MEMORY
 DATA BOOK

Homson

COMPONENTS
Page
GENERAL INFORMATION
ContentsAlphanumerical indexSales Offices, Representatives, and Distributor Locations
CHAPTER 1 - STATIC RAMs
Static RAMs selection guide 1-1
ZEROPOWER AND TIMEKEEPER RAMs
MK48T02/03/12/13 2K x 8 ZEROPOWER/TIMEKEEPER RAM 1-5
MK48Z02/03/12/13 2K x 8 ZEROPOWER RAM 1-23
MK48Z08/18 • MK48Z09/19 8K x 8 ZEROPOWER RAM 1-35
BATTERY BACK-UP RAM
MK48C02 - MK48C02L 2K x 8 Battery back-up RAM $1-49$
BiPORT DEVICES
MK4501 512×9 CMOS BiPORT FIFO 1-57
MK4503 2048×9 CMOS BiPORT FIFO 1-71
MK4505M • MK4505S CMOS Very high speed clocked FIFO 1-87
MK4511 512×9 CMOS BiPORT RAM 1-105
STATIC RAMs
MK4801A-55/70/90 1K x 8-bit static RAM 1-117
MK4801A-1/2/3/4 1K x 8-bit static RAM 1-123
ET2147H • ETL2147H 4096×1 static RAMs 1-129
VERY FAST STATIC RAMs
MK41H66 • MK41H67 16K x 1 CMOS static RAM 1-135
MK41L66 • MK41L67 16K x 1 CMOS static RAM ($3.3 \mathrm{~V}_{\mathrm{CC}}$) 1-149
MK41H68 - MK41H69 4K x 4 CMOS static RAM 1-163
MK41L68 • MK41L69 4K x 4 CMOS static RAM ($3.3 \mathrm{~V}_{\mathrm{CC}}$) 1-177
MK41H78 - MK41H79 4K x 4 CMOS static RAM 1-191
MK41L78 • MK41L79 4K x 4 CMOS static RAM ($3.3 \mathrm{~V}_{\mathrm{CC}}$) 1-205
MK41H87 64K x 1 CMOS static RAM 1-219
MK41H80 $4 \mathrm{~K} \times 4$ CMOS TAGRAM 1-229
CHAPTER 2 - PROGRAMMABLE ROMs
Programmable ROMs selection guide 2-1
NMOS EPROM
ET2716 16,384-bit (2048 x 8) UV Erasable PROM 2-3
CMOS EPROMs
ETC2716 16,384-bit (2048 x 8) UV Erasable PROM 2-9
ETC2732 32,768-bit (4096×8) UV Erasable PROM 2-15
TS27C64 65,536-bit (8192 x 8) UV Erasable PROM 2-23
TS27C256 262,144-bit ($38,768 \times 8$) UV Erasable PROM 2-31
TS27C1001 131,072 x 8-bit UV or One Time EPROM 2-39
TS27C1024 65,536 x 16-bit UV or One Time EPROM 2-41

CONTENTS

Page
CMOS EEPROMs
TS59C11 1K-bit serial EEPROM 2-43
TS93C46 1K-bit serial EEPROM 2-45
TS28C16A 16,384-bit (2K x 8) Electrically Erasable PROM 2-47
TS28C17A 16,384-bit ($2 \mathrm{~K} \times 8$) Electrically Erasable PROM 2-49
TS28C64 65,536-bit (8K x 8) Electrically Erasable PROM 2-51
OTP ROMs
TS27C64P 65,536-bit (8192 x 8) One Time Programmable-ROM 2-53
TS27C256P 262,144-bit ($32,768 \times 8$) One Time Programmable-ROM 2-61
CHAPTER 3 - BIPOLAR PROMs
Bipolar PROMs selection guide 3-1
TS71180 - TS71181 8K fast PROMs 3-3
TS71280 • TS71281 8K fast PROMs 3-3
TS71190 • TS71191 16K fast PROMs 3-9
TS71290 • TS71291 16K fast PROMs 3-9
TS71321 32K fast PROMs 3-15
TS71640 • TS71641 64K fast PROMs 3-21

Part number	Page	Part number	Page	Part number	Page
ET2147H	$1-129$	MK4505M	$1-87$	TS27C256	$2-31$
ET2716	$2-3$	MK4505S	$1-87$	TS27C256P	$2-61$
ETC2716	$2-9$	MK4511	$1-105$	TS27C1001	$2-39$
ETC2732	$2-15$	MK4801A-1/2/3/4	$1-123$	TS27C1024	$2-41$
ETL2147H	$1-129$	MK4801A-55/70/90	$1-117$	TS28C16A	$2-47$
MK41H66	$1-135$	MK48C02	$1-49$	TS28C17A	$2-49$
MK41H67	$1-135$	MK48T02	$1-5$	TS28C64	$2-51$
MK41L66	$1-149$	MK48T03	$1-5$	TS59C11	$2-43$
MK41L67	$1-149$	MK48T12	$1-5$	TS71180	$3-3$
MK41H68	$1-163$	MK48T13	$1-5$	TS71181	$3-3$
MK41H69	$1-163$	MK48Z02	$1-23$	TS71190	$3-9$
MK41L68	$1-177$	MK48Z03	$1-23$	TS71191	$3-9$
MK41L69	$1-177$	MK48Z08	$1-35$	TS71280	$3-3$
MK41H78	$1-191$	MK48Z09	$1-35$	TS71281	$3-3$
MK41H79	$1-191$	MK48Z12	$1-23$	TS71290	$3-9$
MK41L78	$1-205$	MK48Z13	$1-23$	TS71291	$3-9$
MK41L79	$1-205$	MK48Z18	$1-35$	TS71321	$3-15$
MK41H80	$1-229$	MK48Z19	$1-35$	TS71640	$3-21$
MK41H87	$1-219$	TS27C64	$2-23$	TS71641	$3-21$
MK4501	$1-57$	TS27C64P	$2-53$	TS93C46	$2-45$
MK4503	$1-71$				

THOMSON - MOSTEK
 TECHNICAL SUPPORT, PRODUCT MARKETING

FOR INTEGRATED CIRCUITS:
(Corporate Headquarters)
1310 Electronics
Carrollton, TX 75006
214/466-6000
TWX 910-860-5437

FOR DISCRETE DEVICES AND RF \& MICROWAVE TRANSISTORS: 16 Commerce Drive
Montgomeryville, PA 18936-1002
215/362-8500
FAX 215/362-1293

OR PASSIVE COMPONENTS
6203 Variel Avenue, Unit A P.O. Box 4051

Woodland Hills, CA 91367
818/887-1010
FAX 818/702-0725

FOR SPECIAL PRODUCTS
301 Route 17 North
Rutherford, NJ 07070
201/438-2300
FAX 201/438-1774

U.S. AND CANADIAN SALES OFFICES:

WESTERN AREA:
Thomson Components - Mostek Corporation 2540 Mission College Blvd.
Suite 104
Santa Clara, CA 95054
408/970-8585
FAX 408-970-8737
Thomson Components - Mostek Corporation
18004 Skypark Circle
Suite 140
Irvine, CA 92714
714/250-0455
FAX 714/261-1505
Thomson Components - Mostek Corporation 6203 Variel Ave.
Unit A, P.O. Box 4051
Woodland Hills, CA 91367
818/887-1010
FAX 818/702-0725
Thomson Components - Mostek Corporation 1107 North East 45th St.
Suite 411
Seattle, WA 98105
206/632-0245
FAX 206/633-5413
Thomson Components - Mostek Corporation
601 South Bowen St.
Longmont, CO 80501
303/449-9000
FAX 303/651-7976
Thomson Components - Mostek Corporation 7950 East Redfield Rd.
Suite 160
Scottsdale, AZ 85260
602/998-1580
FAX 602/483-2303
Thomson Components - Mostek Corporation
7155 SW Varns St.
Tigard, OR 97223-8057
503/620-5517
FAX 503/639-3591

FOR ALL OTHER COUNTRIES
Thomson Semiconducteurs
43, Avenue de L'Europe
78140 Vélizy-Villacoublay/France
Tél: (1) 394697 19/Télex: 204780 F
or contact Corporate Headquarters

CENTRAL AREA:

Thomson Components - Mostek Corporation 1310 Electronics
MS1137
Carrollton, TX 75006
214/466-8844
TWX 910-860-5437
Thomson Components - Mostek Corporation
6100 Green Valley Drive
Suite 130
Bloomington, MN 55438
612/831-2322
FAX 612/831-8195
Thomson Components - Mostek Corporation 1827 Walden Office Square
\#430
Schaumburg, IL 60173
312/397-6550
FAX 312/397-4066
Thomson Components - Mostek Corporation 3215 Steck Ave.
Suite 202
Austin, TX 78758
512/451-4061
TWX 910-874-2007
Thomson Components - Mostek Corporation
26677 W. 12 Mile Rd.
Suite \#141
Southfield, MI 48034
313/354-5840
FAX 313/354-3370

CANADA

Thomson CSF Canada
Semiconductor Division
1000 Sherbrooke West
Suite 2340
Montreal, Quebec H3A 3G4
514/288-4148
FAX 514/288-8987
Thomson Components - Mostek Corporation 44 Rosebud Ave.
Brampton, Ontario L6X 2W5
416/454-5252
FAX 416/454-4328

EASTERN AREA:

Thomson Components - Mostek Corporation 83 Cambridge Street
Suite 2A
Burlington, MA 01803
617/273-3310
FAX 617/272-2467
Thomson Components - Mostek Corporation
The Pavilions at Greentree
Route \#73, Suite 101
Marlton, NJ 08053
609/596-9200
FAX 609/424-7437
Thomson Components - Mostek Corporation 4414 Evangel Cr. \#C
Huntsville, AL 35816
205/830-9036
FAX 205/830-9038
Thomson Components - Mostek Corporation
387 Hooker Avenue
Office No. 2
Poughkeepsie, NY 12603
914/454-8813
FAX 914/454-1320
Thomson Components - Mostek Corporation 5890 Sawmill Rd.
Suite 204
Dublin, Ohio 43017
614/761-0676
FAX 614/761-2305
Thomson Components - Mostek Corporation
3200 Northline Avenue
Forum VI, Suite 501
Greensboro, NC 27408
919/292-8396
Thomson Components - Mostek Corporation 6045 Atlantic Blvd.
Suite 104
Norcross, GA 30071
404/662-1588
FAX 404/662-1561

U.S. AND CANADIAN REPRESENTATIVES

CONNECTICUT
Scientific Components*
1185 S. Main St.
Cheshire, CT 06410
(203) 272-2963

FAX (203) 271-3048

FLORIDA

Sales Engineering Concepts, Inc. 926 Great Pond Dr.
Suite 2002
Altamonte Springs, FL 32714
(305) 682-4800

FAX (305) 682-6491
Sales Engineering Concepts, Inc.* 1000 S. Federal Hwy.
Suite 204
Deerfield Beach, FL 33441
(305) 426-4601

TWX 510-600-7740

ILLINOIS

John G. Twist Co.*
1301 Higgins Road
Elk Grove Village, IL 60007
(312) 593-0200

TWX 510-601-0552

INDIANA

M/S Sales Associates, Inc.*
7319 W. Jefferson Blvd.
Ft. Wayne, IN 46804
(219) 436-3023

FAX (219) 436-3026

M/S Sales Associates, Inc 1425 E. 86th St Indianapolis, IN 46240 (317) 257-8916

KANSAS
Rush \& West Associates
107 N. Chester Street
Olathe, KS 6606
(913) 764-2700

TWX 910-380-8110

MARYLAND

Tri-Mark Inc.:
1410 Crain Hwy. NW
Glen Burnie, MD 21061
(301) 761-6000

FAX (301) 761-6006
MASSACHUSETTS
AID Nova Sales, Inc.:
2 Milita Drive
Lexington, MA 02173
(617) 861-1820

MICHIGAN

Electronic Sources, Inc.
8014 W. Grand River
Suite 6
Brighton, MI 48116
(313) 227-3598

FAX (313) 227-5655

MINNESOTA

Horizon
8053 East Bloomington Freeway
Bloomington, MN 55420
(612) 884-6515

FAX (612) 888-3073
MISSOURI
Rush \& West Associates
2170 Mason Rd.
St. Louis, MO 63131
(314) 965-3322

TWX 910-752-653
TELEX 752653
NEW JERSEY
Tritek Sales, Inc.*
21 E. Euclid Ave.
Haddonfield, NJ 08033
(609) 429-1551

TWX 215-627-0149 (Philadelphia Line) TWX 710-896-0881

NE Components
189-191 Godwin Ave.
Wyckoff, NJ 07481
(201) 848-1100

NEW YORK

Empire Technical Assoc.* 33 West State St.
Suite 211B
Binghamton, NY 13901
(607) 772-0651

GT Sales*
34 Grand Blvd.
Brentwood, NY 11717
(516) 231-0270

OHIO
Five Star Electronics* 6200 S.O.M. Center Road
Suite B 21
Solon, OH 44139
(216) 349-1611

WISCONSIN

Heartland Technical Marketing
3846 Wisconsin Ave.
Milwaukee, WI 53208
(414) 931-0606

CANADA

Solution Electronic Sales 100A 3380 Maquinna Dr. Vancouver, B.C. V5S 4C9 (604) 438-0679

[^0]
U.S. AND CANADIAN DISTRIBUTORS

ALABAMA
Marshall Industries
3313 S. Memorial Pkwy.
Huntsville, AL 35801
(205) 881-9235

Quality Components, S.E. 4900 University Square \#207 Huntsville, AL 35817
(205) 830-1881

Pioneer Technologies Group 4825 University Square
Huntsville, AL 35805
(205) 837-9300

Schweber Electronics 4930-A Corporate Drive Huntsville, AL 35805
(205) 895-0480

ARIZONA

Kierulff Electronics
4134 E. Wood Street
Phoenix, AZ 85040
(602) 437-0750

Marshall Industries
835 West 22nd St.
Tempe, AZ 85282
(602) 968-6181

Schweber Electronics 11049 North 23rd Drive
Suite 100
Phoenix, AZ 85029
(602) 997-4874

ARKANSAS

See Okiahoma

CALIFORNIA

Integrated Electronics Corp.
7000 Franklin Blvd., Suite 625
Sacramento, CA 95823
(916) 424-5297

Integrated Electronics Corp.
2170 Paragon Drive
San Jose, CA 95131
(408) 435-1000

ITAL Sales
15405 Proctor Avenue
Clity of Industry, CA 91745
(818) 968-8515

Kierulff Electronics
9800 Variel Avenue
Chatsworth, CA 91311
(818) 407-2500

Kierulff Electronics
5650 Jillson St
Los Angeles, CA 90040
(213) 725-0325

Kierulff Electronics
8797 Balboa Avenue
San Diego, CA 92123
(619) 278-2112

Kierulff Electronics 1180 Murphy Avenue
San Jose, CA 95131
(408) 971-2600

Kierulff Electronics
14101 Franklin Avenue
Tustin, CA 92680
(714) $731-5711$

Marshall Industries
One Morgan
Irvine, CA 92715
(714) 458-5395

Marshall Industries 9710 DeSoto Avenue Chatsworth, CA 91311 (818) 407-0101

Marshall Industries
3039 Kilgore Ave., \#140
Rancho Cordova, CA 95670
(916) 635-9700

Marshall Industries 10105 Carroll Canyon Rd.
San Diego, CA 92131
(619) 578-9600

Marshall Industries
336 Los Coches St.
Milpitas, CA 95035
(408) $943-4600$

Schweber Electronics
21139 Victory Blvd.
Conoga Park, CA 91303
(818) 999-4702

Schweber Electronics
1225 West 190th Street
Suite 360
Gardena, CA 90248
(213) 327-8409

Schweber Electronics
17822 Gillette Avenue
Irvine, CA 92714
(714) 863-0264

FAX (714) 863-0200 (X500)
Schweber Electronics 1771 Tribute Rd. Suite B
Sacramento, CA 95815
(916) 929-9732

FAX (916) 929-5608
Schweber Electronics
6750 Nancy Ridge Drive
San Dlego, CA 92121
(619) 450-0454

TWX 910-335-1155
Schweber Electronics
90 E. Tasman Drive San Jose, CA 95131 (408) 946-7171

Zeus Components
1130 Hawk Circle
Anaheim, CA 92807
(714) $632 \cdot 6880$

TWX 910-591-1696
FAX (714) 630-8770
Zeus Components
1580 Old Oakland Road
Suite C205/C206
San Jose, CA 95131
(408) 998.5121

TWX 408-628-96083
FAX (408) 998-0285

COLORADO
Integrated Electronics Corp.
5750 N. Logan Street
Denver, CO 80216
(303) 292-6121

Kierulff Electronics
7060 South Tuscon Way
Englewood, CO 80112
(303) 790-4444

Marshall Industries
7000 North Broadway
Denver, CO 80221
(303) 427-1818

Schweber Electronics
8955 E. Nicholas, Bldg. 2
Englewood, CO 80221
(303) $799-0258$

CONNECTICUT
Greene-Shaw
1475 Whalley Avenue
New Haven, CT 06525
(203) 397.0710

TWX 92-2498
Marshall Industries
20 Sterling Drive
Barnes industrial Park, N
P.O. Box 200

Wailingford, CT 06492-0200
(203) 265-3822

Pioneer-Standard
112 Main Street
Norwalk, CT 06851
(203) 853-1515

TWX 710-468-3373
FAX (203) 838-9901
Schweber Electronics
Commercial Industrial Park
Finance Drive
Danbury, CT 06810
(203) $748-7080$

TWX 710-456-9405
DELAWARE
See New Jersey
Pennsylvanla

FLORIDA

All American Semiconductor
16251 N.W. 54th Avenue
Miaml, FL 33014
(305) 621-8282

800-327-6237
Marshall Industries
4205 34th St., S.W.
Orlando, FL 32811
(305) $841-1878$
(305) $841-1878$

Pioneer Technologies Group
337 S. North Lake, \#1000
Altamonte Springs, FL 32701
(305) $834-9090$

TWX 810-853-0284
Pioneer Technologles Group
674 S. Military Trail
Deerfield Beach, FL 33441
(305) $428-8877$

TWX 510-955-9653

Schweber Electronics
215 North Lake Blvd.
Altamonte Springs, FL 32701
(305) 331-7555

TWX 510-954-0304
Schweber Electronics
3665 Park Central Blvd. N.
Pompano Beach, FL 33064
(305) 977.7511

TWX 510-954-0304
Zeus Components
1750 West Broadway
Suite 114
Oviedo, FL 32765
(305) 365-3000

TWX 910-380-7430
FAX (305) 365-2356

GEORGIA

Dixie Electronics
1234 Gordon Park Road
Augusta, GA 30901
(404) 722-2055

Pioneer Technologies Group
3100 F. Northwoods Place
Norcross, GA 30071
(404) $448-1711$

TWX 810-766-4515
Quality Components
6145 N. Belt Parkway \#B
Norcross, GA 30071
(404) 449-9508

TWX 510-601-5297
629-32421
Schweber Electronics
303 Research Drive
Suite 210
Norcross, GA 30092
(404) 449-9170

TWX 810-766-1592
ILLINOIS
Advent Electronics
7110-16 N. Lyndon St.
Rosemont, IL 60018
(312) $297-6200$

Kierulff Electronics
1140 W. Thorndale Ave.
ItasCa, IL 60143
(31:') $250-0500$
Marshall Industries
1261 Wiley Road
\#F
Schaumburg, IL 60195
(312) 490-0155

Ploneer-Standard
1551 Carmen Drive
Elk Grove Village, IL 60007
(312) 437-9680

Schweber Electronics
904 Cambridge Drive
Elk Grove Village, IL 60007
(312) $364-3750$

TWX 910-222-3453

U.S. AND CANADIAN DISTRIBUTORS

INDIANA
Advent Electronics
8446 Moller Road
Indianapolis, IN 46268
(317) 872-4910

TWX 810-341-3228
Marshall Industries
6990 Corporate Dr.
Indianapolis, IN 46278
(317) 297-0483

Pioneer-Standard
6408 Castleplace Drive
Indianapolis, IN 46250
(317) 849-7300

TWX 810-260-1794
IOWA
Advent Electronics
682 58th Avenue, Ct. SW
Cedar Rapids, IA 52404
(319) 363-0221

TWX 910-525-1337
Schweber Electronics
5270 North Park Place, NE
Cedar Rapids, IA 52402
(319) $373 \cdot 1417$

KANSAS

Marshall Industries
8321 Melrose Dr.
Lenexa, KS 66214
(913) 492-3121

Schweber Electronics 10300 West 103rd Street
Suite 200
Overland Park, KS 66214
(913) 492-2922

KENTUCKY

See Indiana

LOUISIANA

See Texas

MAINE

See Massachusetts

MARYLAND

Marshall Industries
8445 Helgerman Court
Gaithersburg, MD 20877
(301) $840-9450$

Pioneer Technologies Group 9100 Gaither Road Gaithersburg, MD 20877
(301) 921-0660

TWX 710-828-0545
Schweber Electronics
9330 Gaither Road
Gaithersburg, MD 20877
(301) $840 \cdot 5900$

TWX 710-828-9749
Zeus Components
8930-A Route 108
Columbia, MD 21045
(301) 997-1118

TWX 910-380-3554
FAX (301) 964-9784

MASSACHUSETTS

Greene-Shaw
70 Bridge Street
Newton, MA 02195
(617) 969-8900

TWX 922498

Kierulff Electronics
13 Fortune Drive Billerica, MA 01821 (617) 667-8331

Lionex Corporation 36 Jonspin Road Wilmington, MA 01887
(617) 657-5170

FAX (617) 657-6008
Marshall Industries
One Wilshire Road
Burlington, MA 01803
(617) 272-8200

Schweber Electronics
25 Wiggins Avenue
Bedford, MA 01730
(617) 275-5100

TWX 710-326-0268
Zeus Components
429 Marrett Road
Lexington, MA 02173
(617) $863-8800$

TWX 710-326-7604
FAX (617) 863-8807

MICHIGAN

Advent Electronics
24713 Crestview Ct
Farmington Hills, MI 48018 (313) 477-1650

Pioneer-Standard
4505 Broadmoor Avenue SE
Grand Rapids, MI 49508
(616) 698-1800

TWX 510-600-8456
Pioneer-Standard
13485 Stamford
Livonia, M1 48150
(313) 525-1800

TWX 810-242-3271
Schweber Electronics
12060 Hubbard Ave. CN3306
Livonia, MI 48150
(313) 525-8100

TWX 810-242-2983

minnesota

Kierulff Electronics
7667 Cahill Road
Edina, MN 55435
(612) 941-7500

Marshall Industries
3800 Annapolis Lane
Plymouth, MN 55441 (612) 559-2211

Pioneer Standard
10203 Bren Road East
Minnetonka, MN 55343
(612) 935-5444

TWX 910-576-2738
Schweber Electronics
7424 W. 78th Street
Edina, MN 55435
(612) 941-5280

TWX 910-576-3167
MISSISSIPPI
See Texas

MISSOURI
Kierulff Electronics
11804 Borman Drive
St. Louis, MO 63146
(314) 997-4956

TWX 910-762-0721
Schweber Electronics
502 Earth City Expressway
Suite 203
Earth City, MO 63045
(314) 739-0526

TWX 43-4065
MONTANA
See California
NEBRASKA
See lowa
NEW HAMPSHIRE
Schweber Electronics
Bedford Farms Bldg. \#2
Manchester, NH 03102
(603) 625-2250

TWX 710-220-7572
FAX (603) 625-5710
NEW JERSEY
Kierulff Electronics
37 Kulick Road
Fairfield, NJ 07006
(201) 575-6750

Marshall Industries
101 Fairfield Rd.
Fairfield, NJ 07006
(201) 882-0320

Pioneer-Standard
45 Route 46
Pine Brook, NJ 07058
(201) 575-3510

TWX 710-734-4382
Schweber Electronics
18 Madison Road
Fairfield, NJ 07006
(201) 227.7880

TWX 710-734-4305
Solid State
46 Farrand Street
Bloomfield, NJ 07003
(201) 429-8700

TWX 710-994-4780
FAX (201) 429-8683

NEW YORK

Add Electronics
7 Adler Drive
E. Syracuse, NY 13057
(315) 437.0300

Nu-Horizons Electronics 6000 New Horizons Blvd.
N. Amityville, NY 11701
(516) 226-6000

Pioneer-Standard
840 Fairport Park
Fairport, NY 14450
(716) 381-7070

TWX 510-253-7001
FAX (716) 381-5955
Pioneer-Standard
1806 Vestal Pkwy. East
Vestal, NY 13850
(607) 748-8211

TWX 510-252-0893

Pioneer-Standard
Crossways Park West
Woodbury, NY 11797
(516) 921-8700

TWX 510-221-2184
FAX (516) 921-2143
Schweber Electronics
3 Townline Circle
Rochester, NY 14623
(716) 424-2222

TWX 710-541-0601
Schweber Electronics
Jericho Turnpike
Westbury, NY 11590
(516) 334-7474

TWX 510-220-1365
Zeus Components
100 Midland Avenue
Port Chester, NY 10573
(914) 937.7400

TWX 710-567-1248
FAX (914) 937-2553
NORTH CAROLINA
Dixie Electronics
2220 S. Tryon Street
Charlotte, NC 28234
(704) 377-4348

Dixie Electronics
1021 R. Burke St.
Winston-Salem, NC 27102
(919) $724-5961$

Hammond Electronics
2923 Pacific Avenue
Greensboro, NC 27406
(919) 275-6391

TWX 628-94645
Pioneer Technologies Group
9801 A Southern Pine Blvd.
Charlotte, NC 28210
(704) 527.8188

TWX 810-621-0366
Quality Components, S.E.
2940-15 Trawick Road
Raleigh, NC 27604
(919) $876-7767$

Schweber Electronics
5285 North Blvd.
Raleigh, NC 27604
(919) 876-0000

TWX 510-928-0531

NORTH DAKOTA

See Minnesota
OHIO
Kierulff Electronics
476 Windsor Park Drive
Dayton, OH 45459
(513) 439-0045

Marshall Industries 6212 Executive Blvd
Dayton, OH 45424
(513) $236-8088$

Marshall Industries
59058 Harper Road
Solon, OH 44139
(216) 248-1788

U.S. AND CANADIAN DISTRIBUTORS

OHIO (cont.)
Pioneer-Standard
4800 East 131st Street
Cleveland, OH 44105
(216) 587-3600

TWX 810-421-0011
Pioneer-Standard
4433 Interpoint Blvd.
Dayton, OH 45424
(513) $236-9900$

TWX 810-459-1622
Schweber Electronics
23880 Commerce Park Rd.
Beachwood, OH 44122
(216) 464-2970

TWX 810-427-9441
Schweber Electronics
7865 Paragon Road
Suite 210
Dayton, OH 45459
(513) 439-1800

Zeus (Televox)
2593 Lance Drive
Dayton, OH 45409
(513) 294-4499

TWX 75-9251
FAX (513) 294-6620

OKLAHOMA

Quality Components
9934 East 21st South
Tulsa, OK 74129
(918) 664-8812

TWX 910-860-5459
629-28599
Schweber Electronics
4815 South Sheridan
Fountain Plaza, Suite 109
Tulsa, OK 74145
(918) 622-8000

OREGON

Almac Electronics Corp.
1885 N.W. 169th Place
Beaverton, OR 98006
(503) 629-8090

FAX (503) 645-0611
TWX 910-467-8743
Kierulff Electronics
14273 N.W. Science Park Drive
Portland, OR 97229
(503) 641-9150

Marshall Industries
8333 S.W. Cirrus Dr.
Beaverton, OR 97005
(503) 644-5050

PENNSYLVANIA
Almo Electronics, Inc.
9815 Roosevelt Blvd.
Philadelphia, PA 19114
(215) 698-4063

TLX 476-1218
FAX (215) 969-6768
Pioneer-Standard
259 Kappa Drive
Pittsburgh, PA 15238
(412) 782-2300

TWX 710-795-3122
Pioneer Technologies Group
261 Gibraltar Road
Horsham, PA 19044
(215) 674-4000

TWX 510-665-6778

Schweber Electronics
900 Business Center Dr.
Horsham, PA 19044
(215) 441-0600

TWX 510-665-6540
Schweber Electronics
1000 R.I.D.C. Plaza
Suite 203
Pittsburgh, PA 15238
(412) $782-1600$

TWX 810-427-9441
RHODE ISLAND
See Massachusetts New York

SOUTH CAROLINA
Dixie Electronics
1900 Barnwell Street
Columbia, SC 29202
(803) 779-5332

TLX 810-666-2620
FAX (803) 765-9276
Dixie Electronics
531 E. Palmetto Street
Florence, SC 29503
(803) 669-8201

Dixie Electronics
4909 Pelham Rd
Greenville, SC 29606
(803) 297-1435

Dixie Electronics
\#6 Pepperhill Square
7525 Brandywine Road
N. Charleston, SC 29410
(803) 552-2671

SOUTH DAKOTA
See Minnesota
TENNESSEE
Dixie Electronics
Box 8215 Suncrest Drive
Gray, TN 37615
(615) 477-3838

Dixie Electronics 6408 Clinton Highway
Knoxville, TN 27912
(615) 938-4131

TEXAS

Kierulff Electronics
9610 Skillman Ave.
Dallas, TX 75243
(214) 343-2400

Marshall Industries
2045 Chenault St.
Carrolliton, TX 75006
(214) 233-5200

FAX (214) 770.0675
Pioneer-Standard
13710 Omega Road
Dallas, TX 75234
(214) 386-7300

TWX 910-860-5563
Pioneer-Standard
9901 Burnet Road
Austin, TX 78758
(512) $835-4000$

TWX 910-874-1323

Pioneer-Standard
5853 Point West Drive
Houston, TX 77036
(713) 988-5555

TWX 910-881-1606
Quality Components
4257 Kellway Circle
Addison, TX 75001
(214) 733-4300

TWX 910-860-5459
Quality Components
1005 Industrial Blvd.
Sugarland, TX 77478
(713) 240-2255

TWX 62927026
Quality Components
2120 M. Braker Lane
Austin, TX 78758
(512) 835-0220

TWX 324930
Schweber Electronics
4202 Beltway Drive
Dallas, TX 75234
(214) 661-5010

TWX 910-860-5493
Schweber Electronics
6300 La Calma Drive
Suite 240
Austin, TX 78752
(512) 458-8253

TWX 910-874-2045
Schweber Electronics
10625 Richmond, Suite 100
Houston, TX 77042
(713) 784-3600

TWX 910-881-4836
Zeus Components
1800 North Glenville
Suite 120
Richardson, TX 75081
(214) 783-7010

TWX 910-867-9422
FAX (214) 234-4385

UTAH

Integrated Electronics Corp
101 N. 700 West
N. Salt Lake City, UT 84054
(801) 298-1869

Kierulff Electronics
1846 Parkway Blvd.
Salt Lake City, UT 84119
(801) 973-6913

Marshall Industries
3501 South Main St.
Salt Lake City, UT 84115
(801) $261 \cdot 0901$

VERMONT

See New York

VIRGINIA

See Maryland

WASHINGTON

Almac Electronics Corp
14360 S.E. Eastgate Way
Bellevue, WA 98007
(206) 643-9992

TWX 910-444-2067
FAX (206) 746-7425

Almac Electronics Corp.
East 10905 Montgomery
Spokane, WA 99206
(509) 924-9500

TWX 510-773-1855
FAX (509) 928-6096
Kierulff Electronics
19450 68th Ave.
South Kent, WA 98032
(206) 575-4420

Marshall Industries
14102 N.E. 21st St.
Bellevue, WA 98007
(206) 747-9100

WASHINGTON D.C.

See Maryland

WEST VIRGINIA

See Ohio
Pennsylvania
Maryland

WISCONSIN

Kierulff Electronics
2238-E West Bluemound Road
Waukesha, WI 53186
(414) $784-8160$

Marshall Industries
235 North Executive Dr.
\#305
Brookfield, WI 53005
(414) 797-8400

Schweber Electronics
3050 South Calhoun Rd.
New Berlin, WI 53151
(414) 784-9020

WYOMING
See Oregon
Washington

CANADA

R.A.E. Industrial

3455 Gardner Court
Burnaby, B.C.
(604) 291-8866

TWX 610-929-3065
R.A.E. Industrial

11680 170th Street
Edmonton, Alberta
T5S $1 \mathrm{J7}$
(403) 451-4001

TWX 037-2653
Zentronics
8 Tilbury Court
Brampton, Ontario
LбT 3 T4
(416) $451-9600$

TWX 06-97678
FAX (416) 451-8320
Zentronics
3300-14 Ave., NE Bay $\# 1$
Calgary, Alberta
T2A 6J4
(403) 272-1021

Zentronics
155 Colonnade, S. \#17/18
Nepean, Ontario
K2E 7K1
(613) 226-8840

TWX 06-97698
U.S. AND CANADIAN DISTRIBUTORS

CANADA (cont.)

Zentronics
11400 Bridgeport Rd. \#108
Richmond, B.C.
V6X 1 T2
(604) 273-5575

TWX 04-355844

Zentronics

817 McCaffrey Stree
St. Laurent, Quebec
H4T 1N3
(514) 737-9700

TWX 05-824826
Zentronics
564 Weber Street, N. \#10
Waterloo, Ontario
N21 5C6
(519) 884-5700

TWX 06-97678

Zentronics
590 Berry Street
Winnipeg, Manitoba
R3H OS 1
(204) $775-8661$

TWX 06-97678
Future Electronics 3220 5th Avenue, N.E.
Calgary, Alberta
T2A 5N1
(403) 235-5325

Future Electronics
82 St. Regis Crescent N
Downsview, Ontario
M3J 1 Z3
(416) 638-4771

TWX 610-491-1470
FAX (416) 638-2936

Future Electronics
5312 Calgary Trail South
Edmonton, Alberta
T6H 4J8
(403) 438-2858

Future Electronics
Hymus Bivd.
Pointe Claire
Montreal, Quebec
H9R 5C7
(514) 694-7710

TWX 610-421-3251 or
610-421-3500
FAX (514) 695-3707 or
(514) 694-0062

Future Electronics
Baxter Center
1050 Baxter Road
Ottawa, Ontario
K2C 3P2
(613) $820 \cdot 8313$

TWX 610-563-1697
FAX (613) 820-3271

Future Electronics 1695 Boundary Road
Vancouver, B.C.
B5K 4X7
(604) 294-1166

TLX 04354744
FAX (604) 294-1206
Future Electronics
444 Sharon Bay
Winnipeg, Manitoba
R2G OH_{7}
(604) 294-1166 (Vancouver)

CHAPTER 1 - STATMC RARS

STATIC RAMs

ZEROPOWER ${ }^{\text {™ }}$ AND TIMEKEEPER ${ }^{\text {™ }}$ RAMs

Description	Part number	Organization	Access Time	${ }^{1} \mathrm{cc}$	ISB	Page
TIMEKEEPER SRAM	MK48T02-12	$2 \mathrm{~K} \times 8$	120 ns	80 mA	3 mA	1-5
	MK48T02-15	2K $\times 8$	150 ns	80 mA	3 mA	
	MK48T02-20	2K $\times 8$	200 ns	80 mA	3 mA	
	MK48T02-25	2K x 8	250 ns	80 mA	3 mA	
TIMEKEEPER SRAM$V_{C C}= \pm 10 \%$	MK48T12-12	$2 \mathrm{~K} \times 8$	120 ns	80 mA	3 mA	1-5
	MK48T12-15	$2 \mathrm{~K} \times 8$	150 ns	80 mA	3 mA	
	MK48T12-20	$2 \mathrm{~K} \times 8$	200 ns	80 mA	3 mA	
	MK48T12-25	$2 \mathrm{~K} \times 8$	250 ns	80 mA	3 mA	
ZEROPOWER SRAM	MK48Z02-15	$2 \mathrm{~K} \times 8$	150 ns	80 mA	1 mA	1-23
	MK48ZO2-20	$2 \mathrm{~K} \times 8$	200 ns	80 mA	1 mA	
	MK48Z02-25	$2 \mathrm{~K} \times 8$	250 ns	80 mA	1 mA	
ZEROPOWER SRAM$V_{C C}= \pm 10 \%$	MK48Z12-12	2K x 8	120 ns	80 mA	1 mA	1-23
	MK48Z12-15	$2 \mathrm{~K} \times 8$	150 ns	80 mA	1 mA	
	MK48Z12-20	$2 \mathrm{~K} \times 8$	200 ns	80 mA	1 mA	
	MK48Z12-25	$2 \mathrm{~K} \times 8$	250 ns	80 mA	1 mA	
ZEROPOWER SRAM	MK48Z08-15	$8 \mathrm{~K} \times 8$	150 ns	80 mA	1 mA	1-35
	MK48Z08-20	$8 \mathrm{~K} \times 8$	200 ns	80 mA	1 mA	
	MK48Z08-25	$8 \mathrm{~K} \times 8$	250 ns	80 mA	1 mA	
ZEROPOWER SRAM$V_{C C}= \pm 10 \%$	MK48Z18-15	$8 \mathrm{~K} \times 8$	150 ns	80 mA	1 mA	1-35
	MK48Z18-20	$8 \mathrm{~K} \times 8$	200 ns	80 mA	1 mA	
	MK48Z18-25	$8 \mathrm{~K} \times 8$	250 ns	80 mA	1 mA	
ZEROPOWER SRAM	MK48Z09-15	$8 \mathrm{~K} \times 8$	150 ns	80 mA	1 mA	1-35
WITH POWER FAIL	MK48Z09-20	$8 \mathrm{~K} \times 8$	200 ns	80 mA	1 mA	
INTERRUPT OUTPUT	MK48Z09-25	$8 \mathrm{~K} \times 8$	250 ns	80 mA	1 mA	
ZEROPOWER SRAM WITH POWER FAIL INTERRUPT OUTPUT	MK48Z19-15	$8 \mathrm{~K} \times 8$	150 ns	80 mA	1 mA	1-35
	MK48Z19-20	$8 \mathrm{~K} \times 8$	200 ns	80 mA	1 mA	
	MK48Z19-25	$8 \mathrm{~K} \times 8$	250 ns	80 mA	1 mA	

$V_{C C}= \pm 10 \%$

BATTERY BACK-UP RAMs

Description	Part number	Organization	Access Time	ICC	IBAT	Page
BATTERY BACK-UP SRAM	MK48C02-15	$2 \mathrm{~K} \times 8$	150 ns	80 mA	$50 \mu \mathrm{~A}$	$1-49$
	MK48C02-20	$2 \mathrm{~K} \times 8$	200 ns	80 mA	$50 \mu \mathrm{~A}$	
	MK48C02-25	$2 \mathrm{~K} \times 8$	250 ns	80 mA	$50 \mu \mathrm{~A}$	
	MK48C02L-15	$2 \mathrm{~K} \times 8$	150 ns	80 mA	$1 \mu \mathrm{~A}$	
	MK48C02L-20	$2 \mathrm{~K} \times 8$	200 ns	80 mA	$1 \mu \mathrm{~A}$	
	MK48C02L-25	$2 \mathrm{~K} \times 8$	250 ns	80 mA	$1 \mu \mathrm{~A}$	

BiPORT ${ }^{T M}$ DEVICES

Description	Part number	Organization	Access Time	Cycle	Icc	Page
BiPORT FIFO	MK4501-65	512×9	65 ns	80 ns	80 mA	$1-57$
	MK4501-80	512×9	80 ns	100 ns	80 mA	
	MK4501-10	512×9	100 ns	120 ns	80 mA	
	MK4501-12	512×9	120 ns	140 ns	80 mA	
	MK4501-15	512×9	150 ns	175 ns	80 mA	
	MK4501-20	512×9	200 ns	235 ns	80 mA	
	MK4503-50	2048×9	50 ns	65 ns	120 mA	$1-71$
	MK4503-65	2048×9	65 ns	80 ns	120 mA	
	MK4503-80	2048×9	80 ns	100 ns	120 mA	
	MK4503-10	2048×9	100 ns	120 ns	120 mA	
	MK4503-12	2048×9	120 ns	140 ns	120 mA	
	MK4503-15	2048×9	150 ns	175 ns	$120 \text { mA }$	
	MK4503-20	2048×9	200 ns	235 ns	120 mA	
VERY HIGH SPEED CLOCKED FIFO	MK4505M-25	1024×5	15 ns	25 ns	100 mA	1-87
	MK4505M-33	1024×5	20 ns	33 ns	100 mA	
	MK4505M-50	1024×5	25 ns	50 ns	100 mA	
VERY HIGH SPEED CLOCKED FIFO (3 state outputs)	MK4505S-25	1024×5	15 ns	25 ns	100 mA	$1-87$
	MK4505S-33	1024×5	20 ns	33 ns	100 mA	
	MK4505S-50	1024×5	25 ns	50 ns	100 mA	
BiPORT RAM	MK4511-12	512×9	120 ns	150 ns	50 mA	1-105
	MK4511-15	512×9	150 ns	190 ns	50 mA	
	MK4511-20	512×9	200 ns	250 ns	50 mA	

STATIC RAMs

Description	Part number	Organization	Access Time	ICC	ISB	Page
FAST SRAM	MK4801A-55	$1 \mathrm{~K} \times 8$	55 ns	110 mA	-	$1-117$
	MK4801A-70	$1 \mathrm{~K} \times 8$	70 ns	110 mA	-	
	MK4801A-90	$1 \mathrm{~K} \times 8$	90 ns	110 mA	-	
	MK4801A-1	$1 \mathrm{~K} \times 8$	120 ns	110 mA	-	$1-123$
	MK4801A-2	$1 \mathrm{~K} \times 8$	150 ns	110 mA	-	
	MK4801A-3	$1 \mathrm{~K} \times 8$	200 ns	110 mA	-	
	MK4801A-4	$1 \mathrm{~K} \times 8$	250 ns	110 mA	-	
		ET2147H-1	$4 \mathrm{~K} \times 1$	35 ns	180 mA	30 mA
	ET2147H-2	$4 \mathrm{~K} \times 1$	45 ns	180 mA	30 mA	$1-129$
	ET2147H-3	$4 \mathrm{~K} \times 1$	55 ns	180 mA	30 mA	
	ET2147H-4	$4 \mathrm{~K} \times \mathrm{i}$	55 ns	125 mA	20 mA	

VERY FAST CMOS STATIC RAM

Description	Part number	Organization	Access Time	Icc	$I_{\text {SB }}$	Page
FAST $\overline{C S}$ ACCESS	MK41H66-20	16K $\times 1$	20 ns	120 mA	-	1-135
	MK41H66-25	16K $\times 1$	25 ns	120 mA	-	
	MK41H66-35	16K $\times 1$	35 ns	120 mA	-	
	MK41L66-25	16K $\times 1$	25 ns	60 mA	-	1-149
	MK41L66-35	$16 \mathrm{~K} \times 1$	35 ns	60 mA	-	
	MK41L66-45	16K $\times 1$	45 ns	60 mA	-	
	MK41H69-20	$4 \mathrm{~K} \times 4$	20 ns	120 mA	-	1-163
	MK41H69-25	$4 \mathrm{~K} \times 4$	25 ns	120 mA	-	
	MK41H69-35	$4 \mathrm{~K} \times 4$	35 ns	120 mA	-	
	MK41L69-25	$4 \mathrm{~K} \times 4$	25 ns	60 mA	-	1-177
	MK41L69-35	$4 \mathrm{~K} \times 4$	35 ns	60 mA	-	
	MK41L69-45	$4 \mathrm{~K} \times 4$	45 ns	60 mA	-	
$\overline{C E}$ POWER-DOWN	MK41H67-20	16K $\times 1$	20 ns	120 mA	$50 \mu \mathrm{~A}$	$1-135$
	MK41H67-25	16K $\times 1$	25 ns	120 mA	$50 \mu \mathrm{~A}$	
	MK41H67-35	$16 \mathrm{~K} \times 1$	35 ns	120 mA	$50 \mu \mathrm{~A}$	
	MK41L67-25	$16 \mathrm{~K} \times 1$	25 ns	60 mA	$50 \mu \mathrm{~A}$	1-149
	MK41L67-35	16K $\times 1$	35 ns	60 mA	$50 \mu \mathrm{~A}$	
	MK41L67-45	$16 \mathrm{~K} \times 1$	45 ns	60 mA	$50 \mu \mathrm{~A}$	
	MK41H68-20	$4 \mathrm{~K} \times 4$	20 ns	120 mA	$50 \mu \mathrm{~A}$	1-163
	MK41H68-25	4K $\times 4$	25 ns	120 mA	$50 \mu \mathrm{~A}$	
	MK41H68-35	$4 \mathrm{~K} \times 4$	35 ns	120 mA	$50 \mu \mathrm{~A}$	
	MK41L68-25	$4 \mathrm{~K} \times 4$	25 ns	60 mA	$50 \mu \mathrm{~A}$	$1 \cdot 177$
	MK41L68-35	$4 \mathrm{~K} \times 4$	35 ns	60 mA	$50 \mu \mathrm{~A}$	
	MK41L68-45	$4 \mathrm{~K} \times 4$	45 ns	60 mA	$50 \mu \mathrm{~A}$	
	MK41H87-25	$64 \mathrm{~K} \times 1$	25 ns	60 mA	$50 \mu \mathrm{~A}$	1-219
	MK41H87-35	$64 \mathrm{~K} \times 1$	35 ns	60 mA	$50 \mu \mathrm{~A}$	
	MK41H87-45	$64 \mathrm{~K} \times 1$	45 ns	60 mA	$50 \mu \mathrm{~A}$	
$\overline{\overline{C E} / \overline{O E}}$	MK41H78-20	$4 \mathrm{~K} \times 4$	20 ns	120 mA	$50 \mu \mathrm{~A}$	1-191
	MK41H78-25	4K $\times 4$	25 ns	120 mA	$50 \mu \mathrm{~A}$	
	MK41H78-35	$4 \mathrm{~K} \times 4$	35 ns	120 mA	$50 \mu \mathrm{~A}$	
	MK41L78-25	$4 \mathrm{~K} \times 4$	25 ns	60 mA	$50 \mu \mathrm{~A}$	1-205
	MK41L78-35	4K $\times 4$	35 ns	60 mA	$50 \mu \mathrm{~A}$	
	MK41L78-45	$4 \mathrm{~K} \times 4$	45 ns	60 mA	$50 \mu \mathrm{~A}$	
$\overline{C E / O E / C L R}$	MK41H79-20	$4 \mathrm{~K} \times 4$	20 ns	120 mA	-	1-191
	MK41H79-25	$4 \mathrm{~K} \times 4$	25 ns	120 mA	-	
	MK41H79-35	$4 \mathrm{~K} \times 4$	35 ns	120 mA	-	
	MK41L79-25	$4 \mathrm{~K} \times 4$	25 ns	60 mA	-	1-205
	MK41L79-35	$4 \mathrm{~K} \times 4$	35 ns	60 mA	-	
	MK41L79-45	$4 \mathrm{~K} \times 4$	45 ns	60 mA	-	
CACHE MEMORY	MK41H80-20	$4 \mathrm{~K} \times 4$	20 ns	120 mA	-	1-229
COMPARATOR	MK41H80-25	$4 \mathrm{~K} \times 4$	25 ns	120 mA	-	
TAGRAM ${ }^{\text {m }}$	MK41H8O-35	$4 \mathrm{~K} \times 4$	35 ns	120 mA	-	

MEMORY COMPONENTS

FEATURES

\square Integrated Ultra Low Power SRAM, Real Time Clock, Crystal, Power-fail Control Circuit and BatteryBYTEWIDE ${ }^{\text {ru }}$ RAM-like Clock Access
BCD Coded Year, Month, Day, Date, Hours, Minutes and SecondsSoftware Controlled Clock Calibration for High Accuracy ApplicationsPredicted Worst Case Battery Storage Life of 11 years @ $70^{\circ} \mathrm{C}$Pin and Function Compatible with JEDEC Standard 2K x 8 SRAMs (MK48T02/12)
\square Pin and functionally compatible with JEDEC Standard $2 \mathrm{~K} \times 8$ EEPROM (MK48T03/13)

Automatic Power-fail Chip Deselect/Write Protection
\square Two Power-fail Deselect Trip Points Available
MK48T02/03: $4.75 \mathrm{~V} \geq \mathrm{V}_{\text {PFD }} \geq 4.50 \mathrm{~V}$
MK48T12/13: $4.50 \mathrm{~V} \geq \mathrm{V}_{\text {PFD }} \geq 4.20 \mathrm{~V}$

Part Number	Access Time	R/W Cycle Time
MK48TXX-12	120 ns	120 ns
MK48TXX-15	150 ns	150 ns
MK48TXX-20	200 ns	200 ns
MK48TXX-25	250 ns	250 ns

TRUTH TABLE (MK48T02/12)

$\mathrm{V}_{\mathbf{c c}}$	\bar{E}	$\overline{\mathbf{G}}$	$\overline{\text { w }}$	MODE	DQ
$\begin{aligned} & <V_{c c} \text { (Max) } \\ & >V_{c c} \text { (Min) } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IL}} \end{aligned}$	$\begin{gathered} \hline x \\ x \\ \mathrm{v}_{\mathrm{IL}} \\ \mathrm{~V}_{1 H} \end{gathered}$	$\begin{gathered} \mathrm{X} \\ \mathrm{~V}_{\mathrm{IL}} \\ \mathrm{~V}_{\mathrm{IH}} \\ \mathrm{~V}_{\mathrm{IH}} \end{gathered}$	Deselect Write Read Read	$\begin{aligned} & \hline \text { High-Z } \\ & \text { Din }^{\prime} \\ & D_{\text {out }} \\ & \text { High-Z } \end{aligned}$
$\begin{array}{\|l\|} \hline<V_{\text {PFD }} \text { (Min) } \\ >V_{\text {SO }} \\ \hline \end{array}$	X	X	X	Power-Fail Deselect	High-Z
$\leq \mathrm{V}_{\text {So }}$	X	X	X	Battery Back-up	High-Z

Figure 1. Pin Connections

PIN NAMES

$A_{0}-A_{10}$	Address Input	$V_{C C}$	+5 Volts
$\overline{\mathrm{E}}$	Chip Enable	\bar{W}	Write Enable
GND	Ground	\bar{G}	Output Enable
$D Q_{0}-D Q_{7}$ Data In/Data Out			

TRUTH TABLE (MK48T03/13)

$\mathrm{V}_{\text {cc }}$	\bar{E}	$\overline{\mathbf{G}}$	\bar{W}	MODE	DQ
$\begin{aligned} & <V_{C C}(\text { Max }) \\ & >V_{C C}(\text { Min }) \end{aligned}$	$\mathrm{V}_{\text {IH }}$	X	X	Deselect	High-Z
	$V_{\text {IL }}$	$\mathrm{V}_{\text {IH }}$	$V_{\text {IL }}$	Write	$\mathrm{D}_{\text {IN }}$
	$V_{\text {IL }}$	$V_{\text {IL }}$	V_{IH}	Read	Dout
	$V_{\text {IL }}$	V_{IH}	V_{IH}	Read	High-Z
	$V_{\text {IL }}$	$V_{\text {IL }}$	$V_{\text {IL }}$	Read	High-Z
$\begin{aligned} & <V_{\text {PFD }}(\mathrm{Min}) \\ & >V_{\text {SO }} \end{aligned}$	X	X	X	Power-Fail Deselect	High-Z
$\leq \mathrm{V}_{\text {SO }}$	X	X	X	Battery Back-up	High-Z

Figure 2. Block Diagram

DESCRIPTION

The MK48T02/12/03/13 combines a $2 \mathrm{~K} \times 8$ full CMOS SRAM, a BYTEWIDE accessible real time clock, a crystal and a long life lithium carbon mono-fluoride battery, all in a single plastic DIP package. The MK48T02/12/03/13 is a non-volatile pin and function equivalent to any JEDEC standard $2 \mathrm{~K} \times 8$ SRAM, such as the 6116 or 5517. It also easily fits into many EPROM and EEPROM sockets, providing the non-volatility of the PROMs without any requirement for special write timing, or limitations on the number of writes that can be performed.

Access to the clock is as simple as conventional BYTEWIDE RAM access because the RAM and the Clock are combined on the same die. As Figure 2 indicates, the TIMEKEEPER registers are located in the upper eight locations of the RAM. The registers contain, beginning at the top; year, month, date, day, hour, minutes, and seconds data in 24 Hour BCD format. Corrections for 28, 29 (Leap Year), 30 and 31 day months are made automatically. The eighth location is a Con-
trol register. These registers are not the actual clock counters; they are BiPORT read/write Static RAM memory locations. The MK48T02/12/03/13 includes a clock control circuit that, once every second, dumps the counters into the BiPORT RAM.

Because the Clock Registers are constructed using BiPORT memory cells, access to the rest of the RAM proceeds unhindered by updates to the TIMEKEEPER registers, even if the TIMEKEEPER registers are being updated at the very moment another location in the memory array is accessed.

The MK48T02/12/03/13 also has its own Power-fail Detect circuit. The circuit deselects the device whenever V_{CC} is out of range, providing a high degree of data security in the midst of unpredictable system operations brought on by low V_{CC}.

BIPORT, BYTEWIDE, TIMEKEEPER and ZEROPOWER are Trademarks of Thomson Components - Mostek Corporation.

OPERATION

READ MODE

The MK48T02/12/03/13 is in the Read Mode whenever \bar{W} (Write Enable) is high and $\overline{\mathrm{E}}$ (Chip Enable) is low. The device architecture allows ripple-through access (changing Addresses without removing Chip Enable) to any of the 2048 address locations in the static storage array. Valid data will be available at the Data I/O pins within t_{AA} after the last address input signal is stable, providing that the \bar{E} and $\overline{\mathrm{G}}$ access times are satisfied.

If \bar{E} or \bar{G} access times are not yet met, valid data will be available at the latter of Chip Enable Access Time ($t_{\text {CEA }}$) or at Output Enable Access Time ($t_{\text {OEA }}$). The state of the eight three-state Data I/O signals is controlled by \bar{E} and \bar{G}. If the Outputs are activated before t_{AA}, the data lines will be driven to an indeterminate state until t_{AA}. If the Address inputs are changed while \bar{E} and \bar{G} remain low, output data will remain valid for Output Data Hold Time (t_{OH}) but will go indeterminant until the next $t_{A A}$.

Figure 3. Read-Read-Write Timing
AC ELECTRICAL CHARACTERISTICS (READ CYCLE TIMING)
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{CC}}(\mathrm{Max}) \geq \mathrm{V}_{\mathrm{CC}} \geq \mathrm{V}_{\mathrm{CC}}\right.$ (Min) $)$

SYM	PARAMETER	MK48TXX-12		MK48TXX-15		MK48TXX-20		MK48TXX-25		UNITS	NOTES
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX		
t_{RC}	Read Cycle Time	120		150		200		250		ns	
$t_{\text {AA }}$	Address Access Time		120		150		200		250	ns	1
$\mathrm{t}_{\text {CEA }}$	Chip Enable Access Time		120		150		200		250	ns	1
toea	Output Enable Access Time		75		75		80		90	ns	1
$\mathrm{t}_{\text {CEE }}$	Chip Enable Hi to High-Z		30		35		40		50	ns	
$t_{\text {teez }}$	Output Enable Hi to High-Z		30		35		40		50	ns	
${ }^{\text {toH }}$	Valid Data Out Hold Time	15		15		15		15		ns	1

NOTE

1. Measured using the Output Load Diagram shown in Figure 13.

WRITE MODE

The MK48T02/12 is in Write Mode whenever the \bar{W} and \bar{E} inputs are held low. The MK48T03/13 requires $\overline{\mathrm{G}}$ to be held high in addition to $\overline{\mathrm{W}}$ and $\overline{\mathrm{E}}$ being held low. The start of a Write is referenced to the latter occurring falling edge of either W or \bar{E}, or the rising edge of $\overline{\mathrm{G}}$ (MK48T03/13). A Write is terminated by the earlier rising edge of \bar{W} or \bar{E}, or the falling edge of \bar{G} (MK48T03/13). The addresses must be held valid throughout the cycle. \bar{W} or \bar{E} must return high, or \bar{G} must return low (MK48T03/13) for a minimum of $t_{\text {WR }}$ prior to the initiation of another Read or Write Cycle. Datain must be valid for $t_{D S}$ prior to the End of Write and remain valid for $t_{D H}$ afterward.

Some processors thrash producing spurious Write Cy cles during power-up, despite application of a poweron reset. The MK48T03/13 allow a user to easily overcome this problem by holding $\overline{\mathcal{G}}$ low with the power-on reset signal. MK48T02/12 users should force \bar{W} or \bar{E} high during power-up to protect memory after V_{CC} reaches $\mathrm{V}_{\mathrm{CC}}(\mathrm{min})$ but before the processor stablizes.

The MK48T02/12 $\overline{\mathrm{G}}$ input is a DON'T CARE in the write mode. \bar{G} can be tied low and two-wire RAM control can be implemented. A low on \bar{W} will disable the outputs $\mathrm{t}_{\text {WEZ }}$ after $\overline{\mathrm{W}}$ falls. Take care to avoid bus contention when operating with two-wire control.

Figure 4. Write-Write-Read Timing
AC ELECTRICAL CHARACTERISTICS (WRITE CYCLE TIMING)
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{CC}}(\mathrm{Max}) \geq \mathrm{V}_{\mathrm{CC}} \geq \mathrm{V}_{\mathrm{CC}}\right.$ (Min) $)$

SYM	PARAMETER	MK48TXX-12		MK48TXX-15		 1848 TXX-20		MK48TXX-25		UNITS	NOTES
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX		
$\mathrm{t}_{\text {Wc }}$	Write Cycle Time	120		150		200		250		ns	
$\mathrm{t}_{\text {AS }}$	Address Setup Time	0		0		0		0		ns	
$\mathrm{t}_{\text {AW }}$	Address Valid to End of Write	120		150		200		250		ns	
$\mathrm{t}_{\text {CEW }}$	Chip Enable to End of Write	75		90		120		160		ns	
$\mathrm{t}_{\text {WEW }}$	Write Enable to End of Write	75		90		120		160		ns	
$t_{\text {WR }}$	Write Recovery Time	10		10		10		10		ns	
$t_{\text {DS }}$	Data Setup Time	35		40		60		100		ns	
$t_{\text {DH }}$	Data Hold Time	0		0		0		0		ns	
$\mathrm{t}_{\text {WEZ }}$	Write Enable Low to High-Z		40		50		60		80	ns	
$\mathrm{t}_{\text {GEW }}$	$\overline{\mathrm{G}}$ to End of Write	75		90		120		160		ns	1

[^1]
CLOCK OPERATIONS

Reading the Clock

Updates to the TIMEKEEPER registers should be Halted before clock data is read to prevent reading of data in transition. Because the BiPORT TIMEKEEPER cells in the RAM array are only data registers, and not the actual counters, updating the registers can be halted without disturbing the clock itself.

Updating is halted when a " 1 " is written into the "Read" bit, the seventh most significant bit in the Control register. As long as a " 1 " remains in that position, updating is halted. After a Halt is issued, the registers reflect the count, that is day, date, and time that were current at the moment the Halt command was issued.

All of the TIMEKEEPER registers are updated simultaneously. A Halt will not interrupt an update in progress. Updating is within a second after the bit is reset to a " 0 ".

Setting the Clock

The eighth bit of the Control register is the "Write" bit. Setting the Write bit to a " 1 ", like the Read Bit, halts updates to the TIMEKEEPER registers. The user can then load them with the correct day, date and time data in 24 Hour BCD format. Resetting the Write bit to a " 0 " then transfers those values the actual TIMEKEEPER counters and allows normal operation to resume. The KS bit, FT bit and the bits marked with zeroes in Figure 5 must be written with zeroes to allow normal TIMEKEEPER and RAM operation.

ADDRESS	DATA	FUNCTION	
	$\mathrm{D}_{7} \mathrm{D}_{6} \mathrm{D}_{5} \mathrm{D}_{4} \mathrm{D}_{3} \quad \mathrm{D}_{2} \quad \mathrm{D}_{1} \quad \mathrm{D}_{0}$		
7FF	- - - - - -	YEAR	00.99
7FE	$000-1-$	MONTH	01-12
7FD	00	DATE	01-31
7FC	O FT O O O - -	DAY	01-07
7FB	KS O	HOUR	00-23
7FA	0	MINUTES	00-59
7F9	ST	SECONDS	00-59
7F8	W R S - - -	CONTROL	
KEY: ST $\begin{array}{rlrl}\text { S STOP BIT } & & \text { R }=\text { READ BIT } \\ \text { W } & =\text { WRITE BIT } & & S=\text { SIGN BIT }\end{array}$		FT $=$ FREQUENCY TESTKS $=$ KICK START	

Figure 5. The MK48T02/12/03/13 Register Map

Calibrating the Clock

The MK48T02/12/03/13 is driven by a quartz crystal controlled oscillator with a nominal frequency of 32768 Hz .The crystal is mounted in the tophat along with the battery. A typical MK48T02/12/03/13 is accurate within ± 1 minute per month at $25^{\circ} \mathrm{C}$ without calibration. The devices are tested not to exceed $\pm 35 \mathrm{ppm}$ (Parts Per Million) oscillator frequency error at $25^{\circ} \mathrm{C}$, which comes to about ± 1.53 minutes per month. Of course the oscillation rate of any crystal changes with temperature. Figure 6 shows the frequency error that can be expected at various temperatures.

Most clock chips compensate for crystal frequency and temperature shift error with cumbersome trim capacitors. The MK48T02/12/03/13 design, however, employs periodic counter correction. The calibration circuit adds or subtracts count from the oscillator divider circuit at
the divide by 256 stage, as shown in Figure 7. The number of times pulses are blanked (subtracted, negative calibration) or split (added, positive calibration) depends upon the value loaded into the five bit Calibration byte found in the Control register. Adding count speeds the clock up, subtracting counts slows the clock down.

The Calibration byte occupies the five lower order bits in the Control register. The byte can be set to represent any value between 0 and 31 in binary form. The sixth bit is a sign bit; " 1 " indicates positive calibration, " 0 " indicates negative calibration. Calibration occurs within a 64 minute cycle. The first 62 minutes in the cycle may, once per minute, have one second either shortened or lengthened by 128 oscillator cycles, that is one tick of the divide by 256 stage. If a binary 1 is loaded into the register, only the first two minutes in the 64 minute cycle will be modified; if a binary 6 is loaded, the first 12 will be affected, and so on.

Figure 6. The MK48T02/12/03/13 Oscillator Frequency vs. Temperature

NORMAL

POSITIVE CALIBRATION

NEGATIVE CALIBRATION

Figure 7. Adjusting the Divide by 256 Pulse Train

Therefore, each calibration step has the effect of adding or subtracting 256 oscillator cycles for every $125,829,120$ ($32768 \times 60 \times 64$) actual oscillator cycles, that is 2.034 ppm of adjustment per calibration step; giving the user $\mathrm{a} \pm 63.07 \mathrm{ppm}$ calibration range. Assuming that the oscillator is in fact running at exactly 32768 Hz , each of the 31 increments in the Calibration byte would represent 5.35 seconds per month.

Two methods are available for ascertaining how much calibration a given MK48T02/12/03/13 may require. The first involves simply setting the clock, letting it run for a month and comparing it to a known accurate reference (like WWV broadcasts). While that may seem crude, it allows the designer to give the end user the ability to calibrate his clock as his environment may require, even after the final product is packaged in a nonuser serviceable enclosure. All the designer has to do is provide a simple utility that accesses the Calibration byte. The utility could even be menu driven and made foolproof.

The second approach is better suited to a manufacturing environment, and involves the use of some test equipment. When the Frequency Test (FT) bit, the seventh-most significant bit in the Day register, is set to a " 1 ", and the oscillator is running at 32768 Hz , the LSB $\left(\mathrm{DQ}_{0}\right)$ of the Seconds register will toggle at a 512 Hz . Any deviation from 512 Hz indicates the degree and direction of oscillator frequency shift at the test temperature. For example, a reading of 512.00512 Hz would indicate a $+10 \mathrm{ppm}(1-(512 / 512.00512)$) oscillator frequency error, requiring a $-5\left(000101_{2}\right)$ to be loaded into the Calibration Byte for correction. Note that setting or changing the Calibration Byte does not affect the Frequency Test output frequency. The device must be selected and addresses must be stable at Address 7F9 when reading the 512 Hz on DQ_{0}.

The FT bit must be set using the same method used to set the clock, using the Write bit. The LSB of the Seconds register is monitored by holding the MK48T02/12/03/13 in an extended read of the Second register, without having the Read bit set. The FT bit MUST be reset to a " 0 " for normal clock operations to resume.

Stopping and Starting the Oscillator

The oscillator may be stopped at any time. If the device is going to spend a significant amount of time on the shelf, the oscillator can be turned off to minimize current drain from the battery. The "Stop" bit is the MSB of the Seconds register. Setting it to a " 1 " stops the oscillator. In order to make the oscillator as stingy with current as possible, the oscillator is designed to require an extra "kick" to begin oscillation again. The extra kick is provided by the Kick Start (KS) bit, the MSB of the Hours register. To start the oscillator, implement the following procedure.

1. Set the Write Bit to " 1 ".
2. Reset the Stop Bit to " 0 ".
3. Set the Kick Start Bit to " 1 ".
4. Reset the Write Bit to " 0 ".
5. Wait 2 seconds.
6. Set the Write Bit to " 1 ".
7. Reset the Kick Start Bit to " 0 ".
8. Set the Correct time and date.
9. Reset the Write Bit to " 0 ".

Note: Leaving the KS bit set will cause the Clock to draw excessive current and will shorten battery life.

DATA RETENTION MODE

With V_{CC} applied, the MK48T02/12/03/13 operates as a conventional BYTEWIDE static ram. However, V_{CC} is being constantly monitored. Should the supply voltage decay, the RAM will automatically power-fail deselect, write protecting itself when V_{CC} falls within the $\mathrm{V}_{\text {PFD }}$ (max), $\mathrm{V}_{\text {PFD }}(\mathrm{min})$ window. The MK48T02/03 has a $\mathrm{V}_{\text {PFD }}$ (max) - $V_{\text {PFD }}(\mathrm{min})$ window of 4.75 volts to 4.5 volts, providing very high data security, particularly when all of the other system components are specified to 5.0 volts plus and minus 10%. The MK48T12/13 has a VPFD (max) - $\mathrm{V}_{\text {PFD }}(\mathrm{min})$ window of 4.5 volts to 4.2 volts, allowing users constrained to a 10% power supply specification to use the device.

Note: A mid-write cycle power failure may corrupt data at the currently addressed location, but does not jeopardize the rest of the RAM's content. At voltages below $\mathrm{V}_{\text {PFD }}$ (min), the user can be assured the memory will be in a write protected state, provided the V_{CC} fall time does not exceed t_{F}. The MK48T02/12/03/13 may respond to transient noise spikes that reach into the deselect window if they should occur during the time the device is sampling V_{CC}. Therefore decoupling of power supply lines is recommended.

The power switching circuit connects external $V_{C C}$ to the RAM and disconnects the battery when $V_{C C}$ rises above V_{SO}. As V_{CC} rises the battery voltage is checked. If the voltage is too low, an internal Battery Not OK (BOK) flag will be set. The $\overline{\mathrm{BOK}}$ flag can be checked after power up. If the $\overline{\mathrm{BOK}}$ flag is set, the first write attempted will be blocked. The flag is automatically cleared after first write, and normal RAM operation resumes. Figure 8 illustrates how a $\overline{\mathrm{BOK}}$ check routine could be structured.

Normal RAM operation can resume $t_{\text {REC }}$ after $V_{C C}$ exceeds $V_{\text {PFD }}$ (Max). Caution should be taken to keep \bar{E} or \bar{W} high or \bar{G} low (MK48T03/13) as $V_{C C}$ rises past $\mathrm{V}_{\text {PFD }}$ (Min) as some systems may perform inadvertent write cycles after V_{Cc} rises but before normal system operation begins.

Figure 8. Checking the $\overline{\mathrm{BOK}}$ Flag Status

Figure 9. Power-Down/Power-Up Timing
DC ELECTRICAL CHARACTERISTICS (POWER-DOWN/POWER-UP TRIP POINT VOLTAGES) $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}\right)$

SYM	PARAMETER	MIN	TYP	MAX	UNITS	NOTES
V $_{\text {PFD }}$	Power-fail Deselect Voltage (MK48T02/03)	4.50	4.6	4.75	V	1
V PFD	Power-fail Deselect Voltage (MK48T12/13)	4.20	4.3	4.50	V	1
$\mathrm{~V}_{\text {SO }}$	Battery Back-up Switchover Voltage		3		V	1

AC ELECTRICAL CHARACTERISTICS (POWER-DOWN/POWER-UP TIMING)
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}\right)$

SYM	PARAMETER	MIN	MAX	UNITS	NOTES
$t_{\text {PD }}$	$\overline{\mathrm{E}}$ or \bar{W} at $\mathrm{V}_{\text {IH }}$ or $\overline{\mathrm{G}}$ at $\mathrm{V}_{\text {IL }}$ before Power Down	0		ns	
t_{F}	$\mathrm{V}_{\text {PFD }}$ (Max) to $\mathrm{V}_{\text {PFD }}$ (Min) $\mathrm{V}_{\text {CC }}$ Fall Time	300		$\mu \mathrm{S}$	2
$\mathrm{t}_{\text {FB }}$	$\mathrm{V}_{\text {PFD }}$ (Min) to $\mathrm{V}_{\text {SO }} \mathrm{V}_{\text {CC }}$ Fall Time	10		$\mu \mathrm{S}$	3
t_{RB}	$\mathrm{V}_{\text {SO }}$ to $\mathrm{V}_{\text {PFD }}$ (Min) $\mathrm{V}_{\text {CC }}$ Rise Time	1		$\mu \mathrm{S}$	
t_{R}	$\mathrm{V}_{\text {PFD }}$ (Min) to $\mathrm{V}_{\text {PFD }}$ (Max) $\mathrm{V}_{\text {CC }}$ Rise Time	0		$\mu \mathrm{S}$	
$\mathrm{t}_{\text {REC }}$	\bar{E} or \bar{W} at $V_{I H}$ or \bar{G} at $V_{1 L}$ after Power Up	2		ms	

NOTES:

1. All voltages referenced to GND.
2. $\mathrm{V}_{\text {PFD }}$ (Max) to $\mathrm{V}_{\text {PFD }}$ (Min) fall times of less t_{F} may result in deselection/write protection not occurring until $50 \mu \mathrm{~s}$ after $V_{\text {CC }}$ passes $V_{\text {PFD }}$ (Min). VPFD (Max) to (Min) fall times of less than $10 \mu \mathrm{~s}$ may cause corruption of RAM data or stop the clock.
3. $\mathrm{V}_{\text {PFD }}(\mathrm{Min})$ to $\mathrm{V}_{\text {SO }}$ fall times of less than $\mathrm{t}_{\text {FB }}$ may cause corruption of RAM data or stop the clock.

CAUTION

Negative undershoots below -0.3 volts are not allowed on any pin while in Battery Back-up mode.

PREDICTING BACK-UP SYSTEM LIFE

The useful life of the battery in the MK48T02/12/03/13 is expected to ultimately come to an end for one of two reasons; either because it has been discharged while providing current to an external load; or because the effects of aging render the cell useless before it can actually be discharged. Fortunately, these two effects are virtually unrelated, allowing discharge, or Capacity Consumption and the effects of aging, or Storage Life to be treated as two independent but simultaneous mechanisms, the earlier of which defines Back-up System life.

The current drain that is responsible for Capacity Consumption can be reduced either by applying V_{Cc} or turning off the oscillator. With the oscillator off, only the leakage currents required to maintain data in the RAM are flowing. With $V_{C c}$ on, the battery is disconnected from the RAM. Because the leakage currents of the MK48T02/12/03/13 are so low, they can be neglected in practical Storage Life calculations. Therefore, application of V_{CC} or turning off the oscillator can extend the effective Back-up System life.

Predicting Storage Life

Figure 10 illustrates how temperature affects Storage Life of the MK48T02/12/03/13 battery. As long as V_{CC} is applied or the oscillator is turned off, the life of the battery is controlled by temperature and is virtually unaffected by leakage currents drawn by the MK48T02/12/03/13.

