N゙TELEDYNE COMPONENTS

1992 DATA BOOK

ANALOG SIGNAL PROCESSING DRIVERS DMOS POWER ICs SENSORS

Teledyne Components reserves the right to make changes in the circuitry or specification detailed in this manual at any time without notice. Minimums and maximums are guaranteed. All other specifications are intended as guidelines only. Teledyne Components assumes no responsibility for the use of any circuits described herein and makes no representations that they are free from patent infringement.

TELEDYNE COMPONENTS makes no representation that use of its modules in the circuits described herein, or use of other technical information contained herein will not infringe on existing or future patent rights nor do the descriptions contained herein imply the granting of licenses to make use or sell equipment constructed in accordance therewith. Device specifications as contained on the data sheet are current as of the publication date shown. TELEDYNECOMPONENTS maintains the right to make changes in the circuitry and/or specifications contained on this data sheet at any time, without notice and assumes no responsibility for the use of any circuits described therein.
Display Drivers
Analog Switches and Multiplexers

Analog Switches and Multiplexers

TABLE OF CONTENTS

SECTION 1

Display A/D Converters

TC807	2-1/2 Digit Analog-to-Digital Converter	$1-1$
TC811	3-1/2 Digit A/D Converter with Hold and Differential Reference Inputs	$1-13$
Auto-Ranging Analog-to-Digital Converter with 3-1/2 Digit and Bar-Graph Displays	$1-27$	
	Display A/D Converters with Frequency Counter and Logic Probe	$1-49$
TC822/3	3-3/4 Digit LCD Analog-to-Digital Converter	$1-73$
TC826	A/D Converter with Bar Graph Display Output	$1-87$
TC835	Personal Computer Data Acquisition ADC	$1-99$
TC7106/7	3-1/2 Digit A/D Converter	$1-115$
TC7106A/A	3-1/2 Digit A/D Converter	$1-115$
TC7116/7	3-1/2 Digit Analog-to-Digital Converters with Hold	$1-135$
TC7116A/7A	3-1/2 Digit Analog-to-Digital Converters with Hold	$1-135$
TC7126/6A	3-1/2 Digital Analog-to-Digital Converter	$1-149$
TC7129	4-1/2 Digit Analog-to-Digital Converter with On-Chip LCD Drivers	$1-163$
TC7135	4-1/2 Digit Analog-to-Digital Converter	$1-177$
TC7136/6A	Low Power, 3-1/2 Digit Analog-to-Digital Converters	$1-191$
TC8750	3-1/2 Digit Analog-to-Digital Converter with Parallel BDC Output	$1-205$
TC14433/A/B	3-1/2 Digit ADC	$1-213$

SECTION 2

Binary A/D Converters

TC500/A	Integrating Converter Analog Processors	2-1
TC800	15-Bit Plus Sign, Integrating Analog-to-Digital Converter	2-13
TC804	12-Bit μ P-Compatible Multiplexed A/D Converter	2-31
TC850	15-Bit, Fast-Integrating CMOS Analog-to-Digital Converter	2-51
TC7109/9A	12-Bit μ P-Compatible Analog-to-Digital Converters	2-65
TC8702	Binary Output Analog-to-Digital Converters	2-87
TC8704/05	Binary Output Analog-to-Digital Converters	2-87

SECTION 3

Voltage-to-Frequency/Frequency-to-Voltage Converters
4731/33 High Reliability Hybrid Voltage-to-Frequency Converters 3-1
4736 High-Reliability Hybrid Frequency-to-Voltage Converter 3-11
$4743 \quad$ High Frequency, Hybrid Voltage-to-Frequency Converter 3-19
TC9400/1/2 Voltage-to-Frequency/Frequency-to-Voltage Converters 3-23

TABLE OF CONTENTS

SECTION 4

Sensor Products

TC620/1	Solid State Temperature Sensor	$4-1$
TC626	Solid-State Temperature Sensor	$4-7$
TC675/6	Fast NiCAD/Ni-Hydride Battery Charger	$4-9$

SECTION 5

Power Supply Control ICs

TC170 CMOS Current-Mode PWM Controller 5-1

TC172/3
TC15C25/7
TC25C25/7
TC35C25/7
TC18C42/3/4/5
TC28C42/3/4/5
TC38C42/3/4/5
TC18C46/7
TC28C46/7
TC38C46/7
TC7660
TC7662A
TC962

BiCMOS Current-Mode PWM Controller 5-9
BiCMOS PWM Controllers 5-13
BiCMOS PWM Controllers 5-13
BiCMOS PWM Controllers 5-13
BiCMOS Current Mode PWM Controller 5-19
BiCMOS Current Mode PWM Controller \quad 5-19
BiCMOS Current Mode PWM Controller 5-19
CMOS Current Mode PWM Controller \quad 5-25
CMOS Current Mode PWM Controller 5-25
CMOS Current Mode PWM Controller 5-25
DC-to-DC Voltage Converter 5-31
DC-to-DC Converter 5-43
$\begin{array}{ll}\text { High Current DC-to-DC Converter } & 5-49\end{array}$

SECTION 6

Power MOSFET, Motor and PIN Drivers

1120 High-Speed Pin Driver 6-1
TC1426/7/8 1.2A Dual High-Speed MOSFET Drivers 6-3

TC426/7/8 Dual High-Speed Power MOSFET Drivers 6-9
TC429 Single High-Speed, CMOS Power MOSFET Driver 6-17
TC430 Fast CMOS CCD Driver \quad 6-25
TC4401 6A Open-Drain MOSFET Driver \quad 6-33
TC4403 1.5A High-Speed, Floating Load Driver 6-41
TC4404/5
TC4406/7
TC4420/9
TC4421/2
TC4423/4/5
TC4426/7/8
TC4437/8/9
TC4457/8/9
1.5A Dual Open-Drain MOSFET Drivers $\quad 6-47$

3A Dual Open-Drain MOSFET Drivers 6-55
6A High-Speed MOSFET Drivers 6-63
9A High-Speed FET Driver 6-69
3A Dual High-speed MOSFET Drivers 6-77
1.5A Dual High-Speed FET Drivers 6-85

Power Logic CMOS Quad Drivers 6-93
Power Logic CMOS Quad Drivers 6-93

TABLE OF CONTENTS

Power MOSFET, Motor and PIN Drivers (Continued)		
TC4467/8/9	Power Logic CMOS Quad Drivers	$6-93$
TC4487/8/9	Power Logic CMOS Quad Drivers	$6-93$
	Current-Sensing, 6 Amp Power MOSFET Driver	$6-105$
TC4626/7	Power CMOS Drivers with VDD Tripler	$6-111$

SECTION 7

References

TC04/05 Low Power, Band-Gap Voltage References \quad 7-1

SECTION 8

Chopper-Stabilized Operational Amplifiers
TC900 Low Power, Chopper-Stabilized Operational Amplifier 8-1
TC901 Monolithic, Auto-Zeroed Operational Amplifier 8-9

TC911 Auto-Zeroed Monolithic Operational Amplifier 8-15
TC913 Dual Auto-Zeroed Operational Amplifier 8-21
TC914 Quad Auto-Zeroed Operational Amplifier 8-27
TC915 High-Voltage, Auto-Zeroed Operational Amplifier 8-33

TC918 Low-Cost CMOS Operational Amplifier 8-41
TC7650 Chopper-Stabilized Operational Amplifiers 8-47
TC7652 Low Noise, Chopper-Stabilized Operational Amplifier 8-55

TC9420/1	High-Voltage, Auto-Zeroed Operational Amplifiers	$8-63$

SECTION 9

High Performance Amplifiers/Buffers

1321 Wideband, High Slew Rate Operational Amplifier 9-1
1322 Wideband, High Slew Rate Operational Amplifier 9-5
1332 High Performance Operational Amplifier 9-9
1344 Monolithic Wideband, JFET Input Operational Amplifier 9-13
1346 Monolithic Low Bias Current Operational Amplifier 9-17
1430 Fast Settling, FET Input Operational Amplifier 9-21
1435 Operational Amplifier-High-Frequency, Fast-Settling 9-27 9 9-3
1437 Operational Amplifier—Wideband, Fast-Settling 9-35
1438 Operational Amplifier—Wideband, Fast-Settling 9-45
1443 Operational Amplifier-Wideband, Fast-Settling, Fully-Differential, FET-Input 9-47
1460 Operational Amplifier—High-Speed, VMOS Output 9-55
1461 Operational Amplifier-High-Speed, High-Power, VMOS Output 9-61
1468 (TCPA12) Operational Amplifier-High-voltage, Very-High-Power 9-69
1480 Operational Amplifier—Fast-Settling, High-Voltage 9-73
1481 Operational Amplifier-High-Voltage 9-77

TABLE OF CONTENTS

High Performance Amplifiers/Buffers (Continued)

1482	Operational Amplifier-High-Voltage	$9-79$
$\mathbf{4 8 5 6}$	Low Cost Microcircuit Sample/Hold Amplifier	$9-81$
$\mathbf{4 8 6 0}$	Fast, 12-Bit Sample/Hold Amplifier	$9-85$
TP0032	Operational Amplifier-High-Speed, FET-Input	$9-91$
TP0033	High-Speed, Unity-Gain Buffer/Driver Amplifier	$9-97$
TP3554	Operational Amplifier-High-Speed, Wideband	$9-103$

SECTION 10

Video Display Drivers

1902
1903

Monolithic, High-Voltage Video Driver for CRT Monitors	10-1

$\begin{array}{ll}\text { High-Voltage Video Driver for CRT Monitors } & \text { 10-7 }\end{array}$
$\begin{array}{ll}\text { High-Negative-Voltage Video Driver for CRT Monitors } & \text { 10-13 }\end{array}$

SECTION 11
Display Drivers
TC7211/12A 4-Digit CMOS Display Decoder/Driver 11-1
TC7211/12AM Bus Compatible 4-Digit CMOS Decoder/Driver 11-15
TC9404 Serial Input/16-Bit Parallel Output Peripheral Driver $\quad 11-25$
TC9405 16-Bit Parallel-Latched Output Peripheral Driver 11-31

SECTION 12

Analog Switches and Multiplexers
CDG201 Monolithic CMOS/DMOS, Quad SPST Analog Switch 12-1
CDG211 Quad Monolithic, SPST CMOS/DMOS Analog Switch 12-7
CDG2214 High-speed Analog Switch 12-13
CDG2269 Dual SPDT CMOS/DMOS Analog Switch With Data Latch 12-17
CDG308/9 Quad Monolithic, SPST CMOS/DMOS Analog Switches 12-23
CDG4308/9 Quad Monolithic, SPST CMOS/DMOS Analog Switches 12-23
CDG4500 4-Channel CMOS/DMOS High-Frequency Multiplexer 12-31
CDG5341 Dual Monolithic, SPST CMOS/DMOS "T" Configuration Analog Switch 12-35
$\begin{array}{ll}\text { TC4201/2/3 } \quad \text { Quad Single-Pole CMOS Analog Switches } & \text { 12-39 }\end{array}$
TC441/2/3 Microprocessor Compatible CMOS Analog Switches 12-45
TC444/5/6/7 Microprocessor Compatible CMOS Analog Switches 12-51

SECTION 13

Data Communications

TABLE OF CONTENTS

SECTION 14

Discrete DMOS Products

2N7000/2	Power FETs-N-Channel, Enhancement-Mode DMOS	14-1
BS170	N-Channel Enhancement-Mode DMOS Power FET	14-3
SD1106	N-Channel Enhancement-Mode DMOS Power FETs	14-5
SD210-215	N-Channel Enhancement-Mode DMOS FET Switches	14-7
SD211A-215A	N-Channel Enhancement-Mode DMOS FET Switches	14-9
SD304-6	N-Channel Enhancement-Mode Dual Gate DMOS FET	14-11
SD5000/1/2	N-Channel Enhancement-Mode Quad DMOS FET Analog Switch Arrays	14-15
SD5100/1	N-Channel Enhancement-Mode Quad DMOS FET Analog Switch Arrays	14-19
SD5200	N-Channel Enhancement-Mode Quad DMOS FET Driver Array	14-21
SD5400/1/2	Quad DMOS FET Analog Switch Arrays	14-23
VN0610LL/2222LL	N-Channel Enhancement-Mode DMOS Power FETs	14-27
VN10KN3	N-Channel Enhancement-Mode DMOS Power FETs	14-29
VN10LM/2222LM	N-Channel Enhancement-Mode DMOS Power FETs	14-31
VQ1000	N-Channel Enhancement-Mode Quad DMOS Power FET Array	14-33

SECTION 15

Reliability and Quality Assurance

SECTION 16

Ordering Information

SECTION 17
Package Information

SECTION 18

ALPHANUMERIC PRODUCT LIST

High-Speed Pin Driver 6-1
Wideband, High Slew Rate Operational Amplifier 9-1
Wideband, High Slew Rate Operational Amplifier 9-5
High Performance Operational Amplifier 9-9
Monolithic Wideband, JFET Input Operational Amplifier 9-13
Monolithic Low Bias Current Operational Amplifier \quad 9-17
Fast Settling, FET Input Operational Amplifier 9-21
Operational Amplifier-High-Frequency, Fast-Settling 9-27
Operational Amplifier—Wideband, Fast-Settling 9-35
$\begin{array}{ll}\text { Operational Amplifier-Wideband, Fast-Settling } & \text { 9-45 }\end{array}$
Operational Amplifier—Wideband, Fast-Settling, Fully-Differential, FET-Input 9-47
Operational Amplifier-High-Speed, VMOS Output 9-55
Operational Amplifier—High-Speed, High-Power, VMOS Output 9-61
Operational Amplifier-High-voltage, Very-High-Power 9-69
$\begin{array}{ll}\text { Operational Amplifier—Fast-Settling, High-Voltage } & \text { 9-73 }\end{array}$
$\begin{array}{ll}\text { Operational Amplifier—High-Voltage } & \text { 9-77 }\end{array}$
$\begin{array}{ll}\text { Operational Amplifier—High-Voltage } & \text { 9-79 }\end{array}$
$\begin{array}{ll}\text { Monolithic, High-Voltage Video Driver for CRT Monitors } & \text { 10-1 }\end{array}$
$\begin{array}{ll}\text { High-Voltage Video Driver for CRT Monitors } & \text { 10-7 }\end{array}$
$\begin{array}{ll}\text { High-Negative-Voltage Video Driver for CRT Monitors } & 10-13\end{array}$
High-Reliability Hybrid Frequency-to-Voltage Converter 3-11
$\begin{array}{ll}\text { High Frequency, Hybrid Voltage-to-Frequency Converter } & \text { 3-19 }\end{array}$
$\begin{array}{ll}\text { Low Cost Microcircuit Sample/Hold Amplifier } & \text { 9-81 }\end{array}$
Fast, 12-Bit Sample/Hold Amplifier 9-85
Power FETs-N-Channel, Enhancement-Mode DMOS 14-1
High Reliability Hybrid Voltage-to-Frequency Converters 3-1
N-Channel Enhancement-Mode DMOS Power FET 14-3
Monolithic CMOS/DMOS, Quad SPST Analog Switch 12-1
$\begin{array}{lr}\text { Quad Monolithic, SPST CMOS/DMOS Analog Switch } & \text { 12-7 }\end{array}$
High-speed Analog Switch 12-13
Dual SPDT CMOS/DMOS Analog Switch With Data Latch 12-17
Quad Monolithic, SPST CMOS/DMOS Analog Switches 12-23
Quad Monolithic, SPST CMOS/DMOS Analog Switches 12-23
4-Channel CMOS/DMOS High-Frequency Multiplexer 12-31
Dual Monolithic, SPST CMOS/DMOS "T" Configuration Analog Switch 12-35
N-Channel Enhancement-Mode DMOS Power FETs 14-5
N-Channel Enhancement-Mode DMOS FET Switches 14-7
$\begin{array}{lr}\text { N-Channel Enhancement-Mode DMOS FET Switches } & 14-9\end{array}$
N-Channel Enhancement-Mode Dual Gate DMOS FET 14-11
N-Channel Enhancement-Mode Quad DMOS FET Analog Switch Arrays 14-15
N-Channel Enhancement-Mode Quad DMOS FET Analog Switch Arrays 14-19

ALPHANUMERIC PRODUCT LIST

SD5200	N-Channel Enhancement-Mode Quad DMOS FET Driver Array	14-21
SD5400/1/2	Quad DMOS FET Analog Switch Arrays	14-23
TC04/05	Low Power, Band-Gap Voltage References	7-1
TC1426/7/8	1.2A Dual High-Speed MOSFET Drivers	6-3
TC14433/A/B	3-1/2 Digit ADC	1-213
TC15C25/7	BiCMOS PWM Controllers	5-13
TC170	CMOS Current-Mode PWM Controller	5-1
TC172/3	BiCMOS Current-Mode PWM Controller	5-9
TC18C42/3/4/5	BiCMOS Current Mode PWM Controller	5-19
TC18C46/7	CMOS Current Mode PWM Controller	5-25
TC232	Dual RS-232 Transmitter/Receiver and Power Supply	13-1
TC25C25/7	BiCMOS PWM Controllers	5-13
TC28C42/3/4/5	BiCMOS Current Mode PWM Controller	5-19
TC28C46/7	CMOS Current Mode PWM Controller	5-25
TC35C25/7	BiCMOS PWM Controllers	5-13
TC38C42/3/4/5	BiCMOS Current Mode PWM Controller	5-19
TC38C46/7	CMOS Current Mode PWM Controller	5-25
TC4201/2/3	Quad Single-Pole CMOS Analog Switches	12-39
TC426/7/8	Dual High-Speed Power MOSFET Drivers	6-9
TC429	Single High-Speed, CMOS Power MOSFET Driver	6-17
TC430	Fast CMOS CCD Driver	6-25
TC441/2/3	Microprocessor Compatible CMOS Analog Switches	12-45
TC444/5/6/7	Microprocessor Compatible CMOS Analog Switches	12-51
TC4401	6A Open-Drain MOSFET Driver	6-33
TC4403	1.5A High-Speed, Floating Load Driver	6-41
TC4404/5	1.5A Dual Open-Drain MOSFET Drivers	6-47
TC4406/7	3A Dual Open-Drain MOSFET Drivers	6-55
TC4420/9	6A High-Speed MOSFET Drivers	6-63
TC4421/2	9A High-Speed FET Driver	6-69
TC4423/4/5	3A Dual High-speed MOSFET Drivers	6-77
TC4426/7/8	1.5A Dual High-Speed FET Drivers	6-85
TC4437/8/9	Power Logic CMOS Quad Drivers	6-93
TC4457/8/9	Power Logic CMOS Quad Drivers	6-93
TC4460/61/62/63	Current-Sensing, 6 Amp Power MOSFET Driver	6-105
TC4467/8/9	Power Logic CMOS Quad Drivers	6-93
TC4487/8/9	Power Logic CMOS Quad Drivers	6-93
TC4626/7	Power CMOS Drivers with VDD Tripler	6-111
TC500/A	Integrating Converter Analog Processors	2-1
TC620/1	Solid State Temperature Sensor	4-1
TC626	Solid-State Temperature Sensor	4-7
TC675/6	Fast NiCAD/Ni-Hydride Battery Charger	4-9

ALPHANUMERIC PRODUCT LIST

TC7106/7	3-1/2 Digit A/D Converter	1-115
TC7106A7A	3-1/2 Digit A/D Converter	1-115
TC7109/9A	12-Bit μ P-Compatible Analog-to-Digital Converters	2-65
TC7116/7	3-1/2 Digit Analog-to-Digital Converters with Hold	1-135
TC7116A/7A	3-1/2 Digit Analog-to-Digital Converters with Hold	1-135
TC7126/6A	3-1/2 Digital Analog-to-Digital Converter	1-149
TC7129	4-1/2 Digit Analog-to-Digital Converter with On-Chip LCD Drivers	1-163
TC7135	4-1/2 Digit Analog-to-Digital Converter	1-177
TC7136/6A	Low Power, 3-1/2 Digit Analog-to-Digital Converters	1-191
TC7211/12A	4-Digit CMOS Display Decoder/Driver	11-1
TC7211/12AM	Bus Compatible 4-Digit CMOS Decoder/Driver	11-15
TC7650	Chopper-Stabilized Operational Amplifiers	8-47
TC7652	Low Noise, Chopper-Stabilized Operational Amplifier	8-55
TC7660	DC-to-DC Voltage Converter	5-31
TC7662A	DC-to-DC Converter	5-43
TC800	15-Bit Plus Sign, Integrating Analog-to-Digital Converter	2-13
TC804	12-Bit μ P-Compatible Multiplexed A/D Converter	2-31
TC807	2-1/2 Digit Analog-to-Digital Converter	1-1
TC811	3-1/2 Digit AD Converter with Hold and Differential Reference Inputs	1-13
TC818	Auto-Ranging Analog-to-Digital Converter with 3-1/2 Digit and Bar-Graph Displays	1-27
TC820/1	Display A/D Converters with Frequency Counter and Logic Probe	1-49
TC822/3	3-3/4 Digit LCD Analog-to-Digital Converter	1-73
TC826	A/D Converter with Bar Graph Display Output	1-87
TC835	Personal Computer Data Acquisition ADC	1-99
TC850	15-Bit, Fast-Integrating CMOS Analog-to-Digital Converter	2-51
TC8702	Binary Output Analog-to-Digital Converters	2-87
TC8704/05	Binary Output Analog-to-Digital Converters	2-87
TC8750	3-1/2 Digit Analog-to-Digital Converter with Parallel BDC Output	1-205
TC900	Low Power, Chopper-Stabilized Operational Amplifier	8-1
TC901	Monolithic, Auto-Zeroed Operational Amplifier	8-9
TC911	Auto-Zeroed Monolithic Operational Amplifier	8-15
TC913	Dual Auto-Zeroed Operational Amplifier	8-21
TC914	Quad Auto-Zeroed Operational Amplifier	8-27
TC915	High-Voltage, Auto-Zeroed Operational Amplifier	8-33
TC918	Low-Cost CMOS Operational Amplifier	8-41
TC9400/1/2	Voltage-to-Frequency/Frequency-to-Voltage Converters	3-23
TC9404	Serial Input/16-Bit Parallel Output Peripheral Driver	11-25
TC9405	16-Bit Parallel-Latched Output Peripheral Driver	11-31
TC9420/1	High-Voltage, Auto-Zeroed Operational Amplifiers	8-63
TC962	High Current DC-to-DC Converter	5-49
TP0032	Operational Amplifier-High-Speed, FET-Input	9-91

ALPHANUMERIC PRODUCT LIST

TP0033	High-Speed, Unity-Gain Buffer/Driver Amplifier	$9-97$
TP3554	Operational Amplifier-High-Speed, Wideband	$9-103$
VN0610LL22222LL	N-Channel Enhancement-Mode DMOS Power FETs	$14-27$
VN10KN3	N-Channel Enhancement-Mode DMOS Power FETs	$14-29$
VN10LM/2222LM	N-Channel Enhancement-Mode DMOS Power FETs	$14-31$
VQ1000	N-Channel Enhancement-Mode Quad DMOS Power FET Array	$14-33$

Section 1

Display A/D Converters

Display A/D Converters	1
Binary A/D Converters	2
Voltage-to-Frequency/Frequency-to-Voltage Converters	3
Sensor Products	4
Power Supply Control ICs	5
Power MOSFET, Motor and PIN Drivers	6
References	7
Chopper-Stabilized Operational Amplifiers	8
High Performance Amplifiers/Buffers	9
Video Display Drivers	10
Display Drivers	11
Analog Switches and Multiplexers	12
Data Communications	13
Discrete DMOS Products	14
Reliability and Quality Assurance	15
Ordering Information	16
Package Information	17
Sales Offices	18

2-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTER

FEATURES

- Drives 2-1/2 Digit LED Displays
- Internal Voltage Reference \qquad $150 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ Max
- Low Supply Current \qquad 2 mA Max
- Ratiometric Measurements
- Auto-Zero Cycle Eliminates External Trimmers
- Dynamic Range ± 200 Counts
- Multiple Package Options
- Low-Cost 40-Pin Package
- 44-Pin Plastic Flat Package
-44-Pin PLCC Package

GENERAL DESCRIPTION

The TC807 is a $2-1 / 2$ digit analog-to-digital converter (ADC) designed to drive standard 7 -segment LED displays without external drive electronics.

This 0.5% resolution converter is ideal for low-cost pressure, temperature, pH or flow-rate indicators.

The TC807 features differential inputs and references for ratiometric readings. An auto-zero cycle eliminates external offset adjustment potentiometers.

This dual-slope converter automatically rejects 50 -, $60-$ and $400-\mathrm{Hz}$ line frequency interference signals. Polarity information is displayed, giving the device a ± 200 count dynamic range.

Overall system cost is reduced by incorporating a lowtemperature coefficient voltage reference on-chip.

Figure 1. Typical Operating Circuit

TC807

PIN CONFIGURATIONS

ORDERING INFORMATION

Part No.	Package	Temperature Range
TC807CPL.	$40-$-Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC807CKW	44 -Pin Plastic Flat	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC807CLW	44 -Pin PLCC	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

ABSOLUTE MAXIMUM RATINGS

Supply Voltage
V^{+} $+6 \mathrm{~V}$
V^{-}. $-9 \mathrm{~V}$
Analog Input Voltage (Either Input) (Note 1) V^{+}to V^{-}
Reference Input Voltage (Either Input)................ V^{+}to V^{-}
Clock Input..GND to V^{+}
Power Dissipation (Note 2) 800 mW
Operating Temperature Range $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Abstract

Storage Temperature Range \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 60 Sec) $+300^{\circ} \mathrm{C}$

Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may effect device reliability.

ELECTRICAL CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{fLK}}=48 \mathrm{kHz}$, unless otherwise noted.

Parameter	Test Conditions	Min	Typ	Max	Unit
Zero Input Reading	$\begin{aligned} & V_{I N}=0 V \\ & \text { Full Scale }=200 \mathrm{mV} \end{aligned}$	-0	± 0	+0	Digital Reading
Ratiometric Reading	$\begin{aligned} & V_{I N}=V_{\text {REF }} \\ & V_{\text {REF }}=100 \mathrm{mV} \end{aligned}$	99	99/100	100	Digital Reading
Roll-Over Error (Difference in Reading for Equal Positive and Negative Reading Near Full Scale)	$-\mathrm{V}_{\text {IN }}=+\mathrm{V}_{\text {IN }} \approx 200 \mathrm{mV}$	-1	± 0.2	+1	Counts
Linearity (Max Deviation from Best Straight Line Fit)	Full Scale $=200 \mathrm{mV}$ or Full Scale $=2 \mathrm{~V}$	-1	± 0.2	+1	Counts
Common-Mode Rejection Ratio (Note 3)	$\begin{aligned} & V_{C M}= \pm 1 \mathrm{~V}, \mathrm{~V}_{I N}=0 \mathrm{~V} \\ & \text { Full Scale }=200 \mathrm{mV} \end{aligned}$	-	50	-	$\mu \mathrm{V} / \mathrm{N}$
Noise (Peak-Peak Value Not Exceeded 95\% of Time)	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$, Full Scale $=200 \mathrm{mV}$	-	15	-	$\mu \mathrm{V}$
Leakage Current at Input	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	-	1	25	pA
Zero Reading Drift	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	-	0.2	5	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Supply Current (Does Not Include LED Current)	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	-	0.8	2	mA
Internal Voltage Reference (Analog Common Potential with Respect to Positive Supply)	25 kW Between Common and Positive Supply	2.7	3.05	3.35	V
Temperature Coefficient of Analog Common (With Respect to Positive Supply)	25 kW Between Common and Positive Supply $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$	-	20	150	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Segment Sinking Current (Except Pin 19)	$\mathrm{V}^{+}=5 \mathrm{~V}$, Segment Voltage $=3 \mathrm{~V}$	4	8	-	mA
Segment Sinking Current, Pin 19	$\mathrm{V}^{+}=5 \mathrm{~V}$, Segment Voltage $=3 \mathrm{~V}$	8	16	-	mA

NOTES: 1. Input voltages may exceed supply voltages, provided input current is limited to $\pm 100 \mu \mathrm{~A}$.
2. Dissipation rating assumes device is mounted with all leads soldered to PC board.
3. Refer to "Differential Input" discussion.

TC807

PIN DESCRIPTION

40-Pin DIP Pin Number	Name	Description
1	V^{+}	Positive supply voltage.
2	NC	No connection.
3	NC	No connection.
4	NC	No connection.
5	NC	No connection.
6	NC	No connection.
7	NC	No connection.
8	NC	No connection.
9	D_{1}	Activates the D section of the units display.
10	C_{1}	Activates the C section of the units display.
11	B_{1}	Activates the B section of the units display.
12	A_{1}	Activates the A section of the units display.
13	F_{1}	Activates the F section of the units display.
14	E_{1}	Activates the E section of the units display.
15	D_{2}	Activates the D section of the tens display.
16	B_{2}	Activates the B section of the tens display.
17	F_{2}	Activates the F section of the tens display.
18	E_{2}	Activates the E section of the tens display.
19	AB_{3}	Activates both halves of the "1" in the hundreds display.
20	POL	Activates the negative polarity display.
21	GND	Digital ground.
22	G_{2}	Activates the G section of the tens display.
23	A_{2}	Activates the A section of the tens display.
24	C_{2}	Activates the C section of the tens display.
25	G_{1}	Activates the G section of the ones display.
26	V^{-}	Negative power supply voltage.
27	$\mathrm{V}_{\text {INT }}$	Integrator output. Connection point for integration capacitor. See "Integrating Capacitor" for additional details.
28	$\mathrm{V}_{\text {BUFF }}$	Integration resistor connection. Use a $47 \mathrm{k} \Omega$ resistor for 200 mV full-scale range and a $470 \mathrm{k} \Omega$ resistor for 2 V full-scale range.
29	$\mathrm{C}_{\text {AZ }}$	The size of the auto-zero capacitor influences the system noise. Use a $0.47 \mu \mathrm{~F}$ capacitor for 200 mV full scale, and a $0.47 \mu \mathrm{~F}$ capacitor for 2 V full scale. See "Auto-Zero Capacitor" for more details.
30	$\mathrm{V}_{\mathrm{N}^{-}}$	The analog low input is connected to this pin.
31	$\mathrm{V}_{1 \mathrm{~N}^{+}}$	The analog high input is connected to this pin.
32	COMMON	This pin is primarily used to set the analog common-mode voltage for battery operation or in systems where the input signal is referenced to the power supply. See "Analog Common" for more details. It also acts as a reference voltage source.
33	$\mathrm{C}_{\text {REF }}{ }^{-}$	See pin 34.
34	CREF^{+}	A $0.1 \mu \mathrm{~F}$ capacitor is used in most applications. If a large common-mode voltage exists (for example the $\mathrm{V}_{\mathbb{N}^{-}}$pin is not at analog common), and a 200 mV scale is used, a $1 \mu \mathrm{~F}$ capacitor is recommended and will hold the roll-over error to 0.5 count.
35	$\mathrm{V}_{\text {REF }}{ }^{-}$	See pin 36.
36	$\mathrm{V}_{\text {REF }}{ }^{+}$	The analog input required to generate a full-scale output (199 counts). Place 100 mV between pins 35 and 36 for 200 mV full scale. Place 1V between pins 35 and 36 for 2V full scale. See "Reference Voltage."

PIN DESCRIPTION (Cont.)

40-Pin DIP Pin Number	Name	Description
37	TEST	Lamp test. When pulled high (to V^{+}), all segments will be turned on and the display should read "-188". It may also be used as a negative supply for externally-generated decimal points. See "Test" for additional information.
38	OSC_{3}	See pin 40.
39	OSC_{2}	See pin 40.
40	OSC_{1}	Pins 40, 39, and 38 make up the oscillator section. For a 48 kHz clock (three readings per second), connect pin 40 to the junction of a $100 \mathrm{k} \Omega$ resistor and a 100 pF capacitor.The $100 \mathrm{k} \Omega$ resistor is held to pin 39 and the 100 pF capacitor is tied to pin 38.

ANALOG SECTION

Figure 2 is a block diagram of the TC807. Each measurement cycle is divided into three phases: (1) autozero (A-Z), (2) signal integration (SI), and (3) reference integration (RI). The conversion rate is set by the clock oscillator frequency and is independent of the analog input amplitude.

Auto-Zero Cycle

During the auto-zero cycle, the differential input signal is disconnected from the circuit by opening internal analog gates. The internal nodes are shorted to analog common (ground) to establish a zero-input condition. Additional analog gates close a feedback loop around the integrator and comparator. This loop permits comparator offset voltage error compensation. The voltage level established on C_{AZ} compensates for device offset voltages. The offset error referred to the input is less than $10 \mu \mathrm{~V}$.

The auto-zero cycle length is 4000 to 12,000 clock cycles.

Signal-Integrate Cycle

The auto-zero loop is opened, the internal short removed, and the internal differential inputs connect to $\mathrm{V}_{1 \mathrm{~N}^{+}}$ and $V_{1 N^{-}}$. The differential input signal is integrated for a fixed time period. The signal integration period is 4000 cycles. The integration time period is:

$$
t_{s 1}=\frac{4}{\text { fosc }} \times 1000,
$$

where fosc $=$ external clock frequency.
The differential input voltage must be within the device's common-mode range (1 V of either supply) when the converter and measured system share the same power supply common (ground). If the converter and measured system do not share the same power supply common, $\mathrm{V}_{\mathbb{N}^{-}}$should be tied to analog common.

Polarity is determined at the end of the signal integrate phase. The sign bit is a true polarity indication, in that signals less than 1 LSB are correctly determined. This allows precision null detection limited only by device noise and auto-zero residual offsets.

Reference-Integrate Cycle

The final phase is reference integrate or deintegrate. $\mathrm{V}_{\mathbb{N}}{ }^{-}$is internally connected to analog common and $\mathrm{V}_{\mathbb{N}^{+}}$is connected across the previously charged reference capacitor. Circuitry within the chip ensures the capacitor will be connected with the correct polarity to cause the integrator output to return to zero. The time required for the output to return to zero is proportional to the input signal, and is between 0 and 8000 clock cycles. The digital reading displayed is:

$$
100 \times \frac{V_{I N}}{V_{\text {REF }}}
$$

DIGITAL SECTION

The TC807 contains all the segment drivers necessary to directly drive a $2-1 / 2$ digit LED display. The segment is typically 8 mA . The 100 's output (pin 19) sinks current from two LED segments, and has a $16-\mathrm{mA}$ drive capability. The TC807 is designed to drive common anode LED displays. (See Figure 2.)

The polarity indication is "ON" for negative analog inputs. If $\mathrm{V}_{\mathbb{N}^{-}}$and $\mathrm{V}_{\mathbb{N}^{+}}$are reversed, this indication can be reversed also, if desired.

The display font is shown in Figure 3.

System Timing

The oscillator frequency is $\div 4$ prior to clocking the internal decade counters. The three-phase measurement cycle takes a total of 16,000 clock pulses.

TC807

Figure 2. Block Diagram

2-1/2 DIGIT

ANALOG-TO-DIGITAL CONVERTER

TC807

Each phase of the measurement cycle has the following length:
(1) Auto-Zero Phase: 4000 to 12,000 clock pulses For signals less than full-scale, the auto-zero phase is assigned the unused reference integrate time period.
(2) Signal Integrate: 4000 clock pulses - This time period is fixed. The integration period is:

$$
t_{\mathrm{SI}}=4000\left[\frac{1}{\mathrm{f}_{\mathrm{OSC}}}\right],
$$

where fosc is the externally set clock frequency.
(3) Reference Integrate: 0 to 8000 clock pulses.

Component Value Selection

Auto-Zero Capacitor (C_{AZ})

The $C_{A Z}$ size has some influence on system noise. A $0.47 \mu \mathrm{~F}$ capacitor is recommended for 200 mV full scale. A $0.047 \mu \mathrm{~F}$ capacitor is adequate for 2 V full-scale applications. A Mylar-type dielectric capacitor is adequate.

Reference Voltage Capacitor ($\mathrm{C}_{\text {REF }}$)

The reference voltage used to ramp the integrator output voltage back to zero during the reference integrate cycle is stored on $\mathrm{C}_{\text {REF }}$ A $0.1 \mu \mathrm{~F}$ capacitor is acceptable when $\mathrm{V}_{\mathbb{N}^{-}}$is tied to analog common. If a large commonmode voltage exists ($\mathrm{V}_{\mathrm{REF}^{-}} \neq$analog common) and the application requires a $200-\mathrm{mV}$ full scale, increase $\mathrm{C}_{\text {REF }}$ to $1 \mu \mathrm{~F}$. Roll-over error will be held to less than 0.5 count. A Mylar-type dielectric capacitor is adequate.

Integrating Capacitor (CINT)

$\mathrm{C}_{\text {INT }}$ should be selected to maximize integrator output voltage swing without causing output saturation. Analog common will normally supply the differential voltage reference. For this case, $\mathrm{a} \pm 2 \mathrm{~V}$ full-scale integrator output swing is satisfactory. For 3 readings $/$ second (fosc $=48 \mathrm{kHz}$), a $0.22 \mu \mathrm{~F}$ value is suggested. If a different oscillator frequency is used, $\mathrm{C}_{\text {INT }}$ must be changed in inverse proportion to maintain the nominal $\pm 2 \mathrm{~V}$ integrator swing.

An exact expression for $\mathrm{C}_{\mathbb{I N T}}$ is:

$$
\mathrm{C}_{\mathrm{INT}}=\frac{(4000)\left(\frac{1}{f_{\mathrm{OSC}}}\right)\left(\frac{\mathrm{V}_{\mathrm{FS}}}{R_{\mathrm{INT}}}\right)}{\mathrm{V}_{\mathrm{INT}}}
$$

where: fosc $=$ Clock frequency at pin 38
$V_{\text {FS }}=$ Full-scale input voltage
$\mathrm{R}_{\text {INT }}=$ Integrating resistor
$\mathrm{V}_{\mathrm{INT}}=$ Desired full-scale integrator output swing.
$\mathrm{C}_{\text {INT }}$ must have low dielectric absorption to minimize roll-over error. An inexpensive polypropylene capacitor is recommended.

Figure 3. Display Font and Segment Assignment

Integrating Resistor ($\mathrm{R}_{\mathrm{INT}}$)

The input buffer amplifier and integrator are designed with Class A output stages. The output stage idling current is $100 \mu \mathrm{~A}$. The integrator and buffer can supply $20 \mu \mathrm{~A}$ drive currents with negligible linearity errors. RINT is chosen to remain in the output stage linear drive region but not so large that printed circuit board leakage currents induce errors. For a 200 mV full scale, $R_{\mathbb{N} T}$ is $47 \mathrm{k} \Omega$. A 2 V full scale requires $470 \mathrm{k} \Omega$.

Component Value	Nominal Full-Scale Voltage	
	$\mathbf{2 V}$	
C_{AZ}	$0.47 \mu \mathrm{~F}$	$0.047 \mu \mathrm{~F}$
$\mathrm{R}_{\mathrm{INT}}$	$47 \mathrm{k} \Omega$	$470 \mathrm{k} \Omega$
$\mathrm{C}_{\mathrm{INT}}$	$0.22 \mu \mathrm{~F}$	$0.22 \mu \mathrm{~F}$

NOTE: $\mathrm{fosc}=48 \mathrm{kHz}$ (3 readings/second)

Oscillator Components

$R_{\text {OSC }}$ (pin 40 to pin 38) should be $100 \mathrm{k} \Omega$. Cosc is selected from the equation:

$$
\mathrm{f}_{\mathrm{OSC}}=\frac{0.45}{\mathrm{RC}}
$$

For fosc of $48 \mathrm{kHz}, \mathrm{C}_{\mathrm{OSc}}$ is 100 pF , nominally.
Note that fosc is $\div 4$ to generate the TC807 internal control clock.

To achieve maximum rejection of 60 Hz noise pickup, the signal integrate period should be a multiple of 60 Hz . Oscillator frequencies of $240 \mathrm{kHz}, 120 \mathrm{kHz}, 80 \mathrm{kHz}, 60 \mathrm{kHz}$, $40 \mathrm{kHz}, 33-1 / 3 \mathrm{kHz}$, etc., should be selected. For 50 Hz rejection, oscillator frequencies of $200 \mathrm{kHz}, 100 \mathrm{kHz}, 66-2 /$ $3 \mathrm{kHz}, 50 \mathrm{kHz}, 40 \mathrm{kHz}$, etc., would be suitable. Note that 40 kHz (2.5 readings/second) will reject both 50 and 60 Hz (also 400 and 440 Hz).

Reference Voltage Selection

A full-scale reading (280 counts) requires the input signal be twice the reference voltage.

Required Full-Scale Voltage*	V $_{\text {REF }}$
200 mV	100 mV
2 V	1 V

[^0]
2-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTER

TC807

In some applications, a scale factor other than unity may exist between a transducer output voltage and the required digital reading. For example, assume a pressure transducer output for $200 \mathrm{lb} / \mathrm{in} .^{2}$ is 400 mV . Rather than dividing the input voltage by two, the reference voltage should be set to 200 mV . This permits the transducer input to be used directly.

The differential reference can also be used when a digital zero reading is required when $V_{\mathbb{N}}$ is not equal to zero. This is common in temperature measuring instrumentation. A compensating offset voltage can be applied between analog common and $\mathrm{V}_{\mathbb{N}}{ }^{-}$. The transducer output is connected between $\mathrm{V}_{\mathbb{N}}{ }^{+}$and analog common.

The internal voltage reference potential available at analog common is normally used to supply the converter's reference. This potential is stable whenever the supply potential is greater than approximately 7 V . In applications where an externally-generated reference voltage is desired, refer to Figure 4.

DEVICE PIN FUNCTIONAL DESCRIPTION Differential Signal Inputs

$\mathrm{V}_{\mathrm{IN}^{+}}($Pin 31$), \mathrm{V}_{\mathrm{IN}^{-}}($Pin 30$)$
The TC807 is designed with true differential inputs and accepts input signals within the input stage commonmode voltage range $\left(\mathrm{V}_{\mathrm{CM}}\right)$. The typical range is $\mathrm{V}^{+}-1 \mathrm{~V}$ to V^{-} +1 V . Common-mode voltages are removed from the system when the TC807 operates from a floating power source (isolated from measured system) and $\mathrm{V}_{\mathbb{N}^{-}}$is connected to analog common.

In systems where common-mode voltages exist, the 86 dB common-mode rejection ratio minimizes error. Common-mode voltages do, however, affect the integrator output level. Integrator output saturation must be prevented. A worst-case condition exists if a large positive V_{CM} exists in conjunction with a full-scale negative differential signal. The negative signal drives the integrator output positive along with V_{CM} (Figure 5). For such applications, the integrator output swing can be reduced below the recommended 2 V full-scale swing. The integrator output will swing within 0.3 V of V^{+}or V^{-}without increasing linearity errors.

Differential Reference

$\mathbf{V}_{\text {REF }}{ }^{+}$(Pin 36), $\mathbf{V}_{\text {REF }}{ }^{-}$(Pin 39)
The reference voltage can be generated anywhere within the V^{+}to V^{-}power supply range.

To prevent roll-over errors being induced by large common-mode voltages, $\mathrm{C}_{\text {REF }}$ should be large compared to stray node capacitance.

Figure 4. External Reference

Figure 5. Common-Mode Voltage Reduces Available Integrator Swing ($\mathbf{V}_{\text {COM }} \neq \mathbf{V}_{\mathbf{I N}}$)

2-1/2 DIGIT
 ANALOG-TO-DIGITAL CONVERTER

Analog Common

Analog COMMON (pin 32) is set at a voltage potential approximately 3 V below V^{+}. The potential is guaranteed to be between 2.7 V and 3.35 V below V^{+}. Analog common is tied internally to an N-channel FET capable of sinking 30 mA . This FET will hold the common line at 3 V should an external load attempt to pull the common line toward V^{+}. Analog common source current is limited to $10 \mu \mathrm{~A}$. Therefore, analog common is easily pulled to a more negative voltage (i.e., below $\mathrm{V}^{+}-3 \mathrm{~V}$).

The TC807 connects the internal $\mathrm{V}_{\mathbb{N}}{ }^{+}$and $\mathrm{V}_{\mathbb{N}^{-}}$inputs to analog common during the auto-zero cycle. During the reference-integrate phase, $\mathrm{V}_{\mathbb{N}^{-}}$is connected to analog common. If $\mathrm{V}_{\mathbb{N}}-$ is not externally connected to analog common, a common-mode voltage exists. This is rejected by the converter's $86-\mathrm{dB}$ common-mode rejection ratio. In systems where $\mathrm{V}_{\mathbb{N}^{-}}$is connected to the power supply ground or to a given voltage, analog common should be connected to $\mathrm{V}_{\mathbb{N}}-$.

Analog common serves to set the analog section reference or common point. The common potential has a $0.001 \% / \%$ voltage coefficient and 15Ω output impedance.

With sufficiently high total supply voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}>7 \mathrm{~V}$), analog common is a very stable potential with excellent temperature stability (typically $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$). This potential can be used to generate reference voltage.

If analog common is connected to power ground, the internal reference is disabled. An external reference is required when analog common is connected to power ground.

Test

TEST (pin 37) potential is 5 V less than V^{+}. If test is pulled high (to V^{+}), all segments plus the minus sign will be activated.

The test pin will sink about 10 mA when pulled to V^{+}.

POWER SUPPLIES

The TC807 is designed to work from $\pm 5 \mathrm{~V}$ supplies. However, if a negative supply is not available, it can be generated from the clock output with two diodes, two capacitors, and an inexpensive IC. (See Figure 6.)

In selected applications, a negative supply is not required. The conditions to use a single +5 V supply are:
(1) The input signal can be referenced to the center of the common-mode range of the converter.
(2) The signal is less than $\pm 1.5 \mathrm{~V}$.
(3) An external reference is used.
(4) The TC7660 DC-to-DC converter may also be used to generate -5 V from +5 V (Figure 7).

Ratiometric Resistance Measurements

True differential input and differential reference make ratiometric readings possible. Typically, in a ratiometric operation, an unknown resistance is measured with respect to a known standard resistance. No accurately defined reference voltage is needed.

The unknown resistance is put in series with a known standard and a current passed through the pair. The voltage developed across the unknown is applied to the input and the voltage across the known resistor applied to the reference input. If the unknown equals the standard, the display will read 100. The displayed reading can be determined from the following expression:

$$
\text { Displayed reading }=\frac{R_{\text {UNKNOWN }}}{R_{\text {STANDARD }}} \times 100
$$

The display will overrange for $R_{U N K N O W N} \geqslant 2 \times R_{\text {STANDARD }}$.

Figure 6. Generating Negative Supply From +5V

2-1/2 DIGIT
 ANALOG-TO-DIGITAL CONVERTER

TC807

Figure 9. Internal Reference (200 mV Full Scale, 3 RPS, $\mathrm{V}_{I^{-}}$- Tied to Ground for Single-Ended Inputs)

Figure 7. Negative Power Supply Generation With TC7660

Figure 8. Low Parts Count Ratiometric Resistance Measurement

Figure 10. Recommended Component Values for 2V Full Scale

2-1/2 DIGIT
ANALOG-TO-DIGITAL CONVERTER

Figure 11. TC807 With a 1.25V External Band-Gap Reference ($\mathrm{V}_{\mathrm{N}^{-}}$Tied to Common)

Figure 12. TC807 Operated From Single +5V Supply (An External Reference Must Be Used in This Application)

3-1/2 DIGIT A/D CONVERTER WITH HOLD AND DIFFERENTIAL REFERENCE INPUTS

FEATURES

- Differential Reference Input
- Display Hold Function
- Fast Over-Range Recovery, Guaranteed Next Reading Accuracy
- Low Temperature Drift Internal Reference $35 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (Тур)
- Guaranteed Zero Reading With Zero Input
- Low Noise \qquad $15 \mu \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$
- High Resolution (0.05\%) and Wide Dynamic Range (72 dB)
- High Impedance Differential Input
- Low Input Leakage Current \qquad 1 pA Typ 10 pA Max
- Direct LCD Drive-No External Components
- Precision Null Detection with True Polarity at Zero
- Crystal Clock Oscillator
- Available in DIP, Compact Flat Package or PLCC
- Convenient 9V Battery Operation with Low Power Dissipation ($600 \mu \mathrm{~A}$ Typical, 1 mW Maximum)

TYPICAL APPLICATIONS

- Thermometry
- Digital Meters
- Voltage/Current/Power
- pH Measurement
- Capacitance/Inductance
- Fluid Flow Rate/Viscosity
- Humidity
- Position
- Panel Meters
- LVDT Indicators
- Portable Instrumentation
- Digital Scales
- Process Monitors
- Gaussometers
- Photometers

FUNCTIONAL DIAGRAM

3-1/2 DIGIT A/D CONVERTER WITH HOLD AND DIFFERENTIAL REFERENCE INPUTS

TC811

GENERAL DESCRIPTION

The TC811 is a low power, 3-1/2 digit, LCD display analog-to-digital converter. This device incorporates both a display hold feature and differential reference inputs. A crystal oscillator, which only requires two pins, permits added features while retaining a 40-pin package. An additional feature is an "Integrator Output Zero" phase which guarantees rapid input overrange recovery.

The TC811 display hold (HLDR) function can be used to "freeze" the LCD display. The displayed reading will remain indefinitely as long as HLDR is held high. Conversions continue but the output data display latches are not updated. The TC811 also includes a differential reference for easy ratiometric measurements. Circuits which use the 7106/26/36 can easily be upgraded to include the hold function with the TC811.

The TC811 has an improved internal zener reference voltage circuit which maintains the Analog Common temperature drift to $35 \mathrm{ppm} /^{\circ} \mathrm{C}$ (typical) and $75 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (maximum). This represents an improvement of two to four times over similar 3-1/2 digit converters, eliminating the need for a costly, space consuming external reference source.

The TC811 limits linearity error to less than one count on both the 200 mV and the 2.00 V full-scale ranges. Rollover
error-the difference in readings for equal magnitude but opposite polarity input signals-is below ± 1 count. High impedance differential inputs offer 1 pA leakage currents and a $10^{12} \Omega$ input impedance. The $15 \mu \mathrm{~V}_{p-p}$ noise performance guarantees a "rock solid" reading. The Auto Zero cycle guarantees a zero display readout for a zero volt input.

The single chip CMOS TC811 incorporates all the active devices for a 3-1/2 digit analog to digital converter to directly drive an LCD display. Onboard oscillator, precision voltage reference and display segment and backplane drivers simplify system integration, reduce board space requirements and lower total cost. A low cost, high resolution (0.05\%) indicating meter requires only a TC811, an LCD display, five resistors, six capacitors, a crystal, and a 9V battery. Compact, hand held multimeter designs benefit from the Teledyne Semiconductor small footprint package option.

The TC811 uses a dual slope conversion technique which will reject interference signals if the converters integration time is set to a multiple of the interference signal period. This is especially useful in industrial measurement environments where 50,60 and 400 Hz line frequency signals are present.

ORDERING INFORMATION

Part No.	Package	Temperature Range	$\mathrm{V}_{\text {REF }}$ TempCo
TC811CPL	40-Pin Plastic	0° to $70^{\circ} \mathrm{C}$	$75 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ Max
TC811RCPL ${ }^{1}$	40-Pin Plastic	0° to $70^{\circ} \mathrm{C}$	$75 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ Max
TC811IJL	40-Pin CerDIP	-25° to $85^{\circ} \mathrm{C}$	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ Max
TC811CKW	44-Pin Flat	0° to $+70^{\circ} \mathrm{C}$	75 ppm ${ }^{\circ} \mathrm{C}$ Max
TC811CLW	44-Pin PLCC	0° to $+70^{\circ} \mathrm{C}$	$75 \mathrm{ppm}{ }^{\circ} \mathrm{C}$ Max

NOTES: 1. Reversed pin-out

3-1/2 DIGIT A/D CONVERTER WITH HOLD AND DIFFERENTIAL REFERENCE INPUTS

PIN CONFIGURATIONS

3-1/2 DIGIT A/D CONVERTER WITH HOLD AND DIFFERENTIAL REFERENCE INPUTS

TC811
ABSOLUTE MAXIMUM RATINGS
Supply Voltage (V+ to V-) 15 V
Analog Input voltage (Either Input) ${ }^{1}$ $V+$ to $V-$
Reference Input Voltage $V+$ to $V-$
Clock Input TEST to V_{+}
Power Dissipation ${ }^{2}$
CerDIP Package (J) 1000 mW
Plastic Package (P, K) 800 mW
Plastic Leaded Chip Carrier (L) 800 mW
Operating Temperature RangeCommercial Package (C) .$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Industrial Package (I) $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 60 sec) $+300^{\circ} \mathrm{C}$

Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS: $\mathrm{V}_{\text {Supply }}=9 \mathrm{~V}, \mathrm{f}_{\mathrm{CLO}}{ }_{C K}=32.768 \mathrm{kHz}$, and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
Input						
-	Zero Input Reading	$\begin{aligned} & \hline V_{I N}=0 \mathrm{~V} \\ & V_{F S}=200 \mathrm{mV} \end{aligned}$	-000.0	± 000.0	+000.0	Digital Reading
-	Zero Reading Drift	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$	-	0.2	1	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
-	Ratiometric Reading	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {REF }}, \mathrm{V}_{\text {REF }}=100 \mathrm{mV}$	999	999/1000	1000	Digital Reading
NL	Linearity Error	$\mathrm{V}_{\text {FS }}=200 \mathrm{mV}$ or 2.000 V	-1	± 0.2	+1	Counts
ER	Roll Over Error	$\mathrm{V}_{\mathrm{IN}^{-}}=\mathrm{V}_{\mathrm{IN}^{+}} \approx 200 \mathrm{mV}$	-1	± 0.2	+1	Counts
e_{N}	Noise	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{~V}_{\text {FS }}=200 \mathrm{mV}$	-	15	-	$\mu \mathrm{V}_{\text {P.P }}$
L	Input Leakage Current	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	-	1	10	pA
CMRR	Common-Mode Rejection	$\begin{aligned} & V_{C M}= \pm 1 \mathrm{~V}, \mathrm{~V}_{\mathbb{I N}}=0 \mathrm{~V}, \\ & V_{\mathrm{FS}}=200 \mathrm{mV} \end{aligned}$	-	50	-	$\mu \mathrm{V} / \mathrm{V}$
$\overline{\text { TC SF }}$	Scale Factor Temperature Coefficient	$\begin{aligned} & \mathrm{V}_{\mathbb{I N}}=199 \mathrm{mV}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \\ & \text { (ext. } \mathrm{V}_{\text {REF }} \text { tc }=0 \mathrm{ppm} \text {) } \end{aligned}$	-	1	5	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$

Analog Common Section

$V_{\text {CTC }}$	Analog Common Temperature Coefficient	$250 \mathrm{~K} \Omega$ from $\mathrm{V}+$ to Analog Common $0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}$ "C" Commercial "I" Industrial	—	$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{gathered} 75 \\ 100 \end{gathered}$	$\begin{aligned} & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{aligned}$
V_{C}	Analog Common Voltage	$250 \mathrm{~K} \Omega$ from V+ to Analog Common	2.7	3.05	3.35	Volts
Hold Pin Input Section						
	Input Resistance	Pin 1 to Pin 37	-	70	-	k Ω
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	Pin 1	-	-	Test +1.5	V
$\mathrm{V}_{\text {IH }}$	Input High Voltage	Pin 1	$V+-1.5$	-	-	V
LCD Drive Section ${ }^{3}$						
$\mathrm{V}_{\text {SD }}$	LCD Segment Drive Voltage	$\mathrm{V}+$ to $\mathrm{V}-=9 \mathrm{~V}$	4	5	6	VP-P
$\mathrm{V}_{\text {SD }}$	LCD Backplane Drive Voltage	$\mathrm{V}+$ to $\mathrm{V}-=9 \mathrm{~V}$	4	5	6	$V_{\text {P-P }}$

Power Supply

ISUP \quad Power Supply Current	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{~V}+$ to $\mathrm{V}-=9 \mathrm{~V}$				
	$\mathrm{f}_{\mathrm{OSC}}=16 \mathrm{kHz}$	-	70	100	$\mu \mathrm{~A}$
	$\mathrm{f}_{\mathrm{OSC}}=48 \mathrm{kHz}$	-	90	125	$\mu \mathrm{~A}$

NOTES: 1. Input voltages may exceed supply voltages when input current is limited to $100 \mu \mathrm{~A}$.
2. Dissipation rating assumes device is mounted with all leads soldered to a printed circuit board.
3. Backplane drive is in phase with the segment drive for "segment off" 180° out of phase for "segment on." Frequency is 20 times the conversion rate. Average DC component is less than 50 mV .

3-1/2 DIGIT A/D CONVERTER WITH HOLD AND DIFFERENTIAL REFERENCE INPUTS

PIN DESCRIPTION

40-Pin DIP	$\begin{aligned} & \text { 44-Pin } \\ & \text { PLCC } \end{aligned}$	Name	Function
1	2	HLDR	Hold pin, logic 1 holds present display reading
2	3	D_{1}	Activates the D section of the units display
3	4	C_{1}	Activates the C section of the units display
4	5	B_{1}	Activates the B section of the units display
5	6	A_{1}	Activates the A section of the units display
6	7	F_{1}	Activates the F section of the units display
7	8	G_{1}	Activates the G section of the units display
8	9	E_{1}	Activates the E section of the units display
9	10	D_{2}	Activates the D section of the tens display
10	11	C_{2}	Activates the C section of the tens display
11	13	B_{2}	Activates the B section of the tens display
12	14	A_{2}	Activates the A section of the tens display
13	15	F_{2}	Activates the F section of the tens display
14	16	E_{2}	Activates the E section of the tens display
15	17	D_{3}	Activates the D section of the hundreds display
16	18	B_{3}	Activates the B section of the hundreds display
17	19	F_{3}	Activates the F section of the hundreds display
18	20	E_{3}	Activates the E section of the hundreds display
19	21	AB_{4}	Activates both halves of the 1 in the thousands display
20	22	POL	Activates the negative polarity display
21	24	BP	Backplane drive output
22	25	G_{3}	Activates the G section of the hundreds display
23	26	A_{3}	Activates the A section of the hundreds display
24	27	C_{3}	Activtes the C section of the hundreds display
25	28	G_{2}	Activates the G section of the tens display
26	29	V-	Negative power supply voltage
27	30	$\mathrm{V}_{\text {INT }}$	Integrator output, connection for $\mathrm{C}_{\text {INT }}$
28	31	$\mathrm{V}_{\text {BUFF }}$	Buffer output, connection for RINT
29	32	$\mathrm{C}_{\text {AZ }}$	Integrator input, connection for $\mathrm{C}_{\text {AZ }}$
30	33	$\mathrm{V}_{1 \mathrm{I}^{-}}$	Analog input low
31	35	$\mathrm{V}_{\text {IN }}+$	Analog input high
32	36	COM	Analog Common: Internal zero reference
33	37	$\mathrm{V}_{\text {REF }}$ -	Reference input low
34	38	$\mathrm{C}_{\text {REF }}{ }^{-}$	Negative connection for reference capacitor
35	39	$\mathrm{C}_{\text {REF }+}$	Positive connection for reference capacitor
36	40	$\mathrm{V}_{\text {REF }+}$	Reference input high
37	41	TEST	All LCD segment test when pulled high (V^{+})
38	42	V+	Positive power supply voltage
39	43	OSC_{2}	Crystal oscillator output
40	44	OSC_{1}	Crystal oscillator input

Figure 1 Typical Operating Circuit

GENERAL THEORY OF OPERATION

Dual-Slope Conversion Principles

The TC811 is a dual slope, integrating analog-to-digital converter. An understanding of the dual slope conversion technique will aid the user in following the detailed TC811 theory of operation following this section. A conventional dual slope converter measurement cycle has two distinct phases:

1) Input Signal Integration
2) Reference Voltage Integration (Deintegration)

Referring to Fig 2, the unknown input signal to be converted is integrated from zero for a fixed time period ($\mathrm{T}_{\mathrm{INT}}$), measured by counting clock pulses. A constant reference voltage of the opposite polarity is then integrated until the integrator output voltage returns to zero. The reference integration (deintegration) time ($\mathrm{T}_{\text {DEINT }}$) is then directly proportional to the unknown input voltage ($\mathrm{V}_{\mathbb{N}}$).

In a simple dual slope converter, a complete conversion requires the integrator output to "ramp-up" from zero and "ramp-down" back to zero. A simple mathematical equation relates the input signal, reference voltage and integration time:

$$
\frac{1}{R_{I N T} C_{I N T}} \int_{0}^{t_{I N T}} V_{I N}(t) d t=\frac{V_{\text {REF }} t_{\text {DEINT }}}{R_{\text {INT }} C_{I N T}}
$$

where:
$V_{\text {REF }}=$ Reference voltage
$t_{I N T}=$ Integration Time
$t_{D E I N T}=$ Deintegration Time

Figure 2 Basic Dual Slope Converter

Figure 3 Normal-Mode Rejection of Dual Slope Converter

For a constant $\mathrm{V}_{\text {INT: }}$:

$$
\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {REF }}\left[\frac{\mathrm{t}_{\mathrm{DEINT}}}{\mathrm{t}_{\mathrm{INT}}}\right]
$$

3-1/2 DIGIT A/D CONVERTER WITH HOLD AND DIFFERENTIAL REFERENCE INPUTS

Accuracy in a dual slope converter is unrelated to the integrating resistor and capacitor values as long as they are stable during a measurement cycle. An inherent benefit of the dual slope technique is noise immunity. Noise spikes are integrated or averaged to zero during the integration periods, making integration ADCs immune to the large conversion errors that plague successive approximation converters in high noise environments. Interfering signals, with frequency components at multiples of the averaging (integrating) period, will be attenuated. (see Fig 3). Integrating ADCs commonly operate with the signal integration period set to a multiple of the $50 / 60 \mathrm{~Hz}$ power line period.

THEORY OF OPERATION

Analog Section

In addition to the basic integrate and deintegrate dualslope cycles discussed above, the TC811 design incorporates an "Integrator Output Zero" cycle and an "Auto Zero" cycle. These additional cycles ensure the integrator starts at OV (even after a severe over-range conversion) and that all offset voltage errors (buffer amplifier, integrator and comparator) are removed from the conversion. A true digital zero reading is assured without any external adjustments.

A complete conversion consists of four distinct phases:
(1) Integrator Output Zero Cycle
(2) Auto Zero Cycle
(3) Signal Integrate Cycle
(4) Reference Deintegrate Cycle

Integrator Output Zero Cycle

This phase guarantees that the integrator output is at zero volts before the system zero phase is entered, ensuring that the true system offset voltages will be compensated for even after an over-range conversion. The duration of this phase is variable, being a function of the number of counts (clock cycles) required for deintegration.

The Integrator Output Zero cycle will last from 11 to 140 counts for non-over-range conversions and from 31 to 640 counts for over-range conversions.

Auto Zero Cycle

During the Auto Zero cycle, the differential input signal is disconnected from the measurement circuit by opening internal analog switches and the internal nodes are shorted to Analog Common (0V ref.) to establish a zero input condition. Additional analog switches close a feedbackloop around the integrator and comparator to permit comparator offset voltage error compensation. A voltage established on C_{AZ} then compensates for internal device offset voltages

Figure 4a Conversion Timing During Normal Operation

Figure 4b Conversion Timing During Overrange Operation
during the measurement cycle. The Auto Zero cycle residual is typically 10 to $15 \mu \mathrm{~V}$.

The Auto Zero duration is from 910 to 2,900 counts for non-over-range conversions and from 300 to 910 counts for over-range conversions.

Signal Integration Cycle

Upon completion of the Auto Zero cycle, the Auto Zero loop is opened and the internal differential inputs connect to $\mathrm{V}_{\mathbb{N}}+$ and $\mathrm{V}_{\mathbb{N}^{-}}$. The differential input signal is then integrated for a fixed time period which, in the TC811 is 1000 counts (4000 clock periods). The externally set clock frequency is divided by four before clocking the internal counters. The integration time period is:

$$
\mathrm{T}_{\mathrm{INT}}=\frac{4000}{\mathrm{f}_{\mathrm{OSC}}}
$$

The differential input voltage must be within the device common-mode range when the converter and measured system share the same power supply common (ground).

3-1/2 DIGIT A/D CONVERTER WITH HOLD AND DIFFERENTIAL REFERENCE INPUTS

TC811

Ifthe converter and measured system do not share the same power supply common, as in battery powered applications, $\mathrm{V}_{\mathbb{N}}$ - should be tied to Analog Common.

Polarity is determined at the end of signal integration phase. The sign bit is a "true polarity" indication in that signals less than 1 LSB are correctly determined. This allows precision null detection which is limited only by device noise and Auto Zero residual offsets.

Reference Integrate (Deintegrate) Cycle

The reference capacitor, which was charged during the Auto Zero cycle, is connected to the input of the integrating amplifier. The internal sign logic insures that the polarity of the reference voltage is always connected in the phase which is opposite to that of the input voltage. This causes the integrator to ramp back to zero at a constant rate which is determined by the reference potential.

The amount of time required ($\mathrm{T}_{\text {DEINT }}$) for the integrating amplifier to reach zero is directly proportional to the amplitude of the voltage that was put on the integrating capacitor ($\mathrm{V}_{\text {INT }}$) during the integration cycle:

$$
T_{\mathrm{DEINT}}=\frac{\mathrm{R}_{\mathrm{INT}} \mathrm{C}_{\mathrm{INT}} \mathrm{~V}_{\mathrm{INT}}}{\mathrm{~V}_{\mathrm{REF}}}
$$

The digital reading displayed Is:

$$
\text { Digital Count }=1000 \frac{\mathrm{~V}_{\mathrm{IN}^{+}}-\mathrm{V}_{\mathrm{IN}^{-}}}{\mathrm{V}_{\mathrm{REF}}}
$$

The oscillator frequency is divided by 4 prior to clocking the internal decade counters. The four phase measurement cycle takes a total of 4000 counts or 16000 clockpulses. The 4000 count cycle is independent of input signal magnitude or polarity.

Each phase of the measurement cycle has the following length:

1) Auto Zero: 300 to 2900 Counts
2) Signal Integrate: 1000 Counts

This time period is fixed. The integration period is:

$$
T_{\text {INT }}=\frac{4000}{f_{O S C}}=1000 \text { Counts }
$$

Where fosc is the crystal oscillator frequency.
3) Reference Integrate: 0 to 2000 Counts
4) Integrator Output Zero: 11 to 640 Counts

The TC811 can replace the ICL7106/26/36 in circuits which require both the hold function and a differential reference. The TC811 offers a greatly improved internal reference temperature coefficient, which can often eliminate
the need for an external reference. Some minor component changes are required to upgrade existing designs, reduce power dissipation, and improve the overall performance. (see Oscillator Components)

Digital Section

The TC811 contains all the segment drivers necessary to directly drive a 3-1/2 digit liquid crystal display (LCD). An LCD backplane driver is included. The backplane frequency is the external clock frequency divided by 800 . For three conversions/second the backplane frequency is 60 Hz with a 5 V nominal amplitude. When a segment driver is in phase with the backplane signal the segment of "OFF". An out of phase segment drive signal causes the segment to be "ON" or visible. This AC drive configuration results in negligible DC voltage across each LCD segment. This insures long LCD display life. The polarity segment driver is "ON" for negative analog inputs. If $\mathrm{V}_{\mathbb{N}}+$ and $\mathrm{V}_{\mathbb{N}}-$ are reversed then this indicator would reverse.

TEST Function (TEST)

On the TC811, when TEST is pulled to a logical "HIGH", all segments are turned "ON". The display will read "-1888". During this mode the LCD segments have a constant DC voltage impressed. Do not leave the display in this mode for more than several minutes. LCD displays may be destroyed if operated with DC levels for extended periods.

The display FONT and segment drive assignment are shown in Figure 5.

DISPLAY FONT

0123456789

4348 ILL F08
Figure 5 Display FONT and Segment Assignment

HOLD Reading Input (HLDR)

When HLDR is at a logic "HI" the latch will not be updated. Conversions will continue but will not be updated untilHLDR is returned to "LOW". To continuously update the display, connect HLDR to ground or leave it open. This input is CMOS compatible and has an internal resistance of $70 \mathrm{~K} \Omega$ (typical) tied to TEST.

3-1/2 DIGIT A/D CONVERTER WITH HOLD AND DIFFERENTIAL REFERENCE INPUTS

COMPONENT VALUE SELECTION

Auto Zero Capacitor - C AZ

The value of the Auto Zero capacitor $\left(\mathrm{C}_{A Z}\right)$ has some influence on system noise. A $0.47 \mu \mathrm{~F}$ capacitor is recommended for 200 mV full-scale applications where 1LSB is $100 \mu \mathrm{~V}$. A $0.10 \mu \mathrm{~F}$ capacitor should be used for 2.0 V fullscale applications. A capacitor with low dielectric absorption (Mylar) is required.

Reference Voltage Capacitor - CREF

The reference voltage used to ramp the integrator output voltage back to zero during the reference integrate cycle is stored on $\mathrm{C}_{\text {REF }}$. A $0.1 \mu \mathrm{~F}$ capacitor is typical. If the application requires a sensitivity of 200 mV full-scale, increase $\mathrm{C}_{\text {REF }}$ to $1.0 \mu \mathrm{~F}$. Rollover error will be held to less than 1/2 count. A good quality, low leakage capacitor, such as Mylar, should be used.

Integrating Capacitor - $\mathrm{C}_{\text {INT }}$

CINT should be selected to maximize integrator output voltage swing without causing output saturation. Analog common will normally supply the differential voltage reference. For this case a $\pm 2 \mathrm{~V}$ integrator output swing is optimum when the analog input is near full-scale. For 2 or 2.5 reading/second (fosc $=32 \mathrm{kHz}$ or 40 kHz) and $\mathrm{V}_{\mathrm{FS}}=$ $200 \mathrm{mV}, \mathrm{a} .068 \mu \mathrm{~F}$ value is suggested. If a different oscillator frequency is used, $\mathrm{C}_{\mathrm{INT}}$ must be changed in inverse proportion to maintain the nominal $\pm 2 \mathrm{~V}$ integrator swing. An exact expression for $\mathrm{C}_{\mathbb{N} T}$ is :

$$
C_{\mathrm{INT}}=\frac{4000 \mathrm{~V}_{\mathrm{FS}}}{\mathrm{~V}_{\mathrm{INT}} R_{\mathrm{INT}} f_{\mathrm{OSC}}}
$$

where:
$f_{\text {Osc }}=$ Clock frequency at Pin 39
$\mathrm{V}_{\mathrm{FS}}=$ Full-scale input voltage
$\mathrm{R}_{\text {INT }}=$ Integrating resistor
$\mathrm{V}_{\text {INT }}=$ Desired full-scale integrator output swing
$\mathrm{C}_{\mathrm{INT}}$ must have low dielectric absorption to minimize roll-over error. A polypropylene capacitor is recommended.

Integrating Resistor - RINT

The input buffer amplifier and integrator are designed with class A output stages which have idling currents of $6 \mu A$. The integrator and buffer can supply $1 \mu \mathrm{~A}$ drive currents with negligible linearity errors. $R_{\text {INT }}$ is chosen to remain in the output stage linear drive region but not so large that printed circuit board leakage currents induce errors. For a 200 mV full-scale, R $\mathrm{R}_{\text {INT }}$ should be about $180 \mathrm{k} \Omega$. A 2.0 V full-scale requires abut $1.8 \mathrm{M} \Omega$.

Oscillator Components

The internal oscillator has been designed to operate with a quartz crystal, such as the Statek CX-1V series. Such crystals are very small and are available in a variety of standard frequencies. Note that fosc is divided by four to generate the TC811 internal control clock. The backplane drive signal is derived by dividing fosc by 800 .

To achieve maximum rejection of ac-line noise pickup, a 40 kHz crystal should be used. This frequency will yield an integration period of 100 ms and will reject both 50 Hz and 60 Hz noise. For prototyping or cost-sensitive applications a 32.768 kHz watch crystal can be used, and will produce about 25 dB of line-noise rejection. Other crystal frequencies, from 16 kHz to 48 kHz , can also be used.

Pins 39 and 40 make up the oscillator section of the TC811. Figures $6 a$ and $6 b$ show some typical conversion rate component values.

The LCD backplane frequency is derived by dividing the oscillator frequency by 800. Capacitive loading of the LCD may compromise display performance if the oscillator is run much over 48 KHz .

Reference Voltage ($\mathrm{V}_{\mathrm{REF}}$)

A full-scale reading (2000 counts) requires the input signal be twice the reference voltage.

In some applications a scale factor other than unity may exist, such as between a transducer output voltage and the required digital reading. Assume, for example, a pressure transducer output is 400 mV for $2000 \mathrm{lb} / \mathrm{in}^{2}$. Rather than dividing the input voltage by two, the reference voltage should be set to 200 mV . This permits the transducer input to be used directly.

Figure 6a TC811 Oscillator

3-1/2 DIGIT A/D CONVERTER WITH HOLD AND DIFFERENTIAL REFERENCE INPUTS

TC811

Oscillator Freq. (kHz)	Full-Scale Voltage (V			
	200)			
	RINT	CINT	RINT	
32.768	180 k	$0.068 \mu \mathrm{~F}$	CINT	
40	150 k	$0.068 \mu \mathrm{~F}$	$0.068 \mu \mathrm{~F}$	

Figure 6b

DEVICE PIN FUNCTIONAL DESCRIPTION

Differential Signal Inputs ($\mathrm{V}_{\mathrm{IN}}+(\mathrm{Pin} 31$),

 $\mathrm{V}_{\mathrm{IN}^{-}}$(Pin 30))The TC811 is designed with true differential inputs and accepts input signals within the input stage common mode voltage range $\left(\mathrm{V}_{\mathrm{CM}}\right)$. The typical range is $\mathrm{V}+-1.0$ to $\mathrm{V}-+$ 1.5 V . Common-mode voltages are removed from the system when the TC811 operates from a battery or floating power source (isolated from measured system) and $\mathrm{V}_{\mathrm{IN}^{-}}$is connected to Analog Common. (see Fig 8)

In systems where common-mode voltages exist, the 86 dB common-mode rejection ratio minimizes error. Com-mon-mode voltages do, however, affect the integrator output level. A worse case condition exists if a large positive $V_{C M}$ exists in conjunction with a full-scale negative differential signal. The negative signal drives the integrator output positive along with V_{CM} (Figure 8). For such applications the integrator output swing can be reduced below the recommended 2.0 V full-scale swing. The integrator output will swing within 0.3 V of $\mathrm{V}+$ or V - without increased linearity error.

Reference (VREF (Pin 36), $\mathbf{V}_{\text {REF- }}$ (Pin 33))

Unlike the ICL7116, the TC811 has a differential reference as well as the "hold" function. The differential refer-
ence inputs permit ratiometric measurements and simplify interfacing with sensors such as load cells and temperature sensors. The TC811 is ideally suited to applications in handheld multimeters, panel meters, and portable instrumentation. The reference voltage can be generated anywhere within the $\mathrm{V}+$ to V - power supply range.

To prevent rollover type errors from being induced by large common-mode voltages, C $_{\text {REF }}$ should be large compared to stray node capacitance. A $0.1 \mu \mathrm{~F}$ capacitor is a typical value.

The TC811 offers a significantly improved Analog Common temperature coefficient. This provides a very stable voltage suitable for use as a voltage reference. The temperature coefficient of Analog Common is typically 35ppm/ ${ }^{\circ} \mathrm{C}$.

4348 ILL F11
Figure 8 Common-Mode Voltage Reduces Available Integrator Swing. ($\mathrm{V}_{\text {COM }} \neq \mathrm{V}_{\mathbf{I N}}$)

4348 ILL F10
Figure 7 Common-Mode Voltage Removed in Battery Operation With $\mathrm{V}_{\mathrm{IN}}-=$ Analog Common

3-1/2 DIGIT A/D CONVERTER WITH HOLD AND DIFFERENTIAL REFERENCE INPUTS

Analog Common (Pin 32)

The Analog Common pin is set at a voltage potential approximately 3.0 V below $\mathrm{V}+$. This potential is guaranteed to be between 2.70 V and 3.35 V below $\mathrm{V}+$. Analog common is tied internally to an N channel FET capable of sinking $100 \mu \mathrm{~A}$. This FET will hold the common line at 3.0 V below V + should an external load attempt to pull the common line toward $\mathrm{V}+$. Analog common source current is limited to $1 \mu \mathrm{~A}$. Analog common is therefore easily pulled to a more negative voltage (i.e. below $\mathrm{V}_{+}-3.0 \mathrm{~V}$).

The TC811 connects the internal $\mathrm{V}_{\mathbb{N}}+$ and $\mathrm{V}_{\mathbb{N}}$ - inputs to Analog Common during the Auto Zero cycle. During the reference integrate phase $\mathrm{V}_{\mathbb{N}^{-}}$is connected to Analog Common. If $\mathrm{V}_{\mathbb{N}^{-}}$is not externally connected to Analog Common, a common-mode voltage exists. This is rejected by the converter's 86 dB common-mode rejection ratio. In battery powered applications, Analog Common and $\mathrm{V}_{\mathbf{N}}-$ are usually connected, removing common-mode voltage concerns. In systems where $\mathrm{V}_{\mathbb{N}^{-}}$-is connected to the power supply ground or to a given voltage, Analog Common should be connected to $\mathrm{V}_{\mathrm{CN}^{-}}$.

The Analog Common pin serves to set the analog section reference or common point. The TC811 is specifically designed to operate from a battery or in any measurement system where input signals are not referenced (float) with respect to the TC811 power source. The Analog Common potential of $\mathrm{V}+-3.0 \mathrm{~V}$ gives a 7 V end of battery life voltage. The analog common potential has a voltage coefficient of $0.001 \% / \%$.

With a sufficiently high total supply voltage ($\mathrm{V}_{+}-\mathrm{V}->$ 7.0V), Analog Common is a very stable potential with excellent temperature stability (typically $35 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$). This potential can be used to generate the TC811 reference voltage. An external voltage reference will be unnecessary in most cases because of the $35 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ temperature coefficient. See TC811 Internal Voltage Reference discussion.

TEST (Pin 37)

The TEST pin potential is 5 V less the $\mathrm{V}+$. TEST may be used as the negative power supply connection when interfacing the TC811 to external CMOS logic. The TEST pin is tied to the internally generated negative logic supply through a 500Ω resistor. The TEST pin may be used to sink up to 1 mA . See the applications section for additional information on using TEST as a negative digital logic supply.

If TEST is pulled "HIGH" ($\mathrm{V}+$), all segments plus the minus sign will be activated. Do not operate in this mode for more than several minutes, because when TEST is pulled to V_{+}, the LCD Segments are impressed with a DC voltage which may cause damage to the LCD.

APPLICATIONS INFORMATION

Decimal Point and Annunciator Drive

The TEST pin is connected to the internally generated digital logic supply ground through a 500Ω resistor. The TEST pin may be used as the negative supply for external CMOS gate segment drivers. LCD display annunciators for decimal points, low battery indication, or function indication may be added without adding an additional supply. No more than 1 mA should be supplied by the TEST pin. The TEST pin potential is approximately 5 V below $\mathrm{V}+$.

Internal Voltage Reference

The TC811 Analog Common voltage temperature stability has been significantly improved. This improved device can be used to upgrade old systems and design new systems without external voltage references. External R and C values do not need to be changed, however, noise performance will be improved by increasing C_{AZ} (See Auto Zero Capacitor section). Fig 10 shows Analog Common supplying the necessary voltage reference for the TC811.

4348 ILL F12
Figure 9 Display Annunciator Drivers

3-1/2 DIGIT A/D CONVERTER WITH HOLD AND DIFFERENTIAL REFERENCE INPUTS

TC811

Liquid Crystal Display Sources

Several LCD manufactures supply standard LCD displays to interface with the TC811 3-1/2 digit analog-to-digital converter.

Manufacturer	Address/Phone	Representative Part Numbers*
Crystaloid	5282 Hudson Dr.,	C5335, H5535,
Electronics	Hudson, OH 44236 $216-655-2429$	T5135, SX440
AND	770 Airport Blvd.,	FE 0801,
	Burlingame, CA 94010	FE 0203
	415-347-9916	
EPSON	3415 Kashikawa St.,	LD-B709BZ
	Torrence, CA 90505	LD-H7992AZ
	212-534-0360	
Hamlin, Inc.	612 E. Lake St.,	3902, 3933, 3903
	Lake Mills, WI 53551	
	$414-648-2361$	

'NOTE: Contact LCD manufacturer for full product listing/specifications.
Oscillator Crystal Source

Manufacturer	Address/Phone	Representative Part Numbers
STATEK	512 N-Main Orange, CA 92668	CX-1V 40.0
	$714-639-7810$	

Ratiometric Resistance Measurements

The TC811 true differential input and differential reference make ratiometric readings possible. In ratiometric operation, an unknown resistance is measured with respect to a known standard resistance. No accurately defined reference voltage is needed.

The unknown resistance is put in series with a known standard and a current is passed through the pair (Figure 11). The voltage developed across the unknown is applied to the input and the voltage across the known resistor applied to the reference input. If the unknown equals the standard, the input voltage will equal the reference voltage and the display will read 1000. The displayed reading can be determined from the following expression:

Displayed reading $=\frac{\text { RUNKNOWN }}{R_{\text {STANDARD }}}$
$\times 1000$
The display will overrange for Runknown $\geq 2 \mathrm{X}$ $\mathrm{R}_{\text {STANDARD }}$.

Figure 10 TC811 Internal Voltage Reference Connection

Figure 11 Low Parts Count Ratio Metric Resistance Measurement

3-1/2 DIGIT A/D CONVERTER WITH HOLD AND DIFFERENTIAL REFERENCE INPUTS

Figure 12 Temperature Sensor

Figure 13 Positive Temperature Coefficient Resistor Temperature Sensor

```
NOTES
```


AUTO-RANGING ANALOG-TO-DIGITAL CONVERTER WITH 3-1/2 DIGIT AND BAR-GRAPH DISPLAYS

FEATURES

- 3-1/2 Digit Numeric Plus 40-Segment Bar-Graph LCD Drivers
- Annunciator Outputs Permit Customizing of LCD
- 2-Chip Set, Surface-Mounted
- 60-Pin Flat Package
- 20-Pin Small Outline (SO)
- Auto-Range Operation for AC and DC Voltage and Resistance Measurements
- Two User-Selected AC/DC Current Ranges 20 mA and 200 mA
- 22 Operating Ranges
- 9 DC/AC Voltage
- 4 AC/DC Current
- 9 Resistance and Low-Power Ohms
- Display Hold Function
- 3-1/2 Digit Resolution in Auto-Range Mode ... 1/2000
- Extended Resolution in Manual Range Mode 1/3000
- Memory Mode for Relative Measurements $\pm 5 \%$ F.S.
- Internal AC-to-DC Conversion Op Amp
- Triplex LCD Drive for Decimal Points, Digits, Bar-Graphs, and Annunciators
- Continuity Detection and Piezoelectric Transducer Driver
- Low-Drift Internal Reference \qquad 75 ppm $/{ }^{\circ} \mathrm{C}$
- 9V Battery Operation 10 mW
- Low Battery Detection and LCD Annunciator

FUNCTIONAL DIAGRAM

AUTO-RANGING ANALOG-TO-DIGITAL CONVERTER WITH 3-1/2 DIGIT AND BAR-GRAPH DISPLAYS

TC818

GENERAL DESCRIPTION

The TC818 is a 2-chip integrating analog-to-digital converter (ADC) with 3-1/2 digit numeric and 40-segment bargraph LCD drivers, automatic ranging, and single 9 V battery operation. The TC818 chip set (consisting of the TC818A and TC818D), combines the precision of a numeric display with the quick recognition of a bar-graph. The numeric display is driven by the TC818A, which also includes the ADC. The bar-graph display is driven by the TC818D.

The 40 -segment bar-graph display provides "quicklook" perception of amplitude. Recognizing trends is also easier with a bar-graph, making TC818-based instruments valuable in nulling, tuning, calibration, and similar applications. On the other hand, the numeric display provides 0.05% resolution and a full set of annunciators that spell out the TC818's many operating modes.

Automatic range selection is provided for both voltage (DC and AC) and ohms (high and low power) measurements. Expensive and bulky mechanical range switches are not required. Five full-scale ranges are available, with automatic selection of external volt/ohm attenuators over a 1 to 10,000 range. Two current ranges, 20 mA and 200 mA , can be manually selected. The auto-range feature can be bypassed, allowing input attenuator selection through a single line input.

During manual mode operation, resolution is extended to 3000 counts full-scale. Extended resolution is also available during $2000 \mathrm{k} \Omega$ and 2000 V full-scale auto-range operation. The extended range operation is indicated by a flashing 1 MSD and by the fully-extended bar-graph.

The TC818 includes an AC-to-DC converter for AC voltage and current measurements. Only external diodes/ resistors/capacitors are required. Other features include a memory mode, low-battery detection, display $\overline{H O L D}$ input, and continuity buzzer driver.

The 3-1/2 digit numeric display includes a full set of annunciators. Decimal points are adjusted as automatic or manual range changes occur, and voltage, current, and ohms operating modes are displayed. Additional annunciators are activated for manual, auto, memory, $\overline{\text { HOLD }}$, AC, low-power ohms, and low-battery conditions.

The TC818 is available in a surface-mounted chip set, with the TC818A in a 60-pin flat package and the TC818D in a 20 -pin small outline (SO) package. Combining numeric and bar-graph display drivers, single 9 V battery operation, internal range switching, and compact surface mounting, the TC818 is ideal for advanced portable instruments.

ORDERING INFORMATION

Part No.	Package	Temperature Range
TC818ACBQ	$60-$ Pin Plastic Flat	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC818DCOP	$20-$ Pin SO	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

PIN CONFIGURATIONS

AUTO-RANGING ANALOG-TO-DIGITAL

 CONVERTER WITH 3-1/2 DIGIT AND BAR-GRAPH DISPLAYS
ABSOLUTE MAXIMUM RATINGS

TC818A
Supply Voltage ... +15 V
Analog Input Voltage V_{CC} to V_{SS}
Reference Input Voltage $V_{c c}$ to $V_{s s}$
Voltage at Pin 43Common $\pm 0.7 \mathrm{~V}$
Power Dissipation ... 800 mW
TC818D
Supply Voltage ...6V
Digital Input VoltageVCC to GND
Power Dissipation ... 500 mW

Both Devices

Operating Temperature Range $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 sec) $+300^{\circ} \mathrm{C}$
Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to Absolute Maximum Rating Conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS: $\mathrm{V}_{\mathrm{S}}=9 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Figure 1 Test Circuit

Symbol	Parameter	Test Conditions	TC818A			Unit
			Min	Typ	Max	
	Zero Input Reading	200 mV Range Without $10 \mathrm{M} \Omega$ Resistor 200 mV Range With $10 \mathrm{M} \Omega$ Resistor 20 mA and 200 mA Range	$\begin{aligned} & -0000 \\ & -0001 \\ & -0000 \end{aligned}$	$\begin{aligned} & 0000 \\ & \overline{0000} \end{aligned}$	$\begin{aligned} & +0000 \\ & +0001 \\ & +0000 \end{aligned}$	Digital Reading
$\overline{R E}$	Roll-Over Error	200 mV Range Without $10 \mathrm{M} \Omega$ Resistor 200 mV Range With $10 \mathrm{M} \Omega$ Resistor 20 mA and 200 mA Range	-	-	$\begin{aligned} & \pm 1 \\ & \pm 3 \\ & \pm 1 \end{aligned}$	Counts
NL	Linearity Error	Best Case Straight Line	-	-	± 1	Count
IN	Input Leakage Current		-	-	10	pA
e_{N}	Input Noise	BW $=0.1$ to 10 Hz	-	20	-	$\mu \mathrm{V}_{\text {P-P }}$
	AC Frequency Response	$\pm 1 \%$ Error $\pm 5 \%$ Error	-	$\begin{array}{\|l\|} \hline 40 \text { to } 500 \\ 40 \text { to } 2000 \\ \hline \end{array}$	-	Hz
	Open Circuit Voltage for Ohm Measurements	Excludes 200 2 Range	-	570	660	mV
	Open Circuit Voltage for LO Ohm Measurements	Excludes 200 2 Range	-	285	350	mV
$\mathrm{V}_{\text {COM }}$	Analog Common Voltage	$\left(\mathrm{V}_{\text {CC }}-\mathrm{V}_{\text {COM }}\right)$	2.8	3	3.3	V
$\overline{V_{\text {CTC }}}$	Common Voltage Temperature Coefficient		-	-	50	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
		Display Multiplex Rate	-	100	-	Hz
VIL	Low Logic Input	$\overline{20 \mathrm{~mA}}, \mathrm{AC}, \mathrm{I}, \overline{\mathrm{LO} \Omega}, \mathrm{HOLD}$ Range, -MEM , Ohms (Relative to DIGITAL GND, Pin 55)	-	-	1	V
	Logic 1 Pull-Up	$\overline{20 \mathrm{~mA}}, \mathrm{AC}, \mathrm{I}, \overline{\mathrm{LO} \Omega}, \mathrm{HOLD}$ Range, -MEM , Ohms (Relative to DIGITAL GND, Pin 55)	-	25	-	$\mu \mathrm{A}$
V_{OL}	Low Logic Output	ANNUNC, DEINT; $I_{L}=100 \mu \mathrm{~A}$	-	DGND+0.1	-	V
$\underline{\mathrm{VOH}}$	High Logic Output	ANNUNC, DEINT; $\mathrm{l}_{\mathrm{L}}=100 \mu \mathrm{~A}$	-	$\mathrm{V}_{\mathrm{cc}}-0.1$	-	V
	Buzzer Driver Frequency		-	4	-	kHz
	Low Battery Flag Voltage	$V_{C C}$ to $V_{S S}$	6.3	6.6	7	V
	Operating Supply Current		-	0.8	1.5	mA

ELECTRICAL CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions	TC818D			
V_{IH}	High Logic Input		Min	Typ	Max	Unit
V_{IL}	Low Logic Input		2.5	-	-	V
I_{IL}	Logic Input Current	$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{IN}}-\mathrm{GND}$	-	-	1	V
	Display Multiplex Rate		-	0.01	10	nA
	Operating Supply Current		-	100	-	Hz

AUTO-RANGING ANALOG-TO-DIGITAL CONVERTER WITH 3-1/2 DIGIT AND BAR-GRAPH DISPLAYS

TC818

TC818A PIN DESCRIPTION

Pin No. (Quad Flat Package)	Symbol	Description
1	$\overline{\mathrm{OHM}}$	Logic input. "0" (digital ground) for resistance measurement.
2	$\overline{20 \mathrm{~mA}}$	Logic Input. "0" (digital ground) for 20 mA full-scale current measurement.
3	BUZ	Buzzer. Audio frequency, 4 kHz , output for continuity indication during resistance measurement. A noncontinuous 4 kHz signal is output to indicate an input overrange during voltage or current measurements.
4	XTAL1	32.768 kHz crystal connection and clock output to drive TC818D.
5	XTAL2	32.768 kHz crystal connection.
6	V ${ }_{\text {DISP }}$	Sets peak LCD drive signal: $\mathrm{V}_{\mathrm{P}}=\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\text {DISP. }}$. $\mathrm{V}_{\text {DISP }}$ may also be used to compensate for temperature variation of LCD crystal threshold voltage.
7	BP1	LCD backplane \#1.
8	BP2	LCD backplane \#2.
9	BP3	LCD backplane \#3.
10	LO $2 / \mathrm{A}$	LCD annunciator segment drive for low ohms resistance measurement and current measurement.
11	Ω / A	LCD annunciator segment drive for resistance measurement and current measurement.
12	k/m/HOLD	LCD annunciator segment drive for k ("kilo-Ohms"), m ("milli-Amps" and "milli-Volts") and HOLD mode.
13	BCPO (Ones Digit)	LCD segment drive for "b," "c" segments and decimal point of least significant digit (LSD).
14	ADGO	LCD segment drive for "a," "g," "d" segments of LSD.
15	FE0	LCD segment drive for "f" and "e" segments of LSD.
16	BCP1	LCD segment drive for "b," "c" segments and decimal point of second LSD.
17	ADG1	LCD segment drive for "a," "g," "d" segments of second LSD.
18	FE1	LCD segment drive for "f" and "e" segments of second LSD.
19	BCP2	LCD segment drive for "b," "c" segments and decimal point of third LSD (hundreds digit).
20	ADG2	LCD segment drive for "a," "g," "d" segments of third LSD.
21	FE2	LCD segment drive for "f" and "e" segments of third LSD.
22	BCP3	LCD segment drive for "b," "c" segments and decimal point of MSD (thousands digit).
23	AC/-/AUTO	LCD annunciator segment drive for AC measurements, polarity, and auto-range operation.
24	-MEM/BATT	LCD annunciator segment drive for low-battery indication and memory (relative measurement).
25	ANNUNC	Square-wave output at the backplane frequency, synchronized to BP1. ANNUNC can be used to control display annunciators. Connecting an LCD segment to ANNUNC turns it on; connecting it to its backplane turns it off. ANNUNC is also used to synchronize the TC818A and TC818D backplanes.
26	$\mathrm{V}_{\text {cc }}$	Positive battery supply connection.
27	COM	Analog circuit ground reference point. Nominally 3V below Vcc.
28	DEINT	Deintegrate output. Transmits the A/D conversion result to the bar-graph LCD driver. (See text.)
29	RMREFL	Ratiometric (resistance measurement) reference low voltage.
30	Creft	Reference capacitor negative terminal, $\mathrm{C}_{\text {REF }}=0.1 \mu \mathrm{~F}$.
31	Crefy	Reference capacitor positive terminal, $\mathrm{C}_{\text {REF }}=0.1 \mu \mathrm{~F}$.
32	REFHI	Reference voltage for voltage and current measurement. Nominally 163.85 mV .
33	תR1	Standard resistor connection for 200Ω full-scale.
34	$\Omega \mathrm{R} 2$	Standard resistor connection for 2000Ω full-scale.
35	Ω R3	Standard resistor connection for $20 \mathrm{k} \Omega$ full-scale.
36	$\Omega \mathrm{R} 4$	Standard resistor connection for $200 \mathrm{k} \Omega$ full-scale.

TC818A PIN DESCRIPTION (Cont.)

Pin No. (Quad Flat Package)	Symbol	Description
37	Ω R5	Standard resistor connection for $2000 \mathrm{k} \Omega$ full-scale.
38	VR3	Voltage measurement +100 attenuator.
39	VR2	Voltage measurement +10 attenuator.
40	VR5	Voltage measurement $+10,000$ attenuator.
41	VR4	Voltage measurement +1000 attenuator.
42	V_{1}	Unknown voltage input + attenuator.
43	1	Unknown current input.
44	ACVL	Low output of AC-to-DC converter.
45	Cl_{1}	Integrator capacitor connection. Nominally $0.1 \mu \mathrm{~F}$. (Must have low dielectric absorption. Polypropylene dielectric suggested.)
46	$\mathrm{C}_{\text {AZ }}$	Auto-zero capacitor connection. Nominally $0.1 \mu \mathrm{~F}$.
47	R_{X}	Unknown resistance input.
48	CFI	Input filter connection.
49	ADI	Negative input of internal AC-to-DC operational amplifier.
50	ADO	Output of internal AC-to-DC operational amplifier.
51	R Ω BUF	Active buffer output for resistance measurement. Integration resistor connection. Nominally $220 \mathrm{k} \Omega$.
52	RVIBUF	Active buffer output for voltage and current measurement. Integration resistor connection. Nominally $150 \mathrm{k} \Omega$.
53	ACVH	Positive output of AC-to-DC converter.
54	$\mathrm{V}_{\text {SS }}$	Negative supply connection. Connect to negative terminal of 9V battery.
55	DGND	Internal logic digital ground. Ground connection for the TC818D, and the logic "0" level. Nominally 4.7 V below V_{Cc}.
56	$\overline{\text { RANGE }}$	Input to set manual operation and change ranges.
57	$\overline{\text { HOLD }}$	Input to hold display. Connect to DGND to "freeze" display.
58	-MEM	Input to enter memory measurement mode for relative measurements. The two LSD's are stored and subtracted from future measurements.
59	$\begin{gathered} \mathrm{DC}(\Omega) / \\ \mathrm{AC}(\mathrm{LO} \Omega) \end{gathered}$	Input that selects AC or DC option during voltage/current measurements. For resistance measurements, the ohms or low power (voltage) ohms option can be selected.
60	İ	Input to select measurement. Connect to logic "0" (digital ground) for current measurement.

AUTO-RANGING ANALOG-TO-DIGITAL CONVERTER WITH 3-1/2 DIGIT AND BAR-GRAPH DISPLAYS

TC818

TC818D PIN DESCRIPTION

Pin No. (20-Pin SO)	Symbol	Description
1	18, 19, 20	Segments 18, 19, 20 of LCD.
2	15, 16, 17	Segments 15, 16, 17 of LCD.
3	12, 13, 14	Segments 12, 13, 14 of LCD.
4	9, 10, 11	Segments 9, 10, 11 of LCD.
5	6, 7, 8	Segments 6, 7, 8 of LCD.
6	3, 4, 5	Segments 3, 4, 5 of LCD.
7	0, 1, 2	Segments 0, 1, 2 of LCD.
8	$\mathrm{V}_{\text {DISP }}$	Sets peak LCD voltage drive level. Connect to V ${ }_{\text {DISP }}$ of TC818A, or to GND of TC818D.
9	CLK	Clock input. Connect to XTAL1 output of TC818A.
10	GND	Digital ground. Connect to DGND of TC818A.
11	SYNC	Display SYNC input. Synchronizes backplanes of the TC818A and TC818D. Connect to ANNUNC output of TC818A.
12	DATA	Data input. Pulses at the CLK input are counted while DATA is logic high. Connect to DEINT output of TC818A.
13	39,40, OR	Segments 39, 40 and overrange of LCD.
14	36, 37, 38	Segments 36, 37, 38 of LCD.
15	33, 34, 35	Segments 33, 34, 35 of LCD.
16	30, 31, 32	Segments 30, 31, 32 of LCD.
17	27, 28, 29	Segments 27, 28, 29 of LCD.
18	24, 25, 26	Segments 24, 25, 26 of LCD.
19	21, 22, 23	Segments 21, 22, 23 of LCD.
20	V_{CC}	Power supply input. Connect to $\mathrm{V}_{\text {CC }}$ of TC818A.

THEORY OF OPERATION

The TC818 consists of two CMOS integrated circuits. The TC818A incorporates an auto-ranging ADC and drivers for a 3-1/2 digit LCD, while the TC818D provides data formatting and drivers for a 40-segment bar-graph display. Both integrated circuits are required to form a complete measurement system.

During each A/D conversion cycle, data is transferred from the TC818A to the TC818D. Therefore, the bar-graph display will track the numeric (3-1/2 digit) display. The exact relationship between numeric display counts and bar-graph segments displayed is shown in Table I. Both displays are updated at the same rate. When the TC818A is in its extended resolution mode (3000 counts, maximum), the bar-graph will display all 40 bars continuously.

Analog-to-Digital Converter (ADC)

The TC818A includes an integrating ADC with autoranging resolution of 2000 counts and manual range resolution of 3000 counts. Figure 1 shows a simplified schematic of the analog section. In auto-ranging mode, internal logic
will adjust the input voltage or ohms attenuators so that measurements will always be made in the appropriate range. Measurement ranges, logic control inputs, $3-1 / 2$ digit LCD formatting, and other features are identical to the TC815 auto-ranging A/D converter. However, the TC818A is not pin-compatible with, and is not a replacement for, the TC815.

A display annunciator output (ANNUNC) can be used to customize the LCD. ANNUNC is a square wave at the backplane frequency. Connecting an annunciator segment to the ANNUNC driver turns the segment on; connecting the segment to its backplane turns it off.

Bar-Graph Driver

The TC818D includes a counter and data latch, clock divider, and triplex LCD bar-graph formatting and display functions. A block diagram of the TC818D and connections between the TC818A and TC818D is shown in Figure 2. The TC818D does not require a separate power supply, since it is powered from $V_{C C}$ and digital ground of the TC818A.

AUTO-RANGING ANALOG-TO-DIGITAL CONVERTER WITH 3-1/2 DIGIT AND BAR-GRAPH DISPLAYS

Figure 1 TC818A Analog Section

TC818

Figure 2 Interface Between TC818A and TC818D

When the TC818D DATA input goes to a logic high, pulses are counted at the CLK input. A clock divider scales clock pulses so that the number of LCD bar-graph segments is proportional to the numeric display (see Table I).

When the DATA input goes low, the counter contents are transferred to a display latch. Thenthe bar-graph counter is reset to zero in preparation for the next A/D conversion cycle.

The CLK input is also divided to produce the triplex LCD drivers. The backplane and segment driver waveforms are the same voltage levels as the TC818A. However, the TC818D segment driver waveforms are less complicated than those of the TC818A, because adjacent bar-graph segments are either on or off.

The SYNC input permits synchronizing display backplanes. By connecting the ANNUNC output of the TC818A to the SYNC input of the TC818D, the two sets of LCD
drivers will be synchronized. This feature permits the use of an LCD with only one set of backplane drivers and saves three pin connections to the display.

LCD backplane and segment drive voltages are set by the voltage between $V_{C C}$ and $V_{\text {DISP }}$ pins. In most cases, $V_{\text {DISP }}$ will be connected to GND and the LCD drive voltage will be about 5 V . If $\mathrm{V}_{\text {DISP }}$ is not connected to $G N D$, then $\mathrm{V}_{\text {DISP }}$ of the TC818D must be connected to $\mathrm{V}_{\text {DISP }}$ of the TC818A.

Data Transfer

Analog conversion results are transferred from the TC818A to the TC818D via two pins, DEINT and XTAL1. DEINT is a TC818A output with a pulse width proportional to the anaiog voltage being measured. DEINT goes to a logic high at the beginning of the TC818A deintegrate cycle, and goes low at the comparatorzero-crossing (end of conversion).

TC818

Timing of the DEINT pulse width is derived from the TC818A's XTAL1 output, which provides a 32.768 kHz clock. The number of clock pulses occurring while DEINT is high determines the number of bar-graph segments displayed. The relationship between numeric display counts and bar-graph segments is shown in Table I.

Resistance, Voltage, Current Measurement Selection

The TC818 is designed to measure voltage, current, and resistance. Auto-ranging is available for resistance and voltage measurements. The $\overline{\mathrm{OHM}}$ (pin 1) and I (pin 60) input controls are normally pulled internally to V_{Cc}.

By tying these pins to DGND (pin 55), the TC818 is configured internally to measure resistance, voltage, or current. The required signal combinations are shown in Table II.

Table I. TC818A Numeric Display vs TC818D
Bar-Graph Segments Bar-Graph Segments

Numeric Reading	Bar-Graph Segments
$0-24$	0
$25-74$	1
$75-124$	2
\bullet	\bullet
$\left(\left(50^{*} N\right)-25\right)$ to $\left(\left(50^{*} N\right)+24\right)$	\bullet
$(w h e r e 1 \leq N \leq 40)$	\bullet
\bullet	\bullet
\bullet	\bullet
$1975-2024^{*}$	\bullet
$>2024^{*}$	40

*Readings >1999 will only occur in manual or expanded resolution modes.

Table II. TC818 Measurement Selection Logic

Function Select Pin		
$\overline{\mathrm{OHM}}$ (Pin 1)	$\overline{\mathrm{I}}$ (Pin 60)	Selected Measurement
0	0	Voltage
0	1	Resistance
1	0	Current
1	1	Voltage
$0=$ Digital Ground	1 = Floating or Tied to V_{CC}	
NOTES:	1. $\overline{\text { OHM and } \overline{\mathrm{I}} \text { are normally pulled internally high to } \mathrm{V}_{\mathrm{Cc}}}$(pin 26). This is considered a logic "1". 2. Logic "0" is the potential at digital ground (pin 55).	

Resistance Measurements - Ohms and Low Power Ohms

The TC818 can be configured to reliably measure incircuit resistances shunted by semiconductor junctions. The TC818 low-powerohms measurement mode limits the probe open circuit voltage. This prevents semiconductor junctions in the measured system from turning on.

In the resistance measurement mode, the $\Omega / \overline{\mathrm{LO} \Omega}$ (pin 59) input selects the low-power ohms measurement mode. For low-power ohms measurements, $\Omega / \overline{\mathrm{LOS}}$ (pin 59) is momentarily brought low to digital ground potential. The TC818 sets up for a low-power ohms measurement with a maximum open circuit probe voltage of 0.35 V above analog common. In the low-power ohms mode, an LCD annunciator, $\overline{\mathrm{LO} \Omega}$, will be activated. On power-up, the low-power ohms mode is not active.

If the manual operating mode has been selected, toggling $\Omega / \overline{\mathrm{LO} \Omega}$ resets the TC818 back to auto-range mode. In manual mode, the decision to make a normal or low-power ohms measurement should be made before selecting the desired range.

The low-power ohms measurement is not available on the 200Ω full-scale range. Open-circuit voltage on this range is below 2.8 V .

The standard resistance values are listed in Table III.
Table III. Ohms Range Ladder Network

Full-Scale Range	Standard Resistance	Low-Power Ohms Mode
200Ω	$163.85 \Omega(\mathrm{R} 1)$	No
2000Ω	$1638.5 \Omega(\mathrm{R} 2)$	Yes
$20 \mathrm{k} \Omega$	$16,385 \Omega(\mathrm{R} 3)$	Yes
$200 \mathrm{k} \Omega$	$163,850 \Omega(\mathrm{R} 4)$	Yes
$2000 \mathrm{k} \Omega$	$1,638,500 \Omega(\mathrm{R} 5)$	Yes
R8, a positive temperature coefficient resistor, and the		
6.2V zener, Z1, provide input voltage protection during ohms measurement.		

Ratiometric Resistance Measurements

The TC818 measures resistance ratiometrically. Accuracy is set by the external standard resistors connected to pins 33 through 37. A low-power ohms mode may be selected on all but the 200Ω full-scale range. The low-power ohms mode limits the voltage applied to the measured system. This allows accurate "in-circuit" measurements when a resistor is shunted by semiconductor junctions.

Full auto-ranging is provided. External precision standard resistors are automatically switched to provide the proper range.

AUTO-RANGING ANALOG-TO-DIGITAL CONVERTER WITH 3-1/2 DIGIT AND BAR-GRAPH DISPLAYS

TC818

Figure 3 is a detailed block diagram of the TC818 configured for ratiometric resistance measurements. During the signal integrate phase the reference capacitor charges to a voltage inversely proportional to the measured resistance, Rx. Figure 4 shows that the conversion accuracy relies only on the accuracy of the external standard resistors.

Normally, the required accuracy of the standard resistances will be dictated by the accuracy specifications of the user's end product. Table IV gives the equivalent ohms per count for various full-scale ranges to allow users to judge the

Table IV. Reference Resistors

Full-Scale Range (Ω)	Reference Resistor	$\Omega /$ Count
200	163.85	0.1
2 k	1638.5	1
20 k	16385	10
200 k	163,850	100
2 M	$1,638,500$	1000

Figure 3 Ratiometric Resistance Measurement Functional Diagram

Example: $200 \mathrm{k} \Omega$ Full-Scale Measurement
(a) $V_{R}=\frac{163.85 \mathrm{k} \Omega}{163.85+220+\mathrm{RX}_{\mathrm{X}}} 30.64$

(b) $V_{X}=\frac{R_{X}}{163.85 \mathrm{k} \Omega+220 \Omega+R_{X}} 30.64$
(c) "Ramp-Up Voltage" = "Ramp-Down Voltage"

$$
\therefore \frac{\mathrm{V}_{\mathrm{X}}}{\mathrm{R}_{1} \mathrm{C}_{1}} 3 \mathrm{t}_{1}=\frac{\mathrm{V}_{\mathrm{R}}}{\mathrm{R}_{1} \mathrm{C}_{1}} \mathrm{t}_{\mathrm{DE}}
$$

where:
$R_{I}=$ Integrating Resistor, $t_{I}=$ Integrate Time
$\mathrm{C}_{1}=$ Integrating Capacitor, $\mathrm{t}_{\mathrm{DE}}=$ Deintegrate Time
(d) $R_{X}=163.85\left(\frac{t_{D E}}{t_{1}}\right)$

Independent of R_{l}, C_{l} or internal voltage reference.

Figure 4 Resistance Measurement Accuracy Set by External Standard Resistor

Voltage Measurement

Resistive dividers are automatically changed to provide in-range readings for 200 mV to 2000 V full-scale readings (Figure 1). The input resistance is set by external resistors R14/R13. The divider leg resistors are R9-R12. The divider leg resistors give a 200 mV signal at V_{1} ($\operatorname{pin} 42$) for full-scale voltages from 200 mV to 2000 V .

For applications that do not require a 10 MW input impedance, the divider network impedances may be lowered. This will reduce voltage offset errors induced by switch leakage currents.

Current Measurement

The TC818 measures current only under manual range operation. The two user-selectable, full-scale ranges are 20 mA and 200 mA . Select the current measurement mode by holding the I input (pin 60) low at digital ground potential. The $\overline{\mathrm{OHM}}$ input (pin 1) is left floating or tied to the positive supply.

Two ranges are possible. The 200 mA full-scale range is selected by connecting the $\overline{20 \mathrm{~mA}}$ input (pin 2) to digital ground. If left floating, the 200 mA full-scale range is selected.

External current-to-voltage conversion resistors are used
at the current input (l_{1}, pin 43). For 20 mA measurements, a 10Ω resistor is used. The 200 mA range requires a 1Ω resistor. Full scale is 200 mV

Printed circuit board trace resistance between analog common and R16 must be minimized. In the 200 mA range, for example, a 0.05Ω trace resistance causes a 5% current-to-voltage conversion error at l_{1} (pin 43).

The extended resolution measurement option operates during current measurements.

To minimize roll-over error, the potential difference between ANALOG COM (pin 27) and system common must be minimized.

AC-to-DC Measurements

In voltage and current measurements, the TC818 can be configured for AC measurements. An on-chip operational amplifier and external rectifier components perform the AC-to-DC conversion.

When power is first applied, the TC818 enters the DC measurement mode. For AC measurements (current or voltage), AC/DC (pin 59) is momentarily brought low to digital ground potential; the TC818 sets-up for AC measurements and the AC liquid crystal display annunciator activates. Toggling AC/DC low again returns the TC818 to DC operation.

AUTO-RANGING ANALOG-TO-DIGITAL CONVERTER WITH 3-1/2 DIGIT AND BAR-GRAPH DISPLAYS

TC818

If manual operating mode has been selected, toggling AC/DC resets the TC818 back to auto-range mode. In manual mode operation, AC or DC should be selected first, then the desired range.

The minimum $A C$ full-scale voltage range is 2 V . The DC full-scale minimum voltage is 200 mV .
$A C$ current measurements are available on the 20 mA and 200 mA full-scale ranges.

Conversion Timing

The TC818 uses the conventional dual-slope integrating conversion technique with an added phase that automatically eliminates zero offset errors. The TC818 gives a zero reading with a 0 V input.

This device is designed to operate with a low-cost, readily-available 32.768 kHz crystal. It serves as a timebase oscillator crystal in maniy digital clocks. (See external crystal sources, page 18.)

The external clock is divided by two. The internal clock frequency is 16.348 kHz , giving a clock period of $61.04 \mu \mathrm{~s}$. The total conversion - auto-zero phase, signal integrate, and reference deintegrate - requires 8000 clock periods (or 488.3 ms). There are approximately two complete conversions per second.

The integration time is fixed at 1638.5 clock periods (or 100 ms), giving a rejection of $50 / 60 \mathrm{~Hz}$ AC line noise.

The maximum reference deintegrate time, representing a full-scale analog input, is 3000 clock periods (or 183.1 ms) during manual extended resolution operation. The 3000 counts are available in manual mode, extended resolution operation only. In auto-ranging mode, the maximum deintegrate time is 2000 clock periods. The 1000 clock periods are added to the auto-zero phase. An auto-ranging or manual conversion takes 8000 clock periods. After a zero crossing is detected in the reference deintegrate mode, the auto-zero phase is entered.

Figure 5 shows the basic TC818 timing relationships.

Manual Range Selection

The TC818's voltage and resistance auto-ranging feature can be disabled by momentarily bringing RANGE (pin 56) to digital ground potential (pin 55). When the change from auto to manual ranging occurs, the first manual range selected is the last range in the auto-ranging mode.

The TC818's power-up circuit initially selects autorange operation. Once the manual-range option is entered, range changes are made by momentarily grounding the RANGE control input. The TC818 remains in the manualrange mode until the measurement function (voltage or resistance) or measurement option (AC/DC, $\Omega / \overline{\mathrm{LO} \Omega}$) changes, causing the TC818 to return to auto-ranging operation.

External Crystal $=32.768 \mathrm{kHz}$
External Crystal $=32.768 \mathrm{kHz}$
Internal Clock Period $=t_{p}=2 / 32.768=61.04 \mu \mathrm{~s}$
Internal Clock Period $=t_{p}=2 / 32.768=61.04 \mu \mathrm{~s}$
Total Conversion Time $=\mathrm{t}_{\mathrm{t}} \mathrm{CONV}=8000\left(\mathrm{t}_{\mathrm{p}}\right)$
Total Conversion Time $=\mathrm{t}_{\mathrm{t}} \mathrm{CONV}=8000\left(\mathrm{t}_{\mathrm{p}}\right)$
$=488.3 \mathrm{~ms} \approx 2 \mathrm{conv} / \mathrm{sec}$
$=488.3 \mathrm{~ms} \approx 2 \mathrm{conv} / \mathrm{sec}$
Integration Time $=t_{1}=1638.5\left(t_{p}\right)=100 \mathrm{~ms}$
Integration Time $=t_{1}=1638.5\left(t_{p}\right)=100 \mathrm{~ms}$
Maximum Reference Deintegrate Time
Maximum Reference Deintegrate Time
$=t_{D E}=3000\left(t_{P}\right)=183.1 \mathrm{~ms}$ (manual,
$=t_{D E}=3000\left(t_{P}\right)=183.1 \mathrm{~ms}$ (manual,
extended resolution)
extended resolution)
$=2000\left(\mathrm{t}_{\mathrm{p}}\right)=122.1 \mathrm{~ms}$ (auto-range)
$=2000\left(\mathrm{t}_{\mathrm{p}}\right)=122.1 \mathrm{~ms}$ (auto-range)
Minimum Auto-Zero Time
Minimum Auto-Zero Time
$=(8000-3000-1638.5)$
$=(8000-3000-1638.5)$
$\left(t_{p}\right)=205.1 \mathrm{~ms}$ (manual,
$\left(t_{p}\right)=205.1 \mathrm{~ms}$ (manual,
extended resolution)
extended resolution)
$=(8000-2000-1638.5)$
$=(8000-2000-1638.5)$
$\left(t_{p}\right)=266.2 \mathrm{~ms}$ (auto-range)
$\left(t_{p}\right)=266.2 \mathrm{~ms}$ (auto-range)

Figure 5 Basic TC818 Conversion Timing

AUTO-RANGING ANALOG-TO-DIGITAL CONVERTER WITH 3-1/2 DIGIT AND BAR-GRAPH DISPLAYS

The "Auto" LCD annunciator driver is active only in the auto-range mode.

Figure 6 shows typical operation where the manual range selection option is used. Also shown is the extended resolution display format.

Extended Resolution Manual Operation

When operated in the manual-range mode, the TC818 extends resolution by 50% for current, voltage, and resistance measurements. Resolution increases to 3000 counts from 2000 counts. The extended resolution feature operates only in the $2000 \mathrm{k} \Omega$ and 2000 V ranges during auto-range operation.

In the extended resolution operating mode, readings above 1999 are displayed with a blinking "1" most significant digit. The blinking "1" should be interpreted as the digit 2. The three least significant digits display data normally. The bar-graph LCD will be fully extended.

An input overrange condition causes the most significant digit (MSD) to blink and sets the three least significant digits (LSDs) to display "000." The buzzer output is enabled for input voltage and current signals with readings greater than 2000 counts in both manual- and auto-range operations.

Figure 6 Manual Range Selection; Resistance Measurement

Figure 7 Manual Range Selection; Current Measurement

Figure 8 Manual Range Selection; Voltage Measurement

AUTO-RANGING ANALOG-TO-DIGITAL CONVERTER WITH 3-1/2 DIGIT AND BAR-GRAPH DISPLAYS

TC818

For resistance measurements, the buzzer signal does not indicate an overrange condition. The buzzer is used to indicate continuity. Continuity is defined as a resistance reading less than 19 counts.

-MEM Operating Mode

Bringing-MEM (Pin58) momentarily low configures the "-MEM" operating mode. The -MEM LCD annunciator becomes active. In this operating mode subsequent measurements are made relative to the last two digits (≤ 99) displayed at the time MEM is low. This represents 5% of fullscale. The last two significant digits are stored and subtracted from all the following input conversions.

A few examples clarify operation:

Example 1: In Auto-Ranging

```
RI}(N)=18.21 k\Omega (20 k\Omega Range) \geq Display 18.21 k\Omega
    MEM \geq Store 0.21 k\Omega
RI}(N+1)=19.87\textrm{k}\Omega(20\textrm{k}\Omega\mathrm{ Range)
     Display 19.87-0.21 = 19.66 k\Omega
RI}(N+2)=22.65 k\Omega (200 k\Omega Range
    \geq Display 22.7 k\Omega and MEM Disappears
```

Example 2: In Fixed Range 200Ω Full Scale
$R_{l}(N)=18.2 \Omega \geq$ Display 18.2Ω
MEM \geq Store 8.2Ω
$R_{I}(N+1)=36.7 \Omega$
\geq Display $36.7-8.2=28.5 \Omega$
$R_{1}(N+2)=5.8 \Omega$
\geq Display $5.8-8.2=-2.4 \Omega^{\star}$
*Will display minus resistance if following input is less than offset stored at fixed range.

Example 3: In Fixed Range 20V Full Scale
$\mathrm{V}_{\mathrm{I}}(\mathrm{N})=0.51 \mathrm{~V} \geq$ Display 0.51 V
$M E M \geq$ Store 0.51 V
$V_{1}(N+1)=3.68 \mathrm{~V}$
\geq Display $3.68-0.51=3.17 \mathrm{~V}$
$\mathrm{V}_{1}(\mathrm{~N}+2)=0.23 \mathrm{~V}$
\geq Display $0.23-0.51=-0.28 \mathrm{~V}$
$V_{1}(N+3)=-5.21 \mathrm{~V}$
\geq Display $-5.21-0.51=-5.72 \mathrm{~V}$

On power-up the, -MEM mode is not active. Once the MEM is entered, bringing MEM low again returns the TC818 to normal operation.

The -MEM mode is also cancelled whenever the measurement type (resistance, voltage, current, AC/DC, $\Omega / \overline{\mathrm{LO} \Omega}$) or range is changed. The LCD -MEM annunciator will be off in normal operation.

In auto-range operation, if the following input signal cannot be converted on the same range as the stored value, the -MEM mode is cancelled. The LCD annunciator is turned off.

The -MEM operating mode can be very useful in resistance measurements where lead length resistance would cause measurement errors.

Automatic Range Selection Operation

When power is first applied, the TC818 enters the autorange operating state. The auto-range mode may be entered from manual mode by changing the measurement function (resistance or voltage) or by changing the measurement option (AC/DC, $\Omega / \overline{\mathrm{LO} \Omega}$).

The automatic voltage range selection begins on the most sensitive scale first: 200 mV for DC or 2 V for AC measurements. The voltage range selection flow chart is given in Figure 9.

Internal input protection diodes to $\mathrm{V}_{\mathrm{CC}}(\mathrm{pin} 26)$ and V_{SS} (pin 54) clamp the input voltage. The external $10 \mathrm{M} \Omega$ input resistance (see R14 and R13, Functional Diagram) limits current safely in an overrange condition.

The voltage range selection is designed to maximize resolution. For input signals less than 9% of full scale (count reading <180), the next most sensitive range is selected.

An overrange voltage input condition is flagged, whenever the internal count exceeds 2000, by activating the buzzer output (pin 3). This 4 kHz signal can directly drive a piezoelectric acoustic transducer. An out-of-range input signal causes the 4 kHz signal to be on for 122 ms , off for 122 ms , on for 122 ms , and off for 610 ms (see Figure 15).

During voltage auto-range operation, the extended resolution feature operates on the 2000 V range only. (See extended resolution operating mode discussion.)

The resistance auto-range selection procedure is shown in Figure 10. The 200Ω range is the first range selected unless the low ohms resistance measurement option is selected. In low ohms operation, the first full-scale range tried is $2 \mathrm{k} \Omega$.

The resistance range selected maximizes sensitivity. If the conversion results in a reading less than 180, the next most sensitive full-scale range is tried.

If the conversion is less than 19 in auto-range operation, a continuous 4 kHz signal is output at BUZ (pin 3). An overrange input does not activate the buzzer.

Figure 9 Auto-Range Operation; Voltage Measurement

Figure 10 Auto-Range Operation; Resistance Measurement
Out-of-range input conditions are displayed by a blinking MSD with the three LSDs set to "000," and by the fully extended bar-graph.

The extended resolution feature operates only on the $200 \mathrm{k} \Omega$ and 2000 V full-scale ranges during auto-range operation. A blinking "1" most significant digit is interpreted as the digit 2 . The three LSDs display data normally.

AUTO-RANGING ANALOG-TO-DIGITAL CONVERTER WITH 3-1/2 DIGIT AND BAR-GRAPH DISPLAYS

TC818

Low-Battery Detection Circuit

The TC818 contains a low-battery detector. When the 9 V battery supply has been depleted to a 7 V nominal value, the LCD low-battery annunciator is activated.

The low-battery detector is shown in Figure 11. The lowbattery annunciator is guaranteed to remain OFF with the battery supply greater than 7 V . The annunciator is guaranteed to be ON before the supply battery has reached 6.3V.

Triplex Liquid Crystal Display (LCD) Drive

The TC818 directly drives a triplexed LCD using $1 / 3$ bias drive. All numeric data, decimal point, polarity, and function annunciator drive signals are developed by the TC818A. The bar-graph data are developed to the TC818D. A direct connection to a triplex LCD is possible without external drive electronics. Standard and custom LCDs are readily available from LCD manufacturers.

The LCDs must be driven with an AC signal having a zero DC component, for long display life. The liquid crystal polarization is a function of the RMS voltage appearing across the backplane and segment driver. The peak drive signal applied to the LCD is:
$V_{C C}-V_{\text {DISP }}$
For example, if $\mathrm{V}_{\text {DISP }}$ is set at a potential 3 V below $\mathrm{V}_{\text {CC }}$, the peak drive signal is:

$$
V_{P}=V_{C C}-V_{D I S P}=3 V
$$

Figure 11 Low-Battery Detector

An "OFF" LCD segment has an RMS voltage of $\mathrm{V}_{\mathrm{p}} / 3$ across it or 1 V . An "ON" segment has a $0.63 \mathrm{~V}_{\mathrm{P}}$ signal across it or 1.92 V for $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\text {DISP }}=3 \mathrm{~V}$.

Since the V VISP pin is available, the user may adjust the "ON" and "OFF" LCD levels for various manufacturer's displays by changing V_{P} signal across it or 1.92 V for $\mathrm{V}_{\mathrm{CC}}-$ $V_{\text {DISP }}=3 \mathrm{~V}$.
"OFF" segments may become visible at high LCD operating temperatures. A voltage with a -5 to $-20 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ temperature coefficient can be applied to $\mathrm{V}_{\text {DISP }}$ to accommodate the liquid crystal temperature operating characteristics, if necessary.

The TC818A and TC818D internally generate two intermediate LCD drive potentials (V_{H} and V_{L}) from resistive dividers (Figure 12) between $V_{C C}$ and $V_{\text {DISP. }}$ The ladder impedance is approximately $150 \mathrm{k} \Omega$. This drive method is commonly known as $1 / 3$ bias. With $V_{\text {DISP }}$ connected to digital ground, $V_{P} \approx 5 \mathrm{~V}$.

The intermediate levels are needed so that drive signals giving RMS "ON" and "OFF" levels can be generated. Figure 13 shows a typical drive signal and the resulting waveforms for "ON" and "OFF" RMS voltage levels across a selected numeric LCD element.

Figure 12 1/3 Bias LCD Drive

AUTO-RANGING ANALOG-TO-DIGITAL
CONVERTER WITH 3-1/2 DIGIT AND
BAR-GRAPH DISPLAYS

Figure 13 Triplex LCD Drive Waveforms

AUTO-RANGING ANALOG-TO-DIGITAL CONVERTER WITH 3-1/2 DIGIT AND BAR-GRAPH DISPLAYS

TC818

Liquid Crystal Displays (LCDs)

Most users design their own custom LCD. However, for prototyping purposes, a standard display is available from Varitronix, Ltd. The prototype display configuration is shown in Figure 14.

- Varitronix Ltd.

9/F Liven House, 61-63, King Yip Street
Kwun Tjong, Hong Kong
Tel: 3-410286
Telex: 36643 VTRAX HX
FAX: 852-3-439555
Part No. VIM-328-DP

- USA Office:

VL Electronics Inc
3171 Los Feliz Blvd, \#303
Los Angeles, CA 0039
Tel: (213) 738-8700

External Crystal

The TC818 is designed to operate with a $32,768 \mathrm{~Hz}$ crystal. This frequency is internally divided by two to give a 61.04μ s clock period. One conversion takes 8000 clock periods or 488.3 ms (≈ 2 conversions/second). Integration time is 1638.5 clock periods or 100 ms .

The 32 kHz quartz crystal is readily available and inexpensive. The 32 kHz crystal is commonly used in digital clocks and counters.

Several crystal sources exist. A partial listing is:

- Statek Corporation 512 N. Main
Orange, CA 92668
(714) 639-7810

TWX: 910-593-1355
Telex: 67-8394

- Daiwa Sinku Corporation 1389, Shinzaike - AZA-Kono Hirakacho, Kakogawa Hyogo, Japan Tel: 0794-26-3211
- International Piezo LTD 24-26 Sze Shan Street Yau Ton, Hong Kong
TLX: 35454 XTAL HZ
Tel: 3-3501151
Contact manufacturer for full specifications.

Figure 14 Typical LCD Configuration, TC818 Triplex

"Buzzer" Drive Signal

The BUZ output (pin 3) will drive a piezoelectric audio transducer. The signal is activated to indicate an input overrange condition for current and voltage measurements or continuity during resistance measurements.

During a resistance measurement, a reading less than 19 on any full-scale range causes a continuous 4 kHz signal to be output. This is used as a continuity indication.

A voltage or current input measurement overrange is indicated by a noncontinuous 4 kHz signal at the BUZ output. The LCD most significant digit also flashes and the three least significant digits are set to display zero. The buzzer drive signal for overrange is shown in Figure 15. The

BUZ output is active for any reading over 2000 counts in both manual and auto-range operation. The buzzer is activated during an extended resolution measurement.

The BUZ signal swings from $V_{c c}$ (pin 26) to DGND (pin 55). The signal is at $V_{c c}$ when not active.

The BUZ output is also activated for 15 ms whenever a range change is made in auto-range or manual operation. Changing the type of measurement (voltage, current, or resistance), or measurement option (AC/DC, $\Omega / \overline{\mathrm{LO} \Omega}$), also activates the buzzer output for 15 ms . A range change during a current measurement will not activate the buzzer output.

Figure 15 TC818 Timing Waveform for Buzzer Output

AUTO-RANGING ANALOG-TO-DIGITAL CONVERTER WITH 3-1/2 DIGIT AND BAR-GRAPH DISPLAYS

Vendors for piezoelectric audio transducers are:

- Gulton Industries

Piezo Products Division
212 Durham Avenue
Metuchen, New Jersey 08840
(201) 548-2800

Typical P/Ns: 102-95NS, 101-FB-00

- Taiyo Yuden (USA) Inc.

Arlington Center
714 West Algonquin Road
Arlington Heights, Illinois 60005
Typical P/Ns: CB27BB, CB20BB, CB355BB

Display Decimal Point Selection

The TC818 provides a decimal point LCD drive signal. The decimal point position is a function of the selected fullscale range, as shown in Table V.

Table V. Decimal Point Selection

Full-Scale Range	$\mathbf{1}$	*	$\mathbf{9}$	$\boldsymbol{*}$
DP3	$\mathbf{9}$	$\boldsymbol{*}$	$\mathbf{9}$	
$2000 \mathrm{~V}, 2000 \mathrm{k} \Omega$		DP1		
$200 \mathrm{~V}, 200 \mathrm{k} \Omega$	OFF	OFF	OFF	
$20 \mathrm{~V}, 20 \mathrm{k} \Omega$	OFF	OFF	ON	
$2 \mathrm{~V}, 2 \mathrm{k} \Omega$	OFF	ON	OFF	
$200 \mathrm{~V}, 200 \Omega$	ON	OFF	OFF	
$200 \mathrm{mV}, 200 \Omega$	OFF	OFF	ON	
20 mA	OFF	OFF	ON	
200 mA	OFF	ON	OFF	

AC-to-DC Converter Operational Amplifier

The TC818 contains an on-chip operational amplifier that may be connected as a rectifier for AC-to-DC voltage and current measurements. Typical operational amplifier characteristics are:

- Slew Rate: $1 \mathrm{~V} / \mu \mathrm{s}$
- Unity-Gain Bandwidth: 0.4 MHz
- Open-Loop Gain: 44 dB
- Output Voltage Swing (Load $=10 \mathrm{k} \Omega) \pm 1.5 \mathrm{~V}$
(Referenced to Analog Common)
When the AC measurement option is selected, the input buffer receives an input signal through switch S14 rather than switch S11 (see Figure 1). With external circuits, the AC operating mode can be used to perform other types of functions within the constraints of the internal operational amplifier. External circuits that perform true RMS conversion or a peak hold function are typical examples.

Component Selection

Integration Resistor Selection

The TC818 automatically selects one of two external integration resistors. RVIBUF (pin52) is selected for voltage and current measurement. RWBUF (pin 51) is selected for resistance measurements.

RVIBUF Selection (Pin 52)

In auto-range operation, the TC818 operates with a 200 mV maximum full-scale potential at V_{1} (pin 42). Resistive dividers at VR2 (pin 39), VR3 (pin 38), VR4 (pin 41), and VR5 (pin 40) are automatically switched to maintain the 200 mV full-scale potential.

In manual mode, the extended operating mode is activated giving a 300 mV full-scale potential at V_{1} (pin 42).

The integrator output swing should be maximized, but saturations must be avoided. The integrator will swing within 0.45 V of V_{CC} (pin 26) and 0.5 V of V_{SS} (pin 54) without saturating. $\mathrm{A} \pm 2 \mathrm{~V}$ swing is suggested. The value of RVIBUF is easily calculated, assuming a worst-case extended resolution input signal:

$$
\text { RVIBUF }=\frac{V_{\text {MAX }}\left(\mathrm{t}_{1}\right)}{V_{\text {INT }}\left(C_{1}\right)} \approx 150 \mathrm{k} \Omega
$$

where:

$$
\begin{array}{ll}
\mathrm{V}_{\text {INT }} & =\text { Integrator swing }= \pm 2 \mathrm{~V} \\
\mathrm{t}_{1} & =\text { Integration time }=100 \mathrm{~ms} \\
\mathrm{C}_{1} & =\text { Integration capacitor }=0.1 \mu \mathrm{~F} \\
\mathrm{~V}_{\text {MAX }} & =\text { Maximum input at } \mathrm{V}_{1}=300 \mathrm{mV}
\end{array}
$$

RWBUF Selection (Pin 51)

In ratiometric resistance measurements, the signal at R_{X} (pin 47) is always positive with respect to analog common. The integrator swings negative.

The worst-case integrator swing is for the 200Ω range with the manual, extended resolution option.

The input voltage, V_{X} (pin 47) is easily calculated (Figure 16):

$$
R \Omega B U F=\frac{\left(V_{C C}-V_{A N C O M}\right) R_{X}}{\left(R_{X}+R_{S}+R_{1}+R_{S}\right)}=0.63 V
$$

where:
$\mathrm{V}_{\text {ANCOM }}=$ Potential at analog common $\approx 2.7 \mathrm{~V}$
$R_{S}=220 \Omega$
$R_{1} \quad=163.85 \Omega$
$\mathrm{R}_{\mathrm{X}}=300 \Omega$
$R_{S} \quad=$ Internal switch 33 resistance $\approx 600 \Omega$

For a 3.1 V integrator swing, the value of $\mathrm{R} \Omega \mathrm{BUF}$ is easily calculated:

$$
\mathrm{R} \Omega \mathrm{BUF}=\frac{\left(\mathrm{V}_{\mathrm{X}} \operatorname{Max}\right)\left(\mathrm{t}_{1}\right)}{\mathrm{C}_{\mathrm{l}}\left(\mathrm{~V}_{\mathrm{INT}}\right)} \approx 220 \mathrm{k} \Omega
$$

where:
$\mathrm{V}_{\text {INT }} \quad=$ Integrator swing $=3.1 \mathrm{~V}$
$t_{1} \quad=$ Integration time $=100 \mathrm{~ms}$
$\mathrm{C}_{1} \quad=$ Integration capacitor $=0.1 \mu \mathrm{~F}$
R_{X} Max $=300 \Omega$
V_{X} Max $=700 \mathrm{mV}$
With a low battery voltage of 6.6 V , analog common will be approximately 3.6 V above the negative supply terminal. With the integrator swinging down from analog common toward the negative supply, a 3.1 V swing will set the integrator output to 0.5 V above the negative supply.

Capacitors - $\mathrm{C}_{\mathrm{INT}}, \mathrm{C}_{\mathrm{AZ}}$ and $\mathrm{C}_{\text {REF }}$

The integration capacitor, $\mathrm{C}_{\mathrm{INT}}$, must have low dielectric absorption. A $0.1 \mu \mathrm{~F}$ polypropylene capacitor is suggested. The auto-zero capacitor, $\mathrm{C}_{A Z}$, and reference capacitor, $\mathrm{C}_{\text {REF }}$, should be selected for low leakage and dielectric absorption. Polystyrene capacitors are good choices.

Figure 16 R Ω BUF Calculation (200Ω Manual Operation)

Reference Voltage Adjustment

The TC818 contains a low temperature drift internal voltage reference. The analog common potential (pin 27) is established by this reference. Maximum drift is a low 75 $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$. Analog common is designed to be approximately 2.6V below $V_{C c}$ (pin 26). A resistive divider (R18/R19, Functional Diagram) sets the TC818 reference input voltage (REFHI, pin 32) to approximately 163.85 mV .

With an input voltage near full scale on the 200 mV range, R19 is adjusted for the proper reading.

Display Hold Feature

The LCD will not be updated when $\overline{\mathrm{HOLD}}$ (pin 57) is connected to GND (pin 55). Conversions are made, but the display is not updated. A HOLD mode LCD annunciator is activated when HOLD is low.

The LCD $\overline{\mathrm{HOLD}}$ annunciator is activated through the triplex LCD driver signal at pin 12.

Flat Package Socket

Sockets suitable for prototype work are available. A USA source is:

- Nepenthe Distribution 2471 East Bayshore, Suite 520
Palo Alto, CA 94303
(415) 856-9332

TWX: 910-373-2060
"CBQ" Socket, Part No. IC51-064-042

Resistive Ladder Networks

Resistor attenuator networks for voltage and resistance measurements are available from:

- Caddock Electronics

1717 Chicago Avenue
Riverside, CA 92507
Tel: (714) 788-1700
TWX: 910-332-6108

Attenuator Accuracy	Attenuator Type	Caddock Part Number
0.1%	Voltage	$1776-\mathrm{C} 441$
0.25%	Voltage	$1776-\mathrm{C} 44$
0.25%	Resistance	T1794-204-1

NOTES

DISPLAY A/D CONVERTERS WITH FREQUENCY COUNTER AND LOGIC PROBE

FEATURES

- Multiple-Function Measurement System
- Analog-to-Digital Converter
- Frequency Counter
- Logic Probe
- Frequency Counter
- Measures Input Frequency to 4 MHz
- Auto-Ranging Over Four-Decade Range
- Logic Probe Inputs
- Two LCD Annunciators
- Buzzer Drive
- Peak Reading Hold With LCD Annunciator
- 3-3/4 Digit (3999 Maximum) Resolution (TC820)
- 3-1/2 Digit (1999 Maximum) Resolution (TC821)
- Low Noise A/D Converter
- Differential Inputs, 1 pA Bias Current
- Differential Reference for Ratiometric Ohms
— On-Chip Voltage Reference, $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ Drift
- No External LCD Drivers Required
- Full 3-3/4 Digit Display
— Displays "OL" for Input Overrange
- Three Decimal Point and Polarity Drivers
- LCD Annunciator Drive
- Adjustable LCD Drive Voltage
- Low Battery Detect With LCD Annunciator
- On-Chip Buzzer Driver and Control Input
- Control Input Changes Full Scale Range by 10:1
- Data Hold Input
- Underrange and Overrange Outputs
- Multiple Package Options
- 40-Pin DIP
- 44-Pin Flat Package or PLCC

SIMPLIFIED BLOCK DIAGRAM

DISPLAY A/D CONVERTERS WITH FREQUENCY COUNTER AND LOGIC PROBE

TC820 (3-3/4 DIGIT) TC821 (3-1/2 DIGIT)

GENERAL DESCRIPTION

The TC820 is a 3-3/4 digit measurement system combining an integrating analog-to-digital converter, frequency counter, and logic level tester in a single 40-pin package. The TC820 supersedes the TC7106 in new designs by improving performance and reducing system cost. The TC820 adds features that are difficult, expensive, or impossible to provide with older A/D converters (see the competitive evaluation). The high level of integration permits TC820based instruments to deliver higher performance and more features, while actually reducing parts count.

Fabricated in low-power CMOS, the TC820 directly drives a 3-3/4 digit (3999 maximum) LCD. The TC821 includes all features of the TC820, but with a resolution of $3-1 / 2$ digits (1999 maximum).

With a maximum range of 3999 counts, the TC820 provides 10 times greater resolution in the 200 mV to 400 mV range than traditional 3-1/2 digit meters. An auto-zero cycle guarantees a zero reading with a OV input. CMOS processing reduces analog input bias current to only 1 pA . Rollover error, the difference in readings for equal magnitude but opposite polarity input signals, is less than ± 1 count. Differential reference inputs permit ratiometric measurements for ohms or bridge transducer applications.

The TC820's frequency counter option simplifies design of an instrument well-suited to both analog and digital troubleshooting: voltage, current, and resistance measurements, plus precise frequency measurements to 4 MHz (higher frequencies can be measured with an external prescaler), and a simple logic probe. The frequency counter will automatically adjust its range to match the input frequency, over a four-decade range.

Two logic level measurement inputs permit a TC820based meter to function as a logic probe. When combined with external level shifters, the TC820 will display logic levels on the LCD and also turn on a piezoelectric buzzer when the measured logic level is low.

Other TC 820 features simplify instrument design and reduce parts count. On-chip decimal point drivers are included, as is a low battery detection annunciator. A piezoelectric buzzer can be controlled with an external switch or by the logic probe inputs. Two oscillator options are provided: A crystal can be used if high accuracy frequency measurements are desired, or a simple RC option can be used for low-end instruments.

A "peak reading hold" input allows the TC820 to retain the highest A/D or frequency reading. This feature is useful in measuring motor starting current, maximum temperature, and similar applications.

A family of instruments can be created with the TC821 and TC820. No additional design effort is required to create instruments with 3-1/2 and 3-3/4 digit resolution. The TC821 can also reduce parts count in existing high-end 7106-type designs.

The TC820 and TC821 operate from a single 9V battery, with typical power of 10 mW . Packages include a 40-pin DIP, 44-pin plastic flat package, and 44-pin PLCC.

COMPETITIVE EVALUATION

Features	TC820	7106
3-3/4 Digit Resolution	Yes	No
Auto-Ranging Frequency Counter	Yes	No
Logic Probe	Yes	No
Decimal Point Drive	Yes	No
Peak Reading Hold (Frequency or Voltage)	Yes	No
Display Hold	Yes	No
Simple 10:1 Range Change	Yes	No
Buzzer Drive	Yes	No
Low Battery Detection With Annunciator	Yes	No
Overrange Detection With Annunciator	Yes	No
Low Drift Reference	Yes	No
Underrange/Overrange Logic Output	Yes	No
Input Overload Display	"OL"	"1"
LCD Annunciator Driver	Yes	No
LCD Drive Type	Triplexed	Direct
LCD Pin Connections	15	24
LCD Elements	36	23

PIN CONFIGURATIONS

TC820 (3-3/4 DIGIT) TC821 (3-1/2 DIGIT)

ABSOLUTE MAXIMUM RATINGS (Note 3)

Supply Voltage ($\mathrm{V}_{\mathrm{S}^{+}}$to GND) \qquad
Analog Input Voltage (Either Input) (Note 1) $\mathrm{V}_{\mathrm{S}^{+}}$to V^{-}
Reference Input Voltage (Either Input). $\ldots V_{S^{+}}$to $V_{S}{ }^{-}$
Digital Inputs $\mathrm{V}_{\mathrm{S}^{+}}$to DGND
VIISP \qquad $\mathrm{V}_{\mathrm{s}}{ }^{+}$to $\mathrm{DGND}-0.3 \mathrm{~V}$
Power Dissipation, Plastic Package (Note 2) 800 mW Operating Temperature Range
"C" Devices \qquad $.0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
"E" Devices $40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec) \qquad

Static-sensitive devices. Unused devices should be stored in conductive material to protect against static discharge and static fields

NOTES: 1. Input voltages may exceed the supply voltages provided that input current is limited to $\pm 100 \mu \mathrm{~A}$. Current above this value may result in invalid display readings but will not destroy the device if limited to $\pm 1 \mathrm{~mA}$.
2. Dissipation ratings assume device is mounted with all leads soldered to printed circuit board.
3. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS: $\mathrm{V}_{\mathrm{S}}=9 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions	Min	Typ	Max	Units
	Zero Input Reading	$\begin{aligned} & V_{i N}=0 V \\ & \text { full Scale }=200 \mathrm{mV} \\ & \left(V_{F S}=200 \mathrm{mV} \text { for TC821) }\right) \end{aligned}$	-000	± 000	+000	Digital Reading
RE	Roll-Over Error	$\begin{aligned} & V_{\text {IN }}= \pm 390 \mathrm{mV} \\ & \text { Full-Scale }=400 \mathrm{mV} \\ & \left(V_{\text {IN }}= \pm 190 \mathrm{mV},\right. \\ & \mathrm{V}_{\text {FS }}=200 \mathrm{mV} \text { for TC821) } \end{aligned}$	-1	± 0.2	+1	Counts
NL	Nonlinearity (Maximum Deviation From Best Straight Line Fit)	$\begin{aligned} & \text { Full-Scale }=400 \mathrm{mV} \\ & \left(\mathrm{~V}_{\mathrm{FS}}=200 \mathrm{mV} \text { for TC821 }\right) \end{aligned}$	-1	± 0.2	+1	Count
	Ratiometric Reading	$\begin{aligned} & V_{I N}=V_{\text {REF }}, \text { TC820 } \\ & V_{I N}=V_{\text {REF }}, \text { TC821 } \end{aligned}$	$\begin{gathered} 1999 \\ 999 \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline \text { 1999/2000 } \\ 999 / 1000 \end{array}$	$\begin{aligned} & 2000 \\ & 1000 \end{aligned}$	Digital Reading
CMRR	Common-Mode Rejection Ratio	$\begin{aligned} & V_{C M}= \pm 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{iN}}=0 \mathrm{~V} \\ & \mathrm{Full}^{2} \mathrm{Scale}=400 \mathrm{mV} \\ & \left(\mathrm{~V}_{\text {FS }}=200 \mathrm{mV} \text { for } \mathrm{TC} 820\right) \end{aligned}$	-	50	-	$\mu \mathrm{V} / \mathrm{N}$
VCMR	Common-Mode Voltage Range	Input High, Input Low	$\mathrm{V}_{\mathrm{S}^{-}+1.5}$	-	$\mathrm{V}^{+}-1$	V
e_{N}	Noise (P-P Value Not Exceeded 95\% of Time)	$\begin{aligned} & V_{\mathbb{I N}}=0 \mathrm{~V} \\ & \text { Full-Scale }=400 \mathrm{mV} \\ & \left(V_{F S}=200 \mathrm{mV} \text { for TC820 }\right) \end{aligned}$	-	15	-	$\mu \mathrm{V}$
IIN	Input Leakage Current	$\begin{aligned} & \mathrm{V}_{1 N}=0 \mathrm{~V} \\ & \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{\mathrm{A}} \leqslant+85^{\circ} \mathrm{C} \end{aligned}$	二	$\begin{gathered} 1 \\ 20 \\ 100 \\ \hline \end{gathered}$	10	pA
$\mathrm{V}_{\text {com }}$	Analog Common Voltage	$25 \mathrm{k} \Omega$ Between Common and $\mathrm{V}_{\mathrm{S}}{ }^{+}$ $\left(\mathrm{V}_{\mathrm{S}^{+}}-\mathrm{V}_{\mathrm{COM}}\right)$	3.15	3.3	3.45	V
$\mathrm{V}_{\text {ctc }}$	Common Voltage Temperature Coefficient	$\begin{aligned} & 25 \mathrm{k} \Omega \text { Between Common and } \mathrm{V}_{S^{+}} \\ & 0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leq T_{A} \leqslant+85^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	—	$\begin{aligned} & 35 \\ & 50 \end{aligned}$	50	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
TCzs	Zero Reading Drift	$\begin{aligned} & \mathrm{V}_{1 \mathrm{~N}}=0 \mathrm{~V} \\ & 0^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{\mathrm{A}} \leqslant+85^{\circ} \mathrm{C} \end{aligned}$	-	$\begin{gathered} 0.2 \\ 1 \end{gathered}$	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
TCFS	Scale Factor Temperature Coefficient	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=399 \mathrm{mV} \\ & \left(\mathrm{~V}_{\mathrm{IN}}=199 \mathrm{mV}\right. \text { for TC821) } \\ & 0^{\circ} \mathrm{C} \leqslant T_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leqslant T_{\mathrm{A}} \leqslant+85^{\circ} \mathrm{C} \\ & \text { Ext Ref }=0 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	—	$\begin{aligned} & 1 \\ & 5 \end{aligned}$	5	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (Cont.)

Symbol	Parameter	Test Conditions	Min	Typ	Max	Units
Is	Supply Current	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	-	1	1.5	mA
	Peak-to-Peak Backplane Drive Voltage	$\begin{aligned} & V_{S}=9 \mathrm{~V} \\ & V_{\text {DISP }}=\mathrm{DGND} \end{aligned}$	4.5	4.7	5.3	V
	Buzzer Frequency	$\mathrm{f}_{\text {OSC }}=40 \mathrm{kHz}$	-	5	-	kHz
	Counter Timebase Period	$\mathrm{fosc}=40 \mathrm{kHz}$	-	1	-	Second
	Low Battery Flag Voltage	$\mathrm{V}_{\mathrm{S}^{+}}$to V^{-}	6.7	7	7.3	V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage		-	-	DGND+1.5	V
$\mathrm{V}_{\text {IH }}$	Input High Voltage		$\mathrm{V}^{+}-1.5$	-	-	V
V_{OL}.	Output Low Voltage, UR, OR Outputs	$\mathrm{I}_{\mathrm{L}}=50 \mu \mathrm{~A}$	-	-	DGND+0.4	V
V OL	Output High Voltage, UR, OR Outputs	$\mathrm{I}_{\mathrm{L}}=50 \mu \mathrm{~A}$	$\mathrm{V}^{+}{ }^{+1.5}$	-	-	V
	Control Pin Pull-Down Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}^{+}$	-	5	-	$\mu \mathrm{A}$

PIN DESCRIPTION

$\begin{aligned} & \text { Pin No. } \\ & \text { (40-Pin } \\ & \text { Packagel) } \end{aligned}$	Pin No. (44-Pin Flat Package)	Symbol	Description
1	40	L-E4	LCD segment driver for L ("logic low"), polarity, and "e" segment of most significant digit (MSD).
2	41	AGD4	LCD segment drive for "a," "g," and "d" segments of MSD.
3	42	BC4P3	LCD segment drive for "b" and "c" segments of MSD and decimal point 3.
4	43	HFE3	LCD segment drive for H ("logic high"), and "f" and "e" segments of third LSD.
5	44	AGD3	LCD segment drive for "a," "g," and "d" segments of third LSD.
6	1	BC3P2	LCD segment drive for "b" and "c" segments of third LSD and decimal point 2.
7	2	OFE2	LCD segment drive for "overrange," and "f" and "e" segments of second LSD.
8	3	AGD2	LCD segment drive for "a," "g," and "d" segments of second LSD.
9	4	BC2P1	LCD segment drive for "b " and "c" segments of second LSD and decimal point 1.
10	5	PKFE1	LCD segment drive for "hold peak reading," and "f" and "e" segments of LSD.
11	6	AGD1	LCD segment drive for "a," "g," and "d" segments of LSD.
12	7	BC1BT	LCD segment drive for "b" and "c" segments of LSD and "low battery."
13	8	BP3	LCD backplane \#3.
14	9	BP2	LCD backplane \#2.
15	10	BP1	LCD backplane \#1.
-	11	VIISP	Sets peak LCD drive signal: $V_{\text {PEAK }}=\left(V_{S^{+}}\right)-V_{\text {DISP. }}$. $V_{\text {DISP }}$ may also be used to compensate for temperature variation of LCD crystal threshold voltage.
16	12	DGND	Internal logic digital ground, the logic "0" level. Nominally 4.7V below V^{+}+
17	13	ANNUNC	Square-wave output at the backplane frequency, synchronized to BP1. ANNUNC can be used to control display annunciators. Connecting an LCD segment to ANNUNC turns it on; connecting it to its backplane turns it off.

DISPLAY A/D CONVERTERS WITH FREQUENCY COUNTER AND LOGIC PROBE

PIN DESCRIPTION (Cont.)

$\begin{aligned} & \text { Pin No. } \\ & \text { (40-Pin } \\ & \text { Packagel) } \end{aligned}$	Pin No. (44-Pin Flat Package)	Symbol	Description
18	14	LOGIC	Logic mode control input. When connected to $\mathrm{V}_{\mathrm{S}^{+}}$, the converter is in logic mode. The LCD displays "OL" and the decimal point inputs control the "high" and "low" annunciators. When the "low" annunciator is on, the buzzer will also be on. When unconnected or connected to DGND, the TC820 is in the voltage/frequency measurement mode. This pin has a $5 \mu \mathrm{~A}$ internal pull-down to DGND.
19	15	RANGE/ FREQ	Dual-purpose input. In range mode, when connected to $\mathrm{V}_{\mathrm{S}^{+}}$, the integration time will be 200 counts instead of 2000 counts (100 instead of 1000 counts for TC821), and the LCD will display the analog input divided by 10 . (See text for limitation with TC820.) In frequency mode, this pin is the frequency input. A digital signal applied to this pin will be measured with a 1 -second time base. There is an internal $5 \mu \mathrm{~A}$ pull-down to DGND.
20	16	DP0/LO	Dual-purpose input. Decimal point select input for voltage measurements. In logic mode, connecting this pin to $\mathrm{V}_{\mathrm{S}^{+}}$will turn on the "low" LCD segment. There is an internal $5 \mu \mathrm{~A}$ pull-down to DGND in volts mode only. Decimal point logic:
			DP1 DP0 Decimal Point Selected
			0 0 None
			010 DP 1
			10 DP2
			11 DP3
21	17	DP1/HI	Dual-purpose input. Decimal point select input for voltage measurements. In logic mode, connecting this pin to $\mathrm{V}_{\mathrm{S}^{+}}$will turn on the "high" LCD segment. There is an internal $5 \mu \mathrm{~A}$ pull-down to DGND in volts mode only.
22	18	BUZOUT	Buzzer output. Audio frequency, 5 kHz , output which drives a piezoelectric buzzer.
23	19	BUZIN	Buzzer control input. Connecting BUZIN to $\mathrm{V}_{\mathrm{s}^{+}}$turns the buzzer on. BUZIN is logically ORed (internally) with the "logic level low" input. There is an internal $5 \mu \mathrm{~A}$ pull-down to DGND.
24	20	$\frac{\text { FREQ/ }}{\text { VOLTS }}$	Voltage or frequency measurement select input. When unconnected, or connected to DGND, the A/D converter function is active. When connected to $\mathrm{V}_{S^{+}}$, the frequency counter function is active. This pin has an internal $5 \mu \mathrm{~A}$ pull-down to DGND.
25	21	PKHOLD	Peak hold input. When connected to $\mathrm{V}_{\mathrm{S}^{+}}$, the converter will only update the display if a new conversion value is greater than the preceding value. Thus, the peak reading will be stored and held indefinitely. When unconnected, or connected to DGND, the converter will operate normally. This pin has an internal $5 \mu \mathrm{~A}$ pull-down to DGND.
	22	UR	Underrange output. This output will be high when the digital reading is 380 counts or less ($\leqslant 180$ counts for TC821).
	23	OR	Overrange output. This output will be high when the analog signal input is greater than full scale. The LCD will display "OL" when the input is overranged.
26	24	V^{-}	Negative supply connection. Connect to negative terminal of 9 V battery.
27	25	COM	Analog circuit ground reference point. Nominally 3.3 V below V^{+}.
28	26	$\mathrm{C}_{\text {REF }}{ }^{+}$	Positive connection for reference capacitor.
29	27	$\mathrm{C}_{\text {REF }}{ }^{-}$	Negative connection for reference capacitor.
30	28	$\mathrm{V}_{\text {REF }}{ }^{+}$	High differential reference input connection.
31	29	$\mathrm{V}_{\text {REF }}{ }^{-}$	Low differential reference input connection.
32	30	$\mathrm{V}_{\text {IN }}{ }^{-}$	Low analog input signal connection.

PIN DESCRIPTION (Cont.)

$\begin{gathered} \text { Pin No. } \\ \text { (40-Pin } \\ \text { Packagel) } \end{gathered}$	Pin No. (44-Pin Flat Package)	Symbol	Description
33	31	$\mathrm{V}_{1 \mathrm{~N}^{+}}$	High analog input signal connection.
34	32	$\mathrm{V}_{\text {BUFF }}$	Buffer output. Connect to integration resistor.
35	33	$\mathrm{C}_{\text {AZ }}$	Auto-zero capacitor connection.
36	34	$\mathrm{V}_{\text {INT }}$	Integrator output. Connect to integration capacitor.
	35	$\begin{aligned} & \overline{\mathrm{EOC} /} \\ & \text { HOLD } \end{aligned}$	Bidirectional pin. Pulses low (i.e., from $\mathrm{V}_{\mathrm{S}^{+}}$to DGND) at the end of each conversion. If connected to $\mathrm{V}_{\mathrm{S}^{+}}$, conversions will continue, but the display is not updated.
37	36	OSC1	Crystal oscillator (input) connection.
38	37	OSC2	Crystal oscillator (output) connection.
39	38	OSC3	RC oscillator connection.
40	39	$\mathrm{V}^{+}{ }^{+}$	Positive power supply connection, typically 9V.

ORDERING INFORMATION

Surface-Mount Devices

Part No.	Resolution	Package	Temperature Range
TC820CKW	$3-3 / 4$ Digits	$44-$ Pin Plastic Flat Package	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC820CLW	$3-3 / 4$ Digits	$44-$-Pin Plastic Leaded Chip Carrier (PLCC)	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC820EKW	$3-3 / 4$ Digits	44 -Pin Plastic Flat Package	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC820ELW	$3-3 / 4$ Digits	44 -Pin Plastic Leaded Chip Carrier (PLCC)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC821CKW	$3-1 / 2$ Digits	$44-$ Pin Plastic Flat Package	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC821CLW	$3-1 / 2$ Digits	$44-$ Pin Plastic Leaded Chip Carrier (PLCC)	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC821EKW	$3-1 / 2$ Digits	$44-$-Pin Plastic Flat Package	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC821ELW	$3-1 / 2$ Digits	$44-$-Pin Plastic Leaded Chip Carrier (PLCC)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

40-Pin DIPs

Part No.	Resolution	Temperature Range
TC820CPL	$3-3 / 4$ Digits	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC820EPL	$3-3 / 4$ Digits	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC821CPL	$3-1 / 2$ Digits	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC821EPL	$3-1 / 2$ Digits	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

TC820/TC821 Comparison

Feature	TC820	Device
TC821		
Resolution	3-3/4 Digits	3-1/2 Digits
All Other Features	Yes	Yes
(Counter, Logic, etc.)		

FUNCTIONAL DIAGRAM

Figure 1. Typical Operating Circuit

FEATURES

The TC820 and TC821 combine the features of an analog-to-digital converter (ADC), frequency counter, and logic probe, in a single CMOS-integrated circuit. All of the TC820 features are shown graphically in the functional diagram. With on-chip voltage reference and LCD drive circuitry, the TC820 simplifies the design of multi-mode measurement instruments.

The TC820 has a resolution of 3-3/4 digits (3999 maximum), while the TC821 has a resolution of $3-1 / 2$ digits (1999 maximum). The features of both converters are the same, so that both $3-3 / 4$ digit and $3-1 / 2$ digit designs can be produced with only one PC board design. The differences between the TC820 and the TC821 primarily affect system timing, and are noted in the appropriate sections of the data sheet.

GENERAL THEORY OF OPERATION

Dual-Slope conversion Principles

The TC820 analog-to-digital converter operates on the principle of dual-slope integration. An understanding of the dual-slope conversion technique will aid the user in following the detailed TC820 theory of operation following this section. A conventional dual-slope converter measurement cycle has two distinct phases:
(1) Input Signal Integration
(2) Reference Voltage Integration (Deintegration)

Referring to Figure 2, the unknown input signal to be converted is integrated from zero for a fixed time period ($\mathrm{t} \mathrm{INT}^{\mathrm{T}}$), measured by counting clock pulses. A constant reference voltage of the opposite polarity is then integrated

DISPLAY A/D CONVERTERS WITH FREQUENCY COUNTER AND LOGIC PROBE

Figure 2. Basic Dual-Slope Converter
until the integrator output voltage returns to zero. The reference integration (deintegration) time (TDEINT) is then directly proportional to the unknown input voltage ($\mathrm{V}_{\mathbb{I}}$).

In a simple dual-slope converter, a complete conversion requires the integrator output to "ramp-up" from zero and "ramp-down" back to zero. A simple mathematical equation relates the input signal, reference voltage, and integration time:

$$
\frac{1}{R_{I N T} C_{I N T}} \int_{0}^{t_{I N T}} \quad V_{I N}(t) d t=\frac{V_{\text {REF }} t_{\text {DEINT }}}{R_{I N T} C_{I N T}}
$$

where: $V_{\text {REF }}=$ Reference voltage
$\mathrm{t}_{\mathrm{INT}}=$ Integration time
$t_{\text {DEINT }}=$ Deintegration time
For a constant $\mathrm{t}_{\mathrm{INT}}$:

$$
V_{I N}=V_{\text {REF }} \times \frac{t_{\text {DEINT }}}{t_{\text {INT }}}
$$

Accuracy in a dual-slope converter is unrelated to the integrating resistor and capacitor values as long as they are stable during a measurement cycle. An inherent benefit of the dual-slope technique is noise immunity. Noise spikes are integrated or averaged to zero during the integration periods, making integrating ADCs immune to the large
conversion errors that plague successive approximation converters in high-noise environments. Interfering signals, with frequency components at multiples of the averaging (integrating) period, will be attenuated (Figure 3). Integrating ADCs commonly operate with the signal integration period set to a multiple of the $50 / 60 \mathrm{~Hz}$ power line period.

Figure 3. Normal-Mode Rejection of Dual-Slope Converter

TSC820 THEORY OF OPERATION

Analog Section

In addition to the basic integrate and deintegrate dualslope phases discussed above, the TC820 design incorporates a "zero integrator output" phase and an "auto-zero" phase. These additional phases ensure that the integrator starts at OV (even after a severe overrange conversion), and that all offset voltage errors (buffer amplifier, integrator and comparator) are removed from the conversion. A true digital zero reading is assured without any external adjustments.

A complete conversion consists of four distinct phases:
(1) Zero Integrator Output
(2) Auto-Zero
(3) Signal Integrate
(4) Reference Deintegrate

Zero Integrator Output Phase

This phase guarantees that the integrator output is at 0 V before the system zero phase is entered, ensuring that the true system offset voltages will be compensated for even after an overrange conversion. The duration of this phase is 500 counts plus the unused deintegrate counts, for both the TC820 and TC821.

DISPLAY A/D CONVERTERS WITH FREQUENCY COUNTER AND LOGIC PROBE

Auto-Zero Phase

During the auto-zero phase, the differential input signal is disconnected from the measurement circuit by opening internal analog switches, and the internal nodes are shorted to Analog Common (0 V ref) to establish a zero input condition. Additional analog switches close a feedback loop around the integrator and comparator to permit comparator offset voltage error compensation. A voltage established on C_{AZ} then compensates for internal device offset voltages during the measurement cycle. The auto-zero phase residual is typically $10 \mu \mathrm{~V}$ to $15 \mu \mathrm{~V}$. The auto-zero duration is 1500 counts (750 counts for TC821).

Signal Integration Phase

Upon completion of the auto-zero phase, the auto-zero loop is opened and the internal differential inputs connect to $\mathrm{V}_{\mathbb{N}}{ }^{+}$and $\mathrm{V}_{\mathbb{N}^{-}}$. The differential input signal is then integrated for a fixed time period, which is 2000 counts (4000 clock periods) in the TC820, and 1000 counts (4000 clock periods) in the TC821. The externally-set clock frequency is divided by two (TC820) or four (TC821) before clocking the internal counters. The integration time period is:

$$
t_{\mathrm{INT}}=\frac{4000}{f_{\mathrm{OSC}}}
$$

Note that for the same clock frequency, the TC820 and TC821 have the same signal integration time. Therefore, the noise rejection performance of the two converters will be the same.

The differential input voltage must be within the device's common-mode range when the converter and measured system share the same power supply common (ground). If the converter and measured system do not share the same power supply common, as in battery-powered applications, $\mathrm{V}_{\mathbb{N}^{-}}$should be tied to analog common.

Polarity is determined at the end of signal integration phase. The sign bit is a "true polarity" indication in that signals less than 1 LSB are correctly determined. This allows precision null detection that is limited only by device noise and auto-zero residual offsets.

Reference Integrate (Deintegrate) Phase

The reference capacitor, which was charged during the auto-zero phase, is connected to the input of the integrating amplifier. The internal sign logic ensures the polarity of the reference voltage is always connected in the phase opposite to that of the input voltage. This causes the integrator to ramp back to zero at a constant rate determined by the reference potential.

The amount of time required ($\mathrm{T}_{\text {DEINT }}$) for the integrating amplifier to reach zero is directly proportional to the
amplitude of the voltage that was put on the integrating capacitor $\left(\mathrm{V}_{\mathrm{INT}}\right)$ during the integration phase:

$$
t_{\text {DEINT }}=\frac{R_{I N T} C_{I N T} V_{I N T}}{V_{\text {REF }}}
$$

The digital reading displayed by the TC820 is:

$$
\text { Digital Count }=2000 \frac{\mathrm{~V}_{\mathbb{N}^{+}}-\mathrm{V}_{\mathbb{N}^{-}}}{\mathrm{V}_{\mathrm{REF}}}
$$

For the TC821, the digital reading displayed is:

$$
\text { Digital Count }=1000 \frac{\mathrm{~V}_{\mathrm{I}^{+}}-\mathrm{V}_{\mathbb{N}^{-}}}{\mathrm{V}_{\mathrm{REF}}}
$$

System Timing

The oscillator frequency is divided by 2 (4 for TC821) prior to clocking the internal decade counters. The fourphase measurement cycle takes a total of 8000 (4000) counts or 16000 (16000) clock pulses. The 8000 (4000) count phase is independent of input signal magnitude or polarity.

Each phase of the measurement cycle has the following length:

Conversion Phase	TC820	TC821	Units
1) Auto-Zero:	1500	500	Counts
2) Signal Integrate: ${ }^{1,2}$	2000	1000	Counts
3) Reference Integrate:	1 to 4001	1 to 2001	Counts
4) Integrator Output Zero:	499 to 4499	499 to 2499	Counts

NOTES: 1. This time period is fixed. The integration period for the TC820 is:

$$
\mathrm{t}_{\mathrm{INT}}(\mathrm{TC820})=\frac{4000}{f_{\mathrm{OsC}}}=2000 \text { counts }
$$

For the TC821, the integration period is:

$$
\mathrm{t}_{\mathrm{INT}}(\mathrm{TC821})=\frac{4000}{f_{\text {OSC }}}=1000 \text { counts }
$$

where fosc is the clock oscillator frequency.
2. Times shown are the RANGE/FREQ at logic low (normal operation). When RANGE/FREQ is logic high, signal integrate times are 200 counts for TC820 and 100 counts for TC821. See "10:1 Range Change" section.

Input Overrange

When the analog input is greater than full scale, the LCD will display "OL" and the "OVERRANGE" LCD annunciator will be on.

Peak Reading Hold

The TC820 provides the capability of holding the highest (or peak) reading. Connecting the PK HOLD input to $V_{S^{+}}$enables the peak hold feature. At the end of each

DISPLAY A/D CONVERTERS WITH FREQUENCY COUNTER AND LOGIC PROBE

conversion the contents of the TC820 counter is compared to the contents of the display register. If the new reading is higher than the reading being displayed, the higher reading is transferred to the display register. A "higher" reading is defined as the reading with the higher absolute value.

The peak reading is held in the display register so the reading will not "droop" or slowly decay with time. The held reading will be retained until a higher reading occurs, the PK HOLD input is disconnected from $\mathrm{V}_{\mathrm{S}^{+}}$, or power is removed.

The peak signal to be measured must be present during the TC820 signal integrate period. The TC820 does not perform transient peak detection of the analog input signal. However, in many cases, such as measuring temperature or electric motor starting current, the TC820 "acquisition time" will not be a limitation. If true peak detection is required, a simple circuit will suffice. See the applications section for details.

The peak reading function is also available when the TC820 is in the frequency counter mode. The counter autoranging feature is disabled when peak reading hold is selected.

10:1 Range Change

The analog input full-scale range can be changed with the RANGE/FREQ input. Normally, RANGE/FREQ is held low by an internal pulldown. Connecting this pin to $\mathrm{V}_{\mathrm{S}}{ }^{+}$will increase the full-scale voltage by a factor of 10 . No external component changes are required.

The RANGE/FREQ input operates by changing the integrate period. When RANGE/FREQ is connected to $\mathrm{V}_{\mathrm{S}}{ }^{+}$, the signal integration phase of the conversion is reduced by a factor of 10 (i.e., from 2000 counts to 200 counts).

For the TC821 (3-1/2 digit) ADC, the RANGE/FREQ input can be used to select between 200 mV and 2 V full scale. For the TC820, however, the 10:1 range change will result in $\pm 4 \mathrm{~V}$ full scale. This full-scale range will exceed the common-mode range of the input buffer when operating from a 9 V battery. If range changing is required for the TC820, a higher supply voltage can be provided or the input voltage can be divided by 2 externally.

Frequency Counter

In addition to serving as an analog-to-digital converter, the TC820 internal counter can also function as a frequency counter (Figure 4). In the counter mode, pulses at the RANGE/FREQ input will be counted and displayed.

The frequency counter derives its time base from the clock oscillator. The counter time base is:

$$
t_{\mathrm{COUNT}}=\frac{f_{\mathrm{OSC}}}{40,000}
$$

Thus, the counter will operate with a 1 -second time base when a 40 kHz oscillator is used. The frequency counter accuracy is determined by the oscillator accuracy. For accurate frequency measurements, a crystal oscillator is recommended.

The frequency counter will automatically select the proper range. Auto-range operation extends over four decades, from 3.999 kHz to $3.999 \mathrm{MHz}(1.999 \mathrm{kHz}$ to 1.999 MHz for TC821). Decimal points are set automatically in the frequency mode (Figure 5).

The logic switching levels of the RANGE/FREQ input are CMOS levels. For best counter operation, an external buffer is recommended. See the applications section for details.

Logic Probe

The TC820 can also function as a simple logic probe (Figure 6). This mode is selected when the LOGIC input is high. Two dual-purpose pins, which normally control the decimal points, are used as logic inputs. Connecting either input to a logic high level will turn on the corresponding LCD annunciator. When the "low" annunciator is on the buzzer will be on. As with the frequency counter input, external level shifters/buffers are recommended for the logic probe inputs.

When the logic probe function is selected while FREQ/ VOLTS is low (A/D mode), the ADC will remain in the autozero mode. The LCD will read "OL" and all decimal points will be off (Figure 7).

If the logic probe is active while FREQ $\overline{\operatorname{VOLTS}}$ is high (counter mode), the frequency counter will continue to operate. The display will read "OL" but the decimal points will be visible. If the logic probe input is also connected to the RANGE/FREQ input, bringing the LOGIC input low will immediately display the frequency at the logic probe input.

Analog Pin Functional Description

Differential Signal Inputs ($\mathrm{V}_{1 N^{+}}$), ($\mathrm{V}_{\mathrm{IN}^{-}}$)

The TC820 is designed with true differential inputs, and accepts input signals within the input stage commonmode voltage $\left(\mathrm{V}_{\mathrm{CM}}\right)$ range. The typical range is $\mathrm{V}_{\mathrm{S}^{+}}--1 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{S}^{-}}+1.5 \mathrm{~V}$. Common-mode voltages are removed from the system when the TC820 operates from a battery or floating power source (isolated from measured system) and $\mathrm{V}_{\mathrm{S}}{ }^{-}$is connected to analog common. (See Figure 8.)

Figure 4. TC820 Counter Operation

DP3	DP2
DP1	
IIN	DECIMAL POINT
$0 \mathrm{Hzz}-3999 \mathrm{~Hz}$ $4 \mathrm{kHz}-39.99 \mathrm{kHz}$ $40 \mathrm{kHz}-399.9 \mathrm{kHz}$ $\geq 400 \mathrm{kHz}$	DP3

Figure 5. TC820 Auto-Range Decimal Point Selection vs Frequency Counter Input

In systems where common-mode voltages exist, the 86 dB common-mode rejection ratio minimizes error. Common-mode voltages do, however, affect the integrator output level. A worst-case condition exists if a large, positive V_{CM} exists in conjunction with a full-scale, negative differential signal. The negative signal drives the integrator output positive along with V_{CM} (Figure 9). For such applications, the integrator output swing can be reduced below the recommended 2 V full-scale swing. The integrator output will swing within 0.3 V of $\mathrm{V}_{\mathrm{S}^{+}}$or $\mathrm{V}_{\mathrm{S}^{-}}$without increased linearity error.

Reference ($\mathrm{V}_{\mathrm{s}^{+}}, \mathrm{V}_{\mathrm{s}}{ }^{-}$)

The TC820 reference, like the analog signal input, has true differential inputs. In addition, the reference voltage can be generated anywhere within the power supply voltage of the converter. The differential reference inputs permit ratiometric measurements and simplify interfacing with sensors, such as load cells and temperature sensors.

Figure 6. Logic Probe Simplified Schematic

Figure 7. LCD During Logic Probe Operation

To prevent roll-over-type errors from being induced by large common-mode voltages, $\mathrm{C}_{\text {REF }}$ should be large compared to stray node capacitance. A $0.1 \mu \mathrm{~F}$ capacitor is typical.

The TC820 offers a significantly improved analog common temperature coefficient, providing a very stable voltage suitable for use as a voltage reference. The temperature coefficient of analog common is typically $35 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

Analog Common

The analog common pin is set at a voltage potential approximately 3.3 V below $\mathrm{Vs}_{\mathrm{s}^{+}}$. This potential is guaranteed to be between 3.15 V and 3.45 V below $\mathrm{V}_{\mathrm{S}^{+}}$. Analog common is tied internally to an N -channel FET capable of sinking 3 mA . This FET will hold the common line at 3.3 V below $\mathrm{V}_{\mathrm{s}}{ }^{+}$should be an external load attempt to pull the common line toward Vs^{+}. Analog common source current is limited to $12 \mu \mathrm{~A}$, and is therefore easily pulled to a more negative voltage (i.e., below $\mathrm{V}_{\mathrm{s}^{+}}-3.3 \mathrm{~V}$).

The TC820 connects the internal $\mathrm{V}_{1 N^{+}}$and $\mathrm{V}_{\mathrm{IN}^{-}}$inputs to analog common during the auto-zero cycle. During the reference integrate phase, $\mathrm{V}_{\mathrm{IN}^{-}}$is connected to analog common. If $\mathrm{V}_{\mathbb{N}^{-}}$is not externally connected to analog common, a common-mode voltage exists. This is rejected by the converter's 86 dB common-mode rejection ratio. In battery-powered applications, analog common and $\mathrm{V}_{\text {IN }}-$ are usually connected, removing common-mode voltage concerns. In systems where $\mathrm{V}_{\mathrm{IN}}{ }^{-}$is connected to the power supply ground or to a given voltage, analog common should be connected to $\mathrm{V}_{1 \mathrm{IN}^{-}}$.

The analog common pin serves to set the analog section reference or common point. The TC820 is specifically designed to operate from a battery or in any measurement

Figure 8. Common-Mode Voltage Removed in Battery Operation With $\mathbf{V}_{\mathbf{I N}^{-}}=$Analog Common

Figure 9. Common-Mode Voltage Reduces Available Integrator Swing ($\mathrm{V}_{\text {COM }} \neq \mathrm{V}_{\mathbf{I N}}$)
system where input signals are not referenced (float) with respect to the TC820 power source. The analog common potential of $\mathrm{V}_{\mathrm{S}^{+}}-3.3 \mathrm{~V}$ gives a 7 V end-of-battery-life voltage. The analog common potential has a voltage coefficient of $0.001 \% / \%$.

With a sufficiently high total supply voltage $\left(\mathrm{V}_{\mathrm{S}^{+}}-\mathrm{V}_{\mathrm{S}}{ }^{-}\right.$ $>7 \mathrm{~V}$), analog common is a very stable potential with excellent temperature stability (typically $35 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$). This potential can be used to generate the TC820 reference voltage. An external voltage reference will be unnecessary in most cases, because of the $35 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ temperature coefficient. See the applications section for details.

Function Control Input Pin Functional Description

The TC820 operating modes are selected with the function control inputs. The control input truth table is shown in Table I . The high logic threshold is $\geqslant \mathrm{V}_{\mathrm{S}^{+}}-1.5 \mathrm{~V}$ and the low logic level is \leqslant DGND +1.5 V .

Table I. TC820 Control Input Truth Table

Logic Input				
FREQ/	RANGE/		TC820/821 Function	
FOLTS	FREQ	LOGIC	1	Logic Probe
X	X	0	A/D Converter, $V_{\text {FULL SCALE }}=2 \times V_{\text {REF }}$	
0	0	0	A/D Converter, $V_{\text {FULL SCALE }}=20 \times V_{\text {REF }}$	
1	1	Frequency Counter Input	0	Frequency Counter

NOTES: 1. Logic "0" = DGND
2. Logic " 1 " $=V_{S}{ }^{+}$

FREQ/VOLTS

This input determines whether the TC820 is in the analog-to-digital conversion mode or in the frequency counter mode. When FREQ/VOLTS is connected to $\mathrm{V}_{\mathrm{S}}{ }^{+}$, the TC820 will measure frequency at the RANGE/FREQ input. When unconnected, or connected to DGND, the TC820 will operate as an analog-to-digital converter. This input has an internal $5 \mu \mathrm{~A}$ pull-down to DGND.

LOGIC

The LOGIC input is used to activate the logic probe function. When connected to $\mathrm{V}_{\mathrm{S}^{+}}$, the TC820 will enter the logic probe mode. The LCD will show "OL" and all decimal points will be off. The decimal point inputs directly control "high" and "low" display annunciators. When LOGIC is unconnected, or connected to DGND, the TC820 will perform analog-to-digital or frequency measurements as selected by the FREQ/VOLTS input. The LOGIC input has an internal $5 \mu \mathrm{~A}$ pull-down to DGND.

DISPLAY A/D CONVERTERS WITH FREQUENCY COUNTER AND LOGIC PROBE

RANGE/FREQ

The function of this dual-purpose pin is determined by the FREQ/VOLTS input. When FREQ/VOLTS is connected to $V_{S}{ }^{+}$, RANGE/FREQ is the input for the frequency counter function. Pulses at this input are counted with a time base equal to fosc 40,000 . Since this input has CMOS input levels ($\mathrm{V}_{\mathrm{S}^{+}}-1.5 \mathrm{~V}$ and DGND +1.5 V), an external buffer is recommended.

When the TC820 analog-to-digital converter function is selected, connecting RANGE/FREQ to $\mathrm{V}_{\mathrm{S}}{ }^{+}$will divide the integration time by 10. Therefore, the RANGE/FREQ input can be used to perform a $10: 1$ range change without changing external components.

DP0/LO, DP1/HI

The function of these dual-purpose pins is determined by the LOGIC input. When the TC820 is in the analog-todigital converter mode, these inputs control the LCD decimal points. The decimal point truth table is shown in Table II. These inputs have internal $5 \mu \mathrm{~A}$ pull-downs to DGND when the voltage/frequency measurement mode is active.

Table II. TC820 Decimal Point Truth Table

Decimal Point Inputs		
DP1	DPO	LCD
0	0	3999
0	1	399.9
1	0	39.99
1	1	3.999

Connecting the LOGIC input to $\mathrm{V}_{\mathrm{S}}{ }^{+}$places the TC820 in the logic probe mode. In this mode, the DPO/LO and DP1/HI inputs control the LCD "low" and "high" annunciators directly. When DP1/HI is connected to V^{+}, the "high" annunciator will turn on. When DPO/LO is connected to $\mathrm{V}_{S^{+}}$, the "low" annunciator and the buzzer will turn on. The internal pull-downs on these pins are disabled when the logic probe function is selected.

These inputs have CMOS logic switching thresholds. For optimum performance as a logic probe, external level shifters are recommended. See the applications section for details.

BUZ IN

This input controls the TC820 on-chip buzzer driver. Connecting BUZ IN to $\mathrm{V}_{\mathrm{s}^{+}}$will turn the buzzer on. There is an external pull-down to DGND. BUZ IN can be used with external circuitry to provide additional functions, such as a fast, audible continuity indication.

Additional Features

The TC820 and TC821 are available in 40-pin and 44pin packages. Several additional features are available in the 44-pin package.

EOC/HOLD

$\overline{E O C} / \mathrm{HOLD}$ is a dual-purpose, bidirectional pin. As an output, this pin goes low for 10 clock cycles at the end of each conversion. This pulse latches the conversion data into the display driver section of the TC820.
$\overline{E O C} / H O L D$ can be used to hold (or "freeze") the display. Connecting this pin to $\mathrm{V}_{\mathrm{S}^{+}}$inhibits the display update process. Conversions will continue, but the display will not change. $\overline{\mathrm{EOC}} / \mathrm{HOLD}$ will hold the display reading for either analog-to-digital or frequency measurements.

The input/output structure of the EOC/HOLD pin is shown in Figure 10. The output drive current is only a few microamps, so $\overline{\mathrm{EOC}} / \mathrm{HOLD}$ can easily be overdriven by an open-collector logic gate, as well as a FET, bipolar transistor, or mechanical switch. When used as an output, EOC/ HOLD will have a slow rise and fall time due to the limited output current drive. A CMOS Schmitt trigger buffer is recommended.

Figure 10. $\overline{\text { EOC/ }} / \mathrm{HOLD}$ Pin Schematic

Overrange (OR), Underrange (UR)

The OR output will be high when the analog input signal is greater than full scale (3999 counts for TC820 and 1999 counts for TC821). The UR output will be high when the display reading is 380 counts or less ($\leqslant 180$ counts for TC821).

The OR and UR outputs can be used to provide an auto-ranging meter function. By logically ANDing these outputs with the inverted $\overline{\mathrm{EOC}} / \mathrm{HOLD}$ output, a single pulse will be generated each time an underranged or overranged conversion occurs (Figure 11).

Figure 11. Generating Underrange and Overrange Pulses

$V_{\text {DISP }}$

The $V_{\text {DISP }}$ input sets the peak-to-peak LCD drive voltage. In the 40 -pin package, $V_{\text {DISP }}$ is connected internally to DGND, providing a typical LCD drive voltage of 5 V P-p. The 44 -pin package includes a separate $\mathrm{V}_{\text {DISP }}$ input for applications requiring a variable or temperature-compensated LCD drive voltage. See the applications information for suggested circuits.

APPLICATIONS INFORMATION

Power Supplies

The TC820 is designed to operate from a single power supply such as a 9 V battery (Figure 12). The converter will operate over a range of 7 V to 15 V . For battery operation, analog common (COM) provides a common-mode bias voltage (see analog common discussion in the theory of operation section). However, measurements cannot be referenced to battery ground. To do so will exceed the negative common-mode voltage limit.

Figure 12. Powering the TC820/821 From a Single 9V Battery

A battery with voltage between 3.5 V and 7 V can be used to power the TC820, when used with a voltage doubler, as shown in Figure 13. The voltage doubler uses the TC7660 and two external capacitors. With this configuration measurements can be referenced either to Analog Common or to battery ground.

Digital Ground (DGND)

Digital ground is generated from an internal zener diode (Figure 14). The voltage between $\mathrm{V}_{\mathrm{s}^{+}}$and DGND is the internal supply voltage for the digital section of the TC820. DGND will sink a minimum of 3 mA .

DGND establishes the low logic level reference for the TC820 mode select inputs, and for the frequency and logic probe inputs. The DGND pin can be used as the negative supply for external logic gates, such as the logic probe buffers. To ensure correct counter operation at high frequency, connect a $1 \mu \mathrm{~F}$ capacitor from DGND to Vs^{+}.

DGND also provides the drive voltage for the LCD. The TC820 40-pin package internally connects the LCD V $\mathrm{V}_{\text {DISP }}$ pin to DGND, and provides an LCD drive voltage of about $5 \mathrm{~V}_{\text {P.P. }}$ In the 44 -pin package, connecting the $\mathrm{V}_{\text {DISP }}$ pin to DGND will provide a 5 V LCD drive voltage.

Digital Input Logic Levels

Logic levels for the TC820 digital inputs are referenced to $\mathrm{V}_{\mathrm{S}^{+}}$and DGND. The high-level threshold is $\mathrm{V}_{\mathrm{S}^{+}}-1.5 \mathrm{~V}$ and the low logic level is DGND +1.5 V . In most cases,

Figure 13. Powering the TC820/821 From a Low-Voltage Battery

DISPLAY A/D CONVERTERS WITH FREQUENCY COUNTER AND LOGIC PROBE

Figure 14. DGND and COM Outputs
digital inputs will be connected directly to $\mathrm{V}_{\mathrm{S}^{+}}$with a mechanical switch. CMOS gates can also be used to control the logic inputs, as shown in the logic probe inputs section.

Clock Oscillator

The TC820 oscillator can be controlled with either a crystal or with an inexpensive resistor-capacitor combination. The crystal circuit, shown in Figure 15, is recommended when high accuracy is required in the frequency counter mode. The 40 kHz crystal is a standard frequency for ultrasonic alarms, and will provide a 1 -second time base for the counter or 2.5 analog-to-digital conversions per second. Consult the crystal manufacturer for detailed applications information.

Where low cost is important, the R-C circuit of Figure 16 can be used. The frequency of this circuit will be approximately:

$$
\mathrm{fosc}=\frac{0.3}{\mathrm{RC}}
$$

Figure 15. Suggested Crystal Oscillator Circuit

Figure 16. R-C Oscillator Circuit

Typical values are $R=10 \mathrm{k} \Omega$ and $\mathrm{C}=68 \mathrm{pF}$. The resistor value should be $\geqslant 100 \mathrm{k} \Omega$. For accurate frequency measurement, an R-C oscillator frequency of 40 kHz is required.

System Timing

All system timing is derived from the clock oscillator. The clock oscillator is divided by 2 (4 for TC821) prior to clocking the A/D counters. The clock is also divided by 8 to drive the buzzer, by 240 to generate the LCD backplane frequency, and by 40,000 for the frequency counter time base. A simplified diagram of the system clock is shown in Figure 17.

Component Value Selection

Auto Zero Capacitor - C_{Az}

The value of the auto-zero capacitor (C_{A}) has some influence on system noise. A $0.47 \mu \mathrm{~F}$ capacitor is recommended; a low dielectric absorption capacitor (Mylar) is required.

Reference Voltage Capacitor - CREF

The reference voltage capacitor used to ramp the integrator output voltage back to zero during the reference integrate cycle is stored on $\mathrm{C}_{\text {REF }}$ A $0.1 \mu \mathrm{~F}$ capacitor is typical. A good quality, low leakage capacitor (such as Mylar) should be used.

Integrating Capacitor $-\mathrm{C}_{\mathbf{I N T}}$

$\mathrm{C}_{\mathrm{INT}}$ should be selected to maximize integrator output voltage swing without causing output saturation. Analog common will normally supply the differential voltage reference. For this case, a $\pm 2 \mathrm{~V}$ integrator output swing is optimum when the analog input is near full scale. For 2.5 readings/second (fosc $=40 \mathrm{kHz}$) and $\mathrm{V}_{\mathrm{FS}}=400 \mathrm{mV}$, a $0.22 \mu \mathrm{~F}$ value is suggested. If a different oscillator frequency is used, $\mathrm{C}_{\text {INT }}$ must be changed in inverse proportion to

Figure 17. System Clock Generation
maintain the nominal $\pm 2 \mathrm{~V}$ integrator swing. An exact expression for $\mathrm{C}_{\mathrm{INT}}$ is:

$$
C_{I N T}=\frac{4000 V_{\text {FS }}}{V_{\text {INT }} R_{\text {INT }} f_{\text {OSC }}}
$$

where: $\mathrm{f}_{\mathrm{OSC}}=$ Clock frequency
$\mathrm{V}_{\mathrm{FS}}=$ Full-scale input voltage
$\mathrm{R}_{\text {INT }}=$ Integrating resistor
$\mathrm{V}_{\text {INT }}=$ Desired full-scale integrator output swing
$\mathrm{C}_{\text {INT }}$ must have low dielectric absorption to minimize roll-over error. A polypropylene capacitor is recommended.

Integrating Resistor - $\mathrm{R}_{\text {INT }}$

The input buffer amplifier and integrator are designed with class A output stages. The integrator and buffer can supply $40 \mu \mathrm{~A}$ drive currents with negligible linearity errors. $\mathrm{R}_{\text {INT }}$ is chosen to remain in the output stage linear drive region but not so large that printed circuit board leakage currents induce errors. For a 400 mV full scale, RINT should be about $100 \mathrm{k} \Omega$.

Reference Voltage Selection

A full-scale reading (4000 counts for TC820 and 2000 counts for TC821) requires the input signal be twice the reference voltage.

Table III. Reference Voltage Selection

Full-Scale Input Voltage (V_{FS}) (Note 1)	TC820		TC821	
	$\mathrm{V}_{\text {REF }}$	Resolution	$V_{\text {REF }}$	Resolution
200 mV	Note 2		100 mV	$100 \mu \mathrm{~V}$
400 mV	200 mV	$100 \mu \mathrm{~V}$	200 mV	$200 \mu \mathrm{~V}$
1 V	500 mV	$250 \mu \mathrm{~V}$	500 mV	$500 \mu \mathrm{~V}$
2 V	1 V	$500 \mu \mathrm{~V}$	1 V	1 mV

(Notes 3, 4)
NOTES: 1. TC820/821 in A/D converter mode, RANGE/FREQ = logic low.
2. Not recommended.
3. $\mathrm{V}_{\mathrm{FS}}>2 \mathrm{~V}$ may exceed the input common mode range. See "10:1 Range Change" section.
4. Full-scale voltage values are not limited to the values shown. For example, TC820 V_{FS} can be any value from 400 mV to 2 V .

In some applications, a scale factor other than unity may exist between a transducer output voltage and the required digital reading. Assume, for example, that a pressure transducer output is 800 mV for $4000 \mathrm{lb} / \mathrm{in}^{2}$. Rather than dividing the input voltage by two, the reference voltage should be set to 400 mV . This permits the transducer input to be used directly.

The internal voltage reference potential available at analog common will normally be used to supply the converter's reference voltage. This potential is stable whenever the supply potential is greater than approximately 7 V . The low-battery detection circuit and analog common operate from the same internal reference. This ensures that the low-battery annunciator will turn on at the time the internal reference begins to lose regulation.

The TC820 can also operate with an external reference. Figure 18 shows internal and external reference applications.

Ratiometric Resistance Measurements

The TC820 true differential input and differential reference make ratiometric readings possible. In ratiometric operation, an unknown resistance is measured with respect to a known standard resistance. No accurately defined reference voltage is needed.

The unknown resistance is put in series with a known standard and a current is passed through the pair (Figure 19). The voltage developed across the unknown is applied to the input and voltages across the known resistor

DISPLAY A/D CONVERTERS WITH FREQUENCY COUNTER AND LOGIC PROBE

TC820 (3-3/4 DIGIT) TC821 (3-1/2 DIGIT)

Figure 18. Reference Voltage Connections

Figure 19. Low Parts Count Ratiometric Resistance Measurement
applied to the reference input. If the unknown equals the standard, the input voltage will equal the reference voltage and the display will read 2000 (1000 for TC821). The displayed reading can be determined from the following expression:

$$
\text { Displayed reading }=\frac{\text { RUNKNOWN }}{\text { RSTANDARD }} \times 2000
$$

The display will overrange for values of RUNKNOWN $\geqslant 2$ $\times \mathrm{R}_{\text {standard }}$.

Buffering the FREQ Input

When the FREQ/VOLTS input is high and the LOGIC input is low, the TC820 will count pulses at the RANGE/ FREQ input. The time base will be fosc $/ 40,000$, or $1 \mathrm{sec}-$ ond with a 40 kHz clock. The signal to be measured should swing from $\mathrm{V}_{\mathrm{S}^{+}}$to DGND. The RANGE/FREQ input has CMOS input levels without hysteresis. For best results, especially with low-frequency sine-wave inputs, an external buffer with hysteresis should be added. A typical circuit is shown in Figure 20.

Figure 20. Frequency Counter External Buffer

Logic Probe Inputs

The DP0/LO and DP1/HI inputs provide the logic probe inputs when the LOGIC input is high. Driving either DPO/ LO or $\mathrm{DP} 1 / \mathrm{HI}$ to a logic high will turn on the appropriate LCD annunciator. When DPO/LO is high, the buzzer will be on.

To provide a "single input" logic probe function, external buffers should be used. A simple circuit is shown in Figure 21. This circuit will turn the appropriate annunicator on for high and low level inputs.

If carefully controlled logic thresholds are required, a window comparator can be used. Figure 22 shows a typical circuit. This circuit will turn on the high or low annunciators when the logic thresholds are exceeded, but the resistors connected from DPO/LO and DP1/HI to DGND will turn both annunciators off when the logic probe is unconnected.

Figure 21. Simple External Logic Probe Buffer

Figure 22. Window Comparator Logic Probe

The TC820 logic inputs are not latched internally, so pulses of short duration will usually be difficult or impossible to see. To display short pulses properly, the input pulse should be "stretched." The circuit of Figure 22 shows capacitors added across the input pull-down resistors to stretch the input pulse and permit viewing short-duration input pulses.

External Peak Detection

The TC820 will hold the highest A/D conversion or frequency reading indefinitely when the PK HOLD input is connected to $\mathrm{V}_{\mathrm{S}^{+}}$. However, the analog peak input must be present during the A/D converter's signal integrate period. For slowly changing signals, such as temperature, the peak reading will be properly converted and held.

If rapidly changing analog signals must be held, an external peak detector should be added. An inexpensive circuit can be made from an op-amp and a few discrete components, as shown in Figure 23. The droop rate of the external peak detector should be adjusted so that the held voltage will not decay below the desired accuracy level during the converter's 400 ms conversion time.

Liquid Crystal Display (LCD)

The TC820 drives a triplex (multiplexed 3:1) LCD with three backplanes. The LCD can include decimal points, polarity sign, and annunciators for overrange, peak hold, high and low logic levels, and low battery. Table IV shows the assignment of the display segments to the backplanes and segment drive lines. The backplane drive frequency is obtained by dividing the oscillator frequency by 240.

Figure 23. External Peak Detector

Backplane waveforms are shown in Figure 24. These appear on outputs BP1, BP2, and BP3. They remain the same regardless of the segments being driven.

Other display output lines have waveforms that vary depending on the displays values. Figure 25 shows a set of waveforms for the a, g, d outputs of one digit for several combinations of "on" segments.

Table IV. LCD Backplane and Segment Assignments

40-Pin DIP Pin No.	44-Pin Flat Pkg Pin No.	LCD Display Pin No.	BP1	BP2	BP3
1	40	3	LOW	"-"	E4
2	41	4	A4	G4	D4
3	42	5	B4	C4	DP3
4	43	6	HIGH	F3	E3
5	44	7	A3	G3	D3
6	1	8	B3	C3	DP2
7	2	9	OVER	F2	E2
8	3	10	A2	G2	D2
9	4	11	B2	C2	DP1
10	5	12	PEAK	F1	E1
11	6	13	A1	G1	D1
12	7	14	B1	C1	BATT
13	8	$2,16^{*}$	-	-	BP3
14	9	1	-	BP2	-
15	10	15	BP1	-	-

[^1]
DISPLAY A/D CONVERTERS WITH FREQUENCY COUNTER AND LOGIC PROBE

Figure 24. Backplane Waveforms

Figure 25. Typical Display Output Waveforms

Figure 26. Typical TC820/821 LCD

LCD Source

Although most users will design their own custom LCD, a standard display for the TC820 (Figure 26), Part No. ST-$1355-\mathrm{M} 1$, is available from:

Crystaloid (USA)	Crystaloid (Europe)
Crystaloid Electronics	Rep France
P.O. Box 628	102, rue des Nouvelles
5282 Hudson Dr.	F92150 Suresnes
Hudson, OH 44238	France
Phone: (216) 655-2429	Phone: 33-1-42 04 29 25
Fax: (216) 655-2176	Fax: 33-1-4506 46 99

This display can also be used with the TC821.

Annunciator Output

The annunciator output is a square wave running at the backplane frequency (for example, 167 Hz when $\mathrm{f}_{\mathrm{Os}}=40 \mathrm{kHz}$). The peak-to-peak amplitude is equal to $\left(\mathrm{V}_{\mathrm{S}^{+}}-\mathrm{V}_{\text {DISP }}\right)$. Connecting an annunciator of the LCD to the annunciator output turns it on; connecting it to its backplane turns it off.

LCD Drive Voltage (V $\mathrm{VISP}_{\text {) }}$

The peak-to-peak LCD drive voltage is equal to $\left(\mathrm{V}_{\mathrm{S}^{+}}\right.$ - $V_{\text {DISP }}$). In the 40-pin dual-in-line package (DIP), $\mathrm{V}_{\text {DISP }}$ is internally connected to DGND, providing a typical LCD drive voltage of $5 \mathrm{~V}_{\mathrm{P} \text {-p. }}$

For applications with a wide temperature range, some LCDs require that the drive levels vary with temperature to maintain good viewing angle and display contrast. In this case, the TC820 44-pin package provides a pin connection for $V_{\text {DISP. }}$. Figure 27 shows TC820 circuits that can be adjusted to give a temperature compensation of about $10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ between $\mathrm{V}_{\mathrm{S}}{ }^{+}$and $\mathrm{V}_{\text {DISP. }}$. The diode between GND and $V_{\text {DISP }}$ should have a low turn-on voltage because $V_{\text {DISP }}$ cannot exceed 0.3 V below GND.

Crystal Source

Two sources of the 40 kHz crystal are:

Statek Corp
512 N. Main St
Orange, CA 92668
Phone: (714) 639-7810
Fax: (714) 997-1256
Part \#: CX-1V-40.0

SPK Electronics
2F-1, No. 312, Sec 4, Jen Ai Rd
Taipei, Taiwan R.O.C.
Phone: (02) 754-2677
Fax: 886-2-708-4124
Part\#: QRT-38-40.0 kHz

DISPLAY A/D CONVERTERS
 WITH FREQUENCY COUNTER
 AND LOGIC PROBE

Figure 27. Temperature-Compensating Circuits

NOTES

3-3/4 DIGIT LCD ANALOG TO DIGITAL CONVERTER

FEATURES

- 3-3/4 Digit (3999 maximum) Resolution
- 3V Battery Operation
- On-Chip DC-to-DC Converter
- Low Power Operation
- Supply Current $400 \mu \mathrm{~A}$ Typical
- Differential Signal Inputs
- Differential Reference Inputs
- LCD with Triplexed drive
- 3-3/4 Digit Resolution
- 3 Decimal Points
- LCD Annunciator Driver Output
- Low-battery and Hold Annunciators
- Op-amp for AC-to-DC Converter
- Display HOLD with LCD Annunciator
- Low-battery Detect with LCD Annunciator
- On-chip Band-gap Reference
- Crystal Oscillator
- 40-Pin DIP or 44-Pin Flat Package

FUNCTIONAL DIAGRAM

3-3/4 DIGIT LCD ANALOG TO DIGITAL CONVERTER

TC822 TC823

GENERAL DESCRIPTION

The TC822 is a $3-3 / 4$ digit LCD analog-to-digital converter ADC which operates from a single 3V battery. Product designs utilizing the TC822 offer higher performance, lower parts count and smaller size than 7106-based designs, while the 3 V battery permits a wide variety of packaging options.

All active components necessary to construct a 0.025% resolution measurement system are included on the TC822. Only external resistors and capacitors, an LCD and a battery are required.

The TC822 includes features which must be added externally with ADCs such as the 7106. LCD decimal point drivers, low-battery detection, and data hold function with LCD annunciator are all on chip. No external exclusive-OR gates are required. An operational amplifier, which can be used for an AC-to-DC converter or resistance measurement current source, is also included.

Differential signal inputs with 1 pA leakage simplify system design. Differential reference inputs permit ratiometric measurements, while retaining the data HOLD function. Either the internal 1.3V band-gap reference or an external reference can be used.

The TC822 LCD drive includes 3-3/4 digits, decimal points, and HOLD and low-battery annunciators. The triplexed LCD requires only 14 interconnects, which increases reliability and simplifies mechanical design.

Package options include a 40-pin DIP and 44-pin plastic leaded chip carrier (PLCC), and compact flat packages. The many on-chip features of the TC822, combined with the
compact flat package and 3 V battery, permit the design of very small, high quality, economical instruments.

The TC823 offers all the features of the TC822, but with a resolution of 3-1/2 digits.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V^{+}to GND) +4.7 V
Analog Input Voltage (either input) $\ldots \ldots \ldots \ldots \ldots V_{S^{+}}$to $\mathrm{V}_{S^{-}}$ (Note 1)
Reference Input Voltage (either input) $\mathrm{V}_{\mathrm{S}^{+}}$to $\mathrm{V}_{\mathrm{S}^{-}}$
Op Amp Input Voltage (either input) $\mathrm{V}_{\mathrm{S}^{+}}$to $\mathrm{V}_{\mathrm{S}^{-}}$
Digital Inputs .. $\mathrm{V}_{\mathrm{S}^{+}}$to GND
Power Dissipation, Plastic Package 800 mW
Operating Temperature Range
\qquad
E Devices.. $40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Soldering Temperature (10 sec) $300^{\circ} \mathrm{C}$
NOTES: 1. Input voltages may exceed the supply voltages provided that input current is limited to $\pm 100 \mu \mathrm{~A}$. Current above this value may result in invalid display readings but will not destroy the device if limited to $\pm 1 \mathrm{~mA}$.
2. Dissipation ratings assume device is mounted with all leads soldered to printed circuit board.
3. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to Absolute Maximum Rating Conditions for extended periods may affect device reliability.
4. Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields.

ORDERING INFORMATION

Part No.	Resolution Digits	44-Pin Plastic Flat Package	44-Pin Plastic Leaded Chip (PLCC)	40-Pin Plastic DIP	Temperature Range
TC822CKW	3-3/4	X			$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC822CLW	3-3/4		X		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC822CPL	3-3/4			X	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC822EKW	3-3/4	X			$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC822ELW	3-3/4		X		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC822EPL	3-3/4			X	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC823CKW	3-1/2	X			$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC823CLW	3-1/2		X		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC823CPL	3-1/2			X	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC823EKW	3-1/2	X			$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC823ELW	3-1/2		X		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC823EPL	3-1/2			X	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS: $\mathrm{V}_{\mathrm{S}}=3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Figure 1 Test Circuit

Symbol	Parameter	Test Conditions	Min	Typ	Max	Units
Input						
	Zero Input Reading	$\begin{aligned} & \mathrm{V}_{\mathrm{iN}}=0.0 \mathrm{~V} \\ & \text { Full-Scale }=400 \mathrm{mV} \end{aligned}$	-0000	0000	+0000	Digital Reading
$\overline{R E}$	Roll-Over Error	$\begin{aligned} & V_{I N}= \pm 390 \mathrm{mV} \\ & \text { Full-Scale }=400 \mathrm{mV} \end{aligned}$	-1	± 0.2	+1	Counts
$\overline{\mathrm{NL}}$	Non-Linearity (Max Deviation from Best Straight Line Fit)	Full-Scale $=400 \mathrm{mV}$	-1	± 0.2	+1	Count
	Ratiometric Reading	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {REF }}$	1999	$\begin{aligned} & 1999 / \\ & 2000 \end{aligned}$	2000	Digital Reading
$\overline{E_{N}}$	Noise ($p-p$ value not exceeded 95% of time)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0.0 \mathrm{~V} \\ & \text { Full-Scale }=400 \mathrm{mV} \end{aligned}$	-	15	-	$\mu \mathrm{V}$
In	Input Leakage Current	$\begin{aligned} & \mathrm{V}_{I N}=0.0 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+85^{\circ} \mathrm{C} \end{aligned}$	—	$\begin{gathered} \overline{20} \\ 100 \end{gathered}$	$\begin{gathered} 10 \\ 100 \\ 250 \end{gathered}$	pA
CMRR	Common-Mode Rejection Ratio	$\begin{aligned} & V_{C M}= \pm 0.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}=0.0 \mathrm{~V}}^{\text {Fuli-Scale }=400 \mathrm{mV}} \end{aligned}$	-	50	-	$\mu \mathrm{V} / \mathrm{V}$
$\mathrm{V}_{\text {CMR }}$	Common-Mode Voltage Range	Input High, Input Low $\mathrm{V}_{\text {IN }}=0.0 \mathrm{~V} \text {, Full-Scale }=400 \mathrm{mV}$	GND -0.5	-	GND +0.5	V
$\overline{\mathrm{TC}}$	Zero Reading Drift	$\begin{aligned} & \mathrm{V}_{1 \mathrm{~N}}=0.0 \mathrm{~V} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\ & \text { Ext. Ref. } 0 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	-	$\begin{gathered} 0.2 \\ 1 \end{gathered}$	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
TCFS	Scale Factor Temperature Coefficient	$\begin{aligned} & \mathrm{V}_{I N}=399 \mathrm{mV} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\ & \text { Ext. Ref. } 0 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	-	$\begin{aligned} & \pm 1 \\ & \pm 5 \end{aligned}$	$\begin{gathered} \pm 5 \\ \pm 25 \end{gathered}$	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
	Input Voltage Range	$\mathrm{V}_{\mathrm{IN}^{+}}, \mathrm{V}_{\mathrm{IN}^{-}}$ Normal Mode + Common-Mode Voltage	GND -0.5	-	GND +0.5	V
Reference						
$\mathrm{V}_{\text {REF }}$	Reference Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{L}}=25 \mu \mathrm{~A} \\ & \left(\mathrm{~V}_{\text {REF }}-\mathrm{GND}\right) \end{aligned}$	1.25	1.3	1.45	V
$\mathrm{TCV}_{\text {REF }}$	Reference Voltage Temperature Coefficient	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$	-	50	-	ppm/ $/{ }^{\circ} \mathrm{C}$
Op-Amp						
$V_{\text {IOA }}$	Op-Amp Input Offset Voltage	$\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$	-	± 10	-	mV
	Op-Amp Input Voltage Range		-	± 2	-	V
	Op-Amp Unity Gain Frequency		-	0.6	-	MHz
	Op-Amp Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ to GND	-	± 2.5	-	V
	Op-Amp Slew Rate	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ to $\mathrm{GND}, \mathrm{CL}=50 \mathrm{pF}$	-	1	-	V/ $/ \mathrm{s}$

ELECTRICAL CHARACTERISTICS (Cont.): $\mathrm{V}_{\mathrm{S}}=3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Figure 1 Test Circuit

Symbol	Parameter	Test Conditions	Min	Typ	Max	Units
Digital						
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	DP1, DP2, HOLD	-	-	GND +0.5	V
$\underline{\mathrm{V}_{\text {IH }}}$	Input High Voltage	DP1, DP2, HOLD	$\mathrm{V}^{+}+0.5$	-	-	V
	Control Pin Pulldown Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {S }}{ }^{+}$	-	3	-	$\mu \mathrm{A}$
	LCD Drive Voltage	$2 \mathrm{~V} \leq \mathrm{V}^{+} \leq 4 \mathrm{~V}$	3.1	3.2	3.3	V p-p
Power Supply						
Is	Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}^{+}}=3.0 \mathrm{~V} \end{aligned}$	-	400	600	$\mu \mathrm{A}$
	Supply Operating Voltage Range	V^{+}to GND	2	-	4	V
	Low-Battery Flag Voltage	V^{+}to GND	2.15	2.25	2.45	V

Figure 1 Test Circuit

3-3/4 DIGIT LCD ANALOG TO DIGITAL CONVERTER

PIN CONFIGURATIONS

PRELIMINARY PIN DESCRIPTION AND FUNCTION, TC822 3-3/4 DIGIT A-D CONVERTER, 3V OPERATION

Pin No. (40-Pin Package)	Symbol	Description
1	$\mathrm{V}^{+}{ }^{+}$	Positive battery supply connection. Typically 3V.
2	OSC1	Oscillator connection.
3	OSC2	Oscillator connection.
4	BUFOSC	Buffered oscillator output.
5	BCDO	LCD segment drive for 'b', 'c', and 'd' segments of least significant digit (LSD).
6	AGE0	LCD segment drive for ' a ', ' g ', and ' e ' segments of LSD.
7	BATFODP1	LCD segment drive for LOW-BATTERY, ' f ' segment of LSD, and decimal point 1.
8	BCD1	LCD segment drive for 'b', 'c', and 'd' segments of 2nd LSD.
9	AGE1	LCD segment drive for ' a ', ' g ', and 'e' segments of 2nd LSD.
10	HOLDF1DP2	LCD segment drive for 'data hold', 'f' segment of 2nd LSD, and decimal point 2.
11	BCD2	LCD segment drive for 'b', 'c', and 'd' segments of 3rd LSD.
12	AGE2	LCD segment drive for ' a ', ' g ', and ' e ' segments of 3rd LSD.
13	-F2DP3	LCD segment drive for 'polarity', 4 ' segment of 3rd LSD, and decimal point 3.
14	BCD3	LCD segment drive for 'b', 'c', and 'd' segments of most significant digit (MSD).
15	AGE3	LCD segment drive for ' a ', ' l ', and ' e ' segments of MSD.
16	BP3	LCD backplane \#3.
17	BP2	LCD backplane \#2.
18	BP1	LCD backplane \#1.
19	ANNUNC	Square wave output at the backplane frequency, synchronized to BP1. ANNUNC can be used to control display annunciators. Connecting an LCD segment to ANNUNC turns it on; connecting it to its backplane turns it off.
20	DP1	Decimal Point select input.
21	DP2	Decimal Point select input.
22	HOLD	Hold input. Connecting this pin to $\mathrm{V}^{+}{ }^{+}$will 'freeze' the LCD.

TC822
 TC823

PRELIMINARY PIN DESCRIPTION AND FUNCTION, TC822 3-3/4 DIGIT A-D CONVERTER, 3V OPERATION (Cont.)

Pin No. (40-Pin Package)	Symbol	Description
23	$\mathrm{Clint}^{\text {d }}$	Integrator output. Connect to integration capacitor.
24	BUF	Buiffer output. Connect to integration resistor.
25	$\mathrm{C}_{\text {Az }}$	Autozero capacitor connection.
26	$\mathrm{V}_{\text {REF }}{ }^{+}$	High differential reference input connection.
27	$\mathrm{C}_{\text {REF }}{ }^{+}$	Positive connection for reference capacitor.
28	$\mathrm{C}_{\text {REF }}{ }^{-}$	Negative connection for reference capacitor.
29	$\mathrm{V}_{\text {REF }}{ }^{-}$	Low differential reference input connection.
30	$\mathrm{V}_{1 \mathrm{~N}^{+}}$	High analog input signal connection.
31	ViN^{-}	Low analog input signal connection.
32	COM	Analog circuit ground reference point.
33	REFOUT	Output of 1.3 V voltage reference.
34	OAOUT	Output of uncommitted operational amplifier.
35	OA-	Inverting input of uncommitted operational amplifier.
36	OA+	Noninverting input of uncommitted operational amplifier.
37	$\mathrm{V}^{\text {S }}$	Output of DC-to-DC converter. Connect a $1 \mu \mathrm{~F}$ capacitor from this pin to power ground.
38	C-	Capacitor connection for DC-to-DC converter.
39	GND	Power ground.
40	C+	Capacitor connection for DC-to-DC converter.

FEATURES

The TC822 and TC823 are high-resolution analog-todigital converters which include all of the active components required to build a typical digital multimeter or other measurement instrument. The on-chip op-amp can be configured as a sensor amplifier, AC-to-DC converter, or resistance measurement current source. The LCD includes decimal points, low-battery detection, and data hold annunciators. A DC-to-DC converter permits operation from a single 3V battery. With on-chip voltage reference and LCD drive circuitry, the TC822 simplifies the design of multi-mode measurement instruments.

The TC822 has a resolution of 3-3/4 digits (3999, maximum) while the TC823 has a resolution of 3-1/2 digits (1999, maximum). The features of both converters are the same, so that both 3-3/4 digit and 3-1/2 digit designs can be produced with only one basic design. The differences between the TC822 and the TC823 primarily affect system timing, and are noted in the ADC System Timing section of the data sheet.

GENERAL THEORY OF OPERATION

Dual-Slope Conversion Principles

The TC822 ADC operates on the principle of dual-slope integration. An understanding of the dual-slope conversion technique will aid the user in following the detailed TC822 theory of operation following this section. A conventional dual-slope converter measurement cycle has two distinct phases:

1) Input Signal Integration
2) Reference Voltage Integration (Deintegration)

Referring to Figure 2, the unknown input signal to be converted is integrated from zero for a fixed time period (t_{NT}), measured by counting clock pulses. A constant reference voltage of the opposite polarity is then integrated until the integrator output voltage returns to zero. The reference integration (deintegration) time (t_{DEINT}) is then directly proportional to the unknown input voltage ($\mathrm{V}_{\mathbb{I}}$).

3-3/4 DIGIT LCD ANALOG TO DIGITAL CONVERTER

Figure 2 Basic Dual-Slope Converter
In a simple dual-slope converter, a complete conversion requires the integrator output to 'ramp-up' from zero and 'ramp-down' back to zero. A simple mathematical equation relates the input signal, reference voltage and integration time:

$$
\begin{aligned}
\frac{1}{R_{I N T} C_{I N T}} \int_{0}^{\text {INT }} & V_{I N}(t) d t=\frac{V_{\text {REF }} I_{\text {DEINT }}}{R_{I N T}} \overline{C_{I N T}} \\
\text { where: } \quad V_{\text {REF }} & =\text { Reference Voltage } \\
& =\text { Integration Time } \\
t_{\text {INT }} & \\
t_{\text {DEINT }} & =\text { Deintegration Time }
\end{aligned}
$$

For a constant $\mathrm{T}_{\mathrm{INT}}$:

$$
V_{I N}=V_{\text {REF }} \cdot \frac{\text { DEEINT }^{t_{N T}}}{}
$$

Accuracy in a dual-slope converter is unrelated to the integrating resistor and capacitor values, as long as they are stable during a measurement cycle. An inherent benefit of the dual-slope technique is noise immunity. Noise spikes are integrated, or averaged, to zero during the integration periods, making integrating ADCs immune to the large conversion errors that plague successive approximation converters in high-noise environments. Interfering signals, with frequency components at multiples of the averaging (integrating) period, will be attenuated (see Figure 3). Integrating ADCs commonly operate with the signal integration period set to a multiple of the $50 / 60 \mathrm{~Hz}$ power line period.

Figure 3 Normal-Mode Rejection of Dual-Slope Converter

TC822 ADC THEORY OF OPERATION
 Analog Section

In addition to the basic integrate and deintegrate dualslope phases discussed above, the TC822 design incorporates a 'Zero Integrator Output' phase and an 'Auto Zero' phase. These additional phases ensure that the integrator starts at zero volis (even after a severe over-range conversion) and that all offset voltage errors (buffer amplifier, integrator and comparator) are removed from the conversion. A true digital zero reading is assured without any external adjustments.

A complete conversion consists of four distinct phases:

1) Zero Integrator Output Phase
2) Auto Zero Phase
3) Signal Integrate Phase
4) Reference Deintegrate Phase

Zero Integrator Output Phase

This phase guarantees that the integrator output is at zero volts after an overrange input occurs. Thus, the next reading after an overranged reading will be correct. The Zl phase duration varies from 0 to 600 counts.

Auto Zero Phase

During the Auto Zero phase, the differential input signal is disconnected from the measurement circuit by opening internal analog switches and the internal nodes are shorted to Analog Common (0 volt ref) to establish a zero input condition. Additional analog switches close a feedback loop around the integrator and comparator to per:nit comparator offset voltage error compensation. A voltage established on $\mathrm{C}_{A Z}$ then compensates for internal device offset voltages during the measurement cycle. The Auto Zero phase residual is typically 10 to $15 \mu \mathrm{~V}$. The Auto Zero duration is 1600 counts, plus the ZI counts if an overrange did not occur, plus

3-3/4 DIGIT LCD ANALOG TO DIGITAL CONVERTER

TC822
TC823
unused deintegration counts. Thus, the AZ phase can occupy from 1600 to 6000 counts (600 to 3000 counts for TC823).

Signal Integration Phase

Upon completion of the Auto Zero phase, the Auto Zero loop is opened and the internal differential inputs connect to $\mathrm{V}_{\mathbb{N}}{ }^{+}$and $\mathrm{V}_{\mathbb{N}^{-}}$. The differential input signal is then integrated for a fixed time period, which in the TC822 is 2000 counts (4000 clock periods) and in the TC823 is 1000 counts (4000 clock periods). The externally set clock frequency is divided by two (TC822) or four (TC823) before clocking the internal counters. The integration time period is:

$$
\mathrm{t}_{\mathrm{NT}}=\frac{4000}{f_{\mathrm{OSC}}}
$$

Note that, for the same clock frequency, the TC822 and TC823 will have the same signal integration time. Therefore, the noise rejection performance of the two converters will be the same.

Polarity is determined at the end of signal integration phase. The sign bit is a 'true polarity' indication in that signals less than 1 LSB are correctly determined. This allows precision null detection which is limited only by device noise and Auto Zero residual offsets.

Reference Integrate (Deintegrate) Phase

The reference capacitor, which was charged during the Auto Zero phase, is connected to the input of the integrating amplifier. The internal sign logic insures that the polarity of the reference voltage is always connected in the phase which is opposite to that of the input voltage. This causes the integrator to ramp back to zero at a constant rate which is determined by the reference potential.

The amount of time required ($\mathrm{t}_{\text {DEINT }}$) for the integrating amplifier to reach zero is directly proportional to the amplitude of the voltage that was put on the integrating capacitor ($\mathrm{V}_{\mathrm{INT}}$) during the integration phase:

$$
\mathrm{t}_{\mathrm{DINT}}=\frac{\mathrm{R}_{\mathrm{INT}} \cdot \mathrm{C}_{\mathrm{INT}} \cdot \mathrm{~V}_{\mathrm{INT}}}{\mathrm{~V}_{\mathrm{REF}}}
$$

The digital reading displayed by the TC822 is:

$$
\text { Digital Count }=2000 \cdot \frac{\mathrm{~V}_{\mathrm{N}}^{+}-\mathrm{V}_{\text {IN }}}{\mathrm{V}_{\mathrm{REF}}}
$$

For the TC823, the digital reading displayed is:

$$
\text { Digital Count }=1000 \cdot \frac{\mathrm{~V}_{\text {IN }}^{+}-\mathrm{V}_{\text {IN }}}{\mathrm{V}_{\mathrm{REF}}}
$$

ADC System Timing

The oscillator frequency is divided by 2 (4 for TC823) prior to clocking the internal decade counters. The four phase measurement cycle takes a total of 8000 (4000) counts or 16000 (16000) clock pulses. The 8000 (4000)
count phase is independent of input signal magnitude or polarity.

Each phase of the measurement cycle has the following length:

Conversion Phase	TC822	TC823	
1) Auto Zero	1600 to 5999	600 to 2999	Counts
2) Signal Integrate	2000	1000	Counts
3) Reference Integrate	1 to 4000	1 to 2000	Counts
4) Integrator Output Zero	0 to 400	0 to 400	Counts

* This time period is fixed. The integration period for the TC822 is:

$$
\mathrm{t}_{\mathrm{INT}}\left(\mathrm{TC822)}=\frac{4000}{\mathrm{f}_{\mathrm{SSC}}}=2000\right. \text { Counts }
$$

For the TC823, the integration period is:

$$
\mathrm{t}_{\mathrm{N} T}(\mathrm{TC823})=\frac{4000}{\mathrm{fOSC}^{2}}=1000 \text { Counts }
$$

where fosc is the clock oscillator frequency.

ANALOG PIN FUNCTIONAL DESCRIPTION Differential Signal Inputs ($\mathrm{V}_{\mathrm{IN}^{+}}, \mathrm{V}_{\mathrm{IN}^{-}}$)

The TC822 is designed with true differential inputs and accepts input signals within the input stage common mode voltage range (V_{CM}). The maximum input voltage range, which includes normal-mode + common-mode signals, is $\pm 0.5 \mathrm{~V}$.

Common-mode voltages are removed from the system when $\mathrm{V}_{\mathbb{I}}{ }^{-}$is connected to Analog Common. The TC822's on-chip DC-to-DC converter eliminates most common-mode difficulties and permits measurements where measurement and power grounds cannot be isolated. (see Figure 4)

Figure 4 DC-to-DC Converter Permits Ground Referenced Measurements

Common-mode voltages with respect to power GND do, however, affect the integrator output level. The user must be particularly careful that the integrator does not saturate when at minimum battery voltage. A worse case condition

3-3/4 DIGIT LCD ANALOG TO DIGITAL CONVERTER

exists if a large positive V_{CM} exists in conjunction with a fullscale negative differential signal. The negative signal drives the integrator output positive along with $\mathrm{V}_{\text {СМ }}$ (Figure 5). For such applications the integrator output swing can be reduced below the recommended 1.5 V full-scale swing. The integrator output will swing within 0.3 V of $\mathrm{V}_{\mathrm{s}^{+}}$or $\mathrm{V}_{\mathrm{s}^{-}}$without increased linearity error.

Figure 5 Common-Mode Voltage Reduces Available Integrator Swing. ($\mathrm{V}_{\text {COM }} \neq \mathrm{V}_{\text {IN }}$)

Reference Inputs ($\mathrm{V}_{\mathrm{REF}}{ }^{+}, \mathrm{V}_{\text {REF }}{ }^{-}$)

The TC822 reference, like the analog signal input, has true differential inputs. In addition, the reference voltage can be generated anywhere within the power supply voltage of the converter. The differential reference inputs permit ratiometric measurements and simplify interfacing with sensors such as load cells and temperature sensors.

Reference Output (REFOUT)

This pin is the buffered output of the internal CMOS band-gap reference. The output voltage is typically 1.3 V above power GND, with a load current of $25 \mu \mathrm{~A}$. The temperature coefficient of REFOUT is typically $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

Analog Common

The TC822 connects the internal $\mathrm{V}_{\mathbb{N}}+$ and $\mathrm{V}_{\mathbb{N}^{-}}$inputs to Analog Common during the Auto Zero cycle. During the reference integrate phase $\mathrm{V}_{\mathbb{N}^{-}}$is connected to Analog Common. If $\mathrm{V}_{\mathbb{N}}-$ is not externally connected to Analog Common, a common-mode voltage exists. This is rejected by the converter's 86 dB common-mode rejection ratio. In battery powered applications, Analog Common and $\mathrm{V}_{\mathbb{N}}{ }^{-}$are usually connected, removing common-mode voltage concerns. In
systems where $\mathrm{V}_{1 \mathbb{N}}-$ is connected to the power supply ground or to a given voltage, Analog Common should be connected to $\mathrm{V}_{\mathbb{1}}$.

The Analog Common pin serves to set the analog section reference or common point. The TC822 is specifically designed to operate from a battery or in any measurement system where input signals are referenced to the TC822 power source, so Analog Common is normally connected to power GND.

DIGITAL PIN FUNCTIONAL DESCRIPTION

DP1, DP2
These inputs control the LCD decimal points. The decimal point truth table is shown in Table 1. These inputs have internal $3 \mu \mathrm{~A}$ pulldowns to DGND.
Table 1 TC822 Decimal Point Truth Table

Decimal Point DP2	Inputs DP1	LCD
0	0	3999
0	1	399.9
1	0	39.99
1	1	3.999

Hold

HOLD can be used to hold or 'freeze' the display. Connecting this pin to $\mathrm{V}_{\mathrm{S}^{+}}$inhibits the display update process. Conversions will continue, but the display will not change.

APPLICATIONS INFORMATION

Power Supplies

The TC822 is designed to operate from a 3 V battery, but will operate over a range of 2.0 to 4.0 V . An on-chip DC-to$D C$ converter converts the $+3 V$ supply to $-3 V$, whichpermits bipolar input voltages to be converted. Measurements are referenced to battery ground, so that the TC822/823 are ideal for applications such as measuring battery voltage, battery charging current, etc.

Op-Amp Power Supply Current

The op-amp of the TC822 has a low-distortion class A output, which is biased at $100 \mu \mathrm{~A}$. To reduce supply current when the op-amp is not being used, connect the noninverting input to V^{-}, as shown in Figures 6 and 11. When the op-amp is used, supply current will increase by about $200 \mu \mathrm{~A}$.

3-3/4 DIGIT LCD ANALOG TO DIGITAL CONVERTER

TC822

Figure 6 Simplified Op-Amp Output Schematic

Clock Oscillator

The crystal oscillator circuit is shown in Figure 7. An inexpensive 32.768 kHz watch crystal gives about 27 dB noise rejection at 60 Hz , while a 40 kHz crystal (used in ultrasonic alarms) will almost totally reject 50 and 60 Hz noise.

Figure 7 Crystal Oscillator Circuit

System Clock

All systemtiming is derived from the clock oscillator. The clock oscillator is divided by two (four for TC823) prior to clocking the A/D counters. The clock is also divided by 4 to drive the DC-to-DC converter, and by 768 to generate the LCD backplane frequency. A simplified diagram of the system clock is shown in Figure 8.

COMPONENT VALUE SELECTION Auto Zero Capacitor - C $\mathbf{A Z}$

The size of the Auto Zero capacitor (C_{A}) has some effect on system noise. A $0.22 \mu \mathrm{~F}$ capacitor is recommended. A capacitor with low dielectric absorption (polyester) is required.

Reference Voltage Capacitor - CREF

The reference voltage used to ramp the integrator output voltage back to zero during the reference integrate

Figure 8 System Clock Generation
cycle is stored on $\mathrm{C}_{\text {REF }}$. $\mathrm{A} 0.22 \mu \mathrm{~F}$ capacitor is typical. A good quality, low leakage capacitor, such as polyester, should be used.

