode Range		1	-0.5	-2.5	V
VIDF	Convert Voltage, Differential		IV	0.4	1.2	V

## ELECTRICAL SPECIFICATIONS

PARAMETER	TEST   CONDITIONS	TEST   LEVEL	MIN TYP	MAX	UNITS

DC ELECTRICAL CHARACTISTICS $v_{C C A}=0.0 \mathrm{~V}, \mathrm{v}_{\text {EEA }}=\mathrm{V}_{\text {EED }}=-5.2 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{C}}=0 \mathrm{OFF} ., 1_{\mathrm{SET}}=1.105 \mathrm{~mA}$

IIL	Input Current, Logic LOW, Data and Controls				120	$\mu \mathrm{A}$
$I_{\text {IH }}$	Input Current, Logic HIGH, Data and Controls			10	120	$\mu \mathrm{A}$
IC	Input Current, Convert			2	60	$\mu \mathrm{A}$
$\mathrm{C}_{1}$	Input Capacitance, Data and Controls		V	3		pF
PSR	Power Supply Sensitivity (HDAC10180)		1	-120	+120	$\mu \mathrm{A} V$
PSR	Power Supply Sensitivity (HDAC10181)			-120	+ 120	$\mu \mathrm{A} V$
IEE	Supply Current		1	175	200	mA

DYNAMIC CHARACTERISTICS $R_{L}=37.5$ Ohms, $C_{L}=5 \mathrm{pF}, \mathrm{TA}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{SET}}=1.105 \mathrm{~mA}$

$\mathrm{F}_{\text {S }}$	Maximum Conversion Rate	B Grade A Grade	$1$	$\begin{array}{\|l\|} 165 \\ 275 \end{array}$	MWPS
${ }^{\text {thl }}$	Rise Time	10\% to $90 \%$ G.S.	1	1.6	ns
$\mathrm{t}_{\mathrm{RI}}$	Rise Time	$10 \%$ to $90 \%$ G.S. $\mathrm{R}_{\mathrm{L}}=25 \mathrm{Ohms}$	IV	1.0	ns
${ }^{\text {t }}$ S	Current Settling Time, Clocked Mode	To 0.2\%	IV	7	ns
${ }^{\text {t }}$ I	Current Settling Time, Clocked Mode	To 0.8\%	IV	5.5	ns
${ }^{\text {t }}$ I	Current Settling Time, Clocked Mode	$\begin{aligned} & \text { To 0.2\% } \\ & R_{L}=25 \Omega \\ & \hline \end{aligned}$	IV	4.5	ns
${ }^{\text {t }}$ DSC	Clock to Ouptut Delay, Clocked Mode		1	4	ns
${ }^{\text {t }}$ DST	Data to Output Delay, Transparent Mode		1	6	ns
${ }^{\text {tPWL }}$	Convert Pulse Width, LOW	B Grade   A Grade	i	$\begin{array}{\|l} \hline 3.0 \\ 1.8 \end{array}$	ns
	Glitch Energy	Area $=1 / 2 \mathrm{VT}$	V	10	pV-s
$t_{\text {PWH }}$	Convert Pulse Width, HIGH	B Grade   A Grade	$1$	$\begin{aligned} & 3.0 \\ & 1.8 \end{aligned}$	ns
$\mathrm{BW}_{\text {REF }}$	Reference Bandwidth, -3dB		V	1	MHz


| PARAMETER | TEST <br> CONDITIONS | TEST <br> LEVEL | MIN TYP | MAX | UNITS |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

DYNAMIC CHARACTERISTICS $R_{L}=37.5 \mathrm{Ohms} \mathrm{C}_{\mathrm{L}}=5 \mathrm{PF}, \mathrm{TA}=25^{\circ} \mathrm{C}$, $\mathrm{I}_{\text {SET }}=1.105 \mathrm{~mA}$

$\mathrm{ts}_{\mathrm{S}}$	Set-up Time, Data and   Controls		1	1.3	1.8	2
ns						
$\mathrm{t}_{\mathrm{H}}$	Hold Time, Data and   Controls		1	0.5	0	
SR	Slew Rate	$20 \%$ to $80 \%$ G.S.	1	400	ns	
$\mathrm{FT}_{\mathrm{C}}$	Clock Feedthrough		1			$\mathrm{~V} / \mu \mathrm{S}$

## ELECTRICAL CHARACTERISTICS TESTING

All electrical characteristics are subject to the following conditions:

All parameters having Min./Max. specifications are guaranteed. The Test Level column indicates the specific device testing actually performed during production and Quality Assurance inspection. Any blank sections in the data columns indicates that the specification is not tested at the specified conditions.

Unless otherwise noted, all tests are pulsed tests, therefore $T_{j}=T_{c}=T_{a}$.

## TEST LEVEL TEST PROCEDURE

I $100 \%$ production tested at the specified temperature.

II $100 \%$ production tested at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$, and sample tested at specified temperature.

III QA sample tested per QA test plan TA100.
IV Parameter is guaranteed (but not tested) by design and characterization data.

V Parameter is a typical value for information purposes only.

The MSB currents are then summed with the LSBs, which provide a one-sixteenth of full scale contribution, to provide the 256 distinct analog output levels.

The video control inputs drive weighted current sinks which are added to the output current to produce composite video output levels. These controls, Sync, Blank, Reference White (Force High), and Bright are needed in video applications.

Another feature that similar video D/A converters do not have is the Feedthrough Control. This pin allows registered or unregistered operation between the video control inputs and data. In the registered mode, the composite functions are latched to the pixel data to prevent screen-edge distortions generally found on unregistered 'VIDEO DACs'.


## TYPICAL INTERFACE CIRCUIT

## GENERAL

A typical interface circuit using the HDAC10180 in a color raster application is shown in Figure 2. The HDAC10180 requires few external components and is extremely easy to use. The very high operating speeds of the HDAC10180 requires good circuit layout, decoupling of supplies, and proper design of transmission lines. The following are several considerations that should be noted to achieve best performance.

## INPUT CONSIDERATIONS

Video input data and controls may be directly connected to the HDAC10180. Note that all ECL inputs are terminated as close to the device as possible to reduce ringing, crosstalk and reflections. A convenient and commonly used microstrip impedance is about 130 Ohms, which is easily terminated using a 330 Ohm resistor to $\mathrm{V}_{\mathrm{EE}}$ and a 220 Ohm resistor to Ground. This arrangement gives a Thevenin equivalent termination of 130 Ohms to -2 Volts without the need for a 2 Volt supply. Standard SIP (Single Inline Package) 220/330 resistor networks are available for this purpose.

It is recommended that the stripline or microstrip techniques be used for all ECL interface. Printed circuit wiring of known impedance over a solid ground plane is recommended. The ground plane should be constructed such that analog and digital ground currents are isolated as much as possible. The HDAC10180 provides separate digital and analog ground connections to simplify ground layout.

## OUTPUT CONSIDERATIONS

The analog outputs are designed to directly drive a dual 50 or 75 Ohm load transmission system as shown. The source impedances of the HDAC10180 outputs are high impedance current sinks. The load impedance (RL) must be 25 or 37.5 Ohms to attain standard RS-343-A video levels. Any deviation from this impedance will affect the resulting video output levels proportionally. As with the data interface, it is important that the analog transmission lines have matched impedance throughout, including connectors and transitions between printed wiring and coaxial cable. The combination of matched source termination resistor Rs and load terminator Rıminimizes reflections of both forward and reverse traveling waves in the analog transmission system. The return path for analog output current is Vcca which is connected to the source termination resistor Rs.

FIGURE 1 TIMING DIAGRAM


FIGURE 2 TYPICAL INTERFACE CIRCUIT


## POWER CONSIDERATIONS

The HDAC10180 operates from a single standard -5.2 Volt supply. Proper bypassing of the supplies will augment the HDAC10180 inherent supply noise rejection characteristics. As shown in Figure 2, a large tantalum capacitor in parallel with smaller ceramic capacitors is recommended for best performance. The small-valued capacitors should be connected as close to the device package as possible, whereas the tantalum capacitor may be placed up to a few inches away.

The HDAC10180 operates with separate analog (VEEA) and digital ( $V_{\text {EED }}$ ) power supplies to establish high noise immunity. Both supplies can eventually be connected to the same power source, but they should be individually decoupled as mentioned previously. The digital supply has a separate ground return which is Vcco. The analog supply return is Vcca. All power and ground pins must be connected in any application. If a +5 V power source is required, the ground pins V cco and Vcca become the positive supply pins while Veed and Veea become the ground returns. The relative polarities of the other voltages on inputs and outputs must be maintained.

## REFERENCE CONSIDERATIONS

The HDAC10180 has two reference inputs: REF - and REF + . Both pins are connected to the inverting and noninverting inputs of an internal amplifier that serves as a reference buffer amplifier.

The output of the buffer amplifier is the reference for the current sinks. The amplifier feedback loop is connected around one of the current sinks to achieve better accuracy (see Figure 5).

Since the analog output currents are proportional to the digital input data and the reference current (Iset), the full-scale output may be adjusted by varying the reference current. Iset is controlled through the REF + input on the HDAC10180. A method and equations to set Iset is shown in Figure 2. The HDAC10180 uses an external negative voltage reference. The external reference must be stable to achieve a satisfactory output and the REF - pin should be driven through a resistor to minimize offsets caused by bias current. The value for Iset can be varied with the 500 Ohm trimmer to change the full scale output. A double 50 Ohm load ( 25 Ohm ) can be driven if Iset is increased 50\% more than lset for doubly terminated 75 Ohm video applications.

The HDAC10180 provides an external compensation input (COMP) for the reference buffer amplifier. In order to use this pin correctly, a capacitor (Cc) should be connected between COMP and Veea as shown in Figure 2. Keep the lead lengths as short as possible. If the reference is to be kept as a constant, the Cc should be large $(.01 \mu \mathrm{~F})$. The value of Cc determines the bandwidth of the amplifier. If modulation of the reference is required, smaller values of Cc can be used to get up to a 1 MHz bandwidth.

## DATA INPUTS AND VIDEO CONTROLS

The HDAC10180 has standard single-ended data inputs. The inputs are registered to produce the lowest differential data propagation delay (skew) to minimize glitching. There are also four video control inputs to generate composite video outputs. These are Sync, Blank, Bright and Reference White or Force High. Also provided is the Feedthrough control as mentioned earlier. The controls and data inputs are all 10 KH and 100K ECL compatible. In addition, all have internal pulldown resistors to leave them at a logic low so the pins are inactive when not used. This is useful if the devices are applied as standard DACs without the need for video controls or if less than 8 -bits are used.

The HDAC10180 is usually configured in the synchronous mode. In this mode, the controls and data are synchronized to prevent pixel dropout. This reduces screen-edge distortions and provides the lowest output noise while maintaining the highest conversion rate. By leaving the Feedthrough (FT) control open (low), each rising edge of the convert (CONV) clock latches decoded data and control values into a D-type internal register. The registered data is then converted into the appropriate analog output by the switched current sinks. When FT is tied high, the control inputs and data are not registered. The analog output asynchronously tracks the input data and video controls. Feedthrough itself is asynchronous and usually used as a DC control.

The controls and data have to be present at the input pins for a set-up time of ts before, and a hold time of th after the rising edge of the clock (CONV) in order to be synchronously registered. The set-up and hold times are not important in the asynchronous mode. The minimum pulse widths high (tpwh) and low (tpwL) as well as settling time become the limiting factors (see Figure 1).

The video controls produce the output levels needed for horizontal blanking, frame synchronization, etc., to be compatible with video system standards as described in RS-343-A. Table 1 shows the video control effects on the analog output. Internal logic governs Blank, Sync and Force High so that they override the data inputs as needed in video applications. Sync overrides both the data and other controls to produce full negative video output (Figure 4).

Reference white video level output is provided by Force High, which drives the internal digital data to full scale output or 100 IRE units. Bright gives an additional $10 \%$ of full scale value to the output level. This function can be used in graphic displays for highlighting menus, cursors or warning messages. Again, if the devices are used in non-video applications, the video controls can be left open.

## CONVERT CLOCK

For best performance, the clock should be ECL driven, differentially, by utilizing CONV and CONV (Figure 3). By driving the clock this way, clock noise and power supply/output intermodulation will be minimized. The rising edge of the clock synchronizes the data and control inputs to the HDAC10180. Since the actual switching threshold of CONV is determined by CONV, the clock can be driven single-ended by connecting a bias voltage to CONV. The switching threshold of CONV is set by this bias voltage.

## ANALOG OUTPUTS

The HDAC10180 has two analog outputs that are high impedance, complementary current sinks. The outputs vary in proportion to the input data, controls and reference current values so that the full scale output can be changed by setting lief as mentioned earlier.

In video applications, the outputs can drive a doubly terminated 50 or 75 Ohm load to standard video levels. In the standard configuration of Figure 7, the output voltage is the product of the output current and load impedance and is between 0 and -1.07 V . The OUT output (Figure 4) will provide a video output waveform with the SYNC pulse bottom at the -1.07 V level. The OUT + is inverted with SYNC up.

Table 1 Video Control Operation (Output values for Set-up = 10 IRE and 75 Ohm standard load)

Sync	Blank	Ref White	Bright	Data Input	Out - (mA)	Out - (V)	Out - (IRE)	Description
1	X	X	X	$x$	28.57	-1.071	-40	Sync Level
0	1	X	X	X	20.83	-0.781	0	Blank Level
0	0	1	1	$x$	0.00	0.000	110	Enhanced High Level
0	0	1	0	X	1.95	-0.073	100	Normal High Level
0	0	0	0	000...	19.40	-0.728	7.5	Normal Low Level
0	0	0	0	111...	1.95	-0.073	100	Normal High Level
0	0	0	1	000...	17.44	-0.654	17.5	Enhanced Low Level
0	0	0	1	111...	0.00	0.000	110	Enhanced High Level

Table 2 The HDAC10180 family and speed designations.

Part Number	Update	Comments
HDAC10180A	275 MWPS	Suitable for $1200 \times 1500$ to $1500 \times 1800$   displays at 60 to 90 Hz update rate.
HDAC10180B	165 MWPS	Suitable for $1024 \times 1280$ to $1200 \times 1500$   displays at 60 to 90 Hz update rate.

Figure 3: CONVert, $\overline{\text { CONVert SWITCHING LEVELS }}$


FIGURE 4 VIDEO OUTPUT WAVEFORM FOR STANDARD LOAD


FIGURE 5 EQUIVALENT INPUT CIRCUITS—DATA, CLOCK, CONTROLS AND REFERENCE


FIGURE6 DAC OUTPUT CIRCUIT

REF -

REF


FIGURE 7A STANDARD LOAD


FIGURE 7B TEST LOAD


## TYPICAL RGB GRAPHICS SYSTEM

In an RGB graphics system, the color displayed is determined by the combined intensities of the red, green and blue (RGB) D/A converter outputs. A change in gain or offset in any of the RGB outputs will affect the apparent hue displayed on the CRT screen.

Thus, it is very important that the outputs of the D/A converters track each other over a wide range of operating conditions. Since the D/A output is proportional to the product of the reference and digital input code, a common reference should be used to drive all three D/As in an RGB system to minimize RGB DAC-toDAC mismatch. This may also eliminate the need for individual calibration of each DAC during production assembly.

The HDAC10181 contains an internal precision bandgap reference which completely eliminates the need for an external reference. The reference can supply up to $50 \mu \mathrm{~A}$ to an external load, such as another DAC reference input. (See HDAC10181 Data Sheet)

The circuits shown in Figure 8 illustrate how a single HDAC10181 may be used as a master reference in a system with multiple DACs (such as RGB). The other DACs are simply slaved frem the HDAC10181's reference output. The HDAC10180s shown are especially well-suited to be slaved to a 10181 , since they are essentially 10181s without the reference. The 10180 is pin-compatible with the TDC1018, which like the 10180, does not have an internal reference. Although either the TDC1018 or HDAC10180 may be slaved from an HDAC10181, the higher performance HDAC10180 is the best choice for new designs.

No external reference is required for operation of the HDAC10181, as this function is provided internally. The internal reference is a bandgap type and is suitable for operation over extended temperature ranges. The HDAC10180 must use an external reference.

FIGURE 8
TYPICAL RBG GRAPHICS SYSTEM


$$
I_{S E T}=\frac{1.3 V}{\alpha\left(R_{1}\right)+R_{2}}
$$



FIGURE 9 BURN-IN CIRCUIT

BLANK

NAME	FUNCTION
D3	Data Bit 3
D2	Data Bit 2
D1	Data Bit 1
DO	Data Bit 0 (LSB)
VEED	Digital Negative Supply
CONV	Convert Clock Input
CONV	Convert Clock Input Complement
FT	Register Feedthrough Control
VCCD	Digital Positive Supply
FH	Data Force High Control
BLANK	Video Blank Input
BRT	Video Bright Input
SYNC	Video SYNC Input
REF-	Reference Current - Input
REF+	Reference Current + Input
COMP	Compensation Input
VCCA	Analog Positive Supply
OUT-	Output Current Negative
OUT+	Output Current Positive
VEEA	Analog Negative Supply
D7	Data Bit 7 (MSB)
D6	Data Bit 6
D5	Data Bit 5
D4	Data Bit 4

NOTES:

## 8-BIT, HIGH SPEED DIA CONVERTERS

## FEATURES

- 275 MWPS Conversion Rate - A Version
- 165 MWPS Conversion Rate - B Version
- RS-343-A Compatible
- Complete Video Controls: Sync, Blank, Bright and Reference White (Force High)
- 10KH, 100K ECL Compatible
- Single Power Supply
- Stable On-chip Bandgap Reference
- Registered Data And Video Controls
- Differential Current Outputs


## APPLICATIONS

- High Resolution Color or Monochrome Displays
- Medical Electronics: CAT, PET, MR Imaging Displays
- CAD/CAE Workstations
- General Purpose High-Speed D/A Conversion
- Digital Synthesizers
- Automated Test Equipment
- Digital Transmitters/Modulators


## GENERAL DESCRIPTION

The HDAC10181 is a monolithic 8 -bit digital-to-analog converter capable of accepting video data at a 165 or 275 MWPS rate. Complete with video controls (Sync, Blank, Reference White, [Force High] Bright), the HDAC10181 directly drives doubly-terminated 50 or 75 Ohm loads to standard composite video levels. Standard set-up level is 7.5 IRE, and $O$ IRE set-up is
available as a mask programmed option. The HDAC10181 includes an internal precision bandgap reference which can drive two HDAC10180s in an RGB graphics system. The HDAC10181 contains data and control input registers, video control logic, reference, and current switches in 24 Lead CERDIP, or ceramic sidebrazed DIP.

BLOCK DIAGRAM


## ABSOLUTE MAXIMUM RATINGS (Beyond which the useful life will be Impaired) ${ }^{1}$

Supply Voltages	
$\mathrm{V}_{\text {EED }}$ (measured to $\mathrm{V}_{\text {CCD }}$ )	-7.0 to 0.5V
$\mathrm{V}_{\text {EEA }}$ (measured to $\mathrm{V}_{\text {CCA }}$ ).	7.0 to 0.5V
$\mathrm{V}_{\text {CCA }}$ (measured to $\mathrm{V}_{\text {CCD }}$ )	-0.5 to 0.5V

## Input Voltages

CONV, Data, and Controls $\mathrm{V}_{\text {EED }}$ to 0.5 V
(measured to $\mathrm{V}_{\mathrm{CCD}}$ )

```
REF + (measured to V CCA)
 V VEA to 0.5V
REF - (measured to V VCA)
 VEEA to 0.5V
```


## Temperature

Operating, Ambient . . . . . . . . . . . . . -60 to $+140^{\circ} \mathrm{C}$ Junction . . . . . . . . . . . . . . . . . . . $+175^{\circ} \mathrm{C}$
Lead, Soldering ( 10 seconds) . . . . . . . . . . . . $+300^{\circ} \mathrm{C}$
Storage . . . . . . . . . . . . . . . . . . . . . . . . -60 to $+150^{\circ} \mathrm{C}$

## Notes:

1. Operation at any Absolute Maximum Ratings is not implied. See Electrical Specifications for proper nominal applied conditions in typical applications.

ELECTRICAL SPECIFICATIONS

PARAMETER	TEST   CONDITIONS	TEST   LEVEL	MIN	TYP	MAX	UNITS

DC ELECTRICAL CHARACTISTICS $v_{\text {CCA }}=0.0 \mathrm{~V}, \mathrm{v}_{\text {EEA }}=\mathrm{v}_{\text {EED }}=-5.2 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{C}}=0 \mathrm{PF} ., 1_{\mathrm{SET}}=1.105 \mathrm{~mA}$

$\overline{E_{L I}}$	Integral Linearity Error	$1.0 \mathrm{~mA}<\mathrm{I}_{\text {SET }}<1.3 \mathrm{~mA}$	1	$\begin{aligned} & -0.2 \\ & -1 / 2 \end{aligned}$	$\begin{aligned} & +0.2 \\ & +1 / 2 \end{aligned}$	\% Full Scale LSB
$\overline{E L D}$	Differential Linearity Error	$1.0 \mathrm{~mA}<\mathrm{I}_{\mathrm{SET}}<1.3 \mathrm{~mA}$	1	$\begin{aligned} & -0.2 \\ & -1 / 2 \end{aligned}$	$\begin{aligned} & +0.2 \\ & +1 / 2 \end{aligned}$	\% Full Scale LSB
$\overline{E_{G}}$	Gain Error	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$   OVER TEMP RANGE	III	$\begin{aligned} & -15 \\ & -19 \end{aligned}$	$\begin{aligned} & +15 \\ & +19 \end{aligned}$	$\begin{aligned} & \text { \% Full } \\ & \text { Scale } \end{aligned}$
$\mathrm{TC}_{\mathrm{G}}$	Gain Error Tempco		V	250		PPM $/{ }^{\circ} \mathrm{C}$
$\mathrm{C}_{\text {REF }}$	Input Capacitance, REF + , REF -		V	5		pF
$V_{\text {OCP }}$	Compliance Voltage, + Output		1	-1.5	+3	V
$V_{\text {OCN }}$	Compliance Voltage, - Output		1	-1.5	+3	V
$R_{\text {OUT }}$	Equivalent Output Resistance		1	20		K Ohm
${ }^{\text {CoUT }}$	Output Capacitance		V	12		pF
Iop	Maximum Current, + Output		V		45	mA
ION	Maximum Current, - Output		V		45	mA
Ios	Output Offset Current		1		1/2	LSB
$\mathrm{V}_{\mathrm{IH}}$	Input Voltage, Logic HIGH		1		-1.4	V
$V_{\text {IL }}$	Input Voltage, Logic LOW		1	-1.0		V
VICM	Convert Voltage, Common Mode Range		1	-0.5	-2.5	V
$V_{\text {IDF }}$	Convert Voltage, Differential		IV	0.4	1.2	V
ILL	Input Current, Logic LOW, Data and Controls				120	$\mu \mathrm{A}$
$\overline{I H}$	Input Current, Logic HIGH, Data and Controls			10	120	$\mu \mathrm{A}$
1 C	Input Current, Convert			2	60	$\mu \mathrm{A}$

ELECTRICAL SPECIFICATIONS

PARAMETER	TEST   CONDITIONS	TEST   LEVEL	MIN TYP	MAX	UNITS

DC ELECTRICAL CHARACTISTICS $v_{C C A}=0.0 \mathrm{~V}, \mathrm{v}_{\text {EEA }}=\mathrm{v}_{\text {EED }}=-5.2 \mathrm{~V} \pm 0.3 \mathrm{~V}_{,} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{C}}=0 \mathrm{PF} ., \mathrm{I}_{\mathrm{SET}}=1.105 \mathrm{~mA}$

$\mathrm{C}_{\mathrm{I}}$	Input Capacitance,   Data and Controls	V	3		pF	
PSR	Power Supply Sensitivity		I	-120	+120	$\mu \mathrm{~A} / \mathrm{V}$
IEE	Supply Current		I	175	200	mA

DYNAMIC CHARACTERISTICS $R_{L}=37.5$ Ohms, $C_{L}=5 \mathrm{pF}, \mathrm{TA}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{SET}}=1.105 \mathrm{~mA}$

$\mathrm{F}_{S}$	Maximum Conversion Rate	B Grade   A Grade	$1$	$\begin{aligned} & 165 \\ & 275 \end{aligned}$			MWPS
$t_{\text {RI }}$	Rise Time	10\% to 90\% G.S.	1			1.6	ns
$t_{\text {RI }}$	Rise Time	$10 \%$ to $90 \%$ G.S. $R_{L}=25$ Ohms	IV			1.0	ns
${ }^{\text {t }}$ I	Current Settling Time, Clocked Mode	To 0.2\%	IV			7	ns
${ }^{\text {S }}$ I	Current Settling Time, Clocked Mode	To 0.8\%	IV			5.5	ns
${ }^{\text {t }}$ I	Current Settling Time, Clocked Mode	$\begin{aligned} & \text { To } 0.2 \% \\ & R_{L}=25 \Omega \\ & \hline \end{aligned}$	IV			4.5	ns
${ }^{\text {t }}$ DSC	Clock to Ouptut Delay, Clocked Mode		1			4	ns
${ }^{\text {t }}$ DST	Data to Output Delay, Transparent Mode		1			6	ns
${ }^{\text {t PWL }}$	Convert Pulse Width, LOW	B Grade   A Grade	$1$	$\begin{aligned} & 3.0 \\ & 1.8 \end{aligned}$			ns
	Glitch Energy	Area $=1 / 2 \mathrm{VT}$	V		10		pV -s
${ }^{\text {tPWH }}$	Convert Pulse Width, HIGH	B Grade   A Grade	i	$\begin{aligned} & 3.0 \\ & 1.8 \end{aligned}$			ns
$\mathrm{BW}_{\text {REF }}$	Reference Bandwidth, $-3 d B$	!	v		1		MHz
${ }^{\text {s }}$	Set-up Time, Data and Controls		1	1.3	1.8	2	ns
$t_{H}$	Hold Time, Data and Controls		1	0.5	0		ns
SR	Slew Rate	20\% to 80\% G.S.	1	400			$\mathrm{V} / \mu \mathrm{S}$
$\mathrm{FT}_{\mathrm{C}}$	Clock Feedthrough		1			-48	dB

## ELECTRICAL CHARACTERISTICS TESTING

All electrical characteristics are subject to the following conditions:

All parameters having Min./Max. specifications are guaranteed. The Test Level column indicates the specific device testing actually performed during production and Quality Assurance inspection. Any blank sections in the data columns indicates that the specification is not tested at the specified conditions.

Unless otherwise noted, all tests are pulsed tests, therefore $T_{j}=T_{c}=T_{a}$.

## APPLICATION INFORMATION

The HDAC10181 is a high speed video Digital-toAnalog converters capable of up to 275 MWPS conversion rates. This makes the devices suitable for driving $1500 \times 1800$ pixel displays at 70 to 90 Hz update rates. In addition, the HDAC10181 includes an internal bandgap reference which may be used to drive other HDAC10180s if desired. (See HDAC10180 Data Sheet)

The HDAC10181 is separated into different conversion rate categories as shown in Table 2.

The HDAC10181 has 10KH and 100K ECL logic level compatible video control and data inputs. The complementary analog output currents produced by the devices are proportional to the product of the digital control and data inputs in conjunction with the analog reference current. The HDAC10181 is segmented so that the four MSBs of the input data are separated into a parallel "thermometer" code. From here, fifteen current sinks, which are identical, are driven to

## TEST LEVEL TEST PROCEDURE

I $100 \%$ production tested at the specified temperature.

II $100 \%$ production tested at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$, and sample tested at specified temperature.

III QA sample tested only at specified temperatures

IV Parameter is guaranteed (but not tested) by design and characterization data.

V Parameter is a typical value for information purposes only.
fabricate sixteen coarse output levels. The remaining four LSBs drive four binary weighted current switches. The MSB currents are then summed with the LSBs, which provide a one-sixteenth of full scale contribution, to provide the 256 distinct analog output levels.

The video control inputs drive weighted current sinks which are added to the output current to produce composite video output levels. These controls, Sync, Blank, Reference White (Force High), and Bright are needed in video applications.

Another feature that similar video D/A converters do not have is the Feedthrough Control. This pin allows registered or unregistered operation between the video control inputs and data. In the registered mode, the composite functions are latched to the pixel data to prevent screen-edge distortions generally found on unregistered "VIDEO DACs".

## FUNCTIONAL DIAGRAM



## TYPICAL INTERFACE CIRCUIT

## GENERAL

A typical interface circuit using the HDAC10181 in a color raster application is shown in Figure 2. The HDAC10181 requires few external components and is extremely easy to use. The very high operating speeds of the HDAC10181 requires good circuit layout, decoupling of supplies, and proper design of transmission lines. The following are several considerations that should be noted to achieve best performance.

## INPUT CONSIDERATIONS

Video input data and controls may be directly connected to the HDAC10181. Note that all ECL inputs are terminated as close to the device as possible to reduce ringing, crosstalk and reflections. A convenient and commonly used microstrip impedance is about 130 Ohms, which is easily terminated using a 330 Ohm resistor to $\mathrm{V}_{\mathrm{EE}}$ and a 220 Ohm resistor to Ground. This arrangement gives a Thevenin equivalent termination of 130 Ohms to -2 Volts without the need for a 2 Volt supply. Standard SIP (Single Inline Package) 220/330 resistor networks are available for this purpose.

It is recommended that the stripline or microstrip techniques be used for all ECL interface. Printed circuit wiring of known impedance over a solid ground plane is recommended. The ground plane should be constructed such that analog and digital ground currents are isolated as much as possible. The HDAC10181 provides separate digital and analog ground connections to simplify ground layout.

## OUTPUT CONSIDERATIONS

The analog outputs are designed to directly drive a dual 50 or 75 Ohm load transmission system as shown. The source impedances of the HDAC10181 outputs are high impedance current sinks. The load impedance (RL) must be 25 or 37.5 Ohms to attain standard RS-343-A video levels. Any deviation from this impedance will affect the resulting video output levels proportionally. As with the data interface, it is important that the analog transmission lines have matched impedance throughout, including connectors and transitions between printed wiring and coaxial cable. The combination of matched source termination resistor Rs and load terminator RL minimizes reflections of both forward and reverse traveling waves in the analog transmission system. The return path for analog output current is Vcca which is connected to the source termination resistor Rs.

## FIGURE 1 TIMING DIAGRAM



FIGURE 2 TYPICAL INTERFACE CIRCUIT


## POWER CONSIDERATIONS

The HDAC10181 operates from a single standard -5.2 Volt supply. Proper bypassing of the supplies will augment the HDAC10181's inherent supply noise rejection characteristics. As shown in Figure 2, a large tantalum capacitor in parallel with smaller ceramic capacitors is recommended for best performance. The small-valued capacitors should be connected as close to the device package as possible, whereas the tantalum capacitor may be placed up to a few inches away.

The HDAC10181 operates with separate analog (VEEA) and digital (Veed) power supplies to establish high noise immunity. Both supplies can eventually be connected to the same power source, but they should be individually decoupled as mentioned previously. The digital supply has a separate ground return which is Vcco. The analog supply return is Vcca. All power and ground pins must be connected in any application. If a +5 V power source is required, the ground pins $V_{c c D}$ and Vcca become the positive supply pins while Veed and Vees become the ground returns. The relative polarities of the other voltages on inputs and outputs must be maintained.

## REFERENCE CONSIDERATIONS

The HDAC10181 has one input (IsEt) and one reference output (REF OUT). Both pins are connected to the inverting and noninverting inputs of an internal amplifier that serves as a reference buffer amplifier. The HDAC10181 has a bandgap reference connected internally to the inverting input of the buffer amplifier and the REF OUT.

The output of the buffer amplifier is the reference for the current sinks. The amplifier feedback loop is connected around one of the current sinks to achieve better accuracy (see Figure 5).

Since the analog output currents are proportional to the digital input data and the reference current (Iset), the full-scale output may be adjusted by varying the reference current. Iset is controlled through the Iset input on the HDAC10181. A method and equations to set IsEt is shown in Figure 2. The HDAC10181 uses its own reference voltage for setting up Iset as shown in Figure 2. The value for Iset can be varied with the 500 Ohm trimmer to change the full scale output. A double 50 Ohm load ( 25 Ohm ) can be driven if Iset is increased $50 \%$ more than Iset for doubly terminated 75 Ohm video applications.

The HDAC10181 provides an external compensation input (COMP) for the reference buffer amplifier. In order to use this pin correctly, a capacitor (Cc) should be connected between COMP and VEEA as shown in Figure 2. Keep the lead lengths as short as possible. If the reference is to be kept as a constant, the Cc should be large $(.01 \mu \mathrm{~F})$. The value of Cc determines the bandwidth of the amplifier. If modulation of the reference is required, smaller values of Cc can be used to get up to a 1 MHz bandwidth.

## DATA INPUTS AND VIDEO CONTROLS

The HDAC10181 has standard single-ended data inputs. The inputs are registered to produce the lowest differential data propagation delay (skew) to minimize glitching. There are also four video control inputs to generate composite video outputs. These are Sync, Blank, Bright and Reference White or Force High. Also provided is the Feedthrough control as mentioned earlier. The controls and data inputs are all 10KH and 100K ECL compatible. In addition, all have internal pulldown resistors to leave them at a logic low so the pins are inactive when not used. This is useful if the devices are applied as standard DACs without the need for video controls or if less than 8 -bits are used.

The HDAC10181 is usually configured in the synchronous mode. In this mode, the controls and data are synchronized to prevent pixel dropout. This reduces screen-edge distortions and provides the lowest output noise while maintaining the highest conversion rate. By leaving the Feedthrough (FT) control open (low), each rising edge of the convert (CONV) clock latches decoded data and control values into a D-type internal register. The registered data is then converted into the appropriate analog output by the switched current sinks. When FT is tied high, the control inputs and data are not registered. The analog output asynchronously tracks the input data and video controls. Feedthrough itself is asynchronous and usually used as a DC control.

The controls and data have to be present at the input pins for a set-up time of ts before, and a hold time of th after the rising edge of the clock (CONV) in order to be synchronously registered. The set-up and hold times are not important in the asynchronous mode. The minimum pulse widths high (tpwh) and low (tpwL) as well as settling time become the limiting factors (see Figure 1).

The video controls produce the output levels needed for horizontal blanking, frame synchronization, etc., to be compatible with video system standards as described in RS-343-A. Table 1 shows the video control effects on the analog output. Internal logic governs Blank, Sync and Force High so that they override the data inputs as needed in video applications. Sync overrides both the data and other controls to produce full negative video output (Figure 4).

Reference white video level output is provided by Force High, which drives the internal digital data to full scale output or 100 IRE units. Bright gives an additional $10 \%$ of full scale value to the output level. This function can be used in graphic displays for highlighting menus, cursors or warning messages. Again, if the devices are used in non-video applications, the video controls can be left open.

## CONVERT CLOCK

For best performance, the clock should be ECL driven, differentially, by utilizing CONV and CONV (Figure 3). By driving the clock this way, clock noise and power supply/output intermodulation will be minimized. The rising edge of the clock synchronizes the data and control inputs to the HDAC10181. Since the actual switching threshold of CONV is determined by CONV, the clock can be driven single-ended by connecting a bias voltage to CONV. The switching threshold of CONV is set by this bias voltage.

## ANALOG OUTPUTS

The HDAC10181 has two analog outputs that are high impedance, complementary current sinks. The outputs vary in proportion to the input data, controls and reference current values so that the full scale output can be changed by setting Iref as mentioned earlier.

In video applications, the outputs can drive a doubly terminated 50 or 75 Ohm load to standard video levels. In the standard configuration of Figure 7, the output voltage is the product of the output current and load impedance and is between 0 and -1.07 V . The OUT output (Figure 4) will provide a video output waveform with the SYNC pulse bottom at the -1.07 V level. The OUT + is inverted with SYNC up.

Table 1 Video Control Operation (Output values for Set-up = 10 IRE and 75 Ohm standard load)

Sync	Blank	Ref White	Bright	Data Input	Out - (mA)	Out - (V)	Out - (IRE)	Description
1	X	X	X	X	28.57	- 1.071	-40	Sync Level
0	1	x	X	X	20.83	-0.781	0	Blank Level
0	0	1	1	$x$	0.00	0.000	110	Enhanced High Level
0	0	1	0	X	1.95	-0.073	100	Normal High Level
0	0	0	0	000...	19.40	-0.728	7.5	Normal Low Level
0	0	0	0	111...	1.95	-0.073	100	Normal High Level
0	0	0	1	000...	17.44	-0.654	17.5	Enhanced Low Level
0	0	0	1	111...	0.00	0.000	110	Enhanced High Level

Table 2 The HDAC10181 family and speed designations.

Part Number	Update	Comments
HDAC10181A	275 MWPS	Suitable for $1200 \times 1500$ to $1500 \times 1800$   displays at 60 to 90 Hz update rate.
HDAC10181B	165 MWPS	Suitable for $1024 \times 1280$ to $1200 \times 1500$   displays at 60 to 90 Hz update rate.

FIGURE 3 CONVert, $\overline{C O N V}$ ert SWITCHING LEVELS


FIGURE 4 VIDEO OUTPUT WAVEFORM FOR STANDARD LOAD


FIGURE 5 EQUIVALENT INPUT CIRCUITS—DATA, CLOCK, CONTROLS AND REFERENCE


## FIGURE6 DAC OUTPUT CIRCUIT



## FIGURE 7A STANDARD LOAD



FIGURE 7B TEST LOAD


## TYPICAL RGB GRAPHICS SYSTEM

In an RGB graphics system, the color displayed is determined by the combined intensities of the red, green and blue (RGB) D/A converter outputs. A change in gain or offset in any of the RGB outputs will affect the apparent hue displayed on the CRT screen.

Thus, it is very important that the outputs of the D/A converters track each other over a wide range of operating conditions. Since the D/A output is proportional to the product of the reference and digital input code, a common reference should be used to drive all three D/As in an RGB system to minimize RGB DAC-toDAC mismatch. This may also eliminate the need for individual calibration of each DAC during production assembly.

Tine HDAC10181 contains an internal precision bandgap reference which completely eliminates the need for an external reference. The reference can supply up to $50 \mu \mathrm{~A}$ to an external load, such as another DAC reference input.

The circuits shown in Figure 8 illustrate how a single HDAC10181 may be used as a master reference in a system with multiple DACs (such as RGB). The other DACs are simply slaved from the HDAC10181's reference output. The HDAC10180s shown are especially well-suited to be slaved to a 10181 , since they are essentially 10181s without the reference. The 10180 is pin-compatible with the TDC1018, which like the 10180, does not have an internal reference. Although either the TDC1018 or HDAC10180 may be slaved from an HDAC10181, the higher performance HDAC10180 is the best choice for new designs. (See HDAC10180 Data Sheet)

No external reference is required for operation of the HDAC10181, as this function is provided internally. The internal reference is a bandgap type and is suitable for operation over extended temperature ranges. The HDAC10180 must use an external reference.

## FIGURE 8

## TYPICAL RBG GRAPHICS SYSTEM



FIGURE 9 BURN-IN CIRCUIT


## PIN ASSIGNMENTS



PIN FUNCTIONS

NAME	FUNCTION
D3	Data Bit 3
D2	Data Bit 2
D1	Data Bit 1
DO	Data Bit O (LSB)
VEED	Digital Negative Supply
CONV	Convert Clock Input
CONV	Convert Clock Input Complement
FT	Register Feedthrough Control
VCCD	Digital Positive Supply
FH	Data Force High Control
BLANK	Video Blank Input
BRT	Video Bright Input
SYNC	Video SYNC Input
REF OUT	Reference Output
ISET	Reference Current + Input
COMP	Compensation Input
VCCA	OAnalog Positive Supply
OUT-	Output Current Negative
OUT, +	Output Current Positive
VEEA	Analog Negative Supply
D7	Data Bit 7 (MSB)
D6	Data Bit 6
D5	Data Bit 5
D4	Data Bit 4

NOTES:

## TRIPLE 4-BIT, HIGH SPEED RASTER DIA CONVERTER

## PRELIMINARY INFORMATION

## FEATURES

- 200 MWPS Conversion Rate
- Complete RGB DIA Solution
- RS-343-A Compatible
- Video Controls: Sync, Blank, Bright and Reference White
- Registered for Low Glitch
- Single Power Supply
- On-chip Bandgap Reference

The HDAC34010 is a monolithic, triple 4-bit raster digital-to-analog (D/A) converter, complete with special video controls, on-chip reference, registers, and precision output termination. Only one device is required for a complete RGB D/A system.

Four special video controls (Sync, Blank, $+10 \%$ Bright and Reference White) allow full reconstruction of RS-343-A compatible video signals from composite inputs. All data and control inputs are ECL compatible.

## APPLICATIONS

- RGB Color Graphics
- CAD/CAE
- Instrumentation Displays
- Medical Electronics: CAT, PET, NMR Displays
- Business Computer Graphics
- CRT Terminals

The HDAC34010 will directly drive a 75 Ohm coaxial cable and monitor termination to standard video levels.

The gain and output termination of each D/A is precisely adjusted using a proprietary trimming procedure. The HDAC34010 is fabricated using an advanced VLSI bipolar process for excellent performance, low power consumption, and high reliability in a choice of convenient packages.

## BLOCK DIAGRAM



Absolute Maximum Ratings (Beyond which the useful life will be impaired) ${ }^{1}$

# Supply Voltages <br> $\mathrm{V}_{\mathrm{EE}}$ (measured to $\mathrm{D}_{\mathrm{GND}}$ ) .............. -7.0 to 0.5 V <br> $\mathrm{A}_{\mathrm{GND}}$ (measured to $\mathrm{D}_{\mathrm{GND}}$ ) ............. -0.5 to 0.5 V 

Input Voltages
Clock, Data and Controls (measured to $\mathrm{D}_{\mathrm{GND}}$ )

## Temperature

Operating, ambient. ................ -60 to $+140^{\circ} \mathrm{C}$
junction . . . . . . . . . . . . . . . . . . . . . $+175^{\circ} \mathrm{C}$
Lead, soldering ( 10 seconds) . . . . . . . . . . . . . . $+300^{\circ} \mathrm{C}$
Storage .......................... -60 to $+150^{\circ} \mathrm{C}$

## Outputs

Analog Output (R, G and B), applied voltage (measured to A $_{\text {GND }}$ ) ................................ -3.0 to 3.0 V
Analog Output ( R , G and B ), applied current ${ }^{2} \ldots . . .60 \mathrm{~mA}$ Output Short Circuit Duration Unlimited

## Notes:

1. Operation at any Absolute Maximum Ratings is not implied. See Electrical Specifications for proper nominal applied conditions in typical applications.

COMMERCIAL TEMPERATURE RANGE

DIC PARAMETER	TEST   CONDITIONS	TEST						
LEVEL							MIN $\quad$ TYP $\quad$ MAX	UNITS
:---								

## STATIC CHARACTISTICS

$\mathrm{V}_{\mathrm{EE}}=5.2 \mathrm{~V}, \mathrm{f}_{\mathrm{CLOCK}}=200 \mathrm{MHz}$, Test Load Figure 6 unless otherwise specified

$\mathrm{V}_{\mathrm{EE}}$	Supply Voltage   (Measured to $\mathrm{D}_{\mathrm{GND}}$ )			-4.75	-5.2	-5.5	V
$\mathrm{I}_{\mathrm{EE}}$	Supply Current				-345	-385	mA
$\mathrm{D}_{\mathrm{GND}}$							
$\mathrm{A}_{\mathrm{GND}}$	Ground Voltage   Differential						
$\mathrm{C}_{\mathrm{I}}$	Input Capacitance, Clock   Data and Controls		-0.1	0.0	+0.1	V	
$\mathrm{~V}_{\mathrm{OC}}$	Compliance Voltage	Note 2		3	5	pF	
$\mathrm{R}_{\mathrm{O}}$	Output Resistance	Note 2		-2		0.5	V
$\mathrm{C}_{\mathrm{O}}$	Output Capacitance	Note 2		71	75	79	Ohms
$\mathrm{I}_{\mathrm{O}}$	Maximum Output Current	Note 2			15	20	pF
$\mathrm{I}_{\mathrm{IL}}$	Input Current, Logic   LOW, Data and Controls				28	30	mA
$\mathrm{I}_{\mathrm{IH}}$	Input Current, Logic   HIGH, Data and Controls			70	120	$\mu \mathrm{~A}$	

## Notes:

1. Standard test load given in Figure 6.
2. Specification applies to each R, G and B DAC.

COMMERCIAL TEMPERATURE RANGE

AC PARAMETER	TEST	TEST				
CONDITIONS ${ }^{\prime}$	LEVEL	MIN	TYP	MAX	UNITS	

## DYNAMIC CHARACTISTICS

$\mathrm{V}_{\mathrm{EE}}=5.2 \mathrm{~V}, \mathrm{f}_{\mathrm{CLOCK}}=200 \mathrm{MHz}$, Test Load Figure 6 unless otherwise specified

$\mathrm{F}_{S}$	Maximum Conversion Rate	Note 2	200	225		MWPS
${ }^{\text {t }}$	Clock to Output Delay			4	5	ns
${ }_{\text {t }}$ T	Settling Time, $\pm 1 / 2$ LSB	$\pm 1 / 2$ LSB 3			4	ns
$t_{R}$	Rise Time	$10 \%$ to $90 \%$ of Gray Scale ${ }^{4}$			2.5	ns
SR	Slew Rate		200			$\mathrm{V} / \mu \mathrm{s}$
$t_{\text {PWWL }}$	Clock Pulse Width, LOW ${ }^{1}$		2.0			ns
$t_{\text {PWW }}$	Clock Pulse Width, HIGH'		2.0			ns
${ }^{\text {ts }}$	Setup Time, Data and Controls		2.0	1.5		ns
${ }^{\text {t }} \mathrm{HL}$	Hold Time, Data and Controls		1.0	0.5		ns

## Notes:

1. Standard test load given in Figure 6. Specification applies to each R, $G$ and $B$ DAC.
2. MWPS $=$ MegaWords Per Second. Setting time from $50 \%$ point to $\pm 1 / 2$ LSB is 3.5 ns Maximum.
3. $\pm 1 / 2$ LSB $= \pm 3.2 \%$ of Gray Scale.
4. Gray Scale $=\mid$ video white level $\cdot$ video black level $\mid=600 \mathrm{mv}$ (nominal).
5. The minimum specified conversion rate is given in the Dynamic Characteristics section. The sum of tpw and tpw must always equal or exceed the minimum conversion cycle time.

D/C PARAMETER	TEST CONDITIONS ${ }^{1}$	TEST LEVEL	MIN	TYP	MAX	UNITS

SYSTEM PERFORMANCE
$\mathrm{V}_{\mathrm{EE}}=5.2 \mathrm{~V}, \mathrm{f}_{\mathrm{CLOCK}}=200 \mathrm{MHz}$, Test Load Figure 6 unless otherwise specified

$E_{\text {LI }}$	Linearity Error Integral, Terminal Based	Note 2, 3			$\pm 1.6$	$\pm 3.2$	\%G.S.
$E_{L D}$	Linearity Error, Differential	Note 2, 4			$\pm 0.4$	$\pm 0.8$	\%G.S.
'OF	Output Offset Current	$\begin{aligned} & \text { DATA }=\text { SYNC }= \\ & \text { BLANK }=1 \\ & \text { BRIGHT }=0 \end{aligned}$				$\pm 10$	$\mu \mathrm{A}$
$\mathrm{E}_{\mathrm{G}}$	Absolute Gain Error					$\pm 1$	G.S.
$\mathrm{TC}_{\mathrm{G}}$	Gain Error Tempco				$\pm 0.01$	$\pm 0.02$	\%G.S. ${ }^{\circ} \mathrm{C}$
PSRR	Power Supply Rejection Ratio	Supply to Output ${ }^{\text {s }}$		22	28		db
PSS	Power Supply Sensitivity	Supply to Output			5	10	$\mathrm{mV} / \mathrm{V}$


DIC PARAMETER	TEST	TEST				
CONDITIONS						

SYSTEM PERFORMANCE
$\mathrm{V}_{\mathrm{EE}}=5.2 \mathrm{~V}, \mathrm{f}_{\mathrm{CLOCK}}=200 \mathrm{MHz}$, Test Load Figure 6 unless otherwise specified

$G_{V}$	Peak Glitch Voltage	Note 6		2	5	mV
$G_{E}$	Peak Glitch Area ('Energy')	Note 7		4	10	pico-Volt-seconds
${ }^{\text {FT }}$ C	Feedthrough, Clock	Data $=$ Constant ${ }^{8}$		$-50$	-45	dB
$\mathrm{FT}_{\mathrm{D}}$	Feedthrough, Data	Clock $=$ Constant ${ }^{\text {8 }}$		-70	-65	dB
$V_{\text {IL }}$	Input Voltage, Logic LOW			-1.65		V
$V_{\text {IH }}$	Input Voltage, Logic HIGH				-0.95	V
$\mathrm{T}_{\text {A }}$	Ambient Temperature ${ }^{2}$			0	70	${ }^{\circ} \mathrm{C}$
${ }^{T}$ C	Case Temperature ${ }^{2}$			0	125	${ }^{\circ} \mathrm{C}$

## Notes:

1. Standard test load given in Figure 6. Specification applies to each R, G, and B DAC.
2. \%G.S. $=$ Percent Gray Scale, where G.S. $=\mid$ video white level -video black level| $=600 \mathrm{mv}$ (nominal).
3. $\pm 3.2 \%$ G.S. $= \pm 1 / 2$ LSB (Least Significant Bit).
4. $\pm 0.8 \%$ G.S. $= \pm 1 / 8$ LSB (Least Significant Bit).
5. $20 \mathrm{kHz}, 600 \mathrm{mV}$ p-p ripple superimposed on VEE or $\mathrm{V} c$; dB relative to full $\mathrm{G} . \mathrm{S}$. $=\mathrm{OdB}$.
6. Peak Glitch Voltage is the maximum voltage deviation from ideal voltage during the glitch period.
7. Glitch Area (voltage x time) is sometimes referred to as an "energy", although this is not dimensionally correct. The Peak Glitch Area is the maximum area deviation from the ideal output. Since glitches are typically "doublets" of symmetric positive and negative excursions, the average glitch area approaches zero.
8. dB relative to full $\mathrm{G} . \mathrm{S} .=0 \mathrm{~dB}, 300 \mathrm{MHz}$ bandwidth limit.
9. 500 LFPM moving air required above $\mathrm{T}_{\mathrm{A}}=50^{\circ} \mathrm{C} ; \theta \mathrm{CA}=30^{\circ} \mathrm{C} W$ Typical at 500 LFPM .

## ELECTRICAL CHARACTERISTICS TESTING

All electrical characteristics are subject to the following conditions:

All parameters having Min./Max. specifications are guaranteed. The Test Level column indicates the specific device testing actually performed during production and Quality Assurance inspection. Any blank sections in the data columns indicates that the specification is not tested at the specified conditions.

Unless otherwise noted, all tests are pulsed tests, therefore $T_{j}=T_{c}=T_{a}$.

## test level test procedure

I $100 \%$ production tested at the specified temperature.

II $100 \%$ production tested at $T_{a}=25^{\circ} \mathrm{C}$, and sample tested at specified temperature.

III QA sample tested per QA test plan TA100.
IV Parameter is guaranteed (but not tested) by design and characterization data.

V Parameter is a typical value for information purposes only.

## GENERAL INFORMATION

The HDAC34010 is especially suited for Red-GreenBlue (RGB) color raster applications. The HDAC34010 comprises three complete 4 -bit digital-to-analog converters (DACs), precision bandgap reference, input data registers, decoding logic, video controls, and 75 Ohm source output termination as shown in the Functional Diagram. Each DAC has independent data and control inputs, with the exception of video Blank, Bright, and Reference White, which are common to all three converters. Parallel data input registers are provided for each DAC. A single Clock input synchronizes the video data entry and conversion cycle for all three converters. All data, clock, and control inputs of the HDAC34010 are compatible with standard EmitterCoupled Logic (ECL).

The video control inputs (Sync, Blank, Bright and Reference White) are used for reconstruction of RS-343-A compatible signals from video control inputs. Video setup level (the difference between video black and video blank) may be programmed for 0,10 , or 20 IRE units, depending on the condition of the Setup Select control.

The HDAC34010 utilizes a partially segmented approach whereby the upper 2 MSBs (Most Significant Bits) are decoded into a parallel code which drive individual and identical current switches. The advantage of this approach is that currents are added sequentially as codes increase, thereby eliminating the switching in and out of currents (as with straight binaryweighted DACs). This technique reduces glitching and improves linearity and other performance character-


## APPLICATIONS CIRCUIT DISCRIPTION

A typical interface circuit using the HDAC34010 in an RGB color raster application is shown in Figure 1 A/B. Although the HDAC34010 requires few external components and is extremely easy to use, there are several considerations that should be noted to achieve best performance. The very high operating speeds of the HDAC34010 require good circuit layout, decoupling of supplies, and proper design of transmission lines.

Video input data and controls may be directly connected to the HDAC34010. Note that all ECL inputs are terminated as close to the device as possible to reduce ringing, crosstalk and reflections. A convenient and commonly used microstrip impedance is about 130 Ohms, which is easily terminated using a 330 Ohm resistor to $\mathrm{V}_{\mathrm{eg}}$ and 220 Ohm resistor to Ground. This arrangement gives a Thevenin equivalent termination of 130 Ohms to -2 Volts without the need for a 2 Volt supply. Standard SIIP (Single Inline Package) 220/330 resistor networks are available for this purpose.

It is recommended that the stripline or microstrip techniques be used for all ECL interface. Printed circuit wiring of known impedance over a solid ground plane is recommended. The ground plane should be constructed such that analog and digital ground currents are isolated as much as possible. The HDAC34010 provides separate digital and analog ground connections to simplify grounding layout.

The $\mathrm{R}, \mathrm{G}$, and B analog outputs are designed to directly drive a 75 Ohm transmission system as shown. The source impedances of the HDAC34010's RGB outputs are factory-trimmed to 75 Ohms $+/-5 \%$, thus eliminating the need for an external sourcetermination resistor. The RGB load impedance (RL) must be 75 Ohms to attain standard RS-343-A video levels. Any deviation from this impedance will affect the resulting video output levels proportionally. As with the data interface, it is important that the analog transmission lines have matched impedance throughout, including connectors and transitions between printed wiring and coaxial cable. The combination of matched source termination resistor Rs and load terminator RL minimizes reflections of both forward and reverse travelling waves in the analog transmission system. The return path for analog output current is DAC RTN, which is connected internally to the source-termination resistors, Rs.

No external reference is required for operation of the HDAC34010, as this function is provided internally. The internal reference is a bandgap type and is suitable for operation over extended temperature ranges.

The HDAC34010 operates from a single standard -5.2 Volt supply. Proper bypassing of the supplies will augment the HDAC34010's inherent supply noise rejection characteristics. As shown, a large value Tantalum capacitor in parallel with smaller ceramic capacitors is recommended for best performance. The small-valued capacitors should be connected as close to the device package as possible, whereas the tantalum capacitor may be placed up to a few inches away.

FIGURE 1 H HDAC34010 TYPICAL INTERFACE CIRCUIT



The timing diagram for the HDAC34010 is shown in Figure 2．Data to all three DACs（Red，Green，and Blue）is simultaneously entered on the rising edge of the clock． Data must be valid for a setup time of ts before，and for a hold time of tw after the rising edge of the clock，in order to be correctly entered．The DAC outputs will change in accordance to the clocked input data after a delay time of to．The settling time is specified as the time from when the DAC output is no longer within $1 / 2$ LSB of the previous value until it is within $1 / 2$ LSB of the new value．

The video control inputs cause the DAC outputs to change directly，without regard to the clock input．All video controls（Sync，Blank，Bright and Reference White） are active－Low（negative true）logic．Figure 3 illustrates the operation of Sync and Blank inputs and the resulting video output signal．As shown，both Sync and Blank must be Low to achieve the proper video Sync level．The video control input hierarchy is given in Table 1，with typical output levels for a setup level of 10 IRE．

Setup level is the difference between video Blank and Black levels．The HDAC34010 supports setups of 0,10 ， and 20 IRE，which are programmed by connecting the Setup select input to ground（ OV ），not connected，or to $\mathrm{V}_{\mathrm{EE}}$ （ -5.2 V ），respectively．For most applications the 10 IRE option is suitable．

The Reference White input forces the DAC outputs to an all＂ 1 ＂s level，which is video＂white＂in most systems． This is especially useful for clearing the display screen to white during system reset or power－up．The Bright input adds $10 \%$ of full－scale video to the present video level． The Bright feature is commonly used for highlighting cur－ sors or creating overlays of video information．Sync， Blank and Reference White override the RGB data in－ puts，while Bright may be applied to any video level．

FIGURE 2 TIMING DIAGRAM


Table 1 Video Control Operation（Output values for Setup＝ 10 IRE and 75 Ohm standard load）

Sync	Blank	Ref White	Bright	Data Input	Out（V）	Out（IRE）	Description
0	0	1	1	X X X ${ }^{\text {I }}$	－1．028	－40	Sync Level
1	0	1	1	XXXX	－0．742	0	Blank Level
1	1	0	1	XxXX	－0．071	84	Normal White Level
1	1	0	0	XXXX	0.0	94	Enhanced White Level
1	1	1	1	1111	－0．071	84	Normal White Level
1	1	1	0	1111	0.0	94	Enhanced White Level
1	1	1	1	0000	－0．671	10	Normal Black Level
1	1	1	0	0000	－0．600	20	Enhanced Black Level

## Notes：

1．All Video Controls are active－Low（negative true）logic．
2．Sync and Blank output levels are dependent on setup level selected．Values indicated are for setup $=10$ IRE（setup select left un－ connected）．
3．Sync level requires that both Sync and Blank $=0$ ．
4． 140 IRE $=1.00$ Volts．
5．All control values are subject to tolerance of $\pm 2 \%$ Gray Scale．

Setup Select

Setup Control Input	Setup Level
OVolts（GND）	0 IRE
Not Connected	101 IRE
-5.2 Volts（VEE）	201 RE

FIGURE 3 VIDEO OUTPUT WAVEFORM FOR STANDARD LOAD \＆ 10 IRE SETUP


FIGURE 4 EQUIVALENT INPUT CIRCUIT, DATA, CLOCK \& CONTROL


## FIGURE 5 DAC OUTPUT CIRCUIT



FIGURE 6A STANDARD LOAD
HDAC34010
HDAC 34010

FIGURE 6B TEST LOAD


## PIN FUNCTIONS

## PIN ASSIGNMENTS


**For Ordering Information See Section 1.

## TRIPLE 4-BIT, HIGH SPEED RASTER DIA CONVERTER

PRELIMINARY INFORMATION

## FEATURES

- 100 MWPS Conversion Rate
- Complete RGB DIA Solution
- RS-343-A Compatible
- Video Controls: Sync, Blank, Bright and Reference White
- Registered for Low Glitch
- Standard +5, -5.2V Supplies
- On-chip Bandgap Reference
- TTL Compatible
- Immune to Power-On Latchup

The HDAC34020 is a monolithic, triple 4-bit raster digital-to-analog (D/A) converter, complete with special video controls, on-chip reference, registers, and precision output termination. Only one device is required for a complete RGB D/A system.

Four special video controls (Sync, Blank, $+10 \%$ Bright and Reference White) allow full reconstruction of RS-343-A compatible video signals from composite inputs. All data and control inputs are TTL compatible.

## APPLICATIONS

- RGB Color Graphics
- CAD/CAE Workstations
- Instrumentation Displays
- Medical Electronics: CAT, PET, NMR Displays
- Business Computer Graphics
- CRT Terminals

The HDAC34020 will directly drive a 75 Ohm coaxial cable and monitor termination to standard video levels.

The gain and output termination of each DIA is precisely adjusted using a proprietary trimming procedure. The HDAC34020 is fabricated using an advanced VLSI bipolar process for excellent performance, low power consumption, and high reliability in a choice of convenient packages.

## BLOCK DIAGRAM



Absolute Maximum Ratings (Beyond which the useful life will be impaired) ${ }^{1}$

Supply Voltages
$\mathrm{V}_{\mathrm{EE}}$ (measured to $\mathrm{D}_{\mathrm{GND}}$ ) . . . . . . . . . . . . -7.0 to 0.5 V
$\mathrm{V}_{\mathrm{CC}}$ (measured to $\mathrm{D}_{\mathrm{GND}}$ ) $\ldots \ldots \ldots . .+7.0$ to -0.5 V
$\mathrm{A}_{\mathrm{GND}}$ (measured to $\mathrm{D}_{\mathrm{GND}}$ )
-0.5 to 0.5 V

Temperature
Operating, ambient............... . -60 to $+140^{\circ} \mathrm{C}$
junction ........................ . $+175^{\circ} \mathrm{C}$
Lead, soldering ( 10 seconds) . . . . . . . . . . . . . . $+300^{\circ} \mathrm{C}$
Storage ......................... -60 to $+150^{\circ} \mathrm{C}$

## Input Voltages

Clock, Data and Controls (measured to $\mathrm{D}_{\mathrm{GND}}$ )

$$
\begin{aligned}
& \mathrm{D}_{\mathrm{GND}} \mathrm{~V}_{\mathrm{CC}} \text { to }-0.5 \mathrm{~V}
\end{aligned}
$$

## Outputs

Analog Output (R, G and B), applied voltage (measured to A $_{\text {GND }}$ ) .............................. -3.0 to 3.0 V Analog Output ( R , G and B ), applied current ${ }^{2} \ldots . . .60 \mathrm{~mA}$ Output Short Circuit Duration ............... Unlimited

## Notes:

1. Operation at any Absolute Maximum Ratings is not implied. See Electrical Specifications for proper nominal applied conditions in typical applications.

## COMMERCIAL TEMPERATURE RANGE

DIC PARAMETER	TEST					
CONDITIONS ${ }^{1}$	TEST	LEVEL	MIN	TYP	MAX	UNITS

STATIC CHARACTISTICS
$\mathrm{V}_{\mathrm{EE}}=5.2 \mathrm{~V}, \mathrm{f}_{\mathrm{CLOCK}}=200 \mathrm{MHz}$, Test Load Figure 6 unless otherwise specified

$\mathrm{V}_{\mathrm{EE}}$	Negative Supply Voltage (Measured to $\mathrm{D}_{\mathrm{GND}}$ )		-4.75	$-5.2$	-5.5	V
$\mathrm{V}_{\mathrm{CC}}$	Positive Supply Voltage (Measured to $\mathrm{D}_{\mathrm{GND}}$ )		4.75	5.0	5.25	V
${ }^{\text {E EE }}$	Negative Supply Current			-345	-385	mA
${ }^{\text {I CC }}$	Positive Supply Current			26	40	mA
$\mathrm{D}_{\mathrm{GND}}$   $\mathrm{A}_{\text {GND }}$	Ground Voltage Differential		-0.1	0.0	+0.1	V
$\mathrm{C}_{1}$	Input Capacitance, Clock Data and Controls			3	5	pF
$\mathrm{V}_{\mathrm{OC}}$	Compliance Voltage	Note 2	-2		0.5	V
$\mathrm{R}_{\mathrm{O}}$	Output Resistance	Note 2	71	75	79	Ohms
$\mathrm{C}_{0}$	Output Capacitance	Note 2		15	20	pF
${ }_{1}$	Maximum Output Current	Note 2	28	30		mA
IIL	Input Current, Logic LOW, Data and Controls		-1.30	-0.5		mA
${ }_{I}{ }_{H}$	Input Current, Logic HIGH, Data and Controls			0	100	$\mu \mathrm{A}$

## Notes:

1. Test load given in Figure 6B
2. Specification applies to each R, G and B DAC.

COMMERCIAL TEMPERATURE RANGE

AC PARAMETER			TEST LEVEL	MIN	TYP	MAX	UNITS
DYNAMIC CHARACTISTICS$\mathrm{V}_{\mathrm{EE}}=5.2 \mathrm{~V}, \mathrm{f}_{\mathrm{C}} \mathrm{LOCK}=200 \mathrm{MHz} \text {, Test Load Figure } 6 \text { unless otherwise specified }$							
$\mathrm{F}_{S}$	Maximum Conversion Rate	Note 2		100	125		MWPS
${ }^{t} \mathrm{D}$	Clock to Output Delay				4	5	ns
${ }^{\text {t }}$ ST	Settling Time	$\begin{aligned} & \pm 1 / 2 \text { LSB to } \pm 1 / 2 \\ & \text { LSB }^{3} \end{aligned}$			3	4	ns
$t_{R}$	Rise Time	$10 \%$ to $90 \%$ of Gray Scale4				2.5	ns
SR	Slew Rate			200			$\mathrm{V} / \mathrm{\mu s}$
${ }^{\text {tPWL }}$	Clock Pulse Width, LOW ${ }^{\text {- }}$			4			ns
${ }^{\text {t PWW }}$	Clock Pulse Width, HIGH			4			ns
${ }^{t}$	Setup Time, Data and Controls			3	2		ns
${ }^{\text {HLL}}$	Hold Time, Data and Controls			2	1		ns

## Notes:

1. Test load given in Figure 6B. Specification applies to each R, G and B DAC.
2. MWPS $=$ MegaWords Per Second. Setting time from $50 \%$ point to $\pm 1 / 2$ LSB is 3.5 ns Maximum.
3. $\pm 1 / 2$ LSB $= \pm 3.2 \%$ of Gray Scale.
4. Gray Scale $=\mid$ video white level $\cdot$ video black level $\mid=600 \mathrm{mv}$ (nominal).
5. The minimum specified conversion rate is given in the Dynamic Characteristics section. The sum of tpwl and tpwh must always equal or exceed the minimum conversion cycle time.

D/C PARAMETER	TEST   CONDITIONS	TEST   LEVEL	MIN	TYP	MAX	UNITS

## SYSTEM PERFORMANCE

$\mathrm{V}_{\mathrm{EE}}=5.2 \mathrm{~V}, \mathrm{f}_{\mathrm{CLOCK}}=200 \mathrm{MHz}$, Test Load Figure 6 unless otherwise specified

$\mathrm{E}_{\mathrm{LI}}$	Linearity Error Integral, Terminal Based	Note 2, 3		$\pm 1.6$	$\pm 3.2$	\%G.S.
$E_{L D}$	Linearity Error, Differential	Note 2, 4		$\pm 0.4$	$\pm 0.8$	\%G.S.
${ }^{1} \mathrm{OF}$	Output Offset Current	$\begin{aligned} & \text { DATA }=\text { SYNC }= \\ & \text { BLANK }=1 \\ & \text { REF WH }=\text { BRT }=0 \end{aligned}$			$\pm 10$	$\mu \mathrm{A}$
$\mathrm{E}_{\mathrm{G}}$	Absolute Gain Error				$\pm 1$	G.S.
$\mathrm{TC}_{\mathrm{G}}$	Gain Error Tempco			$\pm 0.01$	$\pm 0.02$	\%G.S. $/{ }^{\circ} \mathrm{C}$
PSRR	Power Supply Rejection Ratio	Supply to Output ${ }^{5}$	22	28		db
PSS	Power Supply Sensitivity	Supply to Output		5	10	mVIV

COMMERCIAL TEMPERATURE RANGE

DIC PARAMETER		$\begin{aligned} & \text { TEST } \\ & \text { CONDITIONS' } \end{aligned}$	TEST LEVEL	MIN	TYP	MAX	UNITS
SYSTEM PERFORMANCE   $\mathrm{V}_{\mathrm{EE}}=5.2 \mathrm{~V}, \mathrm{f}^{\mathrm{f}} \mathrm{CLOCK}=200 \mathrm{MHz}$, Test Load Figure 6 unless otherwise specified							
$\mathrm{G}_{V}$	Peak Glitch Voltage	Note 6			2	5	mV
$\mathrm{G}_{\mathrm{E}}$	Peak Glitch Area ('Energy')	Note 7			4	10	pico-   Volt-seconds
$\mathrm{FT}_{\mathrm{C}}$	Feedthrough, Clock	Data $=$ Constant $^{\text {b }}$			-50	-45	dB
$\mathrm{FT}_{\mathrm{D}}$	Feedthrough, Data	Clock $=$ Constant ${ }^{\text {8 }}$			-70	-65	dB
$\mathrm{V}_{\text {IL }}$	Input Voltage, Logic LOW			0.8			V
$\mathrm{V}_{\mathrm{IH}}$	Input Voltage, Logic HIGH					2.4	V
$\mathrm{T}_{\text {A }}$	Ambient Temperature ${ }^{2}$			0		70	${ }^{\circ} \mathrm{C}$
${ }^{T}$ C	Case Temperature ${ }^{2}$			0		125	${ }^{\circ} \mathrm{C}$

## Notes:

1. Standard test load given in Figure 6. Specification applies to each R, G, and B DAC.
2. $\%$ G.S. $=$ Percent Gray Scale, where G.S. $=\mid$ video white level $\cdot$ video black level $\mid=600 \mathrm{mv}$ (nominal).
3. $\pm 3.2 \%$ G.S. $= \pm 1 / 2$ LSB (Least Significant Bit).
4. $\pm 0.8 \%$ G.S. $= \pm 1 / 8$ LSB (Least Significant Bit).
5. $20 \mathrm{kHz}, 600 \mathrm{mV}$ p-p ripple superimposed on Vee or Voc; dB relative to full $\mathrm{G} . \mathrm{S}$. $=0 \mathrm{~dB}$.
6. Peak Glitch Voltage is the maximum voltage deviation from ideal voltage during the glitch period.
7. Glitch Area (voltage $x$ time) is sometimes referred to as an "energy", although this is not dimensionally correct. The Peak Glitch Area is the maximum area deviation from the ideal output. Since glitches are typically "doublets" of symmetric positive and negative excursions, the average glitch area approaches zero.
8. dB relative to full $\mathrm{G} . \mathrm{S}$. $=0 \mathrm{~dB}, 300 \mathrm{MHz}$ bandwidth limit.
9. 500 LFPM moving air required above $T_{A}=50^{\circ} \mathrm{C} ; \theta C A=30^{\circ} \mathrm{CW}$ Typical at 500 LFPM .

## ELECTRICAL CHARACTERISTICS TESTING

All electrical characteristics are subject to the following conditions:

All parameters having Min./Max. specifications are guaranteed. The Test Level column indicates the specific device testing actually performed during production and Quality Assurance inspection. Any blank sections in the data columns indicates that the specification is not tested at the specified conditions.

Unless otherwise noted, all tests are pulsed tests, therefore $T_{j}=T_{c}=T_{a}$.

## TEST LEVEL TEST PROCEDURE

I $100 \%$ production tested at the specified temperature.

II $100 \%$ production tested at $T_{a}=25^{\circ} \mathrm{C}$, and sample tested at specified temperature.

III QA sample tested only at specified temperatures

Parameter is guaranteed (but not tested) by design and characterization data.

V
Parameter is a typical value for information purposes only.

## GENERAL INFORMATION

The HDAC34020 is especially suited for Red-GreenBlue (RGB) color raster applications. The HDAC34020 comprises three complete 4 -bit digital-to-analog converters (DACs), precision bandgap reference, input data registers, decoding logic, video controls, and 75 Ohm source output termination as shown in the Functional Diagram. Each DAC has independent data and control inputs, with the exception of video Blank, Bright, and Reference White, which are common to all three converters. Parallel data input registers are provided for each DAC. A single Clock input synchronizes the video data entry and conversion cycle for all three converters. All data, clock, and control inputs of the HDAC34020 are compatible with standard Transistor -Transistor Logic (TTL).

The video control inputs (Sync, Blank, Bright and Reference White) are used for reconstruction of RS-343-A compatible signals from video control inputs. Video setup level (the difference between video black and video blank) may be programmed for 0,10 , or 20 IRE units, depending on the condition of the Setup Select control.

The HDAC34020 utilizes a partially segmented approach whereby the upper 2 MSBs (Most Significant Bits) are decoded into a parallel code which drive individual and identical current switches. The advantage of this approach is that currents are added sequentially as codes increase, thereby eliminating the switching in and out of currents (as with straight binaryweighted DACs). This technique reduces glitching and improves linearity and other performance characteristics.

## FUNCTIONAL DIAGRAM



## APPLICATIONS CIRCUIT DISCRIPTION

A typical interface circuit using the HDAC34020 in an RGB color raster application is shown in Figure 1 A/B. Although the HDAC34020 requires few external components and is extremely easy to use, there are several considerations that should be noted to achieve best performance. The very high operating speeds of the HDAC34020 require good circuit layout, decoupling of supplies, and proper design of transmission lines.

TTL video input data and controls may be directly connected to the HDAC34020. It is recommended that stripline or microstrip techniques be used for all TTL interface. Printed circuit wiring of known impedance over a solid ground plane is recommended. The ground plane should be constructed such that analog and digital ground currents are isolated as much as possible. The HDAC34020 provides separate digital and analog ground connections to simplify grounding layout.

The R, G, and B analog outputs are designed to directly drive a 75 Ohm transmission system as shown. The source impedances of the HDAC34020's RGB outputs are factory-trimmed to 75 Ohms $\pm 5 \%$, thus eliminating the need for an external sourcetermination resistor. The RGB load impedance (RL)
must be 75 Ohms to attain standard RS-343-A video levels. Any deviation from this impedance will affect the resulting video output levels proportionally. As with the data interface, it is important that the analog transmission lines have matched impedance throughout, including connectors and transitions between printed wiring and coaxial cable. The combination of matched source termination resistor Rs and load terminator RL minimizes reflections of both forward and reverse travelling waves in the analog transmission system. The return path for analog output current is DAC RTN, which is connected internally to the source-termination resistors, Rs.

No external reference is required for operation of the HDAC34020, as this function is provided internally. The internal reference is a bandgap type and is suitable for operation over extended temperature ranges.

The HDAC34020 operates from standard +5 and -5.2 Volt supplies. Proper bypassing of the supplies will augment the HDAC34020's inherent supply noise rejection characteristics. As shown, a large value Tantalum capacitor in parallel with smaller ceramic capacitors is recommended for best performance. The small-valued capacitors should be connected as close to the device package as possible, whereas the Tantalum capacitor may be placed up to a few inches away.

## FIGURE 1 A HDAC34020 TYPICAL INTERFACE CIRCUIT




The timing diagram for the HDAC34020 is shown in Figure 2. Data to all three DACs (Red, Green, and Blue) is simultaneously entered on the rising edge of the clock. Data must be valid for a setup time of ts before, and for a hold time of $t+$ after the rising edge of the clock, in order to be correctly entered. The DAC outputs will change in accordance to the clocked input data after a delay time of to. The settling time is specified as the time from when the DAC output is no longer within $1 / 2$ LSB of the previous value until it is within $1 / 2$ LSB of the new value.

The video control inputs cause the DAC outputs to change directly, without regard to the clock input. All video controls (Sync, Blank, Bright and Reference White) are active-Low (negative true) logic. Figure 3 illustrates the operation of Sync and Blank inputs and the resulting video output signal. As shown, both Sync and Blank must be Low to achieve the proper video Sync level. The video control input hierarchy is given in Table 1, with typical output levels for a setup level of 10 IRE.

Setup level is the difference between video Blank and Black levels. The HDAC34020 supports setups of 0 , 10 , and 20 IRE, which are programmed by connecting the Setup select input to ground ( OV ), not connected, or to $\mathrm{V}_{\mathrm{EE}}(-5.2 \mathrm{~V})$, respectively. For most applications the 10 IRE option is suitable.

The Reference White input forces the DAC outputs to an all " 1 "s level, which is video "white" in most systems. This is especially useful for clearing the display screen to white during system reset or powerup. The Bright input adds $10 \%$ of full-scale video to the present video level. The Bright feature is commonly used for highlighting cursors or creating overlays of video information. Sync, Blank and Reference White override the RGB data inputs, while Bright may be applied to any video level.

## FIGURE 2 TIMING DIAGRAM



Table 1 Video Control Operation (Output values for Setup = 10 IRE and 75 Ohm standard load)

Sync	Blank	Ref White	Bright	Data Input	Out (V)	Out (IRE)	Description
0	0	1	1	XXXX	-1.028	-40	Sync Level
1	0	1	1	XXXX	-0.742	0	Blank Level
1	1	0	1	XXXX	-0.071	84	Normal White Level
1	1	0	0	XXXX	0.0	94	Enhanced White Level
1	1	1	1	1111	-0.071	84	Normal White Level
1	1	1	0	1111	0.0	94	Enhanced White Level
1	1	1	1	0000	-0.671	10	Normal Black Level
1	1	1	0	0000	-0.600	20	Enhanced Black Level

## Notes:

1. All Video Controls are active-Low (negative true) logic.
2. Sync and Blank output levels are dependent on setup level selected. Values indicated are for setup $=10$ IRE (setup select left unconnected).
3. Sync level requires that both Sync and Blank $=0$.
4. 140 IRE $=1.00$ Volts.
5. All control values are subject to tolerance of $\pm 2 \%$ Gray Scale.