Storage Life predictions presented in Figure 10 are extrapolated from temperature accelerated life-test data collected in over 100 million device hours of continuing bare cell and encapsulated cell battery testing by Thomson - Mostek. Obviously, temperature accelerated testing cannot identify non-temperature dependent failure mechanisms. However, in view of the fact that no random cell failures have been recorded in any of Thomson - Mostek's on going battery testing since it began in 1982, we believe the chance of such failure
mechanisms surfacing is extremely small. For the purpose of this testing, a cell failure is defined as the inability of a cell stabilized at $25^{\circ} \mathrm{C}$ to produce a 2.0 volt closed-circuit voltage across a 250 K ohm load resistance.

> A Special Note: The summary presented in Figure 10 represents a conservative analysis of the data presently available. While Thomson - Mostek is most likely in possession of the largest collection of battery life data of this kind in the world, the results presented should not be considered absolute or final; they can be expected to change as yet more data becomes available. We believe that future readpoints of life tests presently under way and improvements in the battery technology itself will result in a continuing improvement of these figures.

Two end of life curves are presented in Figure 10. They are labeled "Average" ($t_{50 \%}$) and ($t_{1 \%}$). These terms relate to the probability that a given number of failures will have accumulated by a particular point in time. If, for example, expected life at $70^{\circ} \mathrm{C}$ is at issue, Figure 10 indicates that a particular MK48T02/12/03/13 has a 1% chance of having a battery failure 11 years into its life and a 50% chance of failure at the 20 year mark. Conversely, given a sample of devices, 1% of them can be expected to experience battery failure within 11 years; 50% of them can be expected to fail within 20 years.

The $t_{1 \%}$ figure represents the practical onset of wear out, and is therefore suitable for use in what would normally be thought of as a worst-case analysis. The $t_{50 \%}$ figure represents "normal" or "average" life. It is, therefore, accurate to say that the average device will last " $\mathrm{t}_{50 \%}$ ".

Battery life is defined as beginning on the date of manufacture. Each MK48T02/12/03/13 is marked with a four digit manufacturing date code in the form YYWW (Example: $8625=1986$, week 25).

Calculating Predicted Storage Life of the Battery

As Figure 10 indicates, the predicted Storage Life of the battery in the MK48T02/12/03/13 is a function of temperature.

Because the ambient temperature profile is dependent
upon application controlled variables, only the user can estimate predicted Storage Life in a given design. As long as ambient temperature is held reasonably constant, expected Storage Life can be read directly from Figure 10. If the MK48T02/12/03/13 spends an appreciable amount of time at a variety of temperatures, the following equation should be used to estimate Storage Life.

$$
\text { Predicted Storage Life }=\frac{1}{\left[\left(\mathrm{TA}_{1} / \mathrm{TT}\right) / \mathrm{SL}_{1}\right]+\left[\left(\mathrm{TA}_{2} / \mathrm{TT}\right) / \mathrm{SL}_{2}\right]+\ldots+\left[\left(\mathrm{TA}_{n} / \mathrm{TT}\right) / \mathrm{SL}_{n}\right]}
$$

Where $T A_{1}, T A_{2}, T A_{n}=$ Time at Ambient Temperature 1, 2, etc.

$$
T T=\text { Total Time }=T A_{1}+T A_{2}+\ldots+T A_{n}
$$

$S L_{1}, \mathrm{SL}_{2}, \mathrm{SL}_{\mathrm{n}}=$ Predicted Storage Life at Temp 1, Temp 2, etc. (See Figure 10).

Example Predicted Storage Life Calculation

A cash register/terminal operates in an environment where the MK48T02/12/03/13 is exposed to tempera-
tures of $30^{\circ} \mathrm{C}\left(86^{\circ} \mathrm{F}\right)$ or less for $4672 \mathrm{hrs} / \mathrm{yr}$; temperatures greater than $25^{\circ} \mathrm{C}$, but less than $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$, for $3650 \mathrm{hrs} / \mathrm{yr}$; and temperatures greater than $40^{\circ} \mathrm{C}$, but less than $70^{\circ} \mathrm{C}\left(158^{\circ} \mathrm{F}\right)$, for the remaining $438 \mathrm{hrs} / \mathrm{yr}$.

Reading predicted $\mathrm{t}_{1 \%}$ values from Figure 10; $\mathrm{SL}_{1}=456$ yrs., $\mathrm{SL}_{2}=175$ yrs., $\mathrm{SL}_{3}=11.4$ yrs.
Total Time $(\mathrm{TT})=8760 \mathrm{hrs} . / \mathrm{yr} . \quad \mathrm{TA}_{1}=4672 \mathrm{hrs} . / \mathrm{yr} . \quad \mathrm{TA}_{2}=3650 \mathrm{hrs} . / \mathrm{yr} . \quad \mathrm{TA}_{3}=438 \mathrm{hrs} . / \mathrm{yr}$.

$$
\begin{aligned}
\text { Predicted Typical Storage Life } & \geq \frac{1}{[(4672 / 8760) / 456]+[(3650 / 8760) / 175]+[(438 / 8760) / 11.4]} \\
& \geq 126 \mathrm{yrs} .
\end{aligned}
$$

Figure 10. MK48T02/12/03/13 Predicted Battery Storage Life vs. Temperature

Predicting Capacity Consumption Life

The MK48T02/12/03/13 internal cell has a minimum rated capacity of 35 mAh . The device places a nominal combined RAM and TIMEKEEPER load of $1.2 \mu \mathrm{~A}$ on a typical internal 37 mAh lithium battery when the clock is running and the device is in Battery Back-up mode. At that rate, the MK48T02/12/03/13 will consume the cell's capacity in 29,166 hours, or about 3.3 years. But, as Figure 11 shows, Capacity Consumption can be spread over a much longer period of time.

Naturally, Back-up current varies with temperature. As Figure 12 indicates, the rate of Current Consumption by the MK48T02/12/03/13 with the clock running in Battery Back-up mode is a function of temperature.

Because the ambient temperature profile is dependent upon application controlled variables, only the user can estimate consumption rates in a given design. As long as ambient temperature is held reasonably constant, expected Capacity Consumption life can be estimated by reading 0\% V_{CC} Duty Cycle Capacity Consumption life directly from Figure 12, and dividing by the expected $V_{\text {CC }}$ Duty Cycle (i.e. at $25^{\circ} \mathrm{C}$ with a 66% Duty Cycle, Capacity Consumption Life $=3.3 /(1-66)=9.5$ years).

If the MK48T02/12/03/13 spends an appreciable amount of time at a variety of temperatures, the same equation provided in the previous Storage Life section should be used to estimate Capacity Consumption life.

Example Consumption Life Calculation

Taking the same cash registertterminal used earlier, let's assume that the high and low temperature periods are the non-operating, Battery Back-up mode periods, and that the register is turned on 10 hours a day seven days per week. The two points of interest on the curves in Figure 12 will be the $25^{\circ} \mathrm{C}$ and the $70^{\circ} \mathrm{C}$ points.

$$
\begin{aligned}
& \text { Reading Capacity Life values from Figure } 12 ; \mathrm{CL}_{1}=3.3 \mathrm{yrs} ., \mathrm{CL}_{2}=3.55 \mathrm{yrs} . \\
& \begin{aligned}
\text { Total Time }(\mathrm{TT})=8760 \mathrm{hrs} . / \mathrm{yr} . \mathrm{TA}_{1}=4672 \mathrm{hrs} . / \mathrm{yr} . \mathrm{TA}_{2}=438 \mathrm{hrs} . / \mathrm{yr} \text {. } \\
\text { Capacity Life } \geq \frac{1}{[(4672 / 8760) / 3.3]+[(438 / 8760) / 3.55]} \\
\geq 5.69 \mathrm{yrs} .
\end{aligned}
\end{aligned}
$$

Estimating Back-up System Life

The procedure for estimating Back-up System Life is simple. Pick the lower of the two numbers. In the case calculated in the examples, that would be 5.69 years.

The fact is, since either mechanism, Storage Life or Capacity Consumption, can end the system's life, the end is marked by whichever occurs first.

Figure 11. Typical Capacity Consumption Life at $25^{\circ} \mathrm{C}$ vs. V_{Cc} Duty Cycle

Figure 12. Current Consumption Life Over Temperature with 0\% Vcc Duty Cycle

APPLICATION NOTE:

BINARY TO BCD, AND BCD TO BINARY CONVERSION

The MK48T02/12/03/13 presents and accepts TIMEKEEPER data in BCD format. Conversion to or from other formats can be executed in a single line of code, as the following example BASIC program demonstrates.

10 REM BINARY TO BCD
20 DEF FNA (X)=INT (X/10)*16+X-INT (X/10)*10
30 REM BCD TO BINARY
40 DEF FNB $(X)=$ INT $(X / 16)^{*} 10+(X A N D 15)$

ABSOLUTE MAXIMUM RATINGS*

$$
\begin{aligned}
& \text { Voltage On Any Pin Relative To GND . - } 0.3 \mathrm{~V} \text { to +7.0 V } \\
& \text { Ambient Operating (} \mathrm{V}_{\mathrm{CC}} \mathrm{On} \text {) Temperature }\left(\mathrm{T}_{\mathrm{A}}\right) \ldots . .^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\
& \text { Ambient Storage (} V_{\mathrm{CC}} \text { Off, Oscillator Off) Temperature . }-20^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\
& \text { Total Device Power Dissipation . } 1 \text { Watt } \\
& \text { Output Current Per Pin . } 20 \text { mA } \\
& \text { "Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional } \\
& \text { operation of the device at these or any other conditions beyond those indicated in the operational section of this specification is not implied. Exposure to absolute } \\
& \text { maximum rating conditions for extended periods of time may affect reliability. }
\end{aligned}
$$

RECOMMENDED DC OPERATING CONDITIONS

$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)$

SYM	PARAMETER	MIN	MAX	UNITS	NOTES
V_{CC}	Supply Voltage (MK48T02/03)	4.75	5.50	V	1
$\mathrm{~V}_{\mathrm{CC}}$	Supply Voltage (MK48T12/13)	4.50	5.50	V	1
GND	Supply Voltage	0	0	V	1
$\mathrm{~V}_{\mathrm{IH}}$	Logic "1" Voltage All Inputs	2.2	$\mathrm{~V}_{\mathrm{CC}}+0.3 \mathrm{~V}$	V	1
$\mathrm{~V}_{\mathrm{IL}}$	Logic "0" Voltage All Inputs	-0.3	0.8	V	1,2

DC ELECTRICAL CHARACTERISTICS

$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{CC}}(\mathrm{Max}) \geq \mathrm{V}_{\mathrm{CC}} \geq \mathrm{V}_{\mathrm{CC}}\right.$ (Min) $)$

SYM	PARAMETER	MIN	MAX	UNITS	NOTES
$\mathrm{I}_{\mathrm{CC} 1}$	Average V_{CC} Power Supply Current		80	mA	3
$\mathrm{I}_{\mathrm{CC} 2}$	TTL Standby Current $\left(\overline{\mathrm{E}}=\mathrm{V}_{\mathrm{IH}}\right)$		5	mA	4
$\mathrm{I}_{\mathrm{CC} 3}$	CMOS Standby Current $\left(\overline{\mathrm{E}}=\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}\right)$		3	mA	4
I_{IL}	Input Leakage Current (Any Input)	-1	+1	$\mu \mathrm{~A}$	5
I_{OL}	Output Leakage Current	-5	+5	$\mu \mathrm{~A}$	5
$\mathrm{~V}_{\mathrm{OH}}$	Output Logic "1" Voltage ($\left.\mathrm{I}_{\mathrm{OUT}}=-1.0 \mathrm{~mA}\right)$	2.4		V	
$\mathrm{~V}_{\mathrm{OL}}$	Output Logic "0" Voltage $\left(\mathrm{I}_{\mathrm{OUT}}=2.1 \mathrm{~mA}\right)$		0.4	V	

CAPACITANCE ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

SYM	PARAMETER	MAX	NOTES
C_{I}	Capacitance on all pins (except D/Q)	7 pF	6
$\mathrm{C}_{\mathrm{D} / \mathrm{Q}}$	Capacitance on D / Q pins	10 pF	6,7

NOTES

1. All voltages referenced to GND.
2. Negative spikes of -1.0 volts allowed for up to 10 ns once per cycle.
3. I IC 1 measured with outputs open.
4. Measured with Control Bits set as follows: $\mathrm{R}=1 ; \mathrm{W}, \mathrm{ST}, \mathrm{KS}, \mathrm{FT}=0$.
5. Measured with GND $\leq V_{1} \leq V_{C C}$ and outputs deselected.
6. Effective capacitance calculated from the equation $C=1 \Delta t$ with $\Delta V=3$
volts and power supply at 5.0 V .
7. Measured with outputs deselected.

AC TEST CONDITIONS

Input Levels:
Transition Times:
Input and Output Timing Reference Levels
0.6 V to 2.4 V

5 ns
0.8 V or 2.2 V

Figure 13. Equivalent Output Load Diagram

B Package
24 Pin

NOTES:

1. Overall length includes .010 in . flash on either end of the package.
2. Package standoff to be measured per JEDEC requirements.
3. Measured from centerline to centerline at lead tips.
4. When the solder lead firish is specified, the maximum limit shall be increased by .003 in .

ORDERING INFORMATION
$\frac{\text { MK48T }}{\substack{\text { DEVICE } \\ \text { FAMILY }}} \frac{X}{V_{\text {CC }} \text { RANGE }} \frac{x}{\overline{\bar{G}}} \frac{B}{\text { FUNCTION }} \frac{-X X}{\text { PACKAGE }} \frac{-x}{\text { SPEED }}$

FEATURES

\square Predicted worst case battery life of 11 years @ $70^{\circ} \mathrm{C}$
\square Data retention in the absence of power
\square Data security provided by automatic write protection during power failure
\square Pin and functional compatibility with $2 \mathrm{~K} \times 8$ Byte Wide Static RAMs (MK48ZO2/12)
\square Pin and function compatible with $2 \mathrm{~K} \times 8$ EEPROMs (MK48Z03/13)
$\square+5$ Volt only Read/Write
\square Conventional SRAM write cycles
\square Full CMOS-440 mW active; 5.5 mW standby
\square 24-Pin Dual in Line package, JEDEC pinouts
\square Read-cycle time equals write-cycle time
\square Low-Battery Warning
\square Two power-fail deselect trip points available
MK48Z02/03 $4.75 \mathrm{~V} \geq \mathrm{V}_{\text {PFD }} \geq 4.50 \mathrm{~V}$
MK48Z12/13 $4.50 \mathrm{~V} \geq \mathrm{V}_{\text {PFD }} \geq 4.20 \mathrm{~V}$

Part Number	Access Time	R/W Cycle Time
MK48ZXX-12	120 ns	120 ns
MK48ZXX-15	150 ns	150 ns
MK48ZXX-20	200 ns	200 ns
MK48ZXX-25	250 ns	250 ns

TRUTH TABLE (MK48Z02/12)

V_{cc}	$\overline{\mathrm{E}}$	$\overline{\mathrm{G}}$	$\overline{\text { w }}$	MODE	DQ
$\begin{aligned} & <V_{C C}(\text { Max }) \\ & >V_{c C} \text { (Min) } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{HH}} \\ & \mathrm{~V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IL}} \end{aligned}$	$\begin{gathered} \mathrm{X} \\ \mathrm{X} \\ \mathrm{~V}_{\mathrm{IL}} \\ \mathrm{~V}_{\mathrm{IH}} \end{gathered}$	$\begin{gathered} X \\ V_{I L} \\ V_{I H} \\ V_{I H} \end{gathered}$	Deselect Write Read Read	High-Z D_{IN} Dout High-Z
$\begin{aligned} & <\mathrm{V}_{\text {PFD }} \text { (Min) } \\ & >\mathrm{V}_{\mathrm{SO}} \end{aligned}$	X	X	X	Power-Fail Deselect	High-Z
$\leq \mathrm{V}_{\text {So }}$	X	X	X	Battery Back-up	High-Z

Figure 1. Pin Connections

PIN NAMES

$A_{0}-A_{10}$	Address Inputs	V_{cc}	System Power (+5 V)
$\overline{\mathrm{E}}$	Chip Enable	$\overline{\mathrm{W}}$	Write Enable
GND	Ground	$\overline{\mathrm{G}}$	Output Enable
$\mathrm{DQ}-\mathrm{DQ}_{7}$ Data In/Data Out			

TRUTH TABLE (MK48Z03/13)

V_{cc}	\bar{E}	$\overline{\mathbf{G}}$	\bar{W}	MODE	DQ
$\begin{aligned} & <V_{c c}(\text { Max }) \\ & >V_{c c}(\text { Min }) \end{aligned}$	V_{IH}	X	X	Deselect	High-Z
	$\mathrm{v}_{\text {IL }}$	$\mathrm{V}_{\text {IH }}$	$\mathrm{v}_{\text {IL }}$	Write	$\mathrm{D}_{\text {IN }}$
	$\mathrm{v}_{\text {IL }}$	$\mathrm{V}_{\text {IL }}$	V_{IH}	Read	Dout
	VIL	V_{IH}	V_{IH}	Read	High-Z
	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {IL }}$	Read	High-Z
$\begin{aligned} & <V_{\text {PFD }} \text { (Min) } \\ & >V_{S O} \end{aligned}$	X	X	X	Power-Fail Deselect	High-Z
$\leq \mathrm{V}_{\text {So }}$	X	X	X	Battery Back-up	High-Z

[^2]
DESCRIPTION

The MK48Z02/03/12/13 is a 16,384 -bit, Non-Volatile Static RAM, organized 2K $\times 8$ using CMOS and an integral Lithium energy source. The ZEROPOWER ${ }^{\text {"I }}$ RAM has the characteristics of a CMOS static RAM, with the important added benefit of data being retained in the absence of power. Data retention current is so small that a miniature Lithium cell contained within the package provides an energy source to preserve data. Low current drain has been attained by the use of a full CMOS memory cell, novel analog support circuitry, and carefully controlled junction leakage by an all implanted

CMOS process. Safeguards against inadvertent data loss have been incorporated to maintain data integrity in the uncertain operating environment associated with power-up and power-down transients. The ZEROPOWER RAM can replace existing $2 \mathrm{~K} \times 8$ static RAM, directly conforming to the popular Byte Wide 24-pin DIP package (JEDEC). MK48Z02/03/12/13 also matches the pinning of 2716 EPROM and $2 \mathrm{~K} \times 8$ EEPROM. Like other static RAMs, there is no limit to the number of write cycles that can be performed. Since the access time, read cycle, and write cycle are less than 250 ns and require only +5 volts, no additional support circuitry is needed for interface to a microprocessor.

Figure 2. Block Diagram

OPERATION

Read Mode

The MK48Z02/03/12/13 is in the Read Mode whenever \bar{W} (Write Enable) is high and \bar{E} (Chip Enable) is low, providing a ripple-through access of data from eight of 16,384 locations in the static storage array. Thus, the unique address specified by the 11 Address Inputs (A_{n}) defines which one of 2,048 bytes of data is to be accessed.

Valid data will be available to the eight data Output Drivers within $t_{A A}$ after the last address input signal is stable, providing that the $\overline{\mathrm{E}}$ and $\overline{\mathrm{G}}$ access times are satisfied. If $\overline{\mathrm{E}}$ or $\overline{\mathrm{G}}$ access times are not met, data access will be measured from the limiting parameter ($\mathrm{t}_{\text {CEA }}$ or $\mathrm{t}_{\text {OEA }}$), rather than the address. The state of the eight Data I/O signals is controlled by the $\overline{\mathrm{E}}$ and $\overline{\mathrm{G}}$ control signals. The data lines may be in an indeterminate state between t_{OH} and t_{AA}, but the data lines will always have valid data at t_{AA}.

Figure 3. Read-Read-Write Timing
AC ELECTRICAL CHARACTERISTICS (READ CYCLE TIMING)
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{CC}}(\mathrm{Max}) \geq \mathrm{V}_{\mathrm{CC}} \geq \mathrm{V}_{\mathrm{CC}}\right.$ (Min))

SYM	PARAMETER	MK48ZXX-12		MK48ZXX-15		MK48ZXX-20		MK48ZXX-25		UNITS	NOTES
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX		
$t_{\text {RC }}$	Read Cycle Time	120		150		200		250		ns	
$t_{\text {AA }}$	Address Access Time		120		150		200		250	ns	1
${ }^{\text {C CEA }}$	Chip Enable Access Time		120		150		200		250	ns	1
toEA	Output Enable Access Time		75		75		80		90	ns	1
${ }^{\text {t CEE }}$	Chip Enable Hi to High-Z		30		35		40		50	ns	
$\mathrm{t}_{\text {OEZ }}$	Output Enable Hi to High-Z		30		35		40		50	ns	
${ }^{\text {toh }}$	Valid Data Out Hold Time	15		15		15		15		ns	1

NOTE

1. Measured using the Output Load Diagram shown in Figure 8.

WRITE MODE

The MK48Z02/12 is in Write Mode whenever the \bar{W} and \bar{E} inputs are held low. The MK48ZO3/13 requires \bar{G} to be held high in addition to \bar{W} and \bar{E} being held low. The start of a Write is referenced to the latter occurring falling edge of either W or \bar{E}, or the rising edge of \bar{G} (MK48Z03/13). A Write is terminated by the earlier rising edge of \bar{W} or \bar{E}, or the falling edge of \bar{G} (MK48Z03/13). The addresses must be held valid throughout the cycle. \bar{W} or \bar{E} must return high, or \bar{G} must return low (MK48Z03/13) for a minimum of $t_{\text {WR }}$ prior to the initiation of another Read or Write Cycle. Data-in must be valid for $t_{D S}$ prior to the End of Write and remain valid for $t_{D H}$ afterward.

Some processors thrash producing spurious Write Cycles during power-up, despite application of a poweron reset. The MK48Z03/13 allow a user to easily overcome this problem by holding $\overline{\mathrm{G}}$ low with the power-on reset signal. MK48Z02/12 users should force \bar{W} or \bar{E} high during power-up to protect memory after V_{CC} reaches $\mathrm{V}_{\mathrm{CC}}(\mathrm{min})$ but before the processor stablizes.

The MK48Z02/12 \bar{G} input is a DON'T CARE in the write mode. \bar{G} can be tied low and two-wire RAM control can be implemented. A low on \bar{W} will disable the outputs $\mathrm{t}_{\text {WEZ }}$ after \bar{W} falls. Take care to avoid bus contention when operating with two-wire control.

Figure 4. Write-Write-Read Timing
AC ELECTRICAL CHARACTERISTICS (WRITE CYCLE TIMING)
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{CC}}(\mathrm{Max}) \geq \mathrm{V}_{\mathrm{CC}} \geq \mathrm{V}_{\mathrm{CC}}\right.$ (Min) $)$

SYM	PARAMETER	MK48ZXX-12		MK48ZXX-15		MK48ZXX-20		MK48ZXX-25		UNITS	NOTES
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX		
$t_{\text {wc }}$	Write Cycle Time	120		150		200		250		ns	
$t_{\text {AS }}$	Address Setup Time	0		0		0		0		ns	
$\mathrm{t}_{\text {AW }}$	Address Valid to End of Write	120		150		200		250		ns	
$t_{\text {CEW }}$	Chip Enable to End of Write	75		90		120		160		ns	
$t_{\text {WEW }}$	Write Enable to End of Write	75		90		120		160		ns	
$t_{\text {WF }}$	Write Recovery Time	10		10		10		10		ns	
${ }^{\text {D }}$ D	Data Setup Time	35		40		60		100		ns	
t_{DH}	Data Hold Time	0		0		0		0		ns	
$t_{\text {WEZ }}$	Write Enable Low to High-Z		40		50		60		80	ns	
$\mathrm{t}_{\text {GEW }}$	$\overline{\mathrm{G}}$ to End of Write	75		90		120		160		ns	1

NOTE:

1. Applies to MK48Z03/13 only

DATA RETENTION MODE

With V_{CC} applied, the MK48Z02/12/03/13 operates as a conventional BYTEWIDE static ram. However, V_{CC} is being constantly monitored. Should the supply voltage decay, the RAM will automatically power-fail deselect, write protecting itself when $V_{C C}$ falls within the $V_{P F D}$ (max), $\mathrm{V}_{\text {PFD }}(\mathrm{min})$ window. The MK48Z02/03 has a $\mathrm{V}_{\text {PFD }}$ (\max) $-\mathrm{V}_{\text {PFD }}(\min)$ window of 4.75 volts to 4.5 volts, providing very high data security, particularly when all of the other system components are specified to 5.0 volts plus and minus 10%. The MK48Z12/13 has a VPFD (max) - $\mathrm{V}_{\text {PFD }}$ (min) window of 4.5 volts to 4.2 volts, allowing users constrained to a 10% power supply specification to use the device.

Note: A mid-write cycle power failure may corrupt data at the current address location, but does not jeopardize the rest of the RAM's content. At voltages below VPFD (min), the user can be assured the memory will be in a write protected state, provided the V_{CC} fall time does not exceed t_{F}. The MK48Z02/12/03/13 may respond to transient noise spikes that reach into the deselect window if they should occur during the time the device is sampling V_{CC}. Therefore decoupling of power supply lines is recommended.

The power switching circuit connects external V_{CC} to the RAM and disconnects the battery when $V_{C C}$ rises above V_{SO}. As V_{CC} rises the battery voltage is checked. If the voltage is too low, an internal Battery Not OK ($\overline{\mathrm{BOK}}$) flag will be set. The $\overline{\mathrm{BOK}}$ flag can be checked after power up. If the BOK flag is set, the first write attempted will be blocked. The flag is automatically cleared after first write, and normal RAM operation resumes. Figure 5 illustrates how a $\overline{\text { BOK }}$ check routine could be structured.

Normal RAM operation can resume $t_{\text {REC }}$ after $V_{C C}$ exceeds $V_{\text {PFD }}$ (Max). Caution should be taken to keep \bar{E} or \bar{W} high or \bar{G} low (MK48Z03/13) as $V_{C C}$ rises past $\mathrm{V}_{\text {PFD }}$ (Min) as some systems may perform inadvertent write cycles after $\mathrm{V}_{\text {cc }}$ rises but before normal system operation begins.

Figure 5. Checking the $\overline{\mathrm{BOK}}$ Flag Status

Figure 6. Power-Down/Power-Up Timing
DC ELECTRICAL CHARACTERISTICS (POWER-DOWN/POWER-UP TRIP POINT VOLTAGES) $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}\right.$)

SYM	PARAMETER	MIN	TYP	MAX	UNITS	NOTES
V $_{\text {PFD }}$	Power-fail Deselect Voltage (MK48Z02/03)	4.50	4.6	4.75	V	1
V PFD	Power-fail Deselect Voltage (MK48Z12/13)	4.20	4.3	4.50	V	1
$\mathrm{~V}_{\text {SO }}$	Battery Back-up Switchover Voltage		3		V	1

AC ELECTRICAL CHARACTERISTICS (POWER-DOWN/POWER-UP TIMING)
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}\right)$

SYM	PARAMETER	MIN	MAX	UNITS	NOTES
$t_{\text {PD }}$	$\overline{\mathrm{E}}$ or $\overline{\mathrm{W}}$ at $\mathrm{V}_{\text {IH }}$ or $\overline{\mathrm{G}}$ at V_{IL} before Power Down	0		ns	
t_{F}	$\mathrm{V}_{\text {PFD }}$ (Max) to $\mathrm{V}_{\text {PFD }}$ (Min) $\mathrm{V}_{\text {CC }}$ Fall Time	300		$\mu \mathrm{S}$	2
$t_{\text {FB }}$	$\mathrm{V}_{\text {PFD }}$ (Min) to $\mathrm{V}_{\text {SO }} \mathrm{V}_{\text {CC }}$ Fall Time	10		$\mu \mathrm{S}$	3
t_{RB}	$\mathrm{V}_{\text {SO }}$ to $\mathrm{V}_{\text {PFD }}$ (Min) $\mathrm{V}_{\text {CC }}$ Rise Time	1		$\mu \mathrm{S}$	
t_{R}	$\mathrm{V}_{\text {PFD }}$ (Min) to $\mathrm{V}_{\text {PFD }}$ (Max) $\mathrm{V}_{\text {CC }}$ Rise Time	0		$\mu \mathrm{S}$	
$\mathrm{t}_{\text {REC }}$	$\overline{\mathrm{E}}$ or \bar{W} at V_{IH} or $\overline{\mathrm{G}}$ at V_{IL} after Power Up	2		ms	

NOTES:

1. All voltages referenced to GND.
2. $V_{\text {PFD }}$ (Max) to $V_{\text {PFD }}$ (Min) fall times of less t_{F} may result in deselection/write protection not occurring until $50 \mu \mathrm{~s}$ after V_{CC} passes $\mathrm{V}_{\text {PFD }}$ (Min). V VFD (Max) to (Min) fall times of less than $10 \mu \mathrm{~s}$ may cause corruption of RAM data.
3. $\mathrm{V}_{\text {PFD }}(\mathrm{Min})$ to V_{SO} fall times of less than $\mathrm{t}_{\text {FB }}$ may cause corruption of RAM data.

CAUTION

Negative undershoots below -0.3 volts are not allowed on any pin while in Battery Back-up mode.

DATA RETENTION TIME

About Figure 7

Figure 7 illustrates how expected MK48Z02/03/12/13 battery life is influenced by temperature. The life of the battery is controlled by temperature and is virtually independent of the percentage of time the MK48Z02/03/12/13 spends in battery back-up mode.

Battery life predictions presented in Figure 7 are extrapolated from temperature accelerated life-test data collected in over 100 million device hours of continuing bare cell and encapsulated cell battery testing by Thomson - Mostek. Obviously, temperature accelerated testing cannot identify non-temperature dependent failure mechanisms. However, in view of the fact that no random cell failures have been recorded in any of Thomson - Mostek's ongoing battery testing since it began in 1982, we believe the likelihood of such failure mechanisms surfacing is extremely poor. For the purpose of this testing, a cell failure is defined as the inability of a cell stabilized at $25^{\circ} \mathrm{C}$ to produce a 2.0 volt closed-circuit voltage across a 250 K ohm load resistance.

A Special Note: The summary presented in Figure 7 represents a conservative analysis of the data presently available. While Thomson Mostek is most likely in possession of the largest collection of battery life data of this kind in the world, the results presented should not be considered absolute or final; they can be expected to change as yet more data becomes available. We believe that future read-points of life tests presently under way and improvements in the battery technology itself will result in a continuing improvement of these figures.

Two end of life curves are presented in Figure 7. They are labeled "Average ($\mathrm{t}_{50 \%}$)" and " $\mathrm{t}_{1 \%}$)". These terms relate to the probability that a given number of failures will have accumulated by a particular point in time. If, for example, expected life at $70^{\circ} \mathrm{C}$ is at issue, Figure 7 indicates that a particular MK48Z02/03/12/13 has a 1\% chance of having a battery failure 11 years into its life and a 50% chance of failure at the 12 year mark. Conversely, given a sample of devices, 1% of them can be expected to experience battery failure within 11 years; 50% of them can be expected to fail within 20 years.

The $t_{1 \%}$ figure represents the practical onset of wearout, and is therefore suitable for use in what would normally be though of as a worst-case analysis. The $t_{50 \%}$ figure represents "normal" or "average" life. It is, therefore, accurate to say that the average device will last "t 50% ".
Battery life is defined as beginning on the date of manufacture. Each MK48Z02/03/12/13 is marked with a four digit manufacturing date code in the form YYWW (Example: $8502=1985$, week 2).

Calculating Predicted Battery Life

As Figure 7 indicates, the predicted life of the battery in the MK48Z02/03/12/13 is a function of temperature. The back-up current required by the memory matrix in the MK48Z02/03/12/13 is so low that it has negligible influence on battery life.
Because predicted battery life is dependent upon application controlled variables, only the user can estimate predicted battery life in a given design. As long as ambient temperature is held reasonably constant, expected life can be read directly from Figure 7. If the MK48Z02/03/12/13 spends an appreciable amount of time at a variety of temperatures, the following equations should be used to estimate battery life.

$$
\text { Predicted Battery Life }=\frac{1}{\left.\left.\left[\left(\mathrm{TA}_{1} / \mathrm{TT}\right) / \mathrm{BL}_{1}\right)\right]+\left[\left(\mathrm{TA}_{2} / \mathrm{TT}\right) / \mathrm{BL}_{2}\right]+\ldots+\left[\left(\mathrm{TA}_{n} / \mathrm{TT}\right) / \mathrm{BL}_{n}\right)\right]}
$$

Where $T A_{1}, T A_{2}, T A_{n}=$ Time at Ambient Temperature 1, 2, etc.

$$
\begin{aligned}
\mathrm{TT} & =\text { Total Time }=\mathrm{TA}_{1}+\mathrm{TA}_{2}+\ldots+\mathrm{TA}_{\mathrm{n}} \\
\mathrm{BL}_{1}, \mathrm{BL}_{2}, \mathrm{BL}_{\mathrm{n}} & =\text { Predicted Battery Lifetime at Temp 1, Temp 2, etc. (see Figure 7). }
\end{aligned}
$$

EXAMPLE PREDICTED BATTERY LIFE CALCULATION

A cash register/terminal operates in an environment where the MK48Z02/03/12/13 is exposed to tempera-
tures of $30^{\circ} \mathrm{C}\left(86^{\circ} \mathrm{F}\right)$ or less for $3066 \mathrm{hrs} / \mathrm{yr}$; temperatures greater than $25^{\circ} \mathrm{C}$, but less than $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$, for $5256 \mathrm{hrs} / \mathrm{yr}$; and temperatures greater than $40^{\circ} \mathrm{C}$, but less than $70^{\circ} \mathrm{C}\left(158^{\circ} \mathrm{F}\right)$, for the remaining $438 \mathrm{hrs} / \mathrm{yr}$.

Reading predicted typical life values from Figure 7; $B L_{1}=456$ yrs., $B L_{2}=175$ yrs., $B L_{3}=11.4$ yrs.
Total Time $(\mathrm{TT})=8760 \mathrm{hrs} . / \mathrm{yr} . \quad \mathrm{TA}_{1}=3066 \mathrm{hrs} . / \mathrm{yr} . \quad \mathrm{TA}_{2}=5256 \mathrm{hrs} . / \mathrm{yr} . \quad \mathrm{TA}_{3}=438 \mathrm{hrs} . / \mathrm{yr}$.
Predicted Typical Battery Life \geq 1
$[(3066 / 8760) / 456]+[(5256 / 8760) / 175]+[(438 / 8760) / 11.4]$
$\geq 116.5 \mathrm{yrs}$.

Figure 7. MK48Z02/03/12/13 Predicted Battery Storage Life vs Temperature

ABSOLUTE MAXIMUM RATINGS*

```
Voltage On Any Pin Relative To GND -0.3 V to +7.0 V
Ambient Operating ( \(\mathrm{V}_{\mathrm{CC}} \mathrm{On}\) ) Temperature ( \(\mathrm{T}_{\mathrm{A}}\) ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) Ambient Storage ( \(\mathrm{V}_{\mathrm{CC}}\) Off) Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)
Total Device Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Watt
Output Current Per Pin
.20 mA
"Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.
CAUTION: Under no conditions can the "Absolute Maximum Rating" tor the voltage on any pin be exceeded since it will cause permanent damage. Specifically, do not perform the "standard" continuity test on any input or output pin, i.e do not force these pins below - 0.3 V DC.
```

RECOMMENDED DC OPERATING CONDITIONS
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)$

SYM	PARAMETER	MIN	MAX	UNITS	NOTES
$V_{\text {CC }}$	Supply Voltage (MK48Z02/03)	4.75	5.50	V	1
$\mathrm{~V}_{\mathrm{CC}}$	Supply Voltage (MK48Z12/13)	4.50	5.50	V	1
GND	Supply Voltage	0	0	V	1
$\mathrm{~V}_{\text {IH }}$	Logic "1" Voltage All Inputs	2.2	$\mathrm{~V}_{\mathrm{CC}}+0.3 \mathrm{~V}$	V	1
$\mathrm{~V}_{\mathrm{IL}}$	Logic "0" Voltage All Inputs	-0.3	0.8	V	1,2

DC ELECTRICAL CHARACTERISTICS
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{CC}}(\max) \geq \mathrm{V}_{\mathrm{CC}} \geq \mathrm{V}_{\mathrm{CC}}\right.$ (min) $)$

SYM	PARAMETER	MIN	MAX	UNITS	NOTES
$\mathrm{I}_{\mathrm{CC} 1}$	Average V_{CC} Power Supply Current		80	mA	3
$\mathrm{I}_{\mathrm{CC} 2}$	TTL Standby Current $\left(\overline{\mathrm{E}}=\mathrm{V}_{\mathrm{IH}}\right)$		3	mA	
$\mathrm{I}_{\mathrm{CC} 3}$	CMOS Standby Current $\left(\overline{\mathrm{E}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}\right)$		1	mA	
I_{LL}	Input Leakage Current (Any Input)	-1	+1	$\mu \mathrm{~A}$	4
I_{OL}	Output Leakage Current	-5	+5	$\mu \mathrm{~A}$	4
$\mathrm{~V}_{\mathrm{OH}}$	Output Logic "1" Voltage $\left(\mathrm{I}_{\mathrm{OUT}}=-1.0 \mathrm{~mA}\right)$	2.4		V	
$\mathrm{~V}_{\mathrm{OL}}$	Output Logic "0" Voltage $\left(\mathrm{I}_{\mathrm{OUT}}=2.1 \mathrm{~mA}\right)$		0.4	V	

CAPACITANCE ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

SYM	PARAMETER	MAX	NOTES
C_{I}	Capacitance on all pins (except D/Q)	7 pF	5
$C_{D / Q}$	Capacitance on D/Q pins	10 pF	4,5

NOTES

1. All voltages referenced to GND.
2. Negative spikes of -1.0 volts allowed for up to 10 ns once per cycle.
3. ICC1 measured with outputs open.
4. Measured with $G N D \leq V_{1} \leq V_{C C}$ and outputs deselected.
5. Effective capacitance calculated from the equation $C=\frac{1 \Delta t}{\Delta V}$ with $\Delta V=3$ volts and power supply at nominal level.

AC TEST CONDITIONS

Input Levels:
Transition Times:
Input and Output Timing Reference Levels
Ambient Temperature
V_{CC} (MK48Z02/03)
V_{CC} (MK48Z12/13)
0.6 V to 2.4 V

5 ns
0.8 V or 2.2 V
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
4.75 V to 5.5 V
4.5 V to 5.5 V

Figure 8. Output Load Diagram

ORDERING INFORMATION

NOTES:

1. Overall length includes .010 in . flash on either end of the package.
2. Package standoff to be measured per JEDEC requirements.
3. Measured from centerline to centerline at lead tips.
4. When the solder lead finish is specified, the maximum limit shall be increased by .003 in .

FEATURES

\square Predicted Worst Case Battery Life of 11 years @ $70^{\circ} \mathrm{C}$
\square Data retention in the absence of power
\square Power Fail Interrupt Output (MK48Z09/19)
\square Extra data security provided by early write protection during power failure (MK48Z08/09)
\square Direct replacement for volatile $8 \mathrm{~K} \times 8$ Byte Wide Static RAM
$\square+5$ Volt only Read/Write
\square Unlimited write cycles
$\square 28$-Pin Dual In Line package, JEDEC pinout
\square Read-cycle time equals write-cycle time
\square Low-Battery Warning
\square Two power-fail deselect trip points available
MK48Z08/09: $4.75 \mathrm{~V} \geq \mathrm{V}_{\text {PFD }} \geq 4.50 \mathrm{~V}$
MK48Z18/19: $4.50 \mathrm{~V} \geq \mathrm{V}_{\text {PFD }} \geq 4.20 \mathrm{~V}$

Part Number	Access Time	R/W Cycle Time
MK48Z08B-25	250 ns	250 ns
MK48Z08B-20	200 ns	200 ns
MK48Z08B-15	150 ns	150 ns
MK48Z18B-25	250 ns	250 ns
MK48Z18B-20	200 ns	200 ns
MK48Z18B-15	150 ns	150 ns
MK48Z09B-25	250 ns	250 ns
MK48Z09B-20	200 ns	200 ns
MK48Z09B-15	150 ns	150 ns
MK48Z19B-25	250 ns	250 ns
MK48Z19B-20	200 ns	200 ns
MK48Z19B-15	150 ns	150 ns

Figure 1. Pin Connections

PIN NAMES

$\mathrm{A}_{0}-\mathrm{A}_{12}$	Address Inputs	V_{cc} System Power $(+5 \mathrm{~V})$
$\overline{\mathrm{E}_{1}}, \mathrm{E}_{2}$	Chip Enable	$\overline{\mathrm{W}}$
GND	Write Enable	
$\mathrm{DQ}_{0}-\mathrm{DQ}_{7}$ Data In/Data Out	$\overline{\mathrm{G}} \quad$ Output Enable	

ZEROPOWER ${ }^{\text {ww }}$ is a trademark of Thomson Components - Mostek Corporation

DESCRIPTION

The MK48Z08/MK48Z18/MK48Z09/MK48Z19 is a 65,536-bit, Non-Volatile Static RAM, organized $8 \mathrm{~K} \times 8$ using CMOS and an integral Lithium energy source. The ZEROPOWER ${ }^{\text {TM }}$ RAM has the characteristics of a CMOS static RAM, with the important added benefit of data being retained in the absence of power. Data retention current is so small that a miniature Lithium cell contained within the package provides an energy source to preserve data. Low current drain has been attained by the use of a full CMOS memory cell, novel analog support circuitry, and carefully controlled junction leak-
age by an all implanted CMOS process. Safeguards against inadvertent data loss have been incorporated to maintain data integrity in the uncertain operating environment associated with power-up and power-down transients. The ZEROPOWER RAM can replace existing 8K x 8 static RAM, directly conforming to the popular Byte Wide 28-pin DIP package (JEDEC). MK48Z08/18/09/19 also matches the pinning of 2764 EPROM and $8 \mathrm{~K} \times 8$ EEPROMs. Like other static RAM, there is no limit to the number of write cycles that can be performed. Since the access time, read cycle, and write cycle are less than 250 ns and require only +5 volts, no additional support circuitry is needed for interface to a microprocessor.

TRUTH TABLE MK48Z08/18

v_{cc}	E	$\overline{\mathbf{G}}$	W	MODE	DQ	POWER
$\underset{(\max)}{<\mathrm{V}_{\mathrm{cc}}}$	$\mathrm{V}_{1 \mathrm{H}}$	x	X	Deselect	High Z	Standby
	$\mathrm{V}_{\text {IL }}$	X	$\mathrm{V}_{\text {IL }}$	Write	$\mathrm{D}_{\text {IN }}$	Active
$\begin{aligned} & >V_{c \mathrm{c}} \\ & (\mathrm{~min}) \end{aligned}$	$\mathrm{V}_{\text {IL }}$	V_{IL}	$\mathrm{V}_{1 \mathrm{H}}$	Read	$\mathrm{D}_{\text {OUT }}$	Active
	V_{IL}	V_{IH}	V_{IH}	Read	High Z	Active
$\begin{array}{\|l\|} \hline<\mathrm{V}_{\mathrm{PFD}} \\ (\mathrm{~min}) \\ >\mathrm{V}_{\mathrm{SO}} \\ \hline \end{array}$	X	X	X	Deselect	High Z	CMOS Standby
$\leq \mathrm{V}_{\text {SO }}$	X	X	X	Deselect	High Z	Battery Back-up Mode

TRUTH TABLE MK48Z09/19

V_{cc}	$\overline{E_{1}}$	E_{2}	$\overline{\mathrm{G}}$	W	MODE	DQ	POWER
$\begin{aligned} & <\mathrm{V}_{\mathrm{cc}} \\ & (\max) \end{aligned}$	$\mathrm{V}_{1 H}$	X	x	X	Deselect	High Z	Standby
	X	V_{IL}	x	X	Deselect	High Z	Standby
	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{1 H}$	X	$V_{\text {IL }}$	Write	$\mathrm{D}_{\text {IN }}$	Active
$\begin{aligned} & >V_{c c} \\ & (\mathrm{~min}) \end{aligned}$	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{1 H}$	$\mathrm{V}_{\text {IL }}$	V_{IH}	Read	$\mathrm{D}_{\text {OUT }}$	Active
	$\mathrm{V}_{\text {IL }}$	V_{IH}	V_{H}	V_{IH}	Read	High Z	Active
$<V_{\text {PFD }}$ (min) $>\mathrm{V}_{\mathrm{SO}}$	X	X	X	X	Deselect	High Z	CMOS Standby
$\leq \mathrm{V}_{\text {SO }}$	X	X	X	X	Deselect	High Z	Battery Back-up Mode

Figure 2. Block Diagram

OPERATION

Read Mode

The MK48Z08/18/09/19 is in the Read Mode whenever \bar{W} (Write Enable) is high, \bar{E}_{1} (Chip Enable) is low, and E_{2} is high (MK48Z09/19), providing a ripple-through access of data from eight of 65,536 locations in the static storage array. Thus, the unique address specified by the 13 Address Inputs (A_{n}) defines which one of 8,192 bytes of data is to be accessed.

Valid data will be available to the eight data Output Drivers within $t_{A A}$ after the last address input signal is stable, providing that the Chip Enable and $\overline{\mathrm{G}}$ access times are satisfied. If Chip Enable or \bar{G} access times are not met, data access will be measured from the limiting parameter ($t_{\text {OEA }}$ or $t_{\text {CEA }}$ or $t_{\text {CEA2 }}$), rather than the address. The state of the eight Data I/O signals is controlled by the Chip Enable and \bar{G} control signals. The data lines may be in an indeterminate state between $t_{O H}$ and $t_{A A}$, but the data lines will always have valid data at $t_{A A}$.

Figure 3. Read Cycle

READ CYCLE

AC ELECTRICAL CHARACTERISTICS

$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{CC}}(\mathrm{min}) \leq \mathrm{V}_{\mathrm{CC}} \leq \mathrm{V}_{\mathrm{CC}}(\max)\right)$

SYM	PARAMETER	MK48ZX×-15		MKK48ZXX-20		MKK48ZXX-25		UNITS	NOTES
		MIN	MAX	MIN	MAX	MIN	MAX		
t_{RC}	Read Cycle Time	150	-	200	-	250	-	ns	
$t_{\text {AA }}$	Address Access Time	-	150	-	200	-	250	ns	
$\mathrm{t}_{\text {CEA } 1}$	$\overline{\mathrm{E}_{1}}$ Access Time	-	150	-	200	-	250	ns	
$\mathrm{t}_{\text {CEA2 }}$	E_{2} Access Time	-	150	-	200	-	250	ns	
$\mathrm{t}_{\text {OEA }}$	Output Enable to Output in Valid	-	75	-	100	-	125	ns	
$\mathrm{t}_{\text {CEL }}$	Chip Enable ($\overline{\mathrm{E}_{1}}, \mathrm{E}_{2}$) to Output In Low-Z	10	-	10	-	15	-	ns	
$\mathrm{t}_{\text {OEL }}$	Output Enable to Output Low-Z	5	-	5	-	10	-	ns	
${ }^{\text {t CEZ }}$	Chip Enable ($\bar{E}_{1}, \mathrm{E}_{2}$) Output In High-Z	-	75	-	100	-	125	ns	
$\mathrm{t}_{\text {OEZ }}$	Output Enable to Output High-Z	-	60	-	80	-	100	ns	
${ }^{\text {OH}}$	Output Data Hold Time	20	-	20	-	25	-	ns	

Write Mode

The MK48Z08/18/09/19 is in the Write Mode whenever the \bar{W} and \bar{E}_{1} are low and E_{2} (MK48Z09/19) is high. The start of a write is referenced to the latter occurring falling edge of \bar{W} or $\overline{E_{1}}$, or the rising edge of E_{2} (MK48Z09/19). A write is terminated by the earlier rising edge of \bar{W} or $\overline{E_{1}}$ or the falling edge of E_{2} (MK48ZO9/19). The addresses must be held valid throughout the cycle. $\overline{E_{1}}$ or \bar{W} must return high or E_{2} (MK48Z09/19) must
return low for a minimum of $t_{\text {WR }}$ prior to the initiation of another read or write cycle. Data-in must be valid $t_{D S}$ prior to the end of write and must remain valid for t_{DH} afterward.

Because $\overline{\mathrm{G}}$ is a Don't Care in Write Mode and a low on \bar{W} will return the outputs to High-Z, $\overline{\mathrm{G}}$ can be tied low and two-wire RAM control can be implemented. A low on \bar{W} will disable the outputs $t_{\text {WEZ }}$ after \bar{W} falls. Take care to avoid bus contention when operating with two-wire control.

Figure 4. Write Cycle 1 (\bar{W} Controlled Write)

Figure 5. Write Cycle $2\left(\bar{E}_{1}\right.$ Controlled Write)

Figure 6. Write Cycle 3 ($\mathrm{E}_{\mathbf{2}}$ Controlled Write)
WRITE CYCLE
AC ELECTRICAL CHARACTERISTICS
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{CC}}(\mathrm{min}) \leq \mathrm{V}_{\mathrm{CC}} \leq \mathrm{V}_{\mathrm{CC}}(\max)\right)$

SYM	PARAMETER	MK48ZXX-15		MK48ZXX-20		MK48ZXX-25		UNITS	NOTES
		MIN	MAX	MIN	MAX	MIN	MAX		
$\mathrm{t}_{\text {wc }}$	Write Cycle Time	150	-	200	-	250	-	ns	
$\mathrm{t}_{\text {WD }}$	Write Pulse Width	100	-	150	-	200	-	ns	
$t_{\text {cew }}$	Chip Selection to End of Write	130	-	180	-	230	-	ns	
$\mathrm{t}_{\text {AS }}$	Address Set up Time	0	-	0	-	0	-	ns	
$t_{\text {WR }}$	Write Recovery Time	10	-	10	-	10	-	ns	
$\mathrm{t}_{\text {WEZ }}$	$\overline{\mathrm{W}}$ to Output High-Z	-	75	-	100	-	125	ns	
$\mathrm{t}_{\text {DS }}$	Data Setup Time	70	-	80	-	90	-	ns	
t_{DH}	Data Hold Time	5	-	5	-	5	-	ns	

AC ELECTRICAL CHARACTERISTICS (POWER-DOWN/POWER-UP TIMING)
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}\right.$)

SYM	PARAMETER	MIN	MAX	UNITS	NOTES
t_{F}	$\mathrm{V}_{\text {PFD }}$ (Max) to $\mathrm{V}_{\text {PFD }}$ (Min) $\mathrm{V}_{\text {CC }}$ Fall Time	300		$\mu \mathrm{S}$	2
$\mathrm{t}_{\text {FB }}$	$\mathrm{V}_{\text {PFD }}$ (Min) to $\mathrm{V}_{\text {SO }} \mathrm{V}_{\text {CC }}$ Fall Time	10		$\mu \mathrm{S}$	3
t_{RB}	$V_{\text {SO }}$ to $\mathrm{V}_{\text {PFD }}$ (Min) $\mathrm{V}_{\text {CC }}$ Rise Time	1		$\mu \mathrm{s}$	
t_{R}	$\mathrm{V}_{\text {PFD }}$ (Min) to $\mathrm{V}_{\text {PFD }}$ (Max) $\mathrm{V}_{\text {CC }}$ Rise Time	0		$\mu \mathrm{S}$	
$\mathrm{t}_{\text {REC }}$	\bar{E}_{1} or \bar{W} at $V_{1 H}$ or E_{2} at $V_{\text {IL }}$ after Power-Up	100		$\mu \mathrm{S}$	
$t_{\text {PFX }}$	$\overline{\text { INT }}$ Low to Auto Deselect	10	40	$\mu \mathrm{S}$	
$\mathrm{t}_{\text {PFH }}$	$\mathrm{V}_{\text {PFD }}$ (Max) to INT High		100	$\mu \mathrm{s}$	4
$\mathrm{t}_{\text {FB }}$	$\mathrm{V}_{\text {PFD }}(\mathrm{Min})$ to $\mathrm{V}_{\text {SO }}$	10		$\mu \mathrm{S}$	

DC ELECTRICAL CHARACTERISTICS (POWER-DOWN/POWER-UP TRIP POINT VOLTAGES)
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}\right)$

SYM	PARAMETER	MIN	TYP	MAX	UNITS	NOTES
V PFD	Power-fail Deselect Voltage (MK48Z08/09)	4.50	4.6	4.75	V	$\mathbf{1}$
V PFD	Power-fail Deselect Voltage (MK48Z18/19)	4.20	4.3	4.50	V	$\mathbf{1}$
V $_{\text {SO }}$	Battery Back-up Switchover Voltage		$\mathbf{3}$		V	$\mathbf{1}$

NOTES:

1. All voltages referenced to GND.
2. $\mathrm{V}_{\text {PFD }}$ (Max) to $\mathrm{V}_{\text {PFD }}$ (Min) fall times of less t_{F} may result in deselection/write protection not occurring until $40 \mu \mathrm{~s}$ after V_{CC} passes $\mathrm{V}_{\text {PFD }}$ (Min). VPFD (Max) to (Min) fall times of less than $10 \mu \mathrm{~s}$ may cause corruption of RAM data.
3. $\mathrm{V}_{\text {PFD }}(\mathrm{Min})$ to V_{SO} fall times of less than t_{FB} may cause corruption of RAM data.
4. INT may go high anytime after $V_{C C}$ exceeds $V_{\text {PFD }}(\mathrm{min})$ and is guaranteed to go high $\mathrm{t}_{\mathrm{PFH}}$ after $V_{C C}$ exceeds $V_{\text {PFD }}$ (max).

CAUTION

Negative Undershoots Below - 0.3 volts are not allowed on any pin while in Battery Back-up mode.

NOTE:

Inputs may or may not be recognized at this time.
Caution should be taken to keep \bar{E}_{1} or \bar{W} in the high state or E_{2} low as V_{CC} rises past $\mathrm{V}_{\text {PFD }}$ (min). Some systems may perform inadvertant write cycles after $V_{C C}$ rises but before normal system operation begins. Even though a power on reset is being applied to the processor a reset condition may not occur until after the system clock is running.

Figure 7. Power Down/Power-Up Timing

Power Fail and Data Retention

With V_{CC} applied, the MK48Z08/18/09/19 operates as a static RAM. The Power-Fail Detect Circuit of the MK48Z08/18/09/19 constantly monitors V_{CC}. Because the reference voltage applied to the detector/comparator is stabilized over temperature, the Power-Fail Detect trip point remains within the $V_{\text {PFD }} \min / m a x$ window under all rated conditions. Once deselection has occurred, all inputs and outputs are "Don't Cares" and may have anywhere from -0.3 to $\mathrm{V}_{\mathrm{cc}}+0.3$ volts applied to them with absolutely no effect upon the RAM.

As V_{CC} falls below approximately V_{SO} volts, the power switching circuit connects the lithium battery to supply power to the RAM.

The power switching circuit connects external $V_{C C}$ to the RAM and disconnects the battery when $V_{C C}$ rises above approximately V_{SO} volts. As V_{CC} rises from $\mathrm{V}_{\mathrm{PFD}}$
(\min) to $\mathrm{V}_{\text {PFD }}(\mathrm{max})$, the battery voltage is checked. If the voltage is too low, an Internal Battery Not OK (BOK) flag will be set.

Normal RAM operation can resume $t_{\text {REC }}$ after $V_{C C}$ reaches $\mathrm{V}_{\text {PFD }}$ (max). Caution should be taken to keep $\overline{E_{1}}$, or \bar{W} in the high state or E_{2} low as $V_{C C}$ rises past $\mathrm{V}_{\text {PFD }}$ (min). Some systems may perform inadvertant write cycles after V_{CC} rises but before normal system operation begins.

The $\overline{\text { BOK }}$ flag can be checked after power up. If the $\overline{B O K}$ flag is set, the first write attempted will be blocked. The flag is automatically cleared after first write, and normal RAM operation resumes. Figure 8 illustrates how a $\overline{B O K}$ check routine could be structured. Note: $\overline{\bar{E}_{1}}$ on the MK48Z09/19 and $\overline{\mathrm{E}}$ on the MK48Z08/18 need not be active to clear the $\overline{\text { BOK Flag. }}$ Care should be taken not to inadvertantly clear the BOK Flag.

NOTE:
Users not concerned about data retention beyond battery end of life, need not to check BOK status, however, make sure to use a dummy write cycle on power-up when not checking $\overline{B O K}$ to avoid losing first write cycle.

Figure 8. Checking the $\overline{\mathrm{BOK}}$ Flag Status

DATA RETENTION TIME

About Figure 9

Figure 9 illustrates how expected MK48Z08/18/09/19 battery life is influenced by temperature. The life of the battery is controlled by temperature and is virtually independent of the percentage of time the MK48Z08/18/09/19 spends in battery back-up mode.

Battery life predictions presented in Figure 9 are extrapolated from temperature accelerated life-test data collected in over 100 million device hours of continuing bare cell and encapsulated cell battery testing by Thomson Mostek. Obviously, temperature accelerated testing cannot identify non-temperature dependent failure mechanisms. However, in view of the fact that no random cell failures have been recorded in any of Thomson - Mostek's ongoing battery testing since it began in 1982, we believe the likelihood of such failure mechanisms surfacing is extremely poor. For the purpose of this testing, a cell failure is defined as the inability of a cell stabilized at $25^{\circ} \mathrm{C}$ to produce a 2.0 volt closed-circuit voltage across a 250 K ohm load resistance.

A Special Note: The summary presented in Figure 9 represents a conservative analysis of the data presently available. While Thomson - Mostek is most likely in possession of the largest collection of battery life data of this kind in the world, the results presented should not be considered absolute or final; they can be expected to change as yet more data becomes available. We believe that future readpoints of life tests presently under way and improvements in the battery technology itself will result in a continuing improvement of these figures.

Two end of life curves are presented in Figure 9. They are labeled "Average ($\mathrm{t}_{50 \%}$)" and " $\left(\mathrm{t}_{1 \%}\right)$ ". These terms relate to the probability that a given number of failures will have accumulated by a particular point in time. If, for example, expected life at $70^{\circ} \mathrm{C}$ is at issue, Figure 9 indicates that a particular MK48Z08/18/09/19 has a 1\% chance of having a battery failure 11 years into its life and a 50% chance of failure at the 22 year mark. Conversely, given a sample of devices, 1% of them can be expected to experience battery failure within 11 years; 50% of them can be expected to fail within 22 years.

The $t_{1 \%}$ figure represents the practical onset of wearout, and is therefore suitable for use in what would normally be though of as a worst-case analysis. The $t_{50 \%}$ figure represents "normal" or "average" life. It is, therefore, accurate to say that the average device will last " $\mathrm{t}_{50 \%}$ ".
Battery life is defined as beginning on the date of manufacture. Each MK48Z08/18/09/19 is marked with a four digit manufacturing date code in the form YYWW (Example: $8502=1985$, week 2).

Calculating Predicted Battery Life

As Figure 9 indicates, the predicted life of the battery in the MK48Z08/18/09/19 is a function of temperature. The back-up current required by the memory matrix in the MK48Z08/18/09/19 is so low that it has negligible influence on battery life.
Because predicted battery life is dependent upon application controlled variables, only the user can estimate predicted battery life in a given design. As long as ambient temperature is held reasonably constant, expected life can be read directly from Figure 9. If the MK48Z08/18/09/19 spends an appreciable amount of time at a variety of temperatures, the following equations should be used to estimate battery life.

$$
\text { Predicted Battery Life }=\frac{1}{\left.\left.\left[\left(\mathrm{TA}_{1} / T \mathrm{~T}\right) / \mathrm{BL}_{1}\right)\right]+\left[\left(\mathrm{TA}_{2} / \mathrm{TT}\right) / \mathrm{BL}_{2}\right]+\ldots+\left[\left(\mathrm{TA}_{n} / T \mathrm{~T}\right) / \mathrm{BL}_{n}\right)\right]}
$$

Where $\mathrm{TA}_{1}, T A_{2}, T A_{n}=$ Time at Ambient Temperature 1,2 , etc.

$$
\begin{aligned}
\mathrm{TT} & =\text { Total Time }=\mathrm{TA}_{1}+\mathrm{TA}_{2}+\ldots+\mathrm{TA}_{n} \\
\mathrm{BL}_{1}, \mathrm{BL}_{2}, \mathrm{BL}_{\mathrm{n}} & =\text { Predicted Battery Lifetime at Temp 1, Temp 2, etc. (see Figure 9). }
\end{aligned}
$$

EXAMPLE PREDICTED BATTERY LIFE CALCULATION

A cash register/terminal operates in an environment where the MK48Z08/18/09/19 is exposed to tempera-
tures of $30^{\circ} \mathrm{C}\left(86^{\circ} \mathrm{F}\right)$ or less for $3066 \mathrm{hrs} / \mathrm{yr}$; temperatures greater than $25^{\circ} \mathrm{C}$, but less than $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$, for 5256 hrs/yr; and temperaiures greaier than $40^{\circ} \mathrm{C}$, but less than $70^{\circ} \mathrm{C}\left(158^{\circ} \mathrm{F}\right)$, for the remaining $438 \mathrm{hrs} / \mathrm{yr}$.

Reading predicted $\mathrm{t} 1 \%$ life values from Figure 9 ; $\mathrm{BL}_{1}=456$ yrs., $\mathrm{BL}_{2}=175$ yrs., $\mathrm{BL}_{3}=11.4$ yrs.
Total Time (TT) $=8760 \mathrm{hrs} . / \mathrm{yr} . \quad \mathrm{TA}_{1}=3066 \mathrm{hrs} . / \mathrm{yr} . \quad \mathrm{TA}_{2}=5256 \mathrm{hrs} . / \mathrm{yr} . \quad \mathrm{TA}_{3}=438 \mathrm{hrs} . / \mathrm{yr}$.
Predicted Typical Battery Life \geq 1
$[(3066 / 8760) / 456]+[(5256 / 8760) / 175]+[(438 / 8760) / 11.4]$
$\geq 116.5 \mathrm{yrs}$.

Figure 9. MK48Z08/18/09/19 Predicted Battery Life vs Temperature

ABSOLUTE MAXIMUM RATINGS*

Total Power Dissipation . 1.0 watt
Output Current Per Pin . 10 mA
Voltage On Any Pin Relative To GND . - 0.3 V to +7.0 V

Ambient Storage (V_{CC} Off) Temperature . $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
"Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

CAUTION: Under no conditions can the "Absolute Maximum Rating" for the voltage on any pin be exceeded since it will cause permanent damage. Specifically, do not perform the "standard" continuity test on any input or output pin, i.e do not force these pins below -0.3 V DC.

RECOMMENDED DC OPERATING CONDITIONS
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)$

SYM	PARAMETER	MIN	MAX	UNITS	NOTES
V_{CC}	Supply Voltage (MK48Z08/09)	4.75	5.50	V	1
$\mathrm{~V}_{\mathrm{CC}}$	Supply Voltage (MK48Z18/19)	4.50	5.50	V	1
GND	Supply Voltage	0	0	V	1
$\mathrm{~V}_{\mathrm{IH}}$	Logic "1" Voltage All Inputs	2.2	$\mathrm{~V}_{\mathrm{CC}}+0.3 \mathrm{~V}$	V	1
$\mathrm{~V}_{\mathrm{IL}}$	Logic "0" Voltage All Inputs	-0.3	0.8	V	1,2

DC ELECTRICAL CHARACTERISTICS
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{CC}}(\mathrm{min}) \leq \mathrm{V}_{\mathrm{CC}} \leq \mathrm{V}_{\mathrm{CC}}(\max)\right)$

SYM	PARAMETER	MIN	MAX	UNITS	NOTES
$\mathrm{I}_{\mathrm{CC} 1}$	Average V_{CC} Power Supply Current		80	mA	3
$\mathrm{I}_{\mathrm{CC} 2}$	TTL Standby Current $\left(\overline{\mathrm{E}_{1}}=\mathrm{V}_{\mathrm{IH}}\right.$ or $\left.\mathrm{E}_{2}=\mathrm{V}_{\mathrm{IL}}\right)$		3	mA	
$\mathrm{I}_{\mathrm{CC} 3}$	CMOS Standby Current $\left(\overline{\mathrm{E}_{1}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}\right)$		1	mA	
I_{IL}	Input Leakage Current $($ Any Input $)$	-1	+1	$\mu \mathrm{~A}$	4
I_{LO}	Output Leakage Current	-5	+5	$\mu \mathrm{~A}$	4
$\mathrm{~V}_{\mathrm{OH}}$	Output Logic "1" Voltage $\left(\mathrm{I}_{\mathrm{OUT}}=-1.0 \mathrm{~mA}\right)$	2.4		V	
$\mathrm{~V}_{\mathrm{OL}}$	Output Logic "0" Voltage $\left(\mathrm{I}_{\mathrm{OUT}}=2.1 \mathrm{~mA}\right)$		0.4	V	

CAPACITANCE ($\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}^{\circ} \mathrm{C}$)

SYM	PARAMETER	CONDITIONS	MAX	UNIT
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\text {IN }}=\mathrm{GND}$	10	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\mathrm{V}_{\text {OUT }}=\mathrm{GND}$	10	pF

NOTES

1. All voltages referenced to GND.
2. Negative spikes of -1.0 volts allowed for up to 10 ns once per cycle.
3. ICC1 measured with outputs open.
4. Measured with $G N D \leq V_{1} \leq V_{C C}$ and outputs deselected.

AC TEST CONDITIONS

Input Levels:
Transition Times:
Input and Output Timing Reference Levels
Ambient Temperature
$V_{C C}$ MK48Z08/09
$V_{\text {CC }}$ MK48Z18/19
0.6 V to 2.4 V

5 ns
0.8 V or 2.2 V $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
4.75 V to 5.5 V 4.5 V to 5.5 V

Figure 10. Output Load Diagram
ORDERING INFORMATION

PACKAGE DESCRIPTION

B Package

NOTES:

1. Overall length includes .010 in . flash on either end of the package.
2. Package sstandoff to be measured per JEDEC requirements.
3. Measured from centerline to centerline at lead tips.
4. When the solder lead finish is specified, the maximum limit shall be increased by .003 in .

FEATURES

\square Ideal Non-Volatile RAM with a single external Lithium Cell

- Data security provided by automatic write protection during power failure
\square No battery drain during normal operating conditions
- Ultra low battery drain during battery back-up
\square Data retention down to 1.8 V
ㄴ Low battery warning
\square Power fail detect signal available for memory expansion
\square Fully static Chip Enable and Output Enable facilitate bus control
- High performance

Part No.	Access Time	R/W Cycle Time
MK48CO2-15 MK48CO2L-15	150 ns	150 ns
MK48CO2-20 MK48CO2L-20	200 ns	200 ns
MK48C02-25	250 ns	250 ns

BLOCK DIAGRAM

Figure 2

TRUTH TABLE

V_{cc}	$\overline{\mathrm{E}}$	$\overline{\mathrm{G}}$	\bar{W}	MODE	DQ	POWER
$\left\lvert\, \begin{array}{l\|l} \leq 5.5 \\ \text { volts } \end{array}\right.$	V_{IH}	X	X	Deselect	High Z	Standby
	$\mathrm{V}_{\text {IL }}$	X	$\mathrm{V}_{\text {IL }}$	Write	$\mathrm{D}_{\text {IN }}$	Active
$\begin{aligned} & \geq 4.75 \\ & \text { volts } \end{aligned}$	VIL	$V_{\text {IL }}$	V_{IH}	Read	Dout	Active
	$\mathrm{V}_{\text {IL }}$	V_{IH}	V_{IH}	Read	High Z	Active
$\left\lvert\, \begin{gathered} <4.5 \\ \text { volts } \end{gathered}\right.$	X	X	X	Write Protect	High Z	CMOS Standby

PIN NAMES

$\mathrm{A}_{0}-\mathrm{A}_{10}=$ Address Inputs	$\mathrm{E}=$ Chip Enable
$\mathrm{DO}_{0}-\mathrm{DQ}_{7}=$ Data In/Data Out	$\mathrm{W}=$ Write Enable
$\mathrm{GND}=$ Ground	$\mathrm{G}=$ Output Enable
$\mathrm{V}_{\mathrm{CC}}=$ Power (+5 V)	$\mathrm{PF}=$ Power Fail Detect Output
$\mathrm{VB}=$ Battery Inputs	

PIN CONNECTIONS

Figure 1

DESCRIPTION

The MK48C02/MK48CO2L is a CMOS RAM with integral power fail support circuitry for battery backup applications. The fully static RAM uses a HCMOS six transistor cell and is organized $2 \mathrm{~K} \times 8$. Included in the device is a feature to conserve battery energy and a method of providing data security during V_{CC} transients. Battery voltage is checked on each power-up with the status communicated via the $V_{\text {LB }}$ pin. A precision voltage detector, nominally set at 4.60 volts, write-protects the RAM to prevent inadvertent loss of data when V_{CC} is out of tolerance. In this way, all input and output pins (including \bar{E} and \bar{W}) become "don't care". The device permits full functional ability of the RAM for $V_{C C}$ above 4.75 volts, provides write protection for $V_{C C}$ less than 4.50 volts, and maintains data in the absence of V_{CC} with no additional support circuitry other than a primary cell. The current supplied by the battery during data retention is for junction leakage only (typically less than 5 na) because all power-consuming circuitry is turned off. The low battery drain allows the use of a long life Lithium primary cell.

OPERATION

Read Mode

The MK48CO2/MK48CO2L is in the Read Mode whenever \bar{W} (Write Enable) is high and \bar{E} (Chip Enable) is low, providing a ripple-through access of data from eight of 16,384 locations in the static storage array. Thus, the unique address specified by the 11 Address Inputs $\left(A_{n}\right)$ define which one of 2048 bytes of data is to be accessed.

Valid data will be available to the eight Data Output Drivers within $t_{A A}$ after the last address input signal is stable, providing that the $\overline{\mathrm{E}}$ and $\overline{\mathrm{G}}$ (Output Enable) access times are satisfied. If \bar{E} or \bar{G} access times are not met, data access will be measured from the limiting parameter ($t_{\text {CEA }}$ or $t_{\text {OEA }}$) rather than the address. The state of the eight Data I/O signals is controlled by the \bar{E} and \bar{G} control signals. The data lines may be in an indeterminate state between t_{OH} and t_{AA}. but the data lines will always have valid data at t_{AA}.

Write Mode

The MK48C02/MK48CO2L is in the Write Mode whenever the \bar{W} and \bar{E} inputs are in the low state. The latter occurring falling edge of either \bar{W} or \bar{E} will determine the start of the

Write Cycle. Therefore, $\mathrm{t}_{\mathrm{AS}}, \mathrm{t}_{\mathrm{WD}}$, and $\mathrm{t}_{\text {CEW }}$ are referenced to this latter occurring edge of E or W. The Write Cycle is terminated by the earlier rising edge of \bar{E} or \bar{W}. The addresses must be held valid throughout the cycle. \bar{W} must return to the high state for a minimum of $t_{W R}$ prior to the initiation of another cycle. If the output bus has been enabled (\bar{E} and \bar{G} low), then \bar{W} will disable the outputs in $t_{\text {WEZ }}$ from its falling edge; however care must be taken to avoid a potential bus contention. Data-In must be valid $t_{D S}$ prior to the rising edge of \bar{E} or \bar{W} and must remain valid for $t_{D H}$ after the rising edge of \bar{E} or \bar{W}.

Data Retention Mode

In the normal mode of operation, the MK48CO2/ MK48CO2L operates as a static RAM. However, $V_{C C}$ is being constantly monitored. Should the supply voltage decay, the RAM will automatically write-protect itself in the $V_{C C}$ range between 4.75 and 4.50 volts as long as the slew rate $\left(t_{f}\right)$ specification is satisfied. The open collector output, PF, will go low when the RAM is write-protected. By holding \bar{E} or \bar{W} above $V_{I H}$ for a minimum of $t_{P D}$ before power-down, incomplete write cycles to the RAM will be avoided. Once $V_{C C}$ falls below 4.50 volts, all inputs to the RAM become "don't care" and may be as high as 5.50 volts.

As $V_{C C}$ falls below approximately 3.0 volts, the power switching circuit connects the external energy source to supply power to the RAM. In the Data Retention mode, the current drain on the energy source will be less than $I_{B A T}$ max.

This redundant battery scheme has been provided to enhance data retention reliability. If only one battery is used, VB_{1} and VB_{2} should be connected together.