Integrating Capacitor - $\mathrm{C}_{\mathrm{INT}}$

$\mathrm{C}_{\mathrm{INT}}$ should be selected to maximize integrator output voltage swing without causing output saturation. Analog common will normally supply the differential voltage reference. For this case a $\pm 1.5 \mathrm{~V}$ integrator output swing is optimum when the analog input is near full-scale. For 2.5 readings/second (fosc $=40 \mathrm{kHz}$) and $\mathrm{V}_{\mathrm{FS}}=400 \mathrm{mV}, \mathrm{a} 0.27 \mu \mathrm{~F}$ value is suggested. For a 32.768 kHz crystal, use $0.22 \mu \mathrm{~F}$. If a different oscillator frequency is used, $\mathrm{C}_{\mathrm{INT}}$ must be changed in inverse proportion to maintain the nominal $\pm 1.5 \mathrm{~V}$ integrator swing. An exact expression for $\mathrm{C}_{\mathrm{INT}}$ is:

$$
C_{I N T}=\frac{4000 V_{F S}}{V_{\text {INT }} \cdot R_{\text {INT }} \cdot f_{\text {OSS }}}
$$

where: $\quad f_{\text {osc }}=$ Clock frequency

$$
\mathrm{V}_{\mathrm{FS}}=\text { Full-scale input voltage }
$$

$\mathrm{R}_{\mathrm{INT}}=$ Integrating resistor
$\mathrm{V}_{\text {INT }}=$ Desired full-scale integrator output swing
$\mathrm{C}_{\text {INT }}$ must have low dielectric absorption to minimize roll-over error. A polypropylene capacitor is recommended.

Integrating Resistor - $\mathbf{R I N T}^{\text {INT }}$

The input buffer amplifier and integrator are designed with class A output stages. The integrator and buffer can supply $5 \mu \mathrm{~A}$ drive currents with negligible linearity errors. $\mathrm{R}_{\mathbb{I N T}}$ is chosen to remain in the output stage linear drive

3-3/4 DIGIT LCD ANALOG TO DIGITAL CONVERTER

region but not so large that printed circuit board leakage currents induce errors. For a 400 mV full-scale, $\mathrm{R}_{\text {INT }}$ should be about $100 \mathrm{k} \Omega$.

Reference Voltage Selection

A full scale reading (4000 counts for TC822 and 2000 counts for TC823) requires that the input signal be twice the reference voltage. For example, a 400 mV full scale TC822 requires a reference voltage of 200 mV .

In some applications a scale factor other than unity may exist between a transducer output voltage and the required digital reading. Assume, for example, that a pressure transducer output is 500 mV for $4000 \mathrm{lb} / \mathrm{in}^{2}$. Rather than dividing the input voltage by 1.25 , the reference voltage should be set to 250 mV . This permits the transducer input to be used directly. For best results, full scale voltage should be limited to 500 mV .

The TC822 can also operate with an external reference. Figure 9 shows internal and external reference applications.

Ratiometric Resistance Measurements

The TC822 true differential input and differential reference make ratiometric readings possible. In ratiometric operation, an unknown resistance is measured with respect to a known standard resistance. No accurately defined reference voltage is needed.

The unknown resistance is put in series with a known standard and a current is passed through the pair (Figure 10). The voltage developed across the unknown is applied to the input and the voltage across the known resistor applied to the reference input. If the unknown equals the standard, the input voltage will equal the reference voltage and the display will read 2000 (1000 for TC823). The displayed reading can be determined from the following expression:

$$
\text { Displayed Reading }=\frac{\text { RUNKNOWN }}{\text { RSTANDARD }} \cdot 2000
$$

The display will overrange for $R_{U N K N O W N ~} \geq 2 \times R_{\text {STANDARD }}$

Figure 10 Low Parts Count Ratiometric Resistance Measurement

Figure 9 Internal and External Reference Applications

3-3/4 DIGIT LCD ANALOG TO DIGITAL CONVERTER

TC822
TC823

AC-to-DC Converter

The on-chip op amp of the TC822/823 can be combined with external components to convert an AC voltage into a DC voltage. Figure 11 shows a typical circuit.

LCD

The TC822 drives a triplex (multiplexed $3: 1$) liquid crystal display with three backplanes. The LCD includes decimal points, polarity sign, and annunciators for data hold and low-battery. Table 2 shows the assignment of the display segments to the backplanes and segment drive lines. The backplane drive frequency is obtained by dividing the oscillator frequency by 768.

Table 2 LCD Pin Assignment, TC822

Pin	COM1	COM2	COM3
1	COM1	-	-
2	-	COM2	-
3	-	-	COM3
4	B0	C0	D0
5	A0	G0	E0
6	BATTERY	F0	P1
7	B1	C1	D1
8	A1	G1	E1
9	HOLD	F1	P2
10	B2	C2	D2
11	A2	G2	E2
12	Y	F2	P3
13	B3	C3	D3
14	A3	G3	E3
15	-	-	-
16	-	-	-
17	-	-	-
18	-	-	-

Figure 11 Low Cost AC-to-DC Converter

Backplanes waveforms are shown in Figure 12. These appear on outputs BP1, BP2, and BP3. They remain the same regardless of the segments being driven.

Figure 12 Backplane Waveforms
Other display output lines have waveforms that vary depending on the displays values. Figure 13 shows a set of waveforms for the AGE outputs of one digit for several combinations of 'on' segments.

Figure 13 Typical Display Output Waveforms

LCD Source

Although most users will design their own custom LCD, a standard display for the TC822 is available. Figure 14 shows a display, part No. VIM428-DP, available from Varitronix.

Varitronix (USA)
VL Electronics
3171 Los Feliz Blvd
Suite 303
Los Angeles, CA 90039
Tel: (312) 661-8883
FAX: (213) 663-3711
Part No.:jg VIM428-DP

Varitronix 9/F Liven House 61-63 King Yip Street Kwun Tjong
Hong Kong
Tel: 3-410286
FAX: 3-439555

Figure 14 Typical TC822/823 LCD

Annunciator Output

The annunciator output is a square wave running at the backplane frequency (for example, 52 Hz when $\mathrm{f}_{\mathrm{OSC}}=40 \mathrm{kHZ}$). The peak-to-peak amplitude is the same as the backplane and segment driver outputs. Connecting an annunciator of the LCD to the annunciator output turns it on; connecting it to its backplane turns it off.

LCD Drive Voltage

The peak-to-peak LCD drive voltage is typically 3.2 Vpp. This voltage will remain stable until the battery voltage falls below the point where the low-battery flag turns on (about 2.1V).

NOTES

A/D CONVERTER WITH BAR GRAPH DISPLAY OUTPUT

FEATURES

- Bipolar A/D Conversion
- 2.5\% Resolution
- Direct LCD Display Drive
- 'Thermometer' Bar or Dot Display
- 40 Data Segments Plus Zero
- Overrange Plus Polarity Indication

Precision On-Chip Reference \qquad 35 ppm/ $/{ }^{\circ} \mathrm{C}$

- Differential Analog Input
- Low Input Leakage 10 pA
- Display Flashes on Overrange
- Display Hold Mode
- Auto-Zero Cycle Eliminates Zero Adjust Potentiometer
- 9V Battery Operation
- Low Power Consumption \qquad 1.1 mW

20 mV to 2.0 V Full-Scale Operation

- Non-Multiplexed LCD Drive for Maximum Viewing Angle

PIN CONFIGURATION

GENERAL DESCRIPTION

In many applications a graphical display is preferred over a digital display. Knowing a process or system operates, for example, within design limits is more valuable than a direct system variable readout. A bar or moving dot display supplies information precisely without requiring further interpretation by the viewer.

The TC826 is a complete analog-to-digital converter with direct liquid crystal (LCD) display drive. The 40 LCD data segments plus zero driver give a 2.5% resolution bar display. Full-scale differential input voltage range extends from 20 mV to 2 V . The TC826 sensitivity is $500 \mu \mathrm{~V}$. A low drift $35 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ internal reference, LCD backplane oscillator and driver, input polarity LCD driver, and overrange LCD driver make designs simple and low cost. The CMOS design required only $125 \mu \mathrm{~A}$ from a 9 V battery. In +5 V systems a TC7660 DC to DC converter can supply the -5 V supply. The differential analog input leakage is a low 10 pA .

Two display formats are possible. The BAR mode display is like a 'thermometer' scale. The LCD segment driver that equals the input plus all below it are on. The DOT mode activates only the segment equal to the input. In either mode the polarity signal is active for negative input signals. An overrange input signal causes the display to flash and activates the overrange annunciator. A hold mode can be selected that freezes the display and prevents updating.

The dual slope integrating conversion method with auto-zero phase maximizes noise immunity and eliminates zero-scale adjustment potentiometers. Zero-scale drift is a low $5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. Conversion rate is typically 5 per second and is adjustable by a single external resistor.

A compact, $0.5^{\prime \prime}$ square, flat package minimizes PC board area. The high pin count LSI package makes multiplexed LCD displays unnecessary. Low cost, direct drive LCD displays offer the widest viewing angle and are readily available. A standard display is available now for TC826 prototyping work.

A/D CONVERTER WITH BAR GRAPH DISPLAY OUTPUT

ORDERING INFORMATION

Part No.	Package	Temperature
TC826CBQ	60-Pin Plastic	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
	Quad Flat Package	
	Formed Leads	

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V^{+}to V^{-}) ... 15 V
Analog Input Voltage (either input) ${ }^{(1)}$................... $\mathrm{V}+$ to $\mathrm{V}-$
Package Power Dissipation
Flat Package 500 mW
Operating Temperature
'C' Devices \qquad $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 60 sec) $300^{\circ} \mathrm{C}$

Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to Absolute Maximum Rating Conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS:

unless otherwise stated $\mathrm{V}_{\mathrm{S}}=9 \mathrm{~V} ; \mathrm{ROSC}=430 \mathrm{k} \Omega ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$; Full-Scale $=20 \mathrm{mV}$.

No.	Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
1	-	Zero Input	$\mathrm{V}_{\mathbb{N}}=0.0 \mathrm{~V}$	-0	± 0	+0	Display
2	-	Zero Reading Drift	$\begin{aligned} & V_{\mathbb{I N}}=0.0 \mathrm{~V} \\ & 0^{\circ} \mathrm{C} \leq T_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \end{aligned}$	-	0.2	1	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
3	NL	Linearity Error	Max Deviation From Best Straight Line	-1	0.5	+1	Count
4	-	Rollover Error	$-\mathrm{V}_{\text {IN }}=+\mathrm{V}_{\text {IN }}$	-1	0	+1	Count
5	EN	Noise	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	-	60	-	$\mu \mathrm{V}_{\text {P-P }}$
6	ILK	Input Leakage Current	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	-	10	20	PA
7	CMRR	Common-Mode Rejection Ratio	$\begin{aligned} & \mathrm{VCM}= \pm 1 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \end{aligned}$	-	50	-	$\mu \mathrm{V} / \mathrm{N}$
8	-	Scale Factor Temperature Coefficient	$0 \leq T_{A} \leq 70^{\circ} \mathrm{C}$ External Ref. Temperature Coefficient $=0 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	-	1	-	ppm ${ }^{\circ} \mathrm{C}$
9	VCTC	Analog Common Temperature Coefficient	$250 \mathrm{k} \Omega$ Between Common and V^{+} $0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}$	-	35	100	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
10	-	Analog Common Voltage	$250 \mathrm{k} \Omega$ Between Common and $\mathrm{V}_{\mathrm{S}^{+}}$	2.7	2.9	3.35	V
11	VSD	LCD Segment Drive Voltage		4	5	6	$\mathrm{V}_{\mathrm{P}-\mathrm{P}}$
12	VBD	LCD Backplane Drive Voltage		4	5	6	VP-P
13	-	Power Supply Current		-	125	175	$\mu \mathrm{A}$

NOTES: 1. Input voltages may exceed the supply voltages when the input current is limited to $100 \mu \mathrm{~A}$.
2. Static sensitive device. Unused devices should be stored in conductive material to protect devices from static discharge and static fields.
3. Backplane drive is in phase with segment drive for 'off' segment and $180^{\circ} \mathrm{C}$ out of phase for 'on' segment. Frequency is 10 times conversion rate.
4. Logic input pins 58,59 , and 60 should be connected through $1 \mathrm{M} \Omega$ series resistors to $V_{S}-$ for logic 0 .

A/D CONVERTER WITH
 BAR GRAPH DISPLAY OUTPUT

PIN DESCRIPTION AND FUNCTION

Pin No.	Name	Description
1	Analog Common	Establishes the internal analog ground point. Analog common is set to 2.9 V below the positive supply by an internal zener reference circuit. The voltage difference beween $\mathrm{V}_{\mathrm{S}^{+}}$and analog-common can be used to supply the TC826 voltage reference input at REF IN (Pin 4).
2	+IN	Positive analog signal input.
3	-In	Negative analog signal input.
4	REF IN	Reference voltage positive input. Measured relative ato analog-common. REF IN \approx Full-Scale/2.
5	$\mathrm{C}_{\text {REF }+}$	Reference capacitor connection.
6	Cref -	Reference capacitor connection.
7	$\mathrm{V}^{+}{ }^{+}$	Positive supply terminal.
8	VBUF	Buffer output. Integration resistor connection.
9	CAZ	Negative comparator input. Auto-zero capacitor connection.
10	VINT	Integrator output. Integration capacitor connection.
11	VS-	Negative supply terminal.
12	OSC1	Oscillator resistor (Rosc) connection.
13	OSC2	Oscillator resistor (ROSC) connection.
14	BP	LCD Backplane driver.
15	BAR 0	LCD Segment driver: Bar 0
16	1	1
17	2	2
18	3	3
19	4	4
20	5	5
21	6	6
22	7	7
23	8	8
24	9	9
25	10	10
26	11	11
27	12	12
28	13	13
29	14	14
30	15	15
31	16	16
32	17	17
33	18	18
34	19	19
35	20	20
36	21	21
37	22	22
38	23	23
39	24	24
40	25	25
41	26	26
42	27	27
43	28	28

A/D CONVERTER WITH BAR GRAPH DISPLAY OUTPUT

TC826
PIN DESCRIPTION AND FUNCTION (Cont.)

Pin No.	Name	Description
44	BAR 29	LCD Segment driver: Bar 29
45	30	30
46	31	31
47	32	32
48	33	33
49	34	34
50	35	35
51	36	36
52	37	37
53	38	38
54	39	39
55	40	40
56	OR	LCD segment driver that indicated input out-of-range condition.
57	POL-	LCD segment driver that indicates input signal is negative.
58	BAR/ $\overline{\text { DOT }}$	Input logic signal that selects bar or dot display format. Normally in bar mode. Connect to $\mathrm{V}_{\mathrm{S}}{ }^{-}$through $1 \mathrm{M} \Omega$ resistor for Dot format.
59	$\overline{\text { HOLD }}$	Input logic signal that prevents display from changing. Pulled high internally to inactive state. Connect to V_{S} - through $1 \mathrm{M} \Omega$ series resistor for HOLD mode operation.
60	$\overline{\text { TEST }}$	Input logic signal. Sets TC805 to BAR display mode. Bar 0 to 40 , plus OR flash on and off. The POLLCD driver is on. Pulled high internally to inactive state. Connect to $V_{S}{ }^{-}$with $1 \mathrm{M} \Omega$ series resistor to activate.

Figure 1 Typical TC826 Circuit Connection

A/D CONVERTER WITH BAR GRAPH DISPLAY OUTPUT

DUAL SLOPE CONVERSION PRINCIPLES

The TC826 is a dual slope, integrating analog-to-digital converter. The conventional dual slope converter measurement cycle has two distinct phases:

- Input Signal Integration
- Reference Voltage Integration (Deintegration)

The input signal being converted is integrated for a fixed time period (TSI). Time is measured by counting clock pulses. An opposite polarity constant reference voltage is then integrated until the integrator output voltage returns to zero. The reference integration time is directly proportional to the input signal (TRI). (Figure 2).

In a simple dual slope converter a complete conversion requires the integrator output to 'ramp-up' and 'rampdown'.

A simple mathematical equation relates the input signal reference voltage and integration time:

$$
\frac{1}{R C} \int_{0}^{T S I} V_{\mathbb{N}}(t) d t=\frac{V_{R} T_{R I}}{R C}
$$

Where:
$\mathrm{V}_{\mathrm{R}}=$ Reference Voltage
$V_{\mathrm{SI}}=$ Signal Integration Time (Fixed)
$\mathrm{T}_{\mathrm{RI}}=$ Reference Voltage Integration Time (Variable)
For a constant $V_{I N}: V_{I N}=V_{R} \frac{T_{R I}}{T_{S I}}$

The dual slope converter accuracy is unrelated to the integrating resistor and capacitor values as long as they are stable during a measurement cycle. An inherent benefit is noise immunity. Noise spikes are integrated or averaged to zero during the integration periods. Integrating ADCs are immune to the large conversion errors that plague successive approximation converters in high noise environments. Interfering signals with frequency components at multiples of the averaging period will be attenuated. (Figure 3.)

The TC826 converter improves the conventional dual slope conversion technique by incorporating an auto-zero phase. This phase eliminates zero-scale offset errors and drift. A potentiometer is not required to obtain a zero output for zero input.

Figure 3 Normal-Mode Rejection of Dual Slope Converter

Figure 2 Basic Dual Slope Converter

AID CONVERTER WITH BAR GRAPH DISPLAY OUTPUT

TC826

THEORY OF OPERATION

Analog Section

In addition to the basic signal integrate and deintegrate cycles discussed above, the TC826 incorporates an autozero cycle. This cycle removes buffer amplifier, integrator, and comparator offset voltage error terms from the conversion. A true digital zero reading results without external adjusting potentiometers. A complete conversion consists of three cycles: an auto-zero, signal integrate and reference cycle. (Figures 4 and 5.)

Auto-Zero Cycle

During the auto-zero cycle the differential input signal is disconnected from the circuit by opening internal analog gates. The internal nodes are shorted to analog common (internal analog ground) to establish a zero input condition. Additional analog gates close a feedback loop around the integrator and comparator. This loop permits comparator
offset voltage error compensation. The voltage level established on CAZ compensates for device offset voltages.

The auto-zero cycle length is 19 counts minimum. Unused time in the deintegrate cycle is added to the autozero cycle.

Signal Integration Cycle

The auto-zero loop is opened and the internal differential inputs connect to $+\mathbb{I N}$ and $-\mathbb{I N}$. The differential input signal is integrated for a fixed time period. The TC826 signal integration period is 20 clock periods or counts. The externally set clock frequency is divided by 32 before clocking the internal counters. The integration time period is:

$$
\mathrm{T}_{\mathrm{sI}}=\frac{32}{\text { Fosc }} \times 20
$$

Where:
Fosc = External Clock Frequency

Figure 4 TC826 Analog Section

A/D CONVERTER WITH BAR GRAPH DISPLAY OUTPUT

The differential input voltage must be within the device common-mode range when the converter and measured system share the same power supply common (ground). If the converter and measured system do not share the same power supply common, $-\mathbb{N}$ should be tied to analog-common. This is the usual connection for battery operated systems. Polarity is determined at the end of signal integrate signal phase. The sign bit is a true polarity indication in that signals less than 1 LSB are correctly determined. This allows precision null detection limited only by device noise and system noise.

Reference Integrate Cycle

The final phase is reference integrate or deintegrate. $\mathbb{I N}$ is internally connected to analog common and $+\mathbb{I N}$ is connected with the correct polarity to cause the integrator output to return to zero. The time required for the output to return to zero is proportional to the input signal and is between 0 and 40 counts. The digital reading displayed is:

$$
20=\frac{V_{I N}}{V_{\text {REF }}}
$$

System Timing

The oscillator frequency is divided by 32 propr to clocking the internal counters. The three phase measurement
cycle takes a total of 80 clock pulses. The 80 count cycle is independent of input signal magnitude.

Each phase of the measurement cycle has the following length:

- Auto-Zero Phase: 19 to 59 Counts

For signals less than full-scale the auto-zero is assigned the unused reference integrate time period.

- Signal Integrate: 20 Counts

This time period is fixed. The integration period is:

$$
T_{\mathrm{SI}}=20\left[\frac{32}{\mathrm{~F}_{\mathrm{osc}}}\right]
$$

Where Fosc is the externally set clock frequency.

- Reference Integrate: 0 to 41 Counts

Reference Voltage Selection

A full-scale reading requires the input signal be twice the reference voltage. The reference potential is measured between REF IN (Pin 4) and Analog-Common (Pin 1).

Required Full-Scale Voltage	$\mathbf{V}_{\text {REF }}$
20 mV	10 mV
2 V	1 V

Figure 5 TC826 Conversion Has Three Phases

A/D CONVERTER WITH BAR GRAPH DISPLAY OUTPUT

The internal voltage reference potential availabe at analog-common will normally be used to supply the converters reference. This potential is stable whenever the supply potential is greater than approximately 7 V . In applications where an externally generated reference voltage is desired refer to Figure 6.

The reference voltage is adjusted with a near full-scale input signal. Adjust for proper LCD display readout.

Figure 6 External Reference

Components Value Selection

Integrating Resistor (RINT)

The desired full-scale input voltage and output current capability of the input buffer and integrator amplifier set the integration resistor value. The internal class A output stage amplifiers will supply a $1 \mu \mathrm{~A}$ drive durrent with minimal linearity error. RINT is easily calculated for a $1 \mu \mathrm{~A}$ full-scale current:

$$
\mathrm{R}_{\mathrm{INT}}=\frac{\text { Full-Scale Input Voltage }(\mathrm{V})}{1 \times 10^{-6}}=\frac{\mathrm{VFS}}{1 \times 10^{-6}}
$$

Where VFS = Full-Scale Analog Input

Integrating Capacitor (CINT)

The integrating capacitor should be slected to maximize intgrator output swing. The integrator output will swing to within 0.4 V of $\mathrm{V}_{\mathrm{S}^{+}}$or $\mathrm{V}_{\mathrm{S}^{-}}$without saturating.

The integrating capacitor is easily calculated:

$$
\mathrm{CINT}=\frac{\mathrm{VFS}}{\text { RINT }}\left(\frac{640}{\text { FOSC } \times \text { VINT }}\right)
$$

Where : \quad VINT $=$ Integrator Swing
FOSC = Oscillator Frequency

The integrating capacitor should be selected for low dielectric absorption to prevent roll-over errors. Polypropylene capacitors are suggested.

Auto-Zero Capacitor (CAZ)

CAZ should be 2-3 times larger than the integration capacitor. A polypropylene capacitor is suggested. Typical values from $0.14 \mu \mathrm{~F}$ to $0.068 \mu \mathrm{~F}$ are satisfactory.

Reference Capacitor (CREF)

A $1 \mu \mathrm{~F}$ capacitor is suggested. Low leakage capacitors such as polypropylene are recommended.

Several capacitor/resistor combinations for common full-scale input conditions are given in Table 1.

Table 1 Suggested Component Values

	2 V Full-Scale $V_{\text {REF }} \approx 1 \mathrm{~V}$	200 mV Full-Scale $V_{\text {REF }} \approx 100 \mathrm{mV}$	20 mV Full-Scale $V_{\text {REF }} \approx 10 \mathrm{mV}$
$\mathrm{R}_{\text {INT }}$	$2 \mathrm{M} \Omega$	$200 \mathrm{k} \Omega$	$20 \mathrm{~kg} \Omega$
$\mathrm{C}_{\text {INT }}$	$0.033 \mu \mathrm{~F}$	$0.033 \mu \mathrm{~F}$	$0.033 \mu \mathrm{~F}$
$\mathrm{C}_{\mathrm{REF}}$	$1 \mu \mathrm{~F}$	$1 \mu \mathrm{~F}$	$1 \mu \mathrm{~F}$
C_{AZ}	$0.068 \mu \mathrm{~F}$	$0.068 \mu \mathrm{~F}$	$0.14 \mu \mathrm{~F}$
$\mathrm{R}_{\mathrm{OSC}}$	$430 \mathrm{k} \Omega$	$430 \mathrm{k} \Omega$	$430 \mathrm{k} \Omega$

NOTES: Approximately 5 conversions/second.

Differential Signal Inputs

The TC826 is designed with true differential inputs and accepts input signals within the input stage common-mode voltage range (VCM). The typical range is $\mathrm{V}^{+}-1$ to $\mathrm{V}^{-}+1 \mathrm{~V}$. Common-mode voltages are removed from the system when the TC826 operates from a battery or floating power source (Isolated from measured system) and -IN is connected to analog-common ($V_{\text {COM }}$).

In systems where common-mode rejection ratio minimizes error. Common-mode voltages do, however, affect the integrator output level. Integrator output saturation must be prevented. A worse case condition exists if a large positive V_{CM} exists in conjunction with a full-scale negative differential signal. The negative signal drives the integrator output positive along with V_{CM}. For such applications, the integrator output swing can be reduced below the recommended 2 V full-scale swing. The integrator output will swing within 0.3 V of $\mathrm{V}_{\mathrm{S}^{+}}$or $\mathrm{V}_{\mathrm{S}^{-}}$without increased linearity error.

Digital Section

The TC826 contains all the segment drivers necessary to drive a liquid crystal display (LCD). An LCD backplane driver is included. The backplane frequency is the external clock frequency divided by 256. A $430 \mathrm{k} \Omega$ osc gets the backplane frequency to approximately 55 Hz with a 5 V nominal amplitude. When a segment driver is in phase with the backplane signal the segment is 'OFF'. An out-of-phase segment drive signal causes the segment to be 'ON' or

A/D CONVERTER WITH

 BAR GRAPH DISPLAY OUTPUTvisible. This AC drive configuration results in negligible DC voltage across each LCD segment. This insures long LCD display life. The polarity segment drive, -POL , is 'ON' for negative analog inputs. If $+I N$ and $-I N$ are reversed this indicator would reverse. The TC826 transfer function is shown in Figure 7.

Figure 7 TC826 Transfer Function

BAR / $\overline{\text { DOT }}$ Input (Pin 58)

The BAR / DOT input allows the user to select the display format. The TC826 powers up in the BAR mode. Select the DOT display format by connecting BAR / DOT to the negative supply (Pin 11) through a $1 \mathrm{M} \Omega$ resistor.

HOLD Input (Pin 59)

The TC826 data ouput latches are not updated at the end of each conversion if HOLD is stied to the negative supply (Pin 11) through a $1 \mathrm{M} \Omega$ series resistor. The LCD display continously displays the previous conversion results.

The HOLD pin is normally pulled high by an internal pullup.

TEST Input (Pin 59)

The TC826 enters a test mode with the $\overline{\text { TEST }}$ input connected to the negative supply (Pin 11). The connection must be made through a $1 \mathrm{M} \Omega$ resistor. The TEST input is normally internally pulled high. A low input sets the output data latch to all ones. The BAR display mode is set. The 41 LCD output segments (zero plus 40 data segments) and overrange annuniciator flash on and off at $1 / 4$ the conversion rate. The polarity annunciator (POL-) segment will be on but not flashing

Overrange Display Operation (OR, Pin 56)

An out-of-range input signal will be indicated on the LCD display by the OR annunciator driver (Pin56) becoming active.

In the BAR display format the 41 bar segments and the overrange annunciator, OR, will flash ON and OFF. The flash rate is on fourth the conversion rate (FOSC/2560).

In the DOT display mode, OR flashes and all other data segment drivers are off.

Polarity Indication (POL-Pin 57)

The TC826 converts and displays data for positive and negative input signals. The POL-LCD segment driver (Pin 57) is active for negative signals.

Oscillator Operation

The TC826 external oscillator frequency, FOSC, is set by resistor ROSC connected between pins 12 and 13. The oscillator frequency vs. resistance curve is shown in Figure 8 .

Figure 8 Oscillator Frequency vs. ROSC
FOSC is divided by 32 to provide an internal system clock, FYSY. Each conversion requires 80 internal clock cycles. The internal system clock is divided by 8 to provide the LCD backplane drive frequency. The display flash rate during an input out-of-range signal is set by dividing FSYS by 320. (See Figure 9.)

The internal oscillator may be bypassed by driving OSCl (Pin 12) with an external signal generator. OSC2 (Pin 13) should be left unconnected.

The oscillator should swing from $\mathrm{V}_{\mathrm{S}^{+}}$to $\mathrm{V}_{\mathrm{S}^{-}}$in single supply operation (Figure 10A). In dual supply operation the signal should swing from power supply ground to $\mathrm{V}_{\mathrm{s}^{+}}$.

Figure 10 External Oscillator Connection

LCD Display Format

The input signal can be displayed in two formats (Figure 11). The BAR / DOT input (Pin 58) selects the format. The TC826 measurement cycle operates indentically for either mode.

A. BAR MODE

Figure 11 Disp;ay Option Formats

BAR Format

The TC826 power-ups in the BAR mode. BAR / $\overline{D O T}$ is pulled high internally. This display format is similar to a thermometer display. All bars/LCD segments, including zero, below the bar/LCD segment equaling the input signal level are on. A half-scale input signal, for example, would be displayed with BAR 0 to BAR 20 on.

DOT Format

By connecting BAR / $\overline{D O T}$ to $V_{S^{-}}$through a $1 \mathrm{M} \Omega$ resistor the DOT mode is selected. Only the BAR LCD segment equaling the input signal is on. The zero segment is on for zero input.

This mode is useful for moving cursor or 'needle' applications.

A/D CONVERTER WITH BAR GRAPH DISPLAY OUTPUT

TC826

LCD DISPLAYS

Most end products will use a custom LCD display for final production. Custom LCD displays are low cost and available from all manufacturers. The TC826 interfaces to non-multiplexed LCD displays. A backplane driver is included on chip.

To speed initial evaluation and prototype work a standard TC826 LCD display is available from Varitronix.
Varitronix Ltd.
9/F Linen House, 61-63, King Yip Street
Kwun Tjong, Hong Kong
Telex: 36643 VTRAX HX
USA Office:
VL Electronics Inc.
3161 Los Feliz Blvd., Suite 303
Los Angeles, CA 90039
Tel: 213/661-8883
Telex: 821554

- Part No.: VBG412-1 (Pin Connectors)
- Part No.: VBG412-2 (Elastomer Connectors)

Other standard LCD displays suitable for development work are available in both linear and circular formats. One manufacturer is:

UCE Inc.
24 Fitch Street
Norwalk, CT 06855
Tel: 203/838-7509

- Part No. 5040: 50 segment circular display with 3 didgit numeric scale.
- Part No. 5020: 50 segment linear display.

LCD BACKPLANE DRIVER (PIN 14)

Additional drive electronics is not required to interface the TC826 to an LCD display. The TC826 has an on-chip backplane generator and driver. The backplane frequency is:

$$
\mathrm{FBP}=\mathrm{FOSC} / 256
$$

Figure 12 gives typical backplane driver rise/fall time v. backplane capacitance.

Figure 12 Backplane Driver Rise/Fall Time vs. Capacitance

FLAT PACKAGE SOCKET

Sockets suitable for prototype work are available. A USA source is:
Nepenthe Distribution
2471 East Bayshore, Suite 520
Palo Alto, CA 94303
Tel: 415/856-9332
Telex: 910/373-2060
‘BQ’ Socket Part No.: IC51-064-042 BQ

NOTES

PERSONAL COMPUTER DATA ACQUISITION ADC

FEATURES

- Guaranteed 200 kHz Operation
- Guaranteed Zero Reading for OV Input
- Input Sensitivity \qquad $100 \mu \mathrm{~V}$
- Multiplexed BCD Data Output
- No Sample and Hold Required
- UART and Microprocessor Interface Blinking Display Indicates Overrange
- Control Outputs for Auto-Ranging
- Available in PLCC and Surface-Mount Packages
- Low-Power CMOS Technology
- Pin Compatible With TC7135, ICL7135, MAX7135 and SI7135
- Single 5V Operation With TC7660 DC-to-DC Converter
- Extended Temperature Range Operation \qquad $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

APPLICATIONS

- Personal Computer Data Acquisition
- Scales
- Panel Meters
- Digital Pressure Meters
- Chemical Concentration
- Temperature
- Process Variable Measurement
- Flow Rate
- Temperature
- Speed
- Concentration
- Electrostatic Field Measurement
- Voltage, Resistance, Current Measurements
- Light Intensity
- Toxic Level Measurement
- HP-IL Bus Instrumentation

TYPICAL APPLICATION

PIN CONFIGURATIONS

PERSONAL COMPUTER DATA ACQUISITION ADC

GENERAL DESCRIPTION

The TC835 is a low-power, 4-1/2 digit (0.005% resolution), BCD analog-to-digital converter (ADC) that has been characterized for 200 kHz clock rate operation. The five conversions per second rate is nearly twice as fast as the ICL7135 or TC7135.

The multiplexed BCD data output is perfect for interfacing to personal computers. The low-cost, greater than 14bit high-resolution, and $100 \mu \mathrm{~V}$ sensitivity makes the TC835 the most cost-effective data converter available today.

The TC835 (like the TC7135) does not use the external diode-resistor roll-over error compensation circuits required by the ICL7135. This improves circuit density and simplifies circuit board layout.

The device incorporates "integrator output zero" and "auto-zero" phases on each conversion cycle, guaranteeing a stable zero output for 0 V input, even when operated at the higher clock rate.

Microprocessor-based data acquisition systems are supported by the BUSY and STROBE outputs, along with the RUN/ HOLD input of the TC835. The overrange, underrange, busy, and run/hold control functions and multiplexed BCD data outputs make the TC835 the ideal converter for $\mu \mathrm{P}$-based scales and measurement systems and intelligent panel meters. (See Application Notes 16 and 17 for microprocessor interface techniques.)

The TC835 interfaces with full-function LCD and LED display decoder/drivers (TC7211A or TC7212A). The UNDERRANGE and OVERRANGE outputs may be used to implement an auto-ranging scheme or special display functions.

This device is pin compatible with, and incorporates all the features of, the popular TC7135 and ICL7135. The performance of existing designs may be upgraded to faster conversion rates by lowering the value of the integrating capacitor and increasing the clock frequency (see "Component Selection").

ORDERING INFORMATION

Part No.	Package	Temperature Range
TC835CPI	28-Pin Plastic	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC835CKW	44 -Pin Flat	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC835CLI	28 -Pin PLCC	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC835CBQ	$60-$-Pin Flat	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC835EJI	28-Pin CerDIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC835EPI	28-Pin Plastic	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC835EKW	44 -Pin Flat	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC835ELI	28 -Pin PLCC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

NOTE: Tape and reel available for 44-pin flat and 28-pin PLCC packages.

PERSONAL COMPUTER DATA ACQUISITION ADC

TC835

ABSOLUTE MAXIMUM RATINGS (Note 1)

Positive Supply Voltage ...6V
Negative Supply Voltage ..-9V
Analog Input Voltage (Pin 9 or 10) V^{+}to V^{-}(Note 2)
Reference Input Voltage (Pin 2) \qquad
Clock Input Voltage
\qquad V^{+}to $V-$

Operating Temperature Range $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $+300^{\circ} \mathrm{C}$

Package Power Dissipation

CerDIP (J)
Plastic (P) 0.8 W

Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to Absolute Maximum Rating Conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{CLOCK}}=200 \mathrm{kHz}, \mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}$

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
Analog						
	Display Reading With Zero Volt Input	Notes 3 and 4	-0.0000	± 0.0000	+0.0000	Display Reading
$\overline{T C z}$	Zero Reading Temperature Coefficient	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ Note 5	-	0.5	2	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\overline{\text { TC }}$ FS	Full-Scale Temperature Coefficient	$\begin{aligned} & \mathrm{V}_{\mathbb{N}}=2 \mathrm{~V} \\ & \text { Notes } 5 \text { and } 6 \end{aligned}$	-	-	5	ppm $/{ }^{\circ} \mathrm{C}$
NL	Nonlinearity Error	Note 7	-	0.5	1	Count
DNL	Differential Linearity Error	Note 7	-	0.01	-	LSB
	Display Reading in Ratiometric Operation	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{REF}}$ Note 3	+0.9997	+0.9998	+1.0000	Display Reading
\pm FSE	\pm Full-Scale Symmetry Error (Roll-Over Error)	$-\mathrm{V}_{\mathrm{IN}}=+\mathrm{V}_{\mathrm{IN}}$ Note 8	-	0.5	1	Count
IN	Input Leakage Current	Note 4	-	1	10	pA
e_{N}	Noise	Peak-to-Peak Value Not Exceeded 95\% of Time	-	15	-	$\mu \mathrm{V}_{\text {P-P }}$

Digital

IL	Input Low Current	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	-	10	100	$\mu \mathrm{A}$
IH	Input High Current	$\mathrm{V}_{\text {IN }}=+5 \mathrm{~V}$	-	0.08	10	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OL }}$	Output Low Voltage	$\mathrm{l}_{\mathrm{OL}}=1.6 \mathrm{~mA}$	-	0.2	0.4	V
$\overline{\mathrm{V}_{\text {OH }}}$	Output High Voltage $B_{1}, B_{2}, B_{4}, B_{8}, D_{1}-D_{5}$ Busy, Polarity, Overrange, Underrange, Strobe	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=10 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.4 \\ & 4.9 \end{aligned}$	$\begin{gathered} 4.4 \\ 4.99 \end{gathered}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	v
flck	Clock Frequency	Note 10	0	200	1200	kHz

Power Supply

V^{+}	Positive Supply Voltage		4	5	6	V
V-	Negative Supply Voltage		-3	-5	-8	V
$\underline{+}$	Positive Supply Current	$\mathrm{f}_{\text {cLK }}=0 \mathrm{~Hz}$	-	1	3	mA
F	Negative Supply Current	$\mathrm{f}_{\text {clk }}=0 \mathrm{~Hz}$	-	0.7	3	mA
PD	Power Dissipation	$\mathrm{f}_{\text {clk }}=0 \mathrm{~Hz}$	-	8.5	30	mW

NOTES: 1. Functional operation is not implied.
2. Limit input current to under $100 \mu \mathrm{~A}$ if input voltages exceed supply voltage.
3. Full-scale voltage $=2 \mathrm{~V}$.
4. $V_{I N}=O V$.
5. $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$.
6. External reference temperature coefficient less than $0.01 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
7. $-2 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq+2 \mathrm{~V}$. Error of reading from best fit straight line.
8. $\left|\mathrm{V}_{\mathbb{N}}\right|=1.9959$.
9. Test circuit shown in Figure 1.
10. Specification related to clock frequency range over which the TC835 correctly performs its various functions. increased errors result at higher operating frequencies.

Figure 1 Test Circuit

Figure 2 Digital Logic Input

Figure 3B System Zero Phase

Figure 3C Input Signal Integration Phase

Figure 3D Reference Voltage Integration Cycle

Figure 3E Integrator Output Zero Phase

GENERAL THEORY OF OPERATION

Dual-Slope Conversion Principles

The TC835 is a dual-slope, integrating analog-to-digital converter. An understanding of the dual-slope conversion technique will aid in following the detailed TC835 operational theory.

The conventional dual-slope converter measurement cycle has two distinct phases:
(1) Input signal integration
(2) Reference voltage integration (deintegration)

The input signal being converted is integrated for a fixed time period. Time is measured by counting clock pulses. An opposite polarity constant reference voltage is then integrated until the integrator output voltage returns to zero. The reference integration time is directly proportional to the input signal.

In a simple dual-slope converter, a complete conversion requires the integrator output to "ramp-up" and "rampdown."

A simple mathematical equation relates the input signal, reference voltage, and integration time:

$$
\frac{1}{R C} \int_{0}^{t_{S I}} V_{I N}(t) d t=\frac{V_{R} t_{R I}}{R C}
$$

where:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{R}}=\text { Reference voltage } \\
& \mathrm{t}_{\mathrm{SI}}=\text { Signal integration time (fixed) } \\
& \mathrm{t}_{\mathrm{RI}}=\text { Reference voltage integration time (variable). }
\end{aligned}
$$

For a constant V_{IN} :

$$
\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{R}}\left[\frac{\mathrm{t}_{\mathrm{RI}}}{\mathrm{t}_{\mathrm{SI}}}\right] .
$$

The dual-slope converter accuracy is unrelated to the integrating resistor and capacitor values, as long as they are stable during a measurement cycle. An inherent benefit is noise immunity. Noise spikes are integrated, or averaged, to zero during the integration periods. Integrating ADCs are immune to the large conversion errors that plague successive approximation converters in high-noise environments. (See Figure 4.)

TC835 Operational Theory

The TC835 incorporates a system zero phase and integrator output voltage zero phase to the normal twophase dual-slope measurement cycle. Reduced system errors, fewer calibration steps, and a shorter overrange recovery time result.

The TC835 measurement cycle contains four phases:
(1) System zero
(2) Analog input signal integration
(3) Reference voltage integration
(4) Integrator output zero

Internal analog gate status for each phase is shown in Table I.

Figure 4 Basic Dual-Slope Converter

Table I. Internal Analog Gate Status

Conversion Cycle Phase	SW1	Internal Analog Gate Status					SW ${ }_{\text {Iz }}$	Reference Schematic
System Zero				Closed	Closed	Closed		3 A
Input Signal Integration	Closed							3 B
Reference Voltage Integration		Closed*				Closed		3 C
Integrator Output Zero						Closed	Closed	3D

*NOTE: Assumes a positive polarity input signal. $\mathrm{SW}_{\mathrm{FI}}^{-}$would be closed for a negative input signal.

System Zero (Figure 3B)

During this phase, errors due to buffer, integrator, and comparator offset voltages are compensated for by charging $\mathrm{C}_{A Z}$ (auto-zero capacitor) with a compensating error voltage. With a zero input voltage the integrator output will remain at zero.

The external input signal is disconnected from the internal circuitry by opening the two SW switches. The internal input points connect to ANALOG COMMON. The reference capacitor charges to the reference voltage potential through SW_{R}. A feedback loop, closed around the integrator and comparator, charges the $\mathrm{C}_{A Z}$ capacitor with a voltage to compensate for buffer amplifier, integrator, and comparator offset voltages.

Analog Input Signal Integration (Figure 3C)

The TC835 integrates the differential voltage between the +INPUT and -INPUT pins. The differential voltage must be within the device common-mode range; -1 V from either supply rail, typically.

The input signal polarity is determined at the end of this phase.

Reference Voltage Integration (Figure 3D)

The previously-charged reference capacitor is connected with the proper polarity to ramp the integrator output back to zero. The digital reading displayed is:

$$
\text { Reading }=10,000\left[\frac{\text { Differential Input }}{V_{\text {REF }}}\right] .
$$

Integrator Output Zero (Figure 3E)
This phase guarantees the integrator output is at 0 V when the system zero phase is entered and that the true system offset voltages are compensated for. This phase normally lasts 100 to 200 clock cycles. If an overrange condition exists, the phase is extended to 6200 clock cycles.

Analog Section Functional Description

Differential Inputs
(+INPUT, Pin 10 and -INPUT, Pin 9)
The TC835 operates with differential voltages within the input amplifier common-mode range. The input amplifier common-mode range extends from 0.5 V below the positive supply to 1 V above the negative supply. Within this com-mon-mode voltage range, an 86 dB common-mode rejection ratio is typical.

The integrator output also follows the common-mode voltage. The integrator output must not be allowed to saturate. A worst-case condition exists, for example, when a large positive common-mode voltage with a near full-scale negative differential input voltage is applied. The negative input signal drives the integrator positive when most of its swing has been used up by the positive common-mode voltage. For these critical applications the integrator swing can be reduced to less than the recommended 4 V full-scale swing, with some loss of accuracy. The integrator output can swing within 0.3 V of either supply without loss of linearity.

ANALOG COMMON Input (Pin 3)

ANALOG COMMON is used as the -INPUT return during auto-zero and deintegrate. If-INPUT is different from ANALOG COMMON, a common-mode voltage exists in the system. This signal is rejected by the excellent CMRR of the converter. In most applications, -INPUT will be set at a fixed, known voltage (power supply common, for instance). In this application, ANALOG COMMON should be tied to the same point, thus removing the common-mode voltage from the converter. The reference voltage is referenced to ANALOG COMMON.

REFERENCE Voltage Input (REF IN, Pin 2)

The REFIN input must be a positive voltage with respect to ANALOG COMMON. Two reference voltage circuits are shown in Figure 5.

PERSONAL COMPUTER DATA ACQUISITION ADC

Figure 5 Using an External Reference

Digital Section Functional Description

The major digital subsystems within the TC835 are illustrated in Figure 6, with timing relationships shown in Figure 7. The multiplexed $B C D$ output data can be displayed on LCD or LED display with the TC7211A (LCD) or TC7212A (LED) 4-digit display drivers.

The digital section is best described through a discussion of the control signals and data outputs.

RUN/HOLD Input (Pin 25)
When left open, this pin assumes a logic " 1 " level. With a $R / \bar{H}=1$, the TC835 performs conversions continuously, with a new measurement cycle beginning every 40,002 clock pulses.

When R / \bar{H} changes to a logic " 0 ," the measurement cycle in progress will be completed, and data held and displayed as long as the logic " 0 " condition exists.

A positive pulse ($>300 \mathrm{~ns}$) at R/H initiates a new measurement cycle. The measurement cycle in progress when R / \bar{H} initially assumed the logic " 0 " state must be completed before the positive pulse can be recognized as a single conversion run command.

Figure 6 Digital Section Functional Diagram

Figure 7 Timing Diagrams for Outputs

PERSONAL COMPUTER DATA ACQUISITION ADC

The new measurement cycle begins with a 10,001count auto-zero phase. At the end of this phase the busy signal goes high.

STROBE Output (Pin 26)

During the measurement cycle, the $\overline{\text { STROBE }}$ control line is pulsed low five times. The five low pulses occur in the center of the digit drive signals ($D_{1}, D_{2}, D_{3}, D_{5}$, Figure 8).
D_{5} (MSD) goes high for 201 counts when the measurement cycles end. In the center of the D_{5} pulse, 101 clock pulses after the end of the measurement cycle, the first STROBE occurs for one-half clock pulse. After the D_{5} digit strobe, D_{4} goes high for 200 clock pulses. The STROBE goes low 100 clock pulses after D_{4} goes high. This continues through the D_{1} digit drive pulse.

The digit drive signals will continue to permit display scanning. STROBE pulses are not repeated until a new measurement is completed. The digit drive signals will not continue if the previous signal resulted in an overrange condition.

The active low $\overline{\text { STROBE pulses aid } B C D}$ data transfer to UARTs, processors and external latches. (See Application Note 16.)

BUSY Output (Pin 21)

At the beginning of the signal-integration phase, BUSY goes high and remains high until the first clock pulse after the integrator zero crossing. BUSY returns to the logic " 0 " state after the measurement cycle ends in an overrange condition. The internal display latches are loaded during the first clock pulse after BUSY, and are latched at the clock pulse end. The BUSY signal does not go high at the beginning of the measurement cycle, which starts with the auto-zero cycle.

OVERRANGE Output (Pin 27)

If the input signal causes the reference voltage integration time to exceed 20,000 clock pulses, the OVERRANGE output is set to a logic "1." The overrange output register is set when BUSY goes low, and is reset at the beginning of the next reference-integration phase.

UNDERRANGE Output (Pin 28)

If the output count is 9% of full scale or less $(\leq 1800$ counts), the underrange register bit is set at the end of BUSY. The bit is set low at the next signal-integration phase.

POLARITY Output (Pin 23)

A positive input is registered by a logic " 1 "polarity signal. The polarity bit is valid at the beginning of reference integrate and remains valid until determined during the next conversion.

Figure 8 Strobe Signal Pulses Low Five Times per Conversion
The polarity bit is valid even for a zero reading. Signals less than the converter's LSB will have the signal polarity determined correctly. This is useful in null applications.

DIGIT Drive Outputs (Pins 12, 17, 18, 19 and 20)
Digit drive signals are positive-going signals. The scan sequence is D_{5} to D_{1}. All positive pulses are 200 clock pulses wide, except D_{5}, which is 201 clock pulses wide.

All five digits are scanned continuously, unless an overrange condition occurs. In an overrange condition, all digit drives are held low from the final STROBE pulse until the beginning of the next reference-integrate phase. The scanning sequence is then repeated. This provides a blinking visual display indication.

BCD Data Outputs (Pins 13, 14, 15 and 16)
The binary coded decimal (BCD) bits $B_{8}, B_{4}, B_{2}, B_{1}$, are positive-true logic signals. The data bits become active simultaneously with the digit drive signals. In an overrange condition, all data bits are at a logic "0" state.

APPLICATIONS INFORMATION

Component Value Selection

The integrating resistor is determined by the full-scale input voltage and the output current of the buffer used to charge the integrator capacitor. Both the buffer amplifier and the integrator have a class A output stage, with $100 \mu \mathrm{~A}$ of quiescent current. A $20 \mu \mathrm{~A}$ drive current gives negligible linearity errors. Values of $5 \mu \mathrm{~A}$ to $40 \mu \mathrm{~A}$ give good results. The exact value of an integrating resistor for a $20 \mu \mathrm{~A}$ current is easily calculated.

$$
\mathrm{R}_{\mathrm{INT}}=\frac{\text { full-scale voltage }}{20 \mu \mathrm{~A}}
$$

Integrating Capacitor

The product of integrating resistor and capacitor should be selected to give the maximum voltage swing that ensures the tolerance build-up will not saturate the integrator swing (approximately 0.3 V from either supply). For $\pm 5 \mathrm{~V}$ supplies and ANALOG COMMON tied to supply ground, $a \pm 3.5 \mathrm{~V}$ to $\pm 4 \mathrm{~V}$ full-scale integrator swing is adequate. $\mathrm{A} 0.10 \mu \mathrm{~F}$ to 0.47 $\mu \mathrm{F}$ is recommended. In general, the value of $\mathrm{C}_{\mathrm{INT}}$ is given by:

$$
\begin{aligned}
\mathrm{C}_{\mathrm{INT}} & =\frac{[10,000 \times \text { clock period }] \times l_{\mathrm{INT}}}{\text { Integrator output voltage swing }} \\
& =\frac{(10,000)(\text { clock period })(20 \mu \mathrm{~A})}{\text { Integrator output voltage swing }}
\end{aligned}
$$

A very important characteristic of the integrating capacitor is that it has low dielectric absorption to prevent rollover or ratiometric errors. A good test for dielectric absorption is to use the capacitor with the input tied to the reference. This ratiometric condition should read half-scale 0.9999. any deviation is probably due to dielectric absorption. Polypropylene capacitors give undetectable errors at reasonable cost. Polystyrene and polycarbonate capacitors may also be used in less critical applications.

Auto-Zero and Reference Capacitors

The size of the auto-zero capacitor has some influence on the noise of the system. A large capacitor reduces the noise. The reference capacitor should be large enough such that stray capacitance to ground from its nodes is negligible.

The dielectric absorption of the reference capacitor and auto-zero capacitor are only important at power-on, or when the circuit is recovering from an overload. Smaller or cheaper capacitors can be used if accurate readings are not required for the first few seconds of recovery.

Reference Voltage

The analog input required to generate a full-scale output is $\mathrm{V}_{\mathrm{IN}}=2 \mathrm{~V}_{\text {REF }}$.

The stability of the reference voltage is a major factor in the overall absolute accuracy of the converter. For this reason, it is recommended that a high-quality reference be used where high-accuracy absolute measurements are being made. Suitable references are:

Part Type	Manufacturer
TC04A	Teledyne Components
TC8069	

Conversion Timing

Line Frequency Rejection

A signal integration period at a multiple of the 60 Hz line frequency will maximize 60 Hz "line noise" rejection.

A 200 kHz clock frequency will reject 60 Hz and 400 Hz noise. This corresponds to five readings per second.

Conversion Rate vs Clock Frequency

Oscillator Frequency (kHz)	Conversion Rate (Conv/Sec)		
100	2.5		
120	3		
200	5		
300	7.5		
400	10		
800	20		
1200	30		
Oscillator Frequency (kHz)	Line F 60 Hz	Frequency z 50 Hz	jection 400 Hz
50.000	-	-	-
53.333	-	-	-
66.667	-	-	-
80.000	-	-	-
83.333	-	-	-
100.000	-	-	-
125.000	-	-	-
133.333	-	-	-
166.667	-	-	-
200.000	-	-	-
250.000	-	-	-

The conversion rate is easily calculated:
$\begin{gathered}\text { Conversion Rate } \\ (\text { Readings } 1 / \mathrm{sec})\end{gathered}=\frac{\text { Clock Frequency }(\mathrm{Hz})}{4000}$

PERSONAL COMPUTER DATA ACQUISITION ADC

Power Supplies and Grounds

Power Supplies

The TC835 is designed to work from $\pm 5 \mathrm{~V}$ supplies. For single +5 V operation, a TC7660 can provide a -5 V supply.

Grounding

Systems should use separate digital and analog ground systems to avoid loss of accuracy.

Displays and Driver Circuits

Teledyne Components manufactures two display decoder/driver circuits to interface the TC835 to an LCD or LED display. Each drive has 28 outputs for driving four 7 -segment digit displays.

Device	Package	Description
TC7211AIPL	40-Pin Epoxy	4-Digit LCD Driver/Decoder
TC7212AIPL	40-Pin Epoxy	4-Digit LED Driver/Decoder

Several sources exist for LCD and LED display:

Manufacturer	Address	Display Type
Hewlett Packard 640 Page Mill Rd. LED Components Palo Alto, CA 94304 Litronix, Inc. 19000 Homestead Rd. Cupertino, CA 94010 LED AND 770 Airport Blvd. Burlingame, CA 94010 LCD and LED Epson America, Inc. 3415 Kanhi Kawa St. Torrence, CA 90505 LCD		

High-Speed Operation

The maximum conversion rate of most dual-slope A/D converters is limited by the frequency response of the comparator. The comparator in this circuit follows the integrator ramp with a 3μ s delay, and at a clock frequency of 200 kHz ($5 \mu \mathrm{~s}$ period), half of the first reference integrate clock period is lost in delay. This means that the meter reading will change from 0 to 1 with a $50 \mu \mathrm{~V}$ input, 1 to 2 with $150 \mu \mathrm{~V}$, 2 to 3 at $250 \mu \mathrm{~V}$, etc. This transition at mid-point is considered desirable by most users; however, if the clock frequency is increased appreciably above 200 kHz , the instrument will flash "1" on noise peaks even when the input is shorted.

For many dedicated applications where the input signal is always of one polarity, the delay of the comparator need not be a limitation. Since the nonlinearity and noise do not increase substantially with frequency, clock rates of up to $\sim 1 \mathrm{MHz}$ may be used. For a fixed clock frequency, the extra count or counts caused by comparator delay will be a constant and can be subtracted out digitally.

The clock frequency may be extended above 200 kHz without this error, however, by using a low-value resistor in series with the integrating capacitor. The effect of the resistor is to introduce a small pedestal voltage on to the integrator output at the beginning of the reference integrate phase. By careful selection of the ratio between this resistor and the integrating resistor (a few tens of ohms in the recommended circuit), the comparator delay can be compensated and the maximum clock frequency extended by approximately a factor of 3. At higher frequencies, ringing and second-orderbreaks will cause significant nonlinearities in the first few counts of the instrument.

The minimum clock frequency is established by leakage on the auto-zero and reference capacitors. With most devices, measurement cycles as long as 10 seconds give no measurable leakage error.

The clock used should be free from significant phase or frequency jitter. Several suitable low-cost oscillators are shown in the applications section. The multiplexed output means that if the display takes significant current from the logic supply, the clock should have good PSRR.

Zero-Crossing Flip-Flop

The flip-flop interrogates the data once every clock pulse after the transients of the previous clock pulse and half-clockpulse havedieddown. False zero-crossings caused by clock pulses are not recognized. Of course, the flip-flop delays the true zero-crossing by up to one count in every instance, and if a correction were not made, the display would always be one count too high. Therefore, the counter is disabled for one clock pulse at the beginning of the reference integrate (deintegrate) phase. This one-count delay compensates for the delay of the zero-crossing flipflop, and allows the correct number to be latched into the display. Similarly, a one-count delay at the beginning of auto-zero gives an overload display of 0000 instead of 0001. Nodelay occurs during signal integrate, so that true ratiometric readings result.

PERSONAL COMPUTER

 DATA ACQUISITION ADC
TC835

TYPICAL APPLICATION DIAGRAMS

PERSONAL COMPUTER
 DATA ACQUISITION ADC

TYPICAL APPLICATIONS DIAGRAMS (Cont.)

TYPICAL APPLICATIONS DIAGRAMS (Cont.)

TC835

TYPICAL APPLICATIONS DIAGRAMS (Cont.)
Negative Supply Voltage Generator

3-1/2 DIGIT A/D CONVERTER

FEATURES

- Internal Reference with Low Temperature Drift $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ Typical $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ Maximum
- Drives LCD (TC7106) or LED (TC7107) Display Directly
- Guaranteed Zero Reading With Zero Input
- Low Noise for Stable Display
True Polarity Indication for Precision Null
Applications
Convenient 9 V Battery Operation (TC7106A)
High Impedance CMOS Differential Inputs $10^{12} \Omega$
Differential Reference Inputs Simplify Ratiometric
Measurements
Mow Power Operation................................... 10 mW
(.
Available in 60-Pin Plastic Flat Package

Auto-Zero Cycle Eliminates Need for Zero Adjustment

Figure 1 TC7106A Typical Operating Circuit

Figure 2 TC7107A Typical Operating Circuit

3 1/2 DIGIT A/D CONVERTER

TC7106/7106A TC7107/7107A

GENERAL DESCRIPTION

The TC7106A and TC7107A 3-1/2 digit direct display drive analog-to-digital converters allow existing 7106/7107 based systems to be upgraded. Each device offers a precision internal voltage reference featuring a $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ maximum temperature drift coefficient. This represents a 4 to 7 times improvement over similar 3-1/2 digit converters. Existing 7106 and 7107 based systems may be upgraded without changing external passive component values. The need for a costly, space consuming external reference is removed. The TC7107A drives common anode light emitting diode (LED) displays directly with an 8 mA drive current per segment. A low cost, high resolution indicating meter requires only a display, four resistors, and four capacitors. The TC7106A low power drain and 9 V battery operation make it suitable for portable applications.

The TC7106A/TC7107A reduces linearity error to less than 1 count. Rollover error-the difference in readings for equal magnitude but opposite polarity input signals-is
below ± 1 count. ${ }^{\sim}$ High impedance differential inputs offer 1 pA leakage current and a $10^{12} \Omega$ input impedance. The differential reference input allows ratiometric measurements for ohms or bridge transducer measurements. The $15 \mu \mathrm{~V}_{\text {P-P }}$ noise performance guarantees a "rock solid" reading. The auto-zero cycle guarantees a zero display reading with a zero volt input.

The TC7106A/TC7107A dual slope conversion technique automatically rejects interference signals if the converters integration time is set to a multiple of the interference signal period. This is especially useful in industrial measurement environments where 50,60 and 400 Hz line frequency signals are present.

The TC7106A/TC7107A are available in a small 60-pin flat package for compact designs. DIP devices are offered in an industrial temperature range.

ORDERING INFORMATION

Part No.	Package	Pin Layout	Temperature Range	Display Drive
TC7106CPL	40-Pin Plastic DIP	Normal	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	LCD
TC7106RCPL	40-Pin Plastic DIP	Reverse	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	LCD
TC7106IJL	40-Pin CerDIP	Normal	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	LCD
TC7106CBQ	60-Pin Plastic Flat Package	Formed Leads	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	LCD
TC7106CKW	44-Pin Plastic Flat	Formed Leads	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$L C D$
TC7106CLW	44-Pin PLCC	-	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$L C D$
TC7107CPL	40-Pin Plastic DIP	Normal	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	LED
TC7107RCPL	40-Pin Plastic DIP	Reverse	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	LED
TC71071JL	40-Pin CerDIP	Normal	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	LED
TC7107CBQ	60-Pin Plastic Flat Package	Formed Leads	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	LED
TC7107CKW	44-Pin Plastic Flat	Formed Leads	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	LED
TC7107CLW	44-Pin PLCC	-	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	LED
TC7106ACPL	40-Pin Plastic DIP	Normal	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$L C D$
TC7106ARCPL	40-Pin Plastic DIP	Reverse	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	LCD
TC7106AIJL	40-Pin CerDIP	Normal	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	LCD
TC7106ACBQ	60-Pin Plastic Flat Package	Formed Leads	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	LCD
TC7106ACKW	44-Pin Plastic Flat	Formed Leads	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	LCD
TC7106ACLW	44-Pin PLCC	-	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	LCD
TC7107ACPL	40-Pin Plastic DIP	Normal	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	LED
TC7107ARCPL	40-Pin Plastic DIP	Reverse	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	LED
TC7107AIJL	40-Pin CerDIP	Normal	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	LED
TC7107ACBQ	60-Pin Plastic Flat Package	Formed Leads	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	LED
TC7107ACKW	44-Pin Plastic Flat	Formed Leads	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	LED
TC7107ACLW	44-Pin PLCC	-	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	LED

PIN CONFIGURATIONS

PIN CONFIGURATIONS (Cont.)

ABSOLUTE MAXIMUM RATINGS*

TC7106A

Supply Voltage (V^{+}to V^{-})... 15 V
Analog Input Voltage (either input) (Note 1) V^{+}to V^{-}
Reference Input Voltage (either input) V^{+}to V^{-}
Clock Input..Test to V^{+}
Power Dissipation (Note 2)
CerDIP Package
1000 mW
Plastic Package .. 800 mW
Operating Temperature
" C " Devices ... $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
" "" Devices- $25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 sec)
$300^{\circ} \mathrm{C}$
TC7107A
Supply Voltage
V+ $+6 \mathrm{~V}$
V- -9 V
Analog Input Voltage (either input) (Note 1) V^{+}to V^{-}
Reference Input Voltage (either input) V^{+}to V^{-}
Clock Input GND to V_{+}
Power Dissipation (Note 2)
CerDIP PAckage 1000 mW
Plastic Package 800 mW
Operating Temperature
"C" Devices $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
"|" Devices $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 sec) $300^{\circ} \mathrm{C}$
Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to Absolute Maximum Rating Conditions for extended periods may affect device reliability.

3 1/2 DIGIT A/D CONVERTER

ELECTRICAL CHARACTERISTICS

(Note 3)

Characteristics	Conditions	TC811			Unit
		Min	Typ	Max	
Zero Input Reading	$\begin{aligned} & \mathrm{V}_{\text {IN }}=0.0 \mathrm{~V} \\ & \text { Full-Scale }=200.0 \mathrm{mV} \end{aligned}$	-000.0	± 000.0	+000.0	Digital Reading
Ratiometric Reading	$\begin{aligned} & V_{\text {IN }}=V_{\text {REF }} \\ & V_{\text {REF }}=100 \mathrm{mV} \end{aligned}$	999	999/1000	1000	Digital Reading
Roll-Over Error (Difference in Reading for Equal Positive and Negative Reading Near Full-Scale)	$-\mathrm{V}_{\text {IN }}=+\mathrm{V}_{\text {IN }} \cong 200 \mathrm{mV}$	-1	± 0.2	+1	Counts
Linearity (Max. Deviation From Best Straight Line Fit)	$\begin{aligned} & \text { Full-Scale }=200 \mathrm{mV} \\ & \text { or Full-Scale }=2.000 \mathrm{~V} \end{aligned}$	-1	± 0.2	+1	Counts
Common-Mode Rejection Ratio (Note 4)	$\begin{aligned} & V_{C M}= \pm 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}, \\ & \text { Full Scale }=200.0 \mathrm{mV} \end{aligned}$	-	50	-	$\mu \mathrm{V} / \mathrm{V}$
Noise (Pk - Pk Value Not Exceeded 95\% of Time)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} \\ & \text { Full-Scale }=200.0 \mathrm{mV} \end{aligned}$	-	15	-	$\mu \mathrm{V}$
Leakage Current @ Input	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	-	1	10	pA
Zero Reading Drift	$\begin{aligned} & \mathrm{V}_{\text {IN }}=0 \mathrm{~V} \\ & \text { "C" Device }=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\text {IN }}=0 \mathrm{~V} \\ & \text { " } \mathrm{l}^{\prime} \text { Device }=-25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	-	$\begin{aligned} & 0.2 \\ & 1.0 \end{aligned}$	1 2	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Scale Factor Temperature Coefficient	$\begin{aligned} & \mathrm{V}_{\mathbb{I N}}=199.0 \mathrm{mV} \text {, } \\ & \text { "C" Device }=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \text { (Ext. Ref }=0 \mathrm{ppm}{ }^{\circ} \mathrm{C} \text {) } \\ & \mathrm{V}_{\text {IN }}=199.0 \mathrm{mV} \\ & \text { "I" Device }=-25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$		1	$\begin{gathered} 5 \\ 20 \end{gathered}$	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Supply Current (Does Not Include LED Current For TC7107A)	$\mathrm{V}_{\text {IN }}=0$	-	0.8	1.8	mA
Analog Common Voltage (With Respect to Pos. Supply)	$25 \mathrm{k} \Omega$ Between Common and Pos. Supply	2.7	3.05	3.35	V
Temp. Coeff. of Analog Common (With Respect to Pos. Supply)	25k Ω Between Common and Pos. Supply $0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}$ "C," Industrial Temp. Range Devices	-	20	50	ppm $/{ }^{\circ} \mathrm{C}$
Temp. Coeff. of Analog Common (With Respect to Pos. Supply)	$25 \mathrm{k} \Omega$ Between Common and Pos. Supply $0^{\circ} \mathrm{C} \leq T_{A} \leq 85^{\circ} \mathrm{C}$ "I," Industrial Temp. Range Devices	-	-	75	ppm $/{ }^{\circ} \mathrm{C}$
TC7106A ONLY Pk - Pk Segment Drive Voltage (Note 5)	V^{+}to $\mathrm{V}^{-}=9 \mathrm{~V}$	4	5	6	V
TC7106A ONLY Pk - Pk Backplane Drive Voltage (Note 5)	V^{+}to $\mathrm{V}^{-}=9 \mathrm{~V}$	4	5	6	V
TC7107A ONLY Segment Sinking Current (Except Pin 19)	$\begin{aligned} & \mathrm{V}^{+}=5.0 \mathrm{~V} \\ & \text { Segment Voltage }=3 \mathrm{~V} \end{aligned}$	5	8.0	-	mA
TC7107A ONLY Segment Sinking Current (Pin 19)	$\begin{aligned} & \mathrm{V}^{+}=5.0 \mathrm{~V} \\ & \text { Segment Voltage }=3 \mathrm{~V} \end{aligned}$	10	16	-	mA

NOTES: 1. Input voltages may exceed the supply voltages provided the input current is limited to $\pm 100 \mu \mathrm{~A}$.
2. Dissipation rating assumes device is mounted with all leads soldered to printed circuit board.
3. Unless otherwise noted, specifications apply to both the TC7106A and TC7107A at TA $=25^{\circ}, f_{C L O C K}=48 \mathrm{kHz}$. TC7106A is tested in the circuit of Figure 1. TC7107A is tested in the circuit of Figure 2.
4. Refer to "Differential input" discussion.
5. Backplane drive is in phase with segment drive for "off" segment, 180° out of phase for "on" segment. Frequency is 20 times conversion rate. Average DC component is less than 50 mV .

PIN DESCRIPTION

40-Pin DIP Pin Number (Normal)	(Reverse)	60-Pin Flat Package Pin Number	Name	Description
1	(40)	13	V^{+}	Positive supply voltage.
2	(39)	14	D_{1}	Activates the D section of the units display.
3	(38)	15	C_{1}	Activates the C section of the units display.
4	(37)	16	B_{1}	Activates the B section of the units display.
5	(36)	17	A_{1}	Activates the A section of the units display.
6	(35)	18	F_{1}	Activates the F section of the units display.
7	(34)	19	G_{1}	Activates the G section of the units display.
8	(33)	20	E_{1}	Activates the E section of the units display.
9	(32)	21	D_{2}	Activates the D section of the tens display.
10	(31)	25	C_{2}	Activates the C section of the tens display.
11	(30)	26	B_{2}	Activates the B section of the tens display.
12	(29)	27	A_{2}	Activates the A section of the tens display.
13	(28)	28	F_{2}	Activates the F section of the tens display.
14	(27)	29	E_{2}	Activates the E section of the tens display.
15	(26)	30	D_{3}	Activates the D section of the hundreds display.
16	(25)	31	B_{3}	Activates the B section of the hundreds display.
17	(24)	32	F_{3}	Activates the F section of the hundreds display.
18	(23)	33	E_{3}	Activates the E section of the hundreds display.
19	(22)	34	AB_{4}	Activates both halves of the 1 in the thousands display.
20	(21)	35	POL	Activates the negative polarity display.
21	(20)	36	$\begin{aligned} & \mathrm{BP} \\ & \mathrm{GND} \end{aligned}$	LCD Backplane drive output (TC7106A). Digital ground (TC7107A).
22	(19)	37	G_{3}	Activates the G section of the hundreds display.
23	(18)	40	A_{3}	Activates the A section of the hundreds display.
24	(17)	41	C_{3}	Activates the C section of the hundreds display.
25	(16)	43	G_{2}	Activates the G section of the tens display.
26	(15)	45	V^{-}	Negative power supply voltage.
27	(14)	46	$\mathrm{V}_{\text {INT }}$	Integrator output. Connection point for integration capacitor. See INTEGRATING CAPACITOR section for more details
28	(13)	47	$V_{\text {BUFF }}$	Integration resistor connection. Use a $47 \mathrm{k} \Omega$ resistor for a 200 mV fullscale range and a $470 \mathrm{k} \Omega$ resistor for 2 V full-scale range.
29	(12)	49	$\mathrm{C}_{\text {AZ }}$	The size of the auto-zero capacitor influences system noise. Use a $0.47-\mu \mathrm{F}$ capacitor for 200 mV full scale, and a $0.047-\mu \mathrm{F}$ capacitor for 2V full scale. See Paragraph on AUTO-ZERO CAPACITOR for more details.
30	(11)	51	V İ	The analog low input is connected to this pin.
31	(10)	55	$\mathrm{V}_{\text {IN }}^{+}$	The analog high input signal is connected to this pin.
32	(9)	57	Analog Common	This pin is primarily used to set the analog common-mode voltage for battery operation or in systems where the input signal is referenced to the power supply. It also acts as a reference voltage source. See paragraph on ANALOG COMMON for more details.
33	(8)	58	$\mathrm{C}_{\text {ReF }}$	See pin 34.

PIN DESCRIPTION (Cont.)

40-Pin DIP Pin Number (Normal)	(Reverse)	60-Pin Flat Package Pin Number	Name	Description
34	(7)	59	$\mathrm{C}_{\text {REF }}^{+}$	A $0.1-\mu \mathrm{F}$ capacitor is used in most applications. If a large commonmode voltage exists (for example, the $V_{\text {IN }}$ pin is not at analog common), and a $200-\mathrm{mV}$ scale is used, a $1-\mu \mathrm{F}$ capacitor is recommended and will hold the roll-over error to 0.5 count.
35	(6)	60	$\mathrm{V}_{\text {- }} \mathrm{E}_{\text {EF }}$	See pin 36.
36	(5)	1	$\mathrm{V}_{\text {REF }}^{+}$	The analog input required to generate a full-scale output (1999 counts). Place 100 mV between pins 35 and 36 for 199.9 mV full-scale. Place 1V between pins 35 and 36 for $2 V$ full scale. See paragraph on REFERENCE VOLTAGE.
37	(4)	3	Test	Lamp test. When pulled high (to V^{+}) all segments will be turned on and the display should read -1888. It may also be used as a negative supply for externally-generated decimal points. See paragraph under TEST for additional information.
38	(3)	4	OSC_{3}	See pin 40.
39	(2)	6	OSC_{2}	See pin 40.
40	(1)	10	OSC_{1}	Pins 40, 39, 38 make up the oscillator section. For a $48-\mathrm{kHz}$ clock (3 readings per section), connect pin 40 to the junction of a $100-\mathrm{k} \Omega$ resistor and a $100-\mathrm{pF}$ capacitor. The $100-\mathrm{k} \Omega$ resistor is tied to pin 39 and the $100-\mathrm{pF}$ capacitor is tied to pin 38.

General Theory of Operation Dual Slope Conversion Principles

The TC7106A and TC7107A are dual slope, integrating analog-to-digital converters. An understanding of the dual slope conversion technique will aid in following the detailed operation theory.

The conventional dual slope converter measurement cycle has two distinct phases:

- Input Signal Integration
- Reference Voltage Integration (Deintegration)

The input signal being converted is integrated for a fixed time period (T_{SI}). Time is measured by counting clock pulses. An opposite polarity constant reference voltage is then integrated until the integrator output voltage returns to zero. The reference integration time is directly proportional to the input signal ($T_{\text {RI }}$). (Figure 3A).

In a simple dual slope converter a complete conversion requires the integrator output to "ramp-up" and "rampdown."

A simple mathematical equation relates the input signal, reference voltage and integration time:

$$
\frac{1}{R C} \int_{0}^{T_{S I}} V_{I N}(t) d t=\frac{V_{\mathrm{R}} T_{R I}}{R C}
$$

where:
$\mathrm{V}_{\mathrm{R}}=$ Reference Voltage
$\mathrm{T}_{\mathrm{SI}}=$ Signal Integration Time (Fixed)
$\mathrm{T}_{\mathrm{RI}}=$ Reference Voltage Integration Time (Variable)
For a constant $\mathrm{V}_{\mathbb{I}}$:
$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{R}} \frac{\mathrm{T}_{\mathrm{RI}}}{\mathrm{T}_{\mathrm{SI}}}$

Figure 3A Basic Dual Slope Converter

The dual slope converter accuracy is unrelated to the integrating resistor and capacitor values as long as they are stable during a measurement cycle. An inherent benefit is noise immunity. Noise spikes are integrated or averaged to zero during the integration periods. Integrating ADCs are immune to the large conversion errors that plague successive approximation converters in high noise environment. Interfering signals with frequency components at multiples of the averaging period will be attenuated. Integrating ADCs commonly operate with the signal integration period set to a multiple of the $50 / 60 \mathrm{~Hz}$ power line period. (Figure $3 B$)

Figure 3B Normal-Mode Rejection of Dual Slope Converter

Analog Section

In addition to the basic signal integrate and deintegrate cycles discussed, the circuit incorporates an auto-zero cycle. This cycle removes buffer amplifier, integrator, and comparator offset voltage error terms from the conversion. A true digital zero reading results without external adjusting potentiometers. A complete conversion consists of three cycles: an auto zero, signal integrate and reference integrate cycle.

Auto-Zero Cycle

During the auto-zero cycle the differential input signal is disconnected from the circuit by opening internal analog gates. The internal nodes are shorted to analog common (ground) to establish a zero input condition. Additional analog gates close a feedback loop around the integrator and comparator. This loop permits comparator offset voltage error compensation. The voltage level established on C_{AZ} compensates for device offset voltages. The offset error referred to the input is less than $10 \mu \mathrm{~V}$.

The auto-zero cycle length is 1000 to 3000 counts.

Signal Integrate Cycle

The auto-zero loop in opened, the internal differential inputs connect to $\mathrm{V}_{\mathbb{N}}^{+}$and $\mathrm{V}_{\mathbb{N}}$. The differential input signal is integrated for a fixed time period. The signal integration period is 1000 counts. The externally set clock frequency is divided by four before clocking the internal counters. The integration time period is:

$$
T_{S I}=\frac{4}{f_{\mathrm{OSC}}} \times 1000
$$

where:

fosc = External Clock Frequency

The differential input voltage must be within the device common-mode range (1 V of either supply) when the converter and measured system share the same power supply common (ground). If the converter and measured system do not share the same power supply common, V_{i} should be tied to analog common.

Polarity is determined at the end of signal integrate phase. The sign bit is a true polarity indication in that signals less than 1 LSB are correctly determined. This allows precision null detection limited only by device noise and auto-zero residual offsets.

Reference Integrate Cycle

The final phase is reference integrate or de-integrate. $\mathrm{V}_{\text {IN }}$ is internally connected to analog common and $\mathrm{V}_{\mathbb{N}}^{+}$is connected across the previously charged reference capacitor. Circuitry within the chip ensures that the capacitor will be connected with the correct polarity to cause the integrator output to return to zero. The time required for the output to return to zero is proportional to the input signal and is between 0 and 2000 counts. The digital reading displayed is:

$$
1000 \times \frac{\mathrm{V}_{\mathrm{IN}}}{\mathrm{~V}_{\mathrm{REF}}}
$$

Digital Section (TC7106A)

The TC7106A (Figure 5) contains all the segment drivers necessary to directly drive a $31 / 2$ digit liquid crystal display (LCD). An LCD backplane driver is included. The backplane frequency is the external clock frequency divided by 800 . For three conversions/second the backplane frequency is 60 Hz with a 5 V nominal amplitude. When a segment driver is in phase with the backplane signal the segment is "OFF." An out of phase segment drive signal causes the segment to be "ON" or visible. This AC drive configuration results in negligible DC voltage across each LCD segment. This insures long LCD display life. The polarity segment driver is "ON" for negative analog inputs. If $\mathrm{V}_{\mathbb{N}}^{+}$and $\mathrm{V}_{\mathbb{N}}$ are reversed this indicator would reverse.

TC7106/7106A TC7107/7107A

On the TC7106A when the test pin is pulled to V_{+}all segments are turned "ON." The display reads-1888. During this mode the LCD segments have a constant DC voltage impressed. Do not leave the display in this mode for more than several minutes. LCD displays may be destroyed if operated with DC levels for extended periods.

The display FONT and the segment drive assignment are shown in Figure 6.

Figure 6 Display FONT and Segment Assignment
In the TC7106A an internal digital ground is generated from a 6 volt zener diode and a large P channel source follower. This supply is made stiff to absorb the large capacitive currents when the backplane voltage is switched.

Digital Section (TC7107A)

Figure 7 shows the TC7107A. It is identical to the TC7106A except that the regulated supply and back plane drive have been eliminated and the segment drive is typically 8 mA . The 1000 output (pin 19) sinks current from two LED segments, and has a 16 mA drive capability. The TC7107A is designed to drive common anode LEDs.

In both devices, the polarity indication is "on" for negative analog inputs. If $\mathrm{V}_{\mathbb{N}}^{-}$and $\mathrm{V}_{\mathbb{N}}^{+}$are reversed, this indication can be reversed also, if desired.

The display font is the same as the TC7106A.

System Timing

The oscillator frequency is divided by 4 prior to clocking the internal decade counters. The three phase measurement cycle takes a total of 4000 counts or 16000 clock pulses. The 4000 count cycle is independent of input signal magnitude.

Each phase of the measurement cycle has the following length:

- Auto-Zero Phase: $\begin{array}{ll}1000 \text { to } 3000 \text { Counts } \\ \text { (4000 to } 12000 \text { Clock Pulses) }\end{array}$

For signals less than full-scale the auto-zero phase is assigned the unused reference integrate time period.

- Signal Integrate: 1000 Counts
(4000 Clock Pulses)
This time period is fixed. The integration period is:

$$
T_{\mathrm{SI}}=4000\left[\frac{1}{\mathrm{fosc}}\right]
$$

Where fosc is the externally set clock frequency.

- Reference Integrate: 0 to 2000 Counts
(0 to 8000 Clock Pulses)
The TC7106A/7107A are drop in replacements for the 7106/7107 parts. External component value changes are not required to benefit from the low drift internal reference.

Clock Circuit

Three clocking methods may be used:

1. An external oscillator connected to pin 40.
2. A crystal between pins 39 and 40.
3. An R-C oscillator using all three pins.

Figure 8 Clock Circuits

Component Value Selection Auto-Zero Capacitor - C_{AZ}

The $C_{A Z}$ capacitor size has some influence on system noise. A $0.47 \mu \mathrm{~F}$ capacitor is recommended for 200 mV fullscale applications where 1 LSB is $100 \mu \mathrm{~V}$. A $0.047 \mu \mathrm{~F}$ capacitor is adequate for 2.0 V full-scale applications. A mylar type dielectric capacitor is adequate.

Reference Voltage Capacitor - CREF

The reference voltage used to ramp the integrator output voltage back to zero during the reference integrate cycle is stored on $\mathrm{C}_{\text {REF }}$ A $0.1 \mu \mathrm{~F}$ capacitor is acceptable when $V_{\mathbb{N}}$ is is tied to analog common. If a large common-mode voltage exists ($V_{\bar{R} E F} \neq$ analog common) and the application requires a 200 mV full-scale increase $\mathrm{C}_{\text {REF }}$ to $1.0 \mu \mathrm{~F}$. Rollover error will be held to less than 0.5 count. A mylar type dielectric capacitor is adequate.

3 1/2 DIGIT A/D CONVERTER

TC7106/7106A

TC7107/7107A

Integrating Capacitor $-\mathrm{C}_{\mathrm{INT}}$

$\mathrm{C}_{\text {INT }}$ should be selected to maximize integrator output voltage swing without causing output saturation. Due to the TC7106A/7107A superior analog common temperature coefficient specification, analog common will normally supply the differential voltage reference. For this case $a \pm 2 \mathrm{~V}$ fullscale integrator output swing is satisfactory. For 3 readings/ second (fosc $=48 \mathrm{kHz}$) a $0.22 \mu \mathrm{~F}$ value is suggested. If a different oscillator frequency is used $\mathrm{C}_{\mathrm{INT}}$ must be changed in inverse proportion to maintain the nominal $\pm 2 \mathrm{~V}$ integrator swing.

An exact expression for $\mathrm{C}_{\mathbb{I N T}}$ is:
$\mathrm{C}_{\text {INT }}=\frac{(4000)\left(\frac{1}{f_{\mathrm{OSC}}}\right)\left(\frac{\mathrm{V}_{\mathrm{FS}}}{\mathrm{R}_{\text {INT }}}\right)}{\mathrm{V}_{\text {INT }}}$
Where:
$\mathrm{f}_{\mathrm{OSC}}=$ Clock frequency at Pin 38
$V_{\text {FS }}=$ Full-scale input voltage
$\mathrm{R}_{\text {INT }}=$ Integrating resistor
$\mathrm{V}_{\text {INT }}=$ Desired full-scale integrator output swing
$\mathrm{C}_{\text {INT }}$ must have low dielectric absorption to minimize rollover error. An inexpensive polypropylene capacitor is recommended.

INTEGRATING RESISTOR - RINT

The input buffer amplifier and integrator are designed with class A output stages. The output stage idling current is $100 \mu \mathrm{~A}$. The integrator and buffer can supply $20 \mu \mathrm{~A}$ drive currents with negligible linearity errors. RINT is chosen to remain in the output stage linear drive region but not so large that printed circuit board leakage currents induce errors. For a 200 mV full-scale $\mathrm{R}_{\text {INT }}$ is $47 \mathrm{k} \Omega$. A 2.0 V full-scale requires $470 \mathrm{k} \Omega$.

Component	Nominal Full-Scale Voltage	
Value	200.0 mV	2.000 V
C_{AZ}	$0.47 \mu \mathrm{~F}$	$0.047 \mu \mathrm{~F}$
$\mathrm{R}_{\mathrm{INT}}$	$47 \mathrm{k} \Omega$	$470 \mathrm{k} \Omega$
$\mathrm{C}_{\mathrm{INT}}$	$0.22 \mu \mathrm{~F}$	$0.22 \mu \mathrm{~F}$
Note: \quad 1. fosc $=48 \mathrm{kHz}(3$ readings $/ \mathrm{sec})$		

Oscillator Components

Rosc (Pin 40 to Pin 39) should be $100 \mathrm{k} \Omega . C_{\text {osc }}$ is selected from the equation:

$$
\mathrm{fosc}_{\mathrm{osc}}=\frac{0.45}{\mathrm{RC}}
$$

For fosc of $48 \mathrm{kHz}, \mathrm{C}_{\mathrm{Osc}}$ is 100 pF nominally.
Notethatfosc is divided by fourto generate the TC7106A internal control clock. The backplane drive signal is derived by dividing fosc by 800 .

To achieve maximum rejection of 60 Hz noise pickup, the signal integrate period should be a multiple of 60 Hz . Oscillator frequencies of $240 \mathrm{kHz}, 120 \mathrm{kHz}, 80 \mathrm{kHz}, 60 \mathrm{kHz}$, $40 \mathrm{kHz}, 331 / 3 \mathrm{kHz}$, etc. should be selected. For 50 Hz rejection, oscillator frequencies of $200 \mathrm{kHz}, 100 \mathrm{Khz}$, $662 / 3 \mathrm{kHz}, 50 \mathrm{kHz}, 40 \mathrm{kHz}$, etc. would be suitable. Note that 40 kHz (2.5 readings/second) will reject both 50 and 60 Hz (also 400 and 440 Hz).

Reference Voltage Selection

A full-scale reading (2000 counts) requires the input signal be twice the reference voltage.

Required Full-Scale Voltage ${ }^{*}$	V $_{\text {REF }}$
200.0 mV	100.0 mV
2.000 V	1.000 V
${ }^{*} \mathrm{~V}_{\mathrm{FS}}=2 \mathrm{~V}_{\text {REF }}$	

In some applications a scale factor other than unity may exist between a transducer output voltage and the required digital reading. Assume, for example, a pressure transducer output is 400 mV for $2000 \mathrm{lb} / \mathrm{in}^{2}$. Rather than dividing the input voltage by two the reference voltage should be set to 200 mV . This permits the transducer input to be used directly.

The differential reference can also be used when a digital zero reading is required when $\mathrm{V}_{\mathbb{N}}$ is not equal to zero. This is common in temperature measuring instrumentation. A compensating offset voltage can be applied between analog common and V_{in}. The transducer output is connected between V_{N} and analog common.

The internal voltage reference potential available at analog common will normally be used to supply the converters reference. This potential is stable whenever the supply potential is greater than approximately $7 \mathrm{~V} . \operatorname{In}$ applications where externally generated reference voltage is desired refer to Figure 9.

Figure 9 External Reference

Device Pin Functional Description

Differential Signal Inputs
(ViN $\left.{ }_{\text {N }}^{+}(\operatorname{Pin} 31), \mathrm{V}_{\text {IN }}(\operatorname{Pin} 30)\right)$
The TC7106A/7017A is designed with true differential inputs and accepts input signals within the input stage common mode voltage range $\left(\mathrm{V}_{\mathrm{CM}}\right)$. The typical range is V^{+} -1.0 to $\mathrm{V}^{-}+1 \mathrm{~V}$. Common-mode voltages are removed from the system when the TC7106A/TC7107A operates from a battery or floating power source (isolated from measured system) and $\mathrm{V}_{\mathbb{N}}$ is connected to analog common ($\mathrm{V}_{\mathrm{COM}}$): See Figure 10.

In systems where common-mode voltages exist in 86 dB common-mode rejection ratio minimizes error. Com-mon-mode voltages do, however, affect the integrator output level. Integrator output saturation must be prevented. A worse case condition exists if a large positive V_{CM} exists in conjunction with a full-scale negative differential signal. The negative signal drives the integrator output positive along with V_{CM} (Figure 11). For such applications the integrator
output swing can be reduced below the recommended 2.0 V full-scale swing. The integrator output will swing within 0.3 V of V^{+}or V^{-}without increasing linearity errors.

Figure 11 Common-Mode Voltage Reduces Available Integrator Swing. ($\mathrm{V}_{\mathrm{COM}} \neq \mathrm{V}_{\mathrm{IN}}$)

Differential Reference

$\left(\mathrm{V}_{\text {REF }}^{+}(\operatorname{Pin} 36), \mathrm{V}_{\text {REF }}^{-}(\operatorname{Pin} 35)\right)$
The reference voltage can be generated anywhere within the V^{+}to V^{-}power supply range.

To prevent rollover type errors being induced by large common-mode voltages C REF should be large compared to stray node capacitance.

The TC7106A/TC7107A circuits have significantly lower analog common temperaturecoefficient. This potential gives a very stable voltage suitable for use as a voltage reference. The temperature coefficient of analog common is $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typically.

Figure 10 Common-Mode Voltage Removed in Battery Operation with $\mathbf{V}_{\overline{\mathrm{N}}}=$ Analog Common

Analog Common (Pin 32)

The analog common pin is set at a voltage potential approximately 3.0 V below V^{+}. The potential is guaranteed to be between 2.7 V and 3.35 V below V^{+}. Analog common is tied internally to the N channel FET capable of sinking 20 mA . This FET will hold the common line at 3.0 V should an external load attempt to pull the common line toward V^{+}. Analog common source current is limited to $10 \mu \mathrm{~A}$. Analog common is therefore easily pulled to a more negative voltage (i.e., below $\mathrm{V}^{+}-3.0 \mathrm{~V}$).

The TC7106A connects the internal $\mathrm{V}_{\mathbb{N}}^{+}$and V_{N} inputs to analog common during the auto-zero cycle. During the reference integrate phase $\mathrm{V}_{\mathbb{N}}$ is connected to analog common. If $\mathrm{V}_{\overline{\mathrm{N}}}$ is not externally connected to analog common, a common-mode voltage exists. This is rejected by the converters 86 dB common-mode rejection ratio. In battery operation analog common and $V_{\mathbb{I N}}^{-}$are usually connected removing common-mode voltage concerns. In systems where $V_{\mathbb{N}}$ is connected to the power supply ground or to a given voltage, analog common should be connected to $\mathrm{V}_{\mathrm{i}}^{\mathrm{N}}$.

The analog common pin serves to set the analog section reference or common point. The TC7106A is specifically designed to operate from a battery or in any measurement system where input signals are not referenced (float) with respect to the TC7106A power source. The analog common potential of $\mathrm{V}^{+}-3.0 \mathrm{~V}$ gives a 6 V end of battery life voltage. The common potential has a $0.001 \% / \%$ voltage coefficient and a 15Ω output impedance.

With sufficiently high total supply voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}>$ 7.0 V) analog common is a very stable potential with excel-

Figure 12 Analog CommonTemperature Coefficient
lent temperature stability-typically $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. This potential can be used to generate the reference voltage. An external voltage reference will be unnecessary in most cases because of the $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ maximum temperature coefficient. See Internal Voltage Reference discussion.

Test (Pin 37)

The test pin potential is 5 V less than V^{+}. Test may be used as the negative power supply connection for external CMOS logic. The test pin is tied to the internally generated negative logic supply (Internal Logic Ground) through a 500Ω resistor in the TC7106A. The test pin load should be no more than 1 mA .

If test is pulled to V^{+}all segments plus the minus sign will be activated. Do not operate in this mode for more than several minutes with the TC7106A. With Test $=\mathrm{V}^{+}$the LCD Segments are impressed with a DC voltage which will destroy the LCD.

The test pin will sink about 10 mA when pulled to V^{+}.

Internal Voltage Reference Stability

The analog cornmon voltage temperature stability has been significantly improved (Figure 12). The "A" version of the industry standard circuits allow users to upgrade old systems and design new systems without external voltage references. External R and C values do not need to be changed. Figure 13 shows analog common supplying the necessary voltage reference for the TC7106A/TC7107A.

Figure 13 Internal Voltage Reference Connection

3 1/2 DIGIT A/D CONVERTER

Power Supplies

The TC7107A is designed to work from $\pm 5 \mathrm{~V}$ supplies. However, if a negative supply is not available, it can be generated from the clock output with two diodes, two capacitors, and an inexpensive IC. (Figure 14)

In selected applications a negative supply is not required. The conditions to use a single +5 V supply are:

- The input signal can be referenced to the center of the common-mode range of the converter.
- The signal is less than $\pm 1.5 \mathrm{~V}$.
- An external reference is used.

The TSC7660 DC to DC converter may be used to generate -5 V from +5 V (Figure 15).

Figure 14 Generating Negative Supply From +5 V

TC7107 Power Dissipation Reduction

The TC7107A sinks the LED display current and this causes heat to build up in the IC package. If the internal voltage reference is used, the changing chip temperature can cause the display to change reading. By reducing package power dissipation such variations can be reduced. By reducing the LED common anode voltage the TC7107A package power dissipation is reduced.

Figure 16 is a photograph of a curve-trace display showing the relationship between output current and output voltage for a typical TC7107CPL. Since a typical LED has 1.8 volts across it at 7 mA , and its common anode is connected to +5 V , the TC7107A output is at 3.2 V . (point A on Figure 15). Maximum power dissipation is $8.1 \mathrm{~mA} \times 3.2$ $V \times 24$ segments $=622 \mathrm{~mW}$.

Notice, however, that once the TC7107A output voltage is above two volts, the LED current is essentially constant as output voltage increases. Reducing the output voltage by 0.7 V (point B in Figure 16) results in 7.7 mA of LED current,

Figure 15 Negative Power Supply Generation with TC7660
only a 5 percent reduction. Maximum power dissipation is only $7.7 \mathrm{~mA} \times 2.5 \mathrm{~V} \times 24=462 \mathrm{~mW}$, a reduction of 26%. An output voltage reduction of 1 volt (point C) reduces LED current by $10 \%(7.3 \mathrm{~mA})$ but power dissipation by 38% ! (7.3 $\mathrm{mA} \times 2.2 \mathrm{~V} \times 24=385 \mathrm{~mW})$.

Figure 16 TC7107A Output Current vs Output Voltage

TC7106/7106A TC7107/7107A

Reduced power dissipation is very easy to obtain. Figure 17 shows two ways: either a 5.1 ohm, $1 / 4$ watt resistor or a 1 Amp diode placed in series with the display (but not in series with the TC7107A). The resistor will reduce the TC7107A output voltage, when all 24 segments are "ON," to point " C " of Figure 16. When segments turn off, the output voltage will increase. The diode, on the other hand, will result in a relatively steady output voltage, around point "B."

In addition to limiting maximum power dissipation, the resistor reduces the change in power dissipation as the display changes. This effect is caused by the fact that, as fewer segments are "ON," each "ON" output drops more voltage and current. For the best case of six segments (a "111" display) to worst case (a "1888" display) the resistor will change about 230 mW , while a circuit without the resistor will change about 470 mW . Therefore, the resistor will reduce the effect of display dissipation on reference voltage drift by about 50\%.

The change in LED brightness caused by the resistor is almost unnoticeable as more segments turn off. If display brightness remaining steady is very important to the designer, a diode may be used instead of the resistor.

Figure 17 Diode or Resistor Limits Package Power Dissipation

APPLICATIONS INFORMATION LIQUID CRYSTAL DISPLAY SOURCES

Several LCD manufacturers supply standard LCD displays to interface with the TC7106A 3 1/2 digit analog-todigital converter.

Manufacturer	Address/Phone	Part Numbers ${ }^{1}$
Crystaloid Electronics	5282 Hudson Dr., Hudson, OH 44236 $216 / 655-2429$	C5335, H5535,
AND	770 Airport Blvd., Burlingame, CA 94010 SX440 $415 / 347-9916$	FE 0801
	FE 0203	
EPSON	3415 Kashikawa St.,	LD-B709BZ
	Torrance, CA 90505	LD-H7992AZ
	213/534-0360	
Hamlin, Inc.	612 E. Lake St., Lake Mills, WI 53551	3902, 3933, 3903
	$414 / 648-2361$	

Note: 1. Contact LCD manufacturer for full product listing/ specifications.

Light Emitting Diode Display Sources

Several LED manufacturers supply seven segment digits with and without decimal point annunciators for the TC7107A.

Manufacturer	Address	Display Type
Hewlett-Packard Components	640 Page Mill Rd.	LED
Palo Alto, CA 94304		
	770 Airport Blvd.	LED

Decimal Point and Annunciator Drive

The test pin is connected to the internally-generated digital logic supply ground through a 500Ω resistor. The test pin may be used as the negative supply for external CMOS gate segment drivers. LCD display annunciators for decimal points, low battery indication, or function indication may be added without adding an additional supply. No more than 1 mA should be supplied by the test pin. The test pin potential is approximately 5 V below V^{+}.

Ratiometric Resistance Measurements

The true differential input and differential reference make ratiometric reading possible. Typically in a ratiometric operation, an unknown resistance is measured with respect to a known standard resistance. No accurately defined reference voltage is needed.

3 1/2 DIGIT A/D CONVERTER

TC7106/7106A TC7107/7107A

4350 ILL F20
Figure 18 Decimal Point Drive Using Test as Logic Ground

The unknown resistance is put in series with a known standard and a current passed through the pair. The voltage developed across the unknown is applied to the input and the voltage across the known resistor is applied to the reference input. If the unknown equals the standard, the display will read 1000. The displayed reading can be determined from the following expression:

$$
\text { Displayed Reading }=\frac{R \text { Unknown }}{\text { R Standard }} \times 1000
$$

The display will overrange for R Unknown $\geq 2 \times R$ standard.

Figure 19 Low Parts Count Ratiometric Resistance Measurement

Figure 20 3 1/2 Digit True RMS AC DMM

TC7106/7106A TC7107/7107A

Figure 21 Temperature Sensor

Figure 22 Positive Temperature Coefficient Resistor Temperature Sensor

Figure 23 Integrated Circuit Temperature Sensor

3 1/2 DIGIT A/D CONVERTER

TC7106/7106A TC7107/7107A

Figure 24 TC7106A Using the Internal Reference. (200 mV Full-Scale, 3 RPS).

Figure 26 Circuit for Developing Underrange and Overrange Signals from TC7106A Outputs.

Figure 25 TC7107A Internal Reference (200 mV Full-Scale, 3 RPS, $V_{\bar{I}}$ Tied to GND for Single Ended Inputs).

Figure 27 TC7106ATC7107A: Recommended Component Values for 2.00 V Full-Scale

TC7106/7106A
TC7107/7107A

Figure 28 TC7107A With a 1.2 V External Band-Gap Reference. (V^{-}in Tied to Common.)

Figure 29 TC7107A Operated from Single +5 V Supply An External Reference Must Be Used in This Application.

3-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTERS WITH HOLD

FEATURES

- Low Temperature Drift Internal Reference TC7116/TC7117 \qquad 80 ppm $/{ }^{\circ} \mathrm{C}$ Typ 20 ppm/ ${ }^{\circ} \mathrm{C}$ Typ
- Display Hold Function
- Directly Drives LCD or LED Display
- Guaranteed Zero Reading With Zero Input
- Low Noise for Stable Display 2V or 200 mV Full-Scale Range (FSR)
- Auto-Zero Cycle Eliminates Need for Zero Adjustment Potentiometer
- True Polarity Indication for Precision Null Applications
- Convenient 9V Battery Operation (TC7116/TC7116A)
- High Impedance CMOS Differential Inputs ... $10^{12} \Omega$
- Low Power Operation. \qquad 10 mW

Figure 1 Typical TC7116/TC7116A Operating Circuit

Figure 2 Typical TC7117/TC7117A Operating Circuit

3-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTERS WITH HOLD

TC7116 TC7117 TC7116A TC7117A

GENERAL DESCRIPTION

The TC7116A and TC7117A feature a precision, lowdrift internal reference, and are functionally identical to the TC7116/TC7117. A low-drift external reference is not normally required with the TC7116A/TC7117A.

The TC7116A/TC7117A are 3-1/2 digit CMOS analog-to-digital converters (ADCs) containing all the active components necessary to construct a 0.05% resolution measurement system. Seven-segment decoders, polarity and digit drivers, voltage reference, and clock circuit are integrated on-chip. The TC7116A drives liquid crystal displays (LCDs) and includes a backplane driver. The TC7117A drives common anode light emitting diode (LED) displays directly with an $8-\mathrm{mA}$ drive current per segment.

These devices incorporate a display hold (HLDR) function. The displayed reading remains indefinitely, as long as HLDR is held high. Conversions continue, but output data display latches are not updated. The reference low input ($\mathrm{V}_{\mathrm{REF}}$) is not available as it is with the TC7106/ 7107. $V_{\bar{R} E F}$ is tied internally to analog common in the TC7116A/7117A devices.

The TC7116A/7117A reduces linearity error to less than 1 count. Roll-over error (the difference in readings for equal magnitude but opposite polarity input signals) is below ± 1 count. High-impedance differential inputs offer 1 pA leakage current and a $10^{12} \Omega$ input impedance. The 15 $\mu \mathrm{V}_{\mathrm{P}-\mathrm{p}}$ noise performance guarantees a "rock solid" reading. The auto-zero cycle guarantees a zero display reading with a OV input.

The TC7116A/7117A dual-slope conversion technique automatically rejects interference signals if the converter's integration time is set to a multiple of the interference period. This is especially useful in industrial measurement environments where $50-\mathrm{Hz}, 60-\mathrm{Hz}$, and $400-\mathrm{Hz}$ line frequency signals are present.

The TC7116A/7117A are available in a small, 60-pin flat package for compact designs. Standard devices are offered in an industrial temperature range and with 160hour burn-in at $+125^{\circ} \mathrm{C}$.

ORDERING INFORMATION

Part No.	Package	Temperature Range	Reference Temperature Coefficient	Display Drive
TC7116CPL	40-Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	LCD
TC7116ACPL	40-Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$35 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	LCD
TC7116IPL	40-Pin Plastic DIP	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$80 \mathrm{ppm} /^{\circ} \mathrm{C}$	LCD
TC7116CJL	40-Pin CerDIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	LCD
TC7116IJL	40-Pin CerDIP	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$80 \mathrm{ppm}{ }^{\circ} \mathrm{C}$	LCD
TC7116AIJL	40-Pin CerDIP	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$35 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	LCD
TC7116CBQ	60-Pin Plastic Flat	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	LCD
TC7116ACBQ	60-Pin Plastic Flat	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$35 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	LCD
TC7116CKW	44-Pin Plastic Flat	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$80 \mathrm{ppm} /^{\circ} \mathrm{C}$	LCD
TC7116ACKW	44-Pin Plastic Flat	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$35 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	LCD
TC7116CLW	44-Pin PLCC	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	LCD
TC7116ACLW	44-Pin PLCC	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$35 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	LCD
TC7117CPL	40-Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	LED
TC7117ACPL	40-Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$35 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	LED
TC7117IPL	40-Pin Plastic DIP	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	LED
TC7117CJL	40-Pin CerDIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$80 \mathrm{ppm}{ }^{\circ} \mathrm{C}$	LED
TC7117JL	40-Pin CerDIP	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	LED
TC7117AIJL	40-Pin CerDIP	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$35 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	LED
TC7117CBQ	60-Pin Plastic Flat	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	LED
TC7117ACBQ	60-Pin Plastic Flat	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$35 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	LED
TC7117CKW	44-Pin Plastic Flat	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	LED
TC7117ACKW	44-Pin Plastic Flat	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$35 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	LED
TC7117CLW	44-Pin PLCC	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	LED
TC7117ACLW	44-Pin PLCC	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$35 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	LED

3-1/2 DIGIT ANALOG-TO-DIGITAL

 CONVERTERS WITH HOLD$\begin{array}{ll}\text { TC7116 } & \text { TC7117 } \\ \text { TC7116A } & \text { TC7117A }\end{array}$
PIN CONFIGURATIONS

3-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTERS WITH HOLD

TC7116 TC7117

TC7116A TC7117A

ABSOLUTE MAXIMUM RATINGS*

Supply Voltage
TC7116/TC7116A: V^{+}to V^{-} $\pm 15 \mathrm{~V}$
TC7117/TC7117A: V^{+}to GND $+6 \mathrm{~V}$
V- to GND -9V
Analog Input Voltage (Either Input) (Note 1) V^{+}to V^{-}
Reference Input Voltage (Either Input) V^{+}to V^{-}
Clock Input
TC7116/TC7116A TEST to V^{+}
TC7117/TC7117A GND to V^{+}
Power Dissipation (Note 2)
CerDIP 1000 mW
Plastic 800 mW

Abstract

Operating Temperature "C" Device $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ """ Device $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Storage Temperature $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 60 sec) $300^{\circ} \mathrm{C}$

Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to Absolute Maximum Rating Conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS (Note 3)

Parameter	Test Conditions	Min	Typ	Max	Unit
Zero Input Reading	$\begin{aligned} & V_{I N}=O V \\ & \text { Full Scale }=200 \mathrm{mV} \end{aligned}$	-	± 0	-	Digital Reading
Ratiometric Reading	$\begin{aligned} & V_{I N}=V_{\text {REF }} \\ & V_{\text {REF }}=100 \mathrm{mV} \end{aligned}$	999	999/1000	1000	Digital Reading
Roll-Over Error (Difference in Reading for Equal Positive and Negative Readings Near Full Scale)	$-\mathrm{V}_{\mathrm{IN}}=+\mathrm{V}_{\mathrm{IN}} \cong 200 \mathrm{mV}$ or $\approx 2 \mathrm{~V}$	-1	± 0.2	+1	Counts
Linearity (Maximum Deviation From Best Straight Line Fit)	Full Scale $=200 \mathrm{mV}$ or 2 V	-1	± 0.2	+1	Counts
Common-Mode Rejection Ratio (Note 4)	$\begin{aligned} & V_{C M}= \pm 1 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{~N}}=0 \mathrm{~V} \\ & \text { Full Scale }=200 \mathrm{mV} \end{aligned}$	-	50	-	$\mu \mathrm{V} / \mathrm{V}$
Noise (Peak-to-Peak Value Not Exceeded 95\% of Time)	$\begin{aligned} & V_{I N}=0 \mathrm{~V} \\ & \text { Full Scale }=200 \mathrm{mV} \end{aligned}$	-	15	-	$\mu \mathrm{V}$
Leakage Current at Input	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	-	1	10	pA
Zero Reading Drift	$\begin{aligned} & V_{I N}=0 V \\ & " \mathrm{C} " \text { Device: } 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & \text { "l" Device: }-25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	-	$\begin{gathered} 0.2 \\ 1 \\ \hline \end{gathered}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Scale Factor Temperature Coefficient	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=199 \mathrm{mV} \\ & \text { "C" Device: } 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & \text { (Ext Ref }=0 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \text {) } \\ & \text { " }{ }^{\prime \prime} \text { Device: }-25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	-	1	5 20	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Input Resistance, Pin 1	Note 6	30	70	-	$\mathrm{k} \Omega$
$\mathrm{V}_{\text {IL }}$, Pin 1	TC7116A Only	-	-	Test +1.5	V
$\mathrm{V}_{\text {IL }}$, Pin 1	TC7117A Only	-	-	GND +1.5	V
$\mathrm{V}_{1 \mathrm{H},}$ Pin 1	Both	$\mathrm{V}^{+}-1.5$	-	-	V
Supply Current (Does Not Include LED Current for 7117A)	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	-	0.8	1.8	mA
Analog Common Voltage (With Respect to Positive Supply)	$25 \mathrm{k} \Omega$ Between Common and Positive Supply	2.4	3.05	3.35	V
Temperature Coefficient of Analog Common (With Respect to Positive Supply)	"C" Device: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ TC7116ATC7117A TC7116/TC7117	-	$\begin{aligned} & 20 \\ & 80 \\ & \hline \end{aligned}$	50	$\begin{aligned} & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{aligned}$
Temperature Coefficient of Analog Common (With Respect to Positive Supply)	"I" Device: $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ $25 \mathrm{k} \Omega$ Between Common and Positive Supply (TC7116ATC7117A)	-	-	75	ppm $/{ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (Cont.)

Parameter	Test Conditions	Min	Typ	Max	Unit
TC7116/TC7116A ONLY Peak-to-Peak Segment Drive Voltage	V^{+}to $\mathrm{V}^{-}=9 \mathrm{~V}$ (Note 5$)$	4	5	6	V
TC7116/TC7116A ONLY Peak-to-Peak	V^{+}to $\mathrm{V}^{-}=9 \mathrm{~V}$ (Note 5$)$	4	5	6	V
Backplane Drive Voltage	$\mathrm{V}^{+}=5 \mathrm{~V}$ Segment Voltage $=3 \mathrm{~V}$	5	8	-	mA
TC7117/TC7117A ONLY Segment Sinking Current (Except Pin 19)	$\mathrm{V}^{+}=5 \mathrm{~V}$ Segment Voltage $=3 \mathrm{~V}$	10	16	-	mA
TC7117/TC7117A ONLY Segment	Sinking Current (Pin 19 Only)				

NOTES: 1. Input voltages may exceed supply voltages, provided input current is limited to $\pm 100 \mu \mathrm{~A}$.
2. Dissipation rating assumes device is mounted with all leads soldered to printed circuit board.
3. Unless otherwise noted, specifications apply at $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{CLOCK}}=48 \mathrm{kHz}$. TC7116/TC7116A are tested in the circuit of Figure 1 . TC7117/TC7117A are tested in the circuit of Figure 2.
4. Refer to "Differential Input" discussion.
5. Backplane drive is in-phase with segment drive for "off" segment, 180° out-of-phase for "on" segment. Frequency is 20 times conversion rate. Average DC component is less than 50 mV .
6. The TC7116/TC7116A logic inputs have an internal pull-down resistor connected from HLDR, pin 1 to TEST, pin 37.

The TC7117/TC7117A logic inputs have an internal pull-down resistor connected from HLDR, pin 1 to GND, pin 21.

PIN DESCRIPTION

| 40-Pin DIP
 Pin Number
 Normal | 60-Pin
 Flat Package
 Pin Number | Name | Description |
| :--- | :---: | :--- | :--- | | 1 |
| :--- |

TC7116 TC7117
 TC7116A TC7117A

PIN DESCRIPTION (Cont.)

40-Pin DIP Pin Number Normal	60-Pin Flat Package Pin Number	Name	Description
1	13	HLDR	Hold pin, Logic 1 holds present display reading.
24	41	C_{3}	Activates the C section of the hundreds display.
25	43	G_{2}	Activates the G section of the tens display.
26	45	V^{-}	Negative power supply voltage.
27	46	$\mathrm{V}_{\text {INT }}$	Integrator output. Connection point for integration capacitor. See Integration Capacitor section for additional details.
28	47	$V_{\text {BUFF }}$	Integration resistor connection. Use a $47 \mathrm{k} \Omega$ resistor for 200 mV full-scale range and a $470 \mathrm{k} \Omega$ resistor for 2 V full-scale range.
29	49	$\mathrm{C}_{\text {AZ }}$	The size of the auto-zero capacitor influences system noise. Use a $0.47 \mu \mathrm{~F}$ capacitor for 200 mV full scale and a $0.047 \mu \mathrm{~F}$ capacitor for 2 V full scale. See Auto-Zero Capacitor paragraph for more details.
30	51	VIN	The analog low input is connected to this pin.
31	55	$\mathrm{V}^{+}{ }_{\text {N }}$	The analog high input is connected to this pin.
32	57	ANALOG	This pin is primarily used to set the analog commonmode COMMON voltage for battery operation or in systems where the input signal is referenced to the power supply. See Analog Common paragraph for more details. It also acts as a reference voltage source.
33	58	$\mathrm{C}_{\text {ReF }}$	See pin 34.
34	59	$\mathrm{C}_{\text {REF }}^{+}$	A $0.1 \mu \mathrm{~F}$ capacitor is used in most applications. If a large, common-mode voltage exists (e.g., the $\mathrm{V}_{\text {IN }}$ pin is not at analog common), and a 200 mV scale is used, a 1 $\mu \mathrm{F}$ capacitor is recommended and will hold the roll-over error to 0.5 count.
35	60	V^{+}	Positive power supply voltage.
36	1	V^{+}REF	The analog input required to generate a full-scale output (1999 counts). Place 100 mV between pins 32 and 36 for 199.9 mV full scale. Place 1 V between pins 32 and 36 for 2 V full scale. See paragraph on Reference Voltage.
37	3	TEST	Lamp test. When pulled high (to V^{+}), all segments will be turned on and the display should read -1888 . It may also be used as a negative supply for externallygenerated decimal points. See Test paragraph for more details.
38	4	OSC_{3}	See pin 40.
39	6	OSC_{2}	See pin 40.
40	10	OSC_{1}	Pins 40, 39 and 38 make up the oscillator section. For a 48 kHz clock (3 readings per sec), connect pin 40 to the junction of a $100 \mathrm{k} \Omega$ resistor and a 100 pF capacitor. The $100 \mathrm{k} \Omega$ resistor is tied to pin 39 and the 100 pF capacitor is tied to pin 38.

Figure 3 Analog Section of TC7116/TC7116A and TC7117/TC7117A

ANALOG SECTION

Figure 3 shows the block diagram of the analog section for the TC7116/TC7116A and TC7117/TC7117A. Each measurement cycle is divided into three phases: (1) autozero (A-Z), (2) signal integrate (INT), and (3) reference integrate (REF) or deintegrate (DE).

Auto-Zero Phase

High and low inputs are disconnected from the pins and internally shorted to analog common. The reference capacitor is charged to the reference voltage. A feedback loop is closed around the system to charge the auto-zero capacitor (C_{AZ}) to compensate for offset voltages in the buffer amplifier, integrator, and comparator. Since the comparator is included in the loop, A-Z accuracy is limited only by system noise. The offset referred to the input is less than $10 \mu \mathrm{~V}$.

Signal-Integrate Phase

The auto-zero loop is opened, the internal short is removed, and the internal high and low inputs are connected to the external pins. The converter then integrates the differential voltages between V^{+}in and $\mathrm{V}_{\text {IN }}^{-}$for a fixed time. This differential voltage can be within a wide com-mon-mode range; 1 V of either supply. However, if the input signal has no return with respect to the converter power supply, $V_{\mathbb{I N}}^{-}$can be tied to analog common to establish the correct common-mode voltage. At the end of this phase, the polarity of the integrated signal is determined.

Reference Integrate Phase

The final phase is reference integrate, or deintegrate. Input low is internally connected to analog common and input high is connected across the previously charged reference capacitor. Circuitry within the chip ensures that the capacitor will be connected with the correct polarity to cause the integrator output to return to zero. The time required for the output to return to zero is proportional to the input signal. The digital reading displayed is:

$$
1000 \times \frac{V_{\mathrm{IN}}}{\mathrm{~V}_{\mathrm{REF}}}
$$

Reference

The positive reference voltage $\left(\mathrm{V}^{+}\right.$REF $)$is referenced to analog common.

Differential Input

This input can accept differential voltages anywhere within the common-mode range of the input amplifier or, specifically, from 1 V below the positive supply to 1 V above the negative supply. In this range, the system has a CMRR of 86 dB , typical. However, since the integrator also swings with the common-mode voltage, care must be exercised to ensure the integrator output does not saturate. A worstcase condition would be a large, positive common-mode voltage with a near full-scale negative differential input voltage. The negative-input signal drives the integrator positive when most of its swing has been used up by the

3-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTERS WITH HOLD

TC7116 TC7117 TC7116A TC7117A

Figure 4 Using an External Reference
positive common-mode voltage. For these critical applications, the integrator swing can be reduced to less than the recommended 2 V full-scale swing with little loss of accuracy. The integrator output can swing within 0.3 V of either supply without loss of linearity.

Analog Common

This pin is included primarily to set the common-mode voltage for battery operation (TC7116/TC7116A) or for any system where the input signals are floating with respect to the power supply. The analog common pin sets a voltage approximately 2.8 V more negative than the positive supply. This is selected to give a minimum end-of-life battery voltage of about 6 V . However, analog common has some attributes of a reference voltage. When the total supply voltage is large enough to cause the zener to regulate ($>7 \mathrm{~V}$), the analog common voltage will have a low voltage coefficient ($0.001 \% /$ $\%$), low output impedance ($\cong 15 \Omega$), and a temperature coefficient of less than $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$, typically, and 50 ppm maximum. The TC7116/TC7117 temperature coefficients are typically $80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

An external reference may be used, if necessary, as shown in Figure 4.

Analog common is also used as $\mathrm{V}_{\text {in }}$ return during autozero and deintegrate. If V_{in} is different from analog common, a common-mode voltage exists in the system and is taken care of by the excellent CMRR of the converter. However, in some applications, $\mathrm{V}_{\text {IN }}^{-}$will be set at a fixed, known voltage (power supply common for instance). In this application, analog common should be tied to the same point, thus removing the common-mode voltage from the converter. The same holds true for the reference voltage; if it can be conveniently referenced to analog common it should be, since this removes the common-mode voltage from the reference system.

Within the IC, analog common is tied to an N -channel FET that can sink 30 mA or more of current to hold the voltage 3 V below the positive supply (when a load is trying

Figure 5 Simple Inverter for Fixed Decimal Point

Figure 6 Exclusive "OR" Gate for Decimal Point Drive

Figure 7 Clock Circuits
to pull the analog common line positive). However, there is only $10 \mu \mathrm{~A}$ of source current, so analog common may easily be tied to a more negative voltage, thus overriding the internal reference.

Test

The test pin serves two functions. On the TC7117/ TC7117A, it is coupled to the internally-generated digital supply through a 500Ω resistor. Thus, it can be used as a

3-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTERS WITH HOLD

negative supply for externally-generated segment drivers, such as decimal points or any other presentation the user may want to include on the LCD. (Figures 5 and 6 show such an application.) No more than a 1 mA load should be applied.

The second function is a "lamp test." When test is pulled high (to V^{+}), all segments will be turned on and the display should read -1888 . The test pin will sink about 10 mA under these conditions.

DIGITAL SECTION

Figures 8 and 9 show the digital section for TC7116/ TC7116A and TC7117/TC7117A, respectively. For the TC7116/TC7116A (Figure 8), an internal digital ground is generated from a 6 V zener diode and a large P-channel source follower. This supply is made stiff to absorb the
relative large capacitive currents when the backplane (BP) voltage is switched. The BP frequency is the clock frequency $\div 800$. For 3 readings per second, this is a $60-\mathrm{Hz}$ square wave with a nominal amplitude of 5 V . The segments are driven at the same frequency and amplitude, and are inphase with BP when OFF, but out-of-phase when ON. In all cases, negligible DC voltage exists across the segments.

Figure 9 is the digital section of the TC7117/TC7117A. It is identical to the TC7116/TC7116A, except the regulated supply and BP drive have been eliminated, and the segment drive is typically 8 mA . The 1000's output (pin 19) sinks current from two LED segments, and has a $16-\mathrm{mA}$ drive capability. The TC7117/TC7117A are designed to drive common anode LED displays.

In both devices, the polarity indication is ON for analog inputs. If $\mathrm{V}_{\mathbb{N}}^{-}$and $\mathrm{V}^{+}{ }_{\mathrm{N}}$ are reversed, this indication can be reversed also, if desired.

Figure 8 TC7116/TC7116A Digital Section

3-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTERS WITH HOLD

TC7116 TC7116A

TC7117

System Timing

The clocking method used for the TC7116/TC7116A and TC7117/TC7117A is shown in Figure 9. Three clocking methods may be used:
(1) An external oscillator connected to pin 40.
(2) A crystal between pins 39 and 40.
(3) An RC network using all three pins.

The oscillator frequency is $\div 4$ before it clocks the decade counters. It is then further divided to form the three convert-cycle phases: signal integrate (1000 counts), reference deintegrate (0 to 2000 counts), and auto-zero (1000 to 3000 counts). For signals less than full scale, auto-zero gets the unused portion of reference deintegrate. This makes a complete measure cycle of 4000 (16,000 clock pulses) independent of input voltage. For 3 readings per second, an oscillator frequency of 48 kHz would be used.

To achieve maximum rejection of $60-\mathrm{Hz}$ pickup, the signal-integrate cycle should be a multiple of 60 Hz . Oscillator frequencies of $240 \mathrm{kHz}, 120 \mathrm{kHz}, 80 \mathrm{kHz}, 60 \mathrm{kHz}, 48$ $\mathrm{kHz}, 40 \mathrm{kHz}, 33-1 / 3 \mathrm{kHz}$, etc. should be selected. For 50 Hz rejection, oscillator frequencies of $200 \mathrm{kHz}, 100 \mathrm{kHz}, 66-2 / 3$ $\mathrm{kHz}, 50 \mathrm{kHz}, 40 \mathrm{kHz}$, etc. would be suitable. Note that 40 kHz (2.5 readings per second) will reject both 50 Hz and 60 Hz (also 400 Hz and 440 Hz).

HOLD Reading Input

When HLDR is at a logic HIGH the latch will not be updated. Analog-to-digital conversions will continue but will not be updated until HLDR is returned to LOW. To continuously update the display, connect to test (TC7116/TC7116A) or ground (TC7117/TC7117A), or disconnect. This input is CMOS compatible with $70 \mathrm{k} \Omega$ typical resistance to test (TC7116/TC7116A) or ground (TC7117/TC7117A).

Figure 9 TC7117/TC7117A Digital Section

TC7116	TC7117
TC7116A	TC7117A

COMPONENT VALUE SELECTION

Auto-Zero Capacitor

The size of the auto-zero capacitor has some influence on system noise. For 200 mV full scale, where noise is very important, a $0.47 \mu \mathrm{~F}$ capacitor is recommended. On the 2 V scale, a $0.047 \mu \mathrm{~F}$ capacitor increases the speed of recovery from overload and is adequate for noise on this scale.

Reference Capacitor

A $0.1 \mu \mathrm{~F}$ capacitor is acceptable in most applications. However, where a large common-mode voltage exists (i.e., the $V_{i N} \mathrm{p}$ in is not at analog common), and a $200-\mathrm{mV}$ scale is used, a larger value is required to prevent roll-over error. Generally, $1 \mu \mathrm{~F}$ will hold the roll-over error to 0.5 count in this instance.

Integrating Capacitor

The integrating capacitor should be selected to give the maximum voltage swing that ensures tolerance build-up will not saturate the integrator swing (approximately 0.3 V from either supply). In the TC7116/TC7116A or the TC7117/ TC7117A, when the analog common is used as a reference, a nominal $\pm 2 \mathrm{~V}$ full- scale integrator swing is acceptable. For the TC7117/TC7117A, with $\pm 5 \mathrm{~V}$ supplies and analog common tied to supply ground, $\mathrm{a} \pm 3.5 \mathrm{~V}$ to $\pm 4 \mathrm{~V}$ swing is nominal. For 3 readings per second (48 kHz clock), nominal values for $\mathrm{C}_{\mathrm{INT}}$ are $0.22 \mu 1 \mathrm{~F}$ and $0.10 \mu \mathrm{~F}$, respectively. If different oscillator frequencies are used, these values should be changed in inverse proportion to maintain the output swing.

The integrating capacitor must have low dielectric absorption to prevent roll-over errors. Polypropylene capacitors are recommended for this application.

Integrating Resistor

Both the buffer amplifier and the integrator have a class A output stage with $100 \mu \mathrm{~A}$ of quiescent current. They can supply $20 \mu \mathrm{~A}$ of drive current with negligible nonlinearity. The integrating resistor should be large enough to remain in this very linear region over the input voltage range, but small enough that undue leakage requirements are not placed on the PC board. For 2 V full scale, $470 \mathrm{k} \Omega$ is near optimum and, similarly, $47 \mathrm{k} \Omega$ for 200 mV full scale.

Oscillator Components

For all frequency ranges, a $100-\mathrm{k} \Omega$ resistor is recommended; the capacitor is selected from the equation:

$$
f=\frac{45}{R C}
$$

For 48 kHz clock (3 readings per second), $\mathrm{C}=100 \mathrm{pF}$.

Reference Voltage

To generate full-scale output (2000 counts), the analog input required is $\mathrm{V}_{\mathbb{I}}=2 \mathrm{~V}_{\text {REF }}$. Thus, for the 200 mV and 2 V scale, $\mathrm{V}_{\text {REF }}$ should equal 100 mV and 1 V , respectively. In many applications, where the ADC is connected to a transducer, a scale factor exists between the input voltage and the digital reading. For instance, in a measuring system the designer might like to have a full-scale reading when the voltage from the transducer is 700 mV . Instead of dividing the input down to 200 mV , the designer should use the input voltage directly and select $\mathrm{V}_{\text {REF }}=350 \mathrm{mV}$. Suitable values for integrating resistor and capacitor would be $120 \mathrm{k} \Omega$ and $0.22 \mu \mathrm{~F}$. This makes the system slightly quieter and also avoids a divider network on the input. TheTC7117/TC7117A, with $\pm 5 \mathrm{~V}$ supplies, can accept input signals up to $\pm 4 \mathrm{~V}$. Another advantage of this system is when a digital reading of zero is desired for $\mathrm{V}_{\mathbb{N}} \neq 0$. Temperature and weighing systems with a variable tare are examples. This offset reading can be conveniently generated by connecting the voltage transducer between $\mathrm{V}^{+} \mathbb{N}$ and analog common, and the variable (or fixed) offset voltage between analog common and $\mathrm{V} \overline{\mathrm{IN}}$.

TC7117/TC7117A POWER SUPPLIES

The TC7117/TC7117A are designed to operate from $\pm 5 \mathrm{~V}$ supplies. However, if a negative supply is not available, it can be generated with a TC7660 DC-to-DC converter and two capacitors. Figure 10 shows this application.

In selected applications, negative supply is not required. The conditions to use a single +5 V supply are:
(1) The input signal can be referenced to the center of the common-mode range of the converter.
(2) The signal is less than $\pm 1.5 \mathrm{~V}$.
(3) An external reference is used.

Figure 10 Negative Power Supply Generation With TC7660

TC7116A TC7117A

TYPICAL APPLICATIONS

Figure 11 TC7116/TC7116A Using the Internal Reference (200 mV Full Scale, 3 RPS)

Figure 12 TC7117/TC7117A Internal Reference (200 mV Full Scale, 3 RPS, ViN Tied to GND for Single-Ended Inputs.)

Figure 13 Circuit for Developing Underrange and Overrange Signals from TC7116/TC7116A Outputs

Figure 14 TC7117/TC7117A With a 1.2V External Band-Gap Reference (V_{IN} Tied to Common)

3-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTERS WITH HOLD

TC7116

 TC7116A

Figure 15 Recommended Component Values for 2V Full Scale (TC7116/TC7116A and TC7117/TC7117A)

APPLICATIONS INFORMATION

The TC7117/TC7117A sink the LED display current, causing heat to build up in the IC package. If the internal voltage reference is used, the changing chip temperature can cause the display to change reading. By reducing package power dissipation, such variations can be reduced. By reducing the LED common anode voltage, the TC7117/ TC7117A package power dissipation is reduced.

Figure 17 is a curve-tracer display showing the relationship between output current and output voltage for typical TC7117CPLTC7117ACPL devices. Since a typical LED has 1.8 V across it at 8 mA and its common anode is connected to +5 V , the TC7117/TC7117A output is at 3.2 V (Point A, Figure 17). Maximum power dissipation is 8.1 mA $\times 3.2 \mathrm{~V} \times 24$ segments $=622 \mathrm{~mW}$.

However, notice that once the TC7117/TC7117A's output voltage is above 2 V , the LED current is essentially constant as output voltage increases. Reducing the output voltage by 0.7 V (Point B Figure 17) results in 7.7 mA of LED current, only a 5% reduction. Maximum power dissipation is now only $7.7 \mathrm{~mA} \times 2.5 \mathrm{~V} \times 24=462 \mathrm{~mW}$, a reduction of 26%. An output voltage reduction of 1 V (Point C) reduces LED current by $10 \%(7.3 \mathrm{~mA})$, but power dissipation by $38 \%(7.3$ $\mathrm{mA} \times 2.2 \mathrm{~V} \times 24=385 \mathrm{~mW}$).

Figure 16 TC7117/TC7117A Operated from Single +5 V Supply (An External Reference Must Be Used in This Application.)

Reduced power dissipation is very easy to obtain. Figure 18 shows two ways: Either a $5.1 \Omega, 1 / 4 \mathrm{~W}$ resistor, or a 1 A diode placed in series with the display (but not in series with the TC7117/TC7117A). The resistor reduces the TC7117/TC7117A's output voltage (when all 24 segments are ON) to Point C of Figure 17. When segments turn off, the output voltage will increase. The diode, however, will result in a relatively steady output voltage, around Point B.

In addition to limiting maximum power dissipation, the resistor reduces change in power dissipation as the display changes. The effect is caused by the fact that, as fewer segments are ON, each ON output drops more voltage and current. For the best case of six segments (a "111" display) to worst case (a "1888" display), the resistor circuit will change about 230 mW , while a circuit without the resistor will change about 470 mW . Therefore, the resistor will reduce the effect of display dissipation on reference voltage drift by about 50%.

The change in LED brightness caused by the resistor is almost unnoticeable as more segments turn off. If display brightness remaining steady is very important to the designer, a diode may be used instead of the resistor.

3-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTERS WITH HOLD

TC7116

 TC7117

Figure 17 TC7117/TC7117A Output Current vs Output Voltage

Figure 18 Diode or Resistor Limits Package Power Dissipation

3-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTER

FEATURES

TYPICAL APPLICATIONS

- Thermometry
- Bridge Readouts
- Strain Gauges
- Load Cells
- Null Detectors
- Digital Meters
- Voltage/Current/Ohms/Power
$-\mathrm{pH}$
- Capacitance/Inductance
- Fluid Flow Rate/Viscosity/Level
- Humidity
- Position
- Digital Scales
- Panel Meters

LVDT Indicators
Portable Instrumentation

- Power Supply Readouts
- Process Monitors
- Gaussometers

■ Photometers

TYPICAL OPERATING CIRCUIT

3-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTER

TC7126

 TC7126A
GENERAL DESCRIPTION

The TC7126A features a precision, low-drift internal voltage reference and is functionally identical to the TC7126. A low-drift external reference is not normally required with the TC7126A.

The TC7126A is a $3-1 / 2$ digit CMOS analog-to-digital converter (ADC) containing all the active components necessary to construct a 0.05% resolution measurement system. Seven-segment decoders, digit and polarity drivers, voltage reference, and clock circuit are integrated on-chip. The TC7126A directly drives a liquid crystal display (LCD), and includes a backplane driver.

A low-cost, high-resolution indicating meter requires only a display, four resistors, and four capacitors. The TC7126A's
extremely low power drain and 9 V battery operation make it ideal for portable applications.

The TC7126A reduces linearity error to less than 1 count. Roll-over error (the difference in readings for equal magnitude but opposite polarity input signals) is below ± 1 count. High-impedance differential inputs offer 1 pA leakage current and a $10^{12} \Omega$ input impedance. The $15 \mu \mathrm{~V}_{\text {P-p }}$ noise performance guarantees a "rock solid" reading, and the auto-zero cycle guarantees a zero display reading with a OV input.

The TC7126A's dual-slope conversion technique automatically rejects interference signals if the converter's integration time is set to a multiple of the interference period. This is especially useful in industrial measurement environments where $50-\mathrm{Hz}, 60-\mathrm{Hz}$, and $400-\mathrm{Hz}$ line frequency signals are present.

ORDERING INFORMATION

Part No.	Package	Pin Layout	Temp Range	Ref Tempco (Max)
TC7126CPL	40-Pin Plastic DIP	Normal	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
TC7126ACPL	40-Pin Plastic DIP	Normal	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$35 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
TC7126RCPL	40-Pin Plastic DIP	Reversed	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
TC7126ARCPL	40-Pin Plastic DIP	Reversed	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$35 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
TC7126IPL	40-Pin Plastic DIP		$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
TC7126CJL	40-CerDIP		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
TC7126IJL	40-CerDIP		$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
TC7126AIJL	40-CerDIP		$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$35 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
TC7126CBQ	60-Pin Plastic Flat		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
TC7126ACBQ	60-Pin Plastic Flat		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$35 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
TC7126CKW	44-Pin Plastic Flat		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
TC7126ACKW	44-Pin Plastic Flat		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$35 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
TC7126CLW	44-Pin PLCC		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
TC7126ACLW	44-Pin PLCC		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$35 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$

PIN CONFIGURATIONS

PIN CONFIGURATIONS (Cont.)

3-1/2 DIGIT
 ANALOG-TO-DIGITAL CONVERTER

TC7126 TC7126A

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V^{+}to V^{-}) 15 V
Analog Input Voltage (Either Input) (Note 1) V^{+}to V^{-}
Reference Input Voltage (Either Input) V^{+}to V^{-}
Clock Input ...TEST to V^{+}
Operating Temperature Range
C Devices .. $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
I Devices .. $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range $. ~-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 sec) $300^{\circ} \mathrm{C}$

Power Dissipation (Note 2)

CerDIP (J)...

1000 mW

Plastic DIP (P) .. 800 mW
Plastic Flat Package, PLCC (B, K, L) 500 mW
Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to Absolute Maximum Rating Conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS: $\mathrm{V}_{\mathrm{S}}=+9 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=16 \mathrm{kHz}$, and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
Input						
	Zero Input Reading	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} \\ & \text { Full Scale }=200 \mathrm{mV} \end{aligned}$	-000.0	± 000.0	+000.0	Digital Reading
	Zero Reading Drift	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$	-	0.2	1	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
	Ratiometric Reading	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {REF }}, \mathrm{V}_{\text {REF }}=100 \mathrm{mV}$	999	999/1000	1000	Digital Reading
NL	Linearity Error	Full Scale $=200 \mathrm{mV}$ or 2 V Max Deviation From Best Fit Straight Line	-1	± 0.2	1	Count
	Roll-Over Error	$-\mathrm{V}_{\text {IN }}=+\mathrm{V}_{\mathbb{I N}} \approx 200 \mathrm{mV}$	-1	± 0.2	1	Count
e_{N}	Noise	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$, Full Scale $=200 \mathrm{mV}$	-	15	-	$\mu \mathrm{V}_{\text {P. }}$
L	Input Leakage Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	-	1	10	PA
CMRR	Common-Mode Rejection Ratio	$\begin{aligned} & V_{C M}= \pm 1 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{~N}}=0 \mathrm{~V}, \\ & \text { Full Scale }=200 \mathrm{mV} \end{aligned}$	-	50	-	$\mu \mathrm{V} / \mathrm{V}$
	Scale Factor Temperature Coefficient	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=199 \mathrm{mV}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \\ & \text { Ext Ref Temp Coeff }=0 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{aligned}$	-	1	5	ppm $/{ }^{\circ} \mathrm{C}$
Analog Common						
$V_{\text {CTC }}$	Analog Common Temperature Coefficient	$\begin{aligned} & 250 \mathrm{k} \Omega \text { Between Common and } \mathrm{V}^{+} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \text { ("C" Devices): } \\ & \mathrm{TC} 7126 \\ & \mathrm{TC} 7126 \mathrm{~A} \\ & -25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \text { ("I" Device): } \\ & \mathrm{TC} 7126 \mathrm{~A} \end{aligned}$	-	$\begin{aligned} & 80 \\ & 35 \\ & 35 \end{aligned}$	$\begin{gathered} \overline{75} \\ 100 \end{gathered}$	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
V_{C}	Analog Common Voltage	$250 \mathrm{k} \Omega$ Between Common and V^{+}	2.7	3.05	3.35	V

LCD Drive

V_{SD}	LCD Segment Drive Voltage	V^{+}to $\mathrm{V}^{-}=9 \mathrm{~V}$	4	5	6	$\mathrm{~V}_{\mathrm{P}-\mathrm{P}}$
V_{BD}	LCD Backplane Drive Voltage	V^{+}to $\mathrm{V}^{-}=9 \mathrm{~V}$	4	5	6	$\mathrm{~V}_{\mathrm{P}-\mathrm{P}}$

Power Supply

| S $\quad V_{I N}=0 \mathrm{~V}, \mathrm{~V}^{+}$to $\mathrm{V}^{-}=9 \mathrm{~V}($ Note 6$)$ | - | 55 | 100 | $\mu \mathrm{~A}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |

NOTES: 1. Input voltage may exceed supply voltages when input current is limited to $100 \mu \mathrm{~A}$.
2. Dissipation rating assumes device is mounted with all leads soldered to PC board.
3. Refer to "Differential Input" discussion.
4. Backplane drive is in-phase with segment drive for "off" segment and 180° out-of-phase for "on" segment. Frequency is 20 times conversion rate. Average DC component is less than 50 mV .
5. See "Typical Operating Circuit."
6. During auto-zero phase, current is $10-20 \mu \mathrm{~A}$ higher. A 48 kHz oscillator increases current by $8 \mu \mathrm{~A}$ (typical). Common current not included.

PIN DESCRIPTION

40-Pin DIP Pin Number Normal	(Reverse)	60-Pin Flat Package Pin Number	Name	Description
1	(40)	13	V^{+}	Positive supply voltage.
2	(39)	14	D_{1}	Activates the D section of the units display.
3	(38)	15	C_{1}	Activates the C section of the units display.
4	(37)	16	B_{1}	Activates the B section of the units display.
5	(36)	17	A_{1}	Activates the A section of the units display.
6	(35)	18	F_{1}	Activates the F section of the units display.
7	(34)	19	G_{1}	Activates the G section of the units display.
8	(33)	20	E_{1}	Activates the E section of the units display.
9	(32)	21	D_{2}	Activates the D section of the tens display.
10	(31)	25	C_{2}	Activates the C section of the tens display.
11	(30)	26	B_{2}	Activates the B section of the tens display.
12	(29)	27	A_{2}	Activates the A section of the tens display.
13	(28)	28	F_{2}	Activates the F section of the tens display.
14	(27)	29	E_{2}	Activates the E section of the tens display.
15	(26)	30	D_{3}	Activates the D section of the hundreds display.
16	(25)	31	B_{3}	Activates the B section of the hundreds display.
17	(24)	32	F_{3}	Activates the F section of the hundreds display.
18	(23)	33	E_{3}	Activates the E section of the hundreds display.
19	(22)	34	AB_{4}	Activates both halves of the 1 in the thousands display.
20	(21)	35	POL	Activates the negative polarity display.
21	(20)	36	BP	Backplane drive output.
22	(19)	37	G_{3}	Activates the G section of the hundreds display.
23	(18)	40	A_{3}	Activates the A section of the hundreds display.
24	(17)	41	C_{3}	Activates the C section of the hundreds display.
25	(16)	43	G_{2}	Activates the G section of the tens display.
26	(15)	45	V^{-}	Negative power supply voltage.
27	(14)	46	$\mathrm{V}_{\text {INT }}$	The integrating capacitor should be selected to give the maximum voltage swing that ensures component tolerance build-up will not allow the integrator output to saturate. When analog common is used as a reference and the conversion rate is 3 readings per second, a $0.047 \mu \mathrm{~F}$ capacitor may be used. The capacitor must have a low dielectric constant to prevent roll-over errors. See "Integrating Capacitor" section for additional details.
28	(13)	47	$V_{\text {BUFF }}$	Integration resistor connection. Use a $180 \mathrm{k} \Omega$ resistor for a 200 mV fullscale range and a $1.8 \mathrm{M} \Omega$ resistor for a 2 V full-scale range.
29	(12)	49	$\mathrm{C}_{\text {AZ }}$	The size of the auto-zero capacitor influences system noise. Use a $0.33 \mu \mathrm{~F}$ capacitor for 200 mV full scale, and a $0.033 \mu \mathrm{~F}$ capacitor for 2 V full scale. See paragraph on auto-zero capacitor for more details.
30	(11)	51	$\mathrm{V}_{1 N^{-}}$	The low input signal is connected to this pin.
31	(10)	55	$\mathrm{V}_{1 \mathrm{~N}^{+}}$	The high input signal is connected to this pin.
32	(9)	57	ANALOG COMMON	This pin is primarily used to set the analog common-mode voltage for battery operation or in systems where the input signal is referenced to the power supply. See paragraph on analog common for more details. It also acts as a reference voltage source.
33	(8)	58	CREF^{-}	See pin 34.

3-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTER

TC7126 TC7126A

PIN DESCRIPTION (Cont.)

GENERAL THEORY OF OPERATION

 Dual-Slope Conversion PrinciplesThe TC7126A is a dual-slope, integrating analog-todigital converter. An understanding of the dual-slope conversion technique will aid in following detailed TC7126A operational theory.

The conventional dual-slope converter measurement cycle has two distinct phases:
(1) Input signal integration
(2) Reference voltage integration (deintegration)

The input signal being converted is integrated for a fixed time period (t_{s}), measured by counting clock pulses. An opposite polarity constant reference voltage is then integrated until the integrator output voltage returns to zero. The reference integration time is directly proportional to the input signal ($t_{\text {RI I }}$).

In a simple dual-slope converter, a complete conversion requires the integrator output to "ramp-up" and "ramp-down."

A simple mathematical equation relates the input signal, reference voltage, and integration time:

$$
\frac{1}{R C} \int_{0}^{t_{S I}} V_{\mathbb{N}}(t) d t=\frac{V_{R} t_{R I}}{R C}
$$

Figure 1 Basic Dual-Slope Converter
where:
$V_{R}=$ Reference voltage
$t_{S I}=$ Signal integration time (fixed)
$t_{R I}=$ Reference voltage integration time (variable).

Figure 2 Normal-Mode Rejection of Dual-Slope Converter
For a constant V_{IN} :

$$
V_{I N}=V_{R}\left[\frac{t_{\mathrm{RI}}}{t_{\mathrm{SI}}}\right]
$$

The dual-slope converter accuracy is unrelated to the integrating resistor and capacitor values, as long as they are stable during a measurement cycle. Noise immunity is an inherent benefit. Noise spikes are integrated, or averaged, to zero during integration periods. Integrating ADCs are immune to the large conversion errors that plague successive approximation converters in high-noise environments. Interfering signals with frequency components at multiples of the averaging period will be attenuated. Integrating ADCs commonly operate with the signal integration period set to a multiple of the $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ power line period.

ANALOG SECTION

In addition to the basic integrate and deintegrate dualslope cycles discussed above, the TC7126A design incorporates an auto-zero cycle. This cycle removes buffer amplifier, integrator, and comparator offset voltage error terms from the conversion. A true digital zero reading results without external adjusting potentiometers. A complete conversion consists of three phases:
(1) Auto-zero phase
(2) Signal integrate phase
(3) Reference integrate phase

Auto-Zero Phase

During the auto-zero phase, the differential input signal is disconnected from the circuit by opening internal analog gates. The internal nodes are shorted to analog common (ground) to establish a zero input condition. Additional
analog gates close a feedback loop around the integrator and comparator. This loop permits comparator offset voltage error compensation. The voltage level established on $\mathrm{C}_{A Z}$ compensates for device offset voltages. The auto-zero phase residual is typically $10 \mu \mathrm{~V}$ to $15 \mu \mathrm{~V}$.

The auto-zero cycle length is 1000 to 3000 clock periods.

Signal Integration Phase

The auto-zero loop is entered and the internal differential inputs connect to $\mathrm{V}_{\mathbb{N}^{+}}$and $\mathrm{V}_{\mathbb{N}}-$. The differential input signal is integrated for a fixed time period. The TC7126A signal integration period is 1000 clock periods, or counts. The externally-set clock frequency is $\div 4$ before clocking the internal counters. The integration time period is:

$$
t_{\mathrm{SI}}=\frac{4}{f_{\mathrm{OSC}}} \times 1000
$$

where $\mathrm{f}_{\mathrm{OSC}}=$ external clock frequency.
The differential input voltage must be within the device common-mode range when the converter and measured system share the same power supply common (ground). If the converter and measured system do not share the same power supply common, $\mathrm{V}_{\mathbb{N}^{-}}$should be tied to analog common.

Polarity is determined at the end of signal integrate phase. The sign bit is a true polarity indication, in that signals less than 1 LSB are correctly determined. This allows precision null detection limited only by device noise and auto-zero residual offsets.

Reference Integrate Phase

The third phase is reference integrate, or deintegrate. $\mathrm{V}_{\mathbb{N}^{-}}$is internally connected to analog common and $\mathrm{V}_{\mathbb{N}^{+}}$is connected across the previously-charged reference capacitor. Circuitry within the chip ensures the capacitor will be connected with the correct polarity to cause the integrator output to return to zero. The time required for the output to return to zero is proportional to the input signal and is between 0 and 2000 internal clock periods. The digital reading displayed is:

$$
1000 \frac{\mathrm{~V}_{\mathbb{I}}}{\mathrm{V}_{\mathrm{REF}}}
$$

DIGITAL SECTION

The TC7126A contains all the segment drivers necessary to directly drive a $3-1 / 2$ digit LCD. An LCD backplane driver is included. The backplane frequency is the external clock frequency $\div 800$. For 3 conversions per second the backplane frequency is 60 Hz with a 5 V nominal amplitude.
9S1-1

3-1/2 DIGIT
 ANALOG-TO-DIGITAL CONVERTER

When a segment driver is in-phase with the backplane signal, the segment is "OFF." An out-of-phase segment drive signal causes the segment to be "ON," or visible. This $A C$ drive configuration results in negligible DC voltage across each LCD segment, ensuring long LCD life. The polarity segment driver is "ON" for negative analog inputs. If $\mathrm{V}_{\mathbb{N}^{+}}$and $\mathrm{V}_{\mathbb{N}^{-}}$are reversed, this indicator would reverse.

On the TC7126A, when the test pin is pulled to V^{+}, all segments are turned "ON." The display reads -1888 . During this mode, LCD segments have a constant DC voltage impressed. Do not leave the display in this mode for more than several minutes; LCDs may be destroyed if operated with DC levels for extended periods.

The display font and segment drive assignment are shown in Figure 4.

System Timing

The oscillator frequency is $\div 4$ prior to clocking the internal decade counters. The three-phase measurement cycle takes a total of 4000 counts (16,000 clock pulses). The 4000count cycle is independent of input signal magnitude.

Each phase of the measurement cycle has the following length:
(1) Auto-zero phase: 1000 to 3000 counts (4000 to 12,000 clock pulses)
For signals less than full scale, the auto-zero phase is assigned the unused reference integrate time period.
(2) Signal integrate: 1000 counts (4000 clock pulses)
This time period is fixed. The integration period is:

$$
\mathrm{t}_{\mathrm{SI}}=4000\left[\frac{1}{\text { fosc }}\right],
$$

where fosc is the externally-set clock frequency.
(3) Reference integrate: 0 to 2000 counts
(0 to 8000 clock pulses)

Figure 4 Display Font and Segment Assignment

The TC7126A is a drop-in replacement for the TC7126 and ICL7126 that offers a greatly improved internal reference temperature coefficient. No external component value changes are required to upgrade existing designs.

COMPONENT VALUE SELECTION

Auto-Zero Capacitor (C_{AZ})
The C_{AZ} size has some influence on system noise. A $0.33 \mu \mathrm{~F}$ capacitor is recommended for 200 mV full-scale applications where 1 LSB is $100 \mu \mathrm{~V}$. $\mathrm{A} 0.033 \mu \mathrm{~F}$ capacitor is adequate for 2 V full-scale applications. A Mylar-type dielectric capacitor is adequate.

Reference Voltage Capacitor ($\mathrm{C}_{\text {REF }}$)

The reference voltage used to ramp the integrator output voltage back to zero during the reference integrate phase is stored on $\mathrm{C}_{\text {REF }}$ A $0.1 \mu \mathrm{~F}$ capacitor is acceptable when $\mathrm{V}_{\mathrm{REF}}{ }^{-}$is tied to analog common. If a large commonmode voltage exists ($\mathrm{V}_{\mathrm{REF}}{ }^{-} \neq$analog common) and the application requires a 200 mV full scale, increase $\mathrm{C}_{\text {REF }}$ to $1 \mu \mathrm{~F}$. Roll-over error will be held to less than 0.5 count. A Mylar-type dielectric capacitor is adequate.

Integrating Capacitor ($\mathrm{C}_{\mathrm{INT}}$)

$\mathrm{C}_{\text {INT }}$ should be selected to maximize integrator output voltage swing without causing output saturation. Due to the TC7126A's superior analog common temperature coefficient specification, analog common will normally supply the differential voltage reference. For this case, $\mathrm{a} \pm 2 \mathrm{~V}$ full-scale integrator output swing is satisfactory. For 3 readings per second (fosc $=48 \mathrm{kHz}$), a $0.047 \mu \mathrm{~F}$ value is suggested. For 1 reading per second, $0.15 \mu \mathrm{~F}$ is recommended. If a different oscillator frequency is used, $\mathrm{C}_{\mathbb{N T} T}$ must be changed in inverse proportion to maintain the nominal $\pm 2 \mathrm{~V}$ integrator swing.

An exact expression for $\mathrm{C}_{\mathbb{I N T}}$ is:
$\mathrm{C}_{\text {INT }}=\frac{(4000)\left(\frac{1}{\text { fosc }}\right)\left(\frac{\mathrm{V}_{\mathrm{FS}}}{\mathrm{R}_{\text {INT }}}\right)}{\mathrm{V}_{\mathrm{INT}}}$,
where: $\mathrm{f}_{\mathrm{OSC}}=$ Clock frequency at pin 38
$\mathrm{V}_{\mathrm{FS}}=$ Full-scale input voltage
$\mathrm{R}_{\mathrm{INT}}=$ Integrating resistor
$\mathrm{V}_{\text {INT }}=$ Desired full-scale integrator output swing.
At 3 readings per second, a 750Ω resistor should be placed in series with $\mathrm{C}_{\mathrm{INT}}$. This increases accuracy by compensating for comparator delay. $\mathrm{C}_{\mathrm{INT}}$ must have low dielectric absorption to minimize roll-over error. An inexpensive polypropylene capacitor is recommended.

3-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTER

TC7126
TC7126A

Integrating Resistor ($\mathrm{R}_{\mathbb{I N T}}$)

The input buffer amplifier and integrator are designed with Class A output stages. The output stage idling current is $6 \mu \mathrm{~A}$. The integrator and buffer can supply $1 \mu \mathrm{~A}$ drive current with negligible linearity errors. $\mathrm{R}_{\mathrm{INT}}$ is chosen to remain in the output stage linear drive region, but not so large that PC board leakage currents induce errors. For a 200 mV full scale, $\mathrm{R}_{\mathrm{INT}}$ is $180 \mathrm{k} \Omega$. A 2 V full scale requires $1.8 \mathrm{M} \Omega$.

Component	Nominal Full-Scale Voltage	
Value	$\mathbf{2 0 0 ~ m V}$	$\mathbf{2 V}$
$\mathrm{C}_{A Z}$	$0.33 \mu \mathrm{~F}$	$0.033 \mu \mathrm{~F}$
$\mathrm{R}_{\mathrm{INT}}$	$180 \mathrm{k} \Omega$	$1.8 \mathrm{M} \Omega$
$\mathrm{C}_{\text {INT }}$	$0.047 \mu \mathrm{~F}$	$0.047 \mu \mathrm{~F}$
NOTE: \quad fosc $=48 \mathrm{kHz}(3$ readings per sec).		

Oscillator Components

Cosc should be 50 pF ; Rosc is selected from the equation:

$$
\mathrm{f}_{\mathrm{OSC}}=\frac{0.45}{\mathrm{RC}} .
$$

For a 48 kHz clock (3 conversions per second), $\mathrm{R}=180 \mathrm{k} \Omega$.
Note that fosc is $\div 4$ to generate the TC7126A's internal clock. The backplane drive signal is derived by dividing fosc by 800 .

To achieve maximum rejection of 60 Hz noise pickup, the signal integrate period should be a multiple of 60 Hz . Oscillator frequencies of $240 \mathrm{kHz}, 120 \mathrm{kHz}, 80 \mathrm{kHz}, 60 \mathrm{kHz}$, $40 \mathrm{kHz}, 33-1 / 3 \mathrm{kHz}$, etc. should be selected. For 50 Hz rejection, oscillator frequencies of $200 \mathrm{kHz}, 100 \mathrm{kHz}, 66-2 /$ $3 \mathrm{kHz}, 50 \mathrm{kHz}, 40 \mathrm{kHz}$, etc. would be suitable. Note that 40 kHz (2.5 readings per second) will reject both 50 Hz and 60 Hz (also 400 Hz and 440 Hz).

Reference Voltage Selection

A full-scale reading (2000 counts) requires the input signal be twice the reference voltage.

Required Full-Scale Voltage *	V $_{\text {REF }}$
200 mV	100 mV
2 V	1 V

${ }^{*} V_{F S}=2 V_{\text {REF }}$.
In some applications, a scale factor other than unity may exist between a transducer output voltage and the required digital reading. Assume, for example, a pressure transducer output for $2000 \mathrm{lb} / \mathrm{in} .^{2}$ is 400 mV . Rather than dividing the
input voltage by two, the reference voltage should be set to 200 mV . This permits the transducer input to be used directly.

The differential reference can also be used where a digital zero reading is required when V_{IN} is not equal to zero. This is common in temperature-measuring instrumentation. A compensating offset voltage can be applied between analog common and $\mathrm{V}_{\mathbb{N}^{-}}$. The transducer output is connected between $\mathrm{V}_{\mathbb{N}^{+}}$and analog common.

DEVICE PIN FUNCTIONAL DESCRIPTION
 (Pin Numbers Refer to 40-Pin DIP)
 \section*{Differential Signal Inputs}

$\mathrm{V}_{\mathrm{IN}^{+}}($Pin 31$), \mathrm{V}_{\mathrm{IN}^{-}}(\operatorname{Pin} 30)$

The TC7126A is designed with true differential inputs and accepts input signals within the input stage commonmode voltage range (V_{CM}). Typical range is $\mathrm{V}^{+}-1 \mathrm{~V}$ to V^{-} +1 V . Common-mode voltages are removed from the system when the TC7126A operates from a battery or floating power source (isolated from measured system), and $\mathrm{V}_{\mathbb{N}^{-}}$is connected to analog common ($\mathrm{V}_{\text {COM }}$). (See Figure 5.)

In systems where common-mode voltages exist, the TC7126A's 86 dB common-mode rejection ratio minimizes error. Common-mode voltages do, however, affect the integrator output level. A worst-case condition exists if a large positive V_{CM} exists in conjunction with a full-scale negative differential signal. The negative signal drives the integrator output positive along with V_{CM} (see Figure 6.) For such applications, the integrator output swing can be reduced below the recommended 2 V full-scale swing. The integrator output will swing within 0.3 V of V^{+}or V^{-}without increased linearity error.

Differential Reference

$\mathbf{V}_{\text {Ref }}{ }^{+}$(Pin 36), V $_{\text {Ref }}{ }^{-}$(Pin 35)
The reference voltage can be generated anywhere within the V^{+}to V^{-}power supply range.

To prevent roll-over type errors being induced by large common-mode voltages, $\mathrm{C}_{\text {REF }}$ should be large compared to stray node capacitance.

The TC7126A offers a significantly improved analog common temperature coefficient. This potential provides a very stable voltage, suitable for use as a voltage reference. The temperature coefficient of analog common is typically $35 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ for the TC7126A and $80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ for the TC7126.

ANALOG COMMON (Pin 32)

The analog common pin is set at a voltage potential approximately 3 V below V^{+}. The potential is guaranteed to be between 2.7 V and 3.35 V below V^{+}. Analog common is tied internally to an N -channel FET capable of sinking $100 \mu \mathrm{~A}$. This FET will hold the common line at 3 V should an

Figure 5 Common-Mode Voltage Removed in Battery Operation With $\mathrm{V}_{\mathrm{IN}}=$ Analog Common
external load attempt to pull the common line toward V^{+}. Analog common source current is limited to $1 \mu \mathrm{~A}$. Therefore, analog common is easily pulled to a more negative voltage (i.e., below $\mathrm{V}^{+}-3 \mathrm{~V}$).

The TC7126A connects the internal $\mathrm{V}_{\mathrm{IN}^{+}}$and $\mathrm{V}_{\mathbb{N}^{-}}$inputs to analog common during the auto-zero phase. During the reference-integrate phase, $\mathrm{V}_{\mathbb{N}^{-}}$is connected to analog common. If $\mathrm{V}_{\mathrm{IN}^{-}}$is not externally connected to analog common, a common-mode voltage exists, but is rejected by the converter's 86 dB common-mode rejection ratio. In battery operation, analog common and $\mathrm{V}_{\mathbb{N}^{-}}$are usually connected, removing common-mode voltage concerns. In systems where $\mathrm{V}_{\mathbb{N}}{ }^{-}$is connected to power supply ground or to a given voltage, analog common should be connected to $\mathrm{V}_{\mathbb{N}^{-}}$.

The analog common pin serves to set the analog section reference, or common point. The TC7126A is specifically designed to operate from a battery or in any measurement system where input signals are not referenced (float) with respect to the TC7126A's power source. The analog

Figure 6 Common-Mode Voltage Reduces Available Integrator Swing ($\mathrm{V}_{\text {COM }} \neq \mathrm{V}_{\text {IN }}$)
common potential of $\mathrm{V}^{+}-3 \mathrm{~V}$ gives a 7 V end of battery life voltage. The common potential has a $0.001 \% / \%$ voltage coefficient and a 15Ω output impedance.

With sufficiently high total supply voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}>7 \mathrm{~V}$), analog common is a very stable potential with excellent temperature stability (typically $35 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$). This potential can be used to generate the TC7126A's reference voltage. An external voltage reference will be unnecessary in most cases because of the $35 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ temperature coefficient. See "TC7126A Internal Voltage Reference" discussion.

TEST (Pin 37)

The test pin potential is 5 V less than V^{+}. Test may be used as the negative power supply connection for external CMOS logic. The test pin is tied to the internally-generated negative logic supply through a 500Ω resistor. The test pin load should not be more than 1 mA . See "Digital Section" for additional information on using test as a negative digital logic supply.

If test is pulled high (to V^{+}), all segments plus the minus sign will be activated. Do not operate in this mode for more than several minutes. With TEST $=\mathrm{V}^{+}$, the LCD segments are impressed with a DC voltage which will destroy the LCD.

TC7126A Internal Voltage Reference

The TC7126A's analog common voltage temperature stability has been significantly improved (Figure 7). The " A " version of the industry-standard TC7126 device allows users to upgrade old systems and design new systems without external voltage references. External R and C values do not need to be changed. Figure 10 shows analog common supplying necessary voltage reference for the TC7126A.

3-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTER

TC7126
TC7126A

Figure 7 Analog Common Temperature Coefficient

APPLICATIONS INFORMATION

Liquid Crystal Display Sources

Several manufacturers supply standard LCDs to interface with the TC7126A 3-1/2 digit analog-to-digital converter.

Manufacturer	Address/Phone	Representative Part Numbers*
Crystaloid Electronics	5282 Hudson Dr., Hudson, OH 44236 216-655-2429	$\begin{aligned} & \text { C5335, H5535, } \\ & \text { T5135, SX440 } \end{aligned}$
AND	770 Airport Blvd., Burlingame, CA 94010 415-347-9916	$\begin{aligned} & \text { FE 0801, } \\ & \text { FE } 0203 \end{aligned}$
VGI, Inc.	1800 Vernon St., Ste. 2 Roseville, CA 95678 916-783-7878	11048, 11126
Hamlin, Inc.	612 E. Lake St., Lake Mills, WI 53551 414-648-2361	3902, 3933, 3903

*NOTE: Contact LCD manufacturer for full product listing/specifications.

Decimal Point and Annunciator Drive

The test pin is connected to the internally-generated digital logic supply ground through a 500Ω resistor. The test pin may be used as the negative supply for external CMOS gate segment drivers. LCD annunciators for decimal points, low battery indication, or function indication may be added without adding an additional supply. No more than 1 mA should be supplied by the test pin. The test pin potential is approximately 5 V below V^{+}.

Figure 8 TC7126A Internal Voltage Reference Connection

Flat Package

The TC7126A is available in an epoxy 60-pin formed leads flat package. A test socket for the TC7126ACBQ device is available:

Part No.	IC 51-42
Manufacturer:	Yamaichi
Distribution:	Nepenthe Distribution
	2471 East Bayshore
	Suite 520
	Palo Alto, CA 94043
	(415) 856-9332

Ratiometric Resistance Measurements

The TC7126A's true differential input and differential reference make ratiometric readings possible. In ratiometric operation, an unknown resistance is measured with respect to a known standard resistance. No accurately-defined reference voltage is needed.

The unknown resistance is put in series with a known standard and a current passed through the pair. The voltage developed across the unknown is applied to the input and the voltage across the known resistor applied to the reference input. If the unknown equals the standard, the display will read 1000. The displayed reading can be determined from the following expression:

$$
\text { Displayed reading }=\frac{R_{\text {UNKNOWN }}}{R_{\text {STANDARD }}} \times 1000
$$

The display will overrange for Runknown $\geqslant 2 \times \mathrm{R}_{\text {STANDARD }}$.

Figure 10 Low Parts Count Ratiometric Resistance Measurement

Figure 9 Decimal Point and Annunciator Drives

Figure 11 3-1/2 Digit True RMS AC DMM

TC7126
TC7126A

Figure 12 Temperature Sensor

Figure 13 Positive Temperature Coefficient Resistor Temperature Sensor

Figure 14 Integrated Circuit Temperature Sensor

4-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTER WITH ON-CHIP LCD DRIVERS

FEATURES

- Count Resolution \qquad $\pm 19,999$
Resolution on 200 mV Scale
- True Differential Input and Reference
- Low Power Consumption. \qquad $500 \mu \mathrm{~A}$ at 9 V
- Direct LCD Driver for:
-4-1/2 Digits
- Decimal Points
- Low-Battery Indicator
- Continuity Indicator
- Overrange and Underrange Outputs
- Range Select Input
- High Common-Mode Rejection Ratio 110 dB
- External Phase Compensation Not Required

4-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTER WITH ON-CHIP LCD DRIVERS

TC7129

GENERAL DESCRIPTION

The TC7129 is a 4-1/2 digit analog-to-digital converter (ADC) that directly drives a multiplexed liquid crystal display (LCD). Fabricated in high-performance, low-power CMOS, the TC7129 ADC is designed specifically for highresolution, battery-powered digital multimeter applications. A complete analog measurement instrument requires only the TC7129, a few passive components, a reference, an LCD, and a battery. Power consumption is low, only 500 $\mu \mathrm{A}$ from a 9 V battery. The traditional dual-slope method of A/D conversion has been enhanced with a successive integration technique to produce readings accurate to better than 0.005% of full scale, and resolution down to $10 \mu \mathrm{~V}$ per count.

The TC7129 includes features important to multimeter applications. It detects and indicates low-battery condition. A continuity output drives an annunciator on the display, and can be used with an external driver to sound an audible alarm. Overrange and underrange outputs and a rangechange input provide the ability to create auto-ranging instruments. For snapshot readings, the TC7129 includes a
latch-and-hold input to freeze the present reading. This combination of features makes the TC7129 the ideal choice for full-featured multimeter and digital measurement applications.

ORDERING INFORMATION

Part No.	Pin Layout	Package	Temperature Range
TC7129CPL	Normal	$40-$ Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC7129RCPL	Reversed	$40-$-Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC7129CJL	Normal	$40-$ Pin CerDIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC7129CKW	Formed	$44-$-Pin Plastic Flat	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC7129CLW	-	$44-$ Pin PLCC	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC7129CBQ	Formed	$60-$ Pin Plastic Flat	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

PIN CONFIGURATIONS

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V^{+}to V^{-}) $+15 \mathrm{~V}$
Reference Voltage (REF HI or REF LO) V^{+}to V^{-}
Input Voltage (IN HI or IN LO) (Note 1) \qquad V^{+}to V^{-}
VIISP Digital Input, Pins
 Analog Input, Pins 25, 29, 30 V^{+}to V^{-} Power Dissipation Plastic Package (Note 2) 800 mW Operating Temperature Range $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec) \qquad $+300^{\circ} \mathrm{C}$

Notes: Input voltages may exceed supply voltages, provided input current is limited to $\pm 400 \mu \mathrm{~A}$. Currents above this value may result in invalid display readings but will not destroy the device if limited to $\pm 1 \mathrm{~mA}$.
Dissipation ratings assume device is mounted with all leads soldered to printed circuit board.
Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to Absolute Maximum Rating Conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS: V^{+}to $\mathrm{V}^{-}=9 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=1 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{CLK}}=120 \mathrm{kHz}$, unless otherwise indicated. Pin numbers refer to 40 -pin DIP.

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
Input						
	Zero Input Reading	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, 200 \mathrm{mV}$ Scale	-0000	0000	+0000	Counts
	Zero Reading Drift	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}, 0^{\circ} \mathrm{C}<T_{A}<+70^{\circ} \mathrm{C}$	-	± 0.5	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
	Ratiometric Reading	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {REF }}=1000 \mathrm{mV}$, Range $=2 \mathrm{~V}$	9997	9999	10000	Counts
	Range Change Accuracy	$\mathrm{V}_{\mathrm{IN}}=0.1 \mathrm{~V}$ on Low Range $\div \mathrm{V}_{\mathbb{I}}=1 \mathrm{~V}$ on High Range	0.9999	1.0000	1.0001	Ratio
RE	Roll-Over Error	$-\mathrm{V}_{\text {IN }}=+\mathrm{V}_{\text {IN }}=199 \mathrm{mV}$	-	1	2	Counts
NL	Linearity Error	200 mV Scale	-	1	-	Counts
CMRR	Common-Mode Rejection Ratio	$\mathrm{V}_{\text {CM }}=1 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}, 200 \mathrm{mV}$ Scale	-	110	-	dB
CMVR	Common-Mode Voltage Range	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} \\ & 200 \mathrm{mV} \text { Scale } \end{aligned}$		$\begin{aligned} & \left(\mathrm{V}^{-}\right)+1.5 \\ & \left(\mathrm{~V}^{+}\right)-1 \end{aligned}$	-	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\overline{e_{N}}$	Noise (Peak-to-Peak Value Not Exceeded 95\% of Time)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} \\ & 200 \mathrm{mV} \text { Scale } \end{aligned}$	-	14	-	$\mu \mathrm{V}_{\text {P-P }}$
IN	Input Leakage Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$, Pins 32, 33	-	1	10	pA
	Scale Factor Temperature Coefficient	$\begin{aligned} & \mathrm{V}_{\mathbb{I N}}=199 \mathrm{mV}, 0^{\circ} \mathrm{C}<T_{\mathrm{A}}<+70^{\circ} \mathrm{C} \\ & \text { External } \mathrm{V}_{\text {REF }}=0 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	-	2	7	ppm $/{ }^{\circ} \mathrm{C}$
Power						
$\mathrm{V}_{\text {COM }}$	Common Voltage	V^{+}to Pin 28	2.8	3.2	3.5	V
	Common Sink Current Common Source Current	$\begin{aligned} & \Delta \text { Common }=+0.1 \mathrm{~V} \\ & \Delta \text { Common }=-0.1 \mathrm{~V} \end{aligned}$	-	$\begin{aligned} & 0.6 \\ & 10 \end{aligned}$	-	$\begin{aligned} & \mathrm{mA} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
DGND	Digital Ground Voltage	V^{+}to Pin 36, V^{+}to $\mathrm{V}^{-}=9 \mathrm{~V}$	4.5	5.3	5.8	V
	Sink Current	$\triangle \mathrm{DGND}=+0.5 \mathrm{~V}$	-	1.2	-	mA
	Supply Voltage Range	V^{+}to V^{-}	6	9	12	V
Is	Supply Current Excluding Common Current	V^{+}to $\mathrm{V}^{-}=9 \mathrm{~V}$	-	0.5	1	mA
flek	Clock Frequency		-	120	360	kHz
	$V_{\text {DISP Resistance }}$	$\mathrm{V}_{\text {DISP }}$ to V^{+}	-	50	-	$\mathrm{k} \Omega$
	Low-Battery Flag Activation Voltage	V^{+}to V^{-}	6.3	7.2	7.7	V
Digital						
	Continuity Comparator	Vout Pin 27 = High	100	200	$\bar{\square}$	mV
	Threshold Voltages	$V_{\text {Out }}$ Pin 27 = Low	-	200	400	mV
	Pull-Down Current	Pins 37, 38, 39	-	2	10	$\mu \mathrm{A}$
	"Weak Output" Current Sink/Source	Pins 20, 21 Sink/Source Pin 27 Sink/Source	-	$\begin{aligned} & 3 / 3 \\ & 3 / 9 \end{aligned}$	-	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
	Pin 22 Source Current Pin 22 Sink Current		-	$\begin{gathered} 40 \\ 3 \end{gathered}$	-	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$

4-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTER WITH ON-CHIP LCD DRIVERS

TC7129

PIN DESCRIPTIONS (Pin Numbers Refer to 40-Pin DIP)

Pin	Name	Function
1	OSC_{1}	Input to first clock inverter.
2	OSC_{3}	Output of second clock inverter.
3	AUNUNCIATOR DRIVE	Backplane square-wave output for driving annunciators.
4	$\mathrm{B}_{1}, \mathrm{C}_{1}, \mathrm{CONT}$	Output to display segments.
5	$\mathrm{A}_{1}, \mathrm{G}_{1}, \mathrm{D}_{1}$	Output to display segments.
7	$\mathrm{B}_{2}, \mathrm{C}_{2}$, LO BATT	Output to display segments.
8	$\mathrm{A}_{2}, \mathrm{G}_{2}, \mathrm{D}_{2}$	Output to display segments.
9	F_{2}, E_{2}, D^{\prime}	Output to display segments.
10	$\mathrm{B}_{3}, \mathrm{C}_{3}$, MINUS	Output to display segments.
11	A_{3}, G_{3}, D_{3}	Output to display segments.
12	F_{3}, E_{3}, D^{\prime}	Output to display segments.
13	$\mathrm{B}_{4}, \mathrm{C}_{4}, \mathrm{BC}_{5}$	Output to display segments.
14	$\mathrm{A}_{4}, \mathrm{D}_{4}, \mathrm{G}_{4}$	Output to display segments.
15	$F_{4}, \mathrm{E}_{4}, \mathrm{DP}_{4}$	Output to display segments.
16	BP_{3}	Backplane \#3 output to display.
17	BP_{2}	Backplane \#2 output to display.
18	BP_{1}	Backplane \#1 output to display.
19	$\mathrm{V}_{\text {DISP }}$	Negative rail for display drivers.
20	$\mathrm{DP}_{4} / \mathrm{OR}$	Input: When HI , turns on most significant decimal point. Output: Pulled HI when result count exceeds $\pm 19,999$.
21	$\mathrm{DP}_{3} / \mathrm{UR}$	Input: Second most significant decimal point on when HI. Output: Pulled HI when result count is less than ± 1000.
22	$\overline{\text { LATCH/HOLD }}$	Input: When floating, ADC operates in the free-run mode. When pulled HI, the last displayed reading is held. When pulled LO, the result counter contents are shown incrementing during the deintegrate phase of cycle. Output: Negative-going edge occurs when the data latches are updated. Can be used for converter status signal.

23	$\mathrm{~V}^{-}$	Negative power supply terminal.
24	$\mathrm{~V}^{+}$	Positive power supply terminal and positive rail for display drivers.
25	INT IN	Input to integrator amplifier.
26	INT OUT	Output of integrator amplifier.
27	CONTINUITY	Input: When LO, continuity flag on the display is off. When HI, continuity flag is on. Output: HI when voltage between inputs is less than +200 mV . LO when voltage between inputs is more than +200 mV.
28	COMMON	Sets common-mode voltage of 3.2 V below V^{+}for $\mathrm{DE}, 10 \mathrm{X}$, etc. Can be used as preregulator for external reference.

29	CREF $^{+}$	Positive side of external reference capacitor.
30	CREF $^{-}$	Negative side of external reference capacitor.
31	BUFFER	Output of buffer amplifier.
32	IN LO	Negative input voltage terminal.
33	N HI	Positive input voltage terminal.
34	REF HI	Positive reference voltage input terminal.
35	REF LO	Negative reference voltage input terminal.
36	DGND	Internal ground reference for digital section. See " $\pm 5 \mathrm{~V}$ Power Supply" paragraph.
37	RANGE	$3 \mu \mathrm{~A}$ pull-down for 200 mV scale. Pulled HI externally for $2 \mathrm{~V} \mathrm{scale}$.
38	DP_{2}	Internal 3 $\mu \mathrm{A}$ pull-down. When HI, decimal point 2 will be on.
39	DP_{1}	Internal $3 \mu \mathrm{~A}$ pull-down. When HI, decimal point 1 will be on.
40	OSC_{2}	Output of first clock inverter. Input of second clock inverter.

4-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTER WITH ON-CHIP LCD DRIVERS

COMPONENT SELECTION

The TC7129 is designed to be the heart of a highresolution analog measurement instrument. The only additional components required are a few passive elements, a voltage reference, an LCD, and a power source. Most component values are not critical; substitutes can be chosen based on the information given below.

The basic circuit for a digital multimeter application is shown in Figure 1. See "Special Applications" for variations. Typical values for each component are shown. The sections below give component selection criteria.

Oscillator (XOsc, $\mathrm{C}_{01}, \mathrm{C}_{\mathrm{O} 2}, \mathrm{R}_{\mathrm{O}}$)

The primary criterion for selecting the crystal oscillator is to chose a frequency that achieves maximum rejection of line-frequency noise. To do this, the integration phase should last an integral number of line cycles. The integration
phase of the TC7129 is 10,000 clock cycles on the 200 mV range and 1000 clock cycles on the 2 V range. One clock cycle is equal to two oscillator cycles. For 60 Hz rejection, the oscillator frequency should be chosen so the period of one line cycle equals the integration time for the 2 V range:

$$
\begin{aligned}
& 1 / 60 \text { second }=16.7 \mathrm{~ms}= \\
& \frac{1000 \text { clock cycles * } 2 \text { osc cycles/clock cycle }}{\text { oscillator frequency }}
\end{aligned}
$$

giving an oscillator frequency of 120 kHz . A similar calculation gives an optimum frequency of 100 kHz for 50 Hz rejection.

The resistor and capacitor values are not critical; those shown work for most applications. In some situations, the capacitor values may have to be adjusted to compensate for parasitic capacitance in the circuit. The capacitors can be low-cost ceramic devices.

Figure 1 Standard Circuit

4-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTER WITH ON-CHIP LCD DRIVERS

Some applications can use a simple RC network instead of a crystal oscillator. The RC oscillator has more potential for jitter, especially in the least significant digit. See "RC Oscillator."

Integrating Resistor (RINT)

The integrating resistor sets the charging current for the integrating capacitor. Choose a value that provides a current between $5 \mu \mathrm{~A}$ and $20 \mu \mathrm{~A}$ at 2 V , the maximum full-scale input. The typical value chosen gives a charging current of $13.3 \mu \mathrm{~A}$:

$$
\mathrm{I}_{\mathrm{CHARGE}}=\frac{2 \mathrm{~V}}{150} 13.3 \mu \mathrm{~A}
$$

Too high a value for $\mathrm{R}_{\text {INT }}$ increases the sensitivity to noise pickup and increases errors due to leakage current. Too low a value degrades the linearity of the integration, leading to inaccurate readings.

Integrating Capacitor ($\mathrm{C}_{\mathrm{INT}}$)

The charge stored in the integrating capacitor during integrate phase is directly proportional to the input voltage. The primary selection criterion for $\mathrm{C}_{\mathrm{INT}}$ is to choose a value that gives the highest voltage swing while remaining within the high-linearity portion of the integrator output range. An integrator swing of 2 V is the recommended value. The capacitor value can be calculated from the equation:

$$
\mathrm{C}_{\mathrm{INT}}=\frac{\mathrm{t}_{\mathrm{INT}} * l_{\mathrm{INT}}}{V_{\mathrm{SWING}}}
$$

where $\mathrm{t}_{\mathrm{INT}}$ is the integration time.
Using the values derived above (assuming 60 Hz operation), the equation becomes:

$$
\mathrm{C}_{\mathrm{INT}}=\frac{16.7 \mathrm{~ms} * 13.3 \mu \mathrm{~A}}{2 \mathrm{~V}}=0.1 \mu \mathrm{~F}
$$

The capacitor should have low dielectric absorption to ensure good integration linearity. Polypropylene and Teflon capacitors are usually suitable. A good measurement of the dielectric absorption is to connect the reference capacitor across the inputs by connecting:

Pin to Pin

$$
20 \rightarrow 33 \quad\left(\text { CheF }^{+}\right. \text {to IN HI) }
$$

$$
30 \rightarrow 32 \quad \text { (CREF }{ }^{-10} \text { IN LO) }
$$

A reading between 10,000 and 9998 is acceptable; anything lower indicates unacceptable high dielectric absorption.

Reference Capacitor ($\mathrm{C}_{\text {REF }}$)

The reference capacitor stores the reference voltage during several phases of the measurement cycle. Low leakage is the primary selection criterion for this component. The value must be high enough to offset the effect of stray capacitance at the capacitor terminals. A value of at least $1 \mu \mathrm{~F}$ is recommended.

Voltage Reference (DREF, RREF, RBIAS, CRF)

A TC04 band-gap reference provides a high-stability voltage reference of 1.25 V . The reference potentiometer ($\mathrm{R}_{\text {REF }}$) provides an adjustment for adjusting the reference voltage; any value above 20 kW is adequate. The bias resistor ($R_{\text {BIAS }}$) limits the current through $D_{\text {REF }}$ to less than $150 \mu \mathrm{~A}$. The reference filter capacitor (C_{RF}) forms an RC filter with R RIAS to help eliminate noise.

Input filter ($\mathrm{R}_{\mathrm{IF}}, \mathrm{C}_{\mathrm{IF}}$)

For added stability, an RC input noise filter is usually included in the circuit. The input filter resistor value should not exceed 100 kW . A typical RC time constant value is 16.7 ms to help reject line-frequency noise. The input filter capacitor should have low leakage for high-impedance input.

Battery

The typical circuit uses a 9 V battery as a power source. Any value between 6 V and 12 V can be used. For operation from batteries with voltages lower than 6 V and for operation from power supplies, see "Powering the TC7129."

SPECIAL APPLICATIONS

The TC7129 as a Replacement Part

The TC7129 is a direct pin-for-pin replacement part for the Intersil ICL7129. Note, however, that the Intersil part requires a capacitor and resistor between pins 26 and 28 for phase compensation. Since the TC7129 uses internal phase compensation, these parts are not required and, in fact, must be removed from the circuit for stable operation.

Powering the TC7129

While the most common power source for the TC7129 is a 9 V battery, there are other possibilities. Some of the more common ones are explained below.

4-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTER WITH ON-CHIP LCD DRIVERS

TC7129

$\pm 5 \mathrm{~V}$ Power Supply

Measurements are made with respect to power supply ground. DGND (pin 36) is set internally to about 5V less than v^{+}(pin 24); it is not intended as a power supply input and must not be tied directly to power supply ground. (It can be used as a reference for external logic, as explained in "Connecting to External Logic." (See Figure 2.)

Figure 2 Powering the TC7129 From a ± 5 V Power Supply

Low-Voltage Battery Source

A battery with voltage between 3.8 V and 6 V can be used to power the TC7129 when used with a voltage-doubler circuit as shown in Figure 3. The voltage doubler uses the TC7660 DC-to-DC voltage converter and two external capacitors.

+5V Power Supply

Measurements are made with respect to power supply ground. COMMON (pin 28) is connected to REFLO (pin 35). A voltage doubler is needed, since the supply voltage is less than 6V minimum needed by the TC7129. DGND (pin 36) must be isolated from power supply ground. (See Figure 4.)

Connecting to External Logic

External logic can be directly referenced to DGND (pin 36), provided the supply current of the external logic does not exceed the sink current of DGND (Figure 5). A safe value for DGND sink current is 1.2 mA . If the sink current is expected to exceed this value, a buffer is recommended. (See Figure 6 .)

Figure 3 Powering the TC7129 From a Low-Voltage Battery

Figure 4 Powering the TC7129 From a +5 V Power Supply

Figure 5 External Logic Referenced Directly to DGND

Temperature Compensation

For most applications, $\mathrm{V}_{\text {DISP }}$ (pin 19) can be connected directly to DGND (pin 36). For applications with a wide temperature range, some LCDs require the drive levels vary with temperature to maintain good viewing angle and display contrast. Figure 7 shows two circuits that can be

adjusted to give temperature compensation of about 10 $\mathrm{mV} /{ }^{\circ} \mathrm{C}$ between $\mathrm{V}^{+}(\operatorname{pin} 24)$ and $\mathrm{V}_{\text {DISP. }}$. The diode between DGND and $V_{\text {DISP }}$ should have a low turn-on voltage because $V_{\text {DISP }}$ cannot exceed 0.3 V below DGND.

Figure 7 Temperature Compensating Circuits

4-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTER WITH ON-CHIP LCD DRIVERS

RC Oscillator

For applications in which 3-1/2 digit $(100 \mu \mathrm{~V})$ resolution is sufficient, an RC oscillator is adequate. A recommended value for the capacitor is 51 pF . Other values can be used as long as they are sufficiently larger than the circuit parasitic capacitance. The resistor value is calculated from:

$$
R=\frac{0.45}{\text { freq *C }}
$$

For 120 kHz frequency and $\mathrm{C}=51 \mathrm{pF}$, the calculated value of R is 75 kW . The RC oscillator and the crystal oscillator circuits are shown in Figure 8.

Measuring Techniques

Two important techniques are used in the TC7129: successive integration and digital auto-zeroing. Successive integration is a refinement to the traditional dual-slope conversion technique.

Dual-Slope Conversion

A dual-slope conversion has two basic phases: integrate and deintegrate. During the integrate phase, the input signal is integrated for a fixed period of time; the integrated voltage level is thus proportional to the input voltage. During the deintegrate phase, the integrated voltage is ramped down at a fixed slope, and a counter counts the clock cycles until the integrator voltage crosses zero. The count is a

Figure 8 Oscillator Circuits
measurement of the time to ramp the integrated voltage to zero, and is therefore proportional to the input voltage being measured. This count can then be scaled and displayed as a measurement of the input voltage. Figure 9 shows the phases of the dual-slope conversion.

The dual-slope method has a fundamental limitation. The count can only stop on a clock cycle, so that measurement accuracy is limited to the clock frequency. In addition, a delay in the zero-crossing comparator can add to the inaccuracy. Figure 10 shows these errors in an actual measurement.

Figure 9 Dual-Slope Conversion

Successive Integration

The successive integration technique picks up where dual-slope conversion ends. The overshoot voltage shown in Figure 10, called the "integrator residue voltage," is measured to obtain a correction to the initial count. Figure 11 shows the cycles in a successive integration measurement.

The waveform shown is for a negative input signal. The sequence of events during the measurement cycle is:

Phase	Description
INT_{1}	Input signal is integrated for fixed time. (1000 clock cycles on 2V scale, 10,000 on 200 mV $)$
DE $_{1}$	Integrator voltage is ramped to zero. Counter counts up until zero crossing to produce reading accurate to 3-1/2 digits. Residue represents an overshoot of the actual input voltage.
REST	Rest; circuit settles.
X10	Residue voltage is amplified 10 times and inverted.
DE $_{2}$	Integrator voltage is ramped to zero. Counter counts down until zero crossing to correct reading to 4-1/2 digits. Residue represents an undershoot of the actual input voltage.
REST	Rest; circuit settles.
X10	Residue voltage is amplified 10 times and inverted.
$\overline{\text { DE }} 3$	Integrator voltage is ramped to zero. Counter counts up until zero crossing to correct reading to 5-1/2 diigits. Residue is discarded.

4-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTER WITH ON-CHIP LCD DRIVERS

TC7129

Figure 10 Accuracy Errors in Dual-Slope Conversion

Figure 11 Integrator Waveform

Digital Auto-Zeroing

To eliminate the effect of amplifier offset errors, the TC7129 uses a digital auto-zeroing technique. After the input voltage is measured as described above, the measurement is repeated with the inputs shorted internally. The reading with inputs shorted is a measurement of the internal errors and is subtracted from the previous reading to obtain a corrected measurement. Digital auto-zeroing eliminates the need for an external auto-zeroing capacitor used in other ADCs.

Inside the TC7129

Figure 12 shows a simplified block diagram of the TC7129.

Integrator Section

The integrator section includes the integrator, comparator, input buffer amplifier, and analog switches used to change the circuit configuration during the separate measurement phases described earlier.

Figure 12 Functional Diagram

4-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTER WITH ON-CHIP LCD DRIVERS

TC7129

Figure 13 Integrator Block Diagram

Table I. Switch Legends

Label	Meaning
$\overline{\overline{\mathrm{DE}}}$	Open during all deintegrate phases.
$\overline{\mathrm{DE}-}$	Closed during all deintegrate phases when input voltage is negative.
$\overline{\mathrm{DE}+}$	Closed during all deintegrate phases when input voltage is positive.
NT_{1}	Closed during the first integrate phase (measurement of the input voltage).
NT_{2}	Closed during the second integrate phase (measurement of the amplifier offset).
$\overline{\mathrm{NT}}$	Open during both integrate phases.
$\overline{\mathrm{REST}}$	Closed during the rest phase.
$\overline{\mathrm{ZI}}$	Closed during the zero-integrate phase. $\overline{X 10}$
$\overline{\mathrm{X} 10}$	Closed during the X10 phase.

The buffer amplifier has a common-mode input voltage range from 1.5 V above V^{-}to 1 V below V^{+}. The integrator amplifier can swing to within 0.3 V of the rails, although for best linearity the swing is usually limited to within 1V. Both amplifiers can supply up to $80 \mu \mathrm{~A}$ of output current, but should be limited to $20 \mu \mathrm{~A}$ for good linearity.

Continuity Indicator

A comparator with a 200 mV threshold is connected between IN HI (pin 33) and IN LO (pin 32). Whenever the voltage between inputs is less than 200 mV , the CONTINUITY

Figure 14 Continuity Indicator Circuit
output (pin 27) will be pulled high, activating the continuity annunciator on the display. The continuity pin can also be used as an input to drive the continuity annunciator directly from an external source. A schematic of the input/output nature of this pin is shown in Figure 15.

Figure 15 Input/Output Pin Schematic

Common and Digital Ground

The common and digital ground (DGND) outputs are generated from internal zener diodes. The voltage between V^{+}and DGND is the internal supply voltage for the digital section of the TC7129. Common can source approximately $12 \mu \mathrm{~A}$; DGND has essentially no source capability.

Low Battery

The low battery annunciator turns on when supply voltage between V^{+}and V^{-}drops below 6.8 V . The internal zener has a threshold of 6.3 V . When the supply voltage drops below 6.8 V , the transistor tied to V^{-}turns off, pulling the "Low Battery" point high. (See Figure 16.)

Figure 16 Digital Ground (DGND) and Common Outputs

Sequence and Results Counter

A sequence counter and associated control logic provide signals that operate the analog switches in the integrator section. The comparator output from the integrator gates the results counter. The results counter is a six-section up/ down decade counter which holds the intermediate results from each successive integration.

Overrange and Underrange Outputs

When the results counter holds a value greater than $\pm 19,999$, the $\mathrm{DP}_{4} / \mathrm{OR}$ output (pin 20) is driven high. When the results counter value is less than ± 1000, the $\mathrm{DP}_{3} / \mathrm{UR}$ output (pin 21) is driven high. Both signals are valid on the falling edge of $\overline{\mathrm{LATCH}} / \mathrm{HOLD}(\overline{\mathrm{L}} / \mathrm{H})$ and do not change until the end of the next conversion cycle. The signals are updated at the end of each conversion unless the L/H input (pin 22) is held high. Pins 20 and 21 can also be used as inputs for external control of decimal points 3 and 4. Figure 15 shows a schematic of the input/output nature of these pins.

Latch/Hold

The $\bar{U} H$ output goes low during the last 100 cycles of each conversion. This pulse latches the conversion data into the display driver section of the TC7129. This pin can also be used as an input. When driven high, the display will not be updated; the previous reading is displayed. When driven low, the display reading is not latched; the sequence counter reading will be displayed. Since the counter is counting much faster than the backplanes are being updated, the reading shown in this mode is somewhat erratic.

Display Driver

The TC7129 drives a triplexed LCD with three backplanes. The LCD can include decimal points, polarity sign, and annunciators for continuity and low battery. Figure 17 shows the assignment of the display segments to the backplanes and segment drive lines. The backplane drive frequency is obtained by dividing the oscillator frequency by 1200. This results in a backplane drive frequency of 100 Hz for 60 Hz operation (120 kHz crystal) and 83.3 Hz for 50 Hz operation (100 kHz crystal).

Backplane waveforms are shown in Figure 18. These appear on outputs $\mathrm{BP}_{1}, \mathrm{BP}_{2}, \mathrm{BP}_{3}$ (pins 16, 17, and 18). They remain the same regardless of the segments being driven.

Other display output lines (pins 4 through 15) have waveforms that vary depending on the displayed values. Figure 19 shows a set of waveforms for the A, G, D outputs (pins 5, 8, 11, and 14) for several combinations of "on" segments.

4-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTER WITH ON-CHIP LCD DRIVERS

Figure 17 Display Segment Assignments

Figure 18 Backplane Waveforms

The ANNUNCIATOR DRIVE output (pin 3) is a squarewaverunning at the backplane frequency (100 Hz or 83.3 Hz), with a peak-to-peak voltage equal to DGND voltage. Connecting an annunciator to pin 3 turns it on; connecting it to its backplane turns it off.

Figure 19 Typical Display Output Waveforms

4-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTER

FEATURES

- Low Roll-Over Error \qquad ± 1 Count Max
- Guaranteed Nonlinearity Error \qquad ± 1 Count Max
- Guaranteed Zero Reading for OV Input
- True Polarity Indication at Zero for Null Detection
- Multiplexed BCD Data Output
- TTL-Compatible Outputs
- Differential Input
- Control Signals Permit Interface to UARTs and μ Processors
- Auto-Ranging Supported With Overrange and Underrange Signals
- Blinking Display Visually Indicates Overrange Condition
- Low Input Current \qquad 1 pA
- Low Zero Reading Drift $2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Interfaces to TC7211A (LCD) and TC7212A (LED) Display Drivers
- Available in DIP and Surface-Mount Packages

TYPICAL 4-1/2 DIGIT DVM WITH LCD

4-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTER

TC7135

GENERAL DESCRIPTION

The TC7135 4-1/2 digit analog-to-digital converter (ADC) offers $50 \mathrm{ppm}(1$ part in 20,000) resolution with a maximum nonlinearity error of 1 count. An auto-zero cycle reduces zero error to below $10 \mu \mathrm{~V}$ and zero drift to $0.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. Source impedance errors are minimized by a 10 pA maximum input current. Roll-over error is limited to ± 1 count.

By combining the TC7135 with a TC7211A (LCD) or TC7212A (LED) driver, a 4-1/2 digit display DVM or DPM can be constructed. Overrange and underrange signals support automatic range switching and special display blanking/flashing applications.

Microprocessor-based measurement systems are supported by BUSY, STROBE, and RUN/HOLD control signals. Remote data acquisition systems with data trans-
fer via UARTs are also possible. The additional control pins and multiplexed BCD outputs make the TC7135 the ideal converter for display or microprocessor-based measurement systems.
ORDERING INFORMATION

Part No.	Package	Temperature Range
TC7135CJI	28-Pin CerDIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC7135CPI	28-Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC7135CBQ	$60-$-Pin Plastic Flat Package With Formed Leads	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC7135CLI	28-Pin PLCC	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

PIN CONFIGURATIONS

4-1/2 DIGIT
 ANALOG-TO-DIGITAL CONVERTER

ABSOLUTE MAXIMUM RATINGS (Note 1)

Positive Supply Voltage ..6V
Negative Supply Voltage ..-9V
Analog Input Voltage (Pin 9 or 10).......... V^{+}to V^{-}(Note 2)
Reference Input Voltage (Pin 2) V^{+}to V^{-}
Clock Input Voltage ... OV to V^{+}
Operating Temperature Range $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $+300^{\circ} \mathrm{C}$

Package Power Dissipation
\qquad
CerDIP (J) 1W
Plastic (P) .. 0.8 W
Static-sensitive device. Unused devices must be stored in conductive material to protect them from static discharge and static fields. Stresses above thoselistedunder "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied.

ELECTRICAL CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{CLOCK}}=120 \mathrm{kHz}, \mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}$ (Figure 1)

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
Analog						
	Display Reading With Zero Volt Input	Notes 2 and 3	-0.0000	± 0.0000	+0.0000	Display Reading
TCZ	Zero Reading Temperature Coefficient	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ Note 4	-	0.5	2	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
TCFS	Full-Scale Temperature Coefficient	$\mathrm{V}_{\mathrm{IN}}=2 \mathrm{~V}$ Notes 4 and 5	-	-	5	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
NL	Nonlinearity Error	Note 6	-	0.5	1	Count
DNL	Differential Linearity Error	Note 6	-	0.01	-	LSB
	Display Reading in Ratiometric Operation	$V_{I N}=V_{\text {REF }}$ Note 2	+0.9998	+0.9999	$+1.0000$	Display Reading
\pm FSE	\pm Full-Scale Symmetry Error (Roll-Over Error)	$-V_{\mathbb{I N}}=+V_{\mathbb{I N}}$ Note 7	-	0.5	1	Count
In	Input Leakage Current	Note 3	-	1	10	pA
V_{N}	Noise	Peak-to-Peak Value Not Exceeded 95\% of Time	-	15	-	$\mu \mathrm{V}_{\text {P-P }}$
Digital						
ILL	Input Low Current	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	-	10	100	$\mu \mathrm{A}$
I_{H}	Input High Current	$\mathrm{V}_{\text {IN }}=+5 \mathrm{~V}$	-	0.08	10	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OL }}$	Output Low Voltage	$\mathrm{OL}=1.6 \mathrm{~mA}$	-	0.2	0.4	V
V_{OH}	Output High Voltage $B_{1}, B_{2}, B_{4}, B_{8}, D_{1}-D_{5}$ Busy, Polarity, Overrange, Underrange, Strobe	$\begin{aligned} & I_{\mathrm{OH}}=1 \mathrm{~mA} \\ & I_{\mathrm{OH}}=10 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.4 \\ & 4.9 \end{aligned}$	$\begin{gathered} 4.4 \\ 4.99 \end{gathered}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & V \\ & V \end{aligned}$
$f_{\text {CLK }}$	Clock Frequency	Note 8	0	120	1200	kHz

Power Supply

V^{+}	Positive Supply Voltage	4	5	6	V	
$\mathrm{~V}^{-}$	Negative Supply Voltage	-3	-5	-8	V	
I^{+}	Positive Supply Current	$\mathrm{f}_{\mathrm{CLK}}=0 \mathrm{~Hz}$	-	1	3	mA
I^{-}	Negative Supply Current	$\mathrm{f}_{\mathrm{CLK}}=0 \mathrm{~Hz}$	-	0.7	3	mA
PD	Power Dissipation	$\mathrm{f}_{\mathrm{CLK}}=0 \mathrm{~Hz}$	-	8.5	30	mW

NOTES: 1. Limit input current to under $100 \mu \mathrm{~A}$ if input voltages exceed supply voltage.
2. Full-scale voltage $=2 \mathrm{~V}$.
3. $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$.
4. $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C}$.
5. External reference temperature coefficient less than $0.01 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
6. $-2 \mathrm{~V} \leqslant \mathrm{~V}_{\mathbb{I N}} \leqslant+2 \mathrm{~V}$. Error of reading from best fit straight line.
7. $\left|\mathrm{V}_{\mid N}\right|=1.9959$.
8. Specification related to clock frequency range over which the TC7135 correctly performs its various functions. Increased errors result at higher operating frequencies.

TC7135

Figure 1. Test Circuit

Figure 2. Digital Logic Input

Figure 3A. Internal Analog Switches

Figure 3B. System Zero Phase

Figure 3C. Input Signal Integration Phase

Figure 3D. Reference Voltage Integration Phase

Figure 3E. Integrator Output Zero Phase

GENERAL THEORY OF OPERATION

 Dual-Slope Conversion PrinciplesThe TC7135 is a dual-slope, integrating analog-todigital converter. An understanding of the dual-slope conversion technique will aid in following detailed TC7135 operational theory.

The conventional dual-slope converter measurement cycle has two distinct phases:
(1) Input signal integration
(2) Reference voltage integration (deintegration)

The input signal being converted is integrated for a fixed time period, measured by counting clock pulses. An opposite polarity constant reference voltage is then integrated until the integrator output voltage returns to zero. The reference integration time is directly proportional to the input signal.

In a simple dual-slope converter, a complete conversion requires the integrator output to "ramp-up" and "rampdown."

A simple mathematical equation relates the input signal, reference voltage, and integration time:

$$
\frac{1}{R C} \int_{0}^{t_{S I}} V_{\mathbb{I N}}(t) d t=\frac{V_{R} t_{\mathrm{RI}}}{R C}
$$

where:
$\mathrm{V}_{\mathrm{R}}=$ Reference voltage
$\mathrm{t}_{\mathrm{SI}}=$ Signal integration time (fixed)
$\mathrm{t}_{\mathrm{RI}}=$ Reference voltage integration time (variable).

For a constant $V_{\mathbb{I N}}$:

$$
\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{R}}\left[\frac{\mathrm{t}_{\mathrm{RI}}}{\mathrm{t}_{\mathrm{SI}}}\right] .
$$

The dual-slope converter accuracy is unrelated to the integrating resistor and capacitor values, as long as they are stable during a measurement cycle. Noise immunity is an inherent benefit. Noise spikes are integrated, or averaged, to zero during integration periods. Integrating ADCs are immune to the large conversion errors that plague successive approximation converters in high-noise environments. (See Figure 4.)

TC7135 Operational Theory

The TC7135 incorporates a system zero phase and integrator output voltage zero phase to the normal twophase dual-slope measurement cycle. Reduced system errors, fewer calibration steps, and a shorter overrange recovery time result.

The TC7135 measurement cycle contains four phases:
(1) System zero
(2) Analog input signal integration
(3) Reference voltage integration
(4) Integrator output zero

Internal analog gate status for each phase is shown in Table I.

Figure 4. Basic Dual-Slope Converter

Table I. Internal Analog Gate Status

Conversion Cycle Phase	SW	$\mathrm{SW}_{\mathrm{RI}}{ }^{+}$	Internal SW ${ }_{\text {RI }}{ }^{-}$	ralog G $S W_{Z}$	Status SW	SW 1	SW ${ }_{\text {IZ }}$	Reference Schematic
System Zero				Closed	Closed	Closed		3B
Input Signal Integration	Closed							3 C
Reference Voltage Integration		Closed*				Closed		3D
Integrator Output Zero						Closed	Closed	3E

NOTE: Assumes a positive polarity input signal. $\mathrm{SW}_{\mathrm{RI}^{-}}{ }^{\text { }}$ would be closed for a negative input signal.

System Zero Phase

During this phase, errors due to buffer, integrator, and comparator offset voltages are compensated for by charging C_{AZ} (auto-zero capacitor) with a compensating error voltage. Withzero input voltage, the integrator output remains at zero.

The external input signal is disconnected from the internal circuitry by opening the two SW_{1} switches. The internal input points connect to analog common. The reference capacitor charges to the reference voltage potential through SW_{B}. A feedback loop, closed around the integrator and comparator, charges the $\mathrm{C}_{A Z}$ with a voltage to compensate forbuffer amplifier, integrator, and comparator offset voltages. (See Figure 3B.)

Analog Input Signal Integration Phase

The TC7135 integrates the differential voltage between the +INPUT and -INPUT. The differential voltage must be within the device's common-mode range; -1 V from either supply rail, typically.

The input signal polarity is determined at the end of this phase. (See Figure 3C)

Reference Voltage Integration Phase

The previously-charged reference capacitor is connected with the proper polarity to ramp the integrator output back to zero. (See Figure 3D.) The digital reading displayed is:

$$
\text { Reading }=10,000\left[\frac{\text { Differential Input }}{V_{\text {REF }}}\right] .
$$

Integrator Output Zero Phase

This phase guarantees the integrator output is at 0 V when the system zero phase is entered and that the true system offset voltages are compensated for. This phase normally lasts 100 to 200 clock cycles. If an overrange condition exists, the phase is extended to 6200 clock cycles. (See Figure 3E.)

Analog Section Functional Description

Differential Inputs

The TC7135 operates with differential voltages (+INPUT, pin 10 and -INPUT, pin 9) within the input amplifier common-mode range which extends from 1 V below the positive supply to 1 V above the negative supply. Within this common-mode voltage range, an 86 dB common-mode rejection ratio is typical.

The integrator output also follows the common-mode voltage and must not be allowed to saturate. A worst-case condition exists, for example, when a large positive commonmode voltage with a near full-scale negative differential input voltage is applied. The negative input signal drives the integrator positive when most of its swing has been used up by the positive common-mode voltage. For these critical applications, the integrator swing can be reduced to less than the recommended 4 V full-scale swing, with some loss of accuracy. The integrator output can swing within 0.3 V of either supply without loss of linearity.

Analog Common

ANALOG COMMON (pin 3) is used as the-INPUT return during the auto-zero and deintegrate phases. If -INPUT is different from analog common, a common-mode voltage exists in the system. This signal is rejected by the excellent CMRR of the converter. In most applications, -INPUT will be set at a fixed known voltage (power supply common, for instance). In this application, analog common should be tied to the same point, thus removing the common-mode voltage from the converter. The reference voltage is referenced to analog common.

Reference Voltage

The reference voltage input (REF IN, pin 2) must be a positive voltage with respect to analog common. Two reference voltage circuits are shown in Figure 5.

Figure 5. Using an External Reference Voltage

Digital Section Functional Description

The major digital subsystems within the TC7135 are illustrated in Figure 6, with timing relationships shown in Figure 7. The multiplexed BCD output data can be displayed on an LCD or LED display with the TC7211A (LCD) or TC7212A (LED) 4-digit display drivers.

The digital section is best described through a discussion of the control signals and data outputs.

RUN/HOLD Input

When left open, the RUN/HOLD (R/F) input (pin 25) assumes a logic " 1 " level. With $\mathrm{R} / \bar{H}=1$, the TC7135 performs conversions continuously, with a new measurement cycle beginning every 40,002 clock pulses.

When R//̈H changes to logic " 0 ," the measurement cycle in progress will be completed, and data held and displayed, as long as the logic " 0 " condition exists.

A positive pulse (>300 ns) at R//H initiates a new measurement cycle. The measurement cycle in progress when R / \bar{H} initially assumed logic " 0 " must be completed before the positive pulse can be recognized as a single conversion run command.

The new measurement cycle begins with a $10,001-$ count auto-zero phase. At the end of this phase, the busy signal goes high.

Figure 6. Digital Section Functional Diagram

Figure 7. Timing Diagrams for Outputs

STROBE Output

During the measurement cycle, the $\overline{\text { STROBE }}$ output (pin 26) control line is pulsed low five times. The five low pulses occur in the center of the digit drive signals ($\mathrm{D}_{1}, \mathrm{D}_{2}$, D_{3}, D_{4} and D_{5}; see Figure 8).
D_{5} goes high for 201 counts when the measurement cycles end. In the center of D_{5} pulse, 101 clock pulses after the end of the measurement cycle, the first STROBE occurs for one-half clock pulse. After D_{5} strobe, D_{4} goes high for 200 clock pulses. STROBE goes low 100 clock pulses after D_{4} goes high. This continues through the D_{1} drive pulse.

The digit drive signals will continue to permit display scanning. STROBE pulses are not repeated until a new measurement is completed. The digit drive signals will not continue if the previous signal resulted in an overrange condition.

Figure 8. Strobe Signal Pulses Low Five Times per Conversion
The active-low STROBE pulses aid BCD data transfer to UARTs, microprocessors, and external latches. (See Application Note AN-16.)

BUSY Output

At the beginning of the signal-integration phase, BUSY (pin 21) goes high and remains high until the first clock pulse after the integrator zero crossing. BUSY returns to logic "0" after the measurement cycle ends in an overrange condition. The internal display latches are loaded during the first clock pulse after BUSY and are latched at the clock pulse end. The BUSY signal does not go high at the beginning of the measurement cycle, which starts with the auto-zero phase.

OVERRANGE Output

If the input signal causes the reference voltage integration time to exceed 20,000 clock pulses, the OVERRANGE output (pin 27) is set to logic "1." The OVERRANGE output register is set when BUSY goes low and reset at the beginning of the next reference-integration phase.

UNDERRANGE Output

If the output count is 9% of full scale or less ($\leqslant 1800$ counts), the UNDERRANGE output (pin 28) register bit is set at the end of BUSY. The bit is set low at the next signalintegration phase.

POLARITY Output

A positive input is registered by a logic "1" polarity signal. The POLARITY output (pin 23) is valid at the beginning of reference integrate and remains valid until determined during the next conversion.

The POLARITY bit is valid even for a zero reading. Signals less than the converter's LSB will have the signal polarity determined correctly. This is useful in null applications.

Digit Drive Outputs

Digit drive outputs are positive-going signals. Their scan sequence is $D_{5}, D_{4}, D_{3}, D_{2}$ and D_{1} (pins 12, 17, 18, 19 and 20 , respectively). All positive signals are 200 clock pulses wide, except D_{5}, which is 201 clock pulses.

All five digits are continuously scanned, unless an overrange condition occurs. In an overrange condition, all digit drives are held low from the final STROBE pulse until the beginning of the next reference-integrate phase. The scanning sequence is then repeated, providing a blinking visual display.

BCD Data Outputs

The binary coded decimal (BCD) outputs, $\mathrm{B}_{8}, \mathrm{~B}_{4}, \mathrm{~B}_{2}$ and B_{1} (pins $16,15,14$ and 13 , respectively) are positive truelogic signals. They become active simultaneously with digit drive signals. In an overrange condition, all data bits are logic " 0 ".

APPLICATIONS INFORMATION

Component Value Selection

Integrating Resistor

The integrating resistor ($\mathrm{R}_{\mathrm{INT}}$) is determined by the fullscale input voltage and output current of the buffer used to charge the integrator capacitor ($\mathrm{C}_{\text {INT }}$). Both the buffer amplifier and the integrator have a Class A output stage, with $100 \mu \mathrm{~A}$ of quiescent current. A $20 \mu \mathrm{~A}$ drive current gives negligible linearity errors. Values of $5 \mu \mathrm{~A}$ to $40 \mu \mathrm{~A}$ give good results. The exact value of $\mathrm{RINT}_{\mathrm{N}}$ for a $20 \mu \mathrm{~A}$ current is easily calculated:

$$
\mathrm{R}_{\mathrm{INT}}=\frac{\text { Full-scale voltage }}{20 \mu \mathrm{~A}} .
$$

Integrating Capacitor

The product of $\mathrm{R}_{\operatorname{INT}}$ and $\mathrm{C}_{\mathrm{INT}}$ should be selected to give the maximum voltage swing to ensure tolerance build-up will not saturate integrator swing (approximately 0.3 V from either supply). For $\pm 5 \mathrm{~V}$ supplies, and analog common tied to supply ground, $a \pm 3.5 \mathrm{~V}$ to $\pm 4 \mathrm{~V}$ full-scale integrator swing is
adequate. $\mathrm{A} 0.10 \mu \mathrm{~F}$ to $0.47 \mu \mathrm{~F}$ is recommended. In general, the value of $\mathrm{C}_{\mathrm{INT}}$ is given by:

$$
\begin{aligned}
\mathcal{C}_{\mathbb{N T}} & =\frac{[10,000 \times \text { clock period }] \times \mathrm{I}_{\mathbb{N T}}}{\text { Integrator output voltage swing }} \\
& =\frac{(10,000)(\text { clock period) }(20 \mu \mathrm{~A})}{\text { Integrator output voltage swing }} .
\end{aligned}
$$

A very important characteristic of the $\mathrm{C}_{\mathrm{INT}}$ is that it has low dielectric absorption to prevent roll-over or ratiometric errors. A good test for dielectric absorption is to use the capacitor with the input tied to the reference. This ratiometric condition should read half-scale 0.9999 . Any deviation is probably due to dielectric absorption. Polypropylene capacitors give undetectable errors at reasonable cost. Polystyrene and polycarbonate capacitors may also be used in less critical applications.

Auto-Zero and Reference Capacitors

The size of the auto-zero capacitor $\left(\mathrm{C}_{\mathrm{AZ}}\right)$ has some influence on system noise. A large capacitor reduces noise. The reference capacitor ($\mathrm{C}_{\text {REF }}$) should be large enough such that stray capacitance from its nodes to ground is negligible.

The dielectric absorption of $\mathrm{C}_{\text {REF }}$ and C_{AZ} is only important at power-on, or when the circuit is recovering from an overload. Smaller or cheaper capacitors can be used if accurate readings are not required during the first few seconds of recovery.

Reference Voltage

The analog input required to generate a full-scale output is $\mathrm{V}_{\mathrm{IN}}=2 \mathrm{~V}_{\mathrm{REF}}$.

The stability of the reference voltage is a major factor in overall absolute accuracy of the converter. Therefore, it is recommended that high-quality references be used where high-accuracy, absolute measurements are being made. Suitable references are:

Part Type	Manufacturer
TC04	Teledyne Components
MP5010	Teledyne Components

Conversion Timing

Line Frequency Rejection

A signal-integration period at a multiple of the 60 Hz line frequency will maximize 60 Hz "line noise" rejection.

A 100 kHz clock frequency will reject $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$ and 400 Hz noise, corresponding to 2.5 readings per second.

ANALOG-TO-DIGITAL CONVERTER

Table II. Line Frequency Rejection

Oscillator Frequency $\mathbf{(k H z)}$	Frequency Rejected $(\mathbf{H z})$
$300,200,150,120$,	60
$100,40,33-1 / 3$	
$250,166-2 / 3$,	
125,100	50
100	$50,60,400$

Table III. Conversion Rate vs Clock Frequency

Conversion Rate (Conv/Sec)	Clock Frequency (kHz)
2.5	100
3.0	120
5.0	200
7.5	300
10.0	400
20.0	800
30.0	1200

Displays and Driver Circuits

Teledyne Components manufactures three display decoder/driver circuits to interface the TC7135 to LCDs or LED displays. Each driver has 28 outputs for driving four 7segment digit displays. The TC700A features increased LED segment drive current for greater display brightness.

Device	Package	Description
TC7211AIPL	40-Pin Epoxy	4-Digit LCD Driver/Encoder
TC7212AIPL	40-Pin Epoxy	4-Digit LED Driver/Encoder

Several sources exist for LCDs and LED displays.

Manufacturer	Address	Display Type				
Hewlett Packard	640 Page Mill Road Components	Palo Alto, CA 94304	\quad LED \quad	770 Airport Blvd.		
:---	:---	:---:				
Burlingame, CA 94010	LCD and					
Epson America, Inc.	3415 Kanhi Kawa St. Torrance, CA 90505	LCD				

High-Speed Operation

The maximum conversion rate of most dual-slope ADCs is limited by frequency response of the comparator. The comparator in this circuit follows the integrator ramp with a 3μ s delay, and at a clock frequency of 160 kHz ($6 \mu \mathrm{~s}$ period), half of the first reference integrate clock period is lost in delay. This means the meter reading will change from 0 to 1 with a $50 \mu \mathrm{~V}$ input, 1 to 2 with $150 \mu \mathrm{~V}$, 2 to 3 with $250 \mu \mathrm{~V}$, etc. This transition at mid-point is considered desirable by most users; however, if clock frequency is increased appreciably above 160 kHz , the instrument will flash "1" on noise peaks even when the input is shorted.

For many dedicated applications, where the input signal is always of one polarity, comparator delay need not be a limitation. Since nonlinearity and noise do not increase substantially with frequency, clock rates up to $\sim 1 \mathrm{MHz}$ may be used. For a fixed clock frequency, the extra count (or counts) caused by comparator delay will be constant and can be digitally subtracted.

The clock frequency may be extended above 160 kHz without this error, however, by using a low value resistor in series with the integrating capacitor. The effect of the resistor is to introduce a small pedestal voltage onto the integrator output at the beginning of reference-integrate phase. By careful selection of the ratio between this resistor and the integrating resistor (a few tens of ohms in the recommended circuit), the comparator delay can be compensated for and maximum clock frequency extended by approximately a factor of 3 . At higher frequencies, ringing and second-order breaks will cause significant nonlinearities during the first few counts of the instrument.

The minimum clock frequency is established by leakage on the auto-zero and reference capacitors. With most devices, measurement cycles as long as 10 seconds give no measurable leakage error.

The clock used should be free from significant phase or frequency jitter. Several suitable low-cost oscillators are shown in the applications section. The multiplexed output means if the display takes significant current from the logic supply, the clock should have good PSRR.

Zero-Crossing Flip-Flop

The flip-flop interrogates data once every clock pulse after transients of the previous clock pulse and half-clock pulse have died down. False zero-crossings caused by clock pulses are not recognized. Of course, the flip-flop delays the true zero-crossing by up to one count in every instance, and if a correction were not made, the display would always be one count too high. Therefore, the counter

4-1/2 DIGIT
 ANALOG-TO-DIGITAL CONVERTER

is disabled for one clock pulse at the beginning of the reference integrate (deintegrate) phase. This one-count delay compensates for the delay of the zero-crossing flipflop, and allows the correct number to be latched into the display. Similarly, a one-count delay at the beginning of auto-zero gives an overload display of 0000 instead of 0001. No delay occurs during signal integrate, so true ratiometric readings result.

Generating a Negative Supply

A negative voltage can be generated from the positive supply by using a TC7660. (See Figure 9.)

Figure 9. Negative Supply Voltage Generator

TYPICAL APPLICATIONS DIAGRAMS

RC Oscillator Circuit

GATES ARE 74C04

1. $f_{O}=\frac{1}{2 C\left[0.41 R_{P}+0.70 R_{1}\right]}, R_{P}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}$
a. If $R=R_{1}=R_{2}, f \cong 0.55 / R C$
b. If $R_{2} \gg R_{1}, f \cong 0.45 / R_{1} C$
c. If $R_{2} \ll R_{1}, f \cong 0.72 / R_{1} C$
2. Examples:
a. $f=120 \mathrm{kHz}, \mathrm{C}=420 \mathrm{pF}$
$R_{1}=R_{2} \approx 10.9 \mathrm{k} \Omega$
b. $f=120 \mathrm{kHz}, \mathrm{C}=420 \mathrm{pF}, \mathrm{R}_{2}=50 \mathrm{k} \Omega$
$R_{1}=8.93 \mathrm{k} \Omega$
c. $\mathrm{f}=120 \mathrm{kHz}, \mathrm{C}=220 \mathrm{pF}, \mathrm{R}_{2}=5 \mathrm{k} \Omega$
$\mathrm{R}_{1}=27.3 \mathrm{k} \Omega$

Comparator Clock Circuit

TC7135

TYPICAL APPLICATIONS DIAGRAMS (Cont.)

4-1/2 Digit ADC Interfaced to LCD With Digit Blanking on Overrange

4-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTER

TYPICAL APPLICATIONS DIAGRAMS (Cont.)

4-1/2 Digit ADC With Multiplexed Common Cathode LED Display

4-Channel Data Acquisition System

NOTES

ATTELEDYNE

COMPONENTS

LOW POWER, 3-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTERS

FEATURES

- Fast Overrange Recovery, Guaranteed First Reading Accuracy
- Low Temperature Drift Internal Reference TC7136
$.70 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ Typ
TC7136A $35 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ Typ
- Guaranteed Zero Reading With Zero Input
- Low Noise . $.15 \mu V_{\text {p-p }}$
- High Resolution .. 0.05%

■ Wide Dynamic Range 72 dB

- Low Input Leakage Current...................... 1 pA Typ
- Direct LCD Drive - No External Components
- Precision Null Detectors With True Polarity at Zero
- High-Impedance Differential Input
- Convenient 9V Battery Operation With

Low Power Dissipation.
$500 \mu \mathrm{~W}$ Typ $900 \mu \mathrm{~W}$ Max

- Internal Clock Circuit
- Available in Compact Flat Package or PLCC
- Industrial Temperature Range Device Available

TYPICAL APPLICATIONS

- Thermometry
- Bridge Readouts
- Strain Gauges
- Load Cells
- Null Detectors
- Digital Meters
- Voltage/Current/Ohms/Power
- pH
- Capacitance/Inductance
- Fluid Flow Rate/Viscosity/Level
- Humidity
- Position
- Digital Scales
- Panel Meters
- LVDT Indicators

Portable Instrumentation
Power Supply Readouts

- Process Monitors
- Gaussometers
- Photometers

TYPICAL OPERATING CIRCUIT

LOW POWER, 3-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTERS

TC7136
TC7136A

GENERAL DESCRIPTION

The TC7136 and TC7136A are low-power, 3-1/2 digit, liquid crystal display (LCD), analog-to-digital converters (ADCs). These devices incorporate an "integrator output zero" phase which guarantees overrange recovery. The performance of existing TC7126, TC7126A and ICL7126based systems may be upgraded with minor changes to external, passive components.

The TC7136A has an improved internal zener reference voltage circuit which maintains the analog common temperature drift to $35 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (typical) and $75 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (maximum). This represents an improvement of two to four times over similar 3-1/2 digit converters. The costly, spaceconsuming externai reference source may be removed.

The TC7136 limits linearity error to less than 1 count on 200 mV or 2 V full-scale ranges. Roll-over error - the difference in readings for equal magnitude but opposite polarity input signals - is below ± 1 count. High-impedance differential inputs offer 1 pA leakage currents and a $10^{12} \Omega$ input impedance. The differential reference input allows
ratiometric measurements for ohms or bridge transducer measurements. The $15 \mu \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ noise performance guarantees a "rock solid" reading. The auto-zero cycle guarantees a zero display readout for a 0 V input.

The single-chip CMOS TC7136 incorporates all the active devices for a 3-1/2 digit ADC to directly drive an LCD. The internal oscillator, precision voltage reference, and display segment/backplane drivers simplify system integration, reduce board space requirements and lower total cost. A low-cost, high-resolution (0.05%) indicating meter requires only a display, four resistors, four capacitors and a 9V battery. The flat package option eases the mechanical design of low-cost, hand-held multimeters.

The TC7136A dual-slope conversion technique rejects interference signals if the converter's integration time is set to a multiple of the interference signal period. This is especially useful in industrial measurement environments where $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$, and 400 Hz line frequency signals are present.

ORDERING INFORMATION

Part No.	Package	Pin Layout	Temperature Range	Reference Temperature Coefficient (Max)
TC7136ACPL TC7136CPL	40-Pin Plastic DIP	Normal	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$75 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
TC7136ARCPL	40-Pin Plastic DIP	Reversed	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$75 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
TC7136RCPL				$150 \mathrm{ppm}{ }^{\circ} \mathrm{C}$
TC7136 AIJL	40-Pin CerDIP	Normal	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
TC7136IJL				$150 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
TC7136ACKW	44-Pin Plastic Flat	Formed Leads	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$75 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
TC7136CKW				$150 \mathrm{ppm}{ }^{\circ} \mathrm{C}$
TC7136ACLW	44-Pin PLCC		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$75 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
TC7136CLW				$150 \mathrm{ppm}{ }^{\circ} \mathrm{C}$

TC7136 TC7136A

PIN CONFIGURATIONS

LOW POWER, 3-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTERS

TC7136

 TC7136A
ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V^{+}to V^{-})+15V
Analog Input Voltage (Either Input) (Note 1) V^{+}to V^{-}
Reference Input Voltage (Either Input) V^{+}to V^{-}
Clock Input ...TEST to V^{+}
Power Dissipation (Note 2)
CerDIP (J) \qquad 1000 mW
Plastic DIP (P) ... 800 mW
Flat Package (K, L) 500 mW
Operating Temperature Range
C Devices
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Storage Temperature Range \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 60 sec) \qquad
Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to Absolute Maximum Rating Conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS: $\mathrm{V}_{\mathrm{S}}=9 \mathrm{~V}, \mathrm{f}$ CLK $=16 \mathrm{kHz}$, and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
Input						
	Zero Input Reading	$\begin{aligned} & \mathrm{V}_{\mathrm{iN}}=0 \mathrm{~V} \\ & \text { Full Scale }=200 \mathrm{mV} \end{aligned}$	-000.0	± 000.0	+000.0	Digital Reading
	Zero Reading Drift	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}, 0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C}$	-	0.2	1	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
	Ratiometric Reading	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {REF }}, \mathrm{V}_{\text {REF }}=100 \mathrm{mV}$	999	999/1000	1000	Digital Reading
$\overline{N L}$	Nonlinearity Error	Full Scale $=200 \mathrm{mV}$ or 2V Max Deviation From Best Straight Line	-1	± 0.2	1	Count
	Roll-Over Error	$-\mathrm{V}_{\text {IN }}=+\mathrm{V}_{\text {IN }} \approx 200 \mathrm{mV}$	-1	± 0.2	1	Count
e_{N}	Noise	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$, Full Scale $=200 \mathrm{mV}$	-	15	-	$\mu \mathrm{V}$ P-P
L	Input Leakage Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	-	1	10	pA
CMRR	Common-Mode Rejection Ratio	$\begin{aligned} & V_{C M}= \pm 1 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}, \\ & \text { Full Scale }=200 \mathrm{mV} \end{aligned}$	-	50	-	$\mu \mathrm{V} / \mathrm{N}$
	Scale Factor Temperature Coefficient	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=199 \mathrm{mV}, 0^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C} \\ & \text { Ext Ref Temp Coeff }=0 \mathrm{ppm}{ }^{\circ} \mathrm{C} \end{aligned}$	-	1	5	$\mathrm{ppm}^{\circ} \mathrm{C}$
Analog Common						
$\mathrm{V}_{\text {CTC }}$	Analog Common Temperature Coefficient	$250 \mathrm{k} \Omega$ Between Common and V^{+} $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C} \quad$ TC7136A "C" Commercial Temp TC7136 Range Devices	-	$\begin{aligned} & 35 \\ & 70 \end{aligned}$	$\begin{gathered} 75 \\ 150 \end{gathered}$	$\begin{aligned} & \mathrm{ppm}^{\circ} \mathrm{C} \mathrm{C} \\ & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{aligned}$
		$-25^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+85^{\circ} \mathrm{C}$ TC7136A " $l^{\prime \prime}$ Industrial Temp TC7136 Range Devices	-	$\begin{aligned} & 35 \\ & 70 \end{aligned}$	$\begin{aligned} & 100 \\ & 150 \end{aligned}$	$\begin{aligned} & \mathrm{ppm}^{\circ} \mathrm{C} \\ & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{aligned}$
V_{C}	Analog Common Voltage	250 kW Between Common and V^{+}	2.7	3.05	3.35	V
LCD Drive						
$\mathrm{V}_{\text {SD }}$	LCD Segment Drive Voltage	V^{+}to $\mathrm{V}^{-}=9 \mathrm{~V}$	4	5	6	$\mathrm{V}_{\text {P-P }}$
$\mathrm{V}_{B D}$	LCD Backplane Drive Voltage	V^{+}to $\mathrm{V}^{-}=9 \mathrm{~V}$	4	5	6	VP-P
Power Supply						
Is	Power Supply Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{~V}^{+}$to $\mathrm{V}^{-}=9 \mathrm{~V}$ (Note 6)	-	70	100	$\mu \mathrm{A}$

NOTES: 1. Input voltages may exceed supply voltages when input current is limited to $100 \mu \mathrm{~A}$.
2. Dissipation rating assumes device is mounted with all leads soldered to PC board.
3. Refer to "Differential Input" discussion.
4. Backplane drive is in-phase with segment drive for "off" segment and 180° out-of-phase for "on" segment. Frequency is 20 times conversion rate. Average DC component is less than 50 mV .
5. See "Typical Operating Circuit".
6. A 48 kHz oscillator increases current by $20 \mu \mathrm{~A}$ (typical). Common current not included.

PIN DESCRIPTION

40-Pin DIP Pin Number Normal	(Reverse)	Name	Description
1	(40)	V^{+}	Positive supply voltage.
2	(39)	D_{1}	Activates the D section of the units display.
3	(38)	C_{1}	Activates the C section of the units display.
4	(37)	B_{1}	Activates the B section of the units display.
5	(36)	A_{1}	Activates the A section of the units display.
6	(35)	F_{1}	Activates the F section of the units display.
7	(34)	G_{1}	Activates the G section of the units display.
8	(33)	E_{1}	Activates the E section of the units display.
9	(32)	D_{2}	Activates the D section of the tens display.
10	(31)	C_{2}	Activates the C section of the tens display.
11	(30)	B_{2}	Activates the B section of the tens display.
12	(29)	A_{2}	Activates the A section of the tens display.
13	(28)	F_{2}	Activates the F section of the tens display.
14	(27)	E_{2}	Activates the E section of the tens display.
15	(26)	D_{3}	Activates the D section of the hundreds display.
16	(25)	B_{3}	Activates the B section of the hundreds display.
17	(24)	F_{3}	Activates the F section of the hundreds display.
18	(23)	E_{3}	Activates the E section of the hundreds display.
19	(22)	AB_{4}	Activates both halves of the 1 in the thousands display.
20	(21)	POL	Activates the negative polarity display.
21	(20)	BP	Backplane drive output.
22	(19)	G_{3}	Activates the G section of the hundreds display.
23	(18)	A_{3}	Activates the A section of the hundreds display.
24	(17)	C_{3}	Activates the C section of the hundreds display.
25	(16)	G_{2}	Activates the G section of the tens display.
26	(15)	V^{-}	Negative power supply voltage.
27	(14)	VINT	The integrating capacitor should be selected to give the maximum voltage swing that ensures component tolerance build-up will not allow the integrator output to saturate. When analog common is used as a reference and the conversion rate is 3 readings per second, a $0.047 \mu \mathrm{~F}$ capacitor may be used. The capacitor must have a low dielectric constant to prevent roll-over errors. See Integrating Capacitor section for additional details.
28	(13)	$\mathrm{V}_{\text {BUFF }}$	Integration resistor connection. Use a $180 \mathrm{k} \Omega$ for a 200 mV full-scale range and a $1.8 \mathrm{M} \Omega$ for 2 V full-scale range.
29	(12)	$\mathrm{C}_{\text {AZ }}$	The size of the auto-zero capacitor influences the system noise. Use a $0.47 \mu \mathrm{~F}$ capacitor for a 200 mV full scale, and a $0.1 \mu \mathrm{~F}$ capacitor for a 2 V full scale. See paragraph on Auto-Zero Capacitor for more details.
30	(11)	$\mathrm{V}_{1 N^{-}}$	The low input signal is connected to this pin.
31	(10)	ViN^{+}	The high input signal is connected to this pin.
32	(9)	ANALOG COMMON	This pin is primarily used to set the analog common-mode voltage for battery operation or in systems where the input signal is referenced to the power supply. See paragraph on Analog Common for more details. It also acts as a reference voltage source.
33	(8)	$\mathrm{C}_{\text {REF }}{ }^{-}$	See pin 34.