## Setup Select

Setup Control Input	Setup Level
OVolts (GND)	0 IRE
Not Connected	101 RE
-5.2 Volts $\left(\mathrm{V}_{\mathrm{EE}}\right)$	201 RE

FIGURE 3 VIDEO OUTPUT WAVEFORM FOR STANDARD LOAD \& 10 IRE SETUP


FIGURE 4 EQUIVALENT INPUT CIRCUIT, DATA, CLOCK \& CONTROL


FIGURE 5 DAC OUTPUT CIRCUIT


FIGURE 6A STANDARD LOAD


PIN ASSIGNMENTS
R CC

FIGURE 6B TEST LOAD


## PIN FUNCTIONS

## NAME FUNCTION

VCC	Positive Supply Voltage Input ( +5 V)
RD4	R Data Bit 4 (LSB)
RD3	R Data Bit 3
RD2	R Data Bit 2
RD1	R Data Bit 1 (MSB)
RED SYNC	Red Composite Sync Input
GD4	G Data Bit 4 (LSB)
GD3	G Data Bit 3
GD2	G Data Bit 2 (MSB)
GD1	G Data Bit 1 (MSB)
GRN SYNC	Green Composite Sync Input
BD4	B Data Bit 4 (LSB)
BD3	B Data Bit 3
BD2	B Data Bit 2
BD1	B Data Bit 1 (MSB)
BLUE SYNC	Blue Composite Sync Input
VEE	Negative Supply Voltage Input ( $-5.2 V$ )
BLANK	Video Blank Input
BRT	+ 10\% Bright Input
CLOCK	Conversion Clock Input
REF WH	Reference White Input
AGND	Analog Ground
DGND	Digital Ground
DAC RTN	DAC Return
SET-UP	Video Set-up Select
BLUE	Blue DAC Video Output
GREEN	Green DAC Video Output
RED	Red DAC Video Output

## SIGNAL <br> PROCESSING TECHNOLOGIES

## HDAC50500

## 12-BIT MONOLITHIC MDAC WITH FULL $\mu$ P INTERFACE

## ADVANCE INFORMATION

## FEATURES:

- Directly Interfaces to Intel and Motorola 8-Bit Microprocessors Without Additional Glue Logic
- Input Data Latches
- 12-Bit Linearity $\pm 1 / 2$ LSB (End Point Over Temperature Range)
- 500ns Output Settling Time
- 4 Quadrant Multiplication
- Single Supply Operation


## APPLICATIONS:

- Industrial Automation
- Process Control
- Bus Structured Instrumentation
- Microprocessor Controlled Gain/Function Circuits


## GENERAL DESCRIPTION

The HDAC50500 is a 12-bit multiplying digital-to-analog converter that will interface directly to most 8-bit microprocessors with no additional glue logic required. Both Motorola's MPX'ed and non-MPX'ed bus formats as well as Intel's MPX'ed bus format are supported.

Performance specifications of $\pm 1 / 2$ LSB maximum nonlinearity, $\pm 1 / 2$ LSB maximum gain error and 500 ns typical output settling time (A/G grade) are the best in the
industry! Additionally, timing specifications are the fastest currently available thus allowing more efficient usage of today's faster microprocessors.

This part is manufactured using Honeywell's Bipolar Enhanced CMOS (BEMOS) process. This process allows the combination of dense high speed digital logic with precision analog circuitry, all on a single monolithic chip.

## BLOCK DIAGRAM



SPECIFICATIONS ( $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=10 \mathrm{~V}$ )
Over Temperature Range Specified Below, Unless Otherwise Indicated

Parameter	Test Conditions	Test Level (1) Level (1)	HDAC50500A/G Min Nom Max	HDAC50500A Min Nom Max	HDAC50500B Min Nom Max	Units
Relative Accuracy		1	$-1 / 2+1 / 2$	$-1 / 2+1 / 2$	$-1 \quad+1$	LSB
Differential Nonlinearity		1	$-1 / 2+1 / 2$	$-1 / 2+1 / 2$	$-1 \quad+1$	LSB
Gain Error:	$25^{\circ} \mathrm{C}$	1	$-1 / 2+1 / 2$	-2 +2	$-3 \quad+3$	LSB
	Tmin-Tmax	1	$-1.5+1.5$	$-3 \quad+3$	$-4+4$	LSB
Output Settling Time	$\begin{aligned} & \text { OUT1 Load } \\ = & 100 \Omega+13 \mathrm{pF} \end{aligned}$	II	0.5	0.5	0.5	$\mu \mathrm{S}$
Output Capacitance on OUT1	Inputs Low Inputs High	$11$	$\begin{aligned} & 30 \\ & 75 \end{aligned}$	$\begin{aligned} & 30 \\ & 75 \end{aligned}$	$\begin{aligned} & 30 \\ & 75 \end{aligned}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$
$t_{\text {DS }}$ : Data Set-up Time		1	60	60	60	ns
${ }_{\text {DH: }}$ : Data Hold Time		1	10	10	10	ns
Address Hold Time		1	10	10	10	ns
Address Set-Up Time		1	20	20	20	ns

(1) Test Procedure: I- Production tested at the specified conditions; II - Sample tested to ensure compliance.
**For Ordering Information See Section 1.

14-BIT VOLTAGE-OUTPUT DIGITAL TO ANALOG CONVERTER

PRELIMINARY INFORMATION

## FEATURES:

- Fast Voltage Settling Time of 750 nS (Typical) to 0.5 LSB
- On-Chip Reference Buffer
- Single Supply Operation
- On-Chip Application Resistors to Support Output Gain Selection
- Low Power Dissipation of 15 mW (Typical)
- 1/2 LSB Maximum Differential Nonlinearity Over Temperature
- High-Speed Microprocessor Compatible Interfacing


## APPLICATIONS:

- $\mu$ P Controlled Instruments
- Automatic Test Equipment
- Data Acquisition and Control Systems
- Frequency Synthesizers
- Battery Powered Systems
- High Speed A/D Converters


## GENERAL DESCRIPTION

The HDAC50600 is a 14 -bit voltage-output digital to analog converter. This high-performance monolithic device provides fast output voltage settling, single supply operation, and low power dissipation. Unique onchip functions include an input reference buffer and precision application resistors used to support output voltage scaling. Unlike current-output devices, this voltage-output DAC simplifies the task of output buffering.

The device input accepts full 14 -bit wide parallel data which makes the HDAC50600 ideal for 16 -bit bus
architectures. Data loading is controlled by standard $\overline{C S}$ and $\overline{W R}$ signals which simplify microprocessor interfacing. High-speed microprocessors, such as Intel's 80386 or Motorola's 68020, are supported by the 100 nS (minimum) write pulse width timing. All logic input levels are TTL and 5 volt CMOS compatible.

The HDAC50600 is manufactured on Honeywell's Bipolar Enhanced CMOS (BEMOS) process. This process is optimized to allow the combination of dense, high-speed digital logic with precision analog circuitry on a single chip.

## BLOCK DIAGRAM



## ABSOLUTE MAXIMUM RATINGS (Beyond Which Damage May Occur) $25^{\circ} \mathrm{C}$ (1)

## Supply Votages

Positive Supply Votage (VCC to AGND) +7
Positive Supply Voltage (VDD to DGND) +7 Ground Voltage Differential (AGND to DGND)

VCC to VDD Differential -0.5 to +0.5 V
Input Voltages
Digital Inputs to DGND -0.3 to VDD +0.3 V
Pins $23-26$ to DGND $\pm 25 \mathrm{~V}$
Pins 2,3 to AGND - 0.3 to +25 V
(1) Operation at any Absolute Maximum Rating is not implied. See Electrical Specifications for proper nominal applied conditions in typical applications.

## ELECTRICAL SPECIFICATIONS

All specifications Tmin to Tmax unless otherwise noted.
$\mathrm{VDD}=\mathrm{VCC}=5 \mathrm{~V}$; VREF $=10 \mathrm{~V}$; AGND $=\mathrm{DGND}=0 \mathrm{~V}$ unless otherwise noted.

DC Parameters	Test Conditions	Test Level (1)	HDAC50600A Min Typ Max	HDAC50600B Min Typ Max	Units
ACCURACY					
Resolution		1	14	14	Bits
Relative Accuracy		1	$\pm 1 / 2$	$\pm 1$	LSB
Differential Linearity Error		1	$\pm 1 / 2$	$\pm 1$	LSB
Offset Error		I	+3	+4	LSB
Gain Error		1	$\pm 4$	$\pm 8$	LSB
Offset Error Tempco		11	$\pm 2$	$\pm 2$	ppm/ ${ }^{\circ} \mathrm{C}$
Gain Error Tempco		II	$\pm 2.5$	$\pm 5$	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Power Supply Rejection ( $\triangle$ Gain/ $\Delta \mathrm{VCC}$ )	$\begin{aligned} & \text { VCC }= \\ & 5 \mathrm{~V} \pm 5 \% \end{aligned}$	1	$\pm 1 / 2$	$\pm 1 / 2$	LSB
Application Resistor Value $(\mathrm{R})$		11	$10 \quad 1316$	$10 \quad 13$	$\mathrm{k} \Omega$
Application Resistor Matching Error (5/3R, 5/2R to R)		I	$\pm .05$	$\pm .05$	\%

REFERENCE INPUTS

IIN (Input Current)	+10V REF or   +5 VREF   Input	I	1	1	mA
CIN (Input Capacitance)	+10 VREF or   +5 VREF   Input	II	10	10	pF

(1) Test Procedure: I-Production tested at the specified conditions

II - Guaranteed by design and sampled characterization data.

## ELECTRICAL SPECIFICATIONS

All specifications Tmin to Tmax unless otherwise noted.
$\mathrm{VDD}=\mathrm{VCC}=5 \mathrm{~V} ; \mathrm{VREF}=10 \mathrm{~V} ; \mathrm{AGND}=\mathrm{DGND}=0 \mathrm{~V}$ unless otherwise noted.

DC Parameters	Test Conditions	Test Level (1)	HDAC50600A Min Typ Max	HDAC50600B   Min Typ Max	Units

## LOGIC INPUTS (Pins DBO - DB13, $\overline{\text { WR }}, \overline{\mathrm{CS}}$ )

VIH (High Input Voltage)		I	2.4	2.4	Volts
VIL (Low Input Voltage)		I	0.8	0.8	Volts
IIN Input Current)	$\mathrm{VIN}=0$ or 5 V	I	1	1	$\mu \mathrm{~A}$
CIN (Input Capacitance)	VIN $=0$ or 5 V	II	10	10	pF


ANALOG OUTPUTS (Pins VOUT)									
ROUT (Output Resistance)	$\begin{aligned} & \text { DBO-DB13 } \\ & \text { Are Zero } \end{aligned}$	1	4.5	6.5	8.5	4.5	6.5	8.5	$\mathrm{K} \Omega$
Output Resistance Tempco		11		-300			-300		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
COUT (Output Capacitance)		II			15		10	15	pF
Output Voltage Swings	$\mathrm{R}_{\mathrm{L}} \geq 1 \mathrm{M} \Omega$	1		3			3		Volts

POWER SUPPLY

VDD, VCC Range		1	4.75	5.25	4.75	5.25
IDD	All Digital inputs   VIL or VIH	1	2		Volts	
IDD	All Digital inputs   0 or 5V	1	100	mA		
ICC		1	3	6	3	6
AC Parameters						

## DYNAMIC PERFORMANCE

Output Voltage   Settling Time	Input Logic   Levels 0 to 5 V	II	0.75	0.75	$\mu \mathrm{~S}$
Digital to Analog   Glitch Impulse		II	20	20	$\mathrm{nV}-\mathrm{Sec}$
Output Voltage Noise Density		II	20	20	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$

TIMING CHARACTERISTICS

$\mathrm{t} \overline{\mathrm{CS}}$ (Chip Select to Write Setup Time)	II	0	0	ns
tCH (Chip Select to Write Hold Time)	11	0	0	ns
t $\overline{W R}$ ( $\overline{\mathrm{WR}}$ Pulse Width)	II	100	100	ns
tDS ( Data Setup Time)	11	80	80	ns
tDH ( Data Hold Time)	II	10	10	ns

[^8]
## TIMING DIAGRAM



## MODE SELECTION

Write Mode:
$\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ low: DAC responds to data inputs DB0-DB13.
HOLD MODE:
Either $\overline{\mathrm{CS}}$ or $\overline{\text { WR }}$ high: data inputsDBO-DB13 are locked out, DAC holds last data present when $\overline{W R}$ or $\overline{C S}$ assumes high state.

## TERMINOLOGY

## Relative Accuracy

Relative accuracy, also known as endpoint nonlinearity, is a measure of the maximum deviation from a straight line passing though the endpoints of the DAC transfer function. It is measured after adjusting for zero error and full-scale error and is expressed in $\%$ of full scale range or (sub)multiples of 1 LSB.

## Differential Nonlinearity

Differential nonlinearity is the difference between the measured change and the ideal 1 LSB change between any two adjacent codes. A specified differential nonlinearity of 1 LSB (max) over the operating temperature range ensures monotonicity.

## Gain Error

Gain error, also known as full-scale error, is a measure of the deviation of the actual DAC full-scale output from the ideal full-scale output. For the HDAC50600, ideal fullscale output is (16383/16384)•3V + (Offset Error). Gain error and offset error are adjustable to zero using external trims as shown in Figure 5.

## Output Voltage Settiling Time

Time required for Vout to settle to within $1 / 2$ LSB for a given digital stimulus, ie., zero to full-scale.

## Digital to Analog Giltch Impuise

This is a measure of the amount of charge injected from the digital inputs to Vout when the input changes state. It is specified as the area of the glitch in nV -secs. The digital input is toggled between 01111111111111 and 10000000000000 with Vref at 3 Volts.

## GENERAL CIRCUIT DESCRIPTION

## Conversion Section

The HDAC50600 uses a modified R-2R resistor ladder network for digital-to-analog conversion. A functional diagram of this internal network is shown in Figure 2. To ensure a low Differential Linearity Error, the three most significant bits of the DAC use a segmented architecture, while the remaining eleven bits use the classical R-2R structure. Laser trimmed thin-film resistors assure high accuracy and stability over time and temperature.

Position of internal switches $\mathrm{S} 0-\mathrm{S} 17$ determine the DAC output voltage and are controlled by the DAC input code DB0-DB13. The internal Vref node is maintained at 3 Volts by the reference buffer which provides a DAC output range of 0 to 3 Volts.

## Reference Buffer

The internal Vref node is driven by the on-chip Reference Buffer as illustrated in the block diagram. By using internal buffering, the DAC's settling time is minimized and less constraint is placed on the external reference. The on-chip reference buffer also simplifies the bipolar output option covered later in this section.

## Reference Input Voltage Divider

The HDAC50600 can use either a 5 or 10 Volt reference using input pins +5 V REF or +10 V REF, respectively. The unused reference pin must be tied to AGND. The input reference voltage is divided down internally to provide an internal reference voltage of 3 Volts. Gain matching between the two references is ensured by thin film laser trimming.

## Internal Application Resistors

The Vout pin provides an output signal ranging from 0 to 3 Volts with an output impedance of $6.5 \mathrm{k} \Omega$ typical. In many applications, output buffering and gain are desirable to increase the output voltage range. The HDAC50600 contains trimmed thin-film application resistors for use with an external op amp. These can be configured to provide output ranges of 0 to 10 Volts or -5 to +5 Volts.

Figure 3 shows how to connect the external op amp. As shown in the table of Figure 3, pin R is connected to analog ground to provide a 0 to 10 Volt unipolar output. In this configuration, the op amp is connected as a noninverting amplifier with a gain of 10/3.

Pin R is connected to pin BIP OFF (bipolar offset) to provide a -5 to +5 Volt bipolar output range. BIP OFF is internally connected to the Reference Buffer output. The op amp in the bipolar output mode is configured so that:
$V_{\text {BUFF-OUT }}=(10 / 3)($ Vout $)-(5 / 3)($ Vref $)$
No attempt should be made to use the BIP OFF output as a reference source for other external devices. Additional loading of this pin may degrade device performance.

Unlike a current-output type DAC, the input offset voltage of the external op amp will not cause a nonlinearity over the output range. Because of the constant output impedance of the HDAC50600, output offset will remain constant over the output range. Output offset adjustment therefore is only required in those applications requiring absolute accuracy.

## Input Logic and Interfacing

Data is loaded into the HDAC50600 with a single 14-bit wide data word on pins DB0-DB13, where DB0 is the least significant bit (LSB). Pins CS and WR control the loading of the DAC input register. When both $\overline{C S}$ and $\overline{\mathrm{WR}}$ are logic low, the input latches are transparent. If either $\overline{C S}$ or $\overline{W R}$ (or both) goes to logic high, the DAC data register is latched and Vout retains its present value. The timing relationship of WR, $\overline{\mathrm{CS}}$ and input data is shown in the the Write Timing Diagram of Figure 1. Pins $\overline{\mathrm{WR}}$ and $\overline{\mathrm{CS}}$ may be used interchangeably.

The input logic scheme of the HDAC50600 is designed for direct interface and control by a 16-bit microprocessor. Since the device is designed for write pulse widths as short as 100 ns , it is compatible with the latest high-speed general purpose microprocessors such as Motorola's 68000 or 68020 or Intel's 80286 or 80386. Typical microprocessor interfacing is shown in Figure 4.

Figure 2. Equivalent Resistor Network for the HDAC50600 DAC Circuitry


## APPLICATION HINTS

## External Operational Amplifier Selection

When application of the HDAC50600 requires an external op amp for output signal gain or buffering, selection of the op amp type can involve trade-offs between cost, accuracy, and speed. As an example, consider the circuit of Figure 3. In this application, the amplifier is configured for a non-inverting gain of $10 / 3$ to provide a 10 Volt output swing. To contribute less than 1/4 LSB linearity error at Vbuff-out, the op amp's largesignal open loop voltage gain (Avol) must be $250 \mathrm{~V} / \mathrm{mV}$ ( 108 dB ) minimum. Input offset drift over temperature, which is also multiplied by $10 / 3$, will also effect Vbuff-out accuracy. For the circuit of Figure 3, an error of less than $1 / 4 \mathrm{LSB}$ over a $50^{\circ} \mathrm{C}$ temperature change will be maintained with an op amp having a $\Delta \mathrm{Vos} /{ }^{\circ} \mathrm{C}$ of $3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ maximum; for a $100^{\circ} \mathrm{C}$ change, $1.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ maximum is required.

The slew rate and bandwidth requirement will vary depending on application. Fast op amps, such as the OP17 at $60 \mathrm{~V} / \mu \mathrm{s}$ slew rate and 30 MHz bandwidth, will provide a very fast settling time so that the output Vbuffout in Figure 3 can approach the 750 ns settling time of the HDAC50600. Input noise, like input offset, is multiplied by the non-inverting gain of the circuit (noise gain). Most modern high-accuracy op amps which provide suitable gain also have sufficiently low input noise. Proper op amp decoupling and good layout techniques are also essential to maintain low input noise.

Good op amp choices for high gain accuracy include the OP-43, OP-77, and the LT1001-LT1008. For high accuracy and high speed the OP-27 or the still faster OP37 are good choices.

## Offset and Full Scale Trim Adjustments

Although the application resistor ratios are matched to better than $\pm 0.05 \%$, this error combined with the DAC's offset and gain errors are important to consider when utilizing the circuit of Figure 3 . With the addition of external trim resistors as shown in Figure 5, offset and gain errors can be eliminated. The values of $\mathrm{Ra}, \mathrm{Rb}$ and Rc as shown will work for both the HDAC50600A and HDAC50600B grades.

## Calibration for 0-10 Volt Unipolar Output Operation

When using the 0-10 Volt unipolar output circuit option of Figure 5, the Zero setting (offset) is accomplished by adjustment of potentiometer Ros. Ros performs internal nulling of the op amp. The value and connection of Ros should be as specified in the op amp manufacturer's data
sheet to minimize temperature drift. Range of offset adjustment using this procedure will typically be $\pm 5 \mathrm{mV}$. A thermally stable multi-turn potentiometer should be used for Ros.

Full-scale adjustment is provided by external resistor Ra and potentiometer Rc. Ra and Rc add to the the total input and feedback resistance provided by the internal application resistors and allow a $\pm 10$ LSB adjustment range. Like Ros, Ra and Rc should have low temperature coefficients with the latter being a multi-turn potentiometer. Rb is not used and can be omitted for unipolar operation.

Figure 3. Connection Diagram of External Operational Amplifier Utilizing Internal Application Resistors


$V_{X}$ CONNECTION	$V_{\text {BUFF-OUT }}$ RANGE
ANALOG GROUND   PIN BIP OFF	$0 \rightarrow+10 V$   $-5 \rightarrow+5 V$ (UNIPOLAR)

Figure 4. Typical Microprocessor Interface (Simplified)


The procedure for trim adjustment using the 0-10 Volt unipolar circuit option of Figure 5 is as follows:

1) Set zero value: With [ 00000000000000 ] in the input register, adjust potentiometer Ros to obtain 0.0000 Volts at Vbuff-out.
( 0.00061 V equals 1 LSB )
2) Set full scale value: With [11 11111111 1111] in the input register, adjust potentiometer Rc to obtain the correct Full-scale output minus 1 LSB which is 9.99939 Volts.
([Full-scale output] $=[(16383 / 16384) \cdot 10 \mathrm{~V}]+[$ Zero output])

## Calibration for $\pm 5$ Volt Bipolar Output Operation

For the $\pm 5$ Volt bipolar output circuit option of Figure 5 , Zero output occurs at - 5 Volts. By use of the application resistors connected as shown, the Zero output is derived by multiplying the 3 Volt reference at pin BIP OFF by $-5 / 3$. Zero output at Vbuff-out is adjusted by potentiometer Rb which changes the $-5 / 3$ gain. Potentiometer Ros is optional and should only be used with op amps that are not internally trimmed. When Ros is used, the op amp offset is adjusted first. As in the bipolar circuit option, potentiometer Rc is used to adjust full-scale value.

Figure 5. Modification of Figure 3 Showing Use of External Trim Resistors


$$
\begin{array}{|l|l|}
\hline v_{X} \text { CONNECTION } & v_{\text {BUFF-OUT }} \text { RANGE } \\
\hline \text { ANALOG GROUND } & \begin{array}{l}
0 \rightarrow+10 \mathrm{~V} \\
\mathrm{R}_{\mathrm{B}}
\end{array} \\
\hline
\end{array}
$$

NOTES: (1) R OS IS OPTIONAL IN BIPOLAR OPERATION. (2) $R_{B}$ IS NOT USED AND THEREFORE CAN BE BLLIMINATED IN UNIPOLAR O PERATION.

The procedure for trim adjustment using the $\pm 5$ Volt bipolar circuit option of Figure 5 is as follows:

1) Zero the input offset voltage to the op amp. Do this by writing [00 000000000000 ] into the input register and shorting the inverting and non-inverting op amp inputs to ground. Adjust Ros until Vbuff-out is as near to 0 Volts as possible. Delete this step if resistor Ros is not used.
(1) Set Zero value: With [00 00000000 0000] in the input register, adjust potentiometer Rb to obtain a -5.0000 Volt output at Vbuff-out. ( 0.00061 V equals 1 LSB)
2) Set full scale value: With [11 11111111 1111] in the input register, adjust potentiometer Rc to obtain the correct Full-scale output minus 1 LSB which is 4.99939 Volts. [Full-scale output] $=[(16383 / 16384) \cdot 10 \mathrm{~V}]+[$ Zero output])

## Die Plot <br> $136 \times 172$ mils




Pin Assignment


Pin Functions

FUNCTION
VREF OUTPUT FOR BIPOLAR OPERATIO INPUT FOR 10 V REFERENCE VOLTAGE INPUT FOR 5V REFERENCE VOLTAGE INPUT DATA BIT 0 (LSB) INPUT DATA BIT 1 INPUT DATA BIT 2 INPUT DATA BIT 3 INPUT DATA BIT 4 INPUTDATA BIT 5 INPUT DATA BIT 6 INPUT DATA BIT 7 INPUT DATA BIT 8 INPUT DATA BIT 9 DIGITAL GROUND INPUT DATA BIT 10 INPUTDATA BIT 11 INPUT DATA BIT 12 INPUT DATA BIT 13 (MSB) DATA WRITE CHIP SELECT
DIGITAL POSITIVE POWER SUPPLY ANALOG GROUND
APPLICATION RESISTOR NETWORK APPLICATION RESISTOR NETWORK APPLICATION RESISTOR NETWORK APPLICATION RESISTOR NETWORK ANALOG VOLTAGE OUTPUT ANALOG POSITIVE POWER SUPPLY

[^9]NOTES:

## SIGNAL PROCESSING TECHNOLOGIES

## HDAC50800

## 14-BIT VOLTAGE-OUTPUT DIGITAL TO ANALOG CONVERTER

## PRELIMINARY INFORMATION

## FEATURES:

- Small 24 Pin, 0.3" Wide DIP Package
- Fast Voltage Settling Time of 750 nS (Typical) to 0.5 LSB
- On-Chip Reference Buffer
- Single Supply Operation
- On-Chip Application Resistors to Support Output Gain Selection
- Low Power Dissipation of 15 mW (Typical)
-1/2 LSB Maximum Differential Nonlinearity Over Temperature
- Double Buffered Microprocessor Compatible Interfacing


## GENERAL DESCRIPTION

The HDAC50800 is a 14-bit voltage-output digital to analog converter. This high-performance monolithic device provides fast output voltage settling, single supply operation, and low power dissipation. Unique onchip functions include an input reference buffer and precision application resistors used to support output voltage scaling. Unlike current-output devices, this voltage-output DAC simplifies the task of output buffering.

The device input accepts right-justified data in two bytes from an 8 -bit data bus. DAC data loading is controlled by

## APPLICATIONS:

- $\mu \mathrm{P}$ Controlled Instruments
- Automatic Test Equipment
- Data Acquisition and Control Systems
- Frequency Synthesizers
- Battery Powered Systems
- High Speed A/D Converters
standard $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ signals. Address lines A 0 and A 1 control internal register loading and data transfer. The 100 nS (minimum) write pulse width ensures operation with a wide range of high-speed microprocessors. All logic input levels are TTL and 5 volt CMOS compatible.

The HDAC50800 is manufactured on Honeywell's Bipolar Enhanced CMOS (BEMOS) process. This process is optimized to allow the combination of dense, high-speed digital logic with precision analog circuitry on a single chip.

## BLOCK DIAGRAM



# ABSOLUTE MAXIMUM RATINGS (Beyond Which Damage May Occur) $25^{\circ} \mathrm{C}$ (1) 

## Supply Votages

Positive Supply Votage (VCC to AGND) +7 V
Positive Supply Voltage (VDD to DGND) +7 V
Ground Voltage Differential (AGND to DGND) -0.3 to 1 V
VCC to VDD Differential -0.5 to +0.5 V

## Input Voltages

Digital Inputs to DGND - 0.3 to VDD +0.3 V
Pins 19-22 to DGND $\pm 25 \mathrm{~V}$
Pins 2,3 to AGND - 0.3 to +25 V

## Output

VOUT to DGND -0.3 to VCC
Temperature
Temperature, ambient -60 to $+140^{\circ} \mathrm{C}$
junction $\quad+150^{\circ} \mathrm{C}$
Lead Temperature (soldering 10 seconds) $+300^{\circ} \mathrm{C}$
Storage Temperature -65 to $+150^{\circ} \mathrm{C}$
(1) Operation at any Absolute Maximum Rating is not implied. See Electrical Specifications for proper nominal applied conditions in typical applications.

## ELECTRICAL SPECIFICATIONS

All specifications Tmin to Tmax unless otherwise noted.
$\mathrm{VDD}=\mathrm{VCC}=5 \mathrm{~V} ; \mathrm{VREF}=10 \mathrm{~V} ; \mathrm{AGND}=\mathrm{DGND}=0 \mathrm{~V}$ unless otherwise noted.

DC Parameters	Test Conditions	$\begin{array}{\|c\|} \text { Test } \\ \text { Level (1) } \end{array}$	HDAC50800A   Min Typ Max			HDAC50800B Min Typ Max			Units
ACCURACY									
Resolution		I			14			14	Bits
Relative Accuracy		1			$\pm 1 / 2$			$\pm 1$	LSB
Differential Linearity Error		1			$\pm 1 / 2$			$\pm 1$	LSB
Offset Error		1			+3			+4	LSB
Gain Error		1			$\pm 4$			$\pm 8$	LSB
Offset Error Tempco		11			$\pm 2$			$\pm 2$	ppm/ ${ }^{\circ} \mathrm{C}$
Gain Error Tempco		11			$\pm 2.5$			$\pm 5$	ppm/ ${ }^{\circ} \mathrm{C}$
Power Supply Rejection ( $\Delta$ Gain/ $\Delta V C C$ )	VCC= $5 \mathrm{~V} \pm 5 \%$	1			$\pm 1 / 2$			$\pm 1 / 2$	LSB
Application Resistor Value (R)		11	10	13	16		13	16	$\mathrm{k} \Omega$
Application Resistor Matching Error ( $5 / 3 R, 5 / 2 R$ to R)		1			$\pm .05$			$\pm .05$	\%

## REFERENCE INPUTS

IIN (Input Current)	+10 V REF or   +5 VREF   Input	I	1	1	mA
CIN (Input Capacitance)	+10 V REF or   +5 V REF   Input	II	10	10	pF

(1) Test Procedure: I-Production tested at the specified conditions

II- Guaranteed by design and sampled characterization data.

DC Parameters	Test Conditions	Test Level (1)	HDAC50800A Min Typ Max	HDAC50800B Min Typ Max	Units
LOGIC INPUTS (Pins DBO - DB7, $\overline{\text { WR, }} \overline{\mathrm{CS}}, \mathrm{A} 0, \mathrm{~A} 1$ )					
VIH (High Input Voltage)		1	2.4	2.4	Volts
VIL (Low Input Voltage)		1	0.8	0.8	Volts
IIN Input Current)	VIN $=0$ or 5 V	1	1	1	$\mu \mathrm{A}$
CIN (Input Capacitance)	VIN=0 or 5V	II	10	10	pF
ANALOG OUTPUTS (Pin VOUT)					
ROUT (Output Resistance)	DAC is loaded with all zeros	1	$\begin{array}{lll}4.5 & 6.5 & 8.5\end{array}$	$\begin{array}{lll}4.5 & 6.5 & 8.5\end{array}$	K $\Omega$
Output Resistance Tempco		11	-300	-300	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
COUT (Output Capacitance)		11	$10 \quad 15$	$10 \quad 15$	pF
Output Voltage Swings	$\mathrm{R}_{1} \geq 1 \mathrm{M} \Omega$	1	3	3	Volts
POWER SUPPLY					
VDD, VCC Range		1	4.75 5.25	4.75	Volts
IDD	All Digital inputs VIL or VIH	1	2	2	mA
IDD	All Digital inputs 0 or 5 V	1	100	100	$\mu \mathrm{A}$
ICC		1	$3 \quad 6$	36	mA
AC Parameters	Test Conditions	Test Level (1)	HDAC50800A   Min Typ Max	HDAC50800B   Min Typ Max	Units
DYNAMIC PERFOMANCE					
Output Voltage   Settling Time DAC is t   zero and	ggled between full-scale	11	0.75	0.75	$\mu \mathrm{S}$
Digital to Analog Glitch Impulse		11	20	20	nV -Sec
Output Voltage Noise Density		11	20	20	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
TIMING CHARACTERISTICS					
tAS (Address Valid to Write Setup Time)		11	30	30	ns
tAH (Address Valid to Write Hold Time)		II	0	0	ns
tCS (Chip Select to Write Setup Time)		11	0	0	ns
tCH (Chip Select to Write Hold Time)		11	0	0	ns
t $\overline{W R}$ (WR Pulse Width)		11	100	100	ns
tDS ( Data Setup Time)		II	80	80	ns
tDH (Data Hold Time)		11	10	10	ns

(1) Test Procedure: I-Production tested at the specified conditions. II-Guaranteed by design and sampled characterization data.

FIGURE 1 TIMING DIAGRAM


## TERMINOLOGY

## Relative Accuracy

Relative accuracy, also known as endpoint nonlinearity, is a measure of the maximum deviation from a straight line passing though the endpoints of the DAC transfer function. It is measured after adjusting for zero error and full-scale error and is expressed in $\%$ of full scale range or (sub)multiples of 1 LSB.

## Differential Nonlinearity

Differential nonlinearity is the difference between the measured change and the ideal 1 LSB change between any two adjacent codes. A specified differential nonlinearity of 1 LSB (max) over the operating temperature range ensures monotonicity.

## Gain Error

Gain error, also known as full-scale error, is a measure of the deviation of the actual DAC full-scale output from the ideal full-scale output. For the HDAC50800, ideal fullscale output is (16383/16384)•3V + (Offset Error). Gain error and offset error are adjustable to zero using external trims as shown in Figure 5.

## Output Voltage Settling Time

Time required for Vout to settle to within $1 / 2$ LSB for a given digital stimulus, ie., zero to full-scale.

## Digital to Analog Glitch Impulse

This is a measure of the amount of charge injected from the digital inputs to Vout when the input changes state. It is specified as the area of the glitch in nV -secs. The digital input is toggled between 01111111111111 and 10000000000000 with Vref at 3 Volts.

## MODE SELECTION

$\overline{W R}$	cs	A1	AO	FUNCTION
x	1	x	x	DEVICE NOT SELECTED
1	x	x	X	DEVICE NOT SELECTED
0	0	0	0	DIRECT DAC LOADING (2)
0	0	0	1	M.S. INPUT REGISTER LOADED FROM DATA BUS (BIT 8-13)
		1	0	L.S. INPUT REGISTER LOADED FROM DATA BUS (BIT 0-7)
0	0	1	1	DAC REGISTER LOADED FROM INPUT REGISTERS

## NOTES:

1. $X=$ DON'T CARE CONDITION

## 2. WHEN A1=A2=0, INPUT REGISTERS ARE

TRANSPARENT. BY PLACING ALL O'S OR 1'S ON THE DATA INPUTS, THE DAC IS SET TO ZERO OR FULL SCALE CONDITION. THIS IS A USEFUL CALIBRATION TOOL.

## GENERAL CIRCUIT DESCRIPTION

## Conversion Section

The HDAC50800 uses a modified R-2R resistor ladder network for digital-to-analog conversion. A functional diagram of this internal network is shown in Figure 2. To ensure a low Differential Linearity Error, the three most significant bits of the DAC use a segmented architecture, while the remaining eleven bits use the classical R-2R structure. Laser trimmed thin-film resistors assure high accuracy and stability over time and temperature.

Position of internal switches $\mathrm{S} 0-\mathrm{S} 17$ determine the DAC output voltage and are controlled by the the DAC input code DB0-DB13. The internal Vref node is maintained at 3 Volts by the reference buffer which provides a DAC output range of 0 to 3 Volts.

## Reference Buffer

The internal Vref node is driven by the on-chip Reference Buffer as illustrated in the block diagram. By using internal buffering, the DAC's settling time is minimized and less constraint is placed on the external reference. The on-chip reference buffer also simplifies the bipolar output option covered later in this section.

## Reference Input Voltage Divider

The HDAC50800 can use either a 5 or 10 Volt reference using input pins +5 V REF or +10 V REF, respectively. The unused reference pin must be tied to AGND. The input reference voltage is divided down internally to provide an internal reference voltage of 3 Volts. Gain matching between the two references is ensured by thin film laser trimming.

## Internal Application Resistors

The Vout pin provides an output signal ranging from 0 to 3 Volts with an output impedance of $6.5 \mathrm{k} \Omega$ typical. In many applications, output buffering and gain are desirable to increase the output voltage range. The HDAC50800 contains trimmed thin-film application resistors for use with an external op amp. These can be configured to provide output ranges of 0 to 10 Volts or -5 to +5 Volts.

Figure 3 shows how to connect the external op amp. As shown in the table of Figure 3, pin R is connected to analog ground to provide a 0 to 10 Volt unipolar output. In this configuration, the op amp is connected as a noninverting amplifier with a gain of $10 / 3$.

Pin R is connected to pin BIPOLAR OFFSET (bipolar offset) to provide a -5 to +5 Volt bipolar output range. BIPOLAR OFFSET is internally connected to the Reference Buffer output. The op amp in the bipolar output mode is configured so that:
$V_{\text {BUFF-OUT }}=(10 / 3)($ Vout $)-(5 / 3)($ Vref $)$
No attempt should be made to use the BIPOLAR OFFSET output as a reference source for other external devices. Additional loading of this pin may degrade device performance.

Unlike a current-output type DAC, the input offset voltage of the external op amp will not cause a nonlinearity over the output range. Because of the constant output impedance of the HDAC50800, output offset will remain constant over the output range. Output offset adjustment therefore is only required in those applications requiring absolute accuracy.

## Input Logic and Interfacing

Data is loaded into the HDAC50800 with two 8-bit bytes of right-justified data, where DBO is the least significant bit (LSB). Pins $\overline{C S}$ and $\overline{W R}$ control the loading of the DAC input registers and pins AO and A1 determine the register address. With the proper register address selected, data is loaded when either WR or $\overline{C S}$ returns to logic high. For complete information on input register loading, please refer to the Timing Diagram of Figure 1 and to the Timing Characteristics. Pins WR and CS may be used interchangeably.

Table 1 summarizes the control logic functions. Pins AO and A1 define a total of four memory locations, two of which are the input registers. Addressing $\mathrm{A} 0=\mathrm{A} 1=1$ loads the DAC register from the input register with the occurrence of $\overline{\mathrm{WR}}=\overline{\mathrm{CS}}=0$. This immediately effects the value of Vout. Addressing $\mathrm{A} 0=\mathrm{A} 1=0$ causes the input registers to be transparent. In this case, input logic codes of all 0's or all 1's create a DAC zero output or a fullscale output, respectively. No other input codes are valid in this mode.

The input logic scheme of the HDAC50800 is designed for direct interface and control by an 8 -bit microprocessor. Since the device is designed for write pulse widths as short as 100 ns , it ensures operation with a wide range of high-speed microprocessors. Figure 4 illustrates simplified microprocessor interfacing.

Figure 2. Equivalent Resistor Network for the HDAC50800 DAC Circuitry


## APPLICATION HINTS

## External Operational Amplifier Selection

When application of the HDAC50800 requires an external op amp for output signal gain or buffering, selection of the op amp type can involve trade-offs between cost, accuracy, and speed. As an example, consider the circuit of Figure 3. In this application, if R is tied to AGND, the amplifier is configured for a noninverting gain of $10 / 3$ to provide a 10 Volt output swing. To contribute less than 1/4 LSB linearity error at Vbuffout, the op amp's large-signal open loop voltage gain (Avol) must be $250 \mathrm{~V} / \mathrm{mV}$ ( 108 dB ) minimum. Input offset drift over temperature, which is also multiplied by $10 / 3$, will also effect Vbuff-out accuracy. For the circuit of Figure 3 , an error of less than $1 / 4$ LSB over a $50^{\circ} \mathrm{C}$ temperature change will be maintained with an op amp having a $\Delta \mathrm{Vos} /{ }^{\circ} \mathrm{C}$ of $3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ maximum; for a $100^{\circ} \mathrm{C}$ change, $1.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ maximum is required.

The slew rate and bandwidth requirement will vary depending on application. Fast op amps, such as the OP17 at $60 \mathrm{~V} / \mu \mathrm{s}$ slew rate and 30 MHz bandwidth, will provide a very fast settling time so that the output Vbuffout in Figure 3 can approach the 750 ns settling time of the HDAC50800. Input noise, like input offset, is multiplied by the non-inverting gain of the circuit (noise gain). Most modern high-accuracy op amps which provide suitable gain also have sufficiently low input noise. Proper op amp decoupling and good layout techniques are also essential to maintain low input noise.

Good op amp choices for high gain accuracy include the OP-43, OP-77, and the LT1001-LT1008. For high accuracy and high speed the OP-27 or the still faster OP37 are good choices.

## Offset and Full Scale Trim Adjustments

Although the application resistor ratios are matched to better than $\pm 0.05 \%$, this error combined with the DAC's offset and gain errors are important to consider when utilizing the circuit of Figure 3 . With the addition of external trim resistors as shown in Figure 5, offset and gain errors can be eliminated. The values of $\mathrm{Ra}, \mathrm{Rb}$ and Rc as shown will work for both the HDAC50800A and HDAC50800B grades.

## Calibration for 0-10 Volt Unipolar Output Operation

When using the 0-10 Volt unipolar output circuit option of Figure 5, the Zero setting (offset) is accomplished by adjustment of potentiometer Ros. Ros performs internal nulling of the op amp. The value and connection of Ros
should be as specified in the op amp manufacturer's data sheet to minimize temperature drift. Range of offset adjustment using this procedure will typically be $\pm 5 \mathrm{mV}$. A thermally stable multi-turn potentiometer should be used for Ros.

Full-scale adjustment is provided by external resistor Ra and potentiometer Rc. Ra and Rc add to the the total input and feedback resistance provided by the internal application resistors and allow a $\pm 10$ LSB adjustment range. Like Ros, Ra and Rc should have low temperature coefficients with the latter being a multi-turn potentiometer. Rb is not used and can be omitted for unipolar operation.

Figure 3. Connection Diagram of External Operational Amplifier Utilizing Internal Application Resistors


$1 V_{X}$ CONNECTION	$V_{\text {BUFF-OUT }}$ RANGE
$A N A L O G-G R O U N D ~$	$0-$
AIOV (UNIPOLAR)	

4 PIN BIP OFF $\quad 1-5++5 \mathrm{~V}$ (BIPOLAR)

-     -         -             -                 -                     -                         -                             -                                 -                                     -                                         -                                             -                                                 -                                                     -                                                         -                                                             -                                                                 -                                                                     - 

Figure 4. Typical Microprocessor Interface (Simplified)


The procedure for trim adjustment using the 0-10 Volt unipolar circuit option of Figure 5 is as follows:

1) Set zero value: With [ 00000000000000 ] in the input register, adjust potentiometer Ros to obtain 0.0000 Volts at Vbuff-out.
( 0.00061 V equals 1 LSB )
2) Set full scale value: With [11 11111111 1111] in the input register, adjust potentiometer Rc to obtain the correct Full-scale output minus 1 LSB which is 9.99939 Volts.
([Full-scale output] $=[(16383 / 16384) \cdot 10 \mathrm{~V}]+[$ Zero output])

## Calibration for $\pm 5$ Volt Bipolar Output Operation

For the $\pm 5$ Volt bipolar output circuit option of Figure 5, Zero output occurs at - 5 Volts. By use of the application resistors connected as shown, the Zero output is derived by multiplying the 3 Volt reference at pin BIPOLAR OFFSET by $-5 / 3$. Zero output at Vbuff-out is adjusted by potentiometer Rb which changes the $-5 / 3$ gain. Potentiometer Ros is optional and should only be used with op amps that are not internally trimmed. When Ros is used, the op amp offset is adjusted first. As in the bipolar circuit option, potentiometer Rc is used to adjust full-scale value.

Figure 5. Modification of Figure 3 Showing Use of External Trim Resistors


NOTES: (1) R OS IS OPTIONAL IN BIPOLAR OPERATION.
(2) $R_{B}$ IS NOT USED AND THEREFORE CAN BE ELLIMINATED IN UNIPOLAR O PERATION.

The procedure for trim adjustment using the $\pm 5$ Volt bipolar circuit option of Figure 5 is as follows:

1) Zero the input offset voltage to the op amp. Do this by writing [ 00000000000000 ] into the input register and shorting the inverting and non-inverting op amp inputs to ground. Adjust Ros until Vbuff-out is as near to 0 Volts as possible. Delete this step if resistor Ros is not used.
2) Set Zero value: With [ 00000000000000 ] in the input register, adjust potentiometer Rb to obtain a 5.0000 Volt output at Vbuff-out.
( 0.00061 V equals 1 LSB )
3) Set full scale value: With [11 11111111 1111] in the input register, adjust potentiometer Rc to obtain the correct Full-scale output minus 1 LSB which is 4.99939 Volts.
[Full-scale output] $=[(16383 / 16384) \cdot 10 \mathrm{~V}]+[$ Zero output])

## Die Plot

$136 \times 172$ mils



Pin Assignment



Pin Functions
**For Ordering Information See Section 1.

NOTES:

## 8-BIT, ULTRA HIGH SPEED DIA CONVERTER

## FEATURES

- 400 MWPS Nominal Conversion Rate
- RS-343-A Compatible
- Complete Video Controls: Sync, Blank, Bright and Reference White (Force High)
- 10KH, 100K ECL Compatible
- Single Power Supply
- Stable On-chip Bandgap Reference
- Registered Data And Video Controls
- Differential Current Outputs
- 50 and 75 Ohm Output Drive


## APPLICATIONS

- Raster Graphics
- High Resolution Color or Monochrome Displays to 2K x 2K Pixels
- Medical Electronics: CAT, PET, MR Imaging Displays
- CAD/CAE Workstations
- Solids Modeling
- General Purpose High-Speed D/A Conversion
- Digital Synthesizers
- Automated Test Equipment
- Digital Transmitters/Modulators


## GENERAL DESCRIPTION

The HDAC51400 is a monolithic 8 -bit digital-to-analog converter capable of accepting video data at 400 MWPS. Complete with video controls (Sync, Blank, Reference White [Force High], Bright) the HDAC51400 directly drives doubly-terminated 50 or 75 Ohm loads to standard composite video levels. Standard set-up
level is 7.5 IRE. The HDAC51400 includes an internal precision bandgap reference which can drive two other 51400s in an RGB graphics system. The HDAC51400 contains data and control input registers, video control logic, reference, and current switches in 24 Lead CERDIP, or ceramic sidebrazed DIP.

BLOCK DIAGRAM


## ABSOLUTE MAXIMUM RATINGS (Beyond which damage may occur) $\mathbf{1 0}^{\mathbf{2}} \mathbf{0}^{\circ} \mathrm{C}$

## Supply Voltages

ED (measured to $\mathrm{V}_{\text {CCD }}$ )	5 V
$\mathrm{V}_{\text {EEA }}$ (measured to $\mathrm{V}_{\text {CCA }}$ )	0 to 0.
$\mathrm{V}_{\text {CCA }}$ (measured to $\mathrm{V}_{\text {CCD }}$ )	. 5 to 0.5V

## Input Voltages

CONV, Data, and Controls
(measured to $\mathrm{V}_{\mathrm{CCD}}$ )

$$
\begin{aligned}
& \text { REF + (measured to } \left.V_{C C A}\right) \ldots \ldots . . V_{\text {EEA }} \text { to } 0.5 \mathrm{~V} \\
& R E F-\left(\text { measured to } V_{C C A}\right) \ldots \ldots . . V_{E E A} \text { to } 0.5 \mathrm{~V}
\end{aligned}
$$

## Temperature

Operating, Ambient . . . . . . . . . . . . . -60 to $+140^{\circ} \mathrm{C}$
Junction . . . . . . . . . . . . . . . . . . . $+175^{\circ} \mathrm{C}$
Lead, Soldering ( 10 seconds) . . . . . . . . . . . . $+300^{\circ} \mathrm{C}$
Storage . . . . . . . . . . . . . . . . . . . . . . . -60 to $+150^{\circ} \mathrm{C}$

## Notes:

1. Operation at any Absolute Maximum Ratings is not implied. See Operating Conditions for proper nominal applied conditions in typical applications.

| PARAMETER | TEST <br> CONDITIONS | TEST <br> LEVEL | MIN TYP | MAX | UNITS |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

DC ELECTRICAL CHARACTISTICS $\quad v_{C C A}=v_{C C D}=0.0 \mathrm{v}, \mathrm{v}_{\text {EEA }}=\mathrm{v}_{\text {EED }}=-5.2 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 1_{\text {SET }}=1.105 \mathrm{~mA}$

$\mathrm{E}_{\text {LI }} \quad 1$	Integral Linearity Error	$1.0 \mathrm{~mA}<1_{\mathrm{SET}}<1.8 \mathrm{~mA}$	1	$\begin{aligned} & -0.2 \\ & -1 / 2 \end{aligned}$	$\begin{aligned} & +0.2 \\ & +1 / 2 \end{aligned}$	\% Full Scale LSB
$E_{L D}$	Differential Linearity Error	$1.0 \mathrm{~mA}<1_{\text {SET }}<1.8 \mathrm{~mA}$	1	$\begin{aligned} & -0.2 \\ & -1 / 2 \end{aligned}$	$\begin{aligned} & +0.2 \\ & +1 / 2 \end{aligned}$	\% Full Scale LSB
$\mathrm{E}_{\mathrm{G}}$	Gain Error		III	-5	+5	\% Full Scale
$\mathrm{TC}_{G}$	Gain Error Tempco					PPM $/{ }^{\circ} \mathrm{C}$
TC ${ }_{\text {B }}$	Bandgap Tempco					PPM $/{ }^{\circ} \mathrm{C}$
$\overline{V_{\text {REF. }}}$ OUT	Reference Voltage	(measured to $\mathrm{V}_{\mathrm{CCA}}$ )				V
${ }^{\text {R REF }}$ OUT	Reference Output Current				-50	$\mu \mathrm{A}$
$\mathrm{C}_{\text {REF }}$	Input Capacitance, ISET, REF IN		V			pF
$\mathrm{v}_{\text {OCP }}$	Compliance Voltage, + Output		1	-1.5	+3	V
$\mathrm{v}_{\text {OCN }}$	Compliance Voltage, - Output		1	-1.5	+3	V
$\mathrm{R}_{\text {OUT }}$	Equivalent Output Resistance		1	20		K Ohm
${ }^{\text {CoUT }}$	Output Capacitance		V			pF
IOP	Maximum Current, + Output	$\mathrm{R}_{\mathrm{L}}=0 \Omega$	V		45	mA
ION	Maximum Current, - Output	$\mathrm{R}_{\mathrm{L}}=0 \Omega$	V		45	mA
Ios	Output Offset Current		1		1/2	LSB
$\mathrm{V}_{\mathrm{IH}}$	Input Voltage, Logic HIGH		1		-1.4	V
$\mathrm{V}_{\mathrm{IL}}$	Input Voltage, Logic LOW		1	-1.0		V
$\mathrm{V}_{\text {ICM }}$	Convert Voltage, Common Mode Range		1	-0.5	-2.5	V


PARAMETER		$\begin{aligned} & \text { TEST } \\ & \text { CONDITIONS } \end{aligned}$	TEST LEVEL	MIN	TYP	MAX	UNITS
DC ELECTRICAL CHARACTISTICS							
$V_{\text {IDF }}$	Convert Voltage, Differential		IV	0.4		1.2	V
IIL	Input Current, Logic LOW, Data and Controls					120	$\mu \mathrm{A}$
${ }_{\text {IH }}$	Input Current, Logic HIGH, Data and Controls				10	120	$\mu \mathrm{A}$
1 C	Input Current, Convert				2	60	$\mu \mathrm{A}$
$\mathrm{C}_{1}$	Input Capacitance, Data and Controls		V		3		pF
PSR	Power Supply Sensitivity		1	-120		+120	$\mu \mathrm{A} / \mathrm{V}$
EE	Supply Current		1		175	200	mA
${ }^{\text {I SET }}$	Reference Input Current	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=37.5 \Omega \\ & \mathrm{R}_{\mathrm{L}}=25 \Omega \\ & \hline \end{aligned}$			$\begin{aligned} & 1.105 \\ & 1.658 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$


PARAMETER	TEST   CONDITIONS	TEST   LEVEL	MIN	TYP	MAX	UNITS

DYNAMIC CHARACTERISTICS $R_{L}=37.5$ Ohms, $C_{L}=5 P F$ (unliess otherwise specified), $T_{A}=25^{\circ} \mathrm{C}, 1_{\text {SET }}=1.105 \mathrm{~mA}$

$\mathrm{F}_{\text {S }}$	Maximum Conversion Rate		1	385	400	MWPS
${ }^{t_{\text {RI }}}$	Rise Time	10\% to $90 \%$ G.S.	1		900	ps
${ }^{t} \mathrm{R}_{1}$	Rise Time	10\% to $90 \%$ G.S. $\mathrm{R}_{\mathrm{L}}=25$ Ohms Total	1		600	ps
${ }^{\text {t }}$ I	Current Settling Time, Clocked Mode	To 0.2\%	IV		4	ns
${ }^{\text {t }}$ S	Current Settling Time, Clocked Mode	$\begin{aligned} & \text { To 0.2\% } \\ & R_{L}=25 \text { Ohms Total } \end{aligned}$	IV		3	ns
${ }^{t} \text { DSC }$	Clock to Ouptut Delay, Clocked Mode		1		4	ns
${ }^{t} \text { DST }$	Data to Output Delay, Transparent Mode		1		6	ns
${ }^{\text {tpWL }}$	Convert Pulse Width, LOW		1		1.25	ns
$t_{\text {PWH }}$	Convert Pulse Width, HIGH		I		1.25	ns
$\mathrm{BW}_{\text {REF }}$	FReference Bandwidth, -3dB		V	0.7	1.25	MHz


PARAMETER	TEST   CONDITIONS	TEST   LEVEL	MIN	TYP	MAX	UNITS

DYNAMIC CHARACTERISTICS $R_{L}=37.5$ Ohms, $C_{L}=5 p F$ (unless otherwise specified), $T_{A}=25^{\circ} C_{1} I_{S E T}=1.105 \mathrm{~mA}$

	Glitch Energy	Area $=1 / 2 \mathrm{VT}$	V	10	$\mathrm{pV}-\mathrm{s}$
$\mathrm{t}_{\mathrm{S}}$	Set-up Time, Data and   Controls		I	1	ns
$\mathrm{t}_{\mathrm{H}}$	Hold Time, Data and   Controls	$20 \%$ to $80 \%$ G.S.	I	700	ps
SR	Slew Rate		1	0	$\mathrm{~V} / \mu \mathrm{S}$
$\mathrm{FT}_{\mathrm{C}}$	Clock Feedthrough		-48	dB	

## ELECTRICAL CHARACTERISTICS TESTING

All electrical characteristics are subject to the following conditions:

All parameters having Min./Max. specifications are guaranteed. The Test Level column indicates the specific device testing actually performed during production and Quality Assurance inspection. Any blank sections in the data columns indicates that the specification is not tested at the specified conditions.

Unless otherwise noted, all tests are pulsed tests, therefore $T_{j}=T_{c}=T_{a}$.

## APPLICATION INFORMATION

The HDAC51400 is a high speed video Digital-toAnalog converter capable of up to a 400 MWPS conversion rate. This makes the device suitable for driving $2048 \times 2048$ pixel displays at 60 to 90 Hz update rates. In addition, the HDAC51400 includes an internal bandgap reference which may be used to drive two other HDAC51400s if desired.

The HDAC51400 has 10KH and 100K ECL logic level compatible video control and data inputs. The complementary analog output currents produced by the devices are proportional to the product of the digital control and data inputs in conjunction with the analog reference current. The HDAC51400 is segmented so that the four MSBs of the input data are separated into a parallel "thermometer" code. From here, fifteen current sinks, which are identical, are driven to fabricate sixteen coarse output levels. The remaining four LSBs drive four binary weighted current switches.

## TEST LEVEL TEST PROCEDURE

I $100 \%$ production tested at the specified temperature.

II $100 \%$ production tested at $T_{a}=25^{\circ} \mathrm{C}$, and sample tested at specified temperature.

III QA sample tested only at specified temperatures

IV Parameter is guaranteed (but not tested) by design and characterization data.

V Parameter is a typical value for information purposes only.

The MSB currents are then summed with the LSBs, which provide a one-sixteenth of full scale contribution, to provide the 256 distinct analog output levels.

The video control inputs drive weighted current sinks which are added to the output current to produce composite video output levels. These controls, Sync, Blank, Reference White (Force High), and Bright are needed in video applications.

Another feature that similar video D/A converters do not have is the Feedthrough Control. This pin allows registered or unregistered operation between the video control inputs and data. In the registered mode, the composite functions are latched to the pixel data to prevent screen-edge distortions generally found on unregistered "VIDEO DACs".


## TYPICAL INTERFACE CIRCUIT

## GENERAL

A typical interface circuit using the HDAC51400 in a color raster application is shown in Figure 2. The HDAC51400 requires few external components and is extremely easy to use. The very high operating speed of the HDAC51400 requires good circuit layout, decoupling of supplies, and proper design of transmission lines. The following are several considerations that should be noted to achieve best performance.

## INPUT CONSIDERATIONS

Video input data and controls may be directly connected to the HDAC51400. Note that all ECL inputs are terminated as close to the device as possible to reduce ringing, crosstalk and reflections. A convenient and commonly used microstrip impedance is about 130 Ohms, which is easily terminated using a 330 Ohm resistor to $\mathrm{V}_{\mathrm{eg}}$ and a 220 Ohm resistor to Ground. This arrangement gives a Thevenin equivalent termination of 130 Ohms to -2 Volts without the need for a -2 Volt supply. Standard SIP (Single Inline Package) 220/330 resistor networks are available for this purpose.

It is recommended that stripline or microstrip techniques be used for all ECL interface. Printed circuit wiring of known impedance over a solid ground plane is recommended. The ground plane should be constructed such that analog and digital ground currents are isolated as much as possible. The HDAC51400 provides separate digital and analog ground connections to simplify ground layout.

## OUTPUT CONSIDERATIONS

The analog outputs are designed to directly drive a doubly terminated 50 or 75 Ohm transmission system as shown. The source impedances of the HDAC51400 outputs are high impedance current sinks. The load impedance (RL) must be 25 or 37.5 Ohms to attain standard RS-343-A video levels. Any deviation from this impedance will affect the resulting video output levels proportionally. As with the data interface, it is important that the analog transmission lines have matched impedance throughout, including connectors and transitions between printed wiring and coaxial cable. The combination of matched source termination resistor Rs and load terminator Rl minimizes reflections of both forward and reverse traveling waves in the analog transmission system. The return path for analog output current is Vcca which is connected to the source termination resistor Rs.

FIGURE 1 TIMING DIAGRAM



## POWER CONSIDERATIONS

The HDAC51400 operates from a single standard -5.2 Volt supply. Proper bypassing of the supplies will augment the HDAC51400's inherent supply noise rejection characteristics. As shown in Figure 2, a large tantalum capacitor in parallel with smaller ceramic capacitors is recommended for best performance. The small-valued capacitors should be connected as close to the device package as possible, whereas the tantalum capacitor may be placed up to a few inches away.

The HDAC51400 operates with separate analog (VEEA) and digital (VEED) power supplies to establish high noise immunity. Both supplies can eventually be connected to the same power source, but they should be individually decoupled as mentioned previously. The digital supply has a separate groundreturn which is Vcco. The analog supply return is Vcca. All power and ground pins must be connected in any application. If a +5 V power source is required, the ground pins V cco and Vcca become the positive supply pins while Veed and Veea become the ground returns. The relative polarities of the other voltages on inputs and outputs must be maintained.

## REFERENCE CONSIDERATIONS

The HDAC51400 has two reference inputs: REF IN and Iset and one reference output REF OUT. The input pins are connected to the inverting and noninverting inputs of an internal amplifier that serves as a reference buffer.

The output of the buffer amplifier is the reference for the current sinks. The amplifier feedback loop is connected around one of the current sinks to achieve better accuracy (see Figure 5).

Since the analog output currents are proportional to the digital input data and the reference current (Iset), the full-scale output may be adjusted by varying the reference current. Iset is controlled through the (Iset) input on the HDAC51400. A method and equations to set Iset is shown in Figure 2. The HDAC51400 can use an external negative voltage reference. The external reference must be stable to achieve a satisfactory output and the REF - IN pin should be driven through a resistor to minimize offsets caused by bias current. The value for Iset can be varied with the 500 to 1 K Ohm trimmer to change the full scale output. A double 50 Ohm load ( 25 Ohm ) can be driven if Iset is increased by $50 \%$ above for doubly terminated 75 Ohm video applications.

## DATA INPUTS AND VIDEO CONTROLS

The HDAC51400 has standard single-ended data inputs. The inputs are registered to produce the lowest differential data propagation delay (skew) minimizing glitching. There are also four video control inputs to generate composite video outputs. These are Sync, Blank, Bright and Reference White or Force High. Also provided is the Feedthrough control as mentioned earlier. The controls and data inputs are all 10 KH and 100K ECL compatible. In addition, all have internal pulldown resistors to leave them at a logic low so the pins are inactive when not used. This is useful if the devices are applied as standard DACs without the need for video controls or if less than 8 -bits are used.

The HDAC51400 is usually configured in the synchronous mode. In this mode, the controls and data are synchronized to prevent pixel dropout. This reduces screen-edge distortions and provides the lowest output noise while maintaining the highest conversion rate. By leaving the Feedthrough (FT) control open (low), each rising edge of the convert (CONV) clock latches decoded data and control values into a D-type internal register. The registered data is then converted into the appropriate analog output by the switched current sinks. When FT is tied high, the control inputs asynchronously tracks the input data and video controls. Feedthrough itself is asynchronous and usually used as a DC control.

The controls and data have to be present at the input pins for a set-up time of ts before, and a hold time of $t H$ after the rising edge of the clock (CONV) in order to be synchronously registered. The set-up and hold times are not important in the asynchronous mode. The minimum pulse widths high (tpwh) and low (tpwl) as well as settling time become the limiting factors (see Figure 1).

The video controls produce the output levels needed for horizontal blanking, frame synchronization, etc., to be compatible with video system standards as described in RS-343-A. Table 1 shows the video control effects on the analog output. Internal logic governs

Blank, Sync and Force High so that they override the data inputs as needed in video applications. Sync overrides both the data and other controls to produce full negative video output (Figure 4).

Reference white video level output is provided by Force High, which drives the internal digital data to full scale output or 100 IRE units. Bright gives an additional $10 \%$ of full scale value to the output level. This function can be used in graphic displays for highlighting menus, cursors or warning messages. Again, if the devices are used in non-video applications, the video controls can be left open.

## CONVERT CLOCK

For best performance, the clock should be ECL driven, differentially, by utilizing CONV and CONV (Figure 3). By driving the clock this way, clock noise and power supply/output intermodulation will be minimized. The rising edge of the clock synchronizes the data and control inputs to the HDAC51400. Since the actual switching threshold of CONV is determined by CONV, the clock can be driven single-ended by connecting a bias voltage to CONV. The switching threshold of CONV is set by this bias voltage.

## ANALOG OUTPUTS

The HDAC51400 has two analog outputs that are high impedance, complementary current sinks. The outputs vary in proportion to the input data, controls and reference current values so that the full scale output can be changed by setting Iset as mentioned earlier.

In video applications, the outputs can drive a doubly terminated 50 or 75 Ohm load to standard video levels. In the standard configuration of Figure 7, the output voltage is the product of the output current and load impedance and is between 0 and -1.07 V . The OUT output (Figure 4) will provide a video output waveform with the SYNC pulse bottom at the -1.07 V level. The OUT + is inverted with SYNC up.

## Table 1 Video Control Operation

Sync	Blank	Ref   White	Bright	Data   Input	Out - (mA)	Out - (V)	Out - (IRE)	Description
1	X	X	X	X	28.57	-1.071	-40	Sync Level   Blank Level
0	1	X	X	X	20.83	-0.781	0	
0	0	1	1	X	0.00	0.000	110	Enhanced High Level
0	0	1	0	X	1.95	-0.073	100	Normal High Level
0	0	0	0	$000 \ldots$	19.40	-0.728	7.5	Normal Low Level
0	0	0	0	$111 \ldots$	1.95	-0.073	100	Normal High Level
0	0	0	1	$000 \ldots$	17.44	-0.654	17.5	Enhanced Low Level
0	0	0	1	$111 \ldots$	0.00	0.000	110	Enhanced High Level

FIGURE 3 CONVert, $\overline{\text { CONVert SWITCHING LEVELS }}$


FIGURE 4 VIDEO OUTPUT WAVEFORM FOR STANDARD LOAD


FIGURE 5 EQUIVALENT INPUT CIRCUITS—DATA, CLOCK, CONTROLS AND REFERENCE


## FIGURE6 DAC OUTPUT CIRCUIT



FIGURE 7A STANDARD LOAD


FIGURE 7B TEST LOAD


SINGLE GAIN CONTROL


INDIVIDUAL GAIN CONTROL


## TYPICAL RGB GRAPHICS SYSTEM

In an RGB graphics system, the color displayed is determined by the combined intensities of the red, green and blue (RGB) D/A converter outputs. A change in gain or offset in any of the RGB outputs will affect the apparent hue displayed on the CRT screen.

Thus, it is very important that the outputs of the D/A converters track each other over a wide range of operating conditions. Since the D/A output is proportional to the product of the reference and digital input code, a common reference should be used to drive all three D/As in an RGB system to minimize RGB DAC-toDAC mismatch. This may also eliminate the need for individual calibration of each DAC during production assembly.

The HDAC51400 contains an internal precision bandgap reference which completely eliminates the need for an external reference. The reference can supply up to $50 \mu \mathrm{~A}$ to an external load. This can accommodate three DAC reference inputs.

The circuits shown in Figure 8 illustrate how a single HDAC51400 may be used as a master reference in a system with multiple DACs (such as RGB). The other DACs are simply slaved from the HDAC51400's reference output.

FIGURE 9 BURN-IN CIRCUIT


PIN ASSIGNMENTS
PIN FUNCTIONS HDAC51400

		NAME	FUNCTION
		D3	Data Bit 3
-		D2	Data Bit 2
D3 1	20.04	D1	Data Bit 1
D2 2	圂 D5	D0	Data Bit 0 (LSB)
D1 3	2208	Veed	Digital Negative Supply
		CONV	Convert Clock Input
D0 4 -	2107	CONV	Convert Clock Input Complement
Veed 5 O	20 Vexa	FT	Register Feedthrough Control
conv 6 -	19 OUT+	VCCD	Digital Positive Supply
CONV 7 d	18 OUT -	FH	Data Force High Control
CONV	O	BLANK	Video Blank Input
FT 8 T	17 Vcca	BRT	Video Bright Input
vcco 9 -	16 Iset	SYNC	Video SYNC Input
FH 10	15 REF IN	REF OUT	Reference Output
blank 11	mref OUT	REF IN	Reference Input
BLANK	mref OUt	Iset	Reference Current
BRT 12	13 SYNC	Vcca	Analog Positive Supply
		OUT-	Output Current Negative
24 LEAD DIP		OUT +	Output Current Positive
		Veea	Analog Negative Supply
		D7	Data Bit 7 (MSB)
		D6	Data Bit 6
		D5	Data Bit 5
		D4	Data Bit 4

**For Ordering Information See Section 1.
Honeywell

NOTES:

## SIGNAL <br> PROCESSING TECHNOLOGIES

## HDAC51600

## 8-BIT, 250 MWPS MULTIPLEXED VIDEO DAC

PRELIMINARY INFORMATION

## FEATURES:

- 5:1 OR 4:1 Data Multiplexer
- 250 MWPS Conversion Rate
- TTL Compatible Data I/O
- On-Chip Bandgap Reference
- RS-343-A Compatible Video Levels


## APPLICATIONS:

- Digital Video Signal Processing
- High Resolution Color or Monochrome Displays
- Medical Elecronics: CAT, PET, MR Imaging Displays
- CAD/CAE Workstations
- Waveform Generation


## GENERAL DESCRIPTION

The HDAC51600 is a monolithic high-speed video DAC with a multiplexed data interface, and an internal voltage reference. All digital inputs and outputs are TTL compatible except the input clock, which is ECL compatible for high speed. The multiplexer is selectable as a divide by 4 or 5 , and the multiplexed data is available through an output port. A divided clock output is
provided for synchronization with external circuitry. The video control inputs (SYNC, BLANK, BRighT, and Force High) are fully synchronous with the pixel data at either the input clock or divided clock rate. The DAC has a differential output that can directly drive doubly terminated 50 or 75 Ohm loads to standard RS-343-A levels. The standard set-up level is 7.5 IRE.

## BLOCK DIAGRAM



## ABSOLUTE MAXIMUM RATINGS $25^{\circ} \mathrm{C}$ (1)

Supply Voltages
Positive Supply Voltage (VCC to GND) $\qquad$ +6.0 to -0.5 V
Negative Supply Voltage (VEE to GND) -6.0 to +5.0 V
Voltage Differential (DGND to AGND, VEED to VEEA)
Input Voltages
Data, Controls (TTL, measured to DGND) $\qquad$ - 0.5 to VCC

ECLK, $\overline{E C L K}$ (ECL, measured to DGND) - 0.5 to VEE

Output
Applied Voltage. $\qquad$ VEE - 0.5 to VCC +0.5

## Temperature

Operating Temperature, junction $+175^{\circ} \mathrm{C}$
Lead Temperature (soldering 10 seconds) ..................... $+300^{\circ} \mathrm{C}$
Storage Temperature $\qquad$ -65 to $+150^{\circ} \mathrm{C}$
(1) Operation at any Absolute Maximum Rating is not implied. See Electrical Specifications for proper nominal applied conditions in typical applications.

## ELECTRICAL SPECIFICATIONS (1)

Figure 3. $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{VEEA}=\mathrm{VEED}=-5.2 \mathrm{~V}, \mathrm{AGND}=\mathrm{DGND}=0.0 \mathrm{~V}, \mathrm{TA}=25^{\circ} \mathrm{C}, \mathrm{ISET}=1.105 \mathrm{~mA}$, unless otherwise specified.

DC Electrical Parameters	Test Conditions	Test Level (1)	MIN	$\begin{gathered} \text { Room } \\ +25^{\circ} \mathrm{C} \\ \text { TYp } \end{gathered}$	MAX	$\begin{gathered} \text { Hot } \\ +70^{\circ} \mathrm{C} \\ \text { MIN MAX } \end{gathered}$		MAX MAX	Units
DAC CHARACTERISTICS									
Resolution		1	8		8				Bits
Integral Linearity, Gray Scale	$\begin{gathered} 1.2 \mathrm{~mA} \leq I S E T \\ \leq 1.8 \mathrm{~mA} \end{gathered}$	1	$\begin{aligned} & -0.2 \\ & -1 / 2 \end{aligned}$	$\begin{aligned} & \pm 0.1 \\ & \pm 1 / 4 \end{aligned}$	$\begin{aligned} & +0.2 \\ & \pm 1 / 2 \end{aligned}$				\%G.S   LSB
Integral Linearity Tempco		V		TBD					ppm $/{ }^{\circ} \mathrm{C}$
Differential Linearity, Gray Scale	$\begin{gathered} 1.2 \mathrm{~mA} \leq \text { ISET } \\ \leq 1.8 \mathrm{~mA} \end{gathered}$	1	$\begin{aligned} & -0.2 \\ & -1 / 2 \end{aligned}$	$\begin{aligned} & \pm 0.1 \\ & \pm 1 / 4 \end{aligned}$	$\begin{aligned} & +0.2 \\ & \pm 1 / 2 \end{aligned}$				\%G.S   LSB
Differential Linearity Tempco		V		TBD					ppm $/{ }^{\circ} \mathrm{C}$
Gain Error, Gray Scale	(Excluding Reference)	1	-5		+5				\%G.S.
Gain Error Tempco		V		$\pm 150$					ppm $/{ }^{\circ} \mathrm{C}$
Offset Current, Outputs, IOS		1		5	15				$\mu \mathrm{A}$
Gray Scale Current, Outputs, IGS		V	16.7	17.6	18.5				mA
Gray Scale Voltage:, Outputs, VGS		V	629	661	694				mV
SYNC Voltage, Outputs		1	260	286	314				mV
Blank Voltage, Outputs		1	48	54	59				mV
BRight Voltage, Outputs		I	64	71	79				mV

ELECTRICAL SPECIFICATIONS (Cont'd)

DC Electrical Parameters	Test Conditions	Test Level (1)	MIN	$\begin{aligned} & \text { Room } \\ & +25^{\circ} \mathrm{C} \\ & \text { TYP } \end{aligned}$	MAX		${ }^{\circ} \mathrm{C}$ MAX		$\begin{aligned} & \text { Id } \\ & \text { C } \\ & \text { MAX } \end{aligned}$	Units
DAC CHARACTERISTICS (Cont'd)										
Maximum Allowable Current, Outputs	ISET is User Defined	IV			45		45		45	mA
Compliance Voltage, Outputs		V	$-1.5$		+1.5					V
Output Resistance	$R L=\infty$	1	20							$K \Omega$
Output Capacitance	$C L=0$	IV		10	13					pF
Power Supply Sensitivity	$\frac{\Delta \mathrm{IGS}}{\triangle \mathrm{VEEA}}$	1			$\pm 120$					$\mu \mathrm{A} V$
REFERENCE CHARACTERISTICS										
Bandgap Voltage	IREF $=-50 \mu \mathrm{~A}$	1	1.17		1.29					V
Bandgap Output Current, IREF		1			-50					$\mu \mathrm{A}$
Bandgap Tempco	IREF $=-10 \mu \mathrm{~A}$	V		$\pm 100$						ppm $/{ }^{\circ} \mathrm{C}$
Common Mode Range REF IN, ISET Pins		IV	-2.45	-	-0.275					V
Bandgap Power Supply Sensitivity	$\triangle$ VREF /   $\triangle$ VEEA	V		TBD						dB
Input Capacitance REF IN, ISET Pins		V		5						pF
Input Current, REF IN		IV		3	15					$\mu \mathrm{A}$
Input Current, ISET		IV			1.80		1.80			mA
DIGITAL LOGIC CHARACTERISTICS										
Input Voltage, Logic Low, TTL		1			0.8					V
Input Voltage, Logic High, TTL		1	2.0							V
Input Current, Logic Low, TTL		1			- 500					$\mu \mathrm{A}$

ELECTRICAL SPECIFICATIONS (Cont'd)

DC Electrical Parameters	Test Conditions	$\begin{gathered} \text { Test } \\ \text { Level (1) } \end{gathered}$		$\begin{aligned} & \text { Room } \\ & +25^{\circ} \mathrm{C} \\ & \text { TYP } \end{aligned}$	MAX	$\begin{gathered} \text { Hot } \\ +70^{\circ} \mathrm{C} \\ \text { MIN } \end{gathered}$	$\begin{array}{r} \mathrm{C} \\ \mathrm{O} \\ \text { MIN } \end{array}$	$\begin{aligned} & \text { ld } \\ & \text { C } \\ & \text { MAX } \end{aligned}$	Units
DIGITAL LOGIC CHARACTERISTICS									
Input Current, Logic High, TTL		1			-500				$\mu \mathrm{A}$
Differential Range, ECLK, ECLK, VIDF	See Fig. 5	IV	0.35		1.65				V
Common Mode Range, ECLK, ECLK, VICM	See Fig. 5	IV	-0.5		-2.5				v
Input Current, ECLK, ECLK		1		5	60				$\mu \mathrm{A}$
$\frac{\text { Input Capacitance, ECLK, }}{\text { ECLK }}$		V		5	10				pF
Output Voltage, Logic Low, DOUT, DIVCLK		1			0.4				V
Output Voltage, Logic High, DOUT, DIVCLK		1	2.4						v
Output Current, DIVCLK		1			16				mA
Output Current, DOUT		1			TBD				mA
POWER SUPPLY CHARACTERISTICS									
Supply Voltage, VCC		IV	4.5		5.5				V
Supply Voltage, VEEA, VEED		IV	-5.5		-4.5				V
Supply Current, ICC		1		95	115				mA
Supply Current, IEEA		1		- 50	-60				mA
Supply Current, IEED		1		-395	-475				mA
Differential Voltage, AGND to DGND, VEEA to VEED		IV	-0.1		+0.1				V


AC Electrical Parameters	Test Conditions	Test Level (1)	$\begin{aligned} & \hline \text { Room } \\ & +25^{\circ} \mathrm{C} \end{aligned}$			$\begin{array}{r} \text { Hot } \\ +70^{\circ} \mathrm{C} \end{array}$		$\begin{aligned} & \text { Cold } \\ & 0^{\circ} \mathrm{C} \end{aligned}$		Units
Maximum Conversion Rate		1	165	250						MWPS

ELECTRICAL SPECIFICATIONS (Cont'd)

AC Electrical Parameters	Test Conditions	Test Level (1)	MIN	$\begin{aligned} & \text { Room } \\ & +25^{\circ} \mathrm{C} \\ & \text { TYP } \end{aligned}$	MAX	$\begin{array}{r} +7 \\ \operatorname{MiN} \end{array}$	${ }^{\circ} \mathrm{C}$ MAX		$\begin{aligned} & \text { Id } \\ & \text { C } \\ & \text { MAX } \end{aligned}$	Units
daC CHARACTERISTICS (See Timing Diagrams)										
Rise/Fall Times, Outputs	$\begin{gathered} \text { 10-90\% G.S. } \\ \text { ISET }=1.65 \mathrm{~mA} \\ \text { RL=25 } \end{gathered}$	1			1					ns
Rise/Fall Times, Outputs	10-90\% G.S.	IV			1.5					ns
Slew Rate, Outputs		1	525							$\mathrm{V} / \mathrm{S}$
Settling Time, Outputs	Full Scale Transition to $0.2 \%$	V		4						ns
Settling Time, Outputs	Full Scale Transition to $0.8 \%$	V		3						ns
ECLK to Output Delay		1	TBD		5					ns
Clock to Output Latency, Data, Video Controls		1	2		2					Cycles
Feedthrough, Clock, Data, Controls		1			TBD					dB
Peak Glitch, VGL	1 LSB Transition at midscale	V		2.8						mV
Glitch (1/2 VGL X Time)	1 LSB Transition at midscale	V		3						pV-s
REFERENCE CHARACTERISTICS										
Amplifier Bandwidth, - 3dB		V		1						MHz
digital logic characteristics (See Timing Diagrams)										
Maximum Clock Period		1	6	4						ns
Pulse Width, High ECLK, ECLK, TPWH		1	2.5	2						ns
Pulse Width, Low   ECLK, ECLK, TPWH		1	2.5	2						ns
Set-Up Time, Data to DIVCLK, TSD		1	10	6.5						ns

ELECTRICAL SPECIFICATIONS (Cont'd)

(1) All electrical characteristics are subject to the following conditions:

All parameters having min/max specifications are guaranteed. The Test Level Column indicates the specific device testing actually performed during production and Quality Assurance inspection. Any blank sections in the data columns indicates that the specification is not tested at the specified condition. Unless otherwise noted, all tests performed after a three minute power soak.