When $V_{C C}$ rises above approximately 3.0 volts, the power switching circuit connects external $V_{C C}$ to the RAM and disconnects the external energy source. As $V_{C C}$ rises from a 4.50 to 4.75 volts, the external energy source is checked. If the voltage is below V_{LB}, a BOK (Battery OK) flag will be set. Normal RAM operation can resume $t_{\text {REC }}$ after $V_{C C}$ exceeds 4.75 volts. Whenever V_{CC} is between 4.50 and 4.75 volts, $\overline{\mathrm{E}}$ or W must be in the high state to prevent inadvertant write cycles. The BOK flag can be checked on the first write cycle after a power-up. This write cycle will not be executed if either battery is below V_{LB}.

ABSOLUTE MAXIMUM RATINGS*

Storage Temperature (Ambient) . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Power Dissipation .. 1 Watt
Output Current . 20 mA
"Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}\right)$

SYM	PARAMETER	MIN	MAX	UNITS	NOTES
V_{CC}	Supply Voltage	4.75	5.50	V	1
GND	Supply Voltage	0	0	V	1
$\mathrm{~V}_{\mathrm{IH}}$	Logic "1" Voltage All Inputs	2.2	$\mathrm{~V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	V	1
$\mathrm{~V}_{\mathrm{IL}}$	Logic "0" Voltage All Inputs	-0.3	0.8	V	1.6
$\mathrm{~V}_{\mathrm{B}}$	Battery Voltage	1.8	3.5	V	1.7
$\mathrm{~V}_{\mathrm{LB}}$	Low Battery Warning (I LOAD $=10 \mu \mathrm{~A}$)	1.8	2.4	V	1
$\Delta \mathrm{~V}_{\mathrm{B}}$	Battery Switch Differential Voltage		0.7	V	

DC ELECTRICAL CHARACTERISTICS
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{CC}}=5.0\right.$ volts $\left.+10 \%-5 \%\right)$

SYM	PARAMETER		MIN	MAX	UNITS	NOTES
${ }^{\text {c CC1 }}$	Average $\mathrm{V}_{\text {CC }}$ Power Supply Current			80	mA	5
${ }^{\text {ccC2 }}$	TTL Standby Current ($\overline{\mathrm{E}}=\mathrm{V}_{1 H}$)			3	mA	
${ }^{\text {cce3 }}$	CMOS Standby Current ($\bar{E} \geq \mathrm{V}_{\text {CC }}-0.2 \mathrm{~V}$)			1	mA	
ILI	Input Leakage Current (Any Input)		-1	+1	$\mu \mathrm{A}$	2
${ }^{\text {OL }}$	Output Leakage Current		-5	+5	$\mu \mathrm{A}$	2
V_{OH}	Output Logic " 1 " Voltage ($\mathrm{l}_{\text {OUT }}=-1.0 \mathrm{~mA}$)		2.4		V	
V_{OL}	Output Logic " 0 " Voltage (${ }_{\text {OUT }}=2.1 \mathrm{~mA}$)			0.4	V	
$\mathrm{V}_{\text {PFL }}$				0.4	\checkmark	
$\mathrm{I}_{\text {BAt }}$	Battery Back-Up Current $\mathrm{V}_{\mathrm{B}}=3.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V}$	MK48C02L		1	$\mu \mathrm{A}$	
		MK48C02		50	$\mu \mathrm{A}$	
${ }^{\text {cha }}$	Battery Charging Current$V_{B}=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}$		-5	+5	na	

AC ELECTRICAL CHARACTERISTICS
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}+10 \%-5 \%\right)$

SYM	PARAMETER	MK48C02-15 MK48C02L-15		$\begin{aligned} & \text { MK48C02-20 } \\ & \text { MK48C02L-20 } \end{aligned}$		MK48C02-25		UNITS	NOTES
		MIN	MAX	MIN	MAX	MIN	MAX		
t_{RC}	Read Cycle Time	150		200		250		ns	
$\mathrm{t}_{\text {AA }}$	Address Access Time		150		200		250	ns	3
${ }^{\text {C CEA }}$	Chip Enable Access Time		150		200		250	ns	3
$\mathrm{t}_{\text {CEZ }}$	Chip Enable Data Off Time		35		40		50	ns	
$\mathrm{t}_{\text {OEA }}$	Output Enable Access Time		70		80		90	ns	3
${ }^{\text {t }}$ OEZ	Output Enable Data Off Time		35		40		50	ns	
${ }^{\text {t }} \mathrm{OH}$	Output Hold from Address Change	15		15		15		ns	
$t_{\text {w }}$	Write Cycle Time	150		200		250		ns	
$t_{\text {AS }}$	Address Setup Time	0		0		0		ns	
${ }^{\text {t CEW }}$	Chip Enable to End of Write	90		120		160		ns	
$\mathrm{t}_{\text {AW }}$	Address Valid to End of Write	120		140		180		ns	
$t_{\text {WD }}$	Write Pulse Width	90		120		160		ns	
$t_{\text {WR }}$	Write Recovery Time	10		10		10		ns	
$t_{\text {WEZ }}$	Write Enable Data Off Time		50		60		80	ns	
$t_{\text {DS }}$	Data Setup Time	40		60		100		ns	
${ }^{\text {D }}$ H	Data Hold Time	0		0		0		ns	

CAPACITANCE
($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

SYM	PARAMETER	MAX	NOTES
C_{1}	Capacitance on all pins (except D/Q)	7 pF	8
$C_{D / Q}$	Capacitance on D/Q pins	10 pF	4,9

NOTES:

1. All voltages referenced to GND.
2. Measured with $\mathrm{GND} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}}$ and outputs deselected.
3. Measured with load as shown in Figure 3.
4. Output buffer is deselected.
5. ${ }^{1} \mathrm{CC}_{1}$ measured with outputs open.
6. Negative spikes of -1.0 volts allowed for up to 10 ns once per cycle.
7. Battery voltages below V_{B} min may allow loss of data.
8. Effective capacitance calculated from the equation $\mathrm{C}=1 \Delta \mathrm{t}$, with $\Delta \mathrm{V}=3$ volts and power supply at nominal level.

AC TEST CONDITIONS

Input Levels
0.6 V to 2.4 V

Transition Times: 5 ns
Input and Output Timing
Reference Levels:
0.8 V or 2.2 V

OUTPUT LOAD DIAGRAM

TIMING DIAGRAM
Figure 4

TIMING DIAGRAM
Figure 5

POWER-DOWN, POWER-UP CONDITIONS

Figure 6

$\mathrm{I}_{\text {bat }}$ SUPPLIED FROM
$\mathrm{V}_{\mathrm{B} 1}$ OR $\mathrm{V}_{\mathrm{B} 2}$
POWER-DOWN/POWER-UP TIMING
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}\right)$

SYM	PARAMETER	MIN	MAX	UNITS	NOTES
$\mathrm{t}_{\text {PD }}$	$\overline{\mathrm{E}}$ or \bar{W} at $\mathrm{V}_{1 H}$ before Power Down	0		$\mu \mathrm{S}$	
t_{F}	V_{CC} slew from 4.75 V to $4.50 \mathrm{~V}\left(\overline{\mathrm{E}}\right.$ or $\overline{\mathrm{W}}$ at $\left.\mathrm{V}_{\mathbb{H}}\right)$	300		$\mu \mathrm{S}$	
t_{FB}	$\mathrm{V}_{\text {CC }}$ slew from 4.50 to 3.0 V	10		$\mu \mathrm{S}$	
$\mathrm{t}_{\text {RB }}$	$\mathrm{V}_{\text {CC }}$ slew from 3.0 V to 4.50 V	1		$\mu \mathrm{S}$	
t_{R}	$\mathrm{V}_{\text {CC }}$ slew from 4.50 to $4.75 \mathrm{~V}\left(\overline{\mathrm{E}}\right.$ or $\overline{\mathrm{W}}$ at $\left.\mathrm{V}_{\text {IH }}\right)$	0		$\mu \mathrm{S}$	
$\mathrm{t}_{\text {REC }}$	$\overline{\mathrm{E}}$ or \bar{W} at V_{IH} after Power Up	2		ms	
$\mathrm{t}_{\text {PFF }}$	$\overline{\mathrm{PF}}$ at logic ${ }^{\circ} 0^{\prime}\left(\mathrm{V}_{\mathrm{CC}} \leq 4.50 \mathrm{~V}\right)$		0	ns	1,2
$t_{\text {PFR }}$	$\overline{\text { PF }}$ at logic ${ }^{\prime} 1$ ' $\left.\mathrm{V}_{\mathrm{CC}} \geq 4.75 \mathrm{~V}\right)$		2	ms	2

NOTES:

1. $\overline{P F}$ starts to go low when $\mathrm{V}_{\mathrm{CC}}<4.75 \mathrm{~V}$. It is guaranteed to be at a logic ' 0 ' when $\mathrm{V}_{\mathrm{CC}} \leq 4.50 \mathrm{~V}$.

WARNING: Under no circumstances are negative undershoots, of any amplitude, allowed when device is in battery backup mode.
2. Measured with load

ORDERING INFORMATION

PART NO.	ACCESS TIME	PACKAGE TYPE	TEMPERATURE RANGE
MK48CO2N-15	150 ns	Plastic	0° to $70^{\circ} \mathrm{C}$
MK48CO2LN-15	150 ns	Plastic	0° to $70^{\circ} \mathrm{C}$
MK48CO2N-20	200 ns	Plastic	0° to $70^{\circ} \mathrm{C}$
MK48CO2LN-20	200 ns	Plastic	0° to $70^{\circ} \mathrm{C}$
MK48CO2N-25	250 ns	Plastic	0° to $70^{\circ} \mathrm{C}$

FEATURES

First-In, First-Out Memory Based ArchitectureFlexible 512×9 organizationLow Power HCMOS technologyAsynchronous and simultaneous read/writeBidirectional applications\square Fully expandable by word width or depthEmpty and full warning flagsRetransmit capability
High performance

Part No.	Access Time	R/W Cycle Time
MK4501-65	65 ns	80 ns
MK4501-80	80 ns	100 ns
MK4501-10	100 ns	120 ns
MK4501-12	120 ns	140 ns
MK4501-15	150 ns	175 ns
MK4501-20	200 ns	235 ns

DESCRIPTION

The MK4501 is a member of the BiPORT ${ }^{\text {m }}$ Memory Series, which utilizes special two-port cell techniques. Specifically, this device implements a First-In, First-Out algorithm, featuring asynchronous read/write operations, full and empty flags, and unlimited expansion capability in both word size and depth. The main application of the MK4501 is as a rate buffer, sourcing and absorbing data at different rates, (e.g., interfacing fast processors and slow peripherals). The full and empty flags are provided to prevent data overflow and underflow. The data is loaded and emptied on a First-In, FirstOut (FIFO) basis, and the latency for the retrieval of

BiPORT is a trademark of Mostek Corporation.

* The MK4501N-65 specifications are preliminary.

Figure 1. Pin Connections

PIN NAMES

$\overline{\text { w }}$	= Write	$\overline{\mathrm{XI}}$ = Expansion In
$\overline{\mathrm{R}}$	= Read	$\overline{\text { XO }}=$ Expansion Out
$\overline{\text { RS }}$	$=$ Reset	$\overline{\mathrm{FF}}=$ Full Flag
$\overline{\text { FL/ }} / \overline{\mathrm{RT}}$	$=$ First Load/	$\overline{\mathrm{EF}}=$ Empty Flag
	Retransmit	$\mathrm{V}_{\text {CC }}=5$ Volts
D	= Data In	GND $=$ Ground
Q	$=$ Data Out	

data is approximately one load cycle (write). Since the writes and reads are internally sequential, thereby requiring no address information, the pinout definition will serve this and future high-density devices. The ninth bit is provided to support control or parity functions.

FUNCTIONAL DESCRIPTION

Unlike conventional shift register based FIFOs, the MK4501 employs a memory-based architecture wherein a byte written into the device does not "ripple-through." Instead, a byte written into the MK4501 is stored at a specific location, where it remains until over-written. The byte can be read and re-read as often as desired.

Twin address pointers (ring counters) automatically generate the addresses required for each write and read operation. The empty/full flag circuit prevents illogical operations, such as reading un-written bytes (reading while empty) or over-writing un-read bytes (writing while full). Once a byte stored at a given address has been read, it can be over-written.

Address pointers automatically loop back to address zero after reaching address 511. The empty/full status of the FIFO is therefore a function of the distance
between the pointers, not of their absolute location. As long as the pointers do not catch one another, the FIFO can be written and read continuously without ever becoming full or empty.

Resetting the FIFO simply resets the address pointers to address zero. Pulsing retransmit resets the read address pointer without affecting the write address pointer.

With conventional FIFOs, implementation of a larger FIFO is accomplished by cascading the individual FI FOs. The penalty of cascading is often unacceptable ripple-through delays. The 4501 allows implementation of very large FIFOs with no timing penalties. The memory-based architecture of the MK4501 allows connecting the read, write, data in, and data out lines of the MK4501s in parallel. The write and read control circuits of the individual FIFOs are then automatically enabled and disabled through the expansion-in and expansion-out pins as appropriate (see the Expansion Timing section for a more complete discussion).

Figure 2. MK4501 Block Diagram

WRITE MODE

The MK4501 initiates a Write Cycle (see Figure 3) on the falling edge of the Write Enable control input ($\overline{\mathrm{W}}$), provided that the Full Flag ($\overline{\mathrm{FF}}$) is not asserted. Data set-up and hold-time requirements must be satisfied with respect to the rising edge of \bar{W}. The data is stored sequentially and independent of any ongoing Read operations. $\overline{\mathrm{FF}}$ is asserted during the last valid write
as the MK4501 becomes full. Write operations begun with $\overline{\mathrm{FF}}$ low are inhibited. $\overline{\mathrm{FF}}$ will go high $\mathrm{t}_{\text {RFF }}$ after completion of a valid READ operation. Writes beginning $\mathrm{t}_{\text {FFW }}$ after $\overline{\mathrm{FF}}$ goes high are valid. Writes beginning after $\overline{\mathrm{FF}}$ goes low and more than $\mathrm{t}_{\text {WPI }}$ before $\overline{\mathrm{FF}}$ goes high are invalid (ignored). Writes beginning less than $t_{\text {WPI }}$ before $\overline{F F}$ goes high and less than $t_{\text {FFW }}$ later may or may not occur (be valid), depending on internal flag status.

Figure 3. Write and Full Flag Timing

AC ELECTRICAL CHARACTERISTICS
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{CC}}=+5.0\right.$ volts $\left.\pm 10 \%\right)$

SYM	PARAMETER	4501-65		4501-80		4501-10		4501-12		4501-15		4501-20		UNITS	NOTES
		MIN	MAX												
$t_{\text {WC }}$	Write Cycle Time	80		100		120		140		175		235		ns	
twPW	Write Pulse Width	65		80		100		120		150		200		ns	1
$t_{\text {WR }}$	Write Recovery Time	15		20		20		20		25		35		ns	
t_{DS}	Data Set Up Time	20		25		35		40		50		65		ns	
$t_{\text {DH }}$	Data Hold Time	10		10		10		10		10		10		ns	
$t_{\text {WFF }}$	\bar{W} Low to $\overline{\mathrm{FF}}$ Low		60		75		95		115		145		195	ns	2
$\mathrm{t}_{\text {FFW }}$	FF High to Valid Write		10		10		10		10		10		10	ns	2
$\mathrm{t}_{\text {RFF }}$	$\overline{\mathrm{R}}$ High to $\overline{\mathrm{FF}}$ High		60		75		95		110		140		190	ns	2
$t_{\text {WPI }}$	Write Protect Indeterminant		35		35		35		35		35		35	ns	2

READ MODE

The MK4501 initiates a Read Cycle (see Figure 4) on the falling edge of Read Enable control input ($\overline{\mathrm{R}}$), provided that the Empty Flag ($\overline{\mathrm{EF}}$) is not asserted. In the Read mode of operation, the MK4501 provides a fast access to data from 9 of 4608 locations in the static storage array. The data is accessed on a FIFO basis independent of any ongoing WRITE operations. After \bar{R} goes high, data outputs will return to a high impedance condition until the next Read operation.

In the event that all data has been read from the FIFO, the $\overline{\mathrm{EF}}$ will go low, and further Read operations will be inhibited (the data outputs will remain in high impedance). EF will go high $t_{\text {WEF }}$ after completion of a valid Write operation. Reads beginning tefr after EF goes high are valid. Reads begun after EF goes low and more than $\mathrm{t}_{\mathrm{RPI}}$ before $\overline{\mathrm{EF}}$ goes high are invalid (ignored). Reads beginning less than $t_{\text {RPI }}$ before $\overline{E F}$ goes high and less than $t_{\text {EFR }}$ later may or may not occur (be valid) depending on internal flag status.

Figure 4. Read and Empty Flag Timing

AC ELECTRICAL CHARACTERISTICS
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{CC}}=+5.0\right.$ volts $\left.\pm 10 \%\right)$

SYM	PARAMETER	4501-65		4501-80		4501-10		4501-12		4501-15		4501-20		UNITS	NOTES
		MIN	MAX												
$\mathrm{t}_{\text {RC }}$	Read Cycle Time	80		100		120		140		175		235		ns	
$t_{\text {A }}$	Access Time		65		80		100		120		150		200	ns	2
$\mathrm{t}_{\text {RR }}$	Read Recovery Time	15		20		20		20		25		35		ns	
$\mathrm{t}_{\text {RPW }}$	Read Pulse Width	65		80		100		120		150		200		ns	1
t_{RL}	$\overline{\mathrm{R}}$ Low to Low Z	20		20		20		20		25		25		ns	2
t_{DV}	Data Valid from $\overline{\mathrm{R}}$ High	5		5		5		5		5		5		ns	2
$\mathrm{t}_{\mathrm{RHZ}}$	$\overline{\mathrm{R}}$ High to High Z		25		25		25		35		50		60	ns	2
$\mathrm{t}_{\text {REF }}$	$\overline{\mathrm{R}}$ Low to $\overline{\mathrm{EF}}$ Low		60		75		95		115		145		195	ns	2
$t_{\text {EFR }}$	$\overline{\mathrm{EF}}$ High to Valid Read		10		10		10		10		10		10	ns	2
$\mathrm{t}_{\text {WEF }}$	\bar{W} High to EF High		60		75		95		110		140		190	ns	2
$\mathrm{t}_{\text {RPI }}$	Read Protect Indeterminant		35		35		35		35		35		35	ns	2

The MK4501 is reset (see Figure 5) whenever the Reset pin ($\overline{\mathrm{RS}}$) is in the low state. During a Reset, both the internal read and write pointers are set to the first location. Reset is required after power up, before a Write operation can begin.

Although neither \bar{W} or $\overline{\mathrm{R}}$ need be high when $\overline{\mathrm{RS}}$ goes low, both \bar{W} and $\overline{\mathrm{R}}$ must be high $\mathrm{t}_{\text {RSS }}$ before $\overline{\mathrm{RS}}$ goes high, and must remain high $\mathrm{t}_{\text {RSR }}$ afterwards. Refer to the following discussion for the required state of $\overline{\mathrm{FL}} / \overline{\mathrm{RT}}$ and $\overline{\mathrm{XI}}$ during Reset.

NOTE

EF and FF may change status during Reset,
but flags will be valid at $\mathrm{t}_{\text {RSC }}$
Figure 5. Reset

AC ELECTRICAL CHARACTERISTICS

$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{CC}}=+5.0\right.$ volts $\left.\pm 10 \%\right)$

SYM	PARAMETER	4501-65		4501-80		4501-10		4501-12		4501-15		4501-20		UNITS	NOTES
		MIN	MAX												
$\mathrm{t}_{\text {RSC }}$	Reset Cycle Time	80		100		120		140		175		235		ns	
$t_{\text {RS }}$	Reset Pulse Width	65		80		100		120		150		200		ns	1
$\mathrm{t}_{\text {RSR }}$	Reset Recovery Time	15		20		20		20		25		35		ns	
$\mathrm{t}_{\text {RSS }}$	Reset Set Up Time	45		60		80		100		130		180		ns	

RETRANSMIT

The MK4501 can be made to retransmit (re-read previously read data) after the Retransmit pin ($\overline{\mathrm{RT}}$) is pulsed low. (See Figure 6).

A Retransmit operation sets the internal read pointer to the first physical location in the array, but will not affect the position of the write pointer. $\overline{\mathrm{R}}$ must be inactive
$t_{\text {RTS }}$ before $\overline{R T}$ goes high, and must remain high for $t_{\text {RTR }}$ afterwards.

The Retransmit function is particularly useful when blocks of less than 512 Writes are performed between Resets. The Retransmit feature is not compatible with Depth Expansion.

NOTE
$\overline{E F}$ and $F F$ may change status during Retransmit,
but flags will be valid at $t_{\text {RTC }}$.
Figure 6. Retransmit

AC ELECTRICAL CHARACTERISTICS

$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{CC}}=+5.0\right.$ volts $\left.\pm 10 \%\right)$

SYM	PARAMETER	4501-65		4501-80		4501-10		4501-12		4501-15		4501-20		UNITS	NOTES
		MIN	MAX												
$i_{\text {RTC }}$	Retransmit Cycle Time	80		100		120		140		175		235		ns	
$t_{\text {RT }}$	Retransmit Pulse Width	65		80		100		120		150		200		ns	1
$t_{\text {RTR }}$	Retransmit Recovery Time	15		20		20		20		25		35		ns	
$t_{\text {RTS }}$	Retransmit Setup Time	45		60		80		100		130		180		ns	

SINGLE DEVICE CONFIGURATION

A single MK4501 may be used when application requirements are for 512 words or less. The MK4501 is placed in Single Device Configuration mode when the chip is Reset with the Expansion In pin ($\overline{\mathrm{XI}}$) grounded (see Figure 7).

WIDTH EXPANSION

Word width may be increased simply by connecting the corresponding input control signals of multiple devices. Status Flags ($\overline{\mathrm{EF}}$ and $\overline{\mathrm{FF}}$) can be detected from any one device. Figure 8 demonstrates an 18 -bit word width by using two MK4501s. Any word width can be attained by adding additional MK4501s.

Figure 7. A Single 512×9 FIFO Configuration

NOTE

Flag detection is accomplished by monitoring the $\overline{\mathrm{FF}}$ and $\overline{\mathrm{EF}}$ signals on either
(any) device used in the width expansion configuration. Do not connect flag
output signals together.
Figure 8. A 512×18 FIFO Configuration (Width Expansion)

DEPTH EXPANSION (DAISY CHAIN)

The MK4501 can easily be adapted to applications when the requirements are for greater than 512 words. Figure 9 demonstrates Depth Expansion using three MK4501s. Any depth can be attained by adding additional MK4501s.

External logic is needed to generate a composite Full Flag and Empty Flag. This requires the ORing of all $\overline{\mathrm{EFs}}$ and the ORing of all FFs (i.e., all must be set to generate the correct composite $\overline{\mathrm{FF}}$ or $\overline{\mathrm{EF}}$).

The MK4501 operates in the Depth Expansion configuration after the chip is Reset under the below listed conditions.

1. The first device must be designated by grounding the First Load pin (FL). The Retransmit function is not allowed in the Depth Expansion Mode.
2. All other devices must have $\overline{\mathrm{FL}}$ in the high state.
3. The Expansion Out ($\overline{\mathrm{XO}})$ pin of each device must be tied to the Expansion $\operatorname{In}(\overline{\mathrm{XI}})$ pin of the next device.

Figure 9. A 1536×9 FIFO Configuration (Depth Expansion)

EXPANSION TIMING

Figures 10 and 11 illustrate the timing of the Expansion Out and Expansion In signals. Discussion of Expansion Out/Expansion In timing is provided to clarify how Depth Expansion works. Inasmuch as Expansion Out pins are generally connected only to Expansion In pins, the user need not be concerned with actual timing in a normal Depth Expanded application unless extreme propagation delays exist between the $\overline{\mathrm{XO}} / \overline{\mathrm{XI}}$ pin pairs.

Expansion Out pulses are the image of the WRITE and READ signals that cause them; delayed in time by t_{xO} and $\mathrm{t}_{\mathrm{XOH}}$. The Expansion Out signal is propagated when the last physical location in the memory array is written and again when it is read (Last Read). This is in contrast to when the Full and Empty Flags are activated, which is in response to writing and reading a last available location.

Figure 10. Expansion Out Timing

AC ELECTRICAL CHARACTERISTICS

$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{CC}}=+5.0\right.$ volts $\left.\pm 10 \%\right)$

SYM	PARAMETER	4501-65		4501-80		4501-10		4501-12		4501-15		4501-20		UNITS	NOTES
		MIN	MAX												
${ }^{\text {tXOL }}$	Expansion Out Low		55		70		75		90		115		150	ns	
$\mathrm{t}_{\mathrm{XOH}}$	Expansion Out High		60		80		90		100		125		155	ns	

When in Depth Expansion mode, a given MK4501 will begin writing and reading as soon as valid WRITE and READ signals begin, provided FL was grounded at RESET time. A MK4501 in Depth Expansion mode with $\overline{F L}$ high at RESET will not begin writing until after an Expansion In pulse occurs. It will not begin reading until
a second Expansion In pulse occurs and the Empty Flag has gone high. Expansion In pulses must occur t_{xIS} before the WRITE and READ signals they are intended to enable. Minimum Expansion In pulse width, t_{XI}, and recovery time, $\mathrm{t}_{\mathrm{XIR}}$, must be observed.

Figure 11. Expansion In Timing

AC ELECTRICAL CHARACTERISTICS
$\left(0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{CC}}=+5.0\right.$ volts $\left.\pm 10 \%\right)$

SYM	PARAMETER	4501-65		4501-80		4501-10		4501-12		4501-15		4501-20		UNITS	NOTES
		MIN	MAX												
${ }_{\text {t }}^{\text {I }}$	Expansion In Pulse Width	60		75		95		115		145		195		ns	1
$\mathrm{t}_{\text {XIR }}$	Expansion In Recovery Time	15		20		20		20		25		35		ns	
txis	Expansion In Setup Time	25		30		45		50		60		85		ns	

COMPOUND EXPANSION

The two expansion techiques described above can be applied together in a straight forward manner to achieve large FIFO arrays (see Figure 12).

BIDIRECTIONAL APPLICATIONS
Applications, which require data buffering between two
systems (each system capable of READ and WRITE operations), can be achieved by pairing MK4501s, as shown in Figure 13. Care must be taken to assure that the appropriate flag is monitored by each system. (i.e., $\overline{\mathrm{FF}}$ is monitored on the device where \bar{W} is used; $\overline{\mathrm{EF}}$ is monitored on the device where $\overline{\mathrm{R}}$ is used.) Both Depth Expansion and Width Expansion may be used in this mode.

NOTES

1. For depth expansion block see DEPTH EXPANSION Section and Figure 9.
2. For Flag operation see WIDTH EXPANSION Section and Figure 8.

Figure 12. Compound FIFO Expansion

Figure 13. Bidirectional FIFO Application
ABSOLUTE MAXIMUM RATINGS*
Voltage on any pin relative to GND -0.5 V to +7.0 V
Operating Temperature T_{A} (Ambient) $.0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Total Device Power Dissipation 1 Watt
Output Current per Pin 20 mA
*Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these, or any other conditions above those indicated in the operational sections of this specification, is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

RECOMMENDED DC OPERATING CONDITIONS
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}\right)$

SYM	PARAMETER	MIN	TYP	MAX	UNITS	NOTES
$V_{C C}$	Supply Voltage	4.5	5.0	5.5	V	3
GND	Ground	0	0	0	V	
$\mathrm{~V}_{\text {IH }}$	Logic "1" Voltage All Inputs	2.0		$\mathrm{~V}_{\mathrm{CC}}+1$	V	3
$\mathrm{~V}_{\mathrm{IL}}$	Logic " 0 " Voltage All Inputs	-0.3		0.8	V	3,4

DC ELECTRICAL CHARACTERISTICS

 $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{CC}}=5.0\right.$ volts $\left.\pm 10 \%\right)$| SYM | PARAMETER | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: |
| IIL | Input Leakage Current (Any Input) | -1 | 1 | $\mu \mathrm{A}$ | 5 |
| loL | Output Leakage Current | -10 | 10 | $\mu \mathrm{A}$ | 6 |
| V_{OH} | Output Logic "1" Voltage Iout $=-1 \mathrm{~mA}$ | 2.4 | | V | 3 |
| V_{OL} | Output Logic " 0 " Voltage $\mathrm{l}_{\text {OUT }}=4 \mathrm{~mA}$ | | 0.4 | V | 3 |
| $\mathrm{l}_{\mathrm{CC} 1}$ | Average V_{CC} Power Supply Current | | 80 | mA | 7 |
| ICC2 | Average Standby Current $\left(\overline{\mathrm{R}}=\overline{\mathrm{W}}=\overline{\mathrm{RS}}=\overline{\mathrm{FL}} / \overline{\mathrm{RT}}=\mathrm{V}_{\mathrm{IH}}\right)$ | | 8 | mA | 7 |
| $\mathrm{l}_{\mathrm{CC} 3}$ | Power Down Current (All Inputs $\geq \mathrm{V}_{\text {cC }}-0.2 \mathrm{~V}$) | | 500 | $\mu \mathrm{A}$ | 7 |

AC ELECTRICAL CHARACTERISTICS

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$)

SYM	PARAMETER	TYP	MAX	NOTES
C_{1}	Capacitance on Input Pins		7 pF	
C_{Q}	Capacitance on Output Pins		12 pF	8

NOTES

1. Pulse widths less than minimum values are not allowed.
2. Measured using output load shown in Output Load Diagram.
3. All voltages are referenced to ground.
4. -1.5 volt undershoots are allowed for 10 ns once per cycle
5. Measured with $0.4 \leq V_{I N} \leq V_{C C}$
6. $\bar{R} \geq V_{I H}, 0.4 \geq V_{\text {OUT }} \leq V_{\text {CC }}$.
7. ICC measurements are made with outputs open
8. With output buffer deselected.

AC TEST CONDITIONS:
Input Levels .. $0^{\circ} \mathrm{C}$ to 2.2 V
Transition Times
Input Signal Timing Reference Level
Output Signal Timing Reference Level..

Figure 14. Output Load

DIM	INCHES		NOTES
	MIN	MAX	
A	-	.210	2
A1	.015	-	2
A2	.140	.160	
B	.015	.021	3
B1	.050	.070	
C	.008	.012	3
D	1.440	1.470	1
D1	.065	.085	
E	.600	.625	
E1	.530	.560	
E1	.090	.110	
eA	.600	.700	
L	.120	-	

NOTES

1. OVERALL LENGTH INCLUDES . 010 IN

FLASH ON EITHER END OF THE PACKAGE.
2. PACKAGE STANDOFF TO BE MEASURED

PER JEDEC REQUIREMENTS.
3. THE MAXIMUM LIMIT SHALL BE

INCREASED BY . 003 IN. WHEN
SOLDER LEAD FINISH IS SPECIFIED.

Figure 15. MK4501 Plastic (N type) Dual-In-Line, 28 pins

ORDERING INFORMATION

PART NO.	ACCESS TIME	R/W CYCLE TIME	CLOCK FREQ.	PACKAGE TYPE	TEMPERATURE RANGE
MK4501N-65	65 ns	80 ns	12.5 MHz	28 Pin Plastic DIP	0° to $70^{\circ} \mathrm{C}$
MK4501N-80	80 ns	100 ns	10.0 MHz	28 Pin Plastic DIP	0° to $70^{\circ} \mathrm{C}$
MK4501N-10	100 ns	120 ns	8.3 MHz	28 Pin Plastic DIP	0° to $70^{\circ} \mathrm{C}$
MK4501N-12	120 ns	140 ns	7.1 MHz	28 Pin Plastic DIP	0° to $70^{\circ} \mathrm{C}$
MK4501N-15	150 ns	175 ns	5.7 MHz	28 Pin Plastic DIP	0° to $70^{\circ} \mathrm{C}$
MK4501N-20	200 ns	235 ns	4.2 MHz	28 Pin Plastic DIP	0° to $70^{\circ} \mathrm{C}$

FEATURES

\square First-In, First-Out Memory Based Architecture
\square Flexible 2048×9 organization
\square Low Power HCMOS technology
\square Asynchronous and simultaneous read/writeBidirectional applications
\square Fully expandable by word width and depth
\square Empty and full warning flagsRetransmit capabilityHigh performance
\square Half full flag in single device mode

Part No.	Access Time	R/W Cycle Time
MK4503-50	50 ns	65 ns
MK4503-65	65 ns	80 ns
MK4503-80	80 ns	100 ns
MK4503-10	100 ns	120 ns
MK4503-12	120 ns	140 ns
MK4503-15	150 ns	175 ns
MK4503-20	200 ns	235 ns

DESCRIPTION

The MK4503 is a member of the BiPORT" Memory Series, which utilizes special two-port cell techniques. Specifically, this device implements a First-In, First-Out algorithm, featuring asynchronous read/write operations, full, half full and empty flags, and unlimited expansion capability in both word size and depth. The main application of the MK4503 is as a rate buffer, sourcing and absorbing data at different rates, (e.g., interfacing fast processors and slow peripherals). The BiPORT is a trademark of Thomson Components - Mostek Corporation.

Figure 1. Pin Connections

PIN NAMES

W	$=$ Write	$\overline{\mathrm{Xl}} \quad=$ Expansion In	
$\overline{\mathrm{R}}$	= Read		$\begin{aligned} \overline{\mathrm{F}}= & \text { Expansion Out } \\ & \text { Half Full Flag } \end{aligned}$
$\overline{\mathrm{RS}}$	= Reset		= Full Flag
FL/RT	= First Load/		= Empty Flag
	Retransmit	$\mathrm{V}_{\text {cc }}$	$=5$ Volts
D	= Data In	GND	= Ground
Q	$=$ Data Out	NC	= No Connection

full, half full and empty flags are provided to prevent data overflow and underflow. The data is loaded and emptied on a First-In, First-Out (FIFO) basis, and the latency for the retrieval of data is approximately one load cycle (write). Since the writes and reads are internally sequential, thereby requiring no address information, the pinout definition will serve this and future highdensity devices. The ninth bit is provided to support control or parity functions.

FUNCTIONAL DESCRIPTION

Unlike conventional shift register based FIFOs, the MK4503 employs a memory-based architecture wherein a byte written into the device does not "ripple-through." Instead, a byte written into the MK4503 is stored at a specific location, where it remains until over-written. The byte can be read and re-read as often as desired in the single device configuration.

Twin internal pointers (ring counters) automatically generate the addresses required for each write and read operation. The empty/full flag circuit prevents illogical operations, such as reading un-written bytes (reading while empty) or over-writing un-read bytes (writing while full). Once a byte stored at a given address has been read, it can be over-written.

The address pointers automatically loop back to address zero after reaching address 2047. The empty/half full and full status of the FIFO is therefore a function of the distance between the pointers, not of their absolute location. As long as the pointers do not catch one another, the FIFO can be written and read continuously without ever becoming full or empty.

Resetting the FIFO simply resets the write and read pointers to location zero. Pulsing retransmit resets the read address pointer without affecting the write address pointer.

With conventional FIFOs, implementation of a larger FIFO is accomplished by cascading the individual FIFOs. The penalty of cascading is often unacceptable ripple-through delays. The 4503 allows implementation of very large FIFOs with no timing penalties. The memory-based architecture of the MK4503 allows connecting the read, write, data in, and data out lines of the MK4503s in parallel. The write and read control circuits of the individual FIFOs are then automatically enabled and disabled through the expansion-in and expansion-out pins.

Figure 2. MK4503 Block Diagram

WRITE MODE

The MK4503 initiates a Write Cycle (see Figure 3) on the falling edge of the Write Enable control input ($\overline{\mathrm{W}}$), provided that the Full Flag ($\overline{\mathrm{FF}}$) is not asserted. Data set-up and hold-time requirements must be satisfied with respect to the rising edge of \bar{W}. The data is stored sequentially and independent of any ongoing Read operations. FF is asserted during the last valid write
as the MK4503 becomes full. Write operations begun with $\overline{\mathrm{FF}}$ low are inhibited. $\overline{\mathrm{FF}}$ 'will go high $\mathrm{t}_{\text {RFF }}$ after completion of a valid READ operation. Writes beginning $t_{\text {FFW }}$ atter $\overline{F F}$ goes high are valid. Writes beginning after $\overline{\text { FF }}$ goes low and more than $t_{\text {WPI }}$ before $\overline{F F}$ goes high are invalid (ignored). Writes beginning less than $t_{\text {WPI }}$ before $\overline{\text { FF }}$ goes high and less than $\mathrm{t}_{\text {FFW }}$ later may or may not occur (be valid), depending on internal flag status.

Figure 3. Write and Full Flag Timing

AC ELECTRICAL CHARACTERISTICS
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{CC}}=+5.0\right.$ volts $\left.\pm 10 \%\right)$

SYM	PARAMETER	4503-50		4503-65		4503-80		4503-10		4503-12		4503-15		4503-20		UNITS	NOTES
		MIN	MAX														
$t_{\text {WC }}$	Write Cycle Time	65		80		100		120		140		175		235		ns	
$t_{\text {WPW }}$	Write Pulse Width	50		65		80		100		120		150		200		ns	1
$t_{\text {WR }}$	Write Recovery Time	15		15		20		20		20		25		35		ns	
${ }^{\text {t }}$ S	Data Set Up Time	30		30		40		40		40		50		65		ns	
t_{DH}	Data Hold Time	5		10		10		10		10		10		10		ns	
$t_{\text {WFF }}$	\bar{W} Low to $\overline{\mathrm{FF}}$ Low		45		60		70		95		115		145		195	ns	2
$t_{\text {fFW }}$	$\overline{\text { FF High to Valid }}$ Write	10			10		10		10		10		10		10	ns	2
$t_{\text {RFF }}$	$\overline{\mathrm{R}}$ High to $\overline{\mathrm{FF}}$ High		45		60		70		95		110		140		190	ns	2
$t_{\text {WPI }}$	Write Protect Indeterminant	35			35		35		35		35		35		35	ns	2

READ MODE

The MK4503 initiates a Read Cycle (see Figure 4) on the falling edge of Read Enable control input ($\overline{\mathrm{R}}$), provided that the Empty Flag (EF) is not asserted. In the Read mode of operation, the MK4503 provides a fast access to data from 9 of 18432 locations in the static storage array. The data is accessed on a FIFO basis independent of any ongoing WRITE operations. After \bar{R} goes high, data outputs will return to a high impedance condition until the next Read operation.

In the event that all data has been read from the FIFO, the EF will go low, and further Read operations will be inhibited (the data outputs will remain in high impedance). $\overline{E F}$ will go high $t_{\text {WEF }}$ after completion of a valid Write operation. Reads beginning $\mathrm{t}_{\mathrm{EFR}}$ after EF goes high are valid. Reads begun after EF goes low and more than $t_{\text {RPI }}$ before $\overline{E F}$ goes high are invalid (ignored). Reads beginning less than $\mathrm{t}_{\text {RPI }}$ before $\overline{\mathrm{EF}}$ goes high and less than $t_{\text {EFR }}$ later may or may not occur (be valid) depending on internal flag status.

AC ELECTRICAL CHARACTERISTICS

$\left(0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{CC}}=+5.0\right.$ volts $\left.\pm 10 \%\right)$

SYM	PARAMETER	4503-50		4503-65		4503-80		4503-10		4503-12		4503-15		4503-20		UNITS	NOTES
		MIN	MAX														
t_{RC}	Read Cycle Time	65		80		100		120		140		175		235		ns	
$t_{\text {A }}$	Access Time		50		65		80		100		120		150		200	ns	2
t_{RR}	Read Recovery Time	15		15		20		20		20		25		35		ns	
$t_{\text {RPW }}$	Read Pulse Width	50		65		80		100		120		150		200		ns	1
$t_{\text {RL }}$	$\overline{\mathrm{R}}$ Low to Low Z	0		0		0		0		0		0		0		ns	2
$t_{\text {dV }}$	Data Valid from $\overline{\mathrm{R}}$ High	5		5		5		5		5		5		5		ns	2
$\mathrm{t}_{\mathrm{RHz}}$	$\overline{\mathrm{R}}$ High to High Z		25		25		25		25		35		50		60	ns	2
$t_{\text {REF }}$	$\overline{\mathrm{R}}$ Low to $\overline{\mathrm{EF}}$ Low		45		60		75		95		115		145		195	ns	2
$t_{\text {EfR }}$	$\overline{\mathrm{EF}}$ High to Valid Read		10		10		10		10		10		10		10	ns	2
$t_{\text {WEF }}$	\bar{W} High to $\overline{\text { EF }}$ High		45		60		75		95		110		140		190	ns	2
$\mathrm{t}_{\text {RPI }}$	Read Protect Indeterminant		35		35		35		35		35		35		35	ns	2

Figure 4. Read and Empty Flag Timing

RESET

The MK4503 is reset (see Figure 5) whenever the Reset pin ($\overline{\mathrm{RS}}$) is in the low state. During a Reset, both the internal read and write pointers are set to the first location. Reset is required after power up, before a Write operation can begin.

Although neither \bar{W} or $\overline{\mathrm{R}}$ need be high when $\overline{\mathrm{RS}}$ goes low, both \bar{W} and $\overline{\mathrm{R}}$ must be high $\mathrm{t}_{\text {RSS }}$ before $\overline{\mathrm{RS}}$ goes high, and must remain high $t_{\text {RSR }}$ afterwards. Refer to the following discussion for the required state of $\overline{\mathrm{FL}} / \overline{\mathrm{RT}}$ and $\overline{\mathrm{XI}}$ during Reset.

NOTE
HF, EF and $\overline{\mathrm{FF}}$ may change status during Reset,
but flags will be valid at $\mathrm{t}_{\text {RSC }}$.
Figure 5. Reset

AC ELECTRICAL CHARACTERISTICS
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{CC}}=+5.0\right.$ volts $\left.\pm 10 \%\right)$

SYM	PARAMETER	4503-50		4503-65		4503-80		4503-10		4503-12		4503-15		4503-20		UNITS	NOTES
		MIN	MAX														
$t_{\text {RSC }}$	Reset Cycle Time	65		80		100		120		140		175		235		ns	
t_{RS}	Reset Pulse Width	50		65		80		100		120		150		200		ns	1
$t_{\text {RSR }}$	Reset Recovery Time	15		15		20		20		20		25		35		ns	
$\mathrm{t}_{\text {RSS }}$	Reset Set Up Time	30		45		60		80		100		130		180		ns	

RETRANSMIT

The MK4503 can be made to retransmit (re-read previously read data) after the Retransmit pin ($\overline{\mathrm{RT}}$) is pulsed low. (See Figure 6).

A Retransmit operation sets the internal read pointer to the first physical location in the array, but will not affect the position of the write pointer. $\overline{\mathrm{R}}$ must be inactive
$t_{\text {RTS }}$ before $\overline{R T}$ goes high, and must remain high for $t_{\text {RTR }}$ afterwards.

The Retransmit function is particularly useful when blocks of less than 2048 Writes are performed between Resets. The Retransmit feature is not compatible with Depth Expansion.

NOTE

HF, EF and FF may change status during Retransmit, but flags will be valid at $\mathrm{t}_{\text {RTC }}$.

Figure 6. Retransmit

AC ELECTRICAL CHARACTERISTICS

$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{CC}}=+5.0\right.$ volts $\left.\pm 10 \%\right)$

SYM	PARAMETER	4503-50		4503-65		4503-80		4503-10		4503-12		4503-15		4503-20		UNITS	NOTES
		MIN	MAX														
$t_{\text {RTC }}$	Retransmit Cycle Time	65		80		100		120		140		175		235		ns	
$\mathrm{t}_{\text {RT }}$	Retransmit Pulse Width	50		65		80		100		120		150		200		ns	1
$\mathrm{t}_{\text {RTR }}$	Retransmit Recovery Time	15		15		20		20		20		25		35		ns	
$\mathrm{t}_{\text {RTS }}$	Retransmit Setup Time	30		45		60		80		100		130		180		ns	

SINGLE DEVICE CONFIGURATION

A single MK4503 may be used when application requirements are for 2048 words or less. The MK4503 is placed in Single Device Configuration mode when the chip is Reset with the Expansion In pin ($\overline{\mathrm{XI}})$ grounded (see Figure 7).

WIDTH EXPANSION

Word width may be increased simply by connecting the corresponding input control signals of multiple devices. Status Flags ($\overline{\mathrm{EF}}$ and $\overline{\mathrm{FF}}$) can be detected from any one device. Figure 8 demonstrates an 18 -bit word width by using two MK4503s. Any word width can be attained by adding additional MK4503s. The half full flag (HF) operates the same as in the single device configuration.

Figure 7. A Single 2048×9 FIFO Configuration

NOTE
Flag detection is accomplished by monitoring the $\overline{\mathrm{FF}}$ and $\overline{\mathrm{EF}}$ signals on either (any) device used in the width expansion configuration. Do not connect flag output signals together.

Figure 8. A 2048×18 FIFO Configuration (Width Expansion)

HALF FULL FLAG LOGIC

When in single device configuration, the ($\overline{\mathrm{HF}}$) output acts as an indication of a half full memory. After half of the memory is filled, and at the falling edge of the next write operation, the half full flag (HF) will be set
low and remain low until the difference between the write pointer and read pointer is less than or equal to one half the total memory. The half full flag $(\overline{\mathrm{HF}})$ is then reset by the rising edge of the read operation. See Figure 9.

Figure 9. Half Full Flag Timing
aC ELECTRICAL CHARACTERISTICS -
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{CC}}=+5\right.$ Volts $\left.\pm 10 \%\right)$

SYM	PARAMETER	4503-50		4503-65		4503-80		4503-10		4503-12		4503-15		4503-20		UNITS	NOTES
		MIN	MAX														
${ }^{\text {t WhF }}$	Write Low to Half Full Flag Low		65		80		100		120		140		175		235	ns	
$\mathrm{t}_{\text {RHF }}$	Read High to Half Full Flag High		65		80		100		120		140		175		235	ns	

DEPTH EXPANSION (DAISY CHAIN)

The MK4503 can easily be adapted to applications when the requirements are for greater than 2048 words. Figure 10 demonstrates Depth Expansion using three MK4503s. Any depth can be attained by adding additional MK4503s.

External logic is needed to generate a composite Full Flag and Empty Flag. This requires the ORing of all $\overline{\mathrm{EF}}$ s and the ORing of all FFs (i.e., all must be set to generate the correct composite $\overline{\mathrm{FF}}$ or $\overline{\mathrm{EF}}$).

The MK4503 operates in the Depth Expansion configuration after the chip is Reset under the below listed conditions.

1. The first device must be designated by grounding the First Load pin (FL). The Retransmit function is not allowed in the Depth Expansion Mode.
2. All other devices must have $\overline{\mathrm{FL}}$ in the high state.
3. The Expansion Out ($\overline{\mathrm{XO}}$) pin of each device must be tied to the Expansion $\ln (\mathrm{XI})$ pin of the next device. The Half Full Flag ($\overline{\mathrm{HF}}$) is disabled in this mode.

Figure 10. A 6K x 9 FIFO Configuration (Depth Expansion)

EXPANSION TIMING

Figures 11 and 12 illustrate the timing of the Expansion Out and Expansion In signals. Discussion of Expansion Out/Expansion In timing is provided to clarify how Depth Expansion works. Inasmuch as Expansion Out pins are generally connected only to Expansion In pins, the user need not be concerned with actual timing in a normal Depth Expanded application unless extreme propagation delays exist between the $\overline{\mathrm{XO} / \overline{\mathrm{XI}} \text { pin pairs. }}$

Expansion Out pulses are the image of the WRITE and READ signals that cause them; delayed in time by t_{xO} and $\mathrm{t}_{\mathrm{xOH}}$. The Expansion Out signal is propagated when the last physical location in the memory array is written and again when it is read (Last Read). This is in contrast to when the Full and Empty Flags are activated, which is in response to writing and reading a last available location.

Figure 11. Expansion Out Timing

AC ELECTRICAL CHARACTERISTICS

$\left(0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}\right)\left(V_{C C}=+5.0\right.$ volts $\left.\pm 10 \%\right)$

SYM	PARAMETER	4503-50		4503-65		4503-80		4503-10		4503-12		4503-15		4503-20		UNITS	NOTES
		MIN	MAX														
$\mathrm{t}_{\mathrm{XOL}}$	Expansion Out Low		40		55		70		75		90		115		150	ns	
$\mathrm{t}_{\mathrm{XOH}}$	Expansion Out High		45		60		80		90		100		125		155	ns	

When in Depth Expansion mode, a given MK4503 will begin writing and reading as soon as valid WRITE and READ signals begin, provided FL was grounded at RESET time. A MK4503 in Depth Expansion mode with $\overline{F L}$ high at RESET will not begin writing until after an Expansion In pulse occurs. It will not begin reading until
a second Expansion In pulse occurs and the Empty Flag has gone high. Expansion In pulses must occur $t_{X I S}$ before the WRITE and READ signals they are intended to enable. Minimum Expansion In pulse width, t_{XI}, and recovery time, $\mathrm{t}_{\mathrm{XIR}}$, must be observed.

Figure 12. Expansion In Timing

AC ELECTRICAL CHARACTERISTICS

$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+70^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{C C}=+5.0\right.$ volts $\left.\pm 10 \%\right)$

SYM	PARAMETER	4503-50		4503-65		4503-80		4503-10		4503-12		4503-15		4503-20		UNITS	NOTES
		MIN	MAX														
$\mathrm{t}_{\times 1}$	Expansion in Pulse Width	45		60		75		95		115		145		195		ns	1
$\mathrm{t}_{\text {XIR }}$	Expansion In Recovery Time	15		15		20		20		20		25		35		ns	
${ }^{\text {txIS }}$	Expansion In Setup Time	20		25		30		45		50		60		85		ns	

COMPOUND EXPANSION

The two expansion techiques described above can be applied together in a straight forward manner to achieve large FIFO arrays (see Figure 13).

BIDIRECTIONAL APPLICATIONS
Applications, which require data buffering between two
systems (each system capable of READ and WRITE operations), can be achieved by pairing MK4501s, as shown in Figure 14. Care must be taken to assure that the appropriate flag is monitored by each system. (i.e., $\overline{\mathrm{FF}}$ is monitored on the device where $\overline{\mathrm{W}}$ is used; $\overline{\mathrm{EF}}$ is monitored on the device where $\overline{\mathrm{R}}$ is used.) Both Depth Expansion and Width Expansion may be used in this mode.

NOTES

1. For depth expansion block see DEPTH EXPANSION Section and Figure 10.
2. For Flag operation see WIDTH EXPANSION Section and Figure 8.

Figure 13. Compound FIFO Expansion

Figure 14. Bidirectional FIFO Application

ABSOLUTE MAXIMUM RATINGS*	
Voltage on any pin relative to GND . 0.0 .5 V to +7.0 V	
Operating Temperature T_{A} (Ambient) . $0^{\circ} \mathrm{C}$ 的 to $+70^{\circ} \mathrm{C}$	
Storage Temperature	
Total Device Power Dissipation	
Output Current per Pin	
*Stresses above those listed under "Absolute Maximum of the device at these, or any other conditions above th ratings for extended periods may affect device reliab	y, and functional operation sure to absolute maximum

ABSOLUTE MAXIMUM RATINGS*
Operating Temperature T_{A} (Ambient) . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . $55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Total Device Power Dissipation . 1 Watt
Output Current per Pin . 20 mA
*Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation ratings for extended periods may affect device reliability.

RECOMMENDED DC OPERATING CONDITIONS
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}\right)$

SYM	PARAMETER	MIN	TYP	MAX	UNITS	NOTES
V_{CC}	Supply Voltage	4.5	5.0	5.5	V	3
GND	Ground	0	0	0	V	
$\mathrm{~V}_{\mathrm{IH}}$	Logic "1" Voltage All Inputs	2.2		$\mathrm{~V}_{\mathrm{CC}}+.3$	V	3,9
$\mathrm{~V}_{\mathrm{IL}}$	Logic " 0 " Voltage All Inputs	-0.3		0.8	V	$3,4,9$

DC ELECTRICAL CHARACTERISTICS
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{CC}}=5.0\right.$ volts $\left.\pm 10 \%\right)$

SYM	PARAMETER	MIN	MAX	UNITS	NOTES
I_{IL}	Input Leakage Current (Any Input)	-1	1	$\mu \mathrm{~A}$	5
I_{OL}	Output Leakage Current	-10	10	$\mu \mathrm{~A}$	6
$\mathrm{~V}_{\mathrm{OH}}$	Output Logic "1" Voltage IOUT $=-1 \mathrm{~mA}$	2.4		V	3
$\mathrm{~V}_{\mathrm{OL}}$	Output Logic "0" Voltage IOUT $=4 \mathrm{~mA}$		0.4	V	3
$\mathrm{I}_{\mathrm{CC} 1}$	Average V_{CC} Power Supply Current		120	mA	7
$\mathrm{I}_{\mathrm{CC} 2}$	Average Standby Current $\left(\bar{R}=\overline{\mathrm{W}}=\overline{\mathrm{RS}}=\overline{\mathrm{FL}} / \overline{\mathrm{RT}}=\mathrm{V}_{\mathrm{IH}}\right)$	12	mA	7	
$\mathrm{I}_{\mathrm{CC} 3}$	Power Down Current $\left(\mathrm{All}\right.$ Inputs $\left.\geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}\right)$		4	mA	7

AC ELECTRICAL CHARACTERISTICS

$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq \pm 70^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{CC}}=+5.0\right.$ volts $\left.\pm 10 \%\right)$

SYM	PARAMETER	TYP	MAX	NOTES
$\mathrm{C}_{\mathbf{I}}$	Capacitance on Input Pins		7 pF	
C_{Q}	Capacitance on Output Pins		12 pF	8

NOTES

1. Pulse widths less than minimum values are not allowed.
2. Measured using output load shown in Output Load Diagram.
3. All voltages are referenced to ground.
4. -1.5 volt undershoots are allowed for 10 ns once per cycle.
5. Measured with $0.0 \leq \mathrm{V}_{I N} \leq \mathrm{V}_{\mathrm{CC}}$.
6. $\bar{R} \geq V_{I H}, 0.0 \leq V_{\mathrm{OUT}} \leq \mathrm{V}_{\mathrm{CC}}$.
7. ICC measurements are made with outputs open.
8. With output buffer deselected.
9. Input levels tested at 500 ns cycle time.

Figure 15. Output Load

DIM	INCHES		NOTES
	MIN	MAX	
A	-	.210	2
A1	.015	-	2
$A 2$.140	.160	
B	.015	.021	3
B1	.050	.070	
C	.008	.012	3
D	1.440	1.470	1
D1	.065	.085	
E	.600	.625	
$E 1$.530	.560	
e1	.090	.110	
eA	.600	.700	
L	.120	-	

NOTES

1. OVERALL LENGTH INCLUDES .010 IN.

FLASH ON EITHER END OF THE PACKAGE
2. PACKAGE STANDOFF TO BE MEASURED PER JEDEC REQUIREMENTS.
3. THE MAXIMUM LIMIT SHALL BE

INCREASED BY . 003 IN. WHEN
SOLDER LEAD FINISH IS SPECIFIED

Figure 16. MK4503 Plastic (N type) Dual-In-Line, 28 pins

DIM	INCHES	
	MIN	MAX
A	.120	.140
A1	.078	.095
B	.013	.021
B1	.026	.032
D	.485	.495
$D 1$.447	.453
$D 2$.390	.430
E	.585	.595
$E 1$.547	.553
$E 2$.490	.530

Figure 17. MK4503 Plastic Leaded Chip Carrier, 32 Pin (K Type)

FEATURES

$\square 1024 \times 5$ Organization
\square Very high performance

Part No.	Cycle Time	Cycle Frequency	Access Time
$4505-25$	25 ns	40 MHz	15 ns
$4505-33$	33 ns	30 MHz	20 ns
$4505-50$	50 ns	20 MHz	25 ns

\square Rising edge triggered clock inputs
\square Supports free-running 40\% to 60\% Duty Cycle Clock Inputs
\square Separate Read and Write Enable Inputs
\square Fully asynchronous and simultaneous Read/Write operationCascadable to any depth with no additional logic
\square Width Expandable to more than 40 bits with no additional logicHalf Full Status FlagFull and Empty Flags, Almost Full, Almost Empty, Input Ready, Output Valid Status Flags (4505M)TTL and CMOS Compatible
$\square 3$ State Outputs

PIN NAMES

$\mathrm{D}_{0}-\mathrm{D}_{4}$	- Data Input
$\mathrm{Q}_{0}-\mathrm{Q}_{4}$	- Data Output
$\mathrm{CK}_{\mathrm{W}}, \mathrm{CK}_{\mathrm{R}}$	- Write and Read Clock
WE	- Write Enable Input 1
RE_{1}	- Read Enable Input 1
RS	- Reset (Active Low)
HF	- Half Full Flag
V_{CC}, GND	- +5 Volt, Ground

Figure 1. Pin Configuration, 300 mil DIP

(4505M Only)	
$\overline{\mathrm{FF}, \overline{\mathrm{EF}}}$	- Full and Empty Flag (Active Low)
AF, AE	- Almost Full, Almost Empty Flag
DR, QV	- Input Ready, Output Valid
(4505s Only)	
WE_{2}	- Write Enable Input 2 RE_{2}

DESCRIPTION

The MK4505 is a Very High Speed $1 \mathrm{~K} \times 5$ Clocked FIFO memory. It achieves its high performance through the use of a pipelined architecture, a 1.2μ full CMOS, single poly, double level metal process, and a memory array constructed using Thomson-Mostek's 8 transistor BiPORT ${ }^{\text {™ }}$ memory cell.

The device is designed for use in applications where data is moving through a system on a square wave clock; applications such as digitized video and audio, image processing, A-to-D and D-to-A conversions, high speed data links, Radar return sampling or data tracing.

The device is available in two versions; a Master, the MK4505M, and a Slave, the MK4505S. The Master provides all of the control signals necessary for reliable, full speed, fully asynchronous width expansion and/or depth expansion. The Master also provides a full compliment of status flags, including Output Valid, Empty, Almost Empty, Half Full, Almost Full, Full, and Input Ready. The Master cannot be written while Full or read while Empty. The Slave, in contrast, can be forced to write and/or read continuously regardless of device status; a feature useful in triggered data acquisitions, or for retransmit (repeat reading) applications.

Figure 2. Block Diagram MK4505M/4505S

4505M WRITE TRUTH TABLE

$\mathrm{CK}_{\text {w }}$	PRESENT STATE				NEXT OPERATION	NEXT STATE		
	$\overline{\mathrm{RS}}$	WE ${ }_{1}$	FF	DR		FF	DR	D
X	0	X	X	X	Reset	1	1	Don't Car
\uparrow	1	0	1	1	No.Op	1	1	Don't Care
\uparrow	1	x	0	0	No-Op	?	?	Don't Care
\uparrow	1	1	1	1	Write	?	?	Data In

4505M READ TRUTH TABLE

CK_{r}	PRESENT STATE				NEXT OPERATION	NEXT STATE		
	$\overline{\mathrm{RS}}$	RE1	$\overline{\text { EF }}$	QV		EF	QV	Q
X	0	x	x	x	Reset	0	0	High Z
\uparrow	1	X	0	X	No-Op	?	0	High Z
\uparrow	1	0	1	0	Hold	?	1	Previous Q
\uparrow	1	1	1	\times	Read	?	1	Data Out

$4505 S$ WRITE TRUTH TABLE

$\mathbf{C K}_{\mathrm{w}}$	PRESENT STATE		NEXT	NEXT STATE	
	$\overline{\mathrm{RS}}$	WE $_{1}$	WE $_{\mathbf{2}}$		D
X	0	X	X	Reset	Don't Care
\uparrow	1	0	X	No-Op	Don't Care
\uparrow	1	X	0	No-Op	Don't Care
\uparrow	1	1	1	Write	Data In

4505S READ TRUTH TABLE

$\mathbf{C K}_{\mathbf{R}}$	PRESENT STATE		NEXT	NEXT STATE	
	$\overline{\mathrm{RS}}$	$\mathrm{RE}_{\mathbf{1}}$	$\mathrm{RE}_{\mathbf{2}}$		Q
X	0	X	X	Reset	High Z
\uparrow	1	X	0	No.Op	High Z
\uparrow	1	0	1	Hold	Previous Data Out
\uparrow	1	1	1	Read	Data Out

[^3]
WRITE OPERATIONS

The device will perform a Write on the next rising edge of the Write Clock $\left(\mathrm{CK}_{\mathrm{W}}\right)$ whenever (see figure 3):

- (4505S) WE_{1} and WE_{2} are high at the rising edge of the clock.
- (4505M) WE ${ }_{1}$ and $\overline{\mathrm{FF}}$ are high at the rising edge of the clock.

Because the device only re-evaluates and updates the Full Flag ($\overline{\mathrm{FF}}$) on the rising edge of CK_{W}, the appearance of an active Full Flag at valid flag access time, t_{A}, assures the user that the next rising edge of the clock will be ignored.

READ AND HOLD OPERATIONS

The device will perform a Read on the next rising edge of the Read Clock (CK_{R}) whenever (see figure 4):

- (4505S) RE_{1} and $R E_{2}$ are high at the rising edge of the clock.
- (4505M) RE ${ }_{1}$ and $\overline{E F}$ are high at the rising edge of the clock.

Because the device only re-evaluates and updates the Empty Flag ($\overline{\mathrm{EF}}$) on the rising edge of CK_{R}, the appearance of an active Empty Flag at valid flag access time, t_{A}, assures the user that the next rising edge of the clock will be ignored.

The device will perform a Hold Cycle (hold over previous data) if $R E_{1}$ is low at the rising edge of the clock (CK_{R}). If $\mathrm{EF}(4505 \mathrm{M})$ or RE_{2} (4505S) is low at the rising edge of the clock, then the outputs will go to High-Z.

RESET

$\overline{\mathrm{RS}}$ is an asynchronous master reset input. A Reset is required after power-up, before first write. Reset commences on the falling edge of $\overline{\mathrm{RS}}$ irrespective of the state of any other input or output. While deactivating Write and/or Read Enable inputs is not required for performance of a Reset, failure to do so requires the user's observance of Reset Set Up Time (t RSS) to assure First Write (and/or First Read of a stand alone 4505S) will occur at the first rising edge of the clock after $\overline{\mathrm{RS}}$ is taken high (Figure 6).

After Reset, if no valid Read operations have been performed since Reset, the "previous data" that will be output when executing the first Hold cycle will be all zeroes (see Figure 7.)

AC ELECTRICAL CHARACTERISTICS
($\mathrm{T}_{\mathrm{A}}=0$ to $70 \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \pm 10 \%$)

SYM	PARAMETER	4505-25		4505-33		4505-50		UNITS	NOTE
		MIN	MAX	MIN	MAX	MIN	MAX		
t_{CK}	Clock Cycle Time	25		33		50		ns	1
$\mathrm{t}_{\text {CKH }}$	Clock High Time	10		13		20		ns	1
$\mathrm{t}_{\text {CKL }}$	Clock Low Time	10		13		20		ns	1
$\mathrm{t}_{\text {S }}$	Set Up Time	10		13		16		ns	1
t_{H}	Hold Time	0		0		0		ns	
$t_{\text {A }}$	Output Access Time		15		20		25	ns	1,2
t_{OH}	Output Hold Time	5		5		5		ns	1,2
$t_{\text {taz }}$	Clock to Outputs High-Z		15		20		25	ns	1,3
$\mathrm{t}_{\text {QL }}$	Clock to Outputs Low-Z	5		5		5		ns	1,3
$\mathrm{t}_{\text {RSS }}$	Reset Set Up Time	12		16		25		ns	1,4
$t_{\text {RS }}$	Reset Pulse Width	25		33		50		ns	
$\mathrm{t}_{\text {fRL }}$	First Read Latency	50		66		100		ns	1,5
$\mathrm{t}_{\text {FFL }}$	First Flag Cycle Latency	25		33		50		ns	1,6
t_{FT}	Fall-Through Delay	$\cdot 71$		94		135		ns	

notes

1. All AC Electrical Characteristics measured under conditions specified in "AC Test Conditions".
2. Measured w/40pf Output Load (Figure 12A).
3. Measured w/5pf Output Load (Figure 12B).
4. Need not be met unless device is Read and/or Write Enabled.
5. Minimum first Write to first Read delay required to assure valid first Read.
6. Minimum first Write to first Read Clock delay required to assure clearing the Empty Flag.

Figure 3. Write Cycle Timing

Figure 4. Read Cycle Timing

Figure 5. Hold Cycle Timing

NOTE: $t_{\text {rss }}$ NEED NOT bE MET UNLESS DEVICE IS READ AND/OR WRITE ENABLED
Figure 6. Reset Cycle Timing (4505M/S)

Figure 7. First Hold After Reset

Figure 8. Almost Empty Flag Timing (4505M)

Figure 9. Almost Full, Half Full Flag Timing (4505M/S)
Flag Interpretation Key

FLAG	CURRENT STATE	VALID WRITE CYCLES REMAINING		VALID READ CYCLES REMAINING	
		MIN	MAX	MIN	MAX
	1	1016	1024	0	8
	0	0	1015	9	1024
HF	1	0	512	512	1024
	0	513	1024	0	511
AF	1	0	8	1016	1024
	0	9	1024	0	1015

NOTE
The table describes the number of valid cycles that can be performed, including
the next rising edge of the clock.

Figure 10. Simultaneous Write/Read Timing (4505M)

Figure 11. Simultaneous Write/Read Timing (4505S)

WIDTH AND DEPTH EXPANSION

A single Master (MK4505M) is required for each 1 k of depth configured. The number of Slaves that can be driven by a single Master is limited only by the effects of adding extra load capacitance (Write and Read Enable Input Capacitance) onto the Input Ready (DR), Output Valid (QV), Full Flag ($\overline{\mathrm{FF}}$) and Empty Flag ($\overline{\mathrm{EF}}$) outputs. However, even 40 bits of width (8 devices) results in only 40 pf of loading, which corresponds to the amount of load called out in the AC Test Conditions. Additional loading will slow the flags down, but as long as Enable Set Up time (t_{S}) is met, slowing the flags has no negative consequences.

WIDTH AND DEPTH EXPANSION EXAMPLES

The width and depth expansion interface timing diagrams (Figures 13 and 14) are in reference to the width and depth expansion schematic in Figure 12 (For simplicity all clocks have the same frequency and transistion rate). Example 1 - First Write Since Empty - Reading the timing diagram from the top left to bottom right, one can determine that Figure 13 illustrates the effects of the first WRITE/READ cycles from an EMPTY array of FIFOs. Both of the $\overline{E F}$ pins are initially low ($\overline{E F_{X}}, E F$ and $R E_{2}$). As data is written into Bank A, the expansion clock reads data from Bank A and writes it to Bank B , the interface $\overline{\mathrm{EF}}\left(\overline{\mathrm{EF}}\right.$ and RE_{2}) and the external $\overline{\mathrm{EF}}$ ($\overline{\mathrm{EF}_{\mathrm{X}}}$) go inactive (logic 1) while data is shifted through the FIFO array from Bank A through Bank B to the external output (Q_{X}). The $\overline{\mathrm{EF}}$ logic goes valid (logic 0) once data is shifted out of its respective bank.

Example 2 - First Read Since Full - Reading the timing diagram from the bottom left to top right, one can determine that Figure 14 illustrates the effects of the first READs from a FULL array of FIFOs. As data is read out of the system (Q_{X}), it allows Bank B to receive data
shifted from Bank A. As Bank B shifts data out via Q_{x}, allowing Bank A to shift data into Bank B, both banks will show an invalid $\overline{F F}$ status (logic 1) on the internal $\overline{F F}$. ($\overline{\mathrm{FF}}$ and WE_{2}) as well as the external $\overline{\mathrm{FF}}\left(\overline{\mathrm{FF}} \mathrm{F}_{\mathrm{X}}\right)$. When Bank A is no longer considered FULL, Data In from the system (D_{x}) is now written into Bank A and shifted to Bank B until the FIFO array is again completely Full.

APPLICATION

The MK4505 operates from a 5.0 volt supply. It is compatible with all standard TTL families on all inputs and outputs. The device should share a solid ground plane with any other devices interfaced with it, particularly TTL devices. Additionally, because the outputs can drive rail-to-rail into high impedance loads, the MK4505 can also interface to 5 volt CMOS on all inputs and outputs.

Since very high frequency current transients will be associated with the operation of the MK4505, power line inductance must be minimized on the circuit board power distribution network. Power and ground trace gridding or separate power planes can be employed to reduce line inductance. Additionally, a high frequency decoupling capacitor should be placed next to each FIFO. The capacitor should be $0.1 \mu \mathrm{~F}$ or larger.

Though often times not thought of as such, the traces on a memory board are basically unterminated, low impedance transmission lines. As such they are subject to signal reflections manifested as noise, undershoots and excessive ringing. Series termination in close proximity to the TTL drivers can improve driver/signal path impedance matching. While experimentation most often proves to be the only practical approach to selection of series resistors, values in the range of 10 to 33 ohms often prove most suitable.

- NOTE: EXAMPLE BEGINS WITH BOTH BANKS EMPTY, AS STATUS FLAGS INDICATE

Figure 13. Example 1 - Width and Depth Expansion Interface Timing

[^4]Figure 14. Example 2 - Width and Depth Expansion Interface Timing

ABSOLUTE MAXIMUM RATINGS

Voltage on any pin relative to GND	-1.5 V to +7.0 V
Ambient Operating Temperature (A_{A})	0 to +70 C
Ambient Storage Temperature (Plastic)	-55 to +125 C
Total Device Power Dissipation	. 1 Watt
RMS Output Current per Pin	25 mA

RECOMMENDED DC OPERATING CONDITIONS

$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)$

SYM	PARAMETER	LIMITS			UNITS	NOTE
		MIN	TYP	MAX		
V_{CC}	Supply Voltage	4.5	5.0	5.5	V	1
$\mathrm{~V}_{\mathrm{SS}}$	Supply Voltage	0	0	0	V	1
$\mathrm{~V}_{\mathrm{IH}}$	Logic 1 Input	2.2		$\mathrm{~V}_{\mathrm{CC}}+1.0$	V	1
$\mathrm{~V}_{\mathrm{IL}}$	Logic 0 Input	-1.0		0.8	V	1,2

notes

1. All voltages referenced to GND.

DC ELECTRICAL CHARACTERISTICS
$\left.,\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right), \mathrm{V}_{\mathrm{CC}}=5.0 \pm 10 \%\right)$

SYM	PARAMETER	LIMITS		UNITS	NOTE
		MIN	MAX		
I_{CC}	Average Power Supply Current		100	mA	1
I_{IL}	Input Leakage Current	-1	+1	$\mu \mathrm{~A}$	2
I_{OL}	Output Leakage Current	-10	+10	$\mu \mathrm{~A}$	3
$\mathrm{~V}_{\mathrm{OH}}$	Logic 1 Output Voltage $\left(\mathrm{I}_{\mathrm{OUT}}=-4 \mathrm{~mA}\right)$	2.4		V	4
$\mathrm{~V}_{\mathrm{OL}}$	Logic 0 Output Voltage $\left(\mathrm{I}_{\mathrm{OUT}}=8 \mathrm{~mA}\right)$		0.4	V	4

notes

1. Measured with both ports operating at $\mathrm{t}_{\mathrm{CK}} \mathrm{Min}$, outputs open. V_{CC} max.
2. Measured with $\mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$ to V_{CC}.
3. Measured at $Q_{0}-Q_{4}$.

Measured after clocking with $R E_{2}=0$ (4505S).
Measured with QV $=0$ (4505M).
4. All voltages referenced to GND.

CAPACITANCE

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$)

SYM	PARAMETER	LIMITS		UNITS	NOTE
		TYP	MAX		
C_{1}	Input Capacitance	4	5	pi	1
CO_{1}	Output Capacitance	8	10	pf	1,2
CO_{2}	Output Capacitance	12	15	pf	1,3

NOTES

1. Sampled, not 100% tested. Measured at 1 MHz .
2. Measured at all data and flag outputs except $\overline{\mathrm{EF}}$ and $\overline{\mathrm{FF}}$.
3. Measured at $\overline{\mathrm{EF}}$ and $\overline{\mathrm{FF}}$.

AC TEST CONDITIONS

(A)
(B)

* INCLUDES SCOPE AND TEST JIG.