PIN DESCRIPTION (Cont.)

40-Pin DIP Pin Number Normal	(Reverse)	Name	Description
34	(7)	CREF^{+}	A $0.1 \mu \mathrm{~F}$ capacitor is used in most applications. If a large common-mode voltage exists (for example, the $\mathrm{V}_{\mathbb{I N}^{-}}$pin is not at analog common), and a 200 mV scale is used, a $1 \mu \mathrm{~F}$ capacitor is recommended and will hold the roll-over error to 0.5 count.
35	(6)	$\mathrm{V}_{\text {REF }}{ }^{-}$	See pin 36.
36	(5)	$\mathrm{V}_{\text {REF }}{ }^{+}$	The analog input required to generate a full-scale output (1999 counts). Place 100 mV between pins 35 and 36 for 199.9 mV full scale. Place 1 V between pins 35 and 36 for 2V full scale. See paragraph on Reference Voltage.
37	(4)	TEST	Lamp test. When pulled high (to V^{+}) all segments will be turned on and the display should read -1888. It may also be used as a negative supply for externally-generated decimal points. See paragraph under Test for additional information.
38	(3)	OSC_{3}	See pin 40.
39	(2)	OSC_{2}	See pin 40.
40	(1)	OSC_{1}	Pins 40, 39 and 38 make up the oscillator section. For a 48 kHz clock (3 readings per second) connect pin 40 to the junction of a $180 \mathrm{k} \Omega$ resistor and a 50 pF capacitor. The $180 \mathrm{k} \Omega$ resistor is tied to pin 39 and the 50 pF capacitor is tied to pin 38.

GENERAL THEORY OF OPERATION
 Dual-Slope Conversion Principles

The TC7136A is a dual-slope, integrating analog-todigital converter. An understanding of the dual-slope conversion technique will aid in following detailed TC7136A operational theory.

The conventional dual-slope converter measurement cycle has two distinct phases:
(1) Input signal integration
(2) Reference voltage integration (deintegration)

The input signal being converted is integrated for a fixed time period ($\mathrm{t}_{\mathrm{s} 1}$), measured by counting clock pulses. An opposite polarity constant reference voltage is then integrated until the integrator output voltage returns to zero. The reference integration time is directly proportional to the input signal ($\mathrm{t}_{\text {RI }}$).

In a simple dual-slope converter, a complete conversion requires the integrator output to "ramp-up" and "rampdown."

A simple mathematical equation relates the input signal, reference voltage, and integration time:

$$
\frac{1}{R C} \int_{0}^{t_{S I}} V_{\mathbb{N}}(t) d t=\frac{V_{R} t_{R I}}{R C}
$$

where:
$\mathrm{V}_{\mathrm{R}}=$ Reference voltage
$t_{\mathrm{S}!}=$ Signal integration time (fixed)
$t_{\mathrm{RI}}=$ Reference voltage integration time (variable).

Figure 1 Basic Dual-Slope Converter

For a constant $\mathrm{V}_{\mathbb{N}}$:

$$
\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{R}}\left[\frac{\mathrm{t}_{\mathrm{RI}}}{\mathrm{t}_{\mathrm{SI}}}\right] .
$$

Figure 2 Normal-Mode Rejection of Dual-Slope Converter
The dual-slope converter accuracy is unrelated to the integrating resistor and capacitor values, as long as they are stable during a measurement cycle. Noise immunity is an inherent benefit. Noise spikes are integrated, or averaged, to zero during integration periods. Integrating ADCs are immune to the large conversion errors that plague successive approximation converters in high-noise environments. Interfering signals with frequency components at multiples of the averaging period will be attenuated. Integrating ADCs commonly operate with the signal integration period set to a multiple of the $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ power line period.

ANALOG SECTION

In addition to the basic integrate and deintegrate dualslope cycles discussed above, the TC7136 and TC7136A designs incorporate an "integrator output-zero cycle" and an "auto-zero cycle." These additional cycles ensure the integrator starts at OV (even after a severe overrange conversion) and that all offset voltage errors (buffer amplifier, integrator and comparator) are removed from the conversion. A true digital zero reading is assured without any external adjustments.

A complete conversion consists of four distinct phases:
(1) Integrator cutput-zero phase
(2) Auto-zero phase
(3) Signal integrate phase
(4) Reference deintegrate phase

Integrator Output-Zero Phase

This phase guarantees the integrator output is at 0 V before the system-zero phase is entered. This ensures that true system offset voltages will be compensated for even
after an overrange conversion. The count for this phase is a function of the number of counts required by the deintegrate phase.

The count lasts from 11 to 140 counts for non-overrange conversions and from 31 to 640 counts for overrange conversions.

Auto-Zero Phase

During the auto-zero phase, the differential input signal is disconnected from the circuit by opening internal analog gates. The internal nodes are shorted to analog common (ground) to establish a zero input condition. Additional analog gates close a feedback loop around the integrator and comparator. This loop permits comparator offset voltage error compensation. The voltage level established on C_{AZ} compensates for device offset voltages. The auto-zero phase residual is typically $10 \mu \mathrm{~V}$ to $15 \mu \mathrm{~V}$.

The auto-zero duration is from 910 to 2900 counts for non-overrange conversions and from 300 to 910 counts for overrange conversions.

Signal Integration Phase

The auto-zero loop is entered and the internal differential inputs connect to $\mathrm{V}_{\mathbb{N}^{+}}$and $\mathrm{V}_{\mathbb{N}}{ }^{-}$. The differential input signal is integrated for a fixed time period. The TC7136A signal integration period is 1000 clock periods or counts. The externally-set clock frequency is divided by four before clocking the internal counters. The integration time period is:

$$
t_{\mathrm{SI}}=\frac{4}{f_{\mathrm{OSC}}} \times 1000
$$

where $\mathrm{f}_{\mathrm{OSC}}=$ external clock frequency.
The differential input voltage must be within the device common-mode range when the converter and measured system share the same power supply common (ground). If the converter and measured system do not share the same power supply common, $\mathrm{V}_{\mathbb{N}^{-}}$- should be tied to analog common.

Polarity is determined at the end of signal integrate phase. The sign bit is a true polarity indication, in that signals less than 1 LSB are correctly determined. This allows precision nuli detection limited only by device noise and auto-zero residual offsets.

Reference Integrate Phase

The third phase is reference integrate or deintegrate. $\mathrm{V}_{\mathbb{N}^{-}}$is internally connected to analog common and $\mathrm{V}_{\mathbb{N}^{+}}$is connected across the previously-charged reference capacitor. Circuitry within the chip ensures the capacitor will be connected with the correct polarity to cause the integrator output to return to zero. The time required for the output to

Figure 4 Conversion Timing During Normal Operation

Figure 5 Conversion Timing During Overrange Operation
return to zero is proportional to the input signal and is between 0 and 2000 internal clock periods. The digital reading displayed is

$$
1000 \frac{\mathrm{~V}_{\mathrm{IN}}}{\mathrm{~V}_{\mathrm{REF}}}
$$

DIGITAL SECTION

The TC7136A contains all the segment drivers necessary to directly drive a $3-1 / 2$ digit LCD. An LCD backplane driver is included. The backplane frequency is the external clock frequency divided by 800 . For three conversions per second the backplane frequency is 60 Hz with a 5 V nominal amplitude. When a segment driver is in-phase with the backplane signal, the segment is "OFF." An out-of-phase segment drive signal causes the segment to be "ON," or visible. This AC drive configuration results in negligible DC voltage across each LCD segment, ensuring long LCD life. The polarity segment driver is "ON" for negative analog inputs. If $\mathrm{V}_{\mathbb{N}^{+}}$and $\mathrm{V}_{\mathbb{N}}{ }^{-}$are reversed, this indicator would reverse.

On the TC7136A, when the test pin is pulled to V^{+}, all segments are turned "ON." The display reads-1888. During this mode the LCD segments have a constant DC voltage impressed. Do not leave the display in this mode for more
than several minutes. LCDs may be destroyed if operated with DC levels for extended periods.

The display font and segment drive assignment are shown in Figure 6.

Figure 6 Display FONT and Segment Assignment

System Timing

The oscillator frequency is divided by 4 prior to clocking the internal decade counters. The four-phase measurement cycle takes a total of 4000 counts, or 16,000 clock pulses. The 4000-count cycle is independent of input signal magnitude.

Each phase of the measurement cycle has the following length:
(1) Auto-zero phase: 3000 to 2900 counts
(1200 to 11,600 clock pulses)
(2) Signal integrate: 1000 counts
(4000 clock pulses)
This time period is fixed. The integration period is:

$$
\mathrm{t}_{\mathrm{sI}}=4000\left[\frac{1}{\mathrm{f}_{\mathrm{OSc}}}\right]
$$

where fosc is the externally-set clock frequency.
(3) Reference integrate: 0 to 2000 counts
(4) Zero integrator: 11 to 640 counts

The TC7136 is a drop-in replacement for the TC7126 and ICL.7126. The TC7136A offers a greatly-improved internal reference temperature coefficient. Minor component value changes are required to upgrade existing designs and improve the noise performance.

COMPONENT VALUE SELECTION

Auto-Zero Capacitor (C_{AZ})

The $C_{A Z}$ capacitor size has some influence on system noise. A $0.47 \mu \mathrm{~F}$ capacitor is recommended for 200 mV fullscale applications where 1 LSB is $100 \mu \mathrm{~V}$. A $0.1 \mu \mathrm{~F}$ capacitor is adequate for 2 V full-scale applications. A Mylar-type dielectric capacitor is adequate.

LOW POWER, 3-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTERS

TC7136 TC7136A

Reference Voltage Capacitor (CREF)

The reference voltage used to ramp the integrator output voltage back to zero during the reference integrate phase is stored on $C_{\text {REF }}$ A $0.1 \mu \mathrm{~F}$ capacitor is acceptable when $\mathrm{V}_{\text {REF }}{ }^{-}$is tied to analog common. If a large commonmode voltage exists ($\mathrm{V}_{\mathrm{REF}^{-}} \neq$analog common) and the application requires a 200 mV full scale, increase $\mathrm{C}_{\text {REF }}$ to $1 \mu \mathrm{~F}$. Roll-over error will be held to less than 0.5 count. A Mylar-type dielectric capacitor is adequate.

Integrating Capacitor ($\mathrm{C}_{\mathrm{INT}}$)

$\mathrm{C}_{\text {INT }}$ should be selected to maximize integrator output voltage swing without causing output saturation. Analog common will normally supply the differential voltage reference this case, a $\pm 2 \mathrm{~V}$ full-scale integrator output swing is satisfactory. For 3 readings per second (fosc $=48 \mathrm{kHz}$) a $0.047 \mu \mathrm{~F}$ value is suggested. For one reading per second, $0.15 \mu \mathrm{~F}$ is recommended. If a different oscillator frequency is used, $\mathrm{C}_{\mathrm{INT}}$ must be changed in inverse proportion to maintain the nominal $\pm 2 \mathrm{~V}$ integrator swing.

An exact expression for $\mathrm{C}_{\mathrm{INT}}$ is:

where: $f_{\text {OSC }}=$ Clock frequency at pin 38
$V_{F S}=$ Full-scale input voltage
$\mathrm{R}_{\text {INT }}=$ Integrating resistor
$\mathrm{V}_{\text {INT }}=$ Desired full-scale integrator output swing.
$\mathrm{C}_{\mathrm{INT}}$ must have low dieleciric absorption to minimize roll-over error. An inexpensive polypropylene capacitor is recommended.

Integrating Resistor ($\mathrm{R}_{\mathrm{INT}}$)

The input buffer amplifier and integrator are designed with Class A output stages. The output stage idling current is $6 \mu \mathrm{~A}$. The integrator and buffer can supply $1 \mu \mathrm{~A}$ drive currents with negligible linearity errors. RINT is chosen to remain in the output stage linear drive region, but not so large that PC board leakage currents induce errors. For a 200 mV full scale, $\mathrm{R}_{\text {INT }}$ is $180 \mathrm{k} \Omega$. A 2 V full scale requires $1.8 \mathrm{M} \Omega$.

Component	Nominal Full-Scale Voltage	
Value	$\mathbf{2 0 0 ~ m V}$	$\mathbf{2 V}$
$\mathrm{C}_{A Z}$	$0.47 \mu \mathrm{~F}$	$0.1 \mu \mathrm{~F}$
$\mathrm{R}_{I N T}$	$180 \mathrm{k} \Omega$	$1.8 \mathrm{M} \Omega$
$\mathrm{C}_{\mathrm{INT}}$	$0.047 \mu \mathrm{~F}$	$0.047 \mu \mathrm{~F}$
NOTE: fosc $=48 \mathrm{kHz}$ (3 readings per sec). $\mathrm{R}_{\mathrm{OSC}}=\mathrm{k} \Omega, \mathrm{C}_{\mathrm{OSC}}=50 \mathrm{pF}$.		

Oscillator Components

Cosc should be 50 pF . Rosc is selected from the equation:
$\mathrm{f}_{\mathrm{OSC}}=\frac{0.45}{\mathrm{RC}}$.
Note that fosc is $\div 4$ to generate the TC7136A's internal clock. The backplane drive signal is derived by dividing fosc by 800 .

To achieve maximum rejection of 60 Hz noise pickup, the signal integrate period should be a multiple of 60 Hz . Oscillator frequencies of $240 \mathrm{kHz}, 120 \mathrm{kHz}, 80 \mathrm{kHz}, 60 \mathrm{kHz}$, $40 \mathrm{kHz}, 33-1 / 3 \mathrm{kHz}$, etc. should be selected. For 50 Hz rejection, oscillator frequencies of $200 \mathrm{kHz}, 100 \mathrm{kHz}, 66-2 / 3$ $\mathrm{kHz}, 50 \mathrm{kHz}, 40 \mathrm{kHz}$, etc. would be suitable. Note that 40 kHz (2.5 readings per second) will reject both 50 Hz and 60 Hz (also 400 Hz and 440 Hz).

Reference Voltage Selection

A full-scale reading (2000 counts) requires the input signal be twice the reference voltage.

Required Full-Scale Voltage *	V $_{\text {REF }}$
200 mV	100 mV
2 V	1 V
$\mathrm{~V}_{\text {FS }}=2$ V $_{\text {REF. }}$	

In some applications, a scale factor other than unity may exist between a transducer output voltage and the required digital reading. Assume, for example, a pressure transducer output for $2000 \mathrm{lb} / \mathrm{in} .^{2}$ is 400 mV . Rather than dividing the input voltage by two, the reference voltage should be set to 200 mV . This permits the transducer input to be used directly.

The differential reference can also be used when a digital zero reading is required when $\mathrm{V}_{\mathbb{N}}$ is not equal to zero. This is common in temperature measuring instrumentation. A compensating offset voltage can be applied between analog common and $\mathrm{V}_{\mathbb{N}^{-}}$. The transducer output is connected between $\mathrm{V}_{\mathrm{IN}^{+}}$and analog common.

DEVICE PIN FUNCTIONAL DESCRIPTION

Differential Signal Inputs

$\mathbf{V}_{\mathrm{IN}^{+}}($Pin 31$), \mathrm{V}_{\mathrm{IN}^{-}}(\operatorname{Pin} 30)$
The TC7136A is designed with true differential inputs and accepts input signals within the input stage commonmode voltage range (V_{CM}). The typical range is $\mathrm{V}^{+}-1 \mathrm{~V}$ to V^{-} +1 V . Common-mode voltages are removed from the system when the TC7136A operates from a battery or floating power source (isolated from measured system), and $\mathrm{V}_{\mathbb{N}^{-}}$- is connected to analog common ($\mathrm{V}_{\mathrm{COM}}$). (See Figure 7.)

Figure 7 Common-Mode Voltage Removed in Battery Operation With $\mathrm{V}_{\mathrm{IN}}=$ Analog Common

In systems where common-mode voltages exist, the 86 dB common-mode rejection ratio minimizes error. Com-mon-mode voltages do, however, affect the integrator output level. A worst-case condition exists if a large positive $V_{C M}$ exists in conjunction with a full-scale negative differential signal. The negative signal drives the integrator output positive along with V_{CM} (see Figure 8.) For such applications, the integrator output swing can be reduced below the recommended 2 V full-scale swing. The integrator output will swing within 0.3 V of V^{+}or V^{-}without increased linearity error.

Differential Reference

$\mathbf{V}_{\text {REF }}{ }^{+}$(Pin 36), $\mathbf{V}_{\text {REF }}{ }^{-}$(Pin 35)
The reference voltage can be generated anywhere within the V^{+}to V^{-}power supply range.

To prevent roll-over type errors being induced by large common-mode voltages, $\mathrm{C}_{\text {REF }}$ should be large compared to stray node capacitance.

Figure 8 Common-Mode Voltage Reduces Available Integrator Swing ($\mathrm{V}_{\mathrm{COM}} \neq \mathrm{V}_{\mathrm{IN}}$)

The TC7136A offers a significantly improved analog common temperature coefficient. This potential provides a very stable voltage, suitable for use as a voltage reference. The temperature coefficient of analog common is typically $35 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

ANALOG COMMON (Pin 32)

The analog common pin is set at a voltage potential approximately 3 V below V^{+}. The potential is guaranteed to be between 2.7 V and 3.35 V below V^{+}. Analog common is tied internally to an N -channel FET capable of sinking $100 \mu \mathrm{~A}$. This FET will hold the common line at 3 V below V^{+} if an external load attempts to pull the common line toward V^{+}. Analog common source current is limited to $1 \mu \mathrm{~A}$. Analog common is therefore easily pulled to a more negative voltage (i.e., below $\mathrm{V}^{+}-3 \mathrm{~V}$).

The TC7136A connects the internal $\mathrm{V}_{\mathbb{N}^{+}}$and $\mathrm{V}_{\mathbb{N}^{-}}$inputs to analog common during the auto-zero phase. During the reference-integrate phase, $\mathrm{V}_{\mathbb{N}}-$ is connected to analog common. If $\mathrm{V}_{\mathbb{N}^{-}}$is not externally connected to analog common, a common-mode voltage exists, but is rejected by the converter's 86 dB common-mode rejection ratio. In battery operation, analog common and $\mathrm{V}_{\mathbb{N}^{-}}$are usually connected, removing common-mode voltage concerns. In systems where $\mathrm{V}_{\mathbb{N}^{-}}$is connected to the power supply ground or to a given voltage, analog common should be connected to $\mathrm{V}_{\mathbb{N}}{ }^{-}$.

The analog common pin serves to set the analog section reference, or common point. The TC7136A is specifically designed to operate from a battery or in any measurement system where input signals are not referenced (float) with respect to the TC7136A power source. The analog common potential of $\mathrm{V}^{+}-3 \mathrm{~V}$ gives a 7 V end of battery life voltage. The common potential has a $0.001 \% / \%$ voltage coefficient.

LOW POWER, 3-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTERS

TC7136 TC7136A

With sufficiently high total supply voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}>7 \mathrm{~V}$), analog common is a very stable potential with excellent temperature stability (typically $35 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$). This potential can be used to generate the TC7136A's reference voltage. An external voltage reference will be unnecessary in most cases because of the $35 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ temperature coefficient. See TC7136A Internal Voltage Reference discussion.

TEST (Pin 37)

The test pin potential is 5 V less than V^{+}. Test may be used as the negative power supply connection for external CMOS logic. The test pin is tied to the internally-generated negative logic supply through a 500Ω resistor. The test pin load should not be more than 1 mA . See the Applications Section for additional information on using test as a negative digital logic supply.

If test is pulled high (to V^{+}), ali segments plus the minus sign will be activated. Do not operate in this mode for more than several minutes. With Test $=\mathrm{V}^{+}$, the LCD segments are impressed with a DC voltage which will destroy the LCD.

TC7136A Internal Voltage Reference

The TC7136 analog common voltage temperature stability has been significantly improved (Figure 9). The "A" version of the industry-standard TC7136 device allows users to upgrade old systems and design new systems without external voltage references. External R and C values do not need to be changed; however, noise performance will be improved by increasing $\mathrm{C}_{A Z}$. (See Auto-Zero Capacitor section.) Figure 10 shows analog common supplying necessary voltage reference for the TC7136A.

Figure 9 Analog Common Temperature Coefficient

Figure 10 TC7136A Internal Voltage Reference Connection

APPLICATIONS INFORMATION

Liquid Crystal Display Sources

Several manufacturers supply standard LCDs to interface with the TC7136A 3-1/2 digit analog-to-digital converter.

Manufacturer	Address/Phone	Representative Part Numbers*
Crystaloid Electronics	5282 Hudson Dr., Hudson, OH 44236 216-655-2429	$\begin{aligned} & \text { C5335, H5535, } \\ & \text { T5135, SX440 } \end{aligned}$
AND	770 Airport Blvd., Burlingame, CA 94010 415-347-9916	$\begin{aligned} & \text { FE 0801, } \\ & \text { FE } 0203 \end{aligned}$
VGI, Inc.	1800 Vernon St., Ste. 2 Roseville, CA 95678 916-783-7878	11048, 11126
Hamlin, Inc.	612 E. Lake St., Lake Mills, WI 53551 414-648-2361	3902, 3933, 3903

*NOTE: Contact LCD manufacturer for full product listing/specifications.

Decimal Point and Annunciator Drive

The test pin is connected to the internally-generated digital logic supply ground through a 500Ω resistor. The test pin may be used as the negative supply for external CMOS gate segment drivers. LCD annunciators for decimal points, low battery indication, or function indication may be added without adding an additional supply. No more than 1 mA should be supplied by the test pin. The test pin potential is approximately 5 V below V^{+}.

LOW POWER, 3-1/2 DIGIT

 ANALOG-TO-DIGITAL CONVERTERS
Ratiometric Resistance Measurements

The TC7136A's true differential input and differential reference make ratiometric readings possible. In ratiometric operation, an unknown resistance is measured with respect to a known standard resistance. No accurately-defined reference voltage is needed.

The unknown resistance is put in series with a known standard and a current passed through the pair. The voltage developed across the unknown is applied to the input and the voltage across the known resistor applied to the reference input. If the unknown equals the standard, the display will read 1000. The displayed reading can be determined from the following expression:

$$
\text { Displayed reading }=\frac{R_{\text {UNKNOWN }}}{R_{\text {STANDARD }}} \times 1000
$$

The display will overrange for $R_{\text {unknown }} \geq 2 \times R_{\text {Standard }}$.

Simple Inverter for Fixed Decimal Point or DisplayAnnunciator

Multiple Decimal Point or Annunciator Driver

Figure 11 Decimal Point and Annunciator Drives

Figure 12 Low Parts Count Ratiometric Resistance Measurement

Figure 13 Temperature Sensor

Figure 14 Positive Temperature Coefficient Resistor Temperature Sensor

NOTES

3-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTER WITH PARALLEL BDC OUTPUT

FEATURES

- High Accuracy, 3-1/2 Digit Resolution With $< \pm 0.025 \%$ Error
- Military Temperature Range Devices
- Monotonic Performance
- No Missing Codes

Monolithic CMOS Construction Gives Low Power Dissipation \qquad

- Contains All Required Active Elements
- Needs Only Passive Support Components, Reference Voltage, and Dual Power Supplies
- High Stability Over Full Temperature Range
- Gain Temperature Coefficient ... $<25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ Typ
- Zero Drift $<30 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ Тур
— Differential Nonlinearity Drift ... $<\mathbf{2 . 5} \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ Typ
- Latched Parallel BDC Outputs
- LPTTL and CMOS Compatible Outputs and Control Inputs
■ Strobed or Free-Running Conversion
- Infinite Input Range
- Any Positive Voltage Can Be Applied via a Scaling Resistor

TEST CIRCUIT

3-1/2 DIGIT ADC WITH PARALLEL BDC OUTPUT

GENERAL DESCRIPTION

The TC8750 is a $3-1 / 2$ digit, monolithic CMOS analog-to-digital converter. Fully self-contained in a single 24-pin dual-in-line package, the converter requires only passive support components, voltage or current references, and power supplies.

Conversion is performed by an incremental chargebalancing technique which has inherently high accuracy, linearity, and noise immunity. An amplifier integrates the sum of the unknown analog current and pulses of a reference current. The number of pulses (charge increments) needed to maintain the amplifier summing junction near zero are counted. At the end of conversion, the total count is latched into the digital outputs in a $3-1 / 2$ digit, parallel BDC digit format.

ORDERING INFORMATION

Part No.	Package	Temperature Range
TC8750CPG	24-Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC8750EHG	24-Pin CerDIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC8750MHG	24-Pin CerDIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

HANDLING PRECAUTIONS

CMOS devices must be handled correctly to prevent damage. Package and store only in conductive foam, antistatic tubes or other conductive material. Use proper antistatic handling procedures. Do not connect in circuits under "power-on" conditions, a shigh transients may cause permanent damage.

PIN CONFIGURATION

ELECTRICAL CHARACTERISTICS: Unless otherwise specified, $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GND}}=0 \mathrm{~V}$,
$V_{\text {REF }}=-6.4 \mathrm{~V}, \mathrm{R}_{\text {BIAS }}=100 \mathrm{k} \Omega$, test circuit shown. $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless full temperature range is specified $\left(-55^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$ for MH package, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for EH package, 0° to $+70^{\circ} \mathrm{C}$ for CP package).

Parameter	Definition	Conditions	Min	Typ	$\begin{aligned} & \text { CP/EH } \\ & \text { Max } \end{aligned}$	MH Max	Unit
Accuracy							
Resolution Accuracy	BCD Word Length of Digital Output		$\begin{array}{\|c\|} \hline 3-1 / 2 \\ \text { (1999 Counts) } \\ \hline \end{array}$	-	-	-	Digits
Relative Accuracy	Output Deviation From Straight Line Between Normalized Zero and Full-Scale Input		-	-	0.025	0.025	\%
Differential Nonlinearity	Deviation From 1 LSB Between Transition Points		-	-	-	0.025	\%
Differential Nonlinearity Temperature Drift	Variation in Differential Nonlinearity Due to Temperature Change	Full Temperature Range	-	± 2.5	± 5	± 5	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Gain Variance	Variation From Exact (Compensate By Trimming R_{IN} or R REF)		-	± 2	± 5	± 5	\% of Nominal
Gain Temperature Drift	Variation \ln A Due to Temperature Change	Full Temperature Range	-	± 25	± 75	± 80	ppm $/{ }^{\circ} \mathrm{C}$
Zero Offset	Correction at Zero Adjust to Give Zero Output When Input is Zero	$\mathrm{I}_{\mathrm{N}}=0$	-	± 10	± 50	± 50	mV
Zero Temperature Drift	Variation in Zero Offset Due to Temperature Change	Full Temperature Range	-	± 3	± 5	± 8	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$

Analog Input (See Note)

IN Full Scale	Full-Scale Analog Input Current to Achieve Specified Activity	-	10	-	-	$\mu \mathrm{A}$
Refernce Current Input to Achieve Specified Accuracy	-	-20	-	-	$\mu \mathrm{A}$	

	Logical "1" Input Threshold Current to Achieve Specified Activity	-	10	-	-	$\mu \mathrm{A}$
$\mathrm{V}_{1 \mathbb{N}^{(1)}}$						
$\mathrm{V}_{1 \mathbb{N}^{(0)}}$	Logical "0" Input Threshold for Initiate Conversion Input	Full Temperature Range	-	-	1.5	1.5

Digital Output

$\mathrm{V}_{\text {Out }}{ }^{(1)}$	Logical "1" Output Voltage for Digits Out, Busy, and Data Valid Outputs	Full Temperature Range lout $=-10 \mu \mathrm{~A}$ lout $=-500 \mu \mathrm{~A}$	4.5	-	-	-	V
$\overline{V_{\text {OUT }}}{ }^{(0)}$	Logical "0" Output Voltage for Digits Out, Busy, and Data Valid Outputs	Full Temperature Range $V_{D D}=4.75 \mathrm{~V}$ I $_{\text {OUT }}=500 \mu \mathrm{~A}$	-	-	0.4	0.4	v
Dynamic							
Conversion Time	Time Required to Perform One Complete A/D Conversion	Full Temperature Range	-	10	12	12	ms

3-1/2 DIGIT ADC WITH PARALLEL BDC OUTPUT

TC8750

ELECTRICAL CHARACTERISTICS (Cont.)

Parameter	Definition	Conditions	Min	Typ	$\begin{gathered} \text { CP/EH } \\ \text { Max } \end{gathered}$	MH Max	Unit
Dynamic (Cont.)							
Conversion Rate in Free-Run Mode		$\mathrm{V}_{\text {INT CONV }}=+5 \mathrm{~V}$	84	100	-	-	Conv per sec
Minimum Pulse Width for Initiate Conversion		Full Temperature Range	500	-	-	-	ns

Supply Current

IDD Quiescent (H Package) (P Package)	Current Required From Positive Supply During Operation	Full Temperature Range $\mathrm{V}_{\text {INT CONV }}=0 \mathrm{~V}$		$\begin{aligned} & 1.4 \\ & 1.4 \end{aligned}$	$\begin{gathered} 2.5 \\ 5 \end{gathered}$	3.5	mA mA
Iss Quiescent (H Package) (P Package)	Current Required From Negative Supply During Operation	Full Temperature Range $\mathrm{V}_{\text {INT CONV }}=0 \mathrm{~V}$	-	$\begin{array}{r} -1.6 \\ -1.6 \\ \hline \end{array}$	$\begin{gathered} -2.5 \\ -5 \\ \hline \end{gathered}$	-3.5	mA mA
Supply Sensitivity	Change in Full-Scale Gain vs Supply Voltage Change	$\mathrm{V}_{\mathrm{DD}} \pm 1 \mathrm{~V}, \mathrm{~V}_{\text {SS }} \pm 1 \mathrm{~V}$	-	± 0.5	± 1	± 1	\%/V
$\begin{aligned} & \left\|V_{D D}\right\|=\left\|V_{S S}\right\| \\ & =5 V \pm 1 V \end{aligned}$	Change in Full-Scale Gain vs Supply Voltage Change for Tracking Supplies		± 0.05	± 0.1	± 0.1	± 0.1	\%/V

NOTE: $I_{I N}$ and $I_{\text {REF }}$ pins connect to the summing junction of an operational amplifier. Voltage sources cannot be attached directly but must be buffered by external resistors. See Test Circuit.

CIRCUIT DESCRIPTION

During conversion, the sum of a continuous current ($l_{\mathbb{N}}$) and pulses of a reference current ($l_{\text {REF }}$) are integrated for a fixed number of clock periods. $l_{\mathbb{N}}$ is proportional to the analog input voltage; $I_{\text {REF }}$ is switched in for exactly one clock period just frequently enough to maintain the summing input of the integrator near zero. Thus, the charge from the continuous $\mathrm{I}_{\mathbb{N}}$ current is balanced against the pulses of $\mathrm{I}_{\text {REF }}$ current. The total number of $\mathrm{I}_{\text {REF }}$ pulses needed during the conversion period to maintain the charge is counted and the result (in BCD) is latched into the outputs at the end of conversion.

The conversion contains two counters and a clock, in addition to an operational amplifier, comparator, latching, output buffers, and housekeeping logic. One counter is a clock counter which (after a reset pulse) starts counting clock pulses; when the required count is reached, the clock counter generates a pulse to start the end-of-conversion routine.

The other counter is a data counter, which is reset synchronously with the clock counter and counts the number of times $I_{\text {REF }}$ is switched into the summing input of the amplifier during the period defined by the clock counter.

When the Initiate Conversion input is strobed with a positive signal, the busy line latches high and a $10 \mu \mathrm{~s}$ (times given are appropriate) start-up cycle begins. The integrating capacitor is discharged and both counters are reset during this start-up period. Conversion begins at the end of the reset pulse and ends with a pulse generated by the clock counter or by an overflow condition in the data counter. This pulse disables further inputs into both counters and triggers a 10μ s shutdown cycle. During the shutdown cycle, Data Valid goes low for $5 \mu \mathrm{~s}$. This binary sequence is shown in the timing diagrams. Busy is true high, and when the circuit is busy, Initiate Conversion has no effect and may be high or low. Data Valid is also true high. The data from a conversion remain valid for as long as power is applied to the circuit or until Data Valid falls at the end of a subsequent conversion, at which time the output data are updated to reflect the latest conversion.

3-1/2 DIGIT ADC WITH

 PARALLEL BDC OUTPUT
TIMING DIAGRAMS

NOTE: Rise and fall times $=200 \mathrm{~ns}$ typical, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$.

PIN FUNCTIONS

Initiate Conversion Input

Accepts CMOS and most 5V logic inputs. Applying a logic "1" to the Initiate Conversion pin initiates the A/D conversion cycle. Once conversion has been initiated, the cycle cannot be interrupted, and the Initiate Conversion pin is disabled until conversion is complete. Two modes of operation are permitted, clocked orfree-running. For clocked operation the Initiate Conversion input is held at logic " 0 " for standby and taken to logic " 1 " when a conversion is desired. For free-running operation the Initiate Conversion pin is connected to V_{DD} or similar permanent logic " 1 " voltage.

Busy Output

A digital status output which is compatible with CMOS logic and low power TTL (can sink and source $500 \mu \mathrm{~A}$). A logic " 1 " output on the Busy pin indicates a conversion cycle is in process. A logic " 1 " to logic " 0 " transition indicates that conversion is complete and the result has been latched at the Digits Out pins. A logic " 0 " to logic " 1 " transition indicates a new conversion cycle has been initiated. If the device is operating in the free-running mode, the Busy output will remain low for approximately $2.5 \mu \mathrm{~s}$, marking the completion and initiation of consecutive conversion cycles.

Data Valid Output

A digital status which is compatible with CMOS logic and low power TTL (can sink and source $50 \mu \mathrm{~A}$). A logic "1"
output at the Data Valid pin indicates that the Digits Out pins are latched with the result of the last conversion cycle. The Data Valid output goes to logic "0" approximately 5μ s before the completion of a conversion cycle. During this $5 \mu \mathrm{~s}$ interval new data is being transferred to the Digits Out pins, and the Digits Out are not valid.

Digits Output (1's, 10's, 100's, 1000's)
The BDC digit outputs which are the result of the A/D conversion. These outputs are CMOS logic and low power TTL compatible.

APPLICATIONS INFORMATION

Input/Output Relationships

The analog input voltage $\left(\mathrm{V}_{\mathrm{IN}}\right)$ is related to the output by the transfer equation:

$$
\begin{aligned}
\text { Digital Counts } & =\frac{V_{I N} \cdot A \cdot R_{\text {REF }}}{R_{I N} \cdot V_{\text {REF }}} \\
A & =4128
\end{aligned}
$$

where digital counts is the value of the BCD output word presented at Digits Out pins in response to $\mathrm{V}_{\mathbb{I N}}$.

3-1/2 DIGIT ADC WITH PARALLEL BDC OUTPUT

The digital output code format is as follows:

Analog Input	Digital Output
$\mathrm{V}_{\mathrm{IN}} \leq$ Full Scale	1100110011001
$=$ Full Scale -1 LSB	1100110011001
$=1$ LSB	$0 \ldots 000 \ldots 1$
≤ 0	$0 \ldots 000 \ldots 0$

External Component Selection

Obtaining a high-accuracy conversion system depends on the voltage regulation of $\mathrm{V}_{\text {REF }}$, and thermal stability of $\mathrm{R}_{\text {IN }}$ and Reff. $^{\text {. The exact dependence is given by the transfer }}$ function. System accuracy also depends, to a lesser degree, on the voltage regulation of V_{DD} and V_{SS}. Supply connections $V_{D D}$ and $V_{S S}$ should have bypass capacitors of $0.1 \mu \mathrm{~F}$ or larger value right at the device pins.

$\mathbf{R I N}_{\mathrm{N}}, \mathbf{R}_{\mathrm{REF}}$

Values of these components are chosen to give a fullscale input current of approximately $10 \mu \mathrm{~A}$ and a reference current of approximately $-20 \mu \mathrm{~A}$.

$$
R_{I N} \approx \frac{V_{\text {IN Full Scale }}}{10 \mu \mathrm{~A}} \quad R_{\text {REF }} \approx \frac{V_{\text {REF }}}{-20 \mu \mathrm{~A}}
$$

Examples:

$$
\operatorname{RiN}_{\mathrm{IN}} \approx \frac{10 \mathrm{~V}}{10 \mu \mathrm{~A}}=1 \mathrm{M} \Omega \quad \mathrm{R}_{\text {REF }} \approx \frac{-6.4 \mathrm{~V}}{-20 \mu \mathrm{~A}}=320 \mathrm{k} \Omega
$$

Note that these values are approximations; the exact relationships are defined by the transfer equation. In practice, the value of Ris typically would be trimmed using the optional gain adjust circuit to obtain full-scale output at $\mathrm{V}_{\mathbb{I N}}$ full scale (see adjustment procedure). Metal film resistors with 1% tolerance or better are recommended for high accuracy applications because of their thermal stability and low noise generation.

RBiAs

Specifications for the TC8750 are based on RBIAS $=$ $100 \mathrm{k} \Omega \pm 10 \%$, unless otherwise noted. However, there are instances when the designer may want to change this resistor in order to affect the conversion time and supply current. By decreasing RBIAs, the ADC will convert much faster and the supply current will be much higher (e.g., when $R_{\text {BIAS }}=20 \mathrm{k} \Omega$, the conversion time is reduced by $1 / 3$, and the supply current will increase from 2 mA to 7 mA). Likewise, if $\mathrm{R}_{B I A S}$ is increased, the conversion time will be longer and the supply current will be much lower. (e.g., when $\mathrm{R}_{\text {BIAS }}=1 \mathrm{M} \Omega$,
the conversion time will be six times longer, and the supply current is now reduced to 0.5 mA).

For details of this relationship, refer to the typical performance curves in Application Note 9.

$R_{\text {DAMP }}$

Exact value not critical, but should have a nominal value of $100 \Omega \pm 10 \%$. Locate close to pin 14 .

$\mathrm{C}_{\text {DAMP }}$

Exact value not critical, but should have a nominal value of $270 \mathrm{pF} \pm 20 \%$. Locate close to pin 14 .

$\mathrm{C}_{\mathrm{INT}}$

Exact value not critical, but should have a nominal value of $68 \mathrm{pF} \pm 10 \%$. Low leakage types are recommended, although mica or ceramic devices can be used in applications where their temperature limits are not exceeded, Locate as close as possible to pins 14 and 15.

$V_{\text {REF }}$

A negative reference voltage must be supplied. This may be obtained from a constant current source circuit or from the negative supply.

$V_{D D}$, $V_{S S}$

Power supplies of $\pm 5 \mathrm{~V}$ are recommended with 0.05% line and load regulation and $0.1 \mu \mathrm{~F}$ decoupling capacitors.

Adjustment Procedure

The test circuit diagram shows optional circuits for trimming the zero location and full-scale gain. Because the digital outputs remain constant outside of the normal operating range (i.e., below zero and above full scale), it is recommended that transition points be used in setting the zero and full-scale values. Recommended procedure is as follows:

1. Set the initiate conversion control high to provide freerun operation, and verify that converter is operating.
2. Set $\mathrm{V}_{\text {IN }}$ to $+1 / 2$ LSB and trim the zero adjust circuit to obtain a $000 \ldots 000 \ldots$ to $000 \ldots 001$ transition. This will correctly locate the zero end.
3. For full scale adjustment, set $\mathrm{V}_{\text {IN }}$ to the full scale value less $1-1 / 2$ LSB, and trim the gain adjust circuit for a 1100110011000 to 1100110011001 transition.

If adjustments are performed in this order, there should be no interaction and they should not have to be repeated.

APPLICATION/DESIGN CIRCUITS

Bipolar Operation (+ and - Inputs)

3-1/2 DIGIT ADC WITH PARALLEL BDC OUTPUT

TC8750
APPLICATION/DESIGN CIRCUITS (Cont.)

3-1/2 DIGIT ADC

FEATURES

- Accuracy: $\pm 0.05 \%$ of Reading ± 1 Count
- Two Voltage Ranges: 1.999 V and 199.9 mV
- Up to 25 Conversions Per Second
- $Z_{\text {IN }}>1000 \mathrm{M}$ Ohms
- Single Positive Voltage Reference
- Auto-Polarity and Auto-Zero
- Overrange and Underrange Signals Available
- Operates in Auto-Ranging Circuits
- Uses On-Chip System Clock or External Clock
- Wide Supply Range: e.g., $\pm 4.5 \mathrm{~V}$ to $\pm 8 \mathrm{~V}$
- Available in Surface-Mount Packages

APPLICATIONS

GENERAL DESCRIPTION

The TC1433 is a low power, high-performance, monolithic CMOS 3-1/2 digit A/D converter. The TC14433 combines both analog and digital circuits on a single IC, thus minimizing the number of external components. This dualslope A/D converter provides automatic polarity and zero correction with the addition of two external resistors and two capacitors. The full-scale voltage range of this ratiometric IC extends from 199.9 millivolts to 1.999 volts. The TC14433B can operate over a wide range of power supply voltages, including batteries and standard 5 -volt supplies.

The TC14433 will interface with the TC7211A (LCD)and TC7212A (LED) display drivers.

The TC14433A/B feature improved performance over the industry standard TC14433. Rollover, which is the measurement of identical positive and negative signals, is guaranteed to have the same reading within one count for the TC14433A, and within four counts for the TC14433B. Power consumption of the TC14433A/B is typically 4 mW , approximately one-half that of the industry standard TC14433.

BLOCK DIAGRAM

TC14433
TC14433A TC14433B

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
DC Supply Voltage	V_{DD} to V_{EE}	-0.5 to +18	Vdc
Voltage, Any Pin, Referenced to V_{EE}	V	-0.5 to	Vdc
DC Current Drain Per Pin	l	10	mAdc
Operating Temperature Range	T_{A}	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\mathrm{STG}}$	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

$\left(\mathrm{V}_{\mathrm{SS}}=0\right.$ or $\left.\mathrm{V}_{\mathrm{EE}}\right)$			
Parameter	Symbol	Value	Unit
DC Supply Voltage:			
V_{DD} to Analog Ground V_{EE} to Analog Ground	V_{DD}	+5 to +8	Vdc
Clock Frequency	$\mathrm{f}_{\mathrm{ELE}}$	-2.8 to -8	Vdc
Zero Offset			
Correction Capacitor	C_{\circ}	0.1 to 400	kHz

Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

($C_{1}=0.1 \mu \mathrm{~F}$ mylar, $\mathrm{R}_{\mathrm{l}}=470 \mathrm{k} \Omega$ at $\mathrm{V}_{\text {REF }}=2 \mathrm{~V}, \mathrm{R}_{1}=27 \mathrm{k} \Omega$ at $\mathrm{V}_{\text {REF }}=200 \mathrm{mV}, \mathrm{C}_{0}=0.1 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{c}}=300 \mathrm{k} \Omega$; all voltages referenced to Analog Ground, pin 1.)

Characteristic	Symbol	$\begin{array}{\|l\|} \hline \mathrm{V}_{\mathrm{DD}} \\ \hline \mathrm{Vdc} \\ \hline \end{array}$	$\frac{V_{\mathrm{EE}}}{\mathrm{Vdc}}$	$-40^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$		Unit
				Min	Max	Min	Typ	Max	Min	Max	
Analog Input											
Rollover Error (Difference	14433A			-	-	-1	-	+1	-	-	Counts
negative reading near full-scale)	14433B			-	-	-4	-	+4	-	-	
$-\mathrm{V}_{\text {IN }}=+\mathrm{V}_{\text {IN }}$: 200 mV Full-Scale	14433			-	-	-	-	-	-	-	
Linearity Output Reading (Note 1) $\begin{aligned} & \left(V_{\text {REF }}=2 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\text {REF }}=200 \mathrm{mV}\right) \end{aligned}$	-	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & -5 \\ & -5 \end{aligned}$	-	-	$\begin{gathered} -0.05 \\ -1 \text { count } \end{gathered}$	+0.05	$\begin{gathered} +0.05 \\ +1 \text { count } \end{gathered}$	-	-	\%rdg
$\begin{gathered} \hline \text { Stability Output Reading (Note 2) } \\ \left(V_{x}=1.99 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=2 \mathrm{~V}\right) \\ \left(\mathrm{V}_{x}=199 \mathrm{mV}, \mathrm{~V}_{\text {REF }}=200 \mathrm{mV}\right) \\ \hline \end{gathered}$	-	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & -5 \\ & -5 \end{aligned}$	-	-	-	-	2 3	-	-	$\begin{aligned} & \text { LSD } \\ & \text { LSD } \end{aligned}$
Zero Output Reading $\left(V_{X}=O V, V_{\text {REF }}=2 \mathrm{~V}\right)$ Bias Current:	-	5	-5	-	-	-	0	0	-	-	LSD
Analog Input	-	5	-5	-	-	-	± 20	± 100	-	-	pA
Reference Input	-	5	-5	-	-	-	± 20	± 100	-	-	pA
Analog Ground	-	5	-5	-	-	-	± 20	± 500	-	-	pA
Common-Mode Rejection $\begin{aligned} & \left(\mathrm{V}_{\mathrm{x}}=1.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=2 \mathrm{~V},\right. \\ & \left.\mathrm{f}_{\mathrm{OC}}=32 \mathrm{kHz}\right) \end{aligned}$		5	-5	-	-	-	65	-	-	-	dB

Digital

Output Voltage — Pins 14 to 23

$\left(\mathrm{V}_{\mathrm{ss}}=0 \mathrm{~V}\right)$	"0" Level
"1" Level	

V_{OL}
V_{OH}
V_{OL}
V_{OH}

5	-5	-	0.05	-	0	0.05
5	-5	4.95	-	4.95	5	-
5	-5	-	-4.95	-	-5	-4.95
5	-5	4.95	-	4.95	5	-

-	0.05	V
4.95	-	V
-	-4.95	V
4.95	-	V

TC144333 TC14433A
TC14433B

Characteristic	Symbol	$\begin{array}{\|c\|} \hline \mathrm{V}_{\mathrm{DD}} \\ \hline \mathrm{Vdc} \\ \hline \end{array}$	$\frac{\mathrm{V}_{\mathrm{EE}}}{\mathrm{Vdc}}$	$-40^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$		Unit				
				Min	Max	Min	Typ	Max	Min	Max					
Output Current - Pins 14 to 23$\left(V_{s \mathrm{~s}}=0 \mathrm{~V}\right)$															
$\left(\mathrm{V}_{\mathrm{OH}}=4.6 \mathrm{~V}\right)$ Source	I_{OH}	5	-5	-0.25	-	-0.2	-0.36	-	-0.14	-	mA				
$\left(\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}\right)$ Sink	I_{OL}	5	-5	0.64	-	0.51	0.88	-	0.36	-	mA				
$\left(\mathrm{V}_{\text {ss }}=0 \mathrm{~V}\right)$															
$\left(\mathrm{V}_{\mathrm{OH}}=5 \mathrm{~V}\right)$ Source	I_{OH}	5	-5	-0.62	-	-0.5	-0.9	-	-0.35	-	mA				
$\left(\mathrm{V}_{\mathrm{OL}}=-4.5 \mathrm{~V}\right)$ Sink	I_{OL}	5	-5	1.6	-	1.3	2.25	-	0.9	-	mA				
Clock Frequency ($\mathrm{R}_{\mathrm{c}}=300 \mathrm{k} \Omega$)	$\mathrm{f}_{\text {cLK }}$	5	-5	-	-	-	66	-	-	-	kHz				
Input Current - DU	I_{DU}	5	-5	-	± 0.3	-	± 0.00001	± 0.3	-	± 1	$\mu \mathrm{A}$				

Power

Quiescent Current		5	-5	-	3.7	-	0.4	2	-	1.6	mA
$\left(\mathrm{V}_{\mathrm{DD}}\right.$ to $\left.\mathrm{V}_{\mathrm{EE}}, \mathrm{I}_{\mathrm{SS}}=0\right) 14433 \mathrm{~A} / \mathrm{B}$	I_{Q}	8	-8	-	7.4	-	1.4	4	-	3.2	mA
14433	I_{Q}	5	-5	-	3.7	-	0.9	2	-	1.6	mA
		8	-8	-	7.4	-	1.8	4	-	3.2	mA
Supply Rejection $\left(V_{D D} \text { to } V_{E E}, I_{S S}=0, V_{\text {REF }}=2 V\right)$	-	5	-5	-	-	-	0.5	-	-	-	mV / V

NOTES: 1. Accuracy - The accuracy of the meter at full-scale is the accuracy of the setting of the reference voltage. Zero is recalculated during each conversion cycle. The meaningful specification is linearity. In other words, the deviation from correct reading for all inputs other than positive full-scale and zero is defined as the linearity specification.
2. Three LSD stability for 200 mV scale is defined as the range that the LSD will occupy 95% of the time.
3. Pin numbers refer to 24 -pin DIP.

ORDERING INFORMATION

Part No.	Package	Temperature Range
TC14433AEPG	24-Pin Plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC14433BEPG		
TC14433EPG		
TC14433EJG	$24-$-Pin CerDIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC14433EJG		
TC14433EJG		
TC14433ELI	28 -Pin PLCC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC14433AELI	$28-P i n$ PLCC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Part No.	Package	Temperature Range
TC14433EBQ	$60-$ Pin Plastic Flat Package: TC14433EBQ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

TC14433
TC14433A TC14433B

Figure 1. Typical Rollover Error vs Power Supply Skew

Figure 3. Typical N-Channel Sink Current at
$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{ss}}=5$ Volts

Figure 5. Typical Clock Frequency vs Resistor (R_{c})

Figure 2. Typical Quiescent Power Supply Current vs Temperature

Figure 4. Typical P-Channel Source Current at $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{ss}}=5$ Volts

Figure 6. Typical \% Change of Clock Frequency vs Temperature
CONVERSION RATE $\left.=\frac{\text { CLOCK FREQUENCY }}{16,400} \pm 1.5 \% \right\rvert\,$

PIN CONFIGURATIONS

TC14433
TC14433A
TC14433B
PIN DESCRIPTIONS

Pin No. 60-Pin FP	Pin No. 24-Pin DIP	Symbol	Description
7	1	$V_{A G}$	This is the analog ground; it has a high input impedance - This pin determines the reference level for the unknown input voltage $\left(\mathrm{V}_{\mathrm{x}}\right)$ and the reference voltage $\left(\mathrm{V}_{\text {REF }}\right)$.
10	2	$\mathrm{V}_{\text {REF }}$	Reference voltage - Full-scale output is equal to the voltage applied to $\mathrm{V}_{\text {REF }}$. Therefore, full-scale voltage of 1.999 V requires 2 V reference and 199.9 mV full-scale requires a 200 mV reference. $\mathrm{V}_{\text {REF }}$ functions as system reset also. When switched to V_{EE}, the system is reset to the beginning of the conversion cycle.
12	3	V_{x}	The unknown input voltage $\left(\mathrm{V}_{\mathrm{x}}\right)$ is measured as a ratio of the reference voltage $\left(\mathrm{V}_{\mathrm{REF}}\right)$ in a ratiometric A/D conversion.
19 22 24	4 5 6	$\begin{gathered} \mathrm{R}_{1} \\ \mathrm{R}_{1} / \mathrm{C}_{1} \\ \mathrm{C}_{1} \end{gathered}$	These pins are for external components used for the integration function in the dual slope conversion. Typical values are $0.1 \mu \mathrm{~F}$ (mylar) capacitor for C_{1}. $\mathrm{R}_{1}=470 \mathrm{k} \Omega$ (resistor) for 2 V full-scale. $\mathrm{R}_{1}=27 \mathrm{k} \Omega$ (resistor) for 200 mV full-scale. Clock frequency of 66 kHz gives 250 ms conversion time. See equation below for calculation of integrator component values.
$\begin{aligned} & 25 \\ & 26 \end{aligned}$	$\begin{aligned} & 7 \\ & 8 \end{aligned}$	$\begin{aligned} & \mathrm{CO} \\ & \mathrm{CO}_{2} \end{aligned}$	These pins are used for connecting the offset correction capacitor. The recommended value is $0.1 \mu \mathrm{~F}$.
27	9	DU	Display update input pin - When DU is connected to the EOC output every conversion is displayed. New data will be strobed into the output latches during the conversion cycle if a positive edge is received on DU prior to the ramp-down cycle. When this pin is driven from an external source, the voltage should be referenced to $\mathrm{V}_{\text {ss }}$.
34 36	10 11	CLK CLK	Clock input pins - The TC14433 has its own oscillator system clock. Connecting a single resistor between CLK ${ }_{1}$ and CLK $_{0}$ sets the clock frequency. A crystal or OC circuit may be inserted in lieu of a resistor for improved stability. CLK ${ }_{1}$, the clock input, can be driven from an external clock source, which need only have standard CMOS output drive. This pin is referenced to V_{EE} for external clock inputs. A $300 \mathrm{k} \Omega$ resistor yields a clock frequency of about 66 kHz . (See typical characteristic curves; see Figure 9 for alternate circuits.)
37	12	$\mathrm{V}_{\text {EE }}$	Negative power current - Connection pin for the most negative supply. Please note the current for the output drive circuit is returned through V_{ss}. Typical supply current is 0.8 mA .
39	13	$\mathrm{V}_{\text {ss }}$	Negative power supply for output circuitry - This pin sets the low voltage level for the output pins (BCD, Digit Selects, EOC, OR). When connected to analog ground, the output voltage is from analog ground to V_{DD}. If connected to V_{EE}, the output swing is from V_{EE} to V_{DD}. The recommended operating range for V_{SS} is between the $\mathrm{V}_{\mathrm{DD}}-3$ volts and V_{EE}.
40	14	EOC	End of conversion output generates a pulse at the end of each conversion cycle. This generated pulse width is equal to one-half the period of the system clock.
41	15	OR	Overrange pin - Normally this pin is set high. When V_{x} exceeds $\mathrm{V}_{\text {REF }}$ the OR pin is low.
49	16	DS_{4}	Digit select pins - The digit select output goes high when the respective digit is selected. The MSD ($1 / 2$ digit) turns on immediately after an EOC pulse.
51	17	DS ${ }_{3}$	The remaining digits turn on in sequence from MSD to LSD.
52	18	DS ${ }_{2}$	To ensure that the BCD data has settled, an inter-digit blanking time of two clock periods is included.
54	19	DS,	Clock frequency divided by 80 equals multiplex rate. For example, a system clock of 60 kHz gives a multiplex rate of 0.8 kHz .
5	20	Q	See Figure 12 for digit select timing diagram.
4	21	Q	BCD data output pins - Multiplexed BCD outputs contain three full digits of information during digit select $\mathrm{DS}_{2}, \mathrm{DS}_{3}, \mathrm{DS}_{4}$.
$\begin{aligned} & 57 \\ & 55 \end{aligned}$	$\begin{aligned} & 22 \\ & 23 \end{aligned}$	Q_{2} Q_{3}	During $D S_{1}$, the $1 / 2$ digit, overrange, underrange and polarity information is available. Refer to truth table.
6	24	V_{DD}	Positive power supply - This is the most positive power supply pin.

CIRCUIT DESCRIPTION

The TC14433 CMOS IC becomes a modified dualslope A/D with a minimum of external components. This IC has the customary CMOS digital logic circuitry, as well as CMOS analog circuitry. It provides the user with digital functions (such as counters, latches, multiplexers) and analog functions (such as operational amplifiers and comparators) on a single chip.

Features of this system include auto-zero, high input impedances and autc-polarity. Low power consumption and a wide range of power supply voltages are also advantages of this CMOS device. The system's auto-zero function compensates for the offset voltage of the internal amplifiers and comparators. In this "ratiometric system," the output reading is the ratio of the unknown voltage to the reference voltage, where a ratio of 1 is equal to the maximum count of 1999. It takes approximately 16,000 clock periods to complete one conversion cycle. Each conversion cycle may be divided into 6 segments. Figure 7 shows the conversion cycle in 6 segments for both positive and negative inputs.

Segment 1 - The offset capacitor (C_{o}), which compensates for the input offset voltages of the buffer and integrator amplifiers, is charged during this period. However, the integrator capacitor is shorted. This segment requires 4000 clock periods.

Segment 2 - During this segment, the integrator output decreases to the comparator threshold voltage. At this time, a number of counts equivalent to the input offset voltage of the comparator is stored in the offset latches for later use in the auto-zero process. The time for this segment is variable and less than 800 clock periods.

Figure 7. Integrator Waveforms at Pin 6

Figure 8. Equivalent Circuit Diagrams of the Analog Section During Segment 4 of the Timing Cycle
(A) Crystal Oscillator Circuit

(B) LC Oscillator Circuit

Figure 9. Alternate Oscillator Circuits

TC14433
TC14433A
TC14433B

Segment 3 - This segment of the conversion cycle is the same as Segment 1.

Segment 4 - Segment 4 is an up-going ramp cycle with the unknown input voltage $\left(\mathrm{V}_{\mathrm{x}}\right)$ as the input to the integrator. Figure 8 shows the equivalent configuration of the analog section of the TC14433. The actual configuration of the analog section is dependent upon the polarity of the input voltage during the previous conversion cycle.

Segment 5 - This segment is a down-going ramp
period with the reference voltage as the input to the integrator. Segment 5 of the conversion cycle has a time equal to the number of counts stored in the offset storage latches during Segment 2. As a result, the system zeros automatically.

Segment 6 - This is an extension of Segment 5. The time period for this portion is 4000 clock periods. The results of the A/D conversion cycle are determined in this portion of the conversion cycle.

Figure 10. 3-1/2 Digit Voltmeter Common-Anode Displays, Flashing Overrange

Figure 11. 3-1/2 Digit Voltmeter with LCD Display

Figure 12. Digit Select Timing Diagram

TC14433
TC14433A TC14433B

APPLICATIONS INFORMATION

Figure 10 is an example of a $3-1 / 2$ digit voltmeter using the TC14433 with common-anode displays. This system requires a 2.5 V reference. Full-scale may be adjusted to 1.999 V or 199.9 mV . Input overrange is indicated by flashing a display. This display uses LEDs with common anode digit lines. Power supply for this system is shown as a dual $\pm 5 \mathrm{~V}$ supply; however, the TC14433 will operate over a wide voltage range (see recommended operating conditions, page 2).

The circuit in Figure 11 shows a 3-1/2 digit LCD voltmeter. The 14024B provides the low frequency square wave signal drive to the LCD backplane. Dual power supplies are shown here; however, one supply may be used when V_{SS} is connected to V_{EE}. In this case, V_{AG} must be at least 2.8 V above V_{EE}.

When only segments b and c of the decoder are connected to the $1 / 2$ digit of the display, 4, 0, 7 and 3appear as 1.

The overrange indication $\left(Q_{3}=0\right.$ and $\left.Q_{0}=1\right)$ occurs when the count is greater than 1999 ; e.g., 1.999 V for a reference of 2 V . The underrange indication, useful for autoranging circuits, occurs when the count is less than 180; e.g., 0.180 V for a reference of 2 V .

CAUTION

If the most significant digit is connected to a display other than a "1" only, such as a full digit display, segments other than b and c must be disconnected. The BCD to 7 -segment decoder must blank on BCD inputs 1010 to 1111.

Figure 14 is an example of a $3-1 / 2$ digit LED voltmeter with a minimum of external components (only 11 additional components). In this circuit, the 14511B provides the segment drive and the 75492 or 1413 provides sink for digit current. Display is blanked during the overrange condition.

TRUTH TABLE

Coded Condition of MSD	$\begin{array}{lllll}Q_{3} & Q_{2} & Q_{1} & Q_{0}\end{array}$	BCD to 7-Segment Decoding
+0	$\begin{array}{llll}1 & 1 & 1 & 0\end{array}$	Blank
-0	$1 \begin{array}{llll}1 & 0 & 1 & 0\end{array}$	Blank
+0 UR	$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$	Blank
-0 UR	$\begin{array}{llll}1 & 0 & 1 & 1\end{array}$	Blank
+1	$0 \begin{array}{llll}0 & 1 & 0 & 0\end{array}$	4-1 Hook up
-1	00000	0-1 _ only
+1 OR	$\begin{array}{llll}0 & 1 & 1 & 1\end{array}$	7-1 segments
-0 OR	$\begin{array}{llll}0 & 0 & 1 & 1\end{array}$	3-1 b and c to MSD

NOTES:

$Q_{3}-1 / 2$ digit, low for "1", high for "0"
Q_{2} - Polarity: " 1 " = positive, " 0 " = negative
Q_{0} - Out of range condition exists if $Q_{0}=1$. When used in conjunction with Q_{3}, the type of out of range condition is indicated; i.e., $Q_{3}=0$ \rightarrow OR or $Q_{3}=1 \rightarrow$ UR.

Figure 13. Demultiplexing for TC14433 BCD Data

Figure 14. 3-1/2 Digit Voltmeter with Low Component Count Using Common Cathode Displays

Figure 15. TC7212A Interface to TC14433 3-1/2 Digit ADC

NOTES

Binary A/D Converters

	Display A/D Converters	1
Voltage-to-Frequency/Frequency-to-Voltage Converters	3	
Sensor Products	4	
	Power Supply Control ICs	5
Power MOSFET, Motor and PIN Drivers	6	
References	7	
Chopper-Stabilized Operational Amplifiers	8	
High Performance Amplifiers/Buffers	9	
Video Display Drivers	10	
Display Drivers	11	
Analog Switches and Multiplexers	12	
Data Communications	13	
Discrete DMOS Products	14	
Reliability and Quality Assurance	15	
Ordering Information	16	
Package Information	17	
Sales Offices	18	

INTEGRATING CONVERTER ANALOG PROCESSORS

FEATURES

- Resolution. \qquad Up to 16 Bits + Sign (TC500A)
- Differential Analog Input
- Differential Reference
- Low Linearity Error \qquad .0.003\%
- Fast Zero-Crossing Comparator...................... $4 \mu \mathrm{~s}$
- Low Power Dissipation 10 mW
- Auto-Zero Cycle Eliminates Zero-Scale Error and Drift
- Zero Integrator Phase Speeds Recovery From Overrange Input Signals
- Automatic Internal Polarity Detection
- Low Input Current 15 pA Max
- Wide Analog Input Voltage $\pm 4.2 \mathrm{~V}$
- Microprocessor Control of Dual-Slope ADC Conversion

IMPROVED PERFORMANCE

The TC500A is an improved version of the popular TC500. The improvements allow up to 16 bits of resolution (plus sign) or faster conversion times for lower resolution applications.

GENERAL DESCRIPTION

The CMOS TC500/TC500A contain all the analog circuits needed to construct an integrating analog-to-digital converter. The analog input buffer, integrator, analog switches, comparator and phase control logic are all on chip.

The dual-slope converter uses time to quantize the analog input signal. A microprocessor and software routine perform the digital function of "counting clocks" for the dualslope integrating converter process. The user can control resolution and conversion speed through software. The TC500/TC500A analog building block can be used to construct a fast or high-resolution converter by modifying software routines.

FUNCTIONAL DIAGRAM

INTEGRATING CONVERTER ANALOG PROCESSORS

TC500 TC500A

A microprocessor controls the TC500/TC500A through the A and B logic input signals. Four phases are possible: auto-zero, signalintegrate, reference integrate (deintegrate), and integrator zero output.

The TC500/TC500A comparator's output provides polarity and integrator zero-crossing information. The comparator output is always low when the integrator crosses zero during the deintegrate phase. This signals the end of a conversion to the processor.

A precision, dual-slope integrating converter with automatic zero-scale offset voltage and drift correction requires only a reference, three capacitors, a resistor and a controller. The TC500/TC500A contain the analog circuits needed
to construct a dual-slope integrating converter with an autozero phase. A zero-integrator output phase can be selected to eliminate errors caused by out-of-range input signals. The zero-integrator phase greatly improves recovery after an overrange conversion.

The CMOS TC500/TC500A operate from $\pm 5 \mathrm{~V}$ supplies. Power dissipation is only 10 mW . Leakage currents at the differential inputs are a low 10 pA. The TC500/TC500A differential reference inputs allow easy ratiometric measurements.

Although the TC500A is pin-for-pin compatible with the TC500, some programming constraints are imposed. (See "Integrator Output Zero.")

ORDERING INFORMATION

Part No.	Package	Temperature Range	System Resolution
TC500ACPE	$16-$ Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$16-\mathrm{Bit}(30 \mathrm{ppm})$
TC500AIJE	16 -Pin CerDIP	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$16-\mathrm{Bit}(30 \mathrm{ppm})$
TC500ACOE	16 -Pin SO	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$16-\mathrm{Bit}(30 \mathrm{ppm})$
TC500CPE	16 -Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4-1 / 2$ Digits $(50 \mathrm{ppm})$
TC500IJE	$16-$ Pin CerDIP	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$4-1 / 2$ Digits $(50 \mathrm{ppm})$
TC500COE	$16-$ Pin SO	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4-1 / 2$ Digits $(50 \mathrm{ppm})$

PIN CONFIGURATIONS

ABSOLUTE MAXIMUM RATINGS

Supply ($\mathrm{V}_{\mathrm{s}^{+}}$to V^{-}) .. +18 V
Positive Supply Voltage (V^{+}to GND) +12 V
Negative Supply Voltage (V_{S} - to GND) -12 V
Analog Input Voltage $\left(\mathrm{V}_{\mathrm{IN}^{+}}\right.$or $\left.\mathrm{V}_{\mathrm{IN}^{-}}\right)$.................. $\mathrm{V}_{\mathrm{S}^{+}}$to V^{-} Logic Input Voltage \qquad $\mathrm{V}^{+}+0.3 \mathrm{~V}$ to $\mathrm{GND}-0.3 \mathrm{~V}$
Package Power Dissipation \qquad 0.5 W

Ambient Operating Temperature Range
Plastic Package (C) \qquad $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
CerDIP Package (I) $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Storage Temperature Range \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 60 sec) \qquad $+300^{\circ} \mathrm{C}$

Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may effect device reliability.

ELECTRICAL CHARACTERISTICS: $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$, unless otherwise specified. $\mathrm{C}_{\mathrm{AZ}}=\mathrm{C}_{\mathrm{REF}}=0.1 \mu \mathrm{~F}$.

Symbol	Parameter	Test Conditions	TC500			TC500A			Unit
			Min	Typ	Max	Min	Typ	Max	
Analog									
	Resolution	Note 1	-	-	50	-	-	30	ppm
ZSE	Zero-Scale Error	Note 1	-	-	0.005	-	-	0.003	\%
ENL	End Point Linearity	Note 1	-	0.005	0.01	-	0.005	0.01	\%
NL	Best Case Straight Line Linearity	Notes 1 and 2	-	-	0.005	-	-	0.003	\%
DNL	Differential Nonlinearity		-	-	0.0025	-	-	0.0025	\%
TC zs	Zero-Scale Temperature Coefficient	Over Operating Temperature Range	-	1	2	-	1	2	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
SYE	Full-Scale Symmetry Error (Roll-Over Error)		-	-	0.01	-	-	0.006	\%
	Ratiometric Reading	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {REF }}=1 \mathrm{~V}$	-	-	0.035	-	-	0.035	\%
$\mathrm{FS}_{\text {TC }}$	Full-Scale Temperature Coefficient	Over Operating Temperature Range External Reference $\mathrm{TC}=0 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	-	-	10	-	-	10	ppm/ ${ }^{\circ} \mathrm{C}$
In	Input Current	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	-	6	15	-	6	15	PA
CMRR	Common-Mode Rejection Ratio	$-1 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CM}} \leqslant 1 \mathrm{~V}$	-	80	-	-	80	-	dB
$V_{\text {CMR }}$	Common-Mode Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$	$\mathrm{V}^{-}+1.5$	-	$\mathrm{V}^{+}{ }^{+}-1.5$	$\mathrm{V}^{-}+1.5$	-	$\mathrm{V}_{\mathrm{S}^{+}-1.5}$	V
	Integrator Output Swing	$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$	-	-	± 4.1	-	-	± 4.1	V
	Analog Input Signal Range		$\mathrm{V}^{-}+0.8$	-	$\mathrm{V}^{+}-0.8$	$\mathrm{V}^{-}+0.8$	-	$\mathrm{V}_{\mathrm{S}^{+}-0.8}$	V
e_{N}	Noise	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	-	30	-	-	30	-	$\mu \mathrm{VP}_{\text {P-P }}$
Digital									
	Reference Input Signal Range		$\mathrm{V}^{-}+1$	-	$\mathrm{V}_{\mathrm{S}^{+}-1}$	$\mathrm{V}_{S^{-}+1}$	-	$\mathrm{V}^{+}-1$	V
V_{OH}	Comparator Logic 1, Output High	$I_{\text {SOURCE }}=800 \mu \mathrm{~A}$	4	-	-	4	-	-	V
VoL	Comparator Logic 0 , Output Low	$\mathrm{I}_{\mathrm{SINK}}=4 \mathrm{~mA}$	-	-	0.4	-	-	0.4	V
V_{IH}	Logic 1, Input High Voltage		3.5	-	-	3.5	-	-	V
$\mathrm{V}_{\text {IL }}$	Logic 0, Input Low Voltage		-	-	1	-	-	1	V
I_{L}	Logic Input Current	Logic 1 or 0	-	0.05	-	-	0.05	-	$\mu \mathrm{A}$
t_{D}	Comparator Delay		-	4	-	-	4	-	$\mu \mathrm{s}$

TC500 TC500A

ELECTRICAL CHARACTERISTICS (Cont.)

Symbol	Parameter	Test Conditions	TC500			TC500A			Unit
			Min	Typ	Max	Min	Typ	Max	
Power									
Is	Supply Current	$\mathrm{V}_{S}= \pm 5 \mathrm{~V}, \mathrm{~A}=1, \mathrm{~B}=1$	-	1	1.5	-	1	1.5	mA
P_{D}	Power Dissipation	$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$	-	-	15	-	-	15	mW
$\mathrm{V}^{+}{ }^{+}$	Positive Supply Operating Voltage Range		4	-	10	4	-	10	V
$\mathrm{V}_{\mathrm{S}}{ }^{-}$	Negative Supply Operating Voltage Range		-3	-	-8	-3	-	-8	V
$\mathrm{V}^{+}{ }^{+} \mathrm{V}^{-}{ }^{-}$	Supply Operating Voltage Range		7	-	15	7	-	15	V

NOTES: 1. Integrate time $\geqslant 200 \mathrm{~ms}$, auto-zero time $\geqslant 100 \mathrm{~ms}, \mathrm{~V}_{\mathrm{INT}}$ (peak) $\approx 4 \mathrm{~V}$.
2. End point linearity at $\pm 1 / 4, \pm 1 / 2, \pm 3 / 4 \mathrm{FS}$ after full-scale adjustment.

OPERATIONAL THEORY

The TC500 and TC500A are dual-slope, integrating analog processors which are used with a microprocessor to generate analog-to-digital conversions of up to 16 bits of resolution. Although the TC500 and TC500A are virtually the same, the TC500A is recommended for applications requiring more than 14 bits of resolution.

The TC500 and TC500A incorporate a system zero phase and integrator output voltage zero phase, in addition to the normal two-phase, dual-slope measurement cycle. Reduced system errors, fewer calibration steps, and shorter overrange recovery time result.

The TC500 and TC500A measurement cycle can use all four phases, if desired.
(1) Auto zero
(2) Analog input signal integration
(3) Reference voltage integration (deintegrate)
(4) Integrator output zero

Internal analog gate status is shown in Table I for each phase (see the functional diagram).

Auto-Zero Phase

During this phase, errors due to buffer, integrator and comparator offset voltages are compensated for by charging C_{AZ} (auto-zero capacitor) with a compensating error voltage.

The external input signal is disconnected from the internal circuitry by opening the two SW_{1} switches. The internal input points connect to analog common. The reference capacitor charges to the reference voltage potential through SW R . A feedback loop, closed around the integrator and comparator, charges the $\mathrm{C}_{A Z}$ capacitor with a voltage to compensate for buffer amplifier, integrator and comparator offset voltages.

Analog Input Signal Integration Phase

The TC500/TC500A integrate the differential voltage between the $(+)$ and (-) inputs. The differential voltage must be within the device's common-mode range.

The input signal polarity is normally checked via software at the end of this phase.

Table I. Internal Analog Gate Status

Conversion Phase	Internal Analog Gate Status						
	SW	$\mathrm{SW}_{\mathrm{RI}}{ }^{+}$	SW RI^{-}	$\mathrm{SW}_{\mathbf{Z}}$	SW ${ }_{\text {R }}$	SW 1	SW ${ }_{\text {IZ }}$
Auto-Zero ($\mathrm{A}=0, \mathrm{~B}=1$)				Closed	Closed	Closed	
Input Signal Integration	Closed						
($\mathrm{A}=1, \mathrm{~B}=0$)							
Reference Voltage		Closed*				Closed	
Deintegration ($A=1, B=1$)							
Integrator Output Zero					Closed	Closed	Closed
($\mathrm{A}=0, \mathrm{~B}=0$)							

Reference Voltage Deintegration Phase

The previously charged reference capacitor is connected with the proper polarity to ramp the integrator output back to zero.

Integrator Output Zero Phase

This phase guarantees the integrator output is at 0 V when the system zero phase is entered and that the true system offset voltages are compensated. This phase is used at the end of the reference voltage deintegration (DEINT) phase and SHOULD be used for all TC500/TC500A applications. This phase MUST be used for resolutions of more than 14 bits. If this phase is not used, the value of the auto-zero capacitor (C_{AZ}) must be about 23 the value of the integration capacitor ($\mathrm{C}_{\mathrm{INT}}$) to reduce the effects of chargesharing. The integrator output zero phase should be programmed to operate until the output of the comparator returns "high" (1) or for fixed time of about 2 ms .

ANALOG SECTION

Differential Inputs $\left(\mathrm{V}_{\mathbb{N}^{+}}\left[\right.\right.$Pin 11], $\mathrm{V}_{\mathbb{N}^{-}}$[Pin 10])
The TC500/TC500A operate with differential voltages within the input amplifier common-mode range. The input amplifier common-mode range extends from 0.8 V below positive supply to 0.8 V above negative supply. Within this common-mode voltage range, a common-mode rejection is typically 80 dB . Full accuracy is maintained, however, when the inputs are no less than 1.5 V from either supply.

The integrator output also follows the common-mode voltage. The integrator output must not be allowed to saturate. A worst-case condition exists, for example, when a large, positive common-mode voltage with a near full-scale negative differential input voltage is applied. The negative input signal drives the integrator positive when most of its swing has been used up by the positive common-mode voltage. For these critical applications, the integrator swing can be reduced. The integrator output can swing within 0.9 V of either supply without loss of linearity.

Analog Common (Pin 5)

Analog common is used as $\mathrm{V}_{\mathbb{N}}$ return during systemzero and reference deintegrate. If $\mathrm{V}_{\mathbb{N}^{-}}$is different from analog common, a common-mode voltage exists in the system. This signal is rejected by the excellent CMRR of the converter. In most applications, $\mathrm{V}_{\mathbb{N}^{-}}$will be set at a fixed known voltage (i.e., power supply common). A commonmode voltage will exist when $\mathrm{V}_{\mathbb{N}^{-}}$is not connected to analog common.

Differential Reference

($\mathrm{V}_{\mathrm{REF}}{ }^{+}$[Pin 9], $\mathrm{V}_{\text {REF }}{ }^{-}$[Pin 8])

The reference voltage can be generated anywhere within 1 V of the power supply voltage of the converter. Rollover error is caused by the reference capacitor losing or gaining charge due to stray capacitance on its nodes. The difference in reference for $(+)$ or $(-)$ input voltages will cause a roll-over error. This error can be minimized by using a large reference capacitor in comparison to the stray capacitance.

Phase Control Inputs (A [Pin 12], B [Pin 13])

The A, B unlatched logic inputs select the TC500/ TC500A operating phase. The A, B inputs are normally driven by a microprocessor I/O port or peripheral I/O chip.

Comparator Output

By monitoring the comparator output during the fixedsignal integrate time, the input signal polarity can be determined by the microprocessor controlling the conversion. The comparator output is high for positive signals and low for negative signals during the signal-integrate phase.

During the reference deintegrate phase, the comparator output will make a high-to-low transition as the integrator output ramp crosses zero. The transition is used to signal the processor that the conversion is complete.

The internal comparator delay is $4 \mu \mathrm{~s}$, typically.
Figure 1 shows the comparator output for large positive and negative signal inputs. For signal inputs at or near zero volts, however, the integrator swing is nonexistent. If com-mon-mode noise is present, the comparator can switch several times during the signal-integrate period. To ensure that the polarity reading is correct, the comparator output should be read and stored at the end of signal integrate.

A "low" (0) on the TC500/TC500A comparator, during the deintegrate phase, signals the processor that the conversion is complete.

The comparator output is undefined during the autozero and the integrator output zero phases.

GENERAL THEORY OF OPERATION

Dual-Slope Conversion Principles

The TC500 is an integrating analog-to-digital converter building block. An understanding of the dual-slope conversion technique will aid in following the detailed TC500A operation theory.

The conventional dual-slope converter measurement cycle has two distinct phases:
(1) Input signal integration
(2) Reference voltage integration (deintegration)

TC500
TC500A

Figure 1. Comparator Output

The input signal being converted is integrated for a fixed time period, measured by counting clock pulses. An opposite polarity constant reference voltage is then integrated until the integrator output voltage returns to zero. The TC500/TC500A automatically switch in the proper polarity reference signal. The reference integration time is directly proportional to the input signal (Figure 2).

In a simple dual-slope converter, a complete conversion requires the integrator output to "ramp-up" and "rampdown." The TC500/TC500A comparator zero-crossing signals the processor to indicate the deintegrate cycle is complete.

A simple mathematical equation relates the input signal, reference voltage and integration time:

$$
\frac{1}{R_{I N T} C_{I N T}} \int_{0}^{t_{I N T}} V_{I N}(t) d t=\frac{V_{R E F} t_{\text {DEINT }}}{R_{I N T} C_{I N T}}
$$

where:
$\mathrm{V}_{\text {REF }}=$ Reference voltage
$\mathrm{t}_{\mathrm{INT}}=$ Signal integration time (fixed)
$t_{\text {DEINT }}=$ reference voltage integration time (variable)

Figure 2. Basic Dual-Slope Converter

INTEGRATING CONVERTER ANALOG PROCESSORS

For a constant $\mathrm{V}_{\mathbb{I}}$:

$$
V_{I N}=V_{\text {REF }} \frac{t_{D E I N T}}{t_{\text {INT }}}
$$

The dual-slope converter accuracy is unrelated to the integrating resistor and capacitor values as long as they are stable during a measurement cycle.

An inherent benefit is noise immunity. Input noise spikes are integrated or averaged to zero during the integration periods. Integrating ADCs are immune to the large conversion errors that plague succesive approximation converters in high-noise environments.

Integrating converters provide noise rejection automatically with at least a $20-\mathrm{dB} / \mathrm{decade}$ attenuation rate. Interference signals with frequencies at integral multiples of the integration period are, theoretically, completely removed. This intuitively makes sense, since the average value of a sine wave of frequency (1/t) averaged over a period (t) is zero.

Integrating converters often establish the integration period to reject $50 / 60 \mathrm{~Hz}$ line frequency interference signals. The ability to reject such signals is shown by a normal mode rejection plot (Figure3). Normal mode rejection is practically set to 50 to 65 dB , since the line frequency can deviate by a few tenths of a percent (Figure 4).

Criteria for C_{AZ} and $\mathrm{C}_{\text {REF }}$

$$
C_{A Z} \approx C_{\text {REF }} \approx \frac{2^{N} t_{\text {INT }}\left(V_{\text {INT }}+V_{\text {REF }}\right) l_{\text {LEAKAGE }}}{V_{\text {INT }} V_{\text {REF }}}
$$

where:
$N=$ resolution (bits)
leakage $\approx 15 \mathrm{pA}$
$V_{\text {INT }}$ (see Figure 2)

This equation is for reference only. Use $0.1 \mu \mathrm{~F}$ capacitor for all applications that have 8 or more conversions per second. Use a $0.22 \mu \mathrm{~F}$ capacitor for 3 to 7 conversions per second, and a $0.47 \mu \mathrm{~F}$ capacitor for 2 or less conversions per second.

COMPONENT VALUE SELECTION

Integrating Resistor ($\mathrm{R}_{\text {INT }}$)

The desired full-scale input voltage and output current capability of the input buffer and integrator amplifier set the integration resistor value. The internal class A output stage amplifiers will supply a $20-\mu \mathrm{A}$ drive current with minimal linearity error. $\mathrm{R}_{\text {INT }}$ is easily calculated for a $20-\mu \mathrm{A}$ full-scale current:

$$
\mathrm{R}_{\mathbb{I N T}}(\mathrm{M} \Omega)=\frac{\text { Full-Scale Input Voltage }(\mathrm{V})}{20} \pm 20 \%
$$

For loop stability, $\mathrm{R}_{\text {INT }}$ should be $\geqslant 50 \mathrm{k} \Omega$.

Reference Capacitor (CREF)

A $0.1-\mu \mathrm{F}$ capacitor is suggested. Larger values may be used to limit roll-over errors. Low leakage capacitors (such as polypropylene) are required.

Auto-Zero Capacitor (C_{AZ})

A $0.1-\mu \mathrm{F}$ polypropylene capacitor is suggested.

TC500

Integrating Capacitor ($\mathrm{C}_{\mathrm{INT}}$)

The integrating capacitor should be selected to maximize integrator output swing. The integrator output will swing to within 0.8 V of $\mathrm{V}_{\mathrm{S}^{+}}$or $\mathrm{V}_{\mathrm{S}}^{-}$without saturating.

Using the suggested $20-\mu \mathrm{A}$ full-scale buffer output current, the integrating capacitor is easily calculated:

$$
\mathrm{C}_{\mathrm{INT}}=\frac{\left(\mathrm{t}_{\mathrm{INT}}\right)\left(\mathrm{V}_{\mathrm{FS}}\right)}{\left(\mathrm{V}_{\mathrm{INT}}\right)\left(\mathrm{R}_{\mathrm{INT}}\right)} \approx 5 \mathrm{t}_{\mathrm{INT}}(\mu \mathrm{~F})
$$

where:
$\mathrm{t}_{\mathrm{INT}}=$ Integration period
$V_{\text {FS }}=$ Full-scale input voltage
$\mathrm{V}_{\mathrm{INT}}=$ Integrator output voltage swing
A very important integrating capacitor characteristic is dielectric absorption. Polypropylene capacitors give undetectable errors at reasonable cost. Polyester and polycarbonate capacitors may also be used in less critical applications.

The threshold noise (N_{TH}) is the algebraic sum of the integrator noise and the comparator noise. This value is typically about $30 \mu \mathrm{~V}$. The graph shows how the value of the reference voltage can influence the results of the final count.

Errors caused by the low-frequency buffer noise may be reduced by increased integration times.

Signal-to-Noise Ratio

$$
\mathrm{S} / \mathrm{N}(\mathrm{~dB})=20 \log \left(\frac{\mathrm{~V}_{\mathbb{I}}}{30 \mu \mathrm{~V}} \cdot \frac{\mathrm{t}_{\mathrm{INT}}}{\mathrm{R}_{\mathrm{INT}} \cdot \mathrm{C}_{\mathrm{INT}}}\right)
$$

The maximum performance of the TC500/TC500A require that overshoot at the end of the deintegration phase be minimized. Also, the integrator zero phase may be terminated as soon as the comparator output returns to "high" (1).

OVERSHOOT

NOISE

$\operatorname{SLOPE}(S)=\frac{V_{\text {REF }}}{R_{I N T} C_{I N T}} N_{T H}=$ Noise Threshold

INTEGRATING CONVERTER ANALOG PROCESSORS

TC500A DESIGN EXAMPLE (See "Component Selection Example")

TC500A TO IBM PC/XT PRINTER PORT

INTEGRATING CONVERTER ANALOG PROCESSORS

TC500 TC500A

Interrupt Operation

The comparator output stays low during the Integration phase ($A=1, B=0$) whenever the input polarity is negative. In those cases where the input polarity is negative AND very near zero, the zero-crossing occurs before the comparator has had a chance to go positive. Thus, no negative-edge will be generated and the microprocessor will not be interrupted.

With a negative input voltage very near zero, the output of the comparator does not have enough time to get full positive. This anomaly is caused by the comparator delay and rise time limitations.

One solution to overcome this condition is to have the microprocessor monitor the comparator output. It can then end the deintegration phase as soon as it sees a zero.

Another solution is to have the microprocessor enable the interrupt and look at the comparator output. If the output is high, the interrupt will be properly triggered. If the output is low, end the deintegration phase and disable the interrupt.

Either solution will produce reliable low voltage conversions.

Rate of Conversion

The conversion times for the TC500/TC500A are a function of many variables and constants. The dominate component is $\mathrm{C}_{\mathrm{INT}}$:

Conversion Time $(\mathrm{sec})=$

$$
0.4 \times \mathrm{C}_{\mathbb{I N T}}(\mu \mathrm{F}) \times\left(2+\left(\mathrm{V}_{\mathbb{N}} / V_{\mathrm{REF}}\right)\right)
$$

The assumptions for this equation are suggested but not strictly required. They are:

Auto-zero time $\left(T_{A Z}\right)=$ Integration time $\left(T_{N T}\right)$
Peak integration voltage ($\mathrm{V}_{\text {INT }}$) $=4 \mathrm{~V}$
Maximum buffer current $\left(V_{\operatorname{IN}(M A X)} / R_{I N T}\right)=20 \mu \mathrm{~A}$

Component Selection Example
Known:

1) Supply voltage for TC500A
($\mathrm{V}_{\text {SUP }}$)
2) Maximum input voltage
(Vin(max))
3) Integration time
(TinT)
4) Output resolution (bits)
5) Clock period
(tclock)
Assume: $\mathrm{V}_{\text {SUP }}= \pm 5 \mathrm{~V}$
$V_{\operatorname{IN}(\text { MAX })}= \pm 2.5 \mathrm{~V}$
$\mathrm{V}_{\operatorname{IN}(\mathrm{MAX})}=\operatorname{IV} \operatorname{IN}(\mathrm{MAX}) \mid$
$\mathrm{T}_{\mathrm{INT}}=40 \mathrm{~ms}$
$N=14$ bits
$t_{\text {ClOCK }}=4 \mu \mathrm{~s}$

INTEGRATING CONVERTER
ANALOG PROCESSORS

Step 1: Calculate $R_{I N T} \quad R_{I N T}=\frac{V_{I N(M A X)}}{I_{B U F(M A X)}}$
Where $I_{B U F(M A X)} \approx 20 \mu \mathrm{~A}$
$R_{\text {INT }}=\frac{2.5 \mathrm{~V}}{20 \mu \mathrm{~A}}=125 \mathrm{~K}$
Use 130K
$\therefore \mathrm{I}_{\text {BUF }}=\frac{2.5 \mathrm{~V}}{130 \mathrm{~K}}=19.2 \mu \mathrm{~A}$

Step 2: Calculate $C_{I N T} \quad C_{I N T}=\frac{T_{I N T} I_{B U F(M A X)}}{V_{I N T}}$
Where $V_{\text {INT }}=V_{\text {SUP }}-1 V=4 V$

$$
\mathrm{C}_{\mathrm{INT}}=\frac{40 \mathrm{~ms} 19.2 \mu \mathrm{~A}}{4 \mathrm{~V}}=0.192 \mu \mathrm{~F}
$$

Use $0.2 \mu \mathrm{~F}$

Step 3: Calculate $V_{\text {REF }}$

$$
V_{\text {REF }}=\frac{V_{I N T} C_{\text {INT }} R_{I N T}}{T_{\text {DEINT }}}
$$

Where $T_{\text {DEINT }}=2^{N} t_{\text {CLOCK }}$

$$
V_{\mathrm{REF}}=\frac{4 \mathrm{~V} \cdot 0.2 \mu \mathrm{~F} \cdot 130 \mathrm{~K}}{2^{N} \mathrm{t}_{\mathrm{CLOCK}}}=1.587 \ldots \mathrm{~V}
$$

Step 4: Calculate integrate count

$$
\mathrm{K}_{\mathrm{INT}}=\frac{\mathrm{T}_{\mathrm{INT}}}{\mathrm{t}_{\mathrm{CLOCK}}}
$$

Where $R_{I N T} \frac{40 \mathrm{~ms}}{4 \mu \mathrm{~s}}=10,000$ Counts

Results: $\mathrm{K}_{\text {DEINT }}=\mathrm{V}_{\mathrm{IN}} \frac{\mathrm{K}_{\text {INT }}}{\mathrm{V}_{\text {REF }}}=\mathrm{V}_{\mathrm{IN}} \frac{10,000}{1.587 \ldots \mathrm{~V}}$

Where K DEINT $=\begin{aligned} & \text { Number of clock periods } \\ & \text { during } T_{\text {DEINT }}\end{aligned}$ during TDEINT

Normalization

The reference voltage can be adjusted to scale the deintegrate count to be directly equivalent to the input voltage.
Since: $\quad \frac{K_{\text {INT }}}{V_{\text {REF }}}=$ Counts/Volt
If: $\quad V_{\text {REF }}$ is adjusted such that
$V_{\text {REF }}=\frac{10000 \text { Counts }}{10000 \text { Counts/Volt }}=\frac{\text { KINT }}{10000 \text { Counts/Volt }}=1 \mathrm{~V}$
Then: $\quad K_{\text {DEINT }}=\frac{\mathrm{V}_{\mathbb{I}}}{100 \mu \mathrm{~V}}$ and $\mathrm{N} \approx 14.61$ Bits
e.g., If $K_{\text {DEINT }}=18357$ Counts, then $V_{\mathbb{N}}=1.8357 \mathrm{~V}$

BONDING DIAGRAM

15-BIT PLUS SIGN, INTEGRATING ANALOG-TO-DIGITAL CONVERTER

FEATURES

- 15-Bit Resolution Plus Sign Bit
- Dynamic Range 96 dB
- Integrating Dual-Slope Converter
- Monotonic
-Eliminates $50 / 60 \mathrm{~Hz}$ 'Line' Interference
- High-Noise Immunity
- Auto-Zero Cycle Eliminates Trimming
- Incorporates Integrator Zero Cycle for Fast Overload Recovery
- Three-State Data Bit/Sign Outputs
- 8-Bit or 16-Bit Parallel Data Transfer to μ Processor Bus
- UART Control Signals
-Serial Data Transmission
- 'Handshake' Data Transfer
- Distributed Control Systems
-Fiber-Optic Transmission Systems
- Easy Conversion Cycle Monitoring and Control
—Data Valid Output Signal
- Continuous or Convert-on-Command Operation

High-Impedance Differential Input

- Maximum Input Current 15 pA
- Low Input Noise .. 15μ VP.P
- On-Chip Crystal Oscillator for 2.5 Conversions/Sec - $\mathrm{f}_{\mathrm{XTAL}}=2.4576 \mathrm{MHz}$
- Integration Period (Rejects 50, 60, 400 Hz Interference Signals) 100 ms
- Supply Operation .. $\pm 5 \mathrm{~V}$
- Low Power Dissipation .20 mW
- Static-Discharge Protected Inputs
- Available in 60-Pin Flat Package

FUNCTIONAL DIAGRAM

TC800
PIN CONFIGURATIONS

15-BIT PLUS SIGN, INTEGRATING
 ANALOG-TO-DIGITAL CONVERTER

GENERAL DESCRIPTION

The TC800 is a 15 -bit plus sign, integrating analog-todigital converter (ADC). It improves conventional two-cycle, dual-slope conversion by incorporating system zero and integrator output zero phases. Offset error sources are automatically zeroed and overrange recovery time is reduced. The integrating conversion technique is immune to noise spikes that introduce conversion errors in successive approximation converters.

The externally-adjustable clock allows integration periods which are integral multiples of 50 Hz or 60 Hz , for maximum power-line noise rejection. Using the 2.4576 MHz crystal oscillator mode (2.5 conversions $/ \mathrm{sec}$), $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$, and 400 Hz signals are rejected.

Microprocessor interface signals support 1-byte (16-bit) or 2-byte (8-bit) parallel data transfers. A 'handshake' operating mode supports serial data transmission via a UART. A serial count output is derived by gating the clock signal with data valid (DVD). The count output pulses may be used in serial fiber-optic transmission systems.

The high-impedance differential inputs, 5 pA input leakage current, 16 -bit dynamic range, and interface control signals make the high-resolution TC800 the ideal analog-todigital converter for process control, data logging and 'intelligent' measurement systems.

See TC850 data sheet for applications requiring fast conversion rates.

ORDERING INFORMATION

Part No.	Package	Temperature Range
TC800CPL	$40-$-Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC800IJL	$40-$ Pin CerDIP	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC800MJL	$40-$ Pin CerDIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
TC800CLW	$44-$ Pin Plastic Leaded Chip Carrier	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC800CBQ	$60-$ Pin Plastic Flat (Formed Leads)	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

15-BIT PLUS SIGN, INTEGRATING ANALOG-TO-DIGITAL CONVERTER

TC800

ABSOLUTE MAXIMUM RATINGS

Positive Supply Voltage (V^{+}to GND) +6.2 V
Negative Supply Voltage (Vs^{-}to GND)-9V
Analog Input Voltage ($\mathrm{V}_{\mathrm{N}^{+}}$or $\mathrm{V}_{\mathrm{IN}^{-}}$) V^{+}to to V^{-}
Voltage Reference Input ($\mathrm{V}_{\text {REF }}$) $\mathrm{V}^{+}{ }^{+}$to $\mathrm{V}^{-}{ }^{-}$
Logic Input Voltage $\mathrm{V}^{+}+0.3 \mathrm{~V}$ to GND -0.3 V
Package Power Dissipation
CerDIP ...1W @ +85 ${ }^{\circ}$
Plastic Packages0.5W @ $+70^{\circ} \mathrm{C}$
bient Operating Temperatu
Plastic DIP (CPL, CBQ) .
PL

ELECTRICAL CHARACTERISTICS: $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$, Conversion Rate $=2.5$ Conversion/sec, Crystal Frequency $=2.4576 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Full-Scale Voltage $=3.2768 \mathrm{~V}$ (Notes 1 and 3).

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
Analog Input						
Zero-Scale Error		$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	-	-	± 0.5	LSB
$\overline{\mathrm{NL}}$	Nonlinearity	Best Straight Line - Full Scale $\leq \mathrm{V}_{\mathbb{I N}} \leq+$ Full Scale	-	1.3	2	LSB
		End Point - Full Scale $\leqslant \mathrm{V}_{\mathrm{IN}} \leqslant+$ Full Scale	-	2.8	-	LSB
DNL	Differential Nonlinearity		-	-	± 0.5	LSB
IN	Input Current	$\mathrm{V}_{1 \mathrm{~N}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	5	15	pA
		$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$	-	25	125	pA
		$-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$	-	70	175	pA
		$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	2.5	7.5	nA
$\mathrm{V}_{\text {CMR }}$	Common-Mode Input Range	Over Operating Temperature Range	$\mathrm{V}^{-}+1.5$	-	$\mathrm{V}^{+}-1$	V
CMRR	Common-Mode Rejection Ratio	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}= \pm 1 \mathrm{~V}$	-	80	-	$\mu \mathrm{V} / \mathrm{V}$
	Full-Scale Gain Temperature Coefficient	External Ref Temperature Coefficient $=0 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$	-	1.5	5	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
	Zero-Scale Error Temperature Coefficient	$\begin{aligned} & \mathrm{V}_{I N}=0 \mathrm{~V} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \end{aligned}$	-	0.8	2	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
	Full-Scale Magnitude Symmetry Error	$\mathrm{V}_{\mathrm{IN}}=3.27 \mathrm{~V}$	-	-	2	LSB
e_{N}	Input Noise	Not Exceeded 95\% of Time	-	15	-	$\mu \mathrm{V}_{\text {P-P }}$

Digital

Conversion Speed			-	2.5	-	Conv/sec
V_{OH}	Output High Voltage	$\mathrm{l}=100 \mu \mathrm{~A}$	3.5	4.4	-	V
V_{OL}	Output Low Voliage	$\mathrm{I}_{\mathrm{O}}=1.6 \mathrm{~mA}$ (Note 2)	-	0.18	0.4	V
lop	Output Leakage Current	High-Impedance State	-	0.1	1	$\mu \mathrm{A}$
$I_{\text {CP }}$	Control Pin Pull-Up Current	Pins 18, 19, 20; $I_{O}=750 \mu \mathrm{~A}$ Pin $21=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2 \mathrm{~V}$	-	5	-	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IH }}$	Input High Voltage	Pins 18-21, 26, 27	2.5	-	-	V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	Pins 18-21, 26, 27	-	-	1	V

15-BIT PLUS SIGN, INTEGRATING ANALOG-TO-DIGITAL CONVERTER

ELECTRICAL CHARACTERISTICS (Cont.)

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
Digital (Cont.)						
lip	Input Pin Pull-Up Current	Pins 26, 27; V $=2 \mathrm{~V}$	-	5	-	$\mu \mathrm{A}$
		Pins 17, 24; V $=2 \mathrm{~V}$	-	25	-	$\mu \mathrm{A}$
1 LD	Input Pin Pull-Down Current	Pin $21, \mathrm{~V}=3 \mathrm{~V}$	-	5	-	$\mu \mathrm{A}$
losct	Oscillator Output Current	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$	-	1	-	mA
IBuFOSc	Buffered Oscillator	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V} \\ & \text { Output Current } \end{aligned}$	-	5	-	mA
$\mathrm{C}_{\text {IN }}$	Input Capacitance	Pins 18, 19	-	-	50	pF
tpw	$\overline{B U S} /$ HAND Control Pin Minimum Pulse Width	Pin 21	70	-	-	ns
twbe	Byte-Enable Pulse Width	Note 1	350	200	-	ns
twCE	Chip-Enable Pulse Width	Note 1	400	250	-	ns
$t_{\text {ABE }}$	Byte-Enable Access Time	Note 1	-	200	350	ns
$t_{\text {ACE }}$	Chip-Enable Access Time	Note 1	-	250	400	ns
$t_{\text {thB }}$	Data Hold From	Note 1 Byte-Enable Change	-	140	300	ns
${ }_{\text {t }}$ DCC	Data Hold From	Note 1 Chip-Enable Change	-	240	400	ns

Power

I^{+}	Positive Supply Current	-	2	3.5	mA
I^{-}	Negative Supply Current	-	2	3.5	mA

NOTES: 1. Parallel data transfer $(\overline{\mathrm{BUS}} / \mathrm{HAND}=0)$. See Figures 8 and 9.
2. For pins $18-20, \mathrm{l}_{\mathrm{O}}=750 \mu \mathrm{~A}$.
3. Crystal source (2.4576 MHz): DIGI-KEY Corp., Highway 32 South, P.O. Box 677, Thief River Falls, MN 56701-9988, Phone 1-800-344-4539, Part No. X047.

PIN DESCRIPTION

Pin No. (40-Pin)	Pin No. (60-Pin)	Symbol	Description (Pin d	ations refer to 40-Pin DIP)
1	9	SGN	Sign Bit: 1 = positive signal-integrate phas	The input signal polarity is determined at the end of the
2	10	DB_{15}	Data Bit 15 (MSB)	Three-State Output Data Bits
3	11	DB_{14}	Data Bit 14	
4	12	DB_{13}	Data Bit 13	
5	13	DB_{12}	Data Bit 12	
6	18	DB_{11}	Data Bit 11	
7	19	DB_{10}	Data Bit 10	
8	20	DB_{9}	Data Bit 9	
9	21	DB_{8}	Data Bit 8	
10	22	DB_{7}	Data Bit 7	
11	24	DB_{6}	Data Bit 6	
12	25	DB_{5}	Data Bit 5	
13	26	DB_{4}	Data Bit 4	NOTE: $\mathrm{DB}_{15}-\mathrm{DB}_{1}$ are at logic ' 1 ' for an overrange conversion.
14	27	DB_{3}	Data Bit 3	
15	28	DB_{2}	Data Bit 2	
16	33	DB_{1}	Data Bit 1 (LSB)	

15-BIT PLUS SIGN, INTEGRATING ANALOG-TO-DIGITAL CONVERTER

TC800

PIN DESCRIPTION (Cont.)

Pin No. (40-Pin)	Pin No. (60-Pin)	Symbol	Description (Pin designations refer to 40-Pin DIP)
17	34	TEST	Test = 0 V ; Data outputs forced to logic ' 1 ' and clock is disabled. Test $=\mathrm{V}^{+}$; Counter latches enabled.
18	35	$\overline{\overline{L B E N}} / \overline{\mathrm{LBFLG}}$ (Input/Output)	A low data byte enable input or flag output, depending on $\overline{\text { BUS }} / \mathrm{HAND}$ (pin 21) status. (1) $\overline{B U S} /$ HAND $=0$: With pin 21 low and $\overline{C E} / \overline{\text { LDSTRB }}=0$ (pin 20), data bits 8 through 1 (pins 9-16) are output when $\overline{\mathrm{LBEN}}=0$. (2) $\overline{\mathrm{BUS}} / \mathrm{HAND}=1$: Valid data on pins $9-16$ is indicated by flag output, LBFLG $=0$.
19	36	$\overline{\mathrm{HBEN}} / \overline{\mathrm{HBFLG}}$ (Input/Output)	A high data byte enable input or flag output, depending on $\overline{\mathrm{BUS}} / \mathrm{HAND}$ (pin 21) status. (1) BUS $/$ HAND $=0$: With pin 21 low and $\overline{C E} / \overline{\mathrm{LDSTRB}}=0$ (pin 20), the high data byte (sign bit plus data bits 15-9) are output when HBEN $=0$. (2) $\mathrm{BUS} / \mathrm{HAND}=1$: Valid data on pins $1-8$ is indicated by flag output, HBLFG $=0$.
20	37	$\overline{\mathrm{CE}} / \overline{\text { LDSTRB }}$ (Input/Output)	(1) $\overline{\mathrm{BUS}} / \mathrm{HAND}=0$: $\overline{\mathrm{CE}}$ is master chip enable. With $\overline{\mathrm{CE}}=1$, sign bit plus data bits $15-1$ are disabled (high-impedance state). $C E=0$ enables outputs and data is transferred under control of LBEN and HBEN.
			CE $\overline{\text { LBEN }}$ HBEN Function
			$\begin{array}{llll}0 & 0 & 1 & \text { Low Data Byte Output }\end{array}$
			0100 High Data Byte Output
			$0 \quad 0 \quad 0 \quad$ Low + High Data Byte Output
			$\begin{array}{llll}0 & 1 & 1 & \text { High-Impedance State }\end{array}$
			(2) $\overline{\overline{B U S} / H A N D}=1: \overline{\text { LDSTRB }}$ is a load strobe output sign. In the handshake mode, $\overline{\text { LDSTRB }}=0$ instructs the receiving device to accept data.
21	39	$\overline{\text { BUS }} / \mathrm{HAND}$	(1) $\overline{\mathrm{BUS}}=0$: Parallel output data mode, where $\overline{\mathrm{CE}}, \overline{\mathrm{HBEN}}$, and $\overline{\mathrm{LBEN}}$ directly control the 16 data bits. (2) $\mathrm{HAND}=1: \overline{\mathrm{LDSTRB}}, \overline{\mathrm{LBFLG}}, \overline{\mathrm{HBFLG}}$ are used in the handshake data transfer mode. (3) $\mathrm{HAND}=$ \qquad (pulsed high): Causes entry into handshake mode for UART interfacing.
22	40	OSC_{2}	Oscillator input.
23	41	OSC_{1}	Oscillator output.
24	42	OSC CON	Selects internal oscillator structure. (1) $\operatorname{OSC} C O N=1: R C$ oscillator. Internal clock frequency is same frequency and duty cycle as BUF OSC. (2) OSC CON = 0: Crystal oscillator. Internal clock frequency is frequency at BUF OSC 415.
25	43	BUF OSC	Buffered oscillator output
26	48	CONVERT/STOP	CONVERT $=1$: Conversions performed continuously. STOP $=0$: Conversion process stops 7 counts before entering signal-integrate phase. The conversion in progress when $\overline{S T O P}=0$ is completed.
27	49	DRQST	Data request signal. Used in handshake mode to indicate an external device is ready to accept data. If DRQST is not used, connect to $\mathrm{V}_{\mathrm{S}}{ }^{+}$.
28	50	$\mathrm{V}_{\mathrm{S}}{ }^{-}$	Negative power supply.
29	51	$\mathrm{V}_{\text {REF }}$	Voltage reference input.
30	52	COM	Analog common. The TC800 is auto-zeroed to the analog common potential.
31	54	VINT	Integrator output.
32	55	$\mathrm{C}_{\text {Sz }}$	System-zero capacitor.
33	56	$\mathrm{V}_{\text {BuF }}$	Output of input signal buffer.
34	57	CR^{-}	Negative Reference capacitor.

PIN DESCRIPTION (Cont.)

Pin No. $(40-\mathrm{Pin})$	Pin No. $(60-\mathrm{Pin})$	Symbol	Description (Pin designations refer to 40-Pin DIP)
35	59	$\mathrm{C}_{\mathrm{R}^{+}}$	Positive Reference capacitor.
36	1	$\mathrm{~V}_{\mathrm{IN}^{-}}$	Negative differential analog input.
37	3	$\mathrm{~V}_{\mathrm{IN}^{+}}$	Positive differential analog input.
38	5	$\mathrm{~V}_{\mathrm{S}^{+}}$	Positive power supply
39	6	GND	Digital ground. Ground return point for digital logic.
40	7	DVE	Data valid signal. $\mathrm{DVE}=1$ during signal-integrate and reference-integrate phases until data is latched.

GENERAL THEORY OF OPERATION

Dual-Slope Conversion Principles

The TC800 is a dual-slope, integrating ADC. An understanding of the dual-slope conversion technique will aid in following the detailed operation theory.

The conventional dual-slope converter measurement cycle has two distinct phases:
(1) Input signal integration
(2) Reference voltage integration (deintegration).

Figure 1 Basic Dual-Slope Converter

The input signal being converted is integrated for a fixed time period, measured by counting clock pulses. An opposite polarity, constant reference voltage is then integrated until the integrator output voltage returns to zero. The reference integration time is directly proportional to the input signal.

In a simple dual-slope converter (Figure 1), a complete conversion requires the integrator output to 'ramp-up' and 'ramp-down.'

The dual-slope converter accuracy is unrelated to the integrating resistor and capacitor values, as long as they are stable during a measurement cycle. Noise immunity is an inherent benefit. Noise spikes are integrated, or averaged, to zero during integration periods. Integrating ADCs are immune to the large conversion errors that plague successive approximation converters in high-noise environments.

A simple mathematical equation related the input signal, reference voltage and integration time:

$$
\frac{1}{R C} \int_{0}^{|S|} V_{I N}(t) d t=\frac{V_{R} t_{R \mid}}{R C}
$$

where: $\mathrm{V}_{\mathrm{R}}=$ Reference voltage
t_{S} = Signal integration time
$\mathrm{t}_{\mathrm{RI}}=$ Reference voltage integration time (variable)
For a constant $V_{\mathbb{I N}}$:

$$
\mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\mathrm{R}}\left[\frac{\mathrm{t}_{\mathrm{R} 1}}{\mathrm{t}_{\mathrm{II}}}\right]
$$

ANALOG SECTION DESCRIPTION System-Zero Phase

During system-zero phase (Figure 2), errors due to buffer, integrator, and comparator offset voltages are compensated for by charging system-zero capacitor $\left(\mathrm{C}_{\mathrm{Sz}}\right)$ with a compensating error voltage. With zero input voltage, the integrator output remains at zero.

15-BIT PLUS SIGN, INTEGRATING ANALOG-TO-DIGITAL CONVERTER

Figure 2 System-Zero Phase
The external input signal is disconnected from internal circuitry by opening two SW, switches. The internal input points connect to analog common. The reference capacitor charges to the reference voltage potential through SW S_{R}. A feedback loop, closed around the integrator and comparator, charges $\mathrm{C}_{S Z}$ with a voltage to compensate for buffer amplifier, integrator, and comparator offset voltages.

Input Signal-Integration Phase

The TC800 integrates differential voltage between the $(+)$ and (-) inputs (Figure 3). The differential voltage must be within the device common-mode range; 1V from either supply rail, typically. The input signal is integrated for 16,384 clock cycles.

The input signal polarity is determined at the end of the phase.

Figure 3 Input Signal Integration Phase

Reference Voltage Integration Phase

The previously-charged reference capacitor is connected with the proper polarity to ramp the integrator output back to zero. The time for the output to return to zero is proportional to the input signal magnitude. The phase lasts for a maximum of 32,768 clock periods. (See Figure 4.)

Figure 4 Reference Voltage Integration Phase

Integrator Output Zero Phase

This phase guarantees the integrator output is at 0 V when the system-zero phase is entered and that true system offset voltages are compensated for. This phase normally lasts 4096 clock cycles. (See Figure 5.)

Figure 5 Integrator Output Zero Phase

15-BIT PLUS SIGN, INTEGRATING ANALOG-TO-DIGITAL CONVERTER

Differential Inputs
 $\mathrm{V}_{\mathrm{IN}^{+}}$(Pin 37) and $\mathrm{V}_{\mathrm{IN}^{-}}$(Pin 36)

The TC800 operates with differential voltages within the input amplifier common-mode range, extending from 1 V below $\mathrm{V}_{\mathbb{N}^{+}}$to 1 V above $\mathrm{V}_{\mathbb{N}^{-}}$. Within this common-mode voltage range, an 86 dB common-mode rejection ratio is typical.

The integrator output also follows the common-mode voltage. The integrator output must not be allowed to saturate. A worst-case condition exists, for example, when a large positive common-mode voltage with a near full-scale negative differential input voltage is applied. The negative input signal drives the integrator positive when most of its swing has been used by the positive common-mode voltage. For these critical applications, the integrator output swing can be reduced to within 0.4 V of either supply without loss of linearity.

Analog Common

Analog common (COM, pin30) is used as the $\mathrm{V}_{\mathbb{N}}{ }^{-}$return during system-zero and reference-integrate phases. If $\mathrm{V}_{\mathbb{N}}-$ is different from analog common, a common-mode voltage exists in the system. This signal is rejected by the excellent CMRR of the converter. In most applications, $\mathrm{V}_{\mathbb{N}^{-}}$will be set at a fixed, known voltage (power supply common, for instance). In this application, analog common should be tied to the same point, thus removing the common-mode voltage from the converter. The reference voltage is referenced to analog common.

DIGITAL SECTION DESCRIPTION

Digital Control Signals

BUS / HAND

The BUS / HAND input (pin 21) selects parallel bus data transfer mode or handshake transfer mode. An internal
pull-down resistor guarantees parallel mode operation when the input pin is open. The handshake mode allows serial data transmission with a UART. In parallel mode, the TC800 outputs data under control of the HBEN (pin 19), LBEN (pin 18), and CE (pin 20) signals. In the handshake mode, the TC800 output signals communicate with peripheral devices to control data transmission.

For $\overline{\mathrm{BUS}}=0, \overline{\mathrm{HBEN}}, \overline{\mathrm{LBEN}}$, and $\overline{\mathrm{CE}}$ input signals control data transmission. Figures 8 and 9 show typical timing relationships and operation. The HBEN, LBEN, and CE signals are asynchronous to the internal conversion clock. Output data is immediately accessed. To avoid accessing data as updates are occurring, the data valid (DVD, pin 40) signal can be used as an enable signal. Data will not change if $\mathrm{DVD}=0$.

In handshake mode, two data transfer methods are possible. If HAND is pulsed high (HAND $=\ldots$) for a minimum of 70 ns , the TC800 enters the handshake mode. If HAND $=1$ continuously, the parallel mode is not reentered, and a handshake data transfer will occur at the end of each conversion cycle.

The BUS / HAND input configures dual-purpose pins 18, 19, and 20 as inputs or outputs. In conjunction with the data request input signal, handshake data transfer is controlled by output signals $\overline{\text { LBFLG }}$, $\overline{H B F L G}$, and $\overline{\text { LDSTRB }}$. (See Table I.)

Data Request Input

The data request (DRQST, pin 27) input is used only in the handshake data transfer mode. DRQST $=1$ indicates an external receiving device is ready to accept data from the TC800. It serves as a send data command. When BUS $/$ HAND $=0$, DRQST should be tied to $\mathrm{V}{ }^{+}$.

Table I (Pin designations refer to 40-Pin DIP)

Operating Mode	Pin Description		
	$\begin{aligned} & \overline{\mathrm{LBEN}} / \overline{\mathrm{LBFLG}} \\ & \text { (Pin 18) } \end{aligned}$	$\overline{\text { HBEN }} / \overline{\mathrm{HBFLG}}$ (Pin 19)	$\begin{aligned} & \overline{\text { CE } / \overline{\text { LDSTRB }}} \\ & \text { (Pin 20) } \end{aligned}$
Bus Transfer Mode BUS $/$ HAND $=0$	LBEN: Low data byte enable input. Logic ' 0 ' activates low-order data $\left(\mathrm{DB}_{8}-\mathrm{DB}_{1}\right)$ if $\overline{C E}=0$.	HBEN: High data byte enable input. Logic ' 0 ' activates the high order data (SGN, $\mathrm{DB}_{15}-\mathrm{DB}_{9}$) if $\overline{\mathrm{CE}}=0$.	$\overline{\mathrm{CE}}$: Master output enable input. When $C E=1$ outputs SGN, DB ${ }_{15}-\mathrm{DB}_{1}$ are disabled and in a highimpedance state
Handshake Transfer Mode $\overline{\mathrm{BUS}} / \mathrm{HAND}=1$ or \square	LBFLG: Low data byte flag output. Indicates output data is $\mathrm{DB}_{8}-\mathrm{DB}_{1}$.	HBFLG: High data byte flag output. Indicates output data is $\mathrm{DB}_{15}-\mathrm{DB}_{9}$.	LDSTRB: Load strobe output signal. A logic ' 0 ' or falling edge indicates valid data is present at the output.

15-BIT PLUS SIGN, INTEGRATING ANALOG-TO-DIGITAL CONVERTER

TC800

CONV / STOP Input

The CONV / STOP input (pin 26) is pulled high through an internal pull-up resistor. If CONV /STOP $=1$, or is left open, the TC800 continuously performs conversions. Each measurement cycle is 65,536 counts long. The measurement cycle time for one conversion is:

$$
\text { Time Conversion }(\mathrm{ms})=\frac{65.536}{\mathrm{f}_{\mathrm{CLK}}(\mathrm{kHz})}
$$

where $\mathrm{f}_{\mathrm{CLK}}=$ Internal clock frequency.
If CONV / STOP $=0$ during reference-integrate phase and after zero-crossing has been detected, the integratorzero phase is immediately entered and completed. This eliminates the time spent in the reference-integrate phase after the output data latches are updated.

If CONV / STOP remains low, the TC800 will wait in the system-zero phase. The signal-integrate phase begins 7 clock counts after a CONV $=1$ signal is detected. The CONV / STOP signal is detected synchronously with the internal clock. The system-zero phase should last a minimum of 70 ms . (See Figures 6 and 7 for CONV / STOP conversion timing diagrams.)

If CONV / STOP goes low and remains low during the system-zero phase, the TC800 will stop at the end of the phase and wait for CONV $=1$. The signal-integrate phase will start 7 clock counts after CONV $=1$ is detected.

TEST Input

When TEST $(\operatorname{pin} 17)=1$, the counter data latches are enabled. When TEST $=0$, the counter outputs are forced to a logic ' 1 ' state and the internal clock is disabled. When TEST is returned to logic ' 1 ' and one clock pulse is applied, all counter outputs are clocked low.

Data Valid

Data valid ($\overline{\mathrm{DVD}}$, pin 40$)=1$ at the start of signal integrate and $\overline{D V D}=0$ one-half clock period after new data is stored in the data latches. Since DVD is always low when data is not changing, the signal may be used as a 'Data Valid Flag.' (See Figures 6 and 7 for timing relationships.)

DATA OUTPUT DESCRIPTION

Parallel Mode Data Interface

With $\overline{B U S} /$ HAND $=0$, the sign and data bits are controlled by the $\overline{\mathrm{CE}}, \overline{\mathrm{LBEN}}$, and $\overline{\mathrm{HBEN}}$ inputs. All three have internal pull-up resistors. Inactive data bits are in a highimpedance state.

The HBEN signal controls the most significant data bytes ($\mathrm{SGN}, \mathrm{DB}_{15}-\mathrm{DB}_{9}$). LBEN controls the least significant data bytes $\left(\mathrm{DB}_{8}-\mathrm{DB}_{1}\right)$.

Figure 6 Convert-on-Command Operation (CONV $/ \overline{\text { STOP }}=0$ After Zero Crossing Detected)

15-BIT PLUS SIGN, INTEGRATING ANALOG-TO-DIGITAL CONVERTER

Figure 7 Continuous Conversion (CONV $/ \overline{S T O P}=1$)

Table II

CE	HBEN	LBEN	High Data Byte (SGN, DB $\mathbf{1 5}^{-D^{-}}{ }_{9}$)	Low Data Byte $\left(\mathrm{DB}_{8}-\mathrm{DB}_{1}\right)$
1	X	X	Inactive (High Z State)	Inactive (High Z State)
0	0	0	Active	Active
0	0	1	Active	Inactive (High Z State)
0	1	0	Inactive (High Z State)	Active
0	1	1	Inactive (High Z State)	Inactive High Z State)

NOTE: $\quad \mathrm{X}=1$ or 0 .
The $\overline{H B E N}, \overline{L B E N}$, and CE inputs are asynchronous with the internal conversion clock. Output data is immediately available. To avoid accessing data as updates occur, the DVD input can control data access. Data will not change if $\overline{D V D}=0$.

Handshake Mode Data Transfer

The TC800 actively controls data transfer to peripherals through the handshake data transfer mode. In the handshake mode, pins 18, 19, and 20 (LBFLG, HBFLG, and LDSTRB) are TTL-compatible outputs. The LDSTRB signal
indicates valid data is available for the peripheral. The LBFLG and HBFLG signals indicate which data byte is being transferred. The data request signal (DRQST, pin 27) informs the TC800 a peripheral is ready to accept data. A complete cycle transfers two 8 -bit bytes.

Figure 8 Parallel Data Transfer (Two 8-Bit Bytes)

15-BIT PLUS SIGN, INTEGRATING ANALOG-TO-DIGITAL CONVERTER

TC800

Figure 9 Parallel Data Transfer (16-Bit Bytes)
The $\overline{B U S} /$ HAND signal is ignored after the handshake mode is entered. Conversions continue, but data latch updating is inhibited until the TC800 transfers two data bytes and clears the internal mode latch.

The handshake mode is entered in two ways:
(1) Set $\overline{\mathrm{BUS}} / \mathrm{HAND}=1$
(2) Pulse $\overline{\mathrm{BUS}} / \mathrm{HAND} \operatorname{High}\left(_\longrightarrow\right)$

BUS $/$ HAND $=1$

With $\overline{\text { BUS }} / \mathrm{HAND}=1$, the TC800 enters the handshake mode after data is stored in the output data latches. Once the handshake mode internal latch signal is set, the BUS / HAND signal is ignored. The DRQST signal controls data transfer to the external requesting peripheral. Figure 10 shows the timing diagram for the data transfer with $\overline{B U S} /$ HAND $=1$ (throughout the transfer). Note that DRQST = 1 throughout the transfer. The data transfer rate is set by the TC800 internal clock. A complete data transfer occurs in 4 clock periods after a DRQST $=1$ is detected on a high-to-low internal clock-edge transition.

For peripherals that cannot accept data at the TC800 clock rate, the DRQST input can be used to delay the transmit sequence. This mode is useful in interfacing to UARTs. Figure 11 shows a typical UART interface.

(3) $\overline{\text { LDSTRB }}$ and $\overline{H B F L G}$ become active at first $L \rightarrow H$ clock transition after DRQST is sensed H.

Figure 10 Data Trasfer With $\overline{\text { BUS }} /$ HAND $=1$

15-BIT PLUS SIGN, INTEGRATING ANALOG-TO-DIGITAL CONVERTER

Figure 11A Typical UART Interface Timing With DRQST Signal Controlling Data Transfer Timing

The UART data transfer sequence begins with DRQST $=1$, indicating the UART transmitter buffer register is empty (TBMT = 1). LDSTRB and HBFLG become active when DRQST is sensed synchronously. The high-order data byte is stored in the UART transmitter buffer register when LDSTRB $=1$. This occurs one clock period after DRQST is sensed. The DRQST signal (TBMT) goes low, halting the cycle with the SGN and $\mathrm{DBN}_{15}-\mathrm{DB}_{9}$ data bits active. After the UART transfers the received data to the transmitter register, DRQST (TBMT) goes high. On the first high-to-low internal clock transition, the high data byte is disabled and one-half clock period later HBFLG $=1$. Concurrently, LDSTRB $=0$ and DB $_{8}-\mathrm{DB}_{1}$ become active. One clock period later, $\overline{\operatorname{LDSTRB}}=1$ and the low data byte is clocked into the UART transmitter buffer register; DRQST goes low. When DRQST returns high, it is sensed on the first TC800 internal clock high-to-low edge transition, thus causing all outputs to be disabled. One-half clock period later the internal handshake mode latch is cleared and $\overline{\text { LDSTRB }}=\overline{\mathrm{HBFLG}}=$ $\overline{L B F L G}=1$. The outputs remain active as long as BUS $/ H A N D=1$.

Figure 11B Typical UART to TC800 Connection

15-BIT PLUS SIGN, INTEGRATING ANALOG-TO-DIGITAL CONVERTER

TC800

$\overline{\text { BUS }} /$ HAND $=-\longrightarrow$ (Pulse High)
The TC800 outputs every conversion (except those completed during a handshake transfer) with BUS / HAND held high. Handshake output sequences on demand are possible by triggering the BUS / HAND control input with a low-to-high edge. Figure 12 shows a typical data transfer. The output cycle is controlled by the DRQST input signal. The complete 2-byte data transfer can take any length of time. Conversions are made, and the DVD and CONV / STOP inputs function normally, but new data will not be latched until the handshake mode is terminated.

Oscillator Control and Operation

The OSC CON input (pin 24) configures the internal oscillator as a crystal or RC oscillator. OSC CON $=1$ establishes the RC oscillator; R should be 50 kW or larger. The internal clock matches the frequency and phase of the BUF OSC (pin 25) signal. In the crystal oscillator mode
(OSC CON = 0), a 415 is between the buffered oscillator output and the internal clock. The internal oscillator may be overdriven by driving OSC_{1} (pin 23). The OSC CON pin controls whether the internal clock is 415 . (See Table III.)

Table III

Oscillator Type	OSC CON (Pin 24)	Internal Clock Frequency	Signal Integration Time	Conversion Cycle Time
$R C$	$V_{S^{+}}$or	$0.45 / R C$	$16,384\left(\frac{R C}{0.45}\right)$	$\frac{R C}{0.45}(65,536)$
Open				
Crystal	Ground	$f_{X T A L} 415$	$16,384\left(\frac{15}{f_{\text {XTAL }}}\right)$	$\frac{15}{f_{\text {XTAL }}}(65,536)$

NOTES: 1. $\mathrm{f}_{\mathrm{XTAL}}=$ crystal frequency $(2.4576 \mathrm{MHz})$
2. Internal clock frequency $=163.8 \mathrm{kHz}$
3. Signal integration time $=1000 \mathrm{~ms}$
4. Conversion cycle time $=400 \mathrm{~ms}$ (2.5 conversions $/ \mathrm{sec}$)

Figure 12 Handshake Output on Command (DRQST Signal Controls Transfer)

Figure 13 External Oscillator Control

Figure 14 Internal RC Oscillator Configuration

Figure 15 Internal Crystal Oscillator Configuration

Component Value Selection

Integrating Resistor ($\mathrm{R}_{\mathrm{INT}}$)

The desired full-scale input voltage and output current capability of the input buffer and integrator amplifier set the integration resistor value. The internal Class A output stage amplifiers supply a $20 \mu \mathrm{~A}$ drive current with minimal linearity error. $\mathrm{R}_{\mathrm{INT}}$ is easily calculated for a $20 \mu \mathrm{~A}$ full-scale current:

$\mathrm{R}_{\text {INT }}(\mathrm{M} \Omega)=\frac{\text { Full-Scale Input Voltage }(\mathrm{V})}{20}$	
Full-Scale Input Voltage (VFS)	R $_{\text {INT }}$
3.2768	160 kW
4.0000	200 kW

Integrating Capacitor ($\mathrm{C}_{\mathbb{I N T}}$)
The integrating capacitor should be selected to maximize integrator output swing. The integrator output will swing to within 0.4 V of $\mathrm{V}_{\mathrm{S}^{+}}$or $\mathrm{V}_{\mathrm{S}}^{-}$without saturating. With $\pm 5 \mathrm{~V}$ power supplies and analog common connected to supply ground, a 3.5 V to 4.3 V swing is adequate.

Using the suggested $20 \mu \mathrm{~A}$ full-scale buffer output current, the integrating capacitor is easily calculated:

$$
\mathrm{C}_{\mathrm{INT}}(\mu \mathrm{~F})=\frac{16,384\left(\frac{1}{f_{\mathrm{CLK}}(\mathrm{kHz})}\right) 20 \mu \mathrm{~A}}{\text { Integrator Output Voltage Swing }(\mathrm{V})}
$$

where $\mathrm{f}_{\text {CLK }}=$ Internal clock frequency .
For 2.5 conv/sec, the internal clock frequency is 163.8 kHz . The TC800 operates at 2.5 conv/sec with an external crystal equal to 2.4576 MHz . A $0.47 \mu \mathrm{~F}$ capacitor is recommended.

The integrating capacitor should be selected for low dielectric absorption to prevent roll-over errors. Polypropylene capacitors are suggested. The outer foil of $\mathrm{C}_{\mathrm{INT}}$ should be connected to pin 31 .

System Zero Capacitor (C $\mathrm{C}_{\mathrm{s} z}$)

$\mathrm{A} 1 \mu \mathrm{~F}$ polypropylene capacitor is suggested. The inner foil should be connected to $\mathrm{C}_{S Z}(\operatorname{pin} 32)$.

Reference Capacitor ($\mathrm{C}_{\text {REF }}$)

A $1 \mu \mathrm{~F}$ capacitor is suggested. Larger values may be used to limit roll-over errors. Low leakage capacitors such as polypropylene or Teflon ${ }^{\circledR}$ should be used.

Reference Voltage

The analog input required to generate the 32,768 fullscale count is $\mathrm{V}_{\mathbb{N}}=2 \mathrm{~V}_{\text {REF }}$. The reference voltage source should be selected for temperature stability. The TC800 provides 30 ppm resolution. With a $5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ reference, a 6° change will introduce a 1-bit absolute error. A stable reference must be used where ambient temperature is controlled and accurate absolute measurements are needed.

The reference voltage input must be a positive voltage with respect to analog common. Reference voltage circuits are shown in Figure 16.

Delay Resistor (R_{S})

The $\mathrm{R}_{\mathrm{S}}, \mathrm{C}_{\mathrm{INT}}$ combination compensates for comparator delay time. With a $0.47 \mu \mathrm{~F}$ integrating capacitor, a 20 W series resistor is suggested.

Figure 16 Reference Voltage Circuits

TYPICAL APPLICATIONS

TC800 Parallel Interface to 6522 Versatile Interface Adapter

*NOTE: May be programmed for convert on command or continuous conversions.

15-BIT PLUS SIGN, INTEGRATING ANALOG-TO-DIGITAL CONVERTER

TYPICAL APPLICATIONS (Cont.)

15-BIT PLUS SIGN, INTEGRATING ANALOG-TO-DIGITAL CONVERTER

TYPICAL APPLICATIONS (Cont.)

12-BIT μ P-COMPATIBLE MULTIPLEXED A/D CONVERTER

FEATURES

- 12-bit Plus Sign, High Accuracy A/D Converter
- Up to 30 Conversions per Second
- Selectable Conversion Rate
- On-Board Analog Mux \qquad 4 or 8 Channel
- Very Fast Overload Recovery
- High Impedance Differential Input
- Low Noise CMOS Design \qquad $15 \mu V_{p-p}$
- Analog Mux Expansion Capability
- Low Input Leakage Current, 10pA (Max)
- Flexible Digital and μ Processor Interfacing
- Internal Reference Regulator, $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
- Power Up to Known State
- Crystal Controlled Clock Circuit
- Available in Compact Flat Package or PLCC
- Industrial Temperature Range Device Available

GENERAL DESCRIPTION

The TC804 is a 12-bit (plus sign and over-range) analog to digital converter. It is equivalent to the popular TC7109A except that the TC804 incorporates an on-board analog multiplexer which may be configured for either 4 or 8 channel operation under software control. The TC804 represents the latest technology in multi-slope, high noise immunity, integrating A/D conversion. The advanced CMOS design offers very low power consumption and high reliability.

The TC804 provides two very flexible modes of digital interfacing to fit a variety of system configurations. The Handshake Mode supports either fast or slow UART interfacing with either triggered or continuous operation. The Direct Output Mode supports microprocessor systems that use a direct bus architecture with either an 8-bit or 16-bit data bus structure.

TYPICAL APPLICATIONS

Process Control
-Flow Measurement
-Leak Detection
-pH Measurement
-Pressure
-Temperature
-Viscosity
-Position

FUNCTIONAL DIAGRAM

12-BIT μ P-COMPATIBLE MULTIPLEXED A/D CONVERTER

PIN CONFIGURATIONS

ORDERING INFORMATION

Part No.	Package	Temperature Range
TC804CLS	68 -pin PLCC	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC804CBQ	60 -pin Plastic Surface Mount	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC804ILS	68 -pin PLCC	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

ABSOLUTE MAXIMUM RATINGSPositive Supply Voltage (V+)$+6.2 \mathrm{~V}$
Negative Supply Voltage (V-) -9.0V
Analog Input Voltage Range (Note 1) $\mathrm{V}+$ to V -
Reference Input Voltage Range V+ to V-
Digital Input or Output
(Note 2)
\qquad V+ to DGND - 0.3
Power Dissipation (Note 3) $.1 \mathrm{~W} @+85^{\circ} \mathrm{C}$
Operating Temperature
Commercial $.0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Industrial $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (60 sec .) $+300^{\circ} \mathrm{C}$

NOTE: All devices contain diodes to protect inputs against damage due to high-static voltages or electric fields. However; it is advised precautions be taken not to exceed maximum recommended input voltages. All unused inputs must be connected to an appropriate logic level (VDD or GND).
Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to Absolute Maximum Rating Conditions for extended periods may affect device reliability.

NOTES: 1. Input voltages may exceed supply voltages if input current is limited to $\pm 100 \mu \mathrm{~A}$.
2. Connecting any digital inputs or outputs to voltages greater than V^{+}or less than GND may cause destructive device latchup. Therefore, it is recommended that inputs from sources other than the same power supply should not be applied to the TC804 before its power supply is established. In multiple supply systems, the supply to the device should be activated first.
3. This limit refers to that of the package and will not occurduring normal operation.

12-BIT μ P-COMPATIBLE MULTIPLEXED A/D CONVERTER

ELECTRICAL CHARACTERISTICS: $\mathrm{V}_{+}=5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}, 15$ Conversions $/ \mathrm{Sec}, 1 \mathrm{MHz}$ Crystal, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
Analog	Multiplexer Section					
$\mathrm{r}_{\mathrm{DS}} \mathrm{ON}$	On Resistance	$-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$	-	5.0	7.5	$\mathrm{~K} \Omega$
t_{BM}	Break-before-Make	-	7.0	10		
t_{AD}	Address Delay, Transparent		250	450	-	nSec
t_{WW}	Address Set-up, Write	-	150	180	nSec	
t_{WR}	Write Delay	50	-	70	nSec	
CORR	Channel Off Rejection Ratio	$\mathrm{f}_{\mathrm{IN}}=10 \mathrm{~Hz}$	-	600	650	nSec

Converter Section

	Zero Input Reading	$\mathrm{V}_{\text {IN }}=0, \mathrm{~V}_{\text {FS }}=409.6 \mathrm{mV}$	000_{16}	00016	000_{16}	Count
	Ratiometric Reading	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {REF }}=204.8 \mathrm{mV}$		7FF ${ }_{16}$		Count
NLE	Non-linearity Error	$V_{F S}=204.8$ or 409.6 mV	-1	± 0.2	1	Count
ROE	Roll-over Error	$\mathrm{V}_{\mathrm{FS}}=204.8$ or 409.6 mV	-1	± 0.2	1	Count
CMRR	Common-mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}= \pm 1 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$	-	50	100	$\mu \mathrm{V} / \mathrm{N}$
$V_{\text {CMR }}$	Common-mode Voltage Range		$\mathrm{V}-+1.5$	-	$\mathrm{V}+-1.5$	V
V_{n}	Noise (aver. pk-pk)		-	15	50	$\mu \mathrm{V}$
IIL	Input Leakage Current	$\begin{aligned} & \mathrm{T}_{A}=25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq 70^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq 85^{\circ} \mathrm{C} \end{aligned}$	-	$\begin{gathered} 20 \\ 100 \\ 150 \end{gathered}$	$\begin{gathered} 45 \\ 200 \\ 300 \end{gathered}$	pA
TCo	Zero Reading Drift	$\begin{aligned} & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} \end{aligned}$	-	$\begin{aligned} & 0.2 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.0 \end{aligned}$	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\overline{T C_{F S}}$	Full-scale Gain Tempco	$\begin{aligned} & 0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C} \leq T_{A} \leq 85^{\circ} \mathrm{C} \end{aligned}$	-	$\begin{aligned} & 1 \\ & 7 \end{aligned}$	$\begin{gathered} 5 \\ 15 \end{gathered}$	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
	Over Range Recovery (Next Conversion)	$\mathrm{V}_{\mathrm{FS}}=204.8 \mathrm{mV}$	-	± 1	± 2	Count

Supply/Reference Section

V+	Positive Supply Voltage		4.5	5.0	5.5	V
V-	Negative Supply Voltage		-4.5	-5.0	-5.5	V
$1+$	Supply Current V+ to GND	$-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$		$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	mA
1-	Supply Current V- to GND	$-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$	-	$\begin{aligned} & -1.5 \\ & -2.0 \end{aligned}$	$\begin{aligned} & -2.0 \\ & -2.5 \end{aligned}$	mA
$\mathrm{V}_{\text {REF }}$	Reference Voltage	($\mathrm{w} /$ respect to $\mathrm{V}+$)	-2.8	-3.0	-3.2	V
TCREF	Reference Voltage Tempco	$\begin{aligned} & 0^{\circ} \leq T A \leq 70^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C} \leq T_{A} \leq 85^{\circ} \mathrm{C} \end{aligned}$	-	$\begin{aligned} & 25 \\ & 30 \end{aligned}$	$\begin{aligned} & 50 \\ & 75 \end{aligned}$	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$

Digital Section

V_{OH}	Output High (SYSCLK, SIP)	$\mathrm{l}_{\mathrm{OL}}=-100 \mu \mathrm{~A}$	-	4.5	-	V
V_{OH}	Output High ($\mathrm{B}_{1}-\mathrm{B}_{12}$, OR, POL, STATUS)	$\mathrm{I}_{\mathrm{OL}}=-100 \mu \mathrm{~A}$	3.5	4.7	-	V
$\mathrm{V}_{\text {OL }}$	Output Low (SYSCLK, SIP)	$\mathrm{IOL}^{\text {a }}=0.5 \mathrm{~mA}$	-	0.2	-	V
Vol	Output Low ($\mathrm{B}_{1}-\mathrm{B}_{12}$, OR, POL STATUS)	$\mathrm{l} \mathrm{OL}=1.6 \mathrm{~mA}$	-	0.2	0.4	V
los	Output Leakage (High Impedance)	$\mathrm{B}_{1}-\mathrm{B}_{12}$, OR, STATUS	-	. 01	1.0	$\mu \mathrm{A}$

12-BIT μ P-COMPATIBLE MULTIPLEXED Á/D CONVERTER

TC804

ELECTRICAL CHARACTERISTICS (Cont.)

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
Digital Section (Cont.)						
	Control I/O Loading	LBEN, $\overline{\mathrm{HBEN}}, \overline{\mathrm{OE}}$	-	-	50	pF
V_{IH}	Input High Voltage		2.5	-	-	V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage		-	-	1	V
IPU	Input Pull-up Current TEST	(All except TEST)	-	$\begin{gathered} 30 \\ 100 \end{gathered}$	-	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
PPD	Input Pull-down Current Mode		-	30	-	$\mu \mathrm{A}$
tw	Mode Input Pulse Width $\overline{W R}, \overline{W E}$		-	50	-	nSec

Oscillator Section

fosc	Frequency of Oscillation	0.8	1.0	5.0	MHz
OSC $_{\mathrm{OH}}$	Output Current High	-	1	2.0	mA
OSC $_{\mathrm{OL}}$	Output Current Low	-	1.5	3.0	mA

ANALOG MULTIPLEXER TIMING DIAGRAM

PIN DESCRIPTION

60-Pin Flat Pack	68-Pin PLCC	Symbol	
1	62	DGND	Description
2	63	TEST	Digital Ground, oV, Ground return for all input and output logic.
3	64	INT/EXT $^{\text {Input HIGH-Normal operation, Input LOW-Force all bits high. (For test }}$	
purposes only.)			

TC804
PIN DESCRIPTION (Cont.)

60-Pin Flat Pack	$\begin{aligned} & \text { 68-Pin } \\ & \text { PLCC } \end{aligned}$	Symbol	Description
38	35	$V_{\text {INT }}$	Integrator Output
39	36	V+	Positive Supply Voltage
40	37	REFout	Reference Output
41	38	DRQST	Data Request, Input ${ }^{(2)}$
42	39	$\overline{\mathrm{OE}}$	Output Enable, Input ${ }^{(1)} /$ Output ${ }^{(2)}$
43	40	LBEN	Low Byte Enable, Input ${ }^{(1)} /$ Output ${ }^{(2)}$
44	41	HBEN	High Byte Enable, Input ${ }^{(1)} /$ Output ${ }^{(2)}$
45	42	MODE	Mode Select, Input: LOW-Direct Output Mode ${ }^{(1)}$ HIGH-Hand Shake Mode
46	45	STATUS	Status Bit, Output: HIGH during Integrate and Deintegrate until data is latched, LOW during Auto-Zero and Integrate-Zero
47	46	POL	Polarity Bit, Output: HIGH-Positive, LOW-Negative
48	47	OR	Over Range Bit, Output: HIGH-Overrange, LOW-Non-Overrange
49	48	B_{12}	Data Bit 12 (Most Significant Data Bit)
50	49	B_{11}	Data Bit 11
51	50	B_{10}	Data Bit 10
52	51	B_{9}	Data Bit 9
53	52	B_{8}	Data Bit 8 (STATUS in High Byte of 8-bit BUS Mode. See Text)
54	53	B_{7}	Data Bit 7
55	54	B_{6}	Data Bit 6
56	55	B_{5}	Data Bit 5
57	56	B_{4}	Data Bit 4
58	57	B_{3}	Data Bit 3
59	58	B_{2}	Data Bit 2
60	59	B_{1}	Data Bit 1, (Least Significant Bit)

NOTES: 1. Direct Output Mode (MODE $=0$)
2. Handshake Mode (Mode = 1)

MODE SELECTION AND DATA TRANSFER INTERFACING (All pin references are to PLCC package)

The direct output mode is a fully complemented microprocessor interface which can support either an 8 or 16 bit data bus. The microprocessor programming has direct control over the data transfer technique. The status bit (STATUS) from the TC804 supplies the information to the microprocessor to insure proper timing and data handling.

The TC804 will be in the direct output mode as long as the MODE input is LOW. An internal pull-down resistor insures that this is the default mode if it is left unconnected.

When the TC804 is in the indirect mode, OUTPUT ENABLE ($\overline{\mathrm{OE}})$, LOW BYTE ENABLE ($\overline{\mathrm{LBEN}}$) and HIGH BYTE ENABLE ($\overline{\mathrm{HBEN}}$) become inputs. These inputs are then used to control the data transfer. The DATA REQUEST (DRQST) input is not used and should be tied HIGH. (see "DIRECT Interfacing")

Direct Output Mode Data Transfer

The low order byte (bits 1 through 8) and the high order byte (bits 9 through 12 plus the polarity and overrange bits) are accessible under control of $\overline{\mathrm{OE}}$ (pin 38), $\overline{\mathrm{LBEN}}$ (pin 40) and $\overline{\text { HBEN (}}$ (in 41). These three inputs are all active LOW. Internal pullup resistors are provided for an inactive HIGH when left open. A LOW on OE will permit a LOW on input HBEN and/or LBEN to output data to the bus. A LOW on HBEN selects the 6 -bit high data byte, a LOW on LBEN selects the 8 -bit low data byte and a LOW on both HBEN and LBEN selects the whole 14-bit data word.

The access of data should be synchronized with the conversion cycle by monitoring the STATUS output (pin 45). This will prevent accessing the data while it is being updated.

Status can also be read on the B 8 output when $\overline{\mathrm{HBEN}}$ is low and LBEN is high.

INTERFACING

Direct Mode

Combinations of chip enable and byte enable control signals which may be used when interfacing the TC804 to parallel data lines are shown in Figure 2. The OE input may be tied low, allowing either byte to be controlled by its own enable (Figure 2A). Figure 2 B shows the $\overline{\mathrm{HBEN}}$ and $\overline{\mathrm{LBEN}}$ as flag inputs, and OE as a master enable, which could be the READ strobe available from most microprocessors. Figure 2C shows a configuration where the two byte enables are connected together. The $\overline{\mathrm{OE}}$ is a chip select, and the $\overline{\text { HBEN }}$ and LBEN may be used as a second chip select or connected to ground.

Figure 1 TC804 Direct Mode Output Timing

Figure 2 Direct Mode Chip and Byte Enable Combinations

TC804

DIRECT MODE TRUTH TABLE

Inputs					Outputs		
MODE	DRQST* *	$\overline{\text { OE }}$	$\overline{\text { LBEN }}$	$\overline{\text { HBEN }}$	STATUS	$\mathbf{B}_{1}-\mathbf{B}_{\mathbf{8}}$	B9 $_{\mathbf{9}-\mathbf{B}_{\mathbf{1 2}}, \text { OR, POL }}$
0	1	1	X	X	1	high Z	high Z
0	1	0	0	0	0	low byte	high byte
0	1	0	1	0	0	high $\mathrm{Z}^{* \star}$	high byte
0	1	0	0	1	0	low byte	high Z
0	1	X	1	1	0	high Z	high Z

*DRQST should be tied high.
**Output B8 is active, and reflects the converter status. This permits the status to be monitored without requiring a separate $\mu \mathrm{P}$ input pin for the STATUS output (pin 45).
Table 1. TC804 Direct Mode Timing Requirements

Symbol	Description	Min	Typ	Max	Units
$t_{\text {BEA }}$	Byte Enable Width	200	500		ns
$\mathrm{t}_{\text {DAB }}$	Data Access Time From Byte Enable		150	300	ns
$\mathrm{t}_{\text {DHB }}$	Data Hold Time From Byte Enable		150	300	ns
$\mathrm{t}_{\text {CEA }}$	Chip Enable Width	300	500		ns
$\mathrm{t}_{\text {DAC }}$	Data Access Time From Chip Enable		200	400	ns
$\mathrm{t}_{\text {DHC }}$	Data Hold Time From Chip Enable		200	400	ns

Figure 3 Full-Time Parallel Interface to MCS-48, -80, -85 Microcomputer

Handshake Mode (MODE =1 or ת)

The handshake mode is an alternative means of interfacing the TC804 to digital systems. It provides a means for having the TC804 become active in controlling the flow of data. This mode allows a direct interface betweenthe TC804 and standard UART's with no external logic required. The TC804 provides all the control and flag signals necessary to sequence the data into the UART and initiate the serial transmission.

The handshake mode is activated when the MODE input pin is held high. The data transfer sequence is started at the end of the conversion cycle and after new data has been stored in the output latches.

The data transfer sequence may also be initiated at any time during the conversion cycle by a positive going pulse applied to the MODE pin. If the low to high transition occurs while new data is being stored, the entry into the handshake mode is delayed until the data is stable.

Whenever the handshake mode has been activated, OUTPUT ENABLE ($\overline{\mathrm{OE}})$, LOWBYTE ENABLE ($\overline{\mathrm{LBEN}})$ and HIGH BYTE ENABLE (HBEN) become outputs. These outputs are then used to "talk to" the UART. The DATA REQUEST (DRQST) input is used by the UART to transfer data. (see "UART Interfacing")

Handshake Mode Data Transfer

The TC804 actively controls the data transfer to peripherals through the handshake data transfer mode. In this mode, $\overline{\mathrm{OE}}$ (pin 38), $\overline{\mathrm{LBEN}}$ (pin 40) and $\overline{\text { HBEN }}$ (pin 41) are each TTL compatible outputs. A LOW on $\overline{O E}$ signals that valid data is available for the peripheral. A LOW on HBEN or LBEN indicates which data byte is being transferred. A HIGH input to the TC804 on DRQST (pin 38) initializes the data transfer. The high byte is transferred first followed by the low byte. Data DRQST may be taken LOW to delay the transfer between data bytes.

Handshake output sequences may be performed on demand by triggering the converter into handshake mode with a low to high edge on the MODE input. A handshake output sequence triggered is shown in Figure 5. The DRQST input is low when the converter enters handshake mode. The whole output sequence is controlled by the DRQST input, and the sequence for the first (high order) byte is similar to the sequence for the second byte.

These diagrams also show that the output sequence can take longer than a conversion cycle. New data will not be latched when the handshake mode is still in progress and is therefore lost.

12-BIT μ P-COMPATIBLE MULTIPLEXED A/D CONVERTER

TC804
HANDSHAKE MODE TRUTH TABLE

Inputs		Outputs					
MODE ${ }^{1}$	DRQST	$\overline{\mathbf{O E}}^{2}$	$\overline{\text { LBEN }}$	HBEN	STATUS	$B_{1}-B_{8}$	$\mathrm{B}_{9}-\mathrm{B}_{12}, \mathrm{OR}, \mathrm{POL}$
1	0	1	1	1	1	high Z	high Z
X	1	Ω	1	0	0	high Z	high byte
X	0	1	1	0	0	High Z	high byte
X	1	Ω	0	1	0	low byte	high Z
X	1	1	1	1	0	high Z	high Z

Figure 4 Handshake Interface-TC804 to MCS-48, -80, -85

12-BIT μ P-COMPATIBLE MULTIPLEXED A/D CONVERTER

Figure 5 TC804 Handshake with DRQST Input Held Positive

Figure 6 TC804 Handshake-Typical UART Interface Timing

TC804

TC804 ANALOG MULTIPLEXER

The on-board analog multiplexer can be configured for eight channel, single-ended input or for four channel, differential input. The signal/differential input (SIG/DIF) selects the configuration. The eight channel mode is selected when SIG/DIF (pin 4) is tied HIGH and the four channel mode is selected when SIG/DIF is tied LOW. Either mode of operation permits both latched and transparent addressing.

A LOW on the reset input ($\overline{\mathrm{RST}}$) or writing a low into the enable input (EN) opens all (4 or 8) channels which permits direct input through the dedicated analog inputs ($\mathrm{V}_{1 N}+$ and $\left.\mathrm{V}_{\mathrm{IN}^{-}}\right)$. An external analog multiplexer may be used instead of the internal multiplexer or in conjunction with it. (See "Analog Multiplexer Expansion").

ANALOG MULTIPLEXER TRUTH TABLE

SGL/DIF	$\overline{\mathbf{W E}}$	$\overline{\mathbf{W R}}$	$\overline{\mathbf{R S T}}$	$\mathbf{E N}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{0}}$	Converter Input	Note	
X	X	X	0	X	X	X	X	$\mathrm{V}_{\mathbb{N}+}$	$\mathrm{V}_{\mathbb{N}^{-}}$	(1)
X	0	0	X	0	X	X	X	$\mathrm{V}_{\mathbb{N}+}$	$\mathrm{V}_{\mathbb{N}^{-}}$	(1)
X	X	1	1	X	X	X	X	no change	(2)	
X	1	X	1	X	X	X	X	no change	(2)	

X = don't care
NOTES: 1. Analog multiplexer disables. $\mathrm{V}_{1 N^{+}}$and $\mathrm{V}_{\mathrm{IN}^{-}}$are inputs to the A / D converter.
2. Analog channel address is latched. $V_{I N}+$ and $V_{I N}$ - are the outputs of the multiplexer as well as the inputs to the A / D converter. The multiplexer channel selection cannor be changed if either $\overline{W E}$ or $\overline{W R}$ is HIGH.

EIGHT CHANNEL OPERATION (SGL/DIF = 1)

Each of the single-ended inputs is referenced to $\mathrm{V}_{\mathbb{N}^{-}}$and must comply with the same common-mode input.

SGL/DIF	$\overline{\text { WE }}$	$\overline{\mathbf{W R}}$	$\overline{\mathbf{R S T}}$	$\mathbf{E N}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{1}} \quad \mathbf{A}_{\mathbf{0}}$	Converter Input
1	0	0	1	1	3-bit address	CHN_{+}	$\mathrm{V}_{\mathbb{N}^{-}}$
1	0	Γ	1	1	3-bit address	CHN_{+}	$\mathrm{V}_{\mathbb{N}^{-}}$
1	Γ	0	1	1	3-bit address	CHN_{+}	IN^{-}

$N=1$ thru $8\left(A_{0}, A_{1}, A_{2}\right)$

FOUR CHANNEL OPERATION (SGL/DIF $=0$)

Bit 3 of the multiplexer address $\left(A_{2}\right)$ has no function when the four channel mode is selected. Each input is independently differential and may have different common-mode offsets.

SGL/DIF	$\overline{\mathbf{W E}}$	$\overline{\mathbf{W R}}$	$\overline{\mathbf{R S T}}$	$\mathbf{E N}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{1}} \quad \mathbf{A}_{\mathbf{0}}$	Converter Input	
0	0	0	1	1	X	2-bit address	$\mathrm{CHN}+$	$\mathrm{CHN}-$
0	0	ζ	1	1	X	2-bit address	$\mathrm{CHN}+$	$\mathrm{CHN}-$
0	ζ	0	1	1	X	2-bit address	$\mathrm{CHN}+$	$\mathrm{CHN}-$

$X=$ don't care, $N=1$ thru $4\left(A_{0}, A_{1}\right)$

ANALOG MULTIPLEXER ADDRESSING (all pin references are to PLCC package)

Single-Ended/Differential (SIG/DIF, pin 4)

If $\mathrm{SIG} / \overline{\mathrm{DIF}}$ is HIGH then the 8 -channel, single-ended mode is selected. If SIG/DIF is LOW then the 4 -channel, differential mode is selected.

The analog multiplexer has an internal address demultiplexer which is configured as either a " 2 of 8 " for 4 channel operation or as a " 1 of 8 " for 8 -channel operation.

Write (WR, pin 6)

The $\overline{W R}$ input may be held LOW in order to employ transparent address operation. Intransparent operation, the multiplexer switches respond directly to the inputs on the address lines (A_{0}, A_{1}, A_{2}) and Enable input (EN, pin 13).

The "latched" mode is entered whenever $\overline{W R}$ goes HIGH. The inputs on the address lines have no effect on the multiplexer switches until $\overline{\text { WR }}$ is pulsed LOW. These address lines may now be used for another purpose.

Write Enable ($\overline{\mathrm{WE}}$, pin 5)

The $\overline{\mathrm{WE}}$ input must be LOW in order for the $\overline{\mathrm{WR}}$ input to be enabled. The $\overline{\mathrm{WE}}$ and $\overline{\mathrm{WR}}$ inputs are AND'ed internally.

Enable (EN, pin 13)

The EN input is like an address input in that it may also be latched in by a LOW to HIGH transition on the WR input.

Reset ($\overline{\mathrm{RST}}, \mathrm{pin} 7$)

The $\overline{\operatorname{RST}}$ input overrides all other inputs to the analog multiplexer. All of the multiplexer switches are open whenever RST is LOW.

ANALOG MULTIPLEXER EXPANSION

The analog multiplexer section of the TC804 may be expanded by using an external multiplexer either in conjunction with, or instead of, the internal multiplexer.

The external multiplexer may be selected at any time when the internal multiplexer is disconnected:

A LOW on the $\overline{\text { RST input or writing a logic LOW into the }}$ enable bit ($\overline{\mathrm{EN}}, \overline{\mathrm{WR}}$, and $\overline{\mathrm{WE}}$ are LOW) will disconnect the internal multiplexer output from the analog input to the TC804 converter.

If an external analog multiplexer is to be used alone then $\overline{\mathrm{RST}}$ should be tied LOW. If an external analog multiplexer is to be used in conjunction with the on-board multiplexer, EN should be used to switch between multiplexers.

ANALOG SECTION (all pin references are to PLCC package)

The analog section of the TC804 will perform conversions at a rate determined by the clock frequency and the inputs to the Conversion Rate Selection (bit 0, pin 7 and bit 1, pin 8). (See Conversion Rate table page 20).

Each measurement cycle is divided into four phases. They are: 1) Auto-Zero (AZ), 2) Signal Integrate (INT), 3) Reference Deintegrate (DE) and 4) Zero Integrate (ZI).

1) Auto-Zero

The Auto-Zero phase has a duration of from 2048 to 6144 counts. During this phase, the analog input signal and reference voltage are disconnected from the analog section. The Auto-Zero capacitor $\left(\mathrm{C}_{\mathrm{A}}\right)$ is charged to a value which represents the total system offsets. The charge on C_{Az} will then be used to compensate the input during the signal integrate (INT) and the reference deintegrate (DE) phases.

This phase is also used to charge the reference capacitor ($\mathrm{C}_{\text {REF }}$) to the value of the reference voltage.

2) Signal Integrate

The Signal Integrate phase is selected for 2048 counts (Integrate Count). During this phase, the analog input signal is connected to the input of the buffer amplifier. The integrating amplifier will charge the integrate capacitor ($\mathrm{C}_{\text {INT }}$) at a rate determined by the value of the input signal.

At the end of the signal integrate phase, the voltage on $\mathrm{C}_{\text {Int }}$ will be equal to:

$$
V_{\mathbb{I N T}}=V_{\mathbb{I N}} \times \frac{\text { Integrate Count } \times f_{\text {CLOCK }}}{R_{\text {INT }} \cdot \mathrm{C}_{\mathbb{I N T}}} \quad(\text { equ } 1)
$$

3) Reference Deintegrate

The length of the Reference Deintegrate phase is determined by the absolute value of the voltage on $\mathrm{C}_{\mathbb{I N T}}$ at the end of the Signal integrate phase, (i.e. $\mathrm{V}_{\mathrm{INT}}$). The reference capacitor ($\mathrm{C}_{\text {REF }}$) is connected to the input of the buffer amplifier in the opposite phase of the input signal. The integrating amplifier will then cause the integrate capacitor ($\mathrm{C}_{\text {INT }}$) to start discharging at a constant rate. This rate is determined by the value of the reference voltage. The 12 -bit counter counts clock pulses during this phase and stops when $\mathrm{C}_{\mathrm{INT}}$ is fully discharged (i.e. zero-crossing).

The final count of the 12 -bit counter is the binary value of the input signal and is equal to:

Deintegrate Count $=\frac{V_{\text {INT }}}{V_{\text {REF }}} \times \frac{R_{\text {INT }} \cdot C_{\text {INT }}}{f_{\text {CLOCK }}}$ (equ 2)

12-BIT μ P-COMPATIBLE MULTIPLEXED A/D CONVERTER

4) Zero Integrate

The Zero-Integrate phase is invoked only when an overrange has occurred. It has a duration of up to 1024 counts. This phase is used to completely discharge C_{AZ} and $\mathrm{C}_{\text {INT }}$ prior to the Auto-Zero phase. This insures that there is no residual charge on either capacitor which may cause a false auto-zero.

Dual Slope Conversion Equation

(combine equ 1 and equ 2)
Deintegrate Count $=\frac{V_{I N}}{V_{\text {REF }}} \quad x$ Integrate Count

DETAILED DESCRIPTION

Analog Section

The Functional Diagram shows a block diagram of the Analog Section of the TC804. The circuit will perform conversions at a rate determined by the clock frequency (8192 clock periods per cycle), when the RUN/HOLD input is left open or connected to V_{+}. Each measurement cycle is divided into four phases as shown in Figure 8. They are: (1) Auto-Zero (AZ), (2) Signal Integrate (INT), (3) Reference Deintegrate (DE), and (4) Zero Integrator (ZI).

Auto-Zero Phase (AZ)

The buffer and the integrator inputs are disconnected from input high and input low and connected to analog common. The reference capacitor is charged to the reference voltage. A feedback loop is closed around the system to charge the auto-zero capacitor, $\mathrm{C}_{A Z}$, to compensate for offset voltage in the buffer amplifier, integrator, and comparator. Since the comparator is included in the loop, the AZ accuracy is limited only by the noise of the system. The offset referred to the input is less than $10 \mu \mathrm{~V}$.

Signal Integrate Phase (SI)

The buffer and integrator inputs are removed from COMMON and connected to input high and input low. The auto-zero loop is opened. The auto-zero capacitor is placed in series in the loop to provide an equal and opposite compensating offset voltage. The differential voltage between input high and input low is integrated for a fixed time of 2048 clock periods. At the end of this phase, the polarity of the integrated signal is determined. If the input signal has no return to the converter power supply, input low can be tied to analog common to establish the correct common-mode voltage.

De-Integrate Phase (DI)

Input high is connected across the previously charged reference capacitor and input low is internally connected to analog common. Circuitry within the chip ensures that the capacitor will be connected with the correct polarity to cause the integrator output to return to the zero crossing (established by AUTO-ZERO) with a fixed slope. The time, represented by the number of clock periods counted for the output to return to zero, is proportional to the input signal.

Zero-Integrator Phase (ZI)

The ZI phase only occurs when an input overrange condition exists. The function of the ZI phase is to eliminate residual charge on the integrator capacitor after an overrange measurement. Unless removed, the residual charge will be transferred to the auto-zero capacitor and cause an error in the succeeding conversion.

The ZI phase virtually eliminates hysteresis or "cross talk" in multiplexed systems. An overrange input on one channel will not cause an error on the next channel measured. This feature is especially useful in thermocouple measurements, where unused (or broken thermocouple) inputs are pulled to the positive supply rail.

During ZI , the reference capacitor is charged to the reference voltage. The signal inputs are disconnected from the buffer and integrator. The comparator output is connected to the buffer input, causing the integrator output to be driven rapidly to 0 V (Figure 8). The ZI phase only occurs following an overrange and lasts for a maximum of 1024 clock periods.

Differential Input

The TC804 has been optimized for operation with ana-log-common near digital ground. With +5 V and -5 V power supplies, a full $\pm 4 \mathrm{~V}$ full-scale integrator swing maximizes the analog section's performance.

A typical CMRR of 86 dB is achieved for input differential voltages anywhere within the typical common-mode range of 1.0 Volts below the positive supply to 1.5 Volts above the negative supply. However, for optimum performance the $\mathrm{V}_{\mathrm{IN}^{+}}$and $\mathrm{V}_{\mathbb{N}^{-}}$inputs should not come within 2 V of either supply rail. Since the integrator also swings with the com-mon-mode voltage, care must be exercised to assure the integrator does not saturate. A worst case condition is near a full-scale negative differential input voltage with a large positive common-mode voltage. The negative input signal drives the integrator positive when most of its swing has been used up by the positive common-mode voltage. In such cases, the integrator swing can be reduced to less than
the recommended $\pm 4 \mathrm{~V}$ full-scale value, with some loss of accuracy. The integrator output can swing to within 0.3 Volts of either supply without loss of linearity.

Differential Reference

The reference voltage can be generated anywhere within the power supply voltage of the converter. Rollover voltage is the main source of common-mode error. It is caused by the reference capacitor losing or gaining charge due to stray capacity on its nodes. With a large commonmode voltage, the reference capacitor can gain charge (increase voltage) when called upon to deintegrate a positive signal and lose charge (decrease voltage) when called upon to deintegrate a negative input signal. This difference in reference for $(+)$ or (-) input voltage will cause a roll-over error. This error can be held to less than 0.5 count worst case by using a large reference capacitor in comparison to the stray capacitance. To minimize roll-over error from these above sources keep the reference commonmode voltage near or at analog common.

Digital Section

The digital section is shown in the block diagram, (Figure 9), and includes the clock oscillator and scaling circuit, a 12-bit binary counter with output latches and TTLcompatible three-state output drivers, UART handshake logic, polarity, overrange and control logic.

Inputs driven from TTL gates should have $3-5 K \Omega$ pullup resistors added for maximum noise immunity. For minimum power consumption, all inputs should swing from GND (low) to $V+$ (high).

STATUS Output

During a conversion cycle, the STATUS output goes high at the beginning of Signal Integrate and goes low onehalf clock period after new data from the conversion has been stored in the output latches. See Figure 8. The signal may be used as a "data valid" flag to drive interrupts, or for monitoring the status of the converter. (Data will not change while STATUS is low). Status is also output on Data Bit 8, when the TC804 is in direct mode (Mode $=0, \overline{\mathrm{LBEN}}=1$, $\overline{\mathrm{HBEN}}=0$).

MODE Input

The output mode of the converter is controlled by the MODE Input. The converter is in its "Direct" output mode, when the MODE pin is low or left open. The output data is directly accessible under the control of the chip and byte enable inputs (this input is provided with a pull-down resistor to ensure a low level when the pin is left open). When the

MODE input is pulsed high, the converter enters the UART handshake mode and outputs the data in two bytes, then returns to "direct" mode. When the MODE input is kept high, the converter will output data in the handshake mode at the end of every conversion cycle. With MODE $=0$ (Direct BUS Transfer) the DRQST input should be tied to V_{+}. (See Handshake Mode Section).

RUN/ HOLD Input

With RUN/ $\overline{H O L D}$ high or open, the circuit operates normally as a dual slope A/D as shown in Figure 8. Conversion cycles operate continuously with the output latches updated after zero crossing in the deintegrate mode. An internal pull-up resistor is provided to insure a high level with an open input.

The RUN/FOLD may be used to shorten conversion time. If the RUN/HOLD goes low at anytime after zero crossing in the de-integrate mode, the circuit will jump to auto-zero and eliminate that portion of time normally spent in de-integrate.

If RUN/ $\overline{H O L D}$ stays or goes low the conversion will complete with minimum time in de-integrate. It will stay in auto-zero for the minimum time and wait in auto-zero for a high in the RUN/HOLD input. As shown in Figure 10, the STATUS output will go high seven clock periods after RUN/ HOLD is changed to high, and the converter will begin the integrate phase of the next conversion.

The RUN/THOLD input allows controlled conversion interface. The converter may be held at idle in auto-zero with RUN/HOLD low. The conversion is started when RUN/ HOLD goes high and the new data is valid when the STATUS output goes low (or is transferred to the UARTsee Handshake Mode). Run/ $\overline{H O L D}$ may now go low, terminating deintegrate and ensuring a minimum auto-zero time before stopping to wait for the next conversion. Conversion time can be minimized by ensuring RUN/ $\overline{H O L D}$ goes low during deintegrate, after zero crossing, and goes high after the hold point is reached. The required activity on the RUN/ HOLD input can be provided by connecting it to the Buffered Oscillator output. In this mode, the input value measured determines the conversion time.

Signal Integrate Phase (SIP) Output

The SIP output is high when the TC804 is in the Signal integrate phase of a conversion. SIP should be used to control multiplexer address changes. The falling edge of SIP indicates that the TC804 has completed signal integration for the current conversion cycle, and that the analog input can be changed. Changing the multiplexer address on the falling edge of SIP will guarantee maximum analog input signal settling time before the next conversion.

12-BIT μ P-COMPATIBLE MULTIPLEXED Á/D CONVERTER

TC804

Oscillator

The TC804 is designed to operate with an internal crystal oscillator or with an external clock. The oscillator mode is selected with the INT/EXT input. A programmable divider permits control of the conversion rate, using hardware or software, over a range of 8 to 1.

For external oscillator operation, the INT/EXT input is connected to DGND. The external oscillator is connected to the OSC1 input, as shown in Figure 10. The oscillator signal should swing from DGND to V_{+}. The ADC system clock frequency will be the oscillator frequency divided by the value selected by the frequency select divider.

Connecting INT/EXT to $\mathrm{V}+$ enables the internal crystal oscillator. Two on-chip capacitors and a feedback device
are added to the oscillator, as shown in Figure 11. A crystal is then connected to the OSC1 and OSC0 inputs. In this configuration, the oscillator will operate with most crystals in the 1 to 5 MHz range.

The conversion rate is pin programmable, using the FSO and FS1 inputs. The frequency select divider will divide the oscillator frequency by 2, 4, 8 or 16. The buffered ADC system clock is available at the SYSCLK output. Divider values can be hard-wired or jumper selected, or can be controlled by software via two bits of a $\mu \mathrm{P}$ output port. The divider truth table is shown in Figure 12.

Figure 7 TC804 RUN/HOLD Operation

Figure 10 External Oscillator Connection

Figure 11 TC804 Crystal Oscillator

12-BIT μ P-COMPATIBLE MULTIPLEXED A/D CONVERTER

Figure 8 Conversion Timing (RUN/HOLD Pin High)

Figure 9 Digital Section

12-BIT μ P-COMPATIBLE MULTIPLEXED A/D CONVERTER

Test Input

The counter and its outputs may be tested easily. When the TEST input is connected to DGND, the internal clock is disabled, and the counter outputs are all forced into the high state. When the input returns to the $1 / 2\left(V_{+}-\right.$DGND) voltage or to $\mathrm{V}+$ and one clock is input, the counter outputs will all be clocked to the low state.

The counter output latches are enabled when the TEST input is taken to a level halfway between V_{+}and DGND allowing the counter contents to be examined anytime.

Component Value Selection

The integrator output swing for full-scale should be as large as possible. For example, with $\pm 5 \mathrm{~V}$ supplies and ANALOG COMMON connected to DGND, the nominal integrator output swing at full-scale is $\pm 4 \mathrm{~V}$. Since the integrator output can go to 0.3 V from either supply without significantly effecting linearity, a 4 V integrator output swing allows 0.7 V for variations in output swing due to component value and oscillator tolerances. With $\pm 5 \mathrm{~V}$ supplies and a common-mode voltage range of $\pm 1 \mathrm{~V}$ required, the component values should be selected to provide $\pm 3 \mathrm{~V}$ integrator output swing. Noise and rollover errors will be slightly worse than in the $\pm 4 \mathrm{~V}$ case. For large common-mode voltage ranges, the integrator output swing must be reduced further. This will increase both noise and rollover errors. To improve the performance, $\pm 6 \mathrm{~V}$ supplies may be used.

Figure 12 Recommended Component Values for VFS $=409.6 \mathrm{mV}$. (See Table Following Page.)

Integrating Capacitor

The integrating capacitor $\mathrm{C}_{\mathrm{INT}}$ should be selected to give the maximum integrator output voltage swing that will not saturate the integrator to within 0.3 V from either supply. $\mathrm{A} \pm 3.5 \mathrm{~V}$ to $\pm 4 \mathrm{~V}$ integrator output swing is nominal for the TC804 with $\pm 5 \mathrm{~V}$ supplies and ANALOG COMMON connected to DGND. For7-1/2 conversionspersecond (61.72 Hz internal clock frequency) nominal values $\mathrm{C}_{\mathrm{INT}_{T}}$ and C_{AZ} are $0.15 \mu \mathrm{~F}$ and $0.33 \mu \mathrm{~F}$, respectively. These values should be changed if different clock frequencies are used to maintain the integrator output voltage swing. The value of $\mathrm{C}_{\mathrm{INT}}$ is given by:

$$
\mathrm{C}_{\mathrm{INT}}=\frac{(2048 \times \text { Clock Period })(20 \mu \mathrm{~A})}{\text { Integrator Output Voltage Swing }\left(\mathrm{V}_{\mathrm{INT}}\right)}
$$

Integrating Converter Features

The output of integrating A/D converters represents the integral or average of an input voltage over a fixed period of time. Compared with techniques in which the input is sampled and held, the integrating converter will average the effects of noise. A second important characteristic is that time is used to quantise the answer, resulting in extremely small non-linearity errors and no missing output codes. The integrating converter also has very good rejection of frequencies whose periods are an integral multiple of the measurement period. This feature can be used to advantage in reducing line frequency noise. (Figure 13.)

Figure 13 Normal Mode Rejection of Dual-Slope Converter as a Function of Frequency.

12-BIT μ P-COMPATIBLE

 MULTIPLEXED A/D CONVERTER| Conversion Rate | FS $_{\mathbf{1}}$ | $\mathbf{F S}_{\mathbf{0}}$ | $\mathbf{R}_{\mathbf{I N T}}$ | $\mathbf{C}_{\mathbf{A Z}}$ | $\mathbf{C}_{\mathbf{I N T}}$ | $\mathbf{R}_{\mathbf{X}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 60 Conv/Sec | 0 | 0 | 24 K | $.033 \mu$ | $.015 \mu$ | 50Ω |
| 30 Conv/Sec | 0 | 1 | 24 K | $.068 \mu$ | $.033 \mu$ | 50Ω |
| 15 Conv/Sec | 1 | 0 | 24 K | 0.15μ | $.068 \mu$ | 50Ω |
| 7.5 Conv/Sec | 1 | 1 | 20 K | 0.33μ | 0.15μ | 0Ω |

Multiply RINT by ≈ 50 for VFS $=2.048 \mathrm{~V}$.

NOTES

*NTELEDYNE COMPONENTS

15-BIT, FAST-INTEGRATING CMOS ANALOG-TO-DIGITAL CONVERTER FEATURES

- 15-bit Resolution Plus Sign Bit
- Up to 40 Conversions per Second
- 12 Conversions per Second Guaranteed
- Integrating ADC Technique
- Monotonic
- High Noise Immunity
- Auto-Zeroed Amplifiers Eliminate Offset Trimming
- Wide Dynamic Range 96 dB
- Low Input Bias Current .30 pA
■ Low Input Noise .. 30μ V P-P
- Sensitivity $100 \mu \mathrm{~V}$
- Flexible Operational Control
- Continuous or On-Demand Conversions
- Data Valid Output
- Bus Compatible, 3-State Data Outputs
- 8-Bit Data Bus
- Simple μ P Interface
- Two Chip Enables
- Read ADC Result Like Memory
- $\pm 5 \mathrm{~V}$ Power Supply Operation \qquad 20 mW
- 40-Pin Dual-in-Line or 44-Pin PLCC Packages

FUNCTIONAL DIAGRAM

15-BIT, FAST-INTEGRATING CMOS ANALOG-TO-DIGITAL CONVERTER

TC850

GENERAL DESCRIPTION

The TC850 is a monolithic CMOS analog-to-digital converter (ADC) with resolution of 15 bits plus sign. It combines a chopper-stabilized buffer and integrator with a unique multiple-slope integration technique that increases conversion speed. The result is 16 times improvement in speed over previous 15 -bit, monolithic integrating ADCs (from 2.5 conversions per sec up to 40 per sec). Faster conversion speed is especially welcome in systems with human interface, such as digital scales.

The TC850 incorporates an ADC and a $\mu \mathrm{P}$-compatible digital interface. Only a voltage reference and a few noncritical passive components are required to form a complete 15bit plus sign ADC.

CMOS processing provides the TC850 with highimpedance differential inputs. Input bias current is typically only 30 pA , permitting direct interface to sensors. Input sensitivity of $100 \mu \mathrm{~V}$ per least significant bit (LSB) eliminates the need for precision external amplifiers. The internal amplifiers are auto-zeroed, guaranteeing a zero digital output with 0 V analog input. Zero adjustment potentiometers or calibrations are not required.

The TC850 outputs data on an 8-bit, 3-state bus. Digital inputs are CMOS compatible; outputs are TTL/CMOS compatible. Chip-enable and byte-select inputs combined with an end-of-conversion output ensures easy interfacing to a wide variety of microprocessors. Conversions can be performed continuously or on command. In continuous mode, data is read as three consecutive bytes and manipulation of address lines is not required.

Operating from $\pm 5 \mathrm{~V}$ supplies, the TC850 dissipates only 20 mW . It is packaged in 40-pin plastic or ceramic dual-inline packages (DIPs) and in a 44-pin plastic leaded chip carrier (PLCC), surface-mount package.

ORDERING INFORMATION

Part No.	Package	Temperature Range
TC850CLW	$44-$ Pin PLCC	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC850CPL	$40-$ Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC850ILW	$44-$ Pin PLCC	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC850IJL	$40-$ Pin CerDIP	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

PIN CONFIGURATIONS

15-BIT, FAST-INTEGRATING CMOS ANALOG-TO-DIGITAL CONVERTER

ABSOLUTE MAXIMUM RATINGS

Positive Supply Voltage ($\mathrm{V}_{\mathrm{S}^{+}}$to GND) +6 V
Negative Supply Voltage (V^{-}to GND)-9V
Analog Input voltage (IN^{+}or IN^{-}) $\mathrm{V}_{\mathrm{S}^{+}}$to $\mathrm{V}_{\mathrm{S}^{-}}$
Voltage Reference Input
$\left(\right.$ REF $_{1}{ }^{+}$, REF $_{1}^{-}$, REF $_{2}{ }^{+}$) $\mathrm{V}_{\mathrm{S}^{+}}$to $\mathrm{V}_{\mathrm{S}^{-}}$
Logic Input Voltage $\mathrm{V}_{\mathrm{S}^{+}}+0.3 \mathrm{~V}$ to GND -0.3 V
Current Into Any Pin ... 10 mA
While Operating ... $100 \mu \mathrm{~A}$
Ambient Operating Temperature Range
C Device .. $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
I Device $25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Lead Temperature (Soldering, 10 sec) $+300^{\circ} \mathrm{C}$	
Package Power Dissipation	
CerDIP	1W@+85 ${ }^{\circ} \mathrm{C}$
Plastic DIP	0.5W@+70 ${ }^{\circ} \mathrm{C}$
Plastic PLCC Package .	$0.5 \mathrm{~W} @+70^{\circ} \mathrm{C}$

Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to Absolute Maximum Rating Conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS: $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{f}$ CLK $=61.44 \mathrm{kHz}, \mathrm{V}_{\mathrm{FS}}=3.2768 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Fig. 1 Test Circuit

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
	Zero-Scale Error	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$		± 0.25	± 0.5	LSB
	End Point Linearity Error	$-\mathrm{V}_{\mathrm{FS}} \leq \mathrm{V}_{\text {IN }} \leq+\mathrm{V}_{\mathrm{FS}}$	-	± 1	± 2	LSB
	Differential Nonlinearity		-	± 0.1	± 0.5	LSB
$\overline{\text { IN }}$	Input Leakage Current	$\begin{aligned} & \mathrm{V}_{I N}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \\ & -25^{\circ} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \end{aligned}$	-	$\frac{30}{1.1}$	$\frac{75}{3}$	pA nA
$\mathrm{V}_{\text {CMR }}$	Common-Mode Voltage Range	Over Operating Temperature Range	$\mathrm{V}^{-}+1.5$	-	$\mathrm{V}^{+}-1.5$	V
CMRR	Common-Mode Rejection Ratio	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}= \pm 1 \mathrm{~V}$	-	80	-	dB
	Full-Scale Gain Temperature Coefficient	External Ref Temperature Coefficient $=0 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$	-	2	5	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
	Zero-Scale Error Temperature Coefficient	$\begin{aligned} & V_{I N}=0 \mathrm{~V} \\ & 0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C} \end{aligned}$	-	0.3	2	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
	Full-Scale Magnitude Symmetry Error	$\mathrm{V}_{\mathrm{IN}}= \pm 3.275 \mathrm{~V}$	-	0.5	2	LSB
e_{N}	Input Noise	Not Exceeded 95\% of Time	-	30	-	$\mu \mathrm{V}$ P-P
IS^{+}	Positive Supply Current		-	2	3.5	mA
s^{-}	Negative Supply Current		-	2	3.5	mA
V_{OH}	Output High Voltage	$\mathrm{l}_{0}=500 \mu \mathrm{~A}$	3.5	4.9	-	V
$\mathrm{V}_{\text {OL }}$	Output Low Voltage	$\mathrm{l}_{0}=1.6 \mathrm{~mA}$	-	0.15	0.4	V
lop	Output Leakage Current	Pins 8-15, High-Impedance State	-	0.1	1	$\mu \mathrm{A}$
$\mathrm{V}_{1 H}$	Input High Voltage	Note 3	3.5	2.3	-	V
1 L	Input Low Voltage	Note 3	-	2.1	1	V
Ipu	Input Pull-Up Current	Pins 2, 3, 4, 6, 7; $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	-	4	-	$\mu \mathrm{A}$
PPD	Input Pull-Down Current	Pins 1,5; $\mathrm{V}_{\mathbb{N}}=5 \mathrm{~V}$	-	14	-	$\mu \mathrm{A}$
losc	Oscillator Output Current	Pin 18, $\mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}$	-	140	-	$\mu \mathrm{A}$
$\mathrm{CIN}^{\text {IN }}$	Input Capacitance	Pins 1-7, 17	-	1	-	pF
Cout	Output Capacitance	Pins 8-15, High-Impedance State	-	15	-	pF
${ }_{\text {t }}^{\text {CE }}$	Chip-Enable Access Time	CS or $\overline{\mathrm{CE}}, \overline{\mathrm{RD}}=$ Low (Note 1)	-	230	450	ns
$t_{\text {te }}$	Read-Enable Access Time	$\mathrm{CS}=$ High, $\overline{\mathrm{CE}}=$ Low (Note 1)	-	190	450	ns
$\mathrm{t}_{\text {DHC }}$	Data Hold From CS or $\overline{\mathrm{CE}}$	$\overline{\mathrm{R}}$ = Low (Note 1)	-	250	450	ns
$t_{\text {DHR }}$	Data Hold From RD	$\mathrm{CS}=$ High, $\overline{\mathrm{CE}}=$ Low (Note 1)	-	210	450	ns
top	OVR//POL Data Access Time	$\begin{aligned} & \mathrm{CS}=\text { High, } \overline{\mathrm{CE}}=\text { Low, } \overline{\mathrm{RD}}=\text { Low } \\ & \text { (Note 1) } \end{aligned}$	-	140	300	ns

15-BIT, FAST-INTEGRATING CMOS ANALOG-TO-DIGITAL CONVERTER

TC850

ELECTRICAL CHARACTERISTICS (Cont.)

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
$t_{\text {LH }}$	Low/High Byte Access Time	$\mathrm{CS}=$ High, $\overline{\mathrm{CE}}=$ Low, $\overline{\mathrm{RD}}=$ Low (Note 1)	-	140	300	ns
	Clock Setup Time	Positive or Negative Pulse Width	100	-	-	ns
$\mathrm{t}_{\text {WRE }}$	$\overline{\mathrm{RD}}$ Minimum Pulse Width	$\mathrm{CS}=$ High, $\overline{\mathrm{CE}}=$ Low (Note 2)	450	230	-	ns
$\mathrm{t}_{\text {WRD }}$	$\overline{\mathrm{RD}}$ Minimum Delay Time	$\mathrm{CS}=$ High, $\overline{\mathrm{CE}}=$ Low (Note 2)	150	50	-	ns
$\mathrm{t}_{\text {WWR }}$	$\overline{W R}$ Minimum Pulse Width	$\mathrm{CS}=$ High, $\overline{\mathrm{CE}}=$ Low, Demand Mode	75	25	-	ns
	Clock Setup Time	Positive or Negative Pulse Width	100			ns

NOTES: 1. Demand mode, CONT/DEMAND $=$ low. Figure 10 timing diagram. $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
2. Continuous mode, CONT/DEMAND $=$ high. Figure 12 timing diagram
3. Digital inputs have CMOS logic levels and internal pull-up/pull-down resistors. For TTL compatibility, external pull-up resistors to VCC are recommended.

PIN DESCRIPTIONS

40-Pin DIP Pin No.	Symbol	Description
1	CS	Chip select, active high. Logically ANDed with $\overline{\mathrm{CE}}$ to enable read and write inputs. (See note 4.)
2	$\overline{\mathrm{CE}}$	Chip enable, active low. (See note 5.)
3	WR	Write input, active low. When chip is selected (CS = high and CE = low) and in demand mode (CONT/DEMAND $=$ low), a logic low on WR starts a conversion. (See note 4.)
4	$\overline{\mathrm{RD}}$	Read input, active low. When $\mathrm{CS}=$ high and $\overline{\mathrm{CE}}=$ low, a logic low on $\overline{\mathrm{RD}}$ enables the 3-state data outputs. (See note 5.)
5	CONT/DEMAND	Conversion control input. When CONT/DEMAND $=$ low, conversions are initiated by the WR input. When CONT/DEMAND $=$ high, conversions are performed continuously. (See note 4.)
6	OVR/POL	Overrange/polarity data-select input. When making conversions in the demand mode (CONT/ $\overline{\text { DEMAND }}=$ low), OVR/POL controls the data output on DB7 when the high-order byte is active. (See note 5.)
7	L/H	Low/high byte-select input. When CONT/DEMAND = low, this input controls whether low-byte or high-byte data is enabled on DB0 through DB7. (See note 5.)
8	DB7	Most significant data bit output. When reading the A/D conversion result, the polarity, overrange, and DB7 data are output on this pin. (See text.)
9-15	DB6-DB0	Data outputs DB6-DB0. 3-state, bus compatible.
16	BUSY	A/D conversion status output. BUSY goes to a logic high at the beginning of the deintegrate phase and goes low when conversion is complete. The falling edge of BUSY can be used to generate a $\mu \mathrm{P}$ interrupt.
17	OSC_{1}	Crystal oscillator connection or external oscillator input.
18	OSC_{2}	Crystal oscillator connection.
19	TEST	For factory testing purposes only. Do not make external connection to this pin.
20	DGND	Digital ground connection.
21	COMP	Connection for comparator auto-zero capacitor. Bypass to $\mathrm{V}^{-}{ }^{-}$with $0.1 \mu \mathrm{~F}$.
$\underline{22}$	$\mathrm{V}_{\mathrm{S}}{ }^{-}$	Negative power supply connection, typically -5 V .
$\underline{23}$	INTout	Output of the integrator amplifier. Connect to $\mathrm{C}_{\text {INT }}$.
$\underline{24}$	INT ${ }_{\text {IN }}$	Input to the integrator amplifier. Connect to summing node of $\mathrm{R}_{\text {INT }}$ and $\mathrm{C}_{\text {INT }}$.
25	BUFFER	Output of the input buffer. Connect to Rint.
26	$\mathrm{C}_{\text {BUFB }}$	Connection for buffer auto-zero capacitor. Bypass to $\mathrm{V}^{-}{ }^{-}$with $0.1 \mu \mathrm{~F}$.
27	C BuFA	Connection to buffer auto-zero capacitor. Bypass to $\mathrm{V}^{-}{ }^{-}$with $0.1 \mu \mathrm{~F}$.
28	$\mathrm{C}_{\text {INTA }}$	Connection for integrator auto-zero capacitor. Bypass to V^{-}with $0.1 \mu \mathrm{~F}$.
$\underline{29}$	$\mathrm{C}_{\text {INTB }}$	Connection for integrator auto-zero capacitor. Bypass to $\mathrm{V}^{-}{ }^{-}$with $0.1 \mu \mathrm{~F}$.
30	COMMON	Analog common.
31	IN^{-}	Negative differential analog input.

15-BIT, FAST-INTEGRATING CMOS ANALOG-TO-DIGITAL CONVERTER

PIN DESCRIPTIONS

40-Pin DIP Pin No.	Symbol	Description
30	COMMON	Analog common.
33	$\mathrm{REF}_{2}{ }^{+}$	Positive input for reference voltage $\mathrm{V}_{\text {REF } 2}$. $\left(\mathrm{V}_{\mathrm{REF} 2}=\mathrm{V}_{\text {REF } 1 / 64}\right.$)
34	$\mathrm{CREF2}^{+}$	Positive connection for $\mathrm{V}_{\text {REF2 }}$ reference capacitor.
35	$\mathrm{CREF2}^{-}$	Negative connection for $\mathrm{V}_{\text {REF2 }}$ reference capacitor.
36	REF ${ }^{-}$	Negative input for reference voltages.
37	$\mathrm{CREF}_{1}{ }^{-}$	Negative connection for $\mathrm{V}_{\text {REF } 1}$ reference capacitor.
38	$\mathrm{C}_{\text {REF } 1}{ }^{+}$	Positive connection for $V_{\text {REF } 1}$ reference capacitor.
39	$\mathrm{REF}_{1}{ }^{+}$	Positive input for $\mathrm{V}_{\text {REF } 1}$.
40	$\mathrm{V}^{+}{ }^{+}$	Positive power supply connection, typically +5 V .

NOTES: 4. This pin incorporates a pull-down resistor to DGND.
5. This pin incorporates a pull-up resistor to $\mathrm{V}_{\mathrm{S}^{+}}$.

THEORY OF OPERATION

The TC850 is a multiple-slope, integrating analog-todigital converter (ADC). The multiple-slope conversion process, combined with chopper-stabilized amplifiers, results in a significant increase in ADC speed, while maintaining very high resolution and accuracy.

Dual-Slope Conversion Principles

The conventional dual-slope converter measurement cycle (shown in Figure 2A) has two distinct phases:
(1) Input signal integration
(2) Reference voltage integration (deintegration)

The input signal being converted is integrated for a fixed time period, measured by counting clock pulses. An opposite polarity constant reference voltage is then integrated until the integrator output voltage returns to zero. The reference integration time is directly proportional to the input signal.

In a simple dual-slope converter, complete conversion requires the integrator output to "ramp-up" and "rampdown." Most dual-slope converters add a third phase, autozero. During auto-zero, offset voltages of the input buffer, integrator, and comparator are nulled, thereby eliminating the need for zero-offset adjustments.

Dual-slope converter accuracy is unrelated to the integrating resistor and capacitor values, as long as they are stable during a measurement cycle. By converting the unknown analog input voltage into an easily-measured function of time, the dual-slope converter reduces the need for expensive, precision passive components.

Noise immunity is an inherent benefit of the integrating conversion method. Noise spikes are integrated, or averaged, to zero during the integration period. Integrating ADCs
are immune to the large conversion errors that plague successive approximation converters in high-noise environments.

A simple mathematical equation relates the input signal, reference voltage, and integration time:

$$
\frac{1}{R C} \int_{0}^{t_{S I}} V_{I N}(t) d t=\frac{V_{R} t_{R I}}{R C}
$$

where: $V_{R}=$ Reference voltage
$\mathrm{t}_{\mathrm{SI}}=$ Signal integration time (fixed)
$t_{\text {RI }}=$ Reference voltage integration time (variable).

Multiple-Slope Conversion Principles

One limitation of the dual-slope measurement technique is conversion speed. In a typical dual-slope method, the auto-zero and integrate times are each one-half of the deintegrate time. For a 15-bit conversion, $2^{14}+2^{14}+2^{15}$ $(65,536)$ clock pulses are required for auto-zero, integrate, and deintegrate phases, respectively. The large number of clock cycles effectively limits the conversion rate to about 2.5 conversions per second, when a typical analog CMOS fabrication process is used.

The TC850 uses a multiple-slope conversion technique to increase conversion speed (Figure 2B). This technique makes use of a two-slope deintegration phase and permits 15 -bit resolution up to 40 conversions per second.

During the TC850's deintegration phase, the integration capacitor is rapidly discharged to yield a resolution of 9 bits. At this point, some charge will remain on the capacitor. This remaining charge is then slowly deintegrated, producing an additional 6 bits of resolution. The result is 15 bits of resolution achieved with only $2^{9}+2^{6}(512+64$, or 576$)$ clock pulses for deintegration. A complete conversion cycle occupies only 1280 clock pulses.

NOTES: Unless otherwise specified, all $0.1 \mu \mathrm{~F}$ capacitors are film dielectric. Ceramic capacitors are not recommended.
NC = No internal connection

* Polypropylene capacitors
** 100 pF Mica capacitors.
Figure 1 Standard Circuit Configuration
In order to generate "fast-slow" integration phases, two voltage references are required. The primary reference ($\mathrm{V}_{\mathrm{REF} 1}$) is set to one-half of the full-scale voltage (typically $\mathrm{V}_{\mathrm{REF} 1}=1.6384 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{FS}}=3.2768 \mathrm{~V}$). The secondary voltage reference ($\mathrm{V}_{\mathrm{REF} 2}$) is set to $\mathrm{V}_{\mathrm{REF} 1} / 64$ (typically 25.6 mV). To maintain 15 -bit linearity, a tolerance of 0.5% for $V_{\text {REF2 }}$ is recommended.

ANALOG SECTION DESCRIPTION

The TC850 analog section consists of an input buffer amplifier, integrator amplifier, comparator, and analog switches. A simplified block diagram is shown in Figure 3.

Conversion Timing

Each conversion consists of three phases: (1) Zero Integrator, (2) Signal Integrate, and (3) Reference Integrate (or Deintegrate). Each conversion cycle requires 1280 internal clock cycles (Figure 4).

Figure 2A Dual-Slope ADC Cycle

Figure 2B "Fast-Slow" Reference Deintegrate Cycle

Zero-Integrator Phase

During the zero-integrator phase, the differential input signal is disconnected from the circuit by opening internal analog gates. The internal nodes are shorted to analog common (ground) to establish a zero-input condition. At the same time, a feedback loop is closed around the input buffer, integrator, and comparator. The feedback loop ensures the integrator output is near 0 V before the signal-integrate phase begins.

During this phase, a chopper-stabilization technique is used to cancel offset errors in the input buffer, integrator, and comparator. Error voltages are stored on the CBUFF, $\mathrm{C}_{\text {INT }}$, and COMP capacitors. The zero-integrate phase requires 246 clock cycles.

Signal-Integrate Phase

The zero-integrator loop is opened and the internal differential inputs are connected to IN^{+}and IN^{-}. The differential input signal is integrated for a fixed time period. The TC850 signal-integrate period is 256 clock periods, or counts. The crystal oscillator frequency is $\div 4$ before clocking the internal counters.

15-BIT, FAST-INTEGRATING CMOS ANALOG-TO-DIGITAL CONVERTER

Figure 3 Analog Section Simplified Schematic

Figure 4 Conversion Timing

The integration time period is:

$$
t_{\mathrm{SI}}=\frac{4}{f_{\mathrm{OSC}}} \times 256
$$

Reference-Integrate Phase

During reference-integrate phase, the charge stored on the integrator capacitor is discharged. The time required to discharge the capacitor is proportional to the analog input voltage.

The reference integrate phase is divided into three subphases: (1) fast, (2) slow, and (3) overrange deintegrate.

During fast deintegrate, $\mathrm{V}_{\mathbb{N}^{-}}$is internally connected to analog common and $\mathrm{V}_{\mathbb{N}^{+}}$is connected across the previ-ously-charged reference capacitor ($\mathrm{C}_{\text {REF1 }}$). The integrator capacitor is rapidly discharged for a maximum of 512 internal clock pulses, yielding 9 bits of resolution.

During the slow deintegrate phase, the internal $\mathrm{V}_{\mathrm{IN}^{+}}$node is now connected to the $\mathrm{C}_{\text {REF2 }}$ capacitor, and the residual charge on the integrator capacitor is further discharged a maximum of 64 clock pulses. At this point, the analog input voltage has been converted with 15 bits of resolution.

If the analog input is greater than full scale, the TC850 performs up to three overrange deintegrate subphases. Each subphase occupies a maximum of 64 clock pulses. The overrange feature permits analog inputs up to 192 LSBs greater than full scale to be correctly converted. This feature permits the user to digitally null up to 192 counts of input offset, while retaining full 15 -bit resolution.

In addition to 512 counts of fast, 64 counts of slow, and 192 counts of overrange deintegrate, the reference-integrate phase uses 10 clock pulses to permit internal nodes to settle. Therefore, the reference integrate cycle occupies 778 clock pulses.

15-BIT, FAST-INTEGRATING CMOS ANALOG-TO-DIGITAL CONVERTER

TC850

Pin Description (Analog)

Differential Inputs (IN^{+}and IN^{-})

The analog signal to be measured is applied at the $1 \mathrm{~N}^{+}$ and IN^{-}inputs. The differential input voltage must be within the common-mode range of the converter. The input com-mon-mode range extends from $\mathrm{V}_{\mathrm{S}^{+}}-1.5 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{S}}{ }^{-}+1.5 \mathrm{~V}$. Within this common-mode voltage range, an 86 dB CMRR is typical.

The integrator output also follows the common-mode voltage. The integrator output must not be allowed to saturate. A worst-case condition exists, for example, when a large, positive common-mode voltage with a near full-scale negative differential input voltage is applied. The negative input signal drives the integrator positive when most of its available swing has been used up by the positive commonmode voltage. For applications where maximum commonmode range is critical, integrator swing can be reduced. The integrator output can swing within 0.4 V of either supply without loss of linearity.

Differential Reference (VREF)

The TC850 requires two reference voltage sources in order to generate the "fast-slow" deintegrate phases. The main voltage reference ($\mathrm{V}_{\mathrm{REF} 1}$) is applied between the $R E F_{1}{ }^{+}$and $R E F^{-}$pins. The secondary reference ($\mathrm{V}_{\text {REF2 }}$) is applied between the $\mathrm{REF}_{2}{ }^{+}$and REF^{-}pins.

The reference voltage inputs are fully differential, and the reference voltage can be generated anywhere within the power supply voltage of the converter. However, to minimize roll-over error, especially at high conversion rates, keep the reference common-mode voltage (i.e., REF-) near or at the analog common potential. All voltage reference inputs are high impedance. Average reference input current is typically only 30 pA .

Analog Common (COMMON)

Analog common is used as the IN^{-}return during the zero-integrator and deintegrate phases of each conversion. If IN^{-}is at a different potential than analog common, a common-mode voltage exists in the system. This signal is rejected by the 86 dB CMRR of the converter. However, in most applications, IN^{-}will be set at a fixed, known voltage (power supply common, for instance). In this case, analog common should be tied to the same point so that the common-mode voltage is eliminated.

DIGITAL SECTION DESCRIPTION

The TC850 digital section consists of two sets of conversion counters, control and sequencing logic, clock oscillator and divider, data latches, and an 8-bit, 3-state interface bus. A simplified schematic of the bus interface logic is shown in Figure 5.

Figure 5 Bus Interface Simplified Schematic

15-BIT, FAST-INTEGRATING CMOS ANALOG-TO-DIGITAL CONVERTER

Clock Oscillator

The TC850 includes a crystal oscillator on-chip. All that is required is to connect a crystal across OSC C_{1} and OSC $_{2}$ pins, and to add two inexpensive capacitors (Figure 1). The oscillator output is +4 prior to clocking the A / D internal counters. For example, a 100 kHz crystal produces a system clock frequency of 25 kHz . Since each conversion requires 1280 clock periods, in this case the conversion rate will be $25,000 / 1280$, or 19.5 conversions per second.

In most applications, however, an external clock is divided down from the microprocessor clock. In this case, the OSC_{1} pin is used as the external oscillator input and OSC_{2} is left unconnected. The external clock driver should swing from digital ground to $\mathrm{V}_{\mathrm{S}^{+}}$. The $\div 4$ function is active for both external clock and crystal oscillator operations.

Digital Operating Modes

Two modes of operation are available with the TC850, continuous conversions and on-demand. The operating mode is controlled by the CONT/DEMAND input. The bus interface method is different for continuous and demand modes of operation.

Demand Mode Operation

When CONT/DEMAND is low, the TC850 performs one conversion each time the chip is selected and the $\overline{W R}$ input is pulsed low. Data is valid on the falling edge of the BUSY output and can be accessed using the interface truth table (Table I).

Continuous Mode Operation

When CONT/DEMAND is high, the TC850 continuously performs conversions. Data will be valid on the falling edge of the BUSY output, and remains valid for 443-1/2 clock cycles.

The low/high $(\mathrm{L} / \overline{\mathrm{H}})$ byte-select and overrange/polarity (OVR/ $\overline{\mathrm{POL}}$) inputs are disabled during continuous mode operation. Data must be read in three consecutive bytes, as shown in Table I.

NOTE: In continuous mode, the conversion result must be read within 443$1 / 2$ clock cycles of the BUSY output falling edge. After this time (i.e., $1 / 2$ clock cycle before BUSY goes high) the internal counters are reset and the data is lost.

Table I. Bus Interface Truth Table

$\overline{C E} \cdot C S$	$\overline{\mathbf{R D}}$	CONT/DEMAND	L/ \bar{H}	OVR/POL	DB7	DB6-DB0
Pins 1 and 2	Pin 4	Pin 5	Pin 7	Pin 6	Pin 8	Pin 9-Pin 15 (Note 1)
0	0	0	0	0	"1" = Input Positive	Data Bits 14-8
0	0	0	0	1	"1" = Input Overrange (Note 2)	Data Bits 14-8
0	0	0	1	X	Data Bit 7	Data Bits 6-0
0	0	1	X	X	Note 3	
0	1	X	X	X	High-Impedance State	
1	X	X	X	X	High-Impedance State	

NOTES: 1. Pin numbers refer to 40-pin DIP.
2. Extended overrange operation: Although rated at 15 bits ($\pm 32,767$ counts) of resolution, the TC850 provides an additional 191 counts above full scale. For example, with a full-scale input of 3.2768 V , the maximum analog input voltage which will be properly converted is 3.2958 V . The extended resolution is signified by the overrange bit being high and the low-order byte contents being between 0 and 190 . For example, with a full-scale voltage of 3.2768 V :

$V_{1 N}$	Overrange Bit	Low Byte	Data Bits $\mathbf{1 4 - 8}$
3.2767 V	Low	255_{10}	127_{10}
3.2768 V	High	000_{10}	0_{10}
3.2769 V	High	001_{10}	0_{10}
3.2867 V	High	099_{10}	0_{10}

3. Continuous mode data transfer:
a. In continuous mode, data MUST be read in three sequential bytes after the BUSY output goes low:
(1) The first byte read will be the high-order byte, with DB7 = polarity.
(2) The second byte read will contain the low-order byte.
(3) The third byte read will again be the high-order byte, but with DB7 = overrange.
b. All three data bytes must be read within $443-1 / 2$ clock cycles after the falling edge of BUSY.
c. The $\overline{R D}$ input must go high after each byte is read, so that the internal byte counter will be incremented. However, the $C S$ and $\overline{C E}$ inputs can remain enabled through the entire data transfer sequence.

15-BIT, FAST-INTEGRATING CMOS ANALOG-TO-DIGITAL CONVERTER

Pin Description (Digital)

Chip Select and Chip Enable (CS and $\overline{\mathrm{CE}}$)

The CS and $\overline{\mathrm{CE}}$ inputs permit easy interfacing to a variety of digital bus systems. $\overline{\mathrm{CE}}$ is active low while CS is active high. These inputs are logically ANDed internally and are used to enable the $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ inputs.

Write Enable Input ($\overline{\mathrm{WR}}$)

The write input is used to initiate a conversion when the TC850 is in demand mode. CS and CE must be active for the $\overline{W R}$ input to be recognized. The status of the data bus is meaningless during the $\overline{W R}$ pulse, because no data is actually written into the TC850.

Read Enable Input ($\overline{\text { RD }}$)

The read input, combined with CS and $\overline{C E}$, enables the 3 -state data bus outputs. Also, in continuous mode, the rising edge of the $\overline{\mathrm{RD}}$ input activates an internal byte counter to sequentially read the three data bytes.

Low/High Byte Select (L/ $\overline{\mathrm{H}}$)

The L / \bar{H} input determines whether the low (least significant) byte or high (most significant) byte of data is placed on the 3 -state data bus. This input is meaningful only when the TC850 is in the demand mode. In the continuous mode, data must be read in three predetermined bytes, so the L / \bar{H} input is ignored

Overrange/Polarity Bit Select (OVR//(POL)

The TC850 provides 15 bits of resolution, plus polarity and overrange bits. Thus, 17 bits of information must be transferred on an 8 -bit data bus. To accomplish this, the overrange and polarity bits are multiplexed onto data bit DB7 of the most significant byte. When OVR/POL is high, DB7 of the high byte contains the overrange status (high = analog input overrange, low = input within full scale). When OVR/ POL is low, DB7 is high for positive analog input polarity and low for negative polarity. The OVR/POL input is meaningful only when $C S, \overline{C E}$, and $\overline{\mathrm{RD}}$ are active, and $\mathrm{L} / \overline{\mathrm{H}}$ is low (i.e., the most significant byte is selected). OVR/POL is ignored when the TC850 is in continuous mode.

Continuous/Demand Mode Input (CONT/DEMAND)

This input controls the TC850 operating mode. When CONT/DEMAND is high, the TC850 performs conversions continuously. In continuous mode, data must be read in the prescribed sequence shown in Table I. Also, all three data bytes must be read within 443-1/2 internal clock cycles after the BUSY output goes low. After 443-1/2 clock cycles data will be lost.

When CONT/DEMAND is low, the TC850 begins a conversion each time CS and $\overline{\mathrm{CE}}$ are active and $\overline{\mathrm{WR}}$ is
pulsed low. The conversion is complete and data can be read after the falling edge of the BUSY output. In demand mode, data can be read in any sequence, and remains valid until WR is again pulsed low.

Busy Output (BUSY)

The BUSY output is used to convey an end-of-conversion to external logic. BUSY goes high at the beginning of the deintegrate phase and goes low at the end of the conversion cycle. Data is valid on the falling edge of BUSY. The output-high period is fixed at 836 clock periods, regardless of the analog input value. BUSY is active during continuous and demand mode operation.

This output can also be used to generate an end-ofconversion interrupt in $\mu \mathrm{P}$-based systems. Noninterruptdriven systems can poll BUSY to determine when data is valid.

ANALOG SECTION APPLICATIONS Component Selection

Reference Voltage

The typical value for reference voltage $\mathrm{V}_{\text {REF1 }}$ is 1.6384 V . This value yields a full-scale voltage of 3.2768 V and resolution of $100 \mu \mathrm{~V}$ per step. The $\mathrm{V}_{\text {REF2 }}$ value is derived by dividing $\mathrm{V}_{\text {REF } 1}$ by 64 . Thus, typical $\mathrm{V}_{\text {REF } 2}$ value is $1.6384 \mathrm{~V} /$ 64 , or 25.6 mV . The $V_{\text {REF2 }}$ value should be adjusted within $\pm 1 \%$ to maintain 15 -bit accuracy for the total conversion process; i.e.,

$$
V_{\text {REF2 }}=\frac{V_{\text {REF } 1}}{64} \pm 1 \% .
$$

The reference voltage is not limited to exactly 1.6384 V , however, because the TC850 performs a ratiometric conversion. Therefore, the conversion result will be:

$$
\text { Digital counts }=\frac{V_{\mathbb{I N}}}{\mathrm{V}_{\mathrm{REF} 1}} \cdot 16384 .
$$

The full-scale voltage can range from 3.2 V to 3.5 V . Fullscale voltages of less than 3.2 V will result in increased noise in the least significant bits, while a full-scale above 3.5 V will exceed the input common-mode range.

Integration Resistor

The TC850 buffer supplies $25 \mu \mathrm{~A}$ of integrator charging current with minimal linearity error. RINT is easily calculated:

$$
\mathrm{R}_{\text {INT }}=\frac{\mathrm{V}_{\text {FULL SCALE }}}{25 \mu \mathrm{~A}}
$$

For a full-scale voltage of 3.2768 V , values of Rint between $120 \mathrm{k} \Omega$ and $150 \mathrm{k} \Omega$ are acceptable.

15-BIT, FAST-INTEGRATING CMOS ANALOG-TO-DIGITAL CONVERTER

Integration Capacitor

The integration capacitor should be selected to produce an integrator swing of $\approx 4 \mathrm{~V}$ at full scale. The capacitor value is easily calculated:

$$
C=\frac{V_{F S}}{R_{I N T}} \cdot \frac{4 \cdot 256}{4 V \cdot f_{C L O C K}}
$$

where $\mathrm{f}_{\mathrm{CLOCK}}$ is the crystal or external oscillator frequency and $V_{F S}$ is the maximum input voltage.

The integration capacitor should be selected for low dielectric absorption to prevent roll-over errors. A polypropylene, polyester or polycarbonate dielectric capacitor is recommended.

Reference Capacitors

The reference capacitors require a low leakage dielectric, such as polypropylene, polyester or polycarbonate. A value of $1 \mu \mathrm{~F}$ is recommended for operation over the temperature range. If high-temperature operation is not required, the $C_{\text {REF }}$ values can be reduced.

Auto-Zero Capacitors

Five capacitors are required to auto-zero the input buffer, integrator amplifier, and comparator. Recommended capacitors are $0.1 \mu \mathrm{~F}$ film dielectric (such as polyester or polypropylene). Ceramic capacitors are not recommended.

DIGITAL SECTION APPLICATION Oscillator

The TC850 may operate with a crystal oscillator. The crystal selected should be designed for a Pierce oscillator, such as an AT-cut quartz crystal. The crystal oscillator schematic is shown in Figure 6.

Since low frequency crystals are very large and ceramic resonators are too lossy, the TC850 clock should be derived from an external source, such as a microprocessor clock. The clock should be input on the OSC 1 pin and no connection should be made to the OSC_{2} pin. The external clock should swing between DGND and VS^{+}.

Since oscillator frequency is $\div 4$ internally and each conversion requires 1280 internal clock cycles, the conversion time will be:

$$
\text { Conversion time }=\text { fclock } \times 4 \times 1280
$$

An important advantage of the integrating ADC is the ability to reject periodic noise. This feature is most often used to reject line frequency (50 Hz or 60 Hz) noise. Noise rejection is accomplished by selecting the integration period
equal to one or more line frequency cycles. The desired clock frequency is selected as follows:

$$
f_{\text {CLOCK }}=f_{\text {NOISE }} \times 4 \times 256,
$$

where $f_{\text {NOISE }}$ is the noise frequency to be rejected, 4 represents the clock divider, and 256 is the number of integrate cycles.

For example, 60 Hz noise will be rejected with a clock frequency of 61.44 kHz , giving a conversion rate of 12 conversions/sec. Integer submultiples of 61.44 kHz (such as 30.72 kHz , etc.) will also reject 60 Hz noise. For 50 Hz noise rejection, a 51.2 kHz frequency is recommended.

If noise rejection is not important, other clock frequencies can be used. The TC850 will typically operate at conversion rates ranging from 3 to 40 conversions $/ \mathrm{sec}$, corresponding to oscillator frequencies from 15.36 kHz to 204.8 kHz .

Figure 6 Crystal Oscillator Schematic

Data Bus Interfacing

The TC850 provides an easy and flexible digital interface. A 3-state data bus and six control inputs permit the TC850 to be treated as a memory device, in most applications. The conversion result can be accessed over an 8-bit bus or via a $\mu \mathrm{P}$ I/O port.

A typical $\mu \mathrm{P}$ bus interface for the TC850 is shown in Figure 7. In this example, the TC850 operates in the demand mode, and conversion begins when a write operation is performed to any decoded address space. The BUSY output interrupts the $\mu \mathrm{P}$ at the end-of-conversion.

The A/D conversion result is read as three memory bytes. The two LSBs of the address bus select high/low byte and overrange/polarity bit data, while high-order address lines enable the $\overline{C E}$ input.

Figure 8 shows a typical interface to a $\mu \mathrm{P}$ I/O port or single-chip $\mu \mathrm{C}$. The TC850 operates in the continuous mode, and can either interrupt the $\mu \mathrm{C} / \mu \mathrm{P}$ or be polled with an input pin.

15-BIT, FAST-INTEGRATING CMOS ANALOG-TO-DIGITAL CONVERTER

Figure 7 Interface to Typical $\mu \mathrm{P}$ Data Bus

Figure 8 Interface to Typical $\mu \mathrm{P}$ I/O Port or Single-Chip $\mu \mathrm{C}$

Since the PA0-PA7 inputs are dedicated to reading A/D data, the A/D CS/ $\overline{C E}$ inputs can be enabled continuously. In continuous mode, data must be read in 3 bytes, as shown in Table I. The required $\overline{\mathrm{RD}}$ pulses are provided by a $\mu \mathrm{C} / \mu \mathrm{P}$ output pin.

The circuit of Figure 8 can also operate in the demand mode, with the start-up conversion strobe generated by a $\mu \mathrm{C} / \mu \mathrm{P}$ output pin. In this case, the L/TH and CONT/DEMAND inputs can be controlled by I/O pins and the $\overline{\mathrm{RD}}$ input connected to digital ground.

Demand Mode Interface Timing

When CONT/DEMAND input is low, the TC850 performs a conversion each time $\overline{\mathrm{CE}}$ and CS are active and $\overline{\mathrm{WR}}$ is strobed low.

The demand mode conversiontiming is shown in Figure 9. BUSY goes low and data is valid 1155 clock pulses after WR goes low. After BUSY goes low, 125 additional clock cycles are required before the next conversion cycle will begin.

Once conversion is started, $\overline{W R}$ is ignored for 1100 internal clock cycles. After 1100 clock cycles, another $\overline{W R}$ pulse is recognized and initiates a new conversion when the present conversion is complete. A negative edge on $\overline{W R}$ is required to begin conversion. If $\overline{\mathrm{WR}}$ is held low, conversions will not occur continuously.

The A/D conversion data is valid on the falling edge of BUSY, and remains valid until one-half internal clock cycle before BUSY goes high on the succeeding conversion. BUSY can be monitored with an I/O pin to determine end of conversion, or to generate a $\mu \mathrm{P}$ interrupt.

In demand mode, the three data bytes can be read in any desired order. The TC850 is simply regarded as three bytes of memory and accessed accordingly. The bus output timing is shown in Figure 10.

Continuous Mode Interface Timing

When the CONT/DEMAND input is high, the TC850 performs conversions continuously. Data will be valid on the falling edge of BUSY, and all three bytes must be read within 443-1/2 internal clock cycles of BUSY going low. The timing diagram is shown in Figure 11.

In continuous mode, OVR/ $\overline{\mathrm{POL}}$ and $\mathrm{L} / \overline{\mathrm{H}}$ byte-select inputs are ignored. The TC850 automatically cycles through three data bytes, as shown in Table I. Bus output timing in the continuous mode is shown in Figure 12.

15-BIT, FAST-INTEGRATING CMOS ANALOG-TO-DIGITAL CONVERTER

Figure 9 Conversion Timing, Demand Mode

NOTE: CONT $\overline{\text { DEMAND }}=$ LOW

* $\overline{R D}$ (as well as CS and $\overline{C E}$) can go HIGH after each byte is read (i.e., in a $\mu \mathrm{P}$ bus interface) or remain LOW during the entire DATA-READ sequence (i.e., $\mu \mathrm{P}$ I/O port interface).

Figure 11 Conversion Timing, Continuous Mode

Figure 12 Bus Output Timing, Continuous Mode

12-BIT μ P-COMPATIBLE ANALOG-TO-DIGITAL CONVERTERS

FEATURES

- Zero-Integrator Cycle for Fast Recovery From Input Overioads
- Eliminates Cross Talk in Multiplexed Systems
- 12-Bit Plus Sign Integrating A/D Converter With Overrange Indication
- Sign Magnitude Coding Format
- True Differential Signal Input and Differential Reference Input
- Low Noise \qquad $15 \mu V_{\text {p.p }}$ Typ
- High Normal Mode Noise and Line Frequency Rejection
- Input Current 1 pA Typ
- No Zero Adjustment
- TTL-Compatible, Byte-Organized Tri-State Outputs
- UART Handshake Mode for Simple Serial Data Transmission
- Power Dissipation \qquad Less Than 20 mW Typ
- Internal Voltage Reference

GENERAL DESCRIPTION

The TC7109A is a 12-bit plus sign, CMOS low-power analog-to-digital converter (ADC). Only eight passive components and a crystal are required to form a complete dualslope integrating ADC.

The improved V_{OH} source current TC7109A has features that make it an attractive per-channel alternative to analog multiplexing for many data acquisition applications. These features include typical input bias current of 1 pA , drift of less than $1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, input noise typically $15 \mu \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$, and auto-zero. True differential input and reference allow measurement of bridge-type transducers such as load cells, strain gauges, and temperature transducers.

The TC7109A provides a versatile digital interface. In the direct mode, chip select and high/low byte enables control parallel bus interface. In the handshake mode, the TC7109A will operate with industry-standard UARTs in controlling serial data transmission - ideal for remote data logging. Control and monitoring of conversion timing is provided by the RUN/HOLD input and STATUS output.

For applications requiring more resolution, see the TC500, 15 -bit plus sign ADC data sheet.

The TC7109A has improved overrange recovery performance and higher output drive capability than the original TC7109. All new (or existing) designs should specify the TC7109A wherever possible.

FUNCTIONAL DIAGRAM

12-BIT μ P-COMPATIBLE ANALOG-TO-DIGITAL CONVERTERS

TC7109
TC7109A
ORDERING INFORMATION

Part No.	Package	Temperature Range
TC7109ACPL	40 -Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC7109ACKW	44 -Pin Flat	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC7109ACLW	44 -Pin PLCC	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC7109AIJL	40 -Pin CerDIP	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC7109AMJL	$40-$-Pin CerDIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Part No.	Package	Temperature Range
TC7109CPL	40 -Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC7109CKW	44 -Pin Flat	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC7109CLW	$44-$-Pin PLCC	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC7109IJL	$40-\mathrm{Pin}$ CerDIP	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC7109MJL	$40-$ Pin CerDIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

PIN CONFIGURATIONS

ABSOLUTE MAXIMUM RATINGS

Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to Absolute Maximum Rating Conditions for extended periods may affect device reliability.

NOTES: 1. Input voltages may exceed supply voltages if input current is limited to $\pm 100 \mu \mathrm{~A}$.
2. Connecting any digital inputs or outputs to voltages greater than V^{+}or less than GND may cause destructive device latchup. Therefore, it is recommended that inputs from sources other than the same power supply should not be applied to the TC7109A before its power supply is established. In multiple supply systems, the supply to the device should be

ELECTRICAL CHARACTERISTICS: All parameters with $\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise indicated.

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
Analog						
	Overioad Recovery Time (TC7109A)			0	1	Measurement Cycle
	Zero Input Reading	$\begin{aligned} & V_{\text {IN }}=O V \\ & \text { Full Scale }=409.6 \mathrm{mV} \end{aligned}$	-00008	$\pm 0000_{8}$	$+0000_{8}$	Octal Reading
	Ratiometric Reading	$\begin{aligned} & V_{I N}=V_{\text {REF }} \\ & V_{\text {REF }}=204.8 \mathrm{mV} \end{aligned}$	37778	$\begin{aligned} & 3777_{8} \\ & 4000_{8} \end{aligned}$	4000_{8}	Octal Reading
$\overline{\mathrm{NL}}$	Nonlinearity (Max Deviation From Best Straight Line Fit)	Full Scale $=409.6 \mathrm{mV}$ to 2.048V Over Full Operating Temperature Range	-1	± 0.2	+1	Count
	Roll-Over Error (Difference in Reading for Equal Positive and Negative Inputs Near (Full Scale)	Full Scale $=409.6 \mathrm{mV}$ to 2.048V Over Full Operating Temperature Range	-1	± 0.02	+1	Count
CMRR	Input Common-Mode Rejection Ratio	$\begin{aligned} & V_{C M} \pm 1 V, V_{I N}=0 V \\ & \text { Full Scale }=409.6 \mathrm{mV} \end{aligned}$		50		$\mu \mathrm{V} N$
$V_{\text {CMR }}$	Common-Mode Voltage Range	Input High, Input Low, and Common Pins	$\mathrm{V}^{-}+1.5$		$\mathrm{V}^{+}-1$	V
e_{N}	Noise (P-P Value Not Exceeded 95\% of Time)	$\begin{aligned} & V_{1 N}=O V \\ & \text { Full Scale }=409.6 \mathrm{mV} \end{aligned}$		15		$\mu \mathrm{V}$
IIN	Leakage Current at Input	V_{IN}, All Packages: $+25^{\circ} \mathrm{C}$ C Device: $0^{\circ} \mathrm{C}$ of T_{A} ๆI $+70^{\circ} \mathrm{C}$ I Device: $-25^{\circ} \mathrm{C}$ II T_{A} II $+85^{\circ} \mathrm{C}$ M Device: $-55^{\circ} \mathrm{C}$ II T_{A} II $+125^{\circ} \mathrm{C}$		$\begin{gathered} 1 \\ 20 \\ 100 \\ 2 \end{gathered}$	$\begin{gathered} 10 \\ 100 \\ 250 \\ 5 \end{gathered}$	pA pA pA nA
$\mathrm{TC}_{\mathrm{zs}}$	Zero Reading Drift	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$		0.2	1	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
TCFS	Scale-Factor Temperature Coefficient	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=408.9 \mathrm{mV}=>7770_{8} \\ & \text { Reading, Ext Ref }=0 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{aligned}$		1	5	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$1+$	Supply Current (V^{+}to GND)	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$, Crystal Oscillator 3.58 MHz Test Circuit		700	1500	$\mu \mathrm{A}$
Is	Supply Current (V^{+}to V^{-})	Pins 2-21, 25, 26, 27, 29 Open		700	1500	$\mu \mathrm{A}$

12-BIT μ P-COMPATIBLE ANALOG-TO-DIGITAL CONVERTERS

TC7109
TC7109A

ELECTRICAL CHARACTERISTICS (Cont.)

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
$V_{\text {REF }}$	Ref Out Voltage	Referenced to $\mathrm{V}^{+}, 25 \mathrm{k} \Omega$ Between V^{+}and Ref Out	-2.4	-2.8	-3.2	V
TC REF	Ref Out Temperature Coefficient	$25 \mathrm{k} \Omega$ Between V^{+}and Ref Out $0^{\circ} \mathrm{C}$ II T_{A} II $+70^{\circ} \mathrm{C}$		80		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Digital						
V_{OH}	Output High Voltage	$\begin{aligned} & \text { TC7109: lout }=100 \mu \mathrm{~A} \\ & \text { TC7109A: Iout }=700 \mu \mathrm{~A} \\ & \text { Pins 2-16, 18, 19, } 20 \end{aligned}$	3.5	4.3		V
$\mathrm{V}_{\text {OL }}$	Output Low Voltage	lout $=1.6 \mathrm{~mA}$		0.2	0.4	V
	Output Leakage Current	Pins 3-16 High Impedance		± 0.01	± 1	$\mu \mathrm{A}$
	Control I/O Pull-Up Current	Pins $18,19,20$ V OUT $=\mathrm{V}^{+}-3 \mathrm{~V}$ Mode Input at GND		5		$\mu \mathrm{A}$
	Control I/O Loading	HBEN, Pin 19; LBEN, Pin 18			50	pF
V_{IH}	Input High Voltage	Pins 18-21, 26, 27 Referenced to GND	2.5			V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	Pins 18-21, 26, 27 Referenced to GND			1	V
	Input Pull-Up Current	Pins 26, 27; $\mathrm{V}_{\text {OUT }}=\mathrm{V}^{+}-3 \mathrm{~V}$ Pins 17, 24; $\mathrm{V}_{\text {OUT }}=\mathrm{V}^{+}-3 \mathrm{~V}$		$\begin{gathered} 5 \\ 25 \end{gathered}$		$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
	Input Pull-Down Current	Pin 21; $\mathrm{V}_{\text {OUT }}=\mathrm{GND}=+3 \mathrm{~V}$		1		$\mu \mathrm{A}$
	Oscillator Output Current, High	$\mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}$		1		mA
	Oscillator Output Current, Low	$\mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}$		1.5		mA
	Buffered Oscillator Output Current, High	$\mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}$		2		mA
	Buffered Oscillator Output Current, Low	$\mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}$		5		mA
tw	Mode Input Pulse Width		60			ns

HANDLING PRECAUTIONS: These devices are CMOS and must be handled correctly to prevent damage. Package and store only in conductive foam, anti-static tubes, or other conducting material. Use proper anti-static handling procedures. Do not connect in circuits under "power-on" conditions, as high transients may cause permanent damage.

PIN DESCRIPTION

TC7109
TC7109A

PIN DESCRIPTION (Cont.)

40-Pin DIP Pin Number	Name	Description
30	BUFFER	Buffer Amplifier Output
31	AUTO-ZERO	Auto-Zero Node - Inside foil of $\mathrm{C}_{\text {AZ }}$.
32	INTEGRATOR	Integrator Output - Outside foil of $\mathrm{C}_{\text {INT }}$.
33	COMMON	Analog Common - System is auto-zeroed to COMMON.
34	INPUT LOW	Differential Input Low Side
35	INPUT HIGH	Differential Input High Side
36	REF IN +	Differential Reference Input Positive
37	REF CAP +	Reference Capacitor Positive
38	REF CAP -	Reference Capacitor Negative
39	REF IN -	Differential Reference Input Negative
40	V^{+}	Positive Supply Voltage - Nominally +5 V with respect to GND (Pin 1).
NOTE: All digital levels are positive true.		

Figure 1 TC7109A UART Interface (Send Any Word to UART to Transmit Latest Result)

12-BIT μ P-COMPATIBLE

 ANALOG-TO-DIGITAL CONVERTERS

Figure 2 TC7109A Parallel Interface With 8048/8049 Microcomputer

DETAILED DESCRIPTION

Analog Section

The functional diagram shows a block diagram of the analog section of the TC7109A. The circuit will perform conversions at a rate determined by the clock frequency (8192 clock periods per cycle), when the RUN/HOLD input is left open or connected to V^{+}. Each measurement cycle is divided into four phases, as shown in Figure 3. They are: (1) Auto-Zero (AZ), (2) Signal Integrate (INT), (3) Reference Deintegrate (DE), and (4) Zero Integrator (ZI).

Auto-Zero Phase

The buffer and the integrator inputs are disconnected from input high and input low and connected to analog common. The reference capacitor is charged to the reference voltage. A feedback loop is closed around the system to charge the auto-zero capacitor, C_{AZ}, to compensate for offset voltage in the buffer amplifier, integrator, and comparator. Since the comparator is included in the loop, the AZ accuracy is limited only by the noise of the system. The offset referred to the input is less than $10 \mu \mathrm{~V}$.

Signal-Integrate Phase

The buffer and integrator inputs are removed from common and connected to input high and input low. The auto-zero loop is opened. The auto-zero capacitor is placed in series in the loop to provide an equal and opposite compensating offset voltage. The differential voltage between input high and input low is integrated for a fixed time of 2048 clock periods. At the end of this phase, the polarity of the integrated signal is determined. If the input signal has no return to the converter's power supply, input low can be tied to analog common to establish the correct commonmode voltage.

Deintegrate Phase

Input high is connected across the previously-charged reference capacitor and input low is internally connected to analog common. Circuitry within the chip ensures the capacitor will be connected with the correct polarity to cause the integrator output to return to the zero crossing (established by auto-zero) with a fixed slope. The time, represented by the number of clock periods counted for the output to return to zero, is proportional to the input signal.

12-BIT μ P-COMPATIBLE ANALOG-TO-DIGITAL CONVERTERS

TC7109
TC7109A

Zero-Integrator Phase

The ZI phase only occurs when an input overrange condition exists. The function of the ZI phase is to eliminate residualcharge on the integrator capacitor after an overrange measurement. Unless removed, the residual charge will be transferred to the auto-zero capacitor and cause an error in the succeeding conversion.

The ZI phase virtually eliminates hysteresis or "cross talk" in multiplexed systems. An overrange input on one channel will not cause an error on the next channel measured. This feature is especially useful in thermocouple measurements, where unused (or broken thermocouple) inputs are pulled to the positive supply rail.