Test Levell - $100 \%$ production tested at the specified temperatures.
Test LevelII- $100 \%$ production tested at $\mathrm{Ta}=25^{\circ} \mathrm{C}$ and sample tested at the specified temperatures.
Test Level III - QA sample tested only at the specified temperatures.
Test Level IV - Parameter is guaranteed (but not tested) by design and characterization data.
Test Level V - Parameter is a typical value for information purposes only.

## FUNCTIONAL DESCRIPTION

The HDAC51600 is a 250 MWPS raster graphics subsystem that includes an 8 -bit DAC with precision bandgap reference, $5: 1$ or $4: 1$ selectable multiplexer, MUX output port, and MUX timing logic. The DAC will directly drive doubly-terminated 50 or 75 Ohm loads to standard RS-343-A levels.

All digital inputs and outputs are TTL compatible, except ECLK, which is ECL compatible. This allows the pixel data to be run at 50 MWPS data rates requiring only one high speed differential ECL clock. A reset input (RESET) and divided clock output (DIVCLK) are provided for synchronizing external circuitry. Video control inputs are fully synchronous with the pixel inputs. A MUX data output provides the multiplexed pixel data for reading at the DOUT port.

## DIV4/DIV5 AND SYNCN/SYNC1 CONTROLS

Two control lines (DIV4/DIV5 and SYNCN//SYNC1) determine which of four operating modes is to be selected: 5:1 or 4:1 MUX with either ECLK or DIVCLK timing for the video controls. These control lines should not be dynamically switched, as this will upset the internal state machine.

## 5:1 MUX

With DIV4/ $\overline{\text { DIV5 }}=0$ and SYNCN/ $\overline{\text { SYNC1 }}=1$ (Mode A; see Timing Diagram A), the IC operates in a $5: 1$ MUX mode. The five data words and video controls (SYNC, BLANK, BRighT, and Force High) are latched on the rising edge of DIVCLK. If any video controls are asserted they remain active for a full DIVCLK period (five ECLK cycles).

In Mode B, with SYNCN/ $\overline{\text { SYNC1 }}=0$ (see Timing Diagram B), the five data words are latched as in Mode A, but the video controls are latched on the rising edge of ECLK. If any video controls are asserted they will remain active for one full ECLK cycle.

## 4:1 MUX

With DIV4/DIV5 $=1$ and SYNCN/ $\overline{\text { SYNC }}=1$ (Mode C; see Timing Diagram C), the IC operates in a $4: 1$ MUX mode. The four data words A-D and all video controls are latched on the rising edge of DIVCLK. If any video controls are asserted, they remain active for a full DIVCLK cycle (four ECLK cycles).

In Mode D, with SYNCN/ $\overline{\text { SYNC1 }}=0$ (see Timing Diagram D), the four data words A-D are latched as in Mode C, but
the video controls are latched on the rising edge of ECLK. If any video controls are asserted, they remain valid for one full ECLK cycle.

## DATA MUX OUTPUT

The data words are sequenced through the MUX in order A-E (A-D for DIV4/DIV5=1) and appear at the DOUT port with one clock cycle latency. The DOUT port is limited to data rates of $\leq 60$ MWPS.

## RESET CONTROL

For synchronizing multiple DACs in a system, a reset function is provided. Timing Diagrams E and F illustrate the operation of this function. When RESET is asserted low, the MUX will continue to run until the internal state machine reaches State B. Once it reaches State B, Word B will appear at the DAC outputs two clock cycles later and remain for subsequent clock cycles. If RESET is applied to multiple DACs in a system, all DACs will be stopped in State B, thus synchronizing them. When RESET goes high, all DACs will cycle through the remaining latched words (C, D, E; DIV4/DIV5 $=0$ and C, D; DIV4/DIV5 $=1$ ) and a new set of data words will be latched on the next rising edge of DIVCLK.

## VIDEO CONTROLS

Modes B and D (Timing Diagrams B and D) allow for video controls to be asserted on any pixel boundary while Modes A and C (Timing Diagrams A and C) only allow for the video controls to be asserted at Pixel A for a full DIVCLK cycle.

## DAC

The DAC provides 256 shades of gray for displaying video information. SYNC, BLANK, BRight and Force High are proportional to the DAC gray scale voltage and provide RS-343-A compatible levels when adjusted as shown in Table 1 and Figure 1. Out- is standard video (SYNC down) with negative true logic; all zeroes equal full scale (BLACK). Out is inverse video (SYNC up) with positive true logic; all ones equal full scale. Bit 0 of each word is the LSB. The DAC can drive doubly terminated 50 or 75 Ohm loads to RS-343-A levels.

*INTERNAL SIGNAL

## (1) DIV4/DIV5 $=0$; SYNCN/ $\overline{\text { SYNC1 }}=1$

All logic levels measured with respect to +1.4 TTL threshold with the exception of ECLK, which is measured at 0.0 V differential.

*INTERNAL SIGNAL
(1) DIV4/DIV5 $=0 ;$ SYNCN $/ \overline{S Y N C 1}=0$

All logic levels measured with respect to +1.4 TTL threshold with the exception of ECLK, which is measured at 0.0 V differential.

‘INTERNAL SIGNAL
(1) DIV4/DIV5 $=1$; SYNCN/SYNC1 $=1$

All logic levels measured with respect to +1.4 TTL threshold with the exception of ECLK, which is measured at 0.0 V differential.

*INTERNAL SIGNAL
(1) DIV4/ $/ \overline{\mathrm{DIV5}}=1 ;$ SYNCN $/ \overline{\text { SYNC1 }}=0$

All logic levels measured with respect to +1.4 TTL threshold with the exception of ECLK, which is measured at 0.0 V differential.

(1) DIV4/DTV5 $=0$

All logic levels measured with respect to +1.4 TTL threshold with the exception of ECLK, which is measured at 0.0 V differential.

TIMING DIAGRAM F. 4:1 MUX (2)

(2) $\mathrm{DIV} 4 / \overline{\mathrm{DIV}}=1$

All logic levels measured with respect to +1.4 TTL threshold with the exception of ECLK, which is measured at 0.0 V differential.

SYNC	BLANK	FORCE   HIGH	BRIGHT	DATA   INPUT	OUT- (mA)	OUT+ (mA)	OUT+,- (IRE)	DESCRIPTION
1	X	X	X	X	28.56	0	-40	SYNC LEVEL
0	1	X	X	X	20.96	7.60	0	BLANK LEVEL
0	0	1	1	X	0.00	28.56	110	BRIGHT
0	0	1	0	X	1.89	26.67	100	NORMAL WHITE LEVEL
0	0	0	0	$000 \ldots$	19.52	9.03	7.5	NORMAL BLACK LEVEL
0	0	0	0	$111 \ldots$	1.89	26.67	100	NORMAL WHITE LEVEL
0	0	0	1	$000 \ldots$	17.63	10.93	17.5	ENHANCED BLACK LEVEL
0	0	0	1	$111 \ldots$	0.00	28.56	110	BRIGHT

ISET $=1.105 \mathrm{~mA} ; R L=37.5 \Omega$; Adjusted for gain and offset.

FIGURE 1. VIDEO OUTPUT WAVEFORM FOR STANDARD LOAD


## TYPICAL APPLICATIONS

Figure 2 illustrates a typical application circuit for a single HDAC51600. It shows how to terminate the DAC for either 50 or 75 Ohm loads. The DAC outputs are proportional to the reference voltage (internal or external) divided by the sum of R1 and R2. The equation for the DAC gray scale output voltage is:
$\operatorname{VOUT}(\mathrm{G} . \mathrm{S})=.\frac{\operatorname{VREF}}{\propto \text { TR1 }+\mathrm{R} 2}(15.9375) \mathrm{RL}$,
where
VREF is the reference voltage,
$\propto$ TR1 is the active portion of resistor R1,
$R L$ is the load resistance ( $\mathrm{R} 3|\mid \mathrm{R} 4$ ).

## RGB GRAPHICS APPLICATION

The circuits shown in Figure 4 illustrate how a single HDAC51600 may be used as a master reference in a
system with multiple DACs (such as RGB). The other DACs are simply slaved from the reference output.

In an RGB graphics system, the color displayed is determined by the combined intensities of the red, green and blue (RGB) D/A converter outputs. A change in gain or offset in any of the RGB outputs will affect the apparent hue displayed on the CRT screen.

Thus, it is very important that the outputs of the D/A converters track each other over a wide range of operating conditions. Since the D/A output is proportional to the product of the reference and digital input code, a common reference can be used to drive all three D/As in an RGB system to minimize RBG DAC to DAC mismatch.

This may also eliminate the need for individual calibration of each DAC during production assembly. The HDAC51600 contains an internal precision bandgap reference which completely eliminates the need for an external reference. The reference can supply enough current to drive two other HDAC51600s.

FIGURE 3. TEST LOADS

DIVCLK/DOUT LOAD


## DAC LOAD



SINGLE GAIN CONTROL


INDIVIDUAL GAIN CONTROL


FIGURE 5. ECLK, ECLK SWITCHING LEVELS

FIGURE 6. EQUIVALENT INPUT CIRCUITS-CLOCK, REFERENCE, DATA AND CONTROLS

CLOCK
REFERENCE


FIGURE 7. EQUIVALENT DAC OUTPUT CIRCUIT


## TOP VIEW



Column	Row	Pin Name	Function
A	1	REF OUT	REFERENCE OUTPUT
A	2	ISET	ISET REFERENCE CURRENT SET
A	3	VEED	NEGATIVE DIGITAL SUPPLY (-5.2V)
A	4	DGND	DIGITAL GROUND (0V)
A	5	DIVCLK	DIVIDED CLOCK OUTPUT
A	6	SYNC	VIDEO SYNC INPUT
A	7	BRIGHT	VIDEO BRIGHT INPUT
A	8	FH	FORCE D/A DATA HIGH INPUT
A	9	SYNCN/SYNC1	VIDEO CONTROLS SYNC MODE
A	10	ECLK	ECL CLOCK InPut
A	11	DE7	INPUT DATA WORDE, BTI 7 (MSB)
B	1	AGND	ANALOG GROUND (OV)
B	2	DGND	DIGITAL GROUND (0V)
B	3	REF IN	REFERENCE INPUT
B	4	VEED	NEGATIVE DIGITAL SUPPLY (-5.2V)
B	5	VCC	POSITIVE DIGITAL SUPPLY (+5.0V)
B	6	DIV4/DIV5	DIVIDE SELECT 4 OR 5 (5 ACTIVE LOW)
B	7	BLANK	VIDEO BLANK INPUT
B	8	$\overline{\text { ECLK }}$	ECL CLOCK INPUT, COMPLEMENT
B	9	RESET	RESET CONTROL, ACTIVE LOW
B	10	DE6	INPUT DATA WORDE, BTT 6
B	11	DE5	INPUT DATA WORD E, BIT 5
C	1	OUT-	DAC OUTPUT, SYNC DOWN
c	2	OUT+	DAC OUTPUT COMPLEMENT, SYNC UP
c	10	DE4	INPUT DATA WORD E, BT 4
c	11	DE3	INPUT DATA WORD E, BT 3
D	1	VEEA	NEGATIVE ANALOG SUPPLY (-5.2V)
D	2	AGND	ANALOG GROUND (OV)
D	10	DE2	INPUT DATA WORDE, BT 2
D	11	DE1	INPUT DATA WORDE, BTT 1
E	1	DOUT 1	MUX DATA OUT, BIT 1
E	2	DOUT0	MUX DATA OUT, BITO (LSB)
E	10	DEO	INPUT DATA WORDE, BTT 0 (LSB)
E	11	DD0	INPUT DATA WORD D, BIT 0 (LSB)
F	1	DOUT 2	MUX DATA OUT, BIT 2
$F$	2	DOUT 3	MUX DATA OUT, BIT 3


Column	Row	Pin Name	Function
F	10	DD1	INPUT DATA WORDD, BIT 1
F	11	DD2	INPUT DATA WORD D, BIT 2
G	1	DOUT 4	MUXDATA OUT, BIT 4
G	2	DOUT 5	MUX DATA DOUT, BIT 5
G	10	DD4	INPUT DATA WORDD, BIT 4
G	11	DD3	INPUT DATA WORDD, BIT3
H	1	DOUT 6	MUXDATA OUT, BIT 6
H	2	DOUT 7	MUXDATA OUT, BIT 7 (MSB)
H	10	DD7	INPUT DATA WORD D, BIT 7 (MSB)
H	11	DD5	INPUT DATA WORD D, BIT 5
J	1	$\overline{O E}$	MUX OUT ENABLE, ACTIVELOW
J	2	DAO	INPUT DATA WORD A, BIT 0 (LSB)
J	10	DC1	INPUT DATA WORD C, BIT 1
J	11	DD6	INPUT DATA WORD D, BIT 6
K	1	DA1	INPUT DATA WORD A, BIT 1
K	2	DA2	INPUT DATA WORD A, BIT 2
K	3	DA4	INPUT DATA WORD A, BIT 4
K	4	DA6	INPUT DATA WORD A, BIT 6
K	5	DB6	INPUT DATA WORD B, BIT 6
K	6	DB3	INPUT DATA WORD B, BIT 3
K	7	DB1	INPUT DATA WORD B, BIT 1
K	8	DC7	INPUT DATA WORD C, BIT 7 (MSB)
K	9	DC5	INPUT DATA WORD C, BIT 5
K	10	DC3	INPUT DATA WORD C, BIT3
K	11	DC0	INPUT DATA WORDC, BITO(LSB)
L	1	DA3	INPUT DATA WORD A, BIT 3
L	2	DA5	INPUT DATA WORD A, BIT 5
L	3	DA7	INPUT DATA WORD A, BIT 7 (MSB)
L	4	DB7	INPUT DATA WORD B, BIT 7 (MSB)
L	5	DB5	INPUT DATA WORD B, BIT 5
L	6	DB4	INPUT DATA WORD B, BIT 4
L	7	DB2	INPUT DATA WORD B, BIT 2
L	8	DB0	INPUT DATA WORD B, BIT 0 (LSB)
L	9	DC6	INPUT DATA WORD C, BIT 6
L	10	DC4	INPUT DATA WORD C, BIT 4
L	11	DC2	INPUT DATA WORDC, BIT 2

[^10]NOTES:

## SIGNAL PROCESSING TECHNOLOGIES

## 16-BIT VOLTAGE-OUTPUT DIGITAL TO ANALOG CONVERTER ADVANCE INFORMATION

## FEATURES:

-16-Bit Accuracy

- On-Chip Band-Gap Voltage Reference
- On-Chip Application Resistors for Gain Selection
- Settling Time of 100 nS Typical to 16 -Bit Accuracy
- -55 to $+125^{\circ} \mathrm{C}$ Operating Temperature
- TTL Input Compatible


## GENERAL DESCRIPTION

The HDAC52160 is a 16 -bit voltage-output digital to analog converter. This high-performance monolithic device offers the highest speed/power ratio in the industry. Unique onchip functions include a band-gap voltage reference and precision application resistors used to support output voltage scaling. Unlike current-output devices, this voltageoutput DAC simplifies the task of output buffering.

Several output voltage ranges are available depending on external interconnection of pins IOS, BPO, 5V FSR, and 10 V FSR. With respect to an all 0 's or all 1 's input, these

## APPLICATIONS:

- Automatic Test Equipment
- Digital Attenuators
- Digital Communication Equipment
- Vector Stroke Video Imaging
ranges are +10 to $0 \mathrm{~V},+5$ to $0 \mathrm{~V},+5$ to $-5 \mathrm{~V},+2.5$ to $-2.5 \mathrm{~V},+15$ to +5 V or +7.5 to +2.5 V .

The HDAC52160 operates with separate $\pm 15 \mathrm{~V}$ analog supplies and a +5 V digital supply to provide maximumnoise immunity. All logic input levels are TTL and 5 volt CMOS compatible. The device is manufactured on Honeywell's Advanced Bipolar Linear process. This process process allow the combination of dense, high-speed digital logic with precision analog circuitry on a single chip.

## BLOCK DIAGRAM



## SPECIFICATIONS

Typical at $+25^{\circ} \mathrm{C}, \mathrm{VDD}=+5 \mathrm{~V}, \mathrm{VEE} 1=\mathrm{VEE} 2=-15 \mathrm{~V}, \mathrm{VCC}=+15 \mathrm{~V}$, Unless otherwise specified.

Parameter	Test Conditions	Test Level (1)	HDAC52160   Min Typ Max		Units
Resolution		1	16		Bits
Integral Linearity		1	$\pm 1 / 2$		LSB
Differential Linearity Error		1	$\pm 1$		LSB
Gain Error		1	$\pm 0.01$		\% of Full Scale
Gain Error Tempco		1	$\pm 15$		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Offset Error		1	$\pm 1$		mV
Reference Input Current		1	1		mA
VIH (Logic High Input Voltage		1	2.4		V
VIL (Logic Low Input Voltage)		1	0.8		V
Output Voltage Settling Time		11	100		nsec
Total Power Dissipation		II	750		mW

(1) Test Procedure: I - Production tested at the specified conditions; II - Sample tested to ensure compliance.

## PINOUT



[^11]
## SIGNAL <br> PROCESSING <br> TECHNOLOGIES

## HDAC7541Z

## CMOS, 12 BIT MONOLITHIC MULTIPLYING DAC

PRELIMINARY INFORMATION

## FEATURES

- Improved Version of the AD7541A
- Low Output Capacitance (< 75 pf.)
- Maximum Gain Error < 2 LSB (all grades)
- 12 Bit Linearity Over Temperature
- Settling Time $=500$ nsecs.
-+5 V to +15 V operation


## APPLICATIONS

- Gain Control Circuits
- Programmable Gain Amplifiers
- Programmble Filters
- Function Generators
- Digital/Synchro Converters
- Digitally Controlled Attenuation


## GENERAL DESCRIPTION

The HDAC7541Z is a monolithic, low cost 12 bit digital to analog converter (DAC). It is compatible with the industry standard 7541A but with significant performance improvements in speed and gain accuracy. The HDAC7541Z is fabricated in a 3 micron, polysilicon gate

CMOS process. The excellent linearity and gain accuracy are achieved through the use of laser-trimmed thin film resistors. Latch-up immunity is insured by the use of an epi process base. This eliminates the need for external Schottky clamping diodes.

## BLOCK DIAGRAM



ABSOLUTE MAXIMUM RATINGS (Beyond which damage may occur) ${ }^{1}$

## Supply Voltages

$V_{D D}($ pin 16) to GND
$\mathrm{V}_{\text {REF }}$ (pin 17) to GND...........................................................25V
Input Voltages
$V_{\text {feedback }}$ (pin 18) to GND. $\pm 25 \mathrm{~V}$
Digital Input Voltage to GND (pins 4-15).....-0.3V, $V_{D D}$

Outputs
$\mathrm{V}_{\mathrm{pin} 1}, \mathrm{~V}_{\text {pin2 }}$ to GND .
$-0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}$
Temperature
Operating Temperature, ambient:.......... -55 to $+125^{\circ} \mathrm{C}$ junction. $+150^{\circ} \mathrm{C}$
Lead Temperature, (soldering 10 seconds)...... $+300^{\circ} \mathrm{C}$
Storage Temperature............................ 65 to $+150^{\circ} \mathrm{C}$
Power Dissipation (Any Package) to $+75^{\circ} \mathrm{C}$...... 450 mW
Derates above $+75^{\circ} \mathrm{C}$. $.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

## Notes:

1. Operation at any Absolute Maximum Rating is not implied. See Electrical Specifications for proper nominal applied conditions in typical applications. Excessive exposure to absolute maximum ratings may effect device reliability.

CAUTION - ESD SENSITIVE DEVICE: The logic and analog ports of this device have special circuits to protect it against ESD damage. Although this protection should prevent permanent damage to the inputs, care should be taken in handling.
$\mathrm{V}_{\mathrm{DD}}=15$ volts; $\mathrm{V}_{\text {REF }}=+10$ volts; $\mathrm{V}_{\text {PIN1 }}=\mathrm{V}_{\text {PIN2 }}=0$ volts $; \mathrm{T}=25^{\circ} \mathrm{C}$ unless otherwise noted

PARAMETER	TEST   CONDITIONS	TEST   LEVEL	HDAC7541ZA   MIN NOM MAX	HDAC7541ZB   MIN NOM MAX	UNITS

DC ELECTRICAL CHARACTERISTICS

Accuracy									
Resolution		1	-	12	-	-	12	-	bits
Relative Accuracy	Tmin- Tmax	1	-1/2	$\pm 1 / 4$	+1/2	-1		+1	LSB
Differential Nonlinearity	Tmin- Tmax	1	-1/2	$\pm 1 / 4$	+1/2	-1		+1	LSB
Gain Error	Using Internal $R_{\text {feedback }}$								
	$25^{\circ} \mathrm{C}$	1		-	. 75		-	1.75	LSB
	Tmin - Tmax	1		-	2.0		-	3	LSB
Gain Temperature Coefficient	Tmin - Tmax	II		0.3	3		0.3	3	ppm $/{ }^{\circ} \mathrm{C}$
Output Leakage									
Pin 1	$\begin{gathered} 25^{\circ} \mathrm{C} \\ 0-70^{\circ} \mathrm{C} /-25 \text { to }+85^{\circ} \mathrm{C} \\ -55 \text { to }+125^{\mathrm{C}} \\ \text { All digital inputs at } \mathrm{OV} \\ \hline \end{gathered}$	1	$\begin{aligned} & -5 \\ & -10 \\ & -200 \end{aligned}$		$\begin{array}{r} +5 \\ +10 \\ +200 \end{array}$	$\begin{aligned} & -5 \\ & -10 \\ & -200 \end{aligned}$		$\begin{array}{r} +5 \\ +10 \\ +200 \end{array}$	nA


PARAMETER	TEST CONDITIONS	TEST   LEVEL	HDAC7541ZA			HDAC7541ZB			UNITS
			MIN	NOM	MAX		NOM	MAX	
DC ELECTRICAL CHARACTERISTICS									
Output Leakage									
Pin 2	$\begin{gathered} 25^{\circ} \mathrm{C} \\ 0-70^{\circ} \mathrm{C} /-25 \text { to }+85^{\circ} \mathrm{C} \\ -55 \text { to }+125^{\circ} \mathrm{C} \\ \text { All digita inputs at } \\ \mathrm{V}_{\mathrm{DD}} \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline-5 \\ & -10 \\ & -200 \end{aligned}$		$\begin{array}{r} +5 \\ +10 \\ +200 \end{array}$	$\begin{array}{\|l\|} \hline-5 \\ -10 \\ -200 \\ \hline \end{array}$		$\begin{array}{r} +5 \\ +10 \\ +200 \end{array}$	nA
Reference Input Resistence	Pin 17 to GND $+25^{\circ} \mathrm{C}$ Temp. Coefficient	$\begin{aligned} & \text { II } \end{aligned}$		$\begin{array}{r} 12.5 \\ -180 \end{array}$	$18$		$\begin{array}{r} 12.5 \\ -180 \end{array}$	18	$K \Omega$ $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Digital Inputs	Tmin - Tmax								
$\mathrm{V}_{\mathrm{IH}}$ (High Input Voltage)		1	2.4			2.4			Volts
$\mathrm{V}_{\text {IL }}$ (Low Input Voltage)		1			0.8			0.8	Volts
$\mathrm{I}_{\mathrm{N}}$ (Input Current)		1			1			1	$\mu \mathrm{A}$
$\mathrm{C}_{\text {IN }}$ (Input Capacitance)	$\mathrm{V}_{\mathrm{IN}}=0$ Volts	II			8			8	pF
Power Supply									
$\mathrm{V}_{\mathrm{DD}}$ Range		1	+5	+15	+16		+15	+16	Volts
IDD	Tmin-Tmax / Digital Inputs at $\mathrm{V}_{\text {IL }}$ or GND	I			$\begin{aligned} & 1 \\ & 1 \end{aligned}$			$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
	$25^{\circ} \mathrm{C}$ Tmin-Tmax / Digital Inputs at $V_{D D}$ or $V_{I H}$	$1$			$\begin{aligned} & 3 \\ & 4 \end{aligned}$			$\begin{aligned} & \hline 3 \\ & 4 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
PSRR	$\Delta \mathrm{V}_{\mathrm{DD}}= \pm 5 \%$	1	-	$\pm .001$	$\pm .005$		$\pm .001$	$\pm .005$	$\begin{aligned} & (\text { ( } \mathrm{gain} \%) \\ & \left(\Delta \mathrm{V}_{\text {DD }} \%\right) \end{aligned}$
AC ELECTRICAL CHARACTERISTICS									
Propagation Delay	From Digital Input to $90 \%$ of Output Final Value; Note 3	II	-	50	100	-	50	100	nsecs
Digital to Analog Glitch Impulse	$\mathrm{V}_{\text {REF }}=0 \mathrm{~V}$; Note 2	II	-	200	400		200	400	nV -sec

$\mathrm{V}_{\mathrm{DD}}=15$ volts; $\mathrm{V}_{\mathrm{REF}}=+10$ volts; $\mathrm{V}_{\text {PIN1 }}=\mathrm{V}_{\text {P.IN2 }}=0$ volts; $\mathrm{T}=25^{\circ} \mathrm{C}$ unless otherwise noted

PARAMETER	TEST CONDITIONS	TEST   LEVEL	HDAC7541ZA			HDAC7541ZB			UNITS
			MIN	NOM	MAX		NOM	MAX	

AC ELECTRICAL CHARACTERISTICS

Multiplying Feedthrough Error	$V_{\text {REF }}$ to $V_{\text {OUT }}$   $\mathrm{V}_{\text {REF }}= \pm 10$ Volts   10 KHz Sinewave	II	0.3	0.5		0.3	0.5	$\mathrm{mV}(\mathrm{p}-\mathrm{p})$
Output Current Settling Time	To $0.01 \%$ of full scale; Notes 2 \& 3	II	0.5	1.0		0.5	1.0	$\mu \mathrm{sec}$
Output Capacitance	Tmin-Tmax							
COUT1	Pin1; Digital Inputs $=\mathrm{V}_{\mathrm{IH}}$	II	48	75		48	75	pF
Cout2	Pin2; Digital Inputs $=\mathrm{V}_{\mathrm{IH}}$	II	15	25		15	25	pF
Cout1	Pin1; Digital Inputs $=\mathrm{V}_{\mathrm{IL}}$	II	19	30		19	30	pF
Cout2	Pin2; Digital Inputs $=\mathrm{V}_{\mathrm{IL}}$	11	38	65		38	65	pF

Note 2: Digital inputs change from 0 V to $\mathrm{V}_{\mathrm{DD}}$ or $\mathrm{V}_{\mathrm{DD}}$ to OV .
Note 3: OUT1 load: $100 \Omega+13 \mathrm{pf}$.
Voltage outputs derived using HOS-50 amplifier.

## ELECTRICAL CHARACTERISTICS TESTING

All electrical characteristics that follow are subject to the following conditions:

All parameters having Min./Max. specifications are guaranteed. The Test Level column indicates the specific device testing actually performed during production and Quality Assurance inspection. Any blank sections in the data columns índicates that the specification is not tested at the specified condition.

Unless otherwise noted, all tests are pulsed tests, therefore $\mathrm{T}_{\mathrm{j}}=\mathrm{T}_{\mathrm{c}}=\mathrm{T}_{\mathrm{a}}$.

## TEST LEVEL

II

## IEST PROCEDURE

Production tested.
Parameter is guaranteed by sample testing.

TYPICAL PERFORMANCE OVER VDD

NONLINEARITY vs.
SUPPLY VOLTAGE


GAIN ERROR vs. SUPPLY VOLTAGE


## TERMINOLOGY

## RELATIVE ACCURACY

Relative accuracy or endpoint nonlinearity is a measure of the maximum deviation from a straight line passing through the endpoints of the DAC transfer function. It is measured after adjusting for zero and full scale and is expressed in \% of full scale range or (sub)multiples of 1LSB.

## DIFFERENTIAL NONLINEARITY

Differential nonlinearity is the difference between the measured change and the ideal 1 LSB change between any two adjacent codes. A specified differential nonlinearity of 1LSB (max) over the operating temperature range ensures monotonicity.

## GAIN ERROR

Gain error or full-scale error is a measure of the output error between an ideal DAC and the actual device output. For the HDAC7541Z ideal full-scale output is $-(4095) /(4096) \cdot\left(V_{\text {REF }}\right)$. Gain error is adjustable to zero using external trims as shown in Figures 4 and 5.

## OUTPUT LEAKAGE CURRENT

Current which appears at OUT1 with the DAC loaded to all 0's or at OUT2 with the DAC loaded to all 1 's.

## MULTIPLYING FEEDTHROUGH ERROR

AC error due to capacitive feedthrough from the $\mathrm{V}_{\mathrm{REF}}$ terminal to OUT1 with the DAC loaded to all 0's.

## OUTPUT CURRENT SETTLING TIME

Time required for the output of the DAC to settle to within 1/2LSB for a given digital input stimulus, i.e., 0 to Full Scale.

## PROPAGATION DELAY

This is a measure of the internal delay of the circuit and is
measured from the time a digital input changes to the point at which the analog output at OUT1 reaches $90 \%$ of its final value.

## DIGITAL TO ANALOG GLITCH IMPULSE

This is a measure of the amount of charge injected from the digital inputs to the analog outputs when the inputs change state. It is usually specified as the area of the glitch in nV -secs and is measured with $\mathrm{V}_{\text {REF }}=\mathrm{GND}$.

## CIRCUIT DESCRIPTION

The HADC7541Z operation is best understood from the simplified circuit description in Figure 1. The input $\mathrm{V}_{\text {REF }}$ is applied to an R-2R ladder network. The R-2R network divides the $V_{\text {REF }}$ input by 2 at each stage to produce currents in the $2 R$ legs which decrease by a factor of 2 moving toward the LSB end of the ladder.

The switches on each $2 R$ leg allow this current to be routed to analog ground or through the feedback resistor of the external op-amp on OUT1. This op-amp resistor converts the current to a voltage again. The sum of the selected leg currents forced through $\mathrm{R}_{\text {feedback }}$ determines the output voltage by the equation in Figure 1.

The op-amp on OUT1 creates a virtual ground point on OUT1 such that the voltage on the 2R legs is ground no matter which positions the current steering switches are in . This makes the input resistance seen by $\mathrm{V}_{\mathrm{REF}} \mathrm{a}$ constant R Ohms.

The HDAC7541Z uses a modification of this R-2R ladder which has the largest 3 bits' current provided by equally weighted resistors rather than binary scaled resistors. This "segmentation" technique improves the linearity and gain accuracy of the HDAC7541Z and lowers the glitch energy during code transitions. This internal structure, however, does not change the way the output code is selected by the user. Therefore, the simplified schematic in Figure 1 is suitable for understanding the operation of the HDAC7541Z.

## EQUIVALENT CIRCUIT ANALYSIS

The equivalent output circuit of the HDAC7541Z is the key to understanding offset, linearity and settling time. Figures 2 and 3 illustrate these effects.

In Figure 2, the equivalent unipolar operation is illustrated with an external op-amp and all switches LOW to route all current to OUT2. The current from OUT2 is composed of (4095/4096)-th's of the input current at pin 17 plus parasitic leakage currents of the switches. These leakage currents are due to both junction and surface leakage on the MOS switches. $1 / 4096$-th of the input current passes to the ground through the ladder terminal 2 R resistor. OUT1 DC current is due only to switch leakage.

Figure 3 shows the same equivalent circuit when all switches are HIGH thereby routing all current to OUT1. The conditions are symmetrical in this case to Figure 2.

The main effect of switch leakages in either case is an offset voltage from the DAC when used in voltage output mode as shown in Figures 2 and 3.

The output resistance seen at the input terminals of the op-amp varies with the code chosen. Between Figures 2 and 3 , resistance at each op-amp input can change from 10K Ohms to an open for extremes in code. This causes the gain of the offsets (due to either leakage currents of the DAC or op-amp offset) to be code dependent. For example, the gain of offsets of the op-amp under these extreme cases is given below:

Offset gain $=1+\mathrm{R}_{\text {feedback }} /$ RDAC
With all code bits LOW:
RDAC >> R feedback ; offset gain $=1$
With all code bits HIGH:
RDAC $=10 \mathrm{~K}$ Ohms; offset gain $=2$
Thus, the offset is not amplified by a constant gain over the range of code input. This variation in offset gain is seen as a non-linearity in the voltage output over the full scale output. The magnitude of non-linearity is the difference in the gains at code extremes times the offset
voltage. In this DAC, this non-linearity is equal to the offset itself. Thus, the total offset voltage of the op-amp plus leakage induced offset of the DAC and op-amp must be kept to less than 1 LSB to prevent degradation to the DAC linearity performance.

The dynamic output impedance of OUT1 and OUT2 is composed of the DAC switch capacitances to ground. OUT2 has the capacitance of the OFF switches while OUT1 has switch capacitance for ON switches.

The capacitance on OUT1 creates a feedback pole in the voltage output operation mode (Figures 2 and 3). Instability of the output amplifier can occur due to the presence of this pole. This pole's instability effect is typically compensated by the use of a feedback capacitorC1 (Figures 4 and 5). Although all R-2R DAC's have the need for this type of compensation, the HDAC7541Z maintains faster settling times when used in the voltage output mode. This is due to the lower output capacitance of the HDAC7541Z.

The choice of compensation capacitor is bounded by three limits:

- C1 along with $\mathrm{R}_{\text {feedback }}$ determines the settling time of the output voltage from the op-amp; therefore C1 should be as small as possible for minimum settling time.
- The pole defined by C1 and $\mathrm{R}_{\text {feedback }}$ should be smaller than secondary poles in the op-amp - as a rule of thumb, about one half of the op-amp's gain-bandwidth.
- Settling time is proportional to $\sqrt{C_{\text {OUT1 }}+\mathrm{C1}}$.

For an OP-27 used as an output op-amp with 8 MHz gain-bandwidth, the choice of $\mathrm{C1}$ would be:
$\left(2 \cdot \pi \cdot \mathrm{C} 1 \cdot \mathrm{R}_{\text {feedback }}\right)^{-1}=4 \mathrm{MHz}$ or $\mathrm{C} 1=4 \mathrm{pf}$.
Fast settling time with small amounts of ringing are obtained when the small values of C1 (given by the criteria above) are as close as possible to the DAC output capacitance. The HDAC7541Z 's low output capacitance comes much closer to fulfilling this goal than most other 7541 compatible DAC's. Thus, faster, more well controlled settling is seen with the HDAC7541Z.

## ANALOG/DIGITAL DIVISION

FIGURE 1 SIMPLIFIED, TYPICAL INTERFACE CIRCUIT


FIGURE 2
HDAC7541Z DAC EQUIVALENT CIRCUIT
ALL DIGITAL INPUTS LOW


FIGURE 3
HDAC7541Z DAC EQUIVALENT CIRCUIT
ALL DIGITAL INPUTS HIGH

## UNIPOLAR BINARY OPERATION 2 QUADRANT MULTIPLICATION

Figure 4 illustrates the use of the HDAC7541Z in a unipolar (or 2 quadrant multiplication) mode. The $\mathrm{V}_{\text {REF }}$ is applied from pin 17 to ground voltage or an input current can be applied to pin 17. Positive or negative voltages/current can be applied. The input is multiplied by $(-1)$ times the DAC code scaling.

R1 can be used to provide full scale output trimming capability. The adjustment is made by selecting code 111111111111 and changing R1 for $(4095 / 4096)$ of the $V_{\text {REF }}$ voltage out. If the source of $V_{\text {REF }}$ is adjustable, $\mathrm{V}_{\text {REF }}$ could be directly adjusted for full scale calibration.

The output capacitance of OUT1 must be compensated as described in Equivalent Circuit Analysis by the use of C1 in the feedback path. This cancels the feedback pole caused by OUT1's capacitance.

The op-amp used with the HDAC7541Z should be selected for low offset voltage and low bias currents to reduce offset and linearity errors as described in Equivalent Circuit Analysis. The op-amp's bias currents appear as errors in the same fashion as the DAC's leakage currents. The op-amp offset voltage should be less than approximately $10 \%$ of an LSB (of the output full scale voltage). This is due to the fact that the offset effect is code dependant and contributes to the nonlinearity in proportion to its size with respect to full scale output voltage.

BIPOLAR OPERATION 4 QUADRANT MULTIPLICATION

The use of the HDAC7541Z in a bipolar (or 4 quadrant multiplication) mode is illustrated in Figure 5. The $\mathrm{V}_{\text {REF }}$ is applied from pin 17 to ground voltage or an input current can be applied to pin 17. Positive or negative voltages/current can be applied. The output is either +1 or -1 times the code scaling of the DAC. The polarity is selected by the MSB of the DAC input code.

Amplifier A1's output is subtracted from $1 / 2$ the value of $V_{\text {REF }}$ to produce a maximum output which is half of $V_{\text {REF }}$ in either polarity (see Table 3 for the exact scaling). The MSB of the DAC selects the polarity of the output.

Full scale calibration of the output can be made by adjusting R5 or the $\mathrm{V}_{\text {REF }}$ source itself. Calibration of the zero output at code 100000000000 is made by adjusting R1. It is key that R3, R4 and R5 track one another for the stability of the summation made at A2. Failure of these resistors to track will result in both gain and offset drift over temperature even though calibration is done at room temperature.

As with unipolar operation, C1 is needed to compensate the OUT1 capacitance. A1 must be selected for low offset voltage and bias current to minimize nonlinearity and offset errors.

*REFER TO TABLE 1.
FIGURE 4 UNIPOLAR BINARY OPERATION


FIGURE 5: BIPOLAR OPERATION (4-QUADRANT MULTIPLICATION)

TRIM   RESISTOR					
	"A" grades		"B" grades	R1	$20 \Omega$
:---:	:---:				
R2	$6.8 \Omega$				

TABLE I: RECOMMENDED TRIM RESISTOR VALUES VS. GRADES

BINARY NUMBER IN DAC			ANALOG OUTPUT, VOUT
MSB		LSB	
1111	1111	1111	$-V_{\text {IN }}\left(\frac{4095}{4096}\right)$
1000	0000	0000	$-\mathrm{V}_{\text {IN }}\left(\frac{2048}{4096}\right)=-1 / 2 \mathrm{~V}_{\text {IN }}$
0000	0000	0001	${ }^{-} \mathrm{V}_{\text {IN }}\left(\frac{1}{4096}\right)$
0000	0000	0000	0 Volts

TABLE II: UNIPOLAR BINARY CODE TABLE FOR CIRCUIT OF FIGURE 4

BINARY NUMBER IN DAC			ANALOG OUTPUT, VOUT
MSB		LSB	
1111	1111	1111	$+V_{\text {IN }}\left(\frac{2047}{2048}\right)$
1000	0000	0001	$+\mathrm{V}_{\text {IN }}\left(\frac{1}{2048}\right)$
1000	0000	0000	OV
0111	1111	1111	$-V_{\text {IN }}\left(\frac{1}{2048}\right)$
0000	0000	0000	$-V_{\text {IN }}\left(\frac{2048}{2048}\right)$

TABLE III: BIPOLAR CODE TABLE FOR CIRCUIT OF FIGURE 5


PIN ASSIGNMENT HDAC7541Z

PIN	NAME	FUNCTION
1	OUT1	CURRENT OUTPUT 1
2	OUT2	CURRENT OUTPUT 2
3	GND	GROUND
4	BIT 1	DIGITAL INPUT（BIT 1）（MOST SIGNIFICANT BIT）
5	BIT 2	DIGITAL INPUT（BIT 2）
6	BIT 3	DIGITAL INPUT（BIT 3）
7	BIT 4	DIGITAL INPUT（BIT 4）
8	BIT 5	DIGITAL INPUT（BIT 5）
9	BIT 6	DIGITAL INPUT（BIT 6）
10	BIT 7	DIGITAL INPUT（BIT 7）
11	BIT 8	DIGITAL INPUT（BIT 8）
12	BIT 9	DIGITAL INPUT（BIT 9）
13	BIT 10	DIGITAL INPUT（BIT 10）
14	BIT 11	DIGITAL INPUT（BIT 11）
15	BIT 12	DIGITAL INPUT（BIT 12）（LEAST SIGNIFICANT BIT）
16	VDD	POSITIVE POWER SUPPLY
17	VREF－IN	REFERENCE INPUT VOLTAGE
18	Rfeedback	INTERNAL FEEDBACK RESISTOR

PIN FUNCTIONS HDAC7541Z
＊＊For Ordering Information See Section 1.

NOTES:

HDAC7542A

## CMOS, 12-BIT, $\mu$ P BUFFERED DAC

## FEATURES:

- Improved Version of the AD7542
- Maximum Gain Error < $\mathbf{1 / 2}$ LSB
-12-Bit Linearity Over Temperature
- $0.5 \mu$ secs. Settling Time
- Microprocessor Compatible I/O
- 4 Quadrant Multiplication
- Low Gain Drift ( $<3 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ )


## APPLICATIONS:

- $\mu \mathrm{P}$ Gain Control Circuits
- $\mu \mathrm{P}$ Attenuator Control
- $\mu \mathrm{P}$ Controlled Function Generators
- Bus Structured Instrumentation
- Process Controllers
- Industrial Controllers

The data bits for selecting the DAC output are written into the HDAC7542A via a direct connection to the parallel bus of a microprocessor. Data bytes are written as 3, 4 bit groups or "nibbles" into the data registers on the chip. The input bits are double buffered on-chip. Updating the analog output is controlled via the parallel bus by writing to the chip. A clear pin (CLR) allows for resetting the output to all zeros under power up or system reset conditions. All address decoding for writing to the chip registers is handled on the chip.

The HDAC7542A's direct parallel bus interconnect makes it an excellent choice for microprocessor-based instruments and industrial or process controllers utilizing microprocessors.

## BLOCK DIAGRAM




CHARACTERISTICS: The following specifications are guaranteed over the full temperature range, unless otherwise specified.

Relative Accuracy		1	$-1 / 2$	$+1 / 2$	$-1 / 2$	$+1 / 2$	-1	+1	LSB
Differential Nonlinearity		1	$-1 / 2$	$+1 / 2$	$-1 / 2$	$+1 / 2$	-1	+1	LSB
Gain Error	$25^{\circ} \mathrm{C}$	1	$-1 / 2$	$+1 / 2$	-2	+2	-3	+3	LSB
	Tmin - Tmax	1	-1.5	+1.5	-3	+3	-4	+4	LSB
Output Settling Time	OUT1 Load   $-100 \Omega+13 p F$	11		0.5		0.5		0.5	$\mu \mathrm{sec}$
Output Capacitance   on OUT1	All Register   Bits Low	11		30		30		30	pF
	All Register   Bits High	11		75		75		75	pF
tDS: Data Set-up Time		1	20		20		20		nsec
tDH: Data Hold Time		1	20		20		20		nsec
tWR: WR Pulse Width		1	40		40	40		nsec	

TESTLEVEL
I

II

TEST PROCEDURE
Production tested at the specified conditions. Parameter is guaranteed by sample characterization data.
**For Ordering Information See Section 1.

# CMOS, 12 BIT, SERIAL INPUT, BUFFERED MULTIPLYING DAC <br> ADVANCE INFORMATION 

## FEATURES:

- Improved Version of the AD7543
- Maximum Gain Error < $\mathbf{1 / 2}$ LSB
- Low Output Capacitance (< 75 pf.)
- $0.5 \mu$ secs. Settling Time
- 12-Bit Linearity Over Temperature
- Serial Data load With Flexible Strobe Conditions

APPLICATIONS:<br>- Industrial and Process Controllers<br>- Proportional Controllers Requiring Serial Isolation or Remote Location

## GENERAL DESCRIPTION

The HDAC7543A is a monolithic, low cost, multiplying12bit digital to analog converter (DAC) designed for serial digital input. It is compatible with the industry standard 7543 but with significant performance improvements in speed and gain accuracy.

The HDAC7543A is fabricated in a 3 micron, polysilicon gate CMOS process. The excellent linearity and gain accuracy over temperature are achieved through the use of laser-trimmed thin film resistors. Latch-up immunity is insured by the use of an epi process base. This eliminates the need for external Schottky clamping diodes to prevent latch-up.

The data bits for selecting the DAC output are written into the HDAC7543A via a serial data port prior to latching them into the output register. The input bits are double buffered on-chip. The serial bus control pins provide a great deal of flexibility in providing the serial input strobe conditions for the data transfer. A clear pin (CLR) allows for resetting the output to all zero's under power up or system reset conditions.

The HDAC7543A's direct serial data interconnect makes it an excellent choice for industrial or process controllers which require electrical isolation or remote location. The serial bus minimizes the number of control lines which would require isolation devices or line drivers in these types of applications.

$\mathrm{VDD}=+5 \mathrm{~V} ; \mathrm{VREF}=+10 \mathrm{~V} ; \mathrm{VOUT} 1=\mathrm{VOUT} 2=0 \mathrm{~V}$


CHARACTERISTICS: The following specifications are guaranteed over the full temperature range, unless otherwise specified.

Relative Accuracy		1	$-1 / 2$	+1/2	$-1 / 2$	+1/2	-1	+1	LSB
Differential Nonlinearity		1	-1/2	+1/2	-1/2	+1/2	-1	+1	LSB
Gain Error	$25^{\circ} \mathrm{C}$	1	-1/2	+1/2	-2	+2	-3	+3	LSB
	Tmin- Tmax	1	-1.5	+1.5	-3	+3	-4	+4	LSB
Output Settling Time	$\begin{aligned} & \text { OUT1 Load } \\ & =100 \Omega+13 \mathrm{pF} \end{aligned}$	11				0.5			$\mu \mathrm{sec}$
Output Capacitance on OUT1	$\begin{aligned} & \operatorname{Reg} B=\text { all } \\ & \text { LOW } \end{aligned}$	II		30		30		30	pF
	$\begin{aligned} & \text { Reg } \mathrm{B}=\text { all } \\ & \text { HIGH } \end{aligned}$	II		75		75		75	pF
${ }^{\text {tsR1 }}$ : Data Strobe Pulse Width		1	80		80		80		nsec
${ }^{\text {t}}$ DS3, 4: Data Set-up Time on STB 3, 4		1	0		0		0	*	nsec
${ }^{\text {t }} \mathrm{DH} 3$, 4: Data Hold Time on STB 3, 4		1	80		80		80		nsec

TEST LEVEL
I

II

TEST PROCEDURE
Production tested at the specified conditions.
Parameter is guaranteed by sample characterization data.
**For Ordering Information See Section 1.

## SIGNAL <br> PROCESSING <br> TECHNOLOGIES

## CMOS 12-BIT BUFFERED MULTIPLYING DAC

## PRELIMINARY INFORMATION

## FEATURES:

- Improved Version of the AD7545
- Maximum Gain Error < 2 LSB
- Low Output Capacitance ( < 75 pf.)
- 500 ns Settling Time
-12-Bit Linearity Over Temperature
- 8 or 16-Bit Bus Compatible


## APPLICATIONS:

- $\mu$ P Controlled Gain Circuits
- $\mu \mathrm{P}$ Controlled Function Generation
- Bus Structured Instruments
- $\mu$ P Based Control Systems


## GENERAL DESCRIPTION

The HDAC7545A is a monolithic, low cost, multiplying 12 -bit digital to analog converter (DAC) designed for direct microprocessor interface. It is compatible with the industry standard 7545 but has significant performance improvements in speed and gain accuracy. The HDAC7545A is fabricated in a 3 micron, polysilicon gate BEMOS process and operates from a single +5 volt (maximum) supply. Excellent linearity and gain accuracy are acheived through the use of laser-trimmed thin film resistors. Latch-up immunity is insured by the use of an epi process base; this eliminates the need for external Schottky clamping diodes for latch-up protection.

The HDAC7545A incorporates a parallel loading architecture for the DAC conversion bits. When pins $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ are low, the twelve input data registers read the bus data. This single load and convert operation allows one-cycle updating by 16 -bit microprocessors.

With direct parallel bus data loading, the HDAC7545A is ideally suited for microprocessor-based instruments and industrial or process controllers.

## BLOCK DIAGRAM



ABSOLUTE MAXIMUM RATINGS (Beyond which damage may occur) ${ }^{1} 25^{\circ} \mathrm{C}$
Supply VoltagesVDD to DGND.+7V
AGD to to DGND ..... -0.3 to VDD
Input Voltages
Digital Inputs to DGND ..... -0.3 to VDD
VRfeedback or VREF to DGND ..... $\pm 25 \mathrm{~V}$
TemperatureOperating Temperature, ambient............. -55 to $+125^{\circ} \mathrm{C}$junction...................... $+150^{\circ} \mathrm{C}$-55 to $+125^{\circ} \mathrm{C}$
Lead Temperature, (soldering 10 seconds)....... $+300^{\circ} \mathrm{C}$Storage Temperature.............................. 65 to $+150^{\circ} \mathrm{C}$Power Dissipation (Any Package) to $+75^{\circ} \mathrm{C}$...... 450 mW(derates above $75^{\circ} \mathrm{C}$ by $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ )
Outputs$V_{\text {OUT1 }}$ to GND-0.3 V to VDD

## Notes:

1. Operation at any Absolute Maximum Rating is not implied. See Electrical Specifications for proper nominal applied conditions in typical applications.
2. CAUTION - ESD SENSITIVE DEVICE: The logic and analog ports of this device have special circuits to protect it against ESD damage. Although this protection should prevent permanent damage to the inputs, care should be taken in handling.

## ELECTRICAL SPECIFICATIONS

Test Conditions: Unless Otherwise Noted, VDD $=5 \mathrm{~V}, \mathrm{VREF}=+10 \mathrm{~V}$, OUT1 $=0 \mathrm{~V}, \mathrm{AGND}=\mathrm{DGND}$,
$T_{A}=0$ to $70^{\circ} \mathrm{C}$ for Commercial Grade Units,
$T_{A}=-25$ to $85^{\circ} \mathrm{C}$ for Industrial Grade Units,
$T_{A}=-55$ to1 $25^{\circ} \mathrm{C}$ for Military Grade Units
(Please Refer to Ordering Information for Grade Descriptions)

DC ELECTRICAL PARAMETERS	TEST CONDITIONS	TEST   LEVEL	HDAC7545AA/G MIN TYP MAX	HDAC7545AA MIN TYP MAX	HDAC7545AB MIN TYP MAX	UNITS

## ACCURACY

Resolution		1	- 12 -		- 12 -		-	12	-	bits
Relative Accuracy		1	$-1 / 2 \pm 1 / 4+1 / 2$		$-1 / 2$	+1/2	-1		+1	LSB
Differential Nonlinearity		1	$-1 / 2 \pm 1 / 4+1 / 2$		-1/2	+1/2	-1		+1	LSB
Gain Error, Using $\mathrm{R}_{\text {feedback }}$	$25^{\circ} \mathrm{C}$	1	-1/2	+1/2	-2	+2	-3		+3	LSB
Gain Error, Using $\mathrm{R}_{\text {feedback }}$	Tmin - Tmax	1	-1.5	+1.5		+3	-4		+4	LSB
Gain Temperature Coefficient		II	0.3	3	0.3	3		0.3	3	ppm $/{ }^{\circ} \mathrm{C}$

## ELECTRICAL SPECIFICATIONS

Test Conditions: Unless Otherwise Noted, $\mathrm{VDD}=5 \mathrm{~V}, \mathrm{VREF}=+10 \mathrm{~V}, \mathrm{OUT} 1=0 \mathrm{~V}, \mathrm{AGND}=\mathrm{DGND}$,
$T_{A}=0$ to $70^{\circ} \mathrm{C}$ for Commercial Grade Units,
$T_{A}=-25$ to $85^{\circ} \mathrm{C}$ for Industrial Grade Units,
$T_{A}=-55$ to $125^{\circ} \mathrm{C}$ for Military Grade Units
(Please Refer to Ordering Information for Grade Descriptions)

DC ELECTRICAL   PARAMETERS   (CONTINUED)	TEST	TEST	HDAC7545AA/G	HDAC7545AA	HDAC7545AB	

OUTPUT LEAKAGE (3)

Pin OUT1	$25^{\circ} \mathrm{C}$	1	-5	+5	-5	+5	-5	+5	nA
Pin OUT1	Military Grades		1	-100	+100	-100	+100	-100	+100
	Other Grades				nA				

INPUT RESISTANCE

Input VREF	Pin 19 to GND   $25^{\circ} \mathrm{C}$	I	7	12.5	18	7	12.5	18	7	12.5
18	$\mathrm{~K} \Omega$									
Input VREF Temp. Coefficient		$॥$		-180	-180		-180	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$		

## LOGIC INPUTS

$\mathrm{V}_{\mathrm{IH}}$ (High input voltage)		1	2.4	2.4	2.4	Volts
$\mathrm{V}_{\mathrm{IL}}$ (Low input voltage)		1		0.8		0.8
$\mathbb{I N}_{\mathrm{IN}}$ (Input current)		1	1	0.8	Volts	
$\mathrm{C}_{\mathrm{IN}}$ (Input capacitance) of   Pins DB0 - DB11, $\overline{\mathrm{WR}}, \overline{\mathrm{CS}}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	1 I		5	1	1

POWER SUPPLY

IDD	All Logic Inputs   at VIL or VIH	I		4	4	
IDD	Logic Inputs at   OV or VDD, $25^{\circ} \mathrm{C}$	1	10	100	10	100

NOTE 3. Digital inputs $\overline{\mathrm{WR}}$ and $\overline{\mathrm{CS}}$ at 0 volts.

## ELECTRICAL SPECIFICATIONS

Test Conditions: Unless Otherwise Noted, VDD $=5 \mathrm{~V}, \mathrm{VREF}=+10 \mathrm{~V}, \mathrm{OUT1}=0 \mathrm{~V}, \mathrm{AGND}=\mathrm{DGND}$, $T_{A}=0$ to $70^{\circ} \mathrm{C}$ for Commercial Grade Units, $T_{A}=-25$ to $85^{\circ} \mathrm{C}$ for Industrial Grade Units,
$T_{A}=-55$ to125 ${ }^{\circ} \mathrm{C}$ for Military Grade Units (Please Refer to Ordering Information for Grade Descriptions)

AC ELECTRICAL PARAMETERS	TEST CONDITIONS	TEST LEVEL	HDAC7545AA/G   MIN TYP MAX	HDAC7545AA MIN TYP MAX	HDAC7545AB MIN TYP MAX	UNITS
Digital to Analog Glitch Impulse	VREF $=$ AGND   Note 4	11	200400	200400	200400	nV-sec
Multiplying Feedthrough Error	Note 5	11	. 3 . 5	. 3 . 5	. 3 . 5	mVPP
COUT (Output Capacitance)	$\begin{aligned} & \mathrm{DB} 0-11=0 \mathrm{~V} \\ & \overline{W R}=\overline{C S}=0 \mathrm{~V} \end{aligned}$	11	30	30	30	pF
$\mathrm{C}_{\text {OUT }}$ (Output Capacitance)	$\begin{aligned} & \mathrm{DBO}-11=\mathrm{VDD} \\ & \overline{\mathrm{WR}}=\overline{\mathrm{CS}}=0 \mathrm{~V} \end{aligned}$	11	75	75	75	pF
Output Current Settling Time	Note 4, 6	11	0.5	$0.5 \quad 1$	0.5	$\mu s e c$.
Propagation Delay	Note 7	II	$50 \quad 100$	$50 \quad 100$	$50 \quad 100$	nsec.
${ }^{\text {t }} \mathrm{CS}$ (Chip select set-up time)		1	60	60	60	nsec.
${ }^{\text {t }} \mathrm{CH}$ (Chip select hold time)		1	0	0	0	nsec.
${ }^{\text {twR ( }}$ (WR pulse width)	${ }^{\text {t }} \mathrm{CS} 2$ twr	1	100	100	100	nsec.
${ }^{\text {t }}$ DS ( ${ }^{\text {(Data set-up time) }}$		1	50	50	50	nsec.
$\mathrm{t}_{\text {DH }}$ (Data hold time)		1	9	9	9	nsec.

NOTES: 4. Load on Pin OUT1 $=100 \Omega+13 \mathrm{pF}$.
5. $\mathrm{VREF}= \pm 10 \mathrm{~V} @ 10 \mathrm{KHz}$ Sinewave.
6. Measured from falling edge of $\overline{W R}$.
7. Measured from falling edge of $\overline{W R}$ to $90 \%$ of final output value.

## ELECTRICAL CHARACTERISTICS TESTING

All electrical characteristics are subject to the following conditions:
Parameters having Min./Max. specifications are guaranteed. The Test Level column indicates the specific device testing actually performed during production and Quality Assurance inspection. Any blank sections in the data columns indicates that the specification is not tested at the specified condition.

Unless otherwise noted, all tests are pulsed tests, therefore $T_{J}=T_{C}=T_{A}$.

IEST LEVEL TEST PROCEDURE
$1 \quad$ Production tested.
II Parameter is guaranteed by sample testing.

## WRITE CYCLE TIMING DIAGRAM



MODE SELECTION
WRITE MODE:
CS and WR low, DAC responds to data inputs DBO-DB11.
hold mode:
Either CS or WR high, data inputs DBO-DB11 are locked out; DAC holds last data present when WR or CS assumes high state.

## RELATIVE ACCURACY

Relative accuracy or endpoint nonlinearity is a measure of the maximum deviation from a straight line passing through the endpoints of the DAC transfer function. It is measured after adjusting for zero and full scale and is expressed in \% of full scale range or (sub)multiples of 1 LSB.

## DIFFERENTIAL NONLINEARITY

Differential nonlinearity is the difference between the measured change and the ideal 1 LSB change between any two adjacent codes. A specified differential nonlinearity of 1 LSB (max) over the operating temperature range ensures monotonicity.

## GAIN ERROR

Gain error or full-scale error is a measure of the output error between an ideal DAC and the actual device output. For the HDAC7545A ideal full-scale output is $-(4095) /(4096) \cdot($ VREF $)$. Gain error is adjustable to zero using external trims as shown in Figures 6 and 7 and Table I.

## OUTPUT LEAKAGE CURRENT

Current which appears at OUT1 with the DAC loaded to all 0's.

## MULTIPLYING FEEDTHROUGH ERROR

$A C$ error due to capacitive feedthrough from the VREF terminal to OUT1 with the DAC loaded to all O's.

## OUTPUT CURRENT SETTLING TIME

Time required for the output of the DAC to settle to within $1 / 2$ LSB for a given digital input stimulus, i.e., 0 to Full Scale.

## PROPAGATION DELAY

This is a measure of the internal delay of the circuit and is measured from the time a digital input changes to the point at which the analog output at OUT1 reaches $90 \%$ of its final value.

## DIGITAL TO ANALOG GLITCH IMPULSE

This is a measure of the amount of charge injected from the digital inputs to the analog outputs when the inputs change state. It is usually specified as the area of the glitch in nV -secs and is measured with VREF= GND.

## GENERAL CIRCUIT DESCRIPTION

As shown in the Block Diagram of the cover sheet, the HDAC7545A consists of a 12-bit multiplyng DAC and a 12 -bit data latch. Data at pins DB0-DB11 is latched when both pins $\overline{C S}$ and $\overline{W R}$ are low. Current latched data establishes the digital-to-analog conversion code, therefore, conversion is actually controlled by pins $\overline{C S}$ and $\overline{W R}$. This is further described in the Interface Logic section.

Figure 1 shows a simplified version of the 12-bit multiplyng DAC circuitry. Note that the HDAC7545A


FIGURE 1 SIMPLIFIED HDAC7545A DAC CIRCUITRY (WITH EXTERNAL OP AMP)
uses a modified R-2R ladder technique that provides for superior linearity over similar devices which use the basic R-2R ladder.

A basic R-2R ladder portion is used within the HDAC7545A for the nine least-significant bits (bits 0 8). This ladder portion successively divides the (remaining) VREF input to produce a binary weighted nine-stage current division. In other words, in moving from left to right, each 2 R resistor leg has half the current flow of the previous leg. Double-pole switches within each leg are controlled by the respective input data bit. The switch routes the bitweighted current of the leg to either analog ground or to the output (pin OUT1). OUT1 is a virtual ground by means of the external active circuitry. Hence, with every switch in either position, the R-2R ladder resistive integrity is maintained. Input resistance of pin VREF is kept constant.

Modification of the basic R-2R ladder structure occurs in the 3 most-significant bits. Here, the switches of seven equally weighted current dividers are controlled by bits $9-11$ via a logic decoder. Although more complex, this method provides increased accuracy. Application of the HDAC7545A is identical to similar devices that use an unmodified R-2R ladder network.

The DAC output current is converted to a voltage by the feedback resistance composed of the external resistor of Figure 1 in series with internal resistor $R_{\text {feedback. }}$ The operational amplifier provides a buffered VOUT, and in combination with the feedback resistance, maintains OUT1 at virtual ground. The transfer function of Figure 2 shows the relationship of VOUT for an equivalent R-2R resistor network, shown in the same figure. A more detailed understanding of the circuit operation and performance aspects are found in the following Equivalent Circuit Analysis section.

## EQUIVALENT CIRCUIT ANALYSIS

The equivalent output circuit of the HDAC7545A is the key to understanding offset, linearity and settling time. Figures 3 and 4 illustrate these effects.

In Figure 3, the equivalent unipolar operation is illustrated with an external op-amp and all switches LOW to route all current to pin OUT2. OUT2 is internally connected to AGND in packaged versions of the HDAC7545A. The current from OUT2 is composed of (4095/4096)-th's of the input current at pin VREF plus parasitic leakage currents of the switches. These leakage currents are due to both junction and surface leakage on the MOS switches. 1/4096-th of the input current passes to the ground through the ladder terminal 2R resistor. OUT1 DC current is due only to switch leakage.

Figure 4 shows the same equivalent circuit when all switches are HIGH thereby routing all current to OUT1. The conditions are symmetrical in this case to Figure 3.

The main effect of switch leakages in either case is an offset voltage from the DAC when used in voltage output mode as shown in Figures 3 and 4.

The output resistance seen at the input terminals of the op-amp varies with the code chosen. Between Figures 3 and 4, resistance at each op-amp input can change from 10K Ohms to an open for extremes in code. This causes the gain of the offsets (due to either leakage currents of the DAC or op-amp offset) to be code dependent. For example, the gain of offsets of the op-amp under these extreme cases is given below: (next page)

VREF


The transfer function for the equivalent network shown is:
$V_{\text {OUT }}=-\operatorname{VREF} \cdot\left(\frac{A_{11}}{2^{1}}+\frac{A_{10}}{2^{2}}+\cdots \frac{A_{0}}{2^{12}}\right)$
where $A_{X}$ assumes a value of 1
for a "HIGH" bit and 0 for a "LOW" bit.

FIGURE 2 EQUIVALENT R-2R RESISTOR NETWORK FOR THE HDAC7545A DAC CIRCUITRY
(WITH EXTERNAL OP AMP)


Offset gain $=1+R_{\text {feedback }} /$ RDAC
With all code bits LOW:
RDAC >> $\mathrm{R}_{\text {feedback; }}$ offset gain $=1$
With all code bits HIGH:
RDAC $=$ R $_{\text {feedback; }}$; offset gain $=2$
Thus, the offset is not amplified by a constant gain over the range of code inputs. This variation in offset gain is seen as a non-linearity in the voltage output over the full scale output. The magnitude of nonlinearity is the difference in the gains at code extremes times the offset voltage. In this DAC, the non-linearity is equal to the offset itself. Thus, the total offset voltage of the op-amp plus leakage induced offset of the DAC and op-amp must be kept to less than 1 LSB to prevent degradation to the DAC linearity performance.

The dynamic output impedance of OUT1 and OUT2 is composed of the DAC switch capacitances to ground. OUT2 has the capacitance of the OFF switches while OUT1 has switch capacitance for ON switches.

The capacitance on OUT1 creates a feedback pole in the voltage output operation mode (Figures 3 and 4). Instability of the output amplifier can occur due to the presence of this pole. This pole's instability effect is typically compensated by the use of a feedback capacitor - C1 (Figures 6 and 7). Although all R-2R DAC's have the need for this type of compensation,
the HDAC7545A maintains faster settling times when used in the voltage output mode. This is due to the lower output capacitance of the HDAC7545A.

The choice of compensation capacitor is bounded by three limits:

- C1 along with $\mathrm{R}_{\text {feedback }}$ determines the settling time of the output voltage from the op-amp; therefore C1 should be as small as possible for minimum settling time.
- The pole defined by C1 and $\mathrm{R}_{\text {feedback }}$ should be smaller than secondary poles in the op-amp - as a rule of thumb, about one half of the op-amp's gainbandwidth.
- Settling time is proportional to $\sqrt{C_{O U T 1}+C 1}$.

For an OP-27 used as an output op-amp with an 8 MHz gain-bandwidth, the choice of C 1 would be:

$$
\begin{aligned}
& \left(2 \cdot \pi \cdot C_{1} \cdot R_{\text {feedback }}\right)^{-1}=4 \mathrm{MHz} \\
& \text { or } C 1 \approx 4 \mathrm{pf}
\end{aligned} \quad\left(R_{\text {feedback }} \approx 12.5 \mathrm{~K} \Omega\right)
$$

Fast settling time with small amounts of ringing are obtained when the small values of C1 (given by the criteria above) are as close as possible to the DAC output capacitance. The HDAC7545A 's low output capacitance comes much closer to fulfilling this goal than most other 7545 compatible DAC's. Thus, faster, more well controlled settling is obtained with the HDAC7545A.


MULTIPLEXED BUS ARCHITECTURE


SEPARATE ADDRESS/DATA BUS ARCHITECTURE

## INTERFACE LOGIC

The HDAC7545A is designed to allow control of the output via a parallel microprocessor bus $1 / O$. This section describes operation of the interface controls to accomplish this.

A typical parallel bus $/ / O$ configuration is shown in figure 5 . The microprocessor provides the DAC code as well as all control signals to load the code and update the analog output. During loading the HDAC7545A accepts the DAC input code in a 12 bit word.

When the $\overline{C S}$ pin is at logic " 0 ", the input register of the HDAC7545A is enabled. The WR input actually stobes the input data from the parallel bus into the HDAC7545A data register. This occurs on the falling edge of this WR pulse. The Write Timing Diagram of page 4 defines the minimum set-up and hold times required by the control lines to successfully transfer data in this fashion.

## UNIPOLAR BINARY OPERATION 2 QUADRANT MULTIPLICATION

Figure 6 illustrates the use of the HDAC7545A in a unipolar (or 2 quadrant multiplication) mode. The VREF is applied from pin 19 to ground voltage or an input current can be applied to pin 19. Positive or negative voltages/currents can be applied. The input is multiplied by $(-1)$ times the DAC code scaling.

R1 can be used to provide full scale output trimming capability. The adjustment is made by selecting code 111111111111 and changing R1 for (4095/4096) of
the VREF voltage out. If the source of VREF is adjustable, VREF could be directly adjusted for full scale calibration (refer to table II).

The output capacitance of OUT1 must be compensated as described in Equivalent Circuit Analysis by the use of C1 in the feedback path. This cancels the feedback pole caused by OUT1's capacitance.


FIGURE 6 UNIPOLAR BINARY OPERATION

The op-amp used with the HDAC7545A should be selected for low offset voltage and low bias currents to reduce offset and linearity errors as described in Equivalent Circuit Analysis. The op-amp's bias currents appear as errors in the same fashion as the DAC's leakage currents. The op-amp offset voltage should be less than approximately $10 \%$ of an LSB (of the output full scale voltage). This is due to the fact that the offset effect is code dependant and contributes to the nonlinearity in proportion to its size with respect to full scale output voltage.

## BIPOLAR OPERATION 4 QUADRANT MULTIPLICATION

The use of the HDAC7545A in a bipolar (or 4 quadrant multiplication) mode is illustrated in Figure 7. The VREF is applied from pin 19 to ground voltage or an input current can be applied to pin 19. Positive or negative voltages/currents can be applied. The output is either +1 or -1 times the code scaling of the DAC. The polarity is selected by the MSB of the DAC input code.

Amplifier A1's output is subtracted from $1 / 2$ the value of VREF to produce a maximum output which is half of VREF in either polarity (see Table 3 for the exact scaling). The MSB of the DAC selects the polarity of the output.

Full scale calibration of the output can be made by adjusting R5 or the VREF source itself. Calibration of the zero output at code 100000000000 is made by adjusting R1. It is key that R3, R4 and R5 track one another for the stability of the summation made at A2. Failure of these resistors to track will result in both gain and offset drift over temperature even though calibration is done at room temperature.

As with unipolar operation, C1 is needed to compensate for OUT1 capacitance. A1 must be selected for low offset voltage and bias current to minimize nonlinearity and offset errors.


FIGURE 7 BIPOLAR OPERATION

TRIM   RESISTOR		
	"A" grades	"B" grades
R1	$20 \Omega$	$100 \Omega$
R2	$6.8 \Omega$	$33 \Omega$

TABLE 1
RECOMMENDED TRIM RESISTANCE

BINARY NUMBER IN			
MSB		ANALOG OUTPUT, $\mathrm{V}_{\text {OUT }}$	
1111	1111	1111	$-\mathrm{V}_{\text {IN }}\left(\frac{4095}{4096}\right)$
1000	0000	0000	$-\mathrm{V}_{\text {IN }}\left(\frac{2048}{4096}\right)=-1 / 2 \mathrm{~V}_{\text {IN }}$
0000	0000	0001	$-\mathrm{V}_{\text {IN }}\left(\frac{1}{4096}\right)$
0000	0000	0000	0 Volts

TABLE II
UNIPOLAR BINARY CODE FOR CIRCUIT OF FIGURE 6

BINARY NUMBER $\mathbb{I N}$ DAC			ANALOG OUTPUT, $V_{\text {OUT }}$
MSB		LSB	
1111	1111	1111	$+V_{\text {IN }}\left(\frac{2047}{2048}\right)$
1000	0000	0001	$+V_{\mathbb{N}}\left(\frac{1}{2048}\right)$
1000	0000	0000	OV
0111	1111	1111	$-V_{\text {IN }}\left(\frac{1}{2048}\right)$
0000	0000	0000	-V IN $\left(\frac{2048}{2048}\right)$

TABLE III
BIPOLAR CODE
FOR CIRCUIT OF FIGURE 7


HDAC7545A PIN ASSIGNMENT
(TOP VIEW)
HDAC7545A PIN FUNCTIONS


HDAC7545A DIE PLOT BONDING PAD LOCATION

Die Size $130 \times 106$ mils

[^12]NOTES:

## 8-BIT, HIGH SPEED RASTER DIA CONVERTER

## FEATURES:

- 200 MWPS Conversion Rate
- Pin-Compatible with AD9700 with Improved Performance
- RS-343-A Compatible
- Complete Video Controls: Sync, Blank, Bright and Reference White
- ECL Compatible
- Single Power Supply
- Stable On-Chip Bandgap Reference


## GENERAL DESCRIPTION

The HDAC97000 is a fully monolithic 8 -bit video digital-to-analog converter specifically designed for raster graphic display applications. The HDAC97000 is complete with an 8 -bit D/A converter, special video controls, on-chip bandgap reference and data registers.

Four unregistered video controls (Sync, Blank, $+10 \%$ Bright and Reference White) allow full reconstruction of RS-343-A compatible video signals from composite inputs. All data and control inputs are compatible with standard ECL.

## APPLICATIONS:

- Color or Monochrome Displays
- High Resolution Raster Graphics
- Medical Electronics: CAT, PET, MR Imaging Displays
- CRT Terminals
- CAD/CAE Workstations
- Solids Modeling
- General Purpose High-Speed D/A Conversion

The HDAC97000 will directly drive a doublyterminated 75 Ohm transmission line to standard video levels.

The precision internal reference is a bandgap type, suitable for stable operation over wide temperature ranges. The HDAC97000 is fabricated using an advanced VLSI Bipolar process for excellent performance, low power consumption, and high reliability in a choice of convenient packages.

## BLOCK DIAGRAM



## ABSOLUTE MAXIMUM RATINGS

Supply Voltages
Vee -7.0 to 0.5 V
Input Voltages
Clock, Data and Controls (measured to GND) Vee to 0.5V
Output
Analog Output applied voltage (measured to GND) ..... -3.0 to 3.0 V
Analog Output applied current ${ }^{2}$ ..... 60 mA
Output Short Circuit Duration Unlimited

## Temperature

Operating, ambient junction	$\begin{aligned} -60 t 0 & +140^{\circ} \mathrm{C} \\ \cdots . & +175^{\circ} \mathrm{C} \end{aligned}$
Lead, soldering (10 seconds)	$+300^{\circ} \mathrm{C}$
Storage	$-6010+150^{\circ} \mathrm{C}$

## Notes:

1. Operation at any Absolute Maximum Rating is not implied. See Electrical Specifications for proper nominal applied conditions in typical applications.
2. Current is specified as positive conventional current flowing into the device.

## ELECTRICAL SPECIFICATIONS

| PARAMETER | TEST <br> CONDITIONS | TEST <br> LEVEL | MIN TYP MAX | UNITS |
| :--- | :--- | :--- | :--- | :--- | :--- |

DC ELECTRICAL CHARACTERISTICS $v_{C C A}=0.0 \mathrm{~V}, \mathrm{v}_{\text {EEA }}=v_{E E D}=-5.2 \mathrm{~V} \pm 0.3 \mathrm{v}, \mathrm{T}_{\mathrm{A}}=-25 \mathrm{to}+85^{\circ} \mathrm{C} *, \mathrm{C}_{\mathrm{C}}=0 \mathrm{PFF}$.

${ }_{\text {E E }}$	Supply Current		1	-155-170			mA
$\mathrm{C}_{\text {in }}$	Input Capacitance Clock, Data \& Controls		V		3		pF
$\mathrm{V}_{\mathrm{OC}}$	Output Compliance Voltage		V	-2		+0.5	V
$\mathrm{R}_{\text {OUT }}$	Equivalent Output Resistance			560	800	1040	Ohms
$\mathrm{C}_{\text {OUT }}$	Output Capacitance		V		15		pF
lout	Maximum Output Current	$I_{\text {REF }}=$ MAX	IV			-30	mA
IIL	Input Current, Logic LOW, Data \& Controls		1		70	120	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{H}}$	Input Current, Logic HIGH, Data \& Controls		1			150	$\mu \mathrm{A}$
IL	Linearity Error, Integral, Terminal Based	Notes 2, 3	1			$\pm 0.19$	\% Gray Scale
DNL	Linearity Error Differential	Notes 2, 4	1			$\pm 0.19$	\% Gray Scale
Ios	Output Offset Current	$\begin{aligned} & \text { Data = Sync = } \\ & \text { Blank =1, } \\ & \text { Bright }=0 \end{aligned}$	1		-1	-8	$\mu \mathrm{A}$


PARAMETER	TEST   CONDITIONS	TEST   LEVEL	MIN	TYP	MAX	UNITS

DC ELECTRICAL CHARACTERISTICS $v_{C C A}=0.0 \mathrm{v}, \mathrm{v}_{\text {EEA }}=\mathrm{v}_{\text {EED }}=-5.2 \mathrm{~V} \pm 0.3 \mathrm{v}, \mathrm{T}_{\mathrm{A}}=-25 \mathrm{to}+85^{\circ} \mathrm{C}^{*}, \mathrm{C}_{\mathrm{C}}=0 \mathrm{OFF}$.