Figure 15. Equivalent Output Load Circuit

ORDERING INFORMATION

PART NUMBER	ACCESS TIME	PACKAGE TYPE	TEMPERATURE
MK4505M(N)-25	15 ns	24 pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK4505M(N)-33	20 ns	24 pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK4505M(N)-50	25 ns	24 pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK4505S(N)-25	15 ns	20 pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK4505S(N)-33	20 ns	20 pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK4505S(N)-50	25 ns	20 pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK4505M(K)-25	15 ns	32 pin Plastic LCC	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK4505M(K)-33	20 ns	32 pin Plastic LCC	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK4505M(K)-50	25 ns	32 pin Plastic LCC	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK4505S(K)-25	15 ns	32 pin Plastic LCC	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK4505S(K)-33	20 ns	32 pin Plastic LCC	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK4505S(K)-50	25 ns	32 pin Plastic LCC	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

20 PIN "N" PACKAGE

PLASTIC DIP (MK4505S)

DIM	INCHES		NOTES
	MIN	MAX	
A	-	.210	2
$A 1$.015	-	2
$A 2$.120	.140	
B	.015	.021	3
$B 1$.050	.070	
C	.008	.012	3
D	1.020	1.050	1
D1	.060	.075	
E	.300	.325	
E1	.240	.270	
e1	.090	.110	
eA	.300	.400	
L	.120	-	

NOTES

1. OVERALL LENGTH INCLUDES 010 IN. FLASH ON EITHER END OF THE PACKAGE.
2. PACKAGE STANDOFF TO BE MEASURED per jedec requirements.
3. THE MAXIMUM LIMIT SHALL BE INCREASED BY 003 IN. WHEN SOLDER LEAD FINISH IS SPECIFIED.

24 PIN "N" PACKAGE PLASTIC DIP (4505M)

DIM	INCHES		NOTES
	MIN	MAX	
A	-	.210	2
$A 1$.015	-	2
$A 2$.120	.140	
B	.015	.021	3
$B 1$.050	.070	
C	.008	.012	3
D	1.220	1.250	1
$D 1$.060	.075	
E	.300	.325	
$E 1$.240	.270	
E1	.090	.110	
EA	.300	.400	
L	.120	-	

NOTES

1. OVERALL LENGTH INCLUDES .010 IN. FLASH ON EITHER END OF THE PACKAGE.
2. PACKAGE STANDOFF TO BE MEASURED PER JEDEC REGUIREMENTS.
3. THE MAXIMUM LIMIT SHALL BE INCREASED BY 003 IN. WHEN SOLDER LEAD FINISH IS SPECIFIED.

FEATURES

\square Single Chip Bi-directional Message Passing
\square Software Controlled Interrupt Outputs
\square Addressable Status/Control FlagsIdentical Ports, 3 -wire Controlled I/O

PIN NAMES

| AD \quad - Address/Data I/O | $\overline{\text { INT }} \quad$ - Interrupt Output |
| :--- | :--- | :--- |
| $\overline{\mathrm{CE}} \quad$ - Chip Enable | GND - Ground |
| $\overline{\mathrm{OE}} \quad$ - Output Enable | $\mathrm{V}_{\mathrm{CC}} \quad-+5$ Volts |
| $\overline{\mathrm{WE}} \quad$ - Write Enable | |

Part Number	Access Time	Cycle Time	Cycle Rate
MK4511-12	120 ns	150 ns	6.67 MHz
MK4511-15	150 ns	190 ns	5.26 MHz
MK4511-20	200 ns	250 ns	4.00 MHz

DESCRIPTION

The MK4511 dual port RAM contains a single 512×9 CMOS memory matrix that can be accessed simultaneously from both of the input/output ports. Dual port operation is achieved through the use of a memory array composed of BiPORT memory cells. Each memory cell is accessible from both ports at all times.

Pin count is kept low through the use of address/data multiplexing. This technique is being used on advanced microprocessors and other devices to keep pin counts and package sizes down.

The MK4511 incorporates all functions required for dual port operations, including software controlled interrupt outputs. Use of the interrupt outputs is optional, allowing both polled and interrupt controlled applications.

SINGLE PORT OPERATIONS

The MK4511 may be viewed from either port as an ordinary three wire controlled 512×9 static RAM. Timing

Figure 1. Pin Connections
of read and write operations is altogether conventional; the presence of the other port is effectively transparent to the accessing processor. Therefore, all timing parameters are specified without references that differentiate between the ports.

READ MODE

The MK4511 is in Read Mode whenever Chip Enable ($\overline{\mathrm{CE}}$) is low and Write Enable ($\overline{\mathrm{WE}}$) is high. A stable address must be placed onto the AD lines $t_{\text {AS }}$ prior to Chip Enable becoming active. The address must be held valid for $t_{A H}$ following the falling edge of $\overline{C E}$.

In Read Mode the bi-directional AD lines are driven alternately by the user and the MK4511. Bus contention will occur if the user's address driver remains active too long. An Output Enable input ($\overline{\mathrm{OE}}$) is provided, offering an improved ability to avoid bus contention. The $\overline{\mathrm{OE}}$ control keeps the AD lines in a high impedance state while held high and for $t_{\text {OEL }}$ after it goes low. Output data will be valid at the latter of $t_{\text {OEA }}$ or $t_{\text {CEA }}$. A Chip Enable recovery time ($\mathrm{t}_{\mathrm{CER}}$) must be observed between assertions of $\overline{C E}$.

Figure 2. MK4511 Block Diagram

Figure 3. Read-Read-Read Modify Write

READ CYCLE TIMING

AC ELECTRICAL CHARACTERISTICS
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10\right.$ percent $)$

SYM	PARAMETERS	MK4511-12		MK4511-15		MK4511-20		UNITS	NOTES
		MIN	MAX	MIN	MAX	MIN	MAX		
$t_{\text {RC }}$	Read Cycle Time	150		190		250		ns	
$t_{\text {AS }}$	Address Setup Time	0		0		0		ns	
$t_{\text {AH }}$	Address Hold Time	20		25		35		ns	
${ }^{\text {t }}$ CEA	Chip Enable Access Time		120		150		200	ns	1
$t_{\text {OEL }}$	Output Enable to Lo-Z	15		15		15		ns	
$\mathrm{t}_{\text {OEA }}$	Output Enable Access Time		55		70		90	ns	1
${ }^{\text {toh }}$	Valid Data Out Hold Time	5		5		5		ns	1
$t_{\text {cez }}$	Chip Enable Hi to Hi-Z		90		110		150	ns	
$\mathrm{t}_{\text {Oez }}$	Output Enable Hi to $\mathrm{Hi}-\mathrm{Z}$		40		50		65	ns	
$\mathrm{t}_{\text {WEZ }}$	Write Enable Lo to Hi-Z		40		50		65	ns	
$\mathrm{t}_{\text {CER }}$	Chip Enable Recovery Time	30		40		50		ns	

WRITE MODE

The MK4511 is in Write Mode whenever Write Enable ($\overline{\mathrm{WE}}$) and Chip Enable ($\overline{\mathrm{CE}}$) are active low. As in Read Mode, the falling edge of $\overline{\mathrm{CE}}$ latches the addresses present at the AD lines. The same addresses set-up and hold times apply. Input to the AD pins must then change from the address to input data. Input data present on the $A D$ lines must be stable for $t_{D S}$ prior to the end of write and must remain valid for t_{DH} afterward. A write cycle may be ended by the rising edge of $\overline{W E}$ or $\overline{C E}$. Chip Enable recovery time must also be observed in write mode.

Even if $\overline{\mathrm{WE}}$ becomes active prior to $\overline{\mathrm{CE}}$ becoming active,
$\overline{\mathrm{CE}}$ falling actually begins the cycle, latching the address present on the AD lines. Such cycles must reference $t_{W E W}, t_{D S}$ and $t_{D H}$ to the rising and falling edges of $\overline{C E}$ and WE.

Read-Modify-Write cycles are possible if the outputs are enabled and the assertion of WE is delayed through $t_{\text {CEA. }}$. The write cycle will begin when WE goes low. WE going low or $\overline{O E}$ going high will return the output drivers to high-Z within $t_{\text {WEZ }}$ or $t_{\text {OEZ }}$ respectively. The address latched when CE went low is still the valid address as the write cycle proceeds. The cycle is ended by the earlier rising edge of $\overline{\mathrm{CE}}$ or $\overline{\mathrm{WE}}$.

Figure 4. Write-Write-Read Modify Write

WRITE CYCLE TIMING

AC ELECTRICAL CHARACTERISTICS
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10\right.$ percent $)$

S Yivi	Párániviticos	MK4511-12		MK4511-15		MK4511-20		UNITS	NOTES
		inilin	Mî̃	initiv	MAAK	infin	MAAK		
${ }^{\text {twc }}$	Write Cycle Time	150		190		250		ns	
$\mathrm{t}_{\text {CEW }}$	Chip Enable to End of Write	120		150		200		ns	
$\mathrm{t}_{\text {WEW }}$	Write Enable to End of Write	80		105		130		ns	
$t_{\text {DS }}$	Data Setup Time	40		55		65		ns	
${ }^{\text {t }}$ D	Data Hold Time	10		10		10		ns	

DUAL PORT OPERATIONS

INTERRUPT CONTROL

Although the Interrupt Control Registers for each port are accessed in parallel with RAM locations 000_{H} and $1 \mathrm{FF}_{\mathrm{H}}$, they do not reside within the RAM array. They do not derive their control inputs from the RAM cells' status. In fact, changing the RAM location's contents via an opposite port will not affect a Interrupt Control Register at all. Therefore, for example, Port Y writing to address 000_{H} cannot affect the status of the Port X

The lower three bits of each byte written to the top and bottom addresses are the ones routed simultaneously to the Interrupt Control Registers. The Interrupt Control Registers consists of three flip-flops per port that serve as the Interrupt Request/Cancel flag (REQ/ $\overline{\mathrm{CAN}}$), Interrupt Output Enable/Disable flag (ENA/DIS) and Interrupt Acknowledge/Ready flag (ACK/RDY). As Figure 5 shows, the logic attached to the Interrupt Control Registers interprets interrupt status and drives the Interrupt Outputs.

Figure 5. MK4511 Interrupt Control Registers and Interrupt Logic

INTERRUPT BYTE STRUCTURE

Because only the lower 3 bits of each interrupt byte are used to control the interrupt logic, the six MSBs written to the RAM have no affect on the state of the interrupt outputs, and may be used for any other purpose. The functions of the three control bits are:

Interrupt Output Enable/Disable ENA/DIS ${ }_{X}\left(\mathrm{AD}_{\mathrm{X} 1}\right)$ and ENA/DIS ${ }_{\mathrm{Y}}\left(\mathrm{AD}_{\mathrm{Y}_{1}}\right)$

Each port can disable its own interrupt outputs by writing a $0\left(X X X X X X X O X_{2}\right)$ into its ENA/DIS bit. If disabled, the interrupt pin will remain high regardless of interrupt requests from the other port. If an interrupt is requested of a disabled port, and an enabling 1 is later written into ENA/ $\overline{\mathrm{DIS}}$ of the disabled port, the interrupt output will go low $t_{\text {WIL }}$ following the rising edge of the enabling write. Disabling a port with an active interrupt output pin will result in the output going high $t_{\text {WIH }}$ after the end of the disabling write.

Interrupt Request/Cancel

REQ/CAN $\mathrm{X}_{\mathrm{X}}\left(\mathrm{AD}_{\mathrm{X}_{0}}\right)$ and REQ/CAN $\mathrm{Y}_{\mathrm{Y}}\left(\mathrm{AD}_{\mathrm{Y}_{0}}\right)$

Assuming that the Enable and Ready flags are set, writing a 1 into a REQ/CAN bit drives an enabled interrupt output pin on the opposite port low. The interrupt line will be driven low $t_{\text {WIL }}$ following the end of the write that places a 1 in the REQ/ $\overline{C A N}$ bit. For example, when $\mathrm{XXXXXXXX1} 2$ is written into location 000_{H} setting REQ/CAN ${ }_{X}$, $\overline{I N T}_{Y}$ will go active low within $t_{\text {WIL }}$. Writing a 0 into the REQ/CAN bit cancels the interrupt request, returning the INT output to a high state $\mathrm{t}_{\text {WIH }}$ after the end of write.

Interrupt Acknowledge/Ready
$\mathrm{ACK} / \overline{\mathrm{RDP}}_{\mathrm{X}}\left(\mathrm{AD}_{\mathrm{X} 2}\right)$ and $\mathrm{ACK} / \overline{\operatorname{RDY}}_{\mathrm{Y}}\left(\mathrm{AD}_{\mathrm{Y} 2}\right)$
Once an interrupt has been received at a port, the interrupt can be turned off by writing a $1\left(X_{X X X X X 1 X X}^{2}\right)$ into the ACK/RDP bit of the receiving port. Writing an acknowledge will cause the interrupt output to go high $t_{\text {WIH }}$ after the end of the write. The interrupt request flag cannot be set while the acknowledge flag is active. An acknowledge must always be followed with a ready (writing a 0 over the 1) before requests from the other port can be recognized. Interrupt requests can be recognized trRR after a ready.

Figure 6. Interrupt Request Timing

INTERRUPT OUTPUT TIMING

AC ELECTRICAL CHARACTERISTICS

$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10\right.$ percent $)$

SYM	PARAMETERS	MK4511-12		MK4511-15		MK4511-20		UNITS	NOTES
		MIN	MAX	MIN	MAX	MIN	MAX		
$\mathrm{t}_{\text {WIL }}$	End of Write to INT Low		50		60		85	ns	
$\mathrm{t}_{\text {WIH }}$	End of Write to INT High		50		60		85	ns	
$t_{\text {RRR }}$	Ready to Request Recognized		10		10		15	ns	

IMPLEMENTATION

Use of the interrupt feature is completely optional, allowing simple implementation of either interrupt driven or polled inter-processor communications applications. Either port can read or write any of the 512 bytes without restriction. Users who choose not to utilize the interrupt feature should leave the interrupt pins unconnected.

Any inter-processor communications application will doubtless employ some type of semaphore scheme. The use of the REQ/CAN, ENA/ $\overline{D I S}$ and ACK/ $\overline{R D Y}$ bits allow for each port to follow the exact status of the other port. The following example covers the case of port X interrupting port Y but applies equally well for port Y interrupting port X .

An Example Approach to Inter-processor Communications Using Pre-Allocated Memory Blocks and Interrupts

Pre-define six memory blocks of 85 bytes each (for a
total of 510 bytes). Assign some number of blocks (probably three) to the X port and the balance to the Y port. Each port will write only to its assigned memory blocks, preventing port X and port Y attempting to load their messages into the same area.

Write the message to be passed into the Port X message area. When finished, read $A C K / \overline{R D Y}_{X}$. If ready, request an interrupt on port Y by writing a 1 into REQ/CAN ${ }_{X}$. Indicate which message block(s) contain valid message data, using the upper six bits of the interrupt register byte.

Now, acknowledge the interrupt to Port Y by writing a 1 to the acknowledge flag on Port Y. Begin reading the message via Port Y. The acknowledge should not be removed until after the message has been read. When it has been, set the ACK/RDY ${ }_{Y}$ flag to ready.

Check to see that the message was received. Monitor ACK/ $\overline{R D Y}_{Y}$ via Port X. Changes to the message block should not be made by Port X until ACK/ $\overline{R D Y}_{Y}$ is zero, indicating Port Y has finished reading its message.

COLLISION

The central objective of the MK4511 design effort was to produce a component that makes implementation of asynchronous, random access dual port memory applications, that can assure data integrity, as simple and inexpensive to design and implement as possible.

Data integrity can be called into question if port to port collision occurs. A collision is defined as both ports attempting to write at the same address or one port reading and one writing at the same address at the same time.

While a collision is generally considered undesirable, the conditions that can lead to ill-defined results are definable and manageable. In the case of a write/write collision, the data stored at the address in question may or may not have any similarity to either write attempted or the previously resident data if the delay between the ends of the writes ($t_{w w L}$)is not long enough. On the other hand, write/read collisions do not affect the integri-
ty of data storage, but do have an impact on the validity of output data at definable points in time (todi and $\mathrm{t}_{\mathrm{ODV}}$). Figures 7 and 8 describe these conditions.

All of the parameters indicated reference the validity of the entire byte of data. Individual bits of a byte change state at slightly different rates. Though this is a subtle distinction, it is nonetheless important, particularly in the case of monitoring ACK/RDY. Be aware that a read may catch the ready bit at a valid zero before the rest of the byte has finished transition. Nevertheless, because there is no reason for the ready bit to go low, other than that the opposite port is writing a zero into it, catching it low is a reliable indication that the other port is ready. This is all to say that single significant bit flag write/read operations can proceed reliably under collision conditions where byte wide operations cannot.

Simultaneous reads at the same address will always produce valid data and are therefore not considered a collision in this context.

Figure 7. Minimum Write To Write Latency For Valid Data Storage

Figure 8. Simultaneous Read Write Timing

COLLISION TIMING

AC ELECTRICAL CHARACTERISTICS
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10\right.$ percent $)$

SYM	PARAMETERS	MK4511-12		MK4511-15		MK4511-20		UNITS	NOTES
		MIN	MAX	MIN	MAX	MIN	MAX		
$\mathrm{t}_{\text {ODI }}$	Output Data Indeterminant	10		10		10		ns	
todv	Output Data Valid		90		115		150	ns	
$t_{\text {WWL }}$	Write to Write Latency	80		105		130		ns	

ABSOLUTE MAXIMUM RATINGS*

Voltage on any pin relative to GND . -0.3 V to +7.0 V

Ambient Storage Temperature . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Total Device Power Dissipation . 1 Watt
Output Current per Pin . 20 mA

* Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or other conditions beyond those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS
($0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$)

SYM	PARAMETERS	MIN	TYP	MAX	UNITS	NOTES
V_{CC}	Supply Voltage	4.5	5.0	5.5	V	2
GND	Supply Voltage	0	0	0	V	
$\mathrm{~V}_{\text {IH }}$	Logic 1 Voltage, All Inputs	2.2		$\mathrm{~V}_{\mathrm{CC}}+0.3$	V	2,3
$\mathrm{~V}_{\text {IL }}$	Logic 0 Voltage, All Inputs	-0.3		0.8	V	2,3

DC ELECTRICAL CHARACTERISTICS
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10\right.$ percent $)$

SYM	PARAMETERS	MIN	MAX	UNITS	NOTES
$\mathrm{I}_{\mathrm{CC} 1}$	Average Power Supply Current per Port		25	mA	4
$\mathrm{I}_{\mathrm{CC} 2}$	TTL Standby Current per Port		2.5	mA	5
I'CO3	CMOS Standby Current per Port		1	mA	6
$\mathrm{I}_{\text {IL }}$	Input Leakage Current	-1	+1	$\mu \mathrm{A}$	7
$\mathrm{IOL}^{\text {che }}$	Output Leakage Current (Any Output Pin)	-5	+5	$\mu \mathrm{A}$	7
V_{OH}	Output Logic 1 Voltage ($\mathrm{l}_{\text {OUT }}=-1 \mathrm{~mA}$)	2.4		V	2
$\mathrm{V}_{\text {OL }}$	Output Logic 0 Voltage (${ }_{\text {OUT }}=2.1 \mathrm{~mA}$)		0.4	V	2

CAPACITANCE

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1.0 \mathrm{MHz}$)

SYM	PARAMETERS	TYP	UNITS	NOTES
C_{I}	Capacitance on any Input Pin	4	pF	8
C_{O}	Capacitance on any Output Pin	10	pF	8,9

NOTES

1. Mieasured with load shown in Figure 9.
2. All voltages referenced to GND.
3. No more than one negative undershoot or positive overshoot of 1.5 V with a maximum pulse width of 10 ns is allowed once per cycle.
4. Output buffer is deselected, both ports are active.
5. All inputs $=V_{I H}$.
6. All inputs $\geq V_{C C}-0.2 \mathrm{~V}$
7. Measured with GND $\leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}}$ and outputs deselected
8. Effective capacitance is calculated as follows: $\quad C=\frac{\Delta \mathrm{Q}}{\Delta \mathrm{V}}$ $\Delta \mathrm{V}=3 \mathrm{~V}$
9. Output buffer is deselected.

AC TEST CONDITIONS

Input Levels GND to 3.0 V
Transition Times 5 ns
Input Signal Timing Reference Level 1.5 V
Output Signal Timing Reference Levels 0.8 V and 2.2 V
Ambient Temperature $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
$V_{C C}$ $5.0 \mathrm{~V} \pm 10$ percent

Figure 9. Equivalent Output Load Circuit

ORDERING INFORMATION

Part Number	Access Time	Package Type	Temperature Range
MK4511N-12	120 ns	28 pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK4511N-15	150 ns	28 pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK4511N-20	200 ns	28 pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

28 PIN
 "N'Package

DIM	INCHES		NOTES
	MIN	MAX	
A	-	.210	2
$A 1$.015	-	2
$A 2$.140	.160	
B	.015	.021	3
$B 1$.050	.070	
C	.008	.012	3
D	1.440	1.470	1
$D 1$.065	.085	
E	.600	.625	
$E 1$.530	.560	
$e 1$.090	.110	
$e A$.600	.700	
L	.120	-	

NOTES

1. OVEAALL LENGTH INCLUOES 010 IN. FLASH ON EITHER END OF THE PACKȦE.
2. PACKAGE STANDOFF TO BE MEASURED PER JEDEC REGUIREMENTS.
3. THE MAXIMUM LIMIT SHALL BE

INCREASED BY 003 IN. WHEN
SOLDER LEAD FINISH IS SPECIfied.

FEATURES

\square Static operation
\square Organization: $1 \mathrm{~K} \times 8$ bit RAM JEDEC pinout

- Pin compatible with Mostek's BYTEWYDE ${ }^{\text {M }}$ memory family
- 24/28 pin ROM/PROM compatible pin configuration
\square High performance

DESCRIPTION

The MK4801A uses Mostek's Scaled POLY $5{ }^{\text {TM }}$ process and advanced circuit design techniques to package 8,192 bits of static RAM on a single chip. Static operation is achieved with high performance and low power dissipation by utilizing Address Activated ${ }^{\text {TM }}$ circuit design techniques.

BLOCK DIAGRAM

Figure 1

TRUTH TABLE

$\overline{\mathrm{CE}}$	$\overline{\mathrm{OE}}$	$\overline{\mathrm{WE}}$	Mode	DQ
$V_{I H}$	X	X	Deselect	High Z
$V_{I L}$	x	$V_{I L}$	Write	$D_{I N}$
$V_{I L}$	$V_{I L}$	$V_{I H}$	Read	$D_{\text {OUT }}$
$V_{I L}$	$V_{I H}$	$V_{I H}$	Read	High Z

$X=$ Don't Care
$\square \overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ functions facilitate bus control

The MK48O1A excels in high speed memory applications where the organization requires relatively shallow depth withe wide word format. The MK4801A presents the user a thigh density cost effective alternative to bipolar and previous)generation N -MOS fast memory.

PIM CONNECTIONS

Figure 2

PIN NAMES

$\mathrm{A}_{0}-\mathrm{Ag}_{9}$	Address Inputs	$\overline{\mathrm{WE}}$	Write Enable
$\overline{\mathrm{CE}}$	Chip Enable	$\overline{\mathrm{OE}}$	Output Enable
V_{SS}	Ground	NC	No Connection
V_{CC}	Power (+5V)	$\mathrm{DO}_{0}-\mathrm{DO}_{7}$	Data In/
			Data Out

ABSOLUTE MAXIMUM RATINGS*

Voltage on any pin relative to $\mathrm{V}_{\text {SS }}$. - . 5 F to +7.0 F
Operating Temperature T_{A} (Ambient) . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature (Ambient)(Ceramic) . - $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature (Ambient)(Plastic) . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Power Dissipation
1 Watt
Output Current
20 mA
*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS7
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}\right)$

SYM	PARAMETER	MIN	TYP	MAX	UNITS	NOTES
V_{CC}	Supply Voltage	4.75	5.0	5.25	V	1
$\mathrm{~V}_{\mathrm{SS}}$	Supply Voltage	0	0	0	V	1
$\mathrm{~V}_{\mathrm{IH}}$	Logic " 1 " Voltage All Inputs	2.2		7.0	V	1
$\mathrm{~V}_{\mathrm{IL}}$	Logic "0" Voltage All Inputs	-2.0		.8	V	1,9

DC ELECTRICAL CHARACTERISTICS․,7
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%\right)$

SYM	PARAMETER	MIN	TYP	MAX	UNITS	NOTES
${ }^{\text {cCl }}$	Average V_{CC} Power Supply Current		60	125	mA	8
ILL	Input Leakage Current (Any Input)	-10		10	$\mu \mathrm{A}$	2
l^{OL}	Output Leakage Current	-10		10	$\mu \mathrm{A}$	2
V_{OH}	Output Logic " 1 " Voltage I Iout $=1 \mathrm{~mA}$	2.4			V	
$\mathrm{V}_{\text {OL }}$	Output Logic " 0 " Voltage $\mathrm{I}_{\text {OUt }}$ $=4 \mathrm{~mA}$			0.4	V	

CAPACITANCE ${ }^{1}$,

$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%\right)$

SYM	PARAMETER	TYP	MAX	NOTES
C_{1}	All pins (except D/Q)	4 pF	6 pF	
$C_{D / Q}$	D/Q pins	10 pF	12 pF	6

AC ELECTRICAL CHARACTERISTICS ${ }^{3,4}$
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ}\right)\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%\right)$

SYM	PARAMETER	MK4801A-55		MK4801A-70		MK4801A-90		UNITS	NOTES
		MIN	MAX	MIN	MAX	MIN	MAX		
t_{RC}	Read Cycle Time	55		70		90		ns	
$\mathrm{t}_{\text {AA }}$	Address Access Time		55		70		90	ns	5
${ }^{\text {t CEA }}$	Chip Enable Access Time		25		35		45	ns	5
${ }^{\text {t Cez }}$	Chip Enable Data Off Time	5	15	5	20	5	30	ns	
${ }^{\text {toea }}$	Output Enable Access Time		25		35		45	ns	5
${ }^{\text {toez }}$	Output Enable Data Off Time	5	15	5	20	5	30	ns	
$\mathrm{t}_{\text {AZ }}$	Address Data Off Time	10		10		10		ns	
$\mathrm{t}_{\text {Wc }}$	Write Cycle Time	65		80		100		ns	
$\mathrm{t}_{\text {AS }}$	Address Setup Time	0		0		0		ns	see text
${ }^{\text {taH }}$	Address Hold Time	15		20		30		ns	see text
${ }^{\text {tosw }}$	Data To Write Setup Time	5		5		5		ns	
${ }^{\text {t }}$ DHW	Data From Write Hold Time	10		10		10		ns	
${ }^{\text {two }}$	Write Pulse Duration	25		30		40		ns	see text
${ }^{\text {twez }}$	Write Enable Data Off Time	5	10	5	15	5	25	ns	
$\mathrm{t}_{\text {WPL }}$	Write Pulse Lead Time	40		50		60		ns	

NOTES:

1. All voltages referenced to $V_{S S}$ -
2. Measured with $.4 \leq \mathrm{V}_{1} \leq 5.0 \mathrm{~V}$, outputs deselected and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
3. $A C$ measurements assume Transition Time $=5 \mathrm{~ns}$, levels V_{SS} to 3.0 V .
4. Input and output timing reference levels are at 1.5 V .
5. Measured with a load as shown in Figure 3.
6. Output buffer is deselected.
7. A minimum of 2 ms time delay is required after application of $\mathrm{V}_{\mathrm{CC}}(+5 \mathrm{~V})$ before proper device operation can be achieved.
8. I CC measured with outputs open.
9. Negative undershoots to a minimum of -1.5 V are allowed with a maximum of 50 ns pulse width.

TIMING DIAGRAM

Figure 4

TIMING DIAGRAM

Figure 5

The MK4801 A features a fast $\overline{\mathrm{CE}}$ (50\% of Address Access) function to permit memory expansion without impacting system access time. A fast $\overline{\mathrm{OE}}(50 \%$ of access time) is included to permit data interleaving for enhanced system performance.

The MK4801A is pin compatible with Mostek's BYTEWYDE ${ }^{\text {TM }}$ memory family of RAMs, ROMs and EPROMs.

OPERATION

Read Mode

The MK4801A is in the READ MODE whenever the Write Enable Control input ($\overline{\mathrm{WE}}$) is in the high state.

In the READ mode of operation, the MK4801A provides a fast address ripple-through access of data from 8 of 8192 locations in the static storage array. Thus, the unique address specified by the 10 Address Inputs (An) define which 1 of 1024 bytes of data is to be accessed.

A transition on any of the 10 address inputs will disable the 8 Data Output Drivers after $t_{\text {AZ }}$. Valid Data will be available to the 8 Data Output Drivers within $t_{A A}$ after the last address input signal is stable, providing that the $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ access times are satisfied. If $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$ access times are not met, data access will be measured from the limiting parameter

PACKAGE DESCRIPTION

Ceramic Dual-In-Line (P)
24 Pin
Figure 6

($\mathrm{t}_{\text {CEA }}$ or $\mathrm{t}_{\text {OEA }}$) rather than the address. The state of the 8 data 1/O signals is controlled by the Chip Enable ($\overline{\mathrm{CE}}$) and Output Enable ($\overline{\mathrm{OE}}$) control signals.

Write Mode

The MK4801A is in the Write Mode whenever the Write Enable $(\overline{W E})$ and Chip Enable $(\overline{\mathrm{CE}})$ control inputs are in the low state.

The WRITE cycle is initiated by the $\overline{W E}$ pulse going low provided that $\overline{C E}$ is also low. The leading edge of the $\overline{W E}$ pulse is used to latch the status of the address bus.

NOTE: In a write cycle the latter occurring edge of either $\overline{W E}$ or $\overline{\mathrm{CE}}$ will determine the start of the write cycle. Therefore, $t_{A S}, t_{W D}$ and $t_{A H}$ are referenced to the latter occurring edge of $\overline{C E}$ or $\overline{W E}$. Addresses are latched at this time. All write cycles whether initiated by $\overline{\mathrm{CE}}$ or $\overline{\mathrm{WE}}$ must be terminated by the rising edge of $\overline{W E}$. If the output bus has been enabled ($\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ low) then $\overline{\mathrm{WE}}$ will cause the output to go to the high Z state in $t_{\text {WEZ }}$.

Data In must be valid $t_{\text {DSW }}$ prior to the low to high transition of $\overline{W E}$. The Data In lines must remain stable for $t_{\text {DHW }}$ after $\overline{W E}$ goes inactive. The write control of the MK4801A disables the data out buffers during the write cycle; however, $\overline{\mathrm{OE}}$ should be used to disable the data out buffers to prevent bus contention between the input data and data that would be output upon completion of the write cycle.

PACKAGE DESCRIPTION

Cerdip (J)
24 Pin
Figure 7

FEATURES

\square Static operation
Organization: $1 \mathrm{~K} \times 8$ bit RAM JEDEC pinout
High performancePin compatible with Mostek's BYTEWYDE ${ }^{\text {M }}$ memory family

- 24/28 pin ROM/PROM compatible pin configuration
$\square C E$ and $O E$ functions facilitate bus control

DESCRIPTION

The MK4801A uses Mostek's advanced circuit design techniques to package 8,192 bits of static RAM on a single chip. Static operation is achieved with high performance and low power dissipation by utilizing Address Activated ${ }^{\text {m }}$ circuit design techniques.

TRUTH TABLE

$\overline{\mathbf{C E}}$	$\overline{\mathrm{OE}}$	$\overline{\mathrm{WE}}$	Mode	DQ
V_{IH}	X	X	Deselect	High Z
V_{IL}	X	V_{IL}	Write	$\mathrm{D}_{\text {IN }}$
V_{IL}	V_{IL}	$\mathrm{V}_{\text {IH }}$	Read	$\mathrm{D}_{\text {OUT }}$
V_{IL}	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\text {IH }}$	Read	High Z

[^5]\square MKB version screened to MIL-STD-883

Part No.	R/W Access Time	R/W Cycle Time
MK4801A-1	120 nsec	120 nsec
MK4801A-2	150 nsec	150 nsec
MK4801A-3	200 nsec	200 nsec
MK4801A-4	250 nsec	250 nsec

The MK48Q1A excels in high speed memory applications where the arganization requires relatively shallow depth with a viide word format. The MK4801A presents to the user a high density cost effective N-MOS memory with the performance characteristics necessary for today's microprocessor applications.
PIN CONNECTIONS
Figure 2

PIN NAMES

$\mathrm{A}_{0}-\mathrm{A}_{9}$	Address Inputs	$\overline{\mathrm{WE}}$	Write Enable
$\overline{\mathrm{CE}}$	Chip Enable	$\overline{\mathrm{OE}}$	Output Enable
V_{SS}	Ground	NC	No Connection
V_{CC}	Power $(+5 \mathrm{~V})$	$\mathrm{DQ}_{0}-\mathrm{DO}_{7}$	Data In/Data Out

ABSOLUTE MAXIMUM RATINGS*
Voltage on any pin relative to $\mathrm{V}_{\text {SS }} \ldots \ldots . .$. 5 V V to +7.0 V
Operating Temperature T_{A} (Ambient) $.0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature (Ambient)(Ceramic) . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature (Ambient)(Plastic) . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Power Dissipation . 1 Watt
Output Current . 20 mA
*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS7
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}\right)$

SYM	PARAMETER	MIN	TYP	MAX	UNITS	NOTES
V_{CC}	Supply Voltage	4.75	5.0	5.25	V	1
$\mathrm{~V}_{\mathrm{SS}}$	Supply Voltage	0	0	0	V	1
$\mathrm{~V}_{\mathrm{H}}$	Logic "1" Voltage All Inputs	2.2		7.0	V	1
$\mathrm{~V}_{\mathrm{IL}}$	Logic "0" Voltage All Inputs	-0.3		.8	V	1,9

DC ELECTRICAL CHARACTERISTICS ${ }^{1,7}$
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%\right)$

SYM	PARAMETER	MIN	TYP	MAX	UNITS	NOTES
I CC1	Average $\mathrm{V}_{\text {CC }}$ Power Supply Current		50	80	mA	8
I_{IL}	Input Leakage Current (Any Input)	-10		10	$\mu \mathrm{~A}$	2
I_{OL}	Output Leakage Current	-10		10	$\mu \mathrm{~A}$	2
$\mathrm{~V}_{\text {OH }}$	Output Logic " 1 " Voltage $\mathrm{I}_{\text {OUT }}=1 \mathrm{~mA}$	2.4			V	
$\mathrm{~V}_{\text {OL }}$	Output Logic " 0 " Voltage $\mathrm{I}_{\text {OUT }}=4 \mathrm{~mA}$			0.4	V	

CAPACITANCE ${ }^{1,7}$
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%\right)$

SYM	PARAMETER	TYP	MAX	NOTES
C_{1}	All pins (except D/Q)	4 pF	6 pF	
$C_{D / Q}$	D/Q pins	10 pF	12 pF	6

AC ELECTRICAL CHARACTERISTICS ${ }^{3,4}$
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ}\right)\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%\right)$

SYM	PARAMETER	-1		-2		-3		-4		UNITS	NOTES
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX		
t_{RC}	Read Cycle Time	120		150		200		250		ns	
$t_{\text {A }}$	Address Access Time		120		150		200		250	ns	5
$\mathrm{t}_{\text {CEA }}$	Chip Enable Access Time		60		75		100		125	ns	5
$\mathrm{t}_{\text {CEZ }}$	Chip Enable Data Off Time	5	30	5	35	5	40	5	45	ns	
toea	Output Enable Access Time		60		75		100		125	ns	5
$\mathrm{t}_{\text {Oez }}$	Output Enable Data Off Time	5	30	5	35	5	40	5	45	ns	
$t_{A Z}$	Address Data Off Time	10		10		10		10		ns	
$t_{\text {wc }}$	Write Cycle Time	120		150		200		250		ns	
$t_{\text {AS }}$	Address Setup Time	0		0		0		0		ns	see text
$\mathrm{t}_{\text {AH }}$	Address Hold Time	40		50		65		80		ns	see text
tosw	Data To Write Setup Time	10		10		15		20		ns	
$\mathrm{t}_{\text {DHW }}$	Data From Write Hold Time	10		10		10		10		ns	
$t_{\text {WD }}$	Write Pulse Duration	45		50		60		70		ns	see text
$\mathrm{t}_{\text {WEZ }}$	Write Enable Data Off Time	5	30	5	35	5	40	5	45	ns	
${ }^{\text {w }}$ WPL	Write Pulse Lead Time	75		90		130		170		ns	

NOTES:

1. All voltages referenced to $V_{S S}$

Measured with $.4 \leq \mathrm{V}_{1} \leq 5.0 \mathrm{~V}$, outputs deselected and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
AC measurements assume Transition Time $=5 \mathrm{~ns}$, levels V_{SS} to 3.0 V Input and output timing reference levels are at 1.5 V
Measured with a load as shown in Figure 3.
Output buffer is deselected.
A minimum of 2 ms time delay is required after application of $\mathrm{V}_{\mathrm{CC}}(+5 \mathrm{~V})$ before proper device operation can be achieved.
8. I CC measured with outputs open.
9. Negative undershoots to a minimum of -1.5 V are allowed with a maximum of 50 ns pulse width.

OUTPUT LOAD

Figure 3

TIMING DIAGRAM
Figure 5

The MK4801A features a fast $\overline{\mathrm{CE}}$ (50% of Address Access) function to permit memory expansion without impacting system access time. A fast $\overline{\mathrm{OE}}$ (50% of access time) is included to permit data interleaving for enhanced system performance.

The MK4801A is pin compatible with Mostek's BYTEWYDETM memory family of RAMs, ROMs and EPROMs. Mostek also offers a higher performance version of the MK4801A designated the MK4801A.

OPERATION

Read Mode

The MK4801A is in the READ MODE whenever the Write Enable Control input ($\overline{\mathrm{WE}}$) is in the high state.

In the READ mode of operation, the MK4801A provides a fast address ripple-through access of data from 8 of 8192 locations in the static storage array. Thus, the unique address specified by the 10 Address Inputs (An) define which 1 of 1024 bytes of data is to be accessed.

A transition on any of the 10 address inputs will disable the 8 Data Output Drivers after $t_{A Z}$. Valid Data will be available to the 8 Data Output Drivers within $t_{A A}$ after the last address input signal is stable, providing that the $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ access times are satisfied. If $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$ access times are not met, data access will be measured from the limiting parameter
($\mathrm{t}_{\text {CEA }}$ or $\mathrm{t}_{\text {OEA }}$) rather than the address. The state of the 8 data 1/O signals is controlled by the Chip Enable ($\overline{\mathrm{CE}}$) and Output Enable ($\overline{O E}$) control signals.

Write Mode

The MK4801A is in the Write Mode whenever the Write Enable ($\overline{\mathrm{WE}}$) and Chip Enable ($\overline{\mathrm{CE}}$) control inputs are in the low state.

The WRITE cycle is initiated by the $\overline{W E}$ pulse going low provided that $\overline{\mathrm{CE}}$ is also low. The leading edge of the $\overline{\mathrm{WE}}$ pulse is used to latch the status of the address bus.

NOTE: In a write cycle the latter occurring edge of either $\overline{W E}$ or $\overline{\mathrm{CE}}$ will determine the start of the write cycle. Therefore, $\mathrm{t}_{\mathrm{AS}}, \mathrm{t}_{\mathrm{WD}}$ and t_{AH} are referenced to the latter occurring edge of $\overline{\mathrm{CE}}$ or $\overline{\mathrm{WE}}$. Addresses are latched at this time. All write cycles whether initiated by $\overline{\mathrm{CE}}$ or $\overline{\mathrm{WE}}$ must be terminated by the rising edge of $\overline{W E}$. If the output bus has been enabled ($\overline{C E}$ and $\overline{O E}$ low) then $\overline{W E}$ will cause the output to go to the high Z state in $t_{W E Z}$.

Data In must be valid $t_{D S W}$ prior to the low to high transition of WE. The Data In lines must remain stable for $\mathrm{t}_{\text {DHW }}$ after $\overline{W E}$ goes inactive. The write control of the MK4801A disables the data out buffers during the write cycle; however, $\overline{\mathrm{OE}}$ should be used to disable the data out buffers to prevent bus contention between the input data and data that would be output upon completion of the write cycle.

PACKAGE DESCRIPTION
 Ceramic Dual-In-Line (P)
 24 Pin

Figure 6

PACKAGE DESCRIPTION CERDIP (J)
 24 Pin

Figure 7

Plastic Dual-In-Line (N)

24 Pin

Figure 8

The ET2147H is a 4096-word by 1 -bit static random access memory fabricated using N-channel silicon-gate technology X-MOS. All internal circuits are fully static and therefore require no clocks or refreshing for operation. The data is read out non destructively and has the same polarity as the input data.
The separate chip select input automatically switches the part to its low power standby mode when it goes high.
The output is held in a high impedance state during write to simplify common I/O applications.

- All inputs and outputs directly TTL compatible
- Static operation - no clocks or refreshing required
- Automatic power down
- High speed - down to 35 ns access time
- Three-state output for bus interface
- Separate Data In and Data Out pins
- Single +5 V supply
- Standard 18-pin dual-in-line package

Max Access/Current	ET2147H-1	ET2147H-2	ET2147H-3	ETL2147H-3
Access (TAVQV-ns)	35	45	55	55
Active Current (ICC-mA)	180	180	180	128
Standby Current (ISB-mA)	30	30	30	29

ABSOLUTE MAXIMUM RATINGS

Voltage on Any Pin Relative to VSS
-3.5 V to +7 V
Storage Temperature Range Power Dissipation
DC Output Current
Bias Temperature Range
Lead Temperature (Soldering, 10 seconds)

Operating Conditions MIN MAX UNITS
Supply Voltage (VCC)
$4.5 \quad 5.5 \quad \mathrm{~V}$
Ambient Temperature (TA) $0+70{ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $T A=0^{\circ} \mathrm{C} t 0+70^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$ (Notes 1 and 2)

Symbol	Parameter	Conditions	ETL 2147H-3		$\begin{aligned} & \text { ET2147H } \\ & -1,-2,-3 \end{aligned}$		Units	
			Min	Max	Min	Max		
\|ILI		Input Load Current (All Input Pins)	$\mathrm{VIN}=0 \mathrm{~V}$ to 5.5V, VCC $=\mathrm{Max}$	-	10	-	10	$\mu \mathrm{A}$
\|ILO		Output Leakage Current	$\begin{aligned} & \overline{C S}=\mathrm{VIH}, \mathrm{VOUT}=\mathrm{GND} \text { to } 4.5 \mathrm{~V}, \\ & \mathrm{VCC}=\mathrm{Max} \end{aligned}$	-	50	-	50	${ }_{\mu} \mathrm{A}$
VIL	Input Low Voltage		-3.0	0.8	-3.0	0.8	V	
VIH	Input High Voltage		2.0	6.0	2.0	6.0	V	
VOL	Output Low Voltage	$10 \mathrm{~L}=8.0 \mathrm{~mA}$	-	0.4	-	0.4	V	
VOH	Output High Voltage	$10 \mathrm{H}=-4.0 \mathrm{~mA}$	2.4	.	2.4	-	V	
ICC	Power Supply Current	$\mathrm{VIN}=5.5 \mathrm{~V}, \mathrm{TA}=0^{\circ} \mathrm{C},$ Output Open	-	125	-	180	mA	
ISB	Standby Current	VCC $=$ Min to Max, $\bar{C} \bar{S}=\mathrm{VIH}$	-	20	-	30	mA	
IPO	Peapk Power.On Current	$\begin{aligned} & \text { VCC }=\text { VSS to VCC Min, } \\ & \overline{C S}=\text { Lower of VCC or VIH Min } \end{aligned}$	-	30	-	40	mA	

CAPACITANCE $\quad T A=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$ (Note 3)

Symbol	Parameter	Conditions	Min	Max	Units
CIN	Address/Control Capacitance	$\mathrm{VIN}=0 \mathrm{~V}$	-	5	pF
COUT	Output Capacitance	$\mathrm{VOUT}=0 \mathrm{~V}$	-	6	pF

Noto 1 : The operating ambient temperature range is guaranteed with transverse air flow exceeding 400 linear feet per minute
Note 2 : These circuits require $500 \mu s$ time delay after VCC reaches the specified minimum limit to ensure proper orientation aftet power-on. This allows the internally generated substrate bias to reach its functional level
Note 3 : This parameter is guaranteed by periodic testing

AC TEST CONDITIONS

Input Test Levels
Input Rise and Fall Times
Input Timing Reference Level
Output Timing Reference Level ($\mathrm{H}-1$)
Output Timing Reference Levels (H.2, H.3, H.3L)

Output Load (See Fig. 1)

Fig. 1-Ouptut Load

READ CYCLE AC ELECTRICAL CHARACTERISTICS TA $=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$ (Note 1)

Symbol		Parameter	ET2147H - 1		ET2147H -2		$\begin{aligned} & \text { ET2147H-3 } \\ & \text { ETL2147H-3 } \end{aligned}$		Unit
Alternate	Standard		Min	Max	Min	Max	Min	Max	
$t_{\text {RC }}$	TAVAV	Read Cycle Time	35	-	45	-	55	-	ns
$t_{\text {AA }}$	TAVQV	Address Access Time	-	35	-	45	-	55	ns
$t_{\text {ACS }}$	TSLQV	Chip Select Access Time (Note 4)	-	35	-	45	-	55	ns
$t_{L Z}$	TSLQX	Chip Select to Output Active (Note 5)	5	-	5	-	10	-	ns
$t_{\text {Hz }}$	TSHQZ	Chip Deselect to Output TRI-STATE (Note 5)	0	30	0	30	0	30	ns
${ }^{\text {O }} \mathrm{OH}$	TAXQX	Output Hold from Address Change	5	-	5	-	5	-	ns
tpu	TSLIH	Chip Select to Power.Up	0	-	0	-	0	-	ns
$t_{\text {Po }}$	TSHIL	Chip Deselect to Power.Down	-	20	-	20	-	20	ns

READ CYCLE WAVEFORMS*

Read Cycle 1 (Continuous Selection $\bar{C} \bar{S}=$ VIL, $\overline{W E}=$ VIH)

Read Cycle $2($ Chip Select Switched, $\overline{W E}=\mathrm{V}: \mathrm{H})($ Note 4)

Note 4 : Address must be valid coincident with or prior to the chip select transition from high to low.
Noto 5 : Measured $\pm 50 \mathrm{mV}$ from steady state voltage. This parameter is sampled and not 100% tested.
-The symbols in parentheses are proposed industry standard.

WRITE CYCLE AC ELECTRICAL CHARACTERISTICS $T A=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, V C C=5 \mathrm{~V} \pm 10 \%$ (Note 1$)$

Symbol		Parameter	ET2147H-1		ET2147H -2		$\begin{gathered} \hline \text { ET2147H-3 } \\ \text { ETL } 2147 \mathrm{H}-3 \\ \hline \end{gathered}$		Unit
Alternate	Standard		Min	Max	Min	Max	Min	Max	
$t_{\text {Wc }}$	TAVAV	Write Cycle Time	35	-	45	-	55	-	ns
${ }^{\text {c }} \mathrm{CW}$	TSLWH	Chip Select to End of Write	35	-	45	-	45	-	ns
$t_{\text {AW }}$	TAVWH	Address Valid to End of Write	35	-	45	-	45	-	ns
$t_{\text {AS }}$	TAVSL TAVWL	Address Set-Up Time	0	-	0	-	0	-	ns
$t_{\text {WP }}$	TWLWH	Write Pulse Width	20	-	25	-	25	-	ns
$t_{\text {WR }}$	TWHAX	Write Recovery Time	0	-	0	-	10	-	ns
$\mathrm{t}_{\text {DW }}$	TDVWH	Data Set-Up Time	20	-	25	-	25	-	ns
${ }_{\text {d }}{ }_{\text {H }}$	TWHDX	Data Hold Time	10	-	10	-	10	-	ns
${ }^{\text {twz }}$	TWLQZ	Write Enable to Output TRISTATE (Note 5)	0	20	0	25	0	25	ns
tow	TWHQX	Output Active from End of Write (Note 5)	0	-	0	-	0	-	ns

WRITE CYCLE WAVEFORMS* (Note 6)

Note 6 : The output remains TRI-STATE if the $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WE}}$ go high simultaneously. $\overline{\mathrm{WE}}$ or $\overline{\mathrm{CS}}$ or both must be high during the address transitions to prevent an erroneous write.

* The symbols in parentheses are proposed industry standard.

Ceramic Dual-In-Line-Package (J)
Order Number ET2147HJ -1, -2, -3 ETL2147HJ-3
ET Package Number J18A MK41H66/MK41H67(N1,P)-20/25/35

FEATURES

$\square 20,25$, and 35 ns Address Access Time
\square Equal access and cycle times
$\square 20$-pin, 300 mil Plastic and Ceramic DIP
\square All input and output pins TTL compatible, low capacitance, and protected against static discharge
$\square 50 \mu \mathrm{~A}$ CMOS Standby Current (MK41H67)
High speed chip select (MK41H66)
\square JEDEC standard pinout

MK41H66 TRUTH TABLE

$\overline{\mathbf{C S}}$	$\overline{\text { WE }}$	Mode	Q	Power
H	X	Deselect	High Z	Active
L	L	Write	High Z	Active
L	H	Read	Data Out	Active

$X=$ Don't Care

MK41H67 TRUTH TABLE

$\overline{\text { CE }}$	$\overline{\text { WE }}$	Mode	Q	Power
H	X	Deselect	High Z	Standby
L	L	Write	High Z	Active
L	H	Read	Data Out	Active

DESCRIPTION

The MK41H66 and MK41H67 feature fully static operation requiring no external clocks or timing strobes, and equal address access and cycle times. Both require only a single $+5 \mathrm{~V} \pm 10$ percent power supply. Both devices are fully TTL compatible.

The MK41H67 has a Chip Enable power down feature which automatically reduces power dissipation when the $\overline{\mathrm{CE}}$ pin is brought inactive (high). Standby power can be further reduced to microwatt levels by holding

Figure 1. Pin Connections

PIN NAMES

$\mathrm{A}_{0}-\frac{\mathrm{A}_{13}}{}-$ Address	$\overline{\text { WE }}-$ Write Enable
$\overline{\mathrm{CE}}-$ Chip Enable	GND - Ground
(MK41H67)	$\mathrm{V}_{\text {CC }}+5$ volts
$\overline{\mathrm{CS}}-$ Chip Select	D - Data In
(MK41H66)	Q - Data Out

the Address and $\overline{\mathrm{CE}}$ pins at full supply rail voltages.
The MK41H66 Chip Select pin provides a high speed chip select access, allowing fast read cycles despite decoder delays.

OPERATIONS

READ MODE

The MK41H66/7 is in the Read Mode whenever WE (Write Enable) is high and CE/CS (Chip Enable/Select) is low, providing a ripple-through access to any one of 16,384 locations in the static storage array. Valid data will be available at the Data Output pin (Q) within $t_{A A}$
after the last address input signal is stable, providing that the $\overline{C E} / \overline{C S}$ access time is satisfied. If $\overline{C E} / \overline{C S}$ access time is not met, data access will be measured from the limiting parameter (t_{CA}) rather than the address. The state of the Data Output pin is controlled by the $\overline{C E} / \overline{C S}$, and $\overline{W E}$ control signals. The Q may be in an indeterminate state at t_{CL}, but the Q will always have valid data at t_{AA}.

Figure 2. Read-Read-Read-Write Timing

READ CYCLE TIMING

AC ELECTRICAL CHARACTERISTICS
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10\right.$ percent $)$

SYM	PARAMETER	MK41H6X-20		MK41H6X-25		MK41H6X-35		UNITS	NOTES
		MIN	MAX	MIN	MAX	MIN	MAX		
t_{RC}	Read Cycle Time	20		25		35		ns	
$t_{\text {AA }}$	Address Access Time		20		25		35	ns	1
${ }^{\text {ct }}$	Chip Enable to Low-Z (MK41H67)	5		5		5		ns	2
t_{CL}	Chip Select to Low-Z (MK41H66)	3		3		3		ns	2
t_{CA}	Chip Enable Access Time (MK41H67)		20		25		35	ns	1
${ }^{\text {t }}$ CA	Chip Select Access Time (MK41H66)		10		12		15	ns	1
$\mathrm{t}_{\text {RCS }}$	Read Command Setup Time	0		0		0		ns	
$\mathrm{t}_{\mathrm{RCH}}$	Read Command Hold Time	0		0		0		ns	
${ }^{\text {toh }}$	Valid Data Out Hold Time	5		5		5		ns	1
t_{Cz}	Chip Enable to High-Z (MK41H67)		8		10		13	ns	2
t_{Cz}	Chip Select to High-Z (MK41H66)		7		8		10	ns	2
$\mathrm{t}_{\text {WEZ }}$	Write Enable to High-Z		8		10		13	ns	2

WRITE MODE

The MK41H66/7 is in the Write Mode whenever the $\overline{W E}$ and $\overline{\mathrm{CE}} / \overline{\mathrm{CS}}$ inputs are in the low state. $\overline{\mathrm{CE}} / \overline{\mathrm{CS}}$ or $\overline{\mathrm{WE}}$ must be high during address transitions. Addresses must be held valid throughout a write cycle. The Write begins with the concurrence of a low on $\overline{W E}$ and $\overline{\mathrm{CE}}$ $\overline{I C S}$. Therefore, $t_{A S}$ is referenced to the latter occurring
edge of $\overline{\mathrm{CE}} / \overline{\mathrm{CS}}$, or $\overline{\mathrm{WE}}$.

If the output is enabled ($\overline{\mathrm{CE}} / \overline{\mathrm{CS}}$ is low), then $\overline{\mathrm{WE}}$ will return the output to high impedance within $t_{\text {WEZ }}$ of its falling edge. Data-In must remain valid t_{DH} after the rising edge of $\overline{C E} / \overline{C S}$ or $\overline{W E}$.

Figure 3. Write-Write-Write-Read Timing

WRITE CYCLE TIMING
AC ELECTRICAL CHARACTERISTICS
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10\right.$ percent $)$

SYM	PARAMETER	MK41H6X-20		MK41H6X-25		MK41H6X-35		UNITS	NOTES
		MIN	MAX	MIN	MAX	MIN	MAX		
${ }^{\text {w }}$ c	Write Cycle Time	20		25		35		ns	
$t_{\text {AS }}$	Address Setup Time	0		0		0		ns	
$t_{\text {AW }}$	Address Valid to End of Write	16		20		30		ns	
$t_{\text {AH }}$	Address Hold after End of Write	0		0		0		ns	
${ }^{\text {t }}$ cW	Chip Enable/Select to End of Write	18		22		32		ns	
$\mathrm{t}_{\text {WEW }}$	Write Enable to End of Write	16		20		30		ns	
$t_{\text {dS }}$	Data Setup Time	10		12		15		ns	
t_{DH}	Data Hold Time	0		0		0		ns	
$t_{\text {WEL }}$	Write Enable to Low-Z	5		5		5		ns	2

LOW V_{cc} DATA RETENTION TIMING (MK41H67)

Figure 4. Data Retention Timing
LOW V_{CC} DATA RETENTION CHARACTERISTICS
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)$

SYM	PARAMETERS	MIN	MAX	UNIT	NOTES
V_{DR}	V_{CC} for Data Retention	2.0	$\mathrm{~V}_{\mathrm{CC}}(\mathrm{min})$	V	7
$\mathrm{I}_{\mathrm{CCDR}}$	Data Retention Power Supply Current	-	50	$\mu \mathrm{~A}$	7
$\mathrm{t}_{\mathrm{CDR}}$	Chip Deselection to Data Retention Time	0	-	ns	
t_{R}	Operation Recovery Time	t_{RC}	-	ns	

The MK41H67 is in Standby Mode whenever $\overline{\mathrm{CE}}$ is held at or above V_{IH}.

Figure 5. Standby Mode Timing
STANDBY MODE
AC ELECTRICAL CHARACTERISTICS
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10\right.$ percent $)$

SYM	PARAMETER	MK41H67-20		MK41H67-25		MK41H67-35		UNITS	NOTES
		MIN	MAX	MIN	MAX	MIN	MAX		
$t_{\text {PD }}$	Chip Enable High to Power Down		20		25		35	ns	
$t_{\text {PU }}$	Chip Enable Low to Power Up	0		0		0		ns	

APPLICATION

The MK41H66/7 operates from a 5.0 volt supply. It is compatible with all standard TTL families on all inputs and outputs. The device should share a solid ground plane with any other devices interfaced with it, particularly TTL devices. Additionally, because the outputs can drive rail-to-rail into high impedance loads, the $41 \mathrm{H} 66 / 7$ can also interface to 5 volt CMOS on all inputs and outputs. Refer to the normalized performance curves that follow.

Since very high frequency current transients will be associated with the operation of the MK41H66/7, power line inductance must be minimized on the circuit board power distribution network. Power and ground trace
gridding or separate power planes can be employed to reduce line inductance. Additionally, a high frequency decoupling capacitor should be placed next to each RAM. The capacitor should be $0.1 \mu \mathrm{~F}$ or larger.

Though often times not thought of as such, the traces on a memory board are basically unterminated, low impedance transmission lines. As such they are subject to signal reflections manifested as noise, undershoots and excessive ringing. Series termination in close proximity to the TTL drivers can improve driver/signal path impedance matching. While experimentation most often proves to be the only practical approach to selection of series resistors, values in the range of 10 to 33 ohms often prove most suitable.

ABSOLUTE MAXIMUM RATINGS*

Voltage on any pin relative to GND . 1.0 V to +7.0 V

Ambient Storage Temperature (Plastic) . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Ambient Storage Temperature (Ceramic) . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Total Device Power Dissipation . 1 Watt
Output Current per Pin
.50 mA
"Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or other conditions beyond those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS

$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)$

SYM	PARAMETER	MIN	TYP	MAX	UNITS	NOTES
V_{CC}	Supply Voltage	4.5	5.0	5.5	V	3
GND	Supply Voltage	0	0	0	V	
$\mathrm{~V}_{\text {IH }}$	Logic 1 Voltage, All Inputs	2.2		$\mathrm{~V}_{\mathrm{CC}}+1.0$	V	3
$\mathrm{~V}_{\mathrm{IL}}$	Logic 0 Voltage, All Inputs	-1.0		0.8	V	3,4

DC ELECTRICAL CHARACTERISTICS
$\left(0^{\circ} \mathrm{C} \leq T_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10\right.$ percent $)$

SYM	PARAMETER	MIN	MAX	UNITS	NOTES
$\mathrm{I}_{\mathrm{CC} 1}$	Average Power Supply Current		120	mA	5
$\mathrm{I}_{\mathrm{CC} 2}$	TTL Standby Current (MK41H67 only)		10	mA	6
$\mathrm{I}_{\mathrm{CC} 3}$	CMOS Standby Current (MK41H67 only)		50	$\mu \mathrm{~A}$	7
I_{IL}	Input Leakage Current (Any Input Pin)	-1	+1	$\mu \mathrm{~A}$	8
I_{OL}	Output Leakage Current (Any Output Pin)	-10	+10	$\mu \mathrm{~A}$	9
$\mathrm{~V}_{\mathrm{OH}}$	Output Logic 1 Voltage $\left(\mathrm{I}_{\text {OUT }}=-4 \mathrm{~mA}\right)$	2.4		V	3
$\mathrm{~V}_{\mathrm{OL}}$	Output Logic 0 Voltage $\left(\mathrm{I}_{\text {OUT }}=+8 \mathrm{~mA}\right)$		0.4	V	3

CAPACITANCE

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \quad \mathrm{f}=1.0 \mathrm{MHz}$)

SYM	PARAMETER	TYP	MAX	UNITS	NOTES
C_{1}	Capacitance on input pins	4	5	pF	10
C_{2}	Capacitance on Q pin	8	10	pF	6,10

NOTES

1. Measured with load shown in Figure 6(A).
2. Measured with load shown in Figure 6(B).
3. All voltages referenced to GND
4. $V_{\text {IL }}$ may undershoot to -2.0 volts for 200 ns or less during input transitions.
5. $I_{C C}$ is measured as the average $A C$ current with $V_{C C}=V_{C C}$ (max) and with the outputs open circuit. tcycle $=$ min. duty cycle 100%.
6. $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$, All Other Inputs $=$ Don't Care.
7. $V_{C C}(\max) \geq \overline{C E} \geq V_{C C}-0.3 V$
$\mathrm{GND}+0.3 \mathrm{~V} \geq \mathrm{A}_{0}-\mathrm{A}_{13} \geq \mathrm{V}_{\mathrm{IL}}(\mathrm{min})$ or $\mathrm{V}_{I H}(\max) \geq \mathrm{A}_{0}-\mathrm{A}_{13} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}$. All Other Inputs = Don't Care.
8. Input leakage current specifications are valid for all $\mathrm{V}_{\text {IN }}$ such that $0 \mathrm{~V}<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\mathrm{CC}}$. Measured at $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}}$ (max).
9. Output leakage current specifications are valid for all $V_{\text {OUT }}$ such that $0 \mathrm{~V}<\mathrm{V}_{\text {OUT }}<\mathrm{V}_{\mathrm{CC}}, \overline{C E} / \mathrm{CS}=\mathrm{V}_{\mathrm{IH}}$ and V_{CC} in valid operating range.
10. Capacitances are sampled and not 100% tested

AC TEST CONDITIONS

Figure 6. Output Load Circuits

NORMALIZED SUPPLY CURRENT VS.
SUPPLY VOLTAGE $T_{A}=0^{\circ} \mathrm{C}$

SUPPLY VOLTAGE (V)

NORMALIZED SUPPLY CURRENT VS.
CYCLE TIME V ${ }_{\text {cC }}=5.0 \mathrm{~V}$ T $_{A}=25^{\circ} \mathrm{C}$

NORMALIZED SUPPLY CURRENT VS.
AMBIENT TEMPERATURE $\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$

AMBIENT TEMPERATURE ($\left.{ }^{\circ} \mathrm{C}\right)$

NORMALIZED ACCESS TIME VS.
SUPPLY VOLTAGE $T_{A}=25^{\circ} \mathrm{C}$

SUPPLY VOLTAGE (V)

NORMALIZED SOURCE AND SINK CURRENTS VS. OUTPUT VOLTAGE VOLTAGE $V_{C C}=5.0 \mathrm{~V} T_{A}=25^{\circ} \mathrm{C}$

NORMALIZED SOURCE AND SINK CURRENTS VS. SUPPLY VOLTAGE $T_{A}=25^{\circ} \mathrm{C}$

ORDERING INFORMATION

PART NUMBER	ACCESS TIME	PACKAGE TYPE	TEMPERATURE RANGE
MK41H67N-20	20 ns	20 pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41H67N-25	25 ns	20 pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41H67N-35	35 ns	20 pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41H66N-20	20 ns	20 pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41H66N-25	25 ns	20 pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41H66N-35	35 ns	20 pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41H67P-20	20 ns	20 pin Ceramic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41H67P-25	25 ns	20 pin Ceramic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41H67P-35	35 ns	20 pin Ceramic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41H66P-20	20 ns	20 pin Ceramic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41H66P-25	25 ns	20 pin Ceramic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41H66P-35	35 ns	20 pin Ceramic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

20 PIN "N" PACKAGE

PLASTIC DIP

DIM	INCHES		NOTES
	MIN	MAX	
A	-	.210	2
A1	.015	-	2
$A 2$.120	.140	
B	.015	.021	3
B1	.050	.070	
C	.008	.012	3
D	1.020	1.050	1
D1	.060	.075	
E	.300	.325	
$E 1$.240	.270	
e1	.090	.110	
eA	.300	.400	
L	.120	-	

NOTES

1. OVERALL LENGTH INCLUDES . 010 IN.

FLASH ON EITHER END OF THE PACKAGE.
2. PACKAGE STANDOFF TO BE MEASURED PER JEDEC REQUIREMENTS.
3. THE MAXIMUM LIMIT SHALL BE INCREASED BY . 003 IN. WHEN SOLDER LEAD FINISH IS SPECIFIED.

20 PIN "P"' PACKAGE

SIDE BRAZED CERAMIC DIP

DIM	INCHES		NOTES
	MIN	MAX	
A	-	.175	1
$A 1$.020	-	1
$A 2$.080	.110	
B	.015	.021	2
$B 1$.038	.057	
C	.008	.012	2
D	.965	.995	
$D 1$.025	.055	
E	.295	.325	
$E 1$.280	.310	
$e 1$.090	.110	
$E A$.290	.365	
L	.120	-	
Q1	.005	-	

NOTES

1. PACKAGE STANDOFF TO BE MEASURED PER JEDEC REQUIREMENTS.
2. THE MAXIMUM LIMIT SHALL $B E$

INCREASED BY 003 IN. WHEN
SOLDER LEAD FINISH IS SPECIFIED.

PRELIMINARY

FEATURES

JEDEC LVTTL standard +3.3 volt operation
25, 35 and 45 ns Address Access Time

Equal access and cycle times20-pin, 300 mil Plastic and Ceramic DIPAll input and output pins TTL compatible, low capacitance, and protected against static discharge
$50 \mu \mathrm{~A}$ CMOS Standby Current (MK41L67)High speed chip select (MK41L66)JEDEC standard pinout

MK41L66 TRUTH TABLE

$\overline{\mathbf{C E}}$	$\overline{\text { WE }}$	Mode	Q	Power
H	X	Deselect	High Z	Active
L	L	Write	High Z	Active
L	H	Read	Data Out	Active

MK41L67 TRUTH TABLE

$\overline{\mathbf{C S}}$	$\overline{\mathbf{W E}}$	Mode	Q	Power
H	X	Deselect	High Z	Standby
L	L	Write	High Z	Active
L	H	Read	Data Out	Active

$X=$ Don't Care

DESCRIPTION

The MK41L66 and MK41L67, together with their by 4 counterparts, the MK41L68 and MK41L69, are the first devices on the market that meet or exceed the JEDEC standard for LVTTL VLSI digital circuits. The LVTTL standard provides for compatability between $+5.0 \pm 0.5$ volt TTL devices and $+3.3 \pm 0.3$ volt LVTTL devices within the same system. Adoption of a lower power supply voltage standard allows dimensional scaling of silicon die to continue, which in turn allows density and

Figure 1. Pin Connections

PIN NAMES

$\mathrm{A}_{0}-\mathrm{A}_{13}-$ Address	$\overline{\mathrm{WE}}-$ Write Enable
$\overline{\mathrm{CE}}-$ Chip Enable	$\mathrm{GND}-$ Ground
$($ MK41L67)	$\mathrm{V}_{\mathrm{CC}}-+3.3$ volts
$\overline{\mathrm{CS}}-$ Chip Select	$\mathrm{D}-$ Data In
$($ MK41L66 $)$	$\mathrm{Q}-$ Data Out

CE - Chip Enable (MK41L67)
$V_{C C}{ }^{-}+3.3$ volts (MK41L66)
performance increases to continue. Scaling down the supply voltage provides a number of other potential benefits including reduced EMI, RFI, power consumption and increased reliability.

The MK41L66 and MK41L67 feature fully static operation requiring no external clocks or timing strobes, and
equal address access z_{i} id cycle times.The MK41L67 has a Chip Enable power Jown feature which automatically reduces power dissipation when the $\overline{\mathrm{CE}}$ pin is brought inactive (high). Standby power can be further reduced to microwatt levels by holding the Address and CE pins at full supply rail voltages.

The MK41L66 Chip Select pin provides a high speed chip select access, allowing fast read cycles despite decoder delays.

OPERATIONS

READ MODE

The MK41L66/7 is in the Read Mode whenever WE
(Write Enable) is high and $\overline{\mathrm{CE}} / \overline{\mathrm{CS}}$ (Chip Enable/Select) is low, providing a ripple-through access to any one of 16,384 locations in the static storage array. Valid data will be available at the Data Output pin (Q) within $t_{A A}$ after the last address input signal is stable, providing that the $\overline{C E} / \overline{C S}$ access time is satisfied. If $\overline{C E} / \overline{C S}$ access time is not met, data access will be measured from the limiting parameter (t_{CA}) rather than the address. The state of the Data Output pin is controlled by the $\overline{C E} / \overline{C S}$, and $\overline{W E}$ control signals. The Q may be in an indeterminate state at t_{CL}, but the Q will always have valid data at $t_{A A}$.
\qquad

Figure 2. Read-Read-Read-Write Timing

READ CYCLE TIMING
AC ELECTRICAL CHARACTERISTICS
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}\right)$

SYM	PARAMETER	MK41L6X-25		MK41L6X-35		MK41L6X-45		UNITS	NOTES
		MIN	MAX	MIN	MAX	MIN	MAX		
t_{RC}	Read Cycle Time	25		35		45		ns	
t_{AA}	Address Access Time		25		35		45	ns	1
${ }^{t_{C L}}$	Chip Enable to Low-Z (MK41L67)	7		7		7		ns	2
${ }^{\text {t }}$ L	Chip Select to Low-Z (MK41L66)	5		5		5		ns	2
${ }^{\text {t }}$ CA	Chip Enable Access Time (MK41L67)		25		35		45	ns	1
t_{CA}	Chip Select Access Time (MK41L66)		12		15		17	ns	1
$\mathrm{t}_{\text {RCS }}$	Read Command Setup Time	0		0		0		ns	
$\mathrm{t}_{\mathrm{RCH}}$	Read Command Hold Time	0		0		0		ns	
t_{OH}	Valid Data Out Hold Time	5		5		5		ns	1
t_{Cz}	Chip Enable to High-Z (MK41L67)		10		13		17	ns	2
t_{Cz}	Chip Select to High-Z (MK41L66)		8		10		12	ns	2
$t_{\text {WEZ }}$	Write Enable to High-Z		10		13		17	ns	2
${ }^{\text {W WEL }}$	Write Enable to Low-Z	5		5		5		ns	2

WRITE MODE

The MK41L66/7 is in the Write Mode whenever the WE and $\overline{C E} / \overline{\mathrm{CS}}$ inputs are in the low state. $\overline{\mathrm{CE}} / \overline{\mathrm{CS}}$ or $\overline{\mathrm{WE}}$ must be high during address transitions. Addresses must be held valid throughout a write cycle. The Write begins with the concurrence of a low on WE and $\overline{\mathrm{CE}}$ $\overline{I C S}$. Therefore, t_{AS} is referenced to the latter occurring
edge of $\overline{C E} / \overline{C S}$, or $\overline{W E}$.
 return the output to high impedance within $t_{\text {WEZ }}$ of its falling edge. Care must be taken to avoid bus contention in this type of operation. Data-In must remain valid $t_{D H}$ after the rising edge of $\overline{C E / C S}$ or $\overline{W E}$.

WRITE CYCLE TIMING
AC ELECTRICAL CHARACTERISTICS
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}\right)$

SYM	PARAMETER	MK41L6X-25		MK41L6X-35		MK41L6X-45		UNITS	NOTES
		MIN	MAX	MIN	MAX	MIN	MAX		
$\mathrm{t}_{\text {WC }}$	Write Cycle Time	25		35		45		ns	
$t_{\text {AS }}$	Address Setup Time	0		0		0		ns	
$t_{\text {AW }}$	Address Valid to End of Write	20		30		40		ns	
$\mathrm{t}_{\text {AH }}$	Address Hold after End of Write	0		0		0		ns	
t_{c} w	Chip Enable/Select to End of Write	22		32		40		ns	
$\mathrm{t}_{\text {WEW }}$	Write Enable to End of Write	20		30		40		ns	
t_{DS}	Data Setup Time	14		15		18		ns	
t_{DH}	Data Hold Time	0		0		0		ns	

Figure 3. Write-Write-Write-Read Timing

Figure 4. Data Retention Timing

LOW $V_{\text {cc }}$ DATA RETENTION CHARACTERISTICS

$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)$

SYM	PARAMETERS	MIN	MAX	UNIT	NOTES
V_{DR}	V_{CC} for Data Retention	2.0	$\mathrm{~V}_{\mathrm{CC}}(\mathrm{min})$	V	7
$\mathrm{I}_{\mathrm{CCDR}}$	Data Retention Power Supply Current	-	50	$\mu \mathrm{~A}$	7
$\mathrm{t}_{\mathrm{CDR}}$	Chip Deselection to Data Retention Time	0	-	ns	
t_{R}	Operation Recovery Time	t_{RC}	-	ns	

Figure 5. Standby Mode Timing
STANDBY MODE
AC ELECTRICAL CHARACTERISTICS
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}\right)$

SYM	PARAMETER	MK41L67-25		MK41L67-35		MK41L67-45		UNITS	NOTES
		MIN	MAX	MIN	MAX	MIN	MAX		
$t_{\text {PD }}$	Chip Enable High to Power Down		25		35		45	ns	
$t_{\text {PU }}$	Chip Enable Low to Power Up	0		0		0		ns	

APPLICATION

The MK41L66/7 operates from a 3.3 volt supply. It is compatible with all standard TTL families on all inputs and outputs. The device should share a solid ground plane with any other devices interfaced with it, particularly 5 volt TTL devices. Additionally, because the outpuis can drive rail-io-rail into high impedance loads, the 41L66/7 can also interface to 5 volt CMOS on all inputs and outputs. Refer to the normalized performance curves that follow.