During ZI , the reference capacitor is charged to the reference voltage. The signal inputs are disconnected from the buffer and integrator. The comparator output is connected to the buffer input, causing the integrator output to be driven rapidly to 0 V (Figure 3). The ZI phase only occurs following an overrange and lasts for a maximum of 1024 clock periods.

Differential Input

The TC7109A has been optimized for operation with analog common near digital ground. With +5 V and -5 V power supplies, a full $\pm 4 \mathrm{~V}$ full-scale integrator swing maximizes the analog section's performance.

A typical CMRR of 86 dB is achieved for input differential voltages anywhere within the typical common-mode range of 1 V below the positive supply to 1.5 V above the negative supply. However, for optimum performance the INHI and IN LO inputs should not come within 2 V of either supply rail. Since the integrator also swings with the common-mode voltage, care must be exercised to ensure the integrator output does not saturate. A worst-case condition is near a full-scale negative differential input voltage with a large positive common-mode voltage. The negative input signal drives the integrator positive when most of its swing has been used up by the positive common-mode voltage. In such cases, the integrator swing can be reduced to less than the recommended $\pm 4 \mathrm{~V}$ full-scale value, with some loss of accuracy. The integrator output can swing to within 0.3 V of either supply without loss of linearity.

Differential Reference

The reference voltage can be generated anywhere within the power supply voltage of the converter. Roll-over voltage is the main source of common-mode error, caused by the reference capacitor losing or gaining charge due to stray capacity on its nodes. With a large common-mode voltage, the reference capacitor can gain charge (increase voltage) when called upon to deintegrate a positive signal and lose charge (decrease voltage) when called upon to deintegrate a negative input signal. This difference in
reference for (+) or ($(-)$ input voltage will cause a roll-over error. This error can be held to less than 0.5 count worst case by using a large reference capacitor in comparison to the stray capacitance. To minimize roll-over error from these sources, keep the reference common-mode voltage near or at analog common.

Digital Section

The digital section is shown in the block diagram (Figure 4) and includes the clock oscillator and scaling circuit, a 12 -bit binary counter with output latches and TTL compatible three-state output drivers, UART handshake logic, polarity, overrange, and control logic. Logic levels are referred to as "low" or "high."

Inputs driven from TTL gates should have 3 kW to 5 kW pull-up resistors added for maximum noise immunity. For minimum power consumption, all inputs should swing from GND (low) to V^{+}(high).

STATUS Output

During a conversion cycle, the STATUS output goes high at the beginning of signal integrate and goes low onehalf clock period after new data from the conversion has been stored in the output latches (see Figure 3). The signal may be used as a "data valid" flag to drive interrupts, or for monitoring the status of the converter. (Data will not change while status is low.)

MODE Input

The output mode of the converter is controlled by the MODE input. The converter is in its "direct" output mode, when the MODE input is low or left open. The output data is directly accessible under the control of the chip and byte enable inputs (this input is provided with a pull-down resistor to ensure a low level when the pin is left open). When the MODE input is pulsed high, the converter enters the UART handshake mode and outputs the data in 2 bytes, then returns to "direct" mode. When the MODE input is kept high, the converter will output data in the handshake mode at the end of every conversion cycle. With MODE $=0$ (direct bus transfer), the send input should be tied to V^{+}. (See "Handshake Mode.")

RUN/FOLD Input

With the RUN/HOLD input high, or open, the circuit operates normally as a dual-slope ADC, as shown in Figure 3. Conversion cycles operate continuously with the output latches updated after zero crossing in the deintegrate mode. An internal pull-up resistor is provided to ensure a high level with an open input.

12-BIT μ P-COMPATIBLE

ANALOG-TO-DIGITAL CONVERTERS
TC7109
TC7109A

Figure 3 Conversion Timing (RUN/HOLD Pin High)

Figure 4 Digital Section

12-BIT μ P-COMPATIBLE ANALOG-TO-DIGITAL CONVERTERS

TC7109
TC7109A

Figure 5 TC7109A RUN/HOLD Operation

The RUN/TOLD input may be used to shorten conversion time. If RUN/ $\overline{H O L D}$ goes low any time after zero crossing in the deintegrate mode, the circuit will jump to auto-zero and eliminate that portion of time normally spent in deintegrate.

If RUN/ $\overline{H O L D}$ stays or goes low, the conversion will complete with minimum time in deintegrate. It will stay in auto-zero for the minimum time and wait in auto-zero for a high at the RUN/ $\overline{H O L D}$ input. As shown in Figure 5, the STATUS output will go high 7 clock periods after RUN/ HOLD is changed to high, and the converter will begin the integrate phase of the next conversion.

The RUN/ $\overline{\mathrm{HOLD}}$ input allows controlled conversion interface. The converter may be held at idle in auto-zero with RUN/ $\overline{H O L D}$ low. The conversion is started when RUN/ HOLD goes high, and the new data is valid when the STATUS output goes low (or is transferred to the UART; see "Handshake Mode"). RUN/HOLD may now go low, terminating deintegrate and ensuring a minimum auto-zero time before stopping to wait for the next conversion. Conversion time can be minimized by ensuring RUN/ $\overline{H O L D}$ goes low during deintegrate, after zero crossing, and goes high after the hold point is reached. The required activity on the RUN/ HOLD input can be provided by connecting it to the buffered oscillator output. In this mode, the input value measured determines the conversion time.

Direct Mode

The data outputs (bits 1 through 8, low-order bytes; bits 9 through 12, polarity and overrange high-order bytes) are accessible under control of the byte and chip enable terminals as inputs with the MODE pin at a low level. These three inputs are all active low. Internal pull-up resistors are provided for an inactive high level when left open. When chip enable is low, a byte-enable input low will allow the outputs of the byte to become active. A variety of parallel data
accessing techniques may be used, as shown in the "Interfacing" section. (See Figure 6 and Table I.)

The access of data should be synchronized with the conversion cycle by monitoring the STATUS output. This prevents accessing data while it is being updated and eliminates the acquisition of erroneous data.

Figure 6 TC7109A Direct Mode Output Timing
Table I TC7109A Direct Mode Timing Requirements

Symbol	Description	Min	Typ	Max	Units
$t_{\text {beA }}$	Byte Enable Width	200	500		ns
$\mathrm{t}_{\text {DAB }}$	Data Access Time From Byte Enable		150	300	ns
$\overline{\text { t }} \overline{\text { b }}$	Data Hold Time From Byte Enable		150	300	ns
tcea	Chip Enable Width	300	500		ns
t ${ }_{\text {daC }}$	Data Access Time From Chip Enable		200	400	ns
torc	Data Hold Time From Chip Enable		200	400	ns

12-BIT μ P-COMPATIBLE ANALOG-TO-DIGITAL CONVERTERS

Handshake Mode

An alternative means of interfacing the TC7109A to digital systems is provided when the handshake output mode of the TC7109A becomes active in controlling the flow of data instead of passively responding to chip and byte enable inputs. This mode allows a direct interface between the TC7109A and industry-standard UARTs with no external logic required. The TC7109A provides all the control and flag signals necessary to sequence the two bytes of data into the UART and initiate their transmission in serial form when triggered into the handshake mode. The cost of designing remote data acquisition stations is reduced using serial data transmission to minimize the number of lines to the central controlling processor.

The MODE input controls the handshake mode. When the MODE input is held high, the TC7109A enters the handshake mode after new data has been stored in the output latches at the end of every conversion performed (see Figures 7 and 8). Entry into the handshake mode may be triggered on demand by the MODE input. At any time during the conversion cycle, the low-to-high transition of a short pulse at the MODE input will cause immediate entry into the handshake mode. If this pulse occurs while new data is being stored, the entry into handshake mode is delayed until the data is stable. The MODE input is ignored in the handshake mode, and until the converter completes the output cycle and clears the handshake mode, data updating will be inhibited (see Figure 9).

When the MODE input is high or when the converter enters the handshake mode, the chip and byte enable inputs become TTL-compatible outputs which provide the output cycle control signals (see Figures 7, 8 and 9).

The SEND input is used by the converter as an indication of the ability of the receiving device (such as a UART) to accept data in the handshake mode. The sequence of the output cycle with SEND held high is shown in Figure 7. The handshake mode (internal MODE high) is entered after the data latch pulse (the $\overline{\mathrm{CE} / \mathrm{LOAD}}, \overline{\mathrm{LBEN}}$ and $\overline{\mathrm{HBEN}}$ terminals are active as outputs since MODE remains high).

The high level at the SEND input is sensed on the same high-to-low internal clock edge. On the next low-tohigh internal clock edge, the high-order byte (bits 9 through 12, POL, and OR) outputs are enabled and the $\overline{\text { CE/LOAD }}$ and the $\overline{\mathrm{HBEN}}$ outputs assume a low level. The $\overline{\mathrm{CE} / \mathrm{LOAD}}$ output remains low for one full internal clock period only; the data outputs remain active for $1-1 / 2$ internal clock periods; and the high-byte enable remains low for 2 clock periods. The CE/LOAD output low level or low-to-high edge may be used as a synchronizing signal to ensure valid data, and the byte enable as an output may be used as a byte identification flag. With SEND remaining high the
converter completes the output cycle using $\overline{\text { CE/LOAD }}$ and LBEN while the low-order byte outputs (bits 1 through 8) are activated. When both bytes are sent, the handshake mode is terminated. The typical UART interfacing timing is shown in Figure 8. The SEND input is used to delay portions of the sequence, or handshake, to ensure correct data transfer. This timing diagram shows an industry-standard HD6403 or CDP1854 CMOS UART to interface to serial data channels. The SEND input to the TC7109A is driven by the TBRE (Transmitter Buffer Register Empty) output of the UART, and the CE/LOAD input of the TC7109A drives the TBRL (Transmitter Buffer Register Load) input to the UART. The eight transmitter buffer register inputs accept the parallel data outputs. With the UART transmitter buffer register empty, the SEND input will be high when the handshake mode is entered after new data is stored. The high-order byte outputs become active and the CE/LOAD and HBEN inputs will go low after SEND is sensed. When $\overline{C E / L O A D}$ goes high at the end of one clock period, the high-order byte data is clocked into the UART transmitter buffer register. The UART TBRE output will go low, which halts the output cycle with the HBEN output low, and the high-order byte outputs active. When the UART has transferred the data to the transmitter register and cleared the transmitter buffer register, the TBRE returns high. The high-order byte outputs are disabled on the next TC7109A internal clock high-to-low edge, and one-half internal clock later, the $\overline{H B E N}$ output returns high. The CE/LOAD and LBEN outputs go low at the same time as the low-order byte outputs become active. When the CE/LOAD returns high at the end of one clock period, the low-order data is clocked into the UART transmitter buffer register, and TBRE again goes low. The next TC7109A internal clock high-tolow edge will sense when TBRE returns to a high, disabling the data inputs. One-half internal clock later, the handshake mode is cleared, and the $\overline{C E / L O A D}, \overline{\mathrm{HBEN}}$ and LBEN terminals return high and stay active, if MODE still remains high.

Handshake output sequences may be performed on demand by triggering the converter into handshake mode with a low-to-high edge on the MODE input. A handshake output sequence triggered is shown in Figure 9. The SEND input is low when the converter enters handshake mode. The whole output sequence is controlled by the SEND input, and the sequence for the first (high order) byte is similar to the sequence for the second byte.

Figure 9 also shows that the output sequence can take longer than a conversion cycle. New data will not be latched when the handshake mode is still in progress and is therefore lost.

12-BIT μ P-COMPATIBLE ANALOG-TO-DIGITAL CONVERTERS

TC7109
TC7109A

Figure 7 TC7109A Handshake With Send Input Held Positive

Figure 8 TC7109A Handshake - Typical UART Interface Timing

Figure 9 TC7109A Handshake Triggered by MODE Input

Oscillator

The oscillator may be overdriven, or may be operated as an RC or crystal oscillator. The OSCILLATOR SELECT input optimizes the internal configuration of the oscillator for RC or crystal operation. The OSCILLATOR SELECT input is provided with a pull-up resistor. When the OSCILLATOR SELECT input is high or left open, the oscillator is configured for RC operation. The internal clock will be the same frequency and phase as the signal at the BUFFERED OSCILLATOR OUTPUT. Connect the resistor and capacitor as in Figure 10. The circuit will oscillate at a frequency given by $f=0.45 / R C$. A $100 \mathrm{k} \Omega$ resistor is recommended for useful ranges of frequency. The capacitor value should be chosen such that 2048 clock periods are close to an integral multiple of the 60 Hz period for optimum 60 Hz line rejection.

With OSCILLATOR SELECT input low, two on-chip capacitors and a feedback device are added to the oscillator. In this configuration, the oscillator will operate with most crystals in the 1 to 5 MHz range with no external components
(Figure 11). The OSCILLATOR SELECT input low inserts a fixed $\div 58$ divider circuit between the BUFFERED OSCILLATOR OUTPUT and the internal clock. A 3.58 MHz TV crystal gives a division ratio providing an integration time given by:

$$
t=(2048 \text { clock periods }) \frac{58}{3.58 \mathrm{MHz}}=33.18 \mathrm{~ms}
$$

The error is less than 1% from two 60 Hz periods, or 33.33 ms , which will give better than $40 \mathrm{~dB}, 60 \mathrm{~Hz}$ rejection. The converter will operate reliably at conversion rates up to 30 per second, corresponding to a clock frequency of 245.8 kHz .

When the oscillator is to be overdriven, the OSCILLATOR OUTPUT should be left open, and the overdriving signal should be applied at the OSCILLATOR INPUT. The internal clock will be of the same duty cycle, frequency and phase as the input signal. When the OSCILLATOR SELECT is at GND, the clock will be $1 / 58$ of the input frequency.

12-BIT μ P-COMPATIBLE ANALOG-TO-DIGITAL CONVERTERS

TC7109

 TC7109A

Figure 10 TC7109A RC Oscillator

Figure 11 TC7109A Crystal Oscillator

Test Input

The counter and its outputs may be tested easily. When the TEST input is connected to GND, the internal clock is disabled and the counter outputs are all forced into the high state. When the input returns to the $1 / 2\left(\mathrm{~V}^{+}-\mathrm{GND}\right)$ voltage or to V^{+}and one clock is input, the counter outputs will all be clocked to the low state.

The counter output latches are enabled when the TEST input is taken to a level halfway between V^{+}and GND, allowing the counter contents to be examined anytime.

Component Value Selection

The integrator output swing for full-scale should be as large as possible. For example, with $\pm 5 \mathrm{~V}$ supplies and COMMON connected to GND, the nominal integrator output swing at full-scale is $\pm 4 \mathrm{~V}$. Since the integrator output can go to 0.3 V from either supply without significantly effecting linearity, a 4 V integrator output swing allows 0.7 V for variations in output swing due to component value and oscillator tolerances. With $\pm 5 \mathrm{~V}$ supplies and a common-mode voltage range of $\pm 1 \mathrm{~V}$ required, the component values should be selected to provide $\pm 3 \mathrm{~V}$ integrator output swing. Noise and
roll-over errors will be slightly worse than in the $\pm 4 \mathrm{~V}$ case. For large common-mode voltage ranges, the integrator output swing must be reduced further. This will increase both noise and roll-over errors. To improve performance, $\pm 6 \mathrm{~V}$ supplies may be used.

Integrating Capacitor

The integrating capacitor, $\mathrm{C}_{\mathbb{I N T}}$, should be selected to give the maximum integrator output voltage swing that will not saturate the integrator to within 0.3 V from either supply. $\mathrm{A} \pm 3.5 \mathrm{~V}$ to $\pm 4 \mathrm{~V}$ integrator output swing is nominal for the TC7109A, with $\pm 5 \mathrm{~V}$ supplies and analog common connected to GND. For 7-1/2 conversions per second (61.72 kHz internal clock frequency), nominal values $\mathrm{C}_{\mathrm{INT}}$ and C_{AZ} are $0.15 \mu \mathrm{~F}$ and $0.33 \mu \mathrm{~F}$, respectively. These values should be changed if different clock frequencies are used to maintain the integrator output voltage swing. The value of $\mathrm{C}_{\mathrm{INT}}$ is given by:

$$
\mathrm{C}_{\mathrm{INT}}=\frac{(2048 \times \text { Clock Period })(20 \mu \mathrm{~A})}{\text { Integrator Output Voltage Swing }}
$$

The integrating capacitor must have low dielectric absorption to prevent roll-over errors. Polypropylene capacitors give undetectable errors, at reasonable cost, up to $+85^{\circ} \mathrm{C}$. Teflon ${ }^{\circledR}$ capacitors are recommended for the military temperature range. While their dielectric absorption characteristics vary somewhat between units, devices may be selected to less than 0.5 count of error due to dielectric absorption.

Integrating Resistor

The integrator and buffer amplifiers have a class A output stage with $100 \mu \mathrm{~A}$ of quiescent current. They supply $20 \mu \mathrm{~A}$ of drive current with negligible nonlinearity. The integrating resistor should be large enough to remain in this very linear region over the input voltage range, but small enough that undue leakage requirements are not placed on the PC board. For 2.048 V full-scale a $100 \mathrm{k} \Omega$ resistor is recommended and for 409.6 mV full-scale a $20 \mathrm{k} \Omega$ resistor is recommended. $R_{\text {INT }}$ may be selected for other values of full scale by:

$$
\mathrm{R}_{\mathrm{INT}}=\frac{\text { Full-Scale Voltage }}{20 \mu \mathrm{~A}}
$$

Auto-Zero Capacitor

As the auto-zero capacitor is made large, the system noise is reduced. Since the TC7109A incorporates a zero integrator cycle, the size of the auto-zero capacitor does not affect overload recovery. The optimal value of the auto-zero capacitor is between 2 and 4 times $\mathrm{C}_{\mathrm{INT}}$. A typical value for $C_{A Z}$ is $0.33 \mu \mathrm{~F}$.

12-BIT μ P-COMPATIBLE ANALOG-TO-DIGITAL CONVERTERS

The inner foil of C_{AZ} should be connected to pin 31 and the outer foil to the RC summing junction. The inner foil of $\mathrm{C}_{\text {INT }}$ should be connected to the RC summing junction and the outer foil to pin 32 for best rejection of stray pickups. For low leakage at temperatures above $+85^{\circ} \mathrm{C}$, use Teflon capacitors.

Reference Capacitor

A $1 \mu \mathrm{~F}$ capacitor is recommended for most circuits. However, where a large common-mode voltage exists, a larger value is required to prevent roll-over error (e.g., the reference low is not analog common), and a 409.6 mV scale is used. The roll-over error will be held to 0.5 count with a 10 $\mu \mathrm{F}$ capacitor. For temperatures above $+80^{\circ} \mathrm{C}$ use Teflon or equivalent capacitors for their low leakage characteristics.

Reference Voltage

To generate full-scale output of 4096 counts, the analog input required is $\mathrm{V}_{\mathrm{IN}}=2 \mathrm{~V}_{\text {REF }}$. For 409.6 mV full scale, use a reference of 204.8 mV . In many applications, where the ADC is connected to a transducer, a scale factor will exist between the input voltage and the digital reading. For instance, in a measuring system, the designer might like to have a full-scale reading when the voltage for the transducer is 700 mV . Instead of dividing the input down to 409.6 mV , the designer should use the input voltage directly and select $V_{\text {REF }}=350 \mathrm{mV}$. Suitable values for integrating resistor and capacitor would be $34 \mathrm{k} \Omega$ and $0.15 \mu \mathrm{~F}$. This makes the system slightly quieter and also avoids a divider network on the input. Another advantage of this system occurs when temperature and weight measurements with an offset ortare are desired for non-zero input. The offset may be introduced by connecting the voltage output of the transducer between common and analog high, and the offset voltage between common and analog low, observing polarities carefully. In processor-based systems using the TC7109A, it may be more desirable to use software and perform this type of scaling or tare subtraction digitally.

Reference Sources

A major factor in the absolute accuracy of the ADC is the stability of the reference voltage. The 12-bit resolution of the TC7109A is one part in 4096, or 244 ppm. Thus, for the onboard reference temperature coefficient of $70 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$, a temperature difference of $3^{\circ} \mathrm{C}$ will introduce a one-bit absolute error. Where the ambient temperature is not controlled, or where high-accuracy absolute measurements are being made, it is recommended an external high-quality reference be used.

A reference output (pin 29) is provided which may be used with a resistive divider to generate a suitable reference voltage (20 mA may be sunk without significant variation in output voltage). A pull-up bias device is provided which sources about $10 \mu \mathrm{~A}$. The output voltage is nominally 2.8 V below V^{+}. When using the on-board reference, REF OUT (pin 29) should be connected to REF- (pin 39), and REF+ should be connected to the wiper of a precision potentiometer between REF OUT and V^{+}. The test circuit shows the circuit for a 204.8 mV reference, generated by a $2 \mathrm{k} \Omega$ precision potentiometer in series with a $24 \mathrm{k} \Omega$ fixed resistor.

Interfacing

Direct Mode

Combinations of chip-enable and byte-enable control signals which may be used when interfacing the TC7109A to parallel data lines are shown in Figure 12. The $\overline{C E / L O A D}$ input may be tied low, allowing either byte to be controlled by its own enable (Figure 12A). Figure 12B shows the $\overline{\mathrm{HBEN}}$ and $\overline{\mathrm{LBEN}}$ as flag inputs, and CE/LOAD as a master enable, which could be the READ strobe available from most microprocessors. Figure 12C shows a configuration where the two byte enables are connected together. The $\overline{\mathrm{CE} / L O A D}$ is a chip enable, and the $\overline{\mathrm{HBEN}}$ and $\overline{\mathrm{LBEN}}$ may be used as a second chip enable, or connected to ground. The 14 data outputs will be enabled at the same time. In the direct MODE, SEND should be tied to V^{+}.

Figure 13 shows interfacing several TC7109A's to a bus, ganging the $\overline{\mathrm{HBEN}}$ and LBEN signals to several converters together, and using the $\overline{C E / L O A D}$ input to select the desired converter.

Figures 14-19 give practical circuits utilizing the parallel three-state output capabilities of the TC7109A. Figure 14 shows parallel interface to the Intel MCS-48, -80 and 85 systems via an 8255 PPI , where the TC7109A data outputs are active at all times. The 8155 I/O ports may be used in an identical manner. This interface can be used in a read-after-update sequence, as shown in Figure 15. The data is accessed by the high-to-low transition of the STATUS driving an interrupt to the microprocessor.

The RUN/ $\overline{H O L D}$ input is also used to initiate conversions under software control. Figure 16 gives an interface to Motorola MC6800 or MOS Technology MCS650X system.

An interrupt is generated through the Control Register B, CB1 line from the high-to-low transition of the STATUS output. The RUN/ $\overline{\text { HOLD }}$ pin is controlled by CB2 through Control Register B , allowing software control of conversions.

12-BIT μ P-COMPATIBLE ANALOG-TO-DIGITAL CONVERTERS

TC7109

TC7109A

Direct interfacing to most microprocessor busses is easily accomplished through the three-state output of the TC7109A.

Figures 1, 17 and 18 are typical connection diagrams. To ensure requirements for setup and hold times, minimum pulse widths, and the drive limitations on long busses are
met, it is necessary to carefully consider the system timing in this type of interface. This type of interface is used when the memory peripheral address density is low, providing simple address decoding. Interrupt handling can be simplified by using an interface to reduce the component count.

Figure 12 Direct Mode Chip and Byte Enable Combinations

Figure 13 Three-Stating Several TC7109A's to a Small Bus

12-BIT μ P-COMPATIBLE

 ANALOG-TO-DIGITAL CONVERTERSTC7109 TC7109A

Figure 14 Full-Time Parallel Interface to MCS-48, -80, -85 Microcomputers

Figure 15 Full-Time Parallel Interface to MCS-48, -80, -85 Microcomputers With Interrupt

Figure 16 Full-Time Parallel Interface to MC6800 or MCS650X Microprocessor

Figure 17 TC7109A Direct Interface to 8080/8085

12-BIT μ P-COMPATIBLE

ANALOG-TO-DIGITAL CONVERTERS
TC7109 TC7109A

Figure 18 TC7109A Direct Interface to MC6800 Bus

Figure 19 TC7109A Handshake Interface to MCS-48, -80, -85 Microcomputers

12-BIT μ P-COMPATIBLE ANALOG-TO-DIGITAL CONVERTERS

TC7109
TC7109A

Handshake Mode

The handshake mode provides an interface to a wide variety of external devices. The byte enables may be used as byte identification flags or as load enables and external latches may be clocked by the rising edge of CE/LOAD. A handshake interface to Intel microprocessors using an 8255 PPI is shown in Figure 19. The handshake operation with the 8255 is controlled by inverting its Input Buffer Full (IBF) flag to drive the SEND input to the TC7109A, and using the $\overline{C E / L O A D}$ to drive the 8255 strobe. The internal control register of the PPI should be set in MODE 1 for the port used. If the 8255 IBF flag is low and the TC7109A is in handshake mode, the next word will be strobed into the port. The strobe will cause IBF to go high (SEND goes low), which will keep the enabled byte outputs active. The PPI will generate an interrupt which, when executed, will result in the data being read. The IBF will be reset low when the byte is read, causing the TC7109A to sequence into the next byte. The MODE input to the TC7109A is connected to the control line on the PPI.

The data from every conversion will be sequenced in two bytes in the system, if this output is left high, or tied high separately. (The data access must take less time than a conversion.) The output sequence can be obtained on demand if this output is made to go from low to high. and the interrupt may be used to reset the MODE bit.

Conversions may be obtained on command under software control by driving the RUN/HOLD input to the TC7109A
by a bit of the 8255 . Another peripheral device may be serviced by the unused port of the 8255 . The 8155 may be used in a similar manner. The MCS650X microprocessors are shown in Figure 20 with MODE and RUN/HOLD tied high to save port outputs.

The handshake mode is particularly useful for directly interfacing to industry-standard UARTs (such as Western Digital TR1602), providing a means of serially transmitting converted data with minimum component count.

A typical UART connection is shown in Figure 1. In this circuit, any word received by the UART causes the UART DR (Data Ready) output to go high. The MODE input to the TC7109A goes high, triggering the TC7109A into handshake mode. The high-order byte is output to the UART and when the UART has transferred the data to the Transmitter register, TBRE (SEND) goes high again, $\overline{\text { LBEN }}$ will go high, driving the UART DRR (Data Ready Reset) which will signal the end of the transfer of data from the TC7109A to the UART.

An extension of the typical connection to several TC7109A's with one UART is shown in Figure 21. In this circuit, the word received by the UART (available at the RBR outputs when DR is high) is used to select which converter will handshake with the UART. Up to eight TC7109A's may interface with one UART, with no external components. Up to 256 converters may be accessed on one serial line with additional components.

Figure 20 TC7109A Handshake Interface to MCS-6800, MCS650X Microprocessors

12-BIT μ P-COMPATIBLE

ANALOG-TO-DIGITAL CONVERTERS

Figure 21 Handshake Interface for Multiplexed Converters

Integrating Converter Features

The output of integrating ADCs represents the integral, or average, of an input voltage over a fixed period of time. Compared with techniques in which the input is sampled and held, the integrating converter averages the effects of noise. A second important characteristic is that time is used to quantize the answer, resulting in extremely small, nonlinearity errors and no missing output codes. The integrating converter also has very good rejection of frequencies whose periods are an integral multiple of the measurement period. This feature can be used to advantage in reducing line frequency noise (Figure 22).

Figure 22 Normal Mode Rejection of Dual-Slope Converter as a Function of Frequency

12-BIT μ P-COMPATIBLE ANALOG-TO-DIGITAL CONVERTERS

TC7109
TC7109A

BONDING DIAGRAM

BINARY OUTPUT ANALOG-TO-DIGITAL CONVERTERS

FEATURES

- High Accuracy - Up to 12-Bit Resolution With < $+1 / 2$ LSB Error
- Monotonic Performance - No Missing Codes
- Monolithic CMOS Construction Gives Low Power Dissipation \qquad 20 mW Typ
- Contains All Required Active Elements - Needs Only Passive Support Components, Reference Voltage, and Dual-Power Supply
- High Stability Over Full Temperature Range - Gain Temperature Coefficient ...<25 ppm/ ${ }^{\circ} \mathrm{C}$ Typ - Zero Drift \qquad .$<30 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ Тур — Differential Nonlinearity Drift $<25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ Typ
- Latched Parallel Binary Outputs
- Three-State, Bus Compatible Outputs (TC8704 and TC8705)
- LPTTL, 74LS, CMOS Compatible Outputs and Control Inputs
- Strobed or Free-Running Conversion
- Infinite Input Range - Any Positive Voltage Can Be Applied Via a Scaling Resistor

TEST CIRCUIT

BINARY OUTPUT ANALOG-TO-DIGITAL CONVERTERS

TC8702
TC8704 TC8705

GENERAL DESCRIPTION

The TC8702/TC8704/TC8705 are 10- and 12-bit monolithic CMOS analog-to-digital converters (ADCs). Fully selfcontained in a single 24-pin dual-in-line package, each converter requires only passive support components, reference and power supplies.

Conversion is performed by an incremental charge balancing technique which has inherently high accuracy, linearity and noise immunity. An amplifier integrates the sum of the unknown analog current and pulses of a reference current, and the number of pulses (charge increments) needed to maintain the amplifier summing junction near zero are counted. At the end of conversion, the total count is latched into the digital outputs as a 10 - or 12-bit binary word.

The TC8704/8705 features a three-state output bus controlled by an output enable input. The output enable control switches to a high impedance or off-state when held high. The off-state allows bus-organized output connections. On the TC8702, outputs are always active.

PIN CONFIGURATION

NOTE: Do not make connections to pins 1 or 2 on TC8704. These pins are internally connected.

* No connection for TC8702

ORDERING INFORMATION

Part No.	Previous Part No.	Resolution	Conversion Time (ms)	Package	Temperature Range
TC8702EHG	TSC8702CN	$12-\mathrm{Bit}$	20	24 -Pin CerDIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC8702MJG	TSC8702CN	12 -Bit	20	24 -Pin CerDIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
TC8704CPG	TSC8704CJ	$10-\mathrm{Bit}$	5	24 -Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC8704EJG	TSC8704CL	$10-\mathrm{Bit}$	5	24 -Pin CerDIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC8704MJG	TSC8704BL	$10-\mathrm{Bit}$	5	24 -Pin CerDIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
TC8705CPG	TSC8705CJ	$12-\mathrm{Bit}$	20	$24-$ Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC8705EHG	TSC8705CL	$12-\mathrm{Bit}$	20	24 -Pin CerDIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC8705MHG	TSC8705BL	$12-\mathrm{Bit}$	20	$24-$ Pin CerDIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

ABSOLUTE MAXIMUM RATINGS

IIN ... $\pm 10 \mathrm{~mA}$
Iref $\pm 10 \mathrm{~mA}$
Digital Input Voltage -0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Operating V_{DD} and $\mathrm{V}_{\text {SS }}$ Range +3.5 V to +7 V
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range
CPG ... $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
EJG $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
MJG, MHG $55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Package Dissipation
500 mW
Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$

Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS: $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GND}}=0, \mathrm{~V}_{\mathrm{REF}}=-6.4 \mathrm{~V}, \mathrm{R}_{\mathrm{BIAS}}=100 \mathrm{k} \Omega$, test circuit shown, unless otherwise specified. $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless full temperature range is specified $\left(-55^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$ for MJG and MHG packages, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for EJG package, $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ for CPG package).

Parameter	Test Conditions	Definition			CP/EJ	MJ/MH	

Accuracy

$\begin{aligned} & \hline \text { Resolution Accuracy } \\ & \text { TC8704 } \\ & \text { TC8702/TC8705 } \end{aligned}$		Binary Word Length of Digital Output	$\begin{aligned} & 10 \\ & 12 \end{aligned}$	-	-	-	$\begin{aligned} & \text { Bits } \\ & \text { Bits } \end{aligned}$
Relative Accuracy		Output Deviation From Straight Line Between Normalized Zero and Full-Scale Input (TC8705CPG Only)	-	$\pm 1 / 4$	$\begin{aligned} & \pm 1 / 2 \\ & \pm 1.5 \end{aligned}$	$\pm 1 / 2$	LSB LSB
Differential Nonlinearity		Deviation From 1 LSB Between Transition Points	-	$\pm 1 / 4$	$\pm 1 / 2$	$\pm 1 / 2$	LSB
Differential Nonlinearity Temperature Drift	Full Temperature Range	Variation in Differential Nonlinearity Due to Temperature Change	-	± 2.5	± 5	± 5	ppm/ ${ }^{\circ} \mathrm{C}$
Gain Variance		Variation From Exact A (Compensate by Trimming RIN or R REF)	-	± 2	± 5	± 5	\% of Nominal
Gain Temperature Drift	Full Temperature Range	Variation in A Due to Temperature Change	-	± 25	± 75	± 80	ppm/ ${ }^{\circ} \mathrm{C}$
Zero Offset	$\begin{aligned} & \operatorname{liN}_{\mathrm{N}}=0, \mathrm{C}_{\mathbb{N T} T}=68 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{ADJ}}=1 \mathrm{k} \Omega \\ & \text { (See Test Circuit) } \\ & \hline \end{aligned}$	Correction at Zero Adjust to Give Zero Output When Input is Zero	-	± 10	± 50	± 50	mV
Zero Temperature Drift	Full Temperature Range	Variation in Zero Offset Due to Temperature Change	-	± 3	± 5	± 8	ppm $/{ }^{\circ} \mathrm{C}$

Analog Input (See Note)

IIN Full Scale		Full-Scale Analog Input Current to Achieve Specified Accuracy	-	10	-	-	$\mu \mathrm{A}$
$\overline{\text { IREF }}$		Reference Current Input to Achieve Specified Accuracy	-	-20	-	-	$\mu \mathrm{A}$
Digital Input							
$\mathrm{V}_{1{ }^{(1)}}$	Full Temperature Range	Logic "1" Input Threshold for Initiate Conversion Input	3.5	-	-	-	V
$\mathrm{V}_{1 \times}{ }^{(0)}$	Full Temperature Range	Logic "0" Input Threshold for Initiate Conversion Input	-	-	1.5	1.5	V

ELECTRICAL CHARACTERISTICS (Cont.)

Parameter	Test Conditions	Definition	Min	Typ	CP/EJ Max	MJ/MH Max	Unit
Propagation Delay							
Output Enable (TC8704, TC8705)	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \end{aligned}$	$\mathrm{t}_{\text {PLH, }} \mathrm{t}_{\text {PHL }}$	-	500	-	1000	ns
Digital Output							
IO(OFF) (TC8704, TC8705)	$\begin{aligned} & \mathrm{OE}=3.5 \mathrm{~V} \\ & 0.4 \mathrm{~V}<\mathrm{V}_{\mathrm{C}}<2.4 \mathrm{~V} \end{aligned}$	Off-State Output Current	-	0.1	± 10	± 10	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OUT }}{ }^{(1)}$	Full Temperature Range, $\begin{aligned} & \text { IOUT }=-10 \mu \mathrm{~A} \\ & \text { IOUT }=-500 \mu \mathrm{~A} \end{aligned}$	Logic "1" Output Voltage for Digits Out, Busy, and Data Valid Outputs	$\begin{aligned} & 4.5 \\ & 2.4 \end{aligned}$	-	-	—	V
$\overline{\mathrm{V}}_{\text {OUT }}{ }^{(0)}$	Full Temperature Range, $\mathrm{V}_{\mathrm{DD}}=4.75 \mathrm{~V}$ lout $=500 \mu \mathrm{~A}$	Logic "0" Output Voltage for Digits Out, Busy, and Data Valid Outputs	-	-	0.4	0.4	V
Dynamic							
Conversion Time TC8704 TC8702, TC8705	Full Temperature Range	Time Required to Perform One Complete A/D Conversion	-	$\begin{gathered} 5 \\ 20 \end{gathered}$	$\begin{gathered} 6 \\ 24 \end{gathered}$	$\begin{gathered} 6 \\ 24 \end{gathered}$	ms ms
Conversion Rate in Free-Run Mode TC8704 TC8702, TC8705	$\mathrm{V}_{\text {INT }}$ CONV $=+5 \mathrm{~V}$		$\begin{array}{r} 167 \\ 42 \\ \hline \end{array}$	$\begin{gathered} 200 \\ 50 \\ \hline \end{gathered}$	-	-	sec
Minimum Pulse Width for Initiate Conversion	Full Temperature Range		500	-	-	-	ns

Supply Current

IDD Quiescent J/H Packages P Package	Full Temperature Range, $\mathrm{V}_{\text {INT }}$ CONV $=0 \mathrm{~V}$	Current Required From Positive Supply During Operation	—	$\begin{aligned} & 1.4 \\ & 1.4 \end{aligned}$	$\begin{gathered} 2.5 \\ 5 \end{gathered}$	$\begin{aligned} & 3.5 \\ & - \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
IsS Quiescent J/H Packages P Package	Full Temperature Range, $\mathrm{V}_{\text {INT CONV }}=0 \mathrm{~V}$	Current Required From Negative Supply During Operation	-	$\begin{aligned} & -1.6 \\ & -1.6 \end{aligned}$	$\begin{gathered} -2.5 \\ -5 \end{gathered}$	$\begin{gathered} -3.5 \\ - \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Supply Sensitivity	$\mathrm{V}_{\mathrm{DD}} \pm 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}} \pm 1 \mathrm{~V}$	Change in Full-Scale Gain vs Supply Voltage Change	-	± 0.5	± 1	± 1	\%/V
	$\begin{aligned} & \left\|\mathrm{V}_{\mathrm{DD}}\right\|=\left\|\mathrm{V}_{\mathrm{SS}}\right\|= \\ & 5 \mathrm{~V} \pm 1 \mathrm{~V} \end{aligned}$	Change in full-Scale Gain vs Supply Voltage Change for Tracking Supplies	-	± 0.05	± 0.1	± 0.1	\%/V

NOTE: $I_{I N}$ and $I_{\text {REF }}$ pins connect to the summing junction of an operational amplifier. Voltage sources cannot be attached directly but must be buffered by extemal resistors. See "Test Circuit."

TIM!NG DIAGRAMS

CIRCUIT DESCRIPTION

During conversion, the sum of a continuous current (l_{N}) and pulses of a reference current (l leFs) is integrated for a fixed number of clock periods. $l_{\mathbb{N}}$ is proportional to the analog voltage; $l_{\text {REF }}$ is switched in for exactly one clock period just frequently enough to maintain the output of the integrator near zero. Thus, the charge from the continuous $I_{\mathbb{N}}$ is balanced against the pulses of $I_{\text {REF }}$. The total number of $l_{\text {REF }}$ pulses needed during the conversion period to maintain the charge balance is counted, and the result (in binary) is latched into the outputs at the end of the conversion.

The converter contains two counters and a clock, in addition to an operational amplifier, comparator, latching output buffers, and housekeeping logic. One counter is a clock counter which starts counting clock pulses after a reset pulse; when the required count is reached, the clock counter generates a pulse to start the end-of-conversion routine. The other counter is a data counter, which is reset synchronously with the clock counter and counts the number of times $I_{\text {REF }}$ is switched into the summing input of the amplifier during the period defined by the clock counter.

When the initiate conversion input is strobed with a positive signal, the busy line latches high and a $10 \mu \mathrm{~s}$ (times given are approximate) start-up cycle begins. The integrating capacitor is discharged and both counters are reset during this start-up period. Conversion begins at the end of the reset pulse and ends with a pulse generated either by the clock counter or by an overflow condition in the data counter. This pulse disables further inputs into both counters and triggers a 10μ s shutdown cycle. During the shutdown cycle, data valid goes low for $5 \mu \mathrm{~s}$. This
binary sequence is shown in the timing diagrams. Busy is true high and, when the circuit is busy, initiate conversion has no effect and may be high or low. Data valid is also true high. The data from a conversion remains valid for as long as power is applied to the circuit or until data valid falls at the end of a subsequent conversion, at which time the output data is updated to reflect the latest conversion.

PIN FUNCTIONS

Initiate Conversion Input

Accepts CMOS and most +5 V logic inputs. Applying a logic "1" to the initiate conversion pin initiates the A/D conversion cycle. Once conversion has been initiated, the cycle cannot be interrupted, and the initiate conversion pin is disabled until conversion is complete. Two modes of operation are permitted: clocked orfree-running. For clocked operation, the initiate conversion input is held at logic " 0 " for standby and taken to logic " 1 " when a conversion is desired. For free-running operation, the initiate conversion pin is connected to V_{DD} or similar permanent logic "1" voltage.

Busy Output

A digital status output which is compatible with CMOS logic and low-power TTL (can sink and source $500 \mu \mathrm{~A}$). A logic "1" output on the busy pin indicates a conversion cycle is in process. A logic "1" to logic "0" transition indicates conversion is complete and the result has been latched at the digit out pins. A logic " 0 " to logic " 1 " transition indicates a new conversion cycle has been initiated. If the

BINARY OUTPUT ANALOG-TO-DIGITAL CONVERTERS

device is operating in the free-running mode, the busy output will remain low for approximately $2.5 \mu \mathrm{~s}$, marking the completion and initiation of consecutive conversion cycles.

Data Valid Output

A digital status which is compatible with CMOS logic and low-power TTL (can sink and source $50 \mu \mathrm{~A}$). A logic "1" output at the data valid pin indicates the digits out pins are latched with the result of the last conversion cycle. The data valid output goes to logic "0" approximately 5μ s before the completion of a conversion cycle. During this 5μ s interval new data is being transferred to the digits out pins, and the digits out are not valid.

Digits Out

The binary digit outputs (Bit 0 . . Bit 11) which are the result of the A/D conversion. These outputs are CMOS logic and low-power TTL compatible.

APPLICATIONS INFORMATION

Input/Output Relationships

The analog input voltage $\left(\mathrm{V}_{\mathbb{I}}\right)$ is related to the output by the transfer equation:

$$
\text { Digital counts }=\frac{V_{\mathbb{I N}} \cdot A \cdot R_{\text {REF }}}{R_{I N} \cdot V_{\text {REF }}}
$$

$$
A=2064 \text { for TC8704; } 8208 \text { for TC8702/TC8705 }
$$

where digital counts is the value of the binary output word presented at digits out pins in response to V_{IN}.

The digital output code format is as follows:

Analog Input	Digital Outputs	
MSB	LSB	
$\mathrm{V}_{\text {IN }} \leq$ Full Scale	$1 \ldots 111 \ldots 1$	
	$=$ Full Scale -1 LSB	
	1 LSB	
≤ 0	$0 \ldots 111 \ldots 1$	
	$0 \ldots 000 \ldots 1$	

Two's complement coding can be generated by inverting the Most Significant Bit (MSB) signal.

External Component Selection

Obtaining a high-accuracy conversion system depends on the voltage regulation of $V_{\text {REF }}$ and thermal stability of $R_{I N}$ and $\mathrm{R}_{\mathrm{REF}}$. The exact dependence is given by the transfer function. System accuracy also depends, to a lesser degree, on the voltage regulation of $V_{D D}$ and $V_{S S}$. Supply connections $V_{D D}$ and $V_{S S}$ should have bypass capacitors of $0.1 \mu \mathrm{~F}$ value, or larger, at the device pins.

$\mathbf{R I N}, \mathbf{R}_{\text {Ref }}$

Values of these components are chosen to give a fullscale input current of approximately $10 \mu \mathrm{~A}$ and a reference current of approximately $-20 \mu \mathrm{~A}$:

$$
\mathrm{R}_{\mathrm{IN}} \cong \frac{\mathrm{~V}_{\text {IN }} \text { Full Scale }}{10 \mu \mathrm{~A}} \quad R_{\text {REF }} \cong \frac{\mathrm{V}_{\text {REF }}}{-20 \mu \mathrm{~A}} .
$$

Examples:

$$
R_{I N} \cong \frac{10 \mathrm{~V}}{10 \mu \mathrm{~A}}=1 \mathrm{M} \Omega \quad R_{R E F} \cong \frac{-6.4 \mathrm{~V}}{-20 \mu \mathrm{~A}}=320 \mathrm{k} \Omega
$$

Note that these values are approximations, and the exact relationships are defined by the transfer equation. In practice, the value of $\mathrm{R}_{\mathbf{I N}}$ typically would be trimmed using the optional gain adjust circuit to obtain full-scale output at $\mathrm{V}_{\text {IN }}$ full scale (see adjustment procedure). Metal film resistors with 1% tolerance or better are recommended for highaccuracy applications because of their thermal stability and low-noise generation.

$R_{\text {BIAS }}$

Specifications for the TC87XX are based on RBIAS $=$ $100 \mathrm{k} \Omega \pm 10 \%$, unless otherwise noted. However, there are instances when the designer may want to change this resistor in order to affect the conversion time and the supply current. By decreasing R RIAS, the A/D will convert much faster and the supply current will be higher. For example, when $R_{\text {BIAS }}$ is $20 \mathrm{k} \Omega$, the conversion time is reduced by $1 / 3$, and the supply current will increase from 2 mA to 7 mA . Likewise, if $\mathrm{R}_{\mathrm{BIAS}}$ is increased, the conversion time will be longer and the supply current will be much lower. For example, when $\mathrm{R}_{\mathrm{BIAS}}=1 \mathrm{M} \Omega$, the conversion time will be six times longer, and supply current is now reduced to 0.5 mA . For details of this relationship, refer to AN-9 typical performance curves.

$R_{\text {Damp }}$

The exact value is not critical, but should have a nominal value of $100 \Omega \pm 10 \%$. Locate close to pin 14.

CDAMP

The exact value is not critical, but should have a nominal value of $270 \mathrm{pF} \pm 20 \%$. Locate close to pin 14.

$\mathrm{C}_{\text {INT }}$

The exact value is not critical, but should have a nominal value of $68 \mathrm{pF} \pm 10 \%$. Low leakage types are recommended, although mica or ceramic devices can be used in applications where their temperature limits are not exceeded. Locate as close as possible to pins 14 and 15.
$V_{\text {REF }}$
A negative reference voltage must be supplied. This may be obtained from a constant current source circuit or from the negative supply.
$\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{SS}}$
Power supplies of $\pm 5 \mathrm{~V}$ are recommended, with 0.05% line and load regulation, and $0.1 \mu \mathrm{~F}$ decoupling capacitors.

Adjustment Procedure

The test circuit diagram shows optional circuits for trimming the zero location and full-scale gain. Because the digital outputs remain constant outside of the normal operating range (i.e., below zero and above full scale), it is
recommended transition points be used in setting the zero and full-scale values. The recommended procedure is:
(1) Set initiate conversion control high to provide freerun operation and verify converter is operating.
(2) Set $\mathrm{V}_{\mathbb{I N}}$ to $+1 / 2$ LSB and trim the zero-adjust circuit to obtain a $000 \ldots 000 \ldots$ to $000 \ldots 001$ transition. This will correctly locate the zero end.
(3) For full-scale adjustment, set $\mathrm{V}_{\mathbb{I}}$ to the full-scale value less 1-1/2 LSB and trim the gain-adjust circuit for a 111 . . . 110 to 111 . . 111 transition.

If adjustments are performed in this order, there should be no interaction and they should not have to be repeated.

TYPICAL APPLICATION/DESIGN CIRCUITS

TYPICAL APPLICATION/DESIGN CIRCUITS (Cont.)
Bipolar Operation (+ and - Inputs)

Reference Voltage Supply

NOTE: $\mathrm{V}_{\text {REF }}=2 \mathrm{~V}$ using voltages derived from $8080 \mathrm{~A} \mu \mathrm{P}$.

TYPICAL PERFORMANCE CURVES

TYPICAL PERFORMANCE CURVES (Cont.)

Output Sink Current vs Supply Voltage

Three-State Propagation Delay (TC8704, TC8705)

Section 3

 \section*{\title{Voltage-to-Frequency/
 \section*{\title{
Voltage-to-Frequency/ Frequency-to-Voltage Frequency-to-Voltage Converters
}} Converters
}}

	Display A/D Converters
Binary A/D Converters	1
Voltage-to-Frequency/Frequency-to-Voltage Converters	$\mathbf{3}$
Sensor Products	4
Power Supply Control ICs	5
Power MOSFET, Motor and PIN Drivers	6
References	7
Chopper-Stabilized Operational Amplifiers	8
High Performance Amplifiers/Buffers	9
Video Display Drivers	10
Display Drivers	11
Analog Switches and Multiplexers	12
Data Communications	13
Discrete DMOS Products	14
Reliability and Quality Assurance	15
Ordering Information	16
Package Information	17
Sales Offices	18

HIGH-RELIABILITY HYBRID VOLTAGE-TO-FREQUENCY CONVERTERS

FEATURES

- Power Supply Range \qquad $\pm 9 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
- Ultra-Linear
- Overrange 100\%
- Dynamic Range 126 dB
- Common-Mode Rejection Ratio 60 dB
- Low Full-Scale Drift
- Low Zero-Offset Voltage Drift
- TTL, CMOS, HNIL Compatible Output

APPLICATIONS

■ No Drift Integrate/Hold

- High Common-Mode Voltage Isolation
- 2-Wire Digital Transmission
- 20-Bit Analog-to-Digital Converters
- Optical Data Link

GENERAL DESCRIPTION

The 4731 and 4733 low-drift voltage-to-frequency (V-toF) converters produce output pulse trains whose repetition rate is a precision linear function of the input voltage. These low-drift, ultra-linear devices can handle positive, negative and differential input signals, and can operate with a wide range of power supply voltages.

With 126 dB of dynamic range, 70 dB CMRR, and 100% overrange, these devices provide linear operation with input voltages from $\pm 10 \mu \mathrm{~V}$ to +20 V . Their current input pin (actually the summing point of an op amp) can resolve currents as low as 1000 pA , making it possible to operate with full-scale input voltages from less than 250 mV to greater than 100 V .

Their 0.002% nonlinearity is the equivalent of 16 -bit endpoint linearity. Differential nonlinearity and dynamic range approach 20 bits.

The 4731 and 4733 are packaged in 24-pin hermetic metal packages. Standard devices are specified for $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ operation. The High Reliability (HR) versions are specified for $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operation.

SIMPLIFIED BLOCK DIAGRAM

4731

PIN CONFIGURATION

$\left.\begin{array}{|llllllllll|}\hline \begin{array}{l}\text { Pin } \\ \text { No. }\end{array} & \text { Designation } & \begin{array}{l}\text { Pin } \\ \text { No. }\end{array} & \text { Designation }\end{array}\right]$

ABSOLUTE MAXIMUM RATINGS

$V_{C C}$ Power Supplies ... $\pm 18 \mathrm{~V}$
$+\mathrm{V}_{\text {IN }} \quad$ Positive Input Voltage (Note 1) $\pm 21 \mathrm{~V}$
$-\mathrm{V}_{\text {IN }} \quad$ Negative Input Voltage $\pm \mathrm{V}_{\mathrm{CC}}$
$\mathrm{V}_{\text {ID }} \quad$ Differential Input Voltage (Note 1) V_{CC}
IIN Current Input .. $210 \mu \mathrm{~A}$
Tc Specified Temperature Range (Case)
$4731 / 4733$................................. $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
4731-HP/4733-HR $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Tsta Storage Temperature Range $\ldots . . .-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS: $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}, \pm \mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}$, unless otherwise indicated.

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
Input $+\mathrm{V}_{\text {IN }}$	Positive Input Voltage		-	10	20	V
$-\mathrm{V}_{\text {IN }}$	Negative Input Voltage		-8	-10	-	V
$\mathrm{V}_{\text {CM }}$	Common-Mode Input Voltage		-7	-	+7	V
CMRR	Common-Mode Rejection Ratio	$\mathrm{V}_{\text {CM }}= \pm 6 \mathrm{~V}, \mathrm{~V}_{\text {DIFF }}=0.5 \mathrm{~V}$	60	-	-	dB
$\mathrm{V}_{\text {ID }}$	Differential Input Voltage	Referenced to - $\mathrm{V}_{\text {IN }}$ (Note 1)	-	10	-	V
In	Current Input Range		. 001	-	120	$\mu \mathrm{A}$
	Input Dynamic Range		100	-	-	dB
V_{OS}	Input Offset Voltage	Adjustable to Zero	-	± 1	± 5	mV
$\mathrm{V}_{\mathrm{OS}} / \mathrm{TC}$	Input Offset Voltage vs Temperature	$\begin{aligned} & -25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \text { \} Typical for standard } \\ & +25^{\circ} \mathrm{C} \text { to }-55^{\circ} \mathrm{C} \text { \} tested for } \mathrm{HR} \\ & \hline \end{aligned}$	-	$\begin{gathered} \pm 6 \\ \pm 20 \\ \pm 20 \\ \hline \end{gathered}$	$\begin{gathered} \pm 20 \\ \pm 100 \\ \pm 50 \\ \hline \end{gathered}$	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\mathrm{R}_{+1 \mathrm{~N}}$	$+\mathrm{V}_{\text {IN }}$ Input Impedance		75	100	125	$\mathrm{k} \Omega$
$\mathrm{R}_{\text {-in }}$	- $\mathrm{V}_{\text {IN }}$ Input Impedance		10	100	-	M Ω
$\mathrm{R}_{\mathrm{I} \text { N }}$	Current Input Impedance	Virtual Ground	-	<0.1	-	Ω

ELECTRICAL CHARACTERISTICS (Cont.)

Symbol	Parameter		Test Conditions	Min	Typ	Max	Unit
Output V_{OH}	Output High Voltage		$\mathrm{l}_{\mathrm{OH}}=4 \mathrm{~mA}$	2.4	-	5.0	V
V_{OL}	Output Low Voltage		$\mathrm{I}_{\mathrm{CL}}=-16 \mathrm{~mA}$	-	-	0.4	V
R_{0}	Output Impedance			2.8	3.5	4.2	$\mathrm{k} \Omega$
Transfer fout	Output Frequency		$\Delta \mathrm{V}_{\text {IN }}$ Equals $\mathrm{V}_{\text {IN }}-\left(-\mathrm{V}_{\text {IN }}\right)$	$\begin{gathered} {\left[\Delta \mathrm{V}_{\mathrm{N}} \times f \mathrm{fA}\right]+10 \mathrm{~V}} \\ {\left[\mathrm{I}_{\mathrm{N}} \times \mathrm{fA}\right] \div \mathrm{I}_{\text {FS }}} \end{gathered}$			$\begin{gathered} \mathrm{kHz} \\ \mathrm{kHz} \end{gathered}$
fA	Scaling Frequency	$\begin{aligned} & 4731 \\ & 4733 \end{aligned}$	Adjustable to Typical Adjustable to Typical	$\begin{aligned} & 9.95 \\ & 99.5 \end{aligned}$	$\begin{gathered} 10 \\ 100 \end{gathered}$	$\begin{aligned} & 10.05 \\ & 100.5 \end{aligned}$	$\begin{aligned} & \mathrm{kHz} \\ & \mathrm{kHz} \end{aligned}$
fA/TC	$\dagger \mathrm{A}$ vs Temperature	4731 4733	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	三-	$\begin{gathered} \pm 8 \\ \pm 7 \\ \pm 12 \\ \pm 10 \end{gathered}$	$\begin{aligned} & \pm 50 \\ & \pm 25 \\ & \pm 50 \\ & \pm 30 \end{aligned}$	$\begin{aligned} & \mathrm{ppm}^{\circ} \mathrm{C} \\ & \mathrm{ppm}^{\circ} \mathrm{C} \\ & \mathrm{ppm}^{\circ} \mathrm{C} \\ & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{aligned}$
	$\dagger \mathrm{A}$ vs Time	$\begin{aligned} & \text { Per D } \\ & \text { Per M } \end{aligned}$		-	$\begin{aligned} & \pm 10 \\ & \pm 30 \end{aligned}$	-	ppm/D ppm/M
IFS	Full-Scale Current			75	100	125	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{FS}} / \mathrm{TC}$	$\mathrm{I}_{\text {FS }}$ vs Temperature	$\begin{aligned} & 4731 \\ & 4733 \end{aligned}$	$\begin{aligned} & +25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \text { to }-25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \text { to }-25^{\circ} \mathrm{C} \end{aligned}$	-	$\begin{gathered} \pm 4 \\ \pm 7 \\ \pm 6 \\ \pm 10 \end{gathered}$	三-	$\begin{aligned} & \mathrm{ppm}^{\circ} \mathrm{C} \\ & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{aligned}$
	Ifs vs Time	$\begin{aligned} & \text { Per D } \\ & \text { Per M } \end{aligned}$		-	$\begin{aligned} & \pm 10 \\ & \pm 30 \end{aligned}$	-	ppm/D ppm/M
$+\mathrm{V}_{\text {INLE }}$	$+\mathrm{V}_{\text {IN }}$ Linearity Error (Note 2)		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=100 \mu \mathrm{~V} \text { to } 12 \mathrm{~V} \\ & \left.-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}\right\} \text { Tested for } \\ & \left.-25^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}\right\} \text { HR only } \end{aligned}$	-	$\begin{aligned} & \pm 0.002 \\ & \pm 0.005 \\ & \pm 0.005 \end{aligned}$	$\begin{gathered} \pm 0.005 \\ \pm 0.03 \\ \pm 0.01 \\ \hline \end{gathered}$	$\begin{aligned} & \text { \%FS } \\ & \text { \%FS } \\ & \% \text { FS } \\ & \hline \end{aligned}$
$-\mathrm{V}_{\text {INLE }}$	- $\mathrm{V}_{\text {IN }}$ Linearity Error (Note 2)		$\mathrm{V}_{\mathrm{IN}}=-100 \mu \mathrm{~V}$ to $\left(-\mathrm{V}_{\mathrm{CC}}+7 \mathrm{~V}\right)$	-	± 0.01	± 0.02	\%FS
linLe	I_{N} Linearity Error (Note 2)		$\mathrm{l} \mathrm{N}=1 \mathrm{nA}$ to $120 \mu \mathrm{~A}$	-	± 0.002	± 0.005	\%FS
tpw	Output Pulse Width	$\begin{aligned} & 4731 \\ & 4733 \end{aligned}$		$\begin{gathered} 10 \\ 1 \end{gathered}$	-	$\begin{gathered} 30 \\ 3 \end{gathered}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$
	Warm-Up Time		0.01\% Accuracy 0.002\% Accuracy	-	$\begin{gathered} 1 \\ 100 \end{gathered}$	-	s
Dynamic ts	Setting Time			1 to 2 Pulses@New Freq+(5 $\mu \mathrm{s}$)			
	Overload Recovery		$\begin{aligned} & \Delta \mathrm{V}_{\mathrm{IN}}=100 \mathrm{~V} \text { to } 10 \mathrm{~V} \text { or } \\ & \Delta I_{\mathrm{IN}}=1 \mathrm{~mA} \text { to } 0.1 \mathrm{~mA} \end{aligned}$	-	0.14	1	ms
Power Supplies VCC Voltage Range				± 9	± 15	± 18	V
	Voltage Asymmetry		$1 V_{c c} \mathrm{l}-1-\mathrm{V}_{\mathrm{cc}} \mathrm{l}$	-	-	± 2	V
ICC	Quiescent Current			-	± 17	± 25	mA
PSRR_{1}	f_{A} vs Power Supplies			-	± 10	± 20	ppm/\%
PSRR_{2}	$I_{\text {Fs }}$ vs Power Supplies			-	± 10	± 20	ppm/\%
PSRR_{3}	$\mathrm{V}_{\text {OS }}$ vs Power Supplies		Constant Voltage at Pin 8	-	± 3	± 20	$\mu \mathrm{V} / \%$

NOTES: 1. $+\mathrm{V}_{\mathrm{iN}}$ has a $100 \mathrm{k} \Omega$ intemal resistor and a $210 \mu \mathrm{~A}$ maximum input current limit. The voltage input, if current-limited by a series input resistor, is virtually unlimited.
2. Linearity specifications apply only after offset and gain have been trimmed to nominal.
3. Limits printed in boldface type are guaranteed and 100% production tested. Limits in normal font are guaranteed but not 100% production tested.

HIGH-RELIABILITY HYBRID VOLTAGE-TO-FREQUENCY CONVERTERS

THEORY OF OPERATION

To take maximum advantage of the 4731/4733's versatility, a functional block diagram and theory of operation are provided herein. With this information, input and output circuitry is easily modified to handle virtually any input signal or output load.

The 4731 and 4733 are free-running (astable), voltagecontrolled multivibrators (see Block Diagram). The effective currents from the four inputs ($+\mathrm{V}_{I N},+\mathrm{V}_{\text {IN }}$ TRIM, $+\mathrm{l}_{\text {IN }}$ and E_{OS}) are summed at the inverting input of op-amp A1. A1 and transistor Q1 form a precision current pump, producing current (I). Current charges capacitor C at a rate which is a precise linear function of the device's input signal.

When the voltage impressed on C (due to I) reaches a fixed precision threshold, the Schmitt trigger output changes state and triggers the one-shot (monostable) multivibrator, which in turn produces a single constant-width output pulse. This pulse performs two functions. Amplified by Q2, it is the output of the V-to-F converter and also activates the precision charge dispenser (PCD). The PCD discharges C to the same "zero" level every time an output pulse is produced. Thus, capacitor C is repeatedly charged and discharged between two precise voltages at a rate which is a linear function of the device's voltage and/or current input signal. This action produces the waveforms shown in the timing diagram of Figure 11.

TRIM THEORY

The V-to-F input circuit zero and full-scale trim are performed at the input circuit amp A1 (see block diagram). The user may treat the V-to-F input as an operational amplifier, within certain limits.

No signal combination should be applied to the V-to-F inputs which will drive the A1 output positive. A frequency output will not result if total current into the V-to-F positive inputs (A1, summing point) becomes negative with respect to the V-to-F negative input. If this occurs, D1 becomes forward-biased, Q1 will cut off, and current (I) and fout will be zero.

The inherent input current full-scale factor is $100 \mu \mathrm{~A}$ $\pm 25 \%$ for a full-scale output. All current adjustment trimming must take this $\pm 25 \%$ tolerance into account. Resistor R1 (see block diagram) is factory laser trimmed so that a fullscale input to $+\mathrm{V}_{\text {IN }}$ TRIM (pin 9) produces an output 101\% $\pm 0.5 \%$ of nominal full scale; i.e., $a+10 \mathrm{~V}$ input to $+\mathrm{V}_{\text {IN }}$ TRIM of the 4731 produces a $10.1 \mathrm{kHz} \pm 0.05 \mathrm{kHz}$ output. Resistor R 2 is factory trimmed so that $+\mathrm{V}_{\mathbb{I N}}$ is within $\pm 0.5 \%$ of nominal full scale; i.e., $a+10 \mathrm{~V}$ input to $+\mathrm{V}_{\mathbb{I N}}$ of the 4731 produces a $10 \mathrm{kHz} \pm 0.05 \mathrm{kHz}$ output. Both $+\mathrm{V}_{\text {IN }}$ and $+\mathrm{V}_{\text {IN }}$ TRIM inputs are trimmed with and specified for $\mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}$ at $25^{\circ} \mathrm{C}$.

Basic Connections

The 4731 and 4733 are factory trimmed and operate as specified without additional components. Figures 1 and 2 illustrate the basic connections for positive or negative input signals and also show the optional offset adjustment connection. Pin $9\left(+V_{\mathbb{I N}}\right.$ TRIM) and pin $12\left(+V_{\mathbb{I N}}\right)$ are inputs for positive voltage signals. $+\mathrm{V}_{\mathrm{IN}}$ is used when accuracy to $\pm 0.1 \%$ full scale is acceptable or when external components cannot be accommodated. $+\mathrm{V}_{1 N}$ TRIM is used when greater full-scale accuracy is required because it allows the use of an external trim adjustment potentiometer. Pin $10\left(l_{\mathrm{IN}}\right)$ is a direct input to the input amplifier summing junction, and is used to input positive-current signals. Its full-scale accuracy is limited to $\pm 25 \%$ of the inherent input current full-scale factor mentioned earlier. Pin $11\left(-\mathrm{V}_{\mathrm{IN}}\right)$ can be used to input negative voltage signals, as shown in Figure 2.

Zero and Full-Scale Trim

When greater accuracy is required, input offset voltage (E_{OS}) is trimmed to zero. For positive inputs only, full-scale output frequency (fout) is trimmed to 10 kHz or 100 kHz , depending on the device being used, with external potentiometers (illustrated in Figures 1 and 2). Note that full-scale trim components should have temperature coefficients similar to the full-scale TC of the device being used.

Figure 1. Positive Voltage/Current Inputs

Figure 2. Negative Voltage Input

TRIM PROCEDURES

1. Apply 10 mV between $+\mathrm{V}_{\mathrm{IN}}$ and ground. Adjust the $50 \mathrm{k} \Omega$ potentiometer to set fout equal to $10 \mathrm{~Hz}(4731)$ or 100 Hz (4733).
2. Apply +10 V between $+\mathrm{V}_{\mathrm{IN}}$ and ground. Adjust R 1 to set fout equal to 10 kHz (4731) or 100 kHz (4733).
3. Repeat (1) and (2) until zero and full scale are set precisely. Note: Zero is set at 10 Hz to 100 Hz out for 10 mV in, because it is impractical to measure 0 Hz out for 0 V in.
Full-scale accuracy for $+\mathbb{I}_{\mathbb{N}}$ is $\pm 25 \%$. Greater accuracy is obtained by using the full-scale and zero trim circuit shown in Figure 3. Resistor dividers RA and RB are only used when the actual input current is greater than that necessary to produce a nominal full-scale output frequency.

FULL-SCALE FACTOR CHANGE

The specified input voltage full-scale factor for the 4731 and 4733 is $9.9 \mathrm{~V} \pm 0.5 \%$ with respect to $-\mathrm{V}_{\mathrm{IN}}$ (or $+100 \mu \mathrm{~A}$ $\pm 25 \% \|_{\mathbb{N}}$) to produce a full-scale output frequency. Many applications require a full-scale output for other (larger or smaller) full-scale input signals or input polarities. Figures 4, 5 and 6 illustrate how to operate with such input signals.

$-8 \mathrm{~V}>\mathrm{V}_{\mathrm{IN}}>+10 \mathrm{~V}$

This series of V-to-F converters can be operated with input voltages greater than +10 V by connecting a fixed resistor and trim potentiometer in series with the $+\mathrm{V}_{\text {IN }}$ or $+V_{I N}$ TRIM inputs (see Figure 4). The same effect can be realized by using a properly selected series resistor and inputting the signal to the current input $\left(+l_{\mathrm{N}}\right)$. For inputs more negative than -8 V , the attenuator network of Figure 5 performs well. For either positive or negative inputs the zero trim and other adjustments remain the same as in Figures 1 and 2.
-10 V < Full-Scale $\mathrm{V}_{\mathrm{IN}}<+10 \mathrm{~V}$
If full-scale input voltage is between $+10 \mu \mathrm{~V}$ and +1 V , the full-scale output is set to nominal full scale by using the current-input terminal with a series resistor, as shown in Figure 6.

If full-scale input signal is between -10 V and $-10 \mu \mathrm{~V}$, a low-drift amplifier (such as the 1435) should be used to amplify the signal full scale to -10 V , or even +10 V , and then apply the signal as usual (i.e., Figures 1 and 2). This preamplification technique can also be used with positive input signals.

Figure 4. Full Scale $+\mathrm{V}_{\text {IN }}$ Greater Than $+\mathbf{1 0 V}$

Attenuator R1, R2, R3 reduces large negative input voltages to range of -VIN.

Figure 5. Full-Scale Input More Negative Than -8V

Figure 6. Full-Scale Output for Less Than Full-Scale Input

Reduced Full-Scale fout

In some applications, a reduced full-scale output frequency is required when the input signal is $\pm 10 \mathrm{~V}$ or greater. The circuits of Figures 4 and 5 show attenuation of an overrange input signal can also be used to attenuate a nominal $\pm 10 \mathrm{~V}$ input signal below $\pm 10 \mathrm{~V}$, thereby reducing the full-scale fout below nominal 10 kHz to 100 kHz .

To make maximum use of the device's dynamic range, the input signal should be conditioned to $\pm 10 \mathrm{~V}$ full scale and a binary (or BCD) frequency divider (counter) should be connected to the output. Any TTL, CMOS, or HNIL device may be used, from a simple $\div 10$ unit (such as the TTL 54/74 90A), to a programmable divider (such as the CMOS CD4059), which can divide by any number from 3 to 15,999 .

If the V-to-F output is set at its nominal full scale, the output of the counter (shown in Figure 7) will be 1 kHz (4731) or $10 \mathrm{kHz}(4733)$. Likewise, the minimum output frequency will be 1 MHz or 10 MHz , respectively.

Full-Scale Input Currents Greater Than +100 $\mu \mathrm{A}$

If the full-scale input current is greater than nominal, the "current splitter" circuit of Figure 8 can be used. As noted in Figure 3, the voltage developed at the wiper of potentiometer RA must be less than the compliance voltage of the

Figure 7. Reduced Full-Scale Output for $\mathrm{V}_{\mathbf{I N}} \geqslant 10 \mathrm{~V}$

$V_{D}=$ Differential Voltage
$V_{C}=$ Common-Mode Voltage
$f_{\text {out }}=\left(V_{D} \div 10\right) \times f_{A}$

Figure 8. Definition of Differential and Common-Mode Input Voltages
current source. A negative-input current can be conditioned by passing it through a resistor connected between $-V_{\text {IN }}$ and signal common, thereby producing a negative voltage. The compliance voltage of the current source must be greater than the maximum voltage developed across the resistor.

The best way to condition current signals is with the classic op-amp current-to-voltage converter circuit. With this circuit and the "right" amplifier, virtually any current (even femtoamps) will provide a positive or negative 10 V full-scale input to the V-to-F without compliance voltage problems.

Differential Inputs

The $+\mathrm{V}_{\mathbb{I N}}$ and $-\mathrm{V}_{\mathbb{I N}}$ terminals represent true differential inputs capable of accepting signals from a balanced line, a thermistor bridge or a signal source sitting at a commonmode voltage. The device's differential input eliminates the need for a differential preamplifier.

To use the voltage inputs differentially, some simple conventions (definitions) must be observed. Illustrated in Figure 8, they are:

1. Common-mode voltage (CMV) is defined as the voltage between $\pm \mathrm{V}_{\mathrm{CC}}$ common and $-\mathrm{V}_{\mathrm{IN}}$.
2. $+\mathrm{V}_{\text {IN }}$ must always be positive with respect to $-\mathrm{V}_{\text {IN }}$.
3. CMV range is typically between $+\mathrm{V}_{\mathrm{CC}}-4 \mathrm{~V}$ and $-\mathrm{V}_{\mathrm{CC}}$ +5 V .
4. The differential (floating, balanced) signal source must be returned to $\pm \mathrm{V}_{\mathrm{CC}}$ common and must not create voltages exceeding the limits set in (1), (2) or (3).
5. fout $=\left(+\mathrm{V}_{\mathbb{I}}\right)-\left(-\mathrm{V}_{\mathbb{I N}}\right) \times f \mathrm{f} / 10 \mathrm{~V} f \mathrm{~A}$
$=10 \mathrm{kHz}$ (4731)
$=100 \mathrm{kHz}$ (4733)

Operation With Bipolar Input Signals

The V-to-F converter cannot operate with bipolar (i.e., -5 V to +5 V) input signals when connected as shown in Figures 1 and 2. To handle bipolar inputs it is necessary to offset the zero (i.e., produce a pulse train out for "zero" volts in).

For example, if $+\mathrm{V}_{\mathrm{IN}}$ is connected to 0 V and $-\mathrm{V}_{\mathrm{IN}}$ is connected to a fixed -5 V , the device's output will be "offset" to either 5 kHz (4731) or 50 kHz (4733) for a 0 V input. If $+\mathrm{V}_{\mathrm{IN}}$ is -5 V , fout will be 0 Hz ; if $+\mathrm{V}_{\text {IN }}$ is 0 V , fout is 5 kHz or 50 kHz ; if $+\mathrm{V}_{\text {IN }}$ is +5 V , fout is 10 kHz or 100 kHz .

The offset may be performed at $+\mathrm{V}_{\mathrm{IN}}(\mathrm{Fin} 12)$ and the signal applied to either- $\mathrm{V}_{\mathbb{I N}}$ (pin 11) or $\mathrm{l}_{\mathrm{N}}(\mathrm{pin} 10)$; or l_{N} may be used to inject the fixed offset. Offsetting may be combined with all of the adjustment techniques, shown in Figures 1 through 10 , to provide signal conditioning for almost any practical input signal.

HIGH-RELIABILITY HYBRID VOLTAGE-TO-FREQUENCY CONVERTERS

Eliminating Common-Mode Signals

An input signal is often a small voltage change impressed on a larger fixed voltage. This situation is handled by nulling (offsetting) the DC or unchanging component of the input signal at one input and adjusting the full-scale gain factor at another, so the variable portion of the input signal causes fout to cover the full excursion from OHz to full scale; i.e., an input signal that is a voltage varying between +4 V and +6 V . To implement offsetting, connect $+\mathrm{V}_{\text {IN }}$ to -4 V . Since the actual signal is $2 \mathrm{~V}(6 \mathrm{~V}-4 \mathrm{~V})$, connect it to $+l_{\mathrm{I}}$ in series with resistor and trim potentiometer chosen to generate 100 $\mu \mathrm{A}$ of input current from the 2 V signal (see Figure 5).

When input varies between +5 V and +15 V (signal $=$ 10 V), implement offsetting by connecting $-\mathrm{V}_{\mathrm{IN}}$ to +5 V and apply the signal to $+\mathrm{V}_{\mathrm{IN}}$. Trim the V -to-F per Figure 1. If the input varies between +30 V and +50 V (signal $=20 \mathrm{~V}$), implement offsetting by connecting -30 V to $+\mathrm{l}_{\mathbb{N}}$ through a $150 \mathrm{k} \Omega$ resistor and series potentiometer. Connect the 20 V signal to $+\mathrm{V}_{\text {IN }}$ or $+\mathrm{V}_{\text {IN }}$ TRIM.

Operation With Fast Signals

A V-to-F application may require operation with rapidly changing input signals. For example, the output of a load cell may change from 0 to full scale (or full scale to 0) in 1 ms . To accurately handle this signal, the output of the V-to-F converter must be able to change faster than the input.

The basic response (or settling time) of the V-to-F converter for voltage inputs is one period of the new frequency $+5 \mu \mathrm{~s}$. Response time is either 1 s (4731) or 0.1 s $(4733)+5 \mu \mathrm{~s}$.

Using the 4731 as an example: When the input changes from 0 V to 10 V , the new frequency is 10 kHz , one period is $100 \mu \mathrm{~s}$, and response time is $105 \mu \mathrm{~s}$. However, if the signal changes from full scale to 0 V , the new period is much longer than the required 1 ms (theoretically it is infinite).

If the V-to-F output is to change in 1 ms , the output frequency for OV in must be offset to a new frequency, the period of which is less than the 1 ms required for the application described. The full-scale value of the input signal is adjusted so the V-to-F converter will operate between the chosen offset or zero frequency and the maximum full-scale frequency.

In Figure 9 a 4731 is offset so that a 0 V to +1 V signal produces an output which varies between 9 kHz and 10 kHz with a response time of $116 \mu \mathrm{~s}$ (maximum) in either direction. Offsetting the V-to-F output range in this manner has the effect of reducing the settling/response time to the required level.

Figure 9. Frequency Offsetting to Decrease Settling Time

TTL Output Characteristics

The TTL-level pulse train from the V-to-F converter is designed to drive at least one TTL load over the power supply range +9 V to +18 V . $\mathrm{At}+15 \mathrm{~V}$, it can drive 10 TTL loads. The output circuit (see block diagram) is a single transistor (Q2) connected as a saturated switch with pull-up resistor (R5). When Q2 is on, the output is at "zero" volts. When Q2 is off, the output voltage is $\left(+V_{C C} \div 3\right)$, assuming pins 23 and 24 are connected together. (If pin 23 is not connected to pin 24, an external divider must be provided which will determine the high output voltage.)

CMOS or HNIL Logic

The 4731 and 4733 output circuits are easily adapted to drive CMOS or HNIL. It is only necessary to parallel R5 (see block diagram) with a $1 \mathrm{k} \Omega$ resistor. This additional pull-up resistor also decreases pulse rise time, enabling these devices to drive larger capacitive loads. If pin 23 is not connected to pin 24, an external divider must be provided.

Output Protection

The V-to-F output (collector of Q2) may be shorted to ground indefinitely without damage; however, since Q2 is ON most of the time, a short to $+V_{C c}$ will cause certain catastrophic failure in about 5 s . A short to TTL (pin 24) and $-V_{C C}$ (pin 5) simultaneously will cause instant catastrophic failure.

Square-Wave Output

The outputs of the 4731 and 4733 are a train of pulses 20μ s or 2μ s wide, respectively (see Figure 11). A symmetrical (square wave) output for driving highly capacitive or

Figure 10. Square-Wave Output Using D-Type Flip-Flop
noisy transmission lines can be obtained with a D-type or JK flip-flop, as shown in Figure 10. The square-wave output has a frequency equal to $1 / 2$ the V-to-F output frequency.

Figure 11. Typical Timing Relationships

NOTES

4736

HIGH-RELIABILITY HYBRID
 FREQUENCY-TO-VOLTAGE CONVERTER

FEATURES

\author{

- Wide Power Supply Range
 \qquad $\pm 12 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
 - Nonlinearity
 \qquad $\pm 0.008 \%$ FS Max
 - Accepts Any Input Waveshape
 - High Noise Immunity
 - Low Full-Scale Drift
 - Low Offset-Voltage Drift
}

APPLICATIONS

- Measure Flow, RPM, Frequency
- Demodulate FM
- Use With V-to-F Converter
- Low-Cost FM Telemetry
- DC Response Magnetic Tape Recording
- Multi-Decade Range Phase Lock Loops
- Fiber-Optic Data Link

GENERAL DESCRIPTION

The 4736 is an ultra-linear, low-drift frequency-to-voltage (F-to-V) converter which produces an output voltage linearly proportional to input frequency, regardless of input waveshape. Designed to satisfy a multitude of precision system requirements, the 4736 represents an invaluable tool for the advancement of data acquisition and signal processing technology.

The superior specifications of the 4736 allow it to be used in the most critical frequency conversion applications. Common tasks include monitoring/controlling the pulsed output of a motor or flowmeter.

The standard 4736 is packaged in a 24-pin dual-in-line metal package and is specified for $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ operation. For high-reliability applications, the $4736-\mathrm{HR}$ is specified for $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operation.

SIMPLIFIED BLOCK DIAGRAM

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS
$V_{C C}$ Power Supplies $\pm 22 \mathrm{~V}$
V_{IN} Input Voltage $\pm 15 \mathrm{~V}$
$V_{\text {ID }}$ Differential Input Voltage $\pm 12 \mathrm{~V}$
$V_{\text {REF }}$ Reference Voltage $\pm 12 \mathrm{~V}$
$\mathrm{T}_{\mathrm{C}} \quad$ Specified Temperature Range (Case)4736$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$$4736-\mathrm{HR} . ~-~ 55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
TstG Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ts ead Temperature
(Soldering, 0.06 " from pkg., $<10 \mathrm{sec}$).. $.260^{\circ} \mathrm{C}$Unit Weight11.2g Typ

FREQUENCY-TO-VOLTAGE CONVERTER

ELECTRICAL CHARACTERISTICS: $T_{C}=+25^{\circ} \mathrm{C}, \pm \mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}$, unless otherwise indicated.

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
Input f_{IN}	Frequency Input Range		0	1	1.3	MHz
	Input Waveform		-	Any	-	-
tpw	Input Pulse Width	$\mathrm{V}_{1 \mathrm{H}}=2 \mathrm{~V}$	75	-	-	ns
V_{IH}	Input High Voltage		2	-	12	V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage		-12	-	0.8	V
$\mathrm{V}_{\mathrm{INT}+}$	Threshold, Positive-Going Pulses	Typically $1.4 \mathrm{~V} \pm 200 \mathrm{mV}$	0.8	1.4	2.2	V
	Threshold, External Set Range		-	-	± 12	V
	Hysteresis		300	400	500	mV
	Hysteresis, External Set Range		0	400	-	mV
RIN	Input Impedance		-	100114	-	G Ω IlpF
Output Vo	Full-Scale Output Voltage	Pin 10 Shorted to Pin 11	9.99	10	10.01	V
$\mathrm{V}_{\text {OADJ }}$	Vo Adjustable Full-Scale Voltage	Pin 10 Shorted to Pin 12	9.97	9.9	10.03	V
Vo/TC	V_{0} Full Scale vs Temperature	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \text { (Standard) } \\ & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \text { (HR) } \end{aligned}$	-	$\begin{aligned} & \pm 40 \\ & \pm 70 \end{aligned}$	$\begin{gathered} \pm 50 \\ \pm 100 \end{gathered}$	$\begin{aligned} & \mathrm{ppm}^{\circ} \mathrm{C} \\ & \mathrm{ppm}^{\circ} \mathrm{C} \end{aligned}$
$\mathrm{V}_{\text {OS }}$	Output Offset Voltage	$\mathrm{fin}^{\text {a }}=0 \mathrm{~Hz}$	-	± 1	± 5	mV
$\mathrm{V}_{\mathrm{OS}} / \mathrm{TC}$	Vos Voltage vs Temperature	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}(\text { Standard }) \\ & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \text { (HR) } \end{aligned}$	-	$\begin{aligned} & \pm 20 \\ & \pm 30 \end{aligned}$	$\begin{aligned} & \pm 50 \\ & \pm 80 \end{aligned}$	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {OLE }}$	V_{0} Linearity Error	1.1 kHz to 1 MHz	-	± 0.003	± 0.008	\%FS
$\mathrm{V}_{\text {OLE }} / \mathrm{TC}$	Vole Over Temperature	1.1 kHz to 1 MHz , $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (Standard) 1.1 kHz to 1 MHz , $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (HR)	$\begin{aligned} & - \\ & - \end{aligned}$		$\begin{gathered} \pm 0.015 \\ \pm 0.05 \end{gathered}$	$\begin{aligned} & \text { \%FS } \\ & \text { \%FS } \end{aligned}$
	V ${ }_{\text {O }}$ Ripple Voltage	$\begin{aligned} & \mathrm{f}_{\mathrm{IN}}=100 \mathrm{~Hz} \\ & \mathrm{f}_{\mathrm{I}}=100 \mathrm{kHz} \\ & \mathrm{f}_{\mathrm{IN}}=1 \mathrm{MHz} \end{aligned}$	-	$\begin{gathered} \hline 80 \\ 450 \\ 80 \\ \hline \end{gathered}$	$\begin{aligned} & 200 \\ & 700 \\ & 150 \\ & \hline \end{aligned}$	$\mathrm{mV} \mathrm{P}_{\mathrm{p}} \mathrm{p}$ mV P-P mV P-p
	Vo vs Time	Per Day Per Week	-	$\begin{aligned} & \pm 20 \\ & \pm 60 \end{aligned}$	-	$\mu \mathrm{V} / \mathrm{D}$ $\mu \mathrm{V} / \mathrm{W}$
PSRR $_{1}$ PSRR_{2}	$\left.\begin{array}{ll}\text { Vo Zero vs Power Supplies } & \} \\ V_{0} \text { Full Scale vs Power Supplies }\end{array}\right\}$	$\pm \mathrm{Vps} \text { from } \pm 13 \mathrm{~V} \text { to } \pm 17 \mathrm{~V} \text { referred }$ $\text { to } \mathrm{Vps}= \pm 15 \mathrm{~V}$	-	$\begin{aligned} & \pm 10 \\ & \pm 40 \end{aligned}$	$\begin{aligned} & \pm 20 \\ & \pm 80 \end{aligned}$	$\mu \mathrm{V} \% \Delta \mathrm{Vps}$ ppm/\% $\%$ Vps
10	Output Current	Not Short-Circuit Protected	$-2 /+20$	-	-	mA
R_{0}	Output Impedance		-	-	0.05	Ω
Transfer	Ideal Transfer Function	$f \mathrm{~A}=1 \mathrm{MHz}$	$\left[\mathrm{f}_{\mathrm{IN}} \div \mathrm{fA}\right] \times 10 \mathrm{~V}$			V
Dynamic RC	Response Time, Internal Filter		-	9	-	$\mu \mathrm{s}$
$t_{\text {SR }}$	Step Response Time to 0.5\%FS	0 Hz to 1 MHz Step, $\mathrm{R}_{\mathrm{L}}=500 \Omega$ 1 MHz to 200 kHz Step, $\mathrm{R}_{\mathrm{L}}=500 \Omega$ 1 MHz to 0 Hz Step, $\mathrm{R}_{\mathrm{L}}=500 \Omega$	二	$\begin{aligned} & 60 \\ & 70 \\ & 95 \\ & \hline \end{aligned}$	-	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \end{aligned}$
Power Supplies						
$\mathrm{V}_{\text {CC }}$	Voltage Range		± 13	± 15	± 17	V
I_{CC}	Quiescent Current		-	± 28	± 35	mA
PD	Power Dissipation		一	1050	-	mW

NOTES: 1. Limits printed in boldface type are guaranteed and 100% production tested at $+25^{\circ} \mathrm{C}$. HR versions have $\mathrm{l}_{\mathrm{O}}, \mathrm{V}_{\mathrm{OLE}} / \mathrm{TC}, \mathrm{V}_{\mathrm{O}}, \mathrm{V}_{\mathrm{OS}}$ and $V_{\mathrm{OS}} / T \mathrm{C}$ tested at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$. Standard parts are tested at room temperature only. Other min/max parameters are guaranteed by design.

HIGH-RELIABILITY HYBRID FREQUENCY-TO-VOLTAGE CONVERTER

THEORY OF OPERATION

The 4736 F -to- V converter is an example of a sophisticated concept implemented in a low-cost, highly reliable device (see block diagram). The input is a comparator (A1) whose output switches between +1 V and -14 V each time the voltage between $\mathrm{fiN}_{\mathrm{N}}(\mathrm{pin} 24)$ and REF IN (pin 23) reverses polarity. Two consecutive reversals are interpreted as one cycle (or pulse) of input frequency.

Each reversal causes a solid-state switch (S1) to alternately connect capacitor C 1 to a precision reference voltage and then, through a frequency-variable filter, to the summing point of op-amp A2. Each time C1 is connected to the reference voltage, a fixed amount of charge (Q) is dumped into C 1 according to the equation $\mathrm{Q}=\mathrm{CV}$.

When C 1 is connected to the summing point of A2, it discharges and the resulting current is converted to a voltage. The higher the input frequency, the greater the average current into the summing point. A2 is a current-tovoltage converter, where:

$$
V_{\text {OUT }}=-\left(1 \times R_{F}\right)
$$

Therefore, $\mathrm{V}_{\mathrm{OUT}}$ is a function of the discharge current from C 1 , the frequency of discharge, and the feedback resistor. C2 filters the current pulses from C 1 to minimize output voltage ripple.

When used as shown in Figure 1, the 4736 operates as specified with no additional components.

Input Threshold

The $f_{\text {IN }}$ (A1) input comparator's threshold is preset at +1.4 V to provide maximum noise immunity when operating with T TL levels and has approximately 400 mV of hysteresis. It can operate with signals of any waveshape which vary about this threshold; for example, a OV to 2 V square wave or $a \pm 5 \mathrm{~V}_{\text {p-p }}$ sine wave. Each alternate threshold crossing is recognized as one cycle (or pulse) of input frequency.

The threshold level at which comparator A1 switches is set to 1.4 V by resistors R1, R2 and R3. The threshold level can be modified by inputting a voltage to REF IN. The threshold will be equal to the voltage input to pin 23 . This voltage should not exceed 12 V , or internal damage will occur.

The comparator hysteresis (400 mV) can be reduced by connecting REF IN to COMMON (pin 22) with a resistor (see "Operation with HNIL or CMOS Logic" following).

Figure 1. Basic Operational Connections

Output Circuit

The 4736 output is an inverting op amp. The output voltage is set by connecting the OUTPUT (pin 10) to FULLSCALE IN (pin 11) or FULL-SCALE ADJ (pin 12). These are the gain-setting inputs, feedback paths, for amplifier A2.

Pin 11 is the nominal feedback connection. The internal resistor is factory trimmed to approximately $49.5 \mathrm{k} \Omega$ and produces a $+10 \mathrm{~V} \pm 0.1 \%$ output for a 1 MHz input frequency. Use this input when accuracy to $\pm 0.1 \%$ full scale is sufficient or when external components cannot be tolerated. Use pin 12 when greater accuracy is required, as it allows use of an external trim (see Figure 2).

The feedback resistor from pin 12 is approximately 495Ω (or 1%) less than nominal. Connecting a $1 \mathrm{k} \Omega$ potentiometer between the output and pin 12 allows the user to fine-tune the output accuracy over a $\pm 1 \%$ range.

Trim Procedure

Referring to Figure 2:

1. Connect $\mathrm{fin}_{\mathrm{I}}$ to COMMON and adjust R 1 for OV output.
2. Connect f_{iN} to a frequency source set at 1 MHz and adjust R2 for 10V output.
3. Repeat steps (1) and (2) until zero and full scale are set.

Figure 2. Zero and Full-Scale Trim

Output Offsetting

Many frequency-to-voltage applications measure a range of frequencies that do not include zero, but require zero volts out for a particular frequency input. For example, the pulse train from a tachometer in a motor speed-control circuit might range between 500,000 and 1,000,000 pulses per second which would normally generate +5 V to +10 V from the 4736.

To obtain a 0 V to +5 V output range the 4736 must be offset by -5 V . This is done by injecting a current of approximately $+50 \mu \mathrm{~A}$ into the SUMMING POINT (pin 9).

The offset-adjust scale factor is $-10 \mu \mathrm{AN} \pm 25 \%$. Offset adjust can be implemented, as shown in Figure 3, by connecting a potentiometer or fixed resistor between the SUMMING POINT and $+V_{C C}$ (pin20). The resistorvalue can be calculated:

$$
\begin{aligned}
R & =V_{C C} \div\left[V_{\text {OFF }} \times \text { Offset Scale Factor }\right] \\
& =15 \div[5 \times 0.00001] \\
& =300 \mathrm{k} \Omega
\end{aligned}
$$

If a bipolar output voltage of -2.5 V to +2.5 V is required for a 500 kHz to 1 MHz input, the output may be offset a total of -7.5 V by the same method.

Figure 3. Output Offset of -5 V to Provide OV to +5 V for 500 kHz to 1 MHz Input Frequency

Scale Expansion and Output Offset

If an application requires a full-scale (0 V to +10 V) output for a less than full-scale range of input frequencies, the fullscale factor can be expanded by increasing the feedback resistor for A2. This is done by adding a series resistor to the internal feedback resistors. Another method is not to use the internal resistors and to add an external resistor between the SUMMING POINT and the OUTPUT (see Figure 4). The value for the total feedback resistance needed, regardless of which method you choose, is:

$$
\begin{aligned}
R_{F} & =G \times 100,000 \\
& =\left[\Delta V_{\text {OUT }} \div \Delta f_{\text {IN }}(\text { in } \mathrm{kHz})\right] \times 100,000 \\
& =[10 \div 500] \times 100,000 \\
& =2 \mathrm{k} \Omega(\pm 25 \%)
\end{aligned}
$$

If this technique is used, be sure to account for the 4736's output compliance range. For example, at $\mathrm{G}=2$, a 500 kHz input produces +10 V output, and a 1 MHz input demands a +20 V output which will overrange the output of the 4736 . The output must be offset by -10 V .

Be aware that the offset scale factor must be divided by the gain factor (G) that you have determined. Therefore, to offset the output by -10 V you must drive $([-10 \mu \mathrm{AV} \div$ Gain of 2] $\times-10 \mathrm{~V})=+50 \mu \mathrm{~A} / \mathrm{V}$ into the summing point.

HIGH-RELIABILITY HYBRID FREQUENCY-TO-VOLTAGE CONVERTER

4736

Figure 4. Custom Full-Scale Factor

Operation With HNIL or CMOS Logic

To obtain maximum noise immunity with a particular logic type, the threshold should be set approximately halfway between the upper and lower logic levels. For example, a $2 \mathrm{k} \Omega, 5 \%$ resistor connected between REF IN and +15 V provides a threshold of +6 V (a typical CMOS or HNIL threshold level). Adjusting the threshold voltage in this manner has no impact on the zero and full-scale trim techniques discussed earlier.

Operation With Signals Less Than +2V Peak

Connecting an $11 \mathrm{k} \Omega, 5 \%$ resistor between REF IN and -15 V will set the threshold at 0 V with hysteresis of approximately 340 mV . Now the input signal only needs to be larger than 340 mV . However, input signals less than 500 mV should be used with care. They may produce erroneous output voltage due to the uncertainty of the hysteresis level.

For input signals less than 500 mV , hysteresis should be reduced by connecting a 200Ω resistor between REF IN and COMMON. This will lower the hysteresis and noise immunity to approximately 60 mV (see Figure 5). A 100Ω resistor provides 30 mV of hysteresis, which is the minimum recommended value. When operating in this mode the 4736 is virtually a zero-crossing detector.

Figure 5. Input Conditioned for Small AC Signal with DC Offset

Operation With DC Common Mode

When the input signal is small and impressed on a DC voltage (i.e., +9 V DC $\pm 500 \mathrm{mV} \mathrm{AC}$), it should be capacitively coupled to the 4736, as shown in Figure 5. If the DC voltage is large, greater than $\pm \mathrm{V}_{\mathrm{CC}}$, the input should be protected against transients with diodes, as shown in Figure 6.

Signals greater than $\pm \mathrm{V}_{\mathrm{CC}}$ peak-to-peak may also be attenuated with a simple resistive divider and the appropriate threshold level, as discussed earlier.

Scale Expansion and Bipolar Output

If an output voltage of -5 V to +5 V is required for 500 kHz to 1 MHz input, the same technique described in "Scale Expansion and Output Offset" is used. The scale is doubled and the output is offset a total of -15 V (from +10 V to -5 V) by additional current into the SUMMING POINT (pin 9).

Output Ripple Filtering and Response Time

By definition, frequency-to-voltage conversion is converting an AC signal to a DC level. Therefore, there must be ripple on the output. This ripple is filtered by a frequency variable filter and by an internal RC network consisting of R_{F} and a capacitor (C2) (see block diagram). Additional filtering
is obtained by adding an external capacitance between the summing point and output.

The response time of the F -to- V converter (how fast the output voltage changes for a step change in the input frequency) is the RC time constant of the ripple filter. If
external capacitance is added, response time is increased. If faster response with reduced ripple voltage is required, a higher frequency-to-voltage should be used or a multipole (i.e., sharp cutoff) low-passfilter should follow the frequency-to-voltage.

Figure 6. Input Conditioned for Small AC Signal Impressed on Large DC Voltage

NOTES

FEATURES

- Full Scale Output

\qquad
10MHz- Fully Differential Input- Dynamic Range100dB

- Linearity 11-Bit
- Supplies $\pm 14 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
- Easily Modified for Different I/O Signals

APPLICATIONS

- Two-Wire Digital Data Transmission
- Ratiometric Data Conversion
- Long Term Integrators
- Fiber Optic Data Links
- FM Modulation

GENERAL DESCRIPTION

The 4743 hybrid voltage to frequency converter offers a full scale output of 10 MHz , and can be externally trimmed to any value from its rated full scale output down to 2.5 MHz . The 4743 has full differential input and can be driven with positive voltage, negative voltage, or positive current. Common mode rejection ratio, with $\mathrm{VCM}=10$ volts, is 80 dB . With external resistors, the input is easily adapted to accept almost any input signal range. The output stage of the unit is a single uncommitted transistor that operates as a saturated switch. A pull-up resistor for TTL compatibility is internal to the 4743. An external resistor can be added to make the output CMOS compatible, and the output can drive 10 TTL loads.

The 4743 has quick response time, and settles to within $\pm 0.01 \%$ FS of a newfrequency in $15 \mu \mathrm{sec}$. Overload recovery time is approximately 10 output signal periods. Dynamic range is greater than 100 dB , and input/output linearity over $\mathrm{a} \pm 10 \mathrm{mV}$ to $\pm 10.5 \mathrm{~V}$ input range is $\pm 0.05 \% \mathrm{FS}$ plus $\pm 0.05 \%$ of signal. Initial zero offset error is $\pm 8 \mathrm{mV}(8 \mathrm{kHz})$. Zero Offset error is externally adjustable to zero. Initial full scale accuracy is $\pm 50 \mathrm{kHz}$, and full scale error is also externally adjustable to zero. If full scale adjust is not employed, Pins 7 and 9 must be tied together.

The standard 4743 is specified for $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ operation. The $-H R$ version is specified for $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operation.

BLOCK DIAGRAM

PIN CONFIGURATION

$\left.\begin{array}{|cllllllll|}\hline \begin{array}{l}\text { Pin } \\ \text { No. }\end{array} & \text { Designation } & \begin{array}{l}\text { Pin } \\ \text { No. }\end{array} & \text { Designation }\end{array}\right]$

ABSOLUTE MAXIMUM RATINGS

$V_{C C} \quad$ Power Supplies ... $\pm 22 \mathrm{~V}$
$\pm \mathrm{V}_{\text {IN }}$ Input Voltage (Note 1) $\pm 15 \mathrm{~V}$
$V_{\text {ID }} \quad$ Differential Input Voltage $V_{\text {CC }}$
IIN Current Input .. 2.1 mA
TC Specified Temperature Range, Case
4743 ... $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
4743-HR $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }} \quad$ Storage Temperature Range $\ldots . . .-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS: $T_{C}=+25^{\circ} \mathrm{C}, \pm \mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}$, unless otherwise indicated.

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
Input $+\mathrm{V}_{\mathrm{IN}}$	Positive Input Range (Note 1)	For specified linearity	0.0001	-	10.5	V
$-\mathrm{V}_{\text {IN }}$	Negative Input Range	For specified linearity	-0.0001	-	-10.5	V
V_{CM}	Common Mode Input Range		-	-	± 10	V
CMRR	Common Mode Rejection Ratio		60	80	-	dB
$\mathrm{V}_{\text {ID }}$	Differential Input Voltage	Referenced to - $\mathrm{V}_{\mathbf{I N}}$	10.5	12	-	V
In	Current Input Range Input Dynamic Range		$\begin{array}{c\|} \hline 0.0001 \\ 100 \end{array}$	-	1.2	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~dB} \end{aligned}$
V_{OS}	Input Offiset Voltage	Adjustable to zero	-	± 8	± 20	mV
$\mathrm{V}_{\text {OS }}$ TC	Input Offset Drift		-	-	± 100	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
PSRR_{1}	Vos vs. Power Supplies	Constant voltage at Pin 8	-	-	± 20	$\mu \mathrm{V} / \%$

HIGH FREQUENCY, HYBRID VOLTAGE-TO-FREQUENCY CONVERTER

ELECTRICAL CHARACTERISTICS: (continued)

NOTES: $\quad 1 .+V_{I N}$ has a $10 \mathrm{k} \Omega$ intemal resistor and a 2 mA maximum input current limit. The Voltage input, if current limited by a series input resistor, is virtually unlimited.
2. Linearity specifications apply only after offset and gain have been trimmed to nominal.
3. Limits printed in boldface type are guaranteed and 100% production tested. Limits in normal font are guaranteed but not 100% production tested. HR product tested at $+125^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ unless otherwise noted. Standard parts tested at room temperature only.

APPLICATION INFORMATION

To take maximum advantage of the 4743's versatility, a functional block diagram and theory of operation are provided. With this information, input and output circuitry are easily understood and adapted to handle virtually any signal or load.

The 4743 is a free-running (astable) voltage controlled multivibrator. A true differential input amplifier, $\left(\mathrm{A}_{1}\right)$, allows the device to be driven by positive input voltage applied to Pin 12 (with Pin 11 open or grounded), by negative voltage applied to Pin 11 (with Pin 12 open or grounded), by differential voltages applied between Pins 12 and $11\left(\mathrm{~V}_{\text {IN }}=\right.$ $+\mathrm{V}_{\mathbb{I}}-\left(-\mathrm{V}_{\mathbb{I}}\right)$), or by positive current applied to Pin 10. CMRR with $\mathrm{VCM}=10 \mathrm{~V}$ is typically 80 dB .

No combination of input signals that will drive the output of amplifier A_{1} positive is permitted. The trigger circuit has a positive threshold level and will not respond to the negative signals that would result from a positive A_{1} output.

Operating with any of the input conditions described above results in a negative voltage at the output of A_{1}. Resistor R, amplifier A_{2}, and capacitor $\mathrm{C}(100 \mathrm{pF})$ form an integrator. C charges as a precise linear function of the V/F's input signal. When the voltage (charge) impressed on C reaches a fixed precise threshold, the trigger circuit triggers the one-shot (monostable) multivibrator, which in turn produces a constant-width output pulse. This pulse performs two functions. Amplified by Q_{1}, it becomes the output of the V/F and at the same time, it activates the precision charge dispenser (PCD).

The PCD discharges C to the same "zero" level every time an output pulse is produced. Thus, capacitor C is repeatedly charged between two precise voltages at a rate which is a linear function of the V/F input signal. That is, the rate of charging C, the repetition rate of reaching the trigger threshold, and the output frequency are all functions of the V/F voltage and/or current inputs.

Offset and Full Scale Trim Theory

Offset and full scale trim are performed at the input circuit. Offset is adjusted with a $25 \mathrm{k} \Omega$ potentiometer between $+V_{c c}$ and $-V_{C C}$, with its wiper tied to Pin 8. The subsequent voltage applied to Pin 8 falls across a $10 \mathrm{M} \Omega$ resistor to become a constant positive or negative current directly injected into the integrator capacitor.Full scale is adjusted by varying the integrator's input resistance with a series $1 \mathrm{k} \Omega$ potentiometer connected between Pins 7 and 9 . This adjustment can only lower the V/F's full scale output frequency, so units are laser trimmed at the factory to have initial full scale output errors that are always positive. By placing a fixed resistor in series with the adjusting potentiometer, the full scale output frequency can be lowered to 2.5 MHz . If full scale adjustment is not employed, Pins 7 and 9 must be tied together with as short a jumper as possible.

4743 Output Circuit

The TTL logic pulse train from the V/F is designed to drive 10 TTL loads with $\pm 15 \mathrm{~V}$ supplies. The output circuit is a single transistor $\left(Q_{1}\right)$ connected as a saturated switch with an uncommitted $2 \mathrm{k} \Omega$ pull-up resistor. With Pins 23 and 24 connected together, the output is approximately zero volts when Q_{1} is on. With Q_{1} off, the output voltage is $+V_{C C} / 3$ or +5 V when $+\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}$. If Pin 23 is not connected to Pin 24 , an external divider must be provided. The output circuit is easily adapted to drive CMOS logic by paralleling the $2 \mathrm{k} \Omega$ resistor with an external resistor large enough to bring the output up to the desired level. The additional pull-up resistor also decreases pulse rise time when driving larger capacitive loads.

The output (collector of Q_{1}) may be shorted to ground indefinitely without damage. However, since Q_{1} is on most of the time, a short to $+\mathrm{V}_{\mathrm{CC}}$ will cause certain catastrophic failure in about 5 seconds.

VOLTAGE-TO-FREQUENCY/FREQUENCY-TO-VOLTAGE CONVERTERS

FEATURES

Voltage-to-Frequency

- Operation \qquad 1 Hz to 100 kHz
- Choice of Guaranteed Linearity:
\qquad
TC9400 ..0.05\%
TC9402 .. 0.25%
- Gain Temperature Stability $\pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ Typ
- Open-Collector Output
- Output Can Interface With Any Form of Logic
- Pulse and Square-Wave Outputs
- Programmable Scale Factor
- Low Power Dissipation......................... 27 mW Typ

■ Single-Supply Operation +8 V to +15 V

- Dual-Supply Operation
$\pm 4 \mathrm{~V}$ to $\pm 7.5 \mathrm{~V}$
Current or Voltage Input

Frequency-to-Voltage

- Operation\qquad DC to 100 kHz- Choice of Guaranteed Linearity:TC94010.02\%
TC9400 0.05\%
TC9402 0.25\%

- Op-Amp Output
- Programmable Scale Factor
High Input Impedance $>10 \mathrm{M} \Omega$
- Accepts Any Voltage Waveshape

APPLICATIONS

Voltage-to-Frequency

- Temperature Sensing and Control
- $\mu \mathrm{P}$ Data Acquisition
- Instrumentation
- 13-Bit Analog-to-Digital Converters
- Digital Panel Meters
- Analog Data Transmission and Recording
- Phase-Locked Loops
- Medical Isolation
- Transducer Encoding
- Alternate to 555 Astable Timer

Frequency-to-Voltage

- Frequency Meters/Tachometer
- Speedometers
- Analog Data Transmission and Recording
- Medical Isolation
- Motor Control
- RPM Indicator
- FM Demodulation
- Frequency Multiplier/Divider
- Flow Measurement and Control

PIN CONFIGURATIONS

GENERAL DESCRIPTION

The TC9400/TC9401/TC9402 are low-cost voltage-tofrequency (V/F) converters combining bipolar and CMOS technology on the same substrate. The converters accept a variable analog input signal and generate an output pulse train whose frequency is linearly proportional to the input voltage.

The devices can also be used as highly-accurate fre-quency-to-voltage (F / V) converters, accepting virtually any input frequency waveform and providing a linearly-proportional voltage output.

A complete V/F or F/V system requires the addition of two capacitors, three resistors, and reference voltage.

ORDERING INFORMATION

Part No.	Linearity (V/F)	Package	Temperature Range
TC9400CPD	0.05%	$14-$-Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC9400EJD	0.05%	$14-\mathrm{Pin}$ CerDIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC9400COD	0.05%	14-Pin SO	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC9401CPD	0.01%	$14-$ Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC9401EJD	0.01%	$14-\mathrm{Pin}$ CerDIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC9402CJD	0.25%	$14-$ Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC9402EJD	0.25%	$14-\mathrm{Pin}$ CerDIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

ABSOLUTE MAXIMUM RATINGS

I_{IN}.. 10 mA
Vout Max -V ${ }_{\text {OUT }}$ Common 25 V
$V_{\text {REF }}$ - V ${ }_{\text {SS }}$...-1.5V
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range
C Device ... $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
E Device... $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Package Dissipation.. 500 mW
Lead Temperature (Soldering, 10 sec) $+300^{\circ} \mathrm{C}$
Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to Absolute Maximum Rating Conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS: $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GND}}=0, \mathrm{~V}_{\text {REF }}=-5 \mathrm{~V}, \mathrm{R}_{\mathrm{BIAS}}=100 \mathrm{k} \Omega$,
Full Scale $=10 \mathrm{kHz}$, unless otherwise specified. $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless temperature range is specified $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for E device, $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ for C device.

VOLTAGE-TO-FREQUENCY		TC9401			TC9400			TC9402			Unit
Parameter	Definition	Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Accuracy											
Linearity 10 kHz	Output Deviation From Straight Line Between Normalized Zero and Fuil-Scale Input	-	0.004	0.01	-	0.01	0.05	-	0.05	0.25	\% Full Scale
Linearity 100 kHz	Output Deviation From Straight Line Between Normalized Zero and Full-Scale Input	-	0.04	0.08	-	0.1	0.25	-	0.25	0.5	\% Full Scale
Gain Temperature Drift (Note 1)	Variation in Gain A Due to Temperature Change	-	± 25	± 40	-	± 25	± 40	-	± 50	± 100	$\begin{aligned} & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \text { Full Scale } \end{aligned}$
Gain Variance	Variation From Exact A Compensate by Trimming $\mathrm{R}_{\mathbb{N}}, \mathrm{V}_{\text {REF }}$, or $\mathrm{C}_{\text {REF }}$	-	± 10	-	-	± 10	-	-	± 10	-	\% of Nominal
Zero Offset (Note 2)	Correction at Zero Adjust for Zero Output When Input is Zero	-	± 10	± 50	-	± 10	± 50	-	± 20	± 100	mV
Zero Temperature Dritt (Note 1)	Variation in Zero Offset Due to Temperature Change	-	± 25	± 50	-	± 25	± 50	-	± 50	± 100	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Analog Input											
IN Full Scale	Full-Scale Analog Input Current to Achieve Specified Accuracy	-	10	-	-	10	-	-	10	-	$\mu \mathrm{A}$
IN Overrange	Overrange Current	-	-	50	-	-	50	-	-	50	$\mu \mathrm{A}$
Response Time	Settling Time to 0.1\% Full Scale	-	2	-	-	2	-	-	2	-	Cycle
Digital Output											
$\begin{aligned} & \mathrm{V}_{\text {SAT }} @ \mathrm{IOL}=10 \mu \mathrm{~A} \\ & \text { (Note 3) } \end{aligned}$	Logic "0" Output Voltage	-	-	0.4	-	-	0.4	-	-	0.4	V
VOUT Max - VOUT Common (Note 4)	Voltage Range Between Output and Common	-	-	18	-	-	18	-	-	18	V
Pulse Frequency Output Width		-	3	-	-	3	-	-	3	-	$\mu \mathrm{s}$

Supply Current

IDD Quiescent E Device (Note 9) C Device	Current Required From Positive Supply During Operation		$\begin{array}{r} 2 \\ 2 \\ \hline \end{array}$	$\begin{aligned} & 4 \\ & 6 \end{aligned}$		$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 4 \\ & 6 \\ & \hline \end{aligned}$	二	$\overline{3}$	$\overline{10}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Iss Quiescent E Device (Note 10) C Device	Current Required From Negative Supply During Operation	-	$\begin{aligned} & -1.5 \\ & -1.5 \end{aligned}$	$\begin{aligned} & -4 \\ & -6 \end{aligned}$	-	$\begin{aligned} & -1.5 \\ & -1.5 \end{aligned}$	$\begin{aligned} & -4 \\ & -6 \end{aligned}$	-	-3	$\overline{-10}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$\mathrm{V}_{\text {DD }}$ Supply	Operating Range of Positive Supply	4	-	7.5	4	-	7.5	4	-	7.5	V
$\mathrm{V}_{\text {SS }}$ Supply	Operating Range of Negative Supply	-4	-	-7.5	-4	-	-7.5	-4	-	-7.5	V

Reference Voltage	Range of Voltage Reference Input	-1	-	-	-1	-	-	-1	-	-	V
$V_{\text {REF }}-V_{\text {SS }}$											

NOTES: 1. Full temperature range.
2. $I_{\mathbb{N}}=0$.
3. Full temperature range, lout $=10 \mathrm{~mA}$.
4. $\mathrm{I}_{\text {OUT }}=10 \mu \mathrm{~A}$.
5. 10 Hz to 100 kHz .
6. $5 \mu \mathrm{~s}$ minimum positive pulse width and $0.5 \mu \mathrm{~s}$ minimum negative pulse width.
7. $t_{f}=t_{F}=20 \mathrm{~ns}$.
8. $R_{L} \geq 2 \mathrm{k} \Omega$.
9. Full temperature range, $\mathrm{V}_{\mathrm{IN}}=-0.1 \mathrm{~V}$.
10. $\mathrm{V}_{\mathrm{IN}}=-0.1 \mathrm{~V}$.
11. $I_{\mathbb{N}}$ connects the summing junction of an operational amplifier. Voltage sources cannot be attached directly, but must be buffered by external resistors.

Figure $1 \quad 10 \mathbf{~ H z}$ to $\mathbf{1 0} \mathbf{~ k H z ~ V / F ~ C o n v e r t e r ~}$

VOLTAGE-TO-FREQUENCY (V/F)
 CIRCUIT DESCRIPTION

The TC9400 V/F converter operates on the principal of charge balancing. The input voltage $\left(\mathrm{V}_{\mathbb{N}}\right)$ is converted to a current (l|Ne by the input resistor. This current is then converted to a charge by the integrating capacitor and shows up as linearly decreasing voltage at the output of the op amp. The zero crossing of the output is sensed by the comparator causing the reference voltage to be applied to the reference capacitor for a time period long enough to virtually charge the capacitor to the reference voltage. This action reduces the charge on the integrating capacitor by a fixed amount ($q=C_{\text {REF }} \times V_{\text {REF }}$), causing the op-amp output to step up a finite amount.

At the end of the charging period, CREF is shorted out, dissipating the stored reference charge, so when the output again crosses zero, the system is ready to recycle. In this manner, the continued discharging of the integrating capacitor by the input is balanced out by fixed charges from the reference voltage. As the input voltage is increased, the number of reference pulses required to maintain balance increases, causing the output frequency to also increase. Since each charge increment is fixed, the increase in frequency with voltage is near. In addition, the accuracy of the output pulses does not directly affect the linearity of the V/F. It must simply be long enough for full charge transfer to take place.

Figure 2 Output Waveforms

The TC9400 contains a "self-start" circuit to ensure the V/F converter always operates properly when power is first applied. In the event during "power-on" the op-amp output is below comparator threshold, and $\mathrm{C}_{\text {REF }}$ is already charged, a positive voltage step will not occur. The op-amp output will continue to decrease until it crosses the -2.5 V threshold of the "self-start" comparator. When this happens, a resistor is connected to the op-amp input, causing the output to quickly go positive until the TC9400 is once again in its normal operating mode.

The TC9400 utilizes both bipolar and MOS transistors on the same substrate, taking advantage of the best features of each. MOS transistors are used at the inputs to reduce offset and bias currents. Bipolar transistors are used in the op amp for high gain, and on all outputs for excellent current driving capabilities, CMOS logic is used throughout to minimize power consumption.

PIN FUNCTIONS

Comparator Input

In the V/F mode, this input is connected to the amplifier output (pin 12) and triggers the $3 \mu \mathrm{~s}$ pulse delay when the input voltage passes its threshold. In the F/V mode, the input frequency is applied to the comparator input.

Pulse Freq Out

This output is an open-collector bipolar transistor providing a pulse waveform whose frequency is proportional to the input voltage. This output requires a pull-up resistor and interfaces directly with MOS, CMOS and TTL logic.

Freq/2 Out

This output is an open-collector bipolar transistor providing a square wave one-half the frequency of the pulse frequency output. This output requires a pull-up resistor and interfaces directly with MOS, CMOS, and TTL logic.

Output Common

The emitters of both the freq/2 out and the pulse freq out are connected to this pin. An output level swing from the collector voltage to ground or to the $V_{S S}$ supply may be obtained by connecting to the appropriate point.

$R_{\text {BIAS }}$

Specifications for the TC9400 are based on RBIAS $=$ $100 \mathrm{k} \Omega \pm 10 \%$, unless otherwise noted. RBIAS may be varied between the range of $82 \mathrm{k} \Omega \leq \mathrm{R}_{\text {BIAS }} \leq 120 \mathrm{k} \Omega$.

Amplifier Out

The output stage of the operational amplifier. A nega-tive-going ramp signal is available at this pin in the V/F mode. In the F/N mode, a voltage proportional to the frequency input is generated.

Zero Adjust

The noninverting input of the operational amplifier. The low-frequency set point is determined by adjusting the voltage at this pin.

VOLTAGE-TO-FREQUENCY/ FREQUENCY-TO-VOLTAGE CONVERTERS

IN

The inverting input of the operational amplifier and the summing junction when connected in the V/F mode. An input current of $10 \mu \mathrm{~A}$ is specified for nominal full scale, but an overrange current up to $50 \mu \mathrm{~A}$ can be used without detrimental effect to the circuit operation.

$V_{\text {REF }}$

A reference voltage from either a precision source or the $V_{S S}$ supply may be applied to this pin. Accuracy will be dependent on the voltage regulation and temperature characteristics of the circuitry.

$V_{\text {REF }}$ Out

The charging current for $\mathrm{C}_{\text {REF }}$ is derived from the internal circuitry and switched by the break-before-make switch to this pin.

V/F CONVERTER DESIGN INFORMATION

Input/Output Relationships

The output frequency (fout) is related to the analog input voltage $\left(\mathrm{V}_{\mathrm{IN}}\right)$ by the transfer equation:

$$
\text { Frequency out }=\frac{V_{I N}}{R_{I N}} \times \frac{1}{\left(V_{\text {REF }}\right)\left(C_{R E F}\right)}=\text { fout } .
$$

External Component Selection

 R_{IN}The value of this component is chosen to give a fullscale input current of approximately $10 \mu \mathrm{~A}$:

$$
\mathrm{R}_{\mathrm{IN}} \cong \frac{\mathrm{~V}_{\mathrm{IN}} \text { Full Scale }}{10 \mu \mathrm{~A}}
$$

Example: $\mathrm{R}_{\mathrm{IN}} \cong \frac{10 \mathrm{~V}}{10 \mu \mathrm{~A}}=1 \mathrm{M} \Omega$.
Note that the value is an approximation and the exact relationship is defined by the transfer equation. In practice, the value of Ris typically would be trimmed to obtain fullscale frequency at $\mathrm{V}_{\text {IN }}$ full scale (see "Adjustment Procedure"). Metal film resistors with 1% tolerance or better are recommended for high-accuracy applications because of their thermal stability and low-noise generation.

$\mathrm{C}_{\mathrm{INT}}$

The exact value is not critical but is related to $\mathrm{C}_{\text {REF }}$ by the relationship:

$$
3 \mathrm{C}_{\text {REF }} \leq \mathrm{C}_{\mathrm{INT}} \leq 10 \mathrm{C}_{\text {REF }} .
$$

Improved stability and linearity are obtained when $\mathrm{C}_{\mathrm{INT}} \leq 4 \mathrm{C}_{\text {REF }}$. Low-leakage types are recommended, although mica and ceramic devices can be used in applications where their temperature limits are not exceeded. Locate as close as possible to pins 12 and 13.

$C_{\text {ReF }}$

The exact value is not critical and may be used to trimthe full-scale frequency (see "Input/Output Relationships"). Glass film or air trimmer capacitors are recommended because of their stability and low leakage. Locate as close as possible to pins 5 and 3 .

$\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{SS}}$

Power supplies of $\pm 5 \mathrm{~V}$ are recommended. For highaccuracy requirements, 0.05% line and load regulation and $0.1 \mu \mathrm{~F}$ disc decoupling capacitors located near the pins are recommended.

Adjustment Procedure

Figure 1 shows a circuit for trimming the zero location. Full scale may be trimmed by adjusting $R_{I N}, V_{\text {REF }}$, or $C_{\text {REF }}$. Recommended procedure for a 10 kHz full-scale frequency is as follows:
(1) Set $V_{\mathbb{I N}}$ to 10 mV and trim the zero adjust circuit to obtain a 10 Hz output frequency.
(2) Set $\mathrm{V}_{\text {IN }}$ to 10 V and trim either $\mathrm{RIN}, \mathrm{V}_{\text {REF }}$, or $\mathrm{C}_{\text {REF }}$ to obtain a 10 kHz output frequency.
If adjustments ar performed in this order, there should be no interaction and they should not have to be repeated.

Figure 3 Recommended $\mathrm{C}_{\text {REF }}$ vs $\mathrm{V}_{\text {REF }}$

Figure 4 Fixed Voltage - Single Supply Operation

Figure 5 Variable Voltage - Single Supply Operation

Figure 6 Single Variable Supply Voltage With Offset and Gain Adjust
ELECTRICAL CHARACTERISTICS: $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GND}}=0, \mathrm{~V}_{\text {REF }}=-5 \mathrm{~V}, \mathrm{R}_{\mathrm{BIAS}}=100 \mathrm{k} \Omega$,
Full Scale $=10 \mathrm{kHz}$, unless otherwise specified. $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless temperature range is specified $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for E device, $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ for C device.

FREQUENCY-TO-VOLTAGE		TC9401			TC9400			TC9402			Unit
Parameter	Definition	Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Accuracy											
Nonlinearity (Note 5)	Deviation From Ideal Transfer Function as a Percentage Full-Scale Voltage		0.01	0.02		0.02	0.05		0.05	0.25	\% Full Scale
Input Frequency Range (Note 6)	Frequency Range for Specified Nonlinearity	10		100k	10		100k	10		100k	Hz
Frequency Input											
Positive Excursion (Note 7)	Voltage Required to Turn Comparator On	0.4		$V_{D D}$	0.4		V_{DD}	0.4		$V_{D D}$	V
Negative Excursion (Note 7)	Voltage Required to Turn Comparator Off	-0.4		-2	-0.4		-2	-0.4		-2	V
Minimum Positive Pulse Width (Note 7)	Time Between Threshold Crossings		5			5			5		$\mu \mathrm{s}$
Minimum Negative Pulse Width (Note 7)	Time Between Threshold Crossings		0.5			0.5			0.5		$\mu \mathrm{s}$
Input Impedance		10			10			10			MW

ELECTRICAL CHARACTERISTICS (Cont.)

FREQUENCY-TO-VOLTAGE		TC9401			TC9400			TC9402			Unit
Parameter	Definition	Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Analog Outputs											
Output Voltage (Note 8)	Voltage Range of Op Amp Output for Specified Nonlinearity		$\mathrm{V}_{\mathrm{D}}{ }^{-1}$			$\mathrm{V}_{\mathrm{DD}}{ }^{-1}$			$\mathrm{V}_{\mathrm{DD}}-1$		V
Output Loading	Resistive Loading at Output of Op Amp	2			2			2			kW

Supply Current

IDD Quiescent E Device (Note 9) C Device	Current Required From Positive Supply During Operation		$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 4 \\ & 6 \end{aligned}$		$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 4 \\ & 6 \end{aligned}$		3	10	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Iss Quiescent E Device (Note 10) C Device	Current Required From Negative Supply During Operation		$\begin{aligned} & -1.5 \\ & -1.5 \end{aligned}$	$\begin{aligned} & -4 \\ & -6 \end{aligned}$		$\begin{aligned} & -1.5 \\ & -1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & -4 \\ & -6 \end{aligned}$		-3	-10	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$\mathrm{V}_{\text {DD }}$ Supply	Operating Range of Positive Supply	4		7.5	4		7.5	4		7.5	V
$\mathrm{V}_{\text {SS }}$ Supply	Operating Range of Negative Supply	-4		-7.5	-4		-7.5	-4		-7.5	V

Reference Voltage

$V_{\text {REF }}-V_{S S}$	Range of Voltage Reference Input	-1			-1			-1			V

NOTES: 1. Full temperature range.
2. $\mathrm{I}_{\mathrm{N}}=0$.
3. Full temperature range, lout $=10 \mathrm{~mA}$.
4. lout $=10 \mu \mathrm{~A}$.
5. 10 Hz to 100 kHz .
6. $5 \mu \mathrm{~s}$ minimum positive pulse width and $0.5 \mu \mathrm{~s}$ minimum negative pulse width.
7. $t_{R}=t_{F}=20 \mathrm{~ns}$.
8. $R_{L} \geq 2 \mathrm{k} \Omega$.
9. Full temperature range, $\mathrm{V}_{I N}=-0.1 \mathrm{~V}$.
10. $\mathrm{V}_{\mathbb{I}}=-0.1 \mathrm{~V}$.
11. $I_{\mathbb{N}}$ connects the summing junction of an operational
amplifier. Voltage sources cannot be attached directly,
but must be buffered by external resistors.

FREQUENCY-TO-VOLTAGE (F/V) CIRCUIT DESCRIPTION

When used as an F/V converter, the TC9400 generates an output voltage linearly proportional to the input frequency waveform.

Each zero crossing at the comparator's input causes a precise amount of charge ($q=C_{\text {REF }} \times V_{\text {REF }}$) to be dispensed intothe op amp's summing junction. This charge inturn flows through the feedback resistor, generating voltage pulses at the output of the op amp. A capacitor ($\mathrm{C}_{\mathbb{I N T}}$) across $\mathrm{R}_{\mathrm{INT}}$ averages these pulses into a DC voltage which is linearly proportional to the input frequency.

F/V CONVERTER DESIGN INFORMATION Input/Output Relationships

The output voltage is related to the input frequency (f_{N}) by the transfer equation:

$$
V_{\text {OUT }}=\left[V_{\text {REF }} C_{\text {REF }} R_{\text {INT }}\right] f_{\text {IN }} .
$$

The response time to a change in $f_{I N}$ is equal to (Rint $\mathrm{C}_{\text {INT }}$). The amount of ripple on $\mathrm{V}_{\text {out }}$ is inversely proportional to $\mathrm{C}_{\mathbb{I N T}}$ and the input frequency.
$\mathrm{C}_{\text {INT }}$ can be increased to lower the ripple. Values of $1 \mu \mathrm{~F}$ to $100 \mu \mathrm{~F}$ are perfectly acceptable for low frequencies.

When the TC9400 is used in the single-supply mode, $V_{\text {REF }}$ is defined as the voltage difference between pin 7 and pin 2.

Input Voltage Levels

The input signal must cross through zero in order to trip the comparator. To overcome the hysteresis, the amplitude must be greater than $\pm 200 \mathrm{mV}$.

If only a unipolar input signal (f_{IN}) is available, it is recommended an offset circuit utilizing a resistor be used or the signal be coupled in via a capacitor.

For 100 kHz maximum input, $\mathrm{R}_{\mathrm{INT}}$ should be decreased to $100 \mathrm{k} \Omega$.

NOTE: $C_{\text {REF }}$ should be increased for low fin max. Adjust Cref so $V_{\text {OUT }}$ is approximately 2.5 V to 3 V for maximum input frequency. When $\mathrm{f}_{\mathrm{IN}} \max$ is less than 1 kHz , the duty cycle should be greater than 20% to ensure CREF is fully charged and discharged.

VOLTAGE-TO-FREQUENCY/ FREQUENCY-TO-VOLTAGE CONVERTERS

TC9400
TC9401
TC9402

Figure 7 DC - $\mathbf{1 0} \mathbf{~ k H z ~ F / V ~ C o n v e r t e r ~}$

Figure 8 FN Digital Outputs

Input Buffer

fout and fout/2 are not used in the F/V mode. However, these outputs may be useful for some applications, such as a buffer to feed additional circuitry. Then, fout will follow the input frequency waveform, except that fout will go high $3 \mu s$ after $f_{\mathcal{N}}$ goes high; fout/2 will be squarewave with a frequency of one-half fout.

If these outputs are not used, pins 8, 9 and 10 may be left floating or connected to ground.

NOTES: 1. The input is now referenced to 6.2 V ($\operatorname{pin} 6$). The input signal must therefore be restricted to be greater than 4 V (pin $6,2 \mathrm{~V}$) and less than 10 V to $15 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{DD}}\right)$.
If the signal is $A C$ coupled, a $100 \mathrm{k} \Omega$ to $10 \mathrm{M} \Omega$ resistor must be placed between the input (pin 11) and ground (pin 6).
2. The output will now be referenced to pin 6 which is at $6.2 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{z}}\right)$. For frequency meter applications, a 1 mA meter with a series-scaling resistor can be placed across pins 6 and 12.

Figure 9 FN Single Supply

The sawtooth ripple on the output of an F/V can be eliminated without affecting the F/V's response time by using the circuit in Figure 10. The circuit has a DC gain of +1 . Any AC components (such as a ripple) are amplified positively via the lower path and negatively via the upper path. When both paths have the same gain, AC ripple is cancelled. The amount of cancellation is directly proportional to gain matching. If the two paths are matched within 10%, the ripple will be lowered by $1 / 10$. For 1% matching, the ripple is lowered by $1 / 100$. The $10 \mathrm{k} \Omega$ potentiometer is used to make the gain equal in both paths. This circuit is insensitive to frequency changes and signal waveshape.

F/V POWER-ON RESET

In F/V mode, the TC9400 output voltage will occasionally be at its maximum value when power is first applied. This condition remains until the first pulse is applied to $\mathrm{fin}_{\mathrm{N}}$. In most frequency-measurement applications this is not a problem, because proper operation begins as soon as the frequency input is applied.

Figure 10 F/V Ripple Eliminator

VOLTAGE-TO-FREQUENCY/ FREQUENCY-TO-VOLTAGE CONVERTERS

In some cases, however, the TC9400 output must be zero at power-on without a frequency input. In such cases, a capacitor connected from pin 11 to $V_{D D}$ will usually be sufficient to pulse the TC9400 and provide a power-on reset
(see Figure 11A). Where predictable power-on operation is critical, a more complicated circuit, such as Figure 11B, may be required.

Figure 11 Power-On Operation/Reset

Section 4

Sensor Products

Display A/D Converters	1
Boltage-to-Frequency/Frequency-to-Voltage Converters	3
Sensor Products	$\mathbf{4}$
Power Supply Control ICs	5
Power MOSFET, Motor and PIN Drivers	6
References	7
Chopper-Stabilized Operational Amplifiers	8
High Performance Amplifiers/Buffers	9
Video Display Drivers	10
Display Drivers	11
Analog Switches and Multiplexers	12
Data Communications	13
Discrete DMOS Products	14
Reliability and Quality Assurance	15
Ordering Information	16
Package Information	17
Sales Offices	18

SOLID STATE TEMPERATURE SENSOR

FEATURES

\author{

- $\pm 3^{\circ} \mathrm{C}$ Absolute Temperature Accuracy
 - 2 kV ESD Protection on All Pins
 - Replaces Mechanical Thermostats and Switches
 - On-Chip Temperature Sense (TC620)
 - External Temperature Sense (TC621)
 - 8-Pin DIP or SOIC for Direct PCB Mounting
 - 2 User-Programmable Temperature Set Points
 - 2 Independent Temperature Limit Outputs
 - Heat/Cool Regulate Output
}

APPLICATIONS

- System Over-Temperature Shutdown
- Advanced Thermal Warning
- Fan Speed Control Circuits
- Vibration-Immune Temperature Sensing
- Accurate Appliance Temperature Sensing

GENERAL DESCRIPTION

The TC620 and TC621 are solid-state temperature switches designed to replace mechanical switches in temperature sensing and control applications. Ambient temperature is sensed and compared to programmable temperature minimums and maximums.

Both devices provide a LOW LIMIT and HIGH LIMIT logical output as well as a CONTROL output. On the TC620, the LOW LIMIT is low when the measured temperature is below the low temperature set-point and the HIGH LIMIT is low when the measured temperature is below the high temperature set-point. The TC621 provides the same output functions except that the logical states are inverted. These outputs allow for easy 'over' and 'under' temperature detection.

The CONTROL output provides a programmable hysteresis in that it goes high when the measured temperature goes above the HIGH LIMIT set-point and returns to low when the measured temperature goes below the LOW LIMIT set-point. The CONTROL output of either device is easily applied to a temperature control system.

FUNCTIONAL DIAGRAM

SOLID STATE TEMPERATURE SENSOR

TC620

TC621

Our proprietary technology provides excellent absolute temperature accuracy ($\pm 3^{\circ} \mathrm{C}$). The low current requirement of these devices make them especially appealing in battery powered applications. The TC620 and TC621 have no moving parts so they are rugged and work well in equipment that needs to take a lot of abuse. Automotive, marine and industrial users will benefit from the ruggedness of these devices.

The LOW LIMIT and HIGH LIMIT temperatures are set by connecting the appropriate resistors to the LOW SET and HIGH SET inputs. The value of these SET resistors are a function of the temperature sensing element.

Internal Temperature Sensor (TC620)

The TC620 incorporates an on-board positive-tempera-ture-coefficient (PTC) thermal sensor which reacts to the internal temperature of the die. The LOW SET resistor (pin 2) should always be lower than the HIGH SET resistor (pin 3) to insure proper operation.

External Temperature Sensor (TC621)

The TC621 performs the same function as the TC620 but employs a user supplied temperature sensing device. The most common type of temperature sensor is a negative-temperature-coefficient (NTC) thermistor. An NTC sensor requires that the input and output functions be reversed from that of the TC620. This means that the HIGH SET resistor (pin 2) should always be lower than the LOW SET resistor (pin 3) to insure proper operation. See the applications section of this data sheet for recommendations on selecting the thermistor.

DESIGN PARAMETERS

The designer must be sure that the LOW SET programming resistor is smaller than the HIGH SET programming resistor for the TC620 or that the LOW SET resistor is larger than the HIGH SET resistor when using the TC621 with an NTC external thermistor. No damage will be done to the part if this is not correct but the CONTROL output logic will be effected.

The LOW LIMIT and HIGH LIMIT outputs will go to a 'high' state ('low' state for TC621) whenever the temperature of the device (or external thermistor) exceeds the temperature programmed for the respective inputs.

The CONTROL output latch will go to a 'high' whenever the sensed temperature exceeds the HIGH SET temperature and will go to a 'low' if the sensed temperature drops below the LOW SET temperature. A bonding option may be used to invert the CONTROL output logic for heating applications. The part number for this option has an 'H' instead of a ' C ' placed after the ' 620 ' or ' 621 ' digits.

If power is applied to the device while the sensed temperature is between the LOW SET temperature and the HIGH SET temperature, the LOW LIMIT output will go 'high' ('low' for the TC621) and the CONTROL output will go 'high'.

The resistance value for the TC620 can be determined by inserting the desired trip temperature (T) into the following formulas:

For Temperatures

$$
\text { below } 70^{\circ} \mathrm{C} \quad \text { Rtrip }=0.783 \times \mathrm{T}+91
$$

above $70^{\circ} \mathrm{C}$
Rtrip $=\mathrm{T}+77$
Where Rtrip = Programming resistor value in k ohms
$T=$ Desired trip temperature in degrees C
For example, to program the device to trip at $50^{\circ} \mathrm{C}$, the programming resistor would be:

Rtrip $=0.783 \times 50+91=130.2 \mathrm{k} \Omega$.
The TC621 can source or sink 10 mA per output. The outputs of the TC620 can source or sink 1 mA . If higher currents are utilized in the TC620, the device will generate internal heat, possibly causing erroneous temperature sensing.

TC620/621 Input vs. Output Logic

Output Resistance vs. Supply Voltage

SOLID STATE

 TEMPERATURE SENSOR
Abstract

TC620 TC621

ABSOLUTE MAXIMUM RATINGS

Power Dissipation	
Plastic ...1W	
CerDIP	800 mW
Derating Factors	
Plastic .. $8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	
CerDIP ...6.4 mW/ ${ }^{\circ} \mathrm{C}$	
Supply Voltage	20 V
Input Voltage Any Input(Gnd -0.3) to (VDD +0.3)	
Operating Temperature	
M Version....................................... 55 to $+125^{\circ} \mathrm{C}$	
E Version ..-40 to	
C Version .. 0 to $+70^{\circ} \mathrm{C}$	
Maximum Chip Temperature $+150^{\circ} \mathrm{C}$	
Storage Temperature 65 to $+150^{\circ} \mathrm{C}$	
Lead Temperature (10 sec) +300	

Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

ORDERING INFORMATION

Part No.	Package	Ambient Temperature
TC620CCOA	8-Pin SOIC	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC620CEOA	8-Pin SOIC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC620CCPA	8-Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC620CEPA	8-Pin Plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC620CMJA	8-Pin Ceramic DIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
TC621CCOA	8-Pin SOIC	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC621CEOA	8 -Pin SOIC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC621CCPA	8-Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC621CEPA	8-Pin Plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC621CMJA	8-Pin Ceramic DIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
TC620HCOA	$8-\mathrm{Pin}$ SOIC	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC620HEOA	8-Pin SOIC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC620HCPA	8-Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC620HEPA	8-Pin Plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC620HMJA	8-Pin Ceramic DIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
TC621HCOA	8-Pin SOIC	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC621HEOA	8-Pin SOIC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC621HCPA	8-Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC621HEPA	8-Pin Plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC621HMJA	8-Pin Ceramic DIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Parameter	Conditions	Min	Typ	Max	Unit
Supply Voltage		4.5		18	V
Supply Current			140	200	$\mu \mathrm{~A}$
Output Resistance	Output High or Low		400	1000	Ω
Output Current	620	Temp Sensed	Source/Sink		
	621	Temp Sensed	Source/Sink		1
Output Current	620	Cool/Heat	Source/Sink		
	621	Cool/Heat	Source/Sink		
Absolute Accuracy	$\mathrm{T}=$ Programmed Temperature	$\mathrm{T}-3$	T	$\mathrm{~T}+3$	${ }^{\circ} \mathrm{C}$

TC620 Sense Resistors vs. Trip Temperature

SOLID STATE TEMPERATURE SENSOR

TC620
TC621

TYPICAL APPLICATIONS

Dual Speed Temperature Control

The Dual Speed Temperature Control adds features to the basic controller by using the TC4469 quad driver. Two of the drivers are configured in a simple oscillator. When the temperature is below the LOW TEMP set point, the output of the driver is off. When the temperature exceeds the LOW TEMP set point, the TC4469 gates the oscillator signal to the outputs of the driver. This square wave signal modulates the remaining outputs and drives the motor at a low speed. If this
speed cannot keep the temperature below the HIGH TEMP set point, then the driver turns on continuously which increases the fan speed to high. The TC620 will monitor the temperature and only allow the fan to operate when needed, and at the required speed to maintain the desired temperature. A higher power option can be designed by adding a resistor and a power MOSFET.

Temperature Controlled Fan

In the Temperature Controlled Fan schematic, a high and a low temperature is selected by two 'set' resistors. The TC620 then monitors the ambient temperature and will turn on the FET switch when the temperature exceeds the HIGH TEMP set point. The fan remains on until the temperature decreases to the LOW TEMP set point. This provides the
hysteresis. In this application, the fan will not turn on unless needed. This makes for a high-power fan control with only four parts.

The TC621 uses an external themistor to monitor the ambient temperature.

SOLID STATE TEMPERATURE SENSOR

USING THE TC621

The TC621 uses an external thermistor to monitor the controlling temperature. A thermistor with a resistance value of approximately $100 \mathrm{k} \Omega$ at $25^{\circ} \mathrm{C}$ is recommended.

Typical thermistors exhibit a negative temperature coefficient (NTC) which must be considered when selecting the set-point resistors. A temperature set-point is selected by picking a resistor whose value is equal to the resistance of the thermistor at the desired temperature.

A $30 \mathrm{k} \Omega$ resistor between HIGH TEMP (pin 2) and V_{DD} (pin 8) will set the high temperature trip point at $+50^{\circ} \mathrm{C}$ and a $49 \mathrm{k} \Omega$ resistor on LOW TEMP (pin 3) will set the low temperature trip point to $+40^{\circ} \mathrm{C}$.

TYPICAL APPLICATIONS

Solid State Thermostat

The Solid State Thermostat diagram shows how the TC620 can be used to control home, industrial and commercial heating and cooling applications in a low cost, simple approach. The TC620 monitors the temperature and when heating is required, turns on the FET swich. This applies power to the gas valve and turns off the "standby" indicator.

TYPICAL NTC THERMISTOR

The Nicad battery provides power to the circuit when the FET is energized. D5 and R2 provide current limited power to the circuit when the FET is off. This also keeps the Nicad battery recharged. R3 and R4 set the desired hysteresis to prevent rapid cycling of the heating or cooling equipment.

Solid State Thermostat

NOTES

SOLID-STATE TEMPERATURE SENSOR

FEATURES

- 2 kV ESD Protection on All Pins
- Replaces Mechanical Thermostats and Switches
- TO-220 package for "Hot Spot" Mounting
- T0-92 Package for Direct Circuit Board Mounting
- $\pm 3^{\circ} \mathrm{C}$ Absolute Temperature Accuracy
- 10 mA Output Signal TO-92 Package
- 50 mA Output Signal TO-220 Package

APPLICATIONS

- System Overtemperature Shutdown
- Advanced Thermal Warning
- Fan Speed Control Circuits
- Vibration-Immune Temperature Sensing
- Accurate Appliance Temperature Sensing

GENERAL DESCRIPTION

The TC626 is a solid-state temperature sensor designed to replace mechanical switches in temperaturesensing applications. The ambient temperature is sensed and compared to an internal programmed temperature. The preset internal temperatures can be ordered in $5^{\circ} \mathrm{C}$ increments, from $0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

Ourproprietary technology provides high, absolute temperature accuracy ($\left.\pm 3^{\circ} \mathrm{C}\right)$. Since there are no moving parts, the TC626 is rugged and works well in harsh environments that could damage and reduce the life of mechanical temperature sensors. Automotive and industrial users will benefit from its immunity to vibration.

DESIGN PARAMETERS

The output will remain low until the internally programmedtemperature is reached. The device then switches its output high. This output signal can source and sink up to 10 mA (TO-92 package) and 50 mA (TO-220 package).

The heat-sinking ability of the surface to which the device is attached can permit higher power applications since the internal heating of the device will be negligible compared to the ambient temperature.

The hysteresis of the TC626 is 5 degrees at $20^{\circ} \mathrm{C}$. At higher temperatures, it increases.

PIN CONFIGURATIONS

SYSTEM OVERTEMPERATURE PROTECTION

TC626

ORDERING INFORMATION

Part Number*	Package	Temperature Range
TC626XXXCAB	3-Pin TO-220	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

* XXX is temperature in $5^{\circ} \mathrm{C}$ increments, from 0 to $+125^{\circ} \mathrm{C}\left(\mathrm{a} 50^{\circ} \mathrm{C}\right.$ part would be TC626050CAB).
ELECTRICAL CHARACTERISTICS: $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}$ unless otherwise specified.

Parameter	Test Conditions	Min	Typ	Max	Units
Supply Voltage		4.5	-	18	V
Supply Current	Output High or Low	-	300	600	$\mu \mathrm{~A}$
Output Resistance	Source/Sink, $\mathrm{V}_{\mathrm{CC}}=18 \mathrm{~V}$	-	-	75	W
Output Current	Source/Sink, $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	-	25	mA
		-	-	10	mA
Absolute Accuracy		$\mathrm{T}-3$	T	$\mathrm{~T}+3$	${ }^{\circ} \mathrm{C}$
Differential		3.5	5	6.5	${ }^{\circ} \mathrm{C}$

Teledyne Components reserves the right to make changes in the circuitry or specifications detailed in this manual at any time without notice. Minimums and maximums are guaranteed. All other specifications are intended as guidelines only. Teledyne Components assumes no responsibility for the use of any circuits described herein and makes no representations that they are free from patent infringement.

SWITCHING LOGIC

FAST NiCAD/Ni-HYDRIDE BATTERY CHARGER

FEATURES

- Fast Charge Cycle
- Automatic Overcharge Protection
- Fail Safe Fast Charge Shut-Off
- Programmable Min/Max Ambient Limits
- Selectable Charge Rate
- Automatic Trickle Charge
- Forced Trickle Charge (TC675)
- Timer Reset Pin (TC676)
- Safety Features
- Temperature Controlled Shut-Off
- Time Controlled Shut-Off
- Dual Mode Automatic Shut-Off
- Automatic Battery Insertion Detector

APPLICATIONS

- Battery Powered Applications
-Power Tools
-Laptop/Notebook Computers
-Medical
-Emergency Lighting Systems
-Communications
-Cellular Phones/Mobile Radio
-Portable Instruments

GENERAL DESCRIPTION

The TC675 and TC676 are designed for use with both NiCad and NiHydride batteries. These two devices meet the needs of the system designer whose battery charge applications require fast, reliable, and safe design.

The many automatic, programmable and selectable features of these devices provide capabilities found only in more expensive implementations. This, combined with inherent device capability of use in both AC or DC power sources, provide a flexible cost-effective solution to battery recharge maintenance.

FUNCTIONAL BLOCK DIAGRAM

ORDERING INFORMATION

Part No.	Package	Operating Temp Range
TC675CPD	14-Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC675EPD	14 -Pin Plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC675MJD	14 -Pin Ceramic DIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
TC675COE	16 -Pin Plastic SOIC	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC676CPD	14 -Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC676EPD	14 -Pin Plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC676MJD	14 -Pin Ceramic DIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
TC676COE	16 -Pin Plastic SOIC	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

ABSOLUTE MAXIMUM RATINGS

Power Dissipation
\qquad
Ceramic .800 mW
Derating Factors
Plastic ... $8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Ceramic .. $6.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Temperature
M Version ... $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
E Version .. $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
C Version .. $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (10 sec) $300^{\circ} \mathrm{C}$ Max Zener Current (liN) ... 50 mA

Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the Operational Specifications is not implied. Any exposure to Absolute Maximum Rating Conditions may affect device reliability.

OPERATIONAL SPECIFICATIONS: unless otherwise specified $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$; $\mathrm{I}_{\mathrm{S}}=6 \mathrm{~mA}$.

Symbol	Parameter	Condition	Min	Typ	Max	Unit
Supply						
Is	Supply Current	(thru current limit resistor)	1	6	30	mA
V_{z}	Zener Clamp Voltage	$\mathrm{I}=6 \mathrm{~mA}$	6	6.3	7	V
R_{Z}	Zener Output Resistance	$\mathrm{I}_{\mathrm{z}}=10 \mathrm{~mA}$ to 30 mA	-	10	20	Ω
$V_{\text {DD }}$	DC input on $\mathrm{V}_{\text {REG }}$	$\mathrm{V}_{\text {IN }}$ Open	4	5	6	V
IDD	Internal Circuit Current	$\mathrm{V}_{\mathrm{DD}}\left(\mathrm{V}_{\mathrm{REG}}\right)=5 \mathrm{~V}$	-	0.3	1	mA
Regulator						
V ${ }_{\text {REG }}$	Regulated Output	$\mathrm{I}_{\text {REG }}=5 \mathrm{~mA}$	5	-	6	V
RREG	$\mathrm{V}_{\text {REG }}$ Output Resistance	$\mathrm{I}_{\text {REG }}=0 \mathrm{~mA}$ to 5 mA	-	38	45	Ω

Switch Resistance (ros ON)

RSW					
MAX	MAX Switch	-	-	200	Ω
RSW	HIGH	HIGH Switch	-	-	450
RSW	LOW Switch	-	-	350	Ω
RSW $_{\text {DELTA }}$	DELTA Switch	-	-	300	Ω
RSW	-	-	-	80	Ω

Threshold Voltage Tolerance

$\delta V_{\text {MAX }}$	MAX	$2 / 3$ V $_{\text {REG }}$	-	± 4	± 10
$\delta V_{\text {HIGH }}$	HIGH	$1 / 2$ V $_{\text {REG }}$	-	± 4	± 10
$\delta V_{\text {LOW }}$	$1 / 3$ V REG	LOW	$1 / 6$ V $_{\text {REG }}$	-	± 4
$\delta V_{\text {DELTA }}$	DELTA	-	± 4	± 10	$\%$
TC $\delta \mathrm{V}$	Threshold Voltage Temp Coefficient	-	± 0.01	± 0.1	$\% /{ }^{\circ} \mathrm{C}$

FAST NiCAD/Ni-HYDRIDE

 BATTERY CHARGERTC675
TC676
OPERATIONAL SPECIFICATIONS (Cont): unless otherwise specified $T_{A}=+25^{\circ} \mathrm{C}$; $\mathrm{I}_{\mathrm{S}}=6 \mathrm{~mA}$.

Symbol	Parameter Condition	Min	Typ	Max	Unit
Output					
$\mathrm{IOHG}^{\text {a }}$	SCR Gate Drive Source	-	5	-	mA
lotG	SCR Gate Drive Sink	-	3	-	mA
$\mathrm{V}_{\text {OLL }}$	LED Low Output Voltage loL $=10 \mathrm{~mA}$	-	-	0.8	V
Digital Input					
ILCR	CHARGE RATE Pull-up Current	-	-	10	$\mu \mathrm{A}$
$\mathrm{IHTR}^{\text {I }}$	TRICKLE/RESET Pull-down Current	-	-	25	$\mu \mathrm{A}$
ILLBD	BATTERY DETECT Pull-up Current	-	-	20	$\mu \mathrm{A}$

ELECTRICAL CHARACTERISTICS: unless otherwise specified $T_{A}=$ Operating Temperature Range; $\mathrm{I}_{\mathrm{s}}=6 \mathrm{~mA}$.

Symbol	Parameter	Condition	Min	Typ	Max	Unit
Supply						
I_{S}	Supply Current	(thru current limit resistor $)$	1.2	6	30	mA
$\mathrm{~V}_{\mathrm{Z}}$	Zener Clamp Voltage	$\mathrm{I}_{\mathrm{Z}}=6 \mathrm{~mA}$	5.5	-	7.5	V
R_{Z}	Zener Output Resistance	$\mathrm{I}_{\mathrm{Z}}=10 \mathrm{~mA}$ to 30 mA	-	-	25	Ω
$\mathrm{~V}_{\mathrm{DD}}$	DC Input on $\mathrm{V}_{\text {REG }}$	V_{IN} Open	4	5	6	V
$\mathrm{IDD}_{\mathrm{DD}}$	Internal Circuit Current	$\mathrm{V}_{\mathrm{DD}}\left(\mathrm{V}_{\text {REG }}\right)=5 \mathrm{~V}$	-	0.5	1.2	mA

Regulator

$V_{\text {REG }}$	Regulated Output	$\mathrm{I}_{\text {REG }}=0 \mathrm{~mA}$ to 5 mA	4.8	-	7	V
$R_{\text {REG }}$	$\mathrm{V}_{\text {REG }}$ Output Resistance	$\mathrm{I}_{\text {REG }}=5 \mathrm{~mA}$	-	45	60	Ω

Switch Resistance (ros ON)

RSW $_{\text {MAX }}$	MAX Switch	-	-	260	Ω
RSW $_{\text {HIGH }}$	HIGH Switch	-	-	510	Ω
RSW LOW	LOW Switch	-	-	410	Ω
RSW	-	-	-	360	Ω
RSW	DELA	DELTA Switch	LED Drive	-	-

Threshold Voltage Tolerance

$\delta V_{\text {MAX }}$	MAX	$2 / 3$ V $_{\text {REG }}$	-	-	± 10	$\%$
$\delta V_{\text {HIGH }}$	HIGH	$1 / 2 \mathrm{~V}_{\text {REG }}$	-	-	± 10	$\%$
$\delta V_{\text {LOW }}$	LOW	$1 / 3 \mathrm{~V}_{\text {REG }}$	-	-	± 10	$\%$
$\delta V_{\text {DELTA }}$	DELTA	$1 / 6 \mathrm{~V}_{\text {REG }}$	-	-	± 10	$\%$
TC δV	Threshold Voltage Temp Coefficient	-	-	0.1	$\% /{ }^{\circ} \mathrm{C}$	

Output

${ }_{\text {IOHG }}$	SCR Gate Drive Source	-	5	-	mA
lotG	SCR Gate Drive Sink	-	3	-	mA
VoL	LED Low Output Voltage	-	-	1	V

Digital Input

ILCR	CHARGE RATE Pull-up Current	-	-	15	$\mu \mathrm{A}$
$\mathrm{l}_{\mathrm{H} T \mathrm{TR}}$	TRICKLE/RESET Pull-down Current	-	-	35	$\mu \mathrm{A}$
$1 / \mathrm{BD}$	BATTERY DETECT Pull-up Current	-	-	25	$\mu \mathrm{A}$

TC675

TIMER-COUNTER

Symbol	Parameter	Condition	Min	Typ	Max	Unit
	Charge Time Counter	$(1.517 \mathrm{Hr} @ 120 \mathrm{~Hz})$	-	655360	-	Counts
	Delay Time Counter	$(1.07 \mathrm{Min} @ 120 \mathrm{~Hz})$	-	7680	-	Counts

DEVICE OPERATION

(All pin numbers refer to the 14-pin dip package)

Temperature Control

Safety is critical in charging NiCad/Ni-Hydride batteries because a fast-charge applied under the wrong conditions may cause severe damage to the battery and it's surroundings. The battery temperature is monitored by an external thermistor and the controller will not allow the battery to start a fast-charge cycle while the battery temperature is too hot or too cold. A NiCad/Ni-Hydride battery tends to warm up during a fast-charge cycle so a temperature that was too high to allow the charging to start may not be too high to allow the charging to continue. Another temperature threshold causes the charger to stop the fast-charge cycle as soon as the battery temperature gets too high.

A charger may also be required to work in cold ambient temperatures. The preprogrammed absolute maximum charging temperature may be too high for these conditions so a separate 'delta' temperature may be used. This will stop the fast-charge cycle if the battery temperature exceeds the ambient temperature by a predetermined amount. This option requires a second thermistor to monitor the ambient temperature.

Time Control

The TC675 and TC676 both use an on-board timercounter which limits the maximum duration of the fastcharge cycle to 1.5 hours (1.8 hrs @ 50 Hz AC power). There is also a time delay of 60 seconds (77 sec @ 50 Hz AC power) before starting a fast-charge cycle. This delay gives the battery temperature sensor time to stabilize.

The counters are clocked by the full-wave rectified AC input. This clock rate is divided by 655,360 to time out the 1.517 hour ($1.82 \mathrm{hrs} @ 50 \mathrm{~Hz}$ AC power) maximum for the fast-charge cycle. A faster or slower clock may be used to modify the timing.

Full-Charge or Half-Charge Option

Both the TC675 and TC676 have a half-charge selection option. The CHARGE RATE input has an internal pullup to select the full-charge mode ($7 / 8$ duty cycle). A low on this pin will select the half-charge mode ($7 / 16$ duty cycle). This input may be selected or toggled anytime during a fastcharge cycle without effecting the time-out sequence.

Trickle-Charge

The trickle-charge mode of the TC675 and the TC676 runs at $\approx 7 \%$ of the fast-charge mode ($1 / 16$ duty cycle for fullcharge and $1 / 32$ duty cycle for half-charge) and is the default mode whenever the fast-charge cycle is not running.

PIN CONFIGURATIONS

TRICKLE/RESET (PIN 12)

The only difference between the TC675 and the TC676 is the operation of the input on pin 12.

On the TC675 (pin 12 = 'TRICKLE'), a high (V_{DD}) on this pin will hold the charger in the trickle-charge mode. The internal timer will continue to count down. If the timer hasn't timed out, the charger will go back to the full-charge mode if this pin is returned to low (0V).

On the TC676 (pin 12 = 'RESET'), low transition ($V_{D D}$ to 0 V) on this pin will reset the timer and initialize a fast-charge cycle.

BATTERY SENSE (PIN 4)

This input is internally pulled up to about 1 volt. It is designed to be capacitively coupled to the cathode of the SCR (the positive terminal of the battery). Without a battery present, the pulses from the full-wave rectified AC signal are coupled by a bypass resistor around the SCR intothe battery input through the capacitor. This produces a zero-crossing waveform at the battery pin which is interpreted as a 'no battery' condition. The presence of a battery will prevent these zero-crossings and the TC675/TC676 can begin a charge sequence.

Some battery packs contain a diode in series with the cells for safety purposes. This diode may prevent the battery from clamping the waveform to prevent zero-crossings. The auxiliary detect circuitry should be added to cause the diode, if present, to forward bias, which will then clamp the waveform to prevent zero-crossings and will indicate the presence of the battery.

CLOCK IN (PIN 6)

This input accepts the rectified AC signal and uses the pulses to establish timing. The waveform must reach zero volts during the pulse off time for accurate timing. Noise on this line could cause false clock triggering which can be prevented by placing a $0.01 \mu \mathrm{~F}$ capacitor from pin 6 to ground. This input is internally clamped to the $\mathrm{V}_{\mathrm{DD}}\left(\mathrm{V}_{\mathrm{DD}}\right)$ potential $(\approx 6 \mathrm{~V})$. A current limiting resistor must be used to connect the rectified $A C$ signal.

SCR DRIVE (PIN 3)

A 1.5 kHz pulse is the output on this pin which turns on the SCR during each cycle of the rectified AC waveform. This signal should be capacitively coupled to the gate of the SCR. A $0.01 \mu \mathrm{~F}$ capacitor will effectively turn on the SCR and block any DC component.

CHARGE RATE (PIN 13)

This input has an internal pull-up which selects the
normal-charge mode as default. A low on this pin will select $1 / 2$ the current charge rate, i. e. if the charger is in full-charge then a low on pin 13 will select $1 / 2$ full-charge, if the charger is in trickle-charge then $1 / 2$ trickle-charge is selected.

LED OUTPUT (PIN 2)

This pin has a pull-down resistor to ground. With power applied and no battery installed, and during the 1 minute start delay, the transistor is on steady. The output will toggle at a 3 Hz rate during a fast-charge cycle. The output will stay on steady during the trickle-charge mode.

CONTROL TEMPERATURE

Each control temperature has a unique voltage threshold which is derived as a ratio of an internal, zener generated reference voltage ($\mathrm{V}_{\mathrm{REG}}$).
$T_{\text {MAX }} \quad\left(\delta \mathrm{V}_{\text {MAX }}=2 / 3 \mathrm{~V}_{\mathrm{REG}}\right)$
the charger will stop the fast-charge mode if the battery temperature reaches this value.
$\mathrm{T}_{\mathrm{HIGH}} \quad\left(\delta \mathrm{V}_{\mathrm{HIGH}}=1 / 2 \mathrm{~V}_{\mathrm{REG}}\right)$ the charger will not start the fast-charge mode if the battery temperature is above this value.

TLOW $\quad\left(\delta V_{\text {LOW }}=1 / 3 V_{\text {REG }}\right)$

 the charger will not start the fast-charge mode if the battery temperature is below this value.
$T_{\text {DELTA }}\left(\delta V_{\text {DELTA }}=1 / 6 V_{\text {REG }}\right)$

 the charger will stop the fast-charge mode if the battery temperature exceeds the ambient temperature by this value.
THERMISTOR TEMPERATURE SENSOR

A common type of thermistor for this application is a negative-temperature-coefficient (NTC) with a relatively high resistance ratio. Some examples of thistype are KC009-ND, KC020-ND or RL1006-53 from Keystone.

Thermistor Characteristics

The transfer function (Resistance vs. Temperature) of a normal NTC thermistor takes the form:

$$
\ln R_{T}=A_{0}+A_{1} / T+A_{2} / T^{2}=\ldots+A_{N} / T^{N}\left(T \text { in }{ }^{\circ} \text { Kelvin }\right)
$$

The first three terms of this equation are sufficient to give a fit of better than $\pm 0.01^{\circ} \mathrm{C}$. The coefficients may be determined by setting up 3 simultaneous equations based on 3 known points.

The following calculations are based on a typical NTC thermistor (Keystone RL1006-53.4K-140-D1) with resistance values of $48.15 \mathrm{k} \Omega$ at $40^{\circ} \mathrm{C}\left(313.15^{\circ} \mathrm{K}\right), 100 \mathrm{k} \Omega$ at $25^{\circ} \mathrm{C}$ (298.15 K) and $221.8 \mathrm{k} \Omega$ at $10^{\circ} \mathrm{C}\left(282.15^{\circ} \mathrm{K}\right)$.

FAST NiCAD/Ni-HYDRIDE BATTERY CHARGER

TC675

1st point:

$$
\ln (48150)=A_{0}+A_{1} / 313.15+A_{2} / 313.152
$$

2nd point:

$$
\ln (100000)=A_{0}+A_{1} / 298.15+A_{2} / 298.152
$$

3rd point:

$$
\ln (221800)=A_{0}+A_{1} / 283.15+A_{2} / 283.152
$$

Solving these three equations for
$\mathrm{A}_{0}, \mathrm{~A}_{1}$ and A_{2} yields:

$$
R_{T}=\ln ^{-1}\left(-5.825+5821 / T-194235 / T^{2}\right)
$$

SETTING UP THE CONTROL TEMPERATURES

Assume an application which requires that the battery charger not start while the battery temperature is below $20^{\circ} \mathrm{C}$ (TLOW) or above $30^{\circ} \mathrm{C}$ ($\mathrm{T}_{\text {HIGH }}$). Also assume that the battery should stop charging if it's temperature gets up to either $40^{\circ} \mathrm{C}\left(\mathrm{T}_{\mathrm{MAX}}\right)$ or $20^{\circ} \mathrm{C}$ ($\mathrm{T}_{\text {DELTA }}$) above an ambient temperature of $15^{\circ} \mathrm{C}$ ($\mathrm{T}_{\text {AMB }}$).

The control temperatures are programmed as a function of the resistance value of the battery temperature thermistor ($\mathrm{R}_{\mathrm{BAT}} \mathrm{T}$) when it is at the temperature to be programmed (T) and the threshold voltage ratio $\left(\delta \mathrm{V}_{\mathrm{X}}\right)$.

The form of the equation to determine the values of $R_{\text {LOW, }} R_{\text {HIGH }}$ and $R_{\text {MAX }}$ is as follows:

$$
\mathrm{R}_{\mathrm{x}}=\frac{\mathrm{R}_{\mathrm{BAT}} T}{\delta V_{X}}-\mathrm{R}_{\mathrm{BAT}} T
$$

where $\mathrm{R}_{\mathrm{BAT}} T$ is the resistance of the
battery thermistor at temperature T
connected to pin 9.
$R_{\text {MAX (}}$ (pin 8):

$$
\mathrm{T}_{\mathrm{MAX}}=40^{\circ} \mathrm{C}, \delta \mathrm{~V}_{\mathrm{MAX}}=2 / 3, R_{\mathrm{BAT}} 40=48.1 \mathrm{k},
$$

$$
R_{\operatorname{MAX}}=\frac{R_{B A T} 40}{N_{\text {MAX }}}-R_{\text {BAT }} 40=\frac{48.1 \mathrm{k}}{2 / 3}-48.1 \mathrm{k}=24 \mathrm{k}
$$

$R_{\text {HIGH }}$ (pin 7):

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{HIGH}}=30^{\circ} \mathrm{C}, \delta \mathrm{~V}_{\mathrm{HIGH}}=1 / 2, \mathrm{R}_{\mathrm{BAT}} 30=77.8 \mathrm{k}, \\
& \mathrm{R}_{\mathrm{HIGH}}=\frac{\mathrm{R}_{\mathrm{BAT}} 30}{\delta \mathrm{~V}_{\mathrm{HIGH}}}-\mathrm{R}_{\mathrm{BAT}} 30=\frac{77.8 \mathrm{k}}{1 / 2}-77.8 \mathrm{k}=77.8 \mathrm{k}
\end{aligned}
$$

RLow (pin 10):

$$
\begin{aligned}
& \mathrm{T}_{\text {LOW }}=20^{\circ} \mathrm{C}, \delta V_{\text {LOW }}=1 / 3, R_{\mathrm{BAT}} 20=129.4 \mathrm{k}, \\
& R_{\text {LOW }}=\frac{R_{\text {BAT } 20}}{\delta V_{\text {LOW }}}-R_{\text {BAT } 20}=\frac{129.4 \mathrm{k}}{1 / 3}-129.4 \mathrm{k}=268.8 \mathrm{k}
\end{aligned}
$$

$R_{\text {DeLta }}$ (PIN 11)

A second thermistor can be used to modify the battery temperature shutdown point as a function of the ambient temperature. A 'delta' temperature may be set up to limit the battery temperature to some value above ambient. This value is called $T_{\text {DELTA }}$ and the ambient temperature that it works against is called $T_{\text {AMB }}$.

This control is very important for applications which are required to work over a wide range of ambient temperatures. Once a $T_{\text {DELTA }}$ value has been set up to work at some $T_{\text {AMB }}$ then the T DELTA will change inversely proportional to $T_{A M B}$. This means that as the ambient temperature goes up, the trip point goes up at an ever decreasing rate because TDELTA goes down.

The form of the equation to determine the values of R Delta is different than the ones for the other temperature control resistors because two thermistors are used. If the same thermistor type is used for monitoring the ambient temperature as is used to monitor the battery temperature then the value of $\mathrm{R}_{\text {DELTA }}$, based on the above example, is calculated thus:

```
\(T_{\text {DELTA }}=20^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{AMB}}=15^{\circ} \mathrm{C}\),
\(\mathrm{T}_{\mathrm{BAT}}=\mathrm{T}_{\mathrm{AMB}}+\mathrm{T}_{\text {DELTA }}=35^{\circ} \mathrm{C}, \delta \mathrm{V}_{\text {DELTA }}=1 / 6\),
```

$\mathrm{R}_{\mathrm{DELLT}}=\frac{\mathrm{R}_{\text {BAT }} 35}{\mathrm{dV}_{\text {DELTA }}}-\mathrm{R}_{\text {Bat }} 35-\mathrm{R}_{\text {AMB15 }}=$
$\frac{61 k}{1 / 6}-61 k-168.7 k=197.3 k$

TYPICAL APPLICATION

IMPORTANT NOTE: THE TC675 AND TC676 WILL MONITOR THE CHARGE TIME AND THE BATTERY TEMPERATURE BUT DOES NOT CONTROL THE CHARGING CURRENT. THE DESIGNER MUST LIMIT THE CHARGE CURRENT TO THE BATTERY BASED ON THE APPROPRIATE RATE FOR THE TYPE AND NUMBER OF CELLS IN THE NICAD/Ni-HYDRIDE BATTERY TO BE CHARGED. EXCEEDING THE BATTERY MANUFACTURER'S MAXIMUM CHARGE CURRENT CAN RESULT IN DEGRADED PERFORMANCE OR EVEN CATASTROPHIC FAILURE.
CHARGING CURRENT CAN BE LIMITED WITH A RESISTOR, AS SHOWN, OR BY MATCHING THE MAXIMUM TRANSFORMER OUTPUT CURRENT TO THE BATTERY CHARGING RATE.

CHARGING NiCAD BATTERIES FROM A DC SOURCE

The TC675 and TC676 are designed to control the charging of $\mathrm{NiCad} / \mathrm{Ni}$-Hydride batteries from a self-clocking, self-commutating power source (full-wave rectified, unfiltered $50 / 60 \mathrm{~Hz}$ AC power). Some applications may require that the NiCad be charged from a DC power source, i. e. battery-to-battery.

When a DC power source is used, the application must provide clock pulse to CLOCK IN (pin 6) to control the timing and a pulse train to BATTERY DETECT (pin 4) whenever a battery is NOT present. This pulse train should be modified
by the presence of a battery such that it does not provide zero-crossings on pin 6.

A SET/RESET latch may be controlled by the SCR DRIVE output (pin 3) and the timing clock (pin 6) which can then mediate the charge current to the battery.

DC voltage may be supplied directly to the internal circuitry through pin5. Under theseconditions, $\mathrm{V}_{\text {REG }}$ becomes $V_{D D}$ and must be at least 4 volts and no greater than 6 volts. The internal circuitry will take about $300 \mu \mathrm{~A}(1 \mathrm{~mA}$ max) and the $V_{\mathbb{I N}}$ input (pin 14) should be left open.

NOTES

Section 5

Power Supply Control ICs

Display A/D Converters	1
Binary A/D Converters	2
Voltage-to-Frequency/Frequency-to-Voltage Converters	3
Sensor Products	4
Power Supply Control ICs	5
Power MOSFET, Motor and PIN Drivers	6
References	7
Chopper-Stabilized Operational Amplifiers	8
High Performance Amplifiers/Buffers	9
Video Display Drivers	10
Display Drivers	11
Analog Switches and Multiplexers	12
Data Communications	13
Discrete DMOS Products	14
Reliability and Quality Assurance	15
Ordering Information	16
Package Information	17
Sales Offices	18

CMOS CURRENT-MODE PWM CONTROLLER

FEATURES

- Low Supply Current With CMOS Technology \qquad- Current-Mode Control- Internal Reference5.1V
- Fast Rise/Fall Times ($\mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}$) 50 ns
- Dual Push-Pull Outputs- Direct-Power MOSFET Drive- High Totem-Pole Output Drive
\qquad- Differential Current-Sense Amplifier- Programmable Current Limit

Soft-Start Operation

Double-Pulse Suppression Undervoltage Lockout

- Wide Supply Voltage Operation \qquad
High Frequency Operation
.200 kHz

Plastic and CerDIP Packages

Available with Low OFF State Outputs

Low Power, Pin-Compatible Replacement for UC3846

BLOCK DIAGRAM

GENERAL DESCRIPTION

The TC170 brings low-power CMOS technology to the current-mode-switching power supply controller market. Maximum supply current is 3.8 mA . Bipolar current-mode control integrated circuits require five times more operating current. Low power supply current eliminates auxiliary power transformers. In off-line powering schemes, where a simple zener diode circuit provides device supply voltage, power dissipation is greatly reduced. CMOS technology decreases system cost, increases power efficiency, reduces heat generation, and increases total system reliability.

The dual totem-pole CMOS outputs drive power MOSFETs or bipolar transistors. The 50-ns typical output rise and fall times, a 1000-pF capacitive loads, minimize MOSFET power dissipation. Output peak current is 300 mA .

The TC170 contains a full array of system-protection circuits. The undervoltage lockout circuit forces outputs OFF if the supply voltage drops below 7V. A soft-start feature is also available. The soft-start option forces the PWM outputs to initially operate at a minimum duty cycle and low peak output current. The TC170 can be directly turned off through a remote-shutdown control pin. The shutdown mode can be latched (power must be turned off to restart system) or nonlatched. The soft-start feature can also be used in system-shutdown applications. Doubleoutput pulse suppression guarantees output drive pulses always alternate from one output driver to the other. Peak current is user-adjustable.

Current-mode control lets users parallel power supply modules. Two or more TC170 controllers can be slaved together for parallel operation. Circuits can operate from a master TC170 internal oscillator or an external system oscillator.

The TC170 operates from an 8 V to 16 V power supply. An internal $2 \%, 5.1 \mathrm{~V}$ reference minimizes external component count. The TC170 is pin compatible with the Unitrode UC1846/2846/3846 bipolar controller.

Other advantages inherent in current-mode control include superior line and load regulation and automatic symmetry correction in push-pull converters.

ORDERING INFORMATION

Part No.	Package	Operating Temperature Range
TC170CPE	16 -Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC170IJE	$16-\mathrm{Pin}$ CerDIP	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC170MJE	$16-$ Pin CerDIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
TC170COE	$16-$ Pin SO	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC170EOE	$16-$ Pin SO	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC170EPE	16 -Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

Supply Voltage 18 V
Output Voltage V_{DD} or 18 V
Analog Inputs -0.3 V to $\mathrm{V}_{\mathrm{S}}+0.3 \mathrm{~V}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $+300^{\circ} \mathrm{C}$
Maximum Chip Temperature $.150^{\circ} \mathrm{C}$
CerDIP Package Thermal Resistance:
θ_{JA} (Junction to Ambient) $105^{\circ} \mathrm{C} / \mathrm{W}$
θ_{Jc} (Junction to Case) $.60^{\circ} \mathrm{C} / \mathrm{W}$
Plastic Package Thermal Resistance:
θ_{JA} (Junction to Ambient) $140^{\circ} \mathrm{C} / \mathrm{W}$
θ_{JC} (Junction to Case) $70^{\circ} \mathrm{C} / \mathrm{W}$
Operating Temperature Range
Commercial $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Industrial
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to Absolute Maximum Rating Conditions for extended periods may affect device reliability.

CMOS CURRENT-MODE PWM CONTROLLER

ELECTRICAL CHARACTERISTICS: $\mathrm{V}_{\mathrm{IN}}=16 \mathrm{~V}, \mathrm{R}_{\mathrm{O}}=24 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{O}}=1 \mathrm{nF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise indicated.

Symbol	Parameter	Test Conditions	Min	Typ	Max
Reference Voltage	Unit				
$V_{\text {REF }}$	Output Voltage	IOUT $=1 \mathrm{~mA}$	5	5.1	5.3
	Line Regulation	$\mathrm{V}_{\text {IN }}=8 \mathrm{~V}$ to 16 V		V	
	Load Regulation	IOUT $=1 \mathrm{~mA}$ to 10 mA		13	20
$\mathrm{~V}_{\text {RTC }}$	Temperature Coefficient	Over Operating Temperature Range		0.4	0.5

Oscillator

Oscillator Frequency	35	42	46	kHz	
Voltage Stability	$\mathrm{V}_{\mathbb{I N}}=8 \mathrm{~V}$ to 16 V		1.1	1.5	$\% / \mathrm{V}$
Temperature Stability	Over Operating Temperature Range		5	10	$\%$

Error Amplifier

Vos	Input Offset Voltage				30	mV
IB	Input Bias Current				1	nA
$\mathrm{V}_{\text {CMRR }}$	Common-Mode Input Voltage	$\mathrm{V}_{\text {IN }}=8 \mathrm{~V}$ to 16 V	0		$\mathrm{V}_{\mathrm{DD}}-2 \mathrm{~V}$	V
$A_{\text {VOL }}$	Open-Loop Voltage Gain	$\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}$ to 6 V	70			dB
BW	Unity Gain Bandwidth			1.2		MHz
CMRR	Common-Mode Rejection Ratio	$\mathrm{V}_{\text {Cmv }} 0 \mathrm{~V}$ to 14V	60			dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\text {IN }}=8 \mathrm{~V}$ to 16 V	60			dB

Current Sense Amplifier

Amplifier Gain	Pin 3 = OV to 1.1V	3	3.15	3.3
Maximum Differential Input Signal	$V_{\text {PIN4 }}-\mathrm{V}_{\text {PIN }}$			≤ 1.1
Common-Mode Input Voltage	0		V	

Current Limit Adjust

Current Limit Offset Voltage	0.5		1	V
Input Bias Current			1	nA

Shutdown Terminal

V_{TB}	Threshold Voltage	0.3	0.35	0.4
$\mathrm{~V}_{\mathrm{IN}} \quad$ Input Voltage Range	0		V	
Minimum Latching Current at Pin 1	125			$\mu \mathrm{~A}$
Maximum Nonlatching Current at Pin 1			50	$\mu \mathrm{~A}$

Output Stage

V_{DD}	Output Voltage	Pin 13			V_{DD}	V
$\mathrm{V}_{\text {OL }}$	Output Low Level	$\mathrm{I}_{\mathrm{SINK}}=20 \mathrm{~mA}$			0.4	V
$\mathrm{V}_{\text {OL }}$	Output Low Level	$\mathrm{I}_{\text {SINK }}=100 \mathrm{~mA}$			2	V
V_{OH}	Output High Level	$\mathrm{ISOURCE}=20 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{DD}}-1 \mathrm{~V}$			V
$\mathrm{V}_{\text {OL }}$	Output High Level	ISOURCE $=100 \mathrm{~mA}$	V_{DD}-4V			V
th	Output Rise Time	$\mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}$		50	150	ns
$t_{\text {F }}$	Output Fall Time	$\mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}$		50	150	ns
Undervoltage Lockout						
	Start-Up	Threshold	7.25	7.7	8.25	V
	Threshold Hystere		0.5	0.75	1	V
Supply						
Is Standby Supply Current				2.7	3.8	mA

Peak Current Limit Setup

Resistors R1 and R2 at the current limit input (pin 1) set the TC170 peak current limit (Figure 1). The potential at pin 1 is easily calculated:

$$
\mathrm{V} 1=\mathrm{V}_{\mathrm{REF}} \frac{\mathrm{R} 2}{\mathrm{R} 1+\mathrm{R} 2}
$$

R1 should be selected first. The shutdown circuit feature is not latched for ($\mathrm{V}_{\mathrm{REF}}-0.35$)/R1<50 $\mu \mathrm{A}$ and is latched for currents greater than $125 \mu \mathrm{~A}$.

The error amplifier output voltage is clamped from going above V1 through the limit buffer amplifier. Peak current is sensed by RS and amplified by the current amplifier which has a fixed gain of 3.15 .
$I_{P C L}$, the peak current limit, is the current that causes the PWM comparator noninverting input to exceed V 1 ; the potential at the inverting input. Once the comparator trip point is exceeded, both outputs are disabled.
$I_{P C L}$ is easily calculated:

$$
I_{\mathrm{PCL}}=\frac{\mathrm{V} 1-0.75 \mathrm{~V}}{3.15(\mathrm{RS})}
$$

where:

$$
\begin{aligned}
& \mathrm{V}_{1}=\mathrm{V}_{\mathrm{REF}} \frac{\mathrm{R} 2}{\mathrm{R} 1+\mathrm{R} 2} \\
& \mathrm{~V}_{\mathrm{REF}}=\text { Internal voltage reference }=5.1 \mathrm{~V} \\
& 3.15=\text { Gain of current-sense amplifier } \\
& 0.75 \mathrm{~V}=\text { Current limit offset }
\end{aligned}
$$

Both driver outputs (pins 11 and 14) are OFF (low) when the peak current limit is exceeded. When the sensed current goes below $l_{\text {PCL }}$, the circuit operates normally.

Output Shutdown

The TC170 outputs can be turned off quickly through the shutdown input (pin 16). A signal greater than 350 mV at pin 16 forces the shutdown comparator output high. The PWM latch is held set, disabling the outputs.

Q2 is also turned on. If $V_{\text {REF }} / R 1$ is greater than $125 \mu \mathrm{~A}$, positive feedback through the lock-up amplifier and Q1 keeps the inverting PWM comparator inverting input below 0.75 V . Q3 remains on even after the shutdown input signal is removed, because of the positive feedback. The state can be cleared only through a power-up cycle. Outputs will be disabled whenever the potential at pin 1 is below 0.75 V .

The shutdown terminal gives a fast, direct way to disable the TC170 output transistors. System protection and remote shutdown applications are possible.

The input pulse to pin 16 should be at least 500 ns wide and have an amplitude of at least 1 V in order to get the minimum propagation delay from input to output. If these parameters are met, the delay should be less than 600 ns at $25^{\circ} \mathrm{C}$; however, the delay time will increase as the device temperature rises.

Soft Restart From Shutdown

A soft restart can be programmed if nonlatched shutdown operation is used.

A capacitor at pin 1 will cause a gradual increase in potential toward V1. When the voltage at pin 1 reaches 0.75 V , the PWM latch set input is removed and the circuit establishes a regulated output voltage. The soft-start operation forces the PWM output drivers to initially operate with minimum duty cycle and low peak currents.

Even if a soft start is not required, it is necessary to insert a capacitor between pin 1 and ground if the current I_{L} is greater than $125 \mu \mathrm{~A}$. This capacitor will prevent "noise triggering" of the latch, yet minimize the soft-start effect.

Soft-Start Power-Up

During power-up, a capacitor at R1, R2 initiates a softstart cycle. As the input voltage (pin 15) exceeds the undervoltage lockout potential (7.7V), Q4 is turned off, ending undervoltage lockout. Whenever the PWM comparator inverting input is below 0.5 V , both outputs are disabled.

When the undervoltage lockout level is passed, the capacitor begins to charge. The PWM duty cycle increases until the operating output voltage is reached. Soft-start operation forces the PWM output drivers to initially operate with minimum duty cycle and low peak current.

Current-Sense Amplifier

The current-sense amplifier operates at a fixed gain of 3.15. Maximum differential input voltage ($\mathrm{V}_{\text {PIN4 }}-\mathrm{V}_{\text {PIN3 }}$) is 1.1V. Common-mode input voltage range is 0 V to $\mathrm{V}_{1 N}-3 \mathrm{~V}$.

Resistive-sensing methods are shown in Figure 2. In Figure 2(A), a simple RC filter limits transient voltage spikes at pin 4, caused by external output transistor-collector capacitance. Transformer coupling (Figure 3) offers isolation and better power efficiency, but cost and complexity increase.

In order to minimize the propagation delay from the input to the current amplifier to the output terminals, the current ramp should be in the order of $1 \mu \mathrm{~s}$ in width (min). Typical time delay values are in the 300 to 400 ns region at $25^{\circ} \mathrm{C}$. The delay time increases with device temperature so that at $50^{\circ} \mathrm{C}$, the delay times may be increased by as much as 100 ns .

CMOS CURRENT-MODE PWM CONTROLLER

TC170

Figure 1 R1 and R2 Set Maximum Peak Output Current

Figure 2 Resistive Sensing

CMOS CURRENT-MODE PWM CONTROLLER

TC170

Figure 3 Transformer Isolated Current Sense

Undervoltage Lockout

The undervoltage lockout circuit forces the TC170 outputs OFF (low) if the supply voltage is below 7.7 V . Threshold hysteresis is 0.75 V and guarantees clean, jitter-free turn-on and turn-off points. The hysteresis also reduces capacitive filtering requirements at the PWM controller supply input (pin 15).

Circuit Synchronization

Current-mode-controlled power supplies can be operated in parallel with a common load. Paralleled converters will equally share the load current. Voltage-mode controllers unequally share the load current, decreasing system reliability.

Two or more TC170 controllers can be slaved together for parallel operation. Circuits can operate from a master TC170 internal oscillator with an external driver (Figure 4). Devices can also be slaved to an external oscillator (Figure 5). Disable internal slave device oscillators by grounding pin 8. Slave controllers derive an oscillator from the bidirectional synchronization output signal at pin 10.

Pin 10 is bidirectional in that it is intended to be both a sync output and input. This is accomplished by making the output driver "weak." This is advantageous in that it eliminates an additional pin from the package but does not enable the device to directly drive another device. In order to make it an effective driver, a buffer is required (Figure 4). In order to use pin 10 as a sync input, it is necessary to overcome the internal driver. This requires a pulse with an amplitude equal to V_{cc}. Since V_{cc} must be above 8.25 V for the undervoltage lockout to be disabled, a CMOS or open-collector TTL driver should be used.

Figure 4 Master/Slave Parallel Operation

Figure 5 External Clock Synchronization

CMOS CURRENT-MODE

 PWM CONTROLLER
TC170

Figure 6 Oscillator Circuit

Oscillator Frequency and Output Dead Time

The oscillator frequency for $R_{O}=24 \mathrm{k} \Omega$ and $C_{0}=1000 \mathrm{pF}$ is:

$$
F_{o}=\left[\frac{1.27}{R_{o} C_{o}}-\frac{2800}{R_{o}^{2} C_{O}}\right] \frac{C_{O}}{C_{O}+150 \times 10^{-12}}
$$

where: $\mathrm{R}_{\mathrm{O}}=$ Oscillator Resistor (Ω)
$\mathrm{C}_{\mathrm{O}}=$ Oscillator Capacitor (F)
Fo $=$ Oscillator Frequency (Hz)
The oscillator resistor can range from $5 \mathrm{k} \Omega$ to $50 \mathrm{k} \Omega$.
Oscillator capacitor can range from 250 pF to 1000 pF . Figure 7 shows typical operation for various resistance and capacitance values.

During transitions between the two outputs, simultaneous conduction is prevented. Oscillator fall time controls the output off, or dead time (Figure 6).

Dead time is approximately:

$$
T_{D}=\frac{2000\left[C_{o}\right]}{1-\left(\frac{2.3}{R_{O}}\right)}
$$

Figure 7 Oscillator Frequency vs Oscillator Resistance
where: $\mathrm{R}_{\mathrm{O}}=$ Oscillator Resistor $(\mathrm{k} \Omega$)
$\mathrm{C}_{\mathrm{O}}=$ Oscillator Capacitor (pF)
$T_{D}=$ Output Dead Time (sec)
Maximum possible duty cycle is set by the dead time.

Output Rise and Fall Times

Output Rise and Fall Times

BONDING DIAGRAM

NOTES: 1. Backside of die is common to $V_{D D}$ 2. Backside of die is not metallized

BiCMOS CURRENT-MODE PWM CONTROLLER

FEATURES

Low Power BiCMOS Construction	
	Low Supply Current
Inputs Will Withstand Neg Inputs to -5V	
High Output Drive1.2A Peak	
Fast Rise/Fall Times 60 ns @ 1000 pF High Frequency Operation. \qquad	
Clock R	
- Adjustab	
djus	
hutd	
UV Lockout Pin Available............................. 9	
ft-Start D	
Low Propagation Delay Shutdown to Output \qquad 90 ns Typ 2kV ESD Protection	

GENERAL DESCRIPTION

The TC172/173 are current-mode BiCMOS PWM control ICs. With a low 1.5 mA supply current along with the high drive currents (1.2A typical), they provide a low-cost solution for many PWM needs, since they canbe driven without a $50-$ 60 Hz transformer and can directly drive MOSFETs up to

The TC172/173 are based on the popular UC3842-type architecture, but are improved to bring out more control features to operate at higher frequency (1 MHz) and provide more output drive power.

The TC172/173 add additional features. They come in a 16-pin package. The additional pins allow more functions: a linear timing ramp for the clock (instead of exponential), user-adjustable undervoltage start and hysteresis level, as well as separate output drive and control grounds. In addition, the TC172/173 provides a separate shutdown pin for fast output shutdown, and an open-collector output pin that pulls low when the user-adjusted undervoltage lockout drops out.

BLOCK DIAGRAM

TC172
TC173

ORDERING INFORMATION

Part No.	Package	Temperature
TC17*MJE	16 -Pin CerDIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
TC17*EOE	16 -Pin SOIC Wide	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$\mathrm{TC} 17^{*} \mathrm{EPE}$	16 -Pin Plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$\mathrm{TC} 17^{*} \mathrm{EJE}$	16 -Pin CerDIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC17*COE	16 -Pin SOIC Wide	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$\mathrm{TC} 17^{*} \mathrm{CPA}$	16 -Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

* The last digit defines the specific device:

172 - 99% duty cycle limit
$173-49 \%$ duty cycle limit

PIN CONFIGURATION

comp 1	
UVLO 2	15 UV HI
$\mathrm{V}_{\mathrm{FB}} 3$	$14 \mathrm{~V} \mathrm{~V}^{\text {N }}$
$\overline{\text { UV }} 4$	$13 \mathrm{~V} D$
SHUT DN 5	12 OUT
Isense 6	11 GND
$\mathrm{RT}_{\mathbf{T}} 7$	10 OUTPUT GND
$\mathrm{C}_{\mathrm{T}} 8$	9. OUTPUT GND
	4342 IL. Fo2

ELECTRICAL CHARACTERISTICS: Unless otherwise stated, these specifications apply for:
$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$ for $\mathrm{TC} 172 / 173 \mathrm{MXX}$
$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$ for TC172/173EXX
$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ for $\mathrm{TC} 172 / 173 \mathrm{CXX}$
$\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$ (Note 4); $\mathrm{R}_{\mathrm{T}}=10 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{T}}=330 \mathrm{pF}$

Parameter	Test Conditions	TC172/173MXX TC172/173EXX			TC172/173CXX			Units
		Min	Typ	Max	Min	Typ	Max	
Reference Section								
Output Voltage	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{l}^{\mathrm{O}}=1 \mathrm{~mA}$	4.95	5	5.05	4.9	5	5.10	V
Line Regulation	$12 \leq \mathrm{V}_{\mathrm{IN}} \leq 18 \mathrm{~V}, \mathrm{l}$ O $=5 \mu \mathrm{~A}$		± 3	± 10		± 3	± 10	mV
Load Regulation	$1 \mathrm{~mA} \leq \mathrm{l}_{0} \leq 11 \mathrm{~mA}$		± 5	± 15		± 5	± 15	mV
Temperature Coefficient	(Note 1)		± 0.25	± 0.5		± 0.25	± 0.5	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Total Output Variation	Line, Load, Temperature (Note 1)	4.9		5.1	4.82		5.18	V
Output Noise Voltage	$10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 1)		100			100		$\mu \mathrm{V}$
Long-Term Stability	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}, 1000 \mathrm{Hrs}$. (Note 1)		± 0.5			± 0.5		\%
Output Short Circuit		-20	-50	-100	-30	-50	-100	mA

Oscillator Section								
Initial Accuracy	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ (Note 5)	490	520	560	490	520	560	kHz
Voltage Coefficient	$12 \leq \mathrm{V}_{\mathrm{CC}} \leq 18 \mathrm{~V}$		0.2	0.3		0.2	0.3	\%/V
Temperature Coefficient	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$ (Note 1)		2	3		2	3	\%/ ${ }^{\circ} \mathrm{C}$
Amplitude	$\mathrm{V}_{\text {PIN4 }}$ Peak-to-Peak	2.45	2.26	2.85	2.45	2.65	2.85	V
Maximum Frequency		1			1			MHz

Error Amp Section

Input Offset Voltage	$\mathrm{V}_{\mathrm{PIN} 1}=2.5 \mathrm{~V}$		± 15	± 50		± 15	± 50	mV
Input Bias Current			0.3	2		0.3	2	N/A
Avol	$2 \leq \mathrm{V}_{0} \leq 4 \mathrm{~V}$	70	90		70	90		dB
Unity Gain Bandwidth	(Note 1)	650	750		650	750		MHz
PSRR	$12 \leq \mathrm{V}_{\mathrm{CC}} \leq 18 \mathrm{~V}$	80	100		80	100		dB

ELECTRICAL CHARACTERISTICS (Cont.)

Parameter	Test Conditions	TC172/173MXX TC172/173EXX			TC172/173CXX			Units
		Min	Typ	Max	Min	Typ	Max	
Error Amp Section (Cont.)								
Output Sink Current	$\mathrm{V}_{\text {PIN } 2}=2.7 \mathrm{~V}, \mathrm{~V}_{\text {PIN } 1}=1.1 \mathrm{~V}$	1.2	1.5		1.5	1.7		mA
Output Source Current	$\mathrm{V}_{\text {PIN } 2}=2.3 \mathrm{~V}, \mathrm{~V}_{\text {PIN } 1}=5 \mathrm{~V}$	3	3.4		3.4	4.2		mA
$\mathrm{V}_{\text {Out }}$ High	$\mathrm{V}_{\mathrm{PIN} 2}=2.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{~K}$ to Ground	5.8	6	6.5	5.8	6.0	6.5	V
Vout Low	$\mathrm{V}_{\mathrm{PIN} 2}=2.7 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{~K}$ to Pin 8	0.1	0.7	1.1	0.1	0.7	1.1	V
Rise/Fall Response Time	(Note 1)		5	7		5	7	$\mu \mathrm{s}$
Current Sense Section								
Gain Ratio	(Notes 2 and 3)	2.8	2.9	3.1	2.8	2.9	3.1	V/N
Maximum Input Signal	$\mathrm{V}_{\text {PIN } 1}=5 \mathrm{~V}$ (Note 2)	0.85	0.95	1.05	0.85	0.95	1.05	V
PSRR	$12 \leq \mathrm{V}_{\mathrm{CC}} \leq 18 \mathrm{~V}$ (Note 2)	70	80		70	80		dB
Input Bias Current			± 0.3	± 2		± 0.3	± 2	N/A
Delay to Output			140	100		140	100	ns
Output Section								
RDSON	$\mathrm{I}_{\text {SINK }}=20 \mathrm{~mA}$		7	15		7	15	Ω
RDSON	$I_{\text {SOURCE }}=20 \mathrm{~mA}$		11	20		11	15	Ω
Rise Time	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$ (Note 1)		40	60		35	60	ns
Fall Time	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$ (Note 1)		30	40		30	40	ns
Cross Conduction	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{nF}$		6.5			6.5		nc
$\mathrm{V}_{\text {DD }}$ Maximum	Pin 12 (Note 1)			18			18	V
Peak Output Current	10,000 pF Load	1.1	1.2	1.5	1.1	1.2	1.5	A

Undervoltage Lockout Section

Start Threshold	User Defined	8	18	8	18
Undervoltage Threshold	User Defined	8	18	8	V

Undervoltage Indicator

Pulldown Voltage	100	100	mV
Shutdown Section			
Minimum Shutdown Pulse Width	100	100	ns
Shutdown Delay	100	100	ns
Shutdown Threshold	1.5	1.5	V

PWM Section

Maximum Duty Cycle	172	95	97	100	95	97	100	$\%$
	173	46	48	50	47	48	50	$\%$
Minimum Duty Cycle				0			0	$\%$

Total Standby Current

Start-Up Current	50	170	300	50	170	300	$\mu \mathrm{~A}$
Operating Supply Current	$\mathrm{V}_{\mathrm{PIN} 2}=\mathrm{V}_{\text {PIN3 }}=0 \mathrm{~V}$	1	2	1	1.5	mA	

NOTES: 1. These parameters, although guaranteed, are not 100% tested in production.
2. Parameter measured at trip point of latch with $\mathrm{V}_{\text {PIN2 }}=0$
3. Gain defined as:
4. Adjust V_{CC} above the start threshold before setting at 15 V .
5. Output frequency equals oscillator frequency for the TC172. Output frequency is one-half oscillator frequency for the TC173.

$$
\mathrm{A}=\frac{\Delta \mathrm{V}_{\text {PIN } 1}}{\Delta \mathrm{~V}_{\mathrm{PIN} 3}} ; 0 \leq \mathrm{V}_{\mathrm{PIN} 3} \leq 0.8 \mathrm{~V}
$$

NOTES

BiCMOS PWM CONTROLLERS

FEATURES

Low Power BiCMOS Construction	
	Low Supply Current 1.0 mA T
Latch Up Immunity> 500 mA on Outputs	
Below Rail Input Protection-5V	
	Sput Drive 500

- Tri-state Sync Pin For Easy Parallel Operation
- Undervoltage Hysterisis Guaranteed
- Shutdown Pin Available
- Double Ended
- Soft Start, With Small Cap
- Low Prop Delay Shutdown to Output
140 ns Typ

FUNCTIONAL DIAGRAM

TC15C25
 TC15C27
 TC25C25 TC25C27 TC35C25 TC35C27

GENERAL DESCRIPTION

The TC35C25 and TC35C27 family of PWM controllers are CMOS implementations of the industry standard 3525 and 3527 voltage mode SMPS ICs.

These second generation CMOS devices employ Teledyne Components' Tough $\mathrm{BiCMOS}{ }^{\text {TM }}$ processfor latchup proof operation. They offer much lowerpowerconsumption than any of their previous CMOS or bipolar counterparts.

These controllers have separate supply pins for the control and output sections of the circuit. This allows 'bootstrap' operation. The CMOS output stage allows the output voltage to swing to within 25 mV of either rail.

Other improved features include tighter hysteresis and undervoltage start-up specifications over temperature, and very low input bias current on all inputs.

OUTPUT SECTION

The output stage of the TC35C25/27 is comprised oftwo pairs of complimentary CMOS drivers operating in a pushpull mode. Each output is capable of sinking or sourcing nearly 500 mA of peak current. They are also capable of absorbing just as much 'kick-back' current without latching.

SOFT START

A soft restart recovery rate may be selected by placing a capacitor from SOFT START (pin 8) to ground. The calculation for the recovery timing is approximately $60 \mathrm{~ms} / \mu \mathrm{F}$.

SOFT START will mediate the start-up from undervoltage recovery, power-on or SHUTDOWN.

SHUTDOWN

There is a minimum delay, non-latching shutdownfeature on the TC35C25/27 PWM controller. Both outputs may be turned off by applying a positive voltage to SHUTDOWN (pin 10). Returning the pin back to ground will reinitialize the soft start cycle.

OSCILLATOR SECTION

A tri-state feature has been added to accommodate systems which require multiple controllers to be run in a 'master/slave' configuration. Thetiming resistor pin (R_{T}, pin 6) may be tied to $\mathrm{V}_{\text {REF }}$ to place the sync pin (SYNC, pin 3) in a high impedance state. This will allow the chip to be clocked from an external source.

The sync output (OSC OUT, pin 4) of the TC35C25 can drive several sync inputs configured in this manner.

REPLACING BIPOLAR VERSIONS WITH CMOS

Although the pin-out and functions are the same for both the Bipolar andCMOS versions, there are several differences that need to be taken into account. The reference voltage on the $\mathrm{TC} 35 \mathrm{C} 25 / 27$ is 4 V instead of 5 V and the oscillator ramp is 3 V , not 4 V . The R_{T} and C_{T} values are different for any particular frequency and dead-time requirement.

The most important difference is that the absolute maximum rating of the V_{DD} and $\mathrm{V}_{\mathbb{I N}}$ voltages for the TC35C25/27 is 18 V , whereas the UC3525/27 is 40 V .

ORDERING INFORMATION

Part No.	Configuration	Pkg./Temperature
TC15C25MJE	Non-Inverting	$\begin{aligned} & 16-\text { Pin CerDIP } \\ & -55 \text { to }+125^{\circ} \mathrm{C} \end{aligned}$
TC15C27MJE	Inverting	$\begin{aligned} & \text { 16-Pin CerDIP } \\ & -55 \text { to }+125^{\circ} \mathrm{C} \end{aligned}$
TC25C25EOE	Non-Inverting	$\begin{aligned} & \text { 16-Pin SOIC (wide) } \\ & -40 \text { to }+85^{\circ} \mathrm{C} \end{aligned}$
TC25C25EPE	Non-Inverting	$\begin{aligned} & \text { 16-Pin Plastic DIP } \\ & -40 \text { to }+85^{\circ} \mathrm{C} \end{aligned}$
TC25C27EOE	Non-Inverting	$\begin{aligned} & \text { 16-Pin SOIC (wide) } \\ & -40 \text { to }+85^{\circ} \mathrm{C} \end{aligned}$
TC25C27EPE	Inverting	16-Pin Plastic DIP -40 to $+85^{\circ} \mathrm{C}$
TC35C25COE	Non-Inverting	16 -Pin SOIC (wide) 0 to $+70^{\circ} \mathrm{C}$
TC35C25CPE	Non-Inverting	16-Pin Plastic DIP 0 to $+70^{\circ} \mathrm{C}$
TC35C27COE	Inverting	16-Pin SOIC (wide) 0 to $+70^{\circ} \mathrm{C}$
TC35C27CPE	Inverting	16-Pin Plastic DIP 0 to $+70^{\circ} \mathrm{C}$

ABSOLUTE MAXIMUM RATINGS
Supply Voltage ..18V
Maximum Chip Temperature $150^{\circ} \mathrm{C}$
Storage Temperature $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (10 sec) $300^{\circ} \mathrm{C}$
Package Thermal Resistance
CerDip R QנJ-A $^{\text {... } 150^{\circ} \mathrm{C} / \mathrm{W}}$
CerDip $\mathrm{R}_{\text {ө- }}$. .. $55^{\circ} \mathrm{C} / \mathrm{W}$
PDIP R ${ }_{\text {Qu-A }}$... $125^{\circ} \mathrm{C} / \mathrm{W}$
PDIP R Qu-c $^{\text {c.. } 45^{\circ} \mathrm{C} / \mathrm{W}}$
SOIC R Qנ-A $^{\text {... } 250^{\circ} \mathrm{C} / \mathrm{W}}$
SOIC ReJ.c ... $75^{\circ} \mathrm{C} / \mathrm{W}$

Operating Temperature

15C2X	${ }_{\text {A }} \leq+125^{\circ} \mathrm{C}$
25C2X	$-40 \mathrm{C}^{\circ} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$
35C2X	$.0 C^{\circ} \leq T_{A} \leq+70^{\circ}$

Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to Absolute Maximum Rating Conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS: unless otherwise specified $\mathrm{V}_{\mathbb{I}}=\mathrm{V}_{\mathrm{DD}}=16 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{T}}=3.7 \mathrm{k} \Omega$, $R_{D}=760 \Omega, C_{T}=1000 \mathrm{pF}$; (See test circuit).

Parameter	Conditions	Min	Typ	Max

Reference Section

Output Voltage	$10=1 \mathrm{~mA}$	3.95	4	4.05	V
Line Regulation	$\mathrm{V}_{\mathrm{IN}}=8$ to 18 V , (note 2)	-	± 4	± 10	mV
Load Regulation	$\mathrm{I}_{1}=1$ to 12 mA, (note 2)	-	± 4	± 15	mV
Temperature Coefficient	(notes 1, 2)	-	± 0.01	± 0.4	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
V ${ }_{\text {REF }}$	Worst Case, (note 2)	3.85	4	4.15	V
Long Term Drift	(note 1)	-	± 50	-	$\mathrm{mV} / 1000 \mathrm{Hrs}$
Short Circuit Current	$\mathrm{V}_{\text {REF }}$ to GND (note 2)	20	40	70	mA
Output Noise	$10 \mathrm{~Hz} \leq \mathrm{f} \geq 10 \mathrm{kHz}$, (note 1)	-	21		μ VRMS
Oscillator					
Initial Accuracy	@ 97 kHz	-	± 2	± 3	\%
Voltage Coefficient	$\mathrm{V}_{\text {IN }}=8$ to 18V, (note 2)	-	± 0.01	± 0.1	\%/V
Temperature Coefficient	(notes 1, 2)	-	± 0.025	± 0.06	$\% /{ }^{\circ} \mathrm{C}$
Osc Ramp Amplitude	(note 2)	2.9	3.2	3.4	V
Reset Switch R ${ }_{\text {DS (ON) }}$		35	50	60	Ω
Clock Amplitude	$\mathrm{f}_{\text {OSC }}=100 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega$, (notes 1, 2)	4.9	5.5	6.7	V
Clock Min Width	$\mathrm{R}_{\mathrm{D}}=0 \Omega$, (note 1) $\mathrm{C}_{\mathrm{T}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{T}}=1 \Omega$	-	170	200	ns
Sync Threshold	R_{T} pin tied to $\mathrm{V}_{\mathrm{REF}}, \mathrm{C}_{\mathrm{T}}$ pin at GND, (note 2)	1.8	2.2	2.8	V
Sync Input Current	Sync Voltage $=4 \mathrm{~V}, \mathrm{~V}\left(\mathrm{R}_{\mathrm{T}}\right)=4 \mathrm{~V}$ (note 2	-	-	± 1	$\mu \mathrm{A}$
Min Sync Pulse Width	Sync Amplitude $=5 \mathrm{~V}$, (note 1)	-	130	175	ns
Max Osc Freq	$\mathrm{R}_{\mathrm{T}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{T}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{D}}=0 \Omega \text {, }$ (note 1)	1.0	-	-	MHz

Error Amplifier ($\mathrm{V}_{\mathrm{CM}}=$					
Input Offset Voltage	(note 2)	-	± 5	± 15	mV
Input Bias Current		-	± 50	± 200	pA
Input Offset Current		-	± 25	± 100	PA
DC Open Loop Gain	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$, (note 2)	70	85	-	dB
Gain Bandwidth Product	(note 1, 2)	0.7	0.9	1.2	MHz
Output Low Level	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ (N Channel), (note 2)	-	10	20	mV
Output High Level	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ (NPN), (note 2)	4.9	5.4	5.9	V
CMRR	$\mathrm{V}_{\mathrm{CM}}=0.5$ to 4.7V, (note 2)	60	75	-	dB

ELECTRICAL CHARACTERISTICS (Cont): unless otherwise specified $\mathrm{V}_{I N}=\mathrm{V}_{\mathrm{DD}}=16 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, $\mathrm{R}_{\mathrm{T}}=3.7 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{D}}=760 \Omega, \mathrm{C}_{\mathrm{T}}=1000 \mathrm{pF}$; (See test circuit).

Parameter	Conditions	Min	Typ	Max	Units
Error Amplifier ($\mathrm{V}_{\mathbf{C M}}=\mathbf{2 . 5 V}$) (Cont.)					
Supply Voltage Rejection	$\mathrm{V}_{\text {IN }}=8$ to 18V, (note 2)	90	120	-	dB
Slew Rate	$\begin{aligned} & \mathrm{C}_{\mathrm{LOAD}}=50 \mathrm{pF}, \mathrm{~A}_{\mathrm{CL}}=1 \\ & \mathrm{~V}(\mathrm{EA}+)=1 \mathrm{~V} \text { to } 3 \mathrm{~V} \text { Pulse, (notes 1,2) } \end{aligned}$	-	1	-	V/us

PWM Comparator

Min Duty Cycle	(note 1)	-	-	0	$\%$
Max Duty Cycle	fosc $=100 \mathrm{kHz}$, (note 1)	45	49	-	$\%$
Input Threshold	$\mathrm{V}\left(\mathrm{C}_{\mathrm{T}}\right)=0.6 \mathrm{~V},($ note 2)	0.5	0.6	0.7	V
Input Threshold	$\mathrm{V}\left(\mathrm{C}_{\mathrm{T}}\right)=3.6 \mathrm{~V},($ note 2)	3.4	3.6	3.7	V
Input Bias Current	(note 1)	-	-	± 1	$\mu \mathrm{~A}$

Soft Start Section

Soft Start Current	$\mathrm{V}_{\text {SHUTDOWN }}=0 \mathrm{~V}$, (note 2)	30	46	75	$\mu \mathrm{~A}$
Soft Start Voltage	$\mathrm{V}_{\text {SHUTDOWN }}=3 \mathrm{~V}$, (note 2)	-	30	100	mV
Shutdown Input Current	$\mathrm{V}_{\text {SHUTDOWN }}=3 \mathrm{~V}$, (note 2)	-	± 1	± 100	nA
Min Shutdown Pulse Width	$\mathrm{V}_{\text {SHUTDOWN }}=5 \mathrm{~V}$ Pulse, (notes 1, 2)	-	20	40	ns
Shutdown Delay	$\mathrm{V}_{\text {SHUTDOWN }}=5 \mathrm{~V}$ Pulse, (notes 1, 2)	130	140	220	ns
Shutdown Threshold		1.5	2.4	3	V

Output Drivers (each output) (note 2)

Output Low Level R RS (ON)	$\mathrm{I}_{\text {SINK }}=20 \mathrm{~mA}$ (note 2)	-	13	25	Ω
Output High Level R $\mathrm{DS}^{\text {(ON) }}$	$I_{\text {SOURCE }}=20 \mathrm{~mA}$ (note 2)	-	20	35	Ω
Rise Time	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$, (notes 1, 2)	-	55	80	ns
Fall Time	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$, (notes 1, 2)	-	40	65	ns

Power Supply

Supply Current	fosc $=100 \mathrm{kHz}$ (See Test Circuit)	-	1	1.6	mA
UV Lockout Threshold	(note 2)	6.6	7	7.3	V
UV Lockout Hysteresis	(note 2)	1.7	2.2	2.5	V
Start-Up Current	(note 2)	-	75	200	$\mu \mathrm{~A}$

NOTES: 1. Not tested.
2. Guaranteed over operating temperature range.

Teledyne Components reserves the right to make changes in the circuitry or specifications detailed in this manual at any time without notice. Minimums and maximums are guaranteed. All other specifications are intended as guidelines only. Teledyne Components assumes no responsibility for the use of any circuits described herein and makes no representations that they are free from patent infringement.

TC15C25
TC15C27
TC25C25 TC35C25 TC25C27 TC35C27

PIN CONFIGURATIONS

TYPICAL CHARACTERISTIC CURVES

Oscillator Frequency
vs. C_{t} and R_{t}

Supply Current
vs. Frequency

Dead Time
vs. C_{t} and Discharge Resistor

NOTES

BiCMOS CURRENT MODE PWM CONTROLLER

FEATURES

- Low Power BiCMOS Design
- Tough CMOS ${ }^{\text {TM }}$ Construction
- Low Supply Current \qquad 1.0 mA Typ @ 100 kHz
- Wide Supply Voltage Operation \qquad 8 V to 18 V
- Latch-Up Immunity. 500 mA on Outputs
- Input Will Withstand Negative Inputs to -5 Volts
- High Output Drive \qquad 0.7A Peak
(1.2A on 14 and 16-Pin Versions)
- 2 kV ESD Protection
- Current Mode Control
- Fast Rise/Fall Time (Max) 60 ns @ 1000 pf
- High Frequency Operation \qquad .300 kHz
- Clock Ramp Reset Current $2.5 \mathrm{~mA} \pm 10 \%$
- Low Propagation Delay Current Amp to Output

140 ns Typ
Pin Compatible with UC3842/3843/3844/3845

BLOCK DIAGRAM

TC18C42/3/4/5
TC28C42/3/4/5 TC38C42/3/4/5

GENERAL DESCRIPTION

The TC38C42/3/4/5 are current mode BiCMOS PWM control ICs. With a low 1.0 mA supply current along with the high drive currents (0.7A peak) they provide a low cost solution for a PWM that operates to 300 kHz and directly drives MOSFETs up to HEX 3 size.

Performance of the oscillator and current sense amplifier have been greatly improved over previous bipolar versions. Voltage and temperature stability have been improved by a factor of 3 . Noise immunity (PSRR) has also been improved. These improvements make for a more reliable power system.

Tough CMOS ${ }^{\text {TM }}$ design and construction provide input and output latch protection, outstanding ESD tolerance, and high reliability manufacturing techniques and materials. Tough CMOS ${ }^{T M}$ means high reliability.

The TC38C42/3/4/5 are pin compatible with earlier bipolar versions so that designers can easily update older designs. Improvements have been added though. For example, clock ramp reset current is specified at 2.5 mA $(\pm 10 \%)$ for accurate deadtime control. A few component values must be changed ($R_{T} \& C_{T}$) to use TC38C42 family in existing bipolar designs.

The 14-pin DIP and 16-pin SO versions have separate and internally isolated grounds, and are rated for higher output current (1.2A). These separate grounds allow for 'bootstrap' operation of the PWM to further improve efficiency.

REFERENCE SECTION

The reference is a zener based design with a buffer amplifier to drive the output. It is unstable with capacitances between $0.01 \mu \mathrm{~F}$ and $3.3 \mu \mathrm{~F}$. In a normal application a $4.7 \mu \mathrm{~F}$ is used. In some lower noise layouts the capacitor can be eliminated entirely.

The reference is active as soon as the 38C4X has power supplied. This is different than its bipolar counterparts, in that the bipolar reference comes on only after the IC has come out of its under voltage mode. Thus, on the 38C4X, the reference pin can not be used as a reset function such as on a soft start circuit.

OSCILLATOR SECTION

The oscillator frequency is set by the combination of a resistor from the reference to the $\mathrm{R}_{T} / \mathrm{C}_{T}$ pin and by a capacitor from this pin to ground. The oscillator is designed to have ramp amplitude from 0.15 to 2.5 volts. This is approximate, as over shoot on the oscillator comparator causes the
ramp amplitude to increase with frequency due to comparator delay. Minimum values for C_{T} and R_{T} are 33 pF and $1 \mathrm{k} \Omega$ respectively. Maximum values are dependent on leakage currents in the capacitor, not on the input currents to the $\mathrm{R}_{\mathrm{T}} / \mathrm{C}_{\mathrm{T}}$ pin.

Frequency of Operation

The frequency of oscillation for the TC38C4X family is controlled by a resistor to $\mathrm{V}_{\mathrm{REF}}\left(\mathrm{R}_{\mathrm{T}}\right)$ and a capacitor to ground $\left(\mathrm{C}_{\mathrm{T}}\right) . \mathrm{V}_{\text {REF }}$ supplies current through the resistor and charges the capacitor until its voltage reaches the threshold of the upper comparator ($\approx 2.5 \mathrm{~V}$). A 2.5 mA current is then applied to the capacitor to discharge it to near ground $(\approx 0.15 \mathrm{~V})$. The discharge current is then shut off and the cycle repeats. An approximate equation for the frequency of operation is:

$$
f_{0} \approx \frac{1}{R_{T} C_{T}} \quad\left(R_{T} \text { in Ohms and } C_{T} \text { in Farads }\right)
$$

The value of R_{T} affects the discharge current and the upper and lower comparators each have delay. As RT gets smaller and as the frequency of operation gets higher, the above equation falls apart. Figure 5 illustrates this effect.

Dead Time

The value of R_{T} has a effect on the discharge ratebut the primary consideration is the value of C_{T}. The time required to discharge the capacitor is approximately $1000 \mathrm{C}_{\mathrm{T}}$.

ORDERING INFORMATION

Part No.	Package	Temperature
TC18C**MJA	8-pin CerDIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
TC18C*MJD	14-pin CerDIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
TC28C**EJA	8-pin CerDIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC28C*EJD	14-pin CerDIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC28C**EOE	16-pin SOIC Wide	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC28C**EPA	8-pin Plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC28C**EPD	14-pin Plastic	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC38C**COE	16-pin SOIC Wide	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC38C**CPA	8-pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC38C**CPD	14-pinPlastic	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

	Duty Cycle Limitation	
Start-up Voltage	99%	49%
14.5 V	X 8 C 42	$\mathrm{X8C44}$
8.4 V	X 8 C 43	X 8 C 45

PIN CONFIGURATIONS

ABSOLUTE MAXIMUM RATINGS

Supply Voltage ..18V
Maximum Chip Temperature $150^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (10 sec) $+300^{\circ} \mathrm{C}$
Package Thermal Resistance

PDIP R ${ }_{\text {® }}$ - . .. $45^{\circ} \mathrm{C} / \mathrm{W}$

SOIC R өJ-C $^{\text {.. } 75^{\circ} \mathrm{C} / \mathrm{W}}$
Operating Temperature

Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to Absolute Maximum Rating Conditions for extended periods may affect device reliability.

TC18C42/3/4/5
TC28C42/3/4/5
TC38C42/3/4/5
ELECTRICAL CHARACTERISTICS: unless otherwise stated, these specifications apply over specified temperature range. $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V} ; \mathrm{R}_{\mathrm{T}}=71 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{T}}=150 \mathrm{pF}$

		$\begin{aligned} & \text { TC18C4X } \\ & \text { TC28C4X } \end{aligned}$			TC38C4X			
Parameter	Test Conditions	Min	Typ	Max	Min	Typ	Max	Units
Reference Section								
Output Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA}$	4.95	5	5.05	4.90	5	5.10	V
Line Regulation	$9.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 15 \mathrm{~V}, \mathrm{l}_{\mathrm{O}}=1 \mathrm{~mA}$	-	± 3	± 10	-	± 3	± 10	mV
Load Regulation	$1 \mathrm{~mA} \leq \mathrm{l}_{0} \leq 11 \mathrm{~mA}$	-	± 5	± 15	-	± 3	± 10	mV
Temp Stability	(note 1)	-	± 0.25	± 0.5	-	± 0.25	± 0.5	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Output Noise Voltage	$10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (note 1)	-	100	-	-	100	-	$\mu \mathrm{V}$ (rms)
Long Term Stability	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}, 1000 \mathrm{Hrs}$. (note 1)	-	± 0.5	-	-	± 0.5	-	\%
Output Short Circuit		-20	-50	-100	-30	-50	-100	mA

Oscillator Section

Initial Accuracy	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (note 4)	95	100	105	95	100	105	kHz
Voltage Stability	$9.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 15 \mathrm{~V}$	-	± 0.2	± 0.3	-	± 0.2	± 0.3	$\%$
Temp Stability	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\mathrm{MAX}}$ (note 1); Figure 2	-	± 0.01	± 0.05	-	± 0.01	± 0.03	$\% /{ }^{\circ} \mathrm{C}$
Clock Ramp Reset	$\mathrm{R}_{\mathrm{T}} / \mathrm{C}_{\mathrm{T}}$ pin at 4V	2.25	2.5	2.75	2.25	2.5	2.75	mA
Amplitude	$\mathrm{R}_{T} / \mathrm{C}_{T}$ pin peak to peak	2.45	2.65	2.85	2.45	2.65	2.85	V
Maximum Freq	(note 1)	300	-	-	300	-	-	kHz

Error Amp Section

Input Offset Voltage	$\mathrm{V}_{\text {(COMP) }}=2.5 \mathrm{~V}$	-	± 15	± 50	-	± 15	± 50	mV
Input Bias Current	(note 1)	-	± 0.3	± 2	-	± 0.3	± 2	nA
A	$2 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 4 \mathrm{~V}$	70	90	-	70	90	-	dB
Gain Bandwidth Product	(note 1)	650	750	-	650	750	-	kHz
PSRR	$9.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 15 \mathrm{~V}$	80	100	-	80	100	-	dB
Output Sink Current	$\mathrm{V}_{\mathrm{FB}}=2.7 \mathrm{~V}, \mathrm{~V}_{(\mathrm{COMP})}=1.1 \mathrm{~V}$ (note 1)	1.2	1.5	-	1.5	1.7	-	mA
Output Source Current	$\mathrm{V}_{\mathrm{FB}}=2.3 \mathrm{~V}, \mathrm{~V}_{(\mathrm{COMP})}=5 \mathrm{~V}$ (note 1)	3	3.4	-	3.9	4.2	-	mA
$\mathrm{V}_{\text {OUT }}$ High	$\mathrm{V}_{\mathrm{FB}}=2.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$ to ground	5.8	6	6.5	5.8	6	6.5	V
$\mathrm{~V}_{\text {OUT }}$ Low	$\mathrm{V}_{\mathrm{FB}}=2.7 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$ to $\mathrm{V}_{\text {REF }}$	0.1	0.7	1.1	0.1	0.7	1.1	V
Rise Response	(note 1)	-	5	7	-	5	7	$\mu \mathrm{~s}$
Fall Response	(note 1)	-	3	5	-	3	5	$\mu \mathrm{~s}$

Current Sense Section

Gain Ratio	(notes 2 \& 3)	2.8	2.9	3.1	2.8	2.9	3.1	$\mathrm{~V} N$
Maximum Input Signal	$\mathrm{V}_{(\text {CoMP })}=5 \mathrm{~V}$ (note 2)	0.85	0.95	1.05	0.85	0.95	1.05	V
PSRR	$9.5 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 15 \mathrm{~V}$ (notes 1, 2 \& 5)	70	80	-	70	80	-	dB
Input Bias Current	(note 1)	-	± 0.3	± 2	-	± 0.3	± 2	nA
Delay to Output	$\mathrm{V}\left(\mathrm{I}_{\text {SENSE }}\right)=1 \mathrm{~V}$ (note 1); Figure 3	-	140	160	-	140	150	ns

Output Section

ros (ON)	$\mathrm{I}_{\text {SINK }}=20 \mathrm{~mA}$	-	7	15	-	7	15	Ω
ros (ON)	$I_{\text {SOURCE }}=20 \mathrm{~mA}$	-	11	20	-	11	15	Ω
Rise Time	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$ (note 1)	-	40	60	-	35	60	ns
Fall Time	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$ (note 1)	-	30	40	-	30	40	ns
Cross Conduction	In coulombs (note 1)	-	6.5	-	-	6.5	-	nC
$\mathrm{V}_{\text {DD }}$ Max	(note 1)	-	-	18	-	-	18	V

ELECTRICAL CHARACTERISTICS (Cont): unless otherwise stated, these specifications apply over specified temperature range. $\mathrm{V}_{I N}=\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V} ; \mathrm{R}_{\mathrm{T}}=71 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{T}}=150 \mathrm{pF}$.

	TC18C4X TC28C4X			TC38C4X				
Parameter	Test Conditions	Min	Typ	Max	Min	Typ	Max	Units

Under Voltage Lockout Section

Start Threshold	X8C42/4	14.1	14.5	14.9	14.1	14.5	14.9	V
	$\mathrm{X8C43/5}$	8	8.4	8.8	8	8.4	8.8	V
Under Voltage Threshold	$\mathrm{X} 8 \mathrm{C} 42 / 4$	8.6	9	9.4	8.6	9	9.4	V
	$\mathrm{X8C43/5}$	7.3	7.6	7.9	7.3	7.6	7.9	V

PWM Section

Maximum Duty Cycle	X8C42/3 (note 1)	95	97	100	95	97	100	$\%$
	X8C44/5 (note 1)	46	48	50	47	48	50	$\%$
Minimum Duty Cycle				0			0	$\%$

Supply Current

Start Up	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}<\mathrm{V}_{\mathrm{UV}}$; Figure 1	50	170	300	50	170	300	$\mu \mathrm{~A}$
Operating	$\mathrm{V}_{\mathrm{FB}}=\mathrm{V}\left(\mathrm{I}_{\mathrm{SENSE}}\right)=\mathrm{OV}$; Figure 4		1	2		1	1.5	mA

NOTES:

1. These parameters, although guaranteed, are not 100% tested in production.
2. Parameter measured at trip point of latch.
3. Gain ratio is defined as:
$\frac{\Delta V_{\text {COMP }}}{\Delta V\left(I_{\text {SENSE }}\right)}$
where $0 \leq \mathrm{V}\left(I_{\text {SENSE }}\right) \leq 0.8 \mathrm{~V}$
4. Output frequency equals oscillator frequency for the X8C42 and X8C43. Output frequency is one half oscillator frequency for the X8C44 and X8C45.
5. PSRR of VREF, Error Amp and PWM Comparator combination.

Teledyne Components reserves the right to make changes in the circuitry or specifications detailed in this manual at any time without notice. Minimums and maximums are guaranteed. All other specifications are intended as guidelines only. Teledyne Components assumes no responsibility for the use of any circuits described herein and makes no representations that they are free from patent infringement.

BENCH TEST OPERATIONAL SIMULATION

The timing ramp $\left(\mathrm{R}_{T} / \mathrm{C}_{T}\right)$ is buffered by the emitter follower and fed back to the I ISENSE input. This ramp simulates the d//dT current ramp which would flow through the primary of the transformer. The output voltage of the power supply is simulated by feeding some of the reference voltage into V_{FB}. The combination of the two input levels determines the operating characteristics of the current mode controller.

TYPICAL CHARACTERISTICS

Oscillator Frequency Changes

vs. Temperature

Figure 2
IDD vs. Temperature

Figure 4

Figure 5

Figure 3
Dead Time vs. $\mathrm{C}_{\mathbf{T}}$

Figure 6

CMOS CURRENT MODE PWM CONTROLLER

FEATURES

- UV Hysteresis Guaranteed
Shutdown Pin Available
Double Ended
Soft Start- Low Prop Delay Current Ampto Output< 350 ns Typ
to Output < 400 ns TypTC38C46/47 Pin Compatible withUnitrode UC3846/3847- ESD Protected.$\pm 2 \mathrm{kV}$

BLOCK DIAGRAM

CMOS CURRENT MODE PWM CONTROLLER

GENERAL DESCRIPTION

The TC38C46/47 are current mode CMOS PWM control ICs. These only draw 2 mA supply current, so they can be driven without a costly $50-60 \mathrm{~Hz}$ transformer. The output drive stage is capable of high drive currents, 300 mA typical.

The TC38C46/47 are pin compatible with earlier bipolar products so that designers can easily update older designs. A number of improvements have been added.

This second generation part has been designed with an isolated drive stage. Unlike its cousin, the TC170, the output stage of the TC38C46/47 can be run from a separate power supply such as a secondary winding on an output transformer. This allows for bootstrap start-up of the power supply.

ORDERING INFORMATION

Part No.	Configuration	Pkg./Temperature
TC18C46MJE	Non-Inverting	16-Pin CerDIP
		-55 to $+125^{\circ} \mathrm{C}$
TC18C47MJE	Inverting	16-Pin CerDIP
		-55 to $+125^{\circ} \mathrm{C}$
TC28C46EOE	Non-Inverting	16-Pin SOIC (wide)
		-40 to $+85^{\circ} \mathrm{C}$
TC28C46EPE	Non-Inverting	16-Pin Plastic DIP
		-40 to $+85^{\circ} \mathrm{C}$
TC28C47EOE	Non-Inverting	16-Pin SOIC (wide)
		-40 to $+85^{\circ} \mathrm{C}$
TC28C47EPE	Non-Inverting	16-Pin Plastic DIP
		-40 to $+85^{\circ} \mathrm{C}$
TC38C46COE	Non-Inverting	16-Pin SOIC (wide)
		0 to $+70^{\circ} \mathrm{C}$
TC38C46CPE	Non-Inverting	16-Pin Plastic DIP
		0 to $+70^{\circ} \mathrm{C}$
TC38C47COE	Inverting	16-Pin SOIC (wide)
		0 to $+70^{\circ} \mathrm{C}$
TC38C47CPE	Inverting	16-Pin Plastic DIP
		0 to $+70^{\circ} \mathrm{C}$

ABSOLUTE MAXIMUM RATINGS
Output Current, Source or Sink (Pins 1, 14) 500 mA
Analog Inputs (Pins 3, 4, 5, 6, 16). -0.3 V to $+\mathrm{V}_{\text {IN }}$
Reference Output Current (Pin 2) $-30 \mathrm{~mA}$
Sync Output Current (Pin 10) $-5 \mathrm{~mA}$
Error Amplifier Output Current (Pin 7) $-5 \mathrm{~mA}$
Soft Start Sink Current (Pin 1) 50 mA
Oscillator Charging Current (Pin 9) 5 mA
Supply Voltage 18 V
Maximum Chip Temperature $150^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (10 sec) $300^{\circ} \mathrm{C}$
Package Thermal Resistance
CerDIP R ®J-A $150^{\circ} \mathrm{C} / \mathrm{W}$
CerDIP R ®J-C $55^{\circ} \mathrm{C} / \mathrm{W}$
PDIP $\mathrm{R}_{\mathrm{\theta J}-\mathrm{A}}$ $125^{\circ} \mathrm{C} / \mathrm{W}$
PDIP R ${ }_{\text {oנ-c }}$ $.45^{\circ} \mathrm{C} / \mathrm{W}$
SOIC R ${ }_{\text {®J-A }}$ $250^{\circ} \mathrm{C} / \mathrm{W}$
SOIC R BJ $_{\text {A }}$ $.75^{\circ} \mathrm{C} / \mathrm{W}$

NOTES: 1. All voltages are with respect to Ground, Pin 13. Currents are positive into, negative out of the specified terminal.
2. Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to Absolute Maximum Rating Conditions for extended periods may affect device reliability.

CMOS CURRENT MODE PWM CONTROLLER

TC18C46
TC18C47
TC28C46
TC38C46

PIN CONFIGURATION

ELECTRICAL CHARACTERISTICS: unless otherwise stated, these specifications apply for
$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for TC18C46/TC $18 \mathrm{C} 47 ;-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for the TC28C46/TC28C47; and $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ for the $\mathrm{TC} 38 \mathrm{C} 46 / \mathrm{TC} 38 \mathrm{C} 47 ; \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}=16 \mathrm{~V} ; \mathrm{R}_{\mathrm{T}}=30.1 \mathrm{k} ; \mathrm{C}_{\mathrm{T}}=270 \mathrm{pF}$.