$\mathrm{V}_{\text {OS }}$ Output Offset Voltage		1	-37-300	$\mu \mathrm{V}$
$\mathrm{E}_{\mathrm{G}} \quad$ Absolute Gain Error		1	$\pm 5$	\% Gray Scale
$\mathrm{TC}_{\mathrm{G}}$ Gain Error Tempco			50	ppm $/{ }^{\circ} \mathrm{C}$
PSS Power Supply Sensitivity	Supply to Output	1	. 005	\%/V
$V_{\text {EE }}$ Supply Voltage			$-4.75-5.2-5.5$	V
$\mathrm{V}_{\text {IL }}$ Input Voltage, Logic LOW		1	-1.70	V
$\mathrm{V}_{1 \mathrm{H}} \quad$ Input Voltage, Logic HIGH		1	-0.90	V
RESOLUTION (full scale)			8	Bits
LSB WEIGHT (voltage) ${ }^{5}$			2.5	mV
LSB WEIGHT (current) ${ }^{5}$			66.67	$\mu \mathrm{A}$
GRAY SCALE OUTPUT   Current   Voltage   Linearity, Differential   Linearity, Integral   Monotonicity   Zero Offset (Initial)			0 to 17 637.5 $\pm 0.19$ $\pm 0.19$ Guaranteed 0.4	mA   mV   \% Gray Scale   \% Gray Scale   mV
TEMPERATURE COEFFICIENTS Linearity Zero Offset Gain Error			$\begin{aligned} & 30 \\ & 12 \\ & 50 \end{aligned}$	$\begin{aligned} & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{aligned}$
DATA INPUTS   [Complementary Binary (CBN)] Logic Compatibility Logic Voltage Levels " 1 " (Positive Logic) "O'" Input Capacitance Input Resistance	to VEE   to VEE		$\begin{array}{ccc}  & \text { ECL } & \\ -0.9 & & -1.7 \\ & 5 & \\ 50 & \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{pF} \\ & \mathrm{~K} \Omega \end{aligned}$
REFERENCE WHITE, COMPOSITE SYNC, BLANKING AND 10\% BRIGHT INPUTS Logic Compatibility Logic Voltage Levels " 1 " (Positive Logic) "O" Input Capacitance Input Resistance	to VEE to VEE		$\begin{array}{ccc}  & \text { ECL } & \\ -0.9 & & -1.7 \\ & 5 & \\ 50 & \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{pF} \\ & \mathrm{~K} \Omega \end{aligned}$


| PARAMETER | TEST <br> CONDITIONS | TEST <br> LEVEL | MIN TYP MAX | UNITS |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

DC ELECTRICAL CHARACTERISTICS $v_{C C A}=0.0 \mathrm{~V}, \mathrm{~V}_{\text {EEA }}=\mathrm{v}_{\text {EED }}=-5.2 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-25 \mathrm{to}+85^{\circ} \mathrm{C}^{*}, \mathrm{C}_{\mathrm{C}}=0 \mathrm{OFF}$.

SET-UP CONTROL 5,6   Ground   Open   1 K Ohm to -5.2 Supply $-5.2 \mathrm{~V}$			$\begin{gathered} 0 \\ -53.6 \\ -71.4 \\ -142.9 \end{gathered}$	mV (0 IRE Units) mV (7.5 IRE Units) mV (10 IRE Units) mV (20 IRE Units
CUTPUT-COMPOSITE SYNC ${ }^{5,6}$   Current   Voltage			$\begin{gathered} 0 \text { or } \\ -7.6 \\ 0 \text { or } \\ -286 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & ( \pm 5 \%) \\ & \mathrm{mV} \\ & \pm 5 \%) \end{aligned}$
OUTPUT-10\% BRIGHT 5,7 Current   Voltage			$\begin{gathered} 0 \text { or } \\ -1.9 \\ 0 \text { or } \\ -71 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & ( \pm 5 \%) \\ & \mathrm{mV} \\ & ( \pm 5 \%) \\ & \hline \end{aligned}$
OUTPUT-COMPOSITE BLANKING 5,6 Current   Voltage			$\begin{gathered} 0 \text { and } \\ -1.43 \\ -1.90 \\ \text { or } \\ -3.81 \\ 0 \text { and } \\ -53.6 \\ -71 \\ \text { or } \\ -142.9 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & ( \pm 5 \%) \\ & \mathrm{mV} \\ & ( \pm 5 \%) \end{aligned}$
POWER REQUIREMENTS   Current Consuption ( -5.2 V )   Power Dissipation   Power Supply Rejection			$\begin{gathered} 140 \\ 728 \\ .025 / .25 \end{gathered}$	mA   mW   \% Gray Scale/   V
TEMPERATURE RANGE Operating (Ambient) Storage			$\begin{array}{lr}-25 & +85 \\ -55 & +150\end{array}$	${ }^{\circ} \mathrm{C}$

## DC ELECTRICAL CHARACTERISTICS NOTES

${ }^{*} \theta_{C A}=30^{\circ} \mathrm{C} / \mathrm{W}$ typical at 500 LFPM .

1. The sum of tPWL and tPWH must always equal or exceed the minimum conversion cycle time.
2. Gray Scale $=$ Video White Level $\cdot$ Video Black Level $=643 \mathrm{mV}$ (nominal)
3. $\pm \%$ Gray Scale $=$ LSB (Least Significant Bit).
4. $\pm \%$ Gray Scale = LSB (Least Significant Bit).
5. 90 IRE Full Gray Scale.
6. Relative to Black.
7. Reference White, Composite Sync, and Composite Blanking are enabled with logic ' 0 "'; $10 \%$ Bright is enabled with logic " 1 ". Composite Sync or Composite Blanking control signals reset input registers.

| PARAMETER | TEST <br> CONDITIONS | TEST <br> LEVEL | MIN | TYP | MAX |
| :--- | :--- | :--- | :--- | :--- | :--- | UNITS 

AC ELECTRICAL CHARACTERISTICS $R_{L}=37.50 \mathrm{hms}, C_{L}=5 p F T_{A}=25$ to $+85^{\circ}{ }^{\circ}{ }^{*}$

F	Maximum Conversion Rate	Note 2		200		MWPS
$T_{d}$	Clock to Output Delay				4.0	ns
$t_{s t}$	Settling Time	$\begin{aligned} & \pm 1 / 2 \text { LSB } \\ & \pm 0.2 \% \text { Gray Scale }{ }^{3} \end{aligned}$			10	ns
$t_{r}, t_{f}$	Rise/Fall Time	$10 \%$ to $90 \%$ of Gray Scale ${ }^{3}$			1.75	ns
SR	Slew Rate			300	450	$\mathrm{V} / \mu \mathrm{S}$
tpWL	Clock Pulse Width, LOW ${ }^{\text {' }}$			2.0		ns
tPWH	Clock Pulse Width, HIGH			2.0		ns
$\mathrm{t}_{\text {s }}$	Hold Time, Data and Controls			2.5	1.5	ns
${ }_{\text {t }}^{\text {H }}$	Hold Time, Data and Controls			0	-0.5	ns
PSRR	Power Supply Rejection Ratio	Supply to Output ${ }^{\text {s }}$		-22		dB
$G_{E}$	Peak Glitch Area ('Energy')	Notes 5, 6	V		35	pico-VoltSeconds
$\mathrm{FT}_{\mathrm{C}}$	Feedthrough, Clock	Data $=$ Constant ${ }^{7}$		-22		dB
$\mathrm{FT}_{\mathrm{D}}$	Feedthrough, Data	Clock $=$ Constant ${ }^{7}$				dB
SPEED GRAY	PERFORMANCE-   SCALE OUTPUT   Settling Time (Voltage Max.)   Slew Rate   Update Rate   Rise Time   Glitch Energy				$\begin{aligned} & 10 \\ & 400 \\ & 200 \\ & 1.5 \\ & 50 \end{aligned}$	ns (to $0.4 \%$ of Gray Scale) $\mathrm{V} / \mu \mathrm{S}$ MWPS ns pV-s
STOBE	E INPUT   Logic Compatibility   Logic Voltage Levels " 1 "   (Positive Logic) " 0 "   Set-up Time (Data)   Hold Time (Data)   Propagation Delay	Logic Loading 5 pF and $50 \mathrm{k} \Omega$ To -5.2 V			$\begin{gathered} \text { ECL } \\ -0.9 \\ -1.7 \\ 1.5 \\ 0 \\ 4 \end{gathered}$	$\begin{aligned} & V \\ & V \\ & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$


PARAMETER	TEST   CONDITIONS	TEST   LEVEL	MIN TYP MAX	UNITS

## AC ELECTRICAL CHARACTERISTICS R $_{L}=37.5 \mathrm{hmss}^{C_{L}}=5 \mathrm{PFT} \mathrm{T}_{\mathrm{A}}=2510+85^{\circ} \mathrm{C}^{*}$

SPEED PERFORMANCE-	Settling Time			
CONTROL INPUTS	To 10\% of			
Composite Sync	Final Value		10	ns
Composite Blank		10	ns	
Reference White			10	ns
Reference Black			10	ns
10\% Bright			10	ns

## AC ELECTRICAL CHARACTERISTICS NOTES

${ }^{*} \theta_{\mathrm{CA}}=30^{\circ} \mathrm{C} / \mathrm{W}$ typical at 500 LFPM.

1. The sum of tPWL and tPWH must always equal or exceed the minimum conversion cycle time.
2. MWPS-MegaWords Per Second $\approx \mathrm{MHz}$.
3. Gray Scale $=$ Video White Level $\cdot$ Video Black Level $=643 \mathrm{mV}$ (nominal).
4. $20 \mathrm{KHz}, 600 \mathrm{mV}$ p-p ripple superimposed on $\mathrm{V}_{\mathrm{EE}}$; dB relative to full Gray Scale $=0 \mathrm{~dB}$.
5. Glitch can be further reduced by trimming Glitch Adjust.
6. Glitch Area (voltage time) is sometimes referred to as an "energy", although this is not dimensionally correct. The Peak Glitch Area is the maximum area deviation from the ideal output. Since glitches are typically "doublets" of symmetric positive and negative excursions, the average glitch area approches zero.
7. dB relative to full Gray Scale $=0 \mathrm{~dB}, 300 \mathrm{MHz}$ bandwidth limit.

## ELECTRICAL CHARACTERISTICS TESTING

All electrical characteristics are subject to the following conditions:

All parameters having Min./Max. specifications are guaranteed. The Test Level column indicates the specific device testing actually performed during production and Quality Assurance inspection. Any blank sections in the data columns indicates that the specification is not tested at the specified conditions.

Unless otherwise noted, all tests are pulsed tests, therefore $T_{j}=T_{c}=T_{a}$.

## TEST LEVEL TEST PROCEDURE

I $100 \%$ production tested at the specified temperature.

II $100 \%$ production tested at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$, and sample tested at specified temperature.

III QA sample tested only at specified temperatures.

IV Parameter is guaranteed (but not tested) by design and characterization data.

V Paramater is a typical value for information purposes only.

HDAC97000 VIDEO DAC CHARACTERISTICS

COMPOSITE VIDEO SIGNAL
256 gray levels plus Sync, Blank, Bright and Reference White

```
STEP SIZE
 2.5mV
```

GRAY SCALE RANGE
0.6375 V Peak to Peak

REFERENCE WHITE LEVEL
+100 IRE Units ( +0.714 V ) relative to Blanking Level with standard set-up, ( +0.6375 V relative to Reference Black)

## DIGITAL INPUT FOR REFERENCE WHITE

All ones (11111111)

REFERENCE WHITE CONTROLS - PIN 16
Logic " 0 " overrides Video Input Word and drives to Reference White Level

REFERENCE BLACK LEVEL

- 0.7085 Absolute
+10 IRE Units $(+71 \mathrm{mV})$ relative to Blanking Level with standard set-up

DITIGAL INPUT FOR REFERENCE BLACK
All zeros (00000000)

SET-UP CONTROL
User Programmable in four levels to set Blanking Level (relative to Reference Black)

1. Input Grounded
2. Input Open
3. Input 1 K Ohm to -5.2 V
4. 

- 142.9

IRE Units
0
7.5

10 (Standard Set-up)
20

COMPOSITE BLANKING LEVEL (with standard set-up)

- 0.785V Absolute
- 10 IRE Units ( $\mathbf{- 7 1 \mathrm { mV } \text { ) relative to Reference Black }}$

COMPOSITE BLANKING CONTROL - PIN 18
Logic " 0 " overrides Video input Word and drives output negative by the amount of set-up voltage relative to the Reference Black Level

COMPOSITE SYNC LEVEL

- 1.071V absolute with standard set-up
-40 IRE Units $(-0.286 \mathrm{~V})$ relative to Blanking Level

COMPOSITE SYNC CONTROL • PIN 17
Logic " 0 " overrides Video Input Word. and drives output 0.286 V negative relative to the Reference Black Level (relative values of Blank and Sync Levels sum together with both active)

## 10\% BRIGHT LEVEL

OV Absolute
All levels are shifted down by 71 mV when the $10 \%$ Bright Control is used

10\% BRIGHT LEVEL • PIN 19
Logic " 0 " causes output to go positive by 71 mV relative to Reference White Level

STROBE INPUT - PIN 11
Logic " 0 " to " 1 " transition clocks input register - input data held by latch, slave latch tracks master latch data
Logic " 1 " to " 0 " transition - slave latch holds previous data, master latch tracks input

## APPLICATION INFORMATION

The HDAC97000 is a fully monolithic 8 -bit video D/A Converter for graphic display applications. It has complete composite controls including Sync, Blank, Reference White, Set-up and 10\% Bright, and will directly drive a 75 Ohm load to RS-343-A video levels. All data and control inputs are compatible with standard ECL. The HDAC97000 is packaged in a 22 lead dual-in-line package and is pin-compatible with the Analog Devices AD9700.

The video control inputs (Sync, Blank, Bright and Reference White) are used for reconstruction of RS-343-A compatible signals from video control inputs.

Video set-up level (the difference between video black and video blank) may be programmed for $0,7.5,10$, or 20 IRE units, depending on the condition of the Set-up Select control.

The HDAC97000 uses a fully binary weighted approach utilizing current switches to implement the DAC. The upper 3 bits are segmented with interdigitated current sources for good matching and better linearity. Each data pin has latches for deskewing input data if the data arrives at different times. This prevents glitches from occurring at the output.

## FUNCTIONAL DIAGRAM



## TYPICAL INTERFACE CIRCUIT

A typical interface circuit using the HDAC97000 in a color raster application is shown in Figure 2. Although the HDAC97000 requires few external components and is extremely easy to use, there are several considerations that should be noted to achieve best performance. The very high operating speeds of the HDAC97000 require good circuit layout, decoupling of supplies, and proper design of transmission lines.

Video input data and controls may be directly connected to the HDAC97000. Note that all ECL inputs are terminated as close to the device as possible to reduce ringing, crosstalk and reflections. A convenient and commonly used microstrip impedance is about 130 Ohms, which is easily terminated using a

330 Ohm resistor to $\mathrm{V}_{\mathrm{EE}}$ and a 220 Ohm resistor to Ground. This arrangement gives a Thevenin equivalent termination of 130 Ohms to -2 Volts without the need for a 2 Volt supply. Standard SIP (Single Inline Package) 220/330 resistor networks are available for this purpose.

It is recommended that the stripline or microstrip techniques be used for all ECL interface. Printed circuit wiring of known impedance over a solid ground plane is recommended. The ground plane should be constructed such that analog and digital ground currents are isolated as much as possible. The HDAC97000 provides separate digital and analog Voc connections to simplify grounding layout.

The analog output and Iset pin are configured so the device can directly drive a 37.5 Ohm impedance system as shown. The source impedance of the HDAC97000 output is 800 Ohms $\pm 30 \%$, thus needing an external source-termination resistor to drive a 75 Ohm transmission line. The load resistor (RL) must be 82.8 Ohms to attain standard RS-343-A video levels. Any deviation from this impedance will affect the resulting video output levels proportionally. As with the data interface, it is important that the analog transmission line has a matched impedance throughout, including connectors and transitions between printed wiring and coaxial cable. The combination of source termination resistor Rs, load resistor RL and load terminator Riminimizes reflections of both forward and reverse travelling waves in the analog transmission system. The return path for analog output current is Vcca, which is connected internally to the source-termination resistor, Rs.

No external reference is required for operation of the HDAC97000, as this function is provided internally. The internal reference is a bandgap type and is suitable for operation over extended temperature ranges.

The HDAC97000 operates from a single standard +5 Volt or -5.2 Volt supply. Proper bypassing of the supplies will augment the HDAC97000's inherent supply noise rejection characteristics. As shown, a large tantalum capacitor in parallel with smaller ceramic capacitors is recommended for best performance. The small-valued capacitors should be connected as close to the device package as possible, whereas the tantalum capacitor may be placed up to a few inches away. Additional decoupling can be accomplished by placing a $.01 \mu \mathrm{~F}$ between the compensation pin (15) and Vcca. This pin connects internally to the DAC reference, which provides the DAC DC bias.

The timing diagram for the HDAC97000 is shown in Figure 1. Data to the DAC is simultaneously entered on the rising edge of the clock. Data must be valid for a set-up time of ts before, and for a hold time of $t+$ after the rising edge of the clock, in order to be correctly entered. The DAC outputs will change in accordance to the clocked input data after a delay time of to. The settling time is specified as the time from when the DAC output is no longer within $1 / 2$ LSB of the previous value until it is within $1 / 2$ LSB of the new value.

The video control inputs cause the DAC output to change directly, without regard to the clock input. All video controls (Sync, Blank, Bright and Reference White) are active-Low (negative true) logic. Figure 3 illustrates the operation of Sync and Blank inputs and the resulting video output signal. As shown, both Sync and Blank must be Low to achieve the proper video Sync level. The video control input hierarchy is given in Table 1, with typical output levels for a set-up level of 10 IRE.

Set-up level is the difference between video Blank and Black levels. The HDAC97000 supports set-ups of 0 , $7.5,10$, and 20 IRE, which are programmed by connecting the Set-up select input to ground ( OV ), not connected, to Vee through a 1 K Ohm resistor, or to $\mathrm{Vem}^{\text {en }}$ ( -5.2 V ), respectively. For most applications the 7.5 IRE option is suitable.

The Reference White input forces the DAC outputs to an all " 1 " $s$ level, which is video "white" in most systems. This is especially useful for clearing the display screen to white during system reset or powerup. The Bright input adds $10 \%$ of full-scale video to the present video level. The Bright feature is commonly used for highlighting cursors or creating overlays of video information. Sync, Blank and Reference White override the data inputs, while Bright may be applied to any video level.

## FIGURE 1 TIMING DIAGRAM



## SETTING OUTPUT DRIVE CAPABILITY

The current set pin (pin 14) adjusts the full-scale output current of the HDAC97000. The resistor designated $\mathrm{R}_{\text {SET }}$, which governs the current into pin 14, can be calculated in relation to DAC output current as follows:

Equation 1: $\mathrm{R}_{\text {SET }}=\frac{90}{22.59}\left[\frac{1.23 \mathrm{~V}}{\mathrm{~V}_{\text {OUT G.S! }}!\mathrm{R}_{\text {LOAD }}}\right]$
Here, 1.23 V is the internal reference voltage, $\mathrm{V}_{\text {outa.s. }}$ is the DAC gray scale output voltage and $R_{\text {LOAD }}$ is the total load resistance on the analog output. In raster scan video applications, $\mathrm{R}_{\mathrm{LOAD}}$ could be equivalent to the load in Figure 2. This would be the internal DAC output resistance in parallel with the output load and cable terminating resistor. If the device is being used in raster scan applications, the total output voltage is the gray scale current plus the video function currents. The value of $\mathrm{R}_{\text {SET }}$ using the total current (or voltage) can be calculated with equation 2:
Equation 2: $R_{\text {SET }}=\frac{140+\mathrm{B}}{22.59}\left[\frac{1.23 \mathrm{~V}}{\mathrm{~V}_{\mathrm{OUT}} / \mathrm{R}_{\mathrm{LOAD}}}\right]$
where $B$ is equal to the value of the setup (BLANK) level ( 0 , $7.5,10$ or 20 ). The total output voltage capability is 1.13 V , which is more than adequate for composite video waveforms.

In other applications where lighter loads are used, Rset can be increased, thus decreasing power dissipation since the output current is decreased. Figure 7 shows an example where this applies if a large output voltage or current swing is not needed.

## GLITCH ADJUST AND COMPENSATION

Glitch adjust and compensation are optional functions that can be used to improve dynamic performance. Glitch adjust is an external adjustment of the logic threshhold in the DAC switches to skew the speed in order to get an output glitch energy below the data sheet specification. This can be done with a resistive pot in conjunction with pin 20 and $\mathrm{V}_{\mathrm{ee}}$ as shown in Figure 2. Adjust the pot for minimum output glitch when the input code is toggling between 01111111 and 10000000; the code transition which normally causes the largest glitch.

Compensation is accomplished by connecting a $.01 \mu \mathrm{~F}$ capacitor to pin 15. Actually this is a decoupling capacitor connected internally to the DAC biasing network. It adds more decoupling as needed if operating with a noisy supply or environment as well as decoupling internal switching noise. This is different than the AD9700, which uses the capacitor to externally compensate the voltage reference buffer amplifier. The amplifier in the HDAC97000 is internally compensated and therefore the compensation pin is used for the optional decoupling function.

## FIGURE 2 HDAC97000 TYPICAL INTERFACE CIRCUIT



Table 1 Video Control Operation (Output values for Set-up = 10 IRE and 75 Ohm standard load)'

Sync 23	Blank 2	Ref White	Bright	Data Input	Out (V) ${ }^{6}$	Out (IRE)	Description
0	0	1	1	$X X X X X X X X$	-1.071	-40	Sync Level   Blank Level
1	0	1	1	$X X X X X X X X$	-0.785	0	
1	1	0	1	$X X X X X X X X$	-0.071	100	Normal White Level
1	1	0	0	$X X X X X X X X$	0.0	110	Enhanced White Level
1	1	1	11111111	-0.071	100	Normal White Level	
1	1	1	1	1111111	0.0	110	Enhanced White Level
1	1	1	0	00000000	-0.7085	10	Normal Black Level
1	1						

## Notes:

1. All Video Controls are active-Low (negative true) logic.
2. Sync and Blank output levels are dependent on set-up level selected. Values indicated are set-up $=10$ IRE set-up select connected through a 1 K Ohm resistor to $\mathrm{V}_{\mathrm{EE}}$.
3. Sync level requires that both Sync and Blank $=0$.
4. 140 IRE $=1.00$ Volt.
5. All control values are subject to tolerance of $\pm 5 \%$ Gray Scale.
6. Analog output values shown are based on a step size of 2.5 mV per LSB (used for ease of calibration). This causes the Gray Scale output to be 637.5 mV rather than 643 mV in the idealized video output waveform. Both values are within the tolerances of RS-343-A.

Table 2 Set-up Select

Set-up Control Input	Sot-up Level
0 Volts (GND)	0 IRE
Not Connected	7.5 IRE
$1 K$ Onm to $-5.2 V$ (VEE)	10 IRE
-5.2 Volts (VEE)	20 IRE

FIGURE 3 VIDEO OUTPUT WAVEFORM FOR STANDARD LOAD \& 10 IRE SET-UP


FIGURE 4 EQUIVALENT INPUT CIRCUIT, DATA, CLOCK, \& CONTROL


FIGURE 5 DAC OUTPUT CIRCUIT


HDAC97000


## HDAC97000 AS A STANDARD DIA CONVERTER

The HDAC97000 is primarily designed to be used in composite video applications, but with its inherent speed, it can also be utilized in other applications requiring up to 200 MegaWords Per Second update rate.

When implemented as a standard DAC, some of the video control inputs should be connected to ground through a diode as indicated in Figure 7 (opposite page). Composite Sync and Blank as well as Reference White are connected in this manner (pin 16, 17 and 18). The set-up pin (21) is tied directly to ground and the $10 \%$ Bright pin (19) is left open. If 8 -bits of resolution are not necessary, the unused inputs should be tied to ground through a diode to prevent an output offset voltage.

## HDAC97000 IN A SINGLE + 5V TTL LOGIC SYSTEM

The HDAC97000 is primarily designed for ECL logic systems which perform better in high-speed applications, but the DAC can be configured for TTL levels as shown in Figure 8 (opposite page). It can be used in systems that only have a +5 V power supply available for the DAC. If any of the data inputs, Composite Blank and Sync or Reference White are not used, they should still be tied up to +5 V as shown. If the $10 \%$ Bright is not used, it should be grounded or left open. Also, note the different set-up conditions as well as the pull-ups on the output.


FIGURE 8 TTL.COMPATIBLE HDAC97000



## PIN FUNCTIONS

## NAME

$V_{C C D}$
$V_{E E}$
D1
D2
D3
D4
D5
D6
D7
D8
CLOCK
OUT
${ }^{\prime}$ SET COMP
REF WH
COMP SYNC
COMP BLANK
10\% BRIGHT
GL ADJ
SET-UP
$V_{\text {CCA }}$

## FUNCTION

Positive Digital Supply
Negative Supply Voltage
Data Input Bit 1 (MSB)
Data Input Bit 2
Data Input Bit 3
Data Input Bit 4
Data Input Bit 5
Data Input Bit 6
Data Input Bit 7
Data Input Bit 8 (LSB)
Conversion Clock Input
Analog Video Output
Reference Current Set
Decoupling Capacitor Connection
Reference White Input
Composite Video Sync Input
Composite Video Blank Input
$+10 \%$ Bright Input
Glitch Adjust Connection
Video Set-Up Select
Positive Analog Supply

NOTES:

## SIGNAL <br> PROCESSING TECHNOLOGIES

## HIGH SPEED 8-BIT VIDEO DAC WITH 512 X 8 MEMORY

PRELIMINARY INFORMATION

## FEATURES

- Large 512 X 8 Lookup Table
-125 MWPS Conversion Rate
-Fully Parallel Bidirectional Data 1/O
-DAC Output Rise/Fall Time <1 ns
- Single Power Supply
-RS-343-A Compatible Video Levels


## GENERAL DESCRIPTION

The HDAM51100 is a monolithic high performance 8 -bit digital to analog converter that includes a $512 \times 8$ RAM (color lookup palette), a precision bandgap reference, registers, bus interface logic, parallel bidirectional data I/O, and is capable of directly driving doubly-terminated 50 or 75 Ohm loads to RS-343-A video levels. The onchip memory allows 512 of the 16.7 million possible

## APPLICATIONS

-High Resolution Color or Monochrome Displays
-CAT, PET, MR Imaging Displays
-CAD/CAE Workstations
-High-Speed D/A Conversion
-Waveform Generators
-Automated Test Equipment
-ECM
colors to be simultaneously displayed in an RGB format. The complete palette can be updated with a new set of 512 colors during the vertical retrace interval, even at $70-$ 90 Hz refresh rates. The memory data is available on the bidirectional data I/O port. Video controls are fully synchronous with the pixel data. SYNC and BRIGHT controls are available as an option. The standard set-up level is OIRE with 7.5 IRE available as an option.

## BLOCK DIAGRAM



## ABSOLUTE MAXIMUM RATINGS (Beyond which damage may occur) ${ }^{1} \mathbf{2 5}^{\circ} \mathrm{C}$

## Supply Voltages

Positive Supply Voltage (VCC to VEE)............ 6.0 to -0.5V
Negative Supply Voltage (VEE to VCC).......... -6.0 to +0.5 V Ground Voltage Differential (VCCA to VCCD). +0.5 to -0.5 V
VEEA to VEED Differential. $\qquad$ +0.5 to -0.5 V

Input Voltages
Data, Controls (ECL, measured to VCCD).....+0.5 to VEED

Output
Applied Voltage $\qquad$ VEE-0.5V to VCC +3.5 V

Temperature
Temperature, ambient. $\qquad$ -60 to $+140^{\circ} \mathrm{C}$
junction
$+150^{\circ} \mathrm{C}$
Lead Temperature (soldering 10 seconds)... $300^{\circ} \mathrm{C}$
Storage Temperature. $\qquad$ -65 to $+150^{\circ} \mathrm{C}$

## Notes:

1. Operation at any Absolute Maximum Rating is not implied. See Electrical Specifications for proper nominal applied conditions in typical applications.

## ELECTRICAL CHARACTERISTICS

COMMERCIAL TEMPERATURE RANGE
Fig. 1, $\mathrm{VCCA}=\mathrm{VCCD}=0.0 \mathrm{~V}, \mathrm{VEEA}=\mathrm{VEED}=-5.2 \pm 0.3 \mathrm{~V}, \mathrm{TA}=25^{\circ} \mathrm{C}, \mathrm{CC}=0 \mathrm{pF}$. ISET $=1.792 \mathrm{~mA}$, unless otherwise specified.

DC ELECTRICAL	TEST	TEST	ROOM $+25^{\circ} \mathrm{C}$	$\begin{aligned} & \text { HOT } \\ & +70^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { COLD } \\ & 0^{\circ} \mathrm{C} \end{aligned}$	
CHARACTERISTICS	CONDITIONS	LEVEL	MIN TYP MAX	MIN MAX	MIN MAX	UNITS

DAC CHARACTERISTICS

Resolution		1	$8 \quad 8$			Bits
Integral Linearity	$\begin{gathered} 1.2 \mathrm{~mA} \leq I S E T \\ \leq 1.8 \mathrm{~mA} \end{gathered}$	1	$\begin{array}{lll} -0.2 & \pm 0.1+0.2 \\ -1 / 2 & \pm 1 / 4+1 / 2 \end{array}$			$\begin{array}{\|l} \text { \% Grey Scale } \\ \text { LSB } \end{array}$
Integral Linearity Tempco		V				ppm $/{ }^{\circ} \mathrm{C}$
Differential Linearity	$\begin{gathered} 1.2 \mathrm{~mA} \leq 1 \mathrm{SET} \\ \leq 1.8 \mathrm{~mA} \end{gathered}$	1	$\begin{array}{lll} -0.2 & \pm 0.1+0.2 \\ -1 / 2 & \pm 1 / 4+1 / 2 \end{array}$			$\begin{aligned} & \text { \% Grey Scale } \\ & \text { LSB } \end{aligned}$
Differential Linearity Tempco		V				ppm/ $/{ }^{\circ} \mathrm{C}$
Gain Error	(Excluding   Reference)	1	$-5 \quad+5$			\% Grey Scale
Gain Error Tempco		V	$\pm 150$			ppm/ $/{ }^{\circ} \mathrm{C}$
Offset Current, Outputs, IOS		1	$5 \quad 15$			$\mu \mathrm{A}$
Full Scale Current, Outputs, IFS	Adjusted for Gain and Offset	1	28.56			mA
Blank Current, Out +	Adjusted for Gain and Offset	1	0			mA

COMMERCIAL TEMPERATURE RANGE
Fig. 1, $\mathrm{VCCA}=\mathrm{VCCD}=0.0 \mathrm{~V}$, VEEA $=\mathrm{VEED}=-5.2 \pm 0.3 \mathrm{~V}, \mathrm{TA}=25^{\circ} \mathrm{C}, \mathrm{CC}=0 \mathrm{PF}$. ISET $=1.792 \mathrm{~mA}$, unless otherwise specified.

DC ELECTRICAL CHARACTERISTICS	TEST CONDITIONS	TEST	$\begin{gathered} \text { ROOM } \\ \text { MIN }+25^{\circ} \mathrm{C} \text { TYP MAX } \end{gathered}$	$\begin{gathered} \text { HOT } \\ +70^{\circ} \mathrm{C} \\ \operatorname{MiN}^{\text {MAX }} \end{gathered}$	$\begin{aligned} & \text { COLD } \\ & 0^{\circ} \mathrm{C} \end{aligned}$   MIN MAX	UNITS

DAC CHARACTERISTICS (Cont.)

Blank Current, Out -	Adjusted for Gain and Offset	1	28.56		mA
Maximum Allowable Current, Outputs	ISET is User Defined	IV	30	30	mA
Compliance Voltage, Outputs		IV	$-1.5+1.5$		V
Output Resistance	$R \mathrm{~L}=\infty$	1	20		$K \Omega$
Output Capacitance	$C L=0$	v	10		pF
Power Supply Sensitivity	$\frac{\Delta \mathrm{IFS}}{\Delta \mathrm{VEE}}$	1	$\pm 120$		$\mu \mathrm{AV}$

## REFERENCE CHARACTERISTICS

Bandgap Voltage	IREF $=-50 \mu \mathrm{~A}$	I	1.17	1.29		
Bandgap Output Current, IREF		I		50		V
Bandgap Tempco	IREF $=-10 \mu \mathrm{~A}$	V	$\pm 100$		$\mu \mathrm{~A}$	
Common Mode Range   REF IN, ISET Pins	$\mathrm{VCCA}=0$   VEEA $=-5.2$	IV	-2.45	-0.275		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Input Capacitance   REF IN, ISET Pins		V	5			V
Input Current, REF IN		V	3		pF	
Input Current, ISET		IV		1.80	1.80	

DIGITAL CONTROL CHARACTERISTICS

Input Voltage, Logic Low   Address, Controls, Data	MECL 10K/10KH   Compatible	II	-1.95	-1.63	-1.95	-1.60	-1.95	-1.63	$V$
Input Voltage, Logic High   Address, Controls, Data	MECL 10K/10KH   Compatible	II	-0.98	-0.81	-0.92	-0.74	-1.02	-0.84	V

COMMERCIAL TEMPERATURE RANGE
Fig. 1, $\mathrm{VCCA}=\mathrm{VCCD}=0.0 \mathrm{~V}$, VEEA $=\mathrm{VEED}=-5.2 \pm 0.3 \mathrm{~V}, \mathrm{TA}=25^{\circ} \mathrm{C}, \mathrm{CC}=0 \mathrm{PF}$. $\operatorname{ISET}=1.792 \mathrm{~mA}$, unless otherwise specified.

		ROOM	HOT	COLD		
DC ELECTRICAL			TEST	$+25^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$   CHARACTERISTICS

DIGITAL CONTROL CHARACTERISTICS (Contd.)

Input Current, Logic Low Address, Controls, Data		1	60			$\mu \mathrm{A}$
Input Current, Logic High Address, Controls, Data		1	120			$\mu \mathrm{A}$
Input Resistance, Address, Controls, Data	to VEED	V	50			$\mathrm{K} \Omega$
Input Capacitance, Address, Controls		V	3			pF
Input Capacitance, Data		V	5			pF
Differential Range, CONVert, CONVert	MECL 10K/10KH Compatible	1	0.41 .2			V
Common Mode Range, VCCM CONVert, CONVert	$\begin{gathered} \mathrm{VCCD}=0 \\ \mathrm{VEED}=-5.2 \end{gathered}$	1	-2.45 -0.5			V
Input Current, CONVert, CONVert	$\mathrm{V}=\mathrm{VCCM}$	1	60			$\mu \mathrm{A}$
Input Capacitance, CONVert, CONVert		V	3			pF
Output Voltage, Logic Low Data			-1.95 -1.63	-1.95 -1.60	-1.95 -1.63	V
Output Voltage, Logic High Data			-0.98 -0.81	-0.92 -0.74	-1.02 -0.84	V
Output Current Data		IV	11	11	11	mA

## POWER SUPPLY CHARACTERISTICS

Supply Current, IEEA		1	56	60		
Supply Current, IEED		1	660	790		mA
Differential Voltage   VCCA to VCCD, VEEA to VEED		IV	-0.1	+0.1		mA
						V

## ELECTRICAL CHARACTERISTICS

COMMERCIAL TEMPERATURE RANGE
Fig. $1, \mathrm{VCCA}=\mathrm{VCCD}=0.0 \mathrm{~V}, \mathrm{VEEA}=\mathrm{VEED}=-5.2 \pm 0.3 \mathrm{~V}, \mathrm{TA}=25^{\circ} \mathrm{C}, \mathrm{CC}=0 \mathrm{pF}$. ISET $=1.792 \mathrm{~mA}$, unless otherwise specified.

AC ELECTRICAL CHARACTERISTICS	TEST CONDITIONS	TEST LEVEL	$\begin{gathered} \text { ROOM } \\ +25^{\circ} \mathrm{C} \\ \text { MIN } \mathrm{TYP} \text { MAX } \end{gathered}$	$\begin{aligned} & \text { HOT } \\ & +70^{\circ} \mathrm{C} \end{aligned}$   MIN MAX	$\begin{aligned} & \text { COLD } \\ & 0^{\circ} \mathrm{C} \\ & \text { MIN MAX } \end{aligned}$	UNITS

DAC CHARACTERISTICS (SEE TIMING DIAGRAMS A, D)

Maximum Update Rate, FS		1	125			MHz
Rise/Fall Times, Outputs	10\% to 90\% G.S.	1	1			ns
Rise/Fall Times, Outputs	$10 \%$ to $90 \%$ G.S. $\mathrm{RL}=37.5 \Omega$	IV	1.5			ns
Slew Rate, Outputs		1	525			$\mathrm{V} / \mu \mathrm{S}$
Settling Time, Clocked Mode, Outputs, TSI	Full Scale Transition to 0.2\%		3.0			ns
Settling Time, Clocked Mode, Outputs	Full Scale Transition to 0.8\%	IV	2.2			ns
Settling Time, Clocked Mode, Outputs	Full Scale Transition to 3.2\%	IV	1.6			ns
Clock to Output Delay, TDOC		1	$3.25 \quad 4.25$			ns
Clock to Output Latency Clocked Mode		1	22			cycles
Blank to Output Latency Clocked Mode		1	22			cycles
Address Output Delay, Transparent Mode, TDOT		V	18.5			ns
Feed Through, Clock, Controls, Data		1	-42			dB
Peak Glitch, VGL	1 LSB Transition at midscale	V	2.8			mV
Glitch Energy (1/2 VGL \& Time)	1 LSB Transition at midscale	V	3			pV-s

## REFERENCE CHARACTERISTICS

Amplifier Bandwidth, -3dB		V	1			MHz

COMMERCIAL TEMPERATURE RANGE
Fig. 1, $V C C A=V C C D=0.0 \mathrm{~V}, \mathrm{VEEA}=\mathrm{VEED}=-5.2 \pm 0.3 \mathrm{~V}, \mathrm{TA}=25^{\circ} \mathrm{C}, \mathrm{CC}=0 \mathrm{PF}$. ISET $=1.792 \mathrm{~mA}$, unless otherwise specified.

AC ELECTRICAL CHARACTERISTICS	TEST CONDITIONS	TEST LEVEL	$\begin{gathered} \text { ROOM } \\ +25^{\circ} \mathrm{C} \\ \text { MIN } \mathrm{TYP} \text { MAX } \end{gathered}$	$\begin{gathered} \text { HOT } \\ +70^{\circ} \mathrm{C} \\ \text { MIN MAX } \end{gathered}$	$\begin{aligned} & \text { COLD } \\ & 0^{\circ} \mathrm{C} \\ & \text { MIN MAX } \end{aligned}$	UNITS

DIGITAL CONTROL CHARACTERISTICS (See Timing Dlagrams A, B, C)

Maximum Clock Cycle CONVert, CONVert, 1/FS	1	8			ns
Pulse Width, High CONVert, CONVert, TPWH		2.5			ns
Pulse Width, Low CONVert, CONVert, TPWL		2.5			ns
Set-up Time, Address, Controls, TSAC	1	2.5			ns
Hold Time, Address, Controls, THAC	1	1			ns
Set-up Time, Write, Address Latched to R/ $\bar{W}$, TSCW	1	8			ns
Hold Time, Write, Address Latched to R/ $\bar{W}$, THCW		1			ns
Pulse Width, Write, R/W, TPWW		5.5			ns
Set-up Time, Write, WREN to R/W, TSEW	IV	0			ns
Hold Time, Write, $\overline{\text { WREN }}$ to $\mathrm{R} / \overline{\mathrm{W}}$, THEW	IV	0			ns
Set-up Time, Write, Data to R/W Low, TSDW		2.5			ns
Hold Time, Write, Data to R/W High, THDW		1			ns
Set-up Time, Write, OE/IE Low to Data, TSID	IV	2.5			ns
Set-up Time, Read, R/W, WREN High to Clock, TSR	IV	2.5			ns
Set-up Time, Read, OE/IE High to Clock, TSO	IV	2.5			ns
Data Delay, Read, Clock to Data, TDD	IV	12			ns

## ELECTRICAL CHARACTERISTICS TESTING

All electrical characteristics are subject to the following conditions:

All parameters having Min./Max. specifications are guaranteed. The Test Level column indicates the specific device testing actually performed during production and Quality Assurance inspection. Any blank sections in the data columns indicates that the specification is not tested at the specified condition.

Unless otherwise noted, all tests performed after a 3 minute power soak.

TEST LEVEL TEST PROCEDURE

1

II

III

IV

V
$100 \%$ production tested at the specified temperatures.
$100 \%$ production tested at $\mathrm{Ta}=$ $25^{\circ} \mathrm{C}$, and sample tested at the specified temperatures.

QA sample tested only at the specified temperatures.

Parameter is guaranteed (but not tested) by design and characterization data.

Parameter is a typical value for information purposes only.

## FUNCTIONAL DESCRIPTION

The HDAM51100 is a 125 MWPS raster graphics subsystem that includes a $512 \times 8$ color lookup palette, 8-bit DAC, a precision bandgap reference, registers, bus interface logic and a parallel bidirectional data I/O port. Refer to Timing Diagrams for system timing.

## COLOR LOOKUP TABLE

Pixel color data is applied to the RAM address register through the address lines A0-A8. This address is used to "lookup" one of the possible 512 intensities stored in the RAM through the bidirectional data port, lines D1-D8. The address register is latched on the rising edge of CONVert (the falling edge of $\overline{C O N V e r t})$. The addressed intensity data from the RAM is latched into the data register on the next rising edge and latched into the DAC register on the next rising clock edge, which applies it to the DAC output. This results in the RAM data appearing at the DAC output two clock cycles after it is latched into the address register. If the Feedthrough (FT) control is asserted, the address is applied to the RAM and the intensity is applied to the DAC asynchronously with respect to CONVert. In either case, reading data out of the RAM requires that the Read/Write (R/W) or Write $\overline{\text { Enable (WREN) pin be asserted high. }}$

## DATA I/O

When the Output Enable/Input Enable (OE/IE) pin, the R/W pin and the WREN pin are asserted low, the 8-bit intensity word applied to the 8-bit data I/O bus (D1 is the MSB) is written into the RAM at the address latched into address register from the address bus, pins A0-A8.

When the OE/IE pin and the $R / \bar{W}$ or $\overline{W R E N}$ pin are asserted high, the 8-bit intensity word from the RAM at the address latched into the address register appears on the 8 -bit data I/O bus and is available to be read by circuitry external to the chip. The data I/O bus can drive ECL loads of $120 \Omega$ to -2 V .

## VIDEO CONTROL

The BLANK control, when asserted high, forces the DAC output to the blank (OIRE, black) level irrespective of the digital word applied to the DAC (Refer to Figure 2). It has the same latency as the lookup table data.

## VOLTAGE REFERENCE

A precision bandgap voltage reference capable of driving two additional HDAM51100's is included on chip to im-
prove performance and reduce the number of necessary external components.

## DAC

The DAC differential outputs provide R3-343-A compatible video levels for $1.1 \mathrm{~mA} \leq I S E T \leq 1.8 \mathrm{~mA}$ and a load of 25 to 37.5 Ohms. OUT- provides standard video levels (blank down) and OUT+ provides inverse video (blank up) with respect to VCCA.

OUT- is negative true logic; full scale output for all zeros from the RAM. OUT+ is positive true logic; full scale for all ones from the RAM. Refer to Figure 2 for a description of data and video controls.

Glitches are a major problem in high speed raster graphics applications. The DAC in the HDAM51100 is designed to minimize any differences in switching times of the different bits. Registering the data prior to applying it to the DAC insures that all of the data bits arrive at the same time further reducing the possibility of glitches.

## LOGIC LEVELS

The HDAM51100 is compatable with ECL logic when powered by a -5.2 V supply.

## TYPICAL APPLICATION CIRCUIT

Figure 1 illustrates a typical application circuit for a single HDAM51100. This circuit shows how to terminate the video DAC's output using either a 50 or a 75 Ohm load and how to set the voltage reference. The internal bandgap reference or an external reference voltage can be used.

The output of the DAC is proportional to the reference voltage divided by the sum of resistors R1 and R2. The equation for the DAC full scale voltage is:

$$
\operatorname{VOUT}(\text { F.S. })=\frac{\text { VREF }}{\alpha \text { TR1 }+ \text { R2 }} \quad(15.9375) \text { RL where: }
$$

> VREF is the reference voltage
> $\alpha$ TR1 is the useable portion of R1
> RL is the total load on the output

OUT- is negative true logic; full scale output for all zeros input. OUT+ is the opposite; full scale output for all ones input.

In a multiple DAC application such as an RGB graphics system, the color displayed is determined by the combined intensities of the red, green and blue (RGB) DAC outputs. A change in gain or an offset in any of the RGB outputs will affect the apparent hue displayed on the CRT screen. For this reason, it is important for the outputs of all three DAC's to track each other over the entire range of operating conditions. Since the DAC output is portional to the reference current (ISET) and the digital input code, using a single reference to drive all three DACs will minimize any mismatch between them even if the reference drifts.

Figure 3 illustrates a circuit that slaves all three DACs from the reference of the "master" DAC. All of the DAC's have a common reference adjustment. This is the simplest reference arrangement and eliminates the need for individual calibration of each DAC during production assembly. The HDAM51100 contains an internal precision bandgap reference which completely eliminates the need for an external reference in most applications. The reference output on a HDAM51100
can supply enough current to drive itself and two additional HDAM51100's.

Figure 4 is a variation on Figure 3 in which one common reference is used but each DAC has it's own individual adjustment.

If it is desireable to use an external reference, the HDAM51100 can easily accomodate this as shown in Figure 5.

As with any high performance, high frequency device, care must be taken when laying out the connecting circuitry. All leads must be kept as short as possible. Power supply decoupling must occur at the IC pins using low inductance ceramic capacitors. Care must be taken to isolate the analog and digital grounds. If the DAC output or data and control lines are routed any appreciable distance on the PC board, transmission line techniques such as stripline or microstrip should be used. Place the three parts near each other, as well as the reference adjustment circuitry, on the board to minimize mismatch due to thermal gradients.

## TIMING DIAGRAMS


timing diagram a - DAC READ


NOTE: MULTIPLE CONVERT PULSES ARE ALLOWABLE DURING WRITE CYCLES IF ADDRESS AND DATA ARE UNCHANGED.

INPUTS - DON'T CARE
OUTPUTS - UNDEFINED

TIMING DIAGRAM B - RAM WRITE


## TIMING DIAGRAM C - RAM READ




FIGURE 1: TYPICAL APPLICATIONS CIRCUIT


FIGURE 2: VIDEO OUTPUT WAVEFORM FOR STANDARD LOAD


FIGURE 3: RGB SYSTEM USING A COMMON DAC REFERENCE AND COMMON REFERENCE ADJUSTMENT


FIGURE 4: RGB SYSTEM USING A COMMON DAC REFERENCE AND INDIVIDUAL REFERENCE ADJUSTMENT


FIGURE 5: RGB SYSTEM USING AN EXTERNAL REFERENCE AND COMMON REFERENCE ADJUSTMENT


FIGURE 6: 680XO RGB SYSTEM BLOCK DIAGRAM


FIGURE 7: EQUIVALENT INPUT CIRCUITS - CLOCK, DATA AND ADDRESS/CONTROLS


FIGURE 8: EQUIVALENT CIRCUITS - DAC AND REFERENCE AMPLIFIER

COLUMN	ROW	PIN NAME	COLUMN	Row	PIN NAME
A	1	VCCD	E	2	A3
A	2	VEED	E	8	VEED
A	3	D8 (LSB)	E	9	VEEA
A	4	D7			
A	5	D6	F	1	A5
A	6	D5	F	2	A6
A	7	D4	F	8	OUT-
A	8	D3	F	9	*VCCA
A	9	D1 (MSB)			
			G	1	A7
B	1	VCCD	G	2	VEED
B	2	VEED	G	8	VCCA
B	8	D2	G	9	OUT+
B	9	VCCD			
c					
C	2	VCCD	H	2	CONV
C	8	VCCD	H	8	COMP
C	9	OEIIE-DATA INPUT/ OUTPUT SELECT	H	9	*VCCA
			J	1	VEED
D	1	A2	$J$	2	CONV
D	2	A1	$J$	3	FT
D	8	RWW-DATA READ/	$J$	4	VCCD
		WRITE SELECT	$J$	5	BLANK
D	9	WREN-DATA WRITE	$J$	6	-VCCA
		ENABLE	$J$	7	REFOUT
			J	8	REFIN
E	1	A4	J	9	ISET

HDAM51100 PACKAGING INFORMATION 46 PIN GRID ARRAY
notes:
*NO INTERNAL CONNECTION - CONNECT TO VCCA FOR INTERELECTRODE SHIELDING


Bottom View
**For Ordering Information See Section 1.

ANALOG TO DIGITAL CONVERTERS

DIGITAL TO ANALOG CONVERTERS

COMPARATORS

```
INSTRUMENTATION AMPLIFIERS
```

SPECIAL FUNCTIONS

EVALUATION BOARDS

## QUALITY ASSURANCE

PACKAGE OUTLINES

## SIGNAL <br> PROCESSING TECHNOLOGIES

## SINGLE ULTRA FAST VOLTAGE COMPARATOR

## FEATURES

- Propagation Delay < 2.5ns
- Propagation Delay Skew < 300ps
- 100MHz Minimum Tracking Bandwidth
- Low Offset $\pm 1 \mathrm{mV}$
- Low Feedthrough
- Latch Control


## APPLICATIONS

- High Speed Instrumentation, ATE
- High Speed Timing
- Window Comparators
- Line Receivers
- A/D Conversion
- Threshold Detection

Improvements over other sources include reduced power consumption, reduced propagation delays, and higher input impedance.

The HCMP96850 is available in 16 Lead DIP, or in die form.

The HCMP96850 is a single, very high speed, monolithic comparator. It is pin-compatible with, and has improved performance over Plessey's SP9685 and AMD's AM6685. The HCMP96850 is designed for use in Automatic Test Equipment (ATE), high speed instrumentation, and other high speed comparator applications.

## BLOCK DIAGRAM

HCMP96850 HIGH SPEED COMPARATOR


## Supply Voltages

Positive Supply Voltage (Vcc measured to GND)
-0.5 to +6.0 V
Negative Supply Voltage (VEE to GND) ... - -6.0 to +0.5 V
Ground Voltage Differential . . . . . . . . . -0.5 to +0.5 V

## Input Voltages



## Output

Output Current
30 mA

## Temperature

Operating Temperature, ambient $\ldots . .-55$ to $+125^{\circ} \mathrm{C}$
junction . . . . . . . . . . . $+150^{\circ} \mathrm{C}$
Lead Temperature, (soldering 60 seconds) $\ldots+300^{\circ} \mathrm{C}$
Storage Temperature
-65 to $+150^{\circ} \mathrm{C}$

## Notes:

1. Operation at any Absolute Maximum Rating is not implied. See Electrical Specifications for proper nominal applied conditions in typical applications.

INDUSTRIAL TEMPERATURE RANGE

INDUTRIAL TEMPERATURE RANGE								
PARAMETER	TEST   CONDITIONS	TEST   LEVEL	MIN	TYP	MAX	UNITS		

## DC ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\mathrm{R}_{\text {S }}=00 \mathrm{Ohms}$	1	-3	+3	mV
$\mathrm{v}_{\text {OS }}$	Input Offset Voltage	$\begin{aligned} & R_{S}=0 \text { Ohms }, \\ & T_{M I N}<T_{A}< \\ & T_{M A X} \end{aligned}$	IV	-3.5	+3.5	mV
$\Delta \mathrm{V}_{\mathrm{OS}} / \Delta \mathrm{T}$	Offset Voltage Tempco		V	4		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
${ }_{\text {BIAS }}$	Input Bias Current		1	4	$\pm 20$	$\mu \mathrm{A}$
${ }^{\text {BIAS }}$	Input Bias Current	$\begin{aligned} & T_{\text {MIN }}<T_{A}< \\ & T_{M_{A X}} \end{aligned}$	IV	7		$\mu \mathrm{A}$
${ }_{\text {l }} \mathrm{S}$	Input Offset Current		1	-1.0	+1.0	$\mu \mathrm{A}$
'os	Input Offset Current	$\begin{aligned} & T_{\text {MIN }}<T_{A}< \\ & T_{M A X^{2}} \\ & \hline \end{aligned}$	IV	-1.3	+1.3	$\mu \mathrm{A}$
${ }^{\text {I CC }}$	Positive Supply Current		1	3.3	5	mA
${ }^{\text {E E }}$	Negative Supply Current		1	13.5	18	mA
$\mathrm{V}_{\mathrm{CM}}$	Common Mode Range		1	-2.5	+2.5	$\checkmark$
$\mathrm{A}_{\mathrm{VOL}}$	Open Loop Gain		V	4000		$\mathrm{V} / \mathrm{V}$
$\mathrm{R}_{\text {IN }}$	Input Resistance		V	60		KOhms
$\mathrm{CIN}_{\text {IN }}$	Input Capacitance		V	3		pF
$\mathrm{CIN}_{\text {IN }}$	Input Capacitance	(LCC Package)	V	1		pF
PSS	Power Supply Sensitivity		1	70		dB
CMRR	Common Mode Rejection Ratio		1	80		dB
$\mathrm{P}_{\mathrm{D}}$	Power Dissipation Single		1		125	mW

OUTPUT LOGIC LEVELS (ECL 10KH Compatible)

$\mathrm{V}_{\mathrm{OH}}$	Output High	50 Ohms to -2 V	1	-.98	-.81	V
$\mathrm{~V}_{\mathrm{OL}}$	Output Low	50 Ohms to -2 V	1	-1.95	-1.63	V
$4-4$			Honeywell			


\section*{PARAMETER <br> | TEST |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| CONDITIONS | TEST | LEVEL | MIN | TYP | MAX | UNITS}

AC ELECTRICAL CHARACTERISTICS
$T_{A}{ }^{25}{ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm .25 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \pm .3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \mathrm{Ohms}$ (Unless otherwise specified)

$\mathrm{t}_{\mathrm{p}}$	Propagation Delay	10 mV O.D.	I	2.4	3
$\mathrm{t}_{\mathrm{S}}$	Latch Set-up Time		ns		
$\mathrm{t}_{\mathrm{p}}(\mathrm{E})$	Latch to Output Delay	50 mV O.D.		0.6	ns
$\mathrm{t}_{\mathrm{PW}}(\mathrm{E})$	Latch Pulse Width		3	ns	
$\mathrm{t}_{\mathrm{H}}(\mathrm{E})$	Latch Hold Time			0	ns
$\mathrm{t}_{\mathrm{r}}$	Rise Time	$20 \%$ to $80 \%$		ns	
$\mathrm{t}_{\mathrm{f}}$	Fall Time	$20 \%$ to $80 \%$		1.76	ns
$\mathrm{f}_{\mathrm{C}}$	Min Clock Rate			1.76	ns

Notes:

1. 100 mV input step.
2. Temperature Range -25 to $+85^{\circ} \mathrm{C}$

## MILITARY TEMPERATURE RANGE

PARAMETER	TEST   CONDITIONS	TEST   LEVEL	MIN	TYP	MAX	UNITS

DC ELECTRICAL CHARACTERISTICS
$T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm .25 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \pm .3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \mathrm{Ohms}$ (Unless otherwise specified)

$\mathrm{V}_{\mathrm{OS}}$	Input Offset Voltage	$\mathrm{R}_{\text {S }}=00 \mathrm{hms}$	1	-3		+3	mV
$v_{\text {OS }}$	Input Offset Voltage	$\begin{aligned} & R_{S}=0 \text { Ohms, } \\ & T_{\text {MIN }}<T_{A}< \\ & T_{M A X} \end{aligned}$	1	-4		+4	mV
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$	Offset Voltage Tempco		V		4		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
${ }_{\text {IBIAS }}$	Input Bias Current		1		4	$\pm 20$	$\mu \mathrm{A}$
IBIAS	Input Bias Current	$\begin{aligned} & \mathrm{T}_{\text {MIN }}<\mathrm{T}_{\mathrm{A}}< \\ & \mathrm{T}_{\text {AAX }^{2}} \\ & \hline \end{aligned}$	1	-50	7	50	$\mu \mathrm{A}$
los	Input Offset Current		1	-1.0		+ 1.0	$\mu \mathrm{A}$
los	Input Offset Current	$\begin{aligned} & \mathrm{T}_{\text {MIN }}<\mathrm{T}_{\mathrm{A}}< \\ & \mathrm{T}_{\text {AX }^{2}} \\ & \hline \end{aligned}$	1	-7		+7	$\mu \mathrm{A}$
${ }^{\text {ICC }}$	Positive Supply Current		1		7	10	mA
$\mathrm{I}_{\mathrm{EE}}$	Negative Supply Current		1		27	36	mA
$\mathrm{V}_{\mathrm{CM}}$	Common Mode Range		1	-2.5		+2.5	V
$A_{\text {VOL }}$	Open Loop Gain		V		4000		V/V
$\mathrm{R}_{\text {IN }}$	Input Resistance		V		60		KOhms
$\mathrm{ClN}_{\text {IN }}$	Input Capacitance		V		3		pF
$\mathrm{C}_{\text {IN }}$	Input Capacitance	(LCC Package)	V		1		pF


$\begin{aligned} & \text { TEST } \\ & \text { CONDITIONS } \end{aligned}$	TEST   LEVEL	MIN	TYP	MAX	UNITS
RISTICS					
$\mathrm{V}, \mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \pm .3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50$ Ohms (Unless otherwise specified)					
Over Temp		70 58			dB
Over Temp		-80 -68			dB
-	1			125	mW

OUTPUT LOGIC LEVELS (ECL 10KH Compatible)

$\mathrm{V}_{\mathrm{OH}}$	Output High	50 Ohms to -2 V	I	-.98	-.81	V
$\mathrm{~V}_{\mathrm{OL}}$	Output Low	50 Ohms to -2 V	I	-1.95	-1.63	V

AC ELECTRICAL CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}} 25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm .25 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=5.2 \mathrm{~V} \pm .3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \mathrm{Ohms}$ (Unless otherwise specified)					
$\mathrm{t}_{\mathrm{P}}$	Propagation Delay	10 mV O.D.	l	2.4	3
$\mathrm{t}_{\mathrm{S}}$	Latch Set-up Time			ns	
$\mathrm{t}_{\mathrm{P}}(\mathrm{E})$	Latch to Output Delay	50 mV O.D.		3	ns
$\mathrm{t}_{\mathrm{PW}}(\mathrm{E})$	Latch Pulse Width			2	ns
$\mathrm{t}_{\mathrm{H}}(\mathrm{E})$	Latch Hold Time			0.5	ns
$\mathrm{t}_{\mathrm{r}}$	Rise Time	$20 \%$ to $80 \%$		ns	
$\mathrm{t}_{\mathrm{f}}$	Fall Time	$20 \%$ to $80 \%$		1.76	ns
$\mathrm{f}_{\mathrm{C}}$	Min Clock Rate		1.76	ns	

## Notes:

1. 100 mV input step.
2. Temperature Range -55 to $+125^{\circ} \mathrm{C}$

## ELECTRICAL CHARACTERISTICS TESTING

All electrical characteristics are subject to the following conditions:

All parameters having Min./Max. specifications are guaranteed. The Test Level column indicates the specific device testing actually performed during production and Quality Assurance inspection. Any blank sections in the data columns indicates that the specification is not tested at the specified condition.

Unless otherwise noted, all tests are pulsed tests, therefore $T_{j}=T_{c}=T_{a}$.
TESTLEVEL
I II
III
IV
v

IEST PROCEDURE
$100 \%$ production tested at the specified temperatures.
$100 \%$ production tested at $\mathrm{Ta}=$ $25^{\circ} \mathrm{C}$, and sample tested at the specified temperatures.

QA sample tested only at the specified temperatures.

Parameter is guaranteed (but not tested) by design and characterization data.

Parameter is a typical value for information purposes only.

## GENERAL INFORMATION

The HCMP96850 is an ultra high speed single voltage comparator. It offers tight absolute characteristics which guarantee matching from package-to-package. The device has differential analog inputs and complementary logic outputs compatible with ECL systems. The output stage is adequate for driving terminated 50 Ohm transmission lines.

The HCMP96850 has one latch enable control and can be driven by standard ECL logic. It also has two separate ground pins, one for the output to accommodate large ground currents without affecting the rest of the circuit, while the other is for the small signal intermediate stages. The input stage is referenced to $V_{c c}$ and $V_{\text {EE. }}$

This comparator offers the following improvements over existing devices:

- Short propagation delays
- Low offset voltage and temperature coefficient
- Low power
- Minimal thermal tails
- Does not oscillate

All of these features combined produce high performance products with timing stability and repeatability for large system precision.

## INTERNAL FUNCTIONAL DIAGRAM


nOTES: 1. HCMP96850 HAS SEPARATE OUTPUT AND INTERMEDIATE STAGE GROUND PINS

## TYPICAL INTERFACE CIRCUIT

A typical interface circuit using the comparator is shown in Figure 1. Although it needs few external components and is easy to apply, there are several considerations that should be noted to achieve optimal performance. The very high operating speeds of the comparator require careful layout, decoupling of supplies, and proper design of transmission lines.

Since the HCMP96850 comparator is a very high frequency and high gain device, certain layout rules must be followed to avoid spurious oscillations. The comparator should be soldered to the board with component lead lengths kept as short as possible. A ground plane should be used, while the input impedance to the part is kept as low as possible, to decrease parasitic feedback. If the output board traces are longer than approximately half an inch, microstripline techniques
must be employed to prevent ringing on the output waveform. Also, the microstriplines must be terminated at the far end with the characteristic impedance of the line to prevent reflections. The HCMP96850 is capable of driving 50 Ohm terminated lines. The termination can be directly tied to -2.0 V , or a Thevenin equivalent terminated to the negative supply if a -2.0 V supply is not available. Both supply voltage pins should be decoupled with high frequency capacitors as close to the device as possible.

All pins designated " $N / C$ ". should be soldered to ground for additional noise immunity and interelectrode shielding. All ground pins should be connected to the same ground plane.

## FIGURE 1 HCMP96850 TYPICAL INTERFACE CIRCUIT



The timing diagram for the comparator is shown in Figure 2. The latch enable (LE) pulse is shown at the top. If LE is high in the HCMP96850, the comparator tracks the input difference voltage. When LE is driven low the comparator outputs are latched into their existing logic states.

The leading edge of the input signal (which consists of 10 mV overdrive) changes the comparator output after a time of todt or $t_{\text {pot }}(Q$ or $\bar{Q}$ ). The input signal must be maintained for a time ts (set-up time) before the latch
enable falling edge and held for time $t$ after the falling edge for the comparator to accept data. After $t h$, the output ignores the input status until the latch is strobed again. A minimum latch pulse width of tpl is needed for strobe operation, and the output transitions occur after a time of tploh or tplol.

Unused outputs must be terminated with 50 Ohms to ground while unused latch enable pins should be connected directly to ground.

## FIGURE 2 TIMING DIAGRAM



## SWITCHING TERMS (refer to Figure 2)

$t_{\text {pdH }} \quad$ INPUT TO OUTPUT HIGH DELAY - The propagation delay measured from the time the input signal crosses the input offset voltage to the $50 \%$ point of an output LOW to HIGH transition.
${ }^{\prime}$ pdL INPUT TO OUTPUT LOW DELAY - The propagation delay measured from the time the input signal crosses the input offset voltage to the $50 \%$ point of an output HIGH to LOW transition.
${ }^{\prime} s$

MINIMUM HOLD TIME - The minimum time after the negative transition of the Latch Enable signal that the input signal must remain unchanged in order to be acquired and held at the outputs.
${ }^{\mathrm{t}} \mathrm{pL} \quad$ MINIMUM LATCH ENABLE PULSE WIDTH - The minimum time that the Latch Enable signal must be HIGH in order to acquire and hold an input signal change.
${ }^{1}{ }^{\mathrm{pdL}}{ }^{-1}{ }^{1} \mathrm{pdH}$ DIFFERENTIAL PROPAGATION DELAY (SKEW) IN. PUT TO OUTPUT - The delay or skew between comparators.
${ }^{t}$ pLOL ${ }^{-1}$ pLOH DIFFERENTIAL PROPAGATION DELAY (SKEW) LATCH TO OUTPUT - The skew from one comparator to another.
$v_{\text {OD }}$ VOLTAGE OVERDRIVE.

## FIGURE 3 EQUIVALENT INPUT CIRCUIT



FIGURE 4 OUTPUT CIRCUIT


FIGURE 5B AC TEST FIXTURE

notes: 1. all bnc a semi rigio coax shielo are grounded.
2. ALL RESISTORS $1 \%(50 \Omega=49.9 \Omega)$.

TRICALLENGTHS L1 $=$ L2 + LS.
4. d.U.t. pluas into a 16 pin high frequency pin
5. MONETTOR INPUT IMPEDANCE $5 O \Omega$ TO GND.
6. SEMI RIGID COAX SHIELD SHOULD BE CONNECTED AS
CLOSE TO THE DEVICE AS POSSIBLE.

FIGURE 6 HCMP96850 WITH HYSTERESIS


HYSTERESIS IS OBTAINED BY APPLYING
A DC BIAS TO THE LE PIN

## PIN FUNCTIONS



16 LEAD CERDIP

NAME
GND1
VCC

+ IN
$-\operatorname{IN}$
N/C
LE
Vee
Qout
Qout
GND2

FUNCTION
Circuit Ground
Positive Supply Voltage Non-Inverting Input Inverting Input No Connection Latch Enable Negative Supply Voltage Output Inverted Output Output Ground

NOTES:

# SIGNAL <br> PROCESSING TECHNOLOGIES 

## HCMP96870A

## DUAL ULTRA FAST VOLTAGE COMPARATOR

## FEATURES

- Propagation Delay < 2.3 ns
- Propagation Delay Skew < 300ps
- 300MHz Minimum Tracking Bandwidth
- Low Offset $\pm 1 \mathrm{mV}$
- Low Feedthrough and Crosstalk
- Differential Latch Control - Dual Version

The HCMP96870A is a dual, very high speed monolithic comparators. It is pin-compatible with, and has improved performance over Plessey's SP9687 and AMD's AM6687. The HCMP96870 is designed for use in Automatic Test Equipment (ATE), high speed instrumentation, and other high speed comparator applications.

## APPLICATIONS

- High Speed Instrumentation, ATE
- High Speed Timing
- Window Comparators
- Line Receivers
- AID Conversion
- Threshold Detection

Improvements over other sources include reduced power consumption, reduced propagation delays, and higher input impedance.

The HCMP96870A is available in 16 Lead CERDIP, 20 Contact Leadless Chip Carriers (LCC), or in die form.


ABSOLUTE MAXIMUM RATINGS (Beyond which damage may occur)' $25^{\circ} \mathrm{C}$

Supply Voltages	
Positive Supply Voltage (Vcc measured to GND)	
	-0.5 to +6.0 V
Negative Supply Voltage (VEE to GND)	-6.0 to +0.5 V
Ground Voltage Differential	-0.5 to +0.5 V
Input Voltages	
Input Voltage	-4.0 to +4.0 V
Differential Input Voltage	-5.0 to +5.0 V
Input Voltage, Latch Controls	Vee to 0.5V
Notes:	

## Supply Voltages

Positive Supply Voltage (Vcc measured to GND)
-0.5 to +6.0 V
Negative Supply Voltage (VEE to GND)
-6.0 to +0.5 V
-0.5 to +0.5 V
-4.0 to +4.0 V
Input Voltage
-5.0 to +5.0 V

## Notes:

1. Operation at any Absolute Maximum Rating is not implied. See Electrical Specifications for proper nominal applied conditions in typical applications.

INDUSTRIAL TEMPERATURE RANGE

PARAMETER	TEST   CONDITIONS	TEST   LEVEL	MIN	TYP	MAX	UNITS

## DC ELECTRICAL CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm .25 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \pm .3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50$ Ohms (Unless otherwise specified)

$V_{\text {OS }}$	Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=0$ Ohms	1	-3	+3	mV
$\mathrm{v}_{\text {OS }}$	Input Offset Voltage	$\begin{aligned} & \mathrm{R}_{\mathrm{S}}=0 \text { Ohms, } \\ & \mathrm{T}_{\mathrm{MIN}}<\mathrm{T}_{\mathrm{A}}< \\ & \mathrm{T}_{\mathrm{MAX}^{2}} \\ & \hline \end{aligned}$	IV	-3.5	+3.5	mV
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$	ffset Voltage Tempco		V	4		${ }_{\mu} \mathrm{V} /{ }^{\circ} \mathrm{C}$
${ }^{\text {BIAS }}$	Input Bias Current		1	4	$\pm 20$	$\mu \mathrm{A}$
${ }^{\text {BIAS }}$	Input Bias Current	$\begin{aligned} & \mathrm{T}_{\text {MIN }^{2}}<\mathrm{T}_{\mathrm{A}}< \\ & \mathrm{MAX}^{2} \end{aligned}$	IV	7		$\mu \mathrm{A}$
Ios	Input Offset Current		1	-1.0	+1.0	$\mu \mathrm{A}$
Ios	Input Offset Current	$\begin{aligned} & T_{M I N}<T_{A}< \\ & T_{M A X} \\ & \hline \end{aligned}$	IV	-1.3	+1.3	$\mu \mathrm{A}$
${ }^{\text {l }} \mathrm{C}$	Positive Supply Current		1	3.3	5	mA
$\mathrm{I}_{\text {EE }}$	Negative Supply Current		1	13.5	18	mA
$\mathrm{V}_{\mathrm{CM}}$	Common Mode Range		1	-2.5	+2.5	V
$A_{\text {VOL }}$	Open Loop Gain		V	4000		$\mathrm{V} / \mathrm{V}$
$\mathrm{R}_{\text {IN }}$	Input Resistance		V	60		KOhms
$\mathrm{Cl}_{1 \mathrm{~N}}$	Input Capacitance		V	3		pF
$\mathrm{CIN}_{\text {IN }}$	Input Capacitance	(LCC Package)	v	1		pF
PSS	Power Supply Sensitivity		1	70		dB
CMRR	Common Mode Rejection Ratio		1	80		dB
$P_{\text {D }}$	Power Dissipation Dual		1		250	mW

OUTPUT LOGIC LEVELS (ECL 10KH Compatible)

$\mathrm{V}_{\mathrm{OH}}$	Output High	50 Ohms to -2 V	I	-.98	-.81	V
$\mathrm{~V}_{\mathrm{OL}}$	Output Low	50 Ohms to -2 V	I	-1.95	-1.63	V


| PARAMETER | TEST <br> CONDITIONS | TEST <br> LEVEL | MIN | TYP | MAX |
| :--- | :--- | :---: | :---: | :---: | :---: | UNITS

## Notes:

1. 100 mV input step.
2. Temperature Range -25 to $+85^{\circ} \mathrm{C}$

## MILITARY TEMPERATURE RANGE

| PARAMETER | TEST <br> CONDITIONS | LEST | LEVEL | MIN | TYP | MAX |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | UNITS | TA |
| :--- |

## DC ELECTRICAL CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm .25 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \pm .3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50$ Ohms (Unless otherwise specified)

$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=0$ Ohms	1	-3		+3	mV
$\mathrm{v}_{\text {OS }}$	Input Offset Voltage	$\begin{aligned} & R_{S}=0 \text { Ohms }, \\ & T_{\text {MIN }}<T_{A}< \\ & T_{M_{M X}} \\ & \hline \end{aligned}$	1	-4		+4	mV
$\Delta V_{\text {OS }} / \Delta T$	Offset Voltage Tempco		V		4		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
IBIAS	Input Bias Current		1		4	$\pm 20$	${ }_{\mu \mathrm{A}}$
'BIȦS	Input Bias Current	$\begin{aligned} & T_{M I N}<T_{A}< \\ & T_{M A X^{2}} \end{aligned}$	1	-50	7	50	$\mu \mathrm{A}$
los	Input Offset Current		1	-1.0		+1.0	$\mu \mathrm{A}$
Ios	Input Offset Current		1	-7		+7	$\mu \mathrm{A}$
${ }^{1} \mathrm{CC}$	Positive Supply Current		1		7	10	mA
${ }^{\text {I E E }}$	Negative Supply Current		1		27	36	mA
$\mathrm{V}_{\mathrm{CM}}$	Common Mode Range		1	-2.5		+2.5	$\checkmark$
$\mathrm{A}_{\mathrm{VOL}}$	Open Loop Gain		V		4000		VN
$\mathrm{R}_{\text {IN }}$	Input Resistance		V		60		KOhms
$\mathrm{C}_{\text {IN }}$	Input Capacitance		V		3		pF
$\mathrm{C}_{\text {IN }}$	Input Capacitance	(LCC Package)	V		1		pF


| PARAMETER | TEST |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| CONDITIONS | LESEL | MIN TYP MAX | UNITS |

DC ELECTRICAL CHARACTERISTICS
$T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm .25 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \pm .3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50$ Ohms (Unless otherwise specified)

PSS	Power Supply Sensitivity	Over Temp		70   58	dB
CMRR	Common Mode Rejection   Ratio	Over Temp		-80   -68	
$\mathrm{PD}_{\mathrm{D}} \quad$ Power Dissipation Dual		1		dB	

OUTPUT LOGIC LEVELS (ECL 10KH Compatible)

$V_{\mathrm{OH}}$	Output High	50 Ohms to -2 V	I	-.98	-.81	V
$\mathrm{~V}_{\mathrm{OL}}$	Output Low	50 Ohms to -2 V	I	-1.95	-1.63	V

AC ELECTRICAL CHARACTERISTICS

$t_{p}$	Propagation Delay	10 mV O.D.	1	2.0	2.3	ns
$t_{s}$	Latch Set-up Time			0.6		ns
$t_{p}(E)$	Latch to Output Delay	50 mV O.D.		3		ns
${ }_{\text {t }}^{\text {PW }}$ (E)	Latch Pulse Width			2		ns
$t_{H}(E)$	Latch Hold Time			0.5		ns
$t_{r}$	Rise Time	20\% to 80\%		1.2		ns
$t_{f}$	Fall Time	20\% to 80\%		1.2		ns
$f_{c}$	Min Clock Rate			300		MHz

## Notes:

1. 100 mV input step.
2. Temperature Range -55 to $+125^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS TESTING

All electrical characteristics that follow are subject to the following conditions:

All parameters having Min./Max. specifications are guaranteed. The Test Level column indicates the specific device testing actually performed during production and Quality Assurance inspection. Any blank sections in the data columns indicates that the specification is not tested at the specified condition.

Unless otherwise noted, all tests are pulsed tests, therefore $T_{j}=T_{c}=T_{a}$.

## IESTLEVEL

I
II

## IEST PROCEDURE

Production tested.
Parameter is guaran teed by sample testing.

## GENERAL INFORMATION

The HCMP96870A is an ultra high speed dual voltage comparator. It offers tight absolute characteristics. The device has differential analog inputs and complementary logic outputs compatible with ECL systems. The output stage is adequate for driving terminated 50 Ohm transmission lines.

The HCMP96870A has a complementary latch enable control for each comparator. Both can be driven by standard ECL logic.

The dual comparator shares the same $\mathrm{V}_{\mathrm{c}}$ and $\mathrm{V}_{\mathrm{EE}}$ connections but have separate grounds for each comparator to achieve high crosstalk rejection. The output stage ground and intermediate ground are separated on the die, but are not bonded to the same pin.

This comparator offers the following improvements over existing devices:

- Short propagation delays
- Low offset voltage and temperature coefficient
- Low power for SMD packaging and low system power
- Good rejection between comparator channels
- Minimal thermal tails
- Does not oscillate

All of these features combined produce high performance products with timing stability and repeatability for large system precision.

## INTERNAL FUNCTIONAL DIAGRAM



## TYPICAL INTERFACE CIRCUIT

A typical interface circuit using the comparator is shown in Figure 1. Although it needs few external components and is easy to apply, there are several considerations that should be noted to achieve optimal performance. The very high operating speeds of the comparator require careful layout, decoupling of supplies, and proper design of transmission lines.

Since the HCMP96870A comparator is a very high frequency and high gain device, certain layout rules must be followed to avoid spurious oscillations. The comparator should be soldered to the board with component lead lengths kept as short as possible. A ground plane should be used, while the input impedance to the part is kept as low as possible, to decrease parasitic feedback. If the output board traces are longer than approximately half an inch, microstripline techniques
must be employed to prevent ringing on the output waveform. Also, the microstriplines must be terminated at the far end with the characteristic impedance of the line to prevent reflections. The HCMP96870A is capable of driving 50 Ohm terminated lines. The termination can be directly tied to -2.0 V , or a Thevenin equivalent terminated to the negative supply if a -2.0 V supply is not available. Both supply voltage pins should be decoupled with high frequency capacitors as close to the device as possible.

All pins designated "N/C" should be soldered to ground for additional noise immunity and interelectrode shielding. All ground pins should be connected to the same ground plane.

FIGURE 1 HCMP96870A TYPICAL INTERFACE CIRCUIT


The timing diagram for the comparator is shown in Figure 2. The latch enable (LE) pulse is shown at the top. If LE is high and $\overline{L E}$ low in the HCMP96870A, the comparator tracks the input difference voltage. When LE is driven low and $\overline{L E}$ high the comparator outputs are latched into their existing logic states.