Since very high frequency current transients will be associated with the operation of the MK41L667, power line inductance must be minimized on the circuit board power distribution network. Power and ground trace
gridding or separate power planes can be employed to reduce line inductance. Additionally, a high frequency decoupling capacitor should be placed next to each RAM. The capacitor should be $0.1 \mu \mathrm{~F}$ or larger.

Though often times not thought of as such, the traces on a memory board are basically unterminated, low impedance transmission lines. As such they are subject to signal reflections manifested as noise, undershoots and excessive ringing. Series termination in close proximity to the TTL drivers can improve driver/signal path impedance matching. While experimentation most often proves to be the only practical approach to selection of series resistors, values in the range of 10 to 33 ohms often prove most suitable.

ABSOLUTE MAXIMUM RATINGS*

Voltage on any pin relative to GND . 1.0 V to +6.0 V

Ambient Storage Temperature (Plastic) . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Ambient Storage Temperature (Ceramic) . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Total Device Power Dissipation . 1 Watt
Output Current per Pin . 50 mA
"Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or other conditions beyond those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)$

SYM	PARAMETER	MIN	TYP	MAX	UNITS	NOTES
V_{CC}	Supply Voltage	3.0	3.3	3.6	V	3
GND	Supply Voltage	0	0	0	V	
$\mathrm{~V}_{\text {IH }}$	Logic 1 Voltage, All Inputs	2.0		$\mathrm{~V}_{\mathrm{CC}}+1.2$	V	3
$\mathrm{~V}_{\mathrm{IL}}$	Logic 0 Voltage, All Inputs	-1.0		0.8	V	3,4

DC ELECTRICAL CHARACTERISTICS
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10\right.$ percent $)$

SYM	PARAMETER	MIN	MAX	UNITS	NOTES
$\mathrm{I}_{\mathrm{CC} 1}$	Average Power Supply Current		60	mA	5
$\mathrm{I}_{\mathrm{CC} 2}$	TTL Standby Current (MK41L67 only)		8	mA	6
$\mathrm{I}_{\mathrm{CC} 3}$	CMOS Standby Current (MK41L67 only)		50	$\mu \mathrm{~A}$	7
I_{IL}	Input Leakage Current (Any Input Pin)	-1	+1	$\mu \mathrm{~A}$	8
I_{OL}	Output Leakage Current (Any Output Pin)	-10	+10	$\mu \mathrm{~A}$	9
$\mathrm{~V}_{\mathrm{OH}}$	Output Logic 1 Voltage ($\left.\mathrm{I}_{\text {OUT }}=-1 \mathrm{~mA}\right)$	2.4		V	3
$\mathrm{~V}_{\mathrm{OL}}$	Output Logic 0 Voltage $\left(\mathrm{I}_{\text {OUT }}=+4 \mathrm{~mA}\right)$		0.4	V	3

CAPACITANCE

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$)

SYM	PARAMETER	TYP	MAX	UNITS	NOTES
C_{1}	Capacitance on input pins	4	5	pF	10
C_{2}	Capacitance on Q pin	8	10	pF	6,10

NOTES

1. Measured with load shown in Figure 6(A).
2. Measured with load shown in Figure 6(B)
3. All voltages referenced to GND.
4. $\mathrm{V}_{\text {IL }}$ may undershoot to -2.0 volts for 200 ns or less during input transitions.
5. $I_{C C 1}$ is measured as the average $A C$ current with $V_{C C}=V_{C C}(\max)$ and with the outputs open circuit. t cycle $=\mathrm{min}$. duty cycle 100%.
6. $\overline{\mathrm{CE}}=\mathrm{V}_{I H}$, All Other Inputs $=$ Don't Care.
7. $V_{C C}(\max) \geq \overline{C E} \geq V_{C C}-0.3 \vee$

GND $+0.3 \mathrm{~V} \geq A_{0}-A_{13} \geq \mathrm{V}_{\mathrm{IL}}(\min)$ or $\mathrm{V}_{\mathrm{IH}}(\max) \geq \mathrm{A}_{0}-\mathrm{A}_{13} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}$ All Other Inputs = Don't Care.
8. Input leakage current specifications are valid for all $\mathrm{V}_{1 \mathrm{~N}}$ such that $0 \mathrm{~V}<\mathrm{V}_{I N}<\mathrm{V}_{\mathrm{CC}}$. Measured at $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}}$ (max)
9. Output leakage current specifications are valid for all $V_{\text {OUT }}$ such that $0 \mathrm{~V}<\mathrm{V}_{\mathrm{OUT}}<\mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CE}} / \mathrm{CS}=\mathrm{V}_{\mathrm{IH}}$ and V_{CC} in valid operating range.
10. Capacitances are sampled and not 100% tested
Input Levels
GND to 3.0 V
Transition Times 5 ns
Input and Output Signal Timing Reference Level 1.5 V
Ambient Temperature
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

LOAD CIRCUIT VALUES

V_{1}	5.0 V	3.3 V
R_{1}	1000Ω	660Ω
R_{2}	670Ω	1016Ω
C_{1}	30 pF	30 pF

* INCLUDES SCOPE AND TEST JIG

EQUIVALENT TO:

Figure 6. Output Load Circuits

Normalized Supply Current vs. Supply Voltage

MHz
Normalized Supply Current vs. Cycle Time

Rorinalized Supply Current vs. Ambient Temperature

Normalized Address Access Time vs. Supply Voltage

T_{A}
Normalized Address Access Time vs. Ambient Temperature

Normalized Output Source and Sink Currents vs. Supply Voltage

Normalized Output Source and Sink Currents vs. Ambient Temperature

Normalized Output Source and Sink Currents vs. Output Voltage

Logic Thresholds vs. Supply Voltage

Logic Thresholds vs. Ambient Temperature

ORDERING INFORMATION

PART NUMBER	ACCESS TIME	PACKAGE TYPE	TEMPERATURE RANGE
MK41L66N-25	25 ns	20 pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41L66N-35	35 ns	20 pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41L66N-45	45 ns	20 pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41L67N-25	25 ns	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	
MK41L67N-35	35 ns	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	
MK41L67N-45	45 ns	20 pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41L66P-25	25 ns	20 pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41L66P-35	35 ns	20 pin Ceramic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41L66P-45	45 ns	20 pin Ceramic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41L67P-25	25 ns	20 pin Ceramic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41L67P-35	35 ns	20 pin Ceramic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41L67P-45	45 ns	20 pin Ceramic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

20 PIN "N" PACKAGE

PLASTIC DIP

DIM	INCHES		NOTES
	MIN	MAX	
A	-	.210	2
$A 1$.015	-	2
$A 2$.120	.140	
B	.015	.021	3
$B 1$.050	.070	
C	.008	.012	3
D	1.020	1.050	1
$D 1$.060	.075	
E	.300	.325	
$E 1$.240	.270	
e1	.090	.110	
eA	.300	.400	
L	.120	-	

NOTES

1. OVERALL LENGTH INCLUDES . 010 IN. FLASH ON EITHER END OF THE PACKAGE.
2. PACKAGE STANDOFF TO BE MEASURED PER JEDEC REQUIREMENTS.
3. THE MAXIMUM LIMIT SHALL BE

INCREASED BY . 003 IN. WHEN
SOLDER LEAD FINISH IS SPECIFIED.

20 PIN "P" PACKAGE

SIDE BRAZED CERAMIC DIP

DIM	INCHES		NOTES
	MIN	MAX	
A	-	.175	1
$A 1$.020	-	1
$A 2$.080	.110	
B	.015	.021	2
$B 1$.038	.057	
C	.008	.012	2
D	.965	.995	
$D 1$.025	.055	
E	.295	.325	
E1	.280	.310	
e1	.090	.110	
eA	.290	.365	
L	.120	-	
Q1	.005	-	

NOTES

1. PACKAGE STANDOFF TO BE MEASURED PER JEDEC REQUIREMENTS
2. THE MAXIMUM LIMIT SHALL BE INCREASED BY 003 IN. WHEN SOLDER LEAD FINISH IS SPECIFIED

FEATURES

\square 20, 25, and 35 ns Address Access Time
Equal access and cycle times
$\square 20$-pin, 300 mil Plastic and Ceramic DIP
\square All inputs and outputs TTL compatible, low capacitance, and protected against static discharge
$\square 50 \mu \mathrm{~A}$ CMOS Standby Current (MK41H68)
\square TTL Standby Current unaffected by address activity (MK41H68)
\square High speed chip select (MK41H69)
\square JEDEC standard pinout

MK41H68 TRUTH TABLE

$\overline{\text { CE }}$	$\overline{\text { WE }}$	Mode	DQ	Power
H	X	Deselect	High Z	Standby
L	L	Write	D $_{\text {IN }}$	Active
L	H	Read	D OUT	Active

MK41H69 TRUTH TABLE

$\overline{\mathbf{C S}}$	$\overline{\text { WE }}$	Mode	DQ	Power
H	X	Deselect	High Z	Active
L	L	Write	D IN	Active
L	H	Read	D OUT	Active

$X=$ Don't Care

DESCRIPTION

The MK41H68 and MK41H69 feature fully static operation requiring no external clocks or timing strobes, and equal address access and cycle times. Both require only a single $+5 \mathrm{~V} \pm 10$ percent power supply. Both devices are fully TTL compatible.
The MK41H68 has a Chip Enable power down feature which automatically reduces power dissipation when the $\overline{\mathrm{CE}}$ pin is brought inactive (high). Standby power can be further reduced to microwatt levels by raising

Figure 1. Pin Connections

PIN NAMES

$A_{0}-A_{11}-$ Address	$\overline{\text { WE }}-$ Write Enable
$D Q_{0}-D Q_{3}-$ Data I/O	GND - Ground
$\overline{C E}-$ Chip Enable	$V_{C C}+5$ volts
$\overline{\text { (MK41H68) }}$	
$\overline{C S}-$ Chip Select	
(MK41H69)	

the $\overline{\mathrm{CE}}$ pin to the full V_{CC} voltage.
The MK41H69 Chip Select pin provides a high speed chip select access, allowing fast read cycles despite decoder delays.

OPERATIONS

READ MODE

The MK41H68/9 is in the Read Mode whenever $\overline{W E}$ (Write Enable) is high and $\overline{\mathrm{CE}} / \overline{\mathrm{CS}}$ (Chip Enable/Select) is low, providing a ripple-through access to data from four of 16,384 locations in the static storage array. The unique address specified by the 12 Address Inputs defines which one of 4096 nibbles of data is to be accessed.

Valid data will be available at the four Data Output pins within $t_{A A}$ after the last address input signal is stable, providing that the $\overline{C E} / \overline{\mathrm{CS}}$ access time is satisfied. If $\overline{C E} / \overline{\mathrm{CS}}$ access time is not met, data access will be measured from the limiting parameter ($t_{C A}$) rather than the address. The state of the four Data I/O pins is controlled by the $\overline{\mathrm{CE}} / \overline{\mathrm{CS}}$, and $\overline{\mathrm{WE}}$ control signals. The data lines may be in an indeterminate state at t_{CL}, but the data lines will always have valid data at $t_{A A}$.

Figure 2. Read-Read-Read-Write Timing

READ CYCLE TIMING

AC ELECTRICAL CHARACTERISTICS
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10\right.$ percent $)$

SYM	PARAMETER	MK41H6X-20		MK41H6X-25		MK41H6X-35		UNITS	NOTES
		MIN	MAX	MIN	MAX	MIN	MAX		
t_{RC}	Read Cycle Time	20		25		35		ns	
$t_{\text {AA }}$	Address Access Time		20		25		35	ns	1
${ }^{\text {t }} \mathrm{CL}$	Chip Enable to Low-Z (MK41H68)	7		7		7		ns	2
${ }^{\text {t }}$ CL	Chip Select to Low-Z (MK41H69)	5		5		5		ns	2
${ }^{\text {t }}$ CA	Chip Enable Access Time (MK41H68)		20		25		35	ns	1
$t_{\text {cA }}$	Chip Select Access Time (MK41H69)		10		12		15	ns	1
$t_{\text {RCS }}$	Read Command Setup Time	0		0		0		ns	
$t_{\text {RCH }}$	Read Command Hold Time	0		0		0		ns	
t_{OH}	Valid Data Out Hold Time	5		5		5		ns	1
$t_{C Z}$	Chip Enable to High-Z (MK41H68)		8		10		13	ns	2
${ }^{\text {t }} \mathrm{CZ}$	Chip Select to High-Z (MK41H69)		7		8		10	ṅs	2
$t_{\text {WEZ }}$	Write Enable to High-Z		8		10		13	ns	2

WRITE MODE

The MK41H68/9 is in the Write Mode whenever the WE and $\overline{C E} / \overline{C S}$ inputs are in the low state. $\overline{C E} / \overline{C S}$ or $\overline{W E}$ must be high during address transitions. Addresses must be held valid throughout a write cycle. The Write begins with the concurrence of a low on $\overline{W E}$ and $\overline{\mathrm{CE}}$ ICS. Therefore, t_{AS} is referenced to the latter occurring
edge of $\overline{C E} / \overline{C S}$, or $\overline{W E}$.
If the output is enabled ($\overline{\mathrm{CE}} / \overline{\mathrm{CS}}$ is low), then $\overline{\mathrm{WE}}$ will return the outputs to high impedance within $t_{\text {WEZ }}$ of its falling edge. Care must be taken to avoid bus contention in this type of operation. Data-In must remain valid t_{DH} after the rising edge of $\overline{C E / C S}$ or $\overline{\mathrm{WE}}$.

Figure 3. Write-Write-Write-Read Timing

WRITE CYCLE TIMING
AC ELECTRICAL CHARACTERISTICS
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10\right.$ percent $)$

SYM	PARAMETER	MK41H6X-20		MK41H6X-25		MK41H6X-35		UNITS	NOTES
		MIN	MAX	MIN	MAX	MIN	MAX		
${ }^{\text {w }}$ c	Write Cycle Time	20		25		35		ns	
$t_{\text {AS }}$	Address Setup Time	0		0		0		ns	
$t_{\text {AW }}$	Address Valid to End of Write	16		20		30		ns	
$t_{\text {AH }}$	Address Hold after End of Write	0		0		0		ns	
t_{CW}	Chip Enable/Select to End of Write	18		22		32		ns	
$\mathrm{t}_{\text {WEW }}$	Write Enable to End of Write	16		20		30		ns	
t_{DS}	Data Setup Time	12		14		15		ns	
$t_{\text {DH }}$	Data Hold Time	0		0		0		ns	
$t_{\text {WEL }}$	Write Enable to Low-Z	5		5		5		ns	2

LOW V_{Cc} DATA RETENTION TIMING (MK41H68)

Figure 4. Data Retention Timing
LOW $\mathrm{V}_{\text {cc }}$ DATA RETENTION CHARACTERISTICS
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)$

SYM	PARAMETERS	MIN	MAX	UNIT	NOTES
$V_{D R}$	$V_{C C}$ for Data Retention	2.0	$V_{C C}(\mathbf{m i n})$	V	7
$I_{C C D R}$	Data Retention Power Supply Current	-	50	$\mu \mathrm{~A}$	7
$\mathrm{t}_{\mathrm{CDR}}$	Chip Deselection to Data Retention Time	0	-	ns	
t_{R}	Operation Recovery Time	t_{RC}	-	ns	

STANDBY MODE (MK41H68 Only)

The MK41H68 is in Standby Mode whenever $\overline{C E}$ is held at or above V_{IH}.

Figure 5. Standby Mode Timing

STANDBY MODE

AC ELECTRICAL CHARACTERISTICS
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10\right.$ percent $)$

SYM	PARAMETER	MK41H68-20		MK41H68-25		MK41H68-35		UNITS	NOTES
		MIN	MAX	MIN	MAX	MIN	MAX		
${ }^{\text {t }}$ PD	Chip Enable High to Power Down		20		25		35	ns	
t_{PU}	Chip Enable Low to Power Up	0		0		0		ns	

APPLICATION

The MK41H68/9 operates from a 5.0 volt supply. It is compatible with all standard TTL families on all inputs and outputs. The device should share a solid ground plane with any other devices interfaced with it, particularly TTL devices. Additionally, because the outputs can drive rail-to-rail into high impedance loads, the $41 \mathrm{H} 68 / 3$ can also interface to 5 volt CMOS on all inputs and outputs. Refer to the normalized performance curves that follow.

Since very high frequency current transients will be associated with the operation of the MK41H68/9, power line inductance must be minimized on the circuit board power distribution network. Power and ground trace
gridding or separate power planes can be employed to reduce line inductance. Additionally, a high frequency decoupling capacitor should be placed next to each RAM. The capacitor should be $0.1 \mu \mathrm{~F}$ or larger.

Though often times not thought of as such, the traces on a memory board are basically unterminated, low impedance transmission lines. As such they are subject to signal reflections manifested as noise, undershoots and excessive ringing. Series termination in close proximity to the TTL drivers can improve driver/signal path impedance matching. While experimentation most often proves to be the only practical approach to selection of series resistors, values in the range of 10 to 33 ohms often prove most suitable.

Abstract

ABSOLUTE MAXIMUM RATINGS*

Voltage on any pin relative to GND . 1.0 V to +7.0 V Ambient Operating Temperature (T_{A}) . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Ambient Storage Temperature (Plastic) . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Ambient Storage Temperature (Ceramic) . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Total Device Power Dissipation . 1 Watt Output Current per Pin .50 mA "Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or other conditions beyond those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS

$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)$

SYM	PARAMETER	MIN	TYP	MAX	UNITS	NOTES
V_{CC}	Supply Voltage	4.5	5.0	5.5	V	3
GND	Supply Voltage	0	0	0	V	
$\mathrm{~V}_{\mathrm{IH}}$	Logic 1 Voltage, All Inputs	2.2		$\mathrm{~V}_{\mathrm{CC}}+1.0$	V	3
$\mathrm{~V}_{\mathrm{IL}}$	Logic 0 Voltage, All Inputs	-1.0		0.8	V	3,4

DC ELECTRICAL CHARACTERISTICS
$\left(0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10\right.$ percent $)$

SYM	PARAMETER	MIN	MAX	UNITS	NOTES
$I_{\text {CC1 }}$	Average Power Supply Current		120	mA	5
I_{CC}	TTL Standby Current (MK41H68 only)		8	mA	6
I_{CC}	CMOS Standby Current (MK41H68 only)		50	$\mu \mathrm{~A}$	7
I_{IL}	Input Leakage Current (Any Input Pin)	-1	+1	$\mu \mathrm{~A}$	8
I_{OL}	Output Leakage Current (Any Output Pin)	-10	+10	$\mu \mathrm{~A}$	9
$\mathrm{~V}_{\text {OH }}$	Output Logic 1 Voltage ($\left.\mathrm{I}_{\text {OUT }}=-4 \mathrm{~mA}\right)$	2.4		V	3
$\mathrm{~V}_{\mathrm{OL}}$	Output Logic 0 Voltage $\left(\mathrm{I}_{\text {OUT }}=+8 \mathrm{~mA}\right)$		0.4	V	3

CAPACITANCE

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$)

SYM	PARAMETER	TYP	MAX	UNITS	NOTES
C_{1}	Capacitance on input pins	4	5	pF	10
C_{2}	Capacitance on DQ pins	8	10	pF	6,10

NOTES

1. Measured with load shown in Figure 6(A).
2. Measured with load shown in Figure 6(B).
3. All voltages referenced to GND.
4. V_{IL} may undershoot to -2.0 volts for 200 ns or less during input transitions.
5. $I_{C C 1}$ is measured as the average $A C$ current with $V_{C C}=V_{C C}$ (max) and with the outputs open circuit. tcycle $=\mathrm{min}$. duty cycle 100%.
6. $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$, All Other Inputs $=$ Don't Care
7. $V_{C C}(\max) \geq \overline{C E} \geq V_{C C}-0.3 \mathrm{~V}$, All Other Inputs $=$ Don't Care
8. Input leakage current specifications are valid for all $\mathrm{V}_{\text {IN }}$ such that $0 \mathrm{~V}<\mathrm{V}_{\mathrm{IN}}<\mathrm{V}_{\mathrm{CC}}$. Measured at $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}}$ (max).
9. Output leakage current specifications are valid for all $V_{\text {OUT }}$ such that $0 \mathrm{~V}<\mathrm{V}_{\text {OUT }}<\mathrm{V}_{\mathrm{CC}}, \overline{C E} / \overline{C S}=\mathrm{V}_{\mathrm{IH}}$ and V_{CC} in valid operating range.
10. Capacitances are sampled and not 100% tested.

AC TEST CONDITIONS

Input Levels GND to 3.0 V
Transition Times 5 ns
Input and Output Signal Timing Reference Level 1.5 V
Ambient Temperature $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
v_{cc} $5.0 \mathrm{~V} \pm 10$ percent

Figure 6. Output Load Circuits

NORMALIZED SUPPLY CURRENT VS. SUPPLY VOLTAGE $T_{A}=0^{\circ} \mathrm{C}$

NORMALIZED SUPPLY CURRENT VS.
CYCLE TIME VCC $=5.0 \mathrm{~V}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

NORMALIZED SUPPLY CURRENT VS. AMBIENT TEMPERATURE $\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$

NORMALIZED ACCESS TIME VS. SUPPLY VOLTAGE $T_{A}=25^{\circ} \mathrm{C}$

NORMALIZED ACCESS TIME VS. AMBIENT TEMPERATURE $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

LOGIC THRESHOLD VOLTAGE VS. AMBIENT TEMPERATURE $\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$

NORMALIZED ACCESS TIME VS. OUTPUT LOADING $V_{C C}=5.0 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

LOGIC THRESHOLD VOLTAGE VS.
SUPPLY VOLTAGE $T_{A}=25^{\circ} \mathrm{C}$

sufflit Voltage (v)

NORMALIZED SOURCE AND SINK CURRENTS vS. OUTPUT VOLTAGE $V_{C C}=5.0 \mathrm{~V}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

NORMALIZED SOURCE AND SINK CURRENTS VS. SUPPLY VOLTAGE $T_{A}=25^{\circ} \mathrm{C}$

NORMALIZED SOURCE AND SINK CURRENTS VS. AMBIENT TEMPERATURE $\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$

ORDERING INFORMATION

PART NUMBER	ACCESS TIME	PACKAGE TYPE	TEMPERATURE RANGE
MK41H68N-20	20 ns	20 pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41H68N-25	25 ns	20 pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41H68N-35	35 ns	20 pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41H69N-20	20 ns	20 pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41H69N-25	25 ns	20 pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41H69N-35	35 ns	20 pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41H68P-20	20 ns	20 pin Ceramic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41H68P-25	25 ns	20 pin Ceramic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41H68P-35	35 ns	20 pin Ceramic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41H69P-20	20 ns	20 pin Ceramic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41H69P-25	25 ns	20 pin Ceramic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41H69P-35	35 ns	20 pin Ceramic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

PLASTIC DIP

DIM	INCHES		NOTES
	MIN	MAX	
A	-	.210	2
$A 1$.015	-	2
$A 2$.120	.140	
B	.015	.021	3
$B 1$.050	.070	
C	.008	.012	3
D	1.020	1.050	1
$D 1$.060	.075	
E	.300	.325	
$E 1$.240	.270	
$e 1$.090	.110	
$e A$.300	.400	
L	.120	-	

NOTES

1. overall length includes . 010 In.

FLASH ON EITHER END OF THE PACKAGE.
2. PACKAGE STANDOFF TO BE MEASURED pER JEDEC REqUIREMENTS.
3. THE MAXIMUM LIMIT SHALL BE INCREASED BY .003 IN. WHEN solder lead finish is specified.

20 PIN "P" PACKAGE

SIDE BRAZED CERAMIC DIP

DIM	INCHES		NOTES
	MIN	MAX	
A	-	.175	1
$A 1$.020	-	1
$A 2$.080	.110	
B	.015	.021	2
$B 1$.038	.057	
C	.008	.012	2
D	.965	.995	
$D 1$.025	.055	
E	.295	.325	
$E 1$.280	.310	
$e 1$.090	.110	
EA	.290	.365	
L	.120	-	
Q1	.005	-	

NOTES

1. package standoff to be measured PER JEDEC REQUIREMENTS.
2. THE MAXIMUM LIMIT SHALL BE INCREASED BY 003 IN. WHEN SOLDER LEAD FINISH IS SPECIFIED.

PRELIMINARY

FEATURES

\square JEDEC LVTTL Standard +3.3 volt operation
$\square 25,35$ and 45 ns Address Access Time
\square Automatic Power-up Clear
\square Equal access and cycle times
\square 20-pin, 300 mil Plastic and Ceramic DIPAll inputs and outputs TTL compatible, low capacitance, and protected against static discharge
$\square 50 \mu \mathrm{~A}$ CMOS Standby Current (MK41L68)
\square TTL Standby unaffected by address activity (MK41L68)
\square High speed chip select (MK41L69)
\square JEDEC standard pinout

MK41L68 TRUTH TABLE

$\overline{\text { CE }}$	$\overline{\text { WE }}$	Mode	DQ	Power
H	X	Deselect	High Z	Standby
L	L	Write	DIN $^{\text {IN }}$	Active
L	H	Read	$D_{\text {OuT }}$	Active

MK41L69 TRUTH TABLE

$\overline{\mathbf{C S}}$	$\overline{\text { WE }}$	Mode	DQ	Power
H	X	Deselect	High Z	Active
L	L	Write	D $_{\text {IN }}$	Active
L	H	Read	D OUT	Active

$X=$ Don't Care

DESCRIPTION

The Mostek MK41L68 and MK41L69, together with their 22 pin derivatives, the MK41L78 and MK41L79, are the first devices on the market that meet or exceed the JEDEC Standard for LVTTL VLSI digital circuits. The

Figure 1. Pin Connections

PIN NAMES

$\mathrm{A}_{0}-\mathrm{A}_{11}-$ Address
$\mathrm{DQ}_{0}-\mathrm{DQ}_{3}-$ Data I/O
$\overline{\mathrm{CE}}-$ Chip Enable
(MK41L68)
$\overline{\mathrm{CS}}-\mathrm{Chip}^{2}$ Select
(MK41L69)

WE - Write Enable
GND - Ground
$\mathrm{V}_{\mathrm{CC}}{ }^{-}+3.3$ volts

LVTTL standard provides for compatability between $+5.0 \pm 0.5$ volt TTL devices and $+3.3 \pm 0.3$ volt LVTTL devices within the same system. Adoption of a lower power supply voltage standard allows dimensional scaling of silicon die to continue, which in turn allows density and performance increases to continue. Scaling
down the supply voltage provides a number of other potential benefits including reduced EMI, RFI, power comsumption and increased reliability.

The MK41L68 and MK41L69 feature fully static operation requiring no external clocks or timing strobes, and equal address access and cycle times. The MK41L68 has a Chip Enable power down feature which automatically reduces power dissipation when the $\overline{C E}$ pin is brought inactive (high). Standby power can be further reduced to microwatt levels by raising the $\overline{\mathrm{CE}}$ pin to the full V_{CC} voltage. The MK41L69 Chip Select pin provides a high speed chip select access, allowing fast read cycles to be achieved despite decoder delays.

OPERATIONS

READ MODE
(Write Enable) is high and CE/CS (Chip Enable/Select) is low, providing a ripple-through access to data from four of 16,384 locations in the static storage array. The unique address specified by the 12 Address Inputs defines which one of 4096 nibbles of data is to be accessed.

Valid data will be available at the four Data Output pins within t_{AA} after the last address input signal is stable, providing that the $\overline{C E} / \overline{C S}$ access time is satisfied. If $\overline{C E} / \overline{C S}$ access time is not met, data access will be measured from the limiting parameter (t_{CA}) rather than the address. The state of the four Data I/O pins is controlled by the $\overline{\mathrm{CE}} / \overline{\mathrm{CS}}$ and $\overline{\mathrm{WE}}$ control signals. The data lines may be in an indeterminate state at $t_{C L}$, but the data lines will always have valid data at t_{AA}.

The MK41L68/9 is in the Read Mode whenever $\overline{\mathrm{WE}}$

Figure 2. Read-Read-Read-Write Timing

READ CYCLE TIMING
AC ELECTRICAL CHARACTERISTICS
$\left(0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V}\right)$

SYM	PARAMETER	MK41L6X-25		MK41L6X-35		MK41L6X-45		UNITS	NOTES
		MIN	MAX	MIN	MAX	MIN	MAX		
t_{RC}	Read Cycle Time	25		35		45		ns	
t_{AA}	Address Access Time		25		35		45	ns	1
t_{CL}	Chip Enable to Low-Z (MK41L68)	7		7		7		ns	2
${ }^{\text {ct }}$	Chip Select to Low-Z (MK41L69)	5		5		5		ns	2
${ }^{\text {t }}$ CA	Chip Enable Access Time (MK41L68)		25		35		45	ns	1
t_{CA}	Chip Select Access Time (MK41L69)		12		15		18	ns	1
$t_{\text {RCS }}$	Read Command Setup Time	0		0		0		ns	
$\mathrm{t}_{\mathrm{RCH}}$	Read Command Hold Time	0		0		0		ns	
t_{OH}	Valid Data Out Hold Time	5		5		5		ns	1
t_{Cz}	Chip Enable to High-Z (MK41L68)		10		13		17	ns	2
t_{Cz}	Chip Select to High-Z (MK41L69)		8		10		12	ns	2
$t_{\text {WEE }}$	Write Enable to High-Z		10		13		17	ns	2
${ }^{\text {t WEL }}$	Write Enable to Low-Z	5		5		5		ns	2

WRITE MODE

The MK41L68/9 is in the Write Mode whenever the WE and $\overline{\mathrm{CE}} / \overline{\mathrm{CS}}$ inputs are in the low state. $\overline{\mathrm{CE}} / \overline{\mathrm{CS}}$, or $\overline{\mathrm{WE}}$ must be high during address transitions. Addresses must be held valid throughout a write cycle. The Write begins with the concurrence of a low on $\overline{W E}$ and $\overline{\mathrm{CE}}$ $/ \overline{\mathrm{CS}}$. Therefore, t_{AS} is referenced to the latter occurring edge of $\overline{C E} / \overline{\mathrm{CS}}$, or $\overline{\mathrm{WE}}$. The write cycle is terminated
by the earlier rising edge of CE/CS, or $\overline{W E}$.
If the output is enabled ($\overline{\mathrm{CE}} / \overline{\mathrm{CS}}$ is low), then $\overline{\mathrm{WE}}$ will return the outputs to high impedance within $t_{\text {WEZ }}$ of its falling edge. Care must be taken to avoid bus contention in this type of operation. Data-In must remain valid $t_{D H}$ after the rising edge of $\overline{C E} / \overline{C S}$ or $\overline{W E}$.

WRITE CYCLE TIMING
AC ELECTRICAL CHARACTERISTICS
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V}\right)$

SYM	PARAMETER	MK41L6X-25		MK41L6X-35		MK41L6X-45		UNITS	NOTES
		MIN	MAX	MIN	MAX	MIN	MAX		
${ }^{\text {twc }}$	Write Cycle Time	25		35		45		ns	
$t_{\text {AS }}$	Address Setup Time	0		0		0		ns	
t_{AW}	Address Stable to End of Write	20		30		40		ns	
$t_{\text {AH }}$	Address Hold after End of Write	0		0		0		ns	
${ }^{\text {t }}$ CW	Chip Enable/Select to End of Write	22		32		40		ns	
$\mathrm{t}_{\text {WEW }}$	Write Enable to End of Write	20		30		40		ns	
t_{DS}	Data Setup Time	14		15		18		ns	
t_{DH}	Data Hold Time	0		0		0		ns	

Figure 3. Write-Write-Write-Read Timing

Figure 4. Data Retention Timing

LOW V_{CC} DATA RETENTION CHARACTERISTICS

$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)$

SYM	PARAMETERS	MIN	MAX	UNIT	NOTES
$V_{D R}$	$V_{C C}$ for Data Retention	2.0	$V_{C C}(\mathrm{~min})$	V	7
I_{CCDR}	Data Retention Power Supply Current	-	50	$\mu \mathrm{~A}$	7
$\mathrm{t}_{\mathrm{CDR}}$	Chip Deselection to Data Retention Time	0	-	ns	
t_{R}	Operation Recovery Time	t_{RC}	-	ns	

STANDBY MODE (MK41L68 Only)

The MK41L68 is in Standby Mode whenever $\overline{\mathrm{CE}}$ is held at or above V_{IH}.

Figure 5. Standby Mode Timing

STANDBY MODE TIMING

AC ELECTRICAL CHARACTERISTICS
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V}\right)$

SYM	PARAMETER	MK41L68-25		MK41L68-35		MK41L68-45		UNITS	NOTES
		MIN	MAX	MIN	MAX	MIN	MAX		
$t_{\text {PD }}$	Chip Enable High to Power Down		25		35		45	ns	
$t_{\text {PU }}$	Chip Enable Low to Power Up	0		0		0		ns	

APPLICATION

The MK41L68/9 operates from a 3.3 volt supply. It is compatible with all standard TTL families. The device should share a solid ground plane with any other devices interfaced with it, particularly 5 volt TTL devices. Additionally, because the outputs can drive rail-to-rail into high impedance loads, the MK41L68/69 can also interface to 5 volt CMOS on all inputs and outputs. Refer to the normalized performance curves that follow.

Since very high frequency current transients will be associated with the operation of the MK41L68/9, power line inductance must be minimized on the circuit board power distribution network. Power and ground trace gridding or separate power planes can be employed to
reduce line inductance. Additionally, a high frequency decoupling capacitor should be placed next to each RAM. The capacitor should be $0.1 \mu \mathrm{~F}$ or larger.

Though often times not thought of as such, the traces on a memory board are basically unterminated, low impedance transmission lines. As such they are subject to signal reflections manifested as noise, undershoots and excessive ringing. Series termination in close proximity to the TTL drivers can improve driver/signal path impedance matching. While experimentation most often proves to be the only practical approach to selection of series resistors, values in the range of 10 to 33 ohms often prove most suitable.

ABSOLUTE MAXIMUM RATINGS*	
Voltage on any pin relative to GND . 1.0 l V to +6.0 V	
Ambient Operating Temperature (T_{A}) . $0^{\circ}{ }^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	
Ambient Storage Temperature (Plastic) . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
Ambient Storage Temperature (Ceramic) . $66^{\circ}{ }^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Total Device Power Dissipation . 1 Watt	
Output Current per Pin . 50 mA	
*Stresses greater than those listed under "Absolute Maxim operation of the device at these or other conditions beyon maximum rating conditions for extended periods of time	rating only and function lied. Exposure to abs

RECOMMENDED DC OPERATING CONDITIONS
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)$

SYM	PARAMETER	MIN	TYP	MAX	UNITS	NOTES
V_{CC}	Supply Voltage	3.0	3.3	3.6	V	3
GND	Supply Voltage	0	0	0	V	
$\mathrm{~V}_{\text {IH }}$	Logic 1 Voltage, All Inputs	2.0		$\mathrm{~V}_{\mathrm{CC}}+1.2$	V	3
$\mathrm{~V}_{\text {IL }}$	Logic 0 Voltage, All Inputs	-1.0		0.8	V	3,4

DC ELECTRICAL CHARACTERISTICS
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V}\right)$

SYM	PARAMETER	MIN	MAX	UNITS	NOTES
$\mathrm{I}_{\mathrm{CC} 1}$	Average Power Supply Current		60	mA	5
$\mathrm{I}_{\mathrm{CC} 2}$	TTL Standby Current (MK41L68 only)		8	mA	6
$\mathrm{I}_{\mathrm{CC} 3}$	CMOS Standby Current (MK41L68 only)		50	$\mu \mathrm{~A}$	7
I_{IL}	Input Leakage Current (Any Input Pin)	-1	+1	$\mu \mathrm{~A}$	8
I_{OL}	Output Leakage Current (Any Output Pin)	-10	+10	$\mu \mathrm{~A}$	9
$\mathrm{~V}_{\mathrm{OH}}$	Output Logic 1 Voltage (I $\left.\begin{array}{l}\text { OUT }\end{array}=-1 \mathrm{~mA}\right)$	2.4		V	3
$\mathrm{~V}_{\mathrm{OL}}$	Output Logic 0 Voltage $\left(\mathrm{I}_{\text {OUT }}=+4 \mathrm{~mA}\right)$		0.4	V	3

CAPACITANCE

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$)

SYM	PARAMETER	TYP	MAX	UNITS	NOTES
C_{1}	Capacitance on input pins	4	5	pF	10
C_{2}	Capacitance on DQ pins	8	10	pF	6,10

NOTES

[^6]6. $C E=V_{I H}$, all other inputs $=$ Don't Care.
7. $\mathrm{V}_{\mathrm{CC}}(\max) \geq \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}$.

All other inputs $=$ Don't Care.
8. Input leakage current specifications are valid for all $\mathrm{V}_{\mathbb{N}}$ such that $0 \mathrm{~V}<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\mathrm{CC}}$. Measured at $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}}$ (max).
9. Output leakage current specifications are valid for all $V_{\text {OUT }}$ such that $0 \mathrm{~V}<\mathrm{V}_{\mathrm{OUT}}<\mathrm{V}_{\mathrm{CC}}, \overline{C E} / \mathrm{CS}=\mathrm{V}_{\mathrm{IH}}$ and V_{CC} in valid operating range.
10. Capacitances are sampled and not 100% tested.

AC TEST CONDITIONS

Input Levels GND to 3.0 V
Transition Times 5 ns
Input and Output Signal Timing Reference Level 1.5 V
Ambient Temperature $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
$V_{C C}$ $3.3 \pm 0.3 \mathrm{~V}$

LOAD CIRCUIT VALUES

V_{1}	5.0 V	3.3 V
R_{1}	1000Ω	660Ω
R_{2}	670Ω	1016Ω
C_{1}	30 pF	30 pF

* INCLUDES SCOPE AND TEST JIG

EQUIVALENT TO:

Figure 6. Output Load Circuits

Normalized Supply Current vs. Supply Voltage

Normalized 4 ${ }^{2}$

Supply Current Temperature
vs. Ambient

Normalized Address Access Time vs. Supply Voltage

T_{A}
Normalized Address Access Time vs. Ambient Temperature

Normalized Address Access Time vs. Output Loading

Normalized Output Source and Sink Currents vs. Ambient Temperature

Normalized Output Source and Sink Currents vs. Output Voltage

Logic Thresholds vs. Supply Voltage

Logic Thresholds vs. Ambient Temperature

ORDERING INFORMATION

PART NUMBER	ACCESS TIME	PACKAGE TYPE	TEMPERATURE RANGE
MK41L68N-25	25 ns	20 pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41L68N-35	35 ns	20 pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41L68N-45	45 ns	20 pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41L69N-25	25 ns	20 pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41L69N-35	35 ns	20 pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41L69N-45	45 ns	20 pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41L68P-25	25 ns	20 pin Ceramic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41L68P-35	35 ns	20 pin Ceramic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41L68P-45	45 ns	20 pin Ceramic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41L69P-25	25 ns	20 pin Ceramic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41L69P-35	35 ns	20 pin Ceramic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41L69P-45	45 ns	20 pin Ceramic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

20 PIN "N" PACKAGE

PLASTIC DIP

DIM	INCHES		NOTES
	MIN	MAX	
A	-	.210	2
$A 1$.015	-	2
$A 2$.120	.140	
B	.015	.021	3
$B 1$.050	.070	
C	.008	.012	3
D	1.020	1.050	1
D1	.060	.075	
E	.300	.325	
E1	.240	.270	
E1	.090	.110	
EA	.300	.400	
L	.120	-	

NOTES

1. overall length includes . 010 In. FLASH ON EITHER END OF THE PACKAGE.
2. PACKAGE STANDOFF TO BE MEASURED PER JEDEC REQUIREMENTS.
3. THE MAXIMUM LIMIT SHALL BE

INCREASED BY OOZ IN WHEN
SOLDER LEAD FINISH IS SPECIFIED.

20 PIN "P" PACKAGE

SIDE BRAZED CERAMIC DIP

DIM	INCHES		NOTES
	MIN	MAX	
A	-	.175	1
$A 1$.020	-	1
$A 2$.080	.110	
B	.015	.021	2
B1	.038	.057	
C	.008	.012	2
D	.965	.995	
$D 1$.025	.055	
E	.295	.325	
$E 1$.280	.310	
E1	.090	.110	
EA	.290	.365	
L	.120	-	
Q1	.005	-	

NOTES

1. PACKAGE STANDOFF TO BE MEASURED PER JEDEC REQUIREMENTS.
2. THE MAXImUM LImIt ShaLL be

INCREASED BY 003 IN WHEN
SOLDER LEAD FINISH IS SPECIFIED.

FEATURES

20, 25, and 35 ns Address Access TimeEqual access and cycle times22-pin, 300 mil Plastic and Ceramic DIPAll inputs and outputs TTL compatible, low capacitance, and protected against static discharge$50 \mu \mathrm{~A}$ CMOS Standby CurrentTTL Standby Current unaffected by address activity
Separate Output Enable control
\square Flash Clear Function (MK41H79)

TRUTH TABLE

$\overline{\text { CE }}$	$\overline{\text { OE }}$	$\overline{\text { WE }}$	* $\overline{\text { CLR }}$	Mode	DQ	Power
H	X	X	X	Deselect	High Z	Standby
L	X	L	H	Write	D $_{\text {IN }}$	Active
L	L	H	H	Read	DOuT	Active
L	H	H	H	Read	High Z	Active
L	X	L	L	Flash Clear	High Z	Active
L	L	H	L	Flash Clear	Low Z	Active
L	H	H	L	Flash Clear	High Z	Active

- Applies to MK41L79 only.

DESCRIPTION

The MK41H78/79 features fully static operation requiring no external clocks or timing strobes, and equal address access and cycle times. It requires a single +5 V ± 10 percent power supply and is fully TTL compatible.

The device has a Chip Enable power down feature which automatically reduces power dissipation when the $\overline{\mathrm{CE}}$ pin is brought inactive (high). Standby power can be further reduced to microwatt levels by raising the $\overline{C E}$ pin to the full $V_{C C}$ voltage. An Output Enable $(\overline{\mathrm{OE}})$ pin provides a high speed tristate control, allowing fast read/write cycles to be achieved with the common-l/O data bus.

Figure 1. Pin Connections

PIN NAMES

$A_{0}-A_{11}$ - Address
$D Q_{0}-D Q_{3}$ - Data I/O
N.C. - No Connect
$\overline{C E}$ - Chip Enable
$\overline{\mathrm{OE}}$ - Output Enable
$\overline{\mathrm{WE}}$ - Write Enable
$\mathrm{GND}-$ Ground
$\mathrm{V}_{\mathrm{CC}}-+5$ volts

Flash Clear operation is provided on the MK41H79 via the $\overline{\mathrm{CLR}}$ pin, and $\overline{\mathrm{CE}}$ active (low). A low applied to the $\overline{C L R}$ pin clears all RAM bits to zero, making it especially useful for high speed cache and buffer storage applications.

OPERATIONS

READ MODE

The MK41H78/79 is in the Read Mode whenever WE (Write Enable) is high and CE (Chip Enable) is low, providing a ripple-through access to data from four of 16,384 locations in the static storage array. The unique address specified by the 12 Address Inputs defines which one of 4096 nibbles of data is to be accessed.

Valid data will be available at the four Data Output pins within $t_{A A}$ after the last address input signal is stable, providing that the $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ (Output Enable) access times are satisfied. If $\overline{C E}$ or $\overline{O E}$ access times are not met, data access will be measured from the limiting parameter ($\mathrm{t}_{\text {CEA }}$ or $\mathrm{t}_{\text {OEA }}$) rather than the address. The state of the four Data I/O pins is controlled by the $\overline{\mathrm{CE}}$, $\overline{W E}$ and $\overline{O E}$ control signals. The data lines may be in an indeterminate state at $\mathrm{t}_{\text {CEL }}$ and $\mathrm{t}_{\text {OEL }}$, but the data lines will always have valid data at $t_{A A}$.

Figure 2. Read-Read-Read-Write Timing

READ CYCLE TIMING
AC ELECTRICAL CHARACTERISTICS
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10\right.$ percent $)$

SYM	PARAMETER	MK41H7X-20		MK41H7X-25		MK41H7X-35		UNITS	NOTES
		MIN	MAX	MIN	MAX	MIN	MAX		
$t_{\text {RC }}$	Read Cycle Time	20		25		35		ns	
$t_{\text {AA }}$	Address Access Time		20		25		35	ns	1
$\mathrm{t}_{\text {CEL }}$	Chip Enable to Low-Z	7		7		7		ns	2
$\mathrm{t}_{\text {CEA }}$	Chip Enable Access Time		20		25		35	ns	1
$\mathrm{t}_{\text {OEL }}$	Output Enable to Low-Z	2		2		2		ns	2
toea	Output Enable Access Time		10		12		15	ns	1
$t_{\text {RCS }}$	Read Command Setup Time	0		0		0		ns	
$\mathrm{t}_{\mathrm{RCH}}$	Read Command Hold Time	0		0		0		ns	
${ }^{\text {toH }}$	Valid Data Out Hold Time	5		5		5		ns	1
$\mathrm{t}_{\text {CEZ }}$	Chip Enable to High-Z		8		10		13	ns	2
$\mathrm{t}_{\text {OEZ }}$	Output Enable to High-Z		7		8		10	ns	2
${ }^{\text {t WEZ }}$	Write Enable to High-Z		8		10		13	ns	2

WRITE MODE

The MK41H78/79 is in the Write Mode whenever the $\overline{W E}$ and $\overline{\mathrm{CE}}$ inputs are in the low state. $\overline{\mathrm{CE}}$ or $\overline{\mathrm{WE}}$ must be high during address transitions. Addresses must be held valid throughout a write cycle. The Write begins with the concurrence of a low on $\overline{W E}$ and $\overline{C E}$. Therefore, $t_{A S}$ is referenced to the latter occurring edge of

CE or WE. The write cycle is terminated by the earlier rising edge of $\overline{C E}$ or $\overline{W E}$.

If the output is enabled ($\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ low), then $\overline{\mathrm{WE}}$ will return the outputs to high impedance within $t_{\text {WEZ }}$ of its falling edge. Care must be taken to avoid bus contention in this type of operation. Data-In must remain valid $t_{D H}$ after the rising edge of $\overline{C E}$ or $\overline{W E}$.

Figure 3. Write-Write-Write-Read Timing

WRITE CYCLE TIMING
AC ELECTRICAL CHARACTERISTICS
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10\right.$ percent $)$

SYM	PARAMETER	MK41H7X-20		MK41H7X-25		MK41H7X-35		UNITS	NOTES
		MIN	MAX	MIN	MAX	MIN	MAX		
$t_{\text {wc }}$	Write Cycle Time	20		25		35		ns	
$\mathrm{t}_{\text {AS }}$	Address Setup Time	0		0		0		ns	
$t_{\text {AW }}$	Address Stable to End of Write	16		20		30		ns	
$\mathrm{t}_{\text {AH }}$	Address Hold after End of Write	0		0		0		ns	
$\mathrm{t}_{\text {CEW }}$	Chip Enable to End of Write	18		22		32		ns	
$\mathrm{t}_{\text {WEW }}$	Write Enable to End of Write	16		20		30		ns	
$\mathrm{t}_{\text {DS }}$	Data Setup Time	12		14		15		ns	
${ }^{\text {t }}{ }_{\text {dH }}$	Data Hold Time	0		0		0		ns	
$\mathrm{t}_{\text {WEL }}$	Write Enable to Low-Z	5		5		5		ns	2

LOW V_{Cc} DATA RETENTION TIMING (MK41H78)

Figure 4. Data Retention Timing
LOW $V_{\text {CC }}$ DATA RETENTION CHARACTERISTICS
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)$

SYM	PARAMETERS	MIN	MAX	UNIT	NOTES
V_{DR}	V_{CC} for Data Retention	2.0	$\mathrm{~V}_{\mathrm{CC}}(\mathrm{min})$	V	7
$\mathrm{I}_{\mathrm{CCDR}}$	Data Retention Power Supply Current	-	50	$\mu \mathrm{~A}$	7
$\mathrm{t}_{\mathrm{CDR}}$	Chip Deselection to Data Retention Time	0	-	ns	
t_{R}	Operation Recovery Time	t_{RC}	-	ns	

CLEAR CYCLE TIMING (MK41H79)
AC ELECTRICAL CHARACTERISTICS
$\left(0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}\right)\left(V_{C C}=5.0 \pm 10 \%\right)$

SYM	PARAMETER	MK41H79-20		MK41H79-25		MK41H79-35		UNITS	NOTES
		MIN	MAX	MIN	MAX	MIN	MAX		
$\mathrm{t}_{\text {FCC }}$	Flash Clear Cycle Time	40		50		70		ns	
$\mathrm{t}_{\text {CEC }}$	Chip Enable Low to End of Clear	40		50		70		ns	
$\mathrm{t}_{\text {CLP }}$	Flash Clear Low to End of Clear	38		48		68		ns	
t_{CX}	Clear to Inputs Don't Care	0		0		0		ns	
t_{CR}	End of Clear to Inputs Recognized	0		0		0		ns	
${ }_{\text {t }}{ }_{\text {cwx }}$	Clear to Write Enable Don't Care	0		0		0		ns	
$\mathrm{t}^{\text {OHC }}$	Valid Data Out Hold from Clear	5		5		5		ns	1

FLASH CLEAR (MK41H79 Only)

A Flash Clear cycle sets all 16,384 bits in the RAM to logic zero. A Clear begins at the concurrence of a low on Chip Enable ($\overline{\mathrm{CE}}$) and Flash Clear ($\overline{\mathrm{CLR}}$). A Clear may be ended by a high on either $\overline{C E}$ or $\overline{C L R}$. A low
on CLR has no effect if the device is disabled (CE high). A Clear may be executed within either a Read or a Write cycle. Figure 5 illustrates a Clear within a Read cycle. Clears within Write cycles are constrained only in that Write timing parameters must be observed as soon as the Flash Clear pin returns high.

Figure 5. Last Read-Flash Clear-First Write

STANDBY MODE

The MK41H78/79 is in Standby Mode whenever $\overline{\mathrm{CE}}$ is held at or above V_{IH}.

Figure 6. Standby Mode

STANDBY MODE

$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10\right.$ percent $)$

SYM	PARAMETER	MK41H7X-20		MK41H7X-25		MK41H7X-35		UNITS	NOTES
		MIN	MAX	MIN	MAX	MIN	MAX		
$t_{\text {PD }}$	Chip Enable High to Power Down		20		25		35	ns	
$t_{\text {PU }}$	Chip Enable Low to Power Up	0		0		0		ns	

APPLICATION

The MK41H78/79 operates from a 5.0 volt supply. It is compatible with all standard TTL families on all inputs and outputs. The device should share a solid ground plane with any other devices interfaced with it, particularly TTL devices. Additionally, because the outputs can drive rail-to-rail into high impedance loads, the $41 \mathrm{H} 78 / 79$ can also interface to 5 volt CMOS on all inputs and outputs. Refer to the normalized performance curves that follow.

Since very high frequency current transients will be associated with the operation of the MK41H78/79, power line inductance must be minimized on the circuit board power distribution network. Power and ground trace
gridding or separate power planes can be employed to reduce line inductance. Additionally, a high frequency decoupling capacitor should be placed next to each RAM. The capacitor should be $0.1 \mu \mathrm{~F}$ or larger.

Though often times not thought of as such, the traces on a memory board are basically unterminated, low impedance transmission lines. As such they are subject to signal reflections manifested as noise, undershoots and excessive ringing. Series termination in close proximity to the TTL drivers can improve driver/signal path impedance matching. While experimentation most often proves to be the only practical approach to selection of series resistors, values in the range of 10 to 33 ohms often prove most suitable.

ABSOLUTE MAXIMUM RATINGS*

Voltage on any pin relative to GND . 1.0 V to +7.0 V

Ambient Storage Temperature (Plastic) . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Ambient Storage Temperature (Ceramic) . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Total Device Power Dissipation . 1 Watt
Output Current per Pin
50 mA
*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functiona operation of the device at these or other conditions beyond those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS

$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)$

SYM	PARAMETER	MIN	TYP	MAX	UNITS	NOTES
$\mathrm{V}_{\text {CC }}$	Supply Voltage	4.5	5.0	5.5	V	3
GND	Supply Voltage	0	0	0	V	
$\mathrm{~V}_{\text {IH }}$	Logic 1 Voltage, All Inputs	2.2		$\mathrm{~V}_{\mathrm{CC}}+1.0$	V	3
$\mathrm{~V}_{\mathrm{IL}}$	Logic 0 Voltage, All Inputs	-1.0		0.8	V	3,4

DC ELECTRICAL CHARACTERISTICS
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10\right.$ percent $)$

SYM	PARAMETER	MIN	MAX	UNITS	NOTES
$\mathrm{I}_{\text {CC1 }}$	Average Power Supply Current		120	mA	5
$\mathrm{I}_{\mathrm{CC2}}$	TTL Standby Current (MK41H78)		10	mA	6
$\mathrm{I}_{\text {CC2 }}$	TTL Standby Current (MK41H79)		16	mA	6
$\mathrm{I}_{\text {CC3 }}$	CMOS Standby Current (MK41H78)		50	$\mu \mathrm{A}$	7
$\mathrm{I}_{\text {IL }}$	Input Leakage Current (Any Input Pin)	-1	+1	$\mu \mathrm{A}$	8
I_{OL}	Output Leakage Current (Any Output Pin)	-10	+10	$\mu \mathrm{A}$	9
V_{OH}	Output Logic 1 Voltage ($\mathrm{l}_{\text {Out }}=-4 \mathrm{~mA}$)	2.4		V	3
V_{OL}	Output Logic 0 Voltage ($\mathrm{l}_{\text {Out }}=+8 \mathrm{~mA}$)		0.4	V	3

CAPACITANCE

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$)

SYM	PARAMETER	TYP	MAX	UNITS	NOTES
C_{1}	Capacitance on input pins	4	5	pF	10
C_{2}	Capacitance on DQ pins	8	10	pF	10

NOTES

1. Measured with load shown in Figure 7(A).
2. Measured with load shown in Figure 7(B).
3. All voltages referenced to GND.
4. $\mathrm{V}_{\text {IL }}$ may undershoot to -2.0 volts for 200 ns or less during input transitions.
5. $I_{C C 1}$ is measured as the average $A C$ current with $V_{C C}=V_{C C}$ (max) and with the outputs open circuit. $\mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}}(\mathrm{min})$ is used.
6. $\mathrm{CE}=\mathrm{V}_{\mathrm{IH}}$, all other inputs $=$ Don't Care
7. $V_{C C}(\max) \geq \overline{C E} \geq V_{C C}-0.3 \mathrm{~V}$, all other inputs = Don't Care.
8. Input leakage current specifications are valid for all $\mathrm{V}_{\mathbb{N}}$ such that $0 \mathrm{~V}<\mathrm{V}_{\mathbb{N}}<\mathrm{V}_{\mathrm{CC}}$. Measured at $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}}$ (max).
9. Output leakage current specifications are valid for all $\mathrm{V}_{\text {OUT }}$ such that $0 \mathrm{~V}<\mathrm{V}_{\mathrm{OUT}}<\mathrm{V}_{\mathrm{CC}}, \overline{C E}=\mathrm{V}_{\mathrm{IH}}$ and V_{CC} in valid operating range.
10. Capacitances are sampled and not 100% tested.

AC TEST CONDITIONS

```
Input Levels GND to 3.0 V
```

Transition Times 5 ns
Input and Output Signal Timing Reference Level
Ambient Temperature $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Figure 7. Output Load Circuits

Normalized Supply Current vs. Supply Voltage

Normalized Address Access Time vs. Supply Voltage
\square
Normalized Address Access Time vs. Ambient
$I_{\text {source }}$
${ }^{\text {sink }}$

Normalized Output Source and Sink Currents vs. Supply Voltage

Normalized Output Source and Sink Currents vs. Ambient Temperature

Normalized Output Source and Sink Currents

Logic Thresholds vs. Ambient Temperature

22 PIN "N" PACKAGE

PLASTIC DIP

DIM	INCHES		NOTES
	MIN	MAX	
A	-	.210	2
$A 1$.015	-	2
A2	.120	.140	
B	.015	.021	3
B1	.050	.070	
C	.008	.012	3
D	1.020	1.050	1
$D 1$.010	.025	
E	.300	.325	
$E 1$.240	.270	
E1	.090	.110	
EA	.300	.400	
L	.120	-	

NOTES

1. OVERALL LENGTH INCLUDES . 010 IN. FLASH ON EITHER END OF THE PACKAGE.
2. PACKAGE STANDOFF TO BE MEASURED PER JEDEC REGUIREMENTS.
3. THE MAXIMUM LIMIT SHALL BE SOLDER LEAD FINISH IS SPECIFIED.

22 PIN "P" PACKAGE

SIDE BRAZED CERAMIC DIP

DIM	INCHES		NOTES
	MIN	MAX	
A	-	.175	1
$A 1$.020	-	1
$A 2$.080	.110	
B	.015	.021	2
$B 1$.038	.057	
C	.008	.012	2
D	1.085	1.115	
$D 1$.035	.065	
E	.295	.325	
$E 1$.280	.310	
E1	.090	.110	
EA	.290	.365	
L	.120	-	
Q1	.005	-	

NOTES

1. PACKAGE STANDOFF TO BE MEASURED PER JEDEC REQUIREMENTS.
2. THE MAXIMUM LIMIT SHALL BE INCREASED BY 003 IN. WHEN SOLDER LEAD FINISH IS SPECIFIED.

ORDERING INFORMATION

PART NUMBER	ACCESS TIME	PACKAGE TYPE	TEMPERATURE RANGE
MK41H78N-20	20 ns	22 pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41H78N-25	25 ns	22 pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41H78N-35	35 ns	22 pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41H78P-20	20 ns	22 pin Ceramic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41H78P-25	25 ns	22 pin Ceramic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41H78P-35	35 ns	22 pin Ceramic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41H79N-20	20 ns	22 pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41H79N-25	25 ns	22 pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41H79N-35	35 ns	22 pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41H79P-20	20 ns	22 pin Ceramic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41H79P-25	25 ns	22 pin Ceramic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41H79P-35	35 ns	22 pin Ceramic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

FEATURES

\square JEDEC LVTTL standard +3.3 volt operation
\square 25, 35 and 45 nsec Address Access Time
\square Equal access and cycle times
$\square 22$-pin, 300 mil Plastic and Ceramic DIP
\square All inputs and outputs TTL compatible, low capacitance, and protected against static discharge
$\square 50 \mu \mathrm{~A}$ CMOS standby current
\square TTL standby current unaffected by address activity
\square Separate Output Enable control
\square Flash Clear function (MK41L79)

TRUTH TABLE

$\overline{C E}$	$\overline{\mathrm{OE}}$	$\overline{\text { WE }}$	* $\overline{C L R}$	Mode	DQ	Power
H	X	X	X	Deselect	High Z	Standby
L	X	L	H	Write	$\mathrm{D}_{\text {IN }}$	Active
L	L	H	H	Read	$\mathrm{D}_{\text {OUT }}$	Active
L	H	H	H	Read	High Z	Active
L	X	L	L	Flash Clear	High Z	Active
L	L	H	L	Flash Clear	Low Z	Active
L	H	H	L	Flash Clear	High Z	Active

* Applies to MK41L79 only.

DESCRIPTION

The Mostek MK41L78 and MK41L79, together with their 20 pin derivatives, the MK41L68 and MK41L69, are the first devices on the market that meet or exceed the JEDEC Standard for LVTTL VLSI digital circuits. The LVTTL standard provides for compatibility between $+5.0 \pm 0.5$ volt TTL devices and $+3.3 \pm 0.3$ volt LVTTL devices within the same system. Adoption of a lower power supply voltage standard allows dimensional scaling of silicon die to continue, which in turn allows den-

Figure 1. Pin Connections

PIN NAMES

$\mathrm{A}_{0}-\mathrm{A}_{11}-$ Address	$\overline{\mathrm{OE}}-$ Output Enable
$\mathrm{DQ}_{0}-\mathrm{DQ} Q_{3}-$ Data I/O	$\overline{\mathrm{WE}}-$ Write Enable
$\mathrm{N} . \mathrm{C}$. No Connect	$\mathrm{GND}-$ Ground
(MK41L78)	$\mathrm{V}_{\mathrm{CC}}-+3.3$ volts
$\overline{\mathrm{CLR}}-$ Flash Clear	
(MK41L79)	
$\overline{\mathrm{CE}}-$ Chip Enable	

sity and performance increases to continue. Scaling down the supply voltage provides a number of other potential benefits including reduced EMI, RFI, power consumption and increased reliability.

The MK41L78 and MK41L79 feature fully static operation requiring no external clocks or timing strobes, and equal address access and cycle times. The devices have a Chip Enable power down feature which automatically reduces power dissipation when the $\overline{C E}$ pin is brought inactive (high). Standby power can be further reduced to microwatt levels by raising the $\overline{C E}$ pin to the full $V_{C C}$ voltage. An output enable ($\overline{\mathrm{OE}}$) pin provides a high speed three state control, allowing fast read/write cycles to be achieved with the common-I/O data bus.

Flash Clear operation is provided on the MK41L79 via the $\overline{C L R}$ pin, and $\overline{\mathrm{CE}}$ active (low). A low applied to the $\overline{\text { CLR }}$ pin clears all RAM bits to zero, making it especially useful for high speed cache and buffer storage applications.
(Write Enable) is high and $\overline{\mathrm{CE}}$ (Chip Enable) is low, providing a ripple-through access to data from four of 16,384 locations in the static storage array. The unique address specified by the 12 Address Inputs defines which one of 4096 nibbles of data is to be accessed.

Valid data will be available at the four Data Output pins within $t_{A A}$ after the last address input signal is stable, providing that the $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ (Output Enable) access times are satisfied. If $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$ access times are not met, data access will be measured from the limiting parameter ($t_{\text {CEA }}$ or $t_{\text {OEA }}$) rather than the address. The state of the four Data I/O pins is controlled by the CE, $\overline{\mathrm{WE}}$ and $\overline{\mathrm{OE}}$ control signals. The data lines may be in an indeterminate state at $t_{C E L}$ and $t_{O E L}$, but the data lines will always have valid data at $t_{A A}$.

OPERATIONS

READ MODE

The MK41L78/9 is in the Read Mode whenever WE

Figure 2. Read-Read-Read-Write Timing

READ CYCLE TIMING
AC ELECTRICAL CHARACTERISTICS
$\left(0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3\right.$ Volts $)$

SYM	PARAMETER	MK41L7X-25		MK41L7X-35		MK41L7X-45		UNITS	NOTES
		MIN	MAX	MIN	MAX	MIN	MAX		
t_{RC}	Read Cycle Time	25		35		45		ns	
$t_{\text {AA }}$	Address Access Time		25		35		45	ns	1
$t_{\text {CEL }}$	Chip Enable to Low-Z	7		7		7		ns	2
$\mathrm{t}_{\text {CEA }}$	Chip Enable Access Time		25		35		45	ns	1
${ }^{\text {toel }}$	Output Enable to Low-Z	3		3		3		ns	2
$\mathrm{t}_{\text {OEA }}$	Output Enable Access Time		12		15		18	ns	1
$t_{\text {RCS }}$	Read Command Setup Time	0		0		0		ns	
$\mathrm{t}_{\mathrm{RCH}}$	Read Command Hold Time	0		0		0		ns	
t_{OH}	Valid Data Out Hold Time	5		5		5		ns	1
$\mathrm{t}_{\text {CEZ }}$	Chip Enable to High-Z		10		13		15	ns	2
toez	Output Enable to High-Z		8		10		12	ns	2
$\mathrm{t}_{\text {WEZ }}$	Write Enable to High-Z		10		13		15	ns	2
${ }^{\text {t WEL }}$	Write Enable to Low-Z	5		5		5		ns	2

WRITE MODE

The MK41L78/9 is in the Write Mode whenever the $\overline{\text { WE }}$ and $\overline{C E}$ inputs are in the low state. $\overline{C E}$ or $\overline{W E}$ must be high during address transitions. Addresses must be held valid throughout a write cycle. The Write begins with the concurrence of a low on $\overline{W E}$ and $\overline{C E}$. Therefore, $t_{A S}$ is referenced to the latter occurring edge of
$\overline{\mathrm{CE}}$ or $\overline{\mathrm{WE}}$. The write cycle is terminated by the earlier rising edge of $\overline{\mathrm{CE}}$ or WE.

If the output is enabled ($\overline{C E}$ and $\overline{O E}$ low), then $\overline{W E}$ will return the outputs to high impedance within $t_{\text {WEZ }}$ of its falling edge. Care must be taken to avoid bus contention in this type of operation. Data-In must remain valid t_{DH} after the rising edge of $\overline{\mathrm{CE}}$ or $\overline{\mathrm{WE}}$.

Figure 3. Write-Write-Write-Read Timing

WRITE CYCLE TIMING
AC ELECTRICAL CHARACTERISTICS
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3\right.$ Volts $)$

SYM	PARAMETER	MK41L7X-25		MK41L7X-35		MK41L7X-45		UNITS	NOTES
		MIN	MAX	MIN	MAX	MIN	MAX		
$t_{\text {wc }}$	Write Cycle Time	25		35		45		ns	
$t_{A S}$	Address Setup Time	0		0		0		ns	
$t_{\text {AW }}$	Address Stable to End of Write	20		30		40		ns	
$t_{\text {AH }}$	Address Hold after End of Write	0		0		0		ns	
${ }^{\text {t }}$ cew	Chip Enable to End of Write	22		32		40		ns	
$\mathrm{t}_{\text {WEW }}$	Write Enable to End of Write	20		30		40		ns	
$t_{\text {dS }}$	Data Setup Time	14		15		18		ns	
t_{DH}	Data Hold Time	0		0		0		ns	

LOW $V_{C C}$ DATA RETENTION TIMING (MK41L78)

Figure 4. Data Retention Timing
LOW $\mathrm{V}_{\text {cc }}$ DATA RETENTION CHARACTERISTICS
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)$

SYM	PARAMETERS	MIN	MAX	UNIT	NOTES
$V_{D R}$	$\mathrm{~V}_{\mathrm{CC}}$ for Data Retention	2.0	$\mathrm{~V}_{\mathrm{CC}}(\mathrm{min})$	V	7
$\mathrm{I}_{\mathrm{CCDR}}$	Data Retention Power Supply Current	-	50	$\mu \mathrm{~A}$	7
$\mathrm{t}_{\mathrm{CDR}}$	Chip Deselection to Data Retention Time	0	-	ns	
t_{R}	Operation Recovery Time	t_{RC}	-	ns	

AC ELECTRICAL CHARACTERISTICS
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3\right.$ Volts $)$

SYM	PARAMETER	MK41L79-25		MK41L79-35		MK41L79-45		UNITS	NOTES
		MIN	MAX	MIN	MAX	MIN	MAX		
$\mathrm{t}_{\text {FCC }}$	Flash Clear Cycle Time	50		70		90		ns	
$\mathrm{t}_{\text {CEC }}$	Chip Enable Low to End of Clear	50		70		90		ns	
${ }^{\text {t CLP }}$	Flash Clear ($\overline{\mathrm{CLR}}$) Pulse Width	45		65		85		ns	
t_{CX}	Clear to Inputs Don't Care	0		0		0		ns	
$t_{C R}$	End of Clear to Inputs Recognized	0		0		0		ns	
${ }^{\text {t }}$ cwx	Clear to Write Enable Don't Care	0		0		0		ns	
$\mathrm{t}_{\mathrm{OHC}}$	Valid Data Out Hold from Clear	5		5		5		ns	1

FLASH CLEAR (MK41L79 Only)

A Flash Clear cycle sets all 16,384 bits in the RAM to logic zero. A Clear begins at the concurrence of a low on Chip Enable ($\overline{\mathrm{CE}}$) and Flash Clear ($\overline{\mathrm{CLR}}$). A Clear may be ended by a high on either CE or CLR. A low
on CLR has no effect if the device is disabled (CE high). A Clear may be executed within either a Read or a Write cycle. Figure 5 illustrates a Clear within a Read cycle. Clears within Write cycles are constrained only in that Write timing parameters must be observed as soon as the Flash Clear pin returns high.

Figure 5. Last Read-Flash Clear-First Write

The MK41L78/9 is in Standby Mode whenever $\overline{\mathrm{CE}}$ is held at or above V_{IH}.

Figure 6. Standby Mode

STANDBY MODE CHARACTERISTICS

$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3\right.$ volts $)$

SYM	PARAMETER	MK41L7X-25		MK41L7X-35		MK41L7X-45		UNITS	NOTES
		MIN	MAX	MIN	MAX	MIN	MAX		
$t_{\text {PD }}$	Chip Enable High to Power Down		25		35		45	ns	
t_{PU}	Chip Enable Low to Power Up	0		0		0		ns	

APPLICATION

The MK41L78/9 operates from a 3.3 volt supply. It is compatible with all 5 volt TTL families, such as ALS, F, and LS, on all inputs and outputs. The device should share a solid ground plane with any other devices interfaced with it, particularly 5 volt TTL devices. Even though the Absolute Maximum Ratings allow the device to be accidentally installed in a 5 volt socket, care should be taken in normal applications to avoid driving inputs past the V_{IH} (max) specifications. Refer to the normalized performance curves that follow.

Since very high frequency current transients will be associated with the operation of the MK41L78/9, power line inductance must be minimized on the circuit board power. distribution network. Power and ground trace
gridding or separate power planes can be employed to reduce line inductance. Additionally, a high frequency decoupling capacitor should be placed next to each RAM, especially in applications utilizing Flash Clear. The capacitor should be $0.1 \mu \mathrm{~F}$ or larger.

Though often times not thought of as such, the traces on a memory board are basically unterminated, low impedance transmission lines. As such they are subject to signal reflections manifested as noise, undershoots and excessive ringing. Series termination in close proximity to the TTL drivers can improve driver/signal path impedance matching. While experimentation most often proves to be the only practical approach to selection of series resistors, values in the range of 10 to 33 ohms often prove most suitable.

ABSOLUTE MAXIMUM RATINGS*

Voltage on any pin relative to
Ambient Operating Temperature (T_{A})
Ambient Storage Temperature (Plastic)
Ambient Storage Temperature (Ceramic)
Total Device Power Dissipation
Output Current per Pin
*Stresses greater than those listed under "Absolute Maximu operation of the device at these or other conditions beyond maximum rating conditions for extended periods of time may

RECOMMENDED DC OPERATING CONDITIONS

$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)$

SYM	PARAMETER	MIN	TYP	MAX	UNITS	NOTES
V_{CC}	Supply Voltage	3.0	3.3	3.6	V	3
GND	Supply Voltage	0	0	0	V	
$\mathrm{~V}_{\text {IH }}$	Logic 1 Voltage, All Inputs	2.0		$\mathrm{~V}_{\mathrm{CC}}+1.2$	V	3
$\mathrm{~V}_{\mathrm{IL}}$	Logic 0 Voltage, All Inputs	-1.0		0.8	V	3.4

DC ELECTRICAL CHARACTERISTICS

$\left(0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3\right.$ Volts $)$

SYM	PARAMETER	MIN	MAX	UNITS	NOTES
$\mathrm{I}_{\mathrm{CC} 1}$	Average Power Supply Current		60	mA	5
$\mathrm{I}_{\mathrm{CC} 2}$	TTL Standby Current (MK41L78)		8	mA	6
$\mathrm{I}_{\mathrm{CC} 2}$	TTLL Standby Current (MK41L79)		14	mA	6
$\mathrm{I}_{\mathrm{CC} 3}$	CMOS Standby Current (MK41L78)		50	$\mu \mathrm{~A}$	7
I_{IL}	Input Leakage Current (Any Input Pin)	-1	+1	$\mu \mathrm{~A}$	8
I_{OL}	Output Leakage Current (Any Output Pin)	-10	+10	$\mu \mathrm{~A}$	9
$\mathrm{~V}_{\mathrm{OH}}$	Output Logic 1 Voltage ($\left.\mathrm{I}_{\mathrm{OUT}}=-1 \mathrm{~mA}\right)$	2.4		V	3
$\mathrm{~V}_{\mathrm{OL}}$	Output Logic 0 Voltage ($\left.\mathrm{I}_{\mathrm{OUT}}=+4 \mathrm{~mA}\right)$		0.4	V	3

CAPACITANCE

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$)

SYM	PARAMETER	TYP	MAX	UNITS	NOTES
C_{1}	Capacitance on input pins	4	5	pF	10
C_{2}	Capacitance on DO pins	8	10	pF	6,10

NOTES

1. Measured with load shown in Figure 7(A).
2. Measured with load shown in Figure 7(B).
3. All voltages referenced to GND.
4. $\mathrm{V}_{\text {IL }}$ may undershoot to -2.0 volts for 200 ns or less during input transitions.
5. I_{CC} is measured as the average AC current with $\mathrm{V}_{C C}=\mathrm{V}_{C C}$ (max) and with the outputs open circuit. t cycle $=\mathrm{min}$. duty cycle 100%.
6. $C E=V_{I H}$
7. $V_{C C}(\max) \geq C E \geq V_{C C}-0.3 \mathrm{~V}$, all other inputs $=$ Don't Care.
8. Input leakage current specifications are valid for all V_{IN} such that $0 \mathrm{~V}<\mathrm{V}_{I N}<\mathrm{V}_{\mathrm{CC}}$. Measured at $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}}$ (max).
9. Output leakage current specifications are valid for all VOUT such that $0 \mathrm{~V}<\mathrm{V}_{\text {OUT }}<\mathrm{V}_{\mathrm{CC}}, \mathrm{CE}-=\mathrm{V}_{\mathrm{IH}}$ and V_{CC} in valid operating range.
10. Capacitances are sampled and not 100% tested.