		$\begin{aligned} & \text { TC18C46/47 } \\ & \text { TC28C46/47 } \end{aligned}$			TC38C46/47			
Parameter	Test Conditions	Min	Typ	Max	Min	Typ	Max	Units
Reference Section								
Output Voltage	$\mathrm{T}_{\mathrm{f}}=25^{\circ} \mathrm{C}, \mathrm{l}_{0}=1 \mathrm{~mA}$	5.05	5.1	5.15	5	5.1	5.20	V
Line Regulation	$\mathrm{V}_{\mathrm{IN}}=8 \mathrm{~V}$ to 16 V	-	± 4	± 20	-	± 4	± 20	mV
Load Regulation	$10=1 \mathrm{~mA}$ to 10 mA	-	± 4	± 20	-	± 4	± 20	mV
Temp Coefficient	Over Operating Range, (note 1)	-	± 0.2	± 0.5	-	± 0.2	± 0.5	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Total Output Range	Line, Load, and Temperature (note 1)	4.97	-	5.24	4.94	-	5.26	V
Long Term Drift	$\mathrm{T}_{\mathrm{f}}=125^{\circ} \mathrm{C}, 1000 \mathrm{Hrs}$ (note 1)	-	± 50	-	-	± 50	-	mV
Short Circuit Output Current	$\mathrm{V}_{\text {REF }}=0 \mathrm{~V}$	20	-	70	20	-	70	mA
Output Noise Voltage	$10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}, \mathrm{T}_{\mathrm{f}}=25^{\circ} \mathrm{C}$ (note 1)	-	22	-	-	22	-	$\mu \mathrm{V}$ (rms)

Oscillator Section

Initial Accuracy	$\mathrm{T}_{\mathrm{f}}=25^{\circ} \mathrm{C}$	96.5	102	106.5	96.5	101	106.5	kHz
Voltage Coefficient	$\mathrm{V}_{\mathrm{IN}}=8 \mathrm{~V}$ to 16 V	-	$\pm .1$	± 1.5	-	$\pm .1$	± 1.5	$\% / \mathrm{V}$
Temp Coefficient	Over Operating Range (note 1)	-	$\pm .04$	± 0.06	-	$\pm .04$	± 0.06	$\% /{ }^{\circ} \mathrm{C}$
Clock Ramp Reset Current		1.2	2	3	1.2	2	3	mA
Osc Ramp Amplitude		3.6	3.8	4	3.6	3.8	4	V
Sync Output High Level	(note 1)	V_{DD}	-	-	V_{DD}	-	-	V
Sync Output Low Level	(note 1)	-0.5			-0.5			
Sync Input High Level	Pin 8 = OV, (note 1)	-	-	0.5	-	-	0.5	V
Sync Input Low Level	Pin 8 = OV, (note 1)	12	8.5	-	12	8.5	-	V
Sync Input Current	Sync Voltage $=5.25 \mathrm{~V}$, Pin 8 = OV	-	8.5	5	-	8.5	5	V

CMOS CURRENT MODE PWM CONTROLLER

TC18C46
TC18C47
TC28C46 TC28C47
TC38C46

TC38C47

ELECTRICAL CHARACTERISTICS (Cont): unless otherwise stated, these specifications apply for $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for $\mathrm{TC} 18 \mathrm{C} 46 / \mathrm{TC} 18 \mathrm{C} 47 ;-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for the $\mathrm{TC} 28 \mathrm{C} 46 / \mathrm{TC} 28 \mathrm{C} 47$; and $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ for the TC38C46/TC38C47; $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}=16 \mathrm{~V} ; \mathrm{R}_{\mathrm{T}}=30.1 \mathrm{k} ; \mathrm{C}_{\mathrm{T}}=270 \mathrm{pF}$.

	TC18C46/47 TC28C46/47		TC38C46/47					
Parameter	Test Conditions	Min	Typ	Max	Min	Typ	Max	Units

Error Amp Section

Input Offset Voltage	-	± 5	± 25	-	± 5	± 25	mV	
Input Bias Current	-	± 10	± 100	-	± 0.1	± 0.5	nA	
Input Offset Current		-	± 10	± 100	-	± 0.1	± 0.5	nA
Open Loop Voltage Gain	$\Delta \mathrm{V}_{\mathrm{O}}=1 \mathrm{~V}$ to $6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k}$	70	90	-	70	90	-	dB
Gain Bandwidth Product	$\mathrm{T}_{\mathrm{f}}=25^{\circ} \mathrm{C}($ note 1$)$	0.7	1	-	0.7	1	-	MHz
CMRR	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ to 11 V	70	90	-	70	90	-	dB
PSRR	V IN $=8 \mathrm{~V}$ to 16 V	70	90	-	70	90	-	dB
Output Sink Current	$\mathrm{V}(\mathrm{EA}-)=5 \mathrm{~V}, \mathrm{~V}(\mathrm{EA}+)=4.9 \mathrm{~V}$, $\mathrm{V}(\mathrm{COMP})=1.2 \mathrm{~V}$	2	4	-	2	4	-	mA
Output Source Current	$\mathrm{V}(\mathrm{EA}-)=5 \mathrm{~V}, \mathrm{~V}(\mathrm{EA}+)=5.1 \mathrm{~V}$, $\mathrm{V}(\mathrm{COMP})=2.5 \mathrm{~V}$	5	10	-	5	10	-	mA
High Level Output Volt	$\mathrm{R}_{\mathrm{L}}=(\mathrm{COMP}) 5 \mathrm{k} \Omega$ to GND, $\mathrm{A}_{\mathrm{CL}}=300$	4.9	5	5.1	4.9	5	5.1	V
Low Level Output Volt	$\mathrm{R}_{\mathrm{L}}=(\mathrm{COMP}) 5 \mathrm{k} \Omega$ to GND, $\mathrm{A}_{\mathrm{CL}}=300$	-	0.4	0.9	-	0.4	0.9	V
Slew Rate		1.3	2	-	1.3	2	-	V / ss

Current Sense Section

Amplifier Gain (notes 2, 3)	2.7	3	3.4	2.7	3	3.4	V
Max Differential (note 2) Input Signal ($\mathrm{V}_{\text {Pin 4 }}-\mathrm{V}_{\text {Pin } 3}$)	1.1	1.5	1.8	1.1	1.5	1.8	V
Input Offset Voltage (note 2)	0.4	0.65	0.85	0.4	0.65	0.85	V
CMRR $\quad \mathrm{V}_{\text {CM }}=1 \mathrm{~V}$ to 12V, (note 2)	40	60	-	40	60	-	dB
PSRR $\quad \mathrm{V}_{\mathrm{IN}}=8 \mathrm{~V}$ to 16 V , (note 2)	40	60	-	40	60	-	dB
Input Bias Current (note 1)	-	± 1	± 100	-	± 1	± 100	nA
Input Offset Current (note 1)	-	± 0.1	± 2	-	± 0.1	± 2	nA
Input Common Mode Range (note 1)	0	-	11	0	-	11	V
Delay to Outputs $\quad \mathrm{T}_{\mathrm{f}}=25^{\circ} \mathrm{C}$, (note 1)	150	225	400	150	225	400	ns

Current Limit Adjust Section

| Current Limit Voltage Offset | - | ± 1 | ± 25 | - | ± 1 | ± 25 | mV |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input Impedance | 3 | 3.5 | 4 | 30 | 3.5 | 4 | $\mathrm{k} \Omega$ |

Shutdown Terminal Section

Threshold Voltage		320	360	400	320	360	400	mV
Input Voltage Range	(note 1)	0	-	$\mathrm{V}_{\text {IN }}$	0	-	$\mathrm{V}_{\text {IN }}$	V
Min Latching Current ($\mathrm{I}_{\text {pin } 1}$)	(note 4)	140	-	-	140	-	-	$\mu \mathrm{A}$
Max Non-Latching Current (l $\mathrm{l}_{\text {Pin1 } 1}$)	(note 5)	-	-	65	-	-	65	$\mu \mathrm{A}$
Min Pulse Width	(note 1)	100	50	-	100	50	-	ns
Delay to Outputs	(note 1)	125	250	400	125	250	400	ns

CMOS CURRENT MODE PWM CONTROLLER

TC18C46	TC18C47
TC28C46	TC28C47
TC38C46	TC38C47

ELECTRICAL CHARACTERISTICS (Cont): unless otherwise stated, these specifications apply for
$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for $\mathrm{TC} 18 \mathrm{C} 46 / \mathrm{TC} 18 \mathrm{C} 47 ;-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for the $\mathrm{TC} 28 \mathrm{C} 46 / \mathrm{TC} 28 \mathrm{C} 47$; and $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ for the TC38C46/TC38C47; $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}=16 \mathrm{~V} ; \mathrm{R}_{\mathrm{T}}=30.1 \mathrm{k} ; \mathrm{C}_{\mathrm{T}}=270 \mathrm{pF}$.

		$\begin{aligned} & \text { TC18C46/47 } \\ & \text { TC28C46/47 } \end{aligned}$			TC38C46/47			
Parameter	Test Conditions	Min	Typ	Max	Min	Typ	Max	Units
Output Section								
Output Low Level ros (ON)	$\mathrm{I}_{\text {SINK }}=20 \mathrm{~mA}$	-	10	20	-	10	20	Ω
Output High Level ris (on)	$I_{\text {SOURCE }}=20 \mathrm{~mA}$	-	20	35	-	20	35	Ω
Output Rise Time	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{mF}$	-	55	90	-	55	90	ns
Output Fall Time	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{mF}$	-	55	90	-	55	90	ns

Under Voltage Lockout Section

Under Voltage Threshold	6.6	7	7.3	6.6	7	7.3	V
Start Threshold	7.5	7.8	8	7.5	7.8	8	V
Threshold Hysteresis	0.6	0.8	1	0.6	0.8	1	V

Total Standby Current

Supply Current	-	1.2	2.5	-	1.2	2	mA
Start-Up Current	-	250	350	-	250	350	$\mu \mathrm{~A}$

NOTES: 1. These parameters, although guaranteed over the recommended operating conditions, are not 100% tested in production.
2. Parameter measured at trip point of latch with $\mathrm{V}_{\text {Pin } 6}=$ $V_{\text {REF }}, V_{\text {Pin } 16}=0 \mathrm{~V}$.
3. Amplifier gain is defined as: $G=\frac{D_{P \text { in } 7}}{D_{P \text { in } 4}}$; $N_{P \text { Pin } 4}=O V$ to $1 V$
4. Current into Pin 1 guaranteed to latch circuit in shutdown state.
5. Current into Pin 1 guaranteed not to latch circuit in shutdown state.

NOTES

TC7660

DC-TO-DC VOLTAGE CONVERTER

FEATURES

- Converts +5 V Logic Supply to $\pm 5 \mathrm{~V}$ System
- Wide Input Voltage Range 1.5V to 10 V
- Efficient Voltage Conversion
- Excellent Power Efficiency 99.9\%
ow Power Supply
- Low Cost and Easy to Use - Only Two External Capacitors Required
- RS232 Negative Power Supply
- Available in Small Outline (SO) Package

GENERAL DESCRIPTION

The TC7660 DC-to-DC voltage converter will generate a negative voltage from a positive source. With two external capacitors, the TC7660 will convert a 1.5 V to 10 V input signal to a -1.5 V to -10 V level. The TC7660 easily generates -5 V in +5 V digital systems.

Many analog-to-digital converters, digital-to-analog converters, operational amplifiers, and multiplexers require negative supply voltages. The TC7660 allows +5 V digital logic systems to incorporate these analog components without adding an additional main power source. The TC7660 can lower total system cost, ease engineering development, and save space, power and weight.

The TC7660 charges a capacitor to the applied supply voltage. Internal analog gates connect the capacitor across the output. Charge is transferred to an output storage capacitor, completing the voltage conversion. Operation requires only two external capacitors for supply voltage $<6.5 \mathrm{~V}$.

BLOCK DIAGRAM

Contained on-chip are a series DC power supply regulator, RC oscillator, voltage-level translator, four output power MOS switches, and a unique logic element which ensures latch-up free operation.

The oscillator, when unloaded, oscillates at a nominal frequency of 10 kHz for an input supply voltage of 5 V . This frequency can be lowered by the addition of an external capacitor to the OSC terminal (pin 7), or the oscillator may be overdriven by an external clock.

The low voltage (LV) terminal (pin 6) may be tied to GND (pin 3) to bypass the internal series regulator and improve LV operation. At medium-to-high voltages (+3.5 V to +10 V), the LV pin is left floating to prevent device latch-up.

The TC7660 open-circuit output voltage is equal to the input voltage to within 0.1%. The TC7660 has a 98% power conversion efficiency for 2 mA to 5 mA load currents.

ORDERING INFORMATION

Part No.	Package	Temperature Range
TC7660CPA	8-Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC7660IJA	8 -Pin CerDIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC7660EOA	8 -Pin Plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC7660EPA	8 -Pin Plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC7660MJA	8-Pin CerDIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
TC7660COA	8 -Pin SO	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

PIN CONFIGURATION (DIP and SO)

ABSOLUTE MAXIMUM RATINGS

Supply Voltage \qquad $+10.5 \mathrm{~V}$
LV and OSC Inputs
Voltage (Note 1) -0.3 V to $\left(\mathrm{V}^{+}+0.3 \mathrm{~V}\right)$ for $\mathrm{V}^{+}<5.5 \mathrm{~V}$

$$
\left(\mathrm{V}^{+}-5.5 \mathrm{~V}\right) \text { to }\left(\mathrm{V}^{+}+0.3 \mathrm{~V}\right)
$$ for $\mathrm{V}^{+}<5.5 \mathrm{~V}$

Current Into LV (Note 1) $20 \mu \mathrm{~A}$ for $\mathrm{V}^{+}>3.5 \mathrm{~V}$
Output Short Duration (VSUPPLY $\leqslant 5.5 \mathrm{~V}$).........Continuous
Power Dissipation (Note 2)
CerDIP
.500 mW
Plastic DIP
.375 mW
Operating Temperature Range
C Suffix \qquad $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Abstract

I Suffix $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ E Suffix $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ M Suffix $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec) $+300^{\circ} \mathrm{C}$

Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS: $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{OSC}}=0$, Test Circuit (Figure 1), unless otherwise indicated.

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
${ }^{+}$	Supply Current	$\mathrm{R}_{\mathrm{L}}=\infty$	-	170	500	$\mu \mathrm{A}$
$\mathrm{V}^{+} \mathrm{H}_{1}$	Supply Voltage Range, High (D_{x} Out of Circuit) (Note 3)	$\begin{aligned} & 0^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{A} \leqslant+70^{\circ} \mathrm{C}, \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{KK}, \mathrm{LV} \mathrm{Open}^{2} \\ & -55^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{A} \leqslant+125^{\circ} \mathrm{C}, \\ & 10 \mathrm{k} \Omega, \mathrm{LV} \text { Open } \end{aligned}$	3	-	6.5 5	v
${ }^{+}{ }_{\text {L1 }}$	Supply Voltage Range, Low (D_{X} Out of Circuit)	$\begin{aligned} & M_{i n} \leqslant T_{A} \leqslant \operatorname{Max}, \\ & R_{L}=10 \mathrm{k} \Omega, L V \text { to GND } \end{aligned}$	1.5	-	3.5	v
$\mathrm{V}^{+} \mathrm{H}_{2}$	Supply Voltage Range, High ($\mathrm{D}_{\mathrm{x}} \ln$ Circuit)	$\begin{aligned} & \operatorname{Min} \leqslant T_{A} \leqslant \text { Max, } \\ & R_{L}=10 \mathrm{k} \Omega, \mathrm{LV} \text { Open } \end{aligned}$	3	-	10	v
$\mathrm{V}^{+} \mathrm{L}^{\text {2 }}$	Supply Voltage Range, Low ($\mathrm{D}_{\mathrm{x}} \ln$ Circuit)	$\begin{aligned} & M_{i n} \leqslant T_{A} \leqslant M a x, \\ & R_{L}=10 \mathrm{k} \Omega, L V \text { to } G N D \end{aligned}$	1.5	-	3.5	v
Rout	Output Source Resistance	lout $=20 \mathrm{~mA}, \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$	-	55	100	Ω
		$\begin{aligned} & \text { lout }=20 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C} \\ & \text { (C Device) } \end{aligned}$	-	-	120	Ω
		$\begin{aligned} & \text { lout }=20 \mathrm{~mA},-25^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{\mathrm{A}} \leqslant+85^{\circ} \mathrm{C} \\ & \text { (I Device) } \end{aligned}$	-	-	130	Ω
		$\begin{aligned} & \text { lout }=20 \mathrm{~mA},-55^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C} \\ & \text { (M Device) } \end{aligned}$	-	-	150	Ω
		$\begin{aligned} & V^{+}=2 \mathrm{~V}, \text { lout }=3 \mathrm{~mA}, \mathrm{LV} \text { to } G N D \\ & 0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+70^{\circ} \mathrm{C} \end{aligned}$	-	-	300	Ω
		$\begin{aligned} & \mathrm{V}^{+}=2 \mathrm{~V}, \text { Iout }=3 \mathrm{~mA}, \mathrm{LV} \text { to GND } \\ & -55^{\circ} \mathrm{C} \leqslant T_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C} \text { (Note 3) } \\ & \hline \end{aligned}$	-	-	600	Ω
fosc	Oscillator Frequency		-	10	-	kHz
PEF	Power Efficiency	$\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega$	95	98	-	\%
Voutef	Voltage Conversion Efficiency	$\mathrm{R}_{\mathrm{L}}=\infty$	97	99.9	-	\%
Zosc	Oscillator Impedance	$\mathrm{V}^{+}=2 \mathrm{~V}$	-	1	-	$\mathrm{M} \Omega$
		$\mathrm{V}^{+}=5 \mathrm{~V}$	-	100	-	$\mathrm{k} \Omega$

NOTES: 1. Connecting any input terminal to voltages greater than $\mathrm{C}+$ or less than GND may cause destructive latch-up. It is recommended that no inputs from sources operating from extemal supplies be applied prior to "power up" of the TC7660.
2. Derate linearly above $50^{\circ} \mathrm{C}$ by $5.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
3. TC7660M only.

TC7660

TYPICAL PERFORMANCE CHARACTERISTICS (Circuit of Figure 1)

Output Source Resistance vs Supply Voltage

Output Source Resistance vs Temperature

Unloaded Osc Freq vs Temperature

TYPICAL PERFORMANCE CHARACTERISTICS (Cont.)

NOTE: The curves on the right include in the supply current that current fed directly into the load (R_{L}) from V^{+}(see Figure 1). Thus, approximately half the supply current goes directly to the positive side of the load, and the other half through the TC7660, to the negative side of the load. Ideally, $V_{O U T}=2 V_{I N}$. $I_{S} \cong 2 I_{L}$, so $V_{I N}{ }^{-1} I_{S} \cong V_{O U T}{ }^{-1} L_{\text {. }}$.

Figure 1. TC7660 Test Circuit

Figure 2. Chip Topography

Circuit Description

The TC7660 contains all the necessary circuitry to complete a voltage doubler, with the exception of two external capacitors, which may be inexpensive $10 \mu \mathrm{~F}$ polarized electrolytic capacitors. Operation is best understood by considering Figure 3, which shows an idealized voltage doubler. Capacitor C_{1} is charged to a voltage, V^{+}, for the half cycle when switches S_{1} and S_{3} are closed. (Note: Switches S_{2} and S_{4} are open during this half cycle.) During the second half cycle of operation, switches S_{2} and S_{4} are closed, with S_{1} and S_{3} open, thereby shifting capacitor C_{1} negatively by V^{+}volts. Charge is then transferred from C_{1} to C_{2}, such that the voltage on C_{2} is exactly V^{+}, assuming ideal switches and no load on C_{2}.

Figure 3. Idealized Switched Capacitor

The four switches in Figure 3 are MOS power switches; S_{1} is a P-channel device, and S_{2}, S_{3} and S_{4} are N-channel devices. The main difficulty with this approach is that in integrating the switches, the substrates of S_{3} and S_{4} must always remain reverse-biased with respect to their sources, but not so much as to degrade their ON resistances. In addition, at circuit start-up, and under output short circuit conditions ($\mathrm{V}_{\text {OUT }}=\mathrm{V}^{+}$), the output voltage must be sensed and the substrate bias adjusted accordingly. Failure to accomplish this will result in high power losses and probable device latch-up.

This problem is eliminated in the TC7660 by a logic network which senses the output voltage (VOUT) together with the level translators, and switches the substrates of S_{3} and S_{4} to the correct level to maintain necessary reverse bias.

The voltage regulator portion of the TC7660 is an integral part of the anti-latch-up circuitry. Its inherent voltage drop can, however, degrade operation at low voltages. To improve low-voltage operation, the LV pin should be connected to GND, disabling the regulator. For supply voltages greater than 3.5 V , the LV terminal must be left open to ensure latch-up-proof operation and prevent device damage.

Theoretical Power Efficiency Considerations

In theory, a voltage multiplier can approach 100\% efficiency if certain conditions are met:
(1) The drive circuitry consumes minimal power.
(2) The output switches have extremely low ON resistance and virtually no offset.
(3) The impedances of the pump and reservoir capacitors are negligible at the pump frequency.

DC-TO-DC VOLTAGE CONVERTER

The TC7660 approaches these conditions for negative voltage multiplication if large values of C_{1} and C_{2} are used. Energy is lost only in the transfer of charge between capacitors if a change in voltage occurs. The energy lost is defined by:

$$
E=1 / 2 C_{1}\left(V_{1}^{2}-V_{2}^{2}\right)
$$

V_{1} and V_{2} are the voltages on C_{1} during the pump and transfer cycles. If the impedances of C_{1} and C_{2} are relatively high at the pump frequency (refer to Figure 3), compared to the value of R_{L}, there will be a substantial difference in voltages V_{1} and V_{2}. Therefore, it is not only desirable to make C_{2} as large as possible to eliminate output voltage ripple, but also to employ a correspondingly large value for C_{1} in order to achieve maximum efficiency of operation.

Dos and Don'ts

- Do not exceed maximum supply voltages.
- Do not connect LV terminal to GND for supply voltages greater than 3.5 V .
- Do not short circuit the output to V^{+}supply for voltages above 5.5 V for extended periods; however, transient conditions including start-up are okay.
- When using polarized capacitors, the + terminal of C_{1} must be connected to pin 2 of the TC7660 and the + terminal of C_{2} must be connected to GND.
- Add diode D_{X} (as shown in Figure 1) for high-voltage, elevated-temperature applications. A 1 N914 diode is suitable.

Considerations for High Voltage and Elevated Temperature

The TC7660 will operate efficiently over its specified temperature range with only two external passive components (storage and pump capacitors), provided the operating supply voltage does not exceed 6.5 V at $+70^{\circ} \mathrm{C}$ and 5 V at $+125^{\circ} \mathrm{C}$. Exceeding these maximums at the temperatures indicated may result in destructive latch-up of the TC7660.

Operation at supply voltages up to 10 V over the fuil temperature range, without danger of latch-up, can be achieved by adding a general-purpose diode in series with the TC7660 output, as shown by D_{x} in the circuit diagrams. The effect of this diode on overall circuit performance is the reduction of output voltage by one diode drop (approximately 0.6 V).

TYPICAL APPLICATIONS

Simple Negative Voltage Converter

Figure 4 shows typical connections to provide a negative supply where a positive supply is available. A similar scheme may be employed for supply voltages anywhere in the operating range of +1.5 V to +10 V , keeping in mind that pin $6(\mathrm{LV})$ is tied to the supply negative (GND) only for supply voltages below 3.5 V , and that diode D_{X} must be included for proper operation at higher voltage and/or elevated temperatures.

The output characteristics of the circuit in Figure 4 are those of a nearly ideal voltage source in series with 70Ω. Thus, for a load current of -10 mA and a supply voltage of +5 V , the output voltage would be -4.3 V .

The dynamic output impedance of the TC7660 is due, primarily, to capacitive reactance of the charge transfer capacitor $\left(C_{1}\right)$. Since this capacitor is connected to the output for only $1 / 2$ of the cycle, the equation is:

$$
X_{C}=\frac{2}{2 \pi f C_{1}}=3.18 \Omega
$$

where $\mathrm{f}=10 \mathrm{kHz}$ and $\mathrm{C}_{1}=10 \mu \mathrm{~F}$.

${ }^{*}$ NOTES: 1. $\mathrm{V}_{\text {OUT }}=-n \mathrm{~V}^{+}$for $1.5 \mathrm{~V} \leqslant \mathrm{~V}^{+} \leqslant 6.5 \mathrm{~V}$.
2. $\mathrm{V}_{\mathrm{OUT}}=-n\left(\mathrm{~V}^{+}-\mathrm{V}_{\text {FDX }}\right)$ for $6.5 \mathrm{~V} \leqslant \mathrm{~V}^{+} \leqslant 10 \mathrm{~V}$.

Figure 4. Simple Negative Converter

Paralleling Devices

Any number of TC7660 voltage converters may be paralleled to reduce output resistance (Figure 5). The reservoir capacitor, C_{2}, serves all devices, while each device requires its own pump capacitor, C_{1}. The resultant output resistance would be approximately:

$$
R_{\text {OUT }}=\frac{\text { Rout (of TC7660) }^{n(\text { number of devices })}}{\text { (}}
$$

Figure 5. Paralleling Devices Lowers Output Impedance

Cascading Devices

The TC7660 may be cascaded as shown (Figure 6) to produce larger negative multiplication of the initial supply voltage. However, due to the finite efficiency of each device, the practical limit is 10 devices for light loads. The output voltage is defined by:

$$
V_{\text {OUT }}=-n\left(V_{I N}\right)
$$

where n is an integer representing the number of devices cascaded. The resulting output resistance would be approximately the weighted sum of the individual TC7660 Rout values.

Changing the TC7660 Oscillator Frequency

It may be desirable in some applications (due to noise or other considerations) to increase the oscillator frequency. This is achieved by overdriving the oscillator from an external clock, as shown in Figure 7. In order to prevent possible
device latch-up, a $1 \mathrm{k} \Omega$ resistor must be used in series with the clock output. In a situation where the designer has generated the external clock frequency using TTL logic, the addition of a $10 \mathrm{k} \Omega$ pull-up resistor to V^{+}supply is required. Note that the pump frequency with external clocking, as with internal clocking, will be $1 / 2$ of the clock frequency. Output transitions occur on the positive-going edge of the clock.
it is aiso possibie io increase the conversion efficiency of the TC7660 at low load levels by lowering the oscillator frequency. This reduces the switching losses, and is achieved by connecting an additional capacitor, Cosc, as shown in Figure 8. Lowering the oscillator frequency will cause an undesirable increase in the impedance of the pump $\left(C_{1}\right)$ and the reservoir $\left(\mathrm{C}_{2}\right)$ capacitors. To overcome this, increase the values of C_{1} and C_{2} by the same factor that the frequency has been reduced. For example, the addition of a 100 pF capacitor between pin 7 (OSC) and pin $8\left(\mathrm{~V}^{+}\right)$will lower the oscillator frequency to 1 kHz from its nominal frequency of 10 kHz (a multiple of 10), and necessitate a corresponding increase in the values of C_{1} and C_{2} (from $10 \mu \mathrm{~F}$ to $100 \mu \mathrm{~F}$).

Figure 6. Increased Output Voltage by Cascading Devices

DC-TO-DC VOLTAGE CONVERTER

Figure 7. External Clocking

Figure 8. Lowering Oscillator Frequency

Positive Voltage Multiplication

The TC7660 may be employed to achieve positive voltage multiplication using the circuit shown in Figure 9. In this application, the pump inverter switches of the TC7660 are used to charge C_{1} to a voltage level of $\mathrm{V}^{+}-\mathrm{V}_{\mathrm{F}}$ (where V^{+} is the supply voltage and V_{F} is the forward voltage drop of diode D_{1}). On the transfer cycle, the voltage on C_{1} plus the supply voltage $\left(\mathrm{V}^{+}\right)$is applied through diode D_{2} to capacitor C_{2}. The voltage thus created on C_{2} becomes $\left(2 \mathrm{~V}^{+}\right)-\left(2 \mathrm{~V}_{\mathrm{F}}\right)$, or twice the supply voltage minus the combined forward voltage drops of diodes D_{1} and D_{2}.

The source impedance of the output $\left(\mathrm{V}_{\mathrm{OUT}}\right)$ will depend on the output current, but for $\mathrm{V}^{+}=5 \mathrm{~V}$ and an output current of 10 mA , it will be approximately 60Ω.

Figure 9. Positive Voltage Multiplier

Combined Negative Voltage Conversion and Positive Supply Multiplication

Figure 10 combines the functions shown in Figures 4 and 9 to provide negative voltage conversion and positive voltage multiplication simultaneously. This approach would be, for example, suitable for generating +9 V and -5 V from an existing +5 V supply. In this instance, capacitors C_{1} and C_{3} perform the pump and reservoir functions, respectively, for the generation of the negative voltage, while capacitors C_{2} and C_{4} are pump and reservoir, respectively, for the multiplied positive voltage. There is a penalty in this configuration which combines both functions, however, in that the source impedances of the generated supplies will be somewhat higher due to the finite impedance of the common charge pump driver at pin 2 of the device.

Figure 10. Combined Negative Converter and Positive Multiplier

Efficient Positive Voltage Multiplication/Conversion

Since the switches that allow the charge pumping operation are bidirectional, the charge transfer can be performed backwards as easily as forwards. Figure 11 shows a TC7660 transforming -5 V to +5 V (or +5 V to +10 V , etc.). The only problem here is that the internal clock and switchdrive section will not operate until some positive voltage has been generated. An initial inefficient pump, as shown in Figure 10, could be used to start this circuit up, after which it will bypass the other (D_{1} and D_{2} in Figure 10 would never turn on), or else the diode and resistor shown dotted in Figure 11 can be used to "force" the internal regulator on.

Figure 11. Positive Voltage Conversion

Voltage Splitting

The same bidirectional characteristics used in Figure 11 can also be used to split a higher supply in half, as shown in Figure 12. The combined load will be evenly shared between the two sides. Once again, a high value resistor to the LV pin ensures start-up. Because the switches share the load in parallel, the output impedance is much lower than in the standard circuits, and higher currents can be drawn from the device. Sy using this cincuit, and then the circuit of Figure $\overline{6}$, +15 V can be converted (via +7.5 V and -7.5 V) to a nominal -15 V , though with rather high series resistance ($\sim 250 \Omega$).

Figure 12. Splitting a Supply in Half

Negative Voltage Generation for Display ADCs

The TC7106 is designed to work from a 9 V battery. With a fixed power supply system, the TC7106 will perform conversions with input signal referenced to power supply ground.

Negative Supply Generation for 4-1/2 Digit Data Acquisition System

The TC7135 is a $4-1 / 2$ digit ADC operating from $\pm 5 \mathrm{~V}$ supplies. The TC7660 provides an inexpensive -5 V source. (See AN16 and AN17 for TC7135 interface details and software routines.)

Figure 13a. Fixed Power Supply Operation of TC7106 ADC

DC-TO-DC VOLTAGE CONVERTER

Figure 13b. Negative Power Supply Generation for TC7107A ADC

Figure 14. TC7660 Supplies -5V for Converters in Microprocessor-Controlled Data Acquisition Systems

NOTES

DC-TO-DC CONVERTER

FEATURES

Equivalent to ICL7662/SI7661/TC7660/LTC1044
Increased Output Current........................... 40 mA
No External Diodes Required
Wide Operating Range to to 18 V
Low Output Impedance @ $\mathrm{I}_{\mathrm{L}}=20 \mathrm{~mA}40 \Omega$ Typ
No Low-Voltage Terminal Required
CMOS Construction

GENERAL DESCRIPTION

The TC7662A is an improved version of the industrystandard TC7660/TC7662 switched capacitor DC-to-DC converters. CMOS construction and advanced design result in a device with twice the output power of the TC7662 and requires fewer parts in many applications.

The TC7662A can source 40 mA versus the TC7662's 20 mA capability. As an inverter, the TC7662A can output voltages as high as 18 V and as low as 3 V , without the need
for external diodes. The output impedance of the device is a low 40Ω (typical), voltage conversion efficiency is 99.9%, and power conversion efficiency is 97%.

See TC962 if higher output current is required.
The low-voltage terminal (pin6) required in some TC7662 applications has been eliminated. Only two external capacitors are required for inverter applications. If an external clock is needed to drive the TC7662A (such as when paralleling), driving pin 7 directly will cause the internal oscillator to sync to the external clock.

The TC7662A can be used in applications such as $V_{\text {OUT }}=-\mathrm{V}_{\text {IN }}, V_{\text {OUT }}=2 \mathrm{~V}_{\text {IN }}, \mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {IN }} / 2$, and $\mathrm{V}_{\text {OUT }}= \pm n \mathrm{~V}_{\text {IN }}$.

It may also be used as a DC-to-DC inverter, a doubler, a plus and minus supply splitter, and (when combined with other TC7662A's), as a voltage multiplier greater than two.

The TC7662A is compatible with the LTC1044, ICL7660, ICL7662, SI7661, and TC7660. It is recommended for designs requiring greater power and/or less input-tooutput voltage drop.

FUNCTIONAL DIAGRAM

ORDERING INFORMATION

Part No.	Package	Temperature Range
TC7662ACPA	8-Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC7662AIJA	8-Pin CerDIP	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC7662AEPA	8 -Pin Plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC7662AMJA	8 -Pin CerDIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

Supply Voitage $\mathrm{V}_{\mathrm{S}}^{+}$to GND......................................+18V Input Voltage (Any Pin) ($\mathrm{V}_{\mathrm{S}}^{+}+0.3$) to $\left(\mathrm{V}_{\mathrm{s}}^{-}-0.3\right)$
Current Into Any Pin
Operating Temperature Range

CPA	0° to $+70^{\circ} \mathrm{C}$
IJA	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
EPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
MJA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
x Dissipation	
CPA, EPA..	.375 mW
MJA	$500 \mathrm{~m}$

Package Thermal Resistance
CPA, EPA $\theta_{J A}$. $140^{\circ} \mathrm{C} / \mathrm{W}$
IJA, MJA $\theta_{J A}$ $.90^{\circ} \mathrm{C} / \mathrm{W}$
Storage Temperature Range................$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $+300^{\circ} \mathrm{C}$
ESD Protection $\pm 2000 \mathrm{~V}$
Output Short Circuit Continuous (at 5.5 V Input)

Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to Absolute Maximum Rating Conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS: $\mathrm{V}_{\mathrm{S}}^{+}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Test Circuit)

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
V_{S}^{+}	Supply Voltage		3	-	18	V
Is	Supply Current $\mathrm{V}_{\mathrm{S}}^{+}=+15 \mathrm{~V}$ $V_{S}^{+}=+5 \mathrm{~V}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=\infty \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & 0 \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \\ & -55 \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & 0 \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \\ & -55 \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{aligned}$	- - - -	$\begin{aligned} & 510 \\ & 560 \\ & 650 \\ & 190 \\ & 210 \\ & 210 \end{aligned}$	700 - - -	$\mu \mathrm{A}$ μA $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
R_{0}	Output Source Resistance	$\begin{aligned} & \mathrm{I}_{\mathrm{L}}=20 \mathrm{~mA}, \mathrm{~V}_{S}^{+}=+15 \mathrm{~V} \\ & \mathrm{~L}_{\mathrm{L}}=40 \mathrm{~mA}, \mathrm{~V}_{S}^{+}=+15 \mathrm{~V} \\ & \mathrm{~L}_{\mathrm{L}}=3 \mathrm{~mA}, \mathrm{~V}_{S}^{+}=+5 \mathrm{~V} \end{aligned}$	-	$\begin{gathered} 40 \\ 50 \\ 100 \end{gathered}$	$\begin{gathered} 50 \\ 60 \\ 125 \end{gathered}$	$\begin{aligned} & \Omega \\ & \Omega \\ & \Omega \end{aligned}$
$\mathrm{C}_{\text {OSC }}$	Oscillator Frequency		-	12	-	kHz
$\mathrm{P}_{\text {EfF }}$	Power Efficiency	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}^{+}=+15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$	93	97	-	\%
$\mathrm{V}_{\text {EFF }}$	Voltage Efficiency	$\begin{aligned} & \mathrm{V}^{+} \mathrm{S}=+15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=\infty \\ & \text { Over Temperature Range } \end{aligned}$	$\begin{aligned} & 99 \\ & 96 \end{aligned}$	99.9	-	

TEST CIRCUIT

APPLICATIONS INFORMATION

Theory of Operation

The TC7662A is a capacitive pump (sometimes called a switched capacitor circuit), where four MOSFET switches control the charge and discharge of a capacitor.

The functional diagram (page 1) shows how the switching action works. SW1 and SW2 are turned on simultaneously, charging C 1 to the supply voltage, $\mathrm{V}_{\mathrm{S}}^{+}$. This assumes that the on resistance of the MOSFETs in series with the capacitor results in a charging time (3 time constants) less than the on time provided by the oscillator frequency, as shown:

$$
3\left(\mathrm{R}_{\mathrm{DS}(\mathrm{ON})} \mathrm{C} 1\right)<\mathrm{C} 1 /\left(0.5 \mathrm{f}_{\mathrm{OSC}}\right)
$$

In the next cycle, SW1 and SW2 are turned off and, after a very short interval of all switches being off (preventing large currents from occurring due to cross conduction), SW3 and SW4 are turned on. The charge in C1 is then transferred to Cout, BUT WITH THE POLARITY INVERTED. In this way, a negative voltage is now derived.

An oscillator supplies pulses to a flip-flop that is then fed to a set of level shifters. These level shifters then drive each set of switches at one-half the oscillator frequency.

The oscillator has a pin that controls the frequency of oscillation. Pin 7 can have a capacitor added that is run to ground. This will lower the frequency of the oscillator by adding capacitance to the timing capacitor internal to the TC7662A. (See Oscillator Frequency vs $\mathrm{C}_{\mathrm{EXt}}$, page 5.)

Capacitors

In early charge pump converters, capacitors were not considered critical due to the high $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ of the MOSFET switches. In order to understand this, let's look at a model of a typical electrolytic capacitor (Figure 1).

Figure 1 Capacitor Equivalent Circuit
Note one of its characteristics is ESR (equivalent series resistance). This parasitic resistance winds up in series with the load. Thus, both voltage and power conversion efficiency are compromised if a low ESR capacitor is not used.

For example, in the "Test Circuit", changing C_{P} and C_{R} capacitors with typical ESR to low ESR types, the effective converter output impedance changed from 45Ω to 40Ω, an improvement of 12%.

This applies to all types of capacitors, including film types (polyester, polycarbonate etc.).

Some applications information suggest the capacitor is not critical and attribute the limiting factor of the capacitor to its reactive value. Let's examine this:

$$
X_{C}=\frac{1}{2 \pi f C} \text { and } Z_{C}=\frac{X_{C}}{D S}
$$

where DS (duty cycle) $=50 \%$.
Thus, $\mathrm{Z}_{\mathrm{C}} \approx 1.33 \Omega$ at $\mathrm{f}=12 \mathrm{kHz}$, where $\mathrm{C}=10 \mu \mathrm{~F}$.
For the TC7662A, $f=12,000 \mathrm{~Hz}$, and a typical value of C would be $10 \mu \mathrm{~F}$. This a reactive impedance of $\approx 1.33 \mathrm{~W}$. If the ESR is as great as 5 W , the reactive value is not as critical as it would first appear, as the ESR would predominate. The 5 W value is typical of a general-purpose electrolytic capacitor.

Synchronizing

The TC7662A may be synchronized by sourcing a $5 \mu \mathrm{~s}$, $5 \mu \mathrm{~A}$ clock pulse to pin 7. Care should be taken not to drive pin 7 beyond +5 V .

A TTL voltage level driving a diode and $100 \mathrm{k} \Omega$ resistor in series to pin 7 is the recommended procedure.

Figure 2 Synchronization

TYPICAL APPLICATIONS

Positive Voltage Multiplier

DC-TO-DC CONVERTER

TYPICAL CHARACTERISTICS CURVES

Output Resistance vs Temperature

NOTES

HIGH CURRENT DC-TO-DC CONVERTER

FEATURES

Pin Compatible With TC7662/ICL7662/S17661

- High Output Current 80 mA
- No External Diodes Required
- Wide Operating Range $3 V$ to 18 V
- Low Output Impedance 28Ω Typ
- No Low Voltage Terminal Required
- Application Zener On Chip
- Doubling Pin Option for Smaller Output Capacitors

GENERAL DESCRIPTION

The TC962 is an advanced version of the industrystandard 7662 high-voltage DC-to-DC converter. Using improved design techniques and CMOS construction, the TC962 can source as much as 80 mA versus the 7662's 20 mA capability.

As an inverter, the TC962 can put out voltages as high as 18 V and as low as 3 V without the need for external diodes. The output impedance of the device is a low 28Ω (with the proper capacitors), voltage conversion efficiency is 99.9%, and power conversion efficiency is 97%.

FUNCTIONAL DIAGRAM

The low voltage terminal (pin 6) required in some 7662 applications has been eliminated. Grounding this terminal will double the oscillator frequency from 12 kHz to 24 kHz . This will allow the use of smaller capacitors for the same output current and ripple, in most applications. Only two external capacitors are required for inverter applications. In the event an external clock is needed to drive the TC962 (such as paralleling), driving this pin directly will cause the internal oscillator to sync to the external clock.

Pin 1 , which is used as a test pin on the 7662 , is a voltage reference zeneronthe TC962. This zener (6.4 V at 5 mA) has a dynamic impedance of 12 W and is intended for use where the TC962 is supplying current to external regulator circuitry and a reference is needed for the regulator circuit. (See applications section.)

The TC962 is compatible with the LTC1044, SI7661, and ICL7662. It should be used in designs that require greater power and/or less input to output voltage drop. It offers superior performance over the ICL7660S.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage ($\mathrm{V}_{\mathrm{S}}^{+}$to GND)+18V
Input Voltage (Any Pin) $\left(\mathrm{V}_{\mathrm{S}}^{+}+0.3\right.$) to $\left(\mathrm{V}_{\mathrm{S}}^{-}-0.3\right)$
Current into Any Pin ... 10 mA
ESD Protection... $\pm 2000 \mathrm{~V}$
Output Short CircuitContinuous (at 5.5V Input)
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $+300^{\circ} \mathrm{C}$
Operating Temperature Range
CPA, COE ... $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
IJA ..- $25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
EOE, EPA .. $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
MJA ... $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Max Dissipation
COE, CPA, EOE, EPA 375 mW
IJA, MJA .. 500 mW
Package Thermal Resistance
CerDIP, R qu-A $^{\text {.. } 90^{\circ} \mathrm{C} / \mathrm{W}}$
PDIP, $\mathrm{R}_{\mathrm{qJ}} \mathrm{A} . ~ 140^{\circ} \mathrm{C} / \mathrm{W}$
Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to Absolute Maximum Rating Conditions for extended periods may affect device reliability.

ORDERING INFORMATION

Part No.	Package	Temperature Range
TC962CPA	8-Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC962IJA	8 -Pin CerDIP	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC962EPA	8-Pin Plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC962MJA	8 -Pin CerDIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
TC962COE	16-Pin SO	0 to $+70^{\circ} \mathrm{C}$
TC962EOE	16-Pin SO	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

PIN CONFIGURATIONS

ELECTRICAL CHARACTERISTICS: $\mathrm{V}_{\mathrm{S}}^{+}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Test Circuit)

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
$\mathrm{V}_{\mathrm{S}}^{+}$	Supply Voltage		3		18	V
Is	Supply Current $\mathrm{V}_{\mathrm{S}}^{+}=15 \mathrm{~V}$ $\mathrm{V}_{\mathrm{S}}^{+}=5 \mathrm{~V}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=\infty \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & 0 \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \\ & -55 \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & 0 \leq \mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C} \\ & -55 \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 510 \\ & 560 \\ & 650 \\ & 190 \\ & 210 \\ & 210 \\ & \hline \end{aligned}$	700	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
R_{O}	Output Source Resistance	$\begin{aligned} & \mathrm{I}_{\mathrm{L}}=20 \mathrm{~mA}, \mathrm{~V}_{S}^{+}=15 \mathrm{~V} \\ & \mathrm{~L}_{\mathrm{L}}=80 \mathrm{~mA}, \mathrm{~V}_{S}^{+}=15 \mathrm{~V} \\ & \mathrm{~L}_{\mathrm{L}}=3 \mathrm{~mA}, \mathrm{~V}_{S}^{+}=5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 28 \\ & 30 \\ & - \end{aligned}$	$\begin{aligned} & 32 \\ & 35 \\ & 46 \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \\ & \Omega \end{aligned}$
Cosc	Oscillator Frequency	Pin 6 Open Pin 6 GND		$\begin{aligned} & 12 \\ & 24 \end{aligned}$		$\begin{aligned} & \mathrm{kHz} \\ & \mathrm{kHz} \end{aligned}$
$\overline{P_{\text {EFF }}}$	Power Efficiency	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}^{+}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$	93	97		\%
$\overline{\mathrm{V}_{\text {DEF }}}$	Voltage Efficiency	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}^{+}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=\infty \end{aligned}$ Over Temperature Range	$\begin{aligned} & 99 \\ & 96 \\ & \hline \end{aligned}$	$\begin{gathered} 99.9 \\ - \end{gathered}$		\% \%
V_{z}	Zener Voltage	$\mathrm{I}_{\mathrm{z}}=5 \mathrm{~mA}$	6.2	6.4	6.6	V
$\underline{Z_{Z T}}$	Zener Impedance	$L_{L}=2.5 \mathrm{~mA}$ to 7.5 mA		12		Ω

APPLICATIONS INFORMATION

Theory of Operation

The TC962 is a capacitive pump (sometimes called a switched capacitor circuit), where four MOSFET switches control the charge and discharge of a capacitor.

Thefunctional diagram (page 1) shows how the switching action works. SW1 and SW2 are turned on simultaneously, charging C_{P} to the supply voltage, $\mathrm{V}_{\mathbb{I}}$. This assumes that the on resistance of the MOSFETs in series with the capacitor results in a charging time (3 time constants) that is less than the on time provided by the oscillator frequency as shown:

$$
3\left(\mathrm{R}_{\mathrm{DS}(\mathrm{ON})} \mathrm{C}_{\mathrm{P}}\right)<\mathrm{C}_{\mathrm{P}} /(0.5 \mathrm{fosc})
$$

In the next cycle, SW1 and SW2 are turned off and after a very short interval of all switches being off (this prevents large currents from occurring due to cross conduction), SW3 and SW4 are turned on. The charge in C_{P} is then transferred to C_{R}, BUT WITH THE POLARITY INVERTED. In this way, a negative voltage is now derived.

Page 1 shows a functional diagram of the TC962. An oscillator supplies pulses to a flip-flop that is then fed to a set of level shifters. These level shifters then drive each set of switches at one-half the oscillator frequency.

The oscillator has two pins that control the frequency of oscillation. Pin 7 can have a capacitor added that is run to ground. This will lower the frequency of the oscillator by adding capacitance to the timing capacitor internal to the TC962. Grounding pin 6 will turn on a current source and double the frequency. This will double the charge current going into the internal capacitor, as well as any capacitor added to pin 7.

A zener diode has been added to the TC962 for use as a reference in building external regulators. This zener runs from pin 1 to ground.

Capacitors

In early charge pump converters, the capacitors were not considered critical due to the high $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ of the MOSFET switches. In order to understand this, let's look at a model of a typical electrolytic capacitor (Figure 1).

Note that one of its characteristics is ESR (equivalent series resistance). This parasitic resistance winds up in series with the load. Thus, both voltage conversion efficiency and power conversion efficiency are compromised if a low ESR capacitor is not used.

In the test circuit, for example, just changing two capacitors, C_{P} and C_{R}, from capacitors with unspecified ESR to low ESR-type output, impedance changes from 36Ω to 28Ω, an improvement of 23% !

This applies to all types of capacitors, including film types (polyester, polycarbonate, etc.).

Some applications information suggest that the capacitor is not critical and attribute the limiting factor of the capacitor to its reactive value. Let's examine this:

$$
X_{C}=\frac{1}{2 \pi f C} \quad \text { and } \quad Z_{C}=\frac{X_{C}}{D S}
$$

where DS (duty cycle) $=50 \%$.
Thus, $\bar{Z}_{C} \approx \hat{2} . \overline{0} \bar{\Omega}$ at $\mathfrak{i}=12 \mathrm{kiHz}$, where $\mathrm{C}=10 \mu \mathrm{~F}$.

For the TC962, $f=12,000 \mathrm{~Hz}$, and a typical value of C would be $10 \mu \mathrm{~F}$. This is a reactive impedance of ${ }^{\underline{a}} 2.6 \mathrm{~W}$. If the ESR is as great as 5 W , the reactive value is not as critical as it would first appear, as the ESR would predominate. The 5 W value is typical of a general-purpose electrolytic capacitor.

Latch Up

All CMOS structures contain a parasitic SCR. Care must be taken to prevent any input from going above or below the supply rail, or latch up will occur. The result of latch up is an effective short between V^{+}s and V^{-}s. Unless the power supply input has a current limit, this latch-up phenomena will result in damage to the device. (See Application Note 31 for additional information.)

TEST CIRCUIT

Figure 1 Typical Electrolytic Capacitor

TYPICAL APPLICATIONS

HIGH CURRENT DC-TO-DC CONVERTER

TYPICAL APPLICATIONS (Cont.)

TYPICAL CHARACTERISTICS CURVES

Frequency vs Temperature

Oscillator Frequency vs $\mathbf{C E X T}^{\text {EX }}$

Output Resistance vs Temperature

TYPICAL CHARACTERISTICS CURVES (Cont.)

Power Conversion Efficiency vs $I_{\text {LOAD }}$

BONDING DIAGRAM

Section 6

Power MOSFET, Motor and PIN Drivers

	Display A/D Converters	1
Voltage-to-Frequency/Frequency-to-Voltage Converters	3	
Powsor Products	4	
Power Supply Control ICs	5	
CosFET, Motor and PIN Drivers	6	
References	7	
Chopper-Stabilized Operational Amplifiers	8	
High Performance Amplifiers/Buffers	9	
Video Display Drivers	10	
Display Drivers	11	
Analog Switches and Multiplexers	12	
Data Communications	13	
Discrete DMOS Products	14	
Reliability and Quality Assurance	15	
Ordering Information	16	
Package Information	17	
Sales Offices	18	

HIGH SPEED PIN DRIVER

FEATURES

- Tristateable output
- Dual inputs
- Wide input voltage range
- Short-circuit protected

APPLICATIONS

- Mixed signal test systems
- Instrumentation

GENERAL DESCRIPTION

The 1120 is a high speed pin driver for use in mixed signal test systems. Typical swing is 20 ns rise/fall time for 10 V step. This device features two logic-selectable inputs, both having unity gain. The output, with short-circuit current limiting, can also be configured for a tristate condition for testing l/O devices.

The 1120 pin driver is available in a 24-pin ceramic package and is specified for operation over the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

Pin No.	Designation	Pin No.	Designation		
1	+24V Supply	24	-24V Supply		
2	NC	23	GND		
3	INPUT A	22	V_{HI} INPUT		-00000000000
4	INPUT B	21	NC		12
5	NC	20	GND		
6	NC	19	OUT		
7	NC	18	OUT		
8	NC	17	GND		24
9	INPUT C	16	NC		OOOOOOOOOOOO
10	INPUT D	15	V ${ }_{\text {LO }}$ INPUT		
11	NC	14	GND		
12	-24V Supply	13	+24V Supply		
$N C=$	o internal connectio				

ELECTRICAL CHARACTERISTICS: $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}, \pm \mathrm{V}_{\mathrm{CC}}= \pm 24 \mathrm{~V}$, unless otherwise indicated.

Parameter	Min	Max	Unit
VHI Offset $1,2,3$	0.4	0.7	V
VLO Offset $1,2,3$	0.4	0.7	V
VHI Clamp Current	-	20	mA
VLO Clamp Current	-	20	mA
VHI Output Current	30	-	mA
VLO Output Current	30	-	mA
Tristate Impedance	15	-	Mohms
+ICC	-	50	mA
ICC	-	50	mA

LOGIC DIAGRAM:

Input A	Input B	Input C	Input D	Output
L	H	L	H	VHIIN
H	L	H	L	$\mathrm{VLO} \operatorname{IN}$
H	L	L	H	L
H	H	H	TRI STATE	
$H=E C L " 1 ", L=E C L$ " 0 "			NOT ALLOWED	

1.2A DUAL HIGH-SPEED MOSFET DRIVERS

FEATURES

- Low Cost
- Latch-Up Protected: Will Withstand 500 mA Reverse Output Current
■ ESD Protected ...22 kV
■ High Peak Output Current1.2A Peak
- High Capacitive Load Drive Capability

1000 pF in 38 ns

- Wide Operating Range
4.5 V to 16 V
- Low Delay Time

75 ns Max

- Logic Input Threshold Independent of Supply Voltage
- Output Voltage Swing to Within 25 mV of Ground or $V_{D D}$
- Low Output Impedance \qquad

APPLICATIONS

- Power MOSFET Drivers
- Switched Mode Power Supplies
- Pulse Transformer Drive
- Small Motor Controls
- Print Head Drive

GENERAL DESCRIPTION

The TC1426/27/28 are a family of 1.2A dual high-speed drivers. They are ideal for high-volume OEM manufacturers, with latch-up protection, ESD protection, and a proprietary molding compound for high reliability. CMOS fabrication is used for low power consumption and high efficiency.

These devices are fabricated using an epitaxial layer to effectively short out the intrinsic parasitic transistor responsible for CMOS latch-up. They incorporate a number of other design and process refinements to increase their longterm reliability.

The TC1426 is compatible with the bipolar DS0026, but only draws $1 / 5$ of the quiescent current. The TC1426/27/28 are also compatible with the TC426/27/28, but with 1.2 A peak output current rather than the 1.5A of theTC426/27/28 devices.

The high-input impedance TC1426/27/28 drivers are CMOS/TTL input-compatible, do not require the speed-up needed by the bipolar devices, and can be directly driven by most PWM ICs.

This family of devices is available in inverting and noninverting versions. Specifications have been optimized to achieve low-cost and high-performance devices, well-suited for the high-volume manufacturer.

FUNCTIONAL DIAGRAM

1.2A DUAL HIGH-SPEED MOSFET DRIVERS

TC1426
TC1427
TC1428

Part No.	Package	Configuration	Range
TC1426COA	$8-\mathrm{Pin}$ SO	Inverting	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC1426CPA	$8-\mathrm{Pin}$ Plastic DIP	Inverting	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC1426EPA	8-Pin Plastic DIP	Inverting	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC1426EOA	$\begin{aligned} & \text { 8-Pin } \\ & \text { SO } \end{aligned}$	Inverting	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC1427COA	8 -Pin SO	Non-Inverting	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC1427CPA	$\begin{aligned} & \text { 8-Pin } \\ & \text { Plastic DIP } \end{aligned}$	Non-Inverting	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC1427EPA	$\begin{aligned} & \text { 8-Pin } \\ & \text { Plastic DIP } \end{aligned}$	Non-Inverting	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC1427EOA	$\begin{aligned} & \text { 8-Pin } \\ & \text { SO } \\ & \hline \end{aligned}$	Non-Inverting	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC1428COA	$8-\mathrm{Pin} \mathrm{SO}$	Inverting and Non-Inverting	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC1428CPA	$\begin{aligned} & \hline \text { 8-Pin } \\ & \text { Plastic DIP } \end{aligned}$	Inverting and Non-Inverting	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC1428EPA	$\begin{aligned} & \hline \text { 8-Pin } \\ & \text { Plastic DIP } \end{aligned}$	Inverting and Non-Inverting	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC1428.EOA	$\begin{aligned} & \text { 8-Pin } \\ & \text { SO } \\ & \hline \end{aligned}$	Inverting and Non-Inverting	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Test Circuit

Figure 1. Inverting Driver Switching Time

PIN CONFIGURATIONS

Figure 2. Non-Inverting Driver Switching Time

1.2A DUAL HIGH-SPEED MOSFET DRIVERS

Power Dissipation
\qquad
\qquad
Derating Factor 500 mW

Plastic DIP . $8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
SOIC $.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Supply Voltage ... 18 V
Input Voltage, Any Terminal........ $\mathrm{V}_{\mathrm{s}}+0.3 \mathrm{~V}$ to GND -0.3 V Operating Temperature: C Version $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ E Version $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Maximum Chip Temperature $+150^{\circ} \mathrm{C}$
Storage Temperature $+65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$
Lead Temperature (10 sec) $300^{\circ} \mathrm{C}$

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated inthe operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ with $4.5 \mathrm{~V} \leqslant \mathrm{~V}_{D D}{ }^{+} \leqslant 16 \mathrm{~V}$ unless otherwise specified.)

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
Input						
V_{IH}	Logic 1, Input Voltage		3	-	-	V
V_{IL}	Logic 0, Input Voltage		-	-	0.8	V
I_{IN}	Input Current	$\mathrm{OV} \leqslant \mathrm{V}_{\mathrm{IN}} \leqslant \mathrm{V}_{\mathrm{DD}}$	-1	-	1	$\mu \mathrm{A}$
Output						
V_{OH}	High Output Voltage	Test Figures 1 and 2	$\mathrm{V}_{\mathrm{DD}}-0.025$	-	-	V
V_{OL}	Low Output Voltage	Test Figures 1 and 2	-	-	0.025	V
R_{0}	Output Resistance	$\begin{gathered} V_{\text {IN }}=0.8 \mathrm{~V} \\ \mathrm{I}_{\text {OUT }}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=16 \mathrm{~V} \end{gathered}$	-	12	18	Ω
		$\begin{gathered} V_{\text {IN }}=3 V \\ \mathrm{I}_{\text {OUT }}=10 \mathrm{~mA}, V_{\text {DD }}=16 \mathrm{~V} \end{gathered}$	-	8	12	Ω
I_{PK}	Peak Output Current		-	1.2	-	A
1	Latch-Up Current	Withstand Reverse Current	>500	-	-	mA

Switching Time (Note 1)

t_{R}	Rise Time	Test Figures 1 and 2	-	-	35	ns
t_{F}	Fall Time	Test Figures 1 and 2	-	-	25	ns
$\mathrm{t}_{\mathrm{D} 1}$	Delay Time	Test Figures 1 and 2	-	-	75	ns
$\mathrm{t}_{\mathrm{D} 2}$	Delay Time	Test Figures 1 and 2	-	-	75	ns

Power Supply

I_{s}	Power Supply Current	$\mathrm{V}_{\mathrm{IN}}=3 \mathrm{~V}$ (Both Inputs)	-	-	9	mA
		$\mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ (Both Inputs)	-	-	0.5	mA

Note: 1. Switching times guaranteed by design.

TC1426
TC1427
TC1428

ELECTRICAL CHARACTERISTICS

(Over operating temperature range with $4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{DD}}{ }^{+} \leqslant 16 \mathrm{~V}$ unless otherwise specified.)

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
Input						
V_{1}	Logic 1, Input Voltage		3	-	-	V
V_{lt}	Logic 0, Input Voltage		-	-	0.8	V
IN	Input Current	$\mathrm{OV} \leqslant \mathrm{V}_{\text {IN }} \leqslant \mathrm{V}_{\text {D }}$	-10	-	10	$\mu \mathrm{A}$
Output						
V_{OH}	High Output Voltage	Test Figures 1 and 2	$\mathrm{V}_{\text {DO }}-0.025$	-	-	V
V_{ol}	Low Output Voltage	Test Figures 1 and 2	-	-	0.025	V
R_{0}	Output Resistance	$\begin{gathered} \mathrm{V}_{\text {IN }}=0.8 \mathrm{~V} \\ \mathrm{I}_{\text {OUT }}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=16 \mathrm{~V} \end{gathered}$	-	15	23	Ω
		$\begin{gathered} \mathrm{V}_{\text {IN }}=3 \mathrm{~V} \\ \mathrm{I}_{\text {OUT }}=10 \mathrm{~mA}, \mathrm{~V}_{\text {DD }}=16 \mathrm{~V} \end{gathered}$	-	10	18	Ω
1	Latch-Up Current	Withstand Reverse Current	>500	-	-	mA

Switching Time

t_{R}	Rise Time	Test Figures 1 and 2	-	-	60	ns
t_{F}	Fall Time	Test Figures 1 and 2	-	-	40	ns
$\mathrm{t}_{\mathrm{D} 1}$	Delay Time	Test Figures 1 and 2	-	-	125	ns
$\mathrm{t}_{\mathrm{D} 2}$	Delay Time	Test Figures 1 and 2	-	-	125	ns

Power Supply

I_{s}	Power Supply Current	$\mathrm{V}_{\mathrm{IN}}=3 \mathrm{~V}$ (Both Inputs)	-	-	13	mA
		$\mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ (Both Inputs)	-	-	0.7	mA

SUPPLY BYPASSING

Large currents are required to charge and discharge large capacitive loads quickly. For example, charging a $1000-\mathrm{pF}$ load 16 V in 25 ns requires an 0.8 A current from the device power supply.

To guarantee low supply impedance over a wide frequency range, a parallel capacitor combination is recommended for supply bypassing. Low-inductance ceramic MLC capacitors with short lead lengths (<0.5-in.) should be used. A $1.0-\mu \mathrm{F}$ film capacitor in parallel with one or two $0.1-\mu \mathrm{F}$ ceramic MLC capacitors normally provides adequate bypassing.

GROUNDING

The TC1426 and TC1428 contain inverting drivers. Ground potential drops developed in common ground impedances from input to output will appear as negative feedback and degrade switching speed characteristics.

Individual ground returns for the input and output circuits or a ground plane should be used.

INPUT STAGE

The input voltage level changes the no-load or quiescent supply current. The N -channel MOSFET input stage transistor drives a 2.5 mA current source load. With a logic " 1 " input, the maximum quiescent supply current is 9 mA . Logic "0" input level signals reduce quiescent current to 500 $\mu \mathrm{A}$ maximum. Unused driver inputs must be connected to $V_{D D}$ or GND. Minimum power dissipation occurs for logic "0" inputs for the TC1426/27/28.

The drivers are designed with 100 mV of hysteresis. This provides clean transitions and minimizes output stage current spiking when changing states. Input voltage thresholds are approximately 1.5 V , making logic " 1 " input any voltage greater than 1.5 V up to V_{DD}. Input current is less than $1 \mu \mathrm{~A}$ over this range.

The TC1426/27/28 may be directly driven by the TL494, SG1526/27, TC38C42, TC170 and similar switch-mode power supply integrated circuits.

1.2A DUAL HIGH-SPEED MOSFET DRIVERS

TC1426
TC1427
TC1428

TYPICAL CHARACTERISTIC CURVES

Rise and Fall Times vs Temperature

Delay Time vs Supply Voltage

Supply Current vs Frequency

1.2A DUAL HIGH-SPEED MOSFET DRIVERS

TC1426
TC1427
TC1428
TYPICAL CHARACTERISTIC CURVES (Cont.)

Quiescent Power Supply Current vs Supply Voltage

High-State Output Resistance

Quiescent Power Supply
Current vs Supply Voltage

Crossover Energy Loss

DUAL HIGH-SPEED POWER MOSFET DRIVERS

FEATURES

- High-Speed Switching ($\mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}$) 30 ns
- High Peak Output Current 1.5A
- High Output Voltage Swing $\mathrm{V}_{\mathrm{DD}}-25 \mathrm{mV}$GND +25 mV
- Low Input Current (Logic "0" or "1")

\qquad $1 \mu \mathrm{~A}$

- TTLCMOS Input Compatible
- Available in Inverting and NoninvertingConfigurations
- Wide Operating Supply Voltage 4.5V to 18 V
- Current Consumption
- Inputs Low 0.4 mA
- Inputs High 8 mA
- Single Supply Operation
- Low Output Impedance 6Ω
- Pinout Equivalent of DS0026 and MMH0026- Latch-Up Resistant: Withstands $>500 \mathrm{~mA}$Reverse Current
- ESD Protected 2 kV

GENERAL DESCRIPTION

The TC426/TC427/TC428 are dual CMOS high-speed drivers. A TTL/CMOS input voltage level is translated into an output voltage level swing equaling the supply. The CMOS output will be within 25 mV of ground or positive supply. Bipolar designs are capable of swinging only within 1 V of the supply.

The low impedance, high-current driver outputs will swing a 1000 pF load 18 V in 30 ns . The unique current and voltage drive qualities make the TC426/TC427/TC428 ideal power MOSFET drivers, line drivers, and DC-to-DC converter building blocks.

Input logic signals may equal the power supply voltage. Input current is a low $1 \mu \mathrm{~A}$, making direct interface to CMOS/bipolar switch-mode power supply control ICs possible, as well as open-collector analog comparators.

Quiescent power supply current is 8 mA maximum. The TC426 requires $1 / 5$ the current of the pin-compatible bipolar DS0026 device. This is important in DC-to-DC converter applications with power efficiency constraints and high-frequency switch-mode power supply applications. Quiescent current is typically 6 mA when driving a 1000 pF load 18 V at 100 kHz .

The inverting TC426 driver is pin-compatible with the bipolar DS0026 and MMH0026 devices. The TC427 is noninverting; the TC428 contains an inverting and noninverting driver.

FUNCTIONAL DIAGRAM

ORDERING INFORMATION

Part No.	Package	Configuration	Temperature Range
TC426CPA	8-Pin PDIP	Inverting	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC427CPA	8-Pin PDIP	Noninverting	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC428CPA	8-Pin PDIP	Complementary	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC426COA	8-Pin SOIC	Inverting	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC427COA	8-Pin SOIC	Noninverting	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC428COA	8-Pin SOIC	Complementary	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC426IJA	8-Pin CerDIP	Inverting	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC427IJA	8-Pin CerDIP	Noninverting	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC428IJA	8-Pin CerDIP	Complementary	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC426EOA	8-Pin SOIC	Inverting	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC427EOA	8-Pin SOIC	Noninverting	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC428EOA	8-Pin SOIC	Complementary	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC426MJA	8-Pin CerDIP	Inverting	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
TC427MJA	8-Pin CerDIP	Noninverting	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
TC428MJA	8-Pin CerDIP	Complementary	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Figure 1. Inverting Driver Switching Time Test Circuit

PIN CONFIGURATIONS (DIP and SO)

Figure 2. Noninverting Driver Switching Time Test Circuit

ABSOLUTE MAXIMUM RATINGS

Maximum Chip Temperature $+150^{\circ} \mathrm{C}$
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $\ldots \ldots+300^{\circ} \mathrm{C}$

Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may effect device reliability.

ELECTRICAL CHARACTERISTICS: $T_{A}=+25^{\circ} \mathrm{C}$ with $4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{DD}} \leqslant 18 \mathrm{~V}$, unless otherwise specified.

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
Input						
V_{IH}	Logic 1, High Input Voltage		2.4	-	-	V
$\mathrm{V}_{\text {IL }}$	Logic 0, Low Input Voltage		-	-	0.8	V
IN	Input Current	$0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{IN}} \leqslant \mathrm{V}_{\mathrm{DD}}$	-1	-	1	$\mu \mathrm{A}$
Output						
V_{OH}	High Output Voltage		$\mathrm{V}_{\mathrm{DD}}-0.025$	-	-	V
V_{OL}	Low Output Voltage		-	-	0.025	V
R_{OH}	High Output Resistance	I OUT $=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=18 \mathrm{~V}$	-	10	15	Ω
ROL	Low Output Resistance	$\mathrm{I}_{\text {OUT }}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=18 \mathrm{~V}$	-	6	10	Ω
lpk	Peak Output Current		-	1.5	-	A
Switching Time (Note 1)						
t_{R}	Rise Time	Test Figure 1	-	-	30	ns
$t_{\text {F }}$	Fall Time	Test Figure 1	-	-	20	ns
$t_{\text {D1 }}$	Delay Time	Test Figure 1	-	-	50	ns
$t_{D 2}$	Delay Time	Test Figure 1	-	-	75	ns
Power Supply						
Is	Power Supply Current	$\mathrm{V}_{\mathrm{IN}}=3 \mathrm{~V}$ (Both Inputs) $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ (Both Inputs)	—	-	$\begin{gathered} \hline 8 \\ 0.4 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$

DUAL HIGH-SPEED POWER MOSFET DRIVERS

TC426
TC427
TC428

ELECTRICAL CHARACTERISTICS:

Over operating temperature range with $4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{DD}} \leqslant 18 \mathrm{~V}$, unless otherwise specified.

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
Input						
V_{IH}	Logic 1, High Input Voltage		2.4	-	-	V
$\mathrm{V}_{\text {IL }}$	Logic 0, Low Input Voltage		-	-	0.8	V
In	Input Current	$0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{IN}} \leqslant \mathrm{V}_{\mathrm{DD}}$	-10	-	10	$\mu \mathrm{A}$
Output						
V OH	High Output Voltage		$\mathrm{V}_{\mathrm{DD}}-0.025$	-	-	V
VOL	Low Output Voltage		-	-	0.025	V
R_{OH}	High Output Resistance	$\mathrm{I}_{\text {OUT }}=10 \mathrm{~mA}, \mathrm{~V}_{\text {DD }}=18 \mathrm{~V}$	-	13	20	Ω
ROL	Low Output Resistance	I OUT $=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=18 \mathrm{~V}$	-	8	15	W
Switching Time (Note 1)						
t_{R}	Rise Time	Test Figure 1	-	-	60	ns
t_{F}	Fall Time	Test Figure 1	-	-	40	ns
t_{01}	Delay Time	Test Figure 1	-	-	75	ns
$\mathrm{t}_{\mathrm{D} 2}$	Delay Time	Test Figure 1	-	-	120	ns
Power Supply						
Is	Power Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=3 \mathrm{~V} \text { (Both Inputs) } \\ & \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} \text { (Both Inputs) } \end{aligned}$	-	-	$\begin{aligned} & 12 \\ & 0.6 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$

NOTE: 1. Switching times guaranteed by design.

SUPPLY BYPASSING

Charging and discharging large capacitive loads quickly requires large currents. For example, charging a $1000-\mathrm{pF}$ load 18 V in 25 ns requires an 0.8 A current from the device power supply.

To guarantee low supply impedance over a wide frequency range, a parallel capacitor combination is recommended for supply bypassing. Low-inductance ceramic disk capacitors with short lead lengths (<0.5 in.) should be used. A $1 \mu \mathrm{~F}$ film capacitor in parallel with one or two $0.1 \mu \mathrm{~F}$ ceramic disk capacitors normally provides adequate bypassing.

GROUNDING

The TC426 and TC428 contain inverting drivers. Ground potential drops developed in common ground impedances from input to output will appear as negative feedback and degrade switching speed characteristics.

Individual ground returns for the input and output circuits or a ground plane should be used.

INPUT STAGE

The input voltage level changes the no-load or quiescent supply current. The N -channel MOSFET input stage transistor drives a 2.5 mA current source load. With a logic " 1 " input, the maximum quiescent supply current is 8 mA . Logic " 0 " input level signals reduce quiescent current to 0.4 mA maximum. Minimum power dissipation occurs for logic "0" inputs for the TC426/427/428. Unused driver inputs must be connected to V_{DD} or GND.

The drivers are designed with 100 mV of hysteresis. This provides clean transitions and minimizes output stage current spiking when changing states. Input voltage thresholds are approximately 1.5 V , making the device TTL compatible over the 4.5 V to 18 V supply operating range. Input current is less than $1 \mu \mathrm{~A}$ over this range.

The TC426/427/428 may be directly driven by the TL494, SG1526/1527, SG1524, SE5560, and similar switchmode power supply integrated circuits.

POWER DISSIPATION

The supply current vs frequency and supply current vs capacitive load characteristic curves will aid in determining power dissipation calculations.

The TC426/427/428 CMOS drivers have greatly reduced quiescent DC power consumption. Maximum quiescent current is 8 mA compared to the DS0026 40 mA specification. For a 15 V supply, power dissipation is typically 40 mW .

Two other power dissipation components are:

- Output stage AC and DC load power.
- Transition state power.

Output stage power is:

$$
\begin{aligned}
P_{O} & =P_{D C}+P A C \\
& =V O\left(I_{D C}\right)+f C_{L} V_{S}^{2}
\end{aligned}
$$

Where:
Vo = DC output voltage
$I_{D C}=D C$ output load current
f = Switching frequency
Vs = Supply voltage

In power MOSFET drive applications the P_{DC} term is negligible. MOSFET power transistors are high impedance, capacitive input devices. In applications where resistive loads or relays are driven, the PDC component will normally dominate.

The magnitude of $P_{A C}$ is readily estimated for several cases:
A.

1. $f=20 \mathrm{kHZ}$
2. $\mathrm{C}_{\mathrm{L}}=1000 \mathrm{pf}$
3. $V \mathrm{~s}=18 \mathrm{~V}$
4. $\mathrm{P}_{\mathrm{AC}}=65 \mathrm{~mW}$
B.
1.f $=200 \mathrm{kHz}$
5. $C_{L}=1000 \mathrm{pf}$
6. $V S=15 \mathrm{~V}$
7. $\mathrm{P}_{\mathrm{AC}}=45 \mathrm{~mW}$

During output level state changes, a current surge will flow through the series connected N and P channel output MOSFETS as one device is turning "ON" while the other is turning "OFF". The current spike flows only during output transitions. The input levels should not be maintained between the logic " 0 " and logic "1" levels. Unused driver inputs must be tied to ground and not be allowed to float. Average power dissipation will be reduced by minimizing input rise times. As shown in the characteristic curves, average supply current is frequency dependent.

TYPICAL CHARACTERISTICS CURVES

DUAL HIGH-SPEED POWER MOSFET DRIVERS

TYPICAL CHARACTERISTICS CURVES (Cont.)

DUAL HIGH-SPEED

POWER MOSFET DRIVERS

VOLTAGE DOUBLER

VOLTAGE INVERTER

NOTES

SINGLE HIGH-SPEED, CMOS POWER MOSFET DRIVER

FEATURES

APPLICATIONS

- Switch-Mode Power Supplies
 - CCD Drivers

- Pulse Transformer Drive
- Class D Switching Amplifiers

GENERAL DESCRIPTION

The TC429 is a high-speed, single CMOS-level translator and driver. Designed specifically to drive highly capacitive power MOSFET gates, the TC429 features 2.5Ω output impedance and 6A peak output current drive.

A 2500 pF capacitive load will be driven 18 V in 25 ns . Delay time through the device is 60 ns . The rapid switching times with large capacitive loads minimize MOSFET transition power loss.

A TTLCMOS input logic level is translated into an output voltage swing that equals the supply and will swing to within 25 mV of ground or V_{DD}. Input voltage swing may equal the supply. Logic input current is under $10 \mu \mathrm{~A}$, making direct interface to CMOS/bipolar switch-mode power supply controllers easy. Input "speed-up" capacitors are not required.

The CMOS design minimizes quiescent power supply current. With a logic 1 input, power supply current is 5 mA maximum and decreases to 0.5 mA for logic 0 inputs.

For dual devices, see the TC426/TC427/TC428 data sheet.

For noninverting applications, or applications requiring latch-up protection, see the TC4420/TC4429 data sheet.

TYPICAL APPLICATION

SINGLE HIGH-SPEED, CMOS POWER MOSFET DRIVER

TC429

ORDERING INFORMATION

Part No.	Package	Temperature Range
TC429CPA	8-Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC429IJA	8-Pin CerDIP	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC429EPA	8-Pin Plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC429MJA	8-Pin CerDIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
TC429Y	Chip	$+25^{\circ} \mathrm{C}$

PIN CONFIGURATION

NC $=$ NO INTERNAL CONNECTION
NOTE: Duplicate pins must both be connected for proper operation.

ABSOLUTE MAXIMUM RATINGS

C Version $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
I Version
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
E Version $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
M Version $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Maximum Chip Temperature

\qquad
$+150^{\circ} \mathrm{C}$ Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec) $+300^{\circ} \mathrm{C}$

Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to Absolute Maximum Rating Conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS: $\quad T_{A}=+25^{\circ} \mathrm{C}$ with $7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 18 \mathrm{~V}$, unless otherwise specified.

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
Input						
V_{IH}	Logic 1, High Input Voltage		2.4	1.8	-	V
$\mathrm{V}_{\text {IL }}$	Logic 0, Low Input Voltage		-	1.3	0.8	V
In	Input Current	$\mathrm{OV} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{DD}}$	-10	-	10	$\mu \mathrm{A}$
Output						
V_{OH}	High Output Voltage		$\mathrm{V}_{\mathrm{DD}}-0.025$	-	-	V
V_{OL}	Low Output Voltage		-	-	0.025	V
Ro	Output Resistance	$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}$	-	1.8	2.5	Ω
		$\mathrm{I}_{\text {OUT }}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=18 \mathrm{~V}$				
		$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$	-	1.5	2.5	Ω
		$\mathrm{l}_{\text {OUT }}=10 \mathrm{~mA}, \mathrm{~V}_{\text {DD }}=18 \mathrm{~V}$				
PrK	Peak Output Current	$V_{D D}=18 \mathrm{~V}$ (See Figure 3)	-	6	-	A
Switching Time (note 1)						
t_{R}	Rise Time	Figure 1, $\mathrm{C}_{\mathrm{L}}=2500 \mathrm{pF}$	-	23	35	ns
t_{F}	Fall Time	Figure 1, $\mathrm{C}_{\mathrm{L}}=2500 \mathrm{pF}$	-	25	35	ns
$t_{\text {D1 }}$	Delay Time	Figure 1	-	53	75	ns
$\mathrm{t}_{\mathrm{D} 2}$	Delay Time	Figure 1	-	60	75	ns
Power Supply						
Is	Power Supply Current	$\mathrm{V}_{\text {IN }}=3 \mathrm{~V}$	-	3.5	5	mA
		$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	-	0.3	0.5	mA

NOTES: 1. Switching times guaranteed by design.

SINGLE HIGH-SPEED, CMOS POWER MOSFET DRIVER

TC429
ELECTRICAL CHARACTERISTICS: Over operating temperature with $7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 18 \mathrm{~V}$, unless otherwise specified.

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
Input						
V_{IH}	Logic 1, High Input Voltage		2.4	-	-	V
$\mathrm{V}_{\text {IL }}$	Logic 0, Low Input Voltage		-	-	0.8	V
In	Input Current	$\mathrm{OV} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{DD}}$	-10	-	10	$\mu \mathrm{A}$
Output						
V OH	High Output Voltage		$\mathrm{V}_{\mathrm{DD}}-0.025$	-	-	V
$\mathrm{V}_{\text {OL }}$	Low Output Voltage		-	-	0.025	V
Ro	Output Resistance	$\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}$	-	-	5	Ω
		$\mathrm{I}_{\text {OUT }}=10 \mathrm{~mA}, \mathrm{~V}_{\text {DD }}=18 \mathrm{~V}$				
		$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}$	-	-	5	Ω
		$\mathrm{I}_{\text {OUT }}=10 \mathrm{~mA}, \mathrm{~V}_{\text {DD }}=18 \mathrm{~V}$				
Switching Time (Note 1)						
$t_{\text {R }}$	Rise Time	Figure 1, $\mathrm{C}_{\mathrm{L}}=2500 \mathrm{pF}$	-	-	70	ns
$t_{\text {F }}$	Fall Time	Figure 1, $\mathrm{C}_{\mathrm{L}}=2500 \mathrm{pF}$	-	-	70	ns
$t_{\text {D1 }}$	Delay Time	Figure 1	-	-	100	ns
$\mathrm{t}_{\mathrm{D} 2}$	Delay Time	Figure 1	-	-	120	ns
Power Supply						
Is	Power Supply Current	$\mathrm{V}_{\text {IN }}=3 \mathrm{~V}$	-	-	12	mA
		$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	-	-	1	mA

NOTE: 1. Switching times guaranteed by design.
SWITCHING SPEED

TYPICAL CHARACTERISTICS CURVES

Supply Current vs. Frequency

Supply Current vs. Supply Voltage

Rise/Fall Times vs. Capacitive Load

Delay Times vs. Supply Voltage

Supply Current vs. Temperature

SINGLE HIGH-SPEED, CMOS POWER MOSFET DRIVER

TYPICAL CHARACTERISTICS CURVES (Cont.)

SUPPLY BYPASSING

Charging and discharging large capacitive loads quickly requires large currents. For example, charging a 2500 pF load 18 V in 25 ns requires a 1.8 A current from the device's power supply.

To guarantee low supply impedance over a wide frequency range, a parallel capacitor combination is recommended for supply bypassing. Low-inductance ceramic disk capacitors with short lead lengths (<0.5 in.) should be used. A $1 \mu \mathrm{~F}$ film capacitor in parallel with one or two $0.1 \mu \mathrm{~F}$ ceramic disk capacitors normally provides adequate bypassing.

GROUNDING

The high-current capability of the TC429 demands careful PC board layout for best performance. Since the TC429 is an inverting driver, any ground lead impedance will appear as negative feedback which can degrade switching speed. The feedback is especially noticeable with slow risetime inputs, such as those produced by an open-collector output with resistor pull-up. The TC429 input structure includes about 300 mV of hysteresis to ensure clean transitions and freedom from oscillation, but attention to layout is still recommended.

Figure 2 shows the feedback effect in detail. As the TC429 input begins to go positive, the output goes negative and several amperes of current flow in the ground lead. As little as 0.05Ω of PC trace resistance can produce hundreds of millivolts at the TC429 ground pins. If the driving logic is referenced to power ground, the effective logic input level is reduced and oscillations may result.

Figure 2 Switching Time Degradation Due to Negative Feedback
Toensureoptimumdevice performance, separate ground traces should be provided for the logic and power connections. Connecting logic ground directly to the TC429 GND pins ensures full logic drive to the input and fast output switching. Both GND pins should be connected to power ground.

INPUT STAGE

The input voltage level changes the no-load or quiescent supply current. The N -channel MOSFET input stage transistor drives a 3 mA current source load. With a logic "1" input, the maximum quiescent supply current is 5 mA . Logic " 0 " input level signals reduce quiescent current to $500 \mu \mathrm{~A}$ maximum.

SINGLE HIGH-SPEED, CMOS POWER MOSFET DRIVER

The TC429 input is designed to provide 300 mV of hysteresis, providing clean transitions and minimizing output stage current spiking when changing states. Input voltage levels are approximately 1.5 V , making the device TTL compatible over the 7 V to 18 V operating supply range. Input current is less than $10 \mu \mathrm{~A}$ over this range.

The TC429 can be directly driven by TL494, SG1526/ 1527, SG1524, SE5560 or similar switch-mode power supply integrated circuits. By off-loading the power-driving duties to the TC429, the power supply controller can operate at lower dissipation, improving performance and reliability.

POWER DISSIPATION

CMOS circuits usually permit the user to ignore power dissipation. Logic families such as the 4000 and 74C have outputs that can only supply a few milliamperes of current, and even shorting outputs to ground will not force enough current to destroy the device. The TC429, however, can source or sink several amperes and drive large capacitive loads at high frequency. The packgae power dissipation limit can easily be exceeded. Therefore, some attention should be given to power dissipation when driving low impedance loads and/or operating at high frequency.

The supply current versus frequency and supply current versus capacitive load characteristic curves will aid in determining power dissipation calculations. Table I lists the maximum operating frequency for several power supply voltages when driving a 2500 pF load. More accurate power dissipation figures can be obtained by summing the three power sources.

Input signal duty cycle, power supply voltage, and capacitive load influence package power dissipation. Given power dissipation and package thermal resistance, the maximum ambient operation temperature is easily calculated. The 8-pin cerDIP junction-to-ambient thermal resistance is $150^{\circ} \mathrm{C} / \mathrm{W}$. At $+25^{\circ} \mathrm{C}$, the package is rated at 800 mW maximum dissipation. Maximum allowable chip temperature is $+150^{\circ} \mathrm{C}$.

Three components make up total package power dissipation:
(1) Capacitive load dissipation (P_{C})
(2) Quiescent power $\left(\mathrm{P}_{\mathrm{Q}}\right)$
(3) Transition power (P_{T})

The capacitive load-caused dissipation is a direct function of frequency, capacitive load, and supply voltage. The package power dissipation is:

$$
P_{C}=f C V_{S}^{2}
$$

where: $f=$ Switching frequency
C = Capacitive load
$\mathrm{V}_{\mathrm{S}}=$ Supply voltage.

Quiescent power dissipation depends on input signal duty cycle. A logic low input results in a low-power dissipation mode with only 0.5 mA total current drain. Logic high signals raise the current to 5 mA maximum. The queiscent power dissipation is:

$$
P_{Q}=V_{S}\left(D\left(l_{H}\right)+(1-D) I_{L}\right)
$$

where: $I_{H}=$ Quiescent current with input high (5 mA max)
$\mathrm{I}_{\mathrm{L}}=$ Quiescent current with input low (0.5 mA max) D = Duty cycle.
Transition power dissipation arises because the output stage N - and P-channel MOS transistors are "on" simultaneously for a very short period when the output changes. The transition package power dissipation is approximately:

$$
P_{T}=f V_{S}\left(3310^{-9}\right) .
$$

An example shows the relative magnitude for each item.

Example 1:

$$
\mathrm{C}=2500 \mathrm{pF}
$$

$$
V_{S}=15 \mathrm{~V}
$$

D $=50 \%$

$$
\mathrm{f}=200 \mathrm{kHz}
$$

$$
\mathrm{P}_{\mathrm{D}}=\mathrm{Package} \text { power dissipation }=\mathrm{P}_{\mathrm{C}}+\mathrm{P}_{\mathrm{T}}+\mathrm{P}_{\mathrm{Q}}
$$

$$
=113 \mathrm{~mW}+90 \mathrm{~mW}+26 \mathrm{~mW}
$$

$$
=229 \mathrm{~mW}
$$

Maximum operating temperature $=T_{J}-\theta_{J A}\left(P_{D}\right)$

$$
=115^{\circ} \mathrm{C}
$$

where: $T_{J}=$ Maximum allowable junction temperature $\left(+150^{\circ} \mathrm{C}\right)$
$\theta_{\mathrm{JA}}=$ Junction-to-ambient thermal resistance ($50^{\circ} \mathrm{C} / \mathrm{W}$, CerDIP).
NOTE: Ambient operating temperature should not exceed $+85^{\circ} \mathrm{C}$ for IJA devices or $+125^{\circ} \mathrm{C}$ for MJA devices.

SINGLE HIGH-SPEED, CMOS

 POWER MOSFET DRIVERTable I. Maximum Operating Frequencies

	$\mathbf{V}_{\mathbf{S}}$	$\mathbf{f}_{\text {Max }}$
18 V	500 kHz	
	15 V	700 kHz
10 V	1.3 MHz	
	5 V	$>2 \mathrm{MHz}$
CONDITIONS:	1. CerDIP Package $\left(\theta_{\mathrm{JA}}=150^{\circ} \mathrm{CW}\right)$	
	2. $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	
	3. $\mathrm{C}_{\mathrm{L}}=2500 \mathrm{pF}$	

Peak Output Current Capability

POWER-ON OSCILLATION

It is extremely important that all MOSFET DRIVER applications be evaluated for the possibility of having HIGH-POWER OSCILLATIONS occurring during the POWER-ON cycle.

POWER-ON OSCILLATIONS are due to trace size and layout as well as component placement. A 'quick fix' for most applications which exhibit POWER-ON OSCILLATION problems is to place approximately $10 \mathrm{k} \Omega$ in series with the input of the MOSFET driver.

NOTES

N゙TELEDYNE COMPONENTS

FAST CMOS CCD DRIVER

FEATURES

- Operating Range............. $4.5 \mathrm{~V} \leqslant\left(\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\right) \leqslant 12 \mathrm{~V}$
- TTLCMOS-Compatible Inputs
- Low Delay Time \qquad 15 ns Typ
- Rise and Fall Times 2200 pF Load, 25 ns Typ
- Peak Output Current .3A
- Output Can Be Floated Below Digital Return
- Level Shifting for Split-Supply Operation
- Guaranteed Skew
- Complementary Outputs
- 10 MHz Operation With Adequate Heat Sink
- Drives $\mathbf{1 0 0 0}$ pF at $\mathbf{4} \mathbf{~ M H z}$, in CerDIP With No External Heat Sink ($10 \mathrm{~V} \mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$)
- Low Output Impedance $.5 \Omega$ Max
■ Low Quiescent Current........................... 5 mA Max

APPLICATIONS

- CCD Driver
- MOSFET Driver
- Laser Diode Driver
- Differential Line Driver
- PIN Diode Driver
- Level Shifting Driver

GENERAL DESCRIPTION

The TC430 is a super-fast CMOS power driver for driving CCDs and other loads. The TC430 operates at frequencies to 10 MHz and drive loads greater than 2200 pF . Peak current output is 3 A .

The input is TTL/CMOS compatible. Digital return and output return can be at different voltages, allowing operation with output swings between positive and negative supplies without sacrificing AC performance when driven from TTL. The ability to swing negative is important when driving CCD devices.

The output stages have been designed so the rising edge of one output crosses the 50% point of the transition within 5 ns of the other. This makes the TC430 ideal for driving CCDs and achieving high contrast images.

CMOS construction achieves low quiescent power (less than 5 mA at 15 V and $25^{\circ} \mathrm{C}$) and low input current requirements. This device requires fewer external components than bipolar devices like the DS0026 which need external speed-up capacitors.

ORDERING INFORMATION

Part No.	Package	Temperature Range
TC430CPA	8-Pin Plastic	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC430IJA	8 -Pin CerDIP	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC430MJA	8 -Pin CerDIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

PIN CONFIGURATION

BONDING DIAGRAM

FAST CMOS CCD DRIVER

ABSOLUTE MAXIMUM RATINGS

Power Dissipation at $+25^{\circ} \mathrm{C}$	
Plastic	1000
CerDIP	800 mW
Derating Factors	
Plastic .. $8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	
CerDIP ... $6.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	
Supply Voltage	$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\text {SS }} \leqslant 15 \mathrm{~V}$
$V_{D D}-V_{D R} \leqslant 15 \mathrm{~V}$	
Input Voltage, Any Terminal ...	
Operating Temperature Range	
M Version $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
I Version $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
C Version $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	

Lead Temperature (Soldering, 10 sec) .. $300^{\circ} \mathrm{C} / \mathrm{W}$

ESD Protection 2000V

Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to Absolute Maximum Rating Conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS: $T_{A}=+25^{\circ} \mathrm{C}$ with $4.5 \mathrm{~V} \leqslant\left(\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{DR}}\right) \leqslant 12 \mathrm{~V}, 4.5 \mathrm{~V} \leqslant\left(\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\right) \leqslant 12 \mathrm{~V}$

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
$\mathrm{V}_{\text {IH }}$	Logic 1, High Input Voltage		2.4	1.6		V
$\mathrm{V}_{\text {IL }}$	Logic 0, Low Input Voltage			1.3	0.8	V
In	Input Current	$0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathbb{I N}} \leqslant \mathrm{V}_{\mathrm{DD}}$	-10		10	$\mu \mathrm{A}$
V_{OH}	High Output Voltage		$\mathrm{V}_{\mathrm{DD}}-0.025$			V
$\mathrm{V}_{\text {OL }}$	Low Output Voltage				$\mathrm{V}_{\text {SS }}+0.025$	V
Ro	Output Resistance	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \text { I OUT }=10 \mathrm{~mA}, \mathrm{~V}_{S S}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{DD}}=12 \mathrm{~V} \end{aligned}$		3	5	Ω
		$\begin{aligned} & \mathrm{V}_{I N}=3 \mathrm{~V}, \text { lout }=10 \mathrm{~mA}, \mathrm{~V}_{S S}=0 \mathrm{~V}, \\ & \mathrm{~V}_{D D}=12 \mathrm{~V} \end{aligned}$		3	5	Ω
IPK	Peak Output Current	$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}$		3		A
tskEW1	Output Pulse Skew	Figure 2		3	5	ns
tsKEW2	Output Pulse Skew	Figure 2		3	5	ns
t_{R}	Rise Time	Figure 1 $C_{L}=2200 \mathrm{pF}, \mathrm{~V}_{\mathrm{DD}}=12 \mathrm{~V}$		22	30	ns
$\overline{t_{F}}$	Fall Time	Figure 1 $C_{L}=2200 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}$		22	30	ns
$t_{\text {D1 }}$	Delay Time	Figure 1		18	25	ns
t_{02}	Delay Time	Figure 1		18	25	ns
Is	Quiescent Power Supply Current	$\begin{aligned} & V_{I N}=3 V, V_{D D}=12 \mathrm{~V}, V_{S S}=0 \mathrm{~V} \\ & V_{I N}=0 \mathrm{~V}, V_{D D}=12 \mathrm{~V}, V_{S S}=0 \mathrm{~V} \end{aligned}$		2.9	$\begin{gathered} 5 \\ 0.3 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$

NOTE: Switching times are guaranteed by design.

TC430
ELECTRICAL CHARACTERISTICS: $4.5 \mathrm{~V} \leqslant\left(\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{DR}}\right) \leqslant 12 \mathrm{~V} ; 4.5 \mathrm{~V} \leqslant\left(\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\right) \leqslant 12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
V_{IH}	Logic 1, High Input Voltage		2.4			V
V_{IL}	Logic 0, Low Input Voltage				0.8	V
In	Input Current	$0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{IN}} \leqslant \mathrm{V}_{\mathrm{DD}}$	-10		10	$\mu \mathrm{A}$
V_{OH}	High Output Voltage		$\mathrm{V}_{\mathrm{DD}}-0.025$			V
$\mathrm{V}_{\text {OL }}$	Low Output Voltage				$\mathrm{V}_{\text {SS }}+0.025$	V
R_{0}	Output Resistance	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{DD}}=12 \mathrm{~V} \end{aligned}$		4.5	7	Ω
		$\begin{aligned} & V_{I N}=3 \mathrm{~V}, \text { I OuT }=10 \mathrm{~mA}, \mathrm{~V}_{S S}=0 \mathrm{~V}, \\ & \mathrm{~V}_{D D}=12 \mathrm{~V} \end{aligned}$		4.5	7	Ω
IPK	Peak Output Current	$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}$		3		A
tskEW1	Output Pulse Skew	Figure 2		5	10	ns
tskew2	Output Pulse Skew	Figure 2		5	10	ns
t_{R}	Rise Time	Figure 1 $C_{L}=2200 \mathrm{pF}, \mathrm{~V}_{\mathrm{DD}}=12 \mathrm{~V}$			40	ns
t_{F}	Fall Time	Figure 1 $C_{L}=2200 \mathrm{pF}, \mathrm{~V}_{\mathrm{DD}}=12 \mathrm{~V}$			40	ns
t_{01}	Delay Time	Figure 1			35	ns
$\mathrm{t}_{\mathrm{D} 2}$	Delay Time	Figure 1			35	ns
Is	Quiescent Power Supply Current	$\begin{aligned} & V_{I N}=3 V, V_{D D}=12 V, V_{S S}=0 V \\ & V_{I N}=0 V, V_{D D}=12 V, V_{S S}=0 V \end{aligned}$		5	$\begin{gathered} 8 \\ 0.5 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$

NOTE: Switching times are guaranteed by design.

Figure 1 Driver Switching Time

Figure 2 Output Drive Skew

FAST CMOS CCD DRIVER

TEST CIRCUIT

APPLICATIONS INFORMATION
 Functional Description

The TC430 is fabricated with a super-fast silicon gate process. The input stage consists of a Schmitt trigger which drives a level shift circuit. The level shift circuit allows the input signal to be referenced to some point other than the output return, pin $3\left(\mathrm{~V}_{\mathrm{SS}}\right)$. This allows the output to swing positive and negative relative to the digital return (pin 1).

The output stage is a low-impedance MOSFET totem pole that can source or sink currents up to 3A peak. This type of output can swing to within millivolts of either rail when driving capacitive loads. Output rise times are on the order of 3 ns , while propagation delays are in the 15 ns region.

Application Tips

Due to its high speed and short transition times, proper layout of the PC board is critical. See Application Note 28 for further information on the effects of layout.

Additional precautions that must be made in addition to those in Application Note 28 are:
(1) Decoupling between the digital return and $V_{D D}$ is critical.
(2) A minimum 4.5V must be maintained between digital return and $V_{D D}$.
(3) Decoupling between $V_{D D}$ and $V_{S S}$ is critical.
(4) Single-point (star) ground systems should be used.

For decoupling between digital return and $V_{D D}$ [item (1) above] a $1 \mu \mathrm{~F} 50 \mathrm{~V}$ polyester film cap (such as a Wima MKS-2) in parallel with a multilayer ceramic $0.1 \mu \mathrm{~F} 50$ X7R (such as an AVX dip guard) will work well. These capacitors have to be mounted as close as possible to the respective pins on the TC430 to minimize circuit inductance.

Circuits that are improperly decoupled will exhibit oscillations on the output.

A minimum 4.5 V between digital return and V_{DD} [item (2) above] is necessary to ensure that the level shifting and hysteresis circuits have enough voltage to function properly. Put another way, the input circuit is referenced to the positive supply, not the negative supply.

Decoupling of the V_{SS} to V_{DD} [item (3) above] is important because of the high peak current capability of the output of the TC430. The suggested decoupling is a low ESR polyester film capacitor (such as the $1 \mu \mathrm{~F} 50 \mathrm{~V}$ MKS2) and a ceramic capacitor (such as the AVX $0.1 \mu \mathrm{~F} 50 \mathrm{~V}$ dip guard).

NOTE: Digital return tied to V_{SS}.

Rise/Fall Times vs Temperature

NOTE: Digital return tied to V_{Ss}.

NOTE: Digital return tied to V_{SS}.

Supply Current vs Frequency

FAST CMOS CCD DRIVER

The parallel combination of the two capacitors forms a low-impedance source of power across a broad frequency range for the output stage. This will ensure that for any load and frequency of operation the output will be as "clean" as is practical.

The use of single-point grounds [item (4) above] is very critical. Due to the high peak currents that the TC430 is capable of generating, any additional trace or wire length can cause L di/dt drops that can effect the output and in the extreme cause the device to fail due to voltage breakdown.

Application Note 28 explains parasitic inductance problems further.

Operation From a Single Supply

If the TC430 is operated from a single supply voltage, the digital return pin must be tied to the $\mathrm{V}_{\text {SS }}$ pin. This eliminates the need for the decoupling capacitors from $V_{D D}$ to digital return.

Load Return Path

It is very important to return the load currents directly to, and in the shortest possible distance to V_{SS}, pin 3 . Again, this is due to the parasitic inductance of the PC board trace or wire. The test circuit shows how the load capacitors, CLOAD, are returned to the same point as the decoupling capacitors which is directly on pin 3.

Input Signal Considerations

The amplitude of the input signal has a significant effect on the propagation delay through the IC.

While the device can be driven with a signal as small as 2 V , propagation delays will be in the 40 ns region. If the input is increased to 5 V , delays will be in the 15 ns region.

The input stage of the TC430 is a MOSFET gate. Thus, it is of high impedance and requires little drive current. This eliminates the need for speed-up capacitors as with older bipolar parts. The use of speed-up capacitors is not recommended, as they can cause voltage-doubling effects that can be detrimental to the life of the device.

Table I Maximum Operating Frequency

$\mathbf{V}_{\mathbf{S}}$	Max Frequency
12 V	4 MHz
10 V	9.1 MHz
5 V	20 MHz

Conditions: 1. CerDIP Package $\left(\theta_{J A}=150^{\circ} \mathrm{C} / \mathrm{W}\right)$
2. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
3. No load

APPLICATIONS

6A OPEN-DRAIN MOSFET DRIVER

FEATURES

GENERAL DESCRIPTION

The TC4401 is a CMOS buffer-driver constructed with complementary MOS outputs, where the drains of the final output totem pole have been left disconnected so individual connections can be made to the pull-up and pulldown sections of the output. This allows the insertion of individual drain current-limiting resistors in the pull-up and pull-down sections of the output, thus allowing the user to define the rates of rise and fall times desired for a capacitive load, or a reduced output swing if driving a resistive load, or to limit base current when driving a bipolar transistor. Minimum rise and fall times, with no resistors, will be less than 30 ns for a $2500-\mathrm{pF}$ load. There is no upper limit.

For driving MOSFETs in motor-control applications, where slow-on/fast-off operation is desired, the TC4401 is superior to the previously-used technique of adding a dioderesistor combination between the driver output and the MOSFET, because it allows accurate control of turn-on, while maintaining fast turn-off and maximum noise immunity for the device being driven.

When used to drive bipolar transistors, this driver maintains the high speeds common to other Teledyne drivers and allows insertion of a base current-limiting resistor, while providing a separate half-output for fast turnoff. By proper positioning of the resistor, either npn or pnp transistors can be driven.

FUNCTIONAL DIAGRAM

6A OPEN-DRAIN MOSFET DRIVER

TC4401

For driving many loads in low-power regimes, this driver, because it has very low quiescent current ($<150 \mu \mathrm{~A}$) and eliminates shoot-through currents in the output stage, requires significantly less power than similar drivers, and can be helpful in meeting low-power budgets.

Because neither drain in an output is dependent on the other (though they do switch simultaneously), this device can also be used as an open-drain buffer/driver where both drains are available in one device, thus minimizing chip count. An unused open drain should be returned to the supply rail its device source are connected to (pull-down to ground, pull-up to V_{DD}), to prevent static damage. Alternatively, in situations where timing resistors, or other means of
limiting crossover currents are used, multiple TC4401's may be paralleled for greater current-carrying capacity.

The TC4401 is built using Teledyne Components' new Tough CMOS process and is capable of giving reliable service in the most demanding electrical environments: it will not latch under any conditions within its power and voltage ratings; it is not subject to damage when up to 5 V of noise spiking of either polarity occurs on the ground pin; and it can accept, without damage or logic upset, up to 1.5 amp of reverse current (of either polarity) being forced back into the outputs. All terminals are fully protected against up to 2 kV of electrostatic discharge.

ORDERING INFORMATION

Part No.	Logic	Package	Temperature Range
TC4401CPA	Inverting	-Pin PDIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC4401EPA	Inverting	Inverting	8 -Pin PDIP
TC4401COA	Inverting	8 -Pin SOIC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC4401EOA	Inverting	8 -Pin SOIC	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC4401IJA	Inverting	8 -Pin CerDIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC4401MJA	8 -Pin CerDIP	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	

PIN CONFIGURATIONS

NC = NO CONNECTION

NOTE: 1. Duplicate pins must both be connected for proper operation.

6A OPEN-DRAIN MOSFET DRIVER

TC4401

ABSOLUTE MAXIMUM RATINGS

Supply Voltage .. 22 V	
Input VoltageV $\mathrm{V}_{\text {DD }}+0.3 \mathrm{~V}$ to GND - 5.0 V	
Input Current (VIN > V_{DD}) 50 mA	
Power Dissipation, $\mathrm{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C}$	
PDIP	1W
SOIC	500 mW
CerDIP	800 mW
Derating Factors (To Ambient)	
PDIP	$8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
SOIC	$4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
CerDIP	$6.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Maximum Chip Temperature $150^{\circ} \mathrm{C}$	
Operating Temperature Range	
C Version ... $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	
I Version $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
E Version $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
M Version $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
Lead Temperatu	$\ldots+300^{\circ} \mathrm{C}$

Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to Absolute Maximum Rating Conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ with $4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{DD}} \leqslant 18 \mathrm{~V}$, unless otherwise specified.

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
Input						
V_{IH}	Logic 1 High Input Voltage		2.4	1.8	-	V
$\mathrm{V}_{\text {IL }}$	Logic 0 Low Input Voltage		-	1.3	0.8	V
$\mathrm{V}_{\text {IN }}(\mathrm{Max})$	Input Voltage Range		-5	-	$\mathrm{V}_{\mathrm{DD}}+0.3$	V
In	Input Current	$0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathbb{N}} \leqslant \mathrm{V}_{\mathrm{DD}}$	-10	-	10	$\mu \mathrm{A}$
Output						
V_{OH}	High Output Voltage	See Figure 1	$\mathrm{V}_{\mathrm{DD}}-0.025$	-	-	V
V_{OL}	Low Output Voltage	See Figure 1	-	-	0.025	V
R_{0}	Output Resistance, High	I $\mathrm{OUT}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=18 \mathrm{~V}$	-	2.1	2.8	Ω
Ro	Output Resistance, Low	$\mathrm{I}_{\text {OUT }}=10 \mathrm{~mA}, \mathrm{~V}_{\text {DD }}=18 \mathrm{~V}$	-	1.5	2.5	Ω
lpK	Peak Output Current	$\mathrm{V}_{\mathrm{DD}}=18 \mathrm{~V}$	-	6	-	A
I REV	Latch-Up Protection Withstand Reverse Current	$\begin{aligned} & \text { Duty Cycle } \leqslant 2 \% \\ & t \leq 300 \mu \mathrm{~s} \end{aligned}$	>1.5	-	-	A
Switching Time (Note 1)						
t_{R}	Rise Time	Figure 1, $\mathrm{C}_{\mathrm{L}}=2500 \mathrm{pF}$	-	25	35	ns
$t_{\text {F }}$	Fall Time	Figure 1, $\mathrm{C}_{\mathrm{L}}=2500 \mathrm{pF}$	-	25	35	ns
$t_{\text {D1 }}$	Delay Time	Figure 1	-	55	75	ns
$\mathrm{t}_{\mathrm{D} 2}$	Delay Time	Figure 1	-	55	75	ns
Power Supply						
Is	Power Supply Current	$\begin{aligned} & V_{\text {IN }}=3 V \\ & V_{\text {IN }}=0 V \end{aligned}$	—	$\begin{gathered} 0.45 \\ 55 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 150 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
$V_{D D}$	Operating Input Voltage		4.5	-	18	V

NOTE: 1. Switching times guaranteed by design.

ELECTRICAL CHARACTERISTICS:

Measured over operating temperature range with $4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{DD}} \leqslant 18 \mathrm{~V}$, unless otherwise specified.

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
Input						
V_{IH}	Logic 1 High Input Voltage		2.4	-	-	V
$\mathrm{V}_{\text {IL }}$	Logic 0 Low Input Voltage		-	-	0.8	V
$\mathrm{V}_{\text {IN }}$ (Max)	Input Voltage Range		-5	-	$\mathrm{V}_{\mathrm{DD}}+0.3$	V
In	Input Current	$0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathbb{I}} \leqslant \mathrm{V}_{\text {S }}$	-10	-	10	$\mu \mathrm{A}$
Output						
V_{OH}	High Output Voltage	See Figure 1	$\mathrm{V}_{\mathrm{DD}}-0.025$	-	-	V
V_{OL}	Low Output Voltage	See Figure 1	-	-	0.025	V
Ro	Output Resistance, High	l ${ }_{\text {OuT }}=10 \mathrm{~mA}, \mathrm{~V}_{\text {DD }}=18 \mathrm{~V}$	-	3	5	Ω
Ro	Output Resistance, Low	I $\mathrm{OUT}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=18 \mathrm{~V}$	-	2.3	5	Ω

Switching Time (Note 1)

NOTE: 1. Switching times guaranteed by design.

Figure 1. Switching Time Test Circuit

6A OPEN-DRAIN MOSFET DRIVER

TC4401

TYPICAL CHARACTERISTICS CURVES

TYPICAL CHARACTERISTICS CURVES (Cont.)

6A OPEN-DRAIN MOSFET DRIVER

POWER-ON OSCILLATION

It is extremely important that all MOSFET DRIVER applications be evaluated for the possibility of having HIGH-POWER OSCILLATIONS occurring during the POWER-ON cycle.

POWER-ON OSCILLATIONS are due to trace size and layout as well as component placement. A 'quick fix' for most applications which exhibit POWER-ON OSCILLATION problems is to place approximately $10 \mathrm{k} \Omega$ in series with the input of the MOSFET driver.

TYPICAL APPLICATIONS

NOTES

1.5A HIGH-SPEED, FLOATING LOAD DRIVER

FEATURES

\author{

- Tough CMOS ${ }^{\text {TM }}$ Construction
 - Low Quiescent Current
 \qquad $300 \mu \mathrm{~A}$ Max
 - Capacitive Inputs With 300 mV Hysteresis
 - Both Inputs Must Be Driven to Drive Load
 - Low Output Leakage
 - High Peak Current Capability
 - Fast Output Rise Time
 - Outputs Individually Testable
}

APPLICATIONS

\author{

- Squib Drivers
 - Isolated Load Drivers
 - Pulsers
 - Safety Interlocks
}

GENERAL DESCRIPTION

The TC4403 is a modified version of the TC4425 driver, intended to drive floating or isolated loads requiring highcurrent pulses. The load is intended to be connected between the outputs without other reference to supply or ground. Then, only when both logic inputs and the $V_{D D}$ input are energized, is power supplied to the load. This construction allows the implementation of a wide variety of redundant input controllers.

The low off-state output leakage and independence of the two half-circuits permit a wide variety of testing schemes to be utilized to assure functionality. The high peak current capability, short internal delays, and fast output rise and fall times ensure sufficient power will be available to the load when it is needed. The TTL and CMOS compatible inputs allow operation from a wide variety of input devices. The ability to swing the inputs negative without affecting device performance allows negative biases to be placed on the inputs for greater safety. In addition, the capacitive nature of the inputs allows the use of series resistors on the inputs for extra noise suppression.

The TC4403 is built using Teledyne Components' new Tough CMOS process for outstanding ruggedness and reliability in harsh applications. Input voltage excursions above the supply voltage or below ground are clamped internally without damaging the device. The output stages are power MOSFETs with high-speed body diodes to prevent damage to the driver from inductive kickbacks.

FUNCTIONAL DIAGRAM

1.5A HIGH-SPEED, FLOATING LOAD DRIVER

TC4403

ORDERING INFORMATION

Part No.	Package	Temperature Range
TC4403CPA	8 -Pin PDIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
TC4403EPA	8 -Pin PDIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC4403MJA	8 -Pin CerDIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

PIN CONFIGURATION

TYPICAL APPLICATION

1.5A HIGH-SPEED, FLOATING LOAD DRIVER

Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to Absolute Maximum Rating Conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS: $T_{A}=+25^{\circ} \mathrm{C}$ with $4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{S}} \leqslant 18 \mathrm{~V}$, unless otherwise specified.

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
Input						
V_{IH}	Logic 1 High Input Voltage		2.4	-	-	V
$\mathrm{V}_{\text {IL }}$	Logic 0 Low Input Voltage		-	-	0.8	V
IIN	Input Current	$0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathbb{I N}} \leqslant 5 \mathrm{~V}$	-1000	± 10	+1000	nA
Output						
V_{OH}	High Output Voltage		$\mathrm{V}_{\mathrm{DD}}-0.025$	-	-	V
V_{OL}	Low Output Voltage		-	-	0.025	V
Ros	Sourcing Output Resistance	$\mathrm{I}_{\text {OUT }}=10 \mathrm{~mA}, \mathrm{~V}_{\text {DD }}=18 \mathrm{~V}$	-	$2 . .8$	5	Ω
$\mathrm{R}_{\text {OG }}$	Grounding Output Resistance	$\mathrm{I}_{\text {OUT }}=-10 \mathrm{~mA}, \mathrm{~V}_{\text {DD }}=18 \mathrm{~V}$	-	3.5	5	Ω
lPK	Peak Output Current		-	1.5	-	A

Switching Time (Note 1)

t_{R}	Rise Time	Figure $1, \mathrm{C}_{\mathrm{L}}=1800 \mathrm{pF}$	-	23	35	ns
t_{F}	Fall Time	Figure $1, \mathrm{C}_{\mathrm{L}}=1800 \mathrm{pF}$	-	25	35	ns
$\mathrm{t}_{\mathrm{D} 1}$	Delay Time	Figure 1, $\mathrm{C}_{\mathrm{L}}=1800 \mathrm{pF}$	-	33	75	ns
$\mathrm{t}_{\mathrm{D} 2}$	Delay Time	Figure 1, $\mathrm{C}_{\mathrm{L}}=1800 \mathrm{pF}$	-	38	75	ns

Power Supply

Is	Power Supply Current	$\mathrm{V}_{\mathbb{I N}}=3 \mathrm{~V}$ (Both Inputs)	-	1.5	2.5
$\mathrm{~V}_{\mathbb{I}}=0 \mathrm{~V}$ (Both Inputs)	-	0.15	0.25	mA	

[^2]
1.5A HIGH-SPEED, FLOATING LOAD DRIVER

TC4403

ELECTRICAL CHARACTERISTICS:

Measured over operating temperature range with $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 18 \mathrm{~V}$ unless otherwise specified.

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
Input						
V_{IH}	Logic 1 High Input Voltage		2.4	-	-	V
$\mathrm{V}_{\text {IL }}$	Logic 0 Low Input Voltage		-	-	0.8	V
IN	Input Current	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{DD}}$	-10,000	± 10	+10,000	nA
Output						
V_{OH}	High Output Voltage		$\mathrm{V}_{\mathrm{DD}}-0.025$	-	-	V
V_{OL}	Low Output Voltage		-	-	0.025	V
Ros	Sourcing Output Resistance	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OUT}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=18 \mathrm{~V} \end{aligned}$	-	3.7	8	Ω
Rog	Grounding Output Resistance	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OUT}}=-10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=18 \mathrm{~V} \end{aligned}$	-	4.3	8	Ω
Switching Time (Note 1)						
$t_{\text {R }}$	Rise Time	Figure 1, $\mathrm{C}_{\mathrm{L}}=1800 \mathrm{pF}$	-	28	60	ns
t_{F}	Fall Time	Figure 1, $\mathrm{C}_{\mathrm{L}}=1800 \mathrm{pF}$	-	32	60	ns
$t_{\text {D1 }}$	Delay Time	Figure 1, $\mathrm{C}_{\mathrm{L}}=1800 \mathrm{pF}$	-	32	100	ns
tD2	Delay Time	Figure 1, $\mathrm{C}_{\mathrm{L}}=1800 \mathrm{pF}$	-	38	100	ns
Power Supply						
Is	Power Supply Current	$\begin{aligned} & \mathrm{V}_{\mathbb{I N}}=3 \mathrm{~V} \text { (Both Inputs) } \\ & \mathrm{V}_{\mathbb{I N}}=0 \mathrm{~V} \text { (Both Inputs) } \end{aligned}$	-	$\begin{gathered} 2 \\ 0.2 \end{gathered}$	$\begin{aligned} & 3.5 \\ & 0.3 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$

NOTE: 1. Switching times guaranteed by design.

Figure 1 Switching Time Test Circuits

1.5A HIGH-SPEED, FLOATING LOAD DRIVER

TYPICAL CHARACTERISTICS CURVES

Rise and Fall Times vs
Temperature

Fall Time vs Supply Voltage

Propagation Delay vs Input Amplitude

1.5A HIGH-SPEED, FLOATING LOAD DRIVER

TYPICAL CHARACTERISTICS CURVES (Cont.)

Quiescent Current vs Voltage

Output Resistance vs Supply Voltage

Delay Time vs Temperature

Quiescent Current vs Temperature

BONDING DIAGRAM

1.5A DUAL OPEN-DRAIN MOSFET DRIVERS

FEATURES

- Independently-Programmable Rise and Fall Times
- Low Output Impedance 7Ω Typ
- High Speed $\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}} \ldots \ldots<30 \mathrm{~ns}$ with 1000 pF Load
- Short Delay Times
- Wide Operating Range \qquad 4.5 V to 18 V

APPLICATIONS

- Motor Controls

- Self-Commutating MOSFET Bridge Driver
- Driving Bipolar Transistors
- Driver for Nonoverlapping Totem Poles
- Reach-Up/Reach-Down Driver

RUGGED

Tough CMOS ${ }^{\text {TM }}$ Construction

- Latch-Up Protected: Will Withstand $>500 \mathrm{~mA}$ Reverse Current (Either Polarity)
- Input Withstands Negative Swings Up to -5V

GENERAL DESCRIPTION

The TC4404 and TC4405 are CMOS buffer-drivers constructed with complementary MOS outputs, where the drains of the final output totem pole have been left disconnected so individual connections can be made to the pull-up and pull-down sections of the output. This allows the insertion of individual drain-current-limiting resistors in the pull-up and pull-down sections of the output, thus allowing the user to define the rates of rise and fall desired for a capacitive load, or a reduced output swing if driving a resistive load, or to limit base current when driving a bipolar transistor. Minimum rise and fall times, with no resistors, will be less than 30 ns for a $1000-\mathrm{pF}$ load. There is no upper limit.

For driving MOSFETs in motor-control applications, where slow-on/fast-off operation is desired, these devices are superior to the previously-used technique of adding a diode-resistor combination between the driver output and the MOSFET, because they allow accurate control of turnon, while maintaining fast turn-off and maximum noise immunity for an OFF device.

When used to drive bipolar transistors, these drivers maintain the high speeds common to other Teledyne drivers and allow insertion of a base current-limiting resistor, while providing a separate half-output for fast turn-off. By proper positioning of the resistor, either npn or pnp transistors can be driven.

FUNCTIONAL DIAGRAM

1.5A DUAL OPEN-DRAIN MOSFET DRIVERS

TC4404 TC4405

For driving many loads in low-power regimes, these drivers, because they eliminate shoot-through currents in the output stage, require significantly less power at higher frequencies, and can be helpful in meeting low-power budgets.

Because neither drain in an output is dependent on the other, these devices can also be used as open-drain buffer/ drivers where both drains are available in one device, thus minimizing chip count. Unused open drains should be returned to the supply rail their device sources are connected to (pull-downs to ground, pull-ups to $V_{D D}$), to prevent static damage. In addition, in situations where timing resistors, or other means of limiting crossover currents are used, like
drains may be paralleled for greater current carrying capacity.
These devices are built using Teledyne Components' new Tough CMOS process and are capable of giving reliable service in the most demanding electrical environments: they will not latch under any conditions within their power and voltage ratings; they are not subject to damage when up to 5 V of noise spiking of either polarity occurs on their ground pin; and they can accept, without damage or logic upset, up to $1 / 2 \mathrm{amp}$ of reverse current (of either polarity) being forced back into their outputs. All terminals are fully protected against up to 2 kV of electrostatic discharge.

ORDERING INFORMATION

Part No.	Logic	Package	Temperature Range
TC4404CPA	Inverting	- -Pin PDIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC4404COA	Inverting	8 -Pin SOIC	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC4405CPA	Noninverting	-Pin PDIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC4405COA	Noninverting	Inverting	8 -Pin SOIC
TC4404EPA	Inverting	8 -Pin PDIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC4404EOA	Noninverting	8 -Pin SOIC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC4405EPA	Noninverting	8 -Pin PDIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC4405EOA	Inverting	8 -Pin SOIC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC4404MJA	Noninverting	8 -Pin CerDIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC4405MJA	8 -Pin CerDIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	

ABSOLUTE MAXIMUM RATINGS
Supply Voltage $+22 \mathrm{~V}$
Maximum Chip Temperature $+150^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $+300^{\circ} \mathrm{C}$
Package Thermal Resistance
CerDIP R ®J-A $150^{\circ} \mathrm{C} / \mathrm{W}$
CerDIP R $\mathrm{R}_{\theta \mathrm{J}-\mathrm{C}}$ $55^{\circ} \mathrm{C} / \mathrm{W}$
PDIP R ®J-A $125^{\circ} \mathrm{C} / \mathrm{W}$
PDIP R ®J-C $45^{\circ} \mathrm{C} / \mathrm{W}$
SOIC R ®J-A $^{\text {A }}$ $250^{\circ} \mathrm{C} / \mathrm{W}$
SOIC R BJ_C $75^{\circ} \mathrm{C} / \mathrm{W}$
Operating Temperature Range
C Version $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
E Version $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
M Version $55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

[^3] material. Protect devices from static discharge and static fields. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and
functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to Absolute Maximum Rating Conditions for extended periods may affect device reliability.

1.5A DUAL OPEN-DRAIN MOSFET DRIVERS

TC4404
TC4405

POWER-ON OSCILLATION

It is extremely important that all MOSFET DRIVER applications be evaluated for the possibility of having HIGHPOWER OSCILLATIONS occurring during the POWER-ON cycle.

POWER-ON OSCILLATIONS are due to trace size and layout as well as component placement. A 'quick fix' for most applications which exhibit POWER-ON OSCILLATION problems is to place approximately $10 \mathrm{k} \Omega$ in series with the input of the MOSFET driver.

ELECTRICAL CHARACTERISTICS:

Specifications measured at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ with $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 18 \mathrm{~V}$, unless otherwise specified.

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
Input						
$\mathrm{V}_{\text {IH }}$	Logic 1 High Input Voltage		2.4	-	-	V
V_{IL}	Logic 0 Low Input Voltage		-	-	0.8	V
IN	Input Current	$-5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{DD}}$	-1	-	1	$\mu \mathrm{A}$
Output						
$\mathrm{V}_{\text {OH }}$	High Output Voltage		$\mathrm{V}_{\mathrm{DD}}-0.025$	-	-	V
$\mathrm{V}_{\text {OL }}$	Low Output Voltage		-	-	0.025	V
R_{0}	Output Resistance	IOUT $=10 \mathrm{~mA}, \mathrm{~V}_{\text {DD }}=18 \mathrm{~V}$; Any Drain	-	7	10	Ω
IPK	Peak Output Current	Any Drain	-	1.5	-	A
IDC	Continuous Output Current	Any Drain	-	-	100	mA
IR	Latch-Up Protection	Any Drain Withstand Reverse Current	>500	-	-	mA
Switching Time (Note 1)						
th	Rise Time	Figure 1, $\mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}$	-	25	30	ns
${ }_{\text {t }}$	Fall Time	Figure 1, $\mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}$	-	25	30	ns
$t_{\text {D1 }}$	Delay Time	Figure 1, $\mathrm{C}_{L}=1000 \mathrm{pF}$	-	-	30	ns
$t_{\text {D }}$	Delay Time	Figure 1, $\mathrm{C}_{L}=1000 \mathrm{pF}$	-	-	50	ns
Power Supply						
Is	Power Supply Current	$\mathrm{V}_{\text {IN }}=3 \mathrm{~V}$ (Both Inputs)	-	-	4.5	mA
		$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ (Both Inputs)	-	-	0.4	mA

NOTE: 1. Switching times guaranteed by design.

PIN CONFIGURATIONS

ELECTRICAL CHARACTERISTICS: Specifications measured over operating temperature range with $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 18 \mathrm{~V}$, unless otherwise specified.

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
Input						
$\mathrm{V}_{\text {IH }}$	Logic 1 High Input Voltage		2.4	-	-	V
VIL	Logic 0 Low Input Voltage		-	-	0.8	V
IN	Input Current	$-5 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{DD}}$	-10	-	10	$\mu \mathrm{A}$
Output						
V_{OH}	High Output Voltage		$\mathrm{V}_{\mathrm{DD}}-0.025$	-	-	V
$\overline{\mathrm{V}}_{\text {OL }}$	Low Output Voltage		-	-	0.025	V
Ro	Output Resistance	IOUT $=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=18 \mathrm{~V}$; Any Drain	-	9	12	Ω
lpk	Peak Output Current	Any Drain	-	1.5	-	A
IDC	Continuous Output Current	Any Drain	-	-	100	mA
I_{R}	Latch-Up Protection	Any Drain Withstand Reverse Current	>500	-	-	mA
Switching Time (Note 1)						
th	Rise Time	Figure 1, $\mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}$	-	-	40	ns
t	Fall Time	Figure 1, $\mathrm{C}_{L}=1000 \mathrm{pF}$	-	-	40	ns
tb1	Delay Time	Figure 1, $\mathrm{C}_{L}=1000 \mathrm{pF}$	-	-	40	ns
$\mathrm{t}_{\mathrm{D} 2}$	Delay Time	Figure 1, $\mathrm{C}_{L}=1000 \mathrm{pF}$	-	-	60	ns
Power Supply						
Is	Power Supply Current	$\mathrm{V}_{\text {IN }}=3 \mathrm{~V}$ (Both Inputs)	-	-	8	mA
		$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ (Both Inputs)	-	-	0.6	mA

NOTE

1. Switching times guaranteed by design.

Figure 1 Switching Time Test Circuit

1.5A DUAL OPEN-DRAIN MOSFET DRIVERS

TC4404
TC4405

TYPICAL CHARACTERISTICS CURVES

Fall Time vs. Capacitive Load

Effect of Input Amplitude on Delay Time

Fall Time vs. Supply Voltage

Rise and Fall Times
vs. Temperature

Propagation Delay Time vs. Temperature

Rise Tlme vs. Capacitive Load

Propagation Delay
vs. Supply Voltage

Quiescent Supply Current
vs. Voltage

1.5A DUAL OPEN-DRAIN MOSFET DRIVERS

TC4404
TC4405
TYPICAL CHARACTERISTICS CURVES (Cont.)
Quiescent Supply Current
vs. Temperature

Pull-Down Output Resistance

1.5A DUAL OPEN-DRAIN MOSFET DRIVERS

TC4404
TC4405

TYPICAL APPLICATIONS

NOTES

3A DUAL OPEN-DRAIN MOSFET DRIVERS

FEATURES

■ Independently-Programmable Rise and Fall Times

- Low Output Impedance \qquad . 3.5Ω Typ
- High Speed t_{R}, t_{F} \qquad <30 ns with 1800 pF Load
- Short Delay Times
- Wide Operating Range 4.5V to 18 V

APPLICATIONS

- Motor Controls
- Self-Commutating MOSFET Bridge Driver
- Driving Bipolar Transistors
- Driver for Nonoverlapping Totem Poles
- Reach-Up/Reach-Down Driver

RUGGED

- Tough CMOS ${ }^{\text {тм }}$ Construction

- Latch-Up Protected: Will Withstand >500 mA Reverse Current (Either Polarity)
- Input Withstands Negative Swings Up to -5V

GENERAL DESCRIPTION

The TC4406 and TC4407 are CMOS buffer-drivers constructed with complementary MOS outputs, where the drains of the final output totem pole have been left disconnected so individual connections can be made to the pullup and pull-down sections of the output. This allows the insertion of individual drain current-limiting resistors in the pull-up and pull-down sections of the outputs, thus allowing the user to define the rates of rise and fall desired for a capacitive load, or a reduced output swing if driving a resistive load, or to limit base current when driving a bipolar transistor. Minimum rise and fall times, with no resistors, will be less than 30 ns for a 1800-pF load. There is no upper limit.

For driving MOSFETs in motor-control applications, where slow-on/fast-off operation is desired, these devices are superior to the previously-used technique of adding a diode-resistor combination between the driver output and the MOSFET, because they allow accurate control of turnon, while maintaining fast turn-off and maximum noise immunity for the device being driven.

When used to drive bipolar transistors, these drivers maintain the high speeds common to other Teledyne drivers and allow insertion of a base current-limiting resistor, while providing a separate half-output for fast turn-off. By proper positioning of the resistor, either npn or pnp transistors can be driven.

FUNCTIONAL DIAGRAM

3A DUAL OPEN-DRAIN MOSFET DRIVERS

TC4406 TC4407

For driving many loads in low-power regimes, these drivers, because they have very low quiescent current ($<250 \mu \mathrm{~A}$) and eliminate shoot-through currents in the output stage, require significantly less power than similar drivers, and can be helpful in meeting low-power budgets.

Because neither drain in an output is dependent on the other (though they do switch simultaneously), these devices can also be used as open-drain buffer/drivers where both drains are available in one device, thus minimizing chip count. Unused open drains should be returned to the supply rail their device sources are connected to (pull-downs to ground, pull-ups to $V_{D D}$), to prevent static damage. Alternatively, in situations where timing resistors, or other means of
limiting crossover currents are used, like drains may be paralleled for greater current-carrying capacity.

The TC4406 and TC4407 are built using Teledyne Components' new Tough CMOS process and are capable of giving reliable service in the most demanding electrical environments: they will not latch under any conditions within their power and voltage ratings; they are not subject to damage when up to 5 V of noise spiking of either polarity occurs on their ground pin; and they can accept, without damage or logic upset, up to $1 / 2 \mathrm{amp}$ of reverse current (of either polarity) being forced back into their outputs. All terminals are fully protected against up to 2 kV of electrostatic discharge.

ORDERING INFORMATION

Part No.	Logic	Package	Temperature Range
TC4406CPA	Inverting	8 -Pin PDIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC4406EPA	Inverting	Inverting	8 -Pin PDIP
TC4406EOE	Inverting	16 -Pin SO Wide	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC4406MJA	Inverting	8 -Pin CerDIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC4406COE	Noninverting	16 -Pin SO Wide	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
TC4407CPA	Noninverting	Noninverting	$8-$ Pin PDIP
TC4407EPA	Noninverting	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	
TC4407EOE	Noninverting	16 -Pin SO Wide	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC4407MJA	TC4407COE		16 -Pin CerDIP

PIN CONFIGURATIONS

3A DUAL OPEN-DRAIN MOSFET DRIVERS

ABSOLUTE MAXIMUM RATINGS

Supply Voltage ..+22V
Maximum Chip Temperature $+150^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $+300^{\circ} \mathrm{C}$
Package Thermal Resistance

PDIP R 日J-A $^{\text {... } 125^{\circ} \mathrm{C} / \mathrm{W}}$
PDIP R ®J-C $^{\text {.. } 45^{\circ} \mathrm{C} / \mathrm{W}}$
SOIC R QJJ-A $. ~ 250 º ~ C / W ~$
SOIC R 日J-C $^{\text {.. } 75^{\circ} \mathrm{C} / \mathrm{W}}$
Operating Temperature Range

$$
\begin{aligned}
& \mathrm{C} \text { Version .. } 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\
& \mathrm{E} \text { Version }-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\
& \text { M Version................................. }-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
\end{aligned}
$$

Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to Absolute Maximum Rating Conditions for extended periods may affect device reliability.

Package Power Dissipation

ELECTRICAL CHARACTERISTICS:
unless otherwise specified, specifications measured at $T_{A}=+25^{\circ} \mathrm{C}$ with $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 18 \mathrm{~V}$.

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
Input						
$\mathrm{V}_{\text {IH }}$	Logic 1 High Input Voltage		2.4	-	-	V
VIL	Logic 0 Low Input Voltage		-	-	0.8	V
IN	Input Current	$-5 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{DD}}$	-1	-	1	$\mu \mathrm{A}$
Output						
V_{OH}	High Output Voltage		$\mathrm{V}_{\mathrm{DD}}-0.025$	-	-	V
V_{OL}	Low Output Voltage		-	-	0.025	V
R_{0}	Output Resistance, Pull Up	$\mathrm{I}_{\text {OUT }}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=18 \mathrm{~V}$	-	2.8	5	Ω
Ro	Output Resistance, Pull Down	$\mathrm{I}_{\text {OUT }}=10 \mathrm{~mA}, \mathrm{~V}_{\text {DD }}=18 \mathrm{~V}$	-	3.5	5	Ω
PK	Peak Output Current	Any Drain	-	3	-	A
IDC	Continuous Output Current	Any Drain	-	-	150	mA
I_{R}	Latch-Up Protection Withstand Reverse Current	Any Drain	>500	-	-	mA

Switching Time (Note 1)

t_{R}	Rise Time	Figure $1, \mathrm{C}_{\mathrm{L}}=1800 \mathrm{pF}$	-	23	35	ns
t_{F}	Fall Time	Figure $1, \mathrm{C}_{\mathrm{L}}=1800 \mathrm{pF}$	-	25	35	ns
$\mathrm{t}_{\mathrm{D} 1}$	Delay Time	Figure $1, \mathrm{C}_{\mathrm{L}}=1800 \mathrm{pF}$	-	33	75	ns
$\mathrm{t}_{\mathrm{D} 2}$	Delay Time	Figure $1, \mathrm{C}_{\mathrm{L}}=1800 \mathrm{pF}$	-	38	75	ns

Power Supply

IS	Power Supply Current	$\mathrm{V}_{\mathbb{I N}}=3 \mathrm{~V}$ (Both Inputs)	-	1.5	2.5	mA
	$\mathrm{~V}_{\mathbb{I N}}=0 \mathrm{~V}$ (Both Inputs)	-	0.15	0.25	mA	

TC4406
TC4407

ELECTRICAL CHARACTERISTICS:

Specifications measured over operating temperature range with $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 18 \mathrm{~V}$, unless otherwise specified.

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
Input						
V_{IH}	Logic 1 High Input Voltage		2.4	-	-	V
$\mathrm{V}_{\text {IL }}$	Logic 0 Low Input Voltage		-	-	0.8	V
ln	Input Current	$-5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{DD}}$	-10	-	10	$\mu \mathrm{A}$
Output						
$\mathrm{V}_{\text {OH }}$	High Output Voltage		$\mathrm{V}_{\mathrm{DD}}-0.025$	-	-	V
V_{OL}	Low Output Voltage		-	-	0.025	V
R_{0}	Output Resistance, Pull Up	l ${ }_{\text {OUT }}=10 \mathrm{~mA}, \mathrm{~V}_{\text {DD }}=18 \mathrm{~V}$	-	3.7	8	Ω
Ro	Output Resistance, Pull Down	lout $=10 \mathrm{~mA}, \mathrm{~V}_{\text {DD }}=18 \mathrm{~V}$	-	4.3	8	Ω
Pr	Peak Output Current	Any Drain	-	3	-	A
IDC	Continuous Output Current	Any Drain	-	-	150	mA
I_{R}	Latch-Up Protection	Any Drain Withstand Reverse Current	>500	-	-	mA
Switching Time (Note 1)						
$\mathrm{t}_{\text {R }}$	Rise Time	Figure 1, $\mathrm{C}_{\mathrm{L}}=1800 \mathrm{pF}$	-	-	60	ns
$t_{\text {F }}$	Fall Time	Figure 1, $\mathrm{C}_{\mathrm{L}}=1800 \mathrm{pF}$	-	-	60	ns
$t_{\text {D1 }}$	Delay Time	Figure 1, $\mathrm{C}_{\mathrm{L}}=1800 \mathrm{pF}$	-	-	100	ns
t_{02}	Delay Time	Figure 1, $\mathrm{C}_{L}=1800 \mathrm{pF}$	-	-	100	ns
Power Supply						
Is	Power Supply Current	$\mathrm{V}_{\text {IN }}=3 \mathrm{~V}$ (Both Inputs)	-	2	3.5	mA
		$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ (Both Inputs)	-	0.2	0.3	mA

NOTE : 1. Switching times guaranteed by design.
Teledyne Components reserves the right to make changes in the circuitry or specifications detailed in this manual at any time without notice. Minimums and maximums are guaranteed. All other specifications are intended as guidelines only. Teledyne Components assumes no responsibility for the use of any circuits described herein and makes no representations that they are free from patent infringement.

Figure 1 Switching Time Test Circuit

3A DUAL OPEN-DRAIN MOSFET DRIVERS

TYPICAL CHARACTERISTICS CURVES

Fall Time
vs. Capacitive Load

Propagation Delay Time
vs. Supply Voltage

Fall Time vs. Supply Voltage

Rise and Fall Times
vs. Temperature

Delay Time
vs. Temperature

Rise Time vs. Capacitive Load

Propagation Delay
vs. Input Amplitude

Quiescent Supply Current
vs. Voltage

TYPICAL CHARACTERISTICS CURVES (Cont.)

Output Resistance (Pull Up) vs. Supply Voltage

Output Resistance (Pull Down) vs. Supply Voltage

TYPICAL APPLICATIONS

High-Side Switch

NOTE: Unused drains should be connected to their respective supplies.

POWER-ON OSCILLATION

It is extremely important that all MOSFET DRIVER applications be evaluated for the possibility of having HIGH-POWER OSCILLATIONS occurring during the POWER-ON cycle.

POWER-ON OSCILLATIONS are due to trace size and layout as well as component placement. A 'quick fix' for most applications which exhibit POWERON OSCILLATION problems is to place approximately $10 \mathrm{k} \Omega$ in series with the input of the MOSFET driver.

Zero Crossover-Current Totem-Pole Switch

Driving Bipolar Transistors

BONDING DIAGRAM

NOTES: 1. Back of die is common to $V_{D D}$.
2. Back of die is not metallized.
3. Dual bond pads must BOTH be connected ($V_{D D}$ and GND).

NOTES

がTELEDYNE COMPONENTS

6A HIGH-SPEED MOSFET DRIVERS

FEATURES

- Tough CMOS ${ }^{\text {™ }}$ Construction
- Latch-Up Protected: Will Withstand >1.5A Reverse Output Current
- Logic Input Will Withstand Negative Swing Up to 5V
- ESD Protected .4 kV
- Matched Rise and Fall Times .25 ns
- High Peak Output Current6A Peak
- Wide Operating Range 4.5V to 18 V
- High Capacitive Load Drive 10,000 pF

■ Low Delay Time ... 55 ns Typ

- Logic High Input, Any Voltage2.4V to VDD
- Low Supply Current With Logic "1" Input... $450 \mu \mathrm{~A}$
- Low Output Impedance.....................................2.5 5
- Output Voltage Swing to Within 25 mV of Ground or $V_{D D}$

APPLICATIONS

- Switch-Mode Power Supplies
- Motor Controls
- Pulse Transformer Driver
- Class D Switching Amplifiers

FUNCTIONAL DIAGRAM

6A HIGH-SPEED MOSFET DRIVERS

TC4420
TC4429

GENERAL DESCRIPTION

The TC4420/4429 Tough CMOS ${ }^{\text {TM }}$ drivers are efficient and easy to use. These devices are 6A (peak) single output MOSFET drivers.

The TC4420/4429 will drive even the largest MOSFETs.
These devices are tough due to extra steps taken to protect them from failures. An epitaxial layer is used to prevent CMOS latch-up. Proprietary circuits allow the input to swing negative as much as 5 V without damaging the part. Special circuits have been added to protect against damage from electrostatic discharge. A special molding compound is used for increased moisture resistance and ability to withstand high voltages. They are also tough
because of Teledyne Components' world-class process controls and device quality.

Because these devices are fabricated in CMOS, they run cool, use less power and are easier to drive. The rail-torail swing capability of CMOS better insures adequate gate voltage to the MOSFET during power up/down sequencing.

The Tough CMOS ${ }^{\text {TM }}$ drivers are easy to use. Three or more discrete components can be replaced with a single device to save PCB area. Any logic input from 2.4 V to V_{DD} can be used without external speed-up capacitors or resistor networks.

This family is available in inverting (TC4429) and noninverting (TC4420) configurations. The TC4429 is pin compatible with the popular TC429.

ORDERING INFORMATION

Part No.	Logic	Package	Temperature Range
TC4420CPA	Noninverting	8 -Pin PDIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC4420EPA	Noninverting	Noninverting	8 -Pin PDIP
TC4420COA	Noninverting	8 -Pin SOIC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC4420EOA	Noninverting	8 -Pin SOIC	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC4420IJA	Noninverting	8 -Pin CerDIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC4420MJA	Noninverting	8 -Pin CerDIP	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC4420CAT	Inverting	$5-$ Pin TO-220	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
TC4429CPA	Inverting	8 -Pin PDIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC4429EPA	Inverting	8 -Pin PDIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC4429COA	Inverting	8 -Pin SOIC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC4429EOA	Inverting	$8-P i n$ SOIC	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC4429IJA	Inverting	$8-P i n ~ C e r D I P ~$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC4429MJA	Inverting	$8-P i n$ CerDIP	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC4429CAT	$5-P i n ~ T O-220$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	

PIN CONFIGURATIONS

6A HIGH-SPEED MOSFET DRIVERS

TC4420
TC4429

ABSOLUTE MAXIMUM RATINGS

Supply Voltage ... +20 V	
Input Voltage .. 5 V to $>\mathrm{V}_{\mathrm{DD}}$	
Input Current ($\mathrm{V}_{\text {IN }}>\mathrm{V}_{\mathrm{DD}}$) 50 mA	
Power Dissipation, $\mathrm{T}_{\mathrm{A}} \leqslant 25^{\circ} \mathrm{C}$	
PDIP	...1W
SOIC	500 mW
CerDIP	800 mW
5-Pin TO-220	..1.5W
Power Dissipation, $\mathrm{T}_{\mathrm{C}} \leq 25^{\circ} \mathrm{C}$	
5-Pin TO-220	.12.5W
Derating Factors (To Ambient)	
PDIP ... $8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	
SOIC ... $4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	
CerDIP .. $6.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	
5-Pin TO-220 $12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	
Thermal Impedances (To Case)	
5-Pin TO-220 R өJ-A $^{\text {... }}$. $10^{\circ} \mathrm{C} / \mathrm{W}$

Storage Temperature Range $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature (Chip) $+150^{\circ} \mathrm{C}$
Operating Temperature Range (Ambient)
C Version ... $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
I Version .. $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
E Version ... $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
M Version .. $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$

Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS: $T_{A}=+25^{\circ} \mathrm{C}$ with $4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{DD}} \leqslant 18 \mathrm{~V}$, unless otherwise specified.

Symbol	Parameter	Test Conditions	Min	Typ	X	Unit

Input

V_{IH}	Logic 1 High Input Voltage	2.4	1.8	-	V
V_{IL}	Logic 0 Low Input Voltage	-	1.3	0.8	V
$\mathrm{~V}_{\mathrm{IN}}(\mathrm{Max})$	Input Voltage Range	-5	-	$\mathrm{V}_{\mathrm{DD}}+0.3$	V
I_{I}	Input Current	$\mathrm{OV} \leqslant \mathrm{V}_{\mathbb{I N}} \leqslant \mathrm{V}_{\mathrm{DD}}$	-10	-	10

Output

V_{OH}	High Output Voltage	See Figure 1	$\mathrm{V}_{\mathrm{DD}}-0.025$	-	-	V
V_{OL}	Low Output Voltage	See Figure 1	-	-	0.025	V
R_{O}	Output Resistance, High	IOUT $=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=18 \mathrm{~V}$	-	2.1	2.8	Ω
R_{O}	Output Resistance, Low	IOUT $=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=18 \mathrm{~V}$	-	1.5	2.5	Ω
I_{PK}	Peak Output Current	$\mathrm{V}_{\mathrm{DD}}=18 \mathrm{~V}$ (See Figure 5)	-	6	-	A
$\mathrm{I}_{\mathrm{REV}}$	Latch-Up Protection Withstand Reverse Current	Duty Cycle $\leqslant 2 \%$ $\mathrm{t} \leqslant 300 \mu \mathrm{~s}$	>1.5	-	-	A

Switching Time (Note 1)

t_{R}	Rise Time	Figure $1, \mathrm{C}_{\mathrm{L}}=2500 \mathrm{pF}$	-	25	35	ns		
t_{F}	Fall Time	Figure 1, $\mathrm{C}_{\mathrm{L}}=2500 \mathrm{pF}$	-	25	35	ns		
$\mathrm{t}_{\mathrm{D} 1}$	Delay Time	Figure 1	-	55	75	ns		
$\mathrm{t}_{\mathrm{D} 2}$	Delay Time	Figure 1	-	55	75	ns		
Power Supply								
I	Power Supply Current	$\mathrm{V}_{\mathrm{IN}}=3 \mathrm{~V}$	-	0.45	1.5	mA		
		$\mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$	-	55	150	$\mu \mathrm{~A}$		
$\mathrm{~V}_{\mathrm{DD}}$	Operating Input Voltage		4.5	-	18	V		

ELECTRICAL CHARACTERISTICS:

Measured over operating temperature range with $4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{DD}} \leqslant 18 \mathrm{~V}$, unless otherwise specified.

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
Input						
V_{IH}	Logic 1 High Input Voltage		2.4	-	-	V
$\mathrm{V}_{\text {IL }}$	Logic 0 Low Input Voltage		-	-	0.8	V
$\mathrm{V}_{\text {IN }}(\mathrm{Max})$	Input Voltage Range		-5	-	$\mathrm{V}_{\mathrm{DD}}+0.3$	V
In	Input Current	$0 \mathrm{~V} \leqslant \mathrm{~V}_{\text {IN }} \leqslant \mathrm{V}_{\text {S }}$	-10	-	10	$\mu \mathrm{A}$
Output						
V_{OH}	High Output Voltage	See Figure 1	$\mathrm{V}_{\mathrm{DD}}-0.025$	-	-	V
$\mathrm{V}_{\text {OL }}$	Low Output Voltage	See Figure 1	-	-	0.025	V
R_{O}	Output Resistance, High	$\mathrm{l}_{\text {OUT }}=10 \mathrm{~mA}, \mathrm{~V}_{\text {DD }}=18 \mathrm{~V}$	-	3	5	Ω
R_{0}	Output Resistance, Low	I $\mathrm{OUT}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=18 \mathrm{~V}$	-	2.3	5	Ω
Switching Time (Note 1)						
t_{R}	Rise Time	Figure 1, $\mathrm{C}_{\mathrm{L}}=2500 \mathrm{pF}$	-	32	60	ns
t_{F}	Fall Time	Figure 1, $\mathrm{C}_{\mathrm{L}}=2500 \mathrm{pF}$	-	34	60	ns
$t_{\text {D1 }}$	Delay Time	Figure 1	-	50	100	ns
to2	Delay Time	Figure 1	-	65	100	ns
Power Supply						
Is	Power Supply Current	$\begin{aligned} & V_{I N}=3 V \\ & V_{I N}=0 V \end{aligned}$	-	$\begin{gathered} 0.45 \\ 60 \end{gathered}$	$\begin{gathered} 3 \\ 400 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mu \mathrm{~A} \end{aligned}$
V_{DD}	Operating Input Voltage		4.5	-	18	V

NOTE: 1. Switching times guaranteed by design.

Figure 1. Switching Time Test Circuit

6A HIGH-SPEED MOSFET DRIVERS

TYPICAL CHARACTERISTICS CURVES

 vs Temperature

Supply Current vs Capacitive Load

TC4420
TC4429

TYPICAL CHARACTERISTICS CURVES (Cont.)

Low-State Output Resistance

Quiescent Power Supply Current vs Temperature

Effect of Input Amplitude on Propagation Delay

High-State Output Resistance

Total nA•S Crossover*

* The values on this graph represent the loss seen by the driver during one complete cycle. For a single transition, divide the value by 2.

NOTES: 1. Backside of die is common to V_{DD}.
2. Backside of die is not metallized.

9A HIGH-SPEED FET DRIVER

FEATURES

- Tough CMOS ${ }^{\text {m }}$ Construction
- High Peak Output Current
. 9A
- High Continuous Output Current 2A Max
- Fast Rise and Fall Times:
- 30 ns with $4,700 \mathrm{pF}$ Load
- 180 ns with 47,000 pF Load
- Short Internal Delays

30 ns Typ

APPLICATIONS

- Line Drivers for Extra-Heavily-Loaded Lines
- Pulse Generators
- Driving Huge MOSFETs and IGBTs
- Local Power ON/OFF Switch
- Motor and Solenoid Driver

GENERAL DESCRIPTION

The TC4421/4422 are large buffer/drivers built using Teledyne Components' proprietary Tough CMOS process. They can drive the largest MOSFETs and IGBTs now produced (including parallel-chip modules) at speeds up to
the megahertz region while delivering the same fast rise and fall times and short delay intervals users expect from Teledyne's drivers.

The drivers are essentially immune to any form of upset except direct overvoltage or over-dissipation - they cannot be latched under any conditions within their power and voltage ratings; they are not subject to damage or improper operation when up to 5 V of ground bounce is present on their ground terminals; they can accept, without either damage or logic upset, more than 1A inductive current of either polarity being forced back into their outputs. In addition, all terminals are fully protected against up to 4 kV of electrostatic discharge.

As a result, the TC4421/4422 drivers are much easier to use, more flexible in operation, and much more forgiving than any other available driver - CMOS or bipolar. Because they are fabricated in CMOS, they dissipate minimum power and provide rail-to-rail output swings, assuring complete power to whatever they drive.

The maximum output swing, 18 V , is sufficient to drive even insensitively-gated IGBTs, while the peak current capability allows capacitive loads up to $0.1 \mu \mathrm{~F}$ to be charged and discharged very rapidly.

FUNCTIONAL DIAGRAM

9A HIGH-SPEED FET DRIVER

TC4421
 TC4422

As MOSFET drivers, the TC4421/4422 can drive the largest single-die MOSFET available and produce rise and fall times of less than 50 ns . Driving the largest parallel-chip MOSFET modules, they can produce rise and fall times of less than 150 ns . They also provide sufficiently low impedance in both the ON and OFF states to ensure that a MOSFET's or IGBT's intended state is not disturbed, even by large voltage transients.

In addition, low output impedance (1.4Ω typ), high continuous current capacity (2 A), and inherent general ruggedness make them useful in situations where a DC
load must be switched on and off rapidly, such as in RF pulsers and laser drives. They are also suitable for driving a nearly endless variety of other loads, including long data lines, small motors, solenoids, piezo elements, or virtually any other load - capacitive, inductive, or resistive.

The TC4421/4422 inputs may be driven directly from either TTL or CMOS (3 V to 18 V). In addition, 300 mV of input hysteresis is built into the input, providing noise immunity and allowing the device to be driven from slowly rising or falling waveforms.

ORDERING INFORMATION

Part No.	Logic	Package	Temperature Range
TC4421CPA	Inverting	8 -Pin PDIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC4421EPA	Inverting	8-Pin PDIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC4421MJA	Inverting	8-Pin CerDIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
TC4421CAT	Inverting	5-Pin TO-220	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC4422CPA	Non-Inverting	$8-P i n$ PDIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ}$
TC4422EPA	Non-Inverting	$8-P i$ PDIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC4422MJA	Non-Inverting	8-Pin CerDIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
TC4422CAT	Non-Inverting	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	

PIN CONFIGURATIONS

9A HIGH-SPEED FET DRIVER

ABSOLUTE MAXIMUM RATINGS

Power Dissipation, $\mathrm{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C}$	
PDIP	1W
CerDIP	800 mW
5-Pin TO-220	1.5 W
Power Dissipation, $\mathrm{T}_{\mathrm{c}} \leq 25^{\circ} \mathrm{C}$	
5-Pin TO-220	12.5W
Derating Factors (To Ambient)	
PDIP	$8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
CerDIP	$6.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
5-Pin TO-220	$12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional
Thermal Impedance (To Case)
5-Pin TO-220 R ${ }_{\text {өJ- }}$
$10^{\circ} \mathrm{C} / \mathrm{W}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature (Chip) $150^{\circ} \mathrm{C}$
Operating Temperature (Ambient)
C Version
$.0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
E Version. $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
M Version . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature (10 sec) $300^{\circ} \mathrm{C}$
Supply Voltage . 20 V
Input Voltage V $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ to GND - 5V
Input Current $\left(\mathrm{V}_{\text {IN }}>\mathrm{V}_{\text {DD }}\right)$. 50 mA
operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ with $4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{DD}} \leqslant 18 \mathrm{~V}$ unless otherwise specified.)

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
Input	Logic 1 Input Voltage	2.4	1.8	-	V	
V_{IH}	Logic O Input Voltage	-	1.3	0.8	V	
$\mathrm{~V}_{\mathrm{IL}}$	Input Current	$\mathrm{OV} \leqslant \mathrm{V}_{\mathrm{IN}} \leqslant \mathrm{V}_{\mathrm{DD}}$	-10	-	10	$\mu \mathrm{~A}$
I_{IN}						

Output

V_{OH}	High Output Voltage	See Figure 1	$\mathrm{V}_{\mathrm{DD}}-0.025$	-	-	V
V_{OL}	Low Output Voltage	See Figure 1	-	-	0.025	V
R_{O}	Output Resistance, High	$\mathrm{V}_{\mathrm{DD}}=18 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}$	-	1.4	-	Ω
R_{O}	Output Resistance, Low	$\mathrm{V}_{\mathrm{DD}}=18 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}$	-	0.9	1.7	Ω
I_{PK}	Peak Output Current	$\mathrm{V}_{\mathrm{DD}}=18 \mathrm{~V}$	-	9	-	A
I_{DC}	Continuous Output Current		2			A
$\mathrm{I}_{\mathrm{REV}}$	Latch-Up Protection Withstand Reverse Current	Duty Cycle $\leqslant 2 \%$ $\mathrm{t} \leqslant 300 \mu \mathrm{~s}$		>1500	-	-
mA						

Switching Time (Note 1)

t_{R}	Rise Time	Figure 1, $\mathrm{C}_{\mathrm{L}}=10,000 \mathrm{pF}$	-	60	75	ns
t_{F}	Fall Time	Figure 1, $\mathrm{C}_{\mathrm{L}}=10,000 \mathrm{pF}$	-	60	75	ns
$\mathrm{t}_{\mathrm{D} 1}$	Delay Time	Figure 1	-	30	60	ns
$\mathrm{t}_{\mathrm{D} 2}$	Delay Time	Figure 1	-	33	60	ns

Power Supply

I_{s}	Power Supply Current	$\mathrm{V}_{\mathrm{IN}}=3 \mathrm{~V}$	-	0.2	1.5	mA
		$\mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$	-	55	150	$\mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{DD}}$	Operating Input Voltage		4.5	-	18	V

ELECTRICAL CHARACTERISTICS
(Measured over operating temperature range with $4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{s}} \leqslant 18 \mathrm{~V}$ unless otherwise specified.)

Symbol	Parameter	Test Conditions	Min	Typ	Max
Input	Unit				
V_{IH}	Logic 1	Input Voltage	2.4	-	-
V_{IL}	Logic 0 Input Voltage	-	V		
I_{IN}	Input Current	$\mathrm{OV} \leqslant \mathrm{V}_{\mathbb{I N}} \leqslant \mathrm{V}_{\mathrm{DD}}$	-	0.8	V

Output

V_{OH}	High Output Voltage	See Figure 1	$\mathrm{V}_{\mathrm{DD}}-0.025$	-	-	V
V_{OL}	Low Output Voltage	See Figure 1	-	-	0.025	V
R_{O}	Output Resistance, High	$\mathrm{V}_{\mathrm{DD}}=18 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}$	-	2.4	3.6	Ω
R_{O}	Output Resistance, Low	$\mathrm{V}_{\mathrm{DD}}=18 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}$	-	1.8	2.7	Ω

Switching Time (Note 1)

t_{R}	Rise Time	Figure $1, \mathrm{C}_{\mathrm{L}}=10,000 \mathrm{pF}$	-	60	120	ns
t_{F}	Fall Time	Figure 1, $\mathrm{C}_{\mathrm{L}}=10,000 \mathrm{pF}$	-	60	120	ns
$\mathrm{t}_{\mathrm{D} 1}$	Delay Time	Figure 1	-	50	80	ns
$\mathrm{t}_{\mathrm{D} 2}$	Delay Time	Figure 1	-	65	80	ns

Power Supply

I_{S}	Power Supply Current	$\mathrm{V}_{\mathrm{IN}}=3 \mathrm{~V}$	-	0.45	3	mA
		$\mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$	-	0.06	0.2	mA
$\mathrm{~V}_{\mathrm{DD}}$	Operating Input Voltage		4.5	-	18	V

NOTE: 1. Switching times guaranteed by design.

TYPICAL CHARACTERISTIC CURVES

Rise Time vs Supply Voltage

Rise Tlme vs Capacitive Load

Rise and Fall Times vs Temperature

Fall Time vs Supply Voltage

Fall Tlme vs Capacitive Load

Propagation Delay vs Supply Voltage

TYPICAL CHARACTERISTIC CURVES (Cont.)

Supply Current vs Capacitive Load,

Supply Current vs Capacitive Load

TYPICAL CHARACTERISTIC CURVES (Cont.)

NOTE: The values on this graph represent the loss seen by the driver during a complete cycle. For the loss in a single transition, divide the stated value by 2 .

High-State Output Resistance vs Supply Voltage

Quiescent Supply Current vs Temperature

Low-State Output Resistance vs Supply Voltage

NOTES

3A DUAL HIGH-SPEED MOSFET DRIVERS

FEATURES

- Tough CMOS ${ }^{\text {TM }}$ Construction
- Latch-Up Protected: Will Withstand 1.5A Reverse Current
- Logic Input Will Withstand Negative Swing Up to 5V
- ESD Protected 4 kV
- High Peak Output Current3A

■ Wide Operating Range4.5V to 18 V

- High Capacitive Load

Drive Capability 1800 pF in 25 ns

- Short Delay Times \qquad
- Consistent Delay Times With Changes in Supply Voltage
- Matched Rise/Fall Times
- Logic High Input, Any Voltage \qquad 2.4 V to V_{DD}
- Logic Input Threshold Independent of Supply Voltage
- Low Supply Current
— With Logic "1" Input 3.5 mA
— With Logic "0" Input $350 \mu \mathrm{~A}$
- Low Input Impedance3.5W Typ
- Output Voltage Swing to Within 25 mV of Ground or $V_{D D}$
- Pinouts Same as TC1426/27/28; TC4426/27/28
- Available in Inverting, Noninverting, and Differential Configurations

FUNCTIONAL DIAGRAM

NOTES: 1. TC4425 has one inverting and one noninverting driver.
2. Ground any unused driver input.

GENERAL DESCRIPTION

The TC4423/4424/4425 are CMOS buffer/drivers built using Teledyne Components' new Tough CMOS process. They are higher output current versions of the new TC4426/ 4427/4428 buffer/drivers, which, in turn, are improved versions of the earlier TC426/427/428 series. All three families are pin-compatible. The TC4423/4424/4425 drivers are capable of giving reliable service in far more demanding electrical environments than their antecedents. They will not latch up under any conditions within their power and voltage ratings. They are not subject to damage, even when up to 5 V of noise spiking (of either polarity) occurs on the ground pin. They can accept, without either damage or logic upset, up to 1.5 A of reverse current (of either polarity) being forced back into their outputs. All terminals are also fully protected against up to 4 kV of electrostatic discharge.

As a result, the TC4423/4424/4425 drivers are much easier to use, more flexible in operation, and much more forgiving than any other drivers (CMOS or bipolar) currently available. Because they are fabricated in CMOS, they dissipate a minimum of power and provide rail-to-rail voltage swings to better ensure the logic state of any load they drive.

Although primarily intended fordriving powerMOSFETs, the TC4423/4424/4425 drivers are equally well-suited to driving any other load (capacitive, resistive, or inductive) which requires a low impedance driver capable of high peak currents and fast switching times. For example, heavily loaded clock lines, coaxial cables, or piezoelectric transducers can all be driven from the TC4423/4424/4425. The only known limitation on loading is the total power dissipated in the driver must be kept within the maximum power dissipation limits of the package.

As MOSFET drivers, the TC4423/4424/4425 can easily switch 1800 pF gate capacitances in under 30 ns , and provide low enough impedances in both the ON and OFF
states to ensure the MOSFET's intended state will not be affected, even by large transients.

The TC4423/4424/4425 design has taken into account five years of field use (and abuse) of our earlier parts, with the goal of making these drivers immune to all forms of improperoperation known from that period, except exceeding the breakdown voltage and power dissipation ratings. We believe we have succeeded.
ORDERING INFORMATION

Part No.	Package	Temperature Range
TC4423COE	16-Pin SO Wide	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC4423CPA	8 -Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC4423IJA	8 -Pin CerDIP	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC4423MJA	8 -Pin CerDIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
TC4423EOE	16-Pin SO Wide	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC4423EPA	8 -Pin Plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC4424COE	16-Pin SO Wide	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC4424CPA	8 -Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC4424IJA	8 -Pin CerDIP	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC4424MJA	8 -Pin CerDIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
TC4424EOE	16-Pin SO Wide	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC4424EPA	8 -Pin Plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC4425COE	16-Pin SO Wide	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC4425CPA	8 -Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC4425IJA	8 -Pin CerDIP	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC4425MJA	8 -Pin CerDIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
TC4425EOE	16 -Pin SO Wide	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC4425EPA	8 -Pin Plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

PIN CONFIGURATIONS

NC = NO CONNECTION
NOTE: Duplicate pins must both be connected for proper operation.

3A DUAL HIGH-SPEED MOSFET DRIVERS

ABSOLUTE MAXIMUM RATINGS

Su
Input Voltage, IN A or IN B $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ to GND -5.0 V
Maximum Chip Temperature $+150^{\circ} \mathrm{C}$
Storage Temperature Range................ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)................ $+300^{\circ} \mathrm{C}$
Package Thermal Resistance
CerDIP $\mathrm{R}_{\text {®J-A }}$.. $150^{\circ} \mathrm{C} / \mathrm{W}$
CerDIP $\mathrm{R}_{\text {өJ-C }}$.. $55^{\circ} \mathrm{C} / \mathrm{W}$
PDIP $\mathrm{R}_{\text {®J-A }}$... $125^{\circ} \mathrm{C} / \mathrm{W}$
PDIP R ®נ-c $^{\text {. .. } 45^{\circ} \mathrm{C} / \mathrm{W}}$
SOIC R ®JJA $^{\text {. ... } 250^{\circ} \mathrm{C} / \mathrm{W}}$
Operating Temperature Range
C Version .. $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
I Version $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
E Version $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
M Version $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Power Dissipation
Plastic DIP ... 1000 mW
CerDIP .. 800 mW

CerDIP $\mathrm{R}_{\theta \mathrm{J}-\mathrm{A}}$$55^{\circ} \mathrm{C} / \mathrm{W}$
PDIP R $\mathrm{R}_{\text {EJ-A }}$ $25^{\circ} \mathrm{C} / \mathrm{W}$
BIC Bosa
$250^{\circ} \mathrm{C} / \mathrm{W}$
SOIC R PJ-C $^{\text {C }}$$.0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
IVersion$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
M Version1000 mW
CerDIP500 mW

Static-sensitive device. Unused devices must be stored in conductive

 material. Protect devices from static discharge and static fields. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to Absolute Maximum Rating Conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS: $T_{A}=+25^{\circ} \mathrm{C}$ with $4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{DD}} \leqslant 18 \mathrm{~V}$, unless otherwise specified.

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
Input						
V_{OH}	Logic 1 High Input Voltage		2.4	-	-	V
$\mathrm{V}_{\text {IL }}$	Logic 0 Low Input Voltage		-	-	0.8	V
IIN	Input Current	$0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{IN}} \leqslant \mathrm{V}_{\mathrm{DD}}$	-1	-	1	$\mu \mathrm{A}$

Output

V_{OH}	High Output Voltage		$\mathrm{V}_{\mathrm{DD}}-0.025$	-	-	V
V_{OL}	Low Output Voltage		-	-	0.025	V
R_{0}	Output Resistance, High	lout $=10 \mathrm{~mA}, \mathrm{~V}_{\text {DD }}=18 \mathrm{~V}$	-	2.8	5	Ω
R_{0}	Output Resistance, Low	$\mathrm{I}_{\text {OUT }}=10 \mathrm{~mA}, \mathrm{~V}_{\text {DD }}=18 \mathrm{~V}$	-	3.5	5	Ω
lpk	Peak Output Current		-	3	-	A
$I_{\text {REV }}$	Latch-Up Protection Withstand Reverse Current	$\begin{aligned} & \text { Duty Cycle } \leqslant 2 \% \\ & t \leqslant 300 \mu \mathrm{~s} \end{aligned}$	1.5	-	-	A
Switching Time (Note 1)						
t_{R}	Rise Time	Figure 1, $\mathrm{C}_{\mathrm{L}}=1800 \mathrm{pF}$	-	23	35	ns
t_{F}	Fall Time	Figure 1, $\mathrm{C}_{\mathrm{L}}=1800 \mathrm{pF}$	-	25	35	ns
$t_{\text {D1 }}$	Delay Time	Figure 1, $\mathrm{C}_{\mathrm{L}}=1800 \mathrm{pF}$	-	33	75	ns
$\mathrm{t}_{\mathrm{D} 2}$	Delay Time	Figure 1, $\mathrm{C}_{\mathrm{L}}=1800 \mathrm{pF}$	-	38	75	ns

3A DUAL HIGH-SPEED MOSFET DRIVERS

ELECTRICAL CHARACTERISTICS:

Over operating temperature range with $4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{DD}} \leqslant 18 \mathrm{~V}$, unless otherwise specified.

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
Input						
V_{IH}	Logic 1 High Input Voltage		2.4	-	-	V
$\mathrm{V}_{\text {IL }}$	Logic 0 Low Input Voltage		-	-	0.8	V
IN	Input Current	$0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{IN}} \leqslant \mathrm{V}_{\mathrm{DD}}$	-10	-	10	$\mu \mathrm{A}$
Output						
V_{OH}	High Output Voltage		$\mathrm{V}_{\mathrm{DD}}-0.025$	-	-	V
$\mathrm{V}_{\text {OL }}$	Low Output Voltage		-	-	0.025	V
R_{0}	Output Resistance, High	I ${ }_{\text {Out }}=10 \mathrm{~mA}, \mathrm{~V}_{\text {DD }}=18 \mathrm{~V}$	-	3.7	8	Ω
Ro	Output Resistance, Low	I OUT $=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=18 \mathrm{~V}$	-	4.3	8	Ω
lPK	Peak Output Current		-	3	-	A
I ReV	Latch-Up Protection Withstand Reverse Current	$\begin{aligned} & \text { Duty Cycle } \leqslant 2 \% \\ & t \leq 300 \mu \mathrm{~s} \end{aligned}$	1.5	-	-	A

Switching Time (Note 1)

t_{R}	Rise Time	Figure 1, $\mathrm{C}_{\mathrm{L}}=1800 \mathrm{pF}$	-	28	60	ns
t_{F}	Fall Time	Figure 1, $\mathrm{C}_{L}=1800 \mathrm{pF}$	-	32	60	ns
$t_{\text {d1 }}$	Delay Time	Figure 1, $\mathrm{C}_{\mathrm{L}}=1800 \mathrm{pF}$	-	32	100	ns
$\mathrm{t}_{\mathrm{D} 2}$	Delay Time	Figure 1, $\mathrm{C}_{\mathrm{L}}=1800 \mathrm{pF}$	-	38	100	ns
Power Supply						
Is	Power Supply Current	$\mathrm{V}_{\mathrm{IN}}=3 \mathrm{~V}$ (Both Inputs) $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ (Both Inputs)	-	$\begin{gathered} 2 \\ 0.2 \end{gathered}$	$\begin{aligned} & 3.5 \\ & 0.3 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$

NOTE: 1. Switching times guaranteed by design.

Figure 1 Inverting Driver Switching Time

Figure 2 Noninverting Driver Switching Time

TYPICAL CHARACTERISTICS CURVES

Rise Tlme vs Capacitive Load

Rise and Fall Times vs Temperature

Fall Time vs Supply Voltage

Fall TIme vs Capacitive Load

Propagation Delay vs Input Amplitude

TYPICAL CHARACTERISTICS CURVES (Cont.)

Quiescent Current vs Supply Voltage

Output Resistance (Output High)

Delay Time vs Temperature

Quiescent Current vs Temperature

Output Resistance (Output Low)

3A DUAL HIGH-SPEED

MOSFET DRIVERS

SUPPLY CURRENT CHARACTERISTICS (Load on Single Output Only)

Supply Current vs Capacitive Load

Supply Current vs Frequency

Supply Current vs Frequency

Supply Current vs Frequency

NOTES

1.5A DUAL HIGH-SPEED FET DRIVERS

FEATURES

- Tough CMOS ${ }^{\text {тм }}$ Construction
- Latch-Up Protected: Will Withstand >0.5A Reverse Current
- Input Will Withstand Negative Inputs Up to 5 V
- ESD Protected .4 kV
- High Peak Output Current1.5A
- Wide Operating Range 4.5V to 18 V
- High Capacitive Load Drive Capability \qquad 1000 pF in 25 ns
- Short Delay Time \qquad $<40 \mathrm{~ns}$ Typ
- Consistent Delay Times With Changes in Supply Voltage
- Matched Rise and Fall Times
- Logic High Input for Any Voltage From 2.4V to $V_{D D}$
- Logic Input Threshold Independent of Supply Voltage
- Low Supply Current
— With Logic "1" Input 4 mA
- With Logic "0" Input $.400 \mu \mathrm{~A}$
- Low Output Impedance.. 7Ω
- Output Voltage Swing to Within 25 mV of Ground or $V_{D D}$
- Pinout Same as TC426/TC427/TC428
- Available in Inverting, Noninverting, and Differential Configurations

FUNCTIONAL DIAGRAM

NOTES: 1. TC4428 has one inverting and one noninverting driver.
2. Ground any unused driver input.

1.5A DUAL HIGH-SPEED FET DRIVERS

TC4426
TC4427
TC4428

GENERAL DESCRIPTION

The TC4426/4427/4428 are CMOS buffer/drivers built using Teledyne Components' new Tough CMOS process. They are improved versions of the earlier TC426/427/428 family of buffer/drivers (with which they are pin compatible) and are capable of giving reliable service in far more demanding electrical environments. They will not latch up under any conditions within their power and voltage ratings. They are not subject to damage when up to 5 V of noise spiking (of either polarity) occurs on the ground pin. They can accept, without damage or logic upset, up to 500 mA of reverse current (of either polarity) being forced back into their outputs. All terminals are fully protected against up to 4 kV of electrostatic discharge.

In addition, Teledyne now uses a custom-developed molding epoxy for plastic packages which, in tests, produced zero device failures after 10,000 hours in an $85^{\circ} \mathrm{C}$ 85% R.H. environment, and contains 50% less sodium and chlorine contamination than standard commercial molding compounds, increasing device lifetimes.

As a result, the TC4426/4427/4428 drivers are much easier to use, more flexible in operation, and much more forgiving than any other drivers (CMOS or bipolar) currently available. Because they are fabricated in CMOS, they dissipate a minimum of power and provide rail-to-rail voltage swings to ensure the logic state of any load they are driving.

Although primarily intended fordriving powerMOSFETs, the TC4426/4427/4428 drivers are equally well-suited to driving any other load (capacitive, resistive, or inductive) which requires a low-impedance driver capable of high peak currents and fast switching times. For example, heavily loaded clock lines, coaxial cables, or piezoelectric transducers all can be driven from the TC4426/4427/4428. The only known limitation on loading is that total power dissipated in the driver must be kept within the maximum power dissipation limits of the package.

As MOSFET drivers, the TC4426/4427/4428 can easily switch 1000 pF gate capacitances in under 30 ns , and provide low enough impedances in both the ON and OFF states to ensure the MOSFET's intended state will not be affected, even by large transients.

Generally, the design of the TC4426/4427/4428 has taken into account 5 years of field use (and abuse) of Teledyne's earlier parts, with the goal of making these parts immune to all forms of improper operation known from that period, except exceeding the breakdown voltage and power dissipation ratings.

ORDERING INFORMATION

Part No.	Package	Temperature Range
TC4426COA	8 -Pin SOIC	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC4426EOA	8 -Pin SOIC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC4426CPA	8 -Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC4426EPA	8 -Pin Plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC4426EJA	8 -Pin CerDIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC4426MJA	8 -Pin CerDIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
TC4427COA	8 -Pin SOIC	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC4427EOA	8 -Pin SOIC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC4427CPA	8 -Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC4427EPA	8 -Pin Plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC4427EJA	8 -Pin CerDIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC4427MJA	8 -Pin CerDIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
TC4428COA	8 -Pin SOIC	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC4428EOA	8 -Pin SOIC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC4428CPA	8 -Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC4428EPA	8 -Pin Plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC4428EJA	8 -Pin CerDIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC4428MJA	8 -Pin CerDIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

1.5A DUAL HIGH-SPEED FET DRIVERS

TC4426
TC4427
TC4428

Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional

operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ with $4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{DD}} \leqslant 18 \mathrm{~V}$, unless otherwise specified.

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
Input						
V_{IH}	Logic 1 High Input Voltage		2.4	-	-	V
$\mathrm{V}_{\text {IL }}$	Logic 0 Low Input Voltage		-	-	0.8	V
In	Input Current	$0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{IN}} \leqslant \mathrm{V}_{\mathrm{DD}}$	-1	-	1	$\mu \mathrm{A}$
Output						
V_{OH}	High Output Voltage		$\mathrm{V}_{\text {DD }}$-0.025	-	-	V
V_{OL}	Low Output Voltage		-	-	0.025	V
R_{0}	Output Resistance	$V_{D D}=18 \mathrm{~V}, \mathrm{l}_{0}=10 \mathrm{~mA}$	-	7	10	Ω
lpk	Peak Output Current		-	1.5	-	A
IREV	Latch-Up Protection Withstand Reverse Current	$\begin{aligned} & \text { Duty Cycle } \leqslant 2 \% \\ & t \leqslant 300 \mu \mathrm{~s} \end{aligned}$	>0.5	-	-	A
Switching Time (Note 1)						
t_{R}	Rise Time	Figure 1	-	25	30	ns
t_{F}	Fall Time	Figure 1	-	25	30	ns
$t_{\text {D1 }}$	Delay Time	Figure 1	-	-	30	ns
tD2	Delay Time	Figure 1	-	-	50	ns
Power Supply						
Is	Power Supply Current	$\mathrm{V}_{\text {IN }}=3 \mathrm{~V}$ (Both Inputs) $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ (Both Inputs)	-	-	$\begin{aligned} & 4.5 \\ & 0.4 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$

NOTE: 1. Switching times are guaranteed by design.

PIN CONFIGURATIONS

NOTE: SOIC pinout is identical to DIP.

ELECTRICAL CHARACTERISTICS

Specifications measured over operating temperature range with $4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{DD}} \leqslant 18 \mathrm{~V}$, unless otherwise specified.

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
Input						
V_{IH}	Logic 1 High Input Voltage		2.4	-	-	V
$\mathrm{V}_{\text {IL }}$	Logic 0 Low Input Voltage		-	-	0.8	V
IN	Input Current	$0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathbb{I N}} \leqslant \mathrm{V}_{\mathrm{DD}}$	-1	-	1	$\mu \mathrm{A}$
Output						
V_{OH}	High Output Voltage		$\mathrm{V}_{\mathrm{DD}}-0.025$	-	-	V
V_{OL}	Low Output Voltage		-	-	0.025	V
R_{O}	Output Resistance	$\mathrm{V}_{\mathrm{DD}}=18 \mathrm{~V}, \mathrm{l}_{0}=10 \mathrm{~mA}$	-	9	12	Ω
lPK	Peak Output Current		-	1.5	-	A
I feV	Latch-Up Protection Withstand Reverse Current	$\begin{aligned} & \text { Duty Cycle } \leqslant 2 \% \\ & t \leqslant 300 \mu \mathrm{~s} \end{aligned}$	>0.5	-	-	A
Switching Time (Note 1)						
$t_{\text {R }}$	Rise Time	Figure 1	-	-	40	ns
$\mathrm{t}_{\text {F }}$	Fall Time	Figure 1	-	-	40	ns
$t_{\text {D1 }}$	Delay Time	Figure 1	-	-	40	ns
$\mathrm{t}_{\mathrm{D} 2}$	Delay Time	Figure 1	-	-	60	ns
Power Supply						
Is	Power Supply Current	$\begin{aligned} & \mathrm{V}_{\mathbb{I N}}=3 \mathrm{~V} \text { (Both Inputs) } \\ & \mathrm{V}_{\mathbb{N}}=0 \mathrm{~V} \text { (Both Inputs) } \end{aligned}$	-	-	$\begin{gathered} \hline 8 \\ 0.6 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$

NOTE: 1. Switching times are guaranteed by design.

1.5A DUAL HIGH-SPEED FET DRIVERS

TC4426
TC4427
TC4428

Figure 1. Switching Time Test Circuit

BONDING DIAGRAM

NOTES:

1. Back of die is common to $V_{D D}$.
2. Back of die is not metallized.

NOTE: The values on this graph represent the loss seen by both drivers in a package during one complete cycle. For a single driver, divide the stated values by 2 . For a single transition of a single driver, divide the stated value by 4.

TYPICAL CHARACTERISTICS CURVES

Rise TIme vs Capacitive Load

Rise and Fall Times vs Temperature

Fall Time vs Supply Voltage

Fall TIme vs Capacitive Load

1.5A DUAL HIGH-SPEED FET DRIVERS

TYPICAL CHARACTERISTICS CURVES (Cont.)

Quiescent Supply Current vs Voltage

High-State Output Resistance

Propagation Delay Time vs Temperature

Quiescent Supply Current vs Temperature

Low-State Output Resistance

1.5A DUAL HIGH-SPEED FET DRIVERS

TC4426
TC4427
TC4428

SUPPLY CURRENT CHARACTERISTICS CURVES (Load on Single Output Only)

Supply Current vs Frequency

Supply Current vs Frequency

POWER LOGIC CMOS QUAD DRIVERS

FEATURES

- Tough CMOS ${ }^{\text {m }}$ Construction
- Latchproof! Withstands 500 mA Inductive Kickback
- 3 Input Logic Choices
- AND/NAND/AND+Inv
- 4 Output Structures
- Pull-Up/Pull-Down/Totem Pole/ Pull-Down with Clamp Diode
- Inverting or Non-Inverting Outputs
- Symmetrical Rise and Fall Times 25 ns
- Short, Equal Delay Times 75 ns
- High Peak Output Current1.2A
- Wide Operating Range. 4.5 to 18 V
- Inputs = Logic 1 for Any Input From 2.4V to $V_{D D}$
- 2 kV ESD Protection on All Pins

APPLICATIONS

LOGIC DIAGRAMS

TC4437/8/9 TC4467/8/9 TC4457/8/9 TC4487/8/9

GENERAL DESCRIPTION

The TC44XX family of four-output CMOS buffer/drivers are an expansion from our earlier single- and dual-output drivers. Each driver has been equipped with a two-input logic gate for added flexibility. Four output configurations have also been provided, so high-efficiency CMOS drivers can be used whether the application requires a totem-pole output or pull-up/pull-down output, or pull-down with a clamp diode. These different input and output combinations make these Power Logic ${ }^{\text {TM }}$ drivers well suited for a wide range of applications.

Although commonly used for driving power MOSFETs and similar highly capacitive loads, these drivers are equally well suited to driving any other load (capacitive, resistive, or inductive) which requires a high efficiency, low-impedance driver capable of high peak currents, rail-to-rail voltage swings, and fast switching times. For example, relays and solenoids can be driven with the 445X driver which contains an internal clamp diode which will shunt inductive flybacks back to the supply. The 443X driver provides a fast, low impedance path to ground for devices referenced to the upper supply rail like indicators, sounders or pin drivers. The 448 X driver can source up to 250 mA into loads referenced to ground. Heavily loaded clock lines, coaxial cables, and piezoelectric transducers can all be driven easily with the 44XX series drivers. The only limitation on loading is that total power dissipation in the IC must be kept within the power dissipation limits of the package.

The TC44XX series drivers are built using Teledyne Component's new Tough CMOS process, which makes them easy and forgiving parts to use; capable of giving reliable service in very demanding operating environments. They will not latch under any conditions within their power and voltage ratings. They are not subject to damage when up to 5 V of noise spiking (either polarity) occurs on the ground line. They can accept up to half an amp of inductive kickback current (either polarity) into their outputs without damage or logic upset. In addition, all terminals are protected against ESD to at least 2000V. Even the molding epoxy used on our plastic packages has been custom developed to contain less sodium and chlorine contamination than standard commercial molding compounds. In tests, it demonstrated zero device failures after 10,000 hours in an $85^{\circ} \mathrm{C}, 85 \%$ relative humidity environment.

ORDERING INFORMATION

Part No.	Package	Temp. Range
TC44**CPD	14-Pin Plastic DIP	0° to $+70^{\circ} \mathrm{C}$
TC44**COE	16-Pin Wide SOIC	0° to $+70^{\circ} \mathrm{C}$
TC44*E CPD	14-Pin Plastic DIP	-40° to $+85^{\circ} \mathrm{C}$
TC44**EOE	16-Pin Wide SOIC	-40° to $+85^{\circ} \mathrm{C}$
TC44*EJD	14-Pin CerDIP	-40° to $+85^{\circ} \mathrm{C}$
TC44* MJD	14-Pin CerDIP	-55° to $+125^{\circ} \mathrm{C}$

**Two digits must be added in this position to define the device input
and output configuration:

TC44XX

7 NAND
5 Pull-Down with Clamp Diode 8 AND
6 Pull-Up and Down 9 AND with INV
8 Pull-Up
The first digit represents output structure. The second digit represents input logic. Example: TC4487 has a pull-up output and a NAND input.

TRUTH TABLE

	Inputs		Outputs			
Part No.	A	B	$\mathbf{4 4 3 X}$	$\mathbf{4 4 5 X}$	$\mathbf{4 4 6 X}$	$\mathbf{4 4 8 X}$
TC44*7	H	H	L	L	L	F
NAND	H	L	F	F	H	H
	L	H	F	F	H	H
	L	L	F	F	H	H
TC44*8	H	H	F	F	H	H
AND	H	L	L	L	L	F
	L	H	L	L	L	F
	L	L	L	L	L	F
TC44*9	H	H	L	L	L	F
AND/	H	L	F	F	H	H
INV	L High	L= Low	F = Floating		L	L
L	L	F				
	L			F		

ABSOLUTE MAXIMUM RATINGS

Supply Voltage ...20V
Input Voltage (GND -5 V) to ($\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$)
Maximum Chip Temperature

Maximum Lead Temperature
(Soldering, 10 sec) .. $+300^{\circ} \mathrm{C}$
Operating Ambient Temperature Range
C Device ... 40° to $+80^{\circ} \mathrm{C}$
E Device.............................$~$
M Device

Power Dissipation

JD Package (14-Pin CerDIP)...........................1.25W
PD Package (14-Pin Plastic DIP)1.5W
OE Package (16-Pin Wide SOIC) 1 W

Package Thermal Resistance	
JD Package (14-Pin CerDIP)	$\mathrm{R}_{\text {өJ-A }} \ldots \ldots .$.
	$\mathrm{R}_{\text {өJ.C }}$........... $45 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
PD Package (14-Pin Plastic DIP)	$\mathrm{R}_{\text {өJ-A }} \ldots \ldots \ldots12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
OE Package (16-Pin Wide SOIC)	
	$\mathrm{R}_{\text {qJ }} \mathrm{C}$........... $31 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to Absolute Maximum Rating Conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS: Measured at $T_{A}=+25^{\circ} \mathrm{C}$ with $4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{DD}} \leqslant 18 \mathrm{~V}$, unless otherwise specified.

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
Input						
$\mathrm{V}_{\text {IH }}$	Logic 1, High Input Voltage	Note 3	2.4		$V_{D D}$	V
$\mathrm{V}_{\text {IL }}$	Logic 0, Low Input Voltage	Note 3	0		0.8	V
In	Input Current	$0 \mathrm{~V} \leqslant \mathrm{~V}_{\text {IN }} \leqslant \mathrm{V}_{\text {D }}$	-1		1	$\mu \mathrm{A}$
Output						
V_{OH}	High Output Voltage	$\mathrm{I}_{\text {LOAD }}=10 \mathrm{~mA}$ (Note 1)	$V_{D D}-0.15$			V
V_{OL}	Low Output Voltage	ILOAD $=10 \mathrm{~mA}$ (Note 1)			0.15	V
R_{0}	Output Resistance	l OUT $=10 \mathrm{~mA}, \mathrm{~V}_{\text {DD }}=18 \mathrm{~V}$		10	15	Ω
Pr	Peak Output Current			1.2		A
IDC	Continuous Output Current	Single Output Total Package			$\begin{aligned} & 300 \\ & 500 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
1	Latch-Up Protection Withstand Reverse Current	$4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{DD}} \leqslant 16 \mathrm{~V}$	500			mA

Switching Time

t_{R}	Rise Time	Figure 1		15	25	ns
t_{F}	Fall Time	Figure 1		15	25	ns
tot	Delay Time	Figure 1		40	75	ns
$\mathrm{t}_{\mathrm{D} 2}$	Delay Time	Figure 1		40	75	ns
Power Supply						
Is	Power Supply Current			1.5	4	mA
VDD	Power Supply Voltage	Note 2	4.5		18	V

ELECTRICAL CHARACTERISTICS: Measured throughout operating temperature range with $4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{DD}} \leqslant 18 \mathrm{~V}$, unless otherwise specified.

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
Input						
V_{IH}	Logic 1, High Input Voltage	(Note 3)	2.4			V
$\mathrm{V}_{\text {IL }}$	Logic 0, Low Input Voltage	(Note 3)			0.8	V
IN	Input Current	$0 \mathrm{~V} \leqslant \mathrm{~V}_{1 N} \leqslant \mathrm{~V}_{\text {DD }}$	-1		1	$\mu \mathrm{A}$
Output						
V_{OH}	High Output Voltage	$\mathrm{I}_{\text {LOAD }}=10 \mathrm{~mA}$ (Note 1)	$\mathrm{V}_{\mathrm{DD}}-0.30$			V
$\mathrm{V}_{\text {OL }}$	Low Output Voltage	$\mathrm{I}_{\text {LOAD }}=10 \mathrm{~mA}$ (Note 1)			0.30	V
Ro	Output Resistance	$\mathrm{I}_{\text {OUT }}=10 \mathrm{~mA}, \mathrm{~V}_{\text {DD }}=18 \mathrm{~V}$		20	30	Ω
PPK	Peak Output Current			1.2		A
-	Latch-Up Protection Withstand Reverse Current	$4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{DD}} \leqslant 16 \mathrm{~V}$	500			mA

Switching Time

t_{R}	Rise Time	Figure 1		50	ns	
t_{F}	Fall Time	Figure 1			50	ns
$\mathrm{t}_{\mathrm{D} 1}$	Delay Time	Figure 1			100	ns
$\mathrm{t}_{\mathrm{D} 2}$	Delay Time	Figure 1			100	ns

Power Supply

IS	Power Supply Current			8
Is	Power Supply Voltage	4.5		18

NOTES: 1. Totem-pole outputs should not be paralleled because the propagation delay differences from one to the other could cause one driver to drive high a few nanoseconds before another. The resulting current spike, although short, may decrease the life of the device.
2. When driving all four outputs simultaneously in the same direction, V_{DD} shall be limited to 16 V . This reduces the chance that internal $\mathrm{dv} / \mathrm{dt}$ will cause high-power dissipation in the device.
3. The input threshold has about 50 mV of hysteresis centered at approximately 1.5 V . Slow moving inputs will force the device to dissipate high peak currents as the input transitions through this band. Input rise times should be kept below $5 \mu \mathrm{~s}$ to avoid high internal peak currents during input transitions. Static input levels should also be maintained above the maximum or below the minimum input levels specified in the "Electrical Characteristics" to avoid increased power dissipation in the device.

PACKAGE POWER DISSIPATION

PIN CONFIGURATIONS

POWER LOGIC CMOS QUAD DRIVERS

TC4437/8/9	TC4467/8/9
TC4457/8/9	TC4487/8/9

Supply Bypassing

Large currents are required to charge and discharge large capacitive loads quickly. For example, charging a 1000 pF load 18 V in 25 ns requires a 0.8 A current from the device's power supply.

To guarantee low supply impedance over a wide frequency range, a parallel capacitor combination is recommended for supply bypassing. Low inductance ceramic disk capacitors with short lead lengths (<0.5 in.) should be used. A $1 \mu \mathrm{~F}$ film capacitor in parallel with one or two $0.1 \mu \mathrm{~F}$ ceramic disk capacitors normally provides adequate bypassing.

Grounding

The TC44X7 and TC44X9 contain inverting drivers. Ground potential drops developed in common ground impedances from input to output will appear as negative feedback and degrade switching speed characteristics.

Individual ground returns for input and output circuits or a ground plane should be used.

Input Stage

The input voltage level changes the no load or quiescent supply current. The N -channel MOSFET input stage transistor drives a 2.5 mA current source load. With logic "0" outputs, maximum quiescent supply current is 4 mA . Logic "1" output level signals reduce quiescent current to 1.4 mA maximum. Unused driver inputs must be connected to $V_{D D}$ or V_{SS}. Minimum power dissipation occurs for logic "1" outputs.

The drivers are designed with 50 mV of hysteresis. This provides clean transitions and minimizes output stage current spiking when changing states. Input voltage thresholds are approximately 1.5 V , making Logic 1 input any voltage greater than 1.5 V up to V_{DD}. Input current is less than $1 \mu \mathrm{~A}$ over this range.

Power Dissipation

The supply current versus frequency and supply current versus capacitive load characteristic curves will aid in determining power dissipation calculations.

Teledyne Components' CMOS drivers have greatly reduced quiescent DC power consumption. Maximum quiescent current is 4 mA , compared to the D469's 20 mA specification.

Input signal duty cycle, power supply voltage, and load type influence package power dissipation. Given power dissipation and package thermal resistance, the maximum ambient operation temperature is easily calculated. The 14pin plastic package junction-to-ambient thermal resistance is $83.3^{\circ} \mathrm{C} / \mathrm{W}$. At $+25^{\circ} \mathrm{C}$, the package is rated at 1500 mW maximum dissipation. Maximum allowable chip temperature is $+150^{\circ} \mathrm{C}$.

Three components make up total package power dissipation:
(1) Load caused dissipation (P_{L})
(2) Quiescent power $\left(\mathrm{P}_{\mathrm{Q}}\right)$
(3) Transition power $\left(\mathrm{P}_{\mathrm{T}}\right)$.

A capacitive-load-caused dissipation (driving MOSFET gates), is a direct function of frequency, capacitive load, and supply voltage. The power dissipation is:

$$
P_{L}=f C V_{S}^{2}
$$

where: $f=$ Switching frequency
C = Capacitive load
$V_{S}=$ Supply voltage.
A resistive-load-caused dissipation for ground-referenced loads is a function of duty cycle, load current, and load voltage. The power dissipation is:

$$
P_{L}=D\left(V_{S}-V_{L}\right) I_{L},
$$

where: $\mathrm{D}=$ Duty cycle
$\mathrm{V}_{\mathrm{S}}=$ Supply voltage
$V_{L}=$ Load voltage
$\mathrm{I}_{\mathrm{L}}=$ Load current .
A resistive-load-caused dissipation for supply-referenced loads is a function of duty cycle, load current, and output voltage. The power dissipation is:

$$
P_{L}=D V_{O} L_{L}
$$

where: $f=$ Switching frequency
$\mathrm{V}_{\mathrm{O}}=$ Device output voltage
$I_{L}=$ Load current .
Quiescent power dissipation depends on input signal duty cycle. Logic high outputs result in a lower power dissipation mode with only 0.6 mA total current drain (all devices driven). Logic low outputs raise the current to 4 mA maximum. The quiescent power dissipation is:

$$
\mathrm{P}_{\mathrm{Q}}=\mathrm{V}_{\mathrm{S}}\left(\mathrm{D}\left(\mathrm{I}_{\mathrm{H}}\right)+(1-\mathrm{D}) \mathrm{I}_{\mathrm{L}}\right)
$$

where: $I_{H}=$ Quiescent current with all outputs low (4 mA max)
$L_{L}=$ Quiescent current with all outputs high (0.6 mA max)

D = Duty cycle
$\mathrm{V}_{\mathrm{S}}=$ Supply voltage .

Transition power dissipation arises in the totem-pole configuration (TC446X) because the output stage N -channel and P-channel MOS transistors are ON simultaneously for a very short period when the output changes. The transition power dissipation is approximately:

$$
P_{T}=f V_{S}\left(10 \times 10^{-9}\right)
$$

Package power dissipation is the sum of load, quiescent and transition power dissipations. An example shows the relative magnitude for each term:

$$
\begin{aligned}
C & =1000 \mathrm{pF} \text { capacitive load } \\
V_{S} & =15 \mathrm{~V} \\
\mathrm{D} & =50 \% \\
f & =200 \mathrm{kHz} \\
\mathrm{P}_{\mathrm{D}} & =\text { Package Power Dissipation }=\mathrm{P}_{\mathrm{L}}+\mathrm{P}_{\mathrm{Q}}+\mathrm{P}_{\mathrm{T}} \\
& =45 \mathrm{~mW}+35 \mathrm{~mW}+30 \mathrm{~mW}=110 \mathrm{~mW} .
\end{aligned}
$$

Maximum operating temperature:
$T_{J}-\theta_{J A}\left(P_{D}\right)=141^{\circ} \mathrm{C}$,
where: $T_{J}=$ Maximum allowable junction temperature $\left(+150^{\circ} \mathrm{C}\right)$
$\theta_{\mathrm{JA}}=$ Junction-to-ambient thermal resistance ($83.3^{\circ} \mathrm{C} / \mathrm{W}$) 14-pin plastic package.

NOTE: Ambient operating temperature should not exceed $+85^{\circ} \mathrm{C}$ for "EJD" device or $+125^{\circ} \mathrm{C}$ for "MJD" device.

Figure 1 Switching Time Test Circuit

POWER LOGIC CMOS

 QUAD DRIVERSTC4437/8/9 TC4467/8/9 TC4457/8/9 TC4487/8/9

CHARACTERISTICS CURVES

Rise Time vs Supply Voltage
(TC446X, TC448X)

Rise Time vs Capacitive Load (TC446X, TC448X)

Rise/Fall Times vs Temperature

Fall Time vs Supply Voltage (TC443X, TC445X, TC446X)

Fall Time vs Capacitive Load (TC443X, TC445X, TC446X)

CHARACTERISTICS CURVES (Cont.)

Quiescent Supply Current vs Supply Voltage

High-State Output Resistance
(TC446X, TC448X)

Propagation Delay Times vs Temperature

Quiescent Supply Current vs Temperature

Low-State Output Resistance (TC443X, TC445X, TC446X)

SUPPLY CURRENT CHARACTERISTICS (Load on Single Output Only)

Supply Current vs Capacitive Load
(TC446X)

Supply Current vs Capacitive Load
(TC446X)

Supply Current vs Frequency (TC446X)

Supply Current vs Frequency (TC446X)

Supply Current vs Frequency
(TC446X)

TC4437/8/9 TC4457/8/9 TC4467/8/9 TC4487/8/9

TYPICAL APPLICATIONS

TYPICAL APPLICATIONS (Cont.)

NOTES

ヘNTELEDYNE
 COMPONENTS

CURRENT-SENSING, 6 AMP POWER MOSFET DRIVER

FEATURES

- Complete Fault-Sensing Power Driver
- High Peak Output Current Driver
- Comparator
- Latch
- High Peak Output Current 6A
- Matched Rise and Fall Times
- High Capacitive Load Drive Capability 2500 pF in 25 ns
- Output Swing to within 25 mV of DGND or V_{DD}
- Low Output Impedance. 2.5Ω
- Fast Comparator 170 ns typ
- Precision Comparator Threshold ... $100 \mathrm{mV} \pm 10 \mathrm{mV}$
- Latch Status Output
- Tough CMOS ${ }^{\text {™ }}$ Construction
- Logic Input Will Withstand Negative Swing Up to -5V
- Latch-up Protected: Will Withstand > 1.5A Reverse Output Current
- Logic High Input, Any Supply Voltage 2.4V to $V_{D D}$
- Low Supply Current
— With Logic '1' Input .. 6 mA
— With Logic ‘0' Input .. 3 mA

FUNCTIONAL DIAGRAM

NOTE: PIN NUMBERS SHOWN FOR 14-PIN DIP.

CURRENT-SENSING, 6 AMP POWER MOSFET DRIVER

TC4460 TC4462 TC4461 TC4463

GENERAL DESCRIPTION

The TC4460/4461/4462/4463 are high speed CMOS drivers which incorporate a comparator input to terminate the output pulse. These devices are ideal for driving power MOSFETS, such as SENSEFETS ${ }^{\circledR}$, which include a separate output which mirrors drain current.

The TC4460 devices consist of a power driver, comparator, and latch. In normal operation the device operates as a power driver with a 6 A peak current totem-pole output. When the comparator threshold is exceeded, the latch is set and the output turns off. The output will not turn on again until the latch is reset. A 'LOCK' output is provided to signal that the output is disabled.

The TC4460 is ideal for applications which require fast response to an overload condition, such as PWM motor drive circuits. The response time is enhanced because the overload indication does not have to propagate through the control loop circuitry. Instead, the comparator directly monitors the SENSEFET current and turns off the driver output. The comparator delay is typically only 170 ns .

The comparator threshold is set internally at 100 mV $\pm 10 \mathrm{mV}$. In most applications the comparator threshold will be referenced to analog ground, but the comparator common mode range extends from 0 V to 3 V .

With a comparator threshold of only 100 mV , low value resistors can be used to monitor the SENSEFET's current. Low impedances maximize the SENSEFET linearity, as well as improving response time and reducing noise.

The totem-pole output will sink or source 6 A peak current, with an output impedance of 2.5Ω. Output swing is to within 25 mV of either supply rail, which ensures that a power MOSFET will be turned fully ON or fully OFF. Rise and fall times are only 25 ns with a 2500 pF load. Maximum load capacitance is essentially limited by package power dissipation.

The TC4460/4461/4462/4463 are built with Teledyne Component's Tough CMOS ${ }^{\text {TM }}$ process. Digital inputs are protected from noise spikes up to 5 V below ground, while the output will accept up to 1.5 A of reverse current (of either polarity) without damage.

ORDERING INFORMATION

$\left.\begin{array}{llllrr}\hline \text { Part No. } & \begin{array}{c}\text { Output } \\ \text { Polarity }\end{array} & \begin{array}{c}\text { Reset } \\ \text { Polarity }\end{array} & \text { Package }\end{array} \quad \begin{array}{r}\text { Temp } \\ \text { Range }\end{array}\right]$

PIN CONFIGURATIONS

NOTE: DUPLICATE PINS MUST BOTH BE CONNECTED FOR PROPER OPERATION. NC = NO INTERNAL CONNECTION
ABSOLUTE MAXIMUM RATINGSSupply Voltage, Digital and Analog.......................... 22 V
Input Voltage, Pins 1 and 2 $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ to GND-5.0V
Input Voltage,Pins 5 and 6
$\qquad$$\mathrm{Vs}^{+}+0.3 \mathrm{~V}$ to Analog GND -0.3 V
Maximum Chip Temperature $+150^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $+300^{\circ} \mathrm{C}$
Package Thermal Resistance
CerDIP R ${ }_{8 /-A}$ $150^{\circ} \mathrm{C} / \mathrm{W}$
CerDIP R $\mathrm{R}_{8-\mathrm{c}}$ $55^{\circ} \mathrm{C} / \mathrm{E}$
PDIP R $\mathrm{R}_{8,-A}$ $125^{\circ} \mathrm{C} / \mathrm{W}$
PDIP R $\mathrm{R}_{1-\mathrm{C}}$ $.45^{\circ} \mathrm{C} / \mathrm{W}$
SOIC R R $_{8,-A}$ $250^{\circ} \mathrm{C} / \mathrm{W}$
SOIC R R $75^{\circ} \mathrm{C} / \mathrm{W}$
Operating Temperature Range
C Device $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
E Device $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
M Device $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Power Disipation
Plastic DIP 1000 mW
CerDIP 800 mW
SOIC 500 mW

Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to Absolute Maximum Rating Conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS: $T_{A}=+25^{\circ} \mathrm{C}$ with $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 18 \mathrm{~V}$, unless otherwise specified.

Symbol	Parameter	Test Conditions	Min	Typ	Max	Units
Input						
V_{IH}	Logic 1 High Input Voltage		2.4	-	-	V
$\mathrm{V}_{\text {IL }}$	Logic 1 Low Input Voltage		-	-	0.8	V
IN	Input Current	$\mathrm{OV} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{DD}}$	-10	-	10	$\mu \mathrm{A}$
Output						
V_{OH}	High Output Voltage		$\mathrm{V}_{\text {DD }}-0.025$	-	-	V
$\mathrm{V}_{\text {OL }}$	Low Output Voltage		-	-	0.025	V
R_{0}	Output Resistance, High	$\mathrm{l}_{\text {OUT }}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=18 \mathrm{~V}$	-	2.2	2.8	Ω
R_{0}	Output Resistance, Low	$\mathrm{l}_{\text {OUT }}=10 \mathrm{~mA}, \mathrm{~V}_{\text {DD }}=18 \mathrm{~V}$	-	1.9	2.5	Ω
IPK	Peak Output Current		-	6	-	A
IREV	Latch-Up Protection Withstand Reverse Current	$\begin{aligned} & \text { Duty Cycle } \leq 2 \% \\ & \mathrm{t} \leq 300 \mu \mathrm{~s} \end{aligned}$	1.5	-	-	A

Switching Time (Note 1)

t_{R}	Rise Time	Figure $1, \mathrm{C}_{\mathrm{L}}=2500 \mathrm{pF}$	-	21	25	ns
t_{F}	Fallime	Figure $1, \mathrm{C}_{\mathrm{L}}=2500 \mathrm{pF}$	-	21	25	ns
$\mathrm{t}_{\mathrm{D} 1}$	Delay Time	Figure $1, \mathrm{C}_{\mathrm{L}}=2500 \mathrm{pF}$	-	65	75	ns
$\mathrm{t}_{\mathrm{D} 2}$	Delay Time	Figure $1, \mathrm{C}_{\mathrm{L}}=2500 \mathrm{pF}$	-	65	75	ns

Comparator (Note 1)

lin_{+}	Comparator Input Bias Current (Plus)		-	-	1	$\mu \mathrm{A}$
$1{ }_{1 / 2}$	Comparator Input Bias Current (Minus)		-	-	150	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OS }}$	Comparator Offset		90	-	110	mV
$\mathrm{V}_{\text {CMR }}$	Comparator Common Mode Range		0	-	3	V
$\mathrm{T}_{\text {CDO }}$	Comparator Delay to V ${ }_{\text {Out }}$	25 mV Overdrive	-	170	200	ns
$T_{\text {cDL }}$	Comparator Delay to LOCK	25 mV Overdrive	-	170	200	ns
T RDL	Reset Delay to $\overline{\text { LOCK }}$		-	70	100	ns
$T_{\text {RDO }}$	Reset Delay to Output		-	90	120	ns
$\mathrm{V}_{\text {IHL }}$	Latch Input High	Pin 2, RESET	2.4	-		V
$\mathrm{V}_{\text {ILL }}$	Latch Input Low	Pin 2, RESET	-	-	0.8	V
Power Supply						
Is	Power Supply Current	$\mathrm{V}_{\mathrm{IN}}=3 \mathrm{~V}$ (Both Inputs) $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ (Both Inputs)		$\begin{aligned} & 3.5 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 6 \\ & 3 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$

NOTES: 1. Switching times guaranteed by design.

ELECTRICAL CHARACTERISTICS: Over operating temperature range with $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=18 \mathrm{~V}$, unless otherwise specified.

Symbol	Parameter	Test Conditions	Min	Typ	Max	Units
Input						
$\mathrm{V}_{\text {IH }}$	Logic 1 High Input Voltage		2.4	-	-	V
V_{IL}	Logic 1 Low Input Voltage		-	-	0.8	V
IN	Input Current	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{DD}}$	-10	-	10	$\mu \mathrm{A}$
Output						
V_{OH}	High Output Voltage		$\mathrm{V}_{\mathrm{DD}}-0.025$	-	-	V
$\mathrm{V}_{\text {OL }}$	Low Output Voltage		-	-	0.025	V
R_{0}	Output Resistance, High	lout $=10 \mathrm{~mA}, \mathrm{~V}_{\text {DD }}=18 \mathrm{~V}$	-	2.8	5	Ω
Ro	Output Resistance, Low	l OUT $=10 \mathrm{~mA}, \mathrm{~V}_{\text {DD }}=18 \mathrm{~V}$	-	3.5	5	Ω
Pr	Peak Output Current		-	6	-	A
IREV	Latch-Up Protection Withstand Reverse Current	$\begin{aligned} & \text { Duty Cycle } \leq 2 \% \\ & t \leq 300 \mu \mathrm{~s} \end{aligned}$	1.5	-	-	A
Switching Time (Note 1)						
t_{R}	Rise Time	Figure 1, $\mathrm{C}_{\mathrm{L}}=2500 \mathrm{pF}$	-	30	35	ns
tF	FallTime	Figure 1, $\mathrm{C}_{\mathrm{L}}=2500 \mathrm{pF}$	-	30	35	ns
$t_{\text {D1 }}$	Delay Time	Figure 1, $\mathrm{C}_{\mathrm{L}}=2500 \mathrm{pF}$	-	80	90	ns
$\mathrm{t}_{\mathrm{D} 2}$	Delay Time	Figure 1, $\mathrm{C}_{\mathrm{L}}=2500 \mathrm{pF}$	-	80	90	ns
Comparator (Note 1)						
liN_{+}	Comparator Input Bias Current (Plus)		-	-	1	$\mu \mathrm{A}$
IN-	Comparator Input Bias Current (Minus)		-	-	150	$\mu \mathrm{A}$
$\bar{V}_{\text {OS }}$	Comparator Offset		85	-	115	mV
$\mathrm{V}_{\text {CMR }}$	Comparator Common Mode Range		0	-	3	V
$T_{\text {CDO }}$	Comparator Delay to V ${ }_{\text {OUT }}$	25 mV Overdrive	-	150	280	ns
$\mathrm{T}_{\text {CDL }}$	Comparator Delay to LOCK	25 mV Overdrive	-	150	280	ns
T RDL	Reset Delay to $\overline{\text { LOCK }}$		-	70	140	ns
TRDO	Reset Delay to Output		-	90	160	ns
$\mathrm{V}_{\text {IHL }}$	Latch Input High	Pin 2, RESET	2.4	-		V
$\mathrm{V}_{\mathrm{ILL}}$	Latch Input Low	Pin 2, RESET	-	-	0.8	V
Power Supply						
Is	Power Supply Current	$\mathrm{V}_{\mathrm{IN}}=3 \mathrm{~V}$ (Both Inputs) $\mathrm{V}_{\mathrm{IN}}=\mathrm{OV}$ (Both Inputs)	—	$\begin{aligned} & 3.5 \\ & 2.8 \end{aligned}$	$\begin{gathered} 6 \\ 3.0 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$

NOTES: 1. Switching times guaranteed by design.

SWITCHING TIME TEST CIRCUIT

INVERTING DRIVER

NONINVERTING DRIVER

POWER CMOS DRIVERS WITH VDD TRIPLER

FEATURES

- Power driver with on Board Voltage Tripler
- Low IDD < 2.0 mA
- Small Package - 8 Pin PDIP
- Under voltage Circuitry
- Fast Rise-Fall Time < 50 ns @ 1000pF
- Below Rail Input Protection

GENERAL DESCRIPTION

The TC4626/4627 are single CMOS high speed drivers with an on board voltage tripler. Three external capacitors are required for the voltage tripler function. The part works with input supply voltages from 2.6 volts to 6 volts depending on the exact load requirements. An internal undervoltage lockout circuit keeps the driver section disenabled while the voltage at $\mathrm{V}_{\text {DRIVE }}$ remains below 9 volts.

FUNCTIONAL DIAGRAM

NOTE: Pin numbers correspond to 8 -pin package

POWER CMOS DRIVERS WITH VDD TRIPLER

TC4626
TC4627

ORDERING INFORMATION

Part No.	Package
TC4626MJA	8 -Pin CerDIP
TC4627MJA	8 -Pin CerDIP
TC4626EPA	8 -Pin PDIP
TC4627EPA	8 -Pin PDIP
TC4626EOE	$16-$ Pin SOIC
TC4627EOE	$16-$ Pin SOIC
TC4626CPA	8 -Pin PDIP
TC4627CPA	8 -Pin PDIP
TC4626COE	$16-$ Pin SOIC
TC4627COE	$16-$ Pin SOIC

ABSOLUTE MAXIMUM RATINGS

Power Dissipation PDIP 500 mW
CerDIP 800 mW
Derating Factor
PDIP

\qquad
$5.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ Above $36^{\circ} \mathrm{C}$

CerDIP $6.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Supply Voltage18 V
Input Voltage, Any Terminal $\ldots \mathrm{V}_{\mathrm{s}}+0.3 \mathrm{~V}$ to GND - 0.3 VOperating Temperature: M Version $\ldots-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$E Version $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$C Version $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Maximum Chip Temperature $+150^{\circ} \mathrm{C}$
Storage Temperature $-60^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (10 sec) $+300^{\circ} \mathrm{C}$

PIN CONFIGURATIONS

POWER CMOS DRIVERS WITH VDD TRIPLER

TC4626
TC4627
ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C} \quad \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \quad \mathrm{C}_{1}=\mathrm{C}_{2}=\mathrm{C}_{3} 10 \mu \mathrm{~F}\right.$ unless otherwise specified.)

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
Driver Input						
$\mathrm{V}_{\text {H }}$	Logic 1, Input Voltage		2.4	-	-	V
V_{IL}	Logic 0 , Input Voltage		-	-	0.8	V
I_{IN}	Input Current	$0 \mathrm{~V} \leqslant \mathrm{~V}_{\text {IN }} \leqslant \mathrm{V}_{\text {DRIVE }}$	-1	-	1	$\mu \mathrm{~A}$

Driver Output

$\mathrm{V}_{\text {OH }}$	High Output Voltage		$\mathrm{V}_{\text {DRIVE }}-0.025$	-	-	V
V_{ol}	Low Output Voltage		-	-	0.025	V
R_{0}	Output Resistance	$\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}$	-	10	15	Ω
		$\begin{aligned} & I_{\text {OUT }}=10 \mathrm{~mA}, \mathrm{~V}_{\text {DD }}=5 \mathrm{~V} \\ & V_{\text {IN }}=3 \mathrm{~V} \\ & \mathrm{I}_{\text {OUT }}=10 \mathrm{~mA}, \mathrm{~V}_{\text {DD }}=5 \mathrm{~V} \end{aligned}$	-	6	10	Ω
	Peak Output Current		-	1.5	-	A

Switching Time

t_{R}	Rise Time	Test Figure 1,2	-	-	40	ns
t_{F}	Fall Time	Test Figure 1,2	-	-	40	ns
$\mathrm{t}_{\mathrm{D} 1}$	Delay Time	Test Figure 1,2	-	-	40	ns
$\mathrm{t}_{\mathrm{D} 2}$	Delay Time	Test Figure 1,2	-	-	40	ns
$\mathrm{F}_{\text {MAX }}$	Maximum Switching Frequency	$\begin{gathered} \text { Test Figure } 1 \\ V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{\text {DRIVE }}>10 \mathrm{~V} \end{gathered}$	1.0	-	-	MHz
R_{3}	Voltage Tripler Output Source Resistance	$\mathrm{I}_{\mathrm{L}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}$	-	220	400	Ω
R_{2}	Voltage Doubler Output Source Resistance		-	120	200	Ω
$\mathrm{F}_{\text {osc }}$	Oscillator Frequency		12	-	28	KHz
$V_{\text {osc }}$	Oscillator Amplitude Measured at C1-	$\mathrm{R}_{\text {LOAD }}=10 \mathrm{~K} \Omega$	4.5	-	-	V
UV	Undervoltage Threshold	@ $\mathrm{V}_{\text {DRIVE }}$	8.5	9	9.5	V
$\mathrm{V}_{\text {Stait }}$	Start Up Voltage	@ $\mathrm{V}_{\text {DRIVE }}$	10.5	11	11.5	V
$V_{\text {drive }}$	$@ V_{D D}=5 \mathrm{~V}$	No Load	14.7	-	-	V

Power Supply

I_{DD}	Power Supply Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{LOW}$ or HIGH	-	-	2
$\mathrm{~V}_{\mathrm{DD}}$	Supply Voltage	mA			

TC4626

TC4627

SWITCHING TIME TEST CIRCUITS

Figure 1. Inverting Driver Switching Time

Figure 2. Non-Inverting Driver Switching Time

Section 7

References

	Display A/D Converters	1
Voltage-to-Frequency/Frequency-to-Voltage Converters	3	
Sensor Products	4	
Power Supply Control ICs	5	
Power MOSFET, Motor and PIN Drivers	6	
References	$\mathbf{7}$	
Chopper-Stabilized Operational Amplifiers	8	
High Performance Amplifiers/Buffers	9	
Video Display Drivers	10	
Display Drivers	11	
Analog Switches and Multiplexers	12	
Data Communications	13	
Discrete DMOS Products	14	
Reliability and Quality Assurance	15	
Ordering Information	16	
Package Information	17	
Sales Offices	18	

LOW POWER, BAND-GAP VOLTAGE REFERENCES

FEATURES

■
Temperature Coefficient \qquad $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$

- Wide Operating Current Range TC04 $15 \mu \mathrm{~A}$ to 20 mA TC05 $20 \mu \mathrm{~A}$ to 20 mA
- Dynamic Impedance1Ω
- Output Tolerance
2\%
- Output Voltage Option

TC04 ...1.25V
TC05 .2.5V
TO-92 Plastic or TO-52 Hermetic Packages

- 8-Pin Plastic Small Outline (SO) Package

GENERAL DESCRIPTION

The TC04 (1.25V output) and TC05 (2.5V output) bipolar, two-terminal, band-gap voltage references offer precision performance without premium price. These devices do not require thin-film resistors, greatly lowering manufacturing complexity and cost.

A $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ output temperature coefficient and $15 \mu \mathrm{~A}$ to 20 mA operating current range make these devices attractive multimeter, data acquisition converter, and telecommunication voltage references.

APPLICATIONS

- ADC and DAC Reference
- Current Source Generation
- Threshold Detectors
- Power Supplies
- Multimeters

PIN CONFIGURATIONS

ORDERING INFORMATION

Voltage		Temperature Range		
	Max Temperature Coefficient	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \text { TO- } 52 \\ \text { Package } \end{gathered}$	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \text { TO-92 } \\ \text { Package } \end{gathered}$	$0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}$ Surface Mount Package
1.25 V	$50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	TC04AMRM	TC04ACZM	TC04ACOA
1.25 V	$100 \mathrm{ppm}^{\circ} \mathrm{C}$	TC04BMRM	TC04BCZM	TC04BCOA
2.5 V	$50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	TC05AMRM	TC05ACZM	TC04ACOA
2.5 V	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	TC05BMRM	TC05BCZM	TCO5BCOA

ABSOLUTE MAXIMUM RATINGS

Forward Current	$+10 \mathrm{~mA}$
Reverse Current	+30 mA
Storage Temperature Range	- $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	
TO-92 Package	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TO-52 Package	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
COA Surface Mount Pac	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Lead Temperature (Soldering, 10 sec)
TO-92 Package ... $260^{\circ} \mathrm{C}$
COA Surface Mount Package $+260^{\circ} \mathrm{C}$
Power DissipationLimited by Forward/
Reverse Current
Functional operation above the absolute maximum stress ratings is not implied.

ELECTRICAL CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise specified.

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
$V_{B R}$	Reverse Breakdown Voltage TC04 TC05	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$	$\begin{aligned} & 1.24 \\ & 2.45 \end{aligned}$	$\begin{aligned} & 1.26 \\ & 2.50 \end{aligned}$	$\begin{aligned} & 1.28 \\ & 2.60 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\overline{D V} V_{B R}$	Reverse Breakdown Voltage Change TC04	$15 \mu \mathrm{~A}<I_{\mathrm{R}}<20 \mathrm{~mA}$	-	10	20	mV
		$20 \mu \mathrm{~A}<\mathrm{I}_{\mathrm{R}}<1 \mathrm{~mA}$	-	0.25	1	mV
	TC05	$20 \mu \mathrm{~A}<I_{\mathrm{R}}<20 \mathrm{~mA}$	-	10	20	mV
		$25 \mu \mathrm{~A}<\mathrm{I}_{\mathrm{R}}<1 \mathrm{~mA}$	-	0.25	1	mV
TC	Temperature Coefficient TC04A/TC05A TC04B/TC05B	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$	-	$\begin{aligned} & 0.003 \\ & 0.003 \end{aligned}$	$\begin{gathered} 0.005 \\ 0.01 \end{gathered}$	$\begin{aligned} & \% /{ }^{\circ} \mathrm{C} \\ & \% /{ }^{\circ} \mathrm{C} \end{aligned}$
$\overline{\mathrm{I}}$	Reverse Current TCO4		0.015	-	20	mA
	TC05		0.020	-	20	mA

VOLTAGE REFERENCE CIRCUITS FOR SYSTEM DATA CONVERTERS

RESPONSE TIME TEST CIRCUIT

TYPICAL APPLICATIONS

TYPICAL CHARACTERISTICS CURVES

Section 8

Chopper-Stabilized Operational Amplifiers

	Display A/D Converters	1
Voltage-to-Frequency/Frequency-to-Voltage Converters	3	
Sonsor Products	4	
Power MOSFET, Motor and PIN Drivers	6	
References	7	
Chopper-Stabilized Operational Amplifiers	$\mathbf{8}$	
High Performance Amplifiers/Buffers	9	
Video Display Drivers	10	
Display Drivers	11	
Anaiog Switches and Multiplexers	12	
Data Communications	13	
Discrete DMOS Products	14	
Reliability and Quality Assurance	15	
Ordering Information	16	
Package Information	17	
Sales Offices	18	

LOW POWER, CHOPPER-STABILIZED OPERATIONAL AMPLIFIER

FEATURES

- Low Power Dissipation

\qquad
.2 mW

- Low Power Supply Current $140 \mu \mathrm{~A}$
- Low-Input Offset Voltage \qquad $5 \mu \mathrm{~V}$ Max
- Low-Input Offset Voltage Drift $0.05 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ Max
- High-Impedance Differential CMOS Inputs ... $10^{12} \Omega$
- High Open-Loop Voltage Gain 120 dB Min
- Low Input Noise Voltage $0.3 \mu \mathrm{~V}_{\text {P-p }}$
■ High Slew Rate..0.2 V/ I s
- Unity-Gain Stable
- Available in 8-Pin DIP and SO

GENERAL DESCRIPTION

The TC900 is a low power, precision operational amplifier. Its $200 \mu \mathrm{~A}$ maximum supply current reduces device power requirements over 15 times, compared to 7650 devices.

Offset voltage is a low $5 \mu \mathrm{~V}$ with drift at $0.05 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. Input offset voltage (V_{OS}) errors are removed and adjustment potentiometers are not necessary. The chopper-stabilized error-correction technique keeps offset voltage errors near zero throughout the device's operating temperature range.

The TC900 performance advantages are achieved without additional manufacturing complexity and costs incurred with laser or "zener zap" $V_{O S}$ trim techniques. The TC900 is one of the lowest cost, low power, precision operational amplifiers available.

The TC900 nulling scheme corrects both DC V V_{OS} errors and $V_{O S}$ drift errors with temperature. A nulling amplifier alternately corrects its own $V_{\text {OS }}$ errors and the main amplifier $V_{\text {OS }}$ errors. Offset-nulling voltages are stored on two usersupplied external capacitors. The capacitors connect to the internal amplifier $V_{\text {OS }}$ null points. The main amplifier input signal is never switched. The nulling scheme keeps $V_{O S}$

FUNCTIONAL DIAGRAM

LOW POWER, CHOPPER-STABILIZED OPERATIONAL AMPLIFIER

TC900

errors low throughout the operating temperature range. Laser and "zener zap" trimming can correct for $V_{O S}$ at only one temperature.

The nulling-circuit oscillator and control circuits are integrated on-chip. Only two external V_{OS} error storage capacitors are required. The TC900 operates as a conventional operational amplifier with vastly improved input specifications. The low V_{OS} and V_{OS} drift errors make the

TC900 ideal for thermocouple, thermistor, and strain gauge applications. Low DC errors and high open-loop gain make the TC900 an excellent preamplifier for precision analog-todigital converters, such as the TC7135, TC850 and TC7109A.

The 14-pin package has an external oscillator input to drive the nulling circuitry. Both the 8-pin and 14-pin packages have an output voltage clamp circuit to minimize overload recovery time.

PIN CONFIGURATIONS

ORDERING INFORMATION

Part No.	Package	Temperature Range	Maximum Vos	Maximum Supply Current
TC900ACPA	8-Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mu \mathrm{~V}$	$200 \mu \mathrm{~A}$
TC900ACOA	8-Pin SO	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mu \mathrm{~V}$	$200 \mu \mathrm{~A}$
TC900AIJA	8-Pin CerDIP	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mu \mathrm{~V}$	$200 \mu \mathrm{~A}$
TC900ACPD	14-Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mu \mathrm{~V}$	$200 \mu \mathrm{~A}$
TC900AIJD	14-Pin CerDIP	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mu \mathrm{~V}$	$200 \mu \mathrm{~A}$
TC900BCPA	8-Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$15 \mu \mathrm{~V}$	$400 \mu \mathrm{~A}$
TC900BCOA	8-Pin SO	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$15 \mu \mathrm{~V}$	$400 \mu \mathrm{~A}$
TC900BIJA	8-Pin CerDIP	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$15 \mu \mathrm{~V}$	$400 \mu \mathrm{~A}$
TC900BCPD	14-Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$15 \mu \mathrm{~V}$	$400 \mu \mathrm{~A}$
TC900BIJD	14-Pin CerDIP	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$15 \mu \mathrm{~V}$	$400 \mu \mathrm{~A}$

Operating Temperature Range
 C Device $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
 I Device ... $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Package Power Dissipation ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)
 \qquad .500 mW

Static-sensitive device. Unused devices must be stored in conductive material to protect them from possible static damage. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS: $\mathrm{V}_{\mathrm{S}^{+}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}^{-}}=-5 \mathrm{~V}, \mathrm{C}_{\mathrm{A}}=\mathrm{C}_{\mathrm{B}}=0.1 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions	TC900A			TC900B			Unit
			Min	Typ	Max	Min	Typ	Max	
Input									
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage		-	-	5	-	-	15	$\mu \mathrm{V}$
TCV ${ }_{\text {OS }}$	Input Offset Voltage vs Temperature Coefficient	Operating Temperature Range (Note 1)	-	0.02	0.05	-	0.1	0.3	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$I_{\text {BIAS }}$	Average Input Bias Current (Note 5)	$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+70^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+85^{\circ} \mathrm{C} \end{aligned}$	—	-	$\begin{gathered} 50 \\ 70 \\ 100 \end{gathered}$	-	-	$\begin{gathered} 80 \\ 100 \\ 140 \end{gathered}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{pA} \\ & \mathrm{pA} \\ & \hline \end{aligned}$
los	Input Offset Current	$T_{A}=+25^{\circ} \mathrm{C}$	-	0.5	-	-	0.5	-	pA
e_{N}	Input Noise Voltage	$\begin{aligned} & \mathrm{R}_{\mathrm{S}}=100 \Omega, 0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz} \\ & \mathrm{R}_{\mathrm{S}}=100 \Omega, 0.1 \text { to } 1 \mathrm{~Hz} \end{aligned}$	-	$\begin{gathered} 4 \\ 0.3 \end{gathered}$	-	-	$\begin{gathered} 4 \\ 0.3 \end{gathered}$	-	$\begin{aligned} & \mu \mathrm{V}_{\text {P-P }} \\ & \mu \mathrm{V}_{\text {P-P }} \end{aligned}$
RIN	Input Resistance		-	10^{12}	-	-	10^{12}	-	Ω
CMVR	Common-Mode Voltage Range		$\mathrm{V}^{-}{ }^{-}$	-	$\mathrm{V}^{+}-2$	V^{-}	-	$\mathrm{V}^{+}-2$	V
CMRR	Common-Mode Rejection Ratio	CMVR $=-5 \mathrm{~V}$ to +2 V	110	130	--	100	-	-	dB
Output									
A_{V}	Large-Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	120	130	-	100	-	-	dB
V OUT	Output Voltage Swing (Note 3)	$\begin{aligned} & R_{L}=10 \mathrm{k} \Omega \\ & R_{L}=100 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & -4.7 \\ & -4.9 \\ & \hline \end{aligned}$	-	$\begin{array}{r} +3.5 \\ +3.9 \end{array}$	$\begin{aligned} & -4.7 \\ & -4.9 \end{aligned}$	-	$\begin{array}{r} +3.5 \\ +3.9 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
	Clamp ON Current (Note 2)	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$	20	90	200	20	90	200	$\mu \mathrm{A}$
	Clamp OFF Current (Note 2)	-4 V < $\mathrm{V}_{\text {OUT }}<4 \mathrm{~V}$	-	1	-	-	1	-	pA
Dynamic									
BW	Unity-Gain Bandwidth	Unity Gain (+1)	-	0.7	-	-	0.7	-	MHz
SR	Slew Rate	$\mathrm{C}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$	-	0.2	-	-	0.2	-	$\mathrm{V} / \mu \mathrm{s}$
	Rise Time		-	0.5	-	-	0.5	-	$\mu \mathrm{s}$
	Overshoot		-	18	-	-	18	-	\%
f_{CH}	Internal Chopping Frequency	Pins 12-14 Open (14-Pin DIP)	-	150	-	-	150	-	Hz
Supply									
$\mathrm{V}_{\mathrm{S}^{+}}$to $\mathrm{V}^{-}{ }^{-}$	Operating Supply Range		4.5	-	16	4.5	-	16	V
Is	Supply Current	No Load	-	140	200	-	-	400	$\mu \mathrm{A}$
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}= \pm 3 \mathrm{~V}$ to $\pm 8 \mathrm{~V}$	120	-	-	100	-	-	dB

NOTES: 1. Operating temperature range is $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for "I" grade and $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ for " C " grade.
2. See "Output Clamp" discussion.
3. Output clamp not connected.
4. Limiting input current to $100 \mu \mathrm{~A}$ is recommended to avoid latch-up problems.
5. Average current caused by switch charge transfer at input.