The leading edge of the input signal (which consists of 10 mV overdrive) changes the comparator output after a time of tpdL or $t_{\text {pdH }}(Q$ or $\bar{Q})$. The input signal must be maintained for a time ts (set-up time) before the latch
enable falling edge and $\overline{L E}$ rising edge and held for time th after the falling edge for the comparator to accept data. After th, the output ignores the input status until the latch is strobed again. A minimum latch pulse width of $t_{p L}$ is needed for strobe operation, and the output transitions occur after a time of tploн or tplol.

Unused outputs must be terminated with 50 Ohms to ground while unused latch enable pins should be connected directly to ground.

## FIGURE 2 TIMING DIAGRAM



## SWITCHING TERMS (refer to Figure 2)

${ }^{\text {'paH }}$	INPUT TO OUTPUT HIGH DELAY - The propagation delay measured from the time the input signal crosses the input offset voltage to the $50 \%$ point of an output LOW to HIGH transition.	$t^{\prime}$	MINIMUM HOLD TIME - The minimum time after the negative transition of the Latch Enable signal that the input signal must remain unchanged in order to be acquired and held at the outputs.
${ }^{\text {podL }}$	INPUT TO OUTPUT LOW DELAY - The propagation delay measured from the time the input signal crosses the input offset voltage to the $50 \%$ point of an output HIGH to LOW transition.	$t_{\text {pL }}$	MINIMUM LATCH ENABLE PULSE WIDTH - The minimum time that the Latch Enable signal must be HIGH in order to acquire and hold an input signal change.
${ }^{\text {ploh }}$	LATCH ENABLE TO OUTPUT HIGH DELAY - The propagation delay measured from the $50 \%$ point of the Latch Enable signal LOW to HIGH transition to the $50 \%$ point of an output LOW to HIGH transition	${ }^{\text {pdLL }}$ - ${ }_{\text {pdH }}$	DIFFERENTIAL PROPAGATION DELAY (SKEW) IN. PUT TO OUTPUT - The delay or skew between comparators.
${ }_{\text {PLOL }}$	LATCH ENABLE TO OUTPUT LOW DELAY - The propagation delay measured from the $50 \%$ point of the Latch Enable signal LOW to HIGH transition to the 50\% point of an output HIGH to LOW transition.	$\mathrm{t}_{\text {PLOL }}{ }^{-1} \mathrm{PLOH}$ $\mathrm{V}_{\text {OD }}$	DIFFERENTIAL PROPAGATION DELAY (SKEW)   LATCH TO OUTPUT - The skew from one comparator to another.   VOLTAGE OVERDRIVE.
${ }^{\text {t }}$	MINIMUM SET-UP TIME - The minimum time before the negative transition of the Latch Enable signal that an input signal change must be present in order to be acquired and held at the outputs.		

FIGURE 3 EQUIVALENT INPUT CIRCUIT


FIGURE 4 OUTPUT CIRCUIT


FIGURE 5B AC TEST FIXTURE

3. MONITOR IMPUT IMPEDANCE SOR TO OND.
3. SELMI MOID COAX SHIELD SHOULD BE CONNECTED AS CLOSE TO THE DEVICE AS POSSIELE.

FIGURE 6 HCMP96870A WITH HYSTERESIS


HYSTERESIS IS OBTAINED BY APPLYING A DC BIAS TO THE LE PIN
$V_{H}=-5.2 \mathrm{~V}$
$V_{\text {LE }}=-1.3 V \pm 100 \mathrm{mV}, V_{\text {LE }}=-1.3 V$

## PIN ASSIGNMENTS

TOP VIEW


20 LEAD CERAMIC LCC

## PIN FUNCTIONS

[^13]NOTES:

## SIGNAL <br> PROCESSING TECHNOLOGIES

## HCMP96900

## DUAL HIGH SPEED, WIDE VOLTAGE RANGE COMPARATOR

## PRELIMINARY INFORMATION

## FEATURES:

- Wide Input Range -8 To +13V
- Input Protected to 1V Above Supplies
- Constant Propagation Delays
- High Speed - 4.2ns Propagation Delay
- Constant Input Current


## APPLICATIONS:

- ATE Pin Receivers
- Timing Ramp Generators
- Line Receivers
- High Speed Window Detectors


## GENERAL DESCRIPTION

The HCMP96900 is a dual, high speed, wide common mode voltage comparator. It is designed for applications measuring critical timing parameters where wide common mode input voltages are required. Propagation delays are constant for varying input slew rates, common mode voltage, overdrive or polarity. Input protection is provided to one volt in excess of the power supplies to ease design of input protection circuitry.

For many applications, the comparator allows the designer to input signals directly into the comparator without the need for either very high speed voltage dividers or buffers. Therefore, designs are easy to protect, high in reliability, and lower in power and space than previous high speed comparators. The device is available in an 18-pin ceramic sidebrazed dip, 20 lead LCC or in die form.

## BLOCK DIAGRAM



## ABSOLUTE MAXIMUM RATINGS $25^{\circ} \mathrm{C}$ (1)

Operating Temperature Range -25 to $+85^{\circ} \mathrm{C}$
Positive Supply Voltage ...............................+18.0V -13.0V

Differential Supply Voltage 24V

Power Dissipation 800 mW
Differential Input Voltage. ..... $\pm 24.0 \mathrm{~V}$
Output Current ..... 40mA
(1) Operation at any Absolute Maximum Rating is not implied. See Electrical Specifications for proper nominal applied conditions in typical applications.

## ELECTRICAL SPECIFICATIONS

Industrial Temperature Range
$\mathrm{VcC}=+12.0 \mathrm{~V}$, $\mathrm{Vee}=-7.0 \mathrm{~V}$, unless otherwise specified.

DC Electrical Characteristics	Test Conditions	Test Level (1)	Room $+25^{\circ} \mathrm{C}$ Min Typ Max	Hot $+85^{\circ} \mathrm{C}$ Min Typ Max	Cold $-25^{\circ} \mathrm{C}$ Min Typ Max	Units
Input Offset Voltage			$-3.0 \pm 0.5+3.0$			mV
$\Delta \mathrm{VOS} / \Delta \mathrm{T}$			20			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current	$\mathrm{VIN}=0.0 \mathrm{~V}$		1.0			$\mu \mathrm{A}$
Input Bias Current	$\mathrm{VIN}=0.0 \mathrm{~V}$		$8 \quad 20$			$\mu \mathrm{A}$
$\triangle I B I A S / \triangle V I N$	$-2 \mathrm{~V}<\mathrm{VIN}<5 \mathrm{~V}$		0.10 .3			$\mu \mathrm{A} / \mathrm{V}$
Input Capacitance	LCC		2			pF
Power Supply Rejection Ratio			80			dB
Common Mode Rejection Ratio			80			dB
Input Common Mode Range			-3.0 10.0			V
Differential Input Voltage Range			13.0			V
Gain			60			dB
Common Mode Input Resistance	$-2 \mathrm{~V}<\mathrm{VIN}<5 \mathrm{~V}$		10			MOhm
Differential Mode Input Resistance			2.5			MOhm
Input Hysteresis			2			mV
Crosstalk						dB
Positive Supply Current			25			mA
Negative Supply Current			60			mA
Power Dissipation						Watts
Output High Voltage	50 Ohms to -2.0V		-. 98 -.81			V
Output Low Voltage	$\left\lvert\, \begin{aligned} & 50 \text { Ohms } \\ & \text { to -2.0V } \end{aligned}\right.$		-1.95 -1.63			V
Input High Voltage			-1.13 -.81			V
Input Low Voltage			-1.95 -1.48			V

(1) See page 3.

## ELECTRICAL SPECIFICATIONS

Industrial Temperature Range
$\mathrm{Vcc}=+12.0 \mathrm{~V}$, $\mathrm{Vee}=-7.0 \mathrm{~V}$, unless otherwise specified.

AC Electrical Characteristics	Test Conditions	Test Level (1)	Room $+25^{\circ} \mathrm{C}$ Min Typ Max	Hot $+85^{\circ} \mathrm{C}$ Min Typ Max	Cold $-25^{\circ} \mathrm{C}$ Min Typ Max	Units
Propagation Delay	50 mV Overdrive		4.2			ns
Propagation Delay	10 mV Overdrive					ns
Output Rise/Fall Time	10\% to 90\%		1.6			ns
Input Slew Rate			1.5			V/ns
Latch Set-Up Time						ns
Latch Hold Time						ns
Minimum Latch Pulse Width						ns
tp with 100 mVOD minus tp with 500 mVOD (2)	$\mathrm{VIN}=+1.0 \mathrm{~V}$		100			ps
tp with 100 m VOD minus tp with 500 mVOD (2)	$\mathrm{VIN}=-1.0 \mathrm{~V}$		100			ps
tp with 100 mVOD minus tp with 500 mVOD (2)	$\mathrm{VIN}=+10.0 \mathrm{~V}$		100			ps
tp with 100 mVOD minus tp with 500 mVOD (2)	$\mathrm{VIN}=-10.0 \mathrm{~V}$		100			ps
10ns Pulse Reproduction			60			ps

(1) All electrical characteristics are subject to the following conditions:

All parameters having $\min / \max$ specifications are guaranteed. The Test Level Column indicates the specific device testing actually performed during production and Quality Assurance inspection. Any blank sections in the data columns indicates that the specification is not tested at the specified condition. Unless otherwise noted, all tests performed after a three minute power soak.

Test Levell $-100 \%$ production tested at the specified temperatures.
Test Level II - $100 \%$ production tested at $\mathrm{Ta}=25^{\circ} \mathrm{C}$ and sample tested at the specified temperatures.
Test Level III - QA sample tested only at the specified temperatures.
Test Level IV - Parameter is guaranteed (but not tested) by design and characterization data.
Test Level V - Parameter is a typical value for information purposes only.
(2) Propagation delay with 100 mV overdrive minus propagation delay with 500 mV overdrive.

## INPUT

The input of the HCMP96900 is designed to accept wide common mode and differential voltages. With the standard supplies of +12.0 V and -7.0 V the input voltage range (both common mode and differential) is +10.0 V to 3.0 V . If a wider or different range is desired, either supply can be changed within the following limits: The positive supply should not exceed +15.0 V nor be less than +10.0 V . The negative supply should not be greater than -3.3 V nor be less than -12.0 V . Total differential supply voltage should not exceed 22 V . Input voltage range is always VCC -2.0 V to VEE +4.0 V , and differential input range is equal to the common mode range. (See Figure 2)

## PROPAGATION DELAY

Propagation delay has been designed to be as constant as possible with a wide variety of input conditions. For all conditions given below the $25^{\circ} \mathrm{C}$ deltas in delays are typically 100 ps , increasing to a typical 250 ps at $85^{\circ} \mathrm{C}$ ambient. For this reason keeping the devices as cool as possible is desirable. Propagation delay has been designed to be constant, independent of edge direction, common mode voltage, input slew rate (up to $1.5 \mathrm{~V} / \mathrm{ns}$ ) or over-drive. Over-drive deltas are specified between 100 mV and 500 mV because these are the types of values seen in test systems. As the over-drive becomes greater than 500 mV , very little change in the delay occurs.

Controlled delays result in very accurate pulse reproduction. For characterization a 10 ns pulse is input into the comparator and the time between its $50 \%$ points are measured. The output pulse from the comparators is then measured. The difference in time is typically 60ps at $25^{\circ} \mathrm{C}$ and decreases to half this value at $85^{\circ} \mathrm{C}$.

## PULSE DETECTION

Digital ATE testing often requires the detection of pulses that are much shorter than the signals that are being measured. This is required to detect glitches in outputs from tested digital products. The HCMP96900 can detect pulses as narrow as 1.5 ns in the unlatched mode and still output full ECL swings.

## INPUT BIAS CURRENT

High speed comparators are often used as integrators with a current source charging a capacitor on the input. this circuit is used to generate very fast, accurate timing pulses. The input bias currents of the HCMP96900 have a linear response over the full input voltage range. While this isn't ideal as no change, it is much better than the nonlinear variations of previous high speed comparators. The change from -3.0 V to +10.0 V is typically less then $3 \mu \mathrm{~A}$.

## LATCH ENABLE INPUTS

The timing diagram for the comparators is shown in Figure 1. The latch enable (LE) pulse is shown at the top. If LE is high and $\overline{\mathrm{LE}}$ low, the comparators track the input difference voltage. When LE is driven low and LE high, the comparator outputs are latched into their existing logic states.

The leading edge of the input signal (which consists of 100 mV overdrive) changes the comparator output after a time of tpdL or tpdh ( Q or $\overline{\mathrm{Q}}$ ). The input signal must be maintained for a time $t_{S}$ (set-up time) before the latch enable falling edge or LE rising edge and held for a time th after the falling edge for the comparator to accept data. After $t_{h}$, the output ignores the input status until the latch is strobed again. A minimum latch pulse width of tpL is needed for strobe operation, and the output transitions occur after a time of tpLOH or tpLOL.

Unused outputs must be terminated with $50 \Omega$ to ground while unused latch enable pins should be connected directly to ground.

## OUTPUTS

The outputs are very high speed differential ECL that are 10 KH compatible and capable of driving 50 Ohm loads. The difference between these outputs and the 10 KH specifications is that they have much faster rise and fall times. Both rise and fall times are 1.2 ns .

FIGURE 1. TIMING DIAGRAM



#### Abstract

comparator to reach the latching circuitry, input signals occuring before $t_{s}$ will be detected and held; those occuring after $t_{h}$ will not


The set-up and hold times are a measure of the time required for an input signal to propagate through the first stage of the be detected. Changes between $t_{s}$ and $t_{h}$ may not be detected ( $\overline{\mathrm{LE}}$ is the inverse of LE).

## SWITCHING TERMS

## tpdH - INPUT TO OUTPUTHIGH DELAY

 The propagation delay measured from the time the imput signal crossed the input offset voltage to the 50\% point of an output LOW to HIGH transistion.
## tpdL - INPUT TO OUTPUT LOW DELAY

The propagation delay measured from the time the imput signal crosses the tmput offset voltage to the $50 \%$ point of an output HIGH to LOW transistion.
tpLOH - LATCH ENABLE TO OUTPUT HIGH DELAY The propagation delay measured from the $59 \%$ point of the Latch Enable signal Low to HIGH transition to 50\% point of an output LOW to HIGH transistion.
tpLOL -LATCH ENABLE TO OUTPUT LOW DELAY The propagation delay measured from the $50 \%$ point of the Latch Enable signal LOW to HIGH transition to the $50 \%$ point of an output HIGH to LOW transition.
ts - MIMINUN SET-UPTIME
The minimum time before the negative transistion of the Latch Enable signal that an input signal change must be present in order to be acquired and held at the outputs.
th -MINIMUM HOLD TIME
The minimum time after the negative transition of the Latch Enable signal that the input signal must remain unchanged in order to be acquired and beld at the outputs.
tpL - MINIMUM LATCH ENABLE PULSE WIDTH The minimum time that the Latch Enable signal must be HIGH in order to acquire and hold an imput signal change.

## tpdL - tpdH - DIFFERENTIAL PROPAGATION DELAY (SKEW) INPUT TO OUTPUT The delay or skew between comparators.

tpLOL - tpLOH - DIFFERENTIAL PROPAGATION DELAY (SKEW) LATCH TO OUTPUT The skew from one comparator to another

VOD - VOLTAGE OVERDRIVE

FIGURE 2. HCMP96900 SUPPLY VOLTAGES INPUT VOLTAGE RANGE


FIGURE 3. HCMP96900 VIN VERSUS IB (Common Mode)


HCMP96900 BURN-IN DIAGRAM (LCC Package)


HCMP96900 DIE PLOT


HCMP96900 18-PIN DIP PACKAGE


Pins	Description
VO1	Output 1
$\overline{\text { VO1 }}$	Inverted Output 1
GND1	Ground
LE1	Latch Enable 1
$\overline{\text { LE1 }}$	Inverted Latch Enable
VEE	Negative Supply Voltage
- VIN1	Inverting Input 1
+ VIN1	Non-inverting Input 1
+ VIN2	Non-inverting Input 2
- VIN2	Inverting Input 2
VCC1	Positive Supply Voltage 1
VCC2	Positive Supply Voltage 2
LE2	Latch Enable 2
LE2	Inverted Latch Enable 2
VO2	Output 2
$\overline{\text { VO2 }}$	Inverted Output 2
GND2	Ground 2

## HCMP96900 20-PIN LCC PACKAGE



[^14]> SELECTION GUIDE, CROSS REFERENCE ORDERING INFORMATION

## ANALOG TO DIGITAL CONVERTERS

## SPECIAL FUNCTIONS

## EVALUATION BOARDS

## APPLICATIONS INFORMATION

## QUALITY ASSURANCE

SALES OFFICES AND REPRESENTATIVES

## HIGH ACCURACY DATA ACQUISITION INSTRUMENTATION AMPLIFIER

## ADVANCE INFORMATION

## FEATURES:

- Direct MONOLITHIC Replacement for AD522
- Low Nonlinearity: $0.001 \%(\mathrm{G}=1)$
- High CMRR: $>100 \mathrm{~dB}(\mathrm{G}=1000)$
- Low Input Voltage Drift: $2.0 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Low Noise: $9 \mathrm{nV} / \mathrm{JHz}$ (@1 kHz, G=1000)
- Single Resistor Gain Programmable 1<G<1000


## APPLICATIONS:

- Industrial and Process Control
- Bridge Amplifiers
- Signal Conditioning
- Test and Medical Instrumentation


## GENERAL DESCRIPTION

The HINA522 is a precision instrumentation amplifier designed for high accuracy data acquisition applications of up to 12 bits. It represents an excellent combination of high common mode rejection, low noise and low nonlinearity. A passive data guard is provided to improve AC common mode rejection and prevent degradation of system bandwidth.

The HINA522 is implemented in Honeywell's Advanced Linear Bipolar process (ALB1A) which combines state-of-the-art, laser trimmed thin film technology with high density junction isolated bipolar technology. The HINA522 is the only fully monolithic direct replacement for the AD522 and thus provides superior stability and reliability for extremely cost-effective low-level amplification.

## BLOCK DIAGRAM



## SPECIFICATIONS

PARAMETER	TEST CONDITIONS	$\begin{aligned} & \text { TEST } \\ & \text { LEVEL } \end{aligned}$	HINA522A MIN TYP MAX	HINA522B MIN TYP MAX	UNITS
ELECTRICAL CHARACTERIST	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{~K} \Omega$, Over Temperature Range Specified Below, Unless Otherwise Indicated				
Gain Error	$\begin{gathered} \mathrm{G}=1 \\ T_{A}=25^{\circ} \mathrm{C} \end{gathered}$	1	$\pm .05$	$\pm .20$	\%
Gain Temperature Coefficient	$\mathrm{G}=1$	1	$\pm 2$	$\pm 2$	ppm $/{ }^{\circ} \mathrm{C}$
Nonlinearity	$G=1$	1	$\pm .001$	$\pm .005$	\%
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1	$\pm 25$	$\pm 75$	$\mu \mathrm{V}$
Input Offset Voltage Temp. Co.		1	$\pm .50$	$\pm 2.0$	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1	$\pm 15$	$\pm 25$	nA
Common Mode Rejection	$G=1000$	1	110	100	dB
Linear Differential Input Voltage Range	$\mathrm{G}=1$	1	$\pm 10$	$\pm 10$	Volts
Linear Common Mode Input Voltage Range	$G=1000$	1	$\pm 12$	$\pm 12$	Volts
Output Voltage		1	$\pm 10$	$\pm 10$	Volts

## TEST LEVEL

I

TEST PROCEDURE
Production tested at the specified conditions.

[^15]
## PRECISION INSTRUMENTATION AMPLIFIER

ADVANCE INFORMATION

## FEATURES:

- Improved Direct Replacement for AD524
- Low Nonlinearity: $0.003 \%$ ( $\mathrm{G}=1$ )
- Low Input Offset Voltage: $25 \mu \mathrm{~V}$ Max
- Low RTI Noise: $4 \mathrm{nV} / \sqrt{\mathrm{Hz}}(@ 1 \mathrm{kHz}, \mathrm{G}=1000)$
- Gain Bandwidth: $25 \mathrm{MHz}(\mathrm{G}=1)$
- High CMRR: $120 \mathrm{~dB}(\mathrm{G}=1000)$


## GENERAL DESCRIPTION

The HINA524 from Honeywell is a highly accurate, precision instrumentation amplifier designed for data acquisition applications where low noise and very high DC performance is required. Features such as maximum Nonlinearity of $.003 \%$ ( $G=1$ ), Common Mode Rejection of $120 \mathrm{~dB}(\mathrm{G}=1000)$ and Input Offset Voltage Drift of $0.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ make the HINA524 the ideal choice for use in many high resolution data acquisition systems.

Along with outstanding DC specifications, the AC performance of a 25 MHz Gain Bandwidth Product, 5 $V / \mu$ s Slew Rate and $15 \mu$ s Settling Time make the HINA524 suitable for may high speed data acquisition applications. Gain selections of 1, 10, 100 and 1000

## APPLICATIONS:

- Data Acquisition System Amplifiers
- Signal Conditioning
- Medical Instrumentation
require no additional components. With the use of a single external resistor, any gain setting can be achieved in the range of $1<\mathrm{G}<1000$.

The HINA524 is implemented in Honeywell's Advanced Linear Bipolar process (ALB1A) which combines state-of-the-art, laser trimmed thin film techniques with high density junction isolated bipolar technology. Honeywell's improved design approach provides a high precision, highly reliable device as a cost effective instrumentation solution. The HINA524 is a direct pin-forpin replacement for the AD524.

## BLOCK DIAGRAM



PARAMETER	TEST   CONDITIONS	TEST   LEVEL	HINA524A   MIN TYP MAX	HINA524B   MIN TYP MAX	HINA524C   MIN TYP MAX	UNITS

## ELECTRICALCHARACTERISTICS

$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{~K} \Omega$, Over Temperature Range Specified Below, Unless Otherwise Indicated

Gain Error	$\begin{aligned} G & =1 \\ T_{A} & =25^{\circ} \mathrm{C} \end{aligned}$	1		$\pm .02$		$\pm .03$		$\pm .05$	\%
Gain Temperature Coefficient	$\mathrm{G}=1$	1		$\pm 5$		$\pm 5$		$\pm 5$	ppm $/{ }^{\circ} \mathrm{C}$
Nonlinearity	$\mathrm{G}=1$	1		$\pm .003$		$\pm .003$		$\pm .005$	\%
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1		$\pm 25$		$\pm 75$		$\pm 200$	$\mu \mathrm{V}$
Input Offset Voltage Temp. Co.		1		$\pm .50$		$\pm .75$		$\pm 2$	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1		$\pm 15$		$\pm 25$		$\pm 50$	nA
Common Mode Rejection	$\mathrm{G}=1000$	1	120		120		110		dB
Linear Differential Input Voltage Range	$\mathrm{G}=1$	1	$\pm 10$		$\pm 10$		$\pm 10$		Volts
Linear Common Mode Input Voltage Range	$G=1000$	1		$\pm 12$		$\pm 12$		$\pm 12$	Volts
Output Voltage		1	$\pm 10$		$\pm 10$		$\pm 10$		Volts

TEST LEVEL
1

TEST PROCEDURE
Production tested at the specified conditions.

[^16]
## SIGNAL <br> PROCESSING TECHNOLOGIES

## PRECISION INSTRUMENTATION AMPLIFIER

ADVANCE INFORMATION

## FEATURES:

- Direct Replacement for AD624
- Low Nonlinearity: $0.001 \%(\mathrm{G}=1)$
- High CMRR: $>130 \mathrm{~dB}(\mathrm{G}>500)$
- Low Input Offset Voltage: $25 \mu \mathrm{~V}$
- Low RTI Noise: $4 \mathrm{nV} / \sqrt{\mathrm{Hzz}}$ (@1 kHz, G=1000)
- Gain Bandwidth: $25 \mathrm{MHz}(\mathrm{G}=1000)$


## GENERAL DESCRIPTION

The HINA624 from Honeywell is a highly accurate, precision instrumentation amplifier designed for data acquisition applications where low noise and very high DC performance is required. Features such as maximum Nonlinearity of $.001 \%(G=1)$, Gain Temperature Coefficient of $5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$, and Input Offset Voltage Drift of $.25 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ make the HINA624 the ideal choice for use in high resolution data acquisition systems.

Both simplicity in gain programming and extreme flexibility are offered by the HINA624. No external components are required for selection of the pretrimmed gains of $1,100,200$, and 1000. Nine additional

APPLICATIONS:<br>- Data Acquisition System Amplifiers<br>- Signal Conditioning<br>- Medical Instrumentation

gain values can also be be achieved by pin strapping. Any arbitrary gain value of $1<G<10,000$ may be programmed with the use of a single external resistor.

The HINA624 is implemented in Honeywell's Advanced Linear Bipolar process (ALB1A) which combines state-of-the-art, laser trimmed thin film technology with high

## BLOCK DIAGRAM



## SPECIFICATIONS

PARAMETER	TEST	TEST	HINA624A	HINA624B	HINA624C	
CONDITIONS						


ELECTRICAL CHARACTERISTICS	$V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{~K} \Omega$, Over Temperature Range Specified Below,
Unless Othenwise Indicated	


Gain Error	$\begin{aligned} G & =1 \\ T_{A} & =25^{\circ} \mathrm{C} \end{aligned}$	I	$\pm .02$	$\pm .03$	$\pm .05$	\%
Gain Temperature Coefficient	$G=1$	1	$\pm 5$	$\pm 5$	$\pm 5$	ppm $/{ }^{\circ} \mathrm{C}$
Nonlinearity	$G=1$	1	$\pm .001$	$\pm .003$	$\pm .005$	\%
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1	$\pm 25$	$\pm 75$	$\pm 200$	$\mu \mathrm{V}$
Input Offset Voltage Temp. Co.		1	$\pm .25$	$\pm .5$	$\pm 2$	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1	$\pm 15$	$\pm 25$	$\pm 50$	nA
Common Mode Rejection	$G=1000$	1	130	120	110	dB
Linear Differential Input Voltage Range	$\mathrm{G}=1$	1	$\pm 10$	$\pm 10$	$\pm 10$	Volts
Linear Common Mode Input Voltage Range	$G=1000$	1	$\pm 12$	$\pm 12$	$\pm 12$	Volts
Output Voltage		1	$\pm 10$	$\pm 10$	$\pm 10$	Volts

TEST LEVEL

I

TEST PROCEDURE
Production tested at the specified conditions.

[^17]
## DIGITAL TO ANALOG CONVERTERS

## COMPARATORS

## INSTRUMENTATION AMPLIFIERS

## SPECIAL FUNCTIONS

EVALUATION BOARDS

## APPLICATIONS INFORMATION

## QUALITY ASSURANCE

## PACKAGE OUTLINES

## 16-BIT ACCURATE, MONOLITHIC TRACK AND HOLD AMPLIFIER

## ADVANCE INFORMATION

## FEATURES

- $5 \mu \mathrm{~S}$ ACQUISITION TIME
- Low Power - 300mW
- Internal Hold Capacitor
- 16-bit Accuracy
- $\pm 5 \mathrm{~V}$ analog input
- Linearity - 0.0008\%


## GENERAL DESCRIPTION

The HTHA27140 is a 16-bit accurate, monolithic track-and-hold amplifier capable of acquiring $\pm 5 \mathrm{~V}$ analog signals within 5 uS yet only consuming 300 mW of power. Included on-chip are two internal hold capacitors that keep the track-to-hold settling time down to 300 nS . The part has the highest speed and accuracy for the power in the industry.

There is a track-and-hold control pin and an output sense pin connected to the inverting input of the preamp stage. Separate analog and digital ground pins are provided

## APPLICATIONS

- Sonar
- Digital Scales
- Instrumentation
- Communications
- DSP Interface
- Acoustic Analysis
- Use With HADC78160 16-bit A/D Converter
to achieve 16-bit accuracy in board layout, and to be compatible with other components that require separate ground planes. The HTHA27140 is optimized to be used with the HADC78160 16-bit A/D converter to increase the A/D analog input frequency range. The device is manufactured on Honeywell SPTs small geometry bipolar process, and military and industrial temperature grades are available.

The part is packaged in a 14 Lead Ceramic DIP and operates on $\pm 15 \mathrm{~V}$ power supplies.

## BLOCK DIAGRAM



## ELECTRICAL SPECIFICATIONS

MILITARY TEMPERATURE RANGE
@ $25^{\circ} \mathrm{C}$ case temperature and nominal supplies.

ELECTRICAL   PARAMETERS	TEST   CONDITIONS	TEST   LEVEL	ROOM   $+25^{\circ} \mathrm{C}$	HOT   $+125^{\circ} \mathrm{C}$   MIN	COLD   $-55^{\circ} \mathrm{C}$	

## STATIC PARAMETERS

| Power Dissipation |  |  | 300 |  | mW |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Gain |  |  | $1 \pm 0.01 \%$ |  | $\mathrm{~V} / \mathrm{N}$ |
| Gain Temperature Coefficient |  |  | 0.1 |  | $\mathrm{PPM} /{ }^{\circ} \mathrm{C}$ |
| Offset |  |  | 1.0 |  | mV |
| Offset Temperature Coefficient | Full Scale Range |  | 0.5 | $\mathrm{PPM} /{ }^{\circ} \mathrm{C}$ |  |
| Pedestal |  |  | 1.0 |  | mV |
| Pedestal Temp. Coefficient | Full Scale Range |  | 0.1 |  | $\mathrm{PPM} /{ }^{\circ} \mathrm{C}$ |
| Linearity | Full Scale Range |  | 10 | PPM |  |
| Input Impedance |  | 5 |  | $\mathrm{~K} \Omega$ |  |
| Logic Loading |  |  |  |  | LS |
| Voltage Range |  |  |  | V |  |

DYNAMIC PARAMETERS

Acquisition Time	10V step to $0.0008 \%$		5.0			$\mu \mathrm{~S}$
Settling Time	Track to Hold		300			nS
Bandwidth			4.0			MHz
Slew Rate			3.0			$\mathrm{~V} / \mu \mathrm{S}$
Noise			15.0			$\mathrm{nV} / \mathrm{Hz}$

TEST LEVELS: I-Production tested at the specified conditions; II-Sample tested to ensure compliance.

[^18]
## PROGRAMMABLE 7TH ORDER LOW PASS ACTIVE FILTER

PRELIMINARY INFORMATION

## FEATURES

- 85 dB Dynamic Range
- Cut Off Frequency ( $f \mathrm{fc}$ ) up to 20 KHz
- On-Chip Anti-Aliasing Protection
- Programmable Bandedge Frequency for both RC and Switched Capacitor Filter
- $\mathrm{S} / \mathrm{H}$ Output
- Microprocessor Compatible
- 7th Order Ladder Filter with Cosine Prefiltering Stage
- Stopband Attenuation $>76 \mathrm{~dB}$ at 3 fc
- Programmable DC Gains of 1, 2, 4, 8
- On-Chip Oscillator (External Crystal)


## GENERAL DESCRIPTION

The HSCF24040 is a monolithic 7th order active filter system. It is manufactured using Honeywell's state-of-the-art BEMOS process which allows the fabrication of low power CMOS logic, linear CMOS circuits, bipolar linear circuitry and thin film resistors on a single chip. The HSCF24040 is designed using switched-capacitor techniques which allows easy programming of the filter cut-off frequency.

The HSCF24040 contains a fully differential, 7-pole, lowpass switched-capacitor filter (SCF) which is designed to provide an accurate, programmable passband for fixed or dynamic applications. The switched-capacitor filter section is preceeded by a 3 -pole active RC filter (RCF)

## APPLICATIONS

- Anti-Alias Filtering
- Test Equipment/Instrumentation
- Spectrum Analyzers
- Medical Telemetry/Filtering
- Speech Analysis and Synthesis
- Data Acquisition Systems
- Computer Controlled Test Systems
with a programmable bandedge. Together, the RCF and SCF provide greater than 76 dB of anti-aliasing protection. The last stage of the SC filter contains a programmable decimator that reduces the sample rate at SCOUT. This insures that the hold period of the sampled and held output is long enough to perform an A/D conversion or be re-sampled by an external $\mathrm{S} / \mathrm{H}$.

The topology and layout of the HSCF24040 is sufficiently flexible to allow customization of the filter function and/or logic. The HSCF24040 is packaged in a 32 pin DIP, operates on $\mathrm{a}+/-5 \mathrm{~V}$ supply voltage and is offered in commercial and military temperature ranges.

## BLOCK DIAGRAM



## ABSOLUTE MAXIMUM RATINGS (Beyond which damage may occur) $\mathbf{1}^{\mathbf{2}} \mathbf{2 5}^{\circ} \mathrm{C}$

## Supply Voltages

Positive Supply Voltage (VDD to GND)
0 to +7 V
0 to -7V
Negative Supply Voltage (VSS to GND) $\qquad$
Input Voltages
Digital Input Voltages
All Except CLKIN, $\overline{\mathrm{CS}}$. $\qquad$ -0.3 to VDD +0.3 V
CLKIN, $\overline{\mathrm{CS}}$.
VSS-0.3 to VDD+0.3V

Temperature
Operating Temperature, ambient........... -55 to $+125^{\circ} \mathrm{C}$
junction.
$+175^{\circ} \mathrm{C}$
Lead Temperature, (soldering 10 seconds)..... $+300^{\circ} \mathrm{C}$ Storage Temperature.
-65 to $+150^{\circ} \mathrm{C}$

## Notes:

1. Operation at any Absolute Maximum Rating is not implied. See Electrical Specifications for proper nominal applied conditions in typical applications. Excessive exposure to absolute maximum ratings may effect device reliability.
2. The XTAL oscillator must not be enabled unless the external crystal is connected between pins X 1 and X 2 .

VDD $=+5.0 \mathrm{~V}, \mathrm{VSS}=-5.0 \mathrm{~V},+25^{\circ} \mathrm{C}$ (Unless Otherwise Specified)						
PARAMETER	TEST   CONDITIONS	TEST   LEVEL	MIN	TYP	MAX	UNITS

DC ELECTRICAL CHARACTERISTICS

VDD		I	4.75	5.0	5.25	Volts
VSS		I	-5.25	-5.0	-4.75	Volts
IDD	$V D D=5 \mathrm{~V}, \mathrm{VSS}=-5 \mathrm{~V}$	1		15		mA
ISS	$V D D=5 \mathrm{~V}, \mathrm{VSS}=-5 \mathrm{~V}$	1		-15		mA
Power Dissipation	$V D D=5 \mathrm{~V}, \mathrm{VSS}=-5 \mathrm{~V}$	1		150		mW
Gain Tolerance	Gain $=1 \mathrm{~V} / \mathrm{N}$	1		$\pm 0.1$		\%
Gain		1	Programmable 1, 2, 4, 8			Volts/Volts
Offset Voltage	Gain $=1 \mathrm{~V} / \mathrm{V}$	1		5		mV
Power Down/Power Dissipation		1		15		mW

AC ELECTRICAL CHARACTERISTICS

RC FILTER \& SC FILTER						
Input CLK Frequency		1	1	4		MHz
Cut-off Frequency Range	fc		78		20,000	Hz
Input Signal Level		1			$\pm 3$	Volts


PARAMETER	TEST   CONDITIONS	TEST   LEVEL	MIN	TYP	MAX	UNITS

AC ELECTRICALCHARACTERISTICS

Output Voltage Swing	$\mathrm{ZL}=5 \mathrm{~K} \Omega / / 50 \mathrm{pF}$	1			$\pm 3$	Volts
Output Current Drive	RCOUT \& SCOUT	1		0.6		mA
Pass Band Ripple		1	-0.1		+0.1	dB
Bandedge Tolerance	$f \mathrm{c}=(-0.1) \mathrm{dB}$ freq	11		$f \mathrm{c} \pm 0.5$		\%
Filter Response	0 to 1.0 fc	1	-0.1		+0.1	dB
(Relative to DC Gain)	1.5 fc	1			-30	dB
	2.0 fc	1			-52	dB
	$\geq 3.0 \mathrm{fc}$	1			-76	dB
Dynamic Range		1	85			dB
Wideband Noise	$\begin{aligned} & \text { SCF BW }=20 \mathrm{kHz} \\ & \text { RCFBW }=80 \mathrm{kHz} \end{aligned}$	11			100	$\mu \mathrm{Vrms}$
Harmonic Distortion	Magnitude of Harmonic	1		-72		dB
	THD	1		0.05		\%
PSRR: In-Band		11		50		dB
High Frequency Aliasing		11		35		dB
RC FILTER						
DC Gain		1	-0.1		+0.1	\%
Bandedge Tolerance		1		$f \mathrm{f}$ (RCF) ${ }_{-0}^{+5}$		\%
Cut-off Frequency Range	$f \mathrm{fc}$ (RCF)	1	7		80	KHz
Filter Response	$f \mathrm{c}$ (RCF) $/ 4$	1		-0.05		dB
	$f \mathrm{f}$ (RCF)	1		-3.45		dB
	17 fc (RCF)	1		-76		dB
CLOCK						
Internal Oscillator Frequency	See Note 2	1	1		4	MHz



ELECTRICALCHARACTERISTICS

DIGITAL ELECTRICAL   PARAMETERS						
Input High Voltage		1	2.0		VDD	Volts
Input Low Voltage		1	0.0		0.8	Volts
Input Leakage Current		1			1	$\mu \mathrm{~A}$
Input Capacitance		II			10	pF

TIMING CHARACTERISTICS (See Timing Diagrams)

$\mu \mathrm{P}$ INTERFACE TIMING					
$\overline{\text { CS }}$ Hold Time	t5	1	10		nsec
Data Hold Time	t4	1	10		nsec
Data Set-up Time	t3	1	100		nsec
Address Hold Time	t2	1	10		nsec
Address Set-up Time	t1	1	20		nsec
SCOUT   SYNCHRONIZATION timing					
SyncB Delay Time	t8	1	25		nsec
SyncB Set-up Time	t9	1	25		nsec
CLKIN to CLKOUT Delay	t6	1		10	nsec
CLKIN to $\overline{\text { CNVRT }}$ Delay	t7	1		20	nsec

## TIMING DIAGRAMS



## SCOUT SYNCHRONIZATION TIMING



## TEST LEVEL CODES

## ELECTRICAL CHARACTERISTICS TESTING

All electrical characteristics that follow are subject to the following conditions：

All parameters having Min．／Max．specifications are guaran－ teed．The Test Level column indicates the specific device test－ ing actually performed during production and Quality Assur－ ance inspection．Any blank sections in the data columns indi－ cates that the specification is not tested at the specified con－ dition．

Unless otherwise noted，all tests are pulsed tests，therefore Tj $=T \mathrm{c}=\mathrm{Ta}$ ．

## TEST LEVEL

I

II

## TEST PROCEDURE

Production tested at the specified temperatures．

Parameter is guaranteed by design and sampled characterization data．

## GENERAL DESCRIPTION

## SC FILTER

SC filters are sampled data filters that provide extremely accurate and stable responses. This is because their internal "time constants" depend only upon the switching frequency and the ratios of monolithic capacitors. The switching frequency is normally derived from a crystal controlled oscillator and is thus, extremely precise. On-chip capacitor ratios are accurate to within approximately $0.1 \%$. Therefore, high order sharp rolloff filters can be manufactured that require no post production trimming. Since the filter bandedge can be programmed by varying the frequency of the clock that controls the filter's switches, the filter bandedge can be made to track the sample rate of an external AVD converter. The filter in the HSCF24040 has 7 poles (Chebyshev approximation) to insure a minimum loss of 76 dB at 3 times the bandedge so that the system A/D can sample as low as 4 times the bandedge (see Figure 1). The SC filter has a differential signal path to improve its PSRR, distortion, and dynamic range. Through digital programming, bandedges of up to 20 KHz and DC gains of $1,2,4$ or 8 can be achieved.


Since the filter loss is greater than 76 dB , any aliased signals will be below the 12 bit level.

FIGURE 1 - REQUIREMENTS FOR AN ANTI-ALIASING FILTER PRIOR TO A/D CONVERSION

## ACTIVE RC FILTER

Although the SC filter is programmable and offers excellent performance, it does have one major drawback. Because it is a sampled data filter, it can fold or alias out-of-band energy into the desired passband in much the same way as the external A/D. Therefore, a continuoustime filter is required in front of the SC filter to provide aliasing protection. We are, however, aided by the fact that the filter sampling rate is many times greater than the bandedge frequency ( 50 times in this case). Thus, a low order, active RC filter with a bandedge accuracy of only $5 \%$ will suffice. This concept is illustrated in Figure 2. The bandedge for this RC filter must be programmable to insure sufficient rejection of the SC filter images located at multiples of the SC filter rate. Eight different RC filter bandedges spanning a 12-to-1 range are available on the HSCF24040. The programmability is achieved by switching different resistor and capacitor values into the filter. A single RC filter bandwith setting (3dB) of $f_{c}(R C F)$ will provide 76 dB of anti-aliasing protection for SC filter bandwidths ranging from $f_{C}($ RCF $) / 5.71$ to $f_{c}(R C F) / 4$.


Note: The RC filter should provide $>76 \mathrm{~dB}$ of loss for several different $S C$ filter sample rates $f_{S}(S C)$.

FIGURE 2 - RC FILTER PROVIDES ANTI-ALIASING FOR SC FILTER

The topology of the RC filter has been chosen so that the DC gain and the pole Q's rely on ratio matching of the on-chip resistors and capacitors. The RC filter bandedge is laser trimmed for high accuracy during the manufacturing process.

## DECIMATOR

The decimator block samples the differential output of the SC filter and converts it to a single ended signal. The decimator also provides a sample-and-hold output (SCOUT) at a programmable sample rate of 25 fc , $12.5 \mathrm{fc}, 6.25 \mathrm{fc}$, or 4.167 fc , where $f \mathrm{c}$ is the SC filter bandwidth. By choosing the proper decimation rate, the hold time at SCOUT will be sufficiently long to allow an A/D conversion to take place. (An external sample and hold may be required for hold times longer than $100 \mu \mathrm{sec}$ to prevent more than $1 / 2$ LSB of droop for a 12 -bit A/D converter).

The CNVRT output is an active low digital output that indicates when the SCOUT output is valid. Applying a falling edge to the SYNC input initiates the CNVRT pulse on the next rising edge of CLKOUT. The use of the decimator block with SYNC and CNVRT insures a proper timing interface between SCOUT and an external AID converter or sample and hold and eliminates the need for a smoothing filter at the SCOUT output.

## PROGRAMMABILITY

The chip contains an 8-bit and a 2 -bit data register. Data in the 8 -bit register controls the SC filter bandedge, RC
filter bandedge, and the decimation rate. (A programmable divide down chain generates the SC filter clocks from the master clock. A similar divide down chain determines the decimation rate from the SC filter clocks). Data in the 2 -bit register controls the programmable D.C. gain of the SC filter. The truth tables for both registers are shown in Table 1.

The SC filter's bandedge is programmed by selecting one of the divide down ratios shown in Table 1. This ratio is divided into the master clock frequency to arrive at the filter cutoff frequency. As an example, assuming a typical master clock frequency of 4 MHz and a divide down ratio of 400 (D0, D1, D2=001), the filter's bandedge would be 10 kHz . Alternately, selecting a divide down ratio of 3200 (D0, D1, D2 $=100$ ) would provide a filter bandedge of 1250 Hz . With a constant master clock frequency, up to seven (7) different discrete SC filter bandedges can be obtained. An infinite number of different bandedges can be derived by varying both the divide down ratios and the master clock frequency. This provides the ultimate level in programming flexibility.

The five control signals $A 0, A S, \overline{W R}, \overline{C S}$, and DS allow the user to directly interface to 8 -bit microprocessors without additional glue logic. Both Motorola's MPX'ed and non-MPX'ed bus formats as well as Intel's MPX'ed bus format is supported. Interface connections for both the Intel and Motorola 8-bit microprocessors are shown in Table 2. In addition to the data-latch format, the DO-D7 and G1-G2 inputs can be hardwired for direct programming without the need for a latch signal by tying the CS input to VSS.

TABLE 1 - PROGRAMMABLE FEATURES

RCF BANDEDGE				DC GAIN		
BCF 3dB BW	D7	D6	D5	DC GAIN	G1	G2
80 KHz	0	0	0	1	1	1
56 KHz	0	0	1	2	1	0
40 KHz	0	1	0	4	0	1
28 KHz	0	1	1	8	0	0
20 KHz	1	0	0			
14 KHz	1	0	1			
10 KHz	1	1	0			
7 KHz	1	1	1			
CLOCK TO SCF BANDEDGE				DECIMATOR SAMPLE RATE		
DIVIDE DOWN RATIO						
$f C L K / f C$	D0	D1	D2	$\underline{f S / H / f C}$	D3	D4
200	0	0	0	25.000	0	0
400	0	0	1	12.500	0	1
800	0	1	0	6.250	1	0
1,600	0	1	1	4.167	1	1
3,200	1	0	0			
6,400	1	0	1			
12,800	1	1	X			

$f \mathrm{C}=0.1 \mathrm{db}$ Bandwidth of the SC filter.
$f C L K=$ Master clock frequency at CLKOUT.
$f S / H=$ Sample rate at SCOUT output.

TABLE 2 - MICROPROCESSOR INTERFACE CONNECTIONS

HSCF24040	INTEL (MPX'ED)   $8088,8085,8051$	MOTOROLA (MPX'ED)   6801,6803	MOTOROLA (NON-MPX'ED)   $680 \mathrm{D}, 6801,6802,6809$
$\overline{\mathrm{CS}}$	Generated from A8-A15	Generated from A8-A15	Generated from A0-A15
$\overline{D S}$	VDD Supply	E	E
$\overline{W R}$	$\overline{W R}$	$\mathrm{R} / \overline{\mathrm{WR}}$	$\mathrm{R} / \overline{\mathrm{WR}}$
A0	ADi	ADi	Ai
AS	ALE	AS	VDD Supply
D0-D7	ADO-AD7	ADO-AD7	DO-D7
G1-G2	ADi	ADi	Di

Note: Tying $\overline{C S}$ to the VSS supply disables the microprocessor interface and allows D0-D7, G1-G2 to be programmed directly without the need for a latch signal.

## OSCILLATOR

The HSCF24040 provides an on－chip oscillator（external crystal）for applications where a system clock is not available．The user has a choice of either the clock driven or the oscillator mode．The oscillator mode is enabled by tying the CLKIN input to VSS．

## TYPICAL APPLICATION CIRCUIT

Figure 3 illustrates how the HSCF24040 might be used for smoothing the output from a D／A converter．In this case，the D／A output is fed into the SCIN input of the device．The SCIN input is enabled by tying AA／SM to ground．The SCOUT output is fed externally into the RCIN input．The smoothed output is finally brought off－ chip via the RCOUT pin．（Note that the smoothed output will not correct for the inherent $\sin (X) /(X)$ droop of the original D／A converter output）．


FIGURE 3 －THE HSCF24040 AS A SMOOTHING FILTER FOR A D／A CONVERTER

## TYPICAL APPLICATION CIRCUIT

The HSCF24040 can be used as the band limiting filter for a 12-bit data acquisition system as shown in Figure 4. The basic function of the device is to bandlimit the input signal so that unwanted out-of-band signals are not aliased (folded) into the desired passband. The input signal enters the HSCF24040 through RCIN and is processed by the RC filter. The signal is then processed by the switched-capacitor filter and finally the decimator to facilitate its interface with the ADD converter. Figure 1 shows that for a 12-bit system the filter must provide at least 76 dB of loss at the frequency $f s-f c$ (where $f s$ is the sampling rate of the $A / D$ converter and $f c$ is the desired channel bandwidth).

In many applications the user may want a programmable channel bandwidth. An instrument that records signals that range from 100 Hz to 20 kHz would require that the A/D sample rate be variable. Figure 1 shows that the required filter bandwidth is directly proportional to the sample rate of the A/D converter. The filtering necessary for multiple sampling rates can be accomplished by using the programmable bandwidth capability of the HSCF24040 to adjust the desired filter response to the sample rate. This eliminates the need for a parallel bank of fixed bandwidth anti-aliasing filters, one for each sample rate.


FIGURE 4 - THE HSCF24040 AS AN ANTI-ALIASING FILTER IN A 12-BIT DATA ACQUISITION SYSTEM

PIN ASSIGNMENT HSCF24040

TOP VIEW


PIN FUNCTIONS HSCF24040
NAME FUNCTION

VSS	Negative supply voltage
$\overline{\text { CS }}$	Chip select；active low
G1－G2	The digital inputs that control the $D C$ gain of the SC filter
D0－D7	The digital inputs that control the RC filter bandedge SC filter bandedge，and SC filter decimation rate
$\overline{\text { SYNC }}$	This digital input controls the sampling instant for the SC filter decimated output；active low
CLKKOUT	Master clock output capable of driving 1 standard TTL load．It is a buffered version of either CLKIN or the internally generated crystal oscillator output．
VDD	Positive supply voltage
$\overline{\text { CNVRT }}$	This digital output indicates that the SCOUT output has settled and can now be converted or sampled （drive capability is 1 standard TTL load）；active low
X1－X2	An external crystal is connected between these pins to generate an accurate clock for chip operation
CLKIN	The master clock input．Forcing CLKIN to VSS enables the on－chip oscillator（external crystal）．
GND	Ground
SCOUT	SC filter output
$\overline{P D}$	This digital input is used to power down the analog circuitry；active low
RCOUT	RC filter output
RCIN	RC filter input
SCIN	SC filter input（only valid when AA $\overline{S M}$ is forced low）
$\overline{W R}$	Write strobe；active low
DS	Data strobe
AA $\overline{S M}$	This digital input controls whether the input to the SC filter comes from RCOUT or SCIN
AS	Address strobe
AO	Register address select

[^19]NOTES:

ANALOG TO DIGITAL CONVERTERS

DIGITAL TO ANALOG CONVERTERS

COMPARATORS
4

INSTRUMENTATION AMPLIFIERS
5

SPECIAL FUNCTIONS

EVALUATION BOARDS
7

## APPLICATIONS INFORMATION

## QUALITY ASSURANCE

## PACKAGE OUTLINES

## SALES OFFICES AND REPRESENTATIVES

## FEATURES

- 150 MSPS MINIMUM CONVERSION RATE
- 70 MHz Full Scale input Bandwidth
-1/2 LSB Integral Linearity (Adjustable)
- Low Clock Duty Cycle Sensitivity (Adjustable)
- Preamp Comparator Design/Optional Input Buffer
- Clock produced from any signal generator
- Improved Output Drive (Doubly-Terminated 50 2 )
- Optional clock divider board provided


## APPLICATIONS

- Evaluation of HADC77100 A/D Converter
- Evaluation of HDAC10181/51400 D/A Converters
- High Definition Video
- Digital Oscilliscopes
- Transient Capture
- Radar, EW
- Direct RF Down-conversion
- Medical Electronics: Ultrasound, CAT Instrumentation


## GENERAL DESCRIPTION

The EB100 Evaluation Board is intended to show the performance of Honeywell Inc.'s Signal Processing Technologies HADC77100A/B flash A/D converter and the HDAC10181A/B or HDAC54100 Ultra High Speed D/A converters. The board provides for either the ADC or DAC to be tested together or separately. Included on the unit are two 100 K ECL multiplexers for data routing between the A/D and D/A or on and off the board as shown in the block diagram below.

The HADC77100A/B is a monolithic flash A/D converter capable of digitizing a 2 Volt analog input signal with full scale frequency components to 70 MHz into 8 -bit digital words at a minimum 150 MSPS update rate. For most applications, no external sample-and-hold is required for accurate conversion due to the device's wide bandwidth.

The HDAC51400 and HDAC10181A/B are monolithic 8bit D/A converters capable of converting data at rates of 400,275 , and 165 MWPS respectively. The parts have

## BLOCK DIAGRAM



[^20]
## SIGNAL PROCESSING TECHNOLOGIES

## FEATURES

- 150 MSPS MINIMUM CONVERSION RATE
- 70 MHz Full Scale input Bandwidth
- 1/2 LSB Integral Linearity (Adjustable with three reference ladder taps)
- Low Clock Duty Cycle Sensitivity (Adjustable)
- Preamp Comparator Design/Optional Input Buffer
- ECL clock produced from any signal generator
- Improved D/A Output Drive, Doubly-Terminated $50 \Omega$


## GENERAL DESCRIPTION

The EB101 Evaluation Board is intended to show the performance of Honeywell Inc.'s Signal Processing Technologies HADC77200A/B flash A/D converter and the HDAC10181A/B or HDAC54100 Ultra High Speed D/A converters. The board provides for either the ADC or DAC to be tested together or separately. Included on the unit are two 100K ECL multiplexers for data routing between the A/D and D/A or on and off the board as shown in the block diagram below.

The HADC77200A/B is a monolithic flash A/D converter capable of digitizing a 2 Volt analog input signal with full scale frequency components to 70 MHz into 8-bit digital words at a minimum 150 MSPS update rate. For most applications, no external sample-and-hold is required for accurate conversion due to the device's wide bandwidth.

The HDAC51400 and HDAC10181A/B are monolithic 8bit D/A converters capable of converting data at rates of 400,275 , and 165 MWPS respectively. The parts have

## BLOCK DIAGRAM

## EB101 EVALUATION BOARD

## APPLICATIONS

- Evaluation of HADC77200 A/D Converter
- Evaluation of HDAC10181/51400 D/A Converters
- High Definition Video
- Digital Oscilliscopes
- Transient Capture
- Radar, EW
- Direct RF Down-conversion
- Medical Electronics: Ultrasound, CAT Instrumentation
optional video controls and can directly drive doublyterminated 50 or $75 \Omega$ loads to standard composite video levels. The DACs have an internal reference to supply themselves and the HADC77200 with a stable voltage reference and gain control for different output voltage swings.

The HCMP96870 is a high speed dual differential voltage comparator used to generate an ECL compatible clock signal from any type signal generator.

The board is in Eurocard format with a 64-pin dual height DIN connector for digital data. The analog inputs, outputs and clock input are standard $50 \Omega$ BNC connectors. Tektronix high impedance probe jacks are provided to monitor the clock lines. Standard $-5.2 \mathrm{~V},+5 \mathrm{~V}$, and $\pm 12$ to $\pm 15$ Volt power supplies are required for operation of the EB101, with nominal power dissipation of less than 11 Watts. The board comes fully assembled, calibrated and tested. An optional input buffer board is available for high performance applications and is explained in more detail on the following pages.

**For Ordering Information See Section 1.

## SIGNAL PROCESSING TECHNOLOGIES

## FEATURES

- USE WITH EB100/101 EVALUATION BOARDS
- 70 MHz Full Scale input Bandwidth driving the converters
- Up to $\pm 100 \mathrm{~mA}$ Drive current
- Low Distortion
- 15nS Settling Time


## EB102 EVALUATION BOARD

## APPLICATIONS

- Evaluation of HADC77100/200 A/D Converters
- High Definition Video
- Digital Oscilliscopes
- Transient Capture
- Radar, EW
- Direct RF Down-conversion
- Medical Electronics: Ultrasound, CAT Instrumentation
slightly better harmonic distortion specifications. The CLC231 version has a much higher output drive capability and faster settling time.

The EB102 analog input and output are standard $50 \Omega$ BNC connectors. Standard $\pm 12$ to $\pm 15$ Volt power supplies are required for operation. The board comes fully assembled, calibrated and tested.

The HADC77100/200 is a monolithic flash A/D converter capable of digitizing a 2 Volt analog input signal with full scale frequency components from 50 up to 70 MHz into 8-bit digital words at a 150 MSPS update rate.

## BLOCK DIAGRAM



## **For Ordering Information See Section 1.

EB103 EVALUATION BOARD

## FEATURES

- 400 MSPS NOMINAL CONVERSION RATE
- 100 to 150 MHz Full Scale input Bandwidth
- 1/2 LSB Integral Linearity (Adjustable with three reference ladder taps)
- Preamp Comparator Design/Optional Input Buffer
- ECL Timing skew clock generator
- Improved D/A Output Drive, Doubly-Terminated $50 \Omega$


## GENERAL DESCRIPTION

The EB103 evaluation board is intended to show the performance of the HADC77200 or HADC77300 flash ADD converters in a ping-ponged mode, and the HDAC54100 Ultra High Speed D/A converter for reconstruction. Included on the unit are two 100K ECL multiplexers for combining the ping-ponged A/D converters' 16 bits of output data into 8 bits at twice the speed. The high speed data is routed between the A/D and D/A, and also off the board as full speed or as divided down data ( external clock) for slower speed FFT measurements. This is shown in the block diagram below.

The HADC77200 is a monolithic, 8 -bit flash A/D converter capable of digitizing a 2 Volt analog input signal with full scale frequency components to 100 MHz at a 150 MSPS update rate. For most applications, no external sample-and-hold is required for accurate conversion due to the device's wide bandwidth.

## APPLICATIONS

- Evaluation of HADC77200/300 ADD Converters
- Evaluation of HDAC51400 D/A Converter
- Digital Oscilliscopes
- Transient Capture
- Radar, EW
- Direct RF Down-conversion
- Medical Electronics: Ultrasound, CAT Instrumentation

The HADC77300 is identical to the HADC77200 except that the analoginput is 150 MHz with a 250 MSPS clock rate and a corresponding increase in power dissipation.

The HDAC51400 is a monolithic 8 -bit D/A converter capable of converting data at rates of 400 MWPS. The part has optional video controls and candirectly drive doublyterminated 50 or $75 \Omega$ loads to standard composite video levels. The DAC has an internal reference to supply itself and the two HADC77200/300 with a stable voltage reference. It also has gain control to provide different output voltage swings so it can be used as a standard voltage output DAC.

The HCMP96870A is a dual high speed differential voltage comparator used to generate an adjustable ECL compatible clock signal for timing skew between the two A/D converters and D/A converter.

[^21]
## EB104 EVALUATION BOARD

## FEATURES:

- Provides operating environment for HADC574Z or HADC674Z and HDAC7545A Devices
- Fully Demonstrates Device Function and Resolution
- Eliminates Noisy Breadboard Evaluation Circuitry
- Buffered A/D and D/A Conversion Data Buses
- Includes Sample/Hold Amp and Output Op Amp IC's
- Unipolar or Bipolar Operation


## GENERAL DESCRIPTION

The EB104 Evaluation Board fully demonstrates the capabilities of Honeywell's HADC574/674Z and HDAC7545A 12-bit data conversion products. All of the basic power supply connections, controls lines and external components are included. The board can operate in an analog input/output fashion utilizing both A/D and D/A devices, or the devices can be operated separately. Unlike most laboratory breadboarding, the ground-planed PC board provides the necessary lownoise evironment essential for 12 -bit resolution. The board makes full use of connectors to allow easy hookup and operation.

## APPLICATIONS:

- Evaluation/Comparison of HADC574/674Z Converters
- Evaluation/Comparison of HDAC7545A Converters
- System Development
- Data Acquision Systems
- Bus Structured Instrumentation
- Process Control Systems

Other support provided on the EB104 includes an input sample/hold amplifier, output operational amplifiers and potentiometers for offset and gain adjustments. Customization and function selections are performed by jumper pins. When considering the HADC574/674Z or HDAC7545A for system design, the EB104 Evaluation Board provides a flexible, high performance evaluation vehicle.

The EB104 is supplied with an HADC574ZBCJ and an HDAC7545AACD. It will support all 574/674 and 7545 type devices.

[^22]
## EB105 EVALUATION BOARD

## FEATURES

- Complete With Socketed HSCF24040ACD Device
- Demonstrates HSCF24040 Performance and Capabilities
- Toggle Switches for On-Board Control and Programming
- Connectors Allow Easy Interfacing of External Control, Programming, and Analog Signals
- Crystal Time Base
- Leaded Power Supply Connector


## GENERAL DESCRIPTION

The EB105 Evaluation Board allows full exercise of the Honeywell HSCF24040 Programmable 7th Order Low Pass Active Filter. Unlike a handwired breadboard, this ground-planed, printed circuit board provides a high performance, noise-free environment. It provides full demonstration and evaluation of the superb HSCF24040 dynamic characteristics. Programming and control of the device is conveniently enabled by onboard toggle switches. Alternately, programming and control can be accomplished though the on-board ribbon cable connector. This option allows software control which can aid in system development.

By making full use of the HSCF24040, the EB105 provides an analog input and output for both the RC and

APPLICATIONS<br>- HSCF24040 Evaluation<br>- Prototype System Development<br>- Programmable General-Purpose Subassembly

FIGURE 1 EB105 BOARD FEATURES
switched-capacitor filters. Both of these low-pass filters are fully programmable. Analog interfacing is accomplished with on-board BNC connectors to minimize noise and digital signal coupling. The EB105 also makes use of separate analog and digital supply grounds to further minimize digital coupling.

A clock crystal is supplied on the board which utilizes the HSCF24040 crystal oscillator feature. An external time base can be used optionally. BNC connectors are provided for external clock input and clock output, for the $\overline{\text { CONVERT }}$ output and the SYNC control line. Use of BNC connectors on these active digital lines assure a minimum of digital to analog coupling.

> SELECTION GUIDE, CROSS REFERENCE ORDERING INFORMATION

## ANALOG TO DIGITAL CONVERTERS

DIGITAL TO ANALOG CONVERTERS

## INSTRUMENTATION AMPLIFIERS

SPECIAL FUNCTIONS

EVALUATION BOARDS

## QUALITY ASSURANCE

## PACKAGE OUTLINES

## SALES OFFICES AND REPRESENTATIVES

# EB100 EVALUATION BOARD 8-BIT, 150 MSPS FLASH A/D CONVERTER AND 8-BIT, 165 TO 400 MWPS RASTER D/A CONVERTER WITH REFERENCE by Tom DeLurio Senior Applications Engineer <br> <br> APPLICATIONS 

 <br> <br> APPLICATIONS}

## FEATURES

## FEATURES

- 150 MSPS MINIMUM CONVERSION RATE
- 70 MHz Full Scale input Bandwidth
- 1/2 LSB Integral Linearity (Adjustable)
- Low Clock Duty Cycle Sensitivity (Adjustable)
- Preamp Comparator Design/Optional Input Buffer
- Clock produced from any signal generator
- Improved Output Drive (Doubly-Terminated 50 2 )
- Optional clock divider board provided

\author{

- Evaluation of HADC77100 AD Converter <br> - Evaluation of HDAC10181/51400 D/A Converters <br> - High Definition Video <br> - Digital Oscilliscopes <br> - Transient Capture <br> - Radar, EW <br> - Direct RF Down-conversion <br> - Medical Electronics: Ultrasound, CAT Instrumentation
}


## GENERAL DESCRIPTION

The EB100 Evaluation Board is intended to show the performance of Honeywell Inc.'s Signal Processing Technologies HADC77100A/B flash A/D converter and the HDAC10181A/B or HDAC54100 Ultra High Speed D/A converters. The board provides for either the ADC or DAC to be tested together or separately. Included on the unit are two 100 K ECL multiplexers for data routing between the ADD and D/A or on and off the board as shown in the block diagram below.

The HADC77100A/B is a monolithic flash A/D converter capable of digitizing a 2 Volt analog input signal with full scale frequency components to 70 MHz into 8 -bit digital words at a minimum 150 MSPS update rate. For most applications, no external sample-and-hold is required for accurate conversion due to the device's wide bandwidth.

The HDAC51400 and HDAC10181A/B are monolithic 8bit D/A converters capable of converting data at rates of 400,275 , and 165 MWPS respectively. The parts have

## BLOCK DIAGRAM

optional video controls and can directly drive doublyterminated 50 or $75 \Omega$ loads to standard composite video levels. The DACs have an internal reference to supply themselves and the HADC77100 with a stable voltage reference and gain control for different output voltage swings.

The HCMP96870 is a high speed differential voltage comparator used to generate an ECL compatible clock signal from any type signal generator.

The board is in Eurocard format with a 64-pin dual height DIN connector for digital data. The analog inputs, outputs and clock input are standard $50 \Omega$ BNC connectors. Tektronix high impedance probe jacks are provided to monitor the clock lines. Standard $-5.2 \mathrm{~V},+5 \mathrm{~V}$, and $\pm 12$ to $\pm 15$ Volt power supplies are required for operation of the EB100, with nominal power dissipation of less than 10 Watts. The board comes fully assembled, calibrated and tested. An optional input buffer board is available for high performance applications and is explained in more detail on the following pages.

## GENERAL INFORMATION

The EB100 evaluation board is a fully assembled and tested circuit board designed to aid in the evaluation of Honeywell's HADC77100 8-bit AD converter, HDAC10181/54100 8-bit D/A converters and HCMP96870 dual comparator. The board contains circuitry for buffering the input signals, generating reference voltages, dividing the DAC and multiplexer clocks, routing input / output data, and generating ECL level differential clock signals from any signal generator. All digital inputs and outputs are 10 KH and 100 K ECL compatible and provisions are made for gain, offset and linearity adjustments. The board requires $-5.2,+5$ and $\pm 12$ to $\pm 15$ Volt supplies.

The EB100 evaluation board consists of seven functional sections that include an analog input buffer, A/D converter, input/output multiplexer and data latches, D/A converter, reference voltage generator, ECL clock generator, and ECL clock divider. The analog and digital grounds are separated on the board for better system grounding characteristics.

There are numerous jumper options available to switch sections in or out of the system to suit individual needs. The clock divider circuitry is on a separate board that plugs into the main board to provide divide by 2 or 4 for the multiplexer and DAC. The jumper options will be discussed in more detail in the following sections. In addition, 90 MHz low pass input and output filters are on board.

## ON BOARD ANALOG INPUT BUFFER

This section consists of a 90MHz low pass filter, HA2539 high frequency op-amp, and a 2 N 5836 of transistor. The input impedance is $50 \Omega$ and the gain is set at $2 X$ so that a 1 Volt input can be applied. Compensation components are provided and can be adjusted for the desired frequency range needed. The compensation is factory adjusted for 50 MHz bandwidth operation. The bandwidth of the buffer amplifier can be increased by decreasing the gain to 1X. The BNC connector shown in the schematics and layout near the output of the buffer can be used for monitoring the buffer output and input to the HADC77100. The BNC should be connected to a $50 \Omega$ terminated oscilliscope and will provide a 10X attenuated signal.

The positive input to the HA2539 is tied to an offset adjust to center the input signal to the HADC77100 around -1 V , which is needed if a $2 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ input signal is applied. The input buffer can be bypassed by removing the $6.8 \Omega$ resistor at the emitter of the 2N5836 and the $450 \Omega$ resistor between the BNC connector and the HADC77100. Bypass the $450 \Omega$ resistor with a jumper wire and the HADC77100 can now be driven directly. The input impedance is $4 \mathrm{~K} \Omega$ in parallel with a 56 pF distributed capacitance.

## OPTIONAL ANALOG INPUT BUFFER BOARD EB102

An alternate and higher performance input buffer is available as an option and sold separately. The EB102 is intended for users operating at the top end of the input bandwidth range of the HADC77100. The reason for a separate board is that the amplifiers utilized are quite a bit more expensive then the "on-board" buffer. But, with the added expense, increased input bandwidth with less harmonic distortion is realized.

There are two versions of the EB102 buffer board, one with a wideband op-amp (CLC221) and one with a wideband buffer amplifier (CLC231). Both versions are identical but are jumpered to provide for the different amplifier pinouts (See Figure 1A). The CLC221 version has the advantage of being configured up to a gain of 50 as required, and has slightly better harmonic distortion specifications. The CLC231 version has the advantage of a much higher output drive current and better settling time.

The Following table shows a breakdown of some of the more important specifications:

TABLE 1 -COMPARISON OF COMLINEAR CLC221/31 AMPLIFIERS

SPECIFICATION	CLC221	CLC231
Gain Range	$\pm 1$ to 50	$\pm 1$ to 5
Output (V, mA)	$\pm 12,500$	$\pm 11,100$
Slew Rate (V/usec)	6500	3000
-3dB Bandwidth (Av=2)	275 MHz	165 MHz
Settling Time (nsec, \%)	$15,0.1$   $18,0.02$	$12,0.1$   $15,0.05$   Harmonic(dBc) Second   Distortion $\mathrm{-58}$

## 100K ECL CLOCK GENERATOR

The ECL clock section consists of an HCMP96870 dual comparator, duty cycle and hysteresis adjust, F100131 triple D flip-flop and several jumper options. Any type high frequency signal generator can be connected to the BNC input to the comparators. Both inputs to the dual comparators are connected to the BNC. There are four outputs which generate differential 100K ECL clock signals. One set goes directly to the HADC77100 while the other two can go to the F100155 multiplexers and HDAC10181/51400 or to the clock divider circuitry.


## REFERENCE VOLTAGE GENERATOR

The reference voltage for the HADC77100 and HDAC$10181 / 51400$ is internally generated by the D/A converter voltage reference of approximately 1.2 Volts. The AD converters 2 Volt reference, 1 Volt midtap and ground are controlled by the PMI quad op-amp OP-11. The magnitude of each setting is further adjusted with potentiometer R26, R25, and R32 as shown in the detailed schematic and board layout.

## INPUT/OUTPUT REGISTER AND MULTIPLEXER

The multiplexer section consists of two F100155 which select between external 8 -bit digital data from the 64 -pin DIN connector or data from the output of the HADC77100. The choice is controlled by tying the SELECT pins to either an ECL high for external data or an ECL low for HADC77100 data. This data is then fed to the HDAC10181/51400 on the "Q" outputs of the F100155 and the "Q" outputs are tied to the external connector.

## A/D CONVERTER SECTION

Both input pins to the HADC77100 are tied together to be either fed by the input buffer or by an external source. The MINV and LINV inputs are left open and tied internally to an ECL low. Diodes are provided to tie them high and change the output logic. The connection choices for determining the output logic are in Table 2.

## D/A CONVERTER SECTION

The D/A converter section contains jumpers to use either the HDAC10181 or HDAC51400. The primary difference in the two parts is the reference voltage connections. These differences are shown in the detailed schematic in Figure 2. All EB100 boards and jumpers will be connected for the HDAC10181A part. If an HDAC51400 is indicated when the board is ordered (See last page), the board jumpers must be configured as shown in Figure 4A and 4B by the user.

The output current magnitude for the HDAC10181/ 51400 is controlled by a potentiometer (R36) through the DAC's Iset control pin. In addition, two 90 MHz low pass filters are provided at both out- and out+ output pins as well as $50 \Omega$ terminating resistors. The terminating resistors can be changed to $75 \Omega$ if desired. Keep in mind that the transmission line must be terminated at the receiving end with the same value resistor. The video and feedthrough controls are routed to the 64-pin DIN connector and are normally disabled.

TABLE 2-OUTPUT LOGIC CODING

MINV LINV	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0 1	1.	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
OV	111. . 11	100. . 00	011. . . 11	000. . 00
.	111. . 10	100. . 01	011. . 10	000. . 01
			.	
VIN	100. . . 00	111. . 11	000. . 00	011. . 11
	011. . 11	000. . 00	111. . . 11	100. . 00
-	.	.	.	.
-	.	-	.	.
	000. . 01	011. . 10	100. . 01	111. . . 10
-2V	000. . 00	011. . 11	100. . . 00	111. . 11

1: VIH, VOH
O: VIL, VOL

TABLE 2A-POTENTIOMETER AND    CAPACITOR ADJUSTMENTS	
NO.	FUNCTION
R26	Pot for adjusting gain to produce a 2V reference   voltage for the VRB pin on the HADC77100 from   the1.2V reference voltage supplied by the   HDAC10181/51400.
R25	Pot for setting the linearity adjustment or midtap pin   (VRM $\approx$ 1V) on the HADC77100.
R32	Pot for setting the top point (VRT) on the reference   vottage ladder. Nominally set at 50mV below AGND.
R36	Pot for adjusting output current drive from the   HDAC10181//1400 (See data sheets).   Vout+=25.6(digital code X Iset)/RL
R5	Pot for setting the HCMP96870 comparator thresh-   old voltage to adjust the ECL clock duty cycle.
R4	Pot for adjusting comparator hysteresis.
R23	Pot for adjusting up to a 2V offset voltage at the   buffer output for driving the HADC77100.
R22	Pot for adjusting compensation for the buffer. This   has been set for a flat response. The frequency   range can be increased at the expense of gain   peaking and phase margin reduction by   decreasing the potentiometer resistor value.
C25	"Lead" Capacitor for controlling gain peaking in the   input buffer. Used in conjunction with Pot R22 and   Cap C44 for the HA2539.
C44	"Lag-lead" compenstion capacitor used with R22.

## POWER SUPPLY CONNECTIONS

Power to the EB100 is supplied through a six pin Molex type connector. The supply lines are color coded as shown in Figure1C. Connect the wire end of the power supply harness to power supplies as shown by Figure 1 C and the silk screen near the mating connector on the PC board itself. The power harness is attached to the board with the bevelled edges and hollow connector alligned to the mating connector.

The power requirements for the EB100 at different supplies and with or without the clock divider board is shown in Table 3. When powering up the board, check to see if the current draw from each supply is equivalent to the numbers in the table. If there is a large difference, then recheck your connections. Supply protection diodes are on the board for any reverse polarity connection, but over-voltage protection is not provided.

DO NOT TURN ON THE POWER UNTIL ALL LEADS ARE CONNECTED TO THE SUPPLIES AND THE HARNESS IS ON THE BOARD!!

TABLE 3 - POWER DISSIPATION

EB100 WITH CLOCK DIVIDER, $\pm 15 \mathrm{~V}$			
Voltage	Current	Power	
+15 V	.145 A	2.175 W	
-15 V	.148 A	2.220 W	
+5 V	.006 A	0.030 W	
-5.2 V	1.39 A	7.228 W	
		11.653 W	
EB100 W/O CLOCK DIVIDER, $\pm 12 \mathrm{~V}$			
Voltage	Current	Power	
+12 V	.119 A	1.428 W	
-12 V	.123 A	1.476 W	
+5 V	.006 A	0.030 W	
-5.2 V	1.27 A	6.604 W	
		9.538 W	



## ANTI-ALIASING AND CLOCK NOISE FILTERS

The input to the EB100 buffer circuitry and the differential outputs from the D/A converter are provided with high frequency noise filters. The three filters are 90 MHz low pass and are intended to be used with the full analog input frequency and full clock sampling rate of the HADC77100 A/D converter. If lower frequencies are used, the filters should be changed to filter clock noise
and harmonics for a particular application. Mini-Circuits Inc. ( see below) supplies a range of low pass filters that fit into the same position as the 90 MHz filters on the EB100 Evaluation board.

Also, adjustment of the clock duty cycle with potentiometer R5 will lower the overall noise floor by controlling the setup and hold time of the digital data for the multiplexers (F100155) and DAC (HDAC10181).

Low Pass
Typical Frequency Response


Frequency $X$ fco


CENTER 17.46 MHz AB $300 \mathrm{KHz} \quad$ VB 300 KHz

	MODEL NO.	PASSBAND, MHz (loss < 1dB) Min.	fco, MHz   (loss 3dB)   Nom.	STOP BAND, MHz (loss >20dB) (loss >40dB)			VSWR,   PassbandStopband	
				Max.	Max.	Min.	Typ.	Typ.
$\begin{array}{r} \text { PLP } \\ \text { case A01 } \end{array}$	PLP-10.7	DC-11	14	19	24	200	1.7	1.7
	PLP-50	DC-48	55	70	90	200	1.7	17
	PLP-70	DC-60	67	90	117	300	1.7	17
	PLP-100	DC-98	108	146	189	400	1.7	17


Case no.	A	B	C	D	E	F	G	H	J	K
A01	.770	.800	.385	.400	.370	.400	.200	.20	.14	.031
	19.56	20.32	9.78	10.16	9.40	10.16	5.08	5.08	3.56	.79



TOP VIEW


NOTE: BLACK BEAD INDICATES
PIN 1. PIN NUMBERS DO NOT
APPEAR ON UNIT. FOR
REFERENCE ONLY.