AC TEST CONDITIONS

Input Levels GND to 3.0 V
Transition Times 5 ns
Input and Output Signal Timing Reference Level 1.5 V
Ambient Temperature $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
$V_{c c}$. $3.3 \pm 0.3 \mathrm{~V}$

LOAD CIRCUIT VALUES

V_{1}	5.0 V	3.3 V
R_{1}	1000Ω	660Ω
R_{2}	670Ω	1016Ω
C_{1}	30 pF	30 pF

* INCLUDES SCOPE AND TEST JIG

EQUIVALENT TO:

Figure 7. Output Load Circuits

T_{A}
Normalized Address Access Time vs. Ambient Temperature

Normalzed Address Access Time vs. Output Loading

Normalized Output Source and Sink Currents vs. Ambient Temperature

Normalized Output Source and Sink Currents

Logic Threshoids vs. Ambient Temperature

22 PIN "N" PACKAGE
 PLASTIC DIP

DIM	INCHES		NOTES
	MIN	MAX	
A	-	.210	2
A1	.015	-	2
AL	.120	.140	
B	.015	.021	3
B1	.050	.070	
C	.008	.012	3
D	1.020	1.050	1
D1	.010	.025	
E	.300	.325	
E1	.240	.270	
E1	.090	.110	
EA	.300	.400	
L	.120	-	

NOTES

1. OVERALL LENGTH INCLUDES 010 IN. FLASH ON EITHER END OF THE PACKAGE.
2. PACKAGE STANDOFF TO EE MEASURED per jedec reguirements.
3. THE MAXIMUM LIMIT SHALL BE

INCREASED BY 003 IN. WHEN
solder Lead finish is specified.

22 pin "P"' PACKAGE

SIDE BRAZED CERAMIC DIP

DIM	INCHES		NOTES
	MIN	MAX	
A	-	.175	1
$A 1$.020	-	1
$A 2$.080	.110	
B	.015	.021	2
$B 1$.038	.057	
C	.008	.012	2
D	1.085	1.115	
$D 1$.035	.065	
E	.295	.325	
$E 1$.280	.310	
E1	.090	.110	
$E A$.290	.365	
L	.120	-	
$Q 1$.005	-	

NOTES

1. PACKAGE STANDOFF TO BE MEASURED PER JEDEC REQUIREMENTS.
2. THE MAXIMUM LIMIT SHALL BE INCREASED BY 003 IN. WHEN SOLDER LEAD FINISH IS SPECIFIED.

ORDERING INFORMATION

PART NUMBER	ACCESS TIME	PACKAGE TYPE	TEMPERATURE RANGE
MK41L78N-25	25 ns	22 pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41L78N-35	35 ns	22 pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41L78N-45	45 ns	22 pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41L79N-25	25 ns	22 pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41L79N-35	35 ns	22 pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41L79N-45	45 ns	22 pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41L78P-25	25 ns	22 pin Ceramic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41L78P-35	35 ns	22 pin Ceramic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41L78P-45	45 ns	22 pin Ceramic DIP $70^{\circ} \mathrm{C}$	
MK41L79P-25	25 ns	22 pin Ceramic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41L79P-35	35 ns	22 pin Ceramic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41L79P-45	45 ns	22 pin Ceramic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

 MK41H87(N,P)-25/35/45

FEATURES

\square 25, 35, and 45 ns Address Access Time
\square Equal access and cycle times
\square 22-pin, 300 mil Plastic and Ceramic DIP
\square All inputs and outputs TTL compatible, low capacitance, and protected against static discharge
$\square 50 \mu \mathrm{~A}$ CMOS Standby Current
\square Battery Backup Operation
\square JEDEC standard pinout

MK41H87 TRUTH TABLE

$\overline{\text { CE }}$	$\overline{\text { WE }}$	Mode	Q	Power
H	X	Deselect	High Z	Standby
L	L	Write	High Z	Active
L	H	Read	Data Out	Active

DESCRIPTION

The MK41H87 features fully static operation requiring no external clocks or timing strobes, and equal address access and cycle times. The MK41H87 requires only a single $+5 \mathrm{~V} \pm 10$ percent power supply, and it is fully TTL compatible.

The MK41H87 has a Chip Enable power down feature which automatically reduces power dissipation when the $\overline{C E}$ pin is brought inactive (high). Standby power can be further reduced to microwatt levels by holding the Address and $\overline{\mathrm{CE}}$ pins at full supply rail voltages.

OPERATIONS

READ MODE

The MK41H87 is in the Read Mode whenever WE (Write Enable) is high and $\overline{\mathrm{CE}}$ (Chip Enable) is low,

Figure 1. Pin Connections

PIN NAMES

$\mathrm{A}_{0}-\mathrm{A}_{15}$ - Address
$\overline{\mathrm{CE}}$ - Chip Enable
WE - Write Enable
$\mathrm{V}_{\mathrm{CC}}-+5$ volts
D - Data In
Q - Data Out
providing a ripple-through access to data from one of 65,536 locations in the static storage array. Valid data will be available at the Data Output pin (Q) within $t_{A A}$ after the last address input signal is stable, providing that the $\overline{C E}$ access time is satisfied. If $\overline{C E}$ access time is not met, data access will be measured from the limiting parameter (t_{CA}) rather than the address. The state of the Data Output pin is controlled by the CE and WE control signals. The Q may be in an indeterminate state at $t_{C L}$, but the Q will always have valid data at $t_{A A}$.

Figure 2. Read-Read-Read-Write Timing

READ CYCLE TIMING
AC ELECTRICAL CHARACTERISTICS
$\left(0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10\right.$ percent $)$

SYM	PARAMETER	MK41H87-25		MK41H87-35		MK41H87-45		UNITS	NOTES
		MIN	MAX	MIN	MAX	MIN	MAX		
t_{RC}	Read Cycle Time	25		35		45		ns	
t_{AA}	Address Access Time		25		35		45	ns	1
$t_{\text {cL }}$	Chip Enable to Low-Z	5		5		5		ns	2
t_{CA}	Chip Enable Access Time		25		35		45	ns	1
$\mathrm{t}_{\text {RCS }}$	Read Command Setup Time	0		0		0		ns.	
$t_{\text {RCH }}$	Read Command Hold Time	0		0		0		ns	
${ }^{\text {toh }}$	Valid Data Out Hold Time	5		5		5		ns	1
t_{Cz}	Chip Enable to High-Z		10		12		15	ns	2
$t_{\text {WEZ }}$	Write Enable to High-Z		10		12		15	ns	2

WRITE MODE

The MK41H87 is in the Write Mode whenever the WE and $\overline{\mathrm{CE}}$ inputs are in the low state. $\overline{\mathrm{CE}}$ or $\overline{\mathrm{WE}}$ must be high during address transitions. Addresses must be held valid throughout a write cycle. The Write begins with the concurrence of a low on WE and $\overline{C E}$. Therefore,
$t_{A S}$ is referenced to the latter occurring edge of $\overline{C E}$ or $\overline{W E}$. If the output is enabled ($\overline{C E}$ is low), then WE will return the output to high impedance within $\mathrm{t}_{\text {WEZ }}$ of its falling edge. Data-In must remain valid $t_{D H}$ after the rising edge of $\overline{\mathrm{CE}}$ or $\overline{\mathrm{WE}}$.

Figure 3. Write-Write-Write-Read Timing

WRITE CYCLE TIMING
AC ELECTRICAL CHARACTERISTICS
$\left(0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10\right.$ percent $)$

SYM	PARAMETER	MK41H8X-25		MK41H8X-35		MK41H8X-45		UNITS	NOTES
		MIN	MAX	MIN	MAX	MIN	MAX		
$t_{\text {wc }}$	Write Cycle Time	25		35		45		ns	
$\mathrm{t}_{\text {AS }}$	Address Setup Time	0		0		0		ns	
$t_{\text {AW }}$	Address Valid to End of Write	20		30		40		ns	
$\mathrm{t}_{\text {AH }}$	Address Hold after End of Write	0		0		0		ns	
${ }^{\text {t }}$ W	Chip Enable to End of Write	20		30		40		ns	
$\mathrm{t}_{\text {WEW }}$	Write Enable to End of Write	20		25		30		ns	
$\mathrm{t}_{\text {DS }}$	Data Setup Time	20		25		35		ns	
$t_{\text {DH }}$	Data Hold Time	0		0		0		ns	
$\mathrm{t}_{\text {WEL }}$	Write Enable to Low-Z	5		5		5		ns	2

LOW V_{Cc} DATA RETENTION TIMING

Figure 4. Data Retention Timing
LOW V_{cc} DATA RETENTION CHARACTERISTICS
($0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$)

SYM	PARAMETERS	MIN	MAX	UNIT	NOTES
$V_{D R}$	$V_{C C}$ for Data Retention	2.0	$V_{C C}(\min)$	V	7
I_{CCDR}	Data Retention Power Supply Current	-	50	$\mu \mathrm{~A}$	7
$\mathrm{t}_{\mathrm{CDR}}$	Chip Deselection to Data Retention Time	0	-	ns	
t_{R}	Operation Recovery Time	t_{RC}	-	ns	

STANDBY MODE (MK41H87)

The MK41H87 is in Standby Mode whenever $\overline{\mathrm{CE}}$ is held at or above V_{IH}.

Figure 5. Standby Mode Timing
STANDBY MODE
AC ELECTRICAL CHARACTERISTICS
$\left(0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10\right.$ percent $)$

SYM	PARAMETER	MK41H87-25		MK41H87-35		MK41H87-45		UNITS	NOTES
		MIN	MAX	MIN	MAX	MIN	MAX		
$t_{\text {PD }}$	Chip Enable High to Power Down		25		35		45	ns	
t_{PU}	Chip Enable Low to Power Up	0		0		0		ns	

APPLICATION

The MK41H87 operates from a 5.0 volt supply. It is compatible with all standard TTL families on all inputs and outputs. The device should share a solid ground plane with any other devices interfaced with it, particularly TTL devices. Additionally, because the outputs can drive rail-to-rail into high impedance loads, the 41 H 87 can also interface to 5 volt CMOS on all inputs and outputs.

Since very high frequency current transients will be associated with the operation of the MK41H87, power line inductance must be minimized on the circuit board power distribution network. Power and ground trace grid-
ding or separate power planes can be employed to reduce line inductance. Additionally, a high frequency decoupling capacitor should be placed next to each RAM. The capacitor should be $0.1 \mu \mathrm{~F}$ or larger.

Though often times not thought of as such, the traces on a memory board are basically unterminated, low impedance transmission lines. As such they are subject to signal reflections manifested as noise, undershoots and excessive ringing. Series termination in close proximity to the TTL drivers can improve driver/signal path impedance matching. While experimentation most often proves to be the only practical approach to selection of series resistors, values in the range of 10 to 33 ohms often prove most suitable.

ABSOLUTE MAXIMUM RATINGS*

Abstract

Voltage on any pin relative to GND -1.0 V to +7.0 V Ambient Operating Temperature (T_{A}) . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Ambient Storage Temperature (Plastic) . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Ambient Storage Temperature (Ceramic) . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Total Device Power Dissipation . 1 Watt Output Current per Pin . 50 mA *Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or other conditions beyond those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)$

SYM	PARAMETER	MIN	TYP	MAX	UNITS	NOTES
V_{CC}	Supply Voltage	4.5	5.0	5.5	V	3
GND	Supply Voltage	0	0	0	V	
$\mathrm{~V}_{\text {IH }}$	Logic 1 Voltage, All Inputs	2.2		$\mathrm{~V}_{\mathrm{CC}}+1.0$	V	3
$\mathrm{~V}_{\mathrm{IL}}$	Logic 0 Voltage, All Inputs	-1.0		0.8	V	3,4

DC ELECTRICAL CHARACTERISTICS
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10\right.$ percent $)$

SYM	PARAMETER	MIN	MAX	UNITS	NOTES
$\mathrm{I}_{\mathrm{CC} 1}$	Average Power Supply Current		60	mA	5
$\mathrm{I}_{\mathrm{CC} 2}$	TTL Standby Current		4	mA	6
$\mathrm{I}_{\mathrm{CC} 3}$	CMOS Standby Current		50	$\mu \mathrm{~A}$	7
I_{IL}	Input Leakage Current (Any Input Pin)	-1	+1	$\mu \mathrm{~A}$	8
I_{OL}	Output Leakage Current (Any Output Pin)	-10	+10	$\mu \mathrm{~A}$	9
$\mathrm{~V}_{\mathrm{OH}}$	Output Logic 1 Voltage ($\left.\mathrm{I}_{\text {OUT }}=-4 \mathrm{~mA}\right)$	2.4		V	3
$\mathrm{~V}_{\mathrm{OL}}$	Output Logic 0 Voltage $\left(\mathrm{I}_{\text {OUT }}=+8 \mathrm{~mA}\right)$		0.4	V	3

CAPACITANCE

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$)

SYM	PARAMETER	TYP	MAX	UNITS	NOTES
C_{1}	Capacitance on input pins	4	5	pF	10
C_{2}	Capacitance on DQ pins	8	10	pF	6,10

NOTES

1. Measured with load shown in Figure 6(A)
2. Measured with load shown in Figure 6(B)
3. All voltages referenced to GND.
4. V_{IL} may undershoot to -2.0 volts for 200 ns or less during input transitions.
5. I_{CC} is measured as the average AC current with $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}}$ (max) and with the outputs open circuit. tcycle $=\mathbf{m i n}$. duty cycle 100%.
6. $\overline{C E}=\mathrm{V}_{\mathrm{IH}}$, All Other Inputs $=$ Don't Care.
7. $\mathrm{V}_{\mathrm{CC}}(\max) \geq \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}$

GND $+0.3 \mathrm{~V} \geq \mathrm{A}_{0}-\mathrm{A}_{15} \geq \mathrm{V}_{\mathrm{IL}}$ (min) or $\mathrm{V}_{\mathrm{IH}}(\max) \geq \mathrm{A}_{0}-\mathrm{A}_{15} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}$ All Other Inputs $=$ Don't Care.
8. Input leakage current specifications are valid for all V_{IN} such that $0 \mathrm{~V}<\mathrm{V}_{I N}<\mathrm{V}_{\mathrm{CC}}$. Measured at $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}}$ (max).
9. Output leakage current specifications are valid for all $V_{\text {OUT }}$ such that $0 \mathrm{~V}<\mathrm{V}_{\mathrm{OUT}}<\mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CE}} / \mathrm{CS}=\mathrm{V}_{\mathrm{IH}}$ and V_{CC} in valid operating range.
10. Capacitances are sampled and not 100% tested.

AC TEST CONDITIONS

Figure 6. Output Load Circuits

22 PIN "N" PACKAGE
 PLASTIC DIP

DIM	INCHES		NOTES
	MIN	MAX	
A	-	.210	2
A1	.015	-	2
A2	.120	.140	
B	.015	.021	3
B1	.050	.070	
C	.008	.012	3
D	1.020	1.050	1
D1	.010	.025	
E	.300	.325	
E1	.240	.270	
e1	.090	.110	
eA	.300	.400	
L	.120	-	

NOTES

1. OVERALL LENGTH INCLUDES .010 IN. FLASH ON EITHER END OF THE PACKAGE.
2. PACKAGE STANDOFF TO BE MEASURED PER JEDEC REQUIREMENTS.
3. THE MAXIMUM LIMIT SHALL BE

INCREASED BY 003 IN. WHEN
SOLDER LEAD FINISH IS SPECIFIED.

22 PIN "P" PACKAGE

SIDE BRAZED CERAMIC DIP

1. PaCkage standoff to be measured PER JEDEC REQUIREMENTS.
2. THE MAXIMUM LIMIT SHALL BE

INCREASED BY 003 IN WHEN
SOLDER LEAD FINISH IS SPECIFIED.

ORDERING INFORMATION

PART NUMBER	ACCESS TIME	PACKAGE TYPE	TEMPERATURE RANGE
MK41H87N-25	25 ns	22 pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41H87N-35	35 ns	22 pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41H87N-45	45 ns	22 pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41H87P-25	25 ns	22 pin Ceramic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41H87P-35	35 ns	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	
MK41H87P-45	45 ns	22 pin Ceramic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

MK, Speed grade

FEATURES

$\square 4 \mathrm{~K} \times 4$ SRAM with onboard 4 bit Comparator
\square 20, 25, and 35ns Address to Compare Access Time
\square 12, 15, and 20 ns Tag Data to Compare Access Time
\square Equal Access, Read and Write Cycle Times
\square Flash Clear Function
\square 22-pin, 300 mil Plastic and Ceramic Dip
\square All Inputs and Outputs are TTL compatible, low capacitance, and protected against static discharge
\square Word Width Expandable

TRUTH TABLE

$\overline{\text { WE }}$	$\overline{\text { OE }}$	$\overline{\text { CLR }}$	MATCH	MODE
H	H	H	Valid	Compare Cycle
L	X	H	Invalid	Write Cycle
H	L	H	Invalid	Read Cycle
X	X	L	Invalid	Flash Clear Cycle

X = Don't Care

DESCRIPTION

The MK41H8O is a member of Mostek's $4 \mathrm{~K} \times 4 \mathrm{CMOS}$ Static RAM family featuring fully static operation requiring no external clocks or timing strobes. Cycle Time and Compare Access Time are equal. The MK41H80 is powered by a single $+5 \mathrm{~V} \pm 10 \%$ power supply and the inputs and outputs are fully TTL compatible.

The MK41H80 features an onboard 4 bit comparator that compares RAM contents and current input data. The result is an active high match on the MATCH pin or an active low miss on the MATCH pin. The MATCH pins of several MK41H80's can be nanded together to provide enabling or acknowledging signals to the data cache or processor.

*AVOID METASTABLE INPUTS

Figure 2. Compare and Write Cycle

*AVOID METASTABLE INPUTS
Figure 3. Write and Read Cycle

COMPARE, WRITE AND READ TIMING

The MK41H80 employs three signals for device control. The Write Enable (WE) pin enables a Write Cycle if low and either a Compare Cycle or a Read Cycle when high. The $\overline{\mathrm{OE}}$ pin enables a Read Cycle if low or a Compare Cycle if high. The CLR pin enables a Flash Clear Cycle when brought low.

The MK41H80 begins a Compare Cycle with the application of a valid address (see Figure 2). A valid MATCH is enabled when $\overline{O E}$ and $\overline{W E}$ go high in conjunction with their respective Set Up and Hold times. MATCH will occur $t_{A C A}$ after a valid address, and $t_{D C A}$ after valid Data In. MATCH will then go invalid $\mathrm{t}_{\mathrm{ACH}}$ after the address changes.

The MK41H80 starts a Write Cycle with stable addresses (see Figure 2). OE may be in either logic state. WE may fall with stable addresses, and must remain low until $t_{A W}$ with a duration of $t_{\text {WEW }}$. Data in must be held valid t_{DS} before and t_{DH} after WE goes high. MATCH will be invalid during this cycle.

The MK41H8O begins a Read Cycle with stable addresses and WE high (see Figure 3). DQ becomes valid $t_{A A}$ after a valid address, and $t_{O E A}$ after the fall of $\overline{O E}$. DQ outputs become invalid t_{OH} after the address becomes invalid or $\mathrm{t}_{\text {oez }}$ after OE is brought high. Ripple through data access may be accomplished by holding $\overline{\mathrm{OE}}$ active low while strobing addresses $\mathrm{A}_{0}-\mathrm{A}_{11}$, and holding $\overline{C L R}$ and $\overline{\text { WE high. The MATCH output will }}$ be invalid during the Read cycle.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS
$\left(O^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%\right)$

SYMBOL	PARAMETER	-20		-25		-35		UNITS	NOTES
		MIN	MAX	MIN	MAX	MIN	MAX		
t_{C}	Cycle Time	20		25		35		ns	
${ }^{\text {t }}$ CSS	Compare Command Set Up Time	7		8		10		ns	
${ }^{\text {t }}$ CH	Compare Command Hold Time	0		0		0		ns	
$t_{\text {RCS }}$	Read Command ($\overline{\text { WE) }}$) Set Up Time	0		0		0		ns	
$\mathrm{t}_{\mathrm{RCH}}$	Read Command (产E) Hold Time	0		0		0		ns	
$t_{\text {AS }}$	Address Set-up Time	0		0		0		ns	
t_{AW}	Address Stable to End of Write Command (WE)	16		20		30		ns	
t_{AH}	Address Hold Time after End of Write	0		0		0		ns	
$\mathrm{t}_{\text {WEW }}$	Write Command ($\overline{\text { WE) }}$) to End of Write	16		20		30		ns	
t_{DS}	Data Set Up Time	12		13		14		ns	
t_{DH}	Data Hold Time	0		0		0		ns	
$\mathrm{t}_{\text {DCA }}$	Data Compare Access Time		12		15		20	ns	4
$t_{\text {ACA }}$	Address Compare Access Time		20		25		35	ns	4
$\mathrm{t}_{\mathrm{ACH}}$	Address Compare Hold Time	5		5		5		ns	4
$\mathrm{t}_{\mathrm{DCH}}$	Data Compare Hold Time	3		3		3		ns	4
$\mathrm{t}_{\text {OEA }}$	Output Enable ($\overline{\mathrm{OE}}$) Access Time		10		12		15	ns	4
t_{OH}	Valid Data Out ($\overline{\mathrm{DQ}}$) Hold Time	5		5		5		ns	4
t_{AA}	Address Access Time		20		25		35	ns	4
$\mathrm{t}_{\text {OEz }}$	Output Enable ($\overline{\mathrm{OE}}$) to High-Z		7		8		10	ns	5
$\mathrm{t}_{\text {OEL }}$	Output Enable ($\overline{O E}$) to Low-Z	2		2		2		ns	5
$\mathrm{t}_{\text {WEZ }}$	Write Enable ($\overline{\text { WE) }}$) to High-Z		8		10		13	ns	5
$t_{\text {WEL }}$	Write Enable (WE) to Low-Z	5		5		5		ns	5

APPLICATION

The MK41H80 operates from a 5.0 volt supply. It is compatible with all standard TTL families on all inputs and outputs. The device should share a solid ground plane with any other devices interfaced with it, particularly TTL devices. Additionally, because the outputs can drive rail-to-rail into high impedance loads, the MK41H80 can also interface to 5 volt CMOS on all inputs and outputs. Refer to the normalized performance curves that follow.

Because high frequency current transients will be associated with the operation of the MK41H80, power lines inductance must be minimized on the circuit board power distribution network. Power and ground trace gridding or separate power planes can be employed to reduce line inductance.

The MK41H80 compares contents of addressed RAM locations to the current data inputs. A logic one (1)
output on the MATCH pin indicates that the input data and the RAM contents MATCH. Conversely, a logic zero (0) on the MATCH pin indicates at least one bit difference between the RAM contents and input data generating a miss. Since the comparator circuitry is always enabled, metastable data input levels can result in excessive MATCH output activity. Therefore, the use of data bus pull-up or pull-down resistors is recommended.

Though often times not thought of as such, the traces on a memory board are basically unterminated, low impedance transmission lines. As such they are subject to signal reflections manifested as noise, undershoots and excessive ringing. Series termination in close proximity to the TTL drivers can improve driver/signal path impedance matching. While experimentation most often proves to be the only practical approach to selection of series resistors, values in the range of 10 to 33 ohms often prove most suitable.

Figure 4. Block Diagram

FLASH CLEAR CYCLE

A Flash Clear Cycle begins as $\overline{C L R}$ is brought low (see Figure 5). A Flash Clear sets all 16,384 bits in the RAM to logic zero. Control Inputs will not be recognized
from $t_{C X}$ after $\overline{C L R}$ falls to $t_{C R}$ after $\overline{C L R}$ is brought high. $\overline{O E}$ and $\overline{W E}$ are Don't Cares and DQ is High-Z. MATCH will be invalid while CLR is low.

AC ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS $\left(O^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%\right)$

SYMBOL	PARAMETER	-20		-25		-35		UNITS	NOTES
		MIN	MAX	MIN	MAX	MIN	MAX		
$\mathrm{t}_{\mathrm{FCC}}$	Flash Clear Cycle Time	40		50		70		ns	
t_{CX}	Clear ($\overline{\mathrm{CLR}}$) to Inputs Don't Care	0		0		0		ns	
$t_{C R}$	End of Clear ($\overline{\mathrm{CLR}}$) to Inputs Recognized	0		0		0		ns	
$\mathrm{t}_{\text {cLP }}$	Flash Clear (CLR) Pulse Width	36		44		60		ns	

*AVOID METASTABLE INPUTS

Figure 5. Read-Flash Clear-Write Cycle
ABSOLUTE MAXIMUM RATINGS*
Voltage on Any Terminal Relative to V_{SS} -1.0 V to +7.0 V
Operating Temperature T_{A} (Ambient) $.0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature (Ceramic) $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature (Plastic) $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Power Dissipation 1 Watt
Output Current per Pin 50 mA
"Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functionaloperation of the device at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolutemaximum rating conditions for extended periods of time may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS

$\left(0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}\right)$

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	NOTES
$\mathrm{V}_{\text {CC }}$	Supply Voltage (Referenced to $\mathrm{V}_{\text {SS }}$)	4.5	5.0	5.5	V	
$\mathrm{~V}_{\text {SS }}$	Ground	0.0	0.0	0.0	V	
$\mathrm{~V}_{\text {IH }}$	Input High (Logic 1) voltage, All Inputs (Referenced to $\mathrm{V}_{\text {SS }}$)	2.2		$\mathrm{~V}_{\mathrm{CC}}+1$	V	
$\mathrm{~V}_{\text {IL }}$	Input Low (Logic 0) voltage, All Inputs (Referenced to $\mathrm{V}_{\text {SS }}$)	-1.0		0.8	V	1

DC ELECTRICAL CHARACTERISTICS

$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%\right)$

SYMBOL	PARAMETER	MIN	MAX	UNITS	NOTES
$\mathrm{I}_{\mathrm{CCl}}$	Operating Current - Average Power Supply Operating Current		120	mA	2
ILI	Input Leakage Current, Any input	-1	1	$\mu \mathrm{A}$	6
Iol	Output Leakage Current	-10	10	$\mu \mathrm{A}$	7
V_{OH}	Output High (Logic 1) voltage Referenced to V_{SS}; $\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}$	2.4		V	
V_{OL}	Output Low (Logic 0) voltage Referenced to V_{SS}; $\mathrm{I}_{\mathrm{OL}}=+8 \mathrm{~mA}$		0.4	V	

AC ELECTRICAL CHARACTERISTICS

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$)

SYMBOL	PARAMETER	TYP	MAX	UNITS	NOTES
C_{1}	Capacitance on any Input Pin	4	5	pF	3
C_{2}	Capacitance on any Output Pin	8	10	pF	3

AC TEST CONDITIONS

Input Levels	GND to 3.0 V
Transition Times	. 5 ns
Input and Output Signal Timing Reference Level	. 1.5 V
Ambient Temperature	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
V_{CC}	± 10 percent

* INCLUDES SCOPE AND TEST JIG.

(B)

NOTES

1. $\mathrm{V}_{\text {IL }}$ may undershoot to -2.0 volts for 200 ns or less during input transitions. 2. $I_{C C 1}$ is measured as the average $A C$ current with $V_{C C}=V_{C C}$ (max) and with the outputs open circuit. t cycle $=\mathrm{min}$ duty cycle 100%.
2. Capacitances are sampled and not 100% tested.
3. Measured with load shown in Figure 6(A).
4. Measured with load shown in Figure 6(B).
5. Input leakage current specifications are valid for all $V_{I N}$ such that $\mathrm{OV}<\mathrm{V}_{I N}<\mathrm{V}_{\mathrm{CC}}$. Measured at $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}}$ (max).
6. Output leakage current specifications are valid for all DQs such that $\mathrm{OV}<\mathrm{V}_{\text {OUT }}<\mathrm{V}_{\text {CC }}$. With exception to MATCH which is always enabled.

Figure 6. Output Load Circuits

Normalized Supply Current vs. Supply Voltage

Normalized Supply Current vs. Cycle Time

Normalized Access Time
vs. Supply Voltage

T_{A}
Normalized Access Time vs. Ambient Temperature

Normalized Output Source and Sink Currents
vs. Supply Voltage

Normalized Access Time vs. Output Loading

Normalized Output Source and Sink Currents vs. Ambient Temperature

Normalized Output Source and Sink Currents
vs. Output Voltage

Logic Thresholds vs. Ambient Temperature

22 PIN "P" PACKAGE
SIDE BRAZED CERAMIC DIP

ORDERING INFORMATION

PART NUMBER	ACCESS TIME	PACKAGE TYPE	TEMPERATURE RANGE
MK41H80N-20	20 ns	22 pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41H80N-25	25 ns	22 pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41H80N-35	35 ns	22 pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41H80P-20	20 ns	22 pin Ceramic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41H80P-25	25 ns	22 pin Ceramic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
MK41H80P-35	35 ns	22 pin Ceramic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

CHAPTER 2 - PROGRAMMABLE ROMs

NMOS EPROMs

Description	Part number	Organization	Access Time	Consumption	Page
UV ERASABLE PROM	ET2716	$2 \mathrm{~K} \times 8$	450 ns	$500 / 125 \mathrm{~mW}$	$2-5$
	ET2716-1	$2 \mathrm{~K} \times 8$	350 ns	$500 / 125 \mathrm{~mW}$	

CMOS EPROMs

Description	Part number	Organization	Access Time	Consumption	Page
UV ERASABLE PROM	ETC2716-5	2K $\times 8$	550 ns	25/0.5 mW	2-11
	ETC2716	$2 \mathrm{~K} \times 8$	450 ns	25/0.5 mW	
	ETC2716-1	$2 \mathrm{~K} \times 8$	350 ns	25/0.5 mW	
	ETC2732-55	$4 \mathrm{~K} \times 8$	550 ns	25/0.5 mW	2-17
	ETC2732-45	$4 \mathrm{~K} \times 8$	450 ns	25/0.5 mW	
	ETC2732-35	$4 \mathrm{~K} \times 8$	350 ns	25/0.5 mW	
	TS27C64-30	$8 \mathrm{~K} \times 8$	300 ns	150/2.5 mW	2-25
	TS27C64-25	$8 \mathrm{~K} \times 8$	250 ns	150/2.5 mW	
	TS27C64-20	$8 \mathrm{~K} \times 8$	200 ns	150/2.5 mW	
	TS27C64-15	$8 \mathrm{~K} \times 8$	150 ns	$150 / 2.5 \mathrm{~mW}$	
	TS27C256-30	32K $\times 8$	300 ns	200/2.5 mW	$2-33$
	TS27C256-25	32K $\times 8$	250 ns	200/2.5 mW	
	TS27C256-20	32K $\times 8$	200 ns	200/2.5 mW	
	TS27C256-15	32K $\times 8$	150 ns	200/2.5 mW	
	TS27C1024	$64 \mathrm{~K} \times 16$	150 ns	250/5 mW	2.41
	TS27C1001	$128 \mathrm{~K} \times 8$	150 ns	250/5 mW	2.43

CMOS EEPROMIs

Description	Part number	Organization	Access Time	Page
ELECTRICALLY ERASABLE PROM	TS59C11	$64 \mathrm{~K} \times 16$ or $128 \mathrm{~K} \times 8$	-	$2-45$
	TS93C46	$64 \mathrm{~K} \times 16$ or $128 \mathrm{~K} \times 8$	-	$2-47$
	TS28C16A	$2 \mathrm{KK} \times 8$	150 ns	$2-49$
	TS28C17A	$2 \mathrm{~K} \times 8$	150 ns	$2-51$

OTP ROMs

Description	Part number	Organization	Access Time	Consumption	Page
ONE TIME	TS27C64P-20	$8 K \times 8$	200 ns	$150 / 2.5 \mathrm{~mW}$	$2-55$
PROGRAMMABLE ROM	TS27C64P-25	$8 K \times 8$	250 ns	$150 / 2.5 \mathrm{~mW}$	
	TS27C64P-30	$8 \mathrm{~m} \times 8$	300 ns	$150 / 2.5 \mathrm{~mW}$	
	TS27C64P-35	$8 \mathrm{~K} \times 8$	350 ns	$150 / 2.5 \mathrm{~mW}$	
	TS27C256P-20	$32 \mathrm{~K} \times 8$	200 ns	$200 / 2.5 \mathrm{~mW}$	$2-63$
	TS27C256P-25	$32 \mathrm{~K} \times 8$	250 ns	$200 / 2.5 \mathrm{~mW}$	
	TS27C256P-30	$32 \mathrm{~K} \times 8$	300 ns	$200 / 2.5 \mathrm{~mW}$	
	TS27C256P-35	$32 \mathrm{~K} \times 8$	350 ns	$200 / 2.5 \mathrm{~mW}$	

The ET2716 is a high speed 16 K UV erasable and electrically reprogrammable EPROM ideally suited for applications where fast turnaround and pattern experimentation are important requirements. The ET2716 is packaged in a 24-pin dual-in-line package with transparent lid. The transparent lid allows the user to expose the chip to ultraviolet light to erase the bit pattern. A new pattern can then be written into the device by following the programming procedure.
This EPROM is fabricated with the reliable, high volume, time proven, N-channel silicon gate technology X-MOS.

- 2048×8 organization
- 525 mW max active power, 132 mW max standby power
- Low power during programming
- Access time ET2716-1, 350ns ; ET2716, 450ns
- Single 5V power supply
- Static-no clocks required
- Inputs and outputs TTL compatible during both read and program modes
- Three-state output with OR-tie capability

Pin Connection During Read or Program

MODE	PIN NAME/NUMBER				
	$\begin{gathered} \hline \overline{\mathrm{CE}} / \mathrm{PGM} \\ (\overline{\mathrm{E}} / \mathrm{P}) \\ 18 \\ \hline \end{gathered}$	$\begin{aligned} & \overline{\mathrm{OE}} \\ & (\overline{\mathrm{G}}) \\ & 20 \\ & \hline \end{aligned}$	$\begin{gathered} \text { VPP } \\ 21 \end{gathered}$	$\begin{gathered} \text { VCC } \\ 24 \end{gathered}$	$\begin{gathered} \text { OUTPUTS } \\ 9-11,13-17 \end{gathered}$
Read	VIL	VIL	5	5	DOUT
Program	Pulsed VIL to VIH	VIH	25	5	DIN

[^7]

Temperature Under Bias
Storage Temperature
VPP Supply Voltage with Respect to VSS
$-10^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
28.5 V to -0.3 V

All Input or Output Voltages with
Respect to VSS (except VPP)
6 V to $-\mathbf{0 . 3 V}$
Power Dissipation
Lead Temperature (Soldering, 10 seconds)

READ OPERATION (Note 2)

DC OPERATING CHARACTERISTICS
(Note 3)
$T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \pm 5 \%$ for ET2716, VCC $=5 \mathrm{~V} \pm 10 \%$ for ET2716-1
VPP $=$ VCC (Note 4), VSS = OV, (Unless otherwise specified)

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
ILI	Input Current	VIN $=525 \mathrm{VORVIN}=$ VIL	-	-	10	$\mu \mathrm{A}$
ILO	Output Leakage Current	VOUT $=5.25 \mathrm{~V} . \overline{\mathrm{CE}} / \mathrm{PGM}-5 \mathrm{~V}$	-	-	10	; A
IPP1	VPP Supply Current	$V P P=5.25 \mathrm{~V}$	-	-	5	mA
ICCI	VCC Supply Current (Standby)	$\overline{\mathrm{CE}} / \mathrm{PGM}=\mathrm{VIH}, \overline{\mathrm{OE}}=\mathrm{VIL}$	-	10	25	mA
ICC2	VCC Supply Current (Active)	$\overline{\mathrm{CE}} / \mathrm{PGM}=\overline{\mathrm{OE}}=\mathrm{VIL}$	-	57	100	mA
VIL	Input Low Voitage		-01	-	0.8	\checkmark
VIH	Input High Voltage		20	-	$\mathrm{V}_{\mathrm{CC}}+1$	\checkmark
VOH	Output High Voltage	$10 \mathrm{H}=-400 \mu \mathrm{~A}$	24	-	-	\checkmark
VOL	Output Low Voltage	$10 \mathrm{~L}=21 \mathrm{~mA}$	-	-	0.45	v

AC CHARACTERISTICS

$T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \pm 5 \%$ for $\mathrm{ET} 2716, \mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$ for $\mathrm{ET} 2716-1$
VPP $=$ VCC (Note 4), VSS $=0 \mathrm{~V}$, (Unless otherwise specified)

SYMBOL		PARAMETER	CONDITIONS	ET2716-1		ET2716		UNITS
STANDARD	JEDEC			MIN	MAX	MIN	MAX	
${ }^{\text {t }}$ ACC	TAVQV	Address to Output Delay	$\overline{C E} / P G M=\overline{O E}=V I L$	-	350	-	450	ns
tCE	TELQV	$\overline{\mathrm{CE}}$ to Output Delay	$\overline{O E}=\mathrm{VIL}$	-	350	-	450	ns
${ }^{1} \mathrm{OE}$	TGLQV	Output Enable to Output Delay	$\overline{C E} / P G M=V I L$	-	120	-	120	ns
TDF	TGHQZ	Output Enable High to Output Hi.Z	$\overline{C E} / P G M=V I L$.	0	100	0	100	ns
${ }^{1} \mathrm{OH}$	TAXOX	Address to Output Hold	$\overline{C E} / P G M=\overline{O E}=V I L$	0	-	0	-	ns
${ }^{1} \mathrm{OD}$	TEHOZ	$\overline{C E}$ to Output H . 2	$\overline{O E}=$ VIL	0	100	0	100	ns

CAPACITANCE (Note 5)

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$

SYMBOL	PARAMETER	CONDITIONS	TYP	MAX	UNITS
CI	Input Capacitance	VIN $=0 \mathrm{~V}$	4	6	pF
CO	Output Capacitance	VOUT $=0 \mathrm{~V}$	8	12	pF

AC Test Conditions

Output Load: 1 TTL gate and CL $=100 \mathrm{pF}$ Input Rise and Fall Times 20 ns Input pulse levels : 0.45 V to 2.4 V Timing measurement reference level $=$ inputs and outputs 0.8 V and 2 V

Note 1 : "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for
"Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2 : VCC must be applied at the same time or before VPP and removed after or at the same time as VPP
Note 3 : Typical conditions are for operation at: $T_{A}=25^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V}, \mathrm{VPP}=\mathrm{VCC}$, and VSS $=0 \mathrm{~V}$
Note 4 : VPP may be connected to VCC except during program.
Note 5 :Capacitance is guaranteed by periodic testing. $T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$.

[^8]
PROGRAM OPERATION

DC ELECTRICAL CHARACTERISTICS AND OPERATING CONDITIONS (Notes 1 and 2)
$\left(T_{A}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)(V C C=5 \mathrm{~V} \pm 5 \%, \mathrm{VPP}=25 \mathrm{~V} \pm 1 \mathrm{~V})$

SYMBOL	PARAMETER	MIN	MAX	UNITS
ILI	Input Leakage Current (Note 3)	-	10	μA
VIL	Input Low Level	-0.1	0.8	V
VIH	Input High Level	2.0	VCC +1	V
ICC	VCC Power Supply Current	-	100	mA
IPP1	VPP Supply Current (Note 4)	-	5	mA
IPP2	VPP Supply Current During Programming Pulse (Note 5)	-	30	mA

AC CHARACTERISTICS AND OPERATING CONDITIONS (Notes 1, 2, and 6)
$\left(T_{A}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)(\mathrm{VCC}=5 \mathrm{~V} \pm 5 \%, \mathrm{VPP}=25 \mathrm{~V} \pm 1 \mathrm{~V})$

SYMBOL		PARAMETER	MIN	TYP	MAX	UNITS
STANDARD	JEDEC					
tas	TAVPH	Address Setup Time	2	-	-	$\mu \mathrm{s}$
tos	TGHPH	$\overline{\text { OE Setup Time }}$	2	-	-	μs
tos	TDVPH	Data Setup Time	2	-	-	$\mu \mathrm{s}$
tah	TPLAX	Address Hold Time	2			$\mu \mathrm{s}$
${ }^{\mathrm{O}} \mathrm{OH}$	TPLGX	$\overline{\mathrm{OE}}$ Hold Time	2	-	-	$\mu \mathrm{s}$
${ }^{\text {i }}$ DH	TPLDX	Data Hold Time	2	-	-	$\mu \mathrm{s}$
${ }^{\text {t }} \mathrm{DF}$	TGHOZ	Chip Disable to Output Float Delay (Note 4)	0	-	100	ns
${ }^{\text {t }} \mathrm{CE}$	TGLQV	Chip Enable to Output Delay (Note 4)	-	-	120	ns
tPW	TPHPL	Program Pulse Width	45	50	55	ms
tPR	TPH1PH2	Program Pulse Rise Time	5	-	-	ns
tPF	TPL2PL1	Program Pulse Fall Time	5	-	-	ns

Note 1 : VCC must be applied at the same time or before VPP and removed after or at the same time as VPP. To prevent damage tothe deviceit must not be inserted into a board with power applied.
Note 2 : Care must be taken to prevent overshoot of the VPP supply when switching to +25 V
Note 3: $0.45 \mathrm{~V} \leqslant \mathrm{VIN}<5.25 \mathrm{~V}$
Note 4 : $\overline{C E} / P G M=V I L, ~ V P P=V C C$
Note 5 : VPP $=26 \mathrm{~V}$
Note 6 : Transition times $\leqslant 20$ ns unless otherwise noted

Program Mode

The ET2716 is programmed by introducing " 0 " s into the desired locations. This is done 8 bits (a byte) at a time. Any individual address, a sequence of addresses, or addresses chosen at random may be programmed. Any or all of the 8 bits associated with an address location may be programmed with a single program pulse applied to the chip enable pin. All input voltage levels including the program pulse on chip enable are TTL compatible. The programming sequence is :

With VPP $=25 \mathrm{~V}, \mathrm{VCC}=5 \mathrm{~V}, \overline{\mathrm{OE}}=\mathrm{VIH}$ and $\overline{\mathrm{CE}} / \mathrm{PGM}=$ VIL, an address is selected and the desired data word is applied to the output pins. (VIL = "0"' and VIL = " 1 " for both address and data). After the address and data signals are stable the program pin is pulsed from VIL to VIH with a pulse width between 45 ms and 55 ms .

Multiple pulses are not needed but will not cause device damage. No pins should be left open. A high level (VIH or higher) must not be maintained longer than tpW(MAX)on the program pin during programming. ET2716's may be programmed in parallel with the same data in this mode.

Program Verify Mode

The programming of the ET2716 may be verified either 1 word at a time during the programming (as shown in the timing diagram) or by reading all of the words out at the end of the programming sequence. This can be done with VPP $=25 \mathrm{~V}$ (or 5 V) in either case. VPP must be at 5 V for all operating modes and can be maintained at 25 V for all programming modes.

Program Inhibit Mode

The program inhibit mode allows programming several ET2716's simultaneously with different data for each
one by controlling which ones receive the program pulse. All similar inputs of the ET2716 may be paralleled. Pulsing the program pin (from VIL to VIH) will program a unit while inhibiting the program pulse to a unit will keep it from being programmed and keeping $\overline{\mathrm{OE}}=$ VIH will put its outputs in the $\mathrm{Hi}-\mathrm{Z}$ state.

ERASING

The ET2716 is erased by exposure to high intensity ultraviolet light through the transparent window. This exposure discharges the floating gate to its initial state through induced photo current. It is recommended that the ET2716 be kept out of direct sunlight. The UV content of sunlight may cause a partial erasure of some bits in a relatively short period of time.

An ultraviolet source of $2537 \AA$ Ai yielding a total integrated dosage of 15 watt-seconds $/ \mathrm{cm}^{2}$ is required. This will erase the part in approximately 15 to 20 minutes if a UV lamp with a $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ power rating is used. The ET2716 to be erased should be placed 1 inch away from the lamp and no filters should be used.

An erasure system should be calibrated periodically. The distance from lamp to unit should be maintained at 1 inch. The erasure time is increased by the square of the distance (if the distance is doubled the erasure time goes up by a factor of 4) Lamps lose intensity as they age. When a lamp is changed, the distance is changed, or the lamp is aged, the system should be checked to make certain full erasure is occuring. Incomplete erasure will cause symptoms that can be misleading. Programmers, components, and system designs have been erroneously suspected when incomplete erasure was the basic problem.

PHYSICAL DIMENSIONS inches (millimeters)

These specifications are subject to change without notice.
Please inquire with our sales offices about the availability of the different packages.

DEVICE OPERATION

The ET2716 has 3 modes of operation in the normal system environment. These are shown in Table I.

Read Mode

The ET 2716 read operation requires that $\overline{O E}=$ VIL, $\overline{C E} / P C M=$ VIL and that addresses $A O-A 10$ have been stabilized. Valid data will appear on the output pins after tacc toe or tce times (see Switching Time Waveforms) depending on which is limiting.

Deselect Mode

The ET 2716 is deselected by making $\overline{O E}=$ VIH. This mode is independent of CE/PGM and the condition of the addresses. The outputs are $\mathrm{Hi}-\mathrm{Z}$ when $\overline{\mathrm{OE}}=\mathrm{VIH}$. This allows OR-tying 2 or more ET2716's for memory expansion.

Standby Mode (Power Down)

The ET2716 may be powered down to the standby mode by making $\overline{C E} / P G M=V I H$. This is independent of $\overline{\mathrm{OE}}$ and automatically puts the outputs in their Hi-Z state. The power is reduced to 25% (13.2 mW max) of the normal operating power. VCC and VPP must be maintened at 5 V . Access time at power up remains either tACC or tCE (see Switching Time Waveforms).

PROGRAMMING

The ET 2716 is shipped from THOMSON SEMICONDUCTEURS completely erased. All bits will be at " 1 " level (output high) in this initial state and after any full erasure. Table II shows the 3 programming modes.

TABLE I. OPERATING MODES $(V C C=V P P=5 \mathrm{~V})$

MODE	PIN NAME/NUMBER		
	$\overline{\mathrm{CE} / P G M}$	$\overline{\mathrm{OE}}$	OUTPUTS
	(\bar{E} / P)	$(\overline{\mathrm{G}})$	
	18	20	$9-11,13-17$
Read	VIL	VIL	DOUT
Deselect	Don't Care	VIH	HI.Z
Standby	VIH	D.on't Care	Hi.Z

TABLE II. PROGRAMMING MODES (VCC = 5V)

MODE	PIN NAME/NUMBER			
	$\begin{gathered} \overline{C E} / P G M \\ (E / P) \\ 18 \end{gathered}$	$\begin{gathered} \overline{\mathrm{OE}} \\ (\overline{\mathrm{G}}) \\ 20 \end{gathered}$	vPP 21	outputs a $9-11,13-17$
Program	Pulsed VIL 10 VIH	VIH	25	DIN
Program Verify	VIL	VIL	25(5)	DOUT
Piogram Inhibit	VIL	VIH	25	Hi. 2

[^9]

The ETC 2716 is a high speed 16 K UV erasable and electrically reprogrammable CMOS EPROM ideally suited for applications where fast turn-around pattern experimentation and low power consumption are important requirements.
The ETC 2716 is packaged in a 24 -pin dual-in-line package with transparent lid. The transparent lid allows the user to expose the chip to ultraviolet light to erase the bit pattern. A new pattern can then be written into the device by following the programming procedure. This EPROM is fabricated with the reliable, high volume, time proven, P2CMOS silicon gate technology.

- CMOS power consumption
- Performance compatible to market standard 8-bit CMOS Microp
- 2048×8 organization
- Pin compatible to 2716
- Access time down to 350 ns
- Single 5V power supply
- Static - no clocks required
- TTL compatible I/Os during both read and program modes
- Three-state output with OR-tie capability
- Oper.temp.: $0^{\circ} \mathrm{C},+70^{\circ} \mathrm{C} ;-25^{\circ} \mathrm{C},+70^{\circ} \mathrm{C}$ (Esuffix) ; $-40^{\circ} \mathrm{C},+85^{\circ} \mathrm{C}$ (V suffix)

Parameter/Part Numbor	ETC 2716-1	ETC 2716	ETC 2716-5
Access Time (ns)	350	450	550
Active Current (mA a 1 MHz)	5	5	5
Standby Current (mA)	0.1	0.1	0.1

Pin Connection During Read or Program

Mode	Pin Name/Number					
	$\overline{\text { CEIPGM }}$ 18	$\overline{\text { OE }}$ 20	VPP 21	VCC 24	Outputs $9-11,13-17$	
	VIL Program Pulsed VIL to VIH	VIL	5	5	DOUT	
		25	5	DIN		

CNOS

16,384-BIT
 (2048 \& 8)
 UV ERASABLE PROM

PIN ASSIGNMENT

PIN NAMES

$A 0-A 10$	Address Inputs
$\mathrm{O}_{0}-\mathrm{O}_{7}$	Data Outputs
$\overline{\mathrm{CE}} / \mathrm{PGM}$	Chip Enable/Program
$\overline{\mathrm{OE}}$	Output Enable
VPP	Read 5V, Program 25 V
VCC	5 V
VSS	Ground

ABSOLUTE MAXIMUM RATINGS (Note 1)

| Temperature Under Bias | $-10^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$ | Output Voltages with Respect | VCC +0.3 V to VSS -0.3 V |
| :--- | ---: | :--- | ---: | :--- |
| Storage Temperature | $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | to VSS | |
| VPP Supply Voltage with Respect | 26.5 V to -0.3 V | Power Dissipation | 1.0 W |
| to VSS | | Lead Temperature (Soldering, 10 seconds) | $300^{\circ} \mathrm{C}$ |
| Input Voltages with Respect to | 6 V to -0.3 V | | |

VSS except VPP (Note 5)

READ OPERATION (Note 2)

DC OPERATING CHARACTERISTICS

$\mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \pm 5 \%, \mathrm{VPP}=\mathrm{VCC}$ (Note 3), VSS $=0 \mathrm{~V}$,(Unless otherwise specified)

Symbol	Parameter	Conditions	Min	$\begin{gathered} \text { Typ } \\ \text { (Note 2) } \end{gathered}$	Max	Units
121	Input Current	VIN = VCC or GND	-	-	10	${ }_{\mu} \mathrm{A}$
ILO	Output Leakage Current	VOUT $=5.25 \mathrm{~V}, \overline{\mathrm{CE}} / \mathrm{PGM}=\mathrm{VIM}$	-	-	10	$\mu \mathrm{A}$
VIL	Input Low Voltage		-0.1	-	0.8	V
VIH	Input High Voltage	(Note 5)	2.0	-	VCC + 1	V
VOL1	Output Low Voltage	$1 \mathrm{OL}=2.1 \mathrm{~mA}$	-	-	0.45	V
VOH1	Output High Voltage	$1 \mathrm{OH}=-400 \mu \mathrm{~A}$	2.4	-	-	V
VOL2	Output Low Voltage	$\mathrm{IOL}=0 \mu \mathrm{~A}$	-	-	0.1	V
VOH2	Output High Voltage	$\mathrm{OH}=0 \mu \mathrm{~A}$	VCC -0.1	-	-	\checkmark
IPP1	VPP Supply Current	$\mathrm{VPP}=5.25 \mathrm{~V}$	-	-	10	$\mu \mathrm{A}$
ICC1	VCC Supply Current Active (TTL Levels)	$\overline{\mathrm{CE}} / \mathrm{PGM}, \overline{\mathrm{OE}}=\mathrm{VIL}$ Addresses $=$ VIH or VIL Frequency $1 \mathrm{MHz}, \mathrm{I} / \mathrm{O}=0 \mathrm{~mA}$	-	2	10	mA
ICC2	VCC Supply Current Active (CMOS Levels)	$\overline{\mathrm{CE}} / \mathrm{PGM}, \overline{\mathrm{OE}}=$ VIL (Note 5) Addresses = GND or VCC Frequency 1 MHz , $\mathrm{I} / \mathrm{O}=0 \mathrm{~mA}$	-	1	5	mA
ICCSB1	VCC Supply Current Standby	$\overline{\mathrm{CE}} / \mathrm{PGM}=\mathrm{VIH}$	-	0.1	1	mA
ICCSB2	VCC Supply Current Standby	$\overline{C E} / P G M=V C C$	-	0.01	0.1	mA

CAPACITANCE (Note 4) $\mathrm{TA}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$

Symbol	Parameter	Conditions	Typ	Max	Units
CI	Input Capacitance	VIN $=0 \mathrm{~V}$	4	6	pF
CO	Output Capacitance	VOUT $=0 \mathrm{~V}$	8	12	pF

AC TEST CONDITIONS

Input Pulse Levels
Input Rise and Fall Times Output Load Input and Output Timing Reference Levels
0.45 V to 2.4 V

20 ns
1 TTL Gate and $\mathrm{CL}=100 \mathrm{PF}$
$0.8 \mathrm{~V}, ~ 2 \mathrm{~V}$

Note 1 : "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2 : Typical conditions are for operation at: $T A=25^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V}, \mathrm{VPP}=\mathrm{VCC}$, and $\mathrm{VSS}=\mathrm{OV}$.
Note 3 : VPP may be connected to VCC except during program.
Nete 4 : Capacitance is guaranteed by periodic testing. $T A=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$
Note 5 : The inputs (Address, $\overline{O E}, \overline{C E}$) may go above VCC by one volt with no latch up danger. Only the output (data inputs during programming) need be restricted to VCC +0.3 V .

AC CHARACTERISTICS $\quad \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \pm 5 \%, \mathrm{VPP}=\mathrm{VCC}, \mathrm{VSS}=0 \mathrm{~V}$, (Unless otherwise specified)

Symbol		Paramoter	Conditions	ETC2716-1		ETC 2716		ETC 2716-5		UNIT
Alternate	Standard			Min	Max	Min	Max	Min	Max	
$t_{\text {ACC }}$	TAVQV	Address to Output Delay	$\overline{\mathrm{CE}} / \mathrm{PGM}=\overline{\mathrm{OE}}=\mathrm{VIL}$	-	350	-	450	-	550	ns
$I_{\text {ce }}$	TELQV	$\overline{C E}$ to Output Delay	$\overline{O E}=\mathrm{VIL}$	-	350	-	450	-	550	ns
toe	TGLQV	Output Enable to Output Delay	$\overline{\mathrm{CE}} / \mathrm{PGM}=\mathrm{VIL}$	-	120	-	120	-	120	ns
$t_{\text {dF }}$	TGHQZ	Output Enable High to Output Hi-Z	$\overline{C E} / P G M=$ VIL	0	100	0	100	0	100	ns
$\mathrm{IOH}^{\text {r }}$	taxax	Address to Output Hold	$\overline{C E} / P G M=\overline{O E}=V I L$	0	-	0	-	0	-	ns
100	TEHQZ	$\overline{C E}$ to Output Hi.Z	$\overline{O E}=\mathrm{VIL}$	0	100	0	100	0	100	ns

SWITCHING TIME WAVEFORMS
Read Cycle ($\overline{C E} / P G M=$ VIL)

Standby Power-Down Mode ($\overline{O E}=$ VIL)

PROGRAM OPERATION

DC ELECTRICAL CHARACTERISTICS AND OPERATING CONDITIONS (Notes 1 and 2)
$\left(\mathrm{TA}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)(\mathrm{VCC}=5 \mathrm{~V} \pm 5 \%, \mathrm{VPP}=25 \mathrm{~V} \pm 1 \mathrm{~V})$

Symbol	Paramoter	Min	Typ	Max	Units
ILI	Input Leakage Current (Note 3)	-	-	10	$\mu \mathrm{~A}$
VIL	Input Low Level	-0.1	-	0.8	V
VIH	Input High Level (Note 7)	2.2	-	VCC +1	V
ICC	VCC Power Supply Current	-	-	10	mA
IPP1	VPP Supply Current (Note 4)	-	-	10	$\mu \mathrm{~A}$
IPP2	VPP Supply Current During Programming Pulse (Note 5)	-	-	30	mA

AC CHARACTERISTICS AND OPERATING CONDITIONS (Notes 1, 2, and 6)
$\left(\mathrm{TA}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)(\mathrm{VCC}=5 \mathrm{~V} \pm 5 \%, \mathrm{VPP}=25 \mathrm{~V} \pm 1 \mathrm{~V})$

Symbol	Parameter	Min	Typ	Max	Units
$t_{\text {AS }}$	Address Set-up Time	2	-	-	$\mu \mathrm{S}$
tos	$\overline{O E}$ Set-up Time	2	-	-	$\mu \mathrm{S}$
$t_{\text {DS }}$	Data Set-up Time	2	-	-	$\mu \mathrm{S}$
$\mathrm{t}_{\text {AH }}$	Address Hold Time	2	-	-	$\mu \mathrm{S}$
$\mathrm{IOH}^{\text {O }}$	$\overline{O E}$ Hold Time	2	-	-	$\mu \mathrm{S}$
${ }_{\text {I }}{ }_{\text {d }}$	Data Hold Time	2	-	-	$\mu \mathrm{S}$
t_{DF}	Output Disable to Output Three state Delay (Note 4)	0	-	100	ns
toe	Output Enable to Output Delay (Note 4)	-	-	120	ns
tpw	Program Pulse Width	45	50	55	ms
$t_{\text {PR }}$	Program Pulse Rise Time	5	-	-	ns
tpf	Program Pulse Fall Time	5	-	-	ns
tvs	VPP Set-Up Time	2	-	-	$\mu \mathrm{S}$
tve	VPP Hold Time	2	-	-	$\mu \mathrm{S}$

Note 1 : VCC must be applied at the same time or before VPP and removed after or at the same time as VPP. To prevent damage to the device it must not be inserted into a board with power applied.
Note 2: Care must be taken to prevent overshoot of the VPP supply when switching to +26 V max
Note $3: 0 V \leqslant V I N \leqslant 5.25 V$
Noto $4: \overline{C E} / P G M=$ VIL, VPP $=$ VCC
Note 5 : VPP = 26 V
Note 6: Transition times $\leqslant 20$ ns unless otherwise noted.
Note 7 : The inputs (Address, $\overline{O E}, \overline{C E}$) may go above VCC by one volt with no latch up danger. Only the output (data inputs during programming) need be restricted to VCC +0.3 V to $\mathrm{VSS}-0.3 \mathrm{~V}$.

Multiple Addross Programming Followod by a Vorify Modo*

* All timings are the same as the single address programming mode. A dummy read is required only if the last programmed byte is the first byte to be verified.

FUNCTIONAL DESCRIPTION device operation

The ETC 2716 has 3 modes of operation in the normal system environment. These are shown in Table I.

Roed Modo

The. ETC 2716 read operation requires that $\overline{O E}=$ VIL, CEJPGM = VIL and that addresses A0-A10 have been stabilized. Valid data will appear on the output pins after tacc, toe or tce times (see Switching Time Waveforms) depending on which is limiting.

TABLE I. OPERATING MODES (VCC = 5V)

Modo	Pin Namo/Numbor		
	$\overline{\mathrm{CE}} / \mathrm{PGM}$ $\mathbf{1 8}$	$\overline{\mathrm{OE}}$ 20	Outputs $9-11,13-17$
	VIL Don't Care VIH	VIL VIH Don't Care	DOUT Hi-Z Hi-Z

Dosoloct Modo

The ETC 2716 is deselected by making $\overline{O E}=$ VIH. This mode is independent of CE/PGM and the condition of the addresses. The outputs are HI-Z when $\overline{\mathrm{OE}}=\mathrm{VIH}$. This allows OR-tying 2 or more ETC 2716 for memory expansion.

Standby Modo (Powor Down)

The ETC 2716 may be powered down to the standby mode by making $\overline{C E} / P G M=V I H$. This is independent of $\overline{O E}$ and automatically puts the outputs in their Hi-Z state. The power is reduced to 0.4% of the normal operating power. VCC must be maintained at 5 V . Access time at power up remains either $t_{A C C}$ or $t_{C E}$ (see Switching Time Waveforms).

PROGRAMMAING

The ETC 2716 is shipped from THOMSON SEMICONDUCTEURS completely erased. All bits will be at a " 1 " level (output high) in this initial state and after any full erasure. Table II shows the 3 programming modes.

FUNCTIONAL DESCRIPTION (Continued)

TABLE II. PROGRAMMING MODES (VCC $=5 \mathrm{~V}$)

Mode	Pin Namo/Number			
	$\overline{C E} / P G M$ 18	$\overline{O E}$ 20	VPP 21	Outputs Q $9-11,13-17$
	Pulsed VIL to VIH Vrogram Verify VIL Program Inhibit	VIL	25	VIN
VIL	VIH	$25(5)$	DOUT	

Program Mode

The ETC 2716 is programmed by introducing " 0 " s into the desired locations. This is done 8 bits (a byte) at a time. Any individual address, a sequence of addresses, or addresses chosen at random may be programmed. Any or all of the 8 bits associated with an address location may be programmed with a single program pulse applied to the chip enable pin. All input voltage levels, including the program pulse on chip enable are TTL compatible. The programming sequence is:

With $\mathrm{VPP}=25 \mathrm{~V}, \mathrm{VCC}=5 \mathrm{~V}, \overline{\mathrm{OE}}=\mathrm{VIH}$ and $\overline{\mathrm{CE}} / \mathrm{PGM}=\mathrm{VIL}$, an address is selected and the desired data word is applied to the output pins. (VIL =" 0 " and VIL $=" 1$ " for both address and data.) After the address and data signals are stable the program pin is pulsed from VIL to VIH with a pulse width between 45 ms and 55 ms .

Multiple pulses are not needed but will not cause device damage. No pins should be left open. A high level (VIH or higher) must not be maintained longer than tpwimax) on the program pin during programming. ETC 2716 may be programmed in parallel with the same data in this mode.

Program Verify Mode

The programming of the ETC 2716 is verified in the program verify mode which has VPP at VCC (see Table II). After programming an address, that same address cannot be immediately verified without an address change (dummy read).

Program Inhibit Mode

The program inhibit mode allows programming several ETC 2716 simultaneously with different data for each one by controlling which ones receive the program pulse.
All similar inputs of the ETC 2716 may be paralleled.
Pulsing the program pin (from VIL to VIH) will program a unit while inhibiting the program pulse to a unit will keep it from being programmed and keeping $\overline{ } E=$ VIH will put its outputs in the HI-Z state.

ERASING

The ETC 2716 is erased by exposure to high intensity ultraviolet light through the transparent window. This exposure discharges the floating gate to its initial state through induced photo current. It is recommended that the ETC 2716 be kept out of direct sunlight. The UV content of sunlight may cause a partial erasure of some bits in a relatively short period of time. Direct sunlight can also cause temporary functional fallure. Extended exposure to room level fluorescent lighting will also cause erasure. An opaque coating (paint, tape, label, etc.) should be placed over the package window if this product is to be operated under these lighting conditions. Covering the window also reduces ICC due to photodiode currents.
An ultraviolet source of $2537 \AA \AA^{\circ}$ yielding a total integrated dosage of 15 watt-seconds $/ \mathrm{cm}^{2}$ is required. This will erase the part in approximately 15 to 20 minutes if a UV lamp with a $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ power rating is used. The ETC 2716 to be erased should be placed 1 inch away from the lamp and no filters should be used. An erasure system should be calibrated periodically. The distance from lamp to unit should be maintained at linch. The erasure time is increased by the square of the distance (if the distance is doubled the er asure time goes up by a factor of 4). Lamps lose intensity as they age. When a lamp is changed, the distance is changed, or the lamp is aged, the system should be checked to make certain full erasure is occurring. Incomplete erasure will cause symptoms that can be misleading. Programmers, components, and system designs have been erroneously suspected when incomplete erasure was the basic problem.

ETC2732(0)-35/45/55

32,768-BIT (4096 x 8) CMOS UV ERASABLE PROM

The ETC 2732 is a high speed 32K UV erasable and electrically reprogrammable CMOS EPROM ideally suited for applications where fast turn-around, pattern experimentation and low power consumption are important requirements.
The ET.C 2732 is packaged in a 24 -pin dual-in-line package with transparent lid. The transparent lid allows the user to expose the chip to ultraviolet light to erase the bit pattern. A new pattern can then be written into the device by following the programming procedure. This EPROM is fabricated with the reliable, high volume, time proven, P^{2} CMOS silicon gate technology.

- CMOS power consumption : 26.25 mW max active power, 0.53 mW max standby power
- 4096×8 organization
- Pin compatible to ET 2716, ETC 2716, ET 2732, ET 2764
- Access time down to 350 ns
- Single 5V power supply
- Static - no clocks required
- TTL compatible I/Os during both read and program modes
- Three-state output with OR-tie capability
- Oper. temp. : $0^{\circ} \mathrm{C},+70^{\circ} \mathrm{C} ;-20^{\circ} \mathrm{C},+70^{\circ} \mathrm{C}$ (D suffix) ; $-25^{\circ} \mathrm{C},+70^{\circ} \mathrm{C}$ (E suffix) ; $-40^{\circ} \mathrm{C},+85^{\circ} \mathrm{C}$ (V suffix).

Parameter/Part Number	ETC2732Q-35	ETC2732Q-45	ETC2732Q-55
Access Time (ns)	350	450	500
Active Current (mA at1 MHz)	5	5	5
Standby Current (mA)	0.1	0.1	0.1

CMOS

(4096 x 8)
32,768-BIT UV ERASABLE PRON•

PIN ASSIGNMENT

PIN NAMES

AO-A11	Address Inputs
$\mathrm{OO}-\mathrm{O} 7$	Data Outputs
$\overline{\mathrm{CE}}$	Chip Enable
OE	Output Enable
VPP	Read RV, Program 25 V
VCC	5 SV
V SS	Ground

ABSOLUTE MAXIMUM RATINGS (Note 1)

Temperature Under Bias	$-10{ }^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$	Output Voltages with Respect	$\mathrm{VCC}+0.3 \mathrm{~V}$ to VSS
Storage Temperature	-0.3 V		
VPP Supply Voltage with Respect	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	to VSS	
to VSS	26.5 V to -0.3 V	Power Dissipation Input Voltages with Respect to	6 V to -0.3 V

READ OPERATION (Note 2)

DC OPERATING CHARACTERISTICS TA $=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \pm 5 \%, \mathrm{VSS}=0 \mathrm{~V}$, (Unless otherwise specified)

Symbol	Parameter	Conditions	Min	$\begin{gathered} \text { Typ } \\ \text { (Note 2) } \end{gathered}$	Max	Units
ILI	Input Current	VIN=VCC or GND	-	-	10	$\mu \mathrm{A}$
ILO	Output Leakage Current	VOUEVCC or VSS, $\overline{C E}=$ VIH	-	-	10	$\mu \mathrm{A}$
VIL	Input Low Voltage		-0.1	-	0.8	\checkmark
VIH	Input High Voltage	(Note 4)	2.0	-	VCC + 1	V
VOL1	Output Low Voltage	$101=2.1 \mathrm{~mA}$	-	-	0.45	V
VOH1	Output High Voltage	$10 \mathrm{H}=-400 \mu \mathrm{~A}$	2.4	-	-	V
VOL2.	Output Low Voitage	$10 \mathrm{~L}=0 \mu \mathrm{~A}$	-	-	0.1	V
VOH2	Output High Voltage	$10 \mathrm{H}=\mathrm{O}_{\mu} \mathrm{A}$	Vcc-0.1	-	-	V
ICC1	VCC Supply Current Active (TTL Levels)	$\begin{aligned} & \hline \overline{C E}=\overline{\mathrm{OE}}=\mathrm{VIL} \\ & \text { Inputs }=\mathrm{VIH} \text { or } \mathrm{VIL} \\ & \text { Frequency } 1 \mathrm{MHz}, \mathrm{I} / \mathrm{O}=0 \mathrm{~mA} \\ & \hline \end{aligned}$	-	2	10	mA
ICC2	VCC Supply Current Active (CMOS Levels)	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\text { VIL }(\text { Note } 4)$ Inputs=GND or VCC Frequency $1 \mathrm{MHz}, 1 / \mathrm{O}=0 \mathrm{~mA}$	-	1	5	mA
ICCSB1	VCC Supply Current Standby	$\overline{C E}=\mathrm{VIH}$	-	0.1	1	mA
ICCSB2	VCC Supply Current Standby	$\overline{\mathrm{CE}}=\mathrm{VCC}$	-	0.01	0.1	mA

AC CHARACTERISTICS $\quad T A=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, V C C=5 \mathrm{~V} \pm 5 \%, V S S=0 \mathrm{~V}$. (Unless otherwise specified)

Symbol	Parameter	Conditions	ETC27320-35		ETC27320-45		ETC27320.55		UNIT
			Min	Max	Min	Max	Min	Max	
${ }_{\text {tacc }}$	Address to Output Delay	$\overline{\mathrm{CE}} / \mathrm{PGM}=\overline{\mathrm{OE}}=\mathrm{VIL}$	-	350	-	450	-	550	ns
${ }^{\text {t }}$ CE	CE to Output Delay	$\overline{O E}=\mathrm{VIL}$	-	350	-	450	-	550	ns
toe	Output Enable to Output Delay	$\overline{C E} / P G M=V I L$	-	150	-	150	-	150	ns
$t_{\text {b }}$	Output Enable High to Output Hi-Z	$\begin{aligned} & \overline{C E} / \text { PGM }=\text { VIL } \\ & \text { (Note 5) } \end{aligned}$	0	130	0	130	0	130	ns
${ }^{\text {toh }}$	Address to Output Hold	$\overline{C E} /$ PGM $=\overline{O E}=$ VIL	0	-	0	-	0	-	ns

Symbol	Parameter	Conditions	Typ	Max	Units
$\mathrm{C}_{\text {INI }}$	Input Capacitance Except $\overline{O E} / V_{P P}$	$V_{1 N}=0 V$	4	6	pF
$\mathrm{C}_{\text {IN } 2}$	$\overline{O E} / V_{\text {Pp }}$ Input Capacitance	$V_{1 N}=O V$	-	20	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	8	12	pF

AC TEST CONDITIONS

Input Pulse Levels
Input Rise and Fall Times
Output Load
Input and Output Timing Reference Levels:
0.45 to 2.4 V
$<20 \mathrm{~ns}$
1 TTL Gate and CL=100 PF
0.8 V and 2 V

SWITCHING TIME WAVEFORMS

Note 1 : "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are, not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Mote 2 : Typical conditions are for operation at : $T A=25^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V}, \mathrm{VPP}=\mathrm{VCC}$, and VSS $=0 \mathrm{~V}$.
Note 3 : Capacitance is guaranteed by periodic testing. $T A=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$.
Note 4 : The inputs (Address, $\overline{\mathrm{OE}}, \overline{\mathrm{CE}}$) may go above VCC by one volt with no latch up danger. Only the output (data inputs during programming) need be restricted to VCC +0.3 V .
Mote 5 : The tDF compare level is determined as follows :
High to $\mathrm{Hi}-\mathrm{Z}$, the measured $\mathrm{VOH}_{\mathrm{OH}}(\mathrm{DC})-0.10 \mathrm{~V}$
Low to $\mathrm{Hi}-\mathrm{Z}$, the measured $\mathrm{V}_{\mathrm{OL}}(\mathrm{DC})+0.10 \mathrm{~V}$

DC PROGRAMMING CHARACTERISTICS (Notes 1 and 2)
$\mathrm{TA}=+25^{\circ} \mathrm{C} \pm 5{ }^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \pm 5 \%$, $\mathrm{VPP}=25 \mathrm{~V} \pm 1 \mathrm{~V}$) (Unless otherwise specified)

Symbol	Parameter	Conditions	Min	$T_{y p}$	Max	Units
I_{LI}	Input Current (All inputs)	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND	-	-	10	$\mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{OL}}$	Output Low Voltage During Verify	$\mathrm{I}_{\mathrm{OL}}=2.1 \mathrm{~mA}$	-	-	0.45	V
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage During Verify	$\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$	2.4	-	-	V
I_{CC}	V_{CC} Supply Current		-	2	10	mA
$\mathrm{~V}_{\mathrm{IL}}$	Input Low Level (All Inputs)		-0.1	-	0.8	V
$\mathrm{~V}_{\mathrm{IH}}$	Input High Level (All Inputs Except $\overline{\mathrm{OE}} / \mathrm{V}_{\mathrm{PP}}$)		2.0	-	$\mathrm{V}_{\mathrm{CC}}+1$	V
I_{PP}	V_{PP} Supply Current	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{PP}}$	-	-	30	mA

AC PROGRAMMING CHARACTERISTICS $\quad\left(T A=+25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \pm 5 \%, \mathrm{VPP} .25 \mathrm{~V} \pm \mathrm{V}\right)$

Symbol	Parameter	Conditions	Min	Typ	Max	
$t_{\text {AS }}$	Address Set-Up Time		2	-	-	$\mu \mathrm{s}$
toes	$\overline{O E}$ Set-Up Time		2	-	-	$\mu \mathrm{s}$
${ }^{\text {t }}$ S	Data Set-Up Time		2	-	-	$\mu \mathrm{s}$
$t_{\text {AH }}$	Address Hold Time		0	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {OEH }}$	$\overline{\text { OE Hold Time }}$		2	-	-	$\mu \mathrm{S}$
$t_{\text {DH }}$	Data Hold Time		2	-	-	$\mu \mathrm{s}$
$t_{\text {bF }}$	Chip Enable to Output Float Delay		0	-	130	ns
tov	Data Valid from $\overline{C E}$	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}} ; \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$	-	-	1	$\mu \mathrm{s}$
$t_{\text {PW }}$	$\overline{\mathrm{CE}}$ Pulse Width During Programming		45	50	55	ms
${ }_{\text {t PRT }}$	$\overline{\text { OE Pulse Rise Time During Programming }}$		50	-	-	ns
$t_{\text {VR }}$	Vpp Recovery Time		2	-	-	$\mu \mathrm{s}$

Note : All times shown in parentheses are minimum and in $\mu \mathrm{s}$ unless otherwise specified. The input timing reference is 0.8 V for a $\mathrm{V}_{1 \mathrm{~L}}$ and 2 V for a $\mathrm{V}_{1 \mathrm{H}}$.