LOW POWER, CHOPPER-STABILIZED OPERATIONAL AMPLIFIER

TC900

Chopper-Stabilized Operational Amplifiers

The TC900 is the first commercially-available, lowpower, chopper-stabilized amplifer. Its maximum supply current is 15 times lower than the pin-compatible TC7650. Figure 1 shows how low supply current is achieved without sacrificing offset voltage or offset voltage drift performance.

Nulling-Capacitor Connection

The offset voltage correction capacitors are connected to C_{A} and C_{B}. The common capacitor connection is made to $\mathrm{V}_{\mathrm{S}}^{-}$(pin 4) on the 8-pin device and to capacitor return ($\mathrm{C}_{\text {RET }}$, pin 8) on the 14-pin device. The common connection should be made through a separate PC trace or wire to avoid voltage drops. Internally, $\mathrm{V}_{\mathrm{S}}{ }^{-}$is connected to $\mathrm{C}_{\text {RET }}$. (See

Clock Operation

The internal oscillator is set for a 150 Hz nominal chopping frequency. With the 14-pin device, the 150 Hz internal chopping frequency is available at the INTERNAL CLOCK OUTPUT (pin 12). A 300 Hz nominal signal will be present at the EXTERNAL CLOCK INPUT pin (pin 13) with INT/EXT high or open. This is the internal clock signal before a divide-by-two operation.

The 14-pin device can be driven by an external clock. The INT/EXT input (pin 14) has an internal pull-up and may be left open for internal clock operation. If an external clock is used, INT/EXT must be tied to $\mathrm{V}_{S^{-}}(\operatorname{pin} 7)$ to disable the internal clock. The external clock signal is applied to the external clock input. Figure 2.)

LOW POWER, CHOPPER-STABILIZED OPERATIONAL AMPLIFIER

TC900

Figure 2. Nulling Capacitor Connection

The external clock amplitude should swing between $\mathrm{V}_{\mathrm{S}^{+}}$ and ground for power supplies up to $\pm 6 \mathrm{~V}$, and between $\mathrm{V}_{\mathrm{S}^{+}}$ and $\mathrm{V}_{S^{+}}-6 \mathrm{~V}$ for higher supply voltages.

At low frequencies, the external-clock duty cycle is not critical, since an internal divide-by-two gives the desired 50% switching duty cycle. The offset storage correction capacitors are charged only when the external clock input is high. A 50% to 80% external-clock positive duty cycle is desired for frequencies above 500 Hz to guarantee transients settle before the internal switches open.

The external clock input can also be used as a strobe input. If a strobe signal is connected at the external clock input, so that it is low during the time an overload signal is applied, neither capacitor will be charged. Leakage currents

Output Clamp

Chopper-stabilized systems can show long overload recovery times. If the output is driven to either supply rail, output saturation occurs; the inputs are no longer held at a "virtual ground." The V_{OS} null circuit treats the differential signal as an offset and tries to correct it by charging the external capacitors. The nulling circuit also saturates. Once the input signal returns to normal, the response time is lengthened by the long recovery time of the nulling amplifier and external capacitors.

Through an external clamp connection, the TC900 eliminates the overload recovery problem by reducing the feedback network gain before the output voltage reaches either supply rail.

The output clamp circuit is shown in Figure3, withtypical inverting and noninverting circuit connections shown in Figures 4 and 5. Output voltage versus clamp circuit current

Figure 3. Internal Clamp Circuit

Figure 4. Noninverting Amplifier With Optional Clamp

Figure 5. Inverting Amplifier With Optional Clamp
characteristics are shown in the typical operating curves. For the clamp to be fully effective, the impedance across the clamp output should be $>100 \mathrm{k} \Omega$.

LOW POWER, CHOPPER-STABILIZED OPERATIONAL AMPLIFIER

TC900

Static Protection

All device pins are static-protected. However, strong static fields and discharges should be avoided, as they can degrade diode junction characteristics and increase inputleakage currents.

Many companies are actively involved in providing services, educational materials, and supplies to aid electronic manufacturers in establishing "static safe" work areas where CMOS components are handled. Two such companies are:

\author{

- 3M
 Static Control Systems Division 223-25W EM Center
 St. Paul, MN 55101
 (800) 792-1072
}
- Semtronics
P.O. Box 592

Martinsville, NJ 08836
(210) 561-9520

Input Bias Current

The TC900 inputs are never disconnected from the main internal amplifier. The null amplifier samples the input offset voltage and corrects DC errors and drift by storing compensating voltages on external capacitors. However, the sampling causes charge transfer at the inputs. The charge transfer represents a peak impulse current of 200 nA to 290 nA at the inputs when the internal clock makes a transition.

Latch-Up Avoidance

Junction-isolated CMOS circuits inherently include a parasitic 4-layer (p-n-p-n) structure which has characteristics similar to an SCR. Under certain circumstances, this junction may be triggered into a low-impedance state, resulting in excessive supply current. To avoid this condition, voltages greater than 0.3 V beyond the supply rails should not be applied to any pin. In general, the amplifier supplies must be established at the same time (or before) any input signals are applied. If this is not possible, the drive circuits must limit input current flow to under 0.1 mA to avoid latchup.

Thermoelectric Potentials

Precision DC measurements are ultimately limited by thermoelectric potentials developed in thermocouple junctions of dissimilar metals, alloys, silicon, etc. Unless all
junctions are at the same temperature, thermoelectric voltages, typically around $0.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, but up to tens of $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ for some materials, will be generated. In order to realize the benefits extremely low offset voltages provide, it is essential to take special precautions to avoid temperature gradients. All components should be enclosed to eliminate air movements, especially those caused by power-dissipating elements in the system. Low thermoelectric-coefficient connections should be used where possible, and power supply voltages and power dissipation should be kept to a minimum. High-impedance loads are preferable, and separation from surrounding heat-dissipating elements is advised.

Pin Compatibility

On the 8-pin TC900, the external null storage capacitors are connected to pins 1 and 8. On most other operational amplifiers these are left open, or are used for offset potentiometer or compensation capacitor connections.

For OP05 and OP07 operational amplifiers, the replacement of the offset null potentiometer between pins 1 and 8 by two capacitors from the pins to $\mathrm{V}_{\mathrm{S}}{ }^{-}$will convert the OP05/ 07 pin configuration for TC900 operation. For LM108 devices, the compensation capacitor is replaced by the external nulling capacitors. The LM101/748/709 pinouts are modified similarly by removing any circuit connections to pin 5 . On the TC900, pin 5 is the output clamp connection. Other operational amplifiers may use this pin as an offset or compensation point.

The minor modifications needed to retrofit a TC900 to existing sockets operating at reduced power supply voltages make prototyping and circuit verification straightforward.

Component Selection

The two required capacitors, C_{A} and C_{B}, have optimum values, depending on the clock or chopping frequency. For the present internal clock, the correct value is $0.1 \mu \mathrm{~F}$. To maintain the same relationship between the chopping frequency and the nulling time constant, the capacitor values should be scaled in proportion to the external clock, if used. High-quality, film-type capacitors (such as Mylar) are preferred. Ceramic or other lower-grade capacitors may be suitable in some applications. For fast settling on initial turnon, low dielectric absorption capacitors (such as polypropylene) should be used. With ceramic capacitors, several seconds may be required to settle to microvolt levels.

LOW POWER, CHOPPER-STABILIZED OPERATIONAL AMPLIFIER

TC900

TYPICAL CHARACTERISTICS CURVES

Input Common-Mode Voltage Range
vs Supply Voltage

LOW POWER, CHOPPER-STABILIZED OPERATIONAL AMPLIFIER

TYPICAL CHARACTERISTICS CURVES (Cont.)

Slew Rate

Offset Voltage vs Common-Mode Voltage

MONOLITHIC, AUTO-ZEROED OPERATIONAL AMPLIFIER

FEATURES

Second-Generation Monolithic, Chopper-Stabilized

 Op-Amp- No External Capacitors Required
- Single-Supply Operation $\pm 15 \mathrm{~V}$ or 5 V to 32 V
- Supply Current.............................. $450 \mu \mathrm{~A}$ at 15V, Typ
- Input Offset Voltage $7 \mu \mathrm{~V}$, Typ
- Common-Mode Rejection Ratio 140 dB, Typ
- Open-Loop Gain \qquad 140 dB Into 10k Load, Typ
- Output Noise \qquad $5 \mu \mathrm{~V}$ at 10 Hz Bandwidth
- Pinout Compatible With ICL7650
- Lowest Parts Count Chopper Op-Amp

GENERAL DESCRIPTION

The TC901 is a monolithic, auto-zeroed operational amplifier. It is a second-generation design of the TC91X series, the world's first monolithic, CMOS chopper-stabilized op-amps with on-chip capacitors. This second-generation design allows use of higher supply voltages ($\pm 15 \mathrm{~V}$ or single supply 30 V), while decreasing noise.

Elimination of the external capacitors allows the designer to increase reliability, lower cost, and simplify design by lowering parts count. Substantial space savings can be realized on PC board layouts. Other chopper-stabilized opamps (such as the ICL7650/7652 and LTC1052) require external capacitors; therefore, these advantages are lost.

Since the TC901 is an auto-zeroing op-amp, input offset voltage is very low. More important, there is almost zero drift with time. This eliminates production line adjustments, as well as periodic calibration.

This device is supplied in 8-pin mini-dual-in-line and plastic SO (small outline) packages. It is pin compatible with bipolar, CMOS, JFET and chopper-stabilized op-amps using the industry-standard 741 pinout.

FUNCTIONAL DIAGRAM

NOTES: 1. *Internal capacitors; external capacitors not required.
2. Pin numbers are for 8 -pin DIP.

Notable electrical characteristics are low supply current ($450 \mu \mathrm{~A}$, typical), single-supply operation (5 V to 32 V), low input offset voltage ($7 \mu \mathrm{~V}$, typical), low noise ($<5 \mu \mathrm{~V}_{\text {P-P }}$, typical, for a 10 Hz bandwidth), and fast recovery from saturation without the use of external clamp circuitry.

Pin Compatibility

The CMOS TC901 is pin compatible with other chopperstabilized amplifiers, such as the 7650, 7652 and 1052. Amplifiers such as the 7650 require $0.1 \mu \mathrm{~F}$ external capacitors connected to pins 1 and 8. The TC901 includes the chopper capacitors on-chip, so external capacitors are not required. Since pins 1,5 and 8 of the TC901 are not connected, the TC901 can directly replace other chopperstabilized amplifiers in existing circuits.

The TC901 pinout also matches many popular bipolar and JFET op-amps, such as the OP-07, OP20, LM101, LM108, 356 and 741. In many applications that operate from $\pm 15 \mathrm{~V}$ power supplies, the TC901 offers superior electrical performance and is a functional pin-compatible replacement. Offset voltage correction potentiometers, compensation capacitors, and chopper-stabilization capacitors can be removed when retrofitting existing equipment designs. System parts count, assembly time, and system cost are reduced, while reliability and performance are improved.

ORDERING INFORMATION

Part No.	Package	Temperature Range
TC901COA	8 -Pin SO	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC901CPA	8 -Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC901IJA	8 -Pin CerDIP	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC901MJA	8 -Pin CerDIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

PIN CONFIGURATION (DIP and SO)

ABSOLUTE MAXIMUM RATINGS

Total Supply Voltage $\left(\mathrm{V}_{\mathrm{S}^{+}}\right.$to $\left.\mathrm{V}_{\mathrm{S}}{ }^{-}\right)$............................ +36 V
Input Voltage $\left(\mathrm{V}_{\mathrm{S}^{+}}+0.3 \mathrm{~V}\right)$ to $\left(\mathrm{V}^{-}-0.3 \mathrm{~V}\right)$
Current Into Any Pin .. 10 mA
While Operating ... $100 \mu \mathrm{~A}$
Storage Temperature Range- $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$
Operating Temperature Range
C Device $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
I Device .. $25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
M Device .. $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Package Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$) CerDIP 500 mW
Plastic DIP .375 mW

Static-sensitive device. Appropriate precautions should be taken when handling, shipping, or storing these devices. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the devices. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied.

ELECTRICAL CHARACTERISTICS: $\mathrm{V}_{\mathrm{S}} \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise indicated (each amplifier).

Symbol	Parameter	Test Conditions	Min	Typ	Max	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage (Figure 2)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	7	15	$\mu \mathrm{V}$
$\mathrm{V}_{\text {OS }} / \mathrm{TC}$	Average Temperature Coefficient of Input Offset Voltage	$0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C}$	-	0.05	0.15	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$I_{\text {BIAS }}$	Average Input Bias Current	$\begin{aligned} & \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{A} \leqslant+70^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{\mathrm{A}} \leqslant+85^{\circ} \mathrm{C} \end{aligned}$	-	$\begin{aligned} & 30 \\ & 0.2 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 50 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
los	Average Input Offset Current	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	50	100	PA
e_{N}	Input Voltage Noise (Figure 1B)	0.1 to $1 \mathrm{~Hz}, \mathrm{R}_{\mathrm{S}} \leqslant 100 \Omega$	-	1.2	-	$\mu \mathrm{V}_{\text {P-P }}$
e_{N}	Input Voltage Noise (Figure 1A)	0.1 to $10 \mathrm{~Hz}, \mathrm{R}_{\mathrm{S}} \leqslant 100 \Omega$	-	5	-	$\mu \mathrm{V}_{\text {P-P }}$
CMRR	Common-Mode Rejection Ratio	$\mathrm{V}_{\mathrm{S}^{-}} \leqslant \mathrm{V}_{\mathrm{CM}} \leqslant \mathrm{V}_{\mathrm{S}^{+}-2 \mathrm{~V}}$	120	140	-	dB
CMVR	Common-Mode Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	$\mathrm{V}_{\mathrm{S}}{ }^{-}$	-	$\mathrm{V}^{+}{ }^{+2}$	V
A_{OL}	Open-Loop Voltage Gain	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	120	140	-	dB
Vout	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	$\mathrm{V}_{\mathrm{S}^{-}+1}$	-	$\mathrm{V}^{+}-1.2$	V
BW	Closed-Loop Bandwidth (Figure 7)	Closed-Loop Gain $=+1$	-	0.8	-	MHz
sr	Slew Rate	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	-	2	-	$\mathrm{V} / \mu \mathrm{s}$
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	120	140	-	dB
V_{S}	Operating Supply Voltage Range	Note 1	± 3	-	± 16	V
Is	Quiescent Supply (Figure 2)	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	-	0.45	0.6	mA

NOTE: 1. Single supply operation: $\mathrm{V}_{\mathrm{S}^{+}}=+5 \mathrm{~V}$ to +32 V .

Figure 1 Input Voltage Noise

Figure $2 V_{O S}$ and $I_{D D}$ vs Supply Voltage

Overload Recovery

The TC901 recovers quickly from output saturation. Typical recovery time from positive output saturation is 20 ms. Negative output saturation recovery time is typically 5 ms .

Figure 3 Recovery From Negative Saturation

Figure 4 Recovery From Positive Saturation

Figure 5 Saturation Test Circuit

MONOLITHIC, AUTO-ZEROED OPERATIONAL AMPLIFIER

Thermocouple Errors

Heating one joint of a loop made from two different metallic wires causes current flow. This is known as the Seebeck effect. By breaking the loop, an open-circuit voltage (Seebeck voltage) can be measured. Junction temperature and metal type determine the magnitude. Typical values are $0.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ to $10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. Thermal-induced voltages can be many times larger than the TC901's offset voltage drift. Unless unwanted thermocouple potentials can be controlled, system performance will be less than optimum.

Unwanted thermocouple junctions are created when leads are soldered or sockets/connectors are used. Low thermoelectric coefficient solder can reduce errors. A 60\% $\mathrm{Cd} / 40 \% \mathrm{Sn} \mathrm{Pb}$ solder has one-tenth the thermal voltage of common $64 \% \mathrm{Sn} / 36 \% \mathrm{~Pb}$ solder at a copper junction.

The number and type of dissimilar metallic junctions in the input circuit loop should be balanced. If the junctions are kept at the same temperature, their summation will add to zero-canceling errors (Figure 6).

Shielding precision analog circuits from air currents especially those caused by power dissipating components and fans - will minimize temperature gradients and minimize thermocouple-induced errors.
$\left.\begin{array}{l}J_{3}=J_{4} \\ J_{2}=J_{5}\end{array}\right\}$ NO TEMPERATURE DIFFERENTIAL
$J_{1}=J_{6}$ AND SAME METALLIC CONNECTION.

Figure 6 Unwanted Thermocouple Errors Eliminated by Reducing Thermal Gradients and Balancing Junctions

Avoiding Latch-Up

Junction-isolated CMOS circuits inherently contain a parasitic p-n-p-n transistor circuit. Voltages exceeding the supplies by 0.3 V should not be applied to the device pins. Larger voltages can turn the p-n-p-n device on, causing excessive device power supply current and excessive power dissipation. TC901's power supply should be established at the same time (or before) input signals are applied. If this is not possible, input current should be limited to $100 \mu \mathrm{~A}$ to avoid triggering the p-n-p-n structure.

Static Protection

Input pins are protected against electrostatic fields. Static handling procedures should be used with all CMOS devices. Many companies provide services, educational material, and supplies to aid electronic equipment manufacturers establish "static safe" CMOS component handling areas. Two such companies are:

- 3M

Static Control Systems Division
223-23W EM Center
St. Paul, MN 55101
(800) 792-1072

- Semtronics
P.O. Box 592

Martinsville, NJ 08836
(201) 561-9520

Figure 7 Phase-Gain

BONDING DIAGRAM

N゙TELEDYNE COMPONENTS

AUTO-ZEROED MONOLITHIC OPERATIONAL AMPLIFIER

FEATURES

- First Monolithic Chopper-Stabilized AmplifierWith On-Chip Nulling Capacitors- Offset Voltage
$\qquad$$5 \mu \mathrm{~V}$
- Offset Voltage Drift $0.05 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Low Supply Current $350 \mu \mathrm{~A}$
- High Common-Mode Rejection 116 dB
- Single Supply Operation 4.5V to 16 V
- High Slew Rate $2.5 \mathrm{~V} / \mu \mathrm{s}$

■ Wide Bandwidth1.5 MHz	
	High Open-Loop Voltage Gain
	($\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$) .. 120
Low Input Voltage Noise	
(0.1 Hz to 1 Hz)0.65 $\mu \mathrm{V}$ P-P	
- Pin Compatible With ICL7650	
	Lower System Parts Count

FUNCTIONAL DIAGRAM

*NOTE: Internal capacitors. No extemal capacitors required.

TC911

GENERAL DESCRIPTION

The TC911 CMOS auto-zeroed operational amplifier is the first complete monolithic chopper-stabilized amplifier. Chopper operational amplifiers like the ICL7650/7652 and LTC1052 require user-supplied, external offset compensation storage capacitors. External capacitors are not required with the TC911. Just as easy to use as the conventional 741 type amplifier, the TC911 significantly reduces offset voltage errors. Pinout matches the OP07/741/ 76508 -pin mini-DIP configuration.

Several system benefits arise by eliminating the external chopper capacitors: lower system parts count; reduced assembly time and cost; greater system reliability; reduced PC board layout effort and greater board area utilization. Also, space savings can be significant in multiple-amplifier designs.

Electrical specifications include $15 \mu \mathrm{~V}$ maximum offset voltage, $0.15 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ maximum offset voltage temperature coefficient. Offset voltage error is five times lower than the premium OP07E bipolar device. The TC911 improves offset drift performance by eight times.

Low offset voltage errors eliminate trim procedures during manufacturing, periodic recalibrations, and reliability problems caused by damaged or misadjusted trim potentiometers.

The TC911 automatically corrects offset voltage drift with time. Operational amplifier long-term drift is less easily controlled and more expensive to maintain when low offset errors are obtained by trimming thin-film resistors. The TC911 internal circuits correct errors repetitively at a 200 Hz rate. Long-term drift is effectively eliminated.

The TC911 operates from dual or single power supplies. Supply current is typically $350 \mu \mathrm{~A}$. Single 4.5 V to 16 V supply operation is possible, making single 9 V battery operation possible. The TC7660 DC-to-DC converter can easily supply a negative potential in dual-supply applications where only a +5 V system supply is available.

Open-loop voltage gain is 115 dB minimum with a $10 \mathrm{k} \Omega$ load. Unity gain bandwidth is 1.5 MHz . Slew rate is $2.5 \mathrm{~V} / \mu \mathrm{s}$. Common-mode rejection ratio is 116 dB . Input commonmode range extends from 2 V below the positive supply to the negative supply.

The TC911 is available in three package types: 8 -pin plastic DIP, ceramic DIP and SO package. Die are available for hybrid applications.

For precision dual- and quad-monolithic chopperstabilized amplifiers, see the TC913 (dual) and TC914 (quad) data sheets.

ORDERING INFORMATION

Part No.	Package	Temperature Range	Maximum Offset Voltage
TC911ACPA	8 -Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$15 \mu \mathrm{~V}$
TC911ACOA	8-Pin SO	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$15 \mu \mathrm{~V}$
TC911BCPA	8 -Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$30 \mu \mathrm{~V}$
TC911BCOA	8 -Pin SO	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$30 \mu \mathrm{~V}$
TC911AIJA	8 -Pin CerDIP	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$15 \mu \mathrm{~V}$
TC911BIJA	$8-\mathrm{Pin}$ CerDIP	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$30 \mu \mathrm{~V}$

PIN CONFIGURATION (SO and DIP)

BONDING DIAGRAM

NOTES: 1. Back of die is common to $V_{c c}$.
2. Back of die is not metalized.

AUTO-ZEROED MONOLITHIC OPERATIONAL AMPLIFIER

ABSOLUTE MAXIMUM RATINGS

Total Supply Voltage ($\mathrm{V}_{\mathrm{S}}^{+}$to $\mathrm{V}_{\mathrm{S}}^{-}$) $\qquad$$+18 \mathrm{~V}$

Input Voltage \qquad ($\mathrm{V}_{\mathrm{S}}^{+}+0.3 \mathrm{~V}$) to $\left(\mathrm{V}_{\mathrm{s}}^{-}\right.$ -0.3 V)
Current into Any Pin \qquad 10 mA
While Operating $100 \mu \mathrm{~A}$
Storage Temperature Range................. $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) \qquad $+300^{\circ} \mathrm{C}$ Operating Temperature Range

C Device $.0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
I Device \qquad $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Package Power Dissipation ($T_{A}=+25^{\circ} \mathrm{C}$)

Static-sensitive device. Unused devices should be stored in conductive material. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied.

ELECTRICAL CHARACTERISTICS: $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise indicated.

Symbol	Parameter	Test Conditions	TC911A			TC911B			Unit
			Min	Typ	Max	Min	Typ	Max	
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	5	15	-	15	30	$\mu \mathrm{V}$
TCV ${ }_{\text {OS }}$	Average Temperature Coefficient of Input Offset Voltage	$\begin{aligned} & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 0.15 \\ & 0.15 \end{aligned}$	-	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.25 \end{aligned}$	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Average Input Bias Current	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \end{aligned}$	-	-	$\begin{gathered} 70 \\ 3 \\ 4 \end{gathered}$	-	-	$\begin{gathered} 120 \\ 4 \\ 6 \end{gathered}$	pA nA nA
los	Average Input Offset Current		-	5	20	-	10	40	pA
e_{N}	Input Voltage Noise	$\begin{aligned} & 0.1 \text { to } 1 \mathrm{~Hz}, R_{S} \leq 100 \Omega \\ & 0.1 \text { to } 10 \mathrm{~Hz}, R_{S} \leq 100 \Omega \end{aligned}$	-	$\begin{gathered} 0.65 \\ 11 \end{gathered}$	-	-	$\begin{gathered} 0.65 \\ 11 \\ \hline \end{gathered}$	-	$\begin{aligned} & \mu \mathrm{V}_{\mathrm{P}-\mathrm{P}} \\ & \mu \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \end{aligned}$
CMRR	Common-Mode Rejection Ratio	$\mathrm{V}_{\mathrm{S}}^{-} \leq \mathrm{V}_{\mathrm{CM}} \leq \mathrm{V}_{\mathrm{S}}^{+}-2.2$	110	116	-	105	110	-	dB
CMVR	Common-Mode Voltage Range		V_{s}	-	$\mathrm{V}_{S}^{+}-2$	V_{s}	-	$\mathrm{V}_{S}^{ \pm}-2$	V
AOL	Open-Loop Voltage Gain	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}= \pm 4 \mathrm{~V}$	115	120	-	110	120	-	dB
V OUT	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	$\mathrm{V}_{\overline{\mathrm{S}}}+0.3$	-	$\mathrm{V}_{\mathrm{S}}^{+}-0.9$	$\mathrm{V}_{\mathrm{S}}^{-}+0.3$	-	$\mathrm{V}_{S}^{+}-0.9$	V
BW	Closed Loop Bandwidth	Closed Loop Gain = +1	-	1.5	-	-	1.5	-	MHz
SR	Slew Rate	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	-	2.5	-	-	2.5	-	$\mathrm{V} / \mu \mathrm{s}$
PSRR	Power Supply Rejection Ratio	$\pm 3.3 \mathrm{~V}$ to $\pm 5.5 \mathrm{~V}$	112	-	-	105	-	-	dB
V_{S}	Operating Supply Voltage Range	Split Supply Single Supply	$\begin{aligned} & \pm 3 \\ & 4.5 \end{aligned}$	-	$\begin{aligned} & \pm 8 \\ & 16 \end{aligned}$	$\begin{aligned} & \pm 3 \\ & 4.5 \end{aligned}$	-	$\begin{aligned} & \pm 8 \\ & 16 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Is	Quiescent Supply Current	$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$	-	350	600	-	-	800	$\mu \mathrm{A}$

AUTO-ZEROED MONOLITHIC OPERATIONAL AMPLIFIER

TC911

TYPICAL CHARACTERISTICS CURVES

Output Voltage Swing vs Load Resistance

AUTO-ZEROED MONOLITHIC OPERATIONAL AMPLIFIER

Pin Compatibility

The CMOS TC911 is pin compatible with the GE/Intersil ICL7650 chopper-stabilized amplifier. The ICL7650 must use external $0.1 \mu \mathrm{~F}$ capacitors connected at pins 1 and 8. With the TC911, external offset voltage error canceling capacitors are not required. On the TCS911 pins 1, 8 and 5 are not connected internally. The ICL7650 uses pin 5 as an optional output clamp connection. External chopper capacitors and clamp connections are not necessary with the TC911. External circuits connected to pins 1,8 and 5 will have no effect. The TC911 can be quickly evaluated in existing ICL7650 designs. Since external capacitors are not required, system part count, assembly time, and total system cost are reduced. Reliability is increased and PC board layout eased by having the error storage capacitors integrated on the TC911 chip.

The TC911 pinout matches many existing op-amps: 741, LM101, LM108, OP05-OP08, OP20, OP21, ICL7650 and ICL7652. In many applications operating from +5 V supplies the TC911 offers superior electrical performance and can be a functional pin-compatible replacement. Offset voltage correction potentiometers, compensation capacitors, and chopper-stabilization capacitors can be removed when retrofitting existing equipment designs.

Thermocouple Errors

Heating one joint of a loop made from two different metallic wires causes current flow. This is known as the Seebeck effect. By breaking the loop, an open circuit voltage

Figure 1. Unwanted Thermocouple Errors Eliminated by Reducing Thermal Gradients and Balancing Junctions
(Seebeck voltage) can be measured. Junction temperature and metal type determine the magnitude. Typical values are $0.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ to $10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. Thermal-induced voltages can be many times larger than the TC911 offset voltage drift. Unless unwanted thermocouple potentials can be controlled, system performance will be less than optimum.

Unwanted thermocouple junctions are created when leads are soldered or sockets/connectors are used. Low thermo-electric coefficient solder can reduce errors. A 60\% $\mathrm{Sn} / 36 \% \mathrm{~Pb}$ solder has $1 / 10$ the thermal voltage of common $64 \% \mathrm{Sn} / 36 \% \mathrm{~Pb}$ solder at a copper junction.

The number and type of dissimilar metallic junctions in the input circuit loop should be balanced. If the junctions are kept at the same temperature, their summation will add to zero-canceling errors (Figure 1).

Shielding precision analog circuits from air currents especially those caused by power dissipating components and fans - will minimize temperature gradients and ther-mocouple-induced errors.

Avoiding Latch-Up

Junction-isolated CMOS circuits inherently contain a parasitic $p-n-p-n$ transistor circuit. Voltages exceeding the supplies by 0.3 V should not be applied to the device pins. Larger voltages can turn the $p-n-p-n$ device on, causing excessive device power supply current and excessive power dissipation. TC911 power supplies should be established at the same time or before input signals are applied. If this is not possible input current should be limited to 0.1 mA to avoid triggering the $p-n-p-n$ structure.

Static Protection

Input pins are protected against electrostatic fields. Static handling procedures should be used with all CMOS devices. Many companies provide services, educational material, and supplies to aid electronic equipment manufacturers to establish "static safe" CMOS component handling areas. A partial company list is:

- 3M	Semtronics
Static Control Systems Div	P.O. Box 592
223-23W EM Center	Martinsville, NJ 08836
St Paul, MN 55101	(201) 561-9520
(800) 792-1072	

Overload Recovery

The TC911 recovers quickly from the output saturation. Typical recovery time from positive output saturation is 20 ms . Negative output saturation recovery time is typically 5 ms .

TYPICAL APPLICATIONS

DUAL AUTO-ZEROED OPERATIONAL AMPLIFIER

FEATURES

First Monolithic Dual Auto-Zeroed Operational Amplifier

- Chopper Amplifier Performance Without External Capacitors
- Vos
$15 \mu \mathrm{~V}$ Max
- Vos Drift $0.15 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ Max
- Saves Cost/Assembly of Four "Chopper" Capacitors
- SO Packages Available
- High DC Gain 120 dB
■ Low Supply Current $650 \mu \mathrm{~A}$
- Low Input Voltage Noise
(0.1 Hz to 10 Hz) \qquad
- Wide Common-Mode Voltage Range $V_{S}{ }^{-}$to $\mathrm{V}_{\mathrm{S}^{+}-2 \mathrm{~V}}$
- High Common-Mode Rejection 116 dB
Dual or Single Supply Operation........... $\pm 3 \mathrm{~V}$ to $\pm 8 \mathrm{~V}$
- Excellent AC Operating Characteristics
- Slew Rate
$2.5 \mathrm{~V} / \mu \mathrm{s}$
- Unity-Gain Bandwidth
1.5 MHz

Pin Compatible With LM358, OP14, MC1458, ICL7621, TL082, TLC322

FUNCTIONAL DIAGRAM

*NOTE: Internal capacitors. No extemal capacitors required.

DUAL AUTO-ZEROED OPERATIONAL AMPLIFIER

TC913

GENERAL DESCRIPTION

The TC913 is the world's first complete monolithic, dual auto-zeroed operational amplifier. The TC913 sets a new standard for low-power, precision dual-operational amplifiers. Chopper-stabilized or auto-zeroed amplifiers offer low offset voltage errors by periodically sampling offset error, and storing correction voltages on capacitors. Previous single amplifier designs required two user-supplied, external $0.1 \mu \mathrm{~F}$ error storage correction capacitors - much too large for on-chip integration. The unique TC913 architecture requires smaller capacitors, making on-chip integration possible. Microvolt offset levels are achieved and external capacitors are not required.

The TC913 system benefits are apparent when contrasted with a TC7650 chopper amplifier circuit implementation. A single TC913 replaces two TC7650's and four capacitors. Five components and assembly steps are eliminated.

The TC913 pinout matches many popular dualoperational amplifiers: OP04, TLC322, LM358, and ICL7621 are typical examples. In many applications, operating from dual 5 V power supplies or single supplies, the TC913 offers superior electrical performance, and can be a functional drop-in replacement; printed circuit board rework is not necessary. The TC913's low offset voltage error eliminates offset voltage trim potentiometers often needed with bipolar and low-accuracy CMOS operational amplifiers.

The TC913 takes full advantage of Teledyne's proprietary CMOS technology. The TC913's $650 \mu \mathrm{~A}$ supply current ($250 \mu \mathrm{~A}$ per amplifier) makes the TC913 the lowest power, precision dual-operational amplifier available. The $250 \mu \mathrm{~A}$ amplifier supply current does not compromise AC performance. Unity gain bandwidth is 1.5 MHz and slew rate is $2.5 \mathrm{~V} / \mu \mathrm{s}$.

For single- and quad-operational amplifiers, see the TC911 and TC914 data sheets.

ORDERING INFORMATION

Part No.	Package	Temperature Range	Maximum Offset Voltage
TC913ACPA	8-Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$15 \mu \mathrm{~V}$
TC913ACOA	8 -Pin SO	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$15 \mu \mathrm{~V}$
TC913BCPA	8 -Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$30 \mu \mathrm{~V}$
TC913BCOA	8 -Pin SO	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$30 \mu \mathrm{~V}$
TC913AIJA	8 -Pin CerDIP	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$15 \mu \mathrm{~V}$
TC913BIJA	8 -Pin CerDIP	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$30 \mu \mathrm{~V}$

PIN CONFIGURATION (SO and DIP)

DUAL AUTO-ZEROED OPERATIONAL AMPLIFIER

ABSOLUTE MAXIMUM RATINGS

Total Supply Voltage ($\mathrm{V}_{\mathrm{S}}^{+}$to $\mathrm{V}_{\mathrm{S}}^{-}$) Input Voltage \qquad $\left(\mathrm{V}_{\mathrm{S}}^{+}+0.3 \mathrm{~V}\right)$ to $\left(\mathrm{V}_{\mathrm{S}}^{-}-0.3 \mathrm{~V}\right)$
Current into Any Pin \qquad .10 mA
While Operating .. $100 \mu \mathrm{~A}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$ Operating Temperature Range
C Device $.0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
I Device $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Package Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$)
CerDIP
500 mW
Plastic DIP and SO 375 mW

Static-sensitive device. Unused devices should be stored in conductive material. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied.

ELECTRICAL CHARACTERISTICS: $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise indicated.

Symbol	Parameter	Test Conditions	TC913A			TC913B			Unit
			Min	Typ	Max	Min	Typ	Max	
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	5	15	-	15	30	$\mu \mathrm{V}$
TCV ${ }_{\text {OS }}$	Average Temperature Coefficient of Input Offset Voltage	$\begin{aligned} & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 0.15 \\ & 0.15 \end{aligned}$	-	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.25 \end{aligned}$	$\begin{aligned} & \mu \mathrm{V} /{ }^{\circ} \mathrm{C} \\ & \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \end{aligned}$
I_{B}	Average Input Bias Current	$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C} \end{aligned}$	—	-	$\begin{gathered} 90 \\ 3 \\ 4 \end{gathered}$	-	-	$\begin{gathered} 120 \\ 4 \\ 6 \end{gathered}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
los	Average Input Offset Current		-	5	20	-	10	40	pA
e_{N}	Input Voltage Noise	$\begin{aligned} & 0.1 \text { to } 1 \mathrm{~Hz}, \mathrm{R}_{\mathrm{S}} \leq 100 \Omega \\ & 0.1 \text { to } 10 \mathrm{~Hz}, \mathrm{R}_{\mathrm{S}} \leq 100 \Omega \end{aligned}$	-	$\begin{aligned} & 0.6 \\ & 11 \end{aligned}$	—	-	$\begin{aligned} & 0.6 \\ & 11 \end{aligned}$	-	$\begin{aligned} & \mu \mathrm{V}_{\text {P-P }} \\ & \mu \mathrm{V}_{\text {P-P }} \end{aligned}$
CMRR	Common-Mode Rejection Ratio	$\mathrm{V}_{\mathrm{S}}^{-} \leq \mathrm{V}_{\mathrm{CM}} \leq \mathrm{V}_{\mathrm{S}}^{+}-2.2 \mathrm{~V}$	110	116	-	100	110	-	dB
CMVR	Common-Mode Voltage Range		$\mathrm{V}_{\mathrm{S}}^{-}$	-	$\mathrm{V}_{S}^{+}-2$	$\mathrm{V}_{\text {S }}$	-	$\mathrm{V}_{S}^{+}-2$	V
AOL	Open-Loop Voltage Gain	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}= \pm 4 \mathrm{~V}$	115	120	-	110	120	-	dB
VOUT	Output Voltage Swing	$R_{L}=10 \mathrm{k} \Omega$	$\mathrm{V}_{\mathrm{S}}+0.3$	-	$\mathrm{V}_{S}^{+}-0.9$	$\mathrm{V}_{\mathrm{S}}+0.3$	-	$\mathrm{V}_{\mathrm{S}}^{+}-0.9$	V
BW	Closed-Loop Bandwidth	Closed Loop Gain $=+1$	-	1.5	-	-	1.5	-	MHz
SR	Slew Rate	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	-	2.5	-	-	2.5	-	V/ $/ \mathrm{s}$
PSRR	Power Supply Rejection Ratio	$\pm 3.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 5.5 \mathrm{~V}$	110	-	-	100	-	-	dB
V_{S}	Operating Supply Voltage Range	Split Supply Single Supply	$\begin{aligned} & \pm 3 \\ & 4.5 \end{aligned}$	-	$\begin{aligned} & \pm 8 \\ & 16 \end{aligned}$	$\begin{aligned} & \pm 3 \\ & 4.5 \end{aligned}$	-	$\begin{aligned} & \pm 8 \\ & 16 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Is	Quiescent Supply Current	$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$	-	0.65	0.85	-	-	1.1	mA

DUAL AUTO-ZEROED OPERATIONAL AMPLIFIER

TYPICAL CHARACTERISTICS CURVES

Negative Overload Recovery Time

HORIZONTAL SCALE $\mathbf{= 2 0} \mathbf{~ m s} / D I V$

Input Offset Voltage vs Common-Mode Voltage

Output Voltage Swing vs Load Resistance

Positive Overload Recovery Time

HORIZONTAL SCALE $=\mathbf{2 0} \mathbf{~ m s}$ /DIV

DUAL AUTO-ZEROED OPERATIONAL AMPLIFIER

Theory of Operation

Each of the TC913's two op-amps actually consists of two amplifiers. A main amplifier is always connected from the input to the output. A separate nulling amplifier alternately nulls its own offset and then the offset of the amplifier. Since each amplifier is continuously being nulled, offset voltage drift with time, temperature, and power supply variations is greatly reduced.

All nulling circuitry is internal and the nulling operation is transparent to the user. Offset nulling voltages are stored on two internal capacitors. An internal oscillator and control logic, shared by the TC913's two amplifiers, control the nulling process.

Pin Compatibility

The TC913 pinout is compatible with OP14, LM358, MC1458, LT1013, TLC322, and similar dual op-amps. In many circuits operating from single or $\pm 5 \mathrm{~V}$ supplies, the TC913 is a drop-in replacement offering DC performance rivaling that of the best single op-amps.

The TC913's amplifiers include a low-impedance class $A B$ output buffer. Some previous CMOS chopper amplifiers used a high-impedance output stage which made open-loop gain dependent on load resistance. The TC913's open-loop gain is not dependent on load resistance.

Overload Recovery

The TC913 recovers quickly from output saturation. Typical recovery time from positive output saturation is 20 ms . Negative output saturation recovery time is typically 5 ms .

Avoiding Latch-Up

Junction-isolated CMOS circuits inherently contain a parasitic p-n-p-n transistor circuit. Voltages exceeding the supplies by 0.3 V should not be applied to the device pins. Larger voltages can turn the p-n-p-n device on, causing excessive device power supply current and power dissipation. The TC913's power supplies should be established at the same time or before input signals are applied. If this is not possible, input current should be limited to 0.1 mA to avoid triggering the p-n-p-n structure.

Static Protection

Input pins are protected against electrostatic fields. Static handling procedures should be used with all CMOS devices. Many companies provide services, educational material, and supplies to aid electronic equipment manufacturers to establish "static safe" CMOS component handling areas. A partial company list is:

- 3 M

Static Control Systems Div 223-23W EM Center
St. Paul, MN 55101
(800) 792-1072

- Semtronics P.O. Box 592 Martinsville, NJ 08836 (201) 561-9520

NOTES

*NTELEDYNE
 COMPONENTS

QUAD AUTO-ZEROED OPERATIONAL AMPLIFIER

FEATURES

- First Monolithic Quad Auto-Zeroed Operational Amplifier
- Chopper Amplifier Performance Without External Capacitors
- $V_{\text {os }}$ \qquad $15 \mu \mathrm{~V}$ Max
- Vos Drift \qquad $0.15 \mu V{ }^{\circ} \mathrm{C}$ Max
—Saves Cost/Assembly of Eight "Chopper" Capacitors
High DC Gain 110 dB
- Low Supply Current
1.5 mA
- Wide Common-Mode Voltage Range $\mathrm{V}_{\mathrm{S}^{-}}$to $\mathrm{V}_{\mathrm{S}^{+}-2 \mathrm{~V}}$
- High Common-Mode Rejection 110 dB

■ Dual or Single Supply Operation $\pm 3 \mathrm{~V}$ to $\pm 8 \mathrm{~V}$ +4.5 V to +16 V

- Excellent AC Operating Characteristics
- Slew Rate
$2.5 \mathrm{~V} / \mu \mathrm{s}$
- Unity-Gain Bandwidth 1.5 MHz

Pin Compatible With LM358, TLC274, LM324, OP11, ICL7641/42

FUNCTIONAL DIAGRAM

*NOTE: Internal capacitors. No external capacitors required.

QUAD AUTO-ZEROED OPERATIONAL AMPLIFIER

TC914

GENERAL DESCRIPTION

The TC914 is the world's first complete monolithic quad auto-zeroed operational amplifier. The TC914 sets a new standard for low-power, precision quad operational amplifiers. Chopper-stabilized (or auto-zeroed) amplifiers offer low offset voltage errors by periodically sampling offset error, and storing correction voltages on capacitors. Previous single amplifier designs required two user-supplied, external $0.1 \mu \mathrm{~F}$ error storage correction capacitors much too large for on-chip integration. The unique TC914 architecture requires smaller capacitors, making on-chip integration possible. Microvolt offset levels are achieved and external capacitors are not required.

The TC914 system benefits are apparent when contrasted with a TC7650 chopper amplifier circuit implementation. A single TC914 replaces four 7650's and eight capacitors. Eleven components and assembly steps are eliminated.

The TC914 pinout matches many popular quad operational amplifiers: OP11, TLC274, LTC1014, LM348, and ICL7642/41 are typical examples. In many applications, operating from dual 5 V or single power supplies, the TC914 offers superior electrical performance, and can be a functional drop-in replacement; printed circuit board rework is not necessary. The TC914's low offset voltage error eliminates offset voltage trim potentiometers often needed with bipolar and low-accuracy CMOS operational amplifiers.

The TC914 takes full advantage of Teledyne's proprietary CMOS technology. Its 1.5 mA supply current ($250 \mu \mathrm{~A}$ per amplifier) makes the TC914 the lowest power, precision quad operational amplifier available. The $250 \mu \mathrm{~A}$ amplifier supply current does not compromise AC performance. Unity-gain bandwidth is 1.5 MHz and slew rate is $2.5 \mathrm{~V} / \mu \mathrm{s}$

For single- and dual-operational amplifiers, see the TC911 and TC913 data sheets.

ORDERING INFORMATION

	Package	Temperature Range	Maximum Offset Voltage
Part No.	PC914ACPD	$14-\mathrm{Pin}$ Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC914BCPD	$14-\mathrm{Pin}$ Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$30 \mu \mathrm{~V}$
TC914AIJD	$14-\mathrm{Pin}$ CerDIP	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$15 \mu \mathrm{~V}$
TC914BIJD	$14-\mathrm{Pin}$ CerDIP	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$30 \mu \mathrm{~V}$
TC914ACOE	$16-\mathrm{Pin} \mathrm{SO}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$15 \mu \mathrm{~V}$

PIN CONFIGURATIONS

TC914

ABSOLUTE MAXIMUM RATINGS

Total Supply Voltage ($\mathrm{V}^{+} \mathrm{s}$ to $\mathrm{V}^{-} \mathrm{s}$) +18 V Input Voltage $\left(\mathrm{V}^{+} \mathrm{s}+0.3 \mathrm{~V}\right)$ to $\left(\mathrm{V}^{-} \mathrm{s}-0.3 \mathrm{~V}\right)$ Current into Any Pin ... 10 mA While Operating .. $100 \mu \mathrm{~A}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$ Operating Temperature Range

C Device \qquad $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
I Device $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Package Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right)$
CerDIP
500 mW
Plastic DIP and SO .375 mW

Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to Absolute Maximum Rating Conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS: $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise indicated.

Symbol	Parameter	Test Conditions	TC913A			TC913B			Unit
			Min	Typ	Max	Min	Typ	Max	
V OS	Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	5	15	-	15	30	$\mu \mathrm{V}$
TCV ${ }_{\text {Os }}$	Average Temperature Coefficient of Input Offset Voltage	$\begin{aligned} & 0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C} \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 0.15 \\ & 0.15 \end{aligned}$	-	二	$\begin{aligned} & 0.25 \\ & 0.25 \end{aligned}$	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Average Input Bias Current	$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C} \end{aligned}$	—	-	$\begin{gathered} 90 \\ 3 \\ 4 \end{gathered}$	-	-	$\begin{gathered} 120 \\ 4 \\ 6 \end{gathered}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
los	Average Input Offset Current	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	5	20	-	10	40	pA
e_{N}	Input Voltage Noise	$\begin{aligned} & 0.1 \text { to } 1 \mathrm{~Hz}, R_{\mathrm{S}} \leq 100 \Omega \\ & 0.1 \text { to } 10 \mathrm{~Hz}, R_{\mathrm{S}} \leq 100 \Omega \end{aligned}$	-	$\begin{aligned} & 0.6 \\ & 11 \\ & \hline \end{aligned}$	-	-	$\begin{gathered} 0.6 \\ 11 \end{gathered}$	-	$\begin{aligned} & \mu V_{\text {P.P }} \\ & \mu \mathrm{V}_{\text {P-P }} \end{aligned}$
CMRR	Common-Mode Rejection Ratio	$\mathrm{V}_{\mathrm{S}}^{-} \leq \mathrm{V}_{\mathrm{CM}} \leq \mathrm{V}_{\mathrm{S}}^{+}-2.2 \mathrm{~V}$	110	116	-	100	110	-	dB
CMVR	Common-Mode Voltage Range		V_{s}	-	$\mathrm{V}_{\mathrm{S}}^{ \pm}-2$	$\mathrm{V}_{\bar{S}}$	-	$\mathrm{V}_{S}^{+}-2$	V
$\overline{\text { AOL }}$	Open-Loop Voltage Gain	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}= \pm 4 \mathrm{~V}$	115	120	-	110	120	-	dB
Vout	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	$\mathrm{V}_{\overline{\mathrm{S}}}+0.3$	-	$\mathrm{V}_{\mathrm{S}}^{+}-0.9$	$\mathrm{V}_{\overline{\mathrm{S}}}+0.3$	-	$\mathrm{V}_{S}^{+}-0.9$	V
BW	Closed-Loop Bandwidth	Closed Loop Gain = +1	-	1.5	-	-	1.5	-	MHz
SR	Slew Rate	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	-	2.5	-	-	2.5	-	$\mathrm{V} / \mu \mathrm{s}$
PSRR	Power Supply Rejection Ratio	$\pm 3.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 5.5 \mathrm{~V}$	110	-	-	100	-	-	dB
V_{S}	Operating Supply Voltage Range	Split Supply Single Supply	$\begin{aligned} & \pm 3 \\ & 4.5 \end{aligned}$	-	$\begin{aligned} & \pm 8 \\ & 16 \end{aligned}$	$\begin{aligned} & \pm 3 \\ & 4.5 \end{aligned}$	-	$\begin{aligned} & \pm 8 \\ & 16 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
I_{S}	Quiescent Supply Current	$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$	-	-	1.6	-	-	2.2	mA

QUAD AUTO-ZEROED OPERATIONAL AMPLIFIER

TYPICAL CHARACTERISTICS CURVES

Negative Overload Recovery Time

HORIZONTAL SCALE $\mathbf{= 2 0} \mathbf{~ m s} / D I V$

Input Offset Voltage vs Common-Mode Voltage

Output Voltage Swing vs Load Resistance

Positive Overload Recovery Time

HORIZONTAL SCALE $\mathbf{2 0} \mathbf{~ m s} /$ DIV

QUAD AUTO-ZEROED OPERATIONAL AMPLIFIER

Theory of Operation

Each of the TC914's four op-amps actually consists of two amplifiers. A main amplifier is always connected from the input to the output. A separate nulling amplifier alternately nulls its own offset and then the offset of the main amplifier. Since each amplifier is continuously being nulled, offset voltage drift with time, temperature and power supply variations is greatly reduced.

All nulling circuitry is internal and the nulling operation is transparent to the user. Offset nulling voltages are stored on two internal capacitors. An internal oscillator and control logic, shared by the TC914's two amplifiers, control the nulling process.

Pin Compatibility

The TC914 pinout is compatible with OP11, LM324, LM348, LT1014, TLC274, and similar quad op-amps. In many circuits operating from single or $\pm 5 \mathrm{~V}$ supplies, the TC914 is a drop-in replacement, offering DC performance rivaling that of the best single op-amps.

The TC914's amplifiers include a low-impedance, class AB output buffer. Some previous CMOS chopper amplifiers used a high-impedance output stage which made open-loop gain dependent on load resistance. The TC914's open-loop gain is not dependent on load resistance.

Overload Recovery

The TC914 recovers quickly from output saturation. Typical recovery time from positive output saturation is 20 ms . Negative output saturation recovery time is typically 5 ms .

Avoiding Latch-Up

Junction-isolated CMOS circuits inherently contain a parasitic p-n-p-n transistor circuit. Voltages exceeding the supplies by 0.3 V should not be applied to the device pins. Larger voltages can turn the p-n-p-n device on, causing excessive device power supply current and power dissipation. The TC914's power supplies should be established at the same time or before input signals are applied. If this is not possible, input current should be limited to 0.1 mA to avoid triggering the $p-n-p-n$ structure.

Static Protection

Input pins are protected against electrostatic fields. Static handling procedures should be used with all CMOS devices. Many companies provide services, educational material, and supplies to aid electronic equipment manufacturers to establish "static safe" CMOS component handling areas. A partial company list is:

- 3M

Static Control Systems Div 223-23W EM Center
St. Paul, MN 55101
(800) 792-1072

- Semtronics
P.O. Box 592

Martinsville, NJ 08836
(201) 561-9520

NOTES

HIGH-VOLTAGE, AUTO-ZEROED OPERATIONAL AMPLIFIER

FEATURES

■
High-Voltage Operation.................................. $\pm 15 \mathrm{~V}$

- Low Offset Voltage $10 \mu \mathrm{~V}$ Max
- Low Offset Voltage Drift........................... $0.2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Low Input Bias Current \qquad
- High Open-Loop Voltage Gain 200 PA Max
- Wide Common-Mode Voltage Range -15 V to +13 V
- Low Input Voltage Noise (0.1 Hz to 1 Hz) \qquad $0.2 \mu \mathrm{~V}_{\text {P-P }}$
- Low Supply Current .. 1 mA
- Single Supply Operation 7 V to 32 V
- Pin Compatible With ICL7650
- Output Clamp Speeds Overload Recovery Time

GENERAL DESCRIPTION

The TC915 is a high-voltage, high-performance CMOS, chopper-stabilized operational amplifier. It can operate from the same $\pm 15 \mathrm{~V}$ power supplies commonly used to power bipolar op amps, such as the OP07 and 741. Previous CMOS chopper-stabilized amplifiers, such as the TC7650, were limited to operating from $\pm 7.5 \mathrm{~V}$ power supplies.

The TC915's maximum V_{OS} specification is only $10 \mu \mathrm{~V}$, almost a factor of 7 improvement over the industry-standard OP07E. The maximum $\mathrm{V}_{\text {Os }}$ drift of $0.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ is 12 times less than the OP07E. Input bias and offset currents (both only 100 pA maximum) are factors of 20 improvements.

In addition to low initial offset errors, the nulling circuitry ensures excellent performance over time and temperature. Long-term drift, which results in periodic recalibration, is effectively eliminated. The nulling circuitry continues to operate over the full temperature range, whereas laser and "zener zap" trimming are only done at a single temperature. The result is a significant decrease in temperature-induced errors.

FUNCTIONAL DIAGRAM

The TC915 operates from dual- or single-power supplies. Supply current is typically 1 mA with $\pm 15 \mathrm{~V}$ supplies. Single supply operation extends from +7 V to +32 V , and the input common-mode range extends to Vs^{-}. For battery operation, see the low-power TC900 data sheet.

The TC915's open-loop gain is 120 dB minimum. Unlike the TC7650, the TC915's gain is independent of load resistance. The low-impedance output will drive a $10 \mathrm{k} \Omega$ load to $\pm 14 \mathrm{~V}$. An output clamp circuit is provided to minimize overload recovery time.

The TC915 uses two amplifiers to correct offset voltage errors. A main amplifier is always in the signal path, which prevents switching spikes at the output. A separate nulling amplifier alternately corrects its own VOS error and then the main amplifier's $\mathrm{V}_{\text {os }}$ error. Only two external capacitors are required to store the nulling error voltages. All active nulling circuitry, including switches and oscillators, are included onchip.

TC915 does not require complicated processing and testing procedures associated with laser or "zener zap" $V_{\text {OS }}$ trimming schemes. Simplified fabrication and high yields combine to make the TC915 one of the lowest-priced precision op amps available. It is available in 8 -pin and 14pin plastic or ceramic dual-in-line packages. Dice are available for hybrid applications.

ORDERING INFORMATION

Part No.	Package	Temperature Range	Max Vos
TC915CPA	8 -Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$10 \mu \mathrm{~V}$
TC915IJA	8-Pin CerDIP	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{~V}$
TC915MJA	8-Pin CerDIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$10 \mu \mathrm{~V}$
TC915CPD	14-Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$10 \mu \mathrm{~V}$
TC915IJD	14-Pin CerDIP	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{~V}$
TC915MJD	14-Pin CerDIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$10 \mu \mathrm{~V}$

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

Total Supply Voltage ($\mathrm{V}_{\mathrm{S}^{+}}$to $\mathrm{V}_{\mathrm{S}^{-}}$) +36 V Input Voltage $\left(\mathrm{V}_{\mathrm{S}^{+}}+0.3 \mathrm{~V}\right)$ to $\left(\mathrm{V}_{\mathrm{S}^{-}}-0.3 \mathrm{~V}\right)$ Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec) $+300^{\circ} \mathrm{C}$ Current Into Any Pin ... 10 mA Operating Temperature Range
C Device .. $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
I Device $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
M Device $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Package Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$)
CerDIP .. 375 mW
Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to Absolute Maximum Rating Conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS: $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise indicated.

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
Input						
Vos	Input Offset Voltage		-	-	10	$\mu \mathrm{V}$
TCV ${ }_{\text {os }}$	Input Offset Voltage vs Temperature Coefficient	$\begin{aligned} & 0^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{\mathrm{A}} \leqslant+85^{\circ} \mathrm{C} \end{aligned}$	$-$	0.01	$\begin{aligned} & 0.1 \\ & 0.3 \end{aligned}$	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
IB_{B}	Input Bias Current	$\begin{aligned} & \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{A} \leqslant+70^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{A} \leqslant+85^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	-	30	$\frac{100}{10}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{pA} \\ & \mathrm{pA} \end{aligned}$
los	Input Offset Current		-	50	100	pA
e_{N}	Input Voltage Noise	$\begin{aligned} & 0.1 \text { to } 1 \mathrm{~Hz}, R_{S} \leqslant 100 \Omega \\ & 0.1 \text { to } 10 \mathrm{~Hz}, R_{S} \leqslant 100 \Omega \end{aligned}$	-	$\begin{aligned} & 0.2 \\ & 0.8 \end{aligned}$	-	$\begin{aligned} & \mu \mathrm{V}_{\text {P-P }} \\ & \mu \mathrm{V}_{\text {P-P }} \end{aligned}$
CMRR	Common-Mode Rejection Ratio	$\mathrm{V}^{-} \leqslant \mathrm{V}_{\mathrm{CM}} \leqslant \mathrm{V}^{+}{ }^{+} 2$	120	140	-	dB
CMVR	Common-Mode Voltage Range		$\mathrm{V}_{\mathrm{S}}{ }^{-}$	-	V^{+}- 2	V
$\mathrm{A}_{\text {OL }}$	Open-Loop voltage Gain	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$	120	140	-	dB
V OUT	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	$\mathrm{V}^{-}+1$	-	$\mathrm{V}^{+}{ }^{+1.2}$	V
BW	Closed-Loop Bandwidth	Closed-Loop Gain $=+1$	-	0.5	-	MHz
	Slew Rate	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	-	0.5	-	$\mathrm{V} / \mu \mathrm{s}$
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	120	140	-	dB
$\mathrm{V}_{\text {S }}$	Supply Voltage Operating Range	(Note 1)	± 3.5	-	± 16	V
Is	Quiescent Supply	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	-	1	1.5	mA

NOTE: 1 . Single supply operation: $\mathrm{V}_{\mathrm{S}^{+}}=+7 \mathrm{~V}$ to +32 V .

Theory of Operation

Figure 1 shows the major elements of the TC915. There are two amplifiers: a main (signal) amplifier and a nulling amplifier. Both have offset-nulling capability. The main amplifier is always connected to the output. The nulling amplifier alternately samples and adjusts its own offset, then the offset of the main amplifier.

A two-phase operation nulls the main amplifier. During the first phase, the A pair of switches close, while the B switches open. The nulling amp's inputs are shorted and its output is fed back to the nulling input. Capacitor C_{A} charges to a voltage which will maintain the nulling amp in its nulled state.

During the second phase, the B switches close and the A switches open. The nulling amplifier's inputs now sample the offset voltage of the main amplifier. The nulling amplifier drives the main amplifier's nulling input to cancel the main amplifier's offset voltage. Capacitor C_{B} stores the nulling voltage of the main amplifier while the nulling amplifier is being nulled on the next cycle.

The TC915 design also incorporates an additional output buffer stage. The buffer provides a low-impedance output traditionally associated with bipolar op amps. Some CMOS chopper-stabilized amplifiers, such as the TC7650, have a high-output impedance which makes open-loop gain proportionalto load resistance. The TC915's open-loop gain is not dependent on load resistance.

Figure 1 The TC915 Contains Nulling and Main Amplifiesr (Offset Correction Voltages Are Stored on Two External Capacitors)

Pin Compatibility

Since the TC915 operates from the same $\pm 15 \mathrm{~V}$ power supplies as bipolar op amps, upgrading existing circuits is simple. The bipolar op amp's nulling and compensation components are removed and the TC915's nulling capacitors are added.

On the 8-pin mini-DIP, the external null storage capacitors are connected to pins 1 and 8 . On most other operational amplifiers these are left open or used for offset potentiometer or compensation capacitor connections.

For OP05 and OP07 operational amplifiers, replacing the offset null potentiometer between pins 1 and 8 with two capacitors from the pins to $\mathrm{V}_{\mathrm{S}^{-}}$converts the OP05/07 pin configuration for TC915 operation. The 741 is easily upgraded by removing the nulling potentiometer between pin 4 and pins 1 and 5 , then connecting capacitors from pin 4 to pins 1 and 8 . For LM108 devices, the compensation capacitor is replaced by the external nulling capacitors. The LM101/ 748/709 pinouts are similarly modified by removing any circuit connections to pin 5 . Pin 5 on the TC915 is the output clamp connection. Other operational amplifiers may use this pin as an offset or compensation point.

The minor modifications needed to retrofit a TC915 to existing sockets make prototyping and circuit verification straightforward.

Nulling Capacitors

The offset voltage correction capacitors are connected to C_{A} and C_{B}. The common capacitor connection is made to $\mathrm{V}_{\mathrm{S}^{-}}$(pin 4) on the 8-pin packages and to capacitor return ($\mathrm{C}_{\text {RET }}$, pin 8) on the 14-pin packages. The common connection should be made through a separate PC trace or wire, to avoid voltage drops. Internally, $\mathrm{V}_{\mathrm{S}}{ }^{-}$is connected to $\mathrm{C}_{\mathrm{RET}}$.
C_{A} and C_{B} should be $0.1 \mu \mathrm{~F}$ film capacitors. Mylar capacitors are suitable.

Component Selection

The two required capacitors, C_{A} and C_{B}, have optimum values, depending on the clock or chopping frequency. For the preset internal clock, the correct value is $0.1 \mu \mathrm{~F}$. To maintain the same relationship between the chopping frequency and the nulling time constant, the capacitor values should be scaled in proportion to the external clock, if used. High-quality, film-type capacitors (such as Mylar) are preferred. Ceramic or other lower-grade capacitors may be suitable in some applications. For fast settling at initial turn-on, low dielectric absorption capacitors (such as polypropylene) should be used. With ceramic capacitors, several seconds may be required to settle to $1 \mu \mathrm{~V}$.

Figure 2 Nulling Capacitor Connection

HIGH-VOLTAGE, AUTO-ZEROED OPERATIONAL AMPLIFIER

TC915

Clock Operation

The internal oscillator is set for a 1000 Hz nominal frequency on both the 8 -pin and 14-pin DIPs. With the 14-pin device, the 250 Hz internal frequency is available at the INTERNAL CLOCK OUTPUT (pin 12). A 1000 Hz nominal signal will be present at the EXTERNAL CLOCK INPUT (pin 13) with INT/EXT high or open. This is the internal clock signal before a divide-by-four operation.

The 14-pin device can be driven by an external clock. The INT/EXT input (pin 14) has an internal pull-up and may be left open for internal clock operation. If an external clock is used, INT/EXT must be tied to $\mathrm{V}_{\mathrm{S}^{-}}$(pin 7) to disable the internal clock. The external clock signal is applied to the external clock input.

The external clock amplitude should swing between $\mathrm{V}_{\mathrm{S}^{+}}$and ground for power supplies up to $\pm 6 \mathrm{~V}$, and between $\mathrm{V}_{\mathrm{S}^{+}}$and $\mathrm{V}_{\mathrm{S}^{+}}-6 \mathrm{~V}$ for higher supply voltages. When the external clock is generated by +5 V logic, capacitive coupling to pin 13 (through a $0.1 \mu \mathrm{~F}$ capacitor) will provide adequate drive.

At low frequencies the external clock duty cycle is not critical, since an internal divide-by-four gives the desired 50% switching duty cycle. The offset storage correction capacitors are charged only when the external clock input is high. A 50% to 80% external clock positive duty cycle is desired for frequencies above 500 Hz to guarantee transients settle before the internal switches open.

The external clock input can also be used as a strobe input. If a stobe signal is connected at the external clock input, so that it is low during the time an overload signal is applied, neither capacitor will be charged. This function can be used to prevent input transients from overloading the nulling circuitry. Leakage currents at the capacitor pins are very low, minimizing offset voltage drift during strobe operation.

Output Clamp

Chopper-stabilized systems can show long overload recovery times. If the output is driven to either supply rail, output saturation occurs; the inputs are no longer held at a "virtual ground." The Vos null circuit treats the differential signal as an offset and tries to correct it by charging the external capacitors. The nulling circuit also saturates. Once the input signal returns to normal, the response time is lengthened by the long recovery time of the nulling amplifier and external capacitors.

Through the external-clamp connection, the TC915 eliminates the overload recovery problem by reducing the feedback network gain before the output voltage reaches either supply rail.

The output clamp circuit is shown in Figure 3, with typical inverting and noninverting circuit connections shown in

Figures 4 and 5. For the clamp to be fully effective, the impedance across the clamp output should be $>100 \mathrm{k} \Omega$.

When the clamp is used, the clamp OFF leakage will add to input bias current. However, clamp leakage in the OFF state is typically only 1 pA .

Input Bias Current

The TC915 inputs are never disconnected from the main internal amplifier. The null amplifier samples the input offset voltage and corrects DC errors and drift by storing compensating voltages on external capacitors. However, the sampling causes charge transfer at the inputs.

The impulse current is not usually a problem, because the amount of charge transferred is very small. Care should be exercised, however, when replacing high-input bias current bipolar op amps. Conventional design practice is to cancel bias current by matching the input impedances (Figure 6a). The TC915 has an input bias current of only

Figure 3 Internal Clamp Circuit

Figure 4 Noninverting Amplifier With Optional Clamp

HIGH-VOLTAGE, AUTO-ZEROED OPERATIONAL AMPLIFIER

TC915

Figure 5 Inverting Amplifier With Optional Clamp
100 pA maximum, so the additional resistor is not necessary. In fact, including the resistor will make the charge injection current, passing through the impedance balancing resistor, appear as a noise source. When replacing an existing op amp with the TC915, either omit the resistor or bypass it to ground with a capacitor (Figure 6b).

Latch-Up Avoidance

Junction-isolated CMOS circuits inherently include a parasitic 4-layer (p-n-p-n) structure which has characteristics similar to an SCR. Under certain circumstances, this
junction may be triggered into a low-impedance state, resulting in excessive supply current. To avoid this condition, voltages greater than 0.3 V beyond the supply rails should not be applied to any pin. In general, the amplifier supplies must be established at the same time, or before, any input signals are applied. If this is not possible, the drive circuits must limit input current flow to under 0.1 mA to avoid latchup.

Static Protection

All device pins are static-protected. However, strong static fields and discharges should be avoided as they can degrade diode junction characteristics and increase inputleakage currents.

Many companies are actively involved in providing services, educational materials, and supplies to aid electronic manufacturers in establishing "static safe" work areas where CMOS components are handled. Two such companies are:

- 3M

Static Control Systems Division 223-25W EM Center
St. Paul, MN 55101
(800) 792-1072

- Semtronics
P.O. Box 592

Martinsville, NJ 08836
(210) 561-9520

(a) High Input Bias Current Op Amp

(b) Low Input Bias Current TC915

Figure 6 Input Bias Current Cancellation

TYPICAL CHARACTERISTICS CURVES

TYPICAL CHARACTERISTICS CURVES (Cont.)

Input Voltage Noise

Negative Overload
Recovery Time

HORIZONTAL SCALE $\mathbf{= 5 0} \mathbf{~ m s / D I V}$

Positive Overload
Recovery Time

HORIZONTAL SCALE $\mathbf{= 5 0} \mathbf{~ m s / D I V}$

LOW-COST CMOS OPERATIONAL AMPLIFIER

FEATURES

Low Power Supply Current $800 \mu \mathrm{~A}$ Max

- Low Input Offset Voltage \qquad
- Low Input Offset Voltage Drift $0.8 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ Max
- High-Impedance Differential

CMOS Inputs \qquad $10^{12} \Omega$

- High Open-Loop Voltage Gain 100 dB Min
- Low Input Noise Voltage \qquad $0.3 \mu \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$
- Compensated Internally for Stable Unity-Gain Operation
- High Common-Mode Rejection. \qquad 98 dB Min
- Small Outline (SO) Packages Available

GENERAL DESCRIPTION

The TC918 is a general-purpose, low-cost CMOS operational amplifier. By periodically sampling input offset voltage and storing compensating voltages in external capacitors, low offset voltage errors are possible. The correction circuits compensate offset voltage drift with temperature and time. Offset voltage temperature coefficient is $0.8 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ maximum; V_{OS} is $50 \mu \mathrm{~V}$ maximum.

The TC918 performance advantages are achieved without the manufacturing complexity and costs incurred with laser or "zener zap" Vos trim techniques. The TC918 offers a $0.2 \mathrm{~V} / \mu \mathrm{s}$ slew rate and a 700 kHz unity-gain bandwidth. Open-loop voltage gain is 100 dB .

Operating from $\pm 5 \mathrm{~V}$ supplies, the TC918's power dissipation is under 10 mW . in +5 V -only systems, the TC7660 DC-to-DC converter can supply the TC918's negative supply potential. The TC918 will also operate from a single +5 V supply.

For lower power dissipation and offset voltage errors, see the TC900 and TC7650/TC7650A specifications.

FUNCTIONAL DIAGRAM

ORDERING INFORMATION

Part No.	Package	Temperature Range	Max Vos
TC918CPA	8-Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$50 \mu \mathrm{~V}$
TC918COA	8-Pin SO	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$50 \mu \mathrm{~V}$
TC918IJA	8-Pin CerDIP	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$50 \mu \mathrm{~V}$
TC918CPD	14-Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$50 \mu \mathrm{~V}$
TC918IJD	14-Pin CerDIP	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$50 \mu \mathrm{~V}$

PIN CONFIGURATIONS

Package Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$)
Plastic and CerDIP ... 500 mW

Static-sensitive device. Unused devices must be stored in conductive material to protect them from possible static damage. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS: $\mathrm{V}_{\mathrm{S}^{+}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}^{-}}=-5 \mathrm{~V}, \mathrm{C}_{\mathrm{A}}=\mathrm{C}_{\mathrm{B}}=0.1 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
Input						
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	-	50	$\mu \mathrm{V}$
TCVos	Input Offset Voltage vs Average Temperature Coefficient	Operating Temperature Range (Note 1)	-	0.4	0.8	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$I_{\text {BIAS }}$	Average Input Bias Current (Note 5)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	-	100	pA
los	Input Offset Current	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	0.5	-	pA
e_{N}	Input Noise Voltage	$\begin{aligned} & \mathrm{R}_{\mathrm{S}}=100 \Omega, 0 \text { to } 10 \mathrm{~Hz} \\ & \mathrm{R}_{\mathrm{S}}=100 \Omega, 0 \text { to } 1 \mathrm{~Hz} \\ & \hline \end{aligned}$	-	$\begin{gathered} 4 \\ 0.3 \end{gathered}$	-	$\begin{aligned} & \mu \mathrm{V}_{\text {P-P }} \\ & \mu \mathrm{V}_{\text {P-P }} \end{aligned}$
$\mathrm{R}_{\text {IN }}$	Input Resistance		-	10^{12}	-	Ω
CMVR	Common-Mode Voltage Range		$\mathrm{V}_{\mathrm{S}}^{-}$		$\mathrm{V}_{\mathrm{S}}^{ \pm}-2$	V
CMRR	Common-Mode Rejection Ratio	CMVR $=-5 \mathrm{~V}$ to +2 V	98	115	-	dB

LOW-COST CMOS

OPERATIONAL AMPLIFIER

TC918
ELECTRICAL CHARACTERISTICS (Cont.)

Symbol	Parameter	Test Conditions	Min	Typ	Max	Units
Output						
A_{V}	Large-Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	100	130	-	dB
V Out	Output Voltage Swing (Note 3)	$\begin{aligned} & R_{\mathrm{L}}=25 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & -4.7 \\ & -4.9 \end{aligned}$	-	$\begin{aligned} & +3.5 \\ & +3.9 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
	Clamp ON Current (Note 2)	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$	20	90	200	$\mu \mathrm{A}$
	Clamp OFF Current (Note 2)	$-4 \mathrm{~V}<\mathrm{V}_{\text {OUT }}<+4 \mathrm{~V}$	-	1	-	pA
Dynamic						
BW	Unity-Gain Bandwidth	Unity Gain (+1)	-	0.7	-	MHz
SR	Slew Rate	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	-	0.2	-	V/ $\mu \mathrm{s}$
Supply						
V^{+}to $\mathrm{V}^{-}{ }^{-}$	Operating Supply Range		4.5	-	16	V
Is	Supply Current	No Load	-	300	800	$\mu \mathrm{A}$
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}= \pm 3 \mathrm{~V}$ to $\pm 8 \mathrm{~V}$	105	-	-	dB

NOTES: 1. Operating temperature range is $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for $" 1 "$ devices and $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ for " C " devices.
2. See "Output Clamp" discussion.
3. Output clamp not connected.
4. Limiting input current to $100 \mu \mathrm{~A}$ is recommended to avoid latch-up problems.
5. Average current caused by switch charge transfer at input.

Op-Amp Performance Comparison

The TC918 is a low-cost, low-power, precision amplifier. A comparison between the TC918 and other amplifiers is shown in Figure 1.

Figure 1. TC918 Comparison to Other Amplifiers

LOW-COST CMOS OPERATIONAL AMPLIFIER

TC918

Nulling Capacitors

The offset voltage correction capacitors are connected to C_{A} and C_{B}. The common capacitor connection is made to $\mathrm{V}_{\mathrm{S}}^{-}$(pin 4 on 8-pin devices) and to capacitor return $\mathrm{C}_{\text {RET }}$ (pin 8 on 14-pin devices). The common connection should be made through a separate PC trace or wire to avoid voltage drops.

Internally, $\mathrm{V}_{\mathrm{S}}{ }^{-}$is connected to $\mathrm{C}_{\text {RET }}$.
C_{A} and C_{B} should be $0.1 \mu \mathrm{~F}$ film capacitors. Mylar capacitors are suitable.

8-PIN PACKAGE
(PIN 8 IS INTERNALLY CONNECTED TO PIN 7
ON 14-PIN PACKAGE)

Figure 2. Nulling Capacitor Connection

Clock Operation

The internal oscillator is set for a 150 Hz nominal frequency. With the 14-pin device, the 150 Hz internal frequency is available at the internal clock output (pin 12). A 300 Hz nominal signal will be present at the external clock input (pin 13), with INT/EXT high or open. This is the internal clock signal before a divide-by-two operation.

The 14-pin device can be driven by an external clock. The INT/EXT input (pin 14) has an internal pull-up and may be left open for internal clock operation. If an external clock is used, INT/EXT must be tied to $\mathrm{V}_{\mathrm{S}^{-}}$(pin 7) to disable the internal clock. The external clock signal is applied to the external clock input (pin 13).

The external clock amplitude should swing between $\mathrm{V}_{\mathrm{S}^{+}}$and ground for power supplies up to $\pm 6 \mathrm{~V}$ and between $\mathrm{V}_{\mathrm{S}^{+}}$and $\mathrm{V}_{\mathrm{S}^{+}}-6 \mathrm{~V}$ for higher supply voltages.

At low frequencies, the external clock duty cycle is not critical, since an internal divide-by-two gives the desired 50% switching duty cycle. The offset storage correction capacitors are charged only when the external clock input is high. A 50% to 80% external clock-positive duty cycle is desired for frequencies above 500 Hz to guarantee transients settle before the internal switches open.

The external clock input can also be used as a strobe input. If a strobe signal is connected at the external clock input, so that it is low during the time an overload signal is applied, neither capacitor will be charged. The leakage currents at the capacitor pins are very low.

Output Clamp

If the output is driven to either supply rail, output saturation occurs. The inputs are no longer held at a "virtual ground." The $V_{O S}$ null circuit treats the differential signal as an offset and tries to correct it by charging the external capacitors. The nulling circuit also saturates. Once the input signal returns to normal, the response time is lengthened by the long recovery time of the internal correction circuit and external capacitors.

Through an external clamp connection, the TC918 eliminates the overload recovery problem by reducing the feedback network gain before the output voltage reaches either supply rail.

Normally, the clamp pin is not connected.

Figure 3. Internal Clamp Circuit

Figure 4. Noninverting Amplifier With Optional Clamp

Figure 5. Inverting Amplifier With Optional Clamp

Input Bias Current

The TC918's inputs are never disconnected from the main internal amplifier. The null amplifier samples the input offset voltage and corrects DC errors and drift by storing compensating voltages on external capacitors. The sampling, however, causes charge transfer at the inputs. The charge transfer represents a peakimpulse current of 200 nA to 290 nA at the inputs when the internal clock makes a transition.

Latch-Up Avoidance

Junction-isolated CMOS circuits inherently include a parasitic 4-layer (p-n-p-n) structure which has characteristics similar to an SCR. Under certain circumstances, this junction may be triggered into a low-impedance state, resulting in excessive supply current. To avoid this condition, voltages greater than 0.3 V beyond the supply rails should not be applied to any pin. In general, the amplifier supplies must be established either at the same time or before any input signals are applied. If this is not possible, the drive circuits must limit input current flow to under 0.1 mA to avoid latch-up.

TYPICAL CHARACTERISTIC CURVES

NOTES

TC7650

CHOPPER-STABILIZED OPERATIONAL AMPLIFIER

FEATURES

Low Input Offset Voltage $0.7 \mu \mathrm{~V}$	
	Low Input Offset Voltage Drift $0.05 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ Max
Low Input Bias Current........................ 10 pA Max	
High Impedance Differential CMOS Inputs ... $10^{12} \Omega$	
High Open-Loop Voltage Gain 120 dB Min	
High Slew Rate.......................................2.5 V/us	
Low-Power Operation 20 mW	
Output Clamp Speeds Recovery Time	
Compensated Internally for Stable Unity Gain Operation	
Operation Direct Replacement for ICL7650	

GENERAL DESCRIPTION

The TC7650 CMOS chopper-stabilized operational amplifier practically removes offset voltage error terms from system error calculations. The $5 \mu \mathrm{~V}$ maximum V_{OS}
specification, for example, represents a 15 times improvement over the industry-standard OP07E. The $50 \mathrm{nV} /{ }^{\circ} \mathrm{C}$ offset drift specification is over 25 times lower than the OP07E. The increased performance eliminates V_{Os} trim procedures, periodic potentiometer adjustment and the reliability problems caused by damaged trimmers.

The TC7650 performance advantages are achieved without the additional manufacturing complexity and cost incurred with laser or "zener zap" Vos trim techniques. The TC7650 is one of the lowest cost precision-operational amplifiers available.

The TC7650 nulling scheme corrects both DC $V_{O S}$ errors and $V_{O S}$ drift errors with temperature. A nulling amplifier alternately corrects its own $\mathrm{V}_{\text {Os }}$ errors and the main amplifier $\mathrm{V}_{\text {OS }}$ error. Offset nulling voltages are stored on two user-supplied external capacitors. The capacitors connect to the internal amplifier $V_{\text {OS }}$ null points. The main amplifier input signal is never switched. Switching spikes are not present at the TC7650 output. The null scheme keeps $\mathrm{V}_{\text {OS }}$ errors low throughout the operating temperature range. Laser and "zener zap" trimming can correct for Vos at only one temperature.

FUNCTIONAL DIAGRAM

CHOPPER-STABILIZED OPERATIONAL AMPLIFIER

TC7650

The nulling circuit oscillator and control circuits are integrated on-chip. Only two external $\mathrm{V}_{\text {OS }}$ error storage capacitors are required. The TC7650 operates as a conventional operational amplifier with improved input specifications. The low $\mathrm{V}_{\text {OS }}$ and $\mathrm{V}_{\text {OS }}$ drift errors make the TC7650 ideal for thermocouple, thermistor, and strain-gauge applications. Low DC errors and high open-loop gain make the TC7650 an excellent preamplifier for precision analog-todigital converters, such as the TC7135 and TC800.

The 14-pin dual-in-line package (DIP) has an external oscillator input to drive the nulling circuitry for optimum noise performance. Both the 8 - and 14-pin DIPs have an output voltage clamp circuit to minimize overload recovery time.

ORDERING INFORMATION

Part No.	Package	Temperature Range	Max Vos
TC7650CPA	8-Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mu \mathrm{~V}$
TC7650IJA	8-Pin CerDIP	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mu \mathrm{~V}$
TC7650CPD	14-Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mu \mathrm{~V}$
TC7650IJD	14-Pin CerDIP	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mu \mathrm{~V}$

PIN CONFIGURATIONS

ABSOLUTE MAXIMUM RATINGS
Total Supply Voltage ($\mathrm{V}_{\mathrm{S}^{+}}$to $\mathrm{V}_{\mathrm{S}^{-}}$) 18 V
Input Voltage $\left(\mathrm{V}_{\mathrm{s}^{+}}+0.3 \mathrm{~V}\right)$ to $\left(\mathrm{V}_{\mathrm{s}^{-}}-0.3 \mathrm{~V}\right)$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$
Voltage on Oscillator Control Pins $\mathrm{V}_{\mathrm{S}^{+}}$to $\mathrm{V}_{\mathrm{S}}{ }^{-}$
Output Short Circuit Duration Indefinite
Current Into Any Pin 10 mA
While Operating (Note 4) $100 \mu \mathrm{~A}$
Operating Temperature Range
I Device $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
C Device $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$Package Power Dissipation ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)CerDIP500 mW
Plastic DIP 375 mW

Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to Absolute Maximum Rating Conditions for extended periods may affect device reliability.

CHOPPER-STABILIZED

 OPERATIONAL AMPLIFIERTC7650
ELECTRICAL CHARACTERISTICS: $\mathrm{V}_{\mathrm{S}^{+}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}^{-}}=-5 \mathrm{~V}, \mathrm{C}_{\mathrm{A}}=\mathrm{C}_{\mathrm{B}}=0.1 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions	Min	Typ	Max	Units
Input						
Vos	Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ Over Operating Temp Range (Note 1)	-	$\begin{aligned} & \pm 0.7 \\ & \pm 1.0 \end{aligned}$	± 5	$\mu \mathrm{V}$
$\overline{\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}}$	Input Offset Voltage Average Temperature Coefficient	Operating Temperature Range (Note 1)	-	0.01	0.05	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
	Offset Voltage vs. Time		-	100	-	n V/ month
$\overline{\text { BIAS }}$	Input Bias Current	$\begin{aligned} & \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \end{aligned}$	-	$\begin{gathered} 1.5 \\ 35 \\ 100 \end{gathered}$	$\begin{gathered} 10 \\ 150 \\ 400 \end{gathered}$	pA pA pA
los	Input Offset Current	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	0.5	-	pA
enp.P	Input Noise Voltage	$\mathrm{R}_{\mathrm{S}}=100 \Omega$, 0 to 10 Hz	-	2	-	$\mu \mathrm{V}_{\text {P-P }}$
IN	Input Noise Current	$f=10 \mathrm{~Hz}$	-	0.01	-	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
$\mathrm{R}_{\text {IN }}$	Input Resistance		-	10^{12}		Ω
CMVR	Common-Mode Voltage Range		-5	$\begin{aligned} & -5.2 \\ & \text { to }+2 \end{aligned}$	+1.6	V
CMRR	Common-Mode Rejection Ratio	$\mathrm{CMVR}=-5 \mathrm{~V}$ to +1.5 V	120	130	-	dB

Output

A	Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	120	130	-	dB
$\bar{V}_{\text {OUT }}$	Output Voltage Swing (Note 3)	$\begin{aligned} & R_{L}=10 \mathrm{k} \Omega \\ & R_{L}=100 \mathrm{k} \Omega \end{aligned}$	± 4.7	$\begin{aligned} & \pm 4.85 \\ & \pm 4.95 \end{aligned}$	-	V
	Clamp ON Current (Note 2)	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$	25	70	200	$\mu \mathrm{A}$
	Clamp OFF Current (Note 2)	-4 V < $\mathrm{V}_{\text {OUT }}<+4 \mathrm{~V}$	-	1	-	PA

Dynamic

B_{W}	Unity-Gain Bandwidth	Unity Gain (+1)	-	2.0	-	MHz
S_{R}	Slew Rate	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	-	2.5	-	$\mathrm{V} / \mu \mathrm{s}$
t_{R}	Rise Time		-	0.2	-	$\mu \mathrm{s}$
	Overshoot		-	20	-	$\%$
f_{CH}	Internal Chopping Frequency	Pins 12-14 Open (DIP)	120	200	375	Hz

Supply

$\mathrm{V}_{\mathrm{S}^{+}, \mathrm{V}_{\mathrm{S}}-}$	Operating Supply Range	4.5	-	16	V	
S	Supply Current	No Load	-	2	3.5	mA
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}= \pm 3 \mathrm{~V}$ to $\pm 8 \mathrm{~V}$	120	130		dB

NOTES: 1. Operating temperature range is $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for " 1 " grade and $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ for " C " grade.
2. See "Output Clamp" discussion.
3. Output clamp not connected. See typical characteristics curves for output swing versus clamp current characteristics.
4. Limiting input current to $100 \mu \mathrm{~A}$ is recommended to avoid latch-up problems.

CHOPPER-STABILIZED OPERATIONAL AMPLIFIER

TC7650

Theory of Operation

Figure 1 shows the major elements of the TC7650. There are two amplifiers (the main amplifier and the nulling amplifier), and both have offset-null capability. The main amplifier is connected full-time from the input to the output. The nulling amplifier, under the control of the chopping frequency oscillator and clock circuit, alternately nulls itself and the main amplifier. Two external capacitors provide the required storage of the nulling potentials and the necessary nulling-loop time constants. The nulling arrangement operates over the full common-mode and power-supply ranges, and is also independent of the output level, thus giving exceptionally high CMRR, PSRR, and Avol.

Careful balancing of the input switches minimizes chopperfrequency charge injection at the input terminals, and the feed-forward-type injection into the compensation capacitor that can cause output spikes in this type circuit.

The circuit's offset voltage compensation is easily shown. With the nulling inputs shorted, a voltage almost identical to the nulling amplifier offset voltage is stored on C_{A}. The effective offset voltage at the null amplifier input is:

$$
\begin{equation*}
V_{\mathrm{OSE}}=\frac{1}{A_{N}+1} \quad V_{\mathrm{OSN}} \tag{1}
\end{equation*}
$$

After the nulling amplifier is zeroed, the main amplifier is zeroed; the A switches open and B switches close.

The output voltage equation is:
$\mathrm{V}_{\mathrm{O}}=\mathrm{A}_{\mathrm{M}}\left[\mathrm{V}_{\mathrm{OSM}}+\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)+\mathrm{A}_{\mathrm{N}}\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)+\mathrm{A}_{\mathrm{N}} \mathrm{V}_{\text {OSE }}\right]$
Substituting (1) $\rightarrow(2)$ and assuming $A_{N} \gg 1$:

$$
\begin{equation*}
V_{O}=A_{M} A_{N}\left[\left(V^{+}-V^{-}\right)+\frac{V_{\mathrm{OSM}}+V_{\mathrm{OSN}}}{A_{N}}\right] \tag{3}
\end{equation*}
$$

As desired, the device offset voltages are reduced by the high open-loop gain of the nulling amplifier.

Output Stage/Load Driving

The output circuit is a high-impedance stage (approximately $18 \mathrm{k} \Omega$). With loads less than this, the chopper amplifier behaves in some ways like a transconductance amplifier whose open-loop gain is proportional to load resistance. For example, the open-loop gain will be 17 dB lower with a $1 \mathrm{k} \Omega$ load than with a $10 \mathrm{k} \Omega$ load. If the amplifier is used strictly for DC, the lower gain is of little consequence, since the DC gain is typically greater than 120 dB , even with a $1 \mathrm{k} \Omega$ load. In wideband applications, the best frequency response will be achieved with a load resistor of $10 \mathrm{k} \Omega$ or higher. This results in a smooth $6 \mathrm{~dB} /$ octave response from 0.1 Hz to 2 MHz , with phase shifts of less than 10° in the transition region, where the main amplifier takes over from the null amplifier. The clock frequency sets the transition region.

Intermodulation

Previous chopper-stabilized amplifiers have suffered from intermodulation effects between the chopper frequency and input signals. These arise because the finite AC gain of the amplifier results in a small AC signal at the input. This is seen by the zeroing circuit as an error signal, which is chopped and fed back, thus injecting sum and difference frequencies, and causing disturbances to the gain and phase versus frequency characteristics near the chopping frequency. These effects are substantially reduced in the TC7650 by feeding the nulling circuit with a dynamic current corresponding to the compensation capacitor current in such a way as to cancel that portion of the input signal due to a finite AC gain. The intermodulation and gain/phase disturbances are held to very low values, and can generally be ignored.

4349 ILL FO3
Figure 1 TC7650 Contains a Nulling and Main Amplifier. Offset Correction Voltages Are Stored on Two External Capacitors.

Figure 2 Nulling Capacitor Connection

Nulling Capacitor Connection

The offset voltage correction capacitors are connected to C_{A} and C_{B}. The common capacitor connection is made to $\mathrm{V}_{S^{-}}$(pin 4) on the 8-pin packages and to capacitor return ($\mathrm{C}_{\mathrm{R}}, \mathrm{pin} 8$) on the 14-pin packages. The common connection should be made through either a separate PC trace or wire, to avoid voltage drops. The capacitors outside foil, if possible, should be connected to C_{R} or $\mathrm{V}_{\mathrm{S}}{ }^{-}$.

Clock Operation

The internal oscillator is set for a 200 Hz nominal chopping frequency on both the 8 - and 14-pin DIPs. With the 14-pin DIP TC7650, the 200 Hz internal chopping frequency is available at the internal clock output (pin 12). A 400 Hz nominal signal will be present at the external clock input pin (pin 13) with INT/EXT high or open. This is the internal clock signal before a divide-by-two operation.

The 14-pin DIP device can be driven by an external clock. The INT/EXT input (pin 14) has an internal pull-up and may be left open for internal clock operation. If an external clock is used, INT/EXT must be tied to $\mathrm{V}_{\mathrm{S}^{-}}$(pin 7) to disable the internal clock. The external clock signal is applied to the external clock input (pin 13).

The external clock amplitude should swing between $\mathrm{V}_{\mathrm{S}^{+}}$ and ground for power supplies up to $\pm 6 \mathrm{~V}$ and between V^{+} and $\mathrm{V}^{+}-6 \mathrm{~V}$ for higher supply voltages.

At low frequencies the external clock duty cycle is not critical, since an internal divide-by-two gives the desired 50% switching duty cycle. The offset storage correction capacitors are charged only when the external clock input is high. A 50% to 80% external clock positive duty cycle is desired for frequencies above 500 Hz to guarantee transients settle before the internal switches open.

The external clock input can also be used as a strobe input. If a strobe signal is connected at the external clock input so that it is low during the time an overload signal is applied, neither capacitor will be charged. The leakage currents at the capacitors pins are very low. At $25^{\circ} \mathrm{C}$ a typical TC7650 will drift less than $10 \mu \mathrm{~V} / \mathrm{sec}$.

Output Clamp

Chopper-stabilized systems can show long recovery times from overloads. If the output is driven to either supply rail, output saturation occurs. The inputs are no longer held at a "virtual ground." The Vos null circuit treats the differential signal as an offset and tries to correct it by charging the external capacitors. The nulling circuit also saturates. Once the input signal returns to normal, the response time is lengthened by the long recovery time of the nulling amplifier and external capacitors.

Through an external clamp connection, the TC7650 eliminates the overload recovery problem by reducing the feedback network gain before the output voltage reaches either supply rail.

Figure 3 Internal Clamp Circuit

Figure 4 Noninverting Amplifier With Optional Clamp

CHOPPER-STABILIZED OPERATIONAL AMPLIFIER

Figure 5 Inverting Amplifier With Optional Clamp
The output clamp circuit is shown in Figure 3, with typical inverting and noninverting circuit connections shown in Figures 4 and 5 . Output voltage versus clamp circuit current characteristics are shown in the typical operating curves. For the clamp to be fully effective, the impedance across the clamp output should be greater than $100 \mathrm{k} \Omega$.

Static Protection

All device pins are static-protected. Strong static fields and discharges should be avoided, however, as they can degrade diode junction characteristics and increase inputleakage currents.

Many companies are actively involved in providing services, educational material, and supplies to aid electronic manufacturers in establishing "static safe" work areas where CMOS components are handled. A partial company listing is:

- 3M

Static Control Systems Division
223-25W EM Center
St. Paul, MN 55101
(800) 792-1072

- Semtronics
P.O. Box 592

Martinsville, NJ 08836
(210) 561-9520

- American Converters 1919 South Butlerfield Road Mundelein, IL 60060
(312) 362-9000
- ACL

1960 East Devon Avenue
Elk Grove Village, IL 60007
(312) 981-9212

Latch-Up Avoidance

Junction-isolated CMOS circuits inherently include a parasitic 4-layer ($\mathrm{p}-\mathrm{n}-\mathrm{p}-\mathrm{n}$) structure which has characteristics similar to an SCR. Under certain circumstances this junction may be triggered into a low-impedance state, resulting in excessive supply current. To avoid this condition, no voltage greater than 0.3 V beyond the supply rails should be applied to any pin. In general, the amplifier supplies must be established either at the same time or before any input signals are applied. If this is not possible, the drive circuits must limit input current flow to under 0.1 mA to avoid latchup.

Thermoelectric Potentials

Precision DC measurements are ultimately limited by thermoelectric potentials developed in thermocouple junctions of dissimilar metals, alloys, silicon, etc. Unless all junctions are at the same temperature, thermoelectric voltages, typically around $0.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, but up to tens of $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ for some materials, will be generated. In order to realize the benefits extremely-low offset voltages provide, it is essential to take special precautions to avoid temperature gradients. All components should be enclosed to eliminate air movement, especially those caused by power-dissipating elements in the system. Low thermoelectric-coefficient connections should be used where possible and power supply voltages and power dissipation should be kept to a minimum. High-impedance loads are preferable, and separation from surrounding heat-dissipating elements is advised.

Pin Compatibility

On the 8-pin mini-DIP TC7650, the external null storage capacitors are connected to pins 1 and 8 . On most other operational amplifiers these are left open or are used for offset potentiometer or compensation capacitor connections.

For OP05 and OP07 operational amplifiers, the replacement of the offset null potentiometer between pins 1 and 8 by two capacitors from the pins to $\mathrm{V}_{\mathrm{S}}{ }^{-}$will convert the OP05/ 07 pin configurations for TC7650 operation. For LM108 devices, the compensation capacitor is replaced by the external nulling capacitors. The LM101/748/709 pinouts are modified similarly by removing any circuit connections to pin 5. On the TC7650, pin 5 is the output clamp connection. Other operational amplifiers may use this pin as an offst or compensation point.

The minor modifications needed to retrofit a TC7650 into existing sockets operating at reduced power supply voltages make prototyping and circuit verification straightforward.

4349 ILL FO8
Figure 6 Input Guard Connection

Input Guarding

High impedance, low leakage CMOS inputs allow the TC7650 to make measurements of high-impedance sources. Stray leakage paths can increase input currents and decrease input resistance unless inputs are guarded. A guard is a conductive PC trace surrounding the input terminals. The ring connects to a low-impedance point at the same potential as the inputs. Stray leakages are absorbed by the low-impedance ring. The equal potential between ring and inputs prevents input leakage currents. Typical guard connections are shown in Figure 6.

The 14-pin DIP configuration has been specifically designed to ease input guarding. The pins adjacent to the inputs are unused.

In applications requiring low leakage currents, boards should be cleaned thoroughly and blown dry after soldering. Protective coatings will prevent future board contamination.

Component Selection

The two required capacitors, C_{A} and C_{B}, have optimum values, depending on the clock or chopping frequency. For the preset internal clock, the correct value is $0.1 \mu \mathrm{~F}$. To maintain the same relationship between the chopping frequency and the nulling time constant, the capacitor values should be scaled in proportion to the external clock, if used. High-quality film-type capacitors (such as Mylar) are preferred; ceramic or other lower-grade capacitors may be suitable in some applications. Forfast settling on initial turnon, low dielectric absorption capacitors (such as polypropylene) should be used. With ceramic capacitors, several seconds may be required to settle to $1 \mu \mathrm{~V}$.

CHOPPER-STABILIZED OPERATIONAL AMPLIFIER

TYPICAL CHARACTERISTIC CURVES

Supply Current vs
Supply Voltage

LOW NOISE, CHOPPER-STABILIZED OPERATIONAL AMPLIFIER

FEATURES

Low Offset Over Temperature Range \qquad $10 \mu \mathrm{~V}$

- Ultra-Low Long-Term Drift 150 nV/Month
- Low Temperature Drift $100 \mathrm{nV} /{ }^{\circ} \mathrm{C}$
- Low DC Input Bias Current. 15 pA
- High Gain, CMRR and PSRR 110 dB Min - Low Input Noise Voltage $0.2 \mu \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$; DC to 1 Hz - Internally-Compensated for Utility-Gain Operation
- Clamp Circuit for Fast Overload Recovery

GENERAL DESCRIPTION

The TC7652 low noise, chopper-stabilized operational amplifier improves noise performance and provides a wider common-mode input voltage range. It offers low-input offset voltage and time/temperature stability, with reduced bandwidth and slew rate. CMOS circuitry eliminates most chopping spikes intermodulation effects and overrange lockup problems.

The TC7652 compares inverting and noninverting input voltages in an amplifier nulled by alternate clock phases. Two external capacitors store the correcting potentials on two amplifier-nulling inputs. All control circuitry, includingthe clock oscillator, is self-contained. The TC7652 is internallycompensated for unity-gain operation. If required, the 14-pin version can use an external clock.

The functional diagram shows the main components of the TC7652. The main and nulling amplifiers have offsetnull capability. The main amp is continuously connected

NOTE: 1. For 8-pin DIP connect to V_{S}, or to $\mathrm{C}_{\text {RET }}$ on "Z" pinout.

TC7652

from input to output. Controlled by the chopping-frequency oscillator and clock circuit, the nulling amp alternately nulls itself and the main amp. The nulling connections (MOSFET gates) are high impedance. Two external capacitors provide nulling potential storage and nulling loop-time constraints. Nulling operates over the full common-mode and power supply ranges. Independent of the output level, this arrangement gives exceptionally high CMRR, PSRR, and Avol.

The input switches are closely matched to reduce chopper frequency charge injection at the input terminals. The main cause of output spikes in this type circuit (feed-forward-type injection into the compensation capacitor) is minimized.

Other chopper-stabilized amplifiers experience intermodulation effects between chopper frequency and input signals. The finite AC gain of the amplifier requires a small AC signal at the input. The zeroing circuit sees this as an error signal, which it chops and feeds back. The circuit also injects sum-and-difference frequencies and causes gain and phase/frequency characteristics disturbances near the chopping frequency.

The TC7652 reduces these intermodulation effects by feeding the nulling circuit a dynamic current that corresponds to the compensation capacitor current and cancels the portion of the input signal from finite AC gain. In this way, the major cause of TC7652 error is minimized. The gain and phase disturbances are held to such low values that they can usually be ignored.

ABSOLUTE MAXIMUM RATINGS

Input Voltage $\left(\mathrm{V}^{+}+0.3 \mathrm{~V}\right)$ to ($\mathrm{V}_{\mathrm{s}}{ }^{-}-0.3 \mathrm{~V}$)
Voltage on Oscillator Control Pins $\mathrm{V}_{\mathrm{s}^{+}}$to Vs^{-}
Duration of Output Short CircuitIndefinite
Current Into Any Pin ... 10 mA
While Operating (Note 4) $100 \mu \mathrm{~A}$
Continuous Total Power Dissipation ($T_{A}=25^{\circ} \mathrm{C}$) CerDIP
.500 mW
Plastic DIP 375 mW
Storage Temperature Range $\ldots-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range
C Device $.0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
I Device ... $25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec). \qquad
Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to Absolute Maximum Rating Conditions for extended periods may affect device reliability.

PIN CONFIGURATIONS

ORDERING INFORMATION

Part No.	Package	Temperature Range
TC7652CPA	8-Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS: $\mathrm{V}_{\mathrm{S}^{+}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}^{-}}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise indicated.

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ Over Operating Temperature Range (Note 1)		$\begin{gathered} \pm 2 \\ \pm 10 \end{gathered}$	± 5	$\mu \mathrm{V}$
$\mathrm{TCV}_{\text {Os }}$	Average Temperature Coefficient of Input Offset Voltage	Operating Temperature Range (Note 1)		0.01	0.05	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\overline{\mathrm{V}} \mathrm{OS} / \Delta \mathrm{T}$	Offset Voltage vs Time			150		$\mathrm{nV} / \mathrm{mo}$
IBIAS	Input Bias Current (CLK On)	$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C}<\mathrm{T}_{A}<+70^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C}<\mathrm{T}_{A}<+85^{\circ} \mathrm{C} \end{aligned}$		$\begin{gathered} 30 \\ 100 \\ 250 \end{gathered}$	$\begin{gathered} 100 \\ 1000 \end{gathered}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{pA} \\ & \mathrm{pA} \end{aligned}$
IBIAS	Input Bias Current (CLK Off)	$\begin{aligned} & \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C} \end{aligned}$		$\begin{gathered} 15 \\ 35 \\ 100 \\ \hline \end{gathered}$	30	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{pA} \\ & \mathrm{pA} \end{aligned}$
los	Input Offset Current	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		25	150	pA
$\mathrm{R}_{\text {IN }}$	Input Resistance			10^{12}		Ω
OL	Large Signal Voltage Gain	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{~V}_{\text {OUT }}= \pm 4 \mathrm{~V} \end{aligned}$	120	150		dB
$\overline{V_{\text {OUT }}}$	Output Voltage Swing (Note 3)	$\begin{aligned} & R_{L}=10 \mathrm{k} \Omega \\ & R_{L}=100 \mathrm{k} \Omega \\ & \hline \end{aligned}$	± 4.7	$\begin{aligned} & \pm 4.85 \\ & \pm 4.95 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
CMVR	Common-Mode Voltage Range		-4.3		+3.5	V
MRR	Common-Mode Rejection Ratio	$\mathrm{CMVR}=-4.3 \mathrm{~V}$ to +3.5 V	120	140		dB
PSRR	Power Supply Rejection Ratio	$\pm 3 \mathrm{~V}$ to $\pm 8 \mathrm{~V}$	120	140		dB
e_{N}	Input Noise Voltage	$\begin{aligned} & \mathrm{R}_{\mathrm{S}}=100 \Omega, \mathrm{DC} \text { to } 1 \mathrm{~Hz} \\ & \mathrm{DC} \text { to } 10 \mathrm{~Hz} \end{aligned}$		$\begin{aligned} & 0.2 \\ & 0.7 \end{aligned}$	$\begin{gathered} 1.5 \\ 5 \end{gathered}$	$\begin{aligned} & \mu \mathrm{V}_{\mathrm{P}-\mathrm{P}} \\ & \mu \mathrm{~V}_{\text {P-P }} \end{aligned}$
IN	Input Noise Current	$\mathrm{f}=10 \mathrm{~Hz}$		0.01		$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
GBW	Unity-Gain Bandwidth			0.4		MHz
SR	Slew Rate	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$		1		$\mathrm{V} / \mu \mathrm{s}$
	Overshoot			15		\%
$\mathrm{V}^{+}, \mathrm{V}^{-}$	Operating Supply Range		5		16	V
Is	Supply Current	No Load		1	3	mA
f_{CH}	Internal Chopping Frequency	Pins 12-14 Open (DIP)	100	275		Hz
	Clamp ON Current (Note 2)	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$	25	100		$\mu \mathrm{A}$
	Clamp OFF Current (Note 2)	$-4 \mathrm{~V} \leqslant \mathrm{~V}_{\text {OUT }}<+10 \mathrm{~V}$		1		pA

NOTES: 1. $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, or $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
2. See "Output Clamp" under detailed description.
3. Output clamp not connected. See typical characteristics curves for output swing versus clamp current characteristics.
4. Limiting input current to $100 \mu \mathrm{~A}$ is recommended to avoid latch-up problems. Typically, 1 mA is safe; however, this is not guaranteed.

LOW NOISE, CHOPPER-STABILIZED OPERATIONAL AMPLIFIER

Capacitor Connection

Connect the null-storage capacitors to the C_{A} and C_{B} pins with a common connection to the $\mathrm{C}_{\text {RET }}$ pin (14-pin TC7652 or 8-pin TC7652Z) or to Vs^{-}(8-pin TC7652). When connecting to Vs^{-}, avoid injecting load current IR drops into the capacitive circuitry by making this connection directly via a separate wire or PC trace.

Output Clamp

In chopper-stabilized amplifiers, the output clamp pin reduces overload recovery time. When a connection is made to the inverting input pin (summing junction), a current path is created between that point and the output pin, just before the device output saturates. This prevents uncontrolled differential input voltages and charge buildup on correction-storage capacitors. Output swing is reduced.

Clock

The TC7652 has a 550 kHz internal oscillator, which is divided by two before clocking the input chopper switches. The 275 Hz chopping frequency is available at INTCLK OUT (pin 12) on 14-pin devices. In normal operation, INT/EXT (pin 14), which has an internal pull-up, can be left open.

An external clock can also be used. To disable the internal clock and use an external one, the INT/EXT pin must be tied to $\mathrm{V}_{\mathrm{s}}{ }^{-}$. The external clock signal is then applied to the EXT CLK IN input (pin 13). An internal divide-by-two provides a 50% switching duty cycle. The capacitors are only charged when EXT CLK \mathbb{N} is high, so a 50% to 80% positive duty cycle is recommended for higher clock frequencies. The external clock can swing between $\mathrm{V}_{\mathrm{s}^{+}}$and $\mathrm{V}_{\mathrm{S}^{-}}$, with the logic threshold about 2.5 V below $\mathrm{V}_{\mathrm{S}^{+}}$.

The output of the internal oscillator, before the divide-bytwo circuit, is available at EXT CLK IN when INT/EXT is high or unconnected. This output can serve as the clock input for a second TC7652 (operating in a master/slave mode), so that both op amps will clock at the same frequency. This prevents clock intermodulation effects when two TC7652's are used in a differential amplifier configuration.

TEST CIRCUIT

If the TC7652's output saturates, error voltages on the external capacitors will slow overload recovery. This condition can be avoided if a strobe signal is available. The strobe signal is applied to EXT CLK IN and the overload signal is applied to the amplifier while the strobe is low. In this case, neither capacitor will be charged. The low leakage of the capacitor pins allow long measurements to be made with negligible errors (typical capacitor drift is $10 \mu \mathrm{~V} / \mathrm{sec}$).

APPLICATION NOTES Component Selection

C_{A} and C_{B} (external capacitors) should be in the $0.1 \mu \mathrm{~F}$ to $1 \mu \mathrm{~F}$ range. For minimum clock ripple noise, use a $1 \mu \mathrm{~F}$ capacitor in broad bandwidth circuits. For limited bandwidth applications where clock ripple is filtered out, use a $0.1 \mu \mathrm{~F}$ capacitor for slightly lower offset voltage. High-quality filmtype capacitors (polyester or polypropylene) are recommended, although a lower grade (ceramic) may work in some applications. For quickest settling after initialturn-on, use low dielectric absorption capacitors (e.g., polypropylene). With ceramic capacitors, settling to $1 \mu \mathrm{~V}$ takes several seconds.

Static Protection Although input diodes static protect all device pins, avoid strong static fields and discharges that can cause degraded diode junction characteristics and produce increased input-leakage currents.

Latch-Up

Junction-isolated CMOS circuits have a 4 -layer (p -n-$\mathrm{p}-\mathrm{n}$) structure similar to an SCR. Sometimes this junction can be triggered into a low-impedance state and produce excessive supply current. Therefore, avoid applying voltage greater than 0.3 V beyond the supply rails to any pin. Establish the amplifier supplies at the same time or before any input signals are applied. If this is not possible, drive circuits must limit input current flow to under 1 mA to avoid latch-up, even under fault conditions.

Output Stage/Load Driving

The output circuit is high impedance (about 18 kW). With lesser loads, the chopper amplifier behaves somewhat like a transconductance amplifier with an open-loop gain proportional to load resistance. (For example, the open-loop gain is 17 dB lower with a 1 kW load than with a 10 kW load.) If the amp is used only for $D C$, the DC gain is typically greater than 120 dB (even with a 1 kW load), and this lower gain is inconsequential. Forwideband, the bestfrequency response occurs with a load resistor of at least 10 kW . This produces a $6 \mathrm{~dB} /$ octave response from 0.1 Hz to 2 MHz , with phase shifts of less than 2 degrees in the transition region, where the main amplifier takes over from the null amplifier.

CONNECTION OF INPUT GUARDS

Thermoelectric Effects

The thermoelectric (Peltier) effects in thermocouple junctions of dissimilar metals, alloys, silicon, etc. limit ultra-high-precision DC amplifiers. Unless all junctions are at the same temperature, thermoelectric voltages around $0.1 \mu \mathrm{~V} /$ ${ }^{\circ} \mathrm{C}$ (up to tens of $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ for some materials) are generated. To realize the low offset voltages of the chopper, avoid temperature gradients. Enclose components to eliminate air movement, especially from power-dissipating elements in the system. Where possible, use low thermoelectric-coefficient connections. Keep power supply voltages and power dissipation to a minimum. Use high-impedance loads and seek maximum separation from surrounding heat-dissipating elements.

Guarding

To benefit from TC7652 low-input currents, take care assembling printed circuit boards. Clean boards with alcohol or TCE, and blow dry with compressed air. To prevent contamination, coat boards with epoxy or silicone rubber.

Even if boards are cleaned and coated, leakage currents may occur because input pins are next to pins at supply potentials. To reduce this leakage, use guarding to lower the voltage difference between the inputs and adjacent metal runs. The guard (a conductive ring surrounding inputs) is
connected to a low-impedance point at about the same voltage as inputs. Then the guard absorbs leakage currents from high-voltage pins.

The 14-pin dual-in-line arrangement simplifies guarding. Like the LM108 pin configuration (but unlike the 101A and 741), pins next to inputs are not used.

Pin Compatibility

Where possible, the 8-pin device basic pinout conforms to such industry standards as the LM101 and LM741. Nullstoring external capacitors connect to pins 1 and 8 , which are usually for offset-null or compensation capacitors. Output clamp (pin 5) is similarly used. For OP05 and OP07 devices, replacement of the offset-null potentiometer (connected between pins 1 and 8 and $\mathrm{V}_{\mathrm{S}^{+}}$by two capacitors from those pins to $\mathrm{V}_{\mathrm{S}^{-}}$) provides compatibility. Replacing the compensation capacitor between pins 1 and 8 by two capacitors to $\mathrm{V}_{\mathrm{S}}-$ is required. The same operation (with the removal of any connection to pin 5) works for LM101, $\mu A 748$, and similar parts.

Because NC pins provide guarding between input and other pins, the 14-pin device pinout conforms closely to the LM108. Because this device does not use any extra pins and does not provide offset-nulling (but requires a compensation capacitor), some layout changes are necessary to convert to the TC7652.

LOW NOISE, CHOPPER-STABILIZED OPERATIONAL AMPLIFIER

TC7652

Some Applications

Figures 1 and 2 show basic inverting and noninverting amplifier circuits using the output clamping circuit to enhance overload recovery performance. The only limitations on replacing other op amps with the TC7652 are supply voltage ($\pm 8 \mathrm{~V}$ maximum) and output drive capability ($10 \mathrm{k} \Omega$ load for full swing). Overcome these limitations with a booster circuit (Figure 3) to combine output capabilities of the LM741 (or other standard device) with input capabilities of the TC7652. These two form a composite device; therefore, when adding the feedback network, monitor loop gain stability.

Figure 1 Noninverting Amplifier With Optional Clamp

Figure 2 Inverting Amplifier With Optional Clamp

Figure 3 Using 741 to Boost Output Drive Capability

Figure 4 shows the clamp circuit of a zero-offset comparator. Because the clamp circuit requires the inverting input to follow the input signal, problems with a chopperstabilized op amp are avoided. The threshold input must tolerate the output clamp current $\approx V_{I N} / R$ without disrupting other parts of the system.

Figure 5 shows how the TC7652 can offset-null high slew rate and wideband amplifiers (such as Teledyne Components' 1437).

Mixing the TC7652 with circuits operating at $\pm 15 \mathrm{~V}$ requires a lower supply voltage divider with the TC7660 voltage converter circuit operated "backwards." Figure 6 shows an approximate connection.

Figure 4 Low Offset Comparator

Figure $5 \mathbf{1 4 3 7}$ Offset-Nulled by TC7652

Figure 6 Splitting +15V With the $\mathbf{7 6 6 0}$ at $>95 \%$ Efficiency

LOW NOISE, CHOPPER-STABILIZED

 OPERATIONAL AMPLIFIERTYPICAL CHARACTERISTICS CURVES

BONDING DIAGRAM

HIGH-VOLTAGE, AUTO-ZEROED OPERATIONAL AMPLIFIERS

FEATURES

High Ope	
Wide Common-Mode Voltage	
Range ...-15V to +13V	
Low Input Voltage Noise$(0.1 \mathrm{~Hz}$ to 1 Hz).............	
	Low Supply Current 1 mA
Low	

GENERAL DESCRIPTION

The TC9420 and TC9421 are high-voltage, highperformance, CMOS chopper-stabilized operational amplifiers. They can operate from the same $\pm 15 \mathrm{~V}$ power supplies as commonly used to power bipolar op-amps, such as the OP07 and OP741. Previous CMOS chopper amplifiers, such as the 7650 , were limited to operating from $\pm 7.5 \mathrm{~V}$ supplies.

Maximum $\mathrm{V}_{\text {OS }}$ for the TC9420/TC9421 is only $5 \mu \mathrm{~V}$, almost a factor of 14 improvement over the industry-standard OP07E. The maximum V_{OS} drift of $0.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ is 12 times less than the OP07E. Input bias and offset currents, both only 30 pA maximum, are factors of 60 improvements.

FUNCTIONAL DIAGRAM

In addition to low initial offset errors, the nulling circuitry ensures excellent performance over time and temperature. Long-term drift, which results in periodic recalibration, is effectively eliminated. The nulling circuitry continues to operate over the full temperature range, whereas laser and "zener zap" trimming are only done at a single temperature. The result is a significant decrease in temperature-induced errors.

The TC9420/TC9421 operate from dual or single power supplies. Supply current is typically 1 mA with $\pm 15 \mathrm{~V}$ supplies. Single supply operation extends from +7 V to +32 V , and the input common-mode range extends to $\mathrm{V}_{\mathrm{S}^{-}}$. For battery operation, see the low-power TC900 data sheet.

The TC9420/TC9421 open-loop gain is 120 dB minimum. Unlike the 7650, the TC9420/TC9421 gain is independent of load resistance. The low impedance output will drive a $10 \mathrm{k} \Omega$ load to $\pm 14 \mathrm{~V}$. An output clamp circuit is provided to minimize overload recovery time.

The TC9420/TC9421 use two amplifiers to correct offset voltage errors. A main amplifier is always in the signal path, which prevents switching spikes at the output. A separate nulling amplifier alternately corrects its own $V_{O S}$ error. Only two external capacitors are required to store the nulling error voltages. All active nulling circuitry, including switches and oscillator, are included on the chip.

The TC9420/TC9421 are pin compatible with Maxim's MAX 420/421.

ORDERING INFORMATION

Part No.	Package	Temperature Range	Max Vos
TC9420CPA	8-Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$10 \mu \mathrm{~V}$
TC9420EJA	8 -Pin CerDIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mu \mathrm{~V}$
TC9420EPA	8 -Pin Plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mu \mathrm{~V}$
TC9421CPD	14 -Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$10 \mu \mathrm{~V}$
TC9421EJD	$14-$ Pin CerDIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mu \mathrm{~V}$
TC9421EPD	$14-$-Pin Plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mu \mathrm{~V}$

PIN CONFIGURATIONS

ABSOLUTE MAXIMUM RATINGS

Total Supply Voltage $\left(\mathrm{V}_{\mathrm{S}^{+}}\right.$to $\left.\mathrm{V}_{\mathrm{S}^{-}}\right)$........................... +36 V Input Voltage $\left(\mathrm{V}_{\mathrm{S}^{+}}+0.3 \mathrm{~V}\right)$ to $\left(\mathrm{V}_{\mathrm{S}^{-}}-0.3 \mathrm{~V}\right)$ Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec) $+300^{\circ} \mathrm{C}$ Current Into Any Pin ... 10 mA Operating Temperature Range
\qquad E Device.. $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Package Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$)

CerDIP Package
.500 mW
Plastic Package .. 375 mW
Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

HIGH-VOLTAGE, AUTO-ZEROED

 OPERATIONAL AMPLIFIERSTC9420
TC9421
ELECTRICAL CHARACTERISTICS: $\mathrm{V}_{\mathrm{S}^{+}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}^{-}}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Test circuit unless noted.

NOTES: 1 . Single supply operation: $\mathrm{V}_{\mathrm{S}^{+}}=+7 \mathrm{~V}$ to +32 V .

HIGH-VOLTAGE, AUTO-ZEROED OPERATIONAL AMPLIFIERS

TC9420 TC9421

Theory of Operation

Figure 1 shows the major elements of the TC9420/ TC9421. There are two amplifiers: the main (signal) amplifier and the nulling amplifier. Both have offset nulling capability. The main amplifier is always connected to the output. The nulling amplifier alternately samples and adjusts its own offset and then the offset of the main amplifier.

A two-phase operation nulls the main amplifier. During the first phase, the A pair of switches close, while the B switches open. Then nulling amp's inputs are shorted and its output is fed back to the nulling input. Capacitor C_{A} charges to a voltage which will maintain the nulling amp in its nulled state.

During the second phase, the B switches close and the A switches open. The nulling amp's inputs now sample the offset voltage of the main amp. The nulling amp drives the main amp's nulling input to cancel the main amplifier's offset voltage. Capacitor C_{B} stores the nulling voltage of the main amplifier while the nulling amp is being nulled on the next cycle.

The TC9420/TC9421 design also incorporates an additional output buffer stage. The buffer provides a low impedance output traditionally associated with bipolar op amps. Some CMOS chopper-stabilized amplifiers, such as the 7650 , have a high output impedance which makes open-loop gain proportional to load resistance. The TC9420/TC9421 open-loop gain is not dependent on load resistance.

Pin Compatibility

Since the TC9420/9421 operate from the same $\pm 15 \mathrm{~V}$ power supplies as bipolar op amps, upgrading existing
circuits is simple. The bipolar op amp's nulling and compensation components are removed, and the TC9420/TC9421 nulling capacitors are added.

On the 8-pin mini-DIP (TC9420), the external null storage capacitors are connected to pins 1 and 8. On most other op amps they are left open or used for offset potentiometer or compensation capacitor connections.

For OP05 and OP07 operational amplifiers, replacing the offset null pot between pins 1 and 8 with two capacitors from the pins to $\mathrm{C}_{\text {RET }}$ will convert the OP05/07 pin configuration for TC9420 operation. The 741 is easily upgraded by removing the nulling pot between pin 4 and pins 1 and 5, then connecting capacitors from pin 4 to pins 1 and 8. For LM108 devices, the compensation capacitor is replaced by the external nulling capacitors. The LM101/ 748/709 pinouts are modified similarly by also removing any circuit connections to pin 5.

The minor modifications needed to retrofit a TC9420 into existing sockets make prototyping and circuit verification straightforward.

Nulling Capacitors

The offset voltage correction capacitors are connected to C_{A} and C_{B}. The common capacitor connection is made to $\mathrm{C}_{\text {RET }}$ (pin 5) on the 8-pin packages and to capacitor return ($\mathrm{C}_{\text {RET }}$, pin 8) on the 14 -pin packages. The common connection should be made through either a separate pc trace or wire to avoid voltage drops.

Internally, $\mathrm{V}_{\mathrm{S}}{ }^{-}$is connected to $\mathrm{C}_{\text {RET }}$.
C_{A} and C_{B} should be $0.1 \mu \mathrm{~F}$ film capacitors. Mylar capacitors are suitable.

Figure 1. TC9420/TC9421 Contain a Nulling and Main Amplifier. Offset Correction Voltages Are Stored on Two External Capacitors.

Figure 2. Nulling Capacitor Connection

Component Selection

The two required capacitors, C_{A} and C_{B}, have optimum values, depending on the clock or chopping frequency. For the preset internal clock, the correct value is $0.1 \mu \mathrm{~F}$. To maintain the same relationship between the chopping frequency and nulling time constant, the capacitor values should be scaled in proportion to the external clock, if used. High-quality film-type capacitors (such as Mylar) are preferred. Ceramic or other lower-grade capacitors may be suitable in some applications. For fast settling on initial turnon, low dielectric absorption capacitors (such as polypropylene) should be used. With ceramic capacitors, several seconds may be required to settle to $1 \mu \mathrm{~V}$.

Clock Operation

The internal oscillator is set for a 1000 Hz nominal frequency on both the 8-pin and 14-pin DIPs. With the 14-pin DIP (TC9421), the $250-\mathrm{Hz}$ internal frequency is available at the internal clock output (pin 12). A 1000 Hz nominal signal will be present at the external clock input (pin 13) with INT/ EXT high or open. This is the internal clock signal before a $\div 4$ operation.

The 14-pin device can be driven by an external clock. The INT/EXT input (pin 14) has an internal pull-up and may be left open for internal clock operation. If an external clock is used, $\operatorname{INT} / \overline{E X T}$ must be tied to $\mathrm{V}_{\mathrm{S}^{-}}$(pin 7) to disable the internal clock. The external clock signal is applied to the external clock input (pin 13).

The external clock amplitude should swing between $\mathrm{V}_{\mathrm{S}^{+}}$ and ground for power supplies up to $\pm 6 \mathrm{~V}$, and between $\mathrm{V}_{\mathrm{S}^{+}}$ and $\mathrm{V}_{\mathrm{S}^{+}}-6 \mathrm{~V}$ for higher supply voltages. When the external
clock is generated by +5 V logic, capacitive coupling to pin 13 (through a $0.1 \mu \mathrm{~F}$ capacitor) will provide adequate drive.

At low frequencies, the external clock duty cycle is not critical, since an internal $\div 4$ gives the desired 50% switching duty cycle. The offset storage correction capacitors are charged only when the external clock input is high. A 50\% to 80% external clock positive duty cycle is desired for frequencies above 500 Hz to guarantee transients settle before the internal switches open.

The external clock input can also be used as a strobe input. If a strobe signal is connected at the external clock input so that it is low during the time an overload signal is applied, neither capacitor will be charged. This function can be used to prevent input transients from overloading the nulling circuitry. Leakage currents at the capacitor pins are very low, so offset voltage drift during strobe operation is minimized.

Output Clamp

Chopper-stabilized systems can show long recovery times from overloads. If the output is driven to either supply rail, output saturation occurs. The inputs are no longer held at a "virtual ground." The $V_{O S}$ null circuit treats the differential signal as an offset and tries to correct it by charging the external capacitors. The nulling circuit also saturates. Once the input signal returns to normal, response time is lengthened by the long recovery time of the nulling amplifier and external capacitors.

Through an external clamp connection, the TC9421 eliminates the overload recovery problem by reducing the feedback network gain before the output voltage reaches either supply rail.

The output clamp circuit is shown in Figure 3, with typical inverting and noninverting circuit connections shown in Figures 4 and 5. For the clamp to be fully effective, the impedance across the clamp output should be $>100 \mathrm{k} \Omega$.

When the clamp is used, the clamp "OFF" leakage will add to input bias current. However, clamp leakage in the "OFF" state is typically only 1 pA .

Input Bias Current

The TC9420/TC9421 are never disconnected from the main internal amplifier. The null amplifier samples the input offset voltage and corrects DC errors and drift by storing compensating voltages on external capacitors. The sampling, however, causes charge transfer at the inputs.

The impulse current is not usually a problem because the amount of charge transferred is very small. Care should be exercised, however, when replacing high-input bias current bipolar op amps. Conventional design practice is to cancel bias current by matching the input impedances (Figure 6a). The TC9420/TC9421 have input bias current of

HIGH-VOLTAGE, AUTO-ZEROED OPERATIONAL AMPLIFIERS

TC9420 TC9421

Figure 3. Internal Clamp Circuit

Figure 4. Noninverting Amplifier With Optional Clamp

Figure 5. Inverting Amplifier With Optional Clamp
only 100 pA maximum, so the additional resistor is not necessary. In fact, including the resistor makes the charge injection current, passing through the impedance-balancing resistor, appear as a noise source. When replacing an existing op amp with the TC9420/TC9421, omit the resistor or bypass it to ground with a capacitor (Figure 6b).

Latch-Up Avoidance

Junction-isolated CMOS circuits inherently include a parasitic 4-layer (p-n-p-n) structure which has characteristics similar to an SCR. Under certain circumstances, this junction may be triggered into a low-impedance state, resulting in excessive supply current. To avoid this condition, voltages greater than 0.3 V beyond the supply rails should not be applied to any pin. In general, the amplifier supplies must be established at the same time or before any input signals are applied. If this is not possible, the drive circuits must limit input current flow to under 0.1 mA to avoid latchup.

Static Protection

All device pins are static-protected. Strong static fields and discharges should be avoided, however, as they can degrade diode junction characteristics and increase inputleakage currents.

Many companies are actively involved in providing services, eductional materials, and supplies to aid electronic manufacturers in establishing "static safe" work areas where CMOS components are handled. A partial company listing is:
-3M
Static Control Systems Division 223-25W EM Center
St. Paul, MN 55101
(800) 792-1072

- Semtronics
P.O. Box 592

Martinsville, NJ 08836
(210) 561-9520

(a) High-Input Bias Current Op Amp

(b) Low-Input Bias Current (TC9420)

Figure 6. Input Bias Current Cancellation

TYPICAL CHARACTERISTICS CURVES

HIGH-VOLTAGE, AUTO-ZEROED OPERATIONAL AMPLIFIERS

TC9420
TC9421

TYPICAL CHARACTERISTICS CURVES (Cont.)

Input Common-Mode Voltage Range vs Supply Voltage

Input Voltage Noise

Input Offset Voltage vs Clock Frequency

EXTERNAL CLOCK INPUT FREQUENCY (Hz)

TYPICAL CHARACTERISTICS CURVES (Cont.)

Negative Overload
Recovery Time

HORIZONTAL SCALE $\mathbf{= 5 0} \mathbf{~ m s / D I V}$

HORIZONTAL SCALE $=50 \mathrm{~ms} /$ DIV

NOTES

Section 9

High Performance Amplifiers/Buffers

	Display A/D Converters	1
Vinary A/D Converters	2	
Voltage-to-Frequency/Frequency-to-Voltage Converters	3	
Sonsor Products	4	
Power MOSFET, Motor and PIN Drivers	6	
References	7	
Chopper-Stabilized Operational Amplifiers	8	
High Performance Amplifiers/Buffers	9	
Video Display Drivers	10	
Display Drivers	11	
Analog Switches and Multiplexers	12	
Data Communications	13	
Discrete DMOS Products	14	
Reliability and Quality Assurance	15	
Ordering Information	16	
Package Information	17	
Sales Offices	18	

WIDEBAND, HIGH SLEW RATE OPERATIONAL AMPLIFIER

FEATURES

- Low Cost
- Fast Settling \qquad 0.1\% in $1 \mu \mathrm{sec}$
- Slew Rate ...35V/ $\mu \mathrm{sec}$
- Full Power Bandwidth .600 kHz
- Open Loop Gain .100 dB
- Gain Bandwidth Product 100 MHz

APPLICATIONS

- High-Frequency Amplifiers
- Current-to-Voltage Converters
- Video Amplifiers
- Differential Amplifiers
- Line Drivers
- Wideband Precision

GENERAL DESCRIPTION

The 1321 is a bipolar input operational amplifier that combines high speed AC performance ($35 \mathrm{~V} / \mu$ s slew rate, 100 MHz GBWP) with superior DC characteristics ($300 \mathrm{M} \Omega$ input impedance, $\pm 5 \mathrm{nA}$ input bias current, 100 dB gain). This combination of features makes it ideal for video and pulse amplifiers, fast integrators, high- Q active filters, and high-speed current-to-voltage converters.

This device is internally compensated for stable operation in circuits operating at closed loop gains of 5 or above. For operation at lower closed loop gains, an external compensation capacitor is required from $\operatorname{Pin} 8$ to ground (or the alternate stabilizing scheme shown in Figure 1 may be used).

The standard 1321 is housed in a small outline, metal TO-99 case and is specified for $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ operation.

PIN CONFIGURATION

1321

ABSOLUTE MAXIMUM RATINGS

ELECTRICAL CHARACTERISTICS: $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}, \pm \mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ unless otherwise indicated.

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
Input lb	Input Bias Current	$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-	± 5	$\begin{aligned} & \pm 25 \\ & \pm 40 \end{aligned}$	$\begin{aligned} & \text { nA } \\ & \text { nA } \end{aligned}$
105	Input Offset Current	$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-	± 5	$\begin{aligned} & \pm 25 \\ & \pm 40 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
VOS	Input Offset Voltage	Without external trim	-	± 3	± 5	mV
VOS TC	VOS vs Temperature		-	± 5	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
PSRR	Input Offset vs Power Supply		-	90	-	dB
VICM	Common Mode	For DC linear operation	± 11	± 12	-	V
CMRR	Common Mode Rejection Ratio	@ DC	-	100	-	dB
ZID	Differential Input Impedance	@ DC	-	300	-	$\mathrm{M} \Omega$
Output Vo	Voltage		± 10	± 12	-	V
10	Current		± 10	± 18	-	mA
Voltage G AOL	Open Loop Voltage Gain	@ DC	98	104	-	dB
ACL	Closed Loop Gain	Stable operation w/o compensation	14	-	-	dB
Frequency GBWP	esponse Gain Bandwidth Product	$\mathrm{ACL}=10, \mathrm{C}_{\mathrm{C}}=0 \mathrm{pF}, \mathrm{f}_{\mathrm{t}}=10 \mathrm{kHz}$	70	100	-	MHz
FPBW	Full Power Bandwidth	$\mathrm{ACL} \geq 5, \mathrm{C}_{\mathrm{C}}=0 \mathrm{pF}$	320	600	-	kHz
Time Res ts	Settling Time 10 V step to 0.1%		-	1	-	$\mu \mathrm{s}$
sr	Slew Rate	$\mathrm{ACL} \geq 5, \mathrm{C}_{\mathrm{C}}=0 \mathrm{pF}$	± 20	± 35	-	$\mathrm{V} / \mu \mathrm{s}$
Noise (Ref en	nced to Input) Midband ($\mathrm{fo}=10 \mathrm{~Hz}$) Highband ($\mathrm{fo}=100 \mathrm{~Hz}$) Wideband ($\mathrm{fo}=1 \mathrm{kHz}$ to 100 kHz)		-	$\begin{aligned} & 45 \\ & 25 \\ & 15 \end{aligned}$	-	$\mathrm{nV} / \mathrm{JHz}$ $\mathrm{nV} / \mathrm{NHz}$ $\mathrm{nV} / \mathrm{VHz}$
Power Sup $V_{C c}$	Power Supply Voltage		-	± 15	± 22.5	V
Icc	Quiescent Supply Current	$\mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}$	-	± 3	± 4	mA

WIDEBAND, HIGH SLEW RATE OPERATIONAL AMPLIFIER

Figure 1. Optional Stabilizing Scheme
(for unity gain stability at high speed)

Figure 2. Bode Plot

NOTES

WIDEBAND, HIGH SLEW RATE OPERATIONAL AMPLIFIER

FEATURES

- Low Cost
- Fast Settling \qquad 0.1\% in 200 ns typ.

- Slew Rate

\qquad $120 \mathrm{~V} / \mu \mathrm{sec}$

- Full Power Bandwidth 1.6 MHz
- Open Loop Gain .84 dB
- Gain Bandwidth Product 20 MHz

APPLICATIONS

- High-Frequency Amplifiers
- Current-to-Voltage Converters
- Video Amplifiers
- Differential Amplifiers
- Line Drivers
- Wideband Precision

GENERAL DESCRIPTION

The 1322 is a high-speed, fast-settling operational amplifier designed for a wide variety of high-speed signal processing tasks. Its fast, accurate settling performance (200 ns to 0.1% accuracy for a 10 V step) and good DC specifications (84 dB open loop gain, 10 mV offset voltage) make the 1322 eminently suitable for high speed 8 - and 10bit data conversion applications. In addition, its high slew rate ($120 \mathrm{~V} / \mu \mathrm{s}$) serves it well in high-speed pulse circuits, signal generators, or other circuits where full output swings at signal frequencies as high as 1.6 MHz are required.

This device is internally compensated for stable operation in circuits operating at closed loop gains of 3 or above. For operation at lower closed loop gains, an external compensation capacitor is required from Pin 8 to ground (or the alternate stabilizing scheme shown in Figure 1 may be used).

The standard 1322 is housed in a small outline, metal TO-99 case and is specified for $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ operation.

PIN CONFIGURATION

Pin	
No.	Designation
1	OFFSET ADJUST
2	$-I N$
3	$+\mathbb{N}$
5	$-V_{C C}$
6	OFFSET ADJUST
7	$+V_{C C}$
8	$B A N D W I D T H ~ C O N T R O L$

WIDEBAND, HIGH SLEW RATE OPERATIONAL AMPLIFIER

1322

ABSOLUTE MAXIMUM RATINGS

VCc Supply Voltage ... $\pm 20 \mathrm{~V}$
$V_{\text {IDF }}$ Differential Input Voltage $\pm 15 \mathrm{~V}$
TC Operating Temperature Range (Case)
1322
$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Tsta Storage Temperature Range $\ldots-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS: $T_{C}=+25^{\circ} \mathrm{C}, \pm \mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ unless otherwise indicated.

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
Input I_{b}	Input Bias Current	$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$		± 125	$\begin{aligned} & \pm 250 \\ & \pm 500 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \\ & \hline \end{aligned}$
105	Input Offset Current	$T_{\text {MIN }}$ to $T_{\text {MAX }}$	二	± 20	$\begin{gathered} \pm 50 \\ \pm 100 \end{gathered}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
VOS	Input Offset Voltage	Without external trim	-	± 5	± 10	mV
VOS TC	VOS vs Temperature		-	± 30	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
PSRR	Input Offset vs Power Supply		-	90	-	dB
VICM	Common Mode	For DC linear operation	± 10	-	-	V
CMRR	Common Mode Rejection Ratio	@ DC	-	90	-	dB
Z_{10}	Differential Input Impedance	@ DC	40	100	-	$\mathrm{M} \Omega$
Output Vo	Voltage		± 10	± 12	-	V
10	Current		± 10	± 20	-	mA
Voltage G AOL	Open Loop Voltage Gain	@ DC	77	84	-	dB
ACL	Closed Loop Gain	Stable operation w/o compensation	10	-	-	dB
Frequency GBWP	esponse Gain Bandwidth Product	$A C L=10, f=10 \mathrm{kHz}$	10	20	-	MHz
FPBW	Full Power Bandwidth	ACL $\geq 3, \mathrm{C}_{\mathrm{C}}=0$	1.2	1.6	-	MHz
Time Resp ts	Settling Time	10 V step to 0.1\%	-	200	-	ns
sr	Slew Rate	$\mathrm{ACL}=3, \mathrm{C}_{\mathrm{C}}=0$	± 80	± 120	-	$\mathrm{V} / \mathrm{\mu s}$
Noise (Ref en	nced to Input) Wideband (10 Hz to 1 kHz)		-	1	-	$\mu \mathrm{V}_{\text {RMS }}$
Power Su $V_{C c}$	Power Supply Voltage		-	± 15	± 20	V
$\mathrm{l} C \mathrm{C}$	Quiescent Supply Current	$\mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}$	-	± 4	± 6	mA

WIDEBAND, HIGH SLEW RATE

 OPERATIONAL AMPLIFIER

Figure 1. Optional Stabilizing Scheme (for unity gain stability at high speed)

Figure 2. Bode Plot

NOTES

HIGH PERFORMANCE OPERATIONAL AMPLIFIER

FEATURES

■ Full Power Frequency 25 kHz
■ \pm Vcc Range .. $\pm 40 \mathrm{~V}$

- Common Mode Range $\pm 35 \mathrm{~V}$

■ Slew Rate.. $\pm 5 \mathrm{~V} / \mu \mathrm{s}$

APPLICATIONS

- Precision High Voltage Source
- Avionics, 48V Operation
- Process Control

GENERAL DESCRIPTION

The 1332 bipolar amplifier provides solutions to problems not solved with the typical 741. Specifications are optimized to provide such capabilities as low drift, high output voltage swing and high speed.

This true differential operational amplifier is matched pin-for-pin with the standard 741 (including $10 \mathrm{~K} \Omega$ optional trim-pot connection).

The 1332's smooth $6 \mathrm{~dB} /$ octave roll off provides stable operation at all values of gain, even when connected as a unity gain follower.

The 1332 has a low initial offset voltage of 6 mV and is specified for $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ operation.

PIN CONFIGURATION

HIGH PERFORMANCE OPERATIONAL AMPLIFIER

1332

ABSOLUTE MAXIMUM RATINGS

VCC Supply Voltage ... $\pm 40 \mathrm{~V}$
$\mathrm{V}_{\text {IDF }}$ Differential Input Voltage $\pm \mathrm{V}_{\mathrm{CC}}$
$V_{\text {ICM }}$ Common Mode Input Voltage....................... \pm VCC
Tc Operating Temperature Range (Case) 1332
TsTG Storage Temperature Range $\ldots-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS: $\quad \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}= \pm 40 \mathrm{~V}$, unless otherwise noted.

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
Input l_{B}	Initial Input Bias Current	Without External Trim	-	-	30	nA
$\mathrm{I}_{8} / \mathrm{TC}$	I_{B} vs Temperature		-	-	0.4	$n \mathrm{nA}^{\circ} \mathrm{C}$
los	Input Offset Current		-	-	30	nA
Vos	Input Offset VoltageWithout Ext		-	± 2	± 6	mV
$\mathrm{V}_{\text {OS }}$ /TC	Vos vs Temperature		-	± 15	± 20	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
PSRR	Input Offset vs Power Supply	@ DC	74	90	-	dB
VICM	Common-Mode Input Voltage	DC Linear Operation	-	-	± 35	V
CMRR	Common-Mode Rejection Ratio	@ DC	74	100	-	dB
$\mathrm{Z}_{\text {IDF }}$	Differential-Mode Input Impedan		-	200	-	$\mathrm{M} \Omega$
ZICM	Common-Mode Input Impedanc		-	1000	-	$\mathrm{M} \Omega$
Output v_{0}	Output Voltage		± 35	-	-	V
10	Output Current		± 10	± 12	-	mA
Voltage A L	Open-Loop Voltage Gain	$R_{L}=$ Rated Load	100	106	-	dB
Frequenc UGBW	Response Unity Gain Bandwidth	Open Loop	-	4	-	MHz
FPBW	Full Power Bandwidth	Sine Wave, 3 to 5\% distortion	-	25	-	kHz
Time Res sr	Slew Rate		-	± 5	-	V/ $/ \mathrm{s}$
Power Supp $V_{C C}$	plies Power Supply Voltage		± 10	-	± 40	V
$I_{\text {cc }}$	Quiescent Supply Current	Quiescent	-	± 3.2	± 4.5	mA

NOTE: The inputs are protected to $\pm \mathrm{V}_{\mathrm{CC}}$. The output is protected against short circuit to ground.

HIGH PERFORMANCE

 OPERATIONAL AMPLIFIERThe 1332 , operating with a $\pm 40 \mathrm{~V}$ power supply, can drive $\pm 35 \mathrm{~V}$ into $2.7 \mathrm{k} \Omega$ at 25 kHz (Figures 1 \& 2). Under maximum load conditions, the output can be short circuited to common without danger, as the output is limited by a chip temperature sensing circuit.

To decrease bandwidth, capacitance may be added between Pin 8 and common. The effect of this capacitance is shown in Figure 3.

Figure 1. Output Voltage Swing vs Frequency at $25^{\circ} \mathrm{C}$

Single Supply Operation

Figure 4 shows a 1332 operating as an inverter from a single supply. This will allow a 1332 to operate from a 48 V aircraft or vessel power.

Figure 2. Output Current

Figure 4. Single Supply Operation

MONOLITHIC
 WIDEBAND, JFET INPUT OPERATIONAL AMPLIFIER

FEATURES

- Monolithic Construction
- Slew Rate

Gain Bandwidth Product100MHz

- Bias Current 50pA Max

APPLICATIONS

- Pulse Amplifiers
- High Speed, Precision Integrators
- High Speed Track/Hold Amplifiers
- Video Amplifiers

GENERAL DESCRIPTION

The 1344 Precision, High Speed Monolithic Operational Amplifier offers significant improvements in features vs other devices of its type. Stable with closed loop gains ≥ 10, the 1344 features 1 MHz full power bandwidth, $120 \mathrm{~V} / \mu$ s slew rate and superior DC characteristics. It is ideal for highspeed data acquisition systems, precision pulse and video amplifiers and high speed buffers. Housed in an 8-pin TO99 package, this device is specified for $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ temperature range.

PIN CONFIGURATION

Pin	
No.	Designation
1	NC
2	INVERTING INPUT
3	NON-INVERTING INPUT
4	$-V_{\mathrm{CC}}$
5	NC
6	OUTPUT
7	$+V_{C C}$
8	COMPENSATION

MONOLITHIC
 WIDEBAND, JFET INPUT OPERATIONAL AMPLIFIER

1344

ABSOLUTE MAXIMUM RATINGS

VCC Supply Voltage ... $\pm 20 \mathrm{~V}$
$V_{\text {IDF }}$ Differential Input Voltage $\pm \mathrm{V}_{\mathrm{CC}}$
TC Operating Temperature Range (Case)
$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Tsta Storage Temperature Range......$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
PD_{D} Power Dissipation....................................675mW

ELECTRICAL CHARACTERISTICS: $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}$, unless otherwise noted.

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
Input I_{B}	Input Bias Current	$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-	$\begin{gathered} \pm 20 \\ \pm 5 \\ \hline \end{gathered}$	$\begin{aligned} & \pm 50 \\ & \pm 10 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
los	Input Offset Current	$T_{\text {min }}$ to $T_{\text {max }}$	二	$\begin{aligned} & \pm 2 \\ & \pm 2 \end{aligned}$	$\begin{gathered} \pm 10 \\ \pm 5 \end{gathered}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
Vos	Input Offset Voltage	Without External Trim $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$		$\begin{aligned} & \pm 1 \\ & \pm 3 \end{aligned}$	$\begin{aligned} & \pm 3 \\ & \pm 5 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
$\mathrm{V}_{\text {OS }}$ TC	Vos vs Temperature		-	± 20	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
PSRR	Input Offset vs Power Supply	@ DC (Note 1)	74	86	-	dB
VICM	Common-Mode Input Voltage	DC Linear Operation	± 10	± 11	-	V
CMRR	Common-Mode Rejection Ratio	@ DC, $\mathrm{V}_{\mathrm{CM}}= \pm 10 \mathrm{~V}$	74	80	-	dB
ZIDF	Differential-Mode Input Impedance	@ DC	-	10^{12}	-	Ω
Output V_{0}	Output Voltage	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	± 10	± 11	-	V
10	Output Current		± 10	± 20	-	mA
Z_{0}	Output Impedance		-	50	-	Ω
Voltage Aol	Open-Loop Voltage Gain Over Specified Temperature Range	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	$\begin{aligned} & 97 \\ & 95 \\ & \hline \end{aligned}$	$\begin{aligned} & 104 \\ & 100 \end{aligned}$	-	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Frequenc GBWP	Response Gain Bandwidth Product	$A_{V}=10$	-	100	-	MHz
UGBW	Unity-Gain Bandwidth		-	20	-	MHz
FPBW	Full-Power Bandwidth	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	-	1.9	-	MHz
Time Res ts	nse Settling Time	10 V Step to $0.2 \%, A_{C L}=10$	-	280	-	ns
sr	Slew Rate		± 100	± 120	-	V/us
$t_{\text {R }}$	Small Signal Rise Time		-	20	-	ns
$\begin{aligned} & \hline \text { Power Su } \\ & \mathrm{V}_{C C} \\ & \hline \end{aligned}$	lies Power Supply Voltage		-	± 15	-	V
Icc	Quiescent Supply Current	$V_{C C}= \pm 15 \mathrm{~V}$	-	± 8	± 10	mA

NOTES: 1. Specified over $\pm 10 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$ supply range.

MONOLITHIC

WIDEBAND, JFET INPUT
OPERATIONAL AMPLIFIER

Figure 1. Fast-Settling Buffer

Figure 3. Open Loop Frequency Response

Figure 5. Output Voltage Swing vs Load Resistance

Figure 4. Normalized AC Parameters vs Temperature

Figure 2. 20 MHz Voltage Follower

Figure 6. Settling Time for Various Output Step Voltages

MONOLITHIC WIDEBAND, JFET INPUT OPERATIONAL AMPLIFIER

1344

Figure 7. Input Offset Voltage and Bias Current vs Temperature

Figure 10. Output Voltage Swing vs Frequency

Figure 12. Open Loop Frequency Response For Various Bandwidth Control Capacitances

Figure 8. Input Noise Voltage and Noise Current vs Frequency

Figure 9. Common Mode Rejection Ratio vs Frequency

Figure 11. Power Supply Rejection Ratio vs Frequency

Figure 13. Power Supply Current vs Temperature

MONOLITHIC LOW BIAS CURRENT OPERATIONAL AMPLIFIER

FEATURES

- Unity Gain Bandwidth Product 2 MHz
- Bias Current ... 250 fA
- Offset Voltage $\pm 3 \mathrm{mV}$ Max
- Settling to $\pm 0.1 \%$
\qquad
- Power Consumption 30 mW Max

APPLICATIONS

- Track/Hold Amplifiers
- Electrometer Amplifiers
- Precision Amplifiers

GENERAL DESCRIPTION

The 1346 High Performance, Monolithic Operational Amplifier combines JFET/Bipolar technology and dielectric isolation to provide the best AC and DC characteristics available in any monolithic device of its type. Specifications of 250 fA input bias current and 3 mV maximum offset voltage combined with 2 MHz unity gain bandwidth and $7 \mathrm{~V} /$ μ s slew rate make the 1346 ideal for such applications as high impedance, high performance buffers, precision track/ hold amplifiers and long-term precision integrators. The 1346 is housed in an 8-pin TO-99 package.

PIN CONFIGURATION

Pin	Designation
No.	
1	TRIM
2	INVERTING INPUT
3	NON-INVERTING INPUT
4	$-V_{c C}$
5	TRIM
6	OUTPUT
7	$+V_{C C}$
8	CASE

MONOLITHIC LOW BIAS CURRENT OPERATIONAL AMPLIFIER

1346

ABSOLUTE MAXIMUM RATINGS

VCC Supply Voltage .. 220 V
$V_{\text {IDF }}$ Differential Input Voltage \pm VC
$\mathrm{T}_{\mathrm{C}} \quad$ Operating Temperature Range (Case) 1346
$.0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Tsta Storage Temperature Range......$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
PD Power Dissipation
300 mW

ELECTRICAL CHARACTERISTICS: $\quad \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}$, unless otherwise noted.

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
Input I_{B}	Input Bias Current	$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$		$\begin{gathered} \pm 0.25 \\ \pm 6 \\ \hline \end{gathered}$	$\begin{gathered} \pm 1 \\ \pm 30 \end{gathered}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{pA} \end{aligned}$
los	Input Offset Current	$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$		$\begin{gathered} \pm 0.03 \\ \pm 1 \end{gathered}$	$\begin{gathered} \pm 0.2 \\ \pm 5 \end{gathered}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{pA} \end{aligned}$
V_{OS}	Input Offset Voltage	Without External Trim $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			$\begin{aligned} & \pm 3 \\ & +4 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
PSRR	Input Offset vs Power Supply	@ DC, $\mathrm{V}_{\mathrm{CC}}= \pm 10 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$	85	105	-	dB
VICM	Common-Mode Input Voltage	DC Linear Operation	± 10	± 12	-	V
CMRR	Common-Mode Rejection Ratio	@ DC	90	110	-	dB
Z_{ID}	Differential Input Impedance	@ DC	-	1	-	G Ω
Output V_{0}	Output Voltage	$R_{L}=2 \mathrm{k} \Omega$	± 10	± 12	-	V
10	Output Current		± 10	± 15	-	mA
losc	Output Short Circuit Current		-	(Note 1)	-	-
Zo	Output Impedance		-	25	-	Ω
Voltage AOL	in Open-Loop Voltage Gain	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{~T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \end{aligned}$	$\begin{aligned} & 106 \\ & 103 \end{aligned}$	120	-	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Frequen UGBW	Response Unity-Gain Bandwidth		-	2	-	MHz
FPBW	Full-Power Bandwidth	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	-	110	-	kHz
Time Re ts	onse Settling Time	10V Step to 0.1\%	-	2	-	$\mu \mathrm{s}$
sr	Slew Rate		± 4	± 7	-	V/ $/ \mathrm{s}$
$t_{\text {R }}$	Small Signal Rise Time		-	75	-	ns
Power S $V_{C C}$	plies Power Supply Voltage		-	± 15	± 20	V
Icc	Quiescent Supply Current	$\mathrm{V}_{\text {CC }}= \pm 15 \mathrm{~V}$	-	± 0.8	± 1	mA

Note 1: Output can withstand a short to ground for an indefinite length of time. Shorts to either supply will result in destruction.

MONOLITHIC

LOW BIAS CURRENT
OPERATIONAL AMPLIFIER

Applications Information

The 1346 is one of the lowest input bias current monolithic operational amplifiers available. When used in applications requiring maximum performance, precautions must be taken against unwanted noise and leakage current. To minimize leakage currents a teflon socket is recommended.

Figure 1. Slew Rate and Transient Response

Figure 3. Current to Voltage Converter

Bypass capacitors should be as near as possible to the unit and the unit should be as near as possible to the signal source. The dielectric isolation process and JFET input design protect the 1346 against input signal transients beyond the level of the supplies as well as large differential signals equal to the differential supply voltage without degradation of performance.

Figure 4. Very High Impedance Noninverting Amplifier

NOTES

FAST SETTLING, FET INPUT OPERATIONAL AMPLIFIER

FEATURES

Settling Time to $\pm 0.01 \%$ (10V step)
Operating Temperature
- Gain Bandwidth Product
- Output
\section*{APPLICATIONS}
Digital-to-Analog Converters
- Sample/Hold Circuits
- Pulse Amplifiers
- Wideband Amplifiers 200 ns Max

\qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
\qquad 100 MHz
■ Slew Rate...750V/ $\boldsymbol{\text { ■ }}$ $\pm 11 \mathrm{~V}, \pm 55 \mathrm{~mA}$

GENERAL DESCRIPTION

The 1430 is a high speed, precision, FET input hybrid op amp that features fast settling time, low bias current, high slew rate, wide bandwidth, and good phase margin. Guaranteed settling time of 200 nsec (10 V step to 0.01%) and a design that is tailored for inverting applications make the 1430 an ideal output amplifier for fast 12 bit D/A converters and other applications such as sample-hold amplifiers and radar pulse amplifiers.

The 1430 was carefully designed so that output settling time would not vary appreciably with closed loop gain (Figure 1). This is particularly important for current to voltage converter applications as with high speed current-output DACs (see Figure 2). The 1430 requires only a feedback capacitor for stability at closed-loop gains of unity and above.

The 1430 is packaged in a 14-pin metal platform package. Both the standard 1430 and the High Reliability (HR) 1430 are specified to operate over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range.

PIN CONFIGURATION

Pin No.	Designation	
1	NC	
2	TRIM	AP
3	TRIM	1430
4	-IN	
5	$+\mathrm{IN}$	
6	$-V_{c c}$	(ㄷ) © © © © ©
7	NC	120345
8	COM	BOTTOM VIEW
9	NC	$\begin{array}{lllllll}14 & 13 & 12 & 11 & 10 & 9 & 8\end{array}$
10	OUTPUT	(ㅇ) (0) © () (o) ©
11	$+V_{c c}$	
12	TRIM	
13	NC	
14	NC	

Figure 1. Settling Time vs Closed Loop Gain

ABSOLUTE MAXIMUM RATINGS

$V_{C C}$
Supply Voltage \qquad $\pm 18 \mathrm{~V}$
$V_{\text {ID }} \quad$ Differential Input Voltage $\pm \mathrm{V}_{\mathrm{CC}}$
$\mathrm{V}_{\mathrm{ICM}}$ Common Mode Input Voltage....................... $\pm \mathrm{V}_{\mathrm{CC}}$
$\mathrm{T}_{\mathrm{C}} \quad$ Operating Temperature Range (Case) 1430 \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ 1430-HR $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Figure 2. Output Amplifier for D/A Converter
$\mathrm{T}_{\text {STG }}$ Storage Temperature Range $\ldots . . .-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ (1) Operation above $85^{\circ} \mathrm{C}$ requires a $20^{\circ} \mathrm{C} / \mathrm{W}$ heat sink.

DC CHARACTERISTICS: (Note 1) $\mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$, inverting circuits only, $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Symbol	Parameter	Test Conditions	1430			1430-HR			Unit
			Min	Typ	Max	Min	Typ	Max	
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage		-	± 0.5	± 2	-	± 0.5	± 2	mV
$\mathrm{V}_{\text {OS }}$ TC	Input Offset Voltage Drift vs Temperature	Average, $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-	± 40	-	-	± 40	± 100	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		-	± 10	± 100	-	± 10	± 100	pA
I_{B} TC	Input Bias Current Drift vs Temperature	Average, $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	Doubles every $11^{\circ} \mathrm{C}$			Doubles every $11^{\circ} \mathrm{C}$			-
los	Input Offset Current		-	± 2		-	± 2	-	pA
los TC	Input Offset Current Drift vs Temperature	Average, $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	Doubles every $11^{\circ} \mathrm{C}$			Doubles every $11^{\circ} \mathrm{C}$			-
Avol	Open-Loop Voltage Gain	$\mathrm{R}_{\mathrm{L}}=200 \Omega$	106	120	-	106	120	-	dB
PSRR	Power Supply Rejection Ratio		-	80	-	-	80	-	dB
CMRR	Common-Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}= \pm 2 \mathrm{~V}$	-	65	-	-	65	-	dB
CMR	Common-Mode Range (DC Linear Operation)		-	+3/-10	-	-	+3/-10	-	V
$\mathrm{Z}_{\text {ID }}$	Differential Input Impedance		-	10^{11113}	-	-	10^{11113}	-	SllpF
ZICM	Common-Mode Input Impedance		-	$10^{11} 1 / 3$	-	-	$10^{11} \mid 13$	-	SllpF
V_{0}	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=200 \Omega$	± 10	± 11	-	± 10	± 11	-	V
lo	Output Current	$\mathrm{R}_{\mathrm{L}}=200 \Omega$	± 50	± 55	-	± 50	± 55	-	mA
Isc	Output Short-Circuit Current		-	± 110	-	-	± 110	-	mA
Ro	Output Resistance (DC Open-Loop)		-	1000	-	-	1000	-	Ω
$\mathrm{V}_{C C}$	Supply Voltage Range (Operating)		± 10	± 15	± 18	± 10	± 15	± 18	V
ICC	Quiescent Supply Current		-	± 20	± 25	-	± 20	± 25	mA

NOTES: 1. Limits printed in boldface type are guaranteed and 100% production tested. Limits in normal font are guaranteed but not 100% production tested.

FAST SETTLING, FET INPUT OPERATIONAL AMPLIFIER

AC CHARACTERISTICS: (Note 1) $\mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$, inverting circuits only, $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Symbol	Parameter	Test Conditions	1430			1430-HR			Unit
			Min	Typ	Max	Min	Typ	Max	
S_{R}	Slew Rate		-	750	-	-	750	-	V/ $/ \mathrm{s}$
GBWP	Gain-Bandwidth Product	$\mathrm{f}=1 \mathrm{MHz}$	80	100	-	80	100	-	MHz
UGBW	Unity-Gain Bandwidth		-	60	-	-	60	-	MHz
$\mathrm{t}_{\text {s }}$	Settling Time ($\mathrm{A}_{\mathrm{CL}}=-1$)	10V step/1\%	-	70	-	-	70	-	ns
		10V step/0.1\%	-	85	-	-	85	-	ns
		10V step/0.01\%	-	175	200	-	175	200	ns
		5 V step/1\%	-	70	-	-	70	-	ns
		5 V step/0.1\%	-	100	-	-	100	-	ns
		5 V step/0.01\%	-	180	-	-	180	-	ns
		2V step/1\%	-	80	-	-	80	-	ns
		2V step/0.1\%	-	100	-	-	100	-	ns
		2V step/0.01\%	-	240	-	-	240	-	ns
e_{n}	Input Voltage Noise Density	$\mathrm{f}=1 \mathrm{kHz}$	-	16	-	-	16	-	$\mathrm{nV} / \mathrm{Hz}$
i_{n}	Input Current Noise Density	$\mathrm{f}=1 \mathrm{kHz}$	-	0.2	-	-	0.2	-	$\mathrm{pA} / \mathrm{Hz}$
C_{L}	Capacitive Load (maximum w/o oscillation)		100	-	-	100	-	-	pF

NOTES: 1. Limits printed in boldface type are guaranteed and 100\% production tested. Limits in normal font are guaranteed but not 100% production tested.

FAST SETTLING, FET INPUT OPERATIONAL AMPLIFIER

Figure 3. The Composition of Settling Time

Defining Settling Time

Settling time is the important specification when handling fast (sub-microsecond rise time), precision $(0.1 \%$ or better amplitude accuracy) pulses. Settling time is the total time required, after the application of an input step (voltage or current), for a circuit's output to reach and stay within an error band specified in relation to the output's final value (see Figure 3).

Settling time cannot be predicted from bandwidth or slew rate. A step input to the amplifier will cause the output to slew at its maximum rate toward the final value. When this value is reached the output will usually overshoot slightly
and "ring" as it settles toward the final value. Settling time includes not only the slew rate but also that portion of the ringing time in which the peaks exceed the settling time error band.

The error band is generally expressed as a percentage of the op-amps full scale output (i.e. 0.01% or 1 mV for a 10 V amplifier). When observing settling time on an oscilloscope the amplifier may appear to have settled because the ringing has ceased but the observed value is outside the error band for a few seconds until it drifts within the error band. This "long tail" phenomenon is often a source of error. The long tail makes it virtually impossible to calculate settling time by using slew rate, and ringing characteristics as the sole factors. Also, knowing the settling time to a given accuracy (i.e. 0.1%) is not helpful in extrapolating the settling time to a higher accuracy, such as 0.01% and vice versa.

If settling time cannot be extrapolated, calculated, guessed or ignored, it must be measured. This can be difficult and misleading if the proper procedures are not followed precisely. (Figure 4 illustrates the 1430's settling characteristics using the test circuit shown in Figure 5A).

Measuring Settling Time

It is not possible to obtain 0.1% or 0.01% accurate measurements directly from an oscilloscope looking at the output waveform. Measuring a 10 V signal, at high sensitivity for proper resolution, will overdrive the scope's input amplifier such that it's own recovery time will be much longer than the settling time being measured. Measuring settling time to 0.01% requires a clipping amplifier to prevent overloading the oscilloscope's input (Figure 5B).

Figure 4. 1430/1430-HR Settling Time
Figure 5. Test Circuit and Clipping Amplifier

Figure 5A. Test Circuit

The test circuit (Figure 5A) is an excellent method for fast-settling time measurements. In this circuit $R_{\text {in }}$ and R_{f} are matched to $R_{i n}{ }^{\prime}$ and R_{f}. When the Amplifier Under Test (AUT) settles to $\pm 0.01 \%$ of a 20 V step ($\pm 2 \mathrm{mV}$) the settling point settles to $\pm 1 \mathrm{mV}$. A FET follower with less than 1 pF input capacitance (3 N 128) is used in the clipper amp to buffer the settling point. The two schottky diodes acting as limiters on the settling point do not store a charge nor present much capacitive loading. Therefore, the lag due to capacitance, $\approx 3 \mathrm{pF}$, in combination with $R_{f}^{\prime}=R_{i}^{\prime}=1 \mathrm{k} \Omega$ can be as low as 1.5 ns . Be sure to use an ideal square wave source for testing, since a square wave with significant ripple can unfairly cause an amplifier to look bad.

This method allows you to look directly at the true AUT output, yet avoids most drawbacks due to the output signal subtraction from the input signal.

Why not connect the 3N128 buffer directly to the summing point? Because of feedback capacitance, C_{f}, and the (A.U.T.) input capacitance, $\mathrm{C}_{\text {in }}$. Many fast-settling amplifiers give best results when some finite amount of feedback capacitance is used. The effect of changing C_{f} can be seen at the settling point but not at the summing point. In addition, some good amplifiers have significant input capacitance due to "Miller capacitance" or feedforward capacitors. In this case, it is possible to see the true settling only at the settling point. You can test at the summing point if the result is the same as at the settling point; but if there is a difference measure at the settling point.

Figure 5B. Clipping Amplifier

FAST SETTLING, FET INPUT OPERATIONAL AMPLIFIER

Figure 6. Open-Loop Gain vs Frequency

An amplifier is of little use in precision work if it's output for a 400 ns pulse rises in 10 ns , overshoots 20%, rings for 100ns, and, due to a tail does not arrive at and remain within 0.01% of the final value for another 600ns. A 1430 will be within 0.01% of final value within 200ns.

To operate the 1430 or $1430-\mathrm{HR}$ from $+85^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, a $20^{\circ} \mathrm{C}$ per watt heat sink must be attached. A suggested device is the Thermalloy Model 6007A* modified by removing the two fins at each end and adding an aluminum "hold down bar" (Figure 7). Heat sink compound must be used between the 1430 and the heat sink.
*Thermalloy 2021 West Valley View Lane Dallas, TX 75234

NOTE: Dimensions: in. (cm)

Figure 7. Heat Sink Assembly

OPERATIONAL AMPLIFIER — HIGH-FREQUENCY, FAST-SETTLING

FEATURES

APPLICATIONS

Radar and Sonar Signal Processing

- Microwave Transmitter Modulators
- Graphic CRT Displays
- Linear Video Mixers
- Video ADCs, DACs, S/Hs

GENERAL DESCRIPTION

The 1435 is an ultra-fast, differential-input operational amplifier designed for precision amplification of wideband, complex waveforms with frequency components from DC to 100 MHz . Such performance is made possible by a unique design featuring high open-loop gain, flat frequency response beyond 10 kHz , and smooth 6 dB /octave rolloff to greater than 100 MHz .

Applications of the 1435 are based on using the precision capabilities of a differential-input op amp at higher frequencies than previously possible. These applications include video mixers with 20 dB to 40 dB gain, fully-differ-ential-input, and 0.1% gain stability; peak detectors (and sample/holds) that can capture $10 \mathrm{~V}, 50 \mathrm{~ns}$ pulses to 1% accuracy and 70 ns pulses to 0.01% accuracy; video A/D and D/A converters; submicrosecond, precision analog comparators.

The standard 1435 is specified for $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ operation. For high-reliability military/aerospace applications, the 1435 High Reliability (HR) version is specified for $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operation.

PIN CONFIGURATION

$\begin{aligned} & \text { PIN } \\ & \text { NO. } \end{aligned}$	designation	PIN NO.	DESIGNATION	${ }_{1435}^{40}$
1 2 3 3 4 5 6 7 7	OPTIONAL BYPASS CAPACITOR OUTPUT SOURCE COMPENSATION CAPACITOR $+\mathrm{V}_{\mathrm{CC}}$ EOS TRIM EOS TRIM -INPUT = NO INTERNAL CONNECTION	$\begin{gathered} 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \end{gathered}$	+INPUT NC NC NC $-V_{C C}$ OUTPUT SINK CASE COMMON	

ABSOLUTE MAXIMUM RATINGS

$\begin{array}{ll}V_{C C} & \text { Supply Voltage } . ~ \\ \text { V }\end{array}$
VICM Common-Mode Input Voltage $\pm 10 \mathrm{~V}$

Tc	Operating Temperature Range (Case)
	1435 $0^{\circ} \mathrm{C}$ to $+70^{\circ}$
	1435-HR $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
TSTG	Storage Temperature Range....$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

DC CHARACTERISTICS: (Note 1) $\mathrm{V}_{C C}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Symbol	Parameter	Test Conditions	1435			1435-HR			Unit
			Min	Typ	Max	Min	Typ	Max	
$V_{\text {Os }}$	Input Offset Voltage		-	± 2	± 5	-	± 2	± 5	mV
$\mathrm{V}_{\text {OS }}$ TC	Input Offset Voltage Drift vs Temperature	Average, $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-	± 5	-	-	± 5	± 25	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		-	± 10	± 30	-	± 10	± 30	$\mu \mathrm{A}$
I_{B} TC	Input Bias Current Drift vs Temperature	Average, $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-	± 50	-	-	± 50	± 150	$\mathrm{nA}{ }^{\circ} \mathrm{C}$
los	Input Offset Current		-	± 0.3	-	-	± 0.3	-	$\mu \mathrm{A}$
los TC	Input Offset Current Drift vs Temperature	Average, $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-	± 2	-	-	± 2	-	$\mathrm{nA} \mathrm{I}^{\circ} \mathrm{C}$
Avol	Open-Loop Voltage Gain		80	95	-	80	95	-	dB
PSRR	Power Supply Rejection Ratio		-	86	-	-	86	-	dB
CMRR	Common-Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}= \pm 5 \mathrm{~V}$	80	100	-	80	100	-	dB
CMR	Common-Mode Range (DC Linear Operation)	CMRR $\geq 74 \mathrm{~dB}$	± 7	± 8.5	-	± 7	± 8.5	-	V
$\mathrm{Z}_{\text {ID }}$	Differential Input Impedance		-	2.5kl\|2	-	-	$2.5 \mathrm{kl\mid 2}$	-	SllpF
$\mathrm{Z}_{\text {ICM }}$	Common-Mode Input Impedance		-	1M112	-	-	1M112	-	$\Omega \mathrm{llipF}$
V_{0}	Output Voltage Swing		± 5	± 7	-	± 5	± 7	-	V
10	Output Current		± 10	± 14	-	± 10	± 14	-	mA
Isc	Output Short-Circuit Current		-	-16/+35	-	-	-16/+35	-	mA
R_{0}	Output Resistance (DC Open-Loop)		-	100	-	-	100	-	Ω
$\mathrm{V}_{C C}$	Supply Voltage Range (Operating)		± 12	± 15	± 16	± 12	± 15	± 16	V
Icc	Quiescent Supply Current		-	± 25	± 30	-	± 25	± 30	mA

NOTES: 1. Limits printed in boldface type are guaranteed and 100% production tested. Limits in normal font are guaranteed but not 100% production tested.

AC CHARACTERISTICS: (Note 1) $\mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{C}}=2 \mathrm{pF}, \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Symbol	Parameter	Test Conditions	1435			1435-HR			Unit
			Min	Typ	Max	Min	Typ	Max	
S_{R}	Slew Rate	$\mathrm{C}_{\mathrm{C}}=0$	250	300	-	250	300	-	V/ $/ \mathrm{s}$
GBWP	Gain-Bandwidth Product	$\mathrm{f}=10 \mathrm{MHz}, \mathrm{C}_{\mathrm{C}}=0$	700	1000	-	700	1000	-	MHz
UGBW	Unity-Gain Bandwidth	$\mathrm{C}_{\mathrm{C}}=0$	-	150	-	-	150	-	MHz
$\mathrm{t}_{\text {s }}$	Settling Time ($\mathrm{C}_{\mathrm{CL}}=-1$)	10V step/0.025\%	-	60	85	-	60	75	ns
		10V step/0.01\%	-	70	-	-	70	-	ns
		5 V step/1\%	-	25	-	-	25	-	ns
		5V step/0.1\%	-	40	60	-	40	60	ns
		1V step/1\%	-	10	-	-	10	-	ns
		1V step/0.1\%	-	20	-	-	20	-	ns
e_{n}	Input Voltage Noise Density	$\mathrm{f}=1 \mathrm{kHz}$	-	16	-	-	16	-	$\mathrm{nV} / \mathrm{NHz}$
i_{n}	Input Current Noise Density	$\mathrm{f}=1 \mathrm{kHz}$	-	25	-	-	25	-	$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
C_{L}	Capacitive Load (Maximum w/o oscillation)	$\mathrm{NG}>2, \mathrm{C}_{\mathrm{C}}=3 \mathrm{pF}$	1000	-	-	1000	-	-	pF

NOTES: 1. Limits printed in boldface type are guaranteed and 100\% production tested. Limits in normal font are guaranteed but not 100% production tested.

HIGH-FREQUENCY, FAST-SETTLING OPERATIONAL AMPLIFIER

APPLICATION INFORMATION

Basic Connections and Wiring Techniques

A schematic and suggested physical layout of basic connections for the 1435 are shown in Figure 1. Illustrated are wiring techniques recommended to obtain specified high frequency/time response from the 1435 . The circuit should be built on a ground plane with minimum length, point-topoint connections, wired directly to the pins of the 1435. If a socket is necessary, it should be made of Teflon (such as the Augat model 114-AG-2A). Remember, 1000Ω and 10 pF provide a time constant of 10 ns .

The 1435 has a Class A output stage. Pin 2 is a follower output, while pin 13 is a current sink used to provide quiescent bias for the follower, as well as sinking load current for negative output swings. For most applications, pins 2 and 13 (the output circuit) are connected together.

Stability and Compensation

The 1435 operates in any conventional op-amp circuits, including the noninverting amplifier, current-to-voltage con-
verter, integrator, etc. However, it must be used at a noise gain of at least 2 (noise gain $=1+R_{F} / R_{I N}$). For example, it can operate as a gain-of-one inverter (Figure 1), or differential amplifier, but as a non-inverting amplifier, it must have a gain of at least 2 .

Capacitor C_{1} (shown in Figure 1), is a 2 pF compensation capacitor which must be used to maintain stable operation when noise gain is less than 10.

Resistor R_{3} connected to the (+) input compensates for the (-) input bias current. It should be equal to $R_{I N}$ and R_{F} in parallel. The $1 \mathrm{k} \Omega, \mathrm{E}_{\mathrm{OS}}$ adjust potentiometer is optional. The $1 \mu \mathrm{~F}$ bypass capacitor $\left(\mathrm{C}_{2}\right)$ on pin 1 may be necessary to prevent oscillation of the output stage when driving capacitive loads.

When operating at the low impedances required by the 1435, care should be taken to include the load provided by the feedback resistor when calculating the total load on amplifier output.

NOTE: $\frac{1}{}$ Represents connection to ground plane.

NOTES: 1. $R_{3}=\frac{\left(R_{F}\right)\left(R_{I N}\right)}{R_{F}+R_{I N}}$ bias current compensation.
2. $1 \mu \mathrm{~F}$ bypass capacitors should be solid tantalum.
3. Pins $9,10,11=$ no connection

HIGH-FREQUENCY, FAST-SETTLING OPERATIONAL AMPLIFIER

Figure 2. Open-Loop Gain and Phase vs Frequency

Operation as a Follower

When operated as a follower, the 1435 requires a noise gain of at least 2 for stability. Figure 3 shows one method of obtaining a noise gain of 2 .

Figure 3. The 1435 as High Impedance Input Follower

Operation as a Current-to-Voltage Converter

The 1435 is an optimum choice for a current-to-voltage converter because of its excellent E_{OS} and los temperature coefficients (TC). When used with a current output DAC the required noise gain of ≥ 2 is provided by using the output impedance of the DAC (see Figure 4). The initial input bias current of the 1435 is compensated by the addition of R_{C}, which is equal to the parallel combination of the feedback resistor and the input (DAC output) impedance. The typical los TC of $2 \mathrm{nA} /{ }^{\circ} \mathrm{C}$ times the feedback resistor ($2.5 \mathrm{k} \Omega$) produces $5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ of output drift over temperature, and the typical Eos TC of $5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ times a noise gain of 3.1 contributes only $15.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ to the output drift.

Figure 4. The 1435 as a Fast Current-to-Voltage Converter

HIGH-FREQUENCY, FAST-SETTLING OPERATIONAL AMPLIFIER

Settling-Time Measurement

The measurement of amplifier settling time to 0.01% under 100 ns accuracy requires great care. The 1435's settling time may be measured using the circuit shown in Figure 5. The settling-time test point is connected to an emitter-follower buffer for 0.1% measurement and to a gain-of-5 amplifier for 0.01%. (For a detailed discussion of these measurementtechniques, see TeledyneComponents' Model 1430 data sheet.)

Figure 5. Settling-Time Test Circuit

Figure 7. PSRR vs Frequency

Figure 8. Typical Settling Time vs Noise Gain

CMRR/PSRR vs Frequency

Figure 6 plots CMRR versus frequency, illustrating that the 1435 is fully differential at video frequencies and is an excellent choice for differential and non-inverting applications.

Figure 7 plots PSRR versus frequency, and illustrates the need to bypass the power supplies at video frequencies (to prevent oscillation).

Settling Time vs Noise Gain

The dependency of the 1435's dynamic performance on circuit gain is shown in Figure 8. Because of the enormous gain bandwidth of the 1435, settling time remains good even with significant gain.

Operation Above $+85^{\circ} \mathrm{C}$

In order to operate the $1435-\mathrm{HR}$ from $+85^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, it must be used with a $18^{\circ} \mathrm{C} / \mathrm{W}$ heat sink. A suggested heat sink is the Thermalloy Model 6007A* (modified by removing the two fins at each end and adding the aluminum hold-down bar, as shown in Figure 10.) Heat-sink compound must be used between the 1435-HR and the heat sink.

Figure 9. 1435-HR Heat Sink Assembly

Figure 10. Input Protection

* To obtain the heat sinks mentioned here, please contact:

Thermalloy
2021 West Valley View Lane
Dallas, TX 75234

HIGH-FREQUENCY, FAST-SETTLING OPERATIONAL AMPLIFIER

WARNING

If $-V_{C C}$ is open, the output will follow $+V_{c c}$. Depending on the feedback network, this may cause an input differential voltage greater than $\pm 4 \mathrm{~V}$, which will degrade the input transistors. To maximize frequency response, the 1435 DOES NOT have input protection. Therefore, the following precautions MUST be taken:

1. Do not apply $+V_{C C}$ before $-V_{C C}$.
2. Do not apply voltage to either input (pins 7 and 8) prior to application of $\pm \mathrm{V}_{\mathrm{Cc}}$.
3. Provide input protection per Figure 10.

Figure 11. Burn-in Circuit

NOTES

OPERATIONAL AMPLIFIER — WIDEBAND，FAST－SETTLING

FEATURES

－Gain Bandwidth Product 350 MHz
－Unity Gain Bandwidth 40 MHz
－Settling Time to 0．1\％（10V step） 85 ns
－Output

\qquad
$+12 \mathrm{~V}, \pm 24 \mathrm{~mA}$
－Small，TO－99 Package－Single External Compensation Capacitor
FET Input

APPLICATIONS

－Current－to－Voltage DACs
－Pulse Amplifiers
－Radar and Sonar Signal Processing
－Graphics CRT Displays
－Video ADCs，DACs，and S／Hs

GENERAL DESCRIPTION

The 1437 hybrid op amp offers versatility in wideband steady－state and fast－transient applications．It stands out for speed and predictability，as exemplified by its fast， smooth settling．The absence of large transients and os－ cillations in the settling waveform make the 1437 a de－ pendable system element that can resolve settling problems associated with ADCs，DACs，and sampling circuits．

The 1437 has excellent DC characteristics：$\pm 200 \mathrm{pA}$ input bias current， 95 dB open－loop gain，and $\pm 0.5 \mathrm{mV}$ input offset voltage．The choice of a single external compensation capacitor ensures a 40 MHz bandwidth at a variety of gains． True differential inputs ensure superior performance in all circuit configurations：inverting，noninverting，or differential． With an attractive price／performance ratio，the 1437 is an industry－standard for high－speed，high－accuracy signal pro－ cessing and data acquisition．

The 1437 is packaged in an 8－pin TO－99 can and is specified for $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ operation．The 1437 High Reli－ ability（HR）version is specified for $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ op－ eration．

PIN CONFIGURATION

$\begin{aligned} & \text { PIN } \\ & \text { NO. } \end{aligned}$	DESIGNATION	
1	OFFSET TRIM	$1 \mathrm{O}_{2}{ }^{\prime}{ }_{4}{ }^{3}$ i i
2	INVERTING INPUT	$\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1\end{array}\right.$
3	NONINVERTING INPUT	$\left(\begin{array}{lll}01 & 50 & 1 \\ 1 & 1\end{array}\right.$
4	$-V_{\mathrm{CC}}$	
5	OFFSET TRIM	
6	OUTPUT	$\cdots-\bigcirc-\infty$
7	＋V CC	入－－－－－－－
8	COMPENSATION	－
		BOTTOM VIEW
44－1		

WIDEBAND, FAST-SETTLING OPERATIONAL AMPLIFIER

ABSOLUTE MAXIMUM RATINGS

VCC Supply Voltage ... $\pm 20 \mathrm{~V}$
$V_{\text {ID }}$ Differential Input Voltage $\pm 25 \mathrm{~V}$
$\mathrm{V}_{\text {ICM }}$ Common-Mode Input Voltage $\pm \mathrm{V}_{\mathrm{CC}}$ $T_{C} \quad$ Operating Temperature Range (Case) 1437
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ 1437-HR $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Tsta Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ $\theta_{\mathrm{JC}} \quad$ Overall Junction-to-Case Thermal Resistance (Note 1) $32^{\circ} \mathrm{C} / \mathrm{W}$ Output Transistor Junction-to-Case Thermal Resistance (Note 2)
$65^{\circ} \mathrm{C} / \mathrm{W}$

NOTES: 1. Overall thermal resistance during normal operating conditions. Multiply this value by the power dissipation of the entire 1437 to determine maximum temperature rise case to junction in the hybrid.
2. Individual thermal resistance of the output stage. The 1437 is a Class AB amplifier. To calculate the output transistor temperature rise case to junction, multiply this figure by the power dissipation of the output transistor. At AC frequencies above 100 Hz , the effective thermal resistance of the output stage will drop $32.5^{\circ} \mathrm{C} / \mathrm{W}$ for the 1437.
DC CHARACTERISTICS: (Note 1) $\mathrm{V}_{C C}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Symbol	Parameter	Test Conditions	1437			1437-HR			Unit
			Min	Typ	Max	Min	Typ	Max	
$V_{0 S}$	Input Offset Voltage		-	± 0.5	± 2	-	± 0.5	± 2	mV
Vos TC	Input Offset Voltage Drift vs Temperature	Average, $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-	± 15	-	-	± 15	± 50	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		-	± 200	-	-	± 200	-	pA
$\mathrm{I}_{\mathrm{B}} \mathrm{TC}$	Input Bias Current Drift vs Temperature	Average, $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	Doubles every $11^{\circ} \mathrm{C}$			Doubles every $11^{\circ} \mathrm{C}$			-
los	Input Offset Current		-	± 20	-	-	± 20	-	pA
los TC	Input Offset Current Drift vs Temperature	Average, $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	Doubles every $11^{\circ} \mathrm{C}$			Doubles every $11^{\circ} \mathrm{C}$			-
AVOL	Open-Loop Voltage Gain		88	95	-	88	95	-	dB
PSRR	Power Supply Rejection Ratio		-	76	-	-	76	-	dB
CMRR	Common-Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}= \pm 8 \mathrm{~V}$	60	78	-	60	78	-	dB
CMR	Common-Mode Range (DC Linear Operation)	CMRR $\geq 54 \mathrm{~dB}$	± 10	± 12	-	± 10	± 12	-	V
$\mathrm{Z}_{\text {ID }}$	Differential Input Impedance		-	$10^{11 / 13}$	-	-	$10^{11 / 13}$	-	$\Omega \mathrm{llpF}$
$\mathrm{Z}_{\text {ICM }}$	Common-Mode Input Impedance		-	$10^{11 / \mid 3}$	-	-	$10^{11 / 13}$	-	SllpF
V_{0}	Output Voltage Swing		± 10	± 12	-	± 10	± 12	-	V
lo	Output Current		± 20	± 24	-	± 20	± 24	-	mA
Isc	Output Short-Circuit Current		-	± 50	-	-	± 50	-	mA
R_{0}	Output Resistance (DC Open-Loop)		-	90	-	-	90	-	Ω
V_{cc}	Supply Voltage Range (Operating)		± 12	± 15	± 20	± 12	± 15	± 20	V
ICC	Quiescent Supply Current		-	± 12	± 15	-	± 12	± 15	mA

NOTES: 1. Limits printed in boldface type are guaranteed and 100\% production tested. Limits in normal font are guaranteed but not 100% production tested.

AC CHARACTERISTICS: (Note 1) $\mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{C}}=0 \mathrm{pF}, \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Symbol	Parameter	Test Conditions	1437			1437-HR			Unit
			Min	Typ	Max	Min	Typ	Max	
$\mathrm{S}_{\text {R }}$	Slew Rate	$\mathrm{C}_{\mathrm{C}}=15 \mathrm{pF}$	-	400	-	-	400	-	V/us
			-	225	-	-	225	-	V/us
GBWP	Gain-Bandwidth Product	$\mathrm{f}=10 \mathrm{MHz}$	-	350	-	-	350	-	MHz
UGBW	Unity-Gain Bandwidth	$\mathrm{C}_{\mathrm{C}}=27 \mathrm{pF}$	-	40	-	-	40	-	MHz
$\mathrm{t}_{\text {s }}$	Settling Time ($\left.A_{C L}=-1, C_{C}=15 \mathrm{pF}\right)$	10 V step/1\%	-	65	-	-	65	-	ns
		10V step/0.1\%	-	85	120	-	85	120	ns
		10V step/0.025\%	-	150	-	-	150	-	ns
		10V step/0.01\%	-	180	-	-	180	-	ns
e_{n}	Input Voltage Noise Density	$f=1 \mathrm{kHz}$	-	10	-	-	10	-	$\mathrm{nV} \sqrt{\mathrm{Hz}}$

NOTES: 1. Limits printed in boldface type are guaranteed and 100\% production tested. Limits in normal font are guaranteed but not 100% production tested.

WIDEBAND, FAST-SETTLING OPERATIONAL AMPLIFIER

APPLICATIONS

The basic connections for the 1437 in the inverting mode are shown in Figure 1.

Figure 1. Normal Inverting Operation

Data Conversion

Fast settling time, low bias and offset currents, and modest power consumption make the 1437 an excellent choice for use in data conversion applications. Figure 2 illustrates the 1437 as a fast-settling input buffer to a 12-bit A/D converter.

Figure 2. Fast-Settling Buffer

Figure 3 demonstrates the 1437 used as a current-tovoltage converter for a 12-bit DAC.

Figure 3. Current-to-Voltage Converter

Stability and Compensation

For wide bandwidth applications, the 1437 can achieve 30 MHz bandwidth at 20 dB gain with a 2 pF compensation capacitor, as shown in Figure 4. The 1437 can operate as a unity-gain buffer out to 40 MHz bandwidth with 27 pF compensation (Figure 5). The 1437 is stable without a compensation capacitor in applications with gains greater than 30 dB , such as a video amplifier (Figure 6), where the gain is 70 dB and a compensation capacitor is not needed. Refer to Figure 8to determine the required compensation for other gain selections.

Figure 4. Inverting Gain of 10

Figure 5. 40 MHz Unity-Gain Buffer

Figure 6. Video Amplifier

Settling-Time Measurements

A typical settling-time measurement circuit for the 1437 is shown in Figure 7a; a photograph of a typical measurement is shown in Figure 7b. Figure 11 presents a graph of settling time to either 100 mV or 10 mV versus the output step size.

Figure 7a. Typical Settling-Time Test Circuit

Figure 7b. Settling-Time Graph

Figure 8. Open-Loop Gain and Phase vs Frequency

Figure 9. Full-Power Bandwidth vs Inverting Gain

Figure 10. Slew Rate vs Inverting Gain

Figure 11. Settling Time vs Output Voltage Change

Figure 12. Noise Gain vs C_{c} for 16% Overshoot

Figure 13. CMRR vs Frequency

NOTES

OPERATIONAL AMPLIFIER — WIDEBAND, FAST-SETTLING

FEATURES

Settling Time to 0.1% (10 V step)..................... 85 ns Output \qquad $\pm 12 \mathrm{~V}, \pm 60 \mathrm{~mA}$ Small, TO-8 Package Single External Compensation Capacitor

APPLICATIONS

- Current-to-Voltage DACs

- Pulse Amplifiers
- Radar and Sonar Signal Processing
- Graphics CRT Displays
- Video ADCs, DACs, and S/Hs

GENERAL DESCRIPTION

The 1438 hybrid operational amplifier offers versatility in wideband steady-state and fast-transient applications. The 1438 stands out for speed and predictability, as exemplified by its fast, smooth settling. The absence of large transients and oscillations in the settling waveform make it a dependable system element that can resolve settling problems associated with ADCs, DACs, and sampling circuits.

The 1438 has excellent DC characteristics: $\pm 200 \mathrm{pA}$ input bias current, 93 dB open-loop gain, and $\pm 0.5 \mathrm{mV}$ input offset voltage. The choice of a single external compensation capacitor is all that is needed to ensure a 40 MHz bandwidth at a variety of gains. True differential inputs ensure superior performance in all circuit configurations, whether inverting, noninverting, or differential. With an attractive price/performance ratio, the 1438 is an industry standard for high-speed, high-accuracy signal process-

The 1438 is packaged in a 12 -pin TO-8 can and is specified for $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ operation. The High Reliability $(-H R)$ version is specified for $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operation.

PIN CONFIGURATION

$\begin{aligned} & \text { PIN } \\ & \text { NO. } \end{aligned}$	DESIGNATION	$\begin{aligned} & \text { PIN } \\ & \text { NO. } \end{aligned}$	DESIGNATION	00
1	NC	12	NC	70
2	OFFSET TRIM	11	COMPENSATION	020
3	INVERTING INPUT	10	$+\mathrm{V}_{\text {CC }}$	$\left(\begin{array}{ll}02 & 80\end{array}\right.$
4	NONINVERTING INPUT	9	OUTPUT	$\left(\begin{array}{ll}01 & 90\end{array}\right.$
5	$\mathrm{-v}_{\mathrm{CC}}$	8	OFFSET TRIM	$\left(\begin{array}{llll}12 & 11 & 10\end{array}\right.$
6	NC	7	NC	00
NC = NO INTERNAL CONNECTION				BOTTOM VIEW

WIDEBAND, FAST-SETTLING OPERATIONAL AMPLIFIER

ABSOLUTE MAXIMUM RATINGS

VCc Supply Voltage ... $\pm 20 \mathrm{~V}$
$V_{\text {ID }}$ Differential Input Voltage $\pm 25 \mathrm{~V}$
$\mathrm{V}_{\text {ICM }}$ Common-Mode Input Voltage $\pm \mathrm{V}_{\mathrm{CC}}$
$\mathrm{T}_{\mathrm{C}} \quad$ Operating Temperature Range (Case)
1438 .. $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
1438-HR $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
NOTES: 1. Overall thermal resistance during normal operating conditions. Multiply this value by the power dissipation of the entire 1438 to determine maximum temperature rise case to junction in the hybrid.
2. Individual thermal resistance of the output stage. The 1438 is a Class $A B$ amplifier. To calculate the output transistor temperature rise case to junction, multiply this figure by the power dissipation of the output transistor. At AC frequencies above 100 Hz , the effective thermal resistance of the output stage will drop $32.5^{\circ} \mathrm{C} / \mathrm{W}$ for the 1438.
DC CHARACTERISTICS: (Note 1) $\mathrm{V}_{C C}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=200 \Omega, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Symbol	Parameter	Test Conditions	1438			1438-HR			Unit
			Min	Typ	Max	Min	Typ	Max	
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage		-	± 0.5	± 2	-	± 0.5	± 2	mV
Vos TC	Input Offset Voltage Drift vs Temperature	Average, $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-	± 15	-	-	± 15	± 50	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		-	± 200	-	-	± 200	-	pA
I_{B} TC	Input Bias Current Drift vs Temperature	Average, $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	Doubles every $11^{\circ} \mathrm{C}$			Doubles every $11^{\circ} \mathrm{C}$			-
los	Input Offset Current		-	± 20	-	-	± 20	-	pA
los TC	Input Offset Current Drift vs Temperature	Average, $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	Doubles every $11^{\circ} \mathrm{C}$			Doubles every $11^{\circ} \mathrm{C}$			-
Avol	Open-Loop Voltage Gain		86	93	-	86	93	-	dB
PSRR	Power Supply Rejection Ratio		-	76	-	-	76	-	dB
CMRR	Common-Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}= \pm 8 \mathrm{~V}$	60	78	-	60	78	-	dB
CMR	Common-Mode Range (DC Linear Operation)	CMRR $\geq 54 \mathrm{~dB}$	± 10	± 12	-	± 10	± 12	-	V
$\mathrm{Z}_{\text {ID }}$	Differential Input Impedance		-	$10^{11} \mid 13$	-	-	$10^{11 / 1 / 3}$	-	SllpF
ZICM	Common-Mode Input Impedance		-	$10^{11} \mid 13$	-	-	$10^{11 / 13}$	-	$\Omega \mathrm{llpF}$
V_{0}	Output Voltage Swing		± 10	± 12	-	± 10	± 12	-	V
Io	Output Current		± 50	± 60	-	± 50	± 60	-	mA
ISC	Output Short-Circuit Current		-	± 125	-	-	± 125	-	mA
R_{0}	Output Resistance (DC Open-Loop)		一	90	-	-	90	-	Ω
$\mathrm{V}_{\text {cc }}$	Supply Voltage Range (Operating)		± 12	± 15	± 20	± 12	± 15	± 20	V
ICC	Quiescent Supply Current		-	± 12	± 15	-	± 12	± 15	mA

NOTES: 1. Limits printed in boldface type are guaranteed and 100% production tested. Limits in normal font are guaranteed but not 100% production tested.
AC CHARACTERISTICS: (Note 1) $\mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=200 \Omega, \mathrm{C}_{\mathrm{C}}=0 \mathrm{pF}, \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Symbol	Parameter	Test Conditions	1438			1438-HR			Unit
			Min	Typ	Max	Min	Typ	Max	
S_{R}	Slew Rate	$\mathrm{C}_{\mathrm{C}}=15 \mathrm{pF}$	-	400	-	-	400	-	V/us
			-	225	-	-	225	-	$\mathrm{V} / \mathrm{\mu s}$
GBWP	Gain-Bandwidth Product	$f=10 \mathrm{MHz}$	-	350	-	-	350	-	MHz
UGBW	Unity-Gain Bandwidth	$\mathrm{C}_{\mathrm{C}}=27 \mathrm{pF}$	-	40	-	-	40	-	MHz
$\mathrm{t}_{\text {s }}$	Settling Time ($\mathrm{A}_{C L}=-1, \mathrm{C}_{C}=15 \mathrm{pF}$)	10V step/1\%	-	65	-	-	65	-	ns
		10V step/0.1\%	-	85	120	-	85	120	ns
		10V step/0.025\%	-	150	1	-	150	-	ns
		10V step/0.01\%	-	180	-	-	180	-	ns
e_{n}	Input Voltage Noise Density	$\mathrm{f}=1 \mathrm{kHz}$	-	10	-	-	10	-	$\mathrm{nV} / \mathrm{NHz}$

NOTES: 1. Limits printed in boldface type are guaranteed and 100% production tested. Limits in normal font are guaranteed but not 100% production tested.

WIDEBAND, FAST-SETTLING OPERATIONAL AMPLIFIER

APPLICATIONS

Basic connections for the 1438 in the normal inverting mode are shown in Figure 1.

Figure 1. Normal Inverting Operation

Data Conversion

Fast settling time, low bias and offset currents, and modest power consumption make the 1438 an excellent choice for use in data conversion applications. Figure 2 illustrates the 1438 as a fast-settling input buffer to a 12-bit A/D converter.

Figure 2. Fast-Settling Buffer

Figure 3 demonstrates the 1438 used as a current-tovoltage converter for a 12 -bit DAC.

Figure 3. Current-to-Voltage Converter

Stability and Compensation

For wide bandwidth applications, the 1438 can achieve 30 MHz bandwidth at 20 dB gain with a 2 pF compensation capacitor, as shown in Figure 4. The 1438 can operate as a unity-gain buffer out to 40 MHz bandwidth with 27 pF compensation (Figure 5). The 1438 is stable without a compensation capacitor in applications with gains greater than 30 dB , such as a video amplifier (Figure 6), where the gain is 70 dB and a compensation capacitor is not needed. Refer to Figure 8 to determine the required compensationfor other gain selections.

Figure 4. Inverting Gain of 10

Figure 5. 40 MHz Unity-Gain Buffer

WIDEBAND, FAST-SETTLING OPERATIONAL AMPLIFIER

Figure 6. Video Amplifier

Settling-Time Measurements

A typical settling-time measurement circuit for the 1438 is shown in Figure 7a; a photograph of a typical measurement is shown in Figure 7b. Figure 11 presents a graph of settling time to either 100 mV or 10 mV versus the output step size.

NOTES: All resistors 1\%, all capacitors 10\%. Refer to 1430 data sheet for discussion on settling-time measurement. All capacitors in $\mu \mathrm{F}$ unless otherwise indicated.

Figure 7b. Settling-Time Graph

Figure 8. Open-Loop Gain and Phase vs Frequency

Figure 9. Full-Power Bandwidth vs Inverting Gain

Figure 10. Slew Rate vs Inverting Gain

Figure 11. Settling Time vs Output Voltage Change

Figure 13. CMRR vs Frequency

Figure 14. PSRR vs Frequency

Figure 12. Noise Gain vs C_{c} for 16% Overshoot

NOTES

OPERATIONAL AMPLIFIER - FAST-SETTLING, FULLY-DIFFERENTIAL, FET-INPUT

FEATURES

- Gain-Bandwidth Product
 2000 MHz

■ Unity-Gain Bandwidth 80 MHz
■ Slew Rate @ $A_{c L}=-1$.............................. 1200 V/ $\mu \mathrm{s}$

- Settling Time to 0.01% (10 V step).................. 130 ns
- Open Loop Gain .. 110 dB

■ Output... $\pm 13 \mathrm{~V}, \pm 130 \mathrm{~mA}$

- Excellent Low Gain Stability

APPLICATIONS

- Video Instrumentation
- High-Speed Follower
- Low Error Current Integrator
- Radar
- Video Frequency Filters
- Video Line Driver

GENERAL DESCRIPTION

The 1443's combination of high speed, wide bandwidth, excellent DC characteristics, and low-gain stability places it at the forefront of high-performance operational amplifiers. Its 2 GHz gain-bandwidth product, $1200 \mathrm{~V} / \mu \mathrm{s}$ slew rate (when compensated for unity gain), and 130 ns settling time clearly make it an outstanding high-speed device. It has been carefully engineered to eliminate the low-gain stability problems that have historically plagued high-speed op amps such as the BB3554. For example, as a unity-gain follower with a 54 pF capacitive load, the 1443 has a small signal (3 dB) bandwidth of 120 MHz , yet still has 35° of phase margin, without using exotic circuit techniques.

The 1443 has a fully-differential FET input followed by a bipolar gain stage that, together, produce excellent DC characteristics. Common-mode rejection ratio (CMRR) is 80 dB (minimum). Offset voltage and bias current are guaranteed less than $\pm 3 \mathrm{mV}$ and -50 pA , respectively. Open-loop gain is 100 dB (minimum). External compensation with a single capacitor allows users to tailor 1443 performance for different applications.

The 1443 is packaged in an 8-pin TO-3 can and is specified for $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ operation. The 1443 High Reliability (HR) version is specified for $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operation.

PIN CONFIGURATION

1443

ABSOLUTE MAXIMUM RATINGS

$V_{\text {CC }}$	Supply Voltage ... $\pm 18 \mathrm{~V}$
$V_{\text {ID }}$	Differential Input Voltage $\pm 25 \mathrm{~V}$
$V_{\text {ICM }}$	Common-Mode Input Voltage $\pm \mathrm{V}_{\text {CC }}$
TC	Operating Temperature Range (Case)
	1443 .. $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
	1443-HR $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
	Storage Temperature Range $-65^{\circ} \mathrm{C}$ to +150

DC CHARACTERISTICS: (Note 1) $\mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Symbol	Parameter	Test Conditions	1443			1443-HR			Unit
			Min	Typ	Max	Min	Typ	Max	
$V_{\text {OS }}$	Input Offset Voltage		-	± 1	± 3	-	± 1	± 3	mV
$\mathrm{V}_{\text {OS }}$ TC	Input Offset Voltage Drift vs Temperature	Average, $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-	± 25	-	-	± 25	± 75	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		-	± 10	± 50	-	± 10	± 50	pA
I_{B} TC	Input Bias Current Drift vs Temperature	Average, $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	Doubles every $11^{\circ} \mathrm{C}$			Doubles every $11^{\circ} \mathrm{C}$			-
los	Input Offset Current		-	± 5	-	-	± 5	-	PA
los TC	Input Offset Current Drift vs Temperature	Average, $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	Doubles every $11^{\circ} \mathrm{C}$			Doubles every $11^{\circ} \mathrm{C}$			-
Avol	Open-Loop Voltage Gain	$\mathrm{R}_{\mathrm{L}}=100 \Omega$	100	110	-	100	110	-	dB
PSRR	Power Supply Rejection Ratio		70	90	-	70	90	-	dB
CMRR	Common-Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}= \pm 5 \mathrm{~V}$	80	100	-	80	100	-	dB
CMR	Common-Mode Range (DC Linear Operation)	CMRR $\geq 74 \mathrm{~dB}$	± 7	± 9	-	± 7	± 9	-	V
$\mathrm{Z}_{\text {ID }}$	Differential Input Impedance		-	$10^{111 / 3}$	-	-	$10^{11} \mid 3$	-	SllpF
ZICM	Common-Mode Input Impedance		-	$10^{11} 113$	-	-	$10^{11 / 1 / 3}$	-	SllpF
V_{0}	Output Voltage Swing	$R_{L}=100 \Omega$	± 10.5	± 13	-	± 10.5	± 13	-	V
10	Output Current		± 100	± 130	-	± 100	± 130	-	mA
ISC	Output Short-Circuit Current	(Note 2)	-	± 160	-	-	± 160	-	mA
R_{0}	Output Resistance (DC Open-Loop)		-	200	-	-	200	-	Ω
$\mathrm{V}_{C C}$	Supply Voltage Range (Operating)		± 12	± 15	± 18	± 12	± 15	± 18	V
ICC	Quiescent Supply Current		-	± 45	± 55	-	± 45	± 55	mA

NOTES: 1. Limits printed in boldface type are guaranteed and 100\% production tested. Limits in normal font are guaranteed but not 100% production tested.
2. The 1443 cannot withstand a continuous short-circuit to ground.

AC CHARACTERISTICS: (Note 1) $\mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{C}}=$ short, $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Symbol	Parameter	Test Conditions	1443			1443-HR			Unit
			Min	Typ	Max	Min	Typ	Max	
S_{R}	Slew Rate	$\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{~A}_{\mathrm{CL}}=-1$	900	1200	-	900	1200	-	V/ $/ \mathrm{s}$
GBWP	Gain-Bandwidth Product	$\begin{aligned} & f=100 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=200 \Omega, \\ & \mathrm{C}_{\mathrm{C}}=0 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}, \\ & \mathrm{R}_{\mathrm{L}}=200 \Omega, \mathrm{C}_{\mathrm{C}}=10 \mathrm{pF} \end{aligned}$	$\overline{90}$	$\begin{array}{\|c\|} \hline 2000 \\ 130 \\ \hline \end{array}$	-	- 90	$\begin{array}{c\|} 2000 \\ 130 \end{array}$	-	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
UGBW	Unity-Gain Bandwidth		-	80	-	-	80	-	MHz
$\mathrm{t}_{\text {s }}$	Settling Time ($\mathrm{A}_{\mathrm{CL}}=-1$)	10 V step/1\% 10V step/0.1\% 10V step/0.01\%	-	$\begin{gathered} 50 \\ 80 \\ 130 \end{gathered}$	$\overline{-}$	-	$\begin{gathered} 50 \\ 80 \\ 130 \end{gathered}$	-	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
e_{n}	Input Voltage Noise Density	$f=1 \mathrm{kHz}$	-	15	-	-	15	-	$\mathrm{nV} / \mathrm{NHz}$
C_{L}	Capacitive Load (maximum w/o oscillation)	$R_{L}=100 \Omega, A_{C L}=-1$	-	>300	-	-	>300	-	pF

NOTES: 1. Limits printed in boldface type are guaranteed and 100\% production tested. Limits in normal font are guaranteed but not 100% production tested.

FAST-SETTLING, FULLY-DIFFERENTIAL FET-INPUT OPERATIONAL AMPLIFIER

1443

Figure 1. Gain and Phase vs Frequency for Variable Compensation

Figure 2. Gain and Phase vs Frequency for Variable R_{L}

Figure 3. CMRR vs Frequency

Figure 4. Gain and Phase vs Frequency for Variable C_{L}

NOTE: Good PSRR vs frequency means smaller supply bypasses can be used to suppress supply noise feedthrough.

Figure 5. PSRR vs Frequency

Figure 6. Utilizable Full-Power Bandwidth

FAST-SETTLING, FULLY-DIFFERENTIAL FET-INPUT OPERATIONAL AMPLIFIER

APPLICATIONS INFORMATION

Compensation

The 1443's design allows users to tailor its compensation, and thereby its performance, to suit different applications. The total effective compensation is an internal 5 pF capacitor in series with whatever capacitor is placed between the compensation input (pin 3) and the output (pin 1).

To minimize low frequency ($<1 \mathrm{MHz}$) slewing error and maximize bandwidth for higher gains ($>30 \mathrm{~dB}$), the external compensation capacitance should range from 0 pF (open) to 5 pF . For best transient response at lower gains, values greater than 5 pF are recommended. Above approximately 15 pF , a short is recommended in lieu of a larger capacitor. The exact value of compensation depends on how much ringing and overshoot an application allows. Most low-gain applications will achieve best overall results by shorting pin 1 to pin 3.

Following selection of a compensation capacitor $\left(\mathrm{C}_{\mathrm{C}}\right)$, a feedback capacitor (C_{FB}) must be selected to properly compensate for input capacitance:

$$
C_{F B}=2 \mathrm{pF} /(\mathrm{NG}-1),
$$

where $\mathrm{NG}=$ noise gain .

Noise gain is defined as $1 / \beta$, where β is equal to the fraction of the output signal that is fed back to the input. Note

NOTE: $1 \mu \mathrm{~F}$ or larger tantalum supply bypass capacitors are recommended for fast-settling applications.
that noise gain is the multiple of amplifier input noise which appears at the amplifier output. In case of low $\mathrm{C}_{\mathrm{C}}, \mathrm{C}_{\mathrm{FB}}$ may be increased to provide extra phase lead. The choice of C_{FB} is best made on the basis of permissible overshoot after C_{C} has been chosen on the basis of gain.

Bypassing

The traditional practice of decoupling power supply lines with bypass capacitors is necessary to prevent highfrequency oscillations resulting from power supply lead inductance and parasitic capacitance. Unfortunately, the bypass capacitor and lead inductance form a tank circuit that can ring when a step change in the op-amp output forces a current pulse from the supply. In many cases, adding a dissipative element (a resistor) will damp the ringing; its exact value is not critical, but its presence is.

Figure 8. Follower Configuration

Figure 9. Frequency Response (As a Follower)

Figure 7. Typical Connection

Follower

When used as a unity-gain follower (Figure 8), the 1443 has a 3 dB bandwidth of 120 MHz with only 1 dB of peaking, as shown in Figure 9. Pulse response in this configuration is shown in Figure 10.

Unity-Gain Inverter

As a unity-gain inverter (Figure 11), the 1443 has a typical 3 dB bandwidth of 60 MHz . It will settle quickly even with loads of $C_{L}=100 \mathrm{pF}$ and $\mathrm{R}_{L}=100 \Omega$, yet will not oscillate if $R_{\text {IN }}$ is open.

Figure 10. Follower Pulse Response

Figure 11. Unity-Gain Inverter

Differential Amplifier

With fully-differential capabilities, the 1443 lends itself to many system configurations. Figure 12 shows a typical configuration for the 1443 as a wideband (approximately 15 MHz) differential amplifier with 20 dB gain.

Figure 12. Wideband Differential Amplifier

High-Speed Coaxial Driver

Figure 13 shows the 1443 being used as a high-speed coaxial line driver. The 1443 can drive a 50Ω cable to $\pm 5 \mathrm{~V}$ with 50Ω terminating resistors at both ends to minimize reflections. Using 1% termination resistors and 50Ω line, ghosts are attenuated at least 77 dB . Without the series 50Ω resistor at the amplifier output, ghosts may only be attenuated by 38 dB .

Figure 13. High-Speed Coaxial Driver

FAST-SETTLING, FULLY-DIFFERENTIAL FET-INPUT OPERATIONAL AMPLIFIER

HIGH-FREQUENCY TROUBLESHOOTING TECHNIQUES

Parasitic Oscillations

With VHF operational amplifiers like the 1443, it is not enough to only be concerned with stability problems due to loop closure. Of equal concern (and often times more annoying) are oscillations due to parasitics. Parasitic oscillations are apt to arise in VHF op-amp circuits in which lead lengths are long ($>1 / 2$ inch), or loop areas are large (>1 cm^{2}) at the summing junction, feedback capacitor, power supply pins, or ground-return paths (from bypass capacitors or the amplifier case).

For the 1443, these oscillations may contain frequencies up to 0.5 GHz . Therefore, you cannot always count on seeing them with an oscilloscope. When parasitic oscillation occurs, it often appears as a DC offset because circuit conductance nonlinearities detect its RF envelope. If what appears to be a DC offset is noisy and erratic, or responsive to the placement of your finger or a test probe, parasitic oscillations may be the problem.

Parasitic oscillations are also likely if there is any significant lead length separating the amplifier output from its load capacitance. The lead inductance and load capacitance form a series LC circuit that looks like a larger and larger capacitor as it approaches resonant frequency from below.

Even lead lengths associated with attaching an oscilloscope probe can cause problems. For a typical scope probe, with the ground attached 10 cm from the measurement point, the ground lead and probe form a series LC circuit of approximately 100 nH and 12 pF . At 100 MHz band-edge for the 1443, the apparent probe capacitance will double. In parallel with already-existing circuit capacitances, this 24 pF may be enough to cause oscillation. A good practice is to wrap the ground lead around the probe tip. An even better practice is to use a probe socket (Tektronix 131-0258-00) installed in the circuit, with careful choice of the ground return route.

Semiconductor capacitances and bandwidths are nonlinearly-dependent on voltage and current. Devices that oscillate at one voltage level may not oscillate at another.

Check for op-amp oscillations at zero volt output and at several additional output points in each polarity. You will often find that oscillations exist at one or two points in the circuits' output range. These might be observed only as unexplained perturbations on the output (they may not appear as bursts) due to envelope detection, as previously discussed.

The Finger as an Analog Development Tool

In 15V systems, the finger can be a useful investigative tool, if thoughtfully applied. It can couple signals in and out and can also be used as a load. A well-laid-out RF op-amp circuit will be only slightly affected by a light touch. Dramatic changes reveal a sensitive point! Check a circuit by touching the amplifier case, the supply rails (carefully), ground, control knobs, chassis parts, etc. If things change markedly when you touch these areas, parasitics may be the problem.

Other Considerations

Problems commonly associated with video amplifiers are naturally present in VHF circuits. Therefore, proper compensation of input capacitance by C_{FB} cannot be ignored. Nor can the impedance (inductance) of the ground return paths (though use of a ground-plane is helpful, it is no panacea).

Thermal Considerations

The 1443 has internal current limiting but can only withstand an output short to ground if, during the short, the output cùrrent is negative as often as positive during each 100 ms period. It is not short-circuit-proof under all conditions. Maximum continuous junction temperature should be kept below $+150^{\circ} \mathrm{C}$.

The case-to-ambient thermal resistance of the TO-3 package is $\theta_{\mathrm{CA}}=35^{\circ} \mathrm{C} / \mathrm{W}$. For the two output transistors, θ_{JC} is $95^{\circ} \mathrm{C} / \mathrm{W}$. With a $20 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ output sinusoid, the effective θ_{Jc} of these two transistors is $65^{\circ} \mathrm{C} / \mathrm{W}$. A heat sink is required above $+75^{\circ} \mathrm{C}$ ambient ($+85^{\circ} \mathrm{C}$ for sinusoidal output) if a 200Ω load is used. With a 100Ω load, a heat sink is required above $+40^{\circ} \mathrm{C}$ ambient ($+50^{\circ} \mathrm{C}$ for sinusoidal output).

FAST-SETTLING, FULLY-DIFFERENTIAL FET-INPUT OPERATIONAL AMPLIFIER

Figure 14. Maximum Allowable Case Temperature vs Load Resistance With Worst-Case Power Dissipation

Figure 15. Worst-Case Power Dissipation vs Load Resistance

NOTES

OPERATIONAL AMPLIFIER - HIGH SPEED, VMOS OUTPUT

FEATURES

- Output $\pm 31 \mathrm{~V}, \pm 200 \mathrm{~mA}$
- Gain-Bandwidth Product \qquad 1 GHz
- Slew Rate \qquad $300 \mathrm{~V} / \mu \mathrm{sec}$
- VMOS Output Stage
- No SOA Restrictions
- Fully Differential Input

APPLICATIONS

- Video Amplifiers

- Video Yoke Drivers
- ATE Pin Drivers
- Driving Inductive and Capacitive Loads

GENERAL DESCRIPTION

The 1460 heralds a new era in high power, wideband operational amplifiers. Designed for ATE signal amplification and pin driving, the 1460 surpasses the competition in speed (1 GHz gain bandwidth product, $300 \mathrm{~V} / \mu \mathrm{sec}$ slew rate) and in output capability (full $\pm 31 \mathrm{~V}, \pm 200 \mathrm{~mA}$ output). The 1460 is a fully differential input, single-ended output device with internal current limiting and external compensation. A single capacitor allows users to tailor 1460 performance to different applications.

The 1460 is ideal for high speed, high gain applications that require a $\pm 30 \mathrm{~V}$, high current output. It is optimized for gains greater than five, making it a superb choice for either analog or digital signal amplification at video frequencies. Secondary breakdown problems associated with most power op amps are virtually eliminated in the 1460 through the use of a unique VMOS output stage. The output voltage and current are limited only by power dissipation and not by safe operating area curves. For any application in which the amplifier will be dissipating more than one watt of power, an external heat sink must be used. The thermal resistance of the 1460 is $20^{\circ} \mathrm{C} /$ watt $\left(\theta_{\mathrm{JC}}\right)$ and $50^{\circ} \mathrm{C} /$ watt $\left(\theta_{\mathrm{JA}}\right)$. Junction temperatures should not exceed $150^{\circ} \mathrm{C}$ for normal operation or $200^{\circ} \mathrm{C}$ for a short-circuit condition.

The 1460 is packaged in an 8-pin TO-3 can. The standard unit is specified for $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ operation. The 1460 High Reliability (HR) version is specified for $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operation.

PIN CONFIGURATION

PIN	
NO.	DESIGNATION
1	OUTPUT
2	OFFSET ADJUST
3	$+V_{C C}$
4	+ IN
5	$-I N$
6	$-V_{C C}$
7	COMPENSATION
8	COMPENSATION/OFFSET ADJUST

BOTTOM VIEW

ABSOLUTE MAXIMUM RATINGS

$V_{\text {CC }}$ Supply Voltage ... $\pm 40 \mathrm{~V}$
$V_{\text {ID }}$ Differential Input Voltage $\pm 6 \mathrm{~V}$
$V_{\text {ICM }}$ Common-Mode Input Voltage .. $+V_{C C}$ to ($+V_{C C}-60 \mathrm{~V}$)

T_{C}	Operating Temperature Range (Case)
$1460 \ldots \ldots . ~$	
	C

1460
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$ Storage Temperature Range $\ldots . . .-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

DC CHARACTERISTICS: (Note 1) $\mathrm{V}_{C C}= \pm 36 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Symbol	Parameter	Test Conditions	1460			1460-HR			Unit
			Min	Typ	Max	Min	Typ	Max	
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage		-	± 1	± 5	-	± 1	± 5	mV
$\mathrm{V}_{\text {OS }}$ TC	Input Offset Voltage Drift vs Temperature	Average, $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-	± 10	-	-	± 10	± 50	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		-	± 5	± 15	-	± 5	± 15	$\mu \mathrm{A}$
I_{B} TC	Input Bias Current Drift vs Temperature	Average, $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-	± 50	-	-	± 50	± 150	$n \mathrm{~A}^{\circ} \mathrm{C}$
los	Input Offset Current		-	± 0.3	± 1.5	-	± 0.3	± 1.5	$\mu \mathrm{A}$
los TC	Input Offset Current Drift vs Temperature	Average, $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-	± 3	-	-	± 3	-	$n \mathrm{Al}^{\circ} \mathrm{C}$
Avol	Open-Loop Voltage Gain	$\mathrm{R}_{\mathrm{L}}=200 \Omega$	80	92	-	80	92	-	dB
PSRR	Power Supply Rejection Ratio		75	100	-	75	100	-	dB
CMRR	Common-Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}=-18 \mathrm{~V} /+30 \mathrm{~V}$	70	85	-	70	85	-	dB
CMR	Common-Mode Range (DC Linear Operation)	CMRR $\geq 64 \mathrm{~dB}$	-201+32	-221+34	-	-201+32-	-22/34	-	V
$\mathrm{Z}_{\text {ID }}$	Differential Input Impedance		-	7.5 k 130	-	- 7	7.5 k 130	-	SllpF
ZICM	Common-Mode Input Impedance		-	1MII6	-	-	1M116	-	SllpF
V_{0}	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=200 \Omega$	± 30	± 31	-	± 30	± 31	-	V
lo	Output Current		± 150	± 200	-	± 150	± 200	-	mA
Isc	Output Short-Circuit Current		-	± 250	± 300	-	± 250	± 300	mA
R_{0}	Output Resistance (DC Open-Loop)		-	20	-	-	20	-	Ω
$\mathrm{V}_{C C}$	Supply Voltage Range (Operating)		± 15	± 36	± 40	± 15	± 36	± 40	V
Icc	Quiescent Supply Current		-	± 20	± 25	-	± 20	± 25	mA

NOTES: 1. Limits printed in boldface type are guaranteed and 100\% production tested. Limits in normal font are guaranteed but not 100% production tested.

AC CHARACTERISTICS: (Note 1) $\mathrm{V}_{\mathrm{CC}}= \pm 36 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{C}}=0 \mathrm{pF}, \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Symbol	Parameter	Test Conditions	1460			1460-HR			Unit
			Min	Typ	Max	Min	Typ	Max	
S_{R}	Slew Rate		-	300	-	-	300	-	V/us
		$\mathrm{C}_{\mathrm{C}}=40 \mathrm{pF}$	50	65	-	50	65	-	V/us
GBWP	Gain-Bandwidth Product	$\mathrm{f}=10 \mathrm{MHz}$	-	1000	-	-	1000	-	MHz
UGBW	Unity-Gain Bandwidth		-	74	-	-	74	-	MHz
$\mathrm{t}_{\text {s }}$	Settling Time ($\mathrm{A}_{C L}=-6, \mathrm{C}_{C}=40 \mathrm{pF}$)	$\begin{aligned} & 30 \mathrm{~V} \text { step/ } 0.1 \% \\ & 10 \mathrm{~V} \text { step/0.1\% } \end{aligned}$	-	$\begin{gathered} 1 \\ 0.8 \end{gathered}$	-	-	$\begin{gathered} 1 \\ 0.8 \end{gathered}$	-	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$

NOTES: 1. Limits printed in boldface type are guaranteed and 100% production tested. Limits in normal font are guaranteed but not 100% production tested.

HIGH SPEED, VMOS OUTPUT

 OPERATIONAL AMPLIFIER
STANDARD CONFIGURATION

APPLICATIONS INFORMATION

In the absence of a positive supply voltage, the output will follow the negative supply. Should such a condition occur, it is possible, depending on the feedback network used, that the maximum allowable differential input voltage may be exceeded. If there is a possibility that the differential input voltage may exceed $\pm 6 \mathrm{~V}$, input overvoltage protection, shown in the Standard Configuration diagram, should be used.

Compensation

For optimum performance and noise rejection, power supplies should be bypassed with $1 \mu \mathrm{~F}$ tantalum capacitors. When driving heavy loads, more bypass capacitance may be needed.

Figures 1 and 2 illustrate low gain noninverting and inverting applications. The 1460's compensation capacitor for each of these applications was chosen for 10 MHz bandwidth operation.

The application in Figure 3 has a 10 MHz bandwidth and an inverting gain of 100 yielding 1 GHz gain bandwidth product. Notice that there is no compensation capacitor on the 1460 . No compensation capacitor is needed for gains over 100. However, a feedback capacitor between 1 pF and 10 pF is recommended to compensate for the 1460's input capacitance.

Figure 1. 10 MHz Noninverting Gain of Two Amplifier

Figure 2. 10 MHz Inverting Gain of Six Amplifier

Figure 3. $10 \mathbf{M H z}$ Inverting Gain of 100

Cc	Frequency at Unity Gain	Phase at Unity Gain	Frequency at 180°	Slew Rate
0 pF	74 MHz	275°	5 MHz	$250 \mathrm{~V} / \mu \mathrm{s}$
10 pF	74 MHz	267°	25 MHz	$125 \mathrm{~V} / \mu \mathrm{s}$
20 pF	55 MHz	277°	32 MHz	$84 \mathrm{~V} / \mu \mathrm{s}$
40 pF	50 MHz	216°	36 MHz	$50 \mathrm{~V} / \mu \mathrm{s}$
80 pF	32 MHz	165°	37 MHz	$28 \mathrm{~V} / \mu \mathrm{s}$
180 pF	17 MHz	132°	45 MHz	$13 \mathrm{~V} / \mu \mathrm{s}$
330 pF	10 MHz	118°	50 MHz	$7 \mathrm{~V} / \mu \mathrm{s}$

Figure 5. A.C. Characteristics vs $\mathbf{C}_{\mathbf{C}}$

HIGH SPEED, VMOS OUTPUT OPERATIONAL AMPLIFIER

Figure 6. Full Power Bandwidth vs Inverting Gain

Figure 8. CMRR vs Frequency

Figure 7. Slew Rate vs Inverting Gain

Figure 9. PSRR vs Frequency

NOTES

OPERATIONAL AMPLIFIER - HIGH-SPEED, HIGH-POWER, VMOS-OUTPUT

FEATURES

- Output \qquad $\pm 34 \mathrm{~V}, \pm 750 \mathrm{~mA}$
- Gain-Bandwidth Product \qquad .1 GHz
- Slew Rate 1000 V/ $\mu \mathrm{s}$
- FET Input
- VMOS-Output Stage
- No SOA Restrictions
- Operation (-HR) \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

APPLICATIONS

- Video Yoke Drivers
- Video Distribution Amplifiers
- High-Speed ATE Pin Drivers
- High-Accuracy Audio Amplification
- Driving Inductive and Capacitive Loads

GENERAL DESCRIPTION

The 1461 is an extremely fast, FET-input, VMOS-output, power operational amplifier. It operates from $\pm 15 \mathrm{~V}$ to $\pm 40 \mathrm{~V}$ supplies, has output voltages up to $\pm 34 \mathrm{~V}$, and output currents up to $\pm 750 \mathrm{~mA}$. Its unique VMOS-output stage eliminates the safe operating area (SOA) restrictions and secondary breakdown problems that plague virtually all other presently-available power op amps. The 1461's ability to handle high output currents at any voltage eliminates the intricate problems normally caused by driving capacitive or inductive loads.

The 1461's combination of speed and power characteristics is unmatched. Its 115 dB open-loop gain, 1 GHz gain-bandwidth product, and $1000 \mathrm{~V} / \mu$ s slew rate make it an outstanding high-speed op amp.

The 1461 is housed in a 14-pin dual-in-line package with "ears" for easy mounting to heat sinks. Compensation is accomplished with a single external capacitor. Two external current-limiting resistors are optional.

The standard 1461 is specified for $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ operation. For high-reliability military/aerospace applications, the High Reliability (HR) 1461 version is specified for $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operation.

PIN CONFIGURATION

HIGH-SPEED, HIGH-POWER, VMOSOUTPUT OPERATIONAL AMPLIFIER

1461

ABSOLUTE MAXIMUM RATINGS

$V_{\text {CC }}$ Supply Voltage .. $\pm 45 \mathrm{~V}$
$V_{\text {ID }}$ Differential Input Voltage $\pm 25 \mathrm{~V}$
$\mathrm{V}_{\text {ICM }}$ Common-Mode Input Voltage \pm VC
$\mathrm{T}_{\mathrm{C}} \quad$ Operating Temperature Range (Case)
1461
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
1461-HR \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

DC CHARACTERISTICS: (Note 1) $\mathrm{V}_{\mathrm{CC}}= \pm 36 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Symbol	Parameter	Test Conditions	1461			1461-HR			Unit
			Min	Typ	Max	Min	Typ	Max	
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage		-	± 0.5	± 5	-	± 0.5	± 5	mV
$\mathrm{V}_{\text {OS }}$ TC	Input Offset Voltage Drift vs Temperature	Average, $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-	± 25	-	-	± 25	± 75	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		-	± 10	± 100	-	± 10	± 100	pA
I_{B} TC	Input Bias Current Drift vs Temperature	Average, $T_{\text {MIN }}$ to $T_{\text {MAX }}$	Doubles every $11^{\circ} \mathrm{C}$			Doubles every $11^{\circ} \mathrm{C}$			-
los	Input Offset Current		-	± 5	-	-	± 5	-	pA
los TC	Input Offset Current Drift vs Temperature	Average, $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	Doubles every $11^{\circ} \mathrm{C}$			Doubles every $11^{\circ} \mathrm{C}$			-
Avol	Open-Loop Voltage Gain		100	115	-	100	115	-	dB
PSRR	Power Supply Rejection Ratio		-	100	-	-	100	-	dB
CMRR	Common-Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}= \pm 22 \mathrm{~V}$	90	108	-	90	108	-	dB
CMR	Common-Mode Range (DC Linear Operation)	$C M R R \geq 84 \mathrm{~dB}$	± 24	± 28	-	± 24	± 28	-	V
Z_{10}	Differential Input Impedance		-	$10^{11^{1 / 13}}$	-	-	$10^{111 / 3}$	-	$\Omega \mathrm{llpF}$
$\mathrm{Z}_{\text {ICM }}$	Common-Mode Input Impedance		-	$10^{11 / \mid 3}$	-	-	$10^{11} \mid 13$	-	$\Omega \mathrm{llpF}$
Vo	Output Voltage Swing	$R_{L}=50 \Omega$	$\begin{aligned} & \pm 30 \\ & \pm 27 \end{aligned}$	$\begin{aligned} & \pm 34 \\ & \pm 29 \end{aligned}$	-	$\begin{aligned} & \pm 30 \\ & \pm 27 \end{aligned}$	$\begin{aligned} & \pm 34 \\ & \pm 29 \end{aligned}$	-	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
10	Output Current		± 600	± 750	-	± 600	± 750	-	mA
Isc	Output Short-Circuit Current	Note 2	-	± 800	-	-	± 800	-	mA
R_{0}	Output Resistance (DC Open-Loop)		-	10	-	-	10	-	Ω
V_{CC}	Supply Voltage Range (Operating)		± 15	± 36	± 40	± 15	± 36	± 40	V
ICC	Quiescent Supply Current		-	± 20	± 25	-	± 20	± 25	mA

NOTES: 1. Limits printed in boldface type are guaranteed and 100\% production tested. Limits in normal font are guaranteed but not 100% production tested.
2. Intemally current limited. May be limited to lower current using external resistors.

AC CHARACTERISTICS: (Note 1) $\mathrm{V}_{C C}= \pm 36 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{C}}=0 \mathrm{pF}, \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Symbol	Parameter	Test Conditions	1461			1461-HR			Unit
			Min	Typ	Max	Min	Typ	Max	
S_{R}	Slew Rate	$\mathrm{R}_{\mathrm{L}} \geq 1 \mathrm{k} \Omega$	700	1000	-	700	1000	-	$\mathrm{V} / \mathrm{\mu s}$
		$\mathrm{C}_{\mathrm{C}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}} \geq 1 \mathrm{k} \Omega$	-	150	-	-	150	-	$\mathrm{V} / \mathrm{\mu s}$
GBWP	Gain-Bandwidth Product	$\mathrm{f}=100 \mathrm{kHz}$	800	1000	-	800	1000	-	MHz
UGBW	Unity-Gain Bandwidth	$\mathrm{C}_{\mathrm{C}}=20 \mathrm{pF}$	-	15	-	-	15	-	MHz
$\mathrm{t}_{\text {s }}$	Settling Time ($\mathrm{A}_{C L}=-1, \mathrm{C}_{C}=30 \mathrm{pF}$)	25V step/1\%	-	350	-	-	350	-	ns
		25V step/0.1\%	-	0.5	1	-	0.5	1	$\mu \mathrm{s}$
		10V step/1\%	-	250	-	-	250	-	ns
		10V step/0.1\%	-	400	-	-	400	-	ns
e_{n}	Input Voltage Noise Density	$\mathrm{f}=1 \mathrm{kHz}$	-	15	-	-	15	-	$\mathrm{nV} / \mathrm{NHz}$

NOTES: 1. Limits printed in boldface type are guaranteed and 100\% production tested. Limits in normal font are guaranteed but not 100% production tested.