PIN CONNECTIONS
SEE CASE STYLE OUTLINE DRAWING

SERIES	IN	OUT	GROUND
PLP	1	8	$2,3,4,5,6,7$

## 



FIGURE 2 - DETAILED SCHEMATIC OF EB100, REVISION C


Figure 3 Continued 10181/51400 Timing Diagram



FIGURE AA - MAIN BOARD LAYOUT AND COMPONENT POSITION (Not To Scale)


FIGURE 4B - JUMPER POSITION AND CONNECTIONS FOR EITHER THE HDAC10181A/B OR HDAC51400
(Not To Scale)



FIGURE 5 - CLOCK DIVIDER BOARD LAYOUT AND COMPONENT POSITION (Not To Scale)

EB100 REVISION C PARTS LIST

PARTS LIST			
NO.	DESCRIPTION	QTY.	MANUFACTURER/PART NO.
1	FERRITE BEAD	11	FAIR-RITE CORP.-2743001111
2	DIODE	4	1N4001
3	TRANSISTOR	1	MOTOROLA-2N5836
4	I.C.	1	HONEYWELL-HDAC10181A/B OR HDAC51400
5	I.C.	1	HONEYWELL-HCMP96870
6	I.C.	2	FAIRCHILD-F100155
7	I.C.	1	PMI-OP-11
8	I.C.	1	HONEYWELL-HADC77100B
9	I.C.	1	HARRIS-HA2539
10	FILTER	3	MINI-CIRCUITS-PLP-100
11	RESISTOR	1	240 2 , 2 w
12	RESISTOR	1	56, 1/2w
13	RESISTOR	1	$6.8 \Omega, 1 / 8 \mathrm{w}$
14	RESISTOR	7	10K $\Omega$, 1/8w
15	SIP RESISTOR PACK	5	220/330 2
16	RESISTOR	4	220 $\Omega$, 1/8w
17	RESISTOR	4	330 ${ }^{\text {, } 1 / 8 w}$
18	RESISTOR	2	750 $\Omega$, 1/8w
19	RESISTOR	3	50ת, 1/8w
20	RESISTOR	3	470 ${ }^{\text {, } 1 / 8 \mathrm{w}}$
21	RESISTOR	1	10ת, 1/8w
22	RESISTOR	1	15.1 $\Omega$, $1 / 8 w$
23	RESISTOR	1	$5 \mathrm{k} \Omega$, 1/8w
24	RESISTOR	1	$1.5 \mathrm{k} \Omega, 1 / 8 \mathrm{w}$
25	POTENTIOMETER	2	BOURNS-1Kת, 3329-H-102 \& MOUSER-ME323$4290 \mathrm{~W}-1 \mathrm{k} \Omega$
26	POTENTIOMETER	6	BOURNS-10K $2,3329-\mathrm{H}-103$
27	CONNECTOR, DIN	1	BELL IND.-905-72184C
28	CONNECTOR	1	MOLEX-09-18-5069
29	CAPACITOR, CHIP	16	JOHANSON-47pf 500R15N470JP4
30	CAPACITOR	10	SPRAGUE-1uf TANT, 35V
31	CAPACITOR	29	SPC TECHNOLOGY-0.1午
32	CAPACITOR, ADJ	2	JOHANSON-47pF-9629
33	CONNECTOR, BNC	5	TRUMPETER-CBJ20,50 2
34	TEST POINTS	2	TEKTRONIX 131-2766-01, 136-0352-02
35	PIN RECEPTACLE	42	MILL MAX-0552-1-15-15-11-27-10-0
36	PIN SOCKET	9	SAMTEC-SL-132-G-12
37	SOCKET, 24PIN	1	SAMTEC-ICO-624-NGT
38	PRINTED CIRCUIT BOARD	1	HONEYWELL-EB100

EB100 CLOCK DIVIDER BOARD

NO.	DESCRIPTION	QTY.	MANUFACTURER/PART NO.
39	F100131	1	FAIRCHILD TRIPLE D-TYPE FLIP-FLOP
40	CAPACITOR	2	$.1 \mu \mathrm{~F}$
41	TESTPOINTS	2	TEKTRONIX $131-2766-01,136-0352-02$
42	RESISTOR	6	$1 \mathrm{~K} \Omega, 1 / 8 w 5 \%$
43	RESISTOR	4	$220 \Omega, 1 / 8 w 5 \%$
44	RESISTOR	4	$330 \Omega, 1 / 8 w 5 \%$
45	CAPACITOR	1	JOHANSON-47PF CHIP
46	TESTPOINTS	2	COMPONENTS CORP.-TP-102


PARTS LIST				
NO.	REF. DESIG.	QTY.	DESCRIPTION	MANUFACTURER / PART NO.
1	C1, 3, 5, 8, 12, 13, 15	7	CAPACITOR, . $1 \mu \mathrm{f}-50 \mathrm{~V}$	AVX/SR205E104MAA
2	C2, 4, 7, 14	4	CAPACITOR, 47pf - CHIP	JOHANSON / 500R15N470.JP4
3	C10, 11, (NOTE 3)	2	CAPACITOR, SEALTRIM 5-20pf	JOHANSON / 9629
4	CR1, 2	2	DIODE, 1N4001	
5	E1, 2	2	JUMPER PINS (HEADER STRIP)	CYPRESS / TSW-1-36-07-T-S
6	FL1	1	FILTER, 90 MHz LOWPASS	MINICIRCUITS / PLP-100
7	J1, 2 (NOTE4)	2	RECEPTACLE, BNC	TRUMPETER / CBJ20
8	L1, 2	2	RF BEAD	FAIR-RITE / $2743001111 / 2$
9	P1	1	PLUG	MOLEX / 09-18-5031
10	R1, 2	2	RESISTOR, 10K OHM	HAMILTON / AVNET / CF1/8-10K-5\%-T/R
11	R4, 12	2	RESISTOR, 33 OHM	HAMILTON / AVNET / CF1/8-33-5\%-T/R
12	R5	1	RESISTOR, 25 K OHM	HAMILTON / AVNET / CF1/8-25K-5\%-T/R
13	R7 (NOTE 1)	1	RESISTOR, 1.5K OHM	HAMILTON / AVNET / CF1/8-1.5K-5\%-T/R
14	R7, 8 (NOTE 2)	2	RESISTOR, 250 OHM	HAMILTON / AVNET / CF1/8-250-5\%-T/R
15	R9	1	RESISTOR, 150 OHM	HAMILTON / AVNET / CF1/8-150-5\%-T/R
16	R10	1	RESISTOR, 51 OHM	HAMILTON / AVNET / CF1/8-51-5\%-T/R
17	R3	1	POTENTIOMETER, 10K OHM	BOURNS / 3339-1-103
18	R6, 11	2	POTENTIOMETER, 1M OHM	BOURNS / 3339-1-106
19	C6, 9	2	CAPACITOR, $1 \mu \mathrm{f}$ TANT, 35V	SPRAGUE / 196 DIO5X9035 HAI
20	U1 (NOTE 1)	1	I.C., OP-AMP	COMLINEAR / CLC221A1
21	U1 (NOTE 2)	1	I.C., BUFF-AMP	COMLINEAR / CLC231A1
22	PCB1	1	PRINTED CIRCUIT BOARD	HONEYWELL/EB102 REV. B

NOTES:

1) USE ITEM NO. 13 WITH ITEM NO. 20 AND JUMPER E1, 2.
2) USE ITEM NO. 14 WITH ITEM NO. 21.
3) USE C10 WITH ITEM NO. 21 ONLY.
4) J2 IS MOUNTED ON THE BACKSIDE OF PCB1.


FIGURE 6 - EB102 BUFFER BOARD LAYOUT AND COMPONENT POSITION (Not To Scale)

## SET-UP PROCEDURE FOR THE EB100 DEMONSTRATION BOARD

[^23]Table 3 (page 6) shows the power requirements for the EB100. Use the current gauges on the power supply or a DMM in line with the power lines and set on current (I). these current values will vary somewhat until all the potentiometers are adjusted. When powering up the board, check to see if the current draw from each supply is equivalent to the numbers in the table. If there is a large difference, then recheck your connections. Supply protection diodes are on the board for any reverse polarity connection, but over-voltage protection is not provided.

## STEP 2

Refer to Figure 2 and 4 on the previous pages. Place a DMM probe (set to voltage selection) on the black jumpers at the input to the HADC77100 (E14). This should read -1 V and is adjusted by turning potentiometer R23 (See Table 2A).

## STEP 3

Again, refer to Figures 2 and 4 on the previous pages and Table 5 on this page. Place a DMM probe (set to voltage selection) on pin 3 of the OP11 and read approximately -1.2 V . If it does not then check to see if the black jumpers for the HDAC10181/51400 are set up

## TABLE 5 - EQUIPMENT LIST

2- SIGNAL GENERATORS CAPABLE OF PRODUCING 1MHZ AND 20MHZ SINEWAVES AT UP TO 1Vp-p OUTPUT LEVELS INTO 50』. H.P.8656A OR EQUIVALENT.

1- OSCILLISCOPE, EITHER H.P. DIGITIZING OSCILLISCOPE MODEL 54100D OR EQUIVALENT OR TEKTRONIX MODEL 2465.

1- DIGITAL MULTIMETER(DMM), KEITHLEY 197 OR EQUIVALENT.
4- POWER SUPPLIES CAPABLE OF PRODUCING THE POWER LISTED IN TABLE 1. 2 LAMBDA LPT-7202-FM OR EQUIVALENT.

5-50 COAX CABLES (RG58) WITH BNC TYPE CONNECTORS.
1- HIGHIMPEDANCE PROBE ( $1 \mathrm{M} \Omega$ ) - TEKTRONIX OR H.P.
for the right part (see Figure 4B). Next set the probe on pin 1 of the OP11. This should read -2 V and is adjusted by turning potentiometer R26. Now set the probe on pin 7 of the OP11. This should read approximately -1 V and is adjusted by potentiometer R35. Pin 8 of the OP11 should read approximately -50 mV and is adjusted by potentiometer R32.

## STEP 4

Refer to Figures 2 and 4. Attach a $50 \Omega$ BNC cable to the "CLK IN" BNC connector. Attach the other end to a sinewave or signal generator set at 20 MHz frequency and $1 \mathrm{Vp}-\mathrm{p}$ amplitude (if $1 \mathrm{Vp}-\mathrm{p}$ is not available, amplitudes down to $100 \mathrm{mVp}-\mathrm{p}$ are acceptable). Put a Tektronix or H.P. high impedance probe in one or both of the probe jacks immediately below the HCMP96870 comparator. Adjust potentiometer R5 to achieve a $50 \%$ duty cycle square wave (both "high" and "low" states are the same length). Adjust potentiometer R4 if no waveform is present and/or to get rid of any jitter in the square wave (this is a hysteresis adjustment). The square wave amplitude should be approximately 900 mVp -p and look like Figure 7 below.

STEP 5
Refer to Figure 2 and 4. Attach a $50 \Omega$ coax cable to the BNC connector marked "BUFFER $\operatorname{IN}$ ". Use a second sinewave or signal generator set at 1 MHz frequency and 1Vp-p amplitude (See Figure 8). Attach another cable to the BNC connector "A/D IN / BUFFER OUT" and to an oscilliscope set at $50 \Omega$ input impedance. A $200 \mathrm{mVp}-\mathrm{p}$ amplitude signal swinging around -100 mVdc should apear at a 1 MHz frequency (See Figure 9). If oscillation is evident (erratic signal amplitude or wrong frequency), potentiometer and capacitor C44 must be adjusted as well as capacitor C25. Adjust capacitor C25 first to minimize the oscillation. If this does not work, set it at the lowest amplitude oscillation and adjust potentiometer R22. Adjust potentiometer R22 to midturn and then adjust capacitor C44 until the oscillation stops. See Figures 10, 11, and 12.


Trigger mode: Edge
On Pos. Edge on Chan2
Trigger Levels
Chan2 $=-1.180$ volts
Holdoff $=70.000$ nsecs
FIGURE 7-CLOCK OUTPUT AT THE TEKTRONIX PROBE JACKS

FIGURE 8-INPUT SIGNAL TO THE BOARD ( $50 \Omega$ INPUT IMPEDANCE)

FIGURE 9-OUTPUT SIGNAL FROM THE "BUFFER OUT" BNC CONNECTOR (50 $\Omega$ IMPEDANCE)


Trigger mode: Edge
On Pos. Edge on Chan1
Trigger Levels

Chan 1	$=0.000$ volts
Holdoff	$=70.000$ nsecs



-1.00000 usec		0.00000 sec			1.00000 usec
Ch. 1	50.00 mvolts / div		Offset	=	-100.0 mvolts
Timebase	$200 \mathrm{nsec} /$ div		Delay	$=$	0.00000 sec
Ch. 1 Parameters			P-P Volts	$=$	200.0 mvolts
Rise Time	294.080 nsec		Fall Time	=	289.910 nsec
Freq.	997.904 KHz		Period	$=$	1.00210 usec
+ Width	499.810 nsec		- Width	=	502.290 nsec
Overshoot =	1.562 mvolts		Preshoot	=	1.562 mvolts

Trigger mode: Edge
On Pos. Edge on Chan 1
Trigger Levels
Chan1 $=-100.0$ mvolts
Holdoff $=70.000$ nsecs

FIGURE 10 OSCILLATIONS ARE APPARENT AND ADJUSTMENTIS NECESSARY

FIGURE 11-THE OSCILLATIONS ARE DECREASING AND THE BOTTOM WAVEFORM IS STARTING TO APPROACH THE SAME SHAPE AS THE TOP WAVEFORM


Trigger mode: Edge
On Pos. Edge on Chan1
Trigger Levels

Chan1	$=0.000$ volts
Holdoff	$=70.000$ nsecs



Trigger mode: Edge
On Pos. Edge on Chan1
Trigger Levels
Chan1 $=0.000$ volts
Holdoff $=70.000$ nsecs

FIGURE12 OSCILLATION HAS STOPPED AND THE BOTTOM WAVE-FORM IS THE SAME SHAPE AS THE TOP WAVEFORM BUTIS INVERTED

FIGURE 13-OUTPUT WAVEFORMS FROM "OUT-" AND "OUT+" WITHOUT THE CLOCK DIVIDER BOARD INSERTED AND THE CLOCK JUMPERS CONNECTED AS SHOWN IN THE TOP OF FIGURE 4



-1.00000 usec	
Ch. 1	400.0 mvolts / div
Ch. 2	400.0 mvolts / div
Timebase	$200 \mathrm{nsec} /$ div
Ch. 1 Parameters	
Rise Time	290.470 nsec
Freq.	1.00264 MHz
+ Width	499.250 nsec
Overshoot	$=6.249$ mvolts

### 0.00000 sec

1.00000 usec

Offset
Offset Delay P-P Volts Fall Time $=297.770 \mathrm{nsec}$ Period $=997.370 \mathrm{nsec}$ - Width $=498.120 \mathrm{nsec}$ Preshoot $=6.249$ mvolts

Trigger mode: Edge
On Neg. Edge on Chan 1
Trigger Levels
Chan1 $=-964.0$ mvolts
Holdoff $=70.000$ nsecs

## STEP 6

This measurement is done without the clock divider board connected and clock jumpers inserted as shown in the top of Figure 4. Again referring to Figures 2 an 4, attach a $50 \Omega$ coax cable to the BNC connector marked "OUT-" and another cable to "OUT+". Attach the other end to an oscilliscope set to $50 \Omega$ input impedance. The outputs should be the opposite of each other and at approximately a 900 mV amplitude. Adjust potentiometer

R36 to achieve this level. Do not adjust too far or the signal will start deteriorating. See Figure 13. After completing step 6, remove one end of each "clock jumper" wire and leave the other end soldered to the board.

## STEP 7

Insert the clock divider board and connect the shorting jumpers to the posts in the +2 configuration and compare to the waveform in Figure 14.

FIGURE 14 - "OUT-" AND "OUT+" WITH THE CLOCK DIVIDER BOARD INSERTED AND SET AT +2 MODE


Trigger mode: Edge
On Neg. Edge on Chan1
Trigger Levels
Chan1 $=-936.0$ mvolts
Holdoff $=70.000$ nsecs

## STEP 8

Insert the clock divider board and connect the shorting jumpers to the posts in the +4 configuration and compare to the waveform in Figure 15.

FIGURE 15-"OUT-" AND "OUT+" WITH +4 CLOCK DIVIDER MODE


Trigger mode: Edge
On Neg. Edge on Chan1
Trigger Levels
Chan1 $=-944.0$ mvolts
Holdoff $=70.000$ nsecs


PIN FUNCTIONS HADC77100

## NAME FUNCTION

AVEE Negative Analog Supply Nominally -5.2V
LINV $\begin{gathered}\text { D0 through D6 Output Inversion Control } \\ \text { Pin }\end{gathered}$
DVEE Digital Analog Supply Nominally -5.2V
DGND1 Digital Ground 1
DGND2 Digital Ground 2
DO Digital Data Output (LSB)
D1-D6 Digital Data Output
D7 Digital Data Output (MSB)
MINV D7 Output Inversion Control Pin
$\overline{\text { CLK }}$ ECL Clock Input Pin
CLK ECL Clock Input Pin
VRB Reference Voltage Bottom Nominally - 2.0 V
AGND Analog Ground
VIN Analog Input (can be connected to the input signal or used as Sense)

VRM Reference Voltage Tap Middle
VIN Analog Input (can be connected to the input signal or used as Sense)

VRT Reference Voltage, Top Nominally 0.0 V

TOP VIEW


16 LEAD CERAMIC

## NAME FUNCTION

$\bar{Q}_{A}$	Output A
$\mathrm{Q}_{\mathrm{A}}$	Inverted Output A
$\mathrm{GND}_{\mathrm{A}}$	Ground A
$\mathrm{LE}_{\mathrm{A}}$	Latch Enable A
$\overline{\mathrm{LE}}_{\mathrm{A}}$	Inverted Latch Enable A
$\mathrm{V}_{\mathrm{EE}}$	Negative Supply Voltage
$-\mathrm{IN}_{\mathrm{A}}$	Inverting Input A
$+\mathrm{IN}_{\mathrm{A}}$	Non-Inverting Input A
$+\mathrm{IN}_{\mathrm{B}}$	Non-Inverting Input B
$-\mathrm{IN}_{\mathrm{B}}$	Inverting Input B
$\mathrm{V} \mathrm{C}_{\mathrm{C}}$	Positive Supply Voltage
LE	Inverted Latch Enable B
$\overline{L E}_{\mathrm{B}}$	Latch Enable B
$\mathrm{GND}_{\mathrm{B}}$	Ground B
$\bar{Q}_{\mathrm{B}}$	Inverted Output B
$\mathrm{Q}_{\mathrm{B}}$	Output B

PIN ASSIGNMENTS HDAC10181

OOLNV


PIN ASSIGNMENTS HDAC51400


## PIN FUNCTIONS HDAC10181

NAME	FUNCTION
D3	Data Bit 3
D2	Data Bit 2
D1	Data Bit 1
D0	Data Bit 0 (LSB)
VEED	Digital Negative Supply
CONV	Convert Clock Input
CONV	Convert Clock Input Complement
FT	Register Feedthrough Control
VCCD	Digital Positive Supply
FH	Data Force High Control
BLANK	Video Blank Input
BRT	Video Bright Input
SYNC	Video SYNC Input
REF-OUT	Reference Output
ISET	Reference Current + Input
COMP	Compensation Input
VCCA	Analog Positive Supply
OUT-	Output Current Negative
OUT+	Output Current Positive
VEEA	Analog Negative Supply
D7	Data Bit 7 (MSB)
D6	Data Bit 6
D5	Data Bit 5
D4	Data Bit 4

PIN FUNCTIONS HDAC51400

NAME	FUNCTION
D3	Data Bit 3
D2	Data Bit 2
D1	Data Bit 1
D0	Data Bit 0 (LSB)
VEED	Digital Negative Supply
CONV	Convert Clock Input
CONV	Convert Clock Input Complement
FT	Register Feedthrough Control
VCCD	Digital Positive Supply
FH	Data Force High Control
BLANK	Video Blank Input
BRT	Video Bright Input
SYNC	Video SYNC Input
REF-OUT	Reference Output
REF-IN	Reference Input
ISET	Reference Current
VCCA	Analog Positive Supply
OUT-	Output Current Negative
OUT+	Output Current Positive
VEEA	Analog Negative Supply
D7	Data Bit 7 (MSB)
D6	Data Bit 6
D5	Data Bit 5
D4	Data Bit 4

## SIGNAL PROCESSING TECHNOLOGY'S PARALLEL ANALOG TO DIGITAL CONVERTERS

## by STEVE SOCKOLOV MARKETING MANAGER

## GENERAL

The fastest type of analog to digital converter known at this time is the parallel or flash converter. This type of converter (see Figure 1) has one comparator for each possible output code. This results in the fact that there are $2^{\mathrm{N}}$ or $2^{\mathrm{N}}-1$ comparators for an " N "-bit flash converter. The difference between the two numbers of comparators depends on whether or not an overrange bit is included. This can be a very large number of comparators, to fit on a single die, for values of N greater than eight.

Flash converters are now available with up to 10 bits of resolution. There are also products available that are called flash converters, but are actually a variation known as "two-step" flash converters. Almost all data sheets that now claim to have 10 - or 11 - bit flash converters, and even some lower resolution converters, are not true parallel converters with $2^{\mathrm{N}}-1$
comparators. These converters (see Figure 2) go by a variety of names including two-step, sub-ranging, half flash, feed forward and series/parallel converters. "Two-step" or sub-ranging converters require a different system design approach than parallel flash converters and require extra support circuits in many applications. A major advantage of these sub-ranging architectures is that they should cost less than a comparable full parallel type. Disadvantages include the need for a sample and hold (unless it is included on the device) and their problems with dynamic performance over processing and temperature have not yet been solved.

Flash converters are currently available with 4 to 10 bits of resolution with 8 bits being by far the most common configuration. There are several trade-offs that are made as resolution is increased. These are,


for a given process, as the resolution is increased and if the basic design is unchanged the speed may decrease slightly, input capacitance will almost double for each bit added, power will go up and cost will increase due to die size and the associated effect on yields. It is for all of these reasons that there are no flashes with greater than 10 bits of resolution available today.

## DESCRIPTIONS

Honeywell's 8-bit flash converters, the HADC77100, 77200 and 77300 (see Figures 3A and 3B) have an input structure that improves their performance over previous flash converter designs. This structure is the inclusion of a preamplifier with inputs connected to the resistor ladder and the analog inputs of each of the 256 comparators.

After the comparator outputs (see Figure 4) the structure of the HADC77100 family of converters is similar to many other 8 -bit flash converters. They are configured in four columns, each of which functions as a 6 -bit converter. The outputs of each column are then
logically combined to generate the 8 -bit output. Output coding can be controlled by the Most Significant Bit Invert (MINV for bit D7) line and the Least Significant Bits Invert (LINV for bits DO through D6) line.

Figure 5 shows a macro block diagram of Honeywell's 10 -bit high speed flash converter. The analog signal enters the preamplifier/comparator front end and is digitized by the comparators into a "thermometer" code. After the comparators there are 16 blocks of 64 "thermometer" code to Gray code converters. This block also contains new patented circuitry to eliminate metastable states. Gray coding was chosen because it reduces glitches and digital noise caused by switching transients and glitches caused by "OR'ing" more than 1 code. The results are reduced signature effects and improved dynamic performance. Following this first decode are the column latches. After the latches the MSBs and the overrange bits of each of the16 banks are decoded to form the 4 MSBs . In parallel with this, the 6 LSBs from each of the 16 banks are OR'ed to form the 6 LSBs.


Figure 3A. HADC77100 Block Diagram


Figure 3B. HADC77200 Block Diagram


Figure 4. HADC77100 Family Block Diagram

Following this first decode are the column latches. After the latches the MSBs and the overrange bits of each of the 16 banks are decoded to form the 4 MSBs. In parallel with this, the 6 LSBs from each of the 16 banks are ORed to form the 6 LSBs. All coding has been Gray code to this point and in the next block it is decoded to binary. Control bits are available to invert either the MSB and/or the LSBs to generate other common codes such as two's complement or offset binary. The final block contains the output latches and buffers.

## INPUT STRUCTURE

There are two inputs to all of Honeywell's flash converters. These inputs are connected to a single point internally so they may be either tied together externally, or used as force and sense lines. Using the force and sense approach will take the effect of the lead inductance out of the input. This would not be much of an advantage at bandwidths below 50 MHz . But it will be useful at higher frequencies. Connected
directly to the inputs are the preamplifiers. The purpose of these preamplifiers is to reduce both kickback currents and the possibility of metastable states. These input amplifiers have a very high gain bandwidth product which results in greatly improved dynamic performance (over previous flash converters). Part of this improvement comes by providing gain prior to the comparator increasing its overdrive, thus reducing the chances for metastable states. Following the input to the preamplifiers the entire circuit to the output latches is differential to reduce clock synchronous noise.

Input capacitance is a very critical parameter to the users of high speed ADCs. In the best of cases this capacitance would be both low and constant. The greater the capacitance, the greater the drive requirements of the signal source and if it varies over input voltage, as it does in most semiconductor devices, then the compensation of the driving amplifier must be designed to account for the worst case. When reading input capacitance on data sheets pay


Figure 5. Digital Logic Configuration, 10-Bit Flash ADC
attention to the test conditions. Semiconductors have the highest capacitance with the lowest voltage across them. For worst case designs with ECL compatible converters $\mathrm{V}_{\text {IN }}$ is at 0.0 Volts.

In some cases, especially in testing, the converter is driven from 50 Ohm sources and this can cause a pole to appear at the input caused by the 50 Ohms in series with the input capacitance. Another characteristic of input capacitance is that it can vary with input frequency and/or input voltage. Signal Processing Technology's converter input capacitance varies only a few pico Farads with either frequency or voltage within its specified operating range.

## RANDOM ERRORS -- SPARKLE CODES, GLITCHES AND METASTABLE STATES

In an ideal flash converter every comparator will be in a defined logic state (either a " 0 " or a " 1 ") at the time that the latches are strobed. At the strobe all of the comparators below the input voltage would be "off" and all of the comparators above the input voltage would be "on." This is the "thermometer" code that was previously referred to.

It is possible to strobe the comparators while one of them is in its linear region. This would cause the decode logic to possibly enter either an undefined state or not have time to change states. This could result in the decode logic equation (see Figure 6) such as $\mathrm{A}+\overline{\mathrm{B}}+\overline{\mathrm{C}}+$ ? $+\mathrm{E}+\mathrm{F}+\mathrm{G}$ for the 3 -bit converter shown in this example. Since the logic has been minimized to only implement the set of equations shown in Table 1, the output would be erroneous. This erroneous data is the result of a metastable state.

TABLE 1
3-BIT FLASH CONVERTER

LOGIC EQUATION		BINARY	GRAY
$\bar{A}+\bar{B}+\bar{C}+\bar{D}+\bar{E}+\bar{F}+\bar{G}$	$=000$	000	
$\bar{A}+\bar{B}+\bar{C}+\bar{D}+\bar{E}+\bar{F}+G$	$=001$	001	
$\bar{A}+\bar{B}+\bar{C}+\bar{D}+\bar{E}+F+G$	$=010$	011	
$\bar{A}+\bar{B}+\bar{C}+\bar{D}+E+F+G$	$=011$	010	
$\bar{A}+\bar{B}+\bar{C}+D+E+F+G=100$	110		
$\bar{A}+\bar{B}+C+D+E+F+G=$	$=101$	100	
$\bar{A}+B+C+D+E+F+G=110$	101		
$A+B+C+D+E+F+G$	$=111$	111	

Another possible decode error that could result is due to differences in propagation delays and offsets of the individual comparators. These differences could result in a comparator output such as $\bar{A}+\bar{B}+\bar{C}+D+E+F+G$. Again, the decode logic has not been designed to solve this equation and could produce erroneous data. These types of errors are often referred to as sparkle code or glitches.

Both of these error sources may appear to be random and appear as incorrect output data when compared to the analog input. Possibilities of the errors caused by metastable states increase exponentially with increased clock speeds. Sparkle codes, caused by differences in propagation delays and offsets, may appear to be random but are repeatable for given clock frequencies and input conditions. This type of error often appears as a signature error. Signature errors are caused by the way the internal structure is partitioned or layed out. An example would be if the internal structure were partitioned into blocks of eight banks of comparators, then at eighth scale intervals there may be either wider or narrower codes than those that exist at other codes. These signature errors can appear with DC inputs, but are more commonly seen at higher frequencies.

Honeywell has added proprietary logic (patent applied for) after the comparators in the 10 -bit flash converter to reduce metastable states, for a given frequency, to the LSB level. The preamplifiers in the HADC77100 family flash converter reduce the metastable error rate by a theoretical factor of six. Signature effects in all Honeywell flash converter designs have also been reduced to a minimum.

## DIGITAL I/O AND INTERNAL LOGIC

All digital inputs, outputs, and clock signals are ECL compatible. ECL was chosen for its low switching noise and its fast clock edges. The fast differential clocks reduce aperture width and jitter. The room temperature specifications for all ECL logic levels are the same as Motorola's 10KH, but they have been designed to operate over the full military temperature range of the converter.

Internal logic is fully differential Current Mode Logic. This is a very high speed, low power logic that has proven performance in high speed converters.

Outputs of the 10 -bit flash are specified terminated to 100 Ohms. This will be to save power, since the speed of 50 Ohm termination is not required at its rated speed. Outputs of the 8 -bit, 125 MHz and above converters are specified with 50 Ohm termination.

## CLOCKING

At this time all of Honeywell's flash converters are driven by differential ECL clocks. We realize that slower converters may be in systems that are totally TTL compatible. But in order to assure optimum performance, ECL clocks have been chosen. The relatively slow edges of TTL signals could cause hundreds of picoseconds of aperture jitter, unacceptable performance for high speed systems. Differential clocks also provide better system noise performance.

For Honeywell's flash converters clock duty cycles are designed to be $50 \%$ for the highest operating speeds. Duty cycles of $50 \%$ were chosen because they are easy to generate and are useful in applications such as ping-ponging. At sample rates below maximum, clock duty cycle is not important to the device operation. What is important at any sample rate is to assure that at least the minimum pulse width is maintained.

Clock inputs were designed to accept differential ECL levels but they may be driven in a variety of different ways. Care must be taken to assure that the method of clock driving is commensurate with the application and temperature range required. For applications where aperture delay is not a critical concern, the clock may be driven single-ended. An ECL signal, or a sine wave with ECL levels may be fed to one of the clock inputs and the other input would be tied to the ECL threshold of approximately -1.3 V . The disadvantage of this method is that due to $V_{\mathrm{BB}}$ shifts with temperature, the aperture delay will shift $15 \mathrm{ps} /{ }^{\circ} \mathrm{C}$ (for the HADC77100) from a typical value of 1.8 ns at $25^{\circ} \mathrm{C}$. This temperature dependent shift is designed to track MECL 10KH logic
and can be driven single-ended without problems when driven from 10 KH logic. For aperture delay critical requirements such as when the converter is used in conjunction with a track and hold or when phase information must be maintained, then differential clocking should be used. This will have much better stability ( $7 \mathrm{ps} /{ }^{\circ} \mathrm{C}$ ) over temperature.

Tracking of different
devices over temperature appears to be very good with almost no difference from device to device in the few HADC77100s that have been measured.

Because the inputs to the internal clock drivers have a gain stage in front of them, signals less than full ECL levels may also be used. Differential signals of greater than $\pm 100 \mathrm{mV}$ are adequate.

Figure 6. 3-Bit Parallel Converter Example

## SPECIFICATIONS AND TESTING



Conver Exampla

All data sheet specifications with minimums or maximums will be tested at the temperatures specified unless otherwise noted. Those that have only typical numbers Honeywell intends to characterize, but not test. Honeywell's data sheets also include a Test Level to specify how the devices are tested.

Testing of flash converters at full operating speeds is extremely complicated. Honeywell uses an automated test system to perform all of the production tests on these devices. Characterization is performed using the test equipment shown in Figure 7. Since testing is so complex and costly, the user may wish to consider using Honeywell's evaluation board with bench top test equipment for incoming sample tests.

There are several tests listed in the specifications that may need explanations. It is important to understand that these devices attain new levels of performance,
and Honeywell believes that traditional analog to digital converter specifications such as gain and linearity are not the only specifications needed for high speed system design. These specifications are static and therefore are applicable to input signals that are at or near DC. Perhaps one could test a parameter such as linearity at a given frequency. This can be done using histogram testing. Another test that can be performed is a RMS sine wave curve fit. This is often referred to as "effective bits." This is a dynamic test that measures the sum of several errors and relates them to the fidelity of a sine wave.

## OFFSET TESTING

Because these converters have two references, one at the top and the other at the bottom of the ladder, the traditional gain and offset specifications do not apply. Honeywell's specifications contain two offset specifications, one for each end of the ladder. The following is an example of testing for these offsets using an 8-bit converter. Any other flash converter with two reference inputs could be tested similarly using different values. Offsets will be tested by applying $\mathrm{V}_{\mathrm{REF}} \mathrm{( } 0.000 \mathrm{~V}$ for the 8 -bit converters) to the input and increasing the positive reference from an arbitrary voltage, say -0.100 V , and finding the code transition to full scale. The difference between the voltage at which the transition occurs, plus $1 / 2$ LSB ( 3.91 mV ), and 0.000 V is the $\mathrm{V}_{\mathrm{RT}}$ offset. The $\mathrm{V}_{\mathrm{RB}}$ offset will be determined in a similar manner with an input voltage of 2.000 V .

## DYNAMIC TESTING

The following are brief explanations of some of the dynamic tests that Honeywell performs when evaluating flash converters. For more complete explanations consult Hewlett Packard's product note 5180A2 "Dynamic Testing of A to D Converters."


Figure 7. Test Equipment

HISTOGRAM TESTING:
In this test a full scale sine wave is input to the ADC and many samples (perhaps 100,000 ) are taken. Then the number of times each code appears is plotted. Since a sine wave is slowest at its extremes the number of codes for zero scale and full scale are the greatest. This should make a graph with a flattened "U" shape. Honeywell's data does not exhibit this shape because the data has been normalized. This test can be conducted at different input frequencies to show response over the full dynamic range of the converter. This test can give data on differential linearity, integral linearity, mean differential linearity, RMS differential, and on the number of missing codes. The mean differential linearity is the sum of all of the differential errors. Ideally, it should be zero. Most flash converters come very close to this value at DC because this parameter measures the magnitude of the sum of superposition errors. As the analog input slew rate increases this error also increases. This is probably due to dynamic currents in the ladder.

Histogram testing does have one weakness. It measures only the number of occurances of each code and not the order of them. For this reason, it is possible to have random errors or missing codes and because the test averages many data points a code may appear wider or narrower than it actually is.

An alternative to sine wave testing is triangle wave testing. This signal would give a very good indication of the performance of the ADC because every comparator would be tested at maximum slew rate. The difficulty with this type of test is generating a triangle wave with a very high frequency.

Square wave testing can also be used to evaluate flash converters. This test measures step response. Evaluation with square waves should be performed on flash converters whenever their input is being driven from either a multiplexer, sample and hold or will, by the nature of the input signal, be required to have good step response.

## RMS DIFFERENTIAL LINEARITY ERROR:

The square root of the sum of the squares of the differential non-linearities. This error term can be an indication of the signal-to-noise ratio of the converter. The device numbered 153 shows a part that has 2 LSB of RMS DL at 10 MHz and 47.5 dB of SNR at the same frequency. Another device measured .28 LSB and 45.68 dB at the same frequency. However, this relationship only holds true for devices that have randomly distributed DNL errors. Those with large spikes may have SNRs that are so poor they are unmeasurable.

SINE WAVE CURVE FIT (Effective Bits):
Testing flash ADCs for sine wave curve fit provides a quantitative value that represents the RMS sum of four error sources. These error sources are DNL, IL, aperture uncertainty and noise. This value could be useful in predicting over-all system performance. To adequately test performance, the converter should be tested with sample and input frequencies selected to change the output at least 1 LSB every clock cycle. This yields much more useful data about the actual performance of the converter than testing with a much lower beat frequency.

Many articles give a formula for calculating effective bits from the Total Error. This formula is given as:

Total Error (dB) = $1.8+6.02 \mathrm{~N}$ (Eff. Bits)

This formula will only be true in cases where the signal is a full scale sine wave. Other literature may use SNR in this formula.

To select the beat frequency for testing the converter at its full sampling frequency with the input at the Nyquist frequency, use the following formula:

$$
\frac{f_{S}}{2^{N}}=\pi f_{B}
$$

Where $f_{B}=$ Beat frequency,
$\mathrm{f}_{\mathrm{S}}=$ Sample frequency,
$\mathrm{N}=$ Number of bits.
Using the above sampling technique will exercise all digital outputs and assure one LSB code change for each clock cycle. If the application requires that the analog input be able to slew at maximum slew rate for any input, then testing using a triangle wave may be more appropriate.

## FFT TESTING:

Discrete Fourier Transform testing can be used to evaluate the dynamic performance of an ADC for Signal-to-Noise Ratio (SNR) and Harmonic distortion. Honeywell defines Total Harmonic Distortion (THD) as the sum of the second through the ninth (though it is usually dominated by 2nd and 3rd) harmonics, and SNR is any remaining signal. The sum of these two parameters is the Total Dynamic Error and it is this value that can be used to calculate sine wave curve fit. These parameters are excellent indicators of flash converter performance. Signal-to-Noise Ratio is one test that needs to be carefully watched because if there are any glitches in the data the repeatability of the test is poor. This test can be used with confidence
at lower analog input bandwidths where there is a low probability of glitches but it must be used carefully when near the limit of flash converter performance.

## FILTERS

Most dynamic ADC testing requires sine waves for inputs and derive data based on that sine wave being ideal. To assure that the test signal is accurate, filters may be required to increase the purity of the input signal. Another method of testing is to eliminate the filters. This is done by measuring the harmonic contents of the input signal and digitally subtracting them from the output data.

## APERTURE

As in any sampled data system the aperture jitter and width affect the accuracy of the system. If the aperture jitter time is converted to an amplitude uncertainty for any input where the voltage is changing, then the magnitude of this change for a sine wave can be calculated for time or voltage by the equation:

$$
\frac{d V}{V}=2 \pi f \quad t_{a}
$$

By calculating the aperture jitter for a given system accuracy and comparing it to the aperture time of the flash converter, the need for a track and hold may be determined. The graph in Figure 8 summarizes required aperture jitter time for different resolution high

speed converters, for sinusoidal frequencies. The aperture width is an integration period and the signal will be integrated over its period. This would only cause a filtering effect, assuming that the aperture itself is well behaved.

An example to determine the maximum aperture jitter using an 8-bit flash converter: If the signal that is to be measured is known not to contain any sinusoidal frequencies above 10 MHz , then from the graph in Figure 8, it can be determined that to assure less than 8 bits of error due to aperture jitter alone, the ADC must have an aperture jitter of less than 70ps. Most data sheets do not state aperture jitter, so to be safe the designer may wish to use a sample and hold. It may be difficult to find sample and holds that sample that fast. Since aperture times for ADCs are usually not specified, though for flash converters they can be very good, it is possible to add a sample and hold to the circuit and decrease the system performance.

Aperture width and jitter are very difficult to measure because of the extremely small time periods that are in the range of picoseconds to tens of picoseconds. Another problem is that they are not absolute numbers, but are random and are usually calculated based on statistical data. However, these values are needed to make intelligent design decisions, especially in sample and hold selection. These values are on the Honeywell SPT flash converter data sheets as typical values that have been based on both computer design simulations and verified by characterization of samples. Aperture delay is the time from the clock edge to the time that the sample is taken. Aperture jitter is the time variation in the point that the sample is taken.

Aperture delay is the delay from the time the clock is strobed until the sample is taken. Figure 9 shows a circuit based on driving both the clock input and the analog input with the same sine wave. This technique can accurately and easily measure aperture delay. It can also be used in a system to align several different channels in time. When using this technique be sure to use differential signals to the clock or errors may result.

Example using the HADC77100:

$$
\begin{aligned}
& V_{\text {in }}=V_{\text {offset }}+A_{0} \sin w t \\
& \text { Choose } f_{\text {in }} \\
&=30 \mathrm{MHz} \\
& \mathrm{Ao}=.75 \\
& V_{\text {offset }}=-1.25 \mathrm{~V}
\end{aligned}
$$

Note that these voltage values will work well for any ECL flash converter with an input that swings below ground.

At ECL logic threshold, $\mathrm{V}_{1}=-1.3 \mathrm{~V}$,
Measure $\mathrm{V}_{2}$ and calculate $\mathrm{T}_{2}$.

$$
\begin{aligned}
& \text { Where } T_{1}=\frac{\arcsin \left(\left(V_{1}-V_{\text {offset }}\right) / A 0\right)}{\omega} \\
& \text { For } V_{\mathrm{rb}}=-2.00 \mathrm{~V} \text { and } V_{\mathrm{rt}}=0.0 \mathrm{~V}, \\
& V_{2}=2.0((\text { Code No./256)-1) }
\end{aligned}
$$

$$
\text { And } T_{2}=1 / w \arcsin \left(\left(V_{2}-V_{\text {offset }}\right) / A_{0}\right)
$$

$$
\text { Aperture delay }=T_{2}-T_{1}
$$



Figure 9. Aperture Delay Measurement

## LINEARITY

Honeywell specifies both integral and differential linearities of the flash converters. Differential nonlinearity is specified from an ideal 1 LSB code width. Therefore, for a device that is specified $\pm 1 / 2$ LSB every code will have widths between $1 / 2$ LSB and $1 \mathrm{l} / 2$ LSBs wide. A device specified $\pm 3 / 4$ LSB could have code widths from $1 / 4$ LSB to $13 / 4$ LSBs wide. To have missing codes the device would need to be specified-1 LSB or greater.

Honeywell has demonstrated the capability of producing flash converters with differential linearity in excess of 9 bits without any type of trimming. The 10-bit converter is capable of being trimmed because a 10 -bit converter has four times the number of compar-ators as an 8 -bit flash converter. An offset error of only 2 mV in any single comparator could destroy the linearity of
the converter. Trimming is in the form of four aluminum links that can be laser cut to select different resistors that will alter the comparator offsets. This method of trimming was chosen because no active or current carrying structure is altered. It is either in the circuit or it is completely deleted. This assures that there is no affect on either long-term stability, reliability, or on temperature performance.

Absolute linearity of converters can be adjusted by the use of external taps. The 10-bit converter can be adjusted by the use of seven external taps, and for the 8-bit converters either one or three taps are available (see Figure 7). These taps can be used to cancel the effect of the bias currents of each preamplifier (see Figure 10). If each wafer had exactly the same betas and absolute bias current, the ladder could be designed to compensate for the bias currents. This would imply that bias currents on each preamplifier could be the same, not only from device to device, but also from chip to chip. Honeywell's designs correct for these first order effects. These effects would appear as bows (see Figures 11A \& 11B) in the linearity curve caused by bias currents. Honeywell's correction works very well so that at the 8-bit level this typical center tap offset is less than a millivolt. So taps are not required to maintain 8-bit linearity at room temperature.

External taps, for the 8-bit converters have half or quarter scale connections and the 10-bit converter has taps placed at eighth scale intervals to allow the user to force the ladder. Externally altering the ladder's linearity, if required, is low in cost and can also be used to change the dynamic range of the converter. Honeywell recommends the use of the PMI OP9 or OP11 quad op amps to force the ladder. These op amps have the required low offset voltage and drift.

The dynamic range of the HADC77200 can be increased by using external ladder taps to bend the ladder and create a piecewise approximation of a curve (Figure 12). There are two primary considerations for this application. The first is to assure that the low end of the scale has no missing codes due to comparator offsets. The second consideration is to assure the maximum ladder current specification is not exceeded.

In normal applications the ladder is referenced to a -2.0 Volt full scale. This results in an LSB of 7.8 mV . Therefore a part that is $\pm 1 / 2$ LSB linear will have comparator offsets of less than half this value or 4 mV . The 100 Ohm ladder will have 20 mA through it, which is close to its maximum rated current of 25 mA .

If a device was to be screened to be $\pm 1 / 4$ LSB then a 2 mV LSB would be possible for the linearity point of view.

So lets start with a 2 mV LSB and geometrically progress, doubling the LSB weight at a quarter, half and three quarters scales, the points available on the HADC77200. This would result in $--128 \mathrm{mV},-384 \mathrm{mV}$ and -896 mV taps respectively. Full scale would be at --1.920 V . Current in the ladder can now be calculated to be $(1920-896 \mathrm{mV}) / 25 \mathrm{Ohms}=41 \mathrm{~mA}$. This does exceed the maximum ladder current at 25 mA . But if the device is operated at room temperature there should be little effect on the devices life. Starting with a 39\% lower LSB weight will soohe power problem but initial accuracy would not be good enough to guarantee no missing codes.

The above application has the ability to resolve 2 mV out of a possible 1960 mV or 59.8 dB of dynamic range.

If the 25 mA specification for the ladder is not to be exceeded then the weight of an LSB cannot exceed 9.8 mV . Because of comparator offsets in our process an LSB should not be less than 2 mV . A geometric progression where each LSB value changes at the quarter scale points by a factor of 1.7 times the previous LSB value could be used. The results would be within the above constraints of an LSB being between 2 mV and 9.8 mV . The taps would then be at $128 \mathrm{mV},-345.6 \mathrm{mV},-715.5 \mathrm{mV}$ and full scale would be at -1.3444 V . Dynamic range would be 56.6 dB .
(BIAS

Figure 10. Ladder with Pre-Amp Bias Currents

The original assumption was that parts could be screened to $\pm 1 / 4$ LSB. Now that the LSB is designed to be 2 mV and this is for the first 64 codes only, screening could be for the first 64 codes to $\pm 1 / 4$ LSB and the remaining codes to $\pm 1 / 2$ LSB. This may help yields and keep the cost of this screened device lower than screening all codes to a tightened specification.


Figure 11A. Ladder Bow 10-Bit Flash ADC


LINEARITY CURVE WITH TAPS FORCED TO WITHIN . 5 mV OF IDEAL
Figure 11B. Corrected Ladder 10-Bit Flash ADC

The coding of the flash converter is such that Vrt is full scale. It may therefore be easier to start with the 2 mV step in the portion of the ladder between Vrb and Vr1. The concept is the same only the taps would be switched.

Because of their very low impedance the reference ladders of flash converters have very high bandwidths. This can be used to dynamically scale the input at very high switching speeds. There is a penalty paid in the SNR and accuracy, but this may be less than that of using a programmable gain amplifier. It is not recommended to go below 500 mV full scale range. This will give a range changing ability of 4 to 1 when a -2.0 V reference is used.

## SUMMARY OF RESULTS

Vrt	0.0	0.0	mV
Vr3	128	128	mV
Vr2	384	345.6	mV
Vr1	896	715.5	mV
Vrb	1920	1344.4	mV
LSB1	2.0	2.00	mV
LSB2	4.0	3.4	mV
LSB3	8.0	5.78	mV
LSB4	16.0	9.83	mV
Dyn Range	59.8	56.6	dB
Max Current	40	25	mA
INCREASING DYNAMIC RANGE			

The dynamic range of a system can be increased by stacking ADCs in groups of two or four. Prior to the HADC77100, this was a very difficult task due to two
sources of error. The first error source was the static errors of the ADCs with their linearity equal to their number of bits yields greater resolution, but there is still only the accuracy of the original converters plus other errors due to offsets and differences in gain. The accuracy of the ADCs should be at least 9 bits accurate to form a 9 -bit accurate 9 -bit system. The second error source was due to dynamic currents flowing from the input of one converter and perturbating the input of the other device(s).


Figure 13 shows an example of two 2-bit ADCs connected to form a 3-bit ADC. This example does not show the logic required to change the output code from all ones to all zeros when the overrange bit goes high. An alternative method of implementing this data conversion is to connect the overrange bit (NOTE: OVR goes True if $\mathrm{V}_{\text {in }}$ is greater than $\mathrm{V}_{\mathrm{rt}}$ minus the offsets) to the MINV and LINV bits of each converter. The individual bits can then be wire ORed together and no additional logic is required. The delay of 6 ns from INV to data out must be taken into account when setting up the timing for this method. Implementing this circuit with N -bits is identical to the 3 -bit example. This stacking of ADCs has no adverse affect on the data throughput; only data output delay is affected. This method of combining ADCs does increase the input capacitance and this must be accounted for in selecting the input amplifier.

Stacking four ADCs is also possible. In this circuit, logic would have to be implemented to control the data from the overrange bits to the outputs. This circuit may have an additional clock delay to the output.

SPT can custom manufacture any of the HADC77100 family for use in stacked applications. These ADCs would then have the correct logic coding at the outputs so that additional logic and their associated delays would not be present.

## INCREASING SAMPLE RATE

The sample rate of a system can often be increased by combining two flash ADCs with their clocks connected out of phase (this is known as ping-ponging) as shown in Figure 14. This technique works especially well with the HADC77100 because of several of its performance parameters. First, the greatly reduced kick-back allows both converters to be driven from the same buffer or amplifier without one converter affecting the other. This eliminates any problems that may arise from different frequency responses of separate amplifiers. Other advantages are that the excellent linearity of the HADC77100 or HADC77200 will enable the design of a true 8 -bit system with sample rates of over 250 MHz . The data would then be available on two separate busses, a useful feature for data rates in excess of 100 MHz . By using the HADC77200 data could be easily clocked into memory or onto the data bus by using the Data Ready output.

The best advantage to using Honeywell flash converters in these applications is that they only require a single clock that has an ideal $50 \%$ duty cycle. This eases design by eliminating the need for delay lines in generating the timing signals.



Figure 14. Ping Pong 2 ADC's for $2 X$ Sample Rate

# EB101 EVALUATION BOARD 8-BIT, 150 MSPS FLASH A/D CONVERTER AND 8-BIT, 165 TO 400 MWPS RASTER D/A CONVERTER WITH REFERENCE by Tom DeLurio Senior Applications Engineer 

## FEATURES

- 150 MSPS MINIMUM CONVERSION RATE
- 70 MHz Full Scale input Bandwidth
- 1/2 LSB Integral Linearity (Adjustable with three reference ladder taps)
- Low Clock Duty Cycle Sensitivity (Adjustable)
- Preamp Comparator Design/Optional Input Buffer
- ECL clock produced from any signal generator
- Improved D/A Output Drive, Doubly-Terminated $50 \Omega$


## APPLICATIONS

- Evaluation of HADC77200 AVD Converter
- Evaluation of HDAC10181/51400 D/A Converters
- High Definition Video
- Digital Oscilliscopes
- Transient Capture
- Radar, EW
- Direct RF Down-conversion
- Medical Electronics: Ultrasound, CAT Instrumentation


## GENERAL DESCRIPTION

The EB101 Evaluation Board is intended to show the performance of Honeywell Inc.'s Signal Processing Technologies HADC77200A/B flash A/D converter and the HDAC10181A/B or HDAC54100 Ultra High Speed D/A converters. The board provides for either the ADC or DAC to be tested together or separately. Included on the unit are two 100 K ECL multiplexers for data routing between the AD and D/A or on and off the board as shown in the block diagram below.

The HADC77200A/B is a monolithic flash A/D converter capable of digitizing a 2 Volt analog input signal with full scale frequency components to 70 MHz into 8 -bit digital words at a minimum 150 MSPS update rate. For most applications, no external sample-and-hold is required for accurate conversion due to the device's wide bandwidth.

The HDAC51400 and HDAC10181A/B are monolithic 8bit D/A converters capable of converting data at rates of 400, 275, and 165 MWPS respectively. The parts have
optional video controls and can directly drive doublyterminated 50 or $75 \Omega$ loads to standard composite video levels. The DACs have an internal reference to supply themselves and the HADC77200 with a stable voltage reference and gain control for different output voltage swings.

The HCMP96870 is a high speed dual differential voltage comparator used to generate an ECL compatible clock signal from any type signal generator.

The board is in Eurocard format with a 64-pin dual height DIN connector for digital data. The analog inputs, outputs and clock input are standard $50 \Omega$ BNC connectors. Tektronix high impedance probe jacks are provided to monitor the clock lines. Standard $-5.2 \mathrm{~V},+5 \mathrm{~V}$, and $\pm 12$ to $\pm 15$ Volt power supplies are required for operation of the EB101, with nominal power dissipation of less than 11 Watts. The board comes fully assembled, calibrated and tested. An optional input buffer board is available for high performance applications and is explained in more detail on the following pages.

## BLOCK DIAGRAM



## GENERAL INFORMATION

The EB101 evaluation board is a fully assembled and tested circuit board designed to aid in the evaluation of Honeywell's HADC77200 8-bit A/D converter, HDAC10181/54100 8-bit D/A converters and HCMP96870 dual comparator. The board contains circuitry for buffering the input signals, generating reference voltages, dividing the DAC and multiplexer clocks, routing input / output data, and generating ECL level differential clock signals from any signal generator. All digital inputs and outputs are 10 KH and 100 K ECL compatible and provisions are made for gain, offset and linearity adjustments. The board requires $-5.2,+5$ and $\pm 12$ to $\pm 15$ Volt supplies.

The EB101 evaluation board consists of seven functional sections that include an analog input buffer, A/D converter, input/output multiplexer and data latches, D/A converter, reference voltage generator, ECL clock generator, and ECL clock divider. The analog and digital grounds are separated on the board for better system grounding characteristics.

There are numerous jumper options available to switch sections in or out of the system to suit individual needs. The clock divider circuitry is on a separate board that plugs into the main board to provide divide by 2 or 4 for the multiplexer and DAC. The jumper options will be discussed in more detail in the following sections. In addition, 90 MHz low pass input and output filters are on board.

## ON BOARD ANALOG INPUT BUFFER

This section consists of a 90 MHz low pass filter, HA2539 high frequency op-amp, and a 2 N 5836 if transistor. The input impedance is $50 \Omega$ and the gain is set at 2 X so that a 1 Volt input can be applied. Compensation components are provided and can be adjusted for the desired frequency range needed. The compensation is factory adjusted for 50 MHz bandwidth operation. The bandwidth of the buffer amplifier can be increased by decreasing the gain to 1 X by changing the $1.5 \mathrm{k} \Omega$ feedback resistor to $750 \Omega$. The BNC connector shown in the schematics and layout near the output of the buffer can be used for monitoring the buffer output and input to the HADC77200. The BNC should be connected to a $50 \Omega$ terminated oscilliscope and will provide a 10X attenuated signal.

The positive input to the HA2539 is tied to an offset adjust to center the input signal to the HADC77200 around -1 V , which is needed if a $2 \mathrm{~V}_{\mathrm{p} \text {-p }}$ input signal is applied. The input buffer can be bypassed by removing the $6.8 \Omega$ resistor at the emitter of the $2 N 5836$ and the $450 \Omega$ resistor between the BNC connector and the HADC77200. Bypass the $450 \Omega$ resistor with a jumper wire and the HADC77200 can now be driven directly. The input impedance is $4 \mathrm{~K} \Omega$ in parallel with a 56 pF distributed capacitance.

## OPTIONAL ANALOG INPUT BUFFER BOARD EB102

An alternate and higher performance input buffer is available as an option and sold separately. The EB102 is intended for users operating at the top end of the input bandwidth range of the HADC77200. The reason for a separate board is that the amplifiers utilized are quite a bit more expensive then the "on-board" buffer. But, with the added expense, increased input bandwidth with less harmonic distortion is realized.

There are two versions of the EB102 buffer board, one with a wideband op-amp (CLC221) and one with a wideband buffer amplifier (CLC231). Both versions are identical but are jumpered to provide for the different amplifier pinouts (See Figure 1A). The CLC221 version has the advantage of being configured up to a gain of 50 as required, and has slightly better harmonic distortion specifications. The CLC231 version has the advantage of a much higher output drive current and better settling time.

The Following table shows a breakdown of some of the more important specifications:

## TABLE 1 - COMPARISON OF COMLINEAR CLC221/31 AMPLIFIERS

SPECIFICATION	CLC221	CLC231
Gain Range	$\pm 1$ to 50	$\pm 1$ to 5
Output (V, mA)	$\pm 12,500$	$\pm 11,100$
Slew Rate (V/usec)	6500	3000
-3dB Bandwidth (Av=2)	275 MHz	165 MHz
Settling Time (nsec, \%)	$15,0.1$	$12,0.1$
	$18,0.02$	$15,0.05$
Harmonic(dBc) Second   Distortion	-58	-55

## 100K ECL CLOCK GENERATOR

The ECL clock section consists of an HCMP96870 dual comparator, duty cycle and hysteresis adjust, F100131 triple D flip-flop and several jumper options. Any type high frequency signal generator can be connected to the BNC input to the comparators. Both inputs to the dual comparators are connected to the BNC. There are four outputs which generate differential 100K ECL clock signals. One set goes directly to the HADC77200 while the other two can go to the F100155 multiplexers and HDAC10181/51400 or to the clock divider circuitry.


## REFERENCE VOLTAGE GENERATOR

The reference voltage for the HADC77200 and HDAC10181/51400 is internally generated by the D/A converter voltage reference of approximately 1.2 Volts . The A/D converter's 2 Volt reference, 3 volitage midtaps and ground are controlled by two PMI quad op-amps (OP11). The magnitude of each setting is further adjusted with potentiometer R25, R26, R32, R37, and R38 as shown in the detailed schematic and board layout.

## INPUT/OUTPUT REGISTER AND MULTIPLEXER

The multiplexer section consists of two F100155 which select between external 8 -bit digital data from the 64 -pin DIN connector or data from the output of the HADC77200. The choice is controlled by tying the SELECT pins to either an ECL high for external data or an ECL low for HADC77200 data. This data is then fed to the HDAC10181/51400 on the "Q" outputs of the F100155 and the " Q " outputs are tied to the external connector.

## a/D CONVERTER SECTION

Both input pins to the HADC77200 are tied together to be either fed by the input buffer or by an external source. The MINV and LINV inputs are left open and tied internally to an ECL low. Diodes are provided to tie them high and change the output logic. The connection choices for determining the output logic are in Table 2.

## d/A CONVERTER SECTION

The D/A converter section contains jumpers to use either the HDAC10181 or HDAC51400. The primary difference in the two parts is the reference voltage connections. These differences are shown in the detailed schematic in Figure 2. All EB100 boards and jumpers will be connected for the HDAC10181A part. If an HDAC51400 is indicated when the board is ordered (See last page), the board jumpers must be configured as shown in Figure 4A and 4B by the user.

The output current magnitude for the HDAC10181/ 51400 is controlled by a potentiometer (R36) through the DAC's Iset control pin. In addition, two 90 MHz low pass filters are provided at both out- and out+ output pins as well as $50 \Omega$ terminating resistors. The terminating resistors can be changed to $75 \Omega$ if desired. Keep in mind that the transmission line must be terminated at the receiving end with the same value resistor. The video and feedthrough controls are routed to the 64-pin DIN connector and are normally disabled.

TABLE 2 - OUTPUT LOGIC CODING

MINV   LINV	0	0	1	1
0	0	1	0	1
.	$111 \ldots .10$	$100 \ldots .01$	$011 \ldots .10$	$000 \ldots .01$
.	.	.	.	.
.	.	.	.	.
VIN	.	$100 . .00$	$111 \ldots .11$	$000 . .00$
.	$011 \ldots .11$	$000 . .00$	$111 . .11$	$100 \ldots .00$
.	.	.	.	.
.	.	.	.	.
.	$000 . .01$	$011 \ldots .10$	$100 . .01$	$111 \ldots .10$
$-2 V$	$000 \ldots .00$	$011 \ldots .11$	$100 . .00$	$111 \ldots .11$

1: VIH, VOH
0: VIL, VOL

TABLE 2A - POTENTIOMETER AND   CAPACITOR ADJUSTMENTS		
NO.	FUNCTION	
R26	Pot for adjusting gain to produce a 2V reference   vottage for the VRB pin on the HADC77200 from   thei.2V reference voltage supplied by the   HDAC10181/51400.	
R255   37/38	Pots for setting the linearity adjustments at the   Comparator reference ladder on the HADC77200.	
R32	Pot for setting the top point (VRT) on the reference   vottage ladder. Nominally set at 50mV below AGND.	
R36	Pot for adjusting output current drive from the   HDAC10181/51400 (See data sheets).   Vout+=25.6(digital code X Iset)/RL	
R5	Pot for setting the HCMP96870 comparator thresh-   old voltage to adjust the ECL clock duty cycle.	
R4	Pot for adjusting comparator hysteresis.	
R23	Pot for adjusting up to a 2V offset voltage at the   buffer output for driving the HADC77200.	
R22	Pot for adjusting compensation and bandwidth for   the buffer circuitry. This has been set for maximum   bandwidth by turning to the full counterclockwise   range. The frequency range can be decreased by   adjusting the potentiometer clockwise.	
C25	"Lead" Capacitor for changing the damping factor   of the input buffer, used in conjunction with Pot R22.   This has been set for a flat response.	

## POWER SUPPLY CONNECTIONS

Power to the EB101 is supplied through a six pin Molex type connector. The supply lines are color coded as shown in Figure1C. Connect the wire end of the power supply harness to power supplies as shown by Figure 1C and the silk screen near the mating connector on the PC board itself. The power harness is attached to the board with the bevelled edges and hollow connector alligned to the mating connector.

The power requirements for the EB101 at different supplies and with or without the clock divider board is shown in Table 3. When powering up the board, check to see if the current draw from each supply is equivalent to the numbers in the table. If there is a large difference, then recheck your connections. Supply protection diodes are on the board for any reverse polarity connection, but over-voltage protection is not provided.

DO NOT TURN ON THE POWER UNTIL ALL LEADS ARE CONNECTED TO THE SUPPLIES AND THE HARNESS IS ON THE BOARD!!

TABLE 3 - POWER DISSIPATION

EB100 WITH CLOCK DIVIDER, $\pm 15 \mathrm{~V}$			
Voltage	Current	Power	
+15V	.145A	2.175W	
-15V	.148A	2.220W	
$+5 \mathrm{~V}$	.006A	0.030W	
-5.2V	1.65A	8.580W	
		13.005W	
	W/O CLO	VIDER, $\pm 1$	
Voltage	Current	Power	
$+12 \mathrm{~V}$	.119A	1.428 W	
-12V	.123A	1.476W	
$+5 \mathrm{~V}$	.006A	0.030W	
-5.2V	1.49A	7.748W	
		10.682W	



FIGURE 1C - POWER SUPPLY HARNESS CONFIGURATION

## ANTI-ALIASING AND CLOCK NOISE FILTERS

The input to the EB101 buffer circuitry and the differential outputs from the D/A converter are provided with high frequency noise filters. The three filters are 90 MHz low pass and are intended to be used with the full analog input frequency and full clock sampling rate of the HADC77200 AND converter. If lower frequencies are used, the filters should be changed to filter clock noise and harmonics for a particular application. Mini-Circuits

Inc. ( see below ) supplies a range of low pass filters that fit into the same position as the 90 MHz filters on the EB101 Evaluation board.

Additional filtering can be achieved by decreasing the bandwidth of the input buffer by adjusting the $500 \Omega$ potentiometer (R22 in Figure 4) clockwise. Also, adjustment of the clock duty cycle with potentiometer R5 will lower the overall noise floor by controlling the setup and hold time of the digital data for the multiplexers (F100155) and DAC (HDAC10181).

Low Pass
Typical Frequency Response


Frequency X foo


CENTER 16.75 MHz
AB 300 KHz VB 300 KHz

SPAN 30.07 MHz
*ST 50.00 msec

DAC OUTPUT SPECTRUM ANALYSIS OF A 10MHz INPUT FUNDAMENTAL WITH A 10.7MHz (PLP-10.7) OUTPUT LOW PASS FILTER AND 100MHz CLOCK RATE

	MODEL	PASSBAND, MHz (loss <1dB) Min.	foo, MHz   (loss 3dB)   Nom.	STOP BAND, MHz (loss > 20dB) (loss > 40dB)			VSWR, Passband Stopband	
	NO.			Max.	Max.	Min.	Typ.	Typ.
$\begin{array}{r} \text { PLP } \\ \text { case } \mathrm{A} 01 \end{array}$	PLP-10.7	DC-11	14	19	24	200	1.7	1.7
	PLP-50	DC-48	55	70	90	200	1.7	17
	PLP-70	DC-60	67	90	117	300	1.7	17
	PLP-100	DC-98	108	146	189	400	1.7	17


Case no.	A	B	C	D	E	F	G	H	J	K
A01	.770	.800	.385	.400	.370	.400	.200	.20	.14	.031
	19.56	20.32	9.78	10.16	9.40	10.16	5.08	5.08	3.56	.79



TOP VIEW


NOTE: BLACK BEAD INDICATES
PIN 1. PIN NUMBERS DO NOT APPEAR ON UNIT. FOR REFERENCE ONLY.

## PIN CONNECTIONS

SEE CASE STYLE OUTLINE DRAWING

SERIES	IN	OUT	GROUND
PLP	1	8	$2,3,4,5,6,7$

2





FIGURE 4A - MAIN BOARD LAYOUT AND COMPONENT POSITION
(Not To Scale)


FIGURE 4B - JUMPER POSITION AND CONNECTIONS FOR EITHER THE HDAC10181A/B OR HDAC51400
(Not To Scale)



FIGURE 5 - CLOCK DIVIDER BOARD LAYOUT AND COMPONENT POSITION

> (Not To Scale)

EB101 REVISION C PARTS LIST

PARTS LIST			
NO.	DESCRIPTION	QTY.	MANUFACTURER / PART NO.
1	FERRITE BEAD	11	FAIR-RITE CORP.-2743001111
2	DIODE	4	1N4001
3	DIODE	3	1 N914
4	TRANSISTOR	1	MOTOROLA-2N5836
5	I.C.	1	HONEYWELL-HDAC10181A/B OR HDAC51400
6	1.C.	1	HONEYWELL-HCMP96870
7	I.C.	2	FAIRCHILD-F100155
8	I.C.	2	PMI-OP-11
9	I.C.	1	HONEYWELL-HADC77200A/B
10	I.C.	1	HARRIS-HA2539
11	FILTER	3	MINI-CIRCUITS-PLP-100
12	RESISTOR	1	240 2 , 2w
13	RESISTOR	1	56, $1 / 2 \mathrm{w}$
14	RESISTOR	1	$6.8 \Omega, 1 / 8 \mathrm{w}$
15	RESISTOR	11	$10 \mathrm{~K} \Omega, 1 / 8 \mathrm{w}$
16	SIP RESISTOR PACK	5	220/330 2
17	RESISTOR	4	220 $2,1 / 8 w$
18	RESISTOR	4	330 ת, 1/8w
19	RESISTOR	2	750 $\Omega$, 1/8w
20	RESISTOR	3	50ת, 1/8w
21	RESISTOR	3	470 $2,1 / 8 w$
22	RESISTOR	1	10ת, 1/8w
23	RESISTOR	1	15.1 $\Omega$, 1/8w
24	RESISTOR	1	5k $\Omega$, 1/8w
25	RESISTOR	1	$1.5 \mathrm{k} \Omega$, 1/8w
26	POTENTIOMETER	2	BOURNS-1K $\Omega, 3329-H-102$ \& MOUSER-ME323$4290 \mathrm{~W}-1 \mathrm{k} \Omega$
27	POTENTIOMETER	8	BOURNS-10Kת, 3329-H-103
28	CONNECTOR, DIN	1	BELL IND.-905-72184C
29	CONNECTOR	1	MOLEX-09-18-5069
30	CAPACITOR, CHIP	16	JOHANSON-47pf 500R15N470JP4
31	CAPACITOR	10	SPRAGUE-1uf TANT, 35V
32	CAPACITOR	29	SPC TECHNOLOGY-0.1告
33	CAPACITOR, ADJ	1	JOHANSON-47pF-9621
34	CONNECTOR, BNC	5	TRUMPETER-CBJ20,50
35	TEST POINTS	2	TEKTRONIX 131-2766-01, 136-0352-02
36	PIN RECEPTACLE	42	MILL MAX-0552-1-15-15-11-27-10-0
37	PIN SOCKET	9	SAMTEC-SL-132-G-12
38	SOCKET, 24PIN	1	SAMTEC-ICO-624-NGT
39	PRINTED CIRCUIT BOARD	1	HONEYWELL-EB101
40	TEST POINTS	2	COMPONENTS CORP. TP-102
41	CAPACITOR	2	Q-PAK Q302
42	JUMPER PINS	18	SAMTEC

EB101 CLOCK DIVIDER BOARD

NO.	DESCRIPTION	QTY.	MANUFACTURER / PART NO.
43	F100131	1	FAIRCHILD TRIPLE D-TYPE FLIP-FLOP
44	CAPACITOR	2	.1 FF
45	TESTPOINTS	2	TEKTRONIX 131-2766-01, $136-0352-02$
46	RESISTOR	6	$1 K \Omega, 1 / 8 w 5 \%$
47	RESISTOR	4	$220 \Omega, 1 / 8 w 5 \%$
48	RESISTOR	4	$330 \Omega, 1 / 8 w 5 \%$
49	CAPACITOR	1	JOHANSON-47pF CHIP
50	TESTPOINTS	2	COMPONENTS CORP.-TP-102


PARTS LIST				
No.	REF. DESIG.	QTY.	DESCRIPTION	MANUFACTURER / PART NO.
1	C1, 3, 5, 8, 12, 13, 15	7	CAPACITOR, $.14 \mathrm{f}-50 \mathrm{~V}$	AVX/SR205E104MAA
2	C2, 4, 7, 14	4	CAPACITOR, 47pf - CHIP	JOHANSON/500R15N470.JP4
3	C10, 11, (NOTE 3)	2	CAPACITOR, SEALTRIM 5-20pf	JOHANSON / 9629
4	CR1, 2	2	DIODE, 1N4001	
5	E1, 2	2	JUMPER PINS (HEADER STRIP)	CYPRESS/TSW-1-36-07-T-S
6	FL1	1	FILTER, 90 MHz LOWPASS	MINICIRCUITS/PLP-100
7	J1, 2 (NOTE4)	2	RECEPTACLE, BNC	TRUMPETER/CBJ20
8	L1, 2	2	RF BEAD	FAIR-RITE/2743001111/2
9	P1	1	PLUG	MOLEX / 09-18-5031
10	R1, 2	2	RESISTOR, 10 KOHM	HAMILTON /AVNET/CF1/8-10K-5\%-T/R
11	R4, 12	2	RESISTOR, 33 OHM	HAMILTON / AVNET / CF1/8-33-5\%-T/R
12	R5	1	RESISTOR, 25 K OHM	HAMILTON/AVNET/ CF $1 / 8-25 \mathrm{~K}-5 \%$-T/R
13	R7 (NOTE 1)	1	RESISTOR, 1.5K OHM	HAMILTON/AVNET/ CF1/8-1.5K-5\%-T/R
14	R7, 8 (NOTE 2)	2	RESISTOR, 250 OHM	HAMILTON / AVNET / CF1/8-250-5\%-T/R
15	R9	1	RESISTOR, 150 OHM	HAMILTON/AVNET/CF1/8-150-5\%-T/R
16	R10	1	RESISTOR, 51 OHM	HAMLLTON / AVNET / CF1/8-51-5\%-T/R
17	R3	1	POTENTIOMETER, 10K OHM	BOURNS / 3339-1-103
18	R6, 11	2	POTENTIOMETER, 1M OHM	BOURNS /3339-1-106
19	C6, 9	2	CAPACITOR, $1 \mu \mathrm{f}$ TANT, 35V	SPRAGUE/196 DIO5X9035HAI
20	U1 (NOTE 1)	1	I.C., OP-AMP	COMLINEAR/CLC221A1
21	U1 (NOTE 2)	1	I.C., BUFF-AMP	COMLINEAR/CLC231A1
22	PCB1	1	PRINTED CIRCUIT BOARD	HONEYWELL/EB102 REV. B

## NOTES:

1) USE ITEM NO. 13 WITH ITEM NO. 20 AND JUMPERE1, 2.
2) USE ITEM NO. 14 WITH ITEM NO. 21.
3) USE C10 WITH ITEM NO. 21 ONLY.
4) J2 IS MOUNTED ON THE BACKSIDE OF PCB1.


FIGURE 6 - EB102 BUFFER BOARD LAYOUT AND COMPONENT POSITION (Not To Scale)

## SET-UP PROCEDURE FOR THE EB101 DEMONSTRATION BOARD

The following setup procedure is completed at Honeywell before the EB101 board is shipped to the customer. It is not necessary for the user to perform this exercise, but it is included for informational purposes.

The EB101 demonstration board is accompanied with a literature package containing the "AN102 APPLICATION NOTE" , the "HADC77200", "HDAC51400", "HDAC10181", and "HCMP96870" data sheets, and an applications department business card. Also, a power harness, and a capacitor alignment tool are included. If there are any questions, please call the applications engineer on the card.

STEP 1
Connect the wire end of the power supply harness to power supplies as shown in Figure 1C. The power harness should be connected to the board with the bevelled edges and hollow connector alligned for correct operation.

DO NOT TURN ON THE POWER UNTIL ALL LEADS ARE CONNECTED TO THE SUPPLIES AND THE HARNESS IS ON THE BOARD!!

Table 3 (page 6) shows the power requirements for the EB101. Use the current gauges on the power supply or a DMM in line with the power lines and set on current (I). these current values will vary somewhat until all the potentiometers are adjusted. When powering up the board, check to see if the current draw from each supply is equivalent to the numbers in the table. If there is a large difference, then recheck your connections. Supply protection diodes are on the board for any reverse polarity connection, but over-voltage protection is not provided.

STEP 2
Refer to Figure 2 and 4 on the previous pages. Place a DMM probe (set to voltage selection) on the black jumpers at the input to the HADC77200 (E14). This should read -1V and is adjusted by turning potentiometer R23 (See Table 2A).

## STEP 3

Again, refer to Figures 2 and 4 on the previous pages and Table 5 on this page. Place a DMM probe (set to voltage selection) on pin 3 of the OP11-A and read approximately -1.2 V . If it does not, then check to see if the black jumpers for the HDAC10181/51400 are set up

## TABLE 5 - EQUIPMENT LIST

2- SIGNAL GENERATORS CAPABLE OF PRODUCING 1MHZ AND 20MHZ SINEWAVES AT UP TO 1Vp-p OUTPUT LEVELS INTO 50』. H.P.8656A OR EQUIVALENT.

1- OSCILLISCOPE, EITHER H.P. DIGITIZING OSCILLISCOPE MODEL 54100D OR EQUIVALENT OR TEKTRONIX MODEL 2465.

1- DIGITAL MULTIMETER(DMM), KEITHLEY 197 OR EQUIVALENT.
4- POWER SUPPLIES CAPABLE OF PRODUCING THE POWER LISTED IN TABLE 1. 2 LAMBDA LPT-7202-FM OR EQUIVALENT.

5- $50 \Omega$ COAX CABLES (RG58) WITH BNC TYPE CONNECTORS.
1- HIGHIMPEDANCE PROBE (1M $\Omega$ ) - TEKTRONIX OR H.P.
for the right part (see Figure 4B). Next set the probe on pin 1 of the OP11-A. This should read -2 V and is adjusted by turning potentiometer R26. Now set the probe on pin 7 of the OP11-A. This should read -2V and is adjusted by turning potentiometer R26. Now set the prove on pin 7 of the OP11-A. This should read approximately -1.5 V and is adjusted by potentiometer R25. Pin 8 of the OP11-A should read -1.0 V and is adjusted by potentiometer R37. On the other amplifier, OP11-B, potentiometer R38 controls the output from pin 1 and should read -0.5 V . Finally, R32 sets up the output from pin 14 on OP11-B and can be set between GROUND and -50 mV .

## STEP 4

Refer to Figures 2 and 4. Attach a $50 \Omega$ BNC cable to the "CLK IN" BNC connector. Attach the other end to a sinewave or signal generator set at 20 MHz frequency and $1 \mathrm{Vp}-\mathrm{p}$ amplitude (if $1 \mathrm{Vp}-\mathrm{p}$ is not available, amplitudes down to $100 \mathrm{mVp}-\mathrm{p}$ are acceptable). Put a Tektronix or H.P. high impedance probe in one or both of the probe jacks immediately below the HCMP96870 comparator. Adjust potentiometer R5 to achieve a $50 \%$
duty cycle square wave (both "high" and "low" states are the same length). Adjust potentiometer R4 if no waveform is present and/or to get rid of any jitter in the square wave (this is a hysteresis adjustment). The square wave amplitude should be approximately 900 mVp -p and look like Figure 7 below.

## STEP 5

Refer to Figure 2 and 4. Attach a $50 \Omega$ coax cable to the BNC connector marked "BUFFER IN". Use a second sinewave or signal generator set at 1 MHz frequency and 1Vp-p amplitude (See Figure 8). Attach another cable to the BNC connector "A/D $\mathbb{N}$ / BUFFER OUT" and to an oscilliscope set at $50 \Omega$ input impedance. A $200 \mathrm{mVp}-\mathrm{p}$ amplitude signal swinging around -100 mVdc should apear at a 1 MHz frequency (See Figure 9). If oscillation is evident (erratic signal amplitude or wrong frequency), potentiometer R22 and capacitor C25 must be adjusted. Adjust potentiometer R22 to the full counterclockwise range. Now adjust capacitor C 25 to stop the oscillation. See Figures 10, 11 and 12.