AC TEST CONDITIONS

VCC	$5 \mathrm{~V} \pm 5 \%$
$V_{p P}$	$25 \mathrm{~V} \pm 1 \mathrm{~V}$
Input Rise and Fall Times	$<20 \mathrm{~ns}$
Input Pulse Levels	0.45 V to 2.4 V
Timing Measurement Reference Level	0.8 V and 2 V
Inputs, Outputs	

Note 1 : Vcc must be applied simultaneously or before Vpp and removed simultaneously or after Vpp. The ETC 2732 must not be inserted into or removed from a board with Vpp at $25 \pm 1 \mathrm{~V}$ to prevent damage to the device.
Noto 2: The maximum allowable voltage which may be applied to the Vpp pin during programming is 26V. Care must be taken when switching the Vpp supply to prevent overshoot exceeding this 26 V maximum specification. $\mathrm{A} 0.1 \mu \mathrm{~F}$ capacitor is required across $\mathrm{Vpp}, \mathrm{Vcc}$ to GND to suppress spurious voltage transients which may damage the device.

DEVICE OPERATION

The five modes of operation of the ETC 2732 are listed in Table I. A single 5 V power supply is required in the read mode. All inputs are TTL levels except for $\overline{\mathrm{OE}} / \mathrm{V}_{\mathrm{PP}}$ during programming. In the program mode the $\overline{O E} / V_{P P}$ input is pulsed from a TTL level to 25 V .

Read Mode

The ETC 2732 has two control functions, both of which must be logically active in order to obtain data at the outputs. Chip Enable ($\overline{\mathrm{CE}}$) is the power control and should be used for device selection. Output Enable ($\overline{\mathrm{OE}}$) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (tACC) is equal to the delay from $\overline{\mathrm{CE}}$ to output ($\mathrm{C} C$). Data is available at the outputs after the falling edge of $\overline{O E}$, assuming that $\overline{C E}$ has been low and addresses have been stable for at least tacc-toe.

Standby Mode

The ETC 2732 has a standby mode which reduces the active power dissipation by 98%, from 26.25 mW to 0.53 mW . The ETC 2732 is placed in the standby mode, by applying a TTL high signal to the $\overline{C E}$ input when in standby mode the outputs are in a high impedance state, independant of the $\overline{O E}$ input.

Output OR-Tying

Because EPROMS are usually used in larger memory arrays, we have provided a 2 -line control function that accommodates this use of multiple memory connection. The 2 -line control function allows for.
a)the lowest possible memory power dissipation, and
b) complete assurance that output bus contention will not occur.

To most efficiently use these two control lines, it is recommended that $\overline{C E}$ (pin 18) be decoded and used as the primary device selecting function, while $\overline{O E}$ (pin 20) be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low power standby modes and that the output pins are active only when data is desired from a particular memory device.

Programming

CAUTION : Exceeding 26.5 V on pin $20\left(\mathrm{~V}_{\mathrm{PP}}\right)$ will damage the ETC 2732.
Initially, and after each erasure, all bits of the ETC 2732 are in the " 1 " state. Data is introduced by selectively programming "Os" into the desired bit lecations. Although only "Os" will be programmed, both " $1 s$ " and "Os" can be presented in the data word. The only way to change a " 0 " to a " 1 " is by ultraviolet light erasure.

The ETC 2732 is in the programming mode when the $\overline{\mathrm{OE}} / \mathrm{V}_{\mathrm{Pp}}$ input is at 25 V . It is required that a $0.1 \mu \mathrm{~F}$ capacitor be placed across $\overline{\mathrm{OE}} / \mathrm{V}_{\mathrm{Pp}}$, and ground to suppress spurious voltage transients which may damage the device. The data to be programmed is applied 8 bits in parallel ta the data output pins. The levels required for the address and data inputs are TTL.
When the address and data are stable, a 50 ms active low TTL program pulse is applied to the $\overline{\mathrm{CE}}$ input. A program pulse must be applied at each address location to be programmed. You can program any location at any timeeither individually, sequentially, or at random. The program pulse has a maximum width of 55 ms .
The ETC 2732 must not be programmed with a DC signal applied to the $\overline{C E}$ input.

Programming of multiple ETC 2732s in parallel with the same data can be easily accomplished due to the simplicity of the programming requirements. Like inputs of the paralleled ETC 2732s may be connected together when they are programmed with the same data. A low level TTL pulse applied to the $\overline{\mathbf{C E}}$ input programs the paralleled.

Program Inhibit

Programming multiple ETC 2732s in parallel with different data is also easily accomplished. Except for $\overline{\mathrm{CE}}$, all like inputs (including OE) of the parallel ETC 2732s may be common. A TTL level program pulse applied to an ETC 2732s $\overline{\mathrm{CE}}$ input with $\overline{\overline{O E}} / \mathrm{V}_{\mathrm{Pp}}$ at 25 V will program that ETC 2732. A high level $\overline{C E}$ input inhibits the other ETC 2732s from being programmed.

Program Verify

A verify should be performed on the programmed bits to determine whether they were correctly programmed. The verify is accomplished with $\sigma E / N_{P P}$ and CE at V_{12} : Data should be verified $t_{D V}$ after the falling edge of CE.

TABLE I. MODE SELECTION

Mode	Pins	$\overline{C E}$ (18)	$\overline{\mathrm{OE}} / \mathbf{V P P}_{\text {PP }}$ $(20$	V_{CC} (24)
Read.	V_{IL}	V_{IL}	5	Outputs $(9-11,13-17)$
Standby	V_{IH}	Don't Care	5	$\mathrm{D}_{\text {OUT }}$
Program	V_{IL}	V_{PP}	5	$\mathrm{Hi}-\mathrm{Z}$
Program Verify	V_{IL}	V_{IL}	5	D_{IN}
Program Inhibit	V_{IH}	V_{PP}	$\mathrm{D}_{\text {OUT }}$	

ERASURE CHARACTERISTICS

The erasure characteristics of the ETC 2732 are such that erasure begins to occur when exposed to light with wavelengths shorter than approximately 4000 Angstroms (\AA). It should be noted that sunlight and certain types of fluorescent lamps have wavelengths in the $3000 \bar{A}$ $-4000 \AA$ range. Data shows that constant exposure to room-level fluorescent lighting could erase the typical ETC 2732 in approximately 3 years, while it would tako approximately 1 weak to cause orasure when exposed to direct sunlight. If the ETC 2732 is to be exposed to these types of lighting conditions for extended periods of time, opaque labels should be placed over the ETC 2732 window to prevent unintentional erasure. Covering the window widl also prevent temporary functional failure due to the generation of photo currents.

The rocommended erasure procedure for the ETC 2732 is exposure to shortwave ultraviolet light which has a wavelength of 2537 Angstroms (\AA). The integrated dose (i.e., UV intensity x exposure time) for erasure should be a minimum of $15 \mathrm{~W}-\mathrm{sec} / \mathrm{cm}^{2}$. The erasure time with this dosage is approximately 21 minutes using an ultraviolet lamp with a $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ power rating. The ETC 2732 should be place within 1 inch of the lamp tubes during erasure. Some lamps have a filter on their tubes which should be removed before erasure.

An erasure system should be calibrated periodically. The distance from lamp to unit should be maintained at one inch. The erasure time increases as the square of the distance. (If distance is doubled the erasure time increases by a factor of 4). Lamps lose intensity as they age.

When a lamp is changed, the distance has changed or the lamp has aged, the system should be checked to make certain full erasure is occurring. Incomplete erasure will cause symptoms that can be misleading. Programmers, components, and even system designs have been erroneously suspected when incomplete erasure was the problem.

SYSTEM CONSIDERATION

The power switching characteristics of EPROMs require careful decoupling of the devices. The supply current, I CC . has three segments that are of interest to the system designer - the standby current level, the active current level, and the transient current peaks that are produced on the falling and rising edges of chip enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. The associated transient voltage peaks can be suppressed by properly selected decoupling capacitors. It is recommended that a $0.1 \mu \mathrm{~F}$ ceramic capacitor be used on every device between $V_{C C}$ and GND. This should be a high frequency capacitor of low inherent inductance. In addition, a $4.7 \mu \mathrm{~F}$ bulk electrolytic capacitor should be used between V_{cc} and GND for each eight devices. The bulk capacitor should be located near where the power supply is connected to the array. The purpose of the bulk capacitor is to overcome the voltage droop caused by the inductive effects of the PC board traces.

PHYSICAL DIMENSIONS inches (millimeters)

UV Window Cavity Dual-In-Line Package (C)

These specifications are subject to change without notice.
Please inquire with our sales offices about the availability of the different packages.

The TS27C64 is a high speed 64K UV erasable and electrically reprogrammable EPROM ideally suited for applications where fast turn-around and pattern experimentation are important requirements.
The TS27C64 is packaged in a 28 -pin dual-in-line package with transparent lid. The transparent lid allows the user to expose the chip to ultraviolet light to erase the bit pattern. A new pattern can then be written into the device by following the programming procedure.

- Fast Access time - 150 ns, $200 \mathrm{~ns}, 250 \mathrm{~ns}, 300 \mathrm{~ns}$
- Compatible to high speed microprocessors zero wait state
- 28-pin JEDEC approved pin-out
- Low power consumption : active 20 mA (max.) standby 1 mA (max.)
- Programming voltage : 12.5 V
- High speed programming (<1 minute)
- Electronic signature
- Also proposed in plastic packages (OTP)

TABLE 1 : ORDERING INFORMATION

PART NUMBER	t ACC $^{(n s)}$	tCE (ns)	TOE (ns)	VCC
TS27C64-15	150	150	75	$5 \mathrm{~V} \pm 10 \%$
TS27C64-20	200	200	80	$5 \mathrm{~V} \pm 10 \%$
TS27C64-25	250	250	100	$5 \mathrm{~V} \pm 10 \%$
TS27C64-30	300	300	120	$5 \mathrm{~V} \pm 10 \%$

Operating temperature range
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (CQ suffix),$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (VQ suffix)
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (MO suffix) TS27C64-25MO TS27C64-30MO

CMOS

65.536-BIT
(8192×8)
UV ERASABLE PROM

PIN ASSIGNMENT

PIN NAMES

$\mathrm{A} 0 \cdot \mathrm{~A} 12$	Address
$\overline{\mathrm{CE}}$	Chip Enable
$\overline{\mathrm{OE}}$	Output Enable
$\mathrm{O} 0 . \mathrm{O}_{7}$	Outputs
$\overline{\mathrm{PGM}}$	Program
NC	Non Connected

MAXIMUM RATINGS (Note 1)

Rating	Symbol	Value	Unit
Operating temperature range $\begin{aligned} & \text { TS } 27 \mathrm{C} 64 \mathrm{Q} \\ & \text { TS } 27 \mathrm{C} 64 \mathrm{VQ} \\ & \text { TS } 27 \mathrm{C} 64 \mathrm{MQ} \end{aligned}$	Tamb	$\begin{gathered} T_{L} \text { to } T_{H} \\ 0 \text { to }+70 \\ -40 \text { to }+85 \\ -55 \text { to }+125 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Storage temperature range	$T_{\text {stg }}$	-65 to +125	${ }^{\circ} \mathrm{C}$
Supply voitage	VPP*	-0.6 to +14	V
Input voltage A9 Except VPP, A9	$V_{\text {in }}{ }^{*}$	$\begin{aligned} & -0.6 \text { to }+13.5 \\ & -0.6 \text { to }+6.25 \end{aligned}$	V
Max power dissipation	$P_{\text {D }}$	1.5	W
Lead temperature (Soldering : 10 seconds)		+300	${ }^{\circ} \mathrm{C}$

* With respect to $V_{S S}$

Note 1 : "Maximum ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating temperature range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical characteristics" provides conditions for actual device operation.

READ OPERATION (Note 2)

DC CHARACTERISTICS
$\mathrm{T}_{\mathrm{amb}}=\mathrm{T}_{\mathrm{L}}$ to $\mathrm{T}_{\mathrm{H}}, \mathrm{VCC}=5 \mathrm{~V} \pm 10 \%, \mathrm{VSS}_{\mathrm{SS}}=0 \mathrm{~V}$ (Unless otherwise specified)

Characteristic	Symbol	Min	Typ (Note 2)	Max	Unit
Input load current ($\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {CC }}$ or GND)	ILI	-	-	10	$\mu \mathrm{A}$
Ouput leakage current ($\mathrm{V}_{\text {Out }}=\mathrm{V}_{\text {CC }}$ or $\left.\mathrm{V}_{\text {SS }}, C E \sim \mathrm{~V}_{\text {IH }}\right)$	ILO	-	-	10	$\mu \mathrm{A}$
VPP read voltage	VPP	$V_{\text {cc }}-0.7$	-	V_{CC}	V
Input low vol tage	$V_{\text {IL }}$	-0.1	-	0.8	V
Input high voltage (Note 2)	$\mathrm{V}_{\text {IH }}$	2.0	-	$\mathrm{VCc}+1$	V
$\begin{gathered} \text { Output low voltage } \\ 1 \mathrm{OL}=2.1 \mathrm{~mA} \\ 1 \mathrm{OL}=0 \mu \mathrm{~A} \end{gathered}$	V_{OL}	-	-	$\begin{gathered} 0.45 \\ 0.1 \end{gathered}$	V
$\begin{gathered} \text { Output high voltage } \\ 1 \mathrm{OH}=-400 \mu \mathrm{~A} \\ \mathrm{OH}=0 \mu \mathrm{~A} \end{gathered}$	V OH	$v_{C C}^{2.4}-0.1$	-	-	V
V cc supply active current (TTL levels) $\overline{C E}=O E=V_{I L}$, Inputs $=V_{I H}$ or $V_{I L}, f=5 \mathrm{MHz}, I / O=0 \mathrm{~mA}$	ICC2	-	10	30	mA
```\(V_{C C}\) supply standby current \(\overline{\mathrm{CE}}=\mathrm{V}_{1 H}\) CEa VCC```	$\begin{aligned} & \text { ICcsB1 } \\ & \text { ICCSB2 } \end{aligned}$	-	$\begin{aligned} & 0.5 \\ & 10 \end{aligned}$	$\begin{gathered} 1 \\ 100 \end{gathered}$	${\underset{\mu A}{m A}}^{m^{2}}$
$\mathrm{V}_{\mathrm{PP}}$ read current ( $\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$ )	IPP1	-	-	100	$\mu \mathrm{A}$

AC CHARACTERISTICS (Notes 3, 4, 5)
$T_{a m b}=T_{L}$ to $T_{H}$

Characteristic	Symbol	Min	Maximum values				Unit
			$\begin{array}{\|c\|} \hline \text { TS27C64 } \\ .15 \end{array}$	$\begin{array}{\|c} \hline \text { TS27C64 } \\ -20 \end{array}$	$\left\lvert\, \begin{gathered} \text { TS27C64 } \\ -25 \end{gathered}\right.$	$\begin{array}{\|c\|} \hline \text { TS27C64 } \\ -30 \end{array}$	
Address to output delay ( $\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V}_{1 \mathrm{~L}}$ )	${ }^{t}$ ACC	-	150	200	250	300	ns
CE to output delay ( $\overline{\mathrm{OE}}=\mathrm{V}_{\text {IL }}$ )	${ }^{\text {t }} \mathrm{CE}$	-	150	200	250	300	ns
Output enable to output delay ( $\overline{\mathrm{CE}} \times \mathrm{V}_{\text {IL }}$ )	toe	-	75	80	100	120	ns
Output enable high to output float ( $\overline{C E}=V_{1 L}$ )	${ }^{\text {t }}$ DF (Note 4)	0	50	50	60	105	ns
Output hold from addresses, $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$ whichever occured first ( $\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$ )	${ }^{1} \mathrm{OH}$	0	-	-	-	-	ns

CAPACITANCE (Note 5)
$\mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$

Characteristic	Symbol	Min	Typ	Max	Unit
Input capacitance $\left(V_{\text {in }}=0 \mathrm{~V}\right)$	$\mathrm{C}_{\text {in }}$	-	4	6	pF
Output capacitance $\left(\mathrm{V}_{\text {out }}=0 \mathrm{~V}\right)$	$\mathrm{C}_{\text {out }}$	-	8	12	pF

Note 2 : Typical conditions are for operation at : $\mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{CC}}$, and $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Note 3 : VCC must be applied at the same time or before VPP and removed after or at the same time as VPP VPP may be connected to $V_{\text {CC }}$ except during program.

Note 4 : The tDF compare level is determined as follows:
High to THREE-STATE, the measured $\mathrm{V}_{\mathrm{OH}}(\mathrm{DC})-0.1 \mathrm{~V}$
Low to THREE-STATE the measured $\mathrm{V}_{\mathrm{OL}}(\mathrm{DC})+0.1 \mathrm{~V}$.
Note 5: Capacitance is guaranteed by periodic testing. $T_{a m b}=+25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$

AC TEST CONDITIONS (Figure 1,2)
FIGURE 1 - OUTPUT LOAD CIRCUIT

Output Load	1 TTL Gate and $C_{L}=100 \mathrm{pF}$
$\leq 20 \mathrm{~ns}$	
Input Rise and Fall Times	0.45 V to 2.4 V
Input Pulse Levels	
Timing Measurement Reference Level	
Inputs, Outputs	0.8 V and 2 V



FIGURE 2 - AC TESTING INPUT/OUTPUT WAVEFORM


AC testing inputs are driven at 2.4 V for a logic " 1 " and 0.45 V for a logic " 0 ". Timing measurements are made at 2.0 V for a logic " 1 " and 0.8 V for a logic " 0 ".

AC WAVEFORMS (READ MODE)


## DC PROGRAMMING CHARACTERISTICS

$\mathrm{T}_{\mathrm{amb}}=25 \pm 5^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} \pm 0.25 \mathrm{~V}, \mathrm{VPP}=12.5 \mathrm{~V} \pm 0.3 \mathrm{~V} \quad$ (Note 1)

Characteristic	Symbol	Min	Typ	Max	Unit
Input current (all inputs $\mathrm{V}_{1}=\mathrm{V}_{1 \mathrm{~L}}$ or $\mathrm{V}_{1 \mathrm{H}}$ )	11	-	-	10	$\mu \mathrm{A}$
Input low level (all inputs)	$V_{\text {IL }}$	-0.1	-	0.8	V
Input high level	$\mathrm{V}_{\text {IH }}$	2.0	-	$\mathrm{V}_{\mathrm{CC}}+1$	V
Output low voltage during verify ( ${ }^{\text {OL }}=2.1 \mathrm{~mA}$ )	$\mathrm{V}_{\mathrm{OL}}$	-	-	0.45	V
Output high voltage during verify ( $1 \mathrm{OH}=-400 \mu \mathrm{~A}$ )	$\mathrm{V}_{\mathrm{OH}}$	2.4	-	-	V
$\mathrm{V}_{\text {CC }}$ supply current (Program \& Verify)	ICC3	-	-	30	mA
$\mathrm{V}_{\text {PP }}$ supply current (Program $\cdot \overline{\mathrm{CE}}=\mathrm{V}_{\text {IL }}=\overline{\mathrm{PGM}}$ )	'PP2	-	-	30	mA

## AC PROGRAMMING CHARACTERISTICS

$\mathrm{T}_{\mathrm{amb}}=25 \pm 5^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} \pm 0.25 \mathrm{~V}, \mathrm{VPP}=12.5 \mathrm{~V} \pm 0.3 \mathrm{~V}$ (Note 1)

Characteristic	Symbol	Min	Typ	Max	Unit
Address set-up time	${ }^{\text {t } A S}$	2	-	-	$\mu \mathrm{s}$
$\overline{O E}$ set-up time	${ }^{\text {t O }}$ OES	2	-	-	$\mu \mathrm{s}$
Data set-up time	${ }^{\text {t }}$ DS	2	-	-	$\mu \mathrm{s}$
Address hold time	${ }^{t} \mathrm{AH}$	0	-	-	$\mu \mathrm{s}$
Data hold time	${ }^{t} \mathrm{DH}$	2	-	-	$\mu s$
Output enable to output float delay	${ }^{t}$ DF	0	-	130	ns
VPP set-up time	tVPS	2	-	-	$\mu \mathrm{s}$
$V_{\text {CC }}$ set-up time	tVCS	2	-	-	$\mu \mathrm{s}$
$\overline{\mathrm{PGM}}$ initial program pulse width	tPW	0.95	1.0	1.05	ms
$\overline{\text { PGM overprogram pulse width (Note 2) }}$	${ }^{\text {t OPW }}$	2.85	-	78.75	ms
$\overline{\mathrm{CE}}$ set-up time	${ }^{\text {t }}$ CES	2	-	-	$\mu \mathrm{s}$
Data valid from $\stackrel{\text { OE }}{ }$	${ }^{\text {t }} \mathrm{OE}$	-	-	150	ns

## AC TEST CONDITIONS

Input rise and fall times (10\% to 90\%)
Input pulse levels
Input timing reference level Ouptut timing reference level

20ns
0.45 V to 2.4 V
0.8 V and 2.0 V
0.8 V and 2.0 V

Note 1 : $\mathrm{V}_{\mathrm{CC}}$ must be applied simultaneously or before $\mathrm{V}_{\text {PP }}$ and removed simultaneously or after VPP.
Note 2: tOPW is defined in flow chart.


1. The input timing reference level is 0.8 V for $\mathrm{V}_{\text {IL }}$ and 2.0 V for $\mathrm{V}_{\mathrm{IH}}$.
2. TOE and TDFP are characteristics of the device but must be accommodated by the programmer.
3. When programming the TS27C64, a $0.1 \mu \mathrm{~F}$ capacitor is required across $\mathrm{V} P \mathrm{P}$ and ground to suppress spurious voltage transients which can damage the device.

TABLE 2. MODE SELECTION

Modo Pins	$\begin{aligned} & \overline{C E} \\ & (20) \end{aligned}$	$\begin{aligned} & \overline{O E} \\ & (22) \end{aligned}$	$\begin{gathered} A 9 \\ (24) \end{gathered}$	$\begin{aligned} & \overline{\text { PGM }} \\ & \text { (27) } \end{aligned}$	Vpp   (1)	VCC (28)	$\begin{aligned} & \text { Outputs } \\ & (11-1315-19) \end{aligned}$
Read	VIL	VIL	x	$\mathrm{V}_{1} \mathrm{H}$	$V_{C C}$	$V_{C C}$	DOUT
Output disable	$V_{\text {IL }}$	$\mathrm{V}_{\mathrm{IH}}$	X	$\mathrm{V}_{\text {IH }}$	$V_{C C}$	$\mathrm{V}_{\mathrm{CC}}$	$\mathrm{Hi}-\mathrm{Z}$
Standby	$\mathrm{V}_{\mathrm{IH}}$	X	$x$	X	$V_{C C}$	$\mathrm{V}_{\mathrm{CC}}$	$\mathrm{Hi}-\mathrm{Z}$
High speed programming	$V_{\text {IL }}$	$\mathrm{V}_{\mathrm{IH}}$	X	$V_{\text {IL }}$	VPP	$V_{C C}$	$\mathrm{DIN}_{\text {IN }}$
Program Verify	$V_{\text {IL }}$	$V_{\text {IL }}$	X	$\mathrm{V}_{\mathrm{IH}}$	VPP	$V_{C C}$	DOUT
Program inhibit	$\mathrm{V}_{\mathrm{IH}}$	X	X	X	VPP	$V_{C C}$	$\mathrm{Hi}-\mathrm{Z}$
Electronic signature (Note 3)	VIL	VIL	$\mathrm{V}_{\mathrm{H}}$   Note 2	$V_{1 H}$	VCC	VCC	CODE

[^10]

## DEVICE OPERATION

The seven modes of operation of the TS27C64 are listed in Table 2. A single 5 V power supply is required in the read mode. All inputs are TTL levels except for VPP.

## Read Mode

The TS27C64 has two control functions, both of which must be logically active in order to obtain data at the outputs. Chip Enable ( $\overline{\mathrm{CE}}$ ) is the power control and should be used for device selection. Ouput Enable ( $\overline{O E}$ ) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time ( $\mathrm{t} A C C$ ) is equal to the delay from $\overline{\mathrm{CE}}$ to output (tCE). Data is available at the outputs after a delay of $\mathrm{t} \overline{\mathrm{OE}}$ from the falling edge of $\overline{O E}$, assuming that $\overline{\mathrm{CE}}$ has been low and addresses have been stable for at least taCC-t $\overline{\mathrm{OE}}$.

## Standby Mode

The TS27C64 has a standby mode which reduces the maximum power dissipation to 5.5 mW . The TS27C64 is placed in the standby mode by applying a TTL high signal to the $\overline{\mathrm{CE}}$ input. When in standby mode, the outputs are in a high impedance state, independent of the $\overline{O E}$ input.

## Output OR-Tying

Because EPROMs are usually used in larger memory arrays, we have provided two control lines which accom. modate this multiple memory connection. The two control lines allow for :
a) the lowest possible memory power dissipation, and
b) complete assurance that output bus contention will not occur.
To use these control lines most efficiently, $\overline{C E}$ (pin 20) should be decoded and used as the primary device selecting function, while $\overline{\mathrm{OE}}$ (pin 22) should be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low power standby modes and that the output pins are active only when data is desired from a particular memory device.

## Programming modes

CAUTION : Exceeding 14 V on pin 1 (VPP) will damage the TS27C64.

Initially, and after each erasure, all bits of the TS27C64 are in the " 1 " state. Data is introduced by selectively programming " Os " into the desired bit locations. Although only " $0 s^{\prime \prime}$ will be programmed, both " 1 " and " Os " can be presented in the data word. The only way to change a " 0 " to a " 1 " is by ultraviolet light erasure.

The TS27C64 is in the programming mode when the VPP input is at 12.5 V and $\overline{\mathrm{CE}}$ and $\overline{\mathrm{PGM}}$ are both at TTL low. It is required that a $0.1 \mu \mathrm{~F}$ capacitor be placed across VPP, VCC and ground to suppress spurious voltage transients which may damage the device. The data to be programmed is applied 8 bits in parallel to the data output pins. The levels required for the address and data inputs are TTL.

Programming of multiple TS27C64s in parallel with the same data can be easily accomplished due to the simplicity of the programming requirements. Like inputs of the parallel TS27C64s may be connected together when they are programmed with the same data. A low level TTL pulse applied to the $\overline{\mathrm{PGM}}$ input programs the paralleled TS27C64s.

## - High speed programming

The high speed programming algorithm described in the flow chart page 6 rapidly programs TS27C64 using an efficient and reliable method particularly suited to the production programming environment. Typical programming times for individual devices are on the order of 1 minute.

## - Program inhibit

Programming of multiple TS27C64s in parallel with different data is also easily accomplished by using the program inhibit mode. A high level on $\overline{\mathrm{CE}}$ or $\overline{\mathrm{PGM}}$ inputs inhibits the other TS27C64s from being programmed. Except for $\overline{\mathrm{CE}}$, all like inputs (including $\overline{\mathrm{OE}})$ of the parallel TS27C64s may be common. A TTL low-level pulse applied to a TS27C64 CE and $\overline{\text { PGM }}$ inputs with VPP at 12.5 V will program that TS27C64.

## - Program verify

A verify may be performed on the programmed bits to determine that they were correctly programmed. The verify is performed with $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ at $\mathrm{V}_{I L}, \overline{\mathrm{PGM}}$ at $\mathrm{V}_{1}$ and $\mathrm{V}_{\mathrm{PP}}$ at 12.5 V .

## - Electronic signature mode

Electronic signature mode allows the reading out of a binary code that will identify the EPROM manufacturer and type.
This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ ambient temperature range that is required when programming the TS27C64.
To activate this mode the programming equipment must force 11.5 V to 12.5 V on address line A 9 (pin 24) of the TS27C64. Two bytes may then be sequenced from the device outputs by toggling address line A0 (pin 10) from $V_{\text {IL }}$ to $V_{I H}$. All other address lines must be held at $V_{\text {IL }}$ during electronic signature mode.

The TS27C64 is erased by exposure to high intensity ultraviolet light through the transparent window. This exposure discharges the floating gate to its initial state through induced photo current. It is recommended that the TS27C64 be kept out of direct sunlight. The UV content of sunlight may cause a partial erasure of some bits in a relatively short period of time. Direct sunlight can also cause temporary functional failure. Extended exposure to room level fluorescent lighting will also cause erasure. An opaque coating (paint, tape, label, etc.) should be placed over the package window if this product is to be operated under these lighting conditions. Covering the window also reduces ICC due to photodiode currents.
An ultraviolet source of $2537 \AA$ yielding a total integrated dosage of 15 watt-seconds $/ \mathrm{cm}^{2}$ is required. This
will erase the part in approximately 15 to 20 minutes if a UV lamp with a $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ power rating is used. The TS27C64 to be erased should be placed 1 inch from the lamp and no filters should be used.
An erasure system should be calibrated periodically. The distance from lamp to unit should be maintained at 1 inch. The erasure time is increased by the square of the distance (if the distance is doubled the erasure time goes up by a factor of 4). Lamps lose intensity as they age. When a lamp is changed, the distance is changed, or the lamp is aged, the system should be checked to make certain full erasure is occuring. Incomplete erasure will cause symptoms that can be misleading. Programmers, components, and system designs have been erroneously suspected when incomplete erasure was the basic problem.



## ADVANCE INFORMATION

The TS27C256 is a high speed 256K UV erasable and electrically reprogram. mable EPROM ideally suited for applications where fast turn-around and pattern experimentation are important requirements.
The TS27C256 is packaged in a 28 -pin dual-in-line package with transparent lid. The transparent lid allows the user to expose the chip to ultraviolet light to erase the bit pattern. A new pattern can then be written into the device by following the programming procedure.

- Fast access time - $150 \mathrm{~ns}, 200 \mathrm{~ns}, 250 \mathrm{~ns}, 300 \mathrm{~ns}$
- Compatible to high speed microprocessors zero wait state
- 28-pin JEDEC approved pin-out
- Low power consumption : active 40 mA (max.) standby 1 mA (max.)
- Programming voltage: 12.5 V
- High speed programming
- Electronic signature.
- Will be proposed in plastic packages (OTP)

TABLE 1 - ORDERING INFORMATION

PART NUMBER	${ }^{\text {taCC }}$ (ns)	${ }^{\text {t CEE }}$ (ns)	toe (ns)	$\mathrm{V}_{\mathrm{cc}}{ }^{*}$
TS27C256-15	150	150	75	$5 \mathrm{~V} \pm 10 \%$
TS27C256-20	200	200	75	$5 \mathrm{~V} \pm 10 \%$
TS27C256-25	250	250	100	$5 \mathrm{~V} \pm 10 \%$
TS27C256-30	300	300	120	$5 \mathrm{~V} \pm 10 \%$

Operating temperature range $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (CO suffix), $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (VQ suffix)


## CNOS

262,144 BIT
(32,768 x 8)
UV ERASABLE PROM


MAXIMUM RATINGS (Note 1)

Rating	Symbol	Value	Unit
$\begin{array}{l}\text { Operating temperature range } \\ \text { TS27C256CO } \\ \text { TS27C256VQ }\end{array}$	$\mathrm{T}_{\text {amb }}$	$\begin{array}{c}\mathrm{T}_{\mathrm{L}} \text { to } \mathrm{T}_{\mathrm{H}} \\ -10 \text { to }+80 \\ -40 \text { to }+85\end{array}$	${ }^{\circ} \mathrm{C}$
Storage temperature range		$\mathrm{T}_{\text {stg }}$	-65 to +125

* With respect to $\mathrm{V}_{\mathrm{SS}}$

Note 1: "Maximum ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating tem. perature range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical characteristics' provides conditions for actual device operation.

## READ OPERATION (Note 2)

DC CHARACTERISTICS
$T_{a m b}=T_{L}$ to $T_{H}, V C C=5 \mathrm{~V} \pm 10 \%, V_{S S}=0 \mathrm{~V}$ (Unless otherwise specified)

Characteristic	Symbol	Min	Typ (Note 2)	Max	Unit
Input load current ( $\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {CC }}$ or GND)	ILI	-	-	10	$\mu \mathrm{A}$
Ouput leakage current ( $\mathrm{V}_{\text {Out }}=\mathrm{V}_{\text {CC }}$ or $\mathrm{V}_{\text {SS }}, C E=\mathrm{V}_{\text {IH }}$ )	ILO	-	-	10	$\mu \mathrm{A}$
Vpp read voltage	$V_{\text {PP }}$	$\mathrm{V}_{\mathrm{CC}}-0.7$	-	$\mathrm{V}_{\text {cc }}$	V
Input low voltage	$V_{\text {IL }}$	-0.1	-	0.8	V
Input high voltage (Note 2)	$\mathrm{V}_{\text {IH }}$	2.0	-	VCC+1	V
$\begin{gathered} \text { Output low voltage } \\ \text { TOL }=2.1 \mathrm{~mA} \\ \text { 'OL }^{2}=0 \mu \mathrm{~A} \end{gathered}$	$\mathrm{V}_{\text {OL }}$	-	-	$\begin{array}{r} 0.45 \\ 0.1 \end{array}$	V
$\begin{gathered} \text { Output high voltage } \\ \mathrm{OH}^{=}-400 \mu \mathrm{~A} \\ \mathrm{OH}^{=0}=\mathrm{O} \mathrm{~A} \\ \hline \end{gathered}$	$\mathrm{V}_{\mathrm{OH}}$	$v_{C C}^{2.4}-0.1$	-	-	V
$\begin{aligned} & \text { VCC supply active current (TTL levels) } \\ & C E=O E=V_{1 L} \text {, Inputs }=V_{1 H} \text { or } V_{I L}, f=5 \mathrm{MHz}, 1 / O=0 \mathrm{~mA} \end{aligned}$	ICC2	-	10	40	mA
$\begin{aligned} & V_{C C} \text { supply standby current } \\ & \overline{C E}=V_{I H}, \overline{O E}=\text { Inputs }=V_{I H} \text { or } V_{I L} \\ & \overline{C E}=V_{C C}-0.1 \mathrm{~V}, \overline{O E}=\text { Inputs }=V_{C C}-0.1 \mathrm{~V} \text { or } V_{S S}+0.1 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { ICcss1 } \\ & \text { ICcsB2 } \\ & \hline \end{aligned}$	-	$\begin{gathered} 0.5 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ 10 \\ \hline \end{gathered}$	$\mathrm{mA}_{\mu \mathrm{A}}$
$V_{P P}$ read current ( $V_{P P}=V_{C C}=5.25 \mathrm{~V}$ )	IPP1	-	-	10	$\mu \mathrm{A}$

AC CHARACTERISTICS (Notes 3,4,5)
$T_{a m b}=T_{L}$ to $T_{H}$

Charoctoristic	Symbol	Min	Maximum values				Unit
			$\begin{array}{\|c\|} \hline \text { TS27C256 } \\ .15 \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { TS27C256 } \\ .20 \end{array}$	$\begin{gathered} \text { TS27C256 } \\ .25 \end{gathered}$	$\begin{gathered} \text { TS27C256 } \\ .30 \end{gathered}$	
Address to output delay ( $\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V}_{\text {IL }}$ )	${ }^{\text {t }}$ ACC	-	150	200	250	300	ns
CE to output delay ( $\overline{O E}=V_{\text {IL }}$ )	${ }^{\text {c }}$ CE	-	150	200	250	300	ns
Output enable to output delay ( $\overline{\mathrm{CE}}=\mathrm{V}_{\text {IL }}$ )	${ }^{\text {t }} \mathrm{OE}$	-	75	75	100	120	ns
Output enable high to output float ( $\overline{C E}=V_{I L}$ )	tDF (Note 4)	0	50	55	60	75	ns
Output hold from addresses, $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$ whichever occured first ( $\overline{C E}=\overline{O E}=V_{I L}$ )	${ }^{1} \mathrm{OH}$	0	-	-	-	-	ns

# CAPACITANCE (Note 5) 

$\mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$

Characteristic	Symbol	Min	Typ	Max	Unit
Input capacitance $\left(\mathrm{V}_{\text {in }}=0 \mathrm{~V}\right)$	$\mathrm{C}_{\text {in }}$	-	4	6	pF
Output capacitance $\left(\mathrm{V}_{\text {out }}=0 \mathrm{~V}\right)$	$\mathrm{C}_{\text {out }}$	-	8	12	pF

Note 2 : Typical conditions are for operation at : $T_{a m b}=+25^{\circ} \mathrm{C}, V_{C C}=5 \mathrm{~V}, V_{P P}=V_{C C}$, and $V_{S S}=0 \mathrm{~V}$

Note 3 : VCC must be applied at the same time or before VPP and removed after or at the same time as VPP VPP may be connected to VCC except during program.

Note 4 : The tDF compare level is determined as follows:
High to THREE-STATE, the measured $\mathrm{VOH}_{\mathrm{O}}(\mathrm{DC})-0.1 \mathrm{~V}$ Low to THREE-STATE the measured $\mathrm{VOL}_{\mathrm{OL}}(\mathrm{DC})+0.1 \mathrm{~V}$.

Note 5 : Capacitance is guaranteed by periodic testing. $T_{\text {amb }}=+25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$.

AC TEST CONDITIONS (Figure 1,2 )

| Output Load | 1 TTL Gate and $C_{L}=100 \mathrm{pF}$ |
| :--- | ---: | ---: |
| Input Rise and Fall Times | $\leq 20 \mathrm{~ns}$ |
| Input Pulse Levels | 0.45 V to 2.4 V |
| Timing Measurement Reference Level |  |
| Inputs, Outputs | 0.8 V and 2 V |

FIGURE 1 - OUTPUT LOAD CIRCUIT


FIGURE 2 - AC TESTING INPUT/OUTPUT WAVEFORM


AC testing inputs are driven at 2.4 V for a logic " 1 " and 0.45 V for a logic " 0 ".
Timing measurements are made at 2.0 V for a logic " 1 " and 0.8 V for a logic " 0 ".

AC WAVEFORMS (READ MODE)


DC PROGRAMMING CHARACTERISTICS
$\mathrm{T}_{\mathrm{amb}}=25 \pm 5^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} \pm 0.25 \mathrm{~V}, \mathrm{VPP}=12.5 \mathrm{~V} \pm 0.3 \mathrm{~V}$ (Note 1)

Characteristic	Symbol	Min	Typ	Max	Unit
Input current (all inputs - $\mathrm{V}_{1}=\mathrm{V}_{1 \mathrm{~L}}$ or $\mathrm{V}_{1}$ )	$1 /$	-	-	10	$\mu \mathrm{A}$
Input low level (all inputs)	VIL	-0.1	-	0.8	$V$
Input high level	$\mathrm{V}_{1} \mathrm{H}$	2.0	-	$\mathrm{V}_{\mathrm{CC}}+1$	V
Output low voltage during verify ( $1 \mathrm{OL}=2.1 \mathrm{~mA}$ )	$\mathrm{VOL}^{\text {OL }}$	-	-	0.45	V
Output high voltage during verify ( ${ }^{\prime} \mathrm{OH}=-400 \mu \mathrm{~A}$ )	$\mathrm{V}_{\mathrm{OH}}$	2.4	-	-	V
$\mathrm{V}_{\text {CC }}$ supply current (Program \& Verify)	I'C3	-	-	40	mA
VPP supply current (Program $\cdot \overline{\mathrm{CE}}=\mathrm{V}_{\text {IL }}$ )	'PP2	-	-	30	mA

## AC PROGRAMMING CHARACTERISTICS

$\mathrm{T}_{\mathrm{amb}}=25 \pm 5^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} \pm 0.25 \mathrm{~V}, \mathrm{VPP}=12.5 \mathrm{~V} \pm 0.3 \mathrm{~V}$ (Note 1)

Characteristic	Symbol	Min	Typ	Max	Unit
Address set-up time	${ }^{\text {taS }}$	2	-	-	$\mu \mathrm{s}$
$\overline{\mathrm{OE}}$ set-up time	toes	2	-	-	$\mu s$
Data set-up time	${ }^{\text {t }}$ D	2	-	-	$\mu s$
Address hold time	${ }^{\text {taH }}$	0	-	-	$\mu \mathrm{s}$
Data hold time	${ }^{1} \mathrm{DH}$	2	-	-	$\mu \mathrm{s}$
Output enable to output float delay	${ }^{\text {t }} \mathrm{DF}$	0	-	130	ns
Vpp set-up time	tVPS	2	-	-	$\mu \mathrm{s}$
$V_{\text {CC }}$ set-up time	tVCS	2	-	-	$\mu \mathrm{s}$
$\overline{\mathrm{CE}}$ initial program pulse width	tPW	0.95	1.0	1.05	ms
$\overline{\mathrm{CE}}$ overprogram pulse width (Note 2)	topw	2.85	-	78.75	ms
Data valid from $\overline{O E}$	toE	-	-	150	ns

## AC TEST CONDITIONS

Input rise and fall times ( $10 \%$ to $90 \%$ )
Input pulse levels
Input timing reference level Ouptut timing reference level

20ns
0.45 V to 2.4 V
0.8 V and 2.0 V
0.8 V and 2.0 V

Note 1 : $\mathrm{V}_{\mathrm{CC}}$ must be applied simultaneously or before $\mathrm{V}_{\text {PP }}$ and removed simultaneously or after VPP.
Note 2 : tOPW is defined in flow chart.


1. The input timing reference level is 0.8 V for $\mathrm{V}_{\mathrm{IL}}$ and 2.0 V for $\mathrm{V}_{\mathrm{IH}}$.
2. tOE and TDFP are characteristics of the device but must be accommodated by the programmer.
3. When programming the TS27C256, a $0.1 \mu \mathrm{~F}$ capacitor is required across VPP and ground to suppress spurious voltage transients which can damage the device.
table 2. mode selection

Mode Pins	$\begin{gathered} \overline{C E} \\ (20) \end{gathered}$	$\begin{gathered} \overline{O E} \\ (22) \end{gathered}$	$\begin{gathered} A 9 \\ (24) \end{gathered}$	VPP   (1)	$\begin{aligned} & V_{C C} \\ & (2 B) \end{aligned}$	$\begin{aligned} & \text { Outputs } \\ & (11-1315-19) \end{aligned}$
Read	$V_{\text {IL }}$	$V_{\text {IL }}$	x	$\mathrm{v}_{\mathrm{CC}}$	$V_{C C}$	Dout
Output disable	$V_{\text {IL }}$	$V_{\text {IH }}$	$\times$	$\mathrm{v}_{\mathrm{CC}}$	VCC	$\mathrm{Hi}-\mathrm{Z}$
Standby	$\mathrm{V}_{\mathrm{IH}}$	X	X	$\mathrm{v}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{CC}}$	$\mathrm{Hi}-\mathrm{Z}$
High speed programming	VIL	$\mathrm{V}_{\mathrm{IH}}$	X	VPP	$\mathrm{V}_{\mathrm{CC}}$	DIN
Program Verify	$\mathrm{V}_{\text {IH }}$	VIL	$x$	VPP	$\mathrm{v}_{\mathrm{CC}}$	DOUT
Program inhibit	$V_{1 H}$	VIH	$x$	VPP	$V_{C C}$	$\mathrm{Hi}-\mathrm{Z}$
Electronic signature (Note 3)	VIL	$V_{\text {IL }}$	$V_{H}$   Note 2	$V_{C C}$	VCC	CODE

NOTES : $1 \cdot x$ can be either $V_{I L}$ or $V_{I H}$

$$
2 \cdot V_{H}=12.0 \mathrm{~V} \pm 0.5 \mathrm{~V}
$$

3 - All address lines at $V_{I L}$ except $A 9$ and $A 0$ that is toggled from $V_{\text {IL }}$ (manufacturer code: $9 B$ ) to $\mathrm{V}_{\text {IH }}$ (type code: 04)


## DEVICE OPERATION

The seven modes of operation of the TS27C256 are listed in Table 2. A single 5 V power supply is required in the read mode. All inputs are TTL levels except for VPP.

## Read Mode

The TS27C256 has two control functions, both of which must be logically active in order to obtain data at the outputs. Chip Enable ( $\overline{\mathrm{CE}}$ ) is the power control and should be used for device selection. Output Enable ( $\overline{\mathrm{OE}}$ ) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time ( $\mathrm{t} A C C$ ) is equal to the delay from $\overline{\mathrm{CE}}$ to output ( $\mathrm{t} C E$ ). Data is available at the outputs after a delay of $\overline{\mathrm{OE}}$ from the falling edge of $\overline{O E}$, assuming that $\overline{C E}$ has been low and addresses have been stable for at least $t A C C \cdot \overline{O E}$.

## Standby Mode

The TS27C256 has a standby mode which reduces the maximum power dissipation to 5.25 mW . The TS27C256 is placed in the standby mode by applying a TTL high signal to the $\overline{\mathrm{CE}}$ input. When in standby mode, the outputs are in a high impedance state, independent of the $\overline{\mathrm{OE}}$ input.

## Output OR-Tying

Because EPROMs are usually used in larger memory arrays, we have provided two control lines which accommodate this multiple memory connection. The two control lines allow for:
a) the lowest possible memory power dissipation, and
b) complete assurance that output bus contention will not occur.
To use these control lines most efficiently, $\overline{C E}$ (pin 20) should be decoded and used as the primary device selecting function, while $\overline{O E}$ (pin 22) should be made a common connection to all devices in the array and connected to the $\overline{R E A D}$ line from the system control bus. This assures that alt deselected memory devices are in their low power standby modes and that the output pins are active only when data is desired from a particular memory device.

## Programming modes

CAUTION : Exceeding 14V on pin $1(\mathrm{VPp})$ will damage the TS27C256.
Initialy, and after each erasure, all bits of the TS27C256 are in the " 1 " state. Data is introduced by selectively programming "Os" into the desired bit locations. AIthough only " 0 s" will be programmed, both " 1 " and " Os " can be presented in the data word. The only way to change a " 0 " to a " 1 " is by ultraviolet light erasure.

The TS27C256 is in the programming mode when the VPP input is at 12.5 V and $\overline{\mathrm{CE}}$ is at TTL low. It is required that a $0.1 \mu \mathrm{~F}$ capacitor be placed across $V_{\text {PP }}$. $V_{C C}$ and ground to suppress spurious voltage transients which may damage the device. The data to be programmed is applied 8 bits in parallel to the data output pins. The levels required for the address and data inputs are TTL.

Programming of multiple TS27C256s in parallel with the same data can be easily accomplished due to the simplicity of the programming requirements. Like inputs of the paralleled TS27C256s may be connected together when they are programmed with the same data. A low level TTL pulse applied to the $\overline{\mathrm{CE}}$ input programs the paralleled TS27C256s.

## - High speed programming

The high speed programming algorithm described in the flow chart page 3 rapidly programs TS27C256 using an efficient and reliable method particularly suited to the production programming environment. Typical programming times for individual devices are on the order of 5 minutes.

## - Program inhibit

Programming of multiple TS27C256s in parallel with different data is also easily accomplised by using the program inhibit mode. A high level on $\overline{C E}$ input inhibits the other TS27C256s from being programmed. Except for $\overline{C E}$, all like inputs (including $\overline{\mathrm{OE}}$ ) of the parallel TS27C256s may be common. A TTL low level pulse applied to a TS27C256 CE input with VPP at 12.5 V will program that TS27C256.

## - Program verify

A verify may be performed on the programmed bits to determine that they were correctly programmed. The verify is performed with $\overline{O E}$ at $V_{I L}, \overline{C E}$ at $V_{I H}$ and VPP at 12.5 V .

## - Electronic signature mode

Electronic signature mode allows the reading out of a binary code that will identify the EPROMs manufacturer and type.
This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ ambient temperature range that is required when programming the TS27C256. To activate this mode the programming equipment must force 11.5 V to 12.5 V on address line A 9 (pin 24) of the TS27C256. Two bytes may then be sequenced from the device outputs by toggling address line $A O$ ( Pin 10 ) from $V_{\text {IL }}$ to $V_{I H}$. All other address lines must be held at $V_{I L}$ during electronic signatuie mode.

The TS27C256 is erased by exposure to high intensity ultraviolet light through the transparent window. This exposure discharges the floating gate to its initial state through induced photo current. It is recommended that the TS27C256 be kept out of direct sunlight. The UV content of sunlight may cause a partial erasure of some bits in a relatively short period of time. Direct sunlight can also cause temporary functional failure. Extended exposure to room level fluorescent lighting will also cause erasure. An opaque coating (paint, tape, label, etc.) should be placed over the package window if this product is to be operated under these lighting conditions. Covering the window also reduces ICC due to photodiode currents.
An ultraviolet source of $2537 \AA$ yielding a total integrated dosage of 15 watt-seconds $/ \mathrm{cm}^{2}$ is required. This
will erase the part in approximately 15 to 20 minutes if a UV lamp with a $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ power rating is used. The TS27C256 to be erased should be placed 1 inch from the lamp and no filters should be used.
An erasure system should be calibrated periodically. The distance from lamp to unit should be maintained at 1 inch. The erasure time is increased by the square of the distance (if the distance is doubled the erasure time goes up by a factor of 4). Lamps lose intensity as they age. When a lamp is changed, the distance is changed, or the lamp is aged, the system should be checked to make certain full erasure is occuring. Incomplete erasure will cause symptoms that can be misleading. Programmers, components, and system designs have been erroneously suspected when incomplete erasure was the basic problem.

PHYSICAL DIMENSIONS inches (milimeters) $^{\text {( }}$



## PRODUCT PREVIEW

The TS27C1001 is a high speed 1 Mbit UV erasable and electrically reprogrammable EPROM ideally suited for 8 bits microprocessors systems requiring large programs.

- 8 bits outputs:
- CERDIP 32 pins package with window also proposed in plastic package (one time programmable),
- 32 pins DIL ( 600 MILS).
- Fast access time 150 ns.

Low power "CMOS" consumption 50 mA (тах.).

- Programming voltage 12.5 V .

Electronic signature for automated programming.
Programming times in the 30 seconds range.

- Easy to implement on all existing 8 bits systems to expand the software or on new sophisticated. Large and very fast systems. Upgrade capability up to 8 Mbits.



ORDERING INFORMATION

Part number	taCC (ns)	tCE (ns)	tOE (ns)	VCC
TS27C1001-12	120	120	65	$5 \mathrm{~V} \pm 10 \%$
TS27C1001-15	150	150	75	$5 \mathrm{~V} \pm 10 \%$
TS27C1001-20	200	200	75	$5 \mathrm{~V} \pm 10 \%$
TS27C1001-25	250	250	$5 \mathrm{~V} \pm 10 \%$	

## Operating Temperature Range

$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (C suffix) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (V suffix)


## PRODUCT PREVIEW

The TS27C1024 is a high speed 1 Mbit UV erasable and electrically reprogrammable EPROM ideally suited for 16 bits or 32 bits microprocessors systems.

- 16 bits outputs:
- CERDIP 40 pins package with window also proposed in plastic package (one time programmable),
- 40 pins DIL ( 600 MILS).
- 44 pins plastic leaded chip carrier.
- Fast access time 150 ns .

Low power "CMOS" consumption 50 mA (max.).

- Programming voltage 12.5 V .

Electronic signature for automated programming.
Programming times in the 30 seconds range.

- Easy layout of the components on printed circuit upgrade capability up to 4 Mbits.


ORDERING INFORMATION

Part number	t $_{\text {ACC }}$ (ns)	tCE (ns)	tOE (ns)	VCC
TS27C1024-12	120	120	65	$5 \mathrm{~V} \pm 10 \%$
TS27C1024-15	150	150	75	$5 \mathrm{~V} \pm 10 \%$
TS27C1024-20	200	200	75	$5 \mathrm{~V} \pm 10 \%$
TS27C1024-25	250	250	100	$5 \mathrm{~V} \pm 10 \%$

## Operating Temperature Range

$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (C suffix) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (V suffix)


## PRODUCT PREVIEW

## Main features:

Highly reliable CMOS floating gate technology.
Single 5 -volt supply.
Eight pin package.
$64 \times 16$ or $128 \times 8$ user selectable serial memory.
Compatible with General Instrument GI 5911.
Self timed programming cycle.
Word and chip erasable.
Operating Range $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
10,000 erase/write cycles.
Ten year data retention.
Power-on data protection.
1K BIT SERIAL EEPROM

P SUFFIX
PLASTIC PACKAGE

CERAMIC PACKAGE

## BLOCK DIAGRAM



## PRODUCT PREVIEW

## Main features:

Highly reliable CMOS floating gate technology.
Single 5-volt supply.
Eight pin package.
$64 \times 16$ or $128 \times 8$ user selectable serial memory.
Compatible with National Semiconducteurs NMC 9346.
Self timed programming cycle.
Word and chip erasable.
Operating Range $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
10,000 erase/write cycles.
Ten year data retention.
Power-on data protection.

1K BIT SERIAL EEPROM

P SUFFIX
PLASTIC PACKAGE

CERAMIC PACIKAGE

PIN ASSIGNMENT


PIN NAMES

CS : Chip Select
SK : Clock Input
DI : Serial Data Input
DO : Serial Data Output
ORG : Organization Input
VCC : +5 V Power Supply
GND : Ground
NC : No Connect


## PRODUCT PREVIEW

## DESCRIPTION

The TS28C16A is a fast, low power, 5 V only CMOS EEPROM requiring a simple interface for in-system programming.
On-chip address and data latches, self-timed'write cycle with auto-erase and VCC power up/down write protection eliminate additional timing and protection hardware. Data polling is provided to allow the user to minimize write cycle time.
The TS28C16A is fabricated in reliable floating gate CMOS technology. It is designed for up to 10,000 write cycles and 10 years data retention.

## Main features:

- Very fast access time 150 ns maximum.
- Low CMOS power:
- active : 25 mA maximum,
- standby : $100 \mu \mathrm{~A}$ maximum.
- 5 V only operation.
- Simple write operation:
- on-chip address and data latches,
- self-timed write cycle with auto-erase,
- power up/down write protection.
- Fast write cycle time 5 ms max. byte write.
- Reliable floating-gate CMOS technology.
- Operating Range: $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.


## BLOCK DIAGRAM



CMOS
16,384-BIT (2K x 8) ELECTRICALLY ERASABLE PROM

P SUFFIX
PLASTIC PACKAGE

CERAMIC PACKAGE

## PIN NAMES



PIN ASSIGNMENT


## PRODUCT PREVIEW

## DESCRIPTION

The TS28C17A is a fast, low power, 5 V only CMOS EEPROM requiring a simple interface for in-system programming.
On-chip address and data latches, self-timed write cycle with auto-erase and $V_{C C}$ power up/down write protection eliminate additional timing and protection hardware. Ready/Busy output indicates status of chip to the microprocessor. Data polling is provided to allow the user to minimize write cycle time.
The TS28C17A is fabricated in reliable floating gate CMOS technology. It is designed for up to 10,000 write cycles and 10 years data retention.

## Main features:

- Very fast access time 150 ns maximum.
- Low CMOS power:
- active : 25 mA maximum,
- Standby : $100 \mu \mathrm{~A}$ maximum.
- 5 V only operation.
- Simple write operation:
- on-chip address and data latches,
- self-timed write cycle with auto-erase,
- power up/down write protection.
- Ready/Busy open drain status output.
- Fast write cycle time 5 ms max. byte write.
- Reliable floating-gate CMOS technology.
- Operating Range: $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.



## CMOS

16,384-BIT ( $2 \mathrm{~K} \times 8$ ) ELECTRICALLY

ERASABLE PROM


## PIN NAMES

$\mathrm{A}_{0} \cdot \mathrm{~A}_{10}$	Addresses
$\mathrm{I} / \mathrm{O}_{0} \cdot 1 / \mathrm{O}_{9}$	Data Inputs/Outputs
$\overline{\mathrm{CE}}$	Chip Enable
$\overline{\mathrm{OE}}$	Output Enable
$\overline{\mathrm{WE}}$	Write Enable
$\mathrm{RDY} / \overline{\mathrm{BUSY}}$	Device Ready/Busy
NC	No Connect

PIN ASSIGNMENT



## PRODUCT PREVIEW

## DESCRIPTION

The TS28C64 is a fast, low power, 5 V only CMOS EEPROM requiring a simple interface for in-system programming.
On-chip address and data latches, self-timed write cycle with auto-erase and $V_{C C}$ power up/down write protection eliminate additional timing and protection hardware. Ready/Busy output indicates status of chip to the microprocessor. Data polling is provided to allow the user to minimize write cycle time.
The TS28C64 is fabricated in reliable floating gate CMOS technology. It is designed for up to 10,000 write cycles and 10 years data retention.

## Main features:

- Very fast access time 150 ns maximum.
- Low CMOS power:
- active : 25 mA maximum,
- standby : $100 \mu \mathrm{~A}$ maximum.
- 5 V only operation.
- Simple write operation:
- on-chip address and data latches,
- self-timed write cycle with auto-erase,
- power up/down write protection.
- Ready/Busy open drain status output.
- Fast write cycle time 5 ms max. byte write.
- Reliable floating-gate CMOS technology.
- Operating Range: $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.



## CMOS

> 65,536-BIT $(8 \mathrm{~K} \times 8)$
> ELECTRICALLY
> ERASABLE PROM


## PIN NAMES

$A_{0} \cdot A_{12}$	Addresses
$\overline{/ / O_{0}}-1 / O_{9}$	Data Inputs/Outputs
$\overline{C E}$	Chip Enable
$\overline{O E}$	Output Enable
$\overline{W E}$	Write Enable
$R D Y / \overline{B U S Y}$	Device Ready/Busy
$N C$	No Connect

PIN ASSIGNMENT

$\qquad$

## ADVANCE INFORMATION

The TS27C64P is a high speed 64 K bits one time electrically programmable ROM ideally suited for applications where fast turn-around is an important requirement.

The TS27C64P is packaged in a 28-pin dual-in-line plastic package and therefore can not be re-written. Programming is performed according to standard THOMSON SEMICONDUCTEURS 64K EPROM procedure.

- Compatible to standard TS27C64 (electrical parameters)
- Programming voltage 12.5 V
- High speed programming
- 28-pin JEDEC approved pin-out
- Ideal for automatic insertion
- Also proposed in PLCC (32 pins JEDEC standard)

TABLE 1: ORDERING INFORMATION

PART NUMBER	$\mathbf{t}_{\text {ACC }}(\mathbf{n s})$	t $_{\text {CE }}(\mathbf{n s})$	t $_{\text {OE }}$ (ns)	$\mathbf{V}_{\text {CC }}$
TS27C64P-15	150	150	75	$5 \mathrm{~V} \pm 10 \%$
TS27C64P-20	200	200	80	$5 \mathrm{~V} \pm 10 \%$
TS27C64P-25	250	250	100	$5 \mathrm{~V} \pm 10 \%$
TS27C64P-30	300	300	120	$5 \mathrm{~V} \pm 10 \%$

Operating temperature range
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (CP suffix), $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (VP suffix)
$-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$ (TP suffix)


## MAXIMUM RATINGS (Note 1)

Rating	Symbol	Value	Unit
```Operating temperature range TS27C64CP TS27C64VP TS27C64TP```	$T_{\text {amb }}$	$\begin{gathered} T_{L} \text { to } T_{H} \\ 0 \text { to }+70 \\ -40 \text { to }+85 \\ -40 \text { to }+105 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Storage temperature range	Tstg	-65 to +125	${ }^{\circ} \mathrm{C}$
Supply voitage	$V_{P P}{ }^{*}$	-0.6 to +14	V
Input vol tage $\begin{array}{r}\text { A9 } \\ \\ \text { Except VPP, A9 }\end{array}$	$V_{\text {in }}$ *	$\begin{aligned} & -0.6 \text { to }+13.5 \\ & -0.6 \text { to }+6.25 \end{aligned}$	V
Max power dissipation	$P_{\text {D }}$	1.5	W
Lead temperature (Soldering: 10 seconds)		+300	${ }^{\circ} \mathrm{C}$

- With respect to $V_{S S}$

Note 1 : "Maximum ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating temperature range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical charac teristics" provides conditions for actual device operation.

READ OPERATION (Note 2)

DC CHARACTERISTICS

$T_{\text {amb }}=T_{L}$ to $T_{H}, V_{C C}=5 \mathrm{~V} \pm 10 \%, V_{S S}=0 \vee$ (Unless otherwise specified)

Characteristic	Symbol	Min	$\begin{gathered} \text { Typ } \\ \text { (Note 2) } \end{gathered}$	Max	Unit
Input load current ($V_{\text {in }}=V_{C C}$ or GND)	${ }_{1} \mathrm{LI}$	-	-	10	$\mu \mathrm{A}$
Ouput leakage current ($\mathrm{V}_{\text {out }}=\mathrm{V}_{\text {CC }}$ or $\left.\mathrm{V}_{\text {SS }}, C E=V_{\text {IH }}\right)$	ILO	-	-	10	$\mu \mathrm{A}$
VPP read voltage	$V_{\text {PP }}$	$\mathrm{V}_{\mathrm{CC}}-0.7$	-	V_{CC}	V
Input low voltage	$V_{\text {IL }}$	-0.1	-	0.8	V
Input high voltage (Note 2)	$\mathrm{V}_{\text {IH }}$	2.0	-	$\mathrm{VCC}+1$	V
$\begin{gathered} \text { Output low voltage } \\ \text { IOL }=2.1 \mathrm{~mA} \\ \text { OL }=0 \mu \mathrm{~A} \end{gathered}$	V_{OL}	-	-	$\begin{gathered} 0.45 \\ 0.1 \end{gathered}$	V
$\begin{gathered} \text { Output high voltage } \\ \mathrm{OH}^{2}=-400 \mu \mathrm{~A} \\ \mathrm{OH}^{\prime}=0 \mu \mathrm{~A} \end{gathered}$	V_{OH}	$\begin{gathered} 2.4 \\ v_{C C}-0.1 \end{gathered}$	-	-	V
Vcc supply active current (TTL levels) $C E=O E=V_{I L}$, Inputs $=V_{I H}$ or $V_{I L}, f=5 \mathrm{MHz}, 1 / O=0 \mathrm{~mA}$	ICC2	-	10	30	mA
$\begin{aligned} & V_{C C} \text { supply standby current } \\ & \overline{C E}=V_{I H} \\ & C E=V_{C C} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ICCSB1 } \\ & \text { ICCSB2 } \\ & \hline \end{aligned}$	-	$\begin{aligned} & 0.5 \\ & 10 \\ & \hline \end{aligned}$	$\begin{gathered} 1 \\ 100 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{m} A \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
V_{PP} read current ($\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{C C}=5.5 \mathrm{~V}$)	IPP1	-	-	100	$\mu \mathrm{A}$

AC CHARACTERISTICS (Notes 3, 4,5)
$T_{a m b}=T_{L}$ to T_{H}

Characteristic	Symbol	Min	Maximum values				Unit
			$\begin{gathered} \text { TS27C64 } \\ -15 \end{gathered}$	$\begin{gathered} \mathrm{rS} 27 \mathrm{C} 64 \\ -20 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{rs} 27 \mathrm{C} 64 \\ .25 \\ \hline \end{gathered}$	$\begin{gathered} \text { TS27C64 } \\ .30 \end{gathered}$	
Address to output delay ($\overline{\mathrm{CE}}=\mathrm{OE}=\mathrm{V}_{1}$)	${ }^{\text {t }}$ ACC	-	150	200	250	300	ns
CE to output delay $\left(\overline{\mathrm{OE}}=\mathrm{V}_{1 \mathrm{~L}}\right)$	${ }^{\text {t }} \mathrm{CE}$	-	150	200	250	300	ns
Output enable to output delay ($\overline{\mathrm{CE}}=\mathrm{V}_{1 L}$)	${ }^{\text {t }}$ OE	-	75	80	100	120	ns
Output enable high to output float $\left(\overline{C E}=V_{I L}\right)$	${ }^{\text {D }}$ (${ }^{\text {(Note 4) }}$	0	50	50	60	105	ns
Output hold from addresses, $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$ whichever occured first ($\overline{C E}=\overline{O E}=V_{I L}$)	${ }^{1} \mathrm{OH}$	0	-	-	-	-	ns

CAPACITANCE (Note 5)

$\mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$

Charactoristic	Symbol	Min	$T_{y p}$	Max	Unit
Input capacitance $\left(\mathrm{V}_{\text {in }}=0 \mathrm{~V}\right)$	$\mathrm{C}_{\text {in }}$	-	4	6	pF
Output capacitance $\left(\mathrm{V}_{\text {out }}=0 \mathrm{~V}\right)$	$\mathrm{C}_{\text {out }}$	-	8	12	pF

Note 2 : Typical conditions are for operation at : $T_{a m b}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{CC}}$, and $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Note 3 : V_{CC} must be applied at the same time or before V_{PP} and removed after or at the same time as V_{PP} Vpp may be connected to $V_{C C}$ except during program.

Note 4 : The tDF compare level is determined as follows:
High to THREE-STATE, the measured $\mathrm{V}_{\mathrm{OH}}(\mathrm{DC})-0.1 \mathrm{~V}$
Low to THREESTATE the measured $\mathrm{V}_{\mathrm{OL}}(\mathrm{DC})+0.1 \mathrm{~V}$.
Note 5: Capacitance is guaranteed by periodic testing. $T_{\mathrm{amb}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$

AC TEST CONDITIONS (Figure 1,2)
Output Load Input Rise and Fall Times Input Pulse Levels
Timing Measurement Reference Level
Inputs, Outputs

1 TL Gate and $C_{L}=100 \mathrm{pF}$
$\leq 20 \mathrm{~ns}$
0.45 V to 2.4 V
0.8 V and 2 V

FIGURE 1 - OUTPUT LOAD CIRCUIT

FIGURE 2 - AC TESTING INPUT/OUTPUT WAVEFORRM

AC testing inputs aro drivan at 2.4 V for a logic " 1 " and 0.45 V for a logic " 0 ". Timing measuroments are mads at 2.0 V for a logic " 1 " and 0.8 V for a logic " 0 ".

AC WAVEFORMS (READ MODE)

DC PROGRAMMING CHARACTERISTICS
$\mathrm{T}_{\mathrm{amb}}=25 \pm 5^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} \pm 0.25 \mathrm{~V}, \mathrm{VPP}=12.5 \mathrm{~V} \pm 0.3 \mathrm{~V} \quad$ (Note 1)

Characteristic	Symbol	Min	Typ	Max	Unit
Input current (all inputs $\cdot \mathrm{V}_{1}=\mathrm{V}_{1 \mathrm{~L}}$ or $\mathrm{V}_{\mathbf{I H}}$)	11	-	-	10	$\mu \mathrm{A}$
Input low level (all inputs)	$V_{\text {IL }}$	-0.1	-	0.8	V
Input high level	$\mathrm{V}_{\text {IH }}$	2.0	-	$\mathrm{V}_{\text {CC }}+1$	\checkmark
Output low voltage during verify ($1 \mathrm{OL}=2.1 \mathrm{~mA}$)	V_{OL}	-	-	0.45	V
Output high voltage during verify ($\left.\mathrm{IOH}^{\prime}=-400 \mu \mathrm{~A}\right)$	V_{OH}	2.4	-	-	v
$V_{\text {CC }}$ supply current (Program \& Verify)	ICC3	-	-	30	mA
$V_{\text {PP }}$ supply current (Program $\cdot \overline{\mathrm{CE}}=\mathrm{V}_{\text {IL }}=\overline{\mathrm{PGM}}$)	IPP2	-	-	30	mA

AC PROGRAMMING CHARACTERISTICS

$\mathrm{T}_{\mathrm{amb}}=25 \pm 5^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} \pm 0.25 \mathrm{~V}, \mathrm{VPP}=12.5 \mathrm{~V} \pm 0.3 \mathrm{~V}$ (Note 1)

Charactoristic	Symbol	Min	Typ	Max	Unit
Address set-up time	tAS	2	-	-	$\mu \mathrm{s}$
$\overline{O E}$ set-up time	toes	2	-	-	$\mu \mathrm{s}$
Data set-up time	${ }^{\text {t }}$ DS	2	-	-	$\mu \mathrm{s}$
Address hold time	${ }^{\text {taH }}$	0	-	-	$\mu \mathrm{s}$
Data hold time	${ }^{\text {\% }} \mathrm{DH}$	2	-	-	μs
Output enable to output float delay	${ }^{\text {t }}$ DF	0	-	130	ns
Vpp set-up timo	TVPS	2	-	-	μs
$V_{\text {CC }}$ set-up time	tVCs	2	-	-	$\mu \mathrm{s}$
$\overline{\text { PGM }}$ initial program pulse width	tpw	0.95	1.0	1.05	ms
$\overline{\text { PGM }}$ overprogram pulse width (Note 2)	${ }^{\text {t OPW }}$	2.85	-	78.75	ms
$\overline{C E}$ set-up time	${ }^{\text {t CES }}$	2	-	-	μs
Data valid from $\overline{O E}$	toe	-	-	150	ns

AC TEST CONDITIONS

Input rise and fall times (10\% to 90\%)
Input pulse levels
Input timing reference level
Ouptut timing reference level

20ns
0.45 V to 2.4 V 0.8 V and 2.0 V 0.8 V and 2.0 V

Note 1: VCC must be applied simultaneously or before VPP and removed simultaneously or after VPP.
Note 2 : tOPW is defined in flow chart.