HIGH-SPEED, HIGH-POWER, VMOSOUTPUT OPERATIONAL AMPLIFIER

APPLICATIONS INFORMATION

Compensation

The 1461 is externally compensated with a single capacitor. The gain bandwidth and slew rate of this device are related to the value of the capacitor by the following approximations:

Slew Rate $\cong\left(0.006 / \mathrm{C}_{\mathrm{c}}\right) \mathrm{V} / \mathrm{sec}$
Gain Bandwidth $\cong\left(0.001 / \mathrm{C}_{\mathrm{c}}\right) \mathrm{Hz}$
These formulas are accurate for C_{C} ranging down to a value of $5-10 \mathrm{pF}$, at which point circuit parasitics begin to take effect and limit the gain-bandwidth product to about 1 GHz and the slew rate to approximately $1000 \mathrm{~V} / \mu \mathrm{s}$.

In order to ensure stability when using the 1461, the value of the compensation capacitor must be such that the result of the gain-bandwidth product divided by the noise gain is less than 15 MHz . This amplifier can maintain a 15 MHz bandwidth up to noise gains of $10-20 \mathrm{~dB}$ by proper adjustment of the compensating capacitance.

Teledyne Components defines noise gain as $1 / \beta$, where β is equal to the fraction of the output signal that is fed back to the inverting input. Note that noise gain is the multiple of the amplifier input noise that appears at the amplifier output.

Current Limiting

Internal to the 1461 are two 0.8Ω resistors that limit maximum output current to approximately 750 mA . Output current can be further limited by the use of two external, user-supplied resistors. One resistor ($+\mathrm{R}_{\mathrm{Sc}}$) limits the

Figure 1.
Bode Plot
positive current, the other resistor (-R R_{SC}) limits the negative current. To determine the value of the limiting resistors, the following approximation can be used:

$$
\pm R_{S C} \cong\left[\left(0.65 / /_{\text {LIMIT }}\right)-0.8\right] \Omega
$$

During initial testing, it is recommended 10Ω resistors be used for $+\mathrm{R}_{S C}$ and $-\mathrm{R}_{\mathrm{SC}}$, to minimize the possibility of damage to the amplifier during circuit verification.

Thermal Considerations

The physics of standard bipolar output devices lead to a problem known as thermal runaway. This phenomenon is due to the fact that as a transistor gets hot it conducts more current for any given V_{BE}, and the more current it conducts the hotter it gets. This cycle continues until the transistor eventually destroys itself. This phenomenon also occurs in small regions of the base of a transistor. If heat is not given time to dissipate from these hot spots, the transistor will destruct at power levels far below that which the device could normally withstand. This is called secondary breakdown and is the reason for safe operating curves on most power op-amp data sheets.

The 1461 has a VMOS-output stage. Since field effect transistors do not exhibit thermal runaway, they do not suffer from secondary breakdown problems. Output voltages and currents are limited only by power dissipation and not by safe operating curves. However, heat sinking may be required to ensure maximum allowable junction temperatures are not exceeded.

Example: On the 1461's thermal derating curves, the slope of the infinite heat sink line is $11^{\circ} \mathrm{C} / \mathrm{W}$. This is the thermal resistance (θ_{Jc}) from each VMOS. Assuming each VMOS junction dissipates 4 W , maximum ambient temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$ is $+70^{\circ} \mathrm{C}$, and maximum allowable junction temperature (T_{J}) is $+150^{\circ} \mathrm{C}$, the necessary thermal resistance of the heat sink can be determined as follows:

1. Assuming the device has a complementary output stage and the thermal rise (junction-case) of each VMOS-output transistor does not affect the other, calculate the maximum amount of power dissipated for each of the two output devices (5 W and 4 W for this example). Using the higher power dissipation number, determine the maximum allowable case temperature $\left(T_{C}\right)$:

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{C}}=\mathrm{T}_{J}-\mathrm{PvMOS} 1\left(\theta_{\mathrm{Jc}}\right) \\
& \mathrm{T}_{\mathrm{C}}=+150^{\circ} \mathrm{C}-(5 \mathrm{~W})\left(11^{\circ} \mathrm{C} / \mathrm{W}\right) \\
& \mathrm{T}_{\mathrm{C}}=+95^{\circ} \mathrm{C}
\end{aligned}
$$

2. Calculate maximum total power dissipation $\left(\mathrm{P}_{\mathrm{T}}\right)$ for the 1461 (assuming $\pm 36 \mathrm{~V}$ supply and 20 mA quiescent current):

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{T}}=(72 \mathrm{~V})(20 \mathrm{~mA})+5 \mathrm{~W}_{\mathrm{VMOS} 1}+4 \mathrm{~W}_{\mathrm{VmOs} 2} \\
& \mathrm{P}_{\mathrm{T}}=10.44 \mathrm{~W}
\end{aligned}
$$

3. Calculate thermal resistance (θ_{CA}) of the heat sink needed to dissipate this power:

$$
\begin{aligned}
\theta_{\mathrm{CA}} & =\left(\mathrm{T}_{\mathrm{C}}-\mathrm{T}_{\mathrm{A}}\right) / \mathrm{P}_{\mathrm{T}} \\
\theta_{\mathrm{CA}} & =\left(95^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}\right) / 10.44 \mathrm{~W} \\
& =2.4^{\circ} \mathrm{C} / \mathrm{W}
\end{aligned}
$$

Lead Inductance

The high frequencies and high-current levels involved with the 1461 necessitate a closer look at the phenomenon of lead inductance. A single 22-gauge wire has a lead inductance of $0.636 \mu \mathrm{H} / \mathrm{ft}$. This inductance can become significant when large rates of $\mathrm{dl} / \mathrm{dt}$ are demanded at the output.

For example, if as much as 4 inches of wire is used to connect pin 9 to pin 10 (the + current-limiting terminals), this wire would have an inductance of 212 nH . At 10 MHz , this inductance would have an effective impedance of 13.3Ω. This resistance would limit the output current to only 42.5 mA . If the unit were driving a 50Ω load, the effective slew rate would be limited to:

$$
\mathrm{dl} / \mathrm{dt}=0.6 / \mathrm{L}=2.82 \mathrm{~A} / \mu \mathrm{s},
$$

yielding a maximum slew rate of $141 \mathrm{~V} / \mu \mathrm{s}$, far less than the capability of this device.

Skin Effect

Skin effect, though not quite as important as lead inductance, can also cause problems in high-frequency, high-power designs. The current flowing in a conductor establishes a magnetic field around the conductor. This causes the distribution of current flow to vary as a function of frequency. At higher frequencies, current is forced to the surface of the conductor, effectively yielding a much smaller wire. The effective resistance of the wire increases with the frequency according to the following formula:

$$
R_{A C}=K(\sqrt{ }) R_{D C}
$$

where f is frequency in MHz and K is a factor that varies with wire size and type.

Example: A 1-foot 22-gauge wire will have the following effective resistance at 10 MHz :

$$
\begin{aligned}
& \mathrm{K}=6.86 \\
& \mathrm{R}_{\mathrm{DC}}=0.016 \Omega / \mathrm{ft} \\
& \mathrm{R}_{\mathrm{AC}}=(6.86)(\sqrt{10})(0.016)=0.347 \Omega
\end{aligned}
$$

Even as little as 0.347Ω can decrease output current capabilities of the 1461 by as much as 30%.

It should be clear from this review of lead inductance and skin effect that short lead lengths are necessary infast, highpower applications.

Standard Configuration

The 1461 in a standard inverting amplifier configuration (including compensation capacitor, current-limiting resistors, and offset adjusting potentiometer) is shown in Figure 2. To meet specified performance and avoid output oscillations, power supplies should be bypassed as shown. The $100 \mu \mathrm{~F}$ capacitors are needed when driving heavy loads at high frequencies.

Figure 2. Standard Inverting Configuration

Capacitive Loads

The 1461 can be used with a compensation networkthat can compensate for almost any value of capacitive load (Figure 3). First, choose C_{c} for operation without a capacitive load. Then choose a series compensation resistor, R_{C}, such that $R_{C} C_{C}=R_{I N T} C_{L}$, where $R_{I N T}$ is approximately 10Ω.

Figure 3. Capacitive Load Driver

Yoke Driver

The absence of secondary breakdown makes the 1461 an excellent choice for driving electron-beam-deflection yokes, with settling times as low as $2-3 \mu \mathrm{~s}$ for a 0.5 A step. For inductive load compensation, choose $R_{C} C_{C}=L / R$. (See Figure 4.)

Figure 4. Yoke Driver

Video Amplifier

The 1461 as a video distribution amplifier (Figure 5) can directly drive 10 coax cables. At a gain of 16 or higher, a compensation capacitor is not needed.

Figure 5. Video Distribution Amplifier

Audio Amplifier

The 1461 has plenty of output current to drive the large base current requirements of high-power transistors. (See Figure 6.)

Figure 6. High-Power Audio Amplifier

Inverting Unity Gain

The 1461 can drive a 50Ω load in an inverting unity-gain configuration as shown in Figure 7. The recommended compensation for this application is 20 pF .

Figure 7. Inverting Unity Gain

Figure 8. Allowable Power Dissipation vs Ambient Temperature

Figure 9. Slew Rate vs. C_{c}

Figure 10. CMRR vs Frequency

HIGH-SPEED, HIGH-POWER, VMOSOUTPUT OPERATIONAL AMPLIFIER

Figure 11. Output Voltage vs Output Current

Figure 12. Settling Time vs Output Voltage Step Size

Figure 13. Quiescent Current vs Operating Frequency ($\mathrm{R}_{\mathrm{L}}=\infty$)

NOTES

1468 (TCPA12)

OPERATIONAL AMPLIFIER - HIGH-VOLTAGE, VERY-HIGH-POWER

FEATURES

- High-Output Current Guaranteed........ $\pm 10 \mathrm{~A}$ (Peak)
- Unity-Gain Stable
- Gain-Bandwidth Product (Single-Pole Rolloff) 4 MHz
- Slew Rate $5 \mathrm{~V} / \mu \mathrm{s}$
- Voltage Supplies $\pm 10 \mathrm{~V}$ to $\pm 50 \mathrm{~V}$
- Pin/Performance Compatible with PA-12, OPA512

APPLICATIONS

- Motor Drives
- Magnetic Deflection Circuits
- Programmable Power Supplies
- High-Power Servo Amplifiers
- Audio Amplifiers (to 120 W rms)

GENERAL DESCRIPTION

The 1468 is a high-voltage, very-high-power operational amplifier. It can operate over a wide range of supply voltages ($\pm 10 \mathrm{~V}$ to $\pm 50 \mathrm{~V}$) and has a guaranteed minimum output current of $\pm 10 \mathrm{~A}$ (peak). The output stage is biased Class AB for low crossover distortion and optimum linearity. It is also protected against back-EMF which is encountered when driving inductive loads, such as motors or solenoids.

With an 8Ω load, the 1468 's open-loop gain is 96 dB minimum, 108 dB typical. Input offset voltage is $\pm 2 \mathrm{mV}$ and input bias current is 12 nA . The 1468 is internally compensated for unity gain and delivers excellent dynamic performance for a device of this type. Slew rate is a fast $5 \mathrm{~V} / \mu \mathrm{s}$ and unity-gain bandwidth is an impressive 4 MHz .

The 1468 is housed in an 8 -pin TO-3 can. The standard product is specified for $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operation. The 1468 High Reliability (HR) version is specified for $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operation.

STANDARD CONFIGURATION

N
CERAMMIC

1468 (TCPA12)

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

$V_{C C}$ Supply Voltage ... $\pm 50 \mathrm{~V}$
$\mathrm{V}_{\text {ID }}$ Differential Input Voltage $\pm\left(\mathrm{IV}_{\mathrm{CC}} \mathrm{I}-3 \mathrm{~V}\right)$
$V_{\text {ICM }}$ Common-Mode Input Voltage $\pm \mathrm{V}_{\mathrm{CC}}$
I_{O} Output Current... $\pm 15 \mathrm{~A}$
$P_{D} \quad$ Internal Power Dissipation.............................125W
$\mathrm{T}_{\mathrm{C}} \quad$ Operating Temperature Range (Case)
1468 .. $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$1468-\mathrm{HR}$.......................... $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

$$
.-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
$$

$\mathrm{T}_{\text {STG }}$ Storage Temperature Range $\ldots . . .-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$T_{J} \quad$ Junction Temperature
(Output Transistor) (Note 1)........................ $+200^{\circ} \mathrm{C}$
θ_{JC} Junction-to-Case Thermal Resistance (Output Transistor) (Note 2)
$0.9^{\circ} \mathrm{C} / \mathrm{W}$ @ AC
$1.4^{\circ} \mathrm{C} / \mathrm{W}$ @ DC

NOTES: 1. Prolonged operation at maximum junction temperature will result in reduced product life. Derate internal power dissipation to achieve high MTBF.
2. $A C$ rating applies if the output current altemates between both output transistors at a rate greater than 60 Hz .

DC CHARACTERISTICS: (Note 1) $\mathrm{V}_{\mathrm{CC}}= \pm 40 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Symbol	Parameter	Test Conditions	1468			1468-HR			Unit
			Min	Typ	Max	Min	Typ	Max	
$V_{\text {OS }}$	Input Offset Voltage		-	± 2	± 6	-	± 2	± 6	mV
$\mathrm{V}_{\text {OS }}$ TC	Input Offset Voltage Drift vs Temperature	Average, $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-	± 10	-	-	± 10	± 65	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		-	± 12	± 30	-	± 12	± 30	nA
I_{B} TC	Input Bias Current Drift vs Temperature	Average, $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-	± 50	-	-	± 50	± 400	$\mathrm{pA}^{\circ} \mathrm{C}$
los	Input Offset Current		-	± 12	± 30	-	± 12	± 30	nA
los TC	Input Offset Current Drift vs Temperature	Average, $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-	± 50	-	-	± 50	± 400	$\mathrm{pA}^{\circ} \mathrm{C}$
AVol	Open-Loop Voltage Gain		-	110	-	-	110	-	dB
		$\mathrm{R}_{\mathrm{L}}=8 \Omega$	96	108	-	96	108	-	dB
PSRR	Power Supply Rejection Ratio		74	90	-	74	90	-	dB
CMRR	Common-Mode Rejection Ratio	$\mathrm{V}_{\text {CM }}= \pm 33 \mathrm{~V}$	74	100	-	74	100	-	dB
CMR	Common-Mode Range (DC Linear Operation)	$\mathrm{CMRR} \geq 68 \mathrm{~dB}$	± 35	± 37	-	± 35	± 37	-	V
Z_{ID}	Differential Input Impedance		-	200M113	-	-	200M13	-	SllpF
V_{0}	Output Voltage Swing	$\begin{aligned} & \text { lout }=5 \mathrm{~A} \\ & \text { IOUT }=10 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \pm 35 \\ & \pm 34 \end{aligned}$	-	-	$\begin{aligned} & \pm 35 \\ & \pm 34 \end{aligned}$	-	-	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
10	Output Current	Peak	± 10	-	-	± 10	-	-	A
ISC	Output Short-Circuit Current	Note 2	-	-	-	-	-	-	A
Ro	Output Resistance (DC Open-Loop)		-	2	-	-	2	-	Ω
VCC	Supply Voltage Range (Operating)		± 10	± 40	± 45	± 10	± 40	± 45	V
lcc	Quiescent Supply Current		-	± 25	± 50	-	± 25	± 50	mA

[^4]AC CHARACTERISTICS: (Note 1) $\mathrm{V}_{\mathrm{CC}}= \pm 40 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Symbol	Parameter	Test Conditions	1468			1468-HR			Unit
			Min	Typ	Max	Min	Typ	Max	
$\mathrm{S}_{\text {R }}$	Slew Rate		2.5	5	-	2.5	5	-	V/us
GBWP	Gain-Bandwidth Product	$f=1 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=8 \Omega$	-	4	-	-	4	-	MHz
UGBW	Unity-Gain Bandwidth		-	4	-	-	4	-	MHz
t_{s}	Settling Time ($\mathrm{A}_{\mathrm{CL}}=-1$)	2V step/0.1\%	-	2	-	-	2	-	$\mu \mathrm{s}$
e_{n}	Input Voltage Noise Density	$\mathrm{f}=1 \mathrm{kHz}$	-	16	-	-	16	-	$\mathrm{nV} / \mathrm{HHz}$
i_{n}	Input Current Noise Density	$\mathrm{f}=1 \mathrm{kHz}$	-	0.18	-	-	0.18	-	$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
C_{L}	Capacitive Load (Maximum w/o oscillation)	$\mathrm{A}_{C L}=+1$	1500	-	SOA	1500	-	SOA	pF

NOTES: 1. Limits printed in boldface type are guaranteed and 100% production tested. Limits in normal font are guaranteed but not 100% production tested.

Output Current Limiting

The 1468 output can be current limited using the \pm LIMIT formulas shown in the standard configuration diagram. In some applications, foldover current limiting can be used to allow increased output current as the 1468 output approaches the power supply rail voltage. To calculate the foldover current limit, use the formula for $\mathrm{I}_{\text {FO }}$ shown in the diagram. The following procedures should be followed:

1. Calculate a value for $R_{C L}$ that provides a safe current limit at $V_{O}=0 \mathrm{~V}$.
2. Calculate the maximum value of $\mathrm{I}_{\mathrm{FO}} *$ by using a value of $O \Omega$ for $R_{F O}$. This is the maximum current limit possible using the foldover current-limit option.
3. Calculate a value for $R_{F O}$ using the value for $R_{C L}$ calculated in step 1, and a desired $\mathrm{I}_{\text {Fo }}$ limit which is lower than the maximum limit calculated in step 2.
*This calculation assumes the output voltage $\left(\mathrm{V}_{0}\right)$ is the same polarity as the current carrying supply voltage. If not, invert the polarity of V_{O} before making this calculation.

Figure 2. Safe Operating Area (SOA)

NOTES

OPERATIONAL AMPLIFIER — FAST-SETTLING, HIGH-VOLTAGE

FEATURES

- Output \qquad $\pm 143 \mathrm{~V}, \pm 100 \mathrm{~mA}$
Settling Time (100V Step to $\pm 0.01 \%$) $2.5 \mu \mathrm{~s}$ Max
- Common-Mode Voltage \qquad $\pm 140 \mathrm{~V}$
- Input Overvoltage and Output Short-Circuit Protected
- Standard TO-3 Can
- BB3583 Compatible with Improved AC Performance
- Operating Temperature (-HR) $\ldots \ldots . .-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

APPLICATIONS

- ATE Pin Drivers
- Electrostatic Deflection

E High-Voltage DACs

GENERAL DESCRIPTION

The 1480 is a fully-differential FET-input operational amplifier capable of operating over a voltage supply range of $\pm 15 \mathrm{~V}$ to $\pm 150 \mathrm{~V}$ with common-mode and output voltages ranging to within 10 V of the supply voltages, and output currents of up to $\pm 100 \mathrm{~mA}$. The 1480 is pin compatible with the BB3583, but has superior time and frequency performance. Gain-bandwidth product is 18 MHz , slew rate is $100 \mathrm{~V} / \mu \mathrm{s}$, and unity-gain bandwidth is 5 MHz .

The input of the 1480 is fully protected. It can withstand common-mode voltages to $\pm\left(\left|\mathrm{V}_{\mathrm{CC}}\right|+5\right) \mathrm{V}$, differential voltages to 450 V , and input voltage slew rates to $150 \mathrm{kV} /$ $\mu \mathrm{s}$. Output current is short-circuit limited at $\pm 125 \mathrm{~mA}$. The true differential FET-input (typical CMRR is 125 dB) limits input bias current to $\pm 200 \mathrm{pA}$ (maximum). The bias and offset current drifts are small enough to greatly reduce the large offset drifts normally associated with high-voltage circuits.

The 1480 is packaged in a TO-3 metal can and is specified for $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ operation. The 1480 High Reliability (HR) version is specified for $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operation.

NOTE: The metal case is electrically isolated. It is recommended that it be grounded during use.

PIN CONFIGURATION

PIN NO.	DESIGNATION	
1	OUTPUT	$5 \bigcirc$
2	$+\mathrm{V}_{\text {cc }}$	
3	OFFSET TRIM	(-)
4	OFFSET TRIM	
5	-IN	
6	+IN	$\begin{array}{lll} 3 & 0 & 1 \end{array}$
7	$-\mathrm{V}_{\text {CC }}$	
8	NC	
NC	NO INTERNAL CONNECTION	BOTTOM VIEW

ABSOLUTE MAXIMUM RATINGS

$V_{C C}$ Supply Voltage \qquad $\pm 160 \mathrm{~V}$
$V_{\text {ID }}$ Differential Input Voltage (Note 1) $\pm 450 \mathrm{~V}$
$V_{\text {ICM }}$ Common-Mode Input Voltage $\pm\left(\mathrm{V}_{\mathrm{CC}}+5\right) \mathrm{V}$ Input Slew Rate (Notes 1, 2) $\pm 150 \mathrm{kV} / \mu \mathrm{s}$

T_{C}	Operating Temperature Range (Case)
	1480 $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
	1480-HR $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
TSTG	Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

NOTES: 1. Includes power-off conditions.
2. The high differential voltage and dv/dt ratings of the input prevent input stage blowout even if the input is directly shorted to either rail. Such shorts do stress the input, however, and we cannot guarantee protection for durations exceeding a few seconds.

DC CHARACTERISTICS: (Note 1) $\mathrm{V}_{C C}= \pm 150 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Symbol	Parameter	Test Conditions	1480			1480-HR			Unit
			Min	Typ	Max	Min	Typ	Max	
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage		-	± 1	± 3	-	± 1	± 3	mV
$\mathrm{V}_{\text {OS }} \mathrm{TC}$	Input Offset Voltage Drift vs Temperature	Average, $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-	± 15	-	-	± 15	± 100	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		-	± 50	± 200	-	± 50	± 200	PA
$\mathrm{I}_{\mathrm{B}} \mathrm{TC}$	Input Bias Current Drift vs Temperature	Average, $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	Doubles every $11^{\circ} \mathrm{C}$			Doubles every $11^{\circ} \mathrm{C}$			-
los	Input Offset Current		-	± 40	-	-	± 40	-	pA
Ios TC	Input Offset Current Drift vs Temperature	Average, $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	Doubles every $11^{\circ} \mathrm{C}$			Doubles every $11^{\circ} \mathrm{C}$			-
Avol	Open-Loop Voltage Gain		-	120	-	-	120	-	dB
		$\mathrm{R}_{\mathrm{L}}=1.8 \mathrm{k} \Omega$	95	115	-	95	115	-	dB
PSRR	Power Supply Rejection Ratio		100	120	-	100	120	-	dB
CMRR	Common-Mode Rejection Ratio	$\mathrm{V}_{\text {CM }}= \pm 130$	110	125	-	110	125	-	dB
CMR	Common-Mode Range (DC Linear Operation)	CMRR $\geq 104 \mathrm{~dB}$	± 135	± 140	-	± 135	± 140	-	V
$\mathrm{Z}_{\text {ID }}$	Differential Input Impedance		-	$10^{11} 115$	-	-	$10^{11} 115$	-	SllpF
ZICM	Common-Mode Input Impedance		-	$10^{11 / 1 / 3}$	-	-	$10^{11} / 13$	-	SllpF
V_{0}	$\begin{array}{ll}\text { Output Voltage Swing } & \mathrm{R}_{\mathrm{L}}=1.8 \mathrm{k} \text { 俍 }\end{array}$		± 140	± 143	-	± 140	± 143	-	V
10			± 75	± 100	-	± 75	± 100	-	mA
ISC	Output Short-Circuit Current $\quad \mathrm{R}_{\mathrm{L}}=500 \Omega$ (Note 2)		-	± 125	-	-	± 125	-	mA
R_{0}	Output Resistance (DC Open-Loop)		-	200	-	-	200	-	Ω
$\mathrm{V}_{C C}$	Supply Voltage Range (Operating)		± 15	-	± 150	± 15	-	± 150	V
ICC	Quiescent Supply Current		-	± 10	± 12	-	± 10	± 12	mA

NOTES: 1. Limits printed in boldface type are guaranteed and 100\% production tested. Limits in normal font are guaranteed but not 100% production tested.
2. The 1480 is short-circuit protected to ground or either supply for supply voltages totalling $<100 \mathrm{~V}$. It is short-circuit protected to ground only for supplies totalling up to 160 V .

FAST-SETTLING, HIGH-VOLTAGE OPERATIONAL. AMPLIFIER

AC CHARACTERISTICS: (Note 1) $\mathrm{V}_{C C}= \pm 150 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Symbol	Parameter	Test Conditions	1480			1480-HR			Unit
			Min	Typ	Max	Min	Typ	Max	
S_{R}	Slew Rate		-	100	-	-	100	-	$\mathrm{V} / \mathrm{\mu s}$
GBWP	Gain-Bandwidth Product	$\mathrm{f}=100 \mathrm{kHz}$	-	18	-	-	18	-	MHz
UGBW	Unity-Gain Bandwidth		-	5	-	-	5	-	MHz
$\mathrm{t}_{\text {s }}$	Settling Time ($\mathrm{A}_{\mathrm{CL}}=-10$)	100 V step/0.1\%	-	1	1.5	-	1	1.5	$\mu \mathrm{s}$
		100V step/0.01\%	-	1.5	2.5	-	1.5	2.5	
e_{n}	Input Voltage Noise Density	$\mathrm{f}=1 \mathrm{kHz}$	-	20	-	-	20	-	$\mathrm{nV} / \mathrm{NHz}$
C_{L}	Capacitive Load (Maximum w/o oscillation)		100	250	-	100	250	-	pF

NOTES: 1. Limits printed in boldface type are guaranteed and 100% production tested. Limits in normal font are guaranteed but not 100% production tested.

NOTES

OPERATIONAL AMPLIFIER - HIGH-VOLTAGE

FEATURES

- Output \qquad
- Fully Differential FET Input
- Wide Supply Range \qquad $\pm 15 \mathrm{~V}$ to $\pm 75 \mathrm{~V}$
- Input Overvoltage Protected

Output Current Limited at $\pm 125 \mathrm{~mA}$

APPLICATIONS

- ATE Pin Drivers

- Electrostatic Deflection

NORMAL INVERTING OPERATION

GENERAL DESCRIPTION

The 1481 is a high-voltage operational amplifier capable of operating with supply voltages as high as $\pm 75 \mathrm{~V}$ or as low as $\pm 15 \mathrm{~V}$. It can provide output voltage swings as high as $\pm 70 \mathrm{~V}$ with output currents to $\pm 100 \mathrm{~mA}$ (short circuit limited to $\pm 125 \mathrm{~mA}$). The cascoded FET input stage is fully overvoltage protected.

This operational amplifier features a $25 \mathrm{~V} / \mu$ s slew rate and a 4.5 MHz unity-gain bandwidth. Maximum input offset voltage is $\pm 3 \mathrm{mV}$, and minimum open-loop gain is 94 dB (full load). The Class AB output stage can drive up to $10,000 \mathrm{pF}$ capacitive loads at closed-loop gains of 10 or more. Pin compatible with the BB3581, the 1481 features more than double the output current capability of its competitor's and faster settling time.

The 1481 is packaged in an 8-pin TO-3 can. The standard unit is specified for $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ operation. The 1481 High Reliability (HR) version is specified for $-55^{\circ} \mathrm{C}$ to

PIN CONFIGURATION

HIGH-VOLTAGE OPERATIONAL AMPLIFIER

1481

ABSOLUTE MAXIMUM RATINGS

$V_{\text {Cc }}$ Supply Voltage ... $\pm 80 \mathrm{~V}$
$\mathrm{V}_{\text {ID }}$ Differential Input Voltage $\pm \mathrm{V}_{\mathrm{CC}}$
$\mathrm{V}_{\text {ICM }}$ Common-Mode Input Voltage $\pm \mathrm{V}_{\mathrm{CC}}$
$\mathrm{T}_{\mathrm{C}} \quad$ Operating Temperature Range (Case)
1481 ... $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Tsta Storage Temperature Range.....$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$\theta_{\text {Jc }} \quad$ Output Transistor Junction-to-Case Thermal Resistance
$6^{\circ} \mathrm{C} / \mathrm{W}$

DC CHARACTERISTICS: (Note 1) $\mathrm{V}_{C C}= \pm 75 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Symbol	Parameter	Test Conditions	1481			1481-HR			Unit
			Min	Typ	Max	Min	Typ	Max	
$V_{\text {OS }}$	Input Offset Voltage		-	± 1	± 3	-	± 1	± 3	mV
$\mathrm{V}_{\text {OS }}$ TC	Input Offset Voltage Drift vs Temperature	Average, $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-	± 15	-	-	± 15	± 50	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		-	± 10	± 100	-	± 10	± 100	pA
I_{B} TC	Input Bias Current Drift vs Temperature	Average, $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	Doubles every $11^{\circ} \mathrm{C}$			Doubles every $11^{\circ} \mathrm{C}$			-
los	Input Offset Current		-	± 10	-	-	± 10	-	pA
los TC	Input Offset Current Drift vs Temperature	Average, $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	Doubles every $11^{\circ} \mathrm{C}$			Doubles every $11^{\circ} \mathrm{C}$			-
Avol	Open-Loop Voltage Gain		-	108	-	-	108	-	dB
		$\mathrm{R}_{\mathrm{L}}=850 \Omega$	94	106	-	94	106	-	dB
PSRR	Power Supply Rejection Ratio		70	94	-	70	94	-	dB
CMRR	Common-Mode Rejection Ratio	$\mathrm{V}_{\text {CM }}= \pm 60$	70	94	-	70	94	-	dB
CMR	Common-Mode Range (DC Linear Operation)	CMRR $\geq 64 \mathrm{~dB}$	± 65	± 70	-	± 65	± 70	-	V
$\mathrm{Z}_{\text {ID }}$	Differential Input impedance		-	$10^{11} 116$	-	-	1011/16	-	SllpF
ZICM	Common-Mode Input Impedance		-	$10^{111 / 3}$	-	-	$10^{11 / 1 / 3}$	-	$\Omega \mathrm{llpF}$
V_{0}	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=850 \Omega$	C8	± 73	-	S	± 73	-	V
			± 68	± 70	-	± 68	± 70	-	V
10	Output Current		± 80	± 100	-	± 80	± 100	-	mA
Isc	Output Short-Circuit Current$R_{L}=330 \Omega$		-	± 125	± 150	-	± 125	± 150	mA
R_{0}	Output Resistance (DC Open-Loop)		-	100	-	-	100	-	Ω
V_{CC}	Supply Voltage Range (Operating)		± 15	-	± 75	± 15	-	± 75	V
ICC	Quiescent Supply Current		-	± 11	± 15	-	± 11	± 15	mA

NOTES: 1. Limits printed in boldface type are guaranteed and 100\% production tested. Limits in normal font are guaranteed but not 100% production tested.

AC CHARACTERISTICS: (Note 1) $\mathrm{V}_{\mathrm{CC}}= \pm 75 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Symbol	Parameter	Test Conditions	1481			1481-HR			Unit
			Min	Typ	Max	Min	Typ	Max	
S_{R}	Slew Rate		-	25	-	-	25	-	V/us
GBWP	Gain-Bandwidth Product	$\mathrm{f}=100 \mathrm{kHz}$	-	7.5	-	-	7.5	-	MHz
UGBW	Unity-Gain Bandwidth		3	4.5	-	3	4.5	-	MHz
$\mathrm{t}_{\text {s }}$	Settling Time ($\mathrm{A}_{\mathrm{CL}}=-1$)	100V step/0.1\%	-	7.5	-	-	7.5	-	$\mu \mathrm{s}$
e_{n}	Input Voltage Noise Density	$\mathrm{f}=1 \mathrm{kHz}$	-	20	-	-	20	-	$\mathrm{nV} / \mathrm{NHz}$
C_{L}	Capacitive Load (Maximum w/o oscillation)	$A_{C L} \geq 10$	10,000	-	-	10,000	-	-	pF

NOTES: 1. Limits printed in boldface type are guaranteed and 100\% production tested. Limits in normal font are guaranteed but not 100% production tested.

OPERATIONAL AMPLIFIER - HIGH-VOLTAGE

FEATURES

Output

\qquad
$\pm 70 \mathrm{~V}, \pm 40 \mathrm{~mA}$- Fully Differential FET Input- Wide Supply Range
\qquad $\pm 15 \mathrm{~V}$ to $\pm 75 \mathrm{~V}$- Input Overvoltage Protected- Output Current Limited at $\pm 65 \mathrm{~mA}$■ Low Supply Current
$\qquad$$\pm 6.5 \mathrm{~mA}$

APPLICATIONS

- ATE Pin Drivers

- Electrostatic Deflection

GENERAL DESCRIPTION

The 1482 is a high voltage operational amplifier capable of operating with supply voltages as high as $\pm 75 \mathrm{~V}$, or as low as $\pm 15 \mathrm{~V}$. It can provide output swings as high as $\pm 70 \mathrm{~V}$ with output currents to $\pm 40 \mathrm{~mA}$ (short circuit limited to $\pm 65 \mathrm{~mA}$). The cascoded FET input stage is fully overvoltage protected.

This op amp features a $25 \mathrm{~V} / \mu \mathrm{S}$ slew rate and a 7.5 MHz unity gain-bandwidth. Maximum input offset voltage is $\pm 3 \mathrm{mV}$, and minimum open loop gain is 94 dB (full load). The class $A B$ output stage can drive up to $10,000 \mathrm{pF}$ capacitive loads at closed loop gains of ten or more. The 1482 is pin and performance compatible with the BB3581, but with faster settling time.

The 1482 is packaged in an 8 pin , TO-3 package. The standard unit is specified for $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ operation. The 1482 High Reliability (HR) version is specified for $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operation.

NORMAL INVERTING OPERATION

PIN CONFIGURATION

HIGH-VOLTAGE OPERATIONAL AMPLIFIER

1482

ABSOLUTE MAXIMUM RATINGS

$V_{C C}$	Supply Voltage ... $\pm 80 \mathrm{~V}$
$V_{\text {ID }}$	Differential Input Voltage $\pm \mathrm{V}_{\text {C }}$
V ICM	Common-Mode Input Voltage $\pm \mathrm{V}_{\mathrm{CC}}$
T_{C}	Operating Temperature Range (Case)
	1482 .. $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
	1482-HR $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

TSTG Storage Temperature Range $\ldots . . .-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ $\theta_{\mathrm{Jc}} \quad$ Output Transistor Junction-to-Case Thermal Resistance
$12^{\circ} \mathrm{C} / \mathrm{W}$

DC CHARACTERISTICS: (Note 1) $\mathrm{V}_{\mathrm{CC}}= \pm 75 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

NOTES: 1 . Limits printed in boldface type are guaranteed and 100% production tested. Limits in normal font are guaranteed but not 100% production tested.

AC CHARACTERISTICS: (Note 1) $\mathrm{V}_{\mathrm{CC}}= \pm 75 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Symbol	Parameter	Test Conditions	1482			1482-HR			Unit
			Min	Typ	Max	Min	Typ	Max	
S_{B}	Slew Rate		-	25	-	-	25	-	V/ $/ \mathrm{s}$
GBWP	Gain-Bandwidth Product	$\mathrm{f}=100 \mathrm{kHz}$	-	9	-	-	9	-	MHz
UGBW	Unity-Gain Bandwidth		5	7.5	-	5	7.5	-	MHz
t_{s}	Settling Time ($\mathrm{A}_{\mathrm{CL}}=-1$)	100V step/0.1\%	-	7.5	-	-	7.5	-	$\mu \mathrm{s}$
e_{n}	Input Voltage Noise Density	$\mathrm{f}=1 \mathrm{kHz}$	-	20	-	-	20	-	$\mathrm{nV} / \mathrm{WHz}$
i_{n}	Input Current Noise Density	$\mathrm{f}=1 \mathrm{kHz}$	-	-	-	-	-	-	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
C_{L}	Capacitive Load (Maximum	$A_{C L} \geq 10$	10,000	-	-	10,000	-	-	pF

NOTES: 1. Limits printed in boldface type are guaranteed and 100\% production tested. Limits in normal font are guaranteed but not 100\% production tested.

LOW COST MICROCIRCUIT SAMPLE/HOLD AMPLIFIER

FEATURES

\author{

- Gain-Bandwidth Product
 \qquad
 \qquad 2.5 MHz
 - Acquisition Time to 0.1%............................2.3 $\mu \mathrm{sec}$
 ■ Slew Rate .. $5 \mathrm{~V} / \mu \mathrm{sec}$
 - Ultra-Versatile: Inverting, Non-inverting, With or Without Gain
 - Wide Temperature Range Version Available
}

APPLICATIONS

- Data Acquisition Systems
- Analog Memories
- Data Distribution Systems
- Deglitch Circuits

GENERAL DESCRIPTION

The 4856 is a high performance sample/hold amplifier for applications requiring high speed and small size. This unit has been designed for maximum versatility in circuit design and "tailoring" of specifications. With a minimum of external components, the 4856 can be used inverting or non-inverting, with or without gain. In the sample mode, the 4856 acts as an op amp and any of the standard op amp feedback circuits may be externally connected to control such parameters as gain and frequency response.

In addition, the externally connected hold capacitor enables the user to achieve the best compromise between acquisition time and droop rate for the particular application. A standard device is specified for $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$. The High Reliability (HR) version is specified for $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range.

BLOCK DIAGRAM

4856

PIN CONFIGURATION

Pin No.	Designation	Pin No.	Designation	1	4	14
1	-IN	8	NC			13
2	+IN	9	+V	3		12
3	OFFSET ADJUST	10	NC	4		11
4	OFFSET ADJUST	11	HOLD CAP.	5		10
5	-V	12	NC	6		9
6	NC	13	GND	7		8
7	OUT	14	SAMPLE/HOLD CONTROL			

DC CHARACTERISTICS: (Note 1) $\mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}$, Unity Gain Configuration, $\mathrm{C}_{\mathrm{H}}=1000 \mathrm{pF}, \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Symbol	Parameter	Test Conditions	4856			4856-HR			Unit
			Min	Typ	Max	Min	Typ	Max	
$\mathrm{V}_{\text {IN }}$	Input Voltage Range		± 10	-	-	± 10	-	-	V
RIN	Input Resistance		5	10	-	5	10	-	M Ω
I_{B}	Input Bias Current		-	± 40	± 200	-	± 40	± 200	nA
		$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-	-	-	-	-	± 400	nA
los	Input Offset Current		-	10	50	-	10	50	nA
		$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-	-	-	-	-	100	nA
Vos	Input Offset Voltage		-	± 2	± 4	-	± 2	± 4	mV
		$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-	± 3	-	-	± 3	± 6	mV
PSRR	Power Supply Rejection Ratio		80	90	-	80	90	-	dB
V_{0}	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	± 10	-	-	± 10	-	-	V
10	Output Current		± 15	-	-	± 15	-	-	mA
R_{0}	Output Resistance (DC)		-	0.15	-	-	0.15	-	Ω
Avol	Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	88	94	-	88	94	-	dB
V_{P}	Pedestal Voltage	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	-	10	20	-	10	20	mV
CMR	Common-Mode Range		± 10	-	-	± 10	-	-	V
V_{IH}	Logic "1" Input Voltage		2	-	-	2	-	-	V
$\mathrm{V}_{\text {IL }}$	Logic "0" Input Voltage		-	-	0.8	-	-	0.8	V
ICC	Quiescent Supply Current	Positive Supply Negative Supply	-	$\begin{aligned} & 3.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 3.5 \end{aligned}$	-	3.5 2.5	5.5 3.5	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$

NOTES: 1. Limits printed in boldface type are guaranteed and 100\% production tested. Limits in normal font are guaranteed but not 100% production tested.
AC CHARACTERISTICS: (Note 1) $\mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}$, Unity Gain Configuration, $\mathrm{C}_{\mathrm{H}}=1000 \mathrm{pF}, \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Symbol	Parameter	Test Conditions	4856			4856-HR			Unit
			Min	Typ	Max	Min	Typ	Max	
tacq	Acquisition Time	to 0.01% of 10 V step	-	3.2	6	-	3.2	6	$\mu \mathrm{s}$
		to 0.1% of 10 V step	-	2.3	4	-	2.3	4	$\mu \mathrm{s}$
$\mathrm{tad}_{\text {a }}$.	Aperture Delay Time		-	30	-	-	30	-	ns
t_{aj}	Aperture Jitter		-	5	-	-	5	-	ns
sr	Slew Rate	$\mathrm{V}_{\mathrm{O}}=10 \mathrm{VPP}$	3.5	5	-	3.5	5	-	$\mathrm{V} / \mu \mathrm{s}$
tr_{r}	Rise Time	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$	-	75	100	-	75	100	ns
GBW	Gain-Bandwidth Product		-	2.5	-	-	2.5	-	MHz

LOW COST MICROCIRCUIT SAMPLE/HOLD AMPLIFIER

Figure 1. Typical Performance Curve

Offset Voltage Trim

The offset voltage, in either the "Sample" or "Hold" mode, may be trimmed to $O V$ while cycling between sample and hold with OV input and adjusting the $100 \mathrm{k} \Omega$ potentiometer (Block Diagram) for OV output. This does not, however, reduce the difference between the Sample and Hold offset voltages to zero.

Droop Rate Adjust

The Droop Rate forthis unit is determined from the value of the external capacitance, (CH), shown in the Block Diagram. Figure 1 shows the curves that give the value of CH for the desired Droop Rate, as well as the effect on Acquisition Time.

To minimize errors caused by dielectric absorption, it is important to choose a polystyrene, mica, or teflon capacitor forthe external hold capacitor. The external capacitor should be located close to the unit to reduce the effects of stray inductance.

Guard Ring

Leakage paths on the P.C. board and on the package surface must be minimized to reduce Droop Rate during hold. The output line forms a guard ring around the Hold Capacitance pin, which, because of the very nearly equal potentials between the outputand the HoldCapacitance pin, will result in a very low leakage current. In addition, Pins 10 and 12 , which are not internally connected, may be connected to the guard ring to reduce package surface leakage.

Figure 2. Pin Programming

Figure 3. Guard Ring Layout (Bottom View)

NOTES

FAST, 12-BIT SAMPLE/HOLD AMPLIFIER

FEATURES

Acquisition Time for a 10V Step to $\pm 0.01 \%$ FS
.. 100 ns Max
Sax
Aperture Jitter ... ± 50 psec
Feedthrough Attenuation 74 dB
TTL Compatible

APPLICATIONS

- Transient Recorders
- Fast Fourier Analysis
- High Speed DASs
- High Speed DDSs
- Analog Delay and Storage

GENERAL DESCRIPTION

The 4860 is a very fast, high-resolution sample/hold (track/hold) amplifier. Its acquisition time and sample-tohold settling time (a S/H's two throughput limiting specifications) are guaranteed to $\pm 0.01 \%$, unlike other S/H amplifiers that only achieve $\pm 0.1 \%$ or $\pm 1 \%$. The 4860 acquires a 10 V signal step to $\pm 0.01 \%$ in 200 nsec maximum and then tracks signal components up to 16 MHz . In the track mode, offset error is typically $\pm 0.5 \mathrm{mV}$, and gain error is typically $\pm 0.05 \%$. When commanded to Hold the 4860's output settles within $\pm 0.01 \%$ FS of its final value in 100 nsec maximum. The aperture delay time is 6 nsec , aperture jitter is $\pm 50 \mathrm{psec}$, and pedestal is a minimal $\pm 2.5 \mathrm{mV}$. In the hold mode the output droop rate is a low $5 \mu \mathrm{~V} / \mu \mathrm{sec}$ maximumand feedthrough attenuation, at 2.5 MHz , is an impressive 74 dB .

Its 24-pin, dual-in-line package, gain of $-1, \pm 10 \mathrm{~V}$ input/ output range, and TTL compatible logic make the 4860's performance compatible with many industry standard devices. Being a second-generation design, however, the 4860 is superior to these units in almost every performance specification. Faster switching and better feedthrough attenuation are the results of our unique MOSFET switching scheme. Shorter acquisition and settling times and considerably lower droop are the result of our proprietary high speed, FET input op amp designs.

A standard device is specified for $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. The High Reliability (HR) version is specified for $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range.

4860

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

$V_{\text {IN }} \quad$ Analog Input
$V_{I D}$ Digital Input \qquad -0.5 V to +5.5 V
$\mathrm{T}_{\mathrm{C}} \quad$ Operating Temperature Range (Case) 4860 4860-HP $5^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ torage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

DC CHARACTERISTICS: (Note 1) $\mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}$, Unity Gain Configuration, $\mathrm{C}_{\mathrm{H}}=1000 \mathrm{pF}, \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Symbol	Parameter	Test Conditions	4860			4860-HR			Unit
			Min	Typ	Max	Min	Typ	Max	
$\mathrm{V}_{\text {IN }}$	Input Voltage Range		± 10.25	± 11.50	-	± 10.25	± 11.50	-	V
Z_{IN}	Input Impedance		-	1	-	-	1	-	k Ω
$\mathrm{V}_{\text {os }}$	Input Offset Voltage	Track Mode	-	± 0.5	± 5	-	± 0.5	± 5	mV
Vos TC	Input Offset Voltage vs Temperature	$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-	± 60	± 300	-	± 60	± 300	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
PSRR	Power Supply Rejection Ratio		-	66	-	-	66	-	dB
Vo	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	± 10.25	± 11.50	-	± 10.25	± 11.50	-	V
lo	Output Current		± 40	-	-	± 40	-	-	mA
Z_{0}	Output Impedance		-	0.1	-	-	0.1	-	Ω
A_{V}	Voltage Gain		-	-1	-	-	-1	-	V/N
$\mathrm{A}_{\text {A }}$	Gain Accuracy	$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-	$\begin{aligned} & \pm 0.05 \\ & \pm 0.05 \end{aligned}$	$\begin{gathered} \pm 0.1 \\ \pm 0.15 \end{gathered}$	-	$\begin{aligned} & \pm 0.05 \\ & \pm 0.05 \end{aligned}$	$\begin{gathered} \pm 0.1 \\ \pm 0.15 \end{gathered}$	$\begin{aligned} & \hline \% \\ & \% \end{aligned}$
A_{L}	Gain Nonlinearity		-	± 0.003	± 0.01	-	± 0.003	± 0.01	\%FS
A_{V} TC	Gain Drift		-	± 0.5	± 5	-	± 0.5	± 5	ppm $/{ }^{\circ} \mathrm{C}$
V_{P}	Pedestal Voltage	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	-	± 2.5	± 20	-	± 2.5	± 20	mV
V_{P} TC	Pedestal Drift		-	± 80	-	-	± 80	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$

DC CHARACTERISTICS: (Continued)

Symbol	Parameter	Test Conditions	4860			4860-HR			Unit
			Min	Typ	Max	Min	Typ	Max	
V_{IH}	Logic "1" Input Voltage		2	-	-	2	-	-	V
$\mathrm{V}_{\text {IL }}$	Logic "0" Input Voltage		-	-	0.8	-	-	0.8	V
$\pm \mathrm{V}_{\text {cc }}$	Voltage Range	$\pm 15 \mathrm{~V}$ Supply $\pm 5 \mathrm{~V}$ Supply	-	$\begin{aligned} & \pm 3 \\ & \pm 5 \end{aligned}$	-	-	$\begin{aligned} & \pm 3 \\ & \pm 5 \end{aligned}$	-	$\begin{aligned} & \% \\ & \% \\ & \hline \end{aligned}$
$\pm \mathrm{CC}$	Quiescent Current	$\pm 15 \mathrm{~V}$ Supply $\pm 5 \mathrm{~V}$ Supply	-	$\begin{array}{\|c\|} \hline \pm 21 \\ 17 \\ \hline \end{array}$	$\begin{gathered} \pm 25 \\ 25 \end{gathered}$	-	$\begin{gathered} \pm 21 \\ 17 \end{gathered}$	$\begin{array}{c\|} \hline \pm 25 \\ 25 \end{array}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
PD	Power Dissipation		-	730	875	-	730	875	mW

NOTES: 1. Limits printed in boldface type are guaranteed and 100\% production tested. Limits in normal font are guaranteed but not 100% production tested.

AC CHARACTERISTICS: (Note 1) $\mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}$, Unity Gain Configuration, $\mathrm{C}_{\mathrm{H}}=1000 \mathrm{pF}, \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Symbol	Parameter	Test Conditions	4860			4860-HR			Unit
			Min	Typ	Max	Min	Typ	Max	
$\mathrm{t}_{\mathrm{acq}}$	Acquisition Time	10 V step to $0.01 \% \mathrm{FS}(\pm 1 \mathrm{mV})$	-	160	200	-	160	200	ns
		10 V step to 0.1% FS ($\pm 10 \mathrm{mV}$)	-	100	170	-	100	170	ns
		10 V step to $1 \% \mathrm{FS}(\pm 100 \mathrm{mV}$)	-	90	-	-	90	-	ns
		1 V step to $1 \% \mathrm{FS}(\pm 100 \mathrm{mV})$	-	75	-	-	75	-	ns
t_{s}	Settling Time, Sample to Hold	to 0.01% FS ($\pm 1 \mathrm{mV}$)	-	60	100	-	60	100	ns
		to 0.1% FS ($\pm 10 \mathrm{mV}$)	-	40	-	-	40	-	ns
$\mathrm{V}_{\text {TSH }}$	Sample tof Hold Transient		-	180	-	-	180	-	mVp-p
$\mathrm{tad}^{\text {d }}$	Aperture Delay Time		-	30	-	-	30	-	ns
$\mathrm{taj}_{\mathrm{aj}}$	Aperture Jitter		-	± 50	-	-	± 50	-	ps
sr	Slew Rate		-	± 300	-	-	± 300	-	$\mathrm{V} / \mathrm{\mu s}$
BW	Small Signal Bandwidth (-3 dB)		-	16	-	-	16	-	MHz
V_{HD}	Droop Rate		-	± 0.5	± 5	-	± 0.5	± 5	$\mu \mathrm{V} / \mu \mathrm{s}$
$\mathrm{F}_{\text {RR }}$	Feedthrough Rejection Ratio	$f=2.5 \mathrm{MHz}, \mathrm{V}_{\text {IN }}=20 \mathrm{Vp}-\mathrm{p}$	-	74	-	-	74	-	dB

FAST, 12-BIT TRACK/HOLD AMPLIFIER

APPLICATIONS INFORMATION

The 4860 is ideally suited for 12 to 14 -bit high speed data acquisition/distribution systems. In a $\pm 10 \mathrm{~V}$ system, its $\pm 0.01 \% \mathrm{FS}(\pm 0.005 \% \mathrm{FSR}$) linearity is equivalent to better than $\pm 1 / 2$ LSB in 13 bits. Its low ± 50 ps aperture uncertainty enables it to accurately ($\pm 1 / 2$ LSB in 12 bits) sample signals with slew rates up to $24.4 \mathrm{~V} / \mu \mathrm{sec}$. Its low, $5 \mu \mathrm{~V} / \mu \mathrm{sec}$, output droop rate enables it to hold signals to $\pm 1 / 2$ LSB in 14 bits for up to $125 \mu \mathrm{sec}$. The 4860 is functionally laser trimmed at the factory to correct offset, pedestal and gain errors, and is designed to be used without external adjustments. If system requirements call for tighter accuracies, units can be selected at the factory or adjustments can be made to the A/D or D/A used with the 4860.

Grounding and Bypassing

With proper grounding and bypassing, the 4860 meets all its published performance specifications without any additional external components. The device has four ground pins (Pins 10, 15, 21 and 23), and all must be tied together and connected to system analog ground as close to the package as possible. It is preferable to have a large analog ground plane beneath the 4860 and have all four ground pins soldered directly to it. Pin 10 is particularly sensitive to ground noise because most of the digital elements that constitute the switch drive circuit are grounded to Pin 10. Noise in the switch drive circuit couples directly to the main op amp summing junction-the most noise-sensitive point in any S/H circuit. Most digital ground currents enter or leave the 4860 through Pin 10, therefore, in order to keep the output clean, care must be taken to ensure that no ground potentials exist between Pin 10 and the other ground pins. This is why Pin 10 must be tied to the analog and not the digital ground system. For the same reason, the +5 V digital logic supply (Pin 9) should be kept as clean as possible. This supply (as well as the $\pm 15 \mathrm{~V}$ supplies, Pins 24 and 22) is bypassed to ground with a $0.01 \mu \mathrm{~F}$ ceramic capacitor inside the 4860. In critical applications, additional external $0.1 \mu \mathrm{~F}$ to $1 \mu \mathrm{~F}$ tantalum bypass capacitors may be required.

Sample/Hold Command

A TTL logic "0" applied to Pin 11, or a logic "1" applied to Pin 12 puts the 4860 into the sample (track) mode. In this mode, the device acts as an inverting unity gain amplifier, and its output follows (tracks) its input. A logic "1" applied to Pin 11 and a logic " 0 " applied to Pin 12 puts the 4860 into the hold mode, and the output is held constant at the level present when the hold command was given. If Pin 11 is used to control the 4860, Pin 12 must be connected to digital ground. If Pin 12 is used to control the 4860 , Pin 11 must be tied to +5 V . Pins 11 and 12 each represent 1 TTL load to the digital drive circuit.

Capacitive and Resistive Loading

In order to avoid oscillations, current limiting or performance variations over temperature, the 4860's output loading has certain restrictions. To avoid oscillation the largest capacitive load is typically 250 pF . The largest recommended resistive load is 500Ω, although values as low as 250Ω may be used. Acquisition and sample-to-hold settling times are relatively unaffected by resistive loads down to 250Ω and capacitive loads up to 50 pF. However, higher capacitive loads will affect both acquisition and settling time.

Figure 1. Track Mode Gain Amplitude and Phase Response

Aperature Jitter

The most common use of sample (track)/hold amplifiers is as an input for A/D converters to permit the accurate digitizing of signals with slew rates (frequencies) much higher than the A/D alone could handle. A rule of thumb for obtaining desired accuracy in successive approximation type A/D conversion is to ensure that the analog input signal being converted does not change by more than $\pm 1 / 2 \mathrm{LSB}$ during the conversion. Applying this rule to any given A / D converter, one can calculate an input slew rate limit beyond which accurate digitizing is impossible. The slew rate can then be converted to a frequency limit if you choose to speak in those terms.

Example: For a 12 -bit 500 ns A/D converter with a $\pm 2.5 \mathrm{~V}$ input range, $1 / 2 \mathrm{LSB}$ is equivalent to .61 mV . If the input is not allowed to change more than .61 mV in 500 ns , the ADC's input slew rate limit is $\pm 1.22 \mathrm{mV} / \mu \mathrm{sec}$. If one were trying to accurately digitize $\mathrm{a} \pm 2.5 \mathrm{~V}$ sine wave its frequency would have to be less than 77.7 Hz .

For example: $\quad \mathrm{dv} / \mathrm{dt}(\max)=2.5 \omega \cos \omega t(\mathrm{Max})$
$1.22 \mathrm{mV} / \mu \mathrm{s}=2.5 \omega$
$1.22 \mathrm{mV} / \mu \mathrm{s}=5 \pi \mathrm{f}$
$77.7(\mathrm{~Hz})=\mathrm{f}(\mathrm{Max})$
A sample/hold in front of an A/D converter can "freeze" the converter's input signal whenever a conversion is made. Even though the S / H reduces system throughput, because the S / H acquisition time has to be added to the A/D conversion time, it makes it possible for the A/D to accurately digitize input signals with much higher slew rates (frequencies). How is this accomplished? Let's look at the timing for a conversion that uses a sample/hold input buffer.

Once a $S / H(T / H)$ has acquired an input signal and is tracking it, the S/H can be commanded to hold at any instant. There is normally a small delay between the time the unit is commanded to hold and the time it actually holds. This delay is called aperture delay time or aperture time delay. It normally does not present a problem because the hold command signal can be advanced in time to make the amplifier hold at the correct time. Aperture delay time can vary as a given device takes sample after sample. The sample-to-sample variation in aperture delay time is called aperture jitter. Although aperture delay time is not normally a problem, aperture jitter is a problem. This is because it is impossible to control or compensate for aperture jitter. Since we have no control during the period of aperture jitter, w ould like our input signal to change as little as possible during this period. To return to our rule of thumb, we don't want the input to change by more than $\pm 1 / 2$ LSB. Therefore, if we're using a S / H in front of an A / D converter, the slew rate limitation is no longer $\pm 1 / 2$ LSB during the conversion time but $\pm 1 / 2$ LSB during the aperture jitter time.

The 4860 has a ± 50 psec aperture jitter. This means there is a 100 psec period during which the input signal should not change more than $\pm 1 / 2 L S B$. If, for example, you are using the $4860 \mathrm{~S} / \mathrm{H}$ in front of a 12-bit A/D converter, then $1 / 2 \mathrm{LSB}=0.61 \mathrm{mV}$. The input signal slew rate limitation for accurate digitizing is then $0.61 \mathrm{mV} / 100 \mathrm{psec}$ or $6.1 \mathrm{~V} / \mu \mathrm{sec}$. This is equivalent to the highest slew rate one would encounter in a $\pm 2.5 \mathrm{~V}$ sine wave with a frequency of 388 kHz . This is a considerable improvement over the 78 Hz sine wave that a 12 -bit, 500 ns ADC could accurately digitize without a S/H. Notice that 388 kHz to 78 Hz is the same ratio as 500 nsec , the ADC's conversion time, to 100 psec , the 4860's aperture jitter.

Figure 3. Acquisition Accuracy vs Acquisition Time for 10V Step
This procedure, which determines how fast a signal a given S / H permits one to digitize, assumes that the output droop rate of the chosen sample/hold is low enough to keep the A/D's input constant to within $\pm 1 / 2$ LSB during a conversion time. It also assumes that at the input slew rate (frequency) of interest, the S/H's output is not slew rate (bandwidth) limited. Lastly, the fact that a given S/H and A/D combination can accurately digitize the fastest portions of a 388 kHz sine wave does not mean that the same combination can be usedtodigitizethat signal for reproduction purposes. Nyquist criteria state that you have to sample a 388 kHz sine wave at twice its frequency, i.e. you have to take a sample every $1.25 \mu \mathrm{sec}$. The $4860 /$ ADC combination must sample at least this fast to reproduce the input.

Figure 2. Accuracy Error Due to Aperture Uncertainty

FAST, 12-BIT TRACK/HOLD AMPLIFIER

Using the 4860 with A/D Converters

There are two important considerations when using S/Hs to drive successive approximation A/Ds. The first is a dual requirement-the S/H's output stage should exhibit a very low impedance compared to the A/D's input impedance, usually 1 to $10 \mathrm{k} \Omega$, at frequencies up to five times the A/D's clock period; and the S/H should be able to recover from current transients in a time interval smaller than the A/D's clock period. These requirements are based on the fact that successive approximation A/D's internal D/A converter changes its output current just prior to the determination of each output bit, therefore, the S / H will be required to sink or source large, high frequency current transients and recover within one clock period. In the hold mode, the 4860's output impedance is typically 0.1Ω. Its output typically recovers (to $\pm 0.01 \%$) from a 2 mA step in less than 100 nsec .

The second consideration involves the S/H's sample-tohold transient settling time. If the same timing pulse that puts the S/H into the hold mode initiates the A/D conversion, the transient settling time has to be short enough to ensure that the A/D has a stable, accurate input when it makes the final decision on whether its MSB output should be a "1" or "0". This decision normally takes place one clock period after a conversion has begun.

In most applications by using the 4860 in front of a successive approximation A/D converter, the 4860's HOLD or HOLD can be driven directly from the converter's status output. The status output changes state when the converter receives a convert command, and this change can be used to drive the S / H from the track to the hold mode. The reverse change in state of the status output at the end of the conversion can also be used to set the S/H back into the track mode.

OPERATIONAL AMPLIFIER — HIGH-SPEED, FET-INPUT

FEATURES

- The Choice Device for All 0032 Applications
- Open-Loop Gain .85 dB
- Settling Time to $\pm 1 \%$..................................... 100 ns
- Slew Rate $.650 \mathrm{~V} / \mu \mathrm{s}$

APPLICATIONS

- High-Speed ADC Comparators
- ADC and SHA Integrators
- High-Speed Integrators
- Video Amplifiers

GENERAL DESCRIPTION

The TP0032 is a high slew rate, FET-input, fully-differential operational amplifier. It features 85 dB open-loop gain, a wide bandwidth (25 MHz @ $\mathrm{A}_{\mathrm{CL}}=+1$), high-input impedance ($10^{11} \Omega$), and high-output drive capabilities.

The TP0032 can be used as a direct replacement for LH0032-type op amps and is far more capable. It features the following performance improvements:

1. Increased open-loop gain; improves linearity and eliminates output voltage droop.
2. Superior second-stage biasing and decreased gain sensitivity to the transconductance of the JFET input yields faster, more consistent settling times.
3. The addition of supply current compensation over temperature improves dynamic response versus temperature.
4. Improved phase margin allows smaller compensation capacitance values to be used in low-gain applications, which means higher slew rates and faster settling times, and useful features for new designs.
The standard TP0032 is specified for $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operation. The TP0032 High Reliability (HR) version is specified for $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operation.

PIN CONFIGURATION

PIN		PIN	
NO.	DESIGNATION	NO.	DESIGNATION
1	NC	7	NC
2	OUTPUT COMP	8	NC
3	BALANCE/COMP	9	NC
4	BALANCEICOMP	10	-VCC
5	INVERTING INPUT	11	OUTPUT
6	NONINVERTING INPUT	12	+ V $_{\text {CC }}$

NC = NO INTERNAL CONNECTION

BOTTOM VIEW

ABSOLUTE MAXIMUM RATINGS

Vcc Supply Voltage .. $\pm 18 \mathrm{~V}$
$V_{I D}$ Differential Input Voltage $\pm 30 \mathrm{~V}$
$\mathrm{V}_{\text {ICM }}$ Common-Mode Input Voltage $\pm \mathrm{V}_{\mathrm{CC}}$
$\mathrm{T}_{\mathrm{C}} \quad$ Operating Temperature Range (Case)
... $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$T_{\text {STG }}$ Storage Temperature Range $\ldots . . .-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

DC CHARACTERISTICS: (Note 1) $\mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Symbol	Parameter	Test Conditions	TP0032			TP0032-HR			Unit
			Min	Typ	Max	Min	Typ	Max	
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage		-	± 2	± 5	-	± 2	± 5	mV
		$\mathrm{T}_{\text {Min }}$ to $\mathrm{T}_{\text {MAX }}$	-	± 4	-	-	± 4	± 10	mV
$\mathrm{V}_{\text {OS }}$ TC	Input Offset Voltage Drift vs Temperature	Average, $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-	± 25	-	-	± 25	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		-	± 10	± 100	-	± 10	± 100	pA
		Average, $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-	± 5	-	-	± 5	± 50	nA
I_{B} TC	Input Bias Current Drift vs Temperature		Doubles every $11^{\circ} \mathrm{C}$			Doubles every $11^{\circ} \mathrm{C}$			-
los	Input Offset Current	$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-	± 5	± 25	-	± 5	± 25	pA
			-	± 12	-	-	± 12	± 25	nA
los TC	Input Offset Current Drift vs Temperature	Average, $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	Doubles every $11^{\circ} \mathrm{C}$			Doubles every $11^{\circ} \mathrm{C}$			-
Avol	Open-Loop Voltage Gain		70	85	-	70	85	-	dB
		$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-	83	-	70	83	-	dB
PSRR	Power Supply Rejection Ratio		50	70	-	50	70	-	dB
CMRR	Common-Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}= \pm 8 \mathrm{~V}$	50	70	-	50	70	-	dB
CMR	Common-Mode Range (DC Linear Operation)	$C M R R \geq 44 \mathrm{~dB}$	± 10	± 12	-	± 10	± 12	-	V
$\mathrm{Z}_{\text {ID }}$	Differential Input Impedance		-	$10^{11 / 1 / 2}$	-	-	$10^{11} / 12$	-	SllpF
Z ${ }_{\text {ICM }}$	Common-Mode Input Impedance		-	$10^{11 / 1 / 3}$	-	-	$10^{11 / 13}$	-	SllpF
V_{0}	Output Voltage Swing		± 10	± 13.5	-	± 10	± 13.5	-	V
10	Output Current		± 10	± 13.5	-	± 10	± 13.5	-	mA
ISC	Output Short-Circuit Current	(Note 2)	-	N/A	-	-	N/A	-	mA
Ro	Output Resistance (DC Open-Loop)		-	90	-	-	90	-	Ω
$\mathrm{V}_{\text {cc }}$	Supply Voltage Range (Operating)		± 10	± 15	± 18	± 10	± 15	± 18	V
ICC	Quiescent Supply Current		-	± 17	± 20	-	± 17	± 20	mA

NOTES: 1 . Limits printed in boldface type are guaranteed and 100% production tested. Limits in normal font are guaranteed but not 100% production tested.
2. The TP0032 is not output short-circuit protected and neither are other vendors' 0032 's.

AC CHARACTERISTICS: (Note 1) $\mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{C} 1}=4 \mathrm{pF}, \mathrm{C}_{\mathrm{C} 2}=100 \mathrm{pF}, \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Symbol	Parameter	Test Conditions	TP0032			TP0032-HR			Unit
			Min	Typ	Max	Min	Typ	Max	
S_{R}	Slew Rate	$\mathrm{A}_{\mathrm{V}}=+1$	350	650	-	350	650	-	V/ $/ \mathrm{s}$
GBWP	Gain-Bandwidth Product	$\begin{aligned} & \mathrm{f}=100 \mathrm{kHz}, \mathrm{C}_{\mathrm{C} 1}=0 \mathrm{pF}, \\ & \mathrm{C}_{\mathrm{C} 2}=0 \mathrm{pF} \end{aligned}$	-	600	-	-	600	-	MHz
UGBW	Unity-Gain Bandwidth	$\mathrm{A}_{\mathrm{V}}=+1$	-	25	-	-	25	-	MHz
$\mathrm{t}_{\text {s }}$	Settling Time ($\mathrm{A}_{\mathrm{CL}}=-1$)	20V step/1\% 20V step/0.1\%	-	$\begin{aligned} & 100 \\ & 300 \end{aligned}$	-	-	$\begin{aligned} & 100 \\ & 300 \end{aligned}$	-	$\begin{array}{\|l} \mathrm{ns} \\ \mathrm{~ns} \end{array}$

NOTES: 1. Limits printed in boldface type are guaranteed and 100\% production tested. Limits in normal font are guaranteed but not 100% production tested.

HIGH-SPEED, FET-INPUT OPERATIONAL AMPLIFIER

APPLICATIONS INFORMATION

Wiring Recommendations

As with most high-speed op amps, the TP0032 is sensitive to circuit board layout; i.e., stray reactances. The power supplies should be bypassed as close to pins 10 and 12 as possible. Use low-inductance capacitors, such as $0.01 \mu \mathrm{~F}$ disc ceramics. Any other compensation capacitors, if used, should be located as close as possible to the appropriate pins to minimize stray capacitance. Good grounding techniques, as always, should be used.

Input Capacitance

The TP0032's input capacitance is typically $2-3 \mathrm{pF}$. To compensate for this, it is recommended that a small capacitor be placed across the feedback resistor. The value of this capacitor should be on the order of several picofarads. The

Figure 1. Offset Null
exact value will vary with the effects of layout and closedloop gain, and is therefore determined case by case.

When using the TP0032 in a noninverting configuration, it may be advantageous to bootstrap the case and/or a guard conductor to the inverting input. This practice will divert leakage currents away from the noninverting input and reduce effective input capacitance.

Heat Sinking

When operating the TP0032 at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, the case temperature will be approximately $+65^{\circ} \mathrm{C}$. Although the TP0032 is specified for operation without a heat sink, bias current performance may be improved with the use of a small heat sink, such as the Thermalloy 2240 or equivalent. The case is electrically isolated, so it may be connected to the heat sink. However, this will add capacitance to all pins and will probably necessitate compensation readjustment.

Figure 3. Output Short-Circuit Protection

Figure 4. Unity-Gain Amplifier

Figure 5. Bode Plot (Uncompensated)

Figure 6. Bode Plot (Unity Gain Compensation)

Figure 7. Maximum Power Dissipation

Figure 8. CMRR vs Frequency

Figure 9. Large Signal Pulse Response

Figure 10. Supply Current vs Supply Voltage

HIGH-SPEED, UNITY-GAIN BUFFER/DRIVER AMPLIFIER

FEATURES

- Replaces All 0033's
- High Speed
- Bandwidth \qquad DC to 100 MHz
- Slew Rate $1500 \mathrm{~V} / \mathrm{s}$
- Settling Time to $\pm 1 \%$ (2 V step) 25 ns
- Low Quiescent Current \qquad $\pm 14 \mathrm{~mA}$

APPLICATIONS

- Input-Buffering Flash ADCs
- CRT Deflection Yoke Drive
- Coaxial Line Driver
- Critical Military, Biomedical and Process Control Environments

GENERAL DESCRIPTION

The TP0033 is a high-speed, high-input impedance, unity-gain buffer amplifier that is pin, package and performance equivalent to the ubiquitous LH0033. This device matches or exceeds the performance of its counterpart in all applications, yet typically draws just $\pm 14 \mathrm{~mA}$ quiescent current, versus $\pm 20 \mathrm{~mA}$ typical for the LH0033.

The TP0033 has a FET input stage which provides high-input impedance ($10^{11} \Omega$), low-input bias current (0.5 nA), and low initial input offset voltage ($\pm 10 \mathrm{mV}$). The device operates with supply voltages from $\pm 5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$ (single supply operation is permissible). With nominal $\pm 15 \mathrm{~V}$ supplies, the TP0033 delivers a guaranteed output of $\pm 12 \mathrm{~V}$ into $1 \mathrm{k} \Omega$. Other key large-signal specifications are $1500 \mathrm{~V} /$ μ s slew rate and 25 ns settling time for the unit to settle a 2 V step (typical "flash" ADC full-scale input) to within $\pm 1 \%$ ($\pm 20 \mathrm{mV}$) of final value.

A 100 MHz bandwidth, 2.9 ns rise time and 1.2 ns propagation delay are key small-signal specifications that further demonstrate the TP0033's suitability for highfrequency, signal-buffering applications.

The TP0033 is housed in a 12-pin TO-8 can. The standard device is specified for $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operation. The High Reliability (HR) version is specified for $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operation.

PIN CONFIGURATION

Pin No.	Designation	Pin No.	Designation	
1	$+\mathrm{V}_{\mathrm{CC}}$	7	OFFSET TRIM	$\mathrm{O}_{3}{ }^{4} \mathrm{lll}^{5} \quad 60$
2	NC	8	NC	$\left(\begin{array}{cc}02\end{array}\right.$
3	NC	9	- V_{CC}	$\left(\begin{array}{ll}02 & 80\end{array}\right.$
4	NC	10	V	$\left(\begin{array}{lllll}0 & 1 & & & \\ & 12 & 11 & 10\end{array}\right.$
5	INPUT	11	OUTPUT	000
6	OFFSET PRESET	12	V^{+}	
NC = No intemal connection				$\begin{aligned} & \text { BOTTOM } \\ & \text { VIEW } \end{aligned}$

HIGH-SPEED, UNITY-GAIN BUFFER/DRIVER AMPLIFIER

TP0033

ABSOLUTE MAXIMUM RATINGS

C-	Supply Voltage ..40V	T_{C}	Operating Temperature Range (Case)
$\left(-V_{C C}\right)$			TP0033............................. $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
V_{1}	Input Voltage .. $\pm \mathrm{V}_{\mathrm{C}}$		TP0033-HR $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
P_{D}	Power Dissipation (See Figure 9)1.5W	TSTG	Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

DC CHARACTERISTICS: (Note 1) $\mathrm{V}_{C C}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{S}}=100 \Omega, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Symbol	Parameter	Test Conditions	TP0033			TP0033-HR			Unit
			Min	Typ	Max	Min	Typ	Max	
AvN	Voltage Gain		0.96	0.98	1.00	0.96	0.98	1.00	V / N
Vos	Input Offset Voltage		-	± 5	± 10	-	± 5	± 10	mV
		$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-	-	-	-	-	± 15	mV
Vos TC	Input Offset Voltage Drift vs Temperature	Average, $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-	± 50	-	-	± 50	± 250	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		-	± 0.5	± 2.5	-	± 0.5	± 2.5	nA
		$T_{\text {MIN }}$ to $T_{\text {MAX }}$	-	-	-	-	-	± 50	nA
PSRR	Power Supply Rejection Ratio		-	60	-	-	60	-	dB
Z_{1}	Input Impedance		10^{10}	10^{11}	-	10^{10}	10^{11}	-	Ω
V_{0}	Output Voltage Swing		± 12	± 13	-	± 12	± 13	-	V
		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \\ & \mathrm{~V}_{\mathrm{C} C}= \pm 5 \mathrm{~V} \end{aligned}$	± 9	$\overline{6}$	-	± 9	-	-	
Isc	Output Short-Circuit Current	(Note 2)	-	N/A	-	-	N/A	-	mA
Ro	Output Resistance (DC Open-Loop)		-	6	10	-	6	10	Ω
$\mathrm{V}_{C C}$	Supply Voltage Range (Operating)		± 5	± 15	± 20	± 5	± 15	± 20	V
Icc	Quiescent Supply Current		-	± 14	± 22	-	± 14	± 22	mA
		$\mathrm{V}_{\mathrm{CC}}= \pm 5 \mathrm{~V}$	-	± 12	-	-	± 12	-	mA
PD	Quiescent Power Dissipation		-	420	660	-	420	660	mW
		$\mathrm{V}_{\mathrm{CC}}= \pm 5 \mathrm{~V}$	-	120	-	-	120	-	mW

NOTES: 1. Limits printed in boldface type are guaranteed and 100\% production tested. Limits in normal font are guaranteed but not 100% production tested.
2. The TP0033 is not output short-circuit protected and neither are other vendors' 0033 's.

Peak instantaneous output current must not exceed $\pm 250 \mathrm{~mA}$.
Continuous output current must not exceed $\pm 100 \mathrm{~mA}$.

AC CHARACTERISTICS: (Note 1) $\mathrm{V}_{C C}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Symbol	Parameter	Test Conditions	TP0033			TP0033-HR			Unit
			Min	Typ	Max	Min	Typ	Max	
S_{R}	Slew Rate		1000	1500	-	1000	1500	-	V/ $\mu \mathrm{s}$
BW	Bandwidth (-3 dB)	$\mathrm{V}_{\text {IN }}=1.0 \mathrm{VRMS}$	-	100	-	-	100	-	MHz
$\Phi_{\text {NL }}$	Phase Non-Linearity	$\mathrm{BW}=1 \mathrm{~Hz}$ to 20 MHz	-	2	-	-	2	-	-
$\mathrm{t}_{\text {s }}$	Settling Time	2V step/1\%	-	25	-	-	25	-	ns
t_{r}	Rise Time	$\Delta \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$	-	2.9	-	-	2.9	-	ns
$t_{p d}$	Propagation Delay	$\Delta \mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$	-	1.2	-	-	1.2	-	ns
THD	Total Harmonic Distortion	$\mathrm{f}>1 \mathrm{kHz}$	-	<0.1	-	-	<0.1	-	\%

NOTES: 1. Limits printed in boldface type are guaranteed and 100\% production tested. Limits in normal font are guaranteed but not 100% production tested.

APPLICATIONS INFORMATION

Offset Adjustment

The TP0033 is factory-trimmed for low initial offset voltage. This is achieved by laser trimming and is implemented by tying pin 6 (offset preset) to pin 7 (offset adjust input). If the offset needs adjusting for any reason (see "Single or Unbalanced Power Supplies"), it can be done by using the offset null scheme shown in Figure 1. If an adjustable offset is not needed, pin 7 must be tied to pin 6. (Pin 7 cannot be left open.)

Current Limiting

The output of the TP0033 is not short-circuit protected and should not exceed $\pm 100 \mathrm{~mA}$ steady-state or $\pm 250 \mathrm{~mA}$ peak instantaneous current. For overcurrent protection, the maximum output current of the TP0033 can be limited by the use of current-limiting resistors as shown in Figure 2, or by an active current-source circuit as shown in Figure3. Whether or not the current is limited, pins 1 and 9 must be connected to $+V_{C C}$ and $-V_{C C}$, respectively.

Wiring Recommendations

The TP0033, like any high-speed device, is sensitive to layout inductances; therefore, ground planes are recommended. For best performance, each power supply should be individually decoupled; i.e., bypassed to ground. If pin 1 is tied directly to pin 12 and pin 9 is tied directly to pin 10 (Figure 1), connect low-inductance ($0.1 \mu \mathrm{~F}$) ceramic disc capacitors directly to pins 10 and 12 and ground them as

closely as possible to the case. If pins 1 and 12 or pins 9 and 10 are not tied together, each pin should be decoupled by a low-inductance ($0.1 \mu \mathrm{~F}$) ceramic disc capacitor, grounded as close as possible to the case.

Reactive Loading

The TP0033 output can drive large (several thousand pF) capacitive loads and long, properly terminated coaxial lines without tendency to oscillate. Peak capacitive output current levels should not exceed 250 mA .

Single or Unbalanced Power Supplies

The TP0033 can operate from unbalanced power supplies, such as the $+5 \mathrm{~V} /-12 \mathrm{~V}$ rails prevalent in MOS-based logic systems. An output offset voltage will result, but is correctable by the nulling method shown in Figure 1. It is predictable (with sufficient accuracy) as follows:

$$
\text { Offset }(V)=(1-\text { Gain })\left(I+V_{C C}\left|-I-V_{C C}\right|\right) / 2
$$

gain is typically 0.985 ; therefore:
Offset $(V)=0.0075\left(1+V_{C C}-1-V_{C C}\right)$

Heat Sinking

Idling in a $+25^{\circ} \mathrm{C}$ ambient environment, the TP0033 has an approximate case temperature of $+65^{\circ} \mathrm{C}$. For best performance, a heat sink (Thermalloy 2240 or equivalent) is recommended, particularly for extended temperature operation.

Figure 2. Resistive Output Current Limiting

$\mathbf{Q}_{1}=\mathbf{Q}_{3}=2 \mathrm{~N} 2905$
$Q_{2}=Q_{4}=2 \mathrm{~N} 2219$
$R_{\text {LIM }} \approx \frac{0.6 \mathrm{~V}}{\mathrm{I}_{\mathrm{LIM}}}$

Figure 3. Active Current-Source Output Current Limiting

FOR ALL CASES, ENSURE THAT:
$\frac{\Delta V_{I N}}{\Delta t} \times C_{L} \leq I_{O} \leq \pm 250 \mathrm{~mA}$

Figure 5. Capacitive Drive

Figure 6. Frequency Response for Various Loads

Figure 4. Coaxial Cable Driver

Figure 7. Power Supply Rejection Ratio

Figure 8. Large Signal Response

Figure 9. Maximum Power Dissipation

NOTES

OPERATIONAL AMPLIFIER - HIGH-SPEED, WIDEBAND

FEATURES

- Stable at Low Gain

- Gain Bandwidth Product

\qquad

Slew Rate

 .2 GHz
- Output

 $1200 \mathrm{~V} / \mu \mathrm{s}$- Low Quiescent Current $12 \mathrm{~V}, \pm 125 \mathrm{~mA}$

Operating Temperature (-HR)

APPLICATIONS

- Pulse Amplifiers

- Fast Buffer/Followers
- Fast D/A Converters
- Video Instrumentation
- Video Frequency Filters

ABSOLUTE MAXIMUM RATINGS

$V_{\text {CC }} \quad$ Supply Voltage .. $\pm 18 \mathrm{~V}$
$V_{\text {ID }}$ Differential Input Voltage $\pm 25 \mathrm{~V}$
$\mathrm{V}_{\text {ICM }}$ Common-Mode Input Voltage $\pm \mathrm{V}_{\text {CC }}$
$\mathrm{T}_{\mathrm{C}} \quad$ Operating Temperature Range (Case)
TP3554................................. $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TP3554-HR $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }} \quad$ Storage Temperature Range $\ldots . . .-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

GENERAL DESCRIPTION

The TP3554 is a fully differential, wideband operational amplifier with 2 GHz gain bandwidth product, $1200 \mathrm{~V} /$ μ s slew rate, and $\pm 12 \mathrm{~V}, \pm 125 \mathrm{~mA}$ output. Settling time for a 10 V step to 0.01% is guaranteed less than 250 ns , and external compensation allows users to optimize bandwidth, slew rate, or settling time in different applications.

The TP3554 is an improved second source to the BurrBrown BB3554. In most applications, the TP3554 is a dropin replacement for the BB3554, having similar bandwidth and slew rate characteristics with similar compensation. In other applications, the TP3554's superior design approach will solve many of the problems encountered with the BB3554. The TP3554's improved interior loop stability overcomes the BB3554's pronounced tendency to ring or oscillate at 120 MHz , especially at lower gains (higher compensations). The improved loop stability also results in an improved capacitive load capability. The TP3554 does not have input overload problems. Input slew rate does not affect settling time, and there are no input rise time restrictions. This eliminates many of the problems encountered in pulse-amplifier applications. The TP3554 has a much lower quiescent current drain, $\pm 14 \mathrm{~mA}$ typical, $(\pm 20 \mathrm{~mA}$ maximum) and a lower short-circuit output current.

The standard TP3554 is housed in a TO-3 metal can and is specified for $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operation. The TP3554 High Reliability (HR) version is specified for $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operation.

PIN CONFIGURATION

HIGH-SPEED, WIDEBAND OPERATIONAL AMPLIFIER

TP3554
DC CHARACTERISTICS: (Note 1) $\mathrm{V}_{C C}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Symbol	Parameter	Test Conditions	TP3554			TP3554-HR			Unit
			Min	Typ	Max	Min	Typ	Max	
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage		-	± 0.5	± 2	-	± 0.5	± 2	mV
$\mathrm{V}_{\text {OS }}$ TC	Input Offset Voltage Drift vs Temperature	Average, $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-	± 20	-	-	± 20	± 50	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		-	± 10	± 50	-	± 10	± 50	pA
$\mathrm{I}_{\mathrm{B}} \mathrm{TC}$	Input Bias Current Drift vs Temperature	Average, $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	Doubles every $11^{\circ} \mathrm{C}$			Doubles every $11^{\circ} \mathrm{C}$			-
los	Input Offset Current		-	± 2	-	-	± 2	-	pA
los TC	Input Offset Current Drift vs Temperature	Average, $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	Doubles every $11^{\circ} \mathrm{C}$			Doubles every $11^{\circ} \mathrm{C}$			-
Avol	Open-Loop Voltage Gain	$\mathrm{R}_{\mathrm{L}}=100 \Omega$	$\begin{gathered} 100 \\ 90 \end{gathered}$	$\begin{gathered} 106 \\ 96 \end{gathered}$	-	$\begin{array}{c\|} \hline 100 \\ 90 \end{array}$	$\begin{gathered} 106 \\ 96 \end{gathered}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
PSRR	Power Supply Rejection Ratio		80	110	-	80	110	-	dB
CMRR	Common-Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}=+5 \mathrm{~V} /-10 \mathrm{~V}$	70	86	-	70	86	-	dB
CMR	Common-Mode Range (DC Linear Operation)	CMRR $\geq 64 \mathrm{~dB}$	-	+8/-13	-	-	+8/13	-	V
$\mathrm{Z}_{\text {ID }}$	Differential Input Impedance		-	10^{111112}	-	-	$10^{11} 112$	-	SllpF
ZICM	Common-Mode Input Impedance		-	$10^{11} 112$	-	-	$10^{11} 112$	-	SllpF
V_{0}	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=100 \Omega$	± 10.5	± 12	-	± 10.5	± 12	-	V
10	Output Current		± 100	± 125	-	± 100	± 125	-	mA
Isc	Output Short-Circuit Current		-	± 150	-	-	± 150	-	mA
R_{0}	Output Resistance (DC Open-Loop)	(Note 2)	-	± 100	-	-	± 100	-	Ω
$\mathrm{V}_{C C}$	Supply Voltage Range (Operating)		± 8	± 15	± 18	± 8	± 15	± 18	V
Icc	Quiescent Supply Current		-	± 14	± 20	-	± 14	± 20	mA

NOTES: 1 . Limits printed in boldface type are guaranteed and 100% production tested. Limits in normal font are guaranteed but not 100% production tested.
2. Typical output resistance is 20Ω at $f=10 \mathrm{MHz}$.

AC CHARACTERISTICS: (Note 1) $\mathrm{V}_{C C}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{C}}=0 \mathrm{pF}, \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Symbol	Parameter	Test Conditions	TP3554			TP3554-HR			Unit
			Min	Typ	Max	Min	Typ	Max	
S_{R}	Slew Rate	$\mathrm{R}_{\mathrm{L}}=100 \Omega$	1000	1200	-	1000	1200	-	V/ $\mu \mathrm{s}$
GBWP	Gain-Bandwidth Product	@ $\mathrm{A}_{\text {OL }}=10$	150	225	-	150	225	-	MHz
		(1) $\mathrm{A}_{\mathrm{OL}}=100$	425	725	-	425	725	-	MHz
		@ $\mathrm{A}_{\text {OL }}=1000$	1000	2000	-	1000	2000	-	MHz
UGBW	Unity-Gain Bandwidth		-	90	-	-	90	-	MHz
$\mathrm{t}_{\text {s }}$	Settling Time ($A_{C L}=-1, C_{C}=12 \mathrm{pF}$)	10V step/1\%	-	40	-	-	40	-	ns
		10V step/0.1\%	-	100	-	-	100	-	ns
		10V step/0.01\%	-	150	250	-	150	250	ns
e_{n}	Input Voltage Noise Density	$f=1 \mathrm{kHz}$	-	10	-	-	10	-	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
C_{L}	Capacitive Load (maximum w/o oscillation)		-	75	-	-	75	-	pF

NOTES: 1 . Limits printed in boldface type are guaranteed and 100% production tested. Limits in normal font are guaranteed but not 100% production tested.

HIGH-SPEED, WIDEBAND OPERATIONAL AMPLIFIER

Figure 1. Bode Plot

Figure 2. Gain and Phase vs Frequency for Variable R_{L}

Figure 3. Gain and Phase vs Frequency for Variable C_{L}

Figure 4. CMRR vs Frequency

Figure 5. PSRR vs Frequency

Figure 6. Maximum Power Dissipation

HIGH-SPEED, WIDEBAND OPERATIONAL AMPLIFIER

APPLICATIONS INFORMATION

Layout, Grounding and Bypassing

Toachievefully-specified performance from the TP3554, careful grounding, bypassing, and wiring precautions are necessary. Grounding is the most important consideration; a ground plane is strongly recommended. The ground plane provides a low-resistance, low-inductance return path for all signals and power returns and reduces stray signal pickup. It should cover and connect all areas on the pattern side of the PC board not otherwise used.

The mechanical layout of the circuit is also very important. All circuit leads should be as short as possible. All PC board conductors should be wide to provide low-resistance, low-inductance connections, and should be as short as possible. In general, the entire physical circuit should be as small as practical. Stray capacitances should be minimized, especially at high-impedance nodes such as the input terminals of the amplifier. The inverting input (pin 5) is especially sensitive, and all associated connections must be short. Stray signal coupling from the output to the inputs or to pin 8 (see "Optional Offset Adjustment") should be minimized. Low resistor values should be used (values less than $5.6 \mathrm{k} \Omega$ are recommended). This practice will give the best circuit performance because the time constants formed with the circuit capacitances will be minimized and have little effect on amplifier performance.

Each power supply lead should be bypassed to ground as near to the amplifier pins as possible. The combination of a $1 \mu \mathrm{~F}$ tantalum capacitor in parallel with a $0.01 \mu \mathrm{~F}$ ceramic capacitor forms a suitable bypass. In inverting applications it is recommended that pin 6 (noninverting input) be grounded rather than connected to a bias-current-compensating resistor. This ensures a good signal ground at the noninverting input. A slight offset error will result; however, if the resistor values used are small, the offset error (due to bias current offset) will be minimal.

It is recommended the TP3554's case not be grounded during use (though it may be grounded, if desired). There is no internal connection to the case; however, a grounded case will add a slight capacitance to each pin. In an already functional circuit, grounding the case will probably require slight compensation adjustment and the compensation capacitor values may be slightly different from those indicated in the typical performance curves.

Optional Offset Adjustment

If the TP3554's guaranteed offset error is too large for a particular application, the initial offset may be adjusted to zero by connecting a $20 \mathrm{k} \Omega$ linear potentiometer between pins 4 and 8, with the wiper connected to the positive supply, as shown in Figure 7. A small, noninductive potentiometer is
recommended. The leads connecting the potentiometer to pins 4 and 8 should be less than 6 inches long to avoid stray capacitance and stray signal pickup. Stray coupling from the output (pin 1) to offset adjust pin 4 has the effect of negative feedback; to pin 8 the effect is positive feedback and should be avoided.

Compensation

The TP3554 uses external frequency compensation to optimize bandwidth, slew rate, or settling time for particular applications. The bode plot (Figure 1) shows curves for several different compensation capacitors. In addition, several typical circuits are shown with recommended compensation for different applications. The primary compensation capacitor $\left(C_{C}\right)$ is connected between pins 1 and 3 . As the performance curves show, higher closed-loop gain configurations require less capacitance and improved gain bandwidth will be realized. Note that a compensation capacitor is not required for closed-loop gains above 35 dB .

The flat, high-frequency response of the TP3554 may be preserved and any high-frequency peaking avoided by connecting a small capacitor in parallel with the feedback resistor. This capacitor compensates for the closed-loop high-frequency transfer function zero that results from the time constant formed by the input capacitance of the amplifier (typically 2 pF), and the input and feedback resistors. Using small resistor values will keep the break frequency of this zero sufficiently high, thereby avoiding peaking, and preserving phase margin (resistor values less than $5.6 \mathrm{k} \Omega$ are recommended). The necessary feedback capacitance value is strongly dependent on circuit layout and closed-loop gain. It will be typically 2 pF for a clean layout using low value resistors ($1 \mathrm{k} \Omega$) and up to 10 pF for circuits using larger resistances.

Figure 7. Unity Gain Inverter

HIGH-SPEED, WIDEBAND OPERATIONAL AMPLIFIER

Slew Rate

Slew rate is dependent upon compensation. Decreasing the compensation capacitor value will increase the available slew rate. Stray capacitances may have the same effect as the compensation capacitor. To avoid limiting the slew rate performance, stray capacitances should be minimized.

Figure 8. Follower

Heat Sinking

The TP3554 does not require a heat sink for operation in most environments. However, the use of a heat sink reduces the case temperature rise and results in lower junction operating temperatures. At extreme temperatures and under full load conditions, a heat sink will be necessary (as indicated in Figure 6). When heat sinking the TP3554, it is recommended the heat sink be connected directly to the amplifier case and the combination not be connected to the ground plane. The addition of a heat sink to an alreadyfunctional circuit will probably require slight compensation adjustment for optimum performance, due to the change in stray capacitances. The added stray capacitance to each pin from the heat sink will depend on the thickness and type of heat sink used.

Figure 11. Typical Settling Time Test Circuit

Figure 9. Inverting Gain of 10 Amplifier

NOTES

Section 10

Video Display Drivers

	Display A/D Converters	1
Binary A/D Converters	2	
Voltage-to-Frequency/Frequency-to-Voltage Converters	3	
Sensor Products	4	
Power Supply Control ICs	5	
Power MOSFET, Motor and PIN Drivers	6	
References	7	
Chopper-Stabilized Operational Amplifiers	8	
High Performance Amplifiers/Buffers	9	
Video Display Drivers	$\mathbf{1 0}$	
Analog Switches and Multiplexers	12	
Data Communications	13	
Discrete DMOS Products	14	
Reliability and Quality Assurance	15	
Ordering Information	16	
Package Information	17	
Sales Offices	18	

MONOLITHIC, HIGH VOLTAGE VIDEO DRIVER FOR CRT MONITORS

FEATURES

- Rise Time into a 6pF load \qquad 2.4ns
- Output Signal 50V p-p
- Linear Variable Gain 0 to 100
24-Pin Power-Tab Package

APPLICATIONS

- High Resolution Monochrome Displays
- High Resolution RGB Displays (Three Packages)

GENERAL DESCRIPTION

The 1900 is a high performance monolithic variable gain transconductance amplifier with a high voltage open collector output capable of driving a video display (CRT cathode) directly. Typical rise times of 2.4 ns are achieved using a peaking inductor with a 200Ω load resistor and a 6 pF total load (CRT and parasitic capacitance).

Differential inputs and a linear adjustable gain stage with an output offset adjustment make the 1900 versatile and well suited for many applications. The TTL BLANK input will set the output to a pre-determined black level independent of signal input.

The 1900 is available in a 24 -pin DIP power-tab package. A suitable heat sink must be attached to maintain the junction temperature with the recommended operating range.

FUNCTIONAL DIAGRAM

1900

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS* $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

TJMAX	Operating Temperature Range (Junction)
TStG	Storage Temperature $55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
VVAA	Output Signal Supply, wrt $\mathrm{V}_{\mathrm{VCB}}$........................65V
$V_{V C B}$	Common Base Supply20V
V Vcc	Positive IC Supply12V
Vee	Negative IC Supply-12V
$V_{\text {DIFF }}$	Differential Input Voltage, Signal2V
$V_{C M}$	Common Mode Input Voltage, Signal土2.0V

VIG Gain Input Voltage 6 V
V vof Offset Input Voltage 6 V
Vblank Blank Input Voltage 6 V
IV REF Reference Output Current $-5 \mathrm{~mA}$
Ts Lead Temperature (solder $<10 \mathrm{sec}$) $+260^{\circ} \mathrm{C}$
Thermal Characteristics
$\mathrm{R}_{\text {日J }} \quad$ Thermal Resistance (Junction to Case)+6C/W
$V_{C M}$ Common Mode Input Voltage, Signal 2.0 V
*An absolute maximum rating defines a bias, mechanical stress, or environmental condition beyond which the device may become unserviceable. The 1900 is static sensitive. Proper handling techniques for static-sensitive parts should be employed.

TYPICAL POWER CONSUMPTION $T_{A}=25^{\circ} \mathrm{C}$ Power Dissipation at $\mathrm{V}_{\mathrm{VAA}}=70 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=200 \Omega$

$V_{O}-V_{B L A C K}$	Duty Cycle \%	IC P_{D} (Watts)	Load P_{D} (Watts)	Total P_{D} (Watts)
0	0	1.6	0	1.6
35	100	7.8	6.1	13.9
35	80	6.5	4.9	11.4
50	80	5.6	10	15.6

AC ELECTRICAL CHARACTERISTICS:
$V_{E E}=-10.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{AA}}=+70 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=200 \Omega, \mathrm{~V}_{\mathrm{BLANK}}=0.4 \mathrm{~V}$, $\mathrm{V}_{\text {IN }} \leq 725 \mathrm{mV}, \mathrm{TA}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
$\mathrm{BW}_{3 \mathrm{~dB}}$	Bandwidth, 3dB	$\mathrm{V}_{\text {VOF }}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega$	200	-	-	MHz
t_{r}	Rise Time, Output	$\begin{aligned} & R_{L}=0, t_{r(v i N)}=400 p s \\ & R_{L}=200 \Omega, t_{r(V \mid N)}=1 \mathrm{~ns}, C_{L}=6 p F(\text { Note 1) } \end{aligned}$	-	$\begin{aligned} & 1.75 \\ & 2.04 \end{aligned}$	2.8	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{t}_{\text {s }}$	Settling Time	90% point to $100 \% \pm 2 \%$, no peaking network, $\mathrm{C}_{\mathrm{L}}=3.5 \mathrm{pF}$	-	-	6	ns
gm	Transconductance	$\begin{aligned} & \mathrm{V}_{\text {VIG }}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{\text {VIG }}=1.0 \mathrm{~V} \\ & \mathrm{~V}_{\text {VIG }}=0.0 \mathrm{~V} \end{aligned}$	$\begin{array}{r} 400 \\ 70 \\ -25 \end{array}$	二	$\begin{gathered} 600 \\ 110 \\ 25 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{mS} \text { (Note 2) } \\ \mathrm{mS} \\ \mathrm{mS} \\ \hline \end{gathered}$
$\underline{L E}$	Amplifier Linearity Error	$\mathrm{V}_{\mathrm{VIG}}=4.0 \mathrm{~V}, \mathrm{~V}_{\text {VOF }}=1.0 \mathrm{~V}$	-	-	± 2	\%GS (Note 3)
LEGA	Gain Adjust Linearity Error	$\mathrm{V}_{\mathrm{VIN}}=0.20 \mathrm{~V}, \mathrm{~V}_{\mathrm{VOF}}=1.0 \mathrm{~V}$	-	-	± 2	\%
TD	Thermal Distortion		-	-	± 2	\%
RVIN	Signal Input Impedance	$\mathrm{V}_{\mathrm{VIN}}=0.0 \mathrm{~V}$	10k	20k	-	Ω
$\mathrm{C}_{\text {VIN }}$	Signal Input Capacitance	$\mathrm{V}_{\text {VIN }}=0.0 \mathrm{~V}$	-	2	-	pF

NOTES: 1. Total load capacitance on the output node of the IC including approximately $3 p F$ load capacitor, 2 pF parasitic board capacitance, and 1 pF parasitic probe capacitance, with a peaking inductor as shown in the typical connection diagram.
2. " S " - Siemens (I / N).
3. "\%GS" means percent of grey scale, referring to RS-343 standard video levels.

DC ELECTRICAL CHARACTERISTICS: $\mathrm{V}_{E E}=-10.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{AA}}=+70 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=200 \Omega, \mathrm{~V}_{\mathrm{BLANK}}=0.4 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
$V_{\text {REF }}$	Reference Output Voltage	$\mathrm{l}_{0}=2 \mathrm{~mA}$	5.25	-	5.75	V
IVCC	Positive Supply Current		40	-	70	mA
lvee	Negative Supply Current		-65	-	-100	mA
lVCB	Common Base Supply Current		21	-	40	mA
Iblank	Blank Input Current	$\begin{aligned} & \mathrm{V}_{\text {BLANK }}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\text {BLANK }}=2.4 \mathrm{~V} \end{aligned}$	$\begin{array}{r} \hline-600 \\ -400 \\ \hline \end{array}$		$\begin{aligned} & -400 \\ & -200 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
IVOF	Offset Adjust Input Current	$\mathrm{V}_{\text {VOF }}=1 \mathrm{~V}$	0.5	-	10	$\mu \mathrm{A}$
IVIG	Gain Adjust Input Current	$\mathrm{V}_{\mathrm{VIG}}=5 \mathrm{~V}$	0.5	-	10	$\mu \mathrm{A}$
IVIN	Signal Input Current	$\mathrm{V}_{\mathrm{VIN}}=0 \mathrm{~V}$	-50	-	50	$\mu \mathrm{A}$
10	Output Current	$\begin{aligned} & V_{\text {BLANK }}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{VOF}}=1.0 \mathrm{~V} \\ & \mathrm{~V}_{\text {BLANK }}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{VOF}}=3.0 \mathrm{~V} \\ & \mathrm{~V}_{\text {VIN }}=0.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{VOF}}=0.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{VIG}}=4.0 \mathrm{~V} \\ & V_{\mathrm{VIN}}=0.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{VOF}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{VIG}}=0.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -1 \\ & -1 \\ & \hline-80 \end{aligned}$	-	$\begin{gathered} \hline 1 \\ 1 \\ 25 \\ 120 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
$\overline{\Delta \mathrm{l} / \Delta \mathrm{T}}$	Output Current vs Temperature	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	-2	-	2	mA
$\Delta \mathrm{l} / \Delta \mathrm{VIG}$	Output Current vs Gain Adjust	$\mathrm{V}_{\mathrm{VIN}}=0 \mathrm{~V}, \Delta \mathrm{~V}_{\mathrm{VIG}}=5.0 \mathrm{~V}$	-10	-	10	mA
$\Delta \mathrm{l} / \Delta \mathrm{VIN}$	Output Current vs Signal Adjust	$\mathrm{V}_{\text {BLANK }}=2.4 \mathrm{~V}, \Delta \mathrm{~V}_{\text {VIN }}=0.3 \mathrm{~V}$	-1	-	1	mA
CMRR	Common Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}= \pm 0.5 \mathrm{~V}$	-	40	-	dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\text {VEE }}, \mathrm{V}_{\text {VCC }}= \pm 5 \%$	25	30	-	dB

MONOLITHIC, HIGH VOLTAGE VIDEO DRIVER FOR CRT MONITORS

Typical Connection Diagram

${ }^{1}$ SYNC Period
${ }^{2}$ BLANK only period
${ }^{3}$ BLACK period
${ }^{4}$ Video Signal

APPLICATIONS INFORMATION

$\mathrm{V}_{\mathrm{IN}}+, \mathrm{V}_{\mathrm{IN}}{ }^{-}$

$\mathrm{V}_{\text {IN }}+$ and $\mathrm{V}_{1 N^{-}}$are the analog input pins. It is recommended that signals applied to these inputs be kept within $\pm 1.3 \mathrm{~V}$ with respect to ground. The input pins accept RS-343 signals of $\mathrm{V}_{\mathrm{VIN}}= \pm 0.714 \mathrm{mV}$ p-p, and will operate properly with common mode range of $\pm 0.5 \mathrm{~V}$ with respect to ground (excluding signal). Although large offsets can be handled safely without damage to the device, output linearity suffers and therefore is not recommended.

$V_{I G}$

$V_{\text {IG }}$ is the overall DC gain control that will vary the device gain from 0 to 80 . An internal reference supply, $\mathrm{V}_{\text {REF }}$ (Pin 2), provides the 5 V nominally needed to drive the gain and offset inputs (see typical connection diagram). Normally a $5 \mathrm{k} \Omega$ potentiometer between $\mathrm{V}_{\text {REF }}$ and ground varies the gain, but an external source can be used, instead of $\mathrm{V}_{\mathrm{REF}}$, with some additional degradation of gain stability with temperature.

Gain control through V_{IG} is a linear relationship. Zero to 100% of the gain range of 0 to 100 is achieved by varying this input from 0 to 5 volts. This yields the following relationship for overall voltage gain of this device (for $l_{0} \leq 250 \mathrm{~mA}$):

$$
\begin{aligned}
& V_{A A}-V_{O}=V_{I N}^{*} g_{m} * R_{L} \\
& V_{A A}-V_{O}=V_{I N}(V)\left(V_{I G}(V) * 0.1^{*} R_{L}\right)
\end{aligned}
$$

The overall gain of this device can vary by $\pm 20 \%$ due to normal process variations of internal components (<150ppm/ ${ }^{\circ} \mathrm{C}$). If multiple devices are used in a system provisions should be made so that they all track thermally (i.e., a common heat sink), to offset any changes with varying ambient conditions.

$V_{\text {of }}$

$V_{\text {OF }}$ is an input control which sets the output quiescent current and therefore the output offset voltage (see Black level). Output quiescent current can be adjusted from 5 mA to 55 mA when $\mathrm{V}_{\text {OF }}$ is adjusted from 0 to 5.5 V . Normally adjustment is done by using a $5 \mathrm{k} \Omega$ potentiometer between $\mathrm{V}_{\text {REF }}$ and ground (see typical application diagram).

TYPICAL RGB CONFIGURATION

MONOLITHIC, HIGH VOLTAGE VIDEO DRIVER FOR CRT MONITORS

BLANK

When asserted (Blank = TTL High), this input disables the video signal and allows the output to rise to the predetermined blank level independent of the V_{OF} control when $V_{\text {OF }}$ is between 0 to 3 V . Above 3 V there is some interaction between $V_{\text {OF }}$ and the Blank level. Blank is independent of the input signal.

BLACK

Black level is the output voltage developed across the external resistor load that is achieved with 0 V video input. This level can be modified by the quiescent operating point setup at the $\mathrm{V}_{\text {OF }}$ input (Pin 3). Adjustments for output current from 5 mA to 55 mA are easily made by varying the bias as V_{OF} from 0 V to 5.5 V .

$V_{\text {REF }}$

$V_{\text {REF }}$ is a bias reference made available for ease in adjusting the offset, and gain inputs. This is a zener reference with a nominal output voltage of $5.5 \mathrm{~V} \pm 5 \%$ which can source up to 4 mA .

$V_{C B}$

The output stage consists of a common-base highvoltage stage and a high-speed low voltage current amplifier in a cascode arrangement. The $V_{C B}$ input is the base connection to the common base device of this stage. Care should be taken to provide a stable DC voltage at this point of nominally +10 V . High frequency compensation at this input is required to avoid output oscillations. A series 15Ω resistor with a 15 pF capacitor to ground is recommended (see typical connection diagram). Smaller values of this RC combination will improve output rise/fall times, but can cause output oscillations near 330 MHz .

SUB

SUB is the internal connection to the substrate and must be connected to $V_{E E}$, the most negative voltage applied to the device. Proper bypassing of the substrate supply, SUB (Pins 20,21) and the V_{EE} supply (Pins 8,9) is required to prevent output oscillations.

Vo

The output of the 1900 is an open collector of a cascode circuit. This output works with nominal output supplies of V_{AA} $=+70 \mathrm{~V}$. The high voltage supply must be greater than any applied $\mathrm{V}_{\text {CB }}$ voltage for proper operation. The 1900 drives loads up to 250 mA . Optimum performance can be achieved when a peaking network is used (see typical connection diagram).

Power Supply

$\mathrm{A}+10 \mathrm{~V}$ and -10.5 V supply are required for proper operation. These supplies can be set at $\pm 12 \mathrm{~V}$ for convenience but this will add additional heat through power dissipation internal to the package. The high voltage supply can be any voltage above the V_{CB} supply, but not greater than $V_{C B}$ plus 65 V . To achieve good performance from the 1900 , close attention to high frequency grounding practices and printed circuit board layout is mandatory.

Supply Sequencing

Power supply sequencing is important to avoid internal device latch-up. To avoid sequencing problems external diodes should be placed from V_{EE} to ground, from ground to $V_{C C}$ and from $V_{C C}$ to the output supply $V_{A A}$ (see typical connection diagram). With the external diodes in the circuit the most negative supply, V_{EE}, should be turned on first.

Power Dissipation

The 1900 dissipates a large amount of power due to different speed and load driving requirements. The PowerTab package provides a low thermal resistance path from the chip to an external heat sink. Care should be taken in the board design to provide sufficient heat sinking capacity to allow operation over the intended operating range. When mounting to a chassis the device tab (heat sink) is attached to $\mathrm{V}_{\mathrm{EE}}(-10.5 \mathrm{~V})$. It is recommended that a low thermal resistance insulator be used when attaching to a grounded chassis.

Initial Step

Initial setup of the device requires proper setup of the $V_{\text {OF }}$ and $V_{\text {IG }}$ inputs for balanced rise/fall times. If too little quiescent current is allowed it will slow the output rise time and limit eventual bandwidth.

HIGH-VOLTAGE VIDEO DRIVER FOR CRT MONITORS

FEATURES

- Output Signals Into 10 pF 90 V-p
- Rise and Fall Times @ $50 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ 2.5 ns
- Linear Gain Adjustment for Matching
- Versions Available to Match Specific CRT Requirements

APPLICATIONS

- CRT Monitors
- Projection
- High-Resolution Monochrome
- High-Resolution RGB

STANDARD CONFIGURATION DIAGRAM

HIGH-VOLTAGE VIDEO DRIVER FOR CRT MONITORS

GENERAL DESCRIPTION

The 1902 is a high-performance, high-voltage amplifier designed to drive the cathode in high-resolution, highbrightness CRT monitors and projection displays.

The 1902 is replete with differential inputs, blanking control, linearly-adjustable gain stage, adjustable offset, and a differential emitter-follower output stage. The 1902 is capable of driving 10 pF to 20 pF loads, can be driven directly from a standard video DAC, and is RS170 and RS343 compatible.

The 1902 has three variants for different applications. The internal high-voltage resistor and output transistors are
varied to strike the optimum balance between output voltage from 40 V to 90 V , and rise/fall times from 2.2 ns to 4.5 ns . The 1902-0 has no internal high-voltage resistor, thereby allowing the designer to select a high-voltage resistor to suit the specific application

The 1902 is housed in a hermetically-sealed, 30-pin flat pack with 50 -mil center pins on two sides. It has mounting flanges suitable for $4-40$ screws. The 1902-X is specified for $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operation. The $1902-\mathrm{X}-\mathrm{HR}$ is specified for $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operation.

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

V_{HV}	Pull-Up Resistor Supply $\left.\mathrm{V}_{\mathrm{HV}} \mathrm{Max}+5 \mathrm{~V}\right)$
$V_{\text {CC }}$	Positive IC Supply+17V
V_{EE}	Negative IC Supply-12V
VIDF	Differential Input Voltage+2V
VICM	Common-Mode Input Voltage $\pm 2 \mathrm{~V}$
$V_{\text {IG }}$	Gain Adjustment Input Voltage 6 V
VIOS	Offset Adjust Input Voltage +6 V
V BLANK	Blank Input Voltage+6V
$l_{\text {RP }}$	Total Current Through Rp (Note 1) 290 mA
$I_{\text {REF }}$	Reference Output Current 5 mA
TC	Operating Case Temperature Range
	1902-X-25 ${ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
	1902-X-HR $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

$T_{J} \quad$ Operating Junction Temperature Range \qquad $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ θ_{Jc} Junction-to-Case Thermal Resistance $10^{\circ} \mathrm{C} / \mathrm{W}$ (for QCAS and Control IC)
$1.25^{\circ} \mathrm{C} / \mathrm{W}$
(for R_{p} internal)
$\mathrm{T}_{\text {STG }} \quad$ Storage Temperature Range....$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ts Lead Temperature (Soldering, $<10 \mathrm{sec}$) $\ldots+260^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS：$T_{C}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{EE}}=-10.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{HV}}=\mathrm{Max}$ ，that is： 120 V for 1902－0， 2 and 70 V for 1902－4， $\mathrm{V}_{\mathrm{BLANK}}=\mathrm{TTL} L \mathrm{Lo}, \mathrm{V}_{\mathrm{IG}}=\mathrm{V}_{\mathrm{OF}}= \pm \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}{ }^{(2)}$ ，unless otherwise noted．

Symbol	Parameter		Test Conditions	Min	Typ	Max	Unit
Input V_{IN}	Input Voltage Range		Referenced to Ground， Excluding $V_{C M}$	－	－	± 0.714	V
I_{B}	Input Bias Current			－50	－	50	$\mu \mathrm{A}$
$\mathrm{V}_{\text {CM }}$	Input Common－Mode Range			－0．5	－	0.5	V
CMRR	Common－Mode Rejection Ratio		$\mathrm{V}_{\mathrm{CM}}= \pm 0.5 \mathrm{~V}$	－	40	－	dB
$\mathrm{R}_{\text {IN }}$	Signal Input Impedance			10	20	－	$\mathrm{k} \Omega$
$\mathrm{C}_{\text {IN }}$	Signal Input Capacitance			－	2	－	pF
Vof	Offset Adjust Input Voltage			0	－	5.5	V
lof	Offset Adjust Input Current		$\mathrm{V}_{\mathrm{OF}}=1 \mathrm{~V}$	0.5	－	10	$\mu \mathrm{A}$
$V_{\text {IG }}$	Gain Adjust Input Voltage			0	－	5	V
IIG	Gain Adjust Input Current		$V_{\text {IG }}=5 \mathrm{~V}$	0.5	－	10	$\mu \mathrm{A}$
Digital Inputs			$\mathrm{V}_{\text {BLANK }}=0.4 \mathrm{~V}$	－600	－	－400	$\mu \mathrm{A}$
$\mathrm{IH}^{\text {IL }}$	Input Logic＂0＂Current						
I_{H}	Input Logic＂1＂Current		$\mathrm{V}_{\text {BLANK }}=2.4 \mathrm{~V}$	－400	－	－200	$\mu \mathrm{A}$
Output Vo	Output Voltage Range，Peak－to－Peak Internal Pull－Up Resistor	$\begin{aligned} & 1902-0,-2 \\ & 1902-4 \end{aligned}$	$\begin{aligned} & V_{H V}=\operatorname{Max}(\text { Note } 3) \\ & V_{H V}=\operatorname{Max} \end{aligned}$	－	－	$\begin{aligned} & 90 \\ & 50 \end{aligned}$	$\begin{aligned} & V_{\text {P-p }} \\ & V_{\text {P-P }} \end{aligned}$
R_{P}		$\begin{aligned} & 1902-0 \\ & 1902-2 \\ & 1902-4 \\ & \hline \end{aligned}$	Rp is External，User－Selected	$\begin{gathered} \hline 0 \\ 380 \\ 190 \\ \hline \end{gathered}$	Note 3	$\begin{gathered} \hline 0 \\ 420 \\ 210 \\ \hline \end{gathered}$	$\begin{aligned} & \hline \Omega \\ & \Omega \\ & \Omega \\ & \hline \end{aligned}$
$V_{\Delta B}$	V Δ in BLANK Mode $\left(\mathrm{V} \Delta=\mathrm{V}_{\mathrm{HV}}-\mathrm{V}_{\mathrm{O}}\right)$	$\begin{aligned} & \text { (Note 4) } \\ & 1902-0,-2 \\ & \\ & 1902-4 \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{BLANK}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OF}}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{IG}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{BLANK}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OF}}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{IG}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{BLANK}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OF}}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{IG}}=5 \mathrm{~V} \\ & V_{\mathrm{BLANK}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OF}}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{IG}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\text {BLANK }}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OF}}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{IG}}=5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -R_{p} \\ & -0.4 \\ & -0.4 \\ & -0.2 \\ & -0.4 \end{aligned}$	二	$\begin{gathered} 2 \times R_{\mathrm{P}} \\ 0.8 \\ 1 \\ 0.4 \\ 1 \\ \hline \end{gathered}$	$\begin{aligned} & \hline \mathrm{mV} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\triangle \mathrm{BIR}}$	V \triangle BLANK Mode Input Rejection （ $\mathrm{V} \Delta=\mathrm{V}_{\mathrm{HV}}-\mathrm{V}_{\mathrm{O}}$ ）	$\begin{aligned} & \text { (Note 4) } \\ & 1902-0,-2 \\ & 1902-4 \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\text {BLANK }}=2.4 \mathrm{~V}, \Delta \mathrm{~V}_{\mathrm{IN}}=0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IG}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\text {BLANK }}=2.4 \mathrm{~V}, \Delta \mathrm{~V}_{\text {IN }}=0.3 \mathrm{~V}, \mathrm{~V}_{\text {IG }}=5 \mathrm{~V} \\ & \mathrm{~V}_{\text {BLANK }}=2.4 \mathrm{~V}, \Delta \mathrm{~V}_{\mathrm{IN}}=0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IG}}=5 \mathrm{~V} \end{aligned}$	－	三－	$\begin{gathered} \pm 2 \times R_{p} \\ \pm 0.8 \\ \pm 0.4 \end{gathered}$	$\begin{aligned} & \hline \mathrm{mV} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \hline \end{aligned}$
$\mathrm{V} \Delta \mathrm{V}_{\text {OS }}$	$\mathrm{V} \Delta$ vs Offset Adjust Min Max	$\begin{aligned} & 1902-0,-2 \\ & 1902-4 \\ & 1902-0,-2 \\ & 1902-4 \end{aligned}$	$\begin{aligned} & V_{\mathrm{OF}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IG}}=3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OF}}=0 \mathrm{~V}, V_{\mathrm{IG}}=3.5 \mathrm{~V} \\ & V_{\mathrm{OF}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OF}}=5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.1 \\ & 32 \\ & 16 \end{aligned}$	－	$\begin{gathered} 10 \\ 6 \\ 52 \\ 26 \end{gathered}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{V} \Delta \mathrm{V}_{\mathrm{IG}}$	V Δ vs Gain Adjust （Gain Adjust Rejection）	$\begin{aligned} & \text { (Note 4) } \\ & \text { 1902-0, -2 } \\ & 1902-4 \end{aligned}$	$\begin{aligned} & \Delta V_{I G}=5 \mathrm{~V} \\ & \Delta V_{I G}=5 \mathrm{~V} \\ & \Delta V_{I G}=5 \mathrm{~V} \end{aligned}$	－	二	$\begin{gathered} \pm 10 \times R_{\mathrm{P}} \\ \pm 4 \\ \pm 2 \\ \hline \end{gathered}$	$\begin{aligned} & \hline \mathbf{m V} \\ & \mathbf{V} \\ & \mathbf{V} \end{aligned}$
$\mathrm{V} \Delta \mathrm{T}_{\mathrm{c}}$	V Δ Over Temperature	$\begin{aligned} & \text { (Note 4) } \\ & 1902-0,-2 \\ & 1902-4 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{C}}=+25^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{C}}=+25^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \end{aligned}$	－	－	$\begin{gathered} \pm 2 \times R_{p} \\ \pm 0.8 \\ \pm 0.4 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \hline \end{aligned}$
$\mathrm{V}_{\text {REF }}$	Reference Voltage		V_{CC} and $\mathrm{V}_{\mathrm{EE}}=$ Nominal $\pm 10 \%$	5.25	－	5.75	V
IREF	Reference Current			－	－	4	mA

ELECTRICAL CHARACTERISTICS (Cont.)

Limits printed in boldface type are guaranteed and are 100% production tested. Limits in normal font are guaranteed but not 100% tested. Standard product tested at room temperature only. HR product tested at $+125^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}, \&-55^{\circ} \mathrm{C}$.
NOTES: 1. This limit only applies when V_{HV} is greater than 90 V .
2. Total load capacitance on the output mode of the IC includes load capacitance and parasitic.
3. All characterization measurements are made using a 400Ω resistor: internal (-2) or external (-0).
4. This specification applies to the $1902-0$ when a custom pull-up resistor is selected by the user.
5. "\%GS" means percent of grey scale, referring to RS343 standard video levels.
6. Rise and fall times depend on the value of R_{P} and L_{P}, peaking inductor (user-selected) and output load.
7. To meet the maximum speed, input rise times of less than 1 ns are needed. These limits are tested to guarantee device functionality.
8. See Table I, page 6, for power dissipation specifications.

HIGH-VOLTAGE VIDEO DRIVER

 FOR CRT MONITORS
ORDERING INFORMATION

| Part
 Number | $\mathbf{R}_{\mathbf{P}}$
 (Ω) | High Voltage
 (\mathbf{V}) | $\mathbf{t}_{\mathbf{R}}$ At $\mathbf{V P P}^{\prime}$ Max |
| :--- | :---: | :---: | :---: | :---: | | Case Operating
 Temperature |
| :---: |
| $1902-0$ |

NOTES: $1 . R_{P}$ is user-defined and supplied. The intemal $R_{P}=0 \Omega$.
2. t_{R} is dependent upon user-defined R_{P} and $V_{H V}$.

EVALUATION BOARDS

Board Number	Driver Number	Description
6149-0	1902-0	These are demonstration boards which allow a user to quickly and easily evaluate the operating characteristics of the video display drivers in conjunction with the user's display. These cards contain the chosen driver, all necessary connectors (power supply
6149-2	1902-2	input/output, control signal) as well as gain and offset adjustment circuits. These boards are compact ($4.5^{\prime \prime} \times 4.5^{\prime \prime} \mathrm{max}$) and are supplied with an attached heat sink for thermal
6149-4	1902-4	management. An application note is included with evaluation board to simplify the evaluation of driver performance.
6149-98		Heat sink kit used with the evaluation board.
6149-99		Fully assembled evaluation board with no hybrid inserted.

APPLICATIONS INFORMATION

Initial Setup

The initial setup of the 1902 requires proper setting of the $V_{\text {OF }}$ and $V_{\text {IG }}$ inputs to obtain balanced rise/fall times. If the quiescent current level (V_{OF}) is set too low, it slows the output rise time and limits the bandwidth of the 1902. If it is set too high, it will limit the fall time. Similar effects result if the gain control $\left(\mathrm{V}_{\mathrm{IG}}\right)$ is set too high.

Signal Inputs

The analog inputs are $+\mathrm{V}_{\text {IN }}$ and $-\mathrm{V}_{\text {IN }}$. They are designed to accept RS343 signals, $\pm 0.714 \mathrm{~V}_{\text {P-p. }}$. It is recommended that the input signal be limited to $\pm 1.3 \mathrm{~V}$ referenced to ground (0.714 V signal +0.5 V common mode). Offsets of $\pm 2 \mathrm{~V}$ (referenced to ground, signal included) can be tolerated without damage to the device, but are not recommended.

Output Voltage

The output voltage is controlled by the breakdown voltages of transistors $Q_{C A S}, Q_{N}$ and Q_{p} (see standard configuration diagram), and the value of R_{p}. The maximum output voltage swing is determined by $V_{P-P}=250 \mathrm{~mA} \times \mathrm{R}_{\mathrm{P}}$. The dash-numbered versions of the 1902 differ in the values
of R_{P}, L_{P}, and the breakdown voltages of the output transistors.

Rise and fall time specifications are based on very conservatively-peaked devices ($<5 \%$ overshoot); i.e., L_{P} is low. The pull-up resistor (R_{P}) is connected directly to pins 16 and 17. External peaking can be added, use inductors with a high self-resonant frequency, and try to minimize capacitive coupling to ground. If no external resistors or inductors are added, use good, high-frequency bypassing on pins 16 and 17.

Care should be taken to limit the amount of the gain and offset adjustment so the total current through Rp does not cause excessive power dissipation. The gain adjust can set the AC current swing to greater than $250 \mathrm{~mA}(250 \mathrm{mAP}$. $P=100 V_{P-p}$ on 400Ω). Higher currents and lower Rp values result in faster rise and fall times. For $\mathrm{V}_{\mathrm{HV}}>90 \mathrm{~V}$, do not exceed a total of 290 mA through Rp.

Access to the internal Rp also means the 1902 canbevery easily configured for low power (but slower speed) applications by adding external resistance. Note that the device is characterized with a 400Ω resistor. Higher R_{p} values will degrade other specifications in addition to rise/fall times.

If large arc protection resistors are used ($>50 \Omega$), series inductance may improve the rise time of the output signal.

DC Gain (Contrast) Control

$V_{I G}$ is the DC gain (contrast) control input. It can vary the device gain linearly from 0 to 80 by inputting a voltage from 0 V to 5 V . The internal reference ($\mathrm{V}_{\mathrm{REF}}$, pin 13) is designed to drive this input as well as the offset control input. Normally, a $5 \mathrm{k} \Omega$ potentiometer between $\mathrm{V}_{\text {REF }}$ and GND (see standard configuration diagram) is used to vary the gain; however, any external 0 V to 5 V DC source can be used, but some temperature performance degradation will result.

The gain equation for the 1902 is:

$$
\begin{aligned}
V_{D} & =V_{H V}-V_{O} \\
& =V_{I N} \times V_{I G} \times 0.1(\pm 20 \%) \times R_{P}{ }^{*}(\pm 5 \%) \times 0.9
\end{aligned}
$$

${ }^{*} R_{P}$ is inside the hybrid. Standard values are $200 \Omega \pm 5 \%$ and $400 \Omega \pm 5 \%$. Other values can be added externally.

The overall gain of the 1902 may vary by $\pm 20 \%$ due to process variations of internal components. Temperature variations also effect gain by as much as $150 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. If more than one 1902 is used in a system, steps should be taken to make them track thermally (i.e., a common heat sink). This will reduce any mismatches due to varying ambient conditions.

Offset (Brightness) Control

$V_{\text {OF }}$ is the output offset (brightness) control input. It sets the quiescent output current in R_{p}, thereby setting the output quiescent voltage level. Output quiescent voltage can be adjusted from (several $\mu A \times R_{P}$) to ($100 \mathrm{~mA} \times R_{P}$), nominal. From $V_{H V}$ this is accomplished by inputting a DC voltage in the 0 V to 5.5 V range at V_{OF}. Normally, this input is from a 5 $\mathrm{k} \Omega$ potentiometer between $\mathrm{V}_{\text {REF }}$ and GND (see standard configuration diagram).

Blank

The blank input, when asserted (i.e., TTL HIGH), disables the video input of the 1902 and sets the output to approximately V_{Hv}. This input is independent of the input signal and operates with TTL levels.

Table I. Typical Power Dissipations

Reference Voltage

$\mathrm{V}_{\mathrm{REF}}$ is a zener reference with a nominal output voltage of $5.5 \mathrm{~V} \pm 5 \%$, and can source up to 4 mA . It is used to adjust offset and gain.

Power Supplies

Power supplies of $15 \mathrm{~V}(\pm 5 \%)$ and $-10.5 \mathrm{~V}(\pm 5 \%)$ are required for proper operation. The negative supply can be set to -12 V , but will increase the internal power dissipation and case temperature. V_{HV} is a function of the 1902 version selected. The maximum value is 120 V , allowing up to 90 $V_{\text {P-P }}$ output signals. Assume that the absolute maximum value is V_{HV} (listed in the specification table) plus 5 V ; i.e., the 1902-2 absolute maximum equals 125 V . It is recommended the 1902 not be operated above V_{HV}. Because the output from this type of circuit is referenced to the $V_{H V}$ rail, it is important that V_{HV} is very stable. In other words, there is no PSRR for V_{HV}. Your system supply will determine your DC stability.

Toachieve maximum high-frequency performance, good high-frequency grounding practices and PC board layout are mandatory.

Supply Sequencing

It is essential that the V_{HV} supply be brought up before V_{EE} and V_{CC} when using the higher voltage versions of the 1902. Supply sequencing is of less importance when V_{HV} is less than 90 V . The recommended sequence is $\mathrm{V}_{\mathrm{HV}}, \mathrm{V}_{\mathrm{CC}}$, then V_{EE}. If sequencing cannot be done, the supplies should be brought up within a few milliseconds of each other.

Power Dissipation

The 1902 power dissipation will vary in accordance to load requirements and pixel size. The 1902 flat pack is designed to provide a low thermal resistance path from the hybrid circuit to an external heat sink. Mounting flanges provide solid mechanical and thermal attachment of the package to the heat sink. In addition, the package is electrically isolated so no mounting insulators are needed and the heat sink can be at any convenient potential.

Device	V_{HV} (V)	Black Level (V)	White Level (V)	Max Signal (V_{o} - Vilack $_{\text {b }}$ (V)	\% of Time Signal is at			Average Power Output Stage (Notes 1, 2) (W)	Average Power Total (Notes 1, 2) (W)
					Blank Level (\%)	Black Level (\%)	White Level (\%)		
1902-2	120	110	20	0	100	0	0	0	2.5
1902-2	120	110	20	90	20	40	40	13.2	15.7
1902-4	70	65	15	0	100	0	0	0	2.5
1902-4	70	65	15	50	20	40	40	8.4	10.59

NOTES: 1. Input stage quiescent power is approximately 2.5 W .

[^5]
がTELEDYNE
 COMPONENTS

HIGH NEGATIVE-VOLTAGE VIDEO DRIVER FOR CRT MONITORS

FEATURES

- Output Signals Into 10 pF Loads \qquad 80 Vp-p
- Rise and Fall Times @ 80 Vp-p
\qquad <4 ns
- User-Defined Pull-Down Resistor
- Linear Gain Adjustment for Matching
- Versions Available to Match Specific CRT Requirements

APPLICATIONS

CRT Monitors

- Projection
- High-Resolution
- Beam Index

STANDARD CONFIGURATION

HIGH NEGATIVE-VOLTAGE VIDEO DRIVER FOR CRT MONITORS

GENERAL DESCRIPTION

The 1903 is a high-performance, high-voltage amplifier designed to drive the grid in high-resolution, high-brightness CRT monitors and projection displays.

The 1903 is replete with differential inputs, blanking control, linearly-adjustable gain stage, adjustable offset and a differential emitter-follower output stage. It is capable of driving 10 pF to 20 pF loads, can be driven directly from a standard video DAC, and is RS170 and RS343 compatible.

The 1903 has four variants to suit different applications. There are basically two types: Those with internal pull-down resistors and those that allow the user to choose and apply their own pull-down resistor. The parts within these two
types differ in peak-to-peak output signal swing. The 19030 and 1903-2 are 90 Vp-p versions specified at less than 4 ns rise and fall times. The 1903-0 and 1903-2 operate from a -95 V rail.

The 1903's are housed in hermetically-sealed, 30-pin flat packs with mounting flanges suitable for 4-40 screws. The standard $1903-\mathrm{X}$ is specified for $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operation. The $1903-X-H R$ is specified for $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operation.

PIN CONFIGURATION

HIGH NEGATIVE-VOLTAGE VIDEO DRIVER FOR CRT MONITORS

ORDERING INFORMATION

Part Number	$\mathbf{R}_{\mathbf{P}}$	$\mathbf{V}_{\text {HV }}$	Output Range	Rise Time	Fall Time	Case Operating Temperature
$1903-0$	$0 \Omega^{\star}$	-95 V	-5 V to -85 V	${ }^{* *}$	${ }^{* *}$	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$1903-0-\mathrm{HR}$	$0 \Omega^{\star}$	-95 V	-5 V to -85 V	${ }^{* *}$	${ }^{* *}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$1903-2$	400Ω	-95 V	-5 V to -85 V	3 ns	4.5 ns	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$1903-2-\mathrm{HR}$	400Ω	-95 V	-5 V to -85 V	3 ns	4.5 ns	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

*User must provide an external Rp.
${ }^{* *}$ Rise and fall times for devices with external R_{P} will approach the times specified here for corresponding values of external R_{P} versus internal R_{P} and output voltage swing.

EVALUATION BOARDS

Board Number	Driver Number
$6150-0$	1903
$6150-2$	These are demonstration boards which allow a user to quickly and easily evaluate the operating characteristics of the video display drivers in conjunction with the user's display. These cards contain the chosen driver, all necessary connectors (power supply, input/output, control signal) as well as gain and offset adjustment circuits. These boards are compact (4.5" $\times 4.5 " \max$) and are supplied with an attached heat sink for thermal management. An application note is included with evaluation board to simplify the evaluation of driver performance.
$6150-98$	Heat sink used with the evaluation board. Fully assembled evaluation board with no hybrid inserted.

ABSOLUTE MAXIMUM RATINGS

$\mathrm{V}_{\text {HV }}$ Load Resistor Supply................... (V HV Max +5 V)
$V_{\text {cc }}$ Positive IC Supply22V
$V_{\text {EE }} \quad$ Negative IC Supply-12V
$V_{\text {IDF }}$ Differential Input Voltage2V
$V_{\text {ICM }}$ Common-Mode Input Voltage $\pm 2 \mathrm{~V}$
$V_{I G}$ Gain Adjustment Input Voltage6V
$V_{\text {OF }}$ Offset Adjustment Input Voltage6V
$V_{\text {BLANK }}$ Blank Input Voltage 6 V
IRP Total Current Through RP (Note 1) 290 mA
$I_{\text {REF }}$ Reference Output Current......................... 5 mA

TC Operating Case Temperature Range 1903 $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ 1903-X-HR $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{J}} \quad$ Operating Junction Temperature Range .. $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Junction-to-Case Thermal Resistance $10^{\circ} \mathrm{C} / \mathrm{W}$ (For $\mathrm{Q}_{\text {CAS }}$ and control IC) $1.25^{\circ} \mathrm{C} / \mathrm{W}$ (For R_{p} internal)
$T_{\text {STG }}$ Storage Temperature Range.....$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ $\mathrm{T}_{\mathrm{S}} \quad$ Lead Temperature (Soldering, $<10 \mathrm{sec}$) $\ldots+260^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS: $T_{C}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{EE}}=-10.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{HV}}=\mathrm{Max}$, that is, $-95 \mathrm{~V}, \mathrm{~V}_{\mathrm{BLANK}}=$ TTL Low, $\mathrm{V}_{\mathrm{IG}}=\mathrm{V}_{\mathrm{OF}}= \pm \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}^{(2)}$, and external $\mathrm{R}_{\mathrm{P}}=400 \Omega$ (1903-0), unless otherwise noted.

Symbol	Parameter	Test Conditions	Sbgrp *	Min	Typ	Max	Unit
Input $V_{I N}$	Input Voltage Range	Referenced to Ground, Excluding $V_{C M}$	-	-	-	± 0.714	V
I_{B}	Input Bias Current		-	-50	-	50	$\mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{CM}}$	Input Common-Mode Range		-	-0.5	-	0.5	V

ELECTRICAL CHARACTERISTICS (Cont.)

Symbol Parameter Test Conditions			Min	Typ	Max	Unit
Input (cont.)						
CMRR	Common-Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}= \pm 0.5 \mathrm{~V}$	-	40	-	dB
$\mathrm{R}_{\text {IN }}$	Signal Input Impedance		10	20	-	$k \Omega$
$\mathrm{C}_{\text {IN }}$	Signal Input Capacitance		-	2	-	pF
$\mathrm{V}_{\text {OF }}$	Offset Adjust Input Voltage		0	-	5.5	V
lof	Offset Adjust Input Current		0.5	-	10	$\mu \mathrm{A}$
VIG	Gain Adjust Input Voltage		0	-	5	V
IG	Gain Adjust Input Current	$\mathrm{V}_{\mathrm{IG}}=5 \mathrm{~V}$	0.5	-	10	$\mu \mathrm{A}$
Digital Inputs						
IIL	Input Logic "0" Current	$\mathrm{V}_{\text {BLANK }}=0.4 \mathrm{~V}$	-600	-	-400	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IH }}$	Input Logic "1" Current	$\mathrm{V}_{\text {BLANK }}=2.4 \mathrm{~V}$	-400	-	-200	$\mu \mathrm{A}$
Output v_{0}	Output Voltage Range 1903-0, -2	$\mathrm{V}_{\mathrm{HV}}=\mathrm{Max}$	-	-	80	$\mathrm{V}_{\text {P.P }}$
Rp	Internal Pull-Down $1903-0$ Resistor $1903-2$	R_{P} is External and is User-Supplied	380	0	$\overline{420}$	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$
$V_{\triangle B}$	V_{Δ} in BLANK Mode $1903-0$ $($ Note 4) $\left(\mathrm{V}_{\Delta}=\mathrm{V}_{\mathrm{HV}}-\mathrm{V}_{\mathrm{O}}\right)$ $1903-2$	$\begin{aligned} & V_{\mathrm{BLANK}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OF}}=1 \mathrm{~V}, \mathrm{~V}_{I G}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{BLANK}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OF}}=1 \mathrm{~V}, \mathrm{~V}_{I G}=5 \mathrm{~V} \end{aligned}$	$\begin{array}{\|c\|} \hline-2 \times R_{P} \\ -2.5 \times R_{P} \\ -1 \end{array}$	-	$\begin{aligned} & \mathrm{R}_{\mathrm{P}} \\ & \\ & 0.4 \\ & 0.4 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\triangle \mathrm{BIR}}$	BLANK Mode Input (Note 4) Rejection V 1903-0, -3	$\begin{aligned} & V_{B L A N K}=2.4 \mathrm{~V}, \Delta \mathrm{~V}_{I N}=0.3 \mathrm{~V}, \mathrm{~V}_{1 G}=5 \mathrm{~V} \\ & V_{B L A N K}=2.4 \mathrm{~V}, \Delta \mathrm{~V}_{I N}=0.3 \mathrm{~V}, \mathrm{~V}_{1 G}=5 \mathrm{~V} \end{aligned}$	$\begin{gathered} -2 \times R_{p} \\ -0.8 \end{gathered}$	-	$\begin{gathered} 2 \times R_{\mathrm{P}} \\ 0.8 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\Delta} \mathrm{V}_{\text {OS }}$	V_{Δ} Offset Voltage (Note that 1903-0 $\begin{array}{ll}\text { Min } & 1903-2 \\ \text { Max } & 1903-2\end{array}$	uses 400Ω load resistor) $\begin{aligned} & \mathrm{V}_{\mathrm{IG}}=4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OF}}=5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -0.2 \\ & -52 \\ & \hline \end{aligned}$	-	$\begin{array}{r} -10 \\ -32 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\mathrm{O}} \mathrm{V}_{\text {IG }}$	V_{Δ} vs Gain Adjust $\begin{array}{ll}1903-0 \\ & 1903-2\end{array}$	$\begin{aligned} & \Delta V_{\mathrm{IG}}=5 \mathrm{~V} \\ & \Delta V_{\text {IG }}=5 \mathrm{~V} \end{aligned}$	-	-	$\begin{gathered} \pm 10 \times R_{R} \\ \pm 4 \end{gathered}$	mV
$\mathrm{V}_{\Delta} \mathrm{T}_{\mathrm{c}}$	$\begin{array}{ll}\mathrm{V}_{\Delta} \text { Over Temperature } & 1903-0 \\ & 1903-2\end{array}$	$\begin{aligned} & \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{C}}=+25^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \end{aligned}$	-	二	$\begin{gathered} \pm 2 \times R_{P} \\ \pm 0.84 \end{gathered}$	mV
$\mathrm{V}_{\text {REF }}$	Reference Voltage	V_{CC} and $\mathrm{V}_{\mathrm{EE}}=$ Nominal $\pm 10 \%$	5.25	-	5.75	V
IREF	Reference Current		-	-	4	mA
Transfer A	Voltage Gain (Note 4) 1903-0, -2	$\mathrm{V}_{\mathrm{IG}}=3 \mathrm{~V}, \Delta \mathrm{~V}_{\mathrm{IN}}=0.6 \mathrm{~V}$	71.5	-	133.8	V/V
$L_{E A}$	Linearity Error Amplifier $\mathrm{V}_{\mathrm{IG}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OF}}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}} \leq \pm 0.5 \mathrm{~V}$		-	-	± 2	$\begin{aligned} & \text { \%GS } \\ & \text { (Note 3) } \end{aligned}$
$\mathrm{LE}_{\mathrm{GA}}$	Linearity Error Gain Adjust	$\mathrm{V}_{\mathrm{IN}}=0.2 \mathrm{~V}, \mathrm{~V}_{\text {OF }}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}} \leq \pm 0.5 \mathrm{~V}$	-	-	± 2	\%GS (Note 3)
Dynamic t_{R}	Output Rise Time $1903-0,-2$ From $\pm \mathrm{V}_{\mathbb{I N}}$ (Note 5) $25^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	$\begin{aligned} & \Delta \mathrm{V}_{\mathbb{N}}=0.6 \mathrm{~V}, \mathrm{t}_{\mathrm{R}}\left(\mathrm{~V}_{\mathrm{IN}}\right)=1 \mathrm{~ns}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{O}}=-5 \mathrm{~V} \text { to }-85 \mathrm{~V} \text { (Note 2) } \end{aligned}$	-	3	4	ns
t_{F}	Output Fall Time $1903-0,-2$ From $\pm V_{\text {IN }}$ (Note 5) $25^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	$\begin{aligned} & \Delta V_{I N}=0.6 \mathrm{~V}, \mathrm{t}_{\mathrm{R}}\left(\mathrm{~V}_{\text {IN }}\right)=1 \mathrm{~ns}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{O}}=-5 \mathrm{~V} \text { to }-85 \mathrm{~V}(\text { Note 2) } \end{aligned}$	-	4	6	ns
$t_{\text {R }}, t_{\text {F }}$	Output Rise and Fall 1903-0, -2 Time From $\pm \mathrm{V}_{\mathbb{I}}$ (Note 5)	HR only, $125^{\circ} \mathrm{C}$	-	6	9	ns
t ${ }_{\text {BPW }}$	Blanking Input Pulse Width		30	-	-	ns
THD	Thermal Distortion		-	-	± 2	\% GS (Note 3)

ELECTRICAL CHARACTERISTICS (Cont.)

Limits printed in boldface type are guaranteed and 100% production tested. Limits in normal font are guaranteed but not 100% production tested. Standard part tested at room temperature. HR parts tested at $+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C} \&+25^{\circ} \mathrm{C}$.
NOTES: 1. This limit only applies when V_{HV} is greater than -60 V .
2. Total load capacitance on the output mode of the IC includes load capacitance and parasitic.
3. "\%GS" means percent of grey scale, referring to RS343 standard video levels.
4. All characterization measurements are made using a 400Ω resistor.
5. Rise and fall times for devices with extemal R_{P} will approach the times specified here for corresponding values of extemal R_{P} versus intemal RP and output voltage swing, depending on PC board layout parasitics.
6. Refer to Table I, page 6, for power dissipation specifications.

APPLICATIONS INFORMATION

Initial Setup

The initial setup of the 1903 requires proper setting of the $\mathrm{V}_{\text {OF }}$ and $\mathrm{V}_{\text {IG }}$ inputs to obtain balanced rise and fall times. If the black level (V_{OF}) is set too low, it will slow the output fall time and limit the bandwidth of the 1903. If it is set too high, it will limit the rise time. Similar effects will result if the gain control $\left(\mathrm{V}_{\mathrm{IG}}\right)$ is set too high.

Signal Inputs

The analog inputs are $+\mathrm{V}_{\text {IN }}$ and $-\mathrm{V}_{\text {IN }}$. They are designed to accept RS343 signals, $\pm 0.714 \mathrm{~V}_{\mathrm{P}-\mathrm{P} \text {. It }}$ is recommended that the input signal be limited to $\pm 1.3 \mathrm{~V}$, referenced to ground (0.714 V signal +0.5 V common mode). Offsets of $\pm 2 \mathrm{~V}$ (referenced to ground, signal included) can be tolerated without damage to the device, but are not recommended.

Output Voltage

The output voltage is controlled by the breakdown voltages of transistors $Q_{C A S}, Q_{N}$, and Q_{P} (see standard configuration diagram), and the value of R_{p}. The maximum output voltage swing is determined by $V_{P P}=250 \mathrm{~mA} \times \mathrm{R}_{\mathrm{P}}$.

The rise and fall time specifications are based on conservatively-peaked devices ($<5 \%$ at the max Vp-p). The internal pull-down resistor (R_{P}) is connected directly to pins 16 and 17. External peaking can be added; use inductors with a high self-resonant frequency and try to minimize capacitive coupling to ground. If no external resistors or inductors are added, use good, high-frequency bypassing on pins 16 and 17.

If large arc-protection resistors are used; i.e., $>50 \Omega$, use of a series inductor may improve the rise time of the output signal.

DC Gain (Contrast) Control

V_{IG} is the DC gain (contrast) control input. It can vary the device gain linearly from 0 to 100 by inputting a voltage from 0 V to 5 V . The internal reference ($\mathrm{V}_{\mathrm{REF}}$, pin 13) is designed to drive this input as well as the offset control input. Normally, a $5 \mathrm{k} \Omega$ potentiometer between $\mathrm{V}_{\text {REF }}$ and GND (see standard configuration diagram) is used to vary the gain. However, any external 0 V to 5 V DC source can be used, but some temperature performance degradation will result.

The gain equation for the 1903 is:

$$
\begin{aligned}
{\left[\mathrm{V}_{\mathrm{HV}}-\mathrm{V}_{\mathrm{O}}\right]=} & \left(\mathrm{V}_{\mathrm{IN}} \times \mathrm{V}_{\mathrm{IG}} \times 0.1(\pm 20 \%)\right. \\
& \times \operatorname{RP}_{\mathrm{P}}(\pm 5 \%) \times 0.9
\end{aligned}
$$

[^6]The overall gain of the 1903 may vary by $\pm 20 \%$ due to process variations of the internal components. Temperature variations also affect gain by as much as $150 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. If more than one 1903 is used in a system, steps should be taken to have them track thermally; i.e., a common heat sink. This will reduce any mismatches due to varying ambient conditions.

HIGH NEGATIVE-VOLTAGE VIDEO DRIVER FOR CRT MONITORS

Offset (Brightness) Control

$V_{\text {OF }}$ is the output offset (brightness) control input. It sets the quiescent output current, in R_{P}, thereby setting the output quiescent voltage level. Output quiescent voltage can be adjusted from several $\mu \mathrm{A} \times$ Rp to $100 \mathrm{~mA} \times \mathrm{R}_{\mathrm{p}}$, nominal, from the V_{HV} rail. This is accomplished by inputting a $D C$ voltage in the 0 V to 5.5 V range at $\mathrm{V}_{\text {OFF }}$. Normally, this input is from a 5 kW potentiometer bertween $\mathrm{V}_{\text {REF }}$ and GND (see standard configuration diagram).

Blank

The blank input, when asserted (i.e., TTL HIGH), disables the video input of the 1903 and sets the output to approximately V_{HV}. This input is independent of the input signal and operates with TTL levels.

Reference Voltage

$V_{\text {REF }}$ is a zener reference with a nominal output voltage of $5.5 \mathrm{~V} \pm 5 \%$, and can source up to 4 mA . It is used in adjusting offset and gain.

Power Supply

Power supplies of $20 \mathrm{~V}(\pm 5 \%)$ and $-10.5 \mathrm{~V}(\pm 5 \%)$ are required for proper operation. The negative supply can be set to -12 V , but will increase the internal power dissipation and case temperature. V V_{HV} is a function of the 1903 version selected. The maximum voltage is -95 V , allowing up to 80 $\mathrm{V}_{\mathrm{P}-\mathrm{p}}$ output signals. The absolute maximum voltage, to preclude damage, is equal to the $\mathrm{V}_{H V}$ listed' in the specification table, plus 5 V . For example, the 1903-0 absolute maximum is -100 V . It is recommended that the high voltage supply not exceed the listed V_{HV}.

Due to the fact the output from this type of circuit is referenced to the $V_{H V}$ rail, there is no PSRR for $V_{H V}$. Therefore, it is important that the V_{HV} rail is very stable. Your system power supply will determine your DC stability.

To achieve maximum high-frequency performance, good high-frequency grounding practices and PC board layout are mandatory. For best performance, the case must be held at AC ground. That is, if the case cannot be grounded directly (such as through a grounded heat sink), it should be capacitively grounded.

Supply Sequencing

It is essential that the V_{HV} supply be brought up before $\mathrm{V}_{E E}$ and $\mathrm{V}_{C C}$ when using the higher voltage version of the 1903. Supply sequencing is less important when V_{HV} is less than -70 V . The recommended sequence is $\mathrm{V}_{\mathrm{HV}}, \mathrm{V}_{\mathrm{CC}}$ then V_{EE}. If sequencing is not possible, the supplies should be brought up within a few milliseconds of each other.

Power Dissipation

The 1903 power dissipation will vary in accordance to load requirements and pixel size. The 1903 flat pack is designed to provide a low thermal resistance path from the hybrid circuit to an external heat sink. Mounting flanges provide solid mechanical and thermal attachment of the package to the heat sink. In addition, the package is electrically isolated so no mounting insulators are needed and the heat sink can be at any convenient voltage potential. (See Table I.)

Table I. Typical Power Dissipations

Device	$\begin{aligned} & V_{\mathrm{HV}} \\ & (\mathrm{~V}) \end{aligned}$	Black Level (V)	White Level (V)	Max. Signal ($\mathrm{V}_{\mathrm{O}}-\mathrm{V}_{\mathrm{BLLACK}}$) (V)	\% of Time Signal is at			Average Power Output Stage (Notes 1, 2) (W)	Average Power Total (Notes 1, 2) (W)
					Blank Level (\%)	Black Level (\%)	White Level (\%)		
1903-2	-95	-85	-5	0	100	0	0	0	2.5
1903-2	-95	-85	-5	80	20	40	40	13.5	16

NOTES: 1. Input stage quiescent power is approximately 2.5 W .
2. Power dissipations listed do not include power dissipation due to switching.

Section 11
 Display Drivers

	Display A/D Converters	1
Binary A/D Converters	2	
Voltage-to-Frequency/Frequency-to-Voltage Converters	3	
Powsor Products	4	
Power Supply Control ICs	5	
ChosFET, Motor and PIN Drivers	6	
References	7	
High Performance Amplifiers/Buffers	9	
Video Display Drivers	10	
Display Drivers	$\mathbf{1 1}$	
Analog Switches and Multiplexers	12	
Data Communications	13	
Riscrete DMOS Products	14	
Reliability and Quality Assurance	15	
Ordering Information	16	
Package Information	17	
Sales Offices	18	

4-DIGIT CMOS DISPLAY DECODER/DRIVER

FEATURES

TC7211A (LCD DRIVER)

- 4-Digit Nonmultiplexed, 7-Segment LCD Outputs With Backplane Driver
- RC Oscillator On Chip Generates Backplane Drive Signal
- Eliminates DC Bias Which Degrades LCD Life
- Backplane Input/Output Pin Permits Synchronization of Cascaded Slave Device to a Master Backplane Signal
- Separate Digit Select Inputs to Accept Multiplexed BCD/Binary Inputs
- Binary and BCD Inputs Decoded to Code B (0 to 9, -, E, H, L, P, Blank)
- Pin Compatible and Functionally Equivalent to ICM7211A and DF411
- Connect to TC7135 in Flat Package for Compact 4-1/2 Digit Meter Systems

TC7212A (LED DRIVER)

- 28 Current Limited Outputs Drive Common-Anode LEDs at Greater than 5 mA Per Segment
- Brightness Input Allows Potentiometer Control of LED Segment Current Pin Also Serves as Digital Display Enable
- Same Input Configuration and Output Decoding as the TC7211A
- Pin compatible and Functionally Equivalent to iCM7212A

GENERAL DESCRIPTION

The TC7211A (LCD Decoder/Driver) and TC7212A (LED Decoder/Driver) is a direct drive, 4-digit, 7-segment display decoder and driver.

The TC7211A drives conventional LCDs. An RC oscillator, divider chain, backplane driver, and 28-segment outputs are provided on a single CMOS chip. The segment drivers supply square waves of the same frequency as the backplane, but in-phase for an OFF segment and out-ofphase for an ON segment. The net DC voltage applied between driver segment and backplane is zero.

The TC7212A Drives common -anode LED displays with 28 current controlled, low leakage, open, N -Channel output transistors. The brightness control input can be used as a digital display enable. A varying voltage at the control input will allow continuous display brightness control.

The TC7211A (LCD) and TC7212A (LED) requires only 4 data bit inputs and 4 digit select signals to interface with multiplexed BCD or binary output devices (such as the ICM7217, ICM7226, ICL7103 and TC7135). The 4-bit binary input code is decoded into the 7 -segment alphanumeric code known as "Code B."

The "Code B" output format results in a 0 to $9,-, \mathrm{E}, \mathrm{H}$, L, P or blank display. True BCD or binary inputs will be correctly decoded to the 7-segment display format.

The CMOS TC7211A and TC7212A are available in a 40-pin epoxy dual-in-line package and a compact 60-pin flat package. All inputs are protected against static discharge.

4-DIGIT CMOS DISPLAY DECODER/DRIVER

TC7211A
TC7212A
FUNCTIONAL BLOCK DIAGRAM

FUNCTIONAL BLOCK DIAGRAM

4-DIGIT CMOS DISPLAY DECODER/DRIVER

TC7211A TC7212A

PIN CONFIGURATIONS

4-DIGIT CMOS DISPLAY DECODER/DRIVER

PIN CONFIGURATIONS

4-DIGIT CMOS DISPLAY DECODER/DRIVER

ORDERING INFORMATION

Part No.	Driver Type	Package	Output Code	Input Config.
TC7211AIPL	LCD	40-Pin Plastic DIP	Code B	Multiplexed 4 -bit Binary or BCD
TC7212AIPL	LED	40-Pin Plastic DIP	Code B	Multiplexed 4 -bit Binary or BCD
TC7211AIJL	LCD	40-Pin CerDIP	Code B	Multiplexed 4-bit Binary or BCD
TC7212AIJL	LED	40-Pin CerDIP	Code B	Multiplexed 4 -bit Binary or BCD
TC7211AIBQ	LCD	60-Pin Flat Package Form Leads	Code B	Multiplexed 4 -bit Binary or BCD
TC7212AIBQ	LED	60-Pin Flat Package Form Leads	Code B	Multiplexed 4 -bit Binary or BCD

TEST CIRCUIT

TIMING DIAGRAMS

4-DIGIT CMOS DISPLAY DECODER/DRIVER

TC7211A
TC7212A

ABSOLUTE MAXIMUM RATINGS

Supply Voltage \qquad Input Voltage, Any Terminal
(Note 2) \qquad $\mathrm{V}^{+}+0.3 \mathrm{~V}, \mathrm{GND}-0.3 \mathrm{~V}$
Power Dissipation (Note 1) \qquad 0.8 W at $+70^{\circ} \mathrm{C}$

Operating Temperature Range $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec) $+300^{\circ} \mathrm{C}$
Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratingsonly, and functional operation of the device at these or any other conditions above
those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
NOTES:

1. This limit refers to that of the package and will not be realized during normal operation.
2. Due to the SCR structure inherent in the CMOS process, connecting any terminal to voltages greater than V^{+}or less that GND may cause destructive latch-up. For this reason it is recommended that inputs from extemal sources not operating on the same power supply not be applied to the device before its supply is established, and, in multiple supply systems, the supply to the TC7211A/TC7212A be tumed on first.

TABLE I: OPERATING CHARACTERISTICS

Test Conditions: All parameters measured with $\mathrm{V}+=5 \mathrm{~V}$
TC7211A Characteristics (LCD Decoder/Driver)

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
V_{SUP}	Operating Voltage Range		3	5	6	V
I_{OP}	Operating Current	Display Blank	-	10	50	$\mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{OSCl}}$	Oscillator Input Current	Pin 36	-	± 2	± 10	$\mu \mathrm{~A}$
$\mathrm{t}_{\mathrm{RFS}}$	Segment Rise/Fall Time	$\mathrm{C}_{\mathrm{L}}=200 \mathrm{pF}$	-	0.5	-	$\mu \mathrm{A}$
$\mathrm{t}_{\mathrm{RFB}}$	Backplane Rise/Fall Time	$\mathrm{C}_{\mathrm{L}}=5000 \mathrm{pF}$	-	1.5	-	$\mu \mathrm{s}$
$\mathrm{f}_{\mathrm{OSC}}$	Oscillator Frequency	Pin 36 Floating	-	16	-	kHz
f_{BP}	Backplane Frequency	Pin 36 Floating	-	125	-	Hz

TC7212A Characteristics (Common-Anode LED Decoder/Driver)

$\mathrm{V}_{\text {SUP }}$	Operating Voltage Range		4	5	6	V
lop	Operating Current	Pin 5 (Brightness),	-	10	50	$\mu \mathrm{A}$
	Display Off	Pins 27-34 = GROUND				
lop	Operating Current	Pin 5 at V_{+}, Display all 8's	-	200	-	mA
$I_{\text {SLK }}$	Segment Leakage Current	Segment Off	-	± 0.01	± 1	$\mu \mathrm{A}$
ISEG	Segment On Current	Segment $\mathrm{On}, \mathrm{V}_{\mathrm{O}}=+3 \mathrm{~V}$	5	8	-	mA
V_{IH}	Logic "1" High Input Voltage		3	-	-	V
$\mathrm{V}_{\text {IL }}$	Logic "0" Low Input Voltage		-	-	1	V
ILLK	Input Leakage Current	Pins 27-34	-	± 0.01	± 1	$\mu \mathrm{A}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance	Pins 27-34	-	5	-	pF
IBPLK	BP/Brightness Input Current Leakage	Measured at Pin 5 With Pin 36 at GND	-	± 0.01	± 1	$\mu \mathrm{A}$
$\mathrm{C}_{\text {BPI }}$	BP/Brightness Input Capacitance All Devices		-	200	-	pF

AC Characteristics (LCD and LED Decoder/Driver)

$t_{\text {SA }}$	Chip Select Active Pulse Width	Refer to Timing Diagrams	1	-	-	$\mu \mathrm{s}$
t_{DS}	Data Valid Time	Refer to Timing Diagrams	-	-	-	ns
t_{DH}	Data Hold Time	Refer to Timing Diagrams	200	-	-	ns
$\mathrm{t}_{\mathrm{IDS}}$	Inter-Digit Select Time	Refer to Timing Diagrams	2	-	-	$\mu \mathrm{s}$

4-DIGIT CMOS DISPLAY DECODER/DRIVER

INPUT DEFINITIONS

In this table, V^{+}and GND are considered to be normal operating input logic levels. For lowest power consumption, input signals should swing over the full supply.

Input	Pin No.	Condition	Function
B0	27 (49)	$\begin{aligned} & \mathrm{V}^{+}=\text {Logic " } 1 \text { " } \\ & \text { GND }=\text { Logic " } \end{aligned}$	Ones (Least Significant)
B1	28 (50)	$\begin{aligned} & \mathrm{V}^{+}=\text {Logic " } 1 \text { " } \\ & \mathrm{GND}=\text { Logic " } \end{aligned}$	Twos
B2	29 (51)	$\begin{aligned} & \mathrm{V}^{+}=\text {Logic " } 1 \text { " } \\ & \mathrm{GND}=\text { Logic " } \end{aligned}$	Fours $\}$ Data Input Bits
B3	30 (52)	$\begin{aligned} & \mathrm{V}^{+}=\text {Logic " } 1 \text { " } \\ & \mathrm{GND}=\text { Logic " } 0 \end{aligned}$	Eights (Most Significant)
OSC	36 (1)	Floating or with external capacitor GND	Oscillator input. Disables BP output devices, allowing segments to be synchronized to an external signal input at the BP terminal (pin 5)
D1	31 (54)		D1 Digit Select (Least Significant)
D2	32 (55)	$\mathrm{V}^{+}=$Active	D2 Digit Select
D3	33 (56)	GND = Inactive	D3 Digit Select
D4	34 (57)		D4 Digit Select (Most Significant)

OUTPUT DEFINITIONS
Output pins are defined by the alphabetical segment assignment and numerical digital assignment.

Output	Pin No.		Function			Output	Pin No.		Function		
A1	37 (3)	A	Segment Drive	Digit 1	(LSD)	A3	13 (26)	A	Segment Drive	Digit 3	
B1	38 (5)	B				B3	14 (27)	B			
C1	39 (6)	C				C3	15 (28)	C			
D1	40 (7)	D				D3	16 (33)	D			
E1	2 (10)	E				E3	17 (34)	E			
F1	4 (12)	F				F3	19 (36)	F			
G1	3 (11)	G	∇	∇	∇	G3	18 (35)	G	∇	∇	
A2	6 (18)	A	Segment Drive	Digit 2		A4	20 (37)	A	Segment Drive	Digit 4	(MSD)
B2	7 (19)	B				B4	21 (39)	B			
C2	8 (20)	C				C4	22 (40)	C			
D2	9 (21)	D				D4	23 (41)	D			
E2	10 (22)	E				E4	24 (42)	E			
F2	12 (25)	F				F4	26 (48)	F			
G2	11 (24)	G	∇	∇		G4	25 (43)	G	\downarrow	∇	\downarrow

*Pin number in parentheses () are for 60-pin flat pack.
DIGIT ASSIGNMENT
\square

4-DIGIT CMOS DISPLAY DECODER/DRIVER

TC7211A
TC7212A

TYPICAL OPERATING CHARACTERISTICS CURVES

4-DIGIT CMOS DISPLAY DECODER/DRIVER

TC7211A
TC7212A

BASIC OPERATION

The TC7211A drives 4 -digit by 7 -segment LCDs. The device contains 28 individual segment drivers, a backplane driver, an on-chip oscillator, and a divider chain to generate the backplane signal.

The 28 CMOS segment drivers and backplane driver contain ratioed N - and P -channel transistors for identical "ON" resistance. The equal resistances eliminate the DC output driver component resulting from unequal rise and fall times. This ensures maximum LCD life.

The backplane output driver can be disabled by grounding the OSCILLATOR input (pin 36). The 28 output segment drivers can therefore be synchronized directly to an input signal at the backplane (BP) terminal (pin 5). Several slave devices may be cascaded to the backplane output of a master device. The backplane signal may also be derived from an external source. These features permit interfacing to single backplane LCDs with characters in multiples of four. (See Figure 1.)

Each slave's backplane input represents only a 200 pF capacitive load to the master backplane driver (comparable to one additional segment). The number of slave devices drivable by a master device is therefore set by the larger display backplane capacitive load. The master backplane output will drive the display backplane of 16 one-half-inch characters with rise and fall times under $5 \mu \mathrm{~s}$. This represents a system with three slave devices and a fourth master device driving the backplane.

If more than four devices are slaved together, the backplane signal should be derived externally and all TC7211A devices slaved to it. The external drive signal must drive a high capacitive load with $1 \mu \mathrm{~s}$ to $2 \mu \mathrm{~s}$ rise and fall times. The backplane frequency is normally 125 Hz . At lower display ambient temperatures, the frequency may be reduced to compensate for display response time.

The on-chip RC oscillator free-runs at approximately 16 kHz . A $\div 128$ circuit provides the 125 Hz backplane frequency. The oscillator frequency may be reduced by connecting an external capacitor between the oscillator terminal and V^{+}. (See typical operating characteristics curves.)

The free-running oscillator may be overridden (if desired) by an external clock. The backplane driver, however, must not be disabled during the external clock's negative or low portion, as this will result in a DC drive component being applied to the LCD, limiting the LCD's life. To prevent backplane driver disabling, the oscillator input should be driven from the positive supply to no less than one-fifth the supply voltage above ground. A backplane disable signal will not be sensed if the driving signal remains above ground by one-fifth the supply voltage. An alternate method for externally driving the oscillatorpermits the oscillator input to swing the full supply voltage range. The oscillator input signal duty cycle is skewed so the low portion duration is less than $1 \mu \mathrm{~s}$. The backplane disable sensing circuit will not respond to such a short signal.

Figure 1. TC7211AM Driving an 8-Digit LCD Display in Master/Slave Configuration

4-DIGIT CMOS DISPLAY DECODER/DRIVER

TC7211A TC7212A

TC7212A LED Decoder

The brightness input may also be operated digitally as a display enable. At a logic 1 the display is fully "ON" and at a logic signal of varying duty cycle also. When operating with LEDs at a higher temperatures and/or higher supply voltages, the device power dissipation may need to be reduced to prevent excessive chip temperature rise. The maximum TC7212AM LED Decoder/Driver

The TC7212AM directly drives four digit, seven segment, common-anode LED displays. The 28 segment drivers are low leakage, current controlled, open drain N channel MOS transistors.

A brightness input (pin 5) can be used in two ways to control output transistor drain current. The voltage at the brightness control input is transferred to the output transistor gate for "ON" segments. The brightness voltage directly modulates the segment drivers "ON" resistance. A variable brightness control may be implemented with a single potentiometer (Figure 4). A high value potentiomenter ($100 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$) will minimize power consumption. The maximum power dissipation is 1 watt at $25^{\circ} \mathrm{C}$. Derate linearly above 35° C to 500 mW at $70^{\circ} \mathrm{C}\left(-15 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\right.$ above $\left.35^{\circ} \mathrm{C}\right)$. Power dissipation for the device is given by:

$$
P=\left(V_{+}-V_{\text {FLED }}\right)\left(I_{S E G}\right)\left(n_{S E G}\right)
$$

where $\mathrm{V}_{\text {FLED }}$ is the LED forward voltage drop, $I_{\text {SEG }}$ is segment current, and $\mathrm{n}_{\text {seg }}$ is the number of "ON" segments. If the device is operated at elevated temperatures, the segment current can be limited through the brightness input to keep power dissipation within the limits described above.

The display may be blanked (all segments OFF) by applying the input code 1111 or by driving the brightness pin witha logic). If brightness control is not needed, pin 5 should be tied to 5.0 V .

Figure 2. Brightness Control

Input Configuration and Output Codes

The TC7211AM accepts a 4-bit, true binary (positive level = logic "1") input at pin 27 (LSB) through pin 30 (MSB). The binary input is decoded to the 7 -segment output known as Code B. The output display format is 0 to $9,-, E, H, L$, P and blank display (see Table I). Segment assignments are shown in Figure 3. The TC7211AM will correctly decode binary and BCD true codes to a 7 -segment output.

The TC7211A accepts multiplexed binary or BCD input data at pin 27 (LSB) through pin 30 (MSB). Pins 31 (LSD) through 34 (MSD) are the digit select lines. When the digit select line is taken to logic " 1 ", input data is decoded and stored in the enabled output latch of the selected digit. More than one digit select line may be activated simultaneously. The same character will be written into all selected digits. (See Figure 5 for decoder segment assignments.)
Table I. Output Code

BinaryInput B3				B2
B1	B0	Code B		
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	-
1	0	1	1	E
1	1	0	0	L
1	1	0	1	P
1	1	1	0	(Blank)
1	1	1	1	

Figure 3. Segment Assignment

4-DIGIT CMOS DISPLAY DECODER/DRIVER

Special Order Decoder Option

The TC7211A is mask programmed to give the 16 combinations of 7 -segment output codes. For large volume orders (50K pieces minimum), custom decoder options are available. Contact Teledyne Components for details.

Applications Information

The TC7212 A has two ground pins. Theses should be connected together.

TYPICAL APPLICATIONS

Figure 4. LCD Display Interface to 4-Digit Counter

Figure 5: 4-1/2 Digit ADC Interfaced to LCD

4-DIGIT CMOS DISPLAY DECODER/DRIVER

TC7211A TC7212A

TYPICAL APPLICATIONS (Cont.)

Figure 6. 4-1/2 Digit ADC Interfaced to LCD Display with Digit Blanking on Overrange

TYPICAL APPLICATIONS (Cont.)

TYPICAL APPLICATIONS (Cont.)

Figure 8: LCD Interface to SY6522 VIA

Figure 9: Digital Scale With LCD Readout

BUS COMPATIBLE 4-DIGIT CMOS DECODER/DRIVER

FEATURES

TC7211AM (LCD DRIVER)

- 4-Digit Non-Multiplexed 7-Segment LCD Outputs With Backplane Driver
- Input and Digit Select Data Latches
- RC Oscillator On-Chip Generates Backplane Drive Signal
- Eliminates DC Bias Which Degrades LCD Life
- Backplane Input/Output Pin Permits Synchronization of Cascaded Slave Device to a Master Backplane Signal
- Binary and BCD Inputs Decoded to Code B (0 to $9,-$, E, H, L, P, Blank)
- Pin Compatible and Functionally Equivalent to ICM7211AM

TC7212AM (LED DRIVER)

- 28 Current Limited Outputs Drive Common-Anode LEDs at 8 mA Per Segment
- Input and Digit Select Data Latches
- Brightness Input Allows Potentiometer Control of LED Segment current. Pin Also Serves as Digital Display Enable
- Same Input Configuration and Output Decoding as the TCM7211AM
- Pin Compatible and Functionally Equivalent to ICM7212AM

GENERAL DESCRIPTION

The TC7211AM (LCD Decoder/driver) and TC7211AM are CMOS direct drive, 4-digit, 7 -segment display decoder and driver. The devices are bus compatible making microprocessor controlled displays possible. Two chip select signals control data and digit select code latching prior to decoding and display. External data latches are unnecessary.

The TC7211AM drives conventional LCDs. An RC oscillator, divider chain, backplane driver, and 28 -segment outputs are provided on a single CMOS chip. The segment drivers supply square waves of the same frequency as the backplane, but in-phase for an OFF segment and out-ofphase for an ON segment. The net DC voltage applied between driver segment and backplane is near zero maximizing display lifetime.

The TC7212AM drives common-anode LED displays with 28 current controlled, low leakage, open drain, N Channel output transistors. The brightness control input can be used as a digital display enable. A varying voltage at the control input will allow continous display brightness control.

The four bit binary input code is decoded into the seven segment alphanumeric code known as "Code B". The "Code B" output format results in a 0 to 9,-, E, H, L, P or blank display. True BCD or binary inputs will be correctly decoded to the seven segment display format.

TC7211AM
TC7212AM

FUNCTIONAL BLOCK DIAGRAM

ORDERING INFORMATION

Part No.	Driver Type	Package	Input Code	Output Config
TC7211AMIPL LCD	40-Pin Plastic	Code B	Digit Select and Latches	
TC7212AMIPL LED	40-Pin Plastic	Code B	Data and Digit Select Latches	

BUS COMPATIBLE, 4-DIGIT CMOS DECODER/DRIVER

TC7211AM TC7212AM

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATIONS

| 40 | D1 |
| :--- | :--- | :--- |
| 39 | C1 |
| 38 | B1 |
| 37 | A1 |
| 36 | OSCILLATOR |
| 35 | GND |
| 34 | CHIP SELECT 2 (CS2) |
| 33 | CHIP SELECT 1 (CS1) |
| 32 | DIGIT SELECT 2 (DS2) |
| 31 | DIGIT SELECT 1 (DS1) |
| 30 | B3 |
| 29 | B2 |
| 28 | B1 |
| 27 | BO |
| 26 | F4 |
| 25 | G4 |
| 24 | E4 |
| 23 | D4 |
| 22 | C4 |
| 21 | B4 |

$v+1$	\bullet	40	D1
E1 2		39	C1
G1 3		38	B1
F1 4		37	A1
BR 5		36	GND
A2 6		35	GND
B2 7		34	CHIP SELECT 2 (CS2)
C2 8		33	CHIP SELECT 1 (CS1)
D2 9		32	DIGIT SELECT 2 (DS2)
E2 10	AN	31	DIGIT SELECT 1 (DS1)
G2 11	TC7212AM (LED)	30	B3 ${ }^{\text {a }}$
F2 12		29	B2 DAT
A3 13		28	B1 INPUTS
B3 14		27	B0
C3 15		26	F4
D3 16		25	G4
E3 17		24	E4
G3 18		23	D4
F3 19		22	C4
A4 20		21	B4

BUS COMPATIBLE, 4-DIGIT CMOS DECODER/DRIVER

TC7211AM

TC7212AM

ABSOLUTE MAXIMUM RATINGS

Supply Voltage $+6.5 \mathrm{~V}$
Input Voltage, Any Terminal
(Note 2) \qquad $\mathrm{V}^{+}+0.3 \mathrm{~V}, \mathrm{GND}-0.3 \mathrm{~V}$
Power Dissipation (Note 1) 1 W at $+70^{\circ} \mathrm{C}$
Operating Temperature Range $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec) $+300^{\circ} \mathrm{C}$

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above
those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

NOTES: 1. This limit refers to that of the package and will not be realized during normal operation.
2. Due to the SCR structure inherent in the CMOS process, connecting any terminal to voltages greater than V^{+}or less than GND may cause destructive latch-up. For this reason, it is recommended that inputs from extemal sources not operating on the same power supply not be applied to the device before its supply is established, and, in multiple supply systems, the supply to the TC7211AM be tumed on first.

TABLE I: OPERATING CHARACTERISTICS
Test Conditions: All parameters measured with $\mathrm{V}_{+}=5 \mathrm{~V}$
TC7211AM Characteristics (LCD Decoder/Driver)

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
V_{SUP}	Operating Voltage Range		3	5	6	V
I_{OP}	Operating Current	Display Blank	-	10	50	$\mu \mathrm{~A}$
$\mathrm{l}_{\mathrm{OSCl}}$	Oscillator Input Current	Pin 36	-	± 2	± 10	$\mu \mathrm{~A}$
$\mathrm{t}_{\mathrm{RFS}}$	Segment Rise/Fall Time	$\mathrm{C}_{\mathrm{L}}=200 \mathrm{pF}$	-	0.5	-	$\mu \mathrm{A}$
$\mathrm{t}_{\mathrm{RFB}}$	Backplane Rise/Fall Time	$\mathrm{C}_{\mathrm{L}}=5000 \mathrm{pF}$	-	1.5	-	$\mu \mathrm{s}$
$\mathrm{f}_{\mathrm{OSC}}$	Oscillator Frequency	Pin 36 Floating	-	16	-	kHz
f_{BP}	Backplane Frequency	Pin 36 Floating	-	125	-	Hz

TC7212AM Characteristics (Common-Anode LED Decoder/Driver)

$\mathrm{V}_{\text {SUP }}$	Operating Voltage Range		4	5	6	V
$\mathrm{l}_{\text {OP }}$	Operating Current	Pin 5 (Brightness),	-	10	50	$\mu \mathrm{A}$
	Display Off	Pins 27-34 = GROUND				
lop	Operating Current	Pin 5 at V+, Display all 8's	-	200	-	mA
$I_{\text {SLK }}$	Segment Leakage Current	Segment Off	-	± 0.01	± 1	$\mu \mathrm{A}$
$I_{\text {SEG }}$	Segment On Current	Segment On, $\mathrm{V}_{\text {SO }}=+3 \mathrm{~V}$	5	8	-	mA

Input Characteristics (LCD and LED Decoder/Driver)

V_{IH}	Logic "1" High Input Voltage	3	-	-	V
V_{IL}	Logic "0" Low Input Voltage	-	-	1	V
$\mathrm{I}_{\mathrm{ILK}}$	Input Leakage Current	Pins 27-34	-	± 0.01	± 1
C_{IN}	Input Capacitance	Pins 27-34	-	5	-
$\mathrm{I}_{\mathrm{BPLK}}$	BP/Brightness Input Current Leakage	Measured at Pin 5 With Pin 36 at GND	-	± 0.01	± 1
$\mathrm{C}_{\mathrm{BPI}}$	BP/Brightness Input Capacitance All Devices	-	200	-	pF

BUS COMPATIBLE, 4-DIGIT

 CMOS DECODER/DRIVER
TABLE I: OPERATING CHARACTERISTICS

Test Conditions: All parameters measured with $\mathrm{V}_{+}=5 \mathrm{~V}$
AC Characteristics (LCD and LED Decoder/Driver)

Symbol	Parameter	Test Conditions	Min	Typ	Max
$\mathrm{t}_{\mathrm{CSA}}$	Chip Select Active Pulse Width	Unit			
t_{DS}	Data Setup Time	200	-	-	ns
t_{DH}	Data Hold Time	100	-	-	ns
$\mathrm{t}_{\mathrm{ICS}}$	Inter-Chip Select Time	10	0	-	ns

NOTE: 3. Other chip select (CS) is either held at logic zero or both CS1 and CS2 driven together.

TIMING DIAGRAMS

Figure 1: BUS Interface Timing Diagram (LED or LCD)

Figure 2: LCD Display Waveforms

TC7211AM

TC7212AM

INPUT DEFINITIONS

In this table, V^{+}and GND are considered to be normal operating input logic levels. For lowest power consumption, input signals should swing over the full supply.

Input	Pin No.	Condition	Function
B0	27	$\begin{aligned} & \mathrm{V}^{+}=\text {Logic " } 1 \text { " } \\ & \mathrm{GND}=\text { Logic " } 0 \text { " } \end{aligned}$	$\left.\begin{array}{l}\text { Ones (Least Significant) } \\ \text { Twos }\end{array}\right\}$ Data Input Bits
B1	28	$\begin{aligned} & \mathrm{V}^{+}=\text {Logic " } 1 \text { " " } \\ & \text { GND }=\text { Logic " } \end{aligned}$	
B2	29	$\begin{aligned} & \mathrm{V}^{+}=\text {Logic " } 1 \text { " } \\ & \text { GND }=\text { Logic " } 0 \end{aligned}$	Fours
B3	30	$\begin{aligned} & \mathrm{V}^{+}=\text {Logic " } 1 \text { " } \\ & \text { GND }=\text { Logic " } \end{aligned}$	Eights (Most Significant)
OSC	36	Floating or with external capacitor GND	Oscillator input. Disables BP output devices, allowing segments to be synchronized to an external signal input at the BP terminal (pin 5)
DS1	31	$\mathrm{V}^{+}=$Logical One	
$\overline{\mathrm{DS} 2}$	32	GND = Logical Zero	
$\overline{\text { CS1 }}$	33	$\mathrm{V}^{+}=$Inactive	When both $\overline{\mathrm{CS} 1}$ and $\overline{\mathrm{CS} 2}$ are low, the data and digit select input latches are open or enabled. On the rising of $\overline{\mathrm{CS} 1}$ or $\overline{\mathrm{CS} 2}$, data is latched, decoded and stored in the output drive latches.
CS2	34	GND = Active	

OUTPUT DEFINITIONS

Output pins are defined by the alphabetical segment assignment and numerical digital assignment.

Output	Pin No.		Function			Output	Pin No.		Function		
A1	37	A	Segment Drive	Digit 1	(LSD)	A3	13	A	Segment Drive	Digit 3	
B1	38	B	-	+		B3	14	B			
C1	39	C				C3	15	C			
D1	40	D				D3	16	D			
E1	2	E				E3	17	E			
F1	4	F				F3	19	F			
G1	3	G	∇	\downarrow	\downarrow	G3	18	G	∇	∇	
A2	6	A	Segment Drive	Digit 2		A4	20	A	Segment Drive	Digit 4	(MSD)
B2	7	B	,	-		B4	21	B			
C2	8	C				C4	22	C			
D2	9	D				D4	23	D			
E2	10	E				E4	24	E			
F2	12	F				F4	26	F			
G2	11	G	\downarrow	∇		G4	25	G	∇	∇	∇

DIGIT ASSIGNMENT

BUS COMPATIBLE, 4-DIGIT CMOS DECODER/DRIVER

TYPICAL OPERATING CHARACTERISTICS CURVES

BUS COMPATIBLE, 4-DIGIT CMOS DECODER/DRIVER

TC7211AM TC7212AM

BASIC OPERATION

The TC7211AM drives 4-digit, 7-segment LCDs. This device contains 28 individual segment drivers, a backplane driver, a self-contained oscillator, and a divider chain to generate the backplane signal.

The 28 CMOS segment drivers and backplane driver contain ratioed N - and P-channel transistors for identical "ON" resistance. The equal resistances eliminate the DC output driver component resulting from unequal rise and fall times. This ensures maximum LCD life.

The backplane output driver can be disabled by grounding the OSCILLATOR input (pin 36). The 28 output segment drivers can therefore be synchronized directly to an input signal at the backplane (BP) terminal (pin 5). Several slave devices may be cascaded to the backplane output of a master device. The backplane signal may also be derived from an external source. These features permit interfacing to single backplane LCDs with characters in multiples of four.

Each slave's backplane input represents only a 200 pF capacitive load to the master backplane driver (comparable to one additional segment). The number of slave devices drivable by a master device is therefore set by the larger display backplane capacitive load. The master backplane output will drive the display backplane of 16 one-half-inch characters with rise and fall times under $5 \mu \mathrm{~s}$. This represents a system with three slave devices and a fourth master device driving the backplane. (See Figure 1.)

If more than four devices are slaved together, the backplane signal should be derived externally and all TC7211AM devices slaved to it. The external drive signal must drive a high capacitive load with $1 \mu \mathrm{~s}$ to $2 \mu \mathrm{~s}$ rise and fall times. The backplane frequency is normally 125 Hz . At lower display ambient temperatures, the frequency may be reduced to compensate for display response time.

The on-chip RC oscillator free-runs at approximately 16 kHz . A $\div 128$ circuit provides the 125 Hz backplane frequency. The oscillator frequency may be reduced by connecting an external capacitor between the oscillator terminal and V^{+}. (See typical operating characteristics curves.)

The free-running oscillator may be overridden (if desired) by an external clock. The backplane driver, however, must not be disabled during the external clock's negative or low portion, as this will result in a DC drive component being applied to the LCD, limiting the LCD's life. To prevent backplane driver disabling, the oscillator input should be driven from the positive supply to no less than one-fifth the supply voltage above ground. A backplane disable signal will not be sensed if the driving signal remains above ground by one-fifth the supply voltage. An alternate method for externally driving the oscillator permitsthe oscillator input to swing the full supply voltage range.

The oscillator input signal duty cycle is skewed so the low portion duration is less than $1 \mu \mathrm{~s}$. The backplane disable sensing circuit will not respond to such a short signal.

Figure 3. TC7211AM Driving an 8-Digit LCD Display in Master/Slave Configuration

TC7212AM LED Decoder/Driver

The TC7212AM directly drives 4-digit, 7-segment, com-mon-anode LED displays. The 28 segment drivers are low leakage, current controlled, open drain N -channel MOS transistors.

A brightness input (pin 5) can be used in two ways to control output transistor drain current. The voltage at the brightness control input is transferred to the output transistor gate for "ON" segments. The brightness voltage directly modulates the segment drivers "ON" resistance. A variable brightness control may be implemented with a single potentiometer (Figure 4). A high value potentiomenter ($100 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$) will minimize power consumption.

The brightness input may also be operated digitally as a display enable. At a logic 1 the display is fully "ON" and at a logic signal of varying duty cycle also. When operating with LEDs at a higher temperatures and/or higher supply voltages, the device power dissipation may need to be reduced to prevent excessive chip temperature rise. The maximum power dissipation is 1 watt at $25^{\circ} \mathrm{C}$. Derate linearly above $35^{\circ} \mathrm{C}$ to 500 mW at $70^{\circ} \mathrm{C}\left(-15 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\right.$ above $\left.35^{\circ} \mathrm{C}\right)$. Power dissipation for the device is given by:

$$
P=\left(V_{+}-V_{F L E D}\right)\left(I_{S E G}\right)\left(n_{S E G}\right)
$$

where $\mathrm{V}_{\text {FLED }}$ is the LED forward voltage drop, $I_{\text {SEG }}$ is segment current, and $n_{\text {seg }}$ is the number of "ON" segments. If

BUS COMPATIBLE, 4-DIGIT CMOS DECODER/DRIVER

the device is operated at elevated temperatures, the segment current can be limited through the brightness input to keep power dissipation within the limits described above.

The display may be blanked (all segments OFF) by applying the input code 1111 or by driving the brightness pin witha logic). If brightness control is not needed, pin 5 should be tied to 5.0 V .

Figure 4. Brightness Control

Input Configuration and Output Codes

The TC7211AM accepts a 4-bit, true binary (positive level = logic "1") input at pin 27 (LSB) through pin 30 (MSB). The binary input is decoded to the 7-segment output known as Code B. The output display format is 0 to $9,-\mathrm{E}, \mathrm{H}, \mathrm{L}$, P and blank display (see Table I). Segment assignments are shown in Figure 2. The TC7211AM will correctly decode binary and BCD true codes to a 7 -segment output.

The TC7211AM is designed to interface with a data bus and display data under microprocessor control. Four data inputs (pins 27-30) and two digit select input bits (pins 31 and 32) are written into input buffer latches. The rising edge of either chip select causes data to be latched, decoded and stored in the selected digit ouptut data latch. The 2-bit digit code selects the appropriate output digit latch. The 4-bit display data word is decoded to the "Code B" 7-segment output format.

For applications where bus compatibility is not required, refer to the TC7211A (LCD) 4-digit decoderdriver datasheet. This device is designed to accept multiplexed BCD/binary input data for display under the control of four separate digit select control signals.

Table 1: Output Code

Binary Input				Code B
B3	B2	B1	B0	
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	-
1	0	1	1	E
1	1	0	0	H
1	1	0	1	L
1	1	1	0	P
1	1	1	1	Blank

Figure 2. Segment Assignment

Special Order Decoder Option

The TC7211A is mask programmed to give the 16 combinations of 7 -segment output codes. For large volume orders (50 K pieces minimum), custom decoder options are available. Contact Teledyne Components for details.

Applications Information

The TC7212AM has two ground pins. These pins should be connected together.

NOTES

TC9404

SERIAL INPUT/16-BIT PARALLEL OUTPUT PERIPHERAL DRIVER

FEATURES

\author{

- High Voltage Outputs15V
 - High Output Current Sink Capability 60 mA
 ■ Low Standby Power 20 mW
 ■ High-Speed Operation 3 MHz
 - 16 Parallel Outputs
 - Cascading Possible for Longer Data Words
}

APPLICATIONS

- Incandescent Lamp Driver
- Thermal Printhead Driver
- LED Bar-Graph Driver
- High Current, Microprocessor Serial Port Extender
- Relay/Solenoid Driver
- Tungsten Lamp Driver
- SCR Gate Driver

GENERAL DESCRIPTION

The TC9404 is a serial input/16-bit parallel output shift register. High output power MOS switching transistors make the TC9404 an ideal interface circuit between microprocessor I/O ports and high current/voltage peripherals. The CMOS construction limits quiescent power dissipation to 20 mW .

The TC9404 common-source, open-drain MOS outputs sustain 15 V in the OFF state and maintain leakage currents under $100 \mu \mathrm{~A}$. The 16 parallel outputs continuously sink 60 $\mathrm{mA}\left(\mathrm{V}_{\mathrm{SAT}} \leq 0.5 \mathrm{~V}\right)$.

Successive connection of serial data outputs to serial data inputs makes longer length serial-to-parallel conversions possible. Device cascading makes the TC9404 an ideal thermal printhead or high-resolution LED bar-graph driver.

SIMPLIFIED SCHEMATIC

PIN CONFIGURATION

SERIAL DATA INPUT \qquad	$24 \mathrm{~V}+$
LOGIC GND 2	23 CLOCK
$Q_{1} \sqrt{3}$	22 SERIAL DATA
Q_{2}	21 Q_{16}
$Q_{3} \sqrt{5}$	(20) Q_{15}
$Q_{4} \sqrt{6}$	19) Q_{14}
OUTPUT GND 7	(18) Q_{13}
Q_{5}	17 OUTPUT GND
$Q_{6} 9$	16) Q_{12}
$Q_{7} 10$	(15) Q_{11}
$Q_{8} 11$	14. Q_{10}
OUTPUT GND 12	(13) Q_{9}

ORDERING INFORMATION

Part No.	Package	Temperature Range	Output Voltage
TC9404CPG	$24-$ Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	15 V
TC9404IJG	$24-\mathrm{Pin}$ CerDIP	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	15 V
TC9404MJG	$24-\mathrm{Pin}$ CerDIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	15 V

ABSOLUTE MAXIMUM RATINGS
Supply Voltage (V^{+}to Logic Ground) $7 V$
Digital Logic Input Voltage 5.5 V
Parallel Output Drain Voltage 22 V
Parallel Output Drain Current 80 mA
Logic Ground to Output Ground Potential Difference 100 mV
Package Power DissipationCerDIP1 W @ $+85^{\circ} \mathrm{C}$
CerDIP 0.4 W @ $+125^{\circ} \mathrm{C}$
Plastic Package 1 W @ $+70^{\circ} \mathrm{C}$
Operating Temperature
CerDIP (IJ) $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$
CerDIP (MJ) $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$
Plastic Package(CP) $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C} \leq T_{A} \leq+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 sec) $+300^{\circ} \mathrm{C}$

Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to Absolute Maximum Rating Conditions for extended periods may affect device reliability.

SERIAL INPUT/16-BIT PARALLEL OUTPUT PERIPHERAL DRIVER

ELECTRICAL CHARACTERISTICS: $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ for TC9404CPG and $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ for TC9404IJG, and $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for TC9404MJG, unless otherwise stated.

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
Output						
$\mathrm{V}_{\text {SAT }}$	Output ON Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=60 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}=4.75 \mathrm{~V} \end{aligned}$	-	0.35	0.5	V
V_{B}	Output OFF Voltage		-	-	15	V
V/O	Output Sink Current	$\mathrm{V}_{\text {SAT }} \leq 0.5 \mathrm{~V}$ (Note 1)	60	-	-	mA
Iox	Output Leakage Current	$\mathrm{V}_{\mathrm{S}}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=15 \mathrm{~V}$	-	-	100	$\mu \mathrm{A}$
$\overline{\mathrm{VOH}}$	Serial Output Logic "1" Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=400 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=10 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.4 \\ & 4.5 \end{aligned}$	—	-	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\overline{\mathrm{V}} \mathrm{OL}$	Serial Output Logic "0" Voltage	$\mathrm{lOL}=5 \mathrm{~mA}$	-	-	0.4	V
Input						
$\mathrm{V}_{\text {INH }}$	Logic "1" Input Voltage	$\mathrm{V}_{\mathrm{S}}=5.25 \mathrm{~V}$	3.3	-	-	V
$\overline{\mathrm{V}_{\text {INL }}}$	Logic "0" Input Voltage	$\mathrm{V}_{\mathrm{S}}=5.25 \mathrm{~V}$	-	-	0.8	V
linh	Logic "1" Input Current	$\mathrm{V}_{\mathrm{S}}=5.25 \mathrm{~V}$	-	-	20	V
IINL	Logic "0" Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{INL}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=5.25 \mathrm{~V} \end{aligned}$	-	-	400	$\mu \mathrm{A}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\text {INL }}=0 \mathrm{~V}$	-	15	-	$\mu \mathrm{A}$
Timing						
t_{DH}	Serial Input Data Hold Time		20	0	-	ns
$\mathrm{t}_{\text {DS }}$	Serial Input Data Set-Up Time		100	70	-	ns
$\mathrm{t}_{\text {cP }}$	Clock Frequency		3	5	-	MHz
tpw	Clock Pulse Width		150	100	-	ns
tPLH	Parallel Output Low-to-High Transition Time	$\begin{aligned} & \mathrm{V}_{\mathrm{B}}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=330 \Omega \\ & \mathrm{C}_{\mathrm{L}}=25 \mathrm{pF} \end{aligned}$	-	-	150	ns
$\overline{t_{\text {PHL }}}$	Parallel Output High-to-Low Transition Time	$\begin{aligned} & \mathrm{V}_{\mathrm{B}}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=330 \Omega \\ & \mathrm{C}_{\mathrm{L}}=25 \mathrm{pF} \end{aligned}$	-	-	150	ns
tsLH	Serial Output Low-to-High Transition Time	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=400 \mu \mathrm{~A} \\ & \mathrm{C}_{\mathrm{L}}=25 \mathrm{pF} \end{aligned}$	-	-	150	ns
tshl	Serial Output High-to-Low Transition Time	$\begin{aligned} & \mathrm{loL}=5 \mathrm{~mA} \\ & \mathrm{C}_{\mathrm{L}}=25 \mathrm{pF} \end{aligned}$	-	-	75	ns
Power						
V_{S}	Operating Supply Voltage		4.75	5	5.25	V
Is	Quiescent Power Supply	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=5.25 \mathrm{~V} \\ & \mathrm{f}_{\mathrm{C}}=0 \mathrm{~Hz} \\ & \mathrm{~V}_{1 \mathrm{HL}}=0 \mathrm{~V} \\ & \mathrm{I}_{0}=0 \mathrm{~mA} \\ & \text { Pin } 22 \mathrm{Open} \end{aligned}$	-	1	4	mA

NOTE 1. Maintain chip temperature $\leq 150^{\circ} \mathrm{C}$.

SERIAL INPUT/16-BIT PARALLEL OUTPUT PERIPHERAL DRIVER

TIMING DIAGRAMS

a) Serial Input Data Hold and Set-Up Times

b) Serial Output Transition Times

c) Parallel Output Transition Times

FUNCTION TABLE

Data Input		Parallel Outputs			
$\mathbf{D}_{\mathbf{N}}$	Clock Input	$\mathbf{Q}_{\mathbf{1}}$	$\mathbf{Q}_{\mathbf{2}}$	$\mathbf{Q}_{\mathbf{3}}$	$\ldots \mathbf{Q}_{\mathbf{1 6}}$
X	L	$\overline{\mathrm{D}_{1}}$	$\overline{\mathrm{D}_{2}}$	$\overline{\mathrm{D}_{3}}$	$\ldots \overline{\mathrm{D}_{16}}$
H	\sim	L^{*}	$\overline{\mathrm{D}_{1}}$	$\overline{\mathrm{D}_{2}}$	$\ldots \overline{\mathrm{D}_{15}}$
L	\sim	H^{*}	$\overline{\mathrm{D}_{1}}$	$\overline{\mathrm{D}_{2}}$	$\overline{\mathrm{D}_{15}}$

$\mathrm{L}=\operatorname{Logic} 0$
$H=$ Logic 1
$\mathrm{L}^{*}=$ Output NMOS ON
$\mathrm{H}^{*}=$ Output NMOS OFF
X = Don't Care
$\boldsymbol{T}=$ Transition from Low-to-High
$D_{1}, D_{2}, \ldots D_{16}=$ Data inputs at clock time T_{-N}. Data is inverted at the parallel outputs.

SERIAL INPUT/16-BIT PARALLEL OUTPUT PERIPHERAL DRIVER

APPLICATIONS

Microprocessor-Controlled LED

Bar-Graph Display

11

NOTES

16-BIT PARALLEL-LATCHED OUTPUT PERIPHERAL DRIVER

FEATURES

$$
\begin{aligned}
& \text { - High Voltage Outputs } \\
& \text { - } 16 \text { Latched Parallel Outputs } \\
& \text { - Cascading Possible for Longer Data Words } \\
& \text { - Dual-Rank Latches and STROBE Input for } \\
& \text { Ripple-Free Data Update } \\
& \text { - OUTPUT ENABLE Input Disables Outputs } \\
& \text { Without Corrupting Data }
\end{aligned}
$$

FUNCTIONAL DIAGRAM

TC9405

GENERAL DESCRIPTION

The TC9405 is a serial input, 16-bit parallel-latched output shift register. Master/slave data latches and high output power MOS switching transistors combine to make the TC9405 an ideal interface circuit between microprocessor I/O ports and high current/voltage peripherals. The CMOS construction limits quiescent power dissipation to 1 mW .

The TC9405 common-source, open-drain MOS outputs sustain 15 V in the OFF state and maintain leakage currents under $100 \mu \mathrm{~A}$. The low output ON resistance allows all 16 channels to simultaneously sink 60 mA with a saturation voltage of 0.5 V maximum and power dissipation of 480 mW . Typical power dissipation of 16 channels sinking 60 mA is only 325 mW .

Dual rank latches and a STROBE input permit glitchfree data updating. With the STROBE input high, data is entered into master latches on each rising edge of the CLOCK input. When STROBE is brought low, data is transferred to the slave latches simultaneously. An OUTPUT ENABLE $(\overline{\mathrm{OE}})$ input is also included, so that all outputs can be turned off. Both STROBE and OUTPUT ENABLE are asynchronous, level-sensitive inputs.

Successive connection of serial data outputs to serial data inputs make longer length serial-to-parallel conversions possible. Device cascading makes the TC9405 an ideal thermal printhead, high-resolution LED bar-graph, or incandescent lamp driver.

APPLICATIONS

- Incandescent Lamp Driver
- Thermal Printhead Driver
- LED Bar-Graph Driver
- High Current, Microprocessor Serial Port Expander
- Relay/Solenoid Driver
- Tungsten Lamp Driver
- SCR Gate Driver

PIN CONFIGURATIONS

ORDERING INFORMATION

Part	Package	Temperature Range	Output Voltage
TC9405CPG	$24-$ Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	15 V
TC9405IJG	$24-$ Pin CerDIP	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	15 V
TC9405MJG	$24-P i n$ CerDIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	15 V

16-BIT PARALLEL-LATCHED OUTPUT PERIPHERAL DRIVER

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V_{DD} to Ground) 7V 7
Digital Logic Input voltage . 5.5V
Parallel Output Drain Voltage . 18 V
Paraillel Output Drain Current 80 mA
Package Power Dissipation
CerDIP Package
....................... 1W © $85^{\circ} \mathrm{C}$
CerDIP Package 0.4W @ $125^{\circ} \mathrm{C}$
Epoxy Package 1W@ $90^{\circ} \mathrm{C}$

Operating Temperature
CerDIP Package (IJG). $-25^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+85^{\circ} \mathrm{C}$
CerDIP Package (MJG) $\ldots .,-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{A} \leqslant+125^{\circ} \mathrm{C}$
Epoxy Package (CPG) $\ldots \ldots \ldots .0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{A} \leqslant+70^{\circ} \mathrm{C}$ Storage Temperature. $-65^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 60 sec) $+300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	T
TC9405C	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC94051	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC9405M	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
Input						
$\mathrm{V}_{\text {INH }}$	Logic 1 Input Voltage	$\mathrm{V}_{\mathrm{DD}}=5.25 \mathrm{~V}$	2.4	-	-	V
$\mathrm{V}_{\text {INL }}$	Logic 0 Input Voltage	$\mathrm{V}_{\text {DD }}=5.25 \mathrm{~V}$	-	-	0.8	V
$\mathrm{I}_{\text {INH }}$	Logic 1 Input Current	$\begin{aligned} & \mathrm{V}_{\text {INH }}=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=5.25 \mathrm{~V} \end{aligned}$	-	-	40	$\mu \mathrm{A}$
$\mathrm{I}_{\text {INL }}$	Logic 0 Input Current	$\begin{aligned} & \mathrm{V}_{\text {INL }}=0.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=5.25 \mathrm{~V} \end{aligned}$	-	-	40	$\mu \mathrm{A}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	-	15	-	pF
$\mathrm{V}_{\text {OH }}$	Serial Output Logic 1 Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=400 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=10 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.4 \\ & 4.5 \end{aligned}$	$\begin{gathered} 4.7 \\ 4.98 \end{gathered}$	-	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {oL }}$	Serial Output Logic 0 Voltage	$\mathrm{I}_{\mathrm{OL}}=3.6 \mathrm{~mA}$	-	-	0.4	V

Output						
$\mathrm{V}_{\text {SAT }}$	Output ON Voltage	$\begin{gathered} \mathrm{I}_{\mathrm{O}}=60 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{DD}}=4.75 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=24^{\circ} \mathrm{C} \\ \text { (Note 2) } \end{gathered}$	-	0.25	0.4	V
$\mathrm{V}_{\text {SAT }}$	Output ON Voltage	$\begin{gathered} \mathrm{I}_{\mathrm{O}}=60 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{DD}}=4.75 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{FULL} \\ (\text { Note 2) } \end{gathered}$	-	-	0.6	V
V_{B}	Output OFF Voltage				15	V
I	Output Sink Current	$\begin{gathered} \mathrm{V}_{\text {SAA }} \leqslant 0.6 \mathrm{~V} \\ \text { (Note 1) } \end{gathered}$	60	-	-	mA
$\mathrm{I}_{\text {ox }}$	Output Leakage Current	$\begin{aligned} \mathrm{V}_{\mathrm{DD}} & =4.75 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{B}} & =15 \mathrm{~V} \end{aligned}$	-	-	100	$\mu \mathrm{A}$

ELECTRICAL CHARACTERISTICS (Cont.)

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
Timing						
t_{DH}	Serial Input Data Hold Time	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	40	20	-	ns
$\mathrm{t}_{\text {os }}$	Serial Input Data Set-Up Time	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	50	0	-	ns
f_{c}	Maximum Clock Frequency	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	3	5	-	MHz
$\mathrm{t}_{\text {pw }}$	Clock Pulse Width	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	150	100	-	ns
$\mathrm{t}_{\text {PLH } 1}$	Parallel Output Low-to-High Transition Time	$\begin{gathered} \overline{\text { STROBE }}=\text { LOW } \\ \overline{\mathrm{OE}}=\mathrm{LOW} \\ \text { (Note } 3 \text { and Figure 1) } \end{gathered}$	-	-	300	ns
$\mathrm{t}_{\text {PHL1 }}$	Parallel Output High-to-Low Transition Time	$\begin{gathered} \overline{\text { STROBE }}=\text { LOW } \\ \overline{\mathrm{OE}}=\mathrm{LOW} \\ (\text { Note } 3 \text { and Figure 1) } \end{gathered}$	-	-	300	ns
$\mathrm{t}_{\text {PLH2 }}$	Parallel Output Low-to-High Transition Time	```STROBE = OE = LOW (Note 3 and Figure 1)```	-	-	300	ns
$\mathrm{t}_{\text {PLHL2 }}$	Parallel Output High-to-Low Transition Time		-	-	300	ns
$\mathrm{t}_{\text {PLHE }}$	Parallel Output Low-to-High Transition Time	$\begin{aligned} & \hline \text { STROBE }=\text { Don't Care } \\ & \overline{\mathrm{OE}}=\text { - } \\ & (\text { Note } 3 \text { and Figure 1) } \end{aligned}$	-	-	250	ns
$\mathrm{t}_{\text {PHLE }}$	Parallel Output High-to-Low Transition Time	$\begin{aligned} & \hline \text { STROBE }=\text { Don't Care } \\ & \overline{\mathrm{OE}}= \\ & (\text { Note } 3 \text { and Figure 1) } \end{aligned}$	-	-	250	ns
$t_{\text {SHL }}$	Serial Output High-to-Low Transition Time	$\begin{gathered} \mathrm{I}_{\mathrm{OL}}=3.6 \mathrm{~mA} \\ \mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{gathered}$	-	-	150	ns
$\mathrm{t}_{\text {sLH }}$	Serial Output Low-to-High Transition Time	$\begin{gathered} \mathrm{I}_{\mathrm{OH}}=400 \mu \mathrm{~A} \\ \mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{gathered}$	-	-	150	ns
$\mathrm{t}_{\text {spw }}$	Strobe Pulse Width	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	80	-	-	ns
Supply						
V_{DD}	Operating Supply Voltage		+4.75	+5	+5.25	V
I_{s}	Quiescent Power Supply	$\begin{aligned} & \mathrm{V}_{\mathrm{D}}=5.25 \mathrm{~V}, \mathrm{f}_{\mathrm{c}}=0 \mathrm{~Hz} \\ & \mathrm{~V}_{\text {INL }}=0 \mathrm{OV}, \mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA} \\ & \mathrm{Pin}^{22} \text { Open } \end{aligned}$	-	50	200	$\mu \mathrm{A}$

NOTES:

1. Maintain die temperature $\leqslant 150^{\circ} \mathrm{C}$.
2. $\mathrm{V}_{\mathrm{SAT}}$ increases by 0.1 V when all outputs are sinking 60 mA due to internal ground drop and self-heating.
3. $V_{B A T}=15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=330 \Omega, \mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Figure 1. Timing Diagrams
a) Serial Input Data Hold and Set-Up Times

b) Serial Output Transition Times

c) Parallel Output Transition Times

$$
\text { (STROBE }=\text { Low, } \overline{\mathrm{OE}}=\text { Low) }
$$

d) STROBE Input Transition Times

$$
(\mathrm{OE}=\mathrm{LOW})
$$

e) OUTPUT ENABLE Transition Times (STROBE $=$ Don't Care)

FUNCTION TABLE

$\overline{\mathrm{OE}}$	$\overline{\text { STROBE }}$	Data Input (D)	Clock Input	Parallel Outputs			
				Q	Q_{2}	Q_{3}	$\ldots Q_{16}$
L	L	X	L	D_{1}	D_{2}	D_{3}	$\ldots{ }^{\text {... }}{ }_{16}$
L	L	H	π		D_{1}	D_{2}	$\ldots{ }_{15}$
L	L	L	\checkmark		D_{1}	D_{2}	$\ldots{ }^{\text {... }}{ }_{15}$
L	H	X	X		$\begin{aligned} & \text { ainta } \\ & \text { Jalic } \end{aligned}$		
H	X	X	X	H^{*}	H^{*}	H^{*}	H^{*}

$L=$ Logic 0
$H=$ Logic 1
L* $=$ Output NMOS ON
$\mathrm{H}^{*}=$ Output NMOS OFF
X = Don't Care
$\sqrt{=}=$ Transition from low-to-high
$D_{1}, D_{2}, \ldots D_{16}=$ Data outputs before the low-to-high transition of the clock
NOTE: $\overline{\mathrm{OE}}$ and $\overline{\mathrm{STROBE}}$ inputs are level-sensitive, not edge-triggered.

TC9405

APPLICATIONS

MICROPROCESSOR CONTROLLED LED BAR-GRAPH DISPLAY

BONDING DIAGRAM

THERMAL PRINTHEAD DRIVER

Section 12

Analog Switches and Multiplexers

	Display A/D Converters	1
Binary A/D Converters	2	
Voltage-to-Frequency/Frequency-to-Voltage Converters	3	
Sonsor Products	4	
Power MOSFET, Motor and PIN Drivers	6	
References	7	
Chopper-Stabilized Operational Amplifiers	8	
High Performance Amplifiers/Buffers	9	
Video Display Drivers	10	
Display Drivers	11	
Analog Switches and Multiplexers	$\mathbf{1 2}$	
Data Communications	13	
Discrete DMOS Products	14	
Reliability and Quality Assurance	15	
Ordering Information	16	
Package Information	17	
Sales Offices	18	

CDG201

MONOLITHIC CMOS/DMOS, QUAD SPST ANALOG SWITCH

FEATURES

High OFF Isolation 66 dB @ 10 MHz
Wide Bandwidth Switches-1 dB @ 100 MHz
Low Channel-to-Channel
Cross Talk................................... -80 dB @ 10 MHz
TTL Compatible
Industry-Standard Pinout

APPLICATIONS

- Glitch-Free Analog Switching
- RF and Video

E Track-and-Hold

- Sample-and-Hold

GENERAL DESCRIPTION

The CDG201 features TTL-compatible input logic and wideband lateral DMOS switches on a single chip. The onchip reference used for TTL compatibility gives an added advantage of constant logic switching over a wide range of supply voltages and temperature without a separate power supply. Industry-standard pinout makes the CDG201 particularly suitable for replacing existing analog switches, while upgrading high-frequency performance.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

MONOLITHIC CMOS/DMOS, QUAD SPST ANALOG SWITCH

CDG201

ORDERING INFORMATION

Part No.	Package	Operating Temperature Range
CDG201COE	16 -Pin Plastic SO	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
CDG201CPE	16 -Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
CDG201EOE	16 -Pin Plastic SO	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
CDG201EPE	16 -Pin Plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
CDG201EJE	16 -Pin CerDIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
CDG201MJE	16 -Pin CerDIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

Negative Supply Voltage	-8V to -15V
Positive Supply Voltage	+8 V to +15 V
Control Input Voltage Range	0 V to +5 V
Operating Temperature Range	
C Suffix	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
E Suffix	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
M Suffix	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Abstract

ABSOLUTE MAXIMUM RATINGS Supply Voltage \qquad Control Input Voltage Range $\mathrm{V}^{+}+0.3 \mathrm{~V}, \mathrm{~V}^{-}-0.3 \mathrm{~V}$ Continuous Current, Any Pin Except S or D 20 mA Continuous Current, S or D................................... 30 mA Peak Pulsed Current, S or D, $80 \mu \mathrm{~s}, 1 \%$, Duty Cycle

90 mA Maximum Junction Temperature $+150^{\circ} \mathrm{C}$ Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Power Dissipation (Derate at $5.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$, Above $+85^{\circ} \mathrm{C}$) 500 mW

NOTE: All devices contain diodes to protect inputs against damage due to high-static voltages or electric fields. However, it is advised precautions be taken not to exceed maximum recommended input voltages. All unused inputs must be connected to an appropriate logic level (VD or GND). Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to Absolute Maximum Rating Conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}^{-}=-15 \mathrm{~V}, \mathrm{~V}^{+}=+15 \mathrm{~V}$

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
Static						
$\mathrm{V}_{\text {ANALOG }}$	Analog Signal Range		-10	-	+10	V
$\mathrm{r}_{\text {DS(ON) }}$	Switch ON Resistance	$\mathrm{V}_{\mathrm{S}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$	-	40	80	Ω
	$\mathrm{V}_{\mathrm{S}}=+2 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$		45	80	Ω	
	$\mathrm{V}_{\mathrm{S}}=+10 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$	-	100	160	Ω	
V_{IH}	High Level Input Voltage, Logic "1" (OFF)		2.4	-	-	V
VIL	Low Level Input Voltage, Logic "0" (ON)		-	-	0.8	V
lin	Logic Input Leakage Current $V_{\mathbb{N}}=+15 \mathrm{~V}$	$\mathrm{V}_{\mathrm{IN}}=+2.4 \mathrm{~V}$	$\overline{0.02}$	$\begin{gathered} 0.01 \\ 0.1 \end{gathered}$	$\begin{aligned} & 0.1 \\ & \mu \mathrm{~A} \end{aligned}$	$\mu \mathrm{A}$
ID(OFF)	Switch OFF Leakage Current	$\mathrm{V}_{\mathrm{D}}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=+2.4 \mathrm{~V}$	-	0.2	5	$n \mathrm{~A}$
IS(OFF)	Switch OFF Leakage Current	$\mathrm{V}_{\mathrm{S}}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=+2.4 \mathrm{~V}$	-	0.4	5	nA
$\underline{1}$	Negative Supply Quiescent Current	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ to +2.4 V	-	-0.3	-1	mA
${ }^{+}$	Positive Supply Quiescent Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to +2.4 V	-	0.6	2	mA
Dynamic						
ton	Switch Turn-On Time	See Switching Times Test Circuit	-	400	600	ns
toff	Switch Turn-Off Time	See Switching Times Test Circuit	-	70	300	ns
OIRR	Off Isolation Rejection Ratio	$f=10 \mathrm{MHz}, R_{L}=50 \Omega$	60	66	-	dB
CCRR	Cross-Coupling Rejection Ratio	$f=10 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega$	-	80	-	dB
$\mathrm{C}_{\text {D }}$	Drain-Node Capacitance	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\text {IN }}=+2.4 \mathrm{~V}$	-	0.3	-	pF
$\mathrm{C}_{\text {S }}$	Source-Node Capacitance	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\text {IN }}=+2.4 \mathrm{~V}$	-	3	-	pF

MONOLITHIC CMOS/DMOS,

QUAD SPST ANALOG SWITCH

CDG201
ELECTRICAL CHARACTERISTICS: $\mathrm{V}^{-}=-15 \mathrm{~V}, \mathrm{~V}^{+}=+15 \mathrm{~V}$
Limits at Temperature Extremes

Symbol	Parameter	Test Conditions	Maximum @ $\mathrm{T}_{\mathbf{A}}=$					Unit
			$-55^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$	$+85^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	
Static								
$\mathrm{V}_{\text {ANALOG }}$	Analog Signal Range		± 10	± 10	± 10	± 10	± 10	V
rDS(ON)	Switch ON Resistance	$\mathrm{V}_{\mathrm{S}}=-10 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$	80	80	120	120	150	Ω
		$\mathrm{V}_{\mathrm{S}}=+2 \mathrm{~V}, \mathrm{~V}_{\mathbb{N}}=0 \mathrm{~V}$	80	80	120	120	150	Ω
		$\mathrm{V}_{\mathrm{S}}=+10 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$	160	160	240	240	300	Ω
$\overline{\mathrm{liN}}$	Logic Input Leakage Current	$\mathrm{V}_{\text {IN }}=+2.4 \mathrm{~V}$	0.1	0.1	1	1	10	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{IN}}=+15 \mathrm{~V}$	0.1	0.1	2	2	20	$\mu \mathrm{A}$
ID(OFF)	Switch OFF Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{D}}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=-10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}}=+2.4 \mathrm{~V} \end{aligned}$	5	5	100	100	1000	nA
$\overline{\text { IS(OFF) }}$	Switch OFF Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}}=+2.4 \mathrm{~V} \end{aligned}$	5	5	100	100	1000	nA
F-	Negative Supply Quiescent Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to +2.4	-1	-1	-1	-1	-1	mA
$1+$	Positive Supply Quiescent Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to +2.4	2	2	2	2	2	mA

SWITCHING TIMES TEST CIRCUIT

NOTE: Switch shown in logic "1" (OFF) position.

TEST WAVEFORMS

MONOLITHIC CMOS/DMOS, QUAD SPST ANALOG SWITCH

CDG201

TYPICAL CHARACTERISTICS CURVES

Switching Times vs
Ambient Temperature

Supply Currents vs Ambient Temperature

TYPICAL CHARACTERISTICS CURVES (Cont.)

Switch-Off Isolation Rejection Ratio vs Frequency

Switch-On Resistance vs Analog Voltage

Switch-On Resistance vs Frequency

Switch-On Resistance vs Supply Voltage

Total Harmonic Distortion vs Frequency

NOTES

QUAD MONOLITHIC, SPST CMOS/DMOS ANALOG SWITCH

FEATURES

- High OFF Isolation 66 dB @ 10 MHz
- Wide Bandwidth Switches $0.9 \times$ DC @ 100 MHz
- Low Channel-to-Channel Cross Talk -80 dB @ 10 MHz
- TTL Compatible
- Low OFF Leakage
- Industry-Standard Pinouts

APPLICATIONS

- Switches
- Glitch-Free Analog
- RF and Video
- Track-and-Hold
- Sample-and-Hold

GENERAL DESCRIPTION

Teledyne Components' CDG211 low-cost analog switch features TTL-compatible input logic and wideband lateral DMOS switches on a single chip. The on-chip reference used for TTL compatibility gives the added advantage of constant logic switching over a wide range of supply voltages and temperature without a separate power supply. Industry-standard pinout makes the CDG211 particularly suitable for replacement of existing analog switches and upgrading high frequency performance at the same time.

FUNCTIONAL BLOCK DIAGRAM

NOTES: 1. Four SPST switches per package.
2. Switches shown in lcgic " 1 " (OFF) position.
3. $\mathrm{ON}=$ Logic " 0 " $\leqslant 0.8 \mathrm{~V}$

OFF $=$ Logic " 1 " $\leqslant 2.4 \mathrm{~V}$

PIN CONFIGURATIONS

QUAD MONOLITHIC, SPST CMOS/DMOS ANALOG SWITCH

CDG211

ORDERING INFORMATION

Part No.	Package	Operating Temperature Range
CDG211CJ	$16-$ Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
CDG201DY	$16-$ Pin SO	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

V^{-}	Negative Supply Voltage-8V to -15V
V^{+}	Positive Supply Voltage +8 V to +15 V
V_{IN}	Control Input Voltage Range 0 V to +5V
V_{S}	Analog Switch Voltage Range $\pm 10 \mathrm{~V}$
TOP	Operating Temperature Range
	C Suffix $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
	D Suffix $-40^{\circ} \mathrm{C}$ to +85

NOTE: All devices contain diodes to protect inputs against damage due to high static voltages or electric fields; however, it is advised that precautions be taken not to exceed the maximum recommended input voltages. All unused inputs must be connected to an appropriate logic voltage level (V_{DD} or GND).

ABSOLUTE MAXIMUM RATINGS

V-	Neg
V^{+}	Positive Supply Voltage 20 V
$\mathrm{V}_{\text {IN }}$	Control Input Voltage
	Range.................................... $\mathrm{V}^{+}+0.3 \mathrm{~V}, \mathrm{~V}^{-}-0.3 \mathrm{~V}$
	Continuous Current, Any Pin Except S or D ... 30 mA

Is Continuous Current, S or D 30 mA
Is Peak Pulsed Current, S or D,
$80 \mu \mathrm{~s}, 1 \%$, Duty Cycle \qquad 90 mA $\mathrm{T}_{\text {STG }}$ Storage Temperature Range........$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ PD Power Dissipation .. 500 mW

ELECTRICAL CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}^{-}=-15 \mathrm{~V}, \mathrm{~V}^{+}=+15 \mathrm{~V}$ per channel, unless otherwise noted.

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
Static $V_{\text {analog }}$	Analog Signal Range		-10	-	+10	V
$\mathrm{r}_{\text {DS(ON) }}$	Switch ON Resistance	$\begin{aligned} & V_{S}=-10 \mathrm{~V}, \mathrm{~V}_{I N}=0 \\ & V_{S}=+2 \mathrm{~V}, \mathrm{~V}_{I N}=0 \\ & V_{S}=+10 \mathrm{~V}, \mathrm{~V}_{I N}=0 \end{aligned}$	-	$\begin{gathered} 40 \\ 45 \\ 100 \end{gathered}$	$\begin{gathered} 80 \\ 80 \\ 160 \end{gathered}$	$\begin{aligned} & \Omega \\ & \Omega \\ & \Omega \end{aligned}$
V_{IH}	High Level Input Voltage		2.4	-	-	V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage		-	-	0.8	V
IN	Logic Input Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathbb{I N}}=+2.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathbb{I N}}=+15 \mathrm{~V} \end{aligned}$	-	$\begin{aligned} & 0.01 \\ & 0.02 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
ldoff)	Switch OFF Leakage Current	$\mathrm{V}_{\mathrm{D}}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=-10 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=+2.4 \mathrm{~V}$	-	0.2	5	$n \mathrm{~A}$
IS(OFF)	Switch OFF Leakage Current	$\mathrm{V}_{\mathrm{S}}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathbb{N}}=+2.4 \mathrm{~V}$	-	0.4	5	nA
F-	Negative Supply Quiescent Current	$\mathrm{V}_{\mathrm{IN}}=0$ or +2.4 V	-	-0.3	-1	mA
${ }^{+}$	Positive Supply Quiescent Current	$\mathrm{V}_{\text {IN }}=0$ or +2.4 V	-	0.6	2	mA
Dynamic ton	Switch Turn-On Time	See Switching Times Test Circuit	-	400	600	ns
toff	Switch Turn-Off Time	See Switching Times Test Circuit	-	70	300	ns
OIRR	OFF Isolation Rejection Ratio	$f=10 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega$	60	66	-	dB
CCRR	Cross-Coupling Rejection Ratio	$f=10 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega$	-	80	-	dB
C_{D}	Drain-Node Capacitance	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=0, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\text {IN }}=+2.4 \mathrm{~V}$	-	0.3	-	pF
C_{S}	Source-Node Capacitance	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=0, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{IN}}=+2.4 \mathrm{~V}$	-	3	-	pF

QUAD MONOLITHIC, SPST
 CMOS/DMOS ANALOG SWITCH

CDG211
ELECTRICAL CHARACTERISTICS: $\mathrm{V}^{-}=-15 \mathrm{~V}, \mathrm{~V}^{+}=+15 \mathrm{~V}$ per channel, unless otherwise noted.
Limits at Temperature Extremes

Symbol	Parameter	Test Conditions	Maximum @ $\mathrm{T}_{\mathbf{A}}=$				Unit
			$-40^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$	$+85^{\circ} \mathrm{C}$	
Static Vanalog	Analog Signal Range		± 10	± 10	± 10	± 10	V
$\mathrm{r}_{\text {DS(ON) }}$	Switch ON Resistance	$\begin{aligned} & V_{S}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0, \\ & V_{S}=+2 \mathrm{~V} \\ & V_{S}=+10 \mathrm{~V}, V_{I N}=0 \end{aligned}$	$\begin{aligned} & 80 \\ & 160 \end{aligned}$	$\begin{gathered} 80 \\ 160 \end{gathered}$	$\begin{aligned} & 120 \\ & 240 \end{aligned}$	$\begin{aligned} & 120 \\ & 240 \end{aligned}$	Ω Ω
IN	Logic Input Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=+2.4 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}}=+15 \mathrm{~V} \end{aligned}$	0.1	0.1	1	1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {(OFF }}$	Switch OFF Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{D}}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=-10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}}=+2.4 \mathrm{~V} \end{aligned}$	5	5	100	100	$n \mathrm{~A}$
IS(OFF)	Switch OFF Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}}=+2.4 \mathrm{~V} \end{aligned}$	5	5	100	100	nA
1^{-}	Negative Supply Quiescent Current	$\mathrm{V}_{\text {IN }}=0$ or +2.4 V	-1	-1	-1	-1	mA
1^{+}	Positive Supply Quiescent Current	$\mathrm{V}_{\text {IN }}=0$ or +2.4 V	2	2	2	2	mA

SWITCHING TIMES TEST CIRCUIT

NOTE: Switch shown in logic "1" (OFF) position.

TEST WAVEFORMS

QUAD MONOLITHIC, SPST CMOS/DMOS ANALOG SWITCH

TYPICAL PERFORMANCE CHARACTERISTICS

Switching Time vs
Ambient Temperature

Supply Current vs Ambient Temperature

QUAD MONOLITHIC, SPST

CMOS/DMOS ANALOG SWITCH

CDG211

TYPICAL PERFORMANCE CHARACTERISTICS (Cont.)

Switch ON Resistance vs Analog Voltage

Switch ON Resistance vs Frequency

Switch ON Resistance vs Supply Voltage

Total Harmonic Distortion vs Frequency

NOTES

HIGH-SPEED ANALOG SWITCH

FEATURES

APPLICATIONS

- RF and Video Switches
- High-Frequency Data Acquisition
- High-Frequency Multiplexers

GENERAL DESCRIPTION

Teledyne Components' CMOS/DMOS analog switches feature high-speed, low-power CMOS input logic and level translation circuitry, and high-speed, low-capacitance, lateral DMOS switches. CMOS and lateral DMOS circuitry are fabricated together on a single silicon chip.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATIONS

CDG2214

Abstract

ABSOLUTE MAXIMUM RATINGS Negative Supply Voltage ..-20V Positive Supply Voltage ..20V Control Input Voltage Range Continuous Current, Any Pin Except S or D $. \mathrm{V}^{+}+0.3 \mathrm{~V}, \mathrm{~V}^{-}-0.3 \mathrm{~V}$... 20 mA Continuous Current, S or D 40 mA Peak Pulsed Current, S or D, $80 \mu \mathrm{~s}, 1 \%$, Duty Cycle \qquad 100 mA Junction Temperature Range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Power Dissipation .500 mW (Derate at $12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$, Above $+85^{\circ} \mathrm{C}$) Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to Absolute Maximum Rating Conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Negative Supply Voltage 5 V to -15 V
Positive Supply Voltage +5 V to +15 V
Control Input Voltage Range 0 V to +5 V
Operating Temperature Range
C Suffix
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
E Suffix.. $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
M Suffix ... $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
ORDERING INFORMATION

Part No.	Package	Operating Temperature Range
CDG2214CPA	8 -Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
CDG2214EPA	8 -Pin Plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
CDG2214MJA	8 -Pin CerDIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
CDG2214COA	8 -Pin Plastic SO	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
CDG2214EOA	8 -Pin Plastic SO	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}^{-}=-15 \mathrm{~V}, \mathrm{~V}^{+}=+15 \mathrm{~V}$ per channel, unless otherwise noted.

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
Static						
Vanalog	Analog Signal Range		-10	-	+10	V
$\mathrm{raS}_{(\mathrm{ON})}$	Switch ON Resistance	$\mathrm{V}_{\mathrm{S}}=-10 \mathrm{~V}$	-	45	80	Ω
		$\mathrm{V}_{\mathrm{S}}=+2 \mathrm{~V}$	-	50	80	Ω
		$\mathrm{V}_{\mathrm{S}}=+10 \mathrm{~V}$	-	130	160	Ω
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage		4.5	3.4	-	V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage		-	-	1	V
$\overline{\mathrm{IN}}$	Logic Input Leakage Current	$\mathrm{V}_{\mathrm{IN}}=+5 \mathrm{~V}$	-	0.01	0.1	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {IN }}=+15 \mathrm{~V}$	-	0.02	0.1	$\mu \mathrm{A}$
D(OFF)	Switch OFF Leakage Current	$\mathrm{V}_{\mathrm{D}}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=-10 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=+5 \mathrm{~V}$	-	0.2	5	nA
IS(OFF)	Switch OFF Leakage Current	$\mathrm{V}_{\mathrm{S}}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=+5 \mathrm{~V}$	-	0.2	5	nA
-	Negative Supply Quiescent Current	$\mathrm{V}_{\text {IN }}=0$ or V^{+}	-	-	-8	mA
+	Positive Supply Quiescent Current	$\mathrm{V}_{\mathrm{IN}}=0$ or V^{+}	-	-	8	mA
Dynamic						
ton	Switch Turn-On Time	$\mathrm{V}_{1 N}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=12 \mathrm{pF}$	-	40	60	ns
toff	Switch Turn-Off Time	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=12 \mathrm{pF}$	-	20	40	ns
OIRR	Off Isolation Rejection Ratio	$\begin{aligned} & f=100 \mathrm{MHz}, R_{\mathrm{L}}=50 \Omega \\ & \mathrm{f}=200 \mathrm{MHz}, R_{\mathrm{L}}=50 \Omega \end{aligned}$	$\begin{aligned} & 37 \\ & 22 \end{aligned}$	$\begin{aligned} & 40 \\ & 25 \end{aligned}$	-	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
L	Insertion Loss	$\mathrm{f}=200 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega$	-	7.8	13	dB
C_{D}	Drain-Node Capacitance	$\mathrm{V}_{\mathrm{D}}=0, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	-	0.3	-	pF
$\mathrm{C}_{\text {S }}$	Source-Node Capacitance	$\mathrm{V}_{\mathrm{S}}=0, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	-	3	-	pF

HIGH-SPEED ANALOG SWITCH

CDG2214
ELECTRICAL CHARACTERISTICS: $\mathrm{V}^{-}=-15 \mathrm{~V}, \mathrm{~V}^{+}=+15 \mathrm{~V}$ per channel, unless otherwise noted.
Limits at Temperature Extremes

Symbol	Parameter	Test Conditions	Maximum @ $\mathrm{T}_{\mathrm{A}}=$				Unit
			$-55^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$	$+85^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	
Static							
$\mathrm{V}_{\text {ANALOG }}$	Analog Signal Range		± 10	± 10	± 10	± 10	V
ros(ON)	Switch ON Resistance	$\mathrm{V}_{\mathrm{S}}=+2 \mathrm{~V}$	80	80	120	150	Ω
		$\mathrm{V}_{\mathrm{S}}=-10 \mathrm{~V}$	80	80	120	150	Ω
		$\mathrm{V}_{\mathrm{S}}=+10 \mathrm{~V}$	160	160	240	300	Ω
IIN	Logic Input Leakage Current	$\mathrm{V}_{\text {IN }}=+5 \mathrm{~V}$	0.1	0.1	1	10	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {IN }}=+15 \mathrm{~V}$	0.1	0.1	2	20	$\mu \mathrm{A}$
$\overline{\text { I (OFF) }}$	Switch OFF Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{D}}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=-10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}}=+5 \mathrm{~V} \end{aligned}$	5	5	200	1000	nA
IS(OFF)	Switch OFF Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}}=+5 \mathrm{~V} \end{aligned}$	5	5	200	1000	nA
${ }^{-}$	Negative Supply Quiescent Current	$\mathrm{V}_{\mathrm{IN}}=0$ or V^{+}	-8	-8	-10	-10	mA
${ }^{+}$	Positive Supply Quiescent Current	$\mathrm{V}_{\text {IN }}=0$ or V^{+}	8	8	10	10	mA

SWITCHING TIMES TEST CIRCUIT

NOTE: Switch shown in logic "1" (OFF) position.