Trigger mode: Edge
On Pos. Edge on Chan2
Trigger Levels
Chan2 $=-1.180$ volts
Holdoff $=70.000$ nsecs
FIGURE 7 - CLOCK OUTPUT AT THE TEKTRONIX PROBE JACKS

FIGURE 8 - INPUT SIGNAL TO THE BOARD (50 2 INPUT IMPEDANCE)

FIGURE 9 - OUTPUT SIGNAL FROM THE "BUFFER OUT" BNC CONNECTOR (50 2 IMPEDANCE)


Trigger mode: Edge
On Pos. Edge on Chan1
Trigger Levels
Chan1 $=-100.0$ mvolts
Holdoff $=70.000$ nsecs

FIGURE 10 OSCILLATIONS ARE APPARENT AND ADJUSTMENT IS NECESSARY

FIGURE 11 - THE OSCILLATIONS ARE DECREASING AND THE BOTTOM WAVEFORM IS STARTING TO APPROACH THE SAME SHAPE AS THE TOP WAVEFORM

			Pos					m
$1 . .$.								
					ध			
	-	$\cdots$	:	$\qquad$			(1).	
							$\because$	$\because$  
				$\because \because, \cdot \cdot \cdot$				
				$\stackrel{1}{\square}$				
-2.50000	usec			0.00000 sec				0000 usec
Ch. 1	$=2$	200.0 mvo	Its / div			fset	$=0.00$	000 volts
Ch. 2	- 4	40.00 mvo	Its / div			fset	- -102	2.0 mvolts
Timebase	= 5	$500 \mathrm{nsec} /$	div			alay	$=0.0$	0000 sec

Trigger mode: Edge
On Pos. Edge on Chan1
Trigger Levels
Chan1 = 0.000 volts
Holdoff = 70.000 nsecs


Trigger mode: Edge
On Pos. Edge on Chan1
Trigger Levels
Chan1 $=0.000$ volts
Holdoff $=70.000$ nsecs

FIGURE12 OSCILLATION HAS STOPPED AND THE BOTTOM WAVE-FORM IS the same shape as THE TOP WAVEFORM BUT IS INVERTED

FIGURE 13 - OUTPUT WAVEFORMS FROM "OUT-" AND "OUT+" WITHOUT THE CLOCK DIVIDER BOARD INSERTED AND THE CLOCK JUMPERS CONNECTED AS SHOWN IN THE TOP OF FIGURE 4


0.00000 sec
1.00000 usec

Offset $=-964.0$ mvolts
Offset $=-544.0$ mvolts
Delay $=0.00000 \mathrm{sec}$
P-P Volts $=912.5$ mvolts
Fall Time $=297.770 \mathrm{nsec}$
Period $=997.370 \mathrm{nsec}$

- Width $=498.120 \mathrm{nsec}$

Preshoot $=6.249$ mvolts

Ch. 1	$=400.0$ mvolts $/$ div	Offset
Ch. 2	$=-964.0$ mvolts	
Timebase $=400.0$ mvolts $/$ div	Offset	$=-544.0 \mathrm{mvolts}$
Ch. 1 Parameters	Delay	$=0.00000 \mathrm{nsec}$
Rise Time $=290.470 \mathrm{nsec}$	P-P Volts	$=912.5 \mathrm{mvolts}$
Freq.	Fall Time	$=297.770 \mathrm{nsec}$
+ Width $=1.00264 \mathrm{MHz}$	Period	$=997.370 \mathrm{nsec}$
Overshoot $=499.250 \mathrm{nsec}$	Width	$=498.120 \mathrm{nsec}$
=	Preshoot	$=6.249 \mathrm{mvolts}$

## STEP 6

This measurement is done without the clock divider board connected and clock jumpers inserted as shown in the top of Figure 4. Again referring to Figures 2 an 4, attach a $50 \Omega$ coax cable to the BNC connector marked "OUT-" and another cable to "OUT+". Attach the other end to an oscilliscope set to $50 \Omega$ input impedance. The outputs should be the opposite of each other and at approximately a 900 mV amplitude. Adjust potentiometer

R36 to achieve this level. Do not adjust too far or the signal will start deteriorating. See Figure 13. After completing step 6, remove one end of each "clock jumper" wire and leave the other end soldered to the board.

## STEP 7

Insert the clock divider board and connect the shorting jumpers to the posts in the +2 configuration and compare to the waveform in Figure 14.

FIGURE 14 - "OUT-" AND "OUT+" WITH THE CLOCK DIVIDER BOARD INSERTED AND SET AT +2 MODE


Trigger mode: Edge
On Neg. Edge on Chan 1
Trigger Levels
Chan1 $=-936.0$ mvolts
Holdoff $=70.000$ nsecs

## STEP 8

Insert the clock divider board and connect the shorting jumpers to the posts in the +4 configuration and compare to the waveform in Figure 15.

FIGURE 15 - "OUT-" AND "OUT+" WITH +4 CLOCK DIVIDER MODE


Trigger mode: Edge
On Neg. Edge on Chan1
Trigger Levels
Chan1 $=-944.0$ mvolts
Holdoff $=70.000$ nsecs

PIN FUNCTIONS HADC77200

## NAME FUNCTION

DRINV Data Ready Inverse
LINV D0 through D6 Output Inversion Control Pin

AVEE Negative Analog Supply Nominally -5.2V
DVEE Digital Analog Supply Nominally -5.2V
DGND1 Digital Ground 1
DGND2 Digital Ground 2
DREAD Data Ready Output
DO Digital Data Output Pin 1 (LSB)
D1 - D6 Digital Data Output Pin 2 Through 6
D7 Digital Data Output Pin 7 (MSB)
D8 Overrange Output
MINV D7 Output Inversion Control Pin
$\overline{\text { CLK }}$ Inverse ECL Clock Input Pin
CLK ECL Clock Input Pin
VRBS Reference Voltage Bottom, Sense Nominally -2.0V

VRBF Reference Voltage Bottom, Force Nominally -2.0 V

VR1 Reference Voltage Tap 1
AGND1 Analog Ground 1
VIN Analog Input, can be connected to the input signal or used as a Sense

AGND2 Analog Ground 2
VR2 Reference Voltage Tap 2
VIN Analog Input, can be connected to the input signal or used as a Sense

VR3 Reference Voltage Tap 3
VRTS Reference Voltage Top, Sense Nominally OV

VRTF Reference Voltage Top, Force Nominally OV

FIGURE 8B PIN ASSIGNMENTS HCMP96870

PIN FUNCTIONS HCMP96870



PIN ASSIGNMENTS HDAC10181

## AN102

PIN FUNCTIONS HDAC10181

NAME	FUNCTION
D3	Data Bit 3
D2	Data Bit 2
D1	Data Bit 1
D0	Data Bit 0 (LSB)
VEED	Digital Negative Supply
CONV	Convert Clock Innut
CONV	Convert Clock Input Complement
FT	Register Feedthrough Control
VCCD	Digital Positive Supply
FH	Data Force High Control
BLANK	Video Blank Input
BRT	Video Bright Input
SYNC	Video SYNC Input
REF-OUT	Reference Output
ISET	Reference Current + Input
COMP	Compensation Input
VCCA	Analog Positive Supply
OUT-	Output Current Negative
OUT+	Output Current Positive
VEEA	Analog Negative Supply
D7	Data Bit 7 (MSB)
D6	Data Bit 6
D5	Data Bit5
D4	Data Bit 4

## PIN FUNCTIONS HDAC51400

NAME	FUNCTION
D3	Data Bit 3
D2	Data Bit 2
D1	Data Bit 1
D0	Data Bit 0 (LSB)
VEED	Digital Negative Supply
CONV	Convert Clock Input
CONV	Convert Clock Input Complement
FT	Register Feedthrough Control
VCCD	Digital Positive Supply
FH	Data Force High Control
BLANK	Video Blank Input
BRT	Video Bright Input
SYNC	Video SYNC Input
REF-OUT	Reference Output
REF-IN	Reference Input
ISET	Reference Current
VCCA	Analog Positive Supply
OUT-	Output Current Negative
OUT+	Output Current Positive
VEEA	Analog Negative Supply
D7	Data Bit 7 (MSB)
D6	Data Bit 6
D5	Data Bit 5
D4	Data Bit 4

## SIGNAL <br> PROCESSING TECHNOLOGIES

## EB103 EVALUATION BOARD APPLICATION NOTE FOR TWO PINGPONGED 8-BIT FLASH A/D CONVERTERS Tom DeLurio, Senior Applications Engineer <br> FEATURES <br> APPLICATIONS

- 400 MSPS NOMINAL CONVERSION RATE
- 100 to 150 MHz Full Scale input Bandwidth
- 1/2 LSB Integral Linearity (Adjustable with three reference ladder taps)
- Preamp Comparator Design/Optional Input Buffer
- ECL Timing skew clock generator
- Improved D/A Output Drive, Doubly-Terminated $50 \Omega$


## GENERAL DESCRIPTION

The EB103 evaluation board is intended to show the performance of the HADC77200 or HADC77300 flash AND converters in a ping-ponged mode, and the HDAC51400 Ultra High Speed D/A converter for reconstruction. Included on the unit are two 100K ECL multiplexers for combining the ping-ponged $A / D$ converters' 16 bits of output data into 8 bits at twice the speed. The high speed data is routed between the $A / D$ and $D / A$, and also off the board as full speed or as divided down data ( external clock) for slower speed FFT measurements. This is shown in the block diagram below.

The HADC77200 is a monolithic, 8 -bit flash A/D converter capable of digitizing a 2 Volt analog input signal with full scale frequency components to 100 MHz at a 150 MSPS update rate. For most applications, no external sample-and-hold is required for accurate conversion due to the device's wide bandwidth.

- Evaluation of HADC77200/300 A/D Converters
- Evaluation of HDAC51400 D/A Converter
- Digital Oscilliscopes
- Transient Capture
- Radar, EW
- Direct RF Down-conversion
- Medical Electronics: Ultrasound, CAT Instrumentation

The HADC77300 is identical to the HADC77200 except that the analog input is 150 MHz with a 250 MSPS clock rate and a corresponding increase in power dissipation.

The HDAC51400 is a monolithic 8 -bit D/A converter capable of converting data at rates of 400 MWPS. The part has optional video controls and candirectly drive doublyterminated 50 or $75 \Omega$ loads to standard composite video levels. The DAC has an internal reference to supply itself and the two HADC77200/300 with a stable voltage reference. It also has gain control to provide different output voltage swings so it can be used as a standard voltage output DAC.

The HCMP96870A is a dual high speed differential voltage comparator used to generate an adjustable ECL compatible clock signal for timing skew between the two A/D converters and D/A converter.

BLOCK DIAGRAM


## GENERAL INFORMATION

The EB103 board is a four layer board that is manufactured for true microstrip performance. The two center copper planes are welded together to form a large ground plane. The plane is broken into digital and analog grounds to provide separate grounding for digital and analog components to achieve low noise operation. The analog inputs, outputs and clock inputs are connected with standard $50 \Omega$ BNC connectors. All interconnects achieve 50 line impedance with 50 thevenin equivalent terminations at the end of the ECL lines. Tektronix high impedance probe jacks are provided to monitor the clock lines and LSBs. Standard $-5.2 \mathrm{~V},+5 \mathrm{~V}$, and 12 to 15 Volt power supplies are required for operation of the EB103, with nominal power dissipation of less than 30 Watts. The board comes fully assembled, calibrated and tested. An optional input buffer and linearity TAP amplifiers are on board for high performance applications.

The EB103 evaluation board is a fully assembled and tested circuit board designed to aid in the evaluation of Honeywell's HADC77200/300 8-bit Flash AND converters, HDAC54100 8-bit Ultra High Speed D/A converter, and the HCMP96870/A dual Voltage comparator. The board contains circuitry for buffering the input signals, generating reference voltages, adjusting and dividing the A/D data and clock, and generating delays for ECL level differential clock signals. All digital inputs and outputs are 10 KH and 100 K ECL compatible and provisions are made for gain, offset and linearity adjustments.

There are jumper options available to adjust clock delay between the A/D and DAC as well as Potentiometers to adjust the comparator thresholds for optimum time skew performance. The external clock option provides the ability to run the output data from the F100151 flip-flops at a slower speed for connection to a logic analyzer for digital performance tests such as FFT and Histogram, etc. (see HADC77200/300 data sheet). In addition, 100 MHz or 200MHz low pass input and output filters are on board for anti-aliasing and clock noise frequency rejection.

## ANALOG INPUT BUFFER

The analog input buffer is shown in Figure 1. This section consists of a low pass filter, and the CLC231 high frequency buffer-amplifier (Table 1). The input impedance is $50 \Omega$ and the gain is set at 2 X so that a $\mathrm{V}^{\text {Volt }}{ }_{p-p}$ analog input can be applied for best operation. Compensation components are provided and can be adjusted for the desired gain/phase response required. The compensation is factory adjusted for 50 MHz bandwidth operation. The gain of the buffer amplifier can be decreased by removing the $250 \Omega$ resistor that is connected to ground on the inverting input to achieve a voltage follower. This change will increase the
available bandwidth of the amplifier. The BNC connector shown in the schematics near the output of the buffer can be used for monitoring the buffer output and input to the HADC77200/300. The BNC should be connected to a $50 \Omega$ terminated oscilliscope and will provide a 10X attenuated signal.

The input buffer can be bypassed by removing the 6.8 resistor at the output of the CLC231 and the 470 resistor between the BNC connector and the HADC77200/300. Bypass the 470 resistor with a jumper wire and the HADC77200/300 can now be driven directly. The input impedance to the two converters is 2 K in parallel with a 120pF distributed capacitance.

The negative input to the CLC231 is tied to an offset adjust to center the input signal to the HADC77200 around -1V , which is needed if a $2 \mathrm{~V}_{\text {p-p }}$ input signal is applied. Futher fine adjustment is provided by the two offset adust pins on the CLC231.

## TABLE 1 - COMLINEAR CLC231 BUFFER AMPLIFIER

SPECIFICATION	CLC231
Gain Range	$\pm 1$ to 5
Output (V, mA)	11,100
Slew Rate (V/ sec)	3000
-3dB Bandwidth (Av=2)	165 MHz
Settling Time (nsec, \%)	$12,0.1$   $15,0.05$
Harmonic(dBc)   Distortion$\quad$Second   Third	-55

## 100K ECL CLOCK GENERATOR

In order to ping-pong very fast A/D converters, timing between the two devices is critical since each part contributes data every other clock pulse. Therefore clock generation is somewhat complicated (See Figure 2). Furthermore, a timing delay section and skew is necessary between the A/D and DAC.

The ECL clock section consists of two HCMP96870/A dual comparators with duty cycle and hysteresis adjust
potentiometers. Also used are F100151 Hex D flip-flops, F100121 9-bit buffers, F100114 Quint Line Receivers, two low pass filters, and several jumper options for time delay.

Any type high frequency signal generator with differential ECL level outputs can be connected to the two clock BNC connectors at the inputs of the F100114 line receiver. For single-ended operation, there is a Vbb generator available on pin 19 which can be connected to one input of the line receiver. At least 150 mV of swing must be available to achieve full output swings from the receivers in the singleended mode.

Starting with the clock generation function for the HDAC51400 DAC and F100151 output data latches, the inverting output of one of the F100114 receivers is connected to another receiver in the same package. This is for an inversion and delay before going on to the time delay section consisting of several of the buffers in the F100121. The delay is set up to make up for time latency between the A/D converter, multiplexers and DAC. Several options are available by making a connection on the lines between the buffer outputs and PLP450 low pass filter. The filter is used to smooth out the 100K ECL output from the buffers to be used for time skew and duty cycle changes at the input to the "\#1" HCMP96870A dual comparators. The time skew and duty cycle change is performed by adjusting potentiometer R2 to change the threshold of the comparator so that the devices' outputs activate at different times. The threshold inputs to the HCMP96870A comparators are connected together to a pot to also adjust the duty cycle of the clock. The latch enable pins are also connected together to a pot to adjust comparator hysteresis.

Two of the outputs of the \#1 comparators are connected to the HDAC51400 clock inputs and one inverting output is connected to the F100151 output data registers that are routed to the ribbon cable connectors. The noninverting output from the comparator is fed to the F100114 receivers to obtain a differential ECL clock for the ribbon cable output. Optional external clock inputs to the HDAC51400 and F100151 are available to clock and aquire data at a slower speed. Probe test points are provided to monitor the clock lines.

The clock generation section for the two HADC77200/300s is next. The noninverting output of the first F100114 receivers is connected to the clock input of a F100151 flip-flop to divide the high speed clock in half for the A/D converters. The output is then smoothed by a 200 MHz low pass filter for timing skew adjustments as before, and it is connected to the two noninverting inputs of "\#2" HCMP96870A. The two comparators are configured the same way as before with hysteresis and threshold adjust. One set of differential outputs goes to the clock inputs of the "\#1" A/D converter and the other set goes to the "\#2" A/D converter. Probe test points are provided on each line to monitor timing skew.

## VOLTAGE REFERENCE GENERATOR

There are several voltage reference options on the board to drive the two HADC77200/300 reference taps. The options are set up by soldering jumper wires across lines. The configuration shown in Figure 3 is the option that is used when the board is shipped. In this mode, the two A/ D converters are driven from the same voltage reference at the top and bottom of the reference ladder. This way the A/ Ds track each other. The other mode is shown in Figure 4. Here, each reference tap can be adjusted for best linearity match between the two or, if the application requires, mismatch. Each tap can be connected or just some of them according to the jumper connections made to accommodate the application. This configuration gives additional control at high speeds between the two A/D converters.

The reference voltage for the HADC77200/300 and HDAC51400 is internally generated by the D/A converter voltage reference of approximately 1.2 Volts . The A/D converter's 2Volt reference, 3 voltage midtaps and ground are controlled by three PMI quad op-amps ( OP-11). The magnitude of each setting is futher adjusted with potentiometer R25, R26, R32, R37, and R38 per HADC77200/300 as shown in the detailed schematic (Figure 4) and board layout (Figure 5) as well as Table 3.

## ANTI-ALIASING AND CLOCK NOISE FILTERS

The input to the EB103 buffer circuitry and the differential outputs from the D/A converter are provided with high frequency noise filters. The three filters are 100 MHz low pass and are intended to be used with the full analog input frequency and full clock sampling rate of the HADC77200 A/D converter. The version of the board with the HADC77300 will be provided with 200 MHz filters. If lower frequencies are used, the filters should be changed to filter input harmonics, clock noise, and for recontruction filters for a particular application. Mini-Circuits inc. ( see page 12) makes a range of low pass filters that fit into the same position as the 100 MHz filters on the EB103 Evaluation board.

Adjustment of the clock time skews with potentiometer R2 and R5 will lower the overall noise floor by controlling the timing mismatch between the two A/D converters and the D/A converter setup and hold times.

## INPUT/OUTPUT REGISTER AND MULTIPLEXER

The multiplexer section consists of two F100155 which select between each 8 -bit digital data word from the output of either HADC77200/300. The choice is controlled by the SELECT pins which are tied to the DREAD (data ready) outputs of each HADC77200/300. One DREAD output is inverted by the DRINV (data ready inverse) control pin so that the output clocks are in phase. This data is then fed to the HDAC10181/51400 on the "Q" outputs of the F100155 and the " $\bar{Q}$ " outputs are tied to the F100151 hex flip-flops which are connected to the external ribbon cable connector.

## A/D CONVERTER SECTION

All input pins to each HADC77200/300 are tied together to be either fed by the input buffer or by an external source. The differentiall clock inputs are driven 90 degrees out of phase so that when one $A / D$ is acquiring the input signal the other is outputting data and vice-versa. The MINV and LINV inputs are left open and tied internally to an ECL low. The connection choices for determining the output logic are in Table 2.

## D/A CONVERTER SECTION

The output current magnitude for the HDAC51400 is controlled by a potentiometer (R36) through the DAC's Iset control pin. In addition, two 100 MHz low pass filters are provided at both out- and out+ output pins as well as $50 \Omega$ terminating resistors. The terminating resistors can be changed to 75 if desired. Keep in mind that the transmission line must be terminated the receiving end with the same value resistor. The video and feedthrough controls are routed to the 64-pin DIN connector and are normally disabled.

## A/D OUTPUT DATA SECTION

The output data from the two HADC77200/300s is available at full clock speed or at a slower speed if an external clock is used. This data is taken from the " $\bar{Q}$ " outputs of the F100155 Multiplexers and clocked into two F100151 Hex D Flip-Flops. The "Q" outputs of the flip-flops are connected to ribbon connectors for easy connection to the outside world. The external clock can be connected through $50 \Omega$ SMA connectors as shown in Figure 2 at the output of the \#1-HCMP96870A pin 2. Be sure to cut the clock trace between the comparator and SMA connector.

TABLE 2 - OUTPUT LOGIC CODING

MINU LINU	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0	1	1
OU	111...11	100... 00	011...11	000... 00
-	111... 10	100... 01	011...10	000... 01
-	-	-	-	-
-	,	,	-	.
$U_{\text {IH }}$	100... 00	111...11	000... 00	011... 11
.	011... 11	000... 00	111...11	100...00
-	-	-		,
-	-	,		-
-	000... 01	011... 10	100... 01	111.. 10
-2U	000... 00	011... 11	100...00	111...11
1: $U_{\text {IH }}, U_{\text {OH }}$				
0 : $U_{1 L}, v_{O L}$				


TABLE 3 - POTENTIOMETER AND CA-					
PACITOR ADJUSTMENTS		$	$	NO	FUNCTION
:---	:---				
R26	Pot for adjusting gain to produce a 2V reference   voltage for the VRB pin on the HADC77200 from   the1.2V reference voltage supplied by the   HDAC10181/51400.				
R25/   37/38	Pots for setting the linearity adjustments at the   comparator reference ladder on the HADC77200.				
R32	Pot for setting the top point (VRT)on the refer-   ence voltage ladder. Nominally set at 50mV   below AGND				
R36	Pot for adjusting output current drive from the   HDAC10181/51400 (See data sheets).   Vout+=25.6(digital code X Iset)/RL				
R2/5	Pot for setting the HCMP96870 comparator   threshold voltage to adjust the ECL clock duty   Cycle.				
R1/4	Pot for adjusting comparator hysteresis.				
R23	Pot for adjusting up to a 2V offset voltage at the   buffer output for driving the HADC77200.				
R22/	Pot for fine adjustment of offset voltage. Used   with pot R23				
C22	"Lead" Capacitor for changing the damping factor   of the input buffer. This has been set for a flat   response.				



FIGURE 1 - EB103 ANALOG INPUT BUFFER, POWER SUPPLY PLUG AND TERMINATIONS.


FIGURE 2 - EB103 CLOCK GENERATION SECTION


FIGURE 3 - EB103 A/D CONVERTER AND D/A CONVERTER


FIGURE 4 - OPTIONAL VOLTAGE REFERENCE CONTROL FOR THE TWO HADC77200/300 A/D CONVERTERS


## POWER SUPPLY CONNECTIONS

Power to the EB103 is supplied through a nine pin Molex type connector. The supply lines are color coded as shown in Figure5. Connect the wire end of the power supply harness to power supplies as shown by Figure 5 and the silk screen near the mating connector on the PC board itself. The power harness is attached to the board with the bevelled edges and hollow connector alligned to the mating connector.

The power requirements for the EB103 at different supplies is shown in Table 4. When powering up the board, check to see if the current draw from each supply is equivalent to the numbers in the table. If there is a large difference, then recheck your connections. Supply protection diodes areon the board for any reverse polarity connection. but overvoltage protection is not provided.

TABLE 4 - POWER DISSIPATION

EB103A		
Voltage	Current	Power
+15 V	.065 A	.975 W
-15 V	.061 A	.915 W
+5 V	.013 A	.065 W
-5.2 V (DVEE)	4.5 A	23.4 W
-5.2 V (AVEE)	.878 A	4.56 W
		29.9 W

DO NOT TURN ON THE POWER UNTIL ALL LEADS ARE CONNECTED TO THE SUPPLIES AND THE HARNESS IS ON THE BOARD!!


FIGURE 6 - POWER SUPPLY HARNESS CONFIGURATION

EB103 TIMING DIAGRAM

CLK TO \#1 HADC77200/300

CLK TO \#2 HADC77200/300

\# 2
HADC77200 OUTPUT DATA

FIGURE 7 - TIMING DIAGRAMS


HDAC51400 TIMING DIAGRAM



Case no.	A	B	C	D	E	F	G	H	J	K
A01	.770	.800	.385	.400	.370	.400	.200	.20	.14	.031
	19.56	20.32	9.78	10.16	9.40	10.16	5.08	5.08	3.56	.79



K DIE. TYP.


NOTE: BLACK BEAD INDICATES PIN 1. PIN NUMBERS DO NOT APPEAR ON UNIT. FOR REFERENCE ONLY.

## PIN CONNECTIONS

SEE CASE STYLE OUTLINE DRAWING

SERIES	IN	OUT	GROUND
PLP	1	8	$2,3,4,5,6,7$

FIGURE 8 - LOW PASS FILTERS

PIN FUNCTIONS HADC77200/300			
NAME	FUNCTION	NAME	FUNCTION
DRINV	Data Ready Inverse	$\overline{\text { CLK }}$	Inverse ECL Clock Input Pin
LINV	D0 through D7 Output Inversion Control Pin	CLK	ECL Clock Input Pin
AVEE	Negative Analog Supply   Nominally -5.2V	VRBS	Reference Voltage Bottom, Sense Nominally -2.0V
DVEE	Digital Analog Supply   Nominally -5.2 V	VRBF	Reference Voltage Bottom, Force Nominally -2.0V
DGND1	Digital Ground 1	VR1	Reference Voltage Tap 1
		AGND1	Analog Ground 1
DGND2	Digital Ground 2		
DREAD	Data Ready Output	VIN	Analog Input, can be connected to the input signal or used as a Sense.
DO	Digital Data Output Pin 1 (LSB)	AGND2	Analog Ground 2
		VR2	Reference Voltage Tap 2
D1-D6	Digital Data Output Pin 2 Through 6	VIN	Analog Input , can be connected to the input signal or used as a Sense.
D7	Digital Data Output Pin 7 (MSB)	VRTS	Reference Voltage Top, Sense Nominally 0 V
D8	Overrange Output	VRTF	Reference Voltage Top, Force Nominally 0 V

## FIGURE 9 - PIN ASSIGNMENT HADC77200/300



FIGURE 10 - PIN ASSIGNMENTS HDAC51400

PIN FUNCTIONS HDAC51400

NAME	FUNCTION
D3	Data Bit 3
D2	Data Bit 2
D1	Data Bit 1
D0	Data Bit 0 (LSB)
VEED	Digital Negative Supply
CONV	Convert Clock Input
CONV	Convert Clock Input Complement
FT	Register Feedthrough Control
VCCD	Digital Positive Supply
FH	Data Force High Control
BLANK	Video Blank Input
BRT	Video Bright Input
SYNC	Video SYNC Input
REF-OUT	Reference Output
REF-IN	Reference Input
ISET	Reference Current
VCCA	Analog Positive Supply
OUT-	Output Current Negative
OUT+	Output Current Positive
VEEA	Analog Negative Supply
D7	Data Bit 7 (MSB)
D6	Data Bit 6
D5	Data Bit 5

PIN FUNCTIONS HCMP96870

## NAME FUNCTION

$\bar{Q}_{A}$
$Q_{\text {A }}$
$\mathrm{GND}_{\mathrm{A}}$
$\underline{L E}{ }_{\text {A }}$
$\mathrm{LE}_{\mathrm{A}}$
$V_{\text {EE }}$
- $\mathrm{IN}_{\mathrm{A}}$
$+\mathrm{N}_{\mathrm{A}}$
$+\mathrm{IN}_{\text {B }}$
- $\mathrm{IN}_{\mathrm{B}}$
$\mathrm{V}_{\mathrm{cc}}$
$\underline{L E}$
$\mathrm{LE}_{\text {B }}$
$\underline{\mathrm{GND}} \mathrm{B}_{\text {B }}$
$Q_{B}$
$Q_{B}$

Output A Inverted Output A Ground A
Latch Enable A Inverted Latch Enable A Negative Supply Voltage Inverting Input A Non-Inverting Input A Non-Inverting Input B Inverting Input B Positive Supply Voltage Inverted Latch Enable B Latch Enable B Ground B Inverted Output B Output B


FIGURE 12 - PIN ASSIGNMENT COMLINEAR CLC231

NOTES:

# SIGNAL <br> PROCESSING TECHNOLOGIES 

## VIDEO DACS AND RASTER GRAPHICS

PAUL M. BROWN

High speed DACs (digital to analog converters) and advances in CRT (cathode ray tube) technology have increased the quality and cost-effectiveness of high resolution displays. The graphics presentations available on todays personal computers and workstations range from good to nearly breathtaking. The 320X200 pixel resolution available on the IBM PC standard color display provides adequate resolution for text and simple graphics. The PC's 640X200 pixel monochrome display provides a much sharper view of text and graphics but without the dramatics of color. The IBM EGA (Enhanced Graphics Adapter) display offers color resolution to $640 \times 350$ pixels. State-of-the-art workstations, on the other hand, can achieve resolutions of over 2048X2048 pixels and palettes of nearly 17 million colors resulting in clarity rivaling 35 mm film. The increasingly wide spread usage of computer torminals, personal computers and workstations for such diverse applications as word processing, desk top publishing, computer aided engineering, mechanical drafting, solids modeling and the design of integrated circuits has heightened the demand for high quality, reasonably priced graphics displays. The availability of high speed monolithic video DACs is helping to pave the way toward lowering the cost and increasing the performance of high resolution displays.

## HOW VIDEO DACS ENTER THE PICTURE

The basic block diagram of a raster scan graphics system (Figure 1) has not changed dramatically in recent years. Previously, expensive laser trimmed hybrid DACs, large amounts of discrete logic and single port RAM were necessary to implement the various functions. This made high resolution graphics systems bulky, power hungry, expensive and unreliable. Now, high speed integrated circuits containing both analog and digital functions make small, efficient, reliable, reasonably priced high resolution graphics systems possible. A graphics system designed today would contain, in addition to the main processor, a graphics controller, high speed RAM, a logic array for glue logic and one or three video DACs (depending on whether the application is monochrome or color).

Graphics controllers range in function from relatively simple screen-refresh controllers, such as the Motorola 6845, to dedicated custom graphics processors. Screen-refresh controllers supply the SYNC and BLANK signals and control the flow of data between the CPU, screen buffer RAM and the video DAC. The speed and resolution of this type of controller is limited by the amount of overhead that the CPU must bear. This configuration is most frequently used in low end workstations and PCs with screen resolutions ranging from $320 \times 200$ to 1024X512. Dedicated graphics processors contain specialized instruction sets for graphics and require little CPU support. This type of architecture is found in the highest performance graphics systems.

## Figure 1.Typical Raster Scan Graphics System



The image is made of pixels or dots on the screen (Figure 2). The graphics controller supplies the DAC with a digital word for each pixel in the display. Typically, the electron beam in the CRT scans across the screen in noninterlaced lines from left to right and top to bottom under the control of the horizontal and vertical SYNC and BLANK signals. The CRT is scanned one line for each pixel row in the vertical direction. As the beam scans from left to right across the face of the CRT, the video DAC receives one digital word for each pixel in the line. The refresh rate is the number of times in one second that all of the pixels in the display are redisplayed. It is easy to see that the rate at which the DAC must convert digital words to analog intensities depends upon the number of pixels per line (horizontal resolution), the number of lines (vertical resolution), the horizontal and vertical retrace (flyback) time and the refresh rate.

Figure 3 plots the DAC bandwidth (also called update rate) required for various common display resolutions. These bandwidths are calculated assuming a 60 Hz refresh rate and that $30 \%$ of each frame time (the time it takes to scan one screen i.e. $1 / 60$ of a second) is used for horizontal and vertical retrace. Another way to measure the required DAC performance is by available pixel time. The pixel time is the period during which the DAC is presented with a digital word and it's output must change to the analog value of that word and illuminate the pixel. Figure 4 illustrates the approximate pixel times for various resolutions. It is important to understand that a video DAC will not settle to its rated accuracy during a pixel time but will ring above and below this level at a very high frequency. The phosphor and the human eye will serve as a low pass filter and average out these variations. The most critical concern is, therefore, the rise time of the DAC output not the settling time. A fast rise time maximizes the illumination of each pixel during the pixel time.

Figure 2. Raster Display

VERTICAL
RETRACE


Figure 3. DAC Bandwidth vs. Resolution vs. Technology


Not only must the DAC be very fast, it must also drive a one volt signal into a doubly terminated 50 or 75 ohm load (actual impedance 25 or 37.5 ohms). Figure 5 illustrates a composite video waveform as described in the EIA RS-343 specification. The SYNC and BLANK levels are not processed through the DAC in all applications. The standard waveform (not including the $10 \%$ over bright level) is $1 \mathrm{Vp}-\mathrm{p}$ which is commonly expressed as 140 IREs. An IRE,then, has a value of 7.14 mV .

The notable levels of the composite video waveform are SYNC, BLANK (the level applied during retrace and is also called "blacker than black"), REFERENCE BLACK (the darkest color), REFERENCE WHITE (the lightest color and is also called "force high") and 10\% OVER-BRIGHT (sometimes called "whiter than white"). The 10\% OVER-BRIGHT level is used for cursors, etc. where a large contrast is necessary with any color, even white. The portion of the waveform between reference black and reference white represents the gray scale for monochrome or potential hues for a color system. The number of discrete levels in this region depends upon the resolution of the DAC. Low end systems will use as few as 4-bits (16 levels) while high end systems intended for solids modeling applications may require 10-bits (1024 levels). Although tremendous performance is required from the DAC, it is not the only limitation on achievable resolution.

Figure 4. Pixel Time vs. Screen Rsolution


Figure 5. RS-343-A with 10 IRE Set-up


## THE CRT

No matter how many bits of resolution or what the data rate, the graphical representation of the data depends upon the display device. The cathode ray tube or CRT is the most prevalent display technology available today. This is especially true for high resolution or color displays. The CRT (see Figure 6) consists of an evacuated glass envelope or bottle that contains an electron gun, a shadow mask (for color) and a glass surface coated with phosphors. A coil, the control yoke, is usually supplied as an integral part of the CRT. The yoke controls the deflection of the electron beam as it travels from the electron gun(s) to the phosphor coated screen. The delta gun configuration, popular in the past, requires deflection control elements that need periodic alignment. The in-line-gun, which does not require adjustment, has become the electron gun of choice in almost all applications today.

The yoke becomes a critical element for refresh rates above 40 Hz due to the heat generated by the increased power necessary to drive the yoke and the back-emf that can cause arcing. A typical yoke has an inductance of $300 \mu \mathrm{H}$ and requires about 6 A of drive current. The back-emf is on the order of 1200 volts. State-of-the-art yokes designed for higher resolution applications feature inductance of less than $100 \mu \mathrm{H}$ but require between 10 and 20A of drive current. The skin effect, however, increases the effective series resistance (and therefore the power dissipation) of the coil at high scan rates. Heating of the coil at higher drive currents can be minimized with the use of Litz wire. The multiple strands of Litz wire maximize the skin thickness thus reducing the effective series resistance of the coil. The lower inductance minimizes the back-emf and thus reduces the problem of arcing.

The flyback or retrace time becomes increasingly critical with higher resolution displays. The more lines of vertical resolution, the more retrace periods there are. The total time taken for horizontal and vertical retrace directly reduces the time available for writing data. This reduces each pixel time and increases the data rate required for the analog to digital converter. Typical horizontal retrace times range from 2 to $7 \mu$ s per line while vertical retrace takes between 500 to $1000 \mu \mathrm{~s}$ depending on display resolution and CRT design.

The most critical elements in determining CRT resolution are the beam spot size and the shadow mask. For very high resolution displays, a shadow mask dot pitch of less than .20 mm is required. The phosphors on the face of the CRT are arranged in groups of red, green and blue (RGB). The electron beams from the guns are focused by the shadow mask to strike the appropriately colored phosphor. The shadow mask also insures that as the beam traces across the screen, the beam from each gun strikes only the correct color phosphor. As resolution increases, the spot size gets smaller. The smaller spot size requires more power to focus the beam and a more powerful beam to maintain the same intensity. This generates more power dissipation and more heat. The spacing between the openings on the shadow mask must also be reduced which makes the shadow mask more fragile. Only $10-20 \%$ of the beam energy strikes the phosphor. The balance of the beam heats the shadow mask causing it to bow out or dome. This mechanical deformation of the shadow mask will change the focus and blur the image. This is most apparent for the larger screen sizes. Keeping the gossamer-like shadow mask stable with localized heating from the electron beams, changes in ambient temperature and mechanical shock and vibration becomes extremely difficult. The only practical solution can be to reduce the size of the display in order to increase the mechanical strength of the shadow mask.

Figure 6. CRT Construction


## VIDEO DACs

The current line-up of monolithic video DACs meets the challenge of today's high resolution graphics displays with a combination of ultra high speed process technologies and advanced architectures. The process of choice for very high speed video DACs is oxide isolated bipolar ECL. Small on-chip components reduce parasitic elements such as stray capacitance allowing high speed performance at reduced current levels. This in turn permits more circuitry to be integrated on a chip from both a die size and a power dissipation perspective.

Many of the new video DACs, such as the HDAM51100, have on chip color palettes including both address and data registers. Other possible architectures, such as found on the HDAC51600, include on-chip data multiplexers that can interleave several banks of relatively slow TTL memory into a very fast DAC to achieve the desired throughput. Having the faster circuitry such as
the color palette or the multiplexer on chip with the DAC eliminates the stray capacitances due to interchip connections. Also, the additional circuitry is fabricated on the same fast process as the DAC. All logic swings and timing will be matched and tuned for the highest performance. The cost of this higher level of integration is the loss of architectural freedom for the designer and the possible difficulty of upgrading the system later without a major revision.

Raster graphics applications can be roughly broken down into low, medium and high pixel resolution which translates directly into DAC bandwidth (update rate). Within these categories, the DACs can be sorted according to their bit accuracy. Recall that a 4 -bit and an 8 -bit DAC operating at a given MWPS (million words per second update rate) in a particular application will produce the same display (pixel) resolution. The 8 -bit converter will, however, offer more shades of gray or more possible colors. The chart, Figure 7, lists the available monolithic video DACs, their speed, accuracy, process and special features.

Figure 7.Current Video DAC Products

Resolution	Speed   MWPS	Process	Part Number	Comments
4-BITS	100	Bipolar	HDAC34020	Registered Triple DAC
	200	Bipolar	HDAC34010	Registered Triple DAC
8-BITS	100	Bipolar	HDAM51100	Registered DAC, 512 x 8 Color Look-Up with lata I/O
	200	Bipolar	HDAC97000	
	250	Bipolar	HDAC51600	Registered Data and Controls, Ref, 5:1 or 4:1 Data MUX
	275	Bipolar	HDAC10180A	Registered Data and Controls
	275	Bipolar	HDAC10181A	Registered Data and Controls, Reference
	400	Bipolar	HDAC51400	Registered Data and Controls, Reference

## VIDEO DAC - CRITICAL PERFORMANCE PARAMETERS

SPEED - The DAC that is selected must be able to comfortably handle the required data rate with variations in power supply voltage and logic swing over the ambient temperature in which it must operate.

RISE TIME - The output of the DAC must be able to reach the intended analog value in a fraction of a pixel time. It is not important that the output settles to the final value due to the filtering effect of the phosphor and the human eye. The pixel should be illuminated at full intensity for the largest fraction of a pixel time possible.

GLITCH ENERGY - Output spikes (glitches) are a highly undesirable manifestation in any DAC and especially so in high resolution video applications. Glitches generally occur at major carries (1/4, 1/2, 3/4 and full scale) and appear as intensity variations on the screen. The magnitude of glitches is usually specified in terms of "glitch energy". This is a measure of both the amplitude and duration of the spike. A great deal of effort has gone into designing "glitch free" DACs. Some DAC architectures use special circuitry or adjustments to reduce or eliminate glitches while others are inherently "glitch free". The Honeywell line of video DACs has the lowest glitch energy in the industry.

POWER DISSIPATION - Power dissipation is important for several reasons. High power dissipation means the DAC will have a higher die temperature. This can lead to performance degradation at higher ambient temperatures and increase the load on the system power supply. Cooling will have to be provided and may require PC board layout considerations, heat sinks or forced air. (See AN108 for more information on thermal design). Many times, however, the only way to achieve the desired performance is to bite the power dissipation bullet.

RESOLUTION - The resolution of the DAC will determine the possible levels of intensity (monochrome) or the number of colors for the display. In the past, 4bits was considered adequate. Now, most new designs are being done with eight or more bits. Solids modeling applications generally require eight to ten bits. More bits of resolution will require a correspondingly larger amount of high speed memory for support.

LOGIC COMPATIBILITY - The fastest DACs will require ECL logic to drive them at their rated speed and will therefore have ECL compatible logic inputs and require ECL power supplies. In these very high speed applications, all logic interconnections must be made using controlled impedance techniques such as microstrips or striplines to avoid undesirable reflections (ringing). Ringing caused by impedance mismatches can easily cause erroneous logic states to be sensed and will reek havoc with a high resolution display. Multiplexed DACs like the HDAC51600 allow up to five banks of relatively slow and inexpensive TTL memory to be multiplexed into a high speed DAC.

ANALOG OUTPUT DRIVE - Most monolithic video DACs will directly drive doubly terminated 50 or 75 ohm loads ( 25 or 37.5 ohms actual load). As speed increases, the improved bandwidth of the 50 ohm system becomes more attractive. This means that the DAC must be capable of driving a 25 ohm load.

## EB104 EVALUATION BOARD INCLUDES HADC574Z 12-BIT A/D CONVERTER AND HDAC7545A 12-BIT D/A CONVERTER

## Cralg Wiley, Senior Applications Engineer

## FEATURES:

- Provides operating environment for HADC574Z or HADC674Z and HDAC7545A Devices
- Fully Demonstrates Device Function and Resolution
- Eliminates Noisy Breadboard Evaluation Circuitry
- Buffered A/D and D/A Conversion Data Buses
- Includes Sample/Hold Amp and Output Op Amp IC's
- Unipolar or Bipolar Operation


## APPLICATIONS:

- Evaluation/Comparison of HADC574/674Z Converters
- Evaluation/Comparison of HDAC7545A Converters
- System Development
- Data Acquision Systems
- Bus Structured Instrumentation
- Process Control Systems


## GENERAL DESCRIPTION

The EB104 Evaluation Board fully demonstrates the capabilities of Honeywell's HADC574/674Z and HDAC7545A 12-bit data conversion products. All of the basic power supply connections, controls lines and external components are included. The board can operate in an analog input/output fashion utilizing both A/D and D/A devices, or the devices can be operated separately. Unlike most laboratory breadboarding, the ground-planed PC board provides the necessary lownoise evironment essential for 12 -bit resolution. The board makes full use of connectors to allow easy hookup and operation.

Other support provided on the EB104 includes an input sample/hold amplifier, output operational amplifiers and potentiometers for offset and gain adjustments. Customization and function selections are performed by jumper pins. When considering the HADC574/674Z or HDAC7545A for system design, the EB104 Evaluation Board provides a flexible, high performance evaluation vehicle.

The EB104 is supplied with an HADC574ZBCJ and an HDAC7545AACD. It will support all $574 / 674$ and 7545 type devices.


FIGURE 1 EB104 BLOCK DIAGRAM

## EB104 GENERAL INFORMATION

The EB104 Evaluation Board is a fully assembled and tested circuit board developed to aide in the evaluation of Honeywell's HADC574Z or HADC674Z and HDAC7545A. A Power supply cable is supplied with the board and requires connection to $+5 \mathrm{~V},+15 \mathrm{~V}$, and -15 V . Standard BNC connectors facilitate analog input and output and 26 pin ribbon connectors provide digital interfacing. This document, along with the HADC574/674Z and HDAC7545A data sheets, is designed to serve as an operating guide.

The EB104 circuitry consists of three main sections: the Analog/Digital Conversion Section, the Multiplexer/Buffer Section, and the Digital/Analog Conversion Section.

## THE A/D CONVERSION SECTION

The heart of this section is the on board HADC574Z or optional HADC674Z 12-bit A/D converter. The HA2425 sample and hold amplifier can support the A/D and can be replaced by several other types of $\mathrm{S} / \mathrm{H}$ amps. Jumper pins allow the the $\mathrm{S} / \mathrm{H}$ amp to be connected or bypassed. When connected, the S/H amp samples the analog input signal and outputs the it to the HADC574/674Z. When bypassed, the analog input is applied directly to the HDAC574/674Z. In either case, the 10 V or 20 V analog input of the HADC574/674Z can be selected with jumper pins. Another set of jumper pins allow the HADC574/674Z to be configured for either unipolar or bipolar input conditions. Trim potentiometers are used to zero the S/H amp offset voltage and trim the HADC574/674Z offset and gain values.

Control and status of the HADC574/674Z and S/H amp is facilitated by the digital control I/O ribbon connector. For convience, jumpers can be used at the ribbon connector to tie particular inputs high or low. Additionally, a jumper can be connected between the HADC574/674Z's STATUS output and the $\mathrm{S} / \mathrm{H}$ amp's $\mathrm{S} / \mathrm{H}$ input; this automaticly provides the appropriate "Hold" command upon a user-initiated Convert command.

With the proper input control logic conditions, the HADC574/674Z can ouput data in one 12 -bit word or two 8 -bit words. When using the 8 -bit mode, the EB104 has jumper pins that allow the appropriate connections between HADC574/674Z data output pins.

The 12 output data bits of the HADC574/674Z are fed to the Multiplexer/Buffer Section.

## THE MULTIPLEXER/BUFFER SECTION

The main purpose of this section is to select input data for the D/A converter. It allows selection of either the A/D converter's output or user-supplied data from the data input ribbon connector. Secondly, it provides buffering between the input and output ribbon connectors and the data conversion IC's.

The multiplexer/buffer section consists solely of three 74LS157 logic IC's which are quad 2 -to-1 data selectors/multiplexers. Control inputs (SELECT and STROBE) are available at the control I/O ribbon connector.

## THE D/A CONVERSION SECTION

This section consists of an HDAC7545A and two OP17 op amps used for output buffering. Other types of op amps can be used as well. Again, jumper pins allow selection of output configuration: in unipolar output mode, one op amp is used, and in bipolar output mode two op amps are used. Each op amp has a trim potentiometer to null input offset voltage. The HDAC7545A has trim potentiometers to adjust the zero and full scale output.

## EB104 PHYSICAL DESCRIPTION

The EB104 PC board is a 5 by 7 inch, Epoxy doublesided, copper-clad printed circuit board. All components and sockets are mounted on the top side, with the exception of the analog input/output BNC connectors which are mounted on the bottom side. Digital and analog ground and all three power supplies are connected through a single 6-pin keyed Molex power connector, for which a mating power supply cable is included with the board. For digital input and output, three 26 -pin ribbon connectors are mounted. One is used for data word input, another for data word output, and the last for digital control and status. All IC's are socketed to facilitate re-selection of components, if so desired. Jumper posts on the top side, jumpered by Berg type jumpers, allow the selection of circuit options.

## EB104 OPERATION

## CAUTIONS

1) When handling the PC board or any of the devices use procedures necessary for protection against electrostatic discharge or device damage may result.
2) No voltages or forced currents should be applied to the EB104 prior to application of power supplies or devices may be damaged. Analog and logic signals should be applied after (or during) power up and removed before (or during) power down.

## USING PRE-CONFIGURED SETUP

The EB104 is pre-configured and ready to operate as delivered with no adjustments or modifications needed. Requirements for operation are limited to power supplies, an analog signal source and an oscilloscope. The jumper-programmed function options are pre-set to provide the following conditions:
a) $\mathrm{S} / \mathrm{H}$ Amp bypassed
b) A/D converter in -10 to +10 V bipolar input operation mode.
c) A/D converter in free-run operation, selfgenerating convert command
d) A/D converter in 12-bit conversion, 12-bit output mode.
e D/A converter input from A/D converter output.
f) D/A converter in -10 to +10 V bipolar output operation mode

To operate the board using this pre-established configuration, perform the following:

1) Connect the power supplies as outlined in the following section. Apply power.
2) Apply an analog signal into BNC connector jack J5, ranging between -10 and +10 volts.
3) Connect oscilloscope to BNC connector jack J6 to observe the reconstructed analog signal. Signal amplitude will range between -10 to +10 volts.

## POWER SUPPLY CONNECTION

Power is supplied through the leaded Molex connector as detailed in Figure 2. Ensure that the beveled edges of the male and female connectors are aligned prior to coupling. Digital and Analog Ground should be connected together at the power supplies to provide maximum noise isolation. The connectors should be coupled and supplies connected prior to turning on the power supplies. With the provided components, the approximate power supply current consumption is:

> + 5 Volt supply: 16 mA +15 Volt supply: 16 mA - 15 Volt supply: 15 mA

Total power dissipation is therefore about 550 mW . When evaluating 574/674 type devices from manufactures other than Honeywell, the +5 V supply current will increase to approximately 28 mA , the +15 V supply to 22 mA , and the -15 V supply to 45 mA . In this case the total power dissipation will be about 1.15 Watts.


FIGURE 2
POWER SUPPLY CONNECTION
Leaded Power Connector, Top View

## ANALOG/DIGITAL CONVERSION SECTION

## OPTIONAL SAMPLE/HOLD AMPLIFIER USE

Because of it's capacitive DAC architecture, the HADC574/674Z has an inherent sample/hold function. The EB104 is supplied with an on-board sample/hold amplifier which is bypassed in order to demonstrate this fuction (the Analog Input Jack J5 is tied directly to the HADC574/674Z). The HADC574/674Z's sample/hold function works well with input signal frequencies up to about 5 KHz when using a full scale input. Above this frequency, input slew-rate limiting and aperture uncertainty time may degrade performance.

The discrete sample/hold (S/H) amplifier should be used with the HADC574/674Z when either the input signal frequency is above 5 KHz or when no aperture delay can be tolerated, such as when using the unit for transient sampling. When evaluating 574/674 devices from other manufacturers, the external sample/hold amp will be needed except for very low frequencies. During the conversion cycle, these other 574/674 units perform the successive-
approximation directly on the input signal; therefore, the last bit is calculated just before the end of the 25 $\mu \mathrm{S}$ (574) or $15 \mu \mathrm{~S}$ (674) conversion cycle.

Figure 3 shows a simplified wiring diagram of the A/D conversion section. Note that the S/H amp can be inserted in the analog input path or bypassed. Table 1 below describes the jumper post connections for these two conditions.

JUMPER   POSTS	S/H AMPLIFIER	
	IN ANALOG   PATH	BYPASSED
E11-E13   E12-E14   E15-E16   E17-E18	OPEN   CLOSED   CLOSED   OPEN	CLOSED   OPEN   OPEN   CLOSED
"EB104 AS DELIVERED		
TABLE 1		
JUMPER CONFIGURATION		

FOR SAMPLE/HOLD UTILIZATION


FIGURE 3
SIMPLIFIED WIRING DIAGRAM
OF ANALOG/DIGITAL CONVERTION SECTION
INPUT STRUCTURE

If operation of the EB104 will be with the sample/hold amplifier bypassed, the following section "External Sample/Hold Amplifier Operation" may be skipped.

## EXTERNAL SAMPLE/HOLD AMPLIFIER OPERATION

## Sample/Hold Amplifier Control

Control of the sample/hold amplifier can be performed by the HADC574/674Z's STATUS output or externally to the EB104. Table 2 describes the jumper configuration for these options. When using the STATUS output, a hold command is generated automaticaly when a convert command is issued to the HADC574/674Z. At the end of the conversion, STATUS returns to zero and commands the S/H amp to again track the analog input. This timing relationship can be seen in figure 4. As discussed in the next section, it is important that the STATUS output stays low long enough for the sample capacitor to charge when using this configuration.


TABLE 2
JUMPER CONFIGURATION FOR SAMPLE/HOLD CONTROL


FIGURE 4
TIMING RELATIONSHIP FOR HADC574Z
R/C INPUT, STATUS OUTPUT, AND SAMPLE/HOLD FUNCTION.

External S/H amp control allows conversion initiation and sample/hold control to be asynchronous. Seperate controls are provided at the $R / \bar{C}$ and $\bar{S} / H$ pins of Jack J2. Ensure that the Convert command is issued at or after the Hold command.

## Hold Capacitor Value Selection

Selection of the hold capacitor value involves tradeoffs between hold droop rate and the charge time upon sampling. Larger capacitance values will discharge slower during the hold mode which is useful for long hold times prior to conversion. Smaller capacitance values, however, will better track higher frequency signals during sample mode due to the increased slew rate. Table 3 shows several capacitor values and the approximate associated system performance. The hold capacitor should be of a polystyrene or teflon type to avoid sample hysteresis.

The Manufacture's Typical Values of Table 3 are taken from the HA2425 data sheet. The Calculated Values assume the following:

Maximum Hold Time:
Maximum allowable error $\quad=1 / 4$ LSB
$=1.2 \mathrm{mV}$ (worst case)
$t(\max )=[\operatorname{Verr}(\max )] /[$ droop rate $]$
Maximum Signal Frequency:
Analog signal is sine wave
Worse-case condition of $20 \mathrm{~V}_{\text {P-p }}$ input
Maximum frequency limited by slew rate
$f(\max )=($ slew rate $) / 2 \pi V_{p}$
Another determining factor in sample capacitor size is aquisition time. Aquisition time is the amount of time needed for the S/H amp to again track the signal following a hold mode. Aquisition time becomes a dominent limitation when working with high sample rates. The minimum capacitor value required for the worse-case conditions using the HADC574Z can be calculated as follows:

The maximum guarranteed conversion period of the HADC574Z is $25 \mu \mathrm{~s}(40 \mathrm{KHz})$ and the maximum HADC574Z aperture time is $2.4 \mu \mathrm{~S}$; therefore, the maximum $\mathrm{S} / \mathrm{H}$ window $=\mathrm{t}$ (sample period) -t (aperture time) $=22.6 \mu \mathrm{~s}$. It is assumed that the worst-case input conditions is a 20 KHz square wave at 20 Vpp , which would offer the highest input voltage differencial between samples. Therefore, the minimum slew rate requirement would be $20 \mathrm{~V} / 22.6 \mu \mathrm{~s}$ or $0.885 \mathrm{~V} / \mu \mathrm{S}$. Reference to the HA2425 data sheet

HA2425 HOLD CAPACITOR VALUE	MANUFACTURE'S TYPICAL VALUES		CALCULATED VALUES	
	DROOP RATE	SLEW RATE ( $\mathrm{V} / \mu \mathrm{s}$ )	(1) MAXIMUM HOLD TIME	(2) MAXIMUM SIGNAL FREQUENCY
10 pF	$600 \mathrm{mV} / \mathrm{s}$	15	2 ms	120 KHz
100 pF	$50 \mathrm{mV} / \mathrm{s}$	15	24 ms	120 KHz
1000 pF	$5 \mathrm{mV} / \mathrm{s}$	10	250 ms	80 KHz
(3) $0.01 \mu \mathrm{~F}$	$500 \mu \mathrm{~V} / \mathrm{s}$	8	2.5 s	64 KHz
$0.1 \mu \mathrm{~F}$	$60 \mu \mathrm{~V} / \mathrm{s}$	0.6	20.2 s	4.8 KHz
$1 \mu \mathrm{~F}$	$20 \mu \mathrm{~V} / \mathrm{s}$	0.05	60 s	400 Hz

NOTES: (1) $\mathrm{FOR}<1 / 4$ LSB DROOP, $\mathrm{Vpp}=20 \mathrm{~V}$
(2) WITH ABILITY TO TRACK SIGNAL, Vpp $=20 \mathrm{~V}$
(3) VALUE SUPPLIED ON EB104

TABLE 3
SAMPLE CAPACITOR SIZE VS. SYSTEM PERFORMANCE
would reveal that the largest hold capacitor value usable for these worst-case conditions is $0.05 \mu \mathrm{f}$.

The EB104 comes supplied with a $0.01 \mu$ capacitor, which will track suitably for the highest sample rate as illustrated above for both the HADC574 and HADC674. At $8 \mathrm{~V} / \mu \mathrm{s}$ slew rate, a minimum of about 3 $\mu \mathrm{s}$ sample time is required for full scale aquisition in the $0-20$ or $\pm 10 \mathrm{~V}$ range or about $1.5 \mu \mathrm{~s}$ in the $0-10$ or $\pm 5 \mathrm{~V}$ range. As seen in Table 3, droop rate is about $0.5 \mathrm{mV} / \mathrm{s}$; maximum hold time prior to conversion is therefore 2.5 seconds if $1 / 4 \mathrm{LSB}$ accuracy is desired.

## Calibration of the Sample/Hold Amplifier

Trim potentiometer R4 is used to zero the offset of the sample/hold amplifier. Although the HADC574/674Z also has a zero adjustment (discussed later), it's range is typically not sufficient to compensate for the external sample/hold amplifier's offset. Gain error in the sample/hold amplifier can be compensated by HADC574/674's gain adjustment. Sample/hold offset trim is performed as follows:

1) Configure EB104 for $\mathrm{S} / \mathrm{H}$ amp in analog signal path (Table 1).
2) Ground Analog Input (Jack J5) by short circuiting.
3) Connect power supplies.
4) Connect a $\bar{S} / \mathrm{H}$ clock; a TTL compatible, $50 \%$ dutycycle 10 KHz square wave applied to the $\overline{\mathrm{S}} / \mathrm{H}$ input of Jack J 2 is suitable; make sure that jumper connection $\mathrm{E} 1-\mathrm{E} 2$ is open.
5) Using an oscilloscope, measure the voltage between jumper post E15 and analog ground ( J 5 shield).
6) Adjust trim potentiometer R4 for 0 volts during Hold cycle, which occurs while the $\overline{\mathrm{S}} / \mathrm{H}$ input is logic high.

Repeat of the above calibation procedure is needed only if the $\mathrm{S} / \mathrm{H}$ amp chip or the hold capacitor is replaced; otherwise, all future "zero" calibration can be performed using the HADC547/674Z calibration procedure discussed below.

## HADC574/674Z OPERATION

## Input Range Selection

Jumper posts on the EB104 allow configuring the HADC574/674Z for input ranges of $0-10,0-20, \pm 5$, or $\pm 10$ volts. The $0-10$ and $0-20$ volt ranges use what is called unipolar input operation and the $\pm 5$ and $\pm 10$ volt range use bipolar input operation. Feedback path of the VREF varies between unipolar and bipolar connections, while one of two input pins, 10 V IN or $20 \mathrm{~V} \operatorname{IN}$, are chosen for ranging. Jumper post programming for the various range options is summarized in Table 4.

*EB104 RANGE AS DELIVERED
TABLE 4
EB104 ANALOG INPUT RANGE OPTIONS AND JUMPER POST PROGRAMMING

## Control Logic Inputs

The EB104 jumper posts are pre-configured to provide 12-bit operation with what is probably the simplest control scheme. Pin R/C్ర of Jack J2, which is connected to the R/C input of the HADC574/674Z, is used to both initiate the 12-bit conversion cycle and enable the 12 bit output. For the free-running

CE	CS	R/C]	12/8	Ao	Operation
0	X	X	X	X	None
X	1	$x$	$\mathbf{x}$	X	None
4	0	0	$\mathbf{x}$	0	Inftiate 12 bit conversion
4	0	0	X	1	Initlate 8 bit conversion
1	$\downarrow$	0	$\mathbf{x}$	0	Initlate 12 blt conversion
1	$\downarrow$	0	$\mathbf{x}$	1	Initlate 8 blt conversion
1	0	$\downarrow$	X	0	Initlate 12 blt converslon
1	0	$\downarrow$	$\mathbf{x}$	1	Initlate 8 blt conversion
1	0	1	1	X	Enable 12 blt Output
1	0	1	0	0	Enable 8 MSB's Only
1	0	1	0	1	Enable 4 LSB's Plus 4 Tralling Zeroes

TABLE 5
TRUTH TABLE FOR THE HADC574/674Z CONTROL LOGIC INPUTS
operation, as configured, the STATUS output pin of Jack J2 triggers the R/C pin. This is discussed further in the next section.

The remaining control pins are tied as follows:
$C E=12 / \overline{8}=+5 \mathrm{~V}$ (Logic High)
$\overline{\mathrm{CS}}=\mathrm{Ao}=$ Ground (Logic Low)
These above connections result in the chip always being enabled in 12-bit conversion mode with all 12 output bits enabled. The truth logic of Table 5 summarizes the control logic functions. Refer to the HADC574Z data sheet for further information regarding these functions.

## Free-Running Operation

By connecting the STATUS output of Jack J2 to the R/C input of Jack J2, the HADC574/674Z self triggers. That is, at the end of a conversion, when STATUS goes to logic low, this automaticly triggers the device for another conversion. Figure 5 shows the resultant wave form of the STATUS line when using the HADC574Z. The HADC674Z gives similar results except that conversion time is $15 \mu \mathrm{~S}$ maximum. Note that the <200 nS STATUS logic low time is not sufficiently long enough for an external sample/hold amp control. The EB104 is preconfigured for free-running operation.

HADC574Z'S STATUS OUTPUTI
HDAC7545A'S WFINPUT


FIGURE 5
STATUS OUTPUT TIMING OF HADC574Z IN FREE-RUNNING MODE

## Data Output Options

The HADC574/674Z is capable of outputing a 12 -bit conversion result in two 8 -bit words (with 4 trailing zeros). To accomplish this, the four MSB output lines are tied to the four LSB output lines as shown in Figure 6. The EB104 has jumper posts to facilitate these connections easily. These connections are summarized in Table 6. Following a conversion, the MSB and LSB words are selected by input pin Ao as indicated in Table 5. For full information on this mode of operation, please refer to the HADC574/674Z data sheet.

HADC574Z


FIGURE 6
WIRING DIAGRAM OF D/A SECTION OUTPUT

JUMPER   POSTS	OUTPUT FORMAT	
	$* 12$ BITS	8 -BITS
E19-E20	OPEN	CLOSED
E21-E22	OPEN	CLOSED
E23-E24	OPEN	CLOSED
E25-E26	OPEN	CLOSED
* EB104 AS DELIVERED		

TABLE 6
JUMPER POSTS SELECTION FOR OUTPUT MODE PROGRAMMING

## Calibration

The HADC574/674Z is manufactured to have only a few LSB's of zero offset and a fraction of a percentage of full scale error, depending on grade. In addition, inaccuracies in the $\mathrm{S} / \mathrm{H}$ amp, if used, will contribute to the inaccuracy of the A/D Conversion Section. The EB104 includes trim potentiometers for zero and full scale adjustment to compensate for these errors which are pre-adjusted for the pre-configured operation. Shipping may effect the adjustments and alter the calibration. Re-calibration will be needed when the input range is changed, when the $\mathrm{S} / \mathrm{H}$ amp utilization is changed, or when any components are replaced in this section.

Calibration involves the adjustment of the devices offset and gain. Adjustment is made so that the output of "zero" (0000 0000 0000) and "full scale" (1111 1111 1111) code values are received when the analog input's negative-most and positive-most values are input. In practice, accurate calibration is acheived by calibrating the "zero" point with an analog input voltage the equivalent of $1 / 2$ LSB above the desired zero setting; the zero trimming is then set between the 000000000000 and 000000000001 output transition. Full scale calibration is then acheived similarly with an analog input 1/2 LSB below the maximum range; the gain trimming is then set between the 111111111111 and 111111111110 output transitions.

To calibrate the A/D section of the EB104 using the approach described above, use the following procedure:

1) Select $S / H$ amp utilization and input range mode.
2) Apply power supplies.
3) If using S/H amp, adjust zero offset trim of S/H amp if not already done.
4) Apply an accurate programmable voltage source to EB104 Analog Input (Jack J5).
(A suitable method to accomplish this is with a variable power supply in parallel with a digital voltmeter. Voltage setting should be accurate to within 0.5 mV , which is about $1 / 4 \mathrm{LSB}$ in the $0-10$ or $\pm 5$ volt range. A potentiometer may be required to divide and trim the input reference voltage. Noise should also be kept low, less than 1 mV if possible. Accuracy of voltage source and level of noise will affect acheivable calibration.)

INPUT RANGE   SELECTED	"ZERO"   CALIBRATION   VOLTAGE	"ZERO"   TRIM   POTENTIOMETER	"FULL SCALE"   CALIBRATION   VOLTAGE
$0-10 \mathrm{~V}$	1.22 mV	R6	9.9963 V
$0-20 \mathrm{~V}$	2.44 mV	$R 6$	19.9927 V
$\pm 5 \mathrm{~V}$			
$\pm 10 \mathrm{~V}$	-4.9988 V	R3	4.9963 V
	-9.9976 V	R3	9.9927 V

*EB104 RANGE AS DELIVERED

TABLE 7
HADC574Z CALIBRATION VOLTAGES
5) Connect logic monitor to A/D data output jack J3. (This can be accomplished with a logic analyzer connected to Jack J3 or by determining the logic value of each pin with a voltmeter or oscilloscope.)
6) Set voltage source to zero calibration value indicated by Table 7.
7) Adjust zero trim potentiometer indicated by Table 7. Set to point where flickering occures between 000000000000 and 00000000 0001; both codes should occure equally. (If using a scope or volt meter, monitor pin B0 of Jack J3, the LSB; ensure pin B2B11 are still zero and not flickering.)
8) Set voltage source to full scale calibration value indicated by Table 7.
9) Adjust gain trim potentiometer R2. Set to point where flickering occures between 111111111111 and 11111111 1110; again equal occurences of code should exist.

The AVD section is now calibrated and ready for use.

## Component Selection

The EB104 can be used for the evaluation and comparison of similar component types. In addition to the hold capacitor discussed earlier, both the external S/H amp and HADC574/674Z can be replaced with other devices. The HA2425 supplied on the board can be replaced with an HA2420, AD583, SMP-81, or SHM-IC-1. The HADC574/674Z can also be replaced with alternate pin compatible devices for evaluation and comparison purposes. Athough pin 11 of the HADC574/674Z is not internally connected, -15 volts is supplied to the socket pad for the VEE requirement of alternate, pin compatible devices from other manufacturers.

## MULTIPLIER/BUFFER SECTION

This section drives both the Digital/Analog Conversion Section and Data Output Jack J4. Input into this section is selectable from either the Analog/Digital Converstion Section or Data Input Jack J3. This allows the Analog/Digital and Digital/Analog Conversion Sections to be linked and operated together or operated separately. Digital code can be output from the HADC574/674Z through Jack J4, or data can be input directly to the HDAC7545A. All data input or output from this section is buffered. A block diagram of the Multiplier/Buffer Section is shown in Figure 7.

## OPERATION

With a logic low into the SELECT input of Control Line Jack J2, the HADC574/674Z output data is selected; a logic high selects the data input into Jack J3. The STROBE input allows input data to be transferred with a logic low condition, and blocks data transfer with a logic high condition. This is shown in Table 8, Multiplexer/Buffer Section Logic Control. A Berg jumper can be used at Jack J 2 to tie either the SELECT or STROBE input low (ground).

The Multiplexer/Buffer Section consists of three 74LS157 devices each of which is a quadruple 2-line-

INPUTS		OUTPUT   (12 BITS)
SELECT	STROBE	
H	X	ALL OUTPUTS LOGIC LOW
L	H	DATA INPUT JACK J2 SELECTED
L	L	"AID CONVERTER OUTPUT SELECTED
"JUMPERED CONDITION AS DELIVERED		

to-1-line data selector/multiplexer. The Strobe inputs and Select inputs of the three devices are tied together and controlled by the STROBE and SELECT input pins of Jack J2. Device compensation is achieved with a Q-Pak ${ }^{T M}$ chip capacitor under each device. Pinout of the 74LS157 and it's logic truth table is shown in the appendix.

## Device Selection

The CMOS equivalent of the 74LS157 can be used in place of the bipolar devices. This will provide the advantage of reduced power supply current, but output drive will be reduced.


FIGURE 7
MULTIPLEXER/BUFFER SECTION BLOCK DIAGRAM

## DIGITAL/ANALOG CONVERSION SECTION

The heart of this section is the HDAC7545A current output digital-to-analog converter. Parallel code received from the Buffer-Multiplexer section is input into it's internal input register and can be latched. The HDA7545A outputs a signal current corresponding to the 12 -bit code residing in the input register. The analog current output of the DAC is converted to a voltage by the external op amp(s) in combination with internal resistor Reeedback.

## DATA INPUT AND LOGIC CONTROL

Input logic pins $\overline{C S}$ and $\overline{W R}$ control HDAC7545A operation and are available on the EB104 at the Control Line Jack J4. Pins CS and WR control the loading of the input register; when both pins are low, data at the input logic pins DB0-DB11 is transferred into the input register. When CS and/or WR goes high, the input register is locked and retains the last code condition. $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ can be tied low (grounded with Berg jumpers at J4) so that all input codes are immediately converted; this is not a good approach if a smooth continuous output is desired. Commonly, and by pin definition, pin $\overline{C S}$ is used for chip selection and WR for writing data into the input register.

The simplest method for loading the HDAC7545A on the EB104 is to ground CS with a Berg jumper. Loading the input register is accomplished with a negative pulse on WR ( 100 nS minimum).

In the pre-configured hook up of the EB104, pin CS is jumpered to ground and pin WR is connected to the STATUS output of the HADC574Z which is in free-run operation. As shown in Figure 9, the typical timing of the HADC574Z and HDAC7545A allows this configuration to function. Output data from the HADC574Z is transferred to the HDAC7545A via the Multiplexer/Buffer section.


FIGURE 9
TIMING RELATIONSHIP BETWEEN HADC574Z AND HDAC7545A
IN PRE-CONFIGURED OPERATION


FIGURE 8
SIMPLIFIED WIRING DIAGRAM OF DIGITAL/ANALOG CONVERSION SECTON

## OUTPUT MODE SELECTION

Berg jumpers allow the selection of either a unipolar or bipolar voltage output from the Digital/Analog Conversion Section. In unipolar operation, a single op amp (U7) is used in an inverted unity gain configuration to provide an inverted 0 to -10 volt output, corresponding to full scale input codes 0000 00000000 to 11111111 1111, respectively. In bipolar operation, both op amps ( U 6 and U7) are used to provide a non-inverted -10 to 10 volt output, corresponding to codes 000000000000 to 1111 1111 1111; 0 volts results from code 10000000 0000 . The jumper configuration for output mode selection is summarized in Table 9.


* EB104 RANGE AS DELIVERED

TABLE 9

## EB104 ANALOG OUTPUT RANGE OPTIONS

 AND JUMPER POST PROGRAMMING
## CALIBRATION

The EB104 is delivered pre-calibrated and ready to operate. However, due to vibration during shipment, recalibration may be necessary in order to obtain the 1/2 LSB accuracy achievable with the HDAC7545A. Calibration will again be necessary following any component replacement in the Digital/Analog Conversion Section with few exceptions, and also when changing between unipolar and bipolar modes.

As discussed later in the Trim and Gain Component section, the gain determining resistors used for bipolar operation are of a readily-available $1 \%$ accuracy variety. This can represent a $2 \%$ gain inaccuracy or an 80 LSB error (out of 4096 LSB's total). Therefore, when adjusting the trimming for a fraction of an LSB, the adjustment is "touchy" and can drift an entire LSB over an ambient temperature change of several degrees Celsius. Refer to the Component Selection section if additional temperature stability is desired.

## Callbration Procedure

During calibration, all voltage measurements are taken from the Analog Output Jack J6. For a more accurate calibration, output noise is reduced by disabling the HAD574/674Z and forcing the input conditions through Data Input Jack J3; On Jack J2, jumper pins CE and SELECT to ground which will disable the HADC574/674Z and select input data from Jack J3. Also jumper pins WR and CS on Jack J2 to ground which will result in continuous conversion.

## Unipolar Output Mode Calibration

1) Ensure EB104 is configured for Unipolar Output Mode.
2) Input 000000000000 into Jack J3.
3) Adjust offset trim potentiometer R15 until 0 Volts is obtained. ( 2.44 mV represents 1 LSB error)
4) Input 111111111111 into Jack J 3 .
5) Adjust Vref gain adjustment R9 until -10 Volts is obtained.

This completes the calibration for unipolar output operation.

Bipolar Output Mode Calibration

1) Perform steps 1 through 3 of Unipolar Output Mode Calibration
2) Disconnect Jumpers E33-E35 and E34-E35; Connect E30-E31.
3) Short pins 2 and 3 of $U 6$ to ground.
4) Adjust offset trim potentiometer R8 until 0 volts is obtained; due to the high gain of the amplifier, it will be nearly impossible to actually obtain 0 volts; adjusting R8 so that the output polarity just changes is sufficient.
5) Connect Jumper E33-E35.
6) Input 000000000000 into Jack J3.
7) Adjust gain trim potentiometer R16 until - 10 Volts is obtained. ( 4.88 mV represents 1 LSB error)
8) Input 111111111111 into Jack J 3.
9) Adjust Vref trim potentiometer R9 until +10 Volts is obtained.
10) Repeat steps 6 though 9 and readjust if necessary.

This completes the calibration for bipolar output operation.

## D/A SECTION COMPONENT SELECTION

## Output and Trim Resistors

In conjunction with external op amp U7, the resistance of Rfeedback in series with R10 is used to convert the DAC output current to a voltage. Additionally, in bipolar output mode a summation circuit composed of op amp U6 and external resistors is used to combine Vref with the generated output voltage. Trim resistors are included to adjust for offset and full scale errors in the HDAC7545A, the Vref error, and in bipolar output mode, the resistor ratio error of the gain stage incorporating op amp U6. The component selection for unipolar output mode will be discussed first.

The worst-case gain error tolerance of the lowestgrade HDAC7545A is $\pm 4$ LSB or approximately $\pm 0.1 \%$. The maximum error of the Vref, derived from the HADC574, is approximately $\pm 0.1 \%$. Therefore, when using unipolar output mode, the gain adjustment will need to be $\pm 0.2 \%$ to cover worst case error. In the HDAC7545A, the resistance of Rfeedback and the resistance into VREF is typically $12.5 \mathrm{~K} \Omega$ but can be as high as $18 \mathrm{~K} \Omega$. For trim purposes, R10 adds to Rfeedback and R9 (potentiometer) adds to the input resistance of Vref. Working out the gain equation using $18 \mathrm{~K} \Omega$ as internal resistance (worse case) it is found that R10 needs to be $36 \Omega$ minimum and R9 twice the R10 value (minimum) to provide the needed $\pm 0.2 \%$ adjustment.

The best control of adjustment and stability for unipolar output operation is achieved by using the resistance values derived above. Even lower values can be used if a better grade HDAC7545A is used and/or VREF voltage is better controlled. Actual values used on the EB104 are larger: R10 is $301 \Omega$ and R9 is 0 to $1000 \Omega$. These increased values are necessary to allow calibration in bipolar mode as discussed below.

In bipolar mode, the gain stage consisting of op amp U6 is configured to gain and sum Vref and the unipolar output of the DAC; (-1)•(Vref)+(-2)•(Unipolar Out). (Recall that the unipolar output is inverted.) When 000000000000 is input, the unipolar output is zero and contributes nothing; the output is therefore $(-10 \mathrm{~V})+(-2) \cdot(0)=-10$ Volts When 111111111111 is input, the output is $(-10 \mathrm{~V})+(-2) \cdot(-10 \mathrm{~V})=+10$ Volts. The accuracy of the $(-1)$ and $(-2)$ gains directly affect final accuracy. In addition to the errors discussed in
unipolar output operation, bipolar output operation gain error also needs to be considered.

Because of relative ease of availability and to therefore demonstrate a practical circuit, the EB104 is supplied with fixed gain resistors of $1 \%$ accuracy. Therefore, $\pm 2 \%$ worst case gain inaccuracies can be expected. The gain adjustment of the (-2)•(Vref) product is first considered. To allow calibration over the maximum $\pm 2 \%$ error range, R16 (feedback resistance) consists of a $21 \mathrm{~K} \Omega(1 \%)$ resistor in parallel with a $1 \mathrm{M} \Omega$ potentiometer; R11 (input resistance) consists of a 20 $\mathrm{K} \Omega(1 \%)$ resistor. Working out the gain equations with nominal resistance values, this allows a gain adjustment from $-\infty$ to $+2.8 \%$ over unity. Considering worst-case resistor values, this leaves $0.8 \%$ for compensation of Vref error.

The gain of the $(-1) \cdot$ (Unipolar Out) product is next considered. This product, again due to the summing amp resistor tolerances, can also vary $\pm 2 \%$; this is due to the the $1 \%$ tolerance of R12 combined with the trimmed R16. The Error is compensated by the same adjustment made in unipolar operation; by adjustment of R9 to change the HDAC7545A output gain. However, the 0.2\% adjustment allowed earlier needs to be increased to $\pm 2 \%$ to compensate for summing amp gain error. By working out the gain equations, it is found that increasing R9 to 360 ohms and R9 to about 720 provides the desired range. Practically, however, due to typical values of HDAC7545A. Vref and Rfeedback resistance and available resistance values, component values of $301 \Omega$ and $1 \mathrm{~K} \Omega$ were chosen for R10 and R9, respectively.

Temperature coefficient of the chosen gain determining resistors is 50 ppm and 100 ppm for the fixed resistors and potentiometers, respectively. These, again are readily available values. If the components did drift in opposite directions, calculation shows that 1 LSB error would be imposed with less that $3^{\circ} \mathrm{C}$ change; practically, however, similar components typically track each other and insignificant change will be noted in the laboratory environment.

Further stability of the Digital/Analog section can be attained by using fixed resistors with lower accuracy tolerance and lower temperature coefficient. The better accuracy will reduce the adjustability needed for the HADC7545A adjustment; this will then reduce the inaccuracies contributed by the external resistance due to internal/external resistor temperature differences and temperature coefficient differences.

Any competing 7545A device may be inserted in place of the HDAC7545A for evaluation. Note, however, that output compensation capacitor C 20 will need be increased to the value specified by the manufacturer. Having a very uniquely low output capacitance, the HDAC7545A requires only 15 pF compensation and has a very fast settling time.