1. The input timing reference level is 0.8 V for $\mathrm{VIL}_{\text {IL }}$ and 2.0 V for $\mathrm{V}_{1 \mathrm{H}}$.
2. tOE and TDFP are characteristics of the device but must be accommodated by the programmer.
3. When programming the TS27C64, $\mathrm{a} 0.1 \mu \mathrm{~F}$ capacitor is required across VPP and ground to suppress spurious voltage transients which can damage the device.

TABLE 2. MODE SELECTION

Modo Plns	$\overline{C E}$ (20)	$\overline{O E}$ (22)	$\begin{gathered} \text { A9 } \\ \text { (24) } \end{gathered}$	$\overline{\overline{\text { PGM }}} \overline{(27)}$	$\begin{aligned} & \text { Vpp } \\ & \text { (1) } \end{aligned}$	$\mathrm{Vccf}_{(20)}$	$\begin{aligned} & \text { Outputs } \\ & (11-1315-19) \end{aligned}$
Read	$\mathrm{V}_{\text {IL }}$	V_{IL}	x	$\mathrm{V}_{\mathbf{I H}}$	$v_{C C}$	$v_{\text {cc }}$	Dout
Output disable	$V_{\text {IL }}$	V_{IH}	x	$V_{\text {IH }}$	vcc	v_{Cc}	$\mathrm{Hi}-\mathrm{Z}$
Standby	V_{IH}	X	x	X	VCc	$V_{\text {cc }}$	$\mathrm{Hi}-\mathrm{Z}$
High speod progromming	$V_{\text {IL }}$	V_{IH}	x	$V_{\text {IL }}$	VPP	Vcc	DIN
Program Verity	$V_{\text {IL }}$	VIL	x	V_{H}	VPP	V_{Cc}	Dout
Program inhibit	V_{IH}	x	x	x	VPP	$v_{\text {cc }}$	$\mathrm{Hi}-2$
Eloctronic signature (Note 3)	VIL	V_{IL}	$\underset{\mathrm{V}_{\mathrm{H}}}{ }$	VIH	Vcc	Vcc	CODE

NOTES : 1 - X can bo oither $V_{\text {IL }}$ or $V_{\text {IH }}$
$2 \cdot V_{H}=12.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$
3. All address lines at VIL except A9 and A0 that is toggled from $V_{\text {IL }}$ (manufacturer code: $9 B$) to $V_{1 H}$ (type code: 08).

DEVICE OPERATION

The seven modes of operation of the TS27C64 are listed in Table 2. A single 5 V power supply is required in the read mode. All inputs are TTL levels except for VPP.

Resd Mado

The TS27C64 has two control functions, both of which must be logically active in order to obtain data at the outputs. Chip Enable ($\overline{\mathrm{CE}}$) is the power control and should be used for device selection. Output Enable ($\overline{O E}$) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time ($\mathrm{t} A C C$) is equal to the delay from $\overline{\mathrm{CE}}$ to output ($\mathrm{t} C \mathrm{C}$). Data is available at the outputs after a delay of $\overline{\mathrm{OE}}$ from the falling edge of $\overline{O E}$, assuming that $\overline{\mathrm{CE}}$ has been low and addresses have been stable for at least $\mathrm{ACC}-\mathrm{t} \overline{\mathrm{OE}}$.

Standby Mode

The TS27C64 has a standby mode which reduces the maximum power dissipation to 5.5 mW . The TS27C64 is placed in the standby mode by applying a TTL high signal to the CE input. When in standby mode, the outputs are in a high impedance state, independent of the $\overline{O E}$ input.

Output OR-Tying

Because EPROMs are usually used in larger memory arrays, we have provided two control lines which accommodate this multiple memory connection. The two control lines allow for:
a) the lowest possible memory power dissipation, and
b) complete assurance that output bus contention will not occur.
To use these control lines most efficiently, $\overline{\mathrm{CE}}$ (pin 20) should be decoded and used as the primary device selecting function, while $\overline{\mathrm{OE}}$ (pin 22) should be made a common connection to all devices in the array and connected to the $\overline{\operatorname{READ}}$ line from the system control bus. This assures that all deselected memory devices are in their low power standby modes and that the output pins are active only when data is desired from a particular memory device.

Programming modes

CAUTION : Exceeding 14 V on pin $1(\mathrm{~V} P \mathrm{P})$ will damage the TS27C64.

Initially, and after each erasure, all bits of the TS27C64 are in the " 1 " state. Data is introduced by selectively programming " Os " into the desired bit locations. Although only "Os" will be programmed, both " 1 " and " Os " can be presented in the data word. The only way to change a " 0 " to a " 1 " is by ultraviolet light erasure.

The TS27C64 is in the programming mode when the VPP input is at 12.5 V and $\overline{\mathrm{CE}}$ and $\overline{\mathrm{PGM}}$ are both at TTL low. It is required that a $0.1 \mu \mathrm{~F}$ capacitor be placed across VPP, VCC and ground to suppress spurious voltage transients which may damage the device. The data to be programmed is applied 8 bits in parallel to the data output pins. The levels required for the address and data inputs are TTL.

Programming of multiple TS27C64s in parallel with the same data can be easily accomplished due to the simplicity of the programming requirements. Like inputs of the parallel TS27C64s may be connected together when they are programmed with the same data. A low level TTL pulse applied to the $\overline{\text { PGM }}$ input programs the paralleled TS27C64s.

- High speed programming

The high speed programming algorithm described in the flow chart page 6 rapidly programs TS27C64 using an efficient and reliable method particularly suited to the production programming environment. Typical programming times for individual devices are on the order of 1 minute.

- Program inhibit

Programming of multiple TS27C64s in parallel with different data is also easily accomplished by using the program inhibit mode. A high level on $\overline{\mathrm{CE}}$ or $\overline{\mathrm{PGM}}$ inputs inhibits the other TS27C64s from being programmed. Except for $\overline{C E}$, all like inputs lincluding $\overline{\mathrm{OE}}$) of the parallel TS27C64s may be common. A TTL low-level pulse applied to a TS27C64 $\overline{\mathrm{CE}}$ and $\overline{\text { PGM }}$ inputs with VPP at 12.5 V will program that TS27C64.

- Program verify

A verify may be performed on the programmed bits to determine that they were correctly programmed. The verify is performed with $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ at $V_{I L}, \overline{\mathrm{PGM}}$ at $\mathrm{V}_{I H}$ and V_{PP} at 12.5 V .

- Electronic signature mode

Electronic signature mode allows the reading out of a binary code that will identify the EPROM manufacturer and type.
This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ ambient temperature range that is required when programming the TS27C64.
To activate this mode the programming equipment must force 11.5 V to 12.5 V on addross line A 9 (pin 24) of the TS27C64. Two bytes may then be sequenced from the device outputs by toggling address line AO (pin 10) from $V_{\text {IL }}$ to $V_{1 H}$. All other address lines must be held at $V_{\text {IL }}$ during electronic signature mode.

PHYSICAL DIMENSIONS inches (millimeters)

ADVANCE INFORMATION

The TS27C256P is a high speed 256 K bits one time electrically pogrammable ROM ideally suited for applications where fast turn-around is an important requirement.
The TS27C256P is packaged in a 28 -pin dual-in-line plastic package and therefore can not we re-written. Proyramming is performed according to standard THOMSON SEiAICONDUCTEURS 25GK EPROM procedure.

- Compatible to standard TS27C256 (electrical parameters)
- Proyramining voltage 12.5 V
- High speed programming
- 28-pin JEDEC approved pin-out
- Ideal for automatic insertion
- Also proposed in PLCC (32 pins JEDẼC. standard)

TABLE 1 - ORDERING INFORMATION

PART NUMBER	${ }^{\text {a }} \mathrm{ACC}$ (ns)	${ }^{\text {C CE }}$ (ns)	toe (ns)	vcc^{*}
TS27C256-20	200	200	75	$5 \mathrm{~V} \pm 10 \%$
TS27C256-25	250	250	100	$5 \mathrm{~V} \pm 10 \%$
TS27C256.30	300	300	120	$5 \mathrm{~V} \pm 10 \%$
TS27C256.35	350	350	120	$5 \mathrm{~V} \pm 10 \%$

Operating temperature range
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (CP suffix), $-40^{\circ} \mathrm{C}$ to $+85^{\prime \prime} \mathrm{C}$ (VP suffix)
$-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$ (TP suffix)

CMOS

262,144 BIT
$(32,768 \times 8)$
ONE TIME PROGRAMMABLE-ROM

MAXIMUM RATINGS (Note 1)

Rating	Symbol	Volue	Unit
Operating temperature rango TS27C256 CP TS27C256 VP TS27C256 TP	Tamb	$\begin{gathered} T_{L} \text { to } T_{H} \\ 0 \text { to } 70 \\ -40 \text { to }+85 \\ -40 \text { to }+105 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Storage temperature range	$T_{\text {stg }}$	-65 to + 125	${ }^{\circ} \mathrm{C}$
Supply voltage	VPP*	-0.6 to +14	V
Input voltage Except VPP, A9	$V_{\text {in }}{ }^{*}$	$\begin{aligned} & -0.6 \text { to }+13.5 \\ & -0.6 \text { to }+6.25 \end{aligned}$	V
Max power dissipation	$P_{\text {D }}$	1.5	W
Lead temperature (Soldering : 10 seconds)		$+300$	${ }^{\circ} \mathrm{C}$

* With respect to $V_{S S}$

Note 1 : "Maximum ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating tem. perature range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical characteristics" provides conditions for actual device operation.

READ OPERATION (Note 2)

DC CHARACTERISTICS
$T_{\text {amb }}=T_{L}$ to $T_{H}, V_{C C}=5 \mathrm{~V} \pm 10 \%, V_{S S}=0 \mathrm{~V}$ (Unless otherwise specified)

Characteristic	Symbol	Min	$\begin{gathered} \text { Typ } \\ \text { (Note 2) } \end{gathered}$	Max	Unit
Input load current ($\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {CC }}$ or GND)	ILI	-	-	10	$\mu \mathrm{A}$
Ouput leakage current ($\mathrm{V}_{\text {Out }}=\mathrm{V}_{\mathrm{CC}}$ or $\mathrm{V}_{\text {SS }}, \mathrm{CE}=\mathrm{V}_{\text {IH }}$)	ILO	-	-	10	$\mu \mathrm{A}$
VPp read voltage	$V_{\text {PP }}$	VCC -0.7	-	V_{CC}	V
Input low voltage	$V_{\text {IL }}$	-0.1	-	0.8	V
Input high voltage (Note 2)	$\mathrm{V}_{\text {IH }}$	2.0	-	$\mathrm{VCC}+1$	V
$\begin{gathered} \text { Output low voltage } \\ \mathrm{OL}^{2}=2.1 \mathrm{~mA} \\ 1 \mathrm{OL}=0 \mu \mathrm{~A} \end{gathered}$	V_{OL}	-	-	$\begin{array}{r} 0.45 \\ 0.1 \end{array}$	V
$\begin{gathered} \text { Output high voltage } \\ \mathrm{OH}^{\mathrm{OH}}=-400 \mu \mathrm{~A} \\ \mathrm{OH}=0 \mu \mathrm{~A} \end{gathered}$	V_{OH}	$\begin{gathered} 2.4 \\ v_{C C}-0.1 \end{gathered}$	-	-	V
VCC supply active current (TTL levels) $C E=O E=V_{I L}$, Inputs $=V_{\text {IH }}$ or $V_{\text {IL }}, f=5 \mathrm{MHz}, I / O=0 \mathrm{~mA}$	ICC2	-	10	40	mA
$\begin{aligned} & V_{C C} \text { supply standby current } \\ & C E=V_{I H}, \overline{O E}=\text { Inputs }=V_{I H} \text { or } V_{I L} \\ & \overline{C E}=V_{C C}-0.1 \mathrm{~V}, \overline{O E}=\text { Inputs }=V_{C C}-0.1 \mathrm{~V} \text { or } V_{S S}+0.1 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { ICcsB1 } \\ & \text { ICCSB2 } \\ & \hline \end{aligned}$	-	$\begin{gathered} 0.5 \\ 1 \end{gathered}$	$\begin{gathered} 1 \\ 10 \\ \hline \end{gathered}$	$\begin{aligned} & m A \\ & \mu \mathrm{~A} \end{aligned}$
$V_{P P}$ read current ($V_{P P}=V_{C C}=5.25 \mathrm{~V}$)	IpP1	-	-	10	$\mu \mathrm{A}$

AC CHARACTERISTICS (Notes 3, 4,5)
$T_{a m b}=T_{L}$ to T_{H}

Characteristic	Symbol	Min	Maximum values				Unit
			$\begin{gathered} \text { TS27C256 } \\ .15 \end{gathered}$	$\begin{gathered} \text { TS27C256 } \\ .20 \end{gathered}$	$\begin{gathered} \text { TS27C256 } \\ -25 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { TS27C256 } \\ -30 \end{array}$	
Address to output delay ($\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V}_{1} \mathrm{~L}$)	${ }^{t}$ ACC	-	150	200	250	300	ns
CE to output delay ($\overline{\mathrm{OE}}=\mathrm{V}_{1 L}$)	${ }^{\text {t }} \mathrm{CE}$	-	150	200	250	300	ns
Output enable to output delay ($\overline{\mathrm{CE}}=\mathrm{V}_{\text {IL }}$)	${ }^{\text {t }} \mathrm{OE}$	-	75	75	100	120	ns
Output enable high to output float ($\overline{C E}=V_{I L}$)	${ }^{\text {t DF }}$ (Note 4)	0	50	55	60	75	ns
Output hold from addresses, $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$ whichever occured first ($\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V}_{\text {IL }}$)	${ }^{1} \mathrm{OH}$	0	-	-	-	-	ns

$\mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$

Characteristic	Symbol	Min	Typ	Max
Input capacitance $\left(V_{\text {in }}=0 \mathrm{~V}\right)$	$\mathrm{C}_{\text {in }}$	-	4	6
Output capacitance $\left(\mathrm{V}_{\text {out }}=0 \mathrm{~V}\right)$	$\mathrm{C}_{\text {out }}$	-	8 PF	

Note 2 : Typical conditions are for operation at : $T_{\mathrm{amb}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{CC}}$, and $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$
Note 3 : VCC must be applied at the same time or before VPP and removed after or at the same time as VPP VPP may be connected to $V_{C C}$ except during program.

Note 4 : The tDF compare level is determined as follows:
High to THREESTATE, the measured $\mathrm{VOH}_{\mathrm{OH}}(\mathrm{DC})-0.1 \mathrm{~V}$
Low to THREESTATE the measured $\mathrm{V}_{\mathrm{OL}}(\mathrm{DC})+0.1 \mathrm{~V}$.
Note 5 : Capacitance is guaranteed by periodic testing. $T_{a m b}=+25^{\circ} \mathrm{C}, f=1 \mathrm{MHz}$.

AC TEST CONDITIONS (Figure 1,2)
Output Load
Input Rise and Fall Times
Input Pulse Levels
Timing Measurement Reference Level
Inputs, Outputs

1 TTL Gate and $C_{L=100} \mathrm{pF}$
$\leq 20 \mathrm{~ns}$
0.45 V to 2.4 V
0.8 V and 2 V

FIGURE 1 - OUTPUT LOAD CIRCUIT

FIGURE 2 - AC TESTING INPUT/OUTPUT WAVEFORM

AC testing inputs are driven at 2.4 V for a logic " 1 " and 0.45 V for a logic " 0 ". Timing measurements are made at 2.0 V for a logic " 1 " and 0.8 V for a logic " 0 ".

AC WAVEFORMS (READ MODE)

DC PROGRAMMING CHARACTERISTICS

$\mathrm{T}_{\mathrm{amb}}=25 \pm 5^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} \pm 0.25 \mathrm{~V}, \mathrm{VPP}=12.5 \mathrm{~V} \pm 0.3 \mathrm{~V} \quad$ (Note 1)

Characteristic	Symbol	Min	Typ	Max	Unit
Input current (all inputs - $\mathrm{V}_{1}=\mathrm{V}_{1 \mathrm{~L}}$ or $\mathrm{V}_{1 H}$)	$1 /$	-	-	10	$\mu \mathrm{A}$
Input low level (all inputs)	$V_{1 L}$	-0.1	-	0.8	V
Input high level	$V_{\text {IH }}$	2.0	-	$\mathrm{V}_{\text {CC }}+1$	V
Output low voltage during verify ($\mathrm{OL}=2.1 \mathrm{~mA}$)	VOL	-	-	0.45	v
Output high voltage during verify ($1 \mathrm{OH}=-400 \mu \mathrm{~A}$)	V_{OH}	2.4	-	-	\checkmark
$V_{\text {CC }}$ supply current (Program \& Verify)	$1 \mathrm{CC3}$	-	-	40	mA
VPP supply current (Program $\cdot \overline{\mathrm{CE}}=\mathrm{V}_{\text {IL }}$)	'PP2	-	-	30	mA

AC PROGRAMMING CHARACTERISTICS
$\mathrm{T}_{\mathrm{amb}}=25 \pm 5^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} \pm 0.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{Pp}}=12.5 \mathrm{~V} \pm 0.3 \mathrm{~V}$ (Note 1)

Characteristic	Symbol	Min	Typ	Max	Unit
Address set-up time	${ }^{1}$ AS	2	-	-	$\mu \mathrm{s}$
$\overline{O E}$ set-up time	${ }^{\text {\% ORS }}$	2	-	-	μs
Data set-up time	${ }^{\text {tos }}$	2	-	-	$\mu \mathrm{s}$
Address hold time	${ }^{t} \mathrm{AH}$	0	-	-	μs
Data hold time	${ }^{t} \mathrm{OH}$	2	-	-	$\mu \mathrm{s}$
Output enable to output float delay	${ }^{\text {' }} \mathrm{DF}$	0	-	130	ns
VPP set-up time	VPS	2	-	-	$\mu \mathrm{s}$
$V_{\text {CC }}$ set-up time	tVCS	2	-	-	μs
$\overline{\mathrm{CE}}$ initial program pulse width	tpw	0.95	1.0	1.05	ms
$\overline{\mathrm{CE}}$ overprogram pulse width (Note 2)	${ }^{\text {t OPW }}$	2.85	-	78.75	ms
Data valid from $\overline{\text { OE }}$	toe	-	-	150	ns

AC TEST CONDITIONS

Input rise and fall times (10\% to 90\%)
Input pulse levels
Input timing reference level
Ouptut timing reference level

Note 1 : VCC must be applied simultaneously or before VPP and removed simultaneously or after VPP.
Note 2 : tOPW is defined in flow chart.

1. The input timing reference level is 0.8 V for $V_{\text {IL }}$ and 2.0 V for $V_{\text {IH }}$.
2. TOE and tDFP are characteristics of the device but must be accommodated by the programmer.
3. When programming the TS27C256, a $0.1 \mu \mathrm{~F}$ capacitor is required across VPP and ground to suppress spurious voltage transients which can damage the device.

TABLE 2. MODE SELECTION

Mode Pins	$\begin{aligned} & \overline{C E} \\ & (20) \end{aligned}$	$\begin{aligned} & \overline{O E} \\ & (22) \end{aligned}$	$\begin{aligned} & \text { A9 } \\ & \text { (24) } \end{aligned}$	Vpp (1)	$\begin{aligned} & V_{C C} \\ & (28) \end{aligned}$	$\begin{gathered} \text { Outputs } \\ (11-1315-19) \end{gathered}$
Read	VIL	$V_{\text {IL }}$	x	$V_{C C}$	VCC	DOUT
Output disable	$V_{\text {IL }}$	$V_{1 H}$	x	$V_{C C}$	$V_{\text {CC }}$	Hi-Z
Standby	$V_{\text {IH }}$	x	x	VCC	VCC	Hi-Z
High speed programming	V_{IL}	$V_{I H}$	X	VPP	$V_{C C}$	$\mathrm{DIN}^{\text {N }}$
Program Verity	$V_{\text {IH }}$	$V_{\text {IL }}$	X	VPP	$V_{C C}$	DOUT
Program inhibit	$V_{1 H}$	VIH	X	Vpp	$V_{C C}$	$\mathrm{Hi}-\mathrm{Z}$
Electronic signature (Note 3)	VIL	$V_{\text {IL }}$	V_{H} Note 2	Vcc	VCC	CODE

NOTES: 1-X can be either $V_{\text {IL }}$ or $V_{\text {IH }} \quad 3$ - All address lines at $V_{\text {IL }}$ except $A 9$ and $A O$ that is toggled from $V_{\text {IL }}$ (manufacturer code: 98) to $V_{\text {IH }}$ (type code: 04)

DEVICE OPERATION

The seven modes of operation of the TS27C256 are listed in Table 2. A single 5 V power supply is required in the reed modo. All inputs are TTL levels except for Vpp.

Roed Modo

The TS27C256 has two control functions, both of which must be logically ectivo in order to obtain data at tho outputs. Chip Enable ($\overline{\mathrm{CE}}$) is the power control and should bo used for device solection. Output Enablo ($\overline{O E}$) is the output control and should bs usod to gate data to the output pins, independent of device selection. Ascuming that addresses are stable, address cecoss timo ($\mathrm{t} \mathbf{A C C}$) is equal to the delay from $\overline{\mathrm{CE}}$ to output (tCE). Data is available at the outputs after a delay of t $\overline{O E}$ from the falling edge of $\overline{O E}$, assuming that $\overline{C E}$ has been low and addresses have been stable for at least tACC t $\overline{O E}$.

Stendby Moda

The TS27C256 has a standby mode which reduces the maximum power dissipation to 5.25 mW . The TS27C256 is placed in the standby mode by applying a TTL high signal to the $\overline{C E}$ input. When in standby mode, the outputs are in a high impedance state, independent of the $\overline{O E}$ input.

Output OR-Tying

Beczuse EPROMs are usually used in largar memory arrays, we have provided two control lines which accommodate this multiple memory connection. The two control lines allow for :
a) the lowest possible memory power dissipation, and
b) complete assurance that output bus contention will not occur.
To use these control lines most efficiently, $\overline{\mathrm{CE}}$ (pin 20) should be decoded and used as the primary device selecting function, while $\overline{O E}$ (pin 22) should be made a common connection to all devices in the array and connected to the $\overline{R E A D}$ line from the system control bus. This assures that all deselected memory devices are in their low power standby modes and that the output pins are active only when data is desired from a particular memory device.

Programming modes

CAUTION : Exceeding 14 V on pin 1(Vpp) will damage the TS27C256.
Initialy, and after each erasure, all bits of the TS27C256 are in the " 1 " state. Data is introduced by selectively programming "Os" into the desired bit locations. Although only "Os" will be programmed, both "1" and " 0 s" can be presented in the data word. The only way to change a " 0 " to a " 1 " is by ultraviolet light erasure.

The TS27C256 is in the programming mode when the VPP input is at 12.5 V and $\overline{\mathrm{CE}}$ is at TTL low. It is required that a $0.1 \mu \mathrm{~F}$ capecitor be pleced ceross VPP, VCC and ground to suppress spurious voltags transients which may damegs the dovice. The data to be programmod is applied 8 bits in parallel to the data output pins. The levols required for the eddress and dato inputs are TTL.

Programming of multipla TS27C256s in parallol with the same data can be easily accomplished due to the simplicity of the programming requirements. Like inputs of the paralleled TS27C256s may be connected tog3ther when they are programmed with the same data. A low level TTL pulse applied to the $\overline{\mathrm{CE}}$ input programs the paralleled TS27C256s.

- High spood programming

The high speed programming algorithm described in the flow chart page 3 ropidly programs TS27C256 using an efficient and reliable methed particularly suited to the production programming environment. Typical programming times for individual devices are on the order of 5 minutes.

- Program inhibit

Programming of multiple TS27C256s in parallel with different data is also casily accomplised by using the program inhibit mode. A high level on $\overline{\mathrm{CE}}$ input inhibits the other TS27C256s from being programmed. Except for $\overline{\mathrm{CE}}$, all like inputs (including $\overline{\mathrm{OE}}$) of the parallel TS27C256s may be common. A TTL low level pulse applied to a TS27C256 CE input with VPP at 12.5 V will program that TS27C256.

- Program varify

A verify may be performed on the progremmed bits to determine that they were correctly programmed. The verify is performed with $\overline{O E}$ at $V_{I L}, \overline{C E}$ at $V_{I H}$ and VPP at 12.5 V .

- Electronic signaturo mode

Electronic signature mode allows the reading out of a binary code that will identify the EPROMs manufacturer and type.
This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ ambient temperature range that is required when programming the TS27C256. To activate this mode the programming equipment must force 11.5 V to 12.5 V on address line A 9 (pin 24) of the TS27C256. Two bytes may then be sequenced from the device outputs by toggling address line AO (Pin 10) from $V_{\text {IL }}$ to $\mathrm{V}_{\text {IH }}$. All other address lines must be held at $V_{\text {IL }}$ during electronic signature mode.

The TS27C256 is erased by exposure to high intensity ultraviolet light through the transparent window. This exposure discharges the floating gate to its initial state through induced photo current. It is recommended that the TS2.7C256 be kept out of direct sunlight. The UV content of sunlight may cause a partial erasure of some bits in a relatively short period of time. Direct sunlight can also cause temporary functional failure. Extenided exposure to room level fluorescent lighting will also cause erasure. An opaque coating (paint, tape, label, etc.) should be placed over the package window if this product is to be operated under these lighting conditions. Covering the window also reduces ICC due to photodiode currents.
An ultraviolet source of $2537 \AA$ yielding a total integrated dosage of 15 watt-seconds $/ \mathrm{cm}^{2}$ is required. This
will erase the part in approximately 15 to 20 minutes if a UV lamp with a $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ power rating is used. The TS27C256 to be erased should be placed 1 inch from the lamp and no filters should be used.
An erasure system should be calibrated periodically. The distance from lamp to unit should be maintained at 1 inch. The erasure time is increased by the square of the distance (if the distance is doubled the erasure time goes up by a factor of 4). Lamps lose intensity as they age. When a lamp is changed, the distance is changed, or the lamp is aged, the system should be checked to make certain full 'erasure is occuring. Incomplete erasure will cause symptoms that can be misleading. Programmers, components, and system designs have been erroneously suspected when incomplete erasure was the basic problem.

PHYSICAL DIMENSIONS inches (millimeters)

CHAPTER 3-BHPOLAR PROMS

FAST PROM

Description	Part number	Organization	Access Time	Output	Page
8K FAST PROM	TS71180A	$1 \mathrm{~K} \times 8$	45 ns	Open collector	3-5
	TS711808	$1 \mathrm{~K} \times 8$	35 ns	Open collector	
	TS71180C	$1 \mathrm{~K} \times 8$	25 ns	Open collector	
	TS71181A	$1 \mathrm{~K} \times 8$	45 ns	3-state	
	TS71181B	$1 \mathrm{~K} \times 8$	35 ns	3-state	
	TS71181C	$1 \mathrm{~K} \times 8$	25 ns	3-state	
	TS71280A	$1 \mathrm{~K} \times 8$	45 ns	Open collector	
	TS71280B	$1 \mathrm{~K} \times 8$	35 ns	Open collector	
	TS71280C	$1 \mathrm{~K} \times 8$	25 ns	Open collector	
	TS71281A	$1 \mathrm{~K} \times 8$	45 ns	3 -state	
	TS71281B	$1 \mathrm{~K} \times 8$	35 ns	3 -state	
	TS71281C	$1 \mathrm{~K} \times 8$	25 ns	3-state	
16K FAST PROM	TS71190	2K $\times 8$	80 ns	Open collector	$3-11$
	TS71190A	2K $\times 8$	60 ns	Open collector	
	TS71190B	2K $\times 8$	45 ns	Open collector	
	TS71190C	2K $\times 8$	35 ns	Open collector	
	TS71191	2K $\times 8$	80 ns	3-state	
	TS71191A	2K $\times 8$	60 ns	3-state	
	TS71191B	2K $\times 8$	45 ns	3-state	
	TS71191C	2K $\times 8$	35 ns	3-state	
	TS71290C	$2 \mathrm{~K} \times 8$	35 ns	Open collector	
	TS71291C	2K $\times 8$	35 ns	3-state	
32K FAST PROM	TS71321B	$4 \mathrm{~K} \times 8$	55 ns	3 -state	3-17
	TS71321C	$4 \mathrm{~K} \times 8$	45 ns	3-state	
64K FAST PROM	TS71640	$8 \mathrm{~K} \times 8$	55 ns	Open collector	3-23
	TS71641	$8 \mathrm{~K} \times 8$	55 ns	3-state	

PRODUCT PREVIEW

The TS71180, 71181, 71280, 71281 are programmable read-only memories (PROM) organized in 1024 words by 8 -bit configuration and are field programmable. They are shipped in an unprogrammed form and have " 0 " in all locations.

These PROM's are available with open collector (TS71180/71280) or three state outputs (TS71181/71281).

- Fast access times :

Address access time : 25 ns max (TS71180C-71181C-71280C-71281C)
35 ns max (TS71180B-711818-71280B-71281B) 45 ns max (TS71180A-71181A-71280A-71281A)

- Low voltage programming
- Highly reliable fuses Ti/W for ultra-fast programming
- Low power Schottky technology (oxide isolation process)
- TTL compatible
- Industry standard pin configuration.

APPLICATIONS

- Microprogramming
- Hardwired algorithms
- Random logic
- Code conversion
- Sequential controllers

PSUFFIX
PLASTIC PACKAGE
ALSO AVAILABLE
」SUFFIX CERDIP PACKAGE CERAMIC PACKAGE

VCC: Power supply voltage (DC + 5 V) 01 to O8: Outputs.

MAXIMUM RATINGS

Rating	Symbol	C suffix	$M_{\text {suffix }}$	Unit
Power supply	$V_{\text {CC }}$	$7 \pm 5 \%$	$7 \pm 10 \%$	V
Operating temperature	$\mathbf{T}_{\text {oper }}$	$-0,+70$	$-55,+125$	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$	$-65,+150$	$-65,+150$	${ }^{\circ} \mathrm{C}$

ELECTRICAL OPERATING CHARACTERISTICS

$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ (unless otherwise noted)

Characteristic	Symbol	C suffix			M suffix			Unit
		Min	Typ	Max	Min	Typ	Max	
Maximum input current at $V_{\text {OL }} \max \left(V_{C C}=V_{C C} \max , V_{1}=0.45 \mathrm{~V}\right)$	IIL	-	-	-0.25	-	-	-0.25	mA
Maximum input current at $V_{1 H} \min \left(V_{C C}=V_{C C}\right.$ max, $\left.V_{1}=2.7\right)$	$1 / \mathrm{H}$	-	-	40	-	-	40	$\mu \mathrm{A}$
Maximum input current ($\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}} \max , \mathrm{V}_{1}=5.5 \mathrm{~V}$)	IIR	-	-	40	-	-	50	$\mu \mathrm{A}$
Low level input voltage	$V_{\text {IL }}$	-	-	0.8	-	-	0.8	V
High level input voltage	$V_{\text {IH }}$	2	-	-	2	-	-	V
Short-circuit output current ($\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}}$ max, $\left.\mathrm{V}_{\mathrm{O}}=0\right) \quad$ (Note 1)	ISC	-20	-	-70	-15	-	-85	mA
Low level output voltage ($\mathrm{V}_{C C}=\mathrm{V}_{C C} \mathrm{~min}, \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}, \mathrm{~V}_{1}=V_{I H}$ or $\left.V_{I L}\right)$	VOL	-	-	0.45	-	-	0.5	V
High level output voltage ($\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{C C} \mathrm{~min}, \mathrm{I}_{\mathrm{OH}}=2 \mathrm{~mA}, \mathrm{~V}_{1}=\mathrm{V}_{1 H}$ or $\mathrm{V}_{\text {IL }}$)	V_{OH}	2.4	-	-	2.4	-	-	V
Power supply current (All inputs are grounded $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{C C}$ max)	${ }^{\text {ICC }}$	-	-	175	-	-	185	mA
Clamping input voltage ($\left.\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}} \mathrm{min}, \mathrm{V}_{1}=-18 \mathrm{~mA}\right)$	V_{1}	-	-	-1.2	-	-	-1.2	V
Output leakage current $\left(V_{C C}=V_{C C}\right.$ max, $\left.\overline{C E 1}=2.4 \mathrm{~V}, C E 2=C E 3=0.4 \mathrm{~V}\right)$ $V_{O}=5.5 \mathrm{~V}$ $71180 / 71280$ $V_{O}=5.5 \mathrm{~V}$ $71181 / 71281$ $V_{O}=0.5 \mathrm{~V}$ $71181 / 71281$	$\begin{aligned} & \text { IOFF } \\ & \text { IOZH } \\ & \text { IOZL } \end{aligned}$	-	-	+40 +40 -40	-	-	+60 +60 -60	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
Input capacitance ($\mathrm{V}_{1}=2 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$) (Note 2)	C_{1}	-	5	-	-	5	-	pF
Output capacitance ($\mathrm{V}_{1}=2 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$) (Note 2)	C_{0}	-	8	-	-	8	-	pF

Note 1 : Only one output should be shorted at a time, otherwise permanent damage to the device may result.
Note 2 : These parameters are not 100% tested, but are periodically sampled.

SWITCHING CHARACTERISTICS (These times are measured from threshold to threshold)

Charactoristic	Symbol	C suffix			M suffix			Unit
		Min	Typ	Max	Min	Typ	Max	
Address access time $(A 0-A 9) \rightarrow(01 \ldots .08)$ TS71180A, TS71181A, TS71280A, TS71281A TS71180B, TS71181B, TS71280B, TS71281B TS71180C, TS71181C, TS71280C, TS71281C	${ }^{\text {t }}$ AA	-	-	45 35 25	-	-	70 50 30	ns
Chip enable access time $(\overline{\mathrm{CE}}, \overline{\mathrm{CE}}, \mathrm{CE}, \mathrm{CE} 4) \rightarrow(01 \ldots .08)$ TS71180A, TS71181A, TS71280A, TS71281A TS71180B, TS71181B, TS71280B, TS71281B TS71180C, TS71181C, TS71280C, TS71281C	${ }^{\text {t }}$ CE	-	-	30 25 20	-	-	40 30 25	n3
Chip disable time $(\overline{\mathrm{CE}}, \overline{\mathrm{CE}}, \mathrm{CE}, \mathrm{CE} 4) \rightarrow(01 \ldots .08)$ TS71180A, TS71181A, TS71280A, TS71281A TS71180B, TS71181B, TS71280B, TS71281B TS71180C, TS71181C, TS71280C, TS71281C	${ }^{\text {² }}$ CD	-	-	30 25 20	-	-	40 30 25	n3

DYNAMIC TEST

PROGRAMMING CHARACTERISTICS

Characteristic	Symbol	Min	Typ	Max	Unit
$V_{\text {CC }}$ programming pulse	$V_{\text {CCP }}$	12.5	-	13	V
$V_{\text {cc }}$ during verify	$V_{C C L}$ V_{CCH}	4.5		5.5	$\begin{aligned} & v \\ & v \end{aligned}$
Programming supply current ($\mathrm{VCCP}=12.75 \pm 0.25 \mathrm{~V}$)	${ }^{\text {I CCP }}$	-	420	550	mA
Input voltage	$\begin{aligned} & v_{I L} \\ & v_{I H} \end{aligned}$	$\begin{gathered} 0 \\ 2.4 \end{gathered}$	-	$\begin{aligned} & 0.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & v \\ & v \end{aligned}$
Output programming voltage	Vo	11.5	12	12.5	\checkmark
Output programming current $\left(V_{O}=12 \pm 0.5\right)$	10	-	1.5	-	mA
$V_{\text {CC }}$ pulse rise time	${ }^{\text {t }} 11$	5	-	10	μs
Output pulse rise time	${ }^{\text {t }}$ 2 2	10	-	20	$\mu \mathrm{s}$
$\overline{\text { CE1 }}$ programming pulse width	tp	40	50	60	μs
Address set-up time / V CCP	${ }^{\text {t }} \mathrm{DA}$	100	-	-	ns
Pulse sequence delay	${ }^{1}$	10	-	-	μs
Delay time before verify	tov	3	-	-	μ
Programming time ($\mathrm{VCC}=\mathrm{V}_{\text {CCP }}$)	tPR	-	-	10	s
Allowed fusing attempts		-	-	1	

1. Select the address to be programmed.

Apply $\overline{\mathrm{CE}}=\mathrm{H} ; \mathrm{CE} 2=\mathrm{H} ; \mathrm{CE} 3=\mathrm{H}$.
2. After a delay tDA $\geqslant 100 \mathrm{~ns}$, raise V_{CC} to $\mathrm{V}_{\mathrm{CCP}}=$ $12.75 \mathrm{~V} \pm 0.25 \mathrm{~V}$.
3. After a delay $t_{D} \geqslant 10 \mu \mathrm{~s}$, apply $\mathrm{V}_{\mathrm{O}}=12 \pm 0.5 \mathrm{~V}$ to the output to be programmed. Program one output at the time. Other outputs are open.
4. After a delay $t_{D} \geqslant 10 \mu \mathrm{~s}$, apply a logic low level to the $\overline{\mathrm{CE}}$ input. This level will be held during $\mathrm{tp}=50$ $\pm 10 \mu \mathrm{~s}$.
5. After a delay to $\geqslant 10 \mu \mathrm{~s}$, remove output voltage V_{O} from the output to be programmed.
6. After a delay $\mathrm{t}_{\mathrm{D}} \geqslant 10 \mu \mathrm{~s}$, lower the voltage $\mathrm{V}_{\mathrm{CCP}}$ to $\mathrm{V}_{\mathrm{CC}}=5 \pm 0.5 \mathrm{~V}$.
7. After a delay tDV $\geqslant 3 \mu \mathrm{~s}$, apply a logic low level to the $\overline{\mathrm{CE}} 1$ input and verify that the programmed output remains in the high state for $\mathrm{V}_{\mathrm{CCH}}=5.5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{CCL}}=4.5 \mathrm{~V}$ (*). Then, apply a logic high level to the $\overline{\mathrm{CE}}$ chip select input.
8. Repeat steps 1 through 7 to program other locations of the PROM.

TYPICAL PROGRAMMING SEQUENCE

* Programming verification at both max and $\min \mathrm{V}_{\mathrm{CC}}$ is optional ($\mathrm{V}_{\mathrm{CCH}}, \mathrm{V}_{\mathrm{CCL}}$).

CB-68

C SUFFIX CERAMIC PACKAGE ALSO AVAILABLE JSUFFIX CERDIP PACKAGE

CB-505

C SUFFIX CERAMIC PACKAGE

ALSO AVAILABLE JSUFFIX

PSUFFIX CERDIP PACKAGE PLASTIC PACKAGE

ORDERING INFORMATION

The table below horizontally shows all avaliable suffix combinations for package, operating tomperature and quality level. Other possibilities on request.

PART NUMAER		OPER. TEMP.		PACKAGE				8CREENING CLASS			
		C	M	P	J	C	E	Std	-D	0/B	B/B
45 ns	T871180A, T871181A	-		\bullet	\bigcirc			-	-		
	T871200A, T8712:1A	-		\bullet	-			-	\bullet		
35 ns	TS711808, T8711818	-		\bullet	-			-	-		
	T8712008, T8712018,	-		-	-			\bigcirc	-		
25 ns	T871100C, TS71181C	\bullet		\bullet	-			-	\bullet		
	TS71280C, T871281C	\bullet		-	-			\bullet	\bullet		

> Examples : TS71181CP, TS71181 CP-D, TS71181CJ, TS71181 CJ-D

Oper. temp. : C: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{M}:-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
Package : P: Pastic DIL, J: Cerdip DIL, C: Ceramic DIL, E: Ceramic LCC.
Screening classes : Std (no end-suffix), -D : NFC 96883 level D.
G/B : NFC 96883 level G, B/B : MIL-STD-883 level B and NFC 96883 level B.

ADVANCE INFORMATION

The TS71190, 71191, 71290, 71291 are programmable read-only me* mories (PROM) organized in a 2048 words by 8 -bit configuration and are field programmable. They are shipped in an unprogrammed form and have " 0 " in all locations.
These PROM's are available with open collector (TS71 190/71290) or three state outputs (TS71191/71291).

- Fast access times :

Address access time : 80 ns max. (TS71190, TS71191)
60 ns max. (TS71190A, TS71191A)
45 ns max. (TS7190B, TS71191B)
35 ns max. (TS71190C, TS71191C)
(TS71290C, TS71291C)

- Temperature compensating circuits to achieve a wide range of operation
- Low voltage programming
- Highly reliable fuses Ti/W for ultra-fast programming
- Low power Schottky technology
- TTL compatible
- Industry standard pin configuration.

APPLICATIONS

- Microprogramming
- Hardwired algorithms
- Random logic
- Code conversion
- Sequential controllers

BLOCK DIAGRAM

16 K FAST PROMs

CHIP CARRIER PACKAGE,

A0 to A10: Address inputs
CE1. CE2, CE3 : Chip enable inputs
$V_{C C}$: Power supply voltage ($D C+5 \mathrm{~V}$) O1 to $\mathbf{O 8}$: Outputs.

MAXIMUM RATINGS

Rating	Symbol	C suffix	M suffix	Unit
Power supply	V_{CC}	$7 \pm 5 \%$	$7 \pm 10 \%$	V
Operating temperature	$\mathrm{T}_{\text {oper }}$	$-0,+70$	$-55,+125$	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$	$-65,+150$	$-65,+150$	${ }^{\circ} \mathrm{C}$

ELECTRICAL OPERATING CHARACTERISTICS

$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ (unless otherwise noted)

Characteristic	Symbol	C suffix			M suffix			Unit
		Min	Typ	Max	Min	Typ	Max	
Maximum input current at $\mathrm{V}_{\mathrm{OL}} \max \left(\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{C C}\right.$ max, $\left.\mathrm{V}_{1}=0.45 \mathrm{~V}\right)$	IIL	-	-	-0.25	-	-	-0.25	mA
Maximum input current at $\mathrm{V}_{1 H} \min \left(\mathrm{~V}_{C C}=\mathrm{V}_{C C} \max , \mathrm{~V}_{1}=2.7\right)$	I/H	-	-	40	-	-	40	$\mu \mathrm{A}$
Maximum input current ($\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}} \max , \mathrm{V}_{1}=5.5 \mathrm{~V}$)	IIR	-	-	40	-	-	50	$\mu \mathrm{A}$
Low level input voltage	$V_{\text {IL }}$	-	-	0.8	-	-	0.8	V
High leval input voltage	$V_{1 H}$	2	-	-	2	-	-	V
Short-circuit output current (Note 1) $\begin{array}{ll} V_{C C}=V_{C C} \max , V_{O}=0 & 71191, A, B, C \\ & 71291 \end{array}$	ISC	-20	-	-70	-15	-	-85	mA
$\left.\begin{array}{rl} \left.\begin{array}{c} \text { Low level output voltage }\left(V_{C C}=V C C ~\right. \\ \text { Inin, } \\ V_{I} \end{array}=V_{I H} \text { or } V_{I L}\right) \\ & 71190, A \\ I_{O L}=9.6 \mathrm{~mA} & 71190 \mathrm{~mA}, C \\ & 71191 \mathrm{~B}, \mathrm{C} \\ & 71290 \mathrm{C} \\ & 71291 \mathrm{C} \end{array}\right\}$	VOL		$\begin{aligned} & 0.35 \\ & 0.35 \end{aligned}$	$\begin{aligned} & 0.45 \\ & 0.45 \end{aligned}$		$\begin{aligned} & 0.35 \\ & 0.35 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & v \\ & v \end{aligned}$
High level output voltage ($\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}} \mathrm{min}, \mathrm{I}_{O H}=2 \mathrm{~mA}, \mathrm{~V}_{1}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{1 \mathrm{~L}}$)	VOH	2.4	-	-	2.4	-	-	V
Power supply current (All inputs are grounded $V_{C C}=V_{C C}$ max)	${ }^{1} \mathrm{CC}$	-	135	175	-	135	185	mA
Clamping input voltage ($\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}} \mathrm{min}, \mathrm{V}_{1}=-18 \mathrm{~mA}$)	V_{1}	-	-	-1.2	-	-	- 1.2	\checkmark
Output leakage current ($\mathrm{V}_{\text {CC }}=\mathrm{V}_{\text {CC }}$ max, $\overline{\mathrm{CE}}=2.4 \mathrm{~V}, \mathrm{CE} 2=\mathrm{CE}_{3}=0.4 \mathrm{~V}$)								
$\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$ ($71190, \mathrm{~A}, \mathrm{~B}, \mathrm{C} / 71290 \mathrm{C}$	IOFF	-	-	+ 40	-	-	+60	$\mu \mathrm{A}$
$\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$ (71191,A,B,C/71291C	${ }^{1} \mathrm{OZH}$	-	-	+ 40	-	-	+ 60	$\mu \mathrm{A}$
$V_{O}=0.5 \mathrm{~V} \quad 71191, A, B, C / 71291 \mathrm{C}$	IOZL	-	-	-40	-	-	-60	$\mu \mathrm{A}$
Input capacitance ($\mathrm{V}_{1}=2 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$) (Note 2)	Cl_{1}	-	5	-	-	5	-	pF
Output capacitance ($\mathrm{V}_{1}=2 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$) (Note 2)	C_{0}	-	8	-	-	8	-	pF

Note 1 : Only one output should be shorted at a time, otherwise permanent damage to the device may result.
Note 2 : These parameters are not 100% tested, but are periodically sampled.

SWITCHING CHARACTERISTICS (These times are measured from threshold to threshold)

Characteristic	Symbol	C suffix			M suffix			Unit
		Min	Typ	Max	Min	Typ	Max	
Address access time $(A 0-A 10) \longrightarrow(01 \ldots . .08)$ TS71190-TS71191 TS71190A.TS71191A TS711908, TS71191B $\left.\begin{array}{l}\text { TS71190C, TS71191C } \\ \text { TS71290C, TS71291C }\end{array}\right\}$	${ }^{\text {t }}$ A A		$\begin{aligned} & 40 \\ & 40 \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 80 \\ & 60 \\ & 45 \\ & 35 \end{aligned}$		$\begin{aligned} & 50 \\ & 50 \\ & - \\ & - \end{aligned}$	$\begin{gathered} 100 \\ 80 \\ 65 \\ 55 \end{gathered}$	ns
$\begin{aligned} & \text { Chip enable access time } \quad(\overline{\text { CE1 }}, \text { CE 2, CE3 }) \longrightarrow(O 1 \ldots . . \text { O8) } \\ & \left.\begin{array}{l} \text { TS71190,A/TS71191,A } \\ \text { TS71190B, TS71191B } \\ \text { TS } 71190 C, \text { TS71191C } \\ \text { TS711290C, TS71291C } \end{array}\right\} \\ & \hline \end{aligned}$	${ }^{\text {t }}$ CE		20	$\begin{aligned} & 35 \\ & 30 \\ & 25 \end{aligned}$		20	$\begin{aligned} & 45 \\ & 35 \\ & 30 \end{aligned}$	ns
	${ }^{t} \mathrm{CD}$		20	$\begin{aligned} & 35 \\ & 30 \\ & 25 \end{aligned}$		20	$\begin{aligned} & 45 \\ & 35 \\ & 30 \end{aligned}$	ns

READING SEQUENCE

DYNAMIC TEST

PROGRAMMING CHARACTERISTICS

Characteristic	Symbol	Min	Typ	Max	Unit
$\mathrm{V}_{\text {CC }}$ programming pulse	$V_{\text {CCP }}$	12.5	-	13	V
$V_{C C}$ during verify	$V_{C C L}$ V_{CCH}	4.5 -	$\begin{aligned} & - \\ & - \end{aligned}$	5.5	$\begin{aligned} & v \\ & v \end{aligned}$
Programming supply current ($\mathrm{V}_{\mathrm{CCP}}=12.75 \pm 0.25 \mathrm{~V}$)	ICCP	-	420	550	mA
Input voltage	$\begin{aligned} & V_{I L} \\ & V_{I H} \end{aligned}$	$\begin{gathered} 0 \\ 2.4 \end{gathered}$		$\begin{aligned} & 0.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Output programming voltage	V_{0}	11.5	12	12.5	V
Output programming current $\left(\mathrm{V}_{\mathrm{O}}=12 \pm 0.5\right)$	10	-	1.5	-	mA
$\mathrm{V}_{\text {CC }}$ pulse rise time	${ }^{\text {t }}$ 1 1	5	-	10	$\mu \mathrm{s}$
Output pulse rise time	${ }_{\text {tR2 }}$	10	-	20	$\mu \mathrm{s}$
$\overline{\mathrm{CE}}{ }_{1}$ programming pulse width	tp	40	50	60	μs
Address set-up time / V CCP	${ }^{\text {t }}$ DA	100	-	-	ns
Pulse sequence delay	${ }^{\text {t }}$	10	-	-	$\mu \mathrm{s}$
Delay time before verify	${ }^{t} \mathrm{DV}$	3	-	-	$\mu \mathrm{s}$
Programming time $\left(\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCP}}\right)$	${ }^{\text {tPR }}$	-	-	10	s
Allowed fusing attempts		-	-	1	

1. Select the address to be programmed.

Apply $\overline{\mathrm{CE}}=\mathrm{H} ; \mathrm{CE} 2=\mathrm{H} ; \mathrm{CE} 3=\mathrm{H}$.
2. After a delay tDA $\geqslant 100 \mathrm{~ns}$, raise V_{CC} to $\mathrm{V}_{\mathrm{CCP}}=$ $12.75 \mathrm{~V} \pm 0.25 \mathrm{~V}$.
3. After a delay tD $\geqslant 10 \mu \mathrm{~s}$, apply $\mathrm{V}_{\mathrm{O}}=12 \pm 0.5 \mathrm{~V}$ to the output to be programmed. Program one output at the time. Other outputs are open.
4. After a delay $\mathrm{t}_{\mathrm{D}} \geqslant 10 \mu \mathrm{~s}$, apply a logic low level to the $\overline{\mathrm{CE} 1}$ input. This level will be held during $\mathrm{tp}=50$ $\pm 10 \mu \mathrm{~s}$.
5. After a delay $\mathrm{t}_{\mathrm{D}} \geqslant 10 \mu \mathrm{~s}$, remove output voltage V_{O} from the output to be programmed.
6. After a delay $\mathrm{t}_{\mathrm{D}} \geqslant 10 \mu \mathrm{~s}$, lower the voltage $\mathrm{V}_{\mathrm{CCP}}$ to $\mathrm{V}_{\mathrm{CC}}=5 \pm 0.5 \mathrm{~V}$.
7. After a delay $\mathrm{tDV} \geqslant 3 \mu \mathrm{~s}$, apply a logic low level to the $\overline{\mathrm{CE}} 1$ input and verify that the programmed output remains in the high state for $\mathrm{V}_{\mathrm{CCH}}=5.5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{CCL}}=4.5 \mathrm{~V}$ (*). Then, apply a logic high level to the $\overline{\mathrm{CE}}$ chip select input.
8. Repeat steps 1 through 7 to program other locations of the PROM.

TYPICAL PROGRAMMING SEQUENCE

[^11]ORDERING INFORMATION

Examples: TS71190CP, TS71190CP-D, TS71190CJ, TS71190CJ-D
Opar. tomp. : C : $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{M}:-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
Package : P: Plastic DIL, J : Cerdip DIL, C: Ceramic DIL, E : Ceramic LCC.
Scroening classos: Std (no end-suffix), -D : NFC 96883 level D.
G/B : NFC 96883 level G, B/B : MIL-STD-883 level B and NFC 96883 level B.

PHYSICAL DIMENSIONS

CB-68

P SUFFIX
PLASTIC PACKAGE
also available
C SUFFIX
J SUFFIX
CERAMIC PACKAGE CERDIP PACKAGE

CB 505

PSUFFIX
PLASTIC PACKAGE
ALSO AVAILABLE
C SUFFIX JSUFFIX CERAMIC PACKAGE CERDIP PACKAGE

CB-707

TS71190A,B TS71191A,B

ESUFFIX
TRICECOP (LCC CHIP CARRIER PACKAGE

These specifications are subject to change without notice
Please inquire with our sales offices about the availability of the different packages

PRODUCT PREVIEW

The TS71321 is programmable read-only memory (PROM) organized in a 4096 words by 8 -bit configuration and is field programmable. It is shipped in an unprogrammed form and has " 0 " in all allocations. This PROM's is available with three state outputs (TS71321).

- Fast access times :

Address access time : 45 ns max TS71321C
55 ns max TS71321B

- Low voltage programming
- Highly reliable fuses Ti / W for ultra-fast programming
- Low power Schottky technology (oxide isolation process)
- TTL compatible
- Industry standard pin configuration.

APPLICATIONS

- Microprogramming
- Hardwired algorithms
- Random logic
- Code conversion
- Sequential controllers

PIN ASSIGNMENT

$V_{C C}$: Power supply voltage ($D C+5 \mathrm{~V}$) O 1 to O 8 : Outputs .

MAXIMUM RATINGS

Rating	Symbol	$C_{\text {suffix }}$	M suffix	Unit
Power supply	$V_{\text {CC }}$	$7 \pm 5 \%$	$7 \pm 10 \%$	V
Operating temperature	$T_{\text {oper }}$	$-0,+70$	$-55,+125$	${ }^{\circ} \mathrm{C}$
Storage temperature	$T_{\text {stg }}$	$-65,+150$	$-65,+150$	${ }^{\circ} \mathrm{C}$

ELECTRICAL OPERATING CHARACTERISTICS

$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ (unless otherwise noted)

Characteristic	Symbol	C suffix			M suffix			Unit
		Min	Typ	Max	Min	Typ	Max	
Maximum input current at $V_{\text {OL }} \max \left(V_{C C}=V_{C C} \max , V_{1}=0.45 \mathrm{~V}\right)$	IIL	-	-	-0.25	-	-	-0.25	mA
Maximum input current at $\mathrm{V}_{1 \mathrm{H}} \mathbf{m i n}\left(\mathrm{V}_{\mathrm{CC}}=V_{C C}\right.$ max, $\left.\mathrm{V}_{1}=2.7\right)$	I/H	-	-	40	-	-	40	$\mu \mathrm{A}$
Maximum input current ($\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}}$ max, $\mathrm{V}_{1}=5.5 \mathrm{~V}$)	IIR	-	-	40	-	-	50	$\mu \mathrm{A}$
Low level input voltage	$V_{\text {IL }}$	-	-	0.8	-	-	0.8	\checkmark
High level input voltage	$\mathrm{V}_{\text {IH }}$	2	-	-	2	-	-	V
Short-circuit output current ($\mathrm{VCC}^{\text {a }} \mathrm{V}_{\text {CC }}$ max, $\mathrm{V}_{\mathrm{O}}=0$) (Note 1)	ISC	-20	-	-70	-15	-	-85	mA
Low level output voltage ($V_{C C}=V_{C C} m i n, I_{O L}=16 \mathrm{~mA}, \mathrm{~V}_{1}=V_{I H}$ or $\left.V_{I L}\right)$	VOL	-	-	0.45	-	-	0.5	V
High leval output voltage ($V_{C C}=V_{C C} \mathrm{~min}, I^{\prime} \mathrm{OH}=2 \mathrm{~mA}, \mathrm{~V}_{1}=V_{1 H}$ or $V_{1 L}$)	VOH	2.4	-	-	2.4	-	-	V
Power supply current (All inputs are grounded $\mathrm{V}_{\text {CC }}=\mathrm{V}_{\mathrm{CC}}$ max)	ICC	-	-	175	-	-	185	mA
Clamping input voltage ($\left.\mathrm{V}_{C C}=\mathrm{V}_{C C} \mathrm{~min}, \mathrm{~V}_{1}=-18 \mathrm{~mA}\right)$	v_{1}	-	-	- 1.2	-	-	-1.2	V
$\begin{aligned} & \text { Output leakage current }\left(V_{C C}=V_{C C} \text { max, } \overline{C_{1}}=2.4 \mathrm{~V}, \mathrm{CE}_{2}=\mathrm{CE}_{3}=0.4 \mathrm{~V}\right) \\ & \mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{IOZH} \\ & \text { IOZL } \end{aligned}$	-	-	$\begin{aligned} & +40 \\ & -40 \end{aligned}$	-	-	$\begin{aligned} & +60 \\ & -60 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Input capacitance ($\mathrm{V}_{1}=2 \mathrm{~V} @ f=1 \mathrm{MHz}$) (Note 2)	C_{1}	-	5	-	-	5	-	pF
Output capacitance ($\mathrm{V}_{1}=2 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$) (Note 2)	Co_{0}	-	8	-	-	8	-	pF

Note 1 : Only one output should be shorted at a time, otherwise permanent damage to the device may result.
Note 2 : These parameters are not 100% tested, but are periodically sampled.

PROGRAMMING CHARACTERISTICS

Charactoristic	Symbol	Min	Typ	Max	Unit
$V_{\text {CC }}$ programming pulse	$V_{\text {CCP }}$	12.5	-	13	V
$V_{\text {CC }}$ during verify	V_{CCL} $\mathrm{V}_{\mathrm{CCH}}$	4.5 -	-	5.5	$\begin{aligned} & v \\ & v \end{aligned}$
Programming supply current ($\mathrm{V}_{\mathrm{CCP}}=12.75 \pm 0.25 \mathrm{~V}$)	${ }^{\text {I CCP }}$	-	420	550	mA
Input voltage	$\begin{aligned} & V_{I L} \\ & V_{I H} \end{aligned}$	$\begin{gathered} 0 \\ 2.4 \end{gathered}$		$\begin{aligned} & 0.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & v \\ & v \end{aligned}$
Output programming voltage	Vo	11.5	12	12.5	V
Output programming current $\left(V_{O}=12 \pm 0.5\right)$	10	-	1.5	-	mA
$V_{\text {CC }}$ pulse rise time	${ }^{\text {t }} 1$	5	-	10	$\mu \mathrm{s}$
Output pulse rise time	tr2	10	-	20	$\mu \mathrm{s}$
$\overline{\mathrm{CE}} 1$ programming pulse width	tp	40	50	60	$\mu \mathrm{s}$
Address set-up time / $\mathrm{V}_{\text {CCP }}$	${ }^{\text {t }}$ DA	100	-	-	ns
Pulse sequence delay	${ }^{\text {D }}$	10	-	-	$\mu \mathrm{s}$
Delay time before verify	${ }^{\text {t }} \mathrm{DV}$	3	-	-	$\mu \mathrm{s}$
Programming time ($\left.\mathrm{V}_{C C}=\mathrm{V}_{C C P}\right)$	tPR	-	-	10	s
Allowed fusing attempts		-	-	1	

1. Select the address to be programmed.

Apply $\overline{\mathrm{CE}}=\mathrm{H} ; \mathrm{CE} 2=\mathrm{H} ; \mathrm{CE} 3=\mathrm{H}$.
2. After a delay tDA $\geqslant 100 \mathrm{~ns}$, raise V_{CC} to $\mathrm{V}_{\mathrm{CCP}}=$ $12.75 \mathrm{~V} \pm 0.25 \mathrm{~V}$.
3. After a delay $\mathrm{t}_{\mathrm{D}} \geqslant 10 \mu \mathrm{~s}$, apply $\mathrm{V}_{\mathrm{O}}=12 \pm 0.5 \mathrm{~V}$ to the output to be programmed. Program one output at the time. Other outputs are open.
4. After a delay tD $\geqslant 10 \mu \mathrm{~s}$, apply a logic low level to the $\overline{\mathrm{CE}} 1$ input. This level will be held during tp $=50$ $\pm 10 \mu \mathrm{~s}$.
5. After a delay $\mathrm{t}_{\mathrm{D}} \geqslant 10 \mu \mathrm{~s}$, remove output voltage V_{O} from the output to be programmed.
6. After a delay $t_{D} \geqslant 10 \mu \mathrm{~s}$, lower the voltage $\mathrm{V}_{\mathrm{CCP}}$ to $\mathrm{V}_{\mathrm{CC}}=5 \pm 0.5 \mathrm{~V}$.
7. After a delay $\mathrm{t} D V \geqslant 3 \mu \mathrm{~s}$, apply a logic low level to the $\overline{\mathrm{CE} 1}$ input and verify that the programmed output remains in the high state for $\mathrm{V}_{\mathrm{CCH}}=5.5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{CCL}}=4.5 \mathrm{~V}$ (*). Then, apply a logic high level to the $\overline{\mathrm{CE} 1}$ chip select input.
8. Repeat steps 1 through 7 to program other locations of the PROM.

TYPICAL PROGRAMMING SEQUENCE

* Programming verification at both max and min V_{CC} is optional ($\mathrm{V}_{\mathrm{CCH}}, \mathrm{V}_{\mathrm{CCL}}$).

SWITCHING CHARACTERISTICS (These times are measured from threshold to threshold)

Characteristic		Symbol	C suffix			M suffix			Unit	
		Min	Typ	Max	Min	Typ	Max			
Address access time	(A0-A11) \rightarrow (01.... O8)		${ }^{\text {t }}$ A							ns
$\begin{aligned} & \text { TS71321B } \\ & \text { TS71321C } \end{aligned}$			-	-	$\begin{aligned} & 55 \\ & 45 \end{aligned}$	-	-	65 60		
Chip enable access time$\begin{aligned} & \text { TS713218 } \\ & \text { TS71321C } \\ & \hline \end{aligned}$	$(\overline{C E 1}, \mathrm{CE} 2) \rightarrow$ (01...08)	${ }^{\text {t Ce }}$							ns	
			-	-	35 20	-	-	$\begin{aligned} & 40 \\ & 30 \end{aligned}$		
Chip disable time$\begin{aligned} & \text { TS71321B } \\ & \text { TS71321C } \end{aligned}$	$(C E 1, C E 2) \rightarrow(01 \ldots .08)$	${ }^{\text {t }}$ D							ns	
			-	-	35 20	-	-	40 30		

READING SEQUENCE

DYNAMIC TEST

CB-68

P SUFFIX PLASTIC PACKAGE
also available J SUFFIX C SUFFIX CERDIP PACKAGE CERAMIC PACKAGE

PRODUCT PREVIEW

The TS71640, 71641 are programmable read-only memories (PROM) organized in a 8192 words by 8 -bit configuration and are field programmable. They are shipped in an unprogrammed form and have " 0 " in all allocations. These PROM's are available with open collector (TS71640) or three state outputs (TS71641).

- Fast access times :

Address access time : 55 ns max.
Enable access time : 30 ns max.

- Highly reliable shorting junction concept
- Low power Schottky technology (oxide isolation process)
- TTL compatible
- Industry standard pin configuration.

APPLICATIONS

- Microprogramming
- Hardwired algorithms
- Random logic
- Code conversion
- Sequential controllers

BLOCK DIAGRAM

VCC: Power supply voltage (DC +5 V) 01 to 08 : Outputs.

MAXIMUM RATINGS

Rating	Symbol	C suffix	M suffix	Unit
Power supply	$V_{\text {CC }}$	$7 \pm 5 \%$	$7 \pm 10 \%$	V
Operating temperature	$\mathrm{T}_{\text {oper }}$	$-0,+70$	$-55,+125$	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$	$-65,+150$	$-65,+150$	${ }^{\circ} \mathrm{C}$

ELECTRICAL OPERATING CHARACTERISTICS

$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ (unless otherwise noted)

Characteristic	Symbol	C suffix			M suffix			Unit
		Min	Typ	Max	Min	Typ	Max	
Maximum input current at $\mathrm{V}_{\mathrm{OL}} \max \left(\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}} \max , \mathrm{V}_{1}=0.45 \mathrm{~V}\right)$	11 L	-	-	-0.25	-	-	-0.25	mA
Maximum input current at $V_{1 H} \min \left(V_{C C}=V_{C C} \max , V_{1}=2.7\right)$	1 H	-	-	40	-	-	40	$\mu \mathrm{A}$
Maximum input current ($\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}} \max , \mathrm{V}_{1}=5.5 \mathrm{~V}$)	I/R	-	-	40	-	-	50	$\mu \mathrm{A}$
Low level input voltage	$V_{\text {IL }}$	-	-	0.8	-	-	0.8	V
High level input voltage	$\mathrm{VIH}^{\text {IH }}$	2	-	-	2	-	-	V
Short-circuit output current ($\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}} \mathrm{max}, \mathrm{V}_{\mathrm{O}}=0$) (Note 1)	${ }^{1} \mathrm{SC}$	-20	-	-70	-15	-	-85	mA
Low level output voltage ($\mathrm{V}_{\text {CC }}=\mathrm{V}_{\text {CC }} \mathrm{min}, \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}, \mathrm{~V}_{1}=\mathrm{V}_{1} \mathrm{H}$ or $\left.\mathrm{V}_{\text {IL }}\right)$	VOL	-	-	0.45	-	-	0.5	V
High level output voltage ($\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}} \min , \mathrm{I}_{\mathrm{OH}}=2 \mathrm{~mA}, \mathrm{~V}_{1}=\mathrm{V}_{1} \mathrm{H}$ or $\left.\mathrm{V}_{1 \mathrm{~L}}\right)$	VOH	2.4	-	-	2.4	-	-	V
Power supply current (All inputs are grounded $\mathrm{V}_{C C}=\mathrm{V}_{\mathrm{CC}}$ max)	${ }^{1} \mathrm{CC}$	-	-	175	-	-	185	mA
Clamping input voltage ($\left.\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}} \mathrm{min}, \mathrm{V}_{1}=-18 \mathrm{~mA}\right)$	V_{1}	-	-	-1.2	-	-	-1.2	V
Output leakage current ($\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}}$ max, $\overline{\mathrm{CE} 1}=2.4 \mathrm{~V}, \mathrm{CE} 2=\mathrm{CE}_{3}=0.4 \mathrm{~V}$)								
$V_{O}=5.5 \vee \quad 71640$	IOFF	-	-	+ 40	-	-	+60	$\mu \mathrm{A}$
$V_{O}=5.5 \mathrm{~V} \quad 71641$	$\mathrm{I} \mathrm{OZH}$	-	-	+ 40	-	-	+60	$\mu \mathrm{A}$
$V_{O}=0.5 \mathrm{~V}$	IOZL	-	-	-40	-	-	-60	$\mu \mathrm{A}$
Input capacitance ($\mathrm{V}_{1}=2 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$) (Note 2)	C_{1}	-	5	-	-	5	-	pF
Output capacitance ($\mathrm{V}_{1}=2 \mathrm{~V}$ @ $\mathrm{f}=1 \mathrm{MHz}$) (Note 2)	Co_{0}	-	8	-	-	8	-	pF

Note 1 : Only one output should be shorted at a time, otherwise permanent damage to the device may result.
Note 2 : These parameters are not 100% tested, but are periodically sampled.

SWITCHING CHARACTERISTICS (These times are measured from threshoid to threshold)

Characteristic		Symbol	C suffix			M suffix			Unit	
		Min	Typ	Max	Min	Typ	Max			
Address access time	$(A 0 \cdot A 12) \rightarrow(01 \ldots . .08)$		tAA	-	-	55	-	-	65	ns
Chip enable access time	$(\overline{\mathrm{CE}}) \longrightarrow(\mathrm{O} 1 \ldots . .08)$	tCE	-	-	30	-	-	35	ns	
Chip disable time	$(\overline{C E}) \rightarrow(01 \ldots .08)$	${ }^{\text {t }} \mathrm{CD}$	-	-	30	-	-	35	ns	

READING SEQUENCE

DYNAMIC TEST

CB-68

c SUFFIX CERAMIC PACKAGE

ORDERING INFORMATION

Part number \square Screening class Oper. temp. \qquad ___ Package The table below horizontally shows all available suffix combinations for package, operating temperature and quality lovel. Other possibilities on request.										
PART NUMBER	OPER. TEMP.		PACKAGE				SCREENING CLASS			
	C	M	P	J	C	E	Std	-D	G/B	B/B
TS71640	0		-	\bullet			\bigcirc	-		
TS71641	-		-	-			-	-		
Examples : TS71640CP, TS71640CP-D, TS71640CJ, TS71640CJ-D										
Oper. temp. : C : $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{M}:-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Package : P : Plastic DIL, J: Cerdip DIL, C : Ceramic DIL, E : Ceramic LCC. Screening classes : Std (no end-suffix), -D : NFC 96883 level D. G/B : NFC 96883 level G, B/B : MIL-STD-883 level B and NFC 96883 level B.										

Trade Marks Registered ©

Thomson Components - Mostek Corporation reserves the right to make changes in specifications and other information at any time without prior notice. Information contained herein is believed to be correct, but is provided solely for guidance in product application and not as a warranty of any kind. Thomson Components - Mostek assumes no responsibility for use of this information, nor for any infringements of patents or other rights of third parties resulting from use of this information, nor for the use of any circuitry other than circuitry embodied in a Thomson Components - Mostek product. No license is granted under any patents or patent rights of Thomson Components - Mostek.

Thomson Components - Mostek Corporation reserves the right to make changes in specifications and other information at any time without prior notice. Information contained herein is believed to be correct, but is provided solely for guidance in product application and not as a warranty of any kind. Thomson Components - Mostek assumes no responsibility for use of this information, nor for any infringements of patents or other rights of third parties resulting from use of this information, nor for the use of any circuitry other than circuitry embodied in a Thomson Components - Mostek product. No license is granted under any patents or patent rights of Thomson Components - Mostek.

The "PRELIMINARY" designation on a Thomson - Mostek data sheet indicates that the product is not characterized. The specifications are subject to change, are based on design goals or preliminary part evaluation, and are not guaranteed. Thomson - Mostek or an authorized sales representative should be consulted for current information before using this product.

The "ADVANCE INFORMATION" designation on a Thomson - Mostek publication indicates that the item described is a prospective product, is not yet available, and that the specification goals have not yet been fully established. Production is anticipated but not guaranteed. The ADVANCE INFORMATION is an initial disclosure of a new product's features and description. The specifications are subject to change at any time without notice, are based on design goals, and are not guaranteed or warranted in any way. Thomson - Mostek or an authorized sales representative should be consulted for current information before using this product or basing any designs on this ADVANCE INFORMATION. No responsibility is assumed by Thomson - Mostek for its use, nor for any infringements of patents or trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights, or trademarks of Thomson - Mostek.

The "APPLICATION BRIEF" or "APPLICATION NOTE" designation on a Thomson-Mostek literature item indicates that the literature item contains information regarding Thomson-Mostek features and/or their varied applications. The information given in the APPLICATION BRIEF or APPLICATION NOTE is believed to be accurate and reliable; however, the information is subject to change and is not guaranteed. No responsibility is assumed by Thomson-Mostek for its use; nor for any infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights, or trademarks of Thomson-Mostek.

1310 ELECTRONICS DRIVE / CARROLLTON. TEXAS 75006 PHONE: (214) 466-6000/TELEX: 730643

[^0]: - Home Office

[^1]: NOTE:

 1. Applies to MK48T03/13 only
[^2]: ZEROPOWER ${ }^{\text {w }}$ is a trademark of Thomson Components - Mostek Corporation

[^3]: $\mathrm{X}=$ Don't care
 $?=$ The next state will be active but the logic level is unknown.

[^4]: - NOTE: EXAMPLE BEGINS WITH BOTH BANKS FULL, AS INDICATED BY STATUS FLAGS

[^5]: X = Don't Care

[^6]: 1. Measured with load shown in Figure 6.
 2. Measured with load shown in Figure 6, $\mathrm{C}_{1}=5 \mathrm{pF}$.
 3. All voltages referenced to GND.
 4. $\mathrm{V}_{\text {IL }}$ may undershoot to -2.0 volts for 200 ns or less during input transitions.
 5. I_{CC} is measured as the average AC current with $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}}$ (max) and with the outputs open circuit. t cycle $=\mathrm{min}$. duty cycle 100%.
[^7]: - Symbols in parentheses are proposed JEDEC standard.

[^8]: - Symbols in parentheses are proposed JEDEC standard

[^9]: - Symbols in parentheses are proposed JEDEC standard

[^10]: NOTES: $1-X$ can be either $V_{I L}$ or $V_{I H}$
 $2 \cdot V_{H}=12.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$
 3. All address lines at $V_{I L}$ except $A 9$ and $A 0$ that is toggled from $V_{\text {IL }}$ (manufacturer code: $9 B$) to $V_{1 H}$ (type code: 08).

[^11]: * Programming verification at both max and $\min \mathrm{V}_{\mathrm{CC}}$ is optional ($\mathrm{V}_{\mathrm{CCH}}, \mathrm{V}_{\mathrm{CCL}}$).