TEST WAVEFORMS

TEST RESULTS

HIGH-SPEED ANALOG SWITCH

CDG2214

TYPICAL PERFORMANCE CHARACTERISTICS

Off Isolation vs Frequency

ベTELEDYNE COMPONENTS

DUAL SPDT CMOS/DMOS ANALOG SWITCH WITH DATA LATCH

FEATURES

- High OFF Isolation
- Low Channel-to-Channel Cross Talk
- Wide Bandwidth
- Analog Signal Range \qquad +10 V to -10 V
- Low ON Resistance 20W Typ

APPLICATIONS

- RF and Video Switches
- High-Speed Precision Data Acquisition
- L-PAD Digital-Controlled Attenuators

GENERAL DESCRIPTION

Teledyne Components' CMOS/DMOS analog switches feature high-speed, low-power CMOS input logic and level translation circuitry, and high-speed, low-capacitance, lateral DMOS switches. CMOS and lateral DMOS circuitry are fabricated together on a single silicon chip. This device is designed for applications where high OFF isolation at high frequencies is needed.

LOGIC DIAGRAM

DUAL SPDT CMOS/DMOS ANALOG SWITCH WITH DATA LATCH

CDG2269

PIN CONFIGURATIONS

FUNCTION TABLE

	Input	Switch		
A	L_{E}	C	SW $_{\mathbf{1}}$	SW $_{\mathbf{2}}$
L	H	L	ON	OFF
H	H	L	OFF	ON
X	X	H	OFF	ON
L	L	L	Note 1	Note 2

NOTES: 1. Hold input state one setup before L_{E} high-to-low transition. If input state is low, then switch ON. If input state is high, then switch OFF.
2. $S W_{1}=\overline{S W}_{2}$.

ORDERING INFORMATION

Part No.	Package	Operating Temperature Range
CDG2269CPE	16-Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
CDG2269COE	16 -Pin SO	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

ABSOLUTE MAXIMUM RATINGS
Negative Supply Voltage $-20 \mathrm{~V}$
Positive Supply Voltage $+20 \mathrm{~V}$
Control Input VoltageRange
\qquad $\mathrm{V}^{+}+0.3 \mathrm{~V}, \mathrm{~V}^{-}-0.3 \mathrm{~V}$
Continuous Current, Any Pin Except S or D 20 mA
Continuous Current, S or D 30 mA
Peak Pulsed Current, S or D, $80 \mu \mathrm{~s}, 1 \%$, Duty Cycle 100 mA
Junction Temperature Range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation 500 mW

NOTE: All devices contain diodes to protect inputs against damage due to high-static voltages or electric fields. However, it is advised precautions be taken not to exceed the maximum recommended input voltages. All unused inputs must be connected to an appropriate logic voltage level (VD orGND). Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to Absolute Maximum Rating Conditions for extended periods may affect device reliability.

DUAL SPDT CMOS/DMOS ANALOG SWITCH WITH DATA LATCH

CDG2269

RECOMMENDED OPERATING CONDITIONS

Negative Supply Voltage	-8V to -15 V
Positive Supply Voltage	+8 V to +15 V
Control Input Voltage Range	. 0 V to +5 V
Operating Temperature Ra	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}^{-}=-15 \mathrm{~V}, \mathrm{~V}^{+}=+15 \mathrm{~V}$ per channel, unless otherwise noted.

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
Static						
V ANALOG	Analog Signal Range		-10	-	+10	V
$\mathrm{r}_{\text {DS(ON }}$	Switch ON Resistance (Switches 2/0 and 2/1)	$\begin{aligned} & V_{S}=-10 \mathrm{~V}, I_{S}=-1 \mathrm{~mA} \\ & V_{S}=+2 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}=+10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1 \mathrm{~mA} \end{aligned}$	—	$\begin{gathered} 29 \\ 40 \\ 100 \end{gathered}$	$\begin{gathered} \hline 80 \\ 80 \\ 160 \end{gathered}$	$\begin{aligned} & \Omega \\ & \Omega \\ & \Omega \end{aligned}$
ros(ON)	Switch ON Resistance (Switches $1 / 0$ and $1 / 1$)	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}=+2 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}=+10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1 \mathrm{~mA} \end{aligned}$	-	$\begin{aligned} & 13 \\ & 20 \\ & 50 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \\ & 80 \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \\ & \Omega \end{aligned}$
$\mathrm{V}_{\text {IH }}$	Logic "1" High Input Voltage		4.5	3.4	-	V
$\mathrm{V}_{\text {IL }}$	Logic "0" Low Input Voltage		-	-	1	V
IN	Logic Input Leakage Current	$\begin{aligned} & V_{\mathbb{I N}}=+5 \mathrm{~V} \\ & V_{\mathbb{I N}}=+15 \mathrm{~V} \end{aligned}$	-	$\begin{aligned} & \hline 0.01 \\ & 0.02 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
ID(OFF)	Switch OFF Leakage Current (Switches $2 / 0$ and 2/1)	$\mathrm{V}_{\mathrm{D}}=+10 \mathrm{~V}, \mathrm{~V}_{S}=-10 \mathrm{~V}$	-	0.4	5	$n \mathrm{~A}$
IS(OFF)	Switch OFF Leakage Current (Switches 2/0 and 2/1)	$\mathrm{V}_{\mathrm{S}}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}$	-	4	20	$n \mathrm{~A}$
ID(OFF)	Switch OFF Leakage Current (Switches $1 / 0$ and 1/1)	$\mathrm{V}_{\mathrm{D}}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=-10 \mathrm{~V}$	-	0.4	5	$n \mathrm{n}$
IS(OFF)	Switch OFF Leakage Current (Switches $1 / 0$ and $1 / 1$)	$\mathrm{V}_{\mathrm{S}}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}$	-	4	20	nA
F	Negative Supply Quiescent Current	$\mathrm{V}_{\mathbb{N}}=0 \mathrm{~V}$ or V^{+}	-	-0.05	-0.5	$\mu \mathrm{A}$
+	Positive Supply Quiescent Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or V^{+}	-	0.03	0.5	$\mu \mathrm{A}$
Dynamic						
t_{D}	Propagation Delay Data to Switch ON Data to Switch OFF Latch Enable to Switch ON Latch Enable to Switch OFF Clear to Switch ON Clear to Switch OFF		$\begin{aligned} & \text { - } \\ & \text { - } \end{aligned}$	$\begin{aligned} & 180 \\ & 100 \\ & 180 \\ & 140 \\ & 180 \\ & 90 \\ & \hline \end{aligned}$	$\begin{aligned} & 250 \\ & 200 \\ & 250 \\ & 200 \\ & 250 \\ & 150 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$ ns
ts	Setup Time		150	120	-	ns
t_{H}	Hold Time		150	90	-	ns
tw	Pulse Width		50	40	-	ns
OIRR	Off Isolation Rejection Ratio (Switches $1 / 0$ and $1 / 1$)	$\begin{aligned} & f=10 \mathrm{MHz}, R_{L}=50 \Omega \\ & f=200 \mathrm{MHz}, R_{L}=50 \Omega \end{aligned}$	$\begin{aligned} & 42 \\ & 12 \end{aligned}$	$\begin{aligned} & 45 \\ & 15 \end{aligned}$	-	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
	Frequency Roll-Off (Bandwidth)	$f=200 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega$	-	1	3	dB
$\overline{C_{D}}$	Drain-Node Capacitance	$\mathrm{V}_{\mathrm{D}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	-	0.6	-	pF
$\mathrm{C}_{\text {S }}$	Source-Node Capacitance	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	-	6	-	pF

DUAL SPDT CMOS/DMOS ANALOG SWITCH WITH DATA LATCH

TYPICAL PERFORMANCE CHARACTERISTICS CURVES

Switch ON Resistance vs Analog Input Voltage

Switch ON Resistance vs Analog Input Voltage

Off Isolation and Insertion Loss vs Frequency

CDG2269

TYPICAL PERFORMANCE CHARACTERISTICS CURVES (Cont.)

Logic Input Leakage Current vs Ambient Temperature

Supply Current vs Ambient Temperature

Switch OFF Leakage vs Ambient Temperature

NOTES

QUAD MONOLITHIC, SPST CMOS/DMOS ANALOG SWITCHES

FEATURES

- High OFF Isolation \qquad 68 dB @ 10 MHz
- Low Insertion Loss $-1 \mathrm{~dB} @ 100 \mathrm{MHz}$
- Low Channel-to-Channel Cross Talk. \qquad -80 dB @ 10 MHz
- CMOS-Compatible Inputs
- Low OFF Leakage
- Industry Standard Pinout (CDG308/CDG309)

GENERAL DESCRIPTION

Teledyne Components' CMOS/DMOS analog switches feature high-speed, low-power CMOS input logic and level translation circuitry, and high-speed, low-capacitance, lateral DMOS switches. CMOS and lateral DMOS circuitry are fabricated together on a single silicon chip. The CDG4308 and CDG4309 use the same die as CDG308 and CDG309; the extra isolating pin between switch input and output increases isolation by 6 dB .

APPLICATIONS

- Glitch-Free Analog Switching
- RF and Video
- Track-and-Hold
- Sample-and-Hold

FUNCTIONAL BLOCK DIAGRAMS

NOTES: 1. Four SPST switches per package.
2. Switches shown in logic "1" position.
3. CDG308/CDG4308: Logic " 0 " = OFF; Logic " 1 " = ON CDG309/CDG4309: Logic "0" = ON; Logic "1" = OFF

QUAD MONOLITHIC, SPST CMOS/DMOS ANALOG SWITCHES

PIN CONFIGURATIONS

ORDERING INFORMATION

Part No.	Package	Operating Temperature Range
CDG308COE	16-Pin SO	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
CDG308CPE	16-Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
CDG308EJE	16-Pin CerDIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
CDG308EOE	16-Pin SO	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
CDG308EPE	16-Pin Plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
CDG308MJE	16-Pin CerDIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
CDG309COE	16-Pin SO	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
CDG309CPE	16-Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
CDG309EJE	16-Pin CerDIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
CDG309EOE	16-Pin SO	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
CDG309EPE	16-Pin Plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
CDG309MJE	16-Pin CerDIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
CDG4308CPP	20-Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
CDG4308EPP	20-Pin Plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
CDG4309CPP	20-Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
CDG4309EPP	20-Pin Plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

ABSOLUTE MAXIMUM RATINGS
Negative Supply Voltage ..-20V
Positive Supply Voltage $+20 \mathrm{~V}$
Control Input Voltage Range $\mathrm{V}^{+}+0.3 \mathrm{~V}, \mathrm{~V}^{-}-0.3 \mathrm{~V}$
Continuous Current, Any Pin Except S or D 20 mA
Continuous Current, S or D 30 mA
Peak Pulsed Current, S or D,
$80 \mu \mathrm{~s}, 1 \%$, Duty Cycle
180 mA
Junction Temperature Range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation ... 500 mW

NOTE: All devices contain diodes to protect inputs against damage due to high-static voltages or electric fields. However, it is advised precautions be taken not to exceed the maximum recommended inputvoltages. All unused inputs must be connected to an appropriate logic voltage level (VDD or GND). Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to Absolute Maximum Rating Conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Negative Supply Voltage \qquad
Positive Supply Voltage +8 V to +15 V
Control Input Voltage Range 0 V to +5 V
Analog Switch Voltage Range.
Operating Temperature Range
C Suffix .. $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
E Suffix............................. $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
M Suffix $55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS: $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}^{-}=-15 \mathrm{~V}, \mathrm{~V}^{+}=+15 \mathrm{~V}$ per channel, unless otherwise noted.

| Symbol | Parameter | Test Conditions | Min | Typ | Max |
| :--- | :--- | :--- | :--- | :--- | :--- | Unit

Static

$\mathrm{V}_{\text {analog }}$	Analog Signal Range		-10	-	+10	V
$\mathrm{r}_{\text {DS(ON })}$	Switch ON Resistance	$\mathrm{V}_{\mathrm{s}}=-10 \mathrm{~V}$	-	40	80	Ω
		$\mathrm{V}_{\mathrm{S}}=+2 \mathrm{~V}$	-	45	80	Ω
		$\mathrm{V}_{\mathrm{S}}=+10 \mathrm{~V}$	-	100	160	Ω
V_{H}	High Level Input Voltage		4.5	3.4	-	V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage		-	-	1	V
In	Logic Input Leakage Current	$\mathrm{V}_{\text {IN }}=+5 \mathrm{~V}$	-	0.01	0.1	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {IN }}=+15 \mathrm{~V}$	-	0.02	0.1	$\mu \mathrm{A}$
ID(OFF)	Switch OFF Leakage Current	$\begin{aligned} & V_{D}=+10 \mathrm{~V}, \mathrm{~V}_{S}=-10 \mathrm{~V} \\ & V_{\text {IN }}=+5 \mathrm{~V} \text { (CDG309/CDG4309) } \\ & \mathrm{V}_{\text {IN }}=+1 \mathrm{~V} \text { (CDG308/CDG4308) } \end{aligned}$	-	0.2	5	nA
IS(OFF)	Switch OFF Leakage Current	$\begin{aligned} & V_{S}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=+5 \mathrm{~V} \text { (CDG309/CDG4309) } \\ & \mathrm{V}_{\text {IN }}=+1 \mathrm{~V} \text { (CDG308/CDG4308) } \end{aligned}$	-	0.4	5	nA
F	Negative Supply Quiescent Current	$\begin{aligned} & \mathrm{V}_{\text {IN }}=+5 \mathrm{~V}(\mathrm{CDG309/CDG4309)} \\ & \mathrm{V}_{\text {IN }}=+1 \mathrm{~V}(\text { CDG308/CDG4308) } \end{aligned}$	-	-0.1	-0.5	$\mu \mathrm{A}$
$1+$	Positive Supply Quiescent Current	$\begin{aligned} & V_{\text {IN }}=+5 \mathrm{~V}(\mathrm{CDG309/CDG4309)} \\ & \mathrm{V}_{\text {IN }}=+1 \mathrm{~V} \text { (CDG308/CDG4308) } \end{aligned}$	-	0.1	0.5	$\mu \mathrm{A}$

Dyna						
ton	Switch Turn-On Time	$\mathrm{V}_{\text {IN }}=+1 \mathrm{~V}$ (CDG308/CDG4308) $\mathrm{V}_{\text {IN }}=+5 \mathrm{~V}$ (CDG309/CDG4309)	-	140	250	ns
toff	Switch Turn-Off Time	$\begin{aligned} & V_{\text {IN }}=+1 \mathrm{~V}(\text { (CDG308/CDG4308) } \\ & V_{\text {IN }}=+5 \mathrm{~V} \text { (CDG309/CDG4309) } \end{aligned}$	-	80	220	ns
OIRR	Off Isolation Rejection Ratio	$\begin{aligned} & f=10 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega \text { (CDG308/CDG309) } \\ & \mathrm{f}=10 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega \text { (CDG4308/CDG4309) } \end{aligned}$	$\begin{aligned} & 60 \\ & 66 \end{aligned}$	$\begin{aligned} & 62 \\ & 68 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
$\mathrm{C}_{\text {CRR }}$	Cross-Coupling Rejection Ratio	$\mathrm{f}=10 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega$	-	80	-	dB
C_{D}	Drain-Node Capacitance	$\begin{aligned} & V_{D}=V_{S}=0, f=1 \mathrm{MHz} \\ & V_{\text {IN }}=+1 V(\text { (CDG308/CDG4308) } \\ & V_{\text {IN }}=+5 V \text { (CDG309/CDG4309) } \end{aligned}$	-	0.3	-	pF
$\overline{\mathrm{C}_{\text {S }}}$	Source-Node Capacitance	$\begin{aligned} & V_{D}=V_{S}=0, f=1 \mathrm{MHz} \\ & V_{S}=0, f=1 \mathrm{MHz}, V_{\text {IN }}=0 \mathrm{~V} \\ & V_{\text {IN }}=+5 \mathrm{~V}(\mathrm{CDG} 309 / \text { CDG4309) } \end{aligned}$	-	3	-	pF

QUAD MONOLITHIC, SPST CMOS/DMOS ANALOG SWITCHES

CDG308 CDG4308
CDG309 CDG4309

ELECTRICAL CHARACTERISTICS: $\mathrm{V}^{-}=-15 \mathrm{~V}, \mathrm{~V}^{+}=+15 \mathrm{~V}$ per channel, unless otherwise noted.
Limits at Temperature Extremes

Symbol	Parameter	Test Conditions	Maximum @ $\mathrm{T}_{\mathrm{A}}=$					Unit
			$-55^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$	$+85^{\circ} \mathrm{C}$	$\underline{+125}{ }^{\circ} \mathrm{C}$	
Static								
$\mathrm{V}_{\text {ANALOG }}$	Analog Signal Range		± 10	± 10	± 10	± 10	± 10	V
$\mathrm{r}_{\text {DS(ON) }}$	Switch ON Resistance	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=-10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=+10 \mathrm{~V} \end{aligned}$	$\begin{gathered} 80 \\ 160 \end{gathered}$	$\begin{gathered} 80 \\ 160 \end{gathered}$	$\begin{aligned} & 120 \\ & 240 \end{aligned}$	$\begin{aligned} & 120 \\ & 240 \end{aligned}$	$\begin{aligned} & 150 \\ & 300 \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$
I_{N}	Logic Input Leakage Current	$\begin{aligned} & \mathrm{V}_{\text {IN }}=+5 \mathrm{~V} \\ & \mathrm{~V}_{\text {IN }}=+15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 10 \\ & 20 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
ID(OFF)	Switch OFF Leakage Current	$\mathrm{V}_{\mathrm{D}}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=-10 \mathrm{~V}$	5	5	100	100	1000	nA
(OFF)	Switch OFF Leakage Current	$\mathrm{V}_{\mathrm{S}}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}$	5	5	100	100	1000	nA
-	Negative Supply Quiescent Current		-0.5	-0.5	-20	-20	-100	$\mu \mathrm{A}$
${ }^{+}$	Positive Supply Quiescent Current		0.5	0.5	20	20	100	$\mu \mathrm{A}$

SWITCH CONTACTS

Switches are bidirectional (analog input can be to source or drain). However, for optimum performance in video applications, connect input to source and output to drain. (See Figure 1.)

POWER SUPPLY DECOUPLING CIRCUIT

By inserting $1 \mathrm{k} \Omega$ resistors in series with V^{+}and V^{-} power supply lines, and decoupling both pins at the device socket, it is possible to improve video switch power supply rejection ratios by 50 dB at frequencies of 20 MHz and higher. (See Figure 2.)

Figure 1 Functional Diagram (1 of 4 Channels)

APPLICATIONS

Very Low Distortion Circuit for Low Frequency/Large Signal Applications

The circuit shown in Figure 3 provides very low distortion ($<0.1 \%$) and high off isolation ($>90 \mathrm{~dB}$) at signal levels equal to the supply voltage. The signal passes through a "T" switch configuration and at the same time modulates the power supply. This modulation maintains a constant ON resistance, $\mathrm{r}_{\mathrm{DS}(\mathrm{ON})}$, which inturn reduces distortion. R5 is for bypassing the power supply and has a typical value of $1 \mathrm{k} \Omega$; R4 should be a value that can be accommodated by the signal source as load; R3 is only necessary at loads lower

Figure 2 Power Supply Decoupling Circuit

QUAD MONOLITHIC, SPST
 CMOS/DMOS ANALOG SWITCHES

$\begin{array}{ll}\text { CDG308 } & \text { CDG4308 } \\ \text { CDG309 } & \text { CDG4309 }\end{array}$

Logic Inverter

The circuit shown in Figure 4 provides logic inversion with two resistors and one switch. It does not require additional logic parts. The resistors divide the supply voltage to a 5 V level when high, and are switched to a low level via the switch. This configuration allows a single-pole, single-throw switch to be changed into a single-pole, double-throw switch.

Figure 4 Logic Inverter

TEST CIRCUITS

Switching Times

QUAD MONOLITHIC, SPST CMOS/DMOS ANALOG SWITCHES

TEST CIRCUITS (Cont.)

*NOTE: $\mathrm{C}=0.22 \mu \mathrm{~F} / / 10 \mu \mathrm{~F}$

Distortion vs Frequency

TYPICAL PERFORMANCE CHARACTERISTICS

Switch ON Resistance vs Analog Voltage

Off Isolation Rejection Ratio vs Frequency

Switch ON Resistance vs Supply Voltage

QUAD MONOLITHIC, SPST CMOS/DMOS ANALOG SWITCHES

TYPICAL PERFORMANCE CHARACTERISTICS (Cont.)

Switch ON Resistance
vs Frequency

Total Harmonic Distortion vs Frequency

Switch ON Resistance vs Supply Voltage and Frequency

Distortion vs Analog Input Voltage

Power Supply Rejection Ratio vs Frequency

CDG4500

4-CHANNEL CMOS/DMOS HIGH-FREQUENCY MULTIPLEXER
 FEATURES
 GENERAL DESCRIPTION

- High OFF Isolation, >62dB @ 10 MHz
- Low Channel-to-Channel Crosstalk, $>80 \mathrm{~dB}$ @ 10 MHz
- 5 Volt CMOS Compatible Inputs
- Low ON Resistance, 40Ω typ.

■ Wide Bandwidth, -3.0 dB @ 100 MHz

- Wide Analog Signal Range $\mathbf{+ 1 0 \mathrm { V } \text { to } - 1 0 \mathrm { V }}$
- High Speed Logic Control

APPLICATIONS

- RF \& Video Switches
- High Speed Precision Data Acquisition

Teledyne CMOS/DMOS Analog Multiplexers feature high-speed, low-power 5 volt CMOS input logic and level translation circuitry and high speed, low capacitance Lateral DMOS switches. CMOS and Lateral DMOS circuitry are fabricated together on a single silicon chip. This part is designed for applications where high "off" isolation at high frequencies is needed. The 14 pin configuration gives a compact board layout without impacting "off" isolation and by use of the enable allows higher levels of multiplexing.

All devices contain diodes to protect inputs against damage due to high static voltages or electric fields; however, it is advised that precautions be taken not to exceed the maximum recommended input voltages. All unused inputs must be connected to an appropriate logic level (either $V_{C C}$ or GND).

FUNCTION DIAGRAM

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

V- Negative Supply Voltage-20V
V+ Positive Supply Voltage.................................20V
$V_{\text {IN }}$ Control Input Voltage
Range $\mathrm{V}++0.3 \mathrm{~V}, \mathrm{~V}--0.3 \mathrm{~V}$
IL Continuous Current, any Pin except S or D ... 20 mA
Is Continuous Current, S or D 30 mA
Is Peak Pulsed Current, S or D, $80 \mu \mathrm{sec}, 1 \%$ Duty Cycle 100 mA
$\mathrm{T}_{\mathrm{J}} \quad$ Junction Temperature Range $\ldots-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Ts Storage Temperature Range........$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
PD Power Dissipation (derate at $12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$, above $+85^{\circ} \mathrm{C}$)
.500 mW

RECOMMENDED OPERATING CONDITIONS

V- Negative Supply Voltage-8.0 to -15V
V+ Positive Supply Voltage 8.0 to +15 V
$V_{\text {IN }}$ Control Input Voltage Range 0 to +5 V
Top Operating Temperature

$$
\begin{aligned}
& \text { (A Suffix) .. }-55 \text { to }+125^{\circ} \mathrm{C} \\
& \text { (B Suffix) .. }+85^{\circ} \mathrm{C} \\
& \text { (C Suffix) }
\end{aligned}
$$

Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ORDERING INFORMATION		
4-Channel Multiplexer with Enable	14-Pin Plastic DIP	14-Pin Ceramic DIP
Commercial Temp. CDG4500 CPD - Range CDG4500 EPD CDG4500 EJD Range - CDG4500 MJD Military Temp. Range		

4-CHANNEL CMOS/DMOS HIGH-FREQUENCY MULTIPLEXER

CDG4500
ELECTRICAL CHARACTERISTICS: ($\mathrm{V}-=-15 \mathrm{~V}, \mathrm{~V}+=+15 \mathrm{~V}$, per channel, unless otherwise noted, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$)

Symbol	Parameter	Test Conditions	Min	Typ	Max	Units
Static						
$\mathrm{V}_{\text {ANALOG }}$	Analog Signal Range		-10		+10	V
$\mathrm{r}_{\text {DS(on) }}$	Channel On Resistance	$\begin{aligned} & V_{S}=-10 \mathrm{~V} \\ & V_{S}=+2.0 \mathrm{~V} \\ & V_{S}=+10 \mathrm{~V} \end{aligned}$	-	$\begin{gathered} 40 \\ 45 \\ 100 \\ \hline \end{gathered}$	$\begin{gathered} 80 \\ 80 \\ 160 \\ \hline \end{gathered}$	Ω
$\mathrm{V}_{\text {IH }}$	Logic High Level Input Voltage		4.5	3.4	-	V
$\mathrm{V}_{\text {IL }}$	Logic Low Level Input Voltage		-	-	1.0	V
IN	Logic Input Leakage Current	$\begin{aligned} & V_{I N}=+5.0 \mathrm{~V} \\ & V_{I N}=+15 \mathrm{~V} \end{aligned}$	-	$\begin{aligned} & 0.01 \\ & 0.02 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\mu \mathrm{A}$
ld(ofF) IS(OFF)	Switch OFF Leakage Current	$\begin{aligned} & V_{D}=+10 \mathrm{~V}, V_{S}=-10 \mathrm{~V} \\ & V_{S}=+10 \mathrm{~V}, V_{D}=-10 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 0.2 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	nA
--	Negative Supply Queiescent Current	$\mathrm{V}_{\mathrm{IN}}=0$ or V_{+}	-	-1.4	-4.0	mA
$\underline{+}$	Positive Supply Quiescent Current	$\mathrm{V}_{\mathbb{N}}=0$ or V_{+}	-	1.6	4.0	mA
Dynamic						
ton	Switch Turn-On Time (All inputs)	$\mathrm{V}_{\text {IN }}=5.0 \mathrm{~V}$	-	150	250	nsec
toff	Switch Turn-OFF Time (All inputs)	$\mathrm{V}_{\text {IN }}=5.0 \mathrm{~V}$	-	120	220	nsec
$\overline{\mathrm{C}_{\text {CRR }}}$	All Crosstalk Single Channel Crosstalk Frequency Roll-Off (Bandwidth)	$\begin{aligned} & f=10 \mathrm{MHz}, R_{L}=50 \Omega \\ & f=10 \mathrm{MHz}, R_{L}=50 \Omega \\ & f=100 \mathrm{MHz}, R_{L}=50 \Omega \end{aligned}$	$\begin{aligned} & 62 \\ & 80 \end{aligned}$	$\overline{-}$	$\overline{-}$	dB
C_{d}	Output Node Capacitance	$\mathrm{V}_{\mathrm{D}}=0, f=1 \mathrm{MHz}, \mathrm{V}_{\text {IN }}=0$	-	8.0	12.0	pF
$\underline{\mathrm{C}_{\text {s }}}$	Input Node Capacitance	$\mathrm{V}_{S}=0, f=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{IN}}=0$	-	2.5	4.0	pF

ELECTRICAL CHARACTERISTICS: ($\mathrm{V}-=-15 \mathrm{~V}, \mathrm{~V}+=+15 \mathrm{~V}$, per channel, unless otherwise noted)
LIMITS AT TEMPERATURE EXTREMES

Symbol	Parameter	Test Conditions	MAXIMUM @ T ${ }_{\text {A }}=$					Units
			$-55^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$	$+85^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	
Static								
$\mathrm{V}_{\text {ANALOG }}$	Analog Signal Range		± 10	± 10	± 10	± 10	± 10	V
$\mathrm{r}_{\text {DS(on) }}$	Channel On Resistance	$\mathrm{V}_{\mathrm{S}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1.0 \mathrm{~mA}$	80	80	120	120	150	Ω
		$\mathrm{V}_{\mathrm{S}}=+2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=+1.0 \mathrm{~mA}$	80	80	120	120	150	Ω
		$\mathrm{V}_{\mathrm{S}}=+10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1.0 \mathrm{~mA}$	160	160	240	240	300	Ω
$\overline{\mathrm{IN}}$	Logic Input	$\mathrm{V}_{\mathrm{IN}}=+5.0 \mathrm{~V}$	0.1	0.1	1.0	1.0	10	$\mu \mathrm{A}$
	Leakage Currents	$\mathrm{V}_{\mathbb{N}}=+15 \mathrm{~V}$	0.1	0.1	2.0	2.0	20	
$\overline{\text { I (OFF) }}$	Switch OFF	$\mathrm{V}_{\mathrm{D}}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=-10 \mathrm{~V}$	5.0	5.0	100	100	1000	nA
$\mathrm{IS}_{\text {SOFF }}$	Leakage Currents	$\mathrm{V}_{S}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}$	5.0	5.0	100	100	1000	
-	Supply	$\mathrm{V}_{\mathrm{IN}}=0$ or $\mathrm{V}+$	-4.0	-4.0	-4.0	-4.0	-4.0	mA
$\underline{+}$	Quiescent Currents	$\mathrm{V}_{\text {IN }}=0$ or V_{+}	4.0	4.0	4.0	4.0	4.0	mA

NOTES

DUAL MONOLITHIC, SPST CMOS/DMOS "T" CONFIGURATION ANALOG SWITCH

FEATURES

- Ultra-High OFF Isolation \qquad $>80 \mathrm{~dB}$ @ 10 MHz Low Channel-to-Channel Cross Talk \qquad -80 dB @ 10 MHz
- CMOS-Compatible Inputs
- Low ON Resistance. \qquad $<110 \Omega$
- Wide Bandwidth \qquad

GENERAL DESCRIPTION

Teledyne Components' CMOS/DMOS analog switches feature high-speed, low-power 5V CMOS input logic and level translation circuitry, and high-speed, low-capacitance, lateral DMOS switches. CMOS and lateral DMOS circuitry are fabricated together on a single silicon chip.

APPLICATIONS

- RF and Video Switches
 - Data Acquisition

FUNCTIONAL BLOCK DIAGRAM

NOTES: 1. Two SPST "T" switches per package.
2. Switchs shown in logic "0" position.
3. Compensation networks can be connected to COMMON 1 and COMMON 2.
4. Switches are "BREAK-before-MAKE"
5. Logic " 0 " = OFF; Logic " 1 " $=$ ON

PIN CONFIGURATION

CDG5341

ORDERING INFORMATION

Part No.	Operating Package	Temperature Range
CDG5341EPE	14-Pin Plastic DIP	$-40^{\circ} \mathrm{C}$ t $0+85^{\circ} \mathrm{C}$
CDG5341CPE	14-Pin Plastic DIP	$0^{\circ} \mathrm{C}$ t $0+70^{\circ} \mathrm{C}$
CDG5341EJE	14-Pin CerDIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
CDG5341MJE	14-Pin CerDIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

Negative Supply Voltage-8V to -15V
Positive Supply Voltage +8 V to +15 V
Control Input Voltage Range 0 V to +5 V
Analog Switch Voltage Range $\pm 10 \mathrm{~V}$
Operating Temperature Range
M Suffix $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
E Suffix $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
C Suffix $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Abstract

ABSOLUTE MAXIMUM RATINGS Negative Supply Voltage ...-20V Positive Supply Voltage ..20V Control Input Voltage Range $\mathrm{V}^{+}+0.3 \mathrm{~V}, \mathrm{~V}^{-}-0.3 \mathrm{~V}$ Continuous Current, Any Pin Except S or D 20 mA Continuous Current, S or D 30 mA Peak Pulsed Current, S or D, $80 \mu \mathrm{~s}, 1 \%$, Duty Cycle 100 mA Junction Temperature Range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Power Dissipation .500 mW (Derate at $12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ Above $+85^{\circ} \mathrm{C}$) NOTE: All devices contain diodes to protect inputs against damage due to high-static voltages or electric fields. However, it is advised precautions be taken not to exceed the maximum recommended inputvoltages. All unused inputs must be connected to an appropriate logic voltagelevel (VDO V_{DD} GND). Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to Absolute Maximum Rating Conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS: $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}^{-}=-15 \mathrm{~V}, \mathrm{~V}^{+}=+15 \mathrm{~V}$ per channel, unless otherwise noted.

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
Static						
$\mathrm{V}_{\text {ANALOG }}$	Analog Signal Range		-10	-	+10	V
ros(ON)	Switch ON Resistance	$\mathrm{V}_{\mathrm{S}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1 \mathrm{~mA}$	-	100	160	Ω
		$\mathrm{V}_{\mathrm{S}}=+2 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}$	-	110	160	Ω
		$\mathrm{V}_{\mathrm{S}}=+10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1 \mathrm{~mA}$	-	200	320	Ω
V_{IH}	High Level Input Voltage		4.5	3.4	-	V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage		-	-	1	V
In	Logic Input Leakage Current		-	0.01	0.1	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{IN}}=+15 \mathrm{~V}$	-	0.02	0.1	$\mu \mathrm{A}$
D(OFF)	Switch OFF Leakage Current	$\mathrm{V}_{\mathrm{D}}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=-10 \mathrm{~V}$	-	0.2	5	nA
IS(OFF)	Switch OFF Leakage Current	$\mathrm{V}_{\mathrm{S}}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}$	-	0.2	5	nA
F-	Negative Supply Quiescent Current	$\mathrm{V}_{\text {IN }}=0$ or V^{+}	-	-0.1	-0.5	$\mu \mathrm{A}$
+	Positive Supply Quiescent Current	$\mathrm{V}_{\text {IN }}=0$ or V^{+}	-	0.1	0.5	$\mu \mathrm{A}$
Dynamic						
ton	Switch Turn-On Time	$\mathrm{V}_{\mathrm{IN}}=+5 \mathrm{~V}$	-	150	250	ns
toff	Switch Turn-Off Time	$\mathrm{V}_{\text {IN }}=+5 \mathrm{~V}$	-	80	220	ns
OIRR	Off Isolation Rejection Ratio	$f=10 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega$	80	-	-	dB
CCRR	Cross-Coupling Rejection Ratio	$f=10 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega$	80	-	-	dB
	Frequency Roll-Off (Bandwidth)	$f=10 \mathrm{MHz}, R_{L}=50 \Omega$	-	1	3	dB
$\bar{C}_{\text {D }}$	Drain-Node Capacitance	$\mathrm{V}_{\mathrm{D}}=0, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	-	0.3	-	pF
$\mathrm{C}_{\text {s }}$	Source-Node Capacitance	$\mathrm{V}_{\mathrm{S}}=0, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	-	3	-	pF

DUAL MONOLITHIC, SPST CMOS/DMOS "T" CONFIGURATION ANALOG SWITCH

CDG5341
ELECTRICAL CHARACTERISTICS: $\mathrm{V}^{-}=-15 \mathrm{~V}, \mathrm{~V}^{+}=+15 \mathrm{~V}$ per channel, unless otherwise noted.
Limits at Temperature Extremes

Symbol	Parameter	Test Conditions	$-55^{\circ} \mathrm{C}$	$\begin{array}{r} \text { Max } \\ -40^{\circ} \mathrm{C} \end{array}$	$\begin{aligned} & \text { ximum } \\ & ++70^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & @ \mathrm{~T}_{A}= \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\left\|+125^{\circ} \mathrm{C}\right\|$	Unit
Static								
V ANALOG	Analog Signal Range		± 10	± 10	± 10	± 10	± 10	V
$\mathrm{r}_{\text {DS(ON) }}$	Switch ON Resistance	$\mathrm{V}_{\mathrm{S}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1 \mathrm{~mA}$	160	160	240	240	300	Ω
		$\mathrm{V}_{\mathrm{S}}=+2 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=+1 \mathrm{~mA}$	160	160	240	240	300	Ω
		$\mathrm{V}_{S}=+10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1 \mathrm{~mA}$	320	320	480	480	600	Ω
IIN	Logic Input Leakage Current	$\mathrm{V}_{\text {IN }}=+5 \mathrm{~V}$	0.1	0.1	1	1	10	$\mu \mathrm{A}$
		$\mathrm{V}_{1 \mathrm{~N}}=+15 \mathrm{~V}$	0.1	0.1	2	2	20	$\mu \mathrm{A}$
ID(OFF)	Switch OFF Leakage Current	$\mathrm{V}_{\mathrm{D}}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=-10 \mathrm{~V}$	5	5	100	100	1000	nA
IS(OFF)	Switch OFF Leakage Current	$\mathrm{V}_{\mathrm{S}}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}$	5	5	100	100	1000	nA
F-	Negative Supply Quiescent Current	$\mathrm{V}_{\text {IN }}=0$ or V^{+}	-0.5	-0.5	-20	-20	-100	$\mu \mathrm{A}$
$1+$	Positive Supply Quiescent Current	$\mathrm{V}_{\mathrm{IN}}=0$ or V^{+}	0.5	0.5	20	20	100	$\mu \mathrm{A}$

TYPICAL PERFORMANCE CHARACTERISTICS CURVES

Off Isolation Rejection Ratio vs Frequency

Switch ON Resistance vs Frequency

NOTES

QUAD SINGLE-POLE CMOS ANALOG SWITCHES

FEATURES

- Low ros(on) $\left(+25^{\circ} \mathrm{C}\right)$ \qquad $<175 \Omega$ Max
- Analog Input Leakage Current 1 nA
- Analog Input Equal to Supply
- Supply Current \qquad $300 \mu \mathrm{~A}$
- Low-Current Logic Input
- Pin Compatible With DG201 (TC4201)

GENERAL DESCRIPTION

The TC4201, TC4202 and TC4203 are quad CMOS analog switches, specifically designed for low supply voltage applications. Special care was taken to reduce crosstalk and feedthrough, while maintaining uniform "on" resistance at supply voltages as low as $\pm 1.5 \mathrm{~V}$. This also results in extremely low charge transfer during switching, typically 5 pC , compared to 30 pC with similar devices.

Charge transfer is an extremely important consideration in the design of sample-and-hold circuits, low-level analog signal switching, and interfacing to high-input impedances, such as those presented by analog-to-digital converters.

This switch family offers four independent single-pole, single-throw (SPST) circuits and features single- or dualsupply operation, with analog input voltage range equal to the supply voltage. The CMOS design requires very low supply current.

The TC4201 consists of four normally-open (Form A) contacts.

The TC4202 consists of four normally-open (Form B) contacts.

The TC4203 combines two Form A contacts with two Form B contacts, and may be configured as two Form C (SPDT) circuits.

PIN CONFIGURATIONS

QUAD SINGLE-POLE CMOS ANALOG SWITCHES

TRUTH TABLE

$\left.\begin{array}{c|c|c|cccc}\hline \text { Logic } & \text { TC4201 } & \text { TC4202 } & & \text { TC4203 } & \text { SW2 } & \text { SW3 }\end{array}\right]$ SW4 | SW1-4 | SW1-4 | SW1 | SW2 | Open | Closed |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | Closed | Open | Open | Closed | |
| 1 | Open | Closed | Closed | Closed | Open |

ORDERING INFORMATION

Part No.	Package	Temperature Range
TC420XCPE	16 -Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC420XCOE	16 -Pin SO Wide	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC420XIJE	16 -Pin CerDIP	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC420XMJE	16 -Pin CerDIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

NOTE: $X=1,2$ or 3 .

ABSOLUTE MAXIMUM RATINGS

Supply Voltages
\qquad

$\mathrm{V}_{\mathrm{s}}{ }^{-}$to GND ...-18V
V_{S} or V_{D} to $\mathrm{V}^{-}{ }^{-}$....................................... 0 O to +18 V

Current*
Any Pin .. 20 mA
S or D, Peak (1 ms, 10\% Duty Cycle)............... 70 mA
Storage Temperature Range $+65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Operating Temperature Range

Package Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$)
Plastic DIP (C)
375 mW (Notes 1, 2)
CerDIP (I and M)
500 mW (Notes 1, 3)
*Input voltages that exceed $\mathrm{V}_{\mathrm{S}^{+}}$or $\mathrm{V}_{\mathrm{S}}{ }^{-}$will be clamped by internal diodes. Limit current to maximum current ratings.
NOTES: 1. All pins soldered or welded to PC board.
2. Derate at $6.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+75^{\circ} \mathrm{C}$.
3. Derate at $13 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+75^{\circ} \mathrm{C}$.

Static-sensitive devices. Unused devices should be stored in conductive material. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied.

ELECTRICAL CHARACTERISTICS: $\mathrm{V}_{\mathrm{S}^{+}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}^{-}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise indicated.

Symbol	Parameter	Test Conditions	Min	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Typ } \end{gathered}$	Max		to $0^{\circ} \mathrm{C}$ Max	$\begin{gathered} -25 \\ +8 \\ \mathrm{Min} \end{gathered}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \text { to } \\ & 5^{\circ} \mathrm{C} \\ & \mathrm{Max} \end{aligned}$		C to $5^{\circ} \mathrm{C}$ Max	Unit
Switches												
$\mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\mathrm{D}}$	Analog Input Signal Range		0	-	5	0	5	0	5	0	5	V
ros(ON)	Drain Source On Resistance	$\mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}$, Switch On	-	105	195		240	-	240	-	260	Ω
$I_{\text {S(OFF) }}$	Source Off Leakage Current	$\begin{aligned} & V_{S}=0.5 \mathrm{~V} \text { to } 4.5 \mathrm{~V}, \\ & V_{D}=4.5 \text { to } 0.5 \mathrm{~V} \text {, Switch Off } \end{aligned}$	-	0.01	1		100	-	100	-	120	nA
ID (OFF)	Drain Off Leakage Current	$\begin{aligned} & V_{S}=0.5 \mathrm{~V} \text { to } 4.5 \mathrm{~V}, \\ & V_{D}=4.5 \text { to } 0.5 \mathrm{~V}, \text { Switch Off } \end{aligned}$	-	0.01	1		100		100	-	120	nA
$\mathrm{I}_{\text {(ON }}$	Drain On Leakage Current	$V_{D}=V_{S}=0.5 \mathrm{~V} \text { to } 4.5 \mathrm{~V},$ Switch Off	-	0.02	1		200		200		230	nA

QUAD SINGLE-POLE
 CMOS ANALOG SWITCHES

ELECTRICAL CHARACTERISTICS: $\mathrm{V}_{\mathrm{S}^{+}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}^{-}}=-5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise indicated.

Symbol	Parameter	Test Conditions	Min	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Typ } \end{gathered}$	Max		$\begin{aligned} & \mathrm{C} \text { to } \\ & 0^{\circ} \mathrm{C} \\ & \mathrm{Max} \end{aligned}$	$\begin{gathered} -25^{\circ} \\ +85 \\ \text { Min } \end{gathered}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \text { to } \\ & 5^{\circ} \mathrm{C} \\ & \text { Max } \end{aligned}$	$\begin{gathered} -55^{\circ} \\ +12 \\ \text { Min } \end{gathered}$	C to $5^{\circ} \mathrm{C}$ Max	Unit
Switches												
$\mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\mathrm{D}}$	Analog Input Signal Range		-5	-	+5	-5	+5	-5	+5	-5	+5	V
ros(ON)	Drain Source On Resistance	$\begin{aligned} & V_{D}= \pm 3.5 \mathrm{~V} \text {, Switch On, } \\ & I_{S}=1 \mathrm{~mA} \end{aligned}$	-	95	175	-	230	-	230	-	250	Ω
IS(OFF)	Source Off Leakage Current	$\mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 4.5 \mathrm{~V}$ Switch Off	-	0.01	1	-	100	-	100	-	120	nA
Id(OFF)	Drain Off Leakage Current	$\mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 4.5 \mathrm{~V},$ Switch Off	-	0.01	1	-	100	-	100	-	120	nA
$\mathrm{I}_{\mathrm{D}} \mathrm{ON}$)	Drain On Leakage Current	$V_{D}=V_{S}= \pm 4.5 \mathrm{~V},$ Switch On	-	0.02	1	-	200	-	200	-	230	nA
Digital												
VINH	Input High Voltage (Logic "1")		-	1.5	2.4	-	2.4	-	2.4	-	2.4	V
$\mathrm{V}_{\text {INL }}$	Input Low Voltage (Logic "0")		0.8	1.5	-	0.8	-	0.8	-	0.8	-	V
IINH	Input Current With Input High Voltage	$\mathrm{V}_{1 \mathrm{~N}}=5 \mathrm{~V}$	-	0.001	1	-	10	-	10	-	12	$\mu \mathrm{A}$
IINL	Input Current With Input Low Voltage	$\mathrm{V}_{1 \mathrm{~N}}=0 \mathrm{~V}$	-	0.001	1	-	10	-	10	-	12	$\mu \mathrm{A}$
Dynamic												
ton	Turn-On Time	See Switch Time Test Circuit	-	250	500		650	-	650	-	750	ns
toff	Turn-Off Time	See Switch Time Test Circuit	-	185	350	-	450	-	450		550	ns
$\mathrm{Q}_{\text {INJ }}$	Charge Injection	$\begin{aligned} & C_{L}=1 \mathrm{nF}, \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{GEN}}=0 \Omega \end{aligned}$	-	5	-	-	-	-	-	-	-	pC
$\mathrm{C}_{\text {S(OFF) }}$	Source Off Capacitance	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{f}=100 \mathrm{kHz}$	-	8	-	-	-	-	-	-	-	pF
$\mathrm{C}_{\text {D(OFF) }}$	Drain Off Capacitance	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{f}=100 \mathrm{kHz}$	-	8	-	-	-	-	-	-	-	pF
$\mathrm{C}_{\mathrm{C}(\mathrm{ON})}$	Channel-On Capacitance	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{f}=100 \mathrm{kHz}$	-	23	-	-	-	-	-	-	-	pF
OIRR	Off Isolation	$f=100 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=1000 \Omega$	-	65	-	-	-	-	-	-	-	dB
CCRR	Cross-Talk Rejection	$f=100 \mathrm{kHz}, \mathrm{R}_{L}=1000 \Omega$	-	85	-	-	-	-	-	-	-	dB
Power Supply												
$1 \mathrm{~S}^{+}$	Positive Supply Current	$\mathrm{V}_{1 \mathrm{~N}}=5 \mathrm{~V}$	-	275	500	-	700	-	700	-	750	$\mu \mathrm{A}$
$1 s^{-}$	Negative Supply Current	$\mathrm{V}_{1 \mathrm{~N}}=5 \mathrm{~V}$	-	0.01	10	-	10	-	10	-	12	$\mu \mathrm{A}$
Supply Operating Range												
$\mathrm{V}_{\mathrm{S}^{+}}$to $\mathrm{V}_{\mathrm{S}^{-}}$and V^{+}to GND			3	-	16	3	16	3	16	3	16	V

TYPICAL CHARACTERISTIC CURVES

Turn-On/Off Time vs Temperature

On Resistance vs Temperature

QUAD SINGLE-POLE

CMOS ANALOG SWITCHES
TC4201
TC4202
TC4203

TEST CIRCUITS

NOTES

MICROPROCESSOR COMPATIBLE CMOS ANALOG SWITCHES

FEATURES

E Data Address Latch On-Chip

- Transparent Latch With WR $=0$
- Write Pulse Operation \qquad <250 ns
- Dual- or Single-Supply Operation
- Low ros(on) $\left(+25^{\circ} \mathrm{C}\right)$. \qquad $<175 \Omega$ Max

- Supply Current

$300 \mu \mathbf{A}$

- Analog Input Equal to Supply
- Analog Input Leakage Current 1 nA
- TTLCMOS Compatible
- Low-Current Logic Input
- Pin Compatible With DG201 and DG221 (TC441)

GENERAL DESCRIPTION

The TC441, TC442 and TC443 are CMOS quad, SPST analog switches with data address latches. Their pinouts match the "201/221" analog switch configuration. The write input (WR, pin 12) is not used on the 201/221. The address latch is transparent when WR is tied low.

This switch family features single- or dual-supply operation, with analog input voltage range equal to the supply voltage. The CMOS design requires very low supply current.

The TC441 has four normally-closed (Form B) contacts, the TC442 has four normally-open contacts (Form A), and the TC443 has two normally-open and two normally-closed contacts.

The TC443 can be configured as two DPST (Form C) switches.

[^7]
MICROPROCESSOR COMPATIBLE CMOS ANALOG SWITCHES

TC441
TC442
TC443

ORDERING INFORMATION

Part No.	Package	Temperature Range
TC44XCPE	$16-$ Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC44XCOE	$16-$ Pin Plastic SO	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC44XIJE	16 -Pin CerDIP	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC44XMJE	$16-\mathrm{Pin}$ CerDIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

$X=1,2$ or 3 .

TRUTH TABLE (Switch State)

$\mathbf{A}_{\mathbf{N}}$	$\overline{\mathrm{WR}}$	TC441	TC442	TC443
0	0	Closed	Open	SW1, SW2 Open SW3, SW4 Closed
1	0	Open	Closed	SW1, SW2 Closed SW3, SW4 Open
X	1		Maintain Previous State	

TIMING DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Supply Voltages
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range
Plastic DIP (C) $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
CerDIP (I)...................................... $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
CerDIP (M) $-55^{\circ} \mathrm{Cto}+125^{\circ} \mathrm{C}$Package Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$)
Plastic DIP (C) 375 mW (Notes 1 and 2)
CerDIP (1 and M) 500 mW (Notes 1 and 3)
*Input voltages that exceed $\mathrm{V}_{\mathrm{S}}{ }^{+}$or V_{S} - will be clamped by internal diodes. Limit current to maximum current ratings.
NOTES: 1. All pins soldered or welded to PC board.
2. Derate at $6.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
3. Derate at $13 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+75^{\circ} \mathrm{C}$.
4. Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to Absolute Maximum Rating Conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS: $\mathrm{V}_{\mathrm{S}^{+}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}^{-}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise indicated.

Symbol	Parameter	Test Conditions	Min	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & \text { Typ } \end{aligned}$	Max	$\begin{array}{\|c} 0^{\circ} \mathrm{C} \\ +7(\\ \text { Min } \end{array}$	$\begin{array}{\|l\|} \hline \text { to } \\ 0^{\circ} \mathrm{C} \\ \mathrm{Max} \end{array}$		$5^{\circ} \mathrm{C}$ $5^{\circ} \mathrm{C}$ Max	$\begin{aligned} & -55^{\circ} \\ & +12 \\ & \mathrm{Min} \end{aligned}$	C to $5^{\circ} \mathrm{C}$ Max	Unit
Switches												
$\mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\mathrm{D}}$	Analog Input Signal Range		0	-	5	0	5	0	5	0	5	V
$\mathrm{r}_{\mathrm{DS}(\mathrm{ON})}$	Drain Source On Resistance	$\mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}$, Switch On	-	105	195	-	240	-	240	-	260	Ω
IS(OFF)	Source Off Leakage Current	$\begin{aligned} & V_{S}=0.5 \mathrm{~V}-4.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{D}}=4.5 \mathrm{~V}-0.5 \mathrm{~V}, \text { Switch Off } \end{aligned}$	-	0.01	1	-	100	-	100	-	120	nA
$\overline{\mathrm{I}}$ (OFF)	Drain Off Leakage Current	$\begin{aligned} & V_{S}=0.5 \mathrm{~V}-4.5 \mathrm{~V}, \\ & \mathrm{~V}_{D}=4.5 \mathrm{~V}-0.5 \mathrm{~V}, \text { Switch Off } \end{aligned}$	-	0.01	1	-	100	-	100	-	120	nA
$\overline{\mathrm{I}(\mathrm{ON})}$	Drain On Leakage Current	$V_{D}=V_{S}=0.5 \mathrm{~V}-4.5 \mathrm{~V},$ Switch Off	-	0.02	1	-	200	-	200	-	230	nA

ELECTRICAL CHARACTERISTICS: $\mathrm{V}_{\mathrm{S}^{+}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}^{-}}=-5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise indicated.

Symbol		Test Conditions	${ }^{25}{ }^{\circ} \mathrm{C}$			$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to } \\ & +70^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & -25^{\circ} \mathrm{C} \\ & +85^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Unit
	Parameter		Min	Typ	Max	Min	Max	Min	Max	Min Max	

Switches

$\mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\mathrm{D}}$	Analog Input Signal Range		-5	-	+5	-5	+5	-5	+5	-5	+5	V
ros(on)	Drain Source On Resistance	$\begin{aligned} & V_{D}= \pm 3.5 \mathrm{~V} \text {, Switch On, } \\ & \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA} \end{aligned}$	-	95	175	-	230	-	230	-	250	Ω
IS(OFF)	Source Off Leakage Current	$V_{S}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 4.5 \mathrm{~V}$ Switch Off	-	0.01	1	-	100	-	100	-	120	nA
$\overline{\text { d (OFF) }}$	Drain Off Leakage Current	$V_{S}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 4.5 \mathrm{~V}$ Switch Off	-	0.01	1	-	100	-	100	-	120	nA
$I_{\text {D(ON })}$	Drain On Leakage Current	$V_{D}=V_{S}= \pm 4.5 \mathrm{~V},$ Switch On	-	0.02	1	-	200	-	200	-	230	nA

Digital

	Input High Voltage (Logic "1")	-	1.5	2.4	-	2.4	-	2.4	-	2.4	V	
VINH	Input Low Voltage (Logic "0")		0.8	1.5	-	0.8	-	0.8	-	0.8	-	V
INH	Input Current With Input High Voltage	$V_{\text {DIGITAL }}=5 \mathrm{~V}$	-	0.001	1	-	10	-	10	-	12	$\mu \mathrm{~A}$
Input Current With Input Low Voltage	$V_{\text {DIGITAL }}=0 \mathrm{~V}$	-	0.001	1	-	10	-	10	-	12	$\mu \mathrm{~A}$	

Dynamic

tww	Write Pulse Width	See Timing Diagram	-	-	250	-	325	-	325	-	375	ns
tosw	Data Setup Time	See Timing Diagram	-	-	250	-	325	-	325	-	375	ns
tohw	Data Hold Time	See Timing Diagram	-	-	50	-	50	-	50	-	50	ns
ton	Turn-On Time	See Switch Time Test Circuit	-	250	500	-	650	-	650	-	750	ns
toff	Turn-Off Time	See Switch Time Test Circuit	-	185	350	-	450	-	450	-	550	ns
$Q_{\text {INJ }}$	Charge Injection	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{GEN}}=0 \Omega \end{aligned}$	-	5	-	-	-	-	-	-	-	$p \mathrm{C}$
$\overline{C_{S(O F F)}}$	Source-Off Capacitance	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{f}=100 \mathrm{kHz}$	-	8	-	-	-	-	-	-	-	pF
$\mathrm{C}_{\text {D(OFF) }}$	Drain-Off Capacitance	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{f}=100 \mathrm{kHz}$	-	8	-	-	-	-	-	-	-	pF
$\mathrm{C}_{\mathrm{C}(\mathrm{ON})}$	Channel-On Capacitance (Except TC444	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{f}=100 \mathrm{kHz}$	-	23	-	-	-	-	-	-	-	pF
OIRR	Off Isolation	$f=100 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=1000 \Omega$	-	65	-	-	-	-	-	-	-	dB
CCRR	Cross-Talk Rejection	$f=100 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=1000 \mathrm{~W}$	一	70	-	-	-	-	-	-	-	dB

Power Supply

I^{+}	Positive Supply Current	$\mathrm{V}_{\text {DIGITAL }}=5 \mathrm{~V}$	-	275	500	-	700	-	700	-	750	$\mu \mathrm{~A}$
I^{-}	Negative Supply Current	$\mathrm{V}_{\text {DIGITAL }}=5 \mathrm{~V}$	-	0.01	10	-	10	-	10	-	12	$\mu \mathrm{~A}$

Supply Operating Range

$\mathrm{V}_{S^{+}}$to $\mathrm{V}_{S^{-}}$and $\mathrm{V}_{\mathrm{S}^{+}}$to GND	3	-	16	3	16	3	16	3	16	V

MICROPROCESSOR COMPATIBLE CMOS ANALOG SWITCHES

TC441
TC442
TC443

TYPICAL CHARACTERISTIC CURVES

TEST CIRCUITS

Channel-to-Channel Cross Talk

NOTES

MICROPROCESSOR COMPATIBLE CMOS ANALOG SWITCHES

FEATURES

- Data Address Latch On-Chip
- Low-Power CMOS
- Write \qquad .250 ns
- Transparent Latch With $\overline{W R}=0$
- Write Pulse Operation <250 ns
- Address Hold Time <50 ns
- Dual- or Single-Supply Operation
- $\mathrm{rDS}_{\mathrm{ON})}\left(+25^{\circ} \mathrm{C}\right)$ \qquad $<175 \Omega$ Max
- Supply Current \qquad
- Analog Input Equal to Supply
- Analog Input Leakage Current \qquad 1 nA
- TTUCMOS Compatible
- Low-Current Logic Input
- Pin Compatible With AD7590 Series

GENERAL DESCRIPTION

The TC444, TC445, TC446 and TC447 are CMOS analog switches offering low on-resistance at low supply voltages. Each provides for transparent (nonlatched) or latched addresses, making them ideal for microprocessor interface applications.

This switch family features single- or dual-supply operation, with analog input range equal to supply voltages. The CMOS design requires very low supply current.

The TC444 is configured as two single-pole, threeposition switches. Either switch can be independently selected (transparent or latched) for its own A or B position. (See TC444 Switch Circuit.)

Also, both switches are put in the C position (both open) by pulling the DISABLE input low. These various switch positions can be latched using the $\overline{\text { WRITE }}(\overline{\mathrm{WR}})$ input. This switch is especially useful in multi-path operations requiring complete isolation.

The TC445 is configured as four independent, normallyopen switches. The $\overline{W R}$ input is used to latch the switches in any selected mode, or may be held low for transparent operation.

The TC446 has the same features as the TC445, except the switches are normally closed.

The TC447 provides two normally-open and two nor-mally-closed switches. Its operation is the same as the TC445 and TC446.

The TC444 is pin compatible with the AD7592. The TC445/TC446 is pin compatible with the AD7590/AD7591.

PIN CONFIGURATION

TC445
TC446
TC447

TC444 SWITCH CIRCUIT

TIMING DIAGRAM

TC444 TRUTH TABLE (Switch State)

DISABLE	AN $_{\mathbf{N}}$	$\overline{\text { WR }}$	TC444
0	X	X	All switches open
1	0	0	S2 to OUT 1 closed S4 to OUT 2 closed
1	1	0	S1 to OUT 1 closed S3 to OUT 2 closed
1	X	1	Maintain previous state

ORDERING INFORMATION

Part No.	Package	Temperature Range
TC444		
TC444CPD	14 -Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC444COD	$14-$ Pin Plastic SO	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC444IJD	$14-$ Pin CerDIP	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC444MJD	$14-$ Pin CerDIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
TC445/446/447		
TC44XCPE	16 -Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC44XCOE	$16-$ Pin Plastic SO	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC44XIJE	$16-$ Pin CerDIP	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC44XMJE	$16-$ Pin CerDIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

$X=5,6$ or 7

TC445/446/447 TRUTH TABLE (Switch State)

$A_{\mathbf{N}}$	$\overline{\text { WR }}$	TC445	TC446	TC447
0	0	Open	Closed	SW1, SW4 open SW2, SW3 closed
1	0	Closed	Open	SW1, SW4 cosed SW2, SW3 open
X	1			Maintain previous state
$\mathrm{X}=$ Don't Care				

ABSOLUTE MAXIMUM RATINGS

Supply Voltages
\qquad
$\mathrm{V}_{\mathrm{S}^{+}}$to GND$+18 \mathrm{~V}$$\mathrm{V}_{\mathrm{S}}{ }^{-}$to GND$-18 \mathrm{~V}$
V_{S} or V_{D} to $\mathrm{V}_{\mathrm{S}^{+}}$ OV, -18 V
V_{S} or V_{D} to $V_{S^{-}}$ $0 \mathrm{~V},+18 \mathrm{~V}$
$V_{\text {DIGITAL }}$ to GND $\mathrm{V}_{\mathrm{s}^{-}}, \mathrm{V}_{\mathrm{s}^{+}}$

Current*

Any Pin \qquad20 mA
S or D, Peak (1 ns, 10\% Duty Cycle)$65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Operating Temperature Range

Plastic DIP (C) $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
CerDIP (I) .. $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
CerDIP (M) .. $-55^{\circ} \mathrm{Cto}+125^{\circ} \mathrm{C}$

Package Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$)
Plastic DIP (C)
375 mW (Notes 1, 2)

CerDIP (I and M)
500 mW (Notes 1, 3)

* Input voltages that exceed $\mathrm{V}_{\mathrm{S}^{+}}$or $\mathrm{V}_{\mathrm{S}}{ }^{-}$will be clamped by intemal diodes. Limit current to maximum current ratings.
NOTES: 1. All pins soldered or welded to PC board.

2. Derate at $6.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
3. Derate at $13 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+75^{\circ} \mathrm{C}$.

ELECTRICAL CHARACTERISTICS: $\mathrm{V}_{\mathrm{S}^{+}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}^{-}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise indicated.

Symbol	Parameter	Test Conditions	Min	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Tyр } \end{gathered}$	Max	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } \\ +70^{\circ} \mathrm{C} \\ \text { Min Max } \end{gathered}$		$\begin{aligned} & -25^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \\ & \text { Min Max } \end{aligned}$		$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \\ & \text { Min Max } \end{aligned}$		Unit
Switches V_{S}, V_{D}	Analog Input Signal Range		0	-	5	0	5	0	5	0	5	V
$\mathrm{r}_{\text {DS }}(\mathrm{ON})$	Drain Source On Resistance	$\mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}$, Switch On	-	105	195		240	-	240	-	260	Ω
$I_{\text {S(OFF }}$	Source Off Leakage Current	$\begin{aligned} & V_{S}=0.5 \mathrm{~V} \text { to } 4.5 \mathrm{~V}, \\ & V_{D}=4.5 \text { to } 0.5 \mathrm{~V}, \text { Switch Off } \end{aligned}$	-	0.01	1	-	100	-	100	-	120	nA
Id (OFF)	Drain Off Leakage Current	$\begin{aligned} & V_{S}=0.5 \mathrm{~V} \text { to } 4.5 \mathrm{~V}, \\ & V_{D}=4.5 \text { to } 0.5 \mathrm{~V}, \text { Switch Off } \end{aligned}$	-	0.01	1		100	-	100	-	120	nA
$I_{\text {d(ON })}$	Drain On Leakage Current	$V_{D}=V_{S}=0.5 \mathrm{~V} \text { to } 4.5 \mathrm{~V},$ Switch Off	-	0.02	1		200		200	-	230	nA

ELECTRICAL CHARACTERISTICS: $\mathrm{V}_{\mathrm{S}^{+}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}^{-}}=-5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise indicated.

Symbol	Parameter	Test Conditions	$+25^{\circ} \mathrm{C}$			$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to } \\ & +70^{\circ} \mathrm{C} \end{aligned}$ Min Max		$\begin{gathered} -25^{\circ} \mathrm{C} \text { to } \\ +85^{\circ} \mathrm{C} \\ \text { Min Max } \end{gathered}$		$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \\ & \text { Min Max } \end{aligned}$		Unit
Switches V_{S}, V_{D}	Analog Input Signal Range		-5	-	5	-5	5	-5	5	-5	5	V
$\mathrm{r}_{\mathrm{DS}(\mathrm{ON})}$	Drain Source On Resistance	$\begin{aligned} & \mathrm{V}_{\mathrm{D}}= \pm 3.5 \mathrm{~V}, \text { Switch } \mathrm{On}, \\ & \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA} \end{aligned}$	-	95	175		230	-	230	-	250	Ω
$\mathrm{I}_{\text {S(OFF) }}$	Source Off Leakage Current	$\mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 4.5 \mathrm{~V}$ Switch Off	-	0.01	1		100	-	100	-	120	nA
$\mathrm{I}_{\text {(}}^{\text {(FFF }}$)	Drain Off Leakage Current	$\mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 4.5 \mathrm{~V}$ Switch Off	-	0.01	1		100	-	100	-	120	nA
$l_{\text {(ON }}$	Drain On Leakage Current	$V_{D}=V_{S}= \pm 4.5 \mathrm{~V},$ Switch On	-	0.02	1		200	-	200	-	230	nA
Digital $\mathrm{V}_{\mathrm{INH}}$	Input High Voltage (Logic "1")		-	1.5	2.4		2.4	-	2.4	-	2.4	V
$\mathrm{V}_{\text {INL }}$	Input Low Voltage (Logic "0")		0.8	1.5	-	0.8	-	0.8	-	0.8	-	V

ELECTRICAL CHARACTERISTICS (Cont.)

Symbol	Parameter	Test Conditions	Min	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Typ } \end{gathered}$	Max		to Max	$\begin{gathered} -25^{\circ} \\ +85 \\ \text { Min } \\ \hline \end{gathered}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \text { to } \\ & 5^{\circ} \mathrm{C} \\ & \mathrm{Max} \\ & \hline \end{aligned}$	$\begin{aligned} & -55^{\circ} \\ & +12 \\ & \text { Min } \end{aligned}$	$\begin{aligned} & { }^{\mathrm{C}} \mathrm{C} \text { to } \\ & 5^{\circ} \mathrm{C} \\ & \mathrm{Max} \\ & \hline \end{aligned}$	Unit
IINL	Input Current With Input Low Voltage	$\mathrm{V}_{\text {DIGITAL }}=0 \mathrm{~V}$	-	0.001	1	-	10	-	10	-	12	$\mu \mathrm{A}$
$\mathrm{V}_{\text {INH }}$	$\overline{\text { DISABLE }}$ Input (TC444)	$\mathrm{V}_{\text {DIGITAL }}=5 \mathrm{~V}$	-	0.1	10	-	15	-	15	-	17	$\mu \mathrm{A}$
$\mathrm{V}_{\text {INL }}$	DISABLE Input (TC444)	$\mathrm{V}_{\text {DIGITAL }}=0 \mathrm{~V}$	-	5	10	-	15	-	15	-	15	$\mu \mathrm{A}$
Dynamic tww	Write Pulse Width	See Timing Diagram	-	-	250	-	325	-	325	-	375	ns
t DSW	Data Setup Time	See Timing Diagram	-	-	250	-	325	-	325	-	375	ns
toHW	Data Hold Time	See Timing Diagram	-	-	50	-	50	-	50	-	50	ns
ton	Turn-On Time	See Switch Time Test Circuit	-	250	500	-	650	-	650	-	750	ns
toff	Turn-Off Time	See Switch Time Test Circuit	-	185	350	-	450	-	450	-	550	ns
$\mathrm{Q}_{\text {INJ }}$	Charge Injection	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{GEN}}=0 \Omega \end{aligned}$	-	5	-	-	-	-	-	-	-	pC
$\mathrm{C}_{\text {S(OFF) }}$	Source-Off Capacitance	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{f}=100 \mathrm{kHz}$	-	8	-	-	-	-	-	-	-	pF
$\mathrm{C}_{\text {D(OFF) }}$	Drain-Off Capacitance	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{f}=100 \mathrm{kHz}$	-	8	-	-	-	-	-	-	-	pF
$\mathrm{C}_{\mathrm{C}(\mathrm{ON})}$	Channel-On Capacitance (Except TC444)	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{f}=100 \mathrm{kHz}$	-	23	-	-	-	-	-	-	-	pF
$\mathrm{C}_{\mathrm{C}(\mathrm{ON})}$	Channel-On Capacitance (TC444 Only)	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{f}=100 \mathrm{kHz}$	-	30	-	-	-	-	-	-	-	pF
DIRR	Off Isolation	$f=100 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=1000 \Omega$	-	65	-	-	-	-	-	-	-	dB
CCRR	Cross-Talk Rejection	$\mathrm{f}=100 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=1000 \Omega$	-	70	-	-	-	-	-	-	-	dB
$\begin{aligned} & \text { Power Su } \\ & \mathrm{I}^{+}{ }^{+} \end{aligned}$	Positive Supply Current	$\mathrm{V}_{\text {digital }}=5 \mathrm{~V}$	-	275	500	-	700	-	700	-	750	$\mu \mathrm{A}$
s^{-}	Negative Supply Current	$\mathrm{V}_{\text {DIGITAL }}=5 \mathrm{~V}$	-	0.01	10	-	10	-	10	-	12	$\mu \mathrm{A}$
Supply Operating Range												

TYPICAL CHARACTERISTIC CURVES

TEST CIRCUITS

Switching Time

Charge Injection

OIRR Off Isolation

CCRR Channel-to-Channel Cross-Talk

Section 13

Data Communications

| Display A/D Converters | 1 |
| ---: | ---: | ---: |
| Binary A/D Converters | 2 |
| Voltage-to-Frequency/Frequency-to-Voltage Converters | 3 |
| Sensor Products | 4 |
| Power Supply Control ICs | 5 |
| ChosFET, Motor and PIN Drivers | 6 |
| References | 7 |
| High Performance Amplifiers/Buffers | 9 |
| Video Display Drivers | 10 |
| Display Drivers | 11 |
| Analog Switches and Multiplexers | 12 |
| Data Communications | $\mathbf{1 3}$ |
| Discrete DMOS Products | 14 |
| Reliability and Quality Assurance | 15 |
| Ordering Information | 16 |
| Package Information | 17 |
| Sales Offices | 18 |

DUAL RS-232 TRANSMITTER/RECEIVER AND POWER SUPPLY

FEATURES

- Meets All RS-232C Specifications
- Operates From Single 5V Power Supply
- 2 Drivers and 2 Receivers
- On-Board Voltage Quadrupler
- Input Levels \qquad
- Output Swing With +5V Supply $\pm 30 \mathrm{~V}$
- Low Power CMOS
- Low Power CMOS 5 mA

GENERAL DESCRIPTION

The TC232 is a dual RS-232 transmitter/receiver that complies with EIA RS-232C guidelines and is ideal for all RS-232C communication links. This device has a 5 V power supply and two charge pump voltage converters that produce $\pm 10 \mathrm{~V}$ power supplies.

The TC232 has four level translators. Two are RS-232 transmitters that convert TTL/CMOS input levels to 9 V RS232 outputs. The other two translators are RS-232 receivers that convert RS-232 inputs to 5V TTL/CMOS output levels. The receivers have a nominal threshold of 1.3 V , a typical hysteresis of 0.5 V , and can operate with up to $\pm 30 \mathrm{~V}$ inputs.

TYPICAL APPLICATION

APPLICATIONS

The TC232 is ideal for all RS-232C communication links: Battery-powered systems, computers, instruments, modems, and peripherals. It can run without the 12 V power supplies other RS-232 devices require.

ORDERING INFORMATION

Part No.	Package	Temperature Range
TC232CPE	16 -Pin Plastic	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC232CJE	16 -Pin CerDIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC232IJE	16 -Pin CerDIP	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC232EPE	16 -Pin Plastic	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC232IPE	$16-$ Pin Plastic	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC232EJE	$16-$ Pin CerDIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC232COE	$16-$ Pin SO	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC232EOE	$16-$ Pin SO	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC232MJE	$16-$ Pin CerDIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

PIN CONFIGURATIONS

ABSOLUTE MAXIMUM RATINGS
VCc. $+6 \mathrm{~V}$
V^{+} $+12 \mathrm{~V}$
V^{-} $+12 \mathrm{~V}$
Input Voltages
T1 $1_{1 N}, T 2_{1}$ -0.3 to ($\left.\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}\right)$
R1in, R2in $\pm 30 \mathrm{~V}$
Output Voltages
T1out, T2out $\left(\mathrm{V}^{+}+0.3 \mathrm{~V}\right)$ to $\left(\mathrm{V}^{-}-0.3 \mathrm{~V}\right)$
R1out, R2out -0.3 to ($\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$)
Short Circuit Duration
V^{+} 30 sec
V- 30 sec
T1out, T2out Continuous

[^8]ELECTRICAL CHARACTERISTICS: $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=$ operating temperature range, test circuit unless otherwise noted.

Parameter	Test Conditions	Min	Typ	Max	Unit
Output Voltage Swing	T1out, T2out Loaded With $3 \mathrm{k} \Omega$ to Ground	± 5	± 9	± 10	V
Power Supply Current			5	10	mA
Input Logic Threshold Low	T1 ${ }_{\text {IN }}, \mathrm{T}_{1 / \mathrm{N}}$			0.8	V
Input Logic Threshold High	T1 ${ }_{1}$, $\mathrm{T}_{1} \mathrm{~N}$	2			V
Logic Pull-Up Current	$\mathrm{T} 1_{1 \mathrm{~N}}, \mathrm{~T} 2_{\text {IN }}=0 \mathrm{~V}$		15	200	$\mu \mathrm{A}$
RS-232 Input Voltage Operating Range		-30		+30	V
RS-232 Input Threshold Low	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	0.8	1.2		V
RS-232 Input Threshold High	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$		1.7	2.4	V
RS-232 Input Hysteresis		0.2	0.5	1	V
RS-232 Input Resistance	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5 \mathrm{~V}$	3	5	7	$\mathrm{k} \Omega$
TTLCMOS Output Voltage Low	lout $=3.2 \mathrm{~mA}$			0.4	V
TTLCMOS Output Voltage High	I OUT $=-1 \mathrm{~mA}$	3.5			V
Propagation Delay	RS-232 to TTL or TTL to RS-232		0.5		$\mu \mathrm{s}$
Instantaneous Slew Rate	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega \text { to } 7 \mathrm{k} \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \text { (Note 1) } \end{aligned}$			30	V/ $/ \mathrm{s}$
Transition Region Slew Rate	$\mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=2500 \mathrm{pF}$ Measured From +3 V to -3 V or $-3 V$ to $+3 V$		3		V/ $/ \mathrm{s}$
Output Resistance	$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}^{+}=\mathrm{V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 2 \mathrm{~V}$	300			Ω
RS-232 Output Short-Circuit Current			± 10		mA

NOTE 1. Sample tested.

DETAILED DESCRIPTION

The TC232 contains a +5 V to $\pm 10 \mathrm{~V}$ dual charge pump voltage converter, a dual transmitter and a dual receiver.

+5 V to $\pm 10 \mathrm{~V}$ Dual Charge Pump Voltage Converter

The TC232 power supply consists of two charge pumps. One uses external capacitor C 1 to double the +5 V input to +10 V , with output impedance of about 200Ω. The other uses C 2 to invert +10 V to -10 V , with overall output impedance of 450Ω (including effects of +5 V to +10 V doubler impedance).

The clock in the doubler circuit will start at $\approx 4.2 \mathrm{~V}$ in the typical part, but external loads may make this point rise to as high as 4.5 V with a load of $2 \mathrm{k} \Omega$ on each of the two output voltages.

Because of this, use of the doubler and inverter to run external circuits should be limited. The maximum current should be no more than 2.5 mA from the +10 V and -10 V in order to guarantee start-up of the doubler clock.

$\mathrm{V}^{+}, \mathrm{V}^{-}$Output Voltages vs Load Current

DUAL RS-232 TRANSMITTER/ RECEIVER AND POWER SUPPLY

The test circuit employs $22 \mu \mathrm{~F}$ capacitors for C 1 to C 4 , but the value is not critical. These capacitors usually are lowcost aluminum electrolytic capacitors, or polyester if size is critical.

Increasing C1 and C2 to $47 \mu \mathrm{~F}$ lowers the output impedance of the +10 V doubler and the -10 V inverter by the change in the ESR of the capacitors.

Increasing C3 and C4 lowers ripple on the $\pm 10 \mathrm{~V}$ voltage outputs and 16 kHz ripple on the RS-232 outputs. Where size is critical, the value of C1 to C4 can be lowered to $1 \mu \mathrm{~F}$. The use of a low ESR-value capacitor will help lower the output ripple and keep the output impedance of the $\pm 10 \mathrm{~V}$ as low as possible.

Dual Transmitter

TC232 transmitters are CMOS inverters driven by $\pm 10 \mathrm{~V}$ internally-generated voltages. The input is TTL/CMOS compatible, with a logic threshold of about 26% of $V_{C C}$ (1.3 V for $5 \mathrm{~V} \mathrm{~V}_{\mathrm{Cc}}$). The input of an unused transmitter can be left unconnected. An internal $400 \mathrm{k} \Omega$ pull-up resistor connected between the transmitter input and $V_{C C}$ pulls the input high and forces the unused transmitter output to the low state.

With V_{CC} at 5 V , the outputs will go from $\left(\mathrm{V}^{+}-0.6 \mathrm{~V}\right)$ to V^{-} with no load and will swing $\pm 9 \mathrm{~V}$ when loaded with $3 \mathrm{k} \Omega$. The minimum output voltage swing, with V_{Cc} at 4.5 V and at maximum ambient temperature, is $\pm 5 \mathrm{~V}$. This conforms to RS-232 specifications for "worst-case" conditions.

EIA RS-232C specs limit the slew rate at output to less than $30 \mathrm{~V} / \mu \mathrm{s}$.

The powered-down output impedance $\left(\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}\right)$ is a minimum of 300Ω with $\pm 2 \mathrm{~V}$ applied to outputs.

The outputs are short-circuit-protected and can be shortcircuited to ground indefinitely.

Dual Receiver

TC232 receivers meet RS-232C input specifications. Input impedance is between $3 \mathrm{k} \Omega$ and $7 \mathrm{k} \Omega$. Switching thresholds are within the $\pm 3 \mathrm{~V}$ limits, and the receivers withstand up to $\pm 30 \mathrm{~V}$ inputs. RS-232 and TTL/CMOS input compatible, the receivers have $0.8 \mathrm{~V} \mathrm{~V}_{\mathrm{IL}}$ and $2.4 \mathrm{~V} \mathrm{~V}_{\mathrm{IH}}$ with 0.5 V hysteresis to reject noise.

The TTL/CMOS compatible receiver output is low when RS-232 input is greater than 2.4 V . It is high when input is floating or between +0.8 V and -30 V .

TEST CIRCUIT

Section 14

Discrete DMOS Products

Display A/D Converters	1
Binary A/D Converters	2
Voltage-to-Frequency/Frequency-to-Voltage Converters	3
Sensor Products	4
Power Supply Control ICs	5
Power MOSFET, Motor and PIN Drivers	6
References	7
Chopper-Stabilized Operational Amplifiers	8
High Performance Amplifiers/Buffers	9
Video Display Drivers	10
Display Drivers	11
Analog Switches and Multiplexers	12
Data Communications	13
Discrete DMOS Products	14
Reliability and Quality Assurance	15
Ordering Information	16
Package Information	17
Sales Offices	18

N-CHANNEL ENHANCEMENT-MODE DMOS POWER FETS

FEATURES

- High Gate Oxide Breakdown, $\pm 40 \mathrm{~V}$ min.
- Low Output and Transfer Capacitances
- Extended Safe Operating Area

APPLICATIONS

- High-Speed Pulse Amplifiers
- Logic Buffers
- Line Drivers
- Solid-State Relays
- Motor Controls
- Power Supplies

ORDERING INFORMATION

Part No.	Package	Description
2N7000	TO-226AA (TO-92)	$60 \mathrm{~V}, 5 \Omega$
	Plastic Package	
2N7002	SOT-23 Package	$60 \mathrm{~V}, 5 \Omega$

ABSOLUTE MAXIMUM RATINGS

($\mathrm{T}_{\mathrm{A}}-+25^{\circ} \mathrm{C}$ unless otherwise noted) (TO-92 Package)

Drain-Source Voltage ... 60 V
Drain-Gate Voltage ($\mathrm{V}_{\mathrm{GS}}=0$) +60 V
Gate-Source Voltage ... $\pm 40 \mathrm{~V}$
Continuous Drain Current
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ 0.21 A
$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ 0.32A
Peak Pulsed Drain Current 0.79A
Continuous Device Dissipation 530 mW
Linear Derating Factor $4.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Pulsed Device Dissipation 3.125W
Linear Derating Factor $25 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Junction
Temperature Range -55 to $+150^{\circ} \mathrm{C}$
Storage Temperature Range -55 to $+150^{\circ} \mathrm{C}$
Lead Temperature ($1 / 16^{\prime \prime}$ frommounting surface for 30 sec)$+260^{\circ} \mathrm{C}$

Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

SCHEMATIC DIAGRAM

PIN CONFIGURATIONS

N-CHANNEL ENHANCEMENT-MODE DMOS POWER FETS

2N7000 2N7002

ELECTRICAL CHARACTERISTICS: ($\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Typ	Max	Units
Static						
BV ${ }_{\text {DSS }}$	Drain-Source Breakdown Voltage	$\mathrm{I}_{\mathrm{D}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0$	60	100	-	V
$\mathrm{V}_{\text {GS(th) }}$	Gate-Source Threshold Voltage	$\mathrm{I}_{\mathrm{D}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}$	0.8	1.9	3.0	V
IGBS	Gate-Body Source Leakage Current	$\mathrm{V}_{\mathrm{GS}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$	-	± 1.0	± 10	nA
loss	Drain-Source OFF	$\mathrm{V}_{\text {DS }}=48 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		0.1	1.0	$\mu \mathrm{A}$
	Leakage Current	$\begin{aligned} & V_{D S}=48 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \\ & T_{\mathrm{C}}=+125^{\circ} \mathrm{C} \end{aligned}$	-	. 01	1.0	mA
$\underline{D(o n)}$	ON Drain Current	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=4.5 \mathrm{~V}^{(1)}$	75	-	-	mA
$\overline{\mathrm{V} S(\text { on) }}$	Drain-Source ON Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=75 \mathrm{~mA}^{(1)} \\ & \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~A}^{(1)} \end{aligned}$	-	1.5	$\begin{aligned} & 0.4 \\ & 2.5 \end{aligned}$	V
$\overline{r_{\text {DS }}(0 n)}$	Drain-Source ON Resistance	$V_{G S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~A}^{(1)}$	-	3.0	5.0	Ω
		$\begin{aligned} & V_{G S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~A}^{(1)} \\ & T_{\mathrm{C}}=+125^{\circ} \mathrm{C} \end{aligned}$	-	4.7	9.0	Ω

Dynamic						
$\mathrm{gis}^{\text {s }}$	Common-Source Forward Transcond	$\begin{aligned} & V_{D S}=10 V, I_{D}=0.2 \mathrm{~A} \\ & f=1 \mathrm{KHz}^{(1)} \end{aligned}$	100	360	-	mmhos
$\mathrm{c}_{\text {iss }}$	Common-Source Input Capacitance	$\begin{aligned} & V_{D S}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	-	47	60	pF
$\mathrm{Crss}^{\text {r }}$	Common-Source Reverse Transfer Capacitance	$\begin{aligned} & V_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	-	3.0	5.0	pF
Coss	Common-Source Output Capacitance	$\begin{aligned} & V_{D S}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	-	15	25	pF
ton	Turn-On Time	$\begin{aligned} & R_{G}=25 \Omega, R_{L}=25 \Omega \\ & V_{D D}=15 \mathrm{~V}, V_{G(\text { on })}=10 \mathrm{~V} \end{aligned}$	-	5.0	10	nSec
$\mathrm{t}_{\text {off }}$	Turn-Off Time	$\begin{aligned} & R_{\mathrm{G}}=25 \Omega, \mathrm{R}_{\mathrm{L}}=25 \Omega \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{G}(\text { on })}=10 \mathrm{~V} \end{aligned}$	-	6.0	10	nSec

Note: 1. Pulse Test $80 \mu \mathrm{Sec}, 1 \%$ Duty Cycle

N-CHANNEL ENHANCEMENT-MODE DMOS POWER FET

FEATURES

- Reliable, low cost, plastic package
- European TO-92 pin-out
- Low capacitance

APPLICATIONS

High-Speed Pulse Amplifiers

- Logic Buffers
- Line Drivers

ORDERING INFORMATION

Part No.	Package	Description
BS170	TO-92 Plastic	$60 \mathrm{~V}, 5 \Omega$

ABSOLUTE MAXIMUM RATINGS
(TC $=+25^{\circ} \mathrm{C}$ unless otherwise specified)
Drain-Source Voltage 60 V
Drain-Gate Voltage ($\mathrm{R}_{\mathrm{GS}} 1 \mathrm{M} \Omega$) 60 V
Gate-Source Voltage $\pm 30 \mathrm{~V}$
Continuous Drain Current
$\mathrm{T}_{\mathrm{C}}=+100^{\circ} \mathrm{C}$ 0.21A
$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ 0.32A
Peak Pulsed Drain Current 1.0A
Maximum Power Dissipation
$\mathrm{T}_{\mathrm{C}}=+100^{\circ} \mathrm{C}$ 0.9
$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ 2.25
Linear Derating Factor
Junction to Ambient $4.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Junction to Case $18 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$Operating Junction andStorageTemperature Range
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$Lead Temperature ($1 / 6$ " frommounting surface for 30 sec)$+260^{\circ} \mathrm{C}$

Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

N-CHANNEL ENHANCEMENT-MODE DMOS POWER FET

BS170
ELECTRICAL CHARACTERISTICS: $\left(\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Typ	Max	Units
Static						
BV ${ }_{\text {DSS }}$	Drain-Source Breakdown Voltage	$\mathrm{I}_{\mathrm{D}}=100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0$	60	100	-	V
$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	Gate-Source Threshold Voltage	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{l}_{\mathrm{D}}=1 \mathrm{~mA}$	0.8	2.1	3.0	V
IGSSF	Gate Body Forward Leakage Current	$V_{G S}=20 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0$	-	. 03	10	nA
IGSSR	Gate Body Reverse Leakage Current	$\mathrm{V}_{\mathrm{GS}}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$		-. 06	-10	$\mu \mathrm{A}$
loss	Drain-Source OFF Leakage Current	$\mathrm{V}_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	-	-	0.5	$\mu \mathrm{A}$
		$\begin{aligned} & V_{D S}=25 \mathrm{~V}, \mathrm{~V}_{G S}=0 \\ & T_{\mathrm{C}}=+125^{\circ} \mathrm{C} \end{aligned}$	-	-	500	$\mu \mathrm{A}$
Io(ON)	ON Drain Current ${ }^{(1)}$	$\mathrm{V}_{\text {DS }}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$	0.3	-	-	A
ros(ON)	Drain-Source ON Resistance ${ }^{(1)}$	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{C}}=+125^{\circ} \mathrm{C} \end{aligned}$		2.8	$\begin{aligned} & 5.0 \\ & 9.0 \end{aligned}$	Ω
Dynamic						
$\mathrm{g}_{\text {s }}$	Common-Source Forward Transcond ${ }^{(1)}$	$\begin{aligned} & V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.2 \mathrm{~A} \\ & \mathrm{f}=1 \mathrm{KHz} \end{aligned}$	100	300	-	mmhos
$\mathrm{c}_{\text {iss }}$	Common-Source Input Capacitance	$\begin{aligned} & V_{D S}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	-	47	60	pF
$\mathrm{c}_{\text {rss }}$	Common-Source Reverse Transfer Capacitance	$\begin{aligned} & V_{D S}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	-	3.0	5.0	pF
Coss	Common-Source Output Capacitance	$\begin{aligned} & V_{D S}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	-	15	25	pF
ton	Turn-On Time	$\begin{aligned} & V_{D D}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{G}(\mathrm{ON})}=10 \mathrm{~V} \\ & R_{\mathrm{L}}=23 \Omega, \mathrm{R}_{\mathrm{G}}=51 \Omega \end{aligned}$	-	-	10	nSec
$t_{\text {off }}$	Turn-Off Time	$\begin{aligned} & V_{D D}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{G}(\mathrm{ON})}=10 \mathrm{~V} \\ & R_{\mathrm{L}}=23 \Omega, R_{\mathrm{G}}=51 \Omega \end{aligned}$	-	-	10	nSec

NOTE: 1. Pulse test $80 \mu \mathrm{Sec}, 1 \%$ duty cycle

SWITCHING TIMES TEST CIRCUIT

TEST WAVEFORMS

N-CHANNEL ENHANCEMENT-MODE DMOS POWER FETS

FEATURES

- Inherent Current Sharing Capability when Parralleled
- Simple Straight-Forward DC Biasing
- Extended Safe Operating Area
- Inherently Temperature StableOutput Current Decreases as Temperature increases

APPLICATIONS

High-Speed Pulse Amplifiers

- Logic Buffers
- Line Drivers
- Solid-State Relays

ORDERING INFORMATION

Part No.	Package	Description
SD1106DD	TO-206AA (TO-18)	60 V min
	Package	

ABSOLUTE MAXIMUM RATINGS

($\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)
Drain-Source Voltage ...60V
Drain-Gate Voltage ($\mathrm{R}_{\mathrm{GS}}=1 \mathrm{M} \Omega$)60V
Gate-Source Voltage ... $\pm 40 \mathrm{~V}$
Continuous Drain Current
$\mathrm{T}_{\mathrm{C}}=+100^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ 0.34A
Peak Pulsed Current 2.0A
Continuous Device Dissipation
$\mathrm{T}_{\mathrm{C}}=+100^{\circ} \mathrm{C}$ 0.4 W
$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ 1.0W
Linear Derating Factor
$\mathrm{T}_{\mathrm{C}}=+100^{\circ} \mathrm{C}$ $5.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ $8.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Junction and StorageTemperature Range$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature ($1 / 16^{\prime \prime}$ from
mounting surface for 10 sec) $+260^{\circ} \mathrm{C}$

Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

SCHEMATIC DIAGRAM

PIN CONFIGURATION

N-CHANNEL ENHANCEMENT-MODE DMOS POWER FETS

SD1106

ELECTRICAL CHARACTERISTICS: $\left(T_{A}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Typ	Max	Units
Static						
BV DSS	Drain-Source Breakdown Voltage	$\mathrm{I}_{\mathrm{D}}=100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0$	60	-	-	V
$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	Gate-Source Threshold Voltage	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{l}_{\mathrm{D}}=1 \mathrm{~mA}$	0.8	-	2.5	V
$I_{\text {GBS }}$	Gate-Body Source Leakage Current	$\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$	-	. 03	10	nA
Ioss	Drain-Source OFF Leakage Current	$\mathrm{V}_{\mathrm{DS}}=40 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	-	. 01	10	$\mu \mathrm{A}$
Idon)	ON Drain Current	$\begin{aligned} & V_{D S}=25 V^{(1)}, V_{G S}=5 \mathrm{~V} \\ & V_{D S}=25 V^{(1)}, V_{G S}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.50 \end{aligned}$	-	-	A
$\mathrm{V}_{\mathrm{DS} \text { (on) }}$	Drain-Source ON Voltage	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~A}^{(1)}$	-	1.8	2.5	V

Dynamic

$\mathrm{gis}^{\text {is }}$	Common-Source Forward Transcond.	$\begin{aligned} & V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~A} \\ & \mathrm{f}=1 \mathrm{KHz}^{(1)} \end{aligned}$	100	270	-	mmhos
$\mathrm{c}_{\text {iss }}$	Common-Source Input Capacitance	$\begin{aligned} & V_{D S}=25 V, V_{G S}=0 \\ & f=1 M H z \end{aligned}$	-	115	150	pF
$\mathrm{c}_{\text {rss }}$	Common-Source Reverse Transfer Capacitance	$\begin{aligned} & V_{D S}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	-	4	7	pF
Coss	Common-Source Output Capacitance	$\begin{aligned} & V_{D S}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \\ & f=1 \mathrm{MHz} \end{aligned}$	-	20	35	pF
ton	Turn-On Time	$\begin{aligned} & V_{D D}=25 \mathrm{~V}, R_{\mathrm{L}}=25 \Omega \\ & R_{G}=51 \Omega, V_{G(\text { on })}=10 \mathrm{~V} \end{aligned}$	-	4.0	6.0	nSec
$\mathrm{t}_{\text {off }}$	Turn-Off Time	$\begin{aligned} & V_{D D}=25 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=25 \Omega \\ & R_{\mathrm{G}}=51 \Omega, V_{\mathrm{G}(\text { on })}=10 \mathrm{~V} \end{aligned}$	-	4.0	6.0	nSec

NOTE: 1. Pulse Test $80 \mu \mathrm{Sec}, 1 \%$ Duty Cycle

N-CHANNEL ENHANCEMENT-MODE DMOS FET SWITCHES

FEATURES

- High Input to Output Isolation-120dB typical - Low feedthrough and feedback transients - Low Inter-electrode Capacitances

APPLICATIONS

- +30V Switch Drivers-SD210, SD211
- $\pm 10 \mathrm{~V}$ Analog Switches-SD214, SD215

■ $\pm 5 \mathrm{~V}$ Analog Switches-SD212, SD213
ORDERING INFORMATION

Part No.	Package	Description
SD210DE	TO-206AF (TO-72)	$10 \mathrm{~V}, 70 \Omega$
SD210DE/R	Shorting Rings	$10 \mathrm{~V}, 70 \Omega$
SD211DE	TO-206AF (TO-72)	$10 \mathrm{~V}, 70 \Omega$
SD211DE/R	Shorting Rings	$10 \mathrm{~V}, 70 \Omega$
SD212DE	TO-206AF (TO-72)	$10 \mathrm{~V}, 70 \Omega$
SD212DE/R	Shorting Rings	$10 \mathrm{~V}, 70 \Omega$
SD213DE	TO-206AF (TO-72)	$10 \mathrm{~V}, 70 \Omega$
SD213DE/R	Shorting Rings	$10 \mathrm{~V}, 70 \Omega$
SD214DE	TO-206AF (TO-72)	$20 \mathrm{~V}, 70 \Omega$
SD214DE/R	Shorting Rings	$20 \mathrm{~V}, 70 \Omega$
SD215DE	TO-206AF (TO-72)	$20 \mathrm{~V}, 70 \Omega$
SD215DE/R	Shorting Rings	$20 \mathrm{~V}, 70 \Omega$

ABSOLUTE MAXIMUM RATINGS

	SD210	SD211	SD212	SD213	SD214	SD215	Unit
V_{DS}	+30	+30	+10	+10	+20	+20	Vdc
V_{SD}	+10	+10	+10	+10	+20	+20	Vdc
V_{DB}	+30	+30	+15	+15	+25	+25	Vdc
V_{SB}	+15	+15	+15	+15	+25	+25	Vdc
V_{GS}	± 40	-15	± 40	-15	± 40	-25	Vdc
		+25		+25		+30	Vdc
V_{GB}	± 40	-0.3	± 40	-0.3	± 40	-0.3	Vdc
		+25		+25		+30	Vdc
V_{GD}	± 40	-30	± 40	-15	± 40	-25	Vdc
		+25		+25		+30	Vdc

ID Continuous Drain Current .50 mA
P_{T} Power Dissipation (at or below $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$)1.2W Linear Derating Factor \qquad $12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ P_{D} Power Dissipation (at or below $T_{A}=+25^{\circ} \mathrm{C}$) $\ldots 300 \mathrm{~mW}$ Linear Derating Factor3. $3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
T_{i} Operating Junction
Temperature Range
-55 to $+125^{\circ} \mathrm{C}$
T_{s} Storage Temperature Range -65 to $+175^{\circ} \mathrm{C}$
Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

SCHEMATIC DIAGRAM

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Symbol	Parameter		Test Conditions	SD210, SD211			SD212, SD213			SD214, SD215			Unit	
			Min	Typ	Max	Min	Typ	Max	Min	Typ	Max			
Static														
$\mathrm{BV}_{\text {DS }}$	Drain-Source Breakdown Voltage			$\mathrm{I}_{\mathrm{D}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=\mathrm{V}_{B S}=0$	30	35	-	-	-	-	-	-	-	V
$\overline{B V_{D S}}$	Drain-Source Breakdown Voltage		$\mathrm{I}_{\mathrm{D}}=10 \mathrm{nA}, \mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{BS}}=-5 \mathrm{~V}$	10	25	-	10	25	-	20	25	-	V	
$\bar{B} V_{S D}$	Source-Drain Breakdown Voltage		$\begin{aligned} & I_{S}=10 \mathrm{nA} \\ & V_{G D}=V_{B D}=-5 \mathrm{~V} \end{aligned}$	10	-	-	10	-	-	20	-	-	V	
$\overline{B V_{D B}}$	Drain-Substrate Breakdown Voltage		$I_{D}-10 n A, V_{G B}=0$ Source OPEN	15	-	-	15	-	-	25	-	-	V	
$\overline{B V_{S B}}$	Source-Substrate Breakdown Voltage		$I_{S}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GB}}=0$ Drain OPEN	15	-	-	15	-	-	25	-	-	V	
$\overline{\text { I (OFF) }}$	Drain-Source OFF Current		$\begin{aligned} & V_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{BS}}=-5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{BS}}=-5 \mathrm{~V} \end{aligned}$	-	-	10	-	-	10	-	-	$\overline{10}$	nA	
IS(OFF)	Source-Drain OFF Current		$\begin{aligned} & V_{S D}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GD}}=\mathrm{V}_{\mathrm{BD}}=-5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{SD}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GD}}=\mathrm{V}_{\mathrm{BD}}=-5 \mathrm{~V} \end{aligned}$	-	-	10	-	-	10	-	-	- 10	nA	
$\overline{\text { IGBS }}$	Gate-Body Source Leakage Current	$\begin{aligned} & \hline \text { SD210 } \\ & \text { SD212 } \\ & \text { SD214 } \\ & \text { SD211 } \\ & \text { SD213 } \\ & \text { SD215 } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{GB}}= \pm 40 \mathrm{~V}, \mathrm{~V}_{\mathrm{DB}}=\mathrm{V}_{\mathrm{SB}}=0 \\ & \mathrm{~V}_{\mathrm{GB}}= \pm 40 \mathrm{~V}, \mathrm{~V}_{\mathrm{DB}}=\mathrm{V}_{\mathrm{SB}}=0 \\ & \mathrm{~V}_{\mathrm{GB}}= \pm 40 \mathrm{~V}, \mathrm{~V}_{\mathrm{DB}}=\mathrm{V}_{\mathrm{SB}}=0 \\ & \mathrm{~V}_{\mathrm{GB}}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{DB}}=\mathrm{V}_{\mathrm{SB}}=0 \\ & \mathrm{~V}_{\mathrm{GB}}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{DB}}=\mathrm{V}_{\mathrm{SB}}=0 \\ & \mathrm{~V}_{\mathrm{GB}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DB}}=\mathrm{V}_{\mathrm{SB}}=0 \end{aligned}$	—	-	$\begin{aligned} & 0.1 \\ & - \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { — } \\ & \text { - } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { E } \\ & \text { - } \end{aligned}$	$\begin{aligned} & \overline{0.1} \\ & \overline{10} \end{aligned}$	-	-	- 0.1 - 10	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \\ & \mathrm{nA} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$	
$\overline{\mathrm{V}_{\text {GS }}(\mathrm{th})}$	Gate Threshold Voltage		$\begin{aligned} & V_{D S}=V_{G S}, I_{D}=1 \mu A, \\ & V_{S B}=0 V \end{aligned}$	0.5	1.0	2.0	0.1	-	2.0	0.1	1.0	2.0	V	
$r_{\text {dS }}(\mathrm{on})$	Drain-Source ON Resistance		$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{SB}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{SB}}=0 \mathrm{~V} \end{aligned}$	-	$\begin{aligned} & 50 \\ & 30 \end{aligned}$	$\begin{aligned} & 70 \\ & 45 \end{aligned}$	-	50	$\begin{aligned} & 70 \\ & 45 \end{aligned}$	-	$\begin{aligned} & 50 \\ & 30 \end{aligned}$	70 45	Ω	
Dynamic														
$\mathrm{gts}^{\text {f }}$	Common-Source Forward Transcond.		$\begin{aligned} & V_{D S}=10 \mathrm{~V}, I_{D}=20 \mathrm{~mA}, \\ & f=1 \mathrm{KHz}, V_{S B}=0 \end{aligned}$	10	12	-	10	12	-	10	12	-	mmhos	
$\overline{\mathrm{C}_{(\mathrm{gs}+\mathrm{gd}+\mathrm{gb})}}$	Gate Node Capacitance		$\begin{aligned} & V_{D S}=10 V, V_{G S}=V_{B S}=-15 \mathrm{~V}, \\ & f=1 \mathrm{MHz} \end{aligned}$	-	2.4	3.5	-	2.4	3.5	-	2.4	3.5	pF	
$\mathrm{C}_{\text {(gd+db) }}$	Drain Node Capacitance		$\begin{aligned} & V_{D S}=10 \mathrm{~V}, V_{G S}=V_{B S}=-15 \mathrm{~V}, \\ & f=1 \mathrm{MHz} \end{aligned}$	-	1.3	1.5	-	1.3	1.5	-	1.3	1.5	pF	
$\mathrm{C}_{(\mathrm{gs}+\mathrm{sb})}$	Source Node Capacitance		$\begin{aligned} & V_{D S}=10 \mathrm{~V}, V_{G S}=V_{B S}=-15 \mathrm{~V}, \\ & f=1 \mathrm{MHz} \end{aligned}$	-	3.5	4.0	-	3.5	4.0	-	3.5	4.0	pF	
$\mathrm{C}_{(\mathrm{dg})}$	Reverse Transfer Capacitance		$\begin{aligned} & V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{BS}}=-15 \mathrm{~V}, \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	-	0.3	0.5	-	0.3	0.5	-	0.3	0.5	pF	
$t_{\text {d(on) }}$	Turn ON Delay Time		$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{G}(\text { on })}=10 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=680 \Omega, \mathrm{R}_{\mathrm{G}}=51 \Omega \end{aligned}$	-	0.7	1.0	-	0.7	1.0	-	0.7	1.0	nSec	
t_{R}	Rise Time		$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{G}(\text { on })}=10 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=680 \Omega, \mathrm{R}_{\mathrm{G}}=51 \Omega \end{aligned}$	-	0.8	1.0	-	0.8	1.0	-	0.8	1.0	nSec	
$\mathrm{t}_{\text {off }}$	Turn OFF Time		$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{G}(0 n)}=10 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=680 \Omega, \mathrm{R}_{\mathrm{G}}=51 \Omega \end{aligned}$	-	10	-	-	10	-	-	10	-	nSec	

N-CHANNEL ENHANCEMENT-MODE DMOS FET SWITCHES

FEATURES

- High Input to Output Isolation-120dB typical
- Low feedthrough and feedback transients
- Low inter-electrode Capacitances
- Low Gamma Process
- On Resistance Guaranteed in Analog Switch Configuration

APPLICATIONS

$\begin{array}{ll}\text { ■ } & \text { +30V Switch Driver-SD211A } \\ \text { - } \\ \pm 10 \mathrm{~V} \text { Analog Switch-SD215A } \\ & \pm 5 \mathrm{~V} \text { Analog Switch-SD211A }\end{array}$
ORDERING INFORMATION

Part No.	Package	Description
SD211ADE	TO-206AF (TO-72) Package	$\mathrm{BV}_{\text {SD 10V (min.) }}$
SD211ADE/R	Shorting Rings	$\mathrm{BV}_{\text {SD }} 10 \mathrm{~V}$ (min.)
SD215ADE	TO-206AF (TO-72) Package	$\mathrm{BV}_{\mathrm{SD}}$ 20V (min.)
SD215ADE/R	Shorting Rings	$\mathrm{BV}_{\text {SD 20V (min.) }}$

ABSOLUTE MAXIMUM RATINGS

Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

SCHEMATIC DIAGRAM
 SCHEMATIC DIAGRAM

SD211A
SD215A
ELECTRICAL CHARACTERISTICS: $\left(T_{A}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Symbol	Parameter	Test Conditions	SD211A			SD215A			Units
			Min	Typ	Max	Min	Typ	Max	
Static									
$\overline{B V_{D S}}$	Drain-Source Breakdown Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{D}}=10 \mu \mathrm{~A}, \\ & V_{G S}=V_{B S}=0 \end{aligned}$	30	35	-	-	-	-	V
		$\begin{aligned} & \mathrm{D}=10 \mathrm{nA}, \\ & V_{\mathrm{GS}}=V_{B S}=-5 \mathrm{~V} \end{aligned}$	10	25	-	20	25	-	
$\overline{B V_{S D}}$	Source-Drain Breakdown Voltage	$\begin{aligned} & I_{S}=10 \mathrm{nA}, \\ & V_{G D}=V_{B D}=-5 V \end{aligned}$	10	-	-	20	-	-	V
$\overline{B V_{D B}}$	Drain-Substrate Breakdown Voltage	$I_{D}=10 \mu A, V_{G B}=0$ Source OPEN	15	-	-	25	-	-	V
$\overline{B V_{S B}}$	Source-Substrate Breakdown Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{S}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GB}}=0 \\ & \text { Drain OPEN } \end{aligned}$	15	-	-	25	-	-	V
$\overline{\text { Iofif) }}$	Drain-Source Off Current	$\begin{aligned} & V_{D S}=10 \mathrm{~V}, \\ & V_{G S}=V_{B S}=-5 \mathrm{~V} \end{aligned}$	-	-	10	-	-	-	nA
		$\begin{aligned} & V_{D S}=20 \mathrm{~V}, \\ & V_{G S}=V_{B S}=-5 \mathrm{~V} \end{aligned}$	-	-	-	-	-	10	
$\mathrm{I}_{\text {(off) }}$	Source-Drain Off Current	$\begin{aligned} & V_{S D}=10 \mathrm{~V}, \\ & V_{G D}=V_{B D}=-5 \mathrm{~V} \end{aligned}$	-	-	10	-	-	-	nA
		$\begin{aligned} & V_{S D}=20 \mathrm{~V}, \\ & V_{G D}=V_{B D}=-5 V \end{aligned}$	-	-	-	-	-	10	
$\overline{I G B S}$	Gate-Body Source Leakage Current	$\begin{aligned} & V_{\mathrm{GB}}=25 \mathrm{~V}, \\ & V_{\mathrm{DB}}=\mathrm{V}_{\mathrm{SB}}=0 \end{aligned}$	-	5	10	-	-	-	$\mu \mathrm{A}$
		$\begin{aligned} & V_{G B}=30 \mathrm{~V}, \\ & V_{D B}=V_{S B}=0 \end{aligned}$	-	-	-	-	-	10	
$\overline{V_{G S(t h)}}$	Gate Threshold Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=1.0 \mu \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{SB}}=0 \end{aligned}$	0.75	1.0	1.5	0.75	1.0	1.5	V
$\overline{\text { ras(on) }}$	Drain-Source ON Resistance	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{SB}}=5 \mathrm{~V} \end{aligned}$	-	-	90	-	-	-	Ω
		$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{SB}}=10 \mathrm{~V} \end{aligned}$	-	-	-	-	-	90	
		$\begin{aligned} & V_{G S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{SB}}=0 \end{aligned}$	-	30	45	-	30	45	
Dynamic									
gis	Common-Source Forward Transcond.	$\begin{aligned} & V_{D S}=10 \mathrm{~V}, I_{D}=20 \mathrm{~mA} \\ & f=1 \mathrm{KHz}, V_{S B}=0 \end{aligned}$	10	13	-	10	13	-	mmhos
$c_{\text {(gs }+\mathrm{gd}+\mathrm{gb})}$	Gate Node Capacitance	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{BS}}=-15 \mathrm{~V} \end{aligned}$	-	2.4	3.5	-	2.4	3.5	pF
$c_{\text {(gd }+\mathrm{db})}$	Drain Node Capacitance	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{BS}}=-15 \mathrm{~V} \end{aligned}$	-	1.3	1.5	-	1.3	1.5	pF
$\mathrm{c}_{(\mathrm{gs}+\mathrm{sb})}$	Source Node Capacitance	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{BS}}=-15 \mathrm{~V} \end{aligned}$	-	3.5	4.0	-	3.5	4.0	pF
$c_{\text {dg }}$	Reverse Transfer Capacitance	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{BS}}=-15 \mathrm{~V} \end{aligned}$	-	0.3	0.5	-	0.3	0.5	pF
$\overline{T_{D(o n)}}$	Turn ON Delay Time	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{G}(0 n)}=10 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=680 \Omega, \mathrm{R}_{\mathrm{G}}=51 \Omega \end{aligned}$	-	0.7	1.0	-	0.7	1.0	nSec
t_{r}	Rise Time	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{G}(0 n)}=10 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=680 \Omega, \mathrm{R}_{\mathrm{G}}=51 \Omega \end{aligned}$	-	0.8	1.0	-	0.8	1.0	nSec
toff	Turn OFF Time	$\begin{aligned} & V_{D D}=5 \mathrm{~V}, V_{G(o n)}=10 \mathrm{~V}, \\ & R_{L}=680 \Omega, R_{G}=51 \Omega \end{aligned}$	-	10	-	-	10	-	nSec

N-CHANNEL ENHANCEMENT-MODE DUAL GATE DMOS FET

FEATURES

- Normally Off-Enhancement-Mode Operation
Dual Gate with Gate Protective Diodes
Low Feedback Capacitance-Crss 03 pF (typ)
Wide Dynamic Range-Remote AGC Capability
High Power Gain-17dB min. © 500 MHz (SD306)
Low Noise - 6.0 dB max. © 500 MHz (SD306)
Low Cross-Modulation Distortion

APPLICATIONS

- Wide Band (Unneutralized) VHF/UHF Amplifiers - VHF/UHF Linear Mixers

ORDERING INFORMATION

Part No.	Package	Description
SD304DE	TO-206AF (TO-72) Package	25V, 130
SD306DE	TO-206AF (TO-72) Package	20V, 100 Ω

ABSOLUTE MAXIMUM RATINGS

VDs Drain-Source Voltage SD304 +25V
SD306 $+20 \mathrm{~V}$
$\mathrm{V}_{\mathrm{G} 1 \mathrm{~B}}$ Gate 1-Substrate Voltage SD304 ..-0.3 to +10V
SD306 -0.3 to +20 V
$\mathrm{V}_{\text {G2B }}$ Gate 2-Substrate VoltageSD304-0.3 to +15 V
SD306 -0.3 to +20 V
ID Continuous Drain Current (Note 1) 50 mA
PD Continuous Power Dissipation (Note 1) $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (Free Air) 300 mW
$T_{C}=+25^{\circ} \mathrm{C}$ (Infinite Heat Sink) 1.2 W
Power Derating Factors (Note 1)Free Air$3.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Infinite Heat Sink $12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
T_{op} Operating JunctionTemperature Range-55 to $+125^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$ Storage Temperature Range -65 to $+175^{\circ} \mathrm{C}$
NOTE: 1. Not applicable to chips. Final value depends mountingsubstrate.

Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

SCHEMATIC DIAGRAM

N-CHANNEL ENHANCEMENT-MODE DUAL GATE DMOS FET

SD304
SD306
ELECTRICAL CHARACTERISTICS: $\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Symbol	Parameter	Test Conditions	SD304			SD306			Units
			Min	Typ	Max	Min	Typ	Max	
Static									
$\overline{B V_{D S}}$	Drain-Source Breakdown Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{D}}=5 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{G} 1 \mathrm{~S}}=\mathrm{V}_{\mathrm{G} 2 \mathrm{~S}}=0 \end{aligned}$	25	30	-	20	25	-	V
loss	Drain-Source OFF Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{G} 1 \mathrm{~S}}=\mathrm{V}_{\mathrm{G} 2 \mathrm{~S}}=0 \end{aligned}$	-	. 01	1.0	-	. 01	1.0	$\mu \mathrm{A}$
IG1SS	Gate 1 Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{G} 1 \mathrm{~S}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{G} 2 \mathrm{~S}}=\mathrm{V}_{\mathrm{DS}}=0 \end{aligned}$	-	1.0	100	-	1.0	100	nA
IG2SS	Gate 2 Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{G} 2 \mathrm{~S}}=10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{G} 1 \mathrm{~S}}=\mathrm{V}_{\mathrm{DS}}=0 \end{aligned}$	-	1.0	100	-	1.0	100	$n \mathrm{~A}$
$\overline{V_{T 1}}$	Gate 1-Source Threshold Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{G} 1 \mathrm{~S}}, \\ & \mathrm{~V}_{\mathrm{G} 2 \mathrm{~S}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mu \mathrm{~A} \end{aligned}$	0.1	1.0	2.0	0.1	0.5	1.5	V
$\overline{V_{T 2}}$	Gate 2-Source Threshold Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{G} 1 \mathrm{~S}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{G} 2 \mathrm{~S}} \\ & \mathrm{I}_{\mathrm{D}}=1 \mu \mathrm{~A} \end{aligned}$	0.1	1.0	2.0	-	-	-	V
		$\begin{aligned} & \mathrm{V}_{\mathrm{G} 1 \mathrm{~S}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{G} 2 \mathrm{~S}} \\ & \mathrm{I}_{\mathrm{D}}=1 \mu \mathrm{~A} \end{aligned}$	-	-	-	0.1	0.5	1.5	V
${ }^{\text {ras(on) }}$	Drain-Source ON Resistance	$\begin{aligned} & \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{G} 1 \mathrm{~S}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{G} 2 \mathrm{~S}}=10 \mathrm{~V} \end{aligned}$	-	90	130	-	65	100	Ω
Dynamic									
9is	Common-Source Forward Transcond.	$\begin{aligned} & V_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=18 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{G} 2 \mathrm{~S}}=10 \mathrm{~V}, \mathrm{f}=1 \mathrm{KHz} \end{aligned}$	8.0	10	-	13	15	-	mmhos
$\mathrm{c}_{\text {iss }}$	Common-Source Input Capacitance	$\begin{aligned} & V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=18 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{G} 2 \mathrm{~S}}=10 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	-	2.5	3.0	-	3.3	3.6	pF
Coss	Common-Source Output Capacitance	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{G} 1 \mathrm{~S}}=0 \\ & \mathrm{~V}_{\mathrm{G} 2 \mathrm{~S}}=10 \mathrm{~V}, \mathrm{~F}=1 \mathrm{MHz} \end{aligned}$	-	1.0	1.2	-	1.0	1.3	pF
$\mathrm{C}_{\text {rss }}$	Common-Source Reverse Transfer Capacitance	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{G} 1 \mathrm{~S}}=0 \\ & \mathrm{~V}_{\mathrm{G} 2 \mathrm{~S}}=10 \mathrm{~V}, \mathrm{~F}=1 \mathrm{MHz} \end{aligned}$	-	. 03	-	-	. 03	-	pF
$\overline{R e(Y 11)}$	Input Admittance	$\begin{aligned} & V_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{ID}=18 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{G} 2 \mathrm{~S}}=10 \mathrm{~V}, \mathrm{f}=200 \mathrm{MHz} \end{aligned}$	-	-	-	-	1.11	-	mmhos
$\mathrm{Im}_{(Y 11)}$	Input Admittance	$\begin{aligned} & V_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{ID}=18 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{G} 2 \mathrm{~S}}=10 \mathrm{~V}, \mathrm{f}=200 \mathrm{MHz} \end{aligned}$	-	-	-	-	4.76	-	mmhos

N-CHANNEL ENHANCEMENT-MODE DUAL GATE DMOS FET

SD304
SD306

ELECTRICAL CHARACTERISTICS: $\left(T_{A}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Symbol	Parameter	Test Conditions	SD304			SD306			Units
			Min	Typ	Max	Min	Typ	Max	
Re (Y22)	Output Admittance	$\begin{aligned} & V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=18 \mathrm{~mA} \\ & V_{\mathrm{G} 2 \mathrm{~S}}=10 \mathrm{~V}, \mathrm{f}=200 \mathrm{MHz} \end{aligned}$	-	-	-	-	1.05	-	mmhos
IM (Y22)	Output Admittance	$\begin{aligned} & V_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=18 \mathrm{~mA} \\ & V_{\mathrm{G} 2 \mathrm{~S}}=10 \mathrm{~V}, \mathrm{f}=200 \mathrm{MHz} \end{aligned}$	-	-	-	-	1.54	-	mmhos
Re (Y21)	Forward Transmittance	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=18 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{G} 2 \mathrm{~S}}=10 \mathrm{~V}, \mathrm{f}=200 \mathrm{MHz} \end{aligned}$	-	-	-	-	13.23	-	mmhos
Im (Y21)	Forward Transmittance	$\begin{aligned} & V_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=18 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{G} 2 \mathrm{~S}}=10 \mathrm{~V}, \mathrm{f}=200 \mathrm{MHz} \end{aligned}$	-	-	-	-	-5.62	-	mmhos
Re (Y12)	Reverse Transmittance	$\begin{aligned} & V_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=18 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{G} 2 \mathrm{~S}}=10 \mathrm{~V}, \mathrm{f}=200 \mathrm{MHz} \end{aligned}$	-	-	-	-	0.01	-	mmhos
Im (Y12)	Reverse Transmittance	$\begin{aligned} & V_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=18 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{G} 2 \mathrm{~S}}=10 \mathrm{~V}, \mathrm{f}=200 \mathrm{MHz} \end{aligned}$	-	-	-	-	-0.04	-	mmhos
Gps	Power Gain	$\begin{aligned} & f=500 \mathrm{MHz}, \mathrm{I}_{\mathrm{D}}=18 \mathrm{~mA} \\ & V_{\mathrm{DS}}=15 \mathrm{~V}, V_{\mathrm{G} 2 \mathrm{~S}}=10 \mathrm{~V} \\ & \hline f=200 \mathrm{MHz}, \mathrm{I}_{\mathrm{D}}=18 \mathrm{~mA} \\ & V_{D S}=15 \mathrm{~V}, V_{G 2 S}=10 \mathrm{~V} \end{aligned}$	13	16	-	17	20	-	dB
NF	Noise Figure	$\begin{aligned} & f=500 \mathrm{MHz}, \mathrm{I}_{\mathrm{D}}=18 \mathrm{~mA} \\ & V_{D S}=15 \mathrm{~V}, V_{G 2 S}=10 \mathrm{~V} \\ & \hline f=200 \mathrm{MHz}, \mathrm{I}_{\mathrm{D}}=18 \mathrm{ma} \\ & V_{D S}=15 \mathrm{~V}, V_{G 2 S}=10 \mathrm{~V} \end{aligned}$	-	5.0 -	6.0 -	-	1.5	2.5	dB
$\overline{\mathrm{AGC}}\left(\mathrm{V}_{\mathrm{G} 2 \mathrm{~S}}\right)$	Range of Automatic Gain Control	$\begin{aligned} & V_{\mathrm{G} 1 \mathrm{~S}} \cong 3.5 \mathrm{~V}, \mathrm{f}=500 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{DS}}=15 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{G} 2 \mathrm{~S}}=10 \mathrm{~V} \text { to } 0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{G} 1 \mathrm{~S}} \cong 2.5 \mathrm{~V}, \mathrm{f}=200 \mathrm{MHz} \\ & V_{\mathrm{DS}}=15 \mathrm{~V}, \\ & V_{\mathrm{G} 2 \mathrm{~S}}=10 \mathrm{~V} \text { to } 0 \mathrm{~V} \\ & \hline \end{aligned}$	- -	40 -	- -	-	50	-	dB
$\overline{E_{\text {INT }}}$	Interfering Signal at Gate for 1% Cross-Modulation Distortion (Peak Voltage ref. to 50 ohm system)	$\begin{aligned} & \mathrm{fo}=500 \mathrm{MHz}, \mathrm{I}_{\mathrm{D}}=18 \mathrm{~mA} \\ & V_{\mathrm{DS}}=15 \mathrm{~V}, V_{G 2 S}=10 \mathrm{~V} \\ & \mathrm{f}=501 \mathrm{MHz} \\ & \mathrm{fo}=200 \mathrm{MHz}, I_{D}=18 \mathrm{~mA} \\ & V_{\mathrm{DS}}=15 \mathrm{VV}, V_{G 2 S}=10 \mathrm{~V} \\ & f=196 \mathrm{MHz} \end{aligned}$	-	200	-	-	480	-	mV
$\mathrm{G}_{\mathrm{psc}}$	Conversion Power Gain ($I_{D}=8 \mathrm{~mA}$)	$\begin{aligned} & V_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{G} 1 \mathrm{~S}}=\mathrm{V}_{\mathrm{G} 2 \mathrm{~S}} \\ & \mathrm{f}=200 \mathrm{MHz} \\ & \mathrm{f}=245 \mathrm{MHz} \end{aligned}$	-	-	-	14	17	-	dB

NOTES

N-CHANNEL ENHANCEMENT-MODE QUAD DMOS FET ANALOG SWITCH ARRAYS

FEATURES

- High Input to Output Isolation-120dB typical
- Low feedthrough and feedback transients
- Low Inter-electrode Capacitances

APPLICATIONS

- $\pm 10 \mathrm{~V}$ Analog Switches-SD5000
 - $\pm 5 \mathrm{~V}$ Analog Switches-SD5001
 - $\pm 7.5 \mathrm{~V}$ Analog Switches-SD5002
 - Sample and Hold
 - Wide-Band, Dual Differential Amplifiers

ORDERING INFORMATION

Part No.	Package	Description
SD5000J	$16-$-Pin Ceramic Dual In-Line	$20 \mathrm{~V}, 70 \Omega$
SDSD5001J	16-Pin Ceramic Dual In-Line	$10 \mathrm{~V}, 70 \Omega$
SD5002J	$16-$ Pin Ceramic Dual In-Line	$15 \mathrm{~V}, 70 \Omega$
SD5000N	$16-$ Pin Plastic Dual In-Line	$20 \mathrm{~V}, 70 \Omega$
SD5001N	$16-$ Pin Plastic Dual In-Line	$10 \mathrm{~V}, 70 \Omega$
SD5002N	$16-$ Pin Plastic Dual In-Line	$15 \mathrm{~V}, 70 \Omega$

SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

	SD5000	SD5001	SD5002	Unit
V_{DS}	+20	+10	+15	Vdc
V_{SD}	+20	+10	+15	Vdc
V_{DB}	+25	+15	+22.5	Vdc
V_{SB}	+25	+15	+22.5	Vdc
V_{GS}	-25	-15	-22.5	Vdc
	+30	+25	+30	Vdc
V_{GB}	-0.3	-0.3	-0.3	Vdc
	+30	+25	+30	Vdc
V_{GD}	-25	-15	-22.5	Vdc
	+30	+25	+30	Vdc

ID Continuous Drain Current 50 mA
P_{D} Total Package Power Dissipation
(at or below $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$) .. 640 mW Linear Derating Factor $10.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
P_{D} Single Device Power Dissipation
(at or below $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$) .300 mW
T_{j} Operating Junction
Temperature Range.
.-55 to $+85^{\circ} \mathrm{C}$
T_{s} Storage Temperature Range -55 to $+150^{\circ} \mathrm{C}$
Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PIN CONFIGURATION

TEST WAVEFORMS

SWITCHING TIMES TEST CIRCUIT

ELECTRICAL CHARACTERISTICS：$\left(T_{A}=+25^{\circ} \mathrm{C}\right.$ per channel，unless otherwise noted．）

Symbol	Parameter	Test Conditions	SD5000			SD5001			SD5002			Unit
			Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Static												
$\overline{B V_{D S}}$	Drain－Source Breakdown Voltage	$\mathrm{I}_{\mathrm{D}}=10 \mathrm{nA}, \mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{BS}}=-5 \mathrm{~V}$	20	25	－	10	25	－	15	25	－	V
$\overline{B V_{S D}}$	Source－Drain Breakdown Voltage	$\begin{aligned} & I_{S}=10 \mathrm{nA} \\ & V_{G D}=V_{B D}=-5 \mathrm{~V} \end{aligned}$	20	－	－	10	－	－	15	－	－	V
$\overline{B V_{D B}}$	Drain－Substrate Breakdown Voltage	$\mathrm{I}_{\mathrm{D}}=10 \mathrm{nA}, \mathrm{~V}_{\mathrm{GB}}=0$ Source Open	25	－	－	15	－	－	22.5	－	－	V
$\overline{B V_{S B}}$	Source－Substrate Breakdown Voltage	$I_{S}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GB}}=0$ Drain Open	25	－	－	15	－	－	22.5	－	－	V
$\overline{I_{\text {（off）}}}$	Drain－Source Off Current	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{BS}}=-5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{BS}}=-5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{BS}}=-5 \mathrm{~V} \end{aligned}$	－	－	－	二	－	10	－	－	$\overline{10}$	nA
$\mathrm{I}_{\text {（off）}}$	Source－Drain Off Current	$\begin{aligned} & \mathrm{V}_{\mathrm{SD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GD}}=\mathrm{V}_{\mathrm{BD}}=-5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{SD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GD}}=\mathrm{V}_{\mathrm{BD}}=-5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{SD}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GD}}=\mathrm{V}_{\mathrm{BD}}=-5 \mathrm{~V} \end{aligned}$	三－	－	－	二	－	10 -	－	－	$\overline{10}$	nA
IGBS	Gate－Body Source Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{GB}}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{DB}}=\mathrm{V}_{\mathrm{SB}}=0 \\ & \mathrm{~V}_{\mathrm{GB}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DB}}=\mathrm{V}_{\mathrm{SB}}=0 \end{aligned}$	－	－	$\overline{1.0}$	－	－	1.0	－	二	$\overline{1.0}$	$\mu \mathrm{A}$
$\overline{V_{G S}(\mathrm{th})}$	Gate Threshold Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=1 \mu \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{SB}}=0 \end{aligned}$	0.1	1.0	2.0	0.1	1.0	2.0	0.1	1.0	2.0	V
$\mathrm{r}_{\text {DS（on）}}$	Drain－Source ON Resistance	$\begin{aligned} & V_{G S}=5 \mathrm{~V}, I_{D}=1 \mathrm{~mA}, V_{S B}=0 \\ & V_{G S}=10 \mathrm{~V}, I_{D}=1 \mathrm{~mA}, V_{S B}=0 \\ & V_{G S}=15 \mathrm{~V}, I_{D}=1 \mathrm{~mA}, V_{S B}=0 \\ & V_{G S}=20 \mathrm{~V}, I_{D}=1 \mathrm{~mA}, V_{S B}=0 \end{aligned}$	—	$\begin{aligned} & 50 \\ & 30 \\ & 23 \\ & 19 \\ & \hline \end{aligned}$	$\begin{aligned} & 70 \\ & - \end{aligned}$	－	$\begin{aligned} & 50 \\ & 30 \\ & 23 \\ & 19 \\ & \hline \end{aligned}$	$\begin{aligned} & 70 \\ & - \end{aligned}$	二	$\begin{aligned} & 50 \\ & 30 \\ & 23 \\ & 19 \\ & \hline \end{aligned}$	$\begin{aligned} & 70 \\ & - \end{aligned}$	Ω
${ }^{\text {r }}$ SSM	ON Resistance Match	$V_{G S}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}, \mathrm{~V}_{S B}=0$	－	1.0	5.0	－	1.0	5.0	－	1.0	5.0	Ω
Dynamic												
g_{ts}	Common－Source Forward Transcond	$\begin{aligned} & V_{D S}=10 \mathrm{~V}, I_{D}=20 \mathrm{~mA}, \\ & f=1 \mathrm{KHz}, V_{S B}=0 \end{aligned}$	10	12	－	10	12	－	10	12	－	mmhos
$\mathrm{C}_{(\mathrm{gs}+\mathrm{gd}+\mathrm{gb})}$	Gate Node Capacitance	$\begin{aligned} & V_{D S}=10 \mathrm{~V}, V_{G S}=V_{B S}=-15 \mathrm{~V}, \\ & f=1 \mathrm{MHz} \end{aligned}$	－	2.4	3.5	－	2.4	3.5	－	2.4	3.5	pF
$\mathrm{C}_{(\mathrm{gs}+\mathrm{db})}$	Drain Node Capacitance	$\begin{aligned} & V_{D S}=10 \mathrm{~V}, V_{G S}=V_{B S}=-15 \mathrm{~V}, \\ & f=1 \mathrm{MHz} \end{aligned}$	－	1.3	1.5	－	1.3	1.5	－	1.3	1.5	pF
$\mathrm{C}_{\text {（gstsb）}}$	Source Node Capacitance	$\begin{aligned} & V_{D S}=10 \mathrm{~V}, V_{G S}=V_{B S}=-15 \mathrm{~V}, \\ & f=1 \mathrm{MHz} \end{aligned}$	－	3.5	4.0	－	3.5	4.0	－	3.5	4.0	pF
$\mathrm{C}_{(\mathrm{dg})}$	Reverse Transfer Capacitance	$\begin{aligned} & V_{D S}=10 \mathrm{~V}, V_{G S}=V_{B S}=-15 \mathrm{~V}, \\ & f=1 \mathrm{MHz} \end{aligned}$	－	0.3	0.5	－	0.3	0.5	－	0.3	0.5	pF
\bar{C}_{T}	Cross Talk	$\mathrm{f}=3 \mathrm{KHz}, \mathrm{R}_{\mathrm{G}}=600 \Omega$	－	－107	－	－	－107	－	－	－107	－	dB
$\mathrm{t}_{\mathrm{d} \text {（on）}}$	Turn ON Delay Time	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{G}(0 n)}=10 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=680 \Omega, \mathrm{R}_{\mathrm{G}}=51 \Omega \end{aligned}$	－	0.7	1.0	－	0.7	1.0	－	0.7	1.0	nSec
tr_{r}	Rise Time	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{G}(o n)}=10 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=680 \Omega, \mathrm{R}_{\mathrm{G}}=51 \Omega \end{aligned}$	－	0.8	1.0	－	0.8	1.0	－	0.8	1.0	nSec
$\mathrm{t}_{\text {off }}$	Turn OFF Time	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{G}(\mathrm{on})}=10 \mathrm{~V}, \\ & R_{\mathrm{L}}=680 \Omega, \mathrm{R}_{\mathrm{G}}=51 \Omega \end{aligned}$	－	10	－	－	10	－	－	10	－	nSec

NOTES

N-CHANNEL ENHANCEMENT-MODE QUAD DMOS FET ANALOG SWITCH ARRAYS

FEATURES

- Common source for 4 channels
- Low feedthrough and feedback transients Low Inter-electrode Capacitances

APPLICATIONS

■ +30V Switch Drivers-SD5100

- +15V Switch Drivers-SD5101

ORDERING INFORMATION

Part No.	Package	Description
SD5100N	14-Pin Plastic Dual In-Line	$30 \mathrm{~V}, 70 \Omega$
	14-Pin Plastic Dual In-Line	$15 \mathrm{~V}, 70 \Omega$
SD5101N	SO-14 Package	$30 \mathrm{~V}, 70 \Omega$
SD5100CY	SO-14 Package	$15 \mathrm{~V}, 70 \Omega$
SD5101CY		

SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Parameter	SD5100	SD5101	Unit
V_{DS}	+30	+15	Vdc
V_{SD}	+0.5	+0.5	Vdc
V_{DB}	+30	+15	Vdc
V_{SB}	+0.5	+0.5	Vdc
V_{GS}	+20	+20	Vdc
V_{GB}	+20	+20	Vdc
	-0.3	-0.3	Vdc
V_{GD}	+20	+20	Vdc
	-30	-15	Vdc

ID Continuous Drain Current50mA
PD Total Package Power Dissipation
(at or below $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$) .640 mW
Linear Derating Factor $10.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
PD Single Device Power Dissipation
at or below $\mathrm{TA}=+25^{\circ} \mathrm{C}$)
.300 mW
T_{j} Operating Junction
Temperature Range
-55 to $+85^{\circ} \mathrm{C}$
T_{s} Storage Temperature Range -55 to $+150^{\circ} \mathrm{C}$

Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
PIN CONFIGURATION

N-CHANNEL ENHANCEMENT-MODE QUAD DMOS FET ANALOG SWITCH ARRAYS

SD5100
SD5101
ELECTRICAL CHARACTERISTICS: $\left(T_{A}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Symbol	Parameter	Test Conditions	SD5100			SD5101			Units
			Min	Typ	Max	Min	Typ	Max	
Static									
$\overline{B V_{D S}}$	Drain-Source Breakdown Voltage	$\begin{aligned} & I_{D}=1.0 \mu A, \\ & V_{G S}=V_{B S}=0 \end{aligned}$	30	35	-	15	30	-	V
$\overline{B V}$	Source-Drain Breakdown Voltage	$\begin{aligned} & I_{S}=10 \mathrm{nA}, \\ & V_{G D}=V_{B D}=0 \end{aligned}$	0.5	-	-	0.5	-	-	V
$\overline{B V_{D B}}$	Drain-Substrate Breakdown Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{D}}-1.0 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GB}}=0 \\ & \text { Source Open } \end{aligned}$	30	-	-	15	-	-	V
$\mathrm{BV}_{S B}$	Source-Substrate Breakdown Voltage	$I_{S}=100 n A, V_{G B}=0$ Drain Open	0.5	-	-	0.5	-	-	V
$I_{\text {(off) }}$	Drain-Source OFF Current	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{BS}}=0 \end{aligned}$	-	1.0	10	-	1.0	10	nA
$\overline{\mathrm{I}}$ GBS	Gate-Substrate Source Leakage Current	$\begin{aligned} & V_{G S}=20 \mathrm{~V}, \\ & V_{D B}=V_{S B}=0 \end{aligned}$	-	-	10	-	-	10	$\mu \mathrm{A}$
$\overline{V G S}_{\text {G }}(\mathrm{th})$	Gate-Source Threshold Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{D}}=1.0 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}} \\ & \mathrm{~V}_{\mathrm{SB}}=0 \end{aligned}$	0.5	1.0	2.0	0.5	1.0	2.0	V
${ }^{\text {r }}$ SS(on)	Drain-Source ON Resistance	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{SB}}=0 \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{SB}}=0 \\ & V_{\mathrm{GS}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{SB}}=0 \\ & \mathrm{~V}_{\mathrm{GS}}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{SB}}=0 \end{aligned}$		$\begin{aligned} & 50 \\ & 30 \\ & 23 \\ & 19 \end{aligned}$	70 45		$\begin{aligned} & 50 \\ & 30 \\ & 23 \\ & 19 \end{aligned}$	$\begin{aligned} & 70 \\ & 45 \\ & - \\ & - \end{aligned}$	Ω
rosm	ON Resistance Match	$\begin{aligned} & \mathrm{VGS}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}, \\ & V_{\mathrm{SB}}=0 \end{aligned}$	-	1.0	5.0	-	1.0	5.0	Ω
Dynamic									
$\mathrm{g}_{\text {f }}$	Common-Source Forward Transcond	$\begin{aligned} & V_{D S}=10 \mathrm{~V}, I_{D}=20 \mathrm{~mA} \\ & f=1 \mathrm{KHz}, V_{S B}=0 \end{aligned}$	10	15	-	10	15	-	mmhos
$c_{(g s+g d+g b)}$	Gate Node Capacitance	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{BS}}=-5 \mathrm{~V} \end{aligned}$	-	2.4	3.5	-	2.4	3.5	pF
$\mathrm{c}_{(\mathrm{gd}+\mathrm{db})}$	Drain Node Capacitance	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{BS}}=-5 \mathrm{~V} \end{aligned}$	-	1.3	1.5	-	1.3	1.5	pF
$\mathrm{c}_{\text {dg }}$	Reverse Transfer Capacitance	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{BS}}=-5 \mathrm{~V} \end{aligned}$	-	0.3	0.5	-	0.3	0.5	pF
C_{T}	Cross Talk	$\mathrm{f}=3 \mathrm{KHz}, \mathrm{R}_{\mathrm{G}}=600 \Omega$	-	-107	-	-	-107	-	dB

NOTE: 1. Pulse Test 80μ Sec, 1% Duty Cycle

N-CHANNEL ENHANCEMENT-MODE QUAD DMOS FET DRIVER ARRAY

FEATURES

- Normally OFF Configuration
- Low Interelectrode Capacitance
- High-speed Switching

APPLICATIONS

- +30V Analog Switch Drivers
- Wide-Band Dual Differential Amplifiers

ORDERING INFORMATION

Part No.	Package	Description
SD5200N	16 -Pin Plastic Dual In-Line	$30 \mathrm{~V}, 80 \Omega$

SCHEMATIC DIAGRAM

Note: | Pin numbers correspond to |
| :--- |
| Package Pinout |

ABSOLUTE MAXIMUM RATINGS

(per channel, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

,	Drain-Source Voltage +30 Vdc
$V_{\text {SD }}$	Source-Drain Voltage +0.5 Vdc
V ${ }_{\text {DB }}$	Drain-Body Voltage +30 Vdc
$V_{\text {SB }}$	Source-Body Voltage+15Vdc
$V_{G S}$	Gate-Source Voltage 25 V dc
$V_{G B}$	Gate-Body Voltage +25 Vdc
	Gate-Body Voltage-0.3Vdc
V_{GD}	Gate-Drain Voltage $+25 \mathrm{Vdc},-30 \mathrm{Vdc}$
ID	Continuous Drain Current50mA
PD	Total Package Power Dissipation (at or below $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$) \qquad 640 mW
	Linear Derating Factor........................ $10.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
$P_{\text {D }}$	Single Device Power Dissipation (at or below $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$) \qquad 300 mW
	Linear Derating Factor..........................5.0mW/ ${ }^{\circ} \mathrm{C}$
Tj	Operating Junction Temperature
	Range .. 55 to $+85^{\circ} \mathrm{C}$
	torage Temperature Range -55 to $+150^{\circ} \mathrm{C}$

Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PIN CONFIGURATION

N-CHANNEL ENHANCEMENT-MODE

 QUAD DMOS FET DRIVER ARRAY
SD5200

ELECTRICAL CHARACTERISTICS: $\left(T_{A}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
Static						
$\bar{B} V_{D S}$	Drain-Source Breakdown Voltage	$\mathrm{I}_{\mathrm{D}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{BS}}=0$	30	35	-	V
$\overline{B V_{S B}}$	Source-Substrate Breakdown Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{S}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GB}}=0 \\ & \text { Drain Open } \end{aligned}$	15	-	-	V
$\overline{\text { IGBS }}$	Gate-Body Leakage Current	$\mathrm{V}_{\mathrm{GB}}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{DB}}=\mathrm{V}_{\mathrm{SB}}=0$	-	-	1.0	$\mu \mathrm{A}$
$\overline{\mathrm{VGS}_{(t h)}}$	Gate-Source Threshold Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=1.0 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{SB}}=0 \end{aligned}$	0.5	1.0	2.0	V
${ }^{\text {r DS }}$ (on)	Drain-Source ON Resistance	$\begin{aligned} & V_{\mathrm{GS}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{SB}}=0 \\ & V_{\mathrm{GS}}=10 \mathrm{~V}, I_{\mathrm{D}}=1 \mathrm{~mA}, V_{S B}=0 \\ & V_{\mathrm{GS}}=15 \mathrm{~V}, I_{\mathrm{D}}=1 \mathrm{~mA}, V_{\mathrm{SB}}=0 \\ & V_{\mathrm{GS}}=20 \mathrm{~V}, I_{D}=1 \mathrm{~mA}, V_{\mathrm{SB}}=0 \end{aligned}$	$\begin{aligned} & \text { - } \\ & - \end{aligned}$	$\begin{aligned} & 50 \\ & 30 \\ & 23 \\ & 19 \end{aligned}$	$\begin{aligned} & 80 \\ & - \\ & \text { - } \end{aligned}$	Ω
DYNAMIC						
g_{s}	Common-Source Forward Transcond.	$\begin{aligned} & V_{D S}=10 \mathrm{~V}, I_{D}=20 \mathrm{~mA} \\ & \mathrm{f}=1 \mathrm{KHz}, V_{S B}=0 \end{aligned}$	10	12	-	mmhos
$c_{(g s+g d+g b)}$	Gate Node Capacitance	$\begin{aligned} & f=1 \mathrm{MHz}, V_{D S}=10 \mathrm{~V} \\ & V_{G S}=V_{B S}=-15 \mathrm{~V} \end{aligned}$	-	2.4	3.5	pF
$c_{(g d+d b)}$	Drain Node Capicitance	$\begin{aligned} & f=1 \mathrm{MHz}, V_{D S}=10 \mathrm{~V} \\ & V_{G S}=V_{B S}=-15 \mathrm{~V} \end{aligned}$	-	1.3	1.5	pF
$\mathrm{C}_{\text {(gs }+\mathrm{sb})}$	Source Node Capacitance	$\begin{aligned} & f=1 \mathrm{MHz}, V_{D S}=10 \mathrm{~V} \\ & V_{G S}=V_{B S}=-15 \mathrm{~V} \end{aligned}$	-	3.5	4.0	pF
$\mathrm{c}_{\text {(dg) }}$	Reverse Transfer Capacitance	$\begin{aligned} & f=1 \mathrm{MHz}, V_{D S}=10 \mathrm{~V} \\ & V_{G S}=V_{B S}=-15 \mathrm{~V} \end{aligned}$	-	0.3	0.5	pF
$\underline{\mathrm{C}_{T}}$	Cross Talk		-	-107	-	dB

QUAD DMOS FET ANALOG SWITCH ARRAYS

FEATURES

ORDERING INFORMATION

Part No.	Package	Description	Temperature Range
SD5400CY	14-Pin	$20 \mathrm{~V}, 30 \Omega$	Commercial
	Plastic Small-Outline		
SD5401CY	14-Pin	$10 \mathrm{~V}, 30 \Omega$	Commercial
	Plastic Small-Outline		
SD5402CY	14-Pin Plastic Small-Outline	$15 \mathrm{~V}, 30 \Omega$	Commercial

SCHEMATIC DIAGRAM

APPLICATIONS

- High-Speed Analog Switches
\qquad
SD5401 ... $\pm 5 \mathrm{~V}$
SD5402 .. $\pm 7.5 \mathrm{~V}$

High-Speed Switch Drivers SD540020V
SD5401 10 V
SD5402 15V- Sample-and-Hold

PIN CONFIGURATION

QUAD DMOS FET ANALOG
 SWITCH ARRAYS

ABSOLUTE MAXIMUM RATINGS:
$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.
VB Drain-Body Voltage SD5400 ..25V
SD5401 $+15 \mathrm{~V}$
SD5402 $+22.5 \mathrm{~V}$
VDS Drain-Source Voltage
SD5400 $+20 \mathrm{~V}$
SD5401 $+10 \mathrm{~V}$
SD5402 $+15 \mathrm{~V}$
$V_{S B}$ Source-Body Voltage
SD5400 $+25 \mathrm{~V}$
SD5401 $+15 \mathrm{~V}$
SD5402 $+22.5 \mathrm{~V}$
$V_{\text {SD }}$ Source-Drain Voltage
SD5400 $+20 \mathrm{~V}$
SD5401 $+10 \mathrm{~V}$
SD5402 $+15 \mathrm{~V}$
V_{GB} Gate-Body Voltage
SD5400 $-0.3 \mathrm{~V},+30 \mathrm{~V}$
SD5401 $-0.3 \mathrm{~V},+25 \mathrm{~V}$
SD5402 $-0.3 \mathrm{~V},+30 \mathrm{~V}$
V_{GD} Gate-Drain Voltage
SD5400 $-25 \mathrm{~V},+30 \mathrm{~V}$
SD5401 $-15 \mathrm{~V},+25 \mathrm{~V}$
SD5402 $-22.5 \mathrm{~V},+30 \mathrm{~V}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ per channel, unless otherwise noted.)

Symbol	Parameter	Test Conditions	SD5400			SD5401			SD5402			Unit
			Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Static												
$\overline{B V_{D S}}$	Drain-Source Breakdown Voltage	$\mathrm{I}_{\mathrm{D}}=10 \mathrm{nA}, \mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{BS}}=-5 \mathrm{~V}$	20	25	-	10	25	-	15	25	-	V
$\overline{B V_{S D}}$	Source-Drain Breakdown Voltage	$\mathrm{I}_{\mathrm{S}}=10 \mathrm{nA}, \mathrm{V}_{\mathrm{GD}}=\mathrm{V}_{\mathrm{BD}}=-5 \mathrm{~V}$	20	-	-	10	-	-	15	-	-	V
$\overline{B V_{D B}}$	Drain-Substrate Breakdown Voltage	$I_{D}=10 \mathrm{nA}, V_{G B}=0 V$ Source OPEN	25	-	-	15	-	-	22.5	-	-	V
$\overline{B V_{S B}}$	Source-Substrate Breakdown Voltage	$I_{S}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GB}}=0 \mathrm{~V}$ Drain OPEN	25	-	-	15	-	-	22.5	-	-	V
$\overline{\mathrm{I}}$ (OFF)	Drain-Source OFF Current	$\begin{aligned} & V_{G S}=V_{B S}=-5 \mathrm{~V}, V_{D S}=10 \mathrm{~V} \\ & V_{G S}=V_{B S}=-5 \mathrm{~V}, V_{D S}=15 \mathrm{~V} \\ & V_{G S}=V_{B S}=-5 \mathrm{~V}, V_{D S}=20 \mathrm{~V} \end{aligned}$	—	-	$\overline{\overline{10}}$	-	-	$\begin{aligned} & 10 \\ & - \end{aligned}$	-	-	$\overline{10}$	nA
$\overline{I_{\text {S (OFF) }}}$	Source-Drain OFF Current	$\begin{aligned} & \mathrm{V}_{\mathrm{GD}}=\mathrm{V}_{\mathrm{BD}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GD}}=\mathrm{V}_{\mathrm{BD}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SD}}=15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GD}}=\mathrm{V}_{\mathrm{BD}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SD}}=20 \mathrm{~V} \end{aligned}$	—	二	$\overline{-}$	-	-	$\begin{aligned} & 10 \\ & - \end{aligned}$	-	-	$\overline{10}$	nA
$\overline{\mathrm{lGBS}}$	Gate-Body Source Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{DB}}=\mathrm{V}_{\mathrm{SB}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GB}}=25 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DB}}=\mathrm{V}_{\mathrm{SB}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GB}}=30 \mathrm{~V} \end{aligned}$	-	-	$\overline{1}$	-	-	1	-	-	$\overline{1}$	$\mu \mathrm{A}$
$\overline{\mathrm{VGS}_{\text {(TH) }}}$	Gate Source Threshold Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=1 \mu \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{SB}}=0 \mathrm{~V} \end{aligned}$	0.1	1	2	0.1	1	2	0.1	1	2	V
$\overline{\mathrm{r}_{\mathrm{DS}}(\mathrm{ON})}$	Drain-Source ON Resistance	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{SB}}=0 \mathrm{~V} \end{aligned}$	-	50	70	-	50	70	-	50	70	Ω
		$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{SB}}=0 \mathrm{~V} \end{aligned}$	-	30	-	-	30	-	-	30	-	Ω
		$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{SB}}=0 \mathrm{~V} \end{aligned}$	-	23	-	-	23	-	-	23	-	Ω
		$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{SB}}=0 \mathrm{~V} \end{aligned}$	-	19	-	-	19	-	-	19	-	Ω
PDSM(ON)	Drain-Source Match ON Resistance	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{SB}}=0 \mathrm{~V} \end{aligned}$	-	1	5	-	1	5	-	1	5	Ω
Dynamic												
$\mathrm{gm}_{\text {(}} \mathrm{FS}$)	Common-Source Forward Transconductance	$\begin{aligned} & V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=20 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{SB}}=0 \mathrm{f}=1 \mathrm{kHz} \end{aligned}$	10	12	-	10	12	-	10	12	-	mmhos
$\overline{\mathrm{C}_{(\mathrm{GS}+\mathrm{GD}+\mathrm{GB})}}$	Gate Node Capacitance	$\begin{aligned} & V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=\mathrm{V}_{B S}=-15 \mathrm{~V}, \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	-	2.4	3.5	-	2.4	3.5	-	2.4	3.5	pF
$\mathrm{C}_{(\mathrm{GS}+\mathrm{DB})}$	Drain Node Capacitance	$\begin{aligned} & V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{BS}}=-15 \mathrm{~V}, \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	-	1.3	1.5	-	1.3	1.5	-	1.3	1.5	pF
$\bar{C}_{(\mathrm{GS}+\mathrm{SB})}$	Source Node Capacitance	$\begin{aligned} & V_{D S}=10 \mathrm{~V}, V_{G S}=V_{B S}=-15 \mathrm{~V}, \\ & f=1 \mathrm{MHz} \end{aligned}$	-	3.5	4	-	3.5	4	-	3.5	4	pF
$\overline{\mathrm{C}_{(\mathrm{DG})}}$	Reverse Transfer Capacitance	$\begin{aligned} & V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{BS}}=-15 \mathrm{~V}, \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	-	0.3	0.5	-	0.3	0.5	-	0.3	0.5	pF
CT	Cross-Talk	$\mathrm{f}=3 \mathrm{kHz}, \mathrm{R}_{\mathrm{G}}=600 \Omega$	-	-107	-	-	-107	-	-	-107	-	dB
$t_{\text {D(ON }}$	Turn ON Delay Time	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{G}(\mathrm{ON})}=10 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=680 \Omega, \mathrm{R}_{\mathrm{G}}=51 \Omega \end{aligned}$	-	0.7	1	-	0.7	1	-	0.7	1	ns
t_{R}	Rise Time	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{G}(\mathrm{ON})}=10 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=680 \Omega, \mathrm{R}_{\mathrm{G}}=51 \Omega \end{aligned}$	-	0.8	1	-	0.8	1	-	0.8	1	ns
toff	Turn OFF Time	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{G}(0 N)}=10 \mathrm{~V}, \\ & R_{\mathrm{L}}=680 \Omega, \mathrm{R}_{\mathrm{G}}=51 \Omega \end{aligned}$	-	10	-	-	10	-	-	10	-	ns

QUAD DMOS FET ANALOG SWITCH ARRAYS

SD5400
SD5401
SD5402

SWITCHING TIMES TEST CIRCUIT

4361 FHD F03

TEST WAVEFORMS

TYPICAL PERFORMANCE CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ per channel, unless otherwise noted.

Gate-Source Threshold Voltage vs Source-Body Voltage

Forward Transconductance vs On Drain Current

N-CHANNEL ENHANCEMENT-MODE DMOS POWER FETs

FEATURES

- High Gate Oxide Breakdown, $\pm 40 \mathrm{~V}$ min.
- Low Output and Transfer Capacitances
- Extended Safe Operating Area

APPLICATIONS

- High-Speed Pulse Amplifiers
- Logic Buffers
- Line Drivers
- Solid-State Relays
- Motor Controls
- Power Supplies

ORDERING INFORMATION

Part No.	Package	Description
VN0610LL	TO-92 Plastic	$60 \mathrm{~V}, 5 \Omega$
PN2222LL	TO-kage	
	Package	$60 \mathrm{~V}, 7.5 \Omega$

ABSOLUTE MAXIMUM RATINGS

Drain-Source Voltage ... +60 V
Drain-Gate Voltage ($\mathrm{V}_{\mathrm{GS}}=0$)60V
Gate-Source Voltage ... $\pm 40 \mathrm{~V}$
Continuous Drain Current
VN0610LL
\qquad
$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$..3. 0.3 A
VN2222LL

$$
\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} .0 .15 \mathrm{~A}
$$

$T_{C}=+25^{\circ} \mathrm{C}$..0.26A
Peak Pulsed Drain Current1.0A
Continuous Device Dissipation

$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$...1.0W
Linear Derating Factor
$T_{A}=+25^{\circ} \mathrm{C}$
$T_{\mathrm{C}}=+25^{\circ} \mathrm{C} . \ldots .2 .4 m W / ~$${ }^{\circ} \mathrm{C}$

Operating Junction
Temperature Range
-55 to $+150^{\circ} \mathrm{C}$
Storage Temperature Range -55 to $+150^{\circ} \mathrm{C}$
Lead Temperature ($1 / 16^{\prime \prime}$ from mounting surface for 30 sec)
$+260^{\circ} \mathrm{C}$
Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

SCHEMATIC DIAGRAM

N-CHANNEL ENHANCEMENT-MODE DMOS POWER FETs

VN0610LL
VN2222LL
ELECTRICAL CHARACTERISTICS: $\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Symbol	Parameter	Test Conditions	VN0610LL			VN2222LL			Units
			Min	Typ	Max	Min	Typ	Max	
Static									
BVDSS	Drain-Source Breakdown Voltage	$\mathrm{I}_{\mathrm{D}}=100 \mu \mathrm{~A}, \mathrm{~V}_{G S}=0$	60	100	-	60	100	-	V
$\mathrm{V}_{\mathrm{GS} \text { (} \mathrm{th} \text {) }}$	Gate-Source Threshold Voltage	$\mathrm{I}_{\mathrm{D}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}$	0.8	1.9	2.5	0.6	1.9	2.5	V
IGBS	Gate-Body Source Leakage Current	$\mathrm{V}_{\mathrm{GS}}= \pm 30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$	-	± 1.0	± 100	-	± 1.0	± 100	nA
loss	Drain-Source OFF	$\mathrm{V}_{\mathrm{DS}}=48 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	-	0.1	10	-	0.1	10	$\mu \mathrm{A}$
	Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=48 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \\ & \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C} \end{aligned}$	-	5.0	500	-	5.0	500	$\mu \mathrm{A}$
ID(on)	ON Drain Current	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}^{(1)}$	1.0	2.2	-	1.0	2.2	-	A
$\overline{\mathrm{VSS}}$ (on)	Drain-Source ON Voltage	$\begin{aligned} & V_{G S}=5 V, I_{D}=0.2 A^{(1)} \\ & V_{G S}=10 V, I_{D}=0.5 A^{(1)} \end{aligned}$	-	$\begin{aligned} & 0.9 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.5 \end{aligned}$	二	$\begin{aligned} & 0.9 \\ & 1.5 \end{aligned}$	$\begin{gathered} 1.5 \\ 3.75 \end{gathered}$	V
$\mathrm{r}_{\text {DS(on) }}$	Drain-Source ON Resistance	$\begin{aligned} & V_{G S}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.2 \mathrm{~A}^{(1)} \\ & \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~A}^{(1)} \\ & \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~A}^{(1)} \\ & T_{A}=+125^{\circ} \mathrm{C} \end{aligned}$	—	$\begin{aligned} & 4.5 \\ & 3.0 \\ & 4.7 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 5.0 \\ & 9.0 \end{aligned}$	-	$\begin{aligned} & 4.5 \\ & 3.0 \\ & 4.7 \end{aligned}$	$\begin{gathered} \hline 7.5 \\ 7.5 \\ 13.5 \end{gathered}$	Ω
Dynamic									
$\mathrm{gis}^{\text {s }}$	Common-Source Forward Transcond	$\begin{aligned} & V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~A} \\ & \mathrm{f}=1 \mathrm{KHz}^{(1)} \end{aligned}$	100	400	-	100	400	-	mmhos
Ciss	Common-Source Input Capacitance	$\begin{aligned} & V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \\ & f=1 \mathrm{MHz} \end{aligned}$	-	80	100	-	80	100	pF
$\mathrm{c}_{\text {rss }}$	Common-Source Reverse Transfer Capacitance	$\begin{aligned} & V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \\ & f=1 \mathrm{MHz} \end{aligned}$	-	1.3	5.0	-	1.3	5.0	pF
Coss	Common-Source Output Capacitance	$\begin{aligned} & V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \\ & f=1 \mathrm{MHz} \end{aligned}$	-	10.5	25	-	10.5	25	pF
ton	Turn-On Time	$\begin{aligned} & V_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{G}(\text { on })}=10 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{G}}=25 \Omega, \mathrm{R}_{\mathrm{L}}=25 \Omega \end{aligned}$	-	5.0	10	-	5.0	10	nSec
$\mathrm{t}_{\text {off }}$	Turn-Off Time	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{G}(\mathrm{on)}}=10 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{G}}=25 \Omega, \mathrm{R}_{\mathrm{L}}=25 \Omega \end{aligned}$	-	6.0	10	-	6.0	10	nSec

NOTE: 1. Pulse Test 80μ Sec, 1% Duty Cycle

N-CHANNEL ENHANCEMENT-MODE DMOS POWER FETS

FEATURES

■ High Gate Oxide Breakdown, $\pm 40 \mathrm{~V}$ min.

- Low Output and Transfer Capacitances
- Extended Safe Operating Area

APPLICATIONS

- High-Speed Pulse Amplifiers
- Logic Buffers
- Line Drivers
- Solid-State Relays
- Motor Controls
- Power Supplies

ORDERING INFORMATION

Part No.	Package	Description
VN10KN3	TO-92 Plastic	$60 \mathrm{~V}, 5 \Omega$

ABSOLUTE MAXIMUM RATINGS
($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)
Drain-Source Voltage $+60 \mathrm{~V}$
Drain-Gate Voltage ($\mathrm{V}_{\mathrm{GS}}=0$) $+60 \mathrm{~V}$
Gate-Source Voltage $\pm 30 \mathrm{~V}$
Continuous Drain Current
$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ 0.24A
$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ 0.32A
Peak Pulsed Drain Current 1.0A
Continuous Device Dissipation
$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ 0.30 W
$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ 1.0W 1.0W
Linear Derating Factor
$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ $2.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ $8.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Junction Temperature
Range -55 to $+150^{\circ} \mathrm{C}$
Storage Temperature Range -55 to $+150^{\circ} \mathrm{C}$
Lead Temperature ($1 / 16$ " from mountingsurface for 30 sec)$+260^{\circ} \mathrm{C}$

[^9]SCHEMATIC DIAGRAM
GATE O-A

N-CHANNEL ENHANCEMENT-MODE DMOS POWER FETS

VN10KN

ELECTRICAL CHARACTERISTICS: $\left(T_{A}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Typ	Max	Units
Static						
BV ${ }_{\text {DSS }}$	Drain-Source Breakdown Voltage	$\mathrm{I}_{\mathrm{D}}=100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0$	60	100	-	V
$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	Gate-Source Threshold Voltage	$\mathrm{I}_{\mathrm{D}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}$	0.8	1.9	2.5	V
IGBS	Gate-Body Source Leakage Current	$\mathrm{V}_{\mathrm{GS}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$	-	± 10	± 100	nA
loss	Drain-Source OFF	$\mathrm{V}_{\mathrm{DS}}=40 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	-	0.1	10	$\mu \mathrm{A}$
	Leakage Current	$\begin{aligned} & V_{D S}=40 \mathrm{~V}, V_{G S}=0 \\ & T_{A}=125^{\circ} \mathrm{C} \end{aligned}$	-	5.0	500	$\mu \mathrm{A}$
$I_{\text {D(on) }}$	ON Drain Current	$\begin{aligned} & V_{G S}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=10 \mathrm{~V}^{(1)} \\ & \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=10 \mathrm{~V}^{(1)} \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.75 \\ & \hline \end{aligned}$	-		A
$\mathrm{V}_{\text {DS(on) }}$	Drain-Source ON Voltage	$\mathrm{V}_{G S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~A}^{(1)}$	-	1.5	2.5	V
ros(on)	Drain-Source ON Resistance	$\begin{aligned} & V_{G S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~A}^{(1)} \\ & \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~A}^{(1)} \\ & T_{A}=+125^{\circ} \mathrm{C} \end{aligned}$	-	$\begin{aligned} & 3.0 \\ & 4.7 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 9.0 \end{aligned}$	Ω
Dynamic						
$\mathrm{gis}^{\text {s }}$	Common-Source Forward Transcond	$\begin{aligned} & V_{D S}=10 V, I_{D}=0.5 \mathrm{~A} \\ & f=1 \mathrm{KHz}^{(1)} \end{aligned}$	100	400	-	mmhos
$\mathrm{c}_{\text {iss }}$	Common-Source Input Capacitance	$\begin{aligned} & V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \\ & f=1 \mathrm{MHz} \end{aligned}$	-	80	100	pF
$\mathrm{c}_{\text {rss }}$	Common-Source Reverse Transfer Capacitance	$\begin{aligned} & V_{D S}=15 \mathrm{~V}, V_{G S}=0 \\ & f=1 \mathrm{MHz} \end{aligned}$	-	1.3	5.0	pF
Coss	Common-Source Output Capacitance	$\begin{aligned} & V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	-	10.5	25	pF
ton	Turn-On Time	$\begin{aligned} & V_{D D}=V_{G(o n)}=10 \mathrm{~V} \\ & R_{G}=25 \Omega, R_{L}=25 \Omega \end{aligned}$	-	5.0	10	nSec
$\mathrm{t}_{\text {off }}$	Turn-Off Time	$\begin{aligned} & V_{D D}=V_{G(o n)}=10 \mathrm{~V} \\ & R_{G}=25 \Omega, R_{L}=25 \Omega \end{aligned}$	-	6.0	10	nSec

NOTE: 1. Pulse Test $80 \mu \mathrm{Sec}, 1 \%$ Duty Cycle

FEATURES
 - High Gate Oxide Breakdown, $\pm 40 \mathrm{~V}$ min.
 - Low Output and Transfer Capacitances
 Extended Safe Operating Area

N-CHANNEL ENHANCEMENT-MODE DMOS POWER FETs

APPLICATIONS

- High-Speed Pulse Amplifiers
- Logic Buffers
- Line Drivers
- Solid-State Relays
- Motor Controls
- Power Supplies

ORDERING INFORMATION

Part No.	Package	Description
VN10LM	TO-237 Plastic	$60 \mathrm{~V}, 5 \Omega$
VN2222LM	TO-237 Plastic	$60 \mathrm{~V}, 7.5 \Omega$

ABSOLUTE MAXIMUM RATINGS
Drain-Source Voltage ... 60 V
Drain-Gate Voltage ($\mathrm{V}_{\mathrm{GS}}=0$) +60 V
Gate Source Voltage ... ± 40
Continuous Drain Current VN10LM
\qquad
$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$..0.44A
VN2222LM
$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$...0.16A
$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$...0.36A
Peak Pulsed Drain Current1.0A
Continuous Device Dissipation
$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$
0.36W
$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$.. 1.8 W

Linear Derating Factor

Operating Junction Temperature
Range ... 55 to $+150^{\circ} \mathrm{C}$
Storage Temperature Range -55 to $+150^{\circ} \mathrm{C}$
Lead Temperature ($1 / 16^{\prime \prime}$ from mounting
surface for 30 sec)
$+260^{\circ} \mathrm{C}$
Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

N-CHANNEL ENHANCEMENT-MODE DMOS POWER FETs

VN10LM
 VN2222LM

ELECTRICAL CHARACTERISTICS: $\left(T_{A}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Symbol	Parameter	Test Conditions	VN10LM			VN2222LM			Units
			Min	Typ	Max	Min	Typ	Max	
Static									
BV ${ }_{\text {DSS }}$	Drain-Source Breakdown Voltage	$\mathrm{I}_{\mathrm{D}}=100 \mu \mathrm{~A}, \mathrm{~V}_{G S}=0$	60	100	-	60	100	-	V
$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	Gate-Source	$\mathrm{I}_{\mathrm{D}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}$	0.8	1.9	2.5	0.6	1.9	2.5	V
$\mathrm{I}_{\text {GBS }}$	Gate-Body Source Leakage Current	$\mathrm{V}_{\mathrm{GS}}= \pm 30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$	-	± 1.0	± 100	-	± 1.0	± 100	nA
Ioss	Drain-Source OFF	$\mathrm{V}_{\mathrm{DS}}=48 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	-	0.1	10	-	0.1	10	$\mu \mathrm{A}$
	Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=48 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \\ & \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C} \end{aligned}$	-	5.0	500	-	5.0	500	$\mu \mathrm{A}$
Idon)	ON Drain Current	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}^{(1)}$	1.0	2.2	-	1.0	2.2	-	A
$\mathrm{V}_{\mathrm{DS} \text { (on) }}$	Drain-Source ON Voltage	$\begin{aligned} & V_{G S}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.2 \mathrm{~A}^{(1)} \\ & V_{G S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~A}^{(1)} \end{aligned}$		$\begin{aligned} & 0.9 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.5 \end{aligned}$	-	$\begin{aligned} & 0.9 \\ & 1.5 \end{aligned}$	$\begin{gathered} 1.5 \\ 3.75 \end{gathered}$	V
$\mathrm{r}_{\text {DS(on) }}$	Drain-Source ON Resistance	$\begin{aligned} & V_{G S}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.2 \mathrm{~A}^{(1)} \\ & \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~A}^{(1)} \\ & \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~A}^{(1)} \\ & T_{\mathrm{A}}=+125^{\circ} \mathrm{C} \end{aligned}$	—	$\begin{aligned} & 4.5 \\ & 3.0 \\ & 4.7 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 5.0 \\ & 9.0 \end{aligned}$	-	$\begin{aligned} & 4.5 \\ & 3.0 \\ & 4.7 \end{aligned}$	$\begin{gathered} \hline 7.5 \\ 7.5 \\ 13.5 \end{gathered}$	Ω
Dynamic									
gis	Common-Source Forward Transcond	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~A} \\ & \mathrm{f}=1 \mathrm{KHz}^{(1)} \end{aligned}$	100	400	-	100	400	-	mmhos
$\mathrm{c}_{\text {iss }}$	Common-Source Input Capacitance	$\begin{aligned} & V_{D S}=15 \mathrm{~V}, V_{G S}=0 \\ & f=1 \mathrm{MHz} \end{aligned}$	-	80	100	-	80	100	pF
$\mathrm{Crss}^{\text {r }}$	Common-Source Reverse Transfer Capacitance	$\begin{aligned} & V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \\ & f=1 \mathrm{MHz} \end{aligned}$	-	1.3	5.0	-	1.3	5.0	pF
Coss	Common-Source Output Capacitance	$\begin{aligned} & V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	-	10.5	25	-	10.5	25	pF
ton	Turn-On Time	$\begin{aligned} & V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{G}(\text { on })}=10 \mathrm{~V} \\ & R_{G}=25 \Omega, R_{\mathrm{L}}=25 \Omega \end{aligned}$	-	5.0	10	-	5.0	10	nSec
$\mathrm{t}_{\text {ff }}$	Turn-Off Time	$\begin{aligned} & V_{D D}=15 \mathrm{~V}, V_{G(o n)}=10 \mathrm{~V} \\ & R_{G}=25 \Omega, R_{L}=25 \Omega \end{aligned}$	-	6.0	10	-	6.0	10	nSec

NOTES: 1. Pulse Test 80μ Sec, 1\% Duty Cycle

N-CHANNEL ENHANCEMENT-MODE QUAD DMOS POWER FET ARRAY FEATURES

- Inherent Current Sharing Capability when Paralleled
- Simple Straightforward DC Biasing
- Extended Safe Operating Area
- CMOS and TTL Compatible

APPLICATIONS

- High-Speed Pulse Amplifiers
- CMOS Logic to High-Current Interfaces
- High-Speed Switching
- Line Drivers
- Stepper Motor Drivers

ORDERING INFORMATION

Part No.	Package	Description
VQ1000J	14 Pin	$60 \mathrm{~V}, 5.5 \Omega$
	Plastic DIP	

SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.)
Drain-Source Voltage 60 V
Drain-Gate Voltage ($\mathrm{V}_{\mathrm{GS}}=0$) 60 V
Gate-Source Voltage $\pm 40 \mathrm{~V}$
Continuous Drain Current
Total Package
$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ 0.29A
$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ 0.51A
Single Device
$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ 0.20A
$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ 0.36A
Peak Pulsed Drain Current 1.0A
Continuous Device Dissipation
Total Package
$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ 0.64W
$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ 2.0W
Single Device
$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ 0.30W
$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ 1.0W
Linear Derating FactorTotal Package
$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ $5.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ $.16 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Single Device
$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ $2.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ $8.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Junction
Temperature Range -55 to $+150^{\circ} \mathrm{C}$
Storage Temperature Range -55 to $+150^{\circ} \mathrm{C}$
Lead Temperature ($1 / 16^{\prime \prime}$ from mounting surface for 30 Sec) $+260^{\circ} \mathrm{C}$

Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

N-CHANNEL ENHANCEMENT-MODE QUAD DMOS POWER FET ARRAY

VQ1000

ELECTRICAL CHARACTERISTICS: $\left(T_{A}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Typ	Max	Units
Static						
BV ${ }_{\text {DSS }}$	Drain-Source Breakdown Voltage	$\mathrm{I}_{\mathrm{D}}=100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0$	60	105	-	V
$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	Gate-Source Threshold Voltage	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=1.0 \mathrm{~mA}$	0.8	1.9	2.5	V
$\mathrm{I}_{\text {GBS }}$	Gate-Body Source Leakage Current	$V_{G S}=10 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0$	-	. 10	100	nA
		$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \\ & \mathrm{~T}_{A}=+125^{\circ} \mathrm{C} \end{aligned}$	-	10	500	nA
		$\mathrm{V}_{\mathrm{GS}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$	-	-. 10	-100	
IDSS	Drain-Source OFF Leakage Current	$\mathrm{V}_{\mathrm{DS}}=60 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	-	. 10	10	$\mu \mathrm{A}$
		$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=60 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \\ & T_{A}=+125^{\circ} \mathrm{C} \end{aligned}$	-	10	500	$\mu \mathrm{A}$
$\overline{\mathrm{I}}$ (on)	Drain-Source ON Current ${ }^{(1)}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.5 \end{aligned}$	$\begin{aligned} & \hline 1.3 \\ & 2.5 \end{aligned}$	-	A
$\mathrm{V}_{\text {DS(on) }}$	Drain-Source ON Voltage ${ }^{(1)}$	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.2 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.3 \mathrm{~A} \end{aligned}$		-	$\begin{aligned} & 1.50 \\ & 1.65 \end{aligned}$	V
$\overline{\mathrm{raS}}$ (on)	Drain-Source ON Resistance ${ }^{(1)}$	$\mathrm{V}_{G S}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.2 \mathrm{~A}$	-	-	7.5	Ω
		$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.3 \mathrm{~A}$	-	-	5.5	
		$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.3 \mathrm{~A} \\ & \mathrm{~T}_{\mathrm{A}}=+125^{\circ} \mathrm{C} \end{aligned}$	-	-	7.6	Ω
Dynamic						
gis	Common-Source Forward Transcond ${ }^{(1)}$	$\begin{aligned} & V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~A} \\ & \mathrm{f}=1 \mathrm{KHz} \end{aligned}$	100	400	-	mmhos
$\mathrm{c}_{\text {iss }}$	Common-Source Input Capacitance	$\begin{aligned} & V_{D S}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \\ & f=1 \mathrm{MHz} \end{aligned}$	-	-	60	pF
$\mathrm{Crss}^{\text {r }}$	Common-Source Reverse Transfer Capacitance	$\begin{aligned} & V_{D S}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	-	-	5.0	pF
coss	Common-Source Output Capacitance	$\begin{aligned} & V_{\text {DS }}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \\ & f=1 \mathrm{MHz} \end{aligned}$	-	-	25	pF
ton	Turn-On Time	$\begin{aligned} & V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{G}(\mathrm{on})} 10 \mathrm{~V} \\ & R_{\mathrm{G}}=25 \Omega, \mathrm{R}_{\mathrm{L}}=25 \Omega \end{aligned}$	-	-	10	nSec
$\mathrm{t}_{\text {off }}$	Turn-Off Time	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{G}(\text { on })} 10 \mathrm{~V} \\ & R_{\mathrm{G}}=25 \Omega, \mathrm{R}_{\mathrm{L}}=25 \Omega \\ & \hline \end{aligned}$	-	-	10	nSec

NOTES: 1. Pulse Test $80 \mu \mathrm{Sec}, 1 \%$ Duty Cycle

Section 15

Reliability and Quality Assurance

	Display A/D Converters	1
Boltage-to-Frequency/Frequency-to-Voltage Converters	3	
Sensor Products	4	
Power Supply Control ICs	5	
Power MOSFET, Motor and PIN Drivers	6	
References	7	
Chopper-Stabilized Operational Amplifiers	8	
High Performance Amplifiers/Buffers	9	
Video Display Drivers	10	
Display Drivers	11	
Analog Switches and Multiplexers	12	
Data Communications	13	
Discrete DMOS Products	14	
Reliability and Quality Assurance	$\mathbf{1 5}$	
Ordering Information	16	
Package Information	17	
Sales Offices	18	

RELIABILITY AND QUALITY ASSURANCE

Teledyne Components continually strives to improve the quality and reliability of our products. This on-going process encompasses all areas of our operation, from design and development through delivery of finished product and customer service. As a result, we are proud of our many years of proven success supplying reliable high performance components to our customers.

New Product Qualification Tests

All products in development must pass a minimum set of die and package related qualification tests as a requirement for their release to manufacturing. As an example, Table 1 summarizes the reliability tests that are performed on new plastic packaged IC's. Samples from three separate fabrication lots must pass each test before production is allowed to begin.

Manufacturing Quality Assurance

The quality and reliability tests and controls in the manufacturing process (see Figure 1) are described below.

Incoming Inspection

Raw materials (silicon wafers, photomasks, leadframes, molding compound, etc.) are inspected by Quality Control on a sample basis. In some cases, where the vendor has an approved SPC program in place, vendor data may be substituted for incoming inspection at Teledyne Components. All raw material vendors are subject to periodic audits by Teledyne Components Quality personnel.

Wafer Fab

In addition to production controls, critical dimension measurements, and electrical measurements of wafers in process, Quality Assurance personnel conduct audits and monitors to assure adherence to specifications.

Wafer Sort

Each die on every wafer is tested on automatic test equipment to the electrical limits in the data sheet. Quality Assurance conducts periodic audits to assure that proper test programs and procedures are being used and that all test equipment is properly calibrated.

Assembly

Sample inspections are performed by Quality Control personnel after die attach, lead bond, and tin plate (for devices with plated leads).

Assembly Environmental

Periodic samples are tested by Quality Assurance for markingpermanency, solderability, resistanceto solderheat, temperature cycle and thermal shock. Also tested, for hermetic devices, are hermeticity and constant acceleration, and for plastic devices, are resistance to steam (pressure cooker) and high temperature biased humidity life $\left(85^{\circ} \mathrm{C} /\right.$ 85\%RH).

Electrical Test

After assembly, devices are 100% tested to the room temperature DC specifications in the data sheet. Following 100% test, lots are submitted to Quality Assurance for sample testing to all data sheet specifications (DC \& AC) over the operating temperature range.

Final Visual and Clearance

Prior to shipping, the devices are inspected by Quality Assurance to Teledyne Components' visual criteria and all paperwork is checked to assure that all manufacturing steps were properly completed and that devices meet the customer's requirements.

Hi -Rel Screening

Teledyne Components offers a number of Monolithic IC and Hybrid products with extra screening for applications that require higher assurance levels of quality and reliability, similar to those demanded for military grade devices*. This "/HR" screening flow, created in 1991, is outlined in Figure 2.

[^10]
RELIABILITY AND

QUALITY ASSURANCE

RELIABILITY QUALIFICATION TESTS

Test	Conditions
Steady State Life	$\begin{aligned} & \mathrm{Ta}=125^{\circ} \mathrm{C} \\ & \mathrm{t}=1000 \mathrm{Hrs} . \end{aligned}$
High Temperature Storage	$\begin{aligned} & \mathrm{Ta}=150^{\circ} \mathrm{C} \\ & \mathrm{t}=1000 \mathrm{Hrs} . \end{aligned}$
Temperature, Humidity, Bias	$\begin{aligned} & \mathrm{Ta}=85^{\circ} \mathrm{C}, \mathrm{RH}=85 \% \\ & \mathrm{t}=1000 \mathrm{Hrs} . \end{aligned}$
Temperature Cycle	$\begin{aligned} & \text { T-high }=150^{\circ} \mathrm{C} \\ & \text { T-low }=-65^{\circ} \mathrm{C} \\ & \# \text { of cycles }=1000 \end{aligned}$
Thermal Shock	$\begin{aligned} & \text { T-high }=150^{\circ} \mathrm{C} \\ & \text { T-low }=-55^{\circ} \mathrm{C} \\ & \# \text { of cycles }=15 \end{aligned}$
Resistance to Solder Heat	Per JEDEC Std 22
Autoclave	$\begin{aligned} & \mathrm{Ta}=121^{\circ} \mathrm{C} \\ & \mathrm{t}=168 \mathrm{Hrs} . \end{aligned}$
ESD Sensitivity	Per Mil-Std 883 Method 3015

PRODUCT ASSURANCE FLOW

MONOLITHIC I.C. PRODUCTS/HR SCREENING FLOW

HYBRID PRODUCTS/HR SCREENING FLOW

Final Electrical
per Applicable Device Specification
DC © $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{AC} @ 25^{\circ} \mathrm{C}$

Device Marking

Teledyne Logo, Part Number, ESD Designator, Date Code, Country of Origin, BeO

Quality Conformance Inspection
TC 5008*
Group A and B, Each Lot per Applicable Device Specification Group C once per design or major change, Group D per package type every 6 months

* Teledyne Components Internal Procedure

NOTES

Section 16

Ordering Information

	Display A/D Converters	1
Binary A/D Converters	2	
Voltage-to-Frequency/Frequency-to-Voltage Converters	3	
Sensor Products	4	
Power MOSFET, Motor and PIN Drivers	6	
References	7	
Chopper-Stabilized Operational Amplifiers	8	
High Performance Amplifiers/Buffers	9	
Video Display Drivers	10	
Display Drivers	11	
Analog Switches and Multiplexers	12	
Data Communications	13	
Discrete DMOS Products	14	
Reliability and Quality Assurance	15	
Ordering Information	$\mathbf{1 6}$	
Package Information	17	
Sales Offices	18	

ペTELEDYNE COMPONENTS

ORDERING INFORMATION

TELEDYNE COMPONENTS INTEGRATED CIRCUIT PRODUCT NUMBERING SYSTEM (except High Noise Immunity Products)

ORDERING INFORMATION

Package Type	Number of Package Pins
A	TO-220
B	Plastic Flat Pack
C	SOT-23
D	MO-078AA
H	Side-Brazed CerDIP
I	TO-220 (Isolated)
J	CerDIP
K	Plastic Gullwing Quad Flat Package
L	Plastic Leaded Chip Carrier (PLCC) connected to case)
M	SOT-89
N	Ceramic Leadless Chip Carrier (LCC)
O	Plastic 'SO' Surface Mount
P	Plastic DIP
R	TO-52
T	GO-99
V	8-Pin Metal Can
Y	Dice
Z	LO
TO-92	M
20	

Section 17

Package Information

Display A/D Converters	1
Binary A/D Converters	2
Voltage-to-Frequency/Frequency-to-Voltage Converters	3
Sensor Products	4
Power Supply Control ICs	5
Power MOSFET, Motor and PIN Drivers	6
References	7
Chopper-Stabilized Operational Amplifiers	8
High Performance Amplifiers/Buffers	9
Video Display Drivers	10
Display Drivers	11
Analog Switches and Multiplexers	12
Data Communications	13
Discrete DMOS Products	14
Reliability and Quality Assurance	15
Ordering Information	16
Package Information	17
Sales Offices	18

がTELEDYNE COMPONENTS

PACKAGE INFORMATION

PACKAGE 1

TO-52 (2-PIN)

PACKAGE 2

TO-92 (2-PIN)

PACKAGE INFORMATION

PACKAGE 3

TO-99 (8-PIN)

PACKAGE 4

8-PIN PLASTIC DIP

PACKAGE 5

8-PIN CERDIP

PACKAGE 6

14-PIN PLASTIC DIP

PACKAGE INFORMATION

PACKAGE 7

14-PIN CERDIP

PACKAGE 8

16-PIN PLASTIC DIP

PACKAGE 9

16-PIN CERDIP

PACKAGE 10

18-PIN PLASTIC DIP

PACKAGE INFORMATION

PACKAGE 11

18-PIN CERAMIC DIP

PACKAGE 12

24-PIN PLASTIC DIP

PACKAGE 13

24-PIN CERAMIC DIP

PACKAGE 14

24-PIN CERDIP

PACKAGE INFORMATION

PACKAGE 15

28-PIN PLASTIC DIP

PACKAGE 16

28-PIN CERAMIC DIP

PACKAGE 17

40-PIN PLASTIC DIP

PACKAGE 18

40-PIN CERAMIC DIP

PACKAGE INFORMATION

PACKAGE 19

28-PIN CERDIP

PACKAGE 20

40-PIN CERDIP

PACKAGE 21

60-PIN FLATPACK FORMED LEADS

PIN 1 INDICATION
DIMPLE OR BUTTON

PACKAGE INFORMATION

PACKAGE 22

5-PIN TO-220 (PACKAGE AT)

PACKAGE 23
TO-18 (3-PIN)

PACKAGE 24

TO-92 (3-PIN)

PACKAGE 25

8-PIN PLASTIC "SO"

PACKAGE INFORMATION

PACKAGE 26

14-PIN PLASTIC "SO"

PACKAGE INFORMATION

PACKAGE 27

68-PIN PLCC

PACKAGE INFORMATION

PACKAGE 28

44-PIN PLCC

PACKAGE 29

28-PIN PLCC

DETAIL VIEW A

SIDE VIEW

PACKAGE INFORMATION

PACKAGE 30

44-PIN FLAT PACK

PACKAGE 31

16-PIN "SO" WIDE

PACKAGE INFORMATION

PACKAGE 32

20-PIN "SO" WIDE

PACKAGE 33

SOT

PACKAGE 34

16-PIN SO

PACKAGE 35

20-PIN PLASTIC DIP

PACKAGE INFORMATION

PACKAGE 36

TO-220 (3-PIN)

Section 18

Sales Offices

	Display A/D Converters	1
Binary A/D Converters	2	
Voltage-to-Frequency/Frequency-to-Voltage Converters	3	
Sonsor Products	4	
Power MOSFET, Motor and PIN Drivers	6	
References	7	
Chopper-Stabilized Operational Amplifiers	8	
High Performance Amplifiers/Buffers	9	
Video Display Drivers	10	
Display Drivers	11	
Analog Switches and Multiplexers	12	
Data Communications	13	
Discrete DMOS Products	14	
Reliability and Quality Assurance	15	
Ordering Information	16	
Package Information	17	
Sales Offices	$\mathbf{1 8}$	

Main Sales Offices

Domestic Sales Offices
Teledyne Components 1300 Terra Bella Avenue P.O. Box 7267

Mountain View, CA 94039-7267
TEL: 415-968-9241
TWX: 910-379-6494
FAX: 415-967-1590
Teledyne Components 10 Oceana Way
Norwood, MA 02062-2601
TEL: 617-255-0300
FAX: 617-255-9576

Foreign Sales Offices

Teledyne Components
Abraham Lincoln Strabe 38-42
6200 Wiesbaden
Germany
TEL: 49-611-768 0
FAX: 49-611-701 239
Teledyne Components
The Harlequin Centre
Southhall Lane
Southhall
Middlesex, UB2 5NH
England
TEL: 44-1-571-9596
FAX: 44-1-571-9439
FAX: 44-1-571-8177
Teledyne Components
11 Dhoby Ghaut \#09-06
Cathay Building
Singapore 0922
TEL: 3388077/3387313
FAX: 3393316

United States Manufacturers Representatives

Alabama
Group 2000 Sales, Inc.
109C Jefferson Street
Huntsville, AL. 35801
(205) 536-2000
FAX: (205) 533-5525
Alaska
Teledyne Components
1300 Terra Bella Avenue
P.O. Box 7267
Mountain View, CA 94039-7267
(415) 968-9241
TWX: 910/379-6494
FAX: 415/967-1590
Arizona
SMS Associates
7819 E. Greenway Rd., Ste. 5
Scottsdale, AZ 85260
(602) 998-0831
FAX: (602) 998-2045

Arkansas

Southern States Mkting., Inc.
1143 Rockingham, Ste. 106
Richardson, TX 75080
(214) 238-7500

FAX: (214) 231-7662

California

Bestronics of San Diego 9683 Tierra Grande St.
Ste. 102
San Diego, CA 92126
(619) 693-1111

FAX: (619) 693-1963
H-Technical Sales II, Inc.
4 Ventura, Ste. 220
Ivine, CA 92640
(714) 753-7810

FAX: (714) 753-7818
ProMerge Sales, Inc.
1737 N. First Street \#510
San Jose, CA 95112
(408) 543-5544

FAX: (408) 453-9536

Colorado
Wescom Marketing
4891 Independence St.
Ste. 235
Wheat Ridge, CO 80033
(303) 422-8957
FAX: (303) 422-9892

Connecticut

Alpha-Omega Sales Corp 325 Main Street
North Reading, MA 01864
(508) 664-1118

FAX: (508) 664-3212

Delaware

S-J Associates, Inc. 204 Plaza Office Center Mt. Laurel, NJ 08054
(609) 866-1234

FAX: (609) 866-8627

Florida

Component Design Marketing 7616 Southland Blvd. Ste. 103
Orlando, FL 32809
(407) 240-3903

FAX: (407) 240-4305
1900 S.W. 85th Avenue
North Lauderdate, FL 33068
(407) 726-5444

FAX: (305) 480-7674
4502 W. Elm Street
Tampa, FL 33614
(813) 886-9721

FAX: (813) 888-7816

Georgia

Group 2000 Sales, Inc.
5390 Peachtree Industrial Blvd.
Ste. 210B
Norcross, Georgia 30071
(404) 729-1889

FAX: (404) 729-1896

Hawaii
Teledyne Components
1300 Terra Bella Avenue
P.O. Box 7267
Mountain View, CA 94039-7267
(415) 968-9241
TWX: 910/379-6494
FAX: 415/967-1590
Idaho
Wescom Marketing
4891 Independence St.
Ste. 235
Wheat Ridge, CO 80033
(303) 422-8957
FAX: (303) 422-9892
Illinois
CenTech, Inc.
10312 East 63rd Terrace
Raytown, MO 64133
(816) 358-8100
FAX: (816) 358-8107
Dolin Sales Co.
609 Academy Dr.
Northbrook, IL 60062
(708) 498-6770
FAX: (708) 498-4885
Indiana
Kansas
Centech, Inc.
10312 East 63rd Terrace
Raytown, MO 64133
(816) 358-8100
FAX: (816) 358-8107
6515 E. 82nd Street, Ste. 202
Indianapolis, IN 46250
(317) 845-7389
FAX: (317) 845-5875
lowa
Rep Associates Corp.
4905 Lakeside Drive N.E.
Cedar Rapids, IA 52402
(319) 373-0152
(319) 373-0217

Teledyne Components Terra Bella Avenue

Mountain View, CA 94039-7267
(415) 968-9241

TWX: 910/379-6494
FAX: 415/967-1590

Idaho

Wescom Marketing 4891 Independence St.
Ste. 235
Wheat Ridge, CO 80033
(303) 422-8957

FAX: (303) 422-9892

Illinois

CenTech, Inc.
10312 East 63rd Terrace
Raytown, MO 64133
(816) 358-8100

FAX: (816) 358-8107
Dolin Sales Co.
609 Academy Dr.
Northbrook, IL 60062
-6770
AX. (708) 498-4885

Indiana

Luebbe Sales Company
6515 E. 82nd Street, Ste. 202
Indianapolis, IN 46250
(317) 845-7389

FAX: (317) 845-5875

owa

Rep Associates Corp. 4905 Lakeside Drive N.E. Cedar Rapids, IA 52402
(319) 373-0152

FAX: (319) 373-0217

Kansas

Centech, Inc.
10312 East 63rd Terrace
Raytown, MO 64133
FAX: (816) 358-8107

United States Manufacturers Representatives (Cont.)

Kentucky
Luebbe Sales Company
7260 Edington Drive
Cincinnati, OH 45249
(513) 530-0600
FAX: (513) 530-0623
24610 Detroit Road
Westlake, OH 44145
(216) 899-0071
FAX: (216) 899-1072
Mad River Station, Ste. 205-B
2717 Miamisburg-Centerville Road
Dayton, OH 45459-3704
(513) 438-0490
FAX: (513) 438-8760
Louisiana
Southern States Mkting., Inc.
1143 Rockingham, Ste. 106
Richardson, TX 75080
(214) 238-7500
FAX: (214) 231-7662
400 East Anderson Lane
Ste. 610
Austin, TX 78752
(512) 835-5822
FAX: (512) 835-1404
10700 Richmond, Ste. 243
Houston, TX 77042
(713) 789-2426
FAX: (713) 789-3202

Maine

Alpha-Omega Sales Corp
325 Main Street
North Reading, MA 01864
(508) 664-1118

FAX: (508) 664-3212

Maryland

Arbotek Associates
1404 E. Joppa Road
Towson, MD 21204
(301) 825-0775

FAX: (301) 337-2781

Massachusetts
Alpha-Omega Sales Corp
325 Main Street
North Reading, MA 01864
(508) 664-1118
FAX: (508) 664-3212
Michigan
Luebbe Sales Company
27280 Haggerty Road C-11
Farmington Hills, MI 48331
(313) 489-8828
FAX: (313) 489-8829

Minnesota

Comprehensive Technical Sales
6525 City West Pkwy.
Eden Prairie, MN 55344
(612) 941-7181

FAX: (612) 941-4322

Mississippi
Group 2000 Sales, Inc.
5390 Peachtree Industrial Blvd.
Ste. 210B
Norcross, Georgia 30071
(404) 729-1889
FAX: (404) 729-1896

Missouri

CenTech, Inc.
10312 East 63rd Terrace
Raytown, MO 64133
(816) 358-8100

FAX: (816) 358-8107

Montana

Wescom Marketing
4891 Independence St.
Ste. 235
Wheat Ridge, CO 80033
(303) 422-8957

FAX: (303) 422-9892

Nebraska
CenTech, Inc.
10312 East 63rd Terrace
Raytown, MO 64133
(816) 358-8100
FAX: (816) 358-8107
Nevada
ProMerge Sales, Inc.
1737 N. First Street \#510
San Jose, CA 95112
(408) 543-5544
FAX: (408) 543-5020
New Hampshire
Alpha-Omega Sales Corp
325 Main Street
North Reading, MA 01864
(508) 664-1118
FAX: (508) 664-3212
New Jersey
Metro Logic Corp.
271 Route 46 West
Ste. D 202
Fairfield, NJ 07006
(201) 575-5585
FAX: (201) 575-8023
S-J Associates, Inc.
204 Plaza Office Center
Mt. Laurel, NJ 08054
(609) 866-1234
FAX: (609) 866-8627
New Mexico
SMS Associates
7819 E. Greenway Rd., Ste. 5
Scottsdale, AZ 85260
(602) 998-0831
FAX: (602) 998-2045
Gew York
4855 Executive Drive
Liverpool, NY 13088
(317) 451-3480
FAX: (317) 451-0988

Nebraska

CenTech, Inc.
10312 East 63rd Terrace
Raytown, MO 64133
(816) 358-8100

FAX: (816) 358-8107

Nevada

ProMerge Sales, Inc.
1737 N. First Street \#510
San Jose, CA 95112
(408) 543-5544

FAX: (408) 543-5020

New Hampshire

Alpha-Omega Sales Corp
325 Main Street
North Reading, MA 01864
(508) 664-1118

FAX: (508) 664-3212

New Jersey

Metro Logic Corp.
271 Route 46 West
Ste. D 202
Fairfield, NJ 07006
(201) 575-5585

FAX: (201) 575-8023
S-J Associates, Inc.
204 Plaza Office Center
Mt. Laurel, NJ 08054
(609) 866-1234

FAX: (609) 866-8627

New Mexico

SMS Associates
7819 E. Greenway Rd., Ste. 5
Scottsdale, AZ 85260
(602) 998-0831

FAX: (602) 998-2045

New York

Gen-Tech Electronics
4855 Executive Drive
Liverpool, NY 13088
(317) 451-3480

FAX: (317) 451-0988

United States Manufacturers Representatives (Cont.)

New York (Cont.)
Metro Logic Corp.
271 Route 46 West
Ste. D 202
Fairield, NJ 07006
(201) 575-5585
FAX: (201) 575-8023
North Carolina
Group 2000 Sales, Inc.
109C Jefferson Street
Huntsville, Alabama 35801
(205) 536-2000
FAX: (205) 533-5525
5390 Peachtree Industrial Blvd.
Ste. 210B
Norcross, Georgia 30071
(404) 729-1889
FAX: (404) 729-1896
North Dakota
Comprehensive Technical Sales
6525 City West Pkwy.
Eden Prairie, MN 55344
(612) 941-7181
FAX: (612) 941-4322
Ohio
Oklahoma
Southern States Mkting., Inc.
1143 Rockingham, Ste. 106
Richardson, TX 75080
(214) 238-7500
FAX: (214) 231-7662 Sales Company
Cincinnati, Oh 45249
(513) 530-0600
FAX: (513) 530-0623
Mad River Sta., Ste. 205-B
2717 Miamisburg-Centerville Road
Dastlake, OH 44145
(216) 899-0071
(513) 438-0490 (216) 899-1072

Oklahoma (Cont.)
400 East Anderson Lane
Ste. 610
Austin, TX 78752
(512) 835-5822
FAX: (512) $835-1404$
10700 Richmond, Ste. 243
Houston, TX 77042
(713) 789-2426
FAX: (713) 789-3202

Oregon

Advanced Technical Marketing
4900 S.W. Griffith Drive, \#105
Beaverton, OR 97005
(503) 643-8307

FAX: (503) 643-4364

Pennsylvania

Luebbe Sales Company
9800 McKnight Rd., Ste. 200-B
Pittsburgh, PA 15237
(412) 364-0490

FAX: (412) 364-4290
S-J Associates, Inc. 204 Plaza Office Center
Mt. Laurel, NJ 08054
(609) 866-1234

FAX: (609) 866-8627

Rhode Island
Alpha-Omega Sales Corp.
325 Main Street
North Reading, MA 01864
(508) 664-1118
FAX: (508) 664-3212

South Carolina

Group 2000 Sales, Inc.
109C Jefferson Street
Huntsville, AL 35801
(205) 536-2000

FAX: (205) 533-5525

South Dakota
 Comprehensive Technical Sales
 6525 City West Parkway
 Eden Prairie, MN 55344
 (612) 941-7181
 FAX: (612) 941-4322
 Tennessee
 Group 2000 Sales, Inc.
 109C Jefferson Street
 Huntsville, AL 35801
 (205) 536-2000
 FAX: (205) 533-5525

Texas

Southern States Mkting., Inc.
1143 Rockingham, Ste. 106
Richardson, TX 75080
(214) 238-7500

FAX: (214) 231-7662
400 East Anderson Lane
Ste. 610
Austin, TX 78752
(512) 835-5822

FAX: (512) 835-1404
10700 Richmond, Ste. 243
Houston, TX 77042
(713) 789-2426

FAX: (713) 789-3202

Utah

Wescom Marketing
3500 S. Main Street
Salt Lake City, UT 94115
(801) 269-0419

FAX: (303) 422-9892

Vermont

Alpha-Omega Sales Corp. 325 Main Street
North Reading, MA 01864
(508) 664-1118

FAX: (508) 664-3212

Virginia

Arbotek Associates, Inc.
1404 E. Joppa Road
Towson, MD 21204
(301) 825-0775

FAX: (301) 337-2781

Washington

Advanced Technical Marketing 8521 154th Avenue N.E.
Redmond, WA 98052
(206) 869-7636

FAX: (206) 869-9841

Washington, DC

Arbotek Associates
1404 E. Joppa Road
Towson, MD 21204
(301) 825-0775

FAX: (301) 337-2781

West Virginia

Luebbe Sales Company
9800 McKnight Road
Ste. 200-B
Pittsburgh, PA 15237
(412) 364-0490

FAX: (412) 364-4290

Wisconsin

Comprehensive Technical Sales
6525 City West Parkway
Eden Prairie, MN 55344
(612) 941-7181

FAX: (612) 941-4322
Dolin Sales Co.
250 W. Coventry Ct.
Glendale, WI 53217
(414) 482-1111

FAX: (414) 351-4142

Wyoming

Wescom Marketing
4891 Independence Street
Ste. 235
Wheat Ridge, CO 80033
(303) 422-8957

FAX: (303) 422-9892

British Columbia

Weiss Company
4381 Fraser Street, \#202
Vancouver, British Columbia,
CN V5V 4G4
(604) 873-1112
FAX: (604) 873-1120

Manitoba

Weiss Company
P.O. Box 225, Station "L"
Winnepeg, Manitoba
CN R3H OZ5
(204) 772-3665
FAX: (204) 774-1814

Ontario

Weiss Company
7270 Torbram Road, \#5
Mississauga, Ontario
CN L4T 3Y7
(416) 673-0011
FAX: (416) 673-1270
Weiss Company
P.O. Box 1235, Station "H"
Nepean, Ontario
CN K2J 1 Z9
(613) 692-0617
FAX: (613) 692-4081

Quebec

Weiss Company
2044 St. Regis Blvd.
Dorval, Quebec
CN H9P 1H6
(514) 685-6644
FAX: (514) 685-6950

Canadian Distributors

Alberta	Quebec
Future Electronics, Inc. 3833-29th Street NE Calgary, Alberta CN T1Y 6B5 (403) 250-5550 FAX: (403) 291-7054	Future Electronics, Inc. 1000 Ave St. Jean Baptist, Suite 100 Quebec CN G2E 5G5 (418) 877-6666 FAX: (418) 877-6671
4606-97th Street Edmonton, Alberta CN T6E 5N9 (403) 438-2858 FAX: (403) 434-0812	237 Hymus Blvd. Polnte Claire, Quebec CN H9R 5P9 (514) 694-7710 FAX: (514) 694-3707
British Columbia Future Electronics, Inc. 1695 Boundary Road Vancouver, BC CN V5K 4X7 (604) 294-1166 FAX: (604) 294-1206	Marshall Industries, Inc. 148 Brunswick Blvd. Polnte Claire, Quebec CN H9R 5P9 (514) 694-8142 FAX: (514) 694-6989
Manitoba Future Electronics, Inc. 106 King Edward Winnipeg, Manitoba CN R3H ON8 (204) 786-7711 FAX: (204) 783-8133	
Ontario Future Electronics, Inc. 1050 Baxter Road Ottawa, Ontario CN K2C 3P2 (613) 820-8313 FAX: (613) 820-3271	
5935 Airport Road, Suite 200 Mississuaga, Ontario CN L4V 1W5 (416) 612-9200 FAX: (416) 612-9185	
Marshall Industries, Inc. 4 Paget Road, Units 10 \& 11 Building 1112 Brampton, Ontario CN L6T 5G3 (416) 458-8046 FAX: (416) 458-1613	

FAX: (416) 458-1613

United States Distributors

Alabama
Future Electronics, Inc.
237 Hymus Blvd.
Huntsville, AL 35805
(205)830-2322
Fax: (205)830-6664
Marshall Industries, Inc.
3313 Memorial Pkwy South
Huntsville, AL 35801
(205)881-9235
Fax: (205)881-1490

Arizona

Future Electronics, Inc.
4636 E. University Dr.
Suite 245
Phoenix, AZ 85034
(602)968-7140

Fax: (602)968-0334
Marshall Industries, Inc.
9830 S. 51st St.
Phoenix, AZ 85044
(602)496-0290

Fax: (602)893-9029

California

All American Semiconductor 2360 Qume Dr., Suite C
San Jose, CA 95131
(408)943-1200
(800)222-6001

Fax: (408)943-1393
All American Semiconductor
369 Van Ness Way
Suite 701
Torrance, CA 90501
(310)320-0240
(800)669-8300

Fax: (310)320-7207
All American Semiconductor
5060 Shoreham Place
Suite 200
San Diego, CA 92122
(619)458-5850

Fax: (619)458-5866

California (Cont.)
All American Semiconductor
17220 New Hope St.
Suite 211
Fountain Valley, CA 92708
(714)435-0115

Elmo Semiconductor Corp. 7590 N. Glen Oaks Blvd.
Burbank, CA 91504
(818)768-7400

Fax: (818)767-7038
Future Electronics, Inc. 2220 O'Toole Ave.
San Jose, CA 95131
(408)434-1122

Fax: (408)344-0822
Future Electronics, Inc. 9301 Oakdale Ave.
Suite 210
Chatsworth, CA 91311
(818)772-6240

Fax: (818)772-6247
Future Electronics, Inc.
16925 Browning Ave.
Irvine, CA 92714
(714)250-4141

Fax: (714)250-4185
Future Electronics, Inc.
3940 Ruffin Rd., Unit E
San Diego, CA 92123
(619)278-5020

Fax: (619)756-8546
Marshall Industries, Inc.
9320 Telstar Ave.
El Monte, CA 91731-3004
(1-800)522-0084
Fax: (818)307-6297
Marshall Industries, Inc.
26637 Agoura Rd.
Calabasas, CA 91302-1959
(818)880-7000

Fax: (818)880-6846
Marshall Industries, Inc.
One Morgan
Inine, CA 92718
(714)458-5301

Fax: (714)581-5255

California (Cont.)

Marshall Industries, Inc.
10105 Carroll Canyon Rd.
San Diego, CA 92131
(619)578-9600

Fax: (619)586-0469
Marshall Industries, Inc.
3039 Kilgore Ave., \#140
Rancho Cordova, CA 95670
(916)635-9700

Fax: (916)635-6044
Marshall Industries, Inc.
336 Los Coches St.
Milpitas, CA 95035
(408)942-4600

Fax: (408)262-1224
Zeus Components, Inc.
5236 Colodny Dr.
Agoura Hills, CA 91301
(818)889-3838

Fax: (818)889-2464
Zeus Components, Inc.
6276 San Ignacio Ave., Suite E
San Jose, CA 95119
(408)629-4789

Fax: (408)629-4792
Zeus Components, Inc.
22700 Savi Ranch Pkwy
Yorba Linda, CA 92686
(714)921-9000

Fax: (714)921-2715

Colorado

Future Electronics, Inc.
9030 Yukon St., Suite 2700
Broomfield, CO 80021
(303)421-0123

Fax: (303)421-7696
Integrated Electronics Corp.
5750 N. Logan St.
Denver, CO 80216
(303)292-6121

Fax: (303)297-2053
Marshall Industries, Inc.
12351 N. Grant
Thornton, CO 80241
(303)451-8383

Fax: (303)457-2899

United States Distributors

Connecticut
Future Electronics, Inc.
24 Stony Hill Rd.
Bethel, CT 06801
(203)743-9594
Fax: (203)798-9745
Marshall Industries, Inc.
20 Sterling Dr.
Barnes Indl. Park North
P.O. Box 200
Wallingford, CT 06492-0200
(203)265-3822
Fax (203)284-9285
Florida
All American Semiconductor
16251 NW 54th Ave.
Miami, FL 33014
(305)621-8282
(800)829-8282
Fax: (305)620-7831
All American Semiconductor
5009 Hiatus Rd.
Sunrise, FL 33351
(305)572-7999
(800)222-6001
Fax: (305)749-9229
Chip Supply
7725 N. Orange Blossom Trail
Orlando, FL 32810
(407)298-7100
Fax: (407)290-0164
Future Electronics, Inc.
650 Northlake Blvd.
Suite 520
Altamonte Springs, FL 32701
(407)767-8414
Fax: (407)767-0645
Future Electronics, Inc.
2200 Tall Pines Dr., Suite 108
Largo, FL 34641
(813)530-1222
Fax: (813)538-9598
Marshall Industries, Inc.
380 S. Northlake Blvd.
Suite 1024
Altamonte Springs, FL 32701
(407)767-8585
Fax: (305)767-8585

Florida (Cont.)

Marshall Industries, Inc. 2700 W. Cypress Creek Rd.
Suite D114
Ft. Lauderdale, FL 33309
(305)977-4880

Fax: (305)977-4887
Marshall Industries, Inc.
2840 Scherer Dr., Suite 410
St. Petersburg, FL 33716
(813)573-1399

Fax: (305)767-8676
Nu-Horizons
3421 NW 55th St.
Fort Lauderdale, FL 33309
(305)735-2555

Fax: (305)735-2880
Zeus Components, Inc.
285 Central Pkwy
Suite 1730
Altamonte Springs, FL 32714
(407)365-3000

Fax: (407)365-2356
Georgia
Future Electronics, Inc.
3000 Northwoods Pkwy
Suite 295
Norcross, GA 30071
(404)441-7676

Fax: (404)441-7580
Nu-Horizons
555 Oakbrook Pkwy
Suite 340
Norcross, GA 30093
(404)416-8666

Fax: (404)416-9060

Illinois

Advent Electronics Inc.
7110-16 N. Lyndon St.
Rosemont, IL 60018
(708)298-4210

Fax: (708)297-6650
Future Electronics, Inc.
1000 E. State Pkwy Unit B
Schaumburg, IL 60173
(708)882-1255

Fax: (708)490-9290

Illinois (Cont.)

Marshall Industries, Inc.
50 E. Commerce Dr., Unit 1
Schaumburg, IL 60173
(708)490-0155

Fax: (312)490-0569

Indiana

Advent Electronics Inc.
8446 Moller Rd.
Indianapolis, IN 46268
(317)872-4910

Fax: (317)872-9987
Marshall Industries, Inc.
6990 Corporate Dr.
Indianapolis, IN 46278
(317)297-0483

Fax: (317)297-2787

lowa

Advent Electronics Inc.
682-58th Ave. Court SW
Cedar Rapids, IA 52404
(319)363-0221

Fax: (319)363-4514

Kansas

Marshall Industries, Inc.
10413 W. 84th Terrace
Pine Ridge Business Park
Lenexa, KS 66214
(913)492-3121

Fax: (913)492-6205

Maryland

All American Semiconductor
14636 Rothgelo Dr.
Rockville, MD 20850
(301)251-1205
(800)426-0420

Fax: (301)251-8574
Future Electronics, Inc.
6760 Alexander Bell Dr.
Suite 160
Columbia, MD 21046
(301)290-0600

Fax: (301)290-0328

United States Distributors

Maryland (Cont.)

Marshall Industries, Inc. 2221 Broadbirch Dr.
Silver Spring, MD 20904
(301)622-1118

Fax: (301)622-0451
Nu-Horizons
8975 Guilford Rd., Suite 120
Columbia, MD 21046
(301)995-6330

Fax: (301)995-6332
Zeus Components, Inc.
8930-A Route 108
Columbia, MD 21045
(301)997-1118

Fax: (301)964-9784

Massachusetts

All American Semiconductor 107 Audubon Rd., Suite 104
Wakefield, MA 01880
(617)246-2300
(800)274-2834

Fax: (617)246-2305
Future Electronics, Inc.
41 E . Main St.
Bolton, MA 01740
(508)799-3000

Fax: (508)779-3050
Marshall Industries, Inc.
33 Upton Dr.
Wilmington, MA 01887
(508)658-0810

Fax: (617)658-7608
North Star Electronics
100 Research Dr.
Wilmington, MA 01887
(508)657-5155

Fax: (508)657-6559

Nu-Horizons

19 Corporate PI.
107 Audubon Rd., Bldg. 1
Wakefield, MA 01880
(617)246-4442

Fax: (617)246-4462

Massachusetts (Cont.)
Zeus Components, Inc.
11 Lakeside Office
PK-607 North Ave.
Wakefield, MA 01880
(617)863-8800
Fax: (617)863-8807
Michigan
Advent Electronics Inc.
24713 Crestview Court
Farmington, MI 48331
(313)477-1650
Fax: (313)477-2630
Future Electronics, Inc.
35200 Schoolcraft Rd.
Suite 106
Livonia, MI 48150
(313)261-5270
Fax: (313)261-8175
Marshall Industries, Inc.
31067 Schoolcraft
Livonia, MI 48150
(313)525-5850
Fax: (313)525-5855
Minnesota
All American Semiconductor
11409 Valley View Rd.
Eden Prairie, MN 55344
(612)944-2151
Fax: (612)944-9803
Future Electronics, Inc.
10025 Valley View Rd.
Suite 196
Eden Prairie, MN 55344
(612)944-2200
Fax: (612)944-2520
Marshall Industries, Inc.
3955 Annapolis Ln.
Plymouth, MN 55447
(612)559-2211
Fax: (612)559-8321

Minnesota

All American Semiconductor 11409 Valley View Rd. Eden Prairie, MN 55344 (612)944-215

Fax. (612)944-9803
Future Electronics, Inc.
10025 Valley View Rd.
Suite 196
Eden Prairie, MN 55344
(612)944-2200

Fax: (612)944-2520
Marshall Industries, Inc.
3955 Annapolis Ln.
Plymouth, MN 55447
(612)559-2211

Fax: (612)559-8321

Missouri
 Future Electronics, Inc. 12125 Woodcrest Exec Dr.
 Suite 220
 St. Louis, MO 63141
 (314)469-6805
 Fax: (314)469-7226
 Marshall Industries, Inc.
 3377 Hollenberg Dr. Bridgeton, MO 63044
 (314)291-4650
 Fax: (314)291-5391

New Jersey

Future Electronics, Inc.
1259 Route 46 East
Parsippany, NJ 07054
(201)299-0400

Fax: (201)299-1377
Future Electronics, Inc.
12 East Stowe Rd., Suite 200
Marlton, NJ 08053
(609)778-7600

Fax: (609)778-4621
Marshall Industries, Inc. 158 Gaither Dr.
Mt. Laurel, NJ 08054
(609)234-9100

Fax: (609)797-7031
Marshall Industries, Inc.
101 Fairfield Rd.
Fairfield, NJ 07006
(201)882-0320

Fax: (201)882-0095
Nu-Horizons
39 U.S. Route 46
Pine Brook, NJ 07058
(201)882-8300

Fax: (201)882-8398
Nu-Horizons
2002C Greentree
Executive Campus
Marlton, NJ 08053
(609)596-1833

Fax: (609)596-0612

United States Distributors

New York	New York (Cont.)	Ohio (Cont.)
All American Semiconductor	Zeus Components, Inc.	Zeus Components, Inc.
711-2 Koehler Ave.	100 Midland Ave.	2912 Springboro West
Ronkonkoma, NY 11779	Port Chester, NY 10573	Suite 106
(516)981-3935	(914)937-7400	Dayton, OH 45439
Fax: (516)981-3947	Fax: (914)937-2553	(513)293-6162
Future Electronics, Inc. 7453 Morgan Rd. Liverpool, NY 13090 (315)451-2371 Fax: (315)451-7258	Zeus Components, Inc. 2110 Smithtown Ave. Ronkonkoma, NY 11779 $(516) 737-4500$ Fax: (516)737-4520	Fax: (513)293-1781
		Oregon
		Future Electronics, Inc.
		15236 N.W. Greenbriar Pkwy.
Future Electronics, Inc.		Beaverton, OR 97006
333 Metro Park	North Carolina	(503)645-9454
Rochester, NY 14623 (716)272-1120	Future Electronics, Inc. Smith Tower, Suite 328	Marshall Industries, Inc.
Fax: (716)272-7182	P.O. Box 600	9705 S.W. Gemini Dr.
	Condord, NC 28026	Beaverton, OR 97005
801 Motor Pkwy	(704)455-9030	(503)646-8256
Hauppauge, NY 11788	Fax: (704)455-9173	Fax: (503)644-5050
(516)234-4000 Fax: (516)234-6183	Future Electronics, Inc 5225 Capital Blvd. 1 N. Comm. Ctr. Raleigh, NC 27604 (919)790-7111 Fax: (919)790-9022	Pennsylvania
Marshall Industries, Inc. 129 Brown St. Johnson City, NY 13790 (607)798-1611		Marshall Industries, Inc. 401 Parkway View Dr. Pittsburgh, PA 15205 (412)788-0441 Fax: (412)963-7982
Fax: (607)797-7031	Marshall Industries, Inc. 5224 Greens Dairy Rd.	
Marshall Industries, Inc. 1250 Scottsville Rd. Rochester, NY 14624 (716)235-7620 Fax: (716)235-0052	5224 Greens Dairy Rd. Raleigh, NC 27604 (919)878-8992 Fax: (919)872-2431	Texas
		All American Semiconductor
		1819 Firman Dr.
	Ohio	Richardson, TX 75081
Marshall Industries, Inc. 275 Oser Ave. Hauppauge, NY 11788 (516)273-2424	Future Electronics, Inc. 6601 Fland Haven Dr. Mayfield, OH 44124 (216)449-6996	$\begin{aligned} & (214) 231-5300 \\ & (800) 541-1435 \end{aligned}$
		Fax: (214)437-0353
		Future Electronics, Inc.
Nu-Horizons		1850 N. Greenville
6000 New Horizons Blvd.		Suite 146
Amityville, NY 11701 (516)226-6000	3250 Park Center Dr.	Richardson, TX 75081 (214)437-2437
Fax: (516)226-5886	Dayton, OH 45414 (513)989-4480	Fax: (214)669-2347
Nu-Horizons 333 Metro Park Rochester, NY 14623 (716)292-0777 Fax: (716)292-0750	Fax: (513)236-0780	Future Electronics, Inc.
		11271 Richmond Ave.
	30700 Bainbridge Rd., Unit A	Suite 106 Houston, TX 77082
	Solon, OH 44139	(713)556-8696
	(216)248-1178	Fax: (713)589-7069

United States Distributors

Texas (Cont.)

Marshall Industries, Inc.
2045 Chenault St.
Carrollton, TX 75006
(214)233-5200

Fax: (214)770-0675
Marshall Industries, Inc.
10681 Haddington St. \#160
Houston, TX 77043
(713)467-1666

Fax: (713)467-9805
Marshall Industries, Inc.
8504 Cross Park Dr.
Austin, TX 78754
(512)837-1991

Fax: (512)832-9810
Zeus Components, Inc.
1800 N. Greenville
Suite 120
Richardson, TX 75081
(214)783-7010

Fax: (214)234-4385

Utah

Future Electronics, Inc.
2250 S. Redwood Rd.
Salt Lake City, UT 84119
(801)972-8489

Fax: (801)972-3602
Integrated Electronics Corp.
2117 South 3600 West
Salt Lake City, UT 84119
(801)977-9750

Fax: (801)975-1207
Marshall Industries, Inc. 2355 S. 1070 W. Suite D
Salt Lake City, UT 84115
(801)973-2288

Fax: (801)973-2296

Washington

Future Electronics, Inc.
4038-148th Ave., NE
Redmond, WA 98052
(206)881-8199

Fax: (206)881-5232

Washington (Cont.)

Marshall Industries, Inc.
11715 N. Creek Pkwy. South
Suite 112
Bothell, WA 98011
(206)486-5747

Fax: (206)486-6964

Wisconsin

Future Electronics, Inc.
20875 Crossroads Circle
Suite 200
Waukesha, WI 53186
(414)786-1884

Fax: (414)786-0744
Marshall Industries
Crossroads Corporate Center 1
20900 Swenson Dr.
Suite 150
Waukesha, WI 53186
(414)797-8400

Fax: (414)797-8270

International Representatives and Distributors

Argentina
Tinko SA
Adolfo Aisina 1777
1088 Buenos Aires
Argentina
(011)45-6563
Fax: (011)49 6501/6726
Noise S.A.
V. Cevallos 239
1077 Buenos Aires
Argentina
(011)541-46776
Fax: (011)541-3258498/99

Australia
R\&D Electronics
4 Florence Street
P.O. Box 206
Burwood, Victoria
Australia 3125
(011)61-3-808-8911
Fax: (011)61-3-808-9168

Austria

Ing. E. Steiner
Hummelgasse 14
A-1130 Wien
(011)43 $222827474-0$

Fax: (011)43 2228285617

Belgium

Velleman NV Components
Industrieterrein 27
B-9740 Gavere
(011)32 91846714

Fax: (011) 3291846703

Brazil

Hitech Commercial Indl. Ltd.
(Division of Cosele)
Av, Eng. Luiz Carlos Berrini
801-Conjunto 111/121
Brooklin
(011)55 5359566

Denmark	Italy
Prescom A/S	Velco SRL
Herlev Hovedgade 201B	Contra S. Francesco 75
DK-2730 Herlev	1-361000 Vicenza
(011)45 44532244	(011)39 444922922
Fax: (011)45 44532044	Fax: (011)39 444922338
Finland	Japan
OY Fintronic AB	Tomen Electonics Corp.
Heikkillantie 2A	1-1, Uchisaiwai-Cho 2-Chome
SF-02100 Helsinki	Chiyoda-Ku, Tokyo 100 Japan
(011)0 3586926022	(011)81 3 506-3477
Fax: (011)0 3586821251	Fax: (011)81 3 506-3497
Mespek OY	U.S.A. Branch
Soidintic 14	1333 Lawrence Expressway
SF-00700 Helsinki	Suite 266
(011)0 3583511800	Santa Clara, CA 95051
Fax: (011)03583453384	(408)248-2520
	Fax: (408)248-2960
France	Tomen Electronics Corp.
Tekelec Airtronic SA	Kawaramachi 2-64,
Cite des Bruyeres	Higashi-ku
Rue Carle Vernet	Osaka 541, Japan
F-92310 Sevres	(011)81 6 208-3636
(011)145 347535	Fax: (011)81 6 208-3640
Fax: (011)145072191	Hirel Company, Ltd.
Scientech-Rea	K S Bldg 2 F
79-81, Rue Pierre Semard	2-4-1 Sadohara-cho, Ichigaya
F-92320 Chatillon-Sous-Bagneux (011)149 652750	Shinjuku-ku, Tokyo 162 (011)3 2608401
Fax: (011)149 652769	Fax: (011)3 260-8412
Hong Kong	Korea
Component Agent Ltd.	Vine Overseas Trading Corp.
36/F Metroplaza, Tower 1	Rm 305/306
Hing Fong Road	Korea Electric Assoc. Bldg.
Kwai Chung	11-4, Supyo-Dong, Jung-Ku
(011)852-487 8826	Seoul
Fax: (011)852 4871268	Korea $\text { (011)82 } 22661663$
India	Fax: (011)82 22727807
Zenith Technologies A-3, Annexa, A-Z Indl. Est. G.K. Marg, Lower Parcel Bombay 400013, India (011)91-22-494-7457	

International Representatives and Distributors

Malaysia

NIE Electronics (M) Sdn Bhd 1004/1005, Resource
Complex 33
Jalan Segambut Atas
51200 Kuala Lumpur
Malaysia
(011)60-3-621-2122

Fax: (011)60-3-621-1789

New Zealand

R\&D Electronics
4 Florence Street
P.O. Box 206

Burwood, Victoria
Australia 3125
(011)61-3-808-8911

Fax: (011)61-3-808-9168

North Germany

Adelco Elektronik GmbH
Boxholmstrasse 5
2085 Quickborn bei Hamburg

Germany

(011)49 41062024

Fax: (01149 41063852
Weisbauer Elektronik GmbH
Heiliger Weg 1
4600 Dortmund 1
(011)49 231579547

Fax: (011)49 231577514

Norway

Hefro Elektronikk a.s.
Haavard Martinsens vei 19
N -0915 Oslo 9
(011)2 107300
(011)2 106546

Portugal

Componenta

Components Electronicos, Lda
Rua Luis Camoes, 128
P-1399 Lisboa
(011)351 136212 83/84

Singapore

NIE Electronics (S) PTE Ltd.
Block 5022 \#03-41
Ang Mo Kio
Industrial Park 2
Singapore 2056
(011)483-3133

Fax: (011)483-4288

South Africa

Agatronics Comp. (PTY) Ltd.
P.O. Box 1518

RSA 2125 Randburg
(011)27 789 1065/75

Fax: (01127 7870319
Communica (PTY) Ltd.
364 Pretorius St.
RSA 0001 Pretoria
(011)12-3227613/21

Fax: (011)12-3223721

South Germany

Semitron W. Rock GmbH
Im Gut 1
7897 Kussaberg 6
(011)49 774280010

Fax: (011)49 77426901
Neumuller GmbH
Eschenstrassee 2
8028 Taufkirchen/Munchen
(011)49 89612080

Fax: (011)49 8961208248
CED Ditronic GmbH
Julius-Holder-Strasse 42
7000 Stuttgart 70
(011)49 711720010

Fax: (011)497117289780

Spain

Amitron SA
Avda. de Valladolid, 47D
E-28008 Madrid
(011)3415420906

Fax: (01134 12487958

Sweden

Bexab Technology AB
Kemistvagen 10
S-18325 Taby
(011)46 87328980

Fax: (011)46 87327058

Switzerland

Ena AG

$\mathrm{CH}-8917$ Oberlunkhofen
(011)4157342834

Fax: (011)4157341443
Omni Ray AG
Industriestrasse 31
CH-8305 Dietlikon
(011)4118352111

Fax: (011)41 18335081

Taiwan

Timkuo Taiwan Ltd.
8F-2, 157 Fu Hsing South Rd.
Sec. 2 Taipei
Taiwan
(011)886-2-514 9000

Fax: (011)886-2-709 2247
Helm Engineering \& Trading 4F-76, Tua Hua South Road Sec. 2 Taipei
Taiwan
(011)886-2-709 1888

Fax: (011)886-2-706 0465

Turkey

Empa
Elektronik Mamulleri
Pazarlama A.S.
Florya Is Merkezi
Londra Asfalti, 5 Yol
TR-34630 Sefakoy-Istanbul
(011)90 15806767

Fax: (011)90 15985353

United Kingdom

Future Electronics Ltd.
Petersfeld Avenue
Slough, Berks SL2 5EA
(011)4475321193

Fax: (011)44 75377661
Hunter Electronic Components
Unit 3 Central Estate
Denmark St.
Maidenhead, Berks, SL67BN
(011)44 62875911

Fax: (011)44 62875611
Phoenix Electronics
Phoenix House
Bothwell Road
Castlehill
Carluke
Strathclyde ML8 5UF
Scotland
(011)44 55551566

Fax: (011)44 55551562
Trident Microsystems Ltd.
55, Ormside Way
Holmethorpe Indl. Estate
Redhill, Surrey RH1 2LS
(011)44 737765900

Fax: (011)44 737771908

CD Juarez

Dicopel, S.A. DE C.V.
Francisco Pimentel 98
Col. San Rafael
06470 Mexico, D.F.
(011)525 7030742

Fax: (011) 5257031772
Presa Tintero 3013
Col. Lomas Del Santuario
31280 Chihuahua, Chih
(011)52 14 11-27-07

Fax: (011)52 14 11-27-67

Guadalajara

Av. Federalismo 268, 20 Piso
Sector Juarex
44100 Guadalajara, Jal
(011)52 36 26-12-32

Fax: (011)52 36 26-39-66

Merida

Av. Aviacion 602-A (Al Lado De La Dina) 97000 Merida, YUC (011)52 14 11-27-07 Fax: (011)52 99 28-05-74

Monterey

Eugenio Garza Sada 3367-DESP. 207
Col. Altavista
64810 Monterrey, N.L.
(011)52 83 59-63-70

Fax: (011)52 83 59-63-70

Tijuana

Alejandro Humbolt 17502-105
Fraco, Garita De Otay
22300 Tijuana, B.C.
(011)52 66 23-78-93

Fax: (011)52 66 23-78-94

[^0]: ${ }^{*} V_{\mathrm{FS}}=2 \mathrm{~V}_{\mathrm{REF}}$

[^1]: *Connect both pins 2 and 16 of LCD to TC820 BP3 output.

[^2]: NOTE: 1. Switching times guaranteed by design.

[^3]: Static-sensitive device. Unused devices must be stored in conductive

[^4]: NOTES: 1. Limits printed in boldface type are guaranteed and 100\% production tested. Limits in normal font are guaranteed but not 100% production tested.
 2. Current limiting is set by user via extemal resistors.

[^5]: 2. Power dissipations listed do not include power dissipation due to switching.
[^6]: *Rp can be the internal 400Ω resistor or an external user-defined/ supplied resistor.

[^7]: switches shown with $A n=0$

[^8]: Power Dissipation
 CerDIP 675 mW
 Derate $9.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ Above $+70^{\circ} \mathrm{C}$
 Plastic DIP 375 mW
 Derate $7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ Above $+70^{\circ} \mathrm{C}$
 Small Outline (SO)
 375 mW
 Derate $7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ Above $+70^{\circ} \mathrm{C}$
 Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

[^9]: Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

[^10]: * The similarity between our internal specification numbers and MIL-STD-883 test methed numbers (e.g. TC2010 for internal visual) is intentional and was meant as an aid to understanding our new flow. The procedures, despite the similarity in numbers, are not intended to be identical to or in conformance with the test methods contained in MIL-STD-883.