## Op Amps

The high slew rate OP-17 was chosen for the EB104 to demonstrate the fast settling time of the HDAC7545A. Many other popular op amp types, having the same pin out, can be used instead. Some of these op amps require the opposite voltage polarity on the offset trim potentiometer wiper. The EB104 has Berg jumper posts that allow this polarity change. Please refer to Table 10 for the jumper position for several popular op amps.


FIGURE 10
OP AMP PIN OUT
TOP VIEW


FIGURE 11 EB104 WIRING


NOTES:
(1) U3-US DECOUPLUNG CAPACITORS MOUNTED BENEATH IC (Q-PAK TM),
(2) PINOUTS OF JACKS AND IC'S (J1-J6, U1-U8) SHOWN FROM TOP VIEW.
(2) PINOUTS OF JACKS AND IC'S (J1J6, U1-U8) SHOWN FROM
(4) E36 AND E37 USED AS LOGIC HIGH JUMPER POSTS FOR JACK J 2.
(5) R9 AND R16 TEMP CO 100 PPM; R10, R11, R12 AND R17 TEMP CO 50 PPM.


FIGURE 12
EB104 BOARD LAYOUT
Top View, Actual Size

DATA INPUT JACK J3

DATA OUTPUT JACK J4


## A/D Conversion Section

## R4: S/H Amp Offset Adjustment

R2: Gain Adjustment Of A/D Conversion, Unipolar and Bipolar Modes (Same as R2 in HADC574Z data sheet, figures 11 and 12)

R3: Offset (Zero) Adjustment of A/D Conversion, Unipolar Mode Only (Same as R1 in HADC574Z data sheet, figure 11)

R6: Offset (Zero) Adjustment of A/D Conversion, Bipolar Mode Only (Same as R1 in HADC574Z data sheet, figure 12)

D/A Conversion Section
R8: Offset (Zero) Adjustment of Op Amp U6
R15: Offset (Zero) Adjustment of Op Amp U7
R16: Full Scale Output Trim for use in Bipolar Mode

R9: (Optional Resistor, Board Delivered With Pins Jumpered) VREF Trim for D/A Conversion Adjustment; Used to Trim Full Scale Output in Unipolar Mode, or Zero Output in Bipolar Mode.

TABLE 12 TRIM POTENTIOMETER SUMMARY

Multi-turn potentiometers are supplied on the EB104 to allow fine adjustment of various analog conditions. Although the EB104 Is calibrated during manufacture to allow functionality, some adjustment may be necessary to obtain desired results.



PIN	PIN NAME	FUNCTION
1	VLOGIC	LOGIC SUPPLY VOLTAGE, +5V
2	$12 / 8$	DATA MODE SELECTINPUT
3	CS	CHIP SELECT INPUT
4	Ao	BYTE ADDRESS/SHORT CYCLE INPUT
5	R/C	READ/CONVERT INPUT
6	CE	CHIP ENABLE INPUT
7	VCC	ANALOG POSITIVE SUPPLY, +15
8	REFOUT	REFERENCE OUTPUT, +10V
9	AGND	ANALOG GROUND
10	REFIN	REFERENCE INPUT
11	N.C.	NO CONNECTION
12	BIP OFF	BIPOLAROFFSET
13	$10 V I N$	10 VOLTANALOG INPUT
14	$20 V I N$	2OV ANALOG INPUT
15	DGND	DIGITAL GROUND
$16-27$	DBO-DB11	DIGIALDATA OUTPUT
28	STS	STATUS OUTPUT

FIGURE 14
HADC574Z PIN ASSIGNMENT


PIN	PIN NAME	FUNCTION
1	OUT1	ANALOG CURRENT OUTPUT
2	AGND	ANALOG GROUND
3	DGND	DIGITAL LOGIC GROUND
$4-15$	DBO-DB11	OUTPUTDATA BITS
16	CS	CHIP SELECT
17	WR	DATA WRITE
18	VDD	POSITIVE POWER SUPPLY
19	VREF	REEERENCE INPUT VOLTAGE
20	Rfeedback	INTERNAL FEEDBACK RESISTOR

FIGURE 15
HDAC7545A PIN ASSIGNMENT


FIGURE 16
HA2425 SAMPLE/HOLD AMP PIN OUT TOP VIEW


INPUTS				OUTPUT
STROBE	SELECT	$A$	$B$	$Y$
$H$	$X$	$X$	$X$	$L$
$L$	$L$	$L$	$X$	$L$
$L$	$L$	$H$	$X$	$H$
$L$	$H$	$X$	$L$	$L$
$L$	$H$	$X$	$H$	$H$

FIGURE 17
74LS157 2-TO-1 MULTIPLEXER/SELECTOR PIN OUT
AND LOGIC TRUTH TABLE
PIN OUT FROM TOP VIEW

NO.	REF. DESIG.	QTY	DESCRIPTION	MANUFACTURER/PART NO.
1	C1-C5	5	Capacitor, $1 \mu \mathrm{~F}$ Tantalum	
2	C6, C8, C10	3	Capacitor, $10 \mu \mathrm{~F}$ Tantalum	
3	C7, C9, C11,	11	Capacitor, $0.1 \mu \mathrm{~F}$	
	C12, C14, C15, C17, C18, C19,			
	C21, C 22			
4	C13	1	Capacitor, $0.01 \mu \mathrm{~F}$ Polystyrene	
5	C20	1	Capacitor, 15 pF	
6	See Note (1)	3	Capacitor, $0.01 \mu \mathrm{~F}$ Q-Pak ${ }^{\text {™ }}$	Rogers Corporation
7	CR1, CR2	2	Diode, 1N914	
8	E1-E37	37	Jumper Pins	
9	J1	1	Connector, Power	Molex / 09-180-5061
10	J2, J3, J4	3	Connector, 26-Pin Ribbon Cable	TRW / 3593-5002
11	J5, J6, J7	3	Connector, BNC	Trumpeter / CBJ20
12	R1, R5	2	Resistor, $100 \mathrm{~K} \Omega, 1 / 8 \mathrm{Watt}, 5 \%$	
13	R7	1	Resistor, $100 \Omega, 1 / 8$ Watt, $5 \%$	
14	R10	1	Resistor, $301 \Omega, 1 / 8$ Watt, $1 \%$	Dale / RN55C
15	R11	1	Resistor, $20 \mathrm{~K} \Omega, 1 / 8 \mathrm{Watt}, 1 \%$	Dale / RN55C
16	R12	1	Resistor, $10 \mathrm{~K} \Omega, 1 / 8 \mathrm{Watt}, 1 \%$	Dale / RN55C
17	R13	1	Resistor, $4.99 \mathrm{~K} \Omega, 1 / 8 \mathrm{Watt}, 1 \%$	
18	R14	1	Resistor, $10 \mathrm{~K} \Omega, 1 / 8$ Watt, 5 \%	
19	R17	1	Resistor, $21 \mathrm{~K} \Omega, 1 / 8 \mathrm{Watt}, 1 \%$	Dale / RN55D
20	R2, R3	2	Potentiometer, $100 \Omega$ Multiturn	Bourns / 3339P-101
21	R4, R6	2	Potentiometer, $100 \mathrm{~K} \Omega$ Multiturn	Bourns / 3339P-104
22	R8, R15	2	Potentiometer, $20 \mathrm{~K} \Omega$ Multiturn	Bourns / 3339P-203
23	R9	1	Potentiometer, $1 \mathrm{~K} \Omega$ Multiturn	Bourns / 3006P-102
24	R16	1	Potentiometer, $1 \mathrm{M} \Omega$ Multiturn	Bourns / 3006P-105
25	U1	1	I.C., HA2425, Sample/Hold Amp	Harris
26	U2	1	I.C., HADC574BCJ, A/D Converter	Honeywell
27	U3, U4, U5	3	I.C., 74LS157, TTL Quad Multiplexer	
28	U6, U7	2	I.C., OP-17, Operational Amplifier	PMI
29	U8	1	I.C., HDAC7545AACD, D/A Converter	Honeywell

(1) Note: Q-pak™ capacitors mounted in DIP sockets of U3, U4, U5

FIGURE 18
EB104 COMPONENT LIST

## THERMAL CONSIDERATIONS FOR HIGH PERFORMANCE DEVICES

PAUL M. BROWN

## INTRODUCTION

The package of an integrated circuit is its interface to the outside world. The pins and bonding wires conduct power and control voltages to and from the silicon chip (die). In addition, the pins, bonding wires and body of the package transfer heat from the die to the outside environment. Just as electrical resistance is a measure of the efficiency with which current is conducted by an electrical connection, thermal resistance measures the efficiency of heat flow. There are four thermal resistances of concern to the systems designer: $\theta \mathrm{JC}$, the thermal resistance from the die (junction) to the package (case), $\theta C S$, the thermal resistance from the package (case) to the heat sink, $\theta$ SA, the thermal resistance from the heat sink to the ambient environment, and $\theta J A$, the thermal resistance from the die (junction) to the ambient environment through the package with no additional heat sink attached.

The junction temperature and the temperature of the die can be easily calculated (see the example below) given the ambient temperature, the appropriate thermal resistance, and the power dissipated on the die. It is important to keep the die temperature under the maximum specified limit, usually $150^{\circ} \mathrm{C}$, under worst case conditions; i.e. maximum ambient temperature, maximum power supply voltage, and maximum load to avoid permanent damage to the device. Reliability is also acutely affected by the junction temperature since many failure mechanisms are accelerated with an increase in temperature. An IC operating at a junction temperature, (TJ), of $125^{\circ} \mathrm{C}$ will typically exhibit a failure rate almost 150 times that of the same device operating at a junction temperature of $70^{\circ} \mathrm{C}$.

## SYSTEM THERMODYNAMICS

Thermal management in a board or system level application consists of transferring heat from an undesirable location (i.e. the die) to one where it can be dissipated into the environment without adversely affecting the system. There are three ways that heat is transferred: conduction, convection, and radiation.

Thermoconduction is the process of transferring heat through a medium from a relatively high temperature to a relatively low temperature. To maximize the conductive flow of heat, it is important to choose a medium with high thermal conductivity, such as copper or aluminum. The geometry of the medium should be chosen to yield the largest practical cross-sectional area and to shorten the conduction path. The rate of heat transfer is the greatest when there is a large difference between the high and low temperatures.

Thermoconvection, in the context of this discussion, is the transfer of heat from a solid (the IC and attached heat sinks) to a fluid (air). Convection depends upon the surface area across which the transfer takes place, the temperature difference between the solid and the fluid, and the characteristics of the fluid including: thermal expansion coefficient, specific heat, viscosity, density, and thermal conductivity. Free convection occurs when heat from the solid is conducted to the fluid in contact with it causing the fluid to become less dense and rise thus being displaced by fluid at a lower temperature. Convection is most effective if the fluid flow next to the solid is turbulent. This prevents boundary layers of fluid forming next to the solid thereby insulating the solid from the fluid.

Forced convection can be an order of magnitude more efficient than free convection. However, it is often more expensive to implement. When forced convection is used, the recommended air flow is usually between 200 and 500 fpm (feet per minute). Care should be taken to insure that this air flow is turbulent.

To maximize the effectiveness of convection, it is important to mount the heat dissipating surfaces in the vertical direction for free convection or along the air flow for forced convection. The enclosure must have proper ventilation so that the flow of air is not restricted. Place low power devices close to the air source in forced convection systems to keep them at the lowest possible temperature.

Figure 1. Basic Thermal Circuit Junction temperature (TJ)


Figure 2. Thermal Circuit with External Heat Sink


Figure 3. Junction Temperature Calculation


## PACKAGE THERMAL RESISTANCE

The thermal resistance of an IC, both $\theta J A$ and $\theta J C$, depend upon several unique product specific characteristics. Among these are: die size, the method used to attach the die to the package (glass, gold, eutectic, epoxy), bonding wire thickness, the number of bonding wires, package cavity size, package material type, package geometry and design, and package emissivity. Thermal resistance is, therefore, typically specified on the device data sheet. $\theta \mathrm{JA}$ is generally specified for a device inserted into a PC board mounted socket in still air at $25^{\circ} \mathrm{C}$. This specification includes the effects of both convection and radiation. If the ambient conditions are different, i.e. moving air, $\theta J A$ will be different. $\theta J C$, on the other hand, is measured with the package attached to an infinite heat sink and is a measure of thermal conduction from the die to the package.

The graphs below give a representation of the ranges of $\theta \mathrm{JA}$ and $\theta \mathrm{JC}$ that can be expected from industry standard packages. This data has been compiled from information supplied by several semiconductor and package manufacturers and is valid at sea level in still air assuming free convection. Under these conditions, approximately $70 \%$ of heat transfer occurs through convection and $30 \%$ by radiation. The thermal resistances of packages and heat sinks must be derated in other environmental conditions due to the loss in effectiveness of heat transfer. At high altitudes ( $770,000 \mathrm{ft}$.), only $30 \%$ of heat transfer is by convection (due to the less dense air) and $70 \%$ by radiation. In space (a very good vacuum), all heat is transferred by radiation. At ambient temperatures greater than $50^{\circ} \mathrm{C}$ heat transfer suffers due to decreased air density. Since there are many variables that affect thermal resistance specifications, the data supplied here is generic information and is only approximate. Consult the data sheet or the manufacturer for thermodynamic specifications of a particular device.

Figure 4. Thermal Conduction Channels


## HEAT SINKING

A heat sink is a thermoconductive device that is mechanically affixed to the integrated circuit to reduce the thermal resistance from case to ambient (an infinite heat sink can only reduce $\theta J A$ to $\theta J C$ ). Heat sinks are used with ICs that generate more heat energy than their package can effectively dissipate. Heat sinks include: devices designed to aid heat dissipation, the circuit board and its conductive traces. The ability of the circuit board to conduct heat away from the IC can be enhanced in several ways. First, whenever possible, design the P.C. board such that either a large ground or a Vcc plane is around and directly under the IC. When layout permits, wide ground traces (of 2 oz . copper) can be used to form a heat conducting channel from under the IC to the edge of the P.C. board where a good thermal connection can be made to the chassis (see Figure 4). It is important that these heat conducting channels pass under the IC since the die is usually attached to the bottom of the package (except for "cavity down pin grid arrays"). The most efficient heat conduction path is, therefore, out the bottom of the package. The package leads can also conduct a significant amount of heat away from the IC. This is especially true if 2 oz . copper traces are used. In most cases, layouts will be complicated enough that multilayer P.C. boards will be required. This is almost unavoidable for large pin count packages or when controlled impedance techniques, such as microstrip or stripline, must be used. Multi-layer boards afford a great deal more freedom for thermal design than two layer boards. Discrete heat sink devices are available in a wide variety of forms from manufacturers, such as EG\&G, Wakefield Engineering, Avid Engineering, or IERC.

Component placement is also critical. DO NOT place components that dissipate large amounts of power, such as dropping resistors, voltage regulators, etc., in close proximity to ICs that are themselves dissipating large amounts of power. Concentration of power dissipating components makes heat removal very difficult. Heat radiated by one component will be absorbed by another. Some components that appear in analog to digital and digital to analog circuitry, such as voltage references, OP amps, and buffer amplifiers, are very sensitive to temperature and should be isolated from thermal sources. Arrange components and heat sink fins to avoid blocking convection currents or forced air. Take into account the orientation that the circuit board will have when it is installed and the expected flow of convection currents and/or forced air.

It should be obvious from the above discussion that thermal design must be an integral part of the overall design of any board or system. Installing glue on or clipon heat sinks or a fan as an afterthought is no substitute for well planned, thermal design.

## REFERENCES

EG\&G Wakefield Engineering. Active Cooling Products and Capabilities. Massachusetts: EG\&G Publications and Media Center, 1985.

EG\&G Wakefield Engineering. Standard Products Catalog. Massachusetts: EG\&G Publications and Media Center, 1985.

International Electronic Research Corporation. Heat Sink/Dissipator Products and Thermal Management Guide. International Electronic Research Corporation, 1985.

(1) This is generic data. For exact values for a given product, consult a product data sheet or the manufacturer.

NOTES:

# SIGNAL PROCESSING TECHNOLOGIES 

EB105 EVALUATION BOARD
INCLUDES HSCF24040 PROGRAMMABLE 7TH ORDER LOW PASS ACTIVE FILTER

## FEATURES

- Complete With Socketed HSCF24040ACD Device
- Demonstrates HSCF24040 Performance and Capabilities
- Toggle Switches for On-Board Control and Programming
- Connectors Allow Easy Interfacing of External Control, Programming, and Analog Signals
- Crystal Time Base
- Leaded Power Supply Connector


## GENERAL DESCRIPTION

The EB105 Evaluation Board allows full exercise of the Honeywell HSCF24040 Programmable 7th Order Low Pass Active Filter. Unlike a handwired breadboard, this ground-planed, printed circuit board provides a high performance, noise-free environment. It provides full demonstration and evaluation of the superb HSCF24040 dynamic characteristics. Programming and control of the device is corveniently enabled by onboard toggle switches. Altennately, programming and control can be accomplished though the on-board ribbon cable connector. This option allows software control which can aid in system development.

By making full use of the HSCF24040, the EB105 provides an analog input and output for both the RC and

## APPLICATIONS

- HSCF24040 Evaluation
- Prototype System Development
- Programmable General-Purpose Subassembly
switched-capacitor filters. Both of these low-pass filters are fully programmable. Analog interfacing is accomplished with on-board BNC connectors to minimize noise and digital signal coupling. The EB105 also makes use of separate analog and digital supply grounds to further minimize digital coupling.

A clock crystal is supplied on the board which utilizes the HSCF24040 crystal oscillator feature. An external time base can be used optionally. BNC connectors are provided for external clock input and clock output, for the CONVERT output and the SYNC control line. Use of BNC connectors on these active digital lines assure a minimum of digital to analog coupling.

## FIGURE 1 EB105 BOARD FEATURES



## EB105 LAYOUT AND GENERAL INFORMATION

The EB105 contains one socketed HSCF24040 integrated circuit, an assortment of toggle switches and connectors, and a few discrete components used for power supply decoupling and logic voltage pull-up or pull-down. Board layout is shownin Figure 3. The prime function of the EB105 is to provide a low noise operating environment for the HSCF24040 and to allow ease of interface and programming for the purpose of device evaluation.

## POWER SUPPLY CONNECTION

Power is supplied though the leaded Molex connector as detailed in Figure 2. Ensure that the beveled edges of the male and female connectors are aligned prior to coupling. Digital and Analog Ground should be connected together at the power supplies to provide maximum noise isolation. The male and female connectors should be coupled and the power supplies connected prior to turning on the power supplies. The power supply current consumption will be that of the HSCF24040 which can be found in the HSCF24040 preliminary information or data sheet.


FIGURE 2
POWER SUPPLY CONNECTION Leaded Power Connector for Jack J1 Top View

## PROGRAMMING AND PARAMETER CONTROL

Operation of the EB105 must be preceded by device programming in order to establish operating characteristics. Programming involves loading the HSCF24040 data registers. This can be accomplished manually by use of the on-board toggle switches or externally by software though ribbon connector jack J . Table 1 summarizes the EB105 toggle switches, most of which are directly related to device programming. The direct programming mode, established by switch S12, allows the HSCF24040 characterisics to be changed "on the fly" by register logic switches S1-S10.

Register programing and device control can also be accomplished externally though jack J1, the ribbon cable connector. Figure 5 shows the pinout of jack J1. Note that each pin of jack J 1 is connected directly the corresponding pin of the HSCF24040. When using jack J1, ensure switches S1-S10 and S13 are in the open (center) position and S 12 is in the "DP" position.

Please refer to Table 1 and the HSCF24040 preliminary information or data sheet for further information on register programming and the other input logic control.

## DEVICE OPERATION

Operation of the HSCF24040 involves utilizing the device for real time filtering of an analog signal. In addition, a SYNC input and CNVRT output are available for external use which can serve as a timing interface to an A/D converter or sample/hold amplifier. Unlike the programming and parameter control inputs described above, all of the active signals used during operation utilize on-board BNC connectors to reduce coupling. This is further aided by the use of separate analog and digital ground connections. Switches S11 and S16, described in Table 1, play a part in device operation. Table 2 provides a summary of the jacks that are used during device operation. Note that each of these jacks are directly tied to the corresponding HSCF24040 pin and use similar callouts. For more information on these pin functions please refer to the the HSCF24040 preliminary information or data sheet.



FIGURE 4
EB105 BOARD LAYOUT
Top View

## TABLE 1 EB105 TOGGLE SWITCH SUMMARY (PART 1)

## Switches S1 to S10: Register State Operators

Position of each switch (up or down) determines the logic state of the corresponding input register upon loading. Each switch is disconnected when in the center position which allows programming though jack J1.

Type: Double Pole, Single Throw, 3 Position
Positions;
UP: Loads Logic 1 State
CENTER: Disconnects switch, allows programming though Jack J1
DOWN: Loads Logic 0 State
S1: Decimator Sample Rate Bit D4
S2: Decimator Sample Rate Bit D3
S3: Clock to SCF Bandedge Divide Down Ratio Bit D2
S4: Clock to SCF Bandedge Divide Down Ratio Bit D1
S5: Clock to SCF Bandedge Divide Down Ratio Bit D0
S6: RC Filter Bandedge Bit D7
S7: RC Filter Bandedge Bit D6
S8: RC Filter Bandedge Bit D5
S9: DC Gain Bit G2
S10: DC Gain Bit G1

## Switch S11: "XTAL OSC CONTROL", Crystal Oscillator Control Switch

This switch enables and disables the HSCF24040 crystal oscillator function. It is directly connected to pin CLKIN and jack J3. When it is down in the "OFF" position it allows a clock input into jack J3 to serve as the HSCF24040 time base. When it is in the up "ON" position pin CLKIN is tied low to -5 V and the internal crystal oscillator serves as the time base.

Type: Single Pole, Single Throw
Positions;
UP: "ON" which enable the internal clock
DOWN: "OFF" which disables the internal clock and allows operation by the external clock

## Switch S12: Direct Program Switch

Direct program mode causes the data registers for D0-D7, G1 and G2 to act transparent. When switch S 12 is up in the "DP" or direct program position, $\overline{\mathrm{CS}}$ is pulled to VSS $(-5 \mathrm{~V})$ by R6. This disables the A0, AS, $\overline{\mathrm{WR}}$, and DS inputs and places the HSCF24040 in the direct program mode. When switch S12 in down in the "MAN" or manual position, input register loading is controlled by switch S15; switch S13 must be in the "BW" or "GAIN" position. Note that data latch control inputs $\overline{C S}, A O, A S, \overline{W R}$, and DS can be driven from jack $J 1$ when $S 12$ is in the "DP" position and S13 is in the open (center) position.

Type: Single Pole, Double Throw
Positions:
UP: "DP" Direct Program mode, D0-D7, G1, G2 latches transparent (switch open)
DOWN: "MAN" Manual mode, loading controlled by S15 (switch closes)

## TABLE 1 EB105 TOGGLE SWITCH SUMMARY (PART 2)

## Switch S13: Register Select Switch

This switch, which is tied directly to pin AO, selects either the D0-D7 registers or G1, G2 registers during manual loading. When in the "GAIN" (down) position, it sets pin AO to logic 0 which allows access to register bits G1 and G2. When in the "BW" (up) position, it sets pin A0 to logic 1 which allows access to register D0 through D7. With switch S13 in the center position, it is disconnected and allows control of pin A0 though Jack J1. The purpose of the AO pin is to allow use of an 8 -bit bus to write all ten registers. The data into pin AO can be latched by a 1 to 0 logic transition on pin AS; pin AS is pulled high by resistor R9 and can be pulled low by pin AS of jack J1.

Type: Double Pole, Single Throw, 3 Position
Positions:
UP: "BW", Bits D0-D7 Latch Access
CENTER: Switch Open (Control enabled by jack J1)
DOWN: "GAIN", Bits G1, G2 Latch Access

## Switch S14, "CONFIG SELECT", Filter Configuration Selection

This switch controls the logic state of HSCF24040 pin AA/ $\overline{S M}$ which internally determines the analog input to the switched-capacitor filter. In the up "AA" position logic state 1 is forced which establishes the RC filter output as the SCF input. In the down "SM" position logic state 0 is forced which establishes the ScIN analog input as the input to the SCF. This switch does not have a corresponding function on Jack J1.

## Type: Single Pole, Single Throw

Positions;
UP: "AA" RC filter output is SCF input (Logic 1)
DOWN: "SM" Analog input ScIN is SCF input (Logic 0)

## Switch S15, "LATCH DATA" Data Strobe Control Switch

Pushing this momentary-contact switch up into the "L" (Latch) position loads the input registers by pulling the DS input to ground. Concurrently, switch S12 must be in the "MAN" (DOWN) position or pins WR and $\overline{\mathrm{CS}}$ must be pulled low at jack J1.

Type: Single Pole, Single Throw, Momentary Contact
Positions;
UP: "L" Latches register data ( $D S=\operatorname{logic} 0$ ), Momentary Contact
DOWN: Inactive (DS = logic 1)

## Switch 16: Power Down Switch

This switch is used to disable the analog circuitry of the HSCF24040 thus conserving power. Along with pullup resistor R12, it controls the logic state of pin PD.

Type: Single Pole, Single Throw
Positions;
UP: "ON" Device Fully Functional (PD = logic 1)
DOWN "OFF" Analog Portion Disabled (PD = logic 0 )

## TABLE 2 EB105 BNC CONNECTOR SUMMARY

Jack J2: "CNVRT", External A/D Converter Control Output Pin

This active low output signal is used to indicate when the Sc OUT output is valid, i.e., when the decimator output has settled. It is used to trigger an external A/D converter or sample/hold amplifier. This jack is directly connected to the CNVRT pin of the HSCF24040.

## Jack J3: "CLK IN", External Clock Input

This input jack is used to drive the HSCF24040 with an external clock. Switch S11 must be in the OFF position for this input to function. This jack is connected directly to the CLKIN pin of the HSCF24040.

## Jack J4: "CLK OUT", Device Clock Output

This output jack provides a buffered version of either CLKIN or the internally generated crystal oscillator output. It is connected directly to pin CLKOUT of the HSCF24040.

## Jack J5: "SYNC", Decimator Sampling Sync Input

This active low input jack controls the sampling instant for the decimator output. Applying a falling edge to the SYNC input initiates the CNVRT pulse on the next rising edge of CLKOUT. This jack is connected directly to pin SYNC of the HSCF24040.

## Jack J7: "Sc OUT", Switched-Capacitor Filter Output

This jack is the analog output of the switched-capacitor filter after passing through the decimator. It is directly connected to the pin SCOUT of the HSCF24040. Optional load resistor R13 can be added on the EB105 board.

## Jack J8: "Rc OUT", RC Filter Output

This jack is the analog output of the RC filter and is connected directly to pin RCOUT of the HSCF24040. Optional load resistor R14 can be added on the EB105 board.

## Jack J9: "Rc IN", RC Filter Input

This jack is the analog input to the RC filter and is connected directly to pin RCIN of the HSCF24040.

## Jack J10: "Sc IN", Switched-Capacitor Filter Input

This jack is the analog input to the Switched-capacitor filter and is directly connected to pin SCIN of the HSCF24040. This pin is internally enabled only when switch S14 "CONFIG SELECT" is down in the "SM" position.


FIGURE 5
RIBBON CABLE CONNECTOR JACK J1 PIN FUNCTION SUMMARY

[^24]NOTES:

# SIGNAL <br> PROCESSING TECHNOLOGIES 

## USING ECL DACs WITH TTL LOGIC

by Tom DeLurio and Russ Moen

High speed Digital-to-Analog converters are primarily designed to perform in 10 K or 100 K ECL systems because of the inherent speed and low noise that is characteristic of this logic group. Unfortunately, a large number of designers, are either using high speed TTL logic with the DAC or are stuck in a +5 V only environment and using pseudo ECL levels. This Application Brief will address these issues and offer solutions to overcome the perceived incompatibility between -5.2 V operation and +5 V operation.

Although the majority of Honeywell Signal processing Technologies' High speed DACs are optimized for ECL input levels, TTL levels can be utilized by pulling up the input pins to +5 V . Additionally, the Vcc or Ground pins must also be pulled up to +5 V and the Vee pins are tied to ground. And, by adding optional input voltage divider resistors, decreased noise can be realized by attenuating switching levels.

In a pseudo ECL system where the preceding DAC logic or memory is ECL but is pulled up to +5 V , all that needs to be done is to pull the DAC up to the same level by shifting the ground or Vcc and Vee pins. Also, in most cases, analog output level shifting is required to bring the output down to ground potential. This is not necessary if driving an AC coupled load.

Honeywell SPT makes a variety of different ECL compatible DACs which have different types of output structures, but similar inputs. Therefore, if needed, all the circuits will have the same input level shifting but different output circuits.

The first device, the HDAC97000, is an 8-bit Video DAC that operates at 200MWPS. It has an $800 \Omega$ output source resistor and standard ECL input pins. The circuit in Figure 1 shows how to attenuate and pull up the input and video control pins for TTL levels using resistors R1 and R2. R1 is for input attenuation and R2 is the pull-up resistor for each input and control pin. The associated gain setting, setup, and glitch adjust function inputs are the same as before but just shifted up to accommodate a +5 V environment. The analog output is then level shifted down to ground and resistor values are determined by the following equations:

## Gain Setting

$R_{01}=\frac{\left(V-V_{1}\right) R_{L}}{V_{3 M A X}} \quad$ Where $R_{L}=R_{L 1} \| R_{L 2}$

Where $\mathrm{V}_{\text {ЗМАХ }}=$ Maximum output voltage.
$R_{\text {SET }}=K\left(3^{63 /} / 64\right) R_{01}$


## Example

For
$\mathrm{V}_{3}=0$ to +1.071 V ( 0 to 150 IRE ), $1 / 2 \mathrm{I}_{\text {DAC MAX }} \cong 18 \mathrm{~mA}$, Blank $=10$ IRE, $\mathrm{V} 1=3.77 \mathrm{~V} \cong \mathrm{~V} 2, \mathrm{RL}=37.5 \Omega$
$R_{01}=\frac{(5 \mathrm{~V}-3.77 \mathrm{~V})}{1.071 \mathrm{~V}} 37.5=43 \Omega, 1 / 8 \mathrm{~W}$
$R_{\text {SET }}=150 / 90(363 / 64) 43 \Omega=212 \Omega, 1 / 8 \mathrm{~W}$
DAC Midscale $\cong 18 \mathrm{~mA}$
$R_{02} \geq \frac{3.77 \mathrm{~V}-.75 \mathrm{~V}\left(\mathrm{Q}_{1} \mathrm{~V}_{\mathrm{bo}}\right)}{18 \mathrm{~mA}} \geq 168 \Omega, 1 / 8 \mathrm{~W}$
$R_{02} \leq \frac{3.77 \mathrm{~V}-.75 \mathrm{~V}}{\frac{5-3.77}{10(43)}} \leq 1,056 \Omega, 1 / 8 \mathrm{~W}$
A practical method for setting up the circuit is as follows:

1. With $\begin{aligned} I_{D A C ~ o u t ~}^{*} & = \\ & 0 \mathrm{~mA} \text { voltage at at } V_{3} .\end{aligned}$
2. $I_{\text {DAC out }}=I_{V_{3 A X}}$. adjust $R_{\text {SET }}$ for desired minimum voltage at
3. $I_{\text {DAC out }}=1 / 2$ Gray Scale, adjust $R_{02}$ for $V_{1}=V_{2}$.
( Readjust $R_{01}$ and $R_{\text {SET }}$ in steps 1 and 2 )
It is important that all +5 V supplies be adequately bypassed as shown in Figure 1 for input, output and power pins.

FIGURE 1-HDAC97000 IN A TTL ENVIRONMENT.


The next devices are 8-bit High speed DACs that operate from 165, 275, and up to 400MWPS. They are respectively the HDAC10180, HDAC10181, and the HDAC51400. Each part has the same output current structures but have different voltage reference configurations. The HDAC10180 does not have an internal voltage reference and needs an external reference as shown in Figure 2. If two or more DACs are used as in an RGB monitor application, the HDAC10180s can use the reference from one HDAC10181. The HDAC51400 has a reference on board but has a separate reference out pin, whereas the HDAC10181 shares its' reference out with the reference input pin.

There are numerous ways to level shift the output from these devices to ground reference, but the circuit in Figure 2 takes advantage of the differential current output pins (OUT+ and OUT-). The equations for choosing resistor values are as follows:

For the LM113 or HDAC10181/51400 Reference Voltage
$\mathrm{V}+=+1.2 \mathrm{~V}$
$I_{S E T}=\frac{V_{+}}{(\propto T) R_{1}+R_{2}}$
$\propto T$ is the number of turns on potentiometer R1.
$R_{L}=R_{3} \| R_{4}$
$I_{C}=\left(\frac{1.2+\left(V_{b e 1}-V_{b e 2}\right)}{R_{6}}\right)-\frac{V_{\text {out }}}{R_{L}} \quad$ The current in Q2
$\mathrm{V}_{\text {out }}($ F.S. $)=15.9375\left(\mathrm{I}_{\text {SET }}\right) \mathrm{R}_{\mathrm{L}}+7.5$ IRE
Where Full Scale $\approx 650 \mathrm{mV}$ and $7.5 \mathrm{IRE} \approx 54 \mathrm{mV}$.
7.5IRE is the monitor dc setup level and is standard on the HDAC10180/81/51400 Video DAC series.

FIGURE 2 - HDAC10180/81 AND HDAC51400 IN A TTL ENVIRONMENT.


Q1 $=$ Q2 $=2$ N4209 for HDAC10180/81B
Q1 $=$ Q2 $=2$ N5583 for HDAC10180/81A
Q1 $=$ Q2 $=2$ N5583 for HDAC51400

NOTES:

# SIGNAL <br> PROCESSING TECHNOLOGIES 

## EXTERNAL SYNC CIRCUIT FOR VIDEO DACs

by Tom DeLurio and Russ Moen

High speed Digital-to-Analog converters and multifunction DACs with memory or multiplexers do not always have on board video SYNC pulse control inputs. This Application Brief will offer solutions to overcome the absence of video sync control pins. If needed, the circuits can equally be used for blank or $10 \%$ bright funtions as well.

Although the majority of Honeywell Signal processing Technologies' High speed DACs have video sync control inputs, some do not. Since most of SPTs DAC products are current output type devices, the sync pulse can be added directly to the output pins. One option is shown in Figure 1 using the HDAM51100 DAC with memory. This device does not have on-board sync control.

The sync pulse level is generated using an ECL type flipflop that is clocked in phase with the DAC clock to drive a matched transistor pair. Three flip-flops can be used in series to match the clock latency of the HDAM51100 or the time can be compensated for in software.

Another option is shown in Figure 2. Here, the sync circuit takes advantage of the voltage reference available from the DACs reference output pins. This circuit is more accurate and stable then the previous one but uses more components.


FIGURE 1 - Video DACs with external SYNC control.


FIGURE 2 - Video DACs with external SYNC control using Internal voltage reference.

## SIGNAL <br> PROCESSING TECHNOLOGIES

## CHARGE SCALING DATA CONVERTERS

PAUL M. BROWN

High quality polysilicon MOS capacitors, inherent in Honeywell's CMOS process, have made it possible to replace the traditional data conversion technique of current scaling with charge scaling. This technique relies on carefully matched capacitors instead of matched resistors and current sources to accomplish digital to analog conversion. The advantages of this approach include ease of manufacture, low power consumption and an inherent sample-and-hold function that substantially improves analog-to-digital converter performance yet adds no extra components. This application brief will discuss the basic charge scaling DAC (digital-to-analog converter), how it functions and how it is used in The HADC574Z and the HADC674Z to achieve the "built in" sample-and-hold function.

Figure 1. Simple Capacitive Divider


$$
\text { Vout }=\text { Vref } \frac{\text { Csel }}{C b+C s e l}
$$

Charge scaling DAC's produce an analog output voltage by distributing charge in an array of binary weighted capacitors. The weighting of the capacitive divider is determined by the incomming digital code. Figure 1 illustrates a basic capacitive divider circuit. This circuit functions in two steps. In step 1, switch Sa is closed and switch Sb is connected to ground, discharging both Csel and Cb . In step 2, Sa is opened and Sb is connected to the reference voltage Vref. Due to the relative values of Cb and Csel and the charge distribution between them, Vref is divided between the two capacitors such that Vout $=$ Vref X Csel/(Cb+Csel).

Figure 2 illustrates how a capacitive DAC is implemented using the above approach. Csel is the sum of all capacitors selected by the data bits to be connected to Vref and Cb is the balance of all other capacitors, including the termination capacitance, that remain connected to ground.

The total DAC capacitance, $\mathrm{Ctot}=\mathrm{C}+\mathrm{C} / 2+\mathrm{C} / 4+\mathrm{C} / 8$ $+\ldots . .+\mathrm{C} / 2^{\mathrm{N}-1}+\mathrm{C} / 2^{\mathrm{N}-1}=2 \mathrm{C}$
$\mathrm{Ctot}=\mathrm{Csel}+\mathrm{Cb}$
The total selected capacitance, $\mathrm{Csel}=\mathrm{b}_{1} \mathrm{C}+\mathrm{b}_{2} \mathrm{C} / 2=$ $\mathrm{b}_{3} \mathrm{C} / 4+\ldots .+\mathrm{b}_{\mathrm{N}} \mathrm{C} / 2^{\mathrm{N}-1}\left(\right.$ where $\mathrm{b}_{1} \ldots \mathrm{~b}_{\mathrm{N}}=1$ or 0$)$

Vout $=$ Vref X Csel/Ctot

Figure 2. Capacitor DAC


The HADC574Z/674Z use the DAC in a slightly different manner (see figure 3). The DAC output is connected to one input of a comparator and a reference voltage is applied to the other comparator input. The conversion cycle begins with a "reset". The DAC is first "zeroed" to the analog input voltage with switch S1 closed. Next, S1 opens and the SAR (successive approximation register), under control of the comparator, sets the appropriate data bits to either Vref or ground to balance the comparator inputs. The significance of this is that the input voltage is sampled only during the "reset" period. Although there is no sample-and-hold circuit in the classical sense, the sampling nature of the capacitive DAC makes the HADC574Z/674Z appear to have a built in sample-and-hold.

This sample-and-hold action substantially increases the signal bandwidth of the HADC574Z/674Z over that of similar competing devices.

## EXAMPLE:

Assuming a sinusoidal signal, maximum slew rate, $\mathrm{Sr}=$ $2 \pi \mathrm{fVp}(\mathrm{Vp}=$ peak voltage $)$

For an N -bit converter to maintain $+/-1 / 2$ LSB accuracy :
Verr $\leq \mathrm{Vfs} / 2^{\mathrm{N}+1}$ (where Verr is the allowable error voltage and Vfs is the full scale voltage)

Let $\Delta \mathrm{V}=\mathrm{Verr}, \mathrm{Vp}=\mathrm{Vin} / 2$ and $\Delta \mathrm{T}=$ The time during which unwanted voltage changes can occur on the input signal.

This can be rewritten as:
$\mathrm{Vfs} / 2^{\mathrm{N}+1} \geq \pi \mathrm{fVin} \Delta \mathrm{T}$
or
$\mathrm{f}_{\text {max }} \leq \mathrm{Vfs} /(\pi \mathrm{Vin} \Delta \mathrm{T}) 2^{\mathrm{N}+1}$
Let Vfs $=$ Vin $=20 \mathrm{~V}$
AD574
$\Delta \mathrm{T}=$ conversion time $=25 \mu$ stypical
$f_{\max } \leq 20 \mathrm{~V} /\left[\pi(20 \mathrm{~V})(25 \mu \mathrm{~s})\left(2^{13}\right)\right]=1.55 \mathrm{~Hz}$
HADC574Z
$\Delta \mathrm{T}=20 \mathrm{~ns}$ typical (specified aperture uncertainty time)
$f_{\max } \leq 20 \mathrm{~V} /\left[\pi(20 \mathrm{v})(20 \mathrm{~ns})\left(2^{13}\right)\right]=1.94 \mathrm{kHz}$
The HADC574Z has over a 1250:1 improvement in analog bandwidth with NO ADDITIONAL COMPONENTS!
$\mathrm{Sr}=\Delta \mathrm{V} / \Delta \mathrm{T}=2 \pi \mathrm{fV} \mathrm{p}$
Figure 3. HDAC574/675 DAC Configuration


# SIGNAL PROCESSING TECHNOLOGIES 

HADC574Z AND HADC674Z ANALOG INPUT STRUCTURE
Craig wiley

The capacitive DAC circuitry in the HADC574/674Z provides lower power dissipation, improved accuracy, and an inherent sample/hold function as compared to the traditional R-2R ladder DAC approach used in similar devices. In many applications this inherent sample/ hold function can eliminate the need for an external sample/hold amplifier and provide superior performance. Additionally, it reduces the dependance on signal source characteristics during conversion eliminating the need for signal buffering. The sample/hold function of the HADC574/674Z can reduce the external circuitry requirements of data acquisition systems when used properly. This application brief will discuss the application, advantages and limitations of the HADC574/674Z analog input structure.

## CONVERSION EVENTS

Operation of the HADC574/674Z can be broken into two basic events. The first event is referred to as the sample period and begins upon an initiation of conversion. During the sample period a capacitor array within the device is connected to the analog input and is allowed to charge to the external signal voltage. The second event, longer by comparison, is the successive-approximation operation utilizing the CDAC. During the conversion period, the internal sample capacitance is switched from the input to the internal CDAC circuitry. As shown in the simplified circuit equivalent of Figure 1, SW1 is used to transfer the capacitance Cs from the input to the CDAC circuitry. Actually, SW1 consists of several parallel MOSFET switches and Cs is a capacitor array that performs the CDAC function. Please refer to application brief AB102 for more information on charge scaling data converters.

Conversion event timing of the HADC574/674Z devices is determined by an internal clock. By virtue of the differences between internal clock frequency, the HADC674Z exhibits a shorter total conversion time compared to the HADC574Z. This also results in a different sample period between the two devices which requires application considerations. Figure 2 shows the conversion event timing (minimum-maximum values) of both devices. For additional timing information please refer to the device data sheet.


20 VOLT INPUT RANGE

FIGURE 1 SIMPLIFIED INPUT CIRCUIT OF HADC574/674Z Typical values shown

Compared to similar devices, the HADC574/674Z places less demand on the signal source stability and output characteristics. In the similar devices, the R-2R DAC is connected to the external signal source during the successive-approximation conversion operation. During the conversion, the signal source must remain stable to within a tolerable bit accuracy. Low output impedance and close proximity of the source are normally necessary to allow quick response to the changing DAC load. These requirements are normally met with a sample/hold or buffer amp. When using the HADC574/ $674 Z$ 's, however, direct connection can frequently be made to the voltage source without performance degradation.


FIGURE 2 CONVERSION EVENT TIMING OF HADC574/674Z

## DC INPUT CHARACTERISTICS

The internal input scaling resistors in the HADC574/674Z have different impedance characteristics forthe 10 V IN and $20 \mathrm{~V} \operatorname{IN}$ analog input pins. The input resistance range of these pins is shown in Figure 3. When using a high signal source impedance, the attenuation caused by the internal input resistance must be considered. For example, a signal source with an output resistance of $5 \mathrm{k} \Omega$ driving the $10 \mathrm{~V} I \mathrm{~N}$ pin, which has a $5 \mathrm{k} \Omega$ typical input resistance, would appear to have only half the signal value. Some of this error can by compensated by the external trim network (see data sheet), but drift can result due to thermal coefficient differences between the external and internal resistances. It is therefore important to keep the source impedance as low as possible.


FIGURE 3 DC INPUT CHARACTERISTICS OF HADC574/674Z

## DYNAMIC INPUT CHARACTERISTICS

## Input Settling

Although the sample/hold function of the HAC574/674Z provides utility, dynamically it is of modest performance when compared to dedicated sample/hold amplifiers. It can, however, provide superior noise immunity when sampling lower frequencies (below 5 kHz ).

Figure 4 shows the electrical equivalent of the internal sample circuitry as it appears to Cs. The equivalent resistance using either input pin ( 10 V IN or $20 \mathrm{~V} \operatorname{IN}$ ) is equal, assuming zero source resistance. Figure 4 provides a usable first order approximation and ignores all other parasitic effects. The $4 \mathrm{k} \Omega$ resistance includes the resistance of SW1; in applications with high source resistance, source resistance effects should also be included. Charge resistance can be calculated from the circuits of Figure 1.

In Figure 4, the voltage across Cs over time is defined by:

$$
\frac{e_{c}}{E}=1-e^{-t / R C} \quad \text { (equation 1) }
$$

where: $e_{c}=$ Voltage of Cs; $E=$ Signal Voltage; $t=$ time $; \mathrm{R}, \mathrm{C}=$ Component Values of Figure 4.

To express Equation 1 in terms of time ( t ) to obtain a required charge voltage ( $e_{c}$ ), we can rewrite equation 1 as:

$$
t=-R C \ln \left(1-\frac{e_{c}}{E}\right) \quad \text { (equation 2) }
$$

The design of a data acquisition system using the HADC574/674Z must take into account the total system settling time and the effect upon $e_{c}$, the captured signal voltage sample. The desired settling value of $e_{c}$ must occur within the sample period of the device. Using equation 1, a full-scale step input will settle to within $1 / 2$ LSB of final value in $0.9 \mu \mathrm{~s}$. (For this calculation, $(\mathrm{ec} / \mathrm{E})=(4095.5 / 4096)$ ). Using equation 2 , the final value is within $1 / 5$ LSB after $1 \mu \mathrm{~S}$. Therefore, even when using the HADC674Z which has minimum sample period of $1 \mu \mathrm{~s}$, the pole introduced by the internal charge circuit is negligible.

Because this dynamically-limited sample/hold amplifier acts like a low-pass filter, it exhibits good noise immunity. An external sample/hold will usually be more susceptible to circuit noise. Even with an external sample/hold amplifier, the HADC574/674Z typically exhibits less input noise than similar 574/674 devices. Room temperature characterization shows that typical equivalent input noise of the HADC574/674Z is $1 / 5$ LSB or $50 \mu \mathrm{~V}$.

## Dynamic Sampling Error

The bandwidth limitations of the HADC574/674Z's sample/hold feature are more apparent when performing dynamic sampling, that is, sampling of an active signal. For an AC signal voltage, the circuit of Figure 4 is low pass, phase-lag network. The transfer function of Figure 4 can be expressed as:

$$
\left.e_{c}=\frac{E}{1+j w R C} \quad \text { (Equation } 3\right)
$$

where: $w=2 p f$
The sample circuit equivalent, shown in Figure 4, can be viewed as a single-pole low-pass filter with a half power point at 1.6 MHz . Using equation 3 , the $1 / 2 \mathrm{LSB}$ magnitude attenuation of a full scale signal occurs at 25 kHz . At 10 kHz , the attenuation is only 0.08 LSB . As discussed in the following section, since 5 kHz is about the maximum usable range, the low-pass magnitude degradation imposes insignificant error.

Phase distortion in the input network is an important error to consider in dynamic sampling applications. As signal frequency goes up, higher reactance of the sample capacitor causes an increase in phase shift. Thus, a sampled waveform at one frequency appears to be delayed in time relative to a lower frequency. Phase shifting between frequencies is illustrated in Figure 5. Using equation 3 above, it can be determined that a fullscale sinusoidal signal is allowed a maximum frequency of 195 Hz if an amplitude error of $1 / 2 \mathrm{LSB}(\Delta \mathrm{V})$ maximum is allowed considering the phase shift in the time domain ( $\Delta t$ ). Most analog data, however, is in the form of a complex waveform which consists of several fundamental frequencies. Sampling of a complex waveform with excessively high frequency components will result in a distorted digital representation.

## Non-Apparent Dynamic Factors

Present architecture of the HADC574/674Z results in an inherent input slew rate limitation during the sample period described earlier. Slew rate adversely affects the switches composing SW1 in Figure 1. Problems will generally be found with slew rates above $0.25 \mathrm{~V} / \mu$ s into the 10 V IN pin or $0.5 \mathrm{~V} / \mu \mathrm{s}$ into the 20 V IN pin. This corresponds to full-scale sinusoidal signal of 8 kHz into either pin. To avoid problems over all operating conditions, the maximum slew rate should be conservatively limited to $0.16 \mu \mathrm{~V} /$ s into 10 V IN or $0.32 \mu \mathrm{~V} / \mathrm{s}$ on to 20 V IN. This places the conservative input frequency limit at 5


FIGURE 4 EQUIVALENT DYNAMIC CIRCUIT OF HADC574/674Z
kHz for a full-scale sinusoidal signal. Exceeding the slew rate limitation during the sample period will result in an all " 1 " output for a positive-going input and an all " 0 " output for a negative-going input.

As described in the HADC574Z and HADC674Z data sheets, aperture jitter also places a limitation on the maximum usable input frequency. The specified 20 ns typical aperture jitter accounts for worst case changes in ambient temperature and power supply voltages. In application, however, sample-to-sample jitter typically less than 5 ns. Discrete-Fourier-transform (DFT) characterization of the HADC574Z has showed that the widebandwidth signal-to-noise ratio is approximately 72 dB down from the fundamental when using full-scale singletone sinusoidal test signals up to 8 kHz . Above this frequency, the slew rate limitation described above greatly degradates the performance. Both the minimum aperture jitter and excellent linearity typically found with the HADC574/674Z provide a low dynamic distortion level which approaches ideal performance limited by 12bit quantization error alone.


FIGURE 5
EFFECTS OF PHASE DISTORTION THROUGH INPUT NETWORK

## CONCLUSION

The analog input structure of the HADC574/674Z provides superior performance to that of similar 574/674 devices. In addition, the inherent sample/hold function can eliminate the need of an external sample/hold or buffer amplifier. Because of it's dynamic limitations, use of the internal sample/hold function is limited to lowerfrequency ( $<5 \mathrm{kHz}$ ) data-acquisition applications. Systems requiring temporal (phase) accuracy during dynamic sampling or that will sample signals over 5 kHz should use an external sample/hold amplifier.

# SIGNAL <br> PROCESSING <br> TECHNOLOGIES 

# TESTING THE HADC574Z AND HADC674Z ON THE LTS2020 

Craig Wiley

Minor modifications of test hardware and software are needed in order to successfully test the Honeywell SPT HADC574Z or HADC674Z devices on the LTS2020 tester. The LTS2020 is a low-cost integrated circuit test system built by Analog Devices Incorporated and is commonly used as an Incoming Inspection test station. The HADC574/674Z devices offer enhanced performance but have slight differences in test requirements compared to 574/674 devices available from other manufacturers. Hardware modifications required for the HADC574/674Z will not effect the testing of similar pincompatible devices.


FIGURE 1
LTS2020 INPUT RANGE SWITCHING TECHNIQUE
Input structure of device shown is of 574/674 devices

## HARDWARE MODIFICATION

The hardware modification involves a minor change to the LTS0620 socket adapter which fits into the LTS2200-ADC family board. The socket adapter, as-is, takes advantage of the input structure common to 574/ 674 devices by other manufacturers. A single-pole relay is used to switch between to 20 V IN and 10 V IN pins of the device. This relay configuration is illustrated in Figure 1. The HADC574/674Z devices, due to the more accurate input architecture, will not function properly with this simplified switching scheme and instead requires a double pole relay as shown in Figure 2.

This modification on the LTS0620 socket adapter involves changing relay K2 and making the appropriate wiring modifications. Using the LTS0620 schematic nomenclature, Figure 3 shows the board, as-is, and Figure 4 shows the modified version. For relay K2, a Coto 221105 is used to replace the existing Coto 2900-0017. The modification will provide a suitable range switching technique for the HADC574/674Z as well as all pin-compatible 574/674 devices. No software changes are required for this modification.


FIGURE2
MODIFIED LTS2020 INPUT RANGE SWITCHING TECHNIQUE
Input structure of device shown is of HADC574/674Z

## SOFTWARE MODIFICATIONS

Testing of HADC574/674Z devices require some software changes since the LTS2020 574/674 test software is written for the similar bipolar devices. First, since HADC574/674Z devices use the BEMOS process, the limits for the power supply current tests need to be lowered. Second, since HADC574/674Z devices do not use a - 15 Volt supply (VEE pin is not internally connected) the -15 Volt tests need to be bypassed. And last, because of the internal sample/hold function, the ratio between the 8 -bit and 12 -bit conversion times differs from similar 574/674 devices (although they still comply with the specifications).


FIGURE 3
UNMODIFIED LTS0620 WIRING AS REPRESENTED BY FIGURE 1

The test programs available for the LTS2020 tester are the AD574_HG for testing 574 devices and the AD674_HG for testing 674 devices. The modifications of these programs for successful testing of the HADC574Z and HADC674Z devices are listed below. These modified test programs will not be suitable for testing similar 574/674 devices and should therefore be given new names avoid confusion.

## AD574_HG and AD674_HG Test Program Changes:

1) Line 310, change LL (Lower Limit) to -0.1 and UL (Upper Limit) to +3 (mA)
2) Line 340 , change $L L$ to 0 and UL to $10(\mathrm{~mA})$
3) Add line 355 "GOTO 380"
4) Line 86 , change " $E$ " conversion factor to 0.75 .
5) Add line 1005 "GOTO 1060".


FIGURE 4
MODIFIED LTS0620 WIRING AS REPRESENTED BY FIGURE 2
(Comments:)
(New +5 Volt supply c Irrent limits)
(New +15 Volt supply current limits)
(Skips -15 Volt supply test since this pin is unconnected)
(New 8-bit conversion time limit)
(Skips - 15 Volt pin PSSR test)

SELECTION GUIDE, CROSS REFERENCE ORDERING INFORMATION

## ANALOG TO DIGITAL CONVERTERS

DIGITAL TO ANALOG CONVERTERS

COMPARATORS

INSTRUMENTATION AMPLIFIERS

## SPECIAL FUNCTIONS

> EVALUATION BOARDS

## APPLICATIONS INFORMATION

## QUALITY ASSURANCE

## PACKAGE OUTLINES

## SALES OFFICES AND REPRESENTATIVES

## Quality Assurance

Quality and reliability of electronic components are critical issues at Honeywell Signal Processing Technologies. Customers integrate large portions of their finished products into silicon using SPT's complex high performance integrated circuits. The quality and reliability of the end products therefore, depend heavily upon the integrated circuits they contain. Realizing the intimate relationship between its customers' success and its own, SPT has put into place a continually improving quality assurance system that makes its products among the highest quality and most reliable components available.

Quality and reliability, frequently thought to be synonymous, have quite different meanings. Quality implies that a device initially conforms to a given set of performance criteria. Reliability implies that a device continuously meets a given set of performance criteria. Figure 1 illustrates the traditional "Bathtub" Failure Rate Curve. A given sample of unscreened devices that initially meet their published specifications (high quality) will tend to have a relatively high initial failure rate (infant mortality) due to parameter drift or manufacturing defects that have gone undetected during the manufacturing process (low reliability). The failure rate during the "normal life" period is affected by devices with latent failure mechanisms that normally exhibit themselves during the infant mortality period and some devices that prematurely "wear out". Failure during the "wear out" period is caused by metal migration, long term drifts, corrosion and package failure. SPT insures the high quality of its product with rigorous $100 \%$ electrical testing. Product reliability is designed in and insured through comprehensive QA (Quality Assurance) monitoring throughout the manufacturing process and screening of the final product.

Screening operations are designed to "weed out"' potential infant mortality failures before they are shipped to customers. The screening procedures that SPT uses are described below with the failure mechanisms they are designed to catch.

## Pre-seal Visual

Wire bonding, die bonding, package, package leads and die are visually inspected using both a high and low power microscope. Many of the defects detectable during this inspection such as defective wire bonds, contamination, scratched metalization or other defects on the die contribute to infant mortality. This inspection is performed just prior to sealing the device.

## Bond Strength

This sample test verifies the mechanical strength of the wire bond. Metalization and interconnection failures (typically opens or shorts) account for nearly half of IC failures.

## Stabilization

The devices are heated to $150^{\circ} \mathrm{C}$ in an oven for 24 hours without electrical stress. This procedure is used as a preconditioning for subsequent testing.

## Temperature Cycling

The devices are cooled to $-55^{\circ} \mathrm{C}$ for 10 minutes then elevated to $+150^{\circ} \mathrm{C}$ for 10 minutes with a 5 minute transfer time in-between. This procedure is carried out 10 times. Variations in physical dimensions of defective packages can cause loss of package integrity, cracking of passivation on the die, and changes in operating characteristics due to mechanical stress. This test is performed without electrical stress.

## Constant Acceleration

The monolithic devices are subjected to $30,000 \mathrm{gs}$ for 1 minute in the Y 1 plane. This test is performed without electrical stress and can uncover mechanical weakness that was not detected by temperature cycling. Gold wire bonds are effectively tested for integrity in cavity packages (packages in which the bond wires are not encapsulated). The test is not as conclusive for aluminum wires (due to their lighter weight). Cracked die, weak die bonds, poor lid seals and improperly dressed bonding wires can also be detected during this test.

## Hermetic Seal

## Fine Leak

The units are placed in a helium filled vessel under 60 psig for at least 1 hour. Helium will enter the die cavity through any cracks or pin holes. The devices are removed and placed into the test chamber of a mass spectrometer leak detector. Any helium that entered the package during the previous procedure will be drawn out by the vacuum in the test chamber. The leak rate is measured by the spectrometer. An alternative method with equal or greater sensitivity using Krypton gas may be substituted for this test.

## Gross Leak

After the completion of the fine leak test (if applicable), the gross leak test is performed to test for leaks greater than $10^{-3}$ ATM CC/sec. The devices are placed in a vacuum/pressure chamber at 5 torr for 1 hour. Before breaking the vacuum the units are covered with liquid FC-72. The pressure is then raised to 60 psig for two hours. The devices are removed from the vacuum/pressure vessel and submerged 2 in. in FC-43, heated to $125^{\circ} \mathrm{C}$, for 30 seconds and visually checked for bubbles.

These tests evaluate package integrity and detect devices that might fail when exposed to an environment containing moisture or gaseous contaminants.

## Pre Burn-In Electrical Test

Devices are tested $100 \%$ at $25^{\circ} \mathrm{C}$ for DC parameters (AC parameters and temperature extremes as required) to detect any electrical anomalies induced by the previous mechanical and thermal stresses. Serialized devices that will be burned-in may have some parameters logged at this point to test for parameter drift after burn-in is completed.

## Burn-In

Burn-in is performed for a specified number of hours at $125^{\circ} \mathrm{C}$ with the device electrically stressed. This procedure eliminates devices with parameters that are marginal or have latent defects. Intermittent shorts caused by pinholes in the passivation will tend to become permanently shorted. Metal that is almost discontinuous due to scratches or cracks will tend to open. Corrosion and contamination on the die will tend to impact the circuit performance and will be detectable during the post burn-in electrical testing.

## Post Burn-In Electrical Test

Devices are tested $100 \%$ at $25^{\circ} \mathrm{C}$ for DC parameters (AC parameters and temperature extremes as required) to insure that after all applicable screening the devices perform as specified.

## External Visual

This final optical inspection insures that the packages and leads appear defect free.

Figure 2 summarizes the screening procedure and the failure mechanisms they are designed to detect. Figure 3 Quality Flow Diagrams illustrate the standard processing for SPT's various product grades. Special quality flows can be tailored to specific customer needs.

## FIGURE 1: "BATHTUB" FAILURE-RATE CURVE





NOTE:
GROUP A: ELECTRICAL CHARACTERISTICS
GROUP B: PACKAGE ORIENTED TESTS
GROUP C: LIFE TESTS - PERIODIC CONFORMANCE
GROUP D: ENVIRONMENTAL TESTS - PERIODIC CONFORMANCE

FIGURE 2: FAILURE DETECTION SUMMARY


FIGURE 3: QUALITY FLOW DIAGRAMS

IN-LINE FLOW CHART FOR TRANSFER MOLDED
(PLASTIC) AND NON-HERMETIC CAVITY TYPE PACKAGES


## SELECTION GUIDE, CROSS REFERENCE

 ORDERING INFORMATIONDIGITAL TO ANALOG CONVERTERS
3

COMPARATORS

## EVALUATION BOARDS

## QUALITY ASSURANCE

## DIE PLOTS


















14 LEAD SIDBRAZED


16 LEAD SIDEBRAZED


16 LEAD CERDIP


16 LEAD PLASTIC


18 LEAD CERDIP


18 LEAD PLASTIC


20 LEAD CERDIP


20 LEAD PLASTIC


22 LEAD SIDEBRAZED


22 LEAD CERDIP


## 24 LEAD SIDEBRAZED



## 28 LEAD SIDEBRAZED



28-LEAD DUAL IN-LINE; CERDIP


28-LEAD DUAL IN-LINE; PLASTIC


32 LEAD SIDEBRAZED


48 LEAD SIDEBRAZED



20 PIN LCC


46 PIN PGA

**For Ordering Information See Section 1.

NOTES:

## SELECTION GUIDE, CROSS REFERENCE

 ORDERING INFORMATION
## ANALOG TO DIGITAL CONVERTERS

## DIGITAL TO ANALOG CONVERTERS

## COMPARATORS

4

## INSTRUMENTATION AMPLIFIERS

SPECIAL FUNCTIONS

## APPLICATIONS INFORMATION

## QUALITY ASSURANCE

## PACKAGE OUTLINES

## AREA SALES MANAGERS

WESTERN AREA
Honeywell Inc. SPT
721 S. Parker, Bldg. C
Orange, CA 92668
(714) 953 -4886

FAX: (714) 953-7204
Telex: 290651

## CENTRAL AREA

Honeywell Inc. SPT
1 S. 376 Summit Avenue, Court A
Oakbrook Terrace, IL 60181
(312) 916-1826

FAX: (312) 916-1828

## SOUTH CENTRAL AREA

Honeywell Inc. SPT
P.O. Box 467639

Atlanta, GA 30346
(404) 392-1399

FAX: (404) 392-9772
EASTERN AREA
Honeywell Inc. SPT 6 Misty Ridge Circle Kinnelon, NJ 07405 (201) 492.0113 FAX: (201) 492-0210

## DOMESTIC REPRESENTATIVES

## ALABAMA

Rep, Inc.
11535 Gilleland Road P.O. Box 4889 (35815) Huntsville, AL 35803
(205) 881-9270
(800) 633-2050

TWX 810-776-2102
EasyLink 62608310
FAX 205-882-6692

## ARIZONA

Electronic Development \& Sales, Inc.
2105 South 48th Street, Suite 107
Tempe, AZ 85282
(602) 438-1547

TWX 510-600-4993
FAX (602) 438-1569

## ARKANSAS

(see Texas)
CALIFORNIA
Emerging Technology Sales
2030 Fortune Drive
Suite B
San Jose, CA 95131
(408) 433-9366

Telex 757199
FAX (408) 434-6730
Emerging Technology Sales
5523 Brome Court
Orangevale, CA 95662
(916) 988-4387

FAX (916) 988-3299
SC Cubed
468 Pennsfield Place
Suite 101A
Thousand Oaks, CA 91360
(805) 496-7307

FAX (805) 495-3601

## SC Cubed

17862 17th Street
Suite 207
Tustin, CA 92680
(714) 731-9206

FAX (714) 731-7801

Scott Gould
753 Santa Rosita
Solana Beach, CA 92075
(619) 755-0824

COLORADO
Luscombe Engineering Company
616 Kimbark Street
Longmont, CO 80501
(303) 772-3342

FAX (303) 772-8783

## CONNECTICUT

Astrorep of New
England
3 Barnard Lane
P.O. Box 7220

Bloomfield, CT 06002
(203) 243-3122

FAX (203) 243-8280
Telex 882486
DELAWARE
(See Southern New Jersey)
FLORIDA
(WESTERN)
Perrott Associates
473 East Shore Drive
Clearwater, FL 33515
(813) 443-5214

TWX 810-866-0328
FAX (813) 443-7629
(SOUTHERN)
Perrott Associates
9639 Oregon Road
Boca Raton, FL 33434
(305) 792-2211

TWX 510-955-9831
FAX (305) 488-9073

## (CENTRAL)

Perrott Associates
7725 N, Orange
Blossom Trail
Orlando, FL 32810
(305) 298-7748

TWX 810-850-0254
FAX (305) 299-1807

GEORGIA
Rep, Inc.
1944 Northlake Parkway
Suite 1
Tucker, GA 30084
(404) 938-4358

TWX 810-766-0822
EasyLink 62657560
FAX (404) 938-0914

## ILLINOIS

 (NORTHERN)Heartland Technical Marketing, Inc.
3315 W. Algonquin Rd.
Rolling Meadows, IL 60008
(312) 577-9222

FAX (312) 577-0325
Telex (312) 577-0329)
ILLINOIS (SOUTHERN)
(see Missouri)
INDIANA
Arete Sales Inc.
2260 Lake Ave.
Suite 250
Fort Wayne, IN 46805
Phone: (219) 423-1478
Arete Sales Inc.
918 Fry Road
Greenwood, IN 46142
Phone: (317) 882-4407

## IOWA

S \& O Sales Inc.
3226 Center Point Rd. N.E.
Suite 205
Cedar Rapids, IA 52402
Phone: (319) 363-7323
FAX (319) 363-7331
TWX 910-525-1317

## KANSAS

Design Solutions inc.
10000 W. 75th Street
Suite 200
Shawnee Mission, KS
66204
(913) 677.4747

## DOMESTIC REPRESENTATIVES

KENTUCKY
(EASTERN)
(see Ohio)
KENTUCKY (WESTERN)
(see Indiana [Southern])
LOUISIANA
(see Texas)
MAINE
(see Massachusetts)

## MARYLAND

Rep-tron, Inc. 6528 Waterloo Rd.
Baltimore, MD 21227
(301) 799-7490

FAX (301) 796-1948

## MASSACHUSETTS

Compass Technology, Inc.
300 Wildwood Street
Woburn, MA 01801
(617) 933-3336

FAX (617) 932-3354

## MICHIGAN

Greiner Associates
15324 E. Jefferson Ave.
Grosse Pointe Park, MI 48230
(313) 499-0188

FAX (313) 499-0665
Telex 62705450
MINNESOTA
Mel Foster Technical Sales, Inc.
7611 Washington Ave., South
P.O. Box 35216

Edina, MN 55635
(612) 941-9790

TWX 910-576-2746
FAX (612) 944-0634

## MISSISSIPPI

(see Alabama)

## MISSOURI

Design Solutions Inc. 12173 Prichard Farm Rd.
St. Louis, MO 63043
(314) 739-3630

MCl 6501813164
MONTANA
(see Colorado)
NEBRASKA
(see Kansas)

## NEVADA

(call SPT direct)
NEW HAMPSHIRE
(see Massachusetts)

NEW JERSEY (NORTHERN)
Comp-Tech Sales
208 Boulevard
Suite E
Hasbrouck Heights, NJ 07604
(201) 288-7400

FAX (201) 288-7583
TWX 710-990-6118
NEW JERSEY
(SOUTHERN)
Rivco January, Inc.
78 S. Trooper Rd.
Morristown, PA 19403
(215) 631-1414

FAX (215) 631-1640
TWX (510) 660-2406
NEW MEXICO
(El Paso, TX)
Nelco Electronix
4801 General Bradley, N.E.
Albuquerque, NM 87111
(505) 293-1399

FAX (505) 292-3247
NEW YORK (UPSTATE)
Elcom Sales inc.
400 Whitney Road
Rochester, NY 14625
P.O. Box 25112
(716) 385-1400

FAX (716) 248-8531
TWX (510) 254-2627
Elcom Sales Inc.
2-4 Fennell St.
P.O. Box 836

Skaneateles, NY 13152
(315) 685-8245

FAX (315) 685-6273
NEW YORK (METRO)
Comp-Tech Sales
P.O. Box 237

New Hyde Park, NY 11040
(516) 593-2628

FAX (201) 288-7583
NORTH CAROLINA
Rep, Inc.
2500 Gateway Center Blva.
Suite 400
Morrisville, NC 27560
(919) 469-9997

EasyLink 62637570
FAX (919) 481-3879
NORTH DAKOTA
(see Minnesota)
OHIO
Meta Technical Sales
Inc.
264 E. Garfield Rd.
Aurora, OH 44202
(216) 562-8772

FAX (216) 562-7129

OKLAHOMA
West Associates
9717 E. 42 nd \#125
Tulsa, OK 74146
(918) 665-3465

TWX 910-997-1096
FAX (918) 663-1762

## OREGON

Northwest Marketing Associates
6975 S.W. Sandburg Road
Suite 330
Portland, OR 97223
(503) 620-0441

TWX 910-464-5157
NWMARKPTL
FAX (503) 684-2541

## PENNSYLVANIA

(WESTERN)
(see Ohio)

## PENNSYLVANIA

(EASTERN)
(see Southern New Jersey)
RHODE ISLAND
(see Massachusetts)

## SOUTH CAROLINA

Rep, Inc.
6407 Idlewild Road
Suite 425
Charlotte, NC 28202
(704) 563-5554

Telex 821765
EasyLink 62637570
FAX (704) 535-7507

## SOUTH DAKOTA

(see Minnesota)
TENNESSEE
Rep, Inc.
P.O. Box 728

113 South Branner Street
Jefferson City, TN 37760
(615) 475-9012

TWX 810-570-4203
EasyLink 62657620

## TEXAS

West Associates
801 E. Campbell Rd. \#350
Richardson, TX 75081
(214) 680-2800

Telex 910-997-0805
FAX (214) 699-0330

## TEXAS

(AUSTIN)
West Associates
8000 Centre Park Dr. \#250
Austin, TX 78754
(512) $339-6886$

TWX 910-997-1041
FAX (512) 339-8951

## DOMESTIC REPRESENTATIVES

TEXAS
(HOUSTON)
West Associates
4615 Southwest Frwy. \#720
Houston, TX 77027
(713) 621 -5983

TXW 910-997-1030
FAX (713) 621-5895

## UTAH

Luscombe Engineering Company
47 W. 200 South
Suite 326
Salt Lake City, UT 84101
(801) 532-4118

VERMONT
(see Massachusetts)
VIRGINIA
(see Maryland)
WASHINGTON
Northwest Marketing
Associates
12835 Bell-Red Road
Suite 330N
Bellevue, WA 98005
(206) 455-5846

FAX (206) 451-1130
TWX 910-443-2445 NWMARKBVUE

WASHINGTON D.C.
(see Maryland)
WEST VIRGINIA
(see Ohio)
WISCONSIN
Heartland Technical
Marketing, Inc.
3846 W. Wisconsin Avenue
Milwaukee, WI 53208
Phone (414) 931-0606

## WYOMING

(see Colorado)

## INTERNATIONAL REPRESENTATIVES

AUSTRALIA
TO BE DETERMINED
AUSTRIA
Bacher Electronics
Gesellschaft m.b.H
BURO
Meidlinger Hauptstrabe 78
A-1120 Wien
AUSTRIA
43-222-835646
FAX (43) 222-834276
Telex 847-131532

## BELGIUM

Trade Mark Electronics (TME)
Bisschoppenhoflaan 357-359
2100 Antwerpen (Deuren)
BELGIUM
32-3-3251910
FAX (32) 3-3259542
Telex (846) 72713 TMEBEL B

## DENMARK

Ditz Schweitzer
Vallensbaekvej 41
DK-2600 Glostrup
DENMARK
45-2-453044
FAX (45) 2-459206
Telex (855) -33257 SCHWEI DK

## ENGLAND

Ambar Cascom Ltd.
Rabans Close
Aylesbury, Bucks. HP19 3RS
ENGLAND
0296434141
FAX (44) 296-29670
Telex 837427

## FINLAND

OY Fintronic AB
Melkonkatu 24A
SF00210 Helsinki
FINLAND
358-0-6926022
FAX (358) 0-674886
Telex 857-124224

## FRANCE

Radio Equipements Antares (REA)
90, Rue de Villiers
92300 LEVALLOIS-PERRET
FRANCE
33-1-47581111
FAX (33) 1-47587913
Telex (842) 620630
microel
Av. de la Baltique
ZA de Courtaboeuf - B.P. 3
91941 LES ULIS CEDEX
FRANCE
331-1-69070824
FAX (33) 1-69071723
Telex 692493F
GERMANY
Kontron Halbleiter GmBH
Breslauer Strasse 16
D-8057 Eching b. Munchen
WEST GERMANY
49-89-31901381
FAX (49) 89-31901499
Telex (841) $5212467 Z$ KHL D
HOLLAND
Techmation Electronics B.V.
Bernhardstraat 11
4175 Ed Haaften
Postbus 9, 175 ZG Haaften
HOLLAND
31-41-892222
FAX (31) 41-891872
Telex (844)-50423 TME NL
ISRAEL
Tritech Limited
5 Haarad Street
P.O. Box 53200

Tel-Aviv 61531
ISRAEL
972-3-498802
FAX (972) 3-497816
Telex (922) - 379123

## ITALY

Silverstar
Via del Gracchi 20
20146 Milano
ITALY
39-2-4996
FAX (39) 2-435594
Telex 843-332189

## SPAIN

Selco
Paseo de la Habana 190-bajo
28036 Madrid
SPAIN
34-1-4054213, 4094634
FAX (34) 1-2592284
Telex (831) 45458 (EPAP-E)

## SWEDEN

Setron Sweden AB
Nora Torg 5
P.O. Box 2001

S-18202 Danderyd
Stockholm
SWEDEN
46-8.7530055
FAX (46) 8-7555594
Telex (854) 15339
SWITZERLAND
Anatec AG
Baarerstrasse 112
CH-6302 Zug
SWITZERLAND
41-42-315477
FAX (41) 42-315647
Telex (845) -865299 ANA CH
JAPAN
Nippon Imex Corporation
Takeuchi Bldg. 4F
1-37-19 Matsubara
Setagaya-Ku, Tokyo
156 JAPAN
81-3-321-4415
FAX (81) 3-325-0021
Telex (781) -J23444 NIMEXCO

## TAIWAN

Helm Engineering \& Trading Co.
4F. 658, Tun Hua South Road
P.O. Box 13-192 Taipei

TAIWAN, R.O.C.
886-2-709-1888
FAX (886) 2-706-0465
Telex 28204 Helmtra
U.S. Contact: Jerry Shih

Supreme Co.
FAX (408) 262-8268

## PLEASE NOTE:

After March 1, 1988 Area Code and Prefix will change to (719) 540-(Last 4 digits)

SIGNAL PROCESSING TECHNOLOGIES
1150 E. Cheyenne Mountain Blvd., Colorado Springs, CO 80906 (303) 577-1000 TELEX \#452433 EASYLINK \#62926148 FAX \#(303) 577-3716


[^0]:    *HONEYWELL RESERVES THE RIGHT TO SHIP CERDIP IN LIEU OF PLASTIC PACKAGES

[^1]:    Note 4: Available for extemal loads, external load should not change during conversion.
    When supplying an external load and operating on +12 V supplies, a buffer amplifier must be provided for the reference output.

[^2]:    **For Ordering Information See Section 1.

[^3]:    TEST LEVEL CODE: See page 7.

[^4]:    (1) See page 4.

[^5]:    **For Ordering Information See Section 1.

[^6]:    TEST LEVELS: I-Production tested at the specified conditions; II Sample tested to ensure compliance.

[^7]:    **For Ordering Information See Section 1.

[^8]:    (1) Test Procedure: I-Production tested at the specified conditions

    II - Guaranteed by design and sampled characterization data.

[^9]:    **For Ordering Information See Section 1.

[^10]:    **For Ordering Information See Section 1.

[^11]:    **For Ordering Information See Section 1.

[^12]:    **For Ordering Information See Section 1.

[^13]:    **For Ordering Information See Section 1.

[^14]:    **For Ordering Information See Section 1.

[^15]:    **For Ordering Information See Section 1.

[^16]:    **For Ordering Information See Section 1.

[^17]:    **For Ordering Information See Section 1.

[^18]:    **For Ordering Information See Section 1.

[^19]:    ＊＊For Ordering Information See Section 1.

[^20]:    **For Ordering Information See Section 1.

[^21]:    **For Ordering Information See Section 1.

[^22]:    **For Ordering Information See Section 1.

[^23]:    man

    The following setup procedure is completed at Honeywell before the EB100 board is shipped to the customer. It is not necessary for the user to perform this exercise, but it is included for informational purposes.

    The EB100 demonstration board is accompanied with a literature package containing the "AN100 APPLICATION NOTE" , the "HADC77100", "HDAC51400", "HDAC10181", and "HCMP96870" data sheets, and an applications department business card. Also, a power harness, and a capacitor alignment tool are included. If there are any questions, please call the applications engineer on the card.

    STEP 1
    Connect the wire end of the power supply harness to power supplies as shown in Figure 1C. The power harness should be connected to the board with the bevelled edges and hollow connector alligned for correct operation.

    DO NOT TURN ON THE POWER UNTIL ALL LEADS ARE CONNECTED TO THE SUPPLIES AND THE HARNESS IS ON THE BOARD!!

[^24]:    **For Ordering Information See Section 1.

